
 
 
 
 
 

 
Access to Electronic Thesis 

 
 
Author:  Heru Supriyono 

Thesis title:    Novel Bacterial Foraging Optimisation Algorithms with Application to 
Modelling and Control of Flexible Manipulator Systems 

Qualification: PhD 

 
 

This electronic thesis is protected by the Copyright, Designs and Patents Act 1988.  
No reproduction is permitted without consent of the author.  It is also protected by 
the Creative Commons Licence allowing Attributions-Non-commercial-No 
derivatives. 
 
 
 
If this electronic thesis has been edited by the author it will be indicated as such on the 
title page and in the text. 
 
 
 
 
 



 

 

 

 

Novel Bacterial Foraging Optimisation 

Algorithms with Application to Modelling and 

Control of Flexible Manipulator Systems 

 

 

A thesis submitted to the University of Sheffield for the degree of 

Doctor of Philosophy 

 

 

 

By 

Heru Supriyono 

 

 

 

Department of Automatic Control and Systems Engineering 

The University of Sheffield 

Mappin Street 

Sheffield, S1 3JD 

United Kingdom 

 

 

February 2012 



i 
 

ABSTRACT 

 

 

Biologically-inspired soft-computing algorithms, which were developed by mimicking 

evolution and foraging techniques of animals in nature, have attracted significant 

attention of researchers. The works are including the development of the algorithm itself, 

its modification and its application in broad areas. This thesis presents works on 

biologically-inspired algorithm based on bacterial foraging algorithm (BFA) and its 

performance evaluation in modelling and control of dynamic systems. The main aim of 

the research is to develop new modifications of BFA and its combination with other soft 

computing techniques and test their performances in modelling and control of dynamic 

systems. Modification of BFA focuses for improving its convergence in terms of speed 

and accuracy. The performances of modified BFAs are assessed in comparison to that of 

original BFA. 

In the original BFA, in this thesis referred as standard BFA (SBFA), bacteria use 

constant chemotactic step size to head to global optimum location. Very small 

chemotactic step size around global optimum location will assure bacteria find the global 

optimum point. However, a large number of steps is needed for the whole optimisation 

process. Moreover, there is potential for the algorithm to be trapped in one of the local 

optima. On the contrary, big chemotactic step size will assure bacteria have faster 

convergence speed but the literature shows that it results oscillation around global 

optimum point and the algorithm potentially missing the global optimum point and 

leading to oscillation around the point. Thus SBFA can be improved by applying 

adaptable chemotactic step size which could change: very large when bacteria are in 

locations far away from the global optimum location, to speed up the convergence, and 

very small when bacteria are in the locations near the global optimum so that bacteria 

able to find global optimum point without oscillation.  

Here, four novel adaptation schemes allowing the chemotactic step size to 

depending on the cost function value have been proposed. The adaptation schemes are 

developed based on linear, quadratic and exponential functions as well as fuzzy logic 

(FL). Then, the proposed BFAs with adaptable chemotactic step size, i.e. linearly 

adaptable BFA (LABFA), quadratic adaptable BFA (QABFA), exponentially adaptable 

BFA (EABFA) and fuzzy adaptable chemotactic step size (FABFA), are validated by 
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using them to find global minimum point of seven well-known benchmark functions 

commonly used in development of optimisation techniques development. The results 

show that all ABFAs achieve better accuracy and speed compared to those of SBFA. 

 The ABFAs are then used in modelling and control of a single-link flexible 

manipulator system. This includes modelling (based on linear model structures, neural 

network (NN), and fuzzy logic (FL)), optimising joint-based collocated (JBC) 

proportional-derivative (PD) control, and optimising both PD and proportional integral 

derivative (PID) control of end-point acceleration feedback for vibration reduction of a 

single-link flexible manipulator. The results show that ABFAs outperform SBFA in 

terms of convergence speed and accuracy. Since all SBFA and ABFAs use the same 

general parameters and bacteria are initially placed randomly across the nutrient media 

(cost function), the superiority better performance of ABFAs are attributed to the 

proposed adaptable chemotactic step size.  
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1 

CHAPTER 1 

INTRODUCTION 
 

 

1.1. Background 

Computing methodologies of various levels of sophistication are present behind modern 

industrial and commercial applications such as control, voice processing, system 

identification and estimation, fault diagnosis, pattern recognition, image processing, etc. 

Generally, the computing methodologies are hidden from the end user who, probably, 

will not be aware of the computing side of the application. For years, researchers and 

engineers have been developing and applying computing methods based on conventional 

or traditional computing techniques. These computing methods are referred to as “hard 

computing” (HC) methodologies or simply called as “computing” by most people. The 

disadvantages of HC methodologies are that they need high precision and accurate 

information of the system. Meanwhile, in real world problems the system is always not 

ideal. Also, HC methodologies usually need excessive development time. However, HC 

methodologies have well-known numerical stability and their effects as part of a larger 

system have been well-analyzed (Ovaska et al., 2002, 2006). In control, linear quadratic 

Gaussian (LQG) and root locus are two examples of HC that are widely used by 

researchers and engineers. 

In contrast to HC, “soft computing” (SC) methodologies can be utilised in 

situations where there is imprecision, uncertainty, partial truth that might be caused by 

complexity, nonlinearity, time variation, or disturbances of the system to achieve 

robustness, tractability with low cost solution (Suzuki et al., 2000). These superiorities 

over HC make SC widely used in industrial applications such as aerospace, 

communication systems, consumer appliances and electric power systems (Dote and 

Ovaska, 2001). The original definition of SC has been made by Professor Lotfi A. Zadeh 

as quoted from (Ovaska et al., 2006): 

“Soft computing differs from conventional (hard) computing in that, unlike 

hard computing, it is tolerant of imprecision, uncertainty, partial truth, and 

approximation. In effect, the role model for soft computing is: Exploit the tolerance 

for imprecision, uncertainty, partial truth, and approximation to achieve tractability, 

robustness and low solution cost. 
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At this juncture, the principal constituents of soft computing (SC) are fuzzy 

logic (FL), neural computing (NC), genetic computing (GC) and probabilistic 

reasoning (PR), with the latter subsuming belief networks, chaos theory and parts of 

learning theory. What is important to note is that soft computing is not a melange. 

Rather, it is a partnership in which of the partners contributes a distinct 

methodology for addressing problems in its domain. In this prospective, the 

principal constituent methodologies in SC are complementary rather than 

competitive.” 

Although not mentioned in the original definition above, currently developed algorithms 

such as swarm intelligence, chaos theory, perceptron, etc can also be included as 

constituents of SC. For most researchers and engineers, the term “computational 

intelligence” is more frequently used instead of SC. Thus, the term computational 

intelligence and SC are usually used interchangeably. For all constituents of SC include 

FL, NC, GC, and PR, it can be noted that, in an application, the use of combination of 

these constituents give better results than only using individually FL, NC, GC, and PR. 

In order to make SC more widespread for different applications, three essential principal 

requirements are needed (Goldberg, 2002; Ovaska et al., 2006): 

• Scalable results 

• Practicality 

• Little models or theory 

In an application, SC could be used either to replace HC or to complement HC. A few 

examples of HC and SC are combination of LQG with FL, LQG with GA, and root locus 

with FL. 

In an optimisation problem where the task is to find global optimum in the search 

space, there are several challenging properties such as there may be many local optima, 

the size of the search space may be so large that may impact on computation time of the 

search process. Various numerical analysis based tools have been developed and 

proposed to find an acceptable solution. Most of them are based on gradient of cost 

function as guidance to the global optimum solution. These techniques are efficiently 

applied with convex cost functions which are continuous and without nonlinearities in 

the cost function and its constraints (Eldred, 1998), however the drawback is that there is 

high possibility to be trapped at a local optimum point. 

Global optimisation algorithms attempt to find the global optimum in the search 

space by either using deterministic or heuristic approach. Deterministic algorithms 
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search the global optimum point using a certain pattern while heuristic approaches search 

the global optimum based on experience. The advantages of deterministic techniques are 

that they have high possibility to find global optimum. However, they usually need long 

computational time and high computational resources. Heuristic approaches are usually 

developed based on non-deterministic or stochastic techniques. By using this concept, 

they can search the optimisation space randomly so that the global optimum point can be 

found within acceptable computation time and using reasonable computation resources. 

However, because the random process produces unlimited number possible solutions, in 

the highly complex or highly nonlinear systems, the computation time also significantly 

increases in such cases.  

In general, biologically-inspired algorithms comprise computational algorithms 

that have been developed by mimicking biological processes that occur in the nature 

such as evolution and natural selection, human brain and reasoning, social systems and 

foraging with the main aim is to seek potential and possible alternative techniques or 

tools for solving highly complex problems that may not be achieved by using existing 

computational methods such as dynamic programming, linear programming, nonlinear 

programming, gradient descent based methods. Every natural process has its own 

mechanism which is usually self-organized, very efficient and very optimal. Some 

examples of natural processes, to mention a few, are natural selection where the fittest 

species will survive while weaker species will die, foraging (mechanism for food 

locating, handling, and ingesting) of species like birds, fishes, ants, and bacteria. Several 

existing biologically inspired algorithms are outlined in the taxonomy block diagram 

depicted in Figure 1.1. All these algorithms are not based on gradient of cost function so 

they do not need to calculate the gradient and are less susceptible to problems of local 

optimum that arise with multimodal error surfaces.  
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Figure 1.1: Biologically-inspired algorithms taxonomy block diagram (Brabazon, 2010). 

 

Social systems-based algorithms were developed by modelling the behaviour of 

animals in doing something collectively, for example foraging in groups, rather than 

individually (Passino, 2002). Bacterial foraging algorithm (BFA) (Passino, 2002), which 

has been developed based on foraging strategies of E. Coli bacteria, emerged as one of 

relatively the most newly developed biologically-inspired optimisation methods. E. Coli 

bacteria always try to find a place which has high level of nutrition and avoid a place 

which has noxious substance. From the optimisation point of view, the optimum value is 

the place which has the highest nutrient level. The initial position of bacteria could be set 

in certain predetermined position or dispersed randomly across the nutrient media 

(search space). Bacteria will move towards global optimum position by applying 

“biased” random walk called chemotaxis in constant “step size”. After performing a 

predetermined number of chemotactic steps, the health of bacteria is sorted based on the 

nutrient level they get. Half of the population with high nutrient level, the healthy 
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bacteria, will reproduce (every bacterium splits into two bacteria) and takes the same 

place of their mother while the remaining half with lower nutrient level, unhealthy 

bacteria, will die. By using this mechanism, the number of bacteria in the population will 

remain constant. Because of external factors, the number of bacteria in the population 

could be decreased sharply or dispersed to other regions of nutrient media. This event 

makes bacteria able to explore most parts or whole regions of nutrient media. 

The constant chemotactic step size of random walk of bacteria in original BFA 

(Passino, 2002) has two consequences, bigger step size makes bacteria able to heading to 

optimum location faster but with risk to miss the global optimum on the other hand very 

small step size ensure bacteria to find global optimum but to require a lot of chemotactic 

steps to converge to the optimum value. Investigations on the chemotactic step size 

which will result in faster convergence without sacrificing accuracy need to be carried 

out.  

Artificial neural networks referred to here as neural networks (NNs) are initiated 

by Hebb (1949) and then have been enhanced by Hopfield (1982), Rumellhart et al. 

(1986), Grossberg (1982) and Widrow (1987). Since their introduction, NNs have 

attracted significant attention of researchers because of their advantages for example 

parallelism, distributed representation and computation, generalization ability, 

adaptability and inherent contextual information processing as well as their learning 

capability (Jain and Mohiuddin, 1996).  

Fuzzy logic (FL) is a concept firstly introduced by Lotfi Zadeh base (1965, 1973) 

to model human reasoning in the decision making based on imprecise and incomplete 

information in the form of rule base. Simply speaking, FL can be viewed as a way of 

incorporating human experiences and knowledge and then breaking it down into certain 

computation steps to produce output from given input. Because it has been developed 

based on human logic-like, it can deal with nonlinearity of systems.  

The three concepts, namely BFA, NN and FL can be combined to build hybrid 

technique(s) to solve problems more accurately than by each one individually. Since 

BFA is an optimisation algorithm, it could be utilised to find optimal parameters of NN 

and FL. Alternatively, FL which has been developed based on human reasoning can be 

used to enhance BFA’s performance so that BFA will have faster convergence and better 

accuracy and then may be applied it to optimising NN. Thus the possible configuration 

of combination of these three algorithms considered in this work is as shown in Figure 

1.2. 
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Figure 1.2: The possible configuration of the three algorithms considered in the work. 

 

Compared to rigid manipulators, the use of flexible manipulators has several 

advantages (Azad, 1994; Book and Majette, 1983): 

a. It needs lower energy consumption  

b. It requires smaller actuator 

c. It has safer operation due to reduced inertia 

d. It has compliant structure 

e. It has possible elimination of gearing 

f. It has less bulky design 

g. It has low mounting strength and rigidity requirements 

All these advantages allow flexible manipulators to be used in various applications such 

as in sophisticated robotic assistants for the disabled (Gharooni et al., 2001), for reducing 

the space-launch cost in space exploration (Yamano et al., 2000), and for handling 

hazardous waste material in hazardous plants (Jamshidi et al., 1998). 

Besides its advantages, the oscillatory behaviour of a flexible manipulator system 

during its operation needs special consideration. The flexible nature and distributed 

characteristic of a flexible manipulator system leads to complex system dynamics. 

Another problem is that the coupling between the rigid dynamics and the flexible 

dynamics of the link may also cause stability problems (Talebi et al., 2002). This makes 

the task of controlling flexible manipulator systems including: finding accurate model of 

the system, setting precise position, and suppressing its vibration due to system 

flexibility and non-minimum phase characteristics of the system (Piedboeuf et al., 1993; 

Yurkovich, 1992) becomes very challenging. Thus, finding an accurate model which 

represents whole dynamics of both rigid and flexible factors to design an accurate control 

system is very challenging task.   
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It can be noted from the literature that BFA has not been applied in the area of a 

single-link flexible manipulator system, either for modelling or control. Thus, the 

application of BFA, either its original algorithm or upgraded version, and its 

combination with NN and FL for modelling and control of a single-link flexible 

manipulator system would be very interesting. 

 

1.2. Aim of the research 

From the literature, it can be noted that, since it is still relatively newly developed 

optimisation technique, there are still spaces that can be explored on the modification of 

BFA especially to increase its convergence speed and accuracy and also its possible 

combination with other soft computing techniques such as FL and NN. Moreover, 

despite its potential, BFA has not been reported yet for modelling and control of flexible 

manipulator systems. The main aim of the research is to develop new modifications of 

BFA and its combination with other soft computing techniques and test their 

performances in modelling and control of dynamic systems, exemplified by a single-link 

flexible manipulator system. Modification of BFA is focusing on improving its 

convergence in terms of speed and accuracy. The performance of modified BFA will be 

compared to that of the original BFA, referred as standard BFA (SBFA). 

  

1.3. Research objectives 

The main aim of the research can be broke down into several objectives as follows: 

1. To investigate the development of modified BFA for better convergence and 

better global optimum value with due consideration of computational complexity 

in comparison to the original BFA. 

2. To investigate the performances of the modified BFAs in modelling a single-link 

flexible manipulator system based on parametric modelling approach, in 

comparison to that of SBFA based on the optimum nutrient value achieved, 

convergence speed and time-domain response. 

3. To investigate potential soft-computing techniques that combine BFAs, NN, and 

FL in non-parametric modelling and control of a single-link flexible manipulator 

system and validate the developed model and control strategies experimentally 

within a flexible manipulator rig. Possible permutations which will be considered 

throughout the work include: 

a. Combination of BFAs and FL. This will include: 



Chapter 1: Introduction 

8 
 

• Using FL for modifying BFA so that the BFA will have faster 

convergence and better accuracy. 

• Using BFAs for optimising FL 

b. Combination of BFAs and NN. BFAs will be used for finding optimal 

parameters of NN, i.e. weights, biases and parameters of activation 

functions. 

c. Combination of BFAs, FL and NN. The modified BFA based on FL will be 

used to optimise NN, i.e. to find optimal weights, biases and parameters of 

activation functions. 

4. To investigate the performances of modified BFAs in finding optimal controller 

parameters for a single-link flexible manipulator: for hub-angular movement 

control and vibration reduction of end-point flexible arm. The performances of 

modified BFAs will then be compared to that of SBFA based on the optimum 

nutrient value achieved, convergence speed and time-domain response.  

 

1.4. Contributions of the research 

The contributions arising from this thesis include the following: 

• Contribution 1: bacterial foraging algorithm with linearly adaptable 

chemotactic step size (LABFA). 

The chemotactic step size has been made adaptable regarding the nutrient value 

by utilising linear function of nutrient level. The algorithm has been validated in 

finding optimum point of several benchmark functions and the results have been 

assessed in comparison to that of SBFA. 

 

•••• Contribution 2: bacterial foraging algorithm with quadratic adaptable 

chemotactic step size (QABFA). 

The chemotactic step size has been made adaptable regarding the nutrient value 

by utilising quadratic function of nutrient level. The algorithm has been validated 

in finding optimum point of several benchmark functions and the results have 

been assessed in comparison to that of SBFA. 
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•••• Contribution 3: bacterial foraging algorithm with exponentially adaptable 

chemotactic step size (EABFA). 

The chemotactic step size was has been adaptable regarding the nutrient value by 

utilising exponential function of nutrient level. The algorithm has been validated 

in finding optimum point of several benchmark functions and the results have 

been assessed in comparison to that of SBFA. 

 

•••• Contribution 4: bacterial foraging algorithm with fuzzy adaptable 

chemotactic step size (FABFA). 

A Mamdani type fuzzy logic has been used for the adaptation mechanism of 

chemotactic step size so that the chemotactic step size is changed according to the 

nutrient level. The algorithm has been validated in finding optimum point of 

several benchmark functions and the results have been assessed in comparison to 

that of SBFA. 

 

•••• Contribution 5: Parametric approach using bacteria foraging algorithms 

with adaptable chemotactic step size (ABFAs) for modelling of flexible 

manipulator system. 

In the investigation, a linear structure model which represented flexible 

manipulator system is optimised by BFAs. The modelling process involves: 

a. Preliminary experimentation. Empirical comparison of three cost function 

alternatives, i.e. sum of absolute error (SAE), mean of absolute error (MAE) 

and mean of squared error (MSE), for modelling process has been performed. 

The results show that MSE has been the most suitable cost function for 

modelling process. 

b. Optimisation process. Three single-input single-output (SISO) models based 

on autoregressive with exogenous input (ARX) model structure optimised by 

LABFA, QABFA, EABFA and FABFA have been developed and their 

results have been assessed in comparison to that of SBFA. The comparison 

has been made based on the optimum cost function value achieved, 

convergence speed and time-domain and frequency-domain responses. 
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•••• Contribution 6: Non parametric modelling approach using neural network 

(NN) optimised by ABFAs for modelling of flexible manipulator system. 

Here, NN optimised by BFAs are used for modelling of flexible manipulator. The 

modelling process involves following steps: 

a. Preliminary experimentation. Empirical comparison of three cost function 

alternatives, i.e. sum of absolute error (SAE), mean of absolute error (MAE) 

and mean of squared error (MSE) and root mean square error (RMSE) has 

been performed in the modelling process. The results show that RMSE was 

the most suitable cost function for modelling process based on NN. 

b. Optimisation process. Three NNs optimised by LABFA, QABFA, EABFA 

and FABFA based SISO have been developed and the results assessed in 

comparison to that of SBFA. The comparison has been made based on the 

optimum cost function value achieved, convergence speed and time-domain 

and frequency-domain responses. 

 

•••• Contribution 7: Non parametric modelling approach using fuzzy logic (FL) 

optimised by ABFAs for modelling of flexible manipulator system. 

In this work, three SISO models based on BFAs-optimised FL have been 

developed for modelling the hub-angle, hub-velocity and end-point acceleration 

responses of the manipulator. The performances of LABFA, QABFA, EABFA 

and FABFA have been assessed in comparison to that of SBFA based on 

optimum cost function value achieved, convergence speed and time-domain and 

frequency-domain responses. 

 

•••• Contribution 8: Using ABFAs for optimising joint-based collocated (JBC) 

proportional derivative (PD) control for input tracking of flexible 

manipulator system. 

There are two parameters of JBC PD controller to optimise, i.e. proportional (��) 

and derivative (��). The investigation in this work involves two steps: 

a. Preliminary experimentation. Empirical comparison of two cost function 

alternatives. Two cost function alternatives i.e. mean of squared error (MSE) 

and MSE plus weighted maximum overshoot/undershoot have been 

considered. The results show that MSE plus weighted maximum overshoot / 
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undershoot is more suitable to be used because the overshoot / undershoot can 

be suppressed better than with MSE.  

b. Optimisation process. LABFA, QABFA and EABFA are used to tune these 

two parameters and MSE plus weighted maximum overshoot / undershoot has 

been chosen as the nutrient media. The results have been assessed in 

comparison to that of SBFA based on optimum of cost function achieved, 

convergence speed and time-domain responses. 

 

•••• Contribution 9: Using ABFAs PD and proportional integral and derivative 

(PID) control with end-point acceleration feedback for vibration reduction 

of end-point flexible arm. 

The investigations involving following steps: 

a. The best ABFAs 1 based controller in the input tracking control discussed in 

sub chapter 8.3 is used as the input tracking control. The selection is based on 

the cost function � value achieved because smallest � means it has the 

smallest error. 

b. For each payload attached in the end-point of flexible arm, PD and PID 

controllers are optimised using ABFAs 2. The performances of controller 

with end-point acceleration feedback are compared to open loop control and 

JBC-PD control without controller with end-point acceleration feedback 

based on the �� value, time-domain and frequency-domain responses. 

c. The performances of ABFAs are compared to SBFA based on the optimum �� 

achieved, convergence speed, time-domain and frequency responses of end-

point acceleration. 

 

1.5. Organisation of the thesis 

The rest of the thesis is organized as follow:  

Chapter 2: Presents a detailed overview of BFA: its algorithm, applications, 

modifications and empirical investigation on parameter selection and its 

impact on convergence and accuracy.  

Chapter 3: Describes the experimental flexible manipulator rig used in this work: its 

technical specifications, previous work on modelling and control and 

preliminary experimentation for collecting input-output data pairs. 
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Chapter 4: Presents the development of chemotactic step size adaptation mechanisms, 

i.e. LABFA, QABFA, EABFA and FABFA. The proposed algorithms are 

validated in finding optimum value of several well-known benchmark 

functions. The performances of ABFAs are then compared to that of 

SBFA based on convergence speed and optimum cost function value 

achieved.  

Chapter 5: Discusses the application of ABFAs developed and discussed in Chapter 4 

in parametric modelling of a single-link flexible manipulator system, from 

input torque to hub-angle, hub velocity and end-point acceleration outputs. 

ABFAs are used to find optimum parameters of an ARMA structure model 

representing the dynamics of a single-link flexible manipulator system and 

their performances are assessed in comparison to that of SBFA. 

Chapter 6: Presents the application of ABFAs developed and discussed in Chapter 4 

for optimising NN and FL in modelling of flexible manipulator system and 

their comparative performance assessment with that of SBFA. Three SISO 

models are developed for modelling hub-angle, hub-velocity and end-point 

acceleration responses of the system.  

Chapter 7: Discusses the application of ABFAs developed in Chapter 4 for tuning 

JBC PD controller for input tracking control and for tuning PD and PID 

controller with end-point acceleration feedback for vibration reduction of 

end point of flexible arm and their performances comparison with SBFA.  

Chapter 8: Presents the concluding remarks of the work and the possible future work. 
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CHAPTER 2 

BACTERIAL FORAGING ALGORITHM: AN 

OVERVIEW 
 

 

2.1. Introduction 

In this chapter, the applications and current modifications of bacterial foraging algorithm 

(BFA) are surveyed. The objective of the investigation is to study the characteristics of 

the original BFA, survey previous modifications and applications and study the impact of 

its parameter changes. Firstly, the concept of chemotaxis and original algorithm are 

discussed in detail. Secondly, the applications of the original BFA in various areas are 

overviewed. Moreover, previous modifications proposed, developed and used by 

researchers on original BFA are outlined. Finally, the impact of BFA’s parameter 

selection on convergence and its accuracy is studied.  

 

2.2. The original bacterial foraging algorithm 

2.2.1. Basic concept of bacteria movement 

BFA (Passino, 2000; Passino, 2002) is an optimisation method developed based on the 

foraging strategy of Escherichia Coli (E. Coli) bacteria, bacteria that live in the human 

intestine. Foraging strategy is a method of animals for locating, handling and ingesting 

their food. The structure of E. Coli bacteria is such that it has a “body” which is 

constructed from a plasma membrane, cell wall and capsule that contains the cytoplasm 

and nucleoid. Furthermore, E. Coli bacteria have flagella that can move in a rotation 

manner and used for locomotion: if the flagella moves counter clockwise it makes 

bacteria to move forward with large displacement namely “swim” and if the flagella 

moves clockwise it makes the bacteria move in an uncertain direction with very small 

displacement called “tumble”. The size of E. Coli bacterium itself is very tiny, about 1 

�� in diameter, 2 �� in length, 1 picogram in weight with about 70 % of it being water. 

An illustration figure of E. Coli bacterium structure is depicted in Figure 2.1. 
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Figure 2.1: An illustration of E. Coli bacterium structure (Passino, 2002, 2005) 

 

In general, in their lifetime in the media, E. Coli bacteria always try to find the 

place which has a high nutrient level and avoid noxious places using certain motion 

pattern namely “taxes”. In moving towards nutrient value, every bacterium releases 

chemical substances of attractant when heading to a nutritious place and repellent when 

they are near a noxious place. Thus, the motion pattern of E. Coli in finding nutrient is 

called “chemotaxis”. If E. Coli bacteria are moving towards higher nutrient level than 

their previous position, they will move forward (swim or run) continuously. However, if 

bacteria arrive at a place with a lower nutrient level than the previous position, they will 

tumble. 

The cartoon illustrations of bacteria in swim and tumble are depicted in Figure 

2.2. In Figure 2.2(a) the bacterium moves from its initial position 1P  to new position 2P  

and then the nutrient values of 1P  and 2P  is compared. Because nutrient level of 2P  is 

higher than 1P , the bacterium then moves forward in the same direction as previous 

movement namely swim or run to the new position 3P . Then, the same process is 

performed until the last bacteria’s lifetime. The bacteria’s chemotaxis which involves 

both swimming and tumbling is illustrated in Figure 2.2(b). The bacterium moves from 

its initial position 1P  to the new position 2P . Because the nutrient level in 2P  is lower 

than that in 1P , the bacterium does not continue to move toward in the same direction as 

previous movement but moves in another uncertain direction with very small 

displacement called tumbling to new position 3P . Also because the nutrient level of 3P  is 

lower than that in 2P , the bacterium will tumbling and arrive at the new position 4P . 

Now, the nutrient level in 4P  is higher than that in 3P  thus the bacterium is swimming in 

the same direction as previous movement to the new position 5P . In the nutritious media, 

bacteria spend more time swimming than tumbling. On the contrary, in a media which 

has a low nutrient level, the bacteria will tumble more frequently than swim. 
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(a) Moving forward continuously (swim) 

 
(b) Moving forward-tumbling-swim 

Figure 2.2: Illustration of chemotaxis pattern of E. Coli bacterium (Passino, 2002, 2005) 

 

Thus, the chemotaxis of bacteria in the nutrient media for their lifetime can be 

summarised as follows (Passino, 2002, 2005): 

a. In the noxious place: combination of tumble and swim to move away from the 

noxious place and try to find nutritious place 

b. In the neutral place (there are neither nutrient nor poison): more frequent tumble 

to find nutritious place (searching) 

c. In the nutritious place: swim as long as possible in the direction of up nutrient 

gradient 

 

2.2.2. Optimisation technique based on bacterial foraging 

From the E. Coli bacteria’s mechanism in finding places with high nutrient value and 

avoiding noxious places an optimisation technique that models this process, namely 

bacterial foraging algorithm (BFA), is developed (Passino, 2002). For example, suppose 

that it is desired to find the global minimum of ( ) pJ ℜ∈θθ ,  with θ  is the position of a 

bacterium and ( )θJ  represents the nutrient media level at θ  where there is no 

measurement or there is no analytical description of the gradient ( )θJ∇ . This 

minimisation problem can be solved using non-gradient optimisation technique adopted 

from foraging of E. Coli bacteria. There are three possibilities of ( )θJ  value:

( ) ( ) 0,0 =< θθ JJ  and ( ) 0>θJ  indicating that the bacterium at location θ  is in nutrient-
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rich, neutral, and noxious environments, respectively. E. Coli bacteria will apply biased 

random walk to climb up the nutrient concentration (find lower and lower values of ( )θJ

), avoid noxious substances (the place where ( ) 0>θJ ), and search for ways out of 

neutral media (location where ( ) 0=θJ ).  

The optimisation steps from beginning to the end that model how E. Coli bacteria 

find food can be divided into four main parts, namely chemotaxis, swarming, 

reproduction and elimination and dispersal.  

 

a. Chemotaxis 

The position and its corresponding nutrient value (usually called as cost function value in 

optimisation) of i -th bacterium at the j -th chemotactic step, k -th reproduction step, and

l -th elimination and dispersal event can be denoted as ( )lkji ,,,θ  and ( )lkjiJ ,,,  

respectively with Si ,...,2,1=  and ( ) plkji ℜ∈,,,θ . From its current position, bacteria 

will walk heading to the position that has lower ( )lkjiJ ,,,  value. The “speed” of the walk 

is determined by the value of chemotactic step size ( ) SiiC ,...,2,1,0 => . The bacteria’s 

chemotaxis could be a combination of: 

• Continuous swim 

• Swim followed by tumble 

• Tumble followed by tumble 

• Tumble followed by swim 

A unit length random direction ( )jφ  on the range [-1,1] is generated to define the 

direction of movement after tumble. Thus, the movement of bacteria from one position to 

another position can be formulated as: 

( ) ( ) ( ) ( )jiClkjilkji φθθ +=+ ,,,,,1,     (2.1) 

If at bacteria position ( )lkji ,,1, +θ  the cost function value ( )lkjiJ ,,1, +  is lower than 

( )lkjiJ ,,,  then the bacteria will move one step with the same direction as the previous 

direction with the step size ( )iC . Another step with the same direction is taken if the next 

cost function is lower. The maximum number of continuous swim in the same direction 

taken is sN . After sN  swim, bacteria have to tumble. 
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b. Swarming 

In the walking process bacteria could release chemical substances to attract other 

bacteria (attractants) so that other bacteria could swarm together. Besides bacteria could 

release chemical substances to repel other bacteria (repellent) so that other bacteria move 

away because two bacteria cannot be in the same location at the same time and keep a 

certain distance between two bacteria. This process is called cell-to-cell signalling via 

attractant and repellent (swarming). The swarming process for every bacterium is 

formulated as:  

( )( ) ( )( )∑
=

=
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i
cccc lkjiJlkjPJ
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where: 

• [ ]Tpθθθθ ,...,, 21= is a point on the optimisation domain 

• ( )i
pm

θ  is position of the pm -th component of the i -th bacterium 

• attractd  is the depth of attractant released by the cell (a quantification of how much 

attractant is released) 

• attractω is a measure of the width of the attractant signal (a quantification of the 

diffusion rate of the chemical) 

• repellenth  is the height of the repellent effect (magnitude of its effect) 

• repellentω  is a measure of the width of the repellent. 

Thus, in the optimisation, the nutrient media in which bacteria will find the 

optimum place is the cost function value plus cell-to-cell signalling (swarming effect) as: 

( ) ( )( )lkjPJlkjiJ cc ,,,,,, θ+       (4) 

In order to get optimal nutrient media landscape the cost function value J  and cell-to-

cell signalling value ccJ  have to be balanced because if the attractant width is high and 

very deep, the cells will have a strong tendency to swarm, and they may even avoid 

going after nutrients and favour swarming. In contrast, if the attractant width is small and 
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the depth shallow, there will be little tendency to swarm and each cell will search on its 

own.  

 

c. Reproduction 

In a rich nutrient media bacteria will reproduce very fast and the number of bacteria will 

increase significantly and in a poor nutrient media bacteria will die so that the population 

size will decrease significantly. To model the reproduction mechanism, after cN  

chemotactic step size, the health of all bacteria is then sorted in ascending order based on 

their accumulated cost function value;  

( )∑
+

=

=
1

1

,,,
cN

j
health lkjiJJ        (2.5) 

In the minimisation process, the highest cost function value means the least healthy 

bacteria and bacteria which have the lowest cost function value means the healthiest 

bacteria. Based on their health, the bacteria population is divided into two halves: 

2
S

Sr =        (6) 

The rS  least healthy bacteria die and the other rS  healthiest bacteria reproduce (every 

bacterium splits into two bacteria) and placed at the same location with their mother. 

This reproduction mechanism keeps the bacteria population constant. After reproduction, 

bacteria will continue the chemotaxis process until achieve maximum chemotactic 

number cN  and then other reproduction events will be performed.  

 

d. Elimination and dispersal 

The population of E. Coli bacteria in the nutrient media can be reduced or replaced 

instantly because of external factors such as catastrophe that will make nutrient media 

poisoned instantly. In the modelling, after performing reN  reproduction steps there are 

elimination and dispersal events. Bacteria which have probability value (between 0 and 

1) lower than certain threshold value ( edp ) are eliminated and dispersed to another 

location and bacteria which have probability value higher than edp  keep their current 

position and are not dispersed. After elimination and dispersal event, bacteria will start 

chemotaxis until achieve reproduction steps reN  and then followed by other elimination 
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and dispersal events. This routine is done until maximum elimination and dispersal 

events edN  achieved. 

 

2.2.3. The original BFA computation algorithm 

In the optimisation algorithm development, there are several parameters that should be 

defined in advance involving: 

• p  as dimension of the search space (number of parameters to optimise) 

• S  as the number of bacteria in the population (for simplicity, S  as chosen for 

even number) 

• �� as the number of chemotactic steps per bacterium lifetime between 

reproduction steps 

• �� as maximum number of swim of bacteria in the same direction 

• ��� as the number of reproduction steps 

• ��� as the number of elimination and dispersal events 

• 	�� as the probability that each bacteria will be eliminated/dispersed. 

• 
 � � � �  � as the index for the bacterium 

• � � � � � �� as the index for chemotactic step 

• � � � � � ��� as the index for reproduction step 

• � � � � � ��� as the index of elimination and dispersal event 

• �� � � �� �� as the index for number of swim  

In search for nutritious places, bacteria will continuously perform random walk 

without stopping until their life is over. The life of bacteria is determined as a total 

number of steps which is calculated as �� � ��� � ���. Finally, the bacterium which has 

the highest nutrient level after all steps carried out is determined as the optimisation 

result. Thus, original BFA (Passino, 2002) that models bacterial population chemotaxis, 

swarming, reproduction, elimination, and dispersal (initially, � � � � � � �) can be 
formulated in the algorithm below (note that updates to the �� automatically result in 

updates to �):  
1. Elimination-dispersal loop: for � � �� � ��� , do � � � � � 
2. Reproduction loop: for � � �� �  ���, do � � � � � 
3. Chemotaxis loop: for � � �� �  ��, do � � � � � 

a. For 
 � ��� �  �, take a chemotactic step for bacterium 
: 
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b. Compute the nutrient media (cost function) value ��
 � � ��. Calculate ��
 � � �� �
��
 � � �� � ��� ����� � �� ��� � ��� (i.e., add on the cell-to-cell attractant effect to the 

nutrient concentration). If there is no swarming effect then ��� ����� � �� ��� � ��� � �. 

c. Put � !�" � ��
 � � �� to save this value since a better cost via a run may be found. 
d. Tumble: Generate a random vector #�
� $ %& with each element #'(�
��& � �� �  	, a 

random number on the range )*��+. 
e. Move: Compute 

���� � � � �� � ���� � �� � ,�
� #�
�
-#.�
�#�
� 

This results in a step of size ,�
� in the direction of the tumble for bacterium 
. 
f. Compute the nutrient media (cost function) value ��
 � � � � ��, and calculate ��
 � �

� � �� � ��
 � � � � �� � ��� ����� � � � �� ��� � � � ���. If there is no swarming effect 

then  ��� ����� � � � �� ��� � � � ��� � �. 

g. Swim (note that an approximation has been used since swimming behaviour of each cell is 
decided as if the bacteria numbered /�� �  
0 have moved and /
 � � 
 � ��  �0 have 
not; this is much simpler to simulate than simultaneous decisions about swimming and 
tumbling by all bacteria at the same time): 

i. Put �� � � (counter for swim length) 
ii. While �� 1 �2 (if have not climbed down too long) 

• Count �� � �� � � 

• If ��
 � � � � �� 1 � !�" (if doing better), then � !�" � ��
 � � � � �� and 
calculate 

���� � � � �� � ���� � � � �� � ,�
� #�
�
-#.�
�#�
� 

 
This results in a step of size ,�
� in the direction of the tumble for 

bacterium 
. Use this ���� � � � �� to compute the new ��
 � � � � �� as 
in sub step f above. 

• Else, � � ��  (the end of the while statement). 
h. Go to next bacterium �
 � �� if 
 3 � (i.e., go to sub step b above) to process the next 

bacterium. 
4. If � 1 ��, go to step 3.  
5. Reproduction: 

a. For the given � and �, and for each 
 � ��� �  �, let 

�4�! "4� � 5 ��
 � � ��
6789

:;9
 

Be the health of bacterium 
 (a measure of how many nutrients it got over its lifetime and 
how successful it was at avoiding noxious substances). Sort bacteria and chemotactic 
parameters ,�
� in order of ascending cost �4�! "4  (higher cost means lower health). 

b. The ��  bacteria with the highest �4�! "4  values die and the other ��  bacteria with the best 
values split (and the copies that are made are placed at the same location as their parent). 

6. If � 1 ���, go to step 2.  
7. Elimination-dispersal: for 
 � ��� �  �, eliminate and disperse each bacterium which has 

probability value less than edp . If one bacterium is eliminated then it is dispersed to random 

location of nutrient media. This mechanism makes computation simple and keeps the number of 
bacteria in the population constant. 
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For Sm :1=  
if 	��<�!=� (Generate random number for each bacterium and if the generated number 
is smaller than  	��  then eliminate/disperse the bacterium) 

   Generate new random positions for bacteria 
   else 

 Bacteria keep their current position (bacteria are not dispersed) 
  end 
 end 

8. If � 1 ���, then go to step 1; otherwise end. 

 

The original BFA algorithm above can be presented as a flowchart in Figure 2.3. 

 
Figure 2.3: Flowchart of original BFA (Passino, 2002) 

 

2.3. Current applications and modifications 

2.3.1. Application of SBFA 

Since its introduction, the original BFA (Passino, 2000, 2002), in this work referred as 

standard BFA (SBFA), has attracted significant attention from researchers in broad areas 

of applications as highlighted below: 
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A. Power systems 

In the area of power systems, SBFA has been used for designing multiple optimal power 

system stabilizers (Das et al. 2008), estimating resistive and inductive parameters in 

electric systems (Noriega et al., 2010), estimating parameters of single phase core type 

transformer model (Padma and Subramanian, 2010), tuning PID controller for power 

oscillation suppression of load frequency control (Ali and Abd-Elazim; 2010), 

optimising weights and biases of a neural network (NN) for load forecasting of power 

systems application (Ulagammai et al., 2007), optimising NN for image compression 

applications (Ying et al. 2008), tuning multiband power system stabilizers of power 

systems (Sumanbabu, et al., 2007), enhancing voltage profile and minimising losses in 

transmission line of power systems (Kumar and Renuga, 2010), tuning parameters of 

power system stabilizers (Ghoshal et al., 2009), and optimising PI controller for active 

power filter application (Mishra and Bhende, 2007). 

 

B. Controller tuning for complex systems 

SBFA has also been applied for controller tuning for complex systems, i.e. tuning PID 

controller for multivariable systems (Kim and Cho, 2005), finding optimum PID 

controllers for different-order systems (Niu et al., 2006), optimising PID controller’s 

parameters for various order systems (Ali and Majhi, 2006), and tuning PD-PI controller 

(Jain and Nigam, 2008a, 2008b). 

 

C. Communication systems 

In the communication systems, SBFA has been utilised for suppressing inference of 

linear antenna arrays (Guney and Basbug, 2008), designing optimal array of Yagi-Uda 

antennas (Mangaraj et al., 2010), designing nonlinear channel equalizers (Majhi and 

Panda, 2006), and calculating resonant frequency of rectangular microstrip antenna 

(Gollapudi et al., 2008). 

 

D. Image processing and pattern recognition 

In the areas of image processing and pattern recognition, SBFA has been employed for 

designing optimal filter for face classification (Sinha, 2007), enhancing peak signal-to-

noise ratio in image processing (Bakwad et al., 2009a), optimising membership function 

parameter of fuzzy model for handwritten Hindi numerals recognition (Hanmandlu et al., 
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2007), and solving independent component analysis (ICA) problems (Acharya et al., 

2007). 

 

E. General systems 

Besides the applications above, SBFA has been used for finding the optimum point of 

dynamic cost function environments (Ramos, et al., 2007), developing system 

identification for nonlinear dynamic systems (Majhi and Panda, 2010), developing 

Hammerstein model (Lin and Liu, 2006), and improving extended Kalman filter to solve 

simultaneous localization and mapping problems for mobile robots and autonomous 

vehicles (Chatterjee and Matsuno, 2006). 

 

2.3.2. Modifications and improvements of BFA 

In order to improve SBFA’s performance, modifications on some aspects of SBFA have 

been proposed. The modifications have been made to improve SBFA’s performance in 

various aspects such as its convergence to the optimum value, computation time, and 

accuracy. 

 

A. Modification 1: adaptable chemotactic step size  

One improvement concept is how to accelerate the convergence of SBFA. With SBFA 

(Passino, 2002), to find places with high nutrient level, bacteria use random walk with 

certain constant chemotactic step size for whole computational process regardless of the 

nutrient value. This makes bacteria walk with constant speed heading to the optimum 

value. If the step size is set to a small value, bacteria need more iteration to find the 

optimum value. To speed up the bacteria’s walk and reduce the iterations needed, bigger 

step size can be used. 

However, a mathematical analysis of the chemotactic step in SBFA based on 

classical gradient descent search approach in (Dasgupta et al., 2008, Dasgupta et al., 

2009a) suggests that chemotaxis employed by SBFA usually results in sustained 

oscillation when close to the global optimum especially on relatively flat landscape 

nutrient media. Thus, the chemotactic step size needs to be selected as small as possible. 

Such condition makes a trade-off between speeding up bacteria’s walk and minimising 

the oscillation around the global optimum point. Making adaptable chemotactic step size, 

i.e. the value of chemotactic step size changed to follow certain conditions, will solve the 

problem.   
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Several attempts have been made by researchers to propose adaptable 

chemotactic step size for BFA. Dasgupta et al. (2008; Dasgupta et al., 2009a; Das et al., 

2009) have proposed simple linear functions of nutrient value of every bacterium and 

have tested these on several well known benchmark functions as well as applied to a 

parameter estimation problem. This algorithm has also been used in for several areas, 

such as forecasting stock market indices (Majhi et al., 2009), detecting circle in a digital 

image (Dasgupta et al., 2010), and designing optimal three-phase energy efficient 

induction motor (Sakthivel et al., 2010). 

Datta et al. (2008) have proposed an alternative chemotactic step size adaptation 

mechanism, where an adaptive delta modulation principle is used to control the step size. 

They have applied the algorithm to optimisation of array of antennas. Coelho and 

Silveira (2006) proposed an adaptable chemotactic step size by adopting several 

probability distribution functions such as uniform, Gaussian and Cauchy, and have 

applied the algorithm to tuning PID controller of robotic manipulator systems. Chen et 

al. (2009) proposed a modified BFA called cooperative bacterial foraging optimization 

(CBFO). The algorithm has been divided into two stages, one stage with big chemotactic 

step size and then continued with another stage with smaller step size. Big step size in 

the first phase has been used to locate possible region of optimum solution without being 

trapped into local optima and smaller step size in the second phase used to find the 

optimum point. They have validated the algorithm in finding the optimum value of 

several benchmark functions. 

Farhat and El-Hawary (2010) have proposed modification of SBFA by 

introducing nonlinear decreasing chemotactic step size and stopping criteria. Thus, the 

optimisation process is stopped after the cost function has reached a pre-specified value. 

They have applied the algorithm to solve economic dispatch with valve-point effects and 

wind power of power systems. On one hand the stopping criteria regarding pre-specified 

value is able to save computation iteration but in the other hand it could not show that the 

predetermined value is the real global optimum point. Mishra (2005) has been combined 

SBFA with FL to solve harmonic estimation problems, where Sugeno-type FL is used 

for adaptation of chemotactic step size. The input of FL is the minimum of cost function 

value and its output is the step size value. By using this algorithm, the chemotactic step 

size is changed adaptively according to cost function value. 
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B. Modification 2: health sorting and swarming 

Among the first modification on SBFA is the swarming computation formula (Liu and 

Passino, 2002), where the swarming formula has been reformulated so that its value is 

changed depending on the cost function value to replace constant value of SBFA. 

Tripathy et al. (2006) proposed three modifications of SBFA, where 

• In the reproduction steps, the health of bacteria is sorted based on the minimum 

value instead of accumulation value. 

• In the swarming formulation, the distances of all bacteria are measured from the 

global optimum instead of the distance of each bacterium. 

This algorithm has been used for designing robust controller for unified power flow 

control (UPFC) of power systems. The algorithm has further been used to solve various 

problems such as optimising both real power loss and voltage stability of UPFC 

(Tripathy and Mishra, 2007), finding optimal angle of v-dipoles antenna (Mangaraj et al., 

2008), finding both optimal location and amount of series injected voltage for UPFC of 

power systems (Tripathy et al., 2006). A new modification with the same concept but 

with adaptable chemotactic step size has also been proposed (Hota et al. 2010), where 

the chemotactic step size is made adaptive in a pre-determined range. The algorithm has 

been applied to find optimal solution of economic emission load dispatch of power 

systems. 

 

C. Modification 3: hybridizing with other algorithms 

Besides stand-alone, SBFA may also be combined with other algorithms. A hybrid 

algorithm combining SBFA and Nelder-Mead has been proposed by Panigrahi and Pandi 

(2008), where Nelder-Mead algorithm is used to evaluate the optimum value which will 

be compared to optimum value of BFA for every chemotaxis step. If the optimum value 

of BFA is better than that of Nelder-Mead algorithm then update it otherwise use 

optimum value of Nelder-Mead algorithm as the best optimum value. They have also 

made chemotactic step size adaptive with certain formula. They have applied the 

algorithm to solving the problem of economic load dispatch of power system, and to 

optimising the congestion cost of power system (Panigrahi and Pandi, 2009). 

Biswas et al. (2007a) have proposed a hybrid algorithm combining differential 

evolution (DE) and SBFA where mutation, crossover and selection of DE concept is 

adopted to model chemotaxis of BFA while reproduction steps and elimination and 
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dispersal events are discarded. The chemotactic step size has also been changed 

according to cost function value using a special formula. They have validated the 

algorithm in finding optimum point of several well-known benchmark functions. The 

algorithm has also been applied to solving congestion management problem in power 

systems (Pandi et al., 2009). 

A hybrid of PSO and SBFA has been proposed by (Korani, 2008), where PSO is 

used to model the social environment. In order to accelerate convergence to global 

optimum point, the concept of position of every swarm and its velocity is adopted for 

bacteria to replace the random walk approach in SBFA. The algorithm has been applied 

to tune PID controllers for various testing systems. This algorithm has also been applied 

to finding global optimum of benchmark functions (Shen et al., 2009). 

Another hybrid algorithm of PSO and SBFA has been proposed by Saber and 

Venayagamoorthy, (2008), where movement principle in PSO is adopted to replace 

random walk of SBFA. The algorithm has been used to solve economic load dispatch 

problems of power systems. Almost the same concept of hybrid algorithm between PSO 

and SBFA has also been proposed by Gollapudi et al. (2009) where movement concept 

of PSO has been used to replace random walk of BFA. The algorithm has been used in 

resonance frequency calculation of rectangular microstrip antenna. This algorithm has 

also been validated using several benchmark functions (Gollapudi et al., 2011). 

Chu et al. (2008) proposed a hybrid algorithm combining PSO and BFA, where 

the movement idea of PSO is adopted for chemotaxis to replace random walk of BFA. 

Also the chemotactic step size was reduced as long as the index reproduction and 

elimination and dispersal increase. They have validated the algorithm in finding 

optimum point of several benchmark functions. 

Yong et al. (2009) have proposed hybrid of PSO and BFA, where PSO operator 

has been used to perform mutation of every bacterium after every chemotactic step 

before reproduction steps. By using the movement steps, bacterium will always be 

attracted towards the global optimum position for entire population every time. The 

algorithm has been used to solve parameter optimisation of power system stabilizer. 

Biswas et al. (2007b) proposed hybrid algorithm between PSO and BFA where 

movement concept in PSO has been adopted to update position and velocity of bacteria 

after chemotaxis step while elimination and dispersal events have been discarded. They 

have validated the algorithm in finding optimum point of various benchmark functions. 

Alavandar et al. (2010) have also proposed the same concept of hybrid between PSO and 
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BFA and applied it to optimising fuzzy logic for controlling two- link rigid-flexible 

manipulator. 

A hybrid algorithm combining PSO, BFA and Nelder-Mead has been proposed 

by Mahmoud, (2010). PSO has been adopted to replace random walk concept of SBFA. 

After the last elimination and dispersal events, Nelder-Mead algorithm is used to find the 

final optimum point. The algorithm has been used in designing optimal bow-tie antenna 

for 2.45 GHz RFID readers. Kim and Cho (2006) and Kim et al., (2007) have proposed a 

hybrid algorithm combining GA and BFA and have tested the algorithm with several 

benchmark functions and have used it to tune PID controller for automatic voltage 

regulator (AVR) systems. 

Jain et al. (2009) have proposed hybrid algorithm combining GA, PSO and BFA, 

where selection, crossover, and mutation operators of GA are used to increase diversity 

of the search and movement concept of PSO is utilised to replace random walk concept 

of SBFA. Finally, in the elimination and dispersal events, the eliminated bacteria are not 

dispersed to new random position but generated via mutation. The algorithm has been 

used to tune PD-like fuzzy pre-compensated control for two-link rigid-flexible 

manipulator. 

 

D. Modification 4: simplification and chemotaxis 

Ramirez-llanos and Quijano (2009) have proposed a simplification of SBFA by only 

using chemotaxis and discarding both reproduction steps and elimination and dispersal 

events in order to make BFA suitable for real-time application. In the end of algorithm, 

the best bacterium is defined as bacterium which has minimum of accumulation cost 

function value for all of chemotaxis steps. Then the proposed algorithm was used for 

reducing of pressure of valves control in a water distribution system. 

Dasgupta et al. (2009b) have proposed a modification of BFA by introducing 

some simplifications in SBFA. In the simplified BFA algorithm, namely micro-BFA, 

there are only three bacteria used. After all chemotaxis steps, those three bacteria are 

ranked based on their cost function value. Bacterium with the best cost function value is 

kept unaltered, the second best bacterium is moved to a place near the best bacterium and 

the worst is dispersed in another random location by using standard elimination and 

dispersal events. Reproduction steps are discarded. The algorithm has been validated in 

finding optimum value of several high dimensional benchmark functions. 
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Rashtchi et al. (2009) have proposed modifications of SBFA by introducing an 

adaptable chemotactic step size and tumble method. Chemotactic step size is reduced as 

exponential function of elimination and dispersal index. For tumble method, if bacteria 

are found with the cost function value of current position worse than that of previous 

position then bacteria will not move to random direction but keep previous position. The 

algorithm has been validated in finding optimum point of various benchmark functions. 

In order to reduce computation time, simplifications of SBFA have been 

proposed by researchers. In parallel bacterial foraging optimisation (PBFO) (Bakwad et 

al., 2009) the best optimum point is evaluated during the chemotaxis step fitness function 

evaluations to replace health sorting concept of SBFA. Also, a threshold value is added 

to the position computation to accelerate computation time. Moreover, a mutation 

operator is performed by adding social component to bacteria position computation while 

elimination and dispersal events are discarded. PBFO has been computed using 

multiprocessor nodes and applied to video compression. The algorithm, also referred to 

as synchronous bacterial foraging optimization, has been used in various applications 

such as finding optimum value of several benchmark functions (Bakwad et al., 2010), 

and tuning parameters of fuzzy PID controller (Su et al., 2010). 

 

2.4. Parameters selection and their impact on convergence and accuracy 

In the optimisation process, computation parameters have to be determined in advance. 

In order to get optimum result with minimum computation cost, the parameters values 

have to be chosen properly in accordance with nutrient media landscape. The choice of 

parameter selection and their impact on convergence and accuracy are studied in this 

section. In order to observe the characteristic of SBFA in relation to parameters changes, 

simulations are conducted on SBFA to find optimum point of given nutrient media. The 

nutrient media is taken from the nutrient media used by Passino (2002) which can be 

formulated as follows: 

��>� = ?@ABC9D�EFA9G�H8�EHAIB�HJ * �@ABCBKD�EFAIB�H8�EHA9G�HJ  

��@ABCBKD�EFAIG�H8�EHA9B�HJ � �@ABC9D�EFA9B�H8�EHA9B�HJ  

*�@ABCG�EFAG�H8�EHA9B�H * L@ABC9D�EFA9G�H8�EHAG�HJ  

*�@ABCGD�EFAK�H8�EHAIG�HJ * �@ABCGD�EFAI9�H8�EHAIG�HJ  

��@ABCGD�EFAIG�H8�EHA9M�HJ � �@ABCGD�EFAG�H8�EHA9N�HJ  

 

 

(2.7) 
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The nutrient media is a two-dimension search space with two variables: >9 and >I. The 

nutrient function has one global maximum at � equal to 5 when variables )>9 >I+ are 
equal to )�? ��+, four local maxima, four local minima and one global minimum at � 
equal to 4 when variables )>9 >I+ are equal to )�? L+. The detailed numerical data of all 

peaks is presented in Table 2.1. The 3D and 2D plots of the test function are shown in 

the Figure 2.4 with the range of parameters >� in �� ���. Since the nutrient function has 
one global maximum, four local maxima, four local minima and one global minimum, it 

is very risky for the optimization algorithm to be trapped in one of the local minima. 

 

 
(a) 3D view 

 
(b) 2D view 

Figure 2.4: Plot of nutrient media function used in (Passino, 2002) 

 

Table 2.1: Numerical data of nutrient media used by Passino (2002) 

Maxima/minima OP OQ Nutrient value R 
Global maximum 15 20 5 
Local minimum 20 15 -2 
Local maximum 25 10 3 
Local maximum 10 10 2 
Local minimum 5 10 -2 
Global minimum 15 5 -4 
Local minimum 8 25 -2 
Local minimum 21 25 -2 
Local maximum 25 16 2 
Local maximum 5 14 2 
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Here, the nutrient media above is viewed as minimisation problem, which means the task 

is to find the global minimum point of the nutrient media. From the SBFA’s point of 

view, the global minimum point is the place which has the highest nutrient level. 

 

2.4.1. Overall foraging of bacteria 

To know how the algorithm works, here SBFA is used to find optimum (minimum) point 

of nutrient media formulated in equation (2.7). In the simulation, the SBFA used the 

following parameter values: 

v 	 = 2 
v � = 20 

v �� = 40 

v �� = 4 

v ��� = 4 

v �� = � �S  

v ��� = 3 

v 	�� = 0.25 

The chemotactic step size ,�
� was chosen as 0.2. Those parameters were chosen so that 

the BFA will be able to find the optimum point of the nutrient media. The initial 

positions of bacteria can be placed either at certain predetermined positions or randomly 

in the nutrient media. If bacteria were placed randomly, they can fall anywhere across 

the nutrient media with the probability that a part of them will fall near the food. In 

contrast, if bacteria were placed in certain pre-determined place, they will begin the 

search from the same initial point. The chemotaxis process of bacteria from their initial 

positions, random and predetermined position [>9 >I] at )�� �?+, is illustrated in Figure 
2.5. 

 
(a) Placed randomly 

 
(b) Placed at )�� �?+ 

Figure 2.5: Illustration of bacteria’s chemotaxis from their initial positions in the nutrient 

media 

 

From their initial positions, bacteria will find food (in this minimisation problem 

means place which has lower nutrient media value) by using biased random walk; they 
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will move to random direction but will move forward continuously in the same direction 

(swim) if they find the correct path. For purposes of illustration, in this section the initial 

positions of bacteria were chosen in the neutral position in the nutrient media, e.g. at 

)�� �?+. This initial position was chosen because it was “neutral” position (the nutrient 
value is nearly equal to zero) and it lies between peaks and valleys. Bacteria will move 

away from peaks toward valleys. After all chemotaxis steps, reproduction steps are 

performed. In the reproduction step, half of bacteria, which are less healthy will die and 

the remaining half (healthier bacteria) will reproduce (split into two bacteria and new 

bacteria has the same place with their mother). With this mechanism only the healthiest 

bacteria (bacteria in the richest food) will survive.  

The simulation results in Figure 2.6 show that after all four reproduction steps, all 

bacteria were trapped in one of the local minima. Elimination and dispersal events, 

which are performed soon after all reproduction steps have taken place is a mechanism 

that makes bacteria to be distributed in other parts of the nutrient media.  

 

Figure 2.6: Bacteria trajectories in the first elimination and dispersal event: 2D view 
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Figure 2.7 shows that after one elimination and dispersal event, a part of bacteria fall into 

the valley where the global minimum exists. In the fourth reproduction of second 

elimination and dispersal event, bacteria grouped in the global valley and local valley.  

 

Figure 2.7: Bacteria trajectories in the second elimination and dispersal event: 2D view 

 

Plots in Figure 2.8 show that in the final elimination and dispersal event all bacteria were 

able to find the global valley. Every movement of bacteria will result new positions 

which in turn will result new corresponding coordinate [>9 T>I]. The trajectories of >9 

and >I for all bacteria in all simulation steps are depicted in Figure 2.9 – Figure 2.11. 
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Figure 2.8: Bacteria trajectories in the third elimination and dispersal event: 2D view 

 

Figure 2.9: Bacteria trajectories in the first elimination and dispersal event: 1D view 
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Figure 2.10: Bacteria trajectories in the second elimination and dispersal event: 1D view 

 

Figure 2.11: Bacteria trajectories in the third elimination and dispersal event: 1D view 
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Convergence plot of SBFA is depicted in Figure 2.12. The plot presents the 

minimum nutrient value achieved by all bacteria for each step. SBFA converges to 

optimum value in 200 steps. The numerical results are presented in Table 2.2. 

 
Figure 2.12: Convergence plot of SBFA 

 

Table 2.2: Numerical result of optimisation process using SBFA for nutrient media 

Initial positions of 

bacteria 
Initial R Optimum 

OP 

Optimum 

OQ 
Optimum R Convergence 

speed (steps) 

)�� �?+ 0.2283 14.9071 4.9442 -3.9813 203 

 

2.4.2. Impact of bacteria population size 

Large number of bacteria population size (�) has advantage that more bacteria searching 

in the nutrient media mean they can search and explore more parts of nutrient media. 

Besides, in the randomly distributed initial positions, more bacteria mean there is high 

probability that bacteria fall near the optimum value. The drawback of large population 

size is it will increase the computation complexity. In this section, the impact of � is 
investigated. SBFA with various � is used to find global minimum of the cost function 

formulated in equation (2.7). In the simulation, the following SBFA parameters values 

were used: 

v 	 = 2 
 

v �� = 40 

v �� = 4 

v ��� = 4 

v �� = � �S  

v ��� = 3 

v 	�� = 0.25 

The chemotactic step size (,�
�) values were chosen at 0.01 and 0.1 while initial 
positions of bacteria were selected at )�� �?+ and randomly across the nutrient media. 
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Numerical results for chemotactic step size (,�
�) equal to 0.01 presented in 
Table 2.3 show that to reduce the population size makes bacteria to be trapped in one of 

local minima. However, with initial positions of bacteria spread randomly across the 

nutrient media, SBFA was able to find place near the global optimum when bacteria 

population size was 10 or above compared to population size equal to 100 when placed 

at )�� �?+. When bacteria reach a place near the global point, the optimum point 

achieved was the same for all �. The convergence plots depicted in Figure 2.13 show that 
by spreading bacteria across the nutrient media, SBFA was able to converge faster than 

placed at )�� �?+. Also the larger population size, the faster SBFA converge to optimum 

value.  

 

Table 2.3: Numerical results of SBFA with various population sizes with chemotactic 

step size (,�
�) is equal to 0.01 
Initial positions 

of bacteria 
U Optimum 

OP 

Optimum 

OQ 
Optimum R Convergence 

speed (steps) 

At )�� �?+  

4 -0.3308 1.1083 �CV��� � ��AK 258 

10 19.9754 15.0206 -1.9116 362 

50 21.0061 25.0081 -1.9895 196 

100 15.0154 4.9836 -3.9867 353 

Randomly in 

nutrient media 

4 19.9826 15.0250 -1.9116 449 

10 15.0635 4.9287 -3.9845 466 

50 15.0145 4.9836 -3.9867 203 

100 15.0159 4.9851 -3.9867 109 
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(a) Initial positions: at )�� �?+ (b) Initial positions: random 

Figure 2.13: Convergence plots of SBFA with various population sizes with ,�
� equal 
to 0.01 

 

For chemotactic step size equal to 0.1, numerical results presented in Table 2.4 

show that the bacteria population size had very little effect on the optimum nutrient value 

achieved. Similar to small step size, here, the convergence plots depicted in Figure 2.14 

show that larger population size resulted SBFA convergence faster to the optimum value. 

(a) Initial positions: at )�� �?+ (b) Initial positions: randomly 

Figure 2.14: Convergence plots of SBFA for different bacteria population size with ,�
� 
equal to 0.1 

 

 

 

 

 



Chapter 2 – Bacterial Foraging Algorithm: An Overview 

38 
 

Table 2.4: Numerical results of SBFA with various population sizes with chemotactic 

step size (,�
�) equal to 0.1 
Initial positions 

of bacteria 
U Optimum 

OP 

Optimum 

OQ 
Optimum R Convergence 

speed (steps) 

At )�� �?+ 

4 15.0347 4.9579 -3.9863 245 

10 14.9978 4.9407 -3.9858 264 

50 15.0054 4.9400 -3.9859 207 

100 15.0046 4.9887 -3.9866 203 

Randomly in the 

nutrient media 

4 14.9981 4.9780 -3.9866 108 

10 14.9695 5.0052 -3.9856 68 

50 15.0224 4.9932 -3.9866 46 

100 15.0218 4.9657 -3.9866 16 

 

2.4.3. Impact of chemotactic step number  

If the number of chemotactic step (��) is set too small, bacteria will not have enough 

steps to converge to the optimum value so that bacteria will face the risk of getting 

trapped at local minima. Large �� will give high probability for bacteria to reach the 

optimum point. However, large �� will increase computation complexity and 

computation time. In this section, SBFA with various �� values is used to find global 

optimum value of nutrient media. The objective of the investigation is to reveal the 

impact of �� value, on both convergence and accuracy of SBFA. The parameters used in 

the simulation were: 

v 	 = 2 
v � = 20 

v �� = 4 v ��� = 4 

v �� = � �S  

v ��� = 3 

v 	�� = 0.25 

Chemotactic step size (C�
�) was set to 0.05 while the initial positions of bacteria were 
selected at )�� �?+ and randomly across the nutrient media. 

The convergence plots depicted in Figure 2.15 show that the �� value affected 

the convergence of SBFA when bacteria were initially placed at )�� �?+. However, it 
did not give much effect when bacteria were initially placed randomly across the nutrient 

media. Numerical results presented in Table 2.5 show that SBFA needed longer 

chemotaxis steps (bigger �� value) to find the global minimum when bacteria were 

placed at )�� �?+. However, with the initial positions of bacteria placed randomly 

selected across the nutrient media the �� only had little effect because parts of bacteria 
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were landed near the optimum point. Another consequence of bigger �� value is that the 

computation time will be longer. 

(a) Initial positions: at )�� �?+ (b) Initial positions: random 

Figure 2.15: Convergence plots of SBFA for various �� values 

 

Table 2.5: Numerical results of SBFA for different �� values 

Initial 

positions of 

bacteria 

XY 
Optimum 

OP 

Optimum 

OQ 

Optimum 

R 
Chemotactic 

steps 

Convergence 

speed (steps) 

At )�� �?+ 

4 7.9314 24.9892 -1.9924 48 - 

6 15.3316 3.1119 -2.7689 72 - 

8 4.8911 9.9831 -1.8428 96 - 

20 15.0193 4.9909 -3.9867 240 170 

70 15.0252 4.9799 -3.9867 840 378 

Randomly 

in nutrient 

media 

4 14.9930 4.9575 -3.9862 48 50 

6 14.9874 4.9681 -3.9863 72 26 

8 15.0006 4.9756 -3.9866 96 65 

20 15.0153 4.9746 -3.9867 240 96 

70 15.0059 4.9766 -3.9866 840 78 

 

2.4.4. Impact of maximum continuous swim number 

Large maximum continuous swim number (��) enables bacteria to swim continuously 

directly heading to the optimum value which means bacteria will only need fewer 

iterations to achieve global optimum point. However, if the �� value is too large bacteria 

will face the risk of moving to and being trapped in local minima. Here, SBFA with 
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various �� is used to find optimum point of the nutrient media formulated in equation 

(2.7). The objective of the investigation is to disclose the effect of �� on the convergence 

and accuracy of SBFA. In the simulation, the BFA parameters were selected as: 

v 	 = 2 
v � = 20 

v �� = 40 

 

v ��� = 4 

v �� = � �S  

v ��� = 3 

v 	�� = 0.25 

Chemotactic step size was chosen equal to 0.05 while the initial positions of bacteria 

were selected at )�� �?+ and randomly across the nutrient media.  

 The convergence plots depicted in Figure 2.16 show that the longer �� the faster 

SBFA will converge to optimum point. However, too big �� value results in a delay in 

the convergence because bacteria will swim toward local optimum point. Numerical 

results outlined in Table 2.6 show that �� values only slightly influence the optimum 

value achieved by SBFA but it impacts on the convergence speed.  

 
(a) Initial positions: at [11; 15] 

 
(b) Initial positions: random 

Figure 2.16: Convergence of SBFA for different �� values 
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Table 2.6: Numerical results of SBFA for different �� values 

Initial positions 

of bacteria 
XZ 

Optimum 

OP 

Optimum 

OQ 
Optimum R Convergence 

speed (steps) 

At )�� �?+ 

1 15.0170 4.9903 -3.9867 413 

2 15.0134 4.9730 -3.9866 238 

4 15.0227 4.9955 -3.9866 213 

6 15.0016 5.0060 -3.9864 215 

10 15.0343 5.0100 -3.9863 372 

Randomly in the 

nutrient media 

1 15.0176 4.9834 -3.9867 248 

2 15.0281 4.9782 -3.9866 109 

4 15.0142 4.9953 -3.9866 75 

6 14.9949 4.9994 -3.9864 47 

10 15.0368 4.9998 -3.9864 39 

 

2.4.5. Impact of reproduction steps 

During reproduction steps, only healthiest bacteria will survive and the other least 

healthy bacteria will be discarded. In the BFA algorithm, with small number of 

reproduction steps (���) bacteria may converge prematurely to local optima. With large 

��� the bacteria will be able to concentrate to good regions using healthiest bacteria only 

and ignore lower-nutrient regions. However, clearly, larger ��� increases computational 

complexity and computational time. In this section, SBFA with various ��� values is 

used to find optimum point of the nutrient media formulated in equation (2.7). The 

objective of the investigation is to discover the impact of ��� on the convergence and 

accuracy of BFA. In the simulation, the following BFA parameters were used: 

v 	 = 2 
v � = 20 

v �� = 40 

v �� = 4 
v �� = � �S  v ��� = 3 

v 	�� = 0.25 

Chemotactic step size (C�
�) values were selected equal to 0.01 and 0.05 while the initial 
positions of bacteria were selected at )�� �?+ and randomly across the nutrient media. 

 With a step size of to 0.01, the converge plots depicted in Figure 2.17 show that, 

in general, large ��� value makes SBFA to converge slower than a small ��� value. For 

the accuracy, numerical results presented in Table 2.7 show that SBFA needs enough 

��� to be able find the place near the optimal point. The introduction of ��� 

automatically increases chemotaxis steps and this in turn increases computational load 
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and time. Similarly with chemotactic step size of 0.05 the convergence plots depicted in 

Figure 2.18 show that smaller ��� values result in faster convergence. Also, numerical 

results presented in Table 2.8 show that ��� values give little impact on the accuracy.  

 
(a) Initial positions: at )�� �?+ 

 
(b) Initial positions: random 

Figure 2.17: Convergence plots of SBFA for different ��� values with chemotactic step 

size (,�
�) equal to 0.01 
 

Table 2.7: Numerical results of SBFA for various ��� values with chemotactic step size 

(,�
�) equal to 0.01 
Initial 

positions of 

bacteria 

X[\ 
Optimum 

OP 

Optimu

m OQ 

Optimum 

R 
Chemotactic 

steps 

Convergence 

speed (steps) 

At )�� �?+ 

1 13.8592 2.7395 -2.1045 120 - 

2 14.9285 5.0630 -3.9809 240 - 

4 15.0163 4.9846 -3.9867 480 269 

6 15.0164 4.9823 -3.9867 720 464 

10 15.0159 4.9878 -3.9867 1200 972 

Randomly 

across 

nutrient 

media 

1 15.5702 5.3337 -3.8188 120 - 

2 15.0163 4.9913 -3.9867 240 223 

4 15.0174 4.9826 -3.9867 480 196 

6 15.0207 4.9867 -3.9867 720 293 

10 15.0149 4.9867 -3.9867 1200 330 

 



Chapter 2 – Bacterial Foraging Algorithm: An Overview 

43 
 

 
(a) Initial positions: at )�� �?+ 

 
(b) Initial positions: random 

Figure 2.18: Convergence plots of SBFA for various ��� value with chemotactic step 

size (,�
�) equal to 0.05 
 

Table 2.8: Numerical results of SBFA for various ��� values with chemotactic step size 

(,�
�) equal to 0.05 
Initial 

positions of 

bacteria 

X[\ 
Optimum 

OP 

Optimum 

OQ 

Optimum 

R 
Chemotactic 

steps 

Convergence 

speed (steps) 

At )�� �?+ 

1 14.9880 5.0137 -3.9860 120 109 

2 15.0384 5.0039 -3.9863 240 194 

4 15.0344 4.9888 -3.9866 480 263 

6 15.0195 4.9558 -3.9864 720 307 

10 14.9986 4.9862 -3.9866 1200 469 

Randomly in 

nutrient 

media 

1 15.0557 4.9764 -3.9860 120 61 

2 15.0219 4.9972 -3.9866 240 69 

4 15.0026 4.9783 -3.9866 480 98 

6 15.0281 4.9911 -3.9866 720 75 

10 15.0000 4.9947 -3.9865 1200 63 

 

2.4.6. Impact of elimination and dispersal event 

Elimination and dispersal event makes bacteria dispersed in another region of nutrient 

media. This event results bacteria to possibly fall into a region near the optimum point. 

Thus, a large value of elimination and dispersal number (���) will assure bacteria 

explore all regions of nutrient media, with increased computational complexity and time 
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as the side effect. With small value of ��� and especially with small population size, the 

bacteria may not explore the whole nutrient media. In this section, SBFA with various 

��� values is utilised to find optimal point of the nutrient media formulated in equation 

(2.7). The objective of the work is to study the impact of ��� value on the convergence 

and accuracy of the algorithm. In the simulation, the following SBFA parameters values 

were used: 

v 	 = 2 
v � = 20 

v �� = 40 

v �� = 4 

v ��� = 4 

v �� = � �S  

 

v 	�� = 0.25 

The chemotactic step size (,�
�) values were selected equal to 0.01 and 0.1 while the 
initial positions of bacteria were selected at )�� �?+ and randomly in the nutrient media. 

For a step size of 0.01, the convergence plots depicted in Figure 2.19 show that in 

general smaller ��� values result in faster convergence. For the initial positions of 

bacteria at )�� �?+, the numerical results presented in Table 2.9 show that SBFA needed 

enough ���, e.g. 3 to find a place near the optimum point. For initial positions of 

bacteria selected randomly in the nutrient media, the BFA was able to find locations near 

the optimum point with only one elimination and dispersal event because part of bacteria 

initially fell near the optimum point. Large ��� values increase the number of 

chemotaxis steps and in turn increase the computation load and time. These conditions 

also apply to chemotactic step size equal to 0.1.  

 
(a) Initial positions: at )�� �?+ 

 
(b) Initial positions: random 

Figure 2.19: Convergence of SBFA for various ��� values with chemotactic step size 

equal to 0.01 
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Table 2.9: Numerical results of SBFA for various values of ��� with chemotactic step 

size equal to 0.01 

Initial 

positions of 

bacteria 

X\] 
Optimum 

OP 

Optimum 

OQ 

Optimum 

R 
Chemotactic 

steps 

Convergence 

speed (steps) 

At )�� �?+ 

1 8.4477 16.5802 0.0421 160 - 

2 14.7798 7.1715 -2.3939 320 - 

3 15.0143 4.9797 -3.9867 480 258 

4 15.0136 4.9804 -3.9867 640 416 

5 15.0144 4.9787 -3.9867 800 453 

Randomly 

in nutrient 

media 

1 15.0134 4.9822 -3.9867 160 55 

2 15.0175 4.9841 -3.9867 320 122 

3 15.0168 4.9815 -3.9867 480 114 

4 15.0199 4.9792 -3.9867 640 118 

5 15.0152 4.9840 -3.9867 800 205 

 

Similar to small chemotactic step size, Table 2.10 shows that, with initial 

positions of bacteria selected at )�� �?+ in the nutrient media, using chemotactic step 

size equal to 0.1 the BFA needed ��� values, of two or above to converge. However, 

with the initial positions of bacteria selected randomly, the BFA was able to find 

locations near the optimum point with only one elimination and dispersal event. Also, 

larger ��� value resulted in a larger number of chemotaxis steps and longer computation 

time. The convergence plots depicted in Figure 2.20 show that ��� values did not impact 

on the convergence of SBFA. 
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Table 2.10: Numerical results of SBFA for various values of ��� with chemotactic step 

size equal to 0.1 

Initial 

positions of 

bacteria 

X\] 
Optimum 

OP 

Optimum 

OQ 

Optimum 

R 
Chemotacti

c steps 

Convergence 

speed (steps) 

At )�� �?+ 

1 -15.3647 27.7284 
^C�_^�
� ��ANI 

160 - 

2 15.0253 4.9891 -3.9867 320 219 

3 15.0411 4.9876 -3.9864 480 200 

4 15.0097 4.9308 -3.9855 640 208 

5 15.0456 4.9699 -3.9863 800 211 

Randomly 

across 

nutrient 

media 

1 14.9760 4.9777 -3.9860 160 95 

2 15.0315 4.9694 -3.9865 320 96 

3 15.0205 4.9709 -3.9866 480 41 

4 15.0069 5.0002 -3.9865 640 44 

5 15.0316 4.9344 -3.9856 800 80 

 

 
(a) Initial positions: at )�� �?+ 

 
(b) Initial positions: random 

Figure 2.20: Convergence of SBFA for various ��� values with chemotactic step size 

equal to 0.1 

 

2.4.7. Impact of chemotactic step size 

Chemotactic step size, ,�
�, value determines the length of one chemotaxis step. 

• If ,�
� is very small, bacteria will be able to find on optimal point very close to 

the theoretical optimum point. However, the convergence will be very slow so 



Chapter 2 – Bacterial Foraging Algorithm: An Overview 

47 
 

that large number of steps will be needed. Also too small ,�
� will make 

bacteria have high probability of being trapped at local optima. 

• If ,�
� is very large, bacteria will be able to converge to optimum value very 

fast and possibly able to miss possible local optima by swimming through them 

without stopping. However, if the optimum value lies in a valley then it will get 

risk to jump over the valley. 

In order to reveal the impact of chemotactic step size (,�
�) on the convergence 
and accuracy, in this section BFA with various ,�
� values is used to find optimum point 

of nutrient media formulated in equation (2.7). In the simulation, the SBFA used the 

parameters values: 

v 	 = 2 
v � = 20 

v �� = 40 

v �� = 4 

v ��� = 4 

v �� = � �S  

v ��� = 3 

v 	�� = 0.25 

The initial positions of bacteria were selected at )�� �?+ and randomly across the 

nutrient media. 

Convergence plots depicted in Figure 2.21 show that bigger chemotactic step size 

results BFA to converge to optimum point faster than that with smaller step size and too 

small step size makes SBFA either not reaching a place near optimum point. However, 

too big chemotactic step size makes bacteria oscillate around optimum point. In addition, 

SBFA is able to converge faster if the initial positions of bacteria are chosen randomly 

because part of bacteria fall in the area near to the optimum value than if placed at 

)�� �?+. Numerical results outlined in Table 2.11 show that if the chemotactic step size 

is too small SBFA could not achieve nutrient value close to optimum point but if the step 

size is too big SBFA may achieve nutrient value farther from optimum point. With initial 

positions of bacteria placed randomly in the nutrient media, SBFA could achieve a 

location near the optimum point using smaller step size. 

 



Chapter 2 – Bacterial Foraging Algorithm: An Overview 

48 
 

(a) Initial positions: at [11; 15] (b) Initial positions: random 

Figure 2.21: Convergence plots of SBFA for various ,�
� values 
 

Table 2.11: Numerical results of SBFA for various ,�
� with initial positions of bacteria 
at )�� �?+ 

Initial positions of 

bacteria 
`�a� Optimum 

OP 

Optimum 

OQ 

Optimum 

R 
Convergence 

speed (steps) 

At )�� �?+ 

0.005 18.4859 3.6244 -0.9782 - 

0.01 19.9765 15.0175 -1.9116 374 

0.05 7.9853 25.0029 -1.9968 236 

0.1 15.0521 4.9860 -3.9862 220 

0.3 14.9795 4.8436 -3.9783 333 

0.5 15.0602 4.7878 -3.8903 217 

Randomly in 

nutrient media 

0.005 4.9252 9.9929 -1.8441 142 

0.01 15.0130 4.9818 -3.9867 245 

0.05 15.0142 4.9953 -3.9866 75 

0.1 15.0448 4.9335 -3.9853 45 

0.3 15.0673 4.9467 -3.9151 18 

0.5 14.8269 4.9370 -3.8714 45 

 

2.4.8. Impact of probability value which bacteria will be eliminated/dispersed 

In the BFA algorithm, probability value which bacteria will be eliminated/dispersed 

(	��) determines the threshold condition that bacteria will be eliminated and dispersed 

and in turn determines how many bacteria will be eliminated/dispersed. Larger 	�� 

values mean larger number of bacteria will be eliminated and dispersed and vice versa. 
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The advantage of large 	�� value is that more bacteria are dispersed to other parts of the 

nutrient media so that BFA can search almost all parts of the nutrient media, and in turn 

avoid getting trapped at local optima and also further to accelerate the convergence. 

However, the negative impact of large 	�� value is that it may degrade the algorithm to 

random exhaustive search. In this section, SBFA with various 	�� values is used to find 

optimum point of the nutrient media formulated in equation (2.7). The objective of the 

investigation is to study the impact of 	�� on the convergence and accuracy of BFA. In 

the simulation, the BFA used the following parameter values: 

v 	 = 2 
v � = 20 

v �� = 40 

v �� = 4 

v ��� = 4 

v �� = � �S  

v ��� = 3 

The chemotactic step size (,�
�) was selected equal to 0.01 with the initial positions of 
bacteria selected at )�� �?+ and randomly across the nutrient media. 

The convergence plots depicted in Figure 2.22 show that large 	�� values result 

in faster convergence. The numerical results presented in Table 2.12 show that with 

initial positions of bacteria at )�� �?+ and too small a 	�� value the SBFA could not 

achieve a location closest to the optimum point. This is likely because there were not 

enough bacteria to be eliminated and dispersed to other area so that bacteria were trapped 

in one of the local minima. For computation time, there was no trends either increasing 

or decreasing due to changes in 	�� value. 

(a) Initial positions: at )�� �?+ (b) Initial positions: random 

Figure 2.22: Convergence plots of SBFA for various probability threshold (	��) values 
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Table 2.12: Numerical results of SBFA for various 	�� values 

Initial positions 

of bacteria 
b\] 

Optimum 

OP 

Optimum 

OQ 
Optimum R Convergence 

speed (steps) 

At )�� �?+ 

0.1 21.0075 25.0036 -1.9895 392 

0.15 16.5141 3.6822 -2.6726 484 

0.25 15.0165 4.9796 -3.9867 434 

0.5 15.0200 4.9796 -3.9867 444 

0.9 15.0143 4.9828 -3.9867 383 

Randomly in the 

nutrient media 

0.1 15.0141 4.9829 -3.9867 294 

0.15 15.0181 4.9805 -3.9867 445 

0.25 15.0135 4.9841 -3.9867 349 

0.5 15.0152 4.9838 -3.9867 111 

0.9 15.0130 4.9821 -3.9867 58 

 

2.4.9. Impact of initial positions of bacteria 

In the BFA optimisation process, the initial positions of bacteria could be selected at 

certain position or just placed randomly in the nutrient media. If the region of global 

optimum in the nutrient media is known, the initial positions of bacteria could be placed 

in the region to accelerate convergence and achieve nutrient value as close as possible 

with global optimum. In this section SBFA with different initial positions of bacteria is 

used to find optimum point of the nutrient media formulated in equation (2.7). The 

objective of the investigation is to study the impact of initial positions of bacteria on 

convergence and accuracy. In the simulation, the SBFA used the following parameter 

values: 

v 	 = 2 
v � = 20 

v �� = 40 

v �� = 4 

v ��� = 4 

v �� = � �S  

v ��� = 3 

v 	�� = 0.25 

Thus every bacterium will have 480 steps in their lifetime. The chemotactic step size was 

selected equal to 0.05. The initial positions of bacteria were selected in seven pre-

determined positions, e.g. )� ��+, )� �+, )�_ �+, )�_ �_+, )�? �_+, )�? ��+, and 
)�� �?+ and randomly in the nutrient media as depicted in Figure 2.23(a). 

The convergence plots depicted in Figure 2.23(b) show that the fastest 

convergence was achieved with initial positions of bacteria at )�? ��+, which is very 
close to the global optimum point.  
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(a) Various initial positions (b) Convergence plots 

Figure 2.23: Various predetermined initial positions of bacteria in the nutrient media and 

their convergence plots 

 

It can be noticed that the convergence of SBFA with initial positions of bacteria selected 

randomly in the nutrient media was slightly slower than with )�? ��+ but faster than 
with all the other rest predetermined initial positions. Numerical results presented in 

Table 2.13 show that the SBFA was able to converge to the global optimum point for 

most of the initial positions of bacteria except for )�? �_+ and )�_ �_+ in 480 steps. 
 

Table 2.13: Numerical results of SBFA with various initial positions of bacteria 

Initial 

positions of 

bacteria 

Initial R Optimum 

OP 

Optimum 

OQ 
Optimum R Convergence 

speed (steps) 

[3, 20] 
�CL^V�
� ��AM 

15.0013 4.9913 -3.9866 316 

[2, 2] 
?CLLV�
� ��AM 

15.0047 5.0071 -3.9864 326 

[28, 2] 0.0087 14.9907 4.9753 -3.9844 415 

[28, 28] 
*�C?^VL
� ��AK 

21.0133 25.0216 -1.9892 109 

[15, 28] 0.0083 20.9845 25.0194 -1.9888 241 

[15, 10] -0.1996 15.0106 4.9991 -3.9866 53 

Random - 15.0215 4.9831 -3.9867 75 

[11, 15] 0.2283 15.0275 4.9822 -3.9856 252 
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2.5. Summary 

The original BFA proposed by Passino (2000, 2002) has been described in detail 

together with its current applications and proposed modifications. Although the original 

BFA performed well in the various applications, the modifications have improve its 

performance in several aspects such as convergence to the optimum value, convergence 

speed, etc. The previous modifications proposed, developed and used by researches give 

an overview of the potential open space for further modification and its application. 

Finally, the impact of parameter selection in the original BFA on convergence and 

accuracy has been studied.  

It can be noted that the most influential factors on convergence are initial 

positions of bacteria and chemotactic step size (,�
�) while the most influential factors 

for accuracy are �� ���  ��� and chemotactic step size (,�
�). If the initial positions of 
bacteria are chosen randomly in the nutrient media and adequate ��  ��� and ��� values 

are provided, then the most influential factor for both convergence and accuracy is the 

chemotactic step size (,�
�). Hybridization of BFA with other techniques such as FL and 
NN need further study to reveal its potential, possibility, and performance. Chapter 3 will 

present an overview of a single-link flexible manipulator considered in this work. 
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CHAPTER 3 

FLEXIBLE MANIPULATOR SYSTEMS: AN 

OVERVIEW 
 

 

3.1. Introduction  

The flexible manipulator system utilised in the research is overviewed in this chapter. 

First of all, the structure of available experimental rig is described. Secondly, current 

works on modelling and control of the flexible manipulator are discussed. Finally, the 

experimental input-output data pairs gathered from the flexible manipulator rig is 

presented. 

 

3.2. Structure of flexible manipulator system 

The flexible manipulator rig considered in this work is a laboratory-scale facility 

depicted in Figure 3.1 (Azad, 1994; Tokhi and Azad, 1997).  

 
Figure 3.1: The laboratory-scale single-link flexible manipulator rig 

 

The experimental rig consists of a thin beam attached on the hub actuator. The actuator is 

a U9M4AT type printed circuit motor driving the flexible manipulator with a bi-

directional motor drive amplifier (LA5600 manufactured by Electro-Craft Corporation). 

The three measuring devices used to record the responses of the manipulator are shaft 

encoder, tachometer and accelerometer. For shaft encoder, a transducer used for 
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measuring hub-angular displacement, with a resolution of 2048 pulses/revolution 

manufactured by Heidenhain is been selected. The tachometer is used for measurement 

of the hub angular velocity of the manipulator. The accelerometer, located at the end-

point of the flexible arm mounted using epoxy adhesive, is used for measuring the end-

point acceleration. The instrument used for accelerometer is integrated circuit 

piezoelectric (ICP) accelerometer 303A03. This device has advantages such as its 

lightweight, small size, can cover the range of frequencies involved in these 

investigations with voltage sensitivity of 1.02 2−msmV and has low impedance output 

that allows the use of long cables without an appreciable signal loss or distortion. A 

precision interface circuit PCL 818G is used to interface the flexible manipulator system 

with a computer, currently a personal computer (PC) with a Pentium Celeron-500 MHz 

is utilised. A direct interface between the processor, the actuator and sensors can be 

handled by this board (Azad, 1994; Tokhi and Azad, 1997). MATLAB/SIMULINK 

environment is developed in the PC and used to communicate with the manipulator so 

that all data from the manipulator can be recorded and a controller can be designed and 

applied. The block diagram of the experimental rig is depicted in Figure 3.2. 

 

 
Figure 3.2: Schematic diagram of the experimental rig (Azad, 1994) 

 

The arm of the manipulator is a beam made from aluminium material. An outline 

of the mechanical model of the flexible manipulator is depicted in Figure 3.3 (Azad, 

1994; Tokhi and Azad, 1997). In the schematic representation of the flexible manipulator 

in Figure 3.4(a): the stationary and moving coordinates are represented by ��� and 
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�′��′ respectively, � is the hub-angular displacement, � is the applied torque at the hub 

by a drive motor, �� represents a payload mass, �	 is the hub inertia, �� is inertia 

associated with the payload. The physical parameters of the flexible arm used in this 

work are outlined in Table 3.1. In this work, the impact of gravity is neglected. The 

operational range of the flexible manipulator rig is in the range of 
�� degrees as 

depicted in Figure 3.4(b). 

Motor

Tachometer

Hub

Flexible arm
E I,  a n d  ρ

w

Shaft
encoder

Mp
Ih

l

 
Figure 3.3: Outline of the flexible manipulator system (Azad, 1994) 

 

 
(a) Schematic representation 

Hub

80°− °80

Operational area

Uncovered area Uncovered area
 

(b) Operational range 

Figure 3.4: Representation of the flexible manipulator system (Azad, 1994) 

 

Table 3.1: Physical parameters of experimental flexible manipulator rig 

Physical parameters Value 

Length (�) 960 mm 

Width (�) 19.008 mm 

Thickness (�) 3.2004 mm 

Mass density per unit volume (�) 2710 ����� 

The second moment of inertia (�) ������ � ���� �� 

The young modulus ( ) !� � �"�#��$ 

Moment of inertia (�%) 0.04862 ���$ 

The hub inertia (�	) ���& � ��� ���$ 
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3.3. Previous works on modelling of flexible manipulator system 

3.3.1. Introduction 

In general, system modelling is the process of developing a structure that represents the 

dynamics of system under study. Several methods such as mathematical method and 

numerical analysis have been proposed, developed and used by researchers (Azad, 1994; 

Poerwanto, 1998). By using a mathematical analysis, the flexible manipulator dynamics 

can be represented as a partial differential equation (PDE). The modelling of flexible 

manipulator using numerical analysis method involves representation of flexible 

manipulator dynamics by solving the PDE using finite difference (FD) or finite element 

(FE) methods.  

Flexible manipulator systems can also be modelled by using certain methods that 

avoid solving dynamics/kinematics of the system. These include parametric and non-

parametric identification techniques (Shaheed and Tokhi, 2002). With these approaches, 

model of the system is derived based on input-output data pairs collected at input-output 

terminals of the system. As a consequence, the accuracy of the model is highly 

dependent on the accuracy of the collected data from the experimentation steps (Ljung, 

1999). There are two steps for these approaches. Firstly, qualitative operations which 

define the structure of the model such as type and order of the differential/difference 

equation that relate the input to the output have to be performed. This step is called 

characterization. Then, the numerical values of the structural parameters are determined, 

which minimize the residual/error between actual system and the model. This step is 

known as identification. Construction of a model based on input-output data pair 

involves three main components (Ljung, 1999): 

a. The input-output data available gathered from experiment 

b. A set of candidate models.  

c. An assessment mechanism to determine the best model  

Furthermore, the system modelling problem can be considered as an optimisation 

task where the objective is to find parameters of the model that minimise the prediction 

error between the system’s actual output (the measured data) and the predicted output 

(model’s output). The general concept of system identification can be described as in 

Figure 3.5, where '()* is the actual input, +()* is the actual output, +,()* is the predicted 

output and -()* is the error; 

-()* . +()* / +,()*  (3.1) 
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Figure 3.5: General concept of system identification 

 

The model is fitted to the real system using the procedure described as: 

 
Figure 3.6: The system identification loop (Ljung, 1999) 

 

Following the modelling phase, the validation phase is carried out. Firstly the 

resulted model must be stable. Secondly, the model shall predict the system response to 

given excitation. To validate predictive capability of the model the experimental data is 

split into two sets: estimation set (modelling set) and test set (prediction set). Normally, 

the data set is divided into two halves. Finally, if the developed model is adequate, the 

prediction errors should not contain any information about the past errors, inputs or 

outputs of the system. The adequacy of the model can be checked by using a set of the 

correlation tests described below (Billings and Voon, 1986), where 0(1* is the prediction 

error (residual), '(1* is the input, 234(�* represents the cross-correlation function 

between '(1* and 0(1*, 0'(1* . 0(1 5 �*'(1 5 �*, and 6(�* is an impulse function: 
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244(�* .  70(1 / �*0(1*8 . 6(�*  

234(�* .  7'(1 / �*0(1*8 . 9���:�  

23;4(�* .  7('$(1 / �* / '<$(1**0(1*8 . 9���:�  

23;4;(�* .  7('$(1 / �* / '<$(1**0$(1*8 . 9���:�  

24(43*(�* .  70(1*0(1 / � / �*'(1 / � / �*8 . 9 � =   

 

 

(3.2) 

The correlations will never be exactly zero for all lags and the 95% confidence bands are 

used to indicate if the estimated correlations are significant or not. However, for linear 

time-invariant models, the first two correlation tests of equation (3.2) are applicable 

(Billings and Voon, 1986). 

 

3.3.2. Mathematical or analytical approaches 

Mathematical analysis for solving the partial differential equation (PDE) to characterise 

the dynamic behaviour of flexible manipulator systems have been proposed (Azad, 1994) 

such as Book (1984), Cannon and Schmitz (1984) and Hasting and Book (1987). 

Another method is by using numerical analysis based on finite difference (FD) (Azad, 

1994; Poerwanto, 1998; Tokhi et al., 1997) and Finite element (FE) (Martins et al., 2003; 

Menq and Chen, 1988; Mohamed, 2003; Tokhi and Azad, 1995; Tokhi et al., 2001; 

Tokhi and Mohamed, 1999; Tokhi et al., 1995; Tokhi et al., 1997; Usoro et al., 1986) 

methods to solve the PDE. 

 

A. Mathematical formulation of systems dynamics 

A schematic description of the single-link flexible manipulator system considered in this 

work is depicted in Figure 3.4(a) (Azad, 1994), where the stationary and moving 

coordinates are represented by ��� and �′��′ respectively, τ(t)  is the applied torque at 

the hub, MP  is the payload mass, Ih  is the hub inertia, E  is the Young modulus, I  is 

the second moment of inertia and ρ  is the mass density per unit length of the 

manipulator respectively. With the gravity effects are neglected, the motion of the 

manipulator is confined to the �′��′  plane only. 

A pinned-free flexible beam, which incorporating inertia at the hub and payload 

mass at the end-point, can be considered as a representation of flexible manipulator 

system model. The displacement y(x,t)  of a point along the manipulator at a distance  x
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from the hub can be described as a function of both the rigid body motion θ(t)  and 

elastic deflection u(x,t)  measured from the line  ��′; 

y(x,t)  x (t) +  u(x,t)= θ  (3.3) 

where θ  is the angular displacement and  is the elastic deflection. By ignoring the 

effects of rotary inertia and shear deformation, the motion of the manipulator can be 

represented as a fourth order PDE as (Azad, 1994): 

EI 
u(x,t)
x

 +   
u(x,t)
t

  =  -  x
4

4

2

2

∂
∂

ρ
∂
∂

ρ θ&&
   

(3.4) 

With boundary conditions are;  

- The displacement at the hub { ( )u t0, } must be zero, 

- The total forces at the hub must be the same with the applied torque, 

- The shear force at the end-point must be equal to M
tP  

u(x,t)2

2

∂
∂

  (Tse et.al, 1980). 

- The stress at the end-point must be zero, that is, no force should be present at the 

free end; 

                                   u(0,t) =  0
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(3.5) 

where l is the length of the manipulator. The whole derivation of the system’s equations 

in details can be found in (Azad, 1994, Poerwanto, 1998). Finally, the governing 

dynamic equation of the system with damping can be formulated as (Poerwanto, 1998) 

 � >
?3(@9A*

>@?
5 � >;3(@9A*

>A;
/ BC

>D3(@9A*

>@;>A
. /�E�F     (3.6) 

where DS  is the resistance to strain velocity (rate of change of strain) and D  
u(x,t)
x tS

3

2

∂
∂ ∂

 is 

the resulting damping moment dissipated in the manipulator structure during its dynamic 

operation. The corresponding boundary conditions are given as in equation (3.5). 

 

B. Finite difference-based modelling 

Here, the FD method is used to solve the PDE in equation (3.6) numerically, and hence 

develop a simulation algorithm characterising the behaviour of the system. There are two 

u
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steps in FD discretisation: dividing the structure into a set of equal-length sections and 

considering the deflection of end of each section (grid-point) over time. The derivation 

(Azad, 1994, Poerwanto, 1998) results in a set of difference equations which can be 

connected into a concise form of matrix representation as: 

Y AY BY CFi j i j, ,+ −= + +1 i, j 1  (3.7) 

where Yi j, +1  is the displacement of grid points i n= 1 2, , ,L  of the manipulator at time 

step j+1 , Yi j,  and Yi j, -1  are the corresponding displacements at time steps j and j-1 

respectively. A and B are constant  n n×  matrices and C is a constant matrix related to 

the given input torque and F is an n ×1  matrix related to the time step ∆ t  and mass per 

unit length of the flexible manipulator;  
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(3.8) 
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(3.10) 

C =  ( )τ j ; [ ]F =  K
T

6 0 0L  (3.11) 

 

where 

 a =  2 -  
6EI t

x
 ; b =  

4EI t
x

 ;  c =  
EI t

x
 ; d =  

D t
x

2

4

2

4

2

4
S

2

∆ ∆ ∆ ∆
ρ∆ ρ∆ ρ∆ ρ∆

  



Chapter 3: Flexible Manipulator System: An Overview 

61 
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Moreover, the dynamic equation of the manipulator can be simulated in a state-space 

form by referring to the matrix formulation as: 

x n x n u

y n x n u

( ) ( )

( ) ( )

+ = +

= +

1 P Q

R S      
 

(3.12) 

where 
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A B

Q
C

R S=








 =









 = =
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NxN NxN N 1
N N 2N ,                  

0 0
0 0, ,  

[ ]u = τ 0 0L
T
, [ ]y n x n x N n x n x N n( ) ( , ) ( , ) ( , ) ( , )= − −1 1 1 1   ,    L L   

With N  is the number of sections. Finally, the state space formulation can be 

implemented in the MATLAB/SIMULINK as depicted in Figure 3.7 (Azad, 1994; 

Poerwanto, 1998).  
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Figure 3.7: Simulation block diagram using SIMULINK with state-space formulation 

(Azad, 1994; Poerwanto, 1998) 

 

This state-space formulation of dynamic motion representation has been widely used for 

control development purpose prior to real experimentation (Md Zain and Tokhi, 2009a; 

Md Zain et al., 2009c; Poerwanto, 1998; Tokhi and Azad, 1995; Tokhi et al., 1995; 

Tokhi et al., 1997). 

 

3.3.3. Parametric modelling approaches 

Parametric modelling is a linear system identification technique which formulates the 

model of the plant as a linear mathematical function that relates the input to output 

usually in form of partial differential/difference equation or transfer function. Various 

estimation methods have been used by researchers for example least mean square (LMS) 

and recursive least squares (RLS) (Md Zain et al., 2009a; Poerwanto, 1998; Shaheed and 

Tokhi, 2002), as well as intelligent optimisation techniques such as genetic algorithm 

(GA) (Md Zain, 2011; Md Zain et al., 2009a; Shaheed et al., 2001) and particle swarm 

optimisation (PSO) (Alam and Tokhi, 2007; Md zain 2011; Md Zain et al., 2009b) for 

modelling the single-link flexible manipulators. 

 

3.3.4. Non-parametric modelling approaches 

Non-parametric modelling is an attempt to represent plant with an input-output 

behavioural box, not as an explicit mathematical function. Literature shows that neural 

networks (NNs) have been proposed for modelling flexible manipulator systems. Talebi 

et al. (1998) used recurrent NN for modelling flexible manipulator for space application. 

Also, multilayer perceptron (MLP) NN with backpropagation learning algorithm and 

4
out_4

u[n]
E-P

Converter

Displ-->Angle

u[1]
H-A

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete State-Space

1
in_1

2
out_2

1
out_1

Hub-angle

3
out_3

Hub-velocity

End-point
acceleration

End-point
residualsH-pass1

L-pass
d/dt
D2

d/dt
D1 H-pass

L-pass1



Chapter 3: Flexible Manipulator System: An Overview 

63 
 

radial basis function (RBF) NN have been utilised for modelling single-link flexible 

manipulator (Shaheed and Tokhi, 2002). 

 

3.4. Previous works on control of flexible manipulator systems 

Generally, there are two control objectives for a flexible manipulator, i.e. to control the 

hub-angular displacement (input tracking) and to suppress vibration at the end point of 

the manipulator. Hub-angular displacement control is aimed to place the flexible arm in a 

desired position and vibration control is aimed to minimise the vibration arising during 

the movement.  

Some works on hub-angular displacement control of single-link flexible 

manipulator have been proposed by researchers. A proportional-derivative (PD)-like 

control referred to as joint-based collocated (JBC), here cited as JBC PD control, has 

been used (Poerwanto, 1998). There are only two parameters to tune in JBC PD control, 

i.e. proportional gain in the feed-forward path of hub-angle reference input and 

derivative gain in hub-velocity feedback path. Proportional integral derivative (PID) 

control has also reported for hub-angular control of flexible manipulators (Md Zain and 

Tokhi, 2009a; Md Zain et al., 2009c), where the three parameters have been optimised 

using genetic algorithm (GA). Siddique and Tokhi (2006) proposed a hybrid control 

approach combining GA, neural network and fuzzy logic, referred to as GA-based neuro-

fuzzy control system, for hub-angle control of single link flexible manipulator system. In 

the proposed controller, neural network was used for tuning both the inputs and output 

gains of fuzzy control. The weights, threshold value and activation function parameter of 

neural network were optimised using GA. 

Sharma et al. (2003) proposed a modular neural network (MNN) for hub-angle 

control of single-link flexible manipulator control. In the MNN, three single neural 

networks were proposed to process three feedback signals: hub-angle, hub velocity and 

end-point acceleration. The outputs of the NNs were then combined to produce one 

control signal for the flexible manipulator system. GA was used to find optimal NN 

architecture, weights, threshold values and parameters of activation function. 

Various techniques, in combination with hub-angular movement control, have 

been proposed to reduce vibration at the end-point of flexible arm. The JBC PD control 

has been proposed in combination with iterative learning control (ILC) where JBC PD 

control has been used for hub-angular control (Md Zain et al., 2005; Tokhi and Md Zain, 

2006). In the proposed algorithm, the JBC PD control has been designed by using root 
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locus technique and ILC were optimised by GA. The same control architecture but with 

input shaping optimised by GA has been proposed (Md Zain, 2006). Hybrid control 

strategies combining JBC PD, ILC, input shaping and PID have been proposed for 

flexible manipulator systems (Tokhi et al., 2004), where JBC PD has been used for hub-

angle control while input shaping, ILC and PID with acceleration feedback has been 

used for vibration control. Parameters of JBC PD have been tuned using root locus 

technique. Mohamed et al. (2005) proposed a hybrid control structure combining JBC 

PD control, input shaping, and strain feedback where JBC PD control has been used for 

controlling the hub-angular movement while input shaping and strain feedback has been 

used for vibration suppression. The parameters of JBC PD controller have been deduced 

using root locus analysis.  

Alam and Tokhi (2007) proposed a hybrid control structure combining fuzzy 

logic (FL) and command shaping (CS) where PD-like FL control was used for hub-angle 

control while CS has been used for vibration suppression. GA has been used to optimise 

both FL control and CS. Shaheed et al. (2005) proposed a hybrid control structure 

comprising adaptive JBC control and adaptive neuro-inverse-dynamic active vibration 

control, where adaptive JBC control was applied to control hub-angular movement and 

adaptive neuro-inverse-dynamic active vibration control was used for vibration 

suppression. 

The application of BFA in the modelling and control of a single-link flexible 

manipulator systems have not been reported yet. A hybrid BFA and particle swarm 

optimisation (PSO), however, has been used for optimising a hybrid fuzzy pre-

compensated PD controller in trajectory control of a two-link rigid flexible manipulator 

(Alavandar et al., 2010). More complete previous work on modelling and control of 

flexible manipulator can be found in Tokhi and Azad (2008). 

 

3.5. Preliminary motion dynamics experiment 

In this section, a preliminary experimentation is carried out to determine the dynamic 

response characteristics of the system. A random signal with maximum amplitude 
 0.3 

Nm  is applied as torque input to excite the flexible manipulator system. The sampling 

time used is 0.001 seconds. This sampling time will cover the system dynamics over a 

frequency range up to 500 Hz. The single-link flexible manipulator is a single-input 

multiple-output (SIMO) system with the input as a torque applied at the hub and the 
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three outputs are measured from the three sensors of flexible manipulator: hub-angle, 

hub velocity and end-point acceleration.  

Experimental results are depicted in Figure 3.8. There are 6400 data samples in 

total for a random input and each of the three outputs. The experimental hub-angle 

response depicted in Figure 3.8(b) shows that, because there is no control action, the 

flexible manipulator does not follow the random signal input and the output increases 

with very small oscillation. The variation in gradient of hub-angle response is evident in 

the hub-angle velocity, widely cited as hub-velocity for short, response depicted in 

Figure 3.8(c) with very small amplitude oscillatory signal. The time-domain end-point 

acceleration is depicted in Figure 3.8(d). From the spectral density of end-point 

acceleration depicted in Figure 3.8(e) it can be noted that frequencies of the first three 

resonance modes of the system were at 11.67 Hz, 36.96 Hz and 64.22 Hz for the 1st , 2nd , 

and 3rd mode respectively. 

 

3.6. Summary 

The technical specifications of flexible manipulator considered in the research have been 

described. Also previous works on modelling and control of flexible manipulator have 

been outlined so that they can be used as a guide for future work. Preliminary experiment 

has been performed to determine dynamics characteristics of the system and highlight its 

main dynamic features. The data collected from the experiment will be used in 

subsequent chapters to model the system using BFAs.  

The development of bacterial foraging algorithm with adaptable chemotactic step 

size and its test using seven benchmark functions will be presented in Chapter 4. 
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(a) Random torque input (b) Time-domain hub-angle 

(c) Time-domain hub velocity (d) Time-domain end-point acceleration 

 
(e) Spectral density of end-point acceleration 

Figure 3.8: Experimental results of flexible manipulator 
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CHAPTER 4 

BACTERIAL FORAGING ALGORITHM WITH 

ADAPTABLE CHEMOTACTIC STEP SIZE 
 

 

4.1. Introduction 

With SBFA (Passino, 2002), bacteria use random walk with a fixed value during the 

whole computational process regardless of the nutrient value to find locations with high 

nutrient level. The chemotactic step size can be made adaptive, i.e. the chemotactic step 

size changes to follow some conditions. The objective of the work in this chapter is to 

investigate the adaptation schemes in the BFA so that the chemotactic step size may 

change depending on the nutrient value. Four approaches, namely using linear function, 

quadratic function, exponential function and fuzzy logic (FL) are presented. In the full 

BFA algorithm, the four proposed approaches will be used as the new chemotactic step 

size instead of a constant value. In order to validate their effectiveness, the proposed 

adaptation mechanisms are tested to find global optimum point of several well-known 

benchmark functions, commonly used in testing of new optimisation algorithms. The 

performances of BFA with adaptable chemotactic step size are then assessed in 

comparison to that of SBFA. The comparison is made based on the convergence and 

optimum nutrient value (accuracy) achieved. 

 

4.2. Adaptation mechanism of chemotactic step size 

The works reported in the literature show that with adaptable chemotactic step size, BFA 

is able to converge faster. Suppose SBFA is used to find optimum value of the nutrient 

value (cost function) depicted in Figure 4.1 subject to minimisation, and the initial 

position of bacterium is at the peak of cost function (��). The bacterium will move down 

the hill heading for the minimum of cost function (point ��) constantly according to the 
determined chemotactic step size. The bigger step size the faster the bacterium will move 

down the hill. However, a mathematical analysis of the chemotactic step in standard 

BFA based on classical gradient descent search approach in (Dasgupta et al., 2009) 

suggests that chemotaxis employed by standard BFA usually results in sustained 

oscillation when close to the global minimum especially on flat landscape nutrient 
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media. In order to damp the oscillation, very small chemotactic step size is needed 

around the global optimum. Thus large step size will lead to the bacterium oscillating 

around the optimum point and probably miss the minimum value. Small step size will 

ensure the bacterium to find the minimum value but will require large number of 

iterations to find the minimum point from. Empirical simulation results discussed in 

Chapter 2 confirm these phenomena. 

 

Figure 4.1: Bacteria trajectories in finding minimum value of cost function from peak 

initial position, where � is the bacterium’s position and ���� is the corresponding 
nutrient value 

 

A strategy to overcome this problem is to apply large step size when the cost 

function value is large so that the bacterium moves down the hill faster and then apply 

very small step size when the bacterium is near the optimum point to ensure the 

bacterium is able to find the optimum point. Thus the chemotactic step size can be made 

adaptive, i.e. the value of chemotactic step size changed based on the nutrient value; if 

the nutrient value is high then the step size is large and if the nutrient value is low then 

the step size is small. By applying this mechanism, the adaptive BFA (ABFA) will be 

faster in convergence and will also be able to find the global optimum. 

In this work, investigations are carried out to make the chemotactic step size 

adaptable by incorporating nutrient value of every bacterium into four mechanisms: 

using three functions namely linear, quadratic, and exponential and using a FL approach. 

The four approaches are adopted because of their simplicity so that the computational 
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complexity of the algorithm is not increased. The basic assumption used in the ABFA 

development in this work is that the global minimum solution of the nutrient media has 

to be non-negative. By using this assumption, when the nutrient value is high it means 

the bacteria are still far away from the global minimum position so that large step size is 

needed to approach the global minimum faster and when the nutrient value is low it 

means the bacteria are close to the global minimum value thus small step size is needed 

so that bacteria will not miss the global minimum point.  

 

4.2.1. Linearly adaptive bacterial foraging algorithm 

The first adaptation mechanism proposed in this work is referred to as linearly ABFA 

(LABFA), where a linear function of nutrient value of every bacterium is used for 

updating the chemotactic step size. The use of simple linear function for updating 

chemotactic step size of BFA has been previously reported (Majhi et al., 2009; Pandi et 

al., 2009; Dasgupta et al., 2009). The disadvantage of the adaptation is that the maximum 

chemotactic step size of unity is likely to be too big for some of optimisation tasks with 

global minimum point equal to zero.  

In order to make the maximum chemotactic step size more flexible according to 

the nature of optimisation task, in this work a tuneable maximum step size is introduced 

instead of unity. Moreover, in order to control of changes in the chemotactic step size, 

tuneable scaling factor for absolute nutrient value is introduced here. Thus changes in the 

chemotactic step size depend on the two tuneable factors. By using this strategy, changes 

in the chemotactic step size can be made steeper so that to lead to faster convergence. 

This results in a new linear adaptation scheme with flexibility in the optimisation task 

according to the nature of the problem. The new linear adaptive chemotactic step size is, 

thus, formulated as follows: 

�	
��� � ���
�� �

�������
      (4.1) 

where, �	
��� is linearly adaptive chemotactic step size for every bacterium, ��	� is 
tuneable maximum chemotactic step size, � is tuneable positive factor, � is tuneable 
positive scaling factor and ������ is absolute of cost function of every bacterium. Larger 

������ will result in smaller �
������� , and this in turn, with determined ��	�, will produce 

larger �	
��� and vice versa. The scaling factor � is used to scale ������ so that �	
��� is 
not very big. This strategy is very useful in the application where the maximum nutrient 
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value is very big. Using such a formulation, the chemotactic step size will change in the 

range [0, ��	�] linearly depending on the nutrient (cost function) value as: 

• If ���� is big then the term �
������� of equation (4.1) will approach zero, and this 

will lead to �	
��� to approach ��	� 

• If ���� is small and approaching zero then the term �
������� of equation (4.1) will 

become a very large value (infinity), and this will lead to �	
��� to approach zero 
 

4.2.2. Quadratic adaptive bacterial foraging algorithm  

The adaptation mechanism formulated in equation (4.1) can be accelerated by 

introducing a mechanism that boosts ������ value using a quadratic function. The 
quadratic ABFA (QABFA) uses quadratic function of nutrient value of every bacterium 

for updating the chemotactic step size. The chemotactic step size is thus formulated as 

follows: 

�	 ��� � ���
�� �

�!"#����$%&�#�����'
  (4.2) 

where �	 ��� is quadratic adaptive step size for every bacterium, ( is tuneable scaling 
factor, and ���� is the nutrient value for every bacterium. The quadratic function of ������ 
will result in extremely big denominator value �

�!")����$%��)�����' , and this in turn, will 

make this function approach zero and thus �	 ��� to approach ��	�. By using this 
formula, QABFA will be able to converge to the optimum point faster than LABFA 

because it has bigger chemotactic step size for the same ������ value. In order to prevent 
�	 ��� being too big, the scaling factors � and ( are introduced. These factors will 
helpful to maintain the chemotactic step size very large when the nutrient value is large 

but very small when the nutrient value is small so that bacteria will be able to head to the 

global optimum without oscillation. In this case, the chemotactic step size will change in 

a quadratic manner in the range of [0, ��	�], depending on the nutrient value.  
 

4.2.3. Exponentially adaptive bacterial foraging algorithm  

The adaptation mechanism formulated in equation (4.1) can also be further accelerated 

by applying exponential function of the nutrient media. The use of exponential function 

of nutrient media will result in larger chemotactic step size for the same nutrient media 
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than LABFA and QABFA. The exponentially ABFA (EABFA) uses an exponential 

function for updating the chemotactic step size, as follows: 

�	*��� � ���
�� �

�+�#�������
     (4.3) 

where �	*��� is exponentially adaptive step size for every bacterium. Similar to LABFA 

and QABFA, larger ������ will make the value of �,�)������� become very large and as a 

result the value of �
�*�#������� will become very small or approach zero, and this in turn will 

make �	*��� to approach ��	�. On the contrary, if ������ is very small or close to zero the 

value of �,)������ will be very small, leading to the value of �
�*�#������� becoming very big, 

and this in turn will lead to �	*��� to become very small or approach zero. The positive 

scaling factor ( will ensure the value ,�)������� not be too large when ������ is very large 
and the positive scaling factor � will make �

�*�#������� to become very small or to approach 

zero to ensure bacteria achieve nearest positions to the global optimum point and do not 

oscillate. As a result, the chemotactic step size will change exponentially according to 

nutrient value in the range [0, ��	�].  
 

4.2.4. Chemotactic step size adaptation using fuzzy logic  

In this section a further approach for chemotactic step size adaptation is presented using 

fuzzy logic (FL). As referred to in the literature review presented in Chapter 2, Mishra 

(2005) proposed the use of a Sugeno type FL with four trapezoidal membership 

functions for adaptation scheme of chemotactic step size, where minimum of the nutrient 

media was used as the input of the FL and the output of FL as a minimum of nutrient 

value times a constant related to the membership function. Because the new chemotactic 

step size only depends on the minimum value of nutrient media, all bacteria will use the 

same chemotactic step size regardless their own nutrient value. The resulted chemotactic 

step size is suitable only for bacteria which have smallest nutrient value at every step but 

not for other bacteria because it will be too small for bacteria which lie in the positions 

that have big nutrient value (still far away from the nutrient media). The probability of 

such negative impact is that most bacteria will not search wide area of the nutrient media 

and even may get trapped in local minima for complex nutrient media. This disadvantage 

can be solved by making the chemotactic step size of every bacterium dependent on its 

own nutrient value. Also instead of using trapezoidal membership function, here 
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Gaussian membership function is used because it is able to represent uncertainty in 

measurements most adequately (Kreinovich et al., 1992). 

The FL concept was first introduced by Lotfi Zadeh to model human reasoning 

from imprecise and incomplete information by giving definitions to vague terms and 

allowing construction of rule base (Zadeh, 1965, 1968, 1973). The FL will map from 

input to output by using human-like reasoning in the form of rule base. The general FL 

model construction is depicted in Figure 4.2.  

 
Figure 4.2: Overall construction of fuzzy logic model (picture adopted from Sivanandam 

et al. (2007) and then modified) 

 

The input of the FL model is crisp value. This is then converted into fuzzy linguistic 

variable through the process of fuzzification. The result is set into the fuzzy inference 

system (FIS) which inaugurates the decision making unit with the rule base and 

associated database. The outcome of the FIS is transformed to crisp values through the 

defuzzification process. For further details of fundamentals of fuzzy logic see (Jang et 

al., 1997; Sivanandam et al. 2007; Zadeh, 1965, 1968, 1973). 

Because of its advantages such as intuitive, widespread acceptance and well 

suited to human input (Sivanandam et al., 2007), Mamdani fuzzy model (Mamdani and 

Assilian, 1974) with centre of area (COA) defuzzification method is used throughout this 

work. Initially, Sugeno fuzzy model (Takagi and Sugeno, 1985; Sugeno and Kang, 1988) 

was also considered and used. However Mamdani fuzzy model was able to produce 

better results than Sugeno fuzzy model. Thus, FL construction for adaptable chemotactic 

step size, depicted in Figure 4.3, with one-input one-output fuzzy model was considered 

as follows: the input of FL is the absolute of nutrient media value of every bacterium 
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(������) and its output is the fuzzy adaptable chemotactic step size of every bacterium 

(�	-���).  

 
Figure 4.3: FL-based adaptable chemotactic step size construction 

 

To ensure the chemotactic step size will be very big when the cost function value is large 

and will be very small or approaching zero when the cost function value is very small or 

approaching zero, seven membership functions are applied both for input and output. 

Four and five membership functions were also considered, however seven membership 

functions gave better results. Gaussian membership function, which is formulated in 

equation (4.4), was chosen for the chemotactic step size to change smoothly. Moreover, 

uncertainty in measurements can be represented most adequately with Gaussian 

membership function (Kreinovich et al., 1992). The fuzzy input with seven Gaussian 

membership functions is depicted in Figure 4.4. 

 
Figure 4.4: Fuzzy input with seven Gaussian membership functions: ES is extremely 

small, VS is very small, S is small, M is medium, B is big, VB is very big and EB is 

extremely big 

 

.�/� � ,/0 12 �
3 !�4�5 '36     (4.4) 

 

Both the two Gaussian memberships parameters (means 7�8 9 87: and standard 
deviations ;�8 9 8 ;:) for input and output were chosen by trial and error. The FL 
produces output from the input by using human-like reasoning in the form of fuzzy rules 
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which are constructed from a set of IF-THEN operations. Parameters which can be 

changed to get optimal FL construction are fuzzy rules and the weight of every fuzzy 

rule output (usually between zero and one). The weight value determines the strength of 

the output of related fuzzy rule: when the weight is zero it means the output of the fuzzy 

rule is zero and when the output is one it means the output of fuzzy rule is in full scale. 

The FL-based adaptable chemotactic step size can be formulated as: 

�	-��� � <�������� (4.5) 

where �	-��� is the fuzzy adaptable chemotactic step size for every bacterium and <�=� 
is a FL structure mapping from cost function value as an input to step size as an output. 

In the FL structure, the universe of discourse of Gaussian membership functions of input 

and output are chosen adequately so that to cover the range of both input and output. The 

general form of fuzzy rule for adaptation can be formulated as: 

IF ������ is > THEN �	-��� is ?    (@,�(AB)     (4.6) 

So that the output level of consequence part is ? scaled by @,�(AB. Thus by using this 
strategy if ������ is very big then �	-��� is very big and if ������ is very small then �	-��� 
is very small or approaching zero so that bacteria would be able to approach the global 

optimum point without oscillation. 

 Because there is only one to one relation from input (������) and output (�	-���) 
of FL structure, for seven Gaussian membership function of fuzzy input and output, there 

will be seven fuzzy rules. The correlation between ������ and �	-��� is dependent on the 
fuzzy rules and their corresponding weights. So that users have freedom to define the 

chemotactic step size in accordance with the nature of cost function of optimisation 

problem, to find better accuracy without oscillation around global optimum point. 

With those adaptable formulated in equation (4.1) – equation (4.3) and equation 

(4.5) above, the movement of bacteria from one position to another position can be 

formulated in equation (1) can now be formulated as: 

( ) ( ) ( ) ( )jiClkjilkji a φθθ +=+ ,,,,,1,    (4.7) 

where ( )iCa  is ( )iCal , ( ) ( )iCiC aeaq ,  and ( )iCaf  for LABFA, QABFA, EABFA and 

FABFA respectively. 

 

4.3. Computation steps of ABFAs 

The major computation steps of ABFAs are exactly the same as computation of SBFA 

(Passino, 2002) discussed in Chapter 2. The difference in the ABFAs is that the 
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chemotactic step sizes of bacteria are adaptable types �	
���8 �	 ���8 �	*��� and �	-��� as 
formulated in equations (4.1)-equation (4.3) and equation (4.5) for LABFA, QABFA, 

EABFA and FABFA respectively. The detailed computation steps of ABFAs that model 

bacterial population chemotaxis, swarming, reproduction, elimination, and dispersal 

(initially, C � D � E � F) in finding the optimum value of nutrient media can be seen in 

the algorithm below (note that updates to the �� automatically result in updates to �) 
(Passino, 2002):  

1. Elimination-dispersal loop: for E � G8H8 9 8 I*� , do E � E J G 
2. Reproduction loop: for D � G8H8 9 8 IK* , do D � D J G 
3. Chemotaxis loop: for C � G8H8 9 8 I, do C � C J G 

a. For � � G8H8L8 9 8 M, take a chemotactic step for bacterium �: 
b. Compute the nutrient value of every bacterium (���8 C8 D8 E�). Calculate ���8 C8 D8 E� �

���8 C8 D8 E� J � !���C8 D8 E�8 ��C8 D8 E�'. If there is no swarming effect then 

� !���C8 D8 E�8 ��C8 D8 E�' � F. 

c. Put �
	NO � ���8 C8 D8 E� to save this value since a better cost via a run may be found. 
d. Tumble: Generate a random vector P��� Q RS with each element P����87 � G8H8 9 8 0, a 

random number on T2GUGV. 
e. Move: Compute 

���C J G8 D8 E� � ���C8 D8 E� J �	��� P���
WPX���P��� 

This results in a step of size YZ�[� in the direction of the tumble for bacterium [. In this work 
YZ�[� is equal to constant value for SBFA and are equal to the proposed adaptable 
chemotactic step size:\YZ]�[�8 YZ^�[�8 YZ_�[� and YZ`�[� for LABFA, QABFA, EABFA and FABFA 

respectively. 
f. Compute the nutrient value of every bacterium (���8 C J G8 D8 E�). Calculate ���8 C J G8 D8 E� �

���8 C J G8 D8 E� J � !���C J G8 D8 E�8 ��C J G8 D8 E�'. If there is no swarming effect then 

� !���C J G8 D8 E�8 ��C J G8 D8 E�' � F. 

g. Swim: 
i. Put 7 � F (counter for swim length) 

ii. While 7 a Ib (if have not climbed down too long) 

• Count 7 � 7 J G 

• If ���8 C J G8 D8 E� a �
	NO (if doing better), then �
	NO � ���8 C J G8 D8 E� and calculate 

���C J G8 D8 E� � ���C J G8 D8 E� J �	��� P���
WPX���P��� 

This results in a step of size YZ�[� in the direction of the tumble for bacterium [. 
In this work YZ�[� is equal to constant value for SBFA and is equal to the 
proposed adaptable chemotactic step size:\YZ]�[�8 YZ^�[�8 YZ_�[� and YZ`�[� for 

LABFA, QABFA, EABFA and FABFA respectively. Use this ���C J G8 D8 E� to compute 
the new ���8 C J G8 D8 E� as in sub step f above. 

• Else, 7 � IN (the end of the while statement). 
h. Go to next bacterium �� J G� if � c M (i.e., go to sub step b above) to process the next 

bacterium. 
4. If C a I, go to step 3.  
5. Reproduction: 
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a. For the given D and E, and for each � � G8H8L8 9 8 M, let 

�d*	
Od� � e ���8 C8 D8 E�
fg��

hi�
 

be the health of bacterium �. Sort bacteria and chemotactic parameters �	��� in order of 
ascending cost �d*	
Od  (higher cost means lower health). 

b. The MK  bacteria with the highest �d*	
Od  values die and the other MK  bacteria with the best 
values split (and the copies that are made are placed at the same location as their parent). 

6. If D a IK*, go to step 2.  
7. Elimination-dispersal: for � � G8H8L8 9 8 M, eliminate and disperse each bacterium which has 

probability value less than edp . If one bacterium is eliminated then it is dispersed to random 

location of nutrient media. This mechanism makes computation simple and keeps the number of 
bacteria in the population constant. 

for Sm :1=  
if 0*�jK	�� (Generate random number for each bacterium and if the generated random 
number is smaller than 0*�  then eliminate/disperse the bacterium) 

Generate new random positions for bacteria 
  else 

Bacteria keep their current position (bacteria are not dispersed) 
end 

end 
8. If E a I*� , then go to step 1; otherwise end. 

 

The relation between nutrient value of every bacterium ���� and adaptable chemotactic 

step size �	���, where �	��� is �	
���8 �	 ���8 �	*��� and �	-��� for LABFA, QABFA, 
EABFA and FABFA respectively, is illustrated in Figure 4.5. The figure illustrates that 

the height of chemotactic step size is up and down regarding the nutrient value according 

to adaptation mechanism formulated in equations (4.1)-equation (4.3) and equation (4.5). 
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Figure 4.5 Illustration of the relationship between the nutrient value ���� and the 
adaptable chemotactic step size �	��� 

 

4.4. Results and discussions  

In order to evaluate and assess their performances, the developed ABFAs are tested with 

seven well-known benchmark test functions commonly used in the evaluation of new 

optimization algorithms. Thus, the seven benchmark test functions become nutrient 

media in which bacteria will find locations with the highest nutrient value. Since the 

global optimum point of benchmark functions is equal to zero, the location which has the 

highest nutrient value is thus equal to zero. Those benchmark functions have different 

characteristics allowing the ABFAs to be evaluated over a range of different 

characteristics. The following protocol is followed in the simulations: 

1. Various chemotactic step size values and settings of SBFA, LABFA, QABFA, 

EABFA and FABFA are considered with each bench mark function. All 

algorithms use the same general parameters which are selected so that bacteria 

have enough chemotaxis steps towards the global minimum point, enough 

reproduction steps so that the bacteria can refine the best nutrient value and 

enough elimination and dispersal events and probability threshold so that bacteria 

can search almost the whole nutrient media without too much computation 

complexity. Bacteria will try to find the global optimum point from their initial 
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positions until their lifetime finish. For all algorithms, as mentioned in Chapter 2, 

the life time of bacteria is determined by the total number of steps they have, 

which is calculated as I k IK* k I*�. 
2. Using the step size values and the settings which resulted in the best nutrient 

value, for every benchmark function, 50 independent runs for each the five 

algorithms, i.e. SBFA, LABFA, QABFA, EABFA and FABFA are performed. 

The optimum nutrient values of each algorithm for all the 50 runs are recorded 

and then compared with each other for: the best, mean and standard deviation of 

optimum nutrient value. The mean and standard deviation of optimum nutrient 

value are defined as: 

� l � m ��n�opqr
f         (4.8) 

;� � sm "��n�$%opqr
f 2 �� l�3     (4.9) 

where: � l is the mean of optimum nutrient value �, I is the total number of runs 

and ;� is the standard deviation of �. The best optimum nutrient value shows the 

closest position that can be achieved by the algorithm and the mean optimum 

nutrient value, gives information on mean nutrient value that can be achieved by 

the algorithm. The standard deviation is measured as variation of the data from its 

mean. Small standard deviation means that the data point is close to the mean and 

high standard deviation shows that the data point is spread over a large range. 

3. The convergence of the run which results the best optimum nutrient value for 

each algorithm is recorded and compared. The comparison is made by counting 

how many steps are needed by the algorithm to achieve nearest location to the 

global minimum point. The convergence is plotted in one dimension graph with 

the /-axis representing the steps and the t-axis representing the minimum 

nutrient value achieved by bacteria in every step. Also the oscillation 

phenomenon of bacteria around the global minimum point is studied. 

 

4.4.1. Test function 1: Rosenbrock function  

The well known classical Rosenbrock function is formulated as: 

��/� � m �GFF k �/��� 2 /�3�3��i� J �G 2 /��3�    (4.10) 

In the tests the variables /� � /��� are in the range of T2HUFuv8 HUFuvV. The 3D and 2D 
views of the two-variable Rosenbrock function are depicted in Figure 4.6. 
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(a) 3D view (b) 2D view 

Figure 4.6: Two-variable Rosenbrock function 

 

It is noted that the global minimum of the Rosenbrock function lies inside a long-narrow-

parabolic shaped valley. In this investigation, the Rosenbrock function is simulated for 2 

dimensions. The global minimum point is ��/� equal to zero when variable /� � /��� �
G. In these tests, the following parameter values were used with all the algorithms: 

v 0 = 2 
v M = 10 

v I = 40 
v IN = 4 

v IK* = 4 
v MK =  M Hw  

v I*� = 3 
v 0*� = 0.25 

The initial positions of bacteria were selected randomly across the nutrient media. 

Various chemotactic step size values were selected by trial and error and applied for 

SBFA, and the best optimum nutrient value was achieved when the step size was equal 

to 0.0075. For LABFA, QABFA and EABFA, all parameters settings, i.e. ��	�8 �8 � and 
( were chosen by trial and error. The chemotactic step sizes for LABFA, QABFA and 

EABFA were formulated as: 

�	
��� � xU�
�� ry

������
      (4.11) 

�	 ��� � xU�
�� ryy

"����$%&������
     (4.12) 

�	*��� � xU�
�� %r

+��������
      (4.13) 

For FABFA, the fuzzy membership function parameters, i.e. universe of discourse, 7 

and ; were selected heuristically. The fuzzy membership functions of input and output 

are depicted in Figure 4.7(a) and 4.7(b) respectively. The fuzzy surface for FABFA 

shown in Figure 4.7(c) was obtained using the fuzzy rules formulated as follows: 
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z� : IF ������ is ES THEN �	-��� is ES (1)  

z3 : IF ������ is VS THEN �	-��� is S (1)  

z{ : IF ������ is S THEN �	-��� is M (1)  
z| : IF ������ is M THEN �	-��� is B (1) (4.14) 

z} : IF ������ is B THEN �	-��� is EB (1)  

z~ : IF ������ is VB THEN �	-��� is EB (1)  

z: : IF ������ is EB THEN �	-��� is EB (1)  
 

(a) Input: ������ (b) Output �	-��� 

 
(c) Fuzzy surface 

Figure 4.7: Fuzzy membership functions and surface of FABFA for Rosenbrock test 

function 

 

The numerical results shown in Table 4.1 demonstrate that, using adaptable 

chemotactic step size, all the four proposed algorithms outperformed the SBFA in 

reaching the optimum nutrient value, and FABFA achieved the lowest nutrient value, i.e. \
GUHG�u k GF4~\ among\ them. Also, FABFA achieved the best mean and standard 
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deviation of optimum nutrient value �. Since all BFAs used the same general parameters, 

the difference of nutrient value achieved is mainly caused by the chemotactic step size.  

 

Table 4.1: Numerical results of simulation with Rosenbrock test function (2 dimensions) 

Algorithm Best 

optimum � 
� l ;� ( )iC  range Convergence 

(steps) 

SBFA HHuUv�FG
k GF4~ 

0.6420 2.0633 0.0075 54 

LABFA �U����
k GF4~ 

0.0151 0.0149 [HUGuLL k
GF4:, 0.1] 

9 

QABFA �FUGF�G
k GF4~ 

0.1059 0.1591 [GUGHFH k
GF4~, 0.1] 

10 

EABFA �UFHvH
k GF4~ 

0.0162 0.0423 [0.0046, 

0.1] 

7 

FABFA �U ����
k ��4� 

�U ����
k ��4� 

�U ����
k ��4� 

[0.0025, 

0.037] 

26 

 

The convergence plots in Figure 4.8(a) show that all the four proposed algorithms were 

faster in convergence, since they reached the optimum point using 9, 10, 7 and 26 steps 

for LABFA, QABFA, EABFA and FABFA respectively, whereas SBFA used 54 steps of 

SBFA. Since the initial positions of bacteria were selected randomly in the nutrient 

media, the nutrient value of each algorithm in the first step was different and the bacteria 

with EABFA fell in locations near the global minimum point while bacteria with 

QABFA fell far away from the global minimum. A comparative view of the best 

optimum nutrient value achieved by the algorithms is depicted in Figure 4.8(b).  
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(a) Convergence plots (b) The best optimum � 
Figure 4.8: Simulation results of algorithms with Rosenbrock test function. 

 

4.4.2. Test Function 2: sphere function 

The sphere function can be formulated as: 

��/� � m /�3��i�        (4.15) 

The characteristics of the sphere function is that it is continuous, convex, and unimodal. 

In the tests carried out here the variables /� are considered in the range T2�UGH8 �UGHV. 
The global minimum in this case is ��/� equal to zero which is reached when all 
variables /� are equal to zero. The 3D and 2D views of the two-variable sphere function 
are shown in Figure 4.9. The plots show that the test function only has one valley with 

one global minimum point and there are no local minima. Thus, it is trivial for the 

algorithm (bacteria) to find the down direction rather than climbing in the opposite 

direction of the valley. However, it is very difficult to find the global minimum value.  

(a) 3D view (b) 2D view 

Figure 4.9: Two-variable sphere function 
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In the investigation, a five-dimension sphere function was used and all algorithms 

used the parameter values: 

v 0 = 5 
v M = 10 

v I = 40 
v IN = 4 

v IK* = 5 
v MK =  M Hw  

v I*� = 5 
v 0*� = 0.25 

The initial positions of bacteria were selected randomly in the nutrient media. Various 

chemotactic step size values were chosen and applied in the simulation of SBFA and the 

best optimum nutrient value achieved was equal to LU�F�� k GF4} when the chemotactic 

step size was equal to 0.01. For LABFA, QABFA and EABFA, all parameters settings, 

i.e. ��	�8 �8 � and ( were chosen by trial and error. Chemotactic step size for LABFA, 

QABFA and EABFA were formulated as: 

�	
��� � xU�
�� �

������
       (4.16) 

�	 ��� � xU�
�� �

yU��!"����$%&������'
     (4.17) 

�	*��� � xU�
�� %y

+�yUy��y�������
      (4.18) 

For FABFA, the fuzzy membership function parameters, i.e. universe of discourse, 7 

and ; were selected heuristically. The membership functions of FABFA for input and 

output are depicted in Figure 4.10(a) and Figure 4.10(b) respectively. The fuzzy rules 

formulated as: 

z� : IF ������ is ES THEN �	-��� is ES (1)  

z3 : IF ������ is VS THEN �	-��� is S (1)  

z{ : IF ������ is S THEN �	-��� is M (1)  
z| : IF ������ is M THEN �	-��� is EB (1) (4.19) 

z} : IF ������ is B THEN �	-��� is EB (1)  

z~ : IF ������ is VB THEN �	-��� is EB (1)  

z: : IF ������ is EB THEN �	-��� is EB (1)  
map the input – output relation into the fuzzy surface depicted in Figure 4.10(c). In the 

fuzzy surface plot, the fuzzy adaptable chemotactic step size �	
��� remained high, e.g. 

around 0.09, for ������ higher than 50, and then decreased sharply to a very small value, 

e.g. below 0.01, lower than SBFA’s step size, around global minimum point. 
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(a) Input: ������ (b) Output: �	-��� 

 
(c) Fuzzy surface 

Figure 4.10: Fuzzy membership functions and surface of FABFA for five-dimension 

sphere test function 

 

The numerical results presented in Table 4.2 show that the four proposed 

algorithms outperformed the SBFA in finding the global optimum with the best nutrient 

value achieved by LABFA, as GUvLFG k GF4~. Also, LABFA achieved the smallest 

mean optimum �, of LUL���k GF4}, while EABFA achieved the best standard deviation 
value, of GU��H�kGF4}. The convergence plots presented in Figure 4.11 show that all 
the four proposed algorithms were faster in convergence than SBFA, and among them 

QABFA had the fastest convergence speed; it only needed 95 steps to converge. A 

comparison of the optimum � values achieved by the algorithms is depicted in Figure 

4.11(b). 
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Table 4.2: Numerical results of simulation with five-dimension sphere test function 

Algorithm The best 

optimum �  
� l ;� ( )iC  

range 

Convergence 

(steps) 

SBFA L�UF��G
k GF4~ 

HLUFGF�
k GF4} 

GFUL�GH
k GF4} 

0.01 500 

LABFA �U ����
k ��4� 

�U ����
k ��4� 

HU�u�H
k GF4} 

[GUuFH� k
GF4~, 0.1] 

100 

QABFA LUH��u
k GF4~ 

uUHG��
k GF4} 

HUu��H
k GF4} 

[3.8720k
GF4�, 0.1] 

95 

EABFA GHU�FuF
k GF4~ 

�UFvu�
k GF4} 

�U ����
k ��4� 

[0.0048, 

0.1] 

190 

FABFA GvUuG�F
k GF4~ 

�UvL�L
k GF4} 

GUvH��
k GF4} 

[0.0057, 

0.095] 

190 

 

 

(a) Convergence plots (b) The best optimum � 
Figure 4.11: Simulation results of all algorithms for five-dimension sphere test function 

 

4.4.3. Test function 3: Rastrigin’s function 6 

The general form of Rastrigin’s function 6 is given as: 

��/� � GF� J m !/�3 2 GF����H�/��'��i�     (4.20) 

This function has one global minimum only and many local minima (is highly 

multimodal) with the locations of minima regularly distributed. The difficulty with this 

test function is that, since there are a lot of local minima, it is very risky for the algorithm 
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as it may get trapped in one of local minima. In the tests, simulations are carried out with 

the variables /� in the range T2�UGH8 �UGHV. The function has global minimum equal to 

zero at /� equal to zero. Figure 4.12 shows 3D and 2D plots of a two-variable Rastrigin’s 
function 6.  

(a) 3D view (b) 2D view 

Figure 4.12: Two-variable Rastrigin’s function 6 

 

Here, the investigation was carried out for 30 dimensions Rastrigin’s function. 

The general parameters of BFAs used in the simulation are: 

v 0 = 30 
v M = 10 

v I = 40 
v IN = 4 

v IK* = 4 
v MK =  M Hw  

v I*� = 4 
v 0*� = 0.25 

The initial positions of bacteria were selected randomly across the nutrient media. 

Among various chemotactic step size values of SBFA used in the simulation, the best 

nutrient value, of 162.9286, was achieved when the chemotactic step size was equal to 

0.025. All parameters and settings for LABFA, QABFA, EABFA and FABFA were 

chosen by trial and error. The chemotactic step sizes for LABFA, QABFA and EABFA 

were formulated as: 

�	
��� � xU3
�� r

�kry��������
      (4.21) 

�	 ��� � xU3
�� r

%U�kry� !"����$%&������'
    (4.22) 

�	*��� � xU3}
�� r

yUy%¡+�yUyy��������
     (4.23) 

The fuzzy membership functions of FABFA for input and output are depicted in Figure 

4.13(a) and Figure 4.13(b). The associated fuzzy rules formulated as: 
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z� : IF ������ is ES THEN �	-��� is ES (1)  

z3 : IF ������ is VS THEN �	-��� is VS (0.8)  

z{ : IF ������ is S THEN �	-��� is S (0.5)  

z| : IF ������ is M THEN �	-��� is M (1) (4.24) 

z} : IF ������ is B THEN �	-��� is B (1)  

z~ : IF ������ is VB THEN �	-��� is VB (1)  

z: : IF ������ is EB THEN �	-��� is EB (1)  

results in the fuzzy surface of FABFA depicted in Figure 4.13(c).  

(a) Input: ������ (b) Output: �	-��� 

 
(c) Fuzzy surface 

Figure 4.13: Fuzzy membership functions and surface of FABFA for 30-dimension 

Rastrigin’s function 6 

 

The convergence plots in Figure 4.14(a) show that all the five BFA algorithms had 

almost the same convergence speed, and converged in around 500 steps. The graphs after 

500 steps were not exactly flat but decreasing with only very small gradient. It is 

interesting to note that all the four proposed algorithms converged to lower nutrient 

values than SBFA. The numerical results presented in Table 4.3 show that all the four 
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proposed algorithms were able to achieve better optimum values than that of SBFA with 

the best optimum � value 122.2388 achieved by FABFA. Also, FABFA achieved the best 
mean � value, of 160.6510 while the best standard deviation of � 17.7094 was achieved 
by QABFA. A comparison of the best optimum � values is depicted in Figure 4.14(b). 

 
(a) Convergence plots 

 

(b) The best optimum � 
Figure 4.14: Simulation results of algorithms for 30-dimension Rastrigin’s function 6 

 

Table 4.3 Numerical results of simulation with 30-dimension Rastrigin test function 

Algorithm The best 

optimum � 
� l ;� ( )iC  range Convergence 

(steps) 

SBFA 162.9286 206.3566 24.7710 0.025 500 

LABFA 125.2555 169.2364 18.5067 [0.0120, 

0.2] 

500 

QABFA 130.9555 170.2937 17.7094 [0.0083, 

0.2] 

500 

EABFA 124.4501 172.3045 19.6060 [0.0103, 

0.25] 

500 

FABFA 122.2388 160.6510 23.4752 [0.0067, 

0.118] 

500 

 

4.4.4. Test function 4: Schwefel’s function 7  

The general formula for Schwefel’s function 7 is given as: 

��/� � uGvU�vH� k � 2 m /����"W�/��$��i�     (4.25) 

The characteristic of this function is that the global minimum lies geometrically distant, 

over the parameter space, from the next best local minima. Therefore, the search 
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algorithms are potentially prone to convergence in the wrong direction. In the test, the 

variables /� were in the range T2�FF8 �FFV. The function has a global minimum of ��/� 
equal to zero when all variables /� are equal to uHFU��v�. Figure 4.15 shows 3D and 2D 
plots of a two-variable Schwefel’s function 7. 

a. 3D view b. 2D view 

Figure 4.15: Two-dimension Schwefel’s function 7. 

 

In the investigations carried out, a two-dimension Schwefel’s function 7 was 

used. In the simulation, the BFA parameters were set as: 

v 0 = 2 
v M = 30 

v I = 50 
v IN = 4 

v IK* = 4 
v MK =  M Hw  

v I*� = 4 
v 0*� = 0.25 

The initial positions of bacteria were selected randomly across the nutrient media. After 

various trial and error efforts in choosing chemotactic step size for SBFA, it was noticed 

that the best optimum � was achieved equal to uUH�HH k GF4| when the chemotactic step 

size was equal to 0.6. All the parameter settings for LABFA, QABFA, EABFA and 

FABFA were chosen by trial and error. The chemotactic step sizes for LABFA, QABFA 

and EABFA were formulated as: 

�	
��� � 3
�� r�y

������
       (4.26) 

�	 ��� � 3
�� %

¢U�kry� !"����$%&������'
    (4.27) 

�	*��� � 3
�� �Ur

+"ry� ������$
      (4.28) 

For FABFA, the fuzzy membership functions of input and output can be seen in Figure 

4.16(a) and Figure 4.16(b) respectively. The associated fuzzy rules were formulated as: 
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z� : IF ������ is ES THEN �	-��� is ES (1)  

z3 : IF ������ is VS THEN �	-��� is S (1)  

z{ : IF ������ is S THEN �	-��� is EB (1)  
z| : IF ������ is M THEN �	-��� is EB (1) (4.29) 

z} : IF ������ is B THEN �	-��� is EB (1)  

z~ : IF ������ is VB THEN �	-��� is EB (1)  

z: : IF ������ is EB THEN �	-��� is EB (1)  
The corresponding fuzzy surface resulting from the fuzzy rules is depicted in Figure 

4.16(c).  

(a) Input: ������ (b) Output: �	-��� 

 
(c) Fuzzy surface 

Figure 4.16: Fuzzy membership functions and surface of FABFA for Schwefel’s 

function 7 

 

The numerical results presented in Table 4.4 show that the three proposed algorithms 

were able to reach better global optimum values than that of SBFA with the best 

optimum � HU���� k GF4} was achieved by QABFA. However, the best mean and 

standard deviation of optimum � were achieved by FABFA, as LUHv�� k GF4| and 
0.0011 respectively.  
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Table 4.4: Numerical results of simulation with two-dimension Schwefel’s function 7 

test function 

Algorithm Optimum 

value 

� l ;� ( )iC  

range 

Convergence 

(Steps) 

SBFA uHU�HHF
k GF4} 

125.0224 90.9566 0.6 130 

LABFA HU�FH�
k GF4} 

0.0077 0.0148 [uULHvF k
GF4:, 2] 

55 

QABFA �U ����
k ��4� 

0.0233 0.0556 [�Uu��H k
GF4~, 2] 

60 

EABFA uUF�F�
k GF4} 

0.0026 0.0032 [0.3925, 

2] 

70 

FABFA HU��FL
k GF4} 

�U ����
k ��4� 

0.0011 [0.0373, 

0.95] 

60 

 

The convergence of the algorithms in Figure 4.17(a) shows that all the four proposed 

algorithms converged faster to the optimum � with LABFA as the fastest among them 

(55 steps). A comparison of the optimum � achieved by the algorithms is shown in 

Figure 4.17(b). 

(a) Convergence plots (b) The best optimum � 
Figure 4.17: Simulation results of algorithms for two-dimension Schwefel’s function 7 

 

4.4.5. Test function 5: Ackley function  

The general form of Ackley function is given as: 
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��/� � HF J , 2 HF,4xU3sr
£m ��%£�qr 2 ,r£m ¤N�3¥���£�qr    (4.30) 

The Ackley function has many local maxima with one global minimum surrounded by 

several local minima. In the test, variables /� were set in the range T2LHU��v8 LHU��vV. 
The Ackley function has one global minimum ��/� equal to zero which is achieved when 
all of variables /� are equal to zero. Figure 4.18 shows 3D and 2D plots of a two-variable 
Ackley function.  

(a) 3D view (b) 2D view 

Figure 4.18: Two-dimension Ackley function 

 

The two-dimension Ackley function was used in the investigations in this work. 

The BFA parameters used in the simulation were: 

v 0 = 2 
v M = 10 

v I = 40 
v IN = 4 

v IK* = 4 
v MK =  M Hw  

v I*� = 4 
v 0*� = 0.25 

The initial positions of bacteria were selected randomly across the nutrient media. 

Various chemotactic step sizes were tried in the simulation of SBFA and the best 

optimum � result (GU���G k GF4|) was achieved when the chemotactic step size was 

equal to uU�FFF k GF4|. The of parameter settings of LABFA, QABFA, EABFA and 

FABFA were chosen manually by trial and error. The chemotactic step sizes for LABFA, 

QABFA and EABFA were formulated as: 

�	
��� � 3
�� ¡

yUr������
      (4.31) 

�	 ��� � 3
�� %U�

yUyr!"����$%&������'
     (4.32) 
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�	*��� � 3
�� rU¢�

ry��+��������
      (4.33) 

For FABFA, the fuzzy membership functions of input and output are depicted in Figure 

4.19(a) and Figure 4.19(b) respectively. With these fuzzy membership functions, fuzzy 

rules formulated as: 

z� : IF ������ is ES THEN �	-��� is ES (1)  

z3 : IF ������ is VS THEN �	-��� is VS (0.1)  
z{ : IF ������ is S THEN �	-��� is B (1)  

z| : IF ������ is M THEN �	-��� is EB (1) (4.34) 

z} : IF ������ is B THEN �	-��� is EB (1)  

z~ : IF ������ is VB THEN �	-��� is EB (1)  
z: : IF ������ is EB THEN �	-��� is EB (1)  

 

result in fuzzy surface depicted in Figure 4.19(c).  

(a) Input: ������ (b) Output: �	-��� 

 
(c) Fuzzy surface 

Figure 4.19: Fuzzy membership functions and surface of FABFA for Ackley test 

function 
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The numerical results presented in Table 4.5 show that all the four proposed algorithms 

were able to find better global optimum value than SBFA with the best optimum � 
achieved by LABFA as vUvvGv k GF4�~ while the best mean and standard deviation 

were achieved by QABFA as LU�GH� k GF4} and GUGGG� k GF4| respectively.  
 

Table 4.5 Numerical results of simulation with two-dimension Ackley test function 

Algorithm Optimum value � l ;� ( )iC  range Convergence 
(Steps) 

SBFA GU���G k GF4| 3.2271 1.5189 uU�FFF
k GF4| 

245 

LABFA �U ����
k ��4�� 

0.0051 0.0129 [�U���� k
GF4�~, 2] 

28 

QABFA LUu�vL k GF4�3 �U ����
k ��4� 

�U ����
k ��4� 

[GUL�FL k
GF4�3, 2] 

15 

EABFA LUuH�� k GF4~ 0.0128 0.0212 [GUGuH� k
GF4}, 2] 

90 

FABFA HUFG�L k GF4} 0.0021 0.0031 [GUL�FL k
GF4|, 
uUvFF k GF4{] 

95 

 

The convergence plots in Figure 4.20(a) show that in the initial iterations, bacteria of all 

the four proposed algorithms were in locations far from the global minimum while 

bacteria of SBFA were in locations closer to the global minimum. However, all the 

proposed algorithms were able to head to the global minimum faster than SBFA with 

QABFA as the fastest among them, able to converge in 15 steps. A comparison of the 

optimum � values achieved by the algorithms is depicted in Figure 4.20(b). 

(a) Convergence plots (b) The best optimum � 
Figure 4.20: Simulation results of the algorithms for two-dimension Ackley test function 
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4.4.6. Test function 6: weighted sphere function 

The general form of weighted sphere function is given as: 

��/� � m � k /�3��i�       (4.35) 

 

This is a continuous, convex, and unimodal function. In the test, /� span in the interval 
T2�UGH8 �GHV. The function has a global minimum value ��/� equal to zero when all 
variables /� are equal to zero. The 3D and 2D plots of a two-variable weighted sphere 
function is depicted in the Figure 4.21. 

(a) 3D view (b) 2D view 

Figure 4.21: Two-dimension weighted sphere function 

 

A 30-dimension weighted sphere function was used in the investigation. The 

BFA parameters were set to: 

v 0 = 30 
v M = 20 

v I = 40 
v IN = 4 

v IK* = 5 
v MK =  M Hw  

v I*� = 5 
v 0*� = 0.25 

The initial positions of bacteria were selected randomly in the nutrient media. In the 

investigations, it was noticed that, for SBFA, the best optimum � achieved was 3.8373 
when the chemotactic step size was equal to 0.07. The parameters and settings for 

LABFA, QABFA, EABFA and FABFA were chosen by trial and error. The chemotactic 

step sizes for LABFA, QABFA and EABFA were formulated as: 

�	
��� � xU3
�� %y

yUr������
      (4.36) 

�	 ��� � xU3
�� %y

yUyy !"����$%&������'
     (4.37) 
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�	*��� � xU3
�� %r

+�yUyy��������
      (4.38) 

For FABFA, the fuzzy membership functions of input and output are depicted in Figure 

4.22(a) and Figure 4.22(b) respectively. The fuzzy rules formulated as: 

z� : IF ������ is ES THEN �	-��� is ES (1)  

z3 : IF ������ is VS THEN �	-��� is S (1)  
z{ : IF ������ is S THEN �	-��� is M (1)  

z| : IF ������ is M THEN �	-��� is EB (1) (4.39) 

z} : IF ������ is B THEN �	-��� is EB (1)  

z~ : IF ������ is VB THEN �	-��� is EB (1)  
z: : IF ������ is EB THEN �	-��� is EB (1)  

will map the input to output in the form of fuzzy the surface depicted in Figure 4.22(c).  

(a) Input: ������ (b) Output: �	-��� 

 
(c) Fuzzy surface 

Figure 4.22: Fuzzy membership functions and surface of FABFA for 30-dimension 

weighted sphere test function 
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The numerical results in Table 4.6 show that all the four proposed algorithms were able 

to achieve better optimum � than SBFA with the best optimum � (0.3486) achieved by 
LABFA. LABFA also achieved the best mean optimum � while FABFA had the best 
standard deviation of optimum �.  
 

Table 4.6. Numerical simulation results with 30-dimension weighted sphere test function 

Algorithm Optimum 

value 

� l ;� ( )iC  range Convergence 

(steps) 

SBFA 3.8373 6.9009 1.6235 0.07 680 

LABFA 0.3486 1.6879 0.9372 [�U��HL k GF4|, 0.2] 520 

QABFA 1.3051 2.1652 0.4766 [HUH�v� k GF4|, 0.2] 520 

EABFA 0.5578 1.9526 1.0263 [0.0092, 0.2] 520 

FABFA 2.1179 2.9460 0.4168 [0.0534, 0.95] 520 

 

The convergence plots depicted in Figure 4.23(a) show that all the four proposed 

algorithms were faster in convergence (all the four algorithms converged in 520 steps), 

than SBFA which converged in 680 steps. A comparison of the best optimum � of all 
algorithms is depicted in Figure 4.23(b). 

(a) Convergence plots 

 

(b) The best optimum � 
Figure 4.23: Simulation results of all algorithms for 30-dimesion weighted sphere test 

function 

 

4.4.7. Test function 7: Schwefel’s function 1.2  

The general form of Schwefel’s function 1.2 is given as: 

��/� � m "m /��hi� $3��i�      (4.40) 
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The Schwefel’s function 1.2 is characterised by rotated hyper ellipsoids.  In the test, 

variables /� were in the interval T2��U�L�8 ��U�L�V. The function has a global minimum 

��/� equal to zero at variables /� equal to zero. Figure 4.24 shows 3D and 2D views of a 
two-variable Schewefel’s function 1.2. 

 

(a) 3D view (b) 2D view 

Figure 4.24: Two-variable Schwefel’s function 1.2 

 

A two-dimension Schwefel’s function 1.2 was used in the investigation carried out here. 

In the simulation, the BFA parameters were set as: 

v 0 = 2 
v M = 10 

v I = 40 
v IN = 4 

v IK* = 4 
v MK =  M Hw  

v I*� = 4 
v 0*� = 0.25 

The initial positions of bacteria were selected randomly in the nutrient media. Among 

various chemotactic step sizes chosen for SBFA, the best optimum � value, of\
uUFH�v k GF4~, was obtained with the chemotactic step size ���� equal to 0.009. The 
parameter settings of LABFA, QABFA, EABFA and FABFA were chosen by trial and 

error. The chemotactic step sizes for LABFA, QABFA and EABFA were formulated as: 

�	
��� � xU3
�� r

yUr������
      (4.41) 

�	 ��� � xU3
�� �

"����$%&������
     (4.42) 

�	*��� � xU}
�� r

ry��+��������
     (4.43) 
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The fuzzy membership functions of FABFA for input and output are depiced in Figure 

4.25(a) and Figure 4.25(b) respectively. The fuzzy rules formulated as: 

z� : IF ������ is ES THEN �	-��� is ES (1)  

z3 : IF ������ is VS THEN �	-��� is S (1)  

z{ : IF ������ is S THEN �	-��� is VB (1)  
z| : IF ������ is M THEN �	-��� is EB (1) (4.44) 

z} : IF ������ is B THEN �	-��� is EB (1)  

z~ : IF ������ is VB THEN �	-��� is EB (1)  

z: : IF ������ is EB THEN �	-��� is EB (1)  
result in correlation between input and output in the form of fuzzy surface depicted in 

Figure 4.25(c).  

(a) Input: ������ (b) Output: �	-��� 

 
(c) Fuzzy surface 

Figure 4.25: Fuzzy membership functions and surface of FABFA for two-dimension 

Schwefel’s function 1.2 test function 

 

The fuzzy surface show that the fuzzy adaptable chemotactic step size remains high, e.g. 

around 0.09 when the nutrient value ���� is considered high and then decreases 
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dramatically when the nutrient value ���� is small. The numerical results in Table 4.7 

show that all the four proposed algorithms were able to achieve better optimum � value 
than SBFA. LABFA and QABFA were able to hit the global minimum point (� equal to 
zero), while EABFA and FABFA achieved the best mean of optimum � (�U�HvF k GF4:) 
and the best standard deviation of optimum � (GUuuFu k GF4~) respectively.  
 

Table 4.7 Numerical simulation results with two-dimension Schwefel’s function 1.2 

Algorithm The best 

optimum � 
� l ;� ( )iC  

range 

Convergence 

(steps) 

SBFA uUFH�v
k GF4~ 

GGFU�uFF
k GF4: 

�U�u�G
k GF4~ 

0.009 83 

LABFA 0 �LUFH�G
k GF4: 

vU���L
k GF4~ 

[0, 0.2] 45 

QABFA 0 HLUGvFF
k GF4: 

HU�Fv�
k GF4~ 

[GUG�FH k
GF4{|, 
0.2] 

71 

EABFA uULHL�
k GF4�3 

�U ����
k ��4� 

GU��uG
k GF4~ 

[uU���� k
GF4}, 0.5] 

80 

FABFA �UFLHL
k GF4� 

G�U��LH
k GF4: 

�U ����
k ��4� 

[0.0055, 

0.95] 

43 

 

The convergence plots depicted in Figure 4.26(a) show that all the four proposed 

algorithms were able to converge faster than SBFA with FABFA as the fastest among 

them (converged in 43 steps). The SBFA converged in 83 steps. A comparison of the 

best optimum � for the algorithms is depicted in Figure 4.26(b). The bar chart shows that 

all the proposed algorithms result in significantly better optimum � than SBFA.  
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(a) Convergence plots (b) The best optimum � 
Figure 4.26: Simulation results of all algorithms for Schwefel function 1.2 

 

4.4.8 Comparison 

The investigations above show that all the four proposed algorithms have achieved better 

best value, mean and standard deviation of optimum � with faster convergence for all 
benchmark functions. Since SBFA and all the four proposed algorithms used the same 

general parameters, the difference on their optimum � achieved and convergence speed 
must have resulted by the use of adaptable chemotactic step size. Also, because initial 

positions of bacteria were selected randomly in the nutrient media, although bacteria of 

SBFA fell in location near the global minimum, by using bigger chemotactic step size, 

all four proposed algorithms were able to converge faster than SBFA. 

 

4.5. Summary 

Four novel approaches for adaptable chemotactic step size of BFA have been presented 

and discussed. The adaptation schemes based on three functions, namely linear, 

quadratic, and exponential and based on FL have been investigated. It has been 

demonstrated with seven commonly used benchmark test functions that ABFAs have 

faster convergence to global optimum and are able to achieve better performance as 

compared to SBFA. Based on the results presented above, all of the four proposed 

algorithms may potentially be used in applications to replace the constant chemotactic 

step size in SBFA. The next chapter, Chapter 5, will discuss the application of BFA in 

linear modelling of flexible manipulator system. 
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CHAPTER 5 

USING PARAMETRIC MODELLING OF FLEXIBLE 

MANIPULATOR WITH BACTERIAL FORAGING 

ALGORITHMS 
 

 

5.1. Introduction 

Linear parametric modelling is a linear system identification technique which formulates 

the model of the plant as a mathematical function relating the input to the output, usually 

in the form of differential/difference equation or transfer function. It can be noted from 

the literature that linear parametric modelling approaches have been used in broad areas 

such as the work by Sowell (1992) who used an autoregressive integrated moving 

average (ARIMA) model for modelling the long-run behaviour of a time series. Han and 

Yuan (1998) used autoregressive (AR), moving average (MA) and autoregressive 

moving average (ARMA) models for modelling and estimating of ultra wide band 

(UWB) radar echoes, Sakkalis et al. (2008) proposed ARMA model for modelling and 

analysis of electroencephalogram (EEG) activity, Li and Kareem (1993) used ARMA 

model for modelling of stochastic wave effects on offshore platforms, Mat Darus and 

Tokhi (2004) used autoregressive moving average with exogenous input (ARMAX) 

model for modelling two-dimensional flexible structure and etc. 

This chapter presents the application of ABFAs proposed in Chapter 4 in 

modelling of flexible manipulator systems in the linear parametric form. The objective of 

the work is to develop a single-link flexible manipulator model based on ABFAs. 

Previous related works on modelling of flexible manipulator system have been addressed 

in Chapter 3. It can be noted from the literature that the use of BFA for modelling 

flexible manipulators has not been reported yet. Approaches for the modelling of a 

single-link flexible manipulator with ABFAs using real-world data collected from an 

experimental rig are presented in this chapter. The single-link flexible manipulator 

system considered in this work is a single-input multiple-output (SIMO) system, with 

one input, the torque of the motor, and three outputs, namely hub-angle, hub velocity and 

end-point acceleration. Three single-input single-output (SISO) models are developed 
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representing the system behaviour from input torque to hub-angle, hub velocity and end-

point acceleration outputs. The performances of the adaptive BFAs (ABFAs) are 

compared to that of standard BFA (SBFA). The comparison is made based on the 

convergence to optimum value, the optimum value achieved, and time-domain and 

frequency domain responses of the developed models. 

 

5.2. Preliminary experimentation 

The experimental input-output data needed for the modelling processes were gathered 

from a laboratory scale single-link flexible manipulator rig. A random signal of � 0.3 
�� amplitude was applied as input to excite the flexible manipulator system and three 

outputs from sensors, namely: hub-angle, hub-velocity and end-point acceleration were 

measured. The input-output data thus gathered were presented in Chapter 3. 

 

5.3. Model structure formulation 

It is noted from the literature that there are various types of model structure that can 

potentially be used in a system identification process. These include AR, autoregressive 

with exogenous input (ARX), ARMA and ARMAX (Ljung, 1999). Among them, several 

model structures have been reported in the modelling of flexible manipulator systems, 

i.e. ARMAX (Shaheed and Tokhi, 2002) and ARMA (Alam and Tokhi, 2007; Md Zain 

et al., 2009a, b, c). Considering the simplicity, performance and computation costs, here 

the ARX structure, also called as equation error model structure, is chosen to model the 

flexible manipulator system. The general ARX model structure can be formulated as 

(Ljung, 1999): 

 
����� 	 
� � � ��� 
 �� � � �� � ��� 
 ���

���
�
�� � ����   (5.1) 

 
where �� �� 	 ������ � � ��, �� � �� 	  ����� � �!�, are the output and input coefficients, 
� " ! represents the order of the model and ���� is the disturbance or uncorrelated 
noise. If the model is “good enough” to represent the system and only depend on actual 

input-output, the noise term of the general ARX model can be neglected (Alam and 

Tokhi, 2007). Thus, the modelling process using ARX model is determining the 

numerical values of coefficients � and �� which result in minimum error between 

measured and estimated outputs, � and ��. Then, the general ARX structure above can be 
expressed as discrete transfer function as: 
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#�$� 	 %�&�
'�&� 	

()&*+(,&*-,+.+(*-,&,+(*
&/+0,&/-,+.+0/-,&,+0/

    (5.2) 

Thus, the stability of the resulted model can be evaluated from the poles that can be 

calculated from the denominator of the discrete transfer function.   

 

5.4. ABFA-based modelling 

In this work, the coefficient values of ARX model, � and ��, are determined using 

ABFAs. A block diagram of the optimisation mechanism is depicted in Figure 5.1.  

 
Figure 5.1: ABFA-based ARX model structure for flexible manipulator modelling 

 

where ���� is the actual input, ���� is the actual output, ����� is the predicted output and 
1��� is the prediction error; 

1��� 	 ���� 
 �����      (5.3) 

The model prediction error is used to set up the cost function which will act as nutrient 

media to be optimised by ABFAs. In the optimisation process, bacteria will try to find 

optimum or minimum cost function value by using random walk for whole bacteria’s 

lifetime determined by the total number of steps calculated as �2 � �34 � �45. The 

result of optimisation process will be optimised parameters of ARX model, � and ��. 
The steps of computation of ABFA-based modelling of flexible are shown in the 

flowchart in Figure 5.2. 
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Figure 5.2: ARX modelling process using BFA 

 

5.5. Model Validation 

To evaluate whether the developed models are adequate, validations are carried out in 

three steps as: 

a. Firstly, stability check is conducted to check whether the resulted models are 

stable or not. The stability of models can be tested by using pole-zero plots. 

b. The 6400 input-output experimental data pairs are split into two sets: the first 

3400 data pairs are used for modelling phase and the remaining 3000 data pairs 

are used for validation phase.   

c. Finally, correlation tests (Billings and Voon, 1986) described in equation (3.2) 

are performed on the developed models. Since the developed models are linear 

time-invariant models, the first two correlation tests of equation (3.2) are 

applicable (Billings and Voon, 1986). 

 

The overall modelling process is outlined in Figure 5.3. 
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Figure 5.3: Overall modelling sequence 

 

5.6. Results and Discussion 

There are three SISO models to model flexible manipulator, i.e. hub-angle, hub-velocity 

and end-point acceleration models. All models were developed based on the four 

proposed ABFAs developed and discussed in Chapter 4, i.e. LABFA, QABFA, EABFA 

and FABFA and then compared to the models developed based on SBFA. The scenario 

of the modelling computations is as: 

1. All parameters of BFAs are used in the modelling process, except dimension of 

the search space 6 which was selected according to the order of the model 

structure, were selected by considering that bacteria should have enough lifetime 

(total number of steps), enough reproduction steps (�34) so that bacteria can 

refine the nutrient value achieved and enough elimination and dispersal events 

(�45) so that bacteria were able to search most parts of the nutrient media to find 

locations closest to the global minimum but with minimum computation load. 

2. As a preliminary simulation, several cost function formulas developed and used 

by researchers in various applications found in the literature are evaluated by 

using them in the modelling of hub-angle based on SBFA. The performances of 
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SBFA using several cost functions are evaluated based on their error of time-

domain responses. The cost function which gives the best performance is used as 

cost function for the rest the modelling process. 

3. For every modelling process, i.e. hub-angle, hub-velocity and end-point 

acceleration models, the performances of the proposed algorithms are compared 

to that of SBFA based on the best optimum cost function value achieved, 

convergence and time-domain response error. 

4. Validation steps are performed for all developed models. 

 

5.6.1. Preliminary simulation: empirical comparison of cost functions 

There are three cost function alternatives considered as the nutrient media of BFAs, sum 

of absolute error (SAE), mean of absolute error (MAE) and mean squared error (MSE). 

These are formulated as: 

789: 	 � ;1���;<
=��       (5.4) 

7�9: 	 �
<� ;1���;<

=��       (5.5) 

7�8: 	 �
<� >1���?@<

=��      (5.6) 

where A represents the number of data points, and 1��� is the model prediction error. 

SAE measures the total absolute error of all data points while MAE measures the mean 

of absolute difference between actual and predicted output of each data point. These cost 

functions have the same units as the actual output. For example if the actual output is in 

degrees then the SAE or MAE will also be in degree. It can be noticed from literature 

that SAE has been used in various applications such as 3-D point set matching 

(Calafiore, 2008), block motion estimation (Yu et al., 2002) and fast output sampling 

control for blood perfusion uncertainity in hyperthermia (Auxilia and Sundaravadivelu, 

2011). MAE has been used in various applications such as 3-D point set matching 

(Calafiore, 2008), estimation of generalised stack filter (Lin and Coyle, 1990) and gray-

scale signals filtering (Dougherty, 1994). MSE measures the mean of squared predicted 

error of every data point. The unit of this cost function is squared of actual output unit, 

for example if the units of actual input are degrees then the units of MSE will be 

B1CD11@. MSE has been used in various applications such as block motion estimation 

(Yu et al., 2002), stock market indices prediction using bacterial foraging optimisation 

(BFO) (Majhi et al., 2009) and modelling and control of flexible manipulator systems 



Chapter 5: Using Parametric Modelling of Flexible Manipulator with Bacterial Foraging Algorithms 

108 
 

(Md Zain and Tokhi, 2009a; Md Zain et al, 2009b, c). The advantage of using MSE is 

that, since the error is squared, it can be used to remove large predicted error. 

In this preliminary simulation, those three cost functions are used in the 

modelling of hub-angle using SBFA. For hub-angle modelling, a 6th order ( 6== MN ) 

ARX model which consists of 13 coefficients ( 61,...,aa  and 60 ,...,bb ) was selected, 

following investigations with various model orders for best results. However, if the 

model is only depending on the previous input then the coefficient 00 =b  so that the total 

coefficients now become 12 ( 61,...,aa  and 61,...,bb ). Thus, there are 12 parameters to 

optimise which means the nutrient media or cost function is a 12-dimension search 

space. The initial values of SBFA parameters were selected as follow: 

v 6 = 12 
v E = 6 

v �2 = 30 

v �F = 4 

v �34 = 5 

v E3 = E �G  

v �45 = 3 

v 645 = 0.25 

Initial positions of bacteria were selected randomly across the cost function. Various 

chemotactic step size values H��� were used in the simulation and the best optimum 7 for 
the cost functions formulated in equations (5.4), (5.5) and (5.6) achieved was 0.0035. 

The time-domain responses and error in modelling phase depicted in Figure 5.4 show 

that using those three cost functions, the output of SBFA-based models could follow the 

actual output very well with MSE providing the closest predicted output to the actual 

output (smallest predicted error).  

(a) Time-domain responses (b) Error 

Figure 5.4: Simulation results of SBFA-ARX based models using all cost function in 

modelling phase 
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The numerical results presented in Table 5.1 confirm that SBFA-based model using MSE 

had the lowest optimum J  ( 6104323.1 −× ) and predicted error range [1I<� 1I0J], i.e[-

0.0033, 0.0035] compared to using SAE and MAE.  

 

Table 5.1: Numerical results of the cost functions in the modelling phase 

Algorithm Optimum K Range of error (L�M�) 
Minimum Maximum 

SBFA-ARX SAE 789:  = 5.0112 -0.1246 0.0436 

SBFA-ARX MAE 7�9:  = 0.0012 -0.0037 0.0048 

SBFA-ARX MSE 7�8:  = 
6104323.1 −×  -0.0033 0.0035 

 

Validation was performed by testing (validating) the developed models with the 

remaining 3000 input-output data points. The time-domain responses and error depicted 

in Figure 5.5 show that the hub-angle model using MSE had the closest predicted output 

to the actual output in comparison with using SAE and MAE. The numerical results 

outlined in Table 5.2 show that the SBFA-based model using MSE had the lowest 

optimum J  ( 5102637.1 −× ) and smallest predicted range, e.g. [-0.0027, 0.1200] 

compared to using SAE and MAE. 

(a) Hub-angle response (b) Error of hub-angle response 

Figure 5.5: Time-domain hub-angle response of SBFA-ARX based models using 

different cost functions in the validation phase 
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Table 5.2: Numerical results of the cost functions in the validation phase 

Algorithm Optimum K  Range of error (L�M�) 
Minimum Maximum 

SBFA-ARX SAE 789:  = 3.5651 -0.0031 0.1205 

SBFA-ARX MAE 7�9:  = 0.0013 -0.0040 0.1205 

SBFA-ARX MSE 7�8:  = 
5102637.1 −×  -0.0027 0.1200 

 

The preliminary results suggest that MSE is suitable for the modelling process of the 

models, i.e. hub-angle, hub-velocity and end-point acceleration because it can remove 

large prediction error. 

 

5.6.2. Hub-angle model 

A. Modelling phase of hub-angle model 

For hub-angle modelling, a 6th order ARX structure model with 00 =b  was selected, 

following investigations with various model orders for best results. Thus there are 12 

parameters to optimise using BFAs. The initial values of BFA parameters were set up as 

follow: 

v 6 = 12 
v E = 6 

v �2 = 30 

v �F = 4 

v �34 = 5 

v E3 = E �G  

v �45 = 3 

v 645 = 0.25 

The initial positions of bacteria were selected randomly across the search space and MSE 

was used as the cost function. For SBFA, various chemotactic step size values were 

apllied in the optimisation process and the best optimum 7 of �NO��� � � PQ, was 
achieved when the chemotactic step size H��� was equal to 0.0035. For LABFA, QABFA 
and EABFA, all parameters, i.e. RI0J� �� B and C, were selected by trial and error and the 
best performance was achieved when the adaptable chemotactic step size values were as 

formulated for LABFA, QABFA and EABFA as: 

H0S��� 	 �O�@
�+ ,

)O)TUV;W�X�;
      (5.7) 

H0Y��� 	 �O�@
�+ ,

,)-Z[>)OZW�X�?T\)OZ;W�X�;]
     (5.8) 

H04��� 	 �O�@
�+ ,

)O)Z^,)-Z;W�X�;
      (5.9) 
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These allow the chemotactic step size change adaptively in the range [0, 0.02]. For 

FABFA, seven-Gaussian fuzzy membership functions were used both in input and output 

and these are depicted in Figures 5.6(a) and 5.6(b) respectively. All parameters, i.e. � 

and _ were also selected by trial and error. Fuzzy rules, relating input to output in the 
form of fuzzy surface depicted in Figure 5.6(c), were formulated as: 

`� : IF ;7���; is ES THEN H0a��� is ES (1)  

`@ : IF ;7���; is VS THEN H0a��� is VS (0.5)  

`b : IF ;7���; is S THEN H0a��� is S (0.6)  

`c : IF ;7���; is M THEN H0a��� is M (1) (5.10) 
`d : IF ;7���; is B THEN H0a��� is B (1)  

`e : IF ;7���; is VB THEN H0a��� is VB (1)  

`Q : IF ;7���; is EB THEN H0a��� is EB (1)  
The fuzzy surface shows that the fuzzy adaptable chemotactic step size for every 

bacterium H0a��� is in relation to the value of ;7���;. 

(a) Input: ;7���; (b) Output: H0a��� 

 
(c) Fuzzy surface 

Figure 5.6: Fuzzy membership function and surface of FABFA for hub-angle model in 

the modelling phase 
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The numerical results presented in Table 5.3 show that all four proposed algorithms were 

able to achieve better step size with EABFA achieving has the best optimum 7, i.e. 
�O�f g � � PQ, and also the smallest error range, e.g. [-0.0011, 0.0014]. Also all four 

proposed algorithms had faster convergence speed (able to converge in 178 steps) 

compared to SBFA, which converged in 327 steps.  

 

Table 5.3: Numerical results of hub-angle models for the algorithms in modelling phase 

Algorithm ( )iC  range Convergence 

(steps) 

Optimum K Range of error (L�M�) 
Minimum Maximum 

SBFA-ARX  0.0035 327 �NO���
� � PQ 

-0.0033 0.0035 

LABFA-

ARX 

[0.0012, 

0.02] 

178 �Ohih 
� � PQ 

-0.0017 0.0018 

QABFA-

ARX 

[�Of��� �
� Pe, 0.02] 

178 NO�hfi
� � PQ 

-0.0017 0.0023 

EABFA-

ARX 

[hOf�gj �
� Pc, 0.02] 

178 kO klmn
� kmPn 

-0.0011 0.0014 

FABFA-

ARX 

[0.0013, 

0.0182] 

178 �Oj�gh
� � PQ 

-0.0019 0.0021 

 

The convergence plots and optimum 7 bar chart of all algorithms are depicted in Figure 

5.7(a) and Figure 5.7(b) respectively. The time-domain hub-angle responses and error 

depicted in Figure 5.7(c) and Figure 5.7(d) respectively show that the hub-angle response 

of all models resulted by BFAs were able to mimic the actual output. However, SBFA-

based model had the biggest error range.  
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(a) Convergence plots (b) Optimum 7 

(c) Time-domain response (d) Error 

Figure 5.7: Simulation results for hub-angle model in the modelling phase 

 

The discrete transfer functions constructed from the optimal parameters resulted with the 

algorithms with a sampling time of 0.001 seconds are given as:  

#�$�8op9 	 P�O��@q&V+�O�����bd&UP�O��b&ZP�O���Q&T+�O��ce&+�O����
&rP�O@@q�&VP�O@@qd&UP�O�Qbs&ZP�O�ed�&TP�O�edc&P�O�bcQ   (5.11) 

#�$�t9op9 	 P�O����bQ&V+�O��@q&U+�O���@bQ&Z+�O����d@&T+�O���dsd&+�O���s@c
&rP�O�b@@&VP�O@sec&UP�O�@ed&ZP�Ob�Qs&TP�O�c��&P�O�sed   (5.12) 

#�$�u9op9 	 �O�����@c&VP�O��@�&U+�O���d&Z+�O���bec&TP�O���@�sq&P�O���d
&rP�O�q��&VP�O@b�Q&UP�O@�ed&ZP�O�bbe&TP�O�des&P�O�s��   (5.13) 

#�$�:9op9 	 P�O���b�e&V+�O���ddb&UP�O���@�@&Z+�O���bc@&T+�O���d@s&+�O���bdQ
&rP�O�qcb&VP�O�e@q&UP�O��bQ&ZP�Obe@&TP�O�ccc&P�O�b@e    (5.14) 

#�$�p9op9 	 P�O��e&VP�O���qQ�cbQ&UP�O���@s�@e&ZP�O���qq�e&T+�O��@@&+�O���dqde
&rP�O�Q@d&VP�O�scs&UP�O�Qqs&ZP�ObeQq&TP�O@�s@&P�O�Qes    (5.15) 

 

B. Validation phase of hub-angle model  

The hub-angle models were validated using the remaining 3000 pairs of input-output 

data. It was noticed from the numerical results presented in Table 5.4 that the cost 
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function values for hub-angle validating process achieved were fO�j�g � � Pd, 
�O��g� � � Pd, �O��i� � � Pd, �O�f�j � � Pd and �O��hg� � � Pd for SBFA-ARX, 
LABFA-ARX, QABFA-ARX, EABFA-ARX and FABFA-ARX models respectively. 

These cost function values suggest that ABFA-based models achieved better validating 

results than SBFA-based model with QABFA-ARX achieving the best optimum 7 value 
and EABFA-ARX with the smallest prediction error range, e.g. [-0.0012, 0.1200].  

 

Table 5.4: Numerical results of hub-angle models for the algorithms in the validation 

phase 

Algorithm Optimum J  Range of error (L�M�) 
Minimum Maximum 

SBFA-ARX  fO�j�g � � Pd -0.0027 0.1200 

LABFA-ARX �O��g� � � Pd -0.0017 0.1200 

QABFA-ARX kO kvwv � kmPx -0.0019 0.1200 

EABFA-ARX �O�f�j � � Pd -0.0012 0.1200 

FABFA-ARX �O��hg� � � Pd -0.0022 0.1202 

 

The optimum 7 of the algorithms in the validation phase is depicted in Figure 5.8(a). The 

time-domain hub-angle responses and error for the validating phase depicted in Figure 

5.8(b) and Figure 5.8(c) show that all the models were able to mimic the measured 

output well but SBFA-based model had the largest prediction error range. The pole-zero 

diagram and correlation tests are depicted in Figures 5.9-5.13 for SBFA, LABFA, 

QABFA, EABFA and FABFA-based models respectively. It is noticed that all the 

models were stable, all poles of the transfer function were inside the unit circle, and the 

correlation functions were within the 95 % confidence interval. One or more zeros were 

outside the unit circle indicating non-minimum phase behaviour. 
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(a) Optimum cost function 

 
(b) Time-domain response 

 
(c) Error 

Figure 5.8: Simulation results of the algorithms for hub-angle model in the validation 

phase 
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(a) Pole-zero diagram 

(b) yzz�{� (c) y|z�{� 
Figure 5.9: Validation test for SBFA-ARX for hub-angle model 
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(a) Pole-zero diagram (b) Pole-zero diagram (zoomed) 

(c) yzz�{� (d) y|z�{� 
Figure 5.10: Validation test for LABFA-ARX for hub-angle model 
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(a) Pole-zero diagram (b) Pole-zero diagram (zoomed) 

(c) yzz�{� (d) y|z�{� 
Figure 5.11: Validation test for QABFA-ARX for hub-angle model 
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(a) Pole-zero diagram 

(b) yzz�{� (c) y|z�{� 
Figure 5.12: Validation test for EABFA-ARX for hub-angle model 
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(a) Pole-zero 

(b) yzz�{� (c) y|z�{� 
Figure 5.13: Validation test of FABFA-ARX for hub-angle model 

 

5.6.3. Hub-velocity modelling 

A. Hub-velocity model in modelling phase 

Hub-velocity is the first differential of the hub-angle. Because in this work hub-angle 

was modelled using 6th order model, here for hub-velocity modelling, a 5th order (

5== MN ) ARX model was used. With coefficient 00 =b , thus, there are ten 

parameters to optimise using BFAs: 

• Five coefficients for previous actual output samples: ��� � � �d 
• Five coefficients for previous input samples: 51,...,bb  

The initial value of BFAs were selected as: 

v 6 = 10 
v E = 6 

v �2 = 20 

v �F = 3 

v �34 = 3 

v E3 = E �G  

v �45 = 3 

v 645 = 0.25 
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The initial positions of bacteria were selected randomly and the MSE was used as the 

cost function. Various chemotactic step size values were used in the simulations for 

SBFA. However, the best cost function value 7 of 0.04191, was achieved when the 
chemotactic step size was equal to 0.011. For LABFA, QABFA and FABFA, the 

parameters and settings for RI0J� �� B and C were chosen by trial and error and the 
optimum cost function value 7 was achieved with the adaptable chemotactic step sizes: 

H0S��� 	 �O@
�+ ,

)O,;W�X�;
      (5.16) 

H0Y��� 	 �O�
�+ ,

)O,[>W�X�?T\;W�X�;]
     (5.17) 

H04��� 	 �O�
�+ ,

)O,^�;W�X�;�
      (5.18) 

For FABFA, seven Gaussian membership functions were used for input and 

output with the parameters � and _ selected by trial and error. The fuzzy membership 

functions for input and output are depicted in Figure 5.14(a) and Figure 5.14(b) 

respectively. Fuzzy rules, relating the input and output in the form of fuzzy surface 

depicted in Figure 5.14(c), were formulated as: 

`� : IF ;7���; is ES THEN H0a��� is ES (1)  

`@ : IF ;7���; is VS THEN H0a��� is VS (0.1)  

`b : IF ;7���; is S THEN H0a��� is S (0.4)  

`c : IF ;7���; is M THEN H0a��� is M (1) (5.19) 

`d : IF ;7���; is B THEN H0a��� is B (1)  
`e : IF ;7���; is VB THEN H0a��� is VB (1)  

`Q : IF ;7���; is EB THEN H0a��� is EB (1)  
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(a) Input: ;7���; (b) Output: H0a��� 

 
(c) Fuzzy surface 

Figure 5.14: Fuzzy membership functions and surface of FABFA for hub-velocity model 

in modelling phase 

 

The numerical results presented in Table 5.5 show that optimum cost function values for 

the hub-velocity modelling achieved were 0.04191, 0.0105, 0.0152, 0.0099 and 0.0142 

for SBFA–ARX, LABFA–ARX, QABFA–ARX, EABFA–ARX and FABFA–ARX 

respectively. It can be noticed that all proposed algorithms were able to achieve better 

cost function values with EABFA achieving the best 7 value. Also, all proposed 
algorithms had smaller prediction error range than SBFA.  
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Table 5.5: Numerical results of hub-velocity models for the algorithms in modelling 

phase 

Algorithm ( )iC  range Convergence 

(steps) 

Optimum K Range of error (L�M�) 
Minimum Maximum 

SBFA-

ARX  

0.011 80 0.04191 -3.0802 0.1157 

LABFA-

ARX 

[ 4101044.2 −× , 

0.2] 

3 0.0105 -3.3814 0.1228 

QABFA-

ARX 

[ 4105448.1 −× , 

0.1] 

3 0.0152 -3.7806 0.1652 

EABFA-

ARX 

[0.0092, 0.1] 3 0.0099 -2.8620 0.2443 

FABFA-

ARX 

[0.0123, ] 5 0.0142 -2.7681 0.3142 

 

The optimum 7 values achieved by the algorithms are depicted in Figure 5.15(a). The 

convergence plots depicted in Figure 5.15(b) show that ABFA-ARX models were able to 

converge to optimum value faster (3 and 5 steps) than SBFA-ARX (80 steps). The actual 

and predicted hub velocity responses and prediction error are depicted in Figure 5.15(c) 

and Figure 5.15(d) respectively. The transfer functions of the hub-velocity models 

formulated with a sampling period of 0.001 seconds are as follows: 

#�$�8op9 	 �O�dq@&U+�O�ese&Z+�O�@�@&TP�O�b�@&+�O�d
&VP�Odcce&UP�O�sb�&ZP�O�q�q&TP�O@@b�&+�O�cce   (5.20) 

#�$�t9op9 	 �O@��q&U+�O��bs&ZP�O��ee&TP�O��dq&+�O��s�
&VP�Odcqb&U+�O�ecs&ZP�ObQ@e&T+�O�dbc&P�O�sQc   (5.21) 

#�$�u9op9 	 P�O�d�d&U+�O�q�b&ZP�O�@dq&TP�O�s&+�O@@ce
&VP�O@qse&UP�O@q�Q&ZP�O��e@&TP�O�q@s&P�O@bsq   (5.22) 

#�$�:9op9 	 �O@e�e&U+�O�@&Z+�O�b@Q&T+�O@Qbe&+�O@eed
&VP�Oecs&UP�OcQqb&Z+�O��dQ&T+�O�bee&+�O�qe@   (5.23) 

#�$�p9op9 	 P�O��e�&U+�O�bee&Z+�O�d@Q&TP�O��Qd&P�O�dsd
&VP�OQdqQ&UP�OeQq@&Z+�O@@d�&T+�O@c��&P�O�@dq   (5.24) 
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(a) Optimum 7 

 
(b) Convergence plots 

(c) Time-domain response (d) Time-domain response (zoomed) 

 
(e) Time-domain error 

Figure 5.15: Simulation results of the algorithms for hub-velocity model in modelling 

phase 
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B. Hub-velocity model in validation phase 

The numerical results presented in Table 5.6 show that cost function values achieved for 

hub-velocity model in the validating phase were 0.0485, 0.0311, 0.0340, 0.0291 and 

0.0266 for SBFA-ARX, LABFA-ARX, QABFA-ARX, EABFA-ARX and FABFA-ARX 

models respectively. It is noticed that all models developed based on the proposed 

ABFA-ARX models were able to achieve better optimum 7 values than SBFA-ARX with 
FABFA-ARX achieving the best optimum 7 value.  
 

Table 5.6: Numerical results of hub-velocity models for the algorithms in validation 

phase 

Algorithm Optimum J  Range of error (L�M�) 
Minimum Maximum 

SBFA-ARX  0.0485 -0.5574 0.3598 

LABFA-ARX 0.0311 -0.5468 0.1285 

QABFA-ARX 0.0340 -0.5655 0.1711 

EABFA-ARX 0.0291 -0.5424 0.12204 

FABFA-ARX 0.0266 -0.5622 0.13166 

 

A comparison of the optimum 7 values achieved by the algorithms in the validation 

phase can be seen in the graphical illustration depicted in Figure 5.16(a). Both actual and 

predicted time-domain responses and error achieved in the validating phase are depicted 

in Figure 5.16(b) and Figure 5.16(c). Pole-zero plots and correlation test results for 

SBFA-ARX, LABFA-ARX, QABFA-ARX and FABFA-ARX are depicted in Figure 

5.17-Figure 5.21 respectively. These figures show that all the models were stable 

because all poles lie inside the unit circle and the models exhibit non-minimum phase 

behaviour since one or more zeros are outside the unit circle. The validation test results 

using correlation functions show that all models are acceptable. 
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(a) Optimum 7 

 
(b) Time-domain responses 

(c) Time-domain responses (zoomed) (d) Time-domain error 

Figure 5.16: Simulation results of the algorithms for hub-velocity model in validation 

phase 
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(a) Pole-zero diagram 

(b) yzz�{� (c) y|z�{� 
Figure 5.17: Validation test for SBFA-ARX for hub-velocity modelling 
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(a) Pole-zero diagram 

(b) yzz�{� (c) y|z�{� 
Figure 5.18: Validation test for LABFA-ARX for hub-velocity modelling 
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(a) Pole-zero diagram 

(b) yzz�{� (c) y|z�{� 
Figure 5.19: Validation test for QABFA-ARX for hub-velocity modelling 
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(a) Pole-zero diagram 

(b) yzz�{� (c) y|z�{� 
Figure 5.20: Validation test for EABFA-ARX for hub-velocity modelling 
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(a) Pole-zero diagram (b) Pole-zero diagram (zoomed) 

(c) yzz�{� (d) y|z�{� 
Figure 5.21: Validation test for FABFA-ARX for hub-velocity modelling 

 

5.6.4. End-point acceleration 

A. End-point acceleration model in modelling phase 

Because of the nature of the flexible manipulator, vibration will occur when the 

manipulator is moved. Each frequency resonance mode of vibration is represented by a 

pair of complex conjugate poles. In the current work, the first three resonance modes are 

investigated, thus three pairs of complex conjugate poles are needed. Hence, a 6th order 

structure model is needed to cover three pairs of complex conjugate poles. Moreover, the 

system contains rigid body dynamics. Accordingly, an 8th order ( 8== MN ) ARX 

model was used to represent the end-point acceleration model. With coefficient 00 =b , 

thus there are 16 parameters to optimise: 

• Eight parameters for previous actual output samples: ��� � � �q 
• Eight parameters for previous input samples: 81,...,bb  
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The initial parameters of BFA are selected as follows: 

v 6 = 16 
v E = 6 

v �2 = 30 

v �F = 3 

v �34 = 3 

v E3 = E �G  

v �45 = 3 

v 645 = 0.25 

The initial positions of bacteria were selected randomly in the nutrient media. After 

testing various chemotactic step size values for SBFA, the best cost function value 7 was 
achieved when the chemotactic step size was equal to 0.03. For LABFA, QABFA and 

EABFA, the parameters RI0J� �� B and C were chosen by trial and error and the best 
optimum 7 values were achieved with adaptable chemotactic step sizes set up as: 

H0S��� 	 �Oc
�+ ,

;W�X�;
       (5.25) 

H0Y��� 	 �Oc
�+ ,

)O}V[>W�X�?T\;W�X�;]
     (5.26) 

H04��� 	 �O�
�+ ,

)OUV^U);W�X�;
      (5.27) 

For FABFA, seven-Gaussian membership function were used for input and 

output with the parameters � and _ chosen by trial and error. The fuzzy membership 

functions used in the investigation for input and output are depicted in Figure 5.22(a) and 

Figure 5.22(b) respectively. Fuzzy rules were formulated as: 

`� : IF ;7���; is ES THEN H0a��� is ES (1)  

`@ : IF ;7���; is VS THEN H0a��� is VS (0.1)  

`b : IF ;7���; is S THEN H0a��� is S (0.8)  
`c : IF ;7���; is M THEN H0a��� is M (1) (5.28) 

`d : IF ;7���; is B THEN H0a��� is B (1)  

`e : IF ;7���; is VB THEN H0a��� is VB (1)  

`Q : IF ;7���; is EB THEN H0a��� is EB (1)  
The rules thus formulated resulted the fuzzy surface depicted in Figure 5.22(c). The 

fuzzy surface reveals that fuzzy chemotactic step size for every bacterium H0a��� 
changes depending on the absolute cost function value ;7���;. 
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(a) Input: ;7���; (b) Output: H0a��� 

 
(c) Fuzzy surface 

Figure 5.22: Fuzzy membership function and surface of FABFA for end-point 

acceleration models for the algorithms in modelling phase 

 

Numerical results outlined in Table 5.7 reveal that optimum values of the cost 

function achieved in the modelling phase were 0.00744, 0.0025, 0.0025, 0.0032 and 

0.00142 for SBFA-ARX, LABFA-ARX, QABFA-ARX, EABFA-ARX and FABFA-

ARX respectively. These cost function values indicate that ABFA-ARX models were 

able to result in better optimum 7 than SBFA-ARX with the best optimum 7 achieved by 
FABFA-ARX.  
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Table 5.7: Numerical results of end-point acceleration models for the algorithms in 

modelling phase 

Algorithm ( )iC  range Convergence 

(steps) 

Optimum J  Range of error (L�M�) 
Minimum Maximum 

SBFA-ARX  0.03 260 0.00744 -0.3302 0.3485 

LABFA-

ARX 

[0.0039, 1.4] 190 0.0025 -0.3137 0.3485 

QABFA-

ARX 

[0.0036, 1.4] 190 0.0025 -0.3119 0.3449 

EABFA-

ARX 

[0.0350, 0.1] 230 0.0032 -0.3159 0.2391 

FABFA-

ARX 

[0.0136, 

0.185] 

190 0.00142 -0.3145 0.2816 

 

A comparison of these optimum 7 values is depicted in Figure 5.23(a). The convergence 
plots depicted in Figure 5.23(b) show that ABFA-ARX models were able to converge to 

the optimum value faster (190 and 230 steps) than SBFA-ARX (260 steps). The actual 

and predicted time-domain end-point acceleration and error depicted in Figure 5.23(c) 

and Figure 5.23(d) show that in general all models were able to mimic the actual output 

but SBFA-ARX resulted the largest prediction error range [-0.3302, 0.3485] among 

them. The corresponding power spectral density (PSD) depicted in Figure 5.23(e) show 

that the first three resonance frequencies of the system found in these modelling were 

11.67 Hz, 36.96 Hz and 64.22 Hz for the 1st mode, 2nd mode and 3rd mode respectively. 

The transfer functions of the models formulated with a sampling period of 0.001 seconds 

are as follows:  

#�$�8op9 	 P�O�ccq&~+�O����&r+�O�qbd&VP�O��b�&U+�O�e@e&Z+�O�Qcd&TP�O��e�&+�O�bsd
&�P�O�@�q&~P�O�@ec&r+�O�cQ�&V+�OcqQQ&UP�O�dcs&ZP�O�@eb&T+�O��bc&P�O�b�d  (5.29) 

#�$�t9op9 	 �O�db@&~+�O����&rP�O��de&VP�O�csQ&UP�O�@cb&ZP�O��cb&TP�O��sQ&+�O��QQ
&�P�O��@d&~P�Ocs�b&r+�OeQ@q&V+�O@�d@&U+�O@�Q�&ZP�O�qdd&TP�OQ@cb&+�OcqeQ  (5.30) 

#�$�u9op9 	 �O�ebs&~+�O��cb&rP�O�@cd&VP�O�d@@&UP�O�bc&ZP�O�@�e&TP�O�@d�&+�O��ds
&�P�O�bQ�&~P�OcQQe&r+�OQ��d&V+�O�sdc&U+�O@�Qc&ZP�O�b�e&TP�Oeq@Q&+�OcqdQ  (5.31) 

#�$�:9op9 	 P�O�QqQ&~P�O�@@s&rP�O�@dq&VP�O��s�&U+�O�@�d&ZP�O�Q@d&TP�O��qc&+�O�q�@
&�P�Od@dq&~+�Obdsc&r+�O�dQe&V+�O�qe&U+�Ob��c&ZP�OeQQs&T+�OcQ&P�O@�q�   (5.32) 

#�$�p9op9 	 P�O���s&~+�O����&r+�O��se&V+�O��b�&UP�O�b�Q&Z+�O�@qe&T+�O��qe&P�O��d@
&�P�Ob@s&~P�OcQQb&r+�Od@b�&VP�Od��c&UP�O@�ec&Z+�O@eee&TP�Ob@ec&+�O�qcc  (5.33) 
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(a) Optimum 7 (b) Convergence plots 

(c) Time-domain responses (d) Error 

 
(e) Spectral density 

Figure 5.23: Simulation results of end-point acceleration model for the algorithms in 

modelling phase 
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B. End-point acceleration model in validation phase 

Numerical results presented in Table 5.8 show that the cost function values achieved for 

end-point acceleration models in the validating phase were 0.0091, 0.0047, 0.0046, 

0.0058 and 0.00127 for SBFA-ARX, LABFA-ARX, QABFA-ARX, EABFA-ARX and 

FABFA-ARX models respectively. Again, these results show that end-point acceleration 

models based on ABFA-ARX models achieved better optimum 7 value than SBFA-ARX 
in the validation phase with FABFA-ARX as the best among them.  

 

Table 5.8: Numerical results of end-point acceleration models for the algorithms in 

validation phase 

Algorithm Optimum J  Range of error (L�M�) 
Minimum Maximum 

SBFA-ARX  0.0091 -0.3260 0.3545 

LABFA-ARX 0.0047 -0.2353 0.3507 

QABFA-ARX 0.0046 -0.2355 0.3515 

EABFA-ARX 0.0058 -0.2762 0.3420 

FABFA-ARX 0.00127 -0.2966 0.3430 

 

A comparison of these optimum 7 values is illustrated in the bar chart depicted in Figure 
5.24(a). The actual and predicted time-domain responses and error in validating phase 

are depicted in Figure 5.24(b) and Figure 5.24(c) respectively, showing that all the 

models were able to mimic the actual output but SBFA-ARX model had the largest 

prediction error range, e.g. [-0.3260, 0.3545]. It is noticed from the PSD depicted in 

Figure 5.24(e) that the first three resonance frequencies for all the models matched one 

another; these were at 11.67 Hz, 36.96 Hz and 64.22 Hz for the 1st, 2nd and 3rd modes 

respectively. 
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(a) Optimum 7 

 
(b) Time-domain responses 

(c) Error (d) Power spectral density 

Figure 5.24: Simulation results of end-point acceleration model for the algorithms in 

validation phase 

 

The pole-zero diagrams and correlation tests for SBFA-ARX, LABFA-ARX, QABFA-

ARX, EABFA-ARX and FABFA-ARX are depicted in Figure 5.25-Figure 5.29 

respectively, indicating that all models were stable with non-minimum phase behaviour. 

The correlation test functions results confirm that the models are acceptable. 
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(a) Pole-zero diagram 

(b) yzz�{� (c) y|z�{� 
Figure 5.25: Validation test for SBFA-ARX for end-point acceleration model 
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(a) Pole-zero diagram 

(b) yzz�{� (c) y|z�{� 
Figure 5.26: Validation test for LABFA-ARX for end-point acceleration model 
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(a) Pole-zero diagram 

(b) yzz�{� (c) y|z�{� 
Figure 5.27: Validation test for QABFA-ARX for end-point acceleration model 
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(a) Pole-zero diagram 

(b) yzz�{� (c) y|z�{� 
Figure 5.28: Validation test for EABFA-ARX for end-point acceleration model 
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(a) Pole-zero plot 

(b) yzz�{� (c) y|z�{� 
Figure 5.29: Validation test for FABFA-ARX model for end-point acceleration 

 

5.7. Summary 

In this work, BFAs with adaptable chemotactic step size have been adopted for 

modelling a single-link flexible manipulator system. Input-output data pairs have been 

collected from an experimental single-link flexible manipulator rig and used in 

developing linear models of the system from input torque to hub-angle, hub-velocity and 

end-point acceleration. The performances of ABFA-ARX models have been assessed in 

comparison to SBFA-ARX based on the optimum cost function achieved, convergence 

speed, time-domain and frequency-domain response. It has been demonstrated that the 

ABFA-ARX models converge faster and achieve better optimum value, and thus provide 

better model than SBFA-ARX. Since in the tests presented, SBFA and all proposed 

ABFA used the same general parameters and the initial positions bacteria were selected 

randomly in the search space, the better performance ABFA demonstrated must be due 
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to the adaptable chemotactic step size. Further work on modelling will consider 

combination of BFAs and other intelligent methods such as NN and FL for nonlinear 

modelling of flexible manipulator systems, and this is presented in Chapters 6. 
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CHAPTER 6 

MODELLING OF FLEXIBLE MANIPULATOR 

USING NEURAL NETWORKS AND FUZZY LOGIC 

OPTIMISED BY BACTERIAL FORAGING 

ALGORITHM 
 

 

6.1. Introduction 

Artificial neural network (ANN) or simply neural network (NN) is a computational 

method which mimics a biological neural network in the human brain (Hagan et al., 

1996). The method involves non-linear processing elements arranged and interconnected 

in a special structure. NN has several advantages such as massive parallelism, distributed 

representation and computation, generalisation ability, adaptability, inherent contextual 

information processing and learning capability (Jain and Mohiuddin, 1996).  

The above advantages have inspired researchers to apply NNs wide range of 

applications such as in modelling durations of syllables (Sreenivasa Rao and 

Yegnanarayana, 2007), analysing properties of oil shale (Nazzal et al., 2008), estimating 

sediment in a river (Haghizadeh et al., 2010), selecting vendor supplier (Golmohammadi 

et al., 2009), forecasting rainfall (Hung et al., 2009), stock performance modelling 

(Refenes et al., 1993), modelling complex process dynamics (Parlos et al., 1994), crane 

collision modelling (Garcia-Fernandez et al., 2004), control of flexible manipulators 

(Sharma et al., 2003; Jnifene and Andrews, 2005), dynamic modelling of a twin rotor 

system (Aldebrez et al., 2004), modelling and control of flexible structures (Mat Darus 

and Tokhi, 2005) and adaptive control of robots (Zalzala and Morris, 1991). For 

application in the areas of flexible manipulator, Talebi et al. (1998) used recurrent NN 

for modelling flexible manipulators for space applications. Also, multilayer perceptron 

(MLP) NN with backpropagation learning algorithm and radial basis function (RBF) NN 

have been utilised for modelling single-link flexible manipulators (Shaheed and Tokhi, 

2002).  

It can be noted from the literature that the potential drawbacks of these learning 

algorithms are they potentially getting trapped in the local minima. To overcome being 
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trapped at local minima, researchers have proposed to utilise intelligent approaches, such 

as genetic algorithm (GA) optimisation, as NN’s learning algorithm. Sharma et al. (2003) 

utilised GA to optimise NN: network architecture, weights, biases and slope parameters 

of activation function of NN to control flexible manipulators. Ben Omrane and Chatti 

(2010) used GA to train NN for modelling and controlling a nonlinear system of water 

level regulation.  

It can be noted from the literature that BFA has been used to optimise a NN. 

Ulagammai et al. (2007) used SBFA for optimising weights and biases of neural network 

for load forecasting of power systems. Ying et al. (2008) used SBFA for optimising NN 

for image compression applications. The application of NN optimised by BFA for 

modelling single-link flexible manipulator system has not been reported yet.  

The fuzzy logic (FL) concept was first introduced by Lotfi Zadeh (Zadeh, 1965, 

1968, 1973) to model human reasoning from imprecise and incomplete information in 

the form of rule base. FL maps input to output by using human-like reasoning in the form 

of rule base which are constructed from a set of IF-THEN operations. Since its 

introduction, FL has been widely applied in various control application by researchers 

including in the area of flexible manipulators  such as control of a non-linear 

multivariable chemical processes (Mahfouf et al., 2002), control of a single-link flexible 

manipulator (Alam and Tokhi, 2007; Jnifene and Andrews, 2005; Siddique, 2002; 

Siddique and Tokhi, 2006;), control of flexible-link robot (Moudgal et al., 1994), control 

of robotic system (Sun and Er, 2004) and suppression of vibration of a cantilever beam 

(Kwak and Sciulli, 1996).  

In the area of modelling, FL has been used in a broad range of applications, to 

mention a few, such as modelling and prediction of maximum daily temperature (Tatli 

and Sen, 1999), modelling of headgear appliance types for orthodontic patients (Akcam 

and Takada, 2002), modelling of powder snow avalanches (Barpi, 2004), modelling and 

control of the air system of a diesel engine (Simani and Bonfe, 2009) and modelling of 

tumorous cerebral tissues on MRI images (Dou et al., 2005). It is noted from the 

literature that several works have been carried out on optimising FL using BFA. 

Alavandar et al. (2010) proposed a hybrid between PSO and BFA and applied it to 

optimising FL for controlling a two-link rigid-flexible manipulator. Jain and et al. (2009) 

proposed a hybrid algorithm combining GA, PSO and BFA and then utilised this for 

optimising PD-like fuzzy pre-compensated control for a two-link rigid-flexible 
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manipulator. Moreover SBFA has been used for optimising membership function 

parameter of fuzzy model for recognition of handwritten Hindi numerals (Hanmandlu et 

al., 2007). The literature shows that FL has not been used for modelling of flexible 

manipulator systems.  

In this work, NN and FL optimised by ABFA are proposed and used for 

modelling a single-link flexible manipulator system. For NN, as a learning algorithm, 

improved bacterial foraging algorithms are used to optimise neural network’s 

parameters, i.e. weights, biases and slope parameters of activation function. For FL-

based, ABFA are used for optimising the weights of every fuzzy rule. Three SISO NN-

based and FL-based models are developed to characterise hub-angle, hub-velocity and 

end-point acceleration responses of flexible manipulators. The objective of the work is to 

assess the performance of ABFAs in the NN-based and FL-based modelling task in 

comparison to SBFA. The assessment is based on the optimum cost function value 

achieved, convergence speed and time-domain response.  

 

6.2. Brief fundamentals of neural network 

There are various NN structures proposed, developed and used by researchers (Hagan et. 

al., 1996) such as multilayer perceptron (MLP), radial basis function (RBF), Hopfield, 

cellular and adaptive resonance theory (ART). Among them, MLP is one of the most 

popular structures and used in applications such as pattern recognition, function 

approximation, system identification, prediction and control, speech and natural 

language processing (Leondes, 1998; Shaheed, 2000). Thus, in this work MLP is used 

for modelling single-link flexible manipulator systems. 

The general structure of MLP is depicted in Figure 6.1 (Dunne, 2007). The MLP 

network is constructed from processing units (here represented by circles) called 

perceptron (neuron) which are fully connected with each other. The neurons in the same 

layer are not connected to one another. In general there are three layers in MLP: the layer 

where data are inputted to MLP network is called input layer, the layer from where data 

are taken from MLP network is called output layer and all layers between input layer and 

output layers are called hidden layers. 
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Figure 6.1: General structure of MLP: three input in input layer, 2 hidden layers and two 

output in output layer 

 

Every neuron in an NN will receive weighted signal and produce output signal by using 

an activation function. The general structure of a single neuron of NN is depicted in 

Figure 6.2 (Dunne, 2007), Where ��� ��� � � �� are inputs, ��� ��� � � �� are weights for 
every input, � is the threshold (bias) value and 	
�� is the activation function. 

 

Figure 6.2: A single neuron in NN 

 

The general working mechanism of every neuron can be explained as follow. Firstly, all 

the inputs are summed up as: �  � � � ����������      (6.1) 

Then, the value of � is mapped into output value by using activation function of the 

neuron. There are various activation function alternatives applicable for NN such as hard 

limit, symmetric hard limit, linear, log sigmoid, bipolar sigmoid, hyperbolic tangent 

sigmoid, etc. Compared to other cost functions, hyperbolic tangent sigmoid activation 

function is able to representi nonlinearity, giving faster learning process and resulting 
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better accuracy while linear activation function offers simplicity and ability to produce 

output linearly related to the input (Karlik and Olgac, 2010; Negnevitsky, 2005). In 

general, hyperbolic tangent sigmoid function can be formulated as: 

	
��  ����������������     (6.2) 

where � is parameter that defines the output shape of the function. The shape of 

hyperbolic tangent sigmoid function for different � values is depicted in Figure 6.3(a). 
The general formula for linear activation function is given as: 	
��  �� (6.3) 

where � is parameter that defines the slope of the linear function. The shape of the linear 

activation function for different � values is depicted in Figure 6.3(b).  

(a) Sigmoid function for various � values (b) Linear function for various � values 
Figure 6.3: Activation functions used by NN 

 

Parameters of NN, i.e. weights (�), biases (�) and activation function parameters, 

need to be tuned to produce satisfactory results using a learning algorithm or training 

algorithm. There are three main categories of learning algorithm (Hagan et al., 1996): 

supervised learning, reinforcement learning and unsupervised learning.  

a. Supervised learning 

In supervised learning, the NN parameters are modified based on given input and 

correct (actual) output. Thus the availability of input-output data pairs is very 

essential for the learning algorithm. For every input applied to NN, the predicted 

output is compared to the actual output. The difference between the predicted output 

and actual output is referred to as prediction error. All NN parameters are adjusted 
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during the learning process to produce predicted output closer and closer to the 

actual output. 

 

b. Reinforcement learning 

In general, reinforcement learning is almost the same as supervised learning. The 

difference is that in the reinforcement learning, the predicted output of NN is not 

compared to the actual output but is given a grade or a score. The grade or score is a 

measurement of the NN performance over some input sequence. Then, NN 

parameters are modified based on the score. 

 

c. Unsupervised learning 

In unsupervised learning, all NN parameters are modified only based on the inputs 

and the correct output as a target is not available. 

 

In this work, because the actual input-output data pairs are available, supervised learning 

technique was chosen to be used in the investigations. ABFAs, proposed in Chapter 4, 

are used as the training algorithms for the NN. 

 

6.3. NN-based modelling computation 

6.3.1. Model structure formulation  

There are several modelling techniques that can be used with NNs to identify non-linear 

system dynamics. These include state-output model, recurrent state model and Non-

linear Auto-Regressive Moving Average with eXogeneous input (NARMAX) model. 

The literature reveals that if the actual input and output data pairs of the plant are 

available, the NARMAX model is a suitable choice for modelling nonlinear systems. 

General NARMAX model can be formulated as (Luo and Unbehauen, 1997): 

��
��  	 ��
� � ��� �
� �  ��� � �!� � "#$�%
��� %
� � ���� � %
� � "&��'
� � ��� '
� �  ��� � '!� � "($ ) � '
��    (6.4) 

where ��
�� is the predicted output, �
�� is the actual output, %
�� is the input, '
�� is the 
noise, "#� "& and "( are the maximum lags number of actual output, input and noise 

respectively and 	*+, is a non-linear function mapping. If the model is good enough to 

identify the system without incorporating the noise term, the model can be represented in 

a NARX form as (Sze, 1995; Luo and Unbehauen, 1997): 
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��
��  	-�
� � ��� �
� �  ��� � �!� � "#$� %
��� %
� � ���� � %
� � "&�. (6.5) 

 

6.3.2. Computation steps of NN-based model 

In this work, NN trained by ABFAs, referred to as ABFA-NN, is used as the non-linear 

function that maps the input to output. ABFA optimises NN’s parameters such as 

weights, biases and parameters of activation function based on the cost function 

formulated from the predicted error. Thus, the general block diagram of training 

mechanism of NN with NARX model is represented in Figure 6.4. 

 
Figure 6.4: Basic diagram of NARX model identification with NN-ABFA 

 

where %
/� is the actual input, �
/� is the actual output, ��
/� is the predicted output and 0
/� is the prediction error; 
0
/�  �
/� � ��
/� (6.6) 

 

In the modelling process, parameters that will be optimised by ABFAs for every 

neuron of NN are weights of every input (�), threshold values or biases (�) and 
activation function parameters � and �. In the optimisation process, bacteria will try to 

find optimum or minimum cost function value by using random walk for whole 

bacteria’s lifetime determined by the total number of steps, calculated as 12 3 14� 31�5. The cost function developed is based on the predicted error 0
/� formulated in 

equation (6.6), and used as the nutrient media in which bacteria will find optimum 

position. Since the global minimum of 0
/� is equal to zero, when the predicted output is 
exactly the same as actual output, thus the global minimum value of cost function is also 
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equal to zero. From the BFAs optimisation point of view, the lowest cost function value 

means the place with the highest nutrient level. The details of ABFA computation steps 

were discussed in Chapter 4. The optimisation process will result in NNs with optimal 

parameters, representing hub-angle, hub-velocity and end-point acceleration models. The 

general NN optimisation sequence for modelling of single-link flexible manipulator 

system is depicted in Figure 6.5. 

 
Figure 6.5: Optimisation process of NN with BFA 

 

6.3.3. Model validation for BFA-NN models 

After the models have been developed, validations are carried out as follows: 

a. The 6400 input-output experimental data pairs are split into two sets: the first 

3400 data pairs are used for modelling phase and the remaining 3000 data pairs 

are used for validation phase.   

b. Correlation tests (Billings and Voon, 1986) described in equation (3.2) are 

performed on the developed models. 

 

The overall modelling process using NN-ABFA is depicted in Figure 6.6. 
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Figure 6.6: Flowchart of overall modelling sequence for NN-based modelling 

 

6.4. FL-based modelling computation 

6.4.1. Model structure formulation 

A brief description of fundamentals of FL was presented in Chapter 4. If measured input-

output data pairs available, a plant can be modelled by using an approach which only 

depends on the actual input-output data pairs. Black box modelling is an approach that 

represents transfer of input to output without any knowledge of internal working or 

mechanism of a plant under study.  

In this work, a black-box modelling approach based on FL is used for modelling 

a single-link flexible manipulator system. In order to simplify the computation 

complexity and load, the FL structure considered in this investigation contains two fuzzy 

inputs (previous actual input (%
/ � ��) and previous actual output (�
/ � ��)) with one 
fuzzy output (predicted output (��
/�)). More fuzzy input will provide more input for FL 

model, however will also rise the computation complexity and loads. In order to produce 

more accurate model, tuneable scaling factors 6�� 6� and 67 are used for previous actual 
input (%
/ � ��), previous actual output (�
/ � ��) and predicted output (��
/�) 
respectively. For each input, the predicted output ��
/� of FL-based model is compared 
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to the actual output y
/� and the difference between the predicted output ��
/� and actual 
output �
/� formed giving predicted error 0
/�. Then, ABFA optimise the FL-based 

model and the three scaling factors based on the cost function developed based on the 

predicted error 0
/� level. Thus, the general block diagram describing modelling of 

flexible manipulator system based on ABFA-optimised FL, here indicated as ABFA – 

FL, is shown in Figure 6.7, where %
/� is the actual input, �
/� is the actual output, ��
/� is the predicted output and 0
/� is the error. 

 
Figure 6.7: Basic diagram of modelling of single-link flexible manipulator system using 

ABFA-FL: 6�, 6� and 67 are scaling factors for input and output 
 

In this investigation, Gaussian membership functions were chosen because they 

are able to represent uncertainty in measurements most adequately (Kreinovich et al., 

1992). Various number of membership functions for input and output were considered in 

the simulation. However, five-membership function FL structure for both inputs and 

output gave good result with acceptable computation time. More membership functions 

will result more fuzzy rules and will consume more computational time. The fuzzy 

inputs and output with five Gaussian membership functions is depicted, in general terms, 

in Figure 6.8. 
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Figure 6.8: Fuzzy input with five Gaussian membership functions: NB is negative big, 

NS is negative small, ZO is zero, PS is positive small and PB is positive big 

 

6.4.2. Computation steps of BFA-FL 

Mamdani type FL (Mamdani and Assilian, 1974) with centroid of area (COA) 

defuzzification is used in this work. The general form of fuzzy rule of Mamdani type FL 

can be formulated as: 

IF %
/ � �� is 8 and �
/ � �� is B THEN ��
/� is C (�) 

where � is weighting factor of the rule. So that the output of consequence part of every 

fuzzy rule is 9 3 �. In order to fit with the nature of problem the weight of every rule 

can be changed in the range [0, 1], weight equal to zero means the output value is zero 

and weight equal to one means the output is in full scale (100 %). Hence, the parameters 

to be optimised in ABFA-FL based flexible manipulator system model are parameters of 

Gaussian membership functions (:�� � �:; and <�� � � <�), weight of every rule (�) and 

scaling factors (6�� 6� and 67).  
It is noticed in the literature that, in various applications, tuning the scaling 

factors or tuning membership functions can lead to the same result (Chen and Linkens, 

1998; Siddique and Tokhi, 2006). Tuning the scaling factors is simpler because only 

fewer parameters are there to tune than tuning membership functions. In this work for 

both input and output, all parameters of Gaussian membership functions (:�� � �:; and <�� � � <;) were selected manually by trial and error. Thus, the investigation here focuses 

on optimising weights (�) of every fuzzy rule and the scaling factors (6�� 6� and 67) 
using BFAs.  

In the optimisation process, a cost function formulated from the predicted error 

(0
/�) is used as the nutrient media in which bacteria will find optimum value. Since the 

minimum value of predicted error (0
/�) is equal to zero, at which point the predicted 
output is exactly the same as actual output, the global minimum value of = is also equal 



Chapter 6: Modelling of Flexible Manipulator Using NNs and FL Optimised by BFA 

155 
 

to zero. From the BFAs optimisation point of view, the lowest cost function value means 

the place with the highest nutrient level. Bacteria will try to find closest location to the 

global minimum point by applying biased random walk until their lifetime which is 

determined by number of steps calculated as 12 3 14� 31�5. The general computation 

steps for modelling of flexible manipulator system based on BFA-FL is depicted in 

Figure 6.9. 

 
Figure 6.9: BFA-FL computation steps flowchart 

 

6.4.3. Model validation for BFA-FL models 

Here, the validation of developed model is carried out in two steps: 

c. The 6400 input-output experimental data pairs are split into two sets: the first 

3400 data pairs are used for modelling phase and then all 6400 data pairs are used 

for validation phase. To validate the models, the entire 6400 data pairs are 

applied to the resulted models.  

d. Finally, correlation tests (Billings and Voon, 1986) described in equation (3.2) 

are performed on the developed models. 
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The overall sequence of steps of modelling of the single-link flexible manipulator system 

using BFA-FL is depicted in Figure 6.10. 

 
Figure 6.10: Flowchart of overall modelling sequence for FL-based modelling 

 

6.5. Protocol and preliminary computation 

6.5.1. Protocol computation 

Three SISO ABFA-NN and BFA-FL models, representing hub-angle, hub-velocity and 

end-point acceleration are developed. The computation scenarios used in models 

development are: 

a.  All parameters of BFAs used in the modelling process, dimension of the search 

space > (selected according to the order of the model structure), are selected 

heuristically. The parameters are selected by considering that BFA should have 

enough number of bacteria (?), bacteria should have enough lifetime (total 

number of steps), enough reproduction steps (14�) so that bacteria can refine the 
nutrient value achieved and enough elimination and dispersal events (1�5) so that 
bacteria are able to search most parts of nutrient media to find location closest to 

the global minimum but with minimum computation loads. 

b. As a preliminary simulation, several cost function developed and used by 

researchers in various applications found in the literature are evaluated 

empirically by using them in the modelling of hub-angle based on SBFA-based 
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model. The performances of SBFA-based model using several cost functions are 

evaluated based on their error of time-domain responses. The cost function which 

gives the best performance is used as cost function for the rest of the modelling 

process. 

c. For every modelling process, i.e. hub-angle, hub-velocity and end-point 

acceleration models, several runs of all BFAs-NN and BFA-FL are performed to 

find the best optimum cost function value. Then, the performances of the 

proposed algorithms are compared to that of SBFA-based model on the best 

optimum cost function value achieved, convergence and time-domain response 

error. 

d. Validation steps are performed for all developed models. 

 

6.5.2. Preliminary simulation: empirical comparison of cost functions 

There are four cost function alternatives considered as the nutrient media of BFA. These 

are sum of absolute error (SAE), mean of absolute error (MAE), mean squared error 

(MSE) and root mean square error (RMSE), formulated as: =@AB  � C0
/�C�D��       (6.7) 

=EAB  ��� C0
/�C�D��       (6.8) 

=E@B  ��� !0
/�$��D��      (6.9) 

=FE@B  G��� !0
/�$�D��D��H
     (6.10) 

where " represents the number of data points, and 0
/� is the prediction error. The first 
three cost functions have been discussed and also used in the preliminary simulations in 

Chapter 5. RMSE is developed by taking roots of MSE. The advantage of using RMSE is 

that it will remove big prediction error and the unit of RMSE is the same as the actual 

and predicted output. In the preliminary simulation, these four cost function alternatives 

are used in the modelling of hub-angle using SBFA-NN. Then the cost function which 

gives the best result, measured by how close the predicted output is to the actual, is used 

throughout the work.  

Various number of previous actual output samples ("#) and previous actual input 
samples ("&) were used in the modelling process. Also various alternatives of NN 

structures were considered and used. It was noticed from the simulation results that, by 

considering the optimum cost function value achieved and computational complexity, a 
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three-layer NN containing input layer, one eight-neuron hidden layer and output layer, 

with eight previous actual input-output samples ( 8== uy nn ) was chosen. Also, it can be 

noted that the more hidden layers used, the slower the convergence of BFA will be. 

Thus, in total there were 154 parameters to be optimised; 

• 128 parameters for weights of signals from inputs (actual previous input and 

actual previous output) enter neurons in the hidden layer. 

• 8 parameters for biases of eight neurons in the hidden layer. 

• 8 parameters for hyperbolic tangent sigmoid activation functions parameter of 

eight neurons in the hidden layer. 

• 8 parameters for weights of signal from hidden layer to output layer 

• 1 parameter for bias of one neuron in the output layer 

• 1 parameter for linear  activation function parameter of one neuron in the output 

layer 

In the simulation, SBFA used the same general parameters as: 

v > = 154 
v ? = 8 v 12 = 110 

v 1I = 4 
v ?4 = ?  J  

v 14� = 6 
v 1�5 = 5 
v >�5 = 0.25 

The initial positions of bacteria were selected randomly across the nutrient media. 

Various chemotactic step sizes 9
��, were used in the modelling process and the best 

cost function value was achieved when 9
�� was equal to 0.006. The time-domain 

responses depicted in Figure 6.11(a) show that, in general, using all those four cost 

function values, the predicted output followed the actual output but the closest predicted 

output was achieved when SBFA used RMSE as the cost function. Error of time-domain 

responses depicted in Figure 6.11(b) show that all models had their own prediction error 

range. The numerical results presented Table 6.1 show that the smallest prediction error 

range, [-0.0032, 0.0041], was achieved when model was developed based on RMSE. 
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Table 6.1: Numerical results of hub-angle BFA-NN model using different cost functions 

in the training phase 

Algorithm Optimum J  Range of error (K
L�) 
Minimum Maximum 

SBFA-NN SAE =@AB  = 2.8084 -0.0039 0.0041 

SBFA-NN MAE =EAB  = 8.2600e-004 -0.0039 0.0041 

SBFA-NN MSE =E@B  = 2.2472e-006 -0.0035 0.0089 

SBFA-NN RMSE =FE@B  = 0.0012 -0.0032 0.0041 

 

(a) Time-domain responses (b) Error 

Figure 6.11: Simulation results of hub-angle model using different cost functions in the 

training phase 

 

The time-domain responses and error in validation phase presented in Figure 

6.12(a) and Figure 6.12(b) respectively show that the predicted output using the cost 

functions followed the actual output with different ranges of closeness. The numerical 

results presented in Table 6.2 show that the model developed based on RMSE as cost 

function had the smallest prediction error range, [-0.0090, 0.1193], compared to other 

models. Based on these empirical comparative results, RMSE was selected as cost 

function throughout the work in this chapter. 
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(a) Time-domain responses (b) Error 

Figure 6.12: Simulation results of hub-angle models using different cost functions in 

validation phase 

 

Table 6.2: Numerical result of hub-angle models using different cost functions in the 

validation phase 

Algorithm Optimum J  Range of error (K
L�) 
Minimum Maximum 

SBFA-NN SAE =@AB  = 3.4960 -0.0153 0.1198 

SBFA-NN MAE =EAB  = 0.0012 -0.0153 0.1198 

SBFA-NN MSE =E@B  = 0.000018456 -0.0092 0.1209 

SBFA-NN RMSE =FE@B  = 0.0051 -0.0090 0.1193 

 

6.6. Results and discussions: BFA-NN models 

6.6.1. Hub-angle model 

A. Hub-angle model in the training phase 

Based on the results in preliminary simulation, in modelling the hub-angle, an NN was 

set up with "&  "#  M, one hidden layer with 8 neurons and one output layer with one 
neuron. Thus, in total, there were 154 parameters to optimise. In the simulation, all 

ABFAs and SBFA used the same general parameters as 

v > = 154 
v ? = 8 v 12 = 110 

v 1I = 4 
v ?4 = ?  J  

v 14� = 6 
v 1�5 = 5 
v >�5 = 0.25 

The initial positions of bacteria were selected randomly across the nutrient media and 

RMSE was used as the cost function. As indicated in the preliminary simulation, for 
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SBFA, the best optimum cost function value was achieved with chemotactic step size 

equal to 0.006. For LABFA, QABFA and EABFA, all the parameters and settings, i.e. �NOP� �� Q and R were chosen manually by trial and error. The best cost function results 

were achieved when the adaptable chemotactic step size for every bacterium of LABFA, 

QABFA and EABFA, i.e. 9OS
��� 9OT
�� and 9O�
�� respectively, were as: 9OS
��  UVU;�� WXVXXHCY
Z�C       (6.11) 

9OT
��  UVU;�� W[3WX�\]!Y
Z�$H^CY
Z�C_
      (6.12) 

9O�
��  UVU;�� WXVXW`\aXVXWCY
Z�C      (6.13) 

For FABFA, one-input one-output fuzzy structure was used, the input was 

absolute cost function value of every bacterium (C=
��C) and the output as fuzzy adaptable 
chemotactic step size for every bacterium (9Ob
��). Seven Gaussian membership 

functions were used for input and output. The parameters : and < of the Gaussian 
membership functions, were chosen manually by trial and error. The fuzzy membership 

functions for input and output of FABFA are depicted in Figure 6.13(a) and Figure 

6.13(b). The fuzzy surface depicted in Figure 6.13(c) determines relationship between 

input and output based on the fuzzy rules formulated as:  c� : IF C=
��C is ES THEN 9Ob
�� is ES (1)  c� : IF C=
��C is VS THEN 9Ob
�� is S (0.2)  c7 : IF C=
��C is S THEN 9Ob
�� is M (1)  cd : IF C=
��C is M THEN 9Ob
�� is B (1) (6.14) c; : IF C=
��C is B THEN 9Ob
�� is VB (1)  ce : IF C=
��C is VB THEN 9Ob
�� is VB (1)  cf : IF C=
��C is EB THEN 9Ob
�� is EB (1)  
 



Chapter 6: Modelling of Flexible Manipulator Using NNs and FL Optimised by BFA 

162 
 

(a) Input: C=
��C (b) Output: 9Ob
�� 

 
(c) Fuzzy surface 

Figure 6.13: Fuzzy membership functions and surface of FABFA for hub-angle model in 

the training phase 

 

A comparison of the optimum = values achieved by the all algorithms is depicted in 

Figure 6.14(a). The convergence plots depicted in Figure 6.14(b) show that all the 

ABFA-NN models were able to converge to the optimum value much faster, with 

QABFA-NN as the fatest among them; QABFA-NN converged in 1380 steps, and 

SBFA-NN converged in 2500 steps. The time-domain hub-angle responses in modelling 

phase depicted in Figure 6.14(c) and Figure 6.14(d) confirm that all predicted outputs 

followed the actual output, but models developed based on the proposed ABFA-NN 

models achieved smaller prediction error range than that based on SBFA-NN. 
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(a) Optimum = (b) Convergence plots 

(c) Time-domain responses (d) Error 

Figure 6.14: Simulation results of hub-angle BFA-NN models in the training phase 

 

The numerical results presented in Table 6.3 show that the optimum values obtained by 

the algorithms were � Vgg� 3 �g�d, hVM�i 3 �g�d, jViMgk 3 �g�d, hVkjkM 3 �g�d 
and lVmk M 3 �g�d for SBFA-NN, LABFA-NN, QABFA-NN, EABFA-NN and 

FABFA-NN respectively. All the four ABFA-NN models achieved smaller cost function 

values than SBFA-NN with EABFA-NN achieving the best optimum = value.  
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Table 6.3: Numerical results of hub-angle models for all algorithms in the training phase 

Algorithm ( )iC  range Convergence 

(steps) 

Optimum n Range of error (K
L�) 
Minimum Maximum 

SBFA-NN  0.007 2500 � Vgg�3 �g�d -0.0032 0.0041 

LABFA-NN  [lVglMk 3�g�d, 0.05] 1450 hVM�i 3 �g�d -0.0031 0.0021 

QABFA-NN [�Vgjij 3�g�d, 0.05] 1380 jViMgk3 �g�d -0.0050 0.0031 

EABFA-NN [iV��jm 3�g�d, 0.05] 1620 hV opoq3 rs�o -0.0026 0.0024 

FABFA-NN [0.0019, 

0.046] 

1640 lVmk M3 �g�d -0.0031 0.0021 

 

B. Hub-angle model in the validation phase 

Results of validating the models with unseen data presented in Table 6.4 show that the 

cost function values for the models in the validation phase were 0.0051, 0.0038, 0.0040, 

0.0039 and 0.0037 for SBFA-NN, LABFA-NN, QABFA-NN, EABFA-NN and FABFA-

NN respectively. It is noted that ABFA-NN models achieved smaller cost function value 

compared to SBFA-NN model and the best optimum = was achieved by FABFA-NN.  
 

Table 6.4: Numerical results of hub-angle BFA-NN models in the validation phase 

Algorithm Optimum J  Range of error (K
L�) 
Minimum Maximum 

SBFA-NN  0.0051 -0.0090 0.1193 

LABFA-NN  0.0038 -0.0031 0.1190 

QABFA-NN 0.0040 -0.0023 0.1193 

EABFA-NN 0.0039 -0.0032 0.1192 

FABFA-NN 0.0037 -0.0032 0.1191 

 

A comparison of optimum = values achieved models in the validation phase is shown in 

Figure 6.15(a). Time-domain responses and error plots depicted in Figure 6.15(b) and 

Figure 6.15(c) respectively show that all models were able to mimic the actual output 
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with the ABFA-based models achieving smaller prediction error range compared to 

SBFA-based model. The correlation tests of equation (3.2) for the models depicted in 

Figure 6.16 – Figure 6.20 show that all correlation values were within 95% confidence 

boundary indicating acceptable performance of the models. 

(a) Optimum = (b) Time-domain responses 

 
(c) Error 

Figure 6.15: Simulation results of hub-angle BFA-NN models in the validation phase 
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Figure 6.16: Correlation tests of hub-angle SBFA-NN model 
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Figure 6.17: Correlation tests of hub-angle LABFA-NN model  
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Figure 6.18: Correlation tests of hub-angle QABFA-NN model  
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Figure 6.19: Correlation tests of hub-angle EABFA-NN model  

 



Chapter 6: Modelling of Flexible Manipulator Using NNs and FL Optimised by BFA 

170 
 

 

(a) tuu
v�  

(b) t&u
v� 

 

(c) t&Hu
v� 
 

(d) t&HuH
v� 

 

(e) tu
u&�
v� 
Figure 6.20: Correlation tests of hub-angle FABFA-NN model  
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6.6.2. Hub-velocity model 

A. Hub-velocity model in the training phase 

In the modelling process of hub-velocity, an NN was set up with "&  "#  M, a hidden 
layer with 8 neurons and one output layer with one neuron. Thus, in total, there were 154 

parameters to optimise. All of ABFAs and SBFA used the same general parameters as: 

v > = 154 
v ? = 8 v 12 = 110 

v 1I = 4 
v ?4 = ?  J  

v 14� = 6 
v 1�5 = 2 
v >�5 = 0.25 

Initial positions of bacteria were selected randomly across the nutrient media and RMSE 

was used as the cost function. After trying various chemotactic step sizes (9
��), the best 
optimum = for SBFA was achieved when 9
�� was equal to 0.015. All parameters of 

LABFA, QABFA and EABFA were chosen by trial and error and the best optimum = 
values for ABFAs were achieved when adaptable chemotactic step sizes were set up as: 

9OS
��  UV��� WXVXXwCY
Z�C      (6.15) 

9OT
��  UV��� WXVXXH]!XVxY
Z�$H^XVxCY
Z�C_
     (6.16) 

9O�
��  UV��� WXVXXwaXVWCY
Z�C      (6.17) 

For FABFA, parameters of Gaussian membership functions for input and output were 

also selected manually by trial and error. Fuzzy rules forming relationship between input 

and output in the form of fuzzy surface were formulated as: c� : IF C=
��C is ES THEN 9Ob
�� is ES (1)  c� : IF C=
��C is VS THEN 9Ob
�� is VS (0.2)  c7 : IF C=
��C is S THEN 9Ob
�� is M (1)  cd : IF C=
��C is M THEN 9Ob
�� is B (1) (6.18) c; : IF C=
��C is B THEN 9Ob
�� is VB (1)  ce : IF C=
��C is VB THEN 9Ob
�� is VB (1)  cf : IF C=
��C is EB THEN 9Ob
�� is EB (1)  
The weight of rule c� was chosen equal to 0.2 to ensure 9Ob
�� was not too big for the 
corresponding cost function value and make 9Ob
�� as small as possible so that bacteria 

are able to achieve nearest position to global minimum point. The fuzzy membership 

functions for input and output and fuzzy surface are depicted in Figure 6.21.   
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(a) Input: C=
��C (b) Output: 9Ob
�� 

 
(c) Fuzzy surface 

Figure 6.21: Fuzzy membership function and surface of FABFA for hub-velocity model 

in the training phase 

 

The numerical results presented in Table 6.5 show that the cost function values achieved 

at hub-velocity modelling were 0.1010, 0.0880, 0.0549, 0.0416 and 0.0156 for SBFA-

NN, LABFA-NN, QABFA-NN, EABFA-NN and FABFA-NN models respectively. 

These results show that all ABFA-NN models achieved smaller const function value than 

SBFA-NN model with FABFA-NN achieving the best optimum = value. A comparison 

of optimum = values achieved by the algorithms is shown outlined in Figure 6.22(a). The 

convergence plots depicted in Figure 6.22(b) show that all the ABFA-NN were able to 

converge to the optimum value faster (between 185-195 steps) than SBFA-NN which 

converged in 890 steps. The time-domain responses and error depicted in Figure 6.22(c) 

and Figure 6.22(d) respectively show that although predicted outputs of all models 



Chapter 6: Modelling of Flexible Manipulator Using NNs and FL Optimised by BFA 

173 
 

followed actual output, all the ABFA-NN models had smaller prediction error range 

compared to that of SBFA-NN model. 

 

Table 6.5: Numerical results of hub-velocity BFA-NN models in the training phase 

Algorithm ( )iC  range Convergence 

(steps) 

Optimum n Range of error (K
L�) 
Minimum Maximum 

SBFA-NN  0.015 890 0.1010 -0.0381 0.0263 

LABFA-NN  [0.0014, 0.2] 195 0.0880 -0.0372 0.0257 

QABFA-NN [0.00029689, 0.2] 185 0.0549 -0.0231 0.0214 

EABFA-NN [0.0017, 0.2] 190 0.0416 -0.0196 0.0183 

FABFA-NN [0.0120, 0.185] 185 0.0156 -0.0189 0.0175 

 

 

(a) Optimum =  
(b) Convergence plots 

(c) Time-domain responses (d) Error 

Figure 6.22: Simulation results of hub-velocity BFA-NN models in the training phase 
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B. Hub-velocity model in the validation phase 

The numerical results of hub-velocity models in validation phase presented in Table 6.6 

show that the cost function values achieved were 0.1079, 0.0939, 0.0589, 0.0445, and 

0.0203 for SBFA-NN, LABFA-NN, QABFA-NN, EABFA-NN and FABFA-NN models 

respectively. It can be noticed from the results that all ABFA-NN models achieved 

smaller cost function values than SBFA-NN model with the best optimum = value 
achieved by FABFA-NN.  

 

Table 6.6: Numerical result of hub-velocity BFA-NN models in the validation phase 

Algorithm Optimum ( )iC  Range of error (K
L�) 
Minimum Maximum 

SBFA-NN  0.1079 -0.0364 0.0222 

LABFA-NN  0.0939 -0.0365 0.0226 

QABFA-NN 0.0589 -0.0237 0.0211 

EABFA-NN 0.0445 -0.0193 0.0189 

FABFA-NN 0.0203 -0.0185 0.0179 

 

The bar chart depicted in Figure 6.23(a) show a comparison of the optimum = values 
achieved by the algorithms. The time-domain responses and error depicted in Figure 

6.23(b) and Figure 6.23(c) respectively show that in general all the models were able to 

mimic the actual output, however, the ABFA-NN models had smaller prediction error 

range. The correlation tests of equation (3.2) for the models depicted in Figure 6.24-

Figure 6.28 show that all correlation values were within 95% confidence boundary 

indicating acceptable performance of the models. 
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(a) Optimum =  
(b) Time-domain responses 

 
(c) Error 

Figure 6.23: Simulation results of hub-velocity BFA-NN models in the validation phase 
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Figure 6.24: Correlation tests of hub-velocity SBFA-NN model  
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Figure 6.25: Correlation tests of hub-velocity LABFA-NN model  
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Figure 6.26: Correlation tests of hub-velocity QABFA-NN model  
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Figure 6.27: Correlation tests of hub-velocity EABFA-NN model  
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Figure 6.28: Correlation tests of hub-velocity FABFA-NN model  

 

6.6.3. End-point acceleration model 

A. End-point acceleration model in the training phase 

In the modelling process of end-point acceleration an NN was set up with "&  "#  M, 
one hidden layer with eight neurons and one output layer with one neuron. Thus, in total, 
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there were 154 parameters to optimise. All the ABFA and SBFA used the same general 

parameters as: 

v > = 154 
v ? = 8 v 12 = 110 

v 1I = 4 
v ?4 = ?  J  

v 14� = 6 
v 1�5 = 5 
v >�5 = 0.25 

Initial positions of bacteria were selected randomly across the nutrient media and RMSE 

was used as the cost function. It was noticed in the investigations that the best optimum = 
of SBFA was achieved when the chemotactic step size 9
�� was equal to 0.022. For 
ABFAs, all parameters of 9OS
��� 9OT
�� and 9O�
�� were selected manually by trial and 

error and the best results were achieved with adaptable chemotactic step sizes set up as: 

9OS
��  UV�;�� WXVXW\CY
Z�C      (6.19) 

9OT
��  UV�;�� WXVXXH\]!XVyY
Z�$H^XVyCY
Z�C_
    (6.20) 

9O�
��  UV�;�� WXVXzaXVWCY
Z�C      (6.21) 

For FABFA, parameters of seven Gaussian membership functions for input and output 

were chosen by trial and error. The fuzzy input, C=
��C, was related to fuzzy output, 9Ob
��, using fuzzy rules formulated as:  

c� : IF C=
��C is ES THEN 9Ob
�� is ES (1)  c� : IF C=
��C is VS THEN 9Ob
�� is ES (0.1)  c7 : IF C=
��C is S THEN 9Ob
�� is S (0.1)  cd : IF C=
��C is M THEN 9Ob
�� is M (0.2) (6.22) c; : IF C=
��C is B THEN 9Ob
�� is B (1)  ce : IF C=
��C is VB THEN 9Ob
�� is VB (1)  cf : IF C=
��C is EB THEN 9Ob
�� is EB (1)  
The Gaussian membership functions for input and output and fuzzy surface of FABFA 

are depicted in Figure 6.29. 
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(a) Input: C=
��C (b) Output: 9Ob
�� 

 
(c) Fuzzy surface 

Figure 6.29: Fuzzy membership function and surface of FABFA for end-point 

acceleration models in the training phase 

 

The numerical results of end-point acceleration in modelling phase for the 

algorithms presented in Table 6.7 show that the cost function values achieved were 

0.0449, 0.0337, 0.0364, 0.0366 and 0.0338 for SBFA-NN, LABFA-NN, QABFA-NN, 

EABFA-NN and FABFA-NN model respectively. These results show that all ABFA-NN 

models achieved better optimum = values than SBFA-NN with the best optimum = 
achieved by LABFA-NN.  
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Table 6.7: Numerical results of end-point acceleration BFA-NN models in the training 

phase 

Algorithm ( )iC  range Convergence 

(steps) 

Optimum J  Range of error (K
L�) 
Minimum Maximum 

SBFA-NN  0.022 1780 0.0449 -0.1554 0.2511 

LABFA-NN  [0.0139, 

0.25] 

1500 0.0337 -0.1483 0.1235 

QABFA-

NN 

[0.0069, 

0.25] 

1500 0.0364 -0.1494 0.1794 

EABFA-NN [0.0146, 

0.25] 

1500 0.0366 -0.1554 0.2029 

FABFA-NN [0.0135, 

0.093] 

1500 0.0338 -0.1554 0.1222 

 

The bar chart depicted in Figure 6.30(a) show a comparison of the optimum = values. 
The convergence plots depicted in Figure 6.30(b) show that all ABFA-NN models were 

faster in convergence and able to find lower cost function values than SBFA-NN. The 

time-domain responses and error depicted in Figure 6.30(c) and Figure 6.30(d) 

respectively show that, although the predicted outputs all followed actual output, ABFA-

NN models had smaller prediction error range than SBFA-NN model. From the PSD 

plots of end-point acceleration depicted in Figure 6.30(e), it can be noticed that all 

models exhibit the same resonance frequencies as the actual output. The frequency 

resonance frequencies were 11.67 Hz, 36.96 Hz and 64.22 Hz for the 1st, 2nd and 3rd 

mode respectively. 
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(a) Optimum =  
(b) Convergence plots 

(c) Time-domain responses (d) error 

 
(e) PSD 

Figure 6.30: Simulation results of end-point acceleration BFA-NN model in the training 

phase 

 

B. End-point acceleration model in the validation phase 

Numerical results presented in Table 6.8 show that the cost function values achieved in 

the validating phase were 0.0593, 0.0427, 0.0459, 0.0473 and 0.0437 for SBFA-NN, 
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LABFA-NN, QABFA-NN, EABFA-NN and FABFA-NN models respectively. These 

results show that ABFA-NN models achieved lower cost function values than SBFA-NN 

with the lowest optimum = achieved by LABFA-NN.  
 

Table 6.8: Numerical results of end-point acceleration BFA-NN models in the validation 

phase 

Algorithm Optimum J  Range of error (K
L�) 
Minimum Maximum 

SBFA-NN  0.0593 -0.2011 0.4414 

LABFA-NN  0.0427 -0.2010 0.3463 

QABFA-NN 0.0459 -0.2010 0.3499 

EABFA-NN 0.0473 -0.2008 0.3455 

FABFA-NN 0.0437 -0.2003 0.3506 

 

A comparison of optimum = values achieved by the algorithms is shown in the bar chart 

depicted in Figure 6.31(a). Time domain responses and prediction error depicted in 

Figure 6.31(b) and Figure 6.31(c) show that in general all models were able to predict the 

actual output very well, however, ABFA-NN models had smaller prediction error range 

which means closer to the actual output than SBFA-NN. The PSD plots of end-point 

acceleration depicted in Figure 6.31(d) show that all predicted outputs had the same 

resonance frequencies as with the actual output. The resonance frequencies for the first 

three modes were 11.67 Hz, 36.96 Hz and 64.22 Hz. The correlation tests of equation 

(3.2) for the models depicted in Figure 6.32-Figure 6.36 show that all correlation values 

were within 95% confidence boundary indicating the acceptability of the models. 
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(a) Optimum =  
(b) Time-domain response 

(c) Error (d) PSD 

Figure 6.31: Simulation results of end-point acceleration BFA-NN model in the 

validation phase 
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Figure 6.32: Correlation tests of end-point acceleration SBFA-NN model  
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Figure 6.33: Correlation tests of end-point acceleration LABFA-NN model  
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Figure 6.34: Correlation tests of end-point acceleration QABFA-NN model  
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Figure 6.35: Correlation tests of end-point acceleration EABFA-NN model  

 



Chapter 6: Modelling of Flexible Manipulator Using NNs and FL Optimised by BFA 

191 
 

(a) tuu
v� (b) t&u
v� 

(c) t&Hu
v� (d) t&HuH
v� 

 

(e) tu
u&�
v� 
Figure 6.36: Correlation tests of end-point acceleration FABFA-NN model  
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6.7. Results and discussion: BFA-FL models 

6.7.1. Hub-angle model 

A. Hub-angle model in the training phase 

It was noticed through simulations that, in this investigation, the best cost function value 

was achieved with 6�  67  �. Thus, in the hub-angle modelling, there are 26 

parameters to be optimised. These comprise: 

• 25 parameters for weights of each rule. There are 25 fuzzy rules in total resulting 

from two inputs with five Gaussian membership functions each. 

• 1 parameter for scaling factor 6� 
In this work all BFAs used the same general parameters as: 

v > = 26 
v ? = 8 v 12 = 30 

v 1I = 3 
v ?4 =  ?  J    

v 14� = 6 
v 1�5 = 2 
v >�5 = 0.25 

The initial positions of bacteria were selected randomly across the nutrient media. 

Various chemotactic step size values were tested with SBFA (9
��) and it was noticed 
that the best optimum cost function = was achieved when 9
�� was equal to 0.0125. For 
ABFA, the parameters of adaptable chemotactic step size were chosen manually by trial 

and error and the best optimum = was achieved when adaptable chemotactic step sizes 

were formulated as: 

9OS
��  UVd�� WXVXX`CY
Z�C      (6.23) 

9OT
��  UVd�� WXVX`\]!XVXyY
Z�$H^XVXyCY
Z�C_
    (624) 

9O�
��  UVd�� WXVXW`\a
XVX`\CY
Z�C�     (6.25) 

As indicated earlier, the construction of FL consists of two inputs, i.e. %
/ � �� in the 
range of [-0.3, 0.3] and �
/ � �� in the range of [0, 0.25], and one output, i.e. ��
/� in 
the range of [-0.01, 0.275]. All Gaussian membership function parameters were set 

manually by trial and error. The membership functions of inputs and output are depicted 

in Figure 6.37. The fuzzy rules which determine the relation between input and output 

were determined by trial and error based on experience and experimental input-output 

data pairs, and these are shown in Table 6.9. 
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(a) Input 1: %
/ � �� (b) Input 2: �
/ � �� 

 
(c) Output: predicted output (��
/�) 

Figure 6.37: Fuzzy membership functions of BFA-FL for hub-angle model 

 

Table 6.9: Fuzzy rules for hub-angle model 

Input 1: {
L � r� Input 2: |
L � r� 
NB NS ZO PS PB 

NB NB (�4�) NS (�4e) ZO (�4��) PS (�4�e) PB (�4��) 

NS NB (�4�) NS (�4f) ZO (�4��) PS (�4�f) PB (�4��) 

ZO NB (�47) NS (�4}) ZO (�4�7) PS (�4�}) PB (�4�7) 

PS NB (�4d) NS (�4~) ZO (�4�d) PS (�4�~) PB (�4�d) 

PB NB (�4;) NS (�4�U) PS (�4�;) PB (�4�U) PB (�4�;) 

 

Numerical results presented in Table 6.10 show that, by using formula in 

equation (7.3)-(7.5), adaptable step size values of ABFAs were in the range [0.0119, 

0.4], [0.0094, 0.4] and [0.0096, 0.4] for LABFA, QABFA and EABFA respectively. By 

using these adaptable chemotactic step sizes, the optimum = values achieved were 
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0.0043, 0.0042 and 0.0045 for LABFA, QABFA and EABFA respectively lower than 

0.0056 of SBFA.  

 

Table 6.10: Numerical results of hub-angle BFA-FL models in the training phase 

Algorithm ( )iC  range Convergence 

(steps) 

Optimum n Range of error (K
L�) 
Minimum Maximum 

SBFA-FL 0.0125 180 0.0056 -0.0075 0.0084 

LABFA-FL [0.0119, 0.4] 150 0.0043 -0.0075 0.0081 

QABFA-FL [0.0094, 0.4] 150 0.0042 -0.0074 0.0082 

EABFA-FL [0.0096, 0.4] 150 0.0045 -0.0074 0.0083 

 

A comparison of the optimum = values achieved by the algorithms is shown in the bar 

chart in Figure 6.38(a). The convergence plots of the algorithms are depicted in Figure 

6.38(b). It can be noted that all ABFA-FL converged to optimum value faster than 

SBFA-FL which converged in 180 steps. The time-domain responses and error for the 

models are depicted in Figure 6.38(c) and Figure 6.38(d) respectively. The fuzzy 

surfaces of the models are presented in Figure 6.39.  
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(a) Optimum = (b) Convergence plots 

(c) Time-domain responses (d) Error 

Figure 6.38: Simulation results of hub-angle BFA-FL models in modelling phase 
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(a) SBFA – FL (b) LABFA-FL 

(c) QABFA-FL (d) EABFA-FL 

Figure 6.39: Fuzzy surfaces of hub-angle BFA-FL models 

 

B. Hub-angle model in the validation phase 

Numerical results outlined in Table 6.11 show that the cost function values achieved in 

the validation phase were 0.0194, 0.0162, 0.0162 and 0.0157 for SBFA-FL, LABFA-FL, 

QABFA-FL and EABFA-FL respectively. These results show that all ABFAs-FL based 

models achieved better optimum = values than SBFA-FL with the best optimum = 
achieved by EABFA-FL. A comparison of optimum = values for the algorithms in the 

validating phase is depicted in Figure 6.40(a). The hub-angle responses and error in the 

validation phase plotted in Figure 6.40(b) and Figure 6.40(c) respectively show that the 

predicted outputs of ABFA-FL based models were closer to the actual output than that of 

SBFA-FL based model. Correlation tests depicted in Figure 6.41-Figure 6.44 show that 

all models were acceptable because the correlation values were within 95% confidence 

boundary (stated as 0.05 boundary). 
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Table 6.11: Numerical results of hub-angle BFA-FL models in the validation phase 

Algorithm Optimum J  Range of error (K
L�) 
Minimum Maximum 

SBFA-FL 0.0194 -0.0075 0.0418 

LABFA-FL 0.0162 -0.0102 0.0360 

QABFA-FL 0.0162 -0.0102 0.0361 

EABFA-FL 0.0157 -0.0110 0.0353 

 

 

 

 

(a) Optimum = (b) Time-domain responses 

 
(c) Error 

Figure 6.40: Simulation results of hub-angle BFA-FL models in the validation phase 
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Figure 6.41: Correlation tests of hub-angle SBFA-FL model 
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Figure 6.42: Correlation tests of hub-angle LABFA-FL model 
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Figure 6.43: Correlation tests of hub-angle QABFA-FL model 
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Figure 6.44: Correlation tests of hub-angle EABFA-FL model 

 

6.7.2. Hub-velocity model 

A. Hub-velocity in the training phase 

Through the modelling work it was noticed that the same FL structure as for hub-angle 

produce the best result for hub-velocity modelling. The total number of parameters to be 
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optimised was 26: 25 weights of fuzzy rules (�4�� � � �4�;) plus one scaling factor in the 
input 1 path (6�) while 6� and 67 were set to unity. Thus, for hub velocity modelling, all 

ABFAs and SBFA used the same general parameters as: 

v > = 26 
v ? = 8 v 12 = 30 

v 1I = 3 
v ?4 =  ?  J    

v 14� = 6 
v 1�5 = 2 
v >�5 = 0.25 

The initial positions of bacteria were selected randomly across the nutrient media. 

Several step size values were used in the simulation using SBFA and the best optimum 

value was achieved when the step size value was equal to 0.01. All parameters of 

LABFA, QABFA and EABFA were selected manually by trial and error and the best 

optimum = was achieved when the adaptable chemotactic step sizes were formulated as: 

9OS
��  UV��� WXVXXxCY
Z�C      (6.26) 

9OT
��  UV��� WXVXy]!XVWY
Z�$H^XVWCY
Z�C_
     (6.27) 

9O�
��  UV��� WXVXW\aXVHCY
Z�C      (6.28) 

Five Gaussian membership functions were used for fuzzy logic construction with the 

Gaussian membership function parameters set manually by trial and error. There were 

two fuzzy inputs: %
/ � �� with range [-0.3, 0.3] and �
/ � �� with range [-0.0025, 
0.004], and one fuzzy output, i.e. ��
/� with the range [-0.0035, 0.0055]. These values 
were chosen based on experience by considering experimental input-output data pairs. 

The fuzzy membership functions for inputs and outputs are depicted in Figure 6.45. The 

relation between inputs and output were addressed in the fuzzy rules presented in Table 

6.12. 

 

Table 6.12: Fuzzy rules of hub-velocity BFA-FL model 

Input 1: {
L � r� Input 2: |
L � r� 
NB NS ZO PS PB 

NB NB (�4�) NB (�4e) NS (�4��) ZO (�4�e) PS (�4��) 

NS NB (�4�) NB (�4f) NS (�4��) ZO (�4�f) PS (�4��) 

ZO NB (�47) NB (�4}) ZO (�4�7) ZO (�4�}) PB (�4�7) 

PS NB (�4d) NS (�4~) ZO (�4�d) PS (�4�~) PB (�4�d) 

PB NB (�4;) NS (�4�U) ZO (�4�;) PS (�4�U) PB (�4�;) 
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(a) Input 1: %
/ � �� (b) Input 2: �
/ � �� 

 

(c) Output: ��
/� 
Figure 6.45: Fuzzy membership functions of hub-velocity BFA-FL model 

 

It can be noted from the numerical results presented in Table 6.13 that the step 

size of ABFA were the ranges of [0.0084, 0.2], [0.0084, 0.2] and [0.0077, 0.2] for 

LABFA-FL, QABFA-FL and EABFA-FL respectively. The optimum cost function = 
values achieved were 0.00049, 0.00048, 0.00048 and 0.00048 for SBFA-FL, LABFA-

FL, QABFA-FL and EABFA-FL respectively. These results show that all ABFA-FL 

models achieved lower optimum = value compared to SBFA-FL. In addition, all the 

BFA-FL models achieved lower optimum = values than 0.00096 of not-optimised fuzzy 

model. The bar chart plotted in Figure 6.46(a) shows a comparison of the optimum = 
values achieved by the algorithms. Because of the nature of cost function, either heavily 

multimodal or rather flat, the convergence plots depicted in Figure 6.46(b) show that all 

the algorithms had almost the same speed of convergence. The time-domain responses 

and error depicted in Figure 6.46(c) and Figure 6.46(d) respectively show that all 
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optimised fuzzy models were able to match the actual output. The surfaces of fuzzy logic 

of hub velocity model are plotted in Figure 6.47.   

 

Table 6.13: Numerical results of hub-velocity BFA-FL models in the training phase 

Algorithm ( )iC  range Convergence 

speed (steps) 

Optimum n Range of error (K
L�) 
Minimum Maximum 

SBFA-FL 0.01 282 0.00049 -0.0020 0.0025 

LABFA-FL [0.0084, 0.2] 241 0.00048 -0.0020 0.0025 

QABFA-FL [0.0084, 0.2] 240 0.00048 -0.0020 0.0025 

EABFA-FL [0.0077, 0.2] 234 0.00048 -0.0020 0.0025 

 

 

(a) Optimum = (b) Convergence plots 

(c) Time-domain responses 
 

(d) Error 

Figure 6.46: Simulation results of hub-velocity BFA-FL models in the training phase 
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(a) SBFA-FL (b) LABFA-FL 

(c) QABFA-FL 
(d) EABFA-FL 

Figure 6.47: Fuzzy surfaces of hub-velocity BFA-FL models 

 

B. Hub-velocity model in the validation phase 

Numerical results in validation phase outlined in Table 6.14 show that the cost function 

values for validation phase were 0.00055, 0.00055, 0.00055 and 0.00055 for SBFA-FL, 

LABFA-FL, QABFA-FL and EABFA-FL models respectively. All models achieved the 

same optimum = value. A comparison of optimum = values achieved by the algorithms is 

depicted in Figure 6.48(a). The time-domain responses and error in validation phase 

plotted in Figure 6.48(b) and Figure 6.48(c) confirm that all models’ responses matched 

the actual output well. Correlation test results depicted in Figure 6.49-Figure 6.52 show 

that all models were acceptable since all the correlation values were within the 95% 

confidence levels. 
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Table 6.14: Numerical results of hub-velocity BFA-FL models in the validation phase 

Algorithm Optimum J  Range of error (K
L�) 
Minimum Maximum 

SBFA-FL 0.00055 -0.0020 0.0025 

LABFA-FL 0.00055 -0.0020 0.0025 

QABFA-FL 0.00055 -0.0020 0.0025 

EABFA-FL 0.00055 -0.0020 0.0025 

 

 

(a) Optimum = (b) Time-domain responses 

 
(c) Error 

Figure 6.48: Simulation results of for hub-velocity BFA-FL models in the validation 

phase 
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Figure 6.49: Correlation tests of hub-velocity SBFA-FL model 

 



Chapter 6: Modelling of Flexible Manipulator Using NNs and FL Optimised by BFA 

208 
 

 

(a) tuu
v�  

(b) t&u
v� 

 

(c) t&Hu
v�  

(d) t&HuH
v� 

 

(e) tu
u&�
v� 
Figure 6.50: Correlation tests of hub-velocity LABFA-FL model 
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Figure 6.51: Correlation tests of hub-velocity QABFA-FL model 
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Figure 6.52: Correlation tests of hub-velocity EABFA-FL model 

 

6.7.3. End-point acceleration model 

A. End-point acceleration in the training phase 

In contrast to hub-angle and hub-velocity models, in the end-point acceleration 

modelling an FL structure with scaling factors set to unity (6�  6�  67  �) proved to 
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be suitable. Thus, the total number of parameters to be optimised were 25, e.g. weights 

of fuzzy rules (�4�� � � �4�;). In the modelling process, all BFAs used the same general 

parameters as: 

v > = 25 
v ? = 8 v 12 = 30 

v 1I = 3 
v ?4 =  ?  J    

v 14� = 3 
v 1�5 = 2 
v >�5 = 0.25 

The initial positions of bacteria were selected randomly across the nutrient media and 

RMSE was used as nutrient value. After trying various values, in the optimisation 

process the step size value for SBFA was set to 0.013. All parameters of LABFA, 

QABFA and EABFA were selected manually by trial and error and the best settings of 

adaptable chemotactic step sizes were: 

9OS
��  UV��� WXVXXH`CY
Z�C      (6.29) 

9OT
��  UV��� WXVXW]!XVWY
W�$H^XVWCY
Z�C_
     (6.30) 

9O�
��  UV��� WXVXWaXVXwCY
Z�C      (6.31) 

Five Gaussian membership functions were used for fuzzy logic construction with all 

Gaussian membership function parameters set manually. The FL structure consisted of 

two inputs: %
/ � �� with range [-0.3, 0.3] and �
/ � �� with range [-1.55, 1.9], and one 
output, i.e. ��
/� with the range [-1.8, 2.3]. The fuzzy membership functions for inputs 

and output are depicted in Figure 6.53. The fuzzy rules which describe the relation 

between two inputs and output are presented in Table 6.15. 

 

Table 6.15: Fuzzy rules for end-point acceleration model 

Input 1: {
L � r� Input 2: |
L � r� 
NB NS ZO PS PB 

NB NB (�4�) NB (�4e) NS (�4��) ZO (�4�e) PS (�4��) 

NS NB (�4�) NS (�4f) NS (�4��) ZO (�4�f) PS (�4��) 

ZO NB (�47) NS (�4}) ZO (�4�7) ZO (�4�}) PS (�4�7) 

PS NB (�4d) NS (�4~) ZO (�4�d) PS (�4�~) PB (�4�d) 

PB NB (�4;) NS (�4�U) ZO (�4�;) PS (�4�U) PB (�4�;) 
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(a) Input 1: %
/ � �� (b) Input 2: �
/ � �� 

 

(c) Output: ��
/� 
Figure 6.53: Fuzzy membership function of BFA-FL for end-point acceleration models 

 

By using the formulae in equation (7.9)-equation (7.11), the step sizes of ABFA 

were adaptable based on the cost function value in the range [0.0110, 0.2], [0.0124, 0.2] 

and [0.0098, 0.2] for LABFA, QABFA and EABFA respectively. It can be noticed from 

the numerical results presented in Table 6.16 that optimum values achieved were 0.1890, 

0.1865, 0.1845 and 0.1848 for SBFA-FL, LABFA-FL, QABFA-FL and EABFA-FL 

models respectively.  
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Table 6.16: Numerical results of end-point acceleration BFA-FL models in the training 

phase 

Algorithm ( )iC  range Convergence 

(steps) 

Optimum n Range of error (K
L�) 
Minimum Maximum 

SBFA-FL 0.013 140 0.1890 -0.7038 0.8652 

LABFA-FL [0.011, 0.2] 135 0.1865 -0.7038 0.8652 

QABFA-FL [0.0124, 0.2] 139 0.1845 -0.7030 0.8635 

EABFA-FL [0.0098, 0.2] 139 0.1848 -0.7033 0.8620 

 

The optimum = results are plotted in the bar chart depicted in Figure 6.54(a). Because of 
the cost function landscape, either flat or highly multimodal, the convergence plots 

depicted in Figure 6.54(b) show that all ABFA-FL models were able to converge to 

optimum value slightly faster than SBFA-FL. Time-domain responses and error of end-

point acceleration depicted in Figure 6.54(c) and Figure 6.54(d) show that all the 

optimised fuzzy models were able to match the actual output while the response of not-

optimised fuzzy model had large error. The power spectral density plots in Figure 6.54(e) 

show that responses of all models matched the actual output, with the first resonance 

frequency is slightly shifted. Resonance frequencies of the system were 11.67 Hz, 36.96 

Hz and 64.22 for the 1st, 2nd and 3rd modes respectively. Surfaces of fuzzy structure for 

end-point acceleration models are plotted in Figure 6.55.  
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(a) Optimum = (b) Convergence plots 

(c) Time-domain responses (d) Error 

 
(e) PSD of end-point acceleration 

Figure 6.54: Simulation results of end-point acceleration BFA-FL models in the training 

phase 
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(a) SBFA-FL (b) LABFA-FL 

(c) QABFA-FL 
(d) EABFA-FL 

Figure 6.55: Surfaces of fuzzy models for end-point acceleration models 

 

B. End-point acceleration in the validation phase 

Numerical results outlined in Table 6.17 show that the optimum = values of the models in 

the validation phase were 0.2096, 0.2078, 0.2063 and 0.2058 for SBFA-FL, LABFA-FL, 

QABFA-FL and EABFA-FL respectively. A comparison of these results is outlined in 

the bar chart depicted in Figure 6.56(a). The time domain end-point acceleration 

responses, error and their power spectral densities depicted in Figure 6.56(b), Figure 

6.56(c) and Figure 6.56(d) respectively show that all models were able to match the 

actual output. Correlation tests results plotted in Figure 6.57-Figure 6.60 confirm that all 

models were acceptable. 
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Table 6.17: Numerical results of end-point acceleration BFA-FL models in the validation 

phase 

Algorithm Optimum J  Range of error (K
L�) 
Minimum Maximum 

SBFA-FL 0.2096 -0.7047 1.3822 

LABFA-FL 0.2078 -0.7045 1.3794 

QABFA-FL 0.2063 -0.7046 1.3429 

EABFA-FL 0.2058 -0.7045 1.2414 

 

 

(a) Optimum = (b) Time-domain responses 

(c) Error (d) PSD of end-point acceleration 

Figure 6.56: Simulation results of end-point acceleration BFA-FL models in the 

validation phase 
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Figure 6.57: Correlation tests of end-point acceleration SBFA-FL model 
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Figure 6.58: Correlation tests of end-point acceleration LABFA-FL model 
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Figure 6.59: Correlation tests of end-point acceleration QABFA-FL model 
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Figure 6.60: Correlation tests of end-point acceleration EABFA-FL model 

 

6.8. Summary 

A laboratory-scale single-link flexible manipulator has been modelled with NNs trained 

by ABFA and FL optimised by ABFA. Three SISO models have been constructed to 
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represent the single-link flexible manipulator from torque input to hub-angle, hub 

velocity and end-point acceleration. Input-output data pairs obtained from the 

experimental rig were split into two parts: one part for modelling phase and another part 

for validating phase. Moreover, a set of correlation tests were carried out to validate all 

resulted models. The investigations have focused on in the performance of ABFAs to 

that of SBFA. The comparisons have been made based on the convergence speed, 

optimum cost function value achieved, time-domain and frequency-domain responses.  

The results show that all ABFAs have faster convergence and are able to achieve 

lower cost function values than SBFA. Since all ABFA and SBFA used the same general 

parameters, and initial positions of bacteria were selected randomly across search space, 

the superior results of ABFAs can be attributed to the adaptable chemotactic step size.  

All models were developed and validated based on the experimental input-output 

data pairs collected from a single-link flexible manipulator rig. In general, the 

optimisation results suggested that all ABFAs were able to achieve better optimum = 
values and have faster convergence speed than SBFA. Their time domain responses, 

error and PSD both in modelling and validation phases show that the predicted output of 

developed models followed the actual output well. The correlation tests show that all 

models are representative of the real systems. The application of ABFA for optimising 

controllers for controlling hub-angular displacement and vibration of end-point of 

flexible arm will be presented in Chapter 7. 
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CHAPTER 7 

CONTROL OF FLEXIBLE MANIPULATOR 

SYSTEM USING BACTERIAL FORAGING 

ALGORITHMS 
 

 

7.1. Introduction 

The oscillatory behaviour of the flexible manipulator system impacts on both the notion 

trajectory of the hub and structural vibration of the flexible arm at the end-point of the 

flexible arm. In general, there are two control objectives with a single-link flexible 

manipulator: to control the hub-angular displacement and to suppress vibration at the end 

point. 

It can be noted from the literature that previous works on hub-angular 

displacement controllers of a single-link flexible manipulator have been proposed by 

researchers. A proportional-derivative (PD)-like controller called joint-based collocated 

(JBC) control, here cited as JBC PD control, has been used (Azad, 1994; Md Zain, 2006; 

Md Zain et al., 2005; Poerwanto, 1998; Tokhi and Md Zain, 2006; Tokhi et al., 2004). 

There are only two parameters to tune in JBC PD, i.e. proportional gain in the feed 

forward path of hub-angle reference input and derivative gain in hub-velocity feedback 

path. Although only a simple controller, its time-domain performances show that JBC 

PD has arguably satisfying performance. The literature shows that various end-point 

acceleration feedback control types have been proposed in combination with JBC PD 

control to achieve reference tracking and vibration control. Among these are genetic 

algorithm (GA)-optimised iterative learning control (ILC) (Md Zain et al., 2005; Tokhi 

and Md Zain, 2006), ILC and PID (Tokhi et al., 2004) and strain feedback (Mohamed et 

al., 2005). These reports suggest that the addition of controller in the end-point 

acceleration feedback could damp the vibration of end-point of flexible arm. 

In the JBC PD control applications above, the root locus approach has been used 

to design the controller. In the root locus approach, the two parameters of JBC PD are 

obtained by finding the poles of the closed loop transfer function of the plant graphically 

(Ogata, 2002). Thus, in order to get accurate controller, accurate model of the plant 
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under study is needed. Another technique which can be utilised to find optimal 

parameters of JBC PD controller is to use an optimisation algorithm. Those reports 

referred to above show that controllers of end-point acceleration feedback have been 

mainly optimised using GA.  

It can be noted from the literature that BFA has been used for tuning PD and PID 

controllers in various applications, for example as for tuning PID controller for 

suppression of power oscillation of load frequency control (Ali and Abd-Elazim; 2010), 

optimising PI controller for active power filter application (Mishra and Bhende, 2007), 

tuning PID controller for multivariable system (Kim and Cho, 2005), finding optimum 

PID controllers for different-order systems (Niu et al., 2006), optimising PID controller’s 

parameters for various different order systems (Ali and Majhi, 2006) and tuning PD-PI 

controller (Jain and Nigam, 2008a, b). The application of BFA in the control single-link 

flexible manipulator has not been reported yet. However, a hybrid BFA and particle 

swarm optimisation (PSO) has been used for optimising a hybrid fuzzy pre-compensated 

PD controller in trajectory control of a two-link rigid flexible manipulator (Alavandar et 

al., 2010).  

Motivated by the previous works, here, BFA with adaptable chemotactic step 

size, i.e. LABFA, QABFA, EABFA, and FABFA, as proposed and discussed in Chapter 

4, are adopted for optimising JBC PD control for controlling the hub-angular 

displacement and for optimising controller of end-point acceleration feedback. Here, 

ABFA were chosen instead of root locus and heuristic methods because they have 

advantages as they do not need exact mathematical model of flexible manipulators, are 

not time consuming as a heuristic method, and are able to find optimal parameters as 

well as avoid being trapped in local minima. The objective of the investigation is to 

assess the performances of ABFA proposed and discussed in Chapter 4 in finding 

optimal solution of JBC PD control and controller with end-point acceleration feedback 

parameters for the flexible manipulator control application. The ABFA’s performances 

are then compared to that of SBFA based on their speed of convergence, optimum value 

achieved and time-domain responses. Throughout this work, all the simulations are 

carried out using Matlab/Simulink software while experimentations are done using a 

single-link flexible manipulator system rig.  
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7.2. Brief overview of PID control 

Proportional-integral-derivative (PID) control is very popular and more than half of 

industrial controllers are either PID or modified PID controllers (Ogata, 2002). PID 

controllers contain three parameters, i.e. proportional gain (��), integral gain (��) and 
derivative gain (��). In general, output signal of PID controller can be formulated as: 

���� 	 ��
��� � �� � 
���� � �� �����
��     (7.1) 

where 
��� is the error, the difference between set point and actual output. This formula 
can also be presented in the form of Laplace transform as: 

���� 	 ��� � ��
� � ���� ����     (7.2) 

Each of the three PID control parameters has its own characteristics and impact on the 

time-domain of closed-loop actual output which can be summarised as in Table 7.1. 

 

Table 7.1: Effects of each parameter of PID control 

Parameter Rise time Maximum overshoot Settling time Steady-state error 

�� Decreasing Increasing Small change Decreasing 

�� Decreasing Increasing Increasing Eliminating 

�� Small change Decreasing Decreasing Small change 

 

The performance of PID control is determined by the composition of the three 

parameters so that the value of each parameter needs to be chosen properly. The 

characteristics of PID control parameters presented in Table 7.1 can be used as a rough 

guide. In practice, there are two most popular tuning methods that can be used to find 

optimal PID parameters, i.e. manual or heuristic and Ziegler-Nichols followed by re-tune 

methods (Ogata, 2002). The manual or heuristic tuning method does not require detailed 

information of the system under control but needs experience of the operator. Ziegler-

Nichols method also can be applied to the system where its mathematical model is not 

properly known. However, the tuning process might also need very extensive effort. 

 

7.3. Single-link flexible manipulator model 

Since it has been widely used in the control development by previous researchers such as 

Alam and Tokhi (2008), Md Zain and Tokhi (2009), Md Zain et al. (2009c) and Tokhi et 

al. (2004), the mathematical model representing a single-link flexible manipulator under 
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study developed by Azad (1994) and then enhanced by Poerwanto (1998) is used in the 

simulations in this work. 

 

7.4. Hub-angular reference tracking control 

The serial tasks usually performed by robot manipulators in industrial applications 

include picking up a payload from initial location, move to a specified location or along 

pre-planned trajectory, and to place the payload in a desired location (Shaheed et al., 

2004). One of the commonly used trajectories is the bang-bang pattern movement. Thus, 

in this investigation, JBC PD control optimised by BFAs is used as the input tracking 

controller of hub-angular movement.  

 

7.4.1. ABFA-JBC PD control structure and computation 

The output signal of JBC PD control for the flexible manipulator control can be 

formulated as: 

���� 	 ��
��� � �� ��
���
��      (7.3) 

where ���� is the control command, �� is proportional gain, �� is the derivative gain, 

��� 	 � � ���� is the error (� is the reference of angular displacement), and ���� is the 
actual angular displacement. Here, ABFA are used to find the optimal value of JBC 

parameters as shown in the block diagram in Figure 7.1. The nutrient media which will 

be optimised by ABFA is the cost function which is formulated based on the hub-angle 

error. The details of ABFA computation was presented in Chapter 4. The computation 

steps of JBC PD-BFA are outlined in Figure 7.2. 

 
Figure 7.1: ABFA-tuned JBC PD control of flexible manipulator 
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Figure 7.2: Flowchart of JBC PD-BFA computation steps 

 

7.4.2. Protocol of simulation and experimentation 

The scenarios the simulations and experimentations are outlined as follows: 

1. All parameters of BFAs used in the optimisation process, except dimension of the 

search space �, which is selected according to the parameters of the controller, 
are selected by trial and error. The parameters are selected by considering that 

bacteria should have enough lifetime (total number of steps), enough 

reproduction steps (���) so that bacteria can refine the nutrient value achieved 
and enough elimination and dispersal events (���) so that bacteria are able to 
search most parts of the nutrient media to find closest optimum location to the 

global minimum but with minimum computation load. 

2. The flexible manipulator model used in the simulation as considered has hub 

inertia and structural damping factor equal to 0.024. 

3. Preliminary simulation to choose suitable cost function is performed. JBC PD is 

optimised by using SBFA only. Various chemotactic step size values are applied 

for each cost function and the best result is used in the comparison. For this 
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purpose, there are two input references used: step input with 75 degree to test the 

step response and bang-bang input with 75 degree magnitude, depicted in Figure 

7.3. Bang-bang-type input is chosen because it reflects nature of the task 

performed by the manipulator, i.e. to accelerate from an initial position and then 

decelerate to a target location. Besides, the bang-bang signal is chosen because it 

consists of one positive pulse and one negative pulse and is considered adequate 

to study the control performance using this signal (Md Zain and Tokhi, 2009). 

The effect of the cost function considered is evaluated based on the time-domain 

responses. 

 
Figure 7.3: A bang-bang input with 75 degree magnitude for reference input 

 

4. After comparison process, the most effective cost function is used in the rest of 

simulations and experiments with bang-bang signal used as the reference input. 

The performances of ABFAs are compared to that of SBFA based on the 

optimum cost function achieved, convergence speed (number of steps needed by 

algorithm to converge to the optimal) and time-domain responses. 

5. The parameters of JBC PD controller obtained in the simulations are applied to 

actual flexible manipulator rig and their performances are compared based on the 

time-domain responses. 

6. For the time-domain responses, following numerical measurements are made and 

used in the comparison: 

a. Rise time for positive pulse and step input (���) is defined as the time required 
for the flexible manipulator to move from initial position (zero degree) until 

reach 90 % of maximum value of hub-angular set point. 
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b. Settling time for positive pulse and step input (���) is defined as the time 
required for the flexible manipulator to move from initial position (zero 

degree) until reach 98 % of maximum value of hub-angular set point. 

c. Maximum overshoot for positive pulse and step input ( !) in per cent is 
formulated as: 

 ! 	 "#$%�&"#$%'
"#$%' ( )**     (7.4) 

where � is the hub-angle set point value and � is the actual hub-angle 
movement. 

d. Steady state error of positive pulse and step input (
���) in per cent is 
formulated as: 


��� 	 "#$%'&�++
"#$%' ( )**     (7.5) 

where ��� is the actual hub-angle value in the steady state level. 
e. Decreasing time for negative pulse (���) is defined as the time needed by 

flexible manipulator to move from maximum hub-angle set point until reach 

90 % of minimum hub-angle set point value. 

f. Settling time for negative pulse (���) is defined as the time needed by flexible 
manipulator to move from maximum hub-angle set point until reach 98 % of 

minimum hub-angle set point value. 

g. Maximum undershoot for negative pulse ( ,) in per cent is formulated as: 

 , 	 "�-%�&"�-%'
"�-%' ( )**     (7.6) 

h. Steady state error for negative pulse (
���) in per cent is formulated as: 


��� 	 "�-%'&"�-%�++
"�-%' ( )**     (7.7) 

where ./0%��� is the actual hub-angle movement at steady state condition of 
negative pulse. 

i. Maximum overshoot for the last stage of bang-bang input movement from 

negative pulse back to the initial position ( -) in per cent is formulated as: 

 - 	 "#$%�1
"#$%' ( )**      (7.8) 

where �- is the actual hub-angle output in last stage of bang-bang input. 
j. Steady state error for the last stage of bang-bang input (
��-) in per cent is 

formulated as: 


��- 	 �++1
"#$%' ( )**      (7.9) 
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where �2�� is the actual hub-angle movement at the steady state condition of 
the last stage of bang-bang input. 

 

Thus, the overall simulation process is illustrated in Figure 7.4. 

 
Figure 7.4: Overall simulation and experiment sequence 

 

7.4.3. Preliminary simulation: empirical cost function comparison 

It can be noted from the literature that mean squared error (MSE) has been succesfully 

used in controller tuning of hub-angle control of flexible manipulator (Md Zain and 

Tokhi, 2009a; Md Zain et al., 2009c). This is formulated as:  

34 	 4
56 7
�8�9:5

;<4       (7.10) 

where 
�8� 	 � � ��8� is the angular displacement error and � is the total number of 
data points. An overshoot is usual phenomenon in the step response testing of controller. 

In the simulation using bang-bang input, overshot could happen in the positive pulse 

while undershoot may arise in the negative pulse. In order to suppress unwanted 

overshoot/undershoot, the cost function is modified by adding weighted absolute 

maximum overshoot/undershoot value as: 

3: 	 �456 7
�8�9:5
;<4 � � = ,= > ?     (7.11) 

where  , is maximum overshoot or undershoot, and ? is the weighting factors. Bigger ? 
value results in bigger suppression on overshoot and undershoot. Because the minimum 

value of 
�8� is equal to zero, in which case the hub-angular displacement output is 
exactly the same as the set point, the global minimum values for cost function 34 and 3: 
are also equal to zero. In terms of BFA computation, lower cost function value means 

higher nutrient level so that the highest nutrient level is when the cost function is equal to 

zero. Thus the main aim of optimisation in this work is to find minimum values of cost 

function 34 and 3:. For the time-domain hub-angle output, the smallest cost function 
value means that the actual hub-angle output of the flexible manipulator is the closest to 

the reference input.  
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Because JBC PD controller has two parameters to optimise, the cost function 

becomes two-dimension search space. In the tuning process using SBFA, the following 

initial values were used 

• � = 2 
• @ = 4 

• �A = 16 

• �� = 2 

• ���  = 3 

• @� = @ BC  

• ��� = 2 

• D�� = 0.25 

Initial positions of bacteria were selected randomly across the nutrient media and after 

using various chemotactic step sizes E�/�, the best optimum cost function 3 value was 
achieved when E�/� was equal to 0.02. Total number steps of computation the BFA were 
calculated as �A ( ��� ( ��� and the cost function 3 value in every step refers to the 
position of bacterium that has the least cost function value. 

 

A. Step input 

In the investigation for step input,  , was the maximum overshoot. Various weighting 
factors ? were used and the most suitable value was equal to 50. Lower ? value than 50 
always resulted overshoot while bigger value resulted slower response. Figure 7.5(a) 

shows the convergence of SBFA using 34 and 3:. As noted the convergence speeds were 
the same with 34 and 3:. The difference in position at the initial step was because bacteria 
were placed randomly; with optimisation using 34, some bacteria were in locations near 
the optimum value. Time-domain responses of SBFA-JBC PD using 34 and 3: are 
depicted in Figure 7.5(b). 

(a) Convergence plots (b) Time-domain hub-angle 

Figure 7.5: Simulation results with SBFA-JBC PD for step input using 34 and 3: 
 

The numerical results presented in Table 7.2 show that although using 34 SBFA achieved 
lower optimum 3 and slightly faster rise and settling time, it resulted 9.071 % maximum 
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overshoot in the response. On the contrary, by using 3: the response overshoot was 
completely removed.  

 

Table 7.2: Performance of controllers for step input using 34 and 3: 
Control FG FH Optimum I JK (s) JL (s) MG (%) NLL (%) 

Using 34 1.7459 0.5687 470.4040 0.6001 1.3008 9.071 0 

Using 3: 1.0655 0.5050 504.9843 0.7574 1.6623 0 0 

 

B. Bang-bang input 

In the investigation for bang-bang input,  , in equation (8.11) was the maximum 
undershoot of the negative pulse. Similar to the case of step input, the optimal ? value 
was equal to 50 for the bang-bang input. The convergence plots depicted in Figure 7.6(a) 

show that by using 34 SBFA-JBC PD was able converged in 23 steps faster than using 3: 
which converged in 55 steps. The time-domain responses depicted in Figure 7.6(b) show 

the comparison of all results. 

(a) Convergence plots (b) Time-domain hub-angle 

Figure 7.6: Simulation results with bang-bang input using 34 and 3: 
 

From numerical results presented in Table 7.3 and Table 7.4 it can be noticed that using 

34 SBFA-JBC PD achieved better optimum 3 ()O)*P* ( )*Q) than using 3: ()O)PRR (
)*Q) and slightly faster rise time and settling time for positive and negative pulses. 
However, using 34 the overshoot in the positive pulse and undershoot in the negative 
pulse were 1.8714% and 17.5970% respectively, whereas with 3: there was neither 
overshoot nor undershoot.  
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Table 7.3: Optimal results of SBFA-JBC PD using 34 and 3: 
Controller Convergence (steps) FG FH Optimum I 
Using 34 13 1.6795 0.6003 )O)*P* ( )*Q 
Using 3: 55 0.9394 0.4887 )O)PRR ( )*Q 

 

Table 7.4: Time-domain responses of SBFA-JBC PD using 34 and 3: 
Controller JKS (s) JLS (s) MGS (%) NLLS (%) JKT (s) JLT (s) MGT (%) NLLT (%) 

Using 34 0.625 1.259 1.871 0 0.8195 1.5719 17.5970 0 

Using 3:  0.843 1.437 0 0 1.1167 1.7290 0 0 

 

The two investigations above show that cost function 3: is suitable to be used throughout 
the work because it could remove overshoot and undershoot of hub-angle response. 

 

7.4.4. Closed-loop simulation using IU 
A. Simulation results 

Here, the hub-angular displacement is controlled using JBC PD optimised by SBFA and 

ABFA with cost function 3:, here only cited as 3, as the nutrient media. Then their 
performances based on convergence speed, optimum value achieved and time-domain 

hub-angle output are compared to those of SBFA. In the simulation, SBFA and ABFA 

used the same initial parameters as: 

• � = 2 
• @ = 4 

• �A = 16 

• �� = 2 

• ���  = 3 

• @� = @ BC  

• ��� = 2 

• D�� = 0.25 

The initial positions of the bacteria were selected randomly across the search space. 

Chemotactic step size for SBFA is a constant value. In the convergence analysis, the 

nutrient value 3 is plotted against the total number of computation steps of BFA 
calculated as �A (��� (���, which is equal to 96 steps. The nutrient value 3 in every 
step means the position of bacterium that has the smallest cost function value. 

In the time-domain representation, the hub-angle output is plotted against time. In 

this work, the performance of the controller is assessed based on 10 parameters of the 

time-domain hub-angle output described in section 7.4.2 above. As noticed in the 

preliminary simulation, for SBFA, the best optimum solution was achieved when 

chemotactic step size E�/� was equal to 0.02. For ABFA, the parameters of LABFA, 
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QABFA and EABFA were selected manually by trial and error and the best optimum 3 
was obtained when adaptable chemotactic step sizes were set up as: 

E#V�/� 	 2O:
4W X

YOZ(X[\Z=]���=
      (7.12) 

E#^�/� 	 2O:
4W X

X[\_�7]���9`a=]���=�
     (7.13) 

E#��/� 	 2O:
4W X

b(X[\_c�[O[X=]���=�
     (7.14) 

For FABFA, the membership functions of input and output are plotted in Figure 7.7(a) 

and 7.7(b) respectively. The fuzzy rules connecting the input to output resulted in the 

fuzzy surface depicted in Figure 7.7(c). The fuzzy rules were formulated as: 

 

�4 : IF =3�/�= is ES THEN E#d�/� is VS (1)  

�: : IF =3�/�= is VS THEN E#d�/� is S (0.3)  

�Q : IF =3�/�= is S THEN E#d�/� is B (1)  

�e : IF =3�/�= is M THEN E#d�/� is EB (1) (7.15) 

�f : IF =3�/�= is B THEN E#d�/� is EB (1)  

�g : IF =3�/�= is VB THEN E#d�/� is EB (1)  

�h : IF =3�/�= is EB THEN E#d�/� is EB (1)  
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(a) Input: =3�/�= (b) Output: E#d�/� 

 
(c) Fuzzy surface 

Figure 7.7: Fuzzy membership functions and surface of FABFA for JBC PD control 

 

Using the formulations in equations (7.12)-(7.15), the adaptable chemotactic step 

sizes were in the range of [0.0164, 0.2], [0.0027, 0.2], [0.0019, 0.2] and [0.0167, 0.09] 

for LABFA-JBC PD, QABFA-JBC PD, EABFA-JBC PD and FABFA-JBC PD 

respectively. The convergence plots of controllers depicted in Figure 7.8(a) show that all 

ABFA-JBC PD controls were significantly faster in convergence than SBFA-JBC PD 

which converged in 87 steps. QABFA-JBC PD, which converged in 14 steps, was the 

fastest in convergence among them. It is also noted that there were no oscillations in the 

optimum point for QABFA-JBC PD and EABFA-JBC PD because they used very small 

chemotactic step size while there was small oscillation in LABFA-JBC PD but still much 

smaller than that of SBFA-JBC PD. Figure 7.8(b) presents the time-domain hub-angular 

displacement output with the controllers. 
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(a) Convergence plots (b) Time-domain hub-angle 

Figure 7.8: Simulation results with the BFA-JBC PD controls 

 

As an impact of lower 3 value, numerical results presented in Table 7.5 and Table 
7.6 show that ABFA-based controls result in better time-domain hub-angle output 

performance, i.e. shorter rise time, decline time and settling time both in the positive and 

negative pulses in comparison to that with SBFA-JBC PD. The controllers were able to 

suppress the presence of unwanted overshoot and undershoot as well as steady state 

error. Compared to using PID-GA control in (Md Zain and Tokhi, 2009), all the 

controllers in this work achieved much faster settling time, because settling time in (Md 

Zain and Tokhi, 2009) was 3.264 second 

 

Table 7.5: Numerical results of optimum 3 of the controllers 
Control ( )iC  range Convergence (steps) Optimum I 

SBFA-JBC PD 0.02 87 )O)PRR ( )*Q 
LABFA-JBC PD [0.0164, 0.2] 49 )O)i*j ( )*Q 
QABFA-JBC PD  [0.0027, 0.2] 14 )O)klm ( )*Q 
EABFA-JBC PD  [0.0019, 0.2] 23 nO nUoo ( npq 
FABFA-JBC PD [0.0167, 0.09] 51 )O)RkB ( )*Q 
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Table 7.6: Time-domain hub-angle responses of the controllers 

Control FG FH JKS (s) JLS (s) JKT (s) JLT (s) 
SBFA-JBC PD 0.9394 0.4887 0.8432 1.4370 1.1167 1.7290 

LABFA-JBC PD 1.1793 0.5343 0.7291 1.3121 0.9803 1.6000 

QABFA-JBC PD 0.9499 0.4663 0.7820 1.0178 1.0167 1.1960 

EABFA-JBC PD 1.8297 0.7325 0.6957 1.2703 0.8877 1.5004 

FABFA-JBC PD  1.0376 0.4957 0.7626 1.2594 1.0093 1.5741 

 

B. Experimental results 

The BFA-based JBC PD controls obtained in the simulation above were implemented on 

the single-link flexible manipulator experimental rig. The time-domain hub-angle 

responses for the controllers are plotted in Figure 7.9.  

 
Figure 7.9: Experimental time-domain hub-angle responses 

 

It is noted from the plots that responses with the ABFA-based controls were slightly 

slower with lower overshoot, undershoot and smaller steady state error than with SBFA-

based control. The numerical results presented in Table 7.7 show that all the BFA-based 

JBC PD controls resulted in acceptable steady-state error, e.g. below 2% with overshoot 

and undershoot are fall between 4.7819% and 28.8287% respectively. 
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Table 7.7: Experimental time-domain hub-angle responses parameters with BFA-JBC 

PD controls 
Control JKS (s) JLS (s) MGS 

(%) 

NLLS 
(%) 

JKT (s) JLT (s) .�� (%) NLLT (%) .�2 

(%) 

NLLp 
(%) 

SBFA-JBC PD 0.555 2.233 21.571 0.297 2.544 3.187 28.829 1.913 25.35 1.762 

LABFA-JBC PD 0.745 0.823 9.684 0.2923 0.790 2.4 12.265 0.546 10.213 0.3651 

QABFA-JBC PD 0.738 0.878 5.086 0.263 0.900 2.145 9.703 0.676 6.739 0.623 

EABFA-JBC PD 0.633 0.732 5.602 0.008 0.834 2.114 7.745 0.061 5.592 0.347 

FABFA-JBC PD 0.709 0.848 4.782 0.208 0.884 2.243 8.554 0.84 5.592 0.359 

 

7.5. Vibration reduction using end-point acceleration feedback 

7.5.1. Controller structure and computation 

When a flexible manipulator is moved to follow a desired trajectory, because of its 

flexible nature, the end-point of the manipulator oscillates around its expected position. 

This oscillation, or vibration, needs to be minimised. In this work, end-point acceleration 

feedback control is used to reduce the vibration. The control structure of end-point 

acceleration feedback (r) is depicted in Figure 7.10.  

 
 

Figure 7.10: End-point acceleration feedback for vibration reduction 

 

A band pass filter (BPF) is installed in the end-point acceleration path to allow vibration 

with high frequency in the feedback loop. The ideal condition is when there is no 

vibration, r equals to zero. There are two optimisation processes, i.e. optimisation for 
input tracking controller using ABFA-1 and optimisation for end-point acceleration 

feedback using ABFA-2. Similar to input tracking control presented in the previous 

section, the investigations are focused on the performance of ABFA compared to SBFA. 
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There are two controls considered in the end-point acceleration feedback loop, 

PD and PID controls. The output signal of PD and PID controls in the end-point 

acceleration feedback loop are given as: 

PD:          �s��� 	 ��
s��� � �� ��t���
��       (7.16) 

PID:          �s��� 	 ��
s��� � �� � 
s���� � �� ��t���
��    (7.17) 

where 
s 	 * � r is the end-point acceleration error. In the optimisation process, 
ABFA-2 used MSE of end-point acceleration error (
s) as cost function. This is 
formulated as: 

3s 	 )
�6 7
r�8�9B�

8	)       (7.18) 

In general, the computation steps are the same as optimising JBC PD above. 

 

7.5.2. Protocol of simulations and experimentations 

In this work, the simulations and experimentations are carried out as: 

1. Bang-bang input depicted in Figure 7.3 is used as the input trajectory.  

2. The best ABFA-1 based controller in the input tracking control discussed in 

section 8.4 is used as the input tracking control loop. The selection is based on 

the 3 value achieved because smallest 3 means it has the smallest error.  
3. Both PD and PID controls with end-point acceleration feedback are optimised 

using ABFA-2.  

4. For the same reasons for input tracking control (ABFA-1), the parameters of 

ABFA-2 are chosen so that bacteria have enough life time (steps) to find global 

minimum of the cost function. 

5. The performances of ABFA are compared to SBFA based on the optimum 3s 
achieved, convergence speed, time-domain and frequency responses of end-point 

acceleration. Moreover, the performances of controller with end-point 

acceleration feedback are compared to open loop-control and JBC PD control 

without end-point acceleration feedback based on the 3s value achieved, time-
domain and frequency-domain responses.  

6. Finally, the parameters of PD / PID controls obtained in the simulations are 

applied in the flexible manipulator rig. The investigations are focused on the 

performances of ABFA-based controls compared to SBFA-based control based 

on 3s value achieved, time-domain and frequency-domain responses. 
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7. For frequency-domain responses, main attentions are paid on the comparison of 

vibration reduction between open loop control and closed loop control, effect of 

PD and PID control of end-point acceleration feedback on vibration reduction 

and performance comparison of ABFA-based and SBFA-based control of end-

point acceleration feedback. The rate of vibration reduction (in per cent) of end-

point flexible arm with closed loop control of end-point acceleration feedback 

against open-loop control is formulated as follow: 

�suV 	 "vt&"wt
"vt

( )**     (7.19) 

where �suV is the vibration reduction rate for closed loop control with control of 
end-point acceleration feedback against open-loop control, .!s is the vibration 

magnitude of open loop control, .As is the vibration magnitude of closed loop 

control without control of end-point acceleration feedback and .Vs is the 

vibration magnitude of closed loop control with control of end-point acceleration 

feedback. The vibration reduction of closed loop control with control of end-point 

acceleration feedback against closed loop control without control of end-point 

acceleration feedback can be formulated as: 

�suAV 	 "xt&"wt
"xt

( )**     (7.20) 

where �suAV is the vibration reduction rate of EABFA-JBC PD with control of 
end-point acceleration feedback against EABFA-JBC PD without control of end-

point acceleration feedback. 

 

7.5.3. Open-loop simulation 

The responses of end-point acceleration for open-loop simulation using bang-bang input 

depicted in Figure 7.3 are shown in Figure 7.11(a) and Figure 7.11(b) in the time-domain 

and frequency-domain respectively. The time-domain response show that the maximum 

vibration only occurs in early stage due to fast movement of the manipulator. It confirms 

that faster and bigger angular movement result bigger vibration of end-point 

acceleration. The numerical results of frequency-domain responses are presented in 

Table 7.8.  
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(a) End-point acceleration time-domain (b) End-point acceleration frequency-

domain 

Figure 7.11: Open-loop end-point acceleration response to bang-bang input 

 

Table 7.8: Numerical results of end-point acceleration response in open-loop (F is 

frequency (Hz) and M is magnitude (y �
z: {|}} )) 

I~ value Mode 1 Mode 2 Mode 3 

456.8778 F = 13.42 Hz 

M = 71.96 

F=31.31 Hz 

M=26.01 

F=62.62 

M=21.9 

 

7.5.4. End-point acceleration feedback with PD control 

A. Simulation results 

In this part, PD controller optimised by BFAs with end-point acceleration feedback is 

used to reduce the vibration at the end-point of the flexible arm. Since there are only two 

parameters to be optimised, i.e. �� and ��, the nutrient media (cost function) of BFA is a 
two-dimension search space. It is noted from the numerical results of input tracking 

control presented in Table 7.6 that EABFA JBC PD had the smallest cost function 3 
value. Thus, in this investigation EABFA-JBC PD is used as the input tracking 

controller. The two parameters of EABFA-JBC PD are ��4 = 1.8297 and ��4 = 0.7325. 
In the optimisation process, the BFA-2 used the same general parameter as: 

• � = 2 
• @ = 4 

• �A = 10 
• �� = 2 

• ��� = 3 
• @� = @ BC  

• ��� = 3 
• D�� = 0.25 

The initial positions of bacteria were selected randomly across the search space. 

For SBFA, the chemotactic step size was chosen manually by trial and error and the best 

result was achieved when E�/� was equal to 0.002. For ABFAs, the best results were 
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achieved when the adaptable chemotactic step size for LABFA-PD, QABFA-PD and 

EABFA-PD were set up as: 

E#V�/� 	 2O2f
4W X

[O[[[`�=]���=
      (7.21) 

E#^�/� 	 2O2f
4W X

[O[[[[Z�7[OX�Z]���9`a[OX�Z=]���=�
    (7.22) 

E#��/� 	 2O2f
4W X

[O[[X�c�[O[`=]���=�
     (7.23) 

For FABFA-PD, the fuzzy structure contained one input, i.e. absolute cost function of 

every bacterium =3�/�= and one output, i.e. fuzzy adaptable chemotactic step size for 
every bacterium E#d�/�. Seven Gaussian membership functions were used for both input 
and output. The membership functions for input and output are plotted in Figure 7.12(a) 

and Figure 7.12(b) respectively. The fuzzy rules result the relationship between input and 

output shown in Figure 7.12(c) were formulated as: 

�4 : IF =3�/�= is ES THEN E#d�/� is ES (1)  

�: : IF =3�/�= is VS THEN E#d�/� is ES (1)  

�Q : IF =3�/�= is S THEN E#d�/� is S (1)  

�e : IF =3�/�= is M THEN E#d�/� is M (1) (7.24) 

�f : IF =3�/�= is B THEN E#d�/� is B (1)  

�g : IF =3�/�= is VB THEN E#d�/� is VB (1)  

�h : IF =3�/�= is EB THEN E#d�/� is EB (1)  
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(a) Input: =3�/�= (b) Output: E#d�/� 

 
(c) Fuzzy surface 

Figure 7.12: Fuzzy membership function and surface of FABFA-PD of end-point 

acceleration feedback 

 

By using these formulations the chemotactic step size of ABFA-PD were in the 

ranges [0.002, 0.005], [0.002, 0.005], [0.002, 0.005] and [0.0016, 0.0185] for LABFA-

PD, QABFA-PD, EABFA-PD and FABFA-PD respectively. The convergence plots 

depicted in Figure 7.13(a) show that FABFA-PD had the fastest convergence speed with 

SBFA-PD, LABFA-PD, QABFA-PD and EABFA-PD having the same convergence 

speed. This was probably due to the cost function landscape being rather flat and 

FABFA-PD was able to converge faster because it applies human logic to choose the 

step size. The numerical results presented in Table 7.9 show that FABFA-PD converged 

in 18 steps compared to other BFAs, which converged in 37 steps.  

Time-domain end-point acceleration responses are depicted in Figure 7.13(b). It 

is noted that, with PD control in the end-point acceleration feedback loop, the 

manipulator vibration was damped faster than without PD control. The cost function 3s 
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values presented in Table 7.9 show that all PD controls with end-point acceleration 

feedback achieved smaller values than open-loop control and without PD control in the 

end-point acceleration feedback loop with the lowest cost function 3s value 170.2501 
achieved by EABFA JBC PD-EABFA PD. PSD of end-point acceleration depicted in 

Figure 7.13(c) shows that the resonance frequencies for the first three vibration modes 

were 13.42 Hz, 31.31 Hz and 62.62 Hz.  

 
(a) Convergence plots 

(b) Time-domain end-point 

acceleration  

(c) Frequency-domain end-point 

acceleration  

Figure 7.13: Simulation results for PD end-point acceleration feedback controls 
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Table 7.9: Numerical results for PD end-point acceleration feedback controls 

Control )(iC  FGU FTU Optimum I~ Convergence (steps) 

Open loop 

control 

- - - 456.8778 - 

EABFA JBC PD - - - 202.6463 - 

EABFA JBC PD 

– SBFA PD 

0.002 0.1402 0.0840 170.2637 37 

EABFA JBC PD 

LABFA-PD 

[0.002, 

0.005] 

0.1397 0.1129 170.2593 37 

EABFA JBC PD 

– QABFA PD 

[0.0020, 

0.005] 

0.1403 0.0827 170.2537 37 

EABFA JBC PD 

– EABFA PD 

[0.002, 

0.005] 

0.1398 0.1076 170.2501 37 

EABFA JBC PD 

– FABFA PD 

[0.0016, 

0.0185] 

0.1401 0.0943 170.2562 18 

 

The response magnitudes at the first and third vibration modes were reduced with PD 

controller in end-point acceleration feedback loop, whereas reinforcement occurred at the 

second mode. Table 7.10 shows the vibration reduction achieved at the resonance modes 

with BFA-PD controllers in the end-point acceleration loop. It is noticed that for all 

controllers with end-point acceleration feedback, all ABFA-based PD controls have 

bigger vibration reduction than that of SBFA-based with the biggest reduction 

percentage for the first three resonance mode is achieved by EABFA JBC PD-EABFA 

PD, i.e. 63.910 %, 18.185 % and 48.767 % for the first, second and third modes 

respectively. 

 

Table 7.10: Spectral attenuation at resonance modes with BFA-PD end-point 

acceleration feedback controls against open-loop control (y �
z: {|}} ) 

Control Mode 1 (dB) Mode 2 (dB) Mode 3 (dB) 

EABFA JBC PD-SBFA PD 38.16 (53.029 %) -1.68 (-6.459 %) 7.3 (33.333 %) 

EABFA JBC PD-LABFA PD 41.36 (57.476 %) 0.94 (3.614 %) 8.69 (39.680 %) 

EABFA JBC PD-QABFA PD 45.82 (63.674 %) 3.86 (14.840 %) 9.76 (44.566 %) 

EABFA JBC PD-EABFA PD 45.99 (63.910 %) 4.73 (18.185 %) 10.68 (48.767 %) 

EABFA JBC PD-FABFA PD 43.14 (59.950 %) 2.4 (9.227 %) 9.45 (43.150 %) 
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The effect of end-point acceleration feedback control in the vibration reduction against 

EABFA JBC PD in per cent is shown in the numerical results presented in Table 7.11 

show that all ABFA-based PD controls have bigger vibration reduction percentage than 

that of SBFA PD and the biggest vibration percentage is obtained by EABFA JBC PD-

EABFA PD, i.e. 27.01 %, 39.511 % and 32.572 % for the first, second and third 

resonance modes respectively.  

 

Table 7.11: Spectral attenuation at resonance modes with BFA PD end-point acceleration 

feedback controls against EABFA JBC PD without feedback loop (y �
z: {|}} ) 

Control Mode 1 (dB) Mode 2 (dB) Mode 3 (dB) 

EABFA JBC PD – SBFA PD 1.78 (5.003 %) 7.49 (21.296 %) 2.04 (12.259 %) 

EABFA JBC PD – LABFA PD 4.98 (13.997 %) 10.11 (28.737 %) 3.43 (20.613 %) 

EABFA JBC PD – QABFA PD 9.44 (26.532 %) 13.03 (37.038 %) 4.5 (27.043 %) 

EABFA JBC PD – EABFA PD 9.61 (27.01 %) 13.9 (39.511 %) 5.42 (32.572 %) 

EABFA JBC PD – FABFA PD 6.76 (18.999 %) 11.57 (32.888 %) 4.19 (25.180 %) 

 

B. Experimental results 

The time-domain and frequency domain end-point acceleration responses of 

experimental rig with PD control in the end-point acceleration feedback loop are shown 

in Figure 7.14. It is noted that the manipulator vibration at the end-point has been 

reduced with the PD end-point acceleration feedback controls. Numerical results of time-

domain responses presented in Table 7.12 show that the 3s values with PD end-point 
acceleration feedback controls were smaller than open loop and without feedback control 

with the smallest 3s value achieved by EABFA JBC PD-EABFA PD.  
 

Table 7.12: Experimental results of time-domain end-point acceleration responses 

Control I~ value 
Open loop 1.5843 

EABFA JBC PD  0.3514 

EABFA JBC PD – SBFA PD 0.2659 

EABFA JBC PD – LABFA PD 0.2385 

EABFA JBC PD – QABFA PD 0.2459 

EABFA JBC PD – EABFA PD 0.2273 

EABFA JBC PD – FABFA PD 0.2375 
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(a) Time-domain End-point 

acceleration  

(b) Frequency-domain end-point 

acceleration  

Figure 7.14: Experimental results of end-point acceleration responses 

 

The numerical results presented in Table 7.13 shows the spectral attenuations achieved at 

the first three resonance modes with BFA PD end-point acceleration feedback controls 

with the biggest vibration reduction for the first and second resonance modes is achieved 

by EABFA JBC PD-EABFA PD, e.g. 89.707 % and 94.059 % while for third resonance 

mode is achieved by EABFA JBC PD-LABFA PD, e.g. 95.293 %. Moreover, in general, 

ABFA-based PD controls of end-point acceleration feedback have bigger vibration 

reduction rate compared to SBFA-based 

 

Table 7.13: Spectral attenuations achieved at resonance modes with BFA-PD end-point 

acceleration feedback controls against open-loop control (y �
z: {|}} ). 

Control Mode 1 (dB) Mode 2 (dB) Mode 3 (dB) 

EABFA JBC PD-SBFA PD 1.407 (86.045 %) 0.945 (93.143 %) 0.924 (92.939 %) 

EABFA JBC PD-LABFA PD 1.465 (89.523 %) 0.9545 (94.039 %) 0.947 (95.293 %) 

EABFA JBC PD-QABFA PD 1.373 (83.936 %) 0.9194 (90.581 %) 0.833 (83.826 %) 

EABFA JBC PD-EABFA PD 1.468 (89.707 %) 0.9547 (94.059 %) 0.89 (83.826 %) 

EABFA JBC PD-FABFA PD 1.407 (86.033 %) 0.9318 (91.813 %) 0.854 (83.927 %) 

 

The numerical results presented in Table 7.14 show that for the first and second 

vibration resonance mode all with controllers of end-point acceleration feedback are able 

to significantly damp the vibration and the biggest reduction is achieved by EABFA JBC 
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PD-EABFA PD, i.e. 57.172 % and 47.55 % respectively while for the third resonance 

mode is achieved by EABFA JBC PD-LABFA PD, i.e. 64.736 %. Again, this results 

show that ABFAs-based controller of end-point acceleration feedback is superior 

compared to SBFA-based. 

 

Table 7.14: Spectral attenuations achieved at resonance modes with BFA-PD end-point 

acceleration feedback controls against EABFA JBC PD without feedback loop 

(y �
z: {|}} ). 

Control Mode 1 Mode 2 Mode 3 

EABFA JBC PD-SBFA PD 0.164 (41.887 %) 0.045 (39.530 %) 0.0625 (47.108 %) 

EABFA JBC PD-LABFA PD 0.222 (56.409 %) 0.0546 (47.42 %) 0.086 (64.736 %) 

EABFA JBC PD-QABFA PD 0.132 (33.418 %) 0.0195 (16.92 %) -0.028 (-21.084 %) 

EABFA JBC PD-EABFA PD 0.225 (57.172 %) 0.0547 (47.55 %) 0.0279 (21.009 %) 

EABFA JBC PD-FABFA PD 0.165 (41.989 %) 0.0319 (27.75 %) -0.007 (-5.271 %) 

 

7.5.5. End-point acceleration feedback with PID control 

A. Simulation results 

In this section, PID control optimised by BFA with end-point acceleration feedback is 

used to reduce the vibration at the end-point of the flexible arm. Since there are three 

parameters to tune in a PID control, the cost function of BFA will form a three-

dimensional search space. Similar to the case of PD end-point acceleration feedback 

control, here EABFA JBC PD is used as the input tracking controller. The two 

parameters of EABFA JBC PD are ��4 = 1.8297 and ��4 = 0.7325. In the optimisation 
process, the BFA-2 used the general parameters: 

• � = 3 
• @ = 4 

• �A = 10 
• �� = 2 

• ��� = 3 
• @� = @ BC  

• ��� = 2 
• D�� = 0.25 

The initial positions of bacteria were selected randomly across the cost function. For 

SBFA, the chemotactic step size was chosen manually by trial and error and the best 

result was achieved when E�/� was equal to 0.005. For ABFA, the best results were 
achieved with chemotactic step size for LABFA, QABFA and EABFA set up as: 

E#V�/� 	 2O:
4W X

[O[[[X=]���=
       (7.25) 
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E#^�/� 	 2O:
4W X

[O[[`X�7[O[X]���9`a[O[X=]���=�
     (7.26) 

E#��/� 	 2O:
4W X

[O[``Zc�[O[[[[Z=]���=�
     (7.27) 

For FABFA, the fuzzy structure contained one input, i.e. absolute cost function of every 

bacterium =3�/�= and one output, i.e. fuzzy adaptable chemotactic step size for every 
bacterium E#d�/�. Seven Gaussian membership functions were used for both input and 
output. The membership functions for input and output are plotted in Figure 7.15(a) and 

Figure 7.15(b) respectively. Fuzzy rules result the relationship between input and output 

can be shown in Figure 7.15(c) were formulated as: 

�4 : IF =3�/�= is ES THEN E#d�/� is VS (1)  

�: : IF =3�/�= is VS THEN E#d�/� is S (1)  

�Q : IF =3�/�= is S THEN E#d�/� is VB (1)  

�e : IF =3�/�= is M THEN E#d�/� is EB (1) (7.28) 

�f : IF =3�/�= is B THEN E#d�/� is EB (1)  

�g : IF =3�/�= is VB THEN E#d�/� is EB (1)  

�h : IF =3�/�= is EB THEN E#d�/� is EB (1)  
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(a) Input: =3�/�= (b) Output: E#d�/� 

 
(c) Fuzzy surface 

Figure 7.15: Fuzzy membership function and surface of FABFA PID end-point 

acceleration feedback control 

 

By using these formulations the chemotactic step size of ABFA were in the range 

[0.0034, 0.2], [0.0019, 0.2], [0.0044, 0.2] and [0.0034, 0.0189] for LABFA PID, QABFA 

PID, EABFA PID and FABFA PID respectively. The convergence plots depicted in 

Figure 7.16(a) show that all ABFA achieved faster convergence speed than SBFA. The 

numerical results presented in Table 7.15 show that ABFA converged in 11 steps 

compared to SBFA which converged in 22 steps. Time-domain and frequency-domain 

end-point acceleration responses depicted in Figure 7.16(b) and Figure 7.16(c) show that 

the system vibration was reduced with the PID end-point acceleration feedback controls.  
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(a) Convergence plots 

(b) Time-domain end-point 

acceleration 

(c) Frequency-domain end-point 

acceleration 

Figure 7.16: Simulation results of BFA PID end-point acceleration feedback controls 

 

Cost function 3s values presented in Table 7.15 show that all controllers with 
end-point acceleration feedback achieved smaller value than open-loop control and 

without PID controller of end-point acceleration feedback, with the lowest cost function 

3s value (170.2573) achieved by EABFA PID. PSD of end-point acceleration depicted in 
Figure 7.16(c) shows that the resonance frequencies of the first three modes were 13.42 

Hz, 31.31 Hz and 62.62 Hz. Vibration’s reduction occurred at the first and third modes 

and the vibration was reinforced at the second mode.  
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Table 7.15: Numerical results for BFA PID end-point acceleration feedback controls 

Control ( )iC  FGU FSU FTU Optimum I Convergence 

(steps) 

Open loop - - - - 456.8778 - 

EABFA JBC PD - - - - 202.6463 - 

EABFA JBC PD-SBFA 

PID 

0.005 0.0875 0.0048 0.0400 171.5426 22 

EABFA JBC PD-LABFA 

PID 

[0.0034, 

0.2] 

0.0957 0.0046 0.0445 171.3446 11 

EABFA JBC PD-

QABFA PID 

[0.0019, 

0.2] 

0.0872 0.0082 0.0681 171.4794 11 

EABFA JBC PD-EABFA 

PID 

[0.0044, 

0.2] 

0.1399 0.0814 0.1304 170.2573 11 

EABFA JBC PD-FABFA 

PID 

[0.0034, 

0.0189] 

0.0804 0.0102 0.0378 171.5290 11 

 

The numerical results in Table 7.16 show the spectral attenuations against open-

loop achieved at the resonance modes with the BFA PID end-point acceleration feedback 

controls. ABFA-based PID end-point acceleration feedback controls have bigger 

reduction rate compared to EABFA JBC PD-SBFA PID and the biggest reduction is 

achieved by EABFA JBC PD-QABFA PID, e.g. 62.924 %, 11.496 % and 44.566 % for 

the first, second and third vibration modes respectively.  

 

Table 7.16: Spectral attenuations achieved at resonance modes with BFA-PID end-point 

acceleration feedback controls against open-loop control (y �
z: {|}} ) 

Control Mode 1  Mode 2  Mode 3  

EABFA JBC PD-SBFA PID 38.64 (53.697 %) -2.219 (-8.535 %) 7.16 (32.694 %) 

EABFA JBC PD-LABFA PID 41.67 (57.907 %) 0.589 (2.268 %) 9.3 (42.511 %) 

EABFA JBC PD-QABFA PID 45.28 (62.924 %) 2.99 (11.496 %) 9.76 (44.566 %) 

EABFA JBC PD-EABFA PID 43.85 (60.937 %) 2.55 (9.804 %) 9.45 (43.150 %) 

EABFA JBC PD-FABFA PID 43.66 (60.673 %) 1.85 (7.113 %) 9.39 (42.877 %) 

 

Against EABFA JBC PD, numerical results presented in Table 7.17 show that all 

ABFA-based PID end-point acceleration feedback controls achieved bigger vibration 

reduction level than SBFA PID and the biggest reduction rate is achieved by EABFA 

JBC PD-QABFA PID, i.e. 23.6405 %, 34.5651 % and 27.0433 % for the first, second 

and third vibration resonance modes respectively.  
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Table 7.17: Spectral attenuations achieved at resonance modes with BFA-PID end-point 

acceleration feedback controls against EABFA JBC PD without feedback loop 

(y �
z: {|}} ) 

Control Mode 1 Mode 2  Mode 3  

EABFA JBC PD-SBFA PID 1.62 (4.636 %) 6.95 (19.755 %) 1.9 (11.418 %) 

EABFA JBC PD-LABFA PID 4.65 (13.309 %) 9.76 (27.743 %) 4.05 (24.339 %) 

EABFA JBC PD-QABFA PID 8.26 (23.641 %) 12.16 (34.565 %) 4.5 (27.043 %) 

EABFA JBC PD-EABFA PID 6.83 (19.548 %) 11.72 (33.314 %) 4.19 (25.180 %) 

EABFA JBC PD-FABFA PID 6.64 (19.004 %) 11.01 (31.325 %) 4.13 (24.82 %) 

 

B. Experimental results 

Time-domain numerical results presented in Table 7.18 show that all BFA PID end-point 

acceleration feedback controls achieved smaller 3s values than open-loop control and 
without end-point acceleration feedback control with the lowest 3s value (0.1968) 
achieved by EABFA JBC PD-EABFA PID.  

 

Table 7.18: Experimental results for BFA PID end-point acceleration feedback controls 

Control I~ value 
Open loop 1.5843 

EABFA-JBC PD  0.3514 

EABFA JBC PD-SBFA PID 0.2592 

EABFA JBC PD-LABFA PID 0.2329 

EABFA JBC PD-QABFA PID 0.2046 

EABFA JBC PD-EABFA PID 0.1968 

EABFA JBC PD-FABFA PID 0.2126 

 

The experimental responses obtained by using parameters of PID control obtained in the 

simulations above with the flexible manipulator rig are shown in Figure 7.17. It is noted 

that significant vibration reduction has been achieved with the BFA PID end-point 

acceleration feedback controls.  
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(a) Time-domain end-point 

acceleration 

(b) Frequency-domain end-point 

acceleration 

Figure 7.17: Experimental results for BFA PID end-point acceleration feedback controls 

 

It is noted in the frequency-domain responses that the vibration was reduced at the first 

three resonance modes with BFA PID end point acceleration feedback controls. Against 

open-loop control, the numerical results for frequency-domain responses presented in 

Table 7.19 shows the spectral attenuations achieved at the first three modes with the 

BFA PID end-point acceleration feedback controls and the biggest vibration reduction 

for the first and second resonance modes are obtained by EABFA JBC PD-QABFA PID, 

e.g. 88.564 % and 93.192 %, while for the third resonance mode is achieved by EABFA 

JBC PD-LABFA PID, e.g. 92.939 %. 

 

Table 7.19: Spectral attenuations achieved at resonance modes with BFA-PID end-point 

acceleration feedback controls against open-loop control (y �
z: {|}} ) 

Control Mode 1 Mode 2 Mode 3 

EABFA JBC PD-SBFA PID 1.351 (82.585 %) 0.924 (91.074 %) 0.919 (92.466 %) 

EABFA JBC PD-LABFA PID 1.362 (83.24 %) 0.93 (91.695 %) 0.924 (92.939 %) 

EABFA JBC PD-QABFA PID 1,449 (88.564 %) 0.95 (93.192 %) 0.858 (86.350 %) 

EABFA JBC PD-EABFA PID 1.428 (87.262 %) 0.938 (92.384 %) 0.857 (86.240 %) 

EABFA JBC PD-FABFA PID 1.427 (87.209 %) 0.935 (92.148 %) 0.837 (84.158 %) 

 

Against EABFA JBC PD without control of end-point acceleration feedback 

results depicted in Table 7.20 that the biggest vibration reduction for the first and second 

vibration resonance mode is obtained by EABFA JBC PD-QABFA PID, e.g.  57.41 % 
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and 58.147 % respectively while for the third resonance mode is provided by EABFA 

JBC PD-LABFA PID, e.g. 47.139 %.  

 

Table 7.20: Spectral attenuations achieved at resonance modes with BFA-PID end-point 

acceleration feedback controls against EABFA JBC PD without feedback loop 

(y �
z: {|}} ) 

Control Mode 1 Mode 2 Mode 3  

EABFA JBC PD-SBFA PID 0.154 (35.146 %) 0.052 (45.124 %) 0.057 (43.599 %) 

EABFA JBC PD-LABFA PID 0.165 (37.582 %) 0.056 (48.94 %) 0.063 (47.139 %) 

EABFA JBC PD-QABFA PID 0.252 (57.41 %) 0.067 (58.147 %) -0.003 (-2.184 %) 

EABFA JBC PD-EABFA PID 0.23 (52.561 %) 0.061 (53.18 %) -0.004 (-3.012 %) 

EABFA JBC PD-FABFA PID 0.225 (51.172 %) 0.06 (51.726 %) -0.025 (-18.599 %) 

 

7.6. Summary 

New chemotactic step size adaptation schemes of BFA proposed and discussed in 

Chapter 4 have been adopted for tuning of JBC PD, for hub-angle trajectory control and 

for tuning PD and PID end-point acceleration feedback controls for end-point vibration 

reduction. In case of JBC PD control tuning, all ABFA-JBC PD controls outperformed 

SBFA-JBC PD since they could converge faster to optimum value, were able to achieve 

better optimum value, and result in better time-domain hub-angle response. The addition 

of maximum undershoot with appropriate weighting value in the cost function has 

allowed to suppress the presence of unwanted overshoot and undershoot. Since all of 

ABFA and SBFA used the same general parameters and the initial positions of bacteria 

were selected randomly across the nutrient media, the superior results achieved with 

ABFA are thus attributed to the adaptable chemotactic step sizes. 

 For tuning end-point acceleration feedback control, in general, ABFA were able 

to converge faster than SBFA. For the best 3s achieved, in both simulation and 
experimentation ABFA achieved lower 3s value compared to SBFA. It has also been 
demonstrated that significant vibration reduction at the end-point of the manipulator can 

be achieved by realising ABFA-based end-point acceleration feedback control into the 

control structure.  
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CHAPTER 8  

CONCLUSION AND FUTURE WORK 
 

 

8.1. Summary and conclusion 

Investigations into the development of biologically-inspired soft computing approaches 

based on bacterial foraging algorithm (BFA) for modelling and control of dynamic 

systems have been presented. The work has focused on the modification of BFA so that it 

could have faster convergence speed and better accuracy. The convergence speed has been 

defined as the number of steps needed by algorithm to converge to the optimum value. To 

validate their performances, the modified BFAs have then tested both on benchmark 

functions and in dynamic modelling and control of a flexible manipulator system.   

The original BFA proposed by Passino (2000, 2002) has been described in detail 

together with its current applications and current modifications. It can be noted from the 

preliminary simulation on the parameter selection and its impact that the most influential 

factors on convergence are initial positions of bacteria and chemotactic step size (����) 

while the most influential factors for accuracy are the number of chemotactic steps per 

bacterium lifetime between reproduction steps (��), the number of reproduction steps 

(���), the number of elimination and dispersal events (��	) and chemotactic step size 

(����). If initial positions of bacteria are chosen randomly in the nutrient media and 

adequate ��
 ��� and ��	 values are provided, then the most influential factor for both 

convergence and accuracy is the chemotactic step size (����).  

The original BFA uses a constant chemotactic step size (����) regardless of the 

nutrient value. In a minimisation case, if the nutrient value is big it means that bacteria are 

in the places which are far away from the global minimum. Bigger ���� makes BFA 

converge to the optimum value faster. It can be noted from the literature that the 

chemotaxis mechanism of BFA results in oscillation around the global optimum point or 

global minimum point in the minimisation case. In order to make bacteria head to the 

global minimum point without oscillation, very small chemotactic step size ����) is 

needed. As a consequence, very small ���� value requires BFA needing larger number of 

steps to converge to the optimum value. Thus the strategy adopted in this work for 

achieving faster convergence without oscillation around the global minimum has been to 
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use large ���� when the nutrient value is big and very small ���� when the nutrient value 

is very small near the global minimum point. Four novel approaches which allow ���� 

change regarding the nutrient value have been presented and discussed. The BFA with 

adaptation schemes based on three functions, namely linear, quadratic, exponential and 

fuzzy logic referred to as LABFA, QABFA, EABFA and FABFA respectively have been 

investigated. In order to evaluate their performances, these four proposed algorithms have 

been used to find optimum point of seven commonly used benchmark test functions and 

the results compared to that of SBFA. In the comparison process, all ABFAs and SBFA 

used the same general parameters, the only difference has been that SBFA used constant 

���� while ABFAs have used adaptable chemotactic step size. It has been demonstrated 

that the BFAs with the adaptable chemotactic step size, referred to as ABFA, have 

performed faster in convergence speed to global optimum and have been able to achieve 

better nutrient value as compared to SBFA. Thus, all the four proposed algorithms can 

potentially be used in the applications to replace the constant chemotactic step size in 

SBFA. 

A thorough investigation of modelling of a single-link flexible manipulator system 

with ABFAs has been carried out. ABFAs have been used for finding optimal parameters 

of ARX models characterising the manipulator from torque input to hub-angle, hub-

velocity and end-point acceleration outputs. While the developed models have represented 

the dynamic behaviour of the system well, it has further been demonstrated that the 

ABFAs have outperformed SBFA in terms of convergence speed and accuracy. 

 Investigations have been carried out for using the proposed ABFAs to optimise 

NN-based models characterising the dynamic behaviour of the flexible manipulator. Three 

SISO models have been constructed to represent the dynamic behaviour of the single-link 

flexible manipulator: from torque input to hub-angle, hub velocity and end-point 

acceleration. While the ABFA-NN based models have represented the dynamic behaviour 

of the system well, a comparative assessment of the results has revealed the ABFAs have 

outperformed the SBFA in terms of convergence speed and optimal cost function value. 

 Further investigations of using ABFAs in a modelling context has involved for 

optimising FL-based models to represent the dynamic behaviour of the single-link flexible 

manipulator system. ABFAs have been used to develop three FL-based SISO models to 

represent the system behaviour from torque input to hub-angle, hub-velocity and end-point 

acceleration outputs. It has been demonstrated that the system behaviour has been 
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characterised well with using Mamdani type fuzzy rules and Gaussian type membership 

functions. Furthermore, a comparative assessment of the results has revealed superiority of 

the ABFAs over SBFA in terms of speed of convergence and optimal cost function value 

reached. 

 In a control context, the proposed ABFAs have been used for control application, 

ABFAs proposed and discussed in Chapter 4 have been initially adopted to tune 

parameters of JBC PD control for hub-angle trajectory tracking of the single-link flexible 

manipulator system. A cost function including MSE and weighted response overshoot and 

undershoot has been developed and investigations have revealed that with such a cost 

function the response overshoot/undershoot is significantly reduced. The control structure 

has been extended further to incorporate end-point acceleration feedback for end-point 

vibration reduction. Two type of controllers, namely PD and PID have been designed 

using ABFAs and placed in the end-point acceleration feedback loop. Investigations have 

revealed that the system has performed well at set-point tracking as well as end-point 

vibration reduction with the developed control approaches. Moreover, comparative 

assessment of the results has revealed superiority of the ABFAs over SBFA in terms of 

speed of convergence, optimal cost function value reached and system response. In the 

comparative assessment carried out throughout this work the same general BFA 

parameters have been used for ABFAs and SBFA and all bacteria have initially been 

placed randomly across the nutrient media. This implies that the superior performance 

achieved with the ABFAs over SBFA can be attributed to the adaptable chemotactic step 

size in the ABFAs. 

 

8.2. Future work 

In line with present work, the potential works to be explored in the future including the 

following: 

 

8.2.1. Applications of BFAs for vibration control of a single-link flexible 

manipulator systems and other flexible structures 

It can be noted from the literature that BFA has not widely been used for vibration control 

of single-link flexible manipulator systems and other flexible structures such as flexible 

beam and flexible plate. The potential applications that BFA can be used include 

optimising vibration controller types such as iterative learning control (ILC), FL control, 

NN control and command shaping. 
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8.2.2. Applications of BFAs for modelling and control of a multi-link flexible 

manipulator systems 

Multi-link flexible manipulator system is a flexible manipulator which contains more than 

one joint. In such case, there are more than one hub-angular movement to be controlled 

and also mechanism of vibration reduction will be much more very challenging compared 

to a single-link one. In order to obtain dependable modelling and reliable controller, BFAs 

could be used for both modelling and controlling task. Literature suggested that only a few 

works have been reported in this application so that there are still plenty open spaces to 

fill. 

 

8.2.3. Applications of BFAs for robotic modelling and control 

It can be noticed from the literature that only a few applications of BFA in the area 

robotics have been reported. Thus BFAs may be adopted for modelling and control of 

robotic systems. 

 

8.2.4. Applications of BFAs in modelling and control paradigms for paraplegic 

mobility 

The literatures show that there are only few works on the application of BFAs in the areas 

of biomedical engineering especially with paraplegia have been reported. Thus there is 

potential for BFAs to develop optimal muscle models and associated control for paraplegic 

mobility purposes. 

 

8.2.5. Hybridisation of BFA with other biologically-inspired soft computing 

techniques 

In the current work, investigations were only focused on the modification of BFA 

including development of hybrid BFA-FL and BFA-NN to get better accuracy and faster 

convergence than original BFA. Hybridisation and comparison with other soft computing 

techniques such as honey bee, ant colony optimisation, clonal expansion etc would be very 

interesting. The comparison can be made based on several aspects such as their accuracy, 

convergence speed and possibility for real time application.  

 

8.2.6. Implementation of BFA in real-time 

Most of the works reported in the literature have involved used of BFA in simulations and 

only a few reports indicated the application of BFA in the real time. The main issue is due 
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to the computational time of BFA that does not meet real-time requirements with currently 

available processors. The potential solutions to solve this is by modifying original BFA 

algorithms, applying certain computation techniques such as parallel computation, using 

high performance processing devices and etc. Besides its huge challenge, the application 

of BFA in the real time application in various areas such as robotics, biomedical 

engineering, is very promising. 

 

8.2.7. Multi-objective BFA 

The current work in this thesis was devoted to single-objective optimisation. For highly 

complex optimisation tasks, which involve two or more conflicting objectives to be met, 

multi-objective optimisation technique is needed. It can be noted from the literature that 

multi-objective evolutionary algorithms were the dominant techniques to be used and only 

a few works on multi-objective BFA have been reported. Despite its huge challenge, multi-

objective BFA offers many potential advantages. 

  

8.2.8. Ensemble computation using BFA 

In some applications, such as pattern classification, feature selection, several algorithms 

need to work together to solve the problem. Collection of algorithms which work together 

for solving one common task is called as ensemble computing. It looks like many people 

working together to finish one common task. Reports in the literature suggest that 

evolutionary algorithm based ensemble computing have been proposed by researchers. 

However, ensemble computation based on BFA has not been reported yet. The BFA can 

be used such as for optimising parameters of classifiers used in the ensemble and etc. 

Thus, investigation on possible BFA based ensemble computing will be interesting to 

pursue.   

 

8.2.9. Implementation of BFA in grid computing 

Grid computing is computation technique by using multi-computer resources to achieve 

common goal. It can be noticed from the literature that the use evolutionary algorithms 

have been reported successfully in grid computing. However, the application of BFA in 

grid computing has not been reported yet. Inspired by the success of evolutionary 

algorithms in grid computing, possible application of BFA in grid computing could be 

investigated. 
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