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ABSTRACT 
 

One of the main reasons contributing to the growth of the wind industry is the effort 

placed on improving designs and on reducing the operating and maintenance costs to 

make wind energy more cost competitive. Operations and maintenance is in fact 

estimated to contribute to 20-25% of the levelised cost of energy for wind energy. Studies 

have shown that while the gearbox is responsible for a substantial portion of the 

downtime incurred during the lifetime of a wind turbine, the initial point of failure is 

generally attributed to the bearings within.  Given this scenario, the main aim of this 

project is to study the applicability of ultrasound techniques as a non-destructive 

monitoring technique that enables detection of problems in the bearings prior to failure. 

The downtime can therefore be reduced by avoiding catastrophic failure and by enabling 

more efficient scheduled maintenance. 

 

In this study a focused immersion transducer has been used to emit and collect ultrasonic 

waves aimed at, and reflected off, the outer race of a bearing. Any changes in the reflected 

waves convey information on the outer race displacements, which in turn provide 

information on the health of the bearing.   

 

A new approach was developed for the construction of cylindrical roller bearing outer 

race surface displacement curves by employing a focused immersion transducer. The 

proposed technique is based on measurement of the first reflected wave specifically 

defined by the zero-crossing point while the bearing is in operation. It is clearly observed 

that as the rolling element goes through the investigated area the distance between 

transducer and bearing outer race is shortened resulting in a time shift of the first 

reflection. Time shift measurements were subsequently converted into bearing outer race 

deflection by using time-of-flight technique. Moreover, it has been shown that real time 

monitoring of the time shift is possible at a low resolution.  

 

The study shows how the bearing outer race deflection curves provide information about 

the ongoing contact events within the bearing. This information can be used to identify 

an unhealthy component, since when any of the components contains a defect, an 

anomaly in the bearing outer race deflection curves is observed. Such discontinuities 

have been characterized by two parameters: peak height and duration and the relationship 
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between these parameters and load, defect location, defect severity and defect size has 

been explored.  

 

It was found that the proposed method is able to distinguish which of the components is 

defective, detect line defects larger than 0.36 mm, assess the severity of the defects and 

pin-point the location of the defect with respect to the sensor as long as it falls within the 

identified measurable range.  
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1 INTRODUCTION  

 

1.1 Background 

The wind power industry has been experiencing growth since its naissance. According 

to the statistical reports prepared by the Global Wind Energy Council (GWEC) in the 

past five years, capacity generation has increased by a factor of two, reaching 486 GW 

by the end of 2016 as shown in the Figure 1.2 (GWEC, 2016). This translates to about 

5% of the global electricity production in 2016 (Global Energy Statistical Year Book, 

2017). China holds the largest share, 34.7% of installed wind capacity followed by the 

United States (16.9%), Germany (10.3%), India (5.9%), Spain (4.7%) and the United 

Kingdom (3%) (as of December, 2016). Establishing itself as one of the most cost 

competitive sources of energy, in addition to being a clean and reliable source, 

predictions are that the industry will continue to grow in the coming years (GWEC, 

2016). 

 

 

Figure 1.1 Installed wind energy capacity between 2001-2016  (GWEC, 2016) 

 

The industry growth has most certainly been fuelled by governmental aid and incentives, 

which are issued to help the countries attain their renewable energy targets. An example 

is the Europe 2020 package whereby the energy produced from renewables in EU 

countries must reach 20% by 2020 (European Parliament, 2009). As an aid to investors, 

companies and other entities, KPMG  issued a report in 2015 compiling all the incentives 

and policies all over the world (KPMG, 2015).   
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However, since the 1980s, the industry has matured, enabling lower investment costs and 

higher capacity factors that have substantially reduced the price of wind energy to 

unprecedented levels. In fact, the levelised cost of energy (LCOE) for onshore wind 

power in certain markets has decreased so much it is nowadays one of the most 

competitive sources of energy, even when compared to fossil fuels as illustrated in the 

Figure 1.2 (IRENA, 2015). 

 

 

Figure 1.2 The levelised cost of electricity from utility-scale renewable technologies, 

2010 and 2014 (IRENA, 2015) 

 

Although Operations and Maintenance (O&M) costs are estimated to contribute to 20-

25% of the LCOE, studies on the running costs and failure modes of operating wind 

turbines are very scarce. Despite this lack of information, the industry keeps evolving by 

improving designs on all levels and reducing operational and maintenance costs to make 

wind energy more efficient and less expensive (Echavarria et al., 2008).  

 

A recent remarkable study by Reder et al. (2016) has focused on wind turbine component 

failures and downtime. Involving over 4300 onshore wind turbines within 230 wind 

farms, of power ranging from 300kW to 3MW, the authors analysed failure logbooks 

from different manufacturers for 3 operational years covering over 7000 failures. The 
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failure rates represent the normalized component failure per turbine and year and the 

downtime represents the component contribution to overall downtime.  

 

 

Figure 1.3 Normalised failure rates and downtimes for geared G < 1MW Turbines 

(Reder et al., 2016)  

 

 

Figure 1.4 Normalised failure rates and downtimes for geared G ≥ 1MW Turbines 

(Reder et al., 2016) 

 

Other older studies (Hahn et al., 2007; Ribrant and Bertling, 2007) are less detailed than 

the one described above, however there is consensus that the gearbox represents a failure 

mode that is responsible for a substantial amount of downtime. 
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In order to detect the failures in wind turbine components shown in Figure 1.3 and 1.4, 

Condition Monitoring Systems (CMS) have been developed. These systems use a variety 

of different types of sensors to monitor critical wind turbine components. There are two 

types of wind turbine CMS: those that are purpose-designed to monitor a particular 

component or the more general and extensive Supervisory Control and Data Acquisition 

that is commonly referred to as SCADA (Yang et al., 2014). The widely employed 

SCADA systems monitor gearbox, bearings and lubricant temperature, vibration level of 

bearings and gearbox, tower and drive train acceleration. The system monitors wind 

turbines inputs such as wind speed, wind deviations and outputs rotor speed, blade angle 

and output active and reactive power to diagnose wind turbine condition, prevent 

additional cost, minimise downtime and increase the wind turbine reliability (Salameh et 

al., 2018).  

 

These condition monitoring systems consist of an integration of several sensors such as 

temperature, vibration, acoustic emission, and ultrasound transducers. The temperature 

of bearings, lubricant, generator, converter, nacelle and transformer is monitored by 

thermocouples. A substantial increase in temperature could be indicative of a late-stage 

fault, however, an increase in temperature could also be the result of a change in the 

operating conditions of surrounding components. The vibration level of the main shaft, 

main bearing, gearbox, generator, nacelle, tower, blade and foundation is monitored by 

vibration sensors. Component degradation, poor bearing installation, precession of 

bearing and faulty bearing components result in an increase of the level of vibration. This 

makes vibration monitoring is a suitable method to diagnose wind turbine components. 

Although, acoustic emission sensors are also capable to detect defects in wind turbine 

components as sensitively as vibration sensors, due to high cost, high noise and high data 

storage requirement, their application is not common. Ultrasound transducers were 

employed in commercialised condition monitoring techniques to detect tower defects and 

wind turbine blade defects in their early stages. In this method, elastic high frequency 

sound waves propagate in the material and interaction with a defect will cause the waves 

to be fully or partially reflected depending on the defect and material properties involved. 

By monitoring emitted and received ultrasound waves, localisation and imaging of 

surface and subsurface defects as well as severity analysis can be performed (Tchakoua 

et al., 2013) 
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On the other hand, ultrasound has been proven to determine the stress and oil film 

thickness in the bearing contacts (Quinn et al., 2002  and Dwyer-Joyce et al., 2003). The 

work of Howard (2016), has shown how lubricant breakdown can be monitored by 

ultrasound and how this can provide information about incipient bearing failure. The 

bearing load and bearing outer race displacement have been monitored by ultrasound 

time-of-flight measurements by Ibrahim 2012 and Chen 2016, respectively. Although 

there is no commercialised ultrasound condition monitoring system, the mentioned 

works have shown the potential of ultrasound techniques as a CMS application. In this 

project, bearing outer race surface displacement and defect detection capabilities of 

ultrasound transducers were examined. 

 

The condition monitoring methods which were discussed briefly above, are mainly 

employed to monitor wind turbine gearboxes and bearings within the drive train. Figures 

1.5 and 1.6 illustrate the bearings that can be found in a wind turbine and in a wind 

turbine gearbox respectively.  

 

 

Figure 1.5 Bearings in the wind turbine (Fierro, 2016) 
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The wind turbine nacelle connects the tower to blades and rotor. It consists of three main 

parts: the main shaft, the gearbox and the generator. Bearings can be found in various 

locations throughout the nacelle. Pitch bearings are generally large, rolling element 

bearings or slewing bearings. They connect the blades and the rotor hub, which in turn 

are connected to the gearbox via the main shaft. Spherical roller bearings or tapered roller 

bearings (TRB) in combination with cylindrical roller bearings (CRB) are commonly 

used to support the main shaft (Dvorak, 2017). Within the gearbox, planet bearings and 

arrangements of CRBs, TRBs, and ball bearings can be found.  These can be in multi-

row or full complement versions to sustain high radial loads. The bearings in the 

generator, ball bearings or CRBs, require current insulation to prevent damage from 

passing current. Finally, the yaw system connecting the nacelle to the tower would 

include angular contact ball bearing or tapered roller bearings due to their compact and 

high load capacity properties (Yagi, 2004). 

 

As studies show that the gearbox is responsible for substantial downtime, the bearings 

within the gearbox are generally the initial point of failure of the gearbox (Musial et al., 

2007). The study by Musial et al., (2007) has identified certain bearing locations as being 

the most critical after having been reported to incur the most application failures 

irrespective of size, brand or model. These locations are those for the planet bearings, 

intermediate shaft-locating bearings and high-speed location bearings. 

 

Figure 1.6 Wind turbine gearbox (Olympus, 2017) 
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The bearings within a gearbox must sustain a varying load operating environment as the 

wind ranges from a breeze to gusts of winds. This makes the acting loads difficult to 

predict possibly leading to the application of an inadequate bearing. One of the aims of 

this study is to develop a monitoring system to measure the applied load on the bearings.   

The same monitoring method can be used for defect detection – whereby problems with 

bearings can be detected prior to failure, hence avoiding catastrophic failures, enabling 

scheduled maintenance based on weather conditions rather than on remaining life-time, 

more efficient use of cranes and replacement of bearings before substantial degradation, 

whereby particles carried away by the oil start affecting other components. This project 

therefore proposes a monitoring system with the aim of reducing downtime and hence 

increase wind turbine reliability.  

 

Although the method would be applicable to any bearing with rotating inner races, such 

as the main bearing and other bearings within the gearbox, the bearing employed in this 

study is a Cooper split bearing – which with respect to non-split bearings has the 

advantages of easier mounting or replacement due to lower handling weights and because 

it can be fitted around the shaft, hence reducing costs and downtime. 

 

1.2 Aim and objectives 

 

Since bearing related faults are generally catastrophic and costly, monitoring of the 

bearings is a necessity. The main aim of this project is to study the applicability of 

ultrasound techniques as a means of obtaining bearing health information, in a non-

destructive manner, for bearings used in wind turbines.  

 

The benefits of employing an ultrasound transducer as opposed to the widely employed 

vibration sensors would be twofold: 

• Ultrasound transducers are not in contact with the casing, whereas vibration 

sensors are seismic devices that are affected by the total motion of the structure 

(casing vibration).    
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• In vibration-based condition monitoring applications, the vibration data of the 

bearing is first stored, then analysed in frequency domain. The proposed method 

is able to detect defect, analyse the source of defect and diagnose the defect 

severity in real time for low rotation speed applications. 

 

To achieve the above aim, the objectives are: 

 

1. Assess the applicability of an ultrasound transducer as a proximity sensor. As the 

outer race of a bearing in operation undergoes cyclic deflection, the outer race 

outer surface distance relative to a fixed-position transducer changes. The first 

step is to evaluate whether an ultrasound transducer can be employed to detect 

this deflection in the outer race and to what resolution.   

 

2. Investigate the deflection curves obtained from the outer race using an ultrasound 

transducer. The effects of the number of rolling elements and shaft rotation 

speeds affect the deflection curves is investigated.  

 

3. Detect defects from the deflection curves. This includes the determination of the 

faulty component (inner race, outer race or rolling elements) and assessment of 

the defect severity and location.  

 

4. Develop signal processing software for both real time and post signal processing 

to enable bearing monitoring.  
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1.3 Thesis layout 

Since the nature of this study is relatively complex and involves both bearing theory, 

ultrasound theory and post processing signal analysis the literature review extends over 

three chapters: Chapters 2,3 and 4. This was necessary to give the reader a basic 

understanding of the concepts involved. Subsequently, Chapter 5 explains the 

experimental procedures followed, and Chapters 6, 7 and 8 discuss the findings.  

 

Chapter 2 introduces the reader to ultrasound theory: definitions and ultrasound wave 

propagation and reflection as determined by the material acoustic properties. Some 

measurement techniques, their principles, the transducer types employed, structure and 

functions of main components are explained briefly. Finally, the application of 

ultrasound techniques to bearing outer race displacements are discussed.  

 

Chapter 3 discusses the bearing outer race force-deflection relationship and compares 

various bearing deformation theories. 

 

In Chapter 4, the last literature review chapter, bearings – the failure modes, bearing life 

prediction approaches and existent defect diagnosis methods are reviewed. The latter 

include the types of transducers and data processing techniques that are most commonly 

employed for defect assessment.  

 

Chapter 5 then introduces the test rig used in this study. Its main components, including 

the transducer instrumentation is presented and the data acquisition systems that were 

developed to record ultrasound reflections are explained.   

 

Chapter 6 deals with outer race deflection measurements by using an ultrasound 

immersion transducer. The proposed bearing outer race deflection measurement method 

is explained in detail, starting from data acquisition and signal processing techniques. 

Finally, the effects of shaft rotation speed, load and the number of rolling elements on 

the deflection magnitude are examined.  
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Defects on the rolling elements and inner race of the bearing are discussed in Chapter 7. 

Deflection curves obtained from bearings having differently sized line defects incised on 

rolling elements and inner races are analysed and defect detection, location and size are 

evaluated.  

 

Ensuing in Chapter 8 is an analysis of defects on the outer race. Defect detection and 

characterization (size and location) on the critically loaded part of the outer race is 

explored. Moreover, the effect of loading conditions on the deflection pattern of a 

defected outer race is investigated.  

 

Finally, Chapter 9 draws the main points deduced from this research and gives some 

recommendations for future research.   
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2 ULTRASOUND BACKGROUND 

 

Within the wind turbine market, condition monitoring systems incorporating ultrasound 

transducers have been employed as structural integrity monitoring systems for 

components such as blades and towers. Although the potential of ultrasound transducers 

in some bearing condition monitoring applications has been investigated, such systems 

have not yet been applied commercially.  Hence, this study attempts to pursue further 

this area of study by evaluating the abilities of ultrasound transducers for bearing 

monitoring systems. Also, since the abilities of non-contact transducers (eddy-current, 

fibre optic) have been confirmed to be able to monitor bearing health, the possibility of 

using an ultrasound transducer as a non-contact sensor is evaluated.  

 

This chapter introduces ultrasound and behavior of ultrasonic waves as they interact with 

different media. Also, it provides information about the theory behind ultrasonic 

condition monitoring techniques which are used to detect bearing defects by monitoring 

the change of bearing outer race shape (deflection and deformation). Finally, applied 

signal processing techniques to determine measurements from the ultrasound data will 

be introduced. 

 

2.1 Ultrasound 

Sound is a mechanical vibration that requires a medium to propagate. The frequency of 

vibration can range up to 100 GHz as illustrated in Figure 2.1. Ultrasound waves are 

sound waves with a frequency that surpasses the sonic region, i.e. the limit of the human 

hearing (20 kHz), but that is less than 10 GHz. This considerably high vibration 

frequency can be obtained by vibrating the piezo electric element by means of 

piezoelectric effect.   

 

Figure 2.1 The frequency range of sound (Kinsler et al., 1999) 
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When ultrasound interacts with a medium, the wave can be fully reflected or partially 

reflected and partially transmitted, depending on the acoustic impedance of the 

material(s). Digital imaging is performed by measuring the reflected and transmitted 

sound wave energies and comparing them to the incident wave.  

 

This penetrating nature of the ultrasound wave enables non-destructive testing and 

monitoring of materials. Ultrasound testing offers a higher safety, less expensive and 

lower frequency solution when compared with X-rays, but also provides a higher spatial 

resolution than other non-destructive methods.  These distinctive, superior features lead 

to extensive usage in many non-destructive testing applications in many different fields 

such as veterinary and human medicine, medical scanners and non-destructive testing 

(NDT) of structures. Usage of ultrasound became more popular in the 20th century 

because of the development of computers that facilitate signal processing capabilities. 

 

2.1.1 Ultrasound propagation and wave types 

All materials are composed of atoms connected via elastic bonds, which at small 

deflections behave similar to a spring, as shown in the Figure 2.2. When the individual 

particles are exposed to oscillation, this vibration force is transmitted to the adjacent 

particle through the elastic bonds. Propagation of the oscillation through the rest of the 

particles in the material will result in a sound wave.   

 

In the media sound waves propagate via four different oscillation modes: longitudinal, 

shear, surface, and plate waves, depending on particles oscillations and wave propagation 

direction. In industrial ultrasonic testing applications, longitudinal and shear waves are 

more commonly employed.  Within this work, longitudinal waves were studied. 
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Figure 2.2 Spring-like elastic bonding between atoms-models of an elastic body 

(Kräutkramer and Kräutkramer, 1987) 

 

 

In the longitudinal waves, which are also known as compression or pressure waves, 

particle displacement (oscillation) occurs parallel to the wave propagation direction.   

Figure 2.3 shows a section of a host material body where a longitudinal wave is 

propagating. As can be seen from the Figure, the material oscillates left to right and the 

induced sound wave propagates to the right. The sound waves propagate at a constant 

speed with uniform intervals to the right. Distance between oscillation cycles represents 

the wavelength of the soundwave, λ, which is related to the host material’s elastic 

modulus and density.  

 

 

Figure 2.3 Longitudinal wave propagation (Kräutkramer and Kräutkramer, 1987) 
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On the other hand, in the shear waves, the oscillation of the particles within the host 

material is perpendicular to the wave propagation direction as shown in Figure 2.4.  

 

 

Figure 2.4 Shear wave propagation (Kräutkramer and Kräutkramer, 1987) 

 

Shear sound waves enter the media at a moderate angle which can be created from angle 

beam transducers and ultrasonic shear transducers.  

 

2.1.2 Material acoustic properties effects on ultrasound wave propagation 

When sound waves interact with a dissimilar medium, the sound transmission rate will 

be affected by medium’s acoustic properties. The relationship between the ultrasonic 

wave propagation and the material’s acoustic properties will be discussed in more detail 

within the section.  

2.1.2.1 Speed of sound 

The speed of sound can be simply described as the travelled distance by the sound wave 

divided by the elapsed time. It depends on the host material and the working environment 

properties.   

 

As explained in § 2.1.1, materials consist of atoms and/or molecules which are inter-

connected to each other with the electrostatic bonds that determine the elastic modulus. 

This structure can be modelled as balls, representing particles, which are linked by 

springs, representing the bonds. The speed of sound through the material depends on 

material density, (where in the ball structure analogy density is represented by the 
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number of balls), and the elastic modulus of material (represented by the stiffness of the 

springs).  

 

Stronger bonds transfer sound more quickly, just like stiffer springs transmit energy more 

rapidly. For instance, although nickel and bronze have same density, sound will travel 

1.59 times faster in nickel than bronze due to high elastic modulus of nickel. The elastic 

modulus is directly proportional to the compressibility; hence, it follows, that the harder 

it is to compress a material, the higher is its elastic modulus and the faster the sound wave 

transmission. For example, sound is transmitted faster in solid media than liquid ones 

(Project Gutenberg, 2017).  

 

On the other hand, the higher the density of the material, the slower is the transmission 

of the sound wave.  For instance, gold and aluminum have similar elastic moduli, 

however sound travels twice as fast in aluminium than in gold, because gold is denser 

(NDT Resource Center, 2018). 

 

Also, the speed of sound depends on the sound waves type; longitudinal waves travel 

faster than shear waves – for example, longitudinal waves travels 2.01 times faster than 

shear waves in nickel. The Equation 2.1 and 2.2 express the speed of sound for 

longitudinal and shear waves: 

 

𝑐𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 = √
𝐸(1 − 𝑣)

𝜌 (1 + 𝑣)(1 − 2𝑣)
(2.1) 

   

𝑐𝑠ℎ𝑒𝑎𝑟 = √
𝐺

𝜌
 (2.2) 

 

Where 𝑐 is the speed of sound, 𝐸 is the modulus of elasticity of the material, 𝐺 is the 

shear modulus, v is the Poisson’s ratio and ρ is the material density. The speed of sound 

is also related to the ultrasound wavelength at a given frequency as illustrated by 

Equation 2.3. 

𝑐 =  𝑓𝜆 (2.3) 
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Environmental conditions such as temperature, pressure, fluid flow velocity and moisture 

content (for gas) also affect the speed of sound. The variation of the speed of sound in 

water with temperature is shown in the Table 2.1.   

 

 Temperature (ºC) Speed of sound (𝒎/𝒔) 
W

a
te

r
 

0 331.4 

10 337.5 

20 343 

30 349.7 

40 355 

Table 2.1 The speed of sound in water vs temperature (NDT Resource Center, 2017) 

  

As the speed of sound and penetration rate are affected by many material parameters, any 

changes in these parameters will affect either one or both of the sound wave’s properties. 

Hence, monitoring the speed of sound and penetration rate enables monitoring of many 

material characteristics in a non-destructive way.   

 

The speed of sound in different materials can be found in Tables (such as Table 2.2 that 

has been adapted from RF Cafe (2017)), but it can also be measured by simple time of 

flight measurements. In these tests, an ultrasound wave travels across a material of 

known thickness and when it reaches the material’s boundary, some of the wave energy 

is transmitted, and some of it is reflected back to the transducer.  

 

By measuring the time elapsed between the wave generation and the received first 

reflection, the speed of sound can be obtained as shown in the Equation 2.4.  

 

𝑐 =
2(𝑘𝑛𝑜𝑤𝑛 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)

𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒
(2.4) 
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In this work, time of flight measurements were performed to study displacements; 

changes in the distance between the transducer face and the bearing outer race outer 

surface, where the wave is travelling through a fluid (water) and the speed of sound in 

the fluid is not varied. This distance (between the immersion transducer face and the 

bearing outer race outer surface) changes while the bearing is in operation and the rolling 

elements pass the monitored area.  

 

 Material Speed of sound (𝒎/𝒔) 

G
a
se

s 

Carbon Dioxide 259 

Helium 965 

Oxygen 316 

Nitrogen 334 

Air 331 

L
iq

u
id

s 

Glycerol 1904 

Sea Water 1535 

Water 1493 

Methyl Alcohol 1103 

S
o
li

d
s 

Diamond 12000 

Glass 5640 

Iron 5960 

Aluminum 5100 

Brass 4700 

Copper 4760 

Gold 3240 

Lead 2160 

Rubber 1550 

Table 2.2 Speed of sound in various materials (longitudinal wave) (RF Cafe, 2018) 
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2.1.2.2 Acoustic impedance 

The acoustic impedance of a material is attained from the product of density and the 

speed of sound. In the Equation 2.5, acoustic impedance is denoted by (𝑁𝑠/𝑚3), the 

speed of sound in the material, 𝑐 (𝑚/𝑠) and density, 𝜌,(𝑘𝑔/𝑚3). The acoustic impedance 

of the various materials is shown in the Table 2.3. 

 

𝑍 =  𝜌𝑐 (2.5) 

 

 

Material Longitudinal wave acoustic impedance  (𝑴𝑹𝒂𝒚𝒍𝒔) 

Aluminum 17.1 

Beryllium 23.5 

Bismuth 21.4 

Brass 36.7 

Bronze 31.28 

Copper 41.61 

Cadmium 24.02 

Gold 62.6 

Iron 45.43 

Lead 24.62 

Nickel 49.99 

Silver 37.8 

Steel 45.4 

Water 1.483 

Air 0.000429 

Table 2.3 Acoustic impedance table of various materials (NDT Resource Center, 2012) 

 

Impedance affects the penetration and reflection of the sound wave at an interface. When 

the acoustic impedance difference between two consecutive materials is high, reflection 

of an incident wave is higher than transmission. This principle is the basis of ultrasonic 

crack detection (discontinuity source); when an ultrasonic wave encounters a crack, it is 

fully reflected due to the high acoustic impedance difference between the solid and the 

air within the crack.   
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In this work, generated ultrasound pulses first propagate in water, then encounter the 

interface of the bearing outer race, which is hardened bearing steel (100Cr6). Most of the 

sound energy, 87.7 per cent is reflected back to the transducer whilst the rest of it is 

transmitted through the bearing. 

 

2.1.2.3 Attenuation  

Attenuation is the decay rate of the amplitude of an ultrasound wave as it travels through 

the medium. The diminishing ratio of the wave is dependent on the host material 

properties: travelled distance and sound frequency. An example of diminishing of 

ultrasonic reflections is shown in the Figure 2.5. This reduction in ultrasonic energy can 

occur for various reasons some of which are radiation, absorption, and scattering. 

 

The sound wave amplitude’s decay can be expressed by Equation 2.6: 

 

𝐴 = 𝐴0𝑒
−𝛼𝑥 (2.6) 

 

Where, 𝐴 is the decayed wave amplitude after the sound wave passed through a material 

of thickness 𝑥. 𝐴0 is the initial wave amplitude and 𝛼 is the attenuation coefficient 

(Kräutkramer and Kräutkramer, 1987). 

 

 

Figure 2.5 Ultrasonic reflections amplitudes diminish in time domain (Brunskill, 2013) 
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2.1.2.3.1 Radiation  

Radiation is the decreasing of the sound wave energy due to spreading of the ultrasound 

wave. An ultrasound wave diverges as it propagates as a consequence of the transducer 

and interface geometries, transducer frequency and the speed of sound within the host 

medium (Figure 2.6 (a)) (NDT Resource Center, 2018). 

 

For focused immersion transducers, low frequency and a very small active element 

diameter will result in excessive beam divergence (Figure 2.6 (b)). On the other hand, 

high frequencies cause less divergence irrespective of element diameter (Figure 6c) 

(NDT Resource Center, 2018). 

 

 

Figure 2.6 (a) Beam Divergence (b)1 MHz planar transducer’s beam divergence (c) 9 

MHz planar transducer’s beam divergence (NDT Resource Center, 2018) 

 

2.1.2.3.2 Absorption 

Ultrasound wave propagation within media depends on particle oscillation. Some of the 

vibrational energy is converted into another form of energy; it changes to frictional heat, 

which means the energy is absorbed by the media. The loss of energy is directly 

proportional to the propagated sound wave frequency; therefore, high frequencies incur 

the highest energy losses.   

 

2.1.2.3.3 Scattering 

As the sound wave propagates in a medium, any discontinuities, inhomogeneities and 

other microstructural variations it encounters in the material will cause the wave to 

scatter. Such microscopic defects can affect propagation direction and frequency content, 

however, the attenuation of the sound wave amplitude is very small.  
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When the size of inhomogeneity is equal to or greater than the wavelength of the incident 

ultrasound wave, the scattering effect will cause a problem. In this work, the probability 

of attenuation by scattering is very low, because the wavelength of the used ultrasound 

wave is around 0.5 mm which is believed to be bigger than the steel discontinuities found 

in the used 100Cr6 high quality hardened steel bearing.       

 

2.1.3 Ultrasonic transducers 

The transducer is an electrical device which is capable of converting a physical quantity 

into another form of energy or vice versa. In ultrasonic transducers, the reversible 

conversion of energy from electrical energy to mechanical energy in the form of sound, 

is carried out via a piezoelectric active element. The energy conversion process can be 

explained briefly as follows: when the piezoelectric element is electrically charged, its 

atoms start vibrating at high frequency – thereby converting electrical energy into an 

inaudible sound wave, that propagates. Ultrasonic transducers can be used for both sound 

wave emission and receipt as the conversion is reversible. 

 

Different kinds of ultrasonic transducers are available for clinical and machine element 

condition monitoring applications; depending on the required wave type, assembly 

conditions and focused or not focused properties. A classification of ultrasound 

transducers is given in Figure 2.7 in the form of a tree diagram.  

 

 

Figure 2.7 Ultrasound transducer types 
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Transducer type selection is the most important part of non-destructive testing of 

materials. The points to be considered when selecting the transducers can be summarized 

as follows; 

 

- Required wavelength:  Defects that are smaller than half the wavelength are 

difficult to detect. Hence, the ultrasound transducer wavelength, which is 

inversely proportional to the transducer frequency, must be chosen large enough 

to detect the defects under investigation.  

 

- Sound propagation type and direction: Each wave type can be used for different 

applications for different measurements.  Also wave propagation direction is 

important to detect flaws; whereas in most applications the wave direction is 

perpendicular to the surface of the investigated part, in some applications a wedge 

transducer is used to emit an ultrasound wave that hits the interface at some 

critical angle.  

 

- Sound beam width: In some applications like bearing oil film thickness 

measurements, the ultrasound beam must fall within the contact region between 

the rolling elements and the races to obtain more precise results. The small 

contact width in bearing applications depends on the bearing material and 

geometry.  

 

In this work, a cost effective commercial probe, of spherical and focused type was 

selected due to its ability to monitor outer race displacement by using simple time of 

flight measurements.  

 

2.1.3.1 The structure of the ultrasonic transducers 

The typical single element ultrasonic transducer which has one piezoelectric element, 

transmits and receives the ultrasound waves.  Examples of such transducers are: 

immersion transducers, contact transducers, angle beam (wedge) transducers and delay 

line transducers. The main components of such single element commercial ultrasonic 

transducers are; piezoelectric elements, electrodes, backing (damping) material, 

protector wear plate, external and internal housing, RF connector and electrical 

connections and circuitry, as is illustrated in Figure 2.8.   
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Figure 2.8 Composition of standard commercial ultrasound transducers (Olympus, 

2006) 

 

The active element of ultrasonic transducers consists of a piezoelectric ceramic or 

piezocomposite, in the shape of a thin disc, rectangle or square, which is sandwiched 

between two electrodes. When these electrodes are electrically connected, electrical 

energy is converted to mechanical energy through particle oscillations, and vice versa. 

Bare piezoelectric elements consist of this basic structure; other transducers’ structure is 

a bit more complex.  

 

The electrodes, which are made up of highly conductive materials such as silver or gold, 

cause the active element to polarize when these are electrically excited. As the molecules 

of the piezoelectric element align themselves, the dimensions of the element change, 

resulting in a displacement. These displacements can be controlled and repeated by 

applying an oscillating electric field to the active element to generate required sound 

waves.  

 

The wear plate is located at the edge of the transducer, next to the electrodes and active 

element assembly to protect it from damage. An acoustic lens could also be attached to 

obtain a focusing effect and extra protection. The backing material which is acoustically 

matched with the piezoelectric element, mechanically supports the active element and 

helps to dampen the vibrations coming from active element. This prevents reverse 
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propagation and long resonance times. The use of dense and highly attenuating material 

enables a wide bandwidth, which gives a high sensitivity. Also, the backing material 

enables short pulses, as opposed to having a continuous signal. 

 

A radio frequency co-axial connector provides voltage to oscillate the active element and 

carry the transducer voltage signals that are converted from the reflected sound waves to 

the data acquisition system. A metal external case covers all the electronics inside and 

protect from external damage.    

 

2.1.3.2 Bare Piezoelectric Elements 

Several types of ultrasound transducers have been used to monitor bearings. Examples 

include immersion ultrasound transducers (focused and unfocused) and bare piezo disc 

transducers. In this study, the immersion transducers used have been bought, whilst the 

piezo disc transducers have been made.  

 

Bare piezoelectric discs have a very basic structure: the piezoelectric element is 

sandwiched between two electrodes to provide an external wiring area to apply electrical 

energy, as illustrated in Figure 2.9.  

 

The lower electrode – located between the active element and the investigated machine 

element– partly envelopes the active element to facilitate wiring (as shown in Figure 2.9). 

The upper electrode covers almost entirely the active element, but is separated from the 

small overlapping part of lower electrode. A differential voltage can be applied to active 

element via the non-contacting electrodes.  

 

 

Figure 2.9 Piezo disc (1 mm slice) (Howard, 2016) 
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Standard longitudinal piezodiscs of 7.1 mm diameter and 0.2 mm thickness provide 10 

MHz sound waves. This can be calculated from Equation 2.7 which shows that there is 

an inversely proportional relationship between the transducer’s centre frequency and the 

thickness of the active element; the thinner piezodisc provides a higher frequency sound 

wave. 

 

𝑓𝑐 =
𝑐𝑝𝑧𝑡

𝑡
 (2.7) 

 

In the formula, 𝑐𝑝𝑧𝑡 is the speed of sound in piezoelectric element, and for PZTA1, this 

is 2000 m/s. 𝑡 is the active element thickness, 0.2 mm, and 𝑓𝑐 is the centre frequency of 

the transducer. Thus, the frequency of the sound waves produced is 10 MHz.  

 

The width of the ultrasonic beam generated depends on the size of the piezo disc 

(Howard, 2016). To monitor small areas, such as bearing contacts, which are in the order 

of millimeters, the piezo disc will need to be cut. It is important to cut the piezo disc in 

such a way that it includes both upper and lower electrodes (as shown in the Figure 2.9).  

 

2.1.3.3 Immersion transducers 

Immersion transducers, as the name suggests, do not come into contact with the inspected 

component, but are immersed in its liquid environment. They can be categorised in three 

different configurations: unfocused, spherically focused and cylindrically focused 

(Figure 2.10). The main tests of the project were performed by using a spherically 

focused ultrasound transducer.  

 

Figure 2.10 Commercial immersion ultrasound transducers (Olympus, 2006) 
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Focused transducers are generally used where higher sensitivity and higher resolution is 

required as such focusing means concentrating longitudinal sound waves into a small 

region, thereby providing a small, concentrated high energy point (spherically focused) 

or line shaped sound beam (cylindrically focused) as illustrated in Figure 2.11. Focusing 

also modifies the near-field effects and enhances the sound beam coupling into curved 

test object surfaces. This focusing effect can be provided by either curving the active 

element/s or by adding a concave lens.  

 

 

Figure 2.11 Cylindrical and spherical focused immersion transducer (Olympus, 2006) 

 

The use of a concave lens and a flat transducer is the more common alternative due to 

the nature of the pulse similarity between sound and light. Spherically focused 

transducers are good solutions for improved sensitivity of small flaws on curved 

materials such as bearings, whilst the cylindrical focused version is more suitable for line 

shaped inspection, which is required in certain machine elements such as tubing or bar 

stock. The application of a spherically focused transducer on bearing systems can be seen 

in the Figure 2.12. 
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Figure 2.12 Spherically focused immersion transducer focusing effect on bearing 

application 

 

On the other hand, unfocused transducers are more commonly used in more generic 

applications or for thick material applications where precision is not necessary.  

 

To perform more precise measurements, focus ultrasound transducer instrumentation 

parameters such as water path and focal spot diameter should be adjusted suitably for the 

experiment. The water path distance can be described as a distance between the 

transducer face and the inspected component surface. The focal spot diameter is the 

narrowest diameter of the sound beam at focal point, where the highest sound beam 

pressure is observed. 

 

In this work, although deflection measurements were not affected significantly by the 

water path distance, to obtain accurate measurements the inspected component was 

positioned in the focal zone where the narrowest and strongest sound beams befall.  

 

2.1.3.3.1 Sound propagation of a spherically focused immersion transducer 

Contactless transducers need a liquid environment between the test object and the 

transducers to get rid of huge acoustic mismatch. Water, because of its structure is the 

best candidate for longitudinal sound wave propagation.  
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The soundfield of a focused ultrasound transducer is divided into two zones: the near 

field (Fresnel zone) and the far field (Fraunhofer zone).  The near field region starts from 

the surface of the transducer to the focal point – where other than having the narrowest 

diameter and highest energy, the echo signal is reduced to – 6 dB of its peak value. In 

this region, the longitudinal sound wave beam diameter narrows as the distance from the 

transducer increases. Soundfield pressure and echo amplitude increase until the far field 

region starts. Beyond this point, the sound waves diverge; sound field pressure drops to 

zero and the beam diameter starts increasing. The transducer frequency and the crystal 

diameter affect the divergence of the beam in the far field region in an inversely 

proportional manner. The best inspection results can be obtained within the focal zone 

region, in the section where the beam diameter decreases from twice the diameter at the 

focal point, to the focal point and increases again to twice the minimum, as indicated by 

Figure 2.13 (Advanced NDT Systems, 2004; Olympus, 2006).  

 

 

Figure 2.13 Sound field of a focused transducer 

 

2.1.3.3.2 Water path 

The distance between face of the transducer and the inspected components is called the 

water path. This distance is crucial for reliable results and is dependent on the inspected 

material thickness, speed of sound in water and the involved material (ex. steel) and also 

on the focal length, the latter of which is 0.8 times the near field length for a point target 

focus. The water path is additionally affected by frequency and diameter of the transducer 

as a result of the relationship between focal length and nearfield.  
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The near field distance can be calculated using Equation 2.8 or measured experimentally. 

It can also be found in catalogues provided by many transducer manufacturers. 

 

𝑁 =
𝐷2𝑓

4𝑐
(2. 8) 

 

Where 𝑁 is the near field length in water, 𝐷 is element diameter, 𝑓 transducer frequency 

and 𝑐  is speed of sound in water. 

 

In this work, this approach has been adopted in addition to comparing the obtained results 

to other work in literature that made use of the same sensor (Dwyer-Joyce et al., 2003). 

 

Table 2.4 Sensor properties in water (Dwyer-Joyce et al., 2003) 

 

The transducer is able to make accurate position measurements between the minimum 

and maximum focus distances. For the employed transducer these distances are 2.54cm 

and 20.32 cm respectively (Olympus (2006), Advanced NDT Systems (2004)). While 

the bearing outer race movement measurements are performed, the distance between 

bearing outer race and transducer should be within these limits. On the other hand, in the 

oil film thickness measurements, since the oil between rolling element and bearing outer 

race is thin and narrow, the emitted sound beam size is critical and should be smaller 

than the size of the oil in the contact area. For this reason, the transducer should be placed 

at the focal zone, where the narrowest sound beam can be obtained.  

 

.            

 

 

 

 

 

Center 

Frequency 

(MHz) 

Bandwidth 

(-6dBpoints) 

(MHz) 

Element 

Diameter 

(mm) 

Focal Length 

in water 

(mm) 

Spot Size in 

water  

(mm) 

10 4 – 17 12.7 76 0.921 
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The focal length of a transducer is specified for water but it is effectively shortened in 

solid material due to speed of sound difference between the media as shown in Figure 

2.14. Most of the solid materials which are inspected have higher sound velocities than 

water which results in a shortening of the focal length due to refraction.  

 

 

Figure 2.14 Focal length shortening 

 

In the Equation 2.9, where 𝐹 is focal length in water, 𝑀𝑃 is inspected material thickness, 

𝑐𝑡𝑚  and 𝑐𝑤  are speed of sound in testing material and water respectively, can be used to 

determine the water path that involves two different media.  

 

 

𝑊𝑃 = 𝐹 − 𝑀𝑃 (
𝑐𝑡𝑚

𝑐𝑤
) (2.9) 

 

     

After specific test conditions were applied to the Equation 2.9, the water path was 

calculated to be 54.5mm.  
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2.1.3.3.3 Focal spot diameter 

The focal spot is the point which exhibits the narrowest beam diameter and highest sound 

field pressure within the focal zone. At this point, the sound field pressure drops to 50% 

(-6 dB). The focal spot diameter is dependent upon the transducer’s characteristic 

properties as well as the propagated media’s acoustic properties and can be calculated 

from Equation 2.10 Silk (1984).  

 

𝑑𝑓(−6𝑑𝐵) = 1.025
𝐹𝑤𝑐𝑤

𝑓𝐷
(2.10) 

      

 

Where 𝐹𝑤 is the focal length of transducer in water, 𝑐𝑤 is the speed of sound in the water, 

𝐷 is the diameter of focus transducer piezoelectric element, 𝑓 is the transducer frequency. 

In this work, the narrowest diameter for the used transducer was calculated to be 0.921 

mm in water applications.  

 

2.2 Ultrasonic interactions at boundaries 

Behaviour of longitudinal waves at the boundaries and how this is applied to the bearing 

environment are described in this section. Ultrasound waves, in some ways behave in a 

similar manner to light waves; as the sound waves propagate in the media, Snell’s law of 

reflection and refraction is observed. When the ultrasound waves strike an interface at an 

inclined angle, the transmitted sound waves are bended due to sound wave propagation 

speed difference between the two consecutive media as illustrated in the Figure 2.15. 

However, unlike light waves, an incident ultrasound wave energy is distributed into 

longitudinal and shear waves as it overcomes a boundary.  
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Figure 2.15 Application of Snell refraction law to the ultrasound waves (Brunskill, 

2013) 

 

When an incident sound beam hits an interface at some angle, some of the wave energy 

is reflected with the same angle of incident wave; the rest of the energy is transmitted 

into the next material and is refracted at a different angle. This angle can be calculated 

by using Snell’s law of refraction as shown in the Equation 2.11.  

 

𝑐1

𝑐2
=

𝑠𝑖𝑛𝜃1

𝑠𝑖𝑛𝜃2

(2.11) 

 

 

Where 𝑐1 and 𝑐2 are the speed of sound in the media, 𝜃1 is the incident wave angle and 

𝜃2 is the refracted wave angle.  

 

On the other hand, a generated ultrasound wave hitting an interface normally, incurs no 

refraction, but is partially reflected back, and partially transmitted through the material. 

The amount of reflection depends on the acoustic impedances of the concerned media 

and is defined by the ultrasound reflection coefficient, R, given by Equation 2.12. Figure 

2.16 shows a schematic of this theory.   

  

𝑅 =
𝑧2 − 𝑧1

𝑧2 + 𝑧1

(2.12) 
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The reflection coefficient can also be expressed in terms of the function of transmission, 

T as illustrated by Equation 2.13: 

𝑅 = 1 − 𝑇 (2.13) 

 

In practical ultrasound measurements, R can be obtained, by measuring instantaneous 

reflection and dividing it by the reference reflection as shown by Equation 2.14. In 

bearing oil film thickness measurement applications, while the rolling element is not in 

contact, the point which is being investigated, is assumed to be the reference and the 

expected interface is steel-air. However, when contact occurs beneath the transducer, oil 

film thickness gets thinner and a steel oil interface is observed. In the latter case, 

reflection amplitudes are lower.  

 

𝑅 =
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑅𝑒𝑓. (𝑅𝑜𝑙𝑙𝑒𝑟 𝑖𝑛 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑤𝑖𝑡ℎ 𝑜𝑢𝑡𝑒𝑟 𝑟𝑎𝑐𝑒 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑜𝑟)

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑛𝑜𝑡 𝑖𝑛 𝑐𝑜𝑛𝑡𝑎𝑐𝑡)
(2.14) 

     

The ultrasonic reflection coefficient varies between -1 and 1, where 𝑅 = 1  denotes 100% 

reflection, as in a solid to air environment case. 𝑅 = 0 represents an identical material 

environment where the entire ultrasonic energy is transmitted. The sign of the value 

denotes the phase of the reflected ultrasound wave.     

 

 

Figure 2.16 Incident, reflected and transmitted pulses at perfect boundaries 
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2.2.1 Ultrasonic Interactions at Real Engineering Contacts  

Surface profiles of real engineering contacts are never as perfect as illustrated in Figure 

2.17 (a). Surfaces have asperities that behave like a spring when two mating surfaces are 

pressed against each other. Such asperities, which prevent perfect contact, result in an 

interfacial stiffness, 𝐾 (𝐺𝑝𝑎) (Tattersall, 1973). Hence, taking into consideration these 

contact imperfections, the ultrasound reflection coefficient vector formula must be 

modified to include the interfacial stiffness as shown in the Equation 2.15.  

 

𝑅 =
𝑧2 − 𝑧1 + 𝑖𝜔 (

𝑧2𝑧1

𝐾  )    

𝑧2 + 𝑧1 +  𝑖𝜔 (
𝑧2𝑧1

𝐾  )
(2.15) 

     

In the Equation 2.15, 𝑧 represents the concerned media acoustic impedances and 𝜔 is the 

ultrasonic waves’ angular frequency (𝜔 = 2𝜋𝑓). This relation is named the ‘spring 

model’ and is used commonly in ultrasonic contact monitoring applications. In bearing 

contact applications, the interfacial stiffness is replaced by the lubricant stiffness, 

because the lubricant increases separation between the contacts and makes the 

imperfections (asperities) effect negligible.  

 

 

Figure 2.17 (a) Asperities in real contact (b) Spring Model as a consequence of contact 

roughness  
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In Equation 2.15, the reflection coefficient vector has an imaginary component 𝑖 that 

represents both phase and amplitude. In practical applications, the reflection coefficient 

magnitude is usually measured and Pythagoras’ theorem is applied to the Equation 2.15 

to obtain the Equation 2.16 which enables the calculation of the absolute value of the 

reflection coefficient (Tattersall, 1973). 

 

|𝑅 | = √
(𝑧2 − 𝑧1)2 +

𝜔2𝑧2
2𝑧1

2

𝐾2 
     

(𝑧2 + 𝑧1)2 + 
𝜔2𝑧2

2𝑧1
2

𝐾2 

    (2.16) 

 

 

2.2.2 Ultrasonic interactions and measurements at bearing contacts  

In this section, the behavior of ultrasonic waves in bearing contacts and the theory of 

measurement techniques will be explained. A discussion of the different techniques and 

their capabilities follows towards the end of the section.  

 

Ultrasonic measurements can be performed by using one of the following three 

approaches: time of flight method, the resonance technique, the spring model in bearing 

contacts. Each approach can be used for bearing lubricant thickness measurements, but 

the measurable range of each method is different. When the lubricant layer thickness is 

equal to or higher than 40 micrometers (µm), the ultrasound wavelength time of flight 

method can be used. If the measuring lubricant thickness is equal to the ultrasound 

wavelength, the resonance method, for which the lowest limit of lubricant film thickness 

must be around 10 µm, can be employed.  When the measuring oil film thickness is in 

the nanometer range and is hence smaller than the ultrasound wavelength, the spring 

model can be used (Suzuki, 2016).   
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2.2.2.1 Basic concepts of the spring model  

In engineering applications where a fluid (e.g. oil) is squeezed between two solid media 

(as in for example piston-cylinder interfaces and bearing applications) (Mills et al., 2015; 

Howard, 2016), ultrasonic reflection was found to be related to the effective fluid 

stiffness, K, which in turn, is related to the compressibility (change in volume due to a 

change in pressure) of the fluid. In bearing applications, lubricants are trapped between 

the outer race and the rolling element. The oil layer stiffness describes the resistance to 

the compression of the layer with applying pressure as shown by Equation 2.17. 

 

𝐾 = −
𝑑𝑝

𝑑𝑢
(2.17) 

    

Where 𝑢 is the compression displacement and 𝑑𝑝 is the pressure change.  

 

Stiffness of the liquid is also related to the bulk modulus of the layer and layer thickness 

as illustrated in Equation 2.18.   

 

𝐾 =
𝐵

ℎ
(2.18) 

      

In Equation 2.18, oil layer bulk modulus is defined by 𝐵, and ℎ is the oil film thickness. 

Bulk modulus determines how compressible the fluid is. It shows how the density of a 

fluid changes when the fluid is subjected to pressure as illustrated by Equation 2.19.  

 

𝛣 = −(
𝜗

𝑑𝜗
)𝑑𝜌 (2.19) 

 

Where 𝜗 is the volume of the fluid, 𝑑𝜗 is the volume change of the fluid due to 

compression, 𝑑𝜌 is the subjected pressure. 

 

However, the bulk modulus can also be determined by Equation 2.20 that relates the 

lubricant density and speed of sound through the lubricant film under ambient 

temperature to the bulk modulus.   
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𝛣 =  𝜌𝑐2 (2. 20)     

 

Hence, substituting Equation 2.20 into Equation 2.18, the lubricant film thickness can be 

determined from fluid parameters.  

𝐾 =
𝜌𝑐2 

ℎ
(2.18) 

    

To obtain a relationship between oil film thickness and reflection coefficient, Equation 

2.18 can be substituted in Equation 2.16: 

 

ℎ =
𝑝𝑐2

𝜔𝑧2𝑧1

√
|𝑅 |2(𝑧2 + 𝑧1)2 − (𝑧2 − 𝑧1)2     

1 − |𝑅 |2
 (2. 21) 

 

If the lubricant is trapped between identical materials, as in bearing applications, the 

lubricant film thickness formula can be expressed easily by Equation 2.22 (Howard, 

2016). 

 

ℎ =
2𝜌𝑐2

𝜔𝑧
√

     |𝑅| 2    

1 − |𝑅|2
(2. 22) 

      

The reflection coefficient can be obtained experimentally as shown by Equation 2.23. 

 

𝑅(𝑓) =
𝐴𝑚(𝑓)

𝐴𝑟𝑒𝑓(𝑓)
𝑅𝑟𝑒𝑓 (2.23) 

     

Where 𝐴𝑚(𝑓) is the spectral amplitude of ultrasonic reflection from the oil layer, 

𝐴𝑟𝑒𝑓(𝑓) is the reference spectral amplitude, and 𝑅𝑟𝑒𝑓 is the reflection coefficient of the 

reference interface. 
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2.2.2.2 Basic concepts of the time of flight method  

Sufficiently thick lubricant film thicknesses which are greater than the wavelength of the 

used transducer, can be measured by using the time of flight method. Thus, the 

measurable lowest lubricant film thickness is defined by the centre frequency of the 

ultrasound transducer. For steel applications ultrasound frequencies are limited to 60 

MHz because attenuation increases significantly with frequency.  Consequently, the 

lowest measurable thickness limit is 40 µm (Suzuki, 2016). 

 

Within this method, related reflections must be located discretely in the time domain 

without overlap. Subsequently, the time difference between related reflections gives the 

time of flight.  

 

The thickness of the lubricant layer can be calculated by using the known speed of sound 

in the layer and measured time of flight.  As is expressed in Equation 2.24 for thickness 

calculation, the time of flight, 𝑡, must be divided by two because the elapsed time covers 

transmission and reflection of ultrasound waves.  

 

ℎ =
𝑐𝑡

2
(2. 24) 

 

Where ℎ is the measured distance, 𝑐 is the speed of sound, and 𝑡 is the elapsed time.  

 

This work employs the ToF method to calculate the distance between the focus 

immersion transducer and the bearing outer race. Also, the distance changes caused by 

the outer race displacement was monitored via the same technique. The bearing outer 

race, whilst sustaining a radial load, is bent when the rolling element passes under the 

transducer. This phenomenon results in a shortened distance, and consequently, the travel 

time of the sound wave also shortens (Ibrahim, 2012). A detailed explanation of the 

method and signal processing techniques will be discussed in outer race displacement 

chapter.   
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2.2.2.3 Basic concepts of resonance method 

When the layer to be measured has a thickness that is equal to the wavelength of the 

employed transducer, the resonant dip technique is applicable. In this technique, the 

lubricant layer is resonated by ultrasound waves and these resonances can be seen as 

drops to zero in the reflection coefficient spectrum, as shown in the figure below. If the 

speed of sound, 𝑐, in the layer is known, and if the reflection coefficient spectrum in the 

frequency domain is obtained, the layer thickness, ℎ, can be calculated by using Equation 

2.25:  

ℎ =
𝑐𝑚

2𝑓𝑚
 (2. 25) 

 

Where 𝑚 is the mode number (first, second, third…etc) of the resonant frequency and 

𝑓𝑚 is the corresponding resonant frequency (Zhang et al., 2006). 

 

 

Figure 2.18 Prediction of the reflection-coefficient spectrum from a layer of mineral oil 

between two steel half spaces (Zhang et al., 2006) 

 

This technique, like ToF, is restricted by the frequency of used transducer, due to high 

attenuation.  The work of (Zhang et al., 2006) shows that in an application of oil of type 

Shell Turbo T68 trapped between EN24 steel parts, the thinnest possible measurable oil 

layer thickness is 7 µm.  

 



40 

 

2.3 Conclusion 

This chapter gives some general background about ultrasound. Some measurement 

techniques and their theory have also been discussed, with more detail given about those 

employed in this research. The main points discussed by the chapter are: 

 

• Ultrasound definition and the generation of ultrasound wave physics 

• Wave types and the effects of the acoustic properties of a medium on the wave 

propagation  

• Ultrasound transducer types, structure and the function of the main components. 

The transducers employed in this work have been discussed in some detail.  

• Ultrasound wave behavior when waves encounter boundaries for example 

bearing contacts 

• The main approaches for lubricant film thickness and outer race displacement 

measurements by using reflected ultrasound signals: spring layer model, time of 

flight and resonant layer model. The former methods, since they have been 

employed in this work, have been given in greater detail.  
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3 BEARING OUTER RACE SURFACE DEFLECTION 

 

This chapter discusses some bearing outer race deflection theories and very briefly the 

principle of bearing outer race deflection measurement which has been employed in this 

research.  

 

3.1 Bearing force-deflection relationship 

Machine elements, such as rolling element bearings, contain locations that need to have 

a lubricant to separate the mating surfaces sustaining a force. In the case of a bearing, 

such contacting surfaces would be in between the races and rolling elements.  The 

lubricant thickness depends on bearing operating conditions, such as the applied forces. 

When the lubricant thickness is too thin, the bearing contacts experience 

elastohydrodynamic lubrication conditions, meaning, that the applied forces are able to 

deform the bearing surfaces elastically (Hamrock and Anderson, 1983).  

 

Applied forces and moments in a bearing, cause elastic deformation and a corresponding 

displacement in the direction in which the forces are exerted. The relationship between 

the applied load and the obtained displacement is non-linear, as illustrated in the 

following figure.  

 

 

Figure 3.1 Rolling bearing load-deflection curve (Bhushan, 2000) 

 

Moreover, the slope of the load-deflection curve at any point gives the bearing stiffness 

which is a multi-dimensional characteristic of bearing. The bearing stiffness matrix can 

be described mathematically as a 5×5 symmetric matrix (Lim and Singh, 1990).  
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𝐾𝑏 =

[
 
 
 
 
 
𝑘𝑥𝑥 𝑘𝑥𝑦 𝑘𝑥𝑧 𝑘𝑥𝜃𝑥

𝑘𝑥𝜃𝑦

𝑘𝑦𝑥 𝑘𝑦𝑦 𝑘𝑦𝑧 𝑘𝑦𝜃𝑥
𝑘𝑦𝜃𝑦

𝑘𝑧𝑥 𝑘𝑧𝑦 𝑘𝑧𝑧 𝑘𝑧𝜃𝑥
𝑘𝑧𝜃𝑦

𝑘𝜃𝑥𝑥 𝑘𝜃𝑥𝑦 𝑘𝜃𝑥𝑧 𝑘𝜃𝑥𝜃𝑥
𝑘𝜃𝑥𝜃𝑦

𝑘𝜃𝑦𝑥 𝑘𝜃𝑦𝑦 𝑘𝜃𝑦𝑧 𝑘𝜃𝑦𝜃𝑥
𝑘𝜃𝑦𝜃𝑦]

 
 
 
 
 

 

 

The matrix consists of the ratios of exerted forces and moments over the related 

displacement in all directions. The matrix depends on the applied load, bearing geometric 

and kinematic parameters, number of rolling elements, radial clearance, contact angle at 

unloaded case, Hertzian stiffness constant.  

 

3.2 Bearing deflection calculation approaches 

Several approaches have been proposed to calculate the bearing deflection, however, 

each approach gives a different value for the elastic displacement acting under the same 

operating conditions. In this section, some of these equations and approaches will be 

presented.  

 

The first attempt at elastic deformation calculation of a point and of a rectangular contact 

was performed by Hertz (1881). Pressure distribution and applied stress effects on the 

deformation were studied and boundary conditions were determined. The assumptions 

and derived equations in this study are the basis of present day contact mechanics. 

Another early attempt at deformation calculation of semi-infinite elastic surfaces at point 

loaded contact conditions was conducted by Boussinesq (1885).  Rectangular contact 

elastic deformation formulations can be derived by using the elastic deformation 

equations of point loading conditions. 

  

Although these early attempts laid the foundations of the elastic deformation 

fundamentals, they were not enough to determine surface deflection in a bearing 

precisely and there was a need for more accurate equations to be developed. However, 

since the elasticity of contacted and compressed surfaces is still based on Hertzian 

contact theory, the main terms should be explained before discussing bearing contact 

deformation.  
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3.2.1 Bearing internal load distribution  

An applied radial force is sustained by the rolling elements, and its distribution is such 

that the rolling element located on the same radial direction of the applied load carries 

the highest load. The load carried by the other rolling elements decreases with increase 

in angle between the rolling element centre and the applied force direction. Figure 3.2 

depicts an example of a 200N load distribution on the rolling elements in a bearing.  

  

 

Figure 3.2 The example of load distribution of the bearing (Wardle, 2015) 

The load on the maximum loaded rolling element for line contacts can be calculated by 

using the Equation 3.1. 

𝑊𝑚𝑎𝑥 =
5𝐹𝑟

𝑍
(3.1) 

 

 Where in equation, 𝑊𝑚𝑎𝑥 is the applied maximum load, 𝐹𝑟 is applied radial load, 𝑍  is 

number of rolling elements (Harris and Kotzalas, 2006).  

 

It follows that the bearing incurs maximum deflection at the point sustaining maximum 

load and hence, in this work, the immersion probe that measures deflection was located 

at this point: i.e. along the direction of the radial load applied.   
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3.2.2 Hertzian line contact theory 

The applied load on the contacted elastic bodies results in local stress and elastic 

deformation at the mating surfaces (i.e. on the outer races and rolling element surfaces). 

The shape of the contact are between a spherical rolling element and the races is elliptic, 

whilst that between the cylindrical rolling element and races it is rectangular (line 

contact) as indicated in Figure 3.3.  

 

 

 

Figure 3.3  Elliptic contact and rectangular (line) contact (Stachowiak and Batchelor, 

2013)  

 

 

The rectangular shape of contact has width 2𝑏 and length 𝐿 (rolling element length). The 

semi-width 𝑏 of the contact depends on many parameters, such as the applied load, 𝑊𝑚𝑎𝑥, 

the radii of the contacting surfaces (𝑅1 and 𝑅2), poisson ratio 𝑣 and  the elastic modulus 

𝐸 as illustrated by Equation 3.2. It is assumed that the applied load is distributed equally 

across the rolling element length. 

 

𝑏 = √
4𝑊𝑚𝑎𝑥𝑅∗

𝐿𝜋𝐸∗
(3.2) 

 

Where 𝐸∗ is the reduced elastic modulus which depends on the poisson ratios and elastic 

moduli of related media; 𝑅∗ is the reduced radius, and can be found from Equation 3.3: 
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1

𝑅∗
=

1

𝑅𝐴
+

1

𝑅𝐵

(3.3) 

 

Where 𝑅𝐴 is the rolling element radius and 𝑅𝐵 is the radius of outer race or inner race. If 

the rectangular line contact between the outer race and rolling element is being analysed, 

𝑅𝐵 is negative because the contact is concave, whereas if the contact between inner race 

and rolling element is analysed 𝑅𝐵 carries a positive sign.  

 

The pressure, 𝑝𝑚𝑎𝑥, is distributed across the rectangular contact and can be found by 

using Equation 3.4:  

 

𝑝𝑚𝑎𝑥 =
2𝑊𝑚𝑎𝑥

𝐿𝜋𝑏
(3.4) 

 

 

3.2.3 Line contact elastic deformation 

The elastic deformation of a line contact has been studied by many researchers and 

consequently there are many equations that are slightly different from each other. The 

textbook by Harris and Kotzalas (2006), cites the equations developed by Lundberg and 

Sjoval (1958) and the simpler, more practical version derived later by Palmgren (1959) 

as illustrated by Equation 3.5. 

 

𝛿 =
2𝑊𝑚𝑎𝑥(1 − 𝑣2)

𝜋𝐸𝑙
ln [

𝜋𝐸𝑙2

𝑊𝑚𝑎𝑥(1 − 𝑣2) (1 ±
𝐷
𝑑𝑚

)
] (3.5) 

 

Where 𝐷 is the rolling element diameter and 𝑑𝑚 is the pitch diameter, which is the 

distance between two oppositely located rolling element centers (Lundberg and Sjoval, 

1958).  

 

Generally, rolling elements are crowned (as shown in Figure 3.4) to avoid high stress at 

the edges and protection from slight misalignment. The more practical formula 

developed by Palmgren (1959) as shown in Equation 3.6 , was derived by observing the 

contact deformation obtained from testing a range of crowned cylindrical roller bearings 

under different operating conditions. 
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Figure 3.4 Crowned cylindrical rolling element (exaggerated scale)(Harris and Kotzalas, 

2006) 

 

𝛿𝑚𝑎𝑥 = 3.84 × 10−5
𝑊𝑚𝑎𝑥

0.9

𝑙0.8
(3.6) 

 

Where 𝑙 is the length of the roller in mm, and 𝑊𝑚𝑎𝑥 is the load of heavily loaded rolling 

elements in Newtons. The radial deflection value which is calculated from the equation 

includes both the cylindrical rolling element and raceway radial elastic deformation 

amount.  

 

Changsen (1991) modified Palmgren’s formula for deflection as Equation 3.7 and 3.8; 

 

𝛿𝑚𝑎𝑥 = 𝐾𝑡𝑊𝑚𝑎𝑥
0.9 (3.7) 

 

 

𝐾𝑡 = 3.81 [
1 − 𝑣1

2

𝜋𝐸1
+

1 − 𝑣2
2

𝜋𝐸2
]

0.9
1

𝑙0.8
(3.8) 

 

It should be emphasised that there are many different equations in literature for the 

determination of maximum deflection. The work of  Houpert (2001) outlines this point. 

In this study, the values given from different equations were compared to published 

experimental work conducted under the same working conditions, and eventually, a new 

equation was proposed. The same exercise was repeated for different loading conditions.   

The difference in the deflection values given by the equations studied by Houpert (2001) 

reveal discrepancies of up to 27%, which is quite significant. 
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Table 3.1 Three different loading conditions calculated deformations by using different 

approaches (reproduced from Houpert, 2001) 

 

Different studies have developed equations to calculate the total cylindrical bearing outer 

race deformations. The ensuing table shows some more of these equations (more detail 

can be found in the given references). The existence of a variety of formulas shows that 

the calculation of bearing outer race elastic deformation is neither clear, nor standardized. 

From the point of view of the author, the total elastic deformation of bearing components, 

may also depend on the thickness and shape of the bearing outer race and the distance 

between rolling elements. 

(Hamrock and 

Anderson, 1983) 
𝛿 =

2𝑊𝑅𝑥

𝜋
[
2

3
+ ln (

4𝑟𝑎𝑥

𝑏
) + ln (

4𝑟𝑏𝑥

𝑏
)] 

(Hamrock and 

Anderson, 1995) 
𝛿 =

2𝑊𝑅𝑥

𝜋
[ln (

4𝑟𝑎𝑥

𝑏
) + ln (

4𝑟𝑏𝑥

𝑏
) − 1] 

(Schmid, et al., 2014) 𝛿 =
2𝑊′𝑅𝑥

𝜋
[ln (

2𝜋

𝑊′
)] 

(Bhushan, 2000) 𝛿 =
𝑊𝑙

𝜋
[
2

𝐸′
 ln (

𝜋𝐸′𝑅𝑒

2𝑊𝑙
) −

(1 + 𝑣1)𝑣1

𝐸1
+

(1 + 𝑣2)𝑣2

𝐸2
] 

(Stachowiak and 

Batchelor, 2013) 
𝛿 = 𝜉�̅� [(

4.5

𝜉�̅�𝑅𝑖
′
)(

𝑊

𝜋𝑘𝑖𝐸′̅̅ ̅̅ ̅̅
)

2

]

1 3⁄

+ 𝜉�̅� [(
4.5

𝜉�̅�𝑅𝑜
′
)(

𝑊

𝜋𝑘𝑜𝐸′̅̅ ̅̅ ̅̅
)

2

]

1 3⁄

 

Table 3.2 Cylindrical rolling element bearing total elastic deformation calculation 

formulas 

 

 

Q/L  

(kN/m) 

Tripp 

 (1985) 

Zantopulos 

(1988) 

Eschmann, 

et al. (1985) 

Houpert 

(2001) 

10 0.74 µm 0.99 µm 0.86 µm 0.75 µm 

100 6.49 µm 8.54 µm 7.26 µm 6.34 µm 

1000 52.8 µm 72.1 µm 61.1 µm 53.7 µm 
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3.3 The principle of the outer race deflection measurement 

In this study, a technique that makes use of ultrasound waves for the measurement of 

deflection of the outer race has been employed. The principle of operation is quite straight 

forward – emitted ultrasound waves that encounter an interface will partly be reflected 

and partly be transmitted. Hence, when incident waves are directed onto a series of 

interfaces, the transducer will receive a series of reflections – depicted in Figure 3.5 – 

that within a time domain will reveal distances travelled in each medium.  

 

Within this study, the immersion transducer is fitted on a steel rod, within a tube that is 

located in line with the shaft center of the bearing and the roller element position that 

incurs the highest load. The tube provides water that enables transmission of ultrasound 

waves to the outer race. Incident ultrasound waves are directed onto the outer race outer 

surface and upon impingement, some of the waves are reflected back to the transducer, 

whilst the rest of the energy is transmitted through the outer race. The transmitted waves 

subsequently encounter another interface – that of the outer race inner surface.  

 

Figure 3.5 Ultrasound reflections in bearing interface 

 

However, this interface is also the point where contact between the outer race and rolling 

elements occurs, and with the passing of each rolling element, a time shift was observed 

in the reflected waves. 
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When a rolling element is directly under the focus transducer, the outer race is 

compressed and pushed in the direction of the probe and hence the water path is 

shortened. Figure 3.6 illustrates this event. Once the rolling element passes the examined 

area, the outer race is reinstated back to its previous, normal position. This deflection 

event has been observed clearly because the investigated area is partially unsupported 

due to the 14 mm diameter hole in the cartridge that was required to accommodate the 

ultrasound immersion transducer. The deflection of the outer race and the consequent 

water path distance shortening means that the reflection from the water-outer race surface 

interface will occur before (less distance to be travelled by the waves to get to the 

interface) and hence, this is exhibited by the reflections in a leftward shift in the time 

domain. 

   

 

Figure 3.6 Bearing outer race deflection schematic 

 

In this work, it has been found that the amount of outer race displacement is directly 

related to the applied load – when the bearing is healthy and without micro subsurface 

cracks. Impurities and invisible cracks weaken the outer race which would result in the 

race incurring higher displacements.  

 

The reason why a race sustains deflection lies in a changing load distribution: the stress 

distribution within the outer race changes with the passing rolling elements. An applied 

radial load on the bearing compresses the outer race, but while the rolling element is at 

the contact point, a normal force in the reverse direction is exerted on the outer race. 

Since the rolling elements are constantly rotating within the bearing, these deflections 

occur cyclically, subjecting the outer race to fatigue.  
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Knowing the speed of sound in water and the time shift of the first reflection, the outer 

race deflection can be calculated. Since the first reflection travels only through water, 

these calculations are not affected by the acousto-elastic effect – which is a change in the 

speed of sound in a material under stress. This independence from the acousto-elastic 

effect is a characteristic that makes the measurements of the bearing outer race surface 

displacement less complex.  

3.3.1 Reflection wave time-shift determination in time domain  

A series of reflections within a time domain, such as those in Figure 3.5 is referred to as 

an A-scan. Time-shift measurements consist of determining the amount of movement of 

the reflections in the time domain of the A-scan data, where most of the information 

about the outer race deflection can be obtained from the first and second reflection waves.  

 

The time difference between the incident pulse and first reflection can be used to find the 

distance between transducer and bearing outer race as illustrated by Equation 3.9. This 

measurement is also used for calibration of transducer, because this distance and the 

speed of sound in water are both known.  

 

𝑑𝑤𝑝 = 0.5𝑐𝑡𝑡𝑑 (3.9) 

 

Where in formula 𝑑𝑤𝑝 is the water path distance, 𝑐 is the speed of sound in the water, 

and 𝑡𝑡𝑑  is the time difference between incident pulse and first reflection.  

 

After calibrating the immersion transducer, the occurring time shifts can be calculated 

using time-of-flight measurements. There are several methods to perform these 

measurements, example of which are: sing-around, pulse-overlap, peak-to-peak, cross-

correlation, phase spectral method, Hilbert transformed and zero-crossing method 

(Mason and Thurston, 1964; Thompson and Chimenti, 2012). In this research, the most 

precise and most sensitive method, the zero crossing method, has been employed for the 

measurements. 

 

 

 



51 

 

3.3.1.1 ToF and time shift determination by Zero-Crossing method 

The time difference between two consecutive reflections in an A-Scan can be calculated 

by determining the difference between the two points which cross the zero amplitude line 

after the first crest of the reflection waves. As can be seen from the following figure, 

these points are in the same phase. The first data point which intersects the horizontal 

zero line after first crest of the first reflection is identified as the starting point of the ToF 

(time of flight) distance, and the corresponding zero crossing point of the second 

reflection is referred to as the finishing point of ToF distance. 

 

 

Figure 3.7 Zero-crossing method (Fujii and Kawashima, 1995)  

 

 

3.4 Conclusion 

 

This chapter commences by a review of bearing force-deformation relationship. This is 

followed by an in-detail discussion and comparison of bearing deformation theories. 

Finally, the principle of the proposed method to measure bearing outer race surface 

displacement is introduced briefly.  
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4 ROLLING ELEMENT BEARING FAILURE 

MECHANISMS AND DETECTION METHODS 

 

In this section, bearing failure modes and their causes will be presented. This shall be 

followed by a comparison of the currently available bearing condition monitoring 

methods and their defect severity detection capabilities. Finally, the monitoring method 

under investigation in this project shall be evaluated and compared against the already 

existing methods.  

 

4.1 Bearing failure analysis 

The bearing is often a key component in the assembly in which it is located and its failure 

can lead to a catastrophic failure of the whole system, which other than the obvious 

economic consequences, may also lead to serious accidents. It is thus easy to understand 

why a lot of work has been done in failure mode analysis in an attempt to help identify 

the cause of the failure and subsequently, to prevent its reoccurrence.  

 

Amongst the various bearing failure mode analysis guides that are readily available (as 

most bearing manufacturers provide their own guide), is the ISO 15243 (International 

Organisation for Standardisation, 2017), first drawn in 2004, but which has been 

superseded in 2017. In this document, in service failure modes are classified into 6 

different modes, each with subdivisions. Definitions, characteristics, images and possible 

root causes are provided. The following table, compiled by ISO 15243 aptly summarizes 

this standard.  
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Table 4.1 Bearing damage classification (International Organisation for 

Standardisation, 2017) 

 

Fatigue

Sub-surface 
initiated fatigue

Surface initiated 
fatigue

Wear

Abrasive wear

Adhesive wear

Corrosion

Moisture 
corrosion

Frictional 
corrosion

Fretting 
corrosion

False brinelling

Electrical 
Erosion

Excessive 
voltage

Current Leakage

Plastic 
Deformation

Overload

Indentation 
from debris

indentation 
from handling

Fracture and 
Cracking

Forced fracture

Fatigue fracture

Thermal 
cracking
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4.1.1 Rolling contact fatigue 

The repeated stresses incurred by the contacting surfaces of the bearing (inner raceway, 

outer raceway or balls) can result in fatigue failure, which generally manifests in spalling, 

i.e. the removal of material from the surface. 

 

A fatigue failure may have its initiation point at the surface or at a subsurface point. In 

the latter, as explained by the Hertzian theory, a microcrack can develop below the 

surface as a result of a build-up of plastic strain that is accumulated from repeated loading 

cycles. Spalling occurs once the crack propagates to the surface. Since the load incurred 

by the bearing would have been considered during the design stage, a subsurface crack 

in practice, is unlikely unless the bearing experiences some abnormal loading. A more 

probable scenario is the formation of a microcrack that is caused by an impurity in the 

steel.  

 

On the other hand, a surface initiated crack can form when the surface is distressed. In 

many instances, this occurs as a consequence of inadequate lubrication; when the 

lubricating film fails to prevent contact of the asperities of the mating surfaces, plastic 

deformation which would lead to microcracking and eventually spalling will be incurred. 

In instances when the lubrication is sound surface initiated fatigue may take place when 

indentations in the surface – caused by foreign particles, extreme loads or handling, have 

protrusions that exceed the oil film thickness, and hence come into contact with the 

asperities from the interacting surface.  

4.1.2 Wear 

Wear is damage, in the form of material removal, which is incurred by a contacting 

surface as a result of the acting mechanical forces. It is generally divided into two classes: 

adhesive or abrasive.  

4.1.2.1 Abrasive wear 

Abrasive wear is material removal from a surface through the action of hard particles – 

which can be contaminants or oxidised spalled fragments from the same surface – 

ploughing through the softer material. Depending on the nature of the particles, the 

surfaces usually become dull, however, a polishing effect may prevail if the particles are 

very fine. The affected areas are generally the raceways, rolling elements and the cage 

as indicated in Figure 4.1.  
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Figure 4.1 Abrasive wear on the bearing inner race (Timken, 2011) 

 

4.1.2.2 Adhesive wear 

Under loading conditions, the contacting asperities are under high stress conditions and 

deform, increasing the contact area, until the load can be supported. An interfacial bond 

that is stronger than any of the interacting materials may form and any further movement 

(sliding) can cause shearing away from the (welded) interface, thereby resulting in 

material transfer, temporary or permanent, from one of the surfaces to the other.  

 

Smearing is a form of severe adhesive wear and occurs because of inadequate lubrication. 

It is typically observed between rolling elements and raceways, but can also take place 

in other locations such as rib faces, and at the ends of the rollers. Figure 4.2 shows an 

example of smearing on an outer raceway. Even the slight movement (creep) of the 

bearing with respect to its seating may lead to smearing on the bearing bore and housing 

seat, if lubrication is not sufficient. Scuffing (smearing) can occur suddenly and may 

result in seizure of the bearing.  

 

Figure 4.2 Adhesive wear on the inner race (Tallian, 2006) 
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4.1.3 Corrosion 

Corrosion is the deterioration of material through chemical action. It falls into two broad 

categories: moisture corrosion and frictional corrosion, the latter of which further 

subdivides in fretting corrosion and false brinelling.  

 

4.1.3.1 Moisture corrosion 

Condensation from atmosphere, water from lubricants (or degraded lubricants), or 

contamination, enable moisture and other aggressive media to come into contact with 

bearing components. Subsequent to such exposure, oxidation or other chemical reactions, 

such as the formation of rust can take place, resulting in pitting and eventually spalling.  

 

The bearing is most susceptible to corrosion when it is at a standstill and the water settles 

around the rolling elements. Hence, as shown in Figure 4.3 deep-seated rust tends to 

show in dark greyish streaks across the raceways, in distances corresponding to rolling 

element positions.  

 

 

Figure 4.3 Moisture corrosion on the outer race of bearing (NTN Corporation, 2001) 

 

4.1.3.2 Frictional corrosion 

Frictional corrosion is a chemical reaction that occurs at contacting surfaces when the 

bearing is stationary (not rotating). Small relative motions, such as vibrations, cause the 

mating surfaces to oxidize, resulting in loss of material in powdery particles.  

 

4.1.3.2.1 Fretting corrosion: 

Fretting corrosion is damage incurred by contacting surfaces undergoing oscillating 

micromovements whilst transmitting loads. For example, fretting corrosion can be found 
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between bearing rings and shafts or housings when the fit is too loose. Typically 

unlubricated, the leading corrosion mechanism is oxidation and for steel components this 

yields reddish debris and similarly coloured rubbing surfaces.  

 

4.1.3.2.2 False brinelling: 

False brinelling, like fretting corrosion, occurs as a consequence of small oscillatory 

movement, however, unlike fretting corrosion, it takes place at the rolling element-

raceway interfaces, where under certain conditions, the lubricant is prevented from 

providing adequate lubrication, resulting in corrosion. The raceway hence incurs 

discoloured depressions that replicate the shape and pitch of the rolling elements as 

illustrated in Figure 4.4. 

 

 

Figure 4.4 False brinelling and fretting corrosion on the bearing outer race 

(Errichello, 2004) 

4.1.4 Electrical erosion 

Electrical erosion is defined as material removal or incurred changes in microstructure 

as a result of a damaging electrical current. Such a current may be a singular incident of 

an excessive current magnitude, or of a smaller size but over a prolonged period in the 

form of a current leak. Damage caused by electrical erosion on an outer raceway and ball 

bearing can be seen in Figure 4.5. 
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Figure 4.5 Electrical erosion on the outer race and ball bearing (International 

Organisation for Standardisation, 2017) 

 

4.1.4.1 Excessive current erosion 

When an electric current passes from one ring to another through the rolling elements, it 

is passing through a small contact area, causing localized heat in a very short time 

interval. The magnitude of the current will determine the heat incurred, which start being 

damaging upon exceeding 200°C – at which temperature annealing of the rings and 

rolling elements start occurring, leading to loss in hardness and the eventual premature 

bearing failure.  

 

In extreme cases, heating may cause the contact area to melt and weld, resulting in a 

series of craters of diameters up to 500µm (electrical pitting). Such damage usually 

manifests on both rolling elements and raceways.   

 

4.1.4.2 Current leakage erosion 

In the presence of a continual flow of current, even if this has a low intensity, many 

shallow craters of microscopic dimensions form in very close proximity to each other. 

Eventually, these will develop into fluting (parallel ridges and grooves) on the raceways 

(Figure 4.6) and rolling elements. Ball bearings do not form flutes, but show 

discolouration which under microscopic inspection reveal craters. 
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An electric current also damages the lubricant; which will darken in colour, harden in 

consistency, and fail to provide adequate lubrication – leading to other forms of failure 

already discussed.  

 

The extent of the damage caused depends on factors such as current intensity and 

duration, bearing load and speed, and the lubricant.  

 

 

Figure 4.6 Fluting on the inner race (Humbert, 2008) 

 

4.1.5 Plastic deformation  

Plastic deformation is the permanent deformation or change that is incurred by a material 

under the action of some load, after the yield strength has been exceeded.  

 

A bearing can incur such a failure on two different levels: on a macroscopic scale – when 

the load incurred by the rolling element and raceway contact is excessive, or on a 

microscopic scale – when a foreign particle gets rolled over between the ring and the 

rolling element and yielding occurs within the contact area. 
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4.1.5.1 Overload deformation 

This type of deformation tends to occur more when the bearing is stationary, and is often 

the result of severe impact (ex. dropping bearing), incorrect mounting (ex. using a 

hammer), or excessive preloading. Figure 4.7 shows an example of heavy impact on the 

bearing. Whenever the load sustained by the bearing is large enough to exceed the elastic 

limit of the raceways, plastic deformation occurs at the contact areas, leaving depression 

marks in positions corresponding to the rolling elements. This form of damage is also 

referred to as true brinelling and distinguishes itself from false brinelling or electrical 

fluting from the surface finish or residual machining marks within the indents.  

 

On the other hand, an excessive load incurred during operation manifests itself in 

different ways, depending on the particulars of the case. For example, an instantaneous 

overload can form flutes with additional individual, non-symmetrical and extended 

marks or it can form depressions in a pitch corresponding to that of the rolling elements. 

In contrast, when the excessive load is constant, plastic deformation occurs 

macroscopically across all of the overloaded area of the ring.  

 

 

Figure 4.7 Overload deformation (International Organisation for Standardisation, 

2017) 

4.1.5.2 Indentation from particles 

Over-rolled particles from debris or oil film contamination will plastically deform the 

raceway and rolling elements during contact – as can be seen in the raceway shown in 

Figure 4.8. The resulting indentation depends upon the nature of the particles, whereby 

the harder the particles, the more severe the damage. Moreover, fatigue and subsequent 
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spalling may also be incurred as indentation shoulders incur a reduction in film thickness 

and higher load concentrations.  

 

 

Figure 4.8 Indentation scars on the bearing outer race (International Organisation for 

Standardisation, 2017) 

 

4.1.6 Cracking and fracture 

Cracks initiate at points of high stress concentrations and propagate, i.e. advance within 

the material, until the component fails by fracture, which is a term that is used to signify 

separation of the body into two or more parts. An example of such a crack can be seen 

in Figure 4.9. The ISO standard subdivides fractures in bearings into 3 kinds: forced 

fracture, fatigue fracture and thermal cracking.  

 

 

Figure 4.9 Axial crack on the inner race (Tallian, 2006) 
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4.1.6.1 Forced fracture 

A forced fracture is the result of a stress concentration that exceeds the tensile strength 

of the material. In other words, it occurs when the bearing is subjected to excessive loads 

/ stress. Most commonly, such over-stressing happens as a consequence for rough 

handling (impact) during mounting or dismounting. Another example that can lead to 

fracture is excessive interference fit.  

 

4.1.6.2 Fatigue fracture 

In components experiencing bending, tension or torsion, cracks can develop at some high 

stress point. Such a crack would propagate in increments with each additional stress cycle 

and upon exceeding a critical crack size, crack propagation accelerates significantly and 

the component, typically a ring or cage, fails by fracture.  

 

4.1.6.3 Thermal cracking 

Sliding motion on the inner or outer ring of a bearing gives rise to high frictional heat. In 

such situations cracks perpendicular to the sliding direction appear on the contacting 

surfaces. Hardened steels are especially susceptible to such form of cracking due to the 

generated heat affecting their heat treatment, causing local rehardening and residual 

stresses. Sliding can result from incorrect seating that would allow certain components, 

such as the backing rings or the end caps to turn and slide against the rings.    

4.2 Wind Turbine Bearings Damage Types  

 

The most commonly observed types of failures in wind turbine bearings are axial 

cracking, spalling, flaking, smearing and micro pitting (Herr and Heidenreich, 2014). 

These failures result in material loss (removal) in bearing components and eventually 

catastrophic failure. The proposed method can detect the defects when the material loss 

propagates in an axial direction (form of line) and when the size of the defect exceeds 

the detectable minimum defect size of the method (0.36 mm). The employed method in 

the project may therefore detect defects at early stages since sub-millimeter sized defects 

are accepted as incipient defects (Tra et al., 2017) 

 

Figure 4.10 (a) and (b) show how axial cracks and spalling develop into line shaped 

defects. Figure 4.10 (c) shows a simulated defect representing such defects.  
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a) Crack initiation and develop in wind turbine high speed bearing inner race 

 

 

b) Spalling develop into line shape (230/600 series spherical roller bearing inner race) 

(Kotzalas and Doll , 2010)  

 

c) Simulated line defect 

Figure 4.10 Real bearing defects and simulated defect                                                
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4.3 The bearing life  

The life of a bearing can be described by the how many revolutions can be performed 

before the first evidence of failure develops. The basic life of a bearing, as defined by 

ISO 281 is a measure that gives the total number of revolutions that 90% of apparently 

identical bearings can undertake or exceed without failure under the same working 

conditions. This figure is also known as the 𝐿10 life, because 10% of the population of 

bearings are estimated to fail before reaching this value as shown by Equation 4.1 

(International Organisation for Standardisation, 2007). 

 

𝐿10 = (𝐶 𝑃⁄ )𝑝 (4.1) 

 

Where 𝐿10 is the bearing rating life (or basic life), at 90% reliability, in one million 

revolutions; 𝐶 is the basic dynamic load capacity, for a rating fatigue life of one million 

rotations; 𝑃 is the standardised dynamic equivalent load (combination of axial and radial 

load) of the bearing; and 𝑝 is the life equation exponent, which is 10 3⁄   for a cylindrical 

rolling element bearing. The equation, which forms the basis of prediction of the bearing 

life has been developed by Palmgren and Lundberg (1947).  

 

However, extensive studies on the fatigue life of a bearing have that the basic life rating 

equation required improving: material quality, effects of operating conditions and 

lubrication needed to be taken into consideration to make bearing life estimation more 

accurate as illustrated by Equation 4.2.  Hence, a statistical model based on a vast amount 

of experimental data was developed (Zaretsky, 1992; Jendzurski, T. and Moyer, 1997; 

Harnoy, 2003).  

 

𝐿𝑛𝑎 = 𝑎1𝑎2𝑎3𝐿10 (4.2) 

 

Where  𝐿𝑛𝑎 is the adjusted rating life and 𝑎1, 𝑎2 and 𝑎3 are the reliability factor, material 

factor and environment factor, respectively. 

 

The reliability factor , 𝑎1, converts 𝐿10 values to different reliability percentage values, if 

this is desired. For example if a reliability of 99% is required, 𝑎1, assumes the value of 

0.21. Other values for  𝑎1 and the corresponding reliability percentages are given in Table 

4.2. 
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Reliability (%) Ln a1 

90 L10 1 

95 L5 0.62 

96 L4 0.53 

97 L3 0.44 

98 L2 0.33 

99 L1 0.21 

Table 4.2 Reliability for factor a1, reproduced from (NTN Corporation, 2001) 

 

Material factor 𝑎2, is related to the bearing materials’ metallurgical properties, 

production method, material purity, applied heat treatments and coatings which directly 

affect the bearing fatigue life.  

 

Environment factor 𝑎3, relates to bearing operational conditions such as rotation speed, 

applied load, operation temperature, lubricant properties such as lubricant thickness, 

contamination and viscosity (Khonsari and Booser, 2008; Harnoy, 2003). 

American Bearing Manufacturers (ABMA), SKF (Svenska Kullagerfabriken AB), and 

the International Organization for Standardization (ISO) are all examples of bodies that 

have published bearing life prediction standards. However, the latter is the most 

extensive and gives in depth consideration for lubrication, contamination, load and 

fatigue stress limit. For this reason, it shall be explained briefly.  

 

ISO 281, provides Equation 4.3 for the modified rating life 𝐿𝑛𝑚, whereby the material 

factor and the environment factor were replaced by the life modification factor, 𝑎𝑖𝑠𝑜; 

 

𝐿𝑛𝑚 = 𝑎1𝑎𝑖𝑠𝑜𝐿10 (4.3) 

 

The life modification factor (𝑎𝑖𝑠𝑜)  as shown by Equation 4.4 shows a relationship that 

includes the contamination factor, 𝑒𝐶 , viscosity ratio, 𝜅, fatigue load limit, 𝐶𝑢, and 

dynamic equivalent load, 𝑃. It is the consideration of these variables that make the 
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modified rating life a more accurate prediction than the basic life. The document explains 

how each of these Figures can be derived. 

  

𝑎𝑖𝑠𝑜 = 𝑓 (
𝑒𝐶𝐶𝑢

𝑃
, 𝜅) (4.4) 

 

The standard also provides a table (reproduced as Table 4.3) with values for the reliability 

modification factor, 𝑎1, which converts the 𝐿10 values into figures of higher reliability 

levels, should this be desired. 

 

Reliability (%) Lnm a1 

90 L10m 1 

95 L5m 0.64 

96 L4m 0.55 

97 L3m 0.47 

98 L2m 0.37 

99 L1m 0.25 

99.2 L0.8m 0.22 

99.4 L0.6m 0.19 

99.6 L0.4m 0.16 

99.8 L0.2m 0.12 

99.9 L0.1m 0.093 

99.92 L0.08m 0.087 

99.94 L0.06m 0.080 

99.95 L0.05m 0.077 

Table 4.3 Life modification factor for reliability, a1,(International Organisation for 

Standardisation, 2007)  
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4.4 Bearing condition monitoring methods 

Bearings are vital machine components in many industrial applications such as wind 

turbines, motors, heavy machinery, automotive and railway applications. Such extensive 

usage of bearings added weight to the reliability issues incurred, because any engineering 

system’s integrity relies on the robustness of its components. This stimulated 

advancement in the techniques which are used to monitor bearing conditions. To assess 

a bearing’s health, parameters that significantly affect damage occurrence and 

propagation, such as critical elements’ temperatures, vibration, lubricating oil conditions 

and displacements can be monitored through the use of different kinds of sensors. In this 

section, a review of bearing failure detection sensors and development of their diagnostic 

capabilities by signal processing methods will be introduced. 

 

4.4.1 Temperature monitoring 

Machine elements whose function involves contacting surfaces that slide or roll against 

each other, such as gears and bearings, incur frictional forces which generate heat and a 

consequent rise in temperature. In bearings, the temperature is generally maintained 

constant through the use of a lubricant of micrometer sized thickness that reduces the 

friction coefficient and asperity interactions between the mating surfaces. A bearing 

would experience a rise in temperature in instances when: an increase in friction force 

between the contacting surfaces takes place, bearing components interact with the cage, 

or lubricant hydrodynamic resistance or seal friction are high (Stolarski and Tobe, 2000).  

 

The main reason for an increase in the friction force is depletion of the lubricant in the 

contact are that results in the conversion of elastohydrodynamically lubricated contacts 

to boundary conditions (steel-to-steel) contacts.  After lubricant break down, the 

asperities on the mating surfaces of the bearing components come into contact and the 

bearing temperature starts increasing at local areas (Nagaraj et al., 1978).  

 

Monitoring of bearing temperature can therefore give information about bearing health 

but the method’s diagnostic abilities are limited, because only well developed defects, 

often just before catastrophic consequences, can be detected by using the method. 

Detection an impending failure is difficult (Watson et al., 2007; Randall and Antoni, 

2011). On the other hand, the method is standardized; it is able to detect anomalies and 
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it can be used as a secondary verification failure detection method (complementary tool) 

(Jammu and Kankar, 2011; Moussa, 2014).  

 

There are two types of sensors to measure bearing components’ temperature; direct 

sensors and indirect sensors. Direct sensors, such as resistance temperature detectors and 

thermocouples, are required to mount to the monitoring components as close as possible 

to measure temperature. Thus, bearing housing equipment needed to be disrupted to 

provide surface for sensor mounting and this situation result in weakening of bearing 

structural integrity and decreasing bearing load carrying capacity. Examples of studies 

that have monitored bearing conditions by using thermocouples are those of (Read and 

Flack, 1987; Glavatskih, 2004). 

 

On the other hand, indirect sensors such as thermal and infrared cameras, are non-contact 

temperature measurement devices. They detect heat (infrared) energy and convert it to 

electronic signals. Processed signals compose the thermal image of the monitored 

component and temperature can thus be calculated. Although, defect existence has been 

detected using thermal imaging of bearings via the infrared techniques, physical bearing 

damage severity and lubricant failures have not yet been diagnosed very well. This is 

because bearing temperature varies with bearing working conditions such as speed, load, 

ambient temperature and runtime; for this reason, bearing temperature increases could 

not be related to just bearing failure and lubricant problems. Addressing an increase of 

temperature would therefore not be easy. However, some recent works (Kim et al., 2012; 

Singh et al., 2014; Moussa, 2014), believe the method has promising potential for 

detecting failures.  

 

4.4.2 Lubricant properties and wear debris in lubricants monitoring 

The lubricant in rotary machine elements such as gears and bearings, separates the 

contacts, thereby reduces friction force, wear and the associated consequent local point 

temperatures. Moreover, oil circulation and filtration enables the removal of any wear 

debris that would normally cause further harm. The lubricant therefore plays a vital role 

in bearing and rotary machines. However, after a certain amount of running time, the 

lubricant gets degraded and its physical and chemical properties, such as viscosity, 

density, acid content, and contamination (metal, water…etc), change making it more 

difficult to maintain separate the contacts. Thus, a deteriorated lubricant leads to 
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deterioration of the bearing and vice versa. Monitoring oil property changes and 

contamination levels can therefore give information about bearing health conditions and 

the remaining useful time of the bearing.  

 

Ensuing is an outline of observable lubrication oil parameters and the monitoring 

methods that can be employed.  

 

Viscosity Monitoring: Viscosity can be simply defined as liquid’s resistance to flow. 

Oil strength and contact separation abilities are directly related to oil film viscosity, 

whereby high viscosity oil prevents adequate flow, and low viscosity oil struggles to 

separate the contacts. Hence oil aging can be determined from its thinning or thickening, 

where even relatively small changes, like 10-20%, effect significantly oil degradation 

(Wang and Gao, 2006). Viscosity measurements can be performed by viscometers or 

rheometers. Portable oil diagnostic systems (PODS)(offline) in addition to viscosity 

measurement, can also measure wear debris concentration and oil temperature. 

Furthermore, recent studies have shown that viscosity can be measured by using 

ultrasonic sound waves (Schirru, 2017). 

 

Acid Content: Acid content in the lubricants results from the usage of a wrong type of 

oil, the existence of acidic contaminants, oxidation, and alkaline reserve depletion. 

Acidity triggers corrosion and this leads to increased wear rates. The acid portion in a 

lubricant can be measured by offline titration tests and viscometers (Appleby, 2010).  

 

Oil Contaminant/Wear Debris Monitoring: Wear particles can appear in bearing 

lubricant after any part of bearing component is degraded. Monitoring of wear particles 

in lubricant can give information about bearing health conditions and remaining useful 

time of bearing (Wang and Zhang, 2005). 

 

 

 

 

 

  



70 

 

 

Wear debris monitoring is generally employed as a complementary method in 

conjunction with other monitoring techniques. There are various debris monitoring 

sensors and techniques that can be used for machine element condition monitoring; some 

of these are spectrographic analysis, inductive and capacitive sensors, magnetic plugs, 

ferrography, and ultrasonic and acoustic techniques. These methods focus on 

determining wear particle morphology and concentration in order to assess the machine 

element failure. They differ from one another in measurable size limitations (size of 

particles detected), sampling methods, working environment and applicable area. The 

following table, summarizes and compares the different sensors on these grounds (Dan, 

2013).  
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Table 4.4 Lubricant condition monitoring sensor types (Dan, 2013) 

Product  In-line/On-line  Technology used  Measure  

Smart® Zapper Electric Chip 

Detector 

In-Line, On-Line Magnetic collection/grip Particles ≥ 100 μm 

QDM® (Quantitative Debris 

Monitor) 

In-Line, On-Line Magnetic flux Particles ≥ 50 μm 

TechAlert™ 30 On-Line Magnetic flux Particles > 1 μm 

TechAlert™ 20 In-Line, On-Line Magnetic flux Particles > 1 μm 

TechAlert™ 10 In-Line, On-Line Magnetic inductance Particles > 50 μm 

TechAlert™ TA Diviner In-Line - Water 

MetalSCAN In-Line Magnetic inductance, 

magnetic flux 

Part. ferro ≥100 μm Part. 

No-ferro ≥500 μm. Total contamination 

PATROL® In-Line Magnetic inductance, 

magnetic flux 

Particles ≥  25 μm 

MIDAS On-line, off-line Magnetic inductance, 

magnetic flux 

Ferrous Particles 

Grid Switch® On-Line Magnetic collection 

switch/grip 

Wear Particles 

ANALEXrs Oil Condition 

Sensor 

On-Line Dielectric loss factor Oil condition 

ANALEXrs Particle Content 

Sensor 

On-Line Inductive coil Particle content 

ANALEXrs Total Ferrous 

Debris Sensor 

On-Line Magnetic inductance Ferrous debris 

Lubrigard Oil Condition 

Sensor 

On-Line Dielectric loss factor Soot, Oxidation products, Water, Glycol, 

Metallic wear particles, Changes in TBN 

FluidScan On-Line FTIR TAN,TBN; oxidation, water, glycol, soot, 

nitration, sulfatation, additives AO, AW and 

contamination with other oils 

OILPro On-line X-ray, IR, TAN, TBN, Cleanliness, oxidation, Viscosity, 

water, fuel, wear metal 

Debritect DT100/200/300 On-line Magnetic Submicron and greater / Water and Moisture 

Continental TEMIC In-line Dielectric Oil temperature, level and quality 

Fraunhofer Munich In-line Dielectric TAN, TBN, oil quality 

Fraunhofer Munich On-line Mid-IR Water 

Fraunhofer Munich On-line UV Detection of fluids, gas and solids 

MSC Off-line - Water, wear, particle count and wear debris 

analysis 

EESIFLO On-line Dielectric Water 

TRANSLUME On-line Optic Oil quality 

On-line Model 600T-LP In-Line 

 

X-ray fluorescence XRF N/A 

Laser Net Fines On-Line/Off line Laser imaging Counters >5 μm. Shape classifier >20 μm 

Oil-Line Sensor In-Line, On-Line Electrostatic collection Particles ≥ 20 μm 

CPD-DAQ Sensor and 

Software 

Off-Line Blotter analysis N/A 

RULER Off-Line Voltammetry AO concentration 

Rockwell Automation On-line Pore blockage Viscosity, wear particles 

Malvern Off -line Microscope Measure size 0.5 to 1000 μm and identify 

shape 

Schubert & Salzer In-line Ultrasonic Particle detection 
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Wear debris monitoring is a useful method to identify failure of machine elements. The 

relationship between wear particle features and wear characteristics such as wear rate, 

type, severity, and source can be established (Roylance and Raadnui, 1994).   

 

 

Figure 4.11 The connection between wear particle properties and wear characteristics 

(Roylance and Raadnui, 1994)  

 

Although monitoring of wear debris in lubricants has been proven to be a highly 

informative technique that provides component health conditions and residual life 

expectancies, the method is time consuming due to the off-site and/or on-site laboratory 

work it involves. Moreover, when comparing the sensors employed to those used in 

vibration, acoustic emission and ultrasound methods, not only are latter less complex, 

but also allow automated online monitoring and data analysis more easily than wear 

debris monitoring ones.  

 

In this section, temperature, oil and wear debris monitoring – all of which are 

complementary bearing condition monitoring methods, have been briefly discussed. In 

the next sections, the more major monitoring methods of vibration, acoustic emission 

and ultrasound shall be discussed in more detail.  
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4.4.3 Vibration monitoring 

Vibration can be defined as an oscillatory movement of the bearing due to internal load 

distribution change while rolling elements pass the loaded area. There are several reasons 

why vibration in the bearing could increase; typically, manufacturing faults (surface 

imperfections), installation faults, defect existence and degradation of the bearing 

(Lacey, 2008). It has been proven that bearing vibration monitoring is a successful 

method for bearing defect detection, diagnosis and prognosis for many industrial 

applications, especially in wind turbines. (For instance, SCADA wind turbine condition 

monitoring). Moreover, vibration monitoring can be used for monitoring of other wind 

turbine components such as gearbox, shaft and blade health monitoring (Tautz-Weinert 

and Watson, 2017). 

 

Vibration sensors, convert the physical movement of bearing, into electrical signals. The 

bearing’s movement can be measured from acceleration, velocity or displacement. In 

most industrial vibration monitoring applications, the accelerometer is the most widely 

employed vibration sensor due to its wide frequency response. The sensor mounting 

position is a key point of the method and a sensor for each vibration direction expected 

must be installed. Generally, two sensors are employed, but when 3-D monitoring is 

required, 3-axis accelerometers are used.  

 

A lot of effort has been made by researchers to develop signal processing techniques that 

obtain useful information, such as defect detection, assessment and remaining life 

prognosis from raw vibration data. These signal processing methods can be classified 

into three main groups: time domain, frequency domain and time-frequency domain. 

 

Time domain signal processing methods analyse vibration data properties change in time; 

frequency domain methods analyse frequency content of the signal; and time-frequency 

domain signal processing techniques analyse the variation of the frequency content of 

vibration data in time.  

 

 



74 

 

These techniques are generally represented as shown in Figure 4.12. The fundamentals 

of these signal processing methods will be discussed briefly, since all the techniques are 

equally applicable to both vibration and acoustic emission data.  

 

 

 

Figure 4.12 Representation of each type of domain 

 

4.4.3.1 Time domain signal processing techniques  

Time domain analysis demonstrates how the sensor data ‘signal’ changes over time. In 

the graphs, while one axis shows time, the other axis shows variations of physical signals. 

In the domain analysis, the signal is analysed statistically to find anomalies that would 

eventually result in bearing failure. A signal’s statistical features, such as root mean 

square (RMS), peak value, kurtosis, and crest factor, change according to bearing health 

conditions. Also, shock pulse method analysis can be performed in the time domain: the 

impingements in the bearing contacts, trigger the transducer to oscillate at its resonant 

frequency. Thus, by monitoring the shock pulses, information on the health of the 

contacts can be obtained (Patidar and Soni, 2013; Vaishakh, 2015; Devendiran, 2016). 

  



75 

 

 

4.4.3.2 Frequency domain signal processing techniques 

While the time domain graph shows a signal as it changes over time, frequency domain 

graphs exhibit the frequency content of the signal. It can be viewed as a conversion of 

the time function into a sum of sine waves at different frequencies as illustrated in Figure 

4.13. 

 

 

 

Figure 4.13 Time-frequency domain of the signal 

 

The main reason for monitoring the frequency spectrum of a vibration signal, is to 

identify when and which of the bearing components has developed a defect from the 

short vibration pulse burst that is given off when the faulty bearing element impinges 

onto the mating surface.  

 

Characteristic defect frequencies: Each bearing component has a different rotation 

frequency which depends on bearing geometry (number of rolling elements, contact 

angle) and operating conditions (shaft rotation speed). This characteristic enables 

identification of defected bearing components because these defects would product 

defect frequencies that show up as harmonics in the frequency domain graph of the 

component. The bearing elements defect frequencies can be calculated from Equation 

4.5, 4.6 and 4.7. 

𝑓𝑖𝑟 =
𝑛

2
𝑓𝑠 (1 +

𝐵𝐷

𝑃𝐷
𝑐𝑜𝑠𝛽) (4.5) 
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2
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𝑓𝑟𝑒 =
𝐵𝐷

𝑃𝐷
𝑓𝑠 (1 + (

𝑃𝐷

𝐵𝐷
)
2

𝑐𝑜𝑠𝛽) (4.7) 

Where  𝑓𝑖𝑟, 𝑓𝑜𝑟 , 𝑓𝑟𝑒  are inner race defect frequency, outer race defect frequency, rolling 

element defect frequency, respectively; n is the number of rolling elements; 𝑓𝑠 is the shaft 

rotation frequency; and BD, PD, 𝛽 are roller diameter, bearing pitch diameter and contact 

angle between rolling element and mating surface respectively (Tandon and Choudry, 

1999; Harris and Kotzalas, 2006). In order to find the frequencies, harmonics and 

periodicities of the defects, signals need to be processed by frequency domain methods 

such as the High Frequency Resonance Technique (HFRT), Cepstrum Method.  

 

4.4.3.3 Time-frequency domain signal processing techniques 

Although, a signal is assumed stationary in a Fourier transform analysis, it is non-

stationary, and it comprises of time-varying frequency contents. This nature of the signal 

requires time-frequency analysis to obtain more comprehensive information from the 

vibration data (Singh, 2016). The time-frequency domain signal processing techniques 

can be classified as Short Time Fourier Transform (STFT), Wavelet Analysis.   

 

4.4.4 Acoustic emission monitoring 

This section provides general information about Acoustic Emission (AE) fundamentals 

and technology. It explains the capabilities of AE transducers for bearing defect 

diagnosis, common AE test parameters, AE features that are generally observed during 

tests and how these can be linked to defect size. Post processing methods applied to 

vibration signals are equally applicable to AE signals and since these have already been 

discussed, they shall not be reviewed again in this section. 

 

Acoustic Emission is one of the non-destructive testing methods (NDT) which is being 

used increasingly in the structural integrity assessment field and in a vast number of 

industrial applications to detect, locate and assess the defects. Acoustic emissions are 

sound waves of a frequency that is over the audible range, between 100 kHz – 1 MHz, 

that spread from solid materials as a result of impact or structural integrity deterioration. 

In bearing applications, transient elastic waves can be detected from the interaction of a 

defected bearing component and its mating surface as it generates vibration (impact), or 
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from the rapid release of energy from bearing components which are under structural 

deformation (structural integrity deterioration) (Pao et al.,1979).  

The transient elastic waves are received by piezoelectric transducers that convert the 

waves into measurable electric signals. These signals are then recorded, pre-processed 

and post-processed by computers. 

 

A healthy bearing’s raw acoustic emission data gives a steady trend (Figure 4.14 (a)), but 

while the bearing is deteriorating; i.e. whilst it is experiencing subsurface crack growth, 

dislocation, grain boundary sliding, precipitates or inclusion mechanisms, a burst 

emission (also called HIT), which has a start and an end point, with a significantly larger 

peak than steady signal data, is observed (Figure 4.14 (b)). Anomalies in AE data that 

arise from friction and bearing components’ defect impingement can also be detected. 

For instance, a groove defect in the inner race will result in periodic acoustic bursts, at 

the frequency associated with the inner race, in the raw acoustic emission data (Jena et 

al., 2012). 

 

 

Figure 4.14 Acoustic emission raw data (a) Healthy bearing (b) Inner race groove 

(width 2.1 mm depth 1mm) (Jena et al., 2012) 

 

While the former type of anomalies, (i.e. those intrinsic to the material) are called primary 

AE sources, the latter, (i.e. those not originating from the material) are called secondary 

AE sources. By monitoring anomalies in AE data in the time domain and in the frequency 

domain, bearing defects can be detected and located, defect severity can be diagnosed 

and the bearing remaining useful time can be predicted. The post signal processing 

techniques which are used for vibration data analysis can be equally applied to the AE 

data for bearing monitoring. Moreover, AE burst characteristics such as rise time, decay 

time, ring down counts, burst amplitude, energy and duration (shown in Figure 4.14) can 

give additional information about bearing health condition (Caesarendra, 2015). 
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Figure 4.15 AE burst (HIT) characteristic properties representation (Caesarendra, 

2015) 

 

AE data containing anomalies, comprises of a superimposition of a continuous AE 

waveform and an AE burst. The latter can be described in several parameters (amplitude, 

ring down counts, duration, rise time, decay, and energy) all of which depend on the 

threshold – which is the background noise of the test rig. The amplitude is the peak of 

value of the AE hit, while the ring down counts are the number of times the threshold is 

exceeded in an event.  The duration is the time difference between the first and the last 

threshold crossings. The rise time is the time difference between first threshold cross and 

the peak amplitude and the decay time is the time difference between the duration and 

the rise time. Finally, the energy can be defined as the area of the AE hit over the 

threshold (NDT Resource Center, 2017). 

 

Researchers in this area have mainly focused on early stage defect detection (minimum 

detectable defect size), defect size correlation between AE parameters, and defect 

location determination by using AE sensors. Some of the studies compared AE and 

vibration sensors’ defect diagnosis abilities for monitoring of natural bearing fatigue and 

artificially defected bearings. The relationship between defect size and burst duration has 

been validated only for outer race defects (Al-Ghamdi et al., 2004; Al-Ghamd and Mba, 

2006; Elforjani and Mba, 2010). 
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With regards to which of AE or vibration is the more sensitive method for defect 

detection, literature can be found to be confusing as there is disagreement between the 

few studies that have been conducted. For instance, while some researchers (Hawman 

and Galinaitis, 1988; James Li and Li, 1995; Nohal and Vaculka, 2017; Al-Ghamd and 

Mba, 2006; Mba and Rao, 2006; Tandon et al., 2007) agree that AE is more sensitive 

than vibration, the studies of some researchers show that vibration sensors are more 

sensitive and can also detect smaller defects (Shiroishi et al., 1997; Williams et al., 2001). 

On the other hand, other studies have found that not only can acoustic emission sensors 

detect and measure defects at an early stage, but they can also determine a defect’s 

location by measuring the signal’s arrival time from source/s to multiple AE sensors at a 

known AE wave velocity (Yoshioka et al., 1998; Elforjani and Mba, 2008). 

 

More recent studies have focused on trying to develop signal processing methods (most 

of which had already been applied to vibration sensors), to increase sensor detection 

capabilities and obtain more precise defect size measurements, more accurate defect 

position determination and more accurate remaining useful time predictions. The aim has 

been to develop methods that could be applied across different working conditions 

(rotation speeds, subjected loads…etc). Also some research has been studying the 

feasibility of applying artificial intelligence systems to make decisions (e.g. to shut down 

the monitored bearing) based on the results of the collected and processed data.  

 

Acoustic emission is a very good method to monitor bearing health conditions, as is 

evidenced by the advantages given above. However, its widespread applicability to wind 

turbine condition monitoring has been detained form its disadvantages of noise, high data 

storage requirements and high computational power requirement for signal processing.  
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4.4.5 Displacement monitoring  

A body’s shape varies (incurs displacements) when subjected to a force, and in a bearing 

environment, such displacements occur when the outer race is subjected to a radial and/or 

axial load, and a rolling element passes over the outer race. Displacements occur at the 

contact region, as indicated in the Figure 4.16. 

 

            

Figure 4.16 Bearing displacement (Harris and Kotzalas, 2006) 

 

In bearing applications, outer race displacement can be measured by using non-

contacting measuring devices (transducers) of which there are many kinds. For example 

eddy current transducers (Harker and Sandy, 1989; Yu et al., 2002), fiber optics 

transducers (Juarez et al., 2002; Conkey et al., 2003), capacitance transducers (Yang et 

al., 1999; Yang et al., 2000) and piezoelectric load transducers (Holm-Hansen and Gao, 

2000) have all been utilized in research studies. Each of these shall be discussed briefly 

in this section, however, more detail will be given to the eddy current type, because of 

its capability to detect defects and its similarity to the transducer used in this work.  

 

A fibre optic transducer consists of an optical fibre which has two internal dielectric 

mirrors separated by a known distance, L as illustrated in Figure 4.16. When chirped 

laser light is directed onto the mirrors, it gets reflected back from the mirror which is 

closer to the bearing outer race (R2). The phase of the reflected light waves shifts with 

the outer race displacement incurred when a rolling element passes the investigated area. 

This means that by measuring the phase shift, the displacements of the outer race can be 

measured (Conkey et al., 2003).   
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Figure 4.17 FFPI structure (Conkey et al., 2003) 

The work of (Conkey et al., 2003), utilizes such a type of transducer (Fiber Fabry Perot 

Interferometer-FFPI). It was positioned within a transverse hole in the bearing housing, 

in close proximity to the bearing outer race. The rolling element passage profile obtained 

gives peaks for ball and sensor alignment, and troughs for when the sensor is in between 

balls, as is shown in the figure below. The frequency sampling rate employed was 1200 

Hz, which is relatively lower than the frequencies using in this work (8500 Hz – 12000 

Hz) (Conkey et al., 2003). 

 

 

Figure 4.18 Ball passage waveform, adapted from (Conkey et al., 2003) 

 

The researcher was able to obtain information about the load and its distribution on the 

rolling elements. It was found that at low loading conditions, the non-uniformity caused 

by the shaft misalignment can be detected (refer to Figure 4.19).  
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Figure 4.19 a) Uniform loading of rolling elements b) Misalignment Detection (Conkey 

et al., 2003) 

 

Bearing outer race displacement measurements have also been performed using 

capacitance measurement. The capacitive sensor, referred to as a Kevin probe, measures 

the contact potential difference between two dissimilar metals. One of the capacitor 

plates is positioned above the moving surface, which in a bearing scenario this means the 

probe is positioned above the outer race (as shown in Figure 4.20), and the other plate is 

electrically connected to the investigated surface, i.e. the other plate is electrically 

connected to the outer race. Displacements in the outer race will generate an electric 

current that varies with the magnitude of the displacement (Yang et al., 1999). 
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Figure 4.20 Capacitive probes application (Yang et al., 1999) 

 

This capacitance measurement technique has been successfully employed in studies that 

investigated relatively small (0.25mm x 0.25mm) defects on rolling elements and 

missing rolling elements (Yang et al., 1999) – even if no relationship between the defect 

size and signal features has been established. They were also used to measure rolling 

element skewness (Yang et al., 2000).  

 

Piezoelectric sensors can be used to measure outer race displacements through the 

piezoelectric effect that has been explained in Chapter 2. In the studies that employed 

this method, the piezoelectric sensor has been embedded into a slot located at the outer 

race, outer surface as shown in Figure 4.21. Thus, the outer race was modelled as a beam 

of varying cross-section, with the sensor giving a change in voltage measurement when 

the shape is changed (Holm-Hansen and Gao, 2000).  

 

 

Figure 4.21 Modified bearing outer race and sensor positioning (Holm-Hansen and 

Gao, 2000) 
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The outer race cross section changes every time a rolling element passes over the slot 

and hence, plotting the voltage output over time shows the displacements and bearing 

load of the outer race whilst it is in operation. Figure 4.22 shows the output given by the 

sensor compared to a simulated finite element model output (Holm-Hansen and Gao, 

2000).  

 

 

Figure 4.22 Sensor output and finite element model output (Holm-Hansen and Gao, 

2000) 

 

Each pulse in the figure, represents each rolling element pass over the sensor’s slot and 

the pulse width is determined by the slot length (beam length). Although the method is 

able to determine the load and bearing outer race deflection, implementation of the sensor 

weakens the bearing and thus bearing load carrying capacity is lowered. This 

shortcoming, reduces the applicability of the method for bearing condition monitoring.    

  

The bearing outer race displacement has also been measured with non-contact Eddy 

Current transducers. In the study conducted by Yu et al. (2002), the transducer was 

placed in a hole in the housing, leaving a specific distance between the transducer tip and 

the bearing outer race. When this distance changed, the voltage output changes as a result 

of the variation in the magnetic field interactions.  
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Figure 4.23 (a) Outer race deflection measurement by using eddy current; (b) Spikes 

resulting from defects (Yu et al., 2002) 

 

The distance between transducer tip and the conductive target (bearing outer race) 

changes according to rolling element positions; while rolling elements pass over the 

measured area, the outer race gets closer to the probe, and after contact occurs, the outer 

race goes back to its previous position. The voltage changes would reflect these changes 

in displacement. 

 

When the defects in the bearing components fall in line with the contact area beneath the 

probe, spikes appear in the deflection curve as shown in Figure 4.23 (b). The amplitudes 

of these spikes gives an indication of defect severity – although no correlation between 

the spike size and defect size has been established. Also, from the components’ pass 

frequency, it is possible to identify which of the components is the one that is defected 

as the harmonics of the defect pass frequencies could be observed in the frequency 

domain analysis.   

 

Another type of transducer that was employed to measure bearing outer race surface 

displacement is the ultrasound immersion transducer. In the work of Ibrahim (2012), a 

25 MHz spherically focused ultrasonic immersion transducer was employed to examine 

the surface displacement of a deep groove bearing. As the rolling elements passed 

underneath the transducer, the first reflection shifted as a result of a decrease in the 

distance between the bearing outer race and the ultrasound transducer. Although in this 

work the time shift of the first reflection and a displacement in the outer race surface 

have been observed, cyclic bearing outer race deflection curves were not obtained. Figure 

4.24 shows how the outer race surface displacement increased with the applied load while 

one ball was passing the underneath the transducer.   
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Figure 4.24 The surface displacement of the contact as a ball is passing (Ibrahim, 

2012) 

 

The above discussion has shown how different types of transducers can be applied for 

bearing outer race displacement measurements. The difference between the different 

kinds, other than in the working principles, lies in the defect resolution (horizontal), 

deflection magnitude resolution (vertical), in the sensitivity to the working environment, 

and the ease of positioning the transducer. For instance, the capacitance probe has a 

vertical resolution (showing magnitude of the deflection) of 0.25mm (MTI instruments), 

that for the fibre optic is 2µm, and eddy current transducers have a resolution of 0.2nm 

(Micro epsilon catalogue). On the other hand, the horizontal resolution for the eddy 

current transducer (which is directly related to sample rate) is much lower than that for 

the fibre optic transducer because. This is because an eddy current transducer records 

real time measurements and does not collect sampled data as the fibre optic transducer.  

 

The works reviewed have also shown that: (a) the bearing outer race surface 

displacement curves obtained from eddy current transducers can detect defect and 

evaluate defect severity on the components of bearings (Yu et al., 2002); and (b) that 

focused ultrasonic transducers are able to measure the deflection of an outer race surface 

of a bearing (Ibrahim, 2012). Hence, this work undertook the task of using a focused 

immersion ultrasonic transducer as a proximity transducer to study the bearing outer race 

surface deflection to greater detail than the previous work and by using superior data 

processing methods.  
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In addition, since an ultrasound transducer provides both high vertical and horizontal 

resolution data due to the sampling nature of the ultrasound wave, the defects on bearing 

components were examined with the aim of determining defect severity by the use of this 

type of transducer. 

 

4.5 Conclusion 

In the chapter, bearing failure characteristics, bearing life prediction and bearing defect 

analysis methods have discussed. 

• Possible bearing failure reasons and failure modes were discussed. 

• Different approaches for bearing life prediction were compared and the 

evaluation of the bearing life rating formula was presented. 

• The methods, transducers and data processing techniques employed for bearing 

defect diagnosis were compared and discussed in some detail. 

• The displacement monitoring techniques have been examined in detail due to the 

resemblance of these methods to that employed in this research.   
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5 EXPERIMENTAL DESIGN AND SENSOR 

INSTRUMENTATION 

 

This chapter discusses the instrumentation used in this project, starting off from the 

overall design of the test rig and the properties of the bearings used. It gives details on 

the setup and other parameters of the transducer employed. Finally, it discusses the 

ultrasound wave acquisition system used to collect reflections off the bearing outer race 

and very briefly explains the post processing methods used to analyse the obtained 

signals.  (The latter are discussed in more detail in Chapter 6).  

 

5.1 Bearing test machine 

The test rig, which was located in the Swift Laboratory within the Mechanical 

Engineering Department of the University of Sheffield, has been designed and 

constructed by Cooper Bearing Ltd. Any modifications required by the bearing parts and 

housing units, such as the attachment of ultrasonic sensors, strain gauges and 

thermocouples, have been conducted by the university’s workshop. Such modifications 

were required to enable monitoring of the bearings.  

 

The test rig consisted of the motor, driving belt, gearbox, two bearing pillow blocks, 

main shaft, monitored bearing, shaft speed controller, load cell, radial loading unit and 

the steel block through which the load was applied and measured. Figure 5.1 shows a 

schematic of this assembly.  

 

The inner race of the bearing under study, a Cooper Split Roller Bearing, was bore-

mounted to the shaft and rotated in correspondence to the constant shaft speed. The radial 

load was applied to the stationary outer race which was fixed to the cartridge unit by 

pins. This test rig simulates the operational mode of some of the wind turbine bearings 

such as the main bearing and the intermediate and high-speed stage bearings. These 

bearings have a rotating inner race and a fixed outer race. 
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Figure 5.1 The bearing test rig 

 

This test bearing inner raceway was driven by a 7.5 kW, 3000 rpm ABB electric motor 

via a 5:1 gearbox reduction and a 3.45:1 pulley stage. The ABB ACS 355 shaft speed 

controller enabled a range of shaft speeds up to a maximum of 175 rpm. The bearing 

could be loaded up to a radial load of 4000 kg, which could be adjusted by tightening the 

custom-made nut located at the right side of the steel block.  
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At the other end of the steel block sat a load cell from which the applied load could be 

read off as shown in Figure 5.2. The test bearing shaft was fixed by two bolt base 

pedestals through the shaft.  The bearing was lubricated with Alvania EP(LF)2 grease. 

 

The rotation speed of the main shaft of the test rig was set to low levels (12.5rpm and 

25rpm) in order to obtain high resolution bearing outer race deflection curves.   The 

applied radial load was not set to values exceeding 3000 kg to avoid further damaging 

the artificially defected bearing components.   

 

 

Figure 5.2 Schematic diagram of the bearing test rig 

 

 

5.1.1 Test bearing 

The use of a Cooper Split bearing in this project is prompted by some of its prominent 

advantages and its applicability to direct drive wind turbine main shafts. Cooper Bearings 

produce split bearings, i.e. bearings of which components such as inner and outer races 

and cage are split, as shown in the Figure 5.3. This makes assembly and disassembly 

easy and reduces downtime, installation expenses and power consumption. It also allows 

for easy inspection.  
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Figure 5.3 Cooper split bearing components (Cooper Bearing, 2015) 

 

The used bearing is referenced 01E B 400EX and is mounted on a 101.6 mm shaft 

diameter.  For this kind of bearing there are two types outer races: Fixed Type bearing 

‘GR’, which has a shoulder to carry axial and radial loads; and Expansion Type bearings 

‘EX’, which does not have shoulder and takes radial loads only as shown in the Figure 

5.4 (Cooper Bearing, 2015). The latter could move axially when expansion or contraction 

occurs on the shaft. Shoulders on the GR type outer race give more durability.  

 

Figure 5.4 EX Type and GR Type bearing outer race (Cooper Bearing, 2015) 

 

A technical drawing for the EX type Split Cooper bearing that has been used more 

predominantly in these tests is shown in Figure 5.5. Some of its key specifications are 

outlined in Table 5.1. 
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Figure 5.5 Technical drawing for EX type split cooper bearing 

 

Radial dynamic load rating (Cr) 320 kN 

Basic static load rating (Cor) 421 kN 

Axial dynamic load rating (Ca) 19.6 kN 

Pitch diameter (PD) 141.3 mm 

Roller Diameter (BD) 22 mm 

No. of Rollers 8 / 16 

Contact angle 0 

Table 5.1 Bearing specification (Cooper Bearing, 2015) 

 

5.1.2 Test Lubricant (Shell Alvania EP(LF)2 Grease) 

In this research, Shell’s Alvania EP (LF)2 grease, a lubricant designed for heavy duty 

bearings, shock loading in wet environments and high temperature is used. It contains 

mineral oil as a base oil and is thickened by lithium soap. Also, special additives give it 

the capability to withstand heavy and shock loads, water wash-out resistance, oxidation 

stability and corrosion protection (Shell, 2007). 
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5.1.3 Inverter  

The test rig shaft speed is controlled by an ABB ACS 355 inverter. The shaft, which is 

fixed to the inner race, can achieve 175 rpm rotation speed in 0.1 increments. Other 

advantageous features include:  

- Compact drives and uniform design  

-  Sensorless vector control  

- Built-in braking chopper  

- Torque memory for lifting applications  

- Common DC bus  

- 600 Hz maximum output frequency 

 

This inverter is equipped with state of the art health and safety measures. For instance, it 

is possible connect the emergency stop button of the rig to the inverter for accident 

prevention. Also, it has a Safe Torque-Off (STO) function which shuts down itself 

immediately in the event of failure, where the shaft requires more torque than the 

specified maximum. This measure not only protects against health hazards but also 

prevents damage to shaft, gearbox and motor (ABB, 2013).  

 

5.2 Simulation of the bearing component defect 

The complexity of life estimation of the bearings incited researchers to develop condition 

based monitoring (CBM) for life estimation of bearings. In such CBM applications, 

changes in the specific properties of the bearings which may be related to fatigue, are 

monitored to estimate the bearing remaining useful time.  

 

In the first part of this study, the outer race deflection curve patterns obtained from a 

brand-new Cooper Split EX type bearing has been examined under different operating 

conditions.  

 

The second part of this research involves the use of an ultrasound transducer to monitor 

outer race deflection with the aim of analysing certain typical bearing defects. Since the 

defect onset process can take a long time, defects of known size in the form of line defects 

with different widths, were artificially introduced to bearing outer races, inner races and 

rolling elements as illustrated in Figure 5.6. In order to assess the measurement 
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capabilities of the proposed method, these defects needed to be of submillimeter 

dimensions. Since the bearing components were composed of hardened 100Cr6 steel, 

machining the defects with Computer Numerical Control (CNC) to the required high 

precision was not possible and instead, Wire-Cut Electrical Discharge machining (EDM) 

was employed. The smallest wire diameter is 0.1 mm, hence line width sizes as small as 

several hundred micrometres could be cut in different bearing components.  These 

submillimetre size defects were accepted as simulated defects of the very early stages of 

the possible defects in a bearing as shown in § 4.2.   

 

 

Figure 5.6 Bearing components artifical defects by EDM (Rolling element,inner race, 

outer race) 

 

5.3 Sensor implementation  

Detailed information on the general properties and applications of ultrasound transducers 

has been given in previous chapters. In this part, the implementation of the spherically 

focused immersion transducer within the testing equipment will be discussed. 

 

Sensor implementation is of vital importance for testing: the sensor’s physical presence, 

cables, connections and other requirements such as water paths need to be taken into 

consideration during the test rig design stage, depending on the sensor’s requirements. 

For instance, while piezo-disc sensors with their adjustable small size disrupt the housing 

only slightly, other sensors such as immersion transducers need a water path which 
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enables sound wave transmission. This means that the housing needs to include a hole, 

of specific diameter within the range of 3.175 mm to 28.5 mm to accommodate their 

circular case geometry (as illustrated in the Figure 5.7) and water path. 

 

 

Figure 5.7 Focus ultrasound transducer and dimensions 

 

The main tests of the project were performed by using a spherically focused ultrasound 

transducer. Holes of diameter 14 mm and 24 mm were drilled through the cartridge and 

test rig’s steel block, respectively, to accommodate both the sensor and water path as 

shown in the Figure 5.2. 

 

In this work, the bearing inner race was fixed to the main shaft and the cage held together 

the rolling elements between the inner and outer races. The outer race was fixed to the 

cartridge by pins to prevent rotation. Through the steel block a measured radial load was 

applied to the bearing. Both cartridge and steel block have been drilled all along to 

accommodate the sensor and water path as shown in the Figure 5.2. Dimensions of the 

test rig in this sketch have been exaggerated for illustrative purposes.   

 

Ultrasound waves were aimed onto the bearing outer race from the transducer located 

vertically above it. The transducer does not need to be in contact with the component it 

will monitor: it emits waves and collects reflections from its fixed position. The 

ultrasound transducer positioning propagated and reflected waves can be seen in the 

Figure 5.8. 
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Figure 5.8 Immersion transducer positioning, wave propagation and reflection 

 

The most critical parameter for the focus immersion ultrasound transducer is the 

adjustment of the water path distance – which is the distance between the face of the 

immersion transducer and the bearing outer race outer surface, as illustrated in the Figure 

5.8. This parameter affects the ultrasound beam diameter and the transmitted ultrasound 

wave energy as has been explained in detail in § 2.1.3.3. The smaller the beam diameter 

and the highest the energy of the transmitted waves to the bearing outer race, the more 

accurately can the movement of the investigated are be observed. This condition can be 

obtained when the bearing outer race is positioned within the focal zone of the transducer.  

 

For the setup of these tests, the water path distance has been calculated from the Equation 

2.9 which was given in § 2.1.3.3.2. 

 

𝑊𝑃 = 𝐹 − 𝑀𝑃 (
𝑐𝑡𝑚

𝑐𝑤
) (2.9) 

 

Also, the water path can be more precisely determined through empirical measurement. 

This can be done by changing the distance between the face of the focused immersion 

transducer and the bearing outer race outer surface in small increments and analysing the 

differences in the ultrasonic reflections obtained.   
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The first reflection comes from the bearing outer race outer surface, and the amplitude 

of this signal indicates the power of the reflection, which is affected by the water path. 

The optimum water path distance is that at which the highest amplitude can be obtained. 

Hence, by collecting and comparing the amplitudes of the first reflections from different 

distances, the water path distance can be determined.  

 

As discussed in § 2.1.3.3.2 the employed focus immersion transducer is able to make 

accurate measurements within the minimum and maximum focus distances: 25.4 mm 

and 203.2 mm, respectively. Figure 5.9 shows that the measured highest reflection 

amplitudes occurred at a water path distance of 54 mm. This is where the most sensitive 

measurements can be performed. 

 

 

Figure 5.9 Variation water path with peak amplitude of reflections 
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5.4 Data acquisition and the basic principles of the post signal 

processing  

In this project, a computer-based ultrasonic data acquisition system, called Film 

Measurement System (FMS), was used to perform the analysis of ultrasonic data. The 

system is made up of two Peripheral Component Interconnecting (PCI) cards – the 

digitiser and the UPR – to perform ultrasonic measurements, as shown in the Figure 5.10.  

 

 

Figure 5.10 Ultrasonic measurements apparatus 

 

The Ultrasonic pulse-receiver (UPR) generates voltage pulses to excite the piezoelectric 

elements within the transducer, which in turn, when induced, these piezoelectric elements 

produce ultrasonic waves. The UPR unit has eight channels and could deliver excitation 

pulses up to 300 volts. Short duration pulses could be generated at a LabVIEW control 

interface at a selected rate of up to 80 kHz. This frequency is called the "Pulser Repetition 

Rate" (PRR) and controls the rate at which the pulser fires. The pulse width (PW) can be 

varied from 50 to 1000 nanosecond.  

 

The generated ultrasonic waves travel through water, interact with the bearing’s outer 

race and are reflected back onto the transducer. These reflected ultrasonic waves are 

converted to a voltage response signal and passed on to the UPR.  Subsequently, the 

analogue response is converted to a digital one by the digitiser, an operation which is 

required to enable further computer processing and storage. The digitiser has a digitizing 

rate of 100 MHZ at a resolution of 12 bits (Howard, 2016).  
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The vertical resolution of the signal is determined by digitiser resolution and it represents 

the number of voltage steps that construct the signal. In the case of a 12-bit digitiser, the 

signal is divided into 4096 (212) vertical digital discrete steps. Small magnitude changes 

of the signal can be efficiently determined by such a high-resolution digitiser. A 12-bit 

digitiser is sufficient for the majority of applications  (Brunskill, 2013). 

 

In ultrasound testing, sound wave incidence is of paramount importance, if an adequate 

reflection is to be obtained. Incident wave properties such as pulse voltage, pulse 

repetition rate, variable gain, length of signal and pulse width can all be adjusted via the 

LabVIEW control interface. Furthermore, the software allows the user to “window” the 

reflection of interest by adjusting the “Delay” and “Range” of the waveform.  Adjusted 

and selected pulses can be recorded as a Technical Data Management Streaming (TDMS) 

file or binary file for post processing techniques. The frequency and duration of the 

recorded data can be adjusted from the developed interface.  

 

The required reflections have been recorded in a stacked ultrasonic data stream form. By 

knowing the Pulser Repetition Rate (PRR) and pulse range, post signal processing 

methods could be applied to the data stream to obtain the required information. 

 

In these studies, incident ultrasound pulses and consecutive reflections have been 

monitored. The first and second reflections have been recorded in same window with a 

sampling rate of 11200 Hz. These were analysed to determine the deflection of the outer 

race under different circumstances (different number of rolling elements and different 

main shaft rotation speed).  

 

For the second part of the project, where the aim was to detect defects in the inner race, 

outer race and rolling elements, the first and second reflections were again recorded 

together using the same sampling rate as in previous experiments.  

 

The idea behind the use of ultrasound transducers and post signal processing for this 

project can be explained simply as follows: ultrasound transducers are not only able to 

measure the thickness of material and detect defects within the material non-

destructively, but also are able to determine the distance between the transducer and the 

examined material when the transducer is positioned at a distance from the inspected 
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material, like for example in the case of the immersion transducer. Moreover, immersion 

ultrasound transducers are able to quantify any movement of the inspected material with 

respect to their fixed position, as such movement would result in a time shift in the 

reflected waves. Hence, by analysing the time shifts of the first reflection wave emitted 

off the bearing outer race, the movements undergone by the outer race could be observed. 

For the signals to be correlated to the deflection of the outer race, the zero-cross and time-

of-flight post processing methods have been employed.  

 

5.5 Conclusion 

This chapter describes the equipment used in this project, which very broadly consists 

of: 

▪ the test rig;  

▪ the transducer instrumentation; and  

▪ the data acquisition system.  

 

Details of each of these components and their role has been discussed to enable a better 

understanding of the subsequent chapters. In addition, the chapter provides an outline of 

the study.  
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6 BEARING OUTER RACE SURFACE DEFLECTION 

MEASUREMENTS 

 

In this chapter, the methodology of the proposed method to measure bearing outer race 

deflection by using ultrasound immersion probe is discussed in detail. In other words, 

the recording of the required ultrasound reflections and signal processing techniques of 

the data will be explained thoroughly. Finally, the effects of the operating conditions and 

the number of rolling elements on the outer race surface displacement will be discussed.   

6.1 Data acquisition 

 

In order to perform post-signal processing techniques to obtain cyclic load-dependent 

bearing outer race displacement data, ultrasound reflections need to be identified and 

recorded.  ToF measurements cannot be applied to the incident wave because its shape 

is not similar to that of the reflections (In Figure 6.1 the incident wave looks similar 

because the signal was rectified for illustrative purposes). Also, the number of data points 

recorded for the incident pulse and first reflection set is between 30-35 times larger than 

that recorded for the first and second reflections – which creates a data size problem. 

Moreover, not using the incident wave, is not an issue, because the time shift of first 

reflection – which is reflected from the outer race’s outer surface, is enough to extract 

information to show the deflection of the bearing outer race.   

 

On the other hand, the second reflection’s raw data stream shows very clearly the passing 

of rolling elements – which is not so evident in the first reflection’s raw data stream. 

Hence, recording of both first and second reflections together enables an acceptable data 

size that gives a clear identification of the passing rolling elements in the raw ultrasonic 

data stream and outer race deflection change with varying load.  
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Figure 6.1 Windowing of the interested reflections- 1st-2nd reflections 

 

The data acquisition interface software connected to the ultrasound pulser-receiver unit 

has been developed within LabVIEW environment. Other than the visualization of the 

incident wave and a series of reflections, it also enables the user to record (termed, 

window) parts of interest of the signal at the desired pulse repetition rate (PRR), pulse 

width and duration. The first and second reflections can be seen windowed in Figure 6.1 

The pulses of interest can be windowed by arranging the delay and range.  
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The pulse repetition rate (PRR) controls the generation frequency of the specified 

window, which in this case includes the first and second reflections (Figure 6.2). The 

number of data points in the ultrasound raw data stream is the multiplication of the PRR, 

window size and duration of the recording time. The recorded first and second reflection 

can be seen in a stacked ultrasonic data stream form as shown in Figures 6.2 and 6.3.  

 

Figure 6.2 Recording of the 1st and 2nd reflections with desired PRR 

 

 

Figure 6.3 Raw ultrasound data stream, (rolling element pass evident in 2nd reflection)  
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6.2 Post signal processing   

The first stage of post signal processing involves reading the consecutive pulses from the 

binary files by using the known signal configuration information, such as window length 

and the pulse lengths. The captured signal window is thus extracted and pulse movements 

can now be analysed.  

 

 

Figure 6.4 1st and 2nd reflection (Defined window) 

 

The window in this study consisted of 265 data points (as shown in Figure 6.4), which is 

equivalent to 2650ns. This window size multiplied by the PRR and collection time, gives 

the total number of data points for the whole data stream.  

 

Each pulse that is emitted, reflected and collected, provides information about the status 

of the interfaces; for example, the first reflection gives information about the outer race 

position relative to the fixed position of the transducer. Hence, each pulse reflection set 

(where a reflection set consists of the first and second reflections) has to be analysed 

separately. To do this, each reflection is windowed by selecting the appropriate ‘index’ 

and ‘Ascan Length’ – software parameters that define the window starting point and 

length, respectively. Subsequently, to enable the software to pick the correct point for 

zero crossing the pulses are likened to each other by normalization and an appropriate 

threshold level is defined. This latter parameter, helps the software to locate the first crest 

– the tail of which is used to locate the zero crossing point (shown in Figure 6.5). 

However, the zero crossing point that follows the highest peak in the reflection signal 

may also be used for time shift analysis.  
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Figure 6.5 1st reflection window-first crest highlighted 

 

Each pulse will provide one zero crossing value, and when these are plotted against time, 

the movement of the first reflection can be visualized. The minima of the resulting curve 

show when the outer race’s outer surface is closest to the probe and the maxima show 

when the surface is farthest away.  

 

 

Figure 6.6 One rolling element pass time-shift graph (3000 kg-25rpm shaft speed-

16RE-EX) 
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Figure 6.6 shows the time-shift graph for the 16 rolling element EX type bearing (under 

the action of a 3000 kg radial load and a shaft speed of 25 rpm), whilst one rolling element 

passes through the investigated area. The rolling element positions shown can be 

translated to positions on the time shift curve as follows. The lowest points on the time 

shift curve represent the moment a rolling element passes beneath the focus immersion 

transducer. At the point, the water path distance is shortened, with the consequence that 

the first reflection is shifted in the leftward direction. At that moment, the zero-crossing 

point of the reflection is 𝑡𝛿0
, and the distance between outer race and transducer is 𝑑𝛿0

. 

In terms of the example shown in Figure 6.4, the selected window delay is 8075 data 

points (meaning that the part of interest starts after 8075 data points (corresponding to 

80750 nanosecond)). The lowest point of the deflection curve as determined from the 

zero crossing, occurs around the 31.7th data point. Adding the delay and the zero crossing 

point (80750 + 317), gives the ToF, which in this case is 8106.7 data points – or 81067 

nanoseconds, between the transducer and the outer race outer surface. The peak point on 

the time shift curve represents the moment the transducer is in between the two 

consecutive rolling elements. At that moment the zero-crossing point of the first 

reflection is 𝑡𝛿2
and the distance between outer race and transducer is 𝑑𝛿2

. For the given 

case, zero crossing point occurs around the 32.8th data point, and hence, gives a ToF 

value of 8107.8 data points (81078 nanoseconds).  

 

In order to find maximum bearing outer race surface displacement, the zero crossing 

point of the second case is subtracted from the first and the basic ToF formula is applied 

as shown by Equation 6.1: 

 

𝛥𝑑 = 𝑑𝛿2
− 𝑑𝛿0

= 0.5 (𝑡𝛿2
− 𝑡𝛿0

) (6.1) 

 

The net time shift curve can be obtained by subtracting the minimum value of the curve 

from every data point (hence, the minima assume the value of zero, and the peaks 

becomes the maximum time shift) as shown in the Figure 6.7. From this curve, the net 

deflection at every point can be obtained as shown in the Figure 6.8 by applying the time 

of flight formula as shown in Equation 6.2:  

𝑑𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑡) = 0.5𝑐𝑡𝑛𝑒𝑡𝑡𝑖𝑚𝑒𝑠ℎ𝑖𝑓𝑡(𝑡) (6.2) 
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Where 𝑑𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 is the deflection at a time t, c is the speed of sound and 𝑡𝑡𝑖𝑚𝑒𝑠ℎ𝑖𝑓𝑡 is 

the timeshift at time t. 

 

 

Figure 6.7 Net time shift (3000 kg-25 rpm shaft speed-16RE-EX) 

  

 

 

Figure 6.8 Net deflection (3000 kg-25 rpm shaft speed-16RE-EX) 
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Figure 6.9 Rolling element position under sensor 

 

 

 

Figure 6.10 Sensor in between two consecutive rolling elements 

 

In this work, all the stages of the rolling element position have been studied. The critical 

positions of the rolling elements relative to the immersion transducer position have been 

identified as follows; (i) when the contact occurs underneath the transducer as depicted 

in Figure 6.9, and (ii) while the sensor is midway between two consecutive rolling 

elements as shown in Figure 6.10. 
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These observations show clearly that as the rolling elements pass over the investigated 

area, the outer race is pushed radially outwards towards the probe and that once the 

rolling elements are outside the investigated area, the outer race starts moving away from 

the probe until the midpoint between two consecutive rolling elements. After this point 

is surpassed, with the subsequent rolling element’s approach, the outer race starts to 

move radially outwards once again until the rolling element is in line with the probe, at 

which point the shortest path distance is observed. The outer race undergoes this 

deformation cycle with every passing rolling element. 

 

The deflection cycles obtained in this study are very similar to sine waves – verifying the 

cyclic behaviour of deflection incurred by the outer race. The cyclic surface displacement 

of the investigated area for a brand new EX type outer race, having 16 rolling elements 

and subjected to a 3000 kg radial load and a shaft rotation of 25 rpm can be seen in Figure 

6.11. 

 

 

Figure 6.11 Deflection (µm) for 16 RE bearing (3000 kg, 25rpm) 
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Each cyclic deflection event provides information about the observed point of the outer 

race movements while rolling elements pass.  As can be seen from the Figure 6.11, the 

peak to peak value of each cycle is almost the same except for the one at the middle. The 

slight differences in the peaks occur because the rolling elements were not placed tightly 

and thus some movement within the cage is allowed. Moreover, the surface qualities of 

each rolling element is slightly different.  On the other hand, the cycle which has the 

higher amplitude and longer duration occurs as a result of the bearing type used: the cage 

of the split bearing consists of two separate cages, each having 8 rolling elements and the 

distance between the two adjacent rolling elements located at the cage split point (38.7 

mm) is relatively bigger than the distance in between all the others (30.9 mm) as shown 

in the Figure 6.12. This causes a prolongation of the water path distance, and the cycle 

takes longer at that point. 

 

 

Figure 6.12 Distances, in mm, in between rolling elements at the split point, and 

otherwise 
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6.3 Operating parameters and bearing outer race deflection 

relationship 

The operating parameters of the bearing affect the magnitude of the bearing outer race 

deflection. An increase in the applied radial load results in an increase of the reaction 

force at the contact and thus the surface displacement increases. On the other hand, an 

increase in speed does not affect the amount of outer race deflection significantly. In this 

section the operating parameters and bearing outer race deflection relationship is 

assessed.  

 

6.3.1 Applied load and experimental procedure 

The bearing in the application has been loaded radially through the use of a lever arm – 

as shown in the schematic below. The radial load applied can be read off the load gauge 

located at the pivot point. The load acting on the most heavily loaded rolling element can 

be determined by taking moments about the pivot point, and then using Stribeck’s 

formula discussed in § 3.2.1. 

 

The forces on the test rig bearing are illustrated in Figure 5.2. In order to calculate the 

reaction force at the contact, moments were taken about the pivot point as shown by 

Equation 6.3: 

 

𝑀 = 2𝑥𝐹𝑟 + xmg − 𝑊𝑟𝑥 = 0 (6.3) 

 

𝑊𝑟 = 2𝐹𝑟 + mg (6.4) 

 

Substituting in Stribeck’s formula (Equation 6.5): 

 

𝑊𝑚𝑎𝑥 =
5(𝑊𝑟)

𝑍
(6.5) 

 

In the table below, radial load reads have been converted to the maximum load incurred 

by the most heavily loaded rolling element (by using moments and Stribeck’s formula) 

for both 16 rolling element and 8 rolling element cases.  
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Radial load (kg) 

(read-out) 

Force at heavily loaded RE 

(16RE) (N) 

Force at heavily loaded RE 

(8RE) (N) 

250 1533 3066 

500 3066 6132 

750 4598 9196 

1000 6131 12262 

1250 7664 15328 

1500 9197 18394 

 

Table 6.1 Radial load (read-out from load gauge) and the force on heavily loaded 

rolling element 

 

In this study, the load has been incrementally increased from 250 to 1500 kg (equivalent 

to a radial load increase of 500 to 3000kg), and at each increment, the rig was left running 

for 45 minutes. This procedure has been repeated for different rotation speeds: 12.5 rpm 

and 25 rpm. A brand-new EX type outer race was tested with 16 and 8 rolling elements 

in the cage in order to analyse effect of the distance between rolling elements as well as 

the effect of the number of rolling elements on the deflection curves. The ultrasound 

reflections data collected has been post processed using the procedure that has been 

outlined in § 6.2 to obtain the net time-shift curve of the first reflection – which is directly 

proportional to bearing outer race surface displacement. Subsequently, the averaged net 

time shift data for different operating conditions which represents the bearing outer race 

surface displacement is obtained.  
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6.3.2 Bearing outer race surface displacement and applied load  

Figure 6.13 shows the change in net time shift with increasing radial load of the specified 

zero-crossing points at the moment when a rolling element is passing through the 

investigated point on the outer race.  

 

 

 

Figure 6.13 Time shift curve of EX type outer race for 16 rolling elements with varied 

load constant shaft speed (25rpm) 

 

The EX type bearing was loaded from 500 kg to 3000 kg radially and the force acting on 

the heavily loaded rolling element increased from 1.5 kN to 9.1 kN at a shaft rotation 

speed of 25rpm – as shown in Table 6.1. The lowest point on the curves represents the 

time when the rolling element is beneath the transducer and hence incurring the highest 

load, whereas the peak points represent the moment when the transducer is in the middle 

of two consecutive rolling elements. The net time shift curves clearly show that time shift 

increases with applied load: increasing from 5.71 ns to 11.97 ns.  

 

As has already been discussed in § 6.2, the time shift of the first reflection is linear to the 

deflection incurred by the outer race’s outer surface. Hence, by applying the Equation 

6.6 that governs this relationship to the time shift curve, the deflection curve can be 

drawn.  
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𝑑𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑡) = 0.5𝑐𝑡𝑡𝑖𝑚𝑒𝑠ℎ𝑖𝑓𝑡(𝑡) (6.6) 

 

Where 𝑑𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 is the deflection at a time 𝑡, 𝑐 is the speed of sound and 𝑡𝑡𝑖𝑚𝑒𝑠ℎ𝑖𝑓𝑡 is 

the timeshift at time t.  

 

 

 

Figure 6.14 Deflection curve of EX type outer race for 16 rolling elements with varied 

load constant shaft speed (25rpm) 

 

The peak to peak difference in the values of each deflection cycle gives the net bearing 

outer race deflection value (Figure 6.14). This varies between 4.2 µm and 8.7 µm for the 

rotation speed of 25 rpm. 
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6.3.3 Effect of rotating speed on outer race surface displacement  

 

 

Figure 6.15 EX outer race surface displacement and applied load 12.5 and 25 rpm 

 

Figure 6.15 shows the load-deflection relationship for different rotation speeds (12.5 and 

25) for the EX type bearing. As can be seen from the plots, bearing rotation speed does 

not affect the deflection incurred significantly at relatively low rotation speeds. In order 

to observe bearing outer race deflection curves in more detail (high horizontal 

resolution), low rotation speeds were selected to enable the passage of every rolling 

element to be represented with more data points. However, at higher speeds, such as 

those over 1000rpm, centrifugal forces would increase the deflection incurred and must 

therefore be taken into consideration.  
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6.3.4 Effect of number of rolling elements 

 

 

Figure 6.16 EX type outer race displacement for 16 and 8 rolling elements (12.5 rpm) 

 

In the results that have been discussed so far, the bearings under investigation contained 

16 rolling elements. However, this work has also studied how the distance between two 

rolling elements affects the deflection.  Hence, tests with 8 rolling elements, instead of 

16 have been conducted.  

 

The load-deflection curves shown in Figure 6.16 show that for 8 rolling elements the 

deflections are much higher than those obtained for 16 rolling element bearings. 

However, similar to the 16 rolling element, the curves show a non-linear relationship 

between load and deflection, and that the rotation speed does not affect the deflection 

greatly.  

 

This difference in deflection quantity between the 16 rolling element bearing and the 8 

rolling element one can be explained by taking into consideration the beam deflection 

theory – which maintains that deflection is directly related to the moment of inertia, the 

distance between the support points, the elastic modulus, and the applied load and its 

position.  
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The rolling elements act as the supports to the radial load applied, and when the probe 

position is in between two consecutive rolling elements, the radial load acting on the 

outer race causes a deflection along its radial direction. The larger the distance between 

the rolling elements, the larger is the deflection incurred. Also, as the number of rolling 

elements decreases, the force acting on the heavily loaded rolling element is increasing 

as proposed by the Stribeck Equation.  

 

6.4 Bearing outer race surface displacement real-time monitoring 

The produced interface used for recording of ultrasound reflections, has been modified 

to process data in real time, while the bearing is in operation. In this mode, the data 

processing methods used were similar to those used in post signal processing, but with 

some modifications.  

 

In real time mode, the user has the means to view several windows simultaneously: one 

window contains the first and second reflections, and two others, containing the first and 

the second reflections in a normalized version. Moreover, the movement of each 

reflection in the time domain can be monitored and plotted (using the zero crossing 

method) in real time.  

 

When the system is operating in this mode, the ultrasound waves emitted onto the bearing 

are not in pulsed form, but in the form of a continuous wave, and in the former mode, the 

sampling rate is much higher than in the latter. For this reason, the resolution of the real 

time plots is lower than that which is obtained from post processing of data. Also, the 

resolution of real time plots is affected by the rotation speed – where the higher the 

rotation, the lower is the resolution.  
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Figure 6.17 Real time time-shift graph (applied load decreasing step-by-step) 

 

In the plot shown in Figure 6.17, it can be seen clearly that as the load was incrementally 

decreased, the deflection decreased correspondingly. Under the same operating 

conditions, the time-shift quantities measured in real-time monitoring were similar to 

those obtained in the post processing method at relatively low shaft speed.  

 

The difference between the time-shift curves (and hence, in the results) lies in the amount 

of data points that are used in their construction. Whilst in the post processing methods, 

hundreds of data points are used to represent the contacting interactions, in real-time, the 

lower amount of data points used result in a less well defined and less accurate contacting 

representation. Thus, the real-time curve tends to contain noise that reduces the resolution 

of the measurements. For instance, consider Figure 6.18 that contains 6 net time shift 

curves for different radial load conditions; starting from 500 kg, with increments of 500 

kg, until 3000 kg.  
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Figure 6.18 Net time shift real time data 

 

 

 

Figure 6.19 Bearing outer race deflection amount real time 

 

Figure 6.19 shows the net time shift converted to outer race deflection amount through 

Equation 2.7. As can be seen from the plots, the bearing outer race deflection amount 

increased with radial load. Real-time bearing outer race deflection curves therefore agree 

with the curves that have been obtained after post signal processing.   
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Since this real-time method can give instantaneous deflection results at relatively small 

data sizes (when compared to the data produced in the post processing method), it can be 

used as a real-time bearing outer race deflection monitoring method.  

 

6.5 Conclusion 

 

In this chapter, the method used to identify and record ultrasound data was explained. 

Subsequently, the post-signal processing techniques used to deduce bearing outer race 

movement measurements have been discussed. Finally, the affects of operating 

conditions on the displacement of the bearing outer are presented and discussed. 

 

The major findings of the work discussed include the following: 

▪ It is understood that ultrasound immersion transducers can be used as proximity 

transducers for bearing applications; 

▪ Outer race cyclic deflection curves can be obtained both in real-time and by post 

processing methods; 

▪ While the shaft rotation speed has minor effects on the deflection magnitude of 

the outer race, the applied radial load and the number of rolling elements (and 

hence the cage geometry) significantly affect the deformation incurred. 
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7 ROLLING ELEMENT AND INNER RACE DEFECT 

DETECTION  

 

This chapter examines the capabilities of the proposed method for inner raceway and 

rolling element defect detection. Artificial defect implementation on the bearing 

components, the post signal processing procedure assumed and the bearing kinematics 

are discussed briefly to facilitate the subsequent discussion on the relationship between 

defect size and the anomalies observed in the outer race deflection cycle.   

 

7.1 Introduction  

In-operation bearing defect diagnosis plays a vital role in preventing excessive failure 

costs. The desirables for such systems generally include: defect detection, defected 

bearing component identification, defect location and defect severity evaluation. Non-

destructive bearing defect detection sensors such as vibration, acoustic emission and 

ultrasound sensors and data processing methods have been developed to fulfil these aims. 

Vibration and acoustic emission methods are generally based on the notion that when a 

defect comes into contact with a bearing component, an anomaly is observed in the signal 

collected by the sensor.  

 

In this research, a focused immersion ultrasound transducer was employed to assess the 

health condition of a bearing. The principle of operation is similar to that of the other 

mentioned methods – whereby the outer race surface displacement cycles are affected by 

defects on the bearing components, resulting in anomalies in the bearing outer race 

deflection curve. In this part of the research, the effects of defects on bearing components 

(rolling elements and inner race) on the outer race deflection curves will be discussed.  

 

The aim of these tests was to find a relation between signal discontinuity and defect size. 

Hence, defects in the form of line slots have been generated onto bearing outer races, 

inner races and rolling elements. Since the line slot width is an indication of defect 

severity, 3 different line widths: 0.41, 0.59 and 0.72 mm, all having a depth of 0.25 mm 

have been prepared by Wire-Cut Electrical Discharge Machining (EDM) on 3 different 

rolling elements. (In this chapter only inner races and rolling element defects are 

discussed. Defects on the outer race are investigated in Chapter 7). To enable easier 
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detection, each defective bearing element had only one defect (which means that in total 

3 defected outer races, 3 defected inner races and 3 defected rolling elements have been 

prepared). 

 

In order to observe defect-contact conditions in the rolling elements, the 3 defected ones 

were placed at known locations within the cage and the first and second ultrasound 

reflections were observed. Such a setup meant that one full cage revolution would give 

information on all the three defects. On the other hand, to evaluate the inner race defects, 

one healthy half of the inner race was changed with one of a known defect size.  After 

recording the reflection signals, these were analysed and the effect of these defects was 

determined.  

 

These experiments have been performed with a fixed type outer race (GR type) which 

had been previously used in other studies. This decision was taken to minimize vibration 

as when rolling elements or inner race were defected, the vibration level increased when 

the EX type outer race was used.  

  

7.1.1 Generation of the artificial defects 

Before the trials of the defect sizes stipulated above have been conducted, a pilot test 

involving a macroscopic defect was conducted. In this test, a line defect of a couple of 

millimeters was generated using a hand held Dremel multi tool, on a rolling element,  

inner race and outer race. The deflection curves obtained from this pilot study clearly 

showed the detection of such defects and hence a strategy to determine the minimum size 

defect was established. Moreover, in these preliminary tests, outer race defects were 

positioned at different and known locations in relation to the transducer position to 

analyse defect-contact location effects on the bearing outer race deflection curves.    

Several line defects were produced starting from 0.25mm up to a 0.65 mm width. 

Although the aimed line defect width sizes were 0.25,0.35, 0.50 and 0.65, these target 

dimensions were not achieved precisely by EDM.  
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In the bearing outer race deflection cycle curves, an anomaly was first observed when 

the 0.41 mm defect was tested. Hence, this was accepted as the minimum detectable 

defect size by the proposed method. Line widths of 0.59 and 0.72 mm have been further 

tested to show the relationship between defect size and the discontinuities observed in 

the deflection curves. 

 

To determine rolling element’s defect severity, three defected rolling elements each with 

a differently sized defect, substituted three healthy rolling elements in the cage at 

different locations – as shown in the image below. The defected rolling elements have 

been placed in both halves of the cage and they have been sufficiently spaced so as not 

to affect each other’s deflection waves. One half (shown at the bottom of Figure 7.1) 

contains the rolling element having the 0.59 mm defect in its 3rd rolling element position 

and the 0.41 mm defected one in its 7th position, whilst the 0.72 mm defect rolling 

element is on the other half, in the 4th position (from the right).   
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Figure 7.1 Defected rolling elements positions in the cage and sketch of defected 

rolling elements location 

 

The defects produced have been measured using a Nikon microscope using a X100 times 

magnification as shown in Figure 7.2.   

    

 

Figure 7.2 Microscope image of slot defects on rolling elements (a) 0.415 mm (b) 0.593 

mm (c) 0.727 mm 
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7.1.2 Data acquisition and post signal processing 

The first and second ultrasound reflections were recorded with the highest possible pulse 

repetition rate (PRR), as permitted by processing abilities of the recording computer. 

Also, since the post signal processing time depends on the duration of the recorded 

reflections and the PRR, to obtain a reasonable post signal processing time, a balance 

between the duration of the recording time and PRR has to be obtained. Hence, after 

taking these factors into consideration, the PRR was set to 11200Hz for defect detection 

experiments. This relatively high PRR value provides an adequate (high) resolution for 

the bearing outer race deflection cycles.  

 

When a defect exists on the bearing outer race, every rolling element will impinge on the 

defect. However, when a defect is on the inner race or on a rolling element, the defect is 

not always located at the mating surfaces. Hence, to obtain deflection curves of when the 

defect/s come into contact the observation of many revolutions was required. Also, since 

the defected rolling elements were positioned in both halves of cage, to determine the 

defected rolling element accurately one whole cage rotation should be observed. At the 

employed shaft rotation speed of 12.5 rpm, one cage revolution takes 11.5 seconds, 

which subsequently required 3 minutes 30 seconds of post processing for the construction 

of the deflection curve.  

 

Outer race surface displacement curves were obtained using the zero-crossing method 

(as explained in § 6.2) in addition to one more signal processing step: the deflection 

curves needed to be smoother to enable more precise measurements of the defects. In 

order to remove high frequency noise from the time domain signal low-pass filters such 

as low-pass FIR filters (Finite Impulse Response) and moving average filters can be 

applied. The moving average filter, which is the most common denoising filter due to 

low computational cost (high execution speed) and good performance at edge sharpness 

was chosen to process the raw outer race deflection curves. Although the defects could 

be detected from real time monitoring, the relatively small size of the defects and the low 

sampling rate, made defect size determination less accurate than when post signal 

processing methods were applied. 
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The moving average filter is an optimal signal processing method for time domain 

signals. The mathematics behind the filter can be shown by Equation 7.1. 

 

𝑦[𝑖] =
1

𝑀
∑ 𝑥[𝑖 + 𝑗]

𝑀−1

𝑗=0
(7.1) 

 

Where 𝑥[ ], is the input data, in this case the selected points which construct the 

deflection curve, 𝑦[ ], is the averaged output data point, and 𝑀 is the number of selected 

data points. In this signal processing method, to obtain one output data point, the 

interested data point and the number of  𝑀 − 1  consecutive data points are summed up 

and divided by 𝑀. The noise reduction amount is equal to the square-root of the number 

of the selected data points (Smith, 1997).  

 

As the filter essentially produces a data point from an average of adjacent data points, 

whilst reducing the noise, it can also affect the delineation of the signal and its edge 

sharpness. For this reason, the sample length needs to be chosen carefully. Whilst a low 

sample length does not change the clarity of the curve, a large sample length (i.e. an 

average of a large number of adjacent points) can distort the curve utterly – which would 

lead to loss of defect indication. 

 

For instance, consider Figure 7.3 below, which shows the deflection curve obtained for 

the defected rolling element having the 0.72 mm width slot. It is operating under a 

1500kg radial load and rotating at a 12.5rpm shaft rotation speed. In order to analyse the 

impact of the sample length, the raw deflection curve and several other moving average 

curves with different data point lengths are exhibited. The anomaly in the outer race 

deflection curves caused by the defect impingement is evident. 
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Figure 7.3 Outer race deflection curve including defect indication (discontinuity) 

smoothed with different sample length values 

 

In order to compare the effect of the moving average filter sample length, consider the 

critical area where the discontinuity is observed. The following Figure shows a magnified 

image of this area.  

 

 

Figure 7.4 Discontinuity properties change with sample length value given to the 

moving average filter 
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When the sample length is bigger than 20 data points, the smoothened curve gets 

distorted: for the 1000 data point sample length curve, the defect is not even observable. 

Conversely, when the sample length consists of 10 data points, the smoothened curve is 

very close to the raw curve pattern but still contains significant noise.  For the cases when 

the sample length is lower than 20 data points, de-noised curves are similar to each other. 

The smoothened curves with 10, 15 and 20 data points sample length, overlap each other 

at the discontinuity starting and ending points thus these sample lengths do not affect the 

discontinuity duration measurements. On the other hand, sample length has a slight 

impact on the discontinuity peak height measurements; the discontinuity peak height of 

the 10 data point sample length curve is 2.5 µm, for the 15 data points case it is 2.45 µm 

and for the 20 data point case it is 2.4 µm. Although for a sample length of between 15 

and 20 data points, the de-noised discontinuity pattern is close to the raw discontinuity 

pattern, when using 20 data points the smoothened data curve does not contain bumps 

and is less noisy.  Hence, throughout these defect detection tests the sample length 

window of 20 data points has been employed to define a discontinuity start and end points 

without causing disruption to the overall outer race deflection curves.  

 

7.1.3 Bearing Kinematics for Discontinuity and Defect Size Correlation 

The deflection curve generated as the rolling element passes through the investigated 

area gives information about the health of the contact conditions. Observing a 

discontinuity in a curve indicates that the bearing has a defect in one of its components. 

As can be seen in Figure 7.3, a discontinuity in the curve has a start point and an end 

point, which points represent the impingement of the edges of the slots. It has been found 

that the time difference between the points is correlated to the slot defect width. 

Furthermore, the slot defect width can be found by using a simple distance-speed-time 

formula when the rotation speed of the rolling element and the duration of the 

discontinuity are known. In order to discuss this correlation and the calculations 

involved, cylindrical rolling element kinematics need to be considered.  

 

The rotation of a motor is conveyed to the gearbox and subsequently this rotary motion 

is transmitted to the main shaft. Since the bearing inner race is fixed to the main shaft, it 

rotates at the same angular velocity. The transmission of rotation movement from the 

inner race to the cage and rolling elements can be found using the following equations. 

 



129 

 

 

Figure 7.5 Bearing components velocities 

 

The speed of a rotating part is defined in revolutions 𝑛 per minute (rpm) and is measured 

by tachometer. The number of revolutions in a minute can be converted to the angular 

velocity, 𝜔 (rad/s) by using Equation 7.2: 

𝜔 =
2𝜋𝑛

60
(7.2) 

 

The angular velocity can be further converted to linear velocity, 𝑉 (m/s), by multiplying 

radius, 𝑟 (m), of the point where linear velocity is measured by Equation 7.3. 

 

𝑉 = 𝜔. 𝑟 (7.3) 

 

For the case with a rotating inner-ring, rolling element rotation speed, 𝑛𝑟 (rpm) can be 

found using the Equation 7.4, when the inner race rotation speed and bearing geometry 

are known (Harris and Kotzalas, 2008): 

 

𝑛𝑟 =
𝑑𝑚𝑛𝑖

2𝐷
(1 − (

𝐷𝑐𝑜𝑠𝛼

𝑑𝑚
)
2

) (7.4) 
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Where 𝑑𝑚 is the bearing pitch diameter, 𝐷 is the rolling element diameter, 𝑛𝑖 is the 

rotation speed of inner race, and 𝛼 is the contact angle – which has the value of 0 for the 

cylindrical rolling element bearing. The rolling element linear speed was calculated to 

be 45.11 mm/sec. This value was verified by analysing the outer race deflection curves.    

 

The expected time duration for the defect to go through the investigated point was 

calculated using the known defect size and the linear velocity of the rolling element as 

illustrated by Equation 7.5. The expected duration was then converted to data points by 

multiplying the PRR (11200) to the expected duration time as shown in Table 7.1.  

 

𝑑𝑒𝑓𝑒𝑐𝑡 𝑤𝑖𝑑𝑡ℎ = 𝑣𝑟𝑜𝑙𝑙𝑖𝑛𝑔 × 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (7.5) 

 

Defect width (mm) Duration (s) Data points 

0.727 0.016 180 

0.593 0.013 147 

0.415 0.009 103 

Table 7.1 Defect size, expected discontinuity duration and corresponding to data points 

 

7.1.4 Distinguishing defected rolling elements 

The deflection curve for the bearing outer race provides information about the contact 

conditions of the bearing components. If there is no defect in the contacts, a consistent 

deflection curve is observed. Conversely, if any of the bearing components is defected 

and the defect is involved in the contact interactions close to the investigated area, a 

discontinuity is observed.  
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Figure 7.6 Bearing outer race deflection curve showing the passage of rolling 

elements, 3 of which are defected 

 

Figure 7.6 shows the deflection in the outer raceway as 13 rolling elements pass through 

the investigated area, whilst the bearing is operating under a load of 1500 kg and a shaft 

rotation speed of 12.5 rpm. Higher deflections (larger peaks) have been observed at the 

cage splitting points. This enables an easy identification of each rolling element position: 

as the splitting points are represented by the larger peak and each trough denotes the 

contact interactions of a rolling element at the point when it is passing beneath the sensor, 

the first rolling element passes after 1s, the second rolling element passes after 1.65s, the 

third at 2.35s and so on.   

 

While the ten healthy rolling elements are passing the investigated area, consistency in 

the outer race deflection curve is observed. However, when the three defective ones – the 

3rd and 7th in the first cage and the 4th from the second cage – pass the investigated area, 

discontinuities were observed in the bearing outer race deflection curve as indicated in 

Figure 7.6. The contact interactions of these 3 defected rolling elements are analysed in 

more detail to investigate the influence of defect-contact positions relative to the 

transducer position.  
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(a) 
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(b) 

 

 

 

(c) 

Figure 7.7 Defect indications of (a) 3rd, (b) 7th and (c) 4th rolling element contact 

conditions 

 

Figure 7.7 (a) shows the defected 3rd rolling element passing over the investigated area. 

While the faulty rolling element is directly beneath the sensor, the line defect is 

contacting neither the inner race nor the outer race. However, as the defected rolling 

element is leaving the investigated area and before the subsequent rolling element comes 

into investigated area, the defect impinges the outer race or the inner race and a 

discontinuity appeared in the deflection cycle. 

 

Figure 7.7 (b) shows the defected 7th rolling element moving across the investigated 

area. Before the faulty element passes directly beneath the sensor, the line defect 

impinges to one of the mating surfaces and a spike is observed in the deflection cycle. 

As the faulty element subsequently passes underneath the sensor, its non-defected 

surfaces are in contact with the races.  
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Similarly Figure 7.7 (c) illustrates the defected 4th rolling element (in the other cage) as 

it cuts across the observed area. In this case, the faulty rolling element’s line defect 

impinges to the mating surface just before the rolling element is directly beneath the 

sensor.  

 

It is therefore clear that defect detection of rolling elements through outer race deflection 

curve monitoring is not limited to the point when defect impingement on the mating 

surfaces is aligned directly under the sensor position, but detection extends over a range 

about this point. Discontinuities for known defects have in fact been detected all over the 

range between two consecutive peaks – whereby the peaks represent the midpoint 

between two consecutive rolling elements as shown in Figure 7.8. This detection range 

can be determined by using the simple distance-speed-time formula using the same 

principles employed in the previous section.  
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Figure 7.8 Defect indication appearance range in the bearing outer race deflection 

curves 

The time difference between two consecutive peaks (obtained from the number of data 

points observed on the curves multiplied by the PRR), multiplied by the rolling element 

rotation speed, gives the detection range. This has been calculated to be 32 mm while the 

inner race is rotating at a speed of 12.5 rpm.  

 

7.1.5 Measurement of rolling element defect size 

A discontinuity in the outer race deflection curve indicates the presence of a defect in the 

contact areas. Such a discontinuity has two properties: its peak height and the duration 

as shown in the Figure 7.9.  

 

 

Figure 7.9 Discontinuity parameters of the outer race deflection curve 
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In the Figure above the original outer race deflection curve and its denoised version are 

shown. The occurrence for such a discontinuity is explained by the defect-mating surface 

interactions and the corresponding movement of the bearing outer race. It is thought that 

when the rolling element defect is in contact with any of the mating surfaces (inner or 

outer raceway), the acting radial load forces the raceways to partially fill up the gap 

caused by the defect. In both cases, the outer raceway undergoes a movement in the 

direction of the acting radial load, as indicated in Figure 7.10. 

 

 

Figure 7.10 Movement of the outer raceway 

 

The magnitude of the peak height and duration vary with the size of the defect but also 

with the distance of impingement relative to the sensor position. To illustrate this latter 

point better, consider Figure 7.11, which exhibits several curves for the same rolling 

element superimposed on each other. When the defect impinges the contacting surfaces 

right beneath the sensor, the discontinuity appears at the bottom of the trough; however, 

when the impingement occurs before or after the investigated point (the point in line with 

the sensor), the discontinuity occurs along the sides of the peaks.  
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Figure 7.11 4th rolling element different position contact conditions (0.727 mm) 

 

In Figure 7.11 each deflection cycle represents a different impingement location for the 

0.727 mm width slot defect. As can be clearly seen from graph, the height and duration 

of the discontinuity decrease as the contact position of the defect becomes more distant 

from the sensor. To simplify comparison, the discontinuities have been referenced (a) to 

(g) starting from the leftmost discontinuity. The peak height and duration of each have 

been tabulated below.  

  

Discontinuity 

Number 

Peak Height  
Measured 

Discontinuity Duration 

Measured defect 

width  

(µm) (Data points)  (mm) 

(a) 0.52 209 0.84 

(b) 1.38 246 0.99 

(c) 2.01 380 1.53 

(d) 2.34 333 1.34 

(e) 1.68 389 1.56 

(f) 1.16 291 1.17 

(g) 0.71 223 0.89 

Table 7.2 Variations of discontinuity properties with defect-surface contact position 
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The width of the fourth rolling element defect was measured optically to be 0.727 mm 

and the expected defect pass duration was calculated to be 180 data points. As can be 

seen from the Table above the measured discontinuity durations were longer than the 

expected duration at all the impingement locations. The reason why this happens, is not 

yet clear, but one possible explanation could be that the deflection cycles are being 

affected when the edges of the line slot strike the races. This makes the discontinuity start 

point and end point difficult to identify. Another reason could be that the defect enlarges 

during operation.  

 

When the defected surface of the faulty 4th rolling element impinges onto either of the 

races directly underneath the sensor (peak (d)), the discontinuity duration is measured to 

be 333 data points. As the defect-races contact point becomes more distant from the 

sensor, the measured discontinuity duration and peak height decrease with distance. In 

fact, the measurements obtained for (a) and (g) are closer to the expected value of 133 

data points. This could be a result of:  

 

(i) geometry: As the sensor measures vertical displacement of the outer raceway, 

for example, δ, for the case when the rolling element is directly beneath the 

transducer, when the defect contact occurs at a distance from the sensor, the 

measured vertical displacement by the sensor, is δsinθ, where θ is the angle 

between the contact point and the investigated point.  

 

(ii) a lower force acting at that contact point because the load distribution in a 

bearing varies with rolling element position as explained in § 3.2.1.     

 

Since the rolling elements are rotating within the cage, the probability of a defect 

occurring in the detection range of the sensor is quite low. Constructing the plot shown 

in Figure 7.11, that consisted of just seven contact locations, was a laborious exercise 

that involved the screening of a substantial number of deflection curves. However, since 

it was desired that the relationship between the measured discontinuity duration and the 

defect impingement location is studied in further detail, tests involving outer race defects 

at different known positions have been conducted. In these tests, contact will occur with 
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every passing rolling element. The changes in the properties of the discontinuities of 

these tests shall be discussed in the following chapter.  

 

 

Figure 7.12 3rd rolling element different position contact conditions (0.593 mm) 

 

Figure 7.12 shows seven superimposed deflection curves for the rolling element having 

the 0.593 mm width slot defect and the calculated expected defect pass duration of 147 

data points. Each of the outer race deflection cycles shows the defect contact conditions 

at a different location with respect to the sensor position. Similar behaviours for the 

changes of the discontinuities are observed for this smaller defect – namely that as the 

defect-contact location became more distant from the sensor, the discontinuity duration 

is decreased. However, the duration and peak height of the discontinuities are smaller 

than those observed for the previously discussed larger defect, meaning that magnitude 

of both of these properties may be related to defect severity.    

  



140 

 

 

Discontinuity 

Number 

Peak Height  
Discontinuity 

Duration  

Measured 

defect width 

(µm) (data points) (mm) 

(a) 0.46 195 0.78 

(b) 0.94 223 0.89 

(c) 1.42 294 1.18 

(d) 1.58 280 1.12 

(e) 1.4 278 1.11 

(f) 0.78 260 1.04 

(g) 0.5 198 0.79 

Table 7.3 Property variations with defect-surface contact distance from sensor position 

(0.593mm) 

 

 

 

 

Figure 7.13 7th rolling element different position contact conditions (0.415 mm) 
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A superimposition of deflection curves for the smallest slot defect of width 0.415 mm 

and expected defect pass duration of 103 data points is given in Figure 7.13. This defect 

size is the smallest that can be detected when this method is employed. Once again, the 

discontinuity duration discontinuity peak height decreases with distance from the sensor 

and the measured peaks and durations are smaller than those measured for the previous 

larger defects.  

  

Discontinuity 

Number 

Peak Height 
Discontinuity 

Duration  

Measured 

width 

(µm) (data points) (mm) 

(a) 0.40 185 0.74 

(b) 0.95 255 1.02 

(c) 1.32 192 0.77 

(d) 0.99 248 0.99 

(e) 0.38 177 0.71 

Table 7.4 Discontinuities' properties variations with defect-surface contact position 

(0.415) 

 

When comparing the plots for the three defects, it is clear that the smallest discontinuity 

peak heights have been observed for the smallest defect and although the measured 

discontinuity durations vary with the defect-race contact location, it is evident that the 

durations are directly related to the defect size. It can therefore be concluded that the 

method is able to detect defects as small as 0.415mm.   

 

7.2 Defect detection and assessment of inner race line defects 

In this part of the research, the detection capabilities of inner race defects by the 

monitoring method under scrutiny shall be discussed. In these experiments, one healthy 

half of the inner race has been replaced with one having a known defect size. 

Subsequently, the first and second ultrasound reflections were recorded together for the 

duration of one revolution of the inner race. By applying the same post signal processing 

techniques employed in the previous section, deflection curves have been constructed 

and defect related discontinuities were analysed. 
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Figure 7.14 Different sizes defects (0.36mm, 0.56mm, 0.63mm) 

 

The artificial line defects that were generated on the inner races by EDM were measured 

with a stereomicroscope and found to have widths of 0.36mm, 0.56mm and 0.63mm 

width and a depth of 0.25 mm can be seen in Figure 7.14 and 7.15. 

 

   

Figure 7.15 Line slot defects images 

 

7.2.1 Identifying the inner race defect 

A defect on a rolling element can be detected when the defect impinges onto the contact 

surfaces – which does not occur at every cycle, but when it occurs, it will be displayed 

somewhere along the same cycle. For instance, if the 3rd and 7th rolling elements have 

defects, when the discontinuities are present, they will be somewhere along the 3rd and 

7th cycles of the deflection curve respectively. However, a defect on an inner race can be 

involved in contact interactions with any of the rolling elements and hence on the 
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deflection curve, the discontinuity generated from such an interaction could lie at any 

point. Therefore, by observing several curves and assessing the position of the 

discontinuities given, the defected component (inner race or rolling element) can be 

identified.  

 

7.2.2 Defect size measurements at different position  

The expected inner race defect pass duration and data points for the generated line slot 

defects, as calculated using the methods described in section 6.1.2, have been presented 

in Table 7.5. These Figures have been compared to the discontinuity durations measured 

experimentally. The peak heights and the effect of defect-contact location relative to the 

sensor position has also been evaluated.  

 

Defect width (mm) Duration (s) Data points 

0.63 0.0139 156 

0.56 0.012 139 

0.36 0.0079 89 

Table 7.5 Inner race defect sizes and rolling element expected passing duration 

 

For each defective inner race, a number of deflection curves exhibiting the defect 

discontinuity have been superimposed on each other. For instance, for the defect 

measuring 0.63 mm, six curves displaying the discontinuity at different locations have 

been compiled in Figure 7.16. For simplicity, the discontinuities have been referenced 

(a) through to (f) starting from the leftmost peak in the rightward direction.  

 

The discontinuity peak height and duration were found to decrease as the defect-contact 

location becomes more distant from the position of the sensor. This behaviour is similar 

to that observed for rolling element defect detection.  

 

On the other hand, when the inner race’s defect contact location is in very close proximity 

to the sensor, the number of data points for the duration of the peak was observed to be 

larger than when contact occurred directly beneath the sensor. This phenomenon has also 

been reported in rolling element defect detection. Although the reason behind this 

observation is still not clear, the proposition that it might be related to the slot defect edge 
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hitting the mating components still holds: when the inner race line defect edge hits the 

rolling element, the transmitted impact effect of the edge is detected by the ultrasound 

immersion transducer and results in an increase of the discontinuity duration. 

 

 

Figure 7.16 Bearing outer race deflection curves’ defect indications for different inner 

race defect contact conditions (0.63mm) 

 

 

Discontinuity 

Number 

Peak Height 
Discontinuity 

Duration 
Measured width 

(µm) (data points) (mm) 

(a) 0.94 225 0.90 

(b) 1.629 254 1.02 

(c) 1.9818 299 1.20 

(d) 1.95 285 1.14 

(e) 1.82 304 1.22 

(f) 1.425 274 1.10 

Table 7.6 Variations of the discontinuity properties with defect-surface contact position 

(0.63 mm defect) 
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Figure 7.17 exhibits seven superimposed deflection curves for the inner race having the 

0.56 mm width slot defect and a corresponding expected defect pass duration of 139 data 

points. Each of the deflection curves shows the inner race defect contact conditions at a 

different location with respect to the sensor position. 

 

In general, a similar pattern for the variation of the discontinuities’ properties is observed 

for this smaller width line defect when compared to the larger defect, namely: i) the 

discontinuity duration decreases when the defect-contact location becomes more distant 

from the sensor, ii) the discontinuity peak height decreases in a similar way as the 

discontinuity duration. The latter suggests that both properties of the discontinuity can 

give an indication of the defect severity. 

 

 

Figure 7.17 Bearing outer race deflection curves’ defect indications for different inner 

race defect contact conditions (0.56mm) 
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Discontinuity 

Number 

Peak Height  
Discontinuity 

Duration  

Measured 

defect width 

(µm) (data points) (mm) 

(a) 0.50 221 0.89 

(b) 0.85 262 1.05 

(c) 1.86 286 1.15 

(d) 1.69 261 1.05 

(e) 1.48 280 1.12 

(f) 1.02 271 1.09 

(g) 0.51 230 0.92 

Table 7.7 Variations of discontinuity properties with defect-surface contact position 

(0.56 mm defect) 

 

Although as in previous cases the peak height and duration decrease with distance from 

the sensor location, the defect was only detected over a distance equal to one fourth of 

the distance between two consecutive rolling elements. Beyond this point the 

discontinuity becomes too small for detection, providing evidence that 0.36 mm is the 

limit for detection.  

 

The smallest inner race slot defect width is 0.36 mm and the expected defect pass 

duration is 89 data points. The superimposed deflection curves (each showing different 

defect contact positions) are shown in Figure 7.18 for smallest defect. The measured 

value that is given by this method is twice the actual value of the defect.  Hence, it can 

be concluded that although the method is able detect an inner race defect, provide 

information about the defect severity and defect-contact position clearly, it is not able 

measure defect size.  
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Figure 7.18 Bearing outer race deflection curves’ defect indications for different inner 

race defect contact conditions (0.36mm) 

 

 

Discontinuity 

Number 

Peak Height 
Discontinuity 

Duration 
Measured width 

(µm) (data points) (mm) 

(a) 0.23 163 0.65 

(b) 0.62 191 0.76 

(c) 0.60 174 0.70 

(d) 0.51 195 0.78 

(e) 0.27 170 0.68 

Table 7.8 Variations in the discontinuity properties with defect-surface contact position 

(0.36mm defect) 

 

In order to illustrate the discontinuity peak properties variation with defect-contact 

position relative to the transducer, the measured discontinuity peak height and peak 

duration were plotted for each of the different defect sizes and contact positions. 

 



148 

 

 

Figure 7.19 Measured peak height (µm) with distance from the sensor (mm) for rolling 

element defects 

                            

Peak height variation with defect-contact position relative to transducer for 3 different 

rolling element defects can be seen in the Figure 7.19. 

 

As has been explained in § 7.1.2, when any defected component comes into contact with 

a mating surface, the bearing outer race incurs a movement in the direction of the acting 

force on the bearing. This is observed as an anomaly in the outer race deflection curves. 

When this contact condition occurred underneath the sensor, a larger vertical movement 

is measured than when the defect-mating surface contact occurs at a distance from the 

sensor, as a result of geometry and load distribution. These phenomena resulted in a 

discontinuity peak height decrease, as the defect-contact position became more distant 

from the transducer.  

 

Figure 7.19 clearly shows how the peak height observed for a rolling element defect-

contact interaction exhibits an exponential behaviour with distance from the sensor. This 

means that the method has potential to measure defect size through this parameter, 

however, more data needs to be collected. If these experiments were extended with a 

larger number of differently sized defects and different locations, smoother trends would 

be obtained. A similar pattern has been observed for the inner raceway defects, depicted 

in Figure 7.20.  
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Figure 7.20 Measured peak height (µm) with distance from the sensor (mm) for inner 

raceway defects 

 

In order to find a correlation between defect width and discontinuity duration, the 

measured peak durations for the three different rolling element defects were plotted 

against the defect-mating surface contact positions.  

 

 

Figure 7.21 Measured peak duration (datapoints) with distance from the sensor (mm) 

for rolling element defects 
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The expected discontinuity durations are 180, 147, and 103 data points for the 0.727, 

0.593, and 0.415 mm rolling element defects respectively. However, all of the measured 

discontinuity durations were longer than the expected values.  Figure 7.21 shows how 

the measured discontinuity durations decreased as the contact distance from the sensor 

increased. As previously discussed, the defect edge impacts onto the mating surface 

distort end point and start point of the discontinuity. Thus, the measured defect size is 

not close to the real values.  

 

Similarly, the measured discontinuity durations for the inner race defects were plotted in 

Figure 7.22 and the same observations as for rolling element defect durations can be 

drawn. However, for both the rolling element defects and the inner raceway defects, the 

measured durations correlate to the defect size.  

 

 

Figure 7.22 Measured peak duration (datapoints) with distance from the sensor (mm) 

for inner raceway defects 

 

Since both peak height and peak duration measurements for the observed discontinuities 

show some correlation with defect size, the parameters can be used to give an indication 

of defect severity.  
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7.3 Conclusions 

 

This chapter has discussed the relationship between defects in the rolling elements and 

the inner race. Differently sized line defects have been generated on both bearing 

components (inner races and rolling elements) and the related ultrasound reflections have 

been recorded. By applying post signal processing methods, the deflection curves have 

been constructed. It has been demonstrated how using the moving average filter can 

improve the signal’s noise without significantly distorting the raw signal – allowing for 

the signal’s features, such as dentations, to be analysed adequately. In order to make 

accurate comparisons, defected components were exposed to the same operating 

conditions: 12.5 rpm inner race rotation speed under an acting radial load of 1500 kg. 

Also, the same signal configurations; pulse repetition rate (PRR) and range, were 

employed to record the ultrasound first and second reflections together during one 

revolution of component of interest. 

 

The chapter has shown how rolling element defects can not only be detected with 

ultrasound testing but that the location of the defected rolling element within the bearing 

can be identified. Furthermore, the proposed method is capable of giving an estimate of 

the defect severity. In fact, defect severity can be given by two variables: the anomaly 

duration and the peak height of the anomaly. On the other hand, the abilities of the 

method to measure defect size need further investigation.  

 

The method has been applied to inner race defects and similar deductions have been 

drawn: i.e. defects on the inner race can be detected and their location can be determined. 

However, the defect size cannot be accurately determined. 
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8 BEARING OUTER RACE DEFECT DETECTION, SIZE 

MEASUREMENT AND LOCALIZATION  

 

In this chapter, the application of the proposed method to bearing outer race defect 

monitoring is considered. The discussion will evaluate the ability of the method to: 

identify a defect on the outer race, determine defect location relative to the investigated 

area, measure defect size from the deflection curves and establish which of the bearing 

components is faulty.   Since the defect width is of submillimeter dimensions, to obtain 

high resolution deflection curves, the highest possible pulse rate was used. Subsequently, 

these deflection curves have been constructed using the post signal processing methods 

employed (and described) in the previous chapters.  

 

8.1 Defect detection and assessment of outer race line defects 

Three line slots of different widths have been cut by EDM at the middle part of three 

different bearing outer races. The three differently sizes defects of 0.41 mm, 0.65 mm 

and 0.75 mm widths and 1 mm depth (as shown in Figure 8.1 and 8.2), were then tested 

under different load conditions and different positions relative to the immersion 

transducer. The same shaft rotation speed of 12.5rpm was maintained throughout the 

tests.  

 

 

Figure 8.1 Line defects on the bearing outer races 
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Figure 8.2 Bearing outer race defects microscope images 

 

 

8.1.1 Data acquisition and post signal processing 

In this part of research, the first and second reflections were recorded with the highest 

possible pulse repetition rate (PRR) (11200 Hz) as permitted by the processing 

capabilities of the employed computer.  Since defect on the outer race appeared in the 

cyclic deflections curves with each rolling element pass over the defect, a signal 

recording time of 3s was sufficient to collect the adequate data.  

 

The same post signal processing methods that have been used for inner race and rolling 

element tests (Chapter 7) have been applied to obtain deflection curves in these tests. 

Although the presence of a defect can be detected by real time monitoring, it was difficult 

to analyse the relationship between the defect size and the discontinuity duration. Hence, 

post signal processing methods were applied to obtain more accurate measurements.  
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8.2 Outer race defect localisation and defect severity analysis 

In the proposed bearing condition monitoring method, the movement of the point where 

ultrasound waves are aimed is monitored. This point incurs vertical movement as a result 

of the dynamically varying stress on the bearing outer race that is caused by rolling 

element passage. While the rolling element is traversing across the investigated point, 

the outer race moves towards the ultrasound transducer, resulting in the shortest distance 

between the transducer and outer race to occur when the rolling element is aligned to the 

investigated point. This instance is represented by the lowest point on the deflection 

curve in Figure 8.3. While the rolling element is leaving the investigated area, the bearing 

outer race gradually moves away from the transducer until the point when the 

investigated area is equidistant from the just-passed rolling element and the subsequent 

one. The peak points of the deflection curves occur at such points. Subsequently, the 

distance between the transducer and the bearing outer race starts decreasing again, as the 

next rolling element approaches the sensor.  

 

While this bearing outer race movement is occurring, rolling element-defect interactions 

within the investigated area produced anomalies (discontinuities) in the deflection curves 

as shown in the Figure 8.3.  

 

Figure 8.3 Bearing outer race deflection curves of the defected bearing outer race 
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Defect-rolling element impingement results in a sudden increase in distance between the 

bearing outer race and the transducer. This sudden increase occurs because while the 

rolling element is passing the defect, part of the rolling element falls into the defect. 

However, since the rolling element has restricted motion in the vertical direction, 

whereas the outer race is acted upon by a radial load, during impingement the outer race 

is pushed over the rolling element, thereby becoming more distant from the transducer.   

 

 

Figure 8.4 Rolling element outer race defect contact conditions 

 

Figure 8.4 provides a visual representation (not scaled) of the defected outer raceway-

rolling element contact. While the rolling element is entering the defect (green), it hits 

first the edge of the line defect and an impact force is transmitted. At this moment, the 

discontinuity starting point is observed. When the rolling element is aligned to the defect 

(blue), the bearing outer race moves towards the rolling element due to the applied radial 

load acting on it. This movement of the raceway is recorded as a spike in the deflection 

curve. While the rolling element is leaving the defect area (red), it hits the other edge of 

the line defect, transmitting another impact force. This point would be marked by the 

ending point in the deflection curve.   

 

This impingement effect was observed clearly when the defect-rolling element contact 

occurred between two consecutive peaks as shown in the Figure 8.3. In other words, if 

the defect-rolling element contact occurs at a distance that is equivalent to half of the 

distance between two consecutive rolling elements away from either side of the sensor, 

it can be observed clearly. Thus, the proposed defect detection method range is 

depending on the distance between two consecutive rolling elements.  
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In order to analyse outer race line defect-rolling element interactions differently sized 

line defects were positioned at known distances from the transducer and exposed to a 

varying radial load. The shaft rotation speed was maintained at 12.5 rpm. For better visual 

comparison, the bearing outer races having 0.75 mm and 0.41 mm line widths (the 

biggest and the smallest, respectively), have been compared. These defects were 

positioned directly beneath the transducer and 7 mm and 15 mm away from either side. 

The recorded ultrasound reflections were then processed and the deflection curves were 

obtained.  

 

Consistent and stable deflection curves were obtained when the force acting on the 

heavily loaded rolling element exceeded 3 kN, and for comparison purposes, the 

deflection curves obtained at 3.07 kN, 6.13 kN and 9.19 kN were evaluated. These forces 

correspond to a measured 1000 kg, 2000 kg, and 3000 kg radial load, respectively. Since 

micropitting was observed at the edge of the line defects after some preliminary tests, 

heavily loading conditions were avoided to prevent further pitting on the edge of the line 

defects and propagation of the line defect. 

 

In order to find a correlation between discontinuity duration and defect width, the number 

of expected data points between the discontinuity start point and end point was 

calculated. This was performed by using the Equations in § 7.1.3 and the known values 

for defect size, velocity of the rolling element (45.11 mm/s) and pulse repetition rate 

(11200 Hz). The expected data points of the 0.75 mm and the 0.41 mm defect widths 

were found to be 186 and 101 data points respectively. These expected values were 

subsequently compared to the discontinuity duration values which were measured by the 

proposed method for different defect positions and different load conditions.  Another 

peak parameter that is related to defect severity, peak height, was also compared for the 

different cases.   
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Figure 8.5 Deflection curves for (a) 0.75mm (b) 0.41mm width defects, at a defect 

position, 15 mm away from the transducer to the left 

 

 

Figure 8.6 Schematic diagram of defect position – 15 mm away from the transducer to 

the left 
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The first case to be considered is when the biggest and smallest defects were positioned 

15 mm away from the transducer on the left side. The curves given in the Figure 8.5 (a) 

and (b), show the deflection of the bearing outer race obtained while rolling elements are 

passing across the 0.75mm defect and the 0.41 mm defect, respectively. The curves show 

that when the sensor in between two consecutive rolling elements, the rolling element on 

the left-hand side to it, is interacting with the defect. This interaction results in a 

discontinuity in the deflection curve. Figure 8.6 shows a schematic representation of this 

instant. The different radial loads applied: 1000 kg, 2000 kg and 3000 kg are represented 

by the blue, red and yellow curves respectively.  

 

The number of data points between the starting and ending points of a discontinuity 

represents a distance, that decreases with increasing load: 360 (1.44 mm), 345 (1.38 mm) 

and 280 (1.12mm) for 1000, 2000 and 3000 kg respectively, for the 0.75 mm defect. On 

the other hand, the expected (calculated) number of data points was 186 – revealing a 

discrepancy between the measured defect widths and the actual values.   

 

Similar to the 0.75 mm case, the measured 0.41 mm defect discontinuity duration 

decreases with increasing applied load: 275 (1.10 mm), 267 (1.07 mm) and 240 (0.96 

mm) for the 1000, 2000 and 3000 kg load, respectively. However, none of these 

measured durations is close to the expected value of 101 data points.  

 

Since the measured discontinuity duration for both defect sizes is not close to the actual 

size, discontinuity duration does not provide a good estimation for defect size. Hence, 

the deduction from this observation is that there is a load dependence of the examined 

discontinuity parameter and that the discontinuity duration decreases with increasing 

load. This behaviour has also been observed for other defect positions relative to the 

sensor.  

 

Variations in the discontinuity peak height have also been considered for both defects. It 

is observed that this value decreases with increasing radial load: 0.68, 0.66 and 0.46 µm 

for 1000, 2000 and 3000 kg load, respectively, for the bigger 0.75 mm defect and for the 

smaller 0.41mm defect: 0.41, 0.38 and 0.25 µm for the same loads.  Since the peak height 

decreases for both defect size and with increasing radial load, this parameter is able to 



159 

 

provide information about the severity of the defect of the outer race, but it cannot predict 

its size.  

 

 

 

Figure 8.7 (a) Deflection curves for 0.75 mm defect positioned directly beneath sensor 

(b) magnified peak version 
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Figure 8.8 (a) Deflection curves for 0.41 mm defect positioned directly beneath sensor 

(b) magnified peak version 

 

 

 

Figure 8.9 Schematic diagram for defect placed directly underneath sensor 
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Figures 8.7 (a) (and (b)) and 7.8 (a) (and (b)) show the deflection behaviour of the bearing 

outer race when the defects, 0.75 mm and 0.41 mm, respectively are positioned directly 

beneath the transducer.  In this case, the rolling element – defect interaction takes place 

directly beneath the sensor as shown in the schematic diagram, Figure 8.9. The 

discontinuities representing the defects therefore appear at the troughs of the deflection 

curve. The measured discontinuity durations for the 0.75 mm diameter were: 610, 605 

and 577 for the 1000, 2000 and 3000 kg loads respectively, whilst the expected duration 

was 186 data points. For the smaller defect, the measured data points were 446, 426 and 

391 for the same loads, whilst the calculated figure was 101 data points. It can be also 

noticed that the discontinuities duration decrease with increasing load.  

 

It is immediately evident that there is a significant difference between the measured and 

expected data point values. The measured values for the defects when these are located 

underneath the sensor is four times higher the real value. The reason for this could be 

related to the construction of the bearing type used. The assembly of the bearing involves 

placing the outer race halves into the cartridge halves at the desired orientation – for 

example, placing the defect at the mid-point (therefore having the outer race split points 

and the cartridge split points aligned – since the defect is at the centre of the outer race 

half). Subsequently, the cartridge halves are held together through four bolts – two at 

each split point. This tightening of the bolts, may be inducing a compressive force onto 

the outer race, causing the raceway to incur a deflection. Of course, the maximum 

deflection incurred by the outer race would be at the mid-point between the cartridge 

points, i.e. in line with the sensor. Hence, when the defect is placed underneath the sensor, 

it could be experiencing an enlargement that is caused by the force exerted by the bolts 

to hold the bearing assembly together. When the outer race defect was placed to the right 

side or left side of the transducer, the defect still experiences an enlargement due to 

deflection in the outer race – however, since it would not be placed at the mid-point, the 

enlargement would be to a lesser extent. The data measured agrees with this explanation 

as the measured defect enlargement decreased with defect location distance from the 

sensor.  However, defect enlargement due to deflection incurred during assembly cannot 

justify an increase in size by a factor of four. Hence, it must be concluded that the method 

is not capable of measuring outer race defect size.   
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The measured discontinuity peak height, like the peak duration, decreased with 

increasing load for both defects: 3.84, 3.77 and 3.29 µm for the 0.75 mm defect under an 

acting radial load of 1000, 2000 and 3000 kg, respectively; and 1.95, 1.84 and 1.42 µm 

for the 0.41 mm for the same acting loads. The results show that under the same loading 

conditions, the peak size changed with size of the defect, which suggests that the method 

is capable of giving an indication of defect severity. 

   

 

 

 

Figure 8.10 Deflection curves for (a) 0.75 mm and (b) 0.41mm width defects (at defect 

positions, 6.3 and 8.6 mm respectively, away from the transducer to the right) 
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Figure 8.11 Schematic diagram of the defect placed to the right side of the transducer 

 

Figures 8.10 (a) and (b) show the deflection behaviour of the bearing outer race when the 

0.75 and 0.41 mm defects were positioned 6.3 mm and 8.62 mm (respectively) away 

from the transducer, to the right side, as shown in Figure 8.11. The discontinuities appear 

in the region preceding the peaks of the deflection curve. 

 

The measured discontinuity duration and peak height values obtained by using the 

proposed method for this defect location follow the same pattern as those obtained for 

the other defect position cases: both parameters indicate defect severity and both decrease 

with increasing load. The bigger line defect discontinuity durations are 453, 420 and 386 

data points for radial loads 1000, 2000 and 3000 kg respectively; while those for the 

smaller defect are 312, 285 and 240 data points for the same acting loads. The measured 

peak height values were 2.61, 2.34 and 1.84 µm for the 0.75 mm, whereas those for the 

smaller defect were 0.86, 0.81 and 0.74 µm, for the loads 1000, 2000 and 3000 kg, 

respectively.  
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Figure 8.12 Deflection curves for (a) 0.75mm and (b) 0.41mm width defects, at a defect 

position of 14.2 mm away from the transducer to the right 

 

 

Figure 8.13 Schematic diagram of defect placed 14.2 mm to the right of the transducer 
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Lastly, the case in which the defects are positioned 14.2 mm away from the transducer 

to the right side has been evaluated. Similar to all the other tests, the discontinuity 

duration and peak height decrease with increasing radial load. Also, both parameter 

values are higher for the more severe line defect. The discontinuity durations for the 0.75 

mm line defect were measured to be 419, 343 and 311 data points for radial loads of 

1000, 2000 and 3000 kg, respectively, and those for the 0.41 mm line defect – 285, 233 

and 198 data points with increasing load. The peak height values were 0.89, 0.59 and 

0.48 µm for the larger defect and 0.27, 0.25 and 0.21 µm for the smaller defect for the 

radial loads of 1000, 2000 and 3000 kg. These parameter values are very similar to those 

obtained for when the defects were positioned 15 mm away from the transducer on the 

left side. The minor differences in the figures can be attributed to imprecision in 

mounting the defects to the predetermined positions. 

 

8.3 Discussion 

The results presented have been compiled graphically in Figure 8.14, where the 

discontinuity durations have been plotted against the applied radial load. The figure 

includes these variations for the different defect sizes and the different defect positions 

relative to the transducer. 

 

For all scenarios tested, measured peak duration was larger for the 0.75 mm and smaller 

for the 0.41 mm. However, Figure 8.14 clearly shows how the measured discontinuity 

durations were larger than the expected (calculated) values in all cases. This could be due 

to a defect enlargement that is caused by bearing assembly. It is possible that while the 

split bearing is being mounted and secured rigidly in place with bolts, the raceway is 

incurring stress that causes the defect size to enlarge. The dimensions of raceway: 165 

mm internal diameter and 5.5 mm thickness and the depth of the defect – 1 mm, would 

make substantial defect enlargement possible. Moreover, the edge hitting effect, different 

impact angles, load distribution, and partial cartridge support all contribute to the 

dynamics of the interaction – with the potential of affecting the measurements. 
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Figure 8.14 Measured defect width variation with applied load for 0.75 and 0.41 mm 

defect sizes at different locations 

 

Another clear and consistent pattern that was observed in all the cases tested is that the 

measured parameters decrease as the radial load increases. The reason for this lies in the 

nature of the setup of the bearing and the way the radial load is applied. As illustrated by 

Figure 8.15, the radial load distribution would cause the defect width to decrease. Hence, 

during operation, the defect area is incurring two opposing forces: whilst the radial load 

pushes the raceway over the rolling element, the defect is caused to increase, but the 

higher the radial load, the harder it is for the raceway to deform and enclose the rolling 

element. Thus, as the radial load increases, the defect deformation (enlargement) 

decreases. 
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Figure 8.15 Radial load distribution 

 

Also showing the effects of the radial load on the measured defect distribution (and peak 

height), are the changes in the measurements as the defect moves away from the sensor. 

The highest values for the parameters were recorded whilst the defect is aligned with the 

sensor, but the values fall with distance away from the transducer – reflecting the 

distribution load. The results also show that the load is balanced as very similar values 

have been reported for when the defects were 14.2 mm to the right and 15 mm to the left 

of the sensor.  
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Figure 8.16 Discontinuity peak height variation with applied load for 0.75 and 0.41 

mm defect sizes at different locations 

Figure 8.16 shows the peak height variation against radial load for all the cases 

considered. Similar to the results observed for discontinuity peak duration, the same 

pattern for all defect sizes and positions tested is observed: higher values are recorded 

for the larger defect and all the parameter values decrease with applied load. This 

suggests that the parameters are related to each other. Since the deflection curves exhibit 

the bearing outer race movement, the discontinuity peak heights provide information 

about how much rolling element is inside of the bearing outer race defect. As the rolling 

element passes the defect, higher peak heights have been recorded along with larger 

defect widths. This is because of the geometry of the defect-rolling element contact 

whereby the rolling element enters further the defect as the defect with increases, as can 

be visualized in Figure 8.17.  
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Figure 8.17 Bearing outer race defect-rolling element contact conditions for wide and 

narrow defect size 

 

 

8.4 Conclusion 

The concluding remarks for this chapter are that the proposed method has been able to 

detect defects on the outer race. The range across which such defects can be detected is 

equivalent to half the distance between two consecutive rolling elements, extending to 

either side of the sensor. Although the measured defect sizes are higher than those 

expected, the method can still distinguish clearly between the smaller and the larger 

defects, and hence, with further work, the method could be used to give an estimation of 

the defect size. The factors affecting the dynamics of the interaction have also been 

discussed.  
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9 CONCLUSION  

 

As the wind power generation continues to be an attractive option for countries in pursuit 

of renewable energy, wind turbine reliability becomes crucial in sustaining the growth of 

this industry. Very often, wind turbine reliability issues are linked to failure of 

components on the drive train: the main bearings, the gearbox and some of the bearings 

within the gearbox. The critical bearings which are most prone to fail have been identified 

as the planet bearings, the intermediate shaft-locating bearings, the high speed locating 

bearings, and the main shaft bearing. These bearings are exposed to non-uniform, high 

and cyclic loads and eventually sub-surface cracks of the bearing components develop 

and propagate – at which point the bearing fails. Condition monitoring of these critical 

bearings for defect diagnosis and predictive maintenance improves wind turbine 

reliability. 

 

In this work, a method to assess the bearing health condition and defect diagnosis has 

been proposed. This method is applicable to bearings where the bearing inner race rotates 

and outer race is stationary due to sensor positioning restrictions. The method can be 

employed to monitor a number of bearings within the wind turbine: the main and 

intermediate shaft locating bearings, and the gearbox input and output bearings whose 

inner race rotates and outer race is fixed. The method could also be applied to a vast 

variety of bearings in other applications and industries, like for example, the bearings in 

marine propulsion, offshore drilling machines, mining and construction equipment that 

would require condition monitoring. 

 

9.1 Bearing outer race deflection measurement 

In this project, ultrasound waves have been emitted onto the bearing outer race through 

the use of a spherical focus ultrasound transducer and the time shift in the ultrasound 

reflections caused by the movement of the outer race has been investigated. To enable 

measurement of the deflection of the outer race outer surface in both real time and in post 

signal processing modes, software has been developed. In this software, the zero-cross 

method has been applied to the first reflection and the time shift amount was calculated 

and correlated with the applied load and the number of rolling elements. It was found 

that the bearing outer race deflects more under higher radial loading conditions, when 
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the distance between rolling elements is bigger (split points) and when the number of 

rolling elements decreases. 

9.2 Defect detection and diagnosis abilities of the method 

The defect detection abilities of the proposed method have also been researched and 

defect interaction has been clearly observed in the cyclic deflection curves. Whilst the 

outer deflection curves for a healthy bearing exhibit an invariable sinusoidal pattern 

where the lower points represent the moment when the rolling element is passing through 

the investigated area, the deflection curves for a defective bearing contain a spike-like 

discontinuity that represents the interaction of the defect onto the bearing components. 

When the rotating parts (inner race and rolling elements) of the bearing come into contact 

with a defect, the distance between the transducer and the outer race increases, which 

results in a discontinuity in the outer race deflection curves. The anomaly in the 

deflection curves has been characterized by two parameters: the peak height of the 

discontinuity and the time difference between start and end points of the discontinuity. 

In order to determine the correlation between the discontinuity parameters and line defect 

sizes, defects of known size have been produced on the bearing components and each 

was tested and monitored.  

 

9.2.1 Inner race defect detection and diagnosis 

Three different sizes of line defects were cut on three different inner race halves by 

electrical discharge machining (EDM). The biggest width defect was 0.63 mm, a medium 

defect width was 0.56 mm and the smallest defect width was 0.36 mm. The latter was 

the smallest detectable line defect by the proposed method for the inner race defects (as 

a smaller defect measuring 0.25 mm did not give satisfactory results during preliminary 

trials). In each experiment one defected half of the inner race was mounted together with 

one healthy inner race and the deflection curves were constructed from the collected first 

reflection time shifts. The defect was detected when it came into contact with the rolling 

elements within the detectable range, which is equivalent to half of the distance between 

two consecutive rolling elements. Moreover, defect size and defect-contact location 

relative to investigated area has been determined. The peak height and the duration of 

the discontinuity indicated the defect severity, with both height and duration increasing 

with severity. However, an accurate measurement of the defect was not achieved.  
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9.2.2 Rolling element defect detection and diagnosis 

Three differently sized grooves of widths 0.41 mm, 0.59 mm and 0.72 mm have been cut 

by EDM on three different rolling elements. All the defected rolling elements have been 

mounted together, but have been positioned sufficiently spaced in the cage so as not to 

influence each other’s defect interaction effect. Each defect on the rolling elements has 

been distinguished in the deflection curves and it was shown how the outer race 

deflection curves can be used to determine the defective rolling element. Similar 

deductions to inner race defect detection have been drawn, namely that the discontinuity 

parameters (peak height and peak duration) increase with defect severity. 

    

9.2.3 Outer race defect detection and diagnosis 

The line defects cut on three different outer races have dimensions: 0.40 mm, 0.55 mm 

and 0.74 mm width and 1 mm depth. Although inner race and rolling element defects 

collide with the outer race randomly, outer race defects impinge on every passing rolling 

element and hence, discontinuities in the deflection curves were observed more 

frequently. This enabled the researcher to obtain more information about defect 

interaction as the defects could be placed at known different locations relative to the 

sensor position.  The defects have been placed directly underneath of the immersion 

transducer, 7 mm and 15 mm away from to the transducer (both sides). Defect size and 

location have been determined for every case, but an accurate measurement of the defect 

size was not achieved.       

 

9.3 Concluding remarks 

The proposed method in this study is successful in detecting defects of widths larger than 

0.35 mm on the inner race, rolling elements and outer races of a bearing. Moreover, 

defect size and location of the defect can be determined when the defect falls within the 

measurable range. This method can be applied to any bearing with rotating inner race 

and be used to monitor bearing health. Moreover, the method can be used as a real-time 

monitoring tool and can be combined with other non-destructive monitoring techniques 

such as vibration and acoustic emission. 
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The method is able to identify which of the bearing components is defective because 

each bearing element exhibits the defect at a different frequency. For instance, if the 

discontinuity is observed for every rolling element, then the defect is located on the outer 

race. If the discontinuity appears when the same element passes the investigated area, 

then that particular rolling element is the defective element. If the discontinuity emerges 

in deflection curves randomly, the inner race would be the defective component.  

 

The capabilities of the method given above make the monitoring of a bearing by the use 

of a focus ultrasound immersion transducer a potentially effective bearing condition 

monitoring tool for industrial applications. 

 

9.4 Future works and recommendations 

This study has clearly shown that the proposed method can be used to detect defects in 

bearing components and that despite accurate defect measurements could not be 

established, it is clear that there a relationship between measured parameters (peak height 

and peak duration) of a discontinuity in the outer race deflection curve and defect size. 

In order to get a better understanding of nature of this relationship, more differently sized 

defects should be tested.  

 

On the other hand, the loading conditions and rotation speeds employed in this study 

were substantially lower than those typically incurred by the bearings found in the 

gearboxes of wind turbines. This limitation was imposed by the equipment used. Future 

work should therefore involve higher loading conditions and faster rotation speeds to 

better simulate the actual operating conditions of bearings in wind turbine gearboxes.  

 

Although a direct relationship between the applied load and the measured bearing outer 

race deflection has been observed, a mathematical model has not been derived. In future, 

this relationship could be determined experimentally for each bearing that can be found 

in the particular application, e.g. wind turbine. If a bearing which is going to be monitored 

in an application has the deflection amounts corresponding to the applied loads 

predetermined, the method can be used to establish the applied load while it is in 

operation by measuring the deflection quantities, assuming a healthy bearing. 
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Moreover, numerical models and finite element method (FEM) models that the explain 

bearing dynamic model can be verified by the proposed method. Comparing the 

deflection curves of a bearing which is tested under different working conditions using 

the proposed outer race deflection measurement method to those obtained from a 

simulation model provides a means to modify and improve the simulation models.  

 

Another opportunity for future work lies in conducting run-to-failure tests with the aim 

of studying the natural degradation of the bearing. In this study, time was limited and 

such tests could not be performed. The proposed method could then be used as a 

deflection based fatigue test method to monitor the natural degradation of the bearing 

when the deflection amount corresponding to a given radial load is known. As the 

deflection of a healthy bearing outer race is stable while an applied load is steady, if a 

substantial increase in deflection is observed whilst the radial load is constant, it is 

understood that fatigue is occurring and that the bearing is degrading. Also, defect 

detection and defect assessment capabilities of the proposed method in real-time 

measurements can be enhanced by developing more powerful digital signal processing 

techniques for condition monitoring applications. 

The proposed method can be applied to naturally degraded bearings from specific 

applications in order to further validate the defect detection capabilities of the method. 

Also, comparative studies can be performed with healthy bearings, naturally degraded 

bearings and artificially defected ones at different stages of failures.   
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