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Abstract

Image segmentation is an important task in many image analysis applications,
where it is an essential first stage before further analysis is possible. The level-
set method is an implicit approach to image segmentation problems. The main
advantages are that it can handle an unknown number of regions and can deal
with complicated topological changes in a simple and natural way. The research
presented in this thesis is motivated by the need to develop statistical method-
ologies for modelling image data through level sets. The fundamental idea is to
combine the level-set method with statistical modelling based on the Bayesian
framework to produce an attractive approach for tackling a wider range of seg-
mentation problems in image analysis.

A complete framework for a Bayesian level set model is given to allow a wider
interpretation of model components. The proposed model is described based
on a Gaussian likelihood and exponential prior distributions on object area and
boundary length, and an investigation of uncertainty and a sensitivity analysis
are carried out. The model is then generalized using a more robust noise model
and more flexible prior distributions.

A new Bayesian modelling approach to object identification is introduced. The
proposed model is based on the level set method which assumes the implicit
representation of the object outlines as a zero level set contour of a higher di-
mensional function. The Markov chain Monte Carlo (MCMC) algorithm is used
to estimate the model parameters, by generating approximate samples from the
posterior distribution. The proposed method is applied to simulated and real
datasets.

A new temporal model is proposed in a Bayesian framework for level-set based
image sequence segmentation. MCMC methods are used to explore the model
and to obtain information about solution behaviour. The proposed method is
applied to simulated image sequences.
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Chapter 1

Introduction

1.1 General

In image analysis, segmentation is often an essential first task before any fur-

ther analysis is carried out. The goal of image segmentation is to partition a

given image into meaningful regions based on some characterising features, for

example colour, intensity, or texture. These regions are often known as objects

and background. Image processing can be considered as a problem in statistical

inference (Besag, 1993). The key advantages of using statistical image segmen-

tation methods is the use of statistical models which provide a flexible frame-

work for modelling and describing the segmentation process.

In image segmentation problems, the data is a noisy copy of the true image;

typically, also the data image might be blurred, which is the main focus in this

thesis. Blurring has the effect of combining information from spatially close

locations, where the data are similar to the true image; the regions within the

image can be identified reliably using image segmentation without any addi-

tional data processing. In contrast to blurring, a projective transformation has

the effect of combining information from locations that are spatially far apart

(Aykroyd, 2015). Here, the image is likely to have the effects of the noise and the

projective transformation as in tomography, an imaging technique which has

been used widely in many medical, geological, and industrial applications (see

for example Aykroyd, 2018; West et al., 2004; Aykroyd et al., 2016) for imaging

an object using measurements taken outside or on the boundary of the object.

1
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The domain of the image is discretized, and then image segmentation becomes

an inverse problem. In such image problems, the segmentation task becomes

more difficult or even impossible (Aykroyd, 2015).

Image segmentation approaches can be considered as low- or high-level. In

low-level approaches, the image is interpreted locally based on pixel represen-

tations. The segmentation task in this approach aims to classify individual pix-

els using multivariate analysis techniques. In early work by Besag (1986), the

image was considered as a continuous two-dimensional region divided into

pixels. Each pixel has a specific colour from a finite set of colours, the true

colour is unknown, and the segmentation task aims to reconstruct the image. In

contrast to pixel representations, the high-level approach assumes that the im-

age contains similar features or objects and the aim is to identify and describe

the objects using statistical models. In recent years, there has been a dramatic

increase in the use of Bayesian statistical models in the identification and de-

scription of the objects in images. For background to Bayesian image analysis,

see Mardia and Kanji (1993), and Mardia (1994). Also for a recent review of

the statistical approach to image analysis, see Aykroyd (2015) and references

therein.

For Bayesian image modelling, one requires a prior model, which describes

the prior information about objects in a given image, and the likelihood, which

specifies the distribution of the data given information about the objects. Using

Bayes’ theorem, the likelihood and the prior model are combined to produce

the posterior distribution of the objects, which can be used for segmentation

and object recognition. However, in some practical applications, the optimiza-

tion of the posterior density cannot be performed analytically, however stochas-

tic optimization methods, the most successful of which is Markov chain Monte

Carlo (MCMC), can be used in many Bayesian statistical estimation problems.

Early work in statistical Bayesian imaging was carried out by Besag (1993), who

suggested the use of prior information in image analysis. Then, in the work by

Geman and Geman (1984), ideas about the low-level approaches were given.

In high-level Bayesian image analysis, modelling could be characterized by the

deformable-templates approach (see for example Grenander, 1993; Grenander

and MacRae Keenan, 1993). In these methods, objects in images are represented

by a deformed template (e.g a closed polygon), which is defined in terms of a
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number of parameters. In particular, the template can be formulated as a model

for the location, size, orientation, and shape of the objects. In many problems,

it is possible to separate out these parameters and to model each one indepen-

dently. A simple example of a template is a circle, which can be described by

parameters: the centre and the radius of the circle (Mardia, 1996). Hurn et al.

(2001) represent a particular deformable template model for locating and la-

belling cells in microscope slides. Hobolth et al. (2003) propose a flexible con-

tinuous parametric shape model for star-shaped planar objects. Dryden et al.

(2006) propose a new deformable template model based on Voronoi polygons

for the segmentation of muscle fibre images.

Active curve models, also known as snakes, were first introduced by (Kass et al.,

1988) as a flexible and attractive model in image segmentation. They have been

used widely for image segmentation (see for example Horritt, 1999; Park et al.,

2001). The technique is expressed usefully in terms of statistical terminology

in Mardia (1996). In this method, the outline of an object is represented by a

set of points around the boundary which are connected by splines. Deformable

template techniques have also been used for Bayesian segmentation in image

sequences (see for example Phillips and Smith, 1993; Mardia et al., 1992).

Similar to active contours, level-set methods (Osher and Sethian, 1988) perform

segmentation by evolving a contour in an image. The contour is embedded in a

higher dimensional surface where it remains closed and non-intersecting. The

advantage of the level-set method compared to the snake method, is that it al-

lows for splitting and merging of the contours without any additional process-

ing. This presentation makes the method simple for use in image segmentation,

especially in some applications where the number of regions is unknown and

there is no information such as size and shape. Also the method is flexible, al-

lowing it to be used in temporal modelling where objects move, and also change

their shape and size; these changes might also include merging and splitting of

the objects themselves.

The main aim of this thesis is to propose and investigate statistical method-

ologies for modelling image data through level sets. The fundamental idea is to

combine the level-set method with statistical modelling, based on the Bayesian
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framework, to produce an attractive approach for tackling a wider range of seg-

mentation problems in image analysis.

In this thesis, all calculations were performed in R statistical software (R Core

Team, 2018).

1.2 Outline of the thesis

This thesis is divided into seven chapters.

Chapter 2 presents the core concepts of the level-set method, introduced by Os-

her and Sethian (1988). Based on the Chan-Vese model (Chan and Vese, 2001),

a detailed derivation of the level-set algorithm for image segmentation is given

with discussion of some practical issues. The performance of the method is in-

vestigated using simulated and real images.

Chapter 3 introduces a complete framework for the Bayesian level-set model,

which allows for a wider interpretation of model components. The proposed

model is described based on a Gaussian likelihood and exponential prior dis-

tributions on the area of the objects and the length of the boundaries. Vari-

ous aspects of sensitivity analysis are discussed. In particular, the influence of

individual measurements and re-weighting of measurements are considered,

along with random perturbations of the measurements. Also, the sensitivity

to the choice of prior model parameters is considered. In some applications

there might be groups of data which are missing; thus the weighted likelihood

approach can also be used to fit the model, as there is no requirement for a com-

plete dataset.

In Chapter 4, a robust Bayesian model for image segmentation through level

sets is investigated. The Student’s t-distribution is proposed as the error model,

and beta and gamma distributions are used as more flexible prior distributions

to model the area of objects and the length of boundaries. The new model is

used to analyse simulated image data, and compared with the fit of the model

proposed in Chapter 3.
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Chapter 5 describes a new Bayesian approach to level-set based image segmen-

tation, and its implementation for the identification of objects. The Markov

chain Monte Carlo algorithm is used to estimate the model parameters and

to explore the proposed model, by generating approximate samples from the

posterior distribution. The proposed algorithm is tested on a wide variety of

grey-level simulated images and real image data.

In Chapter 6, a temporal Bayesian modelling approach based on level sets is

proposed, with interest in the inclusion of temporal prior information, and the

detailed methodology of how to incorporate this information is introduced and

discussed. The Markov chain Monte Carlo (MCMC) method is used to perform

posterior estimation, which provides measures of uncertainty, as well as point

estimates. The method is illustrated using simulated sequences of images and

the results are discussed.

Chapter 7 gives the final summary and conclusion of the thesis, and it outlines

some suggestions for future work.



Chapter 2

The standard level-set method

2.1 Introduction

The level-set method (LSM) was introduced by Osher and Sethian in 1988 as

a numerical technique to capture and analyse the motion of interfaces using

appropriate partial differential equations, such as the Hamilton–Jacobi partial

differential equations (Osher and Sethian, 1988). The basic idea behind the LSM

is to define an (n−1) dimensional interface implicitly as the zero-level of an n di-

mensional function called the level-set function. An appropriate choice for the

level-set function φ is the signed distance function, see Sethian (1999) and Os-

her and Fedkiw (2006). The motion of the interface is controlled by the motion

of the level-set function. Therefore, the LSM can handle topological changes of

the interface in a natural and robust way.

Segmentation is an essential first step in many imaging problems. Segmenta-

tion involves partitioning the given image into meaningful regions, which are

often an object region and a background region. For this aim, active contour

models have been widely studied which use evolving contours that move to-

wards object boundaries. In image segmentation, the idea of using active con-

tours was introduced in 1988 by the seminal work of Kass et al. (Kass et al.,

1988). In these parametric models, evolving contours are presented explicitly

during the dynamic process. This approach, however, does not allow contours

to split or merge; for example if the process begins with one contour then, to

track multiple objects, the active contour needs to split. On the other hand, if

6
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the process begins with multiple initial contours then the active contours may

need to merge. In these models the stopping criteria is based on a gradient func-

tion; thus, in noisy images where object segmentation becomes more difficult,

the evolving curve might pass the object boundaries or stop at the wrong part

of the image.

The LSM is a flexible and simple technique to overcome the limitations of ac-

tive contour models in image segmentation. Chan and Vese (Chan and Vese,

2001) introduced a model to identify the objects in images based on the Mum-

ford–Shah model (Mumford and Shah, 1989) and the LSM (Osher and Sethian,

1988). The Chan–Vese model is more applicable than classic segmentation meth-

ods. In this model, the boundary details are implicit and stopping the evo-

lution process does not depend on the image gradient. This implies that the

Chan–Vese model can detect objects with or without well-defined boundaries.

Further, there is no need for a smoothing step before beginning the segmenta-

tion process, as noisy images can be segmented efficiently. As the model is built

on the LSM formulation, objects are detected automatically.

The LSM has been used successfully in many imaging applications, including

image processing, computer vision and graphics, see Tsai and Osher (2003). Re-

cently, a survey on the development of LSMs to solve inverse problems and for

optimal design was conducted by Burger and Osher (2005). Background on the

LSM can be found in Sethian (1999), Osher and Fedkiw (2006) and Osher and

Sethian (1988). Further, an overview of the LSM, its various applications and

results can be found in Osher and Fedkiw (2001).

In the next section, the core concepts of the LSM are introduced. Section 2.3 de-

scribes the level-set approach to image segmentation based on the Chan–Vese

method. Section 2.4 explains some practical issues involved in using the LSM.

The method is applied to a sequence of simulated images with the numerical

results given in Section 4.4. Finally, in Section 2.6, the algorithm is applied to

real data.
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R1

φ > 0

R0

φ < 0

γ

φ = 0

FIGURE 2.1: Inside area with φ > 0 and outside area with φ < 0.

2.2 The LSM concept

Let γ be a closed curve in the domain S ⊂ R2. Further assume, γ partitions S

into non-overlapping regions; R1, which denotes the region inside γ, and R0,

which denotes the region outside γ. The LSM is based on the implicit definition

of γ as the zero-level of the embedded function φ(s), where s ∈ S. The function

φ is called the level-set function, and it is defined for all s, see Figure (2.1).

The level-set function can be considered as a signed distance function, with

different signs at the two sides of the boundary, φ(s) = 0, and | φ(s) | gives

the smallest distance from s to the boundary. For an evolving process, the zero

level-set for any time t is defined as γ(t) = {s ∈ R2 | φ(s, t) = 0}. The level-set

equation describes the motion of the curve γ implicitly. Figure 2.2 shows the

evolution of the zero level-set γ starting with two separate expanding curves

(in red). Later in time, the topology changes, leading to a single curve. For all

s, the function φ has the following properties, see Figure 2.1:

φ(s, t) < 0; for s ∈ R0,

φ(s, t) = 0; for s ∈ γ,

φ(s, t) > 0; for s ∈ R1. (2.1)
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φ(x, t = 0)

φ(x, 0) = 0

φ(x, t = 1)

φ(x, t = 2)

FIGURE 2.2: Motion based on the time evolution. The curve γ(t) is always given by
the zero level-set of the evolving function φ.

2.3 Segmentation via the LSM

In this section, the level set formulation of the Chan–Vese model and the details

of the numerical solution are described. This model was proposed in Chan

and Vese (2001) to detect objects in an image, based on the level-set method.

Assume that a given function y on the domain S, is formed by two regions: the

first region R1 with the intensity µ1, and the second region R0 with the intensity

µ0. Assume further that γ is a curve, in which the region R1 is inside γ and the

region R0 is outside γ. Consider the problem of detecting the object which is
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represented by the region R1 with the intensity µ1. The Chan–Vese solution is

obtained by minimizing an energy function made up of two parts: the fitting

term χ, which measures the model’s mismatch, and the regularising term Υ,

which ensures the stability of the solution. The first part is defined as follows:

χ(y) =

∫
R0

(y(s)− µ0)
2ds +

∫
R1

(y(s)− µ1)
2ds. (2.2)

Now, consider the Heaviside function H(z), which is defined as follows:

H(z) =

1 if z ≥ 0,

0 otherwise,
(2.3)

and the Dirac delta function δ(z), which is defined as follows:

δ(z) =
d

dz
(H(z)) =

∞ if z = 0,

0 otherwise.
(2.4)

Thus, the model mismatch can be re-written as follows:

χ(φ) =

∫
S
(y(s)− µ0)

2(1−H(φ(s)))ds +

∫
S
(y(s)− µ1)

2H(φ(s))ds. (2.5)

The Heaviside and Dirac delta functions are also used in the second part of

the model, which consists of a weighted sum of the total area of the objects, A∗,

and the total length of the boundaries of the objects, L∗. These terms can be

expressed as follows:

A∗ = A(φ(s > 0)) =

∫
S
H(φ(s))ds, (2.6)

and

L∗ = L(φ(s = 0)) =

∫
S
| ∇H(φ(s)) | ds =

∫
S
δ(φ(s)) | ∇φ(s) | ds. (2.7)
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Thus, the regularizing term can be written as

Υ(φ) = α

∫
S
H(φ(s))ds + λ

∫
S
δ(φ(s)) | ∇φ(s) | ds, (2.8)

where the non-negative parameters λ and α define the weight of the two com-

ponents. For example, large values of α give large weight for the area of the

object resulting in short boundaries, and large values of λ give large weight for

the length of the boundary resulting in small objects.

Combining the parts in Equations 2.8 and 2.5, the energy function with the pa-

rameter φ, µ0, µ1 is given by

E(φ, µ0, µ1) =

∫
S
(y(s)− µ0)

2(1−H(φ(s)))ds +

∫
S
(y(s)− µ1)

2H(φ(s))ds

+α

∫
S
H(φ(s))ds + λ

∫
S
δ(φ(s)) | ∇φ(s) | ds. (2.9)

To simplify the notation, Equation 2.9 can be re-written again as follows:

E(φ, µ0, µ1) =

∫
S
(y(s)− µ0)

2(1−H(φ))ds +

∫
S
(y(s)− µ1)

2H(φ))ds

+α

∫
S
H(φ)ds + λ

∫
S
δ(φ)) | ∇φ | ds. (2.10)

The parameters of the model are estimated by minimising the energy function

in 2.10, with respect to φ, µ0, µ1, as follows:(
φ̂, µ̂0, µ̂1

)
= arg min

φ,µ0,µ1

E(φ, µ0, µ1).

Hence, the estimates are found by solving the following system of equations:

∂E
∂φ

= 0,
∂E
∂µ0

= 0 and
∂E
∂µ1

= 0. (2.11)
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The equations in 2.11 are obtained as follows. First, minimise the energy func-

tion 2.10 with respect to φ. It is not possible to compute the derivative with

respect to φ directly; instead, the Euler–Lagrange framework and Green’s theo-

rem are used to calculate ∂E/∂φ. For each integral in 2.10, the Euler–Lagrange

equation is computed separately, with respect to φ, in the following way. First,

the Euler–Lagrange equation for the integral
∫

S(y(s) − µ0)
2(1 − H(φ))ds with

g1(φ, φ
′, t) = (y(s)− µ0)

2(1−H(φ)) is given by

∂g1

∂φ
− d

dt

(
∂g1

∂φ′

)
= −(y(s)− µ0)

2δ(φ)− 0 = −(y(s)− µ0)
2δ(φ). (2.12)

Secondly, the Euler–Lagrange equation for the integral
∫

S(y(s) − µ1)
2H(φ))ds

with g2(φ, φ
′, t) = (y(s)− µ1)

2H(φ)) is given by

∂g2

∂φ
− d

dt

(
∂g2

∂φ′

)
= (y(s)− µ1)

2δ(φ)− 0 = (y(s)− µ1)
2δ(φ). (2.13)

Thirdly, the Euler–Lagrange equation for the following integral: α
∫

S H(φ)ds,

with g3(φ, φ
′, t) = αH(φ) is given by

∂g3

∂φ
− d

dt

(
∂g3

∂φ′

)
= αδ(φ)− 0 = αδ(φ). (2.14)

Finally, the Euler–Lagrange equation for the last integral λ
∫

S δ(φ)) | ∇φ | ds

with g4(φ, φ
′, t) = λδ(φ)) | ∇φ | is given by

∂g4

∂φ
− d

dt

(
∂g4

∂φ′

)
=

(
λδ′(φ) | ∇φ |

)
− d

dt

(
λδ(φ)∇. | ∇φ |

)
,

= λ

[
δ′(φ) | ∇φ | −∇.

(
δ(φ)∇. | ∇φ |

)]
,

= λ

[
δ′(φ) | ∇φ | −

(
δ′(φ)∇φ.∇. | ∇φ | +δ(φ)∇(∇ | ∇φ |)

)]
,

= λ

[
δ′(φ) | ∇φ | −

(
δ′(φ)∇φ.∇. | ∇φ | +δ(φ)∇.

(
∇φ
| ∇φ |

))]
,

= λ

[
δ′(φ) | ∇φ | −δ′(φ) | ∇φ | −δ(φ)∇.

(
∇φ
| ∇φ |

)]
,

= −λδ(φ)∇.
(
∇φ
| ∇φ |

)
. (2.15)

The total Euler–Lagrange equation for E is given by the summation of Equa-

tions 2.12, 2.13, 2.14 and 2.15 and is considered to be the functional derivative
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of E with respect to φ. Thus:

∂E
∂φ

= −(y(s)− µ0)
2δ(φ) + (y(s)− µ1)

2δ(φ) + αδ(φ)− λδ(φ)∇.
(
∇φ
| ∇φ |

)

= δ(φ)

[
− (y(s)− µ0)

2 + (y(s)− µ1)
2 + α− λ∇.

(
∇φ
| ∇φ |

)]
. (2.16)

The level-set equation is the negative of ∂E/∂φ in 2.16. Thus:

∂φ

∂t
= −∂E

∂φ
= δ(φ)

[
− (y(s)− µ0)

2 + (y(s)− µ1)
2 + α− λdiv

(
∇φ
| ∇φ |

)]
. (2.17)

The equation ∂E/∂φ = 0 cannot be solved explicitly, but instead it can be solved

using the iteration scheme,

φk = φk−1 + ∆t.
∂φ

∂t

∣∣∣∣
φk−1

, for k = 1, . . . . (2.18)

The estimation of φ is then the solution found by this iterative scheme.

Now, to calculate the estimates of µ0 and µ1, consider the partial derivatives

of the energy function 2.10, first with respect to µ0 and then with respect to µ1.

Keeping φ and µ1 fixed and minimizing the energy function with respect to µ0

gives us the following:

∂E
∂µ0

= −2

∫
S
(y(s)− µ0)(1−H(φ))ds,

= −2

[ ∫
S
y(s)ds− µ0

∫
S
ds−

∫
S
y(s)H(φ)ds + µ0

∫
S
H(φ)ds

]
,

= −2

[ ∫
S
y(s)ds− µ0

∫
S
(1−H(φ))ds−

∫
S
y(s)H(φ)ds

]
. (2.19)

Setting Equation 2.19 to zero, the estimate of µ0 is as follows:

µ̂0 =

∫
R0
y(s)ds∫
R0
ds

. (2.20)
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Similarly, to calculate the estimate of µ1, with fixed φ and µ0. The partial deriva-

tive of E , with respect to µ1, is calculated as follows:

∂E
∂µ1

= −2

∫
S
(y(s)− µ1)H(φ)ds,

= −2

[ ∫
S
y(s)H(φ)ds− µ1

∫
S
H(φ)ds

]
. (2.21)

Setting Equation 2.21 to zero, then the estimate of µ1 is as follows:

µ̂1 =

∫
R1
y(s)ds∫
R1
ds

. (2.22)

For the numerical calculations, the problem needs to be discretized. Consider

an N × N observed image y = {yi : i = 1, . . . , n = N2} with pixel i located

at coordinate (i1, i2) where 1 ≤ i1, i2 ≤ N . The algorithm starts by considering

a simple geometric shape, such as a circle, ellipse or square, as the initial zero

level-set γ0. Also the level-set function φ will be discretized at the pixels, this

gives the level-set matrix, which is denoted by ϕ. Then the initial level-set ma-

trix ϕ0 is calculated using the signed shortest distance from a pixel to the zero

level-set. First, a distance function d is defined as

d(i1, i2) = min
(i01,i

0
2)

(|(i1, i2)− (i01, i
0
2)|), (i01, i

0
2) ∈ γ0.

Then the level-set matrix is the signed distance

ϕ0(i1, i2) =


−d(i1, i2) for all (i1, i2) ∈ R0,

d(i1, i2) = 0 for all (i1, i2) ∈ γ0,

+d(i1, i2) for all (i1, i2) ∈ R1.

(2.23)

For example, if γ0 is a circle, then the shortest distance between (i1, i2) and the

circle is |
√

(i1 − cx)2 + (i2 − cy)2−r|, where (cx, cy) is the centre of the circle, and

r is the radius. Hence ϕ0 is calculated using the signed distance to the circle

ϕ0(i1, i2) =
√

(i1 − cx)2 + (i2 − cy)2 − r, for all (i1, i2) ∈ S.
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Then, µ̂0
0 and µ̂0

1 are computed using the discrete version of Equations 2.20 and

2.22, thus µ̂0
0 and µ̂0

1 are the averages of y in ϕ0 < 0 and ϕ0 ≥ 0 respectively.

Hence

µ̂0 =
1

n0

∑
(i1,i2)∈R0

y(i1, i2), and µ̂1 =
1

n1

∑
(i1,i2)∈R1

y(i1, i2), (2.24)

where n0, and n1 are the number of pixels in regions R0 and R1, respectively.

In a two-dimensional space, the gradient of the function φ is given by ∇φ =

(φx, φy), where φx and φy are the first partial derivatives of φ with respect to the

x direction and y direction, respectively. The length of the gradient is given by

| ∇φ |= (φxx + φyy)
1/2, where φxx and φyy are the second partial derivatives of

the level-set function φ with respect to x and y. Thus

div
(
∇φ
| ∇φ |

)
=
φxxφ

2
y − 2φxφyφxy + φyyφ

2
x

φ2
x + φ2

y

,

where φxy is the mixed partial derivative of φ with respect to x and then to y.

To compute the level-set equation 2.17, the term div
(
∇φ
|∇φ|

)
can be computed

numerically using central differences for the level-set matrix ϕ, which are:

ϕx(i1, i2) =
1

2
(ϕ(i1 + 1, i2)− ϕ(i1 − 1, i2)),

ϕy(i1, i2) =
1

2
(ϕ(i1, i2 + 1)− ϕ(i1, i2 − 1)),

ϕxx(i1, i2) = (ϕ(i1 + 1, i2)− ϕ(i1, i2))− (ϕ(i1, i2)− ϕ(i1 − 1, i2)),

ϕyy(i1, i2) = (ϕ(i1, i2 + 1)− ϕ(i1, i2))− (ϕ(i1, i2)− ϕ(i1, i2 − 1)),

and

ϕxy(i1, i2) =
1

4
(ϕ(i1+1, i2+1)−ϕ(i1−1, i2+1))−(ϕ(i1+1, i2−1)−ϕ(i1−1, i2−1)).

With all components now calculated, the level-set matrix ϕ is updated with

Equation 2.18. The updated level-set matrix may need to be reinitialized to the

signed distance function to the zero level-set, see Sussman et al. (1994). This

reinitialization step is stated as being optional in Chan and Vese (2001) but it
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was applied for a few numerical results presented later. The aim of this is to

keep the zero level-set smooth, let ϕ be the discretization of the output φ from

Equation 2.18, then to reinitialize ϕ and to obtain the new level-set matrix ψ,

the following equation is solved (Sussman et al., 1994)ψ0 = ϕ

ψ = Sign(ϕ).(1−
√
ϕ2
x +ϕ2

y),
(2.25)

where Sign(.) is the sign function, andϕx andϕy are the first partial derivatives

of ϕ with respect to the x direction and y direction, respectively. Equation 2.25

is numerically solved following the scheme proposed in Sussman et al. (1994).

First, consider the following definitions

a = ϕ(i1, i2)− ϕ(i1 − 1, i2), b = ϕ(i1 + 1, i2)− ϕ(i1, i2),

c = ϕ(i1, i2)− ϕ(i1, i2 − 1), d = ϕ(i1, i2 + 1)− ϕ(i1, i2),

and

Sign(ϕ(i1, i2)) =
ϕ(i1, i2)√
ϕ2(i1, i2) + 1

.

In addition, a new function G(ϕ(i1, i2)) is defined as

G(ϕ(i1, i2)) =



√
(max((a+)2, (b−)2)) + max((c+)2, (d−)2)))− 1

if ϕ(i1, i2) > 0,√
(max((a−)2, (b+)2)) + max((c−)2, (d+)2)))− 1

if ϕ(i1, i2) < 0,

0 otherwise,

where the + superscript denotes the positive part , and the − superscript de-

notes the negative part. Hence Equation 2.25 is updated using

ψ(i1, i2) = ϕ(i1, i2)−∆t.Sign(ϕ(i1, i2)).G(ϕ(i1, i2)). (2.26)

The approach is stopped when the difference between ϕk+1 and ϕk is below a

tolerance, as explained in the next section. The overall algorithm is summarized

in Figure 2.3.
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1. Start with an initial zero level-set γ0 and calculate the initial level-set ma-
trix ϕ0 using Equation 2.23.

2. Compute µ̂0
0 and µ̂0

1 given ϕ̂0 using Equation 2.24.

3. Update the level-set function ϕ̂k using Equation 2.18 to obtain ϕ̂k+1.

4. Re-initialize and smooth ϕ̂k+1 using Equation 2.26.

5. Check to see if the solution is stable, that is if ξk < ξcrit, see Equation 2.28.
Otherwise return to Step 2.

FIGURE 2.3: The level-set based image segmentation algorithm.

2.4 Practical implementation

As the energy function 2.10 is non-convex, the minimisation algorithm might

yield many local minimisers. Thus, to obtain one global minimiser the Heavi-

side function H(z) is numerically approximated by a function Hε(z), smoothed

in the same manner as in Chan and Vese (2001) with the corresponding δε(z),

given by the following expressions

Hε(z) =
1

2

[
1 +

2

π
arctan

(z
ε

)]
and δε(z) =

ε

π(ε2 + (z)2)
, (2.27)

where the parameter ε ≥ 0 controls the smoothness of the boundary. It is clear

that, as ε → 0, the regularized functions Hε(z) and δε(z) converge to the usual

functions H(z) and δ(z), respectively. Figure 2.4 shows the regularized func-

tions Hε(z) and δε(z) for some values of ε.

It is not efficient to run the evolution process for a large number of iterations as

this increases the computational time. However, stopping the evolution process

before convergence can lead to undesirable results. It is obvious that when a

steady state is attained there is no significant change in the results. This can

be measured using the mean absolute change of the level-set matrix ϕ at each

iteration as follows:

ξk =

∑
|ϕk −ϕk−1|
N2

, k = 2, 3, . . . . (2.28)
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FIGURE 2.4: Regular Heaviside and delta functions.

For some critical value ξcrit, convergence is declared when ξk < ξcrit. Here,

ξcrit = 10−2∆t, as a balance between convergence and speed. The time step ∆t

plays a key role in the iterative process, as it governs the speed of the motion

and the stability of the solution. For satisfactory results, ∆t should be chosen

carefully. In Chan and Vese (2001), the time step is set as ∆t = 0.1, which is

appropriate for the experiments there.

2.5 Experimental results

Experiments were conducted to demonstrate the performance of the method.

First, a synthetic image with a cut-circle object was considered. The parameters

were set to λ = 0.1 and α = 0.4 after some initial experiments, a sensitivity

analysis will be performed later. The time step was ∆t = 0.01. Here, Figure

2.5 shows a synthetic image of the region of interest. In particular, (a) shows

the uncorrupted image, composed of four regions as a cut-circle shape against

the background, and (b) shows the image corrupted by additive Gaussian noise

with σ = 1.

Figure 2.6 shows the segmentation results for selected iterations, in particular

(a) the initial zero level-set and (b–f) the evaluation of the zero level-set at later

iterations. The initial zero level-set function is defined as a simple curve, that is

a single circle centred in the middle. This circle was used to calculate the initial
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(a) (b)

FIGURE 2.5: Synthetic images showing: (a) the true scene and (b) an example dataset.

●●a ●●b ●●c

●●d ●●e ●●f

FIGURE 2.6: Segmentation results showing the evolution process for the zero level-set.

level-set function. As the process starts, the zero level-set begins to move to-

wards the object boundaries. In (b), the zero level-set surrounds the object, then

it comes closer to the boundaries. In (c), a hole starts to appear in the middle

and grows to segment the four parts in the object separately, as shown in (d).

In (e), the four parts in the cut circle are segmented successfully, with no signif-

icant change after.

The convergence of the algorithm was also investigated by calculating the rate

of convergence ξk/∆t for three different time step values. Figure 2.7 shows



Chapter 2. The standard level-set method 20

0 100 200 300 400 500

0
1

2
3

4

Iterations

R
at

e 
of

 c
on

ve
rg

en
ce

FIGURE 2.7: Rate of convergence for ∆t = 1 (in black), ∆t = 0.1 (in red), and
∆t = 0.01 (in green) with ξcrit = 0.1∆t.

the convergence rates for ∆t = 1, ∆t = 0.1 and ∆t = 0.01. It is clear that,

for ∆t = 0.1 and ∆t = 0.01, as the evolution process begins, there is a lot of

change; later, these changes reduce until the zero level-set converges. However,

when ∆t = 1, there is no decrease in the rate of convergence; thus, the algo-

rithm might not converge with this choice of ∆t. As pictured, the algorithm

stopped after around 200 iterations when ∆t = 0.1 and around 300 iterations

when ∆t = 0.01. Thus, it can be stated that, when the time step is small, the al-

gorithm converges slowly, but when the time step is large it may not converge

at all.

The initial zero level-set can be defined arbitrarily without using the truth or the

data. In order to investigate the effect of the choice of the initial zero level-set,

the method was applied to the synthetic image with different initial contours.

Figure 2.8 illustrates the segmentation results with several initial zero level-sets

for the same synthetic image. Each row shows the initial and final zero level-

sets and some in-between. The results show the flexibility of position, size and

shape in the initialisation procedure. However, it is intuitive that the iterative



Chapter 2. The standard level-set method 21

●●a

●●b

●●c

FIGURE 2.8: Segmentation results showing different choices of the initial zero level-set
and the final zero level-set.

process is quicker and the zero level-set settles on objects quickly when the ini-

tial curve is near the true boundary.

The influence of changing the values of the regularizing weights, λ and α, in

the method was also studied. Consider the synthetic image with the cut-circle

object. The algorithm was applied for different values of one parameter while

the other was fixed at zero. Figure 2.9 shows the final zero level-set for varying

values of the length parameter λ with the area parameter α = 0. For λ smaller

than 6, all parts in the object are segmented perfectly. As λ increases, the algo-

rithm fails to segment the cut-circle object individually. When λ = 10, the parts

in the cut circle are segmented as one group, where the zero level-set is repre-

sented by a single circle. For large values of λ, the zero level-set vanishes, and

the iterative process stops. Figure 2.10 shows the effect of changing the values
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of the area parameter α while λ = 0. For small values of α, the algorithm again

fails to segment the cut circle individually, and, as α increases, the results be-

come more desirable. For large values of α, the zero level-set starts to collapse

and then disappears.

●●a ●●b ●●c ●●d

α = 0.5 α = 6 α = 8 α = 10

FIGURE 2.9: Segmentation results with different values of α, with λ = 0.

●●a ●●b ●●c ●●d

λ = 0.5 λ = 6 λ = 8 λ = 10

FIGURE 2.10: Segmentation results with different values of λ, with α = 0.

The method was also applied in a simple dynamic simulation with two circles

moving simultaneously. Figure 2.11 shows the evolution process, beginning

with (a), when one circle hides the other circle. Later, both circles began to move

and the hidden circle appears, as shown in (b), (c) and (d), until they separated,

as shown in (e) and (f). The figure shows the segmentation results. It is clear

the method is capable of tracking dynamically changing boundaries.



Chapter 2. The standard level-set method 23
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FIGURE 2.11: Segmentation results for an image sequence showing data image and
final zero level-set.

2.6 Application to real data

The analysis of image reconstructions in Single Photon Emission Computed To-

mography (SPECT) was considered as a simple illustration of application to real

data. In SPECT, the patient was injected with a radioactively tagged chemical

with the aim of studying metabolic rate or blood flow. Some of the emitted

photons are collected in a system of detectors located around the patient using

a gamma camera. Multiple projections are recorded by the gamma camera at

equally spaced angles around the head of the patient. Then a three-dimensional

reconstruction of the pattern of isotope concentration is formed. It is known

that SPECT data is noisy, thus the reconstruction can be considered as a sta-

tistical estimation problem. However, this estimation is not easy because the

coordinates where the data are collected are not those which are needed in the

reconstruction (Green, 1990).

The original SPECT data was first analysed in Green (1990), but the recon-

structed images were obtained from Aykroyd and Zimeras (1999). A Bayesian

framework for image reconstruction from SPECT data has been proposed in

Green (1990). In particular, the proposed method of reconstruction was based

on a modifying Expectation Maximization (EM) algorithm with the aim of max-

imizing the posterior density which considers prior information about “smooth-

ness” in the isotope concentration.
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In Aykroyd and Zimeras (1999), the method was applied to produce image re-

constructions of the human head, with the aim of highlighting areas of high

blood flow. In particular, the images were first analysed with the assumption of

spatial homogeneity, leading to over smoothing in the image reconstructions.

So a fixed diameter circle was manually placed as a region of interest and the

data re-analysed producing improved results. However, the results so far seen

from applying the level-set method to simulated data suggest that this method

could be an alternative way to define the region of interest and might allow

automatic and case specific regions to be determined. Figure 2.12 shows a se-

quence of six cases equally spaced from the neck to the top of the head. It is clear

that the level-set approach successfully identified the boundaries of the region

of interest, which could be used as a basis for further analysis. The method has

worked in this case, because the reconstructions are extremely smooth, and the

shape of the region of interest is very simple. In particular, there is only one

object which could be considered as a basic geometric object such as a circle or

an ellipse, with smooth boundary.

a b c

d e f

FIGURE 2.12: Results for selected real data showing SPECT reconstructions as a
grey-level image, and final zero level-set as a curve (in red).



Chapter 3

Bayesian modelling and sensitivity

analysis

3.1 Introduction

In the Bayesian approach, the relationship between data and parameters is

given by a likelihood, and relationship between parameters is given by a prior

distribution. Using Bayes’ theorem, these components are combined to produce

a posterior distribution. The idea of incorporating prior information into image

analysis was first suggested by Besag (1983). Later, this idea was developed

by the works of Geman and Geman (1984) and Besag (1986). In these works,

low-level approaches are considered, which use pixel-based models with the

goal of studying image structures pixel by pixel. However, high-level image

processing, using object-based models, aims to find objects or extract geomet-

ric features in images; for example, see Besag and Green (1993). Aykroyd and

Green (1991) present a study comparing these approaches; the study shows the

flexibility of using a global prior against a local prior. For a comprehensive

overview of statistical image analysis, the reader is directed to the collected

works appearing in Mardia and Kanji (1993) and Mardia (1994).

The aim in Bayesian analysis is to fit a model to data, and to summarize the out-

put results using a distribution on the model parameters, this gives an easy way

for interpretation of many phenomena in the real world. In the standard LSM

25
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approach described in Chapter 2, the segmentation process gives only point es-

timates. However, using the Bayesian modelling framework will also provide

information about the precision of the point estimates, that is by measuring

the uncertainty in the estimates. Also, considering prior distributions for the

model parameters as part of a hierarchical model will give a natural way to in-

terpret additional information comparing to the penalty function in the Chan-

Vese model. Further, Bayesian modelling gives more natural motivation for

alternatively likelihood and prior models. In addition, the Bayesian model can

make use of the Markov chain Monte Carlo estimation algorithm, where more

flexibility in model output is possible.

The main objective of this chapter is to give a complete framework for a Bayesian

level-set model. The proposed model is described based on a Gaussian like-

lihood and exponential prior distributions on the object area and boundary

length. Sensitivity to the choice of the prior model parameters is considered;

this is done to investigate the effect of changes to prior parameter values on

the posterior estimates. Moreover, some influence diagnostics are proposed to

assess the sensitivity of the proposed model. The influence of Gaussian per-

turbations of the data are considered; this is done by examining the effects on

the estimation results. Then, in order to identify potentially influential observa-

tions, a leave-one-out approach is used to measure the influence of each obser-

vation on the parameter estimates. After assessing the influential observations,

instead of omitting them, they are re-weighted and used in the model fitting

again. In some applications, groups of the data might be missing; the weighted

approach can also be used to fit the model in these situations as there is no re-

quirement for complete data.

Section 3.2 introduces some definitions and notation that will be used later. A

description of general Bayesian modelling is given in Section 3.3. Section 3.4

gives a detailed derivation of the Bayesian level-set model. Section 3.5 discusses

some different aspects of sensitivity analysis; such as the effect of changes in

prior parameters, the influence of individual measurements using a leave-one-

out approach, and the influence of random perturbations of the measurements.
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3.2 Definitions

Assume that a two-dimensional domainS ⊂ R2 is divided into anN×N grid of

equal-sized square pixels, whereN is an integer. Pixel i is centred at si = (i1, i2),

where 1 ≤ i1, i2 ≤ N , and the vector of these locations, s, defines a finite regular

square lattice. Now, define a discrete variable xi ∈ R for each pixel. Then xi is

called the intensity, and the vector of these pixel variables, x, can be shown as

a grey-level image. Furthermore, assume that the domain S consists of m non-

overlapping regions; for example, objects against a background. These regions

are given by R = {Rk : k = 0, . . . ,m − 1} with corresponding intensities µ =

{µk : k = 0, . . . ,m − 1}. Hence, the domain S can be represented as R0 ∪
. . . ∪ Rm−1 = S with Rk ∩ Rl = ∅, for k 6= l, where ∅ is the empty set. Now

let R∗ = {R1, . . . , Rm−1} denote all objects, and R0 denote the background in

S, respectively. Thus, R∗ = Rc
0, with corresponding intensities µ∗ = µi for

i = 1, . . . ,m− 1. The usual assumption is that an observed image y = {yi : i =

1, . . . , N2} is a noisy copy of the true x; this can be expressed as

yi = xi + εi i = 1, . . . , N2, (3.1)

where

xi =

µ0 if si ∈ R0,

µ∗ if si ∈ R∗,
(3.2)

and the errors εi are independent and identically distributed as N(0, σ2) for

i = 1, . . . , N2. Therefore, the object identification problem can be addressed

by estimating the number of regions, the region shapes, the intensities of the

regions and the noise variance. This can be expressed as the parameter vector

θ = {m,R0, . . . , Rm−1, µ0, µ∗, σ
2}.

3.3 Bayesian approach

In the Bayesian approach the likelihood function and prior distribution are

combined to produce the posterior distribution. The likelihood function rep-

resents the noise model, it is the conditional distribution of the data y given θ
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and denoted as f (y|θ). The data are conditionally independent and all obser-

vations have the same distribution. Thus

f (y|θ) =
N2∏
i=1

f (yi|θ),

where f (yi|θ) is the univariate distribution of yi. If the data are continuous then

f (y|θ) is a continuous probability density function, and a popular example of

this is the Gaussian distribution. Whereas, if the data are discrete then f (y|θ)

is a discrete probability mass function, and an example of this is the Poisson

distribution. The Gaussian distribution is used throughout the thesis, and the

Poisson distribution, which is appropriate for medical imaging applications, is

studied in Chapter 4. The prior distribution expresses general beliefs about the

unknown parameter vector θ. In particular, it is the distribution of the unknown

parameter vector θ and is denoted as p(θ). For each application, the choices for

the prior model are different. In image segmentation problems, there are many

types of additional information that can be considered in the prior distributions,

such as the smoothness of the boundaries between the segmented regions, the

area of the objects and the length of the boundaries, and the number of the ob-

jects.

By using Bayes’ theorem the likelihood and prior distribution are combined to

give a posterior distribution p(θ|y), with the normalized constant f (y), defined

as

p(θ|y) =
f (y|θ)p(θ)

f (y)
. (3.3)

The normalized constant f (y) does not contain any information about the un-

known parameters vector θ, thus it can be removed. Now, consider the log-

posterior distribution

log p(θ|y) = log f (y|θ) + log p(θ)− log f (y). (3.4)

In the classical estimation approach, the maximum likelihood (ML) method is

used to obtain a point estimate where only the likelihood function is involved

in the estimation process. In the Bayesian setting, the corresponding point es-

timate, obtained from the posterior distribution, is called the maximum a pos-

teriori (MAP) estimate. However, the posterior distribution can be used in a

more in depth analysis, as will be seen later. The MAP estimate is obtained by
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maximizing the posterior distribution in Equation 3.3, or equivalently the log-

posterior distribution in Equation 3.4, thus the MAP estimate of the parameter

vector θ can be expressed as

θ̂ = arg max
θ

p(θ|y) = arg max
θ

log p(θ|y). (3.5)

3.4 The Gaussian-exponential model

3.4.1 Model definition

Based on the LSM formulation in Chapter 2, and the definitions in Section 3.2,

the model parameter vector is re-written to θ = {ϕ, µ0, µ∗, σ
2}, where ϕ rep-

resents the discretization version of the level-set function φ. Let f(y|θ) be the

conditional distribution of the observed image y given the parameter vector θ,

and let the noise be modelled by a Gaussian distribution with zero mean and

variance σ2. The likelihood is then given by

f(y|θ) =
1

(2πσ2)N2/2
exp

{
− 1

2σ2

[∑
i∈I0

(yi−µ0)
2 +
∑
i∈I∗

(yi−µ∗)2

]}
, σ > 0, (3.6)

where

I0 = {i : ϕ(si) < 0} and I∗ = {i : ϕ(si) ≥ 0}.

The segmented object region is likely to be compact and small. Although this

is an imprecise belief it must be quantified in the prior model. One option is to

model the area of the object or the length of the object boundary. The simplest

choice is to use an exponential distribution to describe the total area of the re-

gions, which is denoted by A∗, or the total length of the boundaries, which is

denoted byL∗. Thus, the prior distributions forA∗ andL∗ are given respectively

as

p(A∗) = α exp{−αA∗}, A∗ ≥ 0, (3.7)

and

p(L∗) = λ exp{−λL∗}, L∗ ≥ 0. (3.8)
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However, it is not possible to have objects with a very big area and a very small

boundary length, and so length and area variables are not independent of each

other. Often, the area of the objects can give some information about the bound-

ary length and vice versa. In this work, the area of the objects and the length

of the boundaries are, however, modelled independently as a simplifying as-

sumption. In all numerical experiments presented in Chapter 2 there are no

suspicious results. In particular, there are no results where the area is smaller

than expected and the length longer or vice versa which are the joint prior with

higher probability than is realistic. Hence, it can be said that the assumption of

independent area and length is acceptable. In addition, using this specification

the prior model is easy to write down and simple to calculate. Thus A∗ and L∗

will be modelled using the following joint distribution

p(θ) = (αλ) exp{−(αA∗ + λL∗)}, A∗, L∗ ≥ 0. (3.9)

In a Bayesian context, substituting Equations 3.6 and 3.9 into Equation 3.3 gives
the following posterior distribution

p(θ|y) =
1

(2πσ2)N2/2
exp

{
− 1

2σ2

[∑
i∈I0

(yi − µ0)2 +
∑
i∈I∗

(yi − µ∗)2
]}

×(αλ) exp{−(αA∗ + λL∗)},

=
αλ

(2πσ2)N2/2
exp

{
− 1

2σ2

[∑
i∈I0

(yi − µ0)2 +
∑
i∈I∗

(yi − µ∗)2
]

−(αA∗ + λL∗)
}
. (3.10)

This will be used as the basis for estimation.

3.4.2 Parameter estimation

The log-posterior distribution corresponding to 3.10 is

L(θ) = log p(θ|y) = −N
2

2
log(σ2)− 1

2σ2

[∑
i∈I0

(yi − µ0)
2 +

∑
i∈I∗

(yi − µ∗)2

]

−αA∗ − λL∗ + C, (3.11)
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where C contains all constants in Equation 3.10. This equation is the discrete

equivalent of the negative of the level-set energy function in the standard LSM.

Similar to maximum likelihood estimation in classical statistics, in a Bayesian

context a point estimate can be found as the value which corresponds to the

maximum of the posterior distribution, this is called the maximum a posteriori

(MAP) estimate

θ̂MAP = arg max
θ

p(θ|y),

or equivalently based on the log-posterior

θ̂MAP = arg max
θ

log p(θ|y).

If the maximum is located at a turning point then θ̂MAP can be found by dif-

ferentiation. This gives the following equation system, which must be solved

simultaneously

∂L

∂ϕ
= 0,

∂L

∂µ0

= 0,
∂L

∂µ∗
= 0,

∂L

∂σ2
= 0.

This equation system is solved as follows: first, to estimateϕ, fix the parameters

µ0, µ1 and σ2. The partial derivative of 3.11 with respect to ϕ is given by, as has

already been shown in Chapter 2,

∂L

∂ϕ
=
∂(log p(θ|y))

∂ϕ
= δ(ϕ)

[
−(y−µ0)

2+(y−µ∗)2+α−λdiv
(
5ϕ
| 5ϕ|

)]
. (3.12)

Then, the corresponding updating equation is

ϕk = ϕk−1 + ∆t · ∂(ϕ)

∂t

∣∣∣∣
ϕk−1

, for k = 1, ... (3.13)

Second, to estimate the means µ0, µ∗ and the variance σ2, consider the following

partial derivatives

∂L

∂µ0

=
∂(log p(θ|y))

∂µ0

=
1

σ2

∑
i∈I0

(yi − µ0),

∂L

∂µ∗
=
∂(log p(θ|y))

∂µ∗
=

1

σ2

∑
i∈I∗

(yi − µ∗),
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and

∂L

∂σ2
=
∂(log p(θ|y))

∂σ2
= −N

2

2σ2
+

1

2(σ2)2

[∑
i∈I0

(yi − µ0)
2 +

∑
i∈I∗

(yi − µ∗)2

]
.

The parameter values that maximise log p(θ|y) are obtained by analytically solv-

ing the following equations

∂L

∂µ0

= 0,
∂L

∂µ∗
= 0, and

∂(log p(θ|y))

∂σ2
= 0.

Therefore, the parameter estimates are given by

µ̂0 =
1

n0

∑
i∈I0

yi, µ̂∗ =
1

n∗

∑
i∈I∗

yi, and

σ̂2 =
1

N2

[∑
i∈I0

(yi − µ0)
2 +

∑
i∈I∗

(yi − µ∗)2

]
, (3.14)

where n0 and n∗ are the number of data points in regions I0 and I∗ respectively,

and so N2 = n0 + n∗.

3.5 Sensitivity analysis

3.5.1 Prior sensitivity analysis

The influence of changing the prior parameter values is studied; this is based

on the Gaussian-exponential model. In particular, the method is applied first

to the simulated data shown in Figure 2.11 (d), and second to the real data in

Figure 2.12 (b) for different choices of α and λ.

First, the results based on simulated data are discussed. Figure 3.1 shows the

effect of changing the area prior parameter αwhile the length prior parameter λ

is fixed at zero. As the area prior α increases, both the length and area posterior

estimates gently decrease. However, the change in the length posterior is more

gradual than the change in the area posterior. When α is 6.5, the two circles

separate, and then the circles start to shrink until they disappear. However, it

can be said that the estimation is robust to changes in the area prior parameter
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FIGURE 3.1: Posterior sensitivity with respect to changes in area prior parameter α,
and λ = 0.
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FIGURE 3.2: Posterior sensitivity with respect to changes in length prior parameter
λ, and α = 0.

over a broad range of values.

Similarly, Figure 3.2 shows the effect of changing the length prior parameter

λ while the area prior parameter α is fixed at zero. It is clear from the figure

that, as the value of λ increases, there is a slight change in both length and

area. However, when λ = 5, there is a significant change in the length and area;

then there is a slight decrease. Shortly after, the estimated values become zero.

Therefore, for small values of λ, the true objects are segmented very well. Later,

they are both joined with small changes until λ = 5, when the circles start to

disappear. Thus, the estimation results are the same over a wider range of val-

ues compared to the area prior parameter.

Second, the sensitivity analysis for the real data in Figure 2.12 (b) is discussed.
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FIGURE 3.3: Posterior sensitivity with respect to change in the area prior parameter
α for the real data example.
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FIGURE 3.4: Posterior sensitivity with respect to change in the length prior parameter
λ for the real data example.

Figure 3.3 shows a stable decrease in the posterior estimates for the range of α

considered. In Figure 3.4, both posterior estimates for the area and the length

of the object decrease gradually over the range of λ considered. Therefore, the

results here show the robustness of the proposed algorithm over a range of val-

ues of length and area prior parameters; they also show that the output of the

analysis is not sensitive to the precise choice in the prior parameter values.

3.5.2 Local influence

The aim of this section is to study the effect of modest changes in the data on

the parameter estimates. In particular, all data are perturbed by random noise;
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then, reapplying the analysis, the results are used to measure the local influ-

ence of these perturbations. The local influence method was proposed by Cook

(1986) as a method for identifying influential observations in regression analy-

sis. The method has become a popular diagnostic tool because it can be applied

to any model.

Consider a given data set y that is perturbed by defining a vector ω = {ωi:
1 ≤ i ≤ N2}, where the ωi are independently distributed from a Gaussian dis-

tribution with mean zero and variance σ2
ω. Therefore, the perturbed data is

given by

yω = y + ω. (3.15)

Also, there is a non-perturbation vector ω0 such that yω0 = y.
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FIGURE 3.5: The absolute difference between the model parameters from the original
data and the parameters from the perturbed data.

Here, this local influence is assessed by comparing the parameter estimates

from the original and perturbed models as σ2
ω increases. Figure 3.5 (a) shows

the absolute difference between µ̂0 in the original data and µ̂0 in the perturbed

data, that can be defined as ζ = |µ̂0 − µ̂0ω|. In the same figure, (b) shows the ab-

solute difference between µ̂1 in the original data and µ̂1 in the perturbed data,

that can be defined as ζ = |µ̂1 − µ̂1ω|. It is clear in both panels that, as the noise

level increases, there is an increase in the absolute differences for the parame-

ters µ̂0 and µ̂1, showing that the accuracy of the segmentation results is affected,

but the effect of the perturbations is gradual and smooth as σ2
ω changes.
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3.5.3 Case influence and weighted data

For a given data set, not all observations have the same impact on the segmen-

tation results. The aim here is to identify data points that have a significant

impact on the estimation results; these points are called influential points. In

particular, a leave-one-out approach is used to study the influence of individ-

ual observations on the final results. Consider that p(θ|y) is the log-posterior for

the parameter vector θ and the data y = {y1, ..., yN2}. The approach used here is

based on repeatedly omitting one observation at a time and doing an analysis

on the remaining observations. As a result, any significant change in the re-

sults suggests that the omitted observation is influential. The data omitting the

ith observation is denoted by y−i = {y1, ...yi−1, yi+1, ..., yN2} with corresponding

log p(θ|y−i), and the MAP estimate is denoted by θ̂−i.

Let θ̂ be a parameter estimate using all data and θ̂−i be a parameter estimate

using all data while omitting the ith observation. Then, the absolute deviation

from the likelihood function L(θ̂) is given by

ζi = |L(θ̂)− L(θ̂−i)|. (3.16)

As influential observation i tends to have a high value of ζi; when ζi is approx-

imately zero, observation i has no influence on the parameter estimates. To

assess the influence of these points, ζi is calculated for each observation to give

ζ = {ζ1, . . . , ζN2}. For each ζi, a confidence interval is then constructed using the

sample median absolute deviation (MAD) as a robust estimate of the standard

deviation of ζ, which is given by

σ̂ζ = 1.4826 ·median(|ζ1|, . . . , |ζN2|). (3.17)

All points with ζi > 2σ̂ζ are identified as influential points.

In the case where some influential points are identified, observations should

not be treated equally. The observations with a large influence will be given

less weight, and the observations with a small influence will be given more
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FIGURE 3.6: Grey level image showing the dataset (left), and the absolute deviations
for the likelihood function, showing the influential observations (right).

weight. Equivalently, a weighted log-likelihood can be defined as

log f(y|θ,ω) = −N
2

2
log(σ2)− 1

2σ2

[∑
i∈I0

ωi(yi − µ0)
2 +

∑
i∈I∗

ωi(yi − µ∗)2

]
, (3.18)

where ωi ≥ 0 is the weight for the ith observation. Two cases can be considered;

first if the influential observations are known, then ωi = 0 for the influential

observations and ωi = 1 for non-influential observations. Second, when the in-

fluential observations are unknown, a leave-one-out approach is used to iden-

tify potentially influential data points. Then, weight ωi = 2σ̂ζ/ζi is assigned to

each influential observation. Equation 3.18 can then be used to re-fit the model

again, and the corresponding estimate θ̂ω is obtained.

Now the behaviour of influential observations is investigated. Consider Figure

3.6(left) which shows an example of simulated data. The data was simulated

from the Gaussian distribution with µ0 = 10, µ1 = 5 and standard deviation

σ = 0.1. Five observations are chosen randomly, and their intensity values

are changed. In particular, three object observations were replaced by µi = 10

to be from the background region and two background observations were re-

placed by µi = 5 to be from the object region. A leave-one-out approach is used

to identify potentially influential observations. The absolute deviations of the

likelihood function were calculated, and a threshold was set at double the esti-

mated standard deviation of all the absolute deviations. The results are shown

in Figure 3.6(right), it is clear that the influential points are identified as illus-

trated by the red colour (strong influence) and the grey colour (weak influence).
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FIGURE 3.7: Results for final zero level-set from fitting Gaussian model with un-
weighted data (left), zero weights for influential observations (centre), and ωi =
2σ̂ζ/ζi for influential observations (right).

The data has first been analysed using the Gaussian model with unweighted

data, with the result for the final zero level-set shown in Figure 3.7(left). It is

clear that the influential points were classified wrongly, the background obser-

vations were segmented to be from the object region, and the object observa-

tions were segmented to be from the background region. The weighted likeli-

hood defined in 3.18 is now used to fit the model. Two cases are considered:

first zero weights are assigned to the influential observations and the Gaussian

model was fitted, the result is shown in Figure 3.7(centre). Then the weights

ωi = 2σ̂ζ/ζi are assigned for the influential observations, and again the model

was fitted, with the result as shown in Figure 3.7(right). It is clear that by fit-

ting the Gaussian model with weighted influential observations, the four parts

of the cut-circle were identified with no misclassified pixels. The influential

observations were segmented correctly to be in their original regions. To sum-

marise the results two output measures will be considered: first the squared

error (SE) for the area of the object and the length of the boundaries, which is

defined as squared difference between the estimated value and the true value,

and the correct classification rate (CCR), which is defines as the number of cor-

rectly classified pixels divided by the total number of pixels. Table 3.1 displays

the numerical results for the SE and the CCR. It is clear that fitting the Gaussian

model with weighted influential observations gives better results, with low SE

and high CCR.
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Weights CCR SE for the area SE for the length

Unweighted 0.995 0.000003 0.05

ωi = 0 1.000 0.000001 0.03

ωi = 2σ̂ζ/ζi 1.000 0.000001 0.03

TABLE 3.1: The correct classification rate (CCR) and the squared error (SE) for the
area of the object and the length of the boundaries from fitting the Gaussian model
using different weights, for influential points.

3.5.4 Missing data

Images with missing data frequently occur in practical applications. In image

analysis, various methods have been proposed to handle this problem. One

approach is to interpolate the values of these missing data using some estima-

tion method, where the missing data are treated as unknown parameters (Little

and Rubin, 2014). However, the proposed algorithm in this chapter can deal

with this problem naturally. In particular, the LSM is used to identify objects

in a given image through the iterative estimation procedure. In calculating the

level-set matrix ϕ only the pixel positions are used, the values of the data are

not needed, and so ϕ can be defined with missing data. Therefore, the log-

likelihood function in the Gaussian-exponential model does not require a com-

plete dataset. Overall, the level-set value can be defined for those missing data,

and there is no need for any fill-in techniques. In addition to the segmentation

results, this algorithm allows for the segmentation of those missing values.

The following example demonstrates the capacity of the proposed algorithm

for detecting regions with missing data and how it can segment the image au-

tomatically. Figure 3.8 shows data images with different missing regions; white

pixels show the locations of these missing data. The method is applied to the

data images with prior parameters α = 0, and λ = 0.1, then it is applied with

prior parameters α = 1.2, and λ = 0. The results of the final zero level-set are

shown in the figure. It is clear that for α = 0, and λ = 0.1, the objects with

missing regions are identified well. However, with prior parameters α = 1.2,

and λ = 0, the objects were identified but the missing regions were segmented
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a b c

d e f

FIGURE 3.8: Segmentation results showing data images with the final zero level-set:
(a-c) α = 1.2 and λ = 0, and (d-f) α = 0 and λ = 0.1.

a b c

FIGURE 3.9: Segmentation results with two missing regions for different values of the
area prior α.

wrongly.

To investigate how the segmentation results are influenced by changing prior

parameters, the prior for the area is considered. Figure 3.9 shows the final zero

level-set for different values of the prior parameter α. It is clear that, as α in-

creases, those missing regions are identified as background. This is due to the

aim of minimizing the area. The squared error is calculated for the parameter

estimates; with the results shown in Table 3.2. It is clear that the prior parameter

α affects the segmentation results in this situation.
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µ0 µ1 σ2 Length Area

α = 0.1 0.3700 0.0147 0.0288 0.1308 0.0000

α = 1.0 0.3178 0.0175 0.0300 0.1364 0.0003

α = 2.4 0.2065 0.0260 0.0375 0.0398 0.0014

TABLE 3.2: The SE measures of parameters from segmentation results with two miss-
ing regions.

3.6 Conclusions

In this chapter, a Bayesian re-interpretation of the standard LSM was given.

The estimation algorithm was given in full details to obtain the MAP estimate

of the level-set matrix. The method has been successfully applied to simulated

images, as well as to real 2D images obtained from medical SPECT data. A

sensitivity analysis was performed where the effect of changes in prior parame-

ters were considered and the influence of individual measurements along with

random perturbations of the measurements were studied. A further extension,

using a weight function, was proposed to account for unreliable data values or

even missing data. The corresponding model was applied to simulated data

showing its suitability for image segmentation.



Chapter 4

Robust Bayesian modelling

4.1 Introduction

The aim of robust analysis is to build models that are not sensitive to small or

moderate changes in the modelling assumptions. In the Gaussian-exponential

model, the prior distributions are exponential distributions; however, with this

assumption, the most likely values are zero. This means that for large val-

ues of the prior parameters, the evolving curve collapses. This suggests the

use of more appropriate distributions that allow for a non-zero mode. Here,

beta and gamma distributions are used as more flexible prior distributions to

model the area of the object and the length of the boundaries, respectively.

In the Gaussian-exponential model the data model is a Gaussian distribution.

To allow more dispersion in the data, especially when the data contains out-

liers, one suggestion is to replace the Gaussian distribution with the Student’s

t-distribution. The Student’s t-distribution is used to replace a Gaussian distri-

bution in robust linear regression; see, for example, Gelman et al. (2014), and in

robust mixture modelling; see, for example, Peel and McLachlan (2000). With

discrete data an appropriate choice for a robust model is to replace a Gaussian

distribution with a Poisson distribution (Weir and Green, 1994). In this chapter,

the Student’s t-distribution is proposed as the data model as a robust alterna-

tive to the Gaussian distribution in the Gaussian-exponential model proposed

in Chapter 3. For more details of Bayesian robustness analysis and develop-

ments of the influence diagnostic methods, see Berger et al. (1994), Insua and

Ruggeri (2012) and the references there.

42
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Section 4.2 introduces more flexible generalizations of prior distributions for

object area and boundary length. Some alternatives to the Gaussian likelihood

distribution in the Gaussian-exponential model are proposed in Section 4.3. Fi-

nally, detailed simulation studies are reported in Section 4.4.

4.2 Choice of prior models

In Bayesian modelling, the prior distribution presents expert knowledge or gen-

eral beliefs about unknown parameters. In the Gaussian-exponential model, the

exponential distribution was used as the prior distributions to describe the area

of the objects and the length of their boundaries; where the small and compact

regions are more likely than large or irregular regions. This choice, however,

has the unusual property that the most likely values are close to zero, which

is not a meaningful statement; and in fact this might be the cause of the rapid

disappearance of the objects for large values of the prior parameters. Instead

it might be more appropriate to use a distribution allowing a non-zero mode,

such as a gamma distribution. Also, especially for area the distribution should

have a finite upper limit; as the total area cannot be greater than the whole

domain size which can be suitably accommodated using, for example, a beta

distribution.

Let A∗ be the total area of the objects and Amax be the area of the image. Then

the beta distribution with parameters α and β is used to model the proportion

of area of the objects, hence the corresponding prior distribution is

p(A∗) =
1

B(α, β)
(A∗/Amax)

α−1(1− A∗/Amax)β−1, 0 ≤ A∗ ≤ Amax, (4.1)

where B(., .) is the beta function. If A∗/Amax ∼ Beta(α, β), then some properties

of the Beta distribution are

(i) E

(
A∗
Amax

)
=

α

(α + β)
,

(ii) var
(

A∗
Amax

)
=

αβ

[(α + β)2(α + β + 1)]
,
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FIGURE 4.1: Examples of the beta distribution (left), and examples of the gamma
distribution (right).

and when α, β > 1

(iii) mode
(

A∗
Amax

)
=

α− 1

(α + β − 2)
.

Figure 4.1(left) shows plots of the beta probability density function for vari-

ous values of the parameters α and β. It is clear that for some combinations of

α and β there are two modes and the distribution is U shaped. However, this

is not sensible as such situations are unlikely where large area and small area

are both likely. Therefore the bimodal model is not considered here, and at least

one parameter of α or β should be greater than one.

In addition, let L∗ be the total length of object boundaries. For more general

situations, where not only the short length is more likely then, to model the

length, a gamma distribution with parameters κ and λ can be used as a more

appropriate distribution. Thus, the corresponding probability density function

is

p(L∗) =
1

Γ (κ)
λκLκ−1

∗ exp{−λL∗}, L∗ ≥ 0, (4.2)

where Γ (.) is the gamma function. If L∗ ∼ gamma(κ, λ), then some properties

of the gamma distribution are

(i) E(L∗) =
κ

λ
, (ii) var(L∗) =

κ

λ2
,
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and when κ ≥ 1,

mode(L∗) =
(κ− 1)

λ
.

Figure 4.1(right) shows plots of the gamma probability density function for var-

ious values of the parameters κ and λ. The gamma distribution with λ = 1 is an

exponential distribution, and hence the standard model is a special case.

Assuming, for simplicity, that A∗ and L∗ are independent then the distributions

in 4.1 and 4.2 can be combined to give the following joint prior distribution on

the model parameters

p(θ) = p(A∗)× p(L∗)

=
λκ

B(α, β)Γ (κ)
(A∗/Amax)

α−1(1− A∗/Amax)β−1Lκ−1
∗ exp{−λL∗},

0 ≤ A∗ ≤ Amax and L∗ ≥ 0. (4.3)

Let f(y|θ) be the conditional distribution of the observed image y given the

parameter vector θ; let the noise be modelled by a Gaussian distribution with

zero mean and variance σ2. Consider the likelihood function in the Gaussian

model, given by

f(y|θ) =
1

(2πσ2)N2/2
exp

{
− 1

2σ2

[∑
i∈I0

(yi−µ0)
2 +
∑
i∈I∗

(yi−µ∗)2

]}
, σ > 0.

(4.4)

Using Bayes’ theorem, the likelihood in 4.4 and prior distribution in 4.3 are then

combined to give the following posterior distribution

p(θ|y) =
C

(σ2)N2/2
exp

{
− 1

2σ2

[∑
i∈I0

(yi − µ0)
2 +

∑
i∈I∗

(yi − µ∗)2

]}

·(A∗/Amax)α−1(1− A∗/Amax)β−1Lκ−1
∗ exp{−λL∗}, (4.5)
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where C represents the collected constant terms. Thus, the corresponding log

posterior distribution is given by

L(θ) = log p(θ|y) = −N
2

2
log(σ2)− 1

2σ2

[∑
i∈I0

(yi − µ0)
2 +

∑
i∈I∗

(yi − µ∗)2

]

+(α− 1) log
A∗
Amax

+ (β − 1) log

(
1− A∗

Amax

)

−(κ− 1) logL∗ − λL∗ + logC. (4.6)

The MAP estimate is then defined as

θ̂MAP = arg max
θ

p(θ|y) = arg max
θ

log p(θ|y).

If the maximum is located at a turning points then θ̂MAP can be found by dif-

ferentiation. This gives the following equation system, which must be solved

simultaneously, as explained in Chapter 3

∂L

∂ϕ
= 0,

∂L

∂µ0

= 0,
∂L

∂µ∗
= 0,

∂L

∂σ2
= 0.

First, to estimate the level-set matrix ϕ, the partial derivative of L with respect

to ϕ is given by

∂L

∂ϕ
=

[
− (y − µ0)

2(δ(ϕ)) + (y − µ∗)2δ(ϕ)

]
+ (α− 1)

1

Amax
.
δ(ϕ)

A∗

+(β − 1)δ(ϕ)
Amax

Amax − A∗
− (κ− 1)

(
− δ(ϕ)div

(
5ϕ
| 5ϕ|

))
1

L∗

+λδ(ϕ)div
(
5ϕ
| 5ϕ|

)
.

= δ(ϕ)

[
− (y − µ0)

2 + (y − µ∗)2 + (α− 1)
1

AmaxA∗
+ (β − 1)

Amax
Amax − A∗

+(κ− 1)div
(
5ϕ
| 5ϕ|

)
1

L∗
+ λdiv

(
5ϕ
| 5ϕ|

)]
. (4.7)

For fixed µ0, µ∗ and σ2, and introducing an artificial time variable; then (as

explained in Chapter 3) the discrete-time updating equation for the level-set
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matrix is

ϕk = ϕk−1 + ∆t · ∂ϕ
∂t

∣∣∣∣
ϕk−1

, for k = 1, .... (4.8)

To estimate the parameters µ0, µ∗, and σ2, the partial derivatives are

∂L

∂µ0

=
∂(log p(θ|y))

∂µ0

=
1

σ2

∑
i∈I0

(yi − µ0),

∂L

∂µ∗
=
∂(log p(θ|y))

∂µ∗
=

1

σ2

∑
i∈I∗

(yi − µ∗),

and

∂L

∂σ2
=
∂(log p(θ|y))

∂σ2
= −N

2

2σ2
+

1

2(σ2)2

[∑
i∈I0

(yi − µ0)
2 +

∑
i∈I∗

(yi − µ∗)2

]
.

Setting each to zero leads to the following estimates

µ̂0 =
1

n0

∑
i∈I0

yi, µ̂∗ =
1

n∗

∑
i∈I∗

yi, and

σ̂2 =
1

N2

[∑
i∈I0

(yi − µ0)
2 +

∑
i∈I∗

(yi − µ∗)2

]
, (4.9)

where n0 and n∗ are the number of data points in regions I0 and I∗ respectively,

and so N2 = n0 + n∗.

4.3 Choice of noise model

The aim here is to propose a robust alternative noise model to the Gaussian

distribution. It is well known that a model with Gaussian likelihood is sensitive

to outliers (McLachlan and Peel, 2004). Alternatively, a model with Student’s

t-distribution components can be used to fit a robust model. This is because the

Student’s t-distribution has heavier tails than the Gaussian distribution, hence

it is not as sensitive to outliers. In particular, the following form will be used

g(x|ν, σ) =
Γ(ν)√

(π)Γ(ν − 1/2)

σν−1

(σ2 + x2/ν)ν
, ν > 1/2, σ > 0, (4.10)
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FIGURE 4.2: Examples of the Student’s t-distribution.

where µ is the location parameter, σ is the scale parameter and ν is the degrees

of freedom. Notice that the Student’s t-distribution converges to the Gaussian

distribution with mean µ and variance σ2 when ν →∞. Figure 4.2 shows three

examples of standard Student’s t-distributions with µ = 0, σ = 1 and different

values of the degrees of freedom ν. These examples are with ν = 1, ν = 5 and

ν =∞. It is clear that for small values of ν, the distribution has heavier tails than

that of a Gaussian distribution. Using the Student’s t-distribution to replace the

Gaussian distribution in Equation 4.4, the likelihood function is given by

f(y|θ) =

(
Γ(ν)σν−1√

(π)Γ(ν − 1/2)

)N2 ∏
i∈I0

(
σ2 + (yi − µ0)

2/ν

)−ν
∏
i∈I∗

(
σ2 + (yi − µ∗)2/ν

)−ν
. (4.11)

The corresponding log-likelihood function is given by

log f(y|θ) =
N2(ν − 1)

2
log σ2 − ν

[∑
i∈I0

log

(
σ2 + (yi − µ0)

2/ν

)

+
∑
i∈I∗

log

(
σ2 + (yi − µ∗)2/ν

)]
. (4.12)
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Now, assume that the prior distribution of the model parameters, θ, including

A∗ and L∗ is given by

p(θ) = (αλ) exp{−(αA∗ + λL∗)}, A∗, L∗ ≥ 0. (4.13)

Then, using Bayes’ theorem, the likelihood function and the prior distribution

are combined to give the posterior distribution

p(θ | y) =
f(y|θ)p(θ)

f(y)
.

The corresponding log-posterior distribution is then given by

L(θ) = log p(θ|y) = log f (y|θ) + log p(θ)− log f (y). (4.14)

Thus

L(θ) =
N2(ν − 1)

2
log σ2 − ν

[∑
i∈I0

log

(
σ2 + (yi − µ0)

2/ν

)

+
∑
i∈I∗

log

(
σ2 + (yi − µ∗)2/ν

)]
− (αA∗ + λL∗) + C, (4.15)

where C is a constant, and again the MAP estimate is given by

θ̂MAP = arg max
θ

L(θ).

Similarly to the previous case, to estimateϕ, the partial derivative of log p(θ | y)

with respect to ϕ is given by

∂L

∂ϕ
= δ(ϕ)

[
− log

(
σ2 + (yi − µ0)

2/ν

)
+ log

(
σ2 + (yi − µ∗)2/ν

)

+α− λdiv
(
5ϕ
| 5ϕ|

)]
. (4.16)

For fixed µ0, µ∗ and σ2, and introducing an artificial time variable; then (as

explained in Chapter 3) the discrete-time updating equation for the level-set

matrix is

ϕk = ϕk−1 + ∆t · ∂ϕ
∂t

∣∣∣∣
ϕk−1

, for k = 1, .... (4.17)
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FIGURE 4.3: Examples of the Poisson distribution.

The rest of the parameters µ0, µ∗ and σ2 are estimated through function optim

implemented in R. This is because the log-posterior in Equation 4.15 is too com-

plicated and the partial derivatives with respect to those parameters cannot be

obtained analytically.

Another possible data modelling situation is when the data are discrete, exam-

ples of this type of data can be found in medical imaging (see Weir and Green

(1994) and the references there). One possible choice is that the errors are from

a Poisson distribution with a single parameter λ, which has the following prob-

ability mass function

g(x|λ) =
λx exp{−λ}

x!
, x ∈ 0, 1, . . . λ > 0. (4.18)

Note that if λ → ∞, then the Poisson distribution converges to the Gaussian

distribution with the mean λ and variance λ. Figure 4.3 shows three examples

of Poisson distributions with different values of the parameter λ. In particular,

the three density functions shown in the figure are with λ = 1, λ = 4 and λ = 8.

It is clear that, for small values of λ, the most likely value is zero. As λ increases,

zero becomes less likely, and the distribution tends to be more symmetric. The

likelihood function, based on 4.18, is given by

f(y|θ) =
∏
i∈I0

µyi
0 exp{−µ0}

yi!

∏
i∈I∗

µyi
∗ exp{−µ∗}

yi!
. (4.19)
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The corresponding log-likelihood function is given by

log f(y|θ) = log µ0

∑
i∈I0

yi − n0µ0 + log µ∗
∑
i∈I∗

yi − n∗µ∗. (4.20)

Assume that the prior distribution of the model parameters, θ, including A∗

and L∗ is given by

p(θ) = (αλ) exp{−(αA∗ + λL∗)}, A∗, L∗ ≥ 0. (4.21)

Using Bayes’ theorem, the likelihood function and the prior distribution are

then combined to give the posterior distribution

p(θ | y) =
f(y|θ)p(θ)

f(y)
.

The corresponding log-posterior distribution is then given by

L(θ) = log p(θ|y) = log f (y|θ) + log p(θ)− log f (y). (4.22)

Thus

L(θ) =

(
log µ0

∑
i∈I0

yi − n0µ0 + log µ∗
∑
i∈I∗

yi − n∗µ∗

)
− (αA∗ + λL∗) + C,

(4.23)

where C is a constant. The MAP estimate is given by

θ̂MAP = arg max
θ

L(θ).

As in the previous case, ϕ can be estimated by fixing the parameters µ0, µ∗ and

σ2; then, the partial derivative of log p(θ | y) with respect to ϕ is given by

∂L

∂ϕ
= δ(ϕ)

[
− log µ0

∑
i∈I0

yi + log µ∗
∑
i∈I∗

yi + α− λdiv
(
5ϕ
| 5ϕ|

)]
. (4.24)

For fixed µ0 and µ∗, and introducing an artificial time variable; then (as ex-

plained in Chapter 3) the discrete-time updating equation for the level-set ma-

trix is

ϕk = ϕk−1 + ∆t · ∂ϕ
∂t

∣∣∣∣
ϕk−1

, for k = 1, ... (4.25)
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Again, to find a solution for µ0, and µ∗, based on the current level-set ϕk the

partial derivatives are

∂L

∂µ0

=
∂(log p(θ|y))

∂µ0

=
∑
i∈I0

(yi − µ0),

and
∂L

∂µ∗
=
∂(log p(θ|y))

∂µ∗
=
∑
i∈I∗

(yi − µ∗).

Setting each to zero leads to the following estimates

µ̂0 =
1

n0

∑
i∈I0

yi, and µ̂∗ =
1

n∗

∑
i∈I∗

yi.

where n0 and n∗ are the number of data points in regions I0 and I∗ respectively,

and so N2 = n0 + n∗.

4.4 Simulation studies

The aim here is to investigate the robustness of the models in cases where the

data are generated from other models, or when the data contain outliers. Also,

the sensitivity to the choice of prior parameters in the beta distribution is stud-

ied. The results are compared using various posterior measures, such as pos-

terior area, and length. Figure 4.4 shows the posterior mode for area over a

range of area parameters α and β. It is clear that the most likely values for beta

prior distribution are when α and β are relatively equal, and hence when the

distribution is symmetric.

The proposed models use Student’s t-distributions and Poisson distributions as

the alternative likelihood functions to the Gaussian distribution. These are then

applied to simulated datasets, investigating the suitability for image segmenta-

tion problems. In particular, the new models are used to analyse the cut-circle

image data and compared with the fit of the Gaussian model.

A synthetic image that contains a cut-circle object was considered; 8 datasets

were simulated from the Poisson distribution with µ1 = 2 and µ0 a variable

multiple of µ1 (i.e., µ0 = {kµ1 : k = 3, . . . , 10}). Figure 4.5 shows two simulated
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FIGURE 4.4: The posterior density for the object area over a range of area parameters
α and β.

FIGURE 4.5: Example of datasets with: µ1 = 2 and µ0 = 3µ1 (left) and µ0 = 7µ1

(right).

datasets for different values of µ0, note that when the value of k is less than 3

then the segmentation becomes too difficult. This is because the contrast is very

small. Similarly, when k is bigger than 10 the problem becomes very easy.

The Poisson and the Gaussian models were fitted. The CCR and the SE for

the area of the object and the length of the boundary were calculated. The re-

sults from both fitted models are shown in Figure 4.6. In each panel, the black

dotted line represents the results from the Gaussian fitted model, and the red

dotted line represents the results from the Poisson fitted model. Panel (a) in the

figure shows that for small values of k, the CCR for the Poisson fitted model

is higher than the Gaussian fitted model. As k increases, the CCR for the two
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FIGURE 4.6: The correct classification rate (left), the SE for the area of the object (cen-
tre) and the SE for the length of the boundaries (right). The results from the Gaussian
fitted model are shown with the black line, whilst the Poisson fitted model is shown
with the red line.

fitted models become close. At k = 10 they become equal. The SE results for

the area of the object and the length of the boundaries are shown in (b) and (c),

respectively. It is clear that all SE values for the area are very small, showing

little difference between the two fitted models. The SE for the length shows

that for small values of k, the Poisson fitted model is better with lower SE val-

ues. At k = 4 there is a huge jump in SE for the Gaussian fitted model. As k

increases, the SE values from both fitted models become equal. Therefore, the

results based on the CCR show a more robust fitted model by using the Poisson

distribution to model the count data.

The robustness of the Student’s t likelihood model is now investigated. The

data used here were generated from the Gaussian model, with the background

intensity µ0 = 10, the object intensity µ∗ = 5 and common noise variance σ2 = 1.

In order to evaluate the robustness of the image segmentation, about 10% of the

image pixels were drawn from a Gaussian model with higher variance. Then

the Gaussian model and the Student’s t model are fitted to the experimental

data. In particular, the data were analysed first by fitting the Gaussian model,

then the leave-one-out approach was applied to identify the influential observa-

tions. All those influential observations were weighted as explained in Chapter

3, and then the Gaussian model with weighted likelihood was fitted. Finally,

the data was analysed by fitting the Student’s t model.

Figure 4.7 shows segmentation results for the cut-circle image with 10% of the
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FIGURE 4.7: Segmentation results of the cut-circle image with 10% of the image gen-
erated from the Gaussian distribution with different standard deviation values. The
final zero level-set using the Gaussian model (first column), the final zero level-set
using the weighted Gaussian model (middle column), and the final segmented image
using the Student’s t model (last column) are shown.

image from the Gaussian distribution with standard deviation σ = 5, σ = 8 and

σ = 9. The figure shows the final zero level-set from the Gaussian fitted model

(first column), from the weighted Gaussian fitted model (second column) and

from the Student’s t fitted model (third column). It is clear from the figure that

when the observations are from the Gaussian distribution with σ = 5, the cut-

circle object in (a) was identified but with lots of fragments. After fitting the

weighting Gaussian model, (b), the segmentation results seem fine but with

some fragments still remaining. However, with the Student’s t model the re-

sults are substantially improved in (c) and the cut-circle object was segmented
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CCR SE for the area SE for the length

σ = 5
Gaussian model 0.908 0.0002 7.97

Weighted Gaussian model 0.898 0.0040 0.10

Student’s t model 0.978 0.0002 0.04

σ = 8

Gaussian model 0.803 0.0400 0.98

Weighted Gaussian model 0.897 0.0400 0.37

Student’s t model 0.987 0.0001 0.06

σ = 9

Gaussian model 0.612 0.1800 17.75

Weighted Gaussian model - - -

Student’s t model 0.983 0.0006 00.08

TABLE 4.1: The CCR and the SE for the area of the object and the length of its bound-
aries from fitting the Gaussian model using unweighted and weighted data and the
Student’s t model.

very well.

Then, with 10% of the image from the Gaussian distribution with σ = 8, the seg-

mentation results obtained by fitting the Gaussian model, (d), and the weighted

Gaussian model, (e), are very poor. On the other hand, the segmentation result

obtained by fitting the Student’s t model in (f) shows that the cut-circle ob-

ject was identified with the four parts perfectly. Finally, when the observations

were generated from the Student’s t distribution with σ = 9, only the Student’s t

model successfully identified the cut-circle object, (i), where the evolving curve

in (g) collapsed when using the Gaussian model. Hence, the influential obser-

vations cannot be identified and the model with weighted likelihood cannot be

fitted as it is impossible to estimate the weights. The CCR, as well as the SE

for the object area and the length of the boundaries are shown in Table 4.1. The

numerical results support that fitting the Student’s t distribution model gives

better results with a higher CCR compared to the Gaussian and the weighted

Gaussian models.
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FIGURE 4.8: Segmentation results of the cut-circle image with 10% of the image gen-
erated from the Student’s t-distribution with different scale parameter values. The final
zero level-set using the Gaussian model (first column), the final zero level-set using the
weighted Gaussian model (middle column), and the final segmented image using the
Student’s t model (last column) are shown.

Figure 4.8 shows segmentation results of the cut-circle image with 10% of the

image from the Student’s t-distribution with the degrees of freedom ν = 1, a

location parameter µ = 0, and scale parameter values σ = 0.5, σ = 2 and σ = 3.

The figure shows the final zero level-set from the Gaussian fitted model (first

column), from the weighted Gaussian fitted model (second column) and from

the Student’s t fitted model (third column). It is clear that with σ = 0.5, the

cut-circle object is identified using the standard Gaussian model, (a), but with

lots of fragments. After fitting the weighted Gaussian model, the segmentation
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CCR SE for the area SE for the length

σ = 0.5
Gaussian model 0.930 0.0004 7.88

Weighted Gaussian model 0.947 0.0001 1.81

Student’s t model 0.986 0.0000 0.07

σ = 2

Gaussian model 0.839 0.0200 1.1000

Weighted Gaussian model 0.847 0.0200 1.1200

Student’s t model 0.973 0.0003 0.0005

σ = 3

Gaussian model 0.595 0.1800 25.66

Weighted Gaussian model - - -

Student’s t model 0.983 0.0001 00.10

TABLE 4.2: The CCR and the SE for the area of the object and the length of its bound-
aries from fitting the Gaussian model, the weighted Gaussian model, and the Student’s
t model.

results seem fine but with some fragment still remaining in (b). However when

fitting the Student’s t model the results are improved as in (c).

Then, with 10% of the image from the Student’s t-distribution with σ = 2,

the segmentation results obtained by fitting the Gaussian model, (d), and the

weighted Gaussian model, (e), are very poor. On the other hand, the segmen-

tation result obtained by fitting the Student’s t model in (f) shows that the cut-

circle object is identified with the four parts perfectly. Finally, when the obser-

vations are generated from the Student’s t-distribution with σ = 3, only the

Student’s t model successfully identifies the cut-circle object as in (i), whereas

the curve collapses, (g), when using the Gaussian model. Thus, the influen-

tial observations cannot be identified and the model with weighted likelihood

cannot be fitted as it is impossible to estimate the weights. Summary numer-

ical results are shown in Table 4.2. Clearly, these results show that there is a

significant improvement in segmentation when using the Student’s t model.
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4.5 Conclusions

The proposed models in this chapter use a Bayesian level-set framework, which

is described in Chapter 3, based on the standard Gaussian likelihood and with

exponential prior distributions on object area and boundary length. An exten-

sion was proposed using a weight function, this is to account for unreliable

data. The corresponding model was applied to simulated data showing its suit-

ability for image segmentation problems. Also as a robust alternative to the

Gaussian distribution, the Student’s t-distribution was proposed as the data

model. In addition, the beta distribution was used as a more suitable distribu-

tion for modelling the area of the objects, and the gamma distribution was used

as a more flexible generalization for modelling the length of the boundaries,

and the model has been verified on simulated data. The results showed that

there is a significant improvement in goodness of fit when using the Student’s t

model over that of the Gaussian model and the weighted Gaussian model.



Chapter 5

Markov chain Monte Carlo

techniques for image segmentation

5.1 Introduction

In image segmentation the aim is to partition an observed image into several ho-

mogeneous regions, which are often known as the background and the objects.

This can be done by fitting appropriate models, and in particular in the Bayesian

approach by defining a likelihood and a prior distribution, which are combined

using Bayes’ theorem to give a posterior distribution which is then used as the

basis for parameter estimation. For background on Bayesian modelling see for

example Besag et al. (1995) and Gelman et al. (2014). As an alternative to using

an analytic estimation approach in complicated Bayesian modelling problems,

numerical algorithms based on Markov chain Monte Carlo (MCMC) techniques

are often used. In addition to parameter estimation and image segmentation

results, these algorithms allow for more general forms of modelling such as dif-

ferent types of data models and prior distributions, and output summary. In

addition, the MCMC method allows a full investigation into estimation relia-

bility and uncertainty (Aykroyd, 2015).

In this chapter, the LSM and MCMC techniques are combined to produce a

new model fitting approach to object identification in image analysis. The key

unknown parameter is the interface between the background and the objects.

60
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The object boundary, in the level-set formulation, is defined as the zero level-

set curve of the level-set matrix. The goal is to estimate this matrix based on

Bayesian modelling and using the MCMC estimation algorithm. Combining

the level-set method and MCMC has been studied by others. In particular, Xie

et al. (2011) present a new method for history matching and uncertainty quan-

tification for channelized reservoir models using the LSM and MCMC; how-

ever, the method’s concepts are not simple and so it is not easy to implement.

In the paper by Iglesias et al. (2015), a level-set based approach to Bayesian geo-

metric inverse problems is introduced leading to a well-posed inverse problem;

however, the numerical results presented show that initialization of the MCMC

method for the level-set function can have a significant impact on the perfor-

mance of the inversion technique. The method is also sensitive to the choice

of prior parameters, which suggests studying hierarchical Bayesian modelling.

The recent paper of Dunlop et al. (2017) studies automatic selection techniques

for the prior parameters. In particular, the paper shows that Bayesian level-set

inversion is improved significantly by a hierarchical Bayesian method in which

the prior parameters are estimated.

Comparing to the previous works which combine the level-set method and

MCMC methods in image segmentation, this is the first work which proposes a

flexible way to simulate boundaries from the posterior distribution and which

allows a fuller investigation than existing methods. In addition, the proposed

algorithm is easy to describe and simple to apply. In contrast to other works,

a wider range of the output summaries are shown. This includes for example,

the credible intervals for the boundary regions, and the posterior probability for

pixels being from the object regions. Furthermore, the proposed narrow-band

updates presented here provide a quicker approach without loss of estimation

accuracy and algorithm stability. The proposed algorithm has been applied to

a variety of challenging examples in image segmentation, whereas other works

have applied their methods to segment only simple shaped objects.

The likelihood of the data given the unknown parameters and prior distribution

of the parameters are combined, using Bayes’ theorem, to give the posterior dis-

tribution. The proposed method aims to segment a given image into different

homogeneous regions by estimating this posterior distribution. The estimation

procedure and the image segmentation are based on a level-set approach, which
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assumes the implicit representation of the object outlined as the zero level-set

contour of a higher dimensional function. To this end, the Metropolis–Hastings

(M–H) algorithm is used to estimate the level-set matrix. The proposed model

will be in a Bayesian framework, combining noisy measurements and prior in-

formation about the level-set matrix. As well as estimates of the level-set ma-

trix, the MCMC approach allows the estimation of the zero level-set curve, the

mean intensity and the variance of both the background and the objects. Also,

the flexibility of the MCMC method allows a more general investigation of the

posterior distribution. In real applications of image segmentation, it is often the

case that the number of objects is unknown; estimation of the object number

and other model parameters is therefore also an aim.

The next section gives basic definitions, then Section 5.3 descibes the proposed

Bayesian modelling. The general background of MCMC methods and the M–H

algorithm in particular are given in Section 5.4. The use of the M–H algorithm

to estimate the model parameters is described in Section 5.5. In Section 5.6 a

detailed description of some computational issues is given. The proposed algo-

rithm is tested on a wide variety of grey-level simulated images and the numer-

ical results are shown in Section 5.7. Finally, the proposed method is applied to

a real dataset in Section 5.8.

5.2 Definitions

Recall the definitions in Chapter 3 that a 2D space, S ∈ R2, is divided into

N ×N pixels, and the unknown intensity is defined as x(s) where s ∈ S. Also,

a finite set of measurements y = {yi : i = 1, . . . , N2} are collected at locations

s = {si : i = 1, . . . , N2} within the domain S. Often these locations will form a

finite regular square lattice, and the data can be displayed as a grey-level image.

Furthermore, the intensity function can be discretized onto the same square lat-

tice to give unknown variables x = {xi : i = 1, . . . , N2} representing the value

xi at the measured points, that is xi = x(si) for i = 1, . . . , N2, and can also be

displayed as a grey-level image.

Now assume that the domain is divided into non-overlapping regions, R =

{Rk : k = 0, . . . ,m− 1}, with corresponding characteristic intensities µ = {µk :
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k = 0, . . . ,m− 1}. Hence Rk ∩Rl = ∅, for k 6= l, and R0 ∪ . . .∪Rm−1 = S. These

regions are labelled background, R0, and objects, R∗ = Rc
0. R1 is the first object,

R2 is the second object, and so on.

The measurements can be defined in terms of a deterministic component, which

only depends on the region, and a stochastic component, i.e.

yi = xi + εi i = 1, ..., N2, (5.1)

where

xi =

µ0 if si ∈ R0,

µ∗ if si ∈ R∗,
(5.2)

and the errors εi are independently distributed from N(0, σ2) for i = 1, . . . , N2.

5.3 Bayesian modelling

In the classical inference approach, parameters are considered as fixed but un-

known values; however, in the Bayesian analysis, these parameters are con-

sidered as random variables described by probability distributions (Davison,

2003). The posterior probability of these parameters given the data and prior

information is proportional to the product of likelihood and prior probability.

In practice, evaluating the posterior probability is almost impossible. This is

because the unknown parameters are usually of high dimension and so the

posterior distribution is very complex making the integration required for cor-

rect normalization impractical. However, the M-H algorithm can be used to

produce approximate samples, from the posterior distribution from which the

features of the posterior distribution are explored and the parameters are esti-

mated.

The aim here is to segment a domain of interest into homogeneous regions,

which are the background and the objects. Let γ be the outline of the objects;

that is, the interface between the background and the objects. In the level-set

formulation, the curve γ can be defined as a zero level of the level-set matrix ϕ.

Thus, estimating the level-set function will provide the required segmentation

and so the model parameter set is θ = {ϕ, µ0, µ∗, σ
2}.
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The image data can be modelled as follows. Consider a conditional distribu-

tion f(y|θ) of the observed data y = {yi : i = 1, . . . , N2} given the parameters

set θ = {ϕ}. The likelihood is given by

f(y|θ) =
1(

2πσ2
)N2/2

exp

{
− 1

2σ2

[∑
i∈I0

(yi − µ0)
2 +

∑
i∈I∗

(yi − µ∗)2

]}
, (5.3)

where I0 = {i : ϕi < 0} and I∗ = {i : ϕi ≥ 0}.

The parameters are modelled by a prior density, which quantifies any prior

information about them. This prior density should give high probabilities to

parameter values which agree with the prior information, and low probabili-

ties to unacceptable parameter values. The general beliefs about the level-set

matrix ϕ are that there is some spatial prior information, reflecting the idea that

the neighbouring components in the level-set matrix are likely to have simi-

lar values, which suggests smoothness. Also there is an important numerical

issue, which is that the component values of ϕ need to be controlled from drift-

ing into extremely positive or negative values through the updating scheme. In

other words, there is a need for a function to shrink the values. Thus, consider

the case where each parameter value ϕi follows a Gaussian distribution with

mean zero and standard deviation τ (which controls the amount of shrinkage).

It is assumed that there is no prior information about the other model parame-

ters leadings to improper uniform prior distribution. All this information leads

to a prior density function with two components

p(θ) = p(ϕ) ∝ exp

{
− 1

2τ 2

N2∑
i=1

ϕ2
i −

1

2β2

∑
i∼j

(ϕi − ϕj)2

}
, (5.4)

where i ∼ j denotes the sum over pairs of neighbours in a four nearest neigh-

bour system on the square lattice, and τ controls the amount of shrinkage. Here

first-order smoothing is considered with smoothing parameter β, which defines

the level of variability between neighbouring component values. Note that as

β → 0 all components tend to be similar and the image becomes constant, and

as β → ∞ the component values are spatially independent. The function in

Equation 5.4 is similar to that of the fused lasso in regression (Friedman et al.,

2001).
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The product of the likelihood and the prior distributions using Bayes’ theorem

defines the posterior distribution as

π(θ|y) =
f (y|θ)p(θ)

f (y)
,

where f (y) is the normalizing constant. Inference about the model parameter is

based on this posterior distribution. However, when the unknown parameter

vector is high dimensional, the posterior distribution can become complicated

and so it is impractical to do the inference analytically, but, numerical meth-

ods can be used for such estimation problems. One of the most widely used

techniques is the MCMC method. Here the proposed algorithm is based on the

MCMC method, and aims to estimate the level-set matrix ϕ, µ0, µ∗ and σ2 with

the parameters τ and β assumed to be known.

5.4 Markov chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods were invented for physics ap-

plications, specifically to compute complex integrals. These integrals can be

formed as expectations, which are estimated using generated samples from a

target distribution. MCMC methods are used in statistics as a simple and flexi-

ble technique allowing more general and complicated models to be considered.

The key aim of MCMC methods is to explore the properties of a given distri-

bution efficiently. An early review of MCMC methods is given in Besag et al.

(1995), and many practical applications can be found in Gilks et al. (1995), Liu

(2008) and Voss (2013). The recent paper by Robert and Casella (2011) gives a

comprehensive review of the development of MCMC methods. Furthermore, a

review of statistical approaches in image analysis applications can be found in

Aykroyd (2015).

In the Bayesian context, consider first a distribution of the observed data y

given the parameter vector θ; this is the likelihood function denoted by f(y|θ).

Second, a distribution of θ; that is, the prior distribution p(θ). These distri-

butions can be combined to give the distribution of the updated parameter θ

given the data y. This posterior distribution, denoted by π(θ|y), is expressed as
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follows:

π(θ|y) =
f(y|θ)p(θ)∫
f(y|θ)p(θ)dθ

.

In complicated modelling, it is difficult to find the integral
∫
f(y|θ)p(θ)dθ ana-

lytically. However, MCMC methods offer an alternative way to simulate sam-

ples from the posterior distribution π(θ|y) and obtain estimates of the quantities

of interest. In MCMC terminology, the posterior distribution π(θ|y) is called

the target distribution. Essentially, the MCMC method is a generalisation of

the Monte Carlo method where the independent samples are replaced by corre-

lated samples from the posterior distribution. In particular, MCMC samples are

generated sequentially; the next sampled value depends only on the sampled

value most recently generated.

One technique, which is a special case of MCMC methods is, the Metropolis-

Hastings (M-H) algorithm (Metropolis et al., 1953; Hastings, 1970), which is

now one of the most popular sampling algorithms. The aim of this algorithm is

to simulate a Markov chain which has the required posterior distribution as its

equilibrium distribution. A good review of the M-H algorithm is given by Chib

and Greenberg (1995). A summary of the standard algorithm can be found in

Figure 5.1.

The MCMC approach gives a framework which can be used in many estima-

tion problems. The algorithm is used to produce a correlated sample from some

target statistical distribution (usually the posterior distribution in a Bayesian

analysis). If the transitions in the Markov chain are designed well, then the

simulated sample will have the same statistical properties as a sample obtained

directly from the target distribution. However, during any run there is a burn-

in period after which the chain settles. Thus, to reduce the effect of bias, the

generated sample from the beginning are ignored and only the remaining sam-

ple is included in the parameter estimation. For example, consider the sample

{θ1, . . . ,θN} fromN iterations. AfterM � N iterations, the chain is said to have

converged and it is approximately generated from π(θ|y). Thus, with regards

to the aim of estimating the parameters, only the observations {θM+1,θM+2, . . . ,

θN} are used.
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Initialise with an arbitrary value θ0.

Repeat the following steps for k = 1, . . . , K

1. Generate a proposal θ∗ from the proposal distribution q(θ∗|θk−1).

2. Evaluate the acceptance probability α(θ∗|θk−1) in Equation 5.5.

3. Generate u from a uniform distribution U(0, 1). If u ≤ α, the proposed θ∗

is accepted, and θk = θ∗. Otherwise, θ∗ is rejected, and θk = θk−1.

FIGURE 5.1: The standard M-H algorithm.

One of the main issues to be considered in MCMC methods is the number of

steps required for the chain to converge. In statistics literature, there are several

suggestions for how long the MCMC algorithm should be run until the chain

converges. Gilks et al. (1995) provided one such idea that involves running the

chain with different starting points and comparing the results. Another idea is

to calculate autocorrelations; the chain reaches equilibrium when covariances

begin to decay (Geyer, 1992).

The M-H algorithm can be used to generate samples from the target distribu-

tion, π(θ|y), as follows. At each iteration k, a candidate value, or proposal,

θ∗, is drawn from a proposal distribution q(θk−1,θ∗), where θk−1 is the current

state. The proposal is accepted as the next state of the chain with the following

acceptance probability:

α(θ∗|θ) = min

[
1,
π(θ∗|y)q(θ∗|θ)

π(θ|y)q(θ|θ∗)

]
. (5.5)

Otherwise, the proposal θ∗ is rejected, the chain does not move, and the current

value θ is taken as the value of the next state. The most usual choice of the

proposed distribution is the normal distribution, with the mean as the current

state value and an appropriate variance value. The normal distribution is sym-

metric, and so the expression for the acceptance probability α becomes simpler,

as q(θ∗|θ) and q(θ|θ∗) cancel out.

The choice of the variance of the proposal distribution is important to ensure
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the efficiency of the algorithm. If the proposal variance is small, then the accep-

tance rate is large and almost all proposals are accepted; thus the chain moves

in small steps and will take a long time to converge. Conversely, if the proposal

variance is large, then the acceptance rate is small, and many proposals are re-

jected, and the chain does not move often. Hence the proposal variance can be

chosen by monitoring the acceptance rate. In Roberts et al. (1997), the optimal

rate was determined to be 23.4% for a wide range of high dimensional exam-

ples, whereas in low dimensional problems the acceptance rate can be around

44% (Gelman et al., 1996).

5.5 Parameter estimation via the M-H algorithm

The properties of the posterior distribution of the proposed model can be stud-

ied using the M-H algorithm to generate samples of the level-set matrix through

an iterative procedure. In particular, the M-H algorithm simulates a Markov

chain for the level-set matrix ϕ. As the level-set matrix ϕ consists of all com-

ponents ϕi, where i = 1, . . . , N2, it might be computationally efficient to pro-

pose and update these parameters one by one (Aykroyd, 2015); this is known

as a single-component M-H algorithm (Gilks et al., 1995). The M-H algorithm

proposed here is based on a random walk perturbation. The proposal distribu-

tion considered is the normal distribution centred on the current state (the cur-

rent value of the parameter), with the proposal variance κ2 chosen adaptively

through the burn-in period to give a reasonable acceptance rate. The single

component M-H algorithm used here can be described as follows: at iteration

k − 1 let the current parameter be ϕk−1 = {ϕk−1
1 , . . . , ϕk−1

i , . . . , ϕk−1
N2 }, then all

components ϕi are considered separately in the updating algorithm. For each i,

a new value ϕ∗i is proposed as a perturbation of the previous value ϕk−1
i , then

ϕ∗i = ϕk−1
i + ε, where ε ∼ N(0, κ2). The proposed value ϕ∗i is accepted with

probability

α(ϕ∗i |ϕk−1
i ) = min

[
1,

π(ϕk1, ϕ
k
2, . . . , ϕ

k
i−1, ϕ

∗
i , ϕ

k−1
i+1 , . . . , ϕ

k−1
N2−1, ϕ

k−1
N2 |y)

π(ϕk1, ϕ
k
2, . . . , ϕ

k
i−1, ϕ

k−1
i , ϕk−1

i+1 , . . . , ϕ
k−1
N2−1, ϕ

k−1
N2 |y)

]
. (5.6)

If the proposed value is accepted, then ϕki = ϕ∗i ; otherwise it is rejected and

ϕki = ϕk−1
i . The proposed algorithm is summarised in Figure 5.2. For reliable

estimation, this procedure should be repeated until the chain converges to its
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Initialise with an arbitrary level-set matrix ϕ0.

Repeat the following steps for k = 1, . . . , K

Repeat the following steps for i = 1, . . . , N

1. Generate ε from a Gaussian distribution N(0, κ2
1).

2. Generate a new value ϕ∗i , such that ϕ∗i = ϕki + ε.

3. Evaluate the acceptance probability α(ϕ∗i |ϕki ) in Equation 5.6.

4. Generate u from a uniform distribution U(0, 1). If u ≤ α, the proposed ϕ∗i
is accepted, and ϕki = ϕ∗i . Otherwise, ϕ∗i is rejected, and ϕki = ϕk−1

i .

FIGURE 5.2: The single-component random walk M-H algorithm.

equilibrium distribution. Thus, it is useful to check Markov chain paths and

to calculate sample autocorrelation functions. In equilibrium, the paths should

look random and well mixed; in addition, autocorrelation functions should be

close to zero for all but small lags.

Once the sample of the level-set matrix ϕ has been generated from the pos-

terior distribution, with only sampled ϕ after a suitable burn-in period consid-

ered, then various estimates are available (Aykroyd, 2015). Let ϕ1,ϕ2, . . . ,ϕK

be the generated sample collected in equilibrium, then functions of ϕ can be

estimated by

ĝ(ϕ) =
1

K

K∑
k=1

g(ϕk).

The level-set matrix ϕ̂ is estimated by the pixel-wise posterior mean which is

given by

ϕ̂i =
1

K

K∑
k=1

ϕki .

The generated samples can be used to estimate the domain partition, that is the

zero level-set curve along with the number of regions, region intensities and

the noise variance. Also, it is possible to estimate the marginal distributions

of the parameters using the corresponding sample histograms. The location of

the interfaces between regions can be estimated using the zero level-set of the
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sample functions ϕ1,ϕ2, . . . ,ϕK , which gives the sample γ̂1, γ̂2, . . . , γ̂K . More-

over, for each k the number of object regions can be calculated using function

contourLines in R. All the zero contour lines are obtained with their loca-

tions by applying the function to the level-set matrix ϕ; the number of these

zero contour lines is the number of object regions.

Further, each of the generated sample ϕ1,ϕ2, . . . ,ϕK can be used to estimate

the corresponding object mean µ̂1
∗, µ̂

2
∗, . . . , µ̂

K
∗ as follows:

µ̂k∗ =
1

nk∗

∑
i∈Ik∗

yi, for 1 ≤ k ≤ K,

where nk∗ is the number of data points in the corresponding region Ik∗ = {i :

ϕki ≥ 0}. Also, the corresponding background mean sample µ̂1
0, µ̂

2
0, . . . , µ̂

K
0 can

be estimated as

µ̂k0 =
1

nk0

∑
i∈Ik0

yi, for 1 ≤ k ≤ K,

where nk0 is the number of data points in the corresponding region Ik0 = {i :

ϕki < 0}. Finally, the noise variance can be estimated as follows:

(σ̂2)k =
1

N2 − 1

[∑
i∈Ik0

(yi − µ̂k0)2 +
∑
i∈Ik∗

(yi − µ̂k∗)2

]
, for 1 ≤ k ≤ K.

Then, the mean of the object, the background means, and the noise variance are

estimated respectively by

µ̂∗ =
1

K

K∑
k=1

µ̂k∗, µ̂0 =
1

K

K∑
k=1

µ̂k0, and σ̂2 =
1

K

K∑
k=1

(σ̂2)k.

In addition, it is possible to construct the credible interval (see Besag et al. (1995)

and Aykroyd (2015)); for the level-set matrix. This is done by calculating the

credible intervals for all components of the level-set matrix. Let ϕ(k)
i be the kth

observation in the order sample, then a 95% Bayesian credible interval for the

component ϕi can be estimated from the 2.5% and 97.5% sample quantiles of
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the generated sample, that is (
ϕ

(0.025K)
i , ϕ

(0.975K)
i

)
.

The same calculation is performed at each component ϕi, i = 1, . . . , n, in the

level-set matrix. The results can then be used to construct the credible region

for the zero level-set curve of the mean level-set matrix, by linking the lower

and upper quantiles for the components of the level-set matrix. Similarly, a 95%

Bayesian credible interval for an estimated function g(ϕ) can be calculated as(
g(ϕ)(0.025K), g(ϕ)(0.975K)

)
,

where g(ϕ)(k) is the kth observation in the ordered sample. Finally, the posterior

probability of pixel i being part of an object, where 1 ≤ i ≤ N2, can be estimated

using the generated sample ϕ1
i , ϕ

2
i , . . . , ϕ

K
i as follows:

̂Pr(i ∈ I∗) =
1

K

K∑
k=1

I (ϕki ),

where I (.) is an indicator function defined as

I (ϕki ) =

1 if i ∈ Ik∗ ,

0 if i ∈ Ik0 .
(5.7)

5.6 Implementation issues

Narrow-band technique

In the standard LSM, the narrow-band technique is usually used to overcome

the problem of excessive computation times for large data problems (Osher and

Sethian, 1988). The main idea of the narrow-band technique is to update the

level-set matrix only in a narrow band of interest, denoted by B. This is done

by considering pixels around the zero level-set contour and ignoring all other

pixels.

The proposed M-H algorithm described in the previous section produces sam-

ples of the level-set matrix ϕ, and is based on single component updates for
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(a) δ = 0.05 (b) δ = 0.1 (c) δ = 0.15

FIGURE 5.3: Narrow-band sizes for different choices of δ.

all components of the level-set matrix. However, the interest is only in esti-

mating the zero level-set, thus the level-set matrix only needs to be updated

for components in regions close to the zero level-set. A new adaptive method

is proposed, based on the narrow-band technique, for updating the level-set

matrix in the algorithm. Rather than updating all components of the level-set

matrix, the focus is only on components which are in a narrow band around the

zero level-set. The key step is to update the level-set matrix only at these pixels

in the narrow-band. This adaptive technique achieves a significant speed-up

while maintaining accurate results.

The width of the narrow band is determined by the tuning parameter δ, which

should be chosen carefully to balance the speed of the algorithm and the accu-

racy of the results. There are two extreme cases. If δ is very small, then there

are no components in the narrow band to update, the level-set matrix is not up-

dated, and the zero level-set contour does not change. At the other extreme, if

δ is very large, the whole image is in the narrow band, and there is no reason

to use the technique as all components are being updated. Figure 5.3 shows

the zero level-set (red contour) with the narrow band (grey region) for different

values of δ.

In addition, since the prior parameter τ in Equation 5.4 controls the amount of

shrinkage, it should be chosen very carefully. Figure 5.4 shows the number of

pixels inside the narrow-band region after applying the technique; it is clear

that as the value of τ increases the number of pixels inside the narrow-band
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FIGURE 5.4: Number of pixels inside the narrow-band region for different values of τ .

(a) τ = 0.01 (b) τ = 0.002 (c) τ = 0.001

FIGURE 5.5: Narrow-band sizes for different values of τ .

region decreases. This is because the amount of shrinkage increases as seen in

Figure 5.5. Thus there is a link between the best choice of narrow-band size δ

and τ ; the optimum values of δ and τ should balance the algorithm’s speed and

convergence.

It is useful for a few iterations in the burn-in period to update all components,

as this will prevent disconnected regions from forming. If disconnected regions

do form, then the algorithm may not converge to the correct solution, because

the same pixels would be updated in each iteration; thus the zero level-set curve

will not change. Also when the narrow band technique is used then the number

of updated pixels needs to be monitored during the iterations, as the contour

might change its shape, which suggests a change to δ as well.
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Sample size calculation

An important issue with MCMC algorithms is how many sweeps should be

produced after the burn-in period; there is a good discussion of this issue in the

lecture notes by Sokal (1989). The MCMC method forms a Markov chain where

the generated samples are not independent, thus they will have an asymptotic

variance varasy = τσ2

n
, where τ =

∑∞
t=−∞ ρ(t) is the integrated autocorrelation

time and ρ(t) is the autocorrelation function of the process. It is clear that varasy
is larger than in the case where the samples are independent, thus it can be used

to estimate the sample size which is needed after the burn-in period (Aykroyd

and Mardia, 2003). The sample size can be chosen so that the value of varasy is

smaller than, say, 1% of the sampling variance σ2 (Aykroyd and Green, 1991).

Thus n is chosen to satisfy

varasy
σ2

=
τ(σ2/n)

σ2
=
τ

n
<

1

100
.

Let ρ(t) be the autocorrelation function at time t for a function f . Sokal (1989)

defines the integrated autocorrelation time as

τ =
1

2
+
∞∑
t=1

ρ(t).

Now let f̄ = 1
n

∑n
t=1 ft be the sample mean which has variance

var(f̄) =
var(f)

n
τ.

The variance of the sample mean is larger by a factor τ than it would be if the

generated sample values were independent. Using this, the effective sample

size is given by

ne =
n

τ
.

The calculations of the effective sample size are obtained using the Function

effectiveSize in R. In particular, the function is used to calculate the size

ne for each element ϕi individually. Figure 5.6(a) shows the effective number of

independent sample values in a run of length 5000. It is clear that the effective



Chapter 5. Markov chain Monte Carlo techniques for image segmentation 75

5

10

15

20

25

30

5 10 15 20 25 30

0

50

100

150

200

250

300

(a) The effective sample size

5

10

15

20

25

30

5 10 15 20 25 30

0

1000

2000

3000

4000

5000

6000

(b) The required sample size

FIGURE 5.6: Sample size calculation for pixels in the narrow band after burn-in pe-
riod.

sample size for all elements in the narrow band is roughly in a range between

100 and 300. In the same manner, the required sample size, nr, can be calculated

following Aykroyd and Mardia (2003), which yields

nr =
n

ne
× 100.

The results are shown in Figure 5.6(b). One clearly sees that the number of

sample values generated needs to be increased to achieve a reasonable accuracy

of the results for a few components (shown by the red colour). However, for

most components (shown by the grey colour) the required sample size is below

5000, and hence the run length is acceptable.

5.7 Simulation experiments

In this section simulation experiments have been carried out to identify objects

in a given image, i.e. to divide the image into meaningful regions. This is

done using the Bayesian model via the M-H algorithm, which is proposed in

this chapter to estimate the boundary of the objects through the zero level-set

curve. The numerical results are based on a number of synthetic images, which

vary in both the number of objects and the shape of the objects. In particular, the

simulation experiments can be divided into two parts. In the first part, the sim-

ulations are considered as introductory examples to explore the performance of
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the proposed algorithm. In each simulation an image was generated with one

object against the background. In the second part, further exploration of the

performance is made by applying the proposed method to simulated images

that have multiple regions of contrasting shape and area. In all simulations,

the aim is to identify objects in images which are composed of 1024 pixels in a

lattice of dimensions 32× 32.

The data in all simulation experiments were generated from the data model

given by Equation 5.3, where I0 denotes the background region with mean

intensity parameter µ0, I∗ denotes the object regions with mean intensity pa-

rameter µ∗, and the common noise variance σ2. The aim is to estimate both the

number of regions and the interfaces between the regions, along with the region

intensities and noise variance. All these estimates are based on estimating the

level-set function. In order to estimate the values of components of the level-set

matrix, the proposed M-H algorithm is used to generate samples of the level-set

matrix and, as usual, the M-H output from the iterations in the burn-in period

are discarded, to reduce the effect of the initial value. In particular, a main run

of 4500 iterations for every example has been taken after a burn-in period of

500 iterations. At the beginning of the burn-in period, all components were up-

dated, but after 100 iterations, the narrow-band technique was applied and only

components near the zero level-set contour were updated.

The main advantage of using MCMC methods, in addition to parameter es-

timation, is to explore the posterior distribution. In particular, the marginal

posterior distributions for the object mean µ∗, the area of the objects, and the

length of their boundaries are considered, where the area and the length are

measured in pixel units. In order to check the convergence, and to estimate

the required sample size, the samples generated by the proposed algorithm are

graphically and numerically summarized using the trace and autocorrelation

plots.

Circle example

In this example, the image is simulated with one circular object located at the

centre, the intensities µ∗ = 5 and µ0 = 7 for the object and the background

respectively, and Gaussian noise (σ = 0.3). Figure 5.7(left) shows a cloud of
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FIGURE 5.7: A sub-sample of the location of the object centre with the true location
(in black) (left), the posterior mean estimate of the image (centre) and the posterior
probability of pixel i being part of the object (right).

points for a sub-sample of the location of the object centre chosen randomly,

with the true location (in black). Clearly the variability is small and the true

location lies within this cloud of points, which shows the uncertainty in the

location of the circle. The posterior estimate of the image is shown in the same

figure (centre), from which it is clear that both the true and estimated images are

similar. To confirm this result, the correct classification rate was calculated, and

no misclassified pixel were found. The posterior probability of each pixel being

part of the object is calculated, showing what region, background or object, is

most likely to occur in each pixel. The result is shown in Figure 5.7 (right),

where the posterior probabilities are close to 1 for all pixels which in this case

are known to be from the object region, and close to zero for those known to be

from the background. Therefore, it can be said that the accuracy of the object

identifying is very good. Table 5.1 shows that the estimates are close to the true

values. The posterior standard deviations presented in the table show that the

area of the object was estimated more accurately than the other parameters.

Parameter True value Post. mean Post. std dev Post. skewness Post. kurtosis

µ∗ 5.000 5.006 0.007 0.950 4.719

(4.995 , 5.019)

A∗ 420.500 417.662 2.664 0.005 2.944

(pixel)2 (413.274, 422.063)

L∗ 76.770 77.686 1.882 -0.786 6.078

(pixel) (74.158, 80.392)

TABLE 5.1: Summary of posterior results for circle example.
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FIGURE 5.8: Histograms and density estimates, with 95% credible intervals for: the
object mean µ̂∗ (left), the object area (centre) and the length of its boundary (right).
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FIGURE 5.9: Estimation errors of the estimated boundary (left), multiple boundary
traces (centre), and the estimated boundary (shown in red), with the 95% credible
interval of the object boundary (shown in grey) (right).

Figure 5.8 shows the posterior histograms with density estimates for the object

mean µ∗ (left), the area of the circular object (centre) and the length of its bound-

ary (right). The thick line on the horizontal axis indicates the 95% credible in-

tervals. Clearly, the small variation in these parameters is showing that the pa-

rameters are well-estimated. In addition, the object area has an approximately

symmetric distribution; however, the sampling distribution for the object mean

µ∗ is positively skewed and for the boundary length is negatively skewed. The

skewness and kurtosis values presented in Table 5.1 support these findings.

The accuracy in the circle identification is shown in Figure 5.9. The estimation

errors (left) are defined as the difference between the true and the estimated

boundaries, the thickness of the band indicates the estimation error which are

so small that they can not be seen clearly. The estimation variability is also



Chapter 5. Markov chain Monte Carlo techniques for image segmentation 79

0 1000 2000 3000 4000

4.
99

5.
00

5.
01

5.
02

5.
03

5.
04

µ *

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
ut

oc
ov

ar
ia

nc
e

0 1000 2000 3000 4000

41
0

41
5

42
0

42
5

Iterations

A
re

a

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
ut

oc
ov

ar
ia

nc
e

0 1000 2000 3000 4000

65
70

75
80

85

Iterations

Le
ng

th

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
ut

oc
ov

ar
ia

nc
e

FIGURE 5.10: Monitoring statistics for the M-H algorithm for segmenting the circu-
lar object: posterior traces (left column), and the corresponding autocorrelation func-
tions (right column) of the object mean µ∗, the object area, and the length of its bound-
ary.



Chapter 5. Markov chain Monte Carlo techniques for image segmentation 80

shown in the figure, with the central panel showing multiple curves for se-

lected iterations after the convergence of the algorithm. The uncertainty of the

boundary location is given by the spread of the sample curves. In particular,

a sub-sample of 20 curves is chosen randomly from the sample of 4500. It is

clear that the variability is small at the boundaries, which shows the certainty

in the location of the estimated boundary. Additionally, the right panel shows

the credible interval of the level-set contour obtained, by linking the lower and

upper quantiles for the level-set components of the level-set function in the gen-

erated sample. The central red dashed curve shows the location of the mean of

the level-set contour. It is clear that the thickness of the grey region shows a

small and equal variability around the estimated boundary.

The trace plots of the object mean, the object area and the length of its boundary

are shown in the left panels of Figure 5.10. Also, the autocorrelation functions

for these parameters are shown in the right panels of the same figure. From the

trace plots, it is clear that the algorithm reaches equilibrium and the simulation

appears to have stabilized. In addition, the autocorrelation functions show that

the correlation decays quickly. Therefore, there is evidence that the proposed

method has converged to a good solution and there is confidence in the conclu-

sions made from the results.

The choice of prior smoothing parameter β is now discussed. In practice, it

is often the case that the smoothing parameter is unknown and needs to be

estimated. Here the values of β are selected numerically using a straightfor-

ward approach estimating the boundaries with different values of β, and then

chooses the value with minimum MSE. Figure 5.11 shows the results from the

posterior distribution using different values of β. It is clear that, when β =

0.1, the sample boundaries are more widely spread around the posterior mean

of the zero level-set curve. In addition, the difference between the estimated

zero level-set curve and the true boundary is quite large. For smaller β values

β = 0.05 and β = 0.01, the sample boundaries become more regular around

the posterior mean of the zero level-set curve, with each sample curve becom-

ing more circular, and the difference between the estimated zero level-set curve

and the true boundary being small. The preferred value of the prior smoothing

parameter used here (and in the following experiments) is β = 0.01.
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FIGURE 5.11: Multiple zero level-set γ showing the effect of changing the prior
parameter β. The values of β are: β = 0.1 (top row), β = 0.05 (middle row),
and β = 0.01 (bottom row).

Square example

In this example, the results are based on simulated data, with a square object

located at the centre of the image. The data have the intensities µ∗ = 5 and

µ0 = 7 for the object and the background respectively, and the Gaussian noise

(σ = 0.3). A cloud of points for a sub-sample of the location of the object centre

chosen randomly is shown in Figure 5.12 (left). It is clear that the variability

around the mean centre is small and the true location lies within this cloud of

points, this indicates the certainty in the location of the square. In the central

panel, the posterior mean of the image is shown with correct classification rate
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FIGURE 5.12: A sub-sample of the location of the object centre with the true location
(in black) (left), the posterior mean estimate of the image (centre) and the posterior
probability of pixel i being part of the object (right).

equal to 1. Thus, the true and estimated images are identical. The right panel

shows the posterior probability of the pixel being part of the object. It is clear

that about one object pixel has a low probability to be from the object region,

however the other object pixels have high probabilities to be from the square

region. Table 5.2 shows that the estimates are relatively close to the true values.

The posterior standard deviations presented in the table also show that the area

of the object was estimated more accurately than the other parameters.

Parameter True value Post. mean Post. std dev Post. skewness Post. kurtosis

µ∗ 5.000 4.999 0.008 1.098 1.779

(4.989 , 5.015)

A∗ 224.500 223.809 2.797 0.296 0.255

(pixel)2 (219.421, 228.544)

L∗ 59.933 62.461 2.744 0.039 1.376

(pixel) (57.701, 67.129)

TABLE 5.2: Summary of posterior results for square example.

Histograms and density estimates are shown in Figure 5.13, for the object mean

µ∗ (left), the area of the object (centre), and the length of its boundary (right),

along with the 95% credible intervals of these estimates. All histograms show

the same variability as in the circle example, and the parameters are estimated

quite well. The length of the boundary has an approximately symmetric distri-

bution with skewness value close to zero. In contrast, the object mean and the



Chapter 5. Markov chain Monte Carlo techniques for image segmentation 83

µ*

D
en

si
ty

4.98 4.99 5.00 5.01 5.02 5.03 5.04

0
10

20
30

40
50

60

●

Area

D
en

si
ty

215 220 225 230 235

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

●

Length

D
en

si
ty

50 55 60 65 70 75

0.
00

0.
05

0.
10

0.
15

●

FIGURE 5.13: Histograms and density estimates, with 90% credible intervals for: the
object mean µ̂∗ (left), the object area (centre), and the length of its boundary (right).
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FIGURE 5.14: Estimation errors of the estimated boundary (left), multiple boundary
traces (centre), and the estimated boundary (shown in red), with the 95% credible
interval of the object boundary (shown in grey) (right).

area of the object have asymmetric distributions with positive skewness. The

skewness and kurtosis values are presented in Table 5.2.

Figure 5.14 shows the accuracy and the variability in the square segmenta-

tion. The left panel shows small errors, with a slightly greater difference be-

tween the true and the estimated boundaries at the top-right corner. A random

sub-sample of 20 curves is shown in the same figure (centre), showing small

variability, and certainty in the location of the estimated boundary. The right

panel shows the credible interval of the level-set contour, where the central red

dashed curve shows the location of the mean of the level-set contour. It can be

said that the proposed algorithm has been successful in identifying the square

object, although the variation is greater at the top-left and bottom-right than

elsewhere.
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FIGURE 5.15: Monitoring statistics for the M-H algorithm for segmenting the square
object: posterior traces (left column), and the corresponding autocorrelation functions
(right column) of the object mean µ∗, the object area, and the length of its boundary.

From the trace plots shown in the left panels of Figure 5.15, it is clear that the

simulation appears to have stabilized. Also, from the autocorrelation functions

presented in the right panels of the same figure, it is clear that the correlation

decays quickly. Thus, it can be said that there is no cause for concern when

using the results in the parameter estimation.
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FIGURE 5.16: Sub-samples of the location of the centres with the true locations (in
black) (left), the posterior mean estimate of the image (centre) and the posterior proba-
bility of pixel i being part of the object (right).

Cut-circle example

To further explore the proposed algorithm, the true object geometry considered

here is a cut-circle shape, located at the centre of the image and consisting of

four equal parts. Thus, the aim is to fit the proposed model including unknown

boundaries of the four identical objects. The data is simulated with the intensi-

ties µ∗ = 5 and µ0 = 7 for the object and the background respectively, and Gaus-

sian noise (σ = 0.3). Figure 5.16(left) shows cloud of points for sub-samples of

the location of the object centres chosen randomly, with the true locations (in

black). The variability is small and the true locations lie within these clouds of

points, clearly this indicates the certainty in the location of the cut-circle object.

The posterior mean of the image is shown in the same figure (centre). It is clear

that both the true and estimated images are similar and, unsurprisingly, when

the correct classification rate was calculated, there were no misclassified pixels.

The posterior probability of the pixel being part of the object is calculated and

the result is shown in the right panel. It is quite clear that the posterior prob-

abilities for most object pixels are roughly 1, with a few object pixels less than

0.8. Therefore, it can be said that the accuracy of the object identification is very

good. Table 5.3 shows that the estimates for the object mean and the boundary

length are closer to the true values than the estimate for the object area. How-

ever, the posterior standard deviations presented in the table show that the area

of the object was estimated more accurately than the other parameters.

Figure 5.17 shows estimates of posterior distributions as histograms and as
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Parameter True value Post. mean Post. std dev Post. skewness Post. kurtosis

µ∗ 5.000 5.005 0.007 1.234 2.167

(4.996 , 5.018)

A∗ 408 402.860 4.703 -0.043 -0.034

(pixel)2 (395.030, 410.505)

L∗ 166.255 170.431 3.343 -0.455 1.079

(pixel) (165.826,176.517)

TABLE 5.3: Summary of posterior results for cut-circle example.
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FIGURE 5.17: Histograms and density estimates, with 90% credible intervals for: the
object mean µ̂∗ (left), the object area (centre), and the length of its boundary (right).

smoothed density estimates for the object mean µ∗ (left), the area of the cut-

circle object (centre) and the length of its boundaries (right). The thick line

on the horizontal axis indicates the 95% credible interval. It is clear from the

figure that the area of the cut-circle object has an approximately symmetric dis-

tribution. However, the object mean and the length of the boundaries, again,

have positive-skew and negative-skew distributions, respectively. The poste-

rior summary of these parameters is presented in Table 5.3.

The accuracy and the variability in the cut-circle identification is shown in Fig-

ure 5.18. The errors in the left panel are quite small; however, the estimated er-

rors are greater in the corners, especially on the right. The central panel shows

a random sub-sample of 20 curves from the sample of 4500. One can see that

the variability is small at all the boundaries, which shows the certainty in the

location of the estimated boundary. Finally, the credible interval of the esti-

mated boundary can be seen in the right panel, where the central red dashed

curves show the location of the estimated boundary. Clearly, the figure shows
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FIGURE 5.18: Estimation errors of the estimated zero level-set contour (left), multiple
boundary traces (centre), and the estimated boundaries (shown in red), with the 95%
credible interval of the boundaries (shown in grey) (right).

that the greatest variability around the estimated boundary is in the quarters on

the right. Although the cut-circle object is considered as a challenge in image

segmentation, the proposed algorithm has identified the boundaries of the four

parts of the cut-circle successfully.

The trace plots of the object mean, the object area and the length of its bound-

ary are shown in the left panels of Figure 5.19, from which it is clear that the

simulations appear to have stabilized. Also, the autocorrelation functions for

these parameters are shown in the right panels of the same figure, with the

plots showing that the correlation decays quickly. Thus, it can be said that con-

vergence has been reached, and that the results are reliable.

In general for MCMC methods, moving from one solution to another can be

difficult. However, the proposed algorithm here moves from one solution to

the other easily and quickly. Figure 5.20 shows some selected iterations. Here,

it can be seen there are some iterations in which the level-set matrix ϕ in the gen-

erated sample defines one zero level-set contour, with a single corresponding

object region; for other iterations, there are two defined zero level-set contours,

with two object regions. The figure indicates good mixing between one and two

object regions.
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FIGURE 5.19: Monitoring statistics for the M-H algorithm for segmenting the cut-
circle object: posterior traces (left column), and the corresponding autocorrelation
functions (right column) of the object mean µ∗, the object area, and the length of its
boundary.
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FIGURE 5.20: Number of object regions across iterations.
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FIGURE 5.21: Sub-samples of the location of the object centres with the true locations
(in black) (left), the posterior mean estimate of the image (centre) and the posterior
probability of pixel i being part of the object (right).

Three-circle example

In this example, the image consists of three circular objects with different sizes.

The data is simulated with the intensities µ∗ = 5 and µ0 = 7 for the object

and the background respectively, and the Gaussian noise (σ = 0.4). Samples

of the locations of the object centres are chosen randomly and shown in Figure

5.21(left) with the true locations (in black). It is clear that for each sub-sample,

the variation occurs around the mean centre is small and the true location lies

within this sample, which indicates the certainty in the object location. The pos-

terior mean estimate of the image is shown in the same figure (centre), where
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Parameter True value Post. mean Post. std dev Post. skewness Post. kurtosis

µ∗ 5.000 5.014 0.013 0.676 1.021

(4.996 , 5.034)

A∗ 261.500 256.463 3.559 0.140 0.062

(pixel)2 (250.814, 262.370)

L∗ 99.397 105.004 4.879 0.083 0.325

(pixel) (97.167,113.268)

TABLE 5.4: Summary of posterior results for three-circle example.
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FIGURE 5.22: Histograms and density estimates, with 90% credible intervals for: the
object mean µ̂∗ (left), the object area (centre), and the length of its boundary (right).

the correct classification rate is 0.998. The posterior probability of the pixels be-

ing part of the objects is calculated and the result is shown in the right panel. It

is quite clear that the posterior probabilities for most object pixels are roughly

1, with a few object pixels being between 0.4 and 0.6. Table 5.4 shows that the

estimates are relatively close to the true values. The posterior standard devia-

tions presented in the table show that the area of the object was estimated more

accurately than the other parameters.

Figure 5.22 shows the posterior histograms with density estimates for the object

mean µ∗ (left), the area of the objects (centre), and the length of their boundaries

(right). The thick line on the horizontal axis indicates the 95% credible intervals.

Clearly, the small variation in these parameters is showing that they are well-

estimated. In addition, the sampling distributions for the object mean and the

area of the objects are positively skewed, whilst the distribution for the length

of the boundaries is symmetric, with the skewness value close to zero. The

numerical results are presented in Table 5.4.
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FIGURE 5.23: Estimation errors of the estimated boundaries (left), multiple boundary
traces (centre), and the estimated boundaries (shown in red), with the 95% credible
interval of the boundaries (shown in grey) (right).

The accuracy in the identification of the objects is shown in Figure 5.23. The

estimation errors (left) are defined as the differences between the true bound-

aries and the estimated boundaries, the thickness of which indicates the level

of estimation errors. It is clear that the errors are quite small in general, how-

ever the estimated errors are considerable in the top-right of the biggest circle.

The estimation variability is also shown in the figure, where the central panel

shows multiple contours for some selected iterations, with the uncertainty of

the boundary location given by the spread of the sample curves. In particular, a

sub-sample of 20 boundaries of each object is chosen randomly from the sample

of 4500. It is clear that the variability is small at the boundaries, which shows

the certainty in the location of the estimated boundaries. Also, the right panel

shows the credible interval of the estimated boundaries, which indicates that

there is greater variability at the top-right of the biggest circle than elsewhere.

The trace plots of the mean intensity of the objects, the area of the objects, and

the length of their boundaries are shown in the left panels of Figure 5.24. In ad-

dition, the autocorrelation functions for these parameters are shown in the right

panels of the same figure. From the trace plots, it is clear that the algorithm

reaches equilibrium and the simulation appears to have stabilized. Further-

more, the autocorrelation functions show that the correlation decays quickly.

Therefore, there is evidence that the proposed method has converged to an

acceptable solution, and there is confidence in the conclusion made from the

results.
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FIGURE 5.24: Monitoring statistics for the M-H algorithm for segmenting the circu-
lar object: posterior traces (left column), and the corresponding autocorrelation func-
tions (right column) of the object mean µ∗, the object area, and the length of its bound-
ary.
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FIGURE 5.25: Sub-samples of the location of the object centres with the true locations
(in black) (left), the posterior mean estimate of the image (centre), and the posterior
probability of pixel i being part of the object (right).

L & O example

Parameter True value Post. mean Post. std dev Post. skewness Post. kurtosis

µ∗ 5.000 5.014 0.009 0.577 3.427

(4.999 , 5.031)

A∗ 355.500 359.701 2.772 -0.034 3.177

(pixel)2 (355.357, 364.433)

L∗ 75.213 75.954 1.251 -0.096 3.402

(pixel) (73.957,77.994)

TABLE 5.5: Summary of posterior results for L & O example.

The objects in this example are L and O shaped objects. The data is simulated

with the intensities µ∗ = 5 and µ0 = 7 for the objects and the background re-

spectively, and the Gaussian noise σ = 0.4. Figure 5.25 shows clouds of points

for sub-samples of the locations of the object centres chosen randomly, with the

true location (in black). Clearly the variability is small, and the true locations lie

within these clouds of points, which shows the certainty in the location of the

objects. The posterior mean estimate of the image is shown in the same figure

(centre), where the correct classification rate is 0.999. The result of the posterior

probability of the pixels being part of the object is shown in the right panel. It is

quite clear that the posterior probabilities for most object pixels are roughly 1,

with a few object pixels around 0.6. Table 5.5 shows that the estimates are close

to the true values. Also, the posterior standard deviations presented in the table

show that the area of the object was estimated more accurately than the other
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FIGURE 5.26: Histograms and density estimates, with 90% credible intervals for: the
object mean µ̂∗ (left), the object area (centre) and the length of its boundary (right).

parameters.

Figure 5.26 shows the posterior histograms with density estimates for the mean

of the objects µ∗ (left), the area of the objects (centre), and the length of their

boundaries (right). The thick line on the horizontal axis indicates the 95% credi-

ble intervals. Clearly, the small variation in these parameters shows that the pa-

rameters can be estimated well. In addition, the sampling distributions for the

area of the objects and the length of their boundaries are symmetric, whereas

the distribution of the mean of the objects, µ∗, is positivity skewed. The skew-

ness and kurtosis values are presented in Table 5.5.

The trace plots of the mean intensity of the objects, the area of the objects, and

the length of their boundaries are shown in the left panels of Figure 5.27. Also,

the autocorrelation functions for these parameters are shown in the right pan-

els of the same figure. From the trace plots, it is clear that the algorithm reaches

equilibrium, and the simulation appears to have stabilized. In addition, the au-

tocorrelation functions show that the correlation decays quickly. Therefore, the

proposed method has converged sufficiently, and there is a confidence in the

conclusion made from the results.

The accuracy in the identification of the objects is shown in Figure 5.28. The

left panel shows that the errors are quite small; however, it should be noted

that the estimated errors are considerable in the top-left of the inner and outer

boundaries of the O object, and also in the corners of the L object. The estima-

tion variability is also shown in the figure, where the central panel shows mul-

tiple boundaries for selected iterations. It is clear that the variability is small
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FIGURE 5.27: Monitoring statistics for the M-H algorithm for segmenting the circu-
lar object: posterior traces (left column), and the corresponding autocorrelation func-
tions (right column) of the object mean µ∗, the object area, and the length of its bound-
ary.
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FIGURE 5.28: Estimation errors of the estimated boundaries (left), multiple boundary
traces (centre), and the estimated boundaries (shown in red), with the 95% credible
interval of boundaries (shown in grey) (right).

at the boundaries, which shows the certainty in the location of the estimated

boundaries. Finally, the right panel shows the credible interval of the estimated

boundaries, which indicate that there is greater variability at the top-left of the

inner and outer boundaries of the O object, and also at the right-side of the L

object.

5.8 Application to real data

In this section, the proposed algorithm is applied to real data. A lot of scien-

tific and clinical research has focused on detecting tumors and designing new

therapies. An accurate tissue diagnosis can be obtained through needle biop-

sies, by the surgical pathologist. In pathology studies, the analysis of a biopsy

from human tissue provides information for detection and treatment of deadly

diseases, such as cancer (Wang et al., 2011). Histology is the study of the micro-

scopic structure of tissues. The visual interpretation of the cell nucleus structure

is used to distinguish normal tissue from cancer tissue. In doing this, objects are

detected; this means obtaining the location of the objects (near the object cen-

troid) without identifying the boundaries. The detection technique can help in

counting, tracking, and segmentation of the nucleus cells (Xing and Yang, 2016).

The identification of the objects is required to distinguish the different struc-

tures in the cell, and to isolate those containing biologically significant struc-

tures. In particular, the aim in analyzing fluorescence microscopy images of

cells is to identify the cell objects and segment their nuclei; this analysis gives

important diagnostic information in some tissue lesions, because the nuclei in
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FIGURE 5.29: The image of real data showing U2OS nuclei cells.

tumors have characteristic appearances and features such as size, shape, mem-

brane contours, etc. (Wang et al., 2011). Thus, the segmentation approaches are

applied to microscopy images of cells from different samples to obtain compre-

hensive descriptions of the cells.

There are some challenges to cell image segmentation, including, for example,

inhomogeneous illumination across the visual field, variation in object shape,

size and orientation, and variation of the intensity of objects from the same

type, caused for example by inconsistent staining (Nattkemper, 2004). How-

ever, many methods have been proposed for the segmentation of cell nuclei in

fluorescence microscopy images, including methods based on the Chan–Vese

level-set model (e.g. Bergeest and Rohr (2012), Gharipour and Liew (2016), and

Zhang and Li (2017)). An overview on segmentation of micrograph images and

the problem of segmentation evaluation can be found in Nattkemper (2004). A

comprehensive review of the recent nucleus and cell segmentation approaches

can be found in Xing and Yang (2016).

The proposed approach is applied to a 2D fluorescence microscopy image of

U2OS cell nuclei from (Coelho et al., 2009). The U2OS cells are human osteosar-

coma cells (a malignant tumor of bone). The cell line was established in 1964

and was cultivated from tibia tissue of a 15-year-old human female suffering

from bone osteosarcoma (Niforou et al., 2008). The data image consists of 16

nuclei, and with a size of 1030×1349 pixels. A large image size will increase the

performance of the proposed algorithm, however it will also increase the time
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FIGURE 5.30: Sub-samples of the location of the object centres (left), the posterior
mean estimate of the image (centre), and the posterior probability of pixels being part
of the objects (right).

cost. Considering both factors (the segmentation performance and the compu-

tational cost), the size of the image was reduced to 200× 200 pixels.

Figure 5.30(left) shows sub-samples of the locations of the cell centres chosen

randomly. It is clear that for each sub-sample the dispersion around the mean

of the centre location is small, which indicates the certainty in the location of the

cells. The posterior mean estimate of the image is shown in Figure 5.30(centre),

while the estimates of the posterior probabilities of the pixel being part of the

objects is shown in Figure 5.30(right). The posterior probabilities can be seen

to be close to 1 for all object pixels, however for a few pixels on the boundaries

they are close to 0.6. Numerical results are summarised in Table 5.6, from which

it it is clear that all parameters were estimated accurately, with small values of

the posterior standard deviations and reasonably narrow intervals. Therefore,

it can be said that the accuracy of identifying the objects is very good.

Parameter Post. mean Credible interval Post. skewness Post. kurtosis

µ∗ 0.1634 (0.1630, 0.1638) -0.0163 3.0539

A∗ (pixel)2 112.9391 (112.4929, 113.3955) 0.0362 2.9053

L∗ (pixel) 164.1863 (163.3548, 165.0638) 0.1647 3.1998

TABLE 5.6: Summary of posterior results for real data.
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FIGURE 5.31: Marginal posterior samples generated by the proposed method sum-
marised using histograms and kernel density curves with 95% credible intervals for:
the object mean µ̂∗ (left), the area of objects (centre), and the length of boundaries
(right).
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FIGURE 5.32: Multiple boundary traces (left), and the estimated boundaries (shown
in red), with the 95% credible interval of the boundaries (shown in grey) (right).

Figure 5.31 shows the posterior histograms with density estimates for the mean

of the objects µ∗ (left), the area of the objects (centre), and the length of their

boundaries (right). The thick line on the horizontal axis indicates the 95% cred-

ible intervals. Clearly, the small variation in these parameters shows that the

parameters are well-estimated. Furthermore, the sampling distributions, for

the mean intensity of the objects, µ∗, and the area of the objects, are close to

symmetric, whereas the distribution of the length of the boundaries is positiv-

ity skewed. The skewness and kurtosis values are presented in Table 5.6.

The accuracy and the variability in the object identification is shown in Figure

5.32. The left panel shows multiple boundaries for selected iterations. It is clear
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FIGURE 5.33: Monitoring statistics for the M-H algorithm for the real data segmen-
tation: posterior traces (left column), and the corresponding autocorrelation functions
(right column) of the mean µ∗, the area of the objects area, and the length of boundaries.

that the variability is quite small at the boundaries, which shows the certainty

in the location of the estimated boundaries. Finally, the right panel shows min-

imum variations around all object boundaries.

The trace plots of the mean of the objects, the area of the objects, and the length

of their boundaries are shown in the left panels of Figure 5.33. Also, the auto-

correlation functions for these parameters are shown in the right panels of the

same figure. From the trace plots, it is clear that the Markov chain paths show
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convergence with good random fluctuations. In addition, the autocorrelation

functions show that the correlation decays quickly.

5.9 Conclusions

This chapter has proposed a new approach to image segmentation, through

level sets. The level-set matrix was estimated, in a fully Bayesian framework,

using a Markov chain Monte Carlo algorithm. This Bayesian formulation in-

corporates prior information about the level-set matrix. The flexibility of the

MCMC approach allows to demonstrate a range of output summaries. The

sample mean was used to estimate the posterior mean of the boundary, and

sample percentiles to estimate confidence bounds. Marginal distributions, and

functions of the simulated values were inspected. The approach has been ver-

ified in a range of simulated images as well as real image. The results clearly

indicate that the combined Bayesian and MCMC procedure has worked well,

and that the algorithms provides a very good and fast estimation to the objects.



Chapter 6

Temporal modelling of the level-set

matrix

6.1 Introduction

Finding objects in a given image is one of the most important tasks in image

analysis, where the number of objects, their locations, sizes, and shapes may

be unknown. With dynamic images, the aim is to track moving objects in a

sequence of images. Here the objects evolve and move with time in a coher-

ent manner, where locations, sizes, and shapes might change. For example, the

geometries of the objects might change with shrinking and expanding regions,

causing a change in the number of the regions. It has been seen in the early

chapters that the level-set method can cope with changes in shapes easily and

quickly. The idea in this chapter is to extend the level-set method to the case

of segmenting moving objects in a sequence of images by including motion

information as a criterion for segmentation of a sequence of images. The mo-

tion estimation based on the level-set method has been investigated by several

researchers (see for example Cremers and Soatto (2003), Cremers and Soatto

(2005) and references therein). Also a review can be found in Cremers et al.

(2007) and Mitiche and Aggarwal (2016).

In this chapter, the aim is to model an evolving process sequentially based on a

sequence of images. In particular, a temporal model is proposed in a Bayesian

framework for level-set based image sequence segmentation. Markov chain

102
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Monte Carlo (MCMC) methods are used to explore the model and to obtain

information about solution behaviour. The proposed model includes tempo-

ral prior information; thus it is able to describe the relations between temporal

changes, making identification of the objects more efficient and reducing the

estimation variability. There are many applications of similar approach in dif-

ferent areas such as medical imaging (West et al., 2004), industrial process mon-

itoring (West et al., 2005), and geophysics (Uhlemann et al., 2015).

The next section gives a mathematical description of the proposed model and

the full details of how the temporal information can be incorporated in the

model. The use of the M–H algorithm to estimate the model parameters is de-

scribed in Section 6.3. Section 6.4 shows the results from the implementation of

the algorithm on some simulated image sequences, Section 6.5 includes some

conclusions.

6.2 Bayesian Modelling

6.2.1 Likelihood

Assume that a two-dimensional domain S ⊂ R2 is divided into an N × N grid

of equal-sized square pixels, where N is an integer number. Pixel i is located at

si, where 1 ≤ i ≤ N2; then, the vector of these locations s forms a finite regular

square lattice. Now, define a discrete variable xi ∈ R for each pixel i. Thus the

unknown intensities can be given by the vector x = {x1, . . . , xN2} and can be

shown as a grey-level image. Now consider a sequence of images which are

collected at T time points {t1, . . . , . . . , tT}. At each time point tj , 1 ≤ j ≤ T , a

finite set of measurements ytj = {ytj1 , . . . , y
tj
N2} is taken at the locations si, where

1 ≤ i ≤ N2, and the data can be displayed as a grey-level image. Then, the ob-

served data ytj are collected to give the full data set y = {yt1 , . . . ,ytT } ∈ RN2×T .

Now, for each time point tj , 1 ≤ j ≤ T , the domain S is partitioned into

mtj non-overlapping regions, Rtj = {Rtj
0 , . . . , R

tj

(mtj−1)
}, with the correspond-

ing intensities µtj = {µtj0 , . . . , µ
tj

(mtj−1)
}. Hence, the domain S can be repre-

sented as Rtj
0 ∪ . . . ∪ R

tj

(mtj−1)
= S with R

tj
j ∩ R

tj
l = ∅, for j 6= l. Further

Rtj
∗ = {Rtj

1 , . . . , R
tj

(mtj−1)
} denotes all objects, and Rtj

0 denotes the background in
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S. Thus, Rtj
∗ = (R

tj
0 )c, with corresponding intensities µtj∗ = {µtj1 , . . . , µ

tj

(mtj−1)
}.

In the level-set formulation, the boundaries between the different regions Rtj

are given by the zero level-set γtj of the level-set matrix ϕtj . The data ytj de-

pend on the parameter set θtj = {ϕtj} through a mapping to the corresponding

intensity function x(θtj ); hence the measurement model is

ytj = x(θtj ) + ε, (6.1)

where ε is a vector of independent and identically distributed Gaussian errors.

Thus the conditional distribution of the measurements ytj given the parameter

set θtj is ytj | θtj ∼ N(θtj , σ2I) with the likelihood function

f(ytj |θtj ) =
1

(2πσ2)N2/2
exp

{
− 1

2σ2

∑
i

(y
tj
i − xi(θtj ))2

}
, σ > 0,

=
1

(2πσ2)N2/2
exp

{
− 1

2σ2

[∑
i∈I

tj
0

(y
tj
i − µ0)

2 +
∑
i∈I

tj
∗

(y
tj
i − µ∗)2

]}
,

σ > 0,

(6.2)

where I tj0 = {i : ϕtj (si) < 0} and I
tj
∗ = {i : ϕtj (si) > 0}. In the image sequence,

each frame is composed of background and objects, where the objects evolve

with time. Thus the aim at each time point is to identify the unknown ob-

jects; that is, to estimate the boundaries of the objects. Furthermore, the objects

might change location, size, and shape; those changes will also be estimated

as outputs of the estimation procedure. The changes in the objects with time

can be described using a transformation of the boundaries, which include the

effects of translation, scaling, and rotation. These transformation effects can

be explained in terms of the level-set matrix as follows: two level-set matrices

are considered similar if they can be translated, scaled, and rotated to have the

same zero level-set. The translation effects are described as shifts in the x- and

y-directions with parameters Th and Tv, the scale effect is described as shift in

the z-direction of the level-set matrix with parameter Tz, and the rotation ef-

fect with the angle parameter Tr. Let T be a vector consisting of parameters

involved in the transformation effects. Therefore, the complete parameter set

at time t is θtj = {ϕtj ,T tj} = {ϕtj , T tjh , T
tj
v , T tjz , T tjr }. The parameters µ and

σ are unknown, however they can be calculated when ytj and ϕtj are given.
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Clearly it is possible to identify objects in each frame separately using the algo-

rithm proposed in Chapter 5. However, a temporally evolving approach using

the temporal prior models described below will be proposed for time points

t2, . . . , tT .

6.2.2 Prior models

The prior for the level-set matrix ϕtj is presented as discussed in Chapter 5,

hence the shrinkage and smoothing prior with known parameters τ and β is

given by

p(ϕtj ) ∝ exp

{
− 1

2τ 2

∑
i

(ϕ
tj
i )2 − 1

2β2

∑
i∼j

(ϕ
tj
i − ϕ

tj
j )2

}
, i = 1, . . . , T. (6.3)

The proposed algorithm can be used to obtain an estimate for the model pa-

rameter; that is the level-set matrix given only the observed data. However, the

estimation algorithm is extended to include temporal prior information; this is

to consider the temporal correlation between the level-set matrices from two

consecutive time points. Hence, the level-set matrix ϕtj for each time is es-

timated given the corresponding data ytj and the estimated level-set matrix

from the previous time point ϕt(j−1) . In particular, in this chapter a temporally

evolving segmentation algorithm is proposed using the temporal prior model

described as follows.

It is assumed that as the process evolves through time, the changes within the

image vary slowly and smoothly. This can be modelled using a temporal prior.

Let Ψ(T ,ϕ) denote the transformation of the level-set matrix ϕ by the param-

eter vector T , thus Ψ(T ,ϕ) is a translation of ϕ by Th and Tv, a scaling by Tz,
and a rotation by angle Tr. Then, the temporal prior information is that, given

T , the object in the current image will be similar to the object in the previous

image. Here, a Gaussian distribution on first-order differences is used to model
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the temporal smoothness. The temporal prior is then presented as

p(ϕtj ,T tj |ϕt(j−1)) ∝ 1

(2πω2)N2/2
exp

{
− 1

2ω2
‖ϕtj −Ψ(T tj ,ϕt(j−1))‖2

}
,

i = 2, . . . , T, (6.4)

with temporal variance ω2 controlling the variability in the temporal smooth-

ness. In this model, it is assumed that there is no prior information about the

transformation parameters, thus each is distributed uniformly on a finite inter-

val such that the zero level-set curves remain inside the area of the image. In

the Bayesian approach the likelihood and the prior are combined to give the

posterior distribution of the model parameters θtj given data ytj and parameter

set θt(j−1) ,

π(θtj | ytj ,θt(j−1)) =
f(ytj |θtj )p(θtj | θt(j−1))

f(ytj )
, i = 2, . . . , T.

The estimation of all the unknown model parameters and other posterior infer-

ence are based on this posterior distribution. This will be done through Markov

chain Monte Carlo methods which will be described in the next section.

6.3 Parameter estimation

The parameters at time t2, . . . , tT are given by θtj = {ϕtj , T tjh , T
tj
v , T tjz , T tjr }. It

should be noted that at time t1 there is no temporal prior information. In gen-

eral, the estimation approach starts from an arbitrary starting value denoted as

θ0, then a Markov chain is simulated to produce values θ1, . . . ,θK . The algo-

rithm proposed here is to consider changes to a single parameter at each itera-

tion where the proposal is a perturbation of the current parameter with variance

value chosen to achieve reasonable acceptance rates. The general structure of

the estimation procedure is similar to the algorithm explained in Chapter 5.

To simplify the notation, consider that the level-set matrix at time tj is denoted

by ϕ = {ϕ1, . . . , ϕN2} and the estimated level-set matrix at time t(j−1) is de-

noted by ψ = {ψ1, . . . , ψN2}. Also the model parameter vector at time tj is
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θ = {ϕ, Th, Tv, Tz, Tr}. At iteration k of the MCMC algorithm this will be de-

noted by θk = {ϕk, T kh , T kv , T kz , T kr }. Here, the estimation approach is essentially

the same for all time points. The parameter set θ is composed of the level-set

matrix ϕ, Th, Tv, Tz, and Tr, hence in the estimation procedure, each parameter

will be considered separately. The algorithm is now explained and is also sum-

marized in Figure 6.1.

The level-set matrix update: The proposal procedure for the level-set matrix

ϕ is based on separate single component updates as described in Chapter 5.

For i = 1, . . . , N2, repeat the following steps: a new value for ϕi is proposed,

such that ϕ∗i = ϕk−1
i + ε, with ε ∼ N(0, κ2

ϕ). The variance κ2
ϕ is chosen to achieve

a reasonable acceptance rate. The proposed value ϕ∗i is accepted and the pa-

rameter component updated accordingly with probability

α(ϕ∗i | ϕk−1
i ) = min

[
1,

π(ϕk1, . . . , ϕ
k
i−1, ϕ

∗
i , ϕ

k−1
i+1 , . . . ,

π(ϕk1, . . . , ϕ
k
i−1, ϕ

k−1
i , ϕk−1

i+1 , . . . ,

. . . , ϕk−1
N , T k−1

h , T k−1
v , T k−1

z , T k−1
r | ytj ,θt(j−1))

. . . , ϕk−1
N , T k−1

h , T k−1
v , T k−1

z , T k−1
r | ytj ,θt(j−1))

]
. (6.5)

Then, generate u from a uniform distribution, U(0, 1). If α(ϕ∗i | ϕk−1
i ) > u, accept

the proposal, and set ϕki = ϕ∗i , otherwise it is rejected and no change is made;

ϕki = ϕk−1
i .

Shift in x-direction parameter update: A new value T ∗h is proposed as a pertur-

bation of the value T k−1
h , T ∗h = T k−1

h + εh, where εh ∼ N(0, κ2
h). The variance κ2

h

is chosen to achieve a reasonable acceptance rate. Using the parameter values

T ∗h = {T ∗h , T k−1
v , T k−1

z , T k−1
r }, the effects of translation, scaling, and rotation are

incorporated to calculate the transformation of ψ, Ψ(T ∗h,ψ), by evaluating the

acceptance probability

α(T ∗h | T k−1
h ) = min

[
1,

π(ϕk, T ∗h , T k−1
v , T k−1

z , T k−1
r | ytj ,θt(j−1))

π(ϕk, T k−1
h , T k−1

v , T k−1
z , T k−1

r | ytj ,θt(j−1))

]
.

Then, generate u from a uniform distribution, U(0, 1). If α(T ∗h | T k−1
h ) > u, ac-

cept the proposal, and set T kh = T ∗h ; otherwise T kh = T k−1
h .

Shift in y-direction, and z-direction parameter update: following the above
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steps for updating Th.

Angle rotation parameter update: A new value T ∗r is proposed for the angle

rotation parameter T k−1
r , such that T ∗r = mod (T k−1

r + εr, 2π), where εr ∼
N(0, κ2

r). The variance κ2
r is chosen to achieve a reasonable acceptance rate. Us-

ing the parameter values T ∗r = {T kh , T kv , T kz , T ∗r }, the effects of translation, scal-

ing, and rotation are incorporated to calculate the transformation ofψ, Ψ(T ∗r,ψ),

by evaluating the acceptance probability

α(T ∗r | T k−1
r ) = min

[
1,

π(ϕk, T kh , T kv , T kz , T ∗r | ytj ,θt(j−1))

π(ϕk, T kh , T kv , T kz , T k−1
r | ytj ,θt(j−1))

]
.

Then, generate u from a uniform distribution, U(0, 1). If α(T ∗r | T k−1
r ) > u, ac-

cept the proposal, and set T kr = T ∗r ; otherwise T kr = T k−1
r .

For reliable estimation, this procedure should be repeated until the chain con-

verges to its equilibrium distribution. Thus, it is useful to check Markov chain

paths and to calculate sample autocorrelation functions. In equilibrium, the

paths should look unstructured and well mixed; in addition, autocorrelation

functions should be close to zero for all but small lags. Once the sample has

been generated from the posterior distribution, and collected after a suitable

burn-in period to allow the chain to reach equilibrium, the sample mean and

variance are used to estimate the posterior mean and variance. In addition,

sample order statistics are used to estimate credible intervals, marginal distri-

butions estimated and functions of the parameter values can be studied as well.

Various estimates, using the simulated samples of the level-set matrix, were de-

scribed in Chapter 5. Similarly, point and interval estimates are available from

the samples of the temporal parameters. For a particular parameter T in the

transformation vector T ; let T 1, . . . , T K be the simulated sample collected af-

ter equilibrium has been reached, then the posterior mean and variance can be

estimated by the corresponding sample mean and variance:

T̂ =
1

K

K∑
k=1

T k, σ̂2 =
1

K − 1

K∑
k=1

(T k − T̂ )2.
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In addition, the 100(1− α)% credible interval for T is given by(
T (K(α/2)), T (K((1−α)/2))

)
,

where K is chosen so that K(α/2) and K((1− α)/2) are both integer.

6.4 Simulation studies

In this section two simulation experiments have been carried out to study the

estimation of moving objects in a sequence of images, and to estimate the changes

with time using the model and algorithm proposed in this chapter. The first

simulation acts as an introductory example to explore the performance of the

proposed algorithm. In this experiment, a sequence of images were simulated

with a single object, and the object evolves and moves slowly and smoothly

with time. Here only the results when the temporal priors are included will

be considered. In the second experiment, a sequence of images were simulated

with two objects moving with time in a smooth way, at the beginning one object

obscures the other, then both objects move in such a way that the covered object

gradually becomes visible, and at the end the two objects are well separated. In

this experiment the details of the full analysis will be given, so in addition to

estimating the model parameters, the effect of including the temporal informa-

tion will be studied.

The simulation experiments consider a fixed image size of 32 × 32 which is

composed of 1024 pixels, and T time points. For each frame, the data were

generated from the data model given by Equation (5.3), where I0 denotes the

background region with mean intensity parameter µ0, I∗ denotes the object re-

gions with mean intensity parameter µ∗, and the common noise variance σ2.

In these experiments one is interested in estimating the boundaries of the ob-

jects and the four parameters which specify the changes in location, size, and

shape over time. The procedure starts at frame 1, in which the boundaries of

the objects are estimated using image data y1 only. Then, for frames 2 to T the

boundaries of the objects are estimated using the estimate of ϕt(j−1) along with

data ytj . In addition, the other parameters T tjh , T tjv , T tjz , and T tjr are estimated.
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Metropolis-Hastings Algorithm

For each time point tj : Set an initial ϕ0 and an initial T 0. Calcu-
late the transformed level-set matrix at t(j−1); call this Ψ(T 0,ψ).

For each component ϕi, propose a new value ϕ∗i . Evaluate
α(ϕ∗i |ϕi), and apply the Reject/Accept criterion. If the pro-
posal is accepted, update the component value: ϕi=ϕ∗i ; if

the proposal is rejected, retain the component value ϕi= ϕi.

• Generate a new value
T ∗r , and calculate the
corresponding trans-
formed Ψ(T ∗r,ψ).

• Evaluate α(T ∗r |Tr), and
apply the Reject/Ac-
cept criterion.

• If the proposal is ac-
cepted then set Tr=T ∗r ;
otherwise Tr=Tr.

• Generate a new value
T ∗h , and calculate the
corresponding trans-
formed Ψ(T ∗h,ψ).

• Evaluate α(T ∗h |Th), and
apply the Reject/Ac-
cept criterion.

• If the proposal is ac-
cepted then set Th=T ∗h ;
otherwise Th=Th.

• Generate a new value
T ∗v , and calculate the
corresponding trans-
formed Ψ(T ∗v,ψ).

• Evaluate α(T ∗v |Tv), and
apply the Reject/Ac-
cept criterion.

• If the proposal is ac-
cepted then set Tv=T ∗v ;
otherwise Tv=Tv.

• Generate a new value
T ∗z , and calculate the
corresponding trans-
formed Ψ(T ∗z,ψ).

• Evaluate α(T ∗z |Tz), and
apply the Reject/Ac-
cept criterion.

• If the proposal is ac-
cepted then set Tz=T ∗z ;
otherwise Tz=Tz.

FIGURE 6.1: The general structure of the estimation algorithm.
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a b c d

FIGURE 6.2: Multiple boundary traces showing data images for a sequence of frames.

For each frame, the MCMC algorithm was run for 20000 iterations, with a burn-

in period of 2000 iterations. To remove the effects of autocorrelation, every 4th

iteration is collected to produce a posterior sample of size 4500. In addition,

the narrow-band technique can be applied where only components of the level-

set matrix; near the boundaries are updated. The variances are adjusted at the

beginning of the burn-in period to achieve an acceptance rate of about 23.4%

(Roberts et al., 1997).

Experiment 1

In this example a simple dynamic simulation with a single moving object is con-

sidered. In particular, the sequence of images was simulated with a square ob-

ject located around the centre, with the object moving and evolving with time.

The data in the each frame has the intensities µ∗ = 5 and µ0 = 7 for the object

and the background respectively, and a common variance σ2 = 0.3. Then, to

estimate the model parameters the proposed algorithm is used with β = 0.6,

τ = 0.45 and ω = 0.4; there were chosen after initial experiments. Figure 6.2

shows the data image with a sub-sample of 20 curves chosen randomly from

the sample of 4500 for all frames. It is clear that the variability is small at the

boundaries which indicates the certainty in the location of the estimated bound-

ary.

The posterior probability of the pixels is calculated showing what region, back-

ground or objects is most likely to occur in each pixel. The results for all frames

are shown in Figure 6.3, where the posterior probabilities are close to 1 for all

pixels which are known to be from the object region, and close to zero for those

known to be from the background. Therefore, it can be said that the accuracy of
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FIGURE 6.3: The posterior probability of pixel i being part of the object for all frames.

0.475 0.480 0.485 0.490

0.
47

5
0.

48
0

0.
48

5
0.

49
0

X

Y ●

●

a

0.445 0.450 0.455

0.
41

0
0.

41
5

0.
42

0
0.

42
5

X

Y

●

●

b

0.445 0.450 0.455

0.
41

0
0.

41
5

0.
42

0
0.

42
5

X

Y

●

●

c

0.445 0.450 0.455

0.
41

0
0.

41
5

0.
42

0
0.

42
5

X

Y

●

●

d

FIGURE 6.4: A sub-sample of the location of the object centres for all frames, with the
true location (in black).

the object identification is very good.

Figure 6.4 shows a cloud of points for a sub-sample of the location of the object

centres chosen randomly after the convergence of the algorithm, for all frames

with the true location (in black). Clearly the variability is small and the true lo-

cations lie within this cloud of points which shows the certainty in the location

of the object.

Parameter True value Post. mean Post. std dev Post. skewness Post. kurtosis

(95 % CI)

Sh 1.000 1.018 0.238 -0.057 2.427

(0.628, 1.407)

Sv 2.000 2.070 0.243 -0.112 2.145

(1.667, 2.437)

Sz 0.000 15.696 17.062 -0.139 2.981

(-12.622, 42.605 )

Sr 0.000 0.007 0.057 -0.126 2.394

(-0.086 0.093)

TABLE 6.1: Summary of posterior results for frame 2.
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First, the results obtained from the second frame, Figure 6.2(b), are discussed.

Figure 6.5 shows the parameter traces (left column). The traces show rapid con-

vergence and good random mixing. They also indicate moderate autocorrela-

tion within the chain, with the autocorrelation functions reinforcing this (mid-

dle column). Also shown are estimates of the marginal posterior distribution

(right column) as histograms and as smoothed density estimates. The thick line

on the horizontal axis indicates the 95% credible intervals. Clearly, the small

variation in these parameters shows that the parameters are well-estimated. In

addition, all parameters have approximately symmetric distributions. The nu-

merical summaries in Table 6.1 show that all of the posterior mean estimates are

close to the true values, whilst the posterior standard deviations indicate that

the parameters were estimated very precisely.

Parameter True value Post. mean Post. std dev Post. skewness Post. kurtosis

(95 % CI)

Sh 0.000 -0.154 0.441 0.280 2.424

(-0.835, 0.631)

Sv 0.000 -0.193 0.420 0.438 2.601

(-0.776, 0.600)

Sz 110 101.505 45.073 -1.044 6.536

(5.733, 151.357)

Sr 0.000 -0.002 0.015 0.093 3.114

(-0.026, 0.022)

TABLE 6.2: Summary of posterior results for frame 3.

Secondly, the results obtained from the third frame, Figure 6.2(c), are consid-

ered. Figure 6.6 shows the Markov chain paths (left column). The traces con-

verge quickly for each parameter with good random fluctuations. The au-

tocorrelation functions (middle column) show acceptable autocorrelations, al-

though there is a slow decay in the ACF plot for parameter Th. Also shown are

estimates of the marginal posterior distribution (right column) as histograms



Chapter 6. Temporal modelling of the level-set matrix 114

0 1000 2000 3000 4000

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Iterations

Ŝ
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FIGURE 6.5: Plot of MCMC traces (left column), autocorrelation function (ACF)
(middle column), and histogram with density estimates (right column) for temporal
parameters in frame 2.
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FIGURE 6.6: MCMC traces (left column), autocorrelation function (middle column),
and histograms and density estimates (right column) for temporal parameters in frame
3.
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and as smoothed density estimates. The thick line on the horizontal axis indi-

cates the 95% credible intervals. The rotation angle has an approximately sym-

metric distribution. However, the sample distributions for Th, Tv, and Tz are

very asymmetric. The shift in the x and y-direction distributions are positively

skewed, whilst the shift in the z-direction distribution is negatively skewed.

The numerical summaries in Table 6.2 show that all of the posterior mean esti-

mates are close to the true values, with the small values of the posterior stan-

dard deviations indicating that the parameters were estimated very precisely.

Finally, the results obtained from the last frame, Figure 6.2(d), are considered.

Figure 6.7 shows the Markov chain paths (left column). The traces show rapid

convergence and good random mixing. The autocorrelation functions (middle

column) show acceptable autocorrelations, although again there is a slow de-

cay in the ACF plot for parameter Tv. Also shown are estimates of the marginal

posterior distribution (right column) as histograms and as smoothed density

estimates. The thick line on the horizontal axis indicates the 95% credible in-

tervals. The shift in the x and y-directions have approximately symmetric dis-

tributions. In contrast, the shift in the z-direction and the rotation angle have

negatively skewed distributions. The numerical summaries (Table 6.3) show of

the posterior standard deviations indicate that the parameters were estimated

very precisely.

Parameter True value Post. mean Post. std dev Post. skewness Post. kurtosis

(95 % CI)

Sh 0.000 -0.037 0.141 0.075 3.103

(-0.273 0.197)

Sv 0.000 0.048 0.137 0.411 3.430

(-0.163, 0.296)

Sz 0.000 45.150 24.431 -0.103 2.986

(-7.687, 93.186)

Sr 0.349 0.343 0.025 -0.103 2.986

(0.299, 0.384)

TABLE 6.3: Summary of posterior results for frame 4.
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FIGURE 6.7: MCMC traces (left column), autocorrelation function (middle column),
and histograms and density estimates (right column) for temporal parameters in frame
4.
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FIGURE 6.8: Posterior estimates with 95% credible intervals and true values (in
black): (a) shift in the x-direction, Th, (b) shift in the y-direction, Tv, (c) shift in the
z-direction, Tz , and (d) rotation angle, Tr.

Figure 6.8 shows time series plots for the posterior estimates with the 95% cred-

ible intervals and true values (in black) for the shift in the x-direction parameter

(a), shift in the y-direction parameter (b), shift in the z-direction parameter (c),

and rotation angle (d). In each panel, the time sequence shows smooth changes

with a generally constant credible interval width surrounding the estimated

value. Notice that if zero is included in the credible interval for any of the tem-

poral parameters then this indicates that there is no corresponding change in

the object.

A rose diagram is a variation of a circular histogram, with the bars being re-

placed by sectors (Mardia and Jupp, 2009). The radii of each sector is propor-

tional to the square root of the group frequency and so the area of each sector
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FIGURE 6.9: Rose diagrams for rotation angles for frames: (a) 2, (b) 3, and (c) 4.

is proportional to the group frequency. Figure 6.9 shows rose diagrams for the

rotation angle parameter for all time. Each panel shows the rose diagram for

the angle sample at a particular time. From the figure it is clear that there is a

small variation in all samples of angle, which indicates that estimation of the

rotation angle parameter is reliable.

Th Tv Tz

Tv -0.014
Tz 0.005 0.006
Tr -0.021 -0.006 0.003

(a)

Th Tv Tz

Tv -0.015
Tz -0.078 0.077
Tr 0.014 -0.051 -0.078

(b)

Th Tv Tz

Tv -0.015
Tz -0.078 0.077
Tr 0.014 -0.051 -0.078

(c)

TABLE 6.4: Estimated correlations between parameters for frames: (a) 2, (b) 3, and (c)
4.

The correlations between temporal parameters over time are calculated. The

results are represented in Table 6.4 where each sub-table shows the parameter
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FIGURE 6.10: Sample size calculation for the model parameters: (a) components of ϕ
in the narrow-band region, and (b) temporal parameters.

correlations for a specific time point. It is clear that there is no correlation be-

tween the different temporal parameters.

Sample size calculations were performed for each parameter (see Aykroyd and

Green, 1991; Aykroyd and Mardia, 2003). Figure 6.10 show the result of the cal-

culations for the components of the level-set matrix in the narrow-band region

(a) and the temporal parameters (b); these results indicated that the main run

of size 4500 is more than adequate.

Before moving on to the second experiment, the proposed method was applied

using an image replaced by noise. This might happened if the camera stops

recording at a specific time point, say for example at tj . In this situation, the

zero-level curve collapses and the algorithm breaks down after a few iterations.

This is because the algorithm started with a big value of ω, hence there is no

temporal information. This collapsing can be used as a warning alarm, and

hence, in such cases the frame at tj can be removed in the dynamic estimation.

Then, the process continues to estimate the following frame at t(j+1) using the

available data yt(j+1) , and the estimated parameters from the previous frame at

t(j−1). However, if the algorithm is modified, to use the solution from the pre-

vious time point as the initial zero level-set curve and if ω is chosen reasonably,

then the zero level-set curve will not collapse. This is because there is prior

information about the objects, such as their shapes, sizes and locations. This
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suggested modification is based on a single experiment and so more investiga-

tion is needed to confirm the outcome in a wider range of situations.

Experiment 2

In this example, a sequence of images were simulated with two circles moving

with time in a smooth manner. At the beginning one object obscures the other,

then both objects move in such a way that the covered object gradually becomes

visible, at the end the objects are well separated. The data in each frame has the

intensities µ∗ = 5 and µ0 = 7 for the objects and the background respectively,

and a common variance σ2 = 0.6. In the first frame, (a), the boundaries of the

object were estimated individually because there is no temporal information.

The proposed algorithm is then applied, with β = 1, τ = 0.45 and ω = 0.7,

to track the objects, this is done by estimating the boundaries of the objects, the

location of the objects, and the changes in the objects. To assess the convergence

of the MCMC method, the plots of the Markov chain paths and the correspond-

ing autocorrelation functions of the model parameters were checked. The plots

show rapid convergence with acceptable autocorrelations.

Figure 6.11 shows the data with a sub-sample of 20 curves chosen randomly

after the convergence of the algorithm. In each panel, it is clear that the vari-

ability is moderate at the boundaries which shows a reasonable certainty about

the location of the estimated boundary. The posterior probability of the pixels is

calculated showing what region, background or objects, is most likely to occur

in each pixel. The results for all frames are shown in Figure 6.12 (right). The

posterior probabilities are close to 1 for all pixels which are known to be from

the object region, and close to zero for those known to be from the background.

For all frames, it is quite clear that the posterior probabilities for most object pix-

els are roughly 1, with a few object pixels around the boundaries are less than

0.8. It can therefore be said that the objects has been tracked well throughout

the sequence.

Figure 6.13 shows clouds of points for a sub-sample of the location of the ob-

ject centres for frames 1 to 9 (a) and for frame 10 (b), with the true locations

(in black). The locations are estimated for one object where the two circles are
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FIGURE 6.11: Multiple boundary traces showing data images for a sequence of frames.
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FIGURE 6.12: The posterior probability of pixel i being part of the object for all frames.



Chapter 6. Temporal modelling of the level-set matrix 124

0.58 0.60 0.62 0.64 0.66 0.68

0.
58

0.
60

0.
62

0.
64

0.
66

0.
68

X

Y

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

a

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

X

Y

●

●

●

●

b

FIGURE 6.13: Sub-samples of the locations of the object centres for frames 1 to 9 (a)
and for the two objects in frame 10 (b), with the true locations (in black).
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FIGURE 6.14: Posterior estimates with the 95% credible intervals for the temporal
parameters: (a) T̂h, (b) T̂v, and (c) T̂z , with true values (in black).

overlapping in (a), and the location are estimated for the two circles after the

separation in (b). For all frames, it is clear that the variation around the mean

locations (in dark red) is small and the true locations (in black) lie within these

clouds of points.

Figure 6.14 shows time series plots for the posterior estimates with the 95%

credible intervals and true values (in black) for the shift in the x-direction pa-

rameter (a), shift in the y-direction parameter (b), and shift in the z-direction

parameter (c). The figure shows the changes in locations and sizes of the ob-

jects were estimated very well. In each panel, the time sequence shows smooth

changes with a generally constant credible interval width surrounding the es-

timated value. For the shift in the z-direction there is an abrupt change at the

end of the sequence. This is because the two circles are well separated and so
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FIGURE 6.15: The estimated boundaries for all frames (shown in black), with no tem-
poral priors, with the 95% credible intervals for the object boundaries (shown in grey).

the size of the objects reduces.

Figure 6.15 shows the credible intervals for the level-set curve for all frames,

these results are obtained without using any temporal priors. Also, 6.16 shows
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FIGURE 6.16: The estimated boundaries for all frames (shown in red), with temporal
priors, with the 95% credible intervals for the object boundaries (shown in pink).
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FIGURE 6.17: The SE for the estimation of: (a) area of the objects and (b) length of the
boundaries. With temporal prior (in red) and with no temporal prior (in black).

the credible intervals for the level-set curve for all frames, these results are ob-

tained with using temporal priors. In both figures, the regions of the credible

intervals with no temporal priors (in grey) for all frames are compared to the

regions of the credible intervals with temporal priors (in pink) for the corre-

sponding frames. It is clear from this comparison, that the thickness of the pink

regions in Figure 6.16 are smaller with much less variability around the esti-

mated boundaries compared to the grey regions in Figure 6.15. This indicates

that the inclusion of temporal priors has affected the parameter estimation, and

that the variability in the estimated boundaries reduced.

In Figure 6.17, the SE of the estimated area of the objects (a) and length of the

boundaries (b) for both models are compared for all frames. In each panel the

red line represents the SE from the estimation with temporal priors, and the

black line shows the SE from the estimation with no temporal priors. All SE

values in both panels are very small, and so the estimation of area of the objects

in both models is good. However, the estimation of the area of the objects with

temporal priors gives a smaller SE for all frames compared to the estimation

with no temporal priors. Similarly, the SE of the estimated length of the bound-

aries also shows a reduction for the estimation with temporal priors compared

to the estimation with no temporal priors. This is true for all frames, even with

a challenging case at the end where the two objects are separated.
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6.5 Conclusions

This chapter has described a novel modelling approach through level sets for

the use in dynamic imaging problems. Temporal information was easily in-

corporated into the estimation process using the Bayesian approach. A Monte

Carlo sampler was used to explore the full posterior distribution, and to esti-

mate many choices of the outputs, i.e. point estimates, credible intervals/re-

gions, and marginal distributions for the parameters. A range of simulated

images have been considered to illustrate the proposed algorithm. The results

show that the method is able to estimate the temporal changes and to describe

the relationships between temporal changes. In addition, it is clear that the in-

clusion of temporal prior information, makes a substantial improvement. For

further investigation the method needs to be applied to a wider range of exam-

ples including real dynamic imaging situations. Also, a further extension could

be considered to allow estimation errors to be propagated between frames due

to the given level-set matrix from the previous frame also being estimated and

hence involving uncertainty.



Chapter 7

Conclusions and further work

The aim of this thesis was to produce and investigate statistical methodologies

for modelling image data through the level-set approach, and based on the ex-

periments performed are successful in achieving this goal. In this final chapter,

the main results presented in this thesis are summarized, and the future direc-

tion of the work is addressed.

7.1 Conclusions

The main contributions of this thesis are as follows:

• In Chapter 3 and Chapter 4, a rigorous Bayesian formulation of image seg-

mentation based on the level-set method was introduced. This model was

then generalized to allow the consideration of many important practical

applications. In particular, a variety of prior models were considered as

more flexible generalizations for prior information description. Initially,

exponential distributions were used to model the area of objects and the

length of the objects, before proposing beta and gamma distributions as

more appropriate choices. Also, the Student’s t-distribution is proposed

as a more robust choice than a Gaussian distribution for modelling the er-

rors. The results showed that performing a sensitivity analysis provides

an important assessment of robustness of subjective model choices. The

approach can easily be generalized, making it a feasible approach for more

complex image problems.
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• In Chapter 5, a new Bayesian modelling approach was proposed for object

identification in image analysis through level sets. The MCMC estimation

algorithm was also described for sampling from the posterior distribution.

The proposed algorithm was applied to both simulated and real data. A

range of outputs were summarized using the MCMC sampling procedure.

The results clearly indicated that the combined Bayesian/MCMC proce-

dure worked well.

• In Chapter 6, a new method for modelling the temporal evolution of im-

ages through level sets was produced; also, the MCMC algorithm was de-

scribed for sampling the posterior distribution. The proposed algorithm

was applied to simulated image sequences, and successfully estimated

temporal components as well as other model parameters. The results in-

dicate that the proposed method could become a useful tool for temporal

modelling in dynamic imaging problems.

7.2 Further work

There are several suggestions that could be considered as extensions from this

thesis.

• Consider other types of prior information with the aim of improving the

estimation. However, if the prior parameters are not set correctly, the es-

timation results from the MCMC methods might be poor; thus, there is a

need for developing the estimation algorithm, to allow all parameters to

be well estimated. The suggestion for including these parameters in the

estimation process is to fit a hierarchical Bayesian model, which will re-

sult in effective and flexible estimation algorithms. Other information can

easily be incorporated into the estimation process, such as the smoothness

of the boundaries.

• In recent years, Bayesian modelling approaches have provided an appro-

priate framework for controlling and describing the segmentation pro-

cess, to deal with many inverse problems which can be considered as

identifying objects. The proposed algorithms need to be developed, and

then it will be appropriate to be applied in inverse imaging problems.
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• Segmentation of overlapping objects, where parts of the objects are be-

hind others is considered as one of the most challenging problems in im-

age analysis. In the proposed algorithms, the number of objects can be

estimated as well as other model parameters. However, this is extremely

difficult for overlapping objects, as well as the identification of the bound-

aries, and hence these algorithms could be extended to consider such sit-

uations.

• In the temporal modelling approach proposed in this thesis, the given

level-set function from the previous frame is, in fact, also estimated, and

hence has attached uncertainty. If a sequence of estimates are calculated,

then the accumulated uncertainty could be substantial. Hence, there is

clearly scope to propose a method for the total uncertainty; this, of course,

will lead to new insights into image sequence modelling.
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