
Improving data quality for

low-cost environmental

sensors

Xinwei Fang

Doctor of Philosophy

University of York

Computer Science

April 2018



ii



Abstract

Using low-cost sensors to monitor the urban environment has become

increasingly popular, as they can provide better data resolution than

current practices. However, these low-cost sensors often produce poorer

data quality, and so the data may not be utilised directly without pro-

cessing.

This thesis presents a two-phase solution for improving the data qual-

ity of low-cost environmental sensors. The solution consists of a novel

method for anomaly detection and removal, and a process of sensor cal-

ibration. In the first phase, an anomaly model is utilised to identify the

anomalies, which is constructed using a Bayesian-based approach. New

contextual information is used to build the anomaly model, that is to

the best of our knowledge the first time it has been used for such pur-

pose. The result shows that this solution is more practical and robust

than the existing approaches. In the second phase, a systematic com-

parison of the state-of-the-art calibration approaches is performed. The

comparison aims to understand the difference between the methods, and

the result shows a regression based method could provide a more predi-

cable result and require much less computational resources. As a result,

a regression based method is used for calibrating sensors in this work. In

contrast to the existing approaches, the proposed method for calibration

is able to systematically and automatically select the calibration param-

eters. The parameter selection ensures the best set of parameters are

used in the model, which makes the calibration process less sensitive to

different environmental conditions.

The overall evaluations are performed using real datasets. The results

show the data quality in terms of general accuracy against the reference
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instruments can be significantly improved, especially for sensors at road-

side.
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Chapter 1

Introduction

Pollution in urban environments has become the largest environmental

cause of disease and premature death in the world today [44]. The BBC

reported that in 2015, one in six premature deaths globally was related

to pollution, two-thirds of which were linked to air pollution [74]. As

a result, many studies have been carried out to understand pollution in

cities.

1.1 Pollutants in an Urban Environment

Most cities in the world have serious air-quality issues [51,74]. According

to WHO [87], the major pollutants in cities are Nitrogen Dioxide (NO2),

ground Ozone (O3), and the particulate matters (PM10) and (PM2.5).

PM10 and PM2.5 stand for small-sized particles, smaller than 10 or 2.5

micrometers in diameter respectively.

According to [43, 51], pollutants in cities are mainly generated by

human activities, such as traffic pollution and industry pollution, which

could cause various adverse health effects on exposure. The health effects

are predominantly respiratory and cardiovascular diseases, which could

result in an increasing number of premature deaths. For example, PM2.5

is of the greatest health concern to the general public, as they can easily

pass through the nose and throat and accumulate deep inside the lungs.

Since pollution is related to human activities, the pollution levels

at present are higher in industrialised cities and have clear daily pat-
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terns [87]. It is worth pointing out that the increase in NO2 concentration

often comes with a decrease of O3. This relationship between NO2 and

O3 is mainly due to the process of chemical reactions and the reaction

ratio is related to many factors such as temperature and sunlight.

EU air quality standards clearly state limits on the concentration of

a number of pollutants present in the air [25]. Exceeding these limits is

likely to cause serious health effects and governments face fines if they

fail to meet the annual limits. The limits for NO2, O3 and PM10 and

PM2.5 are summarised below.

• PM2.5: 25 µg/m3 annual mean (exceedances are not allowed)

• PM10: 50 µg/m3 annual mean (exceedances are not allowed)

• O3: 120 µg/m3 daily 8-hour mean (exceedances are allowed 25

times over 3 years)

• NO2: 40 µg/m3 annual mean (exceedances are not allowed)

It is noted that concentrations of chemicals in ambient air are typi-

cally measured in units of the mass of chemical per volume of air. Hence,

micrograms per cubic meter (µg/m3) is a unit that is often used in this

context. However, the concentrations of chemicals may also be expressed

as parts per million (ppm) or parts per billion (ppb) in other contexts.

The relationship between ppb and (µg/m3) follows a conversion equation

as follows:

Concentration(µg/m3) = 0.0409×concentration(ppb)×molecularweight
(1.1)

1.2 Current Practice of Monitoring and its

Issues

The European Union and each government has developed an extensive

body of legislation to support the mitigation of pollution in cities. The

legislation not only names the pollutants that need to be monitored but
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also requires them to be monitored at an appropriate spatial and tempo-

ral resolution [15, 17, 18, 26]. However, it has been widely reported that

the spatial resolution of the current monitoring approach is gradually

becoming insufficient [10, 23,37].

Currently, air quality monitoring in the UK uses: 1) passive samplers,

and 2) high-quality electronic sensing stations [17]. These approaches are

used for regulatory monitoring purposes and have been widely applied

in countries across Europe [26]. Passive samplers such as diffusion tubes

are cost-effective devices that enable a large number of devices to be

deployed. For example, diffusion tubes are deployed at more than 230

locations in York, UK [12, 16]. However, since the measurements from

these devices can only be obtained after manual collection and laboratory

analysis, the temporal resolution of the data is significantly limited. For

example, diffusion tubes have been used to provide quarterly averaged

NO2 data in York.

By contrast, high-quality electronic sensing stations provide a much

higher temporal resolution as they sample the environment automatically

and frequently store the measurements in digital format. However, due

to the high market price of individual sensors, as well as the maintenance

costs involved, it can be financially impractical to construct a dense net-

work using those sensors. According to Table 1.1, the minimum cost of

using a reference instrument for a year is more than £100k. As a result,

there are only 134 reference instruments in the Automatic Urban and

Rural Network (AURN) across the UK [15], only two of which are in the

York region [12]. Thus, the spatial resolution of the data is considerably

limited using this approach.

The assumption that pollutant concentrations measured by sensors

are representative of the entire urban environment is a common practice

for pollution assessment [84]. Thus, using data with a limited resolution

would have an adverse impact on the accuracy of the assessment [37,62].

Therefore, a new monitoring approach that is able to provide an improved

spatial and temporal resolution would be significantly important [10,23,

37].
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Table 1.1: The estimated cost for using a reference instrument for a year

(recommended by DEFRA) [13]

The Task Estimated Cost

Six-month to one year monitoring survey

contracted “all-inclusive” to specialist

consultancy.

£10k - £25k

Purchase and installation of single gas-analyser

in existing building with power and phone line

already available.

£10k – £15k

Purchase and installation of a particulate

monitor in an existing building with power and

phone line already available.

£10k – £25k

Purchase and installation of multi-pollutant site

including PM10 in purpose-built enclosure. Power

and phone to be connected, calibration gases to

be purchased, data collection software to be

purchased.

£50k – £80k

Annual “all-inclusive” service and maintenance

costs.
£3-8k per site

Annual data management and QA/QC costs. £5-10k per site

Annual staff costs for site visits. £5-10k per site

Annual cost of electricity/phone. £2-3k per site

Web site commissioning costs. £3-10k

Annual software and web site maintenance fees. £1-2k

Annual filter weighing costs for gravimetric

PM10 monitoring.
£3-10k per year

Total estimated costs, per site, per year £102-198k
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1.3 Low-cost Sensors

It has been widely reported that the use of low-cost sensors can improve

spatial and temporal resolution significantly [32,43,52]. Therefore, using

low-cost sensors is an option if they are sufficiently accurate.

Low-cost sensor units are defined as electronic sensing units that cost

several orders less than existing reference instruments. With recent ad-

vances in electronics, one or more laboratory functions can be integrated

on a single electronic circuit (e.g., Metal Oxide Sensor (MOS) and elec-

trochemical sensor), which makes the cost of sensors considerably lower

and they are more compact and easy to use [85]. More importantly, the

costs incurred during sensor deployment and maintenance can also be

significantly reduced as the use of low-cost sensors does not require in-

frastructure for their deployment or entail frequent manual handling for

maintenance. It is noted that sensors are defined as individual devices

that measure physical phenomenon (e.g. NO2 sensor and O3 sensor);

whereas a sensor unit (e.g. ELM unit, AQ mesh unit) is a system that

integrates one or more sensors. We further differentiate sensors and sen-

sor units from reference instruments, and consider monitoring stations

that are used for regulatory purposes or that fulfil regulatory standards

as reference instruments. However, even though the use of low-cost sen-

sors has many advantages over existing practices, they have not yet been

used for regulatory monitoring purposes due to widely reported data

quality issues [10, 49,76,77].

1.4 The Quality of Data

Data in this work is defined as the measurements of environmental pa-

rameters from sensors. The environmental parameters include, but are

not limited to, temperature, humidity, nitrogen dioxide (NO2) and ground

ozone (O3). According with this definition, variation in data pattern

(e.g. spikes, variations) is related to: 1) the actual physical phenomenon

(caused by environments); and 2) sensing issues (cause by sensors, in-

cluding communication problems). Figure 1.1 illustrates how variation
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of the data would be associated with both factors.

The quality of data in this context is often defined by end-users as

whether it is sufficient for their purposes. Since requirements from end-

users can vary depending on the application, and most users are only

interested in the actual physical phenomenon, data quality in this work

is considered to be the general accuracy of the data with respect to the

ground truth of the environment. Therefore, as illustrated in Figure 1.1,

we believe that data quality can be maximised if the data patterns caused

by the factor of sensing issues are identified and minimised.

DATASENSINGENVIRONMENT

Variations of	sensors

Systematic
e.g. Sensor	

drift

Random
e.g.	Sensing

errors

Variations of	environments

Systematic
e.g. Seasonal	
Changes

Random
e.g. Abnormal	

event

Data	patterns	in	terms	of	signal

Systematic	
patterns: e.g.	
variation	of	

data	

Random	
patterns:	e.g.	
Spikes, outliers

Figure 1.1: The structure of sensed data

However, identifying the causes of data patterns can be difficult. An

example of a sensed data series is given in Figure 1.2, which is O3 data

obtained by a low-cost sensor in a city centre. In the figure, various

data patterns can be observed, such as spikes and variations. In many

studies, spikes would be considered as anomalies, if the environmental

parameters are expected to vary smoothly [6]; but spikes could also be

introduced by real but unusual events, such as spikes caused by a bus

idling near a sensor. It is noted that anomalies in this work are differen-

tiated from outliers. Anomalies are abnormal measurements caused by

sensing issues, whereas outliers are genuine extreme data values. In ad-

dition, variation in the sensed data would be intuitively considered to be

a daily variation of the environment; however any inconsistent responses

of the sensor would also introduce a variation in the data. Since it is

difficult to differentiate the causes of data patterns, the ground truth of

the environment is important for this work. We assume that the data
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Figure 1.2: Ozone data obtained from a low-cost sensor

pattern is caused by sensing issues if it is inconsistent with the ground

truth of the environment.

1.4.1 Ground Truth in the Environment

As reported in [75], it can be challenging to obtain the ground truth of

an uncontrolled environment. As a result, assuming the data from ref-

erence instruments as the ground truth of the environment is a common

practice [28,49,67,76].

A reference instrument often contains multiple analysers, and each

analyser only measures the target pollutant. For example, the Tapered

Element Oscillating Microbalance (TEOM) analyser is used for moni-

toring particulate matter and UV absorption is used for monitoring O3.

The exact model and brand of the analysers are not specified in the pur-

chasing guide distributed by DEFRA. However, the analysers used must

meet the requirements as described in [13]. A service of the instruments

is performed every 6 months by Ricardo, which calibrates all analysers

in the instrument using the approved quality assurance and quality con-

trol (QA/QC) procedures [1, 14]. The calibration process includes leak

tests, analyser reconfiguration and a linearity test, which is based on the

standard calibration procedure described in [66].
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Since no instrumentation could provide an absolute ground truth in

the field, any errors that occurred in the reference measurements would

make this work more difficult. The data quality objectives for ambient

air quality assessment in [26] allow for uncertainty for PM2.5 and PM10

of 25% and uncertainty for O3 and NO2 of 15%. The uncertainty of the

assessment is evaluated in accordance with the standard method (ISO

5725:1994), and it is considered as the maximum deviation of the mea-

sured concentration over the period of consideration, without taking into

account the timing of the events. Therefore, we expect the data quality

of a target pollutant to be no worse than the stated accuracy in [26].

According to [1], the accuracy of the data from reference instruments is

not routinely calculated, and the ‘best possible’ uncertainty for the ref-

erence instruments is estimated as ±15% for the measurements of NO2

and O3; and less than ±10% for the measurements of particulate matter

(PM2.5 and PM10) at the annual averaged concentration. Since the ref-

erence instruments are used as part of regulatory monitoring and fulfil

the EU requirements, we assume that the data quality is sufficient for

end-users [49]. In the rest of this thesis, the reference measurements,

i.e., the data from reference instruments, is considered to be the ground

truth.

1.5 Problem Formulation and Research Ques-

tions

In comparison to the reference instruments, the data from low-cost sen-

sor often encounter: 1) lower data accuracy, 2) a higher percentage of

outliers, and 3) unexpected data patterns (i.e. constant values) [7,11,32,

47,81]. Admittedly, the calibration of sensors and detection of anomalies

are able to alleviate reported data issues as demonstrated in [71, 80, 94].

However, according to [28, 49, 77], the existing methods would not suf-

ficiently compensate for the issues of low-cost sensors, especially when

they are in a polluted urban environment. Therefore, an investigation

was performed to determine a process capable of enhancing the data
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quality of low-cost sensors, particularly in a more polluted environment.

1.5.1 Calibration of Sensors

The literature has demonstrated that sensor calibration is able to im-

prove data quality [6, 28, 49]. Sensor calibration is used to determine a

transferable model, which minimises the systematic differences between

the signal of an uncalibrated sensor and the reference.

Since the response of a low-cost sensor may be related to certain

environmental factors, the state-of-the-art method uses multivariate cal-

ibration. Unlike the univariate calibration process which only uses pa-

rameters of interest to construct the model, the multivariate calibration

also uses supporting parameters such as [49, 75, 76]. The intuition of

this is, if the response of NO2 is related to temperature, a more accu-

rate calibration of NO2 can be determined if the calibration function

includes temperature and subtracts its effect. This allows for a more

accurate calibration model to be derived, as demonstrated in the litera-

ture [19, 20,23,24].

1.5.1.1 Selection of the Method

It has been widely reported that data from low-cost sensors are not able to

provide sufficient information without proper calibration. According to

the literature, regression and artificial neural network (ANN) are two of

most widely used approaches for the calibration of low-cost sensors. How-

ever, the lack of work on effective comparison of calibration approaches

makes it difficult to determine the most appropriate calibration solution.

This leads to the first research question:

Research Question 1: Which is the appropriate calibration

method (Regression or ANN) considering the needs of our

application?
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1.5.1.2 How to Use Supporting Parameters

It is known that the response of a sensor can be affected by a lot of in-

fluences, which implies that calibration may require different supporting

parameters, depending on the actual influence [60, 69]. As a low-cost

sensor often monitors multiple parameters, a large number of parame-

ters are available for multivariate calibration. The problem is when an

appropriate parameter is available but not used in the calibration, the

calibration error may remain large. Whereas, if an inappropriate param-

eter is used, the result would be negatively affected [30,53,78]. This leads

to our second research question:

Research Question 2: How can we ensure calibration results

by properly using supporting parameters?

1.5.2 Detection of Anomalies

The detection and removal of anomalies is another well-known process

for improving data quality. It is known that some of the anomalies may

be associated with a systematic cause. Since we do not have access to

the hardware during this study, the root causes of anomalies remains

unknown. Therefore, we assume that anomalies in the data may not be

compensated by a calibration process, and thus can only be removed.

In this work, anomalies are referred to as abnormal sensor readings

(i.e. the sudden change of pollution concentration) caused by sensor is-

sues that are uncorrelated to the underlying physical phenomena. How-

ever, as discussed in Section 1.4, anomalies are hard to differentiate from

genuine data when the actual physical phenomena is unknown (e.g., a

bus idling near the sensor). Intuitively, using data from reference instru-

ments would reveal what actually happened, for example, how it is used

in the calibration. However, the data from low-cost sensors often has a

much higher temporal resolution (20 seconds) than reference instruments

(hourly), which implies that a real short-term increase in value at higher

temporal resolution may not be noticeable when looking at hourly data

from reference instruments. Furthermore, it is noted that using aver-

aged data would still be inappropriate, as the data after the aggregation
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would still be inconsistent with the data from reference instruments, as

illustrated in [28]. Thus, the data from reference instruments may not

be used as the ground truth for the detection of anomalies.

Admittedly, the consistency between data from low-cost sensors and

reference instruments would be significantly improved after calibration.

However, considering that the calibration process would affect the proper-

ties of anomalies (i.e. changes their magnitude), the detection of anoma-

lies after calibration is inappropriate. Most importantly, anomalies in the

data could also affect the calibration result. Therefore, we believe that

the detection of anomalies before calibration is important. The above

issues lead to the third research question:

Research Question 3: How can we accurately detect and re-

move anomalies to further improve data quality?

1.6 Statement of Hypothesis

Based on the motivations and research questions highlighted in the pre-

vious section, the hypothesis of this thesis is formalised as follows:

Both regression and ANN-based methods are able to improve

data quality for low-cost sensors. However, the regression-

based method is more suitable for our application due to lower

computational cost, reduced sensitivity to the model parame-

ters used and the need for less training data. The data qual-

ity can be enhanced by a calibration process that properly uses

the supporting parameters and data quality can be further im-

proved by applying an accurate removal of anomalies before

calibration.

1.7 Organisation of the Thesis

To present this research, the rest of the thesis is summarised in this

section.
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• Chapter 2: This chapter describes the research background. The

use of sensors and their deployments are presented. The data ob-

tained from the deployments is then used to illustrate the properties

of the data in terms of variability.

• Chapter 3: This chapter is a review of state-of-the-art work in

this area. It covers the calibration of sensors and the detection of

anomalies. The limitations of the current methods are also dis-

cussed in the review. At the end, we discuss the contributions of

the thesis with respect to the limitation of the methods.

• Chapter 4: This is the first technical chapter. This chapter presents

a systematic comparison of the calibration techniques. It focuses on

determining the difference between two of the most used calibration

methods, regression and artificial neural networks. In addition,

this chapter also uses multiple sets of training and testing data to

determine the sensitivity of each method to these data.

• Chapter 5: This chapter presents a modified regression-based method.

In contrast to the existing method, the new method is able to

maximise the dependency between input variables and automat-

ically use the appropriate supporting parameters. The evaluation

of the method is carried out using data obtained from different en-

vironments and the results are compared with the state-of-the-art

method used in Chapter 4.

• Chapter 6: This chapter demonstrates the method for the detection

of anomalies. New relevant contextual information, cross-sensitive

parameters, is used to help identify anomalies. A Bayesian-based

method is used to learn the information and construct the anomaly

model. The evaluation is performed on both synthetic and real

datasets, and the results are also compared with the state-of-the-

art method.

• Chapter 7: This chapter concludes the work with a discussion of

the main contributions and potential future work.
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Chapter 2

Literature Review

This chapter presents a literature review which covers a wide range of

studies related to this work. The main purpose of this chapter is to

provide a background of the state-of-the-art research and to understand

its strengths and limitations with respect to the problems formulated in

Section 1.5.

To begin with, we discuss the the trade-offs between the on-line and

the off-line process in Section 2.1. After that, the state-of-the-art meth-

ods for the calibration of sensors and the detection of anomalies are

reviewed in Section 2.2 and 2.3 respectively. Finally, the limitations of

the current methods and a set of important points are summarised in

Section 2.4.

2.1 On-line and Off-line Process

For sensor related applications, data processing can be generally classified

as an on-line or off-line process. An on-line process means that the data is

processed on the sensor unit before being transmitted to a server; whereas

an off-line process is performed in another place, e.g. a computer, by

fetching the data from the server.

On-line processes ensure the data is processed in real time, and reduce

communication overheads if anomalies are removed before the transmis-

sion. Reducing communication overheads can be extremely beneficial

for sensors running on batteries, as the cost of transmission can be sev-
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eral orders higher than the processing [4]. However, the on-line process

would permanently change the data. This can be a disadvantage if the

process is inadequate, as the process would lead to important informa-

tion being incorrectly permanently removed from the data. In addition,

an on-line process would hinder using information from external sources,

which makes it difficult to identify anomalies as reported in [57,79].

By contrast, off-line processes only work on a copy of the data, and

are able to use information from external sources. However, they require

all sensor data to be transmitted, which increases the communication

costs dramatically. Therefore, using an off-line process is not always the

better option.

Existing studies show that the selection of an on-line or off-line process

is closely related to the application requirement. Thus, it is important to

balance the trade-off between the processes according to the application.

For example, the trade-off between the communication costs and data

integrity.

2.2 Calibration of Sensors

The calibration of sensors has been extensively studied for many years.

In this section, firstly we present a review of the calibration of a single

sensor unit. Then, we review state-of-the-art methods for the calibration

of multiple sensor units (sensor networks). Finally, we summarise the

review of sensor calibration.

2.2.1 Calibration of a Single Sensor Unit

It is known that data from low-cost sensors are widely reported to be

insufficient and may not be used without proper processing. Hence, many

studies have been conducted trying to identify the potential causes.

An obvious question is what factors or variables would affect the re-

sponse of low-cost sensors. In order to answer that question, Lewis et

al. [46] performed a detailed laboratory-based analytical study on differ-

ent electrochemical sensors, including O3 and NO2 sensors. The main
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purpose of their work is to determine whether co-pollutants would affect

the response of the sensor.

In their first experiment, a controlled concentration of a particular

gas was injected into clear air. They report that no abnormal sensors

responses were observed. In the second experiment, the sensors were

tested in ambient air. The air was mixed with a controlled percentage

of different gases including O3, NO, NO2, SO2, CO, H2 and CO2. The

authors conclude that interference from co-pollutants in the response of

sensors can be significant, and the degree of the interference depended

on the ratio of co-pollutants. The results of the interference are shown

in Figure 2.1. Even though they did not further investigate how differ-

ent percentages of co-pollutants and various mixtures of the air would

affect the response of the sensors, their findings are still important as

they explain why low-cost sensors often behave unexpectedly in a real

environment.

Finally, the sensors were exposed in the field (a real environment) and

their response was evaluated against a reference instrument. The sensor

data were linearly calibrated, and the results show the O3 sensor has a

good correlation (R2 = 0.9) with the reference as shown in Figure 2.2;

whereas the NO2 sensor has poor statistical agreement (R2 = 0.25) with

the reference as shown in Figure 2.3. Lewis et al. believe that the NO2

sensor was not measuring the target compound exclusively due to inter-

ference from co-pollutants. Moreover, the NO2 sensor generally reported

a significantly higher concentration than the reference, which consider-

ably exceeded air quality standards (200 µg/m3 1-hour mean). Their

results suggest that NO2 sensors would be more difficult to compensate

and require a more comprehensive evaluation than O3 sensors.

Similarly, Castell et al. [10] deployed 24 identical units of low-cost

sensors in the field to evaluate how the data quality of the sensors com-

pared to the reference instruments. Instead of testing sensors in just one

location, as in [46], the sensors were deployed at different locations for

3 months. Thus, the spatial variation of the data could be obtained in

their work. The sensors monitored multiple parameters including NO2

and O3. The sensors were firstly tested in a laboratory before the deploy-
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Figure 2.1: First row: observed mean ambient pollution mixing ratio and

one sigma range over 18 days. Subsequent rows show the impact of the

signal induced by a co-pollutant expressed as a percentage of the mean

ambient mixing ratio of the measurand (quoted from [46])

Figure 2.2: A time-series comparison of reference photometric O3 instru-

ment (black line), highest O3 sensor (red line), and lowest O3 sensor (blue

line). Grey shaded area shows those sensors lying in the 25th to 75th

percentile range. (quoted from [46])
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Figure 2.3: A time-series comparison of reference chemiluminescence

NO2 instrument (black line), highest NO2 sensor (red line), and low-

est NO2 sensor (blue line). Grey shaded area shows those NO2 sensors

lying in the 25th to 75th percentile range. (quoted from [46])

ment, the test results show that the sensors had a linear response when

only the target gas was injected into the clean air; but the response of

the sensors became hard to predict when the air was mixed with multiple

gases.

The results are in-line with findings reported in [46], which suggests

that low-cost sensors are generally sensitive to co-pollutants. The data

quality was determined and compared against the reference instruments.

Their results show that the performance of sensors varies both spatially

and temporally, and it also varies from sensor to sensor. The results also

show that the variation in sensor performance is related to environmental

variables, such as meteorological conditions and different air composition.

Therefore, the authors conclude that all sensors may need to be evaluated

individually and evaluation in the environment of operation is necessary.

Mueller et al. [54] further investigate the performance of low-cost

sensors (i.e. NO2 and O3) in a real environment. In contrast to the

study in [10,46] where the environmental conditions of deployment were

relatively consistent, the experiment in this work covered a wide range

of environmental conditions, including urban roadside and urban back-
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ground. The units were initially operated in the different environmental

conditions for 3 months, for performance analysis and initial calibration.

They were then relocated to different locations. The authors report that

multivariate regression provides a good calibration result for NO2 in a

harsh environment, as shown in Figure 2.4. However, the result of cali-

bration would drop significantly after relocation. This is largely related

to the change in humidity between different locations, as reported in the

paper.

Mueller et al. further identify using multivariate calibration as impor-

tant for compensating for the data quality of low-cost sensors, especially

for NO2 sensors. However, they do not specify what supporting param-

eters are important to use in the model, but they suggest that the use of

the parameters would be sensitive to different environmental conditions.

Their results indicate that the calibration function may need to be ad-

justed ech time the environmental conditions change, which implies that

the calibration of low-cost sensors in an urban environment may need to

be frequently applied.

Studies in [10,46,54] shows consistent findings in the response of low-

cost sensors, which are:

• The response of low-cost sensors is sensitive to their co-pollutants.

Thus, co-pollutants should be considered in the calibration process.

• The calibration of an NO2 sensor is more difficult than an O3 sen-

sor.

• The response of low-cost sensors varies in different locations. Thus,

the assumption that calibration can hold when sensors are in dif-

ferent locations is not appropriate.

• Calibration may not hold over time due to changes in environmental

conditions.

Since the response of low-cost sensors is sensitive to environmental

conditions (e.g. co-pollutants, meteorological conditions), univariate cal-

ibrations which neglect those effects may be insufficient to compensate

the data of low-cost sensors, especially for NO2 sensors, as identified
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Figure 2.4: The result of calibration with respect to reference (quoted

from [54])

in [23]. As a result, multivariate calibrations that use certain support-

ing parameters have become increasingly popular, and they are currently

the most efficient and effective approach for the calibration of low-cost

sensors.

In contrast to univariate calibration, multivariate calibration uses not

only the parameter of interest (e.g. the target gas) but also other sup-

porting parameters or useful parameters, such as co-pollutants or tem-

perature and humidity. It is clear that the response of sensors could be

strongly related to those effects. Hence, by including certain parameters,

a calibration model would be expected to extract information from those

parameters and subtract the influence from them. This is one reason

why using multivariate calibration is believed to provide a better sensor

calibration. According to [20], a multivariate calibration is generalised
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as the determination of an approximation Ψ in:

Reft = Ψ(Parameter(1)t, Parameter(2)t, ..., Parameter(n)t) (2.1)

where Reft is the pollutant concentration measured by a reference

instrument at time t, and parameter(1)t to parameter(n)t are the uncal-

ibrated parameter of interest and other supporting parameters measured

at the time t.

Devito et al. [20] performed an multivariate calibration of NO2 using

an ANN-based method. Their sensors monitored a list of parameters

that were all used as supporting parameters in the calibration, which

included CO, NOx, O3, temperature (T ), and relative humidity (H). In

their evaluation, the various combinations of the supporting parameters

were tested and the calibration results were determined by the Mean

Absolute Error (MAE) between the model output and the reference. It

is noted that in their results, using an increasing number of supporting

parameters in the calibration did not always lead to a better calibration

result. This indicates that the optimal calibration would not be sim-

ply using all available parameters, which implies that selection of the

supporting parameters would be needed.

A dynamic calibration of low-cost sensors has been proposed based on

an ANN-based method in [23]. Dynamic calibration means the datasets

used for training and testing were obtained at an ultra high temporal

resolution, e.g. at the minute level. This reflects the rapid changes in

concentrations in a real environment. According to the authors, this is

the first dynamic calibration that has been performed in a real environ-

ment as the evaluation was limited by 1) the high temporal resolution

reference data and 2) the inconsistent environmental conditions (both

spatially and temporally) that results in the tested sensor and the ref-

erence not sampling the same phenomena. It is noted that unlike in a

regression-based method, which requires the raw data to be averaged to

a desired temporal resolution in advance, ANN-based methods use data

with higher temporal resolution directly in the calibration. The evalu-

ation shows using the raw data directly in the ANN calibration would
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consistently obtain a better result than the one using the averaged data.

However, the authors did not specify how the network would deal with

the inconsistent number of inputs caused by data gaps.

Spinelle et al. [77] compared a number of calibration methods for

calibrating NO2 and O3 in the field. The methods include univariate

linear regression, multivariate linear regression (MLR) and ANN. The

results were evaluated according to root mean squared error (RMSE)

only, which are illustrated in Figure 2.5. Their results show O3 sensors

are relatively easy to calibrate, as they can achieve a high correlation

with the reference using just univariate linear regression. By contrast,

the NO2 sensors are more difficult to calibrate and they would require a

more complex calibration, such as MLR and ANN. The results confirm

the findings in [10, 46, 54]. Furthermore, their evaluation also indicates

that using an ANN would obtain a better calibration result than using

a MLR. However, it is noted that their calibration was carried out in

a suburban environment, where the environmental conditions could be

considerably different from a typical urban environment. Thus, an ANN-

based method may not always be the best choice for the calibration of

sensors.

Figure 2.5: The result of calibration from multiple methods; centred root

mean square error (CRMSE)(quoted from [77])
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Maag et al. [49] also performed a multivariate calibration for low-

cost sensors in the field. Their results suggest that the cross-sensitive

parameter is the most important parameter for the calibration of NO2.

Cross-sensitivity is defined as sensitivity to one substance which ren-

ders the sensors sensitive to other substances. It is known that NO2 is

cross-sensitive to O3; hence O3 is also referred to as the cross-sensitive

parameter of NO2. This means that the readings from an NO2 sensor

would be dependent on the concentration of O3 in the mixed air. Given

an intuitive example, we assume an NO2 sensor has a response to O3 at

a rate of 50% (this value can be both positive and negative, and would

vary in different conditions) due to cross-sensitivity. Then, if the NO2

sensor is exposed to 200ppm of O3 only, the NO2 sensor will report 50%

of 200ppm. However, if the NO2 sensor is exposed to 100ppm NO2 and

200ppm O3, the NO2 sensor would provide readings of 100ppm + 50%

200ppm.

For this experiment, the monitored parameters are identical to the

ones in [20]. However, it is noted that the supporting parameters used

for constructing the final calibration model are different. This suggests

that the use of the supporting parameter is not only dependent on the

availability of the parameters, but also related to other factors, e.g. cur-

rent environmental conditions. Their results emphasise the importance

of selecting the supporting parameters and shows the significance of using

cross-sensitive parameters in sensor calibration.

The existing studies demonstrate that multivariate calibrations are

able to better calibrate low-cost sensors. The lessons learnt from those

studies are:

• The existing studies often ignore the incompleteness or inconsis-

tency of the data in their process.

• A larger number of supporting parameters used in the calibration

does not always lead to a better calibration result.

• Temperature and humidity, as well as cross-sensitive parameters,

are often used in multivariate calibration, and they have been re-

ported to be useful in many applications.
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• The use of supporting parameters is sensitive to environmental con-

ditions. This shows the importance of selecting supporting param-

eters, especially for sensors in different locations.

The review suggests that using multivariate calibration is impor-

tant to calibrate low-cost sensors, and the ANN-based method and the

regression-based method are the most applied approaches. However, it is

difficult to select an appropriate calibration method for an application,

as the difference between the methods has not yet been comprehensively

studied. Intuitively, a regression-based method can be easily applied and

interpreted [49], but it may not be suitable for calibrations that have a

complex relationship between input variables and the output [77]. By

contrast, an ANN-based method would be able to solve such a prob-

lem with more complicated training and a higher computational cost.

However, to the best of our knowledge, little work has demonstrated a

systematic comparison of the approaches, which hinders understanding

the difference between the methods.

One prominent existing comparison, [77], is limited to comparing the

calibration results in terms of calibration accuracy, which is often rep-

resented as the averaged error between the model predictions and the

reference, e.g. root-mean-squared error (RMSE) or mean-absolute error

(MAE). Since two identical averaged errors may represent different error

distributions, using the calibration accuracy as the only metric for the

comparison would not be sufficient and would not give a deep under-

standing of their differences.

To solve that issue, Esposito et al. [24] and Devito et al. [19] provide

a more detailed comparison for multivariate calibration approaches. In

their work, the approaches are cross-compared not only for calibration

accuracy (determined by the mean absolute error), but also for the capa-

bility to deal with different training scenarios. In [24], calibration results

were compared by varying a different number of training and testing sam-

ples. However, it is noted that the variation of the training and testing

samples was divided by a cut-off value. Hence, results are impacted by

changes in both the training and testing samples, which makes it diffi-

cult to determine which changes are responsible for the variation in the
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output.

Devito et al. [19] analysed how the calibration accuracy was affected

by using different model parameters. For example, they compare calibra-

tion accuracy by varying certain model parameters in the ANN network.

In that case, they would have to assume that the model parameters of

the ANN are independent or partially dependent. However, according to

our analysis, this assumption is not valid as demonstrated in Section 4.

Therefore, we believe that the existing comparisons are less effective and

not able to find the best calibration approach for the needs.

2.2.2 Calibration of Sensor Networks

Calibration of sensor networks are different from the calibration of a sin-

gle sensor unit. A number of surveys categorise the methods for the cali-

bration of sensor networks into micro-calibration and macro-calibration,

e.g., in [28, 82, 86]. Macro-calibration calibrates a network by using the

consistency of the nearby environment and maximises the similarity of

measurements from neighbouring sensors [6,9,29,48]. Thus, no reference

sensor would be required which significantly reduces the cost of calibra-

tion.

Balzano et al. [6] propose a blind calibration, which requires neither

controlled environmental conditions nor high-fidelity reference sensors.

The method in theory is able to automatically calibrate a group of sen-

sors (i.e., sensor networks) in the field. The approach assumes the target

gas would vary smoothly in the field (spatially), and the signal of the

target gas is bandlimited (i.e. the signal can be sampled by a limited

number of sensors). By having that assumption, based on the Nyquist

theorem, the sensor network can over-sample the target gas and recon-

struct its spatial distribution if the deployment of the sensors (spatial

distance) is at least two times higher than the spatial variation of the

signal. The reconstructed signal would be used as the ‘reference’ for the

calibration, and each sensor then adjusts the gain and offset to minimise

the difference to the ‘reference’. However, the method would require that

every sensor in the network can be compensated by an univariate linear
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model (i.e., the model has only two unknowns, gain and off-set). It is

clear that such the assumptions are often invalid in real practice as uni-

variate calibration is often hard when compensating low-cost sensors, as

reviewed in Section 2.2.1

Lipor et al. [48] improved the work in [6] by using total least squares

estimation. The advantage of which is reducing the errors which oc-

curred during the estimation of the ‘reference’. The simulated result

compares four methods, i.e. Least Square (LS), Partially-blind Least

Square (PB-LS), Singular Value Decomposition (SVD) and Partially-

blind Total Least Square (PB-TLS), in Figure 2.6. The figure indicates

that the proposed method (PB-TLS) in theory outperforms the method

(LS) in [6]. In the figure, the dashed line indicates the error of sensors

without calibration, the subspace error is the error that occurs during

the estimating of the ‘reference’. However, even though this method is

considerably more robust than the method in [6], the method still relies

on the same assumptions as in [6], which are often invalid in practice.

Figure 2.6: Error in gain estimation as a function of subspace error

(quoted from [48])

In [9], Bychkovskiy et al. present a two-phase method for calibrating
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a group of sensors. In the first phase, all sensors are required to be co-

located in a place to obtain a relative calibration, which determines the

relationship between pairs of co-located sensors. In the second phase, the

method optimises the determined calibration by maximising the consis-

tency of the sensor measurements in the environment of the deployment.

An obvious issue with this method is if the environmental conditions are

different between the two phases of deployment, the calibration function

obtained in the first phase may not provide a good calibration result in

the second phase. According to Section 2.2.1, it may not be appropriate

to assume the environmental conditions between the two phases of de-

ployment are consistent. Thus, we believe that this method may not be

suitable for applications in an urban environment.

The literature suggests that in theory macro-calibration could cali-

brate a large sensor network at a relatively low cost, as it requires neither

the references nor on-site manual handling. However, such calibration

often demands significant assumptions, and some of the assumptions

are inappropriate for applications in an urban environment, e.g. as-

suming environmental conditions are spatially consistent. In addition,

since macro-calibration calibrates a sensor using the outputs from a non-

reference sensor or model, the determined calibration is only relative, and

could be significantly different from the true value. Due to the identified

limitations, macro-calibration is not ideal for real applications, especially

in the urban environment.

Micro-calibration, on the other hand, is different from macro-calibration

as it uses reference instruments or freshly calibrated low-cost sensors as

a reference. Hence, the obtained calibration is more reliable and it does

not require any assumptions about the behaviour of the sensors or the

conditions of the environment [59, 67]. However, it can be impractical

to co-locate a reference next to every low-cost sensor in the network due

to cost and practical issues. Therefore, using freshly calibrated mobile

sensors as a reference is commonly used in practice [35,88,89].

Saukh et al. [68] propose the idea of using rendezvous to calibrate

sensor networks. Rendezvous is considered as the vicinity when a refer-

ence (freshly calibrated low-cost sensors or reference instruments) and an
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uncalibrated low-cost sensor are close in space and time. As a result, a

rendezvous can be used to propagate the calibration function as sensors at

the rendezvous are considered to monitor the same physical phenomena.

In this context, the calibration is classified as a single-hop calibration

if a low-cost sensor is calibrated directly from a reference instrument;

whereas a multi-hop calibration means that a sensor is calibrated by the

freshly calibrated low-cost sensors and rendezvous (e.g. propagated via

multiple hops from the reference).

Hasenfratz et al. [35] present a multi-hop calibration to calibrate O3

sensors using mobile sensors. The work uses simulations to emulate a

scenario where O3 sensors were placed on mobile platforms, such as a bus

or tram. The constraints were 1) the platforms would pass a reference

sensor every 40 minutes for rendezvous; and 2) the calibration would be

propagated by a number of simulated low-cost sensors. Their simulated

results suggests the accuracy of the calibration would decrease with an

increasing number of hops. It indicates that the error propagation could

be an issue for such a method. The other criticisms of this study are: 1)

the results are based on the simulation, and therefore may not reflect a

real case scenario; 2) the method may not be applicable to parameters

that require a multivariate calibration, such as NO2.

Maag et al. [50] offer a constrained least-square method for a multi-

hop calibration, denoted as sensor array network calibration (SCAN).

Their method was evaluated using both artificial data and real data. The

result illustrated in Figure 2.7 shows a significant improvement in reduc-

ing error propagation over a number of hops in comparison to multiple

least regression (MLR) and geometric mean regression (GMR). Thus, this

method would alleviate the error propagation issue encountered in [35].

However, their work is only demonstrated for calibration parameters that

can be compensated by a univariate calibration.

Other studies on the multi-hop calibration have taken a different re-

search focus. For example, the authors in [31] consider multi-hop cali-

bration as an optimisation problem to determine the best travel route

for mobile platforms and in [89] to determine the optimal rendezvous to

improve the calibration accuracy.
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Figure 2.7: The calibration error in term of overall RMSE over a number

of hops (quoted from [50])

The review illustrates that current studies on the calibration of a

sensor network are mainly based on simulations and may not calibrate

a parameter that would require multivariate calibration, such as NO2.

It is understood that real deployments and datasets are important for

studying the calibration of sensor networks. However, as reported in [27],

to deploy sensors in desired locations and to obtain the required data can

be difficult in practice, which is the main barrier for such a study.

According to the review, the issues for the calibration of sensor net-

works are summarised as:

• A lot of studies rely on simulations due to the lack of real sensed

data.

• The propagation of calibration errors is still an open challenge for

the calibration of sensor networks.

• A lot of studies require assumptions which often do not hold in

practice.
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2.3 Detection of Anomalies

The detection of anomalies has been an active research area in many

domains including fraud detection, image processing and sensor networks

[39, 94, 95]. This review only focuses on anomaly detection for sensors

and sensor networks.

In many existing studies, outliers and anomalies are used interchange-

ably. However, in this study, we differentiate them. We consider outliers

to be the extreme values only. Thus, outliers are not necessarily anoma-

lies, as extreme values can also be real measurements (e.g. a bus idling

next to a sensor). By contrast, anomalies are defined as abnormal data

caused by sensing issues. More specifically, we consider anomalies as

a sudden change in the signal which is uncorrelated to the underlying

physical phenomena. Thus, methods that only detect outliers would not

be sufficient for this study and an ideal method is required to further

separate anomalies from outliers.

A straightforward solution to detect anomalies is to determine a pro-

file of the normal data or the anomalies, and use the profile to differentiate

one from another. Such a profile is referred to as an anomaly model in

this thesis. However, as discussed in Section 1.4, the underlying physical

phenomena is not always available, which makes an accurate anomaly

model difficult to obtain. Common practice is to use extra information

to approximate physical phenomena (e.g. using information from other

sensors). However, the existing solutions may not be directly applica-

ble in this work. In this section, we review a set of methods that have

been widely used for determining anomaly models. According to [64,94],

these methods can be broadly classified as 1) statistical-based methods,

2) nearest-neighbour-based methods, 3) cluster-based methods, and 4)

classification-based methods.

2.3.1 Statistical-based Methods

Statistical-based methods are the simplest method of the four types of

method identified in [94]. They differentiate anomalies by building a

statistical distribution that represents normal data. These methods can
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be further divided into parametric and non-parametric approaches. For

the parametric approaches, the distribution parameters can be easily ob-

tained if the data distribution to be used is known; whereas, determining

the distribution parameters for non-parametric approaches can be diffi-

cult.

Palpanas et al. [57] propose a non-parametric on-line method which

uses a kernel density estimator to determine the profile of the normal

data. The method in theory can detect outliers in streaming data. How-

ever, the method only identifies outliers and is not able to further separate

anomalies. More importantly, the proposed method was only discussed

theoretically and not evaluated experimentally.

Subramaniam et al. [79] extended the work in [57] by performing an

experiment on a synthetic dataset, and the authors also introduced a

sliding window to up-date the profile of normality. The result shows

that the method can obtain an accurate detection result in streamed

data. However, since the method is also performed on-line, there is only

limited information that can be used (as discussed in Section 2.1). Hence,

it would not solve the issue encountered in [57], i.e. the method only

detects outliers not anomalies.

Sheng et al. [73] use an off-line method to detect abnormal values in

sensed data. The key idea of their work is instead of transmitting all

sensed data to the sink for analysis, which would be extremely costly,

they use a histogram to extract information from the data and only

transmit the histogram back to the sink for the analysis. The simulation

results show that the method is able to detect outliers, with communi-

cation costs being dramatically saved. Since the method is an off-line

process, it enables the use of information from other sensors. However,

the abstracted histogram contains too little information to help further

separate anomalies from outliers.

Zhang et al. [92] use off-line spatial and temporal correlations respec-

tively to differentiate anomalies from outliers. Temporal correlation has

three steps. Firstly, the difference between any two consecutive data

points, x(s, t) and x(s, t− 1), is calculated, resulting in a new time series

{x′(s, t) = x(s, t)− x(s, t− 1)}. It is noted that x is the dataset, s and t
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indicate the parameter s taken at time t. The new time series indicates

the change in the temporal property. It is noted that the authors ignore

the natural variation of the data, e.g. daily and seasonal patterns, by

taking data for a short period of time (i.e. data is only few hours long).

In the second step, an auto-regressive moving average model is fitted,

which is defined as AR(p). AR() stands for the model and p is the num-

ber of historical observations used in the model. As a result, the model

AR(p) suggests that the current observation is only correlated with the

previous p observations. It is noted that a larger p would not always

lead to a better result due to the variation of data. Hence, the current

observation can be modelled using the previous observation according to

Equation 2.2

x̂′(s, t) =

p∑
i=1

αix
′
(s, t− i) + εt (2.2)

where αi = αi : i = 1, 2, ..., p are model parameters and εt is white noise.

In the third step, the anomalies are identified by comparing the current

observation with the predicted one. If the difference is above a thresh-

old value, the current observation will be considered to be an anomaly.

However, such a method would require a complete time series, meaning

no data gaps or missing values in the data are allowed. Otherwise, the

result would be significantly compromised. The use of spatial correla-

tion is a similar idea to using temporal correlation. The key difference

being the predicted value x̂′(s, t) is derived from the spatial domain (i.e.

neighbouring sensors) instead of the time domain. However, using the

spatial correlation would require the neighbouring sensors reporting con-

sistent measurements. The detection results using temporal correlation

and spatial correlation are illustrated in Figure 2.8 and 2.9 respectively.

It is noted that TOD and SOD in the figures stand for temporal outliers

detected and spatial outliers detected. The authors conclude that using

spatial correlations would result in communication overheads but lead

to a better result on the detection accuracy. By contrast, the temporal

correlations do not require data from outside but the results would be

much less accurate.
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Figure 2.8: The result of anomaly detection using temporal correlation,

the circle indicates the detected anomalies (quoted from [92])

Figure 2.9: The result of anomaly detection using spatial correlation, the

circle indicates the detected anomalies (quoted from [92])
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In this section, we reviewed statistical-based methods. We summarise

the limitations of such methods as follows:

• A lot of methods can only detect outliers, especially in the on-line

processes.

• It would require extra contextual information, i.e. spatial and tem-

poral correlations to further separate anomalies from outliers.

• The threshold value is often application dependent and determining

a proper threshold value remains an open challenge.

2.3.2 Nearest-Neighbour-based Methods

The nearest-neighbour-based method assumes that normal data patterns

would be found in a dense neighbourhood and abnormal data are far from

this. In contrast to statistical-based method that the profile of normality

is often determined by fitting a data distribution, the nearest neighbour

based method require the data to be intensively processed to determine

similarity measures. The similarity measure indicates the degree of a data

point being normal or abnormal, e.g. a data point would be considered

as an anomaly if its Euclidean distance to a dense neighbourhood in a

certain feature space is below a given threshold.

Zhuang et al. [96] proposed a method for in-network (on-line) outlier

cleaning for data collection. In their method, the data is transformed in

the time-frequency domain. Then, the similarity measure of a data point

is determined based on Dynamic Time Warping (DTW) distance within

that domain. Abnormality is identified if the similarity measure is above

a pre-defined threshold. An obvious drawback of this method is the result

would be highly dependent on a pre-defined threshold. However, the

authors did not analyse the relationship between the increasing threshold

and the result. Thus, the threshold value may not be obvious to define,

as the trade-off is not clear. Furthermore, it is noted that since this

method is processed on-line, this method would face the same issues that

are discussed in Section 2.1.
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Other studies also use the nearest-neighbour based method to detect

abnormal values [8,90,91]. However, their main focus is not on detection

accuracy but on the balancing of trade-offs, such as the trade-off in using

different network topologies (hierarchy vs flat) or the energy consumed

in transmission and computation.

In summary, the limitations of the methods are:

• It is a pointwise process, thus, it can be computationally expensive.

• Similar to statistical-based methods, it can be difficult to separate

anomalies from outliers if no extra contextual information is avail-

able.

• The selection of a proper threshold value is important in such a

method.

2.3.3 Cluster-based Methods

The cluster-based method groups data with similar patterns or charac-

teristics into clusters and identifies abnormal values according to their

similarity measure, e.g. the Euclidean distance between a data point and

a cluster, or between clusters. In contrast to a pointwise process such as

the nearest-neighbour-based method, the cluster-based method can also

label small clusters as abnormal. As a result, it would require less compu-

tational resources for a larger dataset than the nearest-neighbour-based

method. However, the following limitations still exist:

• Even though its computational cost is less than the nearest-neighbour-

based method, it is still computationally expensive.

• The detection result is highly dependent on the choice of cluster,

which make the method extremely sensitive to the data and the

model parameters.

2.3.4 Classification-based Methods

The classification-based method firstly determines a classifier (i.e. a

model of the anomaly) using a training dataset and uses the determined
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classifier to classify normal and abnormal data into a different dataset.

The classification-based method can be further divided into supervised

learning and unsupervised learning, with the main difference being that

the supervised learning requires a specified output in the training phrase,

e.g. labelling data as anomalies and non-anomalies. It is clear that la-

belling anomalies in a real dataset can be difficult. Thus, supervised

learning, e.g. using an artificial neural network (ANN), is rarely used in

anomaly detection in WSN according to [64].

Elnahrawy et al. [22] present context-aware sensors by using a Naive

Bayesian network to detect anomalies and predict missing values. The

assumption is that sensors in the network would provide data that is both

spatially and temporally correlated. A Naive Bayesian network is then

employed to learn such correlations by calculating the joint probabilities

of the current reading between 1) the current readings from neighbour-

ing sensors (spatial correlation), and 2) its previous readings (temporal

correlation). As a result, the current reading can be predicted with a con-

fidence level by its previous readings and the current readings from its

neighbouring sensors. If the confidence level of the predication is above

a threshold, then the predicted reading will be used as reference to iden-

tify anomalies or to fill the data gap if missing values occur. However, it

is noted that if the assumption is invalid (i.e. data are not spatial and

temporal consistent), the method would not obtain a sufficient result.

Janakiram et al. [40] propose a method that not only uses spatial and

temporal correlations, like [22], but also explores the dependencies from

the observation of sensor attributes. A Bayesian Belief Network is used

to model the temperature value. Apart from the spatial and temporal

correlations, attributes like relative humidity, barometric pressure, light

intensity and mote voltage are also used. Their evaluation shows that

detection results benefit from including the attribute dependencies, but

the improvement is not significant. Therefore, the authors conclude that

the selected attribute may not be used for detection of anomalies solely,

and the method would not be applicable if the spatial and temporal

correlation is weak.

According to [94], apart from Bayesian-based methods, support vec-
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Figure 2.10: ROC curves showing the performance of anomaly detection

algorithms (quoted from [45])

tor machine (SVM) based methods are also a widely used unsupervised

method for detection of abnormal values in WSN. The idea of using an

SVM is to separate data belonging to different classes using a hyperplane

in a higher dimensional feature space. However, finding an optimal hy-

perplane is often reported to be difficult e.g. [63,70,93], as the hyperplane

would be sensitive to the dataset, kernel functions and the use of model

parameters.

Lazarevic et al. [45] present a receiver operating characteristic (ROC)

curve to illustrate the trade-off between the detection rate and false

alarms. The ROC for a number of different methods is shown in Fig-

ure 2.10.

According to the review, the issues in using a classification-based

method can be summarised as:

• For supervised learning, such as an ANN, labelling the training

dataset is required, which is often impractical.

• For SVM-based methods, to determine an optimal model parameter
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can be difficult as the model will be sensitive to the dataset and the

selection of kernel functions, and this can be very costly in terms

of computation.

• Using appropriate contextual information can be important.

2.4 Summary of Literature Review

The review of calibration techniques indicates that the current calibration

of sensor networks is still an open challenge. Macro-calibration relies on

significant assumptions (e.g. assuming the environment is spatially de-

pendent), which may not be applicable in an urban environment. In com-

parison, micro-calibration is more practical. However, micro-calibration

would not suit a long calibration path or large calibration errors. It is

noted that many studies on sensor network calibration are based on sim-

ulations. Thus, it is important to deploy sensors to collect real datasets

for such studies.

Existing studies on sensor calibration show that the NO2 sensor is

more difficult to calibrate than the O3 sensor, especially in urban envi-

ronments. It is clear that using multivariate calibrations can significantly

alleviate this issue. However, the review suggests that the use of sup-

porting parameters could be dependent on many factors, which implies

that the selection of supporting parameters is important to ensure the

calibration results work in a different environment.

Furthermore, according to the review, the regression-based method

and the ANN-based method are two of the most widely used approaches

for multivariate calibration. However, the lack of studies with an effec-

tive comparison of the calibration methods hinders the selection of the

calibration, which may lead to an inappropriate calibration being used.

According to the review, we list a few important findings for sensor

calibration:

• The difference between the widely used calibration methods is not

clear, which hinders the most appropriate method being used.
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• Calibration of theNO2 sensor is currently problematic and difficult,

especially in an urban environment.

• Calibration of sensors needs to be carried out under their working

conditions.

• Calibration needs to be frequently applied as long as environmen-

tal condition changes. This implies that calibration needs to be

a lightweight process in terms of computational cost and training

complexity.

• Selecting the supporting parameters from the available parameters

is important to ensure the calibration results work in different en-

vironments.

The review of anomaly detection shows that there are many methods

and techniques available for the detection of anomalies. Each method

has certain advantages and disadvantages, and needs to balance differ-

ent trade-offs (e.g. on-line and off-line processes). For example, some

techniques prefer to remove outliers on-line as it reduces the communi-

cation overhead and further saves battery-power. However, those tech-

niques would not be important for sensors running on mains power as

saving power is not the major concern. Therefore, the use of methods

for anomaly detection needs to be tailored to the purpose.

Since time series data are often considered as one dimensional data,

many existing methods may struggle to differentiate anomalies from out-

liers, as not enough information is provided. Fortunately, the method

that uses appropriate contextual information shows a great advantage

as it would not only improve the detection result, but also be able to

further differentiate anomalies. As identified in [71, 94], this is due to

the fact that the correct measurements are often contextually related,

while anomalies are stochastically unrelated. Hence, we believe that us-

ing appropriate contextual information is important for the detection of

anomalies in our application.

It is known that widely used contextual information is summarised

as spatial dependency, temporal dependency and attribute dependency
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according to [71]. Our review shows that the detection result can be

significantly compromised if the spatial and the temporal dependencies

are not sufficient [5]. Considering the spatial and temporal information

is often inconsistent in our context, as shown in Section 3, we believe

that new contextual information will be essential for the detection of

anomalies in our application.

According to the review, we list a number of findings for the methods

of anomaly detection:

• Evaluation in a real dataset can be difficult as the reference of the

anomalies is hard to obtain.

• Using appropriate context information is important (i.e. spatial

and temporal information) as it could help to differentiate anoma-

lies from outliers.

• The threshold value is often application dependent. However, know-

ing the effect of changing the threshold would be helpful.
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Chapter 3

Research Background

The main purpose of this chapter is to show the characteristics of real

data, and to illustrate the issues that need to be addressed in the the-

sis. It presents the background of the research, and justifies the thesis

contributions with respect to the limitations of the current studies.

To begin with, ELM units which are used as low-cost sensing units

in this work are introduced in Section 3.1. Following that, three deploy-

ments performed during this research are discussed in Section 3.2. Then,

the characteristics of the data in terms of the variation caused by the

types of sensors and environments are illustrated in Section 3.3. In Sec-

tion 3.4, the issues that need to be addressed are summarised. Finally,

we justify the thesis contributions in Section 3.5.

3.1 ELM Units

ELM units, a product from Perkin Elmer, are used as the low-cost sensors

in this work [58]. An ELM can measure multiple parameters including

nitrogen dioxide (NO2), ozone (O3), nitrogen oxide (NO), temperature

(T ), humidity (H), volatile organic compound (V OC), dust and noise.

The parameter of dust stands for particulate matter, which combines

PM10 and PM2.5; The parameter of noise represents the amplitude of

sound in decibels. It is noted that the sensors used in each unit are

off-the-shelf sensors. Thus, the monitored parameters can be tailored

according to application requirements.
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An ELM unit is about the size of a shoe box. It is designed to have

a life time of about 18 months, as some of the sensors provide data via

chemicals that degrade. By default, the data is uploaded to a server using

GSM. However, when the GSM server is not available, data is temporally

stored (within the limits of available resources) in an on-board data logger

and uploaded again when GSM communication recovers. The temporal

resolution of data for all parameters is 20 seconds.

ELM units are powered by main supplies rather than battery, which

addresses the power limitations that many low-cost sensors have. As a

result, an off-line process is more appropriate than an on-line process

for this application. However, the locations of the deployments are then

bound by the mains supply, which means facing many practical issues

when deploying them. For example, sensors may not be deployed in a

desired place if the power supply is not available [27].

It is noted that, like most end-users, we do not have direct access

to the sensors’ hardware or software during and after the deployments.

The deployments were performed and managed by engineers from the

Department of Electronics, University of York. The data is obtained

through the service provider (i.e. Perkin Elmer) and downloaded from

their server directly via an API [58].

3.2 Deployments

Three deployments were carried out in York, UK, during this study. The

first deployment was in 2015. For this deployment, the aim was to un-

derstand the performance of ELM units in an uncontrolled environment

to compare it with a datasheet describing how it behaved in a labo-

ratory. We wanted to know how accurate and consistent the sensors

could be with a simple calibration, e.g. using a univariate calibration.

Hence, 20 ELM units were co-located with a reference instrument for

more than two months in the Wolfson Atmospheric Chemistry Laborato-

ries (WACL) as illustrated in Figure 3.1. The parameters monitored in

all units are identical, NO2, O3, T , H, V OC, dust, and noise. The refer-

ence instrument was maintained by WACL in accordance with regulatory
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Figure 3.1: Deployment on WACL

requirements [1, 14], which provides NO2 data with a temporal resolu-

tion of an hour (not publicly available). The WACL is on the Heslington

West site of the University of York, which is outside the city centre and

surrounded by green infrastructure, such as trees. The environmental

conditions at the WACL are similar to an urban background or suburban

condition, as defined by DEFRA in [2], which is referred to as mild in this

thesis. The pollution concentration in a mild environment is expected to

vary insignificantly over time and space and its annual averaged concen-

tration is expected to be far below the annual limitation (e.g. 40 µg/m3

for NO2). The data from this deployment is about 2 month’s worth.

Sensors may have non-unique responses in different environmental

conditions as identified in [10, 46]. Hence, the aim of the second deploy-

ment was to understand how ELM units would perform in a typical urban

environment and to determine how the response of the sensors would dif-

fer from those in the mild environment. This deployment was located on

Fishergate, which is in the centre of York next to a busy junction. This

environment is classified as traffic by DEFRA according to [2] and it is

referred to as harsh in this work. In contrast to the mild environment,
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Figure 3.2: Deployment in the Fishergate

the pollution concentration in the harsh environment is expected to vary

significantly over time and space and its annual averaged concentration

is expected to be around the annual limitation (e.g. 40 µg/m3 for NO2).

Two ELM units were co-located with a reference instrument at Fisher-

gate for more than 8 months in early 2016 as illustrated in Figure 3.2.

The measurements of the ELMs are NO2, NO, O3, T , H. The refer-

ence instrument (EU Site ID: GB0919A) was managed by the City of

York Council and it is a part of Automatic Rural and Urban Networks

(ARUN). The reference data can be easily accessed from the on-line por-

tal with the temporal resolution of an hour [17]. It is noted that one

of the units stopped transmitting data shortly after the deployment and

has not been recovered since, the root cause for that is unknown. This

deployment collected about 6 months worth of data.

The third deployment was designed for studying the calibration of

sensor networks. The original plan had two phases. The first one was to

co-locate all 20 units of ELM at WACL to pre-determine a calibration

function, for which the set-up was identical to the first deployment. The

second phase was to remove 18 units and deploy them in groups of 3 in

a linear fashion heading on to Heslington East alongside Lakeside Way,
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using the CCTV infrastructure as mounting/power points. With two

units remaining on WACL to tie in the data with that of the reference, the

remaining 6 groups of 3 sensors were equally spaced at a distance of about

100 meters. Having 3 units at each mounting point was to gain statistical

confidence if one of the units malfunctioned. The obtained data would

have been useful to study the calibration of sensor networks and answer

the question of how the different distance between neighbouring sensors

would affect the propagation of the calibration.

The first phase of the deployment started in the middle of 2016. How-

ever, shortly after deployment, an increasing number of sensors stopped

working. The exact root cause was not clear after the on-site visit, but

the engineers suspected that was partially due to the hardware failure of

certain sensors, and the dust and bugs accumulated within the units. A

large number of sensors stopped working again after the affected sensors

were replaced and cleaned. At the end of the three month co-location

period, only 9 units of ELM remained working. This experiment sug-

gests that even though a physical inspection may allow the units to be

corrected (temporally), the units could fail at any time during the deploy-

ment if the root causes were not correctly compensated for. Therefore,

we decided not to continue the phase two deployment as it would be very

costly in terms of the labour costs and managements.

It is understood that for all the deployments, it is important to en-

sure that the co-located sensors (e.g. reference and uncalibrated ELM

units) are sufficiently close. The sensors need to be in the same micro-

environment and to monitor the same phenomena. Otherwise, the data

from the reference instrument may not represent the ground truth of the

low-cost sensors. We are fully aware that sufficient distance between the

low-cost sensor and reference instrument would be sensitive to environ-

mental conditions [65]. According to the literature [59,67], we considered

a sufficient distance for co-location as tens of meters in a mild environ-

ment and a meter in a harsh environment. These constraints were ap-

plied in all of our deployments. As a result, this thesis is focused on the

calibration of a single sensor unit.
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3.3 Characteristics of Environmental Data

As discussed in Section 1.4, the characteristics of environmental data are

associated with the environment and the sensors. In this section, we

firstly use the data from our real deployment to illustrate how the data

would vary with respect to those two factors. Then, we illustrate the

issues of data gaps and the dependency between the monitored parame-

ters.

3.3.1 Data Variation Caused by Environment

The variation of urban environments can be illustrated by comparing

reference instruments in two locations as shown in Figure 3.4. The figure

shows week-long NO2 data obtained by reference instruments in Fish-

ergate (harsh) and at the WACL (mild) respectively. The dashed line

indicates the 40 µg/m3 annual limitation of the NO2. The distance be-

tween two locations is about a mile as shown in Figure 3.3. Data gaps can

be observed in the dataset from Fishergate (in the black circle). Since

we do not have information on how this particular dataset is processed,

it is not clear what the actual root causes are. However, according to the

data quality control procedures in [1, 14], the data gap is likely caused

by the manual removal of the suspected reading.

The temporal variation of environmental parameters can be observed

in many different levels, such as daily, seasonal and annual. In Figure

3.4, a clear daily pattern can be observed from the instrument located

in Fishergate, where the concentration of NO2 in the day is consistently

higher than the night. In contrast, the daily variation is not very clear

in the dataset collected from WACL. It suggests that the pollution con-

centration may not be spatially consistent.

Furthermore, given the prior knowledge that NO2 in cities is mainly

contributed by vehicle emissions, and considering the volume of traffic is

higher during the day than at night, and higher in the harsh environment

than the mild, we believe that the temporal variation of the environment

is related to certain environmental factors. Therefore, the change of envi-

ronmental factors would affect the temporal consistency, e.g. abnormally
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Figure 3.3: The locations of the reference instruments (The map and the

pinpoint service are provided by the Bing Maps, Microsoft, 2018)

heavy traffic at night time would have an impact on the daily variation.

As a result, the environment is spatially and temporally inconsistent.

3.3.2 Data Variations Caused by Low-costs Sensors

As discussed in Section 1.4, the data from low-cost sensors can be affected

by the environment and the sensor simultaneously. Thus, knowing the ac-

tual environment is important to determine how a low-cost sensor would

impact the data. In the following, we illustrate the variation of low-cost

sensors by comparing them to the co-located references.

Figures 3.5 and 3.6 illustrate the NO2 data obtained from low-cost

sensors and the references in the mild and harsh environments. Compar-

ing the data from the low-cost sensors to their references in Figure 3.5,

we can observe that the data from the low-cost sensors has a consider-
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Figure 3.4: NO2 data obtained from reference instruments at mild and

harsh environment respectively

ably higher percentage and magnitude of outliers. It is understood that

the outliers are not necessarily anomalies. However, as the variation and

the magnitude of the outliers observed in low-cost sensors are so signif-

icant in comparison with the reference, we believe that the outliers in

the data are dominated by anomalies. It suggests that low-cost sensors

would introduce anomalies into the data and that the anomalies are more

significant in the harsh environment.

Figure 3.6 is rescaled from Figure 3.5 where the data of the outliers are

excluded. It is noted that in Figure 3.6 the data pattern for the ELM unit

in the city is significantly different from the reference, in which more than

50% of data from the low-cost sensors are zero values. The zero values

are more problematic as they cannot be rescaled during the calibration.

It suggests that the harsh environment has a greater influence on the low-

cost sensors, which implies that a sensor in a harsh environment could

be more difficult to compensate.
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Figure 3.5: NO2 comparison (Raw data)

Figure 3.6: NO2 comparison (With outliers excluded)
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Figure 3.7: Scatter plots between ELM data and reference data at two

locations

Figure 3.7 shows the scatter plot between the data from the ELM sen-

sors and reference instruments at two locations. Since the data pattern

between the mild and harsh environments in the figure are significantly

different, we believe that the calibration being determined in one envi-

ronment is not necessarily applicable to sensors in another environment.

Hence, it is important to calibrate sensors each time when the surround-

ing environment changes.

3.3.3 Data Gaps

Data gaps may frequently occur, and these may have a significant in-

fluence on certain processes, e.g. data aggregation. Figure 3.8 shows

the completeness of week long data received from 9 ELM units deployed

at the WACL. The colour is associated with the percentage of the data

received in an hour. In the figure, we can see that there is only a small

percentage of time that all data was successfully received by the server.

For the rest of the time, data gaps frequently occur. It is clear that

the data gaps were also present in the data from the reference instru-

ments as shown in Figure 3.4. However, according to the figure, the data

gaps observed in the low-cost sensors are more frequent and significant.

As a result, the temporal consistency of the data would be significantly
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affected, especially at a higher temporal resolution.

Figure 3.8: Data completeness

3.3.4 Dependency of the Parameters

It is known that if one or more parameters are severely linear depen-

dent, the calibration model, especially constructed by regression, may

be negatively affected due to the multicollinearity. Hence, we calculate

the cross-correlation between all monitored parameters in both mild and

harsh environments and illustrate their linear dependency.

Figures 3.9 and 3.10 show the correlation coefficient using Pearson’s R

(Pearson correlation coefficient) for all pairs of parameters in the mild and

harsh environments. It is understood that multicollinearity or collinear-

ity is not dependent on a definite threshold value. However, O’Brien [56]

suggests using the variance inflation factor (VIF) as an index to deter-

mine the significance of the collinearity. The VIF is calculated based on

Equation 3.1.
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V IF =
1

1−R2
(3.1)

O’Brien states that if the VIF is above 10, collinearity is likely to be

an issue for the process. This implies that if the correlation coefficient

(R) between any pair of the parameters is over 0.94 in the figures, the

issue of collinearity may need to be considered. Fortunately, the maxi-

mum correlation coefficient from both figures is 0.70, which is below 0.94.

Hence, the result indicates that collinearity may not significantly affect

our process.

Figure 3.9: Cross-correlation from a sensor unit at WACL (mild)
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Figure 3.10: Cross-correlation from a sensor unit at Fishergate (harsh)

Figure 3.11: Cross-correlation from a sensor unit at WACL (mild)
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Figure 3.12: Cross-correlation from a sensor unit at Fishergate (harsh)

We also generate scatter plots across the parameters in both locations

in Figure 3.11 and 3.12. From the figures, the temperature and the

humidity show strong negative correlations in both locations. In the

mild environment, humidity has a strong negative correlation to the O3.

However, the correlation gets weak in the harsh environment. The results

show that the correlation for the same pair of parameters in different

locations can be inconsistent. It suggests that dependencies between

parameters can be non-unique, which implies that the use of supporting

parameters may vary for the calibration in different locations.

3.4 Issues in Improving Data Quality

In this chapter, we introduced the ELM units and discussed three of our

deployments. From this, we noticed that the location of deployment can

be bounded by many practical constraints and the failure of sensors can

frequently occur after deployment [27]. Since we do not have physical

access to the sensors, the root causes of abnormalities in the data are

hard to identify and compensate for. Hence, we believe having easy

access to physical sensors is important for the deployment of low-cost

54



sensors. Furthermore, as we failed to deploy the sensors to form a sensing

network, this thesis is focused on a single sensor unit.

The data from our real deployments are used to illustrate the charac-

teristics of the environmental data. Using data from the reference instru-

ments, we determined that the data obtained from the urban environment

is neither spatially nor temporally consistent. As a result, anomalies in

the data may be hard to identify, as reviewed in Section 2.3. Further-

more, comparing the data from the low-cost sensors to their references

in different environmental conditions, we concluded that low-cost sensors

would be more sensitive to the harsh environment than the mild envi-

ronment. This implies that compensating for the data issues associated

with the sensors in the harsh environment is more difficult.

Finally, we summarise a list of issues that need to addressed with

respect to our data and the limitations of the current methods:

• Data is not spatially and temporally consistent. Hence, such infor-

mation cannot be used to determine an anomaly model.

• The difference between ANN-based and regression-based calibra-

tion is not clear, which hinders the most effective method being

used.

• A selection of supporting parameters is important for the calibra-

tion, as the use of supporting parameters is non-unique.

3.5 Thesis Contributions

The main contribution of this thesis is a two-phase solution to improve

the data quality of low-cost NO2 sensors in an urban environment. The

solution consists of the novel detection and removal of anomalies with

a comprehensive calibration process, in which anomalies are removed

before calibration. With this solution, the data from low-cost sensors is

able to achieve significantly enhanced accuracy than before in a harsh

environment. Under the main contribution, a list of other contributions

is also given, which addresses the issues identified in Section 3.4.
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• Chapter 4 presents a systematic comparison of state-of-the-art cal-

ibration techniques, which focus on determining the difference be-

tween two of the most used calibration methods, i.e. ANN and

regression-based approaches. To the best of our knowledge, this is

the most effective comparison for comparing the calibration method.

The result is able to support the selection of a calibration method.

• Chapter 5 proposes a calibration method that systematically and

automatically uses supporting parameters for multivariate calibra-

tion, which ensures the optimal set of supporting parameters are

used according to local conditions.

• Chapter 6 presents a method for the detection of anomalies, which

uses new contextual information (i.e. cross-sensitive parameter) to

detect and remove anomalies. The results show that anomalies can

be better differentiated from outliers when using the new contextual

information. To the best of our knowledge, this is the first research

to use this information for the detection of anomalies in air quality

sensors.
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Chapter 4

The Comparison of

Calibration Methods

This chapter aims to answer the first research question, which is quoted

below:

Research Question 1: Which is the appropriate calibration

method (Regression or ANN) considering the needs of our

application?

Since the calibration process may need to frequently be applied with

a change in the environmental conditions, a light-weight process in terms

of complexity and computational cost is preferred for sensor calibration

in urban environments. In addition, considering the life-time of low-cost

sensors is bound by the degradation of the sensors, the dataset collected

from the existing deployments is often small (e.g. less than a year’s worth

of data in our application). Therefore, this application would need a

light-weight calibration process that works better on a relatively small

dataset.

The review in Section 2.2 indicates that multivariate calibration is

the best practice for the calibration of low-cost sensors. Regression-based

and ANN-based methods are two of the most used approaches for such

a purpose. Intuitively, a regression-based method can be easily applied

and interpreted, but it may not suit calibrations that have a complex

relationship between the inputs and output. By contrast, an ANN-based
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method is able to solve the problem with a more complicated training

process. However, to the best of our knowledge, the difference between

these approaches in dealing with different training and testing scenarios

has not been thoroughly discussed in the literature.

This chapter presents a systematic comparison of state-of-the-art cal-

ibration methods, i.e. regression-based methods and ANN-based meth-

ods. Instead of comparing only calibration accuracy, this work uses mul-

tiple training and testing datasets to determine the sensitivity of the

methods to these datasets and to understand their differences.

In the rest of this chapter, we firstly explain how the calibration

models of both methods can be constructed and illustrate which model

parameters are needed for constructing them in Section 4.1. Then, we

demonstrate the determination of the model parameters for both meth-

ods using a dataset obtained from one of our deployments in Section 4.2.

Following that, both calibration methods are cross-compared using dif-

ferent training and testing data in Section 4.3. The research validity is

discussed in Section 4.4. Finally, we summarise the findings and answer

the research question in Section 4.5.

4.1 Sensor Calibrations

In this section, we illustrate how an ANN-based method and a regression-

based method can be used for the calibration of sensors, and discuss

which model parameters are important for both methods.

4.1.1 Calibration Using an ANN-based Method

An ANN operates in a similar way to a biological neural network in ani-

mal brains, which propagates the information via neuron connections. In

an ANN, tasks are performed using the knowledge learnt from the train-

ing process. More specifically, the training process is used to determine

the weights of neurons and their propagation path.

Assuming that calibrating X1 requires X2 and X3 as supporting pa-

rameters, a graphical structure of an ANN is illustrated in Figure 4.1.
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Figure 4.1: An ANN structure for the calibration of X1

The training process is used to determine the calibration model as shown

in the figure. The determined model can then provide an approximation

of X1 (calibrated) by the given corresponding inputs, X1 (uncalibrated),

X2 and X3. In theory, an ANN can be programmed without any task-

specific rules (e.g. without knowing the relationship between inputs and

outputs). Thus, the calibration can be performed without any prior

knowledge.

An artificial neuron is an important part of constructing an ANN.

The graphical structure of a neuron is shown in Figure 4.2, which works

in the same way as the neurons in Figure 4.1. A neuron can have multiple

inputs, which can be either inputs from a network or from the output of

another neuron. However, a neuron often has just one output, but the

output can connect to multiple neurons, as shown in Figure 4.1.

A neuron calculates the weighted sum of inputs (Z) and passes Z

to an activation function as shown in Figure 4.2. The outcome of this

controls the neuron output. For example, if the outcome is above a

certain threshold, the neuron is on (On indicates that the information

will be propagated); otherwise, the neuron is off (Off indicates that the

information will not be propagated). Therefore, an activation function

is important for an ANN.
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Figure 4.2: Inside a Neuron

Figure 4.3: Sigmoid Function

4.1.1.1 Activation Function

According to the literature, e.g. [3,55], the main purpose of an activation

function is to transfer the weighted sum of inputs, Z. It is clear that

the variation of Z is unbounded before the transformation, as it can vary

from −Inf to +Inf , which would hinder the optimisation process in

determining the weights. However, after the transformation, e.g. using

the sigmoid function, which is defined as Equation 4.1, S(Z) is normalised

and shown in Figure 4.3.

S(Z) =
1

1 + e−Z
(4.1)

According to the literature, using an activation function is essential

for an ANN, and it has three main purposes:

• The weighted sum of inputs becomes bounded, which avoids un-

stable convergence during optimisation.

60



• It helps to decide whether the neuron is firing or not. Firing means

the inputs from this neuron will be propagated to another neuron,

otherwise not. For example, the neuron will fire if the S(Z) is larger

than 0.5 in the example in Figure 4.3.

• A non-linear activation function enables the ANN to explore a com-

plex non-linear relationship, especially with multiple neurons and

layers.

It is noted that there are many activation functions available. We list

a number of activation functions that have been widely used in Figure 4.4.

Activation function Equation Plot
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Figure 4.4: Summary of activation functions

4.1.1.2 Structure of a Network

The structure of the network is also important for constructing an ANN.

A network structure specifies the type of neurons, the number of neu-

rons and layers and how each neuron is connected. The design of a
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network structure often requires expert knowledge and its improvement

relies on trial by error. Therefore, having an optimal structure for a spe-

cific dataset can be difficult. It is noted that the deep neural network has

become popular in recent years. This is an ANN with a large number of

layers which potentially enables the modelling of complex data. However,

the computational cost required for the training would increase dramat-

ically. Furthermore, considering the small size of our data, it is unlikely

to obtain a stable deep neural network. Thus, this type of network is

not considered in this thesis. We illustrate a few widely used network

structure in Figure 4.5.

Feed 
Forward
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Recurrent Neural 
Network(RNN)

Long Short-Term Memory (LSTM)

L

L

L

L

L

L

L

Input Hidden 
Neuron

Hidden 
Neuron with 

memory
L

Hidden Neuron with 
long short-term 

memory

Figure 4.5: A list of network structures

4.1.1.3 Other Parameters

Apart from the parameters that have been discussed above, a number of

epochs and batch sizes, the loss function and the optimisation method

are also important for an ANN-based method.

The loss function in an ANN is a function that we want to maximise

or minimise during training. Considering the purpose of calibration is

to minimise errors between the model output and the reference, the loss
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function is often used to describe calibration errors. Therefore, imple-

menting the loss function has a number of available options, such as mean

absolute error, mean squared error and mean squared percentage error.

Optimisation is a method to determine the weights of all connections

that minimise (or maximise) the loss function. In practice, there are

also many optimisation methods available, such as, gradient descent and

Adam optimiser.

In most cases, a loss function can have multiple modes. Hence, an

optimisation method may only find local minima/maxima rather than

the global minima/maxima. It is known that the initial points of an op-

timisation method often start randomly, which could result in different

model outputs. In order to minimise variation in the model output, using

multiple epochs is desired. One epoch indicates the entire dataset being

passed into the training. A number of epochs indicates the number of

the times that the entire dataset has gone through training. However,

even though a higher number of epochs would minimise the variation of

model output, it would not completely solve the problem. Furthermore,

it is clear that using an extremely large number of epochs would increase

the computational time dramatically. Therefore, the use of epochs needs

to balance the trade-off between variations in the model output and com-

putational time.

The batch size indicates the number of samples used in an iteration,

and both the batch size and iteration are associated with the total number

of samples for a training dataset. For example, there are 100 samples in

a training dataset. If we select 5 as the batch and 3 as the epoch, the

number of iterations in every epoch is 100/5 = 20, and for the entire

training, it is 20× 3 = 60.

4.1.1.4 Summary of Model Parameters

In this section, we explained how an ANN-based method can be used for

multivariate calibration. From the discussion, we identified a number of

model parameters that are important for an ANN-based method, which

are summarised in Table 4.1.
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Table 4.1: A number of model parameters that need to be determined

for an ANN

Model parameters Examples

Activation function Sigmoid, ReLU,...

Type of neuron Dense, LSTM,...

Number of Neurons 1 to +∞
Number of layers 1 to +∞

Batch size 1 to the total number of training sample

Epoch 1 to +∞
Loss function Mean square error, Mean absolute error, ...

Optimisation method Gradient descent, Adam,...

4.1.2 Calibration Using a Regression-based Method

In this section, we illustrate how multivariate calibration can be per-

formed using a regression-based method and which parameters are impor-

tant for this model. In contrast to the ANN-based method, a regression-

based method needs to pre-determine the relationship between input vari-

ables.

Again, using the calibration of X1 as an example, which requires

X2 and X3 as supporting parameters. Assuming a linear relationship

between the inputs, a multivariate regression using the corresponding

coefficients β can be constructed based on Equation 4.2.

Y (i) = β0 + β1 ·X1(i) + β2 ·X2(i) + ...+ βn ·Xn(i) + ε(i) (4.2)

In Equation 4.2, the ε stands for error term and the i indicates that

the measurements are taken from the same time frame, Y is the reference

of X1; n presents the number of parameters used in the model. The cal-

ibration model is then to determine the coefficient β using Equation 4.3.

E = minimise

N∑
i=1

ε2i (4.3)
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Note that the example in Equation 4.2 uses a linear combination of

first order terms to describe the relationship between the input variables

and the output (i.e. linear). If a more complex non-linear relationship is

important, the relationship needs to be pre-defined before training (e.g.

include non-linear terms or apply a non-linear transformation). There-

fore, we consider the relationship between input variables and output as

the only model parameter for a regression-based method.

4.2 Determining the Model Parameters

In this section, we demonstrate the determination of the model param-

eters and discuss the practical issues encountered during the process.

Firstly, we present the data and programming environment used for this

experiment. Then, we determine the model parameters for both meth-

ods.

4.2.1 Data and Programming Environment

Since our sensors are expected to work in the harsh environment, and

the calibration of sensors in the environment of operation is important,

the experiment in this chapter uses the data obtained from ELM unit at

Fishergate (harsh).

The data was pre-processed by aggregating the raw data into an

hourly basis and excluding data gaps. The process is based on Algo-

rithm 1 in Section 5.1.1. The dataset after pre-processing contained

around 4,000 samples with a temporal resolution of an hour, and the

available parameters are NO2, O3, NO, T and H, where the T and H

present temperature and relative humidity respectively.

The regression-based method was programmed in Matlab, and the

ANN-based method was programmed in Python using Keras library [41]

and TensorF low [83]. Both programs were running on a Mac Book Pro

laptop with 2.7 GHz Intel Core-i5 (no dedicated GPU).

Since it was not clear how the size of the training and testing datasets

would affect the calibration, the dataset was divided sequentially into two
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equally sized partitions. The first 2,000 samples were used as training and

the rest of the samples were used as testing. This practice also maximised

the temporal order of the data. Furthermore, since calibrating NO2 is

often reported to be problematic and requires multivariate calibration,

as discussed in Section 2.2, the calibration of NO2 is used as an example.

4.2.2 Model Parameters for A regression-based Method

It is clear that a pre-determined relationship between the inputs and out-

put is important for using a regression-based method. This experiment

is to analyse if using a non-linear relationship would improve the model

prediction. For this experiment, the non-linear relationship is considered

as using higher order terms in the model. The first 2,000 samples of

the dataset are used for training and another 2,000 samples are used for

testing.

For the experiment, the first model uses a linear combination of first

order terms, which is identical to Equation 4.2, and expressed as f(NO2 ,

O3 , NO , T , H). The following models are constructed by gradually

including a second order term into the existing model, as well as their

interactions [36]. We express the second model as f(NO2 , O3 , NO , T ,

H , NO2
2) and the last model as f(NO2 , O3 , NO , T , H , NO2

2 , O
2
3 ,

NO2 , T 2 , H2). The experiment tests all the possible combinations, i.e.(
0
5

)
+
(
1
5

)
+
(
2
5

)
+
(
3
5

)
+
(
4
5

)
+
(
5
5

)
, which means in total 32 models were

used.

Figure 4.6 shows the results of Root-Mean-Squared-Error (RMSE)

and correlation coefficient (R) between the predictions and the reference,

and the time cost for the training in seconds (Time). In the figure, X-

axis (1) indicates the linear model; whereas X-axis (2) to (32) indicates

one or more higher order terms being used in the model. The result

suggests that the linear model is the best model in comparison to the

models using higher order terms. Furthermore, since the time spent in

the training is less than a second, we believe that the regression-based

method is a lightweight process.

The boxplot in Figure 4.8 shows the error distribution between the
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Figure 4.6: The results of RMSE, R and time for different model settings

where (1) is the linear model, (2) to (32) are the non-linear models
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Figure 4.7: The scatter plots between the results of using the linear

relationship and a non-linear relationship

model predictions and the reference. The error is defined as the dif-

ference between the model output (y
′
) and the reference (Y ), given by

Equation 4.4. It is noted that i indicates the number of samples.

error(i) = Y (i)− y′(i) (4.4)

It is clear that the result in Figure 4.8 is in-line with Figure 4.6,

as the result with a lower RMSE and a higher R value corresponds to

better error distributions. The results from both figures suggest that

using a non-linear relationship in the regression-based method does not

necessarily improve the calibration result.

We plot a scatter plot to compare the results of using the linear re-

lationship and a non-linear relationship, which is shown in Figure 4.7.

The plot for the non-linear relationship uses f(NO2 , O3 , NO , T , H ,

NO2
2 , O

2
3 , NO

2 , T 2 , H2), and it shows a wider spread of points in

comparison to the one using the linear relationship. The result indicates

that the calibration model is unlikely to benefit from a complex relation-

ship without a proper reason. Therefore, a linear relationship is chosen

for constructing the model for the regression-based method as discussed

in Equation 4.2.
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Figure 4.8: The absolute error distribution for different model settings

where (1) is the linear model, (2) to (32) are the non-linear models

4.2.3 Model Parameters for an ANN-based Method

In the following, we discuss how the model parameters of the ANN-

based method were determined and selected for this experiment. It is

noted that the determination of optimal model parameters is still an

open challenge in the artificial intelligence (AI) community, and trial by

error is currently the best practice for this purpose. It is understood that

trying all possible combinations of different parameter settings would not

be practically feasible. Therefore, the variation of parameters is tested

in a certain range and for certain parameters only, for which the decision

is made based on existing work.

Activation function It is clear that there are many activation func-

tions to select from. In this work, we use a sigmoid function as the

activation function because 1) the sigmoid function is often used in

an ANN for sensor calibration [19,24], and 2) it is able to uncover

the hidden relationship (e.g complex non-linear) between inputs

and output [33]. It is clear that each neuron can have a different

activation function. However, since it is practically difficult to test

this, the same activation function is applied to all neurons.
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Structure of the network It is noted that determining the structure

of the network would be highly reliant on expert knowledge, as the

structure of a network can be sensitive to the use of data and the

modification of the network is mainly based on trial by errors. It

is known that the current concentration level of an environmental

parameter is often associated with previous concentrations. Thus,

in order to maximise this property, the LSTM is used as the neu-

ron type, as it is able to use the information from the previous

training [38,55].

Number of neurons and layers We vary the number of neurons in

each layer as [5 20 35] and the number of layers in [1 2 3 4 5]. The

same number of neurons are used in each layer.

Batch size and epoch We test the number of batch size in [1 6 11 16

21 26] and epoch in [1 6 11 16 21 26], which is 1 to 26 with an

incremental of 5.

Loss function Considering the quality of a calibration is often evalu-

ated using mean square error, this is used as the objective function

in the experiment.

Optimisation method Gradient descent is used in this work for op-

timisation, as it is one of the mostly used methods for this pur-

pose [21, 61].

To sum up, four parameters need to be selected in this experiment,

number of layers, number of neurons, epoch and batch size.

Since the experiment has a large number of trials, it is not practical

to evaluate the error distribution for all results. Thus, we use RMSE

and R between the predictions and the reference, and the time spent

in training to approximate the calibration result. It is understood that

two identical RMSE or R may represent different error distributions.

However, according to the results in Section 4.2.2, we believe a result

with a low RMSE and a high R value is sufficient to represent a good

calibration result. The calibration result, in terms of RMSE, R and
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the time, from the use of different model parameters are presented in

Figures 4.9 to 4.13 (at the end of this chapter). For this experiment, the

first 2,000 samples of the dataset are used for training and another 2,000

samples are used for testing in each trial. In other words, the data used

for training and testing are identical across all trials.

Figures 4.9 to 4.13 differentiate the number of layers used in the

model. Hence, the effect of the layer can be derived by comparing the

plots across figures. Within each figure, the number of neurons used in

the model is distinguished by different rows. The first, second and third

column of the figures are RMSE, R and the time respectively. In each

plot, the value is dependent on different epochs and batch sizes.

From the figures, the RMSE and R do not have a predictable response

for different model parameters. For example, the use of parameters to

obtain the best RMSE value does not always secure the highest correla-

tion coefficient. Furthermore, the RMSE and R do not have consistent

trends across different plots, which suggests they may be sensitive to all

model parameters. Time increases when larger epochs are used; but,

using a bigger batch size would compensate for this. It is noted that a

larger batch size would lead to a significant degradation in the quality of

the model according to [42]. Hence, it may not be appropriate to simply

increase the batch size to reduce computational cost. Moreover, the fig-

ures show that the time spent in training an ANN-model is significantly

higher than training a regression-based model as fitting one model could

take up to almost 1,000 seconds.

Since the results did not show a distinctive mode, selecting optimal

model parameters is difficult. We decided to use a 20 neuron and 3 layer

network with 26 epochs and 26 batch size for the model parameters in

the following experiment, as it provides a relatively good result in terms

of RMSE and R, and the balance of time spent on training the model.

Admittedly, the parameters used may not be the most optimal ones and

potentially result in the calibration result being less accurate. However,

it reveals one drawback of using an ANN-based method, that obtaining

the optimal parameter settings is often difficult.
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4.3 Comparison of Calibration Methods

Once the model parameters for both methods have been determined, the

models are evaluated in three ways. Firstly, the variability of model

generation is evaluated. Then, the model outputs are cross-compared

by varying the training dataset and testing dataset. In contrast to the

existing research in [19], the training and testing datasets are altered

individually in this experiment; hence, the result can help to understand

how different training and testing would affect the result of the calibration

respectively. The data used in this section is identical to the previous

section which has been discussed in Section 4.2.1.

4.3.1 Variability of Model Generation

With the determined parameters, we train and test both models using the

same data for multiple iterations to determine the variability of the result

during the model generation process. For this experiment, the dataset

from Fishergate is firstly averaged using Algorithm 1 in Section 5.1.1.

The training and testing datasets are then divided sequentially in the

same way as the previous experiment, for which the first 2,000 samples

of the dataset are used as training and the rest of the samples are used

as testing. Both models are trained using the same model settings and

the data over multiple iterations (1,000 iterations). The testing result in

terms of RMSE, R and time spent for training are shown in Figure 4.14

to 4.15.

Figure 4.14 shows the results from the regression-based method. It is

clear that a regression-based method would provide a consistent result as

long as the model settings and the use of the data are identical. Hence,

the RMSE and R show no variation over the 1,000 iterations. It is noticed

that there is a variation on the time spent on training, but the variation

is extremely small as it is below 0.15 seconds.
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Figure 4.14: The variation of objectives over 1000 repetitions using the

regression-based method

Figure 4.15 shows the results from the ANN-based method. In com-

parison to Figure 4.14, all three objectives show more significant vari-

ations. The result indicates that an ANN-based method would have a

large variation in the model generation process, which would result in a

large uncertainty in the calibration result.

Figure 4.15: The variation of objectives over 1000 repetitions using ANN

In Figure 4.15-c, a few extreme outliers can be observed. They are

suspicious, as the time spent on training the same model is expected to

have much less variation. To further investigate that, the time spent on

each repetition was plotted, as shown in Figure 4.16. It can be observed

that the magnitude of spikes gradually increases with the number of

iterations. In order to rule out experiment error, we performed the same
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experiment again, the result is similar in terms of the patterns, with

the main difference being the spikes occurred in different iterations and

different magnitudes. We further correlated the time to R and RMSE

respectively to determine if the spikes caused any abnormality in those

objectives. The correlations are shown in Figure 4.17.

Figure 4.16: The time variation over 1000 repetitions

Figure 4.17: The correlation of (time vs R) and (time vs RMSE)

The figure shows that the iterations with high time cost do not have

an observable impact on RMSE and R values. However, we noticed that

during the experiment, memory consumption increases with the number

of iterations. Therefore, we suspect the time spikes may be related to the

Keras library or the garbage collection of the system. Since it does not

affect the RMSE and R values significantly, and the root cause may be
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out of the scope of this work, we did not investigate it further. However, it

suggests that applying an ANN using the existing library may introduce

unknown errors into the process.

4.3.2 Comparing the Models under Different Sce-

narios

This section compares the model outputs that use different training and

testing datasets in terms of data size. The results indicate the sensitivity

of the methods for the different calibration scenarios. The experiment

is firstly performed by varying the training dataset, followed by varying

the testing dataset.

4.3.2.1 Varying the Training Dataset

This experiment is designed to understand how the increasing size of the

training dataset would affect the calibration results for both methods.

For this experiment, the dataset from Fishergate is firstly averaged using

Algorithm 1 in Section 5.1.1. The processed dataset is then sequentially

divided into 10 equally sized partitions with each partition having 10

percent of the data. The calibration model is determined by using the

training dataset with different data partitions; and the result of the cali-

bration is evaluated in the same testing dataset. All available parameters

are considered in the calibration model, which are NO2, O3, NO, T and

H. The classification and the use of the training and testing dataset are

illustrated in Figure 4.18.
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Figure 4.18: Varying the training datasets

Figure 4.18 shows how the data is divided into ten equal partitions,

numbered from (1) to (10). It is noted that the partitions (1) to (10) fol-

low the temporal order. For the testing dataset, the last partition (10) is

used, and for the training dataset, different combinations of the partitions

are applied. As illustrated in Figure 4.18, the training dataset steadily

increased from 10 percent of the data to 90 percent of the data with each

step being 10 percent. In order to preserve the temporal dependencies of

the data, the first experiment uses Partition (9) (to preserve the depen-

dencies with Partition (10) in the training). More data is added to the

later experiments by going backwards from Partition (9) e.g. the second

experiment uses Partitions (8) and (9). We label the different training

datasets as 10% to 90% to simplify the labelling in the later plots.

The results in terms of the errors from the models using different

training datasets are illustrated in Figure 4.19. From the figure, we can

observe that errors from using the ANN-based method are less consis-

tent than the regression-based method when the training datasets are

increased. This suggests that the ANN-based method may be more sen-

sitive to the training datasets. To further investigate, we present the

errors using boxplots to show their distributions in Figure 4.20.
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Figure 4.19: The absolute errors of the result when using different train-

ing datasets
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Figure 4.20: The boxplot of errors when using different training datasets

Comparing Figures 4.20 (a) and (b), the figures show that the vari-

ation of errors from using the regression-based method is generally less

than the ANN-based method, and the errors are more consistent across

different training datasets. The scatter plots of the results are presented

in Figure 4.21, which show the results when using 10%, 50% and 90%

of the data for the training. From the figure, we observe that the plots
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from the ANN-based methods shows discrete pattern and not consistent

over the different training datasets. By contract, the results from the

regression-based methods are more consistent over the different training

scenarios. The result suggests the importance of looking at the correla-

tion between reference and calibrated value when evaluate the calibration

result.

Figure 4.21: The scatter plots of the result when using different training

datasets

We further present and plot the mean and the standard deviation of

the errors, which are shown in Table 4.2 and Figure 4.22. In the figure,

the line indicates the changes of the error mean and the bar stands for the

standard deviation. Ideally, errors closer to zero and a smaller standard

deviation indicate a better result.
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Table 4.2: Mean and standard deviation of the errors by varying the

training datasets

datasets 1 2 3 4 5 6 7 8 9

ANN-based method

Mean -5.09 3.81 -2.56 0.44 0.14 -2.30 5.78 2.54 4.57

STD. 8.34 9.92 7.42 7.92 13.86 7.72 12.05 10.58 12.59

Regression-based method

Mean 0.71 0.56 0.85 0.56 0.11 -0.23 -0.45 -0.81 -1.44

STD. 6.75 6.68 6.52 6.49 6.40 6.35 6.26 6.27 6.37

Figure 4.22: Mean and standard deviation of errors for different methods

and training datasets

In Figure 4.22, we can observe that the regression-based method over

predicts when the training dataset is relatively small (smaller than 50

percent of the dataset), and under predicts when the training dataset is

relatively large (larger than 50 percent of the dataset). It suggests that

too large or too small a training dataset is not ideal for regression-based

calibration.
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We further investigated the change in the coefficients from the regression-

based method to understand how the variation of the training dataset

would affect the calibration model. The results are shown in Figure 4.23.

Figure 4.23: The change of regression coefficients with different training

datasets

The figure shows that the coefficients of the regression did not change

significantly in most of the parameters when different datasets were used

for the training. However, we can observe a larger variation of the coef-

ficient in parameters O3 and T . The overall result shows a model with

good stability. It is noted that this result would be data dependent, so

it may not represent a general trend.

It is understood that the result for the ANN-based method will also

be affected by the model generation process, which makes it difficult to

determine which change in result is related to the varying of the dataset.

We have demonstrated the model generation process would have a large

impact on the error mean as the RMSE value would vary significantly.

However, we identify that the model generation process would have much

less influence on the standard deviation of the error, which suggests that

it can be used to reflect the actual change in the results. To prove

this, we trained an ANN 20 times, for which the process is identical to

Section 4.3.1. The mean and the standard deviation of the error from

the 20 iterations were obtained and are summarised in Table 4.3.

In the table, the coefficient of variance (CV ) was used to indicate the

significance of the variance. CV is a measure of relative variability and

it is the ratio of the standard deviation (σ) to the mean (µ), which is

calculated using Equation 4.5. A smaller CV indicates a smaller variation
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Table 4.3: Summarised mean and standard deviation of the model error

from the 20 means from the 20 STD.

STD.mean Meanmean CVmean STD.std Meanstd CVstd

1.7407 -1.526 -114.06 1.231 11.172 11.02

in the result.

CV =
σ

µ
∗ 100 (4.5)

Since CVstd is considerably smaller than CVmean, it suggests the vari-

ation of the standard deviation of the errors would be much less affected

by the model generation process. As a result, we use the standard de-

viation of the error to approximate and compare the response of both

models, which is presented in Figure 4.24.

Figure 4.24: The variation of the standard deviation for different methods

and training datasets

From Figure 4.24, we can observe that the variation of the standard

deviation for the regression-based method is smaller than for the ANN-
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based method. This suggests that the regression-based method is better

than the ANN-based method, as the errors have less variation. However,

even though the variation in errors between the two methods is consider-

ably different, the methods show the opposite trend when more training

datasets are used. The error for the ANN-based method shows a trend

of declining with more historical data used for training, whereas the er-

ror for the regression-based method gradually increases. This suggests

that an ANN-based method would potentially benefit from a larger train-

ing dataset, where a regression-based method is more suited for smaller

datasets. However, it is noted that such improvements may be unobserv-

able and insignificant with respect to the variation of the ANN model.

4.3.2.2 Varying the Testing Dataset

In this section, the experiment is designed to understand how the cal-

ibration result is affected by increasing the size of the testing dataset.

For this experiment, the dataset from Fishergate is firstly averaged using

Algorithm 1 in Section 5.1.1. The processed dataset is then sequen-

tially divided into 10 equally sized partitions with each partition hav-

ing 10 percent of the data, for which process is identical to the one in

Section 4.3.2.1. In contrast to the previous experiment, the calibration

model is determined by using the same training dataset, and the testing

is performed on different combinations of the datasets. The use of the

training and testing dataset is explained in Figure 4.25. All available pa-

rameters in the datasets are considered in the calibration model, which

are NO2, O3, NO, T and H. It is noted that since the training dataset is

identical (Partition (1)), the same ANN model is applied in this experi-

ment. Thus, the results are not affected by the model generation process,

and the variation in results would be directly associated with the use of

different datasets.
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Figure 4.25: Training models by varying the testing datasets

The calibration results are illustrated in Figure 4.26, where the box-

plots represent the error distribution and the x-axis indicates that the

testing dataset increases from 10 percent to 90 percent of the dataset ac-

cording to Figure 4.25. From the figure, the error distributions between

the two methods do not have an observable difference, which suggests

that varying the testing dataset would have a similar impact on both

methods.

The scatter plots showing the result of varying the testing datasets are

presented in Figure 4.27. Even though the error patterns of both meth-

ods are similar. as shown in Figure 4.26, the correlations between the

reference and their calibrated results are significantly different. The cor-

relations for the ANN-based method are much worse than the regression-

based method. The results suggest that it is important to look at the

scatter plot when comparing the calibration results as the errors can be

misleading.

Using only partition (2) as the testing dataset shows the best calibra-

tion errors compared to the others, which suggests that the calibration

function obtains a better result if the testing dataset and the training

dataset are close in time and have a similar data size. To further in-
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Table 4.4: Mean and standard deviation of the errors by varying the

testing datasets

datasets 1 2 3 4 5 6 7 8 9

ANN-based method

Mean -0.54 1.51 4.22 6.08 7.52 6.74 7.00 7.00 6.55

STD. 8.64 10.28 11.52 12.62 12.97 12.93 13.44 13.53 13.57

Regression-based method

Mean -0.73 1.35 3.17 4.39 5.83 5.83 6.54 7.04 7.19

STD. 7.46 8.63 9.45 10.15 10.49 10.18 10.41 10.41 10.26

vestigate, we plot the mean and standard deviation of the errors in Fig-

ure 4.28, for which the data is also presented in Table 4.4.

Figure 4.28 shows the mean value of the error gradually increases

with more testing data used. It suggests that both calibrations would

degrade over time with a similar trend. However, it is noted that the

ratio of the decrease is higher at the beginning and gets lower towards

the end. The results imply that the degradation of the calibration in an

urban environment may not be linear. However, due to the availability

of the data (no other dataset available), we did not investigate it further.

We finally plot the standard deviations of the errors in Figure 4.29, the

result is in line with Figure 4.28.
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Figure 4.26: The boxplot of errors when using the different testing

datasets
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Figure 4.27: The scatter plots of the result when using different testing

datasets

Figure 4.28: Mean and standard deviation of the errors for the different

methods and testing datasets
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Figure 4.29: The variation of the standard deviation for the different

methods and training datasets

4.4 The Limitation of Validity

In this experiment, the ANN-based method was constructed using Python

with a well-built library, which hindered some of the programming fea-

tures and logic. As a result, the causes of abnormal results are difficult

to identify and correct, as discussed in Section 4.3.1.

Determination of the optimal model parameters is often constrained

by practical limitations. It is understood that the model parameters are

selected from a large parameters space, and trial by error to determine

the optimal model output is the best practice for such a purpose. Since

it is not feasible to test all combinations of the parameters, the selected

model parameters may not always be globally optimal. As a result, the

calibration results would be compromised accordingly.

It is clear that the model generation process will introduce variations

in model output discussed in Section 4.3.1. We determined that the stan-

dard deviation of the error is much less affected than the error mean in

the process, and used the standard deviation to approximate the cali-
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bration result. However, such an evaluation may not be appropriate for

applications that are interested in the error mean.

Finally, the evaluations in Section 4.3.2.1 and 4.3.2.2 were only used

with one dataset. Hence, statistical confidence in the results may not be

obtained.

4.5 Summary

This section provides a systematic comparison of state-of-the-art calibra-

tion methods. There are a regression-based method and an ANN-based

method. The comparison demonstrates the practicality of using both

methods in terms of constructing calibration models and testing varia-

tions in the model generation processes. We further used multiple train-

ing and testing data to determine the sensitivity of each method to these

data. The results show that the ANN-based method is sensitive to the

use of model parameters and random variations in the model generation

process, which could lead to a large variation in the calibration results.

By contrast, the regression-based method provides a more predictable

result and requires much fewer computational resources.

The evaluation performed by varying training datasets suggests that

the ANN-based method would benefit from using a larger training dataset,

whereas the regression-based method is more suited for a relatively small

training dataset. By varying the testing datasets, the calibration results

for both methods gradually decreased as more testing dataset were used.

The results suggest that both calibrations would degrade over time and

their degradation would be similar. Our experiment also indicates that

the degradation of calibration in an urban environment may not be lin-

ear, but would require more evidence to confirm it. More importantly,

our analysis shows the importance of looking at the scatter plots when

comparing calibration results, as calibration errors can be misleading.

Finally, we summarise the advantage and disadvantage of both meth-

ods determined in our experiment in Figure 4.30, and answer the research

question which is quoted below:

Research Question 1: Which is the appropriate calibration
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method (Regression or ANN) considering the needs of our

application?

Considering the needs of our application are a light-weight process

that can work on a relatively small dataset, we believe that a regression-

based method would be more appropriate in this work. However, it is

noted that the existing regression-based methods have a lot of limitations,

as discussed in Section 2. Hence, they may not be directly applicable to

our application.

Figure 4.30: The advantages and disadvantages of the two methods
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Chapter 5

Regression based Method for

the Calibration of Sensors

This chapter aims to answer the second research question, which is quoted

below:

Research Question 2: How can we ensure calibration results

by properly using supporting parameters?

In Chapter 3, we demonstrate that environmental interference can

have a significant impact on the response of the sensors. As a result,

many studies reviewed in Chapter 2 use supporting parameters in the

calibration as it is believed to improve calibration results by subtract-

ing those interferences. However, according to the review, the use of

supporting parameters is not only dependent on the availability of the

parameters, but also related to many other factors, e.g. the current en-

vironmental conditions. Since failing to use appropriate parameters may

result in calibration errors remaining large, and using an inappropriate

parameter would bias the calibration results [30, 53, 78], the selection of

supporting parameters is important for the calibration process.

As demonstrated in Chapter 4, a regression-based method is more

appropriate for this research. However, the current calibration methods

will not automatically select the supporting parameters. As a result,

the existing calibration cannot be directly applied to sensors situated in

different environmental conditions as the use of supporting parameters
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could be different. Performing a manual selection of the supporting pa-

rameters before each calibration is able to solve such an issue [20, 49].

However, the manual selection of supporting parameters is not practical

and desirable because 1) there could be a large number of parameters

to select from and 2) the calibration process may frequently be applied.

Hence, a calibration method that can automatically select the optimal

supporting parameters from the available dataset is important.

This section proposes a novel regression-based calibration method.

In contrast to the existing method, the proposed method is able to au-

tomatically select the optimal supporting parameters from an available

dataset. Hence, the method is believed to be less sensitive to a change

of environmental conditions.

In the rest of this chapter, the method of calibration is firstly dis-

cussed in Section 5.1. Then, the evaluation is carried out in the Sec-

tion 5.2 using datasets from both mild and harsh environments, and the

results are cross-compared with the state-of-the-art method which has

been described in the previous section. Following that, we discuss the

limitations of validity in Section 5.3 and summarised the findings and

answer the research questions in Section 5.4.

5.1 Calibration Method

The proposed calibration method has three main steps. The first step is

to pre-process the data making the data suitable for the process. Then,

a two-way interaction term is introduced to the model, which is believed

to maximise the relationship between inputs. Finally, stepwise regression

is introduced to construct the calibration model, which can statistically

use supporting parameters from the available dataset.

5.1.1 Data Pre-processing

It is known that the temporal resolution from most regulatory sites is

an hour, whereas most low-cost sensors provide data at a much higher

temporal resolution, e.g. 20 seconds for ELM units. Hence, for the
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regression-based method, it is important to aggregate the ELM data (20

seconds) into the same resolution as the reference (hourly).

In this work, the data from the low-cost sensors is averaged by the

time-stamp. A wide range of hourly windows were tested to average

the data. The correlations to the reference from using different hourly

windows shows no significant difference. Thus, it suggests that the use

of different moving windows is not significantly important unless it is

known how the reference data is produced. For this work, the hourly

data is averaged based on the window from the current whole hour until

the next whole hour. For example the hourly averaged value for 12:00:00

is obtained from the samples between (>=) 12:00:00 and (<) 13:00:00.

For the techniques of data aggregation, arithmetic mean and median

are commonly used. The arithmetic mean is the sum of the received

values divided by the number of received values. However, by definition,

the arithmetic mean is sensitive to the sample size, which implies that

the mean will have a different confidence if the sample size is different.

Considering the number of samples in an hour window is likely to be

significantly different due to data gaps, using the arithmetic mean can

considerably affect the confidence level of the averaged value. Moreover,

the mean is also sensitive to extreme values. For example, the mean

value could be largely influenced by anomalies with an extreme value.

This can be a particular problem for data that contains high values and

biased anomalies (e.g. non zero means). However, it does not imply that

using a median value is always a better option. As the median value

is a single value, it will not be representative for other samples. If the

spikes are caused by real events, taking the median value would ignore

important information. Moreover, if the percentage of anomalies is more

than 50% of an averaged sample, the median value is likely to be biased.

For this research, as shown in Section 3.3, the number of sample re-

ceived in an hour can be very inconsistent and the anomalies are unlikely

to be more than 50% of the hourly samples as reported from the existing

literature. Hence, we believe that the median is more appropriate for

the aggregation in our application. The process of data pre-processing is

illustrated in detail in Algorithm 1
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ALGORITHM 1: Pseudo code for data pre-processing

Data:

1) Dataset from low-cost sensors, Dm×n. It has the size of m× n.

(n indicates the number of columns; m indicates the number of

rows)

2) The first column is a time array, which stores the time when the

sample was taken. The rest of the column stores the

measurements taken at the corresponding time. The number of

rows indicates the number of samples

3) Reference, Refr×2, The first column is a time array, ti ⊂ T .

T (:, 1), which stores a consistent time-stamp with the date on an

hourly basis (Date.Month.Year 00:00:00,Date.Month.Year

01:00:00,Date.Month.Year 02:00:00 ...). The second column stores

the reference value for the parameter of interest. (Hourly reference

which may contain NAN).

5) for i = 0 to m-1 do

for j = 2 to n do

tempD = D(find(ti 6 D(:, 1) < ti+1),j) (Determine all

values that measured within that hour)

if the number of samples in tempD < 5 then
T(i,j) = NAN (Not a Number)

else
T(i,j) = nan-median(tempD) (The process ignores the

NAN)

end

end

end

Result: Hourly averaged data for low-cost sensors (contains NAN)

6) Join the Ref with T according to the time-stamp and remove

all NAN instances in the dataset.

Result: The dataset that the first column stores the time and the

second column stores the reference data. The rest of the

columns are the averaged data from low-cost sensors.
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It is noted that if there is not enough data to be averaged (the number

of samples within a window is less than 5) or if data gaps occurred in the

reference as shown in Figure 3.4, the relevant data from the corresponding

sensor will be removed, for consistency.

5.1.2 Two-way Interaction

Once the data has been aggregated, it is ready to process. For exam-

ple, according to Section 4.1.2, a calibration model using just one sup-

porting parameter constructed by the current method is presented in

Equation 5.1.

Y (i) = β0 + β1 ·X1(i) + β2 ·X2(i) + ε(i) (5.1)

Assuming X1 is the parameter of interest, and X2 is the supporting

parameter. The equation indicates that the variation of X1 and X2 is

independent, as every one unit increment of Y is constantly associated

with β1 units of X1 and β2 units of X2. This suggests that the current

method would not consider the potential dependency between the inputs.

To solve that issue, an interaction term, which is a multiplication of

any two variables is used in our method. The interaction term is also

known as a moderation term [36]. Adding an interaction term onto the

Equation 5.1, the result is shown in Equation 5.2:

Y (i) = β′0 + β′1 ·X1(i) + β′2 ·X2(i) + β′3 · (X1(i) ·X2(i)) + ε(i) (5.2)

which can be re-written as Equation 5.3:

Y = β′0 + (β′1 + β′3 ·X2(i)) ·X1(i) + β′2 ·X2(i) + ε(i) (5.3)

In this case, the variable X1 is now associated with the variable X2 as

the variation of the X2 would impact the coefficient of the X1. Hence, we

believe that the calibration result can benefit from using the interaction

terms, as dependencies between inputs are now considered in the model.

It is noted that the interaction terms are also considered to be sup-

porting parameters in the following process. As a result, the number
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of available parameters would increase dramatically, which emphasises

the importance of using an automatic process to make the parameter

selection.

5.1.3 Stepwise Regression

In this section, we adopt stepwise regression to systematically select the

useful parameters and calibrate the sensor.

Stepwise regression is similar to multivariate regression with the key

difference being that it performs a systematic selection of inputs and only

uses parameters that make a positive contribution to the calibration.

The method starts with fitting a model using just one input. At each

step, the sum of squared error (SSE) and the p-value are calculated to

test models with and without a new term. If the term is not currently in

the model, the null hypothesis is that the added new term would have a

zero coefficient in the model. If there is sufficient evidence to reject the

null hypothesis, the term with the lowest p-value is added to the model.

Conversely, if a term is currently in the model, the null hypothesis is

that the term has a zero coefficient. If the null hypothesis fails to be

rejected, the term with the highest p-value is removed from the model.

The method proceeds as follows:

1. Construct the initial model using just one term.

2. Terms not in the current model have p-values less than a threshold

(p < 0.05), add the one with the lowest p-value and repeat this

step; otherwise, go to step 3.

3. Terms in the model have p-values less than a threshold (p > 0.05),

remove the one with the highest p-value and go to step 2; otherwise,

end.

Since the method terminates when no single step improves the model,

a different sequence of steps would not lead to a better result. Thus,

the sequence of adding the parameters is unlikely to affect the result.
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The overall method for the proposed sensor calibration is illustrated in

Algorithm 2.

ALGORITHM 2: Pseudo code for the method
Data: Data from Algorithm 1 as Datam×n, Reference:

Y = Data(:, 2) Uncalibrated data trace: Data(:, 3) Other

monitored parameters : Data(:, 4 : end)

for i = 3 to n-1 do

for j = i+1 to n do
termsi,j = xjm×1 xim×1

end

end

Result: Obtaining two-way interaction terms for all parameters,

termsm×t, t is for number of interaction terms

Xm×(t+n−2) = [Data(:, 3 : end) terms(:, :)];

Result: Combining interaction terms and measured parameters as

independent variables, X

while improvement can be determined do

(1)Constructing the initial model using just one term.

(2)Terms not in the current model have p-values less than a

threshold (p < 0.05), add the one with the smallest p-value

and repeat this step; otherwise, go to step 3.

(3) Terms in the model have p-values less than a threshold (p

> 0.05), remove the one with the largest p-value and go to step

2; otherwise, end.

end

Result: Using stepwise regression to determine the use of

variables and the calibration function
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5.2 Calibration Evaluation

In this section, the proposed method is evaluated in both the mild and

harsh environments and the result is compared to the state-of-the-art

method discussed in Section 4.1.2.

The evaluation performed in the mild environment focuses on the

quantitative analysis of the method, which is to determine how the per-

formance of the proposed method compares to the existing method across

multiple sensor units. The evaluation in the mild environment first com-

pares the results from using datasets that contain different set of param-

eters. Then, it investigates how the results of the calibration would be

affected if the characteristics of the testing dataset are different from the

training dataset. Those two evaluations use two months’ worth of data

from eleven ELM units deployed on WACL. The monitored parameters

are NO2, O3, H for relative humidity, T for temperature, dust for par-

ticulate matter PM10 and PM2.5, V OC, and noise for the magnitude of

sound in decibels.

By contrast, the evaluation in the harsh environment is to demon-

strate that the proposed method can further improve the calibration error

in a typical urban environment. Since sensors at the Fishergate moni-

tor less parameters than those in WACL, the evaluation in the harsh

environment only uses parameters: NO2, O3, NO, T and H.

5.2.1 Varying the Available Parameters in the Dataset

This experiment tests how different available parameters affect the cali-

bration results. Two-months’ worth of data from eleven ELMs at WACL

were used. The experiment gradually adds one parameter into the dataset

to simulate sensor units having different sensors on-board. The dataset

from WACL was aggregated into hourly basis data using Algorithm 1.

The training dataset for this experiment is based on indices that were

randomly selected from 50% of the data, and the rest of the data was

used for testing. This process is to avoid the influence from the testing

dataset which has different characteristics from the training dataset. It

is noted that the same indices are used for selecting the training and
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testing datasets in the experiment.

Figure 5.1 shows a comparison of the methods from eleven sensors.

The Y-axis of Figures (a) (b) and (c) represents the RMSE value, the

standard deviation of the error and mean error. The X-axes of the figures

indicate the parameters that are available in the dataset. The plus (+)

sign indicates the current parameter is added into the previous dataset.

For example, in the first dataset only NO2 is included, and in the sec-

ond dataset O3 is added into the NO2. In the third dataset humidity is

then added into the NO2 and O3, and so on. The boxplot represents the

variation in the results from eleven sensors, and the colour differentiates

the methods. The MLS method uses all parameters in each dataset and

the calibration model is constructed according to Equation 4.2. By con-

trast, the calibration model for the proposed method is then constructed

according to the steps discussed in Section 5.1. It is noted that the se-

quence of adding the parameter may affect the result of MLS, but it

is unlikely to influence the proposed method as discussed Section 5.1.3.

Since the experiment only compares the results between the methods

within a given dataset, the sequence of adding a parameter would not

affect the conclusion.

In Figure 5.1-(a), both methods show an improved calibration result

with a larger number of parameters in the dataset; but the proposed

method shows a better result than the existing method. In Figure 5.1-

(b), the results from the variation of the errors is in line with the result of

the calibration accuracy (RMSE). The error mean depicted in Figure 5.1-

(c) shows no significant difference as the boxplots for both methods have

a similar variation.

From the figure, we can confirm that calibration benefits from using

supporting parameters as the results show significant improvement when

multiple parameters are used in the calibration. The proposed method

shows better results than the existing method in general, especially when

the number of parameters in the dataset is relatively large. This could

be due to the removal of inappropriate variables and the use of two-way

interaction terms as justified in Section 5.1.

105



Figure 5.1: Calibration result between the two methods over the different

datasets106



5.2.2 Varying the Data Characteristics

In the previous experiment, the training and testing datasets are con-

structed by random sampling to avoid any potential influence from data

patterns. In this section, we investigate how the characteristics of the

testing dataset being different from the training dataset would affect the

result of calibration. For this experiment, the same two-months’ worth

of data used in Section 5.2.1 was used. The data from one randomly

selected ELM was used. The training dataset was also determined based

on randomly selected indices with a size of 50% of the data, and the

rest of the indices were used for testing. It is noted that the indices for

training and testing were only generated once, and the same calibration

model is used for all the testing.

To add different characteristics into the data, we artificially manipu-

lated the pattern of the testing dataset. It is clear that the characteristics

of the data can be different in many ways. In this experiment, we focus

on 1) the constant value, 2) offset and 3) higher standard deviation.

Table 5.1: The modification of data characteristics

Constant value
STD. = 0

Mean Not changed

Offset mean
STD. Not changed

Mean 2*mean

Higher standard deviation
STD. 2*STD.

Mean Not changed

The modification of the testing dataset was performed as shown in

Table 5.1. The changes in the mean and standard deviation were with

respect to the original testing data. Since different parameters may con-

tribute to the calibration result differently, the modification was tested on

all parameters. It is noted that for each experiment, only one parameter

was modified.

Figures 5.2, 5.3 and 5.5 and Tables 5.2, 5.3 and 5.5 show the cal-

ibration results when the testing dataset of one parameter is modified
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according to different rules. The figures and tables differentiate the dif-

ferent modifications which are offset, constant value and higher standard

deviation. The boxplots in each figure represent the calibration result

in terms of the error distribution when the modification was taken in a

particular parameter. The colour of the boxplot indicates the different

methods used for the calibration.

The tables summarise the RMSE, standard deviation and mean value

of the errors from both methods. The labels indicate which parameter

has been modified for the calibration. It is noted that the label original

stands for the calibration using the data without any modification. This

has been used as the benchmark for the evaluation.

Table 5.2: The calibration results when using the testing dataset with

constant value

Constant value

Original NO2 O3 H T Dust VOC Noise

Proposed

Method

RMSE 1.72 1.80 2.21 2.26 2.12 2.25 2.25 2.35

STD. 1.72 1.80 2.20 2.18 2.04 2.17 2.17 2.27

Mean -0.03 -0.08 0.17 -0.60 -0.60 -0.60 -0.60 -0.60

MLS

Method

RMSE 1.84 1.91 2.14 2.13 2.05 2.18 2.18 2.27

STD. 1.83 1.91 2.14 2.13 2.05 2.17 2.17 2.27

Mean -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15

Figure 5.2: The calibration errors when using the testing dataset with

constant value
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Figure 5.2 and Table 5.2 present the results when the testing data

becomes constant. Figure 5.2 shows no observable difference in terms

of absolute errors, which suggests that the constant value would have a

small impact on both calibration methods. The table indicates that the

constant value in the testing data only slightly influences the RMSE and

the standard deviation, and it has even less impact on the error mean,

especially for MLS method.

Table 5.3: The calibration results when using the testing dataset with

offset mean

Off-set mean

Original NO2 O3 H T Dust VOC Noise

Proposed

Method

RMSE 1.72 2.41 5.50 8.95 27.43 26.52 26.50 60.76

STD. 1.72 1.89 5.08 8.96 9.68 9.95 9.95 16.39

Mean -0.03 -1.49 2.13 -0.12 -25.67 -24.59 -24.59 -28.51

MLS

Method

RMSE 1.84 2.28 3.80 8.00 10.53 9.89 9.88 16.55

STD. 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83

Mean -0.15 -1.35 3.33 7.78 10.37 9.82 9.71 16.44

Figure 5.3: The calibration errors when using the testing dataset with

offset mean

Figure 5.3 and Table 5.3 illustrates the result when the mean value

of the testing data is doubled. The figure suggests the change in mean

value would have a considerable impact on the calibration. We observe
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that for certain parameters the influence are more significant than oth-

ers. Furthermore, the figure suggests that it can have a higher influence

on the proposed method than the MLS method, which may be related

to the use of the interaction terms. The table further confirms the im-

pact on the RMSE, standard deviation and mean are significantly weaker

compared to the result using the unmodified data. This implies that a

recalibration may be needed if the testing dataset has a different mean

value from the training. We further present a scatter plot for results that

the parameter noise being modified in Figure 5.4. The results confirm

that a recalibration is needed.

Figure 5.4: The scatter plots when the testing dataset of the parameter

noise is changed with the offset mean
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Table 5.4: The calibration results when using the testing dataset with a

higher standard deviation

Higher variation

Original NO2 O3 H T Dust VOC Noise

Proposed

Method

RMSE 1.72 1.82 2.46 2.90 3.36 4.15 4.15 4.08

STD. 1.72 1.82 2.46 2.66 3.11 3.67 3.67 3.73

Mean -0.03 0.01 -0.14 1.16 1.28 1.94 1.94 1.66

MLS

Method

RMSE 1.84 1.89 2.10 2.16 2.12 2.22 2.22 2.32

STD. 1.83 1.88 2.10 2.15 2.12 2.22 2.22 2.32

Mean -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15

Figure 5.5: The calibration errors when using the testing dataset with a

higher standard deviation

The results from using the testing data with a higher variation are

presented in Figure 5.5 and Table 5.4. The figure suggests that the

MLS method obtains a better error profile than the proposed method

as the variation of the error is generally smaller. The table shows the

result from the MLS method is relatively consistent in comparison to the

proposed method, whereas the result of the proposed method varies more

significantly, and the errors are further magnified if the modification is

made in certain parameters. We also present a scatter plot for the results

of the parameter noise being modified, in Figure 5.6, which can be cross-

compared with Figure 5.4. The comparison shows that the influence from
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the variation in testing data is much smaller than the change in the mean

value.

Figure 5.6: The scatter plots when the testing dataset of the parameter

noise is changed with the higher variation

The evaluation in the mild environment suggests the proposed method

can potentially obtain a better result than the MLS method in a mild

environment, especially when the number of available parameters in the

dataset is relatively large. However, the proposed method would be more

sensitive to the difference between training and testing datasets, partic-

ularly the difference in the mean value. Therefore, if the mean values

are considerably different between the training and testing datasets, re-

calibration may need to be considered as its influence on the calibration

result is significant.

We have demonstrated that the proposed method is able to further

enhance the calibration result in the mild environment. Next, we will

evaluate the method in the harsh environment.
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5.2.3 Evaluation in a Harsh Environment

For this evaluation, six months’ worth of data from the sensor at Fish-

ergate was firstly pre-processed by aggregating the raw data into hourly

based data and excluding any data gaps. The process is based on Al-

gorithm 1 in Section 5.1.1. After pre-processing, the dataset contains

around 4,000 samples with a temporal resolution of an hour, and the

available parameters are NO2, O3, NO, T and H, where the T and H

present temperature and relative humidity respectively. In Chapter 4, we

determined that using a slightly larger training dataset than the testing

dataset would get a better calibration result. Thus, the dataset is sequen-

tially and evenly divided into three partitions. The first two partitions

are used for training the calibration model, and the last partition is used

for testing calibration results. The calibration results are represented in

Figure 5.7.

Figure 5.7 shows a series of scatter plot of an ELM sensor against a

reference. Figure 5.7-a shows the raw data. The raw data is ELM data

averaged into hourly data using the median without calibration (data

obtained after Algorithm 1). From the figure, we can see the range of

ELM data varies from 0 to 200 as emphasised by the red, which is much

greater in comparison to the reference. Furthermore, a significant number

of zero readings can be observed in the ELM data, which would often be

considered as anomalies in existing work [72].

In Figure 5.7-b, an univariate calibration was applied to the ELM

data and the result is compared against the reference. The function ob-

tained in Figure 5.7-a is used as the calibration function of the univariate

method. From the figure, apart from the range of ELM data being re-

scaled, improvement in the data is barely noticeable, leading to a strange

data pattern (zero values) and a low correlation between the calibrated

data and the reference. This shows and confirms that the univariate cal-

ibration is insufficient for the calibration of low-cost sensors, especially

for the NO2 sensor in a harsh environment. The finding is also in line

with [23,46,77].

Figure 5.7-c shows a calibration being done by an MLS method used
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Figure 5.7: Calibration result in harsh environment
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in [49]. It is noted that the calibration function in this figure was de-

termined in the mild environment, at WACL, and applied to the sensor

located in the harsh environment without any modification. We can ob-

serve a negative correlation between the calibrated data and the reference

in the figure, with the worst linearity between them (i.e. the slope and

offset are the worst). Furthermore, the RMSE and error mean are even

worse than the data without calibration. The result confirms that a cal-

ibration determined in one place is not necessarily applicable to another

place due to the different environmental conditions.

We then applied the MLS method that the calibration model was

determined by in Fishergate. Figure 5.7-d shows that the performance

is significantly improved compared to Figure 5.7-c. It shows the impor-

tance of calibrating sensors in the real working environment. Further-

more, compared to the univariate calibration in Figure 5.7-b, the large

number of constant values are compensated for by using the support-

ing parameters. The correlation between the calibrated data and the

reference has also improved greatly from 0.77 to 0.92, and the relation-

ship between the calibrated data and the reference is getting closer to

linear. Most importantly, the RMSE, standard deviation and mean all

improved. The result confirms the importance of using multiple param-

eters in the calibration and suggests that including certain parameters

can indeed help to compensate for constant values in the data and reduce

the calibration errors.

Finally, the proposed method was applied to the ELM data. The

result is shown in Figure 5.7-e. Comparing this with the result in Fig-

ure 5.7-d, the result in Figure 5.7-e shows further improved correlation

and better linearity between the calibrated data and the reference, as

well as RMSE, standard deviation and mean. The result suggests that

the proposed method can also obtain a better calibration result in the

harsh environment.
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5.2.4 Generalisability of Sensor Calibration

This evaluation tests the generalisability of sensor calibration across

different sensor units and environmental conditions by comparing the

changes in the regression coefficients. We first analyse the variation in

the regression coefficients for the 11 sensor units in the mild environ-

ment (WACL) to determine the variation in coefficients across the sensor

units; then we compare the coefficients determined in the mild environ-

ment (WACL) to those determined in the harsh environment (Fisher-

gate) to further understand the variation in coefficients across different

environments.

As discussed in Section 3.2, the parameters monitored in the mild

and the harsh environments are different. In order to cross-compare the

regression coefficients in both environments, the calibration of NO2 in

this section is constructed using the parameters they have in common,

which are NO2, O3, T and H. The training regimes in the mild and

harsh environments are identical to the ones used in Section 5.2.1 and

Section 5.2.3 respectively. The regression coefficients for sensors in the

mild and the harsh environments are shown in Figure 5.8.

Figure 5.8: The regression coefficients across sensor units and environ-

ments

Figure 5.8 presents not only the raw coefficients but also the nor-
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Table 5.5: The mean and the standard deviation of the coefficients for

the 11 sensor units at WACL

Raw Coefficients

Intercept NO2 O3 T H

19.32±9.11 0.02±0.02 -0.23±0.1 -0.05±0.03 -0.12±0.16

Normalised Coefficients

Intercept NO2 O3 T H

0.04±0.05 0.09±0.07 -0.65±0.14 -0.38±0.25 -0.21±0.27

malised coefficients. The normalised coefficients are also referred to as

the standard coefficients, which are determined from the regression that

converted all the variables using z-scores. Since the magnitude of the

measurements in the mild and harsh environments are significantly dif-

ferent, as discussed in Section 3.3, using the normalised coefficients en-

ables a better comparison, as the variations of variables are all referred

to as their standard deviation.

In Figure 5.8, we can observe a large variation in the coefficients for all

variables among the 11 sensor units in the WACL. Since the units at the

WACL were co-located in the same environmental condition as discussed

in Section 3.2, we consider the variation in the coefficients in these 11

sensor units is the result of using different sensor units. The results

show that the coefficients of the calibration function are inconsistent

for different sensor units in the mild environment, which suggests that

calibration from one sensor unit could give significant errors if applied to

another sensor unit.

We further calculate the mean and standard deviation of the coeffi-

cients for the 11 sensor units at the WACL in Table 5.5. We then compare

the regression coefficients determined from the unit in the harsh environ-

ment (i.e. the grey zone in Figure 5.8) to Table 5.5 to further determine

how the coefficients vary in different conditions. The training datasets

for the mild and the harsh environments have a different number of sam-

ples, which could affect the variation in the coefficients. However, as
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presented in Figure 4.23 and then discussed in Chapter 4, the size of the

training dataset does not have a significant impact on the variation in the

coefficients, and thus the influence of the dataset size is not considered

further in this analysis. The comparison of the coefficients between the

mild (i.e. the coefficients in Table 5.5) and the harsh (i.e. the coefficients

in the grey zone in Figure 5.8) shows that the calibration coefficients

determined in the harsh environment are considerably different from the

coefficients for the mild environment, especially for the intercept, NO2

and O3. The results also suggest that the calibration function may not

easily generalise across different environments.

In summary, the results presented in this section show that the coef-

ficients of the calibration functions are sensitive to the individual sensor

unit and may be sensitive to environmental conditions. Therefore our

recommendation is in-line with the conclusions in [10,46] that individual

sensor units are required to be calibrated in the location of the operation,

although further data is needed to definitively conclude the importance

of the location.

5.3 Limitations of Validity

The proposed method shows the ability to systematically select the sup-

porting parameters. However, it is noted that the objective of the pro-

posed method is to minimise the difference between the model output

and the reference. Hence, the parameters used in the calibration model

would indicate the importance of these parameters in general. Similarly,

the coefficients of the parameters may not present the importance of the

parameters, as the result is data dependent. Therefore, we did not further

analyse what parameters are removed in each calibration and how the

coefficients are changed. For the same reason, we believe that it would

not be appropriate to feed the selected parameter into an ANN-based

method.

Furthermore, due to the limitations of the dataset, the evaluation

in the harsh environment was performed using the same dataset as the

one in Chapter 4. As a result, certain decisions that are based on the
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conclusion from the previous experiment could be biased, such as using

more data in the training dataset than the testing dataset. In addition,

in Figure 5.7-c, the calibration function was determined from a different

sensor, environment and time of the measurement. Hence, the result

might also be influenced by those factors.

5.4 Summary

In this section, we have demonstrated how the supporting parameters can

be better used. The evaluations show that the proposed method is able to

reduce the calibration errors in both the mild and the harsh environment

significantly more than the existing method. The evaluation also confirms

that univariate calibration can be insufficient for calibrating low-cost

sensors and suggests that some constant values in the uncalibrated data

can be alleviated by the calibration process. The result indicates that

the calibration result benefits from the use of the appropriate parameters

and consideration of their interactions.

The evaluation in the mild environment suggests the proposed method

would have a better performance when the number of available param-

eters in the dataset is relatively large. Furthermore, it is demonstrated

that the calibration results can be considerably affected if the data pat-

tern between the training and testing dataset are inconsistent, especially

if the difference is in the mean value.

The evaluation in the harsh environment confirms that the calibration

function applied in one location may not be directly applicable to another

location, and the result illustrates that the proposed method is able to

further reduce calibration errors.

With the evidence provided above, the second research question,

which is quoted below, is answered:

Research Question 2: How can we ensure the calibration result

by properly using supporting parameters?
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Chapter 6

The Detection of Anomalies

This chapter aims to answer the last research question, which is quoted

below:

Research Question 3: How can we accurately detect and re-

move anomalies to further improve data quality?

According to our review, the main difficulty in the detection of anoma-

lies is to differentiate anomalies from outliers. The state-of-the-art re-

search suggests using contextual information to identify anomalies, as

the correct measurements are often contextually related, while anoma-

lies are stochastically unrelated [94]. It is known that spatial and tem-

poral dependencies are the most commonly used contextual information,

and considerable research has demonstrated that they can sufficiently

improve the detection results and are capable of separating anomalies

from outliers. However, as illustrated in Section 3.3, spatial and tem-

poral dependencies are not sufficient for anomaly detection in our data.

Therefore, it is important to explore new contextual information for such

a purpose.

It is understood that the response of a low-cost sensor would be sig-

nificantly affected by its cross-sensitive parameters due to sensor prop-

erties [85]. As reviewed in Chapter 2, using cross-sensitive parameters

is able to improve calibration results significantly, as it would provide

complementary information for the parameter of interest. As a result,

we believe that a certain dependency exists between the parameter of
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interest and its cross-sensitive parameters. This allows anomalies to be

differentiated from abnormal events, i.e. a higher than normal value

of NO2 may be considered as an anomaly rather than an event, if its

cross-sensitive parameter O3 exhibits a significantly different trend.

In this chapter, we explore the cross-sensitive parameter as new con-

textual information to determine if the results of anomaly detection can

benefit from it. A Bayesian-based method is firstly justified and intro-

duced in Section 6.1 to determine the anomaly model. Then, the pro-

posed method is evaluated in both the synthetic data and real data in

Section 6.2. Finally, we discuss the research validity and conclude this

chapter in Sections6.3 and 6.4.

6.1 Method of Anomaly Detection

According to the review, determining an anomaly model is important

for the detection of anomalies. For this work, a learning-based method

is ideal as the dependency between the parameters of interest and its

cross-sensitive parameter needs to be determined. It is understood that

there are many learning-based methods available, such as an ANN, SVM

and Bayesian-based method. Considering the detection of anomalies is

applied with calibration, a lightweight process is ideal as the process may

be applied frequently. Thus, a Bayesian-based method is used in this

work to learn the contextual information and determine the anomaly

model.

6.1.1 Learning the Information

Learning the contextual information in a Bayesian-based method is used

to determine the joint probability between two events, in our case, be-

tween the parameter of interest and its cross-sensitive parameter. We

characterise the learning method as follows:

• The set of measurements, I for the parameter of interest; and C

for the cross-sensitive parameter.
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• An index of the measurements, i, where i ∈ Z+ and Z+ stands for

all positive integers.

• A number of classes (bins) in I and C as j and k, where j and

k ≤ max(i).

• A joint probability, P (I,C)

• A conditional probability distribution, P (I|Ck)

• A conditional probability, P (Ij|Ck)

In practice, due to the missing values, the set of measurements I and

C may not have the same number of samples. Since the method deter-

mines the joint probability between two sets of measurements, P (Ii,Ci),

some simple processing is needed to unify the sample size, ensuring both

sets have a measurement at the same time stamp. For example, if at

a given time, only the I has a reading, then this reading needs to be

removed for consistency.

Bayesian methods only deal with discrete data, so determining a

proper bin size is important. A small bin size could result in the his-

togram having a non-distinct mode, which would make anomalies insep-

arable from the data; however, a large bin size could reduce the precision

of the method, which would then increase the number of false positives.

Since the precision of the sampled data is two significant digits, using the

sampled data directly would result in the bin size becoming too small,

especially when the number of samples in a dataset is relatively small.

Hence, a new discretisation process is required for the measurement sets,

I and C.

We determine the bin size using a two dimensional histogram, which

is similar to the method used in [72]. In practice, domain knowledge can

be important and trying a wide range of bin sizes is ideal for determining

appropriate bin sizes as identified in [72]. The process of discretisation

classifies the set I and C into j and k classes. We then determine the

joint probability as P (I,C) which is also referred to as the joint prob-

ability table, according to the class number [34]. The determined joint
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probability, P (I,C), is considered as the model of anomalies as it will

help to identify anomalies. It is noted that the process can also be ap-

plied to learning spatial and temporal information by determining the

dependencies between the parameters of interest in different locations as

P (Ilocation1, Ilocation2) and the dependency between the current measure-

ment and its previous measurement as P (It, It−1).

6.1.2 Inferencing

Once the joint probability table, P (I,C), is determined, it can be used

to make an inference and statistically identify anomalies. For any test-

ing dataset, the probability distribution of I at a given value of C can

be obtained according to the class number k, which is P (I|Ck). The

probability of the actual Ij, at a given value of Ck, can be determined

as P (Ij|Ck). If the probability is less than a threshold value, this mea-

surement is considered as an anomaly and removed from the data. The

threshold value again is sensitive to the use of the data and would require

domain knowledge to determine. The selection of the threshold value will

be discussed in Section 6.2. The method of the detection of anomalies is

in Algorithm 3.

6.2 Evaluation

The evaluation was performed using both a synthetic dataset and a real

dataset. The use of synthetic data is for evaluating the classification ac-

curacy as it is often impossible to label the anomalies in real datasets.

Furthermore, the evaluation of real data determines how the detection

and removal of anomalies would enhance the calibration. For this eval-

uation, the NO2 is used as the parameter of interest and the O3 is used

for the cross-sensitive parameter.

6.2.1 Synthetic Data

The synthetic data was constructed by injecting anomalies into a clean

dataset. The base signals of the clean dataset are taken from a reference

124



ALGORITHM 3: Pseudo code for detection of anomalies
Data: Define:

Cm×1 = the measurements of the cross-sensitive parameter with m

samples

Ii×1 = the measurements of the parameter of interest with i

samples

m and i indicate the length of the measurement, (i<m)

Removing measurements in Cm×1 for consistency according to

time stamps for both training and testing datasets

Result: Cm×1 becomes Ci×1 which have same number of samples

as Ii×1

1) Classify Ci×1 into k classes and Ii×1 into j classes.

2) (max(C)-min(C)) / k → step for each bin in C; (max(I)-min(I))

/ j → step for each bin in I.

3) Using bin size classifies Ci×1 into k bins and Ii×1 into j bins.

4) Assigning the bin number to the raw data → Ii×2 and Ci×2

Result: Discretisation. (Training and testing datasets)

Declare an empty table = tablek×j, which have k rows and j

columns

for (Training dataset) i = 1 to ALL do
Add 1 on tablek×j according to index C(i, 2) and I(i, 2)

end

Divide the frequency table by the total number of measurements, i

Result: Joint probability table, P (I,C),

for (Testing dataset) i = 1 to ALL do
1) Obtaining the conditional distribution I by using the index,

P (I|C(i, 2))

If the index is out of the range, discard the data instance and

label as anomaly

if P (I(i, 2)|C(i, 2)) < a threshold then
I(i, 1) is an anomaly

else
I(i, 1) is a correct measurement

end

end

Result: Labelling all the measurement
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sensor with a temporal resolution of a minute. The dataset contains

four days of measurements of NO2 and O3. We manually removed any

suspicious measurements and filled them using linear interpolation. The

process is to maximise the consistency of temporal information, as we

compare our method to the one that uses temporal dependencies. The

clean dataset after this process is free from anomalies and is temporally

consistent. The anomalies are then randomly injected into the clean

signals.

The magnitude of anomalies in reality is often unknown. Consider-

ing that an extremely high magnitude of anomalies can be classified by

a simple threshold value, and an extremely small magnitude of anoma-

lies would not significantly affect the data process (e.g. calibration), the

range of the magnitude for artificial anomalies is randomly chosen be-

tween 10% to 60% of the maximal values of the clean signal. We reckon

that the anomalies in that range are problematic as they are difficult to

detect and remove, and have an adverse impact on the data process.

In our previous work [28], the boxplot suggests that there are about

8% of outliers in the dataset. Considering outliers from low-cost sensors

are likely to be dominated by anomalies, as justified in Section 3.3.2,

8% of anomalies were injected into the clean dataset. The constructed

synthetic data for NO2 is illustrated in Figure 6.1. In the figure, the base

signal is in red and the injected anomalies are in blue.

6.2.2 Discretisation

Discretisation is an important step when using a Bayesian-based method

as mentioned previously. Once the training data is available, the mini-

mum and maximum values of the parameters need to be estimated to set

the boundaries of the joint probability table. This process aims to avoid

a scenario in which a real measurement in the testing dataset is greater

than in the training dataset. Setting a large boundary would avoid this

problem; however, setting a larger boundary takes much more computa-

tional resources and individual bins can be left with too few samples for

sound statistical analysis. Hence, such a trade-off needs to be balanced
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Figure 6.1: The synthetic dataset

according to priori knowledge, such as knowing the distribution of the

data in a given time period. For the synthetic data, we know exactly

the maximum and minimum values of the data. Hence, we directly use

those as the boundaries of the table. For the real dataset, we set the

boundary by adding 20% onto the minimal and maximal values of the

training dataset. This is sufficient for the detection of anomalies over a

relatively short period, i.e., the month’s worth of data used in this eval-

uation. However, if the dataset varies more significantly, the boundary

may need to be extended accordingly, as data instances that exceed the

range will be discarded and considered as anomalies.

Once the boundary is determined, the data is classified into a number

of bins according to the bin size. As the boundary of the data is fixed,

the bin size and the number of the bins are complementary and represent

the same thing. The selection of a bin size can be dependent on the type

of data or a requirement from the user. Our data has 5,000 samples and

varies from -4 to 18 as shown in Figure 6.1. We found 15 bins are sufficient
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for NO2 as there is a joint probability between the selected parameters

and each bin has a sufficient number of counts for the analysis. It is

noted that the bin size needs to be adjusted if the number of samples

or the boundary of the data are significantly different from the example.

For instance, if the variation in data is more significant, the number of

bins would need to increase accordingly.

6.2.3 Threshold Value

According to the literature review in Section 2, the selection of a thresh-

old value is data dependent. Therefore, the determination of a thresh-

old is often difficult and requires expert knowledge. In this section, we

demonstrate how the results of anomaly detection are affected by an

increase in the threshold.

The results of the anomaly detection are evaluated in terms of accu-

racy, precision and completeness, which have been widely used for such

a purpose. Those metrics are defined as follows:

Accuracy =
(Number of True Positive + Number of True Negative)

Number of Total
(6.1)

Precision =
Number of True Positive

Number of Test Outcome Positive
(6.2)

Completeness =
Number of True Positive

Number of Condition Positive
(6.3)

where a conditional positive in Equation 6.3 indicates the number of real

positive cases in the data. All values of evaluation metrics are normalised

in the range from 0 to 1.

128



Figure 6.2: The detection results when using different threshold value

Figure 6.2 shows the detection result when the value of the threshold

is gradually increased. The x-axis indicates the threshold value. We can

see the accuracy of the detection is not significantly affected by increasing

the threshold value. However, the precision and the completeness are

extremely sensitive to the value of the threshold. We can see a clear

trade-off between those two metrics. The result of the completeness

starts around 0.2 at the beginning and gradually increases up to 0.87 at

the end. However, the trend of the precision is opposite to the trend of the

completeness. It starts at a higher precision and drops to around 0.35

in the end. From Figure 6.2, we can conclude that the determination

of a threshold is not only sensitive to the use of data but also relies

on the requirements of the end-users, as the trade-off between precision

and completeness need to be balanced. In this study, precision is more

important than completeness, as we do not want to remove too much

correct data. Hence, according to Figure 6.2, our threshold value is

determined as 15. However, it is noted that in practice, we do not have
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the labels for the anomalies. Hence, we cannot rely on Figure 6.2 to

determine the threshold value. As a result, expert knowledge is required

to determine an appropriate threshold value by balancing precision and

completeness. It can be difficult to obtain a perfect balance, however,

it is clear that a smaller threshold value often indicates higher precision

but lower completeness, and a larger threshold value would lead to an

opposite result.

6.2.4 Evaluation in Synthetic Data

For this evaluation, we compare the results from using the cross-sensitive

parameter against those using the temporal information. The same learn-

ing process was performed for both contextual information. Figure 6.3

shows the results in term of detection accuracy, precision and complete-

ness. We inject anomalies into the clean signal for 100 interations to

minimise any potential bias caused by the injection. The process used

the rule discussed in Section 6.2.1, and each boxplot indicates the result

from the 100 tests. The results in Figure 6.3 suggest that using cross-

sensitive parameters is able to produce a more reliable detection result,

as the accuracy and the completeness are significantly better than the

one using the temporal information, and the precision is also no worse

than using the temporal information.

In the first experiment, anomalies are only injected in the NO2. As

anomalies can affect all parameters, in the following experiment, anoma-

lies are injected in both NO2 and O3 data. The percentage and mag-

nitude of the O3 anomalies were determined from real data, which was

done in the same way as in Section 6.2.1. Therefore, the injection of NO2

remains the same as in the previous experiment. 10% of the samples in

the clean O3 data were randomly replaced with anomalies that have a

magnitude randomly selected in the range 10% to 60%.
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Figure 6.3: Anomalies are injected in NO2

The result of 100 tests is shown in Figure 6.4. In the figure, the

accuracy and the completeness of using the cross-sensitive parameter is

still significantly better than using the temporal information after 10%

of anomalies being added into the O3 data. In terms of precision, the

result using the cross-sensitive parameter has much less variation than

the one using the temporal information. Hence, in general, using the

cross-sensitive parameters still has a better performance than using the

temporal information.
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Figure 6.4: Anomalies are injected in NO2 and O3

To consider the variation in the results, we use the mean value to

summarise the two experiments in Table 6.1. The results show that

there is only a small influence on the result by using the cross-sensitive

parameters. Accuracy and precision are not significantly affected, and

completeness is reduced by 5%. By contrast, the anomalies in the O3 do

not affect the result of using the temporal information at all. In general,

using the cross-sensitive parameters obtains a better result than using

the temporal information. Therefore, the results suggest that using the

cross-sensitive parameters is able to sufficiently detect anomalies.

Table 6.1: Mean value from two experiments

Cross-sensitive Parameter Temporal Information

Accuracy Precision Completeness Accuracy Precision Completeness

Exp. 1 0.9398 0.8028 0.5113 0.9103 0.6842 0.1268

Exp. 2 0.9381 0.7977 0.4657 0.9101 0.6859 0.1243

6.2.5 Evaluation Using Real Data

The next stage of the evaluation uses real data obtained from the sensors

at the WACL. As the sensed data is likely to contain anomalies, the ob-

jective of this evaluation is to determine how accurate the resulting signal
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(after anomaly detection and calibration) is compared to the reference

signal. This objective reflects the overall goal of the research work.

We have justified why the detection of anomalies needs to be per-

formed before calibration. However, it is not clear if the process needs

to be applied before or after data aggregation. For this experiment, we

assume that a better anomaly detection and removal would lead to a

better calibration result.

In the first experiment, the process of anomaly removal is applied

before data aggregation. Then, the data is aggregated and calibrated

according to Algorithms 1 and 2 respectively. The training and testing

datasets from WACL are randomly sampled to ensure the same number

of training and testing datasets are used in the comparison. The results

of the calibrations over a number of NO2 sensors are shown in Figures 6.5

and 6.6

In the figures, raw data presents the data that is calibrated without

removing anomalies. Non-parametric indicates the anomalies identified

using a boxplot, which are defined as data points which are greater than

q3 + w × (q3–q1) or less than q1–w × (q3–q1). The w is the maximum

whisker length, and q1 and q3 are the 25th and 75th percentiles of the

sample data respectively. Temporal and cross-sensitive represent the

use of related contextual information. Figure 6.5 shows the calibration

accuracy in terms of RMSE value. We observe that the results from using

the cross-sensitive parameter are slightly better than using the other

methods. However, in Figure 6.6, no significant difference is observed

in the standard deviation of the error for the compared methods. We

suspect that it is because the aggregation process hinders the impact of

anomalies.
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Figure 6.5: Result of calibration in terms of RMSE

Figure 6.6: Result of calibration in terms of standard deviation of the

errors

For the second experiment, the data is firstly aggregated according

to Algorithm 1. The anomalies are then detected and removed from

the aggregated datasets before calibration. The calibration results are

illustrated in Figures 6.7 and 6.8. It is noted that the results in this
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experiment are not comparable to Figure 6.5 and 6.6. From the figures,

the results suggest that using contextual information may further help

the calibration result as both variations of errors and calibration accuracy

are smaller. The results suggest that the calibration result would benefit

from the anomalies being removed after data aggregation.

Figure 6.7: Result of Calibration in terms of RMSE
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Figure 6.8: Result of Calibration in terms of standard deviation of the

errors

In the third experiment, the process of anomaly detection is applied

to the dataset collected from Fishergate, York. We firstly remove the

anomalies in the NO2 data after the aggregation process and then per-

form the calibration according to Section 5. The calibration result can

be cross-compared to the result in Figure 5.7-d, which is shown in Fig-

ure 6.9. Compared to Figure 5.7-d where the sensor was calibrated with-

out anomaly removal, Figure 6.9 shows an improved linearity as the slope

is closer to one. Comparing other evaluation metrics, it suggests that the

calibration result is further improved in terms of reduced RMSE, as well

as the mean and standard deviation of the error.

The results indicate that the proposed anomaly detection in combi-

nation with the calibration is able to further reduce calibration errors

and improves the data quality for low-cost sensors.

6.3 Limitation of Validity

It is understood that evaluation of anomaly detection is still an open

challenge, as using synthetic data will never fully reflect the reality, and
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Figure 6.9: Result of Calibration in the Fishergate

labelling real datasets often introduces errors.

The proposed method uses the dependence between the parameter of

interest and its cross-sensitive parameters (i.e. NO2 and O3). Our evalu-

ation shows the determined dependency can be sufficient and accurately

detect anomalies. However, since the actual dependence between NO2

and O3 would be sensitive to many factors, it is important to carry out

further studies of changes of the dependence. Furthermore, the results of

the proposed method would be sensitive to model parameters, such as the

threshold value. Hence, the result is not cross-comparable for different

applications.

The result of sensor calibration is associated with many factors, such

as the use of sensors and number of training and testing datasets. Hence,

the assumption that a better anomaly detection would lead to a better

calibration result may not always hold. In addition, anomaly removal

applied before and after data aggregation would remove different data,

as the dependency of NO2 and O3 over 20s is expected to be different
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from an hour. Therefore, we believe that a deep understanding of the

cause of anomalies and dependencies between cross-sensitive parameters

is important for future work.

6.4 Summary

The detection of anomalies in the sensed data is difficult as anomalies do

not have a distinctive pattern. Using contextual information is believed

to help anomaly detection, as correct measurements are often contextu-

ally related, while anomalies are stochastically unrelated [94].

Since widely used contextual information (i.e. spatial and temporal

dependencies) is often inaccessible, we propose to use cross-sensitive pa-

rameters as new contextual information. The evaluation using synthetic

data shows the proposed method is able to improve detection accuracy.

However, the trade-off between completeness and precision needs to be

balanced, depending on the user requirements.

It is understood that the evaluation of anomaly detection is still

an open challenge, as accurate labelling for anomalies can be difficult.

Hence, for evaluation on a real dataset, the evaluation objective is to

determine how accurate the resulting signal (after anomaly detection

and calibration) is compared to the reference signal. We consider better

anomaly detection would lead to a better calibration result in certain

circumstances and this objective reflects the overall goal of the research

work.

The anomalies were removed before and after data aggregation. The

results show no observable differences in the calibration results for which

anomalies are removed before data aggregation. In the results where

anomalies are removed after data aggregation, using contextual informa-

tion shows a significant improvement in the calibration results, and the

results from using the cross-sensitive parameter is even better than the

one using temporal dependency. It is understood that the calibration

result is sensitive to many factors. Thus, our evaluation using the real

dataset may only be indicative.

Finally, we apply our two-phase solution to the data obtained from
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Fishergate. The results suggest using cross-sensitive parameters is able

to accurately detect and remove anomalies, and the result of calibration

can be further improved. The material presented in this chapter answers

the last research question, which is quoted below:

Research Question 3: How can we accurately detect and re-

move anomalies to further improve data quality?
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Chapter 7

Conclusion

Using low-cost sensors to monitor the urban environment has become

increasingly popular, as they provide better data resolution than current

practices. However, low-cost sensors often produce poorer data quality

and so the data may not be used directly without processing. This the-

sis presents a two-phase solution to improve the data quality of low-cost

sensors. It consists of a method for the detection and removal of anoma-

lies and a process of sensor calibration. The evaluation shows that the

proposed solution is better than state-of-the-art methods and is able to

improve data quality, especially for sensors in a harsh polluted environ-

ment.

In Chapter 2, a detailed review of the state-of-the-art research was

given, which focused on the calibration of sensors and the detection of

anomalies. The review shows that multivariate calibration is the best

practice for calibrating low-cost sensors, as it includes environmental

influences as supporting parameters and subtracts the related effects. A

number of studies suggest that the use of supporting parameters would

be dependent on the current environmental conditions, and calibration

of sensors in a harsh environment can be more difficult than in a mild

environment, especially for NO2 sensors. Furthermore, the literature

review also reveals that there is a lack of work on an effective comparison

of calibration approaches, which makes it difficult to determine the most

appropriate solution for the needs. Finally, the review indicates that

in the existing methods for anomaly detection it is difficult to separate
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anomalies from outliers, especially when there is insufficient contextual

information, e.g., the spatial and temporal data dependencies are weak.

In Chapter 3, we discussed the deployment of the sensors and illus-

trated the characteristics of the environmental data. The illustration

of real data indicates that the data is neither spatially nor temporally

consistent, and the response of the sensors is closely associated with influ-

ences such as cross-sensitive parameters or environmental variables (e.g.

temperature). With the understanding of the data and the limitations

of the state-of-the-art method, we have demonstrated the validity of the

research questions. They are revisited and summarised below:

Research Question 1: Which is the appropriate calibration

method (Regression or ANN) considering the needs of our

application?

The first research question was answered in Chapter 4. The needs of

the calibration were derived from the context of the application in Chap-

ters 2 and 3 as a lightweight process that works better on a relatively

small training dataset. Chapter 4 presented a systematic comparison

of state-of-the-art calibration methods, i.e. a regression-based method

and an ANN-based method. The evaluation shows that the ANN-based

method is sensitive to the use of model parameters and the random varia-

tion in the model generation process, which can lead to a large variation in

the calibration result. By contrast, the regression-based method provides

a more predictable result and has a better performance for a relatively

small training dataset. Moreover, we demonstrated that the same error

may be associated with different correlations between the reference and

calibrated values. Thus, it is always important to look at both evaluation

metrics. Using the comparison, we believe a regression-based method is

more appropriate for our application.

Research Question 2: How do we ensure the calibration result

by properly using supporting parameters?

This research question was answered in Chapter 5. The review in

Chapter 2 indicated that using supporting parameters was able to im-

prove calibration, but the calibration result would be compromised if 1)
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an appropriate parameter is available but is not used; and 2) an inappro-

priate parameter is used in the calibration. Therefore, we introduced a

novel regression-based calibration in Chapter 5. In contrast to the state-

of-the-art method, the proposed method automatically selects the opti-

mal supporting parameters from an available dataset. The method uses

stepwise regression with interaction terms, which not only maximises the

information from the supporting parameters, but also ensures the most

appropriate parameters are used in the calibration. The evaluation was

carried out in both mild and harsh environments, which shows the pro-

posed method is significantly better than the state-of-the-art method in

terms of calibration accuracy.

Research Question 3: How can we accurately detect and re-

move anomalies to further improve the data quality?

The above research question was answered in Chapter 6. Chapter 2

shows that using contextual information is important to detect anoma-

lies, and the most commonly used information is temporal and spatial

dependencies. Since such information is often unavailable or insufficient

in our data, the problem becomes finding new contextual information

that is available in our dataset, and also providing a better detection

result than existing practices. In Chapter 6, we used new contextual

information, i.e. cross-sensitive parameters, to construct an anomaly

model and identify anomalies. The anomaly model was constructed us-

ing a Bayesian-based approach and the evaluations were carried out on

both synthetic and real data. The evaluation using synthetic data shows

using the cross-sensitive parameter is able to obtain a better detection

result in terms of accuracy, completeness and precision than using the

temporal dependency. The evaluation using a real dataset suggests the

proposed method is able to further improve data quality, as the calibra-

tion result is further enhanced after the anomalies have been removed by

the proposed method.

Based on the above discussion, the evidence provided in this thesis

fails to reject the thesis hypothesis as restated below:
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Both regression and ANN-based methods are able to improve

data quality for low-cost sensors. However, the regression-

based method is more suitable for our application due to lower

computational cost, reduced sensitivity to the model parame-

ters used and the need for less training data. The data qual-

ity can be enhanced by a calibration process that properly uses

the supporting parameters and data quality can be further im-

proved by applying an accurate removal of anomalies before

calibration.

7.1 Key Findings

In this section, we discuss the key findings that we learnt throughout the

thesis.

Systematic Methods for Evaluating Sensor Calibra-

tion

In Chapters 2 and 3, we identified that using multivariate calibration is

essential for improving the data quality of low-cost sensors. However,

to the best of our knowledge, there is a lack of sufficient comparison be-

tween calibration methods, which not only hinders the difference between

the methods, but also prevents an appropriate calibration method being

used. We identified that it is important to have a systematic method

for evaluating calibration methods, as using an inappropriate evaluation

metric could create artefacts in the evaluation and bias the conclusion.

In Chapter 4, we compared calibration methods between an ANN-

based method and a regression-based method and used various metrics

to evaluate them. The evaluation in Section 4.3.1 shows that both meth-

ods could calibrate the sensor and produce a similar RMSE value. The

evaluation in Section 4.3.2.2 (Figure 4.26) shows that both methods pro-

duce a similar error distributions of the calibrations. It is noted that the

RMSE value tends to be the only metric chosen by most environmental

scientists and regulators for the evaluation of calibrations. This is part
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of the reason why the existing comparisons of calibration methods are

insufficient, as they only compare the calibration results using a single

evaluation metric, e.g. RMSE, which would not show a clear difference

between the methods.

In the subsequent comparison in Chapter 4, we demonstrated that

the scatter plot is a good evaluation metric as the scatter plots in Fig-

ures 4.21 and 4.27 were able to show a clear difference between the

methods. The figures show that the predicted values from the ANN-

based method are always categorical, whereas the predicted values from

the regression-based method were not. This indicates that using a scat-

ter plot is important to evaluate the results of calibration. The work

in Chapter 4 suggests that certain evaluation metrics could create an

artefact that hinders the difference between calibrations. Therefore, we

believe it is important to investigate a systematic evaluation method for

the calibration of sensors. However, for the current evaluation, it is im-

portant to look at a wide range of evaluation metrics to avoid artefacts

in the evaluation.

This study presents the difference between the two calibration meth-

ods. The results show that the predicted values from the ANN-based

method are always categorical. However, it was difficult to determine

the reason why the ANN-based method produced such a pattern. It

could be associated with the use of the data, the combination of model

parameters or the training regimes.

Understanding Generalisability of Sensor Calibration

Chapter 3 illustrates that the calibration of low-cost sensors is closely re-

lated to the current environmental conditions. Thus, understanding the

generalisability of sensor calibration is important as it indicates whether

a calibration function can be used across different sensor units or en-

vironments. A good generalisability means that a calibration can be

reused directly on new sensor units or sensors in different environments.

We have tested the generalisability of sensor calibration throughout the

thesis. In Section 4.3.2.1, we demonstrated that the calibration function
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is relatively stable with different sizes of training datasets being used.

Therefore, in practice, we would have confidence in determining a good

calibration function when different sizes of training datasets are used.

However, in Section 5.2.4, we have shown that the calibration function

has a limited generalisability when different sensor units are in use or

sensors are in different environmental conditions. This implies that we

have to apply new calibrations each time the use of sensor units or the

environmental conditions change. Due to the limitation of the dataset,

the conclusion may not be definitive. For example, we only tested the

variation of calibration coefficients for a group of sensor units in the mild

environment. Thus, we would not know how the calibration of coefficients

would vary across sensor units in the harsh environment. Furthermore,

there was only one sensor unit available in the harsh environment, which

makes it impossible to obtain statistical confidence for how the environ-

ments would impact on the generalisability of the calibration function in

a particular location.

It is worth pointing out that this study only suggests the calibration

coefficients vary depending on the sensor units used and the environ-

ments. It was not able to identify what the factors that cause the varia-

tions were and how to compensate for them. Therefore, more knowledge

would be required to answer the following questions: what is the fac-

tor that causes a variation in calibration coefficients across sensor units?

How does the factor affect the behaviours of the sensor units in the mild

environment?

Issues for Anomaly Detection

Data in general reflects underlying physical phenomena but it is also af-

fected by sensing issues. Since anomalies and outliers often appear in data

with similar patterns, the detection of anomalies, especially separating

anomalies from outliers, can be difficult. Chapter 3 shows that anoma-

lies are unrelated to the underlying physical phenomena, thus anomalies

are often identified with respected to their actual physical phenomena.

However, in practice, it is often difficult to determine the actual phys-
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ical phenomena due to the fact that reference instruments often moni-

tor the environment with different temporal resolutions, as discussed in

Section 1.5.2. It is noted that the properties of anomalies change with

respect to the data processing. Thus, it would be inappropriate to de-

tect anomalies after calibration. For example, the pattern of anomalies

observed before and after calibration would be different.

Unknown underlying physical phenomena not only makes the detec-

tion of anomalies more difficult but also hinders studying anomaly detec-

tion in real datasets, as we would not easily get the reference of anomalies

in a real dataset for evaluation. According to the literature review on

anomaly detection, the state-of-the-art methods often use relevant in-

formation (i.e. contextual information) to estimate underlying physical

phenomena. For example, if consistent data patterns were presented

in neighbouring sensors (spatial information), these measurements are

likely to be a reflection of real physical phenomena. In Chapter 3, we

have shown that the existing contextual information is not applicable in

this application. Thus, we propose the use of new contextual information

(i.e. cross-sensitive parameters) to estimate the underlying physical phe-

nomena and to detect anomalies. However, it is noted that the proposed

contextual information would also be unavailable in certain scenarios,

e.g. a sensor unit only monitors the parameters of interest. Therefore,

the use of contextual information to estimate the underlying physical

phenomena would be application dependent.

The anomalies were identified in this work without knowing what

their root causes were. We believe that some of the anomalies are associ-

ated with systematic causes, e.g., dust accumulated in the sensor affects

the measurements and compensating for those root causes would signif-

icantly reduce the anomalies. Finding out the causes of anomalies is a

challenging but important task.

7.2 Future Work

An obvious future study is to deploy sensor units in a way that they

are able to conclude findings for the generalisability of sensor calibra-
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tion. For example, firstly, we need to deploy a group of sensor units

in lab conditions, where the environmental conditions can be fully con-

trolled to determine how exactly the calibration coefficients vary across

sensor units. Then, in the second step, the same group of sensor units

with an identical set-up in different environments (e.g., the relative dis-

tance between the neighbouring sensor units needs to be identical for the

deployment in different environments) needs to be deployed in different

environmental conditions to determined how they would vary in different

environments. The above steps would ensure the use of sensors and the

environment are the only changed variables that are responsible for any

change in measurements in the experiment. We would also recommend

that it is essential to use a large number of sensor units in each deploy-

ment as it could provide stronger statistical confidence for the analysis.

Furthermore, we consider that it is important to better understand

what experimental methods, including statistical analysis, should be per-

formed on individual sensors. A first step would be to perform selection

methods to understand the principal factors that contribute to the er-

rors in sensor data and under what conditions. A second step would be

to look at different evaluation metrics to better understand the errors

related to sensors. For example, using a large dataset and data from a

large group of sensor units to understand the reliability and confidence of

the measurements. This would give the required confidence level under

defined operational conditions. This type of information could then be

used by environmental scientists in their selection of appropriate sensors.

7.3 Open Issues and Challenges

This section discusses a list of open issues and challenges related to this

thesis.

Understanding the Sensing Errors

In this work, we generalised all errors observed in the data as systematic

errors or random errors. We assume that systematic errors can be com-
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pensated for by the process of calibration and random errors would be

removed by the process of anomaly detection. However, data errors can

have many different forms and causes. For example, errors that randomly

occur in the data may be associated with a systematic cause (e.g. dust

accumulated in the sensing unit). The challenge would be establishing a

link between the errors and their causes. By having this link, the errors

can be tolerated at their source.

The Ground Truth in Uncontrolled Environments

Currently, reference sensors are used to provide the ground truth in an

uncontrolled environment. However, due to the cost of the sensors, it is

often impossible to have a sufficient number of references in a network,

especially for large-scale, high-density sensing applications. Furthermore,

as the data from the reference instrument is assumed to be the ground

truth, errors incurred in the reference instrument would hinder the un-

derstanding of the errors in low-cost sensors. Therefore, the challenge is

how to obtain an accurate reference for sensing applications.

Understanding the Errors Propagation and Effects

After finishing the data quality check, the sensed data will be further

analysed to provide information to support decision-making. However,

it is still not clear how the errors incurred at the sensing stage would

be propagated throughout the data analysis and affect the final decision.

We believe that a better process can be designed if we understand which

errors would have the most impact on the decision-making. Therefore,

understanding error propagation and its effects would be important but

challenging.

Long-term Performance

The nature of the environment as well as the performance of sensors will

change over the time. As a result, the data will be affected differently

with respect to the original effect. The challenge is how to design a
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process to cope with those changes to achieve long-term performance.

This is important for future work as it could dramatically reduce the

maintenance costs.
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