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ABSTRACT
[bookmark: _GoBack]The publications used in this thesis consist of eight first author publications (2008 to 2013) exploring three technical issues that arise when using health state utility values (HSUVs) in decision analytic models in health care.  The research provides analysts with HSUVs that may be used to describe the health-related quality of life (HRQoL) associated with not having particular conditions (i.e., the baseline evidence), recommendations on the preferred method to estimate HSUVs for comorbidities when the required evidence is not available,  functions that can be used to map between two of the most commonly used HRQoL instruments (EQ-5D and SF-6D) using individual level patient data, and showed how well these functions estimate mean HSUVs from non-preference-based mean scores.

The collection of work provides a unique and original contribution to the evidence base by bringing several previously overlooked issues into the public domain.  This was an underdeveloped area of health economics and the lack of methodological guidelines in this area could result in sub-optimal allocation of scarce resources.  This undermines the rationale behind the use of the quality adjusted life-year (QALY) and decision-making informed by cost per QALY thresholds.

The publications received positive comments during the peer-review process and have been cited in approximately 280 journal articles.  The condition-specific and general population HSUVs, and the mapping functions, have been used to inform the HSUVs used in 146 different decision analytic models.  The mapping functions have also been used to predict HSUVs in an additional 37 articles.   The remaining articles use the research to either support their choice of methods or to support or compare the results with their own results.  The body of work has informed Technical Support Documents commissioned by the National Institute for Health and Care Excellence, a book chapter, methodological reports and training courses provided to the pharmaceutical industry, lectures on a post-graduate degree course, and an annual short-course at the University of Sheffield.
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1. 	BACKGROUND
This thesis draws on a body of research performed by the author that has been published in 8 peer-reviewed journal articles.  The articles describe methodological research in the area of health economics and specifically issues encountered when using evidence describing the health state utility values (HSUV) that are used in decision analytic models.  

The thesis provides a background to the area (Section 2) including a brief introduction to health state utility values, decision analytic models, existing checklists, and issues that are frequently encountered when using HSUVs in decision analytic models.  The journal articles are then presented (Sections 3, 4 and 5) under the following themes: baseline HSUVs, estimating HSUVs for comorbidities, and predicting HSUVs using published summary statistics.  Section 6 provides a discussion of the areas explored in the papers, including the contribution of the research in relation to the existing evidence and the documented impact of the research.  The final section provides concluding comments.



2. 	BACKGROUND
[bookmark: _Ref432323085][bookmark: _Ref432322799]Over the last twenty years, and particularly the last decade, there has been a substantial growth in the use of quality adjusted life-years (QALYs) in health care. The QALY was originally developed to assist decision-makers allocating scarce resources across disparate health conditions, populations and competing programs in health care through the use of the cost per additional QALY gained due to one intervention compared to an alternative (see Section 2.2).[endnoteRef:1]-[endnoteRef:2]  The QALY is a metric which incorporates both survival and health-related quality of life (HRQoL).[endnoteRef:3]  QALYs are calculated by adjusting life-years accrued to reflect the HRQoL associated with living in particular health states.  Anchored at one (equivalent to full health) and zero (equivalent to death), with negative values representing health states considered worse than dead, preference weights for health states may be derived using different methods and populations.   [1:  Torrance GW, Thomas WH, Sackett DL. A utility maximization model for evaluation of health-care programs. Health Serv Res 1972;7:118–33.]  [2:  Gold MR, Segel JE, Russell LB, Weinsten MC. Cost effectiveness in health and medicine. New York: Oxford University Press, 1996.]  [3:  Drummond MF, O’Brien B, Stoddart GL, Torrance GW. Methods for the economic evaluation of health-care programmes. 2nd ed.1997 Oxford University Press.] 


2.1	Health-related quality of life
[bookmark: _Ref432322788][bookmark: _Ref432348622][bookmark: _Ref432332790]Evidence on HRQoL is collected via a questionnaire which is generally (but not always) completed by the patient.[endnoteRef:4]  The purpose of measuring HRQoL is to quantify the magnitude of effect attributable to a medical condition, or its treatment, on an individual’s life.[endnoteRef:5]  The individual’s health status may be described in different ways and depending on the particular HRQoL instrument used the information collected may be presented in the form of a health profile consisting of several different health dimensions (e.g., mobility, pain, anxiety, selfcare, usual activities), summary physical and/or mental health scores, or an overall total index score.  Questionnaires may be condition-specific (such as the Psoriatic Arthritis Quality of Life scale[endnoteRef:6]) or generic (such as the HUI3[endnoteRef:7]) measures, and both of these may be either non-preference-based (such as the SF-36[endnoteRef:8]), or preference-based utility measures (such as the SF-6D and EQ-5D[endnoteRef:9]-[endnoteRef:10]).  The latter, with preferences elicited from the general population, are frequently identified through the terminology health state utility values (HSUVs), and are the required evidence when calculating QALYs in decision analytic models.    [4:  Brazier J, Ratcliffe J, Tsuchiya A. Measuring and valuing health benefits for economic evaluation  2015 Oxford University Press. New York.]  [5:  http://www.isoqol.org/about-isoqol/what-is-health related-quality-of-life-research (Accessed August 2015)]  [6:  McKenna SP, Doward LC, Whalley D, Tennant A, Emery P, Veale DJ. Development of the PsAQoL: a quality of life instrument specific to psoriatric arthritis. Annals of Rheumatic Diseases, 2004:3(2):162-169.]  [7:  Torrance GW, Feeny DH, Furlong WJ, Barr RD, Zhang Y, Wang Q. Multiattribute Utility Function for a Comprehensive Health Status Classification System: Health Utilities Index Mark 2. Medical Care. 1996;34:702–722.]  [8:  Ware JE Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). Conceptual framework and item selection. Med Care. 1992 Jun;30(6):473-83.]  [9:  Brazier JE, Roberts JF, Veverill MD. The estimation of a preference-based measure of health from the SF-36. J Health Economics 2002; 21:271-292.]  [10:  Dolan P. Modeling valuations for EuroQol health states. Med Care 1997; 35(11):1095-1108.] 


Historically, many studies presented evidence in terms of a profile of summary statistics (such as mean values or percentages scoring specific levels on health dimensions), either due to the objective of the research or because preference-based weights were not available for the instrument used.  As access to individual patient responses are required to apply the weights used to calculate HSUVs, much of the published evidence describing results from HRQoL studies cannot be used to inform QALYs in decision analytic models unless it is transformed or mapped onto a preference-based measure.

[bookmark: _Ref432323162]In addition, differences in the descriptive systems of HRQoL instruments mean they are not measuring the same thing and the differences in the valuation methods used to elicit preference weights can produce widely different HSUVs for the same condition or health state.[endnoteRef:11]-[endnoteRef:12]  Consequently, cost per QALY results generated using evidence obtained from different HRQoL instruments are not directly comparable.3-4,[endnoteRef:13]  As the number of preference-based measures continue to grow, it becomes increasingly important to be able to translate from one preference-based index to another to ensure that results from decision analytic models are comparable. [11:  Brazier J, Roberts J, Tsuchiya A, Busschbach J. A comparison of the EQ-5D and SF-6D across seven patient groups Health Economics. 2004;21; 271-92.]  [12:  Hanmer J, Cherepanov D, Palta M, Kaplan RM, Feeny D, Fryback DG. Health Condition Impacts in a Nationally Representative Cross-Sectional Survey Vary Substantially by Preference-Based Health Index. Med Decis Making August 27, 2015; 0272989X15599546.]  [13:  Gray AM, Clarke PM, Wolstenholme JL, Wordsworth S. Applied methods of cost-effectiveness analysis in health-care. Oxford University Press. 2011.] 


2.2	Decision analytic models
Decision analytic models are now used worldwide to inform policy resource allocation decisions in health care.  These models are mathematical representations of clinical pathways for specific health conditions and provide a mechanism to synthesise evidence from many sources including clinical studies providing evidence of effectiveness of interventions, and observational studies providing evidence on variables such as incidence, prevalence, disease progression, resource use, costs, and HRQoL.2  Decision analytic models generally evaluate the cost-effectiveness of a new intervention compared to existing standard care and typically calculate health benefits due to reductions in mortality rates, clinical events avoided, or symptoms alleviated.13  Results are presented in terms of an incremental cost-effectiveness ratio (ICER):

  

ICERs are frequently assessed against a cost per QALY threshold, whereby interventions are considered to be good value for money if the cost per QALY gained is below the given threshold, and unlikely to be reimbursed if the cost per QALY gained is higher.  As the incremental QALY is the denominator in the ICER, the results generated from the models can be extremely sensitive to the HSUVs used.

[bookmark: _Ref432323525][bookmark: _Ref432325138][bookmark: _Ref432324735]There are numerous text books providing basic and advanced guidance on decision analytic modelling approaches.2-3,13-[endnoteRef:14]  In addition, published evidence describing methodological research in decision analytic modelling in health care continues to grow with papers providing detailed guidance on appropriate choice of model structure,[endnoteRef:15] identifying and valuing outcomes,4 measuring and estimating costs,[endnoteRef:16]-[endnoteRef:17] methods for handling and exploring uncertainty,14,[endnoteRef:18] and appropriate methods for identifying, reviewing and synthesising evidence.[endnoteRef:19],[endnoteRef:20]   [14:  Briggs AH. Handling uncertainty in cost-effectiveness models. Pharmacoeconomics 2000;17:479-500.]  [15:  Brennan A, Chick S E, Davies R. A taxonomy of model structures for economic evaluation of health technologies. Health economics 2006;15(12)1295-1310.]  [16:  Young TA. Estimating mean total costs in the presence of censoring. Pharmacoeconomics 2005;23(12),1229-1242.]  [17:  Lee C Y Y, Wand M P (2015). Variational methods for fitting complex Bayesian mixed effects models to health data. Statistics in Medicine 2015.]  [18:  Brennan A, Kharroubi S, O'Hagan A, Chilcott J. Calculating partial expected value of perfect information via Monte Carlo sampling algorithms. Medical Decision Making 2007;27(4),448-470.]  [19:  Kaltenthaler E, Tappenden P, Paisley S. Reviewing the evidence to inform the population of cost-effectiveness models within health technology assessments. Value in Health 2013;6(5),830-836.]  [20:  Dias S, Sutton A J, Ades AE, Welton NJ. Evidence synthesis for decision making 2 a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Medical Decision Making 2013;33(5)607-617.] 


2.3 	Modelling checklists
Users of the results generated from these models need to be able to evaluate the quality of the models in terms of both the evidence and methodologies use.  Accordingly a number of health care modelling checklists have been published over the years to encourage good practice.[endnoteRef:21],[endnoteRef:22],[endnoteRef:23],[endnoteRef:24],[endnoteRef:25] Depending on the particular checklist, these cover aspects such as the definition of the research question including the perspective taken (discount rates, the time horizon over which costs and benefits are considered, comparators), the justification for the choice of model, a description of data sources, a description of how uncertainty in model parameters is handled, assumptions used, and identifying errors.[endnoteRef:26] [21:  Drummond M, Jefferson T. Guidelines for authors and peer reviewers of economic submissions to the BMJ. BMJ 1996;313:275-83.]  [22:  Eddy D. Technology assessment: the role of mathematical modelling. In Mosteller F, editor. Assessing medical technologies. Washington, DC: National Academy Press; 1985. pp. 144–60.]  [23:  Gold MR. Panel on cost-effectiveness in health and medicine. Med Care 1996;34(12, Suppl.): DS197-9.]  [24:  ISPOR Task Force. Principles of good practice for decision analytic modeling in health-care evaluation. Value Health 2003;6:9–17.]  [25:  Philips Z, Ginnelly L, Sculpher M, Claxton K, Golder S, Riemsma R, et al. Review of guidelines for good practice in decision-analytic modelling in health technology assessment. Health Technol Assess 2004;8(36).]  [26:  Chilcott J, Tappenden P, Rawdin A, Johnson M, Kaltenthaler E, Paisley S. et al. Avoiding and identifying errors in health technology assessment models: qualitative study and methodological review. Health Technology Assessment 2010; Vol 14: No.25.] 


[bookmark: _Ref432348735]To standardise the methodological approaches in technology appraisals and to facilitate comparability, bodies such as the US Panel on Cost-Effectiveness in Health and Medicine and the UK National Institute for Health and Care Excellence (NICE), have developed a Methods guide which includes a ‘reference case’ for decision analytic models.2,[endnoteRef:27]  NICE have also gone as far as stating a preference for EQ-5D evidence (with preference-weights obtained from the UK general population) to be used to depict the HSUVs in submissions where possible.27   [27:  National Institute for Health and Care Excellence. Guide to Technology Appraisal Process. 2008
Available at http://www.nice.org.uk; accessed July 2015.] 


[bookmark: _Ref433881210]As the NICE Methods Guide does not provide detailed technical advice on how to apply and implement the methods it prescribes, over the last few years (2010 to 2015) a series of Technical Support Documents (TSD) have been commission via their Decision Support Unit.[endnoteRef:28]  Informed by a review of the most recent and advanced evidence in specific topic areas, the TSDs are intended to provide recommendations on the implementation of methods in the Methods Guide, and any associated reporting standards.  When the research described in the papers used in this thesis was conducted, the TSDs did not exist, and there was a sharp contrast between the volume of methodological research exploring areas such as evidence synthesis,20 and capturing uncertainty,14 compared to the much smaller volume examining issues in using HSUVs in decisions analytic models.  Much of the research presented in this thesis informed the NICE DSU TSD12: The use of health state utility values in decision models.[endnoteRef:29]  [28:  www.nicedsu.org.uk]  [29:  Ara R, Wailoo AJ. NICE DSU Technical Support Document 12: The use of health state utility values in decision models. 2011. Available from http://www.nicedsu.org.uk (Accessed 3rd August 2015).] 


2.4	Issues encountered when using HSUVs data in decision analytic models
In addition to research describing best practice for decision analytic models, there is a wealth of research devoted to the theoretical and methodological issues involved in designing descriptive systems and valuation techniques for HRQoL instruments and preference weights, respectively, and appropriate methods to collect and interpret this evidence.4  However, literature describing the practical issues arising when applying these data in decision analytic models was sparse when I started much of the research described in this thesis.  

The areas explored in the papers cover three important practical issues encountered when using HSUVs in decision analytic models: 
a) The baseline/counterfactual evidence (the HSUVs associated with not having a particular condition).
b) Estimating HSUVs for comorbidities (where a patient has two (or more) health conditions simultaneously).
c) Predicting HSUVs using summary statistics from non-preference-based evidence.  

These issues are described in more detail in the following sections.

2.4.1	Baseline HSUVs
Depending on the condition and intervention under appraisal, treatment benefits are typically measured in terms of the QALY gain associated with alleviating condition symptoms, avoiding a clinical event, or delaying death.  Within decision analytic models, conditions and events are described using discrete health states and each of these requires a mean HSUV.  Consequently, in addition to the HSUV associated with the condition or event of interest, analysts also require the baseline or counterfactual values which represent the HSUV associated with not having the condition or event.  For example, if evaluating the benefits of a colorectal cancer screening programme, in addition to the HSUV associated with having colorectal cancer (and long-term evidence representing changes in HRQoL associated with disease progression and remission), analysts also need the HSUV associated with not having colorectal cancer.[endnoteRef:30]  Similarly, if evaluating a lipid lowering intervention in patients with rheumatoid arthritis, in addition to the HSUV for patients with rheumatoid arthritis who have a cardiovascular event (both for the short-term acute period and the longer-term when HRQoL could potentially improve), analysts also need the HSUV for patients with rheumatoid arthritis who have no history of cardiovascular disease.[endnoteRef:31]   [30:  Sharp L, Tilson L, Whyte S, O'Ceilleachair A, Walsh C, Usher C et al. Cost-effectiveness of population-based screening for colorectal cancer: a comparison of guaiac-based faecal occult blood testing, faecal immunochemical testing and flexible sigmoidoscopy. British journal of cancer, 2012;106(5),805-816.]  [31:  Bansback N, Ara R, Ward S, Anis A, Choi HK. Statin therapy in rheumatoid arthritis a cost-effectiveness and value of information analysis. Pharmacoeconomics 2009;27(1):25-37.] 


[bookmark: _Ref432332723]Fryback and Lawrence (1997) reported that many analysts used a baseline of full health (e.g., EQ-5D = 1) to represent the absence of the particular health condition being addressed.[endnoteRef:32]  They argued that this approach was biased due to the presence of comorbidities since on average alleviating one condition would still leave other health problems in the population.  Consequently when using a baseline of full health, the decrement on HRQoL associated with the particular condition would be exaggerated.   Using data from the Beaver Dam study, they found that the average utility for a 70 year old male with incontinence was 0.61, while the average utility for a 70 year old male without incontinence was 0.87.  Assuming a baseline of full health, the incremental gain from resolving the incontinence would be 0.39 whereas the actual observed gain would be 0.26 (Figure 1).   [32:  Fryback DG, Lawrence WF Jr. Dollars may not buy as many QALYs as we think: a problem with defining quality-of-life adjustments. Med Decis Making. 1997;17(3):276-84.] 


Figure 1:	Decrement on HRQoL attributable to incontinence32
[image: ]

While ideally the HSUV for the condition free health state would be obtained from individuals without the particular condition (or any other condition likely to be affected by the intervention under appraisal) these data are difficult to source.  Fryback and Lawrence proposed one solution might be to use age (and gender) adjusted data from the general population to represent the HSUV for the health state free of any one particular condition.32  

HSUVs from the general population show a negative relationship with age.10,[endnoteRef:33]-[endnoteRef:34]  The trend is partly attributable to the prevalence of chronic physical health conditions which increase by age,[endnoteRef:35] but is also due to the natural decline in physical health directly attributable to the ageing process as opposed to specific health conditions.  It might be reasonable to assume that unless a condition is extremely prevalent, or unless a condition is associated with a substantial decrement on HRQoL, the average HSUV for people without a particular condition would not be too dissimilar from an age-matched group from the general population.  However, at the time I conducted my research this had not been formally assessed.  [33:  Fryback DG,  Dunham NC, Palta M, Hanmer J, Buechner JAB, Cherepanov D, Dasha BS, et al.  U.S. norms for six generic health related quality-of- life indexes from the national health measurement study Med Care 2007;45(12):1162-1170.]  [34:  Hanmer J, Lawrence W F, Anderson JP, Kaplan RM, Fryback DG. Report of nationally representative values for the noninstitutionalized US adult population for 7 health related quality-of-life scores. Medical Decision Making 2006;26(4),391-400.]  [35:  Department of Health. Long Term Conditions Compendium of Information. Third Edition. 2012 www.dh.gov.uk/longtermconditions http://www.dh.gov.uk/publications] 


[bookmark: _Ref432350557]While there is now a substantial volume of literature providing HSUVs associated with different health conditions, evidence from subgroups without the corresponding condition that can be used as the baseline is sparse.  At the time I undertook the research described in this thesis, many analysts continued to use a baseline of full health,[endnoteRef:36] and it was unclear what affect any differences in the ICER may have on policy decision informed by these evaluations.  [36:  Ward S, Lloyd Jones M, Pandor A, Holmes M, Ara R, Ryan A, Yeo W, Payne N. A systematic review and economic evaluation of statins for the prevention of coronary events Health Technology Assessment 2007 Vol 11 No. 14.] 


I conducted two pieces of research in this area (P3 and P4) to explore the ideas proposed by Fryback and Lawrence, which was the only published literature on this issue at that time.32  The first paper (P3) assessed the effect on the ICER using a case study in cardiovascular disease and compared ICERs obtained using three different baselines: full health, age-adjusted from the general population, and age-adjusted from people with no history of cardiovascular disease.  The second paper (P4) considered whether age-adjusted HSUVs from the general population were appropriate for the baseline when condition-specific evidence (i.e., evidence from people who did not have a particular condition) was not available.  The conditions examined included: arthritis, asthma, back problems, bladder problems/incontinence, bronchitis, cancer, cataract/poor eye sight/blindness, complaints of bowel/colon, complaints of teeth/mouth/tongue, diabetes including hyperglycemia, disorders of blood, hayfever, heart attack/angina, hypertension/high blood pressure, infectious and parasitic disease, kidney complaints, meniere's disease/ear complaints causing balance problems, mental handicap, mental illness/anxiety/depression/nerves, migraine/headaches, blood vessels/embolic, digestive complaints (stomach, liver, pancreas, bile ducts, small intestine duodenum, jejunum and ileum), ear complaints, endocrine/metabolic diseases, other eye complaints, other heart problems, other problems of bones/joints/muscles, other problems of nervous system, other respiratory complaints
piles/haemorrhoids including varicose veins in anus, poor hearing/deafness, reproductive system disorders, skin complaints, stomach ulcer/abdominal hernia/rupture, stroke/cerebral haemorrhage/cerebral thrombosis, tinnitus/noises in the ear, urinary tract infection,
varicose veins/phlebitis in lower extremities.

2.4.2	Estimating HSUVs for comorbidities
Decision analytic models can range from simple decision trees to more complex Markov models or discrete event simulations.15  As these models depict typical clinical pathways followed by patients in normal clinical practice, they can include numerous discrete health states representing the primary health condition and associated clinical events, and additional health states representing treatment related adverse events, or comorbidities (when an additional health condition is present at the same time as the primary condition).  

[bookmark: _Ref432333388]One example is when modelling the potential benefits of weight loss interventions.[endnoteRef:37]  Obesity is associated with an increased risk of cardiovascular events, type 2 diabetes, respiratory conditions, gallstones, and some cancers.  Pharmaceutical interventions for weight loss can have adverse side effects such as spontaneous diarrhoea or an increase in blood pressure levels (which in turn can lead to cardiovascular events).37  Consequently, in addition to the independent decrement on HSUVs associated with changes in body mass index,[endnoteRef:38] analysts need the HSUVs for health states representing combinations of the above conditions to model the full effects of weight changes.  While clinical studies provide evidence on the short-term HRQoL benefits of weight-loss,[endnoteRef:39]-[endnoteRef:40] due to relatively low incidence rates for comorbidities, they will not provide the corresponding evidence from, for example, patients who have diabetes and experience a cardiovascular event. [37:  R Ara, L Blake, L Gray, M Hernández, M Crowther, A Dunkley, F Warren, R Jackson, A Rees, M Stevenson et al. What is the clinical effectiveness and cost-effectiveness of using drugs in treating obese patients in primary care? A systematic review. Health Technology Assessment 2012; Vol. 16: No. 5.]  [38:  Kearns B, Ara R, Young T, Relton C. Association between body mass index and health related quality of life, and the impact of self-reported long-term conditions–cross-sectional study from the south Yorkshire cohort dataset. BMC public health 2013;13(1),1009.]  [39:  Slovacek L, Slovackova B, Pavlik V, Slanska I. Sibutramine - its impact on health related quality of life and depression among adult obese non-diabetic patients. Bratisl Lek Listy. 2009;110(8):496-9.]  [40:  Dennett SL. Boye KS, Yurgin NR. The Impact of Body Weight on Patient Utilities with or without Type 2 Diabetes: A Review of the Medical Literature. Value in health 2008;11;3:478-486.] 


Due to the aging population, the proportion of patients who have multiple coexisting chronic diseases (known as multimorbidity) is increasing.[endnoteRef:41] As a consequence, as health care providers shift from a paradigm of specialist single-disease care to a more holistic, generalist approach to care,[endnoteRef:42] the importance of taking the effect of multimorbidity on HSUVs used in decision analytic models will also increase. [41:  Fortin M, Stewart M, Poitras ME, Almirall J, Maddocks H. A systematic review of prevalence studies on multimorbidity: toward a more uniform methodology. The Annals of Family Medicine. 2012;10(2):142-51.]  [42:   Starfield B. Challenges to primary care from co- and multi-morbidity. Prim Health Care Res Dev. 2011;12(1):1-2.] 


[bookmark: _Ref432436810][bookmark: _Ref432355642][bookmark: _Ref432436832]When HSUVs from individuals with comorbidities are not available analysts frequently utilise mean HSUVs obtained from subgroups with individual conditions to estimate a mean HSUV for the two concurrent conditions.  Traditional techniques used to estimate these include: the minimum HSUV from the individual conditions in the comorbidity (which assumes no additional decrement associated with comorbidity), and the additive and multiplicative methods (which apply constant and relative effects, respectively).[endnoteRef:43]-[endnoteRef:44]  In 2010 a parametric model was proposed as another potential method.[endnoteRef:45]  The literature which compared the accuracy of the different methods at that time reported contradictory results and conclusions and there was no consensus on the most appropriate approach.  For example, while Fu stated: ‘utilities should not be multiplied’,42 Janssen stated: ‘don’t add, multiply’.43 [43:  Fu AZ, Kattan AW. Utilities Should Not Be Multiplied Evidence From the Preference-Based Scores in the United States Med Care 2008;46:984–990.]  [44:  Janssen M, Bonsel G. Estimating preference weights for chronic multimorbidity: Don’t add, multiply 25th Scientific Plenary Meeting of the EuroQol Group - Proceedings:23-40 © 2010 EuroQol Group. Available from www.euroqol.org (Accessed June 2015).]  [45:  Hu B, Fu AZ. Predicting utilities for joint health states: a general framework and a new nonparametric estimator. Medical Decision Making 2010;30(3):E29-39.] 


Using the three traditional techniques to estimate mean EQ-5D HSUVs for subgroups of individuals with two chronic conditions from the mean HSUVs from subgroups with just one of the chronic conditions, and comparing these with the corresponding observed mean HSUV for subgroups with both chronic conditions, the methods can produce substantially different scores (Figure 2).



Figure 2: Observed and estimated mean EQ-5D HSUVs 
[image: ]

The differences in estimated values could potentially bias results generated from decision analytic models using them and thus have implications for policy decisions informed by these analyses.  With no gold standard or formal recommendations, this gives analysts working for commercial sponsors the opportunity to select the methodology which produces the most favourable ICER for their product.  In addition, policy makers are not empowered to gauge the magnitude or direction of potential differences in ICERs generated using the alternative methods.

Three of the papers included in this thesis relate to estimating HSUVs for comorbidities.  Two (P5, P6) are applied studies which compare the accuracy of all three established methods together within the same dataset, and also explore the accuracy of de-novo parametric models obtained using SF-6D and EQ-5D evidence.  The third (P7) is a systematic review of the relevant evidence that was available at the time and sought to identify potential reasons for the differences in the published findings.

2.4.3	Predicting HSUVs from non-preference-based summary statistics 	
While the evidence base for preference-based utility scores is ever increasing, there is a multitude of HRQoL evidence in the public domain which is non-preference-based.  For example, at the time the research used in this thesis was conducted, it had been suggested the SF-36 questionnaire was the most widely used generic instrument in clinical trials,[endnoteRef:46]  and had been cited over 2,000 times between the period 1988 and 2000.[endnoteRef:47]  However, the weights required to generate the SF-6D preference-based utility scores were relatively new,9 and much of the published evidence from the SF-36 was in the form of a profile of health described by summary statistics for the eight health dimensions of the SF-36 and did not provide SF-6D HSUVs.  As access to individual patients’ responses to the questions in the SF-36 is required to calculate the SF-6D, this evidence could not be used to generate QALYs in decision analytic models. [46:  Scoggins JF, Patrick DL. The use of patient-reported outcomes instruments in registered clinical trials: evidence from ClinicalTrials. gov. Contemporary clinical trials. 2009 Jul 31;30(4):289-92.]  [47:  Turner-Bowker DM, Bartley PJ, Ware JE Jr. SF-36 Health Survey & “SF” Bibliography: Third Edition (1988-2000). Lincoln, RI: Quality Metric Incorporated. 2002.] 


In addition, in 2008, the updated NICE Methods Guide stated for the first time that: ‘The EQ-5D is the preferred measure of HRQL in adults‘.27  However, the EQ-5D was not widely used in clinical trials at that time, thus there was (and still is) a large number of conditions which could not be informed by existing evidence.  To address this, the Methods Guide stated: ‘When EQ-5D data are not available, methods can be used to estimate EQ-5D utility data by mapping (also known as ‘cross-walking’) EQ-5D utility data from other HRQL measures…’.27  

At the time I conducted the two applied studies (P1, P2) there were several published functions that could be used to predict HSUVs from alternative generic measures.  Three mapped from the two summary statistics of the SF12 onto US EQ-5D preference-based utility scores,[endnoteRef:48],[endnoteRef:49],[endnoteRef:50] three mapped from the SF-36 health dimensions onto the health utility index (HUI),[endnoteRef:51],[endnoteRef:52],[endnoteRef:53] one mapped from the two summary statistics of the SF12 onto the HUI,[endnoteRef:54] and one mapped from the SF-36 onto the Quality of Wellbeing Scale.[endnoteRef:55]  However, there was no existing function that could be used to predict EQ-5D (or SF-6D) HSUVs suitable for a UK setting without access to the corresponding individual patient level data. [48:  Lawrence WF, Fleishman JA. Predicting EuroQol EQ-5D preference scores from the SF-12 health survey in a nationally representative sample. MDM 2004;24(2):160-9.]  [49:  Sullivan PW, Mapping the EQ-5D index from the SF-12: US general population preferences in a nationally representative sample. MDM 2006;26(4);401-409.]  [50:  Franks P, Lubetkin EI, Gold MR, Tancredi DJ, Jia H. Mapping the SF-12 to the EuroQol EQ-5D in a national USsample. MDM 2004;24(3):247-54.]  [51:  Nichol MB, Sengupta N, Globe DR. Estimation of the Health Utility Index (HUI2) from the SF-36. MDM 2001;21:105-112.]  [52:  Bartmann BA, Rosen MJ, Bradham DD et al. Relationship between health status and utility measures in older claudicants. Qual Life Res 1998;7:67-73.]  [53:  Neumann PJ, Kuntz KM, Leon J et al. Health utilities and health status in Alzheimer’s disease: A cross-sectional study of subjects and caregivers. Washington DC: Abstract, In Meletiche DM, Doshi D, Lofland JG. Medical Outcomes Study Short Form 36: a possible source of utilities. Clinical Therapeutics 1999;21(11)2016-2026.]  [54:  Sengupta N, Nichol MB, Wu J, Globe D. Mapping the SF12 to the HUI3 and VAS in a managed care population. Med Care 2004;42:927-937.]  [55:  Fryback DG, Lawrence WF, Martin PA, Klein R, Klein BE. Predicting Quality of Well-Being scores from the SF-36. MDM 1997;17:1-9.] 


The final two papers used in this thesis provide functions that can be used to predict UK HSUVs (either the SF-6D (P1), or the EQ-5D (P2)) using summary statistics (i.e., mean and standard deviation) from the eight health dimensions of the SF-36.  Although a basic version of the analyses (the statistical regressions) described in one of these papers (P1) was used in an MSc dissertation (June 2006, University of Sheffield), the research was subsequently extended to ensure it would pass the rigorous peer-review process required for publication.  The expanded work included examining the predictive abilities of the models obtained in more detail through additional subgroup analyses across the ranges of the observed scores and through assessing their performance in additional out-of-sample data.

2.5	Articles used in thesis
This thesis describes published research conducted by the author that examines three technical issues frequently encountered by analysts when populating decision analytic models with HSUVs as introduced above and detailed in Figure 3.  The results are relevant for analysts and academics constructing and reviewing models, and for policy decision-makers who make use of the results generated from such models.

Figure 3:	 Technical issues explored in the papers included in this thesis





3.	BASELINE HSUVs
Paper P3. Ara R, Brazier J. Populating an economic model with health state utility values: moving toward better practice. Value in Health 2010; 13(5):509-518. (1st author of 2) [Citations 01/04/2017: GS 73; WoS 53]
The objective of this paper was to explore the potential effect on cost per QALY results when using alternative baselines and different methods to estimate HSUVs for comorbid chronic health conditions.  Data collected during the Health Survey for England (HSE) were used to derive mean EQ-5D HSUVs for respondents with a history of angina, heart attack, or stroke, subgrouped by time since event (previous 12 months, or prior to this).  Health states in an existing decision analytic model in cardiovascular disease (CVD) were modified to match the definitions of cardiovascular events used in the HSE.36  Results were generated from the model using three alternative sets of baseline HSUVs.  The first used a baseline of perfect health (EQ-5D equalled one) for the full lifetime horizon, the second used data from the general population (EQ-5D decreased by age), while the third used data from individuals who indicated they had no history of CVD (EQ-5D decreased by age but was marginally higher than that from the general population).

The ICERs generated using baseline HSUVs from individuals with no history of CVD were comparable with those obtained using evidence from the general population.  Using a constant baseline of full health gave substantially different results, and depending on the age of the cohort, the difference was large enough to produce different conclusions when assessed against a given cost per QAY threshold.  While the additive and multiplicative methods produced comparable results, the minimum method biased the results in favour of younger aged cohorts.

Paper P4. Ara R, Brazier J. Using health state utility values from the general population to approximate baselines in decision analytic models when condition-specific data are not available. Value in Health 2011, 14(4):539-545. (1st author of 2) [Citations 01/04/2017: GS 28; WoS 13]
The objective of this paper was to determine if HSUVs from the general population could be used as the baseline when condition-specific HSUVs (i.e., evidence from people who did not have a particular condition) were not available.  EQ-5D data (n = 41,174) collected during four consecutive rounds of the HSE were pooled.  The data were subgrouped by self-reported health condition using the HSE definitions for chronic health conditions (n = 39).  Mean EQ-5D scores from individuals who indicated they did not have a particular health condition (irrespective of comorbidities) were compared with corresponding scores obtained from: age-matched subgroups from the general population (irrespective of health condition), and age-matched subgroups who indicated they did have the particular condition (irrespective of comorbidities).  The 95% confidence intervals of the means were used to assess statistical significant differences.  These analyses were repeated using subgroups of individuals who indicated they had none of the defined health conditions, and the general population (irrespective of health condition), compared with subgroups who indicated they had just one particular health condition (and no other condition).  Exploratory analyses were also conducted to determine if the magnitude of decrements on HRQoL associated with particular conditions varied by age.

Comparing the subgroups who indicated they did not have a specific condition with age matched subgroups from the general population, the confidence intervals of the mean EQ-5D scores overlapped (P > 0.05) for all comparisons when looking at respondents who indicated they did not have a particular health condition (i.e., condition-specific baseline evidence) compared to the general population suggesting that HSUVs from the general population could be used if condition-specific evidence was not available.  However, when analysing the evidence for subgroups who had just one chronic condition, the confidence intervals did not overlap (P < 0.05), indicating there was a difference in these scores suggesting that general population evidence may not be appropriate for cohorts who have just one health condition.  The results of the exploratory analyses examining the absolute and relative decrements on HRQoL associated with particular conditions by age suggested the relationships were condition-specific with some decrements increasing by age (e.g., back problems), and others decreasing by age (e.g., hypertension).

Paper P7. Ara R, Wailoo A. Using health state utility values in models exploring the cost-effectiveness of health technologies. Value in Health 2012; 15(6):971–974. (1st author of 2) [Citations 01/10/2015: GS 26; WoS 16]
The objective of this paper was to provide an overview of the evidence base relating to the use of HSUVs in decision analytic models focussing on: appropriate baseline data, methods used to estimate HSUVs for comorbidities, and characterising uncertainty.  The evidence base in the area was extremely sparse and this study drew heavily on the papers used in this thesis.  The section on appropriate baselines includes the research and findings described in P3 and P4; the section on estimating HSUVs for comorbidities includes the results of the literature review described in P8 (which included papers P5 and P6).  This review was conducted to inform a NICE technical support document (TSD 12).29

3.1	Summary baseline
The preceding papers demonstrate the use of different baseline evidence could influence a policy decision based on a cost per QALY threshold (P3), provide condition-specific and general population EQ-5D evidence that may be used to represent the baseline HSUVS in future evaluations (P4), and highlight the lack of robust methodological research relating to this issue (P7).

Manuscript (P3) has been cited (GS 73; WoS 53) in numerous research papers relating to the use of individual versus aggregate data in cost-effectiveness analyses, and the use of utility evidence in cost-effectiveness models.  The general population HSUVs have been used as the baseline in multiple cost-effectiveness evaluations covering a broad range of health conditions.  The condition-specific (i.e., from individuals without particular health conditions) and general population evidence presented in P4 have been used numerous decision analytic models (GS 28, WoS 13) covering a broad range of health conditions and have been used to support authors findings in subsequent research projects.  Manuscript P7 has been cited in numerous papers (GS 26; WoS 16) with several authors reiterating the dearth of methodological research and absence of formal consensus on best practice in this area.



4.	ESTIMATING HSUVs FOR COMORBIDITIES
Paper P5. Ara R, Brazier J. Estimating health state utility values for comorbid health conditions using SF-6D data. Value in Health 2011, 14(5):740-745. (1st author of 2) [Citations 01/04/2017: GS 8; WoS 5]
This paper compared the accuracy of different methods used to estimate mean preference-based SF-6D scores for individuals with two comorbid chronic health conditions using mean HSUVs obtained from subgroups which had just one of the two health conditions in the corresponding comorbidity.  Data (n = 64,437) collected during five rounds of the Welsh Health Survey (WHS) were subgrouped by self-reported health condition.  The WHS data were used to derive a function to predict mean scores for the comorbid health conditions using ordinary least square regressions.  The observed mean SF-6D HSUVs for respondents with comorbid conditions were compared with mean scores estimated using the minimum, multiplicative, additive methods and scores predicted using the parametric model.  The HSUVs were estimated using a baseline of full health and using an age/condition adjusted baseline.

Overall, the scores predicted using the statistical regression model were more accurate than those estimated using the non-parametric methods.  The additive and multiplicative methods both under-estimated some of the mean SF-6D scores substantially while the minimum method over-estimated the majority of scores.  The minimum method was more accurate for higher scores while the multiplicative was more accurate for lower scores.  We concluded that although the results suggested the parametric model produced the most accurate scores, the model would require validation in additional data before it could be recommended for use.  Of the non-parametric methods, the multiplicative gave the most accurate results overall.

Paper P6. Ara R, Brazier J. Comparing EQ-5D scores for comorbid health conditions estimated using five different methods. Med Care 2012, 50(5):452-459. (1st author of 2) [Citations 01/04/2017: GS 14; WoS 8]
This paper compared the accuracy of different methods used to estimate mean EQ-5D HSUVs for individuals with two comorbid chronic health conditions using mean HSUVs obtained from subgroups which had just one of the two health conditions in the corresponding comorbid health condition.  Data (n = 41,174) collected during four rounds of the HSE were subgrouped by self-reported chronic health condition.  The HSE data were used to derive a function to predict mean HSUVs for the comorbid health conditions using ordinary least square regressions.  The observed mean EQ-5D HSUVs for respondents with comorbid conditions were compared with those estimated using the minimum, multiplicative, additive methods and those predicted using the parametric model.  The HSUVs were estimated using a baseline of full health and using an age/condition adjusted baseline.

The mean EQ-5D scores for the subgroups (n = 97) ranged from 0.36 to 0.92 and over two-thirds of the subgroups had mean EQ-5D HSUVs below 0.6.  Both the additive and minimum methods performed very poorly in the analyses although the additive results improved slightly when using baseline adjusted scores in the calculations.  Overall, the HSUVs predicted using the statistical regression model were more accurate than those estimated using the non-parametric methods.  The multiplicative method was recommended as the preferred methodology as although the results suggested that the parametric model gave the most accurate scores overall, the model requires validation in external data.

Paper P8. Ara R, Wailoo AJ. Estimating Health State Utility Values for Joint Health Conditions: A Conceptual Review and Critique of the Current Evidence. MDM 2013, 33(2):139-153. [Citations 01/04/2017: GS 6; WoS 3]
The object of this paper was to gain an understanding of potential reasons for differences in results and conclusions reported in studies assessing methods frequently used to estimate mean HSUVs for comorbidities.  This was achieved by conducting a detailed critical review of existing empirical literature.

We found the results and conclusions drawn by the authors were influenced by: which estimation methods were compared within the study, the range of HSUVs estimated (for example while the minimum method performed relatively well when estimating higher HSUVs it was far less accurate when estimating lower HSUVs), and the baselines used in the estimations (adjusting the baseline for age and/or condition rather than using a baseline of full health increased the accuracy of the HSUVs estimated).  The summary statistics used to assess the performance of the methods could also mask substantial and systematic errors when estimating mean HSUVs outside the interquartile range of the indexes (as shown for the minimum method).

While the review identified explanations for the differences in the results and conclusions reported in the literature, it was clear that additional research was required.  Based on the evidence available, we concluded that until the de novo parametric models (see P5 and P6) had been validated in additional data, the multiplicative method, using an adjusted baseline, was the preferred method as this appeared to estimate the most accurate HSUVs when assessed across the full preference-based indexes.

4.1	Summary comorbidities
The preceding papers compare both parametric methods and non-parametric models to estimate HSUVs for comorbidities using either SF-6D (P5) or EQ-5D (P6) evidence.  Paper P8 reviews the rather limited evidence base evaluating the alternative methods used to estimate HSUVs for comorbidities and offers explanations for the differences in results and conclusions reported in the literature (P8).  The majority of citations (P5: GS 8 WoS 5; P6: GS 14 WoS 8; P8: GS 6 WoS 3) use these papers as reference for the methodology used to estimate HSUVs for use in decision analytic models.



5.	PREDICTING HSUVs USING NON-PREFERENCE-BASED SUMMARY STATISTICS
P1. Ara R, Brazier J. Deriving an algorithm to convert the eight mean SF-36 dimension scores into a mean EQ-5D preference-based score from published studies (where patient level data are not available). Value in Health 2008, 11(7); 1131-1143. [Citations 01/04/2017: GS 100; WoS 67]
The objective of the research described in this paper was to obtain a function which could be used to predict mean cohort EQ-5D HSUVs using summary statistics from the eight health dimensions in the SF-36 measure.  Again, the rationale behind the research was to enable analysts to utilise published non-preference-based evidence in economic evaluations.  The relationship between EQ-5D HSUVs and the eight health dimensions of the SF-36 was explored using ordinary least square regressions using data pooled from 12 clinical studies (n = 6,350) covering a wide range of conditions.  The statistical models obtained were tested in out-of-sample data, using summary statistics published in 22 different studies.  These studies provided 63 sets of data which could be used to assess the ability of the models to predict mean cohort EQ-5D HSUVs, and 55 sets of data which could be used to assess the ability of the models to predict changes in mean EQ-5D HSUVs, either between study arms (n = 31) or over time (n = 24).

As with the next paper (P2), while the models tended to under-estimate individual values at the top of the EQ-5D index and over-estimate individual values at the bottom, the errors were comparable with those reported in the literature.  The errors at the extremes were less important at the aggregate level as shown in the out-of-sample validation exercise with 70% (50%) of the 63 study mean values accurate to within |0.05| (|0.025|) and 67% (46%) of the 55 mean incremental values accurate to within |0.05| (|0.025|).  

P2. Ara R, Brazier J. Predicting the SF-6D preference-based index using the eight mean SF-36 health dimension scores: estimating preference-based health-related utilities when patient level data are not available. Value in Health 2009, 12(2); 346-353. [Citations 01/04/2017: GS 47; WoS 30]
The objective of the research described in this paper was to obtain a function which could be used to predict a mean cohort SF-6D HSUV using summary statistics from the eight health dimensions in the SF-36 measure.  The rationale behind the research was to enable analysts to utilise published non-preference-based evidence in economic evaluations.  The relationship between SF-6D HSUVs and the eight health dimensions of the SF-36 was explored using ordinary least square regressions using data pooled from 15 clinical studies (n = 6,890) covering a wide range of conditions.  The statistical models obtained were tested in out-of-sample data, using summary statistics published in 10 different studies.  These studies provided 29 sets of data which could be used to assess the ability of the models to predict mean cohort SF-6D HSUVs, and 12 that could be used to examine the ability of the models to predict mean study arm HSUVs, and 8 sets of data which could be used to assess the ability of the models to predict changes in mean SF-6D HSUVs.

[bookmark: _Ref432843092]The HSUVs predicted using the results of the regressions were consistently accurate with over 90% of errors in the predicted individual values being smaller than |0.05|.  As had been observed in other studies, the models obtained tended to under-estimate individual scores at the top of the SF-6D index and over-estimate scores at the bottom.[endnoteRef:56]  While this would be problematic if predicting individual level HSUVs, the function was intended to be used to predict mean cohort HSUVs which are rarely at the extremes of the index.  The out-of-sample validation exercise demonstrated that the errors at the extremes of the index did not impact on the accuracy of the predicted mean cohort scores:  72% of the 29 mean scores were accurate to within |0.05| and 100% of the 20 incremental values were accurate to within |0.05|.   [56:  Brazier JE, Yang Y, Tsuchiya A, Rowen DL. A review of studies mapping (or cross walking) non-preference-based measures of health to generic preference-based measures. Eur J Health Econ. 2010 Apr;11(2):215-25.] 


5.1	Summary predicting HSUVs using summary statistics
The research described in the preceding papers provides analysts with a function to map between two of the most widely used HRQoL instruments (P1), and functions to predict mean SF-6D HSUVs (P2) or EQ-5D HSUVs (P1) using summary statistics from the SF-36 health profile.  These studies presented errors across the range of the index demonstrating that the use of summary statistics such as the mean error (or mean absolute error) generally used to assess performance of statistical regression models in HRQoL data can mask substantial errors at the extremes of the index.

Paper P2 (GS 47, WoS 30) has been cited to support methods and results of research in similar areas in 17 papers, the function has been used to predict HSUVs for use in 14 decision analytic models, and HSUVs in an additional 18 studies.  Paper P1 (GS 100 WoS 67) has been cited to support methods and results of research in similar areas in 28 papers, and the function has been used to predict HSUVs for use in 46 decision analytic models, and in an additional 27 studies.

6.	DISCUSSION
This thesis includes eight first author peer reviewed journal articles describing research in an important yet under-developed area of health economics.  My research provides analysts with evidence that can be used to inform baseline HSUVs in economic evaluations, recommendations on methods to estimate HSUVs for comorbidities, a mechanism to map between two frequently used HRQoL measures (EQ-5D and SF-6D) using individual level patient data, and showed how well these functions estimate mean HSUVs and can be used to generate HSUVs from non-preference-based summary mean scores statistics.  The research shows that the lack of consensus on methodologies used can produce inconsistencies in ICERs generated from decision analytic models which could undermine policy decision-making based on cost per QALY thresholds.  The literature reviews and the comments from peer reviewers (see below) indicate there was a dearth of robust methodological research in this area and my research has contributed to the evidence base and brought several previously overlooked issues into the public domain.

[bookmark: _Ref433797933]Formal recommendations and guidelines for best practice when using HSUVs in decision analytic models would be a useful resource for analysts, reviewers and policy decision-makers alike.  However, these would be best informed by additional methodological research exploring the issues I have highlighted.  In particular, the uncertainty surrounding the HSUVs used in the analyses should be utilised in future research in these areas.  In addition, the EQ-5D questionnaire has been modified recently to include five possible responses to each of the individual five questions.[endnoteRef:57]  Once the preference-based weights for this version (EQ-5D-5L) have been agreed and are used widely, all the EQ-5D-3L analyses will require updating.  This includes the condition-specific and the age-adjusted general population baseline scores (P4), the comparison of the methods used to estimate HSUVs for comorbidities (P6), the comorbidities parametric model (P6), and the mapping function used to generate EQ-5D HSUVs from the eight SF-36 health dimensions (P1). [57:  http://www.euroqol.org] 


There are limitations with the research and data used in papers included in this thesis, and there are areas where additional research would also be beneficial, as discussed below.

6.1	Baseline HSUVs
6.1.1	Contribution
While Fryback and Lawrence presented a convincing argument against using a baseline of full health in decision analytic models, no-one had formally explored the effect on the ICER.32  Similarly, while they proposed that evidence from the general population might suffice as the baseline when condition-specific HSUVs were not available, again no-one had formally assessed this before I undertook the research described in this thesis. 

The case-study exploring alternative baselines in a decision analytic model (P3), showed that ICERs obtained using a baseline of full health (EQ-5D = 1) are unlikely to be comparable to those obtained using age-adjusted condition or general population evidence, and that the differences in ICERs can undermine policy decisions based on cost per QALY thresholds.  The second paper showed that in many cases HSUVs from the general population are not dissimilar to those from individuals without particular health conditions (P4).  This paper provides analysts with EQ-5D HSUVs that can be used as the baseline in future evaluations.  While there are now multiple catalogues and databases providing mean HSUVs obtained from people with particular conditions,[endnoteRef:58],[endnoteRef:59],[endnoteRef:60] this second paper appears to be unique in presenting evidence from people without particular conditions, and in comparing these with those obtained from age-matched cohorts from the general population.  An evidence review group (ERG) stated: “The ERG feels that the manufacturer has used the best evidence available to them ….”, when critiquing the use of the general population HSUVs reported in this article as the baseline in a recent NICE submission.[endnoteRef:61] [58:  Tengs TO, Wallace A. One thousand health related quality-of-life estimates. Medical Care, 2000:583-637.]  [59:  Sullivan PW, Ghushchyan V. Preference-based EQ-5D index scores for chronic conditions in the United States. Medical Decision Making 2006;26(4),410-420.]  [60:  Saarni SI, Härkänen T, Sintonen H, Suvisaari J, Koskinen S, Aromaa A, Lönnqvist J. The impact of 29 chronic conditions on health related quality of life: a general population survey in Finland using 15D and EQ-5D. Quality of Life Research 2006;15(8),1403-1414.]  [61:  Craig D, O’Connor J, Rodgers M, Rodriguez-Lopez R, Smith A, Woolacott N. Evidence Review Group’s Report Ustekinumab for treating active and progressive psoriatic arthritis. 2003.] 


6.1.2	Further research
There are limitations with the data used in these two studies.  The evidence on presence of chronic conditions was self-reported in the HSE and thus is subject to bias if respondents failed to indicate they had a condition or reported an incorrect self-diagnosis.  In addition, the HSE excludes members of the general population who are hospitalised or who are in residential or care-homes, and it is probable that on average these people will have a lower HRQoL than the respondents in the survey.  While it is not possible to determine the magnitude of effect this exclusion might have on my results, it is likely that the average HRQoL for the older aged subgroups would be slightly lower than that observed in the HSE.  While it is thought unlikely that this would change the conclusions reported in these two papers, there is substantial scope to extend the analyses relating to baseline evidence from additional datasets.  In particular, the use of clinical diagnoses (as opposed to self-reported), smaller diagnostic categories (such as rheumatoid arthritis) as opposed to the broader categories (such as ‘arthritis/rheumatism/fibrositis’) used in both the HSE and WHS, some measure of severity and time since either diagnosis (in progressive conditions such as psoriatic arthritis) or discrete event (such as myocardial infarctions or fractures in people with either cardiovascular disease or osteoporosis, respectively).  It is thought unlikely that any existing dataset satisfies all these requirements for all conditions, and while condition specific datasets are likely to include clinical diagnoses and possibly variables such as duration of the condition (time since diagnosis) and a measure of severity, these datasets will not have evidence from the general population for comparison. 

The research in the baseline papers (P4, P3) was limited to EQ-5D evidence with HSUVs generated using UK preference-weights.  Accordingly, the HSUVs reported in paper P4 are only suitable for use in a decision analytic model with a UK perspective.  In addition, it is not known if the results and conclusions would generalise when using alternative preference-based measures.  Similarly, the analyses described in the CVD case study should ideally be explored in additional health conditions using baseline HSUVs obtained using alternative preference-based measures to determine if the results and conclusions are specific to the CVD model and EQ-5D data.

Exploratory analyses examining the absolute and relative effect on HRQoL associated with specific health conditions compared to age-adjusted HRQoL observed in the general population showed either negative or positive relationships with age that varied by condition (P4).  These results are indicative only due to the design of the analyses and the nature of the data used.  Rather than looking at the relationship with age, a more appropriate question might be to determine if decrements remain constant, increase or decrease over time since diagnosis.  However, these questions are best answered using longitudinal data from people with and without particular conditions which includes additional variables such as time since diagnosis or severity rather than cross-sectional evidence such as the HSE.

6.2	Estimating HSUVs for comorbidities
6.2.2	Contribution
HSUVs for comorbidities should ideally be obtained from people with the particular combination of conditions of interest and in theory it is possible to design a study which would include every possible combination.  Unfortunately, the resource implications associated with collecting and analysing these data is prohibitive, and at least in the foreseeable future analysts will need to utilise alternative evidence.  Although sparse, the existing literature appraising methods used to estimate HSUVs for comorbidities was inconclusive with authors advocating different methods as the preferred technique.42-43  By examining errors in estimated HSUVs using subgroups stratified by the level of observed EQ-5D, I clearly demonstrated that the accuracy of the alternative methods varied across the range of the indexes (P6, P8).  For example, the minimum method performs much more accurately when used on two values near the top of the index and the additive performs very poorly when estimating values near the bottom of the index.  My research also showed the alternative methods commonly used to estimate HSUVs can produce very different values for the same health state (P5, P6), and the case study demonstrated that in CVD, the minimum method biased results in favour of younger cohorts (P1).

6.2.3	Further research
The literature review (P8) identified there was a substantial lack of robust methodological research in this area and while my papers add to the evidence base, the majority of published evidence is limited to estimating HSUVs for just two comorbidities.  In practice, many people, particularly the elderly and more deprived groups, have two or more concurrent chronic health conditions (i.e. multi-morbidities).[endnoteRef:62],[endnoteRef:63]  The limitations highlighted earlier relating to the omission of people in hospital and residential homes from the community based self-reported datasets apply to the comorbidities research too, as one would expect these people to be more likely to have two or more chronic conditions than those in the general population.  The inclusion of this subgroup in a dataset would provide the opportunity to extend the research to far more conditions and different combinations of comorbidities, thus increasing the generalizability of results. [62:  Department of Health (2012). Report. Long-term conditions compendium of Information: 3rd edition.]  [63:  Ward BW, Schiller JS, Goodman RA. Multiple chronic conditions among US adults: a 2012 update. Prev Chronic Dis. 2014;11:130389. DOI: http://dx.doi.org/10.5888/pcd11.130389.] 


Due to the survey designs, only chronic conditions were identified and used in my research as acute events such as migraines, gastroenteritis or fractures were not identified in these surveys.  It is not known whether the decrement associated with acute events combined with the decrement associated with a chronic condition would have a similar relationship on HSUVs as when combining the decrements associated with two chronic conditions.  This issue might be relevant for example, when assessing the cost-effectiveness of interventions for chronic conditions which produce short-term side effects such as sweating or vision changes induced by prednisone in patients with Crohn’s disease and asthma.[endnoteRef:64] [64:  Colombel JF, Loftus EV, Tremaine WJ, Egan LJ, Harmsen WS, Schleck CD et al. The safety profile of infliximab in patients with Crohn’s disease: the Mayo clinic experience in 500 patients. Gastroenterology 2004;126(1),19-31.] 


In addition, there are occasions, albeit relatively rarely, where the mean HSUV is below zero.  In both instances the additive and multiplicative methods could produce values outside the range of the preference-base index.  Examples might be when combining three relatively large decrements using the additive method, or when a negative score is used in the multiplicative method.  It is unclear which of the methods are best suited to estimating HSUVs in these cases and this is an area where additional research is required.

[bookmark: _Ref432401261]The current methods concentrate on the effect on HRQoL associated with conditions as described by the overall preference-based index.  It is possible that the combined effect of two concurrent physical conditions (e.g., rheumatoid arthritis and cancer) would differ from the combined effect of two concurrent mental conditions (e.g., schizophrenia and depression).  There may be merit in examining the HRQoL decrements associated with comorbidities in terms of the combined effects on the individual health dimensions (as opposed to the combined effect on overall HRQoL).  This could be achieved through the use of logistic regressions using the responses for the health dimensions (known as response mapping in the literature).[endnoteRef:65]  In this case, the dependent variable(s) would be the probability of responses to the individual dimension levels for the comorbidity and the explanatory variable(s) would be the responses to the individual dimension levels for the individual conditions. [65:  Ara R, Kearns B, Brazier JE, van Hout B. Predicting preference-based utility values using partial proportional odds models. BMC Res Notes 2014;7(1)438.] 


6.3	Predicting HSUVs using non-preference-based summary statistics 
6.3.1	Contribution
Mapping between instruments is always second best and individual patient level data should be used to generate the appropriate HSUVs whenever possible.  However, analysts who conduct economic evaluations generally do not have access to patient level data, and frequently rely on published summary statistics.  In some instances the specific HSUV evidence required to satisfy reimbursement authorities either may not have been collected or is not in the public domain.  In these occasions statistical regressions models can produce very close approximations suitable for use in decision analytic models, and these articles showed this is particularly true when predicting mean cohort level scores rather than individual scores (P1, P2).

[bookmark: _Ref432401655]The research described in the two mapping studies used pooled evidence from a convenience sample of datasets available in house and covered a broad range of health conditions (P1, P2).  The observed individual HSUVs covered the full ranges of the two indexes and the mean scores for the individual studies ranged from 0.36 to 0.79 for the EQ-5D (0.59 to 0.76 for the SF-6D).  In addition to assessing the predictive abilities of the models in terms of residuals for the study subgroups, we examined residuals when subgrouping by age and gender, and examined the pattern across observed HSUVs.  The models’ abilities to predict mean scores in out-of-sample subgroups were also assessed in terms of the magnitude of error when predicting both mean scores and incremental mean scores  (observed mean scores: 0.03 to 0.87 for the EQ-5D, 0.55 to 0.79 for the SF-6D; observed mean incremental scores: 0.01 to 0.56 for the EQ-5D, 0.001 to 0.15 for the SF-6D).  This validation exercise has been cited as an appropriate approach for validating statistical regression models where the results are to be used in future decision analytic models: “Further validation in patient samples would be appropriate as CEA is often concerned with very ill populations. Such a validation could closely mimic the compilation and analysis of health condition-based datasets presented by Ara and Brazier” (P1, P2).[endnoteRef:66]  Presenting thorough residual analyses as was done in papers P1 and P2, was also advocated in a recent DSU methodological paper on good practice for the use of statistical regression models in economic evaluations.[endnoteRef:67] [66:  Hanmer J. Predicting an SF-6D preference-based score using MCS and PCS scores from the SF-12 or SF-36. Value in Health 2009 12(6)958-966.]  [67:  Kearns B, Ara R, Wailoo A. A review of the use of statistical regression models to Inform cost effectiveness analyses within the NICE Technology appraisals programme. Available from: http://www.nicedsu.org.uk/ Accessed August 2015.] 


6.3.2	Further research
One limitation with this research is that the models reported can only be used to generate HSUVs for use in the UK setting as the coefficients for alternative preference-based measures or weights from other countries would differ from those obtained for the UK scores.  In addition, the EQ-5D questionnaire has been modified recently to include five possible responses to each of the individual five questions.57  Once the preference-based weights for this version (EQ-5D-5L) are available, a new model would be required to predict these scores from the eight SF-36 health dimensions.

[bookmark: _Ref432400374]The regression methodology used in the two studies is also a potential limitation.  HSUVs are discrete, are bound by the constraints of the indexes (at 1 for full health and on the left by the worst imaginable health state), and are rarely normally distributed.  EQ-5D data in particular exhibits gaps between possible tariff values, has a long negative skew, and generally has distinct biomodal or trimodal distributions with a substantial mass at full health and additional smaller masses centred around approximately 0.7 and 0.2.[endnoteRef:68]  Due to the underlying distributions of the dependent variable, ordinary least square regressions could produce biased estimates.  The models generated using ordinary least square regressions could predict values outside the bounds of the tariff, and the systematic pattern in the errors (underpredicting at the top end and overpredicting at the bottom end, as illustrated in P1 and P2), could be problematic when used in external applications and particularly where individual patient level HSUVs are required rather than mean cohort values. [68:  Hernández Alava M, Wailoo A, Ara R.  Tails from the peak district: Adjusted Limited Dependent Variable Mixture Models of EQ-5D Health State Utility Values. Value in Health 2012;15(3):550-561.] 


[bookmark: _Ref432527203]However, simple additive models have been found to perform almost as well as more complex models in terms of predicting mean scores when assessed in terms of the magnitude of errors in the mean scores.56 Indeed, the validation exercise undertaken in papers P1 and P2, show the “equations are reasonably accurate at predicting out-of-sample incremental changes”,66 and justification for use in a NICE Clinical Guideline on Opioids in palliative care was stated as “This particular mapping equation was chosen because it performed effectively in the validation exercise carried out by the authors (whereby mean statistics from published studies were used to validate the results (P1)).[endnoteRef:69]  However, it is acknowledged that any systematic errors at the extremes will be problematic if the models are used to predict HSUVs for individuals.   [69:  National Collaborating Centre for Cancer (UK). Opioids in Palliative Care: Safe and Effective Prescribing of Strong Opioids for Pain in Palliative Care of Adults. Cardiff (UK): National Collaborating Centre for Cancer (UK); 2012 May. (NICE Clinical Guidelines, No. 140.)  Available from: ncbi.nlm.nih.go.] 


In more recent research, we have shown that alternative approaches such as: adjusted limited dependent variable mixture models,68 and partial proportional odds models (mapping onto the original responses to the EQ-5D questionnaire as opposed to the preference-based scores),65 are better able to capture the features observed in individual level EQ-5D data.  The latter has an additional benefit in that the statistical models obtained are not limited to one particular set of preference-weights and a model obtained using UK EQ-5D data could be used together with US preference-weights to generate scores for the US setting.  Ultimately the choice of methodology or model structure will depend on the distribution of the data and how the results are intended to be used.65  

6.4	Impact of research
6.4.1	Comments received from peer reviewers
My research appears to have been well received by the community as evidenced by comments received during the peer reviewing process (Table 1) relating to the interesting/important topics explored (P2, P3, P4, P5, P6, P7, P8), the contribution to the evidence base (P2, P3, P4, P6 ), and the lack of methodological research and guidelines in the area (P3, P7).

In addition to positive comments from reviewers, papers P4 and P6 were selected by the editors of the journal (Value in Health) to appear in ISPOR’s press Release Program: ‘we anticipate this issue and your article will receive enthusiastic attention from our readers and the scientific community’.  Paper P3 ultimately came second when shortlisted by co-editors to be awarded Value in Health Paper of the Year (where co-editors nominate the best paper which: ‘represent(s) a major contribution to the field of pharmacoeconomics and outcomes research [including clinical, economic, and patient-reported (health-related quality of life) outcomes] or its use in health care decision-making…’ from those for which they have acted as co-editor in the preceding 12 months).[endnoteRef:70] [70:  https://www.ispor.org/awards/value-in-health-paper-of-the-year.asp] 




Table 1: 	Peer reviewers’ comments
	Paper
	PR
	Peer reviewer comments

	P1
	
	Comments lost over time due to changes in email providers and storage systems.

	P2
	1
	Very interesting and informative study.

	
	2
	The present study may have a significant contribution to the field of economic evaluations in health care, by adding another potential source of utility weights.
One of the most important applications of this study is its potential ability to predict incremental utilities between cohorts. This is essential for cost-effectiveness analyses.

	P3
	3
	The paper deals with interesting and important questions.
The result of the analysis shows that the choice of method particularly regarding baseline utility, but also co-morbidity, may have an impact on the ICER.
The paper gives a thorough exposition of how utilities are incorporated into a decision analytic model can affect the results.
As the authors point out there is an increasing need for guidance on how to populate models with data in a reliable and consistent manner and that there is a lack of such guidelines regarding QALY-weights. 
Therefore I really find this study to be of great importance and to be a good addition to the exciting literature. 
I think that this paper would clearly point out the importance of how utility weights are handled in a model and why decision-makes therefore should try to produce guidelines on the matter. 

	P4
	1
	This is an interesting manuscript that provides useful data with respect to age-specific HRQOL weights from a general population sample that are also stratified by prevalence of up to 39 existing conditions

	
	2
	This is a well written and thought out paper which attempts to addresses a significant gap in the literature: which baseline HRQoL scores to use in decision models.
The analysis aside I believe that the thoroughness of the presentation alone, EQ5D values and CIs for 39 different health conditions with and without co-morbidities by age group, warrants its publication.
It will surely act as a useful reference source for researchers undertaking decision analytic research.

	P5
	1
	This is an interesting and important topic.

	
	2
	A very relevant manuscript and a topic that is important to discuss in the literature - so thank you for preparing this….. …. A good paper that covers an important topic - thanks again.

	P6
	1
	The topic of this paper is important. 

	
	3
	In this well written paper the authors are right to state that the methodology that undermines the oft used QALY is of great importance to researchers, administrators and policy makers. In both my own research, and that of my colleagues, and I can think of several times when the problem of how to model common co-morbidities was resigned to the 'caveat' box, for mention in the discussion. The interaction of different pair-wise combinations of co-morbidities is a very interesting question that is difficult to examine with the sample size of most surveys, and the ability to extrapolate predictions of the health state for certain pair-wise combinations, rather than the looking at the burden of each condition individually with a coefficient to explain the effect of any co-morb would be a fantastic tool.
I thought the paper was well thought out and written.

	P7
	3
	The subject matter of this paper, namely how to incorporate utilities in cost-utility models, is important and of wide interest.
Furthermore, this paper is particularly useful because, as the authors state, there is very little literature on this subject.  Indeed, I can see no work being done in this area by ISPOR in their Good Outcomes Research Practices: http://www.ispor.org/workpaper/practices_index.asp, which is rather surprising.

	P8
	1
	This is a well written, insightful and mostly comprehensive review of existing literature on estimating health state utility values for comorbid health states.  It is an important topic and the author has done a good job synthesizing a lot of evidence.  

	PR: Peer reviewer



6.4.2	How the research has been used
The value of my research to the academic and policy decision-making communities is evident from the number of citations (approximately 280 individual articles).  The condition-specific and general population HSUVs, and the mapping functions, have been used to inform the HSUVs used in 146 different decision analytic models.  The mapping functions have also been used to predict HSUVs in an additional 37 articles.  The balance used the reported methods and results to support or compare with their own research respectively.  My work has been presented at a number of key international conferences aimed at policy makers and practitioners (listed in Appendix).  

In addition to the citations above, my research has been used to inform a NICE TSD,29 a book chapter,[endnoteRef:71] lectures on a post-graduate degree course, and a short course at the University of Sheffield (Figure 4).  I was invited to present my research to technical analysts employed at NICE (2010) and was invited to take part as an expert in the NICE Methods Review Workshops on Measuring and Valuing Health Effects which were conducted to inform and update the NICE Methods Guide in 2007 and 2011.   [71:   (Using Health State Utility Values in Cost-Effectiveness Modeling) within Encyclopedia of Health Economics (1st Edition) 2014 Available from: www.elsevier.com/books/encyclopedia-of-health-economics/culyer/978-0-12-375678-7.] 



Figure 4: 	How the research has been used




7.	CONCLUDING COMMENTS
The lack of methodological research and technical guidelines relating to using HSUVs in decision analytic models is frustrating for analysts constructing cost-effectiveness models and policy makers/academics reviewing the methods used, and enables analysts working for commercial sponsors the opportunity to select the methodology which produces the most favourable result.  Discrepancies such as those explored within this thesis can lead to sub-optimal allocation of resources which undermines the aim for consistent decision-making and the rationale behind the QALY.

The collection of work presented in this thesis demonstrates a substantial contribution to the evidence base in an underdeveloped area of health economics.  The work represents my efforts to pursue best available evidence and the studies demonstrate there is more to comparability and consistency than the particular preference-based measure used in decision analytic models.  The publications have been well received as demonstrated by the citations and other accolades, and the use in guidance development.  The work extends beyond academia and the proposed methodologies, functions and condition-specific evidence are widely used in papers describing methodological research and economic submissions used to inform policy decision-making in health care.

In summary, this thesis provides a major contribution towards developing a consistent set of methods using HSUVs in decision analytic models in health care.  
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ABSTRACT  
Objective: The objective of the study was to derive a method to predict a mean cohort EQ-5D preference-based index score using published mean statistics of the eight dimension scores describing the SF-36 health profile.

Methods: Ordinary least square regressions models are derived using patient level data (n = 6350) collected during 12 clinical studies.  Models were compared for goodness of fit using standard techniques such as variance explained, the magnitude of errors in predicted values and the proportion of values within the minimal important difference (MID) of the EQ-5D.  Predictive abilities were also compared using summary statistics from both within-sample subgroups and published studies.

Results: The models obtained explained more than 56% of the variance in the EQ-5D scores.  The mean predicted EQ-5D score was correct to within two decimal places for all models and the absolute error for the individual predicted values was approximately 0.13.  Using summary statistics to predict within-sample subgroup mean EQ-5D scores, the mean errors (mean absolute errors) ranged from 0.021 to 0.077 (0.045 to 0.083).  These statistics for the out-of-sample published datasets ranged from 0.048 to 0.099 (0.064 to 0.010).

Conclusion: The models provide researchers with a mechanism to estimate EQ-5D utility data from published mean dimension scores. This research is unique in that it uses mean statistics from published studies to validate the results. While further research is required to validate the results in additional health conditions, the algorithms can be used to derive additional preference-based measures for use in economic analyses.


Keywords: EQ-5D, utility, quality of life, SF-36 

Running title: Estimating a mean EQ-5D score from the SF-36





INTRODUCTION
The quality adjusted life-year (QALY) provides a common metric by which the length of survival is combined with quality of life [1].  It is advocated as the preferred measure of benefit for economic evaluations in health care because the results can be used by decision-makers to prioritise and allocate scarce health care resources [2].  To facilitate comparisons across economic evaluations, policy decision-makers such as the National Institute of Health and Clinical Excellence (NICE) recommend a generic preference-based measure to value health-related quality of life (HRQoL), and NICE suggests the EQ-5D [2].  Nevertheless, there are three pivotal problems associated with the current recommendations.  First, although HRQoL literature continues to grow, there are still a large number of health conditions which cannot be informed by current evidence.  Second, a great deal of the published data describes HRQoL in terms of health profiles described by either disease specific questionnaires or non-preference-based instruments.  Third, the published preference-based evidence may be derived from different instruments.

The underlying concepts of the preference-based indexes may be similar in that a score of one represents perfect health; zero represents death; and negative values represent health states considered worse than death.  Nevertheless, fundamental differences, such as possible range, sensitivity to changes, and different preference-based weights, can produce wide variances in the scores produced by the different instruments for the same health state [3].  The choice of instrument used could have a substantial impact on policy decisions.

The most frequently used generic HRQoL questionnaires are the SF-36, EQ-5D and Health Utility Index (HUI) [4-6].  While all have algorithms which can be used to derive general population weighted preference-based utility indexes, these require access to individual patient level data [7-9].  In addition, as the number of preference-based instruments grows, it becomes increasingly important to be able to translate from one index to another.  Current literature provides a limited volume of evidence which can be used to map from generic questionnaires to alternative preference-based utility indexes.

Older studies [10-13] concentrated on mapping the eight SF-36 dimension scores onto the preference-based HUI2 [7] or the Quality of Well-Being Scale [14]. The majority of recent literature presents relationships between the two SF-12 summary scores [15] and the HUI3 [16-18] or the EQ-5D [17,19-22].  To our knowledge, there is no evidence which can be used to translate the SF-36 dimension scores onto the preference-based EQ-5D utility index.

The objective of the current study was to derive a method to predict a mean cohort EQ-5D preference-based index score using published mean statistics from the eight dimension scores of the SF-36 health profile.  The results will expand the volume of published HRQoL evidence that can be used in economic evaluations and will facilitate comparability of the cost-effectiveness ratios generated using different preference-based measures.  This research is unique in that it is the first publication to examine the relationship between the full SF-36 health profile and the EQ-5D preference-based measure.  It is also the first study to validate the results of the research using mean statistics obtained from the literature.

QOL INSTRUMENTS
The SF-36
The SF-36 is a generic health questionnaire which contains 36 items [5].  The health profile generated from the responses covers eight dimensions: physical functioning (PF), role limitations due to physical problems (RP), role limitations due to emotional problems (RE), pain (BP), general health perception (GH), vitality (VT), mental health (MH) and social function (SF).  With each dimension consisting of several items coded 1, 2 or 3, the responses are summed to produce a raw dimension score (10-30) which is transformed onto a 0-100 scale where 0 and 100 represent severe impairment and no impairment, respectively.

The EQ-5D
The weights for the EQ-5D preference-based index used in the current study were obtained from the UK general public using the time trade-off method [9].  The health states valued were sampled from the 243 possible health states derived from the three levels (no problems, some problems, extreme problems/unable) of each of the five dimensions (mobility, selfcare, usual activities, pain or discomfort, and anxiety or depression) covered in the questionnaire.  The health state valuations range from no problems on any dimension (EQ-5D = 1.0) to most severe impairment on all five (EQ-5D = -0.594).

DATASETS
Datasets used in the regressions and within-sample validation
Individual patient level data (n = 6,350) pooled from 12 studies used in previous research in the School of Health and Related Research was used to explore the relationship between the dimension scores and the utility index.  Collected during observational studies and randomised controlled trials, the data covers a wide range of health conditions including asthma [23], chest pain [24], health older women [25], chronic obstructive pulmonary disease [26], menopausal women [27], irritable bowel syndrome [28], trauma [29], lower back pain [30], leg reconstruction [31], leg ulcers [32], osteoarthritis [33], and varicose veins [34].

Out-of-sample datasets used to validate the models
Out-of-sample published datasets used to validate the models were identified by searching the MEDLINE database.  Studies were retained if they reported the following statistics: 1) the mean scores for the eight health dimensions derived from the SF-36 questionnaire and 2) the mean EQ-5D preference-based utility score derived from the UK population weights.

METHODS
While the objective is to estimate mean EQ-5D scores using published statistics of the SF-36 health profile, the regressions are constructed from individual patient level data.

Statistical methods
The EQ-5D index is regressed onto the eight health dimension scores using ordinary least square (OLS) regressions.  The general model is defined as:
	EQ = + 1xi + 2di +3ri + 
whereby EQ represents the EQ-5D preference-based index, x represents the vector of main effects (PF, RP, BP, GH, VT, SF, RE, MH), d represents the vector of demographs (age and sex), r represents the vector of main effect squares, i represents individual respondents and  represents the stochastic error term of the regression (the residual).

The models were constructed in STATA (version 10, StataCorp., College Station, TX) using backward and forward eliminations to select significant squared terms.  White’s robust standard errors were used to minimise the likelihood of incorrect inferences from the statistical tests [35].  Colinearity was assessed using the variance inflation factor (VIF).  A suggested rule of thumb is that correlations must be stronger than │0.70│to be a problem [36].  However, statistical theory suggests multicolinearity is only likely to become a problem if there is perfect correlation between independent variables (IVs) in conjunction with a small number of observations or a large variance in the IVs [37].  The Cook-Weisenberg and the Shapiro-Wilk test were used to detect heteroscedasticity and normality in the residuals, respectively.

Comparing models
Goodness of fit for models obtained was assessed by examining scatter plots of the observed versus the predicted indexes; the range of predicted values, the mean error (ME), mean absolute error (MAE), root mean squared errors (RMSE) and the number of errors greater than 0.05, (0.025, 0.01) in absolute values.  The R2 statistic quantifies the explanatory power of the model i.e., how much of the variability in the dependent variable is captured by the predictors used.  The models’ predictive abilities were also compared using standard descriptive statistics (mean, SD, max, min) for the individual estimates.  The minimal important difference (MID), defined as the smallest difference in score which patients perceive as beneficial, was also used [38].  Because the objective of the study is to predict mean preference-based measures using summary statistics, cohort mean EQ-5D scores were generated for both within-sample subgroups and out-of-sample datasets and the results were compared using the statistics described above.

RESULTS
Within-sample data
Of the total 6,350 individual respondents, 40% were male and the mean age was 52 years.  The EQ-5D preference-based utility scores were negatively skewed (skew = -1.4) with mean 0.71 (SD = 0.28) and median 0.76.  The data covered the maximum possible range (-0.59 to 1) with 1,512 (24%) individuals scoring the maximum value (EQ-5D = 1) and 241 (4%) rating their HRQoL as worse than death (EQ-5D < 0).  All eight dimension scores were significantly correlated (Table 1) with the EQ-5D, with PF having the strongest relationship (Pearson’s correlation 0.65, P < 0.001).

When grouped by condition (Table 1), the mean EQ-5D scores ranged from 0.36 for the cohort with osteoarthritis to 0.79 for the cohort with chest pain.  When using the subgroups’ mean scores, the correlations between the health dimensions MH, VT, GH, and the EQ-5D index were not statistically significant (P > 0.05).  

Table 1: Summary statistics of the datasets used in the regressions

Out-of-sample datasets
A total of 22 published studies (Table 2) provide 63 sets of data, which can be used to predict mean EQ-5D scores using the eight mean health dimension scores.  Eleven studies provided datasets (n = 31) that can be used to compare incremental scores between two or more subgroups and 11 studies provided datasets (n = 24) that can be used to predict changes over time.  The studies covered a wide range of health conditions including Anderson Fabry disease, asthma, coronary heart disease (CHD), claudication, dialysis, depression, diabetes, dry eye, femoral neck fracture, focal dystonia, haemophilia, hip replacements, liver transplant, lower back pain, osteoporosis, pain, psoriasis, renal transplantation, stroke and walking impairment.  Further details of the studies are available from the authors on request.

The mean EQ-5D scores ranged from 0.03 for a cohort (n = 11) with central neuropathic pain to 0.87 for a cohort (n = 48) with dry eye.  The incremental difference between different cohorts within the same study ranged from 0.01 for individuals enrolled in randomised controlled trials (RCTs) to 0.56 for diabetics subgrouped by self-assessment using the neuropathy total symptom scores (six domains).

Table 2: Summary statistics of the out-of-sample datasets used in validation

Goodness of fit and accuracy of models
Table 3 shows the results of the individual regression analyses using the eight health dimension scores and their squares.  The explanatory power of the model using just the eight main effects (EQ(1)) was 56% and the MAE and RMSE for the individual predictions were 0.134 and 0.183, respectively.  The eight main effects were all statistically significant (P < 0.05) predictors.  While the majority of the coefficients are positive demonstrating the positive relationship with HRQoL, the coefficients for the RP and VT variables are negative.  Although this might suggest colinearity with other variables, the VIF were small at 2.34 and 2.39.

Plotting the residuals, observed and predicted EQ-5D data (Figure 1) shows that model EQ(1) underpredicts at higher levels of utility and overpredicts at lower levels as is commonly seen in HRQoL regressions.  The Cook-Weisberg test (2 = 2445, P < 0.001) suggest the residuals are heteroscedastic while the larger errors at the lower end of the utility scale (Figure 1) show the variance in the residuals are not normally distributed (Shapiro-Wilk test z = 13, P < 0.0001).  Looking at the observed maximum EQ-5D (24% = 1) data, the ME in the predicted values was 0.10 (range -0.5 to 0.70) with 551 (31%) of values underpredicted by at least 0.1.  Conversely, looking at the lower quartile (EQ-5D ≤ 0.62), the ME in the predicted values was -0.14 (range -1.16 to 0.43) with 834 (55%) of values overpredicted by at least 0.1.

Figure 1: Residuals, observed and predicted EQ-5D values for model EQ(1)

While sex was not statistically significant (not shown), the inclusion of age as a predictor (Model EQ(2)) has little impact on the explanatory power of the model (56%), the MEs, or the accuracy of the predicted values.  Removing the variables RP and VT also has little impact on the explanatory power or accuracy of the predicted values (Model EQ(3)).  When including the statistically significant squared dimension scores (PF, SF, MH and BP), the explanatory power increases slightly to 58.5% (models EQ(4) and EQ(5)).  The MAE and RMSE for both models were 0.131 and 0.178, respectively.  The inclusion of the variable age squared as a predictor in addition to significant squared dimension terms (Models EQ(6) and EQ(7)) produced models with the highest explanatory power (> 58.6%), and smallest MAEs and RMSEs (0.1299 and 0.178, respectively).

Table 3: Prediction models using the main effects with and without significant demographics and squared terms

When including the significant squared dimension scores, models EQ(4) and EQ(5) predicted the total mean value for the individual level data correct to three decimal places as opposed to two decimal places for the other models.  The range (min -0.21 to max 0.997) for the models (EQ(4) to EQ(7)) that include the squared terms was larger than the range (min 0.033 to max 1.059) for the models (EQ(1) to EQ(3)) that do not include the squared terms.  The variance in the individual predicted scores was underestimated by all the models with standard deviations ranging from 0.208 (EQ(1) to EQ(3)) to 0.212 (EQ(4) to EQ(7)) in comparison to 0.277 in the observed values.

The relationships between the actual and predicted EQ-5D scores for models EQ(1), EQ(4) and EQ(7) are shown in Figure 2.  Models EQ(4) and EQ(7) generate more negative values than model EQ(1), so the variance in the errors is greater.

Figure 2: Plot of the predicted (models EQ(1), EQ(4) and EQ(7)) against actual EQ-5D scores

Accuracy using within-sample mean statistics
The primary objective of the study was to predict mean preference-based EQ-5D utility scores using reported mean dimension scores derived from the responses to the SF-36 questionnaire.  Using the mean values from the eight dimension scores to predict the mean EQ-5D score for the full dataset (Table 4), models EQ(1), EQ(2) and EQ(3) are much more accurate with MEs of 0.001, than models EQ(4) to EQ(7) which produce MEs greater than 0.067.  When subgrouped by health condition, the ME (MAE and RMSE) in the 12 predicted values were approximately 0.021 (0.045 and 0.056) for models EQ(1) to EQ(3) compared with 0.076 (0.082 and 0.093) for models EQ(4) to EQ(7).  These statistics show the models that include the squared terms tend to overpredict the mean values.  Models EQ(1) to EQ(3) predicted between 62% and 69% of the scores to within |0.05| as opposed to between 15% and 31% for models EQ(5)and EQ(7), respectively.  Model EQ(3) has the largest proportion (54%) of predicted values with errors smaller than |0.025|.  Model EQ(1) predicted 85% of values to within the MID of 0.074.

Table 3: Actual and predicted mean EQ-5D scores for within-sample subgroups using summary statistics

Accuracy using out-of-sample mean statistics
When assessing the models’ accuracy in predicting out-of-sample mean EQ-5D scores using summary statistics (Table 5), of the 63 predicted scores, the models with the squared terms (model EQ(4) to EQ(7)) produced larger MEs at greater than 0.097 as opposed to below 0.05 for the models that do not include the squared terms.  There is little to choose between the MAE for models EQ(1), EQ(2) and EQ(3) at 0.0641, 0.0654 and 0.0654, respectively.  Models EQ(4) to EQ(7) were less accurate with a MAE greater than 0.098.  Approximately 62% (37%) of the scores for models EQ(1) to EQ(3) were correct to within |0.05| (|0.025|) compared with 30% (8%) of the scores for models EQ(4) to EQ(7) (Table 5 and Figure 3).  Model EQ(2) has the greatest proportion (78%) correct to within the MID.

Table 5: Errors in the predicted out-of-sample mean EQ-5D scores (n=63)

A histogram (Figure 3) of the distribution of the errors in the predicted out-of-sample mean EQ-5D scores for Models EQ(1) and EQ(4) shows that Model EQ(1) has a large proportion of values (29%) that are identical to the actual value.  Model EQ(1) has a substantial proportion (48%) that are within 5% of the actual value. 

Figure 3: Distribution of the errors in the predicted out-of-sample mean EQ-5D scores

When comparing how accurate the models are when predicting incremental differences between study arms (n = 31), all the models produced a ME smaller than 0.0023 (Table 6) and approximately 70% of values were accurate to within |0.05|.  Almost 50% of the incremental values were also accurate to within |0.025| and over 77% were accurate to within the MID.  When looking at the incremental changes over time (Table 7), the models that include the squared terms (EQ(4) to EQ(7)) produced the smallest errors.  The MEs for models EQ(4) to EQ(7) were approximately 0.027 compared with approximately 0.034 for models EQ(1) to EQ(3).  Sixty seven percent (46%) of incremental changes over time were correct to within |0.05| (|0.025|) for models EQ(4) to EQ(7) compared with 63% (<42%) for models EQ(1) to EQ(3).  Models EQ(1) to EQ(3) predicted 83% of changes to within the MID.

Table 6: Incremental differences of mean EQ-5D scores between study arms 

Table 7: Incremental changes of mean EQ-5D scores over time 

Overall, when comparing the errors in the out-of-sample predicted mean EQ-5D scores, model EQ(1) was the most accurate.  Looking at Figure 4a which shows the actual out-of-sample mean EQ-5D scores, the predicted values and errors for model EQ(1), it can be seen that the model overpredicts the lower EQ-5D scores and there is a trend for the errors to increase in magnitude as the mean EQ-5D score decreases.  When assessing the accuracy in predicting incremental values, i.e., differences between study arms and changes over time, model EQ(4) was the most accurate overall.  Looking at Figure 4b, there is a tendency for the errors in the predicted incremental values to increase in magnitude as the difference in the scores increases.

Figure 4: Out-of-sample mean EQ-5D scores

Applying the Algorithm
An illustration of how the algorithms are applied is provided below using the summary statistics for the liver transplant cohort (Table 2) and model EQ(1).
EQ-5D = 0.03256 + 0.0037 x PF + 0.00111 x SF – 0.00024 x RP + 0.00024 x RE 
+ 0.00256 x MH – 0.00063 x VT + 0.00286 x BP + 0.00052 x GH
EQ-5D = 0.03256 + 0.0037 x 69 + 0.00111 x 78 – 0.00024 x 59 + 0.00024 x 69 
+ 0.00256 x 55 – 0.00063 x 73 + 0.00286 x 70 + 0.00052 x 66
EQ-5D = 0.706 

This gives an estimate EQ-5D score of 0.706 compared with the actual value of 0.750.


DISCUSSION
The SF-36 is one of the most widely used HRQOL instruments but as the SF-6D is a comparatively new measure, a substantial proportion of the SF-36 based research is presented in terms of a health profile using the mean values of the eight dimension scores.  As the number of preference-based instruments continues to grow, if the results of economic evaluations are to be compared effectively, it will become increasingly important to be able to translate between the different HRQoL measures used.  The models presented here offer two substantial benefits: first, they provide a mechanism to obtain preference-based utility scores from published non-preference-based quality of life data, and second they provide analysts with a methodology to map between two of the most frequently used HRQoL instruments.

The OLS models presented here explain over 56% of the variance in the EQ-6D scores.  These are comparable with the results (63% [19] 58% [17] and 58% [20]) obtained when mapping the SF-12 summary scores onto the UK based EQ-5D preference-based utility index using OLS regressions.  Sullivan et al. reported values of 58% for an OLS model and 92% for a Tobit model involving 18 independent variables including the SF-12 summary scores and socio-demographic variables such as ethnicity and education when mapping onto the US preference-based EQ-5D index [21].  Nichol et al. used OLS regressions to derive a model that explained 51% of variance in the HUI2 using age, sex, and the eight dimension scores obtained from the SF-36 responses (n = 6,921) as the independent variables [10].  The reported variance explained in models mapping from the SF-36 eight dimension scores to the HUI indexes range from 37% [11] to 53% [13].

The results of this study are also comparable with the published evidence when assessing the residuals in the predicted scores.  The MAEs for our models ranged from 0.130 to 0.1340 for the individual predictions, from 0.045 to 0.083 for the within-sample subgroup analyses and from 0.0641 to 0.099 for the out-of-sample scores.  Sullivan et al. reported MAEs for the individual US weighted predictions ranging from 0.0726 for a censored least absolute deviation (CLAD) model to 0.0765 for a Tobit model [21].  Franks et al. reported MAEs ranging from 0.381 for EQ-5D scores smaller than 0 to 0.070 for EQ-5D scores greater than 0.9 [19].  Gray et al. reported MAEs of 0.108 for within-sample predictions and 0.115 for out-of-sample predictions when presenting the results of a study mapping responses in SF-12 data to EQ-5D responses [22].

While several of the published studies validated results using out-of-sample datasets, to our knowledge, this is the first study which uses published datasets to predict mean preference-based utility scores using mean cohort scores for the independent variables.  The errors observed at the individual level still exist when applying the algorithms to summary data, but the magnitude of the errors is much smaller. When using model EQ(2), 49 (78%) of the 63 predicted out-of-sample mean EQ-5D scores were accurate to within |0.074| the established MID for the EQ-5D [37].  We are also the first to report in terms of accuracy when predicting incremental values.  Looking at differences between the study cohorts 25 (81%) of the 31 predicted values for Model EQ(1) were within the MID.  Looking at changes over time 20 (83%) of the 24 predicted values for Models EQ(1), (2) and (3) were within the MID.

The maximum range (1.206) in the predicted individual EQ-5D scores is obtained from model EQ(7) while the minimum range (1.004) is obtained from model EQ(3).  These cover 76% and 64% of the actual EQ-5D index (-0.594 to 1.0), respectively.  Using ages of 18 and 99 years the largest possible range is 1.331 (-0.296 to 1.034) using model EQ(6) while the smallest range is 1.047 (0.023 to 1.070) using model EQ(3).  When subgrouping the out-of-sample datasets by actual EQ-5D score; 15 (24%) of the 63 have scores greater than 0.70 and smaller than 0.80, while 7 (11%) of the 63 have scores greater than or equal to 0.80.  The ME (MAE) in the predicted values for these subgroups when using Model EQ(1) were -0.001 (0.021) and -0.022 (0.028), respectively.  Between 87% and 100% of values for these subgroups were within the MID irrespective of the model used.

Looking at the out-of-sample datasets, at the lower end of the EQ-5D scale five cohorts have a mean EQ-5D score smaller than or equal to 0.175 and five cohorts have a mean EQ-5D score greater than 0.175 and smaller than 0.35.  The MEs in the predicted values for these two subgroups when using Model EQ(1) were 0.285 and 0.158, respectively.  The magnitude of the errors in predicted values for the cohorts with very low EQ-5D scores was problematic.  The models produced estimates that are regressed to the mean and this was exacerbated as the distribution of the EQ-5D scores in the dataset used in the regressions is skewed with a comparatively small proportion (848 of 6350) of individuals scoring below 0.5.  In addition, the relationships between the EQ-5D values and the dimension scores were weaker for the data points at the lower end of the index (Table 1).  Caution should be taken when applying the algorithms to datasets likely to have very low utility values.  Further research involving a greater proportion of individuals with severely impaired health states is required to determine whether separate models for cohorts with very low HRQoL would be beneficial.

Literature describing relationships between the EQ-5D index and the two SF-12 summary scores continues to grow.  Nevertheless, to our knowledge, there is no published methodology that can be used to convert reported mean dimension scores from the full health profile of the SF-36 into an EQ-5D utility score.  It is possible that the use of the eight dimension scores as opposed to the two overall scores could produce an algorithm with the ability to describe smaller differences and changes.  However, further research is required to confirm this.

There is no evidence that sex adds to the variance explained by the models.  The results suggest the dimension scores RP and VT add little to either the goodness of fit or the accuracy of the scores generated by the models.  This probably reflects the fact that EQ-5D does not contain a VT domain. Likewise, while the inclusion of the significant squared terms increases the variance explained by the model slightly, the predictions for the out-of-sample values are less accurate.  Overall there is very little to choose between the goodness of fit or the accuracy of the predictions generated by the models presented here.  Based on the out-of-sample validations, we advocate Model EQ(1) as the first choice for predicting mean EQ-5D scores from mean dimension SF-36 scores when patient level data is not available.  However, when comparing incremental differences between study arms or changes over time, Model EQ(4) is the preferred choice.

In conclusion, we have found that the results of a simple OLS regression can be used to transform the mean dimension scores from the SF-36 questionnaire into mean preference-based EQ-5D scores.  The model is reasonably accurate when predicting out-of-sample data including absolute values, incremental changes between study arms and incremental changes over time.  The results suggest that the algorithm could be used to populate health states in economic models when EQ-5D data are not available.  However, mapping is always second best to either using the EQ-5D directly in clinical studies or to obtaining preference weights for the non-preference measure where the EQ-5D is not appropriate for the condition.  Further research is required to refine and improve on the models presented here.
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Table 1: Summary statistics of the datasets used in the regressions and the within-sample subgroup validations
	Health condition/study subgroup
	N
	Age Mean
	M
%
	
	Mean dimension score
	EQ-5D

	
	
	
	
	
	PF
	SF
	RP
	RE
	MH
	VT
	BP
	GH
	

	Total
	6350
	51.9
	40
	
	67.6
	68.2
	57.6
	67.0
	68.3
	51.5
	63.5
	58.7
	0.71

	Asthma
	2730
	47.7
	40
	
	68.0
	64.0
	60.1
	65.8
	67.9
	49.6
	68.4
	53.0
	0.74

	Chest pain 
	621
	50.3
	62
	
	73.5
	71.7
	49.8
	63.8
	66.2
	50.4
	50.4
	57.9
	0.79

	Healthy older women 
	250
	79.6
	0
	
	48.1
	75.2
	42.6
	60.5
	71.6
	51.7
	58.3
	58.5
	0.61

	Chronic obstructive pulmonary disease
	94
	63.9
	53
	
	27.7
	48.6
	18.6
	45.0
	66.1
	35.0
	55.8
	31.5
	0.54

	Menopausal women
	681
	53.5
	0
	
	79.7
	81.4
	71.5
	73.8
	67.6
	51.8
	67.7
	65.6
	0.77

	Irritable bowel syndrome 
	340
	46.5
	15
	
	79.9
	78.4
	66.8
	69.7
	68.1
	51.8
	65.0
	63.7
	0.75

	Trauma
	151
	56.6
	60
	
	41.1
	50.0
	16.3
	45.0
	61.8
	59.1
	49.8
	69.7
	0.57

	Lower back pain
	126
	42.3
	37
	
	58.0
	62.5
	25.0
	64.3
	68.1
	46.3
	31.2
	62.8
	0.54

	Leg reconstruction
	82
	34.3
	71
	
	41.6
	59.5
	38.4
	56.9
	68.9
	54.6
	48.2
	61.8
	0.50

	Leg ulcer
	232
	73.4
	34
	
	43.5
	66.6
	50.5
	66.2
	69.6
	53.3
	56.0
	64.6
	0.56

	Osteoarthritis
	194
	66.8
	40
	
	24.4
	52.4
	12.2
	41.2
	62.7
	58.4
	53.2
	50.8
	0.36

	Varicose veins
	849
	50.4
	29
	
	82.7
	73.2
	75.7
	82.6
	73.3
	57.0
	68.7
	70.4
	0.76

	Pearson correlation with EQ-5D using individual patient level data (P < 0.001)

	Full dataset
	6350
	
	
	
	0.65
	0.57
	0.52
	0.45
	0.45
	0.46
	0.60
	0.49
	1

	EQ-5D ≥ 0.5
	5502
	
	
	
	0.60
	0.47
	0.47
	0.37
	0.40
	0.46
	0.57
	0.43
	

	EQ-5D < 0.5
	848
	
	
	
	0.41
	0.34
	0.38
	0.24
	0.18
	0.25
	0.44
	0.38
	

	Pearson correlation with EQ-5D using mean cohort values (P < 0.001)

	
	
	
	
	
	0.92
	0.74
	0.85
	0.77
	-0.05
	0.41
	0.58
	0.32
	1


M, male.
SF-36 health dimensions: PF, physical functioning; RP, role limitations due to physical problems; RE, role limitations due to emotional problems; BP, bodily pain; GH, general health perception; VT, vitality; MH, mental health; SF, social function.  
Shaded values not statistically significant (P > 0.05).

Table 2: Summary statistics of the out-of-sample datasets used in validation
	Health Condition
	Study arm
	Time
	N
	Age
	M
	Mean dimension score
	EQ-5D

	
	
	
	
	Mean
	%
	PF
	SF
	RP
	RE
	MH
	VT
	BP
	GH
	

	Renal transplantation
	S1
	baseline
	350
	52
	59.7
	73.1
	78.8
	61.8
	73.8
	63.3
	71.6
	73.7
	60.9
	0.80

	Anderson Fabry 
	S1
	baseline
	38
	37
	100
	65.6
	57.0
	53.9
	56.1
	41.3
	60.7
	55.8
	37.6
	0.56

	Haemophilia
	S1
	baseline
	66
	38
	
	53.8
	70.4
	58.1
	74.9
	55.0
	72.9
	57.7
	46.8
	0.66

	
	S2
	baseline
	100
	46
	
	67.9
	79.9
	81.2
	86.1
	61.4
	74.0
	76.8
	64.1
	0.85

	Stroke
	S1
	baseline
	n/a
	72
	52
	19.0
	41.0
	8.0
	48.0
	42.0
	70.0
	64.0
	55.0
	0.31

	
	S1
	6 m
	98
	67
	
	43.0
	62.0
	34.0
	69.0
	52.0
	78.0
	72.0
	59.0
	0.62

	UA/MI
	S1
	4 m
	895
	n/a
	n/a
	63.0
	73.4
	51.7
	72.0
	52.3
	72.4
	63.4
	59.5
	0.748

	
	S1
	12 m
	
	n/a
	n/a
	62.5
	76.9
	57.0
	74.9
	52.9
	74.3
	65.2
	59.4
	0.752

	
	S2
	4 m
	915
	n/a
	n/a
	59.3
	69.7
	44.9
	67.1
	47.7
	70.6
	61.7
	54.4
	0.714

	
	S2
	12 m
	
	n/a
	n/a
	61.0
	72.9
	52.4
	72.4
	50.3
	72.5
	64.1
	55.4
	0.736

	Claudication
	S1
	baseline
	88
	58
	72
	41.0
	67.0
	30.0
	63.0
	54.0
	73.0
	50.0
	56.0
	0.57

	
	S1
	1 m
	84
	
	
	73.0
	76.0
	59.0
	73.0
	63.0
	76.0
	72.0
	61.0
	0.79

	
	S1
	3 m
	84
	
	
	74.0
	80.0
	63.0
	69.0
	65.0
	78.0
	74.0
	60.0
	0.77

	
	S1
	12 m
	72
	
	
	73.0
	83.0
	64.0
	77.0
	61.0
	75.0
	74.0
	58.0
	0.75

	Depression
	S1
	baseline
	250
	44
	28
	69.0
	30.2
	22.4
	9.1
	22.2
	24.5
	52.0
	38.3
	0.33

	CHD
	S1
	baseline
	78
	67
	n/a
	62.6
	73.9
	56.8
	70.2
	61.5
	76.7
	80.1
	53.3
	0.69

	Lower back pain
	S1
	baseline
	37
	50
	35
	37.3
	43.6
	14.5
	45.2
	38.4
	59.1
	30.1
	48.2
	0.38

	
	S1
	3 m
	
	
	35
	35.1
	53.1
	12.5
	50.0
	38.7
	61.1
	28.6
	47.6
	0.332

	
	S1
	6 m
	
	
	35
	41.5
	54.6
	20.4
	48.1
	41.9
	62.9
	37.0
	48.6
	0.56

	MI
	S1
	1.5 m
	229
	62
	75
	60.0
	46.6
	14.7
	42.8
	42.9
	66.0
	66.4
	55.5
	0.683

	
	S1
	12 m
	229
	63
	75
	62.9
	63.1
	46.1
	63.4
	50.2
	71.3
	70.6
	55.2
	0.718

	
	S2
	12 m
	229
	63
	100
	66.5
	64.6
	50.6
	66.2
	52.0
	72.6
	72.0
	55.8
	0.735

	
	S3
	12 m
	229
	65
	0
	49.9
	58.2
	37.0
	53.9
	41.8
	67.2
	65.4
	52.5
	0.66

	CHD, coronary heart disease; M, male; n/a, not available; S1, study arm 1; S2, study arm 2; S3, study arm 3. SF-36 health dimensions: PF, physical functioning; RP, role limitations due to physical problems; RE, role limitations due to emotional problems; BP, bodily pain; GH, general health perception; VT, vitality; MH, mental health; SF, social function. Values assumed when predicting EQ-5D values are 50% male and age = 50 years.


Table 2: Summary statistics of the out-of-sample datasets used in validation continued
	Health Condition
	Study arm
	Time
	N
	Age
	M
	Mean dimension score
	EQ-5D

	
	
	
	
	Mean
	%
	PF
	SF
	RP
	RE
	MH
	VT
	BP
	GH
	

	Walking impairment
	S1
	baseline
	27
	67
	78
	67.1
	0.8
	40.2
	78.2
	32.4
	74.1
	51.7
	76.0
	0.66

	
	S2
	baseline
	33
	67
	78
	67.1
	0.8
	42.5
	76.9
	43.2
	74.7
	45.3
	74.1
	0.61

	Diabetes
	S1
	baseline
	326
	61
	56
	61.4
	0.6
	74.4
	83.0
	52.2
	70.9
	56.8
	78.6
	0.81

	
	S2
	baseline
	889
	66
	58
	65.7
	0.6
	48.1
	66.6
	20.1
	50.2
	39.1
	71.5
	0.63

	
	S3
	baseline
	1215
	65
	61
	65.1
	0.6
	45.0
	54.0
	13.0
	34.0
	35.5
	64.6
	0.52

	
	S4
	baseline
	
	65
	58
	65.5
	0.6
	23.8
	38.7
	4.3
	17.9
	26.7
	54.0
	0.25

	Low back pain
	S1
	baseline
	393
	44
	49
	43.9
	0.5
	49.1
	57.2
	25.3
	58.9
	46.6
	64.9
	0.48

	
	S2
	baseline
	389
	43
	49
	42.8
	0.5
	45.3
	53.4
	23.0
	49.7
	42.1
	62.0
	0.44

	
	S1
	8 m
	
	
	
	44.6
	0.5
	54.1
	64.5
	37.4
	60.7
	46.5
	65.5
	0.56

	
	S2
	8 m
	
	
	
	43.5
	0.5
	50.4
	58.5
	32.9
	55.3
	40.6
	62.3
	0.53

	
	S1
	24 m
	
	
	
	45.9
	0.5
	56.4
	66.4
	44.0
	61.7
	46.2
	64.3
	0.60

	
	S2
	24 m
	
	
	
	44.8
	0.5
	52.8
	61.8
	38.2
	55.8
	42.7
	62.9
	0.54

	Hip replacement
	S1
	baseline
	
	68
	38
	67.6
	0.4
	22.0
	55.7
	11.0
	51.7
	55.1
	73.5
	0.35

	
	S1
	12 m
	
	69
	38
	68.6
	0.4
	60.7
	79.2
	55.3
	68.7
	68.4
	79.4
	0.76

	Dry eye
	S1
	baseline
	
	39
	27
	39.2
	0.3
	82.3
	91.3
	81.6
	89.7
	66.4
	83.6
	0.87

	
	S2
	baseline
	
	55
	21
	55.2
	0.2
	80.1
	85.3
	72.3
	82.1
	56.4
	75.5
	0.82

	
	S3
	baseline
	
	58
	9
	58.3
	0.1
	69.5
	67.2
	41.7
	74.9
	44.9
	76.4
	0.74

	Femoral neck fracture
	S1
	baseline
	
	79
	19
	79.2
	0.2
	64.4
	77.3
	51.0
	83.3
	65.9
	82.1
	0.82

	
	S2
	baseline
	
	81
	19
	80.8
	0.2
	64.2
	78.5
	45.2
	78.0
	61.2
	76.5
	0.85

	
	S1
	4 m
	
	
	
	79.2
	0.2
	49.0
	67.6
	20.7
	54.6
	60.0
	76.4
	0.73

	
	S2
	4 m
	
	
	
	80.8
	0.2
	43.5
	65.2
	23.4
	46.8
	48.1
	68.3
	0.60


M, male; n/a, not available; S1, study arm 1; S2, study arm 2; S3, study arm 3. SF-36 health dimensions: PF, physical functioning; RP, role limitations due to physical problems; RE, role limitations due to emotional problems; BP, bodily pain; GH, general health perception; VT, vitality; MH, mental health; SF, social function. 
Values assumed when predicting EQ-5D values are 50% male and age = 50 years.



Table 2: Summary statistics of the out-of-sample datasets used in validation continued
	Health Condition
	Study arm
	Time
	N
	Age
	M
	Mean dimension score
	EQ-5D

	
	
	
	
	Mean
	%
	PF
	SF
	RP
	RE
	MH
	VT
	BP
	GH
	

	Pain
	S1
	baseline
	
	51.8
	50
	24.3
	39.8
	0
	36.4
	29.1
	45.8
	16.5
	40.4
	0.08

	
	S2
	baseline
	
	58.4
	50
	25.5
	40.9
	0
	39.4
	28.6
	48
	14.5
	43
	0.07

	
	S3
	baseline
	
	51.2
	50
	29.1
	39.3
	0
	33.2
	29.6
	43.3
	13.1
	46.8
	0.03

	
	S1
	7 days
	
	
	
	17.3
	40.9
	0
	36.4
	32.3
	49.1
	22.4
	32
	0.11

	
	S2
	7 days
	
	
	
	27.7
	52.3
	0
	54.6
	37.7
	60.6
	34.4
	46.9
	0.12

	
	S3
	7 days
	
	
	
	43.2
	80.7
	0
	87.9
	58.1
	74.5
	66.6
	45.7
	0.61

	Hemodialysis 
	S1
	baseline
	
	61.8
	56
	45.6
	60.4
	24
	56.5
	42.7
	71.1
	59.3
	41.6
	0.60

	
	S2
	baseline
	23
	60.2
	91
	33.4
	46.2
	15.2
	39.1
	33.3
	62.8
	51.4
	30
	0.45

	
	S3
	baseline
	105
	62.2
	49
	48.3
	63.6
	26
	60.3
	44.8
	73
	61.1
	42.2
	0.65

	Psoriasis
	S1
	baseline
	37
	49
	60
	75.7
	71.8
	76.4
	67.6
	52.9
	67.9
	65.3
	63
	0.72

	Liver transplant
	S1
	baseline
	160
	53
	51
	44.19
	45.34
	13.32
	37.78
	30
	62.06
	56.44
	31.38
	0.53

	
	S1
	3 month
	160
	
	
	51.66
	63.56
	24.27
	65.79
	47.1
	69.83
	57.45
	57.39
	0.62

	Focal dystonia
	S1
	baseline
	50
	59.2
	30
	63.6
	67.9
	53
	61.2
	54.8
	62.2
	60.5
	47.8
	0.59

	
	
	6 week
	50
	
	
	70.8
	77.4
	63
	75.8
	63.2
	70.9
	64.2
	51.3
	0.66

	
	
	12 week
	50
	
	
	59.6
	68.4
	49
	59.8
	53.6
	66.4
	60.8
	48.3
	0.63

	
	S2
	baseline
	50
	59.2
	30
	73.8
	74.4
	52.0
	75.9
	55.6
	62.7
	55.7
	53.2
	0.60

	
	
	6 week
	50
	
	
	74.6
	83.0
	64.0
	78.5
	64.8
	74.6
	74.2
	52.3
	0.76

	
	
	12 week
	50
	
	
	74.2
	70.9
	46.0
	73.2
	55.0
	59.0
	57.5
	49.0
	0.66

	Liver transplant
	S1
	baseline
	
	51
	38
	69
	78
	59
	69
	55
	73
	70
	66
	0.75

	Pearson correlation with EQ-5D (P < 0.001)

	
	
	
	
	
	
	0.82
	0.85
	0.81
	0.76
	0.79
	0.79
	0.89
	0.61
	1


M, male; n/a, not available; S1, study arm 1; S2, study arm 2; S3, study arm 3. SF-36 health dimensions: PF, physical functioning; RP, role limitations due to physical problems; RE, role limitations due to emotional problems; BP, bodily pain; GH, general health perception; VT, vitality; MH, mental health; SF, social function. 
Values assumed when predicting EQ-5D values are 50% male and age = 50 years.
Table 3: Prediction models using the main effects with and without significant demographics and squared terms (using individual patient level data)
	
	Model EQ(1)
	Model EQ(2)
	Model EQ(3)
	Model EQ(4)
	Model EQ(5)
	Model EQ(6)
	Model EQ(7)

	 
	Beta
	SE
	Beta
	SE
	Beta
	SE
	Beta
	SE
	Beta
	SE
	Beta
	SE
	Beta
	SE

	Intercept
	0.03256
	0.0122
	0.06527
	0.0153
	0.07673
	0.0146
	-0.18105
	0.0272
	-0.18209
	0.0273
	-0.16978
	0.0271
	-0.16889
	0.02707

	PF
	0.00370
	0.0001
	0.00352
	0.0002
	0.00339
	0.0002
	0.00781
	0.0005
	0.00774
	0.0005
	0.00771
	0.00048
	0.00779
	0.00048

	SF
	0.00111
	0.0002
	0.00117
	0.0002
	0.00102
	0.0002
	0.00213
	0.0006
	0.00216
	0.0006
	0.00214
	0.00059
	0.00211
	0.00059

	RP
	-0.00024
	0.0001
	-0.00027
	0.0001
	
	
	
	
	-0.00006
	0.0001
	-0.00006
	0.00008
	
	

	RE
	0.00024
	0.0001
	0.00023
	0.0001
	0.00017
	0.0001
	0.00022
	0.0001
	0.00023
	0.0001
	0.00023
	0.00009
	0.00022
	0.00008

	MH
	0.00256
	0.0002
	0.00260
	0.0002
	0.00239
	0.0002
	0.00599
	0.0008
	0.00607
	0.0008
	0.00609
	0.00077
	0.00601
	0.00077

	VT
	-0.00063
	0.0002
	-0.00060
	0.0002
	
	
	
	
	-0.00034
	0.0002
	-0.00034
	0.00018
	
	

	BP
	0.00286
	0.0001
	0.00286
	0.0001
	0.00270
	0.0001
	0.00472
	0.0006
	0.00479
	0.0006
	0.00488
	0.00055
	0.00480
	0.00055

	GH
	0.00052
	0.0002
	0.00056
	0.0002
	0.00036
	0.0001
	0.00064
	0.0001
	0.00073
	0.0002
	0.00076
	0.00016
	0.00067
	0.00015

	Age
	
	
	-0.00058
	0.0002
	-0.00055
	0.0002
	-0.00069
	0.0002
	-0.00069
	0.0002
	-0.00100
	0.00020
	-0.00100
	0.00020

	PF*PF
	
	
	
	
	
	
	-0.00004
	0.0000
	-0.00004
	0.0000
	-0.00004
	0.00000
	-0.00004
	0.00000

	SF*SF
	
	
	
	
	
	
	-0.00001
	0.0000
	-0.00001
	0.0000
	-0.00001
	0.00000
	-0.00001
	0.00000

	MH*MH
	
	
	
	
	
	
	-0.00003
	0.0000
	-0.00003
	0.0000
	-0.00003
	0.00001
	-0.00003
	0.00001

	BP*BP
	
	
	
	
	
	
	-0.00001
	0.0000
	-0.00001
	0.0000
	-0.00002
	0.00000
	-0.00002
	0.00000

	Age*Age
	
	
	
	
	
	
	
	
	
	
	0.000001
	0.00000
	0.000001
	0.00000

	R2
	0.5630
	
	0.5638
	
	0.5619
	
	0.5852
	
	0.5856
	
	0.5868
	
	0.5864
	

	ME
	0.0000
	
	0.0000
	
	0.0000
	
	0.0000
	
	0.0000
	
	0.0000
	
	0.0000
	

	MAE
	0.1338
	
	0.1336
	
	0.1340
	
	0.1305
	
	0.1305
	
	0.1299
	
	0.1299
	

	RMSE
	0.1832
	
	0.1829
	
	0.1833
	
	0.1784
	
	0.1783
	
	0.1780
	
	0.1781
	

	N(%) < |0.05|
	1817
	(29)
	1808
	(29)
	1817
	(29)
	1575
	(25)
	1573
	(25)
	1569
	(25)
	1567
	(25)

	N(%) < |0.025|
	960
	(15)
	966
	(15)
	954
	(15)
	729
	(12)
	736
	(12)
	717
	(11)
	712
	(11)

	N(%) < |0.01|
	405
	(6)
	415
	(7)
	415
	(7)
	314
	(5)
	295
	(5)
	279
	(4)
	280
	(4)

	
	actual
	predict
	
	predict
	
	predict
	
	predict
	
	predict
	
	predict
	
	predict

	Mean
	0.713
	0.714
	
	0.715
	
	0.715
	
	0.713
	
	0.713
	
	0.715
	
	0.715

	SD
	0.277
	0.208
	
	0.208
	
	0.208
	
	0.212
	
	0.212
	
	0.212
	
	0.212

	Min
	-0.594
	0.033
	
	0.040
	
	0.053
	
	-0.211
	
	-0.212
	
	-0.210
	
	-0.209

	Max
	1.000
	1.052
	
	1.059
	
	1.057
	
	0.991
	
	0.989
	
	0.996
	
	0.997


ME, mean error; MAE, mean absolute error; SF-36 health dimensions: PF, physical functioning; RP, role limitations due to physical problems; RE, role limitations due to emotional problems; BP, bodily pain; GH, general health perception; VT, vitality; MH, mental health; SF, social function. Shaded values not significant (P > 0.05)

Table 4: Actual and predicted mean EQ-5D scores using summary statistics for within-sample subgroups 
	
	Actual
	Predicted EQ-5D utility
	Error

	Dataset
	EQ-5D
	EQ(1)
	EQ(2)
	EQ(3)
	EQ(4)
	EQ(5)
	EQ(6)
	EQ(7)
	EQ(1)
	EQ(2)
	EQ(3)
	EQ(4)
	EQ(5)
	EQ(6)
	EQ(7)

	Within-sample subgrouped by health condition (n = 13)

	Total
	0.713
	0.714
	0.715
	0.715
	0.781
	0.779
	0.781
	0.782
	0.001
	0.001
	0.001
	0.067
	0.066
	0.067
	0.069

	Asthma
	0.741
	0.722
	0.723
	0.724
	0.791
	0.790
	0.791
	0.793
	-0.019
	-0.018
	-0.017
	0.050
	0.049
	0.050
	0.052

	Chest pain 
	0.786
	0.699
	0.699
	0.698
	0.749
	0.749
	0.750
	0.751
	-0.087
	-0.087
	-0.088
	-0.036
	-0.037
	-0.036
	-0.035

	Healthy older women 
	0.610
	0.645
	0.634
	0.633
	0.695
	0.694
	0.693
	0.694
	0.035
	0.024
	0.023
	0.085
	0.084
	0.083
	0.084

	COPD
	0.537
	0.518
	0.516
	0.513
	0.554
	0.555
	0.555
	0.554
	-0.019
	-0.020
	-0.024
	0.017
	0.018
	0.018
	0.017

	Menopausal women
	0.766
	0.786
	0.783
	0.782
	0.821
	0.821
	0.822
	0.822
	0.020
	0.018
	0.016
	0.055
	0.055
	0.056
	0.056

	Irritable bowel 
	0.752
	0.776
	0.777
	0.775
	0.817
	0.817
	0.819
	0.818
	0.024
	0.025
	0.023
	0.065
	0.065
	0.067
	0.066

	Trauma
	0.573
	0.546
	0.549
	0.551
	0.622
	0.618
	0.620
	0.624
	-0.027
	-0.024
	-0.022
	0.049
	0.045
	0.046
	0.051

	Lower back pain
	0.540
	0.592
	0.600
	0.594
	0.653
	0.653
	0.656
	0.656
	0.052
	0.060
	0.054
	0.112
	0.112
	0.116
	0.115

	Leg reconstruction
	0.498
	0.569
	0.584
	0.587
	0.656
	0.653
	0.659
	0.662
	0.071
	0.086
	0.089
	0.158
	0.155
	0.161
	0.164

	Leg ulcer
	0.557
	0.609
	0.601
	0.604
	0.671
	0.669
	0.668
	0.670
	0.052
	0.044
	0.047
	0.114
	0.112
	0.112
	0.114

	Osteoarthritis
	0.363
	0.490
	0.489
	0.495
	0.532
	0.527
	0.527
	0.532
	0.126
	0.126
	0.132
	0.168
	0.163
	0.164
	0.169

	Varicose veins
	0.757
	0.805
	0.804
	0.804
	0.843
	0.842
	0.843
	0.844
	0.048
	0.047
	0.047
	0.086
	0.085
	0.086
	0.086

	ME
	 
	 
	 
	 
	 
	 
	
	
	0.021
	0.022
	0.022
	0.076
	0.075
	0.076
	0.077

	MAE
	
	
	
	
	
	
	
	
	0.045
	0.045
	0.045
	0.082
	0.081
	0.082
	0.083

	RMSE
	
	
	
	
	
	
	
	
	0.055
	0.056
	0.058
	0.093
	0.091
	0.092
	0.094

	% <|0.05|
	
	
	
	
	
	
	
	
	62
	69
	69
	23
	31
	23
	15

	% <|0.025|
	 
	 
	 
	 
	 
	 
	
	
	38
	46
	54
	8
	8
	8
	8

	% <|0.01|
	
	
	
	
	
	
	
	
	8
	8
	8
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


COPD, chronic obstructive pulmonary disease. Bold font indicates the preferred model for each statistic.
MAE, mean absolute error; ME mean error; RMSE, root mean squared error.
Bold font indicate the preferred model for the individual statistics.
Table 5: Errors in the predicted out-of-sample mean EQ-5D scores (n = 63)
	Model
	ME
	MAE
	RMSE
	% <|0.05|
	% <|0.025|
	% <|0.01|
	% < MID

	EQ(1)
	0.0498
	0.0641
	0.1011
	63
	37
	14
	76

	EQ(2)
	0.0495
	0.0654
	0.1024
	62
	37
	11
	78

	EQ(3)
	0.0476
	0.0654
	0.1016
	62
	35
	11
	75

	EQ(4)
	0.0980
	0.0988
	0.1234
	30
	10
	2
	44

	EQ(5)
	0.0972
	0.0981
	0.1228
	29
	8
	2
	44

	EQ(6)
	0.0979
	0.0989
	0.1236
	30
	8
	2
	44

	EQ(7)
	0.0987
	0.0995
	0.1241
	30
	8
	2
	44


Bold font indicates the preferred model for each statistic
MAE, mean absolute error; ME mean error; MID, minimal important difference; RMSE, root mean squared error.



Table 6: Incremental differences of mean EQ-5D scores between study arms (n=31)
	Model
	ME
	MAE
	RMSE
	% <|0.05|
	% <|0.025|
	% <|0.01|
	% < MID

	EQ(1)
	-0.0007
	0.0498
	0.0774
	71
	45
	26
	81

	EQ(2)
	0.0002
	0.0506
	0.0774
	71
	42
	19
	77

	EQ(3)
	0.0014
	0.0524
	0.0798
	71
	45
	19
	77

	EQ(4)
	-0.0019
	0.0441
	0.0685
	68
	48
	29
	81

	EQ(5)
	-0.0023
	0.0440
	0.0685
	71
	45
	26
	81

	EQ(6)
	-0.0021
	0.0441
	0.0685
	71
	45
	26
	81

	EQ(7)
	-0.0016
	0.0441
	0.0684
	71
	45
	29
	81


Bold font indicates the preferred model for each statistic.


Table 7: Incremental changes of mean EQ-5D scores over time (n = 24)
	Model
	ME
	MAE
	RMSE
	% <|0.05|
	% <|0.025|
	% <|0.01|
	% < MID

	EQ(1)
	0.0335
	0.0527
	0.0788
	63
	42
	21
	83

	EQ(2)
	0.0344
	0.0531
	0.0793
	63
	38
	21
	83

	EQ(3)
	0.0342
	0.0532
	0.0801
	63
	38
	21
	83

	EQ(4)
	0.0265
	0.0480
	0.0677
	67
	46
	21
	75

	EQ(5)
	0.0267
	0.0484
	0.0681
	67
	46
	21
	75

	EQ(6)
	0.0268
	0.0486
	0.0682
	67
	46
	25
	71

	EQ(7)
	0.0265
	0.0482
	0.0678
	67
	46
	21
	75


Bold font indicates the preferred model for each statistic





Figure 1: Residuals, observed and predicted EQ-5D values for model EQ(1)
[image: ]


Figure 2: Plot of the predicted (models EQ(1), EQ(4) and EQ(7)) against actual EQ-5D scores
[image: ]


Figure 3: Distribution of the errors in the predicted out-of-sample mean EQ-5D scores 
[image: ]




Figure 4a: Actual out-of-sample mean EQ-5D scores, predicted values and errors for model EQ(1)
[image: ]


Figure 4b: Incremental out-of-sample EQ-5D scores, predicted incremental values and errors for model EQ(4)
[image: ]
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ABSTRACT

Objective: The objective is to derive an algorithm to predict a cohort preference-based Short-form-6D (SF-6D) score using the eight mean health dimension scores from the Short-form-36 (SF-36) when patient level data are not available.

Methods: Health-related quality of life data (n = 6,890) covering a wide range of health conditions was used to explore the relationship between the SF-6D and the eight health dimension scores.  Models obtained using ordinary least square regressions were compared for goodness of fit and predictive abilities on both within-sample subgroups and out-of-sample published datasets.

Results: The models explained more than 83% of the variance in the individual SF-6D scores with a mean absolute error of 0.040.  When using mean health dimension scores from within-sample subgroups and out-of-sample published datasets, the majority of predicted scores were well within the minimal important difference (0.041) for the SF-6D.

Conclusion: This article presents a mechanism to estimate a mean cohort preference-based SF-6D score using the eight mean health dimension scores of the SF-36.  Using published summary statistics, the out-of-sample validation demonstrates that the algorithms can be used to inform both clinical and economic research.  Further research is required in different health conditions.
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INTRODUCTION
[bookmark: _Ref147012497][bookmark: _Ref157916475][bookmark: _Ref157915088]Health care policy decision-makers such as the National Institute for Health and Clinical Excellence recommend that the results of economic evaluations in health care are presented in terms of quality adjusted life-years (QALY) [1].  The QALY quantifies both health-related quality of life (HRQoL) and life expectancy and allows comparison across disparate diseases and interventions [2].  Preference-based measures of health have become an established metric to derive the health state values used to calculate QALYs.  Preference-based measures of health are estimated from values people place on different aspects of health and the overall summary score reflects what is important to the general population.  Examples include the EQ-5D [3], the Quality of Well-Being Scale [4], the Health Utility Index [5], and the SF-6D [6] that is derived from the SF-36 questionnaire [7].

Economic models used to aid decision-making are often populated by HRQoL evidence identified through literature reviews.  However, results from clinical studies are frequently reported using a profile of scores covering different features of health such as physical and emotional dimensions, as opposed to an overall index.  For example, results from studies using the SF-36 [7] instrument are generally reported as cohort summary statistics of the eight health dimension scores that are calculated using individual responses to the original 36 questions.  The SF-36 has been cited as the most widely used generic instrument in the world today [8], being documented in almost 5,000 publications (www.sf-36.org accessed September 1 2006) with more than 2,000 citations for those published between 1988 and 2000 [9].  Because access to individual patients’ responses to the questions in the SF-36 is required to calculate the SF-6D [6], the majority of existing SF-36 evidence cannot be used to calculate QALYs in economic evaluations.  

Although methods are available to map from SF-36 health dimension scores onto the Health Utility Index [10], and the Quality of Well-Being Scale [11], there is currently no published method to obtain a mean cohort preference-based SF-6D score using summary statistics of the eight health dimensions of the SF-36.  This is a major barrier to evidence synthesis for populating economic models.  The current study aims to address this limitation and the primary objective is to derive an algorithm to predict a cohort level preference-based SF-6D score using the eight mean health dimension scores from the SF-36 (v2) when patient level data are not available.  This algorithm has the potential to extend the scope for undertaking economic evaluations in health care using existing and future publications of SF-36 datasets.

The next section of this paper briefly describes the SF-36 and the datasets used in the current study.  This is followed by a description of the methods used, the models obtained and a comparison of the models using standard techniques such as goodness of fit and predictive accuracy using both within-sample and out-of-sample data.  The final section summarises the results, considers how the results may be used, and identifies areas of future research.

METHODS
The SF-36
Developed in the United States, the SF-36 is a multi-purpose health survey that uses 36 questions to represent eight of the most important health concepts included in the medical outcomes study [12-13].  The most commonly reported statistics are the eight health dimensions: physical functioning (PF), role-physical (RP), bodily pain (BP), general health (GH), vitality (VT), social functioning (SF), role emotional (RE) and mental health (MH) which are calculated using responses to the SF-36 questionnaire.  Each dimension consists of several items or questions.  For example the physical function dimension has 10 items to which the respondent can make one of three responses: ‘limited a lot’, ‘limited a little’ or ‘not limited at all’; coded 1, 2 or 3, respectively.  The traditional method of scoring involves re-coding responses to ensure higher scores mean better health and summing items in a dimension to produce a raw dimension score (10-30) that is then transformed onto a 0-100 scale.  Although these statistics can provide information on the effectiveness of health care interventions, the scoring algorithms do not incorporate preferences and have not been designed for use in economic evaluations.

[bookmark: _Toc147108184]The SF-6D
Brazier et al [6,14] constructed a preference-based measure of health from the SF-36 that reduces the outcomes to a single preference-based measure of health, the SF-6D.  The index uses 11 items selected from the SF-36 to assign a respondent to a 6-domain classification of health states that generates 18,000 health states in total.  Standard gamble valuation techniques were used in a survey of a representative sample (n = 611) of the UK general population to value a selection of 249 states.  These data were modelled to produce an algorithm to derive a single index for the full set of health states defined by the SF-6D.  Scored on a continuous index ranging from 0.296 to 1, 0.296 represents the maximum impaired level on all six dimensions, and 1 represents full health i.e., the least impaired level on all six dimensions.  The SF-6D was formulated to be used to represent health state values in economic evaluations and requires individual level responses to the SF-36 (www.shef.ac.uk/scharr/sections/heds/mvh/sf-6d).

The datasets used in the regressions and within-sample validation
[bookmark: _Ref146260973]Data (n = 6,890) was pooled from 15 studies used in previous research in the School of Health and Related Research.  These data were used because they included the individual responses to the questions in the SF-36 and thus could be used to derive the eight mean dimension scores of the SF-36 and the single utility index from the SF-6D for both individual patients and cohorts.  The data were collected during observational studies, randomised controlled trials and longitudinal randomised trials.  The studies cover a wide range of health conditions including asthma [15], chest pain [16], healthy older women [17], chronic obstructive pulmonary disease [18], menopausal women [19], irritable bowel syndrome [20], intensive care patients [21], leg reconstruction [22], leg ulcers [23], lower back pain [24], mental health [25], osteoarthritis [26], sleep apnea [27], trauma patients [28] and varicose veins [29].  Summary statistics are provided in Table 1.

Out-of-sample datasets used to validate the models
Published papers which could be used to validate the models were identified using the keywords SF 36, SF-36, short form-36, SF 6D, SF-6D, short form-6D, health, quality of life, QoL, health-related quality of life and HRQoL.  Studies were retained if they included the mean values for the eight SF-36 health dimension scores and the corresponding cohort mean SF-6D index score.  

Statistical methods
While data from individuals were used to derive the predictive equations, the objective was to obtain a method to predict a mean cohort SF-6D score using mean cohort health summary scores in contrast to predicting individual results using patient level data.  Because item response data are rarely published in HRQoL studies, this requires the SF-36 summary statistics are used to create the equations rather than the individual responses to the SF-36 questionnaire.      

Ordinary least square (OLS) regressions were used to explore the relationship between the preference-based measure and the corresponding health profile.  The general model is defined as:
		SF-6D	= + xi + di + ri + whereby
SF-6D represents the SF-6D preference-based index, x represents the vector of main effects (continuous variables: PF, RP, BP, GH, VT, SF, RE, MH), d represents the vector of demographic characteristics (continuous variable: age; binary dummy variable: sex), r represents the vector of first order interactions between the main effects (i.e., the eight squares and 28 products of the main effects), n represent vectors of unknown parameters, i represents individual respondents and represents the stochastic error term of the regression (the residual).   The models were constructed in STATA using backward and forward eliminations.

To reduce potential problems with multicolinearity due to the large number of interactions, a cut-off criteria (r < |0.90|) for correlations between cross-products was used for inclusion in the regressions.  The main effects were retained in all models.  The squares and interaction variables were retained if they made significant contributions (P < 0.05) to the models and the results were assessed using the variance inflation factor (VIF).  The Cook-Weisberg and the Shapiro-Wilk test were used to detect heteroscedasticity and normality in the residuals, respectively.  Transformations were considered where heteroscedasticity was detected (results not shown) and White’s corrected standard errors were used where this could not be rectified.  Statistical significance is assumed where the P value is less than or equal to 0.05.

To assess the results generated by the models, the predicted and actual SF-6D scores were compared using the root mean squared error (RMSE) and mean absolute error (MAE).  The minimal important difference (MID), defined as the smallest difference in score which patients perceive as beneficial, was also used [30].  These summary measures of agreement were applied to the results obtained using within-study subgroups and out-of-sample datasets.  The models were compared using standard descriptive statistics (mean, standard deviation (SD), max, min) of predicted values and the R2 statistic which quantifies the explanatory power of the model i.e., how much of the variability in the dependent variable is captured by the predictors used.  Their predictive abilities were also compared.  

RESULTS
Within-sample data
Of the 6,890 respondents, information for age (sex) was available for 5,633 (5,720).  The mean age of these respondents is 51 years (range 16-98) and the majority (65% of 5,720) are female.  The SF-6D data are approximately normally distributed (Table 1) with mean 0.70 (median 0.71, SD 0.13; range 0.26-1).  Few individuals score extreme values on the SF-6D; 187 (1.4%) individuals have SF-6D scores ≤ 0.41 while 94 (7.5%) have scores ≥ 0.93.  Data for the eight health dimension scores cover the full possible range 0-100 (where 100 is the best health).  

When subgrouped by study (Table 1), the mean cohort SF-6D scores range from 0.59 (SD 0.11) for individuals enrolled in the mental health study [25] to 0.76 (SD 0.12) for menopausal women enrolled in a study examining the effects of hormone replacement [19].  The SF-6D scores are significantly correlated with all the eight health dimension scores with social function having the strongest relationship (Pearson correlation = 0.76, P < 0.01, Table 1).

Table 1: Summary statistics of the datasets used in the regressions 

Out-of-sample data 
The search identified 10 studies (Table 2) covering a wide range of health conditions including asthma [31], ankylosing spondylitis [32], cardiovascular disease [33-36], diabetes [36,37], lung transplants [38], musculoskeletal diseases [39], and rheumatoid arthritis [40].  The 10 studies provide 29 sets of data that can be used to predict mean SF-6D scores using the eight mean health dimension scores.  Six of the studies also provide data which can be used to compare incremental values between two or more arms (n = 8) [27-29,31,33,36], and six of the studies provide data which can be used to compare changes in SF-6D over time (n = 12) [26,27,29,31,33,36].  The mean SF-6D scores in the out-of-sample datasets range from 0.55 for a cohort with a history of stroke, to 0.79 for a cohort with no recorded medical condition [34,37].  The baseline incremental SF-6D scores (Table 2) between study arms range from 0.005 for subjects enrolled in a longitudinal study assessing the HRQoL impact of new onset musculoskeletal disorders to 0.142 for post-stroke patients enrolled in an observational cohort study [35,39].  The incremental changes over time (Table 2) range from -0.001 for patients undergoing percutaneous coronary intervention to 0.150 for patients with ankylosing spondylitis [32,40].  Further details of the studies are available from the authors on request.

Table 2: Summary statistics of the out-of-sample datasets used in validation

Models estimated from individual level data
The explanatory power of the model using just the eight main effects (Table 2, Model 1) is 83%.  The main effects represent the health dimension scores which increase in magnitude with better health and the coefficients for these variables are positive as would be expected.  Although all eight main effects are significant, the age and gender variables are not statistically significant (P > 0.05) in the multivariate model.  Diagnostic tests reveal potential problems with non-normal (Shapiro-Wilk test z = 7.3, P < 0.001) and heteroscedastic (Cook-Weisberg test 2 = 206, P < 0.001) residuals.  The regression was rerun using White’s robust standard errors and all the main effects remained significant [41].  When including significant interactions, the final model (Table 2, model 2) has 16 independent variables in total: the eight main effects, five squares and three additional cross products.  Model 2 explains 85% of the variance in the SF-6D scores.  

Predictive ability using within-sample individual patient level data
When predicting individual SF-6D scores (Table 3), the MAE (RMSE) is 0.041 (0.052) for Model 1 and 0.040 (0.050) for Model 2.  Using Model 1, 2,256 (33%) and 354 (5%) of the predicted values have errors greater than |0.05| and |0.1|, respectively.  Using Model 2, 31% and 5% of the predicted values have errors greater than |0.05| and |0.1|, respectively.  While the maximum predicted value is larger for Model 1 (0.902) than for Model 2 (0.879), the minimum predicted value (0.344 versus 0.301) is also higher.  Thus scores predicted using Model 2 cover 78% of the actual range in the dataset compared to 75% for Model 1.

Table 3: Summary of SF-6D models and statistics 

Plotting the residuals, observed and predicted SF-6D data (Figure 1) shows that Model 1 underpredicts at higher levels of health state values and overpredicts at lower levels as would be expected.  The plot also suggests that the variance in the errors may be larger at the lower levels of health state values than at the higher levels.

[bookmark: _Ref146566474][bookmark: _Toc147053608]Figure 1: Residuals, observed and predicted SF-6D values for Model 1

Normal quantile plots, which graph the quantiles of a variable against the quantiles of a normal distribution, are sensitive to nonnormality near the tails.  Plotting the residuals in this manner (figures not shown), the variance at the extremes improves slightly for Model 2.

Predictive ability using within-sample mean statistics 
The primary objective of the study is to predict a mean preference-based cohort score using published statistics where preference-based measures are not reported.  To assess the models’ predictive ability when patient level data are not available, the mean values for the eight health dimensions were used to predict a cohort level mean SF-6D score using the full sample and the individual datasets which were pooled.  The models were also assessed by subgrouping the data by sex, age bands and SF-6D scores (Table 4).

When subgrouping the sample the total mean error in the predicted values is 0.0057 and 0.0065 for Model 1 and Model 2, respectively (Table 4).  The RMSE for Model 2 is slightly smaller than for Model 1 at 0.0258 as opposed to 0.0320 and 28/39 (72%) of predicted values are correct to within |0.01| as opposed to 27/39 (69%) for Model 1.  The least accurate scores for both models are when the data is subgrouped by SF-6D score.  Using the mean values for individuals with SF-6D < 0.3 and > 0.90, both models overpredict and underpredict health state values by more than 0.099 and 0.068, respectively.  When the full dataset is subgrouped by sex, the estimated utilities have errors of 0.000 (0.003) for women (men) when using Model 1, and errors of 0.005 (0.008) for women (men) when using Model 2.  The errors in the predicted values for the all female cohort (menopausal study) are also modest: -0.012 and -0.008 for Model 1 and Model 2, respectively.  With one exception (> 90 years), all the results for both models are accurate to within |0.01| when the sample is subgrouped by age band.

Table 4: Comparing the predictive ability of the models for within-sample subgroups 

Predictive ability using out-of-sample mean statistics 
The out-of-sample publications provide 29 sets of data which could be used to assess the models’ accuracy in predicting mean cohort SF-6D scores.  The mean errors (Table 5) in the 29 predicted values are 0.0271 and 0.0265 for Model 1 and Model 2, respectively, suggesting both models slightly over-estimate the values.  The MAE (RMSE) in the predicted scores is 0.0358 (0.0432) for Model 1 and 0.0348 (0.0425) for Model 2.  The majority (72%) of scores are correct to within |0.05| and 62% (59%) of values predicted using Model 1 (Model 2) are within the minimal important difference (0.041) for the SF-6D index [30].

Table 5: Comparing the predictive ability of the models using out-of-sample datasets

Plotting the actual SF-6D scores against the predicted values for the within-sample subgroups and out-of-sample datasets (Figure 2) shows the predicted scores are reasonably accurate.  There is little loss in accuracy when using Model 1 with just the eight main effects as opposed to Model 2 with the interaction terms.  The correlation between the observed and predicted SF-6D scores for the combined subgroups is 0.951 for Model 1 and 0.959 for Model 2.

Figure 2: Plot of observed versus predicted SF-6D scores using mean dimension scores

Accuracy in predicting incremental utilities
The studies also provide eight sets of data which can be used to assess the accuracy of the models when predicting incremental utilities between cohorts within the same study [32,35,36,37,39,40].  The mean error in the incremental differences in SF-6D scores is -0.012, and all errors are well within the MID.  The MAE (RMSE) is 0.0166 (0.0215) for Model 1 and 0.0165 (0.0205) for Model 2.  Fifty percent of the values are correct to within |0.01| for both models.

When looking at changes in utilities over time (Table 5), the mean error for Model 1 is 0.004 while the mean error for Model 2 is -0.004.  All predicted differences in changes in SF-6D scores over time are correct to within |0.05| and 83% of the errors are within the MID.

Applying the algorithm
An example of how the algorithms are applied is provided below using the summary statistics for the full dataset (Table 2) and Model 1 (Table 3).

SF-6D = (34.3814 + 0.0994 * PF + 0.0215 * RP + 0.1083 * BP + 0.0140 * GH 
+ 0.0479 * VT + 0.1001 * SF + 0.0394 * RE + 0.1269 * MH)/100
SF-6D = (34.3814 + 0.0994 * 67.3 + 0.0215 * 56.2 + 0.1083 * 61.9 + 0.0140 * 58.1
+ 0.0479 * 49.5 + 0.1001 * 66.5 + 0.0394 * 65.0 + 0.1269 * 66.0)/100
SF-6D = 0.70


DISCUSSION
If patient level data were available, the cohort mean SF-6D value would be calculated using the individual scores obtained via the algorithm by Brazier et al [6].  However, when only the summary statistics of the eight health dimensions are available, the results of this study offer a method to predict a reasonable estimate for a cohort SF-6D score.  The algorithm will provide analysts with a method to generate QALYs in economic evaluations and will allow comparison of overall HRQoL between disease areas when the SF-6D preference-based measures are not reported.  Model 2 which includes the five squares, the three interactions and the eight main effects is the recommended model because the predicted values are slightly more accurate.

The accuracy of the models in predicting mean preference-based values when using either within-sample subgroups or out-of-sample statistics has been shown to be consistently good with approximately 90% of errors smaller than |0.05|.  When subgrouped by health condition, the actual mean SF-6D scores for the within-samples range from 0.594 for a cohort with depression to 0.756 for a cohort of menopausal women.  The actual mean SF-6D scores for the out-of-sample data range from 0.55 for patients who have experienced a stroke to 0.79 for a cohort with no recorded medical condition.  Model 1 (2) predicts values with errors of 0.006 (0.009), -0.012 (-0.008), 0.058 (0.054) and -0.014 (-0.015) for these four groups, respectively.  The range in the mean cohort values and the corresponding errors in the predicted values demonstrate that the algorithms perform well across the full range of health conditions included.  These results are encouraging when assessing the potential generalizability to other conditions.

Perhaps more importantly to economic analysts, the models are also accurate (all errors smaller than |0.05|) when predicting out-of-sample incremental values between cohorts at baseline or changes over time. With 100% of errors between cohorts at baseline and 83% of errors in incremental changes over time within the minimal important difference for the SF-6D, the models provide a mechanism to derive incremental quality adjusted life-years in economic evaluations used to inform health care policy decision-makers.

While more complex models are possible, the primary objective was to derive a reproducible and transparent algorithm easily understood and applied by researchers.  The basic OLS techniques produce models with high explanatory powers at 0.83 and 0.85.  These are comparable with a Bayesian approach (R2 = 0.88) which predicts SF-6D scores from age, sex and the SF-12 summary scores the MCS-12 and PCS-12 [42].  The variance explained by our simple models are also higher than those derived using 2nd- and 4th degree polynomials and spline models (R2 = 0.63) to map SF-12 summary scores onto the EQ-5D index [43].

Previous research has demonstrated that both age and sex can be significant predictors for HRQoL measures, with health-related preference-based scores decreasing with age [44,45], and sex [45,46].  However, neither age nor sex were significant predictors in the multivariate regressions.  The results of the within-sample subgroup analyses suggest that the omission of these variables does not bias the results generated by the models.

As was observed in a similar exercise mapping from the SF-36 health dimensions to the EQ-5D index [47], the models underpredict the SF-6D values at lower levels and overpredict the SF-6D values at higher levels.  This could be viewed as problematic as the original preference-based SF-6D algorithm also underpredicts the value of good health states and overpredicts the value of poor states [6].  The minimum (maximum) possible values are 0.344 (0.902) and 0.301 (0.879) for Model 1 and Model 2, respectively.  However, the intention of the current study is to derive an algorithm to generate mean preference-based scores for cohorts as opposed to individual values and it has been shown that this anomaly does not restrict the usefulness of the models.  As there are comparatively few individuals at either extreme in the majority of cohorts the truncated range has little impact on mean results.  

Although the dataset used covered the full possible range in the SF-6D index and included patients with a wide variety of diseases, there was a dearth of data at the lower end.  Further research to explore the impact on the results when including a greater proportion of individuals at both extremes of the SF-6D scale and additional medical conditions would be useful.  In particular, including individuals with severe health conditions could increase the generalisability of the results.  Further validation of the accuracy in predicting both baseline scores and incremental values in different samples is also required.
 
CONCLUSION
While individual level data collection of the preference-based weights is ideal, in budget- and resource-constrained health environments the cost, time and manpower involved in primary research is prohibitive.  Increasingly meta-analyses of evidence are being undertaken from published results rather than at the individual level, as part of economic evaluations of health care interventions for agencies such as the National Institute for Health and Clinical Excellence.  This paper presents a mechanism to estimate preference-based SF-6D scores from the eight mean heath dimension scores derived from the SF-36 questionnaire.  As far as the authors are aware, this study is unique in that it looks at predicting a preference-based SF-6D score using published dimension scores.  Further research is required to validate the results in different health conditions.
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Table 1: Summary statistics of the datasets used in the regressions and within-sample subgroup validations
	
	N
	F 
	Age
	SF-6D
	PF
	RP
	BP
	GH
	VT
	SF
	RE
	MH

	
	
	%
	Mean
	Mean
	Mean dimension score

	Full dataset
	6812
	65
	51
	0.70
	67.3
	56.2
	61.9
	58.1
	49.5
	66.5
	65.0
	66.0

	Asthma 
	2494
	61
	50
	0.70
	69.4
	61.7
	69.3
	53.7
	50.1
	64.7
	67.2
	68.1

	Chest pain 
	601
	18
	50
	0.71
	73.8
	50.6
	50.6
	57.7
	50.5
	72.1
	64.4
	66.1

	Healthy older women 
	203
	100
	65
	0.69
	48.3
	41.1
	58.8
	58.3
	51.3
	75.0
	60.1
	71.6

	Chronic obstructive pulmonary disease 
	87
	51
	65
	0.62
	32.1
	20.4
	56.2
	31.9
	35.9
	49.4
	50.2
	65.9

	Menopausal women 
	657
	100
	53
	0.76
	79.9
	71.5
	67.7
	65.8
	51.9
	81.5
	74.0
	67.9

	Irritable bowel syndrome 
	331
	86
	47
	0.75
	80.3
	66.8
	64.9
	63.7
	51.6
	78.3
	69.3
	67.8

	Intensive care 
	147
	59
	57
	0.63
	40.9
	17.2
	49.7
	68.3
	59.3
	49.8
	45.6
	62.1

	Lower back pain 
	198
	62
	43
	0.64
	57.6
	23.6
	31.3
	64.3
	46.2
	62.1
	65.0
	67.4

	Leg reconstruction 
	86
	68
	34
	0.67
	42.2
	39.2
	48.6
	61.6
	54.6
	60.1
	57.8
	68.7

	Leg ulcers 
	232
	66
	74
	0.68
	43.5
	50.5
	56.0
	64.6
	53.3
	66.6
	66.2
	69.6

	Mental health 
	453
	84
	43
	0.59
	67.6
	47.4
	50.7
	46.2
	25.2
	43.6
	30.8
	38.4

	Osteoarthritis 
	170
	60
	68
	0.61
	24.4
	12.4
	53.0
	52.0
	58.1
	51.8
	41.0
	62.7

	Trauma 
	207
	47
	54
	0.66
	48.6
	31.2
	52.9
	56.8
	48.0
	58.1
	57.6
	62.8

	Sleep apnea 
	188
	68
	65
	0.65
	50.4
	43.9
	49.4
	48.7
	40.5
	67.0
	61.0
	59.5

	Varicose veins 
	836
	72
	51
	0.75
	83.1
	75.8
	68.9
	70.5
	57.0
	73.3
	82.7
	73.4

	Pearson correlations with SF-6D using individual patient level data 

	
	
	
	
	
	0.68
	0.68
	0.70
	0.61
	0.68
	0.76
	0.65
	0.66


The health dimension scores from the SF-36: PF, physical functioning; RP, role-physical; BP, bodily pain; GH, general health; VT, vitality; SF, social functioning; RE, role emotional; MH, mental health.
F, female.
All Pearson correlations are significant at 0.01 level.

Table 2: Summary statistics of the out-of-sample datasets used in validations
	Health condition
	Study arm
	Time
	N
	SF-6D
	PF
	RP
	BP
	GH
	VT
	SF
	RE
	MH

	CAD
	S1 
	base
	296
	0.67
	62.4
	38.9
	61.7
	62.5
	48.3
	69.0
	59.8
	79.7

	Lung transplant
	S1 
	base
	99
	0.70
	39.7
	41.9
	45.3
	38.7
	45.3
	44.8
	45.6
	48.3

	Rheumatoid arthritis
	S1 
	base
	291
	0.56
	37.1
	12.9
	27.8
	42.3
	32.6
	55.2
	48.1
	67.2

	
	S1 
	3m
	
	0.63
	47.6
	28.7
	42.5
	48.3
	43.6
	67.5
	56.6
	72.8

	
	S1 
	6m
	
	0.64
	49.2
	34.9
	59.0
	55.5
	55.2
	80.9
	63.6
	72.9

	Ankylosing spondylitis
	S2
	base
	62
	0.60
	50.4
	23.7
	30.6
	42.4
	39.9
	63.9
	56.3
	70.3

	
	S2 
	3m
	
	0.75
	69.2
	55.8
	56.2
	55.7
	62.8
	82.6
	79.1
	81.5

	
	S2 
	6m
	
	0.72
	68.3
	55.1
	77.7
	65.6
	80.7
	98.4
	98.3
	79.1

	Diabetes, Chinese
	S1 
	base
	91
	0.76
	79.7
	79.4
	79.7
	62.3
	59.4
	84.5
	85
	72.1

	Diabetes, Malays
	S2 
	base
	74
	0.75
	72.7
	69.9
	73.6
	65.2
	67.1
	78.7
	75.7
	77.4

	Diabetes, Indian
	S3 
	base
	144
	0.71
	74.0
	73.9
	72.6
	69.8
	64.1
	77.2
	75.3
	71.9

	Rheumatoid arthritis
	S1 
	base
	86
	0.56
	38.7
	16.1
	30.0
	45.3
	37.5
	56.4
	52.6
	71.2

	
	S1 
	6m
	
	0.56
	41.4
	30.2
	38.5
	45.3
	39.4
	61.3
	51.2
	69.0

	
	S2 
	base
	97
	0.58
	43.3
	15.6
	31.7
	45.7
	35.6
	61.7
	55.4
	70.0

	
	S2 
	6m
	
	0.64
	53.2
	38.2
	45.7
	53.2
	47.9
	76.0
	72.1
	78.6

	No medical condition
	S1 
	base
	3155
	0.79
	82.0
	81.9
	80.4
	70.0
	64.8
	81.5
	77.5
	73.1

	Acute medical condition
	S2 
	base
	5224
	0.77
	80.3
	80.5
	78.3
	68.6
	63.8
	80.6
	79.2
	72.4

	Stroke
	S1
	base
	98
	0.55
	19.0
	8.0
	64.0
	55.0
	42.0
	41.0
	48.0
	68.0

	
	S1 
	6m
	
	0.68
	43.0
	34.0
	72.0
	59.0
	52.0
	62.0
	69.0
	78.0

	Musculoskeletal
	S1 
	base
	310
	0.78
	94.5
	87.9
	85.4
	74.2
	66.8
	82.5
	87.7
	70.7

	
	S1 
	EoS
	
	0.76
	92.8
	83.1
	75.4
	73.6
	65.9
	81.9
	84.1
	70.8

	Musculoskeletal free
	S2 
	base
	620
	0.78
	94.5
	87.6
	86.3
	73.4
	66.5
	83.3
	86.5
	70.7

	
	S2 
	EoS
	
	0.78
	94.0
	85.2
	83.7
	74.6
	68.2
	84.2
	85.2
	71.8

	Asthma
	S1 
	base
	220
	0.70
	63.1
	38.1
	66.4
	59.4
	48.8
	72.6
	63.3
	71.2

	
	S1 
	EoS
	
	0.76
	81.3
	73.3
	75.5
	69.4
	60.0
	83.1
	79.6
	75.9

	Stroke
	S2 
	base
	81
	0.55
	17.8
	8.3
	62.3
	54.4
	41.5
	42.7
	47.3
	67.2

	
	S2 
	EoS
	
	0.67
	41.6
	32.1
	68.8
	56.8
	50.5
	60.8
	68.3
	77.9

	Asthma
	S1 
	base
	241
	0.63
	63.2
	38.7
	67.2
	57.9
	48.2
	72.1
	63.3
	70.7

	
	S1 
	EoS
	
	0.73
	81.3
	73.1
	76.1
	69.2
	59.4
	83.4
	80.2
	75.9


CAD, coronary artery disease; The health dimension scores from the SF-36: PF, physical functioning; RP, role-physical; BP, bodily pain; GH, general health; VT, vitality; SF, social functioning; RE, role emotional; MH, mental health.  Published datasets: S1, study arm 1; S2, study arm 2; S3, study arm 3; 3m, 3 month; 6m, 6 month; EoS, end of study.  
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Table 3: Summary of SF-6D models and statistics 
	 
	Model 1
	Model 2

	
	Main effects
	Main effects plus interactions

	 
	Beta#
	RSE#
	Beta#
	RSE#

	Constant
	34.3814
	0.2870
	30.2787
	0.4221

	PF
	0.0994
	0.0033
	0.1742
	0.0108

	RP
	0.0215
	0.0021
	0.0279
	0.0021

	BP
	0.1083
	0.0031
	0.2456
	0.011

	GH
	0.014
	0.0038
	-0.0397
	0.0131

	VT
	0.0479
	0.0046
	0.1345
	0.0123

	SF
	0.1011
	0.004
	0.0907
	0.0038

	RE
	0.0394
	0.0021
	-0.0301
	0.0076

	MH
	0.1269
	0.0048
	0.1252
	0.0046

	PF*PF
	n/a
	n/a
	-0.0007
	0.0001

	BP*BP
	n/a
	n/a
	-0.0011
	0.0001

	GH*GH
	n/a
	n/a
	0.0005
	0.0001

	VT*VT
	n/a
	n/a
	-0.0009
	0.0001

	RE*RE
	n/a
	n/a
	0.0007
	0.0001

	PF*BP
	n/a
	n/a
	-0.0001
	0.00003

	GH*SF
	n/a
	n/a
	0.0002
	0.00004

	GH*RE
	n/a
	n/a
	-0.0001
	0.00003

	Adj R2
	0.834
	
	0.846
	

	ME
	
	0.000
	
	0.000

	MAE
	
	0.041
	
	0.040

	RMSE
	
	0.052
	
	0.050

	% < |0.10|
	
	95
	
	95

	% < |0.05|
	
	77
	
	69

	SF-6D
	actual
	predicted
	
	predicted

	mean
	0.698
	0.698
	
	0.698

	SD
	0.127
	0.116
	
	0.117

	Max
	1
	0.902
	
	0.879

	Min
	0.26
	0.344
	
	0.301


# all beta coefficients and standard errors multiplied by 100. 
All coefficients were statistically significant (P < 0.01). 
Calc: calculated using Brazier et al; Pred: predicted using regression models.
ME, mean error; MAE, mean absolute error; RMSE, Root mean squared error; RSE, robust standard error; SD standard deviation.  
The health dimension scores from the SF-36: PF, physical functioning; RP, role-physical; BP, bodily pain; GH, general health; VT, vitality; SF, social functioning; RE, role emotional; MH, mental health.  




Table 4: Comparing the predictive ability of the models for within-sample subgroups 
	
	
Actual SF-6D
	Calculated preference-based index
	Error

	
	
	Model 1
	Model 2
	Model 1
	Model 2

	Full sample
	0.698
	0.699
	0.704
	0.001
	0.006

	Subgrouped by health condition 

	Asthma 
	0.704
	0.711
	0.715
	0.007
	0.011

	Chest pain 
	0.709
	0.697
	0.699
	-0.012
	-0.010

	Healthy older women 
	0.688
	0.687
	0.693
	-0.001
	0.005

	Chronic obstructive pulmonary disease 
	0.622
	0.616
	0.618
	-0.006
	-0.004

	Menopausal women 
	0.756
	0.744
	0.748
	-0.012
	-0.008

	Irritable bowel syndrome 
	0.750
	0.734
	0.737
	-0.016
	-0.013

	Intensive care 
	0.634
	0.627
	0.630
	-0.007
	-0.004

	Lower back pain 
	0.642
	0.645
	0.642
	0.003
	0.000

	Leg reconstruction 
	0.669
	0.652
	0.655
	-0.017
	-0.014

	Leg ulcer 
	0.682
	0.675
	0.681
	-0.007
	-0.001

	Mental health 
	0.594
	0.600
	0.603
	0.006
	0.009

	Osteoarthritis 
	0.606
	0.611
	0.609
	0.005
	0.003

	Trauma 
	0.657
	0.648
	0.653
	-0.009
	-0.004

	Sleep apnea 
	0.647
	0.650
	0.654
	0.003
	0.007

	Varicose veins 
	0.750
	0.754
	0.760
	0.004
	0.010

	Subgrouped by gender

	Women
	0.708
	0.708
	0.713
	0.000
	0.005

	Men
	0.705
	0.708
	0.713
	0.003
	0.008

	Subgrouped by age bands (years)

	< 30 
	0.731
	0.737
	0.738
	0.006
	0.007

	30-39.9
	0.732
	0.733
	0.735
	0.001
	0.003

	40-49.9
	0.714
	0.714
	0.717
	0.000
	0.003

	50-59.9
	0.715
	0.714
	0.719
	-0.001
	0.004

	60-69.9
	0.690
	0.691
	0.697
	0.001
	0.007

	70-79.9
	0.666
	0.669
	0.674
	0.003
	0.008

	80-89.9
	0.669
	0.668
	0.672
	-0.001
	0.003

	≥ 90
	0.625
	0.663
	0.669
	0.038
	0.044

	< 45
	0.727
	0.729
	0.731
	0.002
	0.004

	45-69.9
	0.709
	0.708
	0.714
	-0.001
	0.005

	≥ 70
	0.666
	0.669
	0.674
	0.003
	0.008

	Subgrouped by actual SF-6D score

	< 0.3
	0.267
	0.410
	0.366
	0.143
	0.099

	0.3-0.39
	0.361
	0.453
	0.425
	0.092
	0.064

	0.4-0.49
	0.454
	0.505
	0.494
	0.051
	0.040

	0.5-0.59
	0.550
	0.561
	0.562
	0.011
	0.012

	0.6-0.69
	0.649
	0.648
	0.653
	-0.001
	0.004

	0.7-0.79
	0.746
	0.749
	0.755
	0.003
	0.009

	0.8-0.89
	0.835
	0.815
	0.819
	-0.020
	-0.016

	≥ 0.9
	0.929
	0.861
	0.851
	-0.068
	-0.078

	< 0.63
	0.534
	0.557
	0.557
	0.023
	0.023

	≥ 0.63
	0.759
	0.751
	0.755
	-0.008
	-0.004

	ME
	
	
	
	0.0057
	0.0065

	MAE
	
	
	
	0.0152
	0.0146

	RMSE
	
	
	
	0.0320
	0.0258

	% < |0.10|
	
	
	
	100
	100

	% < |0.05|
	
	
	
	90
	92

	% < |0.01|
	
	
	
	69
	72

	% < MID
	
	
	
	90
	90


MAE, mean absolute error; ME, mean error; RMSE, root mean squared error.
Table 5: Comparing the predictive ability of the models using out-of-sample datasets
	 
	ME
	MAE
	RMSE
	 % < |0.10|
	% < |0.05|
	% < MID

	Errors in cohort SF-6D scores (n = 29) 

	Model 1
	0.0271
	0.0358
	0.0432
	97
	72
	62

	Model 2
	0.0265
	0.0348
	0.0425
	97
	72
	59

	Errors in incremental values between study groups at baseline (n = 8) 

	Model 1
	-0.0117
	0.0166
	0.0215
	100
	100
	100

	Model 2
	-0.0119
	0.0165
	0.0205
	100
	100
	100

	Errors in incremental changes over time (n = 12) 

	Model 1
	0.004
	0.024
	0.028
	100
	100
	83

	Model 2
	-0.004
	0.025
	0.029
	100
	100
	83


MAE, mean absolute error; ME, mean error; MID, minimal important difference; RMSE, root mean squared error.



Figure 1: Residuals, observed and predicted SF-6D values for Model 1
[image: ]
There are 222/6890 (3.2%) of individuals with observed SF-6D ≥ 0.90 and 62/6890 (0.9%) with observed SF-6D ≤ 0.35.

Figure 2:  Plot of observed versus predicted SF-6D scores using mean dimensional scores
[image: ]
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ABSTRACT 

Background: The methods used to estimate health-state utility values (HSUV) for multiple health conditions can produce very different values.  Economic results generated using baselines of perfect health are not comparable with those generated using baselines adjusted to reflect the HSUVs associated with the health condition.  Despite this, there is no guidance on the preferred techniques and little research describing the effect on cost per quality adjusted life-year (QALY) results when using the different methods.

Methods: Using a cardiovascular disease model (CVD) and cost per QALY thresholds, we assess the consequence of using different baseline health-state utility profiles (perfect health, no history of CVD, general population) in conjunction with models (minimum, additive, multiplicative) frequently used to approximate scores for health states with multiple health conditions.  HSUVs are calculated using the EQ-5D UK preference-based algorithm.

Results: Assuming a baseline of perfect health ignores the natural decline in quality of life associated with age, over-estimating the benefits of treatment.  The results generated using baselines from the general population are comparable to those obtained using baselines from individuals with no history of CVD.  The minimum model biases results in favour of younger aged cohorts.  The additive and multiplicative models give similar results.  

Conclusion: Although further research in additional health conditions is required to support our findings, our results highlight the need for analyst to conform to an agreed reference case.  We demonstrate that in CVD, if data are not available from individuals without the health condition, HSUVs from the general population provide a reasonable approximation. 


Key words: health state utility, health economics methods, methodology, decision models, health surveys

Running title:	Applying health state utility values in models



INTRODUCTION
A number of agencies, including the National Institute for Health and Clinical Excellence (NICE), require economic evidence to be presented in the form of cost-effectiveness analyses whereby health benefits are quantified by quality adjusted life-years (QALYs) [1]. QALYs are calculated by summing the time spent in a health state weighted by the health state utility value (HSUV) associated with the health state, thus incorporating both length of survival and HSUVs into a single metric. Classification systems can produce a wide range of values for the same health state and the economic results generated using different systems are not always comparable [1]. Consequently, for submissions in the UK, the Institute advocate a preference for EQ-5D data with HSUVs obtained using UK population weights when available [1].

However, this is not sufficient to ensure consistency across appraisals because there is no guidance on appropriate baseline HSUVs that should be used to quantify the underlying health condition for patients entering the model [1]. If a baseline utility of perfect health (i.e., EQ-5D equals 1) is used to represent the absence of a health condition, the incremental QALYs gained by an intervention are inflated [2] and the results obtained using a baseline of perfect health are not comparable with those obtained when the baseline is adjusted for not having a particular health condition [3]. There is currently no consensus on baseline HSUVs used in economic evaluations.

In addition, there is currently no directive on the method that should be used to combine HSUVs for multiple health conditions. Analysts are increasingly exploring the benefits of interventions in individuals with several comorbid conditions. For example, HMG-CoA reductase inhibitors (statins) reduce both cardiovascular (CV) risk and rheumatoid arthritis (RA) disease activity; and an economic model exploring the benefits of statins in this population would include health states for patients with a history of both RA and cardiovascular disease (CVD) [4].  Because of strict exclusion criteria preventing patients with comorbidities entering clinical trials, it is unlikely that HSUVs will be available from patients with both health conditions.

When HSUVs for the multiple health states are not available, approximate scores are estimated by combining data collected from patients with the individual health conditions.  Three methods are frequently used: 1) additive, 2) multiplicative and 3) minimum models.  The additive and multiplicative models assume a constant absolute or proportional effect, respectively, while the minimum model applies a disutility that can vary depending on the baseline utility modelled.  Research exploring the appropriateness of the techniques used to combine utility values is inconclusive.  The additive and multiplicative models have been shown to produce similar results for individuals with both diabetes and thyroiditis [5]; the multiplicative model produced accurate utilities for several co-morbid conditions [6]; and the minimum model was advocated as the preferred methodology in two other studies [7,8].

Although literature describing minimum requirements for probabilistic analyses is growing [9], research exploring the basic principles involved in using HSUVs in economic models, and the implications on results generated from the models when using different techniques is scarce.  The limited research undertaken in this area has explored the appropriateness of different baseline utilities and approximate HSUVs for multiple health conditions in isolation; and there is currently no consensus on the preferred methodologies when the two adjustments are undertaken together.  

We describe the results of a pilot study in which we explore the effect of using different baseline utility values and different techniques to estimate approximate HSUVs for multiple health conditions in combination. We use an existing economic model and data from the Health Survey for England to investigate the potential effect on policy decision-making using cost per QALY thresholds. The primary objective of the study is to instigate additional research in this area to provide a foundation for better practice in economic evaluations used to inform health care decision-makers in the UK and elsewhere.

METHODS
The following section provides a brief description of the economic model and a synopsis of the data used.

Cardiovascular Model
An existing peer-reviewed Markov model [10] was modified slightly so that the health states (Fig. 1) matched the definitions of three CV conditions available from the Health Survey for England which are angina (A), heart attack (HA) and stroke (Str) [10,11]. The model compares two alternative treatments and an annual cycle is used for transitions between health states. Individuals enter the model in the event-free (EF) health state and can move to a primary health state: angina (A), nonfatal heart attack (HA), or nonfatal stroke (Str), or remain in the EF health state.  Individuals in the primary and post-event health states can move to a subsequent health state: subsequent angina (SA), subsequent nonfatal HA (SHA), subsequent nonfatal stroke (SStr); or remain in the primary or post-event health state. In each cycle all individuals are at risk of death through other causes (DoC), or fatal CVD (fCVD). Health-state costs are taken from a recent HTA evaluation of lipid treatments in the UK [10].

Health Survey for England
The Health Survey for England (HSE) is conducted annually using random samples of the population living in private households in England. The 2003 and 2006 surveys included questions about history of CVD and a random sample of participants (aged 16 to 98 years) were asked to complete the EQ-5D questionnaire (N = 26,679) [11,12]. Preference-based HSUVs were estimated using the weights obtained using time trade-off valuations from the UK general public [13].

TABLE 1:	EQ-5D scores subgrouped by health condition and time since event

We assumed that the data from individuals who reported a history of just one CV condition are representative of the HSUVs of individuals who have a first ever primary CV event; and that data from individuals who reported a history of more than one CV condition are representative of the HSUVs of individuals who have a subsequent event (Table 1). For example, the mean HSUV during the first 12 months after experiencing a primary (secondary) heart attack is 0.721 (0.431) and the corresponding mean HSUV for time periods after this is 0.742 (0.685).

The relationship between HSUVs, age, sex, and history of CVD was explored using ordinary least square regressions. Model 1 (EQ-5D = 0.9508566 + 0.0212126 * male - 0.0002587 * age - 0.0000332 * age2, Fig. 2) was obtained using the full dataset (n = 26,679) and can be used to estimate the mean HSUVs for individuals in the general population. Model 2 (EQ-5D = 0.9454933 + 0.0256466 * male - 0.0002213 * age - 0.0000294 * age2, Fig. 2) was obtained from individuals who reported no history of angina, heart attack or stroke (n = 25,080) and can be used to estimate the HSUVs for individuals with no history of CVD [14].

Figure 1:	Baseline utility for the event free health state

Analyses
The following section describes a worked example demonstrating the difference in incremental QALYs gained from avoiding a single event when using different baseline HSUV profiles, followed by results generated from the economic model demonstrating the potential effect on a policy decision using a cost per QALY threshold when using the different baseline HSUV profiles.  We then provide a worked example using the three alternative models to estimate approximate scores for multiple health conditions, looking at the difference in incremental QALYs associated with avoiding a single event, followed by results generated from the economic model when combining the different baseline profiles and the techniques used to combine the utility data.

Baseline HSUV profiles
In a CV model, individuals who are at high risk of a CV event and have no prior history of CVD typically enter the model in an “event-free” health state. The HSUV profile associated with this health state is then used as the baseline to estimate the health benefits accrued through avoiding CV events. Ideally, the health profile for the EF health state would be derived from long term registry data and would represent the HSUVs for individuals who are at high risk of a primary CV event but who have no existing history of CVD. In the absence of these data, analysts assume the baseline HSUV profile is either 1) equal to perfect health (i.e., EQ-5D = 1 irrespective of age or sex), 2) equal to the profile of HSUVs from the general population adjusted for age and sex (i.e., all individuals irrespective of history of CVD), or 3) equal to the profile of HSUVs from individuals with no history of CVD.  To simplify the methodology, we present examples for males only in the following section.

In the following example (Box 1), we illustrate the difference in QALYs accrued from avoiding a single event using the three alternative baseline HSUV profile for the EF health state.  The HSUV profile when assuming a baseline of perfect health (UPHEF) is constant at EQ-5D = 1.  The HSUV profile when assuming a baseline from the individuals with no history of CVD (UNCVEF) is calculated using Model 2 and the HSUV profile when assuming a baseline from the general population (UGPEF) is calculated using Model 1 (Figure 2).  The mean EQ-5D score for individuals who reported experiencing angina within the previous 12 months (UA) is 0.6148 and the mean age for this subgroup is 68.8 years (Table 1).  We assume the event occurs at the age of 50 years and examine the cumulative and incremental QALYs accrued over a 50 year time horizon.  For the examples using the age-adjusted baseline profiles, the data for the individual health conditions are combined multiplicatively (see Box 2 for more details on this technique). 





The cumulative QALYs for the EF health state are calculated by summing the life-years weighted by the HSUV profile across the 50 year period (Cumulative QALYPHEF = 50*1, Cumulative QALYNCVEF = = 39.27, Cumulative QALYGPEF == 38.08.  The cumulative QALYs for angina are calculated by summing the life-years weighted by the baseline profile multiplied by the multiplier associated with angina (Cumulative QALYPHA = 50 * 1 * 0.6148 = 30.74, QALYNCVA =* 0.753 = 29.56, Cumulative QALYGPA = * 0.771 = 29.37, Cumulative.  The incremental QALYs associated with avoiding angina is calculated as the difference between the total cumulative QALYs for the EF health state minus the total incremental QALYs for angina (Cumulative QALYiEF - Cumulative QALYA).  The technique used to obtain the multipliers used is described in the next worked example.

BOX 1
Comparing the incremental QALY gain from a single event when using different baseline HSUV profiles

Let	UPHEF = 1
UNCVEF = 0.9454933 + 0.0256466 * male - 0.0002213 * age - 0.0000294 * age2
UGPEF = 0.9508566 + 0.0212126 * male - 0.0002587 * age - 0.0000332 * age2 
	UA = 0.6148 (mean age = 68.8 years)
Where 	Uij = HSUV, and 	i = baseline: 	PH = perfect health
					NCV = no history of CVD (regression Model 2)
				GP = general population (regression Model 1)	
			j = health state: 	EF = event free, A = angina
multiplier for angina for UNCV: male = 0.753 (= 0.6148/0.8167)
multiplier for angina for UGP: male = 0.771 (= 0.6148/0.7973)
 (# see example 2 for method used to obtain multipliers)
Results when assuming a baseline HSUV profile of full health:
	Cumulative QALYPHEF = 50, 
Cumulative QALYPHA = 30.74
	Incremental QALYPH = QALYPHEF - QALYPHA = 19.26 
Results when using a baseline HSUV profile from individuals with no history of CVD:
	Cumulative QALYNCVEF = 39.27 
	Cumulative QALYNCVA = 29.56 
	Incremental QALYNCV = QALYNCVEF - QALYNCVA = 9.71 
Results when assuming a baseline HSUV profile from the general population:
	Cumulative QALYGPEF = 38.08 
	Cumulative QALYGPA = 29.37 
	Incremental QALYGP = QALYGPEF - QALYGPA = 8.71 

Comparing results when using different baseline HSUV profiles for the EF health state
For a male, the cumulative (Box 1) associated with remaining in the EF health state range from 38.1 when using a baseline HSUV profile from the general population to 50 when using a baseline HSUV profile of perfect health; and the cumulative QALYs associated with angina range from 29.4 when using a baseline HSUV profile from the general population to 30.7 when using a baseline HSUV profile of perfect health.  The incremental QALY gain associated with avoiding angina range from 8.71 when using a baseline HSUV profile from the general population to 19.26 when using a baseline HSUV profile of perfect health.  The incremental QALYs obtained using the baseline HSUV profile from the general population are comparable to those obtained when using the baseline HSUV profile from individuals with no history of CVD (8.71 vs 9.71).  

Looking at the QALY gain associated with avoiding a single heart attack or a stroke (Table 2), the values obtained when assuming a baseline HSUV profile of perfect health are substantially higher than those obtained using the age-adjusted data.  Again the QALY gain obtained using the baseline HSUV profile from the general population are comparable to those obtained using the baseline HSUV profile from individuals with no history of CVD (heart attack: 4.30 versus 5.18; stroke: 8.33 versus 9.30).

TABLE 2: Cumulative and incremental QALYS associated with a single event using different baseline HSUV profiles

Cost per QALY results using different baseline HSUV profiles for the EF health state
The three alternative baseline profiles were applied in the CVD model and used to assess the lifetime benefits associated with avoiding primary events for cohorts of differing ages (Table 3).  The results from the worked example show the benefits associated with avoiding a single event are considerably larger when using a baseline of perfect health compared to adjusting the baseline.  When examining the effect on the results generated from the model, the cost per QALY obtained using a baseline of perfect health (Figure 3) is substantially lower than the corresponding results obtained using the age-adjusted profiles, particularly for the older aged cohorts.  If a threshold of £20,000 per QALY is applied (Figure 3), using a baseline of perfect health could potentially induce a different policy decision than the one based on results generated when using a baseline HSUV profile that is adjusted for not having the health condition.    

Table 3: Results generated from CVD model using the three alternative baseline profiles

Figure 2: Comparing the results generated from the CVD model using the three alternative baseline profiles

Estimating approximate HSUV for multiple health conditions
In the following example (Box 2) we use data from individuals who have a history of angina and no other CV condition (UA) and data from individuals who have a history of a heart attack and no other CV condition (UHA) to estimate a HSUV for the multiple health state “angina and heart attack” (UA,HA).  The additive, multiplicative and minimum models are used to estimate the HSUV profiles for the multiple health condition in conjunction with the two age-adjusted baseline HSUV profiles (general population and no history of CVD) using the disutility (δij), multiplier (φij), or minimum value (min), respectively.  These are then used in conjunction with the two age-adjusted baseline HSUV profiles (no history of CVD and general population) but not the baseline of perfect health.  We compare the QALYs obtained from avoiding a single event when using the HSUV (UAHA) from individuals who have a history of both angina and a heart attack with those obtained when using the estimated HSUV (UA,HA).  

A. Using the USUV obtained from individuals with a history of both angina and heart attack

The mean HSUV for individuals with a history of both angina and a heart attack (UAHA) is 0.6243, and the mean age for this subgroup is 68.2 years.  When using the baseline HSUV profile from the general population, the HSUV for a male at the age of 68.2 years (UGP) is 0.8000 (from Model 1).  For the additive model, the disutility (δGPAHA) is the absolute difference between the baseline utility at the age of 68.2 years and the HSUV associated with the health condition angina and heart attack (i.e., δGPAHA = UGP- UAHA = 0.8000 – 0.6243 = 0.1757).  When summing the QALYs accumulated for the health condition, as the additive model assigns a constant effect irrespective of age, a constant value of 0.1757 is deducted from the age-adjusted baseline HSUV each year and the resulting values are summed to give the total cumulative QALYs (QALYGPAHA = = 29.30).  The incremental QALYs are then calculated by deducting the total cumulative QALYS associated with the condition angina and heart attack (QALYGPAHA = 29.30) from the baseline total cumulative QALYs for the EF health state (QALYGPEF = 38.08).



For the multiplicative model, the multiplier (φGPAHA) is the value that will give the HSUV associated with the health condition angina and heart attack (UAHA) when multiplying the baseline utility at the age of 68.2 years (i.e., φGPAHA = UAHA/UGP = 0.6243/0.8000 = 0.7804).  When summing the QALYs accumulated for the health condition, the multiplicative model assigns a constant proportional effect which is dependent on the age-adjusted baseline HSUV.  The total cumulative QALYs are calculated by summing the QALYs obtained when multiplying the age-adjusted baseline HSUV with the corresponding multiplier (QALYGPAHA = = 29.72).  The incremental QALYs are then calculated by deducting the total cumulative QALYS associated with the condition angina and heart attack (QALYGPAHA = 29.72) from the baseline total cumulative QALYs for the event free health state (QALYGPEF = 38.08).  For the minimum model, the minimum HSUV for the multiple condition angina and heart attack, and the age-adjusted baseline is used.  Consequently, the detriment associated with the health condition angina plus heart attack is not constant.  The total cumulative QALYs is simply the sum of the minimum values each year (QALYGPAHA = = 31.21).  The incremental QALYs are then calculated by deducting the total cumulative QALYS for the health state angina plus heart attack (QALYGPAHA = 31.21) from the baseline total cumulative QALYs for the EF health state (QALYGPEF = 38.08).

B. Using the USUV obtained from individuals with a history of either angina (with no other CV condition) or heart attack (with no other CV condition)

The mean HSUV for individuals with a history of just angina (UA) is 0.6910 and the mean HSUV for individuals with a history of just heart attack (UHA) is 0.7391.  The mean ages for these subgroups are 68.4 and 66.6 years, respectively.  When using the baseline HSUV profile from the general population, the corresponding HSUVs for a male at the age of 68.4 and 66.6 years are 0.7990 and 0.8076 (from Model 1).  For the additive model, the total disutility (δGPA,HA) is estimated to be the sum of the absolute difference between the baseline utility at the age of 68.4 and the HSUV associated with the health condition angina (i.e., δGPA = UGP– UA = 0.7990 – 0.6910 = 0.1080) plus the absolute difference between the baseline utility at the age of 68.4 and the HSUV associated with the health condition heart attack (i.e., δGPHA = UGP – UHA = 0.8076 – 0.7391 = 0.0686), giving a total estimated detriment of 0.1766.  When summing the QALYs accumulated for the health condition, a constant value of 0.1766 is deducted from the age-adjusted baseline HSUV each year and the resulting values are summed to give the total cumulative QALYs (QALYGPA,HA = = 29.25).  The incremental QALYs are then calculated by deducting the total cumulative QALYS (QALYGPA,HA = 29.25) from the baseline total cumulative QALYs for the EF health state (QALYGPEF = 38.08).


For the multiplicative model, the estimated multiplier for the health state angina and heart attack (φGPA,HA) is calculated by multiplying the multiplier for angina (φGPA) with the multiplier for heart attack (φGPA).  The single multipliers are calculated using the method described earlier, that is, the multiplier for angina is obtained using the HSUV for angina and the baseline HSUV for individuals at the age of 68.4 years (φGPA = 0.6910/0.7790) and the multiplier for heart attack is obtained using the HSUV for heart attack and the baseline HSUV for individuals at the age of 66.6 years (φGPA = 0.7391/0.8076).  When multiplied together, the estimated multiplier for the condition angina and heart attack (φGPA,HA) is 0.7913.  The total cumulative QALYs are calculated by summing the QALYs obtained when multiplying the age-adjusted baseline HSUV with the corresponding multiplier (QALYGPA,HA = = 30.13).  The incremental QALYs are then calculated by deducting the total cumulative QALYS associated with the condition angina and heart attack (QALYGPA,HA = 30.13) from the baseline total cumulative QALYs for the EF health state (QALYGPEF  = 38.08).  


For the minimum model, the minimum HSUV for the individual conditions angina and heart attack, and the age-adjusted baseline is used.  The total cumulative QALYs is simply the sum of the minimum values each year (QALYGPA,HA = = 34.14).  The incremental QALYs are then calculated by deducting the estimated total cumulative QALYS for the health state angina plus heart attack (QALYGPA,HA = 34.14) from the baseline total cumulative QALYs for the EF health state (QALYGPEF = 38.08).

Comparing results when estimating approximate HSUVs for multiple health condition
When using age-adjusted baseline utilities from the general population to represent the HSUV for the EF health state, and the HSUV for individuals with a history of both angina and heart attack, the incremental QALYs obtained using the additive and the multiplicative models are 8.79 and 8.36, respectively, compared with 6.87 when using the minimum model.  The corresponding incremental QALYs obtained when estimating HSUVs for the combined health state are 8.83, 7.95 and 3.94 for the additive, multiplicative and minimum models, respectively.  If it is assumed that the values obtained using the data from individuals with both health conditions are correct, then the additive and multiplicative models produce much smaller errors in the incremental values than the minimum model.


Box 2
Estimating an approximate HSUV for the multiple health state both angina and heart attack
Let	j = health state and: AHA = both angina and heart attack, A = angina, HA = heart attack, A,HA = proxy angina plus heart attack
	δij = disutility; φij = multiplier; min =minimum
	UAHA @ mean age 68.2 = 0.6243, UGP @ age 68.2 = 0.8000, UNCV @ age 68.2 = 0.8193
	UA @ mean age 68.4 = 0.6910, UGP @ age 68.4 = 0.7990, UNCV @ age 68.4 = 0.8185
	UHA @ mean age 66.6 = 0.7391, UGP @ age 66.6 = 0.8076, UNCV @ age 66.6 = 0.8260
Using a baseline HSUV profile from individuals with no history of CVD,
Additive:	δNCVAHA = UNCV - UAHA = 0.8193 - 0.6243 = 0.1950
		δNCVA,HA = δNCVA + δNCVHA = (UNCV - UA) + (UNCV - UHA)
			= (0.8185 - 0.6910) + (0.8260 - 0.7391) = 0.2143
Multiplicative:	φNCVAHA = UAHA/UNCV = 0.6243/0.8193 = 0.7622
		φNCVA, HA = φNCVA * φNCVHA = (UA/UNCV)*(UHA/UNCV)
			= (0.6910/0.8185)*(0.7391/0.8260) = 0.7555
Minimum:	UNCVAHA = min(UNCV,UAHA) = min(UNCV,0.6243)
		UNCVA,HA = min(UNCV,UA,UHA) = min(UNCV,0.6910,0.7391)
Assuming the event occurs at the age of 50 years,
Using the data from individuals with a history of both angina and heart attack:
	Additive, incremental QALYsNCV = QALYNCVEF - QALYNCVAHA = 39.27 - 29.52 = 9.75
	Multiplicative, incremental QALYsNCV = QALYNCVEF - QALYNCVAHA =39.27 - 29.92 = 9.35
	Minimum, incremental QALYsNCV = QALYNCVEF - QALYNCVAHA = 39.27 - 31.22 = 8.05
Using the approximate scores from individuals with a history of either angina or heart attack:
	Additive, incremental QALYsNCV = QALYNCVEF - QALYNCVA,HA = 39.27 - 28.55 = 10.72
	Multiplicative, incremental QALYsNCV = QALYNCVEF - QALYNCVA,HA = 39.27 - 29.67 = 9.60
	Minimum, incremental QALYsNCV = QALYNCVEF - QALYNCVA,HA = 39.27 - 34.46 = 4.81
When using a baseline HSUV profile from the general population, the approximate HSUVs are calculated using the same method as above replacing the values from individuals with no history of CVD with the corresponding values from the general population.  The results are provided in Table 4.  N.B. any anomalies in the results are due to rounding in the decimal places in the calculations shown above.

Using age-adjusted baseline utilities from individuals with no history of CVD to represent the HSUV profile for the EF health state (calculations provided in Box 2), the additive and the multiplicative models again produce similar results with incremental QALYs of 10.72 and 9.60, respectively, compared with 9.75 and 9.35 when using the data from individuals with a history of both conditions.  The incremental QALY gain when using the minimum model is much smaller at 4.81 and 8.05 when using the HSUV from the individual health conditions and the HSUV from individuals with both health conditions, respectively.  Results for additional examples (n ≥ 20) are provided in Table 4.

Table 4: Cumulative and incremental QALY gains from a single event using different techniques to estimate proxy scores for multiple health states


Cost per QALY results generated when combining the alternative baseline HSUV profiles with the three different models available to combine HSUVs
The three alternative techniques used to combine utility scores are applied in the CVD model and used to assess the lifetime benefits associated with avoiding primary events for cohorts of differing ages using a baseline from individuals with no history of CVD and a baseline from individuals from the general population (Table 5).  The results from the second worked example showed the benefits associated with avoiding a single event are considerably smaller when using the minimum model to combine the utility values.  This has a larger effect on the results for older aged cohorts (Table 5) where the ratio of costs and QALYs are more sensitive to small differences in the number of incremental QALYs gained.  Figure 4 shows the cost per QALY results generated from the model using the different techniques to combine the utility data.  There is very little difference in the results for the additive and multiplicative models, with the baseline HSUVs having a larger effect than the technique used to combine the utility data.

Table 5: Results generated from the CVD model when combining different baseline utility scores and different methods to combine utility data

Figure 3: Comparing results generated from the CVD model when combining different baseline utility scores and different methods to combine utility data


DISCUSSION
We have demonstrated that the difference in QALY benefits accrued from avoiding a single CV event when using a baseline of perfect health are not comparable with those accrued when using a baseline that is adjusted for not having CVD. We have also demonstrated that in CVD, results generated using age-adjusted data from the general population are comparable to those obtained using a baseline from individuals with no history of CVD. Applying the different approaches in an economic model, we also show that assuming an HSUV profile of perfect health as the baseline could potentially influence a policy decision based on a cost per QALY threshold.

The HSE data show that both age and sex are independent predictors of HSUVs and these findings are observed in numerous other datasets [13,16].  Given that the mean EQ-5D score is never equal to full health irrespective of age or sex, using a baseline of perfect health overestimates the benefits associated with avoiding an event and biases the results in favour of the older age cohorts because it ignores the natural decline in mean HSUVs because of age and comorbidities. Data obtained from individuals without the health condition under consideration is the ideal baseline profile and should be used where possible. However, if these data are not available, we show that in CVD, the results generated using age-adjusted baseline data from the general population are comparable with the results generated using age-adjusted baseline data from individuals with no history of CVD.

It should be noted that for the first example where we explore the effect on the ICER of using different baseline profiles we combine the data for the age-adjusted analyses using the multiplicative model. We could have combined the data additively or used the minimum model but felt that presenting all three sets of results added an unnecessary complexity to the methods and detracted from the purpose of the exercise which was twofold.  First, to reiterate findings previously described by Flanagan, i.e., that using a baseline of perfect health overestimates the benefits of treatment, and second, to take the research one step further by exploring the potential effect on policy decisions using results generated from an economic model.

We demonstrated that when combined with the age-adjusted utilities, the method used to estimate approximate scores for multiple health conditions can produce a large variation in the incremental QALY gain from avoiding a single event. When applying the techniques in the economic model we demonstrate that the method used to estimate the approximate scores could affect a policy decision based on a cost per QALY threshold. In particular, using the minimum model in combination with an age-adjusted baseline produces results that are not comparable to those generated using the additive or multiplicative models.

The existing literature describing the effect on results when combining HSUVs using different methods is sparse and inconclusive.  Both Dale et al. and Fu et al. suggest the minimum value should be used to approximate the HSUV for a multiple health condition [7,8]. By taking the minimum mean utility score of the individual health conditions that contribute to a multiple health condition, the minimum model assumes that comorbidity has no additional detrimental effect on the HSUV of individuals with an existing health condition. This is counterintuitive and data from the HSE show that, in CVD, there is a statistically significant difference in the mean EQ-5D score for individuals with one condition compared with those with more than one CV condition (mean EQ-5D for individuals with a history of just angina = 0.691, mean EQ-5D for individuals with a history of angina and stroke = 0.596, P < 0.01). In addition, when applying the minimum model in an economic model in conjunction with an age-adjusted baseline, the method fails. The HSUVs for individuals who experience a primary heart attack is 0.7213. In the primary prevention analyses where all individuals commence in the EF health state the age-adjusted EQ-5D score for males with no history of CVD at the age of 89 years is 0.718. Consequently, when using the minimum model there is no benefit in avoiding a non-fatal heart attack in males over the age of 89 years. Similarly, the post primary angina health state has a mean EQ-5D score of 0.775; thus, there are no benefits for males aged over 78 as the corresponding baseline age-adjusted EQ-5D score for individuals with no history of CVD is 0.7748. Because the minimum model does not apply a constant detriment, the technique introduces a bias against older aged cohorts and the results from our threshold analyses demonstrate this can be quite substantial. We therefore recommend that the minimum model is not used to combine utility scores. 

The authors of a recent publication propose a linear function to estimate HSUVs for combined health states which combines the three commonly used models. The weights for the function were obtained from a sample (n = 207) of men at the time of prostate biopsy. Although the authors found their weighted linear function outperformed the three individual models in terms of bias in the mean residuals and correlations of the residuals with the predicted HSUVs, these results are based on a baseline of perfect health [15].

Our results show that the multiplicative and additive models produce similar results both for the individual events and when applying the techniques in the economic model. Flanagan and colleagues found the multiplicative model was reasonably accurate in estimating both double and triple comorbidities after “purifying” the mean HUI3 scores to adjust for not having 26 chronic conditions [6]. Bond et al. concluded that the additive and multiplicative models produced very similar results, when using a baseline of perfect health [5]. However, the additive model applies a constant absolute detriment across all ages while the multiplicative model applies a constant proportional detriment.  In real terms, this means that the additive model provides a greater absolute reduction in HSUVs than the multiplicative model and the magnitude of the detriment is constant across all ages irrespective of the number of comorbidities. The findings from Dale et al. and Fu et al., who both advocate the minimum model for combining HSUVs outside of an economic model, support the hypothesis that the detriment associated with several comorbidities may not equal the sum of the individual detriments.

Saarni reported that the mean number of comorbid chronic conditions increases from 1.1 for the age group 30–44 years to 4.0 for those aged 75 years and older [16]. It is possible that as the number of comorbidities increase, the detriment associated with an additional condition is smaller than that observed in an individual with just two comorbidities. If this hypothesis is correct, then the detriment associated with additional conditions would not be constant across all ages because of the increasing prevalence of comorbidities. In addition, health conditions can impact on the same health dimensions and it is reasonable to assume that an individual with two or more similar conditions will not necessarily have a reduction in HSUV that is equal to the sum of the reductions observed for each of the individual health conditions.

Although we found the additive and multiplicative models produced similar cost per QALY results, this finding may not generalize with other health conditions. In health conditions with comparatively small gains in QALYs, for example, when the intervention does not have an effect on mortality rates, the economic results are likely to be more sensitive to changes in the techniques used to combine HSUVs. Although additional research is required to support our hypothesis and findings, in the interim period, to facilitate comparison across results generated from models with multiple health states, we advocate the use of the multiplicative model for the reasons discussed above regarding the potential limitations associated with the additive model.

The health care literature and policy decision-makers such as NICE place a great deal of emphasis on both the methods used to obtain weights used in preference-based instruments and the particular preference-based instrument used to collect the HSUVs which are used to populate health states within economic models [1]. Evidence shows that the choice of instrument used to represent the HSUVs of a particular health condition can influence the results generated [17]. However, there is a great deal more to populating an economic model than the choice of instrument used to obtain the HSUVs and a consistent approach would improve comparability of results. We have used EQ-5D data in this article and additional research using alternative data such as the SF-6D is warranted.

CONCLUSION
Our results reinforce earlier recommendations and, until guidelines are in place, we would recommend that data from the general population are used as approximate baseline utility measures for individuals without the health condition under consideration if the actual data are not available. Although our findings demonstrate the additive and multiplicative models give similar results in CVD, additional research in other health conditions and datasets are required.

The underlying principle behind using the same preference-based instrument for all economic evaluations is to enable comparison across different interventions and health conditions. If this is to be realized, some consensus is needed on the most appropriate methods to populate the economic models. The methods used should be clearly described to inform policy decision-makers who are comparing results generated from different evaluations.
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Table 1:	EQ-5D scores subgrouped by health condition and time since event 
	Health condition
	Health state
	N
	Age
	EQ-5D
	

	
	
	
	Mean
	Mean 
	SE

	Utility values used to populate health states in the economic model

	Event free
	EF
	25,080
	47.0
	0.872
	0.001

	Angina < 12 months, history of just angina
	A
	271
	68.8
	0.615
	0.019

	No event < 12 months, history of just angina
	pA
	246
	68.0
	0.775
	0.015

	Angina < 12 months, history of angina + other CV condition
	SA
	245
	67.9
	0.541
	0.022

	No event < 12 months, history of angina + other CV condition 
	pSA
	184
	69.4
	0.715
	0.022

	Heart attack < 12 months, history of just heart attack
	HA
	31
	65.4
	0.721
	0.045

	No event < 12 months, history of just heart attack
	pHA
	206
	65.1
	0.742
	0.020

	Heart attack < 12 months, history of heart attack + other CV condition
	SHA
	36
	66.7
	0.431
	0.066

	No event < 12 months, history of heart attack + other CV condition
	pSHA
	184
	69.2
	0.685
	0.024

	Stroke < 12 months, history of just stroke
	Str
	76
	67.9
	0.626
	0.038

	No event < 12 months, history of just stroke
	pStr
	291
	66.8
	0.668
	0.018

	Stroke < 12 months, history of stroke + other CV condition
	SStr
	18
	73.5
	0.479
	0.087

	No event < 12 months, history of stroke + other CV condition
	pSStr
	77
	70.4
	0.641
	0.037

	Data used to compare methods for estimating proxy scores for multiple health conditions

	Angina (t = ever), history of just angina
	
	517
	68.4
	0.691
	0.013

	Heart attack (t = ever), history of just heart attack
	
	237
	66.6
	0.739
	0.018

	Stroke (t = ever), history of just stroke
	
	367
	67.0
	0.660
	0.016

	Angina and heart attack (t = ever)
	
	323
	68.2
	0.624
	0.019

	Angina and stroke (t = ever)
	
	63
	70.3
	0.596
	0.043

	Heart attack and stroke (t = ever)
	
	32
	69.7
	0.538
	0.065

	Angina < 12 months and heart attack < 12 months 
	
	23
	63.1
	0.400
	0.073

	Angina < 12 months and heart attack > 12 months
	
	154
	68.4
	0.585
	0.030




Table 2:  Cumulative and incremental QALYs associated with a single event using 		different baseline utility data
	
	Multiplicative Model

	
	Cumulative QALY
	Incremental QALY

	Baseline: perfect health

	Event free
	50.00
	

	Angina
	30.74
	19.26

	Heart Attack
	36.07
	13.94

	Stroke
	31.31
	18.69

	Baseline: from general population

	Event free
	38.08
	
	

	Angina
	29.37
	8.71

	Heart Attack
	33.78
	4.30

	Stroke
	29.75
	8.33

	Baseline: from individuals with no history of CVD

	Event free
	39.27
	
	

	Angina
	29.56
	9.71

	Heart Attack
	34.09
	5.18

	Stroke
	29.97
	9.30


 CVD, cardiovascular disease.


Table 3: 	Results generated from CVD model using the three alternative baseline profiles (combining utility scores multiplicatively)
	 
	Baseline utility
	Treatment A QALYs
	Treatment B
QALYs
	Incremental
QALYs
	Cost per 
QALY

	Age 50 years

	Costs £(,000)
	£4,216
	£5,610
	£1,394
	 

	QALYs
	Perfect health
	16,795
	16,895
	100
	£13,887

	
	General population
	14,129
	14,178
	49
	£28,324

	
	No history of CVD
	14,363
	14,417
	54
	£25,914

	Age 60 years

	Costs £(,000)
	£3,660
	£4,773
	£1,113
	

	QALYs
	Perfect health
	13,582
	13,648
	67
	£16,711

	
	General population
	10,919
	10,952
	33
	£33,957

	
	No history of CVD
	11,197
	11,229
	32
	£34,777

	Age 70 years

	Costs £(,000)
	£2,609
	£3,424
	£815
	

	QALYs
	Perfect health
	9,966
	10,002
	36
	£22,849

	
	General population
	7,643
	7,656
	13
	£62,195

	
	No history of CVD
	7,866
	7,880
	14
	£56,487


CVD, cardiovascular disease; QALY, quality adjusted life-year



Table 4: Cumulative and incremental QALY gains from a single event using different techniques to estimate proxy scores for multiple health states
	
	Cumulative QALY
	Incremental QALY
	Error in Incremental QALY

	
	Observeda 
	Proxyb
	Baseline - observed
	Baseline - proxy
	

	 
	GP
	NCVD
	GP
	NCVD
	GP
	NCVD
	GP
	NCVD
	GP
	NCVD

	 Baseline 

	event free
	38.1
	39.3
	 
	 
	 
	 
	 
	 
	 
	 

	Angina plus Heart Attack: EQ-5D just angina = 0.691; EQ-5D just heart attack = 0.739; EQ-5D angina plus heart attack = 0.624  

	Additive
	29.3
	29.5
	29.2
	28.5
	8.8
	9.8
	8.8
	10.7
	0.0
	1.0

	Multiplicative
	29.7
	29.9
	30.1
	29.7
	8.4
	9.4
	7.9
	9.6
	-0.4
	0.2

	Minimum
	31.2
	31.2
	34.1
	34.5
	6.9
	8.1
	3.9
	4.8
	-2.9
	-3.3

	Angina plus Stroke: EQ-5D just angina =0.691; EQ-5D just stroke =0.660, EQ-5D angina plus stroke = 0.596

	Additive
	28.4
	28.5
	25.4
	24.7
	9.7
	10.7
	12.7
	14.6
	3.0
	3.9

	Multiplicative
	28.7
	28.9
	27.0
	26.5
	9.4
	10.4
	11.1
	12.7
	1.8
	2.3

	Minimum
	29.8
	29.8
	32.9
	33.0
	8.3
	9.5
	5.2
	6.3
	-3.1
	-3.2

	Heart Attack plus Stroke: EQ-5D just heart attack = 0.739, EQ-5D just stroke = 0.660; EQ-5D heart attack plus stroke = 0.538

	Additive
	25.3
	25.5
	27.4
	26.7
	12.8
	13.8
	10.7
	12.6
	-2.0
	-1.2

	Multiplicative
	25.8
	26.0
	28.6
	28.1
	12.2
	13.3
	9.5
	11.1
	-2.7
	-2.1

	Minimum
	26.9
	26.9
	32.9
	33.0
	11.2
	12.4
	5.2
	6.3
	-6.0
	-6.1

	Angina < 12 months, Heart Attack < 12 months: 

	EQ-5D angina < 12 months = 0.615; EQ-5D heart attack < 12 months = 0.721; EQ-5D angina < 12 months plus heart attack < 12 months = 0.400

	Additive
	16.9
	17.3
	24.4
	23.7
	21.2
	22.0
	13.7
	15.6
	-7.5
	-6.4

	Multiplicative
	18.5
	18.7
	26.1
	25.7
	19.6
	20.6
	12.0
	13.6
	-7.6
	-7.0

	Minimum
	20.0
	20.0
	30.8
	30.8
	18.1
	19.3
	7.3
	8.5
	-10.8
	-10.8

	Angina < 12 months, Heart Attack > 12 months:

	EQ-5D angina < 12 months = 0.615; EQ-5D heart attack > 12 months = 0.742; EQ-5D angina < 12 months plus heart attack > 12 months = 0.585

	Additive
	27.4
	27.6
	25.4
	24.7
	10.7
	11.7
	12.7
	14.6
	2.0
	2.9

	Multiplicative
	27.9
	28.1
	26.8
	26.4
	10.2
	11.2
	11.3
	12.9
	1.1
	1.7

	Minimum
	29.3
	29.3
	30.8
	30.8
	8.8
	10.0
	7.3
	8.5
	-1.5
	-1.5


a Using utility data from individuals with a history of both conditions; b Using data from individuals with a history of a single condition to estimate the HSUV for the multiple health condition; GP, general population; NCVD, No history of CVD.

Table 5: Results generated from the CVD model when combining different baseline utility scores and different methods to combine utility data
	
	General population
	No history of CVD

	
	Add
	Mult
	Min
	Add
	Mult
	Min

	Age 55 years

	Treatment A, total QALY
	12,530
	12,535
	12,565
	12,790
	12,794
	12,827

	Treatment B, total QALY
	12,573
	12,577
	12,605
	12,837
	12,841
	12,870

	Incremental QALY
	43
	43
	40
	47
	47
	43

	Cost per QALY
	£29,109
	£29,394
	£31,742
	£26,664
	£26,927
	£29,088

	Age 65 years

	Treatment A, total QALY
	9,257
	9,262
	9,298
	9,510
	9,515
	9,553

	Treatment B, total QALY
	9,282
	9,286
	9,318
	9,537
	9,542
	9,576

	Incremental QALY
	25
	24
	20
	27
	27
	23

	Cost per QALY
	£38,680
	£39,553
	£47,253
	£35,235
	£36,021
	£42,767

	Age 75 years

	Treatment A, total QALY
	6,038
	6,042
	6,067
	6,251
	6,256
	6,284

	Treatment B, total QALY
	6,049
	6,053
	6,075
	6,264
	6,268
	6,293

	Incremental QALY
	11
	11
	8
	13
	12
	9

	Cost per QALY
	£58,521
	£61,078
	£82,287
	£52,676
	£54,892
	£74,144


Add, additive method; CVD, cardiovascular disease; Min, minimum method; Mult, multiplicative method; QALY, quality adjusted life-year



Figure 1: 	Health states in cardiovascular model
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Figure 2:	Baseline utility for the event-free health state, 
relationship between HSUVs, age, sex and history of CVD
[image: ]
CVD, cardiovascular disease.



Figure 3:	Comparing the results generated from the CVD model using the three alternative baseline profiles 
[image: ]
CVD, cardiovascular disease; PH, baseline of perfect health; NCV, baseline from individuals with no history of CVD; GP, baseline from the general population.



Figure 4:	Comparing results generated from the CVD model when combining different baseline utility scores and different methods to combine utility data 
[image: ]
CVD, cardiovascular disease; NCV, baseline from individuals with no history of CVD; GP, baseline from the general population; Add, additive; Mult, multiplicative; Min, minimum.
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ABSTRACT	

Background: Decision analytic models in health care require baseline health-related quality of life data to accurately assess the benefits of interventions. The use of inappropriate baselines such as assuming the value of perfect health (EQ-5D = 1) for not having a condition may overestimate the benefits of some treatments and thus distort policy decisions informed by cost per quality adjusted life-years thresholds. 

Objective: The primary objective was to determine if data from the general population are appropriate for baseline health state utility values (HSUVs) when condition-specific data are not available. 

Methods: Data from four consecutive Health Surveys for England were pooled. Self-reported health status and EQ-5D data were extracted and used to generate mean HSUVs for cohorts with or without prevalent health conditions. These were compared with mean HSUVs from all respondents irrespective of health status. 

Results: More than 45% of respondents (n = 41,174) reported at least one condition and almost 20% reported at least two. Our results suggest that data from the general population could be used to approximate baseline HSUVs in some analyses but not all. In particular, HSUVs from the general population would not be an appropriate baseline for cohorts who have just one condition. In these instances, if condition-specific data are not available, data from respondents who report they do not have any prevalent health condition may be more appropriate. Exploratory analyses suggest the decrements on health-related quality of life may not be constant across ages for all conditions and these relationships may be condition-specific. Additional research is required to validate our findings.


Keywords: age-adjusted, baseline, EQ-5D, health state utility values, quality of life


INTRODUCTION	
Agencies such as the UK National Institute for Health and Clinical Excellence (NICE) produce national guidance on the provision of new health technologies and their recommendations are informed by reviews of clinical and economic evidence. To facilitate consistent reimbursement recommendations across all disease areas, interventions are appraised using a decision rule based on the incremental cost per quality adjusted life-year (QALY). The costs per QALY results are estimated using decision analytic models that describe the clinical pathway of health conditions or systems mathematically.

Analytic models frequently compare the benefits of treatments that have the potential to alleviate a health condition or avoid a clinical event. Conditions and events are described by health states in the models and the health-related quality of life (HRQoL) or health state utility values (HSUV) associated with these are generally obtained from clinical trials or observational studies. The baseline HRQoL used to represent the HSUVs for individuals without these conditions or events is equally relevant as these data are used to assess the HRQoL gain in alleviating or avoiding the condition or event. 

Ideally the baseline HSUVs would be derived from people without specific condition(s) using the definitions of health states in the model. However, these data are rarely available and a baseline of full health is commonly assumed [1].  Because the average person still has other health problems, this assumption overestimates the benefits of treatment [2,3], and it has been suggested that on average, a treatment will increase HRQoL to the same level as persons without the condition [4].  The baseline HSUVs used in decision models have important consequences as these data could distort a policy decision based on a cost per QALY threshold thus undermining efficient resource allocation [5].

When condition-specific baseline data are not available, one solution has been to use age-adjusted HSUVs obtained from the general population (irrespective of health condition) [1,2].  These data will include individuals with the condition of interest; hence, an element of double counting is inevitable. However, unless the prevalence of the health condition is high, or the effect on HRQoL is substantial, intuitively one would expect the HRQoL of an average person without a particular health condition to be similar to the HRQoL of an average person of a similar age in the general population. Researchers have shown that in cardiovascular disease (CVD) the cost per QALY results are of a similar magnitude when estimated using either a baseline from the general population or a baseline from respondents with no history of CVD [5].

The primary objective of our study is to determine if this finding generalises to other conditions and thus if data from the general population are appropriate as baseline HSUVs in decision models. Specifically, we compare the HRQoL for subgroups who have a particular prevalent health condition (irrespective of other conditions) with the HRQoL from similar aged subgroups who do not have the condition (irrespective of other health conditions), and the HRQoL from similar aged subgroups irrespective of health status (i.e., the general population). As a secondary analysis, we compare the HRQoL for subgroups who have just one particular prevalent health condition with the HRQoL from similar aged subgroups who do not have any condition, and the HRQoL from similar aged subgroups irrespective of health status (i.e., the general population).

METHODS	
Data	
We used HRQoL data and information on health status collected in the Health Survey for England (HSE) [6].  The HSE is an annual survey conducted on randomly selected samples of the population living in private households in England [6].  For this study, we pooled data collected during the 2003, 2004, 2005 and 2006 surveys. Information on health status was obtained from responses to the following question: “Do you have any long-standing illness, disability or infirmity? By long-standing I mean anything that has troubled you over a period of time, or that is likely to affect you over a period of time?”  Respondents provided details for a maximum of six long-standing illnesses and responses were subsequently coded into 39 different health conditions. Two additional codes: “unclassifiable” and “complaint no longer present” were treated as no condition in our analyses.

HRQoL information was collected using the widely used generic questionnaire, the EQ-5D [7].   The EQ-5D contains five attributes of health status including: mobility, selfcare, usual activities, pain/discomfort and anxiety/depression. Each attribute is measured by a question with three possible responses: no problem, some problem, or severe problem. The combination of all possible responses leads to 243 (3^5) distinct health states. A random sample of the UK general public valued a sample of these health states using time trade-off techniques [7].  The resulting algorithm, which was used to calculate HSUVs for our study, produces a range of -0.59 to 1, whereby 1 represents perfect health, 0 represents death, and negative values represent health states considered to be worse than death.



Analysis	
Generally patients in decision analytic models are defined to match the demographic characteristics of patients who would receive the intervention under evaluation in clinical practice. Consequently, a typical patient will have concurrent health conditions and for older aged cohorts, a substantial proportion of patients will have additional prevalent health conditions. However, the effectiveness and HRQoL evidence used to assess the benefits of treatments may be derived from studies using strict recruitment criteria and patients with comorbidities can be excluded from these. As the baseline needs to reflect the definitions and data used in the model, we perform a series of analyses as described below.

1) The primary analyses test whether data from the general population can be used as the baseline HRQoL when data from cohorts with a specific health condition (irrespective of other health conditions) are used to assess the benefits of treatment. We compare mean EQ-5D scores for these subgroups with mean EQ-5D scores from respondents of a similar age who did not have the specific health condition, and respondents of a similar age irrespective of health status (i.e., the general population).

2) The secondary analyses test whether data from the general population can be used as the baseline HRQoL when data from cohorts with a single health condition are used to assess the benefits of treatment. We compare mean EQ-5D scores for these subgroups with mean EQ-5D scores from respondents of a similar age who do not have any health condition and respondents of a similar age irrespective of health status (i.e., the general population).

3) Exploratory analyses were also performed to test if the decrements on HRQoL for cohorts with a specific health condition (irrespective of other health conditions) are comparable to the decrements for cohorts with the single specific health condition (and no other condition), and if the decrements on HRQoL are constant across age.

All analyses were performed in STATA (version 11, 2010, Stata Corp, College Station, TX). Using the minimal important difference for the EQ-5D (0.074) as a benchmark [8] and assuming a SD of 0.20 in EQ-5D scores, we used subgroups of greater than 64 (256) respondents for having the power to detect a mean difference of 0.10 (0.05) with 80% power and 5% two-sided significance. The analyses were weighted using the individual level self-administered questionnaire weights [6].  Statistical significance for the weighted mean EQ-5D scores was assessed using the 95% confidence intervals (CI) of the mean whereby if the CIs do not overlap there is a statistically significant difference between the groups [9].

RESULTS	
Of the 41,174 respondents who completed the EQ-5D questionnaire, 44.5% (18,302 of 41,174) were male, and the mean age was 48.6 (SD 18.5) years for males and 48.5 (SD 19.0) years for females. 54.5% (22,449 of 41,174) reported they did not have a history of a health condition, 26.1% (10,762 of 41,174) reported just one condition and 19.3% (7,963 of 41,174) reported at least two conditions. The most prevalent condition (Table A1 Appendix) was arthritis/rheumatism/fibrositis at 10.1% (4,145 of 41,174) of the sample followed by hypertension/high blood pressure at 7.7% (3,172 of 41,174). Prevalence of comorbid health conditions varied by primary health condition and by age. The proportion of respondents with more than one health condition ranged from 84.2% (123 of 146) of respondents with other bladder problems/incontinence to 54.0% (1,325 of 2,452) of respondents with asthma. For respondents (n = 4,212) aged 40 years or younger who reported at least one health condition, just 22.2% had at least one other condition whereas 57.4% of respondents (n = 1638) aged over 80 years who reported at least one health condition had at least one other condition.

The mean EQ-5D for all respondents (n = 41,174) was 0.868 (range: -0.594 to 1). Respondents (n = 22,449) who reported no health condition had a mean EQ-5D of 0.949 (range: -0.371 to 1) while respondents who reported one, or more than one health condition had mean EQ-5D scores of 0.821 (range: -0.594 to 1) and 0.654 (range: -0.594 to 1), respectively.

Primary analyses	
With the exception of respondents who had a history of hayfever (n = 416), all mean EQ-5D scores for respondents who reported they had a specific health condition irrespective of whether they also had other health conditions (Table 1 and online Appendix) were lower than the mean EQ-5D scores for the subgroups who either did not have the condition or the subgroups irrespective of health status. Four of the 39 subgroups had less than 64 respondents and were not assessed in terms of significant differences in mean scores. As the confidence intervals of the mean EQ-5D scores did not overlap for 27 of 35 pairs when comparing with subgroups without the condition and 26 of 35 pairs when comparing with subgroups irrespective of health condition, the differences were significant at the P < 0.05 level. Comparing the mean EQ-5D scores for respondents not affected by a condition with the corresponding mean scores for respondents irrespective of health condition, the confidence intervals of the paired mean scores overlapped.

TABLE 1: Mean EQ-5D scores for respondents subgrouped by health condition

These data can be used to assess the average absolute or relative effect on HRQoL compared to an average person of a similar age who does not have the named condition, or an average person of a similar age irrespective of health status. For example, the condition stroke/cerebral haemorrhage/cerebral thrombosis produced the largest average decrement on HRQoL compared to the subgroup who did not have the condition (absolute 0.287, relative 35%) and the subgroup from the general population (absolute 0.282, relative 34%). When compared to subgroups without the health condition, and when compared to subgroups irrespective of health status, 31 of 35 of the differences in mean EQ-5D scores for the groups with more than 64 respondents were greater than the minimal important difference (|0.074|) for the EQ-5D [8].

Secondary analyses	
For the subgroups who reported they had a single specific health condition compared to subgroups of a similar age who reported no health condition, with the exception of respondents who had a history of hayfever (n = 186), and respondents who had a history of poor hearing/deafness (n = 146) all mean EQ-5D scores were lower for the subgroups with the condition (Table 2 and online Appendix). Ten of the 39 subgroups had less than 64 respondents hence were not assessed in terms of significant differences in mean scores. Of the remaining 29 pairs, compared to subgroups who reported no condition, as the confidence intervals of the mean EQ-5D scores did not overlap for 24 comparisons the differences were significant at the P < 0.05 level. When comparing the mean EQ-5D scores for subgroups with a single health condition with subgroups of a similar age irrespective of health status (i.e., general population), of the 29 subgroups involving more than 64 respondents, the mean scores were greater for 13 of the subgroups with a single condition. As the CIs for the mean EQ-5D scores did not overlap for 8 of the 13 pairs, these differences were statistically significant (P < 0.05). For the remaining 16/29 subgroups with mean EQ-5D scores smaller than those of similar aged subgroups irrespective of health status, the CIs of the mean EQ-5D scores did not overlap for 5/16 comparisons (P < 0.05).

TABLE 2: Mean EQ-5D scores for respondents with a single health condition

These data can be used to assess the average absolute or relative effect on HRQoL for a single condition in isolation compared to an average person of a similar age who does not have any condition, or an average person of a similar age irrespective of health status. For example the condition stroke/cerebral haemorrhage/cerebral thrombosis produced the second largest average decrement on HRQoL compared to the subgroup who had no condition (absolute 0.254, relative 27%) and the subgroup from the general population (absolute 0.106, relative 13%). When compared to subgroups without a health condition, 17 of 29 of the differences in mean EQ-5D scores were greater than the minimal important difference (0.074) for the EQ-5D, whereas just 9 of 29 of the differences were greater than the minimal important difference when comparing to the subgroups irrespective of health status [8].

Exploratory analyses	
1) Comparing average decrements on HRQoL for cohorts with a specific health condition (irrespective of other health conditions) with average decrements for corresponding cohorts with just the single specific health condition. In 14 of the 39 conditions, the average decrements on HRQoL were more than halved for the subgroups with just the one health condition (vs. subgroups with no condition) compared to the average decrements on HRQoL for the subgroups with the same condition irrespective of other conditions (versus subgroups without the specific condition irrespective of other conditions) . For example the average relative decrement was 2% for respondents (n = 1,127) with just asthma when compared to respondents of a similar age without any health condition versus an average relative decrement of 10% for respondents (n = 2,452) with asthma and any other health condition when compared to respondents of a similar age without asthma. These data suggest comorbidities impose an additional decrement on HRQoL and the implication of this should be considered on an individual basis when calculating decrements attributed to the alleviation of conditions or avoidance of clinical events in economic models.

2) Comparing decrements on HRQoL across age groups.  Using the full dataset, HRQoL decreased by age (Fig. 1) in general irrespective of the number of health conditions. The rate of decrease in HRQoL by age was greatest in respondents aged over 65 years. Comparing the mean EQ-5D scores for the youngest and oldest aged cohorts subgrouped by health status, the reduction in HRQoL was greatest for respondents with at least one health condition.

FIGURE 1: Mean EQ-5D scores stratified by age and number of health conditions

Potential trends in decrements in HRQoL by age for the individual health conditions were assessed visually by plotting mean EQ-5D scores for age and health condition stratified subgroups together with the average absolute and relative decrements (Fig. 2, Fig. A2 & Fig. A3 in Appendix). Due to small numbers in the age stratified data, these exploratory analyses were performed for the most prevalent health conditions only and the data were compared to respondents who did not have the relevant condition. For the cohort (n = 2484) with back problems/slipped disc/spine/neck plus any other health condition, the average relative decrement on HRQoL compared to respondents without the condition increased by age up to the age of 80 years (Fig. 2a). This trend was also visible in the cohort (n = 1,106) with just back problems/slipped disc/spine/neck (Fig. 2b) when compared to respondents with no health condition. The age stratified average absolute decrements (range 0.19 to 0.29) were similar for the cohorts with or without comorbid health conditions. Compared to the respondents without the condition, as the CIs for the mean EQ-5D scores did not cross, all the age stratified decrements were statistically significant at the 95% level.

FIGURE 2: Mean EQ-5D scores and decrements on HRQoL for respondents with back problems/slipped disc/spine/neck

Conversely, for the cohort (n = 3172) with hypertension/high blood pressure/blood plus any other condition the relative decrement on HRQoL compared to respondents without the condition decreased by age with the largest effects observed in respondents younger than 60 years (Appendix, Fig. A1a). The average effect on HRQoL was much smaller across all age groups for the cohort with just hypertension/high blood pressure/blood (n = 974) compared to the average effect on HRQoL for the cohort with hypertension/high blood pressure/blood and any other health condition (Appendix, Fig. A1b).

For the cohort (n = 4,145)  with arthritis/rheumatism/fibrositis plus any other health condition, the average relative decrement on HRQoL compared to subgroups without the condition decreased slightly by age for respondents aged over 40 years (Appendix, Fig. A2). Conversely, for the cohort (n = 1358) with just arthritis/rheumatism/fibrositis and no other condition, compared to respondents with no health condition, the average relative decrement on HRQoL increased by age. When comparing the mean EQ-5D scores from cohorts with just arthritis/rheumatism/fibrositis with the mean EQ-5D scores for cohorts with arthritis/rheumatism/fibrositis plus any other condition, the confidence intervals of the mean EQ-5D scores did not overlap for the cohorts aged between 40 years and 70 years only. All age and condition-specific mean EQ-5D scores used in the analyses which are not discussed in the article are provided in the online Appendix.

DISCUSSION 	
This study provides EQ-5D scores obtained from non-institutionalised residents in England stratified by self-reported history of prevalent health condition(s) and age (where sample sizes permit). Our results suggest that data from the general population irrespective of health status could be used in place of condition-specific data to represent the HSUVs associated with not having a particular health condition in some analyses but not all. In particular, our analyses show that HSUVs from the general population would not be appropriate for cohorts who have just one health condition. In these instances, if the condition-specific data are not available, age stratified mean HSUVs from respondents who report they have none of the prevalent health conditions could be used.

Not surprisingly, the average decrement on HRQoL compared to the condition-specific baseline was generally smaller for respondents with a single health condition compared to respondents with the same health condition plus any comorbidities. For several conditions the decrement was more than halved. The majority of analytic models use cohorts defined to match those in the clinical studies used to represent the effectiveness of treatment. Therefore the data from cohorts with comorbidities are potentially more relevant as few clinical data are derived from patients who do not have any of the prevalent conditions, particularly in older age cohorts. However, some clinical studies do impose strict exclusion criteria relating to comorbidities. Consequently the clinical and HRQoL evidence and the cohort definitions used in economic models should be considered carefully when selecting the baseline HSUV used to estimate the benefits of treatments.

Our exploratory analyses suggest the decrements on HRQoL associated with health conditions are not constant across age. Some conditions showed an increasing trend and others showed a decreasing trend. This may be due to the prevalence of comorbidities and additional research in this area would be beneficial. In particular research in health conditions that have a substantial effect on HRQoL and cohorts subgrouped by severity of condition would be interesting.

Although we found a strong trend for HSUVs to decrease by age irrespective of health status, we observed a levelling or increase in mean HRQoL in the age groups 65 to 70 years. This has also been reported in data collected using several different preference-based measures in the United States [10].  This could be caused by a relationship between HRQoL and all-cause mortality rates (people with severe health conditions that have a large effect on HRQoL may be more likely to die at a younger age than those with less severe health conditions) followed by an increasing prevalence of comorbidities. Additional research is required to support this hypothesis. 

There are limitations with the data used in this study. In particular the health conditions are self-reported and no information was collected that could be used to determine either the duration of the health condition or the severity of the condition. There was a great deal of individual variation for respondents reporting the same health condition and this could be partly attributable to the wide range in severity of and duration of condition included within a single subgroup. The coded conditions are not exhaustive and it is probable that some respondents had health conditions that are not included in the analyses. As the conditions that are not identified are not prevalent this is unlikely to affect our main findings. The surveys did not sample from people in nursing homes or other institutions who are likely to have lower HRQoL on average than those residing in their own home. This is more likely to have an effect on the HSUVs for the older age cohorts and it could be that the actual average EQ-5D scores for these subgroups are lower than we report. This may have an impact on the age related trends in the decrements for the different health conditions and additional research in this area would be interesting.

Some of the mean HSUVs for subgroups with a particular condition are lower than the corresponding values for subgroups without the condition or those from respondents irrespective of health status which initially appears counterintuitive. For the analyses conducted on subgroups with just one health condition, one possible explanation for higher HSUVs for the respondents with a condition is that the average person in the general population will in fact have a lower HSUV as the combined decrements on HRQoL for the prevalent conditions could be larger than the decrement for the single condition.

Decision analytic models of health care interventions require a baseline HRQoL profile to accurately calculate the benefits of treatment. These data would ideally be derived from respondents who do not have the exact definition of the health condition(s) being modelled. When these data are not available, this study provides a number of age and health condition stratified HSUVs that can be used to assess the benefits of treatment compared to an average person who does not have the condition. Our results suggest age-adjusted HSUV from the general population could be used as the baseline when modelling the benefits of treatment for individuals with comorbidities. However, these data are not appropriate when modelling interventions in patients with a single health condition. Our findings require validation in additional datasets and additional research examining subgroups of patients with precisely defined health conditions would be beneficial.
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Table 1: Primary analyses for the 10 largest subgroups: comparing mean EQ-5D scores for respondents subgrouped by health condition (plus any other health condition), respondents of a similar age without the health condition, and respondents of a similar age irrespective of health status. 
	
	
	Respondents affected by the health 
condition
(and any other health condition)  
	Respondents of a similar age not 
affected by the health condition 
	Respondents of a similar age irrespective
 of health status (i.e., general population)

	
	Mean Age
	n
	Mean 
EQ-5D
	95% CI 
of the mean
	n
	Mean 
EQ-5D
	95% CI 
of the mean
	Abs diff 
	n
	Mean 
EQ-5D
	95% CI 
of the mean
	Abs 
diff

	Arthritis/rheumatism/fibrositis
	62.9
	4145
	0.597
	(0.584, 0.609)
	436
	0.862
	(0.836, 0.888)*
	0.265
	538
	0.812
	(0.785, 0.839)†
	0.215

	Asthma
	44.2
	2452
	0.797
	(0.779, 0.814)
	674
	0.890
	(0.873, 0.907)†
	0.093
	714
	0.885
	(0.868, 0.902)†
	0.088

	Back problems/slipped disc/spine/neck
	50.0
	2484
	0.649
	(0.632, 0.666)
	615
	0.888
	(0.870, 0.905)†
	0.239
	668
	0.866
	(0.847, 0.885)†
	0.217

	Diabetes including  hyperglycemia
	60.4
	1772
	0.714
	(0.695, 0.731)
	592
	0.845
	(0.823, 0.866)†
	0.131
	628
	0.841
	(0.819, 0.862)†
	0.127

	Heart attack/angina
	68.5
	929
	0.628
	(0.602, 0.653)
	569
	0.826
	(0.802, 0.850)†
	0.198
	603
	0.822
	(0.798, 0.846)†
	0.194

	Hypertension/high blood pressure
	62.3
	3172
	0.777
	(0.765, 0.788)
	451
	0.812
	(0.787, 0.835)
	0.035
	522
	0.811
	(0.788, 0.832)
	0.034

	Mental illness/anxiety/
depression/nerves
	45.5
	1332
	0.606
	(0.585, 0.626)
	645
	0.878
	(0.861, 0.894)†
	0.272
	682
	0.856
	(0.836, 0.876)†
	0.250

	Other endocrine/metabolic diseases
	56.4
	1566
	0.771
	(0.747, 0.793)
	655
	0.830
	(0.797, 0.861)†
	0.059
	696
	0.821
	(0.790, 0.852)
	0.050

	Other heart problems
	64.0
	1349
	0.672
	(0.649, 0.694)
	496
	0.802
	(0.771, 0.831)†
	0.130
	528
	0.795
	(0.765, 0.824)†
	0.123

	Other problems of bones/joints/muscles
	54.9
	2526
	0.642
	(0.628, 0.656)
	627
	0.854
	(0.833, 0.874)†
	0.212
	696
	0.821
	(0.790, 0.852)†
	0.179


Abs diff is the absolute difference in mean EQ-5D score compared to the mean EQ-5D score for the subgroup of respondents affected by the health condition    
All CIs for mean EQ-5D overlap (P < 0.05) when comparing: respondents not affected by the condition versus irrespective of health status 
* CIs for mean EQ-5D do not overlap (P < 0.05) when comparing: respondents with the condition versus respondents not affected by the condition 
† CIs for mean EQ-5D do not overlap (P < 0.05) when comparing: respondents with the condition versus respondents irrespective of health status 
Corresponding data for the full set of subgroups are available from the online Appendix 

Table 2: Secondary analyses for the 10 largest subgroups, comparing mean EQ-5D score for respondents with a single health condition, respondents of a similar age with no health condition, and respondents of a similar age irrespective of health condition
	
	
	Respondents affected by the one health condition (and no other health condition)  
	Respondents of a similar age with no health condition 
	Respondents of a similar age irrespective of health status (i.e., general population)

	
	Mean
Age
	n
	Mean 
EQ-5D
	95% CI 
of the mean
	n
	Mean 
EQ-5D
	95% CI 
of the mean
	Abs 
diff
	n
	Mean 
EQ-5D
	95% CI 
of the mean
	Abs 
diff

	Arthritis/rheumatism/fibrositis
	60.1
	1358
	0.685
	0.662,0.706
	286
	0.936
	0.918,0.953*
	0.251
	628
	0.841
	0.819,0.862†
	0.156

	Asthma
	37.6
	1127
	0.931
	0.922,0.939
	500
	0.953
	0.943,0.962*
	0.022
	794
	0.903
	0.889,0.916†
	-0.028

	Back problems/slipped disc/spine/neck
	45.5
	1106
	0.745
	0.727,0.761
	461
	0.952
	0.942,0.960*
	0.207
	736
	0.879
	0.863,0.895†
	0.134

	Diabetes including  hyperglycemia
	55.2
	537
	0.898
	0.883,0.912
	315
	0.952
	0.937,0.965*
	0.054
	670
	0.835
	0.813,0.856†
	-0.063

	Hypertension/high blood pressure
	59.8
	974
	0.916
	0.903,0.928
	286
	0.936
	0.918,0.953
	0.020
	628
	0.841
	0.819,0.862†
	-0.075

	Mental illness/anxiety/
depression/nerves
	40.6
	541
	0.709
	0.685,0.733
	535
	0.955
	0.946,0.964*
	0.246
	826
	0.877
	0.856,0.897†
	0.168

	Other endocrine/metabolic diseases
	48.3
	422
	0.924
	0.909,0.937
	369
	0.948
	0.934,0.960
	0.024
	647
	0.858
	0.832,0.882†
	-0.066

	Other heart problems
	58.2
	366
	0.822
	0.781,0.862
	288
	0.938
	0.921,0.953*
	0.116
	637
	0.829
	0.808,0.849
	0.007

	Other problems of bones/joints/muscles
	48.9
	942
	0.731
	0.709,0.753
	349
	0.946
	0.933,0.959*
	0.253
	645
	0.843
	0.802,0.884†
	0.163

	Other problems of nervous system
	48.2
	336
	0.695
	0.663,0.726
	369
	0.948
	0.934,0.960*
	0.130
	647
	0.858
	0.832,0.882†
	0.04


Abs diff is the absolute difference in mean EQ-5D score compared to the mean EQ-5D score for the subgroup of respondents affected by the health condition.   
All CIs for mean EQ-5D do not overlap (P < 0.05) when comparing: respondents with no health condition versus respondents irrespective of health status.
* CIs for mean EQ-5D do not overlap (P < 0.05) when comparing: respondents with the condition versus respondents with no health condition.
† CIs for mean EQ-5D do not overlap (P < 0.05) when comparing: respondents with the condition versus respondents irrespective of health status.
Corresponding data for the full set of subgroups are available from the online Appendix.

Figure 1: Mean EQ-5D scores (and 95% CI of mean) stratified by age and number of health conditions
[image: ]


Figure 2: Mean EQ-5D scores and average decrements on HRQoL for respondents with back problems/slipped disc/spine/neck

Figure 2a: Respondents with back problems/slipped disc/spine/neck and any other health condition compared to respondents without back problems/slipped disc/spine/neck
[image: ]

Figure 2b: Respondents with just back problems/slipped disc/spine/neck and no other health condition compared to respondents with no condition

[image: ]
(The number of cases are shown next to data points for respondents who have the condition)
[bookmark: BM7]Online Appendix (Using Health State Utility Values from the General Population to Approximate Baselines in Decision Analytic Models when Condition-Specific Data are Not Available)

Table A1: Frequencies of the health conditions
	
	Respondents affected by the health condition (and any other health condition)
	Respondents affected by just the one health condition 

	 
	n
	mean age
	SE of the mean
	n
	%
	mean age
	SE of the mean

	No health condition
	22449
	39.9
	(39.6, 40.1)
	
	
	
	

	Arthritis/rheumatism/fibrositis
	4145
	62.9
	(62.3, 63.5)
	1358
	33
	60.1
	(58.8, 61.2)

	Asthma
	2452
	44.2
	(43.4, 45.0)
	1127
	46
	37.6
	(36.5, 38.6)

	Back problems/slipped disc/spine/neck
	2484
	50
	(49.2, 50.7)
	1106
	45
	45.5
	(44.4, 46.5)

	Bronchitis/emphysema
	336
	65.2
	(63.5, 66.8)
	83
	25
	65
	(61.3, 68.6)

	Cancer (neoplasm) including lumps, mass masses, tumours and growths and benign (nonmalignant) lumps and cysts
	820
	60.9
	(59.3, 62.3)
	282
	34
	55
	(52.5, 57.4)

	Cataract/poor eye sight/blindness
	543
	62.8
	(60.5, 65.0)
	97
	18
	53.3
	(48.0, 58.6)

	Complaints of bowel/colon (large intestine, caecum, bowel, colon, rectum)
	925
	52.5
	(51.2, 53.8)
	282
	30
	44.2
	(41.8, 46.5)

	Complaints of teeth/mouth/tongue
	30
	46.8
	(39.9, 53.7)
	11
	37
	34.4
	(22.3, 46.3)

	Diabetes including  hyperglycemia
	1772
	60.4
	(59.6, 61.1)
	537
	30
	55.2
	(53.7, 56.6)

	Disorders of blood and blood forming or organs and immunity disorders
	334
	53.7
	(49.9, 57.4)
	90
	27
	39.7
	(36.1, 43.2)

	Epilepsy/fits/convulsions
	267
	43.2
	(41.1, 45.2)
	102
	38
	38.5
	(35.8, 41.1)

	Hayfever
	416
	36.9
	(35.3, 38.4)
	186
	45
	35.8
	(33.7, 37.7)

	Heart attack/angina
	929
	68.5
	(67.5, 69.4)
	200
	22
	67
	(65.0, 68.8)

	Hypertension/high blood pressure
	3172
	62.3
	(61.8, 62.8)
	974
	31
	59.8
	(58.8, 60.7)

	Infectious and parasitic disease
	79
	44.5
	(40.4, 48.5)
	33
	42
	40.8
	(35.2, 46.3)

	Kidney complaints
	297
	52.7
	(50.3, 54.9)
	81
	27
	44.8
	(40.0, 49.5)

	Meniere's disease/ear complaints causing balance problems
	154
	60.9
	(58.1, 63.5)
	40
	26
	54.3
	(49.9, 58.6)


Table A1: Frequencies of the health conditions continued
	
	Respondents affected by the health condition (and any other health condition)
	Respondents affected by just the one health condition 

	 
	n
	mean age
	SE of the mean
	n
	%
	mean age
	SE of the mean

	
	
	
	
	
	
	
	

	Mental handicap
	31
	31.7
	(26.9, 36.4)
	11
	35
	26
	(19.5, 32.4)

	Mental illness/anxiety/depression/nerves
	1332
	45.5
	(44.6, 46.4)
	541
	41
	40.6
	(39.2, 41.9)

	Migraine/headaches
	393
	44
	(42.2, 45.8)
	132
	34
	40.3
	(36.9, 43.6)

	Other bladder problems/incontinence
	146
	61.1
	(57.7, 64.3)
	23
	16
	50.5
	(41.1, 59.8)

	Other blood vessels/embolic
	476
	59.8
	(58.1, 61.4)
	104
	22
	51.8
	(48.2, 55.3)

	Other digestive complaints (stomach, liver, pancreas, bile ducts, small intestine duodenum, jejunum and ileum)
	666
	51.6
	(50.1, 53.0)
	184
	28
	43.9
	(41.1, 46.6)

	Other ear complaints
	81
	42.8
	(35.7, 49.8)
	33
	41
	36.1
	(25.4, 46.7)

	Other endocrine/metabolic diseases
	1566
	56.4
	(55.4, 57.2)
	422
	27
	48.3
	(46.7, 49.8)

	Other eye complaints
	470
	61.2
	(58.7, 63.5)
	95
	20
	49.1
	(44.5, 53.5)

	Other heart problems
	1349
	64
	(62.9, 65.0)
	366
	27
	58.2
	(56.0, 60.4)

	Other problems of bones/joints/muscles
	2526
	54.9
	(54.0, 55.8)
	942
	37
	48.9
	(47.5, 50.2)

	Other problems of nervous system
	926
	52.3
	(51.0, 53.4)
	336
	36
	48.2
	(46.0, 50.3)

	Other respiratory complaints
	686
	56.1
	(54.4, 57.7)
	156
	23
	47.9
	(44.1, 51.6)

	Piles/haemorrhoids including varicose veins in anus
	24
	47.9
	(42.2, 53.5)
	8
	33
	48.2
	(39.7, 56.5)

	Poor hearing/deafness
	586
	61.2
	(59.3, 63.0)
	146
	25
	51.7
	(48.2, 55.1)

	Reproductive system disorders
	545
	50.1
	(48.2, 51.8)
	174
	32
	41.6
	(38.7, 44.4)

	Skin complaints
	684
	45.9
	(44.0, 47.8)
	210
	31
	38.4
	(36.3, 40.4)

	Stomach ulcer/abdominal hernia/rupture
	619
	59.3
	(57.7, 60.7)
	124
	20
	52.5
	(49.7, 55.2)

	Stroke/cerebral haemorrhage/cerebral thrombosis
	360
	67.8
	(66.3, 69.2)
	102
	28
	65.8
	(63.1, 68.5)

	Tinnitus/noises in the ear
	125
	61
	(58.3, 63.7)
	21
	17
	59.2
	(50.3, 68.1)

	Urinary tract infection
	36
	59.5
	(53.9, 64.9)
	7
	19
	43.8
	(30.0, 57.5)

	Varicose veins/phlebitis in lower extremities
	102
	59
	(55.5, 62.4)
	36
	35
	49
	(43.0, 54.9)

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	


Table A2: Primary analyses, comparing mean EQ-5D scores for respondents subgrouped by health condition (plus any other health condition), respondents of a similar age without the health condition, and respondents of a similar age irrespective of health status
	
	Mean
 Age
	Respondents affected by the health condition (and any other health condition)  
	Respondents of a similar age not affected by the health condition 
	Respondents of a similar age irrespective of health status (i.e. general population

	
	
	n
	Mean
EQ-5D
	95% CI of 
the mean
	n
	MeanEQ-5D
	95% CI of 
the mean
	Abs 
diff
	n
	Mean
EQ-5D
	95% CI of 
the mean
	Abs 
diff

	Arthritis/
rheumatism/
fibrositis
	62.9
	4145
	0.597
	(0.584, 0.609)
	436
	0.862
	(0.836, 0.888)†
	0.265
	538
	0.812
	(0.785, 0.839)‡
	0.215

	Asthma
	44.2
	2452
	0.797
	(0.779, 0.814)
	674
	0.89
	(0.873, 0.907)†
	0.093
	714
	0.885
	(0.868, 0.902)‡
	0.088

	Back problems/slipped disc/spine/neck
	50.0
	2484
	0.649
	(0.632, 0.666)
	615
	0.888
	(0.870, 0.905)†
	0.239
	668
	0.866
	(0.847, 0.885)‡
	0.217

	Bronchitis/
emphysema
	65.2
	336
	0.584
	(0.541, 0.625)
	565
	0.835
	(0.809, 0.860)†
	0.251
	577
	0.828
	(0.801, 0.853)‡
	0.244

	Cancer (neoplasm) including lumps, mass masses, tumours, growths, benign lumps and cysts
	60.9
	820
	0.697
	(0.657, 0.736)
	560
	0.798
	(0.755, 0.839)†
	0.101
	574
	0.795
	(0.754, 0.836)‡
	0.098

	Cataract/poor eye sight/ blindness
	62.8
	543
	0.7
	(0.669, 0.731)
	530
	0.814
	(0.786, 0.841)†
	0.114
	538
	0.812
	(0.785, 0.839)‡
	0.112

	Complaints of bowel/colon (large intestine, caecum, bowel, colon, rectum)
	52.5
	925
	0.698
	(0.665, 0.731)
	609
	0.832
	(0.808, 0.855)†
	0.134
	625
	0.829
	(0.805, 0.852)‡
	0.131


Table A2: Primary analyses, comparing mean EQ-5D scores for respondents subgrouped by health condition (plus any other health condition), respondents of a similar age without the health condition, and respondents of a similar age irrespective of health status continued
	
	Mean
 Age
	Respondents affected by the health condition (and any other health condition)  
	Respondents of a similar age not affected by the health condition 
	Respondents of a similar age irrespective of health status (i.e. general population

	
	
	n
	Mean
EQ-5D
	95% CI of 
the mean
	n
	MeanEQ-5D
	95% CI of 
the mean
	Abs 
diff
	n
	Mean
EQ-5D
	95% CI of 
the mean
	Abs 
diff

	Complaints of teeth/mouth/
tongue
	46.8
	30*
	0.55
	(0.346, 0.753)
	651
	0.895
	(0.878, 0.910)
	0.345
	652
	0.894
	(0.878, 0.910)
	0.344

	Diabetes including  hyperglycemia
	60.4
	1772
	0.714
	(0.695, 0.731)
	592
	0.845
	(0.823, 0.866)†
	0.131
	628
	0.841
	(0.819, 0.862)‡
	0.127

	Disorders of blood and blood forming or organs and immunity disorders
	53.7
	334
	0.728
	(0.692, 0.764)
	646
	0.833
	(0.812, 0.853)†
	0.105
	647
	0.833
	(0.812, 0.854)‡
	0.105

	Epilepsy/fits/
convulsions
	43.2
	267
	0.715
	(0.671, 0.758)
	703
	0.896
	(0.880, 0.910)†
	0.181
	709
	0.894
	(0.878, 0.909)‡
	0.179

	Hayfever
	36.9
	416
	0.92
	(0.904, 0.935)
	790
	0.91
	(0.893, 0.925)
	-0.01
	803
	0.91
	(0.894, 0.925)
	-0.01

	Heart attack/angina
	68.5
	929
	0.628
	(0.602, 0.653)
	569
	0.826
	(0.802, 0.850)†
	0.198
	603
	0.822
	(0.798, 0.846)‡
	0.194

	Hypertension/high blood pressure
	62.3
	3172
	0.777
	(0.765, 0.788)
	451
	0.812
	(0.787, 0.835)
	0.035
	522
	0.811
	(0.788, 0.832)
	0.034

	Infectious and parasitic disease
	44.5
	79
	0.676
	(0.605, 0.746)
	735
	0.879
	(0.863, 0.895)†
	0.203
	736
	0.879
	(0.863, 0.895)‡
	0.203

	Kidney complaints
	52.7
	297
	0.657
	(0.609, 0.703)
	621
	0.833
	(0.809, 0.855)†
	0.176
	625
	0.829
	(0.805, 0.852)‡
	0.172

	Meniere's disease/ear complaints causing 
	60.9
	154
	0.704
	(0.649, 0.759)
	572
	0.795
	(0.754, 0.836)
	0.091
	574
	0.795
	(0.754, 0.836)
	0.091


Table A2: Primary analyses, comparing mean EQ-5D scores for respondents subgrouped by health condition (plus any other health condition), respondents of a similar age without the health condition, and respondents of a similar age irrespective of health status continued
	
	Mean
 Age
	Respondents affected by the health condition (and any other health condition)  
	Respondents of a similar age not affected by the health condition 
	Respondents of a similar age irrespective of health status (i.e. general population

	
	
	n
	Mean
EQ-5D
	95% CI of 
the mean
	n
	MeanEQ-5D
	95% CI of 
the mean
	Abs 
diff
	n
	Mean
EQ-5D
	95% CI of 
the mean
	Abs 
diff

	Mental handicap
	31.7
	31*
	0.654
	(0.524, 0.783)
	691
	0.916
	(0.901, 0.929)
	0.262
	692
	0.916
	(0.901, 0.929)
	0.262

	Mental illness/anxiety/
depression/nerves
	45.5
	1332
	0.606
	(0.585, 0.626)
	645
	0.878
	(0.861, 0.894)†
	0.272
	682
	0.856
	(0.836, 0.876)‡
	0.25

	Migraine/
headaches
	44.0
	393
	0.777
	(0.745, 0.808)
	704
	0.888
	(0.871, 0.904)†
	0.111
	714
	0.885
	(0.868, 0.902)‡
	0.108

	Other bladder problems/
incontinence
	61.1
	146
	0.619
	(0.557, 0.679)
	571
	0.796
	(0.755, 0.837)†
	0.177
	574
	0.795
	(0.754, 0.836)‡
	0.176

	Other blood vessels
	59.8
	476
	0.644
	(0.611, 0.676)
	619
	0.846
	(0.824, 0.866)†
	0.202
	628
	0.841
	(0.819, 0.862)‡
	0.197

	Other digestive complaints (stomach, liver, pancreas, bile ducts, small intestine duodenum, jejunum and ileum)
	51.6
	666
	0.734
	(0.707, 0.760)
	620
	0.836
	(0.815, 0.856)†
	0.102
	631
	0.834
	(0.813, 0.854)‡
	0.1

	Other ear complaints
	42.8
	81
	0.879
	(0.826, 0.932)
	708
	0.894
	(0.878, 0.909)
	0.015
	709
	0.894
	(0.878, 0.909)
	0.015

	Other endocrine/
metabolic diseases
	56.4
	1566
	0.771
	(0.747, 0.793)
	655
	0.83
	(0.797, 0.861)†
	0.059
	696
	0.821
	(0.790, 0.852)
	0.05


Table A2: Primary analyses, comparing mean EQ-5D scores for respondents subgrouped by health condition (plus any other health condition), respondents of a similar age without the health condition, and respondents of a similar age irrespective of health status continued
	
	Mean
 Age
	Respondents affected by the health condition (and any other health condition)  
	Respondents of a similar age not affected by the health condition 
	Respondents of a similar age irrespective 
of health status (i.e. general population

	
	
	n
	Mean
EQ-5D
	95% CI of 
the mean
	n
	MeanEQ-5D
	95% CI of 
the mean
	Abs 
diff 
	n
	Mean
EQ-5D
	95% CI of 
the mean
	Abs 
diff

	Other eye complaints
	61.2
	470
	0.741
	(0.683, 0.797)
	567
	0.794
	(0.752, 0.835)
	0.053
	574
	0.795
	(0.754, 0.836)
	0.054

	Other heart problems
	64.0
	1349
	0.672
	(0.649, 0.694)
	496
	0.802
	(0.771, 0.831)†
	0.13
	528
	0.795
	(0.765, 0.824)‡
	0.123

	Other problems of bones/joints/
muscles
	54.9
	2526
	0.642
	(0.628, 0.656)
	627
	0.854
	(0.833, 0.874)†
	0.212
	696
	0.821
	(0.790, 0.852)‡
	0.179

	Other problems of nervous system
	52.3
	926
	0.584
	(0.552, 0.615)
	607
	0.846
	(0.825, 0.865)†
	0.262
	631
	0.834
	(0.813, 0.854)‡
	0.25

	Other respiratory complaints
	56.1
	686
	0.697
	(0.671, 0.723)
	676
	0.824
	(0.791, 0.855)†
	0.127
	696
	0.821
	(0.790, 0.852)‡
	0.124

	Piles/haemorrhoids including varicose veins in anus
	47.9
	24*
	0.778
	(0.644, 0.911)
	645
	0.857
	(0.832, 0.882)
	0.079
	647
	0.858
	(0.832, 0.882)
	0.08

	Poor hearing/
deafness
	61.2
	586
	0.768
	(0.742, 0.794)
	567
	0.795
	(0.753, 0.835)
	0.027
	574
	0.795
	(0.754, 0.836)
	0.027

	Reproductive system disorders
	50.1
	545
	0.782
	(0.757, 0.806)
	662
	0.865
	(0.846, 0.884)†
	0.083
	668
	0.866
	(0.847, 0.885)‡
	0.084

	Skin complaints
	45.9
	684
	0.773
	(0.733, 0.812)
	675
	0.855
	(0.834, 0.875)†
	0.082
	682
	0.856
	(0.836, 0.876)‡
	0.083

	Stomach ulcer/ abdominal hernia/ rupture
	59.3
	619
	0.688
	(0.654, 0.720)
	650
	0.806
	(0.781, 0.830)†
	0.118
	668
	0.804
	(0.780, 0.827)‡
	0.116


Table A2: Primary analyses, comparing mean EQ-5D scores for respondents subgrouped by health condition (plus any other health condition), respondents of a similar age without the health condition, and respondents of a similar age irrespective of health status continued
	
	Mean
 Age
	Respondents affected by the health condition (and any other health condition)  
	Respondents of a similar age not affected by the health condition 
	Respondents of a similar age irrespective of health status (i.e. general population

	
	
	n
	Mean
EQ-5D
	95% CI of 
the mean
	n
	MeanEQ-5D
	95% CI of 
the mean
	Abs 
diff 
	n
	Mean
EQ-5D
	95% CI of 
the mean
	Abs 
diff

	Stroke/cerebral haemorrhage/
cerebral thrombosis
	67.8
	360
	0.541
	(0.488, 0.593)
	589
	0.828
	(0.804, 0.851)†
	0.287
	603
	0.822
	(0.798, 0.846)‡
	0.281

	Tinnitus/noises in the ear
	61.0
	125
	0.749
	(0.684, 0.812)
	572
	0.795
	(0.753, 0.835)
	0.046
	574
	0.795
	(0.754, 0.836)
	0.046

	Urinary tract infection
	59.5
	36*
	0.705
	(0.546, 0.862)
	668
	0.804
	(0.780, 0.827)
	0.099
	668
	0.804
	(0.780, 0.827)
	0.099

	Varicose veins/phlebitis in lower extremities
	59.0
	102
	0.794
	(0.730, 0.857)
	665
	0.804
	(0.780, 0.828)
	0.01
	668
	0.804
	(0.780, 0.827)
	0.01


* Subgroups with less than 64 respondents were not compared for assessing significance difference in mean EQ-5D scores 
Absolute difference is the absolute difference in mean EQ-5D score compared to the mean EQ-5D score for the subgroup of respondents affected by the health condition   
All CIs for mean EQ-5D overlap (p>0.05) when comparing: respondents not affected by the condition versus irrespective of health status
† CIs for mean EQ-5D do not overlap (p<0.05) when comparing: respondents with the condition versus respondents not affected by the condition
‡ CIs for mean EQ-5D do not overlap (p<0.05) when comparing: respondents with the condition versus respondents irrespective of health status



Table A3: Secondary analyses, comparing mean EQ-5D score for respondents with a single health condition, respondents of a similar age with no health condition, and respondents of a similar age irrespective of health condition
	
	
	Respondents affected by the one health condition (and no other health condition)  
	Respondents of a similar age
with no health condition 
	Respondents of a similar age irrespective of health status 
(i.e. general population)

	
	Mean
Age
	n
	Mean 
EQ-5D
	95% CI of 
the mean
	n
	Mean 
EQ-5D
	95% CI of
the mean
	Abs 
diff
	n
	Mean 
EQ-5D
	95% CI of 
the mean
	Abs 
diff

	Arthritis/rheumatism/ fibrositis
	60.1
	1358
	0.685
	(0.662,0.706)
	286
	0.936
	(0.918,0.953)†
	0.251
	628
	0.841
	(0.819,0.862)‡
	0.156

	Asthma
	37.6
	1127
	0.931
	(0.922,0.939)
	500
	0.953
	(0.943,0.962)†
	0.022
	794
	0.903
	(0.889,0.916)‡
	-0.028

	Back problems/slipped disc/spine/neck
	45.5
	1106
	0.745
	(0.727,0.761)
	461
	0.952
	(0.942,0.960)†
	0.207
	736
	0.879
	(0.863,0.895)‡
	0.134

	Bronchitis/
emphysema
	65.0
	83
	0.789
	(0.744,0.834)
	200
	0.956
	(0.939,0.973)†
	0.167
	577
	0.828
	(0.801,0.853)
	0.039

	Cancer (neoplasm) including lumps, mass masses, tumours and growths and benign (nonmalignant) lumps and cysts
	55.0
	282
	0.836
	(0.801,0.871)
	315
	0.952
	(0.937,0.965)†
	0.116
	670
	0.835
	(0.813,0.856)
	-0.001

	Cataract/poor eye sight/blindness
	53.3
	97
	0.926
	(0.897,0.954)
	302
	0.936
	(0.923,0.949)
	0.010
	625
	0.829
	(0.805,0.852)‡
	-0.097

	Complaints of bowel/colon (large intestine, caecum, bowel, colon, rectum)
	44.2
	282
	0.878
	(0.854,0.901)
	424
	0.959
	(0.949,0.967)†
	0.081
	714
	0.885
	(0.868,0.902)
	0.007

	Complaints of teeth/mouth/tongue
	34.4
	11*
	0.667
	(0.410,0.924)
	531
	0.957
	(0.947,0.966)
	0.290
	763
	0.912
	(0.898,0.926)
	0.245


Table A3: Secondary analyses, comparing mean EQ-5D score for respondents with a single health condition, respondents of a similar age with no health condition, and respondents of a similar age irrespective of health condition continued
	
	
	Respondents affected by the one health condition (and no other health condition)  
	Respondents of a similar age
with no health condition 
	Respondents of a similar age irrespective of health status 
(i.e. general population)

	
	Mean
Age
	n
	Mean 
EQ-5D
	95% CI of 
the mean
	n
	Mean 
EQ-5D
	95% CI of
the mean
	Abs 
diff
	n
	Mean 
EQ-5D
	95% CI of 
the mean
	Abs 
diff

	Diabetes including  hyperglycemia
	55.2
	537
	0.898
	(0.883,0.912)
	315
	0.952
	(0.937,0.965)†
	0.054
	670
	0.835
	(0.813,0.856)‡
	-0.063

	Disorders of blood and blood forming or organs and immunity disorders
	39.7
	90
	0.876
	(0.835,0.915)
	573
	0.955
	(0.945,0.965)†
	0.079
	850
	0.907
	(0.893,0.921)
	0.031

	Epilepsy/fits/
convulsions
	38.5
	102
	0.873
	(0.837,0.908)
	500
	0.953
	(0.943,0.962)†
	0.080
	794
	0.903
	(0.889,0.916)
	0.03

	Hayfever
	35.8
	186
	0.961
	(0.947,0.975)
	532
	0.956
	(0.947,0.965)
	-0.005
	780
	0.909
	(0.895,0.923)‡
	-0.052

	Heart attack/angina
	67.0
	200
	0.804
	(0.768,0.840)
	193
	0.935
	(0.914,0.955)†
	0.131
	617
	0.815
	(0.791,0.839)
	0.011

	Hypertension/high blood pressure
	59.8
	974
	0.916
	(0.903,0.928)
	286
	0.936
	(0.918,0.953)
	0.020
	628
	0.841
	(0.819,0.862)‡
	-0.075

	Infectious and parasitic disease
	40.8
	33*
	0.762
	(0.698,0.824)
	535
	0.955
	(0.946,0.964)
	0.193
	826
	0.877
	(0.856,0.897)
	0.115

	Kidney complaints
	44.8
	81
	0.845
	(0.799,0.889)
	461
	0.952
	(0.942,0.960)†
	0.107
	736
	0.879
	(0.863,0.895)
	0.034

	Meniere's disease/ear complaints causing balance problems
	54.3
	40*
	0.893
	(0.826,0.960)
	319
	0.930
	(0.913,0.946)
	0.037
	647
	0.833
	(0.812,0.854)
	-0.06

	Mental handicap
	26.0
	11*
	0.776
	(0.594,0.957)
	399
	0.965
	(0.954,0.976)
	0.189
	527
	0.940
	(0.927,0.952)
	0.164

	Mental illness/anxiety/
depression/nerves
	40.6
	541
	0.709
	(0.685,0.733)
	535
	0.955
	(0.946,0.964)†
	0.246
	826
	0.877
	(0.856,0.897)‡
	0.168


Table A3: Secondary analyses, comparing mean EQ-5D score for respondents with a single health condition, respondents of a similar age with no health condition, and respondents of a similar age irrespective of health condition continued
	
	
	Respondents affected by the one health condition (and no other health condition)  
	Respondents of a similar age
with no health condition 
	Respondents of a similar age irrespective of health status 
(i.e. general population)

	
	Mean
Age
	n
	Mean 
EQ-5D
	95% CI of 
the mean
	n
	Mean 
EQ-5D
	95% CI of
the mean
	Abs 
diff
	n
	Mean 
EQ-5D
	95% CI of 
the mean
	Abs 
diff

	Other bladder problems/
incontinence
	50.5
	23*
	0.891
	(0.829,0.952)
	371
	0.947
	(0.932,0.961)
	0.056
	668
	0.866
	(0.847,0.885)
	-0.025

	Other digestive complaints (stomach, liver, pancreas, bile ducts, small intestine duodenum, jejunum and ileum)
	43.9
	184
	0.875
	(0.845,0.903)
	424
	0.959
	(0.949,0.967)†
	0.124
	714
	0.885
	(0.868,0.902)
	0.027

	Other blood vessels/embolic
	51.8
	104
	0.807
	(0.760,0.852)
	315
	0.931
	(0.916,0.944)†
	0.084
	631
	0.834
	(0.813,0.854)
	0.01

	Other ear complaints
	36.1
	33*
	0.926
	(0.869,0.982)
	532
	0.956
	(0.947,0.965)
	0.030
	780
	0.909
	(0.895,0.923)
	-0.017

	Other endocrine/
metabolic diseases
	48.3
	422
	0.924
	(0.909,0.937)
	369
	0.948
	(0.934,0.960)
	0.024
	647
	0.858
	(0.832,0.882)‡
	-0.066

	Other eye complaints
	49.1
	95
	0.894
	(0.857,0.930)
	349
	0.946
	(0.933,0.959)†
	0.052
	645
	0.843
	(0.802,0.884)
	-0.051

	Other heart problems
	58.2
	366
	0.822
	(0.781,0.862)
	288
	0.938
	(0.921,0.953)†
	0.116
	637
	0.829
	(0.808,0.849)
	0.007

	Other respiratory complaints
	47.9
	156
	0.818
	(0.778,0.858)
	369
	0.948
	(0.934,0.960)†
	0.215
	647
	0.858
	(0.832,0.882)
	0.112

	Other problems of bones/joints/muscles
	48.9
	942
	0.731
	(0.709,0.753)
	349
	0.946
	(0.933,0.959)†
	0.253
	645
	0.843
	(0.802,0.884)‡
	0.163

	Other problems of nervous system
	48.2
	336
	0.695
	(0.663,0.726)
	369
	0.948
	(0.934,0.960)†
	0.130
	647
	0.858
	(0.832,0.882)‡
	0.04


Table A3: Secondary analyses, comparing mean EQ-5D score for respondents with a single health condition, respondents of a similar age with no health condition, and respondents of a similar age irrespective of health condition continued
	
	
	Respondents affected by the one health condition (and no other health condition)  
	Respondents of a similar age
with no health condition 
	Respondents of a similar age irrespective of health status 
(i.e. general population)

	
	Mean
Age
	n
	Mean 
EQ-5D
	95% CI of 
the mean
	n
	Mean 
EQ-5D
	95% CI of
the mean
	Abs 
diff
	n
	Mean 
EQ-5D
	95% CI of 
the mean
	Abs 
diff

	Piles/haemorrhoids including varicose veins in anus
	48.2
	8*
	0.931
	(0.822,1.038)
	369
	0.948
	(0.934,0.960)
	0.017
	647
	0.858
	(0.832,0.882)
	-0.073

	Poor hearing/deafness
	51.7
	146
	0.937
	(0.914,0.959)
	315
	0.931
	(0.916,0.944)
	-0.006
	631
	0.834
	(0.813,0.854)‡
	-0.103

	Reproductive system disorders
	41.6
	174
	0.882
	(0.855,0.909)
	494
	0.943
	(0.930,0.956)†
	0.061
	761
	0.877
	(0.846,0.908)
	-0.005

	Skin complaints
	38.4
	210
	0.916
	(0.892,0.939)
	500
	0.953
	(0.943,0.962)†
	0.037
	794
	0.903
	(0.889,0.916)
	-0.013

	Stomach ulcer/abdominal hernia/rupture
	52.5
	124
	0.891
	(0.863,0.918)
	302
	0.936
	(0.923,0.949)†
	0.045
	625
	0.829
	(0.805,0.852)‡
	-0.062

	Stroke/cerebral haemorrhage/
cerebral thrombosis
	65.8
	102
	0.684
	(0.587,0.780)
	216
	0.938
	(0.917,0.958)†
	0.254
	644
	0.790
	(0.763,0.817)
	0.106

	Tinnitus/noises in the ear
	59.2
	21*
	0.903
	(0.816,0.990)
	273
	0.923
	(0.905,0.940)
	0.020
	668
	0.804
	(0.780,0.827)
	-0.099

	Urinary tract infection
	43.8
	7*
	0.934
	(0.822,1.046)
	424
	0.959
	(0.949,0.967)
	0.025
	714
	0.885
	(0.868,0.902)
	-0.049

	Varicose veins/phlebitis in lower extremities
	49.0
	36*
	0.847
	(0.790,0.903)
	349
	0.946
	(0.933,0.959)
	0.099
	645
	0.843
	(0.802,0.884)
	-0.004


* Ten subgroups with less than the sample size (64 respondents) for assessing significance were not compared for difference in mean EQ-5D scores.
Abs diff is the absolute difference in mean EQ-5D score compared to the mean EQ-5D score for the subgroup of respondents affected by the health condition.   
All CIs for mean EQ-5D do not overlap (p<0.05) when comparing: respondents with no health condition versus respondents irrespective of health status
† CIs for mean EQ-5D do not overlap (p<0.05) when comparing: respondents with the condition versus respondents with no health condition
‡ CIs for mean EQ-5D do not overlap (p<0.05) when comparing: respondents with the condition versus respondents irrespective of health status



Table A4: Additional age/health condition stratified mean EQ-5D scores for prevalent health conditions
	Age Band (years)
	History of health condition
	No history of health condition
	History of health condition
	No history of health condition

	
	n
	mean 
	95% CI 
of mean
	n
	mean
	95% CI 
of mean
	n
	mean 
	95% CI 
of mean
	n
	mean
	95% CI 
of mean

	
	General population irrespective of health status (n = 41147)
	No health condition 
(n = 22449)
	Arthritis/rheumatism/fibrositis 
(n = 4145)

	<30
	8083
	0.9383
	(0.935,0.941)
	6269
	0.9633
	(0.960,0.965)
	45
	0.6865
	(0.587,0.785)
	8038
	0.9396
	(0.936,0.942)

	30 to ≤ 35
	3608
	0.9145
	(0.907,0.921)
	2555
	0.9564
	(0.951,0.961)
	62
	0.6526
	(0.470,0.834)
	3546
	0.9196
	(0.913,0.925)

	35 to ≤ 40
	4020
	0.9069
	(0.900,0.913)
	2675
	0.9544
	(0.950,0.958)
	88
	0.6712
	(0.575,0.766)
	3932
	0.9121
	(0.906,0.918)

	40 to ≤ 45
	3746
	0.8824
	(0.872,0.891)
	2376
	0.9513
	(0.946,0.956)
	154
	0.6485
	(0.595,0.701)
	3592
	0.8919
	(0.882,0.901)

	45 to ≤ 50
	3294
	0.8639
	(0.852,0.875)
	1892
	0.9430
	(0.936,0.949)
	214
	0.5859
	(0.535,0.635)
	3080
	0.8824
	(0.871,0.893)

	50 to ≤ 55
	3156
	0.8344
	(0.824,0.843)
	1555
	0.9345
	(0.927,0.941)
	384
	0.5975
	(0.558,0.636)
	2772
	0.8679
	(0.859,0.876)

	55 to ≤ 60
	3285
	0.8222
	(0.811,0.833)
	1400
	0.9296
	(0.914,0.944)
	482
	0.5996
	(0.567,0.631)
	2803
	0.8585
	(0.847,0.869)

	60 to ≤ 65
	2739
	0.8072
	(0.793,0.821)
	1017
	0.9373
	(0.928,0.946)
	514
	0.5902
	(0.552,0.627)
	2225
	0.8546
	(0.841,0.867)

	65 to ≤ 70
	2993
	0.8041
	(0.790,0.817)
	992
	0.9331
	(0.921,0.944)
	621
	0.6024
	(0.565,0.639)
	2372
	0.8560
	(0.844,0.866)

	70 to ≤ 75
	2501
	0.7790
	(0.766,0.791)
	741
	0.9219
	(0.909,0.934)
	580
	0.6045
	(0.575,0.633)
	1921
	0.8293
	(0.816,0.841)

	75 to ≤ 80
	1895
	0.7533
	(0.739,0.767)
	522
	0.8965
	(0.881,0.911)
	472
	0.5864
	(0.555,0.617)
	1423
	0.8066
	(0.792,0.820)

	80 to ≤ 85
	1199
	0.6985
	(0.677,0.719)
	301
	0.8844
	(0.866,0.902)
	319
	0.5509
	(0.513,0.588)
	880
	0.7518
	(0.727,0.775)

	>85
	655
	0.6497
	(0.624,0.675)
	154
	0.8191
	(0.784,0.853)
	210
	0.5198
	(0.462,0.577)
	445
	0.7090
	(0.682,0.735)





Table A4: Additional age/health condition stratified mean EQ-5D scores for prevalent health conditions continued
	Age Band (years)
	History of health condition
	No history of health condition
	History of health condition
	No history of health condition

	
	n
	mean 
	95% CI 
of mean
	n
	mean
	95% CI 
of mean
	n
	mean 
	95% CI 
of mean
	n
	mean
	95% CI 
of mean

	
	Asthma (n = 2452)
	Back problems/slipped disc/spine/neck (n = 2484)

	<30
	531
	0.9024
	(0.886,0.918)
	7552
	0.9408
	(0.937,0.944)
	218
	0.7623
	(0.728,0.795)
	7865
	0.9432
	(0.940,0.946)

	30 to ≤ 35
	211
	0.8658
	(0.832,0.898)
	3397
	0.9174
	(0.909,0.924)
	152
	0.7035
	(0.657,0.749)
	3456
	0.9241
	(0.916,0.931)

	35 to ≤ 40
	240
	0.8531
	(0.817,0.889)
	3780
	0.9102
	(0.903,0.916)
	246
	0.7193
	(0.675,0.763)
	3774
	0.9184
	(0.912,0.924)

	40 to ≤ 45
	199
	0.7676
	(0.670,0.864)
	3547
	0.8893
	(0.881,0.897)
	258
	0.6573
	(0.583,0.731)
	3488
	0.8993
	(0.891,0.906)

	45 to ≤ 50
	196
	0.7073
	(0.591,0.823)
	3098
	0.874
	(0.865,0.882)
	269
	0.6728
	(0.632,0.713)
	3025
	0.8813
	(0.869,0.892)

	50 to ≤ 55
	185
	0.7591
	(0.701,0.817)
	2971
	0.8392
	(0.829,0.848)
	267
	0.6152
	(0.565,0.665)
	2889
	0.8538
	(0.844,0.862)

	55 to ≤ 60
	200
	0.7604
	(0.707,0.812)
	3085
	0.8262
	(0.814,0.837)
	297
	0.6139
	(0.571,0.655)
	2988
	0.8433
	(0.832,0.854)

	60 to ≤ 65
	164
	0.6229
	(0.558,0.686)
	2575
	0.818
	(0.804,0.831)
	248
	0.5586
	(0.488,0.628)
	2491
	0.8329
	(0.821,0.844)

	65 to ≤ 70
	174
	0.7122
	(0.661,0.763)
	2819
	0.8092
	(0.795,0.823)
	180
	0.6378
	(0.592,0.683)
	2813
	0.8155
	(0.801,0.829)

	70 to ≤ 75
	152
	0.6909
	(0.629,0.751)
	2349
	0.7851
	(0.772,0.797)
	155
	0.565
	(0.501,0.628)
	2346
	0.7941
	(0.781,0.806)

	75 to ≤ 80
	120
	0.7168
	(0.659,0.773)
	1775
	0.7559
	(0.741,0.770)
	99
	0.5456
	(0.470,0.620)
	1796
	0.7645
	(0.750,0.778)

	80 to ≤ 85
	56
	0.6936
	(0.594,0.792)
	1143
	0.6987
	(0.677,0.719)
	66
	0.549
	(0.465,0.632)
	1133
	0.7074
	(0.686,0.728)

	>85
	24
	0.7018
	(0.624,0.778)
	631
	0.6474
	(0.621,0.673)
	29
	0.5142
	(0.374,0.654)
	626
	0.6553
	(0.629,0.681)





Table A4: Additional age/health condition stratified mean EQ-5D scores for prevalent health conditions continued
	Age Band (years)
	History of health condition
	No history of health condition
	History of health condition
	No history of health condition

	
	n
	mean 
	95% CI 
of mean
	n
	mean
	95% CI 
of mean
	n
	mean 
	95% CI 
of mean
	n
	mean
	95% CI 
of mean

	
	Cancer (n = 820)
	Complaints of bowel/colon (n = 925)

	<30
	27
	0.7952
	(0.669,0.921)
	8056
	0.9387
	(0.935,0.941)
	79
	0.876
	(0.840,0.911)
	8004
	0.9389
	(0.935,0.942)

	30 to ≤ 35
	21
	0.8435
	(0.713,0.973)
	3587
	0.9149
	(0.907,0.922)
	58
	0.7895
	(0.709,0.869)
	3550
	0.9163
	(0.908,0.923)

	35 to ≤ 40
	32
	0.8461
	(0.744,0.948)
	3988
	0.9074
	(0.901,0.913)
	71
	0.7871
	(0.704,0.869)
	3949
	0.9091
	(0.902,0.915)

	40 to ≤ 45
	33
	0.7186
	(0.617,0.819)
	3713
	0.8842
	(0.874,0.893)
	65
	0.5958
	(0.357,0.834)
	3681
	0.8878
	(0.879,0.895)

	45 to ≤ 50
	43
	0.5728
	(0.171,0.974)
	3251
	0.868
	(0.858,0.877)
	64
	0.6706
	(0.575,0.765)
	3230
	0.8678
	(0.856,0.879)

	50 to ≤ 55
	49
	0.7283
	(0.591,0.865)
	3107
	0.8361
	(0.826,0.845)
	85
	0.7138
	(0.627,0.800)
	3071
	0.8379
	(0.828,0.847)

	55 to ≤ 60
	89
	0.6724
	(0.600,0.744)
	3196
	0.8262
	(0.815,0.837)
	106
	0.6808
	(0.593,0.768)
	3179
	0.8273
	(0.816,0.838)

	60 to ≤ 65
	84
	0.6737
	(0.607,0.739)
	2655
	0.8113
	(0.797,0.825)
	85
	0.5847
	(0.493,0.675)
	2654
	0.8138
	(0.799,0.827)

	65 to ≤ 70
	133
	0.7297
	(0.652,0.807)
	2860
	0.8078
	(0.794,0.821)
	100
	0.7257
	(0.658,0.793)
	2893
	0.8063
	(0.792,0.819)

	70 to ≤ 75
	109
	0.6819
	(0.609,0.754)
	2392
	0.7831
	(0.770,0.795)
	89
	0.6455
	(0.575,0.716)
	2412
	0.7841
	(0.771,0.796)

	75 to ≤ 80
	122
	0.6599
	(0.595,0.724)
	1773
	0.76
	(0.745,0.774)
	65
	0.6319
	(0.529,0.734)
	1830
	0.7577
	(0.743,0.771)

	80 to ≤ 85
	47
	0.6627
	(0.567,0.758)
	1152
	0.6998
	(0.678,0.721)
	38
	0.5881
	(0.457,0.719)
	1161
	0.7019
	(0.680,0.723)

	>85
	31
	0.5643
	(0.439,0.689)
	624
	0.654
	(0.628,0.679)
	20
	0.4607
	(0.294,0.626)
	635
	0.6546
	(0.628,0.680)





Table A4: Additional age/health condition stratified mean EQ-5D scores for prevalent health conditions continued
	Age Band (years)
	History of health condition
	No history of health condition
	History of health condition
	No history of health condition

	
	n
	mean 
	95% CI 
of mean
	n
	mean
	95% CI 
of mean
	n
	mean 
	95% CI 
of mean
	n
	mean
	95% CI 
of mean

	
	Diabetes. incl. hyperglycemia (n = 1772)
	Heart attack/angina (n = 929)

	<30
	43
	0.8595
	(0.773,0.945)
	8040
	0.9386
	(0.935,0.941)
	1
	0.088
	na
	8082
	0.9384
	(0.935,0.941)

	30 to ≤ 35
	41
	0.7271
	(0.579,0.874)
	3567
	0.9165
	(0.909,0.923)
	2
	0.4244
	(-3.59,4.442)
	3606
	0.9148
	(0.907,0.922)

	35 to ≤ 40
	59
	0.8312
	(0.765,0.896)
	3961
	0.9079
	(0.901,0.914)
	6
	0.7015
	(0.352,1.050)
	4014
	0.9072
	(0.900,0.913)

	40 to ≤ 45
	85
	0.7321
	(0.651,0.812)
	3661
	0.8858
	(0.876,0.895)
	10
	0.5502
	(0.250,0.850)
	3736
	0.8834
	(0.873,0.892)

	45 to ≤ 50
	118
	0.7611
	(0.697,0.824)
	3176
	0.8675
	(0.855,0.879)
	23
	0.5502
	(0.250,0.850)
	3271
	0.8664
	(0.855,0.877)

	50 to ≤ 55
	142
	0.703
	(0.644,0.761)
	3014
	0.8409
	(0.831,0.850)
	51
	0.6643
	(0.514,0.814)
	3105
	0.8374
	(0.827,0.846)

	55 to ≤ 60
	173
	0.7199
	(0.669,0.770)
	3112
	0.8277
	(0.816,0.838)
	103
	0.5863
	(0.520,0.652)
	3182
	0.8291
	(0.818,0.840)

	60 to ≤ 65
	245
	0.656
	(0.593,0.718)
	2494
	0.8216
	(0.808,0.834)
	112
	0.6167
	(0.544,0.688)
	2627
	0.8147
	(0.800,0.828)

	65 to ≤ 70
	303
	0.7254
	(0.685,0.765)
	2690
	0.8124
	(0.798,0.826)
	143
	0.6687
	(0.611,0.726)
	2850
	0.811
	(0.797,0.824)

	70 to ≤ 75
	279
	0.7114
	(0.673,0.749)
	2222
	0.7878
	(0.774,0.801)
	157
	0.6501
	(0.594,0.705)
	2344
	0.7875
	(0.774,0.800)

	75 to ≤ 80
	167
	0.6555
	(0.604,0.706)
	1728
	0.763
	(0.748,0.777)
	167
	0.6523
	(0.598,0.706)
	1728
	0.7628
	(0.748,0.777)

	80 to ≤ 85
	83
	0.6977
	(0.638,0.756)
	1116
	0.6985
	(0.676,0.720)
	95
	0.621
	(0.557,0.684)
	1104
	0.7058
	(0.683,0.727)

	>85
	34
	0.6214
	(0.507,0.734)
	621
	0.651
	(0.624,0.677)
	59
	0.6122
	(0.523,0.700)
	596
	0.653
	(0.626,0.679)






Table A4: Additional age/health condition stratified mean EQ-5D scores for prevalent health conditions continued
	Age Band (years)
	History of health condition
	No history of health condition
	History of health condition
	No history of health condition

	
	n
	mean 
	95% CI 
of mean
	n
	mean
	95% CI 
of mean
	n
	mean 
	95% CI 
of mean
	n
	mean
	95% CI 
of mean

	
	Hypertension/high blood pressure/blood (n = 3172)
	Mental illness/anxiety/depression/nerves (n = 1332)

	<30
	20
	0.8062
	(0.709,0.902)
	8063
	0.9386
	(0.935,0.941)
	188
	0.6835
	(0.639,0.727)
	7895
	0.944
	(0.940,0.947)

	30 to ≤ 35
	26
	0.8154
	(0.710,0.919)
	3582
	0.9153
	(0.907,0.922)
	132
	0.627
	(0.559,0.694)
	3476
	0.9243
	(0.917,0.931)

	35 to ≤ 40
	79
	0.8641
	(0.810,0.917)
	3941
	0.9077
	(0.901,0.913)
	159
	0.6232
	(0.573,0.672)
	3861
	0.9176
	(0.911,0.923)

	40 to ≤ 45
	108
	0.7745
	(0.701,0.847)
	3638
	0.8854
	(0.875,0.894)
	171
	0.6167
	(0.564,0.669)
	3575
	0.8955
	(0.886,0.904)

	45 to ≤ 50
	200
	0.8032
	(0.759,0.847)
	3094
	0.8676
	(0.855,0.879)
	136
	0.5356
	(0.463,0.607)
	3158
	0.8782
	(0.867,0.889)

	50 to ≤ 55
	306
	0.7666
	(0.727,0.805)
	2850
	0.8414
	(0.831,0.851)
	142
	0.563
	(0.503,0.622)
	3014
	0.8458
	(0.836,0.855)

	55 to ≤ 60
	416
	0.778
	(0.747,0.808)
	2869
	0.8284
	(0.816,0.840)
	147
	0.5901
	(0.511,0.668)
	3138
	0.8342
	(0.823,0.844)

	60 to ≤ 65
	426
	0.8089
	(0.777,0.840)
	2313
	0.8069
	(0.791,0.822)
	78
	0.5522
	(0.476,0.627)
	2661
	0.8143
	(0.800,0.828)

	65 to ≤ 70
	573
	0.7849
	(0.761,0.808)
	2420
	0.8084
	(0.792,0.823)
	57
	0.6398
	(0.534,0.745)
	2936
	0.8068
	(0.793,0.820)

	70 to ≤ 75
	453
	0.7749
	(0.746,0.803)
	2048
	0.7799
	(0.765,0.794)
	48
	0.5862
	(0.471,0.700)
	2453
	0.783
	(0.770,0.795)

	75 to ≤ 80
	296
	0.7417
	(0.709,0.773)
	1599
	0.7554
	(0.739,0.770)
	29
	0.5762
	(0.423,0.728)
	1866
	0.7561
	(0.742,0.770)

	80 to ≤ 85
	194
	0.6867
	(0.633,0.740)
	1005
	0.7009
	(0.678,0.723)
	28
	0.5333
	(0.384,0.682)
	1171
	0.7021
	(0.681,0.723)

	>85
	75
	0.6853
	(0.617,0.753)
	580
	0.6456
	(0.618,0.672)
	17
	0.5524
	(0.361,0.743)
	638
	0.6523
	(0.626,0.677)






Table A4: Additional age/health condition stratified mean EQ-5D scores for prevalent health conditions
	Age Band (years)
	History of health condition
	No history of health condition
	History of health condition
	No history of health condition

	
	n
	mean 
	95% CI 
of mean
	n
	mean
	95% CI 
of mean
	n
	mean 
	95% CI 
of mean
	n
	mean
	95% CI 
of mean

	
	Other endocrine/metabolic (n = 1566) 
	Other heart problems (n = 1349)

	<30
	59
	0.8551
	(0.809,0.900)
	8024
	0.9389
	(0.935,0.942)
	43
	0.8201
	(0.747,0.892)
	8040
	0.9389
	(0.935,0.942)

	30 to ≤ 35
	45
	0.8214
	(0.736,0.906)
	3563
	0.9156
	(0.908,0.923)
	16
	0.8645
	(0.781,0.947)
	3592
	0.9148
	(0.907,0.922)

	35 to ≤ 40
	80
	0.8718
	(0.814,0.928)
	3940
	0.9076
	(0.901,0.913)
	28
	0.8147
	(0.741,0.888)
	3992
	0.9075
	(0.901,0.913)

	40 to ≤ 45
	109
	0.7923
	(0.734,0.850)
	3637
	0.8851
	(0.875,0.894)
	43
	0.628
	(0.431,0.824)
	3703
	0.8855
	(0.876,0.894)

	45 to ≤ 50
	119
	0.7085
	(0.543,0.873)
	3175
	0.8706
	(0.861,0.879)
	51
	0.7086
	(0.641,0.775)
	3243
	0.8664
	(0.854,0.877)

	50 to ≤ 55
	140
	0.7876
	(0.729,0.845)
	3016
	0.8368
	(0.827,0.846)
	67
	0.6759
	(0.589,0.762)
	3089
	0.8376
	(0.828,0.847)

	55 to ≤ 60
	198
	0.7589
	(0.713,0.804)
	3087
	0.826
	(0.814,0.837)
	112
	0.686
	(0.626,0.745)
	3173
	0.8269
	(0.815,0.837)

	60 to ≤ 65
	198
	0.7905
	(0.747,0.833)
	2541
	0.8085
	(0.793,0.823)
	159
	0.6234
	(0.531,0.714)
	2580
	0.8189
	(0.805,0.832)

	65 to ≤ 70
	233
	0.7942
	(0.758,0.830)
	2760
	0.8048
	(0.790,0.818)
	209
	0.6866
	(0.626,0.747)
	2784
	0.8132
	(0.799,0.827)

	70 to ≤ 75
	175
	0.7487
	(0.699,0.798)
	2326
	0.7813
	(0.768,0.794)
	225
	0.6719
	(0.625,0.718)
	2276
	0.7892
	(0.776,0.802)

	75 to ≤ 80
	109
	0.7125
	(0.651,0.773)
	1786
	0.7555
	(0.741,0.769)
	186
	0.6885
	(0.643,0.733)
	1709
	0.7602
	(0.745,0.774)

	80 to ≤ 85
	75
	0.599
	(0.524,0.673)
	1124
	0.7043
	(0.682,0.725)
	127
	0.6137
	(0.555,0.672)
	1072
	0.707
	(0.684,0.729)

	>85
	26
	0.5316
	(0.388,0.674)
	629
	0.6543
	(0.628,0.680)
	83
	0.5171
	(0.441,0.592)
	572
	0.6692
	(0.642,0.695)





Table A4: Additional age/health condition stratified mean EQ-5D scores for prevalent health conditions continued
	Age Band (years)
	History of health condition
	No history of health condition
	History of health condition
	No history of health condition

	
	n
	mean 
	95% CI 
of mean
	n
	mean
	95% CI 
of mean
	n
	mean 
	95% CI 
of mean
	n
	mean
	95% CI 
of mean

	
	Other problems of bones/joints/muscles (n = 2526)
	Other problems of nervous system (n = 926)

	<30
	202
	0.7626
	(0.726,0.799)
	7881
	0.9428
	(0.939,0.945)
	67
	0.735
	(0.669,0.800)
	8016
	0.94
	(0.936,0.943)

	30 to ≤ 35
	136
	0.7438
	(0.700,0.786)
	3472
	0.9218
	(0.914,0.929)
	36
	0.7242
	(0.609,0.838)
	3572
	0.9163
	(0.908,0.923)

	35 to ≤ 40
	142
	0.685
	(0.634,0.735)
	3878
	0.9146
	(0.908,0.920)
	77
	0.6408
	(0.564,0.717)
	3943
	0.9119
	(0.905,0.918)

	40 to ≤ 45
	185
	0.6794
	(0.631,0.726)
	3561
	0.8925
	(0.883,0.902)
	92
	0.5847
	(0.512,0.656)
	3654
	0.8893
	(0.879,0.898)

	45 to ≤ 50
	185
	0.6407
	(0.586,0.695)
	3109
	0.8774
	(0.865,0.888)
	86
	0.5043
	(0.320,0.688)
	3208
	0.8748
	(0.865,0.883)

	50 to ≤ 55
	210
	0.6021
	(0.558,0.645)
	2946
	0.8502
	(0.840,0.859)
	107
	0.4949
	(0.417,0.571)
	3049
	0.845
	(0.835,0.854)

	55 to ≤ 60
	229
	0.6426
	(0.601,0.683)
	3056
	0.8354
	(0.824,0.846)
	117
	0.6003
	(0.537,0.663)
	3168
	0.8295
	(0.818,0.840)

	60 to ≤ 65
	226
	0.5847
	(0.536,0.632)
	2513
	0.8255
	(0.811,0.839)
	73
	0.5558
	(0.471,0.639)
	2666
	0.814
	(0.800,0.827)

	65 to ≤ 70
	267
	0.5962
	(0.530,0.662)
	2726
	0.8253
	(0.813,0.836)
	86
	0.6128
	(0.538,0.687)
	2907
	0.8091
	(0.795,0.822)

	70 to ≤ 75
	265
	0.605
	(0.561,0.648)
	2236
	0.7988
	(0.786,0.811)
	71
	0.5527
	(0.463,0.641)
	2430
	0.7851
	(0.772,0.797)

	75 to ≤ 80
	212
	0.6125
	(0.569,0.655)
	1683
	0.7719
	(0.757,0.786)
	51
	0.5092
	(0.395,0.623)
	1844
	0.76
	(0.746,0.773)

	80 to ≤ 85
	169
	0.548
	(0.495,0.600)
	1030
	0.7254
	(0.704,0.746)
	41
	0.5189
	(0.410,0.627)
	1158
	0.7051
	(0.683,0.726)

	>85
	98
	0.5498
	(0.484,0.615)
	557
	0.6704
	(0.642,0.698)
	22
	0.5806
	(0.416,0.744)
	633
	0.6519
	(0.626,0.677)
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Figure 1: Mean EQ-5D scores and decrements on HRQoL for cohorts with hypertension/high blood pressure

Figure 1a: Respondents with hypertension/high blood pressure and any other health condition compared to respondents without hypertension/high blood pressure
[image: ]


Figure 1b: Respondents with just hypertension/high blood pressure and no other health condition compared to respondents with no condition
[image: ]

(the number of cases are shown next to data points for respondents who have the condition)

Figure 2: Mean EQ-5D scores and decrements on HRQoL for cohorts with arthritis/rheumatism/fibrositis
Figure 2a: Respondents with arthritis/rheumatism/fibrositis and any other health condition compared to respondents without arthritis/rheumatism/fibrositis
[image: ]


Figure 2b: Respondents with just arthritis/rheumatism/fibrositis and no other health condition compared to respondents with no condition
[image: ]

(the number of cases are shown next to data points for respondents who have the condition)
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ABSTRACT 
Introduction: When health state utility values for comorbid health conditions are not available data from cohorts with single conditions are used to estimate scores.  The methods used can produce very different results and there is currently no consensus on which is the most appropriate approach.

Objective: The objective of the current study was to compare the accuracy of five different methods within the same dataset.

Method: Data collected during five Welsh Health Surveys were subgrouped by health status.  Mean short-form 6 dimension (SF-6D) scores for cohorts with a specific health condition were used to estimate mean SF-6D scores for cohorts with comorbid conditions using the additive, multiplicative, and minimum methods, the adjusted decrement estimator (ADE), and a linear regression model.

Results: The mean SF-6D for subgroups with comorbid health conditions ranged from 0.4648 to 0.6068.  The linear model produced the most accurate scores for the comorbid health conditions with 88% of values accurate to within the minimum important difference for the SF-6D.  The additive and minimum methods underestimated or overestimated the actual SF-6D scores, respectively.  The multiplicative and ADE methods both underestimated the majority of scores.  However, both methods performed better when estimating scores smaller than 0.50.  Although the range in actual HSUVs was relatively small, our data covered the lower end of the index while the majority of previous research has involved actual HSUVs at the upper end of possible ranges.  

Conclusion: While the linear model gave the most accurate results in our data, additional research is required to validate our findings.


Keywords: health-related quality of life, health state utility, methodology, SF-6D, utility
INTRODUCTION
Policy decision-makers such as the National Institute for Health and Clinical Excellence (NICE) in the United Kingdom recommend that the results of economic evaluations in health care are presented in terms of quality adjusted life-years (QALY) [1].  The QALY quantifies both health-related quality of life and life expectancy in a single metric and allows comparison across disparate diseases and interventions [2].  The health state utility values (HSUVs) used to weight the QALYs are obtained from preference-based measures of health such as the Euroqol 5 dimension (EQ-5D), and the short-form 6 dimension (SF-6D) [3,4].

Although there is a large evidence base for HSUVs associated with single health conditions, due to the large number of possible combinations of health conditions, studies reporting HSUVs for comorbid health conditions are limited.  When these data are not available HSUVs for comorbid health conditions are estimated using the HSUVs obtained from people with single conditions.  For example, the mean HSUV for a comorbid health condition defined as both condition A and condition B would be estimated using the mean HSUVs obtained from cohorts with condition A (but not condition B) and the mean HSUV from cohorts with condition B (but not condition A).  The three most frequently used techniques are the additive, multiplicative and minimum methods.  The additive and multiplicative methods assume a constant absolute or constant proportional decrement, respectively, whereas the minimum method attributes no additional health decrement, taking the smallest HSUV from the single health conditions involved.

The evidence base describing empirical research in this area is limited and there is currently no consensus on the most appropriate approach.  The multiplicative method gave a good fit on HUI3 data from the Canadian Community Health Survey [5], and was more accurate than the additive method on EQ-5D data from the Medical Expenditure Panel Survey (MEPS) [6].  The minimum method performed better than both the additive and the multiplicative methods on EQ-5D data from the MEPS [7].  More recently, a variation of the minimum method, the adjusted decrement estimator (ADE) has been proposed and was shown to outperform the three other methods on EQ-5D data from MEPS [8].

The methods can produce very different HSUVs and it has been shown that these differences are great enough to potentially influence a policy decision based on a cost per QALY threshold [9].  This undermines the rationale for consistent reimbursement recommendations and optimal resource allocation.  The objective of the current study was to assess the accuracy of all four methods using SF-6D data collected in the Welsh Health Surveys.  These results were also compared to values predicted using a parametric model that maps from mean HSUVs obtained from cohorts with single health conditions onto HSUVs for cohorts with comorbid health conditions.


METHODS
Welsh Health Survey dataset
The Welsh Health Survey (WHS) is an annual survey which draws from a random sample of the population living in private households in Wales [10-14].  Responses collected during the surveys conducted in the years 2003, 2004, 2005, 2007 and 2008 were pooled for use in the current study.  HSUVs were obtained using the SF-6D (v2) preference-based measure which is derived from responses to the SF-36 generic health questionnaire [15].  The SF-6D is a six-dimensional health state classification system assessing physical functioning, role-limitations, social functioning, pain, mental health and vitality.  The classification system generates a total of 18,000 possible health states.  Weights for the SF-6D preference-measure used in the current study were obtained from a random sample of the UK general population using anchors of zero and one to represent death and perfect health, respectively [3].  The SF-6D is scored on a continuous index whereby 0.296 represents the maximum impaired level on all six dimensions and 1 represents the least impaired level.

In addition to questions on health-related quality of life, respondents were asked to indicate if they had any limiting long term health conditions.  The coded data provide information on 39 individually categorised and 14 grouped limiting long term health conditions (see online Appendix).  All analyses were weighted using the individual level self-administered questionnaire weights that adjust for non-response.


Methods used to estimate HSUVs
The “actual” mean SF-6D scores were calculated for subgroups (n ≥ 30) of respondents with comorbid pairs of health conditions (condition A and condition B), and for subgroups with condition A (and not condition B) or condition B (and not condition A).  The latter were then used to estimate mean SF-6D scores for the cohorts with comorbid health conditions using the three frequently used (additive, minimum and multiplicative) methods and the ADE.  In addition, the relationship between the SF-6D scores from cohorts with single health conditions and the SF-6D scores from cohorts with combined conditions was explored using ordinary least square regression (OLS).  Details of the five methods compared are provided below.  

For the two health conditions, condition A and condition B, the following combinations are possible: condition A and condition B; neither condition A nor condition B; condition A, but not condition B; condition B, but not condition A.  The HSUVs associated with these alternatives are defined to be UA,B, UnA,nB, UA, and UB, respectively.

The additive method assumes a constant absolute detriment relative to the baseline.  When assuming a baseline of full health the additive method is written as:

						(1)
Using an adjusted baseline (see next section) the additive method is written as:

				(2)

The multiplicative method assumes a constant proportional detriment relative to the baseline.  When assuming a baseline of full health, the multiplicative method is written as:

						(3)
When using an adjusted baseline, the multiplicative method is written as: 

					(4)

The minimum method assumes the impact on HRQoL for a comorbid health condition is equivalent to the most severe of the single health conditions, thus there is no additional decrement associated with a second health condition.  When assuming a baseline of full health, the minimum method is written as:

								(5)
When using an adjusted baseline, the minimum method is written as: 

					(6)

The adjusted decrement estimator (ADE), proposed by Hu [8], assumes the HSUV for the comorbid health condition is bound by the minimum HSUV of the two HSUVs for the single health conditions and is written as:

			(7)

In addition to the methods described above, a simple linear model has been proposed [16].  Based on decision theory, multi-attribute utility functions [17,18], and a prospect theory [19], the model incorporates terms that represent the additive, multiplicative and minimum methods [16].  The model is defined by:

	(8)


whereby the beta coefficients are obtained using ordinary least square regressions and  represents the residual.  We use the following adaptation which incorporates an adjusted baseline:

(9)

When using a baseline of full health it is assumed that if a particular health condition is alleviated the HSUV for the health condition will revert to 1 on a preference-based utility index.  This assumption ignores the natural decline in health due to age and additional comorbidities and overestimates the decrement on health-related quality of life associated with health conditions [20].  Consequently this may not be the most appropriate technique when estimating HSUVs for comorbid health conditions.  Several alternatives have been suggested and these include: “purifying” data by dividing all HSUVs by the mean HSUV obtained from individuals with none of the health conditions [5], or using HSUVs associated with not having specific health conditions [6].  We used age-adjusted baseline HSUVs obtained from respondents who do not have any of the health conditions identified in the WHS.

The methods used to estimate HSUVs for the combined health conditions were assessed in terms of errors (actual minus estimated) in the estimated HSUVs.  In addition to the statistics generally reported (mean absolute errors (MAE), mean squared errors (MSE), root mean squared error (RMSE)), the proportion of errors within the minimum important difference (MID) [21] for the SF-6D (MID = 0.041) were calculated and the magnitude of errors across the actual SF-6D scores were examined using scatter plots.



RESULTS
The pooled data included 64,437 cases with SF-6D scores.  The mean SF-6D for the full sample irrespective of health status was 0.7613 (range 0.301 to 1).  The mean SF-6D for respondents (16414/64437) who reported having at least one limiting long term health condition was 0.6055 (SE 0.0011) compared with 0.8104 (SE 0.0006) for respondents who reported no limiting long term health condition.  There were just 2,021 respondents who reported two or more limiting long term illnesses and 32 subgroups (n ≥ 30) with two concurrent conditions (see Appendix for details).  The mean SF-6D scores (Figure 1) for these subgroups ranged from 0.4648 (SE 0.0086) for respondents (n = 140) who reported both a mental disorder and a musculoskeletal condition to 0.6068 (SE 0.0269) for respondents (n = 33) who reported both arthritis/rheumatism/fibrositis and an unclassifiable complaint.  As can be seen in Figure 1, the SF-6D scores are clustered around the mean (0.5301) with just 4/32 groups scoring less than 0.50 or greater than 0.60.  When comparing mean SF-6D scores, all scores from the subgroups with comorbid health conditions were smaller than those from the subgroups with the corresponding single health conditions.

FIGURE 1: Distribution of mean SF-6D scores for subgroups (n=32) with two comorbid health conditions

The linear model estimated using ordinary least squares is provided in Table 1.  The coefficients for all three independent variables are negative as would be expected as they are the decrements associated with the health conditions.  When comparing the magnitude of the coefficients, the coefficient for the condition with the maximum decrement is larger than the coefficient for the condition with the minimum decrement as might be expected.  The weight associated with the interaction term (P = 0.661) is similar to that for the health condition with the minimum disutility.

TABLE 1: Results from the OLS combination model

A summary of the results obtained using the five alternative techniques is provided in Table 2.  Overall, the HSUVs obtained using the linear model are the most accurate producing the smallest MAE (0.0191) and the smallest RMSE (0.0254) in the predicted mean SF-6D values.  Although the average of the predicted mean SF-6D scores equals the actual value of 0.5301, the range is somewhat truncated (predicted range: 0.4935 to 0.5549, actual range: 0.4368 to 0.6068).  All predicted HSUVs, however, are within the MID for the SF-6D and 75% of the errors are smaller than |0.025|.

Of the four nonparametric methods, the ADE outperforms the other three having the smallest MAE (0.0419) and smallest RMSE (0.0471).  When examining accuracy in predicting the individual mean SF-6D scores, the ADE does not compare favourably with the linear model and only 47% (25%) of estimated HSUVs are accurate to within the MID (0.025).  The additive, multiplicative and minimum methods perform less well with just 3%, 6%, and 13% of estimated HSUVs within the MID respectively.

TABLE 2: Comparing the predictive abilities of the five methods

Figure 2 shows the actual and estimated mean SF-6D scores.  It is clear that the minimum method overestimates the actual SF-6D scores and the errors increase as the actual SF-6D scores decrease.  The additive, multiplicative and ADE methods underestimate the majority of the actual SF-6D scores.  Although the linear model produces the most accurate scores, there is a tendency for the errors to be larger at the extremes of the range of actual scores.

FIGURE 2: Plot of actual and estimated SF-6D scores

When subgrouped by actual SF-6D score (Table 3) it can be seen that the value of the SF-6D score being estimated can influence the accuracy of the methods.  For example, while the minimum method was the least accurate in terms of mean errors overall, it performs better than all the other nonparametric methods when estimating actual SF-6D scores greater than 0.55 and 71% of these estimated values are accurate to within the MID.  Similarly, when estimating SF-6D scores smaller than 0.50, the ADE produces 86% of HSUVs accurate to within the MID compared with 57% of values predicted using the linear model.  The additive method does not perform well across the full range of actual SF-6D scores while the multiplicative method performs better when estimating SF-6D scores smaller than 0.50.


DISCUSSION
The objective of the study was to add to the existing evidence base by comparing the accuracy of methods frequently used to estimate HSUVs for comorbid health conditions.  Using SF-6D data obtained from respondents taking part in Welsh Health Surveys, we found that the linear model obtained using an OLS regression out-performed the non-parametric methods.  Overall, 88% of HSUVs predicted using the linear model were within the MID of the SF-6D.  The additive method underestimated the actual SF-6D scores and produced some substantial errors with none of the estimated HSUVs within the MID for the SF-6D.  Although the minimum method overestimated the actual HSUVs it performed better when estimating SF-6D scores greater than 0.55 with errors in estimated values increasing as actual SF-6D scores decreased.  The multiplicative and ADE methods both underestimated the majority of the actual SF-6D scores.  However, when looking at subgroups of actual SF-6D scores, both methods performed better when estimating SF-6D scores greater than 0.50 with 43% and 86% of estimated HSUVs accurate to within the MID for the multiplicative and ADE, respectively.

Our findings are similar to those reported in a recent publication using EQ-5D data obtained from the MEPS [8].  The actual HSUVs for the comorbid health conditions ranged from 0.62 to 0.88 and the authors reported the ADE model outperformed the additive, minimum and multiplicative methods when assessed by MEs and RMSE in estimated values.  Charts of the estimated and actual EQ-5D scores showed the additive and multiplicative methods underestimated the actual EQ-5D scores and the magnitude of errors increased as the actual EQ-5D score increased for both methods.  As in our data, the minimum method performed better for higher HSUVs with the magnitude of errors increasing as the actual HSUV decreased.  While the ADE performed better than the other methods overall, the magnitude of errors in estimated values grew substantially as the actual EQ-5D score decreased.

There are three limitations relating to the data used in the current study.  First, the range in actual mean SF-6D scores (0.4648 to 0.6068) for the comorbid health conditions covered only 24% of the possible range (0.29 to 1) and all values were in the bottom half of the SF-6D index (i.e., below 0.65).  Actual mean HSUVs for comorbid health conditions reported in other studies tend to be in the upper range of the preference-based indexes.  For example, Hu and Fu used data from MEPS and their actual EQ-5D scores ranged from 0.62 to 0.88 which equates to 24% of the possible range (-0.1 to 1) for the US EQ-5D index [7,8,22]. Janssen used a similar dataset and reported actual mean EQ-5D scores for comorbid health conditions ranging from (0.734 to 0.819) [6].  The widest range (-0.01 to 1) of actual mean HSUVs for comorbid conditions was reported in a dataset of HUI3 scores obtained from the Canadian Community Health Survey (2001, 2003).  However, the majority (184/278) of scores were greater than 0.80.  One possible explanation for the differences in the ranges for the actual HSUVs is that the respondents in our dataset were asked to identify limiting long standing illnesses, while the respondents in the surveys for the other studies were asked to identify chronic health conditions.  The consequence of this is that the respondents in the WHS may not have reported health conditions they did not perceive to affect their HRQoL.  As the accuracy in the estimating methods has been shown to vary depending on the range of the scores estimated in both this study and Hu’s it is possible that different conclusions would be drawn if the methods were tested in datasets that covered the full ranges of the indexes.

Second, we were only able to identify 32 subgroups with comorbid health conditions and the number of cases in some of the subgroups was relatively small (n = 30 to 346).  As a consequence we did not estimate HSUVs for comorbid health conditions consisting of greater than two health conditions.  While Flanagan et al. assessed the accuracy of the multiplicative method in estimating HSUVs for comorbid health conditions consisting of more than two health conditions, as far as we are aware, this is the only research in this area and no-one has compared results for multiple comorbid health conditions using alternative methods to date [5].

Third, although we obtained a linear model to predict SF-6D scores for the comorbid health conditions, the number of cases used in the regression was small (n = 32) and none of the coefficients in the model were statistically significant.  As the model tends to overpredict the lower SF-6D scores and underpredict the higher SF-6D scores it is possible that a different model specification would produce more accurate results and additional research exploring alternatives is warranted.

It should be noted that in terms of both goodness of fit and predictive strength, the results vary a lot by baseline SF-6D score.  While our results may not generalise to all other preference-based instruments and datasets, the observed hierarchy of the five methods is equivalent to that reported in an article describing similar research on EQ-5D data [23]. One area where additional research would be particularly informative would be in evaluating the different techniques on subgroups of combinations of specific health conditions.  For example the five methods may produce different levels of accuracy when combining data from single health conditions which have a substantial effect on mental health dimensions compared to when combining data from single health conditions which have a substantial effect on physical health dimensions.  In addition, research exploring the most appropriate method when combining data for acute and chronic conditions would also be relevant.


CONCLUSION
Despite the limitations in the data, this study makes an important contribution to the evidence base.  This study compared the five different techniques on SF-6D data and, although the range of estimated scores was relatively small, it covered the lower end of the preference-based index whilst the majority of other research in this area has involved actual HSUVs at the top end of the preference measures.  While the linear model gave the most accurate results in our sample, additional research is required to develop and validate the model.
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Table 1: Results from the OLS combination model.
	Independent variable
	Coefficient
	Robust SE
	P > |t|

	Maximum decrement 
	-1.049809
	0.6162
	0.099

	Minimum decrement
	-0.4797101
	0.89592
	0.597

	Interaction of utilities
	-0.4986031
	1.12376
	0.661

	Constant  
	1.0606200
	0.77913
	0.184

	

	R2
	0.3472

	

	Maximum decrement
	


	Minimum decrement
	


	Interaction of utilities
	




OLS, ordinary least square; SE, standard error.

Table 2: Comparing the predictive abilities of the four methods. 
	
	Actual
	Estimated 

	
	
	Additive
	Multiplicative
	Minimum
	ADE [8]
	Linear model

	Mean SF-6D 
	0.5301
	0.4092
	0.4556
	0.5848
	0.4918
	0.5301

	Min SF-6D 
	0.4368
	0.3453
	0.4115
	0.5620
	0.4656
	0.4935

	Max SF-6D 
	0.6068
	0.4794
	0.5077
	0.6053
	0.5169
	0.5549

	Range:
	0.1700
	0.1341
	0.0962
	0.0433
	0.0513
	0.0614

	Mean error
	0.1209
	0.0745
	-0.0546
	0.0383
	0.0000

	Maximum absolute error
	0.1924
	0.1496
	0.1316
	0.1196
	0.0669

	
	
	
	
	
	
	

	MAE
	
	0.1209
	0.0747
	0.0563
	0.0419
	0.0191

	MSE
	
	0.0157
	0.0064
	0.0038
	0.0022
	0.0006

	RMSE
	
	0.1252
	0.0799
	0.0613
	0.0471
	0.0254

	% within |0.01|
	0
	3
	0
	0
	31

	% within |0.025|
	0
	6
	6
	25
	75

	
	
	
	
	
	
	

	% within MID |0.041|
	3
	6
	13
	47
	88


ADE, adjusted decrement estimator; MAE, mean absolute error; MID, minimum important difference; MSE, Mean squared error; RMSE, root mean squared error.




Table 3: Errors in estimated HSUVs subgrouped by actual SF-6D score
	Actual SF-6D score
	n
	Additive
	Multiplicative
	Minimum
	ADE [8]
	Linear model

	Mean error

	SF-6D < 0.55
	7
	0.1399
	0.0943
	-0.0260
	0.0636
	0.0256

	0.55 ≤ SF-6D < 0.50
	18
	0.1271
	0.0762
	-0.0528
	0.0403
	-0.0003

	SF-6D ≥ 0.50
	7
	0.1105
	0.0463
	-0.0880
	0.0080
	-0.0249

	Mean absolute error

	SF-6D < 0.55
	7
	0.1399
	0.0943
	0.0334
	0.0636
	0.0256

	0.55 ≤ SF-6D < 0.50
	18
	0.1271
	0.0762
	0.0528
	0.0403
	0.0120

	SF-6D ≥ 0.50
	7
	0.1105
	0.0463
	0.0880
	0.0243
	0.0308

	Root mean squared error 

	SF-6D < 0.55
	7
	0.1430
	0.0978
	0.0342
	0.0683
	0.0324

	0.55 ≤ SF-6D < 0.50
	18
	0.1302
	0.0788
	0.0545
	0.0430
	0.0152

	SF-6D ≥ 0.50
	7
	0.1172
	0.0553
	0.0916
	0.0270
	0.0360

	Accurate to within the |MID| (%)

	SF-6D < 0.55
	7
	0
	0
	71
	0
	86

	0.55 ≤ SF-6D < 0.50
	18
	0
	6
	17
	50
	100

	SF-6D ≥ 0.50
	7
	14
	43
	0
	86
	57


ADE, adjusted decrement estimator; HSUVs, health state utility values; MID, minimum important difference.


Figure 1: Distribution of mean SF-6D scores for subgroups (n = 32) with two comorbid health conditions
[image: ]



Figure 2: Actual and estimated mean SF-6D scores 
[image: ]
ADE, adjusted decrement estimator; OLS, ordinary least square regression.




Appendix
Table A1: Description of comorbid conditions and mean SF-6D scores
	
	
	
	Mean SF-6D score

	
	
	
	
	Age-adjusted baseline 
(from respondents with none of health conditions

	Condition A
	Condition B
	N
	Condition A&B
(Actual)
	Condition A
(not Condition B)
	Condition B
(not Condition A)
	Condition A
	Condition B

	endocrine and metabolic diseases
	heart and circulatory
	 85
	0.5553
	0.6372
	0.5993
	0.7933
	0.7808

	endocrine and metabolic diseases
	Musculoskeletal
	103
	0.5523
	0.6393
	0.5967
	0.7924
	0.7922

	mental disorders
	nervous system
	 34
	0.5020
	0.5671
	0.5862
	0.8127
	0.8033

	mental disorders
	heart and circulatory
	 45
	0.5161
	0.5672
	0.5994
	0.8132
	0.7803

	mental disorders
	Musculoskeletal
	140
	0.4648
	0.5788
	0.5985
	0.8133
	0.7919

	nervous system
	Musculoskeletal
	139
	0.5340
	0.5905
	0.5972
	0.8037
	0.7920

	eye complaints
	Musculoskeletal
	 33
	0.5052
	0.6691
	0.5965
	0.7801
	0.7923

	ear complaints
	Musculoskeletal
	 40
	0.5405
	0.6662
	0.5964
	0.7936
	0.7922

	heart and circulatory
	respiratory system
	 85
	0.5316
	0.6002
	0.6167
	0.7808
	0.7911

	heart and circulatory
	Musculoskeletal
	277
	0.5377
	0.6058
	0.5981
	0.7812
	0.7927

	respiratory system
	Musculoskeletal
	175
	0.5378
	0.6222
	0.5974
	0.7903
	0.7921

	digestive system
	Musculoskeletal
	 82
	0.5475
	0.6250
	0.5966
	0.7978
	0.7922

	genito-urinary system
	Musculoskeletal
	 30
	0.5232
	0.6299
	0.5964
	0.7961
	0.7921

	musculoskeletal
	skin complaints
	 38
	0.5615
	0.5963
	0.6568
	0.7921
	0.8064

	diabetes. incl. hyperglycemia
	arthritis/rheumatism/fibrositis
	34
	0.5434
	0.6351
	0.5815
	0.7895
	0.7855

	mental illness/anxiety/depression/nerves
	arthritis/rheumatism/fibrositis
	104
	0.4368
	0.5684
	0.5837
	0.8129
	0.7851

	mental illness/anxiety/depression/nerves
	back problems/slipped disc/spine/neck
	126
	0.4778
	0.5641
	0.6049
	0.8126
	0.8043

	mental illness/anxiety/depression/nerves
	other problems of bones/joints/muscles
	36
	0.5093
	0.5620
	0.6099
	0.8124
	0.7920

	other problems of nervous system
	arthritis/rheumatism/fibrositis
	49
	0.5218
	0.5700
	0.5820
	0.8012
	0.7854

	other problems of nervous system
	back problems/slipped disc/spine/neck
	30
	0.5146
	0.5693
	0.6037
	0.8005
	0.8044

	other problems of nervous system
	other problems of bones/joints/muscles
	158
	0.5480
	0.5676
	0.6093
	0.8008
	0.7921

	heart attack/angina
	other heart problems
	36
	0.5437
	0.6184
	0.5951
	0.7783
	0.7793

	heart attack/angina
	arthritis/rheumatism/fibrositis
	168
	0.5405
	0.6216
	0.5816
	0.7784
	0.7857

	hypertension/high blood pressure/blood
	arthritis/rheumatism/fibrositis
	31
	0.5576
	0.6301
	0.5814
	0.7881
	0.7857




Table A1: Description of comorbid conditions and mean SF-6D scores continued
	
	
	
	Mean SF-6D score

	
	
	
	
	Age-adjusted baseline 
(from respondents with none of health conditions

	Condition A
	Condition B
	N
	Condition A&B
(Actual)
	Condition A
(not Condition B)
	Condition B
(not Condition A)
	Condition A
	Condition B

	other heart problems
	arthritis/rheumatism/fibrositis
	44
	0.5077
	0.6006
	0.5824
	0.7798
	0.7859

	other heart problems
	other problems of bones/joints/muscles
	51
	0.5182
	0.5966
	0.6098
	0.7795
	0.7925

	asthma
	arthritis/rheumatism/fibrositis
	113
	0.5300
	0.6567
	0.5819
	0.8034
	0.7854

	other respiratory complaints
	arthritis/rheumatism/fibrositis
	33
	0.5247
	0.5841
	0.5815
	0.7811
	0.7854

	arthritis/rheumatism/fibrositis
	back problems/slipped disc/spine/neck
	346
	0.5465
	0.5827
	0.6068
	0.7849
	0.8052

	arthritis/rheumatism/fibrositis
	other problems of bones/joints/muscles
	227
	0.5538
	0.5821
	0.6122
	0.7856
	0.7928

	arthritis/rheumatism/fibrositis
	unclassifiable 
	102
	0.6068
	0.5809
	0.6150
	0.7857
	0.7772

	back problems/slipped disc/spine/neck
	other problems of bones/joints/muscles
	37
	0.5730
	0.6053
	0.6122
	0.8049
	0.7913
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ABSTRACT
Background: There is currently no consensus on the most appropriate method to estimate health state utility values (HSUVs) for comorbid health conditions.

Objective: The objective of the study was to assess the accuracy by applying five different methods to an EQ-5D dataset.

Methods: EQ-5D data (n = 41,174) from the Health Survey for England were used to compare HSUVs generated using the additive, multiplicative and minimum methods, the adjusted decrement estimator, and a linear regression. 

Results: The additive and multiplicative methods underestimated the majority of HSUVs and the magnitude of the errors increased as the actual HSUV increased. Conversely, the minimum and adjusted decrement estimator methods overestimated the majority of HSUVs and the magnitude of errors increased as the actual HSUV decreased. Although the simple linear model produced the most accurate results, there was a tendency to underpredict higher HSUVs and overpredict lower HSUVs. The magnitude and direction of mean errors could be driven by the actual scores being estimated in addition to the technique used and the HSUVs estimated using an adjusted baseline were generally more accurate. 

Conclusions: The additive and minimum methods performed very poorly in our data. Although the simple linear model gave the most accurate results, the model requires validating in external data obtained from the EQ-5D and other preference-based measures. Based on the current evidence base, we would recommend the multiplicative method is used together with a range of univariate sensitivity analyses.

Key Words: health state utility values, comorbidities, quality of life, EQ-5D




BACKGROUND
Economic evaluations in health care are used by policy decision-makers worldwide to make informed decisions on whether new treatments should be reimbursed. Clinical effects are measured in terms of health-related quality of life (HRQoL) effects and costs include the resources used and the intervention costs. Treatments are appraised using decision rules on the basis of incremental cost-effectiveness ratios, which utilize a generic HRQoL measure to quantify the cost per quality adjusted life-year (QALY).1 The QALY is a metric that combines the duration of time spent in a health state with the HRQoL associated with the health state that is, the health state utility value (HSUV).2 The QALY is used to facilitate consistent reimbursement recommendations across all disease areas thus allowing the optimal allocation of resources.

To calculate QALYs, it is necessary to value HRQoL on a scale from 0 for states as bad as being dead to 1 for full health. Some measures have negative values for states worse than dead. There are numerous instruments for deriving these HSUVs, including generic preference-based measures such as EQ-5D,3 SF-6D4 and HUI3,5 and condition-specific measures such as the Overactive Bladder Questionnaire6 and bespoke vignettes. HSUVs have also been obtained directly from patients by asking them to value their own health using one of the valuation techniques. These tools generate different HSUVs for the same patients and there has been considerable debate in the literature about the most appropriate one.7 Specific concerns in the literature include the use of one generic measure over another, generic versus condition-specific,8 time trade-off (TTO) versus other valuation techniques such as standard gamble9 and general population versus patient values.10 Differences in these features have been shown to be important in the way they influence HSUVs and hence the results of cost per QALY analyses. However, there has been far less space devoted in the literature to the use of HSUVs in populating decision analytic model to generate cost-effectiveness ratios. This problem raises additional technical problems that can have equally important consequences for the final incremental cost-effectiveness ratio as the more theoretical concerns.

Decision analytic models used to generate the cost-effectiveness ratios are mathematical models, which represent the health condition or system under appraisal. These models are typically structured around key health states or events, such as strokes or heart attacks. Mean HSUVs for these events are estimated from trials or other sources using one or other tools described above. However, due to aging of the population, these models are required to describe comorbid health conditions (CHCs), such as a stroke alongside arthritis.11 Although there are a number of catalogues providing HSUVs for cohorts with a single health condition, due to the enormous number of possible combinations of CHCs, the HSUVs for these are not readily available. As a consequence, analysts estimate HSUVs for CHCs using data from cohorts with single health conditions. For example, the HSUV for a cohort with both arthritis and stroke would be estimated using the mean HSUV from a cohort who have a history of arthritis (but not stroke) and the mean HSUV from a cohort who have a history of stroke (but not arthritis). HSUVs are estimated on a cohort level as opposed to an individual level as by definition individuals cannot have just a single health condition and a CHC. 

The three most common techniques used to estimate HSUVs for CHCs are the additive, multiplicative, and minimum methods. The additive and multiplicative methods assume constant absolute and proportional decrements, respectively, whereas the decrement associated with the minimum method can vary depending on the baseline used. The adjusted decrement estimator (ADE), a nonparametric estimator based on the minimum method has been proposed,12 and a hybrid model, which incorporates terms representing the three traditional methods has been explored using ordinary least square (OLS) regressions.13

The evidence base in this area is relatively small and there is currently no consensus on the most appropriate method. Comparison of findings reported in the literature is hindered because of differences in study designs such as the preference-based measure estimated, differences in datasets, methodologies compared, ranges of HSUVs estimated, and the statistics used to compare the estimated values.14–16 The methods can produce very different results and when applied in economic models could potentially influence a policy decision based on a cost per QALY threshold.17

The primary objective of the study is to add to the existing evidence base by comparing all five methods in a single dataset. We use EQ-5D data from the Health Survey for England (HSE) to examine the results generated using the different techniques. We recognize EQ-5D is one method for deriving HSUVs and consider the wider implications of this work in the discussion. The next section provides a description of the methods followed by the results of our analyses.


METHODS
Methods used to estimate HSUVS
Given two health conditions, condition A and condition B, there are four possible combinations: individuals having condition A but not condition B, individuals having condition B but not condition A, individuals having condition A and condition B, and individuals who do not have either condition A or condition B. The HSUVs associated with these alternatives are defined as UA, UB, UA,B, and UnA,nB.

The additive method assumes a constant absolute decrement relative to the baseline and the HSUV is estimated using: 
UaddA,B  = UnA,nB – [(UnA – UA) + (UnB – UB)]				(1)
If a baseline of perfect health is used, the additive method is estimated using:
UaddA,B  = UA + UB – 1						(2)

The multiplicative method assumes a constant proportional decrement relative to the baseline and the HSUV is estimated using: 
UMultA,B  = UnA,nB  x (UA/UnA) x (UB/UnB)				(3)
If a baseline of perfect health is used, the multiplicative method is estimated using:
UmultA,B = UA x UB							(4)

The minimum method assumes the HSUV for the CHC is equivalent to the minimum HSUV for the single health conditions within the CHC. The HSUV is estimated using:
UminA,B = min(UnA,nB, UA, UB)					(5)	
If a baseline of perfect health is used, the minimum method is estimated using:
UminA,B = min(UA, UB)						(6)

The ADE has recently been proposed as an alternative method.12 The ADE assumes the estimated HSUV for the CHC has an upper bound equal to the minimum of the HSUVs from the two single health conditions. Assuming a baseline of perfect health, the HSUV is estimated using:
UADEA,B = min(UA, UB) - min(UA, UB) x (1 - UA) x (1 – UB)		(7)
Using an adjusted baseline, Eqn 7 can be written as follows:
UADEA,B = min(UA, UB) - min(UA, UB) x (UnA - UA) x (UnB – UB)	(8)

A simple linear model, which incorporates terms representing the additive, multiplicative, and minimum methods has been proposed.13 Based on decision theory, multi-attribute utility functions, and a prospect theory,18–20 the model is defined by:
UcombA,B =  + 1 x min[(1 - UA),(1 – UB)] + 2 x max[(1 - UA),(1 – UB)] + 3 x (UA x UB) +    (9)
The -coefficients are obtained using OLS regressions and  represents the residual.
If an adjusted baseline is used, the model could be defined by:
UcombA,B =  + 1 x min[(UnA - UA),( UnB – UB)] + 2 x max[(UnA - UA),( UnB – UB)] 
+ 3 x (UnA,nB x UA/UnA x UB/UnB) +    (10)

There is currently no consistency in the baseline used when estimating HSUVs for CHCs and researchers have used a baseline of perfect health,12,16 “purified” data by dividing all HSUVs by the mean HSUV obtained from individuals with none of the conditions in a dataset,13,16 or condition-specific baselines.14 Using a baseline of perfect health overestimates the disutility associated with health conditions,21 and results generated from analyses using a baseline of perfect health are not comparable to those generated using an adjusted baseline.17 It has been suggested that alleviating a health condition would at best increase the average HSUV to that observed in cohorts without the condition.22

The ideal baseline would be the HSUV associated with not having a particular health condition. Thus the baselines for condition A, condition B, or both condition A and condition B, would be obtained from individuals who did not have the respective conditions. Although these data are available for more prevalent health conditions, due to the enormous number of possible health conditions, sourcing condition-specific baselines can be problematic.23 We used age-adjusted baseline HSUVs obtained from respondents who indicated they did not have any of the conditions identified in the dataset used. For comparison with the literature, we also generated results using a baseline of perfect health.

Data
The HSE is an annual survey conducted on randomly selected samples of the population living in private households in England.24–27 This study pools data from the 2003, 2004, 2005, and 2006 core HSE, using the weight variables for the individual level Self-Administered Questionnaire. We used the 39 individual chronic clinical conditions and the 15 grouped chronic clinical conditions.  

The EQ-5D is a widely used generic instrument that contains five attributes of health status including: mobility, selfcare, usual activities, pain/discomfort, and anxiety/depression. Each attribute is measured by a question with three possible responses: no problem, some problem, and severe problem. The combinations of possible responses lead to a total of 243 (3^5) possible health states. A sample of these health states was valued by the United Kingdom general public using time trade-off techniques and the resulting algorithm is used to calculate the preference-based HSUVs in this study.3 The preference-based index has a range of -0.59 to 1, whereby 1 represents perfect health, 0 represents death, and negative values represent health states considered worse than death.

Statistical Analyses
The HSE data were subgrouped (n ≥ 100) by health conditions using (a) groups with comorbid pairs of health conditions (condition A and condition B) regardless of other health conditions; and (b) groups with just one of the individual health conditions within each comorbid pair (i.e., condition A but not condition B, condition B but not condition A). The mean EQ-5D scores (referred to as “actual” EQ-5D scores from here on) and the mean age for each subgroup were calculated.  The mean EQ-5D scores from the subgroups with the single health conditions were then used to estimate mean EQ-5D scores (referred to as “estimated” EQ-5D scores from here on) for the corresponding CHC using the methods described previously.

Performance of Methods
As we are interested in how well the methods estimate the actual EQ-5D scores, we assess the results in terms of the errors in the estimated HSUVs. In addition to using the mean absolute errors (MAE) and root mean squared errors (RMSE), we examine the proportion of estimated values within the minimum important difference (MID) for the EQ-5D (MID = 0.074)28 and the magnitude and direction of errors across the EQ-5D range.


RESULTS
The pooled data included 41,174 cases with EQ-5D scores. The individual data covered the full index range (-0.594 to 1) and the mean HSUV for the cohort was 0.8679 [standard error (SE) 0.0014]. The mean HSUV for the subgroup (n = 18,725/41,174) who reported at least one chronic condition was 0.7565 (SE 0.0026) compared with 0.9493 (SE 0.0009) for those who reported no chronic condition. The mean HSUVs for the 97 subgroups (n ≥ 100) with two conditions ranged from 0.3596 (SE 0.0296) for respondents (n = 171) who reported having both mental illness/anxiety/depression and arthritis/ rheumatism/fibrositis, to 0.9165 (SE 0.0140) for respondents (n = 112) who reported having both asthma and hay fever. Sixty-nine percent (67/97) of subgroups had a mean EQ-5D score < 0.6 and none had a negative mean score (Fig. 1). As these are mean scores as opposed to individuals’ HSUVs, the distribution is relatively normal.

FIGURE 1. Distribution of mean EQ-5D scores for subgroups with two comorbid health conditions

Table 1 provides the results for the linear models obtained using OLS regressions. Although the coefficients for the independent variables are all positive, which is as expected given the negative constant terms, none of the coefficients are significant (P > 0.05). In both models, the weights attributed to the maximum disutility are greater than the weights attributed to the minimum disutility and the interaction term has the largest coefficient.

TABLE 1. Results from the OLS combination models

Comparing the methods in terms of accuracy (Table 2), the mean EQ-5D scores predicted using the OLS combination models are closest to the actual value (mean = 0.5682) when using a baseline of perfect health (mean = 0.5669) and when using an age-adjusted baseline (mean = 0.5671). However, the ranges in predicted values are smaller than the actual range (actual range = 0.5570). The minimum (ADE) methods produce the smallest range in estimated values at 0.2047 (0.2759) when using a baseline of perfect health, and 0.2715 (0.2415) when using an age-adjusted baseline, respectively. Although the additive method produces the widest range in estimated values (0.4797 when using a baseline of perfect health and 0.4614 when using an age-adjusted baseline), the increased range in estimated values is associated with the largest errors in the individual estimations (0.3320 when using a baseline of perfect health and 0.2792 when using an age-adjusted baseline).

TABLE 2. Comparing the accuracy of HSUVs generated using the five methods

The OLS models produce the smallest MAEs and RMSEs in the predicted values when using either a baseline of perfect health or when using an age-adjusted baseline (MAE: 0.047, RMSE: 0.060 for both analyses). Conversely, the additive method produces the largest MAE and RMSE when using a baseline of perfect health (MAE: 0.1411, RMSE: 0.1529). The errors for the additive method are reduced somewhat when using an age-adjusted baseline (MAE: 0.0872; RMSE: 0.1012).  Although the mean errors give an indication of average accuracy across the full range of estimated values, these statistics do not reveal accuracy in individual estimated or predicted values and there are some substantial errors in these. The additive method produces the largest individual error for both sets of analyses and the OLS model produces the smallest individual error for both sets.

Of the nonparametric methods, the additive and the minimum methods are the least accurate in terms of the proportion of individual values estimated to within a given magnitude of error irrespective of the baseline used. Comparing the multiplicative and the ADE results, the baseline influences accuracy and when using an age-adjusted baseline, the multiplicative method produces the largest proportion (72% vs. 52%) of individual values within the MID for the EQ-5D (|0.074|) and the largest proportion (56% vs. 35%) accurate to within |0.05| of the actual HSUVs. Conversely, when using a baseline of perfect health, the ADE method produces the largest proportion of values within these measures.

When plotting the actual and estimated/predicted HSUVs (Fig. 2), it can be seen that the values estimated using an age-adjusted baseline are more accurate than those estimated using a baseline of perfect health when using the additive and multiplicative methods. However, the baseline is not as important for the other three methods. For the additive method, almost all values are underestimated across the full range of actual values. For the multiplicative method there is a tendency for the errors in the estimated values to decrease for lower HSUVs with the largest errors in values > 0.6.  Conversely, the errors in the minimum and ADE methods increase as the actual HSUV decrease with larger errors observed in estimates for lower HSUVs. Although the errors in the HSUVs predicted using the OLS models are smaller than those in the other methods, there is a tendency to underpredict higher HSUVs and overpredict lower HSUVs.

FIGURE 2. Plot of actual and estimated EQ-5D scores

The data were subgrouped into sets of equal numbers (Table 3) based on actual EQ-5D scores and the mean errors in each of the four groups were examined. Presenting the data in this way reveals additional information relating to the accuracy of the methods. Using a baseline of perfect health, the additive and multiplicative methods produce smaller errors in HSUVs < 0.56 compared with errors in HSUVs above this. Conversely, the minimum and ADE methods produce smaller errors in HSUVs > 0.56 compared with errors in HSUVs below this. This trend holds regardless of the baseline used. With the exception of the values predicted for the subgroup at the top of the range (EQ-5D > 0.624), the OLS model tends to be more accurate than all the nonparametric methods although the multiplicative method is the most accurate for the subgroup at the lower end of the range (EQ-5D < 0.514).

TABLE 3. Errors in estimated HSUVs subgrouped by actual EQ-5D score


DISCUSSION
The purpose of this study was to assess the performance of the five methods to estimate mean HSUVs for comorbid conditions. We found the additive and multiplicative methods underestimated the majority of HSUVs irrespective of the baseline used and the magnitude of the errors increased as the actual HSUV increased. Conversely, the minimum and ADE methods overestimated the majority of HSUVs and the magnitude of errors increased as the actual HSUV decreased. Many of the individual errors were substantially larger than the recently published MID (0.082) obtained when using health state transitions defined by the EQ-5D multi-attribute health classification system.29 Although the simple linear model produced more accurate results than the nonparametric estimators, there was a tendency to underpredict higher HSUVs and overpredict lower HSUVs.

A methodological strength of this study is the relatively large range (0.360 to 0.917, with 66% < 0.60) in observed mean HSUVs for the combined health conditions. Flanagan et al15 assessed the multiplicative method using data from the Canadian Community Health Survey and reported 66% (185/278) of the mean HUI3 scores for cohorts with two health conditions that were mild (> 0.80). Similarly, when comparing the multiplicative and additive methods using data from the Medical Expenditure Panel Survey (MEPS), the mean EQ-5D scores for cohorts with two CHCs were also reported to be relatively mild (mean EQ-5D range 0.68 to 0.86).14 The larger range in HSUVs enabled us to assess performance of the methods across subgroups defined by the EQ-5D index and we found the magnitude and direction of errors in the estimated scores varied by the subgroup in addition to the technique used. This suggests that conclusions based on average errors from truncated ranges could be misleading.

Comparing the three conventional methods (additive, multiplicative, and minimum) in terms of average errors and proportions of estimated HSUVs accurate to within a given magnitude, when using a baseline of perfect health, the additive method was the least accurate and the multiplicative method was the most accurate. When using an age-adjusted baseline, the accuracy for both the additive and multiplicative methods increased, leaving the minimum method the least accurate and the multiplicative method remaining the most accurate. These results do not support those reported by other researchers who found the minimum method gave the most accurate results when comparing the three methods in EQ-5D data obtained from the MEPS.16 The difference in results is easily explained by comparing the ranges of actual HSUVs estimated described above. If we examine the average errors in a similar range (0.624 to 1) to the values estimated in Hu’s,12 the minimum method is also found to be more accurate than the additive and multiplicative methods in our dataset.

Hu and Fu12 recently proposed the ADE method based on analyses of the MEPS data used in the previous study. Using a baseline of perfect health they found the ADE was more accurate than the three conventional methods. We also found the ADE method outperformed these methods in our data when using a baseline of perfect health, but when using an age-adjusted baseline, the multiplicative method outperformed the ADE method. Again, when examining the errors for the data subgrouped by actual EQ-5D score, the ADE method performed less favorably for lower HSUVs.

One would intuitively expect that an additional health condition would have a negative effect on HRQoL and consequently mean HSUVs for cohorts with CHCs would be lower than mean HSUV for cohorts with the single health conditions within the CHC. However, some inconsistencies in HRQoL measurements are to be expected and in our dataset a small proportion (6/97) of the mean HSUVs for cohorts with a CHC were greater than one of the mean HSUVs for the corresponding single health conditions. It is clear from charts presented in Hu and Fu’s12 article that this anomaly is observed in a substantial proportion of their data as approximately 25% of HSUVs estimated using the minimum method are smaller than the actual HSUV. This is possibly because the health conditions in their data have a relatively small effect on HRQoL data which may contribute to the difference in their findings.

Although the simple linear model produced the most accurate results in our data, none of the coefficients in the model were significant and the model requires validating in external data. The trend to underestimate higher HSUVs and overestimate lower HSUVs suggests that a different model specification may be warranted and additional research exploring alternatives would be beneficial.

Because of the relatively small number of subgroups in our data, we were unable to explore potential differences in effects when combining utilities for health conditions which effect either different or similar health dimensions. These differences could produce either a synergistic or antagonistic effect on utility and additional research in this area would be extremely informative.

Finally this study has used UK EQ-5D data that has been criticized in terms of its descriptive system, due to its insensitivity,7 and methods for deriving the UK value set used to derive the index. Although these are important methodological arguments in the literature, there is emerging evidence that EQ-5D does provide a valid descriptive system across many medical conditions and compares well with the other generic preference-based measures.7 The TTO valuation method was selected after a favorable comparison of its psychometric properties with standard gamble.3  There, however, remain concerns about the TTO task used to value states (e.g., the use of a 10-y time horizon for the task) and general population values. Although this study does not address these concerns, the results may not generalize to other HSUV tools that are different in terms of descriptive system and valuation methods because these have been shown to generate different values. Further research is needed on datasets using different HSUV measures.

This study makes an important contribution to research in this area by comparing the five different techniques within the same study. Our comparison of mean errors across the range of EQ-5D scores highlights the need to present additional data on subgroups categorized by EQ-5D score when reporting results of analyses in this area. The additive and minimum methods performed very poorly and whereas the simple linear model gave the most accurate results in our data, this requires validating in external data. As the values estimated using the different methods are not comparable, and may have errors greater than the MID reported in a recent article,29 this has implications for policy decisions informed by cost per QALY thresholds. Literature describing research in this area is evolving and based on the current evidence, we would recommend that analysts use the multiplicative method to combine mean HSUVs when using EQ-5D data. Because of the substantial errors that can potentially occur, analysts should perform a range of univariate sensitivity analyses to test the sensitivity of the model to changes in the HSUVs used.
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TABLE 1. Results from the OLS combination models.
	Baseline
	Perfect Health
	
	None of Health Conditions

	
	Coefficient
	RSE
	P
	Coefficient
	RSE 
	P

	Minimum decrement
	0.5136428
	1.1300
	0.651
	0.0439155
	0.4978
	0.930

	Maximum decrement
	0.5284501
	1.3815
	0.703
	0.1545328
	0.7076
	0.828

	Cross product
	1.789911
	1.7784
	0.317
	1.1435140
	0.8307
	0.172

	Constant
	-0.6427511
	1.6315
	0.695
	-0.1007821
	0.7165
	0.888

	R2
	0.57
	
	
	0.58
	
	

	Minimum decrement: min(UnA – UA, UnB – UB)
	
	

	Maximum decrement: max(UnA – UA, UnB – UB))
	
	

	Cross product: min(UnA, UnB))*(UA/UnA)*(UB/UnB)
	


RSE, robust standard error.


TABLE 2. Comparing the accuracy of HSUVs generated using the five methods.
	
	Actual
	Additive
	Multiplicative
	Minimum
	ADE
	OLS 

	Using a baseline of perfect health

	Mean EQ-5D score
	0.5682
	0.4288
	0.5092
	0.6667
	0.6142
	0.5669

	Min EQ-5D score
	0.3596
	0.2321
	0.3795
	0.5860
	0.5018
	0.4367

	Max EQ-5D
	0.9165
	0.7119
	0.7284
	0.7907
	0.7777
	0.8121

	Range
	0.5570
	0.4797
	0.3489
	0.2047
	0.2759
	0.3754

	Mean error
	0.1384
	0.0580
	-0.0995
	-0.0470
	0.0003

	Maximum error
	0.3320
	0.2129
	0.2715
	0.2206
	0.1720

	MAE
	0.1411
	0.0707
	0.1037
	0.0620
	0.0471

	RMSE
	0.1529
	0.0839
	0.1214
	0.0799
	0.0603

	Proportion within |0.01|
	0%
	7%
	4%
	15%
	11%

	Proportion within |0.05|
	7%
	39%
	20%
	46%
	64%

	Proportion within MID |0.074|
	15%
	58%
	33%
	72%
	81%

	Using age-adjusted baseline from individuals with none of health conditions

	Mean EQ-5D score
	0.5682
	0.4890
	0.5418
	0.6667
	0.6367
	0.5671

	Min EQ-5D score
	0.3596
	0.2918
	0.4040
	0.5860
	0.5266
	0.4266

	Max EQ-5D
	0.9165
	0.7532
	0.7598
	0.7907
	0.7860
	0.7955

	Range
	0.5570
	0.4614
	0.3558
	0.2047
	0.2595
	0.3689

	Mean error
	0.0781
	0.0254
	-0.0995
	-0.0695
	0.0001

	Maximum error
	0.2792
	0.1800
	0.2715
	0.2415
	0.1732

	MAE
	0.0872
	0.0516
	0.1037
	0.0781
	0.0466

	RMSE
	0.1012
	0.0651
	0.1214
	0.0950
	0.0598

	Proportion within |0.01|
	7%
	12%
	4%
	5%
	13%

	Proportion within |0.05|
	26%
	56%
	20%
	35%
	63%

	Proportion within MID |0.074|
	40%
	72%
	33%
	52%
	80%

	ADE indicates adjusted decrement estimator; HSUVs, health state utility values; MAE, mean absolute error; MID, minimum important difference; OLS, ordinary least square; RMSE, root mean squared error.





TABLE 3. Errors in estimated HSUVs subgrouped by actual EQ-5D score.
	EQ-5D subgroup
	Additive
	Multiplicative
	Minimum
	ADE
	OLS

	ME: Using a baseline of perfect health

	Full set (n = 97)
	0.1384
	0.0580
	-0.0995
	-0.0470
	0.0003

	1 to < 0.624 (n = 23)
	0.1730
	0.1153
	-0.0411
	0.0007
	0.0515

	0.624 to < 0.562 (n = 24)
	0.1481
	0.0739
	-0.0723
	-0.0236
	0.0176

	0.562 to < 0.514 (n = 24)
	0.1213
	0.0403
	-0.1069
	-0.0550
	-0.0151

	0.514 to < 0.35 (n = 26)
	0.1145
	0.0090
	-0.1694
	-0.1035
	-0.0469

	ME: Using age-adjusted baseline from individuals with none of health conditions

	Full set (n = 97)
	0.0781
	0.0254
	-0.0995
	-0.0695
	0.0001

	1 to < 0.624 (n = 23)
	0.1119
	0.0779
	-0.0411
	-0.0201
	0.0530

	0.624 to < 0.562 (n = 24)
	0.0871
	0.0403
	-0.0723
	-0.0459
	0.0141

	0.562 to < 0.514 (n = 24)
	0.0609
	0.0082
	-0.1069
	-0.0776
	-0.0174

	0.514 to < 0.35 (n = 26)
	0.0559
	-0.0191
	-0.1694
	-0.1275
	-0.0436

	MAE: Using a baseline of perfect health

	Full set (n = 97)
	0.1411
	0.0707
	0.1037
	0.0620
	0.0471

	1 to < 0.624 (n = 23)
	0.1730
	0.1153
	0.0579
	0.0398
	0.0596

	0.624 to < 0.562 (n = 24)
	0.1481
	0.0739
	0.0730
	0.0454
	0.0341

	0.562 to < 0.514 (n = 24)
	0.1234
	0.0490
	0.1069
	0.0550
	0.0375

	0.514 to < 0.35 (n = 26)
	0.1226
	0.0482
	0.1694
	0.1035
	0.0570

	MAE: Using age-adjusted baseline from individuals with none of health conditions

	Full set (n = 97)
	0.0872
	0.0516
	0.1037
	0.0781
	0.0466

	1 to < 0.624 (n = 23)
	0.1123
	0.0803
	0.0579
	0.0472
	0.0604

	0.624 to < 0.562 (n = 24)
	0.0871
	0.0423
	0.0730
	0.0545
	0.0320

	0.562 to < 0.514 (n = 24)
	0.0739
	0.0397
	0.1069
	0.0776
	0.0392

	0.514 to < 0.35 (n = 26)
	0.0775
	0.0457
	0.1694
	0.1275
	0.0548

	ADE, adjusted decrement estimator; HSUVs, health state utility values; MAE, mean absolute error; OLS, ordinary least square.





FIGURE 1. Distribution of mean EQ-5D scores for subgroups (n = 97) with two comorbid health conditions
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FIGURE 2. Plot of actual and estimated EQ-5D scores.
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ABSTRACT

Background: To improve comparability of economic data used in decision-making, some agencies recommend a particular instrument should be used to measure health state utility values (HSUV) used in decision-analytic models. The methods used to incorporate HSUVs in models, however, are often methodologically poor and lack consistency. Inconsistencies in the methodologies used will produce discrepancies in results undermining policy decisions informed by cost per quality adjusted life-years.

Objective: To provide an overview of the current evidence base relating to populating decision-analytic models with HSUVs.

Findings: Research exploring suitable methods to accurately reflect the baseline or counterfactual HSUVs in decision-analytic models is limited, and while one study suggested general population data may be appropriate, guidance in this area is poor. Literature describing the appropriateness of different methods used to estimate HSUVs for combined conditions is growing but there is currently no consensus on the most appropriate methodology. While exploratory analyses suggest a statistical regression model might improve accuracy in predicted values, the models require validation and testing in external datasets. Until additional research has been conducted in this area, the current evidence suggests the multiplicative method is the most appropriate technique. Uncertainty in the HSUVs used in decision-analytic models is rarely fully characterised in decision-analytic models and is generally poorly reported. 

Conclusions: A substantial volume of research is required before definitive detailed evidence based practical advice can be provided.  As the methodologies used can make a substantial difference to the results generated from decision-analytic models, the differences and lack of clarity and guidance will continue to lead to inconsistencies in policy decision-making. 


Keywords: EQ-5D, utility, quality of life, SF-36 

Running title: Using utility values in models

BACKGROUND	
[bookmark: _Toc99439511]To facilitate comparison of results from decision-analytic models, there has been a move towards policy decision-making bodies proposing a specific preference-based measure such as the EQ-5D [1,2].  Inconsistencies in the way the health state utility values (HSUV) are used will produce discrepancies in the results generated, which will undermine policy decisions informed by cost per quality adjusted life-years (QALY). While literature describing best practice in decision-analytic modelling is available [2-4], research exploring the practical issues arising when applying preference-based HSUVs in these models is scarce.

This article provides an overview of the current evidence base relating to issues involved in populating decision-analytic models [5].  Specifically, we look at 1) suitable HSUVs for the baseline/counterfactual health states (see definition below) 2) appropriate methods when combining or adjusting HSUVs for multiple health conditions/comorbidities (where an additional condition coexists alongside the primary condition) and 3) issues when characterising uncertainty in HSUVs. We provide practical advice where possible and highlight where additional research is warranted. While the issues covered in this article are particularly relevant to analysts populating decision-analytic models using summary statistics reported in the literature, many are also relevant to analysts who have access to patient level data.

[bookmark: _Toc296523954]BASELINE / COUNTERFACTUAL HSUVs	
Decision analytic models submitted to reimbursement authorities generally assess the benefits of interventions in terms of their potential to avoid or alleviate a clinical event or condition. As a consequence, in addition to the HSUVs associated with the event or condition, analysts need to know the HSUVs associated with not experiencing the event or the health condition, that is, the baseline or counterfactual values. For example, in patients with a history of cardiovascular disease (CVD), to assess the benefits of avoiding a stroke, analysts need the average HSUV for a cohort who have experienced a stroke and the average HSUV for a cohort who have not experienced a stroke but have a history of CVD (i.e., the baseline). Similarly, when assessing the potential benefits of a screening programme for colorectal cancer, analysts need the average HSUV from a cohort who have colorectal cancer, and the average HSUV from a cohort who do not have colorectal cancer (i.e., the baseline).

Evidence that can be used to represent the condition-specific baseline is often limited, and while some analysts have assumed that the alleviation of a health condition will return health-related quality of life (HRQoL) to full health (i.e., a health utility value of  1) [6], this approach is flawed. Using the previous examples, if a stroke is avoided, there will still be a detrimental effect on HRQoL due to CVD. Similarly, if bowel cancer is prevented, the average patient could still have at least one prevalent health condition which has a detrimental effect on HRQoL. It has been shown that the cost per QALY results generated when using different baseline HSUVs in the same model differ to such an extent that they could influence a policy decision based on a cost per QALY threshold [7].

Many decision models use lifetime horizons to accrue QALY gains, and the average baseline will not be constant across the full horizon modelled due to the increasing prevalence of comorbidities in older-aged cohorts and the detrimental effect on HRQoL associated with age [8].  It has been suggested that average HSUVs from the general population could be used as the baseline when condition-specific data are not available [9].  Because HSUVs obtained from the general population are informed by subgroups with many different conditions, intuitively this makes sense for less prevalent health conditions, or conditions that do not have a substantial effect on HRQoL, as removing a particular subgroup of people who have one of the conditions will not have a substantial effect on the average HSUVs.

Authors of a recent study examined the mean EQ-5D scores for subgroups of respondents (n = 41,174) classified by self-reported health condition in the Health Survey for England [8].  The objective was to determine if data from the general population could be used as proxy scores for the baseline (i.e., the HRQoL associated with not having the particular condition) in models. The appropriateness of the general population data was assessed by comparing the age-stratified mean EQ-5D scores from respondents without a specific condition with matched subgroups from the general population. The study presents a number of age-stratified EQ-5D scores categorised by broadly defined health conditions such as cardiovascular conditions, or arthritis/rheumatism or fibromyalgia. The authors reported that while data from the general population could potentially be used as proxy scores for some conditions, they may not be appropriate for all and for some conditions, it may be more appropriate to use data from respondents who have none of the prevalent health conditions. If condition-specific data are not available, they suggest that a range of sensitivity analyses should be generated with data from the general population used as one end of a range of plausible values.
[bookmark: _Toc296523957]


COMBINING/ADJUSTING HSUVs	
Health care decision-analytic models describe the clinical pathway followed by typical patients and can involve multiple health states representing the primary health condition, with additional health states representing comorbidities (where an additional condition coexists alongside the primary condition). An example might be when assessing the cost-effectiveness of statin treatment (which has the potential to reduce the risk of cardiovascular conditions) in patients with rheumatoid arthritis (RA) [10].  This cost-effectiveness model includes health states defined as RA but no history of CVD, RA and heart attack, or RA and stroke. Each of the individual health states in a decision-analytic model require HSUVs derived from patients whose health condition(s) mirror the health state definitions in the model. Ideally these would be obtained from cohorts with the conditions modelled and it is often possible to derive the required utilities from existing catalogues informed by a comprehensive dataset and appropriately classified conditions [11].  These utility values would be preferable to estimating values using data collected from cohorts in disparate studies or subgroups with single conditions. However, due to the volume of different combinations of health states and conditions, the exact data required are not always available, and in these instances the mean HSUVs for the combined health states are frequently estimated by using the mean HSUVs obtained from patients with the single conditions [12].  There is currently no consensus on which particular method is preferred to estimate these HSUVs, and the approaches used can produce very different estimates [13,14].

The three methods typically used to estimate a mean HSUV for a combined condition when data are only available for relevant single conditions are the additive, multiplicative or minimum methods. These assign a constant absolute decrement, a constant relative decrement, and no additional decrement over that observed for the condition with the lowest HSUV, respectively. A variation of the minimum method (the adjusted decrement estimator) has been suggested, and linear models incorporating terms to represent the three traditional methods (additive, multiplicative and minimum) and obtained using ordinary least square regressions have been presented [12,15-17].  Specific details of the five methods are provided online.

A review of the literature in this area was conducted with articles identified by a systematic search of CINAHL, the Cochrane library, EMBASE, MEDLINE, PsycInfo and Web of Science (1950 - February 2012). The search combined terms for HRQoL (health state utility, quality of life, Euroqol, EQ5D, health utilities mark, HUI, short form six D, SF-6D, SF6D), methodologies (standard gamble, SG, time trade-off, TTO, additive, multiplicative, minimum, regression, model), and terms for joint health states (joint health state, comorbid, combined health states, concurrent, multiple). This was supplemented by a forwards and backwards citations search in the Web of Knowledge and Google Scholar databases. The objective was to conduct a detailed critical review of existing empirical literature to gain an understanding of the reasons for differences in results and conclusions. Studies were included in the review if they estimated HSUVs for joint health conditions using HSUVs from single conditions. Eleven studies that reported results of analyses exploring the accuracy of and/or comparing the performance of the methods used to estimate mean HSUVs were identified [13].  One article was excluded as it was an editorial informed by the results of one of the articles included in the review [18].  A second study was used to inform the discussion, but was excluded as it reviewed the results of the early publications identified in the search but had not had access to the later publications [14].

Three of the 11 studies included used individual level patient data (n = 50 to 207) directly elicited using either standard gamble or time trade-off [16,19,20].  The remaining eight used HSUVs obtained using generic questionnaires (EQ-5D = 4 [15,17,21,22], SF-6D = 3 [12,23,24], HUI3 = 1 [25]) collected during surveys (range 5,224 - 131,535 respondents). Two of the studies evaluated just one method, and the others compared results generated using two, three, or more methods. The authors of the review reported that the range of actual utilities estimated influenced the accuracy of the methods and thus analysts’ conclusions. For example, although the minimum outperformed the additive and multiplicative methods in one study [22], the data estimated covered a very narrow range (0.611 - 0.742), and two of the other studies demonstrated the magnitude of the errors for the minimum method increased substantially when estimating lower utility values [12,17].  Consequently, the findings of the first study cannot be generalised beyond their dataset without additional research. On a similar theme, the authors noted that the use of mean errors when comparing methods was insufficient as these masked bias in the errors [12,17].  Finally, the accuracy of the method used was influenced by the value assigned to normal health, and the errors in estimated values increased when full health (EQ-5D = 1) was used to determine the decrement associated with the single health conditions. The uncertainty in the estimated HSUVs has not been studied, and there is very little evidence describing results when estimating HSUVs for more than two simultaneous conditions. The authors of the review concluded that while there is currently no unequivocal evidence, the linear models obtained using ordinary least square regressions outperformed the other methods. Because these models require validation in external data, and each quality of life instrument and set of preference weights would require a unique statistical model, based on current evidence, however, the authors recommend the multiplicative method. We concur with this recommendation at this time but appreciate that the use of statistical models could be more appropriate once this research has been developed and validated. 

[bookmark: _Toc296523961]Adverse events	
When considering the inclusion of adverse events associated with a treatment or intervention (e.g., nausea is a side effect of treatment given for influenza) in decision-analytic models, it is essential to differentiate between acute events and chronic sequelae, and the inclusion of decrements on HRQoL associated with grade 3 to 4 (severe with marked limitation in activity - life threatening/disabling, requiring medical intervention) adverse events is particularly relevant [26].  Conversely, applying decrements for grade 1 to 2 (mild or transient discomfort - moderate limitation in activity, requiring no or minimal medical intervention) adverse events can introduce an element of double counting because the average HSUV obtained from the main cohort are likely to include the disutility associated with these events.

A review commissioned by the National Institute for Health Research Health Technology Assessment (HTA) programme examined current practice when incorporating adverse events in economic models described in HTA reports published between 2004 and 2007 [27].  Forty-seven of the 80 studies reviewed were assessments conducted to inform National Institute for Health and Clinical Excellence (NICE) appraisals. The authors recommended a clear justification should be provided for the non-inclusion of adverse effects together with an explicit report of how adverse effects are considered in the decision-analytic model. They suggested that systematic searches are required to identify the HSUVs required for adverse events and recommended research exploring the best approach to ensure that any adverse effects of interventions are captured.

Authors of a recent cross-sectional review of HRQoL data used in Health Technology Appraisals (n = 46) submitted to NICE during the period 2004-2008 reported a wide range of methodological variation in the use of utility values and a lack of clarity in the reporting of detailed methods used in the submissions [28].  They found adjustments for adverse events were made by either adding or subtracting a value (72%) from the original HSUVs, multiplying by a weight (18%), or incorporating a multivariate analysis (10%). Again they concluded further guidance is required to clarify the appropriateness of adjusting values and the preferred methods for undertaking these adjustments.

[bookmark: _Toc296523962]

CAPTURING UNCERTAINTY IN HEALTH STATE UTILITY VALUES	
Decision-analytic models in health care combine evidence from a range of sources and frequently extrapolate both costs and effects over time and between patient groups and settings. It is now standard practice to perform full probabilistic sensitivity analyses using Monte-Carlo simulations to explore the uncertainty of input parameters [29].  The parameter uncertainty indicates the imprecision in the cost-effectiveness results and are used to inform the decision uncertainty through cost-effectiveness acceptability curves [30,31].  Ideally, each point estimate included within the model is described by a full probability distribution which reflects the uncertainty surrounding the value accurately [32,33].  The distributions used to describe the uncertainty are not selected arbitrarily but are informed by the data, the type of parameter and the estimation process. While there is a wealth of literature describing appropriate methods for handling skewed cost data [34], little attention has been paid to the methods used to capture the uncertainty in HSUVs.

It has been reported that uncertainty around HSUVs is usually under-reported and that frequently only mean values are used in decision-analytic models [35].  HRQoL data, and in particular the EQ-5D, are not normally distributed. They are bounded by the limits of the index, often involve negative values and are typically skewed, bimodal or trimodal [36].  Nevertheless, the uncertainty in the mean can be adequately described by sampling from a normal distribution in the majority of cases. Exceptions include when sampling for a patient level simulation model using data that has a relatively low or high mean score and a wide distribution. In these cases, an alternative approach would be to describe the utility values as decrements [37], characterised using a log normal or gamma distribution which would give a sampled utility decrement on the interval (0, positive infinity). If a lower constraint is required (e.g., -0.594 for the UK EQ-5D index), the standard beta distribution could be scaled upwards using a height parameter (λ) producing a distribution on a (0, λ) scale.

An additional source of uncertainty, which is typically ignored, relates to the preference-based weights. Instruments such as the SF-6D, Health Utilities Index 3 and EQ-5D, include a number of questions relating to the respondent’s health. The EQ-5D, for example, has five questions with three possible responses to each. This gives a total of 243 (35) distinct health states. As it is not practical to value all possible health states, a selection are typically valued. The statistical regression models fitted to the health states valued will consist of one or more parameter estimates (the preference weights) that are estimated with uncertainty. Although there is no reason, this source of uncertainty is typically ignored in decision-analytic models. When using patient level data or when performing “mapping” exercises, it is simple to reflect this uncertainty by propagating the uncertainty and associated correlations in the covariance matrix in the probabilistic sensitivity analysis (see Appendix in Supplementary Materials at: www.nicedsu.org.uk for link to EQ-5D matrix). In addition, when the required preference-based data are not available, these data can be estimated using mapping functions generated from HRQoL or clinical variables [1,38].  While there is a growing evidence base providing statistical regression models that can be used to estimate the required preference-based data [39], very few authors provide the statistics required to incorporate uncertainty in probabilistic analyses. These are both sources of uncertainty that are relevant to decision-makers and ought to be reflected in the analysis of uncertainty in the same way as other sources of parameter uncertainty.

Decision-analytic models generally incorporate multiple health states describing changes in the health condition (e.g., disease progression, adverse events, distinct events such as heart attacks and strokes) which may require unique HSUVs. Correlations between these HSUVs should be characterised in the probabilistic sensitivity analyses using multivariate distributions. Alternative approaches are currently being explored and the resulting recommendations will be a useful reference for analysts. In addition, a recent publication suggests the standard error of measurement for a number of leading health utilities varies depending where along the health continuum the measurement is made [40].  These last two are examples of the growing volume of work in this area and the literature should be continually reviewed to take account of emerging evidence.
  
[bookmark: _Toc296523980]DISCUSSION	
Robust research in this area is scarce but it is clear that the methodologies employed when using HSUVs in decision-analytic models can make a substantial difference to the results generated and the differences in the methodologies will lead to inconsistent policy-decision-making [7].  One theme that was apparent throughout the evidence reviewed to inform this article was a lack of clarity and transparency in reports describing the methodologies used when applying HSUVs in decision-analytic models. 

A substantial volume of research is required before definitive detailed evidence-based practical advice can be provided in this area including longitudinal data describing potential changes in HSUVs for subgroups of patients with specific health conditions, analyses exploring appropriate baseline data for the counterfactual health states in decision-analytic models to enable more precise calculations of the incremental health benefits of treatment, empirical research on the most appropriate method for adjusting data to reflect comorbidities and/or adverse events, primary studies collecting data for acute events, and research to determine the class/type and duration of adverse event that should be incorporated in economic models.
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USING HEALTH STATE UTILITY VALUES IN MODELS EXPLORING THE COST-EFFECTIVENESS OF HEALTH TECHNOLOGIES

[bookmark: _Toc99439512]ONLINE APPENDIX 
Methods Used To Estimate HSUVs For Comorbid Health Conditions
The techniques described below use mean HSUVs from cohorts with single health conditions to estimate mean HSUVs for cohorts with comorbid health conditions (CHC).  There are three main methods used to estimate the utility value for a combined health state when data only exist for relevant single health states.  These can be termed the “additive”, “multiplicative” and “minimum” approaches.  Alternatives recently proposed include: the adjusted decrement estimator (ADE) which is a variation of the minimum method, and a simple linear model, based on multi-attribute utility theory and prospect theory, which incorporates terms representing the additive, multiplicative and minimum methods [1,2].

Given two health conditions, condition A and condition B, there are four possible combinations of these conditions: individuals have condition A but not condition B, individuals have condition B but not condition A, individuals have both condition A and condition B; individuals do not have either condition A or condition B.  The HSUVs associated with these four alternatives are defined as: UA, UB, UA,B, and UnA,nB.  In addition to these, the following terminology is used: UnA and UnB represent the HSUVs associated with not having the condition A (but could have condition B) or not having condition B (but could have condition A), respectively.

Additive method.  The additive method assumes a constant absolute decrement relative to the baseline and the estimated HSUV for the additive CHC is calculated using:

				(1)
where the superscript “add” denotes the additive method.
If a baseline of perfect health is used, the additive method can be calculated using:

							(2)

Multiplicative method.  The multiplicative method assumes a constant proportional decrement relative to the baseline and the estimated HSUV is calculated using:

						(3)
where the superscript “Mult” denotes the multiplicative method.
If a baseline of perfect health is used, the multiplicative method can be calculated using:

								(4)

Minimum method.  The minimum method assumes the decrement on HRQoL associated with a comorbidity is equal to the maximum decrement attributable to the individual single health conditions, and the estimated HSUV is calculated using:

						(5)
where the superscript “min” denotes the minimum method.
If a baseline of perfect health is used, the minimum method can be calculated using:

								(6)

Adjusted decrement estimator. The adjusted decrement estimator (ADE) has recently been proposed as an alternative method to estimate HSUVs for CHCs [1].  This estimator is a variation of the minimum method and assumes the estimated HSUV for the CHC has an upper bound equal to the minimum of the HSUVs from the two single health conditions.  The proposed method is described by: 

			(7)
where the superscript “ADE” denotes the adjusted decrement estimator.

Combination model.  Basu et al. recently proposed a simple linear model which incorporates terms representing the additive, multiplicative and minimum methods [2].  The model is formulated from a) an adaptation of work originally presented by Keeny and Raiffa which was based on decision theory and multi-attribute utility functions [3,4], and b) a prospect theory that proposes the value function is convex for losses with a marginal rate of decrement in value with increasing losses, as presented by Tversky and Kahneman (1992) [5].  The model is defined by:

	(8)

where the superscript “comb” denotes the combination model,  the residual and the beta coefficients are obtained using ordinary least square regressions.  Equation 8 uses a baseline of perfect health.  Using an adjusted baseline, the combination model can be defined by:

		(9)

The combination model reduces to the three traditional methods under the following conditions:
When 0 = 0, 1 = 1, 2 = 1 and 3 = 0, then Eq. 8 collapses to Eq. 2 (additive method)
When 0 = 0, 1 = 1, 2 = 1 and 3 = -1, then Eq. 8 collapses to Eq. 4 (multiplicative method)
When 0 = 0, 1 = 1, 2 = 0 and 3 = 0, then Eq. 8 collapses to Eq. 6 (minimum method).

Obtaining an age-adjusted multiplier
The method used to obtain an age-adjusted multiplier is provided below.
a) the mean EQ-5D score for a cohort with condition A is 0.70
b) the mean aged for this cohort is 65 years
c) the mean EQ-5D score for a cohort without condition A, at the age of 65 years is 0.80
d) the age-adjusted multiplier = 0.70/0.80 = 0.875


EQ-5D variance covariance matrix  
It is possible to incorporate the uncertainty surrounding the preference-weights in probabilistic sensitivity analyses using the associated variance covariance matrices (for the EQ-5D matrix see www.nicedsu.org.uk).  
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ABSTRACT 

Background: Analysts frequently estimate the health state utility values (HSUVs) for joint health conditions (JHCs) using data from cohorts with single health conditions.  The methods can produce very different results and there is currently no consensus on the most appropriate technique.

Objective: To conduct a detailed critical review of existing empirical literature to gain an understanding of the reasons for differences in results and identify where uncertainty remains that may be addressed by further research.

Results: Of the 11 studies identified, 10 assessed the additive method, 10 the multiplicative method, seven the minimum method, and three the combination model.  Two studies evaluated just one of the techniques while the others compared results generated using two or more.  The range of actual HSUVs can influence general findings, and methods are sometimes compared using descriptive statistics that may not be appropriate for assessing predictive ability.  None of the methods gave consistently accurate results across the full range of possible HSUVs, and the values assigned to normal health influence the accuracy of the methods.

Conclusions: Within the limitations of the current evidence base, we would advocate the multiplicative method, conditional on adjustment for baseline utility, as the preferred technique to estimate HSUVs for JHCs when using mean values obtained from cohorts with single conditions.  We would recommend a range of sensitivity analyses be performed to explore the effect on results when using the estimated HSUVs in economic models.  Although the linear models appeared to give more accurate results in the studies we reviewed, these models require validating in external data before they can be recommended.  



Keywords: utility, combining, comorbidity, quality of life


Running head: Estimating utilities for joint health conditions



BACKGROUND
To fulfil demands from policy decision-makers, there has been a growth in the number of economic evaluations of interventions in health care reporting results in terms of cost per quality adjusted life-years (QALY).  The QALY combines both survival and health-related quality of life (HRQoL) into a single metric that facilitates comparison of results across disparate interventions and disease areas thus allowing optimal allocation of resources.  Many decision-making bodies require that HRQoL data used in economic evaluations are derived from preference-based utility measures with weights obtained from members of the general public [1,2].  These preference-based measures generate an index of health state utility values (HSUVs) whereby perfect health and death are anchored at one and zero, respectively, and negative values represent health states considered to be worse than death.  The most frequently used generic instruments are the EQ-5D, the HUI and the SF-6D [3-5].

Economic models in health care describe the clinical pathway of health conditions.  They can become quite complex involving health states representing the primary health condition and additional joint health states representing comorbidities where an additional condition exists concurrently with the primary health condition.  For example, a joint health condition (JHC) would be a woman with osteoporosis who then develops breast cancer, whereas an adverse event might be someone with influenza developing nausea as a side effect of treatment given for influenza.  HSUVs used to inform health states in models are often collected in the clinical studies assessing the effectiveness of treatments under evaluation.  When these data are not available, HSUVs may be elicited directly from patients or sourced from the literature.  While the former has the advantage that the health states valued can be precisely defined to match those in an economic model, they are resource intensive and the end product is not the preference-based data preferred by many policy decision-makers [1,2].  The latter is problematic as while there is a substantial evidence base providing HSUVs for individuals with single health conditions, the volume of data describing HSUVs for JHCs is limited.  Consequently, analysts frequently estimate the HSUVs for JHCs using data from cohorts with single health conditions and assumptions about how they should be combined.

A number of different approaches have been adopted in practice and recent literature has sought to provide empirical evidence for these alternatives.  However, this is limited and there is currently no consensus on which is the most suitable approach.  As the technique used to estimate HSUVs for JHCs could potentially influence a policy decision based on a cost per QALY threshold [6], inconsistencies in the approaches used could undermine optimal allocation of scarce health care resources.
The objective of the current study is to conduct a detailed critical review of existing empirical literature.  This will permit an understanding of the reasons for differences in the results, identify hypotheses that are consistent with the empirical evidence and identify where uncertainty remains that may be addressed by further research.  As HSUVs for JHCs in economic models are generally estimated using summary statistics from generic instruments reported in the literature, the greatest interest is on studies that use mean HSUVs from cohorts with single health conditions to estimate mean HSUVs for JHCs.


LITERATURE SEARCH AND SYNOPSIS OF STUDIES INCLUDED
A systematic literature search of the databases CINhl, the Cochrane library, embase, Medline, PsycInfo and Web of Science was carried out using keywords combining variations of terms for HRQoL (health state utility, quality of life, Euroqol, EQ5D, health utilities mark, HUI, short form six D, SF-6D, SF6D), methodological terms (standard gamble, SG, time trade-off, TTO, additive, multiplicative, minimum, regression, model) and terms for joint health states (joint health state, comorbid, combined health states, concurrent, multiple).  A forward and backward citation search was also carried out using the Web of Knowledge and Google Scholar databases.  The forward search ensures that all papers that cite the papers identified in the literature search are reviewed.  The backwards search ensures that all papers cited by the papers identified in the literature search are reviewed.  Reference lists of all papers included in the review were checked for additional relevant articles.  The searches were not restricted by publication type, language, or date of publication (1950 to February 2012).  Articles were deemed relevant if they estimated HSUVs for JHCs using data for single conditions.

Synopsis of studies included
Eleven studies which estimated HSUVs for JHCs using data for single conditions were identified based on a review of the titles and abstracts.  Papers were not assessed on the basis of study design, setting or quality, only on whether they involved estimating or predicting HSUVs for JHCs using data from single health conditions.  Information extracted included data reported to describe model fit, performance, diagnostics and the main conclusions reported by the authors (Table 1).

Table 1: Synopsis of studies included in the review

Three of the studies used data directly elicited from patients, using the same people to value HSUVs for both single and JHCs [7-9].  HSUVs for the single health conditions were then used to estimate HSUVs for the JHCs and accuracy in the estimates were compared with the actual HSUVs on an individual level.  The eight remaining studies used large databases where preference-based data were obtained using responses to generic quality of life questionnaires [10-17].  Six of these studies used mean HSUVs obtained from subgroups with single health conditions to estimate mean HSUVs for subgroups with JHCs [12-17].  The remaining two studies used regressions to explore the relationship between HSUVs and presence of health conditions using individual level data [10-11].

Of the three studies that elicited HSUVs directly from patients; two used data obtained from patients (n = 147 [8], n = 207 [9]) with recurrent prostate cancer by trade-off.  Single health conditions were defined as impotence, incontinence, watchful waiting and post-prostatectomy without complications, and JHCs were defined as impotence plus one of the other three single conditions.  The third, which is published in abstract form only, used HSUVs elicited using standard gamble from patients with recurrent rectal cancer [7].  Single health conditions were defined as: cancer, pain, complications, and surgery; and JHCs were defined as: cancer and pain, cancer and complications, and residual cancer after surgery.

The eight studies that used preference-based HSUVs obtained from generic HRQoL questionnaires evaluated data (range 5,224 [10] to 131,535 respondents [12]) from large surveys.  Four used EQ-5D (US) [12-15], one used EQ-5D (UK) [16], three used SF-6D [10-11,17], and one used HUI3 data [12].  The definitions for the health conditions in the primary surveys ranged from specific conditions such as diabetes mellitus without complications [14], and asthma [13] to more general definitions such as back problems [12], cancer (neoplasm) including lumps, mass [16], musculoskeletal or arthritis/rheumatism/fibrositis [17].  One of the studies was slightly different in that it concentrated on data from individuals with just diabetes, diabetes plus hypertension, diabetes plus heart disease, or diabetes plus musculoskeletal illnesses [10].

Number of JHCs and range of estimated HSUVs
In each case the three studies using the directly elicited data estimated HSUVs for just three JHCs (Table 1 and Table 2) [7-9].  In contrast, the majority of the studies using responses from generic HRQoL questionnaires estimated HSUVs for much larger numbers of pairs of JHCs (range 32 [17] to 760 [14]).  In addition to predicting HSUVs for JHCs, one study also examined the relationship between SF-36 health dimensional scores for single health conditions and JHCs [10], whereas another study estimated results for JHCs involving more than two conditions [12].

For the studies using the elicited data, the actual HSUVs for the JHCs were all 0.5 (medians) in one study [7], and covered the ranges 0.66 to 0.72 (means) [8], and 0.63 to 0.70 (means) [9], in the other two studies.  Possible ranges for the preference-based indexes for the generic HRQoL questionnaires used are: SF-6D range 0.3 to 1; EQ-5D (UK) range -0.59 to 1; EQ-5D (US) range -0.109 to 1; HUI3 range -0.36 to 1.  None of the studies analysing these data estimated mean HSUVs that covered the full ranges of the indexes.  The smallest range in actual mean HSUVs was for EQ-5D (US) data (0.734 to 0.819) from the US Medical Expenditures Panel Survey (MEPS 2000, 2002) [13], and the largest range was for HUI3 data (-0.01 to 1.00) from the Canadian Community Health Survey (2001, 2003) [12].  The authors of the latter study reported that while there was a wide variation in the mean HUI3 scores for subgroups with JHCs, most (184/278) were greater than 0.80.  Conversely, two-thirds of the actual mean EQ-5D (UK) HSUVs for the JHCs identified in a study using data from the Health Survey for England were below 0.60 (range 0.360 to 0.917) [16].  Obviously the range in actual HSUVs is highly relevant when comparing accuracy of the different techniques, as the method should be generalisable for use across the full preference-based index including negative values where applicable.

METHODS USED TO ESTIMATE HSUVs FOR JHCs
Baseline HRQoL
Before describing the methods used to estimate HSUVs for JHCs, it is useful to consider the “baseline” utility.  The “baseline” utility is defined as the HSUV a person would have if they did not have a particular health condition.  The impact on HRQoL attributable to a health condition is defined as the difference between the HSUV associated with the particular health condition and the baseline.  The baseline utility used can make a large difference to the estimated decrement on HRQoL associated with particular conditions as shown in the following example.  Using EQ-5D (UK) data (range -0.59 to 1) collected from a random sample (n = 41,471) of the UK population, the mean HSUV for a cohort with a history of heart attack/angina is 0.632 (Figure 1) and the mean age for the cohort is 70 years [18].  The impact on HRQoL attributable to avoiding a heart attack/angina is 0.368 (0.368 = 1 – 0.632) when assuming a baseline of perfect health and 0.181 (0.181 = 0.813 – 0.632) when assuming the baseline is the average health for individuals of the same age with no history of heart attack/angina.  Similarly, looking at the condition arthritis/rheumatism, the impact on HRQoL attributable to arthritis/rheumatism is 0.403 (0.403 = 1 – 0.597) when assuming a baseline of perfect health and 0.272 (0.272 = 0.869 – 0.597) when assuming the baseline is the average health for individuals of the same age who do not have a history of arthritis/rheumatism.  The differences in the decrements (0.187 = 0.368 - 0.181 for heart attack/angina, 0.131 = 0.403 - 0.272 for arthritis/rheumatism) may be attributable to other factors such as comorbidities and age [19].  If a baseline of perfect health is used to estimate the decrements associated with the single health conditions and these data are then used to estimate the decrements associated with a JHC, the impact on HRQoL associated with other factors will be counted twice.

Figure 1: Impact on HRQoL attributable to health condition(s)

The alleviation of a particular health condition will not restore the HRQoL of the average person to full health as they will still have other health problems and it has been suggested that, on average, a treatment will increase HRQoL to the same level of persons without the condition [20].  Several approaches have been taken to adjust the baseline when estimating HSUVs for JHCs.  These include purifying data by dividing all HSUVs by the average HSUV obtained from individuals who report none of the health conditions identified in a survey [12,15], using age-adjusted data obtained from individuals who report none of the health conditions identified in a survey [16,17], and using condition-specific data obtained from individuals who do not report the particular health condition(s) of interest [13].  The first two approaches do not facilitate any adjustment for the severity of the particular condition.

Baseline HRQoL used in the studies reviewed
When estimating HSUVs for the JHCs, the three studies analysing directly elicited data used a baseline of perfect health [7-9].  Flanagan et al. purified their data by dividing all age and sex standardised HSUVs by the mean HSUV (HUI3 = 0.94) from respondents reporting none of the health conditions identified in the primary survey [12].  The objective of the purification was to remove the loss of functional health due to health problems other than the chronic conditions reported in the primary survey [12].  Fu and Kattan used a similar approach in secondary analyses, dividing the HSUVs by the mean HSUV (EQ-5D (US) = 0.952) from respondents reporting none of the health conditions in their dataset, and presented results using a baseline of perfect health as the primary analyses [14].  Ara and Brazier estimated age-adjusted baselines using HSUVs from respondents reporting none of the health conditions identified in the primary surveys [16-17], and Janssen used mean values from the respondents who did not report either condition in each individual JHC for the baseline [13].
Possible methods to estimate HSUVs for Joint Health Conditions
The techniques described below use mean HSUVs from cohorts with single health conditions to estimate mean HSUVs for cohorts with JHCs.  There are three main methods used to estimate the HSUV for a combined health state when data only exist for relevant single health states.  These can be termed the additive, multiplicative and minimum approaches.  Alternatives recently proposed include the adjusted decrement estimator (ADE) which is a variation of the minimum method, and a simple linear model, based on multiattribute utility theory and prospect theory, which incorporates terms representing the additive, multiplicative and minimum methods [9,15].

Given two health conditions, condition A and condition B, there are four possible combinations of these conditions: individuals have condition A but not condition B, individuals have condition B but not condition A, individuals have both condition A and condition B, or individuals do not have either condition A or condition B.  The HSUVs associated with these four alternatives are defined as: UA, UB, UA,B, and UnA,nB.

Additive method.  The additive method assumes a constant absolute decrement relative to the baseline and the estimated HSUV for the additive JHC is calculated using:

				(1)
where the superscript “add” denotes the additive method.
If a baseline of perfect health is used, the additive method can be calculated using:

							(2)

Multiplicative method.  The multiplicative method assumes a constant proportional decrement relative to the baseline and the estimated HSUV is calculated using:

						(3)
where the superscript “Mult” denotes the multiplicative method.
If a baseline of perfect health is used, the multiplicative method can be calculated using:

								(4)

Minimum method.  The minimum method assumes the decrement on HRQoL associated with a comorbidity is equal to the maximum decrement attributable to the individual single health conditions, and the estimated HSUV is calculated using:

						(5)
where the superscript “min” denotes the minimum method.
If a baseline of perfect health is used, the minimum method can be calculated using:

								(6)

Adjusted decrement estimator. The adjusted decrement estimator (ADE) has recently been proposed as an alternative method to estimate HSUVs for JHCs [15].  This estimator is a variation of the minimum method and assumes the estimated HSUV for the JHC has an upper bound equal to the minimum of the HSUVs from the two single health conditions.  The proposed method is described by: 

			(7)
where the superscript “ADE” denotes the adjusted decrement estimator.

Combination model.  Basu et al. recently proposed a simple linear model that incorporates terms representing the additive, multiplicative and minimum methods [9]  The model is formulated from a) an adaptation of work originally presented by Keeny and Raiffa (1976, 1993) which was based on decision theory and multi-attribute utility functions [21-22] and b) a prospect theory that proposes the value function is convex for losses with a marginal rate of decrement in value with increasing losses, as presented by Tversky and Kahneman (1992) [23]  The model is defined by:

	(8)

where the superscript “comb” denotes the combination model,  the residual and the beta coefficients are obtained using ordinary least square regressions.  Equation 8 uses a baseline of perfect health.  Using an adjusted baseline, the combination model can be defined by:

	(9)

The combination model reduces to the three traditional methods under the following conditions:[9]
When 0 = 0, 1 = 1, 2 = 1 and 3 = 0, then Eqn 8 collapses to Eqn 2 (additive method)
When 0 = 0, 1 = 1, 2 = 1 and 3 = -1, then Eqn 8 collapses to Eqn 4 (multiplicative method)
When 0 = 0, 1 = 1, 2 = 0 and 3 = 0, then Eqn 8 collapses to Eqn 6 (minimum method)

Methods used to estimate or predict HSUVs for JHCs in the studies reviewed
Table 2 provides an indication of the methods compared in each of the studies.  The studies are subgrouped into those (n = 3) using directly elicited HSUVs and those (n = 8) using HSUVs obtained from generic HRQoL instruments.  The latter are further subgrouped into the two studies predicting HSUVs from regression models and the six studies estimating mean HSUVs for JHCs using mean HSUVs from subgroups with single health conditions.

Ten studies assessed the additive method, ten the multiplicative method, seven the minimum method, and three the combination model.  Two studies [10,12] evaluated just one of the techniques while the others compared results generated using two [7,13], three [8,11,14], or more techniques [9,15-17].

TABLE 2: Reported results and supporting statistics

REPORTED RESULTS
Studies using HSUVs elicited directly from patients 
Of the three studies using the elicited HSUVs [7-9], Esnaola et al. reported the median absolute difference between the actual and estimated HSUVs for the multiplicative method was significantly lower than that for the additive method (Wilcoxon signed ranks test, P < 0.001) [7].  Dale et al. assessed bias in the estimated HSUVs, assuming an unbiased method would give a mean error (ME) insignificantly different from zero and errors uncorrelated with estimated HSUVs [8].  They reported the additive, minimum and multiplicative methods all produced biased estimates (ME: range 0.038 to 0.127, P < 0.05, correlations: range -0.305 to -0.533, P < 0.05 [8].  Although the minimum method had the smallest RMSE (0.194) and the smallest MAE (0.260), plots showed higher HSUVs were substantially underpredicted and lower HSUVs substantially overpredicted.  The authors recommended HSUVs for JHCs should be elicited directly as the additive, multiplicative and minimum methods are biased and inefficient.  If an elicitation exercise is not possible they recommend the minimum method [8].  Basu et al. reported the combination model (UA,B = 1 – (0.05 + 0.72*max (1-UA, 1–UB)+0.33*min(1-UA, 1–UB) -0.18*(1-UA)(1–UB)) produced up to 50% reduction in the mean squared errors compared to the three traditional methods (additive, multiplicative, minimum) [9].  The correlations between the residuals and predicted HSUVs were much smaller (range 0.0006 to 0.0682 when subgrouped by JHC) for the combination model compared with the correlations between the errors and estimated HSUVs for the other methods (< - 0.246 for all JHCs and methods).  Plots of the mean residuals across quartiles of estimated HSUVs showed the four mean residuals from the combination model were close to zero while the other three methods overestimated low HSUVs and underestimated high HSUVs.

There are difficulties when generalising from these findings.  For example the studies used the same participants to value both the single health conditions and the JHCs; consequently, the value attributed to the JHC could be influenced by the value given to the single condition(s).  In addition, 28% to 40% of valuations were inconsistent in that the elicited HSUVs for the JHC were greater than those for the corresponding single health conditions [24].  The actual JHC HSUVs in all three studies covered a very narrow range of possible values, limiting generalisability.  Finally, it is not clear if the OLS model obtained will perform well in external data.

These limitations withstanding, when estimating HSUVs for JHCs using data elicited directly from patients, the authors found the combination model is more accurate than the others with the minimum method being better than the multiplicative method, which is better than the additive method.  However, these findings are based on analyses using a very limited range of HSUVs for the JHCs, and the coefficients in the combination model may not be generalisable to external data.  

Studies using individual level data obtained from generic HRQoL instruments
Of the two studies using the individual level data obtained from generic HRQoL instruments (both SF-6D), Wee et al. favoured the additive method whereas Hanmer et al. favoured the multiplicative method [10-11].  Wee et al. derived three linear models (n = 5,224) with one pair of JHCs (diabetes plus either hypertension, heart disease or musculoskeletal illnesses) in each model [10].  The dependent variable was the SF-6D and independent variables were diabetes, one of the second chronic medical conditions, the interaction between these, and socio-demographic variables.  The regressions were used to determine if the combined independent effects of two single health conditions were additive (i.e., the effect is equal to the sum of the two independent effects and the interaction term is not significant), subtractive (i.e., the effect is smaller than the sum of the two independent effects and the interaction term is significant and positive), or synergistic (i.e., the effect is greater than the sum of the two independent effects and the interaction term is significant and negative) [10].  Although the coefficients for both single health conditions were negative and statistically significant (P < 0.05) in each of the three regressions, the interaction term was reported to be not significant (coefficients and P-values not reported), implying the combined effect was additive with no evidence of either a synergistic or subtractive effect.
Hanmer et al. compared the additive, multiplicative and minimum methods in regressions (n = 5,969 younger than 65 years; n = 89,226 for 65 years and older) using a latent define summary health scale censored at 0.30 and 1 to match the boundaries of the SF-6D [11].  The HSUVs/disutilities associated with numbers of health conditions were entered as independent variables (from no conditions up to a maximum of 12 or more conditions) and models were obtained with/without socio-demographic covariates.  The minimum method used the same model form but entered individuals as having the health condition with the greatest aggregate impact on HSUVs.  In addition to evaluating the models’ performance in terms of accuracy in predicted scores for individuals, results were also reported for subgroups identified by the number of JHCs.  For respondents aged 65 years and over, the multiplicative (minimum) model had the smallest (largest) ME and MSE when subgrouped by number of health conditions.  Box plots describing errors (actual mean minus predicted mean) for subgroups with two or three JHCs showed a much larger variation in errors from the minimum model compared with the other two.  Although the vast majority of errors for the additive and multiplicative models were within the reported minimally important difference (MID) for the SF-6D (0.03 to 0.04) [25-26], there were several outliers beyond these limits.  The authors concluded that all the methods were imperfect, with the multiplicative linear model performing best followed by the additive linear model and the minimum linear model.  They cautioned that the analyses should be replicated in other large datasets before making strong recommendations on the best methodology and in particular mentioned that censoring at the limits of the SF-6D index could be important in skewed datasets.

It is not possible to determine the most accurate method for predicting HSUVs for JHCs using the findings of these two studies.  As the JHCs used in Wee’s study were limited to diabetes plus one other health condition, this limits generalisability of results to other JHCs [10].  The findings from Hanmer’s study are also limited due to the potentially small range in actual HSUVs evaluated, where the decrement was reported to be relatively small (-0.02 to -0.03) for the majority of the single health conditions [11].

Studies using mean data obtained from generic HRQoL instruments
Of the six studies that used mean HSUVs from subgroups with single health conditions to estimate mean HSUVs for JHCs, one found the multiplicative method gave a good fit (synergy coefficient = 0.99, P < 0.001) for HUI3 data [12]; one found the multiplicative gave a better fit than the additive method for EQ-5D (US) data [13]; one reported that the minimum method outperformed the additive and multiplicative methods for EQ-5D (US) data [14]; one reported the ADE outperformed the three traditional nonparametric estimators [15], and two found the combination linear model performed better than the nonparametric estimators, one for EQ-5D (UK) data [16] and one for SF-6D data [17].

Flanagan et al. tested the multiplicative method on purified data by mapping the purified mean HSUVs for the single health conditions onto the actual mean HUI3 scores for the JHCs (n = 278) using OLS regressions [12].  They reported the multiplicative method gave a good fit (synergy coefficient (s) = 0.99, P < 0.001) in JHCs involving two conditions, where a synergy coefficient (i.e., the coefficient for the independent variable in a regression model with no constant) close to one indicates that the majority of the HSUV associated with the JHC is explained by the product of the HSUVs for the single health conditions.  This was supported by testing the multiplicative method in subgroups with three conditions (s = 0.99) from the same dataset and in subgroups with either two or three conditions in a second dataset (s = 0.99 for both) [12].  As reported earlier, although the actual mean HSUVs in Flanagan’s data covered the largest range of all the studies, a substantial proportion (184/278) had HUI3 scores above 0.80.  These mean HSUVs are unlikely to be normally distributed, suggesting that regressions using OLS may not be appropriate.  As the errors in the estimated values were not reported, it is not possible to deduce how accurate the multiplicative method was in predicting mean HSUVs across the range of the HUI3 index or to compare these findings with those reported in the following studies.

Both Janssen (JHC: n = 45 and n = 166) and Fu (JHC: n = 760) compared the additive and multiplicative methods using EQ-5D (US) data from the MEPS [13-14].  Although the studies used surveys conducted in different years (Janssen: 2000, 2002; Fu: 2001, 2003) the ranges in actual EQ-5D (US) scores for the JHCs were similar (Table 2).  While both studies found the multiplicative method outperformed the additive method, there were substantial differences in their results.  For example Janssen reported MEs of 0.022 and 0.024 for the additive and multiplicative methods, respectively, compared with -0.123 and -0.094 for the additive and multiplicative methods when using a baseline of perfect health and -0.054 and -0.043 when using purified data in Fu’s study (Table 2).  The differences in signs are due to the method used to calculate the errors and the difference in magnitude of the errors are possibly due to the differences in the baselines used as Janssen used a baseline from individuals without the specific health conditions.  Although Janssen et al. reported the MAEs for both methods were below the MID for the EQ-5D (US) [26-27], when plotting the actual and estimated mean HSUVs for all JHCs using the data in the article, it was clear there are substantial errors in the individual values estimated by both methods.

Fu also assessed the minimum method and found this outperformed both the additive and the multiplicative methods in terms of MEs, MSEs and paired t-tests obtained from regressing the estimated JHC HSUVs onto actual values.  Conversely, based on the same statistics, the multiplicative method outperformed the minimum method in two other studies that assessed all three methods [16-17].  A scatter plot of the actual and estimated HSUVs showed heteroskedasticity in the errors in HSUVs estimated using the minimum method, with errors increasing in magnitude as the actual HSUVs decreased [16].

Fu’s article has been superseded by more recent analyses of the data conducted by the same group of researchers [15].  Scatter plots of the estimated and actual HSUVs reported in the second article showed approximately 25% of mean HSUVs estimated using the minimum method were smaller than the actual mean HSUVs for the JHCs.  This is only possible if one or more of the mean HSUVs for the single health conditions are smaller than the mean HSUV for the corresponding JHC.  This is counterintuitive as it implies that comorbidities improve HRQoL.  Although one might expect a proportion of irregularities due to random error/noise, these anomalies could suggest that the data being combined were not comparable in terms of disease severity.  For example a subgroup with the JHC rheumatism and heart disease may have a milder form of rheumatism than a subgroup with just rheumatism.

In addition, the ranges of actual HSUVs estimated differed between the studies, which may contribute to the difference in the findings.  Fu and Hu estimated HSUVs ranging from approximately 0.62 to 0.90 for EQ-5D (US) whereas Ara estimated HSUVs ranging between 0.36 to 0.92 (with 80% of values smaller than 0.6) for EQ-5D (UK) and HSUVs ranging between 0.45 and 0.61 for SF-6D.  As mentioned previously, Ara reported errors in the HSUVs estimated using the minimum method increased as the actual HSUVs decreased, and this was also visible in Hu’s smaller range [15].

In addition to estimates obtained using the three traditional methods, Hu predicted HSUVs using the linear model obtained by Basu [15].  When comparing results with HSUVs estimated using the ADE, they found the ADE method outperformed the others in terms of mean errors in estimated HSUVs but the scatter plot of estimated and actual HSUVs showed the errors increased substantially as actual HSUVs decreased.  Basu’s linear model outperformed the three traditional methods in terms of mean errors in predicted HSUVs.  Ara used the ADE proposed by Hu et al. and found the ME in estimated HSUVs were smaller than those for the three traditional methods when using a baseline of perfect health [16-17].  However, the estimated HSUVs were much more accurate for both the multiplicative and the minimum methods when using an adjusted baseline, and in these analyses, the multiplicative method performed better than the ADE.

Overall, Ara found the linear combination model obtained regressing the mean HSUVs for the single health conditions onto the corresponding mean HSUV for the JHCs outperformed all the nonparametric estimators in both SF-6D and EQ-5D (UK) data [16-17].  When examining the errors across the range of actual HSUVs they reported that almost all values were underestimated across the full range of values when using the additive method.  For the multiplicative method, there was a tendency for the errors to decrease for lower HSUVs, with the largest errors in values greater than 0.6.  Conversely, for both the minimum and ADE methods, the errors increased as the actual HSUV decreased.  Although the errors in the HSUVs predicted using the OLS models were smaller than those in the other methods, there was a tendency to underpredict higher HSUVs and overpredict lower HSUVs.  They cautioned that while the linear model produced more accurate results than the non-parametric estimators, none of the coefficients in the model were significant.  They recommended that their model be validated using external data and suggested an alternative model specification may be warranted.  It is worth noting that the mean HSUVs for the actual JHCs were normally distributed in this dataset, whereas HRQoL data, and in particular individual EQ-5D data, are typically bimodal with a long negative skew.

Because of the differences in the five studies, such as the methods compared, the preference data used, the baseline HSUVs, and the actual range of HSUVs for the JHCs, it is difficult to recommend one particular method.  In general, any recommendations by the study authors were accompanied by caveats or limitations.  Bias in the estimated values from the additive, multiplicative and minimum methods was reported in many of the studies.  The statistics typically used to assess accuracy of the estimated JHCs, such as mean errors, were not particularly informative with regard to systematic errors.  Systematic errors in the estimated JHCs were observed in four of the studies and were even visible in the analyses estimating narrow ranges of HSUVs.  Although the minimum important differences were used as criteria to measure the proportion of estimated values within an “acceptable” range in several of the studies, these statistics could be perceived as arbitrary as a very small error in a HSUV can make a substantial difference to results from decision analytic models where the benefits of treatment are small.  It is clear that conclusions drawn can differ when methods are assessed across different ranges of actual HSUVs, suggesting the relationship between the HSUVs for the single health conditions and the corresponding JHC may not be linear.  In general the analyses using an adjusted baseline produced more accurate results.  Although the parametric approach appears to produce the most accurate results additional research in this area is required.

SUMMARY AND SUGGESTIONS FOR FUTURE RESEARCH
This review provides an overview of the current evidence base, describing some of the methodological issues when estimating HSUVs for JHCs.  In summary, we found the range of actual HSUVs can influence findings, the statistics commonly used to assess the performance of the methods were not always useful for assessing relevance for applications in external data, none of the proposed methods gave consistently accurate results, and adjusted baselines increased accuracy.  However, there are caveats associated with this conclusion and additional research is required, both of which are discussed below.

It is clear that the range in actual HSUVs estimated can have a bearing on findings.  For example, although the minimum method and the ADE performed relatively well in terms of mean errors when using a truncated range at the higher end of a preference-based index [14-15], these methods were less accurate when assessed in subgroups at the lower end of a preference-based index [16].  Although a simple chart showing the actual and estimated HSUVs gives a clear picture of systematic bias in estimated values, few of the studies examined systematic bias in any detail, relying on mean statistics to support their findings.  This has implications when generalising the results for use in practical applications, as decision analytic models frequently include health states in the upper and lower quartiles of preference-based indexes.  For example, it is often the case that a lifetime horizon can be appropriate for assessing cost-effectiveness, where patients are simulated in extreme states of disease severity.  Additional research assessing the methods across the full range of the preference-based indexes is required.  There is also a need for analysts to be more thorough when assessing performance and reporting results.

The baseline used in the estimating method is important, and results from the studies included in this review suggest that estimates obtained using an adjusted baseline were more accurate in general.  Sourcing appropriate baseline data will be difficult as ideally, each health condition requires a unique baseline obtained from individuals who do not have the specific condition(s).  However, there is some evidence that age-adjusted data from the general population may be suitable approximations in some cases [28].  Similarly, using data (n = 1356) collected using the Quality of Well Being Index (range 0 to 1) in the Beaver Dam Health Outcomes Study, Fryback et al. proposed that analysts conducting cost utility analyses use average age-specific HRQoL data from population based studies to represent the state of not having a particular condition [29].  This may generalise to the area of estimating HSUVs for JHCs and additional research in this area would be beneficial.

There will inevitably be issues with the definition of the baseline used, including inconsistencies in data.  For example, there may be occasions when the mean HSUVs for subgroups with a particular health condition are higher than the mean HSUVs for subgroups without the health condition [29], particularly if the data are obtained from different sources.  In addition, anomalies in data such as the apparent inconsistencies in expected HSUVs for JHCs observed in Hu’s dataset require further consideration [15].  As stated previously, these anomalies could suggest that the data being combined are not comparable in terms of disease severity.  For example, a subgroup who have the JHC rheumatism and heart disease may have a milder form of rheumatism than a subgroup who have just rheumatism.  If this is the case, then results generated from datasets similar to those used in the studies in this review may not be the most appropriate data for testing the methods.  Again, research in these areas would be informative.

To our knowledge, no one has assessed the accuracy of the alternative methods in terms of estimating HSUVs for subgroups of JHCs classified by type of health condition.  It is possible that the findings may differ depending on the health dimensions affected by the health conditions being combined.  Alternatively, and particularly for prevalent conditions, correlations between the HSUVs for particular health conditions could affect the accuracy of the methods differently.  Research comparing the accuracy of the methods in subgroups of health conditions would add to our understanding.  In addition, no-one has assessed the methods using more than one HRQoL instrument within the same dataset.  This would be informative with regard to generalisability of the results.

Although the results from the studies included in this review show that simple linear models produce the most accurate results in the study datasets, none of these have been validated in external data.  Each preference-based utility index will require a different model; hence, the existing models cannot be used to estimate HSUVs for alternative preference measures.  For example, the beta coefficients for the EQ-5D (UK) data would not be appropriate for EQ-5D (US) data [16].  In addition, the models tend to underpredict higher HSUVs and overpredict lower HSUVs, suggesting that an alternative model specification could be warranted.  Additional research in this area involving data from a variety of HRQoL instruments exploring alternative model forms and including external validation would be beneficial.

While the use of survey data is attractive due to the relative ease of access and the large sample sizes that provide HSUVs for both single and JHCs, there are problems with these data.  First, the prevalence of health conditions tends to be self-reported and it has been shown that the potential for bias is relatively high.  For example 53% of respondents with a physician’s diagnosis of diabetes indicated they did not have the condition in a Canadian health survey [20].  Consequently, a proportion of respondents identified as not having a particular health condition may actually have the health condition which could give misleading measurements when analysing data from subgroups of individuals based on self-reported health conditions.  Second, national surveys tend to recruit randomly from the general population living in private households, therefore excluding individuals in residential homes and medical establishments.  In general, the latter will have poorer HRQoL than individuals in private residents, and it is likely that a larger proportion will have JHCs, which is the data required to evaluate the methods.

There are an increasing number of general population catalogues that can provide a substantial number of HSUVs for prevalent health conditions.  For example, a recent addition to the evidence base is a catalogue of mean and median HSUVs scores subgrouped by clinical classification categories and international classification of diseases codes [30], obtained from a US survey with HSUVs derived using the EQ-5D UK based tariff [3].  Although literature such as this can provide the required evidence for some economic evaluations, care must be taken to ensure the condition definitions and the statistics used (e.g., mean rather than median) reflect the requirements of the economic model.  In addition, because of the enormous number of combinations of health conditions, it is impractical to obtain actual HSUVs for each possible JHC as the costs and time involved in obtaining de novo evidence is prohibitive.  As a consequence, researchers performing cost-effectiveness analyses will estimate HSUVs for JHCs using data that is readily available from cohorts with the single health conditions within the JHC.  

Although this review has helped to aid understanding of the alternative approaches and the potential reasons for differences in reported findings, it is clear that additional research is required before a particular method is advocated unequivocally.  In the interim, within the limitations of the current evidence base, we would advocate the multiplicative method, conditional on adjustment for baseline utility, as the preferred technique to estimate HSUVs for JHCs when using mean values obtained from cohorts with single conditions.  We recommend that a range of sensitivity analyses be performed to explore the effect on results when using the estimated HSUVs in economic models.  Although the linear models appeared to give more accurate results in the studies we reviewed, additional research including validation in external data is required before they can be recommended.
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Table 1: Summary of studies included in the review
	First Author (Year)
	Utility measure
	Data source
[study year(s)]
(n = number of cases in dataset)
	Single Health Conditions

	Joint Health Conditions
(J = number of actual JHC HSUVs estimated)
	Methods compared
	Authors conclusions/
favoured method 

	Studies using utilities elicited directly from patients

	Esnaola
(2001)
[7]
	Standard gamble
	Patients with recurrent rectal cancer 
(n = 50)
	cancer, pain, complications,
residual cancer after surgery
	Two JHCs (J = 3)
cancer and pain, cancer and complications, and residual cancer after surgery
	Additive
Multiplicative
	Multiplicative predict better than additive and additive may under-estimate utilities for JHCs

	Dale
(2008)
[8]
	TTO
	Patients attending prostate biopsy clinics 
(n = 147)
	impotence, incontinence, watchful waiting, post-prostatectomy
	Two JHCs (J = 3)
impotence plus either incontinence, watchful waiting or post-prostatectomy
	Additive
Multiplicative
Minimum
	All 3 models are biased
Minimum model recommended if cannot elicit JHC HSUVs directly

	Basu
(2009)
[9]
	TTO
	Patients attending prostate biopsy clinics 
(n = 207)
75% model formation, 25% model validation
	impotence, incontinence, watchful waiting, post-prostatectomy
	Two JHCs (J = 3)
impotence plus either incontinence, watchful waiting or post-prostatectomy
	Additive
Multiplicative 
Minimum 
linear model
	Regression combination model is the best approach

	Preference-based data (individual patient level HSUVs)

	Wee
(2005)
[10]
	SF-6D
	Sample of ethnic, Chinese, Malays and Indians in Singapore 
(n = 5,224) 
	diabetes, hypertension, heart disease, musculoskeletal illnesses
	Two JHCs (J = 3)
diabetes plus one of:
hypertension 
heart disease 
musculoskeletal illnesses
	Additive
Synergistic
Subtractive
	In favour of additive method

	Hanmer
(2009)
[11]
	SF-6D
	Medicare Health Outcomes Survey 
[1998-2004]
Split into ≥ 65 or < 65 years
(n = 95,195) model formation; 
(n = 94,794)  model validation
	15 self-reported health conditions 
	65 years and over: 
(J = 58) for two JHCs, 
(J = 35) for three JHCs, 
(J = 26) for four JHCs
(J = 8) for five JHCs
(J = NR) for > 6 JHCs
Under 65 years: J = NR
	Additive 
Minimum 
Multiplicative
	Multiplicative was the best

	ICD = International Classification of Diseases, Ninth Revision, Clinical Modification





Table 1: Summary of studies included in the review continued
	First Author (Year)
	Utility measure
	Data source
[study year(s)]
(n = number of cases in dataset)
	Single Health Conditions

	Joint Health Conditions
(J = number of actual JHC HSUVs estimated)
	Methods compared
	Authors conclusions/
favoured method 

	Preference-based data (mean HSUVs)

	Flanagan
(2005)
[12]
	HUI3
	Canadian Community Health Survey (CCHS) 
Cycle 1.1 [2000-2001] (n = 131,535) model formation;
Cycle 2.1 [2003-2004] (n = 45,101) model validation
	26 self-reported chronic conditions
	Cycle 1.1 (formulation): 
 (J = 278) for two JHCs
(J = 924) for three JHCs
Cycle 2.1 (validation): 
(J = 299) for two JHCs 
(J = 734) for three JHCs
	Multiplicative
	In favour of multiplicative method

	Janssen
(2008)
[13]
	EQ-5D
(US)
	MEPS Medical Expenditure Panel Survey [2000, 2002]
(n = 38,678)
	Conditions defined by ICD-9 codes and subgrouped into: 
a) Quality Priority Conditions (QPC) giving 10 chronic conditions present any time in the past (except joint pain)
b) Clinical Classification Categories (CCC) giving 259 conditions 
	QPC: two JHCs (J = 45)
CCC: two JHCs (J = 166) 
	Additive
Multiplicative
	Multiplicative method shows a better fit 

	Fu
(2008)
[14]
	EQ-5D
(US)
	Medical Expenditure Panel Survey 
[2001, 2003]
(n = 40,846)
	Clinical classification Categories system (CCC), defined by ICD-9 codes
	Two JHCs (J = 760) 
	Additive
Multiplicative
Minimum
Maximum
Average
Mean of condition 
with smaller sample 
	None of the methods provide an unbiased estimate but the minimum outperformed the others

	Hu
(2010)
[15]
	EQ-5D
(US)
	Medical Expenditure Panel Survey 
[2001, 2003]
(n = 40,846)
	Clinical classification Categories system (CCC), using combinations of ICD-9 codes
	Two JHCs (J = 760)
	Additive
Multiplicative
Minimum
ADE
Linear model
	The ADE generated unbiased estimates for joint health states 

	ICD = International Classification of Diseases, Ninth Revision, Clinical Modification






Table 1: Summary of studies included in the review continued
	First Author (Year)
	Utility measure
	Data source
[study year(s)]
(n = number of cases in dataset)
	Single Health Conditions

	Joint Health Conditions
(J = number of actual JHC HSUVs estimated)
	Methods compared
	Authors conclusions/
favoured method 

	Ara
(2010)
[16]
	EQ-5D
(EQ)
	Health Survey for England 
[2003, 2004, 2005, 2006]
(n = 41,174)
	Self-reported chronic health conditions, 39 individually categorised and 15 grouped conditions
	Two JHCs (J = 91) 
	Additive
Multiplicative
Minimum
ADE
OLS combination
	The linear model gave the most accurate results but there were some substantial individual errors

	Ara
(2010)
[17]
	SF-6D
	Welsh Health Survey 
[2003, 2004, 2005, 2007, 2008]
(n = 64,437)
	Self-reported limiting long-standing  health conditions, 39 individually categorised and 14 grouped health conditions
	Two JHCs (J = 32) 
	Additive
Multiplicative
Minimum
ADE
OLS combination
	The linear model gave most accurate results but there were some substantial individual errors

	
	
	
	
	
	
	



Table 2: Reported results and supporting statistics
	Methods used

	Statistics used to compare the methods used to estimate HSUVs

	
	ME (95% CI)
	MSE (95% CI)
	MAE
	CCC (95% CI)
	s
	t-test

	Studies using utilities elicited directly from patients

	Esnaola [7] (SG) range in JHC median HSUVs: all 0.50

	  Additive
	Median absolute error: range 0.300 to 0.350

	  Multiplicative
	Median absolute error: range 0.100 to 0.188

	Dale [8] (TTO) range in JHC mean HSUVs: 0.66 to 0.72

	  Additive
	0.127
	0.256*
	0.282
	-0.533
	NR
	NR

	  Multiplicative
	0.091
	0.218*
	0.276
	-0.406
	NR
	NR

	  Minimum
	0.038
	0.194*
	0.260
	-0.305
	NR
	NR

	Basu [9] (TTO) range in JHC mean HSUVs: 0.63 to 0.70 

	  Additive
	0.0855 to 0.1152
	0.0627 to 0.0711
	NR
	-0.5361 to -0.4707
	NR
	NR

	  Multiplicative
	0.0497 to 0.0838
	0.0475 to 0.0502
	NR
	-0.3404 to -0.4280
	NR
	NR

	  Minimum
	0.0008 to 0.0356
	0.0400 to 0.0510
	NR
	-0.2459 to -0.3407
	NR
	NR

	  Linear model
	-0.005 to 0.0228
	0.0329 to 0.0463
	NR
	0.0006 to 0.0682
	NR
	NR

	Studies predicting HSUVs using individual patient level data from generic HRQoL questionnaires

	Wee [10] (SF-6D) range in JHC HSUVs: not reported

	  Additive
	None of statistics reported: effect of 2nd chronic medical condition was generally additive rather than synergistic or subtractive

	Hanmer [11] (SF-6D) under 65 years [over 65 years] range in JHC HSUVs: NR

	  Additive
	NR
	0.0088 (0.0104)
	NR
	NR
	NR
	NR

	  Multiplicative
	NR
	0.0087 (0.0103)
	NR
	NR
	NR
	NR

	  Minimum
	NR
	0.0092 (0.0113)
	NR
	NR
	NR
	NR

	ADE, adjusted decrement estimator; CCC, concordance correlation coefficient; HSUV, health state utility value; JHC, joint health condition; MAE, mean absolute error; ME, mean error; MSE, mean squared error; NR, not reported; OLS, ordinary least square; s, synergist coefficient in OLS (mapping estimated onto actual HSUVs with no constant), SG, standard gamble; t-test for estimated and actual JHC HSUVs; TTO, time trade-off.
Bold text is the model favoured in study conclusions.
* root mean squared error reported not MSE, † estimated from actual HSUVs and estimated HSUVs reported in article.





Table 2: Reported results and supporting statistics continued
	Methods used

	Statistics used to compare the methods used to estimate HSUVs

	
	ME (95% CI)
	MSE (95% CI)
	MAE
	CCC (95% CI)
	s
	t-test

	Studies estimating mean HSUVs using subgroups with single health conditions and data from generic HRQoL questionnaires

	Flanagan [12] (HUI3) all HSUVs “purified” by dividing data by mean HSUV from full dataset, range in mean JHC HSUVs: -0.01 to 1.00

	  Multiplicative
	NR
	NR
	NR
	NR
	0.99~, P < 0.001
	NR 

	Janssen [13] (EQ-5D) adjusted baseline using mean HSUV from respondents without the specific health condition, 
Health conditions identified by QPC, range in mean JHC HSUVs: 0.594 – 0.798

	  Additive
	0.027†
	0.003†
	0.040
	NR
	NR
	 P < 0.001

	  Multiplicative
	0.010†
	0.002†
	0.032
	NR
	NR
	P = 0.082

	Janssen (EQ-5D) adjusted baseline using mean HSUV from respondents without the specific health condition, 
Health conditions identified by CCC, range in mean JHC HSUVs: 0.611 – 0.742

	  Additive
	0.022†
	0.001†
	0.022
	NR
	NR
	P < 0.001

	  Multiplicative
	0.024†
	0.001†
	0.022
	NR
	NR
	P = 0.289

	Fu [14] (EQ-5D), baseline of perfect health, range in mean JHC HSUVs: 0.611 – 0.742

	  Additive
	-0.123
	0.0156
	NR
	0.2184
	NR (s < 0.970)
	NR

	  Multiplicative
	-0.094
	0.0095
	NR
	0.2752
	NR (s < 0.970)
	NR

	  Minimum
	0.025
	0.0021
	NR
	0.5578
	0.970, P < 0.0001
	NR

	Fu [14] (EQ-5D), all HSUVs purified by dividing data by mean HSUV from full dataset, range in mean JHC HSUVs: 0.62 to 0.90

	  Additive
	-0.054
	0.0035
	NR
	NR
	0.842 [23]
	NR

	  Multiplicative
	-0.043
	0.0025
	NR
	NR
	0.878 [23]
	NR

	  Minimum
	0.027
	0.0024
	NR
	NR
	1.029 [23]
	NR

	ADE, adjusted decrement estimator; CCC, concordance correlation coefficient; HSUV, health state utility value; JHC, joint health condition; MAE, mean absolute error; ME, mean error; MSE, mean squared error; NR, not reported; OLS, ordinary least square; s, synergist coefficient in OLS (mapping estimated onto actual HSUVs with no constant), SG, standard gamble; t-test for estimated and actual JHC HSUVs; TTO, time trade-off.
Bold text is the model favoured in study conclusions.
* root mean squared error reported not MSE, † estimated from actual HSUVs and estimated HSUVs reported in article.






Table 2: Reported results and supporting statistics continued
	Methods used

	Statistics used to compare the methods used to estimate HSUVs

	
	ME (95% CI)
	MSE (95% CI)
	MAE
	CCC (95% CI)
	s
	t-test

	Hu [15] (EQ-5D), baseline of perfect health, range in mean JHC HSUVs: 0.62 to 0.90

	  Minimum
	0.023 
(0.021, 0.026)
	0.045*
(-0.024, 0.023)
	NR
	0.56 
(0.52, 0.59) 
	NR
	NR

	  Multiplicative
	-0.096 
( -0.098, -0.094)
	0.100* 
( -0.114, -0.079)
	NR
	0.28 
(0.25, 0.30)
	NR
	NR

	  Additive
	-0.125
(–0.127, -0.124)
	0.127* 
(-0.141,-0.111)
	NR
	0.22 
(0.20, 0.23)
	NR
	NR

	  ADE
	0.0001 
(-0.002,0.002)
	0.034* 
(-0.024, 0.023)
	NR
	0.72 
( 0.70, 0.75)
	NR
	NR

	  Linear index
	-0.016 
(–0.018, -0.013)
	0.040* 
(-0.043, 0.010)
	NR
	0.60 
(0.58, 0.62)
	NR
	NR

	Ara [16] (EQ-5D), baseline of perfect health, range in mean JHC HSUVs: 0.36 to 0.92

	  Additive
	0.1384
	0.0234
	0.1411
	NR
	NR
	NR

	  Multiplicative
	0.0580
	0.0070
	0.0707
	NR
	NR
	NR

	  Minimum
	-0.0995
	0.0147
	0.1037
	NR
	NR
	NR

	  ADE
	-0.0470
	0.0064
	0.0620
	NR
	NR
	NR

	  OLS model
	0.0003
	0.0036
	0.0471
	NR
	NR
	NR

	Ara [16] (EQ-5D), age-adjusted baseline from individuals with none of health conditions, range in mean JHC HSUVs: 0.36 to 0.92

	  Additive
	0.0781
	0.0102
	0.0872
	NR
	NR
	NR

	  Multiplicative
	0.0254
	0.0042
	0.0516
	NR
	NR
	NR

	  Minimum
	-0.0995
	0.0147
	0.1037
	NR
	NR
	NR

	  ADE
	-0.0695
	0.0090
	0.0781
	NR
	NR
	NR

	  OLS model
	0.0001
	0.0036
	0.0466
	NR
	NR
	NR

	ADE, adjusted decrement estimator; CCC, concordance correlation coefficient; HSUV, health state utility value; JHC, joint health condition; MAE, mean absolute error; ME, mean error; MSE, mean squared error; NR, not reported; OLS, ordinary least square; s, synergist coefficient in OLS (mapping estimated onto actual HSUVs with no constant), SG, standard gamble; t-test for estimated and actual JHC HSUVs; TTO, time trade-off.
Bold text is the model favoured in study conclusions.
* root mean squared error reported not MSE, † estimated from actual HSUVs and estimated HSUVs reported in article.




Table 2: Reported results and supporting statistics continued
	Methods used

	Statistics used to compare the methods used to estimate HSUVs

	
	ME (95% CI)
	MSE (95% CI)
	MAE
	CCC (95% CI)
	s
	t-test

	Ara [17] (SF-6D), age-adjusted baseline from individuals with none of health conditions, range in mean JHC HSUVs: 0.465 to 0.607

	  Additive
	0.1209
	0.0157
	0.1209
	NR
	NR
	NR

	  Multiplicative
	0.0745
	0.0064
	0.0745
	NR
	NR
	NR

	  Minimum
	-0.0546
	0.0038
	0.0546
	NR
	NR
	NR

	  ADE
	0.0383
	0.0022
	0.0006
	NR
	NR
	NR

	ADE, adjusted decrement estimator; CCC, concordance correlation coefficient; HSUV, health state utility value; JHC, joint health condition; MAE, mean absolute error; ME, mean error; MSE, mean squared error; NR, not reported; OLS, ordinary least square; s, synergist coefficient in OLS (mapping estimated onto actual HSUVs with no constant), SG, standard gamble; t-test for estimated and actual JHC HSUVs; TTO, time trade-off.
Bold text is the model favoured in study conclusions.
* root mean squared error reported not MSE, † estimated from actual HSUVs and estimated HSUVs reported in article.



Figure 1: Impact on HRQoL attributable to health condition(s)
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Figure 1: Distribution of mean EQ-5D scores for subgroups with two comorbid

health conditions
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