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Abstract 
 

High-shear wet granulation is a particle size enlargement process widely used in industries 

such as the pharmaceutical, food and agricultural industries. Despite its predominance, 

knowledge on several of the key mechanisms of granulation is lacking, driving up the costs of 

the design of new processes, scale-up and control. For the rate mechanism of consolidation 

and layered growth, models can be found in literature, one of which has been validated for 

the case of growth in a static powder bed. However, these models remain to be 

experimentally validated for application in an actual granulator. This study is the first to 

develop a method to investigate consolidation and layered growth under such dynamic 

conditions, and presents a detailed investigation of the kinetics, as well as a model to describe 

them. 

Initially, a high-shear mixer with three-bladed impeller was used for the method 

development of the study of the kinetics of consolidation and layered growth. However, 

experiments quickly showed that a dedicated piece of equipment was needed in order to 

isolate consolidation and growth from the other granulation phenomena, breakage in 

particular. Therefore, a novel, consolidation-only granulator (COG) was designed. Using the 

COG, the growth kinetics of a variety of powder-binder systems was evaluated. The granule 

mass was found to increase linearly with the square root of time, until a critical-packing 

liquid volume fraction had been achieved. This behaviour corresponds with surface tension-

driven growth models. However, breakage and attrition were found to be prevalent for long 

granulation times, making it impossible to determine both the critical-packing liquid volume 

fraction and the final granulation time. Additionally, an unexpected rapid increase in initial 

granule mass was observed. Remarkably, the overall granule porosity was found to be 

constant. Tomography revealed that the granules developed a core-shell structure, with the 

higher-density shell becoming increasingly thick during granulation and the core becoming 

less dense. 

A further study using a high-shear mixer with flat plate impeller was successfully 

performed to determine the critical-packing liquid volume fraction and final granulation time. 

Although the qualitative kinetic behaviour was found to match that predicted by the surface 

tension-driven growth model, the quantitative behaviour varied. Efforts to incorporate the 

observed core-shell structure into the existing model revealed that such an extension did not 

represent the observed behaviour. As such, no predictive expression was found for the 

critical-packing liquid volume fraction and final granulation time. However, these parameters 

can be obtained from experimental work. Finally, the initial rapid increase in granule was 

addressed, and it was deemed probable that this effect would not have a significant impact on 

in-situ nucleation in a granulator. 

Finally, the results from all the studies were combined to adjust the existing model and 

convert it into two different population balance models (PBMs). The first, a three-

dimensional PBM, was simply proposed. The second, a one-dimensional PBM, was solved 

by discretisation and compared to the experimental results to evaluate its performance. It was 

found that the discretisation method showed some deviation from the experimental results, 

but that this error could be reduced by decreasing the bin width. 

This work has successfully identified the underlying kinetics of layered growth, elucidated 

the consolidation and growth behaviour of granules, and contributed to the modelling and 

design of granulation processes.  
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D͂ Reduced radius length 

Deff Effective diffusivity area/time 

De Deformation number - 

Fr Froude number - 

G Growth rate length/time 

Gi Granule growth rate in bin i length/time 

J, JL Liquid flux length/time 

L Particle/granule size length 

Li Granule size at bin i length 

Lp,i Representative granule size in bin i length 

N Number of drum rotations - 

N Number of intact granules - 

N Total number of particles - 

N Total number of particles per volume volume
-1

 

N0 Initial number of intact granules - 

Ni Total number of particles in bin i - 

Ni Total number of particles per volume in bin i volume
-1 

R Pore radius length 

R Radius of the granulator length 

S Liquid saturation - 

S Probability of particle breakage - 

Si Breakage selection rate constant for bin i time
-1

 

Stdef Stokes deformation number - 

Str
*
 Dimensionless peak flow stress - 

Stv Viscous Stokes number - 

Stv
*
 Critical Stokes number - 

Stv,max Maximum Stokes viscous number - 
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Uc Representative collision velocity Velocity 

V̇ Volumetric binder flow rate volume/time 

Vd Droplet volume volume 
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W
*
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Wm,kin Kinetic energy of the particle energy 
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1/2
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b High-liquid fraction core size length 
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th
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d4,3 Volume moment mean diameter length 
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h0 Initial droplet diameter length 
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-1
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ni Number density function in bin i volume
-1

 

p Pressure pressure 
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q Final bin size - 
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r Growth rate length/time
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r Radius length 

r Ratio between breakage zone and total area - 

r Size ratio between bin i+1 and bin i - 
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r0,obs Extrapolated initial radius of the granule length 

s Position length 

s Probability of granule breakage - 

s Volume of solid of a single granule volume 

smax Maximum pore saturation - 

t time time 

tʹ Wetting time time 

̂t Dimensionless time - 

t" Densification time time 

t1 Static-growth tmax time 

t2 Impact-driven tmax time 

tc Circulation time time 

tmax Time until the granule has reached critical packing time 

̂tmax Dimensionless tmax - 

tmax,d Observed tmax for dynamic experiments time 

tmax,s Observed tmax for static experiments time 

tmax,theory Calculated tmax for experiments time 

tmax,theory,d Calculated tmax for dynamic experiments time 

tmax,theory,s Calculated tmax for static experiments time 

tmax
app 

Apparent tmax time 

tp Droplet penetration time time 

treal Actual granulation time time 

u0 Granule velocity velocity 

<v> Average velocity velocity 

v Velocity velocity 

v Granule volume volume 

v0 Initial droplet volume volume 

v0
app 

Apparent initial liquid volume v0 volume 

v1 Static-growth granule volume volume 

v2 Impact-driven granule volume volume 

vA Granule air volume volume 
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vcrit Critical solid volume volume 
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vL Granule liquid volume volume 

vmax Maximum granule volume volume 

vp Relative granule velocity velocity 
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vT Total granule volume volume 
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x Height coordinate length 
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αi Constant to prevent a negative approximation of n - 

βi,j Coalescence kernel at bins i and j time
-1

 

γ Liquid surface tension force/length 

δ Difference between total granule size and core size length 

̂δ Dimensionless granule-core size difference - 

ε Porosity - 

ε0 Initial porosity - 

εb Bed porosity - 

εend Porosity observed for long granulation times - 

εmin Minimum porosity - 

εstart Porosity observed for short granulation times - 

θ Contact angle angle 

μ Dynamic liquid viscosity pressure*time 

ρg Granule density density 

ρl Liquid density density 

ρs Solid density density 

σp Dynamic yield stress pressure 

τp Dimensionless penetration time - 

ϕ1 Static-growth critical-packing liquid volume fraction - 

ϕ2 Impact-driven critical-packing liquid volume fraction - 

ϕcp Critical-packing liquid volume fraction - 

ϕcp,d Dynamic ϕcp - 
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-1
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1.1 Research background 
 

Granulation is the process of creating larger, more easily processable particles called 

granules by agglomeration of powders [1]. The process is widely applied in many areas, 

including pharmaceuticals, food and agriculture. However, despite its prevalence in industry 

and many excellent studies over the past 60 years [2], the complexity of granulation 

processes still poses many challenges. The fundamental mechanisms of granulation are not 

yet fully understood. Consequently, designing new formulations [2,3], or scaling up existing 

processes [4,5] require extensive investigation. This work focuses on contributing to our 

understanding of two of the key mechanisms of granulation: consolidation and layered 

growth. 

This introductory chapter highlights the current state of the field of granulation and the 

gaps of knowledge this study aims to address. Additionally, a detailed list of the aims of this 

work is provided, and the outline of this thesis is presented. 

 

1.1.1 Granulation in industry 
 

There are many reasons why granulation is widely employed in industry. Granulation of 

powders reduces dust formation, improves handling, tabletability and product appearance. 

Additionally, material properties can be controlled with granulation [1,3,6]. Of particular 

interest to this work is the widely applied method of high-shear wet granulation, which 

employs heavy-duty mixers to agglomerate powders using a liquid binder [3]. 

Although wet granulation using mixers is a common size enlargement method in industry, 

it is one of the most complex processes to scale up and control [6]. Predicting the effects of 

changes in formulation, or designing a production process for a defined product requires 

extensive experimental investigation [2,3], and even the processes that operate well may 

suffer from large recycle ratios, material wastage, energy and money [2]. Although heuristics 

for scaling up processes exist [6-10], some rules of thumb are extremely contradictory. Even 

granules produced from ‘proven’ methods that yield similar granule size distributions may 

have different properties, or vice versa [11]. 

The situation is not hopeless, however. Over the past 60 years [2], knowledge of 

granulation has vastly improved. Research in the field became more systematic with the 

conceptualisation of three distinct rate processes or mechanisms for granulation: wetting and 

nucleation; consolidation and growth; and breakage and attrition [2], as shown in Figure 1.1. 

These rate process can often be further divided into distinct mechanisms. Growth, for 

example, occurs either via agglomeration of granules (coalescence) or powder uptake 

(layering). 

Regime maps were developed to better describe wetting and nucleation [12], granule 

coalescence [13], and granule growth [14]. Investigations of granule breakage at the granule 

scale [15] and process scale [16,17] improved the knowledge on the mechanisms and granule 

properties that govern breakage. All these advances in the field of granulation have improved 

granulation process design, and cleared the way for the development of predictive models. 

However, there are still gaps in knowledge, particularly for breakage, attrition [15,16], 

consolidation [18] and layered growth [19]. 
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Figure 1.1: The three granulation mechanisms as presented by Iveson et al. [2]. Reproduced with 

permission from Elsevier. 

 

1.1.2 The value of predictive models 
 

Predictive models could greatly contribute to the reduction of the number of experiments 

needed to design processes for new products, as well as facilitate a more straightforward 

scale-up of existing processes. Additionally, the on-line monitoring and control of processes 

can be improved using simulations. 

Attempts to simulate agglomeration processes have a long history in the literature [20-23]. 

Of particular interest are population balance models (PBMs), which track the frequency 

distributions of a property as a function of one or more other properties over time. For 

granulation, the number frequency distribution as a function of granule size is usually 

simulated [22], although more complex models also simulate frequency distributions as 

functions of properties like porosity and liquid content [24]. PBMs can be rather flexible, 

with different kernels representing the different rate processes, such as agglomeration, 

occurring during granulation. 

Originally, models were mostly empirical, with parameters having to be fit to 

experimental data in order to obtain reasonable predictions [20-23]. However, a gradual shift 

towards more mechanistic models [25,26] and combinations with other physically relevant 

models such as the discrete element method (DEM) can be found in the literature [27-29]. By 

elucidating the various granulation mechanisms, it should eventually become possible to 

predict all granule properties, to select operating conditions to obtain a specific product, and 

to scale up granulation processes. 

The study presented here aims to contribute to increasing the understanding of, and the 

development of a mechanistic PBM for two correlated rate phenomena in particular: 

2. Consolidation and growth 

1. Wetting and nucleation 

3. Breakage and attrition 
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consolidation and layered growth. Hounslow et al. [30] proposed two different theoretical 

models to predict these two rate processes directly after nucleation. However these models 

were not validated until Pitt et al. [31] demonstrated that the model for surface tension-driven 

growth correctly predicted growth behaviour of nuclei in a static powder bed. However, so 

far, no studies have been performed to investigate the growth behaviour of granules in a 

dynamic situation. 

 

1.2 Research objectives 
 

The overall objective of this work was to provide a mechanistic model that describes the 

consolidation and layered growth mechanisms of high-shear wet granulation. In order to 

achieve this, a fundamental understanding of these phenomena was required. Therefore, it 

was necessary to develop an experimental method of investigating consolidation and layered 

growth by isolating them from the other granulation mechanisms. A method developed in this 

way is expected to be useful not only for the investigation of consolidation and layered 

growth in future studies, but also applicable to other mechanisms such as breakage and 

attrition. The layered growth kernel proposed in this study can be combined with other 

kernels to mechanistically simulate the phenomena occurring during granulation. The 

approach taken can be summarised into the following subgoals: 

 To summarise the current state of the literature on granulation, granulation 

mechanisms and modelling of granulation to highlight the novelty and impact of 

this work. 

 To develop an experimental method to isolate and study consolidation and layered 

growth. 

 To use the developed experimental method to obtain kinetic consolidation and 

growth data for a variety of powder-binder systems: 

o To investigate the effect of particle size and shape 

o To investigate the effect of binder viscosity 

o To investigate the effect of binder drying 

 To identify a model that describes the experimentally obtained kinetic 

consolidation and layered growth behaviour. 

 To investigate the key parameters of the model and identify ways of either 

predicting these parameters or extracting them from experimental data. 

 To convert and adapt the model into a mechanistic population balance model and 

evaluate its performance. 

 

1.3 Thesis layout 
 

This work explores several experimental methods, as well as population balance 

modelling methods. This thesis is structured to first provide an overview of the subject and 

the current state of the field of granulation. This information is then used to develop an 

experimental method, which is subsequently employed to collect experimental data. After the 

evaluation of the experimental data and comparison with the literature, a model is developed 

and evaluated using the data. Finally, all results are linked back to the objectives and 
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discussed. A graphic outline of this work is shown in Figure 1.2, and the chapter structure is 

presented as follows: 

 
Figure 1.2: Graphic outline of this work showing the interdependency of the various chapters.  



Chapter 1  Introduction 

6 

 

Chapter 2 presents the state of the literature. A brief overview of granulation equipment is 

given, and the current knowledge on the various granulation mechanisms is discussed. 

Additionally, the applications of population balance modelling in the field of granulation are 

discussed extensively. Finally, a brief overview of the issues with scale-up and control of 

granulation processes is presented. 

Chapter 3 lists all materials and characterisation techniques used in this work. 

Additionally, the chapter provides a detailed overview of the various experimental methods 

employed throughout this study. 

Chapter 4 details the experiments performed with a high-shear mixer, which laid the 

foundation for the design of novel consolidation-only granulator (COG). Additionally, the 

trends observed in the breakage behaviour are investigated. 

Chapter 5 presents the design of the COG and describes the experiments performed with 

this novel granulator to obtain the kinetics of consolidation and layering for various powder-

binder systems. The collected data is compared to models from the literature. The validity of 

the designed method is then discussed. 

Chapter 6 addresses several of the deviations from the best model identified in the 

previous chapter. Experiments are performed using a high-shear mixer with a flat plate 

impeller and paste granules in order to determine of the key parameters of the model are 

investigated. Furthermore, extension of the model from the literature is proposed. Finally, the 

kinetics of the initial growth behaviour are discussed. 

Chapter 7 proposes two different population balances models to describe layered growth. 

The second model is further developed, solved using various discretisation methods and 

compared to the experimental data reported in Chapter 5. Finally, the validity and limitations 

of the model are discussed. 

Chapter 8 summarises the results of Chapters 4-7, and links the results back to the gaps of 

knowledge identified in Chapter 2 and the objectives of this work. Finally, the contribution of 

this work to the field of granulation is discussed and recommendations for further research 

are made. 
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2.1 Introduction 
 

Fine powders are difficult to handle. Many industries that use particulate materials, like 

the pharmaceutical, catalyst, food and fertiliser industries, use granulation to improve the 

processability of powders. Granulation is defined as the formation of agglomerates by 

sticking together smaller particles, usually by agitation methods [1]. In this thesis, 

agglomerates produced in this way are referred to as granules. 

Using granules instead of powders offers many advantages. The hazards of dust 

explosions, caking and formation of lumps are reduced, bulk storage density is increased and 

handling and metering of the material are improved. The latter is especially important for 

industries that produce tablets from powders, such as the pharmaceutical industry. Another 

advantage of granulation is prevention of the segregation of powder mixtures. The dispersion 

and solubility of powders can be better controlled, which is relevant to the food industry. 

Properties like the porosity and surface to volume ratio can be controlled, which is important 

for the catalyst support industry. Furthermore, granulation improves the appearance of 

powder products [1,3,6]. Granulation can either be carried out with dry powder (dry 

granulation) or with a binder (wet granulation) [3]. This work focuses on wet granulation. 

Despite its relevance and almost 60 years of research [2], granulation remains more of an 

art than a science. Ideally, the desired granule properties are used to determine the necessary 

formulations, operating conditions and equipment. Although knowledge of granulation has 

grown over the past years, extensive laboratory work is still necessary to determine which 

conditions result in the desired properties [2,3]. Furthermore, the scaling up of a granulation 

process requires considerable investigation [4,5]. 

In this chapter, an overview of literature relevant to this thesis is presented, with a focus 

on high shear wet granulation. First, a basic explanation of granulation equipment is given. 

Next, granulation mechanisms and methods to model granulation are explained. Finally, 

scaling and control of granulation processes are discussed. 

 

2.2 Granulation equipment 
 

In industry, many types of granulation equipment are used, each of which has advantages 

and disadvantages. In this chapter, four different types of wet granulators are compared: 

 Tumbling granulators 

 Fluidised bed granulators 

 Twin screw granulators 

 Mixer granulators 

 

2.2.1 Tumbling granulators 
 

Tumbling granulators impart motion to powders in a rotating drum or disc and can be 

operated continuously or in batch [1,6]. Liquid binder is added through spray nozzles and 

scrapers may be present to control cake build-up on the walls. This type of granulator is used 

by the fertiliser, iron and agro-chemical industries, among others [1], and is also used for 

particle coating [6]. 
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Granules produced in tumbling granulators are relatively large, with sizes in the range of 

0.5-20 mm, have a low porosity and are highly spherical [1]. Tumbling granulators can have 

a very high throughput (up to 800 t/h) [6]. 

When operated continuously, disc granulators make use of the natural segregation of 

particles to sort out the larger particles, resulting in narrow size distributions and greatly 

reducing the need for a recycle. Continuous rotating drum granulators have no particle sorting 

mechanism in place and, as a result, require much larger recycles. On the other hand, rotating 

drums can handle a much higher throughput than disc granulators [6]. 

 

2.2.2 Fluidised bed granulators 
 

In a fluidised bed, particles are kept in motion by sending a gas through the powder bed. A 

liquid binder is sprayed either from above or within the bed. Fluidised beds can be operated 

either in batch or continuously for granulation. Industries using these types of fluidised beds 

include the pharmaceutical, food and agro-chemical industries [32]. 

Two types of fluidised beds are commonly used: bubbling and spouted beds. In a bubbling 

bed, particles are fluidised and large bubbles form, whereas in spouted beds most of the 

powder is not fluidised. Instead, a jet of air in the centre creates a spout of particles and gas 

[1]. A spouted bed offers more control over particle circulation and growth compared to a 

bubbling bed. Furthermore, spouted beds can be used when particles are difficult to fluidise. 

On the other hand, bubbling beds can be scaled up more easily [6].  

Granules produced in fluidised beds generally have sizes in the range of 0.1-2 mm and a 

low density [1,6]. Fluidised beds have good heat and mass transfer and are relatively simple 

to operate and scale up, but running costs and wear of the granulator are higher compared to 

other types of equipment. 

 

2.2.3 Twin screw granulators 
 

The direct production of granules using twin screw granulation or twin screw extrusion 

has increasingly received attention in the past few years [33,34]. Twin screw granulation 

involves two augers transporting a wet mass to an extrusion zone. By using different 

kneading elements, the shape and granule size distribution can be varied [35]. Depending on 

the conditions, particles may be produced directly or after an extra cutting or milling step in 

which the extrudate particle size is reduced [36]. Since a twin screw extruder can be operated 

continuously, it could be used to replace high-shear granulation processes. A major 

disadvantage of twin screw granulation, however, is the complexity of parameters such as 

screw configuration, which make the design and optimisation of a granulation process 

laborious. 

 

2.2.4 Mixer granulators 
 

In mixer granulators, an agitator or impeller is used to impart motion to particles [1]. Such 

granulators are classified either as low-shear or high-shear mixers, depending on the impeller 

speed and presence of choppers that break up larger agglomerates. The axis of the impeller 

can either be horizontal or vertical. Horizontal mixers are used in, for example, the fertiliser 

industry, whereas vertical mixers are used by the detergent, agro-chemical and 
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pharmaceutical industries [1]. Mixer granulators can be operated either continuously or in 

batch and produce less spherical, denser granules than tumbling granulators [6]. Although 

granulation using mixers is used in many different industries, it is the most complex type of 

equipment to scale up and control [6]. In the following sections, both low- and high-shear 

mixers are discussed in more detail. 

 

2.2.4.1 Low-shear mixer granulators 

 

Low-shear granulators use less energy than their high-shear counterparts, and may 

produce denser granules than those obtained by fluidised bed granulation. This decreases 

tabletability, but reduces wear of the granules, which may or may not be desired, depending 

on the application for which the granules are used. There are five major types of low-shear 

mixers: ribbon or paddle blenders, planetary mixers, orbiting screw mixers, sigma blade 

mixers and rotating shape granulators [37]. A schematic drawing of each type of mixer is 

shown in Figure 2.1. 

Ribbon blenders are mixers consisting of a shaft with metal ribbons and can be used for 

granulation, although the shaft may not be strong enough to withstand the torque. Therefore, 

sometimes paddles are used instead of ribbons. Ribbon or paddle blenders may be operated 

continuously [37]. Due to their slow operation, most industries have replaced this type of 

granulator with tumbling drums [6]. 

Planetary mixers consist of a bowl with vertical agitator elements and usually mix well in 

the horizontal plane, but not the vertical plane. This type of mixer is operated in batch [37]. 

Due to long mixing times, planetary mixer granulators have mostly been replaced by batch 

high-shear mixers [6]. 

Like the previously mentioned types of low-shear granulators, orbiting screw granulators 

are mainly used for mixing. The mixer consists of a cone with a moving screw that agitates 

the powder. By adding a chopper and spray nozzle, the mixer can be used as an effective low-

shear granulator [37]. Orbiting screw granulators may be used when gentle granulation is 

required, for example when opting for formulations that yield granules with a low strength. 

A sigma blade mixer has s-shaped, rounded blades that mostly compress powders and 

liquid into a paste. This type of kneading leads to a very uniform binder distribution [37] and 

is mostly used for dough mixing in the bread industry. 

Rotating shape granulators usually consist of a drum with cylinder-based shape. The 

machine shell rotates along a horizontal axis. On the axis, a second rotating device agitates 

the powder in addition to the motion imparted by the shell. The shear in the device is usually 

low, which may be desired or undesired depending on the target product. This type of 

granulator is mostly operated in batch, although continuous types are also available [37]. 
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Figure 2.1: Different types of low-shear mixers: ribbon blender (A), planetary mixer (B), orbiting 

screw granulator (C), sigma blade mixer (D) and rotating shape granulator (E). 

 

2.2.4.2 High-shear mixer granulators 

 

High-shear mixer granulators usually consist of a bowl with many different possible 

geometries, an impeller to mix the powder and binder liquid, and a chopper to break down 

large agglomerates [38]. Advantages of high-shear granulators include the short processing 

time, efficient use of binder liquid, the possibility of handling cohesive materials and the 

production of stronger granules. However, there are also several disadvantages to using high-

shear mixers. Granules in high-shear granulators experience stronger shear forces and, 

consequentially, significantly more breakage and attrition compared to other granulators [6]. 

As a result, the granules produced in this way have a higher density and, therefore, a lower 

compressibility (i.e. volume reduction when compressed) compared to granules produced in 

low-shear granulation. Furthermore, a narrow range of operating conditions is required in 

order to obtain reproducible results [38]. 

In the pharmaceutical industry, batch high-shear mixers are widely used due to their 

robustness, but at the same time, they are one of the most complex types of granulator [6]. 

This complexity is mainly caused by the influence of chopper and impeller geometry and the 

differences in shear and flow patterns between different high-shear mixer types. For example, 

chopper speed has little effect on granulation in vertical shaft mixers, whereas it has a much 

larger impact on granulation in horizontal shaft designs like the Lödige mixer [6]. A 

schematic of a horizontal and vertical mixer is shown in Figure 2.2. 

Continuous high-shear mixers involve a horizontal or vertical shaft with blades or pins 

rotating at high speed. This type of granulator is used in, for example, the ceramic clays and 

detergent industries [6]. Residence times are usually in the order of minutes. A major 

advantage is that continuous granulators offer a more flexible throughput of material. In a 

recent study [39], a horizontal continuous granulator was compared to a high-shear mixer and 

fluidised bed. It was concluded that, for the formulation tested, the continuous granulator 

outperformed the others in terms of quality and control.  

A B C 

D E 
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Figure 2.2: Schematic examples of high-shear mixer design: A vertical impeller shaft mixer (A) 

and a horizontal impeller shaft mixer (B).  

High-shear batch granulation is one of the most widely applied granulation technologies 

[6]. In spite of this, developing a granulation process and formulation often requires thorough 

experimentation due to the number variables involved [38]. In the next subchapter, the reason 

for this complexity is explained. 

 

2.3 Granulation phenomena 
 

In order to design granulation processes, it is important to understand the different 

phenomena occurring during granulation. In a review at the start of the 21
st
 century, Iveson et 

al. [2] distinguish three different rate processes: wetting and nucleation; consolidation and 

growth; and breakage and attrition. Each of these processes is discussed in the following 

sections, with a focus on granulation in high-shear mixers. 

 

2.3.1 Wetting and nucleation 
 

Wetting and nucleation occur when a dry powder is contacted and mixed with liquid 

binder [2]. Liquid displaces air in the dry powder and wetted powder particles agglomerate 

into seed granules called nuclei. Wetting and nucleation is an important process, since the 

product granule size distribution is related to the nucleation conditions [12], and poor wetting 

may lead to broad particle size distributions and poor liquid distribution [6]. Therefore, it is 

imperative to know what happens when a droplet hits the powder bed. Two extreme 

situations can be discerned. The droplet size can either be large compared to the particle size, 

or the particles can be large compared to the droplets [6]. 

In the case a droplet being larger than the primary particles, five nucleation steps occur 

[12]. First, the droplet is formed. It then impacts the bed, and, very rarely, breaks into smaller 

droplets. Next, the droplet coalesces at the powder surface and then penetrates into the 

powder pores. Finally, the liquid is mixed by mechanical dispersion. This mechanism is 

called immersion. 

A B 
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When the droplet impacts the powder bed in the immersion mechanism, several types of 

fragmentation of the droplet can occur, each of which results in different types of granules 

[40]. On loose, cohesive powder beds and at low velocities, tunnelling will occur. The droplet 

sucks in particles and penetrates into the bed. This mechanism usually forms spherical 

granules. For coarser powders, droplets instead spread, forming disc-shaped granules. At 

higher velocities, the impact causes crater formation, resulting in a droplet coated in 

particles. The shapes of granules produced in this way vary. 

Charles-Williams et al. [41] compared droplet spreading and penetration on dry and pre-

wetted static powder beds. Penetration is much slower in wet powders, and the viscosity 

greatly influences the penetration and spreading times. When the liquid contact angle is 

greater than 90°, e.g. for hydrophobic powders and aqueous binders, the liquid does not 

penetrate the bed [42]. Instead, powder particles form a shell around the droplet, essentially 

forming a hollow particle after drying. This mechanism is called solid spreading. 

After nucleation, the binder liquid is distributed by mechanical dispersion. Depending on 

the shear, two types of nuclei can be discerned [43]. If shear is insufficient, the granules 

remain as they are, and the liquid distribution may be inhomogeneous. In the case of high 

shear, the nuclei will break, and the resulting granules are more homogeneous compared to a 

situation without breakage. 

When a droplet is smaller than the primary particles, the relevant mechanisms are different 

from the situation described above [44]. Distribution nucleation is more akin to a coating and 

coalescence process and can also be divided into five steps. First, droplets are formed. Next, 

the droplet is deposited on a primary particle, and may spread across the surface or even 

penetrate into the pores of the particle [6]. As more and more droplets gather at the surface of 

the particle, the particle becomes coated in liquid. Since the powder bed in a granulator is 

moving, particles experience many collisions with other particles. Nucleation occurs when 

two colliding particles are sufficiently coated to form a liquid bridge [44]. 

An important development in the investigation of wetting and nucleation phenomena was 

the proposition of a dimensionless spray flux, Ψa [45], defined as the ratio of the wetted area 

covered by the nozzle to the spray area in the nucleation zone (Equation 2.1): 

 

𝛹𝑎 =
3 ∗ �̇�

2 ∗ �̇� ∗ 𝑑𝑑
 (2.1) 

 

where V̇ is the volumetric binder flow rate, Ȧ is the area that passes through the spray zone 

each second and dd is the droplet diameter. For low spray fluxes (Ψa ≪ 1), drops do not 

overlap, and each drop forms a single nucleus. Using the concept of non-overlapping 

droplets, Wildeboer et al. [46] developed a nucleation-only apparatus, based on a conveyor 

belt with powder and a mono-sized drop nozzle. With this equipment, it is possible to 

continuously nucleate granules while mimicking a static powder bed. Droplets were found to 

coalesce due to the force of impact, thus creating nuclei composed of multiple droplets. 

Wildeboer et al. showed that the nuclei size distribution could be narrowed by increasing the 

powder bed velocity. This is in agreement with the definition of the spray flux, since 

increasing Ȧ leads to a decrease in Ψa. 
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Another way to improve the nuclei size distribution is by decreasing the drop penetration 

time, tp [46]. When a drop of volume Vd is gently contacted with a static powder bed with 

porosity εb, the penetration time can be calculated according to Equation 2.2 [1]: 

 

𝑡𝑝 = 1.35
𝑉𝑑

2 3⁄ ∗ 𝜇

ε𝑏2 ∗ 𝑅 ∗ 𝛾 ∗ cos(𝜃)
 (2.2) 

 

where R is the pore radius, γ is the liquid surface tension, θ is the dynamic contact angle and 

μ is the liquid viscosity. This equation implies that, provided the powder and binder 

properties are known, liquid penetration times can be estimated. 

Hapgood et al. [12] combined the concept of the spray flux with the liquid penetration 

time in a nucleation regime map, shown in Figure 2.3. 

 

 

 
Figure 2.3: Nucleation regime map proposed by Hapgood et al. [12] showing the different regimes 

as functions of the dimensionless spray flux and drop penetration time. Reproduced with 

permission from Elsevier.  



Chapter 2  Literature review 

15 

 

Using the time between which a section of powder leaves and re-enters the spray zone 

(circulation time tc) to non-dimensionalise the penetration time (τp), the map was divided into 

three regimes. For high spray flux and long liquid penetration times, droplets have significant 

overlap. Therefore, mechanical mixing is needed to distribute the binder liquid. This usually 

leads to a broad nuclei size distribution. This regime is called the mechanical dispersion 

regime. When the drop penetration time and spray flux are much smaller than 1, each droplet 

forms a single nucleus. This is called the drop controlled regime. There is also an 

intermediate regime in which the process is sensitive to changes in nucleation zone 

conditions. In this way, the regime map enables the prediction of nucleation behaviour 

dependent on process parameters and liquid and powder properties. 

 

2.3.2 Consolidation and growth 
 

After wetting and nucleation, granules may grow and consolidate (i.e. increase in density). 

Since granulated products are often evaluated for size, size distribution and porosity or a 

related property [6], understanding when and how growth occurs is important for the 

industry. Granules can grow either by layering or coalescence [47]. Layering is the formation 

of a fresh layer of powder around an existing granule, causing slow growth. Coalescence, on 

the other hand, involves the collision and sticking together of two granules, causing granules 

to grow rapidly. In a high-shear mixer, both consolidation and growth occur at the same time 

scale due to strong agitation by the impeller. In the following sections, growth, consolidation 

and developments in this area are discussed. 

 

2.3.2.1 Growth 

 

When evaluating growth in a high-shear mixer, it is important to consider what happens 

when two surface-wet granules in the mixer collide. Basically, up to three different types of 

collisions can be discerned, depending on the type of granules involved [6]. 

For near elastic or non-deformable granules, only two phenomena occur. Colliding 

granules will either coalesce or rebound, depending on their kinetic energy. At low kinetic 

energies, the viscous liquid layer around the granules dissipates the kinetic energy 

sufficiently to prevent rebound. At high kinetic energies, the liquid bridge formed is not 

strong enough to keep the granules together, and rebound occurs. Ennis et al. [48] defined a 

criterion for this type of coalescence by using the viscous Stokes number, Stv, for unequally 

sized, spherical granules. The viscous Stokes number shows the ratio between kinetic energy 

and the work performed by the viscous forces, as shown in Equation 2.3: 

 

𝑆𝑡𝑣 =
8 ∗ 𝑚̃ ∗ 𝑢0

3 ∗ 𝜋 ∗ 𝜇 ∗ �̃�2
 (2.3) 

 

where m̃ is the reduced mass of the granules, u0 is the velocity of the granules, μ is the 

average viscosity of the liquid between the granules and D͂ is the reduced radius of the 

granules. By comparing the viscous Stokes number to a critical value, Stv
*
, conclusions 

regarding the result of a collision can be drawn (Equation 2.4): 
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𝑆𝑡𝑣
∗ = (1 +

1

𝑒
) ∗ 𝑙𝑛 (

ℎ

ℎ𝑎
) (2.4) 

 

Here, e is the particle coefficient of restitution, h is the liquid layer thickness and ha is the gap 

distance between the two granules. 

When the maximum viscous Stokes number, Stv,max is much smaller than Stv
*
, growth is in 

the non-inertial regime. In this regime, all collisions are successful. Therefore, granules grow 

by layering and coalescence. When Stv increases so that Stv,max ~ Stv
*
, growth is in the inertial 

regime. In this regime, layering and both rebound and coalescence will occur and the overall 

growth is reduced. Finally, when the average viscous Stokes number increases even more so 

that it is in the order of the critical Stokes number, growth enters the coating regime. In this 

case, all collisions result in rebound and layering is the major growth mechanism. 

Although Ennis et al. provided a useful description of elastic particles, granules in a high-

shear mixer are generally deformable. For deformable particles, in addition to rebound and 

coalescence, deformation of the particles can occur [13]. When the viscous forces of the 

binder liquid are strong enough to fully dissipate the kinetic energy of the colliding granules, 

type I coalescence occurs; the granules do not actually touch and, therefore, do not deform. In 

the case where the kinetic energy is high enough to make the granules collide, either rebound 

or another type of coalescence occurs. After collision, the granules deform and rebound 

starts. As long as the liquid bridge formed is strong enough to keep the granules together, 

coalescence is successful. This is called type II coalescence. For high kinetic energies, the 

liquid bridge breaks and the two deformed particles separate. 

Liu et al. [13] proposed coalescence maps for colliding particles by comparing the viscous 

Stokes number to the deformability of granules, expressed by the Stokes deformation 

number, Stdef (Equation 2.5) [49]: 

 

𝑆𝑡𝑑𝑒𝑓 =
𝜌𝑔 ∗ 𝑈𝑐

2

2 ∗ 𝑌𝑔
 (2.5) 

 

where ρg is the granule density, Uc is the representative collision velocity in the granulator 

and Yg is the dynamic yield stress. The Stokes deformation number compares the kinetic 

energy to the energy required for deformation. The regime map is shown in Figure 2.4. 

Using the proposed map, the collision behaviour of wet particles can be predicted. At low 

velocities, deformability is not significant, and particles generally show type I coalescence. 

Particles with a low deformation number and, therefore, low deformability, mostly show 

rebound behaviour at high velocities, whereas type II coalescence is dominant for highly 

deformable particles. 

 

2.3.2.2 Consolidation 

 

Consolidation, densification or compaction is the mechanism by which granules become 

denser due to collisions in the granulator [6]. During compaction, particle size is reduced, air 

is squeezed out of the pores, porosity decreases and binder liquid may be expelled to the 

granule surface. In the literature, two types of consolidation behaviour are discerned in high-

shear mixers, depending on the deformability of granules [14].  
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Figure 2.4: Coalescence regime maps depending on the Stokes deformation number for a particle 

collision (defined as 6/π*Stdef) and the viscous Stokes number [13]. Reproduced with permission 

from Elsevier. 

In the case where granules are deformable, liquid is easily squeezed to the granule surface. 

This causes the granules to be surface wet most of the time, allowing for constant layering 

and coalescence. As a result, such granules show a constant growth over time [50]. This type 

of behaviour is referred to as steady growth. A low or medium binder viscosity and coarse 

particles promote steady growth behaviour. 

Granules that deform slowly usually take some time to become surface wet [51]. During 

this time, which is usually referred to as the induction period, no growth occurs. After the 

induction period, rapid growth occurs [52]. The induction period can be reduced by 

increasing the binder content. Induction growth behaviour is typically observed for fine 

particles and high viscosities. 

Iveson and Litster [18] investigated granule consolidation and proposed a simple model to 

describe the consolidation process (Equation 2.6): 

 
𝜀 − 𝜀𝑚𝑖𝑛
𝜀0 − 𝜀𝑚𝑖𝑛

= exp(−𝑘 ∗ 𝑁) (2.6) 

 

with ε, ε0 and εmin being the average porosity after N drum rotations, the initial porosity of the 

feed and the minimum achieved porosity, respectively, and k being a consolidation rate 

constant depending on yield stress, particle size and binder viscosity. More recently, it was 

suggested that the dependency of k on these properties could be related to the Stokes 

deformation number [6], at least for drum granulation. 
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Maxim et al. [53] further developed the consolidation model and proposed the following 

equations to describe the evolution of interparticle space over time (Equation 2.7): 

 

{
 
 

 
 𝐵𝑣 − 𝐵𝑣𝑎
𝐵𝑣0 − 𝐵𝑣𝑎

= exp(−𝜔 ∗ 𝑡) 𝑤𝑖𝑡ℎ𝑡 = 𝑡𝑟𝑒𝑎𝑙 − 𝑡
′

𝐵𝑣
" − 𝐵𝑙𝑏𝑟

𝐵𝑣𝑎∗ − 𝐵𝑙𝑏𝑟
= exp(−𝜔 ∗ 𝑡∗)𝑤𝑖𝑡ℎ𝑡∗ = 𝑡𝑟𝑒𝑎𝑙 − 𝑡

"

 (2.7) 

 

The two equations are valid for different times. After an initial wetting period, tʹ, a particle is 

assumed to consolidate by bringing all the primary particles together. After a period t", when 

all particles are packed together, further consolidation takes place by internal densification of 

the granule until a critical packing state is reached. treal is the actual granulation time and ω is 

an agitation intensity rate constant, related to mixer speed. Bv and Bv" are the interparticle 

space of the whole granule and interparticle space between primary particles, respectively. 

Bva and Bva
*
 are the interparticle space reached without and including reconfiguration of the 

primary particles, respectively. Bv0 is the interparticle space at the formation of the granule (t 

= 0) and Blbr is the critical interparticle space. The limiting binder to solid volume ratio, Vl/Vs 

is defined according to Equation 2.8: 

 
𝑉𝑙
𝑉𝑠
=

𝐵𝑙𝑏𝑟
1 − 𝐵𝑙𝑏𝑟

, 𝑜𝑟𝐵𝑙𝑏𝑟 =
𝑉𝑙

𝑉𝑙 + 𝑉𝑠
 (2.8) 

 

where Vl and Vs are the volumes for binder liquid and solid particles, respectively. Although 

the model appears to be useful, this model has not been verified with experimental data. The 

rewritten form of the equation is important for the review of nucleation models in Section 

2.3.2.4. 

 

2.3.2.3 Regime maps 

 

In order to identify and predict all types of growth behaviour observed during granulation, 

Iveson and Litster [14] proposed a regime map, an updated version of which [49] is shown in 

Figure 2.5. The map describes different regimes as a function of the Stokes deformation 

number and the maximum granule pore saturation, smax, which gives the fraction of pores 

occupied by liquid (Equation 2.9): 

 

 

where w is the mass ratio of liquid to solid and ρs and ρl are the densities of the solid particles 

and the binder liquid, respectively. 

  

𝑠𝑚𝑎𝑥 =
𝑤 ∗ 𝜌𝑠 ∗ (1 − 𝜀𝑚𝑖𝑛)

𝜌𝑙 ∗ 𝜀𝑚𝑖𝑛
 (2.9) 
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Figure 2.5: Regime maps proposed by Iveson and Litster [49], showing the different regimes 

during granulation as a function of the Stokes deformation number and the maximum pore 

saturation. Reproduced with permission from Elsevier. 

The regime map allows for a qualitative prediction of growth behaviour. At low pore 

saturations, deformable powders remain free-flowing, whereas non-deformable powders form 

nuclei. Increasing the liquid content promotes the formation of nuclei, except for very weak 

(high Stdef) powders, which form a crumb. Adding more liquid causes either induction growth 

for particles with a low Stokes deformation number or steady growth for deformable 

particles. Once the pore saturation is approximately 1, granules start growing rapidly. 

Increasing liquid content even further only results in the formation of an over-wet mass. 

The regime map clearly shows how growth is related to powder and liquid properties and 

operation of the mixer. For example, increasing agitation intensity increases Stdef, which is 

directly related to particle velocity. However, agitation intensity also promotes consolidation. 

Hence, growth is pushed from induction or steady growth to rapid growth and eventually 

crumb or slurry. Decreasing binder surface tension decreases consolidation and dynamic 

yield stress. Therefore, growth moves to the nucleation or crumb region. As expected, the 

map also shows that increasing binder viscosity or decreasing primary particle size leads to a 

transition from steady growth to induction growth. 

In a later study [49], an attempt was made to verify and, more importantly, quantify the 

regime map. Although drum granulation data fitted the regime map well, mixer data did not. 

It was proposed that the cause of this was the estimation of the typical impact velocity; in the 

study it was assumed that the chopper speed could be used for this estimate. However, this 

assumption resulted in excessively large Stokes deformation numbers. Furthermore, the 

estimates of the dynamic yield strengths of the granules were possibly too low. It was pointed 

out that for proper use of the regime maps, better estimates for the Stokes deformation 

number are required. 
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Tu et al. [54] attempted to investigate the applicability of the regime map for high-shear 

mixers. Instead of the Stokes deformation number and the maximum pore saturation, both of 

which are inconvenient to determine, impeller speed and liquid to solid ratio were used. Since 

liquid to solid ratio is related to pore saturation and the Stokes deformation number is 

dependent on impeller speed, these choices appear valid. However, it should be noted that the 

influence of the dynamic yield stress of the particles is ignored. 

In this study, it was observed that a single system of powder and binder showed 

completely different behaviours depending on impeller speed, liquid to solid ratio and binder 

addition rate. Nucleation only, steady growth, induction growth, rapid growth and 

unconstrained or extremely rapid growth regimes were observed. It was also shown that 

breakage occurred, something the regime map did not take into account. This study clearly 

demonstrated the applicability of growth regime maps, but also showed the need for 

improving their reliability. 

 

2.3.2.4 Models for nucleation with subsequent consolidation and growth 

 

Hounslow et al. [30] presented and compared two different models for nucleation and 

subsequent consolidation and growth. The models considered a pure binder liquid droplet 

surrounded by dry powder, simulating the immersion nucleation mechanism. Both models 

were developed for a planar and a spherical geometry. 

The models both assume that the nucleus will eventually reach a critical packing density 

when the particles are packed as closely together as possible with the original amount of 

liquid added. This condition implies that the granule reaches a critical volume fraction, which 

is in agreement with the previously discussed consolidation model by Maxim et al. [53]. The 

critical volume fraction is defined as follows (Equation 2.10): 

 

𝜙𝑐𝑝 =
𝑉𝑙

𝑉𝑙 + 𝑉𝑠
 (2.10) 

 

This expression is based on exactly the same principle as the expression found in Equation 

2.8, although Hounslow et al. do not provide an expression to calculate the critical packing 

liquid volume based on physical properties. 

In Hounslow et al.’s first model, surface tension is considered the driving force at the 

three-phase interface, and viscous drag the retarding force. For a spherical geometry, nucleus 

growth can be described by Equation 2.11: 

 

𝑣 − 𝑣0
𝑣𝑚𝑎𝑥 − 𝑣0

= √
𝛾 ∗ 𝑑

18.75 ∗ 𝜇 ∗ ℎ0
2 ∗

𝜙𝑐𝑝
3

1 − 𝜙𝑐𝑝
1
3⁄
𝑡 = √

𝑡

𝑡𝑚𝑎𝑥
 (2.11) 

 

where v, v0 and vmax are the volume, initial droplet volume and maximum attainable volume 

considering critical liquid volume fraction of the granule, respectively. γ is the liquid surface 

tension, d is the mean primary particle size, μ is the liquid viscosity, h0 is the initial droplet 

diameter, ϕcp is the critical liquid volume fraction and t is the time after nucleation. The 

model shows that for a set time tmax, the volume of a granule increases with the square root of 

time. After the time exceeds tmax, no growth occurs. This model uses well understood physics, 
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but its weaknesses are the assumption of uniformity of the critical packing state and ignoring 

the collisions and deformations the nucleus may experience. 

The second model, based on deformation driven diffusive flow, assumes that continuous 

small deformations cause transport into and out of the nucleus (Equation 2.12).  

 

𝑣 − 𝑣0
𝑣𝑚𝑎𝑥 − 𝑣0

= 1 − 𝑒𝑥𝑝 (−
12 ∗ 𝐷𝑒𝑓𝑓 ∗ 𝜙𝑐𝑝

2
3⁄

ℎ0
2 𝑡) (2.12) 

 

where Deff is the effective diffusivity and the other parameters are the same as in the previous 

model. As with the first model, the volume of the granule reaches a maximum value for the 

second model, but via a different path. Growth decreases according to exponential decay. 

Although the model incorporates the collisions and deformations experienced by the nucleus, 

the magnitude of the resulting diffusive flow or the dependence on liquid viscosity and 

primary particle size are unknown. 

In essence, the model shows the same trend as the model proposed by Maxim et al. In fact, 

substituting the fraction in front of t with ω and rewriting the equation leads to Equation 2.13: 

 
𝑣 − 𝑣𝑚𝑎𝑥
𝑣0 − 𝑣𝑚𝑎𝑥

= exp(−𝜔 ∗ 𝑡) (2.13) 

 

As expected, this expression is very similar to those shown in Equation 2.7. 

Pitt et al. [31] performed experimental and numerical studies on the consolidation and 

subsequent growth behaviour of granules by using the first, static immersion nucleation 

model proposed by Hounslow et al. By nucleating granules in a static powder bed and 

measuring the mass of the nuclei over time, the growth behaviour of the nuclei was 

determined. Lactose and zeolite were used as powders, and hydroxypropyl methylcellulose 

(HPMC) and silicone oil with various viscosities were used as binders. The growth behaviour 

fit the model very well for all systems tested. However, time scales were one to two orders of 

magnitude larger than those predicted by Hapgood’s immersion nucleation model [55], 

indicating migration of liquid even after the drop had fully penetrated the bed. 

 

2.3.3 Breakage and attrition 
 

Of the three rate processes, breakage and attrition is the least understood in granulation 

[15,16]. However, breakage is an important process: breakage reduces the overall growth of 

granules, can be used for size control, and improves homogeneity [56]. Furthermore, 

knowing the breakage behaviour of granules can also provide information on the performance 

of the product during processing after granulation [15]. 

In the literature, several ways to study the breakage behaviour of granules are reported. 

Generally, the study of breakage can be divided into two main categories, based on the scale 

of the experiments [15]. Experiments on the granule scale focus on single or a small number 

of granules. This is important, since it shows how properties of the granules are linked to 

their strength. Breakage studies at the process scale instead consider the behaviour of 

granules during granulation. Both fields are briefly discussed in the following sections.   
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2.3.3.1 Breakage behaviour of individual granules 

 

Methods of studying the breakage of individual granules involve measuring the force 

required to deform or break granules. Such tests result in a strength to express granule 

resistance to breakage [15]. The strength may vary depending on the technique used and can 

be measured either by static or dynamic methods. 

Static methods include tensile and compressive strength, bending strength and hardness 

tests. Of these options, tensile and compressive strength tests are most frequently described in 

the literature [15]. 

Tensile strength tests involve the application of a tensile force to a particle. Tensile 

strength can be measured indirectly by applying a compressive force to granules, causing the 

generation of a tensile stress plane, which eventually leads to breakage. The compressive 

force required for failure is usually defined as the granule strength. This type of test is 

straightforward and requires no preparation of the sample [15], although a large number of 

granules must be sampled to attain reliable results. Antonyuk and et al. [57] investigated the 

deformation and breakage behaviour of several types of industrial granules with different 

properties. It was found that granules show different breakage behaviour, depending on their 

plasticity and microstructure. Elastic granules showed breakage at the major axis of stress, 

whereas elastic-plastic granules exhibited conical breakage at the area of contact. 

For bending tests, granules are usually compressed into shapes that are easier to evaluate, 

such as bars or cylinders. A typical example of the method is the three-point bending test. 

The sample is supported at two ends from below, and a force is applied in the middle of the 

sample with a blunt wedge from the top, causing breakage. In this way, the propagation of a 

single crack can be evaluated. However, it is difficult to produce a sample that is 

representative of the original granules [15]. 

Hardness of a material is usually determined by indentation, which involves applying a 

load to an indenter at the granule surface [15]. The shape of the tip may vary. An advantage 

of indentation tests is their ease of use; provided the sample granule is large enough with 

respect to characteristic length scales like primary particle size and pore size. For smaller 

samples, nanoindentation can be used. Pepin et al. [58] found that hardness depends on three 

factors: the liquid binder surface tension and viscosity, and the interparticle friction. 

Although static methods are useful and relatively straightforward to perform, their use for 

granulation is limited. In fact, Iveson et al. [59] state that due to the influence of the strain 

rate, traditional static strength measurement methods do not even give a qualitative indication 

of how materials will behave at high strain rates. Therefore, such methods would be invalid 

to predict any breakage behaviour during granulation. Consequently, different dynamic 

methods are needed to investigate breakage. 

Antonyuk et al. [60] observed the dynamic breakage behaviour of single granules in 

granule impact tests, using different types of spherical granules. The breakage behaviour 

resembled that of static tests. 

For their investigation of regime maps, Iveson and Litster [14] predicted the dynamic yield 

strength of granules by dropping granules from different heights and measuring the deformed 

contact area. In further research on breakage, Iveson et al. [61] used compression at various 

strain rates to measure the flow stress of pellets. They found that there was a critical strain 

rate below which strain rate did not matter, but above which flow stress increased with 

increasing strain rate. A follow-up study [62] using dynamic uniaxial compression tests at 
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different speeds revealed a relationship between the dimensionless peak flow stress, Str
*
, and 

the capillary number, Ca. These numbers are defined in Equations 2.14 and 2.15, 

respectively: 

 

𝑆𝑡𝑟∗ =
𝜎𝑝 ∗ 𝑑3,2

𝛾 ∗ 𝑐𝑜𝑠(𝜃)
 (2.14) 

 

𝐶𝑎 =
𝜇 ∗ 𝑣𝑝

𝛾 ∗ 𝑐𝑜𝑠(𝜃)
 (2.15) 

 

where σp, is the peak flow stress, d3,2 is the primary particle Sauter diameter, γ is the surface 

tension, θ is the powder-liquid contact angle, μ is the binder viscosity and vp is the relative 

granule velocity. 

In the obtained relationship, two regimes where found; for low capillary numbers, Str
*
 

flow stress was independent Ca, but for high values of Ca, there was a linear correlation 

between the two numbers. This relationship was further investigated by Smith and Litster 

[63] using dynamic diametrical compression tests to successfully define the difference 

between semi-brittle and plastic failure. 

 

2.3.3.2 Breakage behaviour at the process scale 

 

Breakage tests at the process scale are a useful tool to determine breakage behaviour 

because they directly provide information on what is happening during the granulation 

process. There are several ways to study breakage behaviour in a granulator. The two 

methods discussed in this section are the dye tracer and the breakage-only granulator. 

Van den Dries et al. [56] used a dye tracer to investigate the influence of primary particle 

size and viscosity on the breakage behaviour of granules. Tracer granules were produced by 

mixing powder with the dye tracer, granulating and sieving out appropriate size fractions. 

Next, a reference batch was granulated under the same conditions, after which the tracers 

were added to the batch and granulation was continued. From the resulting batch, samples 

were taken, dissolved in water and analysed using UV-spectroscopy to determine the dye 

tracer content. It was concluded that increasing viscosity and decreasing particle size 

increases granule strength and decreases breakage. 

Liu et al. [16] used a different approach. They filled a high-shear mixer with a cohesive 

sand mixture and added pre-made granule pellets. In this type of mixer, the only phenomenon 

that occurred was the breakage of granules. At set time intervals, the granules were removed 

from the bed and survivors were placed back in the granulator. Formulations with varying 

properties like binder saturation, viscosity and surface tension and primary particle size were 

evaluated. It was found that the extent of breakage decreased with an increase in binder 

saturation, viscosity and surface tension, and increased with an increase in primary particle 

size. Furthermore, Liu et al. state that the percentage of broken granules could be related to 

the Stokes deformation number. A critical Stokes deformation number of 0.2 was proposed, 

above which breakage occurred. 

Smith et al. [17] investigated the effect of impeller speed and shape on breakage behaviour 

of granules in the breakage-only high-shear mixer. In addition to a bevelled edge impeller, 

which creates both shear and impact, a modified, flat impeller was used to maximise shear 

and reduce the effect of impact. The granulator was operated at two different speeds, and 
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instead of pellets, 2-5 mm sized granules prepared by single drop nucleation were used. The 

bevelled edge impeller caused significant breakage of the sample granules, and there was a 

clear correlation between the Stokes deformation number and breakage behaviour. For the 

flat impeller, however, only one of the samples showed significant breakage, even at the 

highest speed. It was concluded that impeller shape and speed have a strong effect on granule 

breakage. In particular, the impeller shape could be used to significantly control breakage 

behaviour. 

 

2.4 Population balance modelling 
 

Models and simulations can increase both the understanding of granulation and provide 

useful information for industry [64]. Applications include the verification of mechanism 

hypotheses, predicting granule properties, designing granular products, and optimisation and 

control. The following subsections discuss population balance modelling specifically, as well 

as synergy with other modelling methods. 

Population balances are a frequently used modelling tool in various areas of research [64]. 

Models using population balances are capable of describing the evolution of one or more 

properties possessed by entities over the course of time. In the case of one-dimensional 

population balances in particle technology, such a model usually describes the evolution of 

the particle size distribution by volume, number or mass over time [26,65]. Generally, a 

population balance model (PBM) can be summarised as in Equation 2.16: 

 

𝜕𝑛

𝜕𝑡
+
𝜕(𝐺 ∗ 𝑛)

𝜕𝐿
= 𝐵 − 𝐷 (2.16) 

 

where n is the number-density function, L is the particle size, t is the time and G, B and D are 

expressions for growth, birth and death, respectively. Depending on the equations used, the 

model can incorporate granulation mechanisms like nucleation, coalescence, breakage, 

layering etc. For continuous processes, flow rates in and out of the systems may also be 

added [6]. The governing equations for these processes are kernels, which describe the rules 

for which these processes apply [64]. For example, an aggregation kernel describes the 

frequency and successes of collisions to predict growth rates. Kernels can be based on 

theoretical concepts, parameters fitted to experimental data, or physical models [66]. 

 

2.4.1 One or multiple dimensions? 
 

PBMs in granulation can track multiple granule properties. In the case where only a single 

property is evaluated, PBMs are called one-dimensional (1-D). The earliest works focused on 

1-D models that tracked particle volume, since this property has the advantage of being 

additive; when two granules coalesce, the volume of the resulting granule is the sum of the 

volumes of the original granules. 

One of the earliest population balance methods successfully applied to particle growth was 

proposed by Hounslow et al. [22]. They proposed a solution method based on discretisation 

of the population balance equations and applied the model to a crystallisation process. The 

equations included terms for nucleation, agglomeration and growth. Since then, PBMs have 
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been extensively used in the field of granulation to predict granule properties and increase our 

understanding of the granulation process [65,67]. 

Although 1-D PBMs can be solved faster than multidimensional models, tracking a single 

property has its limitations [65]. Generally, properties such as porosity and liquid content are 

not homogeneously distributed over particle size classes. Depending on the application of the 

granules, it is imperative to be able to predict these properties. In such cases, tracking granule 

volumes alone is insufficient. 

In a review in 2002, Iveson [24] confirmed such limitations and proposed a four-

dimensional approach to population balance modelling. The author suggested balances for 

porosity and binder content in addition to granule volume, as well as a balance tracking 

composition in the cases of granulating with powder mixtures. 

Verkoeijen et al. [68] expanded upon this concept and introduced a three-dimensional 

PBM. Instead of volume, liquid content and porosity, the model tracks volumes of solid, 

liquid and air. Although this method does not directly yield the properties Iveson [24] 

suggested, these properties can all be calculated when the three volumes are known. Similar 

to total volume in 1-D population balances, volumes in 3-D PBMs have the additional 

advantage of being additive, whereas changes in liquid content or porosity are much more 

complex to compute. As an example, a granule coalescing with another granule with a 

potentially different liquid content and porosity may yield a particle of equal, greater or lower 

liquid content and porosity, depending on the size difference of the original granules. 

Volumes of solid, liquid and air, however, are simply added, greatly simplifying calculations. 

Darelius et al. [69] expanded upon the concept of the 3-D PBM proposed by Verkoeijen et 

al. and proposed a more mechanistic kernel. The authors assumed granules without any air, 

and added an additional balance for the liquid volume present inside the granules. The 

purpose of this change was to enable the calculation of the pore saturation, upon which the 

rate of compaction and the probability of coalescence were based. Their data was also 

compared to experimental data using a high-shear mixer and oversaturated granules. The 

model agreed reasonably well with the experiments for volume, pore saturation and porosity, 

demonstrating the usefulness of 3-D PBMs. 

A major disadvantage of 3-D PBMs is their reduced computational efficiency. In the 

literature, several methods to reduce the complexity of multidimensional PBMs can be found. 

Both Hounslow et al. [70] and Biggs et al. [71] used a linked system of multiple 1-D PBMs. 

By assuming that all granules in a single size class have the same properties, such as liquid 

content, the model is reduced to two linked population balance equations. The model also 

assumes that time and size are the only parameters that influence the rates. This method will 

be referred to as the lumped parameter approach [72]. Both works show promising results, 

although Hounslow et al. point out several limitations of the assumptions. In the case where 

rates are interdependent, such as binder liquid content for aggregation kernels, the 

assumptions of lumped parameters are inappropriate. 

Barrasso and Ramachandran [72] expand on the idea of a reduced order method by 

evaluating the validity of the assumptions of this lumped parameter approach. The authors 

numerically solve a four-dimensional PBM for a binary powder mixture with volume of 

solid, liquid, air and the additional solid component. Next, the lumped parameter approach is 

applied in several different ways, setting several parameters as bin properties. For some 

models, only a single parameter was considered lumped, whereas the most reduced model 

had three lumped parameters, with only the solid volume being a distributed parameter. The 
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accuracy and computational time were compared for the models evaluated. Solution times 

varied from almost 34 hours for the 4-D model to merely 3 seconds for the 1-D model. The 

authors conclude that the liquid content should be kept as a distributed parameter due to its 

importance in the agglomeration of granules. Depending on the required accuracy, the 

lumped parameter approach is a useful technique for the order reduction of multidimensional 

PBMs. 

An alternative order reduction technique was proposed by Chaudhury et al. [73], using a 

combination of tensor decomposition, separation of variables and single variable 

decomposition. This method is based on splitting up the functions depending on multiple 

granule properties into equations that are more readily solved. The authors show that this 

method hardly reduces accuracy while greatly reducing computational time. 

In summary of this subsection, the number of dimensions evaluated in a population 

balance model for granulation is dependent on the desired accuracy and the available 

computational time. If accuracy is the focus of a study, multiple dimensions should be used. 

The most important properties that should be included are solid or total volume, and liquid 

volume or liquid content, as these are the key factors in coalescence. However, if 

computational efficiency is the focus, such as in the case of control, a lumped parameter 

approach should be used to save time. 

 

2.4.2 Solution methods 
 

The previous subsection shows that there are several ways to set up population balance 

equations to model granulation. Often, the final reasoning why a specific model is selected is 

the result of a comparison of desired accuracy versus computational effort. These factors 

depend on the selected model, which can have varying degrees of complexity, and the 

solution method. This section will focus on the latter. 

Often, population balance equations cannot be solved analytically. Therefore, either the 

model has to be simplified as explained in the previous section, or the system of equations 

has to be solved in a computationally efficient way. In the literature, myriad solution methods 

can be found [66]. However, most of such solution methods may be classified into three main 

categories: discretisation, Monte Carlo (MC) simulations, and the method of moments 

(MOM) [74]. These are discussed extensively in the following subsections. Other techniques 

that are briefly touched upon are the Lattice Boltzmann (LB) method and solution using 

wavelets. An overview of all references for the discussed methods can be found at the end of 

this section in Table 2.1. 

 

2.4.2.1 Discretisation 

 

One of the most common solution methods for PBMs is discretisation. Discretisation is 

based on the transformation of a continuous integral equation into a finite series of linked 

equations. The rationale behind this transformation is that, in practice, the particle size 

distribution of granules is not continuous. The cause of this discontinuity is twofold; the 

number of granules produced is not infinite, leading to discrete granule sizes, and the 

accuracy of measurement techniques is not continuous, resulting in a limit to the sizes 

covered. Usually, particle size distributions (PSDs) divide particles into size ranges or bins. 
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Therefore, it is logical to use a technique that evaluates changes to the number of granules per 

bin size. 

An example of discretisation according to a granule size distribution is shown in Figure 

2.6. The number frequency n, standardised by the bin width, is shown as a function of 

discretised volume v, much like an actual size distribution. The standardised number 

frequency is obtained by dividing the total number of particles N in bin i, or Ni in short, by 

the difference between the volume of the next bin, vi+1 and the volume in the current bin, vi. 

A single bin contains all particles of volume vi or greater, but smaller than volume vi+1. Note 

that the bin distribution does not have to be linear. This concept is used in this section to 

discuss various discretisation techniques, an overview of which is provided by Figure 2.7. 

One of the first discretisation schemes for population balance models was proposed and 

applied to a crystallisation process by Hounslow et al. [22]. The authors proposed a geometric 

series such that each bin was twice the size of the previous bin, as shown in Figure 2.7a. For 

collisions, a particle was assigned to a current bin if its size was equal to or larger than the 

minimum bin size, but smaller than the next bin size. 

 

 
Figure 2.6: Example of discretisation using a granule size distribution. The volume of granules is 

divided into discrete bins on the x-axis, and the number density, the number of granules in bin i 

divided by the width of that bin, is displayed on the y-axis. 
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Scheme Authors 

 

Hounslow et al. [22] 

 

Kumar and Ramkrishna 

[75] 

 

Kumar and Ramkrishna 

[76] 
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Kumar et al. [77] 

Figure 2.7: Discretisation schemes based on Hounslow et al.’s discretisation [22] (A), the fixed pivot 

method [75] (B), the moving pivot method [76] (C) and the cell averaged technique [77] (D). 

The obtained numerical solutions were compared with analytical solutions from Gelbard 

and Seinfield [21]. This comparison showed that the model agreed reasonably well with the 

analytical solution. In addition, the discretised model was used to successfully predict 

experimental results from crystallisation data. 

Although Hounslow et al.’s discretisation method [22] is promising, its key limitation is 

the use of a constant geometric grid. Kumar and Ramkrishna [75] addressed this issue by 

introducing a new discretisation method, shown in Figure 2.7b: the fixed pivot method. This 

method can use any grid, and assigns particles to so-called pivots, representative sizes for a 

bin. Particles born inside a bin are assigned to several pivots depending on their properties. 

The closer a particle size is to the actual representative size, the greater the percentage of its 

properties is assigned to that pivot. When applied to a geometric grid with a scaling factor of 

2, the solution of the fixed pivot method becomes the same as the solution obtained by 

Hounslow et al. [22]. 

The discretised model agreed well with analytical solutions, although the method did not 

deal well with parts of a distribution that frequently showed steep changes in density. The 

authors remarked that a moving grid could be a solution in such cases. In a later work [78], 

the same authors combined the fixed pivot method with the method of characteristics to 

address the issue of changes in density. Although successful, the authors pointed out that the 

solution method only readily applies to crystallisation, as the required characteristic curves 

can be determined for this type of process. 

Chakraborty and Kumar [79] later expanded the fixed pivot technique to make it suitable 

for solving multidimensional PBMs. Comparisons to analytical solutions showed that the 

method was viable, but quite dependent on the correct orientation of the grid elements. 
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Although the fixed pivot method has the advantage of being applicable to irregular grids, it 

cannot deal well with rapidly changing particle numbers. This weakness leads to the 

overprediction of number densities for the largest particles. In an attempt to address this, 

Kumar and Ramkrishna [76] proposed a moving pivot technique. Instead of using fixed 

pivots, the pivots automatically adapt according to the average particle size in a single bin, as 

shown in Figure 2.7c. In this way, the accuracy of the predictions for rapidly changing 

number densities is greatly improved, while keeping the advantages the fixed pivot technique 

offers. A trade-off for the increased accuracy, however, is a possible increase in 

computational time. 

Nopens et al. [80] compared the performances of the Hounslow method and the fixed and 

moving pivot methods applied to a flocculation process. Solutions for various different 

situations were compared: pure aggregation, pure binary breakage and a combination of 

aggregation and binary breakage. It was found that for pure aggregation, the moving pivot 

method was the fastest method with the most accurate results, although accuracy could be 

sacrificed for speed when using the other two methods. For binary breakage, the fixed and 

moving pivot methods performed similarly and produced better results than the Hounslow 

method. Of these two, the moving pivot method was slightly faster and, therefore, preferred. 

For the kernel combining both breakage and coalescence, the moving pivot method produced 

the most accurate results, but it was slower than the Hounslow method. 

This comparison shows that accuracy and computational time are not the only factors that 

should be considered when selecting a discretisation method; the types of mechanisms 

simulated are important as well. Methods of modelling different granulation mechanisms are 

addressed later in Section 2.4.3. 

Although the moving pivot technique greatly increases accuracy, it is also a complex 

method of discretisation; the resulting set of population balance equations are stiff, meaning 

they can lead to incorrect solutions if a wrong step size is selected. This property complicates 

the solution of equations obtained with the moving pivot method. To address this problem, 

Kumar et al. [77] proposed a new discretisation technique; the cell averaged technique, 

shown in Figure 2.7d. This technique uses the fixed grid from the fixed pivot method, but 

uses averages of particle properties like the moving pivot method. However, instead of 

moving the pivots, the averages are simply assigned to pivots according to their proximity to 

the pivot values. In this way, the accuracy is improved at a lower computational cost than the 

load needed for the moving pivot method. 

In 2008, two extensions were proposed for the cell average technique by Kumar et al. [77]. 

The first extension [81] introduced a coupling scheme, which links different rate processes 

such as nucleation and growth and treats them uniformly. In this way, accuracy is increased 

and computational time is reduced. A second extension proposed by Kumar et al. [82] 

expanded the cell average technique to two-dimensional PBMs. Although this expansion 

conserved only two moments for the cell average technique compared to three for the fixed 

pivot technique, the cell average technique is preferred for size-dependent kernels. The 

authors remark that although it is possible to solve three-dimensional equations with the 

developed discretisation technique, the computational time would increase. 

A successful attempt at expanding the cell average technique to three dimensions was 

made by Chaudhury et al. [83]. In order to offset the extra computational load, the 

calculations were parallelised across multiple cores. In this way, simulation time was 

significantly decreased. 
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Bertin et al. [84] created a technique based on the moving pivot method for aggregation 

and breakage by incorporating the property redistribution of the cell averaged method. 

Although the new technique is computationally more expensive than other techniques, it 

outperforms such methods in terms of accuracy. In the case of growth and attrition only, the 

computational time for the solution method is greatly reduced. In this situation, the solution 

method should be preferred over other solution methods. 

Apart from the techniques shown in Figure 2.7, several other successful discretisation 

techniques can be found in the literature. A family of commonly applied solution techniques 

are the finite element, finite difference and finite volume methods [66]. These are grouped in 

such a way here because their intention is the solution of the population balance equations 

using a discretisation technique different from the discretisation methods mentioned above. 

An example from literature is the solution of coagulation by Filbet and Laurençot [85], which 

is based on a finite volume scheme. This method has been further expanded by Qamar and 

Warnecke [86] for two-component aggregation. The same authors [87] combined the finite 

volume scheme with the method of characteristics, which is a solution method for partial 

differential equations. 

Immanuel and Doyle [88] developed a hierarchical two-tier technique for the solution of 

one-dimensional population balance equations. The technique, based on finite volume 

discretisation, divides the particle size distribution (PSD) into bins and assigns a uniform 

particle distribution to each bin. In this aspect, the method is more similar to the cell averaged 

and moving pivot methods than the Hounslow and fixed pivot methods. However, this 

method differentiates itself by using a two-tier algorithm to solve the differential equations. 

In a single time step, rates are calculated separately first by keeping the PSD constant. Next, 

the PSD is updated using the determined rates. This step may be iterated several times before 

updating the time. The technique was later extended to 3-D [89] and multidimensional [90] 

PBMs using mathematical kernels. More mechanistic kernels were successfully introduced in 

follow-up studies [91,92]. Overall, an advantage of the two-tier technique is its efficiency, 

yielding relatively fast results with acceptable error. 

From the examples mentioned above, it can be concluded that discretisation is a versatile 

solution technique for population balance equations. However, the computational time 

increases rapidly when a fine grid is required and when multiple dimensions are involved. 

Accuracy and computational time have to be balanced. In addition, the equations needed to 

model the rate processes in PBMs should influence the choice of the discretisation method, as 

some methods are better at handling certain mechanisms than other methods. 

 

2.4.2.2 Monte Carlo method 

 

The Monte Carlo (MC) method is a stochastic solution technique. In general, MC methods 

are slower than discretisation methods, but they are more straightforward to parallelise. This 

makes them ideal for solving multidimensional PBMs. Furthermore, MC methods provide 

more insight into, for example, the particles involved in collisions and the exact composition 

of particles. 

MC methods can be divided into two subcategories. For event-driven MC simulations, 

events occur based on their probability within a time step determined by the rate of the 

process. An example of this would be the collision of two particles, and the resulting 
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rebound, coalescence or breakage that can occur. This method is preferred over more 

complex time-driven MC simulations, which require the discretisation of time [93]. 

It is possible to classify event-driven MC simulations even further into constant volume 

and constant number MC. For the former, the total volume of the particles is conserved. 

Therefore, the number of particles can increase due to nucleation and breakage, and decrease 

by coalescence. A disadvantage of this method is statistical errors introduced when the 

number of simulated particles is insufficient. Particularly, in the case where coalescence is 

prevalent, this weakness will affect the accuracy of the results. On the other hand, excessive 

breakage slows down the simulation significantly due to the need to account for an increasing 

number of particles. 

Constant number MC prevents such problems by keeping the number of particles constant. 

Breakage and coalescence are handled by adjusting the simulation volume, thereby 

circumventing any problems that constant volume MC has. For this reason, constant number 

MC is the preferred event-driven MC method. 

An example of a successful application of a constant volume MC method is the work by 

Gantt and Gatzke [93]. In this work, a series of multidimensional PBMs is solved by an 

algorithm that combines the discrete element method (DEM), discussed in Section 2.4.4, with 

stochastic techniques. Although the authors pointed out that accurate information on 

parameters such as granule strength and Young’s modulus were lacking in the model, the 

simulations agreed well with experimental data. 

Other examples of the application of event-driven MC are works by Braumann et al. [94] 

and Braumann et al. [95]. Both works involved the direct simulation Monte Carlo (DSMC) 

technique to solve a multidimensional PBM. The former work combined granulation with a 

chemical reaction, whereas the latter focused on increasing understanding the numerical error 

of stochastic models. 

A different solution approach from DSMC is the stochastic weighted algorithm (SWA) 

[96]. This method assigns weights to different groups of computational particles. In this way, 

inaccuracies due to low numbers of particles are addressed. Follow-up studies further 

developed SWAs to allow for compartmentalisation (discussed in Section 2.4.3) of the model 

[97] and improve performance [98]. Although the algorithms by themselves are slower than 

DSMC, they are more accurate. This increase in accuracy results in an overall improved 

efficiency, especially for wide PSDs. 

Yu et al. [99] investigated optimal strategies for MC simulations. It was found that the 

number of bin sizes increased resolution, but decreased accuracy. Furthermore, the authors 

presented guidelines for the number of simulated particles versus the number of replicates 

needed at minimum CPU cost. 

Ultimately, the choice of MC solution method depends on the system investigated. For 

broad particle size distributions, the stochastic weighted algorithm is a good choice, although 

most number constant MC techniques should also give good results. For narrower PSDs, 

DSMC could be sufficient. 

 

2.4.2.3 The method of moments 

 

A final important technique in the literature is the method of moments (MOM), or more 

specifically, the quadrature method of moments (QMOM). Moments contain information on 

the shape of the PSD, such as the mean and variance. The higher the order of moments 
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considered, the more detailed the PSD can be described. MOM tracks the lower order 

moments. In this way, the general characteristics of a PSD can be rapidly calculated. 

However, MOM requires the PSD to be in a mathematical form. QMOM is an improved 

method, proposed by McGraw [100], which has no such requirement. 

Alopaeus et al. [101] applied QMOM to breakage, agglomeration and a combination of the 

two. The authors found that high accuracy could be achieved by setting the first six moments 

to be conserved while only doubling the computational time compared to a situation in which 

only two moments were conserved. A study by Rajniak et al. [102] employed QMOM to a 

PBM for a Wurster fluidised bed. The model was combined with computational fluid 

dynamics (CFD) and used to obtain collision rate constants by fitting with experimental data. 

The simulations successfully predicted experimental observations, but there were also 

discrepancies. 

In a study by Marshall et al. [74], QMOM was compared to a discretised PBM and an 

event-driven MC for the case of bicomponent aggregation. It was found that the discretised 

solution mostly agreed with the early stages of granulation, whereas the event-driven MC 

showed great accuracy over the entire time range investigated. QMOM was fast and accurate 

for a composition-independent model, but showed errors when the second component was 

introduced. The authors noted that this problem could probably be solved by increasing the 

number of moments tracked. 

In summary, QMOM is a suitable, fast method of solving a PBM, and it has the added 

advantage of allowing for the incorporation of CFD. However, QMOM only provides 

information on the moments instead of the more detailed information provided by other 

methods. For more detailed results, solution of the full population balance equations by 

discretisation or MC is required. 

 

2.4.2.4 Other solution strategies 

 

This review on solution methods has limited itself to discussing the most popular solution 

methods. Two other methods are worth mentioning. The first method is the Lattice 

Boltzmann method [103,104]. This method draws an analogy to lattice methods used to 

model hydrodynamics and excels at modelling nucleation and growth. However, the method 

is less accurate for aggregation and breakage, and needs to be combined with other methods 

to yield reliable results. 

The other method is the method of wavelets [105] which performs a wavelet 

transformation on the population balance equations to make them solvable. This method has 

the advantage of tuneable resolution, allowing for the quick computation of rough 

information on the solution, or more accurate solution with increased computational time. 

Although the method is promising, the method has not been frequently applied to population 

balance modelling in the literature [106]. 

 

2.4.2.5 Concluding remarks on solution strategies 

 

The balance of computational time and accuracy has been a recurring theme throughout 

this review. Some methods, such as the moving pivot method, can be tuned to have high 

accuracy, but at the cost of increased CPU usage. Some methods are fast, but offer little 

detail, such as the quadrature method of moments (QMOM). Monte Carlo (MC) has the 
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advantage of being able to provide information on particle collision history, whereas QMOM 

is easy to combine with computational fluid dynamics (CFD). Some solution methods are 

particularly useful for modelling wide particle size distributions (PSDs), or are good at 

dealing with specific mechanisms such as breakage or nucleation. MC simulations have the 

advantage of being able to be split over multiple cores, greatly decreasing computational 

time. 

 

In summary, the following factors need to be considered when selecting a solution system: 

 

 Dimensionality of the population balance equations 

 Mechanisms considered (e.g. nucleation, coalescence, breakage, growth) 

 Required accuracy for the application 

 Acceptable computational time for the application 

 Hardware (e.g. number of cores, available CPU) 

 Desired synergy with other models, such as CFD and DEM 

 

2.4.3  Different rate processes and the population balance 
 

The performance of population balance models greatly depends on the rate processes 

simulated. In the literature, a shift to more mechanistic models [25,26] and combinations with 

DEM simulations can be found [27-29]. In this section, the principles behind different 

representations of mechanisms and kernels are discussed. 

Nucleation is a mechanism of ‘birth’ in population balance modelling. Hounslow et al. 

[65] describe birth according to the following equation (Equation 2.17): 

 

𝑑𝑛

𝑑𝑡
= 𝐵0𝑓𝑁 (2.17) 

 

where n is the number density function, t is time, B0 is the nucleation rate per volume per 

second and fN is the nuclei size distribution. A common assumption is setting the distribution 

to monodisperse, in which case the number density function is a Dirac delta function. 

Assuming nuclei are the smallest class of granules formed in the system, Equation 2.17 can 

be discretised according to Equation 2.18: 

 

𝑑𝑁1
𝑑𝑡

= 𝐵0 (2.18) 

 

where N1 is the number of particles per volume in the lowest bin. Even with this assumption, 

determining the actual nucleation rate is a challenge. 

Poon et al. [91] developed a nucleation and wetting kernel based on the drop-controlled 

regime. The model accounted for slow wetting and penetration times, but assumed no overlap 

of droplets and a preference for binder distribution over fines instead of existing granules. 

The kernel was successfully applied in a three-dimensional model. 

In the literature, coalescence kernels are the most commonly studied type of kernel [107]. 

An example of a discretised agglomeration kernel [22] is shown in Equation 2.19. 
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Table 2.1: Overview of solution methods discussed in Section 2.4.2. 

Solution method Study 

Linear discretisation Hounslow et al. (1988) [22] 

Fixed pivot discretisation Kumar and Ramkrishna (1996) [75] 

Chakraborty and Kumar (2007) [79] 

Kumar and Ramkrishna [78] 

Lee et al. [108] 

Moving pivot discretisation Kumar and Ramkrishna (1996) [76] 

Cell averaged discretisation Kumar et al. (2006) [77] 

Kumar et al. (2008) [81] 

Kumar et al. (2008) [82] 

Chaudhury et al. (2013) [83] 

Bertin et al. (2016) [84] 

Finite volumes Filbet and Laurençot (2004) [85] 

Qamar and Warnecke (2007) [86] 

Qamar and Warnecke (2007) [87] 

Two-tier hierarchical method Immanuel and Doyle (2003) [88] 

Immanuel and Doyle (2005) [89] 

Pinto et al. (2007) [90] 

Poon et al. (2008) [91] 

Poon et al. (2009) [92] 

Event-driven Monte Carlo Gantt and Gatzke (2006) [93] 

Braumann et al. (2007) [94] 

Yu et al. (2015) [99] 

Braumann et al. (2010) [95] 

Stochastic weighted approach Patterson et al. (2011) [38] 

Lee et al. (2015) [97] 

Lee et al. (2015) [98] 

Quadrature method of moments Alopaeus et al. (2006) [101] 

Rajniak et al. (2009) [102] 

Mortier et al. (2011) 

Lattice Boltzmann Majunder et al. [103] 

Majunder at al. [104] 

Daubechies orthonormal wavelets Liu and Cameron (2001) [105] 

 

 

𝑑𝑁𝑖
𝑑𝑡

= 𝑁𝑖−1∑2𝑗−𝑖+1𝛽𝑖−1,𝑗𝑁𝑗 +

𝑖−1

𝑗=1

 
1

2
𝛽𝑖−1,𝑖−1𝑁𝑖−1

2 − 𝑁𝑖∑2𝑗−1𝛽𝑖,𝑗𝑁𝑗 −

𝑖−1

𝑗=1

 𝑁𝑖∑𝛽𝑖,𝑗𝑁𝑗

∞

𝑗=𝑖

 (2.19) 

 (1) (2) (3) (4)  

 

where N is the number of particles per volume in a specific bin, i is the bin being currently 

investigated, j is the bin compared to i, βi,j is the coalescence kernel at bins i and j in volume 

per unit of time and t is the time. The terms, numbered 1-4, can be explained as follows: 

Terms 1 and 2 show the increase in the number of particles in bin i due to the coalescence 

of a particle in the previous bin with a particle from any bin equal to or smaller than the 

previous bin size. Terms 3 and 4 represent the reduction of the number of particles due to 

agglomeration with a particle in a previous bin or a particle in the current bin or greater, 

respectively. It is important to note that the coalescence kernel, βi,j, is of great importance for 
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the actual kinetics of the agglomeration process. Many studies focus on finding an expression 

for this kernel. 

For example, Adetayo et al. [109] incorporated a mechanistic element into their empirical 

kernel by adopting a two-stage coalescence approach. The two stages were based on the non-

inertial and inertial growth regimes, and were dependent on the viscous Stokes number. In 

later studies [110,111], a cut-off kernel based on granule size was introduced. Collisions with 

granules below the cut-off size W
*
 were considered successful. With this model, seemingly 

contradictory experimental data could be explained, although the authors emphasised that W
*
 

was only understood qualitatively. 

Liu and Litster [112] developed a more physically based kernel incorporating type I and II 

coalescence. Only collisions satisfying either type of coalescence were considered successful. 

It was found that type I coalescence favoured small granules, whereas type II coalescence 

showed a preference to larger granules. This result indicates that the effect of granule size on 

coalescence is also dependent on granule and binder properties, as the Stokes deformation 

number is partially responsible for coalescence behaviour. The model was not fitted to any 

experimental data. In spite of this, it agreed better with experimental data in the early stages 

of granulation than the experimentally fitted work by Adetayo et al. [109]. In addition, it 

showed good agreement with various experimental data sets in general. 

A comparison of four different collision frequency kernels was made by Darelius et al. 

[113]. The kernels were combined with a collision efficiency kernel in order to develop a 

mechanistic population balance model. Collision frequency kernels compared were a size 

independent kernel [70], Smoluchowski’s shear kernel [114], a kernel based on equipartition 

of kinetic energy (EKE kernel) [65] and a kernel based on equipartition of fluctuating 

translational momentum (ETM kernel) [65]. The first kernel considers all collisions equally 

likely; the second bases collisions on powder flow in suspension; the third assumes that the 

average velocity does not depend on size, but a random component does; the fourth assumes 

full randomness of velocity, but a constant translational momentum for all granules. 

The ETM kernel turned out to describe results for high impeller speeds best, whereas the 

EKE kernel fit the data for low impeller speeds better. Since the EKE kernel emphasises 

granule size more than the ETM kernel, this result implies that granule size is more important 

for growth at lower impeller speeds. It was also shown that a general trend could be observed 

for the collision efficiency by including the liquid saturation in the efficiency expression. 

Since liquid saturation plays an important role in growth behaviour, as demonstrated by 

regime maps [14,49], this finding appears to be consistent with theory. 

In a semi-mechanistic model, Chaudhury et al. [115] decoupled coalescence and 

consolidation. The model was capable of capturing both steady growth and induction growth 

behaviour. Although the kernel is practical for modelling, it needs as few empirical 

parameters as input. Another semi-mechanistic induction growth kernel was proposed by 

Pohlman and Litster [116]. The model in this work is based on the types of coalescence and 

rebound discussed in Section 2.3.2, whereas the model proposed by Chaudhury et al. focuses 

on droplet spreading. 

As with nucleation kernels, there are few breakage kernels to be found in the 

literature [107]. Hounslow et al. [70] used tracer data to propose a kernel based on bimodal 

breakage. The kernel used is shown in Equation 2.20: 
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𝑑𝑁𝑖
𝑑𝑡

=∑ 𝑏𝑖,𝑗

𝑛

𝑗=𝑖

𝑆𝑗𝑁𝑗 − 𝑆𝑖𝑁𝑖 (2.20) 

 

where, Ni is the number of particles per volume in a specific bin, i is the bin being currently 

investigated, j is the bin compared to i, Si is the breakage selection rate constant per unit of 

time, bj,i is the number of fragments from bin j assigned to bin i, and t is the time. The 

challenge here is finding definitions for both S and b. Particularly b, which determines the 

size of the newly formed granules, is particularly difficult to determine reliably. 

The model assumed that the only variables involved were time and granule size. Using 

these assumptions, the model was capable of describing both granule size distributions and 

tracer-mass distribution accurately. The authors pointed out that it was unusual that some rate 

constants depended on time and implied that some other variable must change with time. 

Vogel and Peukert [117] attempted to introduce a mechanistic breakage kernel by using a 

probability of breakage. The breakage selection rate constant S was set to be dependent on the 

kinetic energies of the particles, and the breakage function was determined by the sizes of the 

particles involved in a collision. Experimental data was used to determine particle properties. 

A mechanistic breakage model was developed, incorporated in population balances and 

experimentally validated by Ramachandran et al. [107]. The method involved the three-

dimensional approach proposed by Verkoeijen et al. [68], using solid, liquid and air volumes. 

The breakage kernel itself was based on a method similar to Stokes deformation criteria, 

using external stress applied and the intrinsic granule strength. For the external stress, 

particle-particle, particle-wall and particle-impeller collisions were taken into account. 

Capillary forces, viscous forces and frictional forces determined the intrinsic strength of the 

granules. The kernel performed well compared to empirical and semi-empirical kernels and 

accurately described breakage kinetics. 

A commonly applied equation to determine densification in 3-D PBMs was introduced by 

Verkoeijen et al. [68]. This method, based on Equation 2.6 by Litster et al. [18] is shown in 

Equation 2.21: 

 

𝑑𝑎

𝑑𝑡
= −𝑘𝑐 (

(𝑙 + 𝑎)(𝑠 + 𝑙 + 𝑎)

𝑠
−
𝜀𝑚̃𝑖𝑛(𝑠 + 𝑙 + 𝑎)

2

𝑠
) (2.21) 

 

where s, l and a are the volume of solid, liquid and air, respectively, t is the time, kc is a 

compaction rate constant and εmin is the minimum attainable porosity. The constant kc has to 

be determined experimentally. 

An example of an equation for the growth rate by Hounslow et al. [22] is shown by 

Equation 2.22: 

 

𝑑𝑁𝑖
𝑑𝑡

=
2𝐺

(1 + 𝑟)𝐿𝑖
(

𝑟

𝑟2 − 1
𝑁𝑖−1 +𝑁𝑖 −

𝑟

𝑟2 − 1
𝑁𝑖+1) (2.22) 

 

where G is a growth rate in units of length over time, r is the ratio between the lengths of the 

current bin and the next bin, Ni is the number of particles per unit of length in bin i, and t is 

the time. Again, G must be determined experimentally. 

In general, describing a mechanism as a single set of equations does not represent the 

actual phenomena in a granulator. Breakage, for example, is much more likely to occur near 
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walls or the impeller, and nucleation will take place in the spray zone. The rates mentioned 

above attempt to describe overall growth, birth and death rates, representing the granulator as 

a single black box, or a grey box in the case of semi-mechanistic models. Another option to 

this problem is compartmentalisation of the equations, which is the representation of different 

locations in the granulator by different sets of equations. Compartmentalisation is especially 

important when moving to more mechanistically accurate models. 

Chaudhury et al. [118] investigated a compartmentalised model using a spray zone, a bulk 

high velocity zone, a bulk low velocity zone, and a shear zone. It was found that the PSDs 

varied between zones initially, but the granulator contents became more homogenous as time 

passed. This finding implies that a single-compartment model is suitable for longer 

granulation times, but does not accurately capture initial granulation behaviour. 

Yu et al. [119] focused specifically on the spray zone of a high-shear mixer for the 

incorporation into compartmentalised population balance modelling. By comparison with 

experimental data, it was found that the spray zone is a well-mixed, thin surface layer of the 

powder bed. 

Since twin screw granulation (Section 2.2.3) is mostly a linear process, it is especially 

suitable for compartmentalised models with well-defined boundaries based on the screw 

elements. Barrasso and Ramachandran [120] developed and evaluated a twin screw 

granulator PBM, combined with DEM to obtain residence times per compartment. Results 

agreed qualitatively with experimental data. The possibility of evaluating the effect of 

different screw configurations on granule properties, in particular, opens up quality-by-design 

approaches for twin screw granulation. 

In summary, the equations that represent a granulation process in a PBM may vary greatly 

in complexity depending on the requirements of the model. If the model has to be accurate 

and mechanistically relevant, experimentally obtained fitted parameters are not sufficient. 

Although mechanistic representations of coalescence and to some extent breakage exist, 

further development of mechanistic nucleation, consolidation, layered growth and breakage 

equations are necessary. Furthermore, considering the granulator to be a single well-mixed 

compartment does not represent the actual situation, and may lead to inaccuracies when 

modelling early-stage granulation. On the other hand, if time is the most important factor, for 

example for on-line control, simple, fast models might be needed. 

 

2.4.4 Other modelling techniques and synergy with population balances 
 

Population balances are a useful modelling tool, but they do not describe what is 

happening at the granule and sub-granule scale. Although more mechanistic population 

balance models have been developed, such models do not fully describe a system. In order to 

increase the understanding of granulation, other models should also be used. In some cases, 

models can be combined with population balances in order to increase physical relevance. 

A commonly used method for modelling granulation is the discrete element method 

(DEM) [66], which considers the interactions between individual particles. DEM has the 

advantage of incorporating physically relevant phenomena such as interparticle collisions into 

the simulation, and allows for the investigation of granulation at the particle scale. As a 

downside, the number of particles that can be modelled is limited. 

Gantt and Gatzke [121] used dynamic DEM to simulate type I and II coalescence, 

consolidation and breakage in order to predict final granule size distributions of a high-shear 
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granulation process. Consolidation was modelled with a porosity-related exponential 

relationship. For breakage, a critical Stokes deformation number was used. The model 

showed results very similar to those obtained with population balances. 

DEM can also be combined with population balance modelling in order to create a model 

that covers multiple scales. Gantt et al. [122] developed a coalescence model for a high-shear 

mixer using DEM specifically for the purpose of incorporation into population balance 

models. In order to reduce computational time, periodic boundary conditions and a radial 

boxing scheme were used to check for collisions. Other examples in the literature include 

Gantt and Gatzke [93], as discussed above, and Bouffard et al. [28]. 

Barrasso and Ramachandran [123] coupled a 2-D population balance model with DEM 

simulations in order to develop a hybrid framework. The model does not take nucleation into 

account, but it does allow for the incorporation of breakage and consolidation. Using the 

model, 10 seconds of rolling drum granulation with 5 seconds of liquid addition were 

successfully simulated. The results were not compared to experimental data. 

In their study of twin screw granulation Barrasso et al. [124] developed a bi-directional 

coupling grid between DEM and PBM. DEM provides input for PBM, and if a significant 

change occurs in the PBM, the DEM simulation is repeated to obtain new data. In this way, 

PBM and DEM interact to create a model based on actual particle behaviour. This coupling 

scheme was used in the compartmentalised model described above [120]. 

Kulju et al. [125] used a one-way coupled DEM-PBM scheme to model a continuous high-

shear mixer. DEM was able to predict the effect of shaft speed on the accumulation of 

material in the spray zone. In this way, the effect of shaft speed was incorporated into the 

PBM. 

Another possible use of DEM is to train an artificial neural network (ANN). Barrasso et al. 

[126] used a reduced order model and DEM results to train an ANN to relate particle size, 

PSD and impeller speed to collision frequency. In this way, it is not necessary to perform 

DEM simulations while running the actual simulation, as all collision data is generated by the 

ANN. This method greatly reduces the required computational time, while the results are 

similar to a fully coupled DEM-PBM set-up. 

Other examples of the application of an ANN are the studies performed by Yu et al. [127] 

and AlAlaween et al. [128]. In the work of Yu et al., an ANN capable of directly predicting 

the average particle size and standard deviation of a PSD was trained using experimental data 

and interpolation. AlAlaween et al. developed a network that was capable of predicting 

granule size, binder content and porosity using a similar method. 

A different method of obtaining rate collision data is the kinetic theory of granular flow 

(KTGF). Tan et al. [129,130] showed that a collision kernel based on the equipartition of 

kinetic energy (EKE) derived by Hounslow [65] yields results to those obtained with KTGF. 

Khalilitehrani et al. [131] compared two models to simulate the different phases in a high-

shear mixer using computational fluid dynamics (CFD). Dilute regions were modelled with 

KTGF, whereas dense regions were modelled with a viscosity divergence model. The latter 

model relates shear to solid volume fraction. A rheology model incorporating shear stress and 

strain rate was used for the transitional zone between the dense and dilute phase. This model 

was compared to a model in which KTGF was used for the dilute and transitional zones, and 

the rheology model for the dense phase. The results were then compared to experimental 

data. It was concluded that the former model described the flow behaviour much better than 

both conventional models and the latter model. 
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Some models are simply developed in order to improve the understanding of granulation 

rate processes. A model to predict nucleation sizes as a result of droplet impact on static 

powder beds was developed by Lee et al. [132]. The analytical model was based on 

experimental observations. After impact, the droplets spread in a hemisphere and liquid 

penetrated into the bed. The droplet then recoiled and a nucleus formed. Although the 

simulations could predict nucleation sizes within 1.5% accuracy, the model required 

calibration with experimental data. 

Liu et al. [133] developed a nucleation model based on a nuclei size-prediction method by 

Hapgood et al. [134]. The model used the Stokes deformation number to include the breakage 

of nuclei by binder impact. The model was validated with experimental data. 

A capillary force model for use in a model for solid, liquid and gas three-phase flow 

combining CFD and DEM was proposed by Washino et al. [135]. The results produced by 

the model were compared to experimental data and showed reasonable agreement. 

Talu et al. [136] modelled shear flows of a mixture of dry particles and wet particles with 

a liquid surface layer. Two types of simulations were run. The first type modelled 

agglomeration, and clearly showed growth and breakage regimes, depending on the type of 

mixer selected. From the results, the final granule size distribution could be calculated. In a 

second type of simulation, the deformation and break-up of a single granule in a powder 

medium was modelled and a critical Stokes deformation number was identified. Below the 

critical number, no breakage or deformation occurred. The granule deformed around the 

critical value, and breakage occurred at higher numbers. 

The evolution of the porous microstructure of granules by layering was simulated by 

Ŝtêpánek and Ansari [19]. The volume-of-fluid-based model involved the wetting of a dry 

power bed and subsequent granule growth. The effect of various properties on the granule 

porosity was monitored and documented in maps. 

Overall, the incorporation of different techniques into PBM allow for a more mechanistic 

simulation of the granulation process. Some techniques, such as DEM, make the model more 

physically relevant by considering granulation at the particle level. Other techniques, such as 

models that use physical phenomena to predict properties like nuclei size, capillary force, 

shear flow and layering allow for the development of physically relevant kernels. 

 

2.5 Scaling and control 
 

Scaling and control are very relevant to industry. Scaling up a granulation process is not 

straightforward and requires additional investigation [4,5], since the scale of a process can 

influence product properties [8]. Operation of the equipment needs to be controlled in order 

to guarantee consistent product quality. However, control can prove to be difficult when the 

effects of process conditions on the final product are uncertain. Therefore, some kind of 

framework for scale-up and control is needed [8]. The following sections describe the various 

scaling and control methods found in the literature. 

 

2.5.1 Scaling methods 
 

When scaling up, there are several possible strategies to consider. It is important to 

identify the key properties that have to be maintained and to choose the key processes that 

influence such properties [6]. Although scaling methods may be combined for better results, 



Chapter 2  Literature review 

41 

 

some combinations have contradictory requirements or are economically unfeasible. In this 

section, a few of the most important scaling methods are discussed and compared. 

First of all, some geometric scales should be kept constant [7]. The ratio between the 

impeller/bowl diameter and the chopper should be maintained, as well as the ratio between 

the fill height and the diameter. Furthermore, the granulator should be geometrically similar, 

and the position and shape of the impeller and chopper should be the same on scale-up. It is 

not always possible to satisfy all the geometrical requirements, simply because precisely 

scaled pieces of equipment might not be available. In a study of scale-up using shear forces, 

Tardos et al. [10] specifically emphasise the difficulty of scaling up granulators with different 

geometries and impeller shapes, although they claim that it is possible. 

Another parameter that should be kept constant is the dimensionless spray flux Ψa [45]. In 

doing so, a good binder distribution is ensured. At larger scales, however, this may imply 

using multiple spray nozzles in order to keep the spray zone sufficiently large [3], which is 

economically unattractive. Plank et al. [137] modified the spray flux in order to incorporate 

the effect of surface velocity on granulation into the model, and used this concept for scale-

up. Regardless of spray flux, the liquid content should be kept constant between scales. 

A commonly applied scaling method is using a constant Froude number [8,9]. The 

definition of the Froude number is given in Equation 2.23: 

 

𝐹𝑟 =
𝜔2 ∗ 𝑅

𝑔
 (2.23) 

 

where ω is the angular velocity, R is the radius of the granulator and g is the acceleration due 

to gravity. The Froude number compares inertial and gravitational forces, and can be used to 

characterise flow patterns. Simply put, a constant Froude number ensures a similar flow 

pattern in the granulator. Maintaining a constant Froude number implies decreasing the 

impeller speed proportional to the increase in diameter squared. Using the Froude number is 

not always an effective scale-up method [9]. Mort [138] states that, rather than keeping the 

Froude number constant, it is better to ensure that the Froude number remains high enough to 

maintain a roping flow pattern. Hibare and Acharya [11] found that although keeping the 

Froude number constant resulted in a similar granule size distribution, properties such as 

granule strength were not the same [10]. 

An additional important parameter to consider is the Stokes deformation number [3]. By 

keeping this number constant, the collision velocity of the granules remains constant, and it 

ensures granules are in similar regimes. This can only be achieved by maintaining a constant 

impeller tip speed, which means the impeller speed is decreased proportional to the increase 

in diameter. Therefore, it is impossible to combine this technique with a constant Froude 

number. As long as the Froude number is high enough, this method produces better results 

compared to maintaining a constant Froude number [138] and better conserves granule 

properties like strength [9]. Nakamura et al. [139] recommend that when maintaining a 

constant tip speed during scale-up, the granulation time should be increased in order to 

achieve constant cumulative particle collision energy. 

In order to account for possible changes in geometry as a result of scale-up, the swept 

volume approach can be used [3]. This method aims to keep the volume swept by the 

impeller proportional to the total batch volume. For geometrically similar granulators, this 

method is equal to the constant tip speed approach. Hibare and Acharya [11] obtained 
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comparable granule properties with this approach, although the granule size distribution 

varied slightly. 

Tardos et al. [10] proposed a scale-up power law for the relationship between impeller 

speed and granulator diameter in order to maintain shear. It was concluded that neither a 

constant Froude number nor a constant tip speed maintain the shear forces during scale-up. 

Hassanpour et al. [9] further investigated the use of constant shear and found that it produced 

similar results for larger scales. At lower scales, however, the flow patterns were completely 

different under the constant shear condition, which led to significantly weaker granules. 

 

2.5.2 Control 
 

Like scale-up, control requires detailed knowledge on the effects of operating conditions 

on the properties of granules. For high-shear mixers in particular, control is difficult due to 

the complex interactions of the different rate processes [140]. In this section, some of the 

most common methods to apply control to high-shear granulation are discussed. Such 

methods include observation of flow patterns, inline probes and measuring conditions such as 

torque or impeller work. 

 

2.5.2.1 Flow patterns 

 

It becomes clear from Section 2.5.1 that flow patterns are an important factor influencing 

granule properties. Flow patterns determine mixing and shear among others, and it appears 

logical that flow patterns should give an indication of the state of a granulation process. One 

of the methods used to determine flow fields is positron emission particle tracking (PEPT) 

[9,141,142], which involves tracking a single tracer particle to determine flow patterns. Using 

this technique, Hassanpour et al. [9] showed that different flow patterns were present at 

different scales, even though a granulator with a similar geometry was used. In this way, it 

was possible to explain observed differences in granule properties. Saito et al. [142] showed 

that there are regions with different flow patterns in a high-shear granulator, which could 

account for variation in batch quality. 

Another method to observe flow patterns is particle image velocimetry (PIV) 

[137,143,144]. For this method, a high-speed camera is used to analyse particles at the 

surface of a moving powder bed in a high-shear mixer. By using Fourier transforms, the 

velocity changes in the bed can be linked with material properties like binder viscosity [143]. 

Darelius et al. [144] used a transparent granulator and measured the velocities at the walls of 

the granulator, as opposed to the surface velocities. The flow fields were linked to frictional 

data to predict the torque. Plank et al. [137] incorporated the surface velocity values into the 

dimensionless spray flux in order to describe the change in liquid coverage during scale up. 

Flow patterns can also be observed using electrical capacitance tomography (ECT) [145]. 

Tomograms produced in this way can be used to determine mixing efficiency, granule state 

and suitable times for stopping the addition of liquid or terminating the granulation process. 

 

2.5.2.2 In-line probes 

 

Using in-line probes to measure particle size and shape during granulation can provide 

valuable information for control. However, such probes are difficult to use in mixers because 
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the powder phase is not fully fluidised [6]. Watano et al. [146] solved this problem by using a 

high resolution, high speed camera and a stroboscope with a very narrow slit. This set-up 

allowed for the analysis of a very small plane, which enable the accurate measurement of 

granule size. The images were digitised and successfully used in a fuzzy control system for 

high-shear granulation. 

Wenzel et al. [147] performed various experiments with a particle probe to determine the 

optimal position and settings for the probe. With the in-line probe, it was possible to directly 

see the effect of changing operating conditions on the particle size distribution. 

 

2.5.2.3 Power consumption/torque and impeller work 

 

Measurement of power consumption or torque is frequently used as an indirect technique 

for control in high-shear granulation processes [6]. By measuring the torque over time, a 

power curve can be constructed. When liquid is added to a dry powder, the power required to 

mix the powder increases. Once granulation starts, the torque increases even further. Finally, 

when the granules stop growing, the curve levels off. In this way, power torque can be used 

to monitor a granulation process [148,149]. However, due to batch to batch variation, it is 

dangerous to rely on power consumption alone [6]. 

Goldszal and Bousquet [150] investigated the evolution of the power consumption profile 

as a function of the moisture content and were able to discern the pendular, funicular, 

capillary and dispersion states of nucleation. A distinction was made between step-wise 

growth behaviour (SGB), which contains several torque ‘plateaus’ during nucleation and 

growth, and continuous growth behaviour (CGB), with a much smoother torque profile. It 

was claimed that SGB-type powders were more suitable for granulators, since CGB powders 

tend to form a paste instead of granules. 

An alternative to power consumption is the impeller work, which can be obtained by 

integrating the power consumed over time [140]. In this way, the extent of the granulation 

process is expressed in terms of total work. The advantage of this method is that it is less 

sensitive to particle properties. Moreover, it can be combined with the power consumption 

for better accuracy. 

 

2.6 Literature review conclusions 
 

Granulation has been extensively researched in the literature since the second half of the 

previous century, and there is a clear shift to more science and less art in the field of 

granulation. Mechanisms in granulation have been characterised. Nucleation and wetting 

behaviour can be explained with nucleation regime maps, typical time scales and the 

dimensionless spray flux. Collision behaviour between granules can be predicted by using the 

viscous Stokes number. All of the granulation regimes observed during granulation can be 

described qualitatively by the pore saturation and the Stokes deformation number. Breakage 

behaviour appears to be related to the Stokes deformation number, dimensionless peak flow 

stress and capillary number. Additionally, dynamic breakage behaviour is receiving more 

attention in the literature. In spite of all the advances in the field, however, there is still a 

requirement for further understanding of granulation phenomena. Breakage and attrition 

behaviour cannot be reliably predicted. Consolidation and layering are not fully understood. 
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Models are constantly improving and are becoming more mechanistic. Population 

balances, especially when combined with mechanistic kernels and DEM, are becoming more 

physically relevant. Solution methods become increasingly efficient and allow for larger and 

more complex simulations. However, although many models are available, experimental data 

is required for validation. 

This thesis aims to address the gap of knowledge on consolidation and layered growth, and 

develop a mechanistic model to predict these rate processes. In order to understand 

consolidation and layered growth, an experimental method must be developed to obtain 

useful kinetic data. Therefore, one of the objectives of this work is to develop such a method. 

Three different set-ups are used, as described in Chapter 4, Chapter 5 and Chapter 6. 

Additionally, Chapter 5 and Chapter 6 describe how the experimental data is compared to 

models from the literature, Hounslow et al.’s models for surface-tension drive growth and 

deformation-driven diffusive growth [30] in particular. Based on the models from the 

literature, this work then identifies the key parameters that govern granule layered growth. 

The final objective of this work is to develop a layered growth kernel for population balance 

modelling using these parameters so that this rate process can be predicted for the design of 

industrial granulation processes. 
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3.1 Introduction 
 

This chapter provides an overview of all materials and experimental methods used in this 

study and serves as a reference for the experiments described in the following results 

chapters. In addition, this chapter describes the characterisation and analysis methods used 

and discusses various properties of the materials employed. 

Section 3.2 describes the different characterisation techniques, and provides some 

background information. The Sections 3.3 and 3.4 focus on the powders and liquid binders 

employed, respectively. Next, Section 3.5 elaborates on the properties of the different 

powder-binder systems used in the experiments. Finally, the different experimental methods 

are described in Section 3.6. 

Three different types of experiments were performed. The first type focuses on exploring 

the use of a high-shear mixer for investigating granule consolidation and layered growth 

kinetics. The second type is an investigation of granule consolidation and layering in a 

purposefully designed consolidation-only granulator (COG). The third and final type of 

experiments were performed to further elucidate granule consolidation and layering by using 

a high-shear mixer with flat plate impeller to granulate paste particles. 

 

3.2 Characterisation and analysis methods 
 

Several methods were employed to characterise and analyse both the primary materials 

used and granules produced in this study. The most important of these techniques are particle 

size measurements via laser diffraction, viscosity measurements, contact angle 

measurements, interfacial tension measurements, liquid density measurements, envelope and 

true density measurements using powder and helium pycnometry, respectively, and X-ray 

tomography to study the internal granule structure. The principles and operation of these 

methods are discussed briefly below. 

 

3.2.1 Laser diffraction 
 

All powders used in this study were analysed with dry cell laser diffraction (Malvern 

Mastersizer 3000 PSA) to obtain their particle size distributions (PSDs) and characteristic 

particle sizes. The principle of laser diffraction is based on the scattering of a laser beam on 

particles [151]. Large particles have a small scattering angles, whereas small particles have a 

large scattering angle. The scattering angle is also influenced by the refractive index of the 

material. 

The output of the laser diffraction characterisation is a table with size classes, or bins, and 

the volume of the particles inside each bin. This table can be used to plot a volume frequency 

distribution (referred to as standardised PSD in this work) or q3, the volume percentage of 

particles in a bin divided by the bin width. The shape of the standardised PSD gives 

information on powder properties such as uniformity of the particle size, the surface area 

mean diameter or d3,2, and the volume moment mean diameter or d4,3. The d3,2, or Sauter 

mean diameter, is the diameter of a sphere that has the same volume to surface area ratio as 

the particle investigated, and is mostly used when the surface area of the particles is 

important. The d4,3, or De Brouckere mean diameter, shows where the bulk volume of the 

sample is located. This value is logical to use for laser diffraction, as laser diffraction 



Chapter 3  Materials and methods 

47 

 

measures volume frequency. It is, however, less useful when the sample has a large quantity 

of fines, such as for the zeolite powder used in this study. 

From the standardised PSD, the cumulative particle size distribution (cumulative PSD) by 

volume, or Q3, can be calculated. This distribution yields three important percentile values: 

the d10, d50 and d90. A dX indicates the maximum particle size at which X percent of the 

particles is equal to or smaller than that size. This means that a d10 contains the smallest 10 % 

of the particles by volume, the d50 the smallest 50 % of the particles by volume, and the d90 

the smallest 90 % of the particles by volume. The closer the d10, d50, and d90 are to each other, 

the narrower the standardised and cumulative PSD. 

In order to give a clear representation of the particle size distributions, the d4,3, d3,2, d10, d50 

and d90 are reported for all powders used. Additionally, the q3 and Q3 are shown for all 

samples. 

 

3.2.2 Viscosity measurements 
 

To determine the viscosity of the binder liquids, an MCR502 Anton Paar Rheometer was 

used with a CP50-2/TG conical plate. The rheometer operates on a simple principle. Liquid is 

placed on a stationary plate and a second plate is placed on top of the liquid. The top plate is 

then rotated at a velocity to impart motion to the liquid. The shear rate that is applied 

depends on the velocity of the plate and the height of the gap between the static and rotating 

plate. The apparatus then calculates the shear stress; the force measured divided by the area. 

The viscosity is simply the shear stress divided by the applied shear rate [152]. For this study, 

the applied shear rate varied between 0.01 and 1000 s
-1

. 

 

3.2.3 Contact angle measurements 
 

To investigate the interaction between the different powders and binders used, contact 

angles were measured for each system with a First Ten Ångstroms FTÅ200 goniometer. This 

type of equipment uses imaging of a liquid droplet on a solid surface to calculate the contact 

angle between the solid and liquid. 

A thin layer of powder was spread out on a microscope slide with double adhesive tape on 

top of it. In this way, the effect of droplet penetration was reduced. Next, a droplet was 

deposited from a 22 G (0.41 mm internal diameter) blunt needle on the powder layer. This 

was done in such a way that the droplet was completely detached from the needle before 

touching the powder. Over the course of 75 seconds, a 25-frame movie was recorded of the 

sessile droplet. The FTA32 software on the apparatus then automatically calculated the 

contact angle. However, there were limitations to the software for low contact angles (around 

20°). In such cases, the baseline for the droplet had to be defined manually. This limitation 

has been reported in the literature [153], and 20° is known to be the minimum contact angle 

that can be measured accurately using this equipment. 
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3.2.4 Interfacial tension measurements 
 

The interfacial tension of all liquids was measured with a First Ten Ångstroms FTÅ200 

goniometer. For this measurement, the pendant drop shape method was used [154]. This 

method is based on the Young-Laplace equation[155], and it uses the radii of curvature of the 

droplets and their density to calculate the surface tension using FTA32 software. The pendant 

droplet was created from a 22 G (0.41 mm internal diameter) needle, and a single snapshot 

was taken of the droplet, after which the image was analysed by the software. In order to 

determine the precision of the values, the average surface tension was calculated based on the 

analysis of ten different droplets. 

 

3.2.5 Liquid density measurements 
 

For the measurement of liquid density, a 25 mL density flask was used. This type of flask 

has a stopper with a capillary, which allows for very accurate filling of the flask. The empty 

flask was weighed and filled with the liquid of interest, after which the cap was used to 

remove any excess liquid through the capillary. After careful removal of excess liquid from 

the exterior of the flask, the filled flask was weighed again. The density was calculated from 

the obtained liquid mass and the known flask volume. 

 

3.2.6 Powder pycnometry 
 

The envelope density of granules, i.e. the density including all internal and external 

cavities, was measured using a Micromeritics GeoPyc1360 powder pycnometer. The density 

measurement is based on volume displacement; first the volume of a chamber filled with free 

flowing DryFlo powder is measured, after which a sample with a known mass is introduced 

into the partially filled chamber. The equipment then measures the combined volume of the 

DryFlo powder and sample several times before determining the density using the known 

mass and the volume. For this study, a 12.7 mm sample chamber was used, and consolidation 

force was set at 28 N. 

Due to the small size of the granules, several granules had to be analysed for each 

measurement. The use of multiple granules occasionally led to poor overall flow due to 

mechanical friction between the granules, lowering the accuracy of the measurement. In order 

to maintain reliable results, several repeats were performed. When sufficient granules were 

available, repeats were performed with new, previously untested granules. However, in cases 

where only a few granules were available, or where large numbers of granules were required, 

repeats were performed using the same granules. 

 

3.2.7 Helium pycnometry 
 

The true density of powders and granules was calculated using a Micromeritics AccuPyc 

1340 helium pycnometer. Like the GeoPyc, the AccuPyc measures a volume, although it uses 

helium gas instead of DryFlo powder. A sample of known mass is placed into a sample 

chamber with a known volume. Then, the equipment fills the remaining volume of the sample 

chamber with helium, which penetrates into the pores of the sample. Using the initial pressure 

and the equilibrium pressure after addition of the helium, the software calculates the volume 
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of the sample chamber occupied by the sample. Next, it uses the mass of the sample to 

calculate the true density. However, if the sample has any inaccessible internal pores, the 

equipment gives an overestimation of the true volume, and therefore an underestimation of 

the true density. Whenever possible, a pressure of 19 psig was used for both the purges and 

the analysis. A minimum number of 20 purges was used, and the equilibrium rate was set at 

0.005 psig/min. 

 

3.2.8 X-ray tomography 
 

A select number of granules were analysed using a Skyscan 1172 Micro-CT to obtain 

three-dimensional X-ray images of their internal structure. In the literature, X-ray computed 

tomography has been used to obtain porosity values for granules [156]. A limitation of this 

technique is its accuracy, which relies on the resolution of the equipment. On the other hand, 

the technique shows the internal structure of samples and can be used to calculate the volume 

of inaccessible pores, unlike helium pycnometry. For this study, X-ray computed tomography 

was mostly used to identify the denser and less dense zones in the granules, as the resolution 

was not high enough to obtain reliable porosity data. 

 

3.3 Powder properties 
 

In this work, four different powders were used for the experiments performed. These 

powders were glass beads, lactose monohydrate, plastic beads and sodium aluminosilicate 

zeolite. Lactose monohydrate, a cohesive powder with nonspherical particles, was selected 

for its common use as an excipient in the pharmaceutical industry. The other powders were 

selected to investigate a broader range of particle properties; sodium aluminosilicate is more 

cohesive than lactose monohydrate and has a significantly lower d4,3; glass beads and plastic 

beads have highly spherical particles with different densities. All powders were analysed with 

dry cell laser diffraction to obtain their particle size distribution (PSD). Additionally, helium 

pycnometry was used to obtain the true density of the powders. A summary of all powders 

used, including some of their key properties, is shown in Table 3.1. 

 

 
Table 3.1: Powders used and their properties. Standard errors are shown in brackets. 

Powder d3,2 (μm) d4,3 (μm) d10 (μm) d50 (μm) d90 (μm) ρtrue (g/cm
3
) 

Glass beads 72.50 (0.08) 74.0 (0.1) 61.1 (0.3) 73.34 (0.08) 87.5 (0.6) 
2.496 

(0.001) 

Lactose 

monohydrate 
5.36 (0.04) 49 (1) 4.25 (0.06) 38.2 (0.2) 108 (2) 

1.569 

(0.001) 

Plastic beads 51.4 (0.03) 52.02 (0.02) 45.1 (0.3) 51.73 (0.03) 59.2 (0.3) 
1.219  

(0.002) 

Sodium 

aluminosilicate 
0.943 (0.009) 2.84 (0.01) 0.280 (0.002) 2.744 (0.008) 5.32 (0.02) 

2.10  

(0.01) 
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3.3.1 Glass beads 
 

Glass beads, provided by Mo-Sci Corporation, were used as a model particle. The particles 

are highly spherical, with a minimum sphericity of 0.85 (Mo-Sci Corporation). Due to their 

high sphericity and excellent flowability, glass beads allow for rapid separation of primary 

powder and granules produced after experiments. 

 

3.3.1.1 Particle size distribution 

 

In order to analyse the particle size of the glass beads, three different laser diffraction 

measurements were performed. The resulting PSDs were used to obtain three sets of d3,2 and 

d4,3 values, as well as the d10, d50 and d90 values, which were then averaged to obtain the 

mean values. Figure 3.1 shows the standardised PSD and the size values. 

Glass beads show a fairly narrow unimodal size distribution, with a d10 of 61.1 μm, and a 

d90 of 87.5 μm. This is in reasonable agreement with the guarantee given by the manufacturer 

that 80 % of the particles are in the range of 63-90 μm. The d50, d3,2 and d4,3 are close, as 

expected of a narrow distribution of spherical particles. A cumulative PSD is shown in Figure 

3.2. The curve is S-shaped, which is normal for narrow PSDs. 

 

 
Figure 3.1: Standardised particle size distribution of glass beads obtained via laser diffraction, 

identifying the d3,2, d4,3, d10, d50 and d90 values. 
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Figure 3.2: Cumulative particle size distribution of glass beads obtained via laser diffraction, 

identifying the d3,2, d4,3, d10, d50 and d90 values. 

 

3.3.1.2 Density 

 

The true density of the powder, determined by a triplicate series of helium pycnometry 

experiments, was found to be 2.496 g/cm
3
, making it the highest density powder used. This 

value was in agreement with the manufacturer’s reported value of 2.5 g/cm
3
. 

 

3.3.2 Lactose monohydrate 
 

Crystalline α-lactose monohydrate (Pharmatose 200M), which will be referred to as 

simply ‘lactose’ in this work, was provided by DFE Pharma. Compared to glass beads, 

lactose is much more cohesive, although it flows through a sieve fairly well when mild 

shaking is used. This reduction in flowability is mostly caused by the irregular shape of 

lactose particles, which allows the particles to interlock.  

 

3.3.2.1 Particle size distribution 

 

In order to determine the PSD, a series of four laser diffraction experiments was 

performed. A triplicate was insufficient as the values showed more variation than the other 

powders, with standard error percentages ranging from 0.6 to 2 %, whereas the standard 

errors of the other powders were consistently below 1%. Due to the reduced flowability of the 

powder compared to glass and plastic beads, a 1 cm diameter steel ball was used to promote 

the flow of the powder through the feed sieve. The standardised PSD, including relevant 

particle sizes, is shown in Figure 3.3. 
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Figure 3.3: Standardised particle size distribution of lactose, obtained via laser diffraction, 

identifying the d3,2, d4,3, d10, d50 and d90 values. 

 

The PSD is clearly different from glass and plastic beads. A large fraction of fines is 

present in the lactose. With a d10 of 4.25 and a d90 of 108 μm, the size range is also much 

wider than that of glass beads. The manufacturer reports a fraction of 50-65% below 45 μm, 

which is reasonable considering the d50 is 38.2 μm. The d90 of 100 μm reported by the 

manufacturer is slightly lower than the measured d90. The cumulative size distribution, shown 

in Figure 3.4, is fairly smooth, but it shows a long tail at the lower particle sizes.  

 

3.3.2.2 Density 

 

The true density of lactose, determined by a triplicate of helium pycnometry experiments, 

was found to be 1.569 g/cm
3
. This is in reasonable agreement with the value of 1.54 g/cm

3
 

reported by the manufacturer. 

 

3.3.3 Plastic beads 
 

Plastic beads (Spheromers CA50) were provided by Microbeads AS. Like glass beads, 

plastic beads are highly spherical and unimodal, with excellent flow properties.  
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Figure 3.4: Cumulative particle size distribution of lactose obtained via laser diffraction, 

identifying the d3,2, d4,3, d10, d50 and d90 values. 

 

3.3.3.1 Particle size distribution 

 

A triplicate of laser diffraction experiments was performed to determine the PSD for the 

plastic beads. The standardised PSD and all relevant particle sizes determined are shown in 

Figure 3.5. 

The PSD is narrower than that of glass beads, with a d10 of 45.1 and a d90 of 59.2. The d4,3 

of 52.02 μm is within the error margin of 50 μm ± 5% reported by the manufacturer. The 

cumulative PSD, shown in Figure 3.6, is smooth and steep, as expected from a unimodal 

powder. 

 

3.3.3.2 Density 

 

A triplicate of helium pycnometry experiments was used to determine the true density of 

plastic beads, which was found to be 1.219 g/cm
3
. This density is consistent with the value of 

1.2 g/cm
3
 reported by the manufacturer. Of all powders used, plastic beads has the lowest 

density. 

  



Chapter 3  Materials and methods 

54 

 

 
Figure 3.5: Standardised particle size distribution of plastic beads, obtained via laser diffraction, 

identifying the d3,2, d4,3, d10, d50 and d90 values. 

 

 
Figure 3.6: Cumulative particle size distribution of plastic beads, obtained via laser diffraction, 

identifying the d3,2, d4,3, d10, d50 and d90 values. 
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3.3.4 Sodium aluminosilicate zeolite 
 

Sodium aluminosilicate zeolite (Docil 4A), referred to as ‘zeolite’ in this work, was 

provided PQ Corporation. Zeolite is extremely cohesive, making sieving a laborious process. 

Additionally, the powder is much finer than any of the other powders tested.  

 

3.3.4.1 Particle size distribution 

 

The PSD for zeolite was determined with a triplicate series of laser diffraction 

experiments. A 1 cm steel ball was used to promote flow through the feed sieve by causing 

additional vibrations. Figure 3.7 shows the resulting standardised PSD. Interestingly, a 

bimodal distribution is obtained, whereas the manufacturer reports a narrow unimodal 

particle size distribution with a d50 of 3 μm and an average particle size of approximately 

3 μm. The second peak corresponds quite well with the PSD shown by the manufacturer, and 

the d4,3 and d50 of 2.84 and 2.744 μm, respectively, agree with the reported values. Two 

different explanations can be offered for this phenomenon. First of all, attrition could have 

caused an increase in the fractions of fines, resulting in the large first peak. Second, the 

analysis method can pick up unimodally distributed elongated particles as two different sizes, 

depending on the face turned towards the laser. However, since the manufacturer reports that 

the zeolite particles are mostly cubic in shape, this second explanation is unsatisfactory. It is, 

therefore, reasonable to assume that the zeolite particles have suffered attrition. The 

cumulative PSD, shown in Figure 3.8, mostly confirms the findings of the standardised PSD. 

 

 
Figure 3.7: Standardised particle size distribution of zeolite, obtained via laser diffraction, 

identifying the d3,2, d4,3, d10, d50 and d90 values. 
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Figure 3.8: Cumulative particle size distribution of zeolite, obtained via laser diffraction, 

identifying the d3,2, d4,3, d10, d50 and d90 values. 

 

3.3.4.2 Density 

 

The true density of zeolite, determined with a triplicate of helium pycnometry 

experiments, was found to be 2.10 g/cm
3
. The manufacturer reports no density value for 

comparison. 

 

3.4 Liquid properties 
 

For the experiments performed in this study, four different binder liquids were used: 

silicone oil, aqueous hydroxypropyl methylcellulose (HPMC) solution, aqueous polyethylene 

glycol (PEG) solution and liquid PEG. Viscosities were varied by using different grades of 

silicone oil and PEG; a single HPMC solution was used. All liquids were analysed using 

rheometry to determine their viscosities. Liquid densities were determined using density 

measurement flasks; the liquid surface tension and liquid-powder contact angles were 

determined with a goniometer. A full list of solutions used and their properties is shown in 

Table 3.2. 
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Table 3.2: Liquids used and their properties. Standard errors are shown between brackets. 

Liquid Types Density (g/cm
3
) Viscosity (mPa·s) Surface tension (mN/m) 

Silicone oil 

10 cSt 

50 cSt 

100 cSt 

1000 cSt 

0.9407 (0.0001) 

0.9640 (0.0001) 

0.9684 (0.0001) 

0.9715 (0.0001) 

12.95 (0.06) 

51.74 (0.09) 

104.8 (0.1) 

1042.8 (0.9) 

19.49 (0.07) 

21.11 (0.05) 

19.92 (0.06) 

20.25 (0.08) 

HPMC-solution 12 wt% saturated 1.0944 (0.0004) 200 (2) 45.3 (0.7) 

PEG solution 
50 wt% PEG4,000 

50 wt% PEG20,000 

1.0942 (0.0001) 

1.0953 (0.0001) 

130 (1) 

3192 (9) 

52.4 (0.6) 

53.0 (0.3) 

PEG600 

PEG600, 25.0 °C 

PEG600, 30.0 °C 

PEG600, 32.5 °C 

PEG600, 35.0 °C 

PEG600, 40.0 °C 

- 

- 

1.1172 (0.0001) 

- 

- 

131.6 (0.2) 

103.1 (0.2) 

94.54 (0.07) 

82.6 (0.2) 

66.3 (0.1) 

- 

- 

42.9 (0.2) 

- 

- 

 

3.4.1 Silicone oils 
 

Silicone oils, provided by Sigma-Aldrich, were selected as one of the liquids investigated 

due to their low vapour pressure. Granules produced with this binder will, therefore, not dry. 

This allows for straightforward calculation of granule growth via mass measurements. Four 

different grades of oil with varying viscosities were used: 10 cSt, 50 cSt, 100 cSt and 1000 

cSt. In order to increase the visibility of the silicone oils, the liquids were dyed with Solvent 

Blue 59 (Sigma-Aldrich). This was done by slowly adding small amounts of dye until the 

liquid reached a clearly visible blue colour. The densities of the dyed oils were 0.94, 0.96, 

0.97 and 0.97 g/cm
3
 for 10, 50, 100 and 1000 cSt silicone oil, respectively. These values are 

close to values for the undyed oils provided by Sigma-Aldrich. The interfacial tension was 

found to be approximately 20 mN/m for all silicone oils. 

 

3.4.1.1 Viscosity 

 

The viscosity of the silicone oils was measured by a single measurement using rheometry. 

For 10 cSt silicone oil, the measurement was performed in a shear rate range of 0.1-1000 s
-1

, 

as the equipment is more tuned for higher-viscosity liquids. The full measurement range is 

shown in Figure 3.9. 

Overall, the curves show linear behaviour, although the lines fluctuate more below a shear 

rate of 1 s
-1

. Measurements below this value are used to determine whether a liquid is shear-

thickening or shear-thinning and, overall, measurements in this range show more variation for 

all liquids explored. In the case of the silicone oils analysed, the values mostly fluctuate 

around the same value at low shear. During the experimental work, shear is expected to be 

higher than this range.  

The average viscosity was calculated from the values obtained at a shear rate of 1-1000 s
-1

, 

as this range shows the most constant behaviour. The viscosities determined were 12.95, 

51.74, 104.8 and 1042.8 mPa•s for 10, 50, 100 and 1000 cSt silicone oil, respectively. This is 

slightly more viscous than expected from the kinematic viscosities provided by Sigma-

Aldrich, and may be caused by the presence of dye in the liquid. 
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Figure 3.9: Viscosities of dyed 10, 50, 100 and 1000 cSt silicone oils as a function of the shear rate, 

shown on logarithmic axes. 

3.4.2 Hydroxypropyl methylcellulose solutions 
 

Hydroxypropyl methylcellulose (HPMC: Tylopur 603, provided by Shin-Etsu Chemical 

Ltd.) was dissolved in water saturated with lactose in order to reduce the effect of lactose 

dissolution during the experiments using lactose as the powder component. Saturation was 

performed by first dissolving a surplus of lactose in distilled water and filtering the resulting 

suspension. The filtrate was then used for the preparation of HPMC. A volume of lactose 

solution equivalent to the volume of water needed to create a 12 wt% HPMC solution was 

added. After the preparation of the solution, Erythrosin B (Sigma-Aldrich), a red dye, was 

added to improve visibility of the liquid. The shelf life of HPMC solution saturated with 

lactose is short (about 2 weeks) due to degradation of the lactose. For this reason, three 

freshly prepared solutions were used for characterisation of the liquids. 

The densities and surface tensions of all HPMC solutions were similar, with an average 

density of 1.09 g/cm
3
, and interfacial tension of 45.3 mN/m. 

 

3.4.2.1 Viscosity 

 

To estimate the viscosity of the HPMC solution used for granulation, three separately 

prepared solutions were analysed using rheometry. A comparison of the three obtained curves 

is shown in Figure 3.10. 
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Unlike the silicone oils, HPMC solutions show a clear increase in viscosity at low shear 

rates. This is a typical example of shear thinning behaviour. Interestingly, the second solution 

prepared shows less viscous behaviour at low shear rates. This could indicate that there is 

some variation between prepared batches. However, at higher shear rates, the solutions 

appear to be very similar. During granulation, high shear rates are more likely to occur than 

low shear rates, so the variation between granules produced by different solutions should be 

minimal. 

Due to its shear thinning properties, the viscosities of the HPMC solutions were calculated 

from values obtained at shear rates varying between 10 s
-1

 and 1000 s
-1

. Viscosities were 

found to be 188, 200 and 202 mPa•s, giving an average viscosity of 197 mPa•s. 

 

3.4.3 Aqueous polyethylene glycol solutions 
 

Polyethylene glycol (PEG, provided by Sigma-Aldrich) solutions were prepared with 

distilled water with acid red 1 dye (Sigma-Aldrich). First, a 1 wt% dye solution was prepared. 

Next, polyethylene glycol was dissolved in the dye solution in a 1:1 mass ratio. In this way, a 

50 wt% PEG solution was produced. Two different PEGs were used to create solutions of 

different viscosities: PEG 4000 and PEG 20000. The liquids had similar densities of 1.0942 

and 1.0953 g/cm
3
 and surface tensions of 52.4 and 53.0 mN/m, respectively. 

 

 
Figure 3.10: Viscosities of three lactose-saturated 12 wt% HPMC solutions as a function of the 

shear rate, shown on logarithmic axes.  
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3.4.3.1 Viscosity 

 

Both the PEG 4000 and the PEG 20000 solutions were analysed using rheometry to obtain 

their viscosities. A comparison between the two solutions is shown in Figure 3.11. The 

behaviour of both liquids differs at low shear rates. The PEG 4000 solution shows shear 

thinning behaviour, whereas the PEG 20000 solution has a fairly constant viscosity. 

However, both solutions show constant behaviour in the shear rate range of 1-1000 s
-1

, which 

is probably the most relevant range for granulation. 

Viscosities calculated in the standard shear rate range were found to be 130 and 3192 

mPa•s, for the PEG 4000 and the PEG 20000 solution, respectively. 

 

3.4.4 Molten polyethylene glycol 
 

A single experiment was performed using granulation with molten PEG 600. PEG 600 is a 

waxy solid at room temperature, with a melting point of 20-25 °C. This range allows for 

granulation with the pure liquid, but analysis of granules without a liquid component by 

cooling the granules down below the melting point. At 32.5 °C, the starting temperature of 

the experiments, the density of liquid PEG 600 was measured to be 1.1172 g/cm
3
, and its 

surface tension 42.9 mN/m. 

 

 
Figure 3.11: Viscosities of 50 wt% PEG 4000 and PEG 20000 solutions as a function of the shear 

rate, shown on logarithmic axes.  
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3.4.4.1 Viscosity 

 

Since PEG 600 is a solid at room temperature, it was heated to 32.5 °C to melt it before 

use in the experiments. In order to obtain information on the viscous behaviour of liquid PEG 

600 in the temperature range, rheometry was used to determine the viscosity at four different 

temperatures: 25, 30, 35 and 40 °C. A comparison between these measurements is shown in 

Figure 3.12. 

At all four different temperatures, PEG 600 has a consistent viscosity for the largest part 

of the evaluated shear rate range of 0.01-1000 s
-1

. For shear rates between 0.01 and 0.1 s
-1

, 

there are more fluctuations in the measurements, but not enough to draw any conclusions on 

shear thinning or thickening. As expected, the viscosity of PEG 600 decreases with 

increasing temperatures. The viscosities, calculated from the standard shear rate range of 1-

1000 s
-1

, were found to be 131.6, 103.1, 94.5, 82.6 and 66.3 mPa•s for 25, 30, 32.5, 35 and 

40 °C, respectively. Since PEG 600 is heated to about 32.5 °C before use, the viscosity is 

expected to be at least 94.5 mPa•s during granulation, becoming more viscous due to cooling 

as the experiment progresses. 

 

 
Figure 3.12: Viscosities of PEG 600 at 25 °C, 30 °C, 35 °C and 40 °C as a function of the shear rate, 

shown on logarithmic axes. 32.5 °C is not shown for clarity of the graph. 
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3.5 Powder-binder systems 
 

In this study, fourteen different powder-binder were used overall. All systems used are 

shown in Table 3.3. The table also lists all contact angles for the powder-binder systems 

evaluated. As expected, most liquids wet well. For most systems, the liquid droplet spread 

almost instantly, making the contact angle so low that it could not be measured accurately. 

For such systems, the contact angle is denoted as <20°. Only two systems spread slow 

enough to determine an actual contact angle: glass beads-PEG 4000 (55.23°) and lactose-

PEG 20000 (71.18°). It should be noted, however, that for both systems, the liquid continued 

to move very slowly after these measurements, and a stable point was never reached. It is 

highly likely that the liquid would continue to spread further on the powder material. 

In order to verify this, the droplet was left for 2 minutes after the initial measurement. 

Both systems showed further spreading. An example snapshot is shown in Figure 3.13. 

Clearly, the liquid has spread further, as confirmed by the contact angle, which is 10° lower 

than the originally measured contact angle. This finding suggests that these liquids are 

expected to wet, but that the kinetics are much slower, which might affect granulation. Where 

relevant, such effects are discussed in the chapters where these two systems are used. 

 

3.6 Methods 
 

This section provides a brief general description of the experiments performed in this 

work. More detailed descriptions can be found in Chapter 4.2, Chapter 5.3 and Chapter 6.3. 

Every study used the same overall experimental method. Granules were first prenucleated 

and subsequently granulated, extracted and analysed. For a single powder-binder system, 

multiple experiments were performed at different granulation times in order to study the 

consolidation and layered growth behaviour of the granules. 

A detailed description of all the granulation equipment and analysis methods is given in 

the relevant experimental chapters. 

 
Table 3.3: Overview of all powder-binder systems used in this work 

Powder Binder Contact angle (°) 

Glass beads 

Silicone oil 50 cSt <20 

Silicone oil 100 cSt <20 

Silicone oil 1000 cSt <20 

50 wt% PEG 4000 55.23 (0.53) 

Lactose monohydrate 

Silicone oil 10 cSt <20 

Silicone oil 50 cSt <20 

Silicone oil 10 cSt <20 

Silicone oil 1000 cSt <20 

12 wt% HPMC <20 

50 wt% PEG 4000 <20 

50 wt% PEG 20000 71.18 (0.97) 

PEG 600, 32.5 °C <20 

Plastic beads Silicone oil 10 cSt <20 

Sodium aluminosilicate Silicone oil 100 cSt <20 
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Figure 3.13: Snapshot of glass-PEG 4000, two minutes after the measurement. The contact angle is 

10° lower than the originally measured contact angle. 

Prenucleation outside of the granulator was done in order to reduce the complexity of the 

granulation process. By prenucleating granules, there was no need to add binder liquid during 

the granulation process. Consequently, the effects of nucleation and coalescence during 

granulation could be ignored. Various set-ups were used for prenucleation. For the 

experiments described in Chapter 4, granules were mostly nucleated manually with a syringe. 

The set-up described in Chapter 5 used a syringe pump for prenucleation. In Chapter 6, 

granules were prenucleated by making a paste of powder and binder and cutting the paste into 

pieces. Details of these procedures are given in the relevant experimental chapters. 

Three different types of granulation equipment were used. Initially, experiments were 

performed with a high-shear mixer and a three-bladed impeller (Chapter 4). For the second 

series of experiments, a custom, consolidation-only granulator (COG) was designed to reduce 

granule breakage, as described in Chapter 5. The paste-based granules were granulated using 

a high-shear mixer with a flat plate impeller (Chapter 6). 

After granulation, product granules were extracted from the granulator and separated from 

the powder by gentle sieving. The granules were then weighed in order to gain insight in their 

growth behaviour. Product granules produced in the studies with the COG (Chapter 5) and 

high-shear mixer with flat plate (Chapter 6) were also analysed for their true and envelope 

density by helium and powder pycnometry, respectively. In this way, the consolidation 

behaviour of these granules could be studied. Finally, a few representative granules were 

analysed for their internal structure using X-ray tomography. 
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4.1 Introduction 
 

From the literature review in Chapter 2, it becomes clear that there are knowledge gaps in 

the field of granulation. One such gap is the kinetics of consolidation and the resulting 

layered growth. Hounslow et al. [30] proposed models for this mechanism in both static and 

dynamic situations. Pitt et al. [31] found that the static model, based on surface-tension 

driven growth, described consolidation and layered growth exceptionally well in static 

powder beds. However, a mechanistic study of consolidation and layered growth in dynamic 

powder beds, which is more realistic than static beds for granulation, has not been performed 

in the literature. 

The purpose of this initial study was to develop an experimental granulation method that 

allows for the study of consolidation and layered growth in a dynamic situation. This method 

should separate the phenomena of interest from other granulation phenomena, i.e. breakage, 

attrition, agglomeration and nucleation. The method should, therefore, meet the following 

criteria: 

 

 The granules should be in a three-dimensional moving powder bed 

 No new nuclei should be created during the granulation process 

 Granules should not agglomerate during the granulation process 

 Forces experienced by the granules should be high enough to allow the granules to 

consolidate 

 Forces experienced by the granules should be as low as possible to reduce the 

effect of breakage and attrition 

 The method must be reproducible 

 Preferentially, it should be possible to compare the granules to those produced by 

Pitt et al. [31] to investigate the differences between dynamic and static 

granulation, e.g. by using a similar materials and methods of nucleus production 

 

The first requirement is straightforward: in order to evaluate consolidation and layered 

growth of granules in a dynamic situation, a moving powder bed is needed. This requirement 

does not limit the selection of granulation equipment. Preventing nucleation during 

granulation can be easily solved by prenucleating the granules outside of the granulator. In 

fact, prenucleation was also employed by Pitt et al. [31], although they allowed the granules 

to grow statically after prenucleation to investigate layered growth, whereas this study 

focuses on dynamic growth. An additional advantage of prenucleation is the prevention of 

granule agglomeration, as addition of liquid during the granulation process is not required 

when using prenucleated granules; only the binder already present in the granules is used for 

consolidation and growth. To further prevent agglomeration, a sufficient amount of powder 

should be present. As long as surface-wet granules have access to fresh powder, granule 

agglomeration should not occur [157]. The slightly paradoxical need for high-force impacts 

to cause consolidation but low enough forces to prevent breakage and attrition leads to 

difficulty in selecting appropriate equipment. A delicate balance must be struck between 

exerting sufficient force while preventing breakage and attrition as much as possible. The 

reproducibility of the method should be good, as the contents of the granulator have to be 

extracted regularly as this study requires the monitoring of granules over time. To ensure the 

only difference between different batches of granules is the granulation time, a fresh batch of 
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prenucleated granules should be as similar as possible to the previous batch. This means the 

prenucleation process should be reproducible. Finally, comparison to Pitt et al.’s data should 

give valuable insight into the difference between static and dynamic consolidation and 

layered growth. Given the above criteria, an experimental method and set-up were selected. 

This selection is discussed in Section 4.2.  

The type of equipment selected for the granulation process was a high-shear mixer. 

Although such mixers are capable of generating high shear, they can also be operated at low 

rotational speeds, which should reduce breakage and attrition. As long as a roping regime is 

maintained, good mixing can be achieved [7]. Even at such low speeds, it is expected that 

impacts are high enough to cause consolidation of granules. 

 

4.2 Materials and methods 
 

This initial investigation of consolidation and layered growth focused on experiments in a 

high-shear mixer. Granules were prenucleated outside of the mixer, granulated, extracted and 

analysed. A list of all experiments performed can be found in Table 4.1. 

All powders were passed through a 1.14 mm sieve before use in order to remove any 

lumps. A powder bed was prepared in a petri dish by gently flattening the surface of the bed 

with a ruler. The amount of powder in the petri dish was determined, after which a total 

amount of powder minus the powder bed mass was added to the high-shear mixer (Key 

International Inc. KG-1 Granulator with a 2.3 L bowl) before granulation. For lactose and 

plastic beads, a total amount of 330 g was used. For zeolite, the amount was 450 g. For this 

granulator fill level, the powders showed roping behaviour at the selected impeller speed of 

250 rpm. This behaviour was desired since the roping regime [138], characterised by powder 

being pushed up the walls and falling back on the impeller, indicates good mixing. To ensure 

a good distribution of the powder in the granulator, the mixer was run for 20 s at 250 rpm. 

After preparing the powder bed and granulator, granules were prenucleated on the powder 

bed in the petri dish. For most experiments, this was done by hand, with a 20 mL syringe and 

a blunt 30 G (0.16 mm internal diameter) needle. The needle tip was kept at a height of 5 cm 

above the powder surface. 

 

 
Table 4.1: Overview of all systems used in experiments with the high-shear mixer. 

Powder Binder Binder delivery # of nuclei Times (s) # of data points 

Lactose 100 cSt silicone oil Manual 40 3-24 4 

Lactose 1000 cSt silicone oil Manual 20 6-24 3 

Zeolite 100 cSt silicone oil Manual 40 3-24 3 

Lactose 12 wt% HPMC Manual 20 3-24 3 

Plastic beads 10 cSt silicone oil Manual 40 3-9 3 

Lactose 1000 cSt silicone oil Syringe pump 40 3-36 1 

Lactose 100 cSt silicone oil Manual 40 3-36 6 (x3) 

Lactose 50 cSt silicone oil Manual 40 3-15 4 (x3) 

Lactose 10 cSt silicone oil Manual 40 3-15 3 (x3) 
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When possible, 40 nuclei were produced. This was done in order to increase the precision 

of the results. However, for exploratory experiments with lactose-1000 cSt silicone oil and 

lactose-12 wt% HPMC solution, the high liquid viscosity did not allow for easy manual 

operation of the syringe. To ensure all nucleated granules had a similar nucleation time 

before addition to the granulator, only 20 nuclei were produced. 

For an additional experiment using lactose and 1000 cSt silicone oil, a syringe pump 

(Harvard Apparatus PHD ULTRA I/W) was used for easier droplet generation. The set-up 

was mostly the same as for manual nucleation, but instead of connecting the syringe directly 

to the needle, a tube and Luer Lock connectors were used. The syringe pump was operated at 

a constant speed of 5 μL/s, which yielded an acceptable nucleation rate. 

After nucleation, granules were immediately added to the granulator, after which the 

granulator was operated at 250 rpm for a set amount of time. Granulation times varied from 3 

to 36 seconds. The granules were then extracted by passing all the granulator contents 

through a 1.4 mm sieve. Sieving was performed manually by repeatedly tapping the mesh 

with a spoon to allow the powder to pass through. This method was used in order to prevent 

breakage of the granules. The extracted granules were removed from the sieve and stored in 

petri dishes under ambient conditions for analysis. After a single batch was run at a specific 

time, a new batch was nucleated under the same conditions and the experiment was repeated 

for a longer granulation time. 

Product granules were weighed individually using a microbalance (Mettler-Toledo 

XS3DU, 1 μg accuracy). This method allows for comparison to Pitt et al.’s results [31], 

which uses the same procedure for measuring granule growth. Additionally, Hounslow et 

al.’s models [30] predict the change in volume of the granules, which can be directly related 

to mass via density. Therefore, monitoring the growth kinetics of the granulation process can 

be compared to the models. For the lactose-HPMC system, granules were dried in an oven at 

32.5 °C overnight before analysis to prevent fluctuations in the granule mass due to 

evaporating water. 

The experimental work performed was split into two sets. The first set comprises the first 

five experiments described in Table 4.2: lactose-100 cSt silicone oil, lactose-1000 cSt 

silicone oil (no syringe pump), zeolite-100 cSt silicone oil, lactose-12 wt% saturated HPMC 

solution and plastic beads-10 cSt silicone oil. These experiments were performed to 

investigate the suitability of the several systems used. The second set comprised of 

reproducibility experiments, and was performed with lactose-based systems. A single 

experiment was performed with 1000 cSt silicone oil and a syringe pump, and three 

experiments each were performed with 10 cSt silicone oil, 50 cSt silicone oil and 100 cSt 

silicone oil. In the results and discussion of the experiments, Section 4.3, all liquids will be 

described in terms of their viscosity values, as shown in Table 4.2.  
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Table 4.2: Powder-binder systems used and binder dynamic viscosity. 

Set Powder Binder Viscosity (mPa•s) 

1 

Lactose 100 cSt silicone oil 105  

Lactose 1000 cSt silicone oil 1043  

Zeolite 100 cSt silicone oil 105  

Lactose 12 wt% HPMC 200  

Plastic beads 10 cSt silicone oil 13  

     

2 

Lactose 1000 cSt silicone oil 1043  

Lactose 100 cSt silicone oil 105  

Lactose 50 cSt silicone oil 52  

Lactose 10 cSt silicone oil 13  

 

 

4.3 Results and discussion 
 

The main purpose of performing the experiments with a range of systems was to explore 

the suitability of these systems for consolidation and layered growth studies as well as to 

investigate the potential of using a high-shear mixer for this purpose. In order to quantify 

layered growth, an increase in granule mass must be observed. Furthermore, extracted 

granules must remain intact, without obvious attrition or breakage. Finally, the materials 

should have good enough flowability to allow for rapid sieving, as large differences in 

extraction times might cause variations in granule properties within a single batch. 

Figure 4.1 shows a selection of different granules from set 1 extracted after 3, 9 and 24 

seconds of granulation. For the lactose-based systems prepared with 1043 mPa•s silicone oil 

and 200 mPa•s HPMC, the granules are mostly intact after 3 seconds of granulation. 

However, after 9 seconds, the granules show cracks, wear and deformations. After 24 

seconds, very few undamaged granules remain. 

This is different for zeolite and 105 mPa•s silicone oil. For all times, the granules show 

little wear, as well as very little breakage. This observation implies that zeolite-based 

granules have a higher strength than lactose-based granules. Considering the fact that the 

zeolite powder has smaller primary particles than lactose monohydrate, this result is logical; 

smaller primary particles are expected to yield stronger granules due to stronger capillary 

forces [62]. 

An additional interesting observation from visual inspection of the granules is the change 

in their shape. As time progresses, plastic deformation is observed for some granules; they 

become flatter and more elongated for all systems, although this effect is less pronounced in 

the zeolite-based system. This is most likely the result of collisions with the granulator 

impeller exceeding the yield strength of the granules. This hypothesis is supported by the 

observation of a build-up of granulated material on the impeller. 
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Lactose-1043 mPa•s silicone oil Zeolite-105 mPa•s silicone oil Lactose-200 mPa•s HPMC 

   

Figure 4.1: Comparison of granules produced in the high-shear mixer for three different systems. 

Rows show images of granules extracted after 3, 9 and 24 seconds, respectively. 

Figure 4.2 shows the evolution of the granule mass as a function of time for all systems 

evaluated. Consistent with the observations from Figure 4.1, the systems based on lactose and 

silicone oil showed a slight decrease in mass, whereas the zeolite-based system showed an 

increase in mass. The system comprising lactose and 200 mPa•s HPMC solution showed an 

initial increase in mass and then a decrease. The system produced with plastic beads showed 

a decrease in mass and then an increase, resulting in a slight overall decrease in mass. 

Additionally, breakage caused the error of the granule mass to increase, as fewer granules 

were recovered, and damaged granules were potentially counted as intact granules. No intact 

granules survived more than 9 seconds of granulation. Therefore, no data is shown after this 

time.  

Most of the observations from Figure 4.2 can be explained considering viscosity and 

particle size. A smaller particle size usually leads to stronger granules due to increased 

capillary forces [62]. Furthermore, using a higher viscosity binder should result in stronger 

granules, as well as slower growth due to increased viscous forces. Figure 4.2 clearly 

confirms that this is indeed true for zeolite-silicone oil. The combination of a high viscosity 

binder and small primary powder particles leads to a system that displays actual growth 

behaviour instead of breakage and attrition.  

3 s 

9 s 

24 s 
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Figure 4.2: Evolution of granule mass as a function of time for five different powder binder-

systems: 1. lactose-105 mPa•s silicone oil, 2. lactose-1043 mPa•s silicone oil, 3. zeolite-105 mPa•s 

silicone oil, 4. lactose-200 mPa•s HPMC solution and 5. plastic beads-13 mPa•s silicone oil. Lines 

were added for clarity and are not based on any fitted model. Errors shown are standard errors. 

However, a small particle size does not make zeolite-based systems the ideal candidates 

for high-shear mixer granulation experiments. Due to its small particle size and cohesiveness, 

zeolite powder has poor flowability. This results in sieving times of over thirty minutes, 

which is enough time for the granules to grow significantly according to the static growth 

model validated by Pitt et al. [31]. Therefore, zeolite powder itself is unsuitable for this type 

of study. 

All data sets presented thus far were single runs with each system. In order to confirm 

these initial findings further, repeat experiments were conducted for reproducibility purposes 
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and to determine whether the high-shear mixer results were reliable, despite the errors caused 

by breakage. Figure 4.3 shows a comparison between the triplicate experiments performed 

with lactose-silicone oil-based systems. 

Within a single system, the overall behaviour is qualitatively similar between the different 

runs. The lowest viscosity binder (13 mPa•s) produces granules that show rapid breakage, 

with most of the repeats yielding no intact granules after 9 seconds of granulation. Systems 

with 52 mPa•s silicone oil show relatively less breakage, but display a sharp decrease in 

mass, indicating heavy attrition. 105 mPa•s silicone oil produces granules which show a 

relatively stable granule mass, but no overall growth or attrition. 

 

 

 
 
Figure 4.3: Reproducibility of granule growth behaviour for systems with lactose and A. 13 mPa•s 

silicone oil, B. 52 mPa•s silicone oil and C. 105 mPa•s silicone oil. Lines were added for clarity and 

are not based on any fitted model. Errors shown are standard errors. 

  

A B 

C 
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The slight differences in the granule mass values within the same system may be caused 

by the heavy breakage and attrition observed. Attrition and partial breakage may have led to 

some granules being considered intact when, in fact, they had been damaged. The only 

system that showed any constant growth, zeolite-105 mPa•s silicone oil, had such poor 

powder flowability that the extraction times were deemed too long to generate meaningful 

and reliable results. 

Overall, it can be concluded that none of the systems evaluated had a satisfactory 

performance for studying consolidation and layered growth due to excessive breakage. 

However, it is possible that by increasing the binder viscosity, systems that do display growth 

can be found. In order to investigate this effect of binder viscosity on the granule growth 

behaviour, the averaged lactose-silicone oil results were compared to those of a higher 

viscosity system; lactose-1043 mPa•s silicone oil. This comparison is shown in Figure 4.4. 

The granulation behaviour shown in Figure 4.4 is logical when considering the binder 

viscosities of the systems; low-viscosity binders (13 and 52 mPa•s) show a decrease in 

granule mass, and demonstrate more breakage behaviour. Increasing the binder viscosity to 

105 mPa•s leads to a reduction in both breakage and loss of granule mass. More interestingly, 

the use of a 1043 mPa•s binder does not show an improvement in growth behaviour, although 

a larger number of intact granules was recovered after granulation compared to the 

105 mPa•s silicone oil system. This observation demonstrates that increasing binder viscosity 

is most likely not a solution to counter breakage in a high-shear mixer effectively for the 

study of consolidation and layered growth. 

 

 
Figure 4.4: Comparison of the evolution of mass for systems with lactose and silicone oils of 

different viscosities. Data points for 13, 52 and 105 mPa•s silicone oil are based on the averages 

over three sets each. Lines were added for clarity and are not based on any fitted model. Errors 

shown are standard errors.  
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4.3.1 Summary 
 

For the study of consolidation and layered growth, granulation experiments were 

performed using prenucleated granules in a high-shear mixer. The results show that granules 

are subject to significant breakage and attrition among all systems evaluated. Even systems 

with high-viscosity binders demonstrate no overall increase in mass, with the exception of the 

zeolite-based system. Reproducibility experiments show that the repeats demonstrate 

qualitative granulation behaviour. Increasing the viscosity leads to a decrease in breakage and 

a reduction in attrition. However, even for the highest viscosity tested, no growth was 

observed. Considering these observations, a high-shear mixer is not deemed a suitable piece 

of equipment for the study of consolidation and layered growth. However, the breakage 

behaviour observed makes for an interesting study in granule breakage. This topic is 

discussed in the following section. 
 

4.4 Breakage behaviour in a high-shear mixer 
 

The granules produced in the experiments in the high-shear mixer showed significant 

breakage behaviour. In order to evaluate the survivability of the granules and the effect of 

increasing the binder viscosity, the number of intact granules was tracked over time for the 

lactose-silicone oil data sets. Figure 4.5 shows that it is possible to fit exponential decay 

curves to the data using a least squares fit in Mathematica, allowing for a reasonable 

prediction of the number of intact granules after a certain granulation time. A list of decay 

rates is presented in Table 4.3. Both the figure and table clearly show that for increasing 

viscosity, the decay rate decreases. This finding implies that breakage is reduced by 

increasing the binder viscosity. This section focuses on linking the granulation time to 

physical parameters that might allow for the development of a model for the prediction of 

granule breakage.  

 

 

 

 

 

 
Table 4.3: Standard errors of the fits and decay rates of breakage for the lactose-based systems 

evaluated. 

Binder Exponential decay rate (s
-1

) Standard error of fit (-) 

10 cSt silicone oil 0.373 0.005 

50 cSt silicone oil 0.168 0.026 

100 cSt silicone oil 0.088 0.019 

1000 cSt silicone oil 0.013 0.015 
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Figure 4.5: Number of surviving granules as a function of time for systems of lactose and silicone 

oils of different viscosities. The lines fitted are exponential decay functions of the form e
-a•t

. 

 

4.4.1 Model development 
 

In the literature review in Chapter 2, two different methods of studying breakage are 

discussed: single granule breakage and process-scale breakage. Vogel and Peukert [117] 

consider single granule breakage as a stochastic process, and developed a way of calculating 

the probability of particle breakage S, as shown by Equation 4.1: 

 

𝑆 = 1 − 𝑒𝑥𝑝 (−𝑓
𝑀𝑎𝑡

∗ 𝑥 ∗ 𝑘 ∗ (𝑊𝑚̃,𝑘𝑖𝑛 − 𝑊𝑚̃,𝑚̃𝑖𝑛)) (4.1) 

 

where fMat is a material parameter defining fracture behaviour of the particle, x is the particle 

size, k is the impact number, Wm,kin is the kinetic energy of the particle, and Wm,min is the 

minimum kinetic energy required for particle breakage. This method was implemented into 

population balance models to successfully model a labscale mill. 

Liu et al. [16] and Smith et al. [17] developed a breakage-only granulator to study 

breakage on the process scale. A high-shear mixer was filled with non-granulating sand, and 

pre-made granules were introduced into the mixer, which was run for a set time. The granules 

were then extracted and analysed for breakage. Breakage was linked to the Stokes 

deformation number, Stdef, and a critical number was proposed. Smith et al. specifically found 

that impeller shape had a strong influence on breakage behaviour [17]. 

For the model proposed in this work, breakage is considered as a stochastic process, with a 

probability of breakage. However, as shown by Liu et al. [16] and Smith et al. [17], there is a 

correlation between breakage and the Stokes deformation number. Therefore, the model 

should incorporate the Stokes deformation number in some way to predict breakage. The 

model considers a granulator as being divided into two zones: a zone in which breakage 
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occurs, and a zone in which no breakage occurs. Assuming a symmetrical granulator, these 

zones can be described as areas. Figure 4.6 shows a schematic cross-section of a granulator 

divided in such a way. Considering ideal mixing, the granules could be in either area at a 

specific time. Consequently, granules are assumed to be distributed over each region 

according to the relative size of the regions. At each time step, granules in the no-breakage 

zone are left intact, whereas granules in the breakage zone have a chance to break. These 

assumptions imply that the number of intact granules after a single collision, N, can be 

described using the area of the breakage zone divided by the total available area, r, and the 

probability of breakage, s. This relationship is shown in Equation 4.2: 

 

𝑁 = 𝑁0 ∗ (1 − (𝑟 ∗ 𝑠)) (4.2) 

 

where N0 is the original number of granules. This expression can be rewritten to account for 

the number of intact granules after n impacts (Equation 4.3): 

 
𝑁

𝑁0
= (1 − (𝑟 ∗ 𝑠))

𝑛
 (4.3) 

 

The number of impacts n are assumed to be the product of impeller speed ω, granulation 

time t, and an impeller shape factor f. For example, when an impeller has three blades, a 

single rotation of the impeller provides three impacts for the granules to potentially break, 

whereas this number may be much lower for a flat plate impeller. The expression can be 

rewritten as an exponential function (Equation 4.4): 

 
𝑁

𝑁0
= 𝑒𝑥𝑝(𝑙𝑛(1 − (𝑟 ∗ 𝑠)) ∗ 𝜔 ∗ 𝑓 ∗ 𝑡) 

= 𝑒𝑥𝑝(−𝑎 ∗ 𝑡) 
(4.4) 

 

where a is a positive, lumped parameter. 

 

 
Figure 4.6: Schematic representation of a cross section of the granulator as considered by the 

model, with the breakage and no-breakage zone. 
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Equation 4.4 shows that this model agrees with the observation that the number of 

surviving granules decays exponentially over time. In order to illustrate this, Figure 4.7 

shows how all data points collapse onto the single curve e
-t
. This observation implies that 

Equation 4.4 is useful for predicting breakage behaviour. However, in order to increase the 

reliability of the model and its predictive abilities, it is necessary to find a full expression for 

a, or, more accurately, both the relative size of the breakage zone r and probability of 

breakage s. Of these two, r is relatively easy to determine, as it depends on the shape of the 

granulator, and also likely its operating speed. It should be possible to fit this single 

parameter to actual data. Finding an expression for s is likely to be more difficult. From the 

literature, it is logical to assume that s is dependent on the Stokes deformation number. This 

dependency is explored in the following section. 
 

4.4.2 Determination of the probability of breakage 
 

In order to evaluate how the probability of breakage is related to the physical properties of 

the granules, breakage data from Liu et al. [16] was used
1
. The data comprises 18 different 

experiments with systems of lactose and two grades of silicone oil, at different liquid 

saturations and impeller speeds, as listed in Table 4.4. Granules were prepared by extruding 

and cutting paste with a predetermined formula depending on liquid saturation. The granules 

were then granulated in a breakage-only granulator with a three-bladed impeller filled with 

non-granulating sand for up to one minute. The number of surviving granules over time was 

recorded. 

 
Figure 4.7: Fraction of surviving granules as a function of a*t for systems consisting of lactose and 

silicone oils of different viscosities. All data points collapse onto the single curve e
-t
.  

                                                 

 

 
1
 Raw data kindly provided by Dr. Lian Liu from the University of Surrey for modelling purposes. 



Chapter 4 Consolidation and layering in a high-shear mixer 

78 

 

Table 4.4: Summary of the breakage data sets evaluated in Liu et al.’s [16] work. Each possible set 

of conditions was used, for a total of 18 different data sets. Additionally, the table lists fit standard 

errors and the lumped decay parameter a. Data outside of the intermediate breakage range is 

coloured grey. 

Experiment Silicone oil 

Viscosity (cSt) 

Liquid 

Saturation (-) 

Impeller Speed (rpm) Fit standard error (-) a (s
-1

) 

1 100  0.3 750  0.000 0.460 

2 100  0.3 1000  0.000 0.460 

3 100  0.3 1500  0.000 0.460 

4 1000  0.3 750  0.002 0.155 

5 1000  0.3 1000  0.002 0.155 

6 1000  0.3 1500  0.010 0.148 

7 100  0.5 750  0.026 0.006 

8 100  0.5 1000  0.016 0.008 

9 100  0.5 1500  0.031 0.011 

10 1000  0.5 750  0.052 0.021 

11 1000  0.5 1000  0.034 0.065 

12 1000  0.5 1500  0.021 0.090 

13 100  0.8 750  0.021 0.002 

14 100  0.8 1000  0.037 0.008 

15 100  0.8 1500  0.031 0.009 

16 1000  0.8 750  0.000 0.000 

17 1000  0.8 1000  0.000 0.000 

18 1000  0.8 1500  0.008 0.003 

 

 

Figure 4.8 shows the corresponding fit to the model proposed above, demonstrating that 

all data collapses neatly onto a single curve. Table 4.4 lists the fit standard errors and the 

fitted lumped decay parameter a. Of particular interest are the granules in the intermediate 

breakage range. Predicting full or little granule breakage simply requires a to be either large 

(a ≥ 0.1 s
-1

) or very small (a ≤ 0.008 s
-1

), respectively, allowing for a range of values that 

give acceptable results. In the intermediate breakage range (0.008 < a < 0.1 s
-1

), however, 

small changes on parameter a have a large effect on the fit. The values outside of this range 

are coloured grey in Table 4.4. 

By expressing the obtained fit parameter a as shown in Equation 4.4, it is possible to study 

the effects of different operating conditions and granule properties on the probability of 

breakage. For this purpose, the Stokes deformation number Stdef was used, as defined in the 

literature review (Equation 2.5). For clarity, the equation is shown below in the form used by 

Liu et al. (Equation 4.5):  

 

𝑆𝑡𝑑𝑒𝑓 =

1
2
∗ 𝜌𝑔 ∗ 𝑣𝑐

2

𝜎𝑝
 (4.5) 

 

Here, ρg is the granule density, vc is the granule impact velocity, and σp is the dynamic yield 

stress of the granule. For the theoretical calculation of the dynamic yield stress, the formula 

employed by Liu et al. [16] was used (Equation 4.6): 

 

𝜎𝑝 = 𝐴𝑅−4.3 ∗ 𝑆 ∗ [6 ∗
1−𝜀

𝜀
∗
𝛾∗𝑐𝑜𝑠(𝜃)

𝑑3,2
+

9

8
∗ (

1−𝜀

𝜀
)
2

∗
9∗𝜋∗𝜇∗𝑣𝑝

16∗𝑑3,2
] (4.6) 
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Figure 4.8: Fraction of surviving granules as a function of a*t. All curves collapse onto the single 

curve e
-t
. Data was provided by Liu et al. [16]. 

where AR is the shape factor of the primary particles, S is the liquid saturation of the granule, 

ε is the porosity of the granule, γ is the surface tension, θ is the powder-liquid contact angle, 

d3,2 is the primary particle Sauter diameter, μ is the binder viscosity and vp is the relative 

granule velocity. 

Equations 4.5 and 4.6 confirm some observations from Figure 4.8. Increasing liquid 

viscosity or liquid saturation reduces breakage; both these phenomena could be explained by 

an increase in σp. Increasing impeller speed, on the other hand, leads to an increase in 

breakage. The equations suggest that this is because the kinetic component of the Stdef 

increases. 

Most of the parameters in Equation 4.6 can be found in the study by Liu et al. [16], but the 

granule velocities are not easily obtainable without live imaging and more advanced methods 

such as positron emission particle tracking (PEPT). Instead, Liu et al. assumed that, based on 

the literature, velocity estimates between 10-20 % of the impeller speed were appropriate. 

Therefore, both velocity and the relative velocity were assumed to be 15 % of the impeller tip 

speed in their work. Figure 4.9 shows the dependency of Stdef on this scaling factor within the 

10-20 % impeller speed range. It appears only the magnitude of Stdef is affected, and not the 
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general trends. Therefore, this work uses 15 % for both vc and vp as well. The only difference 

in parameters used is the contact angle. A contact angle of 0° is used in this study, whereas 

Liu et al. [16] used a contact angle of 45°. Liu et al. simply estimated the contact angle to be 

45°, whereas actual measurements in the current work show that silicone oil wets lactose 

much better, with a contact angle below 20°. Consequently, the dynamic yield stress 

increases, and the Stokes deformation number decreases. 

 

 

 

 
Figure 4.9 r*s plotted against Stdef for a range of values of vc and vp. Data was provided by Liu et al. 

[16].  
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From Figure 4.9, it appears that there is no direct correlation between the total probability 

of breakage r*s and Stdef. Figure 4.10, which specifically shows the situation where both vc 

and vp are 15 % of the impeller speed, supports this conclusion. Here, three observations can 

be made. First of all, an increase in viscosity leads to a decrease in both Stdef and the overall 

probability of breakage. This observation is logical since a more viscous liquid produces 

stronger liquid bridges. Second, an increase in saturation also leads to a decrease in Stdef and 

overall probability of breakage. This is expected, as an increase in pore saturation leads to an 

increase in the dynamic yield strength σp, the denominator, and, in turn, a decrease in Stdef
.
. 

Third, an increase in the impeller speed results in an increase in Stdef, but that does not 

automatically lead to an increase in the total probability of breakage. In fact, an increase in 

impeller speed appears to reduce the probability of breakage. This is not entirely illogical, as 

the viscous component of granule dynamic yield strength depends linearly on particle 

velocity vp. Therefore, it appears that a comparison with the dynamic yield strength might be 

more appropriate than the Stokes deformation number. 

 

 

 
Figure 4.10: The overall probability of breakage r*s plotted against the Stokes deformation 

number Stdef. Data was provided by Liu et al. [16].  
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A possible candidate for a dimensionless number containing the dynamic yield strength is 

the dimensionless peak flow stress, Str
*
. The number is defined as shown in Equation 4.7: 

 

𝑆𝑡𝑟∗ =
𝜎𝑝 ∗ 𝑑3,2

𝛾 ∗ 𝑐𝑜𝑠(𝜃)
 (4.7) 

 

where all parameters are as defined by Equation 4.6, and σp, is the peak flow stress, is 

considered to be equal to the dynamic yield strength. Smith et al. [63] found that this number 

corresponds linearly to the capillary number, Ca, which is defined by Equation 4.8: 

 

𝐶𝑎 =
𝜇 ∗ 𝑣𝑝

𝛾 ∗ 𝑐𝑜𝑠(𝜃)
 (4.8) 

 

where, again, all parameters are as defined by Equation 4.6. Figure 4.11 shows a comparison 

between the two numbers.  

 

 

 

 
Figure 4.11: The dimensionless peak flow stress Str* plotted against the capillary number Ca. Data 

was provided by Liu et al. [16]. 
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Although there appears to be a linear relationship between different data sets with the 

same pore saturation, there is a clear difference between different pore saturations. This may 

be a consequence of the equation for the capillary number not taking into account the effect 

of the pore saturation. Regardless, since the capillary number is clearly related to the 

dimensionless peak flow stress and there are definite trends observable in Figure 4.11, Ca is 

another potential candidate for predicting the overall probability of breakage. 

Since the overall probability of breakage should increase with a decrease in dimensionless 

peak flow stress, r*s is expected to be inversely proportional to Str
*
. Figure 4.12 shows that 

this does appear to be the case.  

 

 

 

 
Figure 4.12: The overall probability of breakage r*s plotted against the inverse of the 

dimensionless peak flow stress Str
*
. Data was provided by Liu et al. [16].  
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However, not all data neatly fits a single line; especially highly saturated lactose granules 

do not fit the trend. In order to evaluate how accurately an inversely proportional relationship 

with Str
*
 describes r*s, a fit in Mathematica software was performed. The fit yielded a fitting 

constant of 0.97, which is remarkable, since that implies that Str
*
 can almost directly predict 

the overall probability of breakage, without a fitting constant. 

The obtained fitting constant was used to predict a, and the resulting fractions of intact 

particles were compared to the theoretical outcome as a function of time. This comparison is 

shown in Figure 4.13. From this figure, it becomes clear that the estimated parameter a does 

sufficiently describe the breakage behaviour of the granules. Breakage behaviour of granules 

with a high pore saturation was expected to show strong deviation, as these granules showed 

poor correlation with the inverse of Str
*
. However, predictions in the relevant range of 

0.008 < a < 0.1 s
-1

 are not accurate either. Therefore, it appears Str
*
 alone is not suitable for 

the prediction of the overall probability of breakage. 

 

 

 

 
Figure 4.13: Fraction of surviving granules as a function of time, scaled with the estimated fitting 

parameter aest,Str*. Theoretically, all data should collapse onto a single curve. Data was provided by 

Liu et al. [16].  
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A second option for the prediction of the overall probability of breakage is to use the 

inverse of the capillary number Ca. As is the case for Str
*
, an increase in capillary number 

should lead to an increase in Ca. Figure 4.14 shows the dependency of r*s on Ca. 

Remarkably, three linear trends can be observed: one for each of the saturation values 

used, which is the only different parameter between the three series. This same trend with 

varying S was also observed when comparing Ca to Str
*
. If it were possible to find a 

relationship between the slope of the line and pore saturation S, r*s could be related directly 

to the capillary number. As it turns out through least squares fitting in Mathematica, a linear 

relationship can be obtained, as shown in Equation 4.9: 

 

𝑟 ∗ 𝑠 =
𝑒𝑥𝑝(−7.96 ∗ 𝑆)

𝐶𝑎
 (4.9) 

 

 

 

 
Figure 4.14: The overall probability of breakage r*s plotted against the inverse of the capillary 

number Ca. Data was provided by Liu et al. [16]. 
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where all parameters are as defined in by Equation 4.6. Substituting Equation 4.9 into 

Equation 4.4 yields Equation 4.10: 

 

𝑁

𝑁0
= 𝑒𝑥𝑝 (𝑙𝑛 (1 − (

𝑒𝑥𝑝(−7.96 ∗ 𝑆)

𝐶𝑎
)) ∗ 𝜔 ∗ 𝑓 ∗ 𝑡) (4.10) 

 

This new equation allows for the straightforward calculation of the estimated lumped 

parameter aest,Ca for all data sets. Comparing the estimated parameter to the experimental data 

yields Figure 4.15.  

 

 

 

 
Figure 4.15: Fraction of surviving granules as a function of time, scaled with the estimated fitting 

parameter aest,Ca. Theoretically, all data should collapse onto a single curve. Data was provided by 

Liu et al. [16].  
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Overall, the fit is significantly better than the one obtained with Str
*
. The deviation from the 

exponent is much smaller in Figure 4.15 compared to Figure 4.13. Furthermore, the 

relationship appears to predict the breakage behaviour for high liquid saturations quite well. 

Sets that do not fit the line very well are all outside the range 0.008 < a < 0.1 s
-1

, except the 

set produced with 1000 cSt silicone oil at a saturation of 0.3, granulated at 750 rpm. The fact 

that this set, which falls in the middle of the relevant range, deviates implies that the obtained 

relationship does not yet fully capture breakage behaviour. 

Even if the relationship had fully predicted the breakage behaviour of the granules, 

however, the investigated data set is quite small. Further work in this area of research is 

necessary to investigate whether the obtained trend also applies to different powder-binder 

systems, and whether it also applies at lower shear rates. According to Iveson and Page [62], 

the relationship between the capillary number and dimensionless peak flow stress is much 

less steep. It is also possible that the value of -7.96 varies depending on the system. This 

would allow for the prediction of the physical properties that govern this value. Although this 

would be an interesting study, it is out of scope of this work. 

This investigation into granule breakage has provided important insights into the 

predictions and modelling of breakage. First, the Stokes deformation number Stdef only shows 

a qualitative relationship with the probability of breakage. Second, the dimensionless peak 

flow stress and dynamic yield strength appear to show an inversely proportional relationship 

with the probability of breakage, but no direct correlation was found. Third, the capillary 

number appears to have an inversely proportional relationship with the probability of 

breakage, but it does not account for the effect of the pore saturation. Fourth, by accounting 

for the pore saturation, it is possible to relate the probability of breakage to the inverse of the 

capillary number by introducing a factor equal to the exponent of -7.96 times the pore 

saturation. This value may change according to the systems evaluated, but further research is 

needed to confirm this. 

 

4.5 Conclusions 
 

The suitability of a high-shear mixer for consolidation-only granulation was evaluated 

using different powder-binder systems. Both image analysis and microbalance measurements 

showed that breakage and attrition were prevalent during the granulation process. Only the 

zeolite-based system showed any overall growth by layering. The growth of this system is 

most likely due to its smaller primary particle size compared to the other powders, as small 

particle size is known to increase granule strength. However, due to zeolite powder’s poor 

flowability, it was impossible to extract the granules fast enough to guarantee the same 

growth times for each granule in a batch. Due to the prevalence of breakage and attrition, the 

high-shear mixer was deemed unsuitable for consolidation experiments. 

Efforts to predict breakage behaviour using data provided by Liu et al. [16] showed 

positive results; the number of intact granules appears to decrease exponentially with time. 

The rate at which the number of intact granules decreases only depends qualitatively on the 

Stokes deformation number and dimensionless peak flow stress. By using an inversely 

proportional dependency on the capillary number and introducing the exponent of the pore 

saturation with a scaling factor, a reasonable prediction of the granule breakage behaviour 

could be achieved. However, not all breakage behaviour is fully predicted, and the 

investigated systems are limited to one powder and one binder with two different viscosities. 
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Therefore, it is recommended to investigate whether the proposed relationship holds for other 

systems and operating conditions. However, this would require a dedicated full study. 

Therefore, this investigation is out of scope for this work. 

The results of this preliminary study lead to two key conclusions for future work: 

 Breakage and wear play an important role in determining the suitability of a 

granulator for consolidation-only experiments. These must be eliminated in order 

to obtain useful data. 

 In a high-shear mixer, the impeller causes excessive breakage and attrition. If the 

collisions with the impeller could somehow be reduced, the granulator might be 

suitable for consolidation experiments. 

These results imply that either a different type of granulator should be designed, or the 

high-shear mixer should be modified to drastically reduce breakage and attrition. In this 

work, both methods are employed. However, since Hounslow et al.’s deformation-driven 

diffusive growth model [30] considers deformations due to collisions, a granulator that allows 

for the tracking of such collisions is expected to yield results that are more useful for the 

fulfilment of the objectives of this thesis. Therefore, Chapter 5 presents, the development of a 

novel, consolidation-only granulator that allows the granules to experience a quantifiable 

number of impacts. In Chapter 6, a modified high-shear granulator is used to further 

investigate the critical parameters found in Chapter 5. 
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5.1 Introduction 
 

From the results in Chapter 4, it is evident that a high-shear mixer is not suitable for the 

study of consolidation and layered growth. Although it was possible to eliminate nucleation 

and agglomeration during granulation, the granules experienced significant breakage and 

attrition. In order to reduce breakage and attrition during the experiments, a different type of 

equipment is required. Therefore, a new type of granulator was designed, so that the 

collisions experienced by the granules could be quantified. In this way, the results can be 

compared to models available in literature [30,31], as described in Section 5.4. To this 

purpose, a novel consolidation-only granulator (COG) was developed, based on a linear 

shaker. This design should allow for consistent, countable impacts on the granules for the 

study of consolidation and layered growth. 

The aims of this study are: 

 To develop a granulator specifically for studying consolidation and layered growth. 

 To determine the feasibility of such a granulator. 

 To use the data to develop a kinetic model for consolidation and layered growth. 

 To compare the kinetics found to the results from static nucleation experiments 

performed by Pitt et al. [31] in order to investigate the difference between static 

and dynamic situations in granulation. 

 

The overall concept for the experimental design was the same as that for the experiments 

described in Chapter 4. Again, to eliminate the effect of nucleation within the granulator, 

granules were prenucleated. However, to produce granules rapidly regardless of viscosity, a 

syringe pump was used. Instead of a high-shear mixer, the newly designed consolidation-only 

granulator (COG) was used to granulate the nuclei with powder for a set amount of time. The 

resulting granules were extracted and weighed to obtain their growth as a function of time. 

The results were then compared to Hounslow et al.’s models [30] and Pitt et al.’s static 

nucleation results [31]. In this way, a model for dynamic granulation can be proposed, and 

the performance and viability of the COG can be evaluated. 

 

5.2 Consolidation-only granulator design 
 

The design of the consolidation-only granulator (COG) was based on the principle of a 

linear shaker. This type of motion was selected in order to ensure homogenous impacts 

experienced by all granules. In order to achieve this, it was decided that the granulation 

vessel itself would move so that its motion would be imparted to its contents. Initial manual 

impact tests showed that a stroke of approximately 20 cm at a rate of 5 strokes per second, 

with a fill level of 50-75% of the vessel, resulted in appreciable impacts on the granules. An 

adapted version of the Froude number, described in Equation 2.23, can be calculated in this 

case, according to Equation 5.1: 

 

𝐹𝑟 =
𝐷 ∗ 𝑓2

𝑔
 (5.1) 
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Here, D is the distance of a single stroke, f is the frequency and g is the acceleration due to 

gravity. Using these values, a Froude number of 0.51 are obtained, and an average velocity of 

1 m/s. This Froude number is relatively low for mixer granulators [10,141,158]. However, 

since the investigated motion was linear instead of rotary and good powder flow was 

observed, it was decided to design a granulator based on these specifications. A schematic 

design of the COG is shown in Figure 5.1, and the final set-up, manufactured at the 

University of Sheffield, is shown in Figure 5.2. 

The moving granulation vessel should be removable from the granulator, as it would have 

to be filled and emptied for every experiment, as well as cleaned. In order to make it possible 

to monitor the flow behaviour of the powder in the granulator, the walls and lid of the vessel 

were made of acrylic glass. The base was made of stainless steel. The moving part of the 

granulator itself was a stainless steel carriage on a rail (Hepcomotion), with a flywheel 

imparting the motion via a movable crank. The carriage contained a slot for the granulation 

vessel, with two screws allowing for the quick fastening and removal of the vessel. The 

flywheel itself was powered by a 0.75 kW electromotor (TEC Electric) that could achieve 

speeds of 300 rpm in this set-up. In order to compensate for the forces exerted on one side of 

the flywheel by the crank, a movable counterweight was added to the opposing side. 

For safety purposes, the flywheel-rail system was encased in an acrylic glass cage, which 

could only be removed when the granulator was not running. Accidental access to the 

electromotor and electronics was prevented by stainless steel sheets covering the sides of the 

granulator. The whole rig was placed on legs with swivel casters that could be manually 

locked in position. This type of design was selected for several reasons. Since the flywheel 

converts rotational motion to a linear motion, the apparatus was expected to vibrate 

significantly due to residual lateral (i.e. not in the direction of the shaking motion) forces. 

 

 
Figure 5.1: Schematic drawing of the consolidation-only granulator. A flywheel, powered by an 

electrical motor, is connected to a carriage on a rail. Attached to the carriage is a detachable 

container that serves as the granulation vessel. 
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Figure 5.2: Final design for the consolidation-only granulator (COG); a vessel for powder on a rail 

driven by a flywheel and crank. 

 

Placing the set-up directly on a bench might result in damage to both the bench and 

surroundings, as well as to the equipment due to feedback forces. By placing the apparatus on 

legs, the forces are dissipated by the legs first. In addition, the swivel casters can be locked at 

a slight angle, which helps stabilise the system. Test runs with the apparatus showed that the 

combination of the counterweight and the swivel casters was effective in reducing the 

vibration to acceptable levels; the granulator could be run constantly for over two hours. 

The movable crank was fixed at 10 cm from the centre of the flywheel, for a total stroke of 

20 cm, as specified by the manual tests. This distance implies that the granules in the vessel 

travel 40 cm in a single rotation of the flywheel. The selected motor speed was set to 150 

rpm, or 2.5 s
-1

. This setting results in the specified five impacts per second; both when the 

crank pushes and pulls the carriage. 

A possible issue with the design of the COG is the motion of the flywheel: Due to its 

design, the acceleration is at its highest in the middle of a stroke, and at its lowest at the end 

of a stroke. However, provided the motion is fast enough, inertia can still cause an impact of 

the granules with the walls. Again, the Froude number can be calculated according to 

Equation 5.2: 

 

𝐹𝑟 =
〈𝑣〉2

𝑔 ∗ 𝐷
=

(2𝑓 ∫ 𝑣(𝑡)𝑑𝑡

1
2𝑓

0
)

2

𝑔 ∗ 𝐷
=

(2𝑓 (𝑠 (
1
2𝑓
) − 𝑠(0)))

2

𝑔 ∗ 𝐷
=
4 ∗ 𝐷 ∗ 𝑓2

𝑔
 

(5.2) 

Crank 

Flywheel Rail 

Vessel 
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where <v> is the average vessel velocity, f is the frequency of the flywheel, v is the vessel 

velocity, t is the time, g is the acceleration due to gravity, D is the distance of a single stroke, 

and s is the position of the carriage on the rail. The average velocity is calculated by 

integrating the acceleration over the selected interval since this is exactly a full stroke, or half 

a rotation of the flywheel. A single stroke should therefore take (2*f)
-1

 or 0.2 seconds at the 

selected speed of 2.5 s
-1

. Since the integral of the velocity is the location, the average velocity 

can be found simply by dividing the distance travelled by the time a single stroke takes. 

The velocity, however, is simply the derivative of the position along the rail, or the 

horizontal position of the crank on the flywheel. Consequently, the Froude number can be 

calculated simply by using the overall displacement, leading to a straightforward expression 

to calculate the Froude number. The result, 0.51, is the same as the value originally specified 

by manual testing. This value is generally considered too low for a roping regime, as 

gravitational forces dominate the inertial forces at this point. However, this is an average 

Froude number. The peak Froude number can be calculated from the highest attainable 

velocity, which can be found using Equation 5.3: 

 

𝑣(𝑡) =
𝑑𝑠

𝑑𝑡
=
𝑑 (
𝐷
2 −

𝐷
2 cos (2 ∗ 𝜋 ∗ 𝑓 ∗

1
4𝑓
))

𝑑𝑡
= 𝐷 ∗ 𝜋 ∗ 𝑓 ∗ sin (

𝜋

2
) 

(5.3) 

 

Solving this equation for t = (4*f)
-1

 or 0.1 s yields a peak velocity of 1.6 m/s, which translates 

to a peak Froude number of 1.3. In this scenario, it is much more likely that a turbulent, well-

mixed flow can be developed. Actual test runs using the COG (Figure 5.2) with powder 

showed that this was indeed the case; powder flow was observed throughout the vessel. 

 

5.3 Materials and methods 
 

A novel consolidation-only granulator (COG) was developed specifically to isolate 

consolidation and layered growth by eliminating breakage and attrition. In total, ten different 

powder-binder systems were evaluated, as shown in Table 5.1. For easier comparison, all 

liquids will be referred to by their viscosity values in the results and discussion: 13, 52, 105 

and 1043 mPa•s for 10, 50, 100 and 100 cSt silicone oil, respectively, 130 and 3192 mPa•s 

for 50 wt% PEG 4000 and PEG 20000, respectively, and 95 mPa•s for molten PEG 600, as 

shown in the table. 

The experimental procedure was similar to that of the high-shear mixer experiments 

described in Chapter 4, with prenucleation of granules, granulation, extraction and granule 

analysis. First, powder was sieved through a 1.14 mm sieve, after which a powder bed was 

prepared for granule prenucleation. The surface was levelled by using the ruler to gently 

sweep off powder above the edge of the dish. This method was used in order to decrease the 

variance of the amount of powder in the powder bed. 
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Table 5.1: Overview of all systems used in experiments with the COG. 

Powder Binder Viscosity (mPa•s) Times (min) # of data 

points 

Lactose 10 cSt silicone oil 13  1-64 7 

Lactose 50 cSt silicone oil 52  1-64 7 

Lactose 100 cSt silicone oil 105  1-128 7 (x2), 8 

Lactose 50 wt% PEG 4000 130  1-64 12 

Lactose 50 wt% PEG 20000 3192  0.5-64 8 

Lactose Liquid PEG 600 95  1-128 8 

Glass Beads 50 cSt silicone oil 52  0.5-4 6 

Glass Beads 100 cSt silicone oil 105  0.5-8 8 

Glass Beads 1000 cSt silicone oil 1043  1-16 7 

Glass Beads 50 wt% PEG 4000 130  0.5-96 14 

 

Next, half of the volume of the COG vessel was filled with powder. For lactose, the 

amount used was 200 g, whereas the amount used for glass beads was 400 g due to 

differences in bulk density. Granules were prenucleated by depositing liquid droplets on the 

powder bed using a syringe pump (Harvard Apparatus PHD ULTRA I/W). To improve flow 

and reduce pressure build-up, the syringe in the pump was connected to a 25 G (0.26 mm 

inner diameter) plastic tapered flow tip instead of a needle. Because of this type of tip, a flow 

rate of 10 μl/s could be achieved. The tip was mounted 5 cm above the powder bed. 

Some breakage of granules occurred during granulation, especially at long granulation 

times. In order to extract a sufficient number of intact granules, between 20 and 60 granules 

were nucleated, depending on the expected amount of granule breakage. Granules were added 

to the container, after which a final layer of powder was added in order to prevent the 

granules from adhering to the COG vessel wall. The total amount of powder used was 300 g 

for lactose and 600 g for glass beads. Both amounts filled the container to approximately 75-

80 % of the available volume of 0.7 L. 

The granulator was run for a set amount of time at 150 rpm (or 300 impacts), after which 

all granules were extracted and separated from the powder using a 1.4 mm sieve by gently 

tapping the sieve with a spoon. After extraction, a new batch of granules was nucleated as 

described above, and the experiment was repeated for a longer granulation time. Granulation 

times varied between 0.5 and 128 minutes. Each series of experiments was stopped after an 

insufficient number of intact granules (i.e. less than ten) was obtained as a result of breakage. 

Extracted granules were weighed using a microbalance (Mettler-Toledo XS3DU, 

1 μg accuracy). In the case of granules being produced with 50 wt% PEG solution, granules 

were dried for 6 days under ambient conditions before analysis in order for their mass to 

stabilise. Granules produced with liquid PEG were stored in a refrigerator at 5 °C for 2 weeks 

to stabilise their weight. By tracking the mass, the results can be compared to the static 

experiments from Pitt et al. [31], as well as to the models proposed by Hounslow et al. [30]. 

From each data set, a number of granules were analysed with helium pycnometry and 

powder pycnometry to obtain their respective true and envelope densities. Granules were 

selected depending on their granulation time. Preferentially, granules with the lowest and 

highest granulation times were selected, but this was not always possible due to breakage. As 

a rule, the set with the lowest and highest granulation time and a minimum of 15 surviving 

granules was used. For helium pycnometry, a small number of granules, usually 3-6, was 

analysed at the same time, yielding an average true density. This experiment was repeated 
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another two times, each with a different set of granules, for a total of three experiments per 

data set evaluated. For the powder pycnometry, a larger number of granules was required to 

fill the sample chamber to the minimum volume needed for analysis, usually 6-10. In order to 

increase reliability of the results, repeats with the pycnometer were performed on the same 

granules. For granules produced with PEG, this proved to be a reliable method. However, for 

granules produced with silicone oil, the granules decreased in density after each repeat. 

A select number of granules were analysed with X-ray tomography to investigate the 

structural changes over time. Two sets of granules were evaluated: lactose-105 mPa•s 

silicone oil, and glass beads-105 mPa•s silicone oil. These sets were compared to sets 

produced by static nucleation where nuclei were left to grow in the petri dish without any 

additional granulation. For each set, two different granulation times were selected: one of the 

early granulation times and one at the end of the experiments. For each time, three different 

representative granules were evaluated, for a total of 24 images. 

 

5.4 Results and discussion 
 

This section is divided into three parts. The first part focuses on the growth data obtained 

from the experiments using the COG. The second part discusses the mechanisms by which 

consolidation and layered growth occur. Finally, the third part is an evaluation of the validity 

of the COG as a granulator for studying consolidation and layered growth. 

 

5.4.1 Layered growth in a consolidation-only granulator 
 

An increase in overall granule mass with time was observed for all systems. However, the 

kinetics and overall growth behaviour varied between systems. Therefore, growth behaviour 

is initially discussed separately for each individual system. Figure 5.3 shows the growth 

behaviour of the lactose-silicone oil based systems in terms of granule mass over time.  

The black lines in Figure 5.3 that have been added for visual clarity follow the Hounslow 

et al. model [30] for surface tension-driven growth as shown in Equation 2.11. The full 

implications of this finding are discussed in Section 5.4.2. For now, it suffices to observe that 

the model appears to predict the growth behaviour of the granules quite well, with the 

exception of early and late growth behaviour. This observation is true for all systems 

evaluated in this study. 

Initial growth behaviour of the lactose-silicone oils systems was characterised by a 

significant increase in granule mass, after which the growth rate slowly decreased. The final 

data point represents the maximum granulation time for which a sufficient number of intact 

granules could be extracted from the granulator. Although breakage and attrition were 

significantly reduced compared to high-shear granulation, they were still present; visual 

observation revealed that both fracturing of the granules occurred, as well as breakage of the 

outer layers of the granules. This increase in damage to granules is reflected by the standard 

error for each system; the standard error increases for longer granulation times due to greater 

variation in granule mass, caused by breakage and attrition. 

A different lactose-based system, using 50 wt% PEG solutions of different viscosities as 

binders, is shown in Figure 5.4. 
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Figure 5.3: Granule mass as a function of time for three lactose-silicone oil systems of different 

viscosities. Error bars indicate standard errors, and lines were fitted by using Hounslow et al.’s 

model for surface tension-driven growth [30]. 

Compared to silicone oils, the systems showed different behaviour. No slow, steady 

growth was observed; after an initial rapid increase in mass, which represents the transition 

from liquid droplet to granule, the granule mass remained more or less constant. This effect 

was probably caused by the drying of the binder liquid. This led to a reduction of the standard 

error of the data points. However, more importantly, this effect also caused the kinetics of 

layered growth to be difficult to obtain. 

Similar to lactose-silicone oil-based systems, it appears as though an increase in viscosity 

from 130 to 3192 mPa•s causes slower growth kinetics. Combined with drying, this effect 

may have resulted in a reduction of the final granule mass for the higher viscosity PEG 

solution. Regardless of the cause, the quick levelling off of the growth rate makes systems 

based on lactose and PEG solution unsuitable for the study of isolated consolidation and 

layered growth. The rapid growth-no growth behaviour of the PEG solution-based systems is 

different from the more steady growth behaviour observed with the silicone oil-based 

systems. Interestingly, the final mass achieved with the lowest-viscosity PEG solution, 130 

mPa•s, is much lower than the final mass achieved with a silicone oil of a similar viscosity 

(105 mPa•s). 
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Figure 5.4: Granule mass as a function of time for two lactose-50 wt% PEG solution systems of 

different viscosities. Error bars indicate standard errors, and lines were fitted by using Hounslow 

et al.’s model for surface tension-driven growth [30]. 

Figure 5.5 shows the growth behaviour of a system based on lactose and molten PEG 600, 

with an initial viscosity of 95 mPa•s at 32.5 °C. After an initial leap in granule mass, the 

system shows a decreasing growth rate without levelling off until the experiments were 

stopped due to breakage and attrition.  

Compared to the other systems, this growth behaviour is mostly similar to the growth 

behaviour of silicone oil-based granules. When comparing PEG 600 to the similar-viscosity 

105 mPa•s silicone oil, the final mass is much higher. It should be noted, however, that the 

initial droplet mass was also higher. As such, it is more interesting to study the critical-

packing liquid volume fraction, ϕcp, as discussed in Section 5.4.2.1. 

Although the observed growth behaviour of this lactose-PEG system is promising for the 

study of consolidation and layered growth, there is a potential issue that should be addressed. 

PEG 600 increases in viscosity due to cooling, from 95 to 132 mPa•s at 25 °C, which may 

cause a decrease in the growth rate. Eventually, the binder will solidify, halting growth 

altogether. 
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Figure 5.5: Granule mass as a function of time for a lactose-liquid PEG 600 system. Error bars 

indicate standard errors, and the line was fitted by using Hounslow et al.’s model for surface 

tension-driven growth [30]. 

Taking into account the growth data, it appears as though the increase in viscosity does not 

have a deeply pronounced effect. This could be the result of either slow cooling, or a limited 

effect of the viscosity on the kinetics, or a combination of both. Since the contents of the 

granulator were often close to room temperature after granulation times longer than 10 min, 

the effect of increasing viscosity is likely not to be very significant. This is predicted by 

Hounslow et al.’s model surface tension-driven growth model: the growth rate is inversely 

proportional to the square root of the viscosity [30]. Hence, a change from 95 to 132 mPa•s 

would only result in a reduction of the growth rate by a factor 0.84, or a 16 % deviation. 

The growth behaviour of glass beads-silicone oil-based systems is shown in Figure 5.6. 

Growth behaviour is similar to that of lactose-silicone oil-based systems, with a steep 

initial increase in granule mass, steady growth behaviour and significant breakage at longer 

granulation times; this effect of breakage is reflected by the larger standard errors visible at 

long granulation times. A major difference, however, is the total granulation time before 

experiments were halted due to breakage; overall granulation times were much shorter than 

those of lactose, even using higher viscosity binders. 
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Figure 5.6: Granule mass as a function of time for three glass-silicone oil systems of different 

viscosities. Error bars indicate standard errors, and lines were fitted by using Hounslow et al.’s 

model for surface tension-driven growth [30]. 

The growth behaviour of the final system evaluated in this study, glass beads-130 mPa•s 

PEG solution, is shown in Figure 5.7. This system behaves similarly to its lactose-based 

counterparts; a steep initial jump in granule mass is observed, after which no further increase 

is observed. This system, however, shows an increase and then a decrease in overall mass 

after approximately 12 min. Since the granule mass had been stable over quite a few 

measurements, it is unlikely that this increase was caused by further growth, but rather by 

fluctuations in mass due to breakage. Compared to the glass beads-105 mPa•s silicone oil-

based system, the growth behaviour is different, as no steady growth is observed. However, a 

similar granule mass is achieved. This is most likely coincidence, as the masses shown are 

dry droplet masses. Additionally, the initial growth rate is much higher for the PEG-based 

system, and if drying had not occurred, the granules might have grown more. 
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Figure 5.7: Granule mass as a function of time for a glass beads-50 wt% PEG solution (130 mPa•s) 

system. Error bars indicate standard errors, and the line was fitted by using Hounslow et al.’s 

model for surface tension-driven growth [30]. 

The decrease in mass can be explained by drying; after the granules were sufficiently dried 

in the granulator, breakage and attrition started occurring. This behaviour would be consistent 

with the observations from Figure 5.6, where no drying occurs. The reason why the glass 

beads-PEG solution-based granules show a more prominent decrease in mass than the 

lactose-PEG solution-based granules is most likely the result of the different shapes of the 

primary particles. Glass beads are spherical and lactose particles are rougher, allowing for 

mechanical interlocking [16]. Therefore, systems based on glass beads are likely to produce 

weaker granules than those based on lactose. 

The overall growth behaviour of all systems evaluated is shown in Figure 5.8, scaled 

according to Hounslow et al.’s model for surface tension-driven growth [30], as shown in 

Equation 2.11. The surface tension-driven model shows remarkable agreement with the 

scaled data, although a few assumptions for this scaling have to be mentioned. 

First and most important of all, data was scaled based on the observed maximum granule 

mass achieved for each data set. This mass was not necessarily the final granule mass; in the 

case of systems based on silicone oils and liquid PEG, experiments were halted due to 

significant breakage before a final granule mass was observed. The final granulation time was 

calculated based on a fit of the data points in the growth regime; the data before the 

maximum size was achieved. This assumption could skew the data to the left, as well as give 

a misrepresentation of the stage at which growth levels off. However, taking into account the 

data, this assumption can be justified. Further growth would lead to an increase in granule 

mass. Compared to the current data, this effect would lead to a slightly steeper slope of the 

fitting line, but the overall linear relationship with the square root of time would remain. 
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Hence, although the comparison is quantitatively not fully representative of the actual growth 

kinetics, the qualitative relationship still holds. 

A second issue that must be addressed is the cluster of points to the left of the normalised 

curve; at τ
1/2

 values between 0.8-1. This range is the transition from the growth to no growth 

regime. These data points deviate significantly from the other points. There are two factors 

that could explain this effect. The first factor is the aforementioned assumption of the final 

observed granule mass being the maximum attainable granule mass. This holds for systems 

using silicone oils and liquid PEG as binders, which make up the majority of the points in the 

cluster. The second factor holds for systems based on 50 wt% PEG solutions. These systems 

displayed no growth after the initial increase in granule mass and, as such, do not provide 

reliable data in the growth regime of the curve. 

 

 

 
 

 
Figure 5.8: Dimensionless granule volume difference as a function of the square root of 

dimensionless time for all experiments performed. The black line represents Hounslow et al.’s 

model for surface tension-driven growth [30].  
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To demonstrate that the observed trend is not a simple matter of good fitting, Figure 5.9 

shows a fit with Hounslow et al.’s proposed model for deformation-driven growth [30]. The 

model predicts exponential decay of growth, with time scale depending on material properties 

and the critical-packing liquid volume fraction ϕcp; the liquid volume fraction at the 

maximum size attainable by the granule for the system. Clearly, the predictions by the model 

do not at all describe the observed behaviour. Since the model is based on deformations 

caused by impacts, this finding implies that the actual collisions are not an important factor in 

layered growth for the non-breaking conditions examined here. 

 

 

 
 

 
Figure 5.9: Dimensionless granule volume difference as a function of the dimensionless time scaled 

with the critical-packing liquid volume fraction according to Hounslow et al.’s model for 

deformation-driven growth [30]. The black line represents the theoretical curve on which all lines 

should collapse. 
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In spite of the obvious caveats with interpreting the data obtained with the COG, Figure 

5.8 demonstrates that it is possible to study growth behaviour of granules, provided that the 

systems actually display growth. Furthermore, growth appears to proceed linearly with the 

square root of time, as predicted by Hounslow et al.’s model for surface tension-driven 

growth [30]. This finding implies that surface tension, not collision force, is the key driving 

mechanism in layered growth, even in a dynamic granulation situation. The consequences of 

this implication are discussed in Section 5.4.2, as well as the question whether this 

implication extends to consolidation. 

 

5.4.2 Mechanisms of consolidation and layered growth 
 

The analysis of granule growth behaviour showed that granule growth is proportional to 

the square root of time. An overall qualitative agreement was found with Hounslow et al.’s 

model for surface tension-driven growth [30], but there were several issues that should be 

addressed before a fully predictive model can be proposed. This section deals with the 

kinetics found in this study, as well as showing a comparison to Pitt et al.’s work on static 

granule nucleation [31]. In their work, Pitt et al. demonstrated that static nucleation is 

predicted extremely well by Hounslow et al.’s model of surface tension-driven growth, as 

shown in Figure 5.10. Considering the differences between static nucleation in a powder bed 

and granulation using equipment that actively agitates the nuclei, the fact that the results 

presented in this study are predicted by a model for static growth is remarkable. To discern 

the exact kinetics of layered growth, however, several issues must be addressed. Additionally, 

although the kinetics of layered growth are predicted by the model, those of consolidation are 

not. Hounslow et al.’s model assumes no air is present in the granules. Since growth in the 

model occurs by adding powder volume only, the liquid fraction decreases and granules 

automatically consolidate. However, the assumption of no air present in the granules is not a 

realistic assumption unless the granules considered are heavily saturated with liquid. These 

points are all discussed in the following sections. 

 

5.4.2.1 The kinetics of layered growth 

 

To understand how the kinetics in layered growth are affected by agitation, the results in 

this work can be compared to the static growth results obtained by Pitt et al. [31]. An 

effective method of comparing the growth data is to consider the critical-packing liquid 

volume fraction ϕcp, and the final consolidation time tmax for granules that were grown 

statically in a powder bed and dynamically in the COG. 
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Figure 5.10: Dimensionless granule volume difference as a function of the square root of 

dimensionless time for Pitt et al.’s data [31]. The black line represents Hounslow et al.’s model for 

surface tension-driven growth [30]. 

However, comparing the two methods is not straightforward. There is a time difference of 

approximately one minute between introducing prenucleated granules into the COG and 

actually starting the granulation. This gap is necessary to seal the vessel, fasten the vessel to 

the carriage, and close the lid of the COG. Additionally, extraction takes approximately five 

minutes, as there is a large quantity of powder that needs to be separated from the granules. 

Static growth, on the other hand, starts as soon as the drop hits the powder bed. Furthermore, 

Pitt et al.’s method [31] uses far smaller quantities of powder, allowing for rapid extraction of 

the granules. Of the issues of start-up and extraction, the former is likely to have the most 

profound effect. The fastest growth occurs at the start of granulation; static growth afterwards 
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would be slower, and might be insignificant compared to the dynamic growth experienced 

before this. 

Fortunately, there is a way to account for the initial growth between nucleation and the 

start of granulation. Pitt et al. [31] actually dealt with a similar problem for some systems in 

static nucleation, where the first data point of granules that could be collected had a relatively 

high initial mass. The other data points were predicted by Hounslow et al.’s model, showing a 

linear relationship with the square root of time for all points including the initial granule data 

point. However, there was a large discrepancy between the initial droplet mass and the first 

granule mass measured. Pitt et al.’s solution [31] is shown in Figure 5.11. 

Figure 5.11 shows the grey data points with the fitted curve (red), from which the 

maximum granule volume vmax and the apparent time until the maximum critical-packing 

liquid volume fraction has been achieved, tmax
app

, can be calculated. The method proposed by 

Pitt et al. [31] is based on the principle that an apparent initial droplet volume, v0
app

, can be 

calculated by using the slope of the line fitted to the data to extrapolate to the intersection 

with the y-axis. The actual growth curve starting at initial droplet volume v0 can then be 

reconstructed (blue) to calculate the true time until the critical-packing liquid volume fraction 

has been achieved, tmax (Equation 5.4). 

 

 
Figure 5.11: Pitt et al.’s method of calculating the true time until critical-packing liquid volume 

fraction tmax using similar triangles on a plot with granule volume as a function of the square root 

of time [31]. 
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𝑡𝑚𝑎𝑥 = 𝑡𝑚𝑎𝑥
𝑎𝑝𝑝 (

𝑣 − 𝑣0

𝑣 − 𝑣0
𝑎𝑝𝑝)

2

 (5.4) 

 

where all symbols are as described above. Using this method, tmax can be compared to the 

values obtained by Pitt et al. [31], as well as the theoretical values proposed by Hounslow et 

al. [30], which can be calculated using Equation 5.5: 

 

𝑡𝑚𝑎𝑥 =
18.75 ∗ 𝜇 ∗ ℎ0

2

𝛾 ∗ cos(𝜃) ∗ 𝑑

1 − 𝜙𝑐𝑝
1
3⁄

𝜙𝑐𝑝
3  (5.5) 

 

where μ is the binder viscosity, h0 is the initial droplet radius, γ is the binder surface tension, 

θ is the powder-binder contact angle, and d is the primary particle diameter. From the 

equation, it becomes clear that the critical-packing liquid volume fraction ϕcp plays an 

important role; a difference of about 0.1 in the determined fraction can lead to an order of 

magnitude difference in tmax. Table 5.2 lists the ϕcp values for systems evaluated using static 

nucleation and dynamic nucleation. For lactose-silicone oil based systems, literature values 

from Pitt et al. were used [31]. 

Table 5.2 clearly shows that the COG consistently produces granules that have grown more 

than granules grown in a static powder bed. More specifically, ϕcp appears to change from 

approximately 0.2 to 0.1 in dynamic situations. Therefore, the final powder mass gained is 

approximately doubled for dynamic situations compared to simple static growth. This finding 

implies that ϕcp is not only influenced by the powder and binder properties, but also by the 

equipment used. It is possible that by using a different type of equipment to granulate the 

same system, ϕcp changes depending on how strong the impacts exerted on the granules by 

the equipment are. Care should be taken with this conclusion, however, as granules nucleated 

by depositing a droplet on a static powder bed do not actually grow in three dimensions. It is 

possible that the doubling of mass for dynamic situations simply represents the granule 

growing in full spheres instead of quasi-hemispheres.  

Since ϕcp, is predicted to affect tmax, the kinetics of growth are expected to change 

depending on the equipment used as well. Table 5.3 compares the theoretical granulation 

times to the times as interpolated using Pitt et al.’s method of compensating for the initial 

rapid increase in granule mass for both static and dynamic situations. Comparing the 

theoretical times for static growth and growth in the COG, two major factors influence tmax. 

The first factor is ϕcp, as explained above. The second difference is in droplet size. ϕcp 

accounts for approximately a factor 10. This is confirmed by the lactose-PEG system, which 

shows about an order of magnitude difference between the static and dynamic situation.  

 

 
Table 5.2: Comparison of critical-packing liquid volume fractions ϕcp for both static (s) and 

dynamic (d) situations. 

System ϕcp,s (-) ϕcp,d (-) 

Lactose-13 mPa•s silicone oil 0.22
* 

0.09 

Lactose-52 mPa•s silicone oil 0.21
* 

0.11 

Lactose-105 mPa•s silicone oil 0.20
* 

0.13 

Lactose-95 mPa•s PEG 0.18
 

0.09 

* calculated using data from Pitt et al. [31]  
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Table 5.3: Comparison of theoretical times until the critical-packing liquid volume fraction for 

both static (s) and dynamic (d) situations to the times determined using Pitt et al.’s method [31]. 

System tmax,theory-s (min) tmax,theory-d (min) tmax,s (min) tmax,d (min) 

Lactose-13 mPa•s silicone oil 0.07
* 

4.67 2.23
*
 264.20 

Lactose-52 mPa•s silicone oil 0.43
*
 7.76 21.14

*
 232.14 

Lactose-105 mPa•s silicone oil 1.00
*
 9.91 34.57

*
 200.12 

Lactose-95 mPa•s PEG 1.57 17.59 118.16 191.70 

* calculated using data from Pitt et al. [31] 

 

The much larger disagreement between Pitt et al.’s results is caused by differences in 

initial droplet size; Pitt et al.’s initial droplet size was much smaller than the droplet sizes 

used in the experiments in this study. The difference between theoretical time and 

interpolated times, however, are less straightforward to explain. Pitt et al. found that the 

predictions by Hounslow et al.’s proposed model for tmax was unsatisfactory when applied to 

real situations. However, a general trend can be observed in the static observed times, where 

an increase in viscosity within the same system leads to an increase in the observed tmax. For 

the dynamic situation, this is not the case. All values are similar in magnitude, and, 

interestingly, an increase in viscosity appears to lead to a decrease in tmax. This conclusion 

would not be logical, however. There is clear evidence in the literature, as well in Pitt et al.’s 

results, that an increase in viscosity slows down growth [30,31,55]. A more logical cause of 

this discrepancy is the fact that the true values for vmax, and in extension tmax, were never 

observed due to breakage. 

A different method of evaluating the kinetics of growth is by solely considering the slope 

of the growth line. The slope can be determined by rewriting Equation 2.11 in terms of ϕcp to 

produce Equation 5.6: 

 

𝑣 = 𝑣0 + 𝑣0 ∗ (
1 − 𝜙𝑐𝑝

𝜙𝑐𝑝 ∗ √𝑡𝑚𝑎𝑥
) ∗ √𝑡 = 𝑣0 + 𝑣0 ∗ 𝑎 ∗ √𝑡 (5.6) 

 

With the initial droplet volume v0 known, the only unknown parameters in this function are 

tmax and ϕcp, which can be lumped into parameter a. By comparing parameter a between all 

data sets, a general trend may be observed, as shown by Table 5.4. Increasing viscosity in a 

single powder-binder system clearly lowers the growth rate, which is as expected. 

Interestingly, the overall growth rate for lactose-silicone oil systems appears to decrease 

when changing to a dynamic system. From Equation 5.6, it can be inferred that this change in 

growth rate can be attributed to an increase in tmax, as the experimental results clearly show a 

decrease in ϕcp. A potential cause could be the attrition and breakage of the granules, which is 

more prevalent in the COG than in a static situation. 

 
Table 5.4: Lumped growth parameter a for both static (s) and dynamic (d) situations. 

System as (min
1/2

) ad (min
1/2

) 

Lactose-13 mPa•s silicone oil 2.37
* 

0.65 

Lactose-52 mPa•s silicone oil 0.82
* 

0.52 

Lactose-105 mPa•s silicone oil 0.68
* 

0.47 

Lactose-95 mPa•s PEG 0.41
 

0.73 

* calculated using data from Pitt et al. [31] 
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On the other hand, the lactose-PEG system appears to have a larger growth rate in a 

dynamic situation. This phenomenon is not caused by shear thinning, as both silicone oil and 

PEG showed no such behaviour. Breakage and attrition may also be the cause of the 

difference in kinetics between lactose with silicone oil or PEG as a binder. However, a more 

thorough investigation is required to confirm this possibility. 

Finally, it should be noted that the initial droplet size influences the kinetics of layered 

growth; a larger droplet size will increase the overall growth rate. Since larger initial droplet 

sizes were used in this work, the overall kinetics are faster than those obtained by Pitt et 

al. [31]. 

 

5.4.2.2 The kinetics of consolidation 

 

A final assumption that must be discussed is the actual air content of the granules. 

Hounslow et al. [30] assume that no air is present in the initial granule, and the increase in 

mass is based purely on the layering of powder. In reality, the granules will contain air. As 

demonstrated by the comparison of all systems in Figure 5.8, the fact that granules are porous 

has no effect on the actual qualitative growth behaviour of the granules, although it will likely 

affect the maximum attainable granules size, vmax, and the time needed to reach this size, tmax. 

To determine how the porosity of the granules changed during the granulation time in the 

COG, granules with short and long granulation times were analysed using both helium and 

powder pycnometry to obtain the true and envelope density of the granules, respectively. 

Table 5.5 lists the initial and final porosity of all granules analysed, as well as the relative 

change in porosity. 

Interestingly, changes appear very slight, sometimes falling within the margin of error for 

of the values. Furthermore, there is no general trend visible; for some systems, the porosity 

increases slightly, whereas it decreases for other systems. The overall effect of the impacts 

produced by the COG on porosity seems non-existent; it appears that no actual consolidation 

occurs. This is a remarkable result, considering the COG generates forces capable of causing 

attrition and breakage of the granules. Consequently, it appears as though the decrease in 

critical-packing liquid volume fraction compared to Pitt et al.’s results [31] is indeed partially 

caused by the transition from a 2.5-D to a 3-D situation; for the set-up in this study, the 

nucleus can grow in all directions, as opposed to Pitt et al.’s method where a nucleus can only 

grow into a hemispherical volume. 

 
 

Table 5.5: Granule porosities at the start and end of granulation. Standard errors are shown in 

parentheses. 

System εstart (-) εend (-) Change (%) 

Lactose-13 mPa•s silicone oil 0.428 (0.003) 0.408 (0.008) -5 (2) 

Lactose-52 mPa•s silicone oil 0.408 (0.007) 0.431 (0.003) 6 (2) 

Lactose-105 mPa•s silicone oil 0.40 (0.06) 0.43 (0.01) 7 (15) 

Lactose-130 mPa•s PEG solution 0.68 (0.01) 0.695 (0.009) 2 (2) 

Lactose-3192 mPa•s PEG solution 0.37 (0.01) 0.36 (0.01) -4 (5) 

Lactose-95 mPa•s PEG 0.43 (0.04) 0.442 (0.005) 2 (2) 

Glass beads-52 mPa•s silicone oil 0.490 (0.007) 0.447 (0.005) -9 (2) 

Glass beads-105 mPa•s silicone oil 0.406 (0.009) 0.433 (0.008) 7 (3) 

Glass beads-1043 mPa•s silicone oil 0.39 (0.01) 0.383 (0.007) -3 (4) 

Glass beads-130 mPa•s PEG solution 0.31 (0.01) 0.342 (0.006) 12 (4) 
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5.4.2.3 The mechanism of layering 

 

In the previous section, it was established that there is no clear consolidation occurring in 

the granules during granulation in the COG. However, layering clearly occurs, and it appears 

there is a difference between static growth in a powder bed and dynamic growth in the COG. 

There is a possibility that this difference in caused by the transition from a 2.5-D static bed to 

a 3-D granulator. This section aims to elucidate the mechanism by which layering takes place 

in both situations. 

In order to investigate this, the difference in the internal structure between statically and 

dynamically grown granules was studied using X-ray computed tomography. Figure 5.12 

shows a comparison of representative tomography images for a system using lactose as the 

powder and 105 mPa•s silicone oil as the binder liquid. Note that the rings around the 

granules are part of the sample container. Statically and dynamically grown granules are 

compared both after a short granulation time and after the granules stopped growing. These 

times are not equal, as demonstrated by the results presented in Section 5.4.1. 

Several interesting observations can be made from Figure 5.12. From all images, two 

different basic regions can be discerned; the core and the outer shell. This is logical, as the 

core of all granules was originally a liquid drop. However, there is a difference in cores and 

shells between granules grown in the COG and statically grown granules. Granules grown in 

the COG show clear voids, represented by the black areas. These are likely cracks formed by 

the impacts in the COG, and they appear even after 2 min of granulation. Statically grown 

granules show no such cracks. 

Apart from the obvious cracks in the granules, the cores of the dynamically grown 

granules show larger voids than the much more tightly packed cores of granules grown in a 

static powder bed for both times. During growth, the cores of statically grown granules 

appear to have slightly more voids, whereas this effect is much less pronounced in 

dynamically grown granules. The increase in voidage in the static case can be attributed to 

movement of the binder liquid; cavities originally filled with liquid might be drained due to 

liquid spreading. It is possible that the wider availability of contact area in the COG promotes 

this drainage. This theory is supported by the fact that the core of the granule after short 

dynamic granulation looks very similar to that of the dynamically grown granule at the end of 

its growth. 

A final remarkable difference between the statically and dynamically grown granules is 

the structure of their outer shells. The statically grown granules have a clear shell layer, but 

the shell does not have a specific structure, with loosely packed powder surrounding the core. 

There is, however, a clear layer-like structure to the powder shell found around the core of 

the granules grown in the COG. The powder has grown around the core in layers, and the 

layers are much more compacted than the layers in the statically grown granules. In both 

cases, the shell layer is clearly thicker after a long granulation time compared to the shorter 

times. This finding demonstrates that there is definitely a consolidating effect found in 

granulation with the COG. However, it appears as though consolidation and the formation of 

macrovoids by fracturing result in an overall neutralising effect on the porosity values 

obtained, as demonstrated earlier in Table 5.5. 
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Figure 5.12: Comparison of X-ray tomography images of lactose-100 cSt silicone oil at the early 

and late growth times for static and dynamic situations. The rings are part of the sample container. 

 

The core-shell structure found could explain the two modes of breakage observed for 

lactose-based granules: fracturing of the whole granule, caused by the cracks formed in the 

core, and breakage of the outer layer of the granules, caused by the poor connection between 

core and shell. 
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The effect of powder particle shape can be investigated by comparing the growth 

behaviour of lactose-based systems to that of systems based on glass beads. Figure 5.13 

shows a comparison between granules produced from glass beads and 100 mPa•s silicone oil 

after different growth times in the COG and a static powder bed.  
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Figure 5.13: Comparison of X-ray tomography images of glass beads-100 cSt silicone oil at the 

start and end of growth for static and dynamic situations. The rings are part of the sample 

container.  
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The glass beads-based granules in Figure 5.13 show different behaviour compared those 

based on lactose from Figure 5.12. There is no clear core-shell separation for the glass-based 

system. Additionally, no voids are present in the statically grown granules. However, the 

granules grown in the COG clearly show the development of macrovoids in the granule, 

particularly after 8 min of granulation time. This can be partially attributed to internal 

fracturing. The reason for fracturing is also obvious from the images, as well as visual 

observations of the granules; statically nucleated granules and granules that have been 

granulated in the COG for short times are disc-shaped. In the COG, the granules deform and 

become more spherical after granulation due to the 3-dimensional nature of the powder bed 

and the impacts in granulator. These deformations, which are not present in statically grown 

granules, have resulted in internal fractures. 

The differences in internal structure between lactose and glass beads-based systems can be 

explained by powder particle shape. Glass beads are spherical and move easily, whereas 

lactose-based granules are stronger due to the irregular shape of the powder [62]. This 

enables the glass-based systems to deform more easily into tightly packing structures, 

whereas lactose-based systems develop larger voids. Additionally, glass beads are slightly 

larger than lactose particles (74 compared to 49 μm for lactose), and have a narrow particle 

size distribution. This difference causes lactose-based granules to be stronger, and less prone 

to plastic deformation [63]. Therefore, the lactose-based systems show a clear distinction 

between the original core of the granule and the shells formed around it, whereas the glass 

beads-based granules show no such distinction. Therefore, there is no possibility of tighter 

packing for glass beads-based systems, and consolidation is unlikely to be observed. This is 

also the reason why glass-beads based systems show shorter growth time ranges than lactose-

based systems. The tightly packed glass beads have few voids to impede the binder; 

therefore, the granule reaches its maximum size much faster than with lactose-based granules. 

In conclusion, there appears to be a consolidating effect by the COG, but this is only 

visible in systems with a powder that is not already tightly packed. The consolidating effect 

does not lead to an overall decrease in the porosity due to the formation of macrovoids during 

granulation.  

 

5.4.3 Viability of the COG for studying consolidation and layered growth  
 

The results obtained using the COG have led to interesting observations and results. 

However, the question remains as to whether this newly developed equipment is useful for 

the study of consolidation and layered growth. This question concerns both the reliability of 

the results presented, as well as the actual process by which granulation takes place in the 

COG. 

The repeatability of the COG was evaluated by performing a triplicate series of 

experiments with lactose-105 mPa•s silicone oil. The results are shown in Figure 5.14. For 

short granulation times, i.e. times when the maximum attainable granule mass has not been 

reached, the results show good agreement. However, as the granulation process progresses, 

the spread in data points becomes larger. For longer granulation times, which are not shown 

in the figure, the agreement between the three sets completely vanishes. This increase in error 

could be the result of breakage and attrition, which causes inaccuracies in the measured 

granule mass. 
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Overall, it appears as though the reliability of the COG is sufficient for obtaining growth 

data for intermediate granulation times. However, the accuracy and precision of the COG are 

both greatly reduced for long granulation times. As a result, a different method is needed to 

determine the maximum attainable granule size for a specific system. 

An additional limitation of the COG is the fact that the granules it produces provide no 

useful data with which to investigate granule consolidation. Although X-ray tomography 

images suggest that at least some consolidation occurs in the outer shell of the granule, no 

overall consolidation is observed from pycnometry measurements. This effect is most likely 

caused due to the balance of consolidation with fracture formation. It is possible that in 

industrial granulation, a combination of consolidation, breakage and reagglomeration causes 

the overall decrease in porosity. Alternatively, an increase in the pore saturation by the 

constant addition of liquid binder might also promote the deformability of the granules, 

which could aid in the reduction of the macrovoid volume due to deformation. 

Regardless of the actual mechanisms, the COG is designed in such a way that the data it 

provides cannot provide clear data concerning consolidation. Increasing consolidating forces 

would also increase breakage, invalidating the growth data, as would promoting 

agglomeration and reagglomeration. 

 

 
Figure 5.14: Comparison of granule mass as a function of time for three lactose-105 mPa•s silicone 

oil data sets. Lines were fitted by using Hounslow et al.’s model for surface tension-driven 

growth [30]. 
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In spite of its limitations, the COG provides kinetics of layered growth that appear to 

describe granule growth behaviour quite well. The resulting growth rate, a fitting constant a, 

could be used for modelling of the process. Ideally, an expression to estimate critical-packing 

liquid volume fraction ϕcp should be found to determine the maximum attainable granule size 

and the time needed to reach this size, as well as the full predictive kinetics. As a final 

remark, it is interesting that the typically found growth times are in the order of minutes to 

hours for the systems evaluated. This suggests that the critical-packing liquid volume fraction 

is never reached during practical granulation processes, unless perhaps aggressive 

consolidation and breakage is applied to force growth. 

 

5.5 Conclusions 
 

In this study, granule consolidation and layered growth behaviour was studied using a 

newly developed consolidation-only granulator (COG). Experiments were set up in such a 

way that the effects of wetting and nucleation as well as agglomeration were eliminated, and 

the effect of breakage and attrition was greatly reduced. The data obtained in the experiments 

was compared with predictions from existing models in the literature in order to elucidate the 

mechanisms and kinetics of growth. In this way, three of the key objectives of this work were 

addressed; the development of an experimental method to study consolidation and layered 

growth, the generation of experimental data using this method, and the identification of a 

model that describes the kinetics of layered growth. 

Layered growth proceeded linearly with the square root of time, as predicted by Hounslow 

et al.’s model on surface tension-driven growth [30]. This model uses the critical-packing 

liquid volume fraction ϕcp and final granulation time tmax as the only two unknown parameters 

for determining growth kinetics. The fact that this model predicts granule growth implies that 

powder-binder interaction is the driving force behind layering. There was very little 

qualitative difference between static growth data from Pitt et al. [31] and the dynamic growth 

data obtained in this work. Quantitatively, however there were differences in both the 

observed and interpolated tmax, and no trends were found to predict it accurately. Furthermore, 

the obtained critical-packing liquid volume fraction is smaller for dynamic situations 

compared to the static case. This effect can partially be attributed to the fact that static growth 

requires a 2.5-D bed, whereas more realistic dynamic growth takes place in a 3-D 

environment. 

From porosity calculations using pycnometry, it appears as though no overall 

consolidation of the granules occurred in the COG. In spite of this, X-ray computed 

tomography revealed that the additional powder mass layered around the granule has a higher 

density than the core. However, fractures negate the effect this denser layer would have on 

the overall granule porosity. Comparison with statically grown granules showed that such 

granules grow differently, with fewer macrovoids inside the granules, but a less dense grown 

layer around the core. It appears as though consolidation, in practice, occurs via either 

stronger impacts that force breakage and reagglomeration, or by constant wetting, which 

increases the deformability of the granules.  

Overall, the COG was successful in isolating layered growth from other granulation 

mechanisms, and the growth kinetics obtained are a major leap in understanding and 

modelling layered growth. However, there are several limitations to experiments using the 

COG. In eliminating the effect of wetting and nucleation by prenucleation, the liquid fraction 
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of the granules can only decrease. In combination with the relatively weak impacts of the 

COG to eliminate breakage and attrition, overall consolidation does not occur. Therefore, the 

COG is not suitable for studying consolidation. Moreover, breakage and attrition is not fully 

eliminated, and the granules show attrition and fracturing after long granulation times. 

Although results for short and intermediate granulation times are consistent, results for long 

granulation times show significant variation between different repeats. In addition, 

determining tmax and the final granule volume is impossible due to significant breakage after 

long granulation times. A final limitation of the COG is the fact that early growth behaviour 

cannot be measured, although Pitt et al. proposed a method of addressing the initial leap in 

granule mass at the start of granulation [31]. 

Using the kinetic data successfully obtained with the COG, the initial workings of a model 

have been put in place. However, works needs to be performed to accurately determine the 

key parameters ϕcp and tmax. The following chapter focuses on addressing this issue. 
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6.1 Introduction 
 

The consolidation-only granulator (COG) presented in Chapter 5 was successful in 

demonstrating that layered growth behaviour of granules can be predicted qualitatively using 

Hounslow et al.’s model for surface tension-driven growth [30]. In this model, granules grow 

linearly with the square root of time until a critical-packing liquid volume fraction, ϕcp, has 

been reached. ϕcp determines the maximum attainable granule size, and the time it takes to 

reach this maximum size is termed tmax. According to the model, both ϕcp and tmax determine 

the kinetics of granule growth. However, the experiments in the COG did not yield these 

values, as the maximum granule size was not reached due to granule breakage. In order to 

allow for the quantitative modelling of granule growth behaviour, this issue needs to be 

addressed. Furthermore, an initial rapid increase in granule mass was observed in the 

experiments, which is not predicted by the model. Although Pitt et al. [31] found a method to 

compensate for this leap, it is necessary to account for the rapid increase if a mechanistic 

model is developed. The purpose of the work described in this chapter is to identify a method 

with which to reach maximum consolidation, as well as discuss methods to account for initial 

granule growth. 

The aims of the work described in this chapter are: 

 To design a method to reach maximum attainable granule size 

 To determine ϕcp and tmax for the system evaluated 

 To investigate methods to calculate these values 

 To evaluate the effect of the initial rapid increase in granule mass 

 

Instead of using the COG, a high-shear mixer with a flat plate impeller is used to provide a 

moving 3-D bed without causing significant breakage. The overall method used, discussed in 

Section 6.2, was similar to that of the growth experiments described in Chapter 4, Section 4.2 

and Chapter 5, Section 5.3. However, instead of granulating prenucleated granules, paste 

prepared from powder and binder was cut and granulated. The resulting granules were 

weighed and analysed for their densities. Additionally, X-ray tomography was performed on 

a selection of granules to study their internal structure. 

The values and kinetics obtained were compared to data from Chapter 5, and an extension 

of Hounslow et al.’s model [30] was proposed in order to estimate ϕcp and tmax. Additionally, 

data provided by Shukri [159] was used to discuss rapid initial growth and its consequences 

on the model predictions. 

 

6.2 Method development 
 

In the work thus far, the breakage of granules has been a significant limiting factor for an 

adequate study of consolidation and layering mechanisms. Even the design of the 

consolidation-only granulator (COG), which aims to reduce breakage as much as possible, 

did not succeed in completely eliminating granule breakage, as demonstrated in Chapter 5. 

Therefore, an attempt was made to develop a method which limited granules impacts, while 

still providing a moving powder bed and deformation forces. For this purpose, a high-shear 

mixer with a flat plate impeller was selected as the granulator. In order to ensure good 

mixing, the granulator was operated at speeds at which the roping regime was observed. 
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Instead of using droplet nucleated granules, a paste was made by mixing powder and 

binder liquid, then cut and added to the granulator. This was done for two reasons. Firstly, 

using paste granules essentially starts the growth process in the ‘middle’ of granulation, 

ignoring the initial rapid increase in granule mass observed in the experiments performed 

with the COG described in the previous chapter. Without this initial leap, it should be easier 

to predict growth behaviour using the model, as there would be no need to account for 

apparent tmax; the time needed to reach the granulation end point from the mass after the 

initial leap occurred. Secondly, as a result of to the premixing of powder and binder, the 

paste-based granules are expected to be more homogenous than droplet-nucleated granules. 

Since the shell grown around prenucleated granules was observed to be brittle and low in 

liquid content, a more homogenous granule should show less wear and breakage. 

For the scope of this study, it was decided that a single powder-binder system would be 

evaluated, and that the focus would lie on the repeatability of the experiments. In this way, 

the maximum attainable granule size and ϕcp, as well as tmax, could be determined as 

accurately as possible for this set-up. 

 

6.3 Materials and methods 
 

Similar to the high-shear mixer study described in Chapter 4 and the consolidation-only 

granulator (COG) studies described in Chapter 5, the method of the experiments performed 

was based on prenucleation of granules outside of the granulator, followed by granulation, 

extraction and analysis. Experiments were performed using a high-shear mixer (Key 

International Inc. KG-1 Granulator) to compare results to the data obtained using the COG. In 

order to minimise breakage and attrition, a flat plate impeller was used (2.5 L bowl), and 

granules were prenucleated from paste as described below to make the nuclei less fragile. To 

investigate the effect of impeller speed, the granulator was operated at two different speeds in 

the roping regime; 500 and 750 rpm. Additionally, an experiment at a single granulation time 

(25 min) was repeated seven times in order to investigate the reproducibility of the method. 

The consolidation performance of the flat impeller was compared to that of a three-bladed 

impeller (2.3 L bowl) in the same granulator operated at the minimum speed required for the 

well-mixed roping regime (250 rpm). All operating set-ups used in this study are shown in 

Table 6.1. 

 

 
Table 6.1: Overview of all conditions used in experiments with the high-shear mixer. 

Impeller Speed (rpm) Times (min) Nucleation # of data points 

Flat plate 500 0.25-30 Ruler 11 

Flat plate 750 0.25-20 Grid 11 

Three-bladed 250 0.05-0.3 Grid 6 

Flat plate 500 0.25-25 Grid 11 

Flat plate 750 0.25-25 Grid 11 (x2) 

Flat plate 750 25 Grid 7 
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For comparison, the same powder-binder system, lactose-105 mPa•s silicone oil, was used 

in all experiments. First, the powder was passed through a 1.14 mm sieve, and the granulator 

was loaded with 350 g of powder. The powder was then premixed at the desired speed for 

20 s. Next, the paste was prepared with the powder and binder liquid. The liquid volume 

fraction used was chosen in such a way that the paste could be cleanly cut, but was wet 

enough to be extruded properly. For this particular system, the optimal liquid volume fraction 

was found to be 0.45, which corresponds to a liquid to solid ratio of 0.53. Using the true 

densities of the solid and liquid, the required masses of the materials were calculated, 

weighed and thoroughly mixed in a bowl. After mixing, the materials were loaded into a 

baker’s syringe with a blunt nozzle, of which the 4.78 mm orifice was large enough to enable 

extrusion of the paste. The paste, shown in Figure 6.1, was extruded on cling film and cut 

into 5 mm cylinders with a spatula. For the first series of experiments, at 500 rpm, a ruler was 

used to cut the granules to size, but a 5 mm paper grid underneath the cling film was used for 

all further experiments in order to reduce variation in paste piece size. Each piece of paste 

was immediately introduced into the granulator. After 20 nuclei had been produced and 

added to the granulator, the paste was granulated for a set amount of time. Granulation times 

depended on the impeller used; the flat impeller granulated more slowly and produced more 

intact granules than the three-bladed impeller. The granules were then extracted, separated 

from the powder using a 1.4 mm sieve and weighed individually using a microbalance 

(Mettler-Toledo XS3DU, 1 μg accuracy). The experiment was repeated for a longer 

granulation time until no further increase in mass was observed. 

The true and envelope density of granules were determined using helium and powder 

pycnometry, respectively, for early and late stages of growth. In this way, the porosity could 

be evaluated at the start and end of granulation. 

 

 

 
Figure 6.1: Extruded lactose-100 cSt silicone oil paste. 

  

5 mm 
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Additionally, X-ray tomography was used to investigate the changes in internal structure 

over time of the produced granules. A single set of granules (produced at 750 rpm) was 

investigated at two different times; after 0.5 and 20 min of granulation. For each time, three 

different representative granules were evaluated, for a total of 6 images. 

 

6.4 Results and discussion 
 

This section is divided into three parts. Section 6.4.1 presents and discusses the results of 

the experiments performed. In Section 6.4.2, an attempt is made to extend Hounslow et al.’s 

surface tension-driven growth model [30] to account for the observed consolidation 

behaviour. Finally, Section 6.4.3 focusses on initial granule growth, and ways to predict the 

observed rapid initial granule growth. 

 

6.4.1 Growth behaviour of paste-based granules 
 

Growth of the paste-based granules was observed for all conditions evaluated, but the 

growth behaviour varied for the different operating speeds and impellers used. Therefore, 

growth behaviour is initially discussed separately for each operating condition. Figure 6.2 

shows the first condition; paste granules which have been granulated at 500 rpm using a flat 

plate impeller. 

 
Figure 6.2: Granule mass as a function of time for granules produced from paste cut using either a 

ruler or a grid and granulated at 500 rpm with a flat plate impeller. Error bars indicate standard 

errors, and lines were fitted using Hounslow et al.’s model for surface tension-driven growth [30].  
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Figure 6.2 shows that the paste granules show steady growth until a maximum has been 

reached, much like droplet-nucleated granules. There also does not appear to be a large 

difference between paste prepared with a ruler and paste prepared with a grid, although the 

grid method does appear to produce less variation in the data points; more points fall on the 

fitted curve. Therefore, this method was used for subsequent experiments. 

Figure 6.2 also shows that there is still an initial fast increase in granule mass, which is not 

accounted for by the model. It is possible that this is caused by the method of addition to the 

granulator; paste granules are added as they are cut, leaving a few minutes for the paste to sit 

in a static powder bed. Another potential cause for the initial leap is the presence of liquid at 

the surface of the paste granule. Therefore, no liquid movement is required to produce the 

first initial layer around the granule, causing the initial growth to occur instantaneously. This 

topic of initial growth is discussed in more detail in Section 6.4.3. 

The observation of growth and the end of the growth regime in the high-shear mixer with 

a flat impeller blade clearly demonstrates that paste-based granules remain intact in the 

mixer. In order to investigate whether paste-based granules could survive higher shear, the 

effect of using a three-bladed impeller was investigated. Figure 6.3 shows the growth 

behaviour of paste granulated using the three-bladed impeller at 250 rpm. Growth occurred at 

much shorter time scales compared to the flat plate impeller. The data set shows an overall 

increase in mass of about 50% after 4 seconds. After this increase, no further growth is 

observed. At a first glance, growth appears to occur without an initial rapid increase.  

 

 
Figure 6.3: Granule mass as a function of time for granules produced from paste at 250 rpm with a 

bladed impeller. Error bars indicate standard errors, and lines were fitted using Hounslow et al.’s 

model for surface tension-driven growth [30].  
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However, this absence of a leap is caused by a lack of growth after the first measured data 

point at 0.05 min. Since the maximum size is reached at this point, any line fitted between 

these two points automatically follows the data. 

The cause for the observed lack of further growth is obvious from visual inspection: the 

granules show signs of breakage and attrition, which is reflected by the relatively large 

standard error bars in Figure 6.3. Despite the obvious damage, the system does display 

overall growth. The porosity of the granules produced with the three-bladed impeller is 

compared to that of granules produced with a flat plate impeller in Section 6.4.1.2. 

Figure 6.4 shows the growth behaviour of the three sets of paste granulated at 750 rpm 

with a flat plate impeller. After an initial steep increase, the granule mass increased steadily 

according to Hounslow et al.’s model for surface tension-driven growth [30]. After 

approximately 20-30 minutes (23 min average), growth stopped, and the final granule size 

was reached. Apart from the slight variation in apparent tmax, the granules show comparable 

growth behaviour. Compared to the system cut on a grid and granulated at 500 rpm, two 

observations can be made, as shown in Figure 6.5. 

 

 

 
Figure 6.4: Granule mass as a function of time for granules produced from paste at 750 rpm with a 

flat plate impeller. Error bars indicate standard errors, and lines were fitted using Hounslow et 

al.’s model for surface tension-driven growth [30].  
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First of all, the final granule mass obtained is slightly smaller for the 500 rpm set than for 

the 750 rpm sets; 237 mg and an average mass of 264 mg, respectively. The time it takes to 

achieve this mass is also slightly shorter for the 500 rpm set, with tmax only being 19 min. 

Secondly, it turns out that this effect does not even out completely; the mass gain rate is 13.5 

mg/min
1/2

 for the 500 rpm set, and 16.7 mg/min
1/2

 (averaged) for the 750 rpm sets. This 

finding implies that the impeller speed does have a positive effect on the growth rate; in this 

case, a 50 % increase in impeller speed leads to a 23 % decrease in growth rate. This value is 

close to 22 %; the square root value of a 50 % increase. 

The obtained value could suggest a square root relationship between impeller speed and 

growth rate (Equation 6.1). However, the possible range of rotational speeds (500-750 rpm) is 

too narrow to properly investigate this with the current set-up. 

 

𝑟1
𝑟2
∝ √

𝜔1
𝜔2

 (6.1) 

 

In Equation 6.1, r is the growth rate, and ω is the impeller frequency of rotation. 

 

 
Figure 6.5: Comparison of granule mass as a function of time for granules produced from paste at 

500 and 750 rpm with a flat plate impeller. Error bars indicate standard errors, and lines were 

fitted using Hounslow et al.’s model for surface tension-driven growth [30].  



Chapter 6 Layered growth in a mixer with a flat plate impeller 

125 

 

Figure 6.6 shows the dimensionless growth scaled according to Hounslow et al.’s model 

for surface tension-driven growth [30] for the 500 and 750 rpm sets, using paste cut on a grid. 

Several observations can be made from the figure. First of all, qualitatively, the granules 

appear to demonstrate linear growth with the square root of time. However, the deviation 

from the expected growth line is much larger than the deviation from the scaled growth line 

demonstrated by the COG-produced granules in Figure 5.8 of the previous chapter; the 

prenucleated granule data only showed deviations at the transition between steady growth and 

no growth. The larger deviations in Figure 6.6 may be caused by the difference in nucleation 

methods; granules cut from paste show inherently more deviation in mass than droplets 

produced by a syringe pump; initial drop-nucleated granules have a relative standard error of 

0.1-1.7 %, as opposed to 3.0-4.8 % for cut paste. Hence, results show more variation. This 

explanation is also supported by the fact that the standard errors for the paste-based granule 

masses are significantly larger than those of the drop-nucleated granules in Figure 5.3-Figure 

5.7 in Chapter 5. 

 

 

 
Figure 6.6: Dimensionless granule volume difference as a function of the square root of 

dimensionless time for all granules produced from paste cut on a grid. The black line represents 

Hounslow et al.’s model for surface tension-driven growth [30].  
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In the previous chapter, it was also established that there were deviations from the 

predicted line in the range of 0.8-1 for τ
1/2

. It was proposed that these deviations might be 

caused by breakage, and the absence of an actual observed maximum granule mass. In Figure 

6.6, despite the wider scatter of the data, no particularly strong deviations are present. For the 

granulation experiments with paste, no granule breakage was observed, but end points in 

growth were definitely observed. This observation supports the theory that the large 

deviations from predictions at the transition between the growth and no-growth regime 

observed using the COG in the previous chapter were caused by breakage and scaling errors. 

A final issue that must be addressed when considering the results is the matter of 

repeatability, since the data in Figure 6.6 showed significant deviations from the predicted 

growth line. Figure 6.7 compares the three repeats from Figure 6.4 to the data points from 

single time (25 min) repeated experiments at 750 rpm. The repeated single data point 

experiments in Figure 6.7, marked with diamonds, fall in a similar range as the other 

experiments performed. Interestingly, the repeated experiments show decreasing mass values 

for each iteration; the values decline in order of the experiments performed. 

 

 

 
Figure 6.7: Comparison of granule mass as a function of time for all systems granulated at 750 

rpm. Lines were fitted using Hounslow et al.’s model for surface tension-driven growth [30].  
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From experimental observations, there is an explanation for this decline. For all 

experiments performed, the paste became more difficult to extrude as the experiments 

progressed. This reduction in flowability was most likely caused by a slight loss of binder 

liquid during extrusion. The proof for this explanation is discussed in more detail in the 

following section. The question remains as to whether the loss of binder liquid has 

consequences on the results. From initial trial runs, it was shown that slight variations in the 

liquid volume fraction had a large impact on the flowability of the paste; it was impossible to 

manually extrude paste with a liquid volume fraction of 0.4 using the current set-up. This 

result implies that liquid loss was less than 10%, as it was still possible to extrude the paste, 

albeit with effort. Consequently, a variation of about 10% is expected in the results. However, 

due to the method of initial paste granule production, there already exists some variation in 

the results. The fact that all single experiment repeated points fall within the same range as 

the full range triplicate experiments supports this assumption. Therefore, the error due to 

liquid loss as a result of the experimental method does not invalidate the results, although 

care should be taken when using the results for the estimation of the kinetics. 

 

6.4.1.1 Kinetics of growth 

 

The critical-packing liquid volume fraction ϕcp was determined for all sets cut on a grid 

using the maximum granule mass and the initial liquid mass present in the paste. Table 6.2 

shows a comparison between the theoretically calculated ϕcp and ϕcp obtained from helium 

pycnometry data. The first observation that can be made from the table is that for both 

methods, the systems granulated at 750 rpm have a lower ϕcp than the system granulated at 

500 rpm. Therefore, it is possible that increasing the impeller speed promotes growth. In the 

study using the consolidation-only granulator (COG) described in the previous chapter, the 

effect of impact and movement on granule growth could not be established; the transition 

from a 2.5-D (static) to a 3-D (dynamic) bed might have caused the observed decrease in ϕcp. 

The observation made here, however, implies that there is at least some effect of increasing 

the forces experienced by granules. 

The second observation that can be made from Table 6.2 is the clear difference in liquid 

volume fraction when comparing the two calculation methods. Helium pycnometry clearly 

indicates that the liquid volume fraction is actually lower than the calculated liquid volume 

fraction. This finding implies that liquid is lost either during or before granulation. This is 

supported by the observation that the paste becomes less easy to handle as more paste is 

extruded, as described above. 

 
Table 6.2: Comparison of critical-packing liquid volume fraction as calculated from the final 

granule mass (c) and as determined from the skeletal density (ρ). Standard errors are shown in 

parentheses. 

System ϕcp,c (-) ϕcp,ρ (-) 

500 rpm, grid, flat 0.28 (0.01) 0.250 (0.001) 

750 rpm, grid, flat run 1 0.24 (0.09) 0.215 (0.001) 

750 rpm, grid, flat run 2 0.24 (0.02) 0.190 (0.001) 

750 rpm, grid, flat run 3 0.25 (0.02) 0.200 (0.001) 
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When comparing these ϕcp values to those obtained with the COG, values are significantly 

lower for the COG than for the flat plate impeller mixer. The ϕcp values obtained with helium 

pycnometry, which should be closest to the true values, are comparable to the results obtained 

by Pitt et al. [31]. This finding further supports the hypothesis that impacts on granules do 

promote layered growth. 

As in the previous chapter, the calculated ϕcp values were used to determine the theoretical 

final granulation times. These times were compared to the actual final granulation times, tmax, 

as calculated using Pitt et al.’s method [31]. The results are shown in Table 6.3. Again, the 

theoretical values strongly deviate from the observed values. The theoretical values show 

good agreement for 750 rpm. For 500 rpm, the theoretical value is significantly lower. This is 

logical, as the calculation method only takes into account the value of ϕcp, not the impacts or 

impeller speed [30]. 

For the extrapolated values, two interesting observations can be made. First of all, the 

value for the third run at 750 rpm clearly deviates from the other values. It is possible that the 

value is an outlier; Figure 6.7 does show that the system demonstrates the slowest growth, 

and has no real data point beyond its final granule size. This means that it is more difficult to 

accurately extrapolate the time. Secondly, the system granulated at 500 rpm has a 

significantly higher tmax than the system granulated at 750 rpm. This phenomenon could be 

explained by the increase in impeller speed, which might have promoted granule growth due 

to an increase in the number and magnitude of the collisions experienced by the granules. 

When comparing the values of tmax to those obtained with the COG in the previous 

chapter, the value for 500 rpm is very close to the value obtained for the dynamic 100 cSt 

silicone oil system. However, the values for 750 rpm are much lower, except for the third 

repeat, which shows a significantly higher value. Although this may be due to the value being 

an outlier, this finding implies that the estimation of the final consolidation time shows wide 

variation. There does appear to be consistency in the order of magnitude, however. 

To compare the kinetics of the data sets at 500 rpm and 750 rpm, the same method as in 

the previous chapter was used (Equation 6.2) to calculate the growth rate: 

 

𝑣 = 𝑣0 + 𝑣0 ∗ (
1 − 𝜙𝑐𝑝

𝜙𝑐𝑝 ∗ √𝑡𝑚𝑎𝑥
) ∗ √𝑡 = 𝑣0 + 𝑣0 ∗ 𝑎 ∗ √𝑡 (6.2) 

 

where v is the original droplet volume, v0 is the initial droplet volume, and a is the lumped 

parameter that contains information on ϕcp and tmax. 

 

 
Table 6.3: Comparison of theoretical times until the critical-packing liquid volume fraction is 

reached to times determined using Pitt et al.’s method [31], as described in Chapter 5. 

System tmax,theory (min) tmax (min) 

500 rpm, grid, flat 2.81 202.66 

750 rpm, grid, flat run 1 4.80 140.21 

750 rpm, grid, flat run 2 4.17 162.93 

750 rpm, grid, flat run 3 4.11 258.59 
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The values for a are shown in Table 6.4. Growth rates appear to be higher for the 750 rpm 

system, with the exception of the third dataset, which may be an outlier. Overall, it appears as 

though parameter a increases with an increasing impeller speed, and the same relationship 

between the growth rate and the square root of the impeller speed is obtained. 

Interestingly, when comparing the growth rates to the rates obtained with the COG in the 

previous chapter, the rates obtained with the flat plate mixer are much lower. The breakage in 

the high-shear mixer was significantly lower than the breakage in the COG after long 

granulation times, which implies that breakage and attrition are not the only factors 

influencing granule growth. Had this been the case, then the growth rate should fall within 

the static-dynamic value range. It is possible that gravity is also a relevant property for 

droplet penetration; this may explain the higher growth rates in the 2.5-D powder beds used 

by Pitt et al. [31]. Due to the movements in dynamic beds, gravity should not play as much of 

a role in that case. 

 

6.4.1.2 Consolidation 

 

Table 6.5 shows granule porosity values obtained with helium pycnometry, including 

standard errors, as well as the relative porosity change between early and late granulation 

times. As was the case for granules produced with the COG described in the previous 

chapter, no overall changes were observed, with porosity staying at approximately the same 

value at the start and end of granulation. The few observed differences do not show enough 

change to surpass the relatively high standard errors. Considering the results from the 

previous chapter, these findings are not surprising. In particular, breakage and attrition in the 

mixer with the flat plate impeller was significantly lower than the breakage observed in the 

COG. This finding suggests that the impacts experienced by the granules were much lower 

for the mixer compared to the COG. Consequently, consolidation is expected to be less for 

the mixer. 

 
Table 6.4: Lumped growth parameter a for all sets cut on a grid. 

System a (min
1/2

) 

500 rpm, grid, flat 0.19 

750 rpm, grid, flat run 1 0.27 

750 rpm, grid, flat run 2 0.24 

750 rpm, grid, flat run 3 0.19 

 

 
Table 6.5: Granule porosities at the start and end of granulation, as well as the relative change in 

porosity. Standard errors are shown in parentheses. 

Experiment εstart (-) εend (-) Change (%) 

500 rpm, ruler, flat plate 0.388 (0.007) 0.407 (0.007) 5 (3) 

250 rpm, ruler, three-bladed 0.397 (0.008) 0.41 (0.01) 3 (3) 

500 rpm, grid, flat plate 0.397 (0.007) 0.391 (0.008) -1 (3) 

750 rpm, grid, flat plate run 1 0.398 (0.007) 0.397 (0.006) 0 (2) 

750 rpm, grid, flat plate run 2 0.378 (0.006) 0.377 (0.008) 0 (3) 

750 rpm, grid, flat plate run 3 0.384 (0.004) 0.390 (0.009) +1 (3) 
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However, when comparing the actual porosity values obtained, the values appear to be 

higher for the COG, implying the mixer results in more consolidation. The values are still 

fairly close, however, and the values obtained with the COG have relatively high standard 

errors. In the case where the porosity actually would be lower for the mixer, this can be 

explained by the preparation method of the granules. Paste nucleation is more likely to 

produce a homogenous granule core, which may lead to a reduction in fracturing. To 

investigate this, X-ray tomography was performed on cut paste granulated at 750 rpm, as 

shown in Figure 6.8. 

Similar to the images of drop-nucleated granules granulated using the COG described in 

the previous chapter, Figure 6.8 clearly shows that there is a core-shell structure in the 

granulated paste. Interestingly, the paste does not appear to be completely close-packed; 

small voids are present, even at the early stages of granulation. When comparing to the 

images from the previous chapter, however, the voids are significantly less than those for 

dynamically grown granules, and comparable to the statically grown granules. In the figure, 

the granule cores appear to maintain a similar porosity, although the porosity appears to have 

increased over time, as the colour of the core darkens a bit and small microcracks may be 

observed. However, the outer shell clearly becomes denser during granulation. In fact, the 

darker colour and relatively numerous voids in the image for short granulation times indicates 

that the shell has a higher porosity than the core. On the other hand, the shell has fewer voids 

and a lighter colour for longer granulation times, indicating that the porosity is actually lower 

than that of the core. 

As in the previous chapter, this finding implies that consolidation is definitely happening, 

but it mostly occurs in the outer layers of the granule, and not so much in the core. It would 

therefore be interesting to investigate the effect of this difference in porosity on the growth 

model. 

 

 

 

0.5 min 20 min 

  

Figure 6.8: Comparison of X-ray tomography images of granules consisting of lactose-100 cSt 

silicone oil at the start and end of growth for paste granulated in a high-shear mixer with flat plate 

impeller at 750 rpm. The rings are part of the sample container.  

2 mm 2 mm 
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6.4.2 The effect of porosity differences on surface tension-driven growth 
 

Experiments with the COG and high-shear mixer have shown that no overall consolidation 

occurred. However, the X-ray tomography images clearly show that some sort of local 

consolidation is occurring, giving the granules a clear core-shell structure. This section aims 

to propose an explanation for this phenomenon and investigate the impact on the surface 

tension-driven growth model. 

From the images, it seems as though there is a porosity difference between the core and 

shell, with the shell apparently having a lower porosity than the core. This difference in 

porosities is most likely the result of impacts on the granule. Logically, different porosities 

cause flow of liquid, as capillary force drives the liquid to move to the lower-porosity region, 

enabling more powder layers to form. This phenomenon would partially explain why 

Hounslow et al.’s surface tension-driven growth model [30] drastically underpredicts the 

theoretical tmax; if impacts cause a reduction in porosity of the outer layer, further growth is 

possible, but it is limited by the frequency and force of the impacts. This theory is supported 

by the observation of an increased growth rate for higher impeller speeds in the high-shear 

mixer. 

It is not unrealistic to assume that growth occurs in two phases; Maxim et al. proposed a 

similar approach for their modelling of granule consolidation and layered growth [53], as 

described in Chapter 2, Section 2.3.2.4. Initially, there is the static growth observed by Pitt et 

al. [31], causing the granule to grow until it reaches ϕcp. This behaviour is predicted by 

Hounslow et al.’s model for surface tension-driven growth [30]. However, even in this 

situation, tmax is not predicted accurately. Two factors may contribute to this discrepancy. 

First of all, some voids may be closed off to the liquid, causing the liquid to spread further 

overall than would be the case in absence of these voids. Second, pores in the surrounding 

powder are not equally sized and the liquid may migrate from larger pores to smaller ones, 

causing the granule to keep growing. 

In the second, dynamic, growth phase, growth is driven by a porosity difference caused by 

impacts. Again, liquid migrates to the lower porosity region, in this case the shell. This 

process will continue until the granule has stopped deforming, either because the porosity is 

equal throughout the granule, or because further densification of the core is not possible, 

causing growth to cease. Possibly, the latter phenomenon has been observed with X-ray 

tomography. 

Although the two stages of static and dynamic surface tension-driven growth are likely to 

occur simultaneously, it is relevant for our understanding of layered growth to look at the 

extreme of the two phases occurring sequentially. For this approach, the granules are 

assumed to grow regardless of impacts until the nucleus has reached the critical-packing 

liquid volume fraction ϕcp, or ϕ1, which could be valid for prenucleation or very fast liquid 

penetration. Next, impacts cause the shell to have a new ϕcp, labelled ϕ2. The growth then 

continues until the entire granule has reached the new critical-packing liquid volume fraction. 

From the observed growth behaviour, this assumption is not completely valid, as growth 

stops before the entire granule has reached the new ϕcp. For modelling purposes, however, the 

growth kinetics are exactly the same; the only difference is that the growth will cease sooner, 

leading to an overestimation of tmax. The actual value of ϕ2 and the percentage of the granule 

consolidated to ϕ2 would depend on the impact force and frequency in the granulator. 
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This assumption allows for the repurposing of the model to account for the observed core-

shell growth behaviour, as well as for the comparison with experimental growth behaviour. 

Before this model can be developed for a three-dimensional scenario, the 1-D case must be 

evaluated first, however. This is described in the following section. 

 

6.4.2.1 One-dimensional porosity difference-driven growth 

 

Figure 6.9 presents a one-dimensional situation for growth; similar to Hounslow et al.’s 

planar slab-shaped nucleus [30], a granule that has reached ϕcp is placed in a situation where 

the surrounding powder has a lower porosity due to impacts. The granule starts out at original 

size hmax, at liquid volume fraction ϕcp. These are renamed h1 and ϕ1, respectively, to indicate 

that the granule will grow further. The core with liquid volume fraction ϕ1 is then expected to 

decrease in size (b), whereas the total granule size (h) is expected to increase until the granule 

has reached a new maximum size (h2) at a new critical-packing liquid volume fraction (ϕ2). 

The change of the high liquid-fraction core size b and the total granule size h can be 

expressed in terms of the liquid flux (JL) at the interface between the two phases, J. The terms 

for the core and shell size changes are similar to those of Hounslow et al. [30], although the 

expression for the change in b contains both the first and second critical volume liquid 

fraction, ϕ1 and ϕ2 (Equation 6.3 and 6.4): 

 

𝑑𝑏

𝑑𝑡
= −

𝐽

𝜙1 − 𝜙2
 (6.3) 

 

𝑑ℎ

𝑑𝑡
=

𝐽

𝜙2
 (6.4) 

 

 
Figure 6.9: Schematic representation of one-dimensional granule growth for a granule with a core-

shell system.  
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Furthermore, the difference between h and b is termed δ (Equation 6.5): 

 

𝛿 = ℎ − 𝑏 (6.5) 

 

Since δ is equal to the difference between h and b, the derivative of δ can be considered 

the difference between the derivatives of h and b (Equation 6.6): 

 

𝑑𝛿

𝑑𝑡
=
𝜙1
𝜙2
∗

𝐽

(𝜙1 − 𝜙2)
 (6.6) 

 

Using Equation 6.5, a liquid volume balance (Equation 6.7) can be used to derive an 

expression for the granule size h, as shown in Equation 6.8: 

 

ℎ1 ∗ 𝜙1 = ℎ0 = (𝑏 ∗ 𝜙1) + (𝛿 ∗ 𝜙2) (6.7)  

 

ℎ =
ℎ0
𝜙1
+
(𝜙1 − 𝜙2)

𝜙1
∗ 𝛿 (6.8) 

 

Next, the Blake-Kozeny equation (Equation 6.9) and the capillary force (Equation 6.10) 

can be used to derive an expression for the liquid flux (Equation 6.11). The results are the 

same as those obtained by Hounslow et al. [30]. 

 

𝑑𝑝

𝑑𝑥
= −

150 ∗ 𝜇

𝑑2
∗
(1 − 𝜙2)

𝜙2
3 ∗ 𝐽 (6.9) 

 

where p is the pressure, x is the height, μ is the liquid viscosity and d is the powder particle 

diameter. 

 

𝑑𝑝

𝑑𝑥
= −

4 ∗ 𝛾

𝛿 ∗ 𝑑
∗ (1 − 𝜙2) (6.10) 

 

where γ is the surface tension. 

 

𝐽 =
𝛾 ∗ 𝑑 ∗ 𝜙2

3

37.5 ∗ 𝜇 ∗ 𝛿
 (6.11) 

 

With the expression for the liquid flux J known, Equation 6.6 can be rewritten (Equation 

6.12) and integrated to yield an expression for δ (Equation 6.13): 

 

𝑑𝛿

𝑑𝑡
=

𝛾 ∗ 𝑑

37.5 ∗ 𝜇 ∗ 𝛿
∗
𝜙1 ∗ 𝜙2

2

(𝜙1 − 𝜙2)
 (6.12) 

 

𝛿 = (
𝛾 ∗ 𝑑

18.75 ∗ 𝜇
∗
𝜙1 ∗ 𝜙2

2

(𝜙1 − 𝜙2)
∗ 𝑡)

1/2

 (6.13) 
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This expression can then be substituted into Equation 6.8 to yield an expression for h 

(Equation 6.14). At the time t2, the granule stops growing and h reaches the size h0/ϕ2. This 

time is defined in Equation 6.15. 

 

ℎ =
ℎ0
𝜙1
+ (

𝛾 ∗ 𝑑

18.75 ∗ 𝜇
∗
(𝜙1 − 𝜙2) ∗ 𝜙2

2

𝜙1
∗ 𝑡)

1/2

 (6.14) 

 

𝑡2 =
18.75 ∗ 𝜇 ∗ ℎ0

2

𝛾 ∗ 𝑑
∗
(𝜙1 − 𝜙2)

𝜙1 ∗ 𝜙2
4  (6.15) 

 

With the expression for t2 known, dimensionless expressions can be constructed for t 

(Equation 6.16), δ (Equation 6.17), b (Equation 6.18 and 6.19) and h (Equation 6.20), 

indicated by a circumflex: 

 

�̂� =
𝑡

𝑡2
 (6.16) 

 

𝛿 =
�̂�1/2

𝜙2
 (6.17) 

 

𝑑�̂�

𝑑�̂�
= −

1

2 ∗ �̂�1/2
∗
1

𝜙1
 (6.18) 

 

�̂� =
1

𝜙1
(1 − �̂�1/2) (6.19) 

 

ℎ̂ = �̂� + 𝛿 =
1

𝜙1
+
𝜙1 − 𝜙2
𝜙1 ∗ 𝜙2

∗ �̂�1/2 (6.20) 

 

These expressions are fairly similar to those obtained by Hounslow et al. [30], but they 

account for an initial liquid volume fraction that is not equal to 1. In fact, setting ϕ1 to 1 and 

ϕ2 to ϕcp yields the same expression Hounslow et al. arrived at. Furthermore, the expression 

for the dimensionless volume change (Equation 6.21) and the overall volume as a function of 

time (Equation 6.22) can be derived to be equivalent to those of Hounslow et al. [30], 

provided the initial liquid volume fraction is 1: 

 

𝑣 − 𝑣1
𝑣2 − 𝑣1

=
ℎ̂ − ℎ̂1

ℎ̂2 − ℎ̂1
=
ℎ̂ −

1
𝜙1

1
𝜙2
−
1
𝜙1

= �̂�1/2 (6.21) 

 

𝑣 =
𝑣0
𝜙1
+ (𝑣0 ∗

𝜙1 − 𝜙2
𝜙1 ∗ 𝜙2

) ∗ (
𝑡

𝑡2
)
1/2

 (6.22) 
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6.4.2.2 Three-dimensional porosity difference-driven growth 

 

With the expansion of the 1-D model proposed by Hounslow et al. [30], it is possible to 

investigate the 3-D spherical case, shown in Figure 6.10. The figure shows the three-

dimensional equivalent of Figure 6.9. As with the one-dimensional case, the Blake-Kozeny 

equation (Equation 6.23) and the capillary force (Equation 6.24 and 6.25) can be used to find 

an expression for the liquid flux. However, since the coordinates are spherical, the flux may 

be expressed in terms of q, the constant liquid flux, independent of the radius. Solving the 

equations for q results in an expression of q in terms of the liquid and powder properties, ϕ2 

and the core and total granule size (Equation 6.26). 

 

∆𝑝 = −
4 ∗ 𝛾

𝑑
∗ (1 − 𝜙2) (6.23) 

 

𝑑𝑝

𝑑𝑟
= −

150 ∗ 𝜇

𝑑2
∗
(1 − 𝜙2)

𝜙2
3 ∗

𝑞

𝑟2
 (6.24) 

 

∆𝑝 = −
150 ∗ 𝜇

𝑑2
∗
(1 − 𝜙2)

𝜙2
3 ∗ 𝑞 ∫

𝑑𝑟

𝑟2

ℎ

𝑏

= −
150 ∗ 𝜇

𝑑2
∗
(1 − 𝜙2)

𝜙2
3 ∗ 𝑞 ∗

ℎ − 𝑏

ℎ ∗ 𝑏
 (6.25) 

 

𝑞 = −
𝛾 ∗ 𝑑 ∗ 𝜙2

3

37.5 ∗ 𝜇
∗
ℎ ∗ 𝑏

ℎ − 𝑏
 (6.26) 

 

 

 
Figure 6.10: Schematic representation of three-dimensional granule growth for a granule with a 

core-shell system. 
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which is the expression as derived by Hounslow et al. [30]. However, the expressions for the 

change in b (Equation 6.27), h (Equation 6.28) and the liquid mass balance (Equation 6.29) 

are slightly different, incorporating terms for both ϕ1 and ϕ2: 

 

𝑑𝑏

𝑑𝑡
= −

𝑞/𝑏2

𝜙1 − 𝜙2
= −

𝛾 ∗ 𝑑

37.5 ∗ 𝜇
∗

𝜙2
3

𝜙1 − 𝜙2
∗

ℎ

𝑏 ∗ (ℎ − 𝑏)
 (6.27) 

 

𝑑ℎ

𝑑𝑡
=
𝑞/ℎ2

𝜙2
=

𝛾 ∗ 𝑑

37.5 ∗ 𝜇
∗ 𝜙2

2 ∗
𝑏

ℎ ∗ (ℎ − 𝑏)
 (6.28) 

 

ℎ1
3 ∗ 𝜙1 = ℎ0

3 = (𝑏3 ∗ 𝜙1) + ((ℎ
3 − 𝑏3) ∗ 𝜙2) (6.29) 

 

which are all similar to the expressions obtained by Hounslow et al. [30]. In order to solve the 

equations and find an expression for time as a function of the total granule size, it is 

convenient to derive dimensionless equations for the change in core size (Equation 6.30), 

overall size (Equation 6.31) and the liquid mass balance (Equation 6.32) first using the 

expression for t2 presented in Equation 6.15: 

 

𝑑�̂�

𝑑�̂�
= −

1

2
∗

1

𝜙1 ∗ 𝜙2
∗

ℎ̂

�̂� ∗ (ℎ̂ − �̂�)
 (6.30) 

 

𝑑ℎ̂

𝑑�̂�
=
1

2
∗
𝜙1 − 𝜙2

𝜙1 ∗ 𝜙2
2 ∗

�̂�

ℎ̂ ∗ (ℎ̂ − �̂�)
 (6.31) 

 

1 = (�̂�3 ∗ 𝜙1) + ((ℎ̂
3 − �̂�3) ∗ 𝜙2) (6.32) 

 

Equation 6.31 can then be solved by rewriting the mass balance to find an expression for 

the dimensionless core size (Equation 6.33) and substituting this into the equation 

(Equation 6.34). Rewriting the equation into Equation 6.35 and integrating to give Equation 

6.36 yields the expression for the dimensionless time. Finally, applying the initial condition 

that the dimensionless granule size is equal to ϕ1
-1

 allows for the solution of the integration 

constant K, yielding Equation 6.37. 

 

�̂� = (
(1 − (ℎ̂3 ∗ 𝜙2))

𝜙1 −𝜙2
)

1/3

 (6.33) 
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𝑑ℎ̂

𝑑�̂�
=
1

2
∗
𝜙1 − 𝜙2

𝜙1 ∗ 𝜙2
2 ∗

(
(1 − (ℎ̂3 ∗ 𝜙2))

𝜙1 − 𝜙2
)

1/3

ℎ̂2 − (ℎ̂ ∗ (
(1 − (ℎ̂3 ∗ 𝜙2))

𝜙1 − 𝜙2
)

1/3

)

 (6.34) 

 

2 ∗ 𝜙1 ∗ 𝜙2
2

𝜙1 − 𝜙2
∗

(

 
 
 
 
 

ℎ̂2

(
(1 − (ℎ̂3 ∗ 𝜙2))

𝜙1 − 𝜙2
)

1
3

− ℎ̂

)

 
 
 
 
 

∗ 𝑑ℎ̂ = 𝑑�̂� (6.35) 

 

�̂� = −
𝜙1 ∗ 𝜙2

2

𝜙1 − 𝜙2
∗

(

 
 𝜙1 − 𝜙2

𝜙2
∗ (

(1 − (ℎ̂3 ∗ 𝜙2))

𝜙1 − 𝜙2
)

2
3

+ ℎ̂2

)

 
 
+ 𝐾 (6.36) 

 

�̂� =
𝜙1 ∗ 𝜙2
𝜙1 − 𝜙2

∗ 

(
𝜙2

𝜙1
2/3

∗ (1 − ℎ̂2 ∗ 𝜙1
2/3) + (𝜙1 − 𝜙2)

1/3 ∗ ((1 −
𝜙2
𝜙1
)
2/3

− (1 − ℎ̂3 ∗ 𝜙2)
2/3
)) 

(6.37) 

 

Although the obtained expression for dimensionless time looks relatively daunting, setting 

ϕ1 equal to 1 again results in the same expression as found by Hounslow et al. [30]. Similarly, 

performing a Taylor expansion around a value ϕ2
-1

 for the dimensionless height yields 

equivalent expressions for dimensionless time (Equation 6.38) and the dimensionless granule 

height (Equation 6.39): 

 

�̂� = (
𝜙1 ∗ 𝜙2
𝜙1 − 𝜙2

)
2

∗ (ℎ̂ −
1

𝜙1
1/3
)

2

 (6.38) 

 

ℎ̂ =
1

𝜙1
1/3

+
𝜙1 − 𝜙2
𝜙1 ∗ 𝜙2

∗ �̂�1/2 (6.39) 

 

Furthermore, using a dimensionless height of ϕ2
-1

 in Equation 6.37 yields the expression of 

the dimensionless maximum growth time (Equation 6.40) and actual maximum growth time 

t2 (Equation 6.41): 

 

�̂�𝑚𝑎𝑥 =
𝜙1 ∗ 𝜙2
𝜙1 − 𝜙2

∗ (𝜙1
1/3 − 𝜙2

1/3) (6.40) 
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𝑡2 =
18.75 ∗ 𝜇 ∗ ℎ0

2

𝛾 ∗ 𝑑
∗
𝜙1

1/3 − 𝜙2
1/3

𝜙2
3  (6.41) 

 

Using the same approximation as Hounslow et al. [30], the granule volume can then be 

expressed using Equation 6.42: 

 

𝑣 =
𝑣0
𝜙1
+ (𝑣0 ∗

𝜙1 − 𝜙2
𝜙1 ∗ 𝜙2

) ∗ (
𝑡

𝑡2
)
1/2

 (6.42) 

 

Finally, an expression for the overall granule size can be constructed by assuming that the 

first type of growth occurs independently at different times. First, the granule grows 

independent of impacts until it reaches its natural saturation at ϕ1 after time t1. Next, the 

granule starts growing due to compacted powder around its core, changing the liquid volume 

fraction to ϕ2. From t1, this process takes time t2. This means that the overall observed growth 

time equals the sum of t1 and t2. Below, expressions are presented for t1 (Equation 6.43), t2 

(Equation 6.44) and the overall granule volume v (Equation 6.45): 

 

𝑡1 =
18.75 ∗ 𝜇 ∗ ℎ0

2

𝛾 ∗ 𝑑
∗
1 − 𝜙1

1/3

𝜙1
3  (6.43) 

 

𝑡2 =
18.75 ∗ 𝜇 ∗ ℎ0

2

𝛾 ∗ 𝑑
∗
𝜙1

1
3 − 𝜙2

1
3

𝜙2
3 = (

𝜙1
𝜙2
)
3

∗
𝜙1

1
3 − 𝜙2

1
3

1 − 𝜙1
1/3

∗ 𝑡1 (6.44) 

 

𝑣 =

{
 
 
 
 

 
 
 
 

𝑣0 + (𝑣0 ∗
1 − 𝜙1
𝜙1

) ∗ √
𝑡

𝑡1
𝑡 < 𝑡1

𝑣0
𝜙1
+ (𝑣0 ∗

𝜙1 −𝜙2
𝜙1 ∗ 𝜙2

) ∗ √
𝑡 − 𝑡1
𝑡2

𝑡1 ≤ 𝑡 < 𝑡1 + 𝑡2

𝑣0
𝜙2

𝑡 ≥ 𝑡1 + 𝑡2

 (6.45) 

 

Two observations can be made from Equation 6.45. First of all, if ϕ1 equals 1 or ϕ2 the 

expression is equivalent to Hounslow et al.’s model [30]. Second, nondimensionalisation of 

the overall expression has become more complicated. In order to ensure that the 

dimensionless volume change has values between 0 and 1, it is scaled by the initial droplet 

volume and the final granule volume, v2. Time is scaled by the overall time t1 + t2. However, 

due to the different growth regimes of Equation 6.45, this scaling results in nonlinear growth 

as a function of dimensionless time. 

Figure 6.11 demonstrates this behaviour for varying values of ϕ1. As expected, for a ϕ1 

value of 1, the growth behaviour is indeed linear with the square root of time. Initial growth 

behaviour appears to be consistently linear with the square root of time, but the shift by t1 for 

the second growth regime in Equation 6.45 causes nonlinear behaviour in the second regime. 

Furthermore, it appears as though the further apart the values of ϕ1 and ϕ2 are, the closer the 

overall growth behaviour appears to be linear. 
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Figure 6.11: Dimensionless volume change as a function of the square root of dimensionless time 

according to Equation 6.45 for varying values of ϕ1. 

Figure 6.12 demonstrates the effect of varying ϕ2. Again, for the case where ϕ1 and ϕ2 are 

equal, the behaviour is linear. For other values of ϕ2, however, the behaviour is similar to that 

in Figure 6.11, with linear behaviour for the first regime, and nonlinear behaviour for the 

second regime. As in Figure 6.11, the overall behaviour is closer to linear when the difference 

between ϕ1 and ϕ2 is larger. 

When considering the overall curve, it is entirely feasible to fit a linear line to a set of data 

points behaving according to Equation 6.45. Therefore, there is no clear way of determining 

whether this behaviour or a simpler model holds for the granulation process. The fact that the 

actual growth process might be a combination of static (ϕ1) and dynamic (ϕ2) growth further 

complicates matters, as such data points would be even easier to fit on a straight line. 

However, the question remains whether which type of behaviour is actually happening is 

even relevant for the purposes of modelling the growth behaviour. If Hounslow et al.’s 

original surface tension-driven growth model [30] is sufficiently capable of predicting the 

general growth kinetics, a more complicated expression is neither needed nor does it provide 

a closer representation of reality. 

To investigate how strongly the model deviates from a straight line, several combinations 

of ϕ1 and ϕ2 values were tested. For ϕ1, values in the range of  Pitt et al.’s typical ϕcp were 

selected (0.2) [31], whereas for ϕ2, values around typical COG experiments (0.1) were used. 

In practice, Pitt et al. may have found values beyond the growth regime intended by 

Hounslow et al. due to the presence of smaller pores. However, that would only have 

increased the difference between ϕ1 and ϕ2, making the curve more linear. 
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Figure 6.12: Dimensionless volume change as a function of the square root of dimensionless time 

according to Equation 6.45 for varying values of ϕ2. 

Figure 6.13 shows the effect of slight variations in the values of 0.2 and 0.1 for ϕ1 and ϕ2, 

respectively, and a comparison with Hounslow et al.’s model for surface tension-driven 

growth [30] and experimental data obtained with the COG. For relatively large differences in 

ϕ1 and ϕ2, the curve is very close to linear, with a linear line underestimating the granule size 

slightly in the second growth regime. The smaller the size difference, the more dramatic the 

change from the first growth regime to the second growth regime, and the shorter the second 

growth regime is. At the extreme situation of ϕ1 = 0.18 and ϕ2 = 0.12, the curve deviates 

strongly from linear behaviour, and the original model drastically overestimates the granule 

size. Additionally, both the granulation time as well as the initial granule size are severely 

underestimated. In this situation, Hounslow et al.’s model [30] would not at all give an 

accurate prediction of the growth behaviour. 

However, such behaviour has not been observed in the data produced both by Pitt et al. 

[31] and in this study, as demonstrated by the experimental data in Figure 6.13. This either 

implies that the difference observed between ϕ1 and ϕ2 is sufficiently large, or that the two 

processes of static and dynamic surface tension-driven growth overlap in such a way that a 

linear model is sufficient. This means that a linear surface tension-driven growth model can 

be used, but that Hounslow et al.’s expression for tmax [30] does not reflect the actual growth 

time for granulation. Therefore, both ϕcp and tmax are variables that do not only depend on 

powder and binder properties, but also on the operating parameters and equipment used. For 

the purpose of developing a population balance model, it is therefore sufficient to use the 

original model developed by Hounslow et al. 
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Figure 6.13: Dimensionless volume change as a function of the square root of dimensionless time 

according to Equation 6.45 for varying values of ϕ1 and ϕ2, compared to Hounslow et al.’s surface 

tension-driven growth model [30] and experimental data obtained with the COG. 

 

6.4.3 Initial growth behaviour of granules 
 

So far, this study has focused on developing methods for determining the kinetics of 

layered growth, as well as evaluating the critical-packing liquid volume fraction and final 

granulation time. A final phenomenon that should be addressed is that of the initial growth 

behaviour of granules, i.e. the difference between the initial granule mass observed from data 

plots and the known initial granule mass. For all experiments performed, both with the COG 

and the high-shear mixer, the initial granule mass predicted by the growth line was 

significantly higher than the actual granule mass. After this initial rapid increase, growth 

would proceed according to Hounslow et al.’s model for surface tension-driven growth [30]. 

In order to propose a model, it is important to identify the source of the initial leap in granule 

mass. 

The first source of the rapid increase in granule mass could be the transition from static to 

dynamic surface tension-driven growth, as described in Section 6.4.2. If the first growth 

regime is fast, and only the second regime is observed, nonlinear growth behaviour could be 

found. However, that is only the case if the first and second growth regime are sufficiently 

separated. If there is insufficient separation, the line should appear much more linear, and the 

leap less pronounced. Furthermore, Pitt et al. [31] also observed a rapid increase in granule 

mass for some systems, and their work did not include any dynamic experiments. Therefore, 

different explanations for the initial rapid increase in granule mass should be investigated. 

Shukri [159] specifically investigated the early static growth behaviour of granules using a 

set-up similar to that of Pitt et al. [31]. Granules were drop-nucleated using a syringe, and 

grown statically. The granules were then extracted and weighed, but instead of using a sieve, 
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Shukri extracted all granules individually using pins. In this way, the early growth of granules 

could be studied much more precisely. It was found that there was actually no initial rapid 

increase in granule growth in early stages, but that the method used to extract the granules did 

influence the observed masses; Shukri’s pin method was capable of extracting the granule 

without significantly affecting the granule mass, as opposed to granule-powder separation 

with a sieve, which might lead to granule attrition. As such, it was not possible to connect 

different data sets that used different methods, but the qualitative kinetic growth behaviour 

held in the study. 

The conclusion in Shukri’s work most relevant to this study is that, provided the employed 

method is the same, growth will show the same kinetics, i.e. linear growth with the square 

root of time. This implies that, for both modelling and in practice, if a granule is nucleated 

inside a granulator, it directly starts growing according to known kinetics. Since there is no 

change in extraction method, there will be no initial leap in granule mass. Granules with 

different nucleation times will grow at different rates, however, as determined by their liquid 

content. For the development of a model for use in practical granulation, this difference may 

result in a wide spread of growth rates if long liquid addition times are used, causing 

nucleation at different times. However, it should still be possible to model the rates provided 

the liquid content of the granules is known. 

Interestingly, for the studies performed in this chapter, the initial rapid increase in granule 

mass was observed despite starting in the middle of granulation. This behaviour provides 

some clues about the cause for the observed leap. It is likely that the large growth at the start 

of granulation is caused by the immediate uptake of powder by the liquid. For some set-ups, 

the overall effect will be more pronounced than for other set-ups, as demonstrated by 

Shukri’s results [159]. However, for the purpose of understanding nucleation, as well as 

explaining the behaviour observed in this work, it is interesting to consider the exact 

mechanism of powder uptake from a wet droplet. The following section explores how the 

granule layer is formed in terms of the powder layer formed around it. 

 

6.4.3.1 Layer by layer powder uptake 

 

Observed granule growth behaviour is generally characterised by linear behaviour with the 

square root of time. However, the initial granule mass is rarely predicted correctly, except in 

perhaps the static experiments performed by Pitt et al. [31]. This exclusion of the first data 

point can partially be attributed to a small time difference between addition to the granulator 

of nuclei or paste, and actual granulation. This time gap might cause some static growth, 

which has been demonstrated to have different, albeit qualitatively similar, kinetics. 

However, this time difference does not completely account for the powder uptake, as 

demonstrated by the large differences between actual and predicted granulation end times. 

It is possible that a nucleus or paste granule immediately gains a layer of powder when it 

is added to the powder bed. This is logical, as the surface of the granule is wet; there is no 

requirement for consolidation before layering occurs. Assuming there is a limit to the 

thickness of the powder layer that can be taken in by the nucleus in that first moment of 

granulation, the effect on the granule mass will vary per granule size and the amount of liquid 

available. For smaller granules, the total added powder mass should be lower than that for 

larger granules, since the wet surface area is smaller for the former. However, the relative 

increase in granule mass can be much higher for smaller granules, as the uptake of powder 
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will rapidly increase their mass. Droplet-nucleated granules also have a higher amount of 

liquid available, and should, therefore, show a large relative increase in mass compared to 

paste-nucleated granules. A comparison of the drop-nucleated granules produced with the 

COG in the previous chapter and paste-based granules described here is shown in Table 6.6. 

The table shows that most of these predictions appear to be valid. Small granules with a large 

amount of available liquid show a sharper increase in granule mass than the larger, less wet 

paste-based granules. The total mass increase is larger for the paste-based granules, however, 

especially when considering the fact that the drop-nucleated granules were not granulated 

immediately due to the time between nucleation and start-up of the COG. 

An additional interesting observation is the fact that viscosity appears to have an effect on 

the uptake of powder. The lower the viscosity, the larger the uptake of powder. This 

observation supports the prediction that the availability of binder influences powder uptake; a 

lower-viscosity binder is more mobile in a powder bed, i.e. the penetration time is shorter 

compared to higher-viscosity binders. It is also consistent with Hapgood et al.’s work on 

liquid penetration into powder beds [12,55]. 

For the paste-based granules, the results are quite consistent, although the 500 rpm batch 

deviates slightly from the others. When considering the actual interpolated values (178 mg 

for 500 rpm as opposed to 185 mg for 750 rpm), the overall difference is not that significant. 

Although Table 6.6 is useful for observing the relative increases in granule mass, it does 

not show how the exact layering mechanism works. Table 6.7 shows how many layers the 

granules actually gain when comparing the actual nucleus mass to the interpolated mass, 

assuming a single layer is approximately a powder particle diameter in height.  

Interestingly, when comparing drop-nucleated lactose and glass beads granules, it appears 

as though lactose-based granules show significantly more layered growth. This may be the 

result of particle size and shape; glass beads are larger and more spherical than lactose 

particles, which may lead to weaker powder-liquid bonds and more difficult powder uptake 

due to less mechanical interlocking of the particles [62]. 

 

 
Table 6.6: Comparison of initial nuclei masses to the masses as extrapolated using Hounslow et 

al.’s model for surface tension-driven growth [30]. 

System m0 (μL) m0,extrapolated (μL) Change (%) 

Lactose-13 mPa•s silicone oil 5.7  41.9  638.2  

Lactose-52 mPa•s silicone oil 6.4  37.7  485.4  

Lactose-105 mPa•s silicone oil 6.6  33.0  401.7  

Lactose-95 mPa•s PEG 10.6  39.2  269.0  

Glass beads-52 mPa•s silicone oil 6.4  43.6  577.8  

Glass beads-105 mPa•s silicone oil 6.6  40.2  511.0  

Glass beads-1043 mPa•s silicone oil 4.3  21.9  416.4  

500 rpm, grid, flat plate 134.1  178.0  32.8  

750 rpm, grid, flat plate run 1 131.3  184.2  40.2  

750 rpm, grid, flat plate run 2 128.4  184.5  43.8  

750 rpm, grid, flat plate run 3 128.3  187.1  45.8  

  



Chapter 6 Layered growth in a mixer with a flat plate impeller 

144 

 

Table 6.7: Comparison of initial nucleus radius to the radius as extrapolated using Hounslow et 

al.’s model for surface tension-driven growth, as well as the number of powder layers required to 

achieve the radius difference. 

System r0 (mm) r0,obs (mm) Layers (-) 

Lactose-13 mPa•s silicone oil 1.1  1.9  16  

Lactose-52 mPa•s silicone oil 1.2  1.9  14  

Lactose-105 mPa•s silicone oil 1.2  1.8  12  

Lactose-95 mPa•s PEG 1.3  1.9  11  

Glass beads-52 mPa•s silicone oil 1.2  1.7  8  

Glass beads-105 mPa•s silicone oil 1.2  1.7  7  

Glass beads-1043 mPa•s silicone oil 1.0  1.4  5  

500 rpm, grid, flat plate 2.9  3.2  5  

750 rpm, grid, flat plate I 2.9  3.2  6  

750 rpm, grid, flat plate II 2.9  3.2  6  

750 rpm, grid, flat plate III 2.9  3.2  7  

 

Comparing the paste-based granules to the droplet nucleated granules shows that the 

layered growth is less pronounced in the paste. This is in agreement with the observations 

recorded in Table 6.6. It should be noted that the immediate number of layers gained by 

nucleation with paste is quite small; it is not hard to imagine that the sheer impact of the paste 

with the powder bed allows 5-7 single layers of powder to form around the granule. Taking 

Shukri’s conclusions [159] into consideration, it appears reasonable to assume that the 

granule takes up only a few powder layers upon deposition. For larger granules, the effect on 

both granule mass and volume is less pronounced, and for non-prenucleated granules, the 

effect should not be noticeable during the granulation process. 

 

6.5 Conclusions 
 

In this study, an attempt was made to find expressions for key parameters in Hounslow et 

al.’s model [30], which is one of the main objectives of this work. These key parameters are 

the critical-packing liquid volume fraction, ϕcp, and the granulation time needed to reach 

critical packing, tmax. Additionally, behaviour of experiments performed using the 

consolidation-only granulator (COG) that deviated from Hounslow et al.’s model was 

elucidated in order explore the validity of the model. 

Paste granulation was performed in order to determine end points in granule layered 

growth, as well as find methods to predict these values. To minimise granule breakage and 

attrition and reach the end point of layered growth, a high-shear mixer was fitted with a flat 

plate impeller, and paste was cut and granulated in the mixer. The data obtained was 

compared to that of the drop-nucleated granules granulated in the COG as described in the 

previous chapter. 

It was found that paste-based granules showed similar behaviour to drop-nucleated 

granules, although the paste method had an inherently wider variation in initial granule mass. 

The method was still found to be fairly consistent. Overall, less growth was observed 

compared to growth in the COG, and the final granulation time was similar to that of the 

COG growth experiments. Consequently, growth rates were lower than those obtained in the 

COG. Additionally, it was found that increasing the impeller speed appeared to promote 

growth, with the growth rate being proportional to the square root of the impeller speed. 

Porosity was found to be comparable to the granule porosities obtained with the COG, and 

X-ray tomography revealed a similar core-shell structure. However, the core in this study was 
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found to decrease in density, and the shell to increase in density. No overall densification was 

observed. 

An extension of Hounslow et al.’s surface tension-driven growth model [30] was proposed 

to account for the densification of the granule shell by impacts in the granulator. However, it 

was concluded that considering growth as having a separate static and impact-driven dynamic 

phase did not agree with experimentally observed behaviour. Therefore, it was recommended 

to use Hounslow et al.’s model [30] for predicting granule growth, as well as for the 

development of a population balance model. However, both ϕcp and tmax can most likely not 

be simply calculated, as they could be dependent on the operating procedure and equipment 

used as well as on the system properties. These parameters should be determined 

experimentally. 

Unexpectedly, the initial rapid increase in granule mass after nucleation was still present 

in this study, even for paste-based granules. Evaluation of the results using Shukri’s work 

[159] led to the conclusion that the initial leap in granule mass is most likely not present in 

practical granulation. Further investigation into the layering mechanism revealed that a layer 

of several primary particle sizes wide was formed around the granules immediately after 

addition to the granulator. This phenomenon was most likely caused by the immediate 

availability of binder liquid in the granules, and it was not expected to significantly influence 

the granulation process. Therefore, it is not necessary to account for the uptake of powder in 

the population balance model developed in Chapter 7. 
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7.1 Introduction 
 

In Chapter 5, an effort was made to identify models that predict granulation and 

consolidation behaviour. It was found that layered growth occurred as predicted by Hounslow 

et al.’s model for surface tension-driven growth [30]. In Chapter 6, a method was proposed to 

account for some of the observed deviations from the model, such as the initial rapid increase 

in granule mass. Furthermore, methods to predict important model parameters, such as the 

liquid volume fraction when layered growth stops, ϕcp, and the time it takes to reach this 

value, tmax, were investigated. In this chapter, the information from the previous chapters is 

used to develop a population balance model (PBM). This type of model tracks the 

distribution of one or multiple properties, in this case particle number or volume of solid, 

liquid and air, over time. 

Although the results from Chapter 5 and Chapter 6 show that layered growth can be 

predicted using Hounslow et al.’s model, that does not make the model directly suitable for 

application in population balance modelling. The equations need to be converted into 

population balance equations, and several assumptions have to be made for process 

parameters and conditions in order to solve the equations. Additionally, the performance of 

the developed model has to be evaluated, at least qualitatively, in order for the model to be 

deemed successful. 

The aims of the work described here are: 

 To provide a summary of all the results from Chapter 5 and Chapter 6 with which 

to develop the PBM. 

 To evaluate information from the literature review in Chapter 2 on PBM relevant 

to this study. 

 To develop a layered growth kernel for PBM using discretisation. 

 To implement the model using Mathematica software and perform a short 

simulation. 

 To compare the results of the simulation to the granulation data obtained using the 

consolidation-only granulator described in Chapter 5. 

 

Two types of model are presented here. The first model is based on the volume approach 

proposed by Verkoeijen et al. [68] for a three-dimensional PBM. Due to its relative 

complexity, this model is not evaluated in this study. The second model is a one-dimensional 

PBM solved using discretisation. The latter model is run using Mathematica software. The 

results are compared to the experimental data obtained in Chapter 5, and the viability of the 

proposed model and assumptions are evaluated. 

 

7.2 Properties of the surface tension-driven growth model 
 

From Chapter 5, it becomes clear that granule layered growth is linear with the square root 

of time. This behaviour is predicted by Hounslow et al.’s model for surface tension-driven 

growth [30], which implies that the interaction between powder and binder is the driving 

force behind layering (Equation 7.1): 
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𝑣 = 𝑣0 + (𝑣𝑚𝑎𝑥 − 𝑣0) ∗ √
𝑡

𝑡𝑚𝑎𝑥
 (7.1) 

 

Here, v is the granule volume, v0 is the initial droplet volume, vmax is the maximum attainable 

granule volume, dependent on critical-packing liquid volume fraction ϕcp, and tmax is the time 

needed to attain the maximum granule volume. 

Although the model predicted growth behaviour quite well, there were two complications 

that needed to be addressed. First of all, the initial granule volume, v0, did not agree with the 

observed initial volume when extrapolating obtained growth rates. Generally, an initial steep 

increase in granule mass, and therefore volume, was observed. A second issue that arose was 

that the final granule mass, and therefore the final granule volume and critical-packing liquid 

volume fraction, ϕcp, could not be determined accurately; granule breakage lowered the 

observed granule mass and prevented the recovery of a sufficient number of intact granules to 

accurately determine the final granule mass. 

The work described in Chapter 5 needs two additional remarks. Firstly, it was concluded 

that, although local consolidation appeared to occur in the outer layer of the granules, no 

overall granule consolidation occurred. Therefore, no model can be developed to incorporate 

consolidation as well as layering. Secondly, the method to calculate and use the granule 

volume in Hounslow et al.’s model [30] does not take into account the porosity of the 

granule. It is possible that ϕcp and tmax are dependent on granule porosity, but no such effect 

was found in the model. Therefore, when creating a population balance model, the amount of 

air present in the granules has to be taken into account for the change in granule size. 

In Chapter 6, the issues of the initial rapid increase in granule mass and the determination 

of the final granule mass were addressed. From Shukri’s work [159], it was concluded that 

the initial increase in granule mass was most likely an artefact of the prenucleation times. For 

practical granulation, the effect of the initial uptake of powder should be significantly less 

pronounced. The final granule mass was determined using a mixer with a flat blade impeller 

and cut paste instead of prenucleated granules. The advantage of this method is the fact that 

the effect of the rapid initial growth was reduced. The observed granulation times again did 

not agree with Hounslow et al.’s surface tension-driven growth model [30], most likely due to 

changes in the porosity by impacts in the granulator. Therefore, an attempt was made to 

extend Hounslow et al.’s model to account for the liquid flow due to porosity changes. It was 

found, however, that for practical purposes, ϕcp and tmax could not be calculated in this way, 

and that the kinetics of Hounslow et al.’s model were adequate for describing the growth 

kinetics. Therefore, this model is used for the development of the population balance models 

in the following section. 

 

7.3 Population balance modelling 
 

In this study, two different kernels for PBMs were developed. The first model, a 3-D 

PBM, was proposed, whereas the second model, a 1-D PBM, was discretised and analysed 

using Mathematica software. The shape the equations take is largely determined by the type 

of solution method used to solve the equations, as well as several other factors, described in 

Chapter 2, Section 2.4. The reasons why it was decided to develop these two models 

specifically are evaluated in this section. 
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There are several methods of solving PBMs. First of all, there are the discretisation 

methods [22,75-77], which are based on splitting the population balance equations up into 

several integrals that cover different size classes of granules. Second, there are the Monte 

Carlo (MC) methods [93-95], which are slower than discretisation models, but provide 

information on the individual particles involved in collisions. Third, there is the quadrature 

method of moments (QMOM) [100-102], which preserves only the lower order moments of a 

particle size distribution (PSD). There exist other techniques, but for the purpose of this 

study, only these three categories of techniques are considered [103-105]. 

The study on solution methods in Chapter 2 concludes with the following factors that need 

to be taken into account when selecting a solution system for PBMs: 

 

 Dimensionality of the population balance equations 

 Mechanisms considered (e.g. nucleation, coalescence, breakage, growth) 

 Required accuracy for the application 

 Acceptable computational time for the application 

 Hardware (e.g. number of cores, available CPU) 

 Desired synergy with other models, such as CFD and DEM 

 

Each of these points is considered in the following sections. 

 

7.3.1 The dimensionality of the population balance equations 
 

Population balance models (PBMs) are a type of simulation in which one or multiple 

properties of a system are tracked over time [26,65], depending on the dimensionality of the 

model. In the case of a one-dimensional PBM for granulation, that property is often number 

of granules of a specific size. Usually, a population balance model has several terms, 

describing growth (the change of a property), birth (the increase in number of granules of a 

certain size) and death (the removal of granules of a certain size), referred to as kernels [64]. 

In multidimensional PBMs, multiple properties are tracked. For example, some models track 

size, porosity and liquid content [24], whereas others track volumes of solid, liquid and air 

[68]. 

For the purpose of the layering model, a 3-D PBM sounds attractive: the volume-based 

model meshes well with population balance equations based on volumes of solid, liquid and 

air. However, there are few programs that allow for the fast direct simulation of such a 

complex model. Therefore, a 3-D PBM is proposed, but a simpler 1-D PBM is also developed 

for evaluation using Mathematica software. 

 

7.3.2 The mechanisms considered in the model 
 

The model considered in this study is chiefly designed for predicting layered growth. 

However, it should be kept in mind that the model should be compatible with models for 

other mechanisms such as agglomeration, nucleation, consolidation and breakage. 

Furthermore, when developing a model, liquid addition may play a role, as well as the 

availability of powder in the granulator. This means the model needs to incorporate these 

processes, or at least be adaptable so that these processes can be easily added. 
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7.3.3 Accuracy, computational time, hardware and synergy 
 

For the initial validation of the model, the most interesting factor is qualitative behaviour. 

This means that the model accuracy does not have to be very high. Therefore, the 

computational time is also expected to be low. Consequently, hardware is not a limiting 

factor. Finally, the model is kept as simple as possible for this first evaluation, and does not 

yet need any synergy with DEM. 

 

7.3.4 Other considerations 
 

Two different types of equations are developed for modelling purposes, and both should 

be compared to existing models in the literature. Therefore, it was decided that the 3-D PBM 

would be shaped like Verkoeijen et al.’s set of equations [68], which is a Hounslow 

discretised system [22]. Since this type of discretisation is the most straightforward approach, 

the one-dimensional layered growth kernel for Mathematica is also solved by discretisation. 

In this kernel, the growth rate is considered a function of the granule diameter. Since standard 

discretisation is known to lead to errors due to the division into bins [22], an additional two 

alternatives to standard discretisation are explored; Marchal et al.’s dicretisation [23] and a 

variant of Bertin et al.’s discretisation [84]. 

 

7.4 Model development 
 

This section is divided into two subsections describing the two different models. For the 

first model, a 3-D PBM is developed according to Verkoeijen et al.’s method [68]. The 

second model consists of a fairly straightforward one-dimensional discretised rate expression 

for the change in granule diameter. 

 

7.4.1 3-D PBM based on volume of solid, liquid and air 
 

In 3-D PBMs, multiple properties of a system are tracked at the same time. Although this 

method increases the complexity of the equations and the computation time, it allows for the 

simulation of more realistic property distributions. Verkoeijen et al. [68] proposed a method 

for a volume-based approach of population balance modelling, tracking the volume density 

distribution of solid, liquid and air, as shown in Equation 7.2: 

 

𝜕𝑞

𝜕𝑡
+
𝜕(𝐺 ∗ 𝑞)

𝜕𝐿
= 𝐵 − 𝐷 (7.2) 

 

where q is a vector containing the volume densities of liquid, solid, and air, L is particle size, 

G is growth, B is the birth vector and D is the death vector. 

Considering the fact that the model proposed by Hounslow et al. [30] uses liquid and solid 

volume of a single granule, this type of model appears to be well suited to Verkoeijen et al.’s 

approach. Although such a model would not be able to predict the granule porosity due to the 

exclusion of an air term from the equations, the model would be able to predict the solid and 

liquid content of the granules. In order to develop an appropriate rate equation, Equation 7.1 
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firstly needs to be rewritten slightly to reflect the fact that the equation only takes into 

account the volumes of solid and liquid (Equation 7.3): 

 

𝑣𝑆+𝐿 = 𝑣𝐿 + (𝑣𝑚𝑎𝑥 − 𝑣𝐿) ∗ √
𝑡

𝑡𝑚𝑎𝑥
 (7.3) 

 

Here, vS+L is the total granule volume excluding air, vL is the liquid volume, which may be 

dependent on time, vmax is the maximum attainable granule size, t is the granulation time and 

tmax is the time needed to reach the vmax. The most important modification in this equation is 

that vL can be dependent on time, depending on whether liquid is added or evaporation occurs 

during the simulated granulation process. Since vmax can vary if the liquid volume in the 

granule is variable, it is more useful to express Equation 7.3 in terms of the critical-packing 

liquid volume fraction ϕcp. Additionally, it is more convenient to consider only the solid 

volume vS instead of the total volume vT (Equation 7.4): 

 

𝑣𝑆 = (𝑣𝑚𝑎𝑥 − 𝑣𝐿) ∗ √
𝑡

𝑡𝑚𝑎𝑥
= 𝑣𝐿 ∗ (

1 − 𝜙𝑐𝑝

𝜙𝑐𝑝
) ∗ √

𝑡

𝑡𝑚𝑎𝑥
 (7.4) 

 

This equation is not suitable for direct implementation in population balance modelling, 

however; a population balance equation should be a rate expression to make it possible to 

combine the equation with other kernels. As such, the derivative of Equation 7.4 needs to be 

taken, as shown in Equation 7.5: 

 

𝑑𝑣𝑆
𝑑𝑡

=
𝑑𝑣𝐿
𝑑𝑡

∗ (
1 − 𝜙𝑐𝑝

𝜙𝑐𝑝
) ∗ √

𝑡

𝑡𝑚𝑎𝑥
+ 𝑣𝐿 ∗ (

1 − 𝜙𝑐𝑝

𝜙𝑐𝑝
) ∗

1

2𝑡𝑚𝑎𝑥 ∗ √
𝑡

𝑡𝑚𝑎𝑥

 (7.5) 

 

The expression for growth by layering now contains two terms: the increase or decrease in 

the surface tension-driven growth rate caused by liquid addition or evaporation (blue), as well 

as the surface tension-driven growth rate in absence of changes in the liquid volume (red). 

For evaluation as a PBM, t should be removed from the equation, as the start of growth is 

potentially different for every single granule (if nucleation occurs). Both terms can be 

expressed in terms of vS, eliminating t from the equation (Equation 7.6): 

 

𝑑𝑣𝑆
𝑑𝑡

=
𝑑𝑣𝐿
𝑑𝑡

∗
𝑣𝑆
𝑣𝐿
+
𝑣𝐿

2

𝑣𝑆
∗ (
1 − 𝜙𝑐𝑝

𝜙𝑐𝑝
)

2

∗
1

2𝑡𝑚𝑎𝑥
 (7.6) 

 

In this way, both the term for liquid addition (blue) and regular surface tension-driven growth 

(red) are expressed in quantifiable parameters and variables. In the case where no liquid 

addition or evaporation occurs, the blue term can be eliminated, leaving Equation 7.7: 

 

𝑑𝑣𝑆
𝑑𝑡

=
𝑣𝐿

2

𝑣𝑆
∗ (
1 − 𝜙𝑐𝑝

𝜙𝑐𝑝
)

2

∗
1

2𝑡𝑚𝑎𝑥
 (7.7) 
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which is the same rate expression as the one proposed by Hounslow et al. [30]. Naturally, this 

expression only holds for vL/vS > ϕcp; at the critical-packing liquid volume fraction, no further 

growth occurs. 

 

7.4.2 1-D PBM based on granule diameter growth rate 
 

A typical one-dimensional population balance model represents the change in number 

density function n in terms of particle size L, growth G, birth B and death D, as shown in 

Equation 2.16 of Chapter 2, which is also presented below (Equation 7.8): 

 

𝜕𝑛

𝜕𝑡
+
𝜕(𝐺 ∗ 𝑛)

𝜕𝐿
= 𝐵 − 𝐷 (7.8) 

 

For the purpose of the simulation using Mathematica software, birth and death are neglected, 

reducing the equation to Equation 7.9: 

 

𝜕𝑛

𝜕𝑡
= −

𝜕(𝐺 ∗ 𝑛)

𝜕𝐿
 (7.9) 

 

Here, the growth rate G is expressed in terms of the change of granule diameter as a function 

of time, dL/dt. To convert the population balance equation into an equation usable for a 1-D 

PBM, Equation 7.7 must be converted into an expression dependent on the granule diameter. 

 

7.4.2.1 Expressing the growth rate as a function of the granule diameter 

 

In order to express the growth rate as a function of the diameter instead of solid volume vS 

and liquid volume vL, the total granule volume vT is needed. However, it was found during 

experiments that Hounslow et al.’s model  [30] does not take into account the volume of air 

vA. Therefore, this variable must be added, even if no consolidation occurs (Equation 7.10), to 

account for the effect porosity has on the size of the granule. 

 

𝑣𝑇 = 𝑣𝑆 + 𝑣𝐿 + 𝑣𝐴 (7.10) 

 

Using this equation, the porosity ε can be expressed in terms of these volumes, as shown 

in Equation 7.11. In turn, this equation can be rewritten to express vA as a function of vT, vL 

and ε (Equation 7.12): 

 

𝜀 =
𝑣𝐿 + 𝑣𝐴
𝑣𝑇

 (7.11) 

 

𝑣𝐴 = 𝑣𝑇 ∗ 𝜀 − 𝑣𝐿 (7.12) 

 

Substituting this equation into Equation 7.10 yields Equation 7.13: 

 

𝑣𝑇 = 𝑣𝑆 + 𝑣𝐿 + 𝑣𝑇 ∗ 𝜀 − 𝑣𝐿 =
𝑣𝑆
1 − 𝜀

 (7.13) 
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Now, the total granule volume has been expressed in terms of the volume of solid and the 

porosity. Using the total volume, the granule diameter L can be calculated (Equation 7.14): 

 

𝐿 = √
6

𝜋
∗ 𝑣𝑇

3

= √
6

𝜋
∗
𝑣𝑆
1 − 𝜀

3

 (7.14) 

 

The growth rate G is effectively the derivative of the granule diameter with respect to 

time. Therefore, the derivative of this equation has to be taken. Note that the porosity may be 

dependent on time due to consolidation, and this has also to be taken into account, yielding 

Equation 7.15: 

 

𝐺 =
𝑑𝐿

𝑑𝑡
=

𝑑𝑣𝑆
𝑑𝑡

∗ (1 − 𝜀) + 𝑣𝑆 ∗
𝑑𝜀
𝑑𝑡

𝜋
2 ∗

(1 − 𝜀)2 ∗ √(
6
𝜋 ∗

𝑣𝑆
1 − 𝜀)

23
 (7.15) 

 

Since it is undesirable to have the rate expression for solid volume in the equation, 

Equation 7.6 can be substituted into this expression to yield Equation 7.16: 

 

𝑑𝐿

𝑑𝑡
=

(
𝑑𝑣𝐿
𝑑𝑡

∗
𝑣𝑆
𝑣𝐿
+
𝑣𝐿

2

𝑣𝑆
∗ (
1 − 𝜙𝑐𝑝
𝜙𝑐𝑝

)
2

∗
1

2𝑡𝑚𝑎𝑥
) ∗ (1 − 𝜀) + 𝑣𝑆 ∗

𝑑𝜀
𝑑𝑡

𝜋
2 ∗

(1 − 𝜀)2 ∗ √(
6
𝜋 ∗

𝑣𝑆
1 − 𝜀)

23
 (7.16) 

 

Here, the numerator describing the granule growth rate is composed of three terms: 

changes in surface tension-driven growth due to the addition or evaporation of liquid (blue), 

regular surface tension-driven growth (red), and changes in surface tension-driven growth 

due to variations in the porosity (green). This equation is still quite complex; information on 

the liquid density and porosity is needed, as well as the solid volume. In the experiments 

performed in this work, no liquid was added during the experiments, and no overall 

consolidation was observed. Therefore, Equation 7.16 can be simplified by removing the 

liquid addition (blue) and consolidation (green) terms to produce Equation 7.17. If it is 

desired to include these phenomena, separate equations to describe them must be developed. 

For the liquid volume, it should be possible to use the equation for determining the liquid 

mass fraction, which is used in PBM for mechanistic collision kernels [112]. Likewise, 

porosity is already considered in some population balance models [24]. Therefore, adapting 

the model presented here to implement these parameters for more advanced models should be 

possible. 

 

𝑑𝐿

𝑑𝑡
=

𝑣𝐿
2

𝑣𝑆
∗ (
1 − 𝜙𝑐𝑝
𝜙𝑐𝑝

)
2

∗
1

2𝑡𝑚𝑎𝑥

𝜋
2 ∗

(1 − 𝜀) ∗ √(
6
𝜋 ∗

𝑣𝑆
1 − 𝜀)

23
 (7.17) 
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With the porosity and initial droplet size as constants, the only parameters that need to be 

considered are the critical-packing liquid volume fraction ϕcp and the time to achieve the 

maximum granule size tmax. These two parameters can be determined experimentally. 

Before discretising Equation 7.17, two special cases must be addressed. The first case is 

the end of the growth regime, where the growth rate is zero. This condition is simply satisfied 

by comparing the volume of solid and liquid to the critical-packing liquid volume fraction. 

The other special case is the initial growth, where there is not enough powder taken into the 

nucleus for the porosity constraint to hold. In this scenario, the total volume vT is considered 

to be equal to vL + vS. This regime is true until a critical solid volume has been reached; vcrit, 

according to Equation 7.18: 

 

𝑣𝑐𝑟𝑖𝑡 = 𝑣𝐿
1 − 𝜀

𝜀
 (7.18) 

 

where ε is the constant porosity once the granule has grown beyond the critical solid volume. 

As long as the sum of the solid and liquid volume is smaller than this value, the granule is 

assumed to not contain any air. Since no liquid is added to the granules, the granule will start 

incorporating air during growth in order to maintain a constant porosity. Applying these 

conditions to Equation 7.17 leads to the following equation (Equation 7.19): 

 

𝐺 =

{
 
 
 
 
 
 

 
 
 
 
 
 𝑣𝐿

2

𝑣𝑆
∗ (
1 − 𝜙𝑐𝑝
𝜙𝑐𝑝

)
2

∗
1

2𝑡𝑚𝑎𝑥

𝜋
2 ∗

√(
6
𝜋 ∗

(𝑣𝑆 + 𝑣𝐿))

2
3

𝑣𝑆 < 𝑣𝑐𝑟𝑖𝑡

𝑣𝐿
2

𝑣𝑆
∗ (
1 − 𝜙𝑐𝑝
𝜙𝑐𝑝

)
2

∗
1

2𝑡𝑚𝑎𝑥

𝜋
2 ∗

(1 − 𝜀) ∗ √(
6
𝜋 ∗

𝑣𝑆
1 − 𝜀)

23

𝑣𝐿
𝑣𝐿 + 𝑣𝑆

> 𝜙𝑐𝑝

0
𝑣𝐿

𝑣𝐿 + 𝑣𝑆
≤ 𝜙𝑐𝑝

 (7.19) 

 

7.4.2.2 Discretisation of granule growth 

 

There are several discretisation methods available in the literature for the term d(G*n)/dL. 

Here, three different discretisation methods are used: standard discretisation [22], 

discretisation as performed by Marchal et al. [23] and a variant of discretisation employed by 

Bertin et al. [84]. 

As explained in Chapter 2, discretisation is based on the partial integration of the 

expression of the equation with respect to the particle size, effectively dividing the 

differential equation up into a series of differential equations dependent on time only. Each 

differential equation describes the birth, death and growth in a single bin, or particle size 

range, and bins usually increase exponentially according to a fixed bin size ratio r. Using 

many narrow bins leads to a higher accuracy of the solution, but also to increased 

computational load. The final result is a series of equations describing the number of particles 

in a bin over time, Ni(t). 
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Discretisation of Equation 7.19 requires the replacement of all volumes vS by the discrete 

bin diameter Li by relating the volume vT to the diameter; according to Equation 7.14 for the 

normal growth (red) regime, and as the total volume minus the liquid volume for the initial 

growth (blue) regime (Equation 7.20): 

 

𝐺𝑖 =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑣𝐿

2 ∗ (
1 − 𝜙𝑐𝑝
𝜙𝑐𝑝

)
2

∗
1

2𝑡𝑚𝑎𝑥
𝜋
2 ∗ (𝐿𝑖 + 𝑑𝑝)

2
∗ ((

𝜋
6 ∗ (𝐿𝑖 + 𝑑𝑝)

3
) − 𝑣𝐿)

𝑖 = 1

𝑣𝐿
2 ∗ (

1 − 𝜙𝑐𝑝
𝜙𝑐𝑝

)
2

∗
1

2𝑡𝑚𝑎𝑥
𝜋
2 ∗ 𝐿𝑖

2 ∗ ((
𝜋
6 ∗ 𝐿𝑖

3) − 𝑣𝐿)
(
𝜋

6
∗ 𝐿𝑖

3) − 𝑣𝐿 < 𝑣𝑐𝑟𝑖𝑡

𝑣𝐿
2 ∗ (

1 − 𝜙𝑐𝑝
𝜙𝑐𝑝

)
2

∗
1

2𝑡𝑚𝑎𝑥
𝜋2

12 ∗
(1 − 𝜀)2 ∗ 𝐿𝑖

5

𝑣𝐿

𝑣𝐿 + ((1 − 𝜀) ∗
𝜋
6 ∗ 𝐿𝑖

3)
> 𝜙𝑐𝑝

0
𝑣𝐿

𝑣𝐿 + ((1 − 𝜀) ∗
𝜋
6 ∗ 𝐿𝑖

3)
≤ 𝜙𝑐𝑝

 (7.20) 

 

Note that there is one problem with this equation; for cases where vT ≤ vL, the equation is not 

valid. This can be solved by ensuring no bin smaller than the bin currently under 

consideration exists in the model. Additionally, for L1, which is set equal to the initial droplet 

volume, the size of the bin is considered to be L1 + dp, where dp is the diameter of a single 

powder particle. This effectively means that a liquid droplet is assumed to take in a single 

layer of powder. Provided that the powder particles are small compared to the droplet size, 

this appears to be a reasonable assumption. 

After the discretisation of the growth rate G, it is necessary to define terms for the change 

into and out of the bins in terms of Gi and Ni. The first and most straightforward option is 

standard discretisation [22] which assumes the growth into bin i is equal to the number of 

particles in the bin i-1 multiplied by the growth rate, divided by the width of that bin. 

Likewise, the growth out of a bin i is equal to the number of particles in the bin divided by 

the width of bin i. In summary, the differential equations become (Equation 7.21): 

 

𝑑𝑁𝑖
𝑑𝑡

=

{
  
 

  
 −

𝐺𝑖 ∗ 𝑁𝑖
𝐿𝑖+1 − 𝐿𝑖

𝑖 = 1

𝐺𝑖−1 ∗ 𝑁𝑖−1
𝐿𝑖 − 𝐿𝑖−1

−
𝐺𝑖 ∗ 𝑁𝑖
𝐿𝑖+1 − 𝐿𝑖

1 < 𝑖 < 𝑞

𝐺𝑖−1 ∗ 𝑁𝑖−1
𝐿𝑖 − 𝐿𝑖−1

𝑖 = 𝑞

 (7.21) 

 

Here, there are special cases for the first and last (q
th

) bin; no extra granules are produced at 

the lowest bin, and no granules can grow out of the highest bin. The latter constraint is not a 

result of the end of the growth regime predicted by the model, but rather a necessity to 

conserve the number of granules present. For the growth kernel presented here, no granules 
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are expected to reach the final bin, but this could occur if agglomeration or liquid addition 

kernels were added. 

Equation 7.21 can be rewritten more elegantly in terms of Li only by using the fixed bin 

size ratio r. The rewritten equation then becomes Equation 7.22: 

 

𝑑𝑁𝑖
𝑑𝑡

=

{
  
 

  
 

−(𝐺𝑖 ∗ 𝑁𝑖)

(𝑟 − 1) ∗ 𝐿𝑖
𝑖 = 1

(𝑟 ∗ 𝐺𝑖−1 ∗ 𝑁𝑖−1) − (𝐺𝑖 ∗ 𝑁𝑖)

(𝑟 − 1) ∗ 𝐿𝑖
1 < 𝑖 < 𝑞

(𝑟 ∗ 𝐺𝑖−1 ∗ 𝑁𝑖−1)

(𝑟 − 1) ∗ 𝐿𝑖
𝑖 = 𝑞

 (7.22) 

 

A second option for discretisation is presented by Marchal et al. [23]. Instead of simply 

considering the influx and outflow of granules in a bin to be a function of the previous and 

current bin sizes, Marchal et al. take the average growth between bins. This leads to Equation 

7.23: 

 

𝑑𝑁𝑖
𝑑𝑡

=

{
 
 
 
 

 
 
 
 −((𝐺𝑖 ∗ 𝑁𝑖) + (

1
𝑟 ∗ 𝐺𝑖 ∗ 𝑁𝑖+1))

2 ∗ (𝑟 − 1) ∗ 𝐿𝑖
𝑖 = 1

(𝑟 ∗ 𝐺𝑖−1 ∗ 𝑁𝑖−1) + ((𝐺𝑖−1 − 𝐺𝑖) ∗ 𝑁𝑖) − (
1
𝑟 ∗ 𝐺𝑖 ∗ 𝑁𝑖+1)

2 ∗ (𝑟 − 1) ∗ 𝐿𝑖
1 < 𝑖 < 𝑞

(𝑟 ∗ 𝐺𝑖−1 ∗ 𝑁𝑖−1) + (𝐺𝑖−1 ∗ 𝑁𝑖)

2 ∗ (𝑟 − 1) ∗ 𝐿𝑖
𝑖 = 𝑞

 (7.23) 

 

Bertin et al. [84] present a third option for discretisation of the growth equation. The 

particle size frequency distribution in a single bin, ni, is considered as a function of two 

arbitrary constants, C1,i and C2,i, according to Equation 7.24: 

 

𝑛𝑖(𝐿, 𝑡) = (𝐶1,𝑖 ∗ 𝐿) + 𝐶2,𝑖 (7.24) 

 

The parameters C1,i and C2,i may be found by solving the integral for any of the moments. 

Bertin et al. use the zeroth (Equation 7.25) and third moment (Equation 7.26): 

 

∫ ((𝐶1,𝑖 ∗ 𝐿) + 𝐶2,𝑖) 𝑑𝐿
𝐿𝑖+1

𝐿𝑖

= 𝑁𝑖 (7.25) 

 

∫ ((𝐶1,𝑖 ∗ 𝐿
4) + (𝐶2,𝑖 ∗ 𝐿

3)) 𝑑𝐿
𝐿𝑖+1

𝐿𝑖

= 𝑁𝑖 ∗ 𝐿𝑝,𝑖
3 (7.26) 

 

where Lp,i is the representative granule size for each bin. Bertin et al. then proceeded to 

rewrite the equations with an additional set of equations to calculate this size for each bin. 

However, since the aim of this study is to create as simple a model as possible, Lp,i is 

assumed to be equal to the geometric mean of the bin size, L̅i = (Li*Li+i)
1/2

. This assumption 
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can underestimate or overestimate the actual representative particle size, as demonstrated by 

Figure 7.1. 

Figure 7.1 presents several possible scenarios for the number density function, some of 

which are explored by Bertin et al. [84]. The representative particle size corresponds to the 

particle size that encloses half of the total number of particles in the bin, i.e. half the area of 

the positive part the density function. In case I, the density function is initially negative but 

becomes positive; in case II, the density function starts out positive and further increases. In 

case III, the number density is evenly distributed over the bin. In these three scenarios, the 

representative particle size is expected to be underestimated. According to Equation 7.26, this 

underestimation is expected to lead to an overestimation of the growth rate. On the other 

hand, cases IV and V, the opposites of cases I and II, respectively, lead to an overestimation 

of representative particle size Lp,i and an underestimation of the growth rate. Since the initial 

condition states that granules grow from the smallest bin, it is likely that, at least initially, the 

growth rate is underestimated slightly. 

 

 
 

Figure 7.1: Different cases for which the assumption Lp,i = L̅i is incorrect. In cases I-III, the 

representative particle size is underestimated; for cases IV and V, the representative particle size is 

overestimated.  
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Solving the equations using this assumption leads to the following expressions for C1,i 

(Equation 7.27) and C2,i (Equation 7.28): 

 

𝐶1,𝑖 =

𝑟4 − 1
𝑟 − 1 − (4 ∗ 𝑟

3/2)

(
1
2 ∗

(𝑟4 − 1) ∗ (𝑟 + 1)) − (
4
5
∗ (𝑟5 − 1))

∗
𝑁𝑖

𝐿𝑖
2 (7.27) 

 

𝐶2,𝑖 =

𝑁𝑖 − (
𝐶1,𝑖
2 ∗ 𝐿𝑖

2 ∗ (𝑟2 − 1))

𝐿𝑖 ∗ (𝑟 − 1)
 

(7.28) 

 

In order to ensure the expression is continuous, Equation 7.24 must satisfy the following 

constraint (Equation 7.29): 

 

𝑛𝑖 = (𝐶1,𝑖−1 ∗ 𝐿𝑖) + 𝐶2,𝑖−1 (7.29) 

 

This leads to the following differential equation (Equation 7.30): 

 

𝑑𝑁𝑖
𝑑𝑡

=

{
  
 

  
 −𝛼𝑖 ∗ 𝐺𝑖+1 ∗ ((𝐶1,𝑖 ∗ 𝐿𝑖+1) + 𝐶2,𝑖) 𝑖 = 1

(𝛼𝑖−1 ∗ 𝐺𝑖 ∗ ((𝐶1,𝑖−1 ∗ 𝐿𝑖) + 𝐶2,𝑖−1))

−(𝛼𝑖 ∗ 𝐺𝑖+1 ∗ ((𝐶1,𝑖 ∗ 𝐿𝑖+1) + 𝐶2,𝑖))
1 < 𝑖 < 𝑞

𝛼𝑖−1 ∗ 𝐺𝑖 ∗ ((𝐶1,𝑖−1 ∗ 𝐿𝑖) + 𝐶2,𝑖−1) 𝑖 = 𝑞

 (7.30) 

 

where αi equals 1 for the case where the outcome of Equation 7.29 is positive, and 0 where 

Equation 7.29 is negative. This constraint is used in order to ensure the number of particles in 

a bin is always positive. 

The three sets of discretised population balance equations presented in Equation 7.22, 

Equation 7.23 and Equation 7.30 were solved using Mathematica software. The results were 

compared and the performance of the different sets of equations was evaluated, as described 

in the following section. 

 

7.5 Model implementation 
 

In order to evaluate the performance of the developed 1-D model, it was implemented 

using Mathematica software for the three different discretisation methods presented in 

Equation 7.22, Equation 7.23 and Equation 7.30, as shown by Figure 7.2. To supply data for 

values of initial liquid volume vL, critical-packing liquid volume fraction ϕcp, porosity ε, and 

time needed to achieve critical packing tmax, experimental data was used. All available 

granulation data from the experiments performed using the consolidation-only granulator 

(COG) with the lactose-100 cSt silicone oil system as described in Chapter 5 was combined. 

The combined data points were used to calculate the fitted line and the values for ϕcp and tmax, 

and the pycnometry data was used to calculate the overall porosity. It should be noted that the 
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values used do not represent the actual physical values; after all, it was not possible to obtain 

the real values of ϕcp and tmax in the work performed using the COG. However, the behaviour 

observed does not change, and the experimental data does conform to Hounslow et al.’s 

model for surface tension-driven growth [30], which serves the purpose of evaluating the 

population balance model. The results are shown in Table 7.1. 

Table 7.2 shows the other parameters used to perform the simulation. The lowest bin size 

was set to the diameter of the initial liquid droplet, and the number of particles simulated was 

set to 1000. The latter has no real effect on the actual simulation, but serves as a useful tool to 

ensure the zeroth moment is conserved. For the size ratio between neighbouring bins r, two 

different values were used; a ratio of 2
1/3

, and a ratio of 2
1/9

. The former value was also 

applied by Hounslow et al. [22] in their discretisation of the growth term. The latter value 

was selected to increase the accuracy of the discretisation, at the cost of increasing the 

number of bins evaluated, as shown in Table 7.2. The actual number of bins was selected 

based on the bins size ratio r; the number of bins should be sufficient to account for all 

possible granule sizes. To ensure the final granule size was well within the limits of the 

simulated bin sizes, an additional number of bins was added to the minimum number of bins 

required. 

The parameters shown in Table 7.1 and Table 7.2 were used for standard discretisation 

[22], Marchal et al’s discretisation [23] and Bertin et al.’s discretisation [84], as presented in 

Section 7.4.2.2, for a total of six simulations. All simulations were solved using Mathematica 

software’s NDSolve function for a total simulation time of 250 minutes to capture all 

experimental data, as well as to ensure the fits had reached the no-growth regime. The 

obtained time-dependent particle size distributions (PSDs) were then converted to time-

dependent number-based average particle sizes in order to compare them with experimental 

data. The results of the first set of simulations, with r = 2
1/3

, are shown in Figure 7.3. 

 

 
Table 7.1: Parameters from experimental data used for the model in Equation 7.20. 

Parameter (units) Value 

vL (μL) 6.785 

ε (-) 0.43 

ϕcp (-) 0.13 

tmax (min) 156 

 
Table 7.2: Simulation parameters used for the model. 

Simulation type Number of granules L1 (mm) r (-) Number of bins (-) 

Simulation 1 
1000 2.349 

2
1/3 

10 

Simulation 2 2
1/9 

20 

 

 

 
 
Figure 7.2: Block diagram of the calculations performed using Mathematica software.  
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Figure 7.3: Comparison of particle size as a function of time for both the experimental and 

simulated data for all three discretisation methods with r = 2
1/3

. 

All three models shown in Figure 7.3 demonstrate an increase in particle size over time, 

but Marchal et al.’s discretisation method [23] shows the most unstable behaviour. After a 

rapid increase in particle size, the size fluctuates. This fluctuation is related to the number of 

granules present in each bin; inspection of the individual bins regularly shows a negative 

number of granules. Bertin et al.’s discretisation method [84] yields stable growth, but the 

growth rate is generally underestimated compared to the fit to the experimental data. The 

standard discretisation method [22] appears to yield the smallest deviation from the fitted 

curve, slightly overestimating both the growth rate and the final granule size. The theoretical 

maximum granule size as fitted to the experimental data is 5.49 mm, whereas the predicted 

maximum according to the standard discretisation method is 5.92 mm, a deviation of 7.8 %. 

This means the volume of the granule is overestimated by 25 %. 

The overestimation of the final granule size is not surprising, as the final size is dependent 

on the last bin in which growth occurs. Creating narrower bins by changing r to 2
1/9

 should 

improve the accuracy of the solution; this is demonstrated in Figure 7.4. 

Compared to Figure 7.3, the modelled curves in Figure 7.4 more closely match the fit to 

the experimental data. Marchal et al.’s method [23] displays small deviations and appears to 

predict a final granule size similar to that of the standard discretisation method [22]. 

However, the method still displays negative granule numbers for bins, which is undesirable. 

Bertin et al.’s method [84], which greatly underpredicted the final granule size as well as the 

growth rate, appears to more closely predict the final granule size, with a deviation of 0.18 % 

in diameter, or 0.55 % in volume. The standard discretisation method appears to capture the 

kinetics of growth extremely well. However, the method still overestimates the final granule 

size by 7.8 %. 

 



Chapter 7 Modelling layered growth with population balances 

162 

 

 
Figure 7.4: Comparison of particle size as a function of time for both the experimental and 

simulated data for all three discretisation methods with r = 2
1/9

. 

This difference between the standard discretisation method and Bertin et al.’s method [84] 

is caused by their different approaches. The latter method is an upwind scheme, which takes 

into account the granule size of the next bin. This method inherently underpredicts granule 

growth, as growth decreases with increasing granule size. Therefore, the solution is likely to 

predict the maximum granule size as the bin size before the actual maximum granule size. 

The standard discretisation method, on the other hand, uses the previous bin to calculate 

growth. Therefore, it uses smaller granule sizes compared to Bertin et al.’s method, and 

consequently overpredicts growth. As a result, the standard discretisation method is likely to 

designate the bin size after the actual maximum granule size as the maximum. 

Because of the inherent flaws of discretisation methods, no single method can accurately 

predict the final granule size. However, the kinetics of the growth process can be captured. 

Figure 7.5 shows how the solutions converge for the extreme case where the bin size ratio r is 

equal to 2
1/81

. In this scenario, both standard discretisation and Bertin et al.’s method [84] 

show agreement with the analytical solution. However, Marchal et al.’s method [23] deviates 

from the solution even at this low value for r. Furthermore, the solution keeps fluctuating 

beyond the final time of 250 minutes, never fully converging to the analytical solution. 

Therefore, it is not recommended to use this method for the simulation of growth if the 

growth parameter G is not a constant. 

From the simulations performed, it appears as though standard discretisation is the most 

reliable method for the prediction of the kinetics, especially considering the fact that real 

simulations are expected to run for much shorter granulation times. Although Bertin et al.’s 

method [84] shows good convergence to the analytical solution, it underestimates the actual 

granule size too much for shorter granulation times, particularly at large values of r. 
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Figure 7.5: Comparison of particle size as a function of time for both the experimental and 

simulated data for all three discretisation methods for the extreme case r = 2
1/81

. 

In order to improve the accuracy of the prediction of the final granule size, the bins 

surrounding the final granule size should be narrow, i.e. the value for r should be reasonably 

small. However, reducing r increases the number of bins and, consequently, the 

computational load. Moreover, simulating other granulation mechanisms, such as 

agglomeration, in conjunction with growth would further increase the possible granule sizes, 

the number of bins, and the computation time. Therefore, it is not recommended to decrease r 

if simulation speed is important. 

Since layered growth most likely never reaches the no-growth regime in simulations of 

industrial processes, the predicted growth rate is much more significant than the predicted 

final granule size. As such, upwind methods such as Bertin et al.’s discretisation method [84] 

are not recommended. Standard discretisation appears to better predict the kinetics, although 

it deviates significantly for large bins sizes. It should be possible to develop a discretisation 

method that better captures the kinetics by using a more representative granule size for each 

bin. Marchal et al.’s attempt [23] to average the flows in and out of bins resulted in 

instabilities and negative numbers of granules in some bins, which is undesirable. Different 

averaging methods might be more suitable. 

It should also be noted that the case studied here was the most straightforward simulation 

of growth possible. No liquid addition was considered, and it was assumed that there was no 

consolidation. These two processes will greatly influence the complexity of the equations. 

Furthermore, nucleation, agglomeration, breakage and attrition were not considered. There 

was no mass balance for powder available for layering; it was assumed that, as with the COG 

experiments, powder was not the limiting factor. However, in practical granulation, this is not 

the case. It is likely that the layering rate decreases with a decreasing amount of fines. As 

such, the model evaluated here is just the first step in the mechanistic simulation of layered 

growth. The further development of models capable of simulating this type of growth could 
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provide industry with the tools to better understand the granulation process, as well as 

facilitate easier granulation process design. 

 

7.6 Conclusions 
 

In the study presented here, two novel population balance models (PBMs) were developed 

for layered granule growth by finding a mechanistic expression for the growth rate in order to 

address the final objective of this thesis; to develop and evaluate a mechanistic population 

balance model. The first model was a 3-D PBM based on Verkoeijen et al.’s work [68], 

which tracks volumes of solid, liquid and air per size bin. The second model, a 1-D PBM 

tracking only particle number for each size bin, was discretised using three different 

discretisation methods and evaluated using Mathematica software. 

Results showed that standard discretisation predicted the growth rate best for narrow bins, 

but that it could not accurately predict the final granule size due to the limits of discretisation. 

Other methods deviated more from the curve fitted to experimental data, especially for wider 

bins, which are more likely to be used for simulations when simulation times should be short. 

It is therefore recommended to either use standard discretisation, or develop a discretisation 

scheme that better represents the expected growth rate. 

Overall, the results of the simulation showed that the developed model is capable of 

predicting granule growth behaviour. Future development of the population balance 

equations should focus on the inclusion of other processes such as consolidation, liquid 

addition, nucleation, agglomeration, breakage and attrition. 

  



Chapter 8  Conclusions and recommendations 

165 

 

 

 

Chapter 8. Conclusions and recommendations 
 

 

 

 

 

 

 

 

 

 

 

 

 

  



Chapter 8  Conclusions and recommendations 

166 

 

8.1 Conclusions 
 

The key objective of this work was to develop a mechanistic population balance model for 

layered growth by elucidating the kinetics of the layering mechanism. To this purpose, a 

novel granulator was designed to isolate the layering and consolidation. The obtained kinetics 

were compared to available models in literature, and an appropriate predictive model was 

selected. Further experiments were then performed to evaluate the validity of the model and 

to determine the key parameters needed. Finally, two different population balance models 

were proposed, one of which was further evaluated. 

 

8.1.1 Method development 
 

In order to develop an experimental method to investigate consolidation and layered 

growth in isolation, a novel, consolidation-only granulator (COG) was developed. 

Prenucleation outside of the granulator was used to successfully prevent the effects of wetting 

and nucleation, as well as agglomeration. The development of this method allows, for the 

first time, the observation of the kinetics of layered growth. Additionally, the design of the 

COG would allow for the study of other rate processes, such as attrition, using a slightly 

different set-up. 

 

8.1.2 Consolidation and layering studies 
 

Several key findings were observed in the experimental studies of consolidation and 

layering using the COG and a flat plate impeller mixer: 

 The COG was a suitable method of evaluating the kinetic behaviour of layered 

growth. The method had several limitations, however. Breakage and attrition 

prevented the study of late layered growth behaviour, as well as the observation of 

the end points. Furthermore, initial layered growth behaviour could not be 

observed using this method. 

 Qualitative growth behaviour was predicted by Hounslow et al.’s model for surface 

tension-driven growth [30], with the granules growing linearly with the square root 

of time until a critical-packing liquid volume fraction, ϕcp, had been reached. This 

finding implies that layered growth behaviour is dominated by capillary forces. 

Furthermore, it allows for the description of the full growth behaviour using only 

two parameters: ϕcp and the granulation time required to achieve ϕcp, tmax. 

 No overall consolidation was observed for the systems evaluated. However, X-ray 

tomography demonstrated that local density differences did develop in the granules 

during granulation. A clear core-shell structure was observed, with the core being 

less dense than the surrounding shell. This was most likely the result of impacts 

experienced by the granules. This finding implies that breakage may play an 

important role in the full consolidation of granules. 
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8.1.3 Model evaluation 
 

Hounslow et al.’s model for surface tension-driven growth [30] was converted into two 

different population balance models (PBMs). The first PBM was three-dimensional, based on 

the work performed by Verkoeijen et al. [68]. Due to its relatively higher complexity, this 

model PBM was not evaluated. However, the equations should be useful for the future 

development of a fully predictive 3-D model. 

The second, one-dimensional PBM was based on the frequency distribution of the number 

of granules as a function of granule size. Hounslow et al.’s model was adapted to account for 

the inclusion of a fixed porosity, and used to develop an expression for the layered growth 

term G. This growth term was used to formulate layered a layered growth equation, which 

was solved using three different discretisation schemes. It was demonstrated that the PBM, 

when solved with standard discretisation [22], was capable of predicting the experimental 

data reasonably well. 

This study proposes the first mechanistic population balance kernel for layered growth. 

This model allows for the evaluation of granulation processes as a whole by combination 

with existing kernels for other rate processes, and provides industry with the tools to improve 

the understanding of granulation as well as facilitate granulation process design. 

 

8.1.4 Summary 
 

This work presents, for the first time, a study of consolidation and layered growth in 

dynamic systems. It has been found that layered growth of granules can be qualitatively 

predicted according to Hounslow et al.’s model for surface tension-driven growth [30], and 

that layered growth occurs linearly with the square root of time. The observed trend has been 

used to develop a population balance kernel that can be used to better understand granulation 

in general as well as aid in the design of granulation processes. 

 

8.2 Recommendations for future work 
 

This work has demonstrated that it is possible to model layered granule growth using 

surface tension as the driving force, as proposed by Hounslow et al. [30]. This result opens 

the way for the development of more mechanistic population balance models (PBMs), and 

increases our fundamental understanding of layered granule growth. Additionally, this study 

has contributed to the area of experimental research of granulation by means of the 

development of a novel consolidation-only granulator, which could also be adapted to study 

other granulation mechanisms such as breakage and attrition. Naturally, this work has 

generated more questions than answers, as most studies do. Key areas for future research 

have been identified and listed below: 

 The influence of the presence of air in the granules on the growth rate is most 

likely part of the reason why final growth time tmax and critical-packing liquid 

volume fraction ϕcp can, as of yet, not be estimated. Elucidating the relationship 

and identifying expressions to approximate these values would greatly contribute 

to our understanding of layered growth. 
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 Consolidation has so far been observed mostly locally, not for the entire granule. 

The exact mechanism of consolidation so far is still unknown, and provides an 

interesting avenue of research. 

 In the area of population balance modelling, research should focus combining the 

model with other kernels, and experimentally validating the results. Additionally, 

solution methods should be developed that better predict the final granule size. 

 It this work is has been demonstrated that there is some kind of relationship 

between the capillary number, liquid saturation and granule breakage. However, 

the physics of this process are, as of yet, unclear. Therefore, experiments with a 

wider variety of powder-binder systems could shed some light on the mechanisms 

involved. 
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