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                                            Abstract 

Due to the increasing demand of high data rate of modern wireless communications, there is a 

significant interest in error control coding. It now plays a significant role in digital 

communication systems in order to overcome the weaknesses in communication channels. 

This thesis presents a comprehensive investigation of a class of error control codes known as 

Multiple Parallel Concatenated Gallager Codes (MPCGCs) obtained by the parallel 

concatenation of well designed LDPC codes. MPCGCs are constructed by breaking a long 

and high complexity of conventional single LDPC code into three or four smaller and lower 

complexity LDPC codes. This design of MPCGCs is simplified as the option of selecting the 

component codes completely at random based on a single parameter of Mean Column Weight 

(MCW). 

MPCGCs offer flexibility and scope for improving coding performance in theoretical and 

practical implementation. The performance of MPCGCs is explored by evaluating these 

codes for both AWGN and flat Rayleigh fading channels and investigating the puncturing of 

these codes by a proposed novel and efficient puncturing methods for improving the coding 

performance. 

Another investigating in the deployment of MPCGCs by enhancing the performance of 

WiMAX system. The bit error performances are compared and the results confirm that the 

proposed MPCGCs-WiMAX based IEEE 802.16 standard physical layer system provides 

better gain compared to the single conventional LDPC-WiMAX system.  

The incorporation of Quasi Cyclic QC-LDPC codes in the MPCGC structure (called QC-

MPCGC) is shown to improve the overall BER performance of MPCGCs with reduced 

overall decoding complexity and improved flexibility by using Layered belief propagation 

decoding instead of the sum product algorithm (SPA).  

A proposed MIMO-MPCGC structure with both a 2X2 MIMO and 2X4 MIMO 

configurations is developed in this thesis and shown to improve the BER performance over 

fading channels over the conventional LDPC structure.  
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Chapter 1  

                                        Introduction  

1.1 Overview  

Channel coding in digital wireless communication systems is very important because it 

enables a measure of controlling the errors in data transmission over unreliable 

communication channels. Low-density parity check (LDPC) codes have played an important 

role in error correction for achieving reliable data transmission in a communication system 

over a noisy channel because of their performance that is very close to the Shannon limit. 

LDPC is based on linear block codes and can be considered as a better error-correcting 

scheme when compared with other codes. LDPC was first introduced by Gallager five 

decades ago and then remained largely forgotten for over 50 years [1]. The only distinguished 

work was by Michael Tanner in 1981 when he introduced diagrammatic representations of 

the codes subsequently called the Tanner graph [2]. Since the invention of Turbo codes in 

1993[3], researchers started to focus on finding low complexity codes that have a 

performance approaching the Shannon channel capacity. Finally, LDPC was rediscovered 

again by Mackay and Neal in 1995 [4][5]. Most research has focused on the single LDPC 

component to overcome the high decoding complexity and implementation bottlenecks for 

longer code lengths due to the number of connections in the bipartite Tanner graph. 

MPCGC is a new class of parallel-concatenated codes designed from the parallel 

concatenation of LDPC codes. It is a concatenation of three or more LDPC codes built in 

parallel concatenation [6]. A benefit from applying concatenated small codes instead of a 

single long code is to achieve a low error rate with an overall encoding and decoding 

complexity that is lower than what is required for a conventional single long LDPC code. The 

lower complexity of the MPCGC codes can be achieved by encoding and decoding each 

component code separately. Furthermore, the MPCGC structure offers improved flexibility in 

terms of matching the coding performance and code complexity to a channel’s condition 

(choice of component codes). The reason for applying LDPC codes in the well-known turbo 

code structure of the concatenated codes is to conquer the fairly complex encoding and 

decoding of a long code length into multi steps, while maintaining the information flow 

among the LDPC component decoders and reducing any information loss between the 
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decoding steps. The attractive properties of LDPC codes have led them to be considered even 

better than the best-known turbo code [7-9]. 

The work in this thesis further investigates Multiple Parallel Concatenated Gallager Codes 

(MPCGC) and their evaluation under a range of configurations and channels.  

Further explorations for MPCGCs in this thesis are concerned with the capacity achieved for 

different communication models. 

The thesis includes the study of punctured MPCGCs and their application to the improving a 

communication’s system performance over AWGN and flat Rayleigh fading channels. The 

advantages of using QC-LDPC with MPCGC are investigated in this thesis for enhancing 

coding performance and reducing decoding complexity.  

Application of MPCGC in WiMAX and MIMO are presented with detailed analysis and 

shown to yield improved performance in each case.  

1.2 Research aim 

The main aim of the research is a further investigation into the design of efficient coding 

models based on the MPCGC structure to achieve a low error rate with an overall encoding 

and decoding complexity that is lower than what is required for a conventional single 

equivalent long LDPC code. 

The key idea is to exploit the advantages of using smaller LDPC codes in a turbo code 

structure in an active approach, to achieve an optimal trade-off between excellent 

performance and encoder/decoder complexity. In addition, attractive applications for 

MPCGCs that benefit from the flexibility of the such codes while maintaining/improving 

coding performance with reduced implementation overheads will be evaluated via extensive 

simulation models. 

1.3 Motivation 

Reliable channel coding is very efficient in wireless digital communication when it comes to 

improve system performance and to provide capacity achievement. LDPC codes have been 

considered a top research topic since the end of the 90s and in the 2000s; and are used in 

wide applications in deep space communication, next-generation networks and data storage. 

The foundation of this thesis based on the improvement the system performance with low 
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complexity in encoder/decoder components by investigated an efficient structure for LDPC 

codes based on multiple parallel concatenations codes called MPCGCs. 

The another was motivated to explore the advantage of using concatenated smaller LDPC 

codes as alternative approach of conventional single long LDPC code to achieve excellent 

performance while maintaining/improving coding performance with reduced implementation 

overheads. Moreover, the MPCGC structure is more amenable to flexible when using with 

another application such WiMAX and MIMO applications. Furthermore, MPCGC is useful 

with applications that required throughput achieved to enhance the system performance. 

Another motivation of MPCGC for compatible code rate application where some application 

required puncturing technique to let the code rate variable and flexible to use in this 

applications such WiMAX network. 

The using of QC-LDPC codes with MPCGC structure has reduced the decoding complexity 

of the communication system in terms of the number of iterations and edges compared to the 

conventional MPCGC. 

Finally, the incorporated of the MPCGC structure with MIMO technique has added a flexible 

improvement and enhanced the system performance of these applications. 

 1.4 Objectives 

In order to achieve the research aims, the following objectives have been set. 

1. Investigating and developing an MPCGC structure with three and four LDPC 

component codes with different modulations over AWGN and flat Rayleigh fading 

channel. The crucial design of the mean column weight (MCW) is investigated and 

selected for optimum performance.  

2. Evaluating the complexity of the proposed structures and proposing a metric in terms 

of the number of iterations and edges in addition to calculating the resulting capacity.  

3. Proposing a novel and efficient puncturing method for Multiple Parallel Concatenated 

Gallager Codes (MPCGC).  

4. Further exploration of the MPCGC structure by incorporating a powerful MPCGC in 

the IEEE 802.16/WiMAX standard.  

5. Further investigation for MPCGC by incorporating the efficient QC-LDPC based on 

the circular permutation matrices. The QC-MPCGC offers an improvement to the 
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system performance by reducing the decoding complexity compared to the original 

long LDPC codes.  

6. Exploring different decoding algorithms to reduce the MPCGC complexity. The 

Layered belief propagation (BP) decoder instead of the sum-product algorithm (SPA)  

decoder leading to a Layered BP QC-MPCGC, reducing the overall decoding 

complexity compared to the conventional MPCGC. 

7. Applying the MIMO technique with MPCGC to enhance the system performance.  

1.5 Original Contributions 

The thesis delivers important contributions to MPCGCs and their application as listed below: 

1. Further exploration of the SISO MPCGCs by evaluating these codes for both AWGN 

and flat Rayleigh fading channels. The BER performance was improved when 

compared with the single LDPC component with the same parameters (see chapter 3). 

2. A new MPCGC based on four LDPC component codes, where significant 

performance improvement was obtained with a higher complexity trade-off compared 

to the conventional MPCGC of three LDPC components (see chapter 3). 

3. Designing the best MCW values of LDPC codes to get an excellent BER performance 

for MPCGC of three LDPC components. The suitable design of the MCW values has 

enhanced the system performance at low, medium and high Eb/No regions. Both 

modulations of MPCGC-BPSK and MPCGC-64 QAM are applied to enhance the 

system performance. Formulation of capacity achieved proposed (see chapter 3). 

4. Proposing a novel and efficient puncturing method for Multiple Parallel Concatenated 

Gallager Codes (MPCGC). Random, regular and irregular punctured MPCGC are 

proposed and applied to obtain a compatible suitable code rates (R) for  applications 

like WiMAX. The proposed efficient punctured MPCGCs system is analysed over 

AWGN and flat Rayleigh fading channels. Simulation results show improved 

performance when compared to a single long LDPC code with the same parameters 

before and after puncturing. (see chapter 4). 

5. First to apply the MPCGC structure to the standard IEEE 802.16 WiMAX. Shown 

that MPCGC-WiMAX achieves better BER performance compared with the single 

LDPC–WiMAX. It was extended to study the girth effect which defines the length of 

the shortest cycle of the Tanner graph 
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6. On the designing of the suitable LDPC parties and how to remove the girth affects. 

The advantage of using irregular puncturing process was incorporated with the 

MPCGC-WiMAX to maximize the original code rate from ¼ to ½. (see chapter 5).  

7. First to propose new QC-MPCGC scheme where the single QC-LDPC component is 

incorporated with two LDPC Gallager component codes. The QC-MPCGC shown to 

provide better performance compared to the single QC-LDPC component with the 

same parameters. The complexity of the QC-MPCG was evaluated and shown to be 

less than that of the conventional MPCGC system (see chapter 6). 

8. A new Layered BP QC-MPCGC scheme by using layered BP decoder instead of the 

sum-product algorithm (SPA) decoder to enhance the system performance compared 

to the conventional LDPC component with the the same parameters. In addition, the 

proposed Layered BP QC-MPCGC has the advantage of reducing the decoding 

complexity when compared to the MPCGC system (see chapter 6). 

9. More insights into the MIMO-MPCGC over fading channels were provided through 

the system analysis. Two MIMO approaches with zero forcing equalizer were applied. 

The 2x2 MIMO-MPCGC and 2x4 MIMO-MPCGC systems have been designed and 

analyzed (see chapter 6). 

 1.6 Thesis outline    

The thesis is structured into seven chapters; is organized as follows. 

Chapter 1 provides an introduction to the research topic and highlights the benefit from 

applying MPCGC on the coding systems. The aim of the thesis, followed by the required 

objectives, thesis original contribution. Finally, the thesis layout and list of publication are 

presented. 

Chapter 2 presents background about the benefit of the channel coding and capacity of the 

communication system. Followed by the study of the fundamental and construction methods 

of LDPC codes. The encoding and decoding process is covered in details. Furthermore, the 

highlights of the WiMAX and MIMO applications will be used with MPCGCs have 

presented. Finally, a review of the history of the Parallel concatenation codes is presented in 

details. 

Chapter 3 the motivation for investigation and explore the proposed MPCGC structure is 

highlighted. The process of encoding and decoding the MPCGC system has been described in 



Chapter 1: Introduction 

 
 

6 
 

detail, where a better design for the MCW values has been calculated. The BER performance 

has been enhanced according to the computer simulation of variable coding model. A 

competitive comparison for parallel and serial MPCGC coding has been made. In addition, 

MPCGC provides better performance compared with both the serial MPCGC and the single 

LDPC component.  

At last, the achieved capacity has been improved and calculated for both MPCGC-BPSK and 

MPCGC- 64 QAM.  

Chapter 4 addresses the proposed punctured MPCGC system, where different puncturing 

methods has been presented. This chapter further investigated the punctured MPCGC 

performance, where a different puncturing method has analyzed to make an optimum 

competitive system performance. These three methods are explained such as random, regular 

and irregular punctured MPCGC and evaluated. Finally, the complexity analysis has been 

achieved and the benefit from punctured MPCGC has less complexity than conventional 

MPCGC. 

Chapter 5 presented a novel MPCGC-WiMAX system, where the MPCGC has incorporated 

with the standard IEEE 802.16/WiMAX to get the advantage from the flexibility of the 

MPCGC codes. This chapter is focused on improving the WiMAX performance by 

introducing the encoder and decoder process then the interleaving process has been used to 

make the transmitted data safety from errors and to ensure the FEC high robust and reliable. 

Moreover, the OFDM system has been designed and analyzed as it is based the WiMAX 

system. 

The result shows the improvement of the MPCGC-WiMAX model when compared to the 

single LDPC-WiMAX. In addition, the effect of the girth removable has been addressed. 

Finally, the application of irregular punctured MPCGC-WiMAX has been applied to make the 

compatible code rate with a trade-off in system performance. 

Chapter 6 concentrates on evaluating the effect of the QC-LDPC on the MPCGC system. 

QC-MPCGC provides improvement compared to the conventional single QC-LDPC codes. 

Further, exploration to the MPCGC has applied by incorporating the Layered BP decoder 

instead of the sum-product algorithm. The Layered BP QC-MPCGC has less complexity 

compared to the conventional QC-MPCGC with a little trade-off in BER performance. 

Finally, The analysis is extended by evaluating the effect of the MIMO-MPCGC over fading 
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channel with zero forcing equalizer. Two scenarios are considered, the first scenario 

investigates the 2x2 MIMO-MPCGC performance and the second scenario investigates the 

2x4 MIMO-MPCGC performance. Both two scenarios have analyzed and evaluated to achieve 

better system performance with good Eb/No improvements when compared both above two 

the conventional MIMO-MPCGC systems at the same parameter 

Chapter 7 concludes the research by summarising the outcomes of the thesis and listing the 

concluding remarks. Moreover, at the end of the chapter, the future work directions are given. 
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Chapter 2 

                      Background and Literature Review 
  

2.1 Introduction 

Reliable channel coding is very efficient in wireless digital communication when it comes to 

improve system performance and to provide capacity achievement. LDPC codes have been 

considered a top research topic since the end of the 90s and in the 2000s; and are used in 

wide applications in deep space communication, next-generation networks and data storage. 

It was determined by Richardson that there is similarity between the performance of LDPC 

codes and the Shannon limit in 2001. LDPC codes of block length 107 approaching the 

Shannon limit within 0.0045dB have been shown by simulations [8]. There is a direct 

proportional relationship between the block length and their excellent forward error 

correction properties, their minimum distance (dmin). A parity check matrix which is sparse 

characterizes LDPC codes, as suggested by the name. Thus, a matrix wherein the number of 

1’s is much less than the number of 0’s is a sparse matrix. An increase in the number of 1’s is 

not necessary for an increase in the size of the matrix because of the sparse property of the 

matrix. This implies that the decoding complexity does not have to be increased for it to gain 

better distance properties. 

This chapter includes an introduction and literature review to the keywords that considered in 

this thesis, first a literature review is provided, including the fundamental of channel coding 

of LDPC codes particularly the general coding overview then explaining the concept of the 

channel capacity for communication systems. In addition, the LDPC code representation and 

construction have introduced with the concept of the encoding and decoding system. Also 

considered here the effect of exit chart on designing of good LDPC codes that provides 

perfect performance. Moreover, an application of the multiple parallel concatenation in 

WiMAX and MIMO systems have been introduced. At the end, review of the parallel 

concatenation LDPC codes is given. 
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2.2 Channel coding 

The purpose of channel coding is to protect the transmitted data through a noisy medium 

channel by finding perfect codes that can improve the reliability of the communication 

system. This is achieved by adding parity information bits to transmit the data through a 

noisy channel securely. At the receiver side, apart from the parity of the transmitted message 

might be incorporated with the main information data for error correction, which might have 

been added to the main information through the channel. Further advantages from error 

correction codes focused on error detection, as at least if no error correction happen the errors 

should be detectable [9]. 

2.2.1 General coding communication overview 

In 1940, R. Hamming pioneered the principle of forwarding error correction (FEC), and he 

made this first contribution in this field by invented the Hamming (7, 4) code in 1950 [10]. A 

different point between Hamming code and LDPC code that the parity check for an LDPC 

can be written as sparse; only a few one’s bits compared to the zero’s bits in the array. While, 

Hamming has full-length code 2^𝑚-1 columns, where columns are binary numbers and (m) 

represents the number of rows through the parity check matrix. In addition, LDPC code 

depend on the construction of the parity matrix on the transmitted data, while Hamming code 

is related to algebraic and cyclic coding theory. However, the concerning with how to create 

a reliable, practical encoding and decoding communication systems is called channel coding 

[11][12]. 

2.3 Channel Capacity for communication system 

In 1948, Claude E Shannon presented in his paper the concept of information theory. He 

determined the limits on the reliable transmission of data over noisy channels and how they 

can be calculated. Shannon proved that for a known communication channel such as that 

shown in Figure 2.1, there is a limit called capacity beyond which reliable transmission of 

data is not possible. Reliable transfer of data is applicable at rates, which are close to the 

channel capacity theoretically. The general Shannon theorem presented the relationship 

between the ability of the channel to transport error-free information, compared with the 

signal to noise ratio that affected the channel and the bandwidth used  for information 

transmission [11]. 
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                                         𝐶 = 𝑊 𝑙𝑜𝑔2 (1 +
𝑆

𝑁
)                                                                    (2.1) 

Where, 

𝐶: Channel capacity in bit/sec 

𝑊: Bandwidth in Hz  

 𝑆: Signal power in watt 

𝑁: Noise power in watt 

 

 

                           

Figure 2.1 Digital communication system. 

 

The additive white-Gaussian-noise (AWGN) channel is a commonly used memoryless 

channel among any other channels, like the binary symmetric channel (BSC) or the binary 

erasure channel (BEC). Therefore, we consider the AWGN channel in the codes design 

calculations.  

Let 𝑋 =  [𝑥1, . . . , 𝑥𝑚], and 𝑌 =  [𝑦1, . . . , 𝑦𝑚] represent the random variables of the input and 

output of the channel, respectively, each bit from the ensemble can be represented as 𝑐𝑚 ∈ 

{0, 1} to 𝑥𝑚 where,  𝑥𝑚 = 2(𝑐𝑚 – 1) as 𝑥𝑚 ∈ {±1}, In addition, the channel output can be 
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represented in time domain as 𝑦𝑚 = 𝑥𝑚  +  𝑤𝑚, where 𝑤𝑚,  represents the real value from 

AWGN with zero mean and variance 𝜎2. 

Let us describe the Gaussian probability density function (pdf) of the channel 𝑃(𝑦𝑛 ∖ 𝑥𝑛) as  

                                𝑃(𝑦|𝑥 = ±1) =
1

√2𝜋𝜎
𝑒

−(𝑦±1)2

2𝜎2  .                                                            (2.2) 

The source information probability   𝑃(𝑥 = +1) = 𝑃(𝑥 − 1) =
1

2
                        

                                    𝑃(𝑦)=1/2[𝑃(𝑦|𝑥 = +1) + 𝑃(𝑦|𝑥 = −1)                                          (2.3) 

                                 𝑃(𝑦|𝑥) =  ∏ 𝑃(𝑦𝑚|𝑥𝑚).𝑚                                                                  (2.4) 

The corrections process of the LDPC decoder depends on the two factors, firstly reducing the 

codeword error’s probability, secondly the maximising of the posterior probability (MAP) 

𝑃(𝑥|𝑦). Before Turbo codes invention and rediscovery of LDPC codes, it was believed that 

practically were incredible to reach near Shannon limit. This invention considered that 

practically possible to find capacity approaching codes [12].  

The system of achievable rates 𝑅 can achieve a reliable communication at code rate R 

according to 𝑅 <  𝐶 [11]. The Capacity (bits per second) 𝐶 is the ability of the channel to 

convey information, for example, 0.5 code rate that means each channel has to transfer a half 

bit of information per second. According to the derivation [13, 14], the capacity of the 

AWGN channel.  

                              C=0.5∑ ∫ 𝑃(𝑦|𝑥) 
∞

−∞𝑥=±1 𝑙𝑜𝑔2 
𝑃(𝑦|𝑥)

𝑃(𝑦)
 𝑑𝑦                                               (2.5) 

The integration of equation (2.6) can be summarized to the expectation E{·}. This integral 

can be done according to Monte Carlo integration.                  

The relationship between the channel capacity C and signal to noise ratio (SNR) is illustrated 

in Figure 2.2 [14]. The SNR is represented by Eb/N0, where Eb represents the average energy 

per bit and 𝜎2= N0/2 is the power spectral density of the two-sided of the AWGN channel. At 

certain code rate R, the Shannon capacity provides a free error probability at the certain limit 
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for SNR. Only Turbo codes and LDPC have reached the Shannon limit within 0.5 dB by 

using long block length [12][15]. 

 

 

Figure 2.2 Channel capacity of AWGN channel. 

2.4 Fundamental of LDPC codes 

LDPC is considered a linear error correcting codes where the information bits are involved 

with redundancy bits to produce the codeword. At the receiver, the information will recover 

from the codeword. Let's consider the number of parity bits is 𝑀, while the length of the main 

information bits is 𝐾 and 𝑁 is the length of the block length or codeword. The LDPC parity 

can be defined over Galois finite fields 𝐺𝐹(𝑞) of order 𝑞 > 2. The redundancy is introduced 

by the encoding process. 

                                                     𝑀 =  𝑁 –  𝐾                                                                            (2.6) 

The LDPC code is considered the systematic coding scheme and the binary codes, which 

means the codeword is either 0 or 1. Moreover, for the systematic LDPC construction, the 

message bits 𝑚 is multiplied with the redundant or the parity bits 𝑝 to generate the codeword 

and is defind as. 
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                                                    𝑐 =  [𝑚 𝑝]                                                                               (2.7) 

The error control code depends on the important parameter called code rate 𝑅, which 

represents the redundancy introduced by the LDPC code as in. 

                                                     𝑅 = 𝐾/𝑁 = (𝑁 –𝑀)/𝑁                                               (2.8) 

The parity check matrix of LDPC is linear block codes, which can be described by a binary 

𝐾 ×  𝑁 generator matrix G. The codeword can be described as  

                                                             𝑐 =  𝑚𝐺                                                                       (2.9) 

Also 

                                                            𝑐𝐻𝑇  =  0                                                                       (2.10) 

The modulo-2 arithmetic (⊕) is used to carry both the operation above [14].  

2.5 Representations of LDPC codes 

Two different methods can represent the LDPC codes. Firstly, by linear block codes, they can 

be represented by matrices; secondly by the graphical representation. 

2.5.1 Matrix Representation 

LDPC codes are a class of linear block codes which has parity check matrix H has a number 

of one equalling 1% or fewer. To give an example of a low-density parity-check matrix, the 

matrix defined in the equation (2.11) represents a parity check matrix with (m× n) dimension 

for H (4, 8) code. 

To describe these matrices, there are two numbers;  𝑊𝑟, 𝑊𝑐 for the total number of 1’s in each 

row and columns respectively.  

There are two conditions  𝑊𝑟 << 𝑚  𝑎𝑛𝑑 𝑊𝑐 << n must be satisfied for a matrix to be called 

low density parity check. In order to apply this, the parity check matrix should usually be 

high sparse density and very large, so that the example matrix cannot be really called low-

density [16]. 
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                    𝐻 =[

0 1 0 1 1 0 0 1
1 1 1 0 0 1 0 0
0 0 1 0 0 1 1 1
1 0 0 1 1 0 1 0

]            (2.11)      

2.5.2 Graphical representation 

Tanner introduced an active graphical representation of LDPC codes. He provided a complete 

representation for both encoder and decoder of LDPC codes. 

The Tanner graphs are bipartite graphs, meaning that the all nodes of the graph are divided 

into two distinct sets, and the edges only comprise connecting nodes of two different types. In 

a Tanner graph, the two types of nodes are called check nodes (c-nodes) and variable nodes 

(v-nodes). 

 

 

Figure 2.3 Tanner graph of the parity check matrix H. 

 

Figure 2.3 is an example of a Tanner graph (TG), that was invented in 1981 by Tanner [2]. 

The figure represents the same code as the matrix in the equation (2.12). The creation of such 

a graph is rather straightforward. It consists from check nodes (the number of parity bits) and 
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variable nodes (the number of bits in a code word). The element to be called ℎ𝑖𝑗 of 𝐻 is a 1, 

when check node 𝑓𝑖 is connected to variable node 𝑐𝑗. 

Corresponding to the specified path, 𝑐2 → 𝑓1 → 𝑐5 → 𝑓2 → 𝑐2 is an example of an 

unwanted short or small cycle, as shown in Fig (2.3). Those produced bad decoding 

performance and should usually be avoided since they require a long time [17]. 

2.6 LDPC code construction 

Many algorithms have been used to design the parity check matrix of LDPC. These methods 

depend on the computer-based and the algebraic methods, where algebraic method depends 

on finite mathematics [18][19], combinational approaches [20] and circulant permutation 

matrices [21]. The high flexible codes are computer-based which is near to Shannon limit 

performance. However, there are some essential codes considered as the previous methods 

such following.  

2.6.1 Gallager codes 

LDPC codes were proposed by Gallager which contain three important parameters 

(𝑁, 𝑊𝑐,𝑊𝑟) to represent the block length and the non-zero numbers in each column and row 

[22]. The random column permutation is considered when design the parity check matrix H 

of Gallager codes. It is obtained that the Gallager codes performed better with the increasing 

in the randomness of the parity check bits. 

There are two types of Gallager codes depending on the number of 1s in each row or column. 

An LDPC code is called regular when 𝑊𝑐 and 𝑊𝑟 are constant for each column and row. 

Furthermore, it could be possible while looking to the graphical representation to see the 

regularity of the code, as there is the same number of incoming edges for every v-node as 

well as for all the c-nodes. The code is called irregular when the total number of 1’s in each 

row or column is not constant. The construction of Gallager LDPC codes has three main 

steps: 

1. Construction of the sparse parity check matrix 𝐻 then splitting into 𝑊𝑐 submatrices 𝐻 =

       𝐻1, …… . . , 𝐻𝑊𝑐
, which each column has 1s as well every submatrices has [

𝑁−𝑊𝑟

𝑊𝑐
]. 

2. The submatrix 𝐻1 arranged 1s in the row elements in sloping style. In other words, the 

elements of 1 in the 𝑖th row ( 1 ≤ 𝑖 ≤ 𝑊𝑟) replaced with another place as (𝑖 − 1) 𝑊𝑟 to 𝑖𝑊𝑟.  

3. The remaining submatrices  𝐻2, …… . . , 𝐻𝑊𝑐
 are created by column permutations of 𝐻1. 
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The example of Gallager parity check matrix H (20, 3, 4) as shown in equation (2.12). 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11110000000000000000
00001111000000000000
00000000111100000000
00000000000011110000
00000000000000001111
− − − − − − − − − − − −
10000100010001000000
01000100010000001000
00100010000001000100
00010000001000100010
00000001000100010001
− − − − − − − − − − − −
10000100000100000100
01000010001000010000
00100001000010000010
00010000100001001000
00001000010000100001 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑐1 ⊕ 𝑐2 ⊕ 𝑐3 ⊕ 𝑐4 = 0

𝑐5 ⊕ 𝑐6 ⊕ 𝑐7 ⊕ 𝑐8 = 0
𝑐9 ⊕ 𝑐10 ⊕ 𝑐11 ⊕ 𝑐12 = 0
𝑐13 ⊕ 𝑐14 ⊕ 𝑐15 ⊕ 𝑐16 = 0
𝑐17 ⊕ 𝑐18 ⊕ 𝑐19 ⊕ 𝑐20 = 0
− − − − − − − − − − − − −
𝑐1 ⊕ 𝑐6 ⊕ 𝑐10 ⊕ 𝑐14 = 0
𝑐2 ⊕ 𝑐6 ⊕ 𝑐10 ⊕ 𝑐18 = 0
𝑐3 ⊕ 𝑐7 ⊕ 𝑐14 ⊕ 𝑐14 = 0
𝑐4 ⊕ 𝑐11 ⊕ 𝑐15 ⊕ 𝑐19 = 0
𝑐8 ⊕ 𝑐12 ⊕ 𝑐16 ⊕ 𝑐20 = 0
− − − − − − − − − − − − −
𝑐1 ⊕ 𝑐6 ⊕ 𝑐12 ⊕ 𝑐18 = 0
𝑐2 ⊕ 𝑐7 ⊕ 𝑐11 ⊕ 𝑐16 = 0
𝑐3 ⊕ 𝑐8 ⊕ 𝑐13 ⊕ 𝑐19 = 0
𝑐4 ⊕ 𝑐9 ⊕ 𝑐14 ⊕ 𝑐17 = 0
𝑐5 ⊕ 𝑐10 ⊕ 𝑐15 ⊕ 𝑐20 = 0

 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2.12)       

2.6.2 Mackay codes 

This type of LDPC codes was invented by Mackay [5], which illustrates the benefit of 

designing H sparse matrices. The parity check matrix structure contains constant numbers 

from 1s with random positions. In addition, the distribution of 1s in each row set uniformly. 

The effect of eliminating the short cycles called girth g of length 4 is considered in the 

designing the Mackay codes. The principle of this code is to reduce the number of 1s in each 

column of the H matrix by introducing a factor called low weight columns. 

2.6.3 Quasi-cyclic LDPC (QC-LDPC) codes 

Quasi-Cyclic LDPC (QC-LDPC) codes have submatrices with cyclic connections in the rows 

or columns. These codes offer excellent performance with efficient implementation. The 

encoding process can be done by using shift registers [19][20]. However, this code was 

applied to the single LDPC component with long codes. The identity shifting process of the 

row-columns of the submatrices are constructed and considered. In addition, at the decoder 

memory, the know locations of one row or column can conclude the remaining rows or 

columns in the original submatrix [25][26]. There are many methods for constructing the QC-

𝐻= 
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LDPC based on the arrangements shift values of the submatrices. Furthermore, the avoiding 

of the girth cycles have been considered and suggested by using finite geometry, algebraic 

design and special algorithms[23][24]. 

 

 2.7 Encoding of LDPC 

The reason for using the encoder to generate the codeword that consists of the message bits 

and some parity check bits. In addition, it is possible to include the information message bits 

in an LDPC encoded message. The encoding process is usually done by selecting appropriate 

variable nodes for placing the message bits, and in the next step to calculate the missing 

values of the remaining nodes [9].  

The sparse generation of the parity check matrix H is considered when created the required 

parity check bits. Furthermore, the generation of the Generator matrix  𝐺 = [𝑃. 𝐼𝐾] with the 

order (𝐾.𝑁) depends on the parity check matrix  𝐻= [𝐼𝑛−𝐾. 𝑃𝑇] with the order (𝑛 − 𝑘, 𝑛). The 

design of the parity check matrix should satisfy 𝐺.𝐻𝑇 = 0 as well as, the systematic parity 

check matrix 𝐻1 could be as [𝐼𝑛−𝐾 . 𝑃𝑇], where 𝑃 represents the parity sub matrix while 𝐼𝐾 

represents the dimension of the identity matrix (𝑘 × 𝑘). 

 The syndrome equation of the LDPC code can be represented by 𝐶.𝐻𝑇 which means 

[𝑚.𝐺. 𝐻𝑇 = 0] where the code word 𝐶 is calculated as 𝐶=𝑚.𝐺 and in the next step, the using 

of the syndrome vector in the decoding process [28]. 

2.8 LDPC Decoding Algorithms 

2.8.1 Iterative Message-Passing Algorithms  

The message passing algorithm, also called sum-product algorithm (SPA), is an efficient 

algorithm, where the inference problems can be solved in both statistical physics and error 

control coding. 

The Sum-Product Algorithm (SPA) provides better coding performance with a trade off in 

the decoding complexity. For simplification of the algorithm operations of the SPA which is 

based on soft-decision decoding, multi modifications for both binary and non-binary Low 

Density Parity Check Codes (NB-LDPC) have been proposed, but still required high 

implementation in the decoding complexity. The min sum algorithm (MSA) is modified from 
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the check node operation of the SPA, but still require a high quantized message to be 

delivered between the nodes inside the decoding process [29].  

For LDPC decoding the Sum-Product algorithm (SPA) decoding is a soft-decision message-

passing algorithm that requires calculating the likelihood ratio (LLR intrinsic message) for 

variable node operations to apply the decoding decisions.  

The decoding process starts by make the LLRs pass over to the variable nodes. The step sum’ 

operations on the input LLRs were performed by variable nodes (V) as calculated in equation 

(2.13). Moreover, the computed extrinsic messages are delivered along the connected edges 

to the check nodes (C) [1][30].  

The operation of the SPA variable node: 

                                               𝑉𝑖 =𝐿𝐿𝑅𝑛 +∑ 𝐶𝑗𝑗≠𝑖                                                                   (2.13) 

Where, n = 1, 2, 3….number of variable nodes 

             i, j = 1, 2, 3….degree of variable node 

The check nodes (C) perform the parity check operation and computes the messages that are 

to be passed to the respective variable nodes (V), as in (2.14).  

The operation of the SPA Check node: 

                                         𝐶𝑘 = 2 tan−1(∏ tanh
𝑉𝑙

2𝑘≠𝑙 )                                                            (2.14)  

Where, l, k = 1, 2…. degree of check node 

The system repeats this process until the parity check is fulfilled or the maximum iterations 

are attained. We can observe that high precision extrinsic messages are required by the SPA 

to be forwarded between the nodes and the SPA contains non-linear function in the check 

node operation. As a result, high decoding complexity is observed. Nevertheless, desirable 

decoding performance can be achieved by the SPA [31]. 

2.9 Soft and Hard Decoding 

The soft decoding means a multi-bit resolution and depends on the reliability of the 

transmission, since at this step not only do we receive the value of the signal from the 

receiver but also its probability to be true via extra bits that are added to the message. In this 
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form, the message is presented in a sign-magnitude format where the sign is the value of the 

message (0 or 1 as in hard decoding), and the magnitude is the probability of being correct. 

The received value when the magnitude is low is classified unreliable during assessment by 

the decoder, which can influence its algorithm [12]. 

Besides requiring the parity information, the propagation of reliability information is required 

by the soft decision decoding. Additional bits are required by this information to be 

propagated for each edge or message in the graph. To bring together the reliability of the 

other incoming messages, a reliability update along with the parity update is carried out by 

the nodes and an estimated reliability for each outgoing message is resultantly produced by 

this phenomenon. 

As compared with the current estimate of the parity for that message or variable, the 

propagation of only one bit per message or graph edge is featured in hard decision decoding. 

The message update with an XOR network and the simple parity check is carried out by the 

check nodes. Besides the received bit and addition of the input messages, a weighted majority 

function is performed by the variable nodes. The current iterations estimate of the decoded bit 

is determined by summation or the sign of the majority. The sign of the majority or 

summation of all inputs except the current edges input is outgoing messaging from the 

variable nodes. This represents the inferred value for that variable message and all other 

connected checks [10][26]. 

At the receiver, the incoming message from the detector to the decoder can take many types. 

Hard decision decoding is satisfied when the incoming message from the detector consists of 

only one single bit. The value is decided using a threshold at the receiver. This threshold is 

computed based on channel properties, and the values above the threshold will be treated as 1 

and 0 for values below since the hard decoding leads to hard decisions on the variables of 

each cycle. 

The complexity of the decoder depends on the number of magnitudes even though it allows it 

to assess the incoming message better, giving it a better chance of successful decoding. The 

existence of reliability bits allows soft decoders to make better assumptions on data as 

compared with hard decision decoders that do not have any probability values to work with 

incoming bits that are equally treated [28].  
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2.10 EXIT Charts and Density Evolution 

The extrinsic information transfer (EXIT) chart of LDPC code is a graphical method used to 

predict the decoding threshold of the received codeword. EXIT chart is working on the based 

on the iterative cooperation between check nodes and variable nodes to take the decoding 

decision with appropriate iterations [15][27]. EXIT chart is considered one solution to 

enhance the performance of the LDPC iterative decoding at the error floor region. Moreover, 

Richardson et al. [33] and Luby et al. [34] succeed to show how to make an optimisation to 

the pair of the degree distribution polynomial of the channels. However, their work was 

focused on the conventional single LDPC component, which suffered from high 

implementation in the decoding complexity. 

 The predicted decoding threshold based on EXIT chart is free-cycle Tanner graph. Likewise, 

the density evolution (DE) of LDPC can predict the channel conditions by predicting 

probability density functions (pdfs) of the iterative decoding. The DE can predict the 

decoding of BER when converging to zero. The probability of error relies on the channel 

parameters, example the standard deviation (𝜎) of the AWGN channel [33]. 

2.11 Worldwide Interoperability for Microwave Access (WiMAX)-

IEEE802.16  

WiMAX is a telecommunication technology that produces a high data rate over large 

coverage areas to a large number of users as shown in Figure 2.4. The first introduced in 

2005 to solve the weakness of Wi-Fi network. Moreover, the WiMAX antenna had a 

communication range up to 40 miles with data rate 70 Mbps [35]. 

The first version from WiMAX based IEEE802.16 standard covered the frequency band 10 - 

66 GHz and needs line–of–sight (LOS) towers. After that, the designed standard has covered 

the frequency band 2-11 GHz at different physical (PHY) specifications, to enable non line of 

sight (NLOS) connections that require efficiently techniques to attenuate the effect of the 

multipath and fading. WiMAX technology is based on OFDM technique and it’s  possible to 

be potential replacement candidate for mobile communication network such code division 

multiple access (CDMA) and the global System for Mobile Communication (GSM), or to 

increase the system capacity [36][37]. 
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 The OFDM–based physical layer of the IEEE802.16 standard can be worked as a wireless 

backhaul technology for 2G, 3G and 4G networks. In 2005, the IEEE802.16-2004 was 

updated by 802.16e-2005 with uses Scalable Orthogonal Frequency Division Multiple Access 

(SOFDMA). More updated versions, including 802.16e with multiple antenna supported by 

Multiple Input Multiple Output (MIMO). To satisfy the high demands of the next generation 

data, the modulated is chosen as it is more efficient (more bits per OFDM/SOFDMA symbol) 

[21].  

 

                                          Figure 2.4 WiMAX equipment [38]. 

2.12 Quadratic amplitude modulation (QAM) 

Both the phase and amplitude of signal are changed for the creation of Quadrature amplitude 

modulation (QAM). Through making changes in the amplitude and phase, the bits are 

mapped to two analogue signals. Afterwards, two analogue signals are orthogonal due to 

them being out of phase with each other by 90◦. There are different kinds of QAM depending 

on structure of the constellation diagram. Rectangular-QAM represents the QAM with a 

rectangular structure and circular-QAM is the name given to circular symmetry 

constellations. Under dissimilar channel conditions, the performance of each constellation is 

different. Afterwards, modulation and demodulation of rectangular-QAM is rather simple 
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because of its regular structure which results from amplitude modulations in phase and 

Quadrature. However, channels influenced by phase noise are the most suitable for circular-

QAM. Moreover, such schemes can be implemented now because of the assistance of digital 

signal processing. Henceforth, a combination of ASK and PSK can basically be considered to 

be Quadrature amplitude modulation (QAM) [39]. This implies that, in both the phase and 

amplitude of the carrier signal, the digital information is carried. In comparison to the desired 

transmission frequency, the modulator output frequency is frequently lower and the 

modulator frequency being up-converted to the appropriate radio frequency (RF) for 

transmission is essential. M=64 for M-ary QAM is the condition for “64-QAM” to result. 

Afterwards, at the time of each symbol period, K =𝑙𝑜𝑔2M bits of information is transmitted 

by QAM. 64 possible symbols each having 6 bits are presented for 64-QAM. Different bit 

errors taking place for every symbol error are minimized as bits are mapped into symbol 

frequently according to the Gray codes. This code makes sure that a single bit in error is 

likely corresponded to by a single symbol in error as Gray-coding is a bit assignment where 

there difference in the bit patterns in adjacent symbol is only of one bit. Afterwards, 

rectangular constellation of a Gray-coded unfiltered 64-QAM [40][41]. 

2.14 Multiple Input Multiple Output (MIMO) 

In recent years, research studies discussed the Multiple Input Multiple Output (MIMO) 

systems at length due to their possible attributes. Exploiting the multiple antennas at both 

receiver and transmitter sides is one of the conventional features of MIMO, which is 

described as transmit-receive diversity property. In addition, it is also observed in basic types, 

either at the receiver side SIMO, or at transmitter side MISO [42]. 

MIMO has the potential to uplift the capacity without reducing the transmitted power, by 

which we can infer that it is uniformly dispersed among its multiple antennas. The utilization 

of smart antennas leading to increase in total performance is the one of the appropriate 

solutions of Inter Symbol-Interference in MIMO [43]. The Diversity Spatial multiplexing 

gain, Array gain and Interference minimisation are the general benefits offered by the MIMO.  

For MIMO communication system as in Figure 2.5 with number of  𝑀 transmitted and  𝑁 

received antennas, all of the sent signals are exposed by each of the received antennas so that 

the MIMO fading channel model could be clarified. Accordingly, the SISO channel is 

enabled to be illustrated as a 𝑀𝑇 × 𝑀𝑅 matrix. The 𝑀𝑇 × 𝑀𝑅 MIMO channel matrix at a 
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certain moment of time may be represented over the required bandwidth of frequency-flat 

fading [44][45]. 

                            

 

Figure 2.5 MIMO channel for M transmitter antennas and N receiver 

antennas. 

2.15 History of the Parallel concatenation Gallager codes (PCGC) 

LDPC is one of the more well-known error correcting codes designed in noisy 

communication channels to minimize the probability of information loss. This probability can 

be reduced to a minimum as desired by using LDPC, thus the data rate of transmission can be 

close to Shannon’s limit as required. In 1993, Claude Berrou et al. presented a practical code 

suitable to approach the channel capacity at low (SNR) and called it Turbo codes; and with 

the invention of turbo codes, scholars switched their focus to the parallel concatenation for 

finding a low complexity code which can approach the Shannon channel’s capacity [46]. The 

rediscovery of the LDPC followed the invention of turbo codes which were reinvented with 

the work of Mackay in 1995 [20][31].  
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The last years have observed the increasing research interests in parallel concatenation of 

LDPC codes instead of Turbo codes to improve system performance. The presented research 

is focused on the further studies of the parallel concatenation of LDPC codes. 

Parallel Concatenated Gallager Code (PCGC) is a class of concatenated error correcting 

codes designed to reduce the encoding and decoding complexity of long block length LDPC 

codes. The complexity of the encoding and decoding of LDPC codes increases linearly with 

the code length (N). In addition, the using of conventional single LDPC component means 

that one encoder in the transmitter and one decoder at the receiver are used in single input 

single output (SISO) system. In the conventional LDPC codes with long block length suffers 

from high decoding complexity and error floor problems at high SNR, where the reason for 

high complexity is the higher paths connectivity in the bipartite of the Tanner graph (TG). 

The first original work on Parallel Concatenated Gallager Codes introduced by H. Behairy 

and S. C. Chang in 2000. A new field from a concatenation of only two LDPC codes was 

revealed and presented a scheme to concatenate two LDPC codes using the turbo code 

principle. They got several benefits from considering this approach such as reducing 

complexity, delay, and memory required. This is in addition to the enhancement in the bit 

error rate BER performance when compared with a single LDPC code with the same 

parameter. Moreover, they used a different Mean Column Weights (MCWs) for each LDPC 

code MCW1=2 and MCW2=2.66 through a bipartite graph in the decoder as well as they 

used LDPC code rate ½ for both, and with the concatenation results in a 1/3 rate without used 

interleaver between the codes [48]. Moreover, the previous work is restricted to only two 

LDPC component code with overall code rate R=1/3 concatenated in parallel using Turbo 

code structure and only used LDPC Gallager codes. Later another work in conventional serial 

and parallel concatenation PCGC [31], but the concatenation still limited to only two LDPC 

component and have not been most successful due to their limitation.  

In 2000, irregular repeat-accumulate (RA) codes are devised by Jin et al as a competitive 

alternative to the parallel concatenation of LDPC code [49]. The main advantage of using 

irregular RA codes instead of irregular LDPC codes is that the encoding complexity is linear 

in the code length. The RA consists from an outer code that is a mixture of repetition codes 

and inner code that consists of parity check bits and an accumulator (a differential encoder) 

[50][51]. My investigations of MPCGCs research can be fully parallelized while an a 

posteriori probability (APP) iterative decoder cannot due to the accumulator. 
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In 2003, Zhao and Valenti presented a parallel concatenated convolutional code (PCCC) 

based on the Turbo code (TC) under quasi-static fading relay channel, which transmitted the 

encoded data twice using the interleaver. The classic turbo decoder is used to decode the 

received data [52]. In addition, the advantages from using LDPC codes by Mackay [33][20] 

instead of the turbo codes have offered an improvement in the BER performance and 

reducing in the error floor at the higher SNR region, which made the turbo codes suitable for 

only lower SNR region.  

The better performance achieved when using turbo coding as an outer code and LDPC as an 

inner code in a serial concatenation [53], despite this concatenation has performed well in 

deep space communication but required a high computational complexity compared with the 

MPCGCs research. Further modification in serial concatenation codes, Damian A. Morero et 

al. [54] have reported a new approached to reduce the computational complexity and to 

improve the error floor region by combined both LDPC codes and turbo codes in serial. 

The forward error corrections are essential in the multiple input multiple output (MIMO) 

channels for high-quality communication, in 2003, Futaki and Ohtsuki presented a system 

with iterative turbo decoding called (MIMO-LDPC-TD) using two LDPC encoders and 

decoders. Moreover, each LDPC codes have identical MCW. They improved the 

performance and reduced the complexity smaller than that in the conventional MIMO-LDPC 

[55]. However, my investigations in MIMO-MPCGCs provides better BER performance 

compared with the reported Futki and Ohtsuki results due to using three LDPC components. 

In 2006, Serrato and Tim O’Farrell presented a new class from parallel concatenation by  

applying two different LDPC codes with different MCW values through using the Maximum 

A-Posteriori (MAP) of the SPA decoder. The result was obtained from the authors improving 

the system performance with a low complexity compared to the individual conventional 

LDPC codes, but they used only two LDPC codes concatenated in parallel with overal code 

rate 1/3 and ½ for each individual LDPC code rate. The presented research of the  MPCGC 

structure is more flexible to utilizing three or four LDPC codes by modifications to using the 

a priori information calculated during the super iteration of the decoding process [56]. 

In 2013, Kumar and Kshetrimayum presented a methodology for parallel concatenation of the 

LDPC codes. They presented an efficient methodology for PCGC by utilizing one component 

of LDPC at high mean column weight (MCW) > 2.5 and sending the parity bits of the 
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encoder twice. The performance of this methodology outperforms existing PCGC regarding 

BER performance in both AWGN and flat fading Rayleigh channels. It also showed that the 

proposed PCGC provides coding improvement compared to  the conventional PCGC in terms 

of decoding complexity and decoding delay [52]. The current study in MPCGCs is more 

flexible to use three or more LDPC components with different MCW values. Furthermore, 

the MPCGCs provide superior improvements compared to the other conventional LDPC 

components. 

At the end of 2013, presented a new class from parallel concatenation of multiple 

components of LDPC codes. Multiple Parallel Concatenated Gallager Codes (MPCGC) were 

used to reduce the long component from LDPC code into multiple small (lower-complexity) 

LDPC codes for improving performance in practical. The MPCGC structure with three LDPC 

components provided better system performance with low complexity compared to the single 

conventional LDPC [57]. However, the previous work from MPCGC obtained significant 

BER improvement but limited to the only Gallager LDPC codes and applied to the only SISO 

system. The presented study is more flexible compared to the previous work by the ability to 

use four LDPC components as well as the possibility to use different decoding method such 

Layered BP decoder. In addition, the presented study provides the advantage of applying 

MIMO technique with MPCGC structure to improve the system performance without 

exploiting high decoding complexity.  

 In 2017, a modified PCGC decoding scheme for combined LDPC and turbo convolutional 

code presented a modified practical extrinsic information and achieved a trade-off in the 

performance of the reducing error floor region, computational complexity and latency [58]. 

The presented research has good performance with a trade off in complexity compared to the 

previous combined LDPC with turbo convolutional code. 

 A new efficient technique in the non-zero syndrome of parallel concatenation proposed by 

using two-component LDPC code [59], one component used zero syndromes and the other 

used non zero syndromes. The result showed a better BER performance compared with the 

existing PCGC or the dedicated LDPC code for the same parameters of code rate and code 

length. However, the high computational complexity limitation has affected this work while 

in the current study, the using QC-MPCGCs provides better system performance with less 

complexity.  
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Chapter 3  

Construction of Modified Structured of Multiple Parallel 

Concatenated Gallager Codes (MPCGC) 

3.1 Introduction 

This chapter focuses on the construction of structured MPCGC, where MPCGC are a new 

class of parallel-concatenated codes designed from parallel concatenation of three or four 

component Low-Density Parity-Check (LDPC) codes. MPCGC provides a better error-

correcting procedure as compared with the turbo codes and the other codes. Moreover, the 

reason for using LDPC codes in the well-known turbo code structure is to conquer the fairly 

complex decoding of a long block length (N) into steps. In MPCGC scheme, the component 

LDPC codes concatenated in parallel without using interleaver. 

We intend to show that MPCGC have good error-correcting capabilities with high 

performance in both Additive White Gaussian Noise (AWGN) and flat fading channel,  all 

the simulations were carried out in Matlab and C language because of the simulators are 

normally designed to scale and make it easier to produce accurate result. 

 Analysis of the proposed coding scheme using both iterative and Maximum Likelihood (ML) 

decoding is presented. The system model techniques used are based on the Gaussian 

approximation of the extrinsic information [48]. In addition, a good trade-off between coding 

gain and complexity can be carried out using the parallel concatenated codes proposed by 

Forney [60]. 

MPCGC is a concatenation of three or four LDPC with free interleaver, and the benefit of 

applying concatenated code instead of a single code is to provide better coding performance 

with an overall decoding complexity that is less than needed for a conventional single code. 

Furthermore, the reduced complexity can be achieved by individually decoding each 

component code.  

The organization of this chapter as follows; in section 3.2 the MPCGC encoding has been 

explained in detail. In section 3.3 the proposed system model of the MPCGC encoder is 

presented. The proposed serial and parallel MPCGC structure has been done in section 3.4 

and 3.5 respectively. Followed by the presentation and explanation the SPA decoder in 



Chapter 3: Construction of Modified Structured of Multiple Parallel Concatenated Gallager Codes 

(MPCGC) 

 
 

29 
 

section 3.6. In section 3.7, we explain in detail the iterative decoding of the MPCGC 

structure. The MCW combination and code design has been done in section 3.8. The 

simulation results and discussion of the research is presented in section 3.9 as well the 

complexity analysis has been presented. Finally, the chapter summary is presented in section 

3.10. 

3.2 Encoding of MPCGC 

MPCGC are a class of PCGC where 𝑀 distinctive components with 3 component LDPC 

encoders are used, each of which is described by a generator matrix (𝑘, 𝑛) with code rate 𝑅 =

1/2. The concatenated in parallel method is used to build an overall length (𝑁) and codeword 

rate 𝑅: 

                                                                𝑅 = 1/ (𝑀 + 1)                                                                 (3.1) 

An irregular code with different mean column weights (MCW) are used, which allows the 

codeword bits to participate in a different number of parity check equations. 

A single LDPC parity checks that the matrix of dimensions (𝑚, 𝑛) contains 𝑛 column with 

Hamming weight Cn where 1≤Cn≤ 𝑚 and 𝑛 ∈ {1…𝑛). Also, each of weight 𝑤𝑙, where 𝑤𝑙 ≤

𝑚, l  𝜖{1,…….m}.   

Where, 

                                                        𝜆(𝑥) = ∑ 𝜆𝑖 
𝑚
𝑖=1 𝑥𝑖                                                              (3.2) 

Specifically, the distribution of the column weight has a highest column weight of 𝑀.  In 

other words, 𝜆𝑖 represents in the matrix the fraction of columns weight 𝑖, while  

                                                        MCW≅ ∑ 𝑖𝑚
𝑖=1 𝜆𝑖                                                         (3.3) 

This can be introduced as the (MCW) of the matrix. MCW represents the symbol (left) node 

degree distribution of the Tanner graph[61]. Moreover, MCW has the ability to make the 

construction of structured MPCGC easier and flexible to achieve better performance when 

maximizing the value of the MCW in the LDPC parity, and many improvements can be 

achieved by blocking short cycles, while optimizing the bipartite graph depends on the better 

MCW found in the structure phase. When the codeword 𝐶 is viewed as:  
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                                                                   𝐶 =  [𝑃, 𝑆]  

Where, 

𝑃 is the parity sequence bits and 𝑆 the information sequence e bits, the parity check matrix 𝐻 

can be viewed as:  

𝐻 = [𝐻𝑃, 𝐻𝑆]. Then 

                                                                  (𝐻𝑃, 𝐻𝑆)(𝑃
𝑆
)=0                                                        (3.4) 

The information bits 𝑆 is involved with the codeword 𝐶 when organizing the parity check 

matrix. Thus, the 𝐻𝑃 part of the parity-check matrix has a lower density than the part 𝐻𝑆. 

This style from the columns is arranged in such a way that the information bits are associated 

with the high-weight columns, while the parity bits are associated with the lower-weight 

columns. 

For example, let consider H (𝑚 = 4, 𝑛 = 8) LDPC parity check matrix is: 

                                                     𝐻=

[
 
 
 
 
1 1 0 1 1 1 0 1 
0 0 1 0 1 0 1 0 
1 1 0 0 1 0 1 1 
1 1 1 1 0 1 1 1 

]
 
 
 
 

, 𝐻 = [𝐻𝑃, 𝐻𝑆]                         (3.5) 

The distribution of the column weight is:   

                                                    𝜆(𝑥)  = 0.375𝑥2 +0.625𝑥3                

From equation (3.3), the MCW can be calculated as follow: 

                                               MCW = (2 x 0.375) + (3 x 0.625) = 2.625 

From the above parity-check matrix, we can write out the set of parity-check equations: 

𝑥0 + 𝑥1 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥7 = 0 

                                                                         𝑥2 + 𝑥4 + 𝑥6  = 0 

           𝑥0 + 𝑥1 + 𝑥4 + 𝑥6 + 𝑥7 = 0 
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                                      𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 + 𝑥5 + 𝑥6 + 𝑥7 = 0  

The equations above will be part of planning the Tanner graph in iterative decoding 

algorithms[51][52]. 

The generator matrix is based on a linear code and is used to organize all the possible 

codewords. A linear (𝑛, 𝑘) code has 𝑘 × 𝑛  generator matrix. 

Given a message 𝑆, the codeword will be the product of 𝐺 and 𝑃 with entries modulo 2: 

                                                          𝐶 =  𝐺. 𝑆                                                                 (3.6) 

Given the received codeword 𝑦, the syndrome vector is:   

                                                          𝑧 =  𝐻. 𝑦                                                                          (3.7) 

When 𝑧 = 0, it means that the received codeword is error-free, otherwise the position of the 

flipped bit takes the value of 𝑧 . 

The randomly generated parity check matrix 𝐻 is not systematic, and the Gaussian 

elimination and reordering of columns are meant to derive an equivalent parity check matrix 

in systematic form. 𝐻 is redefined as the original matrix with its column reordered as in the 

Gaussian elimination, so the generator matrix 𝐺 of LDPC can be defined as:  

                                          𝐺T=(𝑃
𝐼𝑘

)                                                                                               (3.8) 

Where 𝐼𝐾 is the (𝐾 × 𝐾) identity matrix [63]. 

3.3  Proposed system model of MPCGC Encoder 

The system encoder is created by the parallel concatenation of four LDPC encoders that are 

concatenated directly. Figure 3.1 represents the MPCGC encoder where 𝑢 (of length 𝑘) 

represents the vector of systematic information bits, while 𝑣M (of length 𝑘) are the parity bits 

generated by 𝑀th encoder and 𝑀 ∈ {1, … ,𝑀}.   

The 4 LDPC encoders work on the same inputs as a result of the output stream code. Figure 

3.1 illustrates the block diagram of the MPCGC encoder system with code rate 1/5 where 𝒆 

represents the systematic information bits sequence of length 𝐾 and 𝑏1, 𝑏2 , 𝑏3, 𝑏4 and bM are 

the parity bits sequences of length 𝐾 generated by first, second, third and fourth LDPC 
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encoders, respectively. By conquering the total encoding process into something less 

complex, a reduction in the overall encoding complexity is done.  

We consider a code rate 𝑅=1/5 and overall code length N=1000, of MPCGC as a result of the 

concatenation of four LDPC codes with the same code rate R=1/2 whose parity check 

matrices 𝐻1, 𝐻2 , 𝐻3 and 𝐻4 are of dimension (𝑚 × 𝑛) where 𝑚=200, 𝑛=400; also with the 

parameters of MPCGC in MCW1=2.04, MCW2=2.73, MCW3=2.79 and MCW4=1.89, 

𝑁=1000 when using the parallel decoding process. 

  𝑅 = 1/(𝑀 + 1) = 1/(4 + 1) = 1/5 

The parity check matrix of each LDPC code corresponding to the information part can be 

denoted by 𝐻1
𝑃, 𝐻2

𝑃, 𝐻3
𝑃  and 𝐻4

𝑃  . 

To generate codeword 𝐶1 

                                                       [𝑏1 . 𝒆 ][ 𝐻1
𝑃  𝐻1

𝑆]𝑇 = 0                                                         (3.9) 

Also for codeword 𝐶2  

                                                [𝑏2 . 𝒆 ][ 𝐻2
𝑃  𝐻2

𝑆]𝑇 = 0                                                         (3.10) 

Also for codeword C3  

                                                [𝑏3 . 𝒆 ][ 𝐻3
𝑃  𝐻3

𝑆]𝑇 = 0                                                         (3.11) 

Also for codeword C4  

                                                      [𝑏4 . 𝒆 ][ 𝐻4
𝑃  𝐻4

𝑆]𝑇 = 0                                                         (3.12) 

In addition, the overall MPCGC codeword has the form: 

                                                       𝐶 = [𝑏1  𝑏2 𝑏3 𝑏4 𝒆]                                                      (3.13) 

Irregular LDPC codes have been used in all parity check matrix of MPCGC and it is known 

to outperform regular LDPC codes since the number of ones in each row and column is not 

constant, though always very small when compared with the whole size of the parity check 

matrix [57]. 
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               Figure 3.1 Block diagram of MPCGC Encoder of M LDPC component. 

 

For further applications to the parallel concatenation of LDPC codes, we can use less 

complex MPCGC design, by choosing three LDPC components. 

We can consider a code rate 𝑅=1/4 and overall code length N=768, of MPCGC as a result of 

the concatenation of three LDPC codes with the same code rate R=1/2 whose parity check 

matrices 𝐻1, 𝐻2 and 𝐻3 of dimensions (𝑚 × 𝑛) where 𝑚=192, 𝑛=384. Moreover, the 

remaining parameters of the MPCGC are MCW1=1.94, MCW2=2.81 and MCW3= 1.81, 

𝑁=768 when using the parallel decoding process.  

  𝑅 = 1/(𝑀 + 1) = 1/(3 + 1) = 1/4 

3.4  Proposed MPCGC Serial decoder 

The output from the first LDPC decoder is directly passed on to the second component, while 

the output of the second decoder is passed on to the third decoder, then the output from the 

third decoder is passed on to the fourth component decoder, then the output of the fourth 

decoder is passed on to the first decoder and so on, as shown in Figure (3.2). This type of 
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decoding is called serial mode in which every LDPC decoder has to wait for the next 

decoder’s output to start the decoding. 

 

                                        Figure 3.2 Serial decoding mode. 

 

For less complexity from MPCGC design, we can also use 3 LDPC components at the 

decoder part. 

During each super iteration, (M) component decoders, the serial decoder can be used as 

shown in Figure 3.3 below. All component decoders use the sum product algorithm as in the 

first super iteration; the a posteriori probabilities P 1(u) of the (N) coded bits have been 

calculated using the received data (y0) and (y1) without applying information; also, the 

information data have been equally distributed as +1 or -1. 

In the second LDPC component, the decoder calculates the second a posteriori probabilities 

P2(u) by using received sequences (y0) and (y2) alongside the a priori (extrinsic) information 

P1e(u) which is available from the first decoder. In addition, the decoder of the third LDPC 

component computes the third a posteriori probabilities P3(u) by using received sequences 

(y0) and (y3) along with the a priori (extrinsic) information P2e(u) available from the second 

decoder. Finally, in the fourth LDPC component, the decoder computes the fourth a posteriori 

probabilities P4(u) using received sequences (y0) and (y4) along with the a priori (extrinsic) 

information P3e(u) available from the third decoder. 

The decoding process directly continues for the last decoder as well using received data (y0) 

and (y𝑀) along with the a priori (extrinsic) information available from the previous 

component decoder 𝑃m-1e(u) in order to complete the calculation corresponding to the P2(u) 

for all M component decoders. 
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                         Figure 3.3 Block diagram of MPCGC serial decoder. 

 

3.5 Proposed MPCGC Parallel decoder 

During each super iteration, (M) component decoders, the parallel decoder can be used as 

shown in Figure 3.4. All component decoders process information at the same time and use 

the sum product algorithm as in the first super iteration (all (M) LDPC decoders launched 

simultaneously), each using the received sequence (y0) and (yM) without applying any a priori 

(extrinsic) since the information bit is equally +1 or -1. Each LDPC component decoder 

computes alone the corresponding posteriori probabilities Pm(u) of the (N) coded bits for a 

number of local iterations, and having to halt when either a known maximum number of local 

iterations is reached or if a codeword is found. After the first super iteration and during each 

subsequent super iteration, every component decoder gets its a priori information from the 

extrinsic information generated during the previous super iteration by all other (M-1) 

decoders. The decoding process continues for all subsequent super iterations until all (M) 

component decoders satisfy the valid codewords, or the super iterations is reached to the 

maximum number. Finally, the output of highest MCW value from the LDPC component 

decoder is stated as the best estimate of the transmitted sequence [6][51].  
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                   Figure 3.4 Block diagram of the proposed MPCGC decoder. 

 

At MPCGC serial decoding, on the systematic bits the decoder is starting with the lower 

MCW because the a priori information not available. This produces higher extrinsic 

information that is advantageous to other LDPC components by speeding up until 

convergence, and then the higher MCW will start with the extrinsic output from the lower 

MCW component decoder. 

MPCGC parallel decoding could be helpful in delaying sensitive applications so as to reduce 

the time of decoding, and the trade-off of this speeding up of the MPCGC parallel decoding 

will be partly degradation in performance, depending on the MCW values of the LDPC 

component when it is compared with the MPCGC serial decoding. 
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3.6  The Sum Product Algorithm (SPA) 

In general, the decoders can be one shot receive inputs, compute the hard results and quit, or 

iterative where the message is being processed and modified via the internal decoder 

algorithm for many local cycles. In this case, the decoder should converge on a result and 

then quit the iterative algorithm when the hard decision is correct (i.e. it passes through the 

parity check matrix), or it quits after the maximum number of iterations has been completed 

and no satisfactory result has been calculated.  

The LDPC decoder uses a soft-decoding iterative algorithm called Sum-Product Algorithm or 

SPA to calculate the result. In the LDPC decoder, the messages or data are being transferred 

between the variable and check nodes, and vice versa for iterative decoding. Soft decoding 

implies that the messages are not just single bit received values but actual probabilities of a 

received value being 1 or 0 [31]. This method is used to compute the a posteriori probability. 

During each super iteration, the component decoder receives intrinsic information from the 

channel along with a priori information from the other component decoder on the systematic 

information bits (except for the first super iteration). 

The (SPA) is a message-passing algorithm that is executed on a bipartite graph. Messages are 

passed along the edges of the graph between the codeword nodes on the left part of the graph 

(variable nodes) and the parity check nodes on the right side (check nodes). The main reason 

for using SPA with likelihoods ratio probabilities instead of the logarithmic domain is to 

accommodate the a priori (extrinsic) information variable from the other component decoder 

[47].    

The decoding begins with the variable nodes sending to their neighboring check nodes their 

received messages back and forth, and the decoding continues with a round of messages sent 

back and forth (and so on) from check nodes to variable nodes. Generally, the messages 

represent an estimate of the bit associated with the variable node terminal to the edge 

carrying the message [48]. The (SPA) algorithm can be calculated by following some 

equations and steps. 

Let us consider the parity check matrix 𝐻 of LDPC code of dimensions (𝑚 × 𝑛). The 

transmitted data vector is represented by 𝑥 and is of length 𝑛 and the received noisy sequence 

is represented by 𝑦. Then to find the most possible sequence 𝑥 according to 𝐻𝑥=0 with the 



Chapter 3: Construction of Modified Structured of Multiple Parallel Concatenated Gallager Codes 

(MPCGC) 

 
 

38 
 

likelihood of x=+1,-1 according to the equation  ∏ 𝑓𝑙
𝑥

𝑙  , let the Gaussian probability density 

function be centred at +1. 

                                𝑃(𝑦𝑙|𝑥𝑙 = +1) =
1

√2𝜋𝜎
𝑒

−(𝑦𝑙−1)2

2𝜎2                                                            (3.14) 

Also the probability of message vector 𝑥=+1 at site 𝜄 is 

              𝑃(𝑥𝑙 = +1|𝑦𝑙)=
𝑃(𝑥𝑙=+1).𝑃(𝑦𝑙|𝑥𝑙=+1)

[𝑃(𝑥𝑙=+1).𝑃(𝑦𝑙|𝑥𝑙 = +1)]+[[𝑃(𝑥𝑙=−1).𝑃(𝑦𝑙|𝑥𝑙 = −1)]
                     (3.15) 

The bits probabilities of the source information are equally 

                              [𝑃(𝑥𝑙 = +1) = 𝑃(𝑥𝑙 = −1) =
1

2 
 ] 

So the equation (3-15) can be as follow; 

                                  𝑓𝑙
1=P(𝑥𝑙 = +1|𝑦𝑙) = 

1

1+exp (
−2𝑦𝑙
𝜎2 )

                                                           (3.16) 

Where, 𝑦𝑙 is the channel’s output 

Also the message probability that equal [-1] at site 𝜄 is  

                                                                    𝑓𝑙
0=1-𝑓𝑙

1                                                                  (3-17) 

To compute the a priori information coming from other decoder component by updating 

equation (3-16) to  

                                   𝑓𝑙
1= 

1

1+[(
P(𝑥𝑙=−1)

P(𝑥𝑙=+1)
 ) exp(

−2𝑦𝑙
𝜎2 )]

                                                                   (3.18) 

Where, 

P(𝑥𝑙=−1)

P(𝑥𝑙=+1)
 denotes the a priori information obtainable from the other component decoders on 

the systematic information bits. 

To produce the posteriori probabilities by (SPA) algorithm for all bits when the bipartite 

graph of 𝐻 matrix included no cycles, the quantity 𝑞𝑚𝑙
𝑥  means the probability that bit 𝑙 of 𝑥 is 

x given the received information obtained by checks other than check 𝑚 [64][65]. 
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Initialization: the variables 𝑞𝑚𝑙
0  and 𝑞𝑚𝑙

1  are already initialized to the values 𝑓𝑙
0 and𝑓𝑙

1, 

respectively. 

Horizontal step, we introduce 𝛿𝑞𝑚𝑙=𝑞𝑚𝑙
0  - 𝑞𝑚𝑙

1  then compute for each m,𝜄 

                                        𝛿𝑟𝑚𝑙=∏ 𝛿𝑞𝑚𝑙𝑙𝜖𝑁(𝑚 )\ 𝑙                                                                 (3-19) 

Then set 𝑟𝑚𝑙
0 =1/2(1+ 𝛿𝑟𝑚𝑙) and 𝑟𝑚𝑙

1 =1/2(1- 𝛿𝑟𝑚𝑙). 

Vertical step, for each 𝜄 and 𝑚 also for x=0, 1 we modify 

                                            𝑞𝑚𝑙
𝑥 = 𝜙𝑚𝑙𝑓𝑙

𝑥  ∏ 𝑟𝑚𝑙
𝑥

𝑚𝜖𝑀(𝑙) \ 𝑚                                                    (3-20) 

Where, 𝜙𝑚𝑙 equal to 𝑞𝑚𝑙
0  + 𝑞𝑚𝑙

1 =1 as well as we can modify the pseudo-posterior 

probabilities                  𝑞𝑙
0  and 𝑞𝑙

1  as follow  

                                           𝑞𝑚𝑙
𝑥 = 𝜙𝑓𝑙

𝑥  ∏ 𝑟𝑚𝑙
𝑥

𝑚𝜖𝑀(𝑙)                                                               (3-21) 

The amounts are used to make a temporary bit-by-bit decoding 𝑥, if (𝐻𝑥=0) then the 

decoding algorithm halts. On the other hand, the algorithm repeats from the horizontal step 

and when the maximum number of local iterations occurs without a valid decoding a failure 

is stated [1][40][41].  

3.7 Iterative decoding of MPCGC 

Maximum Likelihood decoders are not efficient on the bit error probability; therefore, the 

alternative solution is to choose Maximum A Posteriori (MAP), which is optimal in this case. 

Decoding of MPCGC is like the scenario of turbo decoding without using interleaver through 

the decoder component, as each LDPC decoder component computes the posteriori 

probability by using sum product algorithm (SPA) with modification to accommodate the 

priori (extrinsic) information available from other decoder components. Whereas, super 

iteration is the method of exchanging information between four component decoders, while 

local iteration is one complete cycle of (SPA) for single LDPC component.  

The super iteration computes a specific number of local iterations of each component decoder 

before passing to other LDPC component. In addition, the process of exchanging any data 

between decoder components continuously until decoders converge on a valid codeword or a 

higher number of super iterations are achieved. The best estimation of the transmitted data 
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has been selected from the output of the higher MCW component of LDPC decoder [7][58]. 

All component decoders use the SPA in calculating their a posteriori probability.  

At each super iteration, every component decoder uses their parity check matrix to run the 

SPA algorithm. MPCGC is flexible and allows the choice to stop the iterations without 

completed unnecessary super iterations when convergence has occurred.  

Every super iteration and every component LDPC decoder makes a hard decision based on 

the updated a posteriori information, and verifies that it is a valid codeword. Whenever all 

component LDPC decoders declare a valid codeword, the MPCGC decoder will be 

terminated as shown in Figure 3.5. Moreover, in turbo decoding strategy, the turbo decoder 

has the option to go through a specific number of iterations even after a few iterations when 

convergence is declared [66]. 
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                                  Figure 3.5 MPCGC decoding flow chart. 

To calculate the BER of the proposed MPCGC system, the Monte Carlo method has been 

done as shown in the flow chart in Figure 3.6. To understand the calculations of the a priori 

(extrinsic) information among the component decoders, let’s select the easiest way of the 

parallel concatenation by using two LDPC components that work together in parallel. Firstly, 

the received sequence bits from the channel were de-multiplex the total codeword into two 

component vectors 𝑦1 and 𝑦2 then deliver them to the first and second component LDPC 

decoder simultaneously. Secondly, each component decoder computes own posteriori 



Chapter 3: Construction of Modified Structured of Multiple Parallel Concatenated Gallager Codes 

(MPCGC) 

 
 

42 
 

information then the extrinsic information will be calculated and exchanged to transfer to 

other component decoder to calculate the a priori information for the next super iteration of 

the MPCGC system as shown in Figure 3.7.   

  For MPCGC of three component decoders the performance is better than two or single 

components decoders but the trade off in the higher complexity due to the exchanging of the 

extrinsic information between the different decoder components. After the demultiplexer re-

divided, the received sequence into three codewords 𝑦1, 𝑦2and 𝑦3 later transmiting them to 

the other components decoders simultaneously. Furthermore, the decoders in the first super 

iteration compute the calculations of exchanging the extrinsic information from the other two 

LDPC component decoders. Then updating of the equations (3-14), (3-15) and (3-18) to the 

equations (3-22) and (3-23) by adding the modulus factors 𝑘1and 𝑘2 of the extrinsic 

information as a priori information. However, each component decoder computes own 

extrinsic information but the decoder exchanges the extrinsic information with the other two 

component decoders.  Equations (3-22) and (3-23) represents how we calculate the extrinsic 

information among three component decoders [67].  

𝑓𝑙(1) =
1

1 + [𝑘1 (
𝑝(𝑥𝑙 = −1|𝑦𝑙)
𝑝(𝑥𝑙 = +1|𝑦𝑙)

) 𝑘2 (
𝑝(𝑥𝑙 = −1|𝑦𝑙)
𝑝(𝑥𝑙 = +1|𝑦𝑙)

) 𝑒𝑥𝑝 (
−2𝑦𝑙

𝜎2 )]
                    (3.22) 

  

𝑓𝑙(0) =
1

1 + [𝑘1 (
𝑝(𝑥𝑙 = −1|𝑦𝑙)
𝑝(𝑥𝑙 = +1|𝑦𝑙)

) 𝑘2 (
𝑝(𝑥𝑙 = −1|𝑦𝑙)
𝑝(𝑥𝑙 = +1|𝑦𝑙)

) exp (
2𝑦𝑙

𝜎2 )]
                      (3.23) 

 

 



Chapter 3: Construction of Modified Structured of Multiple Parallel Concatenated Gallager Codes 

(MPCGC) 

 
 

43 
 

 

                         Figure 3.6 BER calculation according to the Monte Carlo method. 
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                 Figure 3.7 Decoding algorithm of two component decoders for MPCGC. 
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3.8 MCW Combination and code design  

Selection of a proper combination of matrices is an important step because it has a direct 

impact on the BER performance, as the MPCGC contains a number of component decoders, 

and the parity check matrices should be different. 

First of all, the MCW (Mean Column Weight) is to be discussed, which is the number of ‘1’s 

(the average number of column weight) in whole matrix, as each column has different 

column weights. In this regard, the minimum value should be 1 and the maximum value is 

defined as ‘m’. Moreover, 𝜆𝑖 is a fraction by which the proportion of columns is depicted 

whose weight is equal to i at the parity matrix. Thereafter, the MCW can be computed as 

under: 

𝑀𝐶𝑊 ≜ ∑𝑖𝜆𝑖

𝑚

𝑖=1

                                                              (3.24) 

According to an earlier research study, it was revealed that the LDPC codes having low 

MCW provides better BER performance compared  to the higher MCWs at low to moderate 

(Eb/No) region, while at high (Eb/No) region, it gives poorer performance. The primary 

objective of the MCW design is selecting the low MCW at low to moderate (Eb/No) region, 

while design high MCW at high (Eb/No) region [63]. 

We can calculate the SNR (signal-to-noise ratio) on the basis of the mean value μ and the 

variance value 𝜎2 which are given below, 

                                                                𝑆𝑁𝑅 =
𝜇2

𝜎2
                                                                        (3.25) 

 At this point, mean value μ can be calculated for log-likelihood on the basis of Gaussian 

distribution. 

                                                                  𝜇 =
𝜎2

2
                                                                            (3.26) 

For each individual LDPC codes having different MCWs, the probability analysis has been 

simplified by the Gaussian approximation through estimation technique rather than the actual 

probability density of extrinsic information is to be simulated. In this regard, the better 

quality of extrinsic information is represented by the higher SNR value [68]. 

To represent the quality of the extrinsic information of the MPCGC model. Three component 

parallel decoders are a simple way (less complex than four) to design and well study the exit 
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chart effect on the appropriate MCWs values (MCW1=1.94, MCW2=2.81 and MCW3=1.81) 

in each LDPC component decoder. 

The SNR can be denoted by the SNRi for the a priori information, which represents the input 

bits for each LDPC component decoder, and the SNR for the extrinsic information (output 

bits) is basically the SNRo. It is comprehensible that better performance in low SNRi is 

demonstrated by the code with low MCW and a rapid increase in the SNRo is seen with 

relatively high MCW, as the SNRi is increased in moderate area. By upholding the desirable 

asymptotic performance, the decoding performance is increased by the combination of three 

parallel decoder schemes. In addition, to attain a good performance, the value of three MCWs 

is essential.  

Figure 3.8, Figure 3.9 and Figure 3.10 represent the effect of the MCW in the extrinsic 

information at different Eb/N0 regions 0 dB, 0.5 dB and 1.3 dB respectively. The Input-

Output standard case is depicted by the diagonal dotted lines, while the (SNRo) versus 

(SNRi) of LDPC component decoders represented by their MCWs is demonstrated by the 

solid lines. At LDPC decoder, the output of the extrinsic information represents the SNRo 

and is directly calculated and measured. With the equation, µ = 2×SNRi and 𝜎2 = 4×SNRi, 

the a-priori inputs to the LDPC decoders (SNRi) are assumed to have Gaussian pdfs [63]. 

While associating SNRo of various MCWs decoders with the Input=Output, the standard case 

suggests that at low Eb/N0 region, the coding can decrease the SNRo instead of increasing it, 

if not designed correctly. It is easy to understand that besides quickly generating higher 

SNRo, codes with maximum MCWs would begin to take control with the increase in the 

SNRi. Nevertheless, in case of low SNRi, they all together bad at lower MCWs [69]. 

In a multiple parallel concatenation scheme, the system used three LDPC codes for reducing 

the BER at low to moderate Eb/N0 region while keeping the desirable asymptotic 

performance.  

 A comparatively lower MCW is entailed in the first code as shown in Figure 3.8, which has 

the potential to offer maximum SNR1o in the early few iterations especially when low 

SNR1i. From the first component decoder, the MPCGCs decoder would be driven by the 

relatively high SNR1o for quick convergence, as it cause (as a priori information SNRi) to 

the other LDPC component. 
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  Figure 3.8 Design effect of MCW on the extrinsic information quality at Eb/N0=0 dB. 

 

Since the higher MCW=2.81 of the second component decoder as shown in Figure 3.9 is 

rapidly directed to the cross point, where it goes ahead by developing maximum SNR2o and 

the phenomenon converges as a result. Furthermore, the higher SNRo as it cause (as a priori 

information SNRi) to the third component decoder. The final code has lower MCW=1.81 in 

the third component decoder as shown in Figure 3.10 producing higher SNRo leads to 

converge faster. To give the optimum performance possible under the code length constraints 

and given Eb/N0, the MPCGC decoder parameters (code length, MCW1, MCW2, MCW3) 

are optimized, so that the codes that demonstrate a great performance around a specific 

Eb/N0 could be designed. Upon selecting MCW1, MCW2 and MCW3, a completely 

designed (higher than the Input-Output case) output extrinsic information provided by any 

these component codes was maintained as desired. The optimum codes combination was 

chosen so that this condition could be fulfilled at the specified Eb/N0. Since lower minimum 

distance is usually maintained by the low MCW codes, they do not exhibit consistent output 

at higher Eb/N0. Hence, to achieve maximum SNRo at low SNRi, they were only used. 

Accordingly, the component codes containing the entire SNRo region were applied in our 

design method. However, we attempted to use those as well, which were having a cross point 
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at lower SNRi. When the cross point is attained, the decoding responsibilities would be 

expedited from the lower to the maximum MCW decoder as a result of this method. 

 

Figure 3.9 Design effect  of MCW on the extrinsic information quality at Eb/N0=0.5 dB. 

 

Figure 3.10 Design effect  of MCW on the extrinsic information quality at Eb/N0=1.3 dB. 
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3.9 Simulation and analysis 

3.9.1 BER performance analysis 

Firstly, the characteristics of MPCGCs are evaluated separately using multiple LDPC 

component codes. Where, the number of the component decoders has effect on the 

performance and the complexity of the system. In the case of the four component decoders, 

the received information part with overall code rate R=1/5 are divided into four equal parts 

for LDPC component decoders as shown in Figure (3.11) with each code rate R=1/2 and the 

dimension of the parity check matrix is H (200, 400). Furthermore, each LDPC component 

decoder processes the codewords to receive the main information. 

 

                         Figure 3.11 Design of four components decoder. 

At the transmitter side, the codeword after encoder part is consist from systematic data. 

Furthermore, the codeword has included the information bits with the parity bits of the four 

LDPC components. At the receiver side, the performance evaluation was being conducted for 

perfect channel state information CSI at the receiver; the performance analysis supposed that 

the channel parameters are well known at the receiver. 

Each component decoder is allowed a maximum of 38 local iterations because the maximum 

number of the local iterations in each LDPC component will not exceed than this value 

whereas the overall MPCGCs have 30 super iterations. The BER performance of the 

MPCGC-BPSK over AWGN channel is evaluated and is illustrated in Figure 3.12. The 

parameters of the four LDPC parallel components of MPCGC have the same parity check 

dimensions, H (800, 1000) with different MCWs: code rate R=1/5, MCW1=2.04, 

MCW2=2.73, MCW3=2.79 and MCW4= 1.89 with overall code length N=1000. 

Furthermore, the parameter of the four LDPC serial components of MPCGC have the same 

parity check dimensions, H (800, 1000) with different MCWs: code rate R=1/5, MCW1=2, 

MC W2=2.55, MCW3=2.79 and MCW4= 2.35 with overall code length N=1000. Again, the 

parameters of the equivalent single irregular LDPC code that is used for comparison are 
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R=1/5, MCW= 2.7, N=1000. As shown in Figure 3.12, the parallel MPCGC has a gain of 0.2 

dB (at BER 2e-4) when compared to the equivalent single irregular LDPC with the same 

parameters. Moreover, the parallel MPCGC provide 0.4 dB gain compared to the serial 

MPCGC, also, single LDPC has a gain 0.25 dB compared with serial MPCGC decoder. 

However, the serial MPCGC performs worse than parallel MPCGC decoder and single 

component LDPC decoder.   

 

Figure 3.12 BER comparisons for different LDPC coding model over AWGN channel. 

 

To study the effect of different MCW on the performance of the LDPC codes as shown 

in Figure 3.13, the parallel MPCGC at high Eb/No region has a gain of 0.3 dB (at BER 

2e-4) when compared to the equivalent single irregular LDPC with less MCW at the 

same parameters. Moreover, the performance of the single LDPC codes with high MCW 

outperform the performance of the single LDPC codes with less MCW at only low 

Eb/No region. The complexity of the MPCGC for four components decoder is higher 

than the complexity of three component decoder as will be explained in the next section; 

therefore we will focus more on the performance of MPCGC of three component 

decoders. 
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Figure 3.13 Effect of MCW on the different LDPC coding model over AWGN channel. 

 

In the case of the three component decoders, the received information part with overall code 

rate R=1/4 are divided into three equally parts for LDPC component decoders as shown in 

Figure 3.14 with each code rate R=1/2 and the dimension of the parity check matrix is H 

(192, 384). Furthermore, each LDPC component decoder processes the codewords to receive 

the main information. 

 

                         Figure 3.14 Design of three component decoder. 

Secondly, the characteristics of MPCGCs parallel decoding are evaluated separately, by 

using three LDPC component codes where each component is allowed a maximum of 38 
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local iterations whereas the overall MPCGCs have 30 super iterations. The parameters of the 

three parallel LDPC components of MPCGC have the same parity check dimensions, H 

(192,384) with different MCWs: the overall code rate R=1/4, MCW1=1.94, MCW2=2.81, 

MCW3=1.81 and N=768.  Again, the parameters of the single irregular LDPC code that is 

used for comparison are R=1/4, N=768 and MCW=3.0794 with 50 local iterations. The BER 

performance of the MPCGC-BPSK over AWGN channel is evaluated and illustrated in 

Figure 3.15, the MPCGC has a gain of 0.8 dB (at BER 2e-4) when compared to the 

conventional single irregular LDPC at the same parameters. Furthermore, the MPCGC 

performance outperforms by 1.3 dB (at BER 1e-3) compared with the serial MPCGC decoder 

with parameters: R=1/4, MCW1=2, MCW2=2.56, MCW3=2.67. 

 

Figure 3.15 BER comparison for different LDPC coding model over AWGN channel. 

 

Moreover, the MPCGC shows 0.2 dB gain improvements at ((at BER 2e-4)) when compared 

with the result reported by Kim et. al using the same parameters [70] as shown in Figure 3.16.  
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Figure (3.16) BER comparison for different parallel concatenation LDPC coding model 

over AWGN channel. 

 

For multi-level modulation and bandwidth efficiency in wireless communication system, 

we utilized and analyzed the MPCGC of the three parallel LDPC codes with multilevel 

modulation scheme such 64 QAM.  

The BER performance of the MPCGC-64 QAM over AWGN channel is evaluated and is 

illustrated in Figure 3.17, the MPCGC-64 QAM has a gain of 0.7 dB (at BER 1e-4) when 

compared to the conventional single irregular LDPC at the same parameters.  

Thirdly, the maximum capacity achieved for MPCGC system for both modulation BPSK 

and 64 QAM over AWGN channel has been calculated according to the BER calculation. 

The MPCGC parameters are used for capacity calculation as follows, the overall code rate 

R=1/4, MCW1=1.94, MCW2=2.81, MCW3=1.81 and N=768 the parameters of the single 

irregular LDPC code that is used for comparison are R=1/4, N=768 and MCW=3.0794. 

Figure 3.18 shows that MPCGC-BPSK provides has better capacity achieved at compared 

to the conventional single LDPC.  
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In addition, Figure 3.19 shows that the capacity achieved of MPCGC-64 QAM is higher 

compared to the conventional single LDPC. 

 

Figure 3.17  BER comparison for different LDPC coding model over AWGN channel. 

 

 

Figure 3.18 Capacity achieved for different coding model over AWGN channel. 
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Figure 3.19 Capacity achieved for different coding model over AWGN channel. 

3.9.2 MPCGC complexity analysis   

LDPC complexity for a particular code is proportional to the type of decoder and the 

density of the parity check matrix. The sum product algorithm has an important advantage 

in reduced complexity in turbo codes. To estimate the complexity of MPCGC, we 

calculated the average number of local iterations per each LDPC code needed with 

different E𝑏/N0 values [48]. Firstly, in our case, a MPCGC of three parallel component 

decoders executes a maximum of 30 super iterations; each component decoder in each 

super iteration performs a maximum of 38 local iterations at the received data then passes 

the extrinsic information to the next decoder and so on. The MPCGC decoder generally for 

each super iteration performs a maximum of (3× 38) local iterations, which are done by 3 

LDPC decoders. For the sake of a fair comparison between MPCGC and LDPC codes, the 

decoding complexity per iteration can be estimated in terms of the maximum number of 

edges in the Tanner graph of the code which can be calculated as (NxMCW) for a single 

LDPC code [71]. Therefore for a MPCGC in each super iteration, the maximum number of 

edges can be calculated according to,   



Chapter 3: Construction of Modified Structured of Multiple Parallel Concatenated Gallager Codes 

(MPCGC) 

 
 

56 
 

Total edges= Number of iterations


M

i 1

𝑁𝑖𝑀𝐶𝑊𝑖                                                               (3.27)                          

 On this basis, a preliminary complexity analysis and comparison have been carried out in 

terms of Eb/No and the results in terms of the maximum number of iterations and edges are 

given in Table (3.1) and illustrated in Figures 3.20 and 3.21. The results show that the 

advantages of MPCGC can be exploited without significant additional complexity. 

                                    Table 3.1 Complexity comparisons results. 

            BER       PER     Iterations     Total Edges 

Eb/No LDPC MPCGC LDPC MPCGC LDPC MPCGC LDPC MPCGC 

0 1.9e-1 9e-2 9.8e-1 7 e-1 3.42e3       3.1e3      8.01e6       7.82e6       

0.5 1e-1 7e-2 9 e-1 5e-1      3.35e3       2.49e3       7.87e6       4.92e6       

1 7.6e-2 2e-2 5 e-1 1e-1 1.20e2       1.27e3       2.80e6       3.18e6       

1.5 1e-2 1.3e-3 2.4e-1 1.1 e-2 400 500 9.42e5       1.25e6       

2 1e-3 2e-4 7 e-2 1.2 e-3 305 400 7.42e5       9.37e5      
 

 

Figure 3.20 Complexity and performance comparison between LDPC and MPCGC. 
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Figure 3.21 Complexity and performance comparison between LDPC and MPCGC. 

 

Secondly, the results show that the complexity of the proposed 4 components MPCGCs 

exploited higher decoding complexity when compared with the conventional MPCGC 

system in terms of iterations and edges as shown in Figures 3.22 and 3.23. Moreover, the 

advantages of the conventional MPCGCs can be exploited without significant additional 

complexity.  
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Figure 3.22 Complexity and performance comparison between different components of 

MPCGC. 
 

 

 

Figure 3.23 Complexity and performance comparison between different components of 

MPCGC. 
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3.10 Summary 

This chapter focused on the performance of the MPCGC scheme evaluated over a BPSK-

AWGN channel. It is shown that the MPCGC structure yields superior coding performance 

in both three and four components LDPC decoders configurations when compared to the 

original single-long LPDC component with the same parameters. In addition, MPCGC has 

higher capacity achieved compared to the single conventional LDPC. It is also shown that 

the good design for MCW values of MPCGC provides better performance than random 

variables. 

The preliminary complexity analysis in terms of number of edges and iterations has shown 

that the MPCGC structure does not incur significant additional cost in low Eb/No region. 

But at high Eb/No region the complexity in terms of iterations and total edges has 

increased due to the increasing in the MCW value of the second LDPC component. This 

increasing in MCW leads to increasing in the density (numbers of 1) of the parity check 

bits and then a lot of iterations and edges will be needed until converge to the valid 

codeword. 

MPCGC flexibility and performance have the ability to be attractive in applications 

requiring flexibility while maintaining/ improving system performance with reduced 

implementation overheads. 
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Chapter 4 

Efficient Puncturing Method For Multiple Parallel Concatenated 

Gallager Codes  

4.1 Introduction                                                                                                      

In this chapter, we propose a novel and efficient puncturing method for Multiple Parallel 

Concatenated Gallager Codes (MPCGC). MPCGC uses low-density parity check code 

(LDPC) as component codes for generating variables of code rates and reducing the decoding 

complexity for different applications. The proposed punctured MPCGCs system is analyzed 

over AWGN and flat Rayleigh fading channels. Simulation results show improved 

performance when compared to a single long LDPC code with the same parameters before 

and after puncturing. The proposed MPCGCs structure have the potential to be deployed in 

applications where flexibility in forward error control coding is required with reduced 

encoding and decoding complexity. 

The so-called turbo code structure underlying MPCGCs helps to conquer the encoding and 

decoding complexity of a long code into less complex steps, while maintaining the 

information flow between the component decoders and reducing any information loss 

between the decoding steps [7]. In this chapter, we further explore MPCGCs by evaluating 

these codes for both AWGN and flat Rayleigh fading channels and investigating the 

puncturing of these codes and any performance improvements. The puncturing of parity 

check bits is applied to forward error correction (FEC) codes in order to design the best rate 

compatible (RC) codes to obtain a higher code rate from a low rate mother code [55]- [56].  

In [74] a method from fundamental properties of punctured LDPC codes is presented and 

considered. This method depends on the puncturing threshold to obtain lower bounds on the 

achievable rates over memoryless binary input output symmetric (MBIOS) channels. 

Moreover, there are two advantages for achievable rate compatible LDPC codes. First, at 

high code rates the performance degradation had been reduced. Second, it is used with finite 

length codes without needing to optimize the puncturing properties. In [75] an efficient 

process to predict iterative belief propagation (BP) is studied using randomly punctured 

LDPC code ensembles over a binary input AWGN channel. In addition, the results obtained 
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show that the predictions were accurate compared with values that were calculated using 

density evolution for different puncturing. 

In [76], a good LDPC puncturing distribution for rate compatible punctured code (RCPC) 

was investigated and analyzed with Gaussian Approximation. The results show the 

convergence performance of punctured LDPC codes and the capability to predict the 

asymptotic performance. In [77][78], the achievable rates and decoding complexity of 

punctured LDPC codes over parallel channels is considered and discussed.  The results 

focused on the derivation of upper bounds of the ensemble LDPC codes using maximum 

likelihood (ML) decoding over parallel MBIOS channel.  

In the rest of the chapter, in section 4.2, presents the concept of the puncturing and the 

proposed system model. In section 4.3, we present the encoding process of the punctured 

MPCGC. The decoding process of the punctured MPCGC is given in section 4.4. Followed in 

section 4.5, by evaluating the  BER and PER (packet error rate) for MPCGC and show 

improved performance when compared with single LDPC codes with the same parameters 

under both regular, irregular  and random puncturing. We show that higher coding gain is 

achieved with irregular puncturing of MPCGC. Furthermore, complexity analysis of the 

proposed punctured MPCGC is presented and evaluated in terms of the maximum number of 

iterations and edges and compared to the conventional MPCGC model. Finally, the chapter 

summary is presented in the section 4.6. 

4.2 Punctured MPCGC codes 

To apply puncturing in MPCGC[79][80], let us consider the code rate 𝑅=𝑘/𝑛, where 𝑘, 𝑛 are 

the length of the information bits and codeword, respectively. The diagram of the proposed 

system is shown in Figure 4.1. 

For any codeword length and code rate the proposed puncturing methods can be made for the 

codeword. A subset of the codeword bits are removed before the codeword is transmitted to 

the receiver. A set of 𝑥 bits punctured from the codeword has the effect of minimizing the 

length of the codeword from 𝑛 to 𝑛 − 𝑥. After puncturing a codeword with a puncturing 

fraction Ө= 𝑥 / 𝑛, the resulting code rate is 

                                    𝑅𝑛𝑒𝑤 (Ө)= 
𝑅𝑜𝑙𝑑

1−Ө
   Ө )1,0(                                                            (4.1) 
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Where Rnew and Rold represent the new and mother code rate respectively, and Rnew(0) = R 

is the original (unpunctured) code rate. In this chapter, we study and analyze three different 

methods to puncture the resulting MPCGC codeword as shown in the example in Figure 4.2. 

To study these methods, we use an MPCGC with a code rate R=1/4 with information bits 

k=192 and total code length N=768 with 3 component codes each of code length n=384 with 

a code rate R=1/2.  

The aim of using puncturing with MPCGCs is to maximize the code rate from ¼ to ½. In the 

first method, after the MPCGC encoder stage the ensemble bits are randomly punctured by 

removing random parity bits from each component LDPC codeword. There are two ways for 

removing random bits. Firstly, removing random 128 bits from each component LDPC 

codeword to ensure getting the overall 192 parity bits that is lead to reduce the new codeword 

to half  but, this procedure provides worse BER performance compared with the other 

methods. 

 Secondly, the random puncturing is performed by removing randomly fixed sequence of 384 

bits from the codeword to keep only 192 parity check bits to let the overall code rate equal ½. 

Moreover, to remove 384 bits from the codeword we need randomly removing 92,142 and 

150 bits respectively from the three parity bits.  

The first 92 bits have been removed from the first parity check (𝑃1), as well as removing 

randomly fixed sequence 142 bits from the second parity check (𝑃2) and removing randomly 

fixed sequence 150 bits from the third parity check (𝑃3) respectively.  

In the second method, the ensemble bits are punctured regularly, which means removing a 

fixed part from bits at the same location from each component LDPC codeword. The regular 

puncturing is performed by removing fixed 128 bits from the end of the first parity check 

(𝑃1), also removing fixed 128 bits from the end of the second parity check (𝑃2) and 

removing fixed 128 bits from the end of the third parity check (𝑃3) respectively to keep 192 

bits from the codeword.  

In the third method, the ensemble bits are punctured irregularly, which means removing a 

fixed part from bits at different location from each component LDPC codeword to get an 

optimal puncturing pattern that reduces the complexity of the system decoder.  
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The irregular puncturing is performed by removing fixed 128 bits from the end of the first 

parity check (𝑃1), also removing fixed 128 bits from the beginning and the end of the second 

parity check (𝑃2) and removing fixed 128 bits from the beginning of the third parity check 

(𝑃3) respectively. There is a trade off in terms of degradation in bit error rate (BER) and 

Packet error rate (PER) performance due to reducing the codeword length.   

At the receiver, the positions of the punctured bits according to the type of the puncturing 

should be known, so the de-puncturing process estimates as zeros the positions of the 

received punctured bits and keep as is the systematic information bits and the other parities. 

After the first iteration, at the decoder the punctured bits set to 0 then the value of likelihood 

ratios (LLR’s) of the punctured bits are calculated as 0.5 then proceeds with the decoding 

operations of the other received bits. At the channel part, both AWGN and flat fading channel 

has added to the encoded information as follows: 

The flat fading channel has complex impulse response ℎ(𝑡) and can be represented as: 

                                            ℎ(𝑡) = ℎ1(𝑡) +  𝑗ℎ2(𝑡)                                                                  (4.2)         

Where, ℎ1(𝑡) and ℎ2(𝑡) represents the zero mean Gaussian distribution which are Rayleigh 

distributed as follows: 

                                        |ℎ(𝑡)| = √|ℎ1(𝑡)|2 + |ℎ2(𝑡)|2                                                    (4.3)         

The pdf of Rayleigh distribution of equation ((4.3) can be as follows [81][82]: 

                                                   𝑓(𝑦) =
2y

𝜎2 𝑒
−2𝑦

𝜎2                                                                    (4.4)                        

                                             Where, 𝜎2=E (|ℎ(𝑡)|2)                                                            (4.5)                                      
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           Figure 4.1 Block diagram of the proposed efficient punctured MPCGC system. 

 

             Figure 4.2 Methods of MPCGC puncturing after MPCGC encoder. 
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4.3 MPCGC parallel encoder 

MPCGCs are constructed by combining two or more relatively simple LDPC encoders 

component codes. This irregular LDPC combination improves the system performance when 

compared with a single long LDPC code. We will consider three LDPC components instead 

of four for less complex calculations.  

Let M represent the number of three LDPC parallel encoders that are used to encode the 

information bits K leading to generate a codeword (N). Each component code can be 

described by a (k, n) generator matrix.  

The parallel concatenation method is used to build an overall length N and a codeword rate, 

R=1/(M + 1) code. 

The MCW is an easy and flexible measure to describe the structure of an MPCGC. The parity 

check matrices of the component LDPC codes are constructed based on selecting the 

appropriate value for the MCW. It represents the symbol (left) node degree distribution of the 

Tanner graph.  

Many improvements can be achieved by blocking short cycles in the parity check bits of H 

matrix, while optimizing the bipartite graph depending on better MCWs that are found in the 

structure phase[63].  

After MPCGC encoder as shown in Figure 4.3, the redundant bits will be cancelled or 

combined by a multiplexer. Thus, the final codeword of MPCGC is (𝑆, 𝑃1, 𝑃2, 𝑃3), where 𝑆 

is the information bits, while 𝑃1, 𝑃2 and 𝑃3 are the parity bits generated by the first, second 

and third encoders respectively.  

The overall complexity of the encoder part can be reduced by breaking the encoding of a long 

code length into shorter (in this case 3) codes. 
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                           Figure 4.3 Block diagram of MPCGC encoder. 

 

4.4 Punctured MPCGC parallel decoder 

The LDPC component decoder uses the iterative sum product algorithm due to its lower 

computational complexity. Let the Gaussian probability density function be centered at +1. 
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                                                           (4.6)                                                 

and the probability of message vector 𝑥=+1 at site 𝜄 be 

                                               𝑓𝑙
1= 𝑃 (𝑥𝑙 = +1|𝑦𝑙) = 

1

1+exp (
−2𝑦𝑙
𝜎2 )

                                               (4.7) 

The MPCGC decoder is assumed to know the position of punctured bits to compute the log 

likelihood ratios (LLR’s) as 0.5. The decoding process of MPCGCs follows the turbo 

decoding scenario but without using an interleaver among the component decoders. The 

process of exchanging information between the component decoders can be defined as a 

super iteration, whereas a local iteration can be defined as a complete one cycle from the sum 
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product algorithm decoding. The MPCGC has the flexibility to stop both the local and super 

iterations at convergence. During the first super iteration, all M component decoders launch 

processing information simultaneously using the sum product algorithm (SPA). Each using 

the received sequence (𝑑0) and (𝑑𝑀) without applying any a priori (extrinsic) input since the 

information bits are equally +1 or -1. For a number of local iterations each LDPC component 

code tries to decode its own codeword and calculates alone the corresponding posteriori 

probabilities PM(ĉ) of the (N) coded bits. This decoding will halt when either a known 

maximum number of local iterations is reached or if a unique codeword is found. When the 

first super iteration is completed, each LDPC component decoder will get its own a priori 

information from the extrinsic information of all other (M-1) decoders. For all other 

subsequent super iterations the decoding process continues until all (M) component decoders 

obtained the valid codewords, or reaching the higher number of super iterations. [57]. 

4.5 Simulation results and discussion                                                                                   

4.5.1 BER performance analysis                                                                                

Firstly, the characteristics of MPCGCs parallel decoding are evaluated separately before 

puncturing, by using three LDPC component codes where each component is allowed a 

maximum of 38 local iterations whereas the overall MPCGCs have 30 super iterations. The 

parameters of the three LDPC components of MPCGC have the same parity check 

dimensions, H (192,384) with different MCWs: the overall code rate R=1/4, MCW1=1.94, 

MCW2=2.81, MCW3=1.81 and N=768. Again, the parameters of the equivalent single 

irregular LDPC code that is used for comparison are: R=1/4, MCW= 3.07, N=768 with 50 

local iterations. The BER performance of the MPCGC-BPSK over AWGN channel is 

evaluated and is illustrated in Figure 4.4, the MPCGC has a gain of 0.5 dB (at BER 2e-4) 

when compared to the equivalent single irregular LDPC with the same parameters. 

Furthermore, the MPCGCs performance outperforms by 1.3 dB the single short LDPC code 

with parameters: R=1/2, H (192,384), and MCW=2.8. The MPCGC shows 0.25 dB gain 

improvements when compared with the result reported by Kim et. al using the same 

parameters [70]. 
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Figure 4.4 BER comparison for different LDPC coding model over AWGN channel. 

 

Figure 4.5 BER comparison of MPCGC with LDPC over flat fading Rayleigh channel. 
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Figure 4.6 PER comparison of MPCGC with LDPC over flat fading Rayleigh channel. 

 

 

The BER and PER performance of MPCGCs are evaluated over a flat fading channel. The 

MPCGCs provides a gain of 0.4 dB when compared with the single LDPC codes with the 

same parameters R=1/4, N=768 as shown in Figures 4.5 and 4.6.  

The puncturing performance of the proposed designed MPCGCs was evaluated. After 

encoding, the codeword N=768 is punctured by a puncturing fraction Ө=0.5 to be N=384 for 

improving the BER performance as well as reduce the decoding complexity and to increase 

the transmission code rate from ¼ to ½. Figures 4.7 and 4.8 show the different BER and PER 

comparison of punctured MPCGCSs with BPSK over AWGN channel.  

In the random puncturing method, when removing randomly 128 bits from each component 

LDPC codeword, the simulations show worse BER performance compared to when removing 

unequal numbers of bits from each parity LDPC codeword.  

The irregular puncturing provides better performance at low and high Eb/No region when 

compared to the original without puncturing single LDPC with ½ code rate, MCW=2.75 and 

N=384. In addition, the only performance degradation is in the medium Eb/No region. 
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Furthermore, the irregular and regular puncturing both outperform random puncturing by 1 

and 0.7 dB at BER 1e-4 respectively. Moreover, the irregular and regular punctured 

MPCGCs show 0.5 and 0.4 dB gain improvement respectively compared with the same 

parameters of single regular punctured LDPC codes. In addition, when compared with low 

MCW component of single original LDPC without puncturing with R=1/2, N=384 and 

MCW=1.79, the performance of MPCGC with irregular puncturing outperforms by 1.75 dB 

at BER=1e-3.  

Figures 4.9  and 4.10 show the different BER and PER comparison of the proposed punctured 

MPCGCs over a flat Rayleigh fading channel; the irregular and regular punctured MPCGCs 

show 0.7 and 0.4 dB gain improvements at BER 1e-3 when compared with the single 

punctured LDPC codes with the same parameters.  

In addition, the performance with irregular puncturing is very close to the performance of the 

original code without puncturing for a single LDPC with ½ code rate, MCW=2.75 and 

N=384 at low and medium Eb/No region and provides better performance at the high Eb/No 

region after 4 dB; the irregular and regular MPCGC puncturing outperforms the random 

puncturing by 2 and 1.5 dB at BER 2e-3 respectively. When compared with low MCW 

component of single original LDPC without puncturing with R=1/2, N=384 and MCW=1.79, 

the performance of MPCGC irregular puncturing outperforms the single original LDPC by 3 

dB when BER=8e-3. 
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Figure 4.7 BER performance of different punctured MPCGC over AWGN channel 

 

 

Figure 4. 8 PER performance of different punctured MPCGC over AWGN channel. 
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Figure 4.9 BER comparison of punctured MPCGC with LDPC over flat 

Rayleigh fading channel. 

 

 

 

Figure 4.10 PER comparison of punctured MPCGC with LDPC over flat Rayleigh 

fading channel 
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4.5.2 MPCGC complexity analysis 

LDPC complexity for a particular code is proportional to the type of decoder and the density 

of the parity check matrix [14]. The sum product algorithm has an important advantage, 

which is that it is less complex than other decoding algorithms used in turbo codes. To 

estimate the complexity of MPCGCs, we calculated the average number of local iterations 

per each LDPC code needed with different E𝑏/N0 values [7].   

In our case, an MPCGC executes a maximum of 30 super iterations; each component decoder 

in each super iteration performs a maximum of 38 local iterations on the received data then 

passes the extrinsic information to the next decoder and so on.  

The MPCGC decoder generally for each super iteration performs a maximum of (3× 38) local 

iterations which are done by 3 LDPC decoders. The decoding complexity per iteration can be 

estimated in terms of the maximum number of edges in the Tanner graph of the code which 

can be calculated as (NxMCW) for a single LDPC code [71]. Therefore, for a MPCGC in 

each super iteration, the maximum number of edges can be calculated as shown below,   

Total edges= Number of iterations


M

i 1

𝑁𝑖𝑀𝐶𝑊𝑖                                                               (4.8)                          

On this basis, the complexity analysis and comparison have been carried out in terms of 

Eb/No and the results in terms of the maximum number of iterations and edges are illustrated 

in Figures 4.11 and 4.12.  

The results show that the complexity of the proposed punctured MPCGCs can be reduced 

compared with the conventional MPCGC system. Furthermore, at the decoder the LLR 

values are calculated as 0.5 since of the values of punctured bits set to 0 which it cause 

reducing the decoding complexity due to reduction in the number of the overall required 

iterations as well the decoder will converge quickly. Moreover, the advantages of the 

proposed punctured MPCGCs can be exploited without significant additional complexity.  
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Figure 4.11 Complexity and performance comparison between punctured MPCGCs and 

conventional MPCGC  

 

Figure 4.12 Complexity and performance comparison between punctured MPCGCs and 

conventional MPCGC  
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4.6 Summary 

This chapter focused on an attractive proposed novel punctured MPCGCs scheme evaluated 

over AWGN and flat Rayleigh fading channels for the first time to the best of our knowledge. 

It is shown that the MPCGCs structure yields superior coding performance both with and 

without puncturing when compared to the original single-long LPDC component with the 

same parameters.  

It is also shown that irregular puncturing achieves better performance than regular and 

random puncturing in MPCGCs. The complexity analysis in terms of number of edges and 

iterations has shown that the efficient proposed MPCGC structure has less complexity 

compared with the conventional MPCGCs structure. The benefit from reducing complexity 

by reducing the memory requirement for decoding than that of the single LDPC.
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Chapter 5 

Performance Analysis of Multiple Parallel Concatenated Gallager 

Codes for WiMAX Applications  

5.1 Introduction 

WiMAX system performance can be significantly improved to achieve excellent error 

correction performance by utilizing powerful Forward Error Correction Codes. In this 

chapter, we investigate the use of Multiple Parallel Concatenated Gallager Codes (MPCGC) 

in IEEE 802.16/WiMAX. Computer simulation results confirm that the proposed MPCGCs-

WiMAX system shows better performance with an improvement in gain when compared to a 

single long LDPC-WiMAX system. Moreover, by using the proposed coding scheme, lower 

computational complexity can be achieved than the long LDPC code due to multiple smaller 

lower codes.  

WiMAX (Worldwide Interoperability for Microwave Access) is a telecommunication 

technology that was first introduced in 2001 [83]. The IEEE 802.16 standard is a fixed 

broadband Wireless Access. This standard works with the physical layer and the medium 

access control layer. Moreover, it offers the alternative way to wired broadband standards 

such as DSL. There are different physical layer specifications due to different applications 

and frequency bands that are supported by the WiMAX standard [80][84].  

    The frequency band operation of the first version of the IEEE802.16 is 10 - 66 GHz and 

needs line–of–sight (LOS) towers. After that, the standard extended the frequency operation 

to 2-11 GHz through different physical (PHY) specifications. This enable the Non Line Of 

Sight (NLOS) connections that require techniques which efficiently attenuate the impairment 

of fading and multipath and to solve the weakness of Wi-Fi networks [85][86].  

In this chapter we focus on the improvement of performance of the WiMAX  system based 

on the IEEE 802.16 standard modulation technique, in particular, using the MPCGC system 

based on LDPC coding over an AWGN (Additive White Gaussian Noise) channel [83]. 

The remaining organization of this chapter as follows; in section 5.2 the WiMAX scenario 

has been explained in detail. In section 5.3 the proposed system model of the MPCGC-

WiMAX physical layer is presented. The main assumptions needed to work with the system 

model of MPCGC-WMAX has been done in section 5.4. Followed by presenting the 
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simulation results and discussion of the research in section5.5, this include the BER 

performance and the effect of the girth removable on the parity bits. Finally, the chapter 

summary is presented in section 5.6. 

5.2 WiMAX Scenario 

As terrestrial mobile communication systems are just one of many applications competing for 

suitable bandwidth, there has been a rapid growth in the demand for high-speed mobile 

wireless communications and the use of the radio spectrum. In non-line-of-sight 

environments the systems operating reliably with propagation distance of 0.5 - 30 km, and at 

velocities up to 100 km/hr or higher. Due to excessive channel path loss and excessive 

Doppler spread at high velocity being resulted the current wave standard is used for vehicular 

communications and it is that operate at carrier frequency of 5.9GHz [87-89]. The value of 

the radio spectrum is made extremely high as the spectrum available for mobile applications 

is limited. On the basis of the 802.16 MAN standard constitute the WiMAX standard, whose 

development was conducted by the WiMAX forum [90]. Due to the IEEE 802.16/WiMAX 

standard being the simplest method for applying MPCGC techniques and for showing the 

enhancements on the WiMAX system, it was the physical layer used in this thesis. The same 

subcarrier frequency spacing is maintained by the WiMAX standard, which utilizes 

orthogonal frequency division multiplexing (OFDM), with different factors, such as system 

bandwidth, Fast Fourier transform (FFT) size and number of sub channels, at the same time 

[91][92].   

For wireless communication systems, OFDM technology will be a main method to achieve 

the high data capacity and spectral efficiency requirements. The architecture has to be known 

for the visualization of physical layer design and transmission control. The line of sight 

(LOS) and non-line of sight (NLOS) communication links are present in WiMAX 

architecture, which can be seen in Figure 5.1 [83]. The modulation BPSK schemes can also 

supported by the 802.16/WiMAX standard. Alongside higher throughput via orthogonal 

multi-carrier system in comparison to the traditional single carrier system. In addition, by 

using the cyclic prefix, the eliminating inter-symbol interference (ISI) will be possible. The 

utilization of OFDM as the underlying technology can be reduce complexity by using FFT 

processing [93][94][95]. In 2011, a flexible decoder architecture presented to support LDPC 

codes to work with IEEE 802.16e standard. The dual-mode Flex-SISO decoder was proposed 

using multiple parallel Flex-SISO cores as a basic building block in LDPC and Turbo 
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decoder to increase the decoding throughput [96]. In 2012, a partial parallel LDPC decoder 

based on TDMP with normalized MSA algorithm was proposed. The decoder supports any 

code rate and code length defined in WiMAX network. Furthermore a parallel shifter based 

shuffle network was designed to enable the decoder to support all the 19 code length [97]. In 

2015, an optimized LDPC codes in WiMAX physical layer network coded two way relay 

channel using noncoherent FSK modulation. The BER performance was improved through 

EXIT based optimization of Tanner graph variable node degree distributions. Moreover, by 

maintaining the extended irregular repeat-accumulate (EIRA), the computational complexity 

of the standard codes were preserved in the optimized codes [98]. 

 

                                         Figure 5.1 WiMAX systems. 

5.3 WiMAX Physical Layer Model                                                         

The WiMAX physical layer model, as shown in the block diagram in Figure 5.2 is based on 

OFDM [36]. The system model combines MPCGCs with OFDM to implement and improve 

the WiMAX 802.16 standard [99].  

The baseband WiMAX system has four major parts: 

1.  MPCGCs Encoder/ Decoder for the WiMAX 802.16  standard 

2. Interleaving/ Deinterleaving 
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3. Modulation/ Demodulation 

4. OFDM transmitter/Receiver 

In this block diagram, random data is generated. The proposed MPCGC encoder is designed 

to provide the advantage of breaking the equivalent long single LDPC code into multiple 

smaller codes with lower complexity and thus improve the overall system performance.  

The irregular LDPC codes provide lower encoding/decoding complexity with better 

performance. The parity check matrices of the single LDPC-WiMAX standard based on the 

QC-LDPC is built up and designed based circular right shifted. The entire parity check matrix 

is a set from a systematic linear block with different cyclic shifts, which allows reduction in 

complexity as well.  

There are four code rates supported in the WiMAX standard 1/2, 2/3, 3/4 and 5/6. Every base 

of the  𝐻 matrix has 24 columns. For every code rate, the base model parity check matrix is 

defined for the largest acceptable code length (N=2304). The expansion factor (z) varies from 

24 to 96 with increments 4 and is equal to N/24 for code length N [100]. For instance, the 

code length 768 has expansion factor z=32. Figure 5.3 shows the structure of the parity check 

matrix H (384,768) of the standard for a single LDPC with code rate 1/2, z=32, N=768 [101]. 

The second type of matrix that will be evaluated over MPCGC-WiMAX will be the parity 

check matrices irregular codes based on gallager design with specific well-designed MCW 

for each LDPC component. 
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                 Figure 5.2 Block diagram of WiMAX-OFDM physical layer model. 

 

 

Figure 5.3 Structure of the parity check matrix of WiMAX IEEE 802.16 standard with ½ 

code rate and 768 code length.  
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5.4 The WiMAX model assumptions 

In this case study, many simulation parameters of IEEE 802.16/WiMAX in the system are 

used as shown in Table (5.1) below. The Matlab program simulates BPSK modulation with 

different channels through the Monte Carlo method. The aim is to show the performance 

improvements of the superior forward error correction MPCGC-WiMAX against the 

conventional WiMAX system.  However, the frequency selective fading channel can be used 

instead of flat fading channel for future work. All component decoders use the SPA in 

calculating their a posteriori probability. At each super iteration, each component decoder 

uses their parity check matrix to run the SPA algorithm. 

                                       Table 5.1 WiMAX simulation Parameter. 

 

OFDM, FFT size               256  

Number of data  

subcarriers  

              192 

Code length               768 

Modulation scheme  BPSK [-1,+1] 

Channel model AWGN, Flat fading 

channel 

Cyclic prefix                ¼  

Channel Bandwidth           2.5 MHz 

 

 

5.4.1 MPCGC Encoder/Decoder 

Three LDPC component encoders (mixed in parallel) as presented in the previous chapter are 

used for controlling errors in data transmission over an AWGN and flat Rayleigh fading 

channel. The MPCGC is used as forward error correction (FEC) to encode and decode the 

message which is sent in a redundant way.  

5.4.2 Interleaving  

The process of reordering the data sequence in deterministic format is called interleaving. The 

interleaving is used by making permutation process to the encoded data and the main reason 

for using the interleaver to protect the transmitted data from errors and make the FEC high 

robust and reliable.  
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The inverse of interleaving is the deinterleaving at the receiver side, where the original data 

has been restored from the received sequence [66] 

5.4.3 BPSK modulator  

The BPSK signal can be defined as the shifting in the phase of the continuous carrier in 

response to the amplitude of the original data. The phase shift between the digital data is 

180º, which is convenient choice because it simplifies the modulator design. 

 The PSK signal can be written as: 

                                                              𝛷1(𝑡) = 𝐴𝑠𝑖𝑛(𝑤𝑐𝑡)                                                              (5-1) 

                                                              𝛷2(𝑡) =  − 𝐴𝑠𝑖𝑛(𝑤𝑐𝑡)                                                         (5-2) 

    Where 𝛷1(𝑡) represents the [0] bit and 𝛷2(𝑡) represents the 1 bit. 

5.4.4 Serial to parallel transformation 

The purpose of using the serial to parallel transformation stage in the OFDM system is to 

convert the input serial to parallel data so as to enable transmitting in each OFDM symbol. 

The data is placed on each symbol according to the modulation scheme used and the number 

of subcarriers. On the other hand, at receiver the reverse process will be applied to the data, 

with the subcarriers being transformed back to the original serial data stream. 

5.4.5 Inverse Fast Fourier Transform (IFFT)  

The conventional modulation scheme at the transmitter side is modulated the data. Then all 

individual modulated carriers are summarized or multiplexed to form an OFDM signal. The 

block IFFT is used as transducer system in the OFDM signal. 

The IFFT is a mathematical concept that will convert the signal from the frequency domain 

where it is represented as the phase or amplitude of a particular frequency in the time domain. 

In frequency domain, the individual sub carriers is corresponded to the discrete samples of 

IFFT. The generality of the sub carriers is modulated with data as any unmodulated signals 

such outer subcarrier is set to zero amplitude.  

The frequency guard band provides zero sub carriers before the Nyquist frequency and 

efficient take place to generate the signal [102][103]. 
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5.4.6 Additive white Gaussian noise (AWGN)  

The noise is an unwanted signal that tends to disturb the transmitted signal. The AWGN (with 

zero mean and fixed power spectral density) is added to the modulated signal at the output of 

the modulation unit. Furthermore, it is like the properties of white light therefore it is called 

white because it has flat power spectral density, so in time domain the auto correlation of the 

noise is set to zero for any non-zero time offset. 

The value of the variance 𝜎2 depends on the bit energy 𝐸b of the transmitted signal and the 

signal to noise at the input (for more details in Appendix A). The process of adding the 

AWGN noise to the transmitted signal for a given 𝑆𝑁𝑅 (specified in dB) can be calculated by 

[85]. 

     1. Calculating the power signal  

                                                             𝐸𝑠= 
1

𝑁
 ∑ 𝑢(𝑖)2𝑁−1

𝑖=0                                                                   (5-3) 

Where 𝑢= transmitted data,  𝑁=length (𝑢) 

1. Converting the 𝑆𝑁𝑅 in 𝑑𝐵 to linear scale 𝑆𝑁𝑅𝑙𝑖𝑛𝑒𝑎𝑟 then finding the noise vector from 

Gaussian distribution of noise variance as follows. 

                                                             𝐸𝑏/𝑁0 = 10
𝑆𝑁𝑅

10                                                              (5-4) 

And 

                                                             𝜎= 
1

√(2∗𝑅∗(
𝐸𝑏
𝑁0

)
                                                                        (5-5) 

Where,  

 𝐸𝑏/𝑁0, the energy per bit to noise power spectral density ratio 

𝑅 is the code rate and 𝜎 is the standard deviation, therefore the total noise 

 Noise=(
1

√(2∗𝑅∗(
𝐸𝑏
𝑁0

)
) ∗ [𝑟𝑎𝑛𝑑𝑛(1, 𝑁) + 𝑗 ∗ randn(1, 𝑁)]                                 (5-6) 
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5.5 Simulation Results and Discussion     

5.5.1 Girth removable analysis 

The decoding process of LDPC codes is quickly computable when the Tanner graph of the 

parity check matrix includes no loops. Usually, LDPC contains many loops which directly 

effect on the speed of the sum product algorithm. To overcome the effect of girth on the 

LDPC performance by choosing the appropriate codes with longer girth of Tanner graphs. 

However, the removal of girth 4 is sufficient and better way to increase the convergence. The 

approach of removing a rectangle form of four 1s in the H matrix by redistributing some 

elements inside parity check matrix. The state of H matrix without girth four, if and only if 1s 

are all the elements of the matrix [𝐻𝑇𝐻] except the diagonal line [28]. 

To make comparison between the detection and removal of girth 4 for both single LDPC-

WiMAX and MPCGC-WiMAX. The removal a girth 4 from the standard LDPC-WiMAX 

parity check matrix H (384,768) with ½ code rate and MCW=3.04 as shown in Figures 5.4 

and 5.5. Also Figures 5.6 and 5.7 showed the detection and removal a girth 4 from the 

MPCGC-WiMAX parity check matrix H (192,384) with ½ code rate and MCW=2.757. 

 

Figure 5.4 Entries of standard LDPC-WiMAX parity check matrix with girth 4. 
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Figure 5.5 Entries of standard LDPC-WiMAX parity check matrix with free girth 4. 

 

Figure 5.6 Entries of MPCGC-WiMAX parity check matrix with girth 4. 
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Figure 5.7 Entries of MPCGC-WiMAX parity check matrix with free girth 4. 

 

5.5.2 BER performance analysis  

Firstly, the characteristics of MPCGCs parallel decoding are evaluated separately without 

WiMAX application as shown in Figure 5.8 using three LDPC component codes where each 

component is allowed a maximum of 38 local iterations whereas the overall MPCGCs have 

30 super iterations.  

The BER performance of the MPCGCs is evaluated and is illustrated in Fig. (5.8). The 

parameters of the three parallel Gallager LDPC components of MPCGC have the same parity 

check dimensions, H (192,384) with different MCWs: code rate R=1/4, MCW1=1.94, 

MCW2=2.81, MCW3=1.81 and N=768. Again, the parameters of the equivalent single 

irregular LDPC code that is used for comparison are: R=1/4, MCW= 3.07, N=768, the 

MPCGC has a gain of 0.5 dB (at BER 2e-4) when compared to the equivalent single irregular 

LDPC with the same parameters. Furthermore, the MPCGCs performance outperforms by 1 

dB the single short LDPC code with parameters: R=1/2, H (192,384), and MCW=2.8. The 

MPCGCs show 0.2 dB gain improvements when compared with the result of reported 

proposed method by Kim et. al using the same parameters [70]. Secondly, the performance of 
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a single LDPC-WiMAX baseband transceiver for IEEE 802.16 has been calculated according 

to the simulation parameters in table (5.1) with a 256 size FFT[104].  

The quasi-cyclic LDPC codes represent the base of the WiMAX networks as well as 

producing low computational complexity in the encoder and decoder part. Moreover, the 

required iterations in the decoder part are reduced compared to the Gallager codes as will be 

explained in detail in the next chapter. 

The parameters of the LDPC code used for comparison are R=1/2, N=768 and the WiMAX 

parity check matrix standard H (384,768). The encoding process of single LDPC-WiMAX is 

calculated by constructing the generator matrix 𝐺,  such that 𝐺.𝐻𝑇=0 where 𝐺 is obtained by 

inversion of the parity check matrix concatenated with the identity matrix of the same size. 

Then the codewords are calculated by multiplying the message frame with the generator 

matrix 𝐺.  

The encoding process of MPCGCs-WiMAX is calculated by concatenated three small 

random LDPC codes into parallel concatenation with the same parity check matrix 

dimensions H (192,384) with different MCWs. The decoding process is calculated by parallel 

concatenation of three LDPC components by using the sum product. As shown in Figure 5.9, 

the performance is enhanced showing for example a gain 0.3 dB improvement at BER 2e-4 

when compared with the same parameter of single LDPC-WiMAX according to the reported 

result by Teodor et. Al [105]. Also shown in Figure 5.9, that the MPCGCs-WiMAX 

outperforms single LDPC-OFDM by 0.8 dB at the same parameters[95].  

We noticed also at moderate SNR region the packet error  rate PER performance of the 

MPCGCs parallel decoding outperforms single irregular LDPC-OFDM component decoder 

at the same parameter by achieving  gain about 0.4 dB at BER=1e-3 as shown in Figure 5.10. 
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                         Figure 5.8 BER comparison for different LDPC coding model.  

 

 
                        Figure 5.9 BER comparison of WiMAX coding model. 
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        Figure 5.10 PER comparison for MPCGC-WiMAX system and single LDPC-OFDM. 

 

To enhance the BER performance of the standard MPCGC-WiMAX application and reduced 

the decoding complexity. The puncturing performance of the proposed designed MPCGCs 

were applied to upgrade the code rate to half. After encoding, the codeword N=768 is 

punctured by a puncturing fraction Ө=0.5 to be N=384 for enhancing the BER performance 

at only high Eb/No region as well as reduce the decoding complexity and to increase the 

transmission code rate from ¼ to ½. In the punctured design, we will use the irregular 

puncturing to get the best performance for the WiMAX system. The irregular puncturing is 

performed well compared with the other puncturing techniques as mentioned in the previous 

chapter. The process of puncturing the codeword is done by removing fixed 128 bits from the 

end of the first parity check, moreover removing fixed 128 bits from the beginning and the 

end of the second parity check also removing fixed 128 bits from the beginning of the third 

parity check respectively. Figure 5.11 show the different BER comparison of WiMAX 

application over AWGN channel, the punctured MPCGCs-WiMAX outperforms both single 

LDPC-WiMAX and MPCGCs-WiMAX without puncturing at high Eb/No region only but 

provides worse BER at low and medium Eb/No region at the same parameters.. Another BER 

comparison of WiMAX application over flat Rayleigh fading channel as shown in Figure 

5.12. 



Chapter5: Performance Analysis of Multiple Parallel Concatenated Gallager Codes for WiMAX Applications 

 
 

90 
 

 

         Figure 5.11 BER comparison of WiMAX physical layer model over AWGN channel. 

 

        Figure 5.12 BER comparison of WiMAX physical layer model over flat fading channel. 
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5.6 Summary 

This chapter focused on investigating the deployment of MPCGCs in the IEEE 802.16 

standard physical layer system based on the basic modulation scheme, AWGN transmission 

and flat Rayleigh fading channel. For the same parameters, the proposed MPCGCs-WiMAX 

achieves better gain than single-long LDPC based WiMAX. In addition, the MPCGCs 

scheme shows further advantages when applying irregular puncturing for enhancing and 

upgrading the code rate from ¼ to ½ to be compatible with non-puncturing standard WiMAX 

system. The MPCGC scheme can be a potential scheme for the channel coding in the 

WiMAX communication system. 
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Chapter 6 

Performances analysis of MPCGC with QC-LDPC Codes and 

MIMO application  

6.1 Introduction 

Quasi-Cyclic (QC) LDPC codes have played important roles in the forward error correction 

coding (FEC) system to reduce decoding complexity and enhance the system performance. 

QC-LDPC can be powerful incorporated with the MPCGC system to improve the 

performance of wireless coded systems.  

Structured LDPC codes vary in terms of performance and application complexity. The 

communication complexity is affected or influenced by check and variables nodes 

interconnection patterns or code structure. The QC-LDPC codes that are used with MPCGC 

coding model have the same properties of the QC-LDPC codes used in the WiMAX standard 

but in different MCW value. 

Codes possessing similar and cyclic connections in rows or columns in a sub-matrix are 

termed as Quasi-cyclic (QC) LDPC codes. QC-LDPC can be encoded in an efficient manner 

with shift registers owing to their quasi cyclic structure [106][107][108] and uncomplicated 

address generation mechanism, less memory and localized memory access is required by 

their decoder architectures. In QC-LDPC codes, shifting of identity sub-matrices leads to the 

construction of row-column connections. 

Shift values of all the sub-matrices of QC-LDPC can be used to characterize it. This is 

beneficial in a way that a compacted depiction of the matrix and uncomplicated construction 

is offered by it. QC-LDPC codes can carry out close to the capacity limit as signified in [26] 

even though row-column connections are limited. A concatenation of circularly shifted sub-

matrices with or without zero sub-matrices can help in the formation of a QC-LDPC.  

Combinatorial construction and finite geometry techniques can be taken in to account so as to 

get such structures [27]. A notable work has presented and analysed. Focusing on the  

simplification of the computational optimization of the minimum distance bounds of QC-

LDPC codes in the IEEE802 standards [109]. This simplification in computing the distance 

bounds are 100 times faster than the previous related researches published a few years ago.  

This chapter focusses on investigating a QC- MPCGC structure to enhance the coding 

performance with reduced overall decoding complexity where component QC-LDPC is 
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incorporated in parallel. The Layered BP decoding algorithm is adopted with QC-MPCGC 

instead of the SPA decoder to reduce the overall decoding complexity and enhance the 

system performance compared with a single conventional LDPC. 

The MIMO-MPCGC structure is also investigated in this chapter with its potential to offer 

high QoS (Quality of Service) with increased data rates and spectral efficiency. Moreover, it 

helps in reducing the effect of fading channel by achieving high reduction in BER.  

The next sections are organized as follows; in section 6.2 the proposed QC-LDPC has been 

applied to develop and improve the MPCGC performance. In section 6.3, a layered BP QC-

MPCGC has been incorporated with MPCGC system to reduce the decoding complexity.  

The MPCGC has developed and modified with the MIMO technique to improve and enhance 

the MIMO-MPCGC performance as shown in section 6.4. Finally, in section 6.5 a 

complexity analysis has been done and calculated for the QC-MPCGC system. 

6.2 Proposed QC-MPCGC System Model 

The QC-MPCGC physical layer model, as shown in the block diagram in fig. (6.1), is based 

on the circulant permutation matrices and random Gallager codes with specific column 

weight. The system model of QC-MPCGC combines three different LDPC codes in parallel 

to improve the BER performance and reducing the decoding complexity compared with the 

conventional single LDPC and MPCGC. 

 

                                 Figure 6.1 QC-MPCGC System Model.  
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6.2.1 QC-LDPC Encoder  

The following are the major and foremost steps from the encoding mechanism:  

A Quasi-Cyclic is basically a block code in which another code word is obtained by every 

cyclic shift of a code word by p positions. Thus, a cyclic code is a QC code with 𝑝 = 1. The 

parity check matrix of the QC-LDPC codes signifies it and it comprises of small square 

blocks which are zero matrices or circulant permutation matrices [23] [110]. The achieved 

code is quasi-cyclic (QC) and can be programmed in linear time with the help of shift 

registers. In addition, an equal code with only identity matrices in the first row block and the 

first column block of H can be attained by row and column permutations. 

1. The quasi-cyclic code of length 𝑚𝑝 is the length of the code word, where 𝑚 is the 

row weight.  

2. The column size and row size of the code are multiples of an integer 𝑝.  

3. Create 𝑃𝑖 be the 𝑝 ×  𝑝 circulant permutation which moves the identity matrix 𝐼 for 

any integer i, 0 ≤ 𝑖 ≤ 𝑝 to the right 𝑖 times. 

4. We can define the parity check matrix 𝐻𝑚𝑝×𝑛𝑝 

                        

[
 
 
 
 
 
 
𝑃𝑏11   𝑃𝑏12 𝑃13 …𝑃𝑏1𝑛

𝑃𝑏21   𝑃𝑏22 𝑃23 …𝑃𝑏2𝑛

𝑃𝑏31  𝑃𝑏32 𝑃𝑏33 …𝑃𝑏3𝑛

:      ∶       ∶   …       ∶  
𝑃𝑏𝑚1𝑃𝑏𝑚2 𝑃𝑏𝑚3. 𝑃𝑏𝑚𝑛

            
]
 
 
 
 
 
 

                      (6.1)                                      

Where, 𝑏𝑖𝑗 ∈ {0,1, . . , 𝑝 − 1,∞). Also  𝐻 should be full rank 

5. Enhancing the size of the circulant permutation matrices 𝑝 which is element matrices 

of 𝐻 can help in achieving larger size block LDPC codes.  

6. The inversion of the generator matrix G with identity matrix of the same order yields 

the generator polynomial.  

7. Multiplying the message matrix with the generator matrix puts forward codewords 

[101][103]. 
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6.3 Layered Decoding 

Decoding in layers is another significant approach if we shed light on the several approaches 

directing towards iterative decoding. In such a case, the parity check matrix can act as 

horizontal layers and every layer can signify a component code. The full code is the resultant 

of intersections of all these codes (layers). In addition to it, soft-input soft-output (SISO) 

decoding technique can be implemented to each layer in order. The inputs from the decoder 

are linked to the channel inputs and extrinsic probability outputs from the SISO decoding on 

the last layer treated. If essential, this can be applied to previous layers as well as each next 

layer starts decoding. This process can be continued until the objective is achieved. Iterations 

in a layer by means of the SISO decoder can be called sub-iterations and the term super 

iterations can be used for the general process repetitions [111-113]. 

If a layer is to be decoded, a SISO decoder is implemented to each component code as all the 

codes are independent in the structure. The obtained outputs are later on delivered to the next 

layer that is to be decoded. In a scenario of the specific component code, the SISO decoders 

could be specially derived decoders or for the specific portion of the parity check matrix, 

these decoders could be grounded on belief propagation [114]. 

For the SPA, the nodes are sequentially updated by the layered BP (LBP) schedule, also 

known as shuffled BP and other names, which ensure that the new information available in 

the graph is properly utilized by the incoming messages used for each update. 

 Specifically, a network system updates the single node or subsets of all nodes of one type 

instead of updating all nodes of one type followed by all nodes of the other type. 

Subsequently, system updates a single or some subset of the nodes of the other type. Until the 

time that, the check nodes have been updated, the shuffling or alternating is continued 

[115][116]. 

 This is referred to as the one iteration of the LBP. As compared to the flooding schedule, 

faster convergence for this schedule is enabled by the latest information on the graph. In the 

given examples below, as shown in Figure 6.2 below, it consists of multi parts a, b, c and at 

each part, the first half-step between variable node and check node is red shaded while the 

second half step is yellow shaded. 

Check nodes are sequentially updated in one half-step, and all variable nodes are updated in 

the second half-step, and this particular step is done in the neighbourhood of the most 
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recently updated check node. These steps are performed until the time all check nodes have 

been updated [117].  

 

Figure 6.2 Layered schedule between check and variable nodes of the example 

graph. 

6.4 Multiple Input Multiple Output (MIMO) 

The popularity of wireless communications, especially mobile communications, has vastly 

increased. For high spectral-efficiency and high bitrate transmission, such as multi-input 

multi-output (MIMO) systems [118], transmit diversity schemes have been studied. There is a 

great enhancing in system performance due to increase in the capacity of the systems as the 

diversity in both space (antenna) and time domains can be exploited by the MIMO Systems. 

Nevertheless, only the diversity gain can be exploited by MIMO systems. Therefore, for high 
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quality communications, there is a requirement of forward error correction coding (FEC) in 

these systems. There has been application of turbo structure decoding to these systems. Three 

encoders and three decoders are made use of by the normal LDPC codes. The good error rate 

performance over MIMO channels can be achieved by the multi-antenna systems with turbo 

decoding, as it has been demonstrated.  

For high quality communications, there is a requirement of forward error correction coding in 

the MIMO systems. As of late, similar to good error correcting codes, attention has been to 

acquire low-density parity-check (LDPC) codes [119] . The MIMO systems, where the 

MIMO-LDPC is the name given to the system, have acquired LDPC codes. As shown in 

Figure 6.3.  

 Nt transmits and Nr receives antennas, where Nr ≥ Nt, has been used for modelling the 

MIMO system. hi,j can be used to denote the channel impulse response from the transmit 

antenna i to the receive antenna j. The following denotes the received signal for the system 

having two transmit and two receive antennas, with the assumption that each transmit antenna 

transmit the signal s = [s1 s2….. sn] at time t [120]. 

 

                                               Figure 6.3 MIMO Channel. 
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6.5 Proposed MIMO-MPCGC System Model 

For enhancing the MIMO-LDPC’s performance, a new MIMO-LDPC system with iterative 

turbo decoding (MIMO-MPCGC) is proposed in this chapter with three LDPC component 

encoders and three LDPC component decoders with different LDPC codes.  

The MIMO-MPCGC system model is depicted in Figure 6.4. The MPCGC encoder is 

encoding the modulating bits and mapped as BPSK modulation. The MIMO channel 

techniques have applied to the BPSK signal by splitting the modulated signal into multi data 

sequence for transmission by using multi-transmitted antennas. At the receiver, the received 

signal at each antenna is the superposition of the transmitted data by multi antennas.  

The AWGN and fading are added to the received MIMO system. Furthermore, the received 

corrupted modulated symbols are combined then added to the zero forcing (ZF) equalizer 

process. After the equalisation the stream is passed to the demodulator and decoder process to 

get likelihoods of the received symbols.  Finally, the recovered data have abstained from the 

decoding process.   

 
                                       Figure 6.4 MIMO-MPCGC system model. 
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6.5.1 The Channel of the proposed MIMO-MPCGC 

Let us assume 2X2 MIMO channels with BPSK modulated signal on fading and AWGN 

channel. We can represent the received data as 

                  𝑦 = ℎ𝑋 + 𝑛                                                                                                                      (6.2) 

Where, n∈ 𝑁 (0, 𝑁𝑜), n represents the zero mean of AWGN and 𝑁𝑜 represents the variance. 

For 2X2 MIMO-MPCGC. 

                            [

 𝑦1

   
𝑦2

]=[
ℎ11     ℎ12

 
ℎ21     ℎ22 

] [

  𝑥1  
 

𝑥2

]+[

  𝑛1   
 

𝑛2

]                       (6.3)                               

The receiver has assumed to be known the fading channel coefficients  ℎ11, ℎ12, ℎ21, ℎ22 and 

also known the  𝑦1 , 𝑦2  

From equation (6.3), we can find the received signal at the first received antenna as  

  𝑦1 = ℎ11 𝑥1+ ℎ12 𝑥2+  𝑛 1                                                                                                    (6.4) 

The received signal at the second received antenna as 

  𝑦2 = ℎ21 𝑥1+ ℎ22 𝑥2+ 𝑛2                                                                                                (6.5) 

Where,  𝑦1, 𝑦2 represents the received symbol at the first and second antenna simultaneously  

ℎ represents the flat fading coefficient channel as the multipath channel and has one tap, 

also ℎ = 1 for AWGN channel. 

ℎ11 represents the channel coefficient from the first transmitted antenna to the first received 

antenna. 

ℎ12 represents the channel coefficient from the second transmitted antenna to the first 

received antenna. 

ℎ21 represents the channel coefficient from the first transmitted antenna to the second 

received antenna. 

ℎ22 represents the channel coefficient from the second transmitted antenna to the second 

received antenna. 
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 𝑥1, 𝑥2 represents the equal probability of BPSK transmitted modulated signal +1 or -1.  

 𝑛1 , 𝑛2 represents the noise at the first and received antenna. 

6.5.2 The Channel equalizer of the proposed MIMO-MPCGC 

The zero forcing (ZF) equalizer is applied to the MIMO-MPCGC system before the decoding 

process of the received symbols. Furthermore, the frequency response of the fading channel 

of the received symbols are inverted and equalized to retrieve the signal and minimize the 

inter symbol interference (ISI). Later, the received symbols are passed to the SPA decoder of 

the MPCGCs to detect the original data. Figure 6.5 shows the equalizer model of the MIMO- 

MPCGC system [121]. 

The equalized signal of the received symbols at each sample time t as follow: 

                                               �̂� (t)=𝑦(𝑡) + 𝐻𝑡
−1(𝑡) 𝑤(𝑡)                                                 (6.6) 

 
                                             Figure 6.5 Equalizer model.  

 

6.6 Simulation results and discussion     

6.6.1 BER performance analysis 

Firstly, the properties of QC-MPCGC are simulated and evaluated by using two different 

LDPC Gallager component codes with one QC-LDPC component and all gathered in parallel 

concatenation; also each component is allowed a maximum of 38 local iterations whereas the 

overall MPCGC have 30 super iterations.  
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The BER performance of the QC-MPCGCs is evaluated and is illustrated in Figure 6.6 as 

well compared with the other coding models like MPCGCs, Kim et al result and single 

conventional LDPC component. The parameters of the three parallel LDPC components of 

QC-MPCGC have the same parity check dimensions, H (192,384) with different MCWs: 

code rate R=1/4, MCW1=1.901, MCW2=2.666, MCW3=1.791 and the overall block length 

N=768. Where, the first and third LDPC codes are Gallager codes, while the second LDPC 

code is circulating construction QC-LDPC with the following parameters; the parity check 

matrix has the prime number 𝑝=64 of the rank of submatrices, the row weight 𝑘 of the parity 

check matrix is 3 and the column weight 𝑗 of the parity check matrix is 6. Usually for any 

number of M encoders/decoders of the QC-MPCGC there is only one OC-LDPC component 

considered that controls on the high Eb/No region and is located before the last component. 

Moreover, for four QC-MPCGC components the location of the QC-MPCGC will be in the 

third component and so on. 

The number of rows 𝑚 in the QC-LDPC is (𝑘𝑋𝑝) =3X64=192, while the number of columns 

𝑛 in the QC-LDPC is (𝑗𝑋𝑝) =6X64=384. Moreover, the parameters of the equivalent single 

irregular LDPC code that is used for comparison are: R=1/4, MCW= 3.07, N=768,  

The reason for using only one QC-LDPC component with MPCGC is due to the regular 

circulant permutation of the QC-LDPC codes and the difficultly in designing the specific 

suitable MCW for each code. 

 The performance of QC-MPCGC with 3 QC-LDPC codes performs much worse compared 

to the conventional MPCGC therefore; we used two Gallager components and one QC-LDPC 

component for best design QC-MPCGC. 

The proposed QC-MPCGC has a gain of 0.7 dB (at BER 2e-4) when compared to the 

equivalent single irregular LDPC with the same parameters. Furthermore, the QC-MPCGC 

performance slightly outperforms the conventional MPCGCs at high Eb/No region by 0.1 dB 

(at BER 2e-4) with the same parameters.  

The QC-MPCGCs provides 0.2 dB gain improvements when compared with the result of the 

documented conventional method by Kim et. al using the same parameters [70]. Another 

advantage from incorporating QC-LDPC in the powerful MPCGC is to reduce the decoding 

complexity in terms of iteration and edges as will be explained in the next section. 
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The characteristics of QC-MPCGC parallel decoding are evaluated with layered BP decoding 

instead of SPA, by using three LDPC component codes as the same QC-MPCGC parameters 

of the above design. As shown in Figure 6.7 the layered BP decoding QC-MPCGC-BPSK 

over AWGN channel performs slightly worse than both conventional QC-MPCGC with SPA 

and MPCGC.  

In addition, the decoding complexity of the layered BP QC-MPCGC has less complexity in 

terms of the iterations and edges as will be explained in the next section. 

Secondly, the performance of 2X2 MIMO application with MPCGC has been simulated and 

calculated over fading channel with BPSK modulation. Two antennas are involved in both 

transmitter and receiver.  

The BER performance of the MIMO-MPCGC is evaluated and illustrated in Figure 6.8. The 

parameters of the three parallel LDPC components of MPCGC have the same parity check 

dimensions, H (192,384) with different MCWs: code rate R=1/4, MCW1=1.901, 

MCW2=2.81 and MCW3=1.791 and the overall block length N=768. Again, the parameters 

of the equivalent single irregular LDPC code that is used for MIMO-LDPC comparison are: 

R=1/4, MCW= 2.8, N=768. 

The 2X2 MIMO-MPCGC provides gain of 0.25 dB (at BER 1e-4) when compared to the 

MIMO-LDPC result of the reported method by Deepa and Kumar using the same parameters 

[118]. 

Thirdly, the performance of 2X4 MIMO-MPCGC has also evaluated with the same above 

parameters as shown in Figure 6.9.  

The 2X4 MIMO-MPCGCs have two antennas in the transmitter and four antennas in the 

receiver; the performance of 2X4 MIMO-MPCGC outperforms the conventional MIMO-

LDPC by 0.5 dB (at BER 2e-4) with the same parameters. 

Finally, Figure 6.10 shows the effect of the multi antenna numbers in both transmitter and 

receiver of the MIMO system. The BER performance of 2X4 MIMO-MPCGC outperforms 

the 2X2 MIMO-MPCGC by 3 dB (at BER 1e-4).  

Furthermore, the performance of 2X4 MIMO-LDPC provides 2.8 dB (at BER 1e-4) when 

compared to the 2X2 MIMO-LDPC result of the reported method by Deepa and Kumar using 

the same parameters [118]. 
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Figure 6.6 BER comparisons of QC-MPCGC and different coding model over AWGN 

channel. 

 

Figure 6.7 BER comparison of Layered QC-MPCGC and different coding model over 

AWGN channel. 
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 Figure  6.8 BER comparison of  2X2 MIMO-LDPC over fading channel 

 

Figure 6.9  BER comparison of  2X4 MIMO-LDPC over fading channel 
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Figure 6.10 BER comparison of  MIMO-LDPC over fading channel 

 

6.6.2 QC-MPCGC complexity analysis 

QC-LDPC code has good performance and suitable for hardware implementation due to its 

regular circulant permutation matrices. In addition, the encoding complexity of the QC-

MPCGC can be reduced due to the process of circular shifting. Moreover, the decoder part 

can be reduced the computational complexity of the check nodes update [109][122][123].  

Firstly, the complexity calculation for the QC-MPCGC is done and calculated according to 

the same process as mentioned in chapter 4. The result in terms of the maximum number of 

iterations and edges are illustrated in Figures 6.11 and 6.12. The base QC-LDPC matrices of 

the circulant permutation matrices that are used in the QC-MPCGC model is zero matrix 

[64x64] with a diagonal one and the other submatrices are circular permutation of this base 

matrix. Figures 6.13 and 6.14 show the structure of the base matrix (64X64) and the overall 

parity check matrix (192X384) of the QC-MPCGC respectively. The results show that the 

complexity of the proposed QC- MPCGC can be reduced significantly when compared with 

the conventional MPCGC system. Moreover, the advantages of the proposed QC-MPCGC 

can be exploited without significant additional complexity.  
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Figure 6.11 Complexity and performance comparison between QC- MPCGC and 

conventional MPCGC 

 

 
Figure 6.12 Complexity and performance comparison between QC- MPCGC and 

conventional MPCGC 
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Figure 6.13 Entries of the base matrix (64x64) of the QC-MPCGC 

 

 

Figure 6.14 Entries of the parity check matrix (192x384) of the QC-MPCGC 
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Secondly, the decoding complexity of layered BP QC-MPCGC has been calculated and the 

results show that the complexity of the proposed layered BP QC-MPCGC exploited lower 

decoding complexity when compared with the conventional MPCGC system in terms of 

iterations and edges as shown in Figures 6.15 and 6.16. The conventional MPCGC is the base 

of the Gallager codes with SPA only. 

 Moreover, the advantages of the layered BP QC-MPCGC can be exploited without 

significant additional complexity but with a trade off in BER performance.  

 

Figure 6.15 Complexity and performance comparison between Layered BP QC- 

MPCGC and conventional MPCGC. 
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Figure 6.16 Complexity and performance comparison between Layered BP QC- 

MPCGC and conventional MPCGC. 

6.7 Summary 

In this chapter a further novel exploration is applied to the MPCGC to enhance the system 

performance with reduced complexity. QC-MPCGC is applied by gathering two Gallager 

codes and one QC-LDPC code to enhance the BER performance compared to the 

conventional single LDPC codes. Furthermore, the complexity analysis in terms of number of 

edges and iterations has shown that the novel proposed QC-MPCGC structure has less 

complexity compared with the conventional MPCGCs structure. There is benefit from 

reducing complexity by reducing the memory requirement of QC-MPCGC for decoding than 

that of the conventional MPCGC. Layered BP decoding has been applied to reduce the 

complexity of the QC-MPCGC in terms of iterations and edges with a trade off in BER 

performance. 

MIMO technique is applied also to the MPCGC to improve the system performance and 

enhance the BER performance of MIMO-MPCGC over fading channel compared to the 

conventional LDPC.  
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Chapter 7: Conclusion and future work 

7.1 Conclusion  

The thesis has focused on investigating a new class of concatenated codes based on the 

parallel concatenation of LDPC codes. MPCGC, which is a good class of parallel-

concatenated codes that used to reduce the encoder/decoder complexity and to enhance the 

communication system performance. The LDPC codes in the MPCGC structure required well 

design to achieve excellent BER performance with reduced in the overall decoding 

complexity compared to the conventional LDPC. 

For enabling LDPC codes in the MPCGC structure to use the a priori information between 

the component decoders, they have been modified. Specific LDPC codes with comparable 

rate and information frame length in both AWGN and flat Rayleigh fading channels have 

been outperformed by this class of codes,  

Chapter three has presented a superior MPCGC coding model that consists of three or four 

LDPC components with different matrix densities when compared with conventional single 

LDPC component. The MPCGC-BPSK has shown a better BER performance compared to 

conventional Kim et all reported results by 0.2 dB gain. In addition, the MPCGC-BPSK 

provides 0.8 dB when compared to the single irregular LDPC at the same parameter. 

Furthermore, the MPCGC of three LDPC codes outperforms the serial MPCGC by 1.3 dB at 

the same parameter. Another advantage of the proposed MPCGC in the capacity achievement 

as it is shown that the MPCGC with different modulation has capacity improvement 

regarding single LDPC at the same parameter. 

For MPCGC of four LDPC components, the BER calculation has been done and shown that it 

outperforms the equivalent single irregular LDPC by 0.2 dB at the same parameter.   

A trade-off in the decoding complexity of the MPCGC has been calculated, a preliminary 

complexity comparison and analysis have been carried out in terms of the maximum number 

of iterations and edges inside the decoding process. The results show that the benefit of 

MPCGC can be exploited without significant additional complexity. 

 Chapter four has proposed a novel punctured MPCGC scheme evaluated over AWGN and 

flat Rayleigh fading channels. The puncturing process enabled to maximize the code rate and 

reduced the decoding complexity of the system. 
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 It is also concluded that MPCGCs scheme provides superior coding structure with and 

without puncturing compared to the original conventional LDPC codes the same parameters.  

Three types of punctured MPCGC have been presented and it has been shown that irregular 

puncturing provides better performance than regular and random puncturing. In addition, the 

efficient proposed punctured MPCGC has less decoding complexity analysis in terms of a 

number of iterations and edges compared to the conventional MPCGC structure. The 

advantage of reducing decoding complexity by reducing the required memory for decoding 

than that of conventional single LDPC. The proposed punctured MPCGC codes have the 

ability to be attractive in flexible applications while enhancing coding characteristics with 

less implementations overheads.   

Chapter five has presented a novel MPCGC-WiMAX system based on the IEEE 802.16 

standard. The proposed well designed MPCGC-WiMAX was based on standard BPSK 

modulation over AWGN and flat Rayleigh fading channels. The proposed MPCGC-WiMAX 

has been shown to achieve 0.3 dB improvement over an LDPC-WiMAX with the same 

parameter. The MPCGC-WiMAX can use the irregular puncturing scheme proposed to 

enhance and maximize the code rate to be compatible with standard WiMAX system.  

Finally, chapter six has presented a novel application of QC-LDPC with MPCGC to reduce 

the decoding complexity and also improve overall system performance. The novel proposed 

QC-MPCGC is based on combining two Gallager codes and one QC-LDPC code with 

specific MCW design to enhance the BER performance compared to the conventional LDPC 

codes at the same parameters.  

The proposed QC-MPCGC outperforms the equivalent single irregular LDPC by 0.7 dB with 

the same parameters. Moreover, the QC-MPCGC performance has a gain of 0.2 dB 

improvement compared to the Kim et al. reported conventional method with the same 

parameter. 

The main advantage of the proposed QC-MPCGC design is that it has less complexity in 

terms of iterations and edges of the decoding process compared with the conventional 

powerful MPCGC. In addition, a Layered BP decoder was incorporated in QC-MPCGC 

instead of the sum product algorithm (SPA), the result shows that Layered BP QC-MPCGC 

has less decoding complexity compared with the conventional MPCGC with a trade-off in 

BER performance. 
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The MIMO technique was shown to enhance the MPCGC performance over a fading channel 

with both a 2X2 MIMO and 2X4 MIMO configurations.   

 To sum up, the MPCGCs are suitable for future wireless applications due to their good 

performance with higher capacity alongside reduced encoding and decoding complexity. 

MPCGCs structure is especially attractive for applications where flexibility in forward error 

control coding is required without significant added complexity.   

7.2 Future work 

There is a recommendation of MPCGC to be further researched so that their potential usage 

is completely explored alongside the work presented in this thesis. As comparable binary 

LDPC codes were demonstrated to be outperformed by LDPC codes, the idea of investigating 

MPCGCs based on non-binary 𝐺𝐹(𝑞) LDPC component codes would be of interest.  

Another potential area of research is further investigation of other component codes 

concatenation by combined the convolutional codes or BCH codes with the concatenation of 

LDPC codes. There can be the implementation of various combinations of different code 

rates to match specific applications requirements. The decoding algorithm which is most 

widely used for LDPC does is the sum-product algorithm, as suggested by Gallager. 

Nevertheless, reduced complexity implementation of the decoding algorithm through parallel 

implementation techniques and log-domain arithmetic implementations is the focus of recent 

research. The investigation of how MPCGCs perform under such alternative decoding 

algorithm implementations would be of great interest.  

The performance of the MPCGC is greatly influenced by the interleaver design in turbo 

codes. A square identity matrix having randomly permuted columns as per the interleaver 

sequence can be used to visualize the interleaver. The investigation of the use of a randomly 

generated rate 1/2 LDPC code as an interleaver between the two component encoders would 

be of great interest. The input to the next component encoder would be formed by the parity 

part of the generated LDPC codeword.  

Efficient modification to the MPCGC by using only single LDPC component with mean 

column weight (MCW) ≥ 2.5 but the parity bits of the encoder are send it triple times. This 

procedure enhances the BER performance and reducing the decoding complexity 

[52][65][124]. 
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Punctured MPCGCs can be further investigated by adding a dummy data before encoding to 

control on the compatible code rate then remove it later which will make a code rate 

compatible and enhance the system performance with reduced decoding complexity.  

Enhancing the MPCGC-WiMAX application, since the investigation of the performance 

evaluation was being conducted for perfect CSI at the receiver, the performance analysis 

supposed that the channel parameters are well known at the receiver. This thesis does not 

cover the channel estimation practices for MIMO-WiMAX in realistic mobile environments. 

In addition, thought-provoking outcomes could be achieved by carrying out an investigation 

of these codes in circumstances where perfect CSI is unavailable.  

The hardware implementation of VLSI decoder architecture for MPCGC can be potential 

research to evaluate and enhance the capacity achieved. The potential proposed architecture 

is based on the quasi-cyclic (QC-LDPC) codes whose circulant permutation matrix which 

provide a good performance compared with that of randomly LDPC codes for small to 

moderate block length [125][126]. 

A spatially coupled of LDPC code can be incorporated with MIMO-OFDM-SC-MPCGC to 

enhance the system performance and increased the capacity achieved. Spatially coupled (SC) 

LDPC codes are based on the construction of convolutional codes. Moreover, the SC-QC-

LDPC codes can provide high capacity with reduced decoding complexity [127-129].  

The using of MPCGC based on binary LDPC codes needs to be extended to the nonbinary 

LDPC codes due to their flexibility to cover more enhancing the system performance. 

 Efficient MPCGC coding performance can be achieved by proposing optimized FFT based 

on q-ary SPA decoding for (NB-LDPC) component codes with flooding and layered 

schedules. The (NB-LDPC) are linear block codes provide excellent error correcting codes 

compared to the binary LDPC codes at the same parameter. High throughput with excellent 

performance can be achieved from the proposed model [130][131]. 
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Appendix A 
Signal to noise ratio calculation 

The signal to noise ratio in the received samples is defined as:  

                                                𝑆𝑁𝑅 = 10 log10(
2𝐸𝑏

𝑁0
)                                                      (𝐴1)  

Where 𝐸𝑏 is the average energy per transmitted bit, and 𝑁0/2  is the two-sided power spectral 

density of the additive white Gaussian noise. 

The average transmitted energy per bit is given by: 

                                                        𝐸𝑏 =
1

𝑏
                                                                            ( 𝐴2) 

Where b is the number of bits used in the encoding process to produce each of the symbols. 

The variance in the real parts of noise samples in the received samples is given by:  

                                                          𝜎2 =
𝑁0

2
                                                                         ( 𝐴3) 

 From equations  𝐴1 to 𝐴3, the signal to noise ratio (measured in dB) is taken to be: 

                                                        𝑆𝑁𝑅 = 10 log10(
1

𝑏𝜎2)                                                    (𝐴4) 

For BPSK the value of 1/b=1. 

The information digits are generated with a uniform distribution, and the real parts of the 

noise sample are generated as the Gaussian random number generator with zero means and a 

standard deviation σ.  

The Monte Carlo method is used to simulate the SNR calculations against bit error rate 

(BER). The performance of all systems is determined by calculating the BER (bit error rate) 

at different SNR [132][133]. 

                                          BER =  
Number of erroneous bits

 Number of transmitted bits
                                            (𝐴5)     
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