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Abstract 

High heat fluxes generated by modern electronic chips continue to motivate 

efforts to improve the efficiency of associated cooling systems. This thesis 

seeks to enhance heat transfer in liquid-based micro-channel heat sinks, while 

keeping power consumption low, using geometrical modifications and the 

replacement of water coolant by nanofluids.  

Preliminary investigation of a perforated pinned heat sink shows that 

geometrical enhancement strategies proven for air-cooled systems do not 

necessarily work well with liquid coolant. However, simple solid cylindrical or 

prismatic vortex generators (VGs) positioned at intervals along the base of a 

micro-channel are found to offer heat transfer benefits for liquid coolants 

flowing under laminar conditions. The performance of various VGs with 

different cross-sectional shapes (including semi-circular, triangular, elliptical 

and rectangular) is examined using detailed finite element analysis validated 

against published experimental data. Results show that the half-circle VGs 

offer the best heat transfer improvement among the considered shapes, but 

with a substantial increase in pressure drop along the micro-channel. To 

reduce the pressure penalty, various gaps are introduced along the span of 

the VGs and shown to reduce the pressure while further improving the heat 

transfer performance. A performance evaluation criteria (PEC) index is used 

to assess the VG benefits versus pressure penalty.  

A critical evaluation of various (Al2O3/SiO2-water) nanofluids in terms of 

energy management is conducted, highlighting that performance comparisons 

at equal Reynolds numbers are misleading because of kinematic viscosity 

differences. Enhancement of heat transfer can appear much more significant 

than when comparing at equal flow rate. However, it is also shown that a novel 

combination of elliptical VGs with nanofluids can offer genuine benefits.  

Finally, an optimisation study illustrates that CFD-validated surrogate 

modelling provides an accurate representation of the system performance 

over a range of design parameters, enabling optimal heat transfer and 

pressure drop to be determined.
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As  surface area of the whole heat sink (m2) 

CFD  Computational Fluid Dynamics  

Cp Specific heat, J/Kg.K 

𝐶𝑝𝑓
 Specific heat of fluid, J/Kg.K 

𝐶𝑝𝑠
 Specific heat of solid particles, J/Kg.K 

 D Diameter, m  

FEM Finite Element Method 

FVM Finite Element Method 

K Thermal conductivity, W/m.K 

L Channel length, m 

MFR Mass flow rate, kg/s 

VGs Vortex generators 

P Pressure, N/m2 

Pp Pumping power. W 

q Uniform heat flux, W/cm2 

r Radius of VGs, µm 

Re Reynolds number 

T Temperature, K 

X  Axial distance, µm 

Xin Distance from the inlet to the first VG, µm 

 

Greek Symbols 

β Empirical functions of nanoparticles 

φ Nanoparticles concentration, % 

𝜌𝑓  Density of fluid, kg/m3 
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 µ Viscosity, Kg/ms 

Ө Thermal resistance, K/W 
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 Introduction 

 

 Introduction 

In 1941, the computer first appeared in the United States for military purposes 

and had a size and weight of 1800 square feet (167 m2) and 30 tons (2.75x104 

kg) respectively [1]. It was developed with time, focusing on reduction of size 

and weight while increasing the efficiency, resulting in a challenge point for 

heat transfer. This challenge was how to reject the heat from the computer 

with a limitation of space, and it was solved using forced convection instead 

of natural convection. That forced convection requires an energy input like a 

pressure gradient to drive the flow, so developing energy efficient cooling 

methods requires a consideration of this cost.  

Recently, cooling has become even more challenging due to rapid 

development of electronic applications which focus on size and weight 

reduction while increasing the efficiency simultaneously [2, 3]. These 

applications have recently arisen in various industries such as biomedical, 

environmental, aerospace, nuclear reactors, and other electronic cooling 

device applications [4].  

Therefore, the recent motivation is to investigate the behaviour of conjugate 

heat transfer of cooling systems to reach high thermal and low-pressure drop 

performance especially for the small systems. One of these systems is a 

micro-channel heat sink (MCHS), which has the ability to reject the heat and 

enhance the thermal performance, and forms the primary focus of this study. 

 

 Heat sink and micro-channel  

To reject the generated heat from the electronic components or devices, a 

heat sink can be used to remove the heat either passively using natural 

convection (no fan is required) or actively using forced convection (fan is 

required).  
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There is a need to develop cooling systems by decreasing their size and 

weight to micro- and mini-scale systems, such as micro-channel heat 

exchangers and heat sinks [5], while simultaneously increasing the efficiency 

to meet this development [6].  

Mini- and micro-channels have shown high heat transfer performance, they 

are different in size from the traditional channels and can be classified 

according to their associated hydraulic diameters, Dh, [7-9] as presented in 

Table 1.1. 

 

Table 1.1: Channel classification [8],[9]. 

Mehendale et al. [8]. Kandlikar and Grande [9]. 

Conventional 

channels 
Dh > 6 mm 

Conventional 

channels 
Dh > 3 mm 

Compact 

Passages 
1 mm< Dh ≤ 6 mm Minichannels 1 m < Dh ≤ 3 mm 

Meso-channels 100 mm< Dh ≤ 1mm 
Micro-

channels 

10 m < Dh ≤ 200 

m 

Micro-channels 1 m < Dh ≤ 100 m 

Transitional 

channels 
0.1 m < Dh ≤ 10 m 

Molecular 

nanochannels 
Dh ≤ 0.1 m 

 

The term ‘micro-channel’ first appeared in 1981 [10], and a heat sink based 

on micro-channels is presented in Fig. 1.1. The concept had a great influence 

in thermal science as it decreased the hydraulic diameter and enhanced the 

heat transfer. From an analysis perspective, a key feature of micro-channels 

is that the hydraulic diameter becomes comparable with the channel wall 

thicknesses, and consequently in transverse cross-sections of micro-channel 

heat sinks, the area of the solid material is commensurate with the fluid area 

[11]. This means that conjugate heat transfer phenomena such as axial 

conduction in the solid must be accounted for, and boundary conditions 
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applied at channel walls based on Nusselt number correlations from larger 

channels can lead to inaccurate results [12]. Therefore the motivation of this 

study is to improve the heat transfer in a limited area which generates heat 

flux. 

 

 

 

Figure 1.1: Micro-channel heat sink (L=10 mm and the corresponding 
width of each channel W= 0.3 mm) [13]. 

 

 Heat transfer enhancement classification  

Sixteen different enhancement techniques have been identified as passive or 

active techniques. A list of the various methods or devices under each of these 

two categories in given in Table 1.2 [14]. The primary distinguishing feature is 

that unlike active methods, passive techniques do not require direct input of 

external power, though they may incus indirect energy cost, for instance 

through increase of pressure drop, as will be seen later in this thesis.  
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Table 1.2: Heat transfer enhancement classification  

Passive Techniques Active Techniques 

Treated surfaces Mechanical aids 

Rough surfaces Surface vibration 

Extended surfaces Fluid vibration 

Displaced enhancement devices Electrostatic fields 

Swirl flow devices Injection 

Coiled tubes Suction 

Surface tension devices Jet impingement 

Additives for liquids 

Additives for gases 

 

This thesis discusses two passive techniques to enhance the heat transfer 

performance of a micro-channel heat sink, namely, vortex generators which 

present the extended surface area and swirl flow devices, and nanofluids that 

fall under the additives for liquids category in Table 1.1. 

 

 Vortex generators 

In the revolution of advanced manufacturing processes, many experimental 

and numerical studies investigated ways in which heat transfer can be 

enhanced by modifying the conventional heat sinks. The modification can be 

achieved by adding various geometrical features which extend the cooling 

surface area of the heat sink and disturb the flow to promote the formation of 

vortices in the flow [15]; such features are known as ‘vortex generators’ (VGs). 

Most of the modern thermal systems offer a high heat transfer performance 

when using VGs [16-19]. 

There are two types of vortex generators; they are called transverse vortex 

generators (TVGs) when the axis of vortices is perpendicular to the fluid flow, 

however, they are known as longitudinal vortex generators (LVGs) when the 
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axis of the vortices is parallel to the fluid flow [20]. Both types can be applied 

within channels to extend the surface area and generate vortices to enhance 

the heat transfer. Studies have reported that better heat transfer enhancement 

is achieved using LVGs compared to TVGs [20, 21]. 

Vortex generators can take various forms such as grooves and ribs [22-25]. 

Also, they can be protrusions, wings, inclined blocks, winglets and fins [26, 

27] as shown in Fig. 1.2. They have been used to enhance heat transfer in 

different geometries such as circular and non-circular ducts under turbulent 

flow [28-30]. They have also been used in laminar flow [31], with flat plate-fins 

in rectangular channels [32-34], tube heat exchangers [35], heat sinks [31, 36] 

and rectangular narrow channels [37, 38]. 

Though vortex generators can decrease the thermal resistance of a micro-

channel heat sink, a key problem is that the pressure drop through the heat 

sink increases. This can lead to an increase in the cost of driving the forced 

convection, or increased bypass of the heat sink. One of the aims of this 

investigation is to develop VGs that offer benefits in heat transfer improvement 

while minimising the impact of pressure drop. 

 

 

Figure 1.2: Vortex generator types which are suitable for air flows [39]. 
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 Air cooling and liquid cooling 

Cooling systems can be classified as direct and indirect [40, 41] based on 

whether or not the working fluid has direct contact with the electronic chip or 

component being cooled. As the terms suggest, in direct cooling systems the 

fluid is in contact with the electronic chip in the cooling process, while indirect 

cooling system means that there is no direct contact between the fluid and the 

electronic chip (e.g. when a heat sink is used between the chip and the fluid). 

Both direct and indirect cooling systems might use a natural or a forced 

convection method as a way to reject the generated heat from the electronic 

component, and they are both widely used in cooling systems and can be 

used with either air or liquid as a working fluid [42]. Rapid developments of 

electronic chips led researchers of heat transfer and fluid flow to enhance 

cooling systems. One of the ways to enhance cooling systems might be using 

liquid instead of air; since much lower flow rates are needed. Nowadays, micro 

cooling systems using liquid cooling with vortex generators are becoming the 

focus of research to enhance the heat transfer performance [43]. Thus, liquid 

is used in this study due to the better thermal properties compared to air, whilst 

the focus will be on the reduction of the pressure penalty by suggesting new 

geometries to get the benefit from heat transfer enhancement. 

 

 Nanofluid principles 

Another method for potentially improving heat transfer is to modify the working 

liquid. Recently, rejecting generated heat from microchips has become very 

critical, therefore suggesting the use of an advanced fluid with better thermal 

properties compared to conventional fluid such as water, oil and ethylene 

glycol. Such advanced fluids are called nanofluids [44]. Nanofluids consists of 

a base fluid and nano-sized particles, and were proposed by Choi [45] in 1995.  

"Nanofluids" is an eye-catching term in the heat transfer community nowadays 

[46]. Many review papers and books have illustrated the thermal properties of 

nanofluids [47, 48]. Different cases have illustrated that the heat transfer can 

be enhanced by using nanofluids [49], while others have shown that 

nanofluids are not beneficial [50]. Furthermore, adding small particles of nano- 
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size (i.e. less than 100 nm) to the traditional fluid leads to improvement of the 

thermal properties while maintaining the nanofluid stability [51],[52]. However, 

they have drawbacks like issues of erosion, pressure drop penalty, 

sedimentation and clogging although this less than for earlier solid-liquid 

mixtures with larger particles [53].  

Improvements to make heat transfer equipment more energy efficient would 

need to focus on miniaturization on the one hand and an astronomical 

increase in heat flux on the other hand. Heat transfer fluids such as water, 

mineral oil and ethylene glycol play a vital role in many industrial processes, 

including power generation, chemical processes, heating or cooling 

processes, and microelectronics [54, 55]. Moreover, nanofluids are being 

developed to achieve ultrahigh-performance cooling and have potential to be 

next-generation coolants, representing a very significant and far reaching 

cooling technology for cross cutting application [55, 56]. 

The benefit of nanofluids in the context of VGs and micro channel will be also 

explored in this thesis. 

 

 The aim and objectives of this research 

The aim of this study is to enhance the heat transfer rate with minimum 

pressure penalty in a micro-channel heat sink. This can be achieved by using 

vortex generators (VGs) within the micro-channel to provide an efficient heat 

transfer system. Furthermore, management of the power consumption caused 

by the VGs needs to be considered. This can be by suggesting different 

shapes of VGs. Thus, the objectives of this study are broken down into five 

objectives: 

 To examine the influence of geometry design on heat transfer and fluid 

flow characteristics using laminar flow with Reynolds number ranging 

from 100 to 2300 and different shapes of VGs. 

 To investigate the impact of the fluid type such as traditional fluid such 

as water and advanced fluid like nanofluid on the conjugate heat 

transfer. 
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 To design a model using traditional fluid to enhance the heat transfer 

and reduce the pressure penalty. 

 To investigate the optimal fluid type for the designed model to provide 

lower thermal resistance and pressure drop. 

 To investigate the energy consumption of the optimal design and fluid 

type in terms of pumping power and heat transfer enhancement. 

Having now given an introduction to micro-channel heat sinks, defined the 

problem and stated the objectives, the next chapter (chapter 2) provides a 

wide overview of the relevant literature, while the methodology is illustrated in 

chapter 3. Following that the results chapters are chapters 4 to 6, with chapter 

7 focusing on the energy management aspects of the system explored in the 

preceding chapter. Finally chapter 9 presents the conclusions and future work 

suggestions. 
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 Literature Review 

 

 Introduction 

Since 1931, researchers have explored ways of managing the heat flux 

generated from electrical devices and offering better heat transfer rates using 

different approaches to enhance the heat transfer in mini and micro cooling 

systems.  

Nowadays, the impact of heat transfer and fluid flow have become more 

interesting and challenging simultaneously due to rapid developments in 

electronic and electrical devices and systems which become increasingly 

small in size, light in weight but high in heat transfer dissipation demands. 

Therefore, enhancing the heat transfer in such systems has been a strong 

motivation for this current research [27]. 

One of the possible and effective approaches to enhance the heat transfer is 

a design of a heat sink and the most popular heat sinks used in air-cooled 

systems is a plate-fin heat sink (PFHS) because of its simplicity to 

manufacture. Many investigations of PFHSs have studied and optimized the 

fins’ height, thickness and separation, yielding predictions of heat transfer and 

entropy [57-60]. Other designs such as pinned heat sinks (PHSs) have also 

been considered in both inline and staggered arrangements to enhance the 

heat transfer rate [61]. They can take several shapes such as rectangular, 

square [62], circular [63], elliptical, NACA and drop form [64-66]. The key 

components in the cooling of computer systems, and many other applications 

such as air conditioning, are heat exchangers and heat sinks [5, 67-69]. Based 

on the working fluid, heat exchangers are generally classified as gas, liquid, 

or a combination. Some examples of heat exchangers are shown in Fig. 2.1. 

Many studies have shown that the liquid heat exchangers and heat sinks 

systems had great potential for enhancing the heat transfer compared to gas 

systems based on their thermal conductivity, which is higher in the liquid than 

in the gas [21, 70]. 
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Continuing developments in electronic and electrical devices, and the 

increased heat density associated with miniaturisation, mean that the thermal 

management of high heat fluxes remains an active area of research [3].  

 

 

 

Figure 2.1: (a) Plate-fin heat exchanger and its surface geometries: (b) 
plain rectangular fins, (c) plain triangular fins, (d) wavy fins, (e) offset 

strip fins, (f) perforated fins, (g) louvered fins; after Webb [71]. 

 

However, another approach to improve the heat performance of the cooling 

systems is to improve the thermo-physical properties of the coolants, for 

example by developing nanofluids [55, 68]. Alternatively, the geometry of the 

heat sinks can be adapted to improve heat transfer, for example by modifying 

the pins in PHSs or the channels in PFHSs. One very successful approach for 

air applications is the use of micro-channels. Note that the micro-channels first 

appeared in 1981 [10]. 

Many ways by which the heat transfer might be enhanced such as 

suggestions of new designs of the geometry and/ or advanced fluids can be 

used. Various geometries were designed to achieve high performance of heat 

transfer using an extended surface area [72].  

Many experimental and numerical studies investigated the heat transfer and 

fluid flow performance of various modified geometries such as micro-channels 
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with grooves and ribs [22-25]. The effect of vortex generators (VGs) on heat 

transfer and fluid flow characteristics were investigated experimentally in 1969 

[73]. 

In addition to the surface area enhancement, vortex generators can be 

considered as a geometry improvement which creates secondary flows that 

can enhance the heat transfer [28, 43]. 

In the revolution of advanced manufacturing processes, VGs can take up 

various forms such as protrusions, wings, inclined blocks, winglets, fins, and 

ribs [26, 27], and have been used to enhance heat transfer in different 

geometries such as circular and non-circular ducts under turbulent flow [28-

30]. They have also been used in laminar flow [31], with flat plate-fins in 

rectangular channels [32-34], tube heat exchangers [35], heat sinks [31, 36] 

and rectangular narrow channels [37, 38] as shown in Fig. 2.1. 

One of the promising systems by which high performance heat rejection can 

be achieved is micro and mini-scale systems, such as micro-channel heat 

exchangers and heat sinks [5, 6, 69, 74, 75]. They are different from traditional 

channels, and can be classified according to their associated hydraulic 

diameters, Dh, [7-9], as mentioned in chapter 1 (see1-1).  

On the other hand, utilizing advanced fluids instead of traditional fluids (e.g. 

air and water) has become common and effective. It can be a combination of 

two fluids like mixing water and glycerine [76] or it can be a suspension of 

particles in a liquid which is well known as a nanofluid [77]. 

This chapter is divided into three main sections that consider straight micro-

channels, vortex generators, and nanofluids. 

 

 Uniform micro-channels 

This section provides an idea of the investigations that have been carried out 

on a uniform channel. It is divided into two sections namely, single phase flow 

and two phase flow. 
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2.2.1 Single phase flow 

A numerical investigation of various shapes of rectangular micro-channels 

with the range of width 44-56 μm, height 287-320 μm and length 10 mm was 

conducted by Shkarah et al. [78]. The materials used were aluminium, silicon, 

and graphene. Different values of volumetric flow rate and heat flux with fully 

developed laminar flow of water were utilized. The results showed that the 

thermal resistance was reduced by using graphene in the micro-channel. 

However, the findings have not yet been confirmed experimentally and the 

numerical method considered the thermo-physical properties of the materials 

as non-temperature dependent which may affect the results when compared 

to the experimental setup. 

Laminar flow of deionized water in a copper rectangular micro-channel with 

hydraulic diameter ranged from 200 to 364 μm and length of 120 mm was 

numerically studied by Lee et al. [79]. The finite volume method was 

implemented to determine Nusselt number at various aspect ratios. The study 

presented the distribution of local and average Nusselt numbers as a function 

of non-dimensional axial distance. The researchers proposed correlations 

which helped to enhance the heat transfer. The proposed correlations 

considered the entrance length effect on heat transfer rate, and were in very 

good agreement with previous experimental studies. It was found that the new 

correlation was applicable for thermally developed flow for local and average 

Nusselt number under laminar flow.  

Mansoor et al. [80] performed three-dimensional simulations of a rectangular 

micro-channel using single-phase laminar flow (Re ranged from 500-2000) of 

deionized water as a working fluid. A heat flux of 130W/ cm2 was considered 

to investigate the thermal characteristics in a copper micro-channel. The study 

used FLUENT commercial software, and the results were compared with 

previous numerical and experimental works and showed a good agreement. 

It was found that the heat transfer coefficient was decreased as heat flux 

increased. In addition, high Reynolds number and heat flux led to transition 

from single to two-phase flow, while there was no transition when heat flux 

was less than 100 W/cm2. 
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An experimental study of a copper rectangular micro-channel with hydraulic 

diameter in the range of 318-903 μm and length of 24.5 mm was conducted 

by Lee et al. [81], using deionized water as a working fluid. The study used 

laminar and turbulent flows, with Reynolds number ranged from 300 to 3500 

to investigate the heat transfer and fluid flow regimes using single-phase flow. 

The results showed that heat transfer was increased as the channel size 

decreased. However, decreasing the dimensions of the rectangular channel 

requires more pumping power resulting from increase in the associated 

pressure drop. 

Deng et al. [82] compared a traditional rectangular cross-section copper 

micro-channel with an omega shape micro-channel heat sinks of the same 

hydraulic diameter with ethanol and deionized water as two-phase boiling flow 

as shown in Fig. 2.2. The results showed that water is better than ethanol in 

both micro-channel types. Moreover, using omega micro-channel decreased 

the pressure drop compared to the conventional rectangular micro-channel. 

 

 

Figure 2.2: Micro-channel omega shape in mm [82]. 

 

Micro-channels can be used not only with liquid, but also with gas as a working 

fluid and Balaj et al. [83] studied the influence of shear stress in micro and 

nano-channels using constant wall heat flux. The simulation model used the 

direct simulation Monte Carlo method. It was found that there is a sensible 
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effect of the magnitude of viscous dissipation on heat and flow performance, 

therefore, it should be considered in heat transfer predictions. The study has 

also shown that the heat transfer is significantly enhanced when the heating 

condition is applied while the heat transfer is decreased while utilizing the 

cooling condition. 

Xia et al. [84] studied numerically heat transfer and fluid flow characteristics 

of a liquid-cooled heat sink with three different inlet and outlet locations named 

c, I, and z and different header shapes that feed the micro-channels as shown 

in Fig. 2.3. The traditional shape of a rectangular micro-channel was 

compared with a triangular shape. The results showed that the best geometry 

is the rectangular and the best location of the inflow regime was I, then c, then 

z. Also, the results shown that better heat transfer characteristics were 

achieved with the rectangular header shape. However, the results showed 

that using the position shown in Fig. 2.3 c was the best design when using a 

volume flow rate of 150 ml/min. This is can be attributed to the velocity 

uniformity compared to the trapezoidal and triangular shapes. 
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Figure 2.3: Different inlet and outlet positions and header shapes of 
micro-channel heat sinks [84]. 

 

Heat transfer can be enhanced by applying a magnetic field on water based 

Fe3O4 as indicated by the study of Ghasemian et al. [85]. They investigated 

the heat transfer characteristics of a rectangular channel with a width of 0.2 

cm and length of 2 cm subjected to constant and variable magnetic fields 

under laminar flow. The finite volume method was used to solve the governing 

equations and two phase mixture flow was implemented in the study. The 

results showed that three parameters enhanced heat transfer, namely 

frequency and locations (a, b) of magnetic fields as shown in Fig. 2.4. 

Noticeable enhancement of heat transfer appeared at fully developed flow, 

especially when applying the magnetic field. Moreover, it is found that using 

an alternating magnetic field was better than a constant one by approximately 

1.6 times. Using alternating magnetic field will act as a vortex generator to 

disturb the fluid frequently. 

 

Figure 2.4: Magnetic fields distribution to enhance the heat transfer [85]. 

(e) Trapezoidal (d) Rectangular  (f) Triangular 
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A review of numerical and experimental investigations focusing on the heat 

transfer and air-side flow using a fin and tube heat exchanger was presented 

by Pongsoi et al. [86]. The study summarises a significant effect such as tube 

arrangement, operating conditions, and fin configurations. More than 35 

articles related to heat exchangers were considered, representing the 

experimental studies from the very early period. The study used geometry 

design by comparing circular and spiral fins. It concluded that 57% of the heat 

exchangers used spiral fin, thus, the recommendation of the investigation was 

to use spiral fin instead of circular fin in heat exchangers. Moreover, Pan et al. 

[87] presented the effect of different inlet distribution manifold for different 

width of rectangular micro-channels. The investigation considered different 

dimensions of the inlet design of a Z-shape to examine the effect of inlet 

distribution and the width of the channel on optimal design of a micro- channel. 

The results showed that the width of the channel had significant influence on 

optimisation results.  

Another review of micro and mini channel geometries is that of Dixit and 

Ghosh [7]. The study illustrated previous work in a single-phase flow with heat 

exchangers and heat sinks in various types of flow such as laminar, turbulent, 

developing flows, and fully developed flow. It also presented the heat transfer 

performance such as convective heat transfer under the condition of constant 

wall temperature and constant heat flux. The application and fabrication of 

micro and nano-scales were also adopted in this investigation. It was 

concluded that, there is still difficulty to produce channels of micro-size, due 

to manufacturing limitations, however, micro-channels can be produced as 

parts, but it is still not easy to combine the parts to produce micro-channels. 

Many issues can be found when producing micro-channels from parts such 

as the accuracy of having equal distance between channels. Moreover, the 

reliability of the glue for a specific application, the conductivity of the glue used 

to combine the parts, and avoiding having a layer of the glue, might influence 

the heat transfer performance. 

A numerical and experimental investigation of heat transfer and fluid flow 

performances in a bronze rectangular micro-channel with dimensions of 1 and 

0.3 mm was presented by Gamrat et al. [88]. Water as a working fluid with 
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Reynolds number in the range of 200-3000 was considered to investigate 

mixed convective heat transfer performance. The results of the numerical 

study showed that there was no sensible influence on Nusselt number when 

the channel dimension changed from 1 to 0.1mm. Due to the limitation of the 

experimental measurement, the impact of this change has not been 

measured.  

Laminar flow in different rectangular copper micro-channels with width and 

height 231 µm and 713 µm respectively, was studied experimentally and 

numerically by Qu and Mudawar [89]. Deionized water at Reynolds number in 

the range of 139- 1672 was considered as the working fluid. Two heat flux 

values (100 and 200 W/cm2) were applied on the bottom wall to investigate 

fluid flow and heat transfer performance. It was found that the outlet 

temperature of the fluid decreased at high Reynolds number while the 

pressure drop increased. It was also found that there was not much difference 

in temperature at the top wall of the micro-channels, therefore, it can be 

considered as an adiabatic wall. 

However, most recent numerical studies considered the top wall (the wall 

which is opposite the wall where heat flux was applied to) as an adiabatic wall. 

This is because the low heat transfer at the top wall might transfer from the 

walls by conduction and the fluid by convection, especially when using a 

plastic top wall. 

 

2.2.2 Two-phase flow 

There are considerable numbers of studies that have been carried out on the 

design of micro-channels using two-phase model as can be seen in the 

following paragraphs.  

An experimental investigation of heat transfer performance was conducted by 

Hsu et al. [90] using different orientations of copper rectangular micro-

channels with hydraulic diameter of 440 μm, heat flux of 25 kW/m2, mass flux 

100 and 200 kg/m2s. Two-phase boiling flow and HFE-7100 as a working fluid 

was considered. The setup investigated the effect of the inclination from the 

horizontal to the vertical position on boiling heat transfer. It was found that the 
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heat transfer coefficient rose with the vapour quality and peaked when it 

reached 0.6 for the upward position.  

Suwankamnerd and Wongwises [91] studied two-phase air-water flows in a 

copper rectangular micro-channel having 267 μm hydraulic diameter with low 

Reynolds number. The setup used a separate flow model as well as a 

homogeneous flow model to estimate the pressure drop using the Friedrel 

correlation which is used to measure the pressure drop in two-phase flow. The 

investigation showed enhancement in Nusselt Number of 120% compared to 

single-phase flow. 

In addition, Mirmanto [92] studied the heat transfer coefficient in various 

dimensions of a single copper rectangular micro-channel with a horizontal 

position. Boiling deionized water at 98 oC at the inlet as a working fluid, 125 

kPa as inlet pressure, 800 kg/m2 of mass flux, and various values of heat flux 

were used in this study. The results showed that there was good agreement 

between the experimental measurements and the numerical simulation 

especially in the pressure gradient. It was effective at low pressure generated. 

At fixed heat and mass flux it was found that the heat transfer coefficient went 

down with the quality in the smallest hydraulic diameter, while it was increased 

significantly with the other diameters. 

Konishi et al. [93] studied the effect of boiling flow on flow and heat transfer 

maps. The geometry was a copper rectangular channel consisting of two 

heating walls fixed opposite each other with liquid and mass inlet velocities 

ranging from 0.1 to 1.9 m/s, and 224.2 to 3347.5 kg/m2 s, respectively; and 

the temperature of inlet sub-cooling in the range of 2.8-8.1 oC. Heat transfer 

and fluid flow measurements were adopted to examine flow performance. It 

was found that the temperature distribution improved as the gravity rose, while 

it decreased in micro-gravity.  

Gan et al. [94] investigated experimentally the pressure drop characteristics 

of two-phase flow in a triangular silicon micro-channel with dimensions of 300, 

212, 155.4 μm in width, depth, and hydraulic diameter respectively. Acetone 

was considered as a working fluid under various ranges of inlet temperature 

and pressure, mass velocity, superheat, outlet quality, and heat flux. The 

pressure drop and boiling flow were performed. The outcome of the study was 
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a new correlation which considered the functionality of mass flux, therefore, 

the error of predicting the acetone data with 12.56% of mean absolute error. 

Fang et al.[95] proposed a correlation of flow boiling to investigate the heat 

transfer regime using a copper rectangular tube. The study adopted H2O, 

R718 as a working fluid, two-phase laminar and turbulent flows. More than 

1050 data points of water boiling flow for mini and micro-channels were 

collected. The results showed that the proposed correlation was applicable to 

many refrigerant fluids especially for R410 and NH3. 

Shojaeian and Koşar [96] reviewed previous experimental studies on micro 

and nano geometries using boiling flow. These geometries were in various 

shapes such as rectangular, triangular, and cylindrical cross section. Heat 

transfer and fluid flow characteristics were presented and compared with 

different parameters such as single-phase and two-phase flows. It is found 

that the nano and micro-structures enhanced the heat transfer rate of 

systems. Furthermore, the manufacturing ability has increased to produce 

such complex shapes of nano/ micro-channels. Consequently, manufacturing 

nano/micro configurations had some finishing issues related to the surface. 

This can be tackled by coating the surface. 

Asadi et al. [97] reviewed the validity of experimental correlations on pressure 

drop and heat transfer characteristics in single and two phase flows with 

different geometries of micro-channel. The investigation used 219 papers of 

experimental and numerical studies (from 1982 to 2013). It was found that, 

before 2003, the researchers focused on experimental and analytical 

investigations, while after 2003 the focus turned to be on numerical studies. It 

also indicated that, approximately, 76% of researchers considered the laminar 

flow using single phase flow. This is because the behaviour of the laminar flow 

can be predicted and agreed with the experimental data. However, an 

important factor has not been considered in this study which is the energy 

consumption of using turbulent flow. For example, using turbulent flow will cost 

more pumping power to derive the flow resulting in more energy consumption.  

In summary, straight micro-channels represented the starting stage in 

converting from using conventional channels to micro-sized channels in 

various applications of micro-electrical and micro-electronical chips. As 
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reviewed in the previous sections, micro-channels have rapidly received high 

attention by many researchers in different investigations, both numerical and 

experimental as presented in Fig. 2.5.  

 

Figure 2.5: Growth in number of publications of micro-channels [98]. 

 

The limitation in manufacturing micro-channels was a reason for a reduction 

in experimental studies. Another reason is the high price incurred to 

manufacture micro-channels. It is to be expected that in the near future, the 

manufacturing developments will allow production of the micro-sized channel 

easily. Therefore, there is a real need to develop the straight micro-channels 

to have some complex shapes such as zigzag, wavy and curved micro-

channels to enhance the heat transfer. In addition, increasing the surface area 

and developing the secondary flow in the micro-channels also contributes to 

enhance the heat transfer rate. This can be achieved by adding some objects 

to increase the surface area and disturb the flow to develop the secondary 

flow.  
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2.2.3 Curved and tapered rectangular micro channels 

Research on curved micro-channels has also received recent attention by 

many researchers because of the high thermal and flow performance 

produced by these geometries as elaborated in the following paragraphs.  

Numerical simulation of laminar flow using water as a cooling fluid was done 

by Guo et al. [99]. They investigated the influence on heat transfer 

performance of a curved micro-channel with square cross section as 

presented in Fig. 2.6. This micro-channel had a width and curve radius of 0.2 

mm, 30 mm respectively and Reynolds number in the range of 100-865. It was 

found that at high convection heat transfer, synergy principle method can be 

applied. Note that this method applied to increase the accuracy of the solution 

because it considers the heat transfer at the outer wall. This method is 

applicable for such a curved channels because it presents the heat transfer 

accurately for the outer walls with consideration of fluid flow.  

 

 

Figure 2.6: Curved duct with square cross sectional area [99]. 

 

Chu et al. [100] performed both experimental and numerical investigations of 

curved rectangular micro-channels with different diameters to study the 

influence of different diameters of the curve on flow characteristics. Reynolds 

number was in the range of 80-876 and deionized water as a working fluid 

was considered. The results showed good agreement between the simulation 

and experiments. It was found that the curvature of channel geometry 



 

22 
 

increased the velocity at the outer wall, this leading to enhancement of the 

heat transfer performance but increase in the friction factor.  

A numerical study of a tapered aluminium micro-channel by Dehghan et al. 

[101] investigated the influence of different tapering geometries on pressure 

drop reduction using laminar flow and a constant heat flux of 100 W/cm2. The 

width of the channel was fixed at the inlet to be 200 μm while the outlet width 

was in the range of 75 to 200 μm with the channel length being 12000 μm. It 

was found that Poiseuille number and Nusselt number rose with tapering. The 

optimum heat transfer characteristics was found at an outlet to inlet width ratio 

of 0.5. However, no consideration of the pressure drop in this study, it might 

be worth to consider the pressure drop effect using the channel inlet which 

can be taken a range from 75 to 200 μm.  

 

 Non-uniform channels and vortex generators 

The effect of vortex generators (VGs) on heat transfer and fluid flow 

characteristics were investigated experimentally in 1969 [73]. Two types of 

vortex generators were classified based on the direction of the axis of rotation 

of the vortices generated as briefly discussed in chapter one (sec.1.4). 

Several parameters such as the geometry, shape, and the position of VGs 

might play a crucial role to enhance heat transfer, and the VGs shape can be 

classified into rectangular, delta wings and winglets as presented earlier in 

[39]. However, the wing and winglet VGs are only suitable for air-based heat 

sinks. Various investigations have also indicated potential benefits of using 

VGs with laminar flow at different Reynolds number [37, 43, 102].  

 

2.3.1 Non-uniform channels 

Many experimental and numerical investigations have considered geometrical 

modifications of uniform channels to enhance the heat transfer performance. 

Liu et al. [103] conducted an investigation of the influence of geometry on heat 

and flow maps using turbulent air flow in a modified square channel having 

cylindrical slots of various diameters as shown in Fig. 2.7 a. The finite volume 
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method was used to solve the governing equations utilizing FLUENT 12.1. 

The results emphasized that using cylindrical grooves and square ribs in the 

channel (see Fig. 2.7b) enhanced the heat transfer characteristics compared 

to the uniform channel due to the extended surface area and the generation 

of vortices by disturbing the flow. However, the pressure drop of square-ribbed 

channel was higher than the cylindrical grooves channel and the uniform 

channel. This study agreed with the results of cylindrical grooves in mini 

channels done by Tang et al. [104].  

 

 

 

(a) 
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Figure 2.7: Rectangular micro-channel [103]; (a) Geometry description, 
(b) various cylindrical grooves (cases A0-A3) and square ribs (case b). 

 

Zhai et al. [105] simulated the flow in micro-channels with six types of cavities 

and ribs in the single micro-channel walls. These were “triangular-cavities with 

circular-rib (a) (Tri.C-C.R for short), (b) triangular-cavities with triangular-rib 

(Tri.C–Tri.R for short), (c) triangular-cavities with trapezoidal-ribs (Tri.C–Tra.R 

for short), ( d) trapezoidal-cavities with circular-rib (Tra.C-C.R for short), ( e) 

trapezoidal-cavities with circular-rib (Tra.C-C.R for short), ( f) trapezoidal-

cavities with trapezoid-rib (Tra.C-Tra.R for short)” as seen in Fig. 2.8. De-

ionized water was used as a coolant with Reynolds number ranged from 300 

to 600 and a constant heat flux of 106 W/m2 was applied at the bottom wall of 

the micro-channel. The finite volume method and FLUENT software was 

adopted to investigate the flow and heat transfer characteristics. The results 

showed that using triangular cavities and ribs (see Fig. 2.8f) offered better 

heat transfer compared to a uniform rectangular micro-channel due to better 

interaction between the solid and the fluid. 

(b) 
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Figure 2.8: Square channel having different ribs and cavities [105]. 

 

Knupp et al. [106] proposed a hybrid simulation method to solve the heat 

transfer and fluid flow characteristics via a single domain strategy and 

generalized integral transform technique (GITT). This was applied to laminar 

flow in non-uniform channels as shown in Fig. 2.9. The results showed that 

the GITT method was suitable to be applied for multiphysics applications 

found to be in a good agreement with finite element calculation form in the 

commercial software COMSOL Multiphysics. It is clear that this study agreed 

well with the literature that using COMSOL Multiphysics provides sufficient 

agreement with the experiments studies due to the temperature dependent 

equations implemented in the software, and it is used widely for solving 

problems, especially those with Multiphysics applications. 

 

 

Figure 2.9: Irregular channel [106]. 
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Henze and Wolfersdorf [107] experimentally investigated the impact of 

tetrahedral VGs on Nusselt number and the flow velocity. The results showed 

that using the VGs enhanced the heat transfer rate compared to the uniform 

channel. In addition, it was found that the highest VGs offered highest heat 

transfer enhancement. It was also indicated, as to be expected, that the heat 

transfer enhanced with increasing Reynolds number. However, the pressure 

penalty has not been considered, which determines the pumping power 

required compared to the uniform channel. 

Dai et al. [108] investigated experimentally the influence of zigzag and sine 

wave micro-channel structures on laminar water flow and heat transfer maps. 

They used Reynolds number in the range of 50 to 900 with heat flux of 19.1 

W. A uniform duct was simulated to understand the behaviour of hydraulic 

heat transfer. The results showed that the zigzag geometry enhanced heat 

transfer, while the pressure drop increased.  

Karathanassis et al. [109] investigated the heat and flow characteristics in an 

array of fin plate heat sinks. The geometry was designed to be three sections, 

for each section, the hydraulic diameter was decreased by increasing the 

number of plates. The FVM was applied to solve the governing equation of 

the numerical part, while a closed rig with flow rate ranging from 20-40 ml/s 

was used in the experimental part. It was found that the heat transfer 

enhanced in the third section due to the buoyancy. Also the temperature was 

uniform when Reynolds number decreased. Nevertheless, the pressure drop 

increased due to increasing the number of plates. 

An analytical investigation has been conducted to study the effect of extended 

surface area in heat sinks with four types of fins that were (a) longitudinal 

rectangular fin array (LRFA), (b) longitudinal trapezoidal fin array (LTFA), (c) 

annular rectangular fin array (ARFA), and (d) annular trapezoidal fin array 

(ATFA), as shown in Fig. 2.10 [110]. The results showed that the triangular fin 

offered the best heat transfer rate compared to the other three models. It was 

found that the optimum individual fin was different from the optimum value of 

heat sink as a component. This is because the individual fin was taken shorter 

than the fin in the fins array of the heat sink. 
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Figure 2.10: Various types of fins (a) LRFA, (b) LTFA, (c) ARFA, and (d) 
ATFA [110]. 

 

Ebrahimi et al. [26] studied the impact of using linear VGs to generate vortices 

in micro-channel on fluid flow and heat transfer regimes. Different orientations 

of the VGs and deionized-water under laminar flow were considered to 

simulate three dimensional geometry utilizing finite volume method. The 

results showed that Nusselt number rose from 2-25% when Reynolds number 

ranged from 100 to 1100. However, the friction factor increased by up to 30% 

when using longitudinal VGs. This friction factor penalty could be acceptable 

if space were limited and certain heat transfer rate had to be achieved. 

Hong et al. [111] sought to improve the uniformity of the temperature 

distribution in micro-channel heat sinks by considering a heat sink in which 

the micro-channels formed a rectangular fractal-shaped network. Their 

numerical analysis of the 3D conjugate heat transfer revealed hotspots in 

regions where the channel density was sparse, but these could be overcome 

by local modifications of the channel size. The modified network was found to 

have lower thermal resistance, lower pressure drop and much improved 

uniformity in temperature compared to parallel-channel heat sinks.  
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2.3.2 Cylindrical vortex generators 

The above examples show that there are many ideas for geometrical 

modifications of micro-channels, some of which are rather complex. A 

somewhat simpler - yet effective - class of geometrical modifications are ribs 

or cylindrical added to the channel walls, base, or interior. These act as 

transverse vortex generators, and have been shown to enhance the heat 

transfer [28, 112-116].  

A two-dimensional numerical study by Cheraghi et al. [6] considered a smooth 

channel with fixed heat flux through the wall sides and an adiabatic cylinder 

at various locations inside the channel. The Reynolds number was of 100 and 

Prandtl number ranged from 0.1 to 1. The authors found that the maximum 

enhancement occurred when the cylinder was fixed half way from the base to 

the top of the channel. The results also showed that the low Prandtl number 

had a positive effect on heat transfer enhancement.  

Turbulent flow in a channel having cylindrical vortex generators was 

investigated numerically by Wang and Zhao [117]. It was found that utilizing a 

cylindrical vortex generator enhanced the heat transfer by 1.18 times 

compared corresponding the uniform channel. However, this study did not 

take into account the thermal conductivity of the rib which might distribute the 

heat to the fluid due to the high thermal conductivity of metals compared to 

fluids resulting in further enhancement of the heat transfer in micro-channels. 

 

Chai et al. [118] investigated numerically the effects of ribs on the side walls 

of a silicon micro-channel heated from below and cooled by laminar water 

flow. The ribs were arranged in an offset manner on both side walls, and had 

various cross-sectional shapes, namely rectangular, backward triangular, 

forward triangular, isosceles triangular and semi-circular, each with a 

protrusion of 25 m into the channel. For Reynolds number in the range of 

190-838, Nusselt numbers up to 1.95 times that of a smooth channel were 

achieved, with the apparent friction factor increasing up to 4.57 times. 

Performance evaluation criteria values of 1.02 to 1.48 were found, with 

forward triangular ribs performing best for Re < 350, and semi-circular ribs for 
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Re > 400. In a further three-part work, the same authors also studied aligned 

versus offset fan-shaped ribs on the opposite side walls [119-121]. Various 

other side-wall rib shapes and configurations have also been considered by 

others, e.g. [122, 123] . 

 

 Nanofluids overview 

As remarked in chapter 1, an alternative to modifying the geometry to enhance 

the heat transfer is to modify the working fluid. The last decade has seen a 

dramatic increase in the nanofluids, as can be seen in Fig. 2.11. Compared to 

previous years, it is expected to see more publications this year as the data is 

for only up to April-2018.  

 

Figure 2.11: Growth of publications in nanofluids [98]. 

 

Using nanofluids increases the pumping cost to drive the flow of cooling 

systems. Thus, researchers have extensively studied the effects of nanofluids 

on conjugate heat transfer in various ways such as the effect of fluid 

temperature, nanoparticles shape, clustering of nanoparticles and the effect 
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of pH (potential of hydrogen). However, the most related factors to this study 

are explained below. 

 

2.4.1 Nanofluids preparation 

A nanofluid is a solid-liquid combination fluid obtained by dispersing nano-

sized particles up to 100 nm in a base fluid to improve thermal conductivity of 

the base liquid [124-127]. Nanofluids can be prepared using several 

approaches such as single-step method and two-step method. 

The single-step method is a direct evaporation method by which nanoparticles 

are dispersed directly into a working fluid. In 1996, this method was used to 

prepare Al2O3 and CuO nanoparticles by Eastman et al. in Argonne National 

Laboratory in the USA [128]. The same procedure was employed by Lee et 

al. [129], Choi and Eastman [130], Choi et.al. [52]. After this Zhu et al. [131] 

produced Cu-ethylene glycol nanofluid from copper sulphate anhydride 

(CuSO4.5H2O) and sodium hypophosphite (NaH2PO2.H2O) reaction under 

microwave irradiation. This one-step method produced nanofluid with good 

stability.  

In a two-step procedure, the first step introduces an inert gas to produce a dry 

powder of nanoparticles. Then these nanoparticles are dispersed in the 

conventional fluid. Li and Xuan [108] used the inert gas method which can 

produce clean nanoparticles and, as a result, produce a stable nanofluid. 

However, this method is difficult and expensive for nanoparticle requirements. 

Consequently, many other techniques may produce dry nanoparticles such as 

chemical techniques study [132], aerosol spray method [133], metal vapour 

[134], arc discharge for nano-carbon tubes [135], laser ablation [136], a 

catalytic process [137], or another successful method called VEROS (Vacuum 

Evaporation on Running Oil Substrate) method [138]. In this technique, direct 

evaporation in a vacuum onto the surface of running oil was used to produce 

nanoparticles in small size (10 nm). However, VEROS technique is not 

suitable for substances of more than one component like metal oxides and 

separation of nanoparticles form the fluid is difficult to produce the dry 
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nanoparticles. VEROS method was modified by Eastman et al. [139], they 

replaced the oil by ethylene glycol to produce Cu-ethylene glycol nanofluid. 

 

2.4.2  Thermo-physical Properties of Nanofluids 

Nanofluids have high thermo-physical properties [140]. As a result of having 

high thermal conductivity, nanofluids can offer high heat transfer performance 

compared to the base fluid without nanoparticles. Various considerations of 

nanofluid properties have been made to evaluate and prepare nanofluids, 

such as the effect of base fluid, dispersion and distribution [141], particle 

shape [142, 143], volume concentration [144-147], particle-shell structure 

[148, 149], and thermal contact resistance [150, 151]. Furthermore, different 

factors affect the heat performance of nanofluids such as thermal conductivity, 

density, viscosity and heat capacity. 

Nanofluids can be used with different shapes of different channels to enhance 

the heat transfer, for example, a V shape wavy plate channel was studied 

numerically using various types of nanoparticles and base fluids [152]. The 

study used a large range of Reynolds number from 8000 to 20000. The FVM 

was used to solve the governing equation with the k–ε standard turbulent 

model to investigate the heat transfer performance. It was found that the best 

nanofluid was silicon oxide particles in glycerine base fluid to enhance Nusselt 

number. However, the pressure drop increased using nanofluids. Such 

studies should consider an optimisation between heat transfer enhancement 

and pressure drop increase, or a simple optimisation factor such as hydraulic 

thermal performance also gives an indicate about overall enhancement [153]. 

 

2.4.2.1 Experimental data of thermal conductivity  

Investigators focused on providing a comprehensive data of thermal 

conductivity and the factors which play a major role to enhancing the thermal 

conductivity of nanofluids. They found that the base fluid, nanoparticles size, 

material and concentration are the most effective parameters. Therefore, 

Table 2-1 illustrates a brief survey of thermal conductivity studies. 
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Table 2.1: Heat transfer enhancement using different fluids. 

Base fluid particles  Size [𝑛𝑚] φ% Enhancement 

Water [5] Al2O3 30  0.3-2 h>57%, 

Nu=62% 

Water [128]  33 5 29% 

Water [129]  24.4, 38.4 4 10% 

EG   5 17% 

Water [154]  28 3 12% 

EG   8 40% 

EO   7 50% 

Water [155]  38.4 4 24.3% 

Water, EG,PO [156]  12.2-302 5 30% 

Water [157]  36 10 29% 

Water [158]  27-56 1.6 10% 

Water [159]  48 1 4% 

Water [160]  20 14.5 20% 

Water [161]  110-210 1 0% 

Water [162]  36, 47 6 28% 

Water [163]  8-282 4 18% 

EG  12-282 3 16% 

Water [164]  36, 47 18 30% 

Water  CuO 36 5  60% 

Oil   5 44% 

Water [129]  18.6, 28.6 3.5 12% 

EG   4 20% 

Water [154]  23 4.5 12.3% 

EG   6 12.5% 
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Water [155]  28.6 4 36% 

Water [156]  29 6 58% 

water[160]  33 5 18% 

Water [159]  33 1 5% 

EG   1 9% 

Water [164]  29 3.3 8% 

Water [165]  L=50-100 0.4 9.6 % 

Water [166] TiO2 10,15*40 rod 5 30, 33% 

Water [167]  165 0.72 6.5% 

Water [160]  40 2.5 6% 

Water [168]  95 2 22% 

Water [159]   1 14.4% 

Water [169]   3 9.6% 

Water [170] Fe3O4 9.8 5 38% 

EG [159] WO3 38 0.3 14% 

Water [160] ZrO3 20 10 15% 

Water [161]  110-250 0.1 0% 

Water [161] SiO2 20-40 0.1 0% 

Water [171]  12 1 3% 

EG [172] Cu < 10 0.3 40% 

Water [173]  100 7.5 75% 

Oil    7.5 44% 

Water [174]  50-100 0.1 23.8% 

EG [175] Fe 10 0.55 18% 

EG [176]  10 0.2 18% 

EG [159]  10 0.55 18% 
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Water [177] AG, Au 10-20 0.001 4% 

Toluene   0.001 9% 

Toluene [178] Au 2 0.04 1.5% 

Ethanol  4 0.03 1.4% 

Toluene  Fullerene 

C60-C70 

0.5-0.6 0.8 0% 

Mineral oil [178]  10 0.8 6% 

 

Increase in the thermal conductivity of the working fluid improves the efficiency 

of the associated heat transfer process. However, investigations about the 

convective heat transfer of nanofluids indicated that the enhancement of heat 

transfer coefficient exceeds the thermal conductivity enhancement of 

nanofluids [179-182]. Moreover, other parameters like density, heat capacity, 

and the viscosity have less effect than thermal conductivity. 

 

2.4.2.2 Theoretical development of nanofluid equations 

Investigators have started from the Maxwell equation [183] to predict the 

thermal conductivity of nanofluids. Improving the Maxwell equation offered 

better understanding of the behaviour of thermal conductivity since 1935 when 

Bruggeman [184] reported that high concentration on nanoparticle cannot be 

neglected. Moreover, Hasselman [185] in 1987 modified the theory of Maxwell 

considering the size of the of the composite dispersed phase in addition to the 

volume concentration. However, these studies under-predicted the 

experimental measurements.  

Many investigations have tried to improve the Maxwell equation to produce a 

modified thermal conductivity equation which offers good agreement with the 

experimental data. Modern techniques were utilized to enhance the prediction 

of nanoscale equations such as nanoparticle-matrix interfacial layer [186, 

187], nanoparticle Brownian motion [188, 189], and nanoparticle 

cluster/aggregate [190]. 
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Nie et al. [191] used the exact expression for the heat flux vector of the base 

fluid plus nanoparticle system to estimate the contribution of nanoparticle 

Brownian motion to thermal conductivity. It was found that its contribution is 

too small to account for the abnormally high reported values. The mean free 

path and the transition speed of phonons in nanofluids were estimated through 

density functional theory. It was found that a layer structure can form around 

the nanoparticles and the structure does not further induce fluid–fluid phase 

transition in the bulk fluid.  

In contrast to Nie et al. [152] , Ghasimi and Aminossadati [192] showed that 

considering Brownian motion would enhance the thermal conductivity. They 

used CuO-water nanofluid in a right triangular enclosure. The results also 

reported that heat transfer was enhanced with increasing of nanoparticles.  

 Xuan and Roetzel et al. [193] suspended ultrafine particles to change the 

properties and heat transfer performance of the nanofluid, which exhibited a 

great potential in enhancing the heat transfer. Based on the assumption that 

the nanofluid behaves more like a fluid rather than a conventional solid-fluid 

mixture, they proposed two different approaches for deriving the heat transfer 

correlation of the nanofluid. The effects of transport properties of the nanofluid 

and thermal dispersion were also included. 

 

2.4.2.3 The effect of base fluid 

Base fluid can be water, oils or ethylene glycol. Researchers have 

investigated the effect of base fluid on heat transfer enhancement for two 

decades [48, 194, 195].  

Xie et al. [196] studied the enhancement ratio of thermal conductivity between 

the base fluids and nanofluids. They considered three types of base fluid 

(Water, glycerol, ethylene glycol and pump oil) with α-Al2O3 as nanoparticles. 

The results showed that the water-based nanofluid was the lowest thermal 

conductivity compared to other nanofluids, while the thermal conductivity of 

the water itself was higher compared to the other base fluids.  

However using nanofluids with water-based nanofluid was most common in 

many heat transfer and fluid flow applications as it clearly shown in Table 2.1. 

http://www.sciencedirect.com/science/article/pii/S1290072910000104
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2.4.2.4 The effect of nanoparticles concentration 

The influence of the concentration is an effective factor to enhance the 

thermo-physical properties of nanofluids. It is the portion volume of 

nanoparticles to the base fluid. Many researchers declared that having solid 

particles in the base fluid would enhance the thermal conductivity of 

nanofluids, increasing the viscosity and the density of nanofluids [194, 197-

202]. Furthermore, nanofluids showed non-Newtonian behaviour when using 

nanoparticles of more than 5% [182, 203]. However, due to the high thermal 

conductivity of metallic nanoparticles, they offer the highest thermal 

conductivity of nanofluids compared to the oxides and non-metallic 

nanoparticles. Yulong et al. [204] studied the effect of volume concentration 

on thermal conductivity enhancement. They found that the thermal 

conductivity enhanced with the nanoparticles as shown in Fig. 2.12. 

 

 

Figure 2.12: The influence of nanoparticle concentrations on thermal 
conductivity [204]. 
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 Another study by Kumar et al. [205] investigated the impact of thermal 

conductivity and base fluid on conjugate heat transfer. They utilized CuO and 

TiO2 up to 1% of volume concentration and different base fluid of water and 

ethylene glycol under temperature range from 30 °C to 50 °C. The study found 

that the thermal conductivity enhanced as the nanoparticles concentration 

increased for both cases, an example is shown in Fig. 2.13. The very famous 

study on thermal conductivity done by INPBE [206] reported that the 

enhancement relation between the thermal conductivity and nanoparticles 

concentration were approximately linear.  

 

 

 

Figure 2.13: The influence of nanoparticle concentrations on thermal 
conductivity [205]. 

 

2.4.2.5 The influence of nanoparticle materials 

As one might expect, the nanoparticle material has an effect on resulting 

nanofluid properties. Nanoparticles can be metallic (Fe, Cu, Ag, Au, Al), 

carbon or metallic oxide (Fe3O4, CuO, Al2O3, TiO2, SiC, SiO2, ZnO) [207-211]. 

Metallic oxide and nanoparticles are commonly used with water as a base 

fluid. This is because the oxides are considered more stable than the pure 
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metals in fluids. Moreover, the oxygen in the dioxides makes nanoparticles 

disperse easily and stable in the base fluid. However, Al2O3 and SiO2 / water 

nanofluids offer the highest heat transfer enhancement among the common 

nanofluids. Some researches indicated that SiO2 / water nanofluids offer 

higher heat transfer enhancement compared to Al2O3 / water [201, 212-214], 

while others report the opposite findings [215-217].  

 

2.4.2.6 Thermal conductivity 

Thermal performance of a working fluid can be enhanced by increasing its 

thermal conductivity. This is because, solid nanoparticles have higher thermal 

conductivity than the base fluid; for instance, at room temperature, the thermal 

conductivity of copper is 700 times higher than that of the water. Therefore, 

adding solid nanoparticles to the base fluid improves the thermal conductivity 

of the working fluid. A ratio between the nanofluids and the base fluid can be 

applied 𝑘𝑛𝑓/𝑘𝑏𝑓  to calculate and evaluate the enhancement of the thermal 

conductivity of nanofluids. The enhancement of thermal conductivity achieved 

40% in some cases, despite of the concentration of the nanoparticles not 

exceeding 10% [52, 128, 154, 172, 218-220].  

In the last two decades some researchers indicated that there was no 

agreement between the theoretical equations and experimental data in terms 

of thermal conductivity, while Keblinski et al. [221] reported that most results 

of numerical and experimental investigations showed good agreement. 

However, the study of Keblinski et al. [221] was supported by a benchmark 

study of thermal conductivity done by the International Nanofluid Properties 

Benchmarking Exercise (INPBE) [206]. INPBE sent samples to 30 

organisations worldwide to measure the thermal conductivity. The results 

showed that the thermal conductivity showed ±10% or less average 

differences between the experimental data and theoretical equation of thermal 

conductivity. Nanofluids have high thermo-physical properties compared to 

the base fluid in terms of thermal conductivity [222-226] and heat transfer 

coefficient [227-229]. Therefore, theoretical and experimental surveys are 

presented in the next sections. 
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 Nanofluid equations  

2.5.1 Thermal conductivity: 

Modern equations of effective thermal conductivity [230] are presented based 

on the basic correlation [231] which was developed [232] to be two equations 

which are static and Brownian thermal conductivity (see eq.2.1). The static 

thermal conductivity is proposed by [192] (see eq.2.2) as below: 

eff static browniank k k    2-1 
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where sk  and fk  are the thermal conductivities of the particles and the fluid 

respectively. 

The Brownian motion thermal conductivity equation [232] is : 
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where  
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with K being the Boltzmann constant, T is the fluid temperature, and T0 is the 

reference temperature.  

  

2.5.2 Viscosity equation  

The viscosity of the nanofluid is approximately the same as the viscosity of a 

base fluid if containing dilute suspension of fine spherical particles, as shown 

below [192]: 
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where eff  and f  are the viscosity of nanofluid and base fluid respectively, 

pd  is the nanoparticle diameter, fd  is the base fluid equivalent diameter and 

  is the nanoparticles volume fraction. M is the molecular weight of the base 

fluid and N is the Avogadro number, and fo  is the mass density of the base 

fluid calculated at temperature T=293 K. 

 

2.5.3 The density equation:  

The effective density consists of three main parameters which are nanofluid 

concentration ( ), nanoparticle density s  and base fluid density f [5]: 

 1eff f s     
 

2-5 

 

2.5.4 The effective heat capacity equation:  

With sCp being the heat capacity of the solid particles, and fCp being that of 

the base fluid, the effective heat capacity of the nanofluid is given by [200]: 
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2.5.5 The effective thermal expansion equation: 

The thermal expansion for solid parts s  and for base f  fluid with  can 

produce the effective thermal expansion as follow [233] [234]:  

 

    

 

1

1

f s

eff

f s

   


  

 


 
 

2-7 

 



 

41 
 

  Drawbacks of nanofluids 

Recent investigations have indicated that there is no benefit in using 

nanofluids. Moreover, Myers et al. [50] revealed that there is a lack of 

consistency between the mathematical and experimental studies. The authors 

also indicated that comparing nanofluids on the basis of non-dimensional 

parameters such as Reynolds number is misleading in drawing a correct 

conclusion of the real heat transfer enhancement. Furthermore, Haddad et al. 

[235] reviewed a natural convection using nanofluids. They indicated that, in 

numerical studies, the heat transfer was significantly enhanced using 

nanofluids, nevertheless, the experimental investigations showed the 

opposite results. However, this study reviewed the natural convection 

investigations only which can support the opposite results of the experimental 

studies, because there is perhaps not enough flow to circulate the 

nanoparticles in the system which lead to augmentation of the nanoparticles 

in one place of the system. This could cause hot spot zones, then, decrease 

the heat transfer performance of the system. The reason behind the 

discrepancy between the numerical and experimental of the same working 

condition might be the augmentation as the numerical studies do not take this 

issue into the account. 

Another point of using a fixed Reynolds number and a fixed pumping power 

with nanofluids was highlighted by Haghighi et al. [236]. The results showed 

that there is no enhancement in heat transfer when using a fixed pumping 

power with nanofluids. However, using a fixed Reynolds number showed good 

enhancement of heat transfer. The same findings were concluded by 

Alkasmoul [237, 238]. 

Though nanofluids enhance the heat transfer rate, they attract more cost in 

pumping to drive the fluid [228, 239-244]. 
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 Evaluation of heat transfer improvement 

In electronics, the main aim of enhancing a cooling system is to reject the 

generated heat and keep the electronics working in the range of a limited 

temperature 85 °C [153]. Recently, optimising the energy to reduce the power 

consumption of the cooling system has attracted many researchers, the power 

consumption can be the pumping power of the cooling system or the power 

reduction after enhancing the cooling system. 

To help to evaluate the benefit reuses cost of a proposed modification of a 

cooling system, a performance evaluation criterion (PEC) index can be 

formulated which accounts for both change in heat transfer performance and 

fluid flow effects [245, 246]. The heat transfer term can be Nusselt number or 

thermal resistance, while the fluid flow term might be the friction factor or 

pressure drop. This formula can be used to evaluate the performance of the 

overall enhancement of the system.  

 Furthermore, the formula could be used to evaluate the performance of 

modification of the geometry by comparing basic and developed designs such 

as smooth and modified micro-channel as shown in the equation below [22, 

23]: 

PEC =
Nu/Nus

(𝑓/𝑓𝑠)1/3        2-8 

Where, Nu, Nus are the Nusselt numbers for modified and straight channels, 

and 𝑓, 𝑓𝑠 are the friction factor for modified and straight channels. 

This evaluation method was used by many researchers to examine the 

performance of proposed designs. Furthermore, it could be considered as a 

starting point of optimising the whole system.  

 

 Validation of numerical methods versus experimental investigations  

Developments in numerical solution methods for heat transfer in system which 

made them more accurate and closer to the experimental data. For example, 

considering the temperature dependence of the thermo-physical properties 

[153]. Many investigations were done to improve the numerical methods such 

as Bushehri et al. [247]. They proposed a new method to deal with fluid and 
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solid with an equation utilizing (FVM) CFD software openFOAM with new 

boundary conditions for the temperature jump and flow slip. The equation was 

tested against previous works and showed a good agreement. It was applied 

to a micro-channel heat sink consisting of two parallel plate to investigate heat 

transfer performance. The results indicated that the heat transfer was 

accurately calculated using the proposed equation. 

Moreover, many studies paid an attention to numerical simulation, because it 

is important to predict the experimental measurements such as heat flux, 

temperature, and fluid velocity. Using simulation offered low cost compared to 

the experimental set up [88]. Many investigations were also developed the 

numerical methods to be more accurate and efficient, for instance, improving 

a hybrid finite element method to solve solid-liquid equations of microchannel 

[11], also modified a technique such as generalized integral transform 

technique (GITT) for solving coupling equation which showed a very good 

agreement with the COMSOL Multiphysics® [12].  

An example of good agreement between the numerical and experimental 

studies can be seen in Fig. 2.14. However, using temperature dependent 

equations for thermal properties give better results than temperature 

independent equations. This can be seen later in chapter 3 when the 

temperature dependent equations are used (see Fig. 3.11). 
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Figure 2.14: Validations between numerical and experiments, (a) 
friction coefficient, (b) inlet thermal resistance, and (c) outlet thermal 

resistance. 
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  Conclusions from the literature  

A comprehensive literature review has been provided in this chapter to 

understand the gaps in knowledge in the available published studies on micro-

channel heat sink and nanofluids. Several conclusions can be drawn and they 

are summarized as follows:  

 Applications demands capability to handle high heat flux, therefore, 

developing liquid cooling systems is increasingly important. 

 

 All studies in the literature indicated that using extended surface area 

such as ribs or grooves in uniform channels offered better heat transfer 

enhancements compared to the uniform channels itself. However, 

there will be a pressure drop penalty caused by ribs and grooves 

partially disturbing the fluid flow.  

 

 Although are many examples of geometrical modifications that offer 

some form of benefit in terms of heat transfer, most of these are rather 

complex. 

 

 So far, simpler cylindrical vortex generators have only explored partially 

in two recent studies. However, have focused on flow disturbance, 

treating the VGs as adiabatic objects, and therefore conjugate heat 

transfer effects have not been precisely considered. 

 

  Nanofluids have been extensively studied in the literature. However, 

there are still areas of disagreement in terms of the benefit of using 

them. Although thermal conductivity can be enhanced, the drawback 

of nanofluids is the increases in pressure drop required to drive the 

flow.  

 

 SiO2 and Al2O3 –water are generally accepted to be the best nanofluids 

in terms of heat transfer enhancement. However, comparing SiO2 and 

Al2O3 nanoparticles in water at the same concentration, some 

researchers found that Al2O3-water offers better heat transfer 
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enhancement than SiO2-water, whereas, others indicated the opposite. 

However, the maximum percentage of nanoparticle concentrations is 

4%. 

As presented in the literature there is a gap of knowledge on using micro-

channels with liquid coolants. Therefore, last sections of chapter 3 will 

investigate numerically the common air-based heat sink with water as a 

working fluid using COMSOL Multiphysics. Before presenting the 

investigation, it is important to illustrate the methodology of the present study 

which is presented in the next chapter (chapter 3). 
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 Numerical method  

 

 Introduction 

As discussed in chapter 2, computational fluid dynamics (CFD) has been 

widely used to explore new ideas in small scale systems involving micro and 

mini channel heat sinks due to saving cost and time.  

Therefore, CFD is also the key tool used in this thesis. All required details of 

applying CFD technique to investigate the fluid flow and heat transfer 

performance using micro-channel geometry are presented in this chapter. It is 

broken down to sections describing and explaining each step of solving the 

CFD problem starting by giving a background of CFD, the COMSOL 

Multiphysics® software package, governing equations, the boundary 

conditions, and ending with a summary. 

  

 Background of CFD 

The importance of CFD is to provide an accurate solution at low cost and in 

less time compared to developing an experimental setup. For instance, 

modifying the design of a geometry several times using CFD takes much less 

time and cost than when manufacturing it [248, 249]. In addition, different 

phenomena combined with a conjugate heat transfer such as chemical 

reaction can be included to CFD to provide a prediction of solution [250, 251].  

Therefore, CFD technique is used in industry widely because of its ability to 

provide simulations with acceptable error compared to experimental setup as 

clearly indicated in the literature.  

Complex problems such as combined heat transfer and fluid flow in 

exchanging systems cannot be solved easily using analytical solution. 

Therefore a numerical approach is required for solving such complex 

problems. Several numerical methods are known and available such as finite 

difference, finite volume and finite element. In the current study, finite element 

method (FEM) is considered to solve the 3-D micro-channel model.  
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The FEM is a powerful engineering analysis tool that has been widely used in 

solving science and engineering problems. It first appeared in the 1950s, and 

is also known as finite element analysis. Basically, FEM cuts the geometry 

into sub-geometries know as elements. Each element consists of a number of 

nodes [252]. Over each element, the field variables as low-order polynomials, 

for example linear of quadratically. The geometry having all elements and 

nodes is known as a mesh which is shown in Fig. 3.1 

 

 

Figure 3.1: Mesh of a geometry having elements and nodes. 

 

Furthermore, the shape of the mesh depends on the element shape, it can be 

1D, 2D or 3D (See Fig. 3.2) which is also related to the dimensions and 

complexity of the geometry [253].  
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Figure 3.2: Types of quadratic one, two and three-dimensional 
elements [253]. 

 

However, the process of solving governing equations using FEM can be 

described as in Fig. 3.3 [253]. 
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Figure 3.3: FEM process 

 

 

The general procedure to solve CFD problems using FEM or any other 

method may have several steps namely, physics scenario, geometry, 

computational mesh, governing equations, solution algorithm, results and 

analysis. This procedure consists of three main stages namely, pre-processor, 

solver, and post- processor, which are connected together as described in Fig. 

3.4.  

 

Physical model Mathematical model 

Finite element discretization 

Domain discretization 

Mesh generation 

Finite element discretization 

Spatial Temporal 

Solution 

Accuracy and convergence 
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Figure 3.4: The connection between the three stages [254]. 

 

Generally, after creating the geometry and generating the mesh, the next 

stage is to solve the differential equations using a discretisation of FEM. This 

results in a large set of data giving the velocity, pressure, and temperature 

values at the mesh points. The final stage is to process this data to generate 

meaningful visualisations and plots.  

 

 Governing equations 

The coolant in the channel is taken to be either water or nanofluid, with 

temperature-dependent density 𝜌  and viscosity  μ , flowing under steady 

laminar conditions. Gravitational effects are not important in this small, closed-

domain forced convection system and, since fluid is Newtonian, the governing 

continuity and Navier-Stokes equations therefore take the form:  

𝛁 ⋅ (𝝆𝒖) = 𝟎         3-1 

 

𝛒(𝑻𝑳)(𝒖 ⋅ 𝛁)𝒖 = 𝛁 ∙ [−𝒑𝑰 + 𝛍(𝑻𝑳)(𝛁𝒖 + (𝛁𝒖)𝑻) −
𝟐

𝟑
𝛍(𝑻𝑳)(𝛁 ⋅ 𝒖)𝑰]3-2 

where 𝒖 = (𝑢, 𝑣, 𝑤) is the flow velocity in (𝑥, 𝑦, 𝑧) Cartesian coordinate space, 

and 𝑝 is the pressure. The energy equation for the fluid is 
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ρ𝐶𝑝𝒖 ⋅ ∇𝑇𝐿 = ∇ ⋅ (𝑘∇𝑇𝐿)         3-3 

where 𝐶𝑝 , 𝑇𝐿 , and 𝑘  are respectively the specific heat, temperature, and 

thermal conductivity of the liquid. Viscous dissipation is neglected since water 

viscosity is low. The solid parts of the domain are taken to be aluminium, since 

this is a common material from which heat sinks are made, though some 

results for copper are also presented in chapter 5. Heat conduction through 

the solid is governed by 

 

𝛁 ⋅ (𝒌𝑺𝛁𝑻𝑺) = 𝟎         3-4 

where 𝑇𝑆 and 𝑘𝑆 are respectively the temperature and thermal conductivity of 

the solid.  

The temperature dependence of the fluid properties is given by the following 

expressions built in to COMSOL based on experimental data: 

 

ρ(𝑇𝐿) = 838.466135 + 1.40050603𝑇𝐿 − 0.0030112376𝑇𝐿
2

+ 3.71822313 × 10−7𝑇𝐿
3 

μ(𝑇𝐿) = 1.3799566804 − 0.021224019151𝑇𝐿 + 1.3604562827 × 10−4𝑇𝐿
2  

− 4.6454090319 × 10−7𝑇𝐿
3 + 8.9042735735 × 10−10𝑇𝐿

4  

− 9.0790692686 × 10−13𝑇𝐿
5 + 3.8457331488 × 10−16𝑇𝐿

6 

𝐶𝑝(𝑇𝐿) = 12010.1471 − 80.4072879𝑇𝐿 + 0.309866854𝑇𝐿
2

− 5.38186884 × 10−4𝑇𝐿
3 +  3.62536437 × 10−7𝑇𝐿

4 

𝑘(𝑇𝐿) = −0.869083936 + 0.00894880345𝑇𝐿 − 1.58366345 × 10−5𝑇𝐿
2

+ 7.97543259 × 10−9𝑇𝐿
3  

These temperature dependent equations are valid for water. When water is 

the working fluid, they are used directly, and when the working fluid is a 

nanofluid, the above equations are used to provide the base fluid properties 

required in the nanofluid property equations given in section 2.5.  
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 COMSOL Multiphysics® 

In this study, the COMSOL Multiphysics® package is chosen to solve the 

problem of conjugate heat transfer based on FEM as a numerical technique. 

COMSOL Multiphysics® uses the Galerkin method to convert partial 

differential equations into FEM integral form. Also, COMSOL Multiphysics® 

has a built-in heat transfer module including all essential mechanisms such as 

conduction, convection and radiation. Furthermore, it contains capabilities of 

coupling Multiphysics to consider temperature and velocity fields in parallel 

with other physics such as chemical reactions or electrical circuits, also it can 

be used to solve phase change problems [255]. it is appropriate for such 

problems especially if the geometry is fixed to constant dimensions and the 

fluid flows in constant volume [256]. COMSOL is widely used to simulate 

cooling systems as they have a clear interaction between hot and cold 

surfaces using a combination of Multiphysics.  

 

 Nanofluid equations  

As discussed in the literature, this study considers a nanofluid as one modified 

fluid having different properties from water. However, since the base fluid of 

the nanofluid is water, the water properties defined in COMSOL Multiphysics® 

as a function of temperature (see section 3.3) are used in combination with 

the nanofluid equations presented in chapter 2 (section 2.5) to obtain the 

nanofluid thermo-physical properties for different nanoparticle concentrations. 

The resulting values are validated against published experimental 

measurements – see Tables 3.4 and 3.5 and the results of chapters 6 and 7. 

 

 Geometry description and boundary conditions 

The base geometry considered is a single uniform micro-channel with 

rectangular cross-section, as shown in Fig. 3.5(a). Such channels are 

common in the heat sinks designed for CPUs (Fig. 3.5b), where they form the 

gaps between the parallel fins of the heat sink, and that is the application 

considered here, with the base area of the heat sink taken as As = 6.27108 

µm2. Within the channel, a number of vortex generators are equally distributed 
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along the base. These have cross-sections that are either a rectangular, 

triangular (described in chapter 4) or circular having quarter-circle or half-circle 

(detailed in chapter 5), or the VGs can be elliptical and circular shape 

(presented in chapter 7). The micro-channel dimensions are given in Table 

3.1.  

Boundary conditions play a crucial role in solving the problem of conjugate 

heat transfer [257]. As indicated in Fig. 3.6, the symmetry of the flow was 

exploited to reduce computational effort, and symmetry conditions were 

applied at the left- and right-hand outer boundaries of the domain, 

corresponding to the centre of the channel and the centre of the wall between 

two channels respectively. A uniform heat flux was applied at the bottom 

boundary, as an idealised representation of a live CPU chip requiring cooling 

via the heat sink. It is assumed that the micro-channels in the heat sink are 

fed from a header chamber, so at the micro-channel inlet a uniform velocity 

was imposed. The inlet speed 𝑢𝑖𝑛 was set to achieve the desired Reynolds 

number, defined in terms of the hydraulic diameter as: 

𝑹𝒆 =
𝛒𝒖𝒊𝒏𝑫𝒉

𝝁
 3-5 

The inlet temperature was fixed at 293.15 K. At the outlet, the pressure was 

set to zero, and on the micro-channel walls the no-slip condition was applied. 

On the top boundary, and the remaining walls, adiabatic conditions were 

applied. Table 3.2 summarises the boundary conditions together with the 

relevant equations. 

 



 

55 
 

 

 

Figure 3.5: Geometry description: (a) rectangular micro-channel 
containing vortex generators; (b) 3-D view a heat sink comprised of a 

series of micro-channels [258]; (c) view along the channel showing the 
definition of parameters governing the dimensions of the geometry. 

 

 

Table 3.1: Dimensions of the micro-channel and VGs models. 

Micro- channel dimensions, 𝛍𝐦 

L 25000 Ht 900 Hc 700 

Ww 300 Wc 500 xin 4000 
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w
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Figure 3.6: The boundary conditions of the geometry. 

 

 

Table 3.2: The boundary conditions of the conjugate heat transfer model. 

Locations 
Fluid 

Conditions 

Thermal 

Conditions 

Inlet 50≤ Re ≤2300 Tf=293.15K 

Right and left sides 

(symmetry) 
0

dy

du

 
0

dy

dT

 

Top wall and other walls 𝑚̇ = 0 0
dz

dT

 

Bottom wall of micro-

channel 
𝑚̇ = 0 

𝑞̇=100W/cm2 

constant 

Pressure outlet P=0 0
dx

dT

 

Bottom of micro-channel 

heat sink 
𝑚̇ = 0 

dn

dT
k

dn

dT
k S

S

air

ai .
 

Symmetry plane 
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  Heat transfer performance characterisation 

The heat transfer performance is quantified by the thermal resistance, defined 

as:  

Ѳ =
𝑻𝒂𝒗𝒆−𝑻𝒊𝒏

𝑨𝒔𝒒
         3-6 

 

where 𝑇𝑎𝑣𝑒 is the average temperature on the base surface in the system, 𝑇𝑖𝑛 

is the inlet temperature, and 𝑞 is the heat flux through the base of the heat 

sink. A thermal-hydraulic performance evaluation criteria (PEC) index [22, 23] 

is also used to assess the effective heat transfer enhancement provided by 

VGs, taking into account the penalty paid in terms of the pressure drop. Rather 

than using the usual average Nusselt numbers and friction factors as the 

contrasted thermal and hydraulic measures [22, 23], here the PEC index is 

defined in terms of equivalent directly computed quantities, namely the 

thermal conductance of the system (i.e. the reciprocal of the thermal 

resistance) and the actual pressure drop. Hence the PEC index is defined as: 

 

𝐏𝐄𝐂 =
𝛉𝐬/𝛉

(𝚫𝑷/𝚫𝑷𝒔)𝟏/𝟑        3-7 

 

where Δ𝑃  and Ѳ  are the pressure drop and thermal resistance in a 

microchannel containing VGs and Δ𝑃𝑠 and Ѳ𝑠 are the same quantities in the 

corresponding smooth (i.e. uniform) micro-channel. 

  

The mass flow rate (𝑚̇) and the pumping power (𝑃𝑃) used in this study are 

presented as:  

𝑚̇ =  ρ𝑢𝑖𝑛A         3-8 

𝑃𝑃 = 𝑢𝑖𝑛A∆P        3-9 
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Where 𝑢𝑖𝑛 is calculated based on the equation of Reynolds number (3-7), A is 

the cross sectional area of the inlet of the microchannel (Hc*Wc, see Table 3.1), 

and ∆P is the pressure drop. 

 

 Mesh sensitivity and code validation 

Equations (3-1)-(3-4) were solved simultaneously using the finite element 

software COMSOL Multiphysics® version 5.2. A grid independence test was 

applied on both smooth channel and a VG-enhanced channel to assess the 

density of mesh required. For the smooth channel, five meshes were used, 

labelled as ‘coarser’, ‘coarse’, ‘normal’, ‘fine’, and ‘finer’, with number of 

elements 53554, 145869, 283944, 788230, and 2831904 respectively, and 

Fig. 3.7 shows the average temperature calculated using each mesh. As can 

be seen, the ‘fine’ mesh provided the best run time while ensuring mesh 

independence of the solution. Therefore, the standard fine ‘physics-controlled’ 

mesh was used as the base mesh. This was then modified to accommodate 

the VGs micro-channel models, and mesh sensitivity checked again with a 

sequence of increasingly finer meshes ‘M1’ to ‘M5’. Using the maximum 

temperature as a measure, Fig. 3.8 confirms the suitability of mesh M1. The 

M1 details are modified to be 100 elements as the maximum size, while the 

minimum size is 10 elements. The growth ratio is 1.15 (very fine at the contact 

of the liquid and solid surfaces inside the channel. 

To ensure the accuracy of the results, two simulation models were compared 

with previous numerical studies. The first validation model was compared with 

Shkarah et al. [78], who modelled a graphene micro-channel within a heat sink 

using the finite volume-based software FLUENT. Figs. 3.9 and 3.10 show a 

comparison of the present COMSOL simulations with the published 

calculations, with the inlet temperature set at 300 K, the flow rate at 8.6 cm3/s, 

and the heat flux at two values: 181 and 277 W/cm2. Good agreement is seen 

between the two approaches. The second validation was with Abdollahi and 

Shams [259]. They investigated the impact on conjugate heat transfer of using 

rectangular vortex generators with various orientations and their inclination in 

a channel, with water as the working fluid. The validation was done with the 
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present study and showed good agreement, using an angle for the VG of 45, 

a heat flux of 1kW/m2, and values for Reynolds number of 233 and 350 as 

shown in Table 3.3. 

 

 

Figure 3.7: Grid independence test for a smooth channel, showing the 
maximum temperature calculated using increasingly refined meshes, 

with q = 100 W/cm2 and Re = 600. 

 

 

Figure 3.8: Grid independence test for micro-channel with VGs; q = 100 
W/cm2, Re = 100. 
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Figure 3.9: Code validation by comparison of calculated temperature 
distribution along a graphene micro-channel with heat flux 181 W/cm2 

and flow rate 8.6 cm3/s [78]. 

 

Figure 3.10: Code validation by comparison of calculated temperature 
distribution along a graphene micro-channel with heat flux 277 W/cm2 

and flow rate 8.6 cm3/s [78]. 
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Table 3.3: Code validation with Abdollahi and Shams [259].  

 

Angle of VG 45
◦
 45

◦
 

Re  233 350 

Heat flux 1kW/m2 1kW/m2 

T (K) present 307 305 

T (K) [259] 306.362 305.617 

 

Another validation for a uniform channel consists of comparison with two 

further investigations. The first study was an experimental investigation of a 

straight micro-channel done by Kawano et al. [260]. The second validation 

was against numerical study presented by Qu and Mudawar [261]. Both 

studies used the same material (silicon) and the height, width and length of 

the micro-channel were 180 µm, 57 µm, 10 mm respectively. The top of micro-

channel was subjected to a uniform heat flux of 90W, while the side walls were 

set to be symmetry, and the bottom wall was adiabatic. Laminar flow was used 

in the studies, with Reynolds number ranging from 80 to 400. To validate the 

present computational method, the same system was modelled and the 

resulting calculations of the thermal resistance (calculated in this instance as 

Rth, out= (Tsurface, Max-Tfluid, in)/ q) are shown in Fig. 3.11. As can be seen, 

excellent agreement with the experiments is found.  
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Figure 3.11: Validation of the present model against experimental data 
of Kawano et al. [260] and alternative numerical results of Qu and 

Mudawar [261].  

 

 Experimental and numerical validation of nanofluids 

To ensure the validity of numerical equations (2-1 to 2-7), a validation of 

nanofluids thermo-physical properties between the experimental 

measurement of a study which was done by Ahmed et al. [262] and the 

numerical equations adopted here is shown in Table 3.4. A spherical shape 

of nanoparticles with 25 nm solid particles diameter was considered. 

Furthermore, different concentrations of nanoparticles were utilized in the 

water as a base fluid to produce the thermo-physical properties of nanofluid 

with 0.5% and 1% volume fraction. Two types of nanoparticles were mixed 

with the base fluid to present two nanofluids namely, SiO2 water and Al2O3 

water. 
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Table3.4: Comparison of predicted nanofluid equations with 

experimental work at 20◦ C [262]. 
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Table 3.5: Thermo-physical properties of nanofluids used in this study 
at the inlet temperature (293.15K) 

SiO2-water properties at different concentrations 

Concentration(φ) ρ (kg/m3) µ (kg/(m*s)) k (W/(m*K)) Cp (J/(kg*K)) 

0. 5% 1005.6 0.001 0.596 4148.8 

1% 1011.6 0.001 0.598 4111.2 

2% 1023.6 0.001 0.602 4037.2 

4% 1047.6 0.001 0.610 3894.3 

Al2O3-water properties at different concentrations 

0. 5% 1014.5 0.001 0.602 4120.0 

1% 1029.4 0.001 0.609 4054.9 

2% 1059.0 0.001 0.624 3930.4 

4% 1118.4 0.001 0.656 3701.1 

Base fluid properties (water) 

ρ (kg/m3) µ (kg/(m*s)) k (W/(m*K)) Cp (J/(kg*K)) 

998.2 0.001 0.589 4185.1 

 

 Preliminary Investigation of perforated pinned heat sink 

Before going on to explore liquid micro-channels, vortex generators and 

nanofluids in later chapters, this short section presents a brief preliminary 

study of an air–cooled heat sink. The purpose is to investigate whether 

geometrical modifications that are effective in enhancing the performance of 

air-based system also work when the coolant is switched to a liquid. This 

section is considered as an example to apply the methodology used in 

chapters 4 to 7. 

The system in question is a common pinned heat sink (PHS), consisting of a 

square horizontal and vertical cylindrical pins in a regular array. Al-damook et 

al. [263] have recently shown that perforations in the pins have a beneficial 

effect on the performance of heat transfer and fluids flow. Here, the same 

system is modelled with water replacing the air, to evaluate how effective the 

design modifications are for water coolant.  

 

3.10.1 Geometry description  

The perforated PHS adopted from Al-Damook et al. [263] is shown in Figs. 

3.12-3.14. The thermal performance of this model is examined using water in 

laminar flow (instead of the air for which the system was originally developed). 
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The base of the heat sink is taken to be 5 cm, 5 cm and 0.2 cm of length, width 

and thickness, respectively, while the pin height is 10 cm.  

 

Figure 3.12: Pinned fin heat sink. 

 

Figure 3.13: Boundary condition of perforated pinned heat sink.  

 

 

Figure 3.14: The pin fin model description, all dimensions in mm [263]. 
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3.10.2 Perforated PHS using water 

The perforated PHS model is compared with the solid PHS to examine the 

influence of using water on hydraulic and thermal performance. Fig. 3.15a 

presents numerical predictions of the pressure drop through the PHS. It is 

found that the pressure drop decreases only slightly when using the perforated 

model compared to the solid one. Fig. 315b describes the average 

temperature of PHS base plate, Tcase, as a function of the Reynolds number 

in the range of 300 ≤ Re ≤ 1100 for both solid and perforated pinned heat 

sinks.  

The results show that there actually a slight increase in base temperature 

when perforations are introduced. Since water is more viscous than air, the 

flow path through the small perforations suffers a relating higher viscous 

resistance and consequently little water passes through. Hence the pressure 

drop is only marginally improved. Since flow through holes is slaw, the gain in 

heat transfer through the thermal surface of the holes is outweighed by loss 

of the holes, and the loss of the conductive area along the pins. Hence the 

base temperature is slightly higher for perforated case, therefore, the focus of 

the research will be on the VGs of different shapes (see Fig. 3.14) using water 

as a coolant and exploring their effect on heat and flow characteristics.  
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Figure 3.15: Comparisons between solid and perforated PHS (3 holes) 
with water as a coolant: (a) Pressure drop; (b) Base plate temperature. 

 

300 500 700 900 1100

2

4

6

8

10

12

14

16



p

a


Re

 Solid PHS

 Perforated PHS

300 500 700 900 1100

42

44

46

48

50

52

T
c
a
s
e
(

C
)

Re

 Solid PHS

 Perforated PHS

(a) 

(b) 



 

68 
 

The example of pin fin presented in Fig. 3.15 shows that the idea for 

enhancing the heat transfer performance in air-based cooling system do not 

necessary work with liquid coolants. Though liquids offer higher thermal 

conductivity than air, the higher viscosity must be taken into consideration.  

 

 Summary 

This chapter outlined how to use CFD to solve a conjugate heat transfer 

problem in a micro-channel system. The adopted method has been shown to 

produce mesh independent results, and has been validated against published 

experimental and numerical work. The next chapters (4-7) focus on the 

numerical results of using different VGs shapes to enhance the heat transfer 

and reduce the pressure drop compared to the uniform micro-channel with 

water as the coolant. Nanofluids as coolants are presented in chapter 6, 

required pumping power explored in chapter the pin fin model is studied to 

examine the impact of the geometry and the fluid type on heat transfer and 

fluid flow characteristics. The model has been investigated under laminar flow 

(300 ≤ Re ≤ 1100) subjected to a uniform heat flux related to CPUs in 

electronic devices is 75 W/cm2.  

Furthermore, in the present study, the perforated pinned heat sink showed 

insignificant enhancement in heat transfer rate or reduction in pressure drop 

compared to the solid pins. It does not necessarily follow that a geometrical 

modification that improves heat transfer for one fluid will also enhance 

performance for a different working fluid.  

The remainder of this thesis is devoted to geometrical and/or coolant 

enhancements that are appropriate for liquid coolant heat sink. 
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 Heat and Flow Analysis of Circular Vortex 

Generators Design 

 

 Introduction 

As discussed in the previous chapter, the results indicated that no 

enhancement in heat transfer is seen with the perforated pinned heat sink with 

water. Therefore, to enhance the thermal performance of a cooling system, a 

modified micro-channel having different shapes of VGs is proposed and 

compared to a base geometry which is a uniform micro-channel. The base 

geometry considered is a single micro-channel with rectangular cross-section, 

as described in chapter 3 section 3.6.  

The model is a new design of a uniform micro-channel having different shapes 

of vortex generators (VGs) positioned at intervals along the base of the 

channel. The VGs shapes are circular, triangular and rectangular compared 

to each other based on constant volume of 0.0314 mm3. Models with 

Reynolds number in the range of 50 to 2300 are subjected to a uniform heat 

flux relevant to microelectronics air and water cooling.  

The configuration is a micro-channel with the dimensions listed in Table 4.1 

and as shown in Fig. 4.1. The computational domain consists of a single 

micro-channel with rectangular cross-section, with appropriate symmetry 

planes to represent the whole heat sink. The total base area of the heat sink 

is taken as As = 6.27108 µm2. The new shapes of VGs such as rectangular, 

square, forward triangular and backward triangular are seen in Fig. 4.2 (a-g). 

The key factor in examining the influence of different shapes on heat and flow 

performance is the constant volume of 0.0314 mm3 for each VG. 

This chapter also focuses on the effect of half-circle VGs having and a variable 

radius, r, ranging up to 400 μm design on heat transfer and fluid flow 

characteristics. Note that the units to present the temperature is Kelvin and 

the velocity is m/s.  
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Table 4.1: Micro-channel and VGs dimensions in µm. 

 

Micro-channel dimensions (µm) 

L 25000 Hc 700 Ht 900 Wc 500 Ww 300 

VGs dimensions (µm) 

Triangle Rectangle Square Circle 

h 300 h 315 h=b 250.6628 r Up to 400 

b 418.879 b 200 r=200 for VGs comparison  

 

 

 

Figure 4.1: Geometry description: (a) rectangular micro-channel 
containing vortex generators; (b) view along the channel showing the 
definition of parameters governing the dimensions of the geometry. 

 

(a) 

Ht 

Hc 

VG 

Ww/2 Wc/2 

(b) 



 

71 
 

 

 

Figure 4.2: Side view of different shapes of VGs: (a) Forward triangular 
(FT); (b) Backward triangular (BT); (c) Symmetry triangular (ST); (d) 
Vertical rectangular (VR); (e) Horizontal rectangular (HR); (f) Square 

(S); (g) Half-circle (C). 

 

 Influence of VGs shape in the micro-channel 

Proposed VGs shapes are compared to a uniform channel. The key factor of 

this comparison is that all VG configurations are considered to have an equal 

volume of 0.0314 mm3. The performance of heat transfer and fluid flow effect 

were examined using laminar flow and a constant heat flux ranging from 75 to 

100 W/cm2 and Reynolds number in the range of 50 to 2300. Before 

investigating the influence of different VG configurations on heat transfer and 

fluid flow, Fig. 4.3a shows the effect of heat flux on thermal resistance in a 

uniform micro-channel having no VGs. As to be expected, that thermal 

resistance increased with increasing heat flux for the given Reynolds number. 

However, systems using water as a coolant can dissipate high heat flux 

compared to air-base systems. Therefore, 75-100 W/cm2 is considered in the 

following results. Furthermore, in particular applications there is a temperature 

limitation of operating electronic chips, as calculated results showed that the 

working temperature of 356 K is suitable for the experimental applications, 

which can be achieved using Re of 300. In addition, Fig. 4.3a also presents 

that at high Reynolds number (2000-2300) there is no significant improvement 

in thermal resistance. Hence, the later results are presented at Reynolds 

number in the range of 300-2000. Another important factor in heat transfer 

studies is the pressure drop, since it is directly related to the power 

consumption and hence the overall cost of the system for a long period of 

operation. Fig. 4.3b reveals that the pressure drop is very slightly higher at the 

(a) 

h h 
r 

b b 

(b) (c) (d) (e) (f) (g) 

Fluid flow 

FT BT ST VR HR S C 



 

72 
 

lower heat flux. This is due to the viscosity effect, as the viscosity of a cold 

water is slightly higher than the hot water, therefore this slightly increases the 

pressure drop. Thus Fig. 4.3b shows that no significant effect found utilizing 

heat flux ranging from 75-100 W/cm2. Therefore, in all following results, a heat 

flux of 100 W/cm2 is used. The detail of the effect of VGs shapes on conjugate 

heat transfer is presented in different sections as below. 

 

 

 

Figure 4.3: Different range of heat flux with the full range of Re using 
uniform channel: (a) thermal resistance; (b) pressure drop. 
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4.2.1 Triangular shapes 

A uniform channel is taken as a reference to be compared to the three new 

VG configurations of triangular shape which are forward (FT) backward (BT) 

and symmetric (ST) (see Fig. 4.2). As discussed in the previous section (5.2), 

the heat flux is taken as 100 W/cm2 and Reynolds number is ranging from 300 

to 2000 to assess the impact of VGs on thermal resistance and pressure drop 

as shown in Fig. 4.4a and b. The influence of triangular VG shapes on thermal 

resistance is presented in Fig. 4.4a, where it is found that the symmetric (ST) 

VGs model offers the lowest thermal resistance, followed by forward (FT), 

then the backward (BT), while the highest thermal resistance is for the uniform 

channel. This is also seen in Fig. 4.5a (temperature contours) which shows 

that ST VGs model at Re 800 offers the lowest temperature. This is because 

of the VGs configuration related to the fluid flow, for instance, there is a 

stagnant zone before the VGs of model BT (see Fig. 4.5b) which generates a 

hot spot, while less effect can be seen for FT model due to the flow direction. 

However, the ST model has smaller stagnant zone compared to BT and FT 

models, this can be seen in Fig. 4.4b. It is clear that all triangular 

configurations offer heat transfer enhancement compared to the uniform 

channel. However, the price for thermal reduction of ST model paid for 

pressure drop as ST model has the highest pressure drop compared to all 

proposed models of triangular shapes which is shown in Fig. 4.4b. The next 

section presents the influence of rectangular VG models on conjugate heat 

transfer. 
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Figure4.4: Different configurations of triangular VGs forward triangular 
(FT), backward triangular (BT) and Symmetric triangular (ST): (a) 

thermal resistance; (b) pressure drop. 
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Figure4.5: X-Z planes of various triangular VGs models with flow 
direction from the left to the right at Re 800: (a) temperature contour 
(K) at the wall of the channel; (b) contours of x velocity component 

(m/s) at the centre of the channel. 

 

4.2.2 Rectangular shapes 

In this section, various shapes of rectangular configuration (see Fig. 4.2d-f) 

are compared to the uniform channel to examine their effect on thermal 

resistance and pressure drop. Fig. 4.6a shows the effect of rectangular VGs 

in various models (Vertical rectangular (VR), Horizontal rectangular (HR) and 

Square (S)) on thermal resistance. It is found that the S VGs shape offers the 

lowest thermal resistance compared to VR, HR and the uniform channel 

especially at Re ≥ 900, while model VR offers best thermal resistance at Re ≤ 

800. The reason behind that can be explained using Fig. 4.7a and b. Fig. 4.7a 

shows that the S model has lowest temperature because its dimensions make 
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a balance between the height of the VGs which act as fins in terms of heat 

transfer and the stagnant zone behind the VGs in terms of fluid. It can be seen 

that the effect of heat transfer is more than the effect of the fluid flow in the 

case of comparing VR and S models. Therefore, the VR model offers a better 

heat transfer rate compared to the S model at low Re (see Fig. 4.6a). This can 

be discussed in more detail through association with the fluid flow contours 

shown in Fig. 4.7b, which shows that the height of S model lies between VR 

and HR. Obviously generating a hot spot behind each VGs depends on the 

stagnant zone that also depends on VG’s height. For example, Fig. 4.7b 

shows that S model has the larger stagnant area than HR model, but S model 

still the lowest thermal resistance (see Fig. 4.6a). This can be attributed to the 

fact the fast stream (blue stream) passing over the S model is more than the 

one passing over the HR model (see Fig. 4.7b). the results show that the HR 

model offers the lowest pressure drop compared to VR and S models as 

shown in Fig. 4.6b, this is due to the height (h) of the VGs facing the water 

(see Table 4.1). 
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Figure 4.6: Different VGs of rectangular model (Vertical rectangular 
(VR), Horizontal rectangular (HR) and Square (S)): (a) thermal 

resistance; (b) pressure drop. 

 

 

Figure 4.7: X-Z planes of various triangular VGs models (Vertical 
rectangular (VR), Horizontal rectangular (HR) and Square (S)) with flow 

direction from the left to the right at Re 800: (a) temperature contour 
(K) at the wall of the channel; (b) contours of x velocity component 

(m/s) at the centre of the channel. 
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4.2.3 Circular shapes 

Circular VGs shown in Fig. 4.2g having dimensions presented in Table 4.1 

compared to the uniform channel to study the shape effect on the conjugate 

heat transfer. Fig. 4.8a reveals that the thermal resistance decreased 

significantly using circular VGs compared to the uniform channel. However, 

the pressure drop of C-model is higher than the uniform channel due to the 

VGs which disturb the water in the micro channel as shown in Fig. 4.8b. The 

temperature contour of the circular VGs is compared to the uniform channel 

in Fig. 4.9a which reveals how the circular VGs assist to enhance the heat 

transfer by dissipating the heat from the base of the channel to the water. VGs 

help to develop the secondary flow by disturbing the flow (mixing the cold and 

hot fluids) which leads to reducing the boundary layer as shown in Fig. 4.9b. 
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Figure 4.8: Circular VGs compared to uniform channel using Re from 
300 to 2000: (a) thermal resistance; (b) pressure drop. 

 

 

Figure 4.9: X-Z plane of uniform channel and circular VGs at Re =800: 
(a) temperature contour; (b) contours of x velocity component (m/s) at 

the centre of the channel. 
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4.2.4 Comparison of the VGs shapes 

The sections above compared different VGs to the uniform channel for both 

thermal resistance and pressure drop. Overall, all proposed models enhanced 

the thermal resistance compared to the uniform channel, but all of them have 

higher pressure drop than the uniform channel. Hence, it is natural to ask what 

configuration is the best in terms of heat transfer and pressure drop. 

Therefore, Fig. 4.10a presents the lowest thermal resistance of each group of 

VGs shapes. It is found that the circular VGs shape has the lowest thermal 

resistance compared to S and ST models. In addition, Fig. 4.10b shows that 

the C-model also has a lower pressure drop than ST and S models, but still 

much higher than the uniform channel. VGs enhance the heat transfer, but 

this enhancement depends on the size of the spot area generated behind the 

VGs. For instance, the hot spot behind the C-model is less than for the ST 

and S models. Therefore, the C-model has the lowest thermal resistance as 

shown in Fig. 4.10a. This can be attributed to the fact that the main flow 

passes over the VGs and deflects it, generating a recirculation, which may act 

to reduce the thermal boundary layer and enhance the heat transfer by mixing 

hot and cold liquid [118, 264] as clearly presented in Fig. 4.11a. 
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Figure 4.10: Comparison of the lowest thermal resistance 
configurations (ST, S and C models); (a) thermal resistance; (b) 

pressure drop. 

 

 

Figure 4.11: X-Z plane comparing the uniform channel to ST, S and C 
VGs models at Re =800: (a) temperature contour; (b) velocity contour. 
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4.2.5 Hydraulic thermal performance  

The criterion used in this section is based on assessing by how much does 

increase in pressure drop outweigh combination of the heat transfer 

enhancement and the pressure drop increment when comparing the uniform 

channel and the proposed VG configurations (see Eq. 3-7). Fig. 4.12 shows 

the PEC index value for the best models in terms of thermal resistance (ST, 

S and C models, section 4.2.3). The results indicate that the lowest PEC is for 

ST model, then S model, and the highest PEC is for the C model. This can be 

attributed to the fact of how PEC applied (see Eq.3-7) to evaluate the overall 

heat transfer. This follows since the C model has the lowest thermal resistance 

and lowest pressure drop compared to the other VGs models (see Figs. 5.10 

and 5.11). However, the C model still below 1 (PEC for the uniform channel). 

 

 

Figure4.12: PEC of the lowest thermal resistance models with the full 
range of Re. 
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Based on the above results, the C-model offers lower thermal resistance and 

pressure drop and higher PEC index than other suggested VG configurations. 

Therefore, the focus of the rest of the chapter is on the influence of half-section 

VGs having various radii on the heat transfer and fluid flow characteristics as 

illustrated in the next sections of this chapter.  

  

 Further exploration of half-circle VGs  

The above results highlight that the half-circle VGs appear to be the most 

beneficial, thus these are now explored in more detail. The results presented 

below focus on the particular value of 100 W/cm2 for the heat flux, because 

the system using water can achieve temperature reduction for high heat flux 

subjected to the system. However, higher heat flux cannot apply to the system 

due to the upper temperature limit for operation of electronic devices [30, 265-

267].  

 

The other VG geometry considered in this work is that of cylinders with a half-

circle cross-section as shown in Fig. 4.2. Again the three different radii of 

spanwise configurations shown in Table 4.1 were considered. Fig. 4.13 

presents the impact of the radius of full-span VGs on the thermal resistance 

and pressure drop for a range of Reynolds numbers, which is split into two 

plots for the sake of clarity. Unlike the quarter-circle VGs, for the half-circle 

case, the thermal resistance decreases monotonically with radius for all 

Reynolds numbers above 100. The thermal resistance also decreases as Re 

increases, but of course the pressure drop increases.  
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Figure 4.13: Thermal resistance and pressure drop as a function of VG 
radius for full-span half-circle VGs: (a) Re = 100 to 900; (b) Re = 1100 to 

1500. 
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Fig. 4.16 compares the thermal resistance and pressure drop observed using 

half-circle VG design, along with those of the smooth, uniform channel with no 

VGs present. The VG radius in each case is 200 m. All VGs resulted in higher 

pressure drops than the uniform channel, as is to be expected. The lowest 

pressure drop with VGs present is seen with the uniform channel, then full-

span VGs – i.e. the same ranking as for the thermal resistance.  

 

 

Figure 4.14: Comparison of the thermal resistance and pressure drop 
characteristics of the uniform channel and the half-circle VG 

considered, with radius equal to 200 m. 
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Fig. 4.15 plots the PEC index of the data, confirming that small-radius VGs 

offer good potential for improving the efficiency of micro-channels operating 

at low Reynolds number, with r = 100 µm appearing to give the best 

performance over the widest range of Reynolds number. However, as seen in 

Fig. 4.1 that the thermal resistance increases with increasing the radius of 

VGs. But this reduction in thermal resistance leads to increase the pressure 

drop, as the PEC index is a ratio of the thermal enhancement and fluid flow, it 

can be concluded that no benefit of using large radius when presenting the 

data in PEC perspective. 

 

 

Figure 4.15: Variation of PEC index with Reynolds number for centred 
half-circle VGs of various radii. 
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 Summary 

In this chapter, a uniform micro-channel having different VG configurations 

has been studied to examine the impact of the geometry on heat transfer and 

fluid flow characteristics. The vortex generators (VGs) using different 

configurations which are forward triangular (FT), Backward triangular (BT), 

Symmetry triangular (ST), Vertical rectangular (VR), Horizontal rectangular 

(HR), Square (S) and Half-circle (C). The models have been investigated 

under laminar flow (50 ≤ Re ≤ 2300) subjected to a uniform heat flux of 100 

W/cm2 related to CPUs in electronic devices. The effect of the VGs was 

quantified in terms of the thermal resistance, pressure drop along the channel, 

and a combination of these forming a performance evaluation criteria (PEC) 

index. Therefore, the outcomes out of this research are summarised in the 

following points. 

 For triangular VGs configurations (Forward triangular (FT), backward 

triangular (BT) and Symmetry triangular (ST)). It is found that the lowest 

thermal resistance is for the ST model, while the lowest pressure drop 

is for the BT model. 

 For the rectangular VGs models (Vertical rectangular (VR), horizontal 

rectangular (HR) and Square (S)), the results show that the S model 

offers the lowest thermal resistance and pressure drop compared to 

VR and HR, but the S model still has a higher pressure drop than the 

uniform channel.  

 Circular VGs offer the lowest thermal resistance, followed by 

rectangular and triangular VGs. However, the pressure drops of all 

proposed VGs models are much higher than the uniform channel, 

meaning that additional pumping power would be needed to drive the 

flow compared to the uniform channel. 

 

 A thermal hydraulic performance criterion (PEC) is used to evaluate the 

combination of heat transfer and the pressure drop of the system and 

come out with an overall evaluation. It is found that the circular VG 

model offered the highest PEC (PEC≈ 0.95) in comparison to triangular 
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and square configurations, but still below that of the uniform channel 

(PEC=1). Reducing radius improves PEC, but it remains below 1. 

As concluded above, the half-circle was the best VGs among all suggested 

VGs in enhancing the heat and flow characteristics. However the problem 

of high pressure drop of using VGs compared to the uniform micro-channel 

is still not solved here. Therefore, the next chapter suggests a new idea to 

enhance the heat transfer and reduce the pressure penalty 

simultaneously. 
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  Benefits of spanwise gaps in cylindrical vortex 

generators  

 

 Introduction 

As seen in previous chapter, the cylindrical vortex generators placed 

transversely over the span of a micro-channel can enhance heat transfer 

performance, but adding full-span vortex generators incurs a substantial 

pressure drop penalty. This chapter examines the benefits of introducing 

various gaps along the length of the vortex generators, both for reducing 

pressure drop and improving the thermal conductance of the system. Three 

particular configurations are considered with varied dimensions: symmetrical 

gaps at each end of the vortex generator, i.e. adjacent to the channel side 

walls; a single central gap; and a combination of a central and end gaps as 

shown in Table 5.1 and Fig. 5.1. The performance is investigated numerically 

via 3D finite element analysis (see chapter 3) for Reynolds number in the 

range 300-2300 and under conditions of a uniform heat flux input relevant to 

microelectronics cooling. The results presented below focus on the particular 

value of 100 W/cm2 for the heat flux, because this corresponds to the upper 

limit for operation of electronic devices [265-267]. 

Table 5.1: Dimensions of the micro-channel and VG configurations  

Micro- channel dimensions, µm 

L 25000 Hb 200 Hc 700 

Ww 300 Wc 500 r 0-500 

Gap dimensions, µm 

Central gap 
(C) 

End gap 
(E) 

Central and End gaps 
(CE) 

   

C1 50 E1 50 CE1 250 

C2 100 E2 150 CE2 300 

C3 150 E3 200 CE3 350 

C4 400 E4 250 CE4 400 

C5 450 E5 300 CE5 450 

  E6 350   

  E7 400   
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Figure 5.1: Geometry description: (a) uniform rectangular micro-
channel with governing the dimensions of the geometry; (b) front-view 
cross-section of a ‘central’ (‘C’) gap VG; (c) front-view cross-section of 

an ‘end’ (‘E’) gap VG; (d) front-view cross-section of a ‘CE’ VG, with 
central and end gaps; (e) boundary conditions applied; (f) 3D view of 

the uniform channel. 

 

 The gap performance 

In this study, three-dimensional laminar flow simulations were conducted with 

Reynolds number in the range 300-2300 to assess the effects of the various 

gaps in the VGs (described in Sec. 2) on the conjugate heat transfer, with 

water as the working fluid. There is a very large parameter space associated 

with the VG geometry: in addition to the gap positions and widths of primary 

interest, other parameters include the radii, longitudinal position, separation 
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material. These will be considered in sub-sections below, but to begin we 
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series of 5 equally-spaced aluminium VGs of radius 400 µm. 

    

H
b
 

H
c
 

r 

w
c
 

w
w/2 

 

Heat flux 

S
y
m

m
e

tr
y
 p

la
n

e
 

 

 

S
y
m

m
e

tr
y
 p

la
n

e
 

Variable gap Variable gap Variable gap 

Z 



 

91 
 

5.2.1 End gaps (E-type vortex generators) 

In previous chapter concluded that the full span half-circle VGs of the channel 

provided a lower thermal resistance and lower pressure drop than the other 

VGs. In other words, having a gap between the ends of the VG and the 

channel side walls might be beneficial. Therefore the starting point for the 

results presented here is an investigation of how the width of the end gaps 

affects the performance of the system, to see if there is an optimum gap. 

 

5.2.2 The effect of end-gap width on conjugate heat transfer 

Fig. 5.2 shows how the thermal resistance and the pressure drop along the 

channel vary with Reynolds number for a selection of different end-gap widths. 

Note that the gap size given in the legend refers to the combined width of the 

symmetrical gaps at each end. For clarity, not all gap sizes from Table 5.1 are 

shown is here labelled as ‘E3’ and consists of a 100 µm gap at each end of 

the VG. It is found that this gap width produces a lower thermal resistance 

than all larger gap widths, but inevitably does result in a greater pressure drop 

than VGs with larger gaps. However, it is possible to reduce the thermal 

resistance a little more by decreasing the gap further, as the curve for the E2 

model (two 75 µm gaps) shows. Of course the pressure drop is increased, but 

the E2 pressure drop is still less than that for full-span VGs that have a much 

higher thermal resistance. 

Reducing the gap size further than E2 does not provide any benefit. For 

example, the E1 VGs (two 25 µm gaps) produce the same thermal resistance 

as E2 VGs (not shown in Fig. 5.2 for clarity), but a much higher pressure drop. 

In fact this pressure drop (see Fig. 5.2) actually exceeds that for full-span VGs, 

as a result of the higher viscous drag caused by the very narrow gaps. Such 

small gaps would also be more challenging to manufacture. In terms of the 

achievable thermal resistance, the E2 VG with an overall gap of 150 µm (i.e. 

a 75 µm gap at each end) could therefore be considered as the optimum E-

type VG, as it will produce a lower pressure drop than the VGs with the same 

thermal resistance but narrower gaps. 
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It is worth noting that the E7 VGs, which have two gaps of 200 µm each, show 

almost exactly the same thermal resistance as the full-span VGs, yet with a 

greatly reduced pressure drop. In fact the pressure drop is not much higher 

than for the uniform channel with no VGs present (see Fig. 5.2). The low 

pressure drop penalty is to be expected given that the gaps in the E7 VGs are 

80% of the channel width. 

 

5.2.3 Performance evaluation criteria index 

In an attempt to give a quantitative indication of the benefit versus cost of 

having VGs present in the channel, the Performance Evaluation Criteria (PEC) 

index defined in equation (3-7) sets the relative change in the thermal 

conductance of the system (with respect to a uniform channel) against the 

relative change in the pressure drop. Fig. 5.3 shows the values of this index 

as a function of Reynolds number for a selection of end-gap widths (the legend 

gives the combined width of the two symmetrical gaps at each end of the VG). 

On this measure, the E2 VG is essentially ‘neutral’ for the higher Re values – 

i.e. its PEC values are close to unity, so its improvement in thermal 

conductance is in some way ‘worth’ the increase in pumping power required. 

In contrast, the PEC values for the E1 VG are rather lower, levelling out at 

about 0.85, consistent with the observations in the previous section that 

reducing the size of the end gap below that of the E2 VG simply raises the 

pressure drop with no improvement in thermal resistance/conductance.  

Similarly, the E7 VG noted above reaches PEC values above one, since its 

relatively large gaps mean that the pressure drop is only a little higher than 

that of the uniform channel. However, this is not the largest PEC value that 

can be achieved with end gaps. The highest PEC value obtained is about 1.02 

with the E6 VG, having end gaps of 175 µm each. This VG does however 

have a rather higher thermal resistance than the E2 VG (it is not shown in Fig. 

5.2 but has a thermal resistance slightly lower than the E7 VG). 
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Figure 5.3: Thermal resistance and pressure drop versus Re for E-type 
VGs of radius 400 µm having various gaps of combined width indicated 

in the legend. The r = 0 µm line refers to the uniform channel with no 

VG present. 
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5.2.4 Vortical flow structure and solid temperature distribution 

The key effect of having a gap between the end of the VG and the channel 

wall, instead of a full-span VG, is that longitudinal vortices can be formed, i.e. 

with rotation axes parallel to the main flow direction. This can be seen clearly 

by tracing the 3D trajectories of passive particles in the flow, as shown in Fig. 

5.4. A full-span cylindrical VG obviously completely blocks the flow in the lower 

part of the channel, and the inertia of the fluid passing over the VG results in 

an extended transverse vortex – i.e. with rotation axis perpendicular to the 

flow – see the blue trajectories in Fig. 5.4(a). There is also some weak large-

scale rotation of the flow in the y-z plane, caused by the difference in boundary 

conditions at the solid side wall and symmetry plane, but the dominant effect 

is the transverse vortex. 

With a gap present, the flow is very different and substantial longitudinal 

vortices arise – see the red trajectories in Fig. 5.4(b). Fluid which passes 

through the gap is swept upwards and towards the middle of the channel, as 

shown by the blue trajectories in Figs. 5.4(b) and (c), which is clearly beneficial 

for heat transfer from the solid surfaces of the base and side walls to the bulk 

fluid. Towards the middle of the VG there is still a transverse vortex element 

to the flow, but this is much more open than the clearly defined and essentially 

closed transverse recirculation behind the full-span VG seen in Fig. 5.4(a). 

To illustrate the end gap effect on conjugate heat transfer, Fig. 5.5 shows 

temperature contours within the solid base and the solid side wall of the 

channel, on planes located 2 µm from the solid-water contact surfaces. The 

plots compare full-span VGs with E2 VGs, with the flow from right to left, at 

Re = 500 as in Fig. 5.4. The contours for the full-span (F) VGs clearly show 

the influence of the VGs in reducing the local solid temperature via improved 

heat transfer to the fluid, though there are local hotspots behind each VG, 

corresponding to the enclosed transverse vortices seen in Fig. 5.4(a). In 

comparison, the E2 temperature contours show a consistent approximately 

5K lower temperature at corresponding points in the channel. In particular, the 

side-wall contours (Fig. 5.4b) show a reduction in the vertical extent of the 

hotspots, and reduced temperatures in the upper areas of the wall, consistent 
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with the transport of fluid upwards and inwards (away from the wall) seen in 

Fig. 5.5(b). 

 Figure 5.5: Temperature contours (in K) along channels containing five 
E2 or full-span (F) VGs. The planes shown are within the solid and 
located 2 µm away from the water: (a) the base of the channel, (b) the 
side wall of the channel. 

 

(a) 

(b) 

(c) 

Figure 5.4: Paths of passive tracer particles in the flow, illustrating the 
effect of (a) a full-span cylindrical VG and (b) an E-type VG on transverse 
and longitudinal vortex generation. The VGs have radius 400 µm. The flow 
is from right to left with Reynolds number 500 and the gap at each end of 

the VG is 75 µm. Plot (c) is an enlarged view of (b). 
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5.2.5 The effect of VG position and number 

The results presented above are for a series of 5 equally-spaced VGs of 

radius 400 µm. Clearly this is just one configuration, therefore, it is interesting 

to explore the effect of changing that configuration. To illustrate the effect of 

VG position, a channel with a single E2 VG (of radius 400 µm) and vary the 

position, D, of the centre of the VG from the channel inlet considered. Fig. 5.6 

shows that the VG position in the channel has barely any influence on the 

resulting thermal resistance of the channel, and only a small effect on the 

pressure drop due to the development of the flow from the inlet along the 

channel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Effect of the number of E2 VGs on thermal resistance and 
pressure drop. 
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Though the position of the VGs is not important, the number of VGs will clearly 

influence both the thermal resistance and the pressure drop. Fig. 5.7 shows 

the values of these quantities for series of 4, 5 and 6 equally-spaced E2 VGs. 

As to be expected, adding more VGs lowers the thermal resistance but raises 

the pressure drop. However, in stepping from five to six VGs, the change in 

thermal resistance is rather less than the change in pressure drop, indicating 

that the benefit of decreased thermal resistance could be outweighed by the 

increased pumping power required. Indeed, this is confirmed by calculating 

the corresponding PEC values using Eq. (3-7), which are plotted in Fig. 5.8. 

The series of 5 VGs has an essentially neutral PEC (i.e. close to unity), 

especially for higher Re, indicating that increased pressure drop is balanced 

by a commensurate improvement in thermal performance. The series of 4 and 

6 VGs have PEC also have values that are quite high, but they are both lower 

than for the 5 VGs. The cost of heat transfer enhancement in terms of the 

pressure drop penalty is therefore slightly higher than for the 5 VGs. All the 

remaining results presented here correspond to a series of 5 VGs. 
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Figure 5.7: Effect of single E2 VG position on thermal resistance 

and pressure drop. 
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5.2.6 The effect of VG radius 

The results presented so far are all for VGs of radius 400 µm (as previously 

presented in chapter 4, section 4.3). This is to confirm that the thermal 

resistance decreased as the radius increased, while the pressure drop 

increased with the radius increment. Again, Fig. 5.9 shows how the VG radius 

affects the thermal resistance and pressure drop for a series of five E2 VGs. 

As is to be expected, increasing the radius generally reduces the thermal 

resistance. This is a result of an increased solid surface area in contact with 

the fluid and greater penetration of the (high-conductivity) solid into the bulk 

flow, as well as the mixing effects of the vortices generated. An exception to 

this is the very small-radius (100 µm) VGs at low Reynolds numbers. In that 

case, the thermal resistance is actually higher than that of the uniform 

channel. This is because at low Re the inertia of the flow passing over these 

small VGs is insufficient to generate a substantial recirculating wake. Instead, 

the fluid immediately behind the VGs is essentially stagnant, resulting in local 

hotspots and the associated increase in thermal resistance.  

 

Figure 5.8: PEC versus Re for series of equally-spaced E2 VGs 

of radius 400 µm. 
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Clearly, increasing the radius of the VGs will increase the blockage of the 

micro-channel resulting in an increased pressure drop along the channel. This 

is evident in the pressure drop curves of Fig. 5.10, which highlight the dramatic 

increase in pressure drop for large radii. Similar observations are seen for the 

other VG configurations considered here.  

Since the radius of the VGs produces a quantitative rather than qualitative 

change in behaviour (except for very small radii at low Re), for illustrative 

purposes the remainder of the results will be presented for VG radii of 400 

µm. This is a convenient value for revealing the effects of the VG gaps 

prominently without too excessive a pressure penalty. 

  

5.2.7 The effect of solid thermal conductivity 

As stated in section 3.1, the solid material considered here is aluminium 

(thermal conductivity 238 Wm-1K-1), since this is a popular and economical 

material used for heat sinks. However, copper is also used for heat sinks and 

offers a higher thermal conductivity of 400 Wm-1K-1 (as well as a higher 

volumetric heat capacity). To assess the effect of the solid material on the 
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Figure 5.9: Effect of VG radius on thermal resistance and pressure 

drop for E2 VGs. 
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performance of the vortex generators, simulations with five E2-type VGs were 

repeated with copper as the solid material. Fig. 5.10 shows a comparison of 

the resulting temperature distributions in the channel side wall and channel 

base. The higher thermal conductivity of the copper of course results in faster 

heat conduction through the solid, which leads to greater heat transfer to the 

fluid occurring further upstream than with the aluminium. The thermal 

boundary layers develop more rapidly with the copper, such that downstream 

the boundary layer is thicker and heat transfer efficiency from solid to fluid is 

reduced. This results in higher downstream temperatures in the copper (see 

Fig. 5.10b and c). As a consequence, the calculated thermal resistance is 

slightly higher for the copper micro-channel, as can be seen in Fig. 5.11. The 

pressure drop (Fig. 5.11) is very slightly lower for the copper case because of 

the higher fluid temperature and consequential reduction in fluid viscosity. 

Though there are clearly small quantitative differences in the calculated 

performance of the aluminium and copper micro-channels, the qualitative 

behaviour of the VGs is the same in both cases (see for example the 

temperature distributions in Fig. 5.10). Aluminium has several practical 

advantages over copper including its low density, lower cost and relatively 

easier manufacturability. 
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(b) 

Aluminium 

Copper 

Aluminium 

Copper 

(c) 

Aluminium Copper 

 

 

 

Figure 5.10: Temperature contours (in K) along copper and aluminium 
channels containing five E2 VGs of radius 400 µm with flow at Re=300. 
The planes in (a) and (b) are within the solid, 2 µm away from the water: 

(a) the side wall of the channel, (b) the base of the channel. The (y,z) 

cross-sections in (c) are at the outflow. 

flow direction 
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 Vortex generators with a single central gap (C-type VGs) 

Having seen the benefits of having a gap at each end of the VG, the effect of 

a single central gap is now assessed. Fig. 5.12 shows the corresponding 

thermal resistance and the pressure drop obtained for various gap widths, and 

compares this with the performance of the uniform channel and a channel with 

full-span cylindrical vortex generators present. For very wide gaps, the thermal 

resistance is similar to that of the uniform channel. As the gap is reduced, 

which is equivalent to extending two short VGs from each channel wall, the 

thermal resistance decreases. However, the change is not monotonic. For 

example, at Re < 900 the VGs with a 400 µm gap perform better than those 

with a 450 µm gap, but for larger Re the opposite is true. As in the case of 

small VG radii discussed in section 5.1.5, this is because at low Reynolds 

numbers the inertia of the flow is too weak to generate a substantial eddy 

behind the very short solid parts of the VGs. Improvement in heat transfer is 

primarily due to the increase in surface area and thermal bridging effect of the 
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Figure 5.11: Performance of copper versus aluminium in terms of 

thermal resistance and pressure drop. 
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higher conductivity solid. As Reynolds number and/or length of the VG 

increases, the additional benefit of the enhanced vortices leads to better 

thermal resistance. If the gap width is reduced further, thermal resistances 

better than that of the full-span VGs can be achieved, but there is an optimal 

gap of around 100 µm below which the thermal resistance increases with 

decreasing gap. This is to be expected since as the gap width shrinks to zero, 

the performance should eventually tend to that of the full-span VGs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The pressure drop behaviour of the central-gap VGs is simpler and as to be 

expected: decreasing the gap monotonically increases the pressure drop from 

that of a uniform channel. Interestingly, the pressure drop for the central-gap 

VGs is somewhat higher than for the end-gap VGs with the same overall gap 

width. This results in a set of PEC curves with rather different shape – see 

Fig. 5.13 and compare with Fig. 5.3. In most cases the PEC value is quite low 

and diminishes substantially with Re. Only for relatively large gaps does the 

PEC value approach unity. For very wide gaps, the PEC value can exceed 

unity – notably for the C5 VG, which has a single central gap of width 450 µm, 
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Figure 5.12: Thermal resistance and pressure drop calculated 
for C-type cylindrical VGs as a function of Reynolds number. 
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and a corresponding PEC index of almost 1.1 for Re = 2300. Indeed this is 

the highest PEC value obtained from all the geometries examined here.  

 

 

As Fig. 5.12 shows, the C5 VG provides a reduction in thermal resistance 

compared to a uniform channel, and the performance is almost as good as a 

full-span VG (the C5 thermal resistance is only 2% higher than the full-span 

value). However, there is a very large difference in the pressure drops 

associated with these VGs, which of course translates into the large difference 

in PEC index (1.1 versus 0.7 for C5 and full-span). Clearly, if the thermal 

resistance of the C5 VG is sufficiently low to maintain the required temperature 

of the system being cooled, it would appear to be a much preferable choice 

over the full-span VG as a result of the much lower pumping costs associated 

with it. This is considered further in chapter 7.  
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Figure 5.13: PEC values as a function of Reynolds number for the C-
type VGs considered. 
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Though the pressure drop is quite high, the central gap VGs are effective in 

reducing the local temperature in the solid. To illustrate the temperature 

reduction that can be achieved relative to the full-span VGs, Fig. 5.14 

compares (on the same scale) the temperature contours on a y-z cross-

section through the fluid and solid, located just behind the first VG in the 

channel. Using VGs with a 100 µm central gap, the solid base at this point in 

the channel is cooled some 12K lower than with full-span VGs. Fig. 5.14 also 

indicates the more disturbed flow created by the C-type VG relative to the full-

span VG, and the thinner thermal boundary layer. The temperature 

distributions along the channel are considered later, in section 5.5.3. 

 

 The effect of combining central and end gaps 

Since a central gap and end gaps have each been shown to be beneficial, it 

is natural to ask if combining them in a single VG would provide even better 

performance. Fig. 5.15 shows the calculated thermal resistance of CE-type 

VGs which have a fixed gap of 100 µm at each end, and a central gap that is 

(a) (b) C F 

Figure 5.14: Temperature contours (in K) on a y-z plane located 100 
µm downstream of the trailing edge of the first VG in the channel: 
(a) full-span VGs without gap, (b) C-type VGs with a central gap of 

100 µm. The arrows indicate y,z velocity components at Re=300. 
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varied from 50 to 250 µm. The gap widths indicated in the legend refer to the 

combined width of all three gaps. The end gaps in these VGs are equivalent 

to those in the E3 vortex generator (see Table 1). Comparing the E3 curve in 

Fig. 5.2 with the curves in Fig. 5.15 shows that introducing the central gap in 

addition to the end gaps actually degrades the performance in terms of heat 

transfer – i.e. the thermal resistance increases. Opening up a central route for 

the flow reduces the intensity of the flow through the end gaps, and 

consequently the strength of the longitudinal vortices generated near the 

channel walls and base. As the central gap is widened, the thermal resistance 

increases and approaches that of a uniform channel without VGs present.  

Thinking in terms of the solid parts of the VGs rather than the gaps, an 

interesting corollary to the above observation is that two localised short 

cylindrical VGs are less effective in improving the thermal resistance than two 

small gaps at the ends of an otherwise solid VG. The PEC index values for 

the CE-type VGs are all less than unity; they mainly follow a similar profile to 

Fig. 5.3, with PEC values between 0.9 and 0.97, apart from the smallest gap 

(CE1), whose PEC index falls off more sharply with Re, reaching a value of 

0.88. 
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Figure 5.15: Calculated thermal resistance for CE-type VGs with a 
gap of 100 µm at each end and a variable width central gap. The 

width in the legend refers to the combined width of all three gaps. 
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 Comparison of the ‘best’ of each vortex generator type 

Having explored separately three different gap configurations, this section 

compares them against each other. Specifically the ‘best’ of each type of VG 

is considered, where ‘best’ refers to the gap width that provides the lowest 

thermal resistance for each VG type. 

 

 

5.5.1 Thermal resistance and pressure drop 

As can be seen in Fig. 5.16, the lowest overall thermal resistance is that of the 

E2 vortex generators then, in order, the C2, CE1, and full-span VGs, all of 

which reduce the thermal resistance below that of a uniform channel. The end 

gaps of the E-type VGs are most effective as the longitudinal vortices are 

generated close to the side wall, meaning that they can improve the alignment 

of the flow with the temperature gradient normal to both the channel side wall 

and the base.  
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Figure 5.16: Comparison of the thermal resistances and pressure 

drops for the ‘best’ of each VG type. 
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Of these VGs, the lowest pressure drop is that of the CE1 VG, followed in 

ascending order by E2, the full-span, and finally the C2 VG. Somewhat 

surprisingly, the C2 VG, with a single central gap of 100 m, produces a higher 

pressure drop than the full-span VG. This is attributed to the increased viscous 

drag from the vertical sides of the narrow gap. For larger central gaps (wider 

than about 150 m) the pressure drop is reduced below the level of the full-

span VG, as the flow route through the gap opens up. The E2 VG, on the other 

hand, produces a lower pressure drop than the full-span VG, even though it 

has two narrow gaps of 75 m. This is because at the ends of the VG the 

viscous drag is dominated by the much larger vertical side walls of the 

channel, and the more open flow path introduced by the gaps quickly 

outweighs any relatively small additional viscous drag. The CE1 VG has a 

larger overall gap width, so its low pressure drop is to be expected. 

 

5.5.2 Thermal-hydraulic performance index 

Fig. 5.17 plots the PEC index against Reynolds number for the VGs of each 

type that produce the greatest thermal conductance (i.e. lowest thermal 

resistance), and includes for reference the PEC index for the full-span VG 

system. Clearly the large increase in the pressure drop when full-span VGs 

are present is not compensated by a commensurate improvement in thermal 

conductance, and the PEC value is less than 0.8, falling to 0.7 at higher Re. 

Introducing gaps into the VGs improves the PEC index, but the high pressure 

drop of the C2 VGs means that the PEC value is not much better than the full-

span VGs. Although the CE1 VG has a low pressure drop, its relatively poor 

improvement in the thermal conductance results in PEC values below unity 

but better than the C2 VG. The best PEC is that of the E2 VG, which, as seen 

already, has a good PEC index close to unity. This behaviour highlights the 

fact that the small end gaps promote more intense longitudinal flow 

disturbances along the length of the channel side wall, enhancing heat 

transfer from the side wall as well as the base surface. 
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5.5.3 Solid and fluid temperature distributions 

For a more visual picture of the performance of the different VGs in terms of 

the temperature distributions, Fig. 5.18 shows temperature contours on 

vertical and horizontal longitudinal cross-sections of the channel for the same 

VGs as in Fig. 5.16 operating at Re = 300. For comparison, corresponding 

contours for the uniform channel (i.e. without VGs) are also included. In the 

full-span VG plot in Fig. 5.18 (a) the presence of the closed transverse vortex 

generated behind each VG (see Fig. 5.4a) is clearly seen in the elevated 

temperatures of the fluid there, and there is some localised reduction in the 

solid temperature as a result (see Fig. 5.18b). Also shown well in Fig. 5.18(a), 

in the ‘E2’ plot, is the trail of hotter fluid that is transported upwards and into 

the bulk stream by the longitudinal disturbance generated by the gap between 

the VG and the channel wall. Compare this with the blue fluid trajectories 

100 400 700 1000 1300 1600 1900 2200

0.5

0.6

0.7

0.8

0.9

1.0

P
E

C

Re

 E2=150m

 CE1=250m

 C2=100m

 Full-Span

Figure 5.17: Performance Evaluation Criteria (PEC) index, equation 
(3.14), versus Reynolds number for the VGs of each type offering the 

lowest thermal resistance. 
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plotted in Fig. 5.4(b). This clearly leads to a substantially reduced temperature 

of the solid base, as can be seen in Fig. 5.18(b). A similar uplift of warmer fluid 

behind the VGs is seen in the ‘CE1’ plot of Fig. 5.18(a), but the effect is weaker 

as a result of the central gap diminishing the flow through the end gaps. The 

flow through the single 100 µm central gaps in the C-type VGs clearly 

improves the local heat transfer at each VG, as the temperatures of the VGs 

shows, but there is also a longitudinal effect visible on comparing the ‘C2’ and 

full-span plots in Fig. 5.18, which improves heat transfer to the fluid along the 

length of the channel downstream of the first VG.  

To complement the side- and bottom-view plots of Fig. 5.18, Fig. 5.19 shows 

velocity and temperature plots on spanwise cross-sections of the channel. The 

velocity contours in Fig. 5.19(a) show the x-component, with positive values 

indicating flow towards the outlet and (dark blue) negative values 

corresponding to reverse flow. The cross-sections are located 100 µm 

downstream of the first VG (the position indicated approximately by the white 

dashed line in Fig. 5.18a), and also show the y-z velocity vectors. The full-

span plot shows the strong down-channel flow above the VG and low-velocity 

flow immediately behind the VG. In contrast, the CE, C and E plots show the 

enhanced velocity arising from the gaps. The CE gaps are the widest, and this 

is reflected in the faster flow at the bottom left and the correspondingly 

reduced speed of the flow over the top of the VG. The swirling effect generated 

by the gaps in the three cases is also visible in the y-z velocity vectors. As 

discussed above, the end gaps generate a flow directed upwards along the 

channel wall, and this is visible in the circulatory patterns in Fig. 5.19 

(indicated by the overlaid arrows). In contrast, when a single central gap is 

present, the circulation generated is in the opposite sense, leading to a flow 

down the channel wall.  
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Fig. 5.19(b) shows temperature contours on a cross-section located 2000 µm 

downstream of the centre of the last VG in the channel, which is the location 

indicated approximately by the black dashed line in Fig. 5.18(a). The plots also 

show y-z velocity vectors. The temperature contours clearly show that the E-

type VG produces a significantly lower solid temperature than the other VG 

geometries. The longitudinal vortex created by the gap is also evident in the 

swirl of the velocity vectors in the rightmost plot of Fig. 5.19(b), and this allows 

better penetration of the cooler fluid into the corner between the side wall and 

base. A similar vortex can be seen in the CE-type VG plot, but the intensity is 

much reduced by the presence of the additional flow route through the central 

gap. For the C-type VG, a substantial central plume of warmer fluid can be 

seen as a result of the single central gap promoting heat transfer from the 

base of the channel. However, the C-type and CE-type VGs both exhibit 

thicker thermal boundary layers in this region downstream of the final VG, 

(a) 

Uniform 

Full-span 

CE1=250 µm 

C2=100 µm 

E2=150 µm 

Uniform 

Full-span 

CE1=250 µm 

C2=100 µm 

E2=150 µm 

(b) 

Figure 5.18: Temperature contours on (a) a plane parallel to the side wall 
located 100 µm from the wall, and (b) a plane parallel to the solid base 
located at 2 µm below the fluid flow, for different VG types operating at 

Re = 300. The flow is from the left to the right. 
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resulting in slightly higher solid temperatures here than for the full-span VG, 

despite the temperatures upstream being lower than for the full-span VG. This 

will be considered further in chapter 7. 

 

(b) 

(a) 

Figure 5.19: (a) Contours of the x component of fluid velocity (in m/s) 
and y,z velocity vectors on a spanwise cross-sectional plane located 
100 µm downstream of the first VG; (b) temperature contours and y,z 

velocity vectors on a cross-section located 2000 µm downstream of the 
centre of the last VG in the channel. The Reynolds number is 500, and 

the VGs are (from left to right) CE1, C2, full-span, and E2 (see Table 5.1). 
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 Summary 

The 3D numerical analysis presented here set out to examine the benefits of 

having various gaps along the span of cylindrical vortex generators placed 

across the base of a water-filled micro-channel to enhance heat transfer. The 

geometries have been assessed at Reynolds number 300-2300 in terms of 

their thermal resistances, pressure drops, a performance evaluation criteria 

index combining both of these, and the maximum temperature of the base. 

The baseline geometry is a micro-channel containing solid full-span VGs, 

which generate transverse vortices.  

It was found that, by all measures, having gaps between each end of the VGs 

and the channel side walls offers enhanced performance. Introducing these 

gaps produces longitudinal vortices adjacent to the channel side walls which 

enhance the heat transfer from those walls into the bulk flow. Importantly, 

three-dimensional tracer particle trajectory plots show that in addition to the 

longitudinal vortices generated downstream of the VGs, the fluid passing 

through the end gap is swept upwards and inwards, where it remains as it 

flows onwards to the outflow. This provides a significant additional heat 

transfer route for hot fluid to be transported directly away from the solid 

surfaces. The presence of the end gaps also reduces the pressure drop 

compared to the full-span VG, and for gaps of 100 µm at each end the PEC 

index is slightly above one for most Reynolds numbers, indicating that the 

pressure drop penalty compared to a uniform channel is more than 

compensated for by the improvement in thermal conductivity. The gap size 

offering the best thermal conductivity, and the lowest maximum base 

temperature, is 75 µm at each end, for which the PEC index is close to 1, i.e. 

neutral, especially at higher Re. 

Having a single central gap was found to offer localised enhancement of heat 

transfer, which when considered over the whole base surface produced a 

lower average temperature and hence lower thermal resistance. However, the 

maximum temperature of the base, close to the outflow, is actually higher than 

that for a full-span VG, and close to that for a uniform channel without VGs 

present. From a practical perspective of maintaining the base of the heat sink 

at a given temperature, this is clearly undesirable. Small central gaps (e.g. 
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100 µm) are also found to increase the pressure drop relative to the full-span 

VG, and the PEC index for such gap sizes is correspondingly poor. On the 

other hand, large central gaps (e.g. 450 µm) have a high PEC index of up to 

1.1, but produce average temperatures slightly above those for the full-span 

VG and maximum temperatures above even those for a uniform channel. This 

highlights that the PEC index should only be used in conjunction with specific 

actual rather than relative measurements of performance. Combining a 

central gap together with end gaps (of 100 µm) was found not to be beneficial, 

as the negative aspects of the central gap generally outweighed the positive 

effects of the end gaps. 

The end-gap configuration outperforms the other configurations explored 

here, but there is an optimum end-gap width below which the pressure drop 

increases rapidly with no gain in heat transfer performance. For the system 

considered here, this gap was found to be 15% of the channel width. 

There are of course many other configurations of VG gaps that could be 

considered for analysis, such as gaps that are staggered between consecutive 

VGs, rather than aligned as in the present study, and different spacing and 

distributions of the VGs within the channel. However, the clear conclusion 

from this work is that gaps at the ends of the VGs are beneficial in terms of 

the average temperature and in reducing the large pressure drop associated 

with full-span cylindrical vortex generators. Having said that, looking at the 

average temperature in the practical application of the micro-channels does 

not actually give a complete picture. It is also important to take the maximum 

temperature into the consideration, and this is discussed in chapter 7 in terms 

of energy management of heat transfer and fluid flow.
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 Evaluation of nanofluid performance  

 

 Introduction  

As indicated in chapter 1, an alternative to modifying the heat sink geometry 

to improve heat transfer is to modify the working fluid to enhance its thermal 

properties. Having explored VG geometries in the previous chapters, this 

chapter now explores the possibilities to use nanofluids. In this study, two 

types of nanofluids are used to assess the performance of the heat transfer 

and the fluid flow. The nanofluids consist of Al2O3 or SiO2 nanoparticles in 

different concentrations up to 4% in water as a base fluid. The microchannel 

geometries considered are a uniform channel without VGs and channels with 

VGs. In the previous chapters, the performances of the different vortex 

generators were compared at equal Reynolds numbers. This was a 

reasonable and sensible approach since the properties of the working fluid 

were the same in each case, and the same conclusions would have been 

drawn had the VGs been compared on the basis of equal volumetric or mass 

flow rate. However, when comparing the heat transfer performances of 

different nanofluids, careful consideration must be given to the basis for 

comparison and the presentation and interpretation of the results. The reason 

for this is that increasing the nanoparticle concentration or changing the 

nanoparticle type in a nanofluid changes the viscosity and density of the 

nanofluid. Therefore an enhancement in heat transfer rate observed with one 

nanofluid compared to another at the same Reynolds number could in fact 

simply be due to an increase in the flow speed required to maintain the 

Reynolds number with a more viscous liquid. This issue has been recognised 

in a few previous studies [236, 237] and is discussed further in this chapter.  

Using nanofluids themselves in a system need to be investigated in terms of 

fluid flow due to their thermo-physical properties change. Therefore, before 

applying nanofluids in a micro-channel having VGs, an important examination 

should be done to explore what is the suitable behaviour of the flow? Is it a 

fixed Reynolds number or a fixed mass flow rate? This is the first question that 

this chapter answers by exploring nanofluid performance in a uniform channel.  
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The next step in the current chapter is then to provide a clear picture of heat 

transfer performance of a combination of nanofluids with geometries having 

VGs. As illustrated in the literature, nanofluids have high thermo-physical 

properties compared to the base fluid. From a fluid flow perspective, the 

pressure drop of nanofluids is higher than for water at fixed flow rate due to 

high viscosity compared to water. Therefore, it is interesting to investigate the 

influence of the geometry on the pressure drop and suggest a new geometry 

which has lower pressure drop than those considered previously in thesis. 

Based on the findings of chapter 4, it was concluded that the micro-channel 

having the half-circular VGs (C-model, shown in Fig. 6.1a) offered lower 

pressure drop than triangular or rectangular VGs. Therefore, a new design of 

a half-elliptical VG (EL-model, shown in Fig. 6.1b with dimensions detailed in 

Table 6.1) is suggested which might offer lower pressure drop compared to 

the C-model.  

Based on the suggested VGs, if there is a pressure drop difference between 

the half-circle and half-elliptical VGs, nanofluids can possibly be used with the 

geometry which has lowest pressure drop. Therefore, nanofluids in the half-

elliptical VGs geometry are compared to the half-circle VGs geometry using 

water to assess the influence of different properties of fluids with association 

of different geometry on conjugate heat transfer. The key idea of this study is 

to examine the influence of nanofluids on the thermal resistance and pressure 

drop.  

The results presented below focus on the particular value of 100 W/cm2 for 

the heat flux, because this corresponds to the upper temperature limit for 

operation of electronic devices [153, 265-267]. 

This chapter is broken down into two main sections which are uniform channel 

and VG models, each section includes sub-sections which are fixed Reynolds 

number and fixed mass flow rate. Moreover, the sub-sections are also divided 

into two sub-sections represented by the thermal resistance and pressure 

drop effects.  
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Figure 6.1: Side view of VGs: (a) half-circle (C); and (b) half-elliptic (EL). 

 

Table 6.1: VGs dimensions in µm. 

EL-model C-model 

A 266 r 200 

B 150  

 

 Evaluating nanofluid performance in a uniform channel  

In this section, two types of nanofluids are used in a uniform channel under 

laminar flow conditions. The nanofluids are Al2O3- and SiO2-water nanofluids 

with different concentrations up to 4%, and they are compared to pure water 

to examine the resulting thermal resistances and pressure drops at fixed 

Reynolds number and at fixed mass flow rate.  

Three-dimensional simulations were conducted with Reynolds number in the 

range of 50-1000 and mass flow rate ranging from 3.03 ᵡ10-5 to 6.06 ᵡ10-4 kg/s 

at a constant heat flux of 100 W/cm2. The uniform channel described in 

chapter 3 (see Fig. 3.5 with the dimensions shown in Table 3.1) is used to 

establish baseline behaviours of the different fluids. 

 

6.2.1 Thermal resistance 

As in previous chapters, the thermal behaviour of the system is considered in 

terms of the thermal resistance detailed in eq. 3-6. To begin, the thermal 

resistances achieved with different nanofluids are compared on the basis of 

flow at equal Reynolds number. The impact of nanofluids can be introduced 

as three influences on thermal resistance which can be seen in Fig. 6.2. The 

first influence is that of nanoparticle concentration. A comparison of different 
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𝐴 

 𝐵 

(a) (b) 
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concentrations up to 4% of the Al2O3 and SiO2 nanoparticles in water as a 

base fluid together with the pure water itself is shown in Fig. 6.2 a and b. It is 

found that thermal resistance decreased as the concentrations of 

nanoparticles increased. Since plotting as a function of Reynolds number 

effectively ignores changes in viscosity and density, this decrease in thermal 

resistance could be interpreted as being a result of the greater thermal 

conductivity of nanofluids compared to pure water.  

The second influence is the impact of nanofluid type at the same concentration 

of nanoparticles. Fig. 6.2c shows that Al2O3-water offered slightly better heat 

transfer rate than SiO2-water at the concentration of 4%. This is because of 

the higher thermal conductivity of the Al2O3-water compared to SiO2-water 

(see Table 3.5).  

The last influence is the reduction of thermal resistance using nanofluids 

compared to the pure water. This is because of the thermo-physical properties 

enhancement due to adding nanoparticles having high thermal conductivity 

into the water as a base fluid. 

 Again, the reduced thermal resistance could be interpreted as being because 

of the higher thermal conductivity of nanofluids compared to water. However, 

it is important to recognise the difference in the viscosity and density of the 

fluids. 
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Figure 6.2: Thermal resistance of different working fluids with various 
concentrations in the uniform channel; (a) SiO2-water at different 

concentrations up to 4% with water, (b) Al2O3- water nanofluids (4%) 
and water, (c) a comparison of Al2O3 and SiO2 nanoparticles in the 

water (0 and 4) %. 
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The kinematic viscosity of nanofluids increases with nanoparticles 

concentration as shown in Fig. 6.3. Hence comparing the performance of a 

nanofluid with that of water at the same Reynolds number in the same 

geometry actually means that the nanofluid must be flowing in a higher speed. 

 

 

Figure 6.3: Kinematic viscosity of different nanoparticles concentration.  

  

As many plots in this thesis show, the thermal resistance naturally decreases 

with increasing flow speed. Hence the apparent reduction in thermal 

resistance seen in Fig. 6.2 could be due to the change in flow speed.  

To resolve this issue, Fig. 6.4 replots the thermal resistance as function of 

mass flow rate instead of Reynolds number. One can see that the data points 

are now shifted horizontally, reflecting the change in flow rate required to 

maintain the Reynolds number. Now, it can be seen that if nanofluids are 

compared on the basis of mass flow rate, there is actually negligible difference 
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in the thermal resistance. In fact, the nanofluid thermal resistance is slightly 

higher than that of water for flow rates below 3x10-4 kg/s. 

A key question now is how the pressure drop is affected when nanofluids are 

used instead of water that is considered in the next section. 

 

 

Figure 6.4: Thermal resistance for uniform channel model with 
nanofluid and pure water. 

 

6.2.2 Pressure drop 

The pressure drop is presented in the full range of the given Reynolds number 

and mass flow rate. As to be expected, the pressure drop increases as 

Reynolds number increases for both pure water and nanofluids; this is the 

same behaviour when using mass flow rate instead of Reynolds number. 

Fig. 6.5 (a and b) shows that the pressure drop increased as the concentration 

of nanoparticles increased, due to the associated viscosity increase. It is found 

that Al2O3-water has a lower pressure drop compared to SiO2-water at the 
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same concentration as shown in Fig. 6.5c. The figure also shows that pure 

water offered the lowest pressure drop among all fluid types. 

When plotted as a function of mass flow rate, the increase in pressure drop 

does not appear as severe as in Fig. 6.5. However, the pressure drop does 

still increase with nanoparticles concentration. The fact that pressure drop 

increases with concentrations (see Fig. 6.6) while the thermal resistance 

remains essentially unchanged (see Fig. 6.4) has important consequences for 

the energy efficiency of cooling via nanofluids. This is explored further in 

chapter 7. The next section presents the influence of using nanofluids together 

with VGs on heat transfer and fluid flow performance. 
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Figure 6.5: Pressure drop of pure water compared to different 
nanofluids in the uniform channel at given Re; (a) SiO2-water at 
different concentrations up to 4% with water, (b) Al2O3- water 
nanofluids (4%) and water, (c) a comparison of Al2O3 and SiO2 

nanoparticles concentration of 4% in the water with pure water. 

 

As to be expected, increasing the concentration of nanoparticles in the base 

fluid leads to increase in the viscosity and density, resulting in an increase in 

pressure drop as shown in Fig. 6.6. It is interesting to see that there is no 

significant difference in nanofluids velocity at different concentrations, but 

water velocity is higher than that of nanofluids at different concentrations as 

revealed in Fig. 6.7. This is due to density of nanofluids (see Eq. 3-8 and Table 

3.5). This also can be attributed to the relation between the viscosity and 

density (kinematic viscosity) of nanofluids which increases with increasing 

nanoparticles concentration as can be seen in Figs. 6.8 and 6.9. It is found 

that the kinematic viscosity is constant at the inlet of the micro-channel due to 

the constant inlet temperature (see Figs. 6.8a and 6.9a), while the kinematic 

viscosity changed with temperature considerations at the outlet of the micro-

channel (see the temperature dependent equations in sec.3.3). Moreover, Fig. 

6.10 compares the kinematic viscosity of the SiO2 and Al2O3 nanofluids at the 

concentration of 4%. The figure shows that the kinematic viscosity of SiO2 

nanofluid is higher than the Al2O3 nanofluid at the same concentration, this 
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also explains the reason of the high pressure drop of SiO2 nanofluid compared 

to Al2O3 nanofluid. In addition, Figs. 6.8-6.10 also presents that the kinematic 

viscosity increases with nanoparticles concentration at the same mass flow 

rate either at the inlet or at the outlet of the micro-channel. 

 

Figure 6.6: Pressure drop for the uniform channel model with water 
and Al2O3 nanofluid at different concentrations. 

 

Figure 6.7: X-component of fluid velocity for water and Al2O3 nanofluid 
at different concentrations in the uniform channel. 
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Figure 6.8: Kinematic viscosity of Al2O3 nanofluid at various 
concentrations; (a) at the inlet of the micro-channel (at the inlet 
temperature), (b) at the outlet of the micro-channel (temperature 

dependent). 
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Figure 6.9: Kinematic viscosity of SiO2 nanofluid at various 
concentrations; (a) at the inlet of the micro-channel (at the inlet 
temperature), (b) at the outlet of the micro-channel (temperature 

dependent). 
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Figure 6.10: Comparison of Kinematic viscosity of Al2O3 and SiO2 
nanofluids at 4% of nanoparticles concentration; (a) at the inlet of the 
micro-channel (at the inlet temperature), (b) at the outlet of the micro-

channel (temperature dependent). 
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 Nanofluid performance with half-circle (C-model) VGs 

Based on the findings in sec. 7.2 the Al2O3 nanofluid offered better heat 

transfer and lower pressure drop than the SiO2. Therefore, only the Al2O3 

nanofluid is considered in this section.  

Having seen the behaviour of nanofluids in a uniform channel in the last 

section, this section introduces vortex generators into the channel to assess 

their influence on the nanofluid performance. Full-span half-circle VGs (C-

model are chosen as these offered lowest pressure drop of the full-span VGs 

considered in chapter 4.  

 

6.3.1 Thermal resistance 

The influence of using nanofluid with the C-model and the uniform channel 

water as a reference to evaluate the improvement in heat transfer is 

considered here. Fig. 6.11a shows that the thermal resistance decreased 

when using Al2O3 nanofluid at the concentration of 4% compared to water for 

the C-model at the same Reynolds number. This is due to high thermal 

properties of nanofluid compared to water and/or an increase in the velocity 

calculated based on nanofluid thermal properties as discussed in sec 7.2. 

Moreover, Fig. 6.11b reveals that the C-model offers a lower thermal 

resistance than the uniform channel either with nanofluid or water.  

As discussed in section 6.2.1, when the data is plotted in terms of flow rate 

instead of Reynolds number, the thermal resistance is shifted horizontally, this 

means that no reduction in thermal resistance using nanofluids at a fixed mass 

flow rate there is. Now, Fig. 6.11 shows that the C-model with water offered 

lower thermal resistance than Al2O3 nanofluid at the concentration of 4%. This 

can be attributed to the viscosity difference between water and nanofluid at 

the same flow rate. Interestingly, in spite of the high thermal conductivity of 

nanofluid compared to water, the main effect to enhance the heat transfer is 

still the velocity. In other words, to enhance the heat transfer, no matter how 

much the enhancements in thermal properties of a working fluid unless 

increasing the speed of this fluid. The figure also confirms that the C-model 
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offers lower thermal resistance than the uniform channel with the same 

working fluid.  

 

  

 

 

Figure 6.11: Thermal resistance comparison of the uniform channel 
and C-model with water and Al2O3 nanofluid at the concentration of 

4%; (a) C-model with nanofluid and water, (b) comparison of the 
uniform channel and C-model with water and nanofluid. 
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Figure 6.12: Thermal resistance Vs MFR for geometries and fluids, C-
model and uniform channel with water and Al2O3 nanofluids at the 

concentration of 4%. 

 

6.3.2 Pressure drop 

As to be expected, the price for the reduction in thermal resistance is the 

increase in pressure drop. Fig. 6.13 highlights the significant increase in the 

pressure drop when using nanofluids compared to water. For instance, the 

uniform channel with nanofluid shows a higher pressure drop even than the 

C-model with water. This is due to the velocity and viscosity changes of 

nanofluid with respect to the Reynolds number compared to water.  

However, as discussed in previous chapters of this thesis, it is clear that using 

nanofluid increases the pressure drop, also VGs in a uniform channel shows 

an increase in pressure drop compared to the uniform channel having no VGs. 

But different behaviour appears in Fig. 6.14 when using mass flow rate. The 

behaviour is, the uniform channel with nanofluid offers lower pressure drop 

than the C-model with water, this is opposite of what is shown in Fig. 6.13 

when using Reynolds number. The reason for this, is that the velocity changes 

with Reynolds number as it is a function of the viscosity and density of 

nanofluid, meaning that increasing the nanoparticle concentration increases 
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the velocity required to achieve a given Reynolds number, as seen in Fig. 

6.15a (see Eq.3-5 and Table 3.5). However, at a given mass flow rate, The 

higher density of the nanofluid compared to water (see Eq. 3-8 and table 3.5) 

means that the corresponding nanofluid velocity is lower than that of water. 

This can be seen in Fig. 6.15b which compares the water and nanofluid flow 

velocities in a uniform channel at specified mass flow rate.  

 

Figure 6.13: pressure drop with Reynolds number for C-model and 
uniform channel using water and Al2O3 nanofluid at 4% of 

concentration. 

 

Figure 6.14: Pressure drop comparison of the uniform channel and C-
model using water and nanofluid. 
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Figure 6.15: Velocity comparison of different fluids in the uniform 
channel with respect to: (a) Reynolds number; (b) MFR.  

 

Now, the issue of the increase in the pressure drop with nanofluid still 

motivates this research to find a solution to keep enhancing the heat transfer 

performance and reduce the pressure drop. This directs the research to a new 

suggestion geometry to tackle the issue of the increasing in pressure drop. 

Therefore, there is an interesting question appears here: can the C-model be 

modified to be another similar shape to offer lower pressure drop than the C-

model but enhance the heat transfer or at least keep it the same as the C-

model. The suggestion is, for instance, an elliptical VG? It seems that 

suggesting elliptical VGs (EL-model) might solve the issue of the increase in 

pressure drop and enhances the heat transfer as presented in the next 

section. 
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 Combining nanofluids and elliptical (EL-model) VGs 

The EL-model is shown in Fig. 6.1 and described inTable7.1, and has the 

same volume as the C-model at the radius of 200 µm. Both the C-model and 

EL-model have equal number of VGs which are 5 VGs in the base of the 

uniform micro-channel, also they have the same distribution and location. 

Now, the impact of combining nanofluids and various VGs shapes (C and EL 

models) on conjugate heat transfer is the aim of the current section. Therefore, 

the common question is, can the suggested geometry (EL-model) enhance 

heat transfer performance and reduce the pressure drop? This is with 

association of pressure drop difference between EL-model and C-model. The 

answer is detailed in the next sub-section. 

 

6.4.1 Thermal resistance 

The effect of combining nanofluids and VGs on thermal resistance is 

presented in terms of Reynolds number and mass flow rate. The geometry is 

the uniform channel having vortex generators (C-model and EL-model) which 

are considered and compared based on their constant volume (0.0314 mm3).  

The suggested model (EL-model) used with nanofluid at nanoparticles 

concentration of 1 and 4% and C-model with water is presented in Fig. 6.16 

which shows the influence of the geometry and Reynolds number on thermal 

resistance. The figure shows that the C-model offers slightly lower thermal 

resistance than EL-model where water is used as the working fluid. Moreover, 

as to be expected that using nanofluid reduces the thermal resistance. It is 

also found that the thermal resistance decreased with increasing nanoparticle 

concentration from 1% to 4% which can be seen even in Fig. 6.2. The reason 

is that, Reynolds number is a function of the density and viscosity of 

nanofluids. Therefore increasing nanoparticles concentration increases the 

density and the viscosity which lead to increase Reynolds number.  

Based on the results above, the question is, can EL-model with nanofluid offer 

lower pressure drop than the C-model with water which is mentioned earlier 

in the introduction? The answer is presented here. 
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Figure 6.16: Thermal resistance of various shapes and fluids with 
different Reynolds number. 

 

Fig. 6.17 shows the thermal resistance for various MFR values using EL, C 

models compared to each other at concentrations of Al2O3-water nanofluid up 

to 4%. The figure also demonstrates that EL-model with nanofluid offered 

lower thermal resistance compared to C-model with water at low mass flow 

rate. However, the results indicated that, only very little reduction in thermal 

resistance can be achieved when the MFR and nanoparticles concentration 

are low values. This can be attributed to the viscosity of nanofluid at constant 

MFR. The viscosity of nanofluids increased with the concentration of 

nanoparticles as illustrated in Figs. 6.7-6.10 also in Table 3.5. The increment 

in the viscosity led to decrease the velocity of nanofluids compared to water 

as presented in Fig. 6.15, this resulting to decrease the heat transfer 

enhancement. 
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Figure 6.17: Thermal resistance for EL, C and uniform channel models. 

 

6.4.2 Pressure drop 

The impact of using different VG configurations with nanofluids is presented 

in Fig. 6.18, based on chapter 4, section 4.2.4 (see Fig. 4.15), the results 

showed that the half-circle VGs offered better pressure drop performance 

compared to different VGs configurations (rectangular or triangular VGs). The 

question which interestingly appeared here is, can the suggested geometry 

offer lower pressure drop than the half-circle VGs, then use the suggested 

geometry with nanofluids? 

The answer is presented in Fig. 6.18 that the half-circle VGs (C-model) have 

higher pressure drop than the elliptical VGs (EL-model) with water as the 

working fluid. The results demonstrate that the EL-model with Al2O3 and SiO2 

nanofluids at the concentration of 1% is a successful suggestion to reduce the 

pressure drop (see Fig. 6.18) and the thermal resistance simultaneously when 

using fixed Reynolds number. However, C-model with water has higher 

pressure drop than the EL-model up to 3%. While, the EL-model with Al2O3 

nanofluid at the concentration of 4% is higher than the C-model with water as 

presented in Fig. 6.19. 
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The key idea of using different geometry is to reduce the pressure drop and 

enhance the heat transfer simultaneously with advanced fluids such as 

nanofluids.  

 

 

Figure 6.18: Pressure drop comparison of elliptical VGs with (0-1) % 
nanofluids and half-circle VGs using pure water. 

 

Figure 6.19: Pressure drop for C-model and uniform channel with water 
and EL-model with Al2O3 nanoparticles concentration in water (0-4) %. 
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 Summary 

In this study, various VG models are studied to examine the impact of the 

geometry and the working fluid on heat transfer and fluid flow characteristics. 

All models were investigated under laminar flow submitted to a uniform heat 

flux related to CPUs in electronic devices. The aim of this chapter was to 

suggest a suitable setup of fluids and geometries to meet the rapid 

developments of the electronic devices, therefore the outcomes are: 

 Using fixed Reynolds number, the thermal resistance decreased using 

various nanofluids in different concentrations compared to pure water.  

 The thermal resistance decreased as the concentrations of 

nanoparticles increased. 

 Al2O3-water nanofluid has low thermal resistance and pressure drop 

compared to SiO2-water nanofluid at the same concentration due to its 

thermo-physical properties. 

 With a fixed Reynold number, the new suggested model (elliptical-

model) with nanofluids up to 4% of nanoparticles offered lower thermal 

resistance and pressure drop, but the pressure drop of EL-model with 

nanoparticles concentration of 4% is higher than the half-circle model 

with water.  

 Using MFR showed that there is a slight reduction in thermal resistance 

of EL- model with nanofluid compared to C-model with water, but not 

the same reduction as shown with Reynolds number using nanofluids 

with different geometries. 

 The thermal resistance and the pressure drop increased with the 

nanoparticle concentrations when using MFR. 

From the points above, it can be concluded that this chapter highlights that 

care must be taken when comparing the performance of different nanofluids, 

because the key fluid properties of viscosity and density increase with 

nanoparticles concentration. Importantly, the kinematic viscosity increase with 

nanoparticles concentration, meaning that the flows of two nanofluids in the 

same geometry at the same Reynolds number actually correspond to flows at 

different speeds. Hence apparent enhancement in heat transfer performance 

at different flow rates. 
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It is also shown that modifying a half-circle (C-model) VGs to a half-elliptical 

VGs (EL-model) produces little change in thermal resistance but substantial 

reduction in pressure drop. This can be exploited by combining geometrical 

modifications (using VG geometries) with coolant modifications (using 

nanofluids), and it is found that Al2O3 or SiO2 nanofluids in a micro-channel 

with elliptical VGs can replace pure water as a coolant.  

Based on the finding of this chapter, the practical perspective is important to 

be taken in to consideration in this thesis. Furthermore, the energy 

management of heat and flow characteristics plays a crucial role in practical 

and commercial applications. Therefore the next chapter focuses on the 

energy management analysis of heat transfer and fluid flow in micro-channel 

heat sink. 
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 Energy Management considerations  

 

 Introduction 

 In the practical application of a micro-channel heat sink (e.g. in cooling 

a micro-processor chip), as was the motivation for the present study, a vital 

quantity of interest is the actual surface temperature that can be achieved with 

a given micro-channel geometry, under a given heat load. Therefore, as a final 

observation, this chapter present the data in terms of energy management.  

In previous chapters, the heat transfer performance has been presented 

primarily in terms of thermal resistance and pressure drop. However, as 

indicated in the introduction of this work, a key motivation for the present study 

is the cooling of electronic chips producing a certain heat flux through their 

surface. Since there is an upper limit of the temperature at which a chip can 

operate reliably, key practical questions about the cooling system are (a) can 

a sufficiently low chip temperature be achieved for a given heat flux, and (b) 

how much energy is needed to achieve an acceptable temperature? Hence 

this chapter revisits the findings of earlier chapters focusing on the 

temperatures of the base of the heat sink where the heat flux is applied and 

the pumping power required to achieve them. One of the ways to evaluate the 

energy management in a system is to consider the heat transfer performance 

based on the maximum and/or average temperature. Therefore, the results of 

chapter 4 are represented in terms of average and maximum temperatures 

with water as a coolant, and this will be the first section in this chapter. To 

develop the investigation a further step, chapter 5 is also revisited to explore 

the average and maximum temperatures of the best VGs that offer high 

thermal performance (see Fig. 5.16). The VG configurations are end gap 

model with gap=150 µm (E2), central gap model with gap=100 µm (C2), 

central and end gaps with gap=250 µm (CE1), no gap (full-span) and the 

uniform channel (seeTable6.1). The second section of this work studies the 

effect of heat transfer and fluid flow performance.  

The influence of using different VG geometries to enhance the heat transfer 

and reduce the pressure drop is previously investigated in chapter 6 in terms 
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of thermal resistance and pressure drop. However, in the third section of this 

chapter, the heat transfer is presented in terms of the maximum and average 

temperatures, and the fluid flow will appear as pumping power.  

The motivation for introducing gaps in chapter 5 was to reduce the pressure 

penalty, though it was found that heat transfer also improved. In this chapter 

the gap idea is explored further by applying it to the configuration that 

produced the highest pressure drop presented in chapter 4. 

This is to evaluate the energy management in terms of pumping power and 

heat transfer performance. Chapter 4 concluded that the lowest pressure drop 

was for half-circle, rectangular and triangular VGs, respectively (see Fig. 

4.10).  

Therefore, here is an interesting question: is the idea of having gaps valid to 

be applied on triangular VGs which have the highest pressure drop (see Fig. 

4.10) to reduce the pressure drop and enhance the heat transfer 

performance? Then, based on pressure drop difference, is it beneficial to use 

the triangular VG having gap with nanofluids? Does the suggested model 

(Triangular VGs with gap) work better than half-circle VGs to enhance the heat 

transfer and reduce the power consumption? The questions are answered in 

the first part of fourth section of this chapter.  

Another important aspect in practical application is the optimisation of the 

geometry which is presented as the fifth section of this chapter. 

 

 Full-span VGs with water coolant 

The results in chapter 4 are re-introduced as an average and maximum 

temperatures on the solid base of the micro-channel to assess the energy 

management of heat transfer performance. As presented in chapter 4, the 

lowest thermal resistance and pressure drop were for the half-circle, then the 

rectangular, then the triangular VGs (see Fig. 4.10). This is reflected in the 

average temperatures shown in Fig. 7.1. However, the figure illustrates that 

the C-model has the highest maximum temperature compared to R and T 

models and the uniform channel. This can be attributed to the overall heat 

transfer performance along the channel from the inlet to the outlet in terms of 

the average and maximum temperatures. The reason can be clarified when a 
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temperature distribution along the channel is drawn. This line is located at the 

centre of the channel bottom to show the temperature distribution for the 

uniform channel and the other VGs as illustrated in Fig. 7.2. The figure 

indicates, the C-model has the lowest temperature along the channel up to 

the distance of 21000 µm (after the fifth VG), then the temperature increases 

dramatically to be the highest temperature for a short distance only from 

21000 µm to 25000 µm (at the channel outlet). Now, the reason of the hot 

temperature for the C-model at the outlet is the high temperature of the fluid 

at the outlet as seen in Fig. 7.3. Again, this is related to the fluid flow, as the 

average velocity for the C-model is the lowest among the other VGs. This 

means, more heat transfers from the base to the fluid, then the temperature 

of the fluid increases, this leads to less heat transfer at the channel outlet 

because of the low velocity for the C-model as indicated in Fig. 7.4.  

 

 

Figure 7.1: Average and maximum temperatures of the solid base 
achieved with various vortex generators at Reynolds number 1000 

using water. 
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Figure 7.2: actual temperature distribution along the centre line of the 
microchannel. 

 

 

Figure 7.3: Maximum fluid temperature at the outlet for C, R and T 
models at Re=1000. 
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Figure 7.4: Average and maximum water velocities at the outlet of the 
uniform channel and various VGs at Reynolds number of 1000. 

 

From the results above, the variation of using the average and maximum 

temperatures to evaluate the heat transfer performance needs to be 

investigated using the effect of the gap which appears in the next section. 

 

  Effect of gaps on energy management 

As indicated in chapter 5, having gap in VGs enhances the heat transfer and 

fluid flow (reduces the pressure drop). It is found that the best heat transfer 

performance was for the end gap model with gap=150 µm (E2), then the 

central gap model with gap=100 µm (C2), central and end gaps with gap=250 

µm (CE1), no gap (full-span) and the uniform channel (seeTable6.1 for 

geometry discerption). Therefore, the results are represented with respect to 

the average and maximum temperatures as shown in Fig. 7.5. The figure 

presents the average and, importantly, maximum temperatures achieved on 

the bottom surface of the heat sink operating at Re = 1500 with channels 

containing the C2, E2 and CE1-model VGs offering the lowest thermal 
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with the radius of 400 µm. Also included for comparison is the corresponding 

data for a uniform channel with no VGs, a channel with full-span VGs (no gap), 

and a channel with C5- model VGs which have the highest PEC index of 1.08 

at this Reynolds number (see Figs. 5.13 and 5.17). 

First, it can be seen that the channels with vortex generators all produce a 

lower average temperature than the uniform channel, as has already been 

seen through the thermal resistance equation in chapter 3 (3-6), which is 

based on the average temperature. However, the maximum temperatures 

obtained (at the outflow) show a rather different behaviour. The full-span VG 

provides a 2 K reduction in the average surface temperature and a 2.5 K 

reduction in the maximum temperature compared to the uniform channel. 

Introducing the end gaps to create the E2 VGs produces a further 4 K 

reduction in the average and 1.6 K reduction in the maximum temperature, 

and is clearly beneficial. However, the C-model and CE-model VGs do not 

significantly reduce the maximum temperature relative to the uniform channel 

– in fact the CE1 VG actually results in an almost 1 K increase in the maximum 

temperature. Similarly, the C5 VG offers no reduction in the maximum 

temperature compared to the uniform channel, despite providing a similar 

thermal resistance and hence average surface temperature to the full-span 

VG, as remarked above. This suggests that the improvements in heat transfer 

offered by the C2-model and CE1-model VGs are somewhat more localised, 

such that over the whole surface the net effect is a reduction in average 

temperature, but at the expense of other areas where the local heat transfer 

is worse. Indeed, this effect can be seen at the left-most ends of the contour 

plots in chapter 5, section 5.5.3 (see Fig. 5.18), where the C2 and CE1 VGs 

have a thicker thermal boundary layer on the base surface than the other VG 

models.  

The temperature plots in chapter 5, section 5.5.3 (see Fig. 5.18) suggest that 

the E2-model and full-span VGs are essentially independent of each other at 

this spacing between the VGs; the transverse vortices generated by the full-

span VGs do not extend as far as the next VG, and for the E2-model VG, the 

fluid passing through the gaps is swept upwards and inwards away from the 

gaps in the next VG. 
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Figure 7.5: Average and maximum temperatures on the solid base 
achieved with various half-circle VGs with gaps and without gaps and 

Reynolds number 1500. See Table 5.1 for a description of the VG types. 

 

In contrast, the C2 and CE1 VGs show more interaction, with a more closed 

region of higher temperature fluid between consecutive VGs. Hence for the 

C2 and CE1 VGs, the flow downstream of the final VG is more different from 

the upstream flow than in the E2-model and full-span (no gap) cases. This 

indicates that placement and distribution of the VGs within the channel is an 

important additional design factor for consideration, this is presented in the 

next sections. 

The base surface temperature results highlight that, although the PEC index 
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performance in terms of the practical objective maintaining temperature below 

a given threshold. The results of Fig. 7.5 do however show further evidence 
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However, when analysing data from a pumping power perspective, it is found 
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channel are the best designs to be manufactured to enhance the heat transfer 

at low power consumption. 

 

Figure 7.6: Maximum temperatures for different half-circle VGs 
compared to the uniform channel at different pumping power using 

water as a coolant. 
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nanofluid is used with the EL-model. Also, the velocity contour in Fig. 7.7b 

confirms that the fluid flow is enhanced for EL-model compared to the C-model 

by the reduction in the low velocity zone of the EL-model (Red zone). Thus, 

the influence of the C-model and the EL-model (VGs) on the maximum base 

temperature and pumping power are shown in Fig. 7.8. The uniform channel 

is taken as a reference to compare the influence of using the C-model with 

water and EL-model with water and SiO2 nanofluid at the concentration of 1%. 

It is found that there is enhancement in heat transfer (temperature reduction) 

and in pressure drop when using different VG geometries and fluids, for the 

reduction in pressure drop (see Fig. 6.5). 

 Now, the suggested model (El-model with 1% of SiO2 nanofluid) does offer 

better heat transfer enhancement from a practical perspective than the C-

model with water at the same pumping power. In other words, less pumping 

power is required to achieve a given temperature for the EL-model compared 

to the C-model. Hence, the idea of combining a geometry offering low 

pressure drop use of a nanofluid is successful. This will open a wide range of 

experimental design area. Therefore, researchers can find the easiest design 

to manufacture with no additional pumping power and produce enhancement 

in heat transfer when using the effect of different geometries as shown in Fig. 

7.8. 

 

 

Figure 7.7: X-Z plane comparing the uniform channel to C-model, EL-
model and the uniform channel at Re =800: (a) temperature contour; (b) 

velocity contour. 
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Figure 7.8: Maximum temperature with pumping power for various VG 
models compared to the uniform channel. 

 

7.4.2  Effect of gaps  

The purpose of this section is to draw a clear picture of the effect of the gap 
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power for nanofluids is higher than for water due to the kinematic viscosity as 

discussed in chapter 6 (see Figs. 6.7-6.9). Thus, Fig. 7.9 compares the effect 
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triangular VGs, respectively. This is for both, water (Fig. 7.9a) and nanofluids 

(Fig. 7.9b). As the results show that the highest pressure drop is for the 

triangular VGs, they are taken as an example to examine the effect of having 

a gap on the pressure drop, thermal resistance and pumping power. Now, the 

triangular model is considered as an example to suggest a model which has 

two gaps near the walls of the micro-channel, each gap has 50 µm.  

The key idea of using the gap in VG models is to reduce the pressure drop 

and enhance the heat transfer simultaneously as detailed in chapter 5. The 

concept of having gap in VGs applied here, is exactly the same as when 

having different VGs with pressure difference to tackle the issue of high 

pressure drop of nanofluids as presented in previous section, but here, is 

based on the gap instead of geometrical effect.  

Fig. 7.10a indicates that there is a reduction in the maximum temperature at 

the same pumping power for different VG shapes. Equivalently, to achieve a 

given temperature, lower pumping power is required by some VG shapes. 

Again, the same behaviour of thermal resistance can be seen for water and 

nanofluids as shown in Fig. 7.10b. Therefore, an interesting question appears 

here: can introducing a gap in triangular VGs (having the highest pressure 

drop) enhance the heat transfer using nanofluids or reduce the pumping 

power? 

Fig. 7.11 reveals that, for a given pumping power, the half-circle VGs achieve 

the lowest thermal resistance.  
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Figure 7.9: Pressure drop for different VGs shapes; (a) water for wide 
range of Re, (b) using SiO2-water nanofluids at the concentration of 2%. 
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Figure 7.10: Different VG shapes with Al2O3 nanoparticles at the 
concentration of 0.5% in water; (a) Maximum temperature Vs pumping 

power; (b) thermal resistance using average temperature Vs Re. 
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Figure 7.11: Thermal resistance with different pumping power of 
various VG shapes using SiO2 of 0.5% in water. 

 

Indeed, introducing the gap in triangular VGs can enhance the heat transfer 
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the heat transfer performance. This can be clearly seen in Fig. 7.13. The figure 

shows reduction in the average and maximum temperatures. Fig. 7.14 shows 

velocity contour and temperature contour. The figure confirms that there is a 

relation between the enhancement of the fluid flow and the heat transfer in 

energy perspective.  

In fact, enhancing the flow by having gaps in the triangular VGs (see Fig. 

7.14a) leads to enhancing the heat transfer not only compared to the triangular 
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Figure 7.12: Pumping power for different VG shapes compared to 
triangular VGs having gap of 100 µm (50 µm each side near the walls) 

using SiO2-water at the concentration of 0.5%; (a) maximum 
temperature (K); (b) thermal resistance using average temperature. 
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Figure 7.13: Average and maximum temperatures on the solid base 
achieved with various vortex generators at Reynolds number 1000 

using SiO2-water at the concentration of 0.5%. 

 

 

Figure 7.14: X-Z plane comparing the T-model having Gap of 100 µm to 
full-span T-model, R-model and the C-model at Re =1000 with SiO2-

water at the concentration of 0.5%: (a) Velocity contour; (b) 
Temperature contour. 
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 Optimisation of the uniform micro-channel 

As indicated in previous chapters, a huge design space exists for the micro-

channel system. Therefore, this section present a simple attempt to optimise 

the dimensions of the micro-channel to enhance the heat transfer 

performance. The objective is to reduce of the thermal resistance and the 

pressure drop simultaneously.  

The thermal resistance and pressure drop are parametrised in terms of two 

dimensionless design variables DV1 and DV2, namely DV1 = Hc/Wc and DV1 

= Tb/Wc, with the channel height Hc and thickness Tb =(Ht-Hc) and channel 

width Wch = 500 µm as described in chapter 3 in Table 3.1. A multi-objective 

design optimisation process is carried out with the goal to minimise both the 

thermal resistance and pressure drop. Due to the computational requirements 

of the 3D CFD analysis described in this thesis, a surrogate modelling 

approach is adopted for the optimisation study, a methodology that has been 

successfully applied for a range of engineering applications, e.g. the design 

optimisation of heat transfer. A 3D CFD-based design of experiments (DOE) 

approach based is used to generate 35 points spread within the design space 

(DV1, DV2) ∈ [1, 2] × [0.3, 0.6].  

The distribution of points in the design variable space is shown in Fig. 7.15 

along with the distribution corresponding to the explicit microchannel 

dimensions. 
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Figure 7.15: Distribution of design points for the design variables in: 
(a) Design variable space and (b) Corresponding microchannel 

dimensions. 

 

The full dimensions of the geometry described in chapter 3, section 3.6 (see 

Fig. 3.1c) are included in Table 7.1. The Table shows the maximum 

temperature and pressure drop to build the optimisation.  

In this study a constant Reynolds number is taken for each change of the 

height of the channel (Hc). Therefore, the velocity (u_u) is presented based 

on the Reynolds number using water as a coolant. The velocity is calculated 

based on Reynolds number of 700 for the dimensions of Hc=670 µm and Wc 

= 500 µm. 
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Table 7.1: Dimensions with temperature and pressure drop at fixed 
Reynolds number. 

Hc Ht Uin (m/s) Temperature (K) Pressure (Pa) 

500 740 1.4025 329.34 14028 

516 711 1.3808 328.81 13543 

533 798 1.3591 328.36 13283 

550 715 1.3388 327.99 12831 

566 866 1.3208 327.37 12676 

583 773 1.3027 326.9 12316 

600 875 1.2856 326.88 12160 

616 826 1.2705 326.35 11818 

633 868 1.2552 325.97 11602 

650 800 1.2407 325.56 11385 

666 921 1.2277 325 11346 

683 858 1.2146 324.64 10986 

700 985 1.2022 324.53 10996 

716 941 1.191 324.11 10661 

733 983 1.1796 323.8 10594 

750 920 1.1688 323.52 10388 

766 966 1.159 323.16 10310 

783 1078 1.1491 323.18 10159 

800 955 1.1396 322.53 10046 

816 1086 1.131 322.41 9790.5 

833 1053 1.1222 322.22 9846.6 

850 1095 1.1138 322.32 9546.3 

866 1051 1.1061 321.73 9358.9 

883 1043 1.0984 321.38 9695.7 

900 1115 1.0909 321.81 9051.5 

916 1206 1.084 321.94 8870.2 

933 1213 1.0771 321.74 8654 

950 1210 1.0703 321.37 8517 

966 1146 1.0642 320.91 8580 

983 1188 1.058 320.7 8446.5 

1000 1230 1.0519 320.74 8350.8 

500 650 1.4025 329.19 13800 

500 800 1.4025 329.13 14065 

1000 1150 1.0519 321.2 8175.8 

1000 1300 1.0519 320.97 8243.4 

 

A Radial Basis Function (RBF) method [268], proven to be a successful design 

tool for engineering applications such as heat transfer processes [269] and 

combustion systems [270] for instance, is employed to build the surrogate 

models of T and ΔP, where a cubic radial power function is used to determine 

the weighting of points in the regression analysis at each point: 
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𝑤𝑖 = 𝑟𝑖
3         8.1 

 

The RBF-based surrogate models for the thermal resistance and pressure 

drop are built by carrying out 3D CFD calculations and solutions respectively 

at each of the DOE points and using these values to build surrogate models 

of their dependence on the design variables throughout the design space. 

 

7.5.1 Multi-objective design optimisation 

The design goal is formulated as the unconstrained, multi-objective 

optimization problem of minimising the temperature T and pressure drop ΔP 

simultaneously. The global minimum of the surrogate model for T and ΔP is 

found using a multi-objective genetic algorithm (GA) approach based on [271, 

272]. Graphical examples of surface functions T and ΔP in terms of the design 

Hc and Tb are shown in Figures 8.16 and 8.17 respectively. 

In a multi-objective optimisation problem, a Pareto front can be used by 

designers to select the most suitable compromise between the various 

objective functions that have been distinguished and for which the goal is to 

minimise the objective functions. It is not possible to move along the design 

points on the Pareto front to decrease any of the objective functions without 

increasing at least one other objective function, and Pareto points are often 

referred to as being ‘non-dominated’. In the present case with two objective 

functions the Pareto front showing the impact of the two objectives of interest 

here is shown in Fig. 7.18. This data provides a convenient and scientifically-

rigorous means by which designers can quantify the effect of their design 

criteria on both on both manufacturability and energy efficiency of micro-

channels.  



 

159 
 

 

Figure 7.16: Response surface of function T from the surrogate model 
together with the DOE points. 

 

 

 

Figure 7.17: Response surface of function ΔP from the surrogate 
model together with the DOE points. 
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As a demonstration, 5 microchannel designs lying on the Pareto front in Fig. 

7.18 (a and b) are detailed in Table 7.2. The corresponding design variables, 

namely Hc and Tb with the two objectives T and pressure drop ΔP are also 

specified.  

For the five designs, the performance of maximum temperature and pressure 

drop predicted by surrogate model and the full CFD analysis is also included 

in Table 7.2. 

 

 

Figure 7.18: Pareto front for; (a) the design given in Table 7.1, (b) 
predicted points adopted from the Pareto front. 

(a) 

(b) 
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Table 7.2: Microchannel design performance at five operating 
conditions points located on the Pareto front together with CFD 

validation. 

Pareto 
front 

Hc Ht 
Predicted results CFD results 

Tmax ΔP max Tmax 
ΔP 

max 

µm µm K Pa K Pa 

p1 997.47019 1197.19 320.5435 8325.986 320.91 8199.7 

p2 997.55157 1181.082 320.67858 8269.82 321.15 8116.8 

p3 997.81853 1171.693 320.80871 8258.52 320.85 8553.2 

p4 996.78504 1256.879 320.8702 8191.461 321 8333.8 

p5 995.59267 1265.096 320.94879 8168.737 321.06 8389 

 

The validation of the points given in Table 7.2 are also presented in Fig. 7.19 

(a and b). Fig. 7.19a shows very good agreement between the predicted 

temperature and the temperature of simulation results. The pressure drop is 

drawn in Fig. 7.19b, it is also found to be in good agreement between the 

predicted data and CFD results. 

The optimum design points obtained by the surrogate models and GA and the 

CFD models are comparatively identical. Hence, confirming that the CFD 

model is able to predict the GA-based surrogate models results with high 

confidence. It is worth noting that in terms manufacturing, our CFD-validated 

surrogate model can be used as a reliable design tool to develop micro-

channels with desired anticipated thermal resistance and pressure drop (Rth, 

ΔP) belonging to the region D=[0.123, 0.156] × [1544.24, 9084.58] with 

consequential design variable (Wch, Nch, Θ) ∈ [0.8, 1.486] × [9, 11] ×

[20.28, 39.58].  

Fig. 7.19 shows that the Pareto front showing the compromises that can be 

struck in minimising the maximum value of both T and ΔP together with five 

representative design points (e.g. P1, P2, P3, P4 and P5) used for the 

microchannel performance analysis illustrated in Table 7.2. 
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Figure 7.19: Validation between predicted data and CFD results; (a) 
maximum temperature, (b) maximum pressure drop. 
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  Summary 

This chapter examines the results of previous chapters together from a 

practical perspective. The aim of the study was to suggest a new geometry 

which meets the rapid developments of the electronic devices; shrinking the 

size of the micro-channel and increasing in the thermal efficiency 

simultaneously. This can be achieved by designing a micro-channel which 

offers high thermal performance for low input energy. Two ways are used to 

assess the performance of the heat transfer and fluid flow characteristics. The 

first way is to present the results as average and maximum temperatures 

which has been done in the first and second sections with water as a working 

fluid. The second way is to evaluate the coolant performance in terms of 

pumping power as was done in the third section, where the siO2 and Al2O3 

nanofluids in different concentrations were considered. The fourth section 

deals with optimising the straight micro-channel to suggest a modified design 

to reduce the maximum temperature and pressure drop, simultaneously. The 

findings of the chapter are drawn to be:  

 The half-circle model offers lower average temperature than the 

triangular and rectangular models as indicated in chapter 3. However, 

it produced the highest maximum temperature among the VGs due to 

the high outlet temperature of the fluid (see Fig. 7.2).  

 Gaps at the ends of the VGs are beneficial in terms of the average and 

maximum temperatures that can be achieved for a given heat load, and 

in reducing the large pressure drop associated with full-span vortex 

generators. Half-circle VGs offers the lowest thermal resistance and 

pressure drop among the full-span VG models when using pure water or 

nanofluid as a working fluid. However, when considering the need to 

achieve a base temperature below a critical value, the C5 VG (with a wide 

central gap) is found to achieve this with the lowest pumping power 

requirements. 

 Although nanofluids are generally associated with higher pumping power 

costs, here it is found that careful combination of nanofluids and VG 

geometries can produce net benefits. In particular it is found that 1% 

Al2O3-water nanofluid in combination with an elliptical VG requires less 
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pumping power to achieve a required based temperature than the same 

VG used with pure water or even the half-circle VG with pure water. 

Therefore, more flexible options for manufacturing designs can be 

achieved with the effect of using different geometries with no additional 

cost to be paid for pumping power.  

 There is considerable reduction in pumping power using nanofluids with 

VGs having gaps compared to the VGs without gaps. 

 The results indicate that triangular VGs having gaps used with nanofluid 

provide a lower thermal resistance compared to the full-span triangular 

VG, and even better than the half-circle VGs with pure water at the same 

pumping power. This opens the door to the use of nanofluids without 

additional pumping power cost to enhance the heat transfer performance 

when using the gap in VG models.  

 Surrogate models of the system behaviour built using radial basis 

functions are used to predict the system performance very accurately, 

enabling multi-objectives optimisation to be performed.  

 There is a huge space key and the illustrative example presented here, 

but further optimisation is beyond the scope of this thesis. 
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 Conclusion and recommendation for future work 

 

 Achievements – general discussion 

As indicated in previous chapters, many objectives have been achieved using 

geometrical and fluids influences to enhance the heat transfer and reduce the 

pressure drop. The numerical method used in this study is the finite element 

method which is built in COMSOL Multiphysics. To ensure the accuracy of the 

results, validations of previous experimental and numerical studies have been 

done and found in good agreement. The study investigated the conjugate heat 

transfer under laminar flow (50 < Re < 2300) subjected to a uniform heat flux 

ranging from 75 to 100 W/cm2 related to CPUs in electronic devices. The 

results concluded that perforated pinned heat sink with water struggles to 

enhance the heat transfer. Therefore the vortex generators (VGs) with 

different shapes, namely forward triangular (FT), backward triangular (BT), 

symmetric triangular (ST), vertical rectangular (VR), horizontal rectangular 

(HR), square (S) and half-circle (C) are suggested to enhance the heat 

transfer using liquid coolant (water or nanofluid). Therefore, the outcomes out 

of this research are summarised in the following sections. 

 

 Vortex generators 

From the analysis of the pinned heat sink, and the investigation of vortex 

generators, the following points have been identified: 

• It does not necessarily follow that a geometrical modification that 

improves heat transfer for one fluid will also enhance performance for 

a different working fluid. In the present study, the perforated pinned 

heat sink that is effective with air does not work with water as a coolant. 

• All proposed VG models offer heat transfer improvement (thermal 

resistance reduction) while, as to be expected, the price paid is the 

additional pumping power needed to drive the flow compared to the 

uniform channel.  
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• For triangular VG configurations (forward triangular (FT), backward 

triangular (BT) and symmetric triangular (ST)), it is found that the lowest 

thermal resistance is for the ST model, while the lowest pressure drop 

is for the BT model. 

• For the rectangular VG models (vertical rectangular (VR), horizontal 

rectangular (HR) and square (S)), the results show that the S model 

offers the lowest thermal resistance and pressure drop compared to 

VR and HR, but the S model still has a higher pressure drop than the 

uniform channel. 

• Circular VGs offer the lowest thermal resistance (2% reduction in 

thermal resistance compared to the uniform channel), followed by 

rectangular and triangular VGs. However, the pressure drops of all 

proposed VGs models are much higher than for the uniform channel. 

For the VGs with half-circle cross-section spanning the whole width of 

the microchannel, the thermal resistance was shown to decrease 

monotonically as the VG radius increases. However, as expected the 

pressure drop increased with radius as a result of the increasing 

constriction in the flow. 

•  A modification of the full-span half-circle VG to produce a shorter, 

centred VG showed a greater reduction in the thermal resistance, while 

also showing a smaller increase in the pressure drop, compared to the 

full-span VG. It is found that the E2 model offers reduction in thermal 

resistance (up to 7% compared to the uniform channel and 2% 

compared to full-span model) and pressure drop compared to the full-

span VGs. 

• Based on the PEC index, which offsets the improvement in thermal 

resistance against the pressure penalty. For example there is a 

reduction in thermal resistance for all proposed models. However, few 

models offer heat transfer enhancement with respect to the increase of 

pressure penalty. Thus, small-radius centred VGs offer good potential 



 

167 
 

for improving the efficiency of micro-channels. It is found that VGs with 

very large gap (C5-model - 450 µm of gap) offer the best PEC for half-

circle models, with a value of up to 1.08, which corresponds to a net 

improvement of 8% in the efficiency of the system compared to the 

uniform channel. 

 Nanofluid performance 

As indicated in chapters 6 and 7, care must be taken when implementing 

nanofluids in systems, especially dealing with non-dimensional factors such 

as Reynolds number. This can mislead the results as the Reynolds number is 

a function of density and viscosity of nanofluid. Therefore, increasing the 

density and viscosity (increasing nanoparticles concentration) increases 

Reynolds number. However, using a physical unit such as mass flow rate does 

not offer the same enhancement in heat transfer compared to non-

dimensional factors (Reynolds number), based on this, it is found that: 

• The thermal resistance decreased using various nanofluids in different 

concentrations compared to pure water, it is also decreased as the 

concentrations of nanoparticles increased. 

• Al2O3-water nanofluid has low thermal resistance and pressure drop 

compared to SiO2-water nanofluid at the same concentration due to its 

thermo-physical properties. 

• The new suggested model (elliptical-model) with nanofluids up to 4% 

of nanofluid concentration offered lower thermal resistance and 

pressure drop, but the pressure drop of EL-model with nanoparticles 

concentration of 4% is higher than the half-circle model with water. 

• No significant reduction in thermal resistance is found compared to the 

use of a fixed Reynolds number with different geometries. 

• The thermal resistance and the pressure drop increased with the 

nanoparticle concentrations when using MFR. 

From above points, it is found that there is possibility of combining geometrical 

modifications (using VG geometries) with coolant modifications (using 

nanofluids), and it is found that AhO3or SIO2 nanofluids in a micro-channel 

with elliptical VGs can replace pure water as a coolant. 
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Based on the above findings, the energy management of heat and flow 

characteristics plays a crucial role in practical and commercial applications. It 

is found that having gap in VGs enhances the heat transfer performance and 

reduces the power consumption. The results show that the using nanofluid 

with geometrical modification (elliptical model) provides efficient system with 

low pimping power. 

 Limitations of this study 

Although the finite element model used here was validated against published 

experimental data for a uniform channel, this study is an entirely CFD-based 

investigation, and therefore experimental validation of the new ideas 

presented has yet to be achieved. CFD does not suffer the same restriction in 

terms of manufacture that limits experimental and practical systems, and it is 

recognised that some of the VG designs considered here may not yet be 

feasible to manufacture. As has been stated earlier in the thesis, there is a 

huge design space in terms of VG/microchannel geometry, working fluid, and 

even a combination of these. The optimisation study presented in chapter 7 

considers only a limited investigation of that design space, but does illustrate 

the potential for exploiting optimisation methods in this type of system. 

 Lack of experiments: Limited practical applications of using a micro-

channel heat sink with water or nanofluids, while several experiments 

have used low thermal conductivity liquids such as Novec. There is also 

lack of using closed cycle cooling system compared to open and 

immersing systems such as those used in data centres. 

 Manufacturing issues: High accuracy manufacturing machines are 

required to produce high quality experiments that agreed with the 

results of numerical studies. The common issues of lack agreement 

between the numerical and experimental investigations could be the 

error in dimensions of the experiment compared to the actual design, 

the finishing of the experiment surfaces (surface roughness), the 

accuracy of measuring devices or their setup due to limited space 

(micro- size). 
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 Future Work 

In this section, further work possibilities are listed: 

1. This study has not been done experimentally, therefore, it can be a new 

experimental study which can be used in practical applications. The 

experimental study also could be compared to the existing numerical study of 

this work. 

2. Investigate the effect of tapered geometry with vortex generators on a 

conjugate heat transfer and fluid flow characteristics. This is to reduce 

the issue of the increase of pressure penalty and enhance the heat 

transfer which leads to offer efficient cooling system with low power 

consumption. 

3. Study and optimise the impact of nanofluids on heat and flow 

performances using equations established in the literature (see Ch2, 

section 2.5) and compared them with experimental studies. Also, 

different types of nanoparticles such as CuO and TiO2 in the base fluid 

such as water and/or glycerine with various concentrations can be 

investigated. 

4. The optimization objectives can be extended to be three design 

variables by including the fluid type such as water or nanofluids. The 

optimization study can be done in two ways, the first way is based on 

the thermal and fluid performance such as PEC index, however, the 

second optimization could be for the whole project that is include the 

cost, the design, using different shapes of VGs, and the fluid type. 

5. An important study of energy management can be based on the 
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optimisation results. Saving power, materials, space and the operating 

conditions for a system due to the reduction in temperature and power 

consumption when using modified micro-channel and/ or nanofluid is 

one way of energy management which depend on the outcome of the 

optimisation. 
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