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Abstract

Microcavity polaritons are mixed light-matter quasiparticles arising from the hybridiza-

tion between confined cavity photons and quantum well excitons. Since their first

observation over a quarter of a century ago, they have been extensively researched for

the unusual and attractive properties imparted by the combination of light and matter

components, including their unique dispersion relation, small effective mass and strong

repulsive interactions, leading to rich phenomena in both linear and nonlinear regimes.

More recently, advanced post-growth fabrication techniques have allowed for sophisti-

cated tailoring of the potential landscape of polaritons, opening up a new avenue of

research into polaritonic lattices which show great promise towards quantum simulation

and photonic topological states. In this thesis both planar and laterally-patterned

microcavities are studied, addressing fundamental concepts in polariton physics.

In Chapter 3 planar microcavities are studied under conventional plane wave

excitation, and the spontaneous generation of vorticity and super-Poissonian photon

statistics are demonstrated.

In Chapter 4, single, coupled and zigzag chains of etched micropillars are studied

under low-power incoherent excitation and the polarization degree of freedom is



viii

investigated. In the latter case, different localization lengths are found for orthogonally-

polarized topological edge states of the system.

In Chapter 5, two-dimensional Lieb lattices of micropillars are studied in low-

power and high-power non-resonant and quasi-resonant regimes, where multi-mode

condensation, nonlinear fragmentation and pseudospin (polarization) textures are

reported.



Table of contents

List of figures xv

1 Background 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Microcavity polaritons . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Semiconductor materials . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Microcavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Collective coherence phenomena . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Relaxation processes . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.2 Polariton condensation . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.3 Superfluidity and vortices . . . . . . . . . . . . . . . . . . . . . 21

1.3.4 Pattern formation . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 Polarization degree of freedom . . . . . . . . . . . . . . . . . . . . . . . 26

1.4.1 Pseudospin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4.2 TE-TM splitting . . . . . . . . . . . . . . . . . . . . . . . . . . 29



x Table of contents

1.4.3 Optical spin Hall effect . . . . . . . . . . . . . . . . . . . . . . . 32

1.5 Nonlinear optical effects . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5.1 Parametric scattering . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5.2 Bistability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.5.3 Photon statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.6 Polaritons in periodic potentials . . . . . . . . . . . . . . . . . . . . . . 39

1.6.1 Confinement methods . . . . . . . . . . . . . . . . . . . . . . . 39

1.6.2 Band structure formation . . . . . . . . . . . . . . . . . . . . . 39

1.7 Polaritonic devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2 Methods 45

2.1 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.1.1 Monolithic cavities . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.1.2 Etched micropillar arrays . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Experimental setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.1 Sample cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.2 Reflection and transmission configurations . . . . . . . . . . . . 48

2.2.3 Sample excitation . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2.4 PL collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Sample characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.1 Fitting the dispersion relation . . . . . . . . . . . . . . . . . . . 53

2.3.2 TE-TM splitting . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.3 Optical tomography . . . . . . . . . . . . . . . . . . . . . . . . 56



Table of contents xi

2.3.4 Stokes polarimetry . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Polariton pattern formation and photon statistics of the associated

emission 59

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Pattern formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Pumping scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.2 Power dependence . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.3 Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.4 Pattern rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Photon bunching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4.1 Linear stability analysis . . . . . . . . . . . . . . . . . . . . . . 78

3.4.2 Pattern rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Polarization effects in topological dimer chains 89

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Photonic atoms and dimers . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.1 Zero-dimensional cavity . . . . . . . . . . . . . . . . . . . . . . 92

4.2.2 Coupled cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Polarization effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.1 TE-TM splitting . . . . . . . . . . . . . . . . . . . . . . . . . . 101



xii Table of contents

4.3.2 Polarization-dependent tunnelling . . . . . . . . . . . . . . . . . 108

4.4 Topological dimer chains . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4.1 Edge states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4.2 Odd chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4.3 Polarization-dependent tunnelling . . . . . . . . . . . . . . . . . 116

4.5 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Spatial, spectral and pseudospin properties of a two-dimensional Lieb

lattice 121

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 Linear regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2.1 Band structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2.2 Polarization properties . . . . . . . . . . . . . . . . . . . . . . . 129

5.3 Nonlinear regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3.1 High-angle excitation . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3.2 Normal-incidence excitation . . . . . . . . . . . . . . . . . . . . 134

5.4 Pseudospin textures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6 Conclusions and outlook 143

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2.1 Towards artificial gauge fields . . . . . . . . . . . . . . . . . . . 146



Table of contents xiii

6.2.2 Other polaritonic systems . . . . . . . . . . . . . . . . . . . . . 149

Bibliography 151

Appendix A Further sample details 171

A.1 Layer structure of samples used . . . . . . . . . . . . . . . . . . . . . . 171

A.1.1 Sample 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.1.2 Sample 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.1.3 Sample 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.2 TE-TM splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Appendix B Lieb lattice tight-binding model 177

B.0.1 s bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

B.0.2 p bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181





List of figures

1.1 Schematic of a typical semiconductor microcavity . . . . . . . . . . . . 10

1.2 Anti-crossing curve and exciton-polariton dispersions . . . . . . . . . . 13

1.3 Schematic of relaxation processes in a microcavity . . . . . . . . . . . . 16

1.4 Polariton condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Superfluidity and vortices in polariton condensates . . . . . . . . . . . 23

1.6 Pattern formation in polariton systems . . . . . . . . . . . . . . . . . . 25

1.7 Poincaré sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.8 Polariton dispersion with TE-TM splitting . . . . . . . . . . . . . . . . 30

1.9 Effective magnetic field generated by TE-TM splitting . . . . . . . . . 31

1.10 Calculated spin textures generated by the optical spin Hall effect . . . . 34

1.11 Bistability curve and polariton decay rates . . . . . . . . . . . . . . . . 38

1.12 Band gap spectrum of a 1D periodic potential . . . . . . . . . . . . . . 41

1.13 Honeycomb lattice for polaritons . . . . . . . . . . . . . . . . . . . . . 42

2.1 Example of an etched microcavity . . . . . . . . . . . . . . . . . . . . . 47

2.2 Schematic of the basic PL reflection setup used for sample characterization 51



xvi List of figures

2.3 Schematic of the setup used for transmission measurements . . . . . . . 52

2.4 Schematic of the setup used for transmission measurements and photon

counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 Example of experimental data with fitted curves for sample characterization 54

2.6 Example of characterization of TE-TM splitting . . . . . . . . . . . . . 55

2.7 Optical tomography procedure . . . . . . . . . . . . . . . . . . . . . . . 56

2.8 Slices of tomographic PL data from Sample 1 in different E − k planes 57

2.9 Example of Stokes parameters of PL data . . . . . . . . . . . . . . . . 58

3.1 Vortex lattices in quantum systems . . . . . . . . . . . . . . . . . . . . 61

3.2 Excitation scheme used for generating patterns . . . . . . . . . . . . . . 62

3.3 Pattern power dependence . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Energy-degenerate parametric scattering . . . . . . . . . . . . . . . . . 66

3.5 Five- and six-lobed real and momentum space patterns . . . . . . . . . 69

3.6 Rotation of patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7 Value of g(2) across sequence of five pulses . . . . . . . . . . . . . . . . 73

3.8 Power dependence of g(2)(0) and signal noise . . . . . . . . . . . . . . . 74

3.9 Pump power dependence and linear stability analysis . . . . . . . . . . 80

3.10 Calculated polariton density distributions below bistability threshold . 82

3.11 Calculated polariton density distributions above bistability threshold . 84

3.12 Theoretical rotation of patterns . . . . . . . . . . . . . . . . . . . . . . 85

4.1 Advances in topological photonics . . . . . . . . . . . . . . . . . . . . . 91



List of figures xvii

4.2 Single micropillar cavity . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Calculated real space emission of micropillar eigenmodes . . . . . . . . 96

4.4 Two overlapping micropillar cavities . . . . . . . . . . . . . . . . . . . . 98

4.5 Experimental photonic molecule modes . . . . . . . . . . . . . . . . . . 100

4.6 Calculated photonic molecule modes . . . . . . . . . . . . . . . . . . . 101

4.7 TE-TM splitting in the unetched microcavity . . . . . . . . . . . . . . 103

4.8 Effect of TE-TM splitting on the eigenstates of a single micropillar . . 105

4.9 Polarization textures of the J = 0 spin-vortex modes . . . . . . . . . . 106

4.10 Winding of the linear polarization angle in J = 0 spin-vortex modes . . 107

4.11 Polarization effects in a single dimer . . . . . . . . . . . . . . . . . . . 110

4.12 Zigzag chain of overlapping micropillar cavities . . . . . . . . . . . . . . 114

4.13 N = 11 zigzag chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.14 Topological edge states in a zigzag chain . . . . . . . . . . . . . . . . . 117

4.15 SEM image showing three different zigzag chains . . . . . . . . . . . . . 119

5.1 Experimental realizations of Lieb lattices . . . . . . . . . . . . . . . . . 123

5.2 Scanning electron microscope image of a fully etched 2D Lieb lattice . . 125

5.3 Band structure of a fully etched 2D Lieb lattice . . . . . . . . . . . . . 126

5.4 Band structures of a partially etched 2D Lieb lattice . . . . . . . . . . 127

5.5 Real space emission of the partially etched 2D Lieb lattice . . . . . . . 128

5.6 Intensity and polarization map of the s flat band Fourier space emission 130

5.7 Schematic of the transmission geometry for high-angle excitation of the

Lieb lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



xviii List of figures

5.8 Power dependence of signal states in the Lieb lattice OPO . . . . . . . 133

5.9 Close up angle-resolved PL spectrum of a nonlinear gap state . . . . . 134

5.10 Evolution of the Lieb lattice emission spectrum with excitation power . 135

5.11 Schematic of the transmission geometry for normal-incidence excitation

of the Lieb lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.12 Power dependence of the Lieb lattice under normal-incidence excitation 136

5.13 Nonlinear fragmentation of flat band condensates . . . . . . . . . . . . 137

5.14 Energy vs intensity of constituent modes of the flat band condensates . 139

5.15 Pseudospin textures induced by photonic spin-orbit coupling . . . . . . 140

6.1 Towards pseudomagnetic fields for polaritons . . . . . . . . . . . . . . . 147

6.2 Towards artificial polarization-induced gauge fields for polaritons . . . . 148

6.3 Alternative candidates for future research into confined polaritons . . . 149

A.1 Simulated TE-TM splitting against in-plane wave vector . . . . . . . . 175



List of publications

Journal publications

Polariton Pattern Formation and Photon Statistics of the Associated Emis-

sion

C. E. Whittaker, B. Dzurnak, O. A. Egorov, G. Buonaiuto, P. M. Walker, E. Cancel-

lieri, D. M. Whittaker, E. Clarke, S. S. Gavrilov, M. S. Skolnick and D. N. Krizhanovskii

Phys. Rev. X 7, 031033 (2017)

DOI: https://doi.org/10.1103/PhysRevX.7.031033

Exciton Polaritons in a Two-Dimensional Lieb Lattice with Spin-Orbit Cou-

pling

C. E. Whittaker, E. Cancellieri, P. M. Walker, D. R. Gulevich, H. Schomerus, D.

Vaitiekus, B. Royall, D. M. Whittaker, E. Clarke, I.V. Iorsh, I. A. Shelykh, M. S.

Skolnick, and D. N. Krizhanovskii

Phys. Rev. Lett. 120, 097401 (2018)

DOI: https://doi.org/10.1103/PhysRevLett.120.097401

https://doi.org/10.1103/PhysRevX.7.031033
https://doi.org/10.1103/PhysRevLett.120.097401


2 List of figures

Spatiotemporal Continuum Generation in Polariton Waveguides

P. M. Walker, C. E. Whittaker, D. V. Skryabin, E. Cancellieri, B. Royall, M. Sich, I.

Farrer, D. A. Ritchie, M. S. Skolnick, D. N. Krizhanovskii

In preparation (2018)

Polarization effects in topological zigzag chains for photons

C. E. Whittaker, E. Cancellieri, P. M. Walker, B. Royall, L. E. Tapia Rodriguez, E.

Clarke, H. Schomerus, M. S. Skolnick, and D. N. Krizhanovskii

In preparation (2018)

Conference presentations

Exciton-polaritons in a two-dimensional Lieb lattice with spin-orbit cou-

pling

C. E. Whittaker, E. Cancellieri, P. M. Walker, D. R. Gulevich, H. Schomerus, D.

Vaitiekus, B. Royall, D. M. Whittaker, E. Clarke, I. V. Iorsh, I. A. Shelykh, M. S.

Skolnick, and D. N. Krizhanovskii

Upgraded contributed oral presentation at EP2DS-22/MSS-18 2017, Pennsylvania, USA

Contributed oral presentation at OECS 2017, Bath, UK

Contributed oral presentation at UK Semiconductors 2017, Sheffield, UK

http://sites.psu.edu/ep2ds2017/
http://oecs2017.iopconfs.org/home


List of figures 3

Poster presentation at QFLM 2017, Cargèse, Corsica

Transverse spatial pattern formation in a semiconductor microcavity

C. E. Whittaker, B. Dzurnak, P. M. Walker, E. Cancellieri, D. N. Krizhanovskii, O. A.

Egorov and M. S. Skolnick

Contributed oral presentation at UK Semiconductors 2016, Sheffield, UK

Poster presentation at ICSCE8 2016, Edinburgh, Scotland

Poster presentation at ICPS 2016, Beijing, China (presented by P. M. Walker)

Optical Spin Hall Effect and Pattern Formation in Semiconductor Micro-

cavities

C. E. Whittaker, B. Dzurnak, P. M. Walker, D. N. Krizhanovskii and M. S. Skolnick

Poster presentation at ISNP 2015, Cefalù, Sicily

https://qflm2017.org/
http://www.icps2016.org/
http://www.mifp.eu/SCHOOLS/ISNP-2015/




Chapter 1

Background

1.1 Introduction

The astounding potential of microcavity polaritons has been revealed by over a quarter

of a century’s worth of creative and fruitful experimentation. These quasi-particles,

representing a superposition of both light and matter, have so far provided access to

an incredible wealth of rich physics such as Bose-Einstein condensation, superfluidity,

quantized vortices and ultra-efficient parametric scattering, to name but a few associated

phenomena. And yet, despite the maturity of the polariton field, the keen interest

surrounding polariton systems refuses to subside, and it instead appears that the

extensive research and development applied to polariton systems leading up until this

point is now heralding a new era. At the heart is a desire to understand the intimate

interaction between light and matter, which has fascinated scientists going back to

antiquity, and the tantalizing prospect of the new applied and fundamental physics
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which might develop as a consequence. The initial interest in polariton systems as

integrated sources of ultra-low-threshold coherent light emission endures, whilst year

after year new capabilities and avenues of research continue to open up, enabled by

both academic ingenuity and technological prowess. Indeed, polaritons look set to

continue revealing new secrets and inspiring physicists for years to come, and a new

generation of high-quality samples promises to finally deliver the crucial application.

1.2 Microcavity polaritons

1.2.1 Semiconductor materials

The samples used throughout this thesis are all microcavities based around the III-V

compound semiconductor GaAs and ternary alloys InGaAs and AlGaAs. GaAs is a

zinc-blende material, which refers to crystals comprising two types of atoms arranged

in interpenetrating face-centered cubic lattices, and features a direct band gap, unlike

silicon, which makes it favourable for optoelectronic research. The extensive research

into GaAs-based heterostructures and mature epitaxial growth is one reason why GaAs

is the most popular choice of material for polariton research, along with the II-VI

binary compound CdTe. However, there is also a growing body of research into other

materials, such as wide band gap semiconductors (e.g. GaN and ZnO) and more

recently organic polymers [1]. Ease of growth, sample quality, temperature of operation

and optoelectronic properties are all important criteria which determine the relative

advantages and disadvantages of different semiconductor materials [2].
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1.2.2 Excitons

In direct band gap semiconductors, the promotion of an electron from the valence band

to the conduction band occurs upon absorption of a photon with energy greater than

the band gap EG, leaving a vacancy referred to as a hole. The electrostatic Coulomb

interaction between the negatively charged electron and positively charged hole favours

the formation of a bound state known as an exciton, whose energy is less than that of

an unbound electron-hole pair by its binding energy EB. The two types of excitons,

known as Wannier-Mott and Frenkel excitons refer to the cases when the size of the

exciton is greater than or less than the lattice spacing respectively. In the former case,

which applies to the GaAs excitons studied here, the hydrogenic wavefunction can be

found by solving the Schrödinger equation

[
− ~2

2µ∇2 − e2

4πεε0r

]
ψ(r) = Eψ(r), (1.1)

where µ = memh/(me + mh) is the reduced mass of the bound electron (with mass

me) and hole (with mass mh) and r is their separation. This leads to a 1s exciton

wavefunction given by

ψ1s(r) = 1√
πa3

B

e−r/aB (1.2)

where aB = 4π~2εε0/µe
2 is the Bohr radius. The binding energy is then

EB = ~2

2µa2
B

. (1.3)
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In GaAs, the large dielectric constant ε [3] means the Coulomb force between carriers

is highly screened, leading to a large Bohr radius exceeding 10 nm and corresponding

small binding energy of a few meV. Since the characteristic thermal energy kBT of

the system at room temperature is 25 meV, which exceeds EB, GaAs excitons are

only stable at cryogenic temperatures. In contrast, in materials such as GaN and

ZnO ε is smaller meaning EB exceeds 25 meV and excitons do not dissociate at room

temperature.

Optical excitation is the simplest method to create and study excitons, and it

has long been understood that coupling an excitonic resonance to light modifies the

physical properties of the excitons. Early theoretical works by Pekar [4] and Hopfield

[5] studied the modified exciton dispersion in bulk semiconductors. Low-dimensional

confinement of excitons allows enhanced coupling to light since the density of states is

strongly altered which affects the exciton oscillator strength f [6, 7]. Indeed, layering a

semiconductor between two semiconductors with a larger band gap creates a potential

well in which carriers are confined, with the outer layers acting as barriers. When

the thickness of the well is reduced to a length scale comparable to the de Broglie

wavelength of carriers (∼15 nm or less in GaAs) there is quantum confinement of the

excitons in the effectively 2D plane of the material layer, termed a quantum well (QW).

The binding energy of excitons is enhanced in QWs compared to the unconfined case

(correspondingly the Bohr radius decreases). From the expression for the integrated

absorption intensity of QWs per unit length,
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A = 4π2e2~f
nm0cL

, (1.4)

where n is the material refractive index and L the QW width, one can see how

confinement increases optical absorption, as verified by detailed measurements [8].

For maximum light-matter coupling, one needs also to confine photons, since the

dimensionality mismatch between unconfined photons and 2D excitons means the

excitons couple to a continuum of photon modes (only in-plane momentum conservation

is required). Thus, irreversible radiative decay of the exciton occurs, and the system

exists in the so-called weak coupling regime [9]. In contrast, when the coupling rate

between excitons and photons exceeds the damping, the regime of strong coupling is

reached, and new mixed light-matter eigenmodes appear: polaritons.

1.2.3 Microcavities

Dating back to the first demonstrations of the semiconductor laser diode in 1962

[10, 11], decades of extensive research and technological advances in fabrication have

led to wide use of both optical microresonators and QWs in light-emitting devices

[12]. An example of such a device is the vertical-cavity surface-emitting laser (VCSEL)

developed throughout the 1980s and widely used for technological applications. The

highly reflective planar mirrors in VCSELs strongly modify the spontaneous emission

rate of the excited electron-hole pairs in the QW layer and concentrate the emission

into a tight cone. It was these advances which allowed the first demonstration of
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strong exciton-photon coupling (in 2D) to form microcavity polaritons by Weisbuch

and co-workers in 1992 [13].

Fig. 1.1 Schematic of a typical semiconductor microcavity.

The highly-reflective mirrors used in microcavities consist of epitaxially grown

stacks of alternating layers of two semiconductors with different refractive indices,

known as distributed Bragg reflectors (DBRs). The thickness of individual layers

ensures optimal reflection via constructive interference of reflected light, mediated by

the Bragg condition d = λ/4n. Increasing the number of DBR layers allows reflectivities

approaching unity to be attained within a spectral window (known as the stop-band)

around a central wavelength λ̄. Using this knowledge high quality microresonators can

be engineered by placing a defect layer (which serves as the optical cavity) between

two DBRs, all of which can be grown with atomic precision onto a suitable substrate

using molecular beam epitaxy (MBE). Modern semiconductor microcavities used for

polariton research typically feature 20–30 DBR pairs in the top and bottom stacks,

although state-of-the-art cavities can have up to 40 pairs in a single stack [14]. The

samples used in this thesis feature the commonly used choice of GaAs/AlGaAs DBRs,

enclosing a GaAs cavity with InGaAs QWs, on a GaAs substrate [15].
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The dispersion of microcavity photons in a cavity of length LC and refractive index

nC can be expressed as

EC(k∥) ≈ EC(k∥ = 0) +
~2k2

∥

2mC

(1.5)

where the in-plane wave vector is given by k∥ =
√
k2

x + k2
y and mC = hnC/cLC is the

cavity photon effective mass (∼ 10−5m0). The cavity loss rate γC gives the cavity

resonance a finite width in energy, which is inversely proportional to and limited by

the cavity lifetime (homogeneously broadened). It can be used to define the quality or

Q factor of the cavity, Q = EC/γC .

Placing a QW at one of the antinodes of a microcavity introduces an excitonic

resonance EX into the system, whose dispersion is essentially flat due to its large

effective mass mX ∼ 104−5mC . If the exciton oscillator strength and cavity Q factor are

sufficiently large, normal mode splitting between the QW exciton and cavity photon

occurs when their energies are close to resonance. Energy is transferred back and forth

at the so-called Rabi frequency Ω and an upper polariton (UP) and lower polariton

(LP) branch are formed. Their energies are given by

EUP,LP(k∥) = 1
2

[
EX +EC − i(γX +γC)

]
± 1

2

√
(~Ω)2 +

[
EC − EX − i(γC − γX)

]2
(1.6)

where γX is the exciton linewidth, which is determined largely by thickness fluctuations

and alloy disorder, i.e. it is broadened inhomogeneously. ~Ω defines the vacuum
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Rabi splitting in analogy with atomic physics, and has typical values of 4–15 meV in

contemporary GaAs-based microcavities [7]. Physically it represents a dipole interaction

strength which is proportional to

Ω ∝
√
fNQW

LC

(1.7)

where NQW represents the number of QWs in the cavity [16]. In order for strong

coupling to exist, the condition that ~Ω > γX , γC must be met. The signature of this

regime is the avoided crossing of UP and LP branches, whose splitting is ~Ω when the

cavity-exciton detuning ∆ = EC − EX is zero.

As represented using colours in Fig. 1.2, the polariton branches have a mixed

light-matter content which varies smoothly with ∆. The so-called Hopfield coefficients

[5] give the respective exciton and photon fractions of LP and UP states as

|X(k∥)|2 = 1
2

1 + ∆(k∥)√
∆(k∥)2 + (~Ω)2

 (1.8)

and

|C(k∥)|2 = 1
2

1 −
∆(k∥)√

∆(k∥)2 + (~Ω)2

, (1.9)

which satisfy |X(k∥)|2+|C(k∥)|2 = 1. Since the polariton states are linear superpositions

of exciton and photon states, their lifetimes are given by the weighted exciton and

photon lifetimes γUP = |C|2γX + |X|2γC and γLP = |X|2γX + |C|2γC . It should be

noted that the inhomogeneously broadened exciton peak is typically highly asymmetric,
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Fig. 1.2 Anti-crossing of upper and lower polariton branches as EC is tuned across EX .
The middle panel shows the polariton dispersion at negative (left), zero (centre) and
positive (right) cavity-exciton detuning. The bottom panel shows the corresponding
Hopfield coefficients.

such that at resonance (|X|2 = |C|2 = 0.5) the LP resonance is typically much

narrower than that of the UP [17]. The polariton effective masses are given by

1/mUP = |C|2/mX + |X|2/mC and 1/mLP = |X|2/mX + |C|2/mC . One can see from

Fig. 1.2 that the polariton dispersion is approximately parabolic at small k, and as

such can be described by the quadratic relation
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EUP,LP(k∥) ≈ EUP,LP(k∥ = 0) +
~2k2

∥

2mUP,LP
. (1.10)

This is simply an approximation however. It has been suggested recently that this

part of the dispersion may actually be better described by a non-parabolic model with

fractional kinetic energy [18].

1.3 Collective coherence phenomena

1.3.1 Relaxation processes

Typically, microcavity polaritons are excited by non-resonant optical excitation, where

the laser is blue-detuned several hundreds of meV from the LP branch. Free electron-

hole pairs are generated by laser excitation, rapidly thermalizing on picosecond time

scales. It is thought that high-k bound exciton states are then populated by the emission

of longitudinal optical (LO) phonons, which interact strongly with carriers to carry off

large amounts of energy rapidly [19, 7]. These initial steps of relaxation via phonon

scattering wash out any coherence of the electron-hole pairs. Excitons continue to

relax down the dispersion through further scattering with acoustic phonons, eventually

reaching the optically active zone after 100-200 ps where they can couple to photons

to form polaritons. Outside of this region of momentum space, excitons have a wave

vector larger than light in vacuum and hence do not recombine radiatively. The cone

is defined by
√
k2

x + k2
y = ω/c. Inside the optically active region, polariton relaxation
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reaches a so-called bottleneck in the vicinity of the inflection point, where polaritons

tend to accumulate. This behaviour arises due to the steepness of the dispersion beyond

this point, where fewer phonons are available to carry away large amounts of energy

with a small reduction in k. In thin GaAs QWs, where the width L ∼ aB (the exciton

Bohr radius), the exchanged momentum is limited to a−1
B = (100Å)−1 which gives an

energy of around 1 meV [20]. Simultaneously, the polariton states inside the radiative

region also have an increased photon content which reduces their lifetime, which can

limit further cooling depending on how the polariton lifetime compares to the acoustic

phonon scattering time (∼10 ps). This effect, first studied in detail in Ref. [20], can

lead to a strongly non-equilibrium polariton distribution function which peaks at finite

k, and is more pronounced in negatively-detuned cavities.

In the bottleneck region, polariton-polariton scattering offers another mechanism

through which LPs can relax provided the density is sufficiently high. It is an elastic

dipole-dipole interaction which can exchange a few meV on a time scale of a few ps,

providing the main mechanism to populate the parabolic part of the LP dispersion [7].

The optical pumping also creates free carriers, which induce efficient polariton-free-

carrier interactions on sub-picosecond time scales, where the steeper electron dispersion

allows a larger energy exchange than that provided by acoustic phonons.

1.3.2 Polariton condensation

As composite bosons, polaritons are expected to undergo a phase transition of the

type seen in Bose-Einstein condensates (BECs) at sufficiently high densities, triggering
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Fig. 1.3 Schematic of relaxation processes in a microcavity under non-resonant excita-
tion, showing the initial LO-phonon emission (dotted arrow), scattering with acoustic
phonons (dashed arrows) and polariton-polariton scattering (solid arrows). The grey
area corresponds to the optically inactive states outside of the light cone.

macroscopic occupancy of the ground state. As discussed in the last section, polaritons

have a distribution function governed by the balance between pumping, which continu-

ously replenishes a reservoir of high-energy excitons, relaxation processes which transfer

particles towards lower energy states and push the distribution function closer to an

equilibrium one, and the finite lifetime through which particles are lost. Microcavities

are therefore driven-dissipative systems with an intrinsically non-equilibrium dynamics,

and depending on how close the system is to equilibrium one can classify two different

regimes:

Thermodynamic condensation.– When the polariton lifetime is long enough to allow

particles to reach a quasi-thermal distribution function, the system can be approximately
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described in terms of an equilibrium BEC function NBE(E) = 1/(e(E−µ)/kBT − 1) where

µ and T are the chemical potential and temperature of the system respectively.

Kinetic condensation.– When the polariton lifetime is insufficiently long to allow

thermalization, rather than accumulating in the state that minimizes the system

energy polaritons accumulate in the state with the optimal balance between scattering

processes and lifetime.

In both cases the resulting microcavity emission consists of a coherent beam of

light which has led to popular use of the term "polariton laser" dating back to early

polariton works [21]. However, in contrast to conventional lasers, in polariton systems

no population inversion is required for the emission of coherent light, and optical

gain can be achieved whenever the net scattering rate towards a mode compensates

the radiative losses. This implies the potential for ultra-low-threshold coherent light

emission, an aspect of polariton systems which has attracted keen interest over the

years [22]. When increasing the excitation of the sample more electrons and holes are

injected into the valence and conduction bands, which fill up offering fewer and fewer

states to form excitons. This phenomenon is known as phase space filling [23, 24] and

decreases the exciton oscillator strength and thus the Rabi splitting [25]. Gradually

the coupling strength between the exciton and photons diminishes at high pumping

powers. Finally, when the conduction and valence bands are completely filled, no

excitons can exist in the system anymore, and further polariton formation is prohibited.

This transition takes place at the so-called Mott density, occurring in GaAs- based

QWs for injected densities of electron hole pairs around 1011 cm−2 [26]. Beyond the
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Mott transition strong coupling is no longer possible, and conventional photon lasing

takes place due to the carrier population inversion in the QW(s).

Fig. 1.4 (a) Experimental dispersion relations across the polariton condensation thresh-
old from Ref. [27]. Below threshold polaritons have a broad distribution in momentum
and energy. At and above threshold polaritons macroscopically occupy the k = 0
(ground) state. (b) Energy distributions of an optically trapped thermalized BEC in
a high Q microcavity from Ref. [14] showing fits to the equilibrium Bose-Einstein
distribution. The power values from low to high are 0.12, 0.24, 0.45, 0.71, 0.93, 1.07,
1.10, 1.12, and 1.14 times the threshold value, which is 443 mW. (c) Number of LPs
and cavity photons per mode against injected carrier density for a polariton laser
(triangles) and photon laser (circles) taken from Ref. [28].

The wave function Ψ(r, t) of a macroscopically occupied polariton state can be

described by
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Ψ(r, t) =
√
n(r, t)eiθ(r,t) (1.11)

where Ψ(r, t) has non-zero mean value and acts as the order parameter for the phase

transition. It is a complex number with an amplitude (|Ψ|2 gives the condensate

density) and a phase. The system Hamiltonian initially has global gauge invariance,

meaning it is invariant under an arbitrary phase change of Ψ(r, t). However, at the

phase transition there is a spontaneous symmetry breaking as the whole condensate

assumes a specific phase [7]. In order to describe the dynamics of a polariton system

with long-range phase coherence, pumping and decay, the standard treatmeant is the

generalized Gross-Pitaevskii equation (GPE), sometimes called the Ginzburg-Landau

equation. Generally the LP branch is described by a parabolic dispersion, and the

condensate can be pumped either resonantly or nonresonantly through the presence of

an exciton reservoir (representing the bottleneck effect). The UP states are ignored

since they play little role and are not highly populated. In the case of non-resonant

pumping the widely-used complex GPE describing the macroscopic wave function Ψ of

the condensate with gain and loss is

i~
∂Ψ(r, t)
∂t

=
− ~2∇2

2mLP
+Vext(r, t)+ i

2
[
R(nR(r, t))−γ

]
+g|Ψ(r, t)|2+gRnR(r, t)

Ψ(r, t),

(1.12)

where Vext(r, t) accounts for any external potentials created by e.g. photonic disorder

or post-growth patterning of the microcavity, g and gR give the strength of polariton
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self-interactions and interactions with reservoir excitons, respectively. There are also

terms to represent dissipation of polaritons at a rate γ and creation of polaritons at

a rate R(nR) via scattering from the exciton reservoir. The reservoir density nR, is

described by the equation

∂nR(r, t)
∂t

= PR(r, t) − γRnR(r, t) −R(nR)|Ψ(r, t)|2, (1.13)

where PR is the pumping rate, γR represents dissipation and the third term describes

stimulated scattering into the condensate.

Alternatively, in the case of resonant pumping, the GPE is usually written as

i~
∂Ψ(r, t)
∂t

=
 − ~2∇2

2mLP
+ Vext(r, t) − iγ

2 + g|Ψ(r, t)|2
Ψ(r, t) + Fei(ωP t−kP r), (1.14)

where F is a function describing the amplitude and spatial distribution of the driving

laser which has frequency ωP and wave vector kP . In contrast to the case of non-

resonant pumping, here the phase of the excitation beam is imprinted into the polariton

condensate. The majority of theoretical models of polariton systems (at the mean-field

level) are based around these two complex GPEs. There may also be modifications

in the form of, for example, a density-dependent (saturable) optical gain [29]. The

importance of the GPE is its wide applicability and various phenomena which are then

expected to occur as a result, i.e. known solutions [30].
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With regards to the exact value of the polariton-polariton interaction strength g, it

remains a topic of debate. Theoretically, the pure exciton-exciton interaction energy per

unit density is expected to be given by gX ∼ 3EBa
2
B which for typical GaAs QW excitons

yields gX ∼ 3µeVµm2 [31]. However, several experiments designed to measure gX based

on the blueshift ∆E of polaritons have yielded inconsistent values spanning over three

orders of magnitude between roughly 2 – 2000 µeVµm2 [32–38]. This partly reflects the

difficulty of determining the precise density of coupled and uncoupled excitons in the

system, and also the fact that there are two contributions to the polariton blueshift:

Coulomb interactions of excitons and a phase-space filling which reduces the exciton

oscillator strength and hence Rabi splitting. It has also been suggested that even under

resonant excitation where polariton-exciton scattering is suppressed, large populations

of incoherent excitons (populated through disorder scattering for example) can build

up and contribute to the measured blueshift, depending on the timescale of excitation

and sample properties [39].

1.3.3 Superfluidity and vortices

Another striking macroscopic quantum phenomenon in condensed matter physics is

superfluidity. Following early experimental observations of superfluid behaviour in

the liquid helium isotope 4He [40, 41] it was soon suggested by London [42, 43] that

superfluids are intimately related with BECs. Meanwhile, Landau was able to highly

successfully describe superfluidity (without mention of BECs) using simple postulates

still in use today [44]. Specifically, superfluidity occurs because of the linear dispersion of



22 Background

excitations in a system, and leads to flow without friction due to the irrotational nature

of the fluid; it is now widely agreed that these postulates are a natural consequence of

condensation [see Equation 1.15 below]. As such, both superfluids [45, 46] and atomic

BECs [47, 48] exhibit the associated nucleation of quantized vortices under rotation. In

the case of polariton systems, fork-like dislocations were observed in the interferograms

of early non-resonantly pumped condensates [49] which arise due to the flow of the

dissipative polariton condensate around the disorder landscape in the sample. The

authors noted that this observation alone was insufficient to establish superfluidity,

although it shares similarities. Superfluidity and the Čerenkov regime of polaritons

were reported the following year by Amo et al. [50] under resonant pumping. This was

followed by the observation of oblique solitons [51], which are nonlinear excitations of

a perturbed polariton superfluid. Also using coherent excitation, Nardin et al. [52]

studied the nucleation of vortices and vortex–anti-vortex pairs.

An important relation that follows on from Equation 1.11, allowing one to see

the link between superfluidity and BEC, is that linking the condensate flow v(r) at

position r to the gradient of the phase θ of the wave function:

v(r) = ~
mLP

∇θ(r). (1.15)

which implies that the superfluid is irrotational since ∇ × v(r) = 0. In reality it turns

out rotation is suppressed by the flow only below some critical velocity, whilst above
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Fig. 1.5 (a) Phase map of a single quantized vortex created under non-resonant
excitation in Ref. [49]. (b) Hydrodynamic nucleation of a pair of quantized vortices
observed under resonant excitation in Ref. [52]. (c) Superfluid (left) and Čerenkov
(right) regimes of polariton flow reported in Ref. [50]. (d) Hydrodynamic nucleation of
a pair of oblique solitons and phase map from Ref. [51].

this velocity the phase θ can only change by a multiple of 2π around a closed path in

order that Ψ remains single-valued:

∮
∇θ(r, t) = 2πl. (1.16)

The case where l = 0 describes a uniform condensate. If one considers the case l = 1

with a phase change of 2π, then there must be at least one point inside this path where

θ takes any value between 0 and 2π, i.e. a phase singularity. Thus the amplitude of Ψ

vanishes at this point, constituting a quantized vortex with the unit of circulation

∮
v.dl = ~

mLP

∮
∇θ(r, t) · dl = l

h

mLP
. (1.17)
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The velocity around the vortex core is given by

v = l
~

mLP
êθ. (1.18)

This quantization of the velocity field indeed confirms that vortices appear in a

condensate in the superfluid regime above some critical velocity, below which imposed

rotation is suppressed.

Besides the pinned vortices created under non-resonant excitation [49] and hydrody-

namic vortices observed under resonant excitation [52], vortices may also be imprinted

optically using Laguerre-Gauss beams [53, 54] or other non-Gaussian excitation geome-

tries [55, 56] or by perturbing a polariton fluid with a Gaussian probe at finite angle

[57]. These vortices are single vortices with l = 1; it is well known that higher-order

vortices are thermodynamically unstable, with both optical [58] and atomic [59] vortices

having been observed to break down into arrays of l = 1 vortices. However, a recent

polariton work demonstrated the possibility of generating higher-order vortices using

multiple incoherent pumping spots [60]. The spontaneous emergence of higher-order

vortices will also be discussed in this thesis in Chapter 4.

1.3.4 Pattern formation

The spontaneous emergence of spatio-temporal order, or pattern formation, is one of

the key mechanisms of self-organization observed in non-equilibrium systems in nature.

Many different open physical systems (in biology [61], chemistry [62], physics [63], etc.)
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are described by a familiar set of order parameter equations [64, 65] and thus share

similar pattern forming properties. Several features of polariton systems make them

favourable for pattern forming behaviour. Polaritons exist in non-equilibrium fluids

in which particles undergo nonlinear scattering processes, whilst spreading spatially

in time (diffracting) which are two key ingredients for pattern formation. The order

parameter can be varied by optical pumping, taking the system far from equilibrium

across some threshold where spatial instabilities grow and form patterns. The non-

trivial polariton dispersion with its point of inflection means that coherently pumped

condensates can exhibit nonlinear states which result from a dynamical interplay

between dispersion, dissipation and nonlinear interactions [66].

Fig. 1.6 (a) Hexagon patterns observed in a double microcavity structure in Ref. [67].
(b) Theoretical patterns in a homogeneously pumped microcavity from Ref. [68].
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Spatial pattern formation can be expressed in terms of the complex Ginzburg-Landau

equation which universally describes systems in the vicinity of a symmetry-breaking

instability [69, 70]. It takes the form

i
∂Ψ
∂t

= c1∇2Ψ + c2|Ψ|2Ψ + c3Ψ, (1.19)

where c1, c2 and c3 are complex parameters representing pumping and dissipation in

the case of polariton systems, from which one retrieves the GPEs described above.

One highly favourable property of patterns formed in polariton systems is the ultrafast

response time, with which it has been suggested various applications could be found

for non-equilibrium polariton patterns [71].

1.4 Polarization degree of freedom

1.4.1 Pseudospin

So far we have considered the strong coupling between photons and excitons in

semiconductor microcavities without regards to the spin degree of freedom. To account

for this, one must first consider the underlying spins of the electrons and holes in the

QW layer(s). In GaAs and other zinc-blende semiconductors, the valence band splits

into two branches (degenerate at k = 0) with different effective masses, known as

heavy hole and light hole bands. These have respective total angular momenta along

the growth axis of j = ±3
2 and j = ±1

2 . In GaAs QWs the lowest energy level of a
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heavy hole is typically lower than any light-hole energy level due to their different

confinement energies [7], so excitons are formed by an electron and a heavy hole. As

a result, when heavy holes are bound to electrons, which have j = ±1
2 , ground state

QW excitons may have spin projections of either ±1 or ±2. Since photons carry a

spin angular momentum s = ±1 corresponding to the two circular polarization states,

conservation of total angular momentum dictates that j = ±2 exciton states cannot

couple to light to form polariton states, and are hence called dark excitons, while

j = ±1 exciton states are known as bright excitons since they couple to light. This

means that right- and left-circularly polarized light couples to j = +1 and j = −1

exciton states respectively, whilst linearly polarized light excites a linear combination

of the two. Polaritons thus have two possible spin projections on the growth axis of a

microcavity.

It is convenient to characterize the polarization properties of polaritons using the

pseudospin formalism. Pseudospin is a 3D vector which describes both the exciton spin

and its dipole moment orientation, which can be measured by calculating the Stokes

parameters of the emitted light. The Stokes vector is given by

S =



S0

S1

S2

S3


(1.20)
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where S0 is the total intensity. The first Stokes parameter is the degree of linear

polarization in the vertical and horizontal polarization basis:

S1 = IH − IV

IH + IV
, (1.21)

where IH and IV are the intensities of horizontally and vertically polarized light

respectively. The second Stokes parameter is the degree of linear polarization in the

diagonal and anti-diagonal polarization basis:

S2 = ID − IA

ID + IA
, (1.22)

where ID and IA are the intensities of diagonally and anti-diagonally polarized light

respectively. Finally, the third Stokes parameter is the degree of linear polarization in

the circular polarization basis:

S3 = Iσ+ − Iσ−

Iσ+ + Iσ−
, (1.23)

where Iσ+ and Iσ− are the intensities of right- and left-circularly polarized light respec-

tively. The overall polarization of an ensemble of polaritons can be any superposition of

the individual polarization states and represented as an arrow in the so-called Poincaré

sphere, which is shown in Fig. 1.7. The length of the Stokes vector is between 0 and 1,

going from completely unpolarized to polarized light.
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Fig. 1.7 Poincaré sphere.

1.4.2 TE-TM splitting

TE-TM splitting, also known as longitudinal-transverse splitting, refers to an energy

splitting between transverse-electric (TE) and transverse-magnetic (TM) polarized

polaritons which is seen in the dispersion for oblique angles. The different curvature of

the two polarization branches gives TE and TM polaritons different effective masses,

i.e. mTM < mTE. It has two origins: an intrinsic splitting of the cavity mode caused

by an angle- and polarization-dependent phase delay upon reflection from the DBRs

[72], ∆ϕTM = ∆ϕTEn
2
1/n

2
2, and the wave vector dependence of the long-range exciton

exchange interaction [73]. Since the former effect is much larger we will neglect the

latter effect. The magnitude of TE-TM splitting depends on the deviation of the cavity

mode λC from the central frequency of the stopband λ̄ (which can be enhanced by

structure asymmetry) and it increases quadratically with angle, reaching a maximum

at the angle corresponding to the point of inflection of the LPB [see Fig. 1.8].



30 Background

Fig. 1.8 Upper panel: typical polariton dispersion relation in the presence of large
TE-TM splitting in a negatively-detuned cavity. Lower panel: dependence of TE-TM
splitting on in-plane wave vector.

The Hamiltonian describing TE-TM splitting in a circular polarization basis is

given by

HTE−TM =

 H0(k) ΩTE−TM(k)e−2iϕ

ΩTE−TM(k)e2iϕ H0(k)

 = H0(k)I + ΩTE−TM · σ (1.24)

where k is the 2D in-plane wave vector and ϕ is the in-plane angle [see Fig. 1.7]. I is

the identity matrix and σ is the Pauli matrix vector whose components are the Pauli

spin matrices (σx, σy, σz). ΩTE−TM(k) then represents an effective magnetic field
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ΩTE−TM(k) = ΩTE−TM(k)



cos 2ϕ

sin 2ϕ

0


(1.25)

where ΩTE−TM(k) is the energy splitting between TE and TM modes. Since the z

component is zero, the field is in-plane. The coupling of polariton pseudospin to wave

vector k has strong analogy with spin-orbit coupling, where an effective magnetic field

in the reference frame of electrons couples to their dipole moment giving rise to a spin

splitting. It can be described by a scalar product between the magnetic field and Pauli

matrix vector [74], which is also seen in Equation 1.24. As such, TE-TM splitting is

sometimes referred to as photonic spin-orbit coupling.

Fig. 1.9 Texture of the effective magnetic field induced by TE-TM splitting in momen-
tum space.

The wave function of a TE-polarized mode with its pseudospin aligned with

ΩTE−TM(k) is given by
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ψ(k) = ψ(k)

e
−iϕ

eiϕ

 . (1.26)

The relative phase between the two circular polarization components must be 2ϕ for

the mode to remain TE-polarized. If one considers a rotation of the TE mode around

the in-plane angle ϕ in momentum space, between ϕ = 0 and ϕ = π the relative phase

changes by 2π, so the polarization at these two angles is the same. At the intermediate

angle ϕ = π/2, the relative phase between the two polarization components is π and

hence the mode is orthogonally polarized with respect to the first case. One can now

see that the linear polarization winds doubly during a full rotation around the point

(kx, ky) = (0, 0) [see Fig. 1.9].

1.4.3 Optical spin Hall effect

For a polariton with pseudospin vector S(k) its temporal evolution is given by

∂S(k)
∂t

= S(k) × ΩTE−TM(k) (1.27)

which gives rise to a well-known precession dynamics around the effective field. The

texture of this field is best visualized through the optical spin Hall effect (OSHE). In

the original proposal by Kavokin and co-workers [75], a wave packet of polaritons with

well-defined k is injected resonantly on the LP branch. Resonant Rayleigh scattering

of polaritons from disorder leads to a redistribution around an isoenergetic circle (with

fixed |k|) in momentum space, which leads to the appearance of spin domains in the
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emission [76]. A more recent scheme [77] involves resonant excitation of a microcavity

at normal incidence with a tightly focused linearly polarized pump, which is sufficiently

large in momentum space to directly excite an isoenergetic ring of states at energy

~ωP . As polaritons radially flow from the pump spot, their pseudospin precesses about

ΩTE−TM(k) according to Equation 1.27, which can be written as a function of their

radial velocity vr and radial distance r in the form

vr
∂S(r)
∂r

= S(r) × ΩTE−TM(k) (1.28)

where the velocity is given by vr(k) = ~−1∂E(k)/∂k. An analytical solution provided

by Flayac et al. [77] for the components of the resulting stationary wave function in

the circular polarization basis Ψ(r, ϕ) = (Ψ+,Ψ−)T is given by

Ψ+ =
√

2N0

πk0r
e−iϕ[cosϕeikTMr + i sinϕeikTEr]e−r/r0 , (1.29)

Ψ− =
√

2N0

πk0r
e+iϕ[cosϕeikTMr − i sinϕeikTEr]e−r/r0 , (1.30)

where N0 is the population of polaritons injected at r = 0 and r0 = ~koτLP/mLP

gives a mean decay length where τLP and mLP are the polariton life time and effective

mass and k0 is the mean excitation wave vector, k0 = (kTE + kTM)/2, with kTE,TM =√
2mTE,TMωP/~. The total population is given by n = n+ + n− = |Ψ+|2 + |Ψ−|2.

One can clearly see that there are periodic oscillations of the wave functions in both

azimuthal and radial directions, creating polarization patterns in analogy with the
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electronic spin Hall effect in doped QWs where spin textures are created by Dresselhaus

and Rashba fields [78].

Fig. 1.10 Calculated spin textures generated by the optical spin Hall effect showing
the degree of circular polarization (a) and corresponding degree of linear polarization
(b) from Ref. [77].

In addition to the TE-TM field, there may be additional effective fields in microcavity

systems which are visualized through the OSHE. For example, there may be a field

Ωan(k) associated with intrinsic optical anisotropy in the microcavity, such that

there is a k-independent energy splitting between linear polarization components, i.e.

birefringence, which affects the angular distribution of the OSHE emission pattern

[79, 80]. Whilst both this effect and TE-TM splitting create in-plane effective magnetic

fields, a nonlinear out-of-plane field ΩNL(k) can be generated by a density imbalance

between interacting σ+ and σ− polaritons, i.e. ΩNL(k) = −(α1 − α2)(n+ − n−)êz/2

where α1 and α2 are the interaction constants of polaritons with parallel and antiparallel

spins respectively [77].
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1.5 Nonlinear optical effects

1.5.1 Parametric scattering

Optical nonlinearities in semiconductor microcavities arise from the repulsive inter-

actions between QW excitons. Indeed, in pure QWs the creation of excitons changes

the absorption spectrum by scattering processes [81–83]. However, different states are

not distinguishable simply by changing the excitation wave vector, since the dispersion

is essentially flat and hence obscured by inhomogeneous broadening. As a result,

indirect methods must be used to probe the exciton-exciton scattering. In contrast,

in polariton systems the cavity photon component not only significantly reduces the

effective mass of particles leading to a much steeper dispersion, it also appreciably

reduces the linewidth. Thus, resonant nonlinear optical effects can easily be probed,

wherein different states are easily distinguished.

Pioneering experiments reported by Savvidis et al. [84] studied the huge optical

gain that could be achieved in semiconductor microcavities pumped at finite angle,

demonstrating a stimulated scattering of particles towards the ground state whose

population Nfinal was seeded with a probe. This is a manifestation of the bosonic nature

of polaritons, with the scattering proceeding at a rate proportional to (1 +Nfinal). The

polariton-polariton scattering (already introduced as a means of polariton relaxation

in Section 1.3.1 and enhanced here by final state stimulation) can also be interpreted

in the framework of nonlinear optics as a parametric scattering process, specifically

four-wave mixing (FWM), wherein two pump polaritons elastically scatter into two



36 Background

different directions: the so-called signal and idler states. Energy and momentum

conservation are satisfied due to the peculiar shape of the polariton dispersion, such

that

2kpump = ksignal + kidler. (1.31)

The behaviour reported by Savvidis et al. is typically referred to as optical parametric

amplification. Alternatively, when no probe is present similar behaviour can be observed

and the system is in the optical parametric oscillator (OPO) regime as first reported

by Stevenson et al. [85]. The parametrically generated signal polaritons then show

increased temporal coherence [53] and long-range order similar to BECs [86, 87], and

since no phase is imposed without a probe, there is a spontaneous symmetry-breaking.

Intriguingly, it has recently been shown theoretically that the outgoing polariton pairs

generated in the parametric process may carry non-zero orbital angular momentum

(OAM) [88], such that one can replace the translational momentum k in Equation 1.31

with winding number l and vorticity can spontaneously arise.

1.5.2 Bistability

In OPO experiments, the pump is typically positively detuned by some amount

from the lower polariton branch (LPB) to maximize efficiency [89]. This leads to a

renormalization of the dispersion relation (blueshift behaviour) via FWM [90]. Given a
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pump frequency ωp and corresponding frequency of the LPB at the pump wave vector

ω(kp), optical bistability occurs when

ωp − ω(kp) >
√

3γp, (1.32)

where γp corresponds to the linewidth of the pump mode. Under these conditions,

the pump mode follows a characteristic S-shaped curve with two turning points as a

function of driving intensity, where the negative slope corresponds to unstable states.

Under forward driving (increasing power), there is a sharp jump at the lower right

turning point of the curve, whilst under backwards driving (decreasing power) the

population falls back down at the upper left turning point. Hence between these turning

points two intra-cavity populations are possible depending on the driving direction.

The sharpness of the threshold and size of the bistable interval increase as a function of

detuning [91]. The first experimental observation by Baas et al. [92] was achieved with

excitation at normal incidence, but subsequent theoretical [93, 90] and experimental

[94] works considered the rich interplay between bistability and the OPO behaviour.

The case where ωp − ω(kp) <
√

3γp corresponds to the so-called optical limiter

regime, where a single sharp transition exists without bistability.

1.5.3 Photon statistics

It is well known that the interaction between light and matter strongly affects the

statistical properties of photons. In polariton systems, several theoretical [95, 96]
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Fig. 1.11 (a) Calculated pump population against driving power. The contour maps in
(b) and (c) show the corresponding polariton decay rates below and above threshold
respectively. The decay rates are also shown as a function of pump population in (d).
Gain and loss correspond to positive and negative values on the colour bar (see right).
Taken from Ref. [94].

and experimental [97–99] works have treated the build-up of coherence across the

BEC threshold (under non-resonant excitation) considering the second-order coherence

function g(2) which passes from ∼2 (thermal state) to 1 (coherent state). More recently,

statistical properties of polariton emission have also been studied in the cases of coupled

condensates [100] and across the bistability threshold [101], where mode confinement

was used in both cases to increase the nonlinearity, and strong bunching behaviour

(g(2) > 1) was observed. Whilst such photon bunching can in certain cases imply

non-classical effects such as squeezing, the other limit where photons are anti-bunched

(g(2) < 1) has long been sought after and would unambiguously demonstrate a quantum

regime. The most direct approach, the so-called polariton blockade [102] necessitates a

nonlinearity so strong as to take effect in the single-particle regime, imposing severe

requirements on the mode volumes of polaritons given the estimated strength of the

self-interaction [37, 39].
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1.6 Polaritons in periodic potentials

1.6.1 Confinement methods

So far we have considered the physics of polaritons in planar microcavities, where

energy is quantized along the vertical (growth) direction but particles are free to

move in the plane of the cavity. It is also possible to engineer in-plane potentials for

polaritons, by modulating either the excitonic or photonic energy landscape to provide

lateral confinement. Examples of methods to create such polariton lattices include

metal deposition [103], surface acoustic waves (SAWs) [104], etch-and-overgrowth of

the cavity layer (mesa traps) [105] and post-growth etching [106]. Here we will focus

on this latter technique, which involves etching cylindrical or square micropillars to

induce deep confinement of polaritons on the order of tens of meV, which is not feasible

with other methods. This technique has been employed to great success to create

0D trapping potentials [107], arrays of coupled micropillars [108, 109], 1D [110, 111]

and 2D [106] lattice potentials, and most recently quasicrystals [112] demonstrating a

flexibility which allows tuneable geometries not accessible with the other confinement

techniques (SAWs for example).

1.6.2 Band structure formation

In the case of lattice potentials, the polariton energy spectrum critically depends on

the depth of confinement U0, the periodicity a and the recoil energy ER = ~2k2
0/2mLP
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where k0 = π/a. Considering the simplest case of a 1D lattice as studied in Ref. [110],

forbidden energy gaps exist at

k = ±1
2G = ±nπ

a
, (1.33)

where G = 2nk0 defines the reciprocal lattice vector and n is an integer. These energy

gaps arise since waves at these values of k satisfy the Bragg condition, creating equal

superpositions of left and right travelling waves, i.e. standing waves. The two possible

stationary wave solutions (sine and cosine solutions) are distributed differently in

real space such that they feel a different potential energy, and hence have different

frequencies. The size of the gap is therefore determined by U0. In reality, the finite

polariton linewidth γLP must also be taken into account, since it ultimately limits the

observable band gaps as in early periodic potentials for polaritons [113]. The region

between k = ±k0 defines the first Brillouin zone (BZ) of the lattice, representing the

elementary cell of reciprocal space. Since the energy relation E(k) oscillates with a

periodicity given by the size of the BZ, it is a highly useful construct which gives

information about the energy at any arbitrary value of k.

The same arguments apply in higher dimensions, and periodic lattices of any

geometry, formulated through the Bloch theorem

Ψk(r) = ur(r) exp(ik · r), (1.34)
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Fig. 1.12 Experimental (a) and theoretical (b) dispersion relations of a 1D periodic
potential for polaritons showing forbidden energy gaps, taken from Ref. [110].

which describes the wave function Ψk of any particle at position r under the imposed

periodicity of a lattice potential, described by the periodic function ur. This can be

used to calculate the photonic bands in a laterally modulated microcavity, and then

the energy of the nth lower polariton band ELP,n can be found as

ELP,n(k∥) = 1
2

[
EX + EC,n

]
− 1

2

√
(~Ω)2 +

[
EC,n − EX

]2
, (1.35)

where EC,n is the corresponding photonic band. Since the in-plane motion of particles

is small in microcavities, the tight binding model provides a valid (and often analytical)

approximation of the system provided U0 is sufficiently larger than ER, and is hence

frequently used in polariton lattice works [106, 114, 115].

1.7 Polaritonic devices

Now progress towards utilizing the physics of microcavity polaritons to engineer

opto-electronic devices will be briefly reviewed. The GPE which typcally describes
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Fig. 1.13 (a) Scanning electron microscope (SEM) image of a honeycomb lattice for
polaritons. (b) Reciprocal space image showing the hexagonal shape of the first BZ. (c)
Dispersion relation showing the excellent fit (black lines) provided by the tight binding
approximation. Figures taken from Ref. [106].

polariton systems allows both bistable and optical limiter behaviour, which provide clear

thresholds useful for all-optical logic operations since controllable "on" and "off" states

can be created. It has been shown that the spin degree of freedom can be utilized to

create spin switches based on different thresholds for spin-up and spin-down polaritons

[116]. A variation of the pump-probe scheme in the optical limiter regime may act

as a polariton transistor capable of AND and OR operation [117]. Other works have

made use of polariton-exciton interactions using a nonresonant pump field, realizing

polariton amplifiers [118], tunnelling diodes [119], routers [120], interferometers [121]

and condensate switches [122, 123] in various geometries. Beyond all-optical schemes,

electrical injection of carriers can be used such as in the spin switch reported in Ref.

[124] or to realize coherent light-emitting devices such as the polariton lasers reported

for GaAs [125] and GaN [126] cavities, the latter at room temperature. Alternative
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directions for research into polariton-based devices include the realization of THz

emission sources [127, 128] and polariton-mediated superconductivity [129, 130].

The main challenges that remain for future polariton devices are principly related

to material properties and device engineering. Practical devices should be stable at

room temperature, which immediately rules out the GaAs-based microcavities which

have been discussed in detail so far. Currently, it appears that for many of the other

material choices where progress has been made, such as GaN [126], ZnO [131], organic

polymers [132], and transition-metal dichalcolgenide monolayers [133, 134] the growth

and fabrication can be difficult.





Chapter 2

Methods

2.1 Samples

2.1.1 Monolithic cavities

The microcavity samples which form the basis of all work in this thesis were grown

using molecular beam epitaxy (MBE) by Dr. Ed Clarke at the EPSRC National

Epitaxy Facility based on designs provided by Dr. Paul Walker. They are GaAs nλ/2

cavities, featuring three or six 10 nm In0.04Ga0.96As QWs embedded at one or two

antinodes of the cavity, and all three samples studied feature 23 (27) top (bottom)

Al0.85Ga0.15As/GaAs DBR layers. The heterostructure designs are based on past

optimization of growth parameters as summarized in Ref. [15]. One advantage of

introducing a low indium content into the QWs is that the emission wavelength is

shifted from that of the GaAs substrate (which is at 1.519 eV [135]), allowing samples

to be studied in resonant transmission. A downside is the limit imposed on the
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number of QWs by the indium lattice mismatch, where strain relaxation leads to highly

undesirable crosshatch disorder [15]. This means the Rabi splitting of such samples is

typically much less than can be achieved in AlAs cavities with GaAs QWs [136] where

the lattice mismatch is minimal.

2.1.2 Etched micropillar arrays

The etched micropillar samples developed and studied in this thesis were fabricated

by Dr. Ben Royall of the University of Sheffield Growth Facility, and are inspired by

previous works dating back over two decades [137, 107]. Both partially and fully etched

samples have been studied. With partial etching, only layers from the top DBR are

removed so the QW layers remain unexposed and there is no broadening of the exciton

resonance. However, the confinement depth is shallow in this case and there may even

still be a weak co-existing unmodulated dispersion if the etching is not sufficiently

deep. With fully etched micropillars, the cavity layer is etched all the way through

which gives deeper confinement potentials at the expense of some degradation of the

exciton linewidth [138].

The main steps of the etching procedure used to process monolithic cavities are as

follows:

• Hard mask deposited

• Resist spin-coated

• Exposed to electron beam lithography
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• Developed to remove resist in certain areas, revealing desired etch patterns

• Hard mask etched away

• Remaining resist removed with plasma ashing

• Inductively coupled plasma etch

• Passivation

An example of a post-growth etched honeycomb lattice can be seen in Fig. 2.1.

Fig. 2.1 Example of a fully etched micropillar lattice, showing the design used for
the fabrication procedure (a), an SEM image of the final etched structure (b) and a
close-up of the pillars, where the red arrows show the position of the cavity layer (c).

A summary of all samples used for the work in this thesis can be found in the table

below, and details about the layer structures can be found in Appendix A:

Sample QWs Notes

1 3 Studied in Chapter 3 at a detuning of ∼-2.5 meV

2 6 Studied in Chapters 4 and 5 at detuning of ∼-20 meV, etched

into micropillar arrays and "photonic" Lieb lattice sample

3 3 Studied in Chapter 5 at detuning of -7.5 meV, etched

into "excitonic" Lieb lattice sample
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2.2 Experimental setups

2.2.1 Sample cooling

All measurements were performed at cryogenic temperatures using a LHe-based contin-

uous flow cryostat attached to a LHe dewar in "pull" operation. Sample temperatures

were kept at or below 10 K (monitored using a factory-fitted sensor) by mounting

them onto small copper plates which were attached to the cold finger. The parallel

facing windows either side of the sample provide wide angular access for both reflection

and transmission experiments. The cryostat used features ultra low sample drift and

vibration, providing necessary stability for the high-resolution microphotoluminescence

spectroscopy scans reported in Chapters 4 and 5. The sample space maintained ex-

cellent vacuum during extended periods of operation (below 10−6 mbar), meaning

the vacuum pump could be turned off during measurements to minimize external

vibrations.

2.2.2 Reflection and transmission configurations

As previously discussed, the material composition of semiconductor microcavities

determines whether or not optical properties are accessible only by the reflected light

or can also be studied by the transmitted light. Since the latter feature is possible

for the samples used here, all setups were designed to allow optical experiments in

both geometries. At the front side of the cryostat (corresponding to the top DBR side

of the sample) a 20× magnification microscope objective (MO) with a focal length
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(f) of 10 mm and numerical aperture (NA) of 0.42 was placed. This MO was used

for both excitation and collection during non-resonant measurements in the reflection

configuration. At the rear side of the cryostat, two lenses were used: another N=0.42

MO with f = 10 mm for the measurements in Chapter 3 and an f = 50 mm camera

objective for the measurements in Chapter 5.

2.2.3 Sample excitation

For non-resonant photoluminescence (PL) measurements, which were used in all

chapters of this thesis for sample characterization, and exclusively in Chapter 4 to

measure the sample in a linear regime, a continuous wave (CW) red diode laser

operating at 637 nm was employed. All such measurements were performed in the

reflection configuration, with the attenuated laser beam joining the optical axis via a

50:50 beam splitter (BS) to be focused down to the sample surface by the MO. The

reflected PL was collected by the same MO and imaged onto the spectrometer. For

some measurements it was desirable to excite larger regions of the sample surface, such

as for the characterization of the etched structures in Chapters 4 and 5 which in some

cases extend over tens of microns. For those measurements an additional lens could

be placed in the excitation path before the BS (approximately one focal length from

the back focal plane of the MO) to create a larger beam on the sample surface. In

order to remove the reflected and scattered laser light from the signal measured on the

spectrometer, long pass filters operating at 700 nm or 850 nm were used.
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For resonant excitation of samples, which was employed in Chapters 3 and 5 a

tuneable mode-locked Ti:Sapphire laser with an 80 MHz repetition rate and 100 ps

pulse length was used. A birefringent filter and Gires-Tournois interferometer inside

the folded cavity allow for coarse and fine tuning of the emission wavelength between

approximately 700 – 1080 nm. An optical isolator was used outside the output aperture

of the laser, to prevent potentially damaging back-reflections into the cavity. A half-

wave plate (HWP) and polarizing BS were then used in conjunction: a small fraction of

the laser signal was siphoned off for the pulses to be analyzed by a photodiode attached

to an oscilloscope and an auto-correlator. A graduated rotational ND filter was placed

to set a maximum output power (to avoid thermal damage or dielectric breakdown

of any optics) and subsequently another rotational filter on a motorized stage for

precise and automated control of excitation power. This filter was displaced a small

amount (to reduce irradiance) from the focal plane of a 1:1 Keplerian telescope which

served to shrink the physical beam size incident on the filter, lessening the influence of

the attenuation gradient. Subsequently, a Glan-Thompson prism was used to ensure

highly horizontally polarized excitation, which could then be manipulated using either

a quarter-wave plate (QWP) or HWP for circular/elliptical or linear polarizations

respectively. Whilst most experiments used normal-incidence excitation of samples,

resonant excitation at finite angle could be performed using a mirror on a motorized

translation stage which allowed control over the lateral position of the beam incident on

the large camera objective, which varied the excitation angle. For the large excitation

angle used in Section 5.3.1, the angle of the camera objective itself was adjusted and
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a beam block was used on the front side of the cryostat to filter out the transmitted

laser.

2.2.4 PL collection

After being collected by the MO, the PL emission was imaged via a series of confocal

lenses onto the entrance slit of a HORIBA TRIAX 550 series spectrometer equipped

with a 1200 gr/mm grating, affording a resolution of 0.03 nm (∼50 µeV). Attached to one

of the exit ports was a Princeton Instruments PIXIS 1024×1024 pixel charge-coupled

device (CCD) with a pixel size of 13 µm.

Fig. 2.2 Schematic of the basic PL reflection setup used for sample characterization.

In the collection path, flip mounts were used for the lenses between the MO and

final lens. In the simplest possible configuration, intermediate lenses were flipped out

of the way to form a real space (near-field) image of the sample emission on the CCD.

In order to image the Fourier space (far-field) emission, the next lens after the MO,

which was placed one focal length away from its back focal plane, could be flipped

into place to project the Fourier components of the PL emission onto the spectrometer.
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One focal length away from the Fourier space lens was another real space lens which

allowed imaging the near-field emission with a different magnification. An adjustable

filter could be used in the real space plane to spatially filter the emission from a

selected region in the sample (useful for both real and Fourier space imaging of small

structures). Finally, a HWP and linear polarizer were placed in the excitation path

to resolve the emission in different linear polarization bases, required to estimate the

TE-TM splitting in the sample and for the polarization measurements in e.g. Chapter

4.

Fig. 2.3 Schematic of the setup used for normal-incidence transmission measurements
reported in Chapter 5.

In Chapter 3, photon counting measurements were performed using standard

Hanbury Brown and Twiss (HBT) interferometry [97]. This involved using a 50:50 BS

to send the microcavity PL emission to two identical avalanche photodiodes (APDs)

with a time resolution of 250 ps. Signals from the detectors were recorded as a histogram

of coincidences at different time delays, using a timing card with a 24 ps time-bin width.

Thus the time resolution of the setup was limited by the APDs, which was longer than

the pulse width of 100 ps, but much shorter than the laser repetition period of 12.5 ns,
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allowing correlations between successive emission events to be recorded. No spectral

filtering was required for the experiments owing to the energy-degenerate emission, but

spatial filtering of the near- and far-field emission could be achieved using pinholes in

the real space or Fourier space planes.

Fig. 2.4 Schematic of the setup used for normal-incidence transmission measurements
(a) and photon counting (b) reported in Chapter 3.

2.3 Sample characterization

2.3.1 Fitting the dispersion relation

Samples were characterized by aligning the centre of the k-space PL emission (under

low-power non-resonant excitation) to the spectrometer slit in order to record the

dispersion at zero in-plane angle. The smooth variation in cavity length across samples

induced by halting rotation during MBE growth meant there was generally a broad

range of cavity-exciton detunings accessible, so measurements were taken at various

positions. The recorded CCD data were loaded into MATLAB, where peak positions

corresponding to the upper and lower polariton branches EUP,LP were extracted for
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each pixel, corresponding to a different wave vector given by k∥ = 2π
λ

sin θ. Recalling

and rearranging Equation 1.6 (ignoring loss) the Rabi splitting and exciton energy can

be given as

ELPEUP = EX

(
ELP + EUP

)
−

[
E2

X + 1
2(~Ω)2

]
. (2.1)

which can be solved to find EX and ~Ω by least squares fitting.

Fig. 2.5 (a) Example of an experimentally measured dispersion relation from Sample 1.
(b) Experimental positions of LP and UP energies (blue dots) and fitted curves (green
lines). The black dotted lines show the extracted energies of the uncoupled exciton and
photon modes. (c) Experimental intensity profile of LP resonance along k∥ = 0 (blue
dots) and fitted Lorentzian peak (green line). The inset shows the intensity profile
plotted on a logarithmic scale across a broader energy range, showing clear LP and
UP peaks. The fitting gives a cavity-exciton detuning of -2.2 meV, Rabi splitting of
4.3 meV and linewidth of 78 µeV corresponding to a Q factor of 19,000.

The linewidth is given by the full-width at half-maximum (FWHM) of a fitted Lorentzian

peak at k∥ = 0. Acquiring an accurate theoretical fit to the polariton dispersion provides

highly useful information for future experiments as it allows the Hopfield coefficients,

effective masses and decay rates of polariton states in a sample to be characterized.

Access to these details also facilitates theoretical modelling and understanding.
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2.3.2 TE-TM splitting

The magnitude of TE-TM splitting [see Section 1.4.2] in a sample can be extracted

simply by measuring the microcavity emission in two orthogonal polarization bases, i.e.

horizontal and vertical. An example is shown in Fig. 2.6 where curves were fitted to

the measured dispersion in these two polarization bases, which in this case point in

the sample x and y directions. Separate TE and TM polariton branches can clearly

be resolved, with an energy splitting that increases up to the point of inflection and

different effective masses.

Fig. 2.6 (a) Experimental data from Sample 1 measured in two polarization bases (red
and blue dots) with fitted curves (solid green lines). (b) Dependence of the TE-TM
splitting on k∥. (c) Extracted effective masses for TE- and TM- polarized polaritons.
The fits give mTM = 0.9mTE and a β factor of 0.06 meV µm2.

The size of this polarization splitting can be quantified with the TE-TM splitting factor

β = ~2/4(1/mTM − 1/mTE) [77].
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2.3.3 Optical tomography

In order to gain rich information about the spatial and spectral properties of a polariton

system, an optical tomography procedure [139] can be performed in which the scanning

lens [see Figs. 2.2] is shifted sideways in increments. At each lateral position of the final

lens, a different slice of the near- or far-field emission is aligned with the spectrometer

slit, meaning CCD data from successive measurements can be stacked together to

produce a dataset with four dimensions corresponding to energy, PL intensity and the

two real/k space dimensions.

Fig. 2.7 Schematic of the scanning process used to acquire tomographic data.

In Fig. 2.8, it is demonstrated how the tomography process allows the emission to be

viewed along three different dimensions in the (E, kx, ky) parameter space. It is highly

useful in, for example, etched micropillar lattice samples where it enables a full picture

of the spatial and spectral structure of the polariton modes to be built up.
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Fig. 2.8 (a) Experimentally measured tomographic PL maps from Sample 1. (b) kx −ky

map. (c) E − kx relation. (d) E − ky relation.

2.3.4 Stokes polarimetry

As described above, HWPs and QWPs were used to resolve the collected PL emission

in different linear and circular polarizations. Using Equations 1.21 and 1.22 from the

previous chapter, maps showing the Stokes polarization degrees could be constructed

by linearly combining images recorded in different bases. In Fig. 2.9 an example of

polarization-resolved data is shown. The first two panels correspond to the Stokes

parameters S1 and S2. The third panel shows the degree of linear polarization (DLP),

given by
√
S2

1 + S2
2 . Two rings can clearly be seen, corresponding to the TE and TM

polariton branches. The final panel shows the linear polarization angle (LPA) given

by ϕ = arctan (S2/S1). The double winding of the LPA around kx,y = 0 shows the

influence of the TE-TM field described in Section 1.4.2.
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Fig. 2.9 kx − ky maps from Sample 1 showing the first two Stokes parameters S1 and
S2, and the corresponding degree of linear polarization (DLP) and linear polarization
angle (LPA).

In practice polarization measurements are typically influenced by terms other than

TE-TM splitting, such as localized or extended polarization anisotropy which can arise

from sample disorder or strain fields [79].



Chapter 3

Polariton pattern formation and

photon statistics of the associated

emission

3.1 Background

The phenomenon of spontaneous pattern formation occurs ubiquitously in science in

a diverse range of nonlinear extended media [61–65]. The universal mechanism by

which stationary patterns emerge from an initially symmetric state has fundamental

conceptual significance, combining a cross-talk mechanism acting on different points in

space and local nonlinear interactions [140]. As the system is taken out of equilibrium

by varying some control parameter, the spontaneous growth of new components via

interactions allows localized structures balanced by propagation and nonlinearity to
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form. In optics, diffraction and nonlinear mixing of electromagnetic waves allows

transverse localized structures in various nonlinear media [64, 65].

On the other hand, topological entities such as quantized vortices characterized by

a phase winding around a core [see Section 1.3.3] also play an important role in pattern

formation in many areas of science, including superconductors and stirred atomic Bose-

Einstein condensates (BECs), where patterns formed by vortices with a single winding

m = 1 have been addressed [45, 46, 141, 47, 48], whereas higher order vortices are

unstable. Similarly, in optical systems, high order vortex beams have long been known

to be less stable than single vortices [142–144], and the experimental preparation of

such beams and nonlinear conversion between them is challenging [145, 146], remaining

an obstacle towards realizing many useful applications in optical information processing

[147] and quantum entanglement [148]. One intriguing question is whether the non-

linear wave mixing processes which cause generation of new translational momentum

components and drive pattern formation in optical systems [64, 65], may lead to the

efficient nonlinear generation of vortex beams with sizable orbital angular momentum

(OAM). In this chapter such instabilities and the new class of spontaneous patterns

that result will be addressed. The main results are published in Ref. [149].

A significant consequence of polariton condensation is quantized vorticity, which

emerges from certain solutions of the GPE. So far single vortices have been observed in

polariton BECs, resonant and OPO superfluids [49, 55, 54, 57]. However, spontaneous

patterns driven by higher order vortex modes have not been investigated. Theoretical

studies of pattern formation in polariton systems have demonstrated the possibility of
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Fig. 3.1 Vortex lattices observed in a type-II superconductor from Ref. [46] (a), a stirred
Bose-Einstein condensate from Ref. [48] (b) and interfering polariton condensates from
Ref. [150] (c).

roll, labyrinthine and honeycomb patterns [68]. Experimentally, standing wave patterns

have been reported using annular pumping geometries in nonresonantly pumped BECs

[151, 152] and an extended triangular pattern was observed in a double cavity structure

[67].

3.2 Pattern formation

3.2.1 Pumping scheme

For the results reported in this chapter Sample 1 was used [see Section 2.1], and the

cavity-exciton detuning was approximately -2.5 meV. The Ti:Sa laser was focused

to a 2.5 µm Gaussian spot (the beam size was varied somewhat to produce different

patterns) using the N=0.42 MO, and the emission was recorded on the CCD attached

to the spectrometer. The pump beam was right-circularly polarized and blue-detuned

by between 0.5 and 1 meV from the bottom of the lower polariton branch. A schematic

of the excitation scheme can be seen in Fig. 3.2. In this configuration the pump
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excites polariton plane waves on a ring in momentum space with fixed magnitude of

the in-plane wave vector, |k|, since the tight focusing of the beam in real space leads to

a broad profile in Fourier space where the Gaussian wings directly excite the polariton

dispersion [see Fig. 3.2].

Fig. 3.2 Experimentally measured angle-resolved photoluminescence spectrum with
fitted curves (white lines) showing both the uncoupled (dashed) and coupled (solid)
modes of the system. The blue dotted line shows the energy of the pump laser and the
green solid line shows its Gaussian intensity profile and accompanying axis. |E| is the
electric field amplitude.

3.2.2 Power dependence

At low pumping powers the real space polariton density distribution is well approximated

by a zeroth order Bessel function of the first kind as can be seen in Fig. 3.3(b) [153],



3.2 Pattern formation 63

which is the Fourier transform of a ring. Thus the separation of the Bessel rings

is determined by the radius of the ring in momentum space. Note that some weak

modulation of the low power polariton density distribution is observed in Fig. 3.3(b).

The origin of this structure is most likely anisotropy along the crystallographic axes

which weakly modulates the cavity transmission, leading to a directionally dependent

transmission intensity.

In Fig. 3.3(a) the intracavity population (i.e. the total intensity of the light

emitted by the microcavity) is plotted against pumping power. In the low power

regime, the system behaves linearly with pumping power. At around 3.5 mW (quoted

powers are time-averaged and measured immediately before the excitation objective) a

threshold can be observed which is denoted as P1. At this point there is a change in

the slope of the curve, which corresponds physically to the dynamical instability point

where the azimuthal symmetry of the intracavity field is spontaneously broken and

nontrivial patterns become possible. A selection of the clearest patterns is shown in Fig.

3.3(c)–(g), the first of which is a dipole state with two bright lobes on the innermost

ring surrounding the central spot. As the pumping power is increased, the structure

evolves to accommodate four lobes on the innermost ring, replacing the dipole state,

as observed in Fig. 3.3(d). Beyond this pumping power there is a second threshold

denoted as P2, where there is an abrupt discontinuity in the emission intensity as the

intracavity field jumps to a new stable branch [see Fig. 3.3(a)]. In this regime one

can see the enlarged central spot with more azimuthal polygon patterns observed at

longer radii. Here we see hexagon, heptagon and octagon pattern states (Fig. 3.3(e),
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Fig. 3.3 (a) Integrated emission intensity as a function of pump power. The unfilled
stars are pumping powers corresponding to the real-space density distributions shown in
(b)-(g). P1 and P2 mark the onset of parametric scattering and bistability respectively.
(b) At low pumping powers we observe a Bessel distribution of polaritons. Above P1
we form patterns with two (c) and four (d) bright lobes. Above P2 patterns with six
(e), seven (f) and eight (g) bright lobes emerge. The data are plotted on a log scale
and normalized.

(f) and (g) respectively). At even higher pumping powers the system enters a turbulent
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regime where the coexistence of a large number of modes signals the onset of spatial

turbulence (not shown).

3.2.3 Mechanism

The mechanisms responsible for pattern formation will now be discussed. With

increasing pump power polariton-polariton scattering starts playing an important role

and above the P1 threshold the system becomes unstable against the growth of small

perturbations in the form of noise fluctuations, as certain transverse modes begin to

experience a gain that overcomes losses. The polariton repulsive nonlinearity also

blueshifts the LPB upwards in energy (an effect occurring most strongly at the centre

of the pump spot) and scattering channels to new transverse modes open up. This

allows macroscopic populations of particles to accumulate in nontrivial pattern states,

spontaneously breaking azimuthal symmetry, as pumped polaritons elastically scatter

to signal and idler modes at the same frequency and the system enters what can be

described as an OPO regime. This energy-degenerate parametric scattering can be

seen in Fig. 3.4. Both the blueshift of LPB upwards and parametric scattering results

in the change of slope of the power dependence curve above threshold P1 seen in Fig.

3.3(a) because (i) the excitation of polaritons on a ring in momentum space, which

decreases with pump power, becomes more efficiently pumped by the Gaussian pump

and (ii) the transfer of polaritons into signal and idler modes increases the energy of

the total polariton field inside the cavity.
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Fig. 3.4 Angle-resolved photoluminescence spectra along ky = 0 for driving intensities
in the three distinct regimes. The white lines show the unperturbed LPB.

In contrast to conventional polariton OPOs [154, 85, 155, 94], where pump, signal

and idler modes are plane waves with well defined k and different frequencies, the

pump state in our case is a coherent superposition of polariton plane waves on a ring,

and parametrically generated signal and idler states consist of a coherent superposition

of harmonics carrying OAM of opposite sign and residing on the same ring in Fourier

space [see Fig. 3.5 and Section 3.4 for experimental and theoretical Fourier space

images of patterns]. Signal and idler states with non-zero OAM have been observed in

both theory [156, 157] and experiment in conventional OPOs using an external seed

carrying OAM [53], and quantized OAM has been shown to be conserved during four

wave mixing (FWM) processes [158, 159]. The dynamics of vortex/antivortex pairs

which form in OPO condensates perturbed resonantly with a Gaussian probe beam

have also been investigated [57]. In our system, these vortex states arise spontaneously

without external seeding, and the interference between these vortex/antivortex pairs

creates a standing wave with 2m lobes, where m represents the winding number of

signal and idler modes, which must be equal and opposite. It is then the coherent

superposition of this standing wave with the pump field with constant phase which

gives rise to stable patterns with m lobes, since alternating lobes experience either
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constructive or destructive interference with the pump. Such an interference effect

is pronounced because of the comparable populations of signal and idler states with

the pump, due to highly efficient polariton-polariton scattering. This mechanism is

validated by the theoretical model used in Section 3.4, and explains how patterns with

arbitrary (even or odd) numbers of lobes can arise without violating any conservation

laws.

The allowed structures in a pattern forming system are determined by the nonlinear

dynamical instabilities present. Generally, instabilities in fluid dynamics, nonlinear

optics, chemical reactions, excitable biological media etc. favour patterns such as rolls,

stripes, spots and spirals which have been studied extensively [64, 65]. However, the

instabilities driving pattern formation are azimuthal in our polariton system which

explains pattern geometries (odd polygons) which have not to the best of our knowledge

been observed elsewhere.

In our system, parametric gain is maximized at local maxima of the pump field

intensity distribution, i.e. in the centre and on the first and second Bessel rings,

where the pump intensity is the highest. In this case the winding number ±m of

vortex/antivortex pairs (and hence the number of bright lobes in the final pattern)

is strictly defined by the phase-matching condition for quantization of OAM 2mπ =

2πrkφ, where r is the radius of the Bessel rings, which is given by the magnitude of the

wave vector |k| of resonantly injected polaritons (whose wave vector is purely radial),

and kφ corresponds to the azimuthal component of the wave vector of signal and idler

polaritons acquired during scattering processes. Since the LPB blueshifts as a function
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of the driving intensity of the pump field, the wave vector |k| of injected polaritons

and hence the radii of Bessel rings depends on the pump power. In addition there

is a radial dependence of the LPB blueshift created by the inhomogeneous Gaussian

profile of the pump, providing the necessary conditions for the formation of various

patterns, governed by the pump detuning and polariton dispersion and independent

of the system size, characterized by different winding numbers m, and with different

values of r which correspond to the value of |k| of the patterns. In accordance with

this mechanism, we see that m and r increase with pump power due to blueshift of

the polariton dispersion and the decreasing |k| of pattern states [see Figs. 3.3 and 3.5

and Section 3.4 for experimental and theoretical verification]. Also qualitatively the

increase in the number of lobes with driving intensity can be explained by increased

scattering at higher particle densities, such that more of the radial momentum of

injected polaritons is converted to OAM.

The second threshold in the system results from bistability of the coherently driven

intracavity field, which is characterized by an S-shaped curve connecting a lower and

upper stable branch. The positive feedback between the field intensity and the blueshift

energy means that the pumping efficiency rapidly increases as the LPB ground state

approaches the pump energy, leading to a superlinear increase in the emission intensity

as the intracavity field jumps to the upper bistable branch at the P2 threshold as seen

in Fig. 3.3(a). It is shown in Section 3.3 that this is accompanied by the generation of

super-Poissonian light and a huge increase in the signal noise in the window of pumping

powers where more than one stable solution exists.
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Fig. 3.5 Moving the beam waist position relative to the sample surface by adjusting the
focus of the excitation objective allows the transformation from a pentagon (a),(c) to
a hexagon (b),(d). Bright lobes can be seen in both real space (upper) and momentum
space (lower).

By varying the beam profile under fixed driving intensity, it is possible to switch

between different stable patterns, achieving a transition between states with different

numbers of lobes. An example of this is shown in Fig. 3.5, where adjusting the

size of the pump beam by translating the excitation objective changes the incident

power density. This enables the transition from a pentagon to a hexagon, indicating

how the most favourable pattern state is highly sensitive to pumping conditions. In

addition to the stationary patterns observed in the real space density distribution in

Figs. 3.5(a) and (b), accompanying Fourier space images also reveal polygon-type
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multi-lobed patterns as in Figs. 3.5(c) and (d). Here we see a large emission from

k = 0, reflecting the fact that the pumping power is above the P2 threshold and hence

the ground state has blueshifted into resonance with the pump. The larger ring simply

corresponds to lower density regions of space, i.e. away from the pump spot, where

the LPB is unperturbed. It is in between the outer ring and central spot that we see

polygon patterns, arising from the directional instabilities (polaritons gain an azimuthal

component of polariton wave vector through parametric scattering) experienced during

radial propagation from high to low density regions of space.

3.2.4 Pattern rotation

Now the question of what determines the orientation of the patterns will be addressed.

In the absence of spatial inhomogeneity, noise fluctuations induce some asymmetry into

the initial field distribution created under pulsed excitation. The unstable mode then

grows exponentially from this noise, pinning the locations of the polygon maxima. The

resulting patterns would be expected to form with random spatial orientation from shot

to shot, as they only depend on the relative phase of signal and idler vortex/antivortex

states, which is free to evolve from the phase of the pump. Since our measurements

are made on macroscopic time scales, averaged over millions of pulses, there must be

an additional mechanism stabilizing the patterns and pinning the signal/idler phases.

In reality sample disorder [160] provides spatial inhomogeneity which induces weak

anisotropy, which can stabilize the spatial orientation of the patterns from shot to shot

in experiment. In addition, in experiment it was also found that for some positions
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on the sample a rotation of the pattern orientation is observed when changing from

left to right circularly polarized pumping [see Fig. 3.6]. In other sample positions the

rotation was not observed. The weak localized birefringence naturally present in the

system will convert circularly polarized light into elliptically polarized light inside the

sample, with the direction of ellipticity depending on the circular polarization. Along

with TE-TM splitting and spin-dependent polariton-polariton scattering [161–164] this

birefringence effect may break azimuthal symmetry and hence define the position of

polygon maxima in real space for some positions across the sample where the photonic

disorder is weak.

Fig. 3.6 Real space images of stable hexagon patterns. Under a transition from left (a)
to right (b) circularly polarized pumping the patterns are seen to rotate. The rotation
angle α [see Section 3.4.2] is approximately 30◦.

3.3 Photon bunching

The effect of the parametric instability responsible for pattern formation was also

investigated via the statistical properties of light emitted by the microcavity under

coherent driving. For this the second order correlation function g(2) was measured
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using a HBT interferometer setup with two APDs with a time resolution of 100 ps [See

Section 2.2.4]. Signals from the detectors were recorded as a histogram of coincidences

at different time delays, using a timing card with a 24 ps time bin width. The expression

for number of coincidences G(2) is given by

G(2)(τ) = ⟨n1(t)n2(t+ τ)⟩ (3.1)

where n1 and n2 are the numbers of photons registered on the first and second detectors

respectively at time t and t+ τ and the angle brackets represent averaging over time t.

In the pulsed excitation scheme, the raw data corresponding to photon coincidences

consists of multiple peaks separated by a delay T=12.5 ns, which is the repetition rate

of the driving laser [see inset of Fig. 3.7]. The number of coincidences G(2)(j) between

photons in pulses separated by a time jT (where j is an integer) can be obtained by

integrating G(2)(τ + jT ) over a range of τ to obtain the pulse areas [97]. Assuming

that there is no correlation between intensities of consecutive pulses, G(2)(j) may be

normalized to the average area of the uncorrelated peaks at j ̸= 0. The normalized

g(2)(j) is then given explicitly by the formula:

g(2)(j) =
∫ +∆t/2

−∆t/2 ⟨n1(t)n2(t+ τ + jT )⟩ dτ
1

N−1
∑
i ̸=0

∫ +∆t/2
−∆t/2 ⟨n1(t)n2(t+ τ + iT )⟩ dτ

(3.2)

where N=5 is the number of pulses recorded. The integration range was chosen ∆t=6.5

ns, which is roughly half the value of T .
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Fig. 3.7 At the bistable threshold the value of g(2)(0) shows a bunched value of 1.75.
The corresponding raw data consists of photon coincidences at the HBT photodetectors
and is shown in the inset.

The power dependence of g(2)(0) is plotted in Fig. 3.8(a). At pumping powers

below the P2 threshold 1, g(2)(0) values remain at a value of 1 representing a coherent

state. At the onset of the P2 threshold, the g(2)(0) value suddenly increases to 1.75

(see Fig. 3.7 for the g(2) profile of individual signal pulses) before sharply returning to 1

with further increase of pumping power above threshold. Despite the narrow resonance

of g(2)(0), these results were very reproducible from day to day measurements.

In addition to the results obtained in our planar cavity sample, photon correlations

were also measured in a micropillar. This represents a similar system to our planar

cavity but differing in the key aspect of lateral confinement. Parametric scattering is

suppressed by the absence of a continuum of transverse modes to which polaritons can

scatter, which also precludes pattern formation. A micropillar then represents a system

with pure bistability. By selecting the same pumping conditions as for the planar cavity
1Data in Fig. 3.8 were taken for a linearly polarized pump, for which the strength of polariton-

polariton interactions is about twice smaller than in the case of circularly polarized pump. This leads
to thresholds P1 and P2 higher than in Fig. 3.3.
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Fig. 3.8 (a) The transmitted power through the planar cavity sample (black squares)
and the corresponding value of g(2)(0) (red circles) against pumping power. (b) The
measured photocurrent noise of the emitted light (blue diamonds) shown with the
detector noise floor (blue triangles) and the transmitted power (black squares) against
pumping power. The vertical dotted lines show the two P1 and P2 thresholds. (c) The
value of g(2)(0) (green circles) along with transmitted power (gray squares) against
pumping power in the micropillar sample.

case, the dynamics of a bistable polariton system without inter-mode scattering could

be investigated. It was found that in the micropillar the value of g(2)(0) remained at

that of a coherent state value across the range of pumping powers as can be seen in Fig.

3.8(c). Such observation indicates that the presence of parametric scattering clearly

plays a significant role in the bunching effect in planar structures.
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The findings of the g(2)(0) correlation measurements will now be discussed. In the

planar cavity case, a value close to unity measured below the P1 threshold is expected

since polaritons are quasiresonantly created by laser pulses, inheriting their coherence

properties. In this regime the pump field passes through the cavity with minimal

nonlinear interactions. Even above the threshold for parametric scattering, the light

generated by FWM processes is in a coherent state, and the statistics of the microcavity

emission remain firmly Poissonian. It is only when the bistable threshold is reached

that intensity fluctuations are strongly altered with the microcavity light emission

exhibiting super-Poissonian statistics.

It has been shown in a multi-mode bistable polariton system that energy can

gradually accumulate with time (within tens of picoseconds) in modes populated

through parametric scattering, followed by a sharp transition from the lower to the

upper steady state branch when the internal energy of the system is sufficient [165]. A

similar process is responsible for the bunching effect observed in our system, where signal

and idler modes accumulate particles through the parametric instability responsible for

pattern formation within the duration of the pump pulse, before a strongly superlinear

increase (in time) of pump, signal and idler fields launches the system onto the

upper bistable branch (so-called "blowup" temporal dynamics). In the vicinity of

this threshold the populations of pump, signal and idler modes integrated over the

pump pulse duration are highly sensitive to initial conditions, and thus to quantum

fluctuations of the pump and photonic field inside the cavity. This leads to strong noise

in the cavity emission from pulse to pulse and thus to the super-Poissonian photon
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bunching observed experimentally. By contrast, in a single micropillar cavity there is no

superlinear temporal dynamics of the intracavity field due to the absence of parametric

scattering channels to transverse modes, and before the bistability threshold is reached

(the right turning point of the S-shaped curve) the value of quantum fluctuations is

insufficient to drive the system into stochastic resonance, precluding the observation of

the strong bunching effect.

Above the P2 threshold, the system resides on the upper bistable branch with a well

defined polariton population integrated over each pump pulse, so the value of g(2)(0) is

restored to unity, and the statistics revert back to Poissonian. The behaviour in our

system differs from that of non-resonantly pumped polariton lasers and condensates

[98, 99, 166] where photon bunching is attributed to thermal populations of polaritons,

which subsequently scatter into the coherent ground state at higher intensities or longer

times in the case of above-threshold pumping.

Simultaneously, the photocurrent power noise arising from the microcavity emission

was measured. The principle is that the photocurrent generated by the microcavity

emission may also fluctuate significantly on longer time scales (than the laser period)

due to various classical noise contributions which would lead to an increase of signal

noise at lower frequencies, so it is complementary to the measurements of g(2) [167].

The polariton signal was sent to a Si photodiode detector, generating a photocurrent

which was amplified. Its power noise was analyzed in the frequency domain by a

spectrum analyzer. The photocurrent was acquired in a 1 MHz bandwidth around a
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central frequency of 5 MHz, well separated from the 80 MHz repetition rate of the

laser.

The power dependence of the noise signal is shown in Fig. 3.8(b). At low pumping

powers < 10 mW, noise levels remain relatively close to the detector noise floor, depicted

by unfilled triangles. An increase of noise by a few dB above this level appears at

pumping power ∼ 15 mW before the bistability threshold P2 ∼ 25 mW. This is followed

by a further sharp increase (20 dB) in noise at ∼18 mW and then at ∼22 mW pumping

powers, producing a wide peak with a shoulder at a lower, but still elevated noise level,

in the vicinity of the P2 ∼ 25 mW threshold. The noise reduces at higher powers, but

oscillations in the noise signal are still seen. The underlying physics differs from the

power dependence of g(2)(0), which reflects amplification of high frequency (80 MHz)

quantum fluctuations, i.e. pulse-to-pulse photon number variations. By contrast, low

frequency (5 MHz) noise is likely to originate from amplified classical noise of the pump

field, which grows quadratically with excitation power and is probably much stronger

than the quantum noise of the pump which depends linearly on excitation power

[167]. The noise amplification occurs through generation of fluctuating signal and idler

modes and possibly stochastic jumps between lower and upper bistable polariton states

similarly to the mechanisms responsible for the enhanced g(2)(0), but this may happen

over a broader interval of pump energies since classical fluctuations are stronger than

quantum. Different maxima in the power dependence of noise are probably governed

by the parametric instabilities responsible for pattern formation below and above

the bistability threshold P2 as observed in Fig. 3.3. It is known in other nonlinear



78 Polariton pattern formation and photon statistics of the associated emission

pattern forming systems that noise may be amplified at pump parameters where there

is crossover between different pattern states, referred to as domain coexistence [168].

In that case the noise originates from two competing unstable modes both experiencing

positive growth rates, very similar to the situation discussed theoretically in the next

section.

3.4 Theoretical analysis

3.4.1 Linear stability analysis

A theoretical analysis by Oleg Egorov from Universität Würzburg which provides

additional insight into the mechanisms underlying pattern formation will now be

presented, substantiating further the interpretations presented in the previous section.

Single-shot numerical simulations of the propagation of a pump beam through the

cavity in the presence of symmetry-breaking perturbations were performed. The system

can be described by the widely accepted mean-field model for excitons strongly coupled

to circularly polarized cavity photons [169, 7, 170, 151, 92] whose fields are given as

follows:

∂tE
± − i∇2

⊥E
± + [γ − i (ωp + δ)]E± = iΩRΨ± + E±

p (x, y), (3.3)

∂tΨ± + [γ − iωp] Ψ± + i
(∣∣∣Ψ±

∣∣∣2 + α
∣∣∣Ψ∓

∣∣∣2)
Ψ± = iΩRE

±. (3.4)
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Here E± and Ψ± are the complex amplitudes of the photonic field and coherent excitons

obtained through a standard averaging procedure of the related creation or annihilation

operators. Normalization is such that g−1|E±|2 and g−1|Ψ±|2 are the photon and

exciton numbers per unit area. Here g is the exciton-exciton interaction constant.

The symbols + and - represent right and left circular polarization of light and the

corresponding exciton spins. γ denotes the cavity and exciton damping constants.

ωp = ω − ω0, δ = ω0 − ωc describe the detunings of the pump frequency ω and the

cavity ωc from the excitonic resonance ω0. ΩR is the Rabi frequency. The two spin

components of the excitons are coupled by the dimensionless parameter α which exhibit

values around α = -0.1 [169, 7, 170].

The analysis begins at the onset of the P1 threshold, with a circularly polarized

coherent pump which has an azimuthally-symmetric Gaussian profile:

E+
p (x, y) = A0e

−r2(R−2+iη), (3.5)

E−
p (x, y) = 0. (3.6)

where r =
√
x2 + y2. A finite phase curvature of the pump beam is characterized by

the constant η and reflects the fact that in experiment the beam waist was displaced

with respect to the position of the quantum wells, resulting from the small adjustments

of the excitation objective from its focal distance used to produce the most pronounced

patterns. A non-zero and negative η is used in the theoretical analysis to provide
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a good qualitative agreement with experiment, although the phase curvature is not

fundamental to the underlying nonlinear processes themselves so patterns are still

observable in both experiment and theory over a range of values of η.

Fig. 3.9 (a) Maximum intensity of radially-symmetric steady-state against pump power.
The pump beam has a Gaussian profile with radius R=18 µm and phase curvature
η = −0.02 µm−2. Stable states are depicted by solid lines whereas dotted lines show
unstable solutions breaking spontaneously their radial symmetry. The dashed line
represents solutions which are unstable against m = 0 perturbations. (b) Growth rates
of leading unstable modes (with angular numbers m=2, 5, 6) against intensity of the
radially-symmetric solution. Other parameters: δ=-2.561 meV, ωp=-3.3 meV, γ=0.02
meV, ΩR=2.142 meV. These parameters are very close to the experimental conditions
of Fig. 1.

First, the radially-symmetric steady-state response which is independent of the

polar angle θ=arg(x + iy) was considered. Applying the Newton iterative method,

radially-symmetric steady-states were calculated for different driving intensities, shown

in Fig. 3.9(a). In agreement with pioneering works on exciton-polariton dynamics [92],

the obtained solutions are bistable provided the pump frequency is blue-detuned by

more than a certain amount with respect to the LPB. The threshold P2 corresponding

to the abrupt intensity transition in the experiment [see Fig. 3.3(a)] is expected to

occur at the turning point of the lower bistability branch, approximately where the
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pump equals 0.075 in Fig. 3.9(a). In the limit of weak pumping, the spatial intensity

profiles of the intracavity field possess the previously described ring structure as seen

in Fig. 3.10(a). This confirms that the pump beam excites polaritons on the LPB

which are in resonance with the pump frequency most strongly, compared to the k = 0

mode, which is comparatively very weakly driven [see Fig. 3.10(b)].

A full two-dimensional linear stability analysis of the localized structures was also

performed, which provides insight into the pattern selection process by showing which

transverse modes experience parametric gain. The linear perturbations were assumed

to be vortices carrying OAM with the general form

a+(r)eim θ+λ(m)t + a∗
−(r)e−im θ+λ∗t (3.7)

where the azimuthal winding number is integer, m=0, 1, 2, 3... . The solution becomes

unstable if at least one of the obtained eigenmodes possesses a positive growth rate, i.e.

Re[λ] > 0. The linear stability analysis shows that the radially-symmetric solutions

can become unstable with respect to perturbations breaking the azimuthal symmetry,

i.e. with m ̸= 0 , shown in Fig. 3.9(b). For instance, the linear eigenmode with m=2

can destabilize the steady-state field profile for pump intensities below the bistability

threshold [see Figs. 3.9(a) and (b)]. Direct numerical simulations within the original

equations show that this instability develops with time and results in the formation

of a dipole-like steady-state with three intensity peaks [see Figs. 3.10(c) and (d)] in

strong qualitative agreement with the experimental observation of Fig. 3.3(c).
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Fig. 3.10 Intensity profiles of steady-state solutions are shown in real (a, c) and
momentum (b, d) space. (a, b) Radially-symmetric solution in a low-pump limit for
A2

0=0.01. (c, d) Stable dipole state for A2
0=0.0529. Other parameters are similar to

those of Fig. 6.

For stronger driving intensities above the bistability threshold, the radially sym-

metric solutions undergo azimuthal instabilities with larger winding numbers m. For

instance the growth of the unstable mode with winding number m=5 results in the

formation of the pentagonal structures shown in Figs. 3.11(a) and (b). At even higher

pumping intensities, the growth rate of the unstable mode with m=6 overtakes that

of the pentagon and thus a hexagon becomes the most favorable solution, winning

the mode competition [see Figs. 3.11(c) and (d)]. Such a behaviour is in agreement

with pentagon and hexagon experimental observation above bistability threshold in

Figs. 3.3(f) and 3.5. A spatial Fourier analysis [see Figs. 3.11(b) and (d)] shows
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strong agreement with experimentally measured far-field intensity profiles above the

bistability threshold seen in Figs. 3.5(c) and (d), showing the strongly populated k = 0

mode surrounded by a polygon pattern and the sustained ring structure at larger wave

number, which itself shows some azimuthal dependence on the intensity. In numerical

simulations it was found that switching between the pentagon and hexagon states is

possible by changing either the radius or the phase curvature of the pump beam. In

experiment both of these scenarios correspond to shifting the focus position of the

excitation objective, which irradiates the sample with a different cross-section of the

input beam. It was shown in Fig. 3.5 that this switching behavior is simple to achieve,

as expected by the theoretical model used here. Despite the simplicity of the model,

the above stability analysis of the radially symmetric polariton patterns offers very

good qualitative agreement with the near- and far-field pattern profiles observed in

Figs. 3.3 and 3.5, both before and after the P2 threshold.

3.4.2 Pattern rotation

In order to clarify the physics behind the polarization-dependent rotation of patterns

numerical modeling of the dynamics within the mean-field model was also performed.

As discussed previously [see Eqs. 3.3 and 3.4]:

∂tE
±−i∇2

⊥E
±+[γ − i (ωp + δ)]E±+iβ (∂x ∓ i∂y)2 E∓+i∆XYE

∓ = iΩRΨ±+E±
p (x, y),

(3.8)
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Fig. 3.11 Intensity profiles of steady-state solutions are shown in real (a,c) and momen-
tum (b,d) space. (a,b) Pentagon state for A2

0=0.09. (c,d) Hexagon state for A2
0=0.16.

Other parameters are similar to those of Fig. 6.

Additionally to the already discussed parameters the TE-TM splitting of the cavity

is taken into account by β and birefringence through the parameter ∆XY . The interplay

between TE-TM splitting and birefringence resulting in the polarization-dependent

rotation of pattern states will be demonstrated. Figs. 3.12(a) and (b) show a typical

example of two real space intensity patterns excited by coherent pump beams with

opposite circular polarizations. The orientation of the pattern is defined by a minimum

angle between an axis going through pattern maxima and the x axis. Rotation is given

by the angle α− between the two axes under excitation with left circular polarization

of the pump beam and angle α+ for right circular polarization as in Figs. 3.12(a) and

(b). In order to elucidate the influence of different physical mechanisms numerical
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simulation of the total angle of pattern rotation (α = α+ − α−) depending on the

birefringence parameter was simulated for two values of TE-TM splitting, as can be

seen in Fig. 3.12(c). From fitted curves to the experimentally-measured dispersion

relation the TE-TM splitting factor was found to be β ∼ 0.062 meVµm2, which lies

between the values used in simulations. It was found that for vanishing birefringence,

the patterns are oriented randomly. For small birefringence <0.03 meV the patterns

are oriented along the x axis and at intermediate values of birefringence (0.03 meV

< ∆XY < 0.06 meV) the pattern axis rotates with respect to the x axis by α+(α−)

angle for a left (right) circularly polarized pump. For large birefringence >0.07 meV

the patterns again tend to orient along the x axis. These numerical simulations show

that patterns can be controllably rotated by about 30◦ by switching between right and

left circular polarization of the pump provided the birefringence parameter is strong

enough. The theoretical values of ∆XY at which the rotation of the pattern is observed

are consistent with the typical experimental values of birefringence (0.02-0.05 meV) in

GaAs microcavity samples.

Fig. 3.12 Calculated intensity profiles of the hexagon patterns under (a) left circularly
polarized and (b) right circularly polarized pump beam. Parameters are similar to
those of Fig. 8 of the main text. (c) Rotation angle |α+| + |α−| of the pattern vs. the
birefringence parameter ∆XY for two realistic values of the TE-TM splitting.



86 Polariton pattern formation and photon statistics of the associated emission

3.5 Summary and conclusions

In this chapter the spontaneous formation of polygon patterns in a coherently driven

dissipative system of polaritons has been reported. The effect of the interplay between

parametric instability and bistability on the system dynamics has been investigated.

These results present a new and simple paradigm for the creation of patterns with

novel geometries in unconfined polariton fluids, which does not rely on the use of

pumps with nontrivial geometries or phase, or confinement within heterostructures

with multiple dispersions. It has been shown how the onset of parametric instability

causes coherent scattering to states carrying orbital angular momentum, leading to

spontaneous symmetry-breaking and the emergence of stationary structures. The

coherent superposition of a driven pump mode with parametrically unstable signal

and idler modes has proven in numerical simulations to be able to reproduce the main

behaviours of our system, namely the generation, competition and selection of different

patterns similar to those observed in experiment.

A bunching effect at the bistable threshold has also been observed, where the

light emitted by the microcavity exhibits super-Poissonian statistics, which can be

attributed to the underlying strongly superlinear temporal dynamics of the system.

Specifically, it is a nonlinear effect in which the intracavity intensity fluctuations are

strongly enhanced by the interplay between the pump-induced bistability and the

dynamic “pattern-forming” parametric instability, which provides scattering channels

into which particles can scatter and accumulate.
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In terms of future directions, there is a vast wealth of potential physics to be explored.

Microcavities engineered to feature a large TE-TM splitting are expected to generate

patterns with rich polarization properties resulting from an in-plane effective magnetic

field and spin-anisotropic interactions [171], whilst also offering the observation of

new topological excitations, such as Skyrmions and half-solitons [77]. The presence of

polarization multistability [172] remains unexplored in the context of pattern formation.

Single shot time-resolved measurements will certainly provide invaluable insight into

the pattern formation process. Extreme spatio-temporal statistical fluctuations in the

value of the intracavity field known as rogue waves are expected, which may play a

key role in the transverse mode dynamics [173] and so far have yet to be explored in

polariton systems. Furthermore, such measurements will shed light on the bunching

effect measured at the threshold. Squeezing has already been observed at the bistable

threshold in a single-mode micropillar [174], but theoretically predicted antibunching

amplified by parametric scattering [175] is yet to be observed.

Beyond exciton-polariton systems, ideal candidates for further exploration of sponta-

neous vortex patterns are nonlinear optical systems such as cavities with photorefractive

crystals and atomic vapours [65], where pattern formation relies on a dynamical combi-

nation of propagation, nonlinearity, gain and loss as is the case here. Further afield, in

condensed matter systems such as superfluids and atomic Bose-Einstein condensates

described by a conservative Gross-Pitaevskii equation, the opportunity arises to inves-

tigate what exotic patterns may be formed by matter-wave dynamical instabilities in

different dimensionalities and trapping geometries [176]. For example, modulational
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instability leading to the generation of new harmonics was recently reported in an

atomic condensate, [177] but it remains to be seen whether components carrying high

order vorticity can be created during pattern formation [178]. Furthermore, studies of

quantum effects in the context of pattern formation such as quantum entanglement,

squeezing and spatial correlations are still to be explored, and have potential to be

stimulated by the findings reported here.



Chapter 4

Polarization effects in topological

dimer chains

4.1 Motivation

The successful application of topological arguments to the energy bands of photonic

systems [179] has led to a surge in research activity related to topology over the past

decade [180–183]. A few notable examples of photonic systems exhibiting topological

effects are shown in Fig. 4.1. The interest lies in the potential for integrated devices

offering robust transport of photons. Protection against scattering losses, which are

currently a large hindrance when it comes to integrated photonic devices, is provided

by additional ordering of the system which can be classified according to a discrete

topological invariant. A commonly used example of topological ordering is the genus

of a 3D object, which corresponds to the total Gaussian curvature integrated over its
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whole surface, which is always an integer (equivalent to the number of holes). Smooth

and continuous deformations of the object change the geometry of the object whilst

preserving its genus, unless for example a new hole is created, which corresponds to a

topological phase transition. In photonic systems, the Brillouin zone is a 2D surface

(equivalent to a torus due to its periodic boundary conditions) over which one may

calculate the total phase picked up by a wave function along a closed path to define the

Chern number, the topological invariant used to describe quantum Hall-type phases.

One of the most common approaches to engineering topological phases is to start with

a Dirac Hamiltonian such as that of a honeycomb lattice potential which has linearly

intersecting bands, and hence point degeneracies, and introduce symmetry-breaking

(time or inversion) perturbations which open a non-trivial gap. The signature of the

latter feature is the appearance of unidirectional edge states at the interface with a

trivial insulator, e.g. vacuum.

Recent advances in semiconductor lithography and nanofabrication techniques have

allowed sophisticated tailoring of the potential landscape of microcavity polaritons

[189, 190]. Whilst polaritons already offer a unique combination of high mobility, large

nonlinearity and ultrafast response times, confining polaritons in lattice potentials

allows precise control over the shape and flow of polaritonic wave packets. They are

attractive candidates in the realm of topological photonics due to their polarization

properties, susceptibility to magnetic fields and appreciable nonlinearity, all of which

may be utilized to reach novel polariton phases with non-trivial topological ordering

[191–194]. In this chapter, a textbook topological system, a dimerized 1D chain which
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Fig. 4.1 Advances in topological photonics. (a) Schematic of the gyro-magnetic photonic
crystal (PhC) slab reported in Ref. [184]. The blue dots indicate the ferrite rods
arranged in a 2D square lattice subject to a magnetic field of 0.2 T which explicitly
breaks time-reversal symmetry (TRS). Chiral edge states (CESs) are found at the
interface between the PhC and metal wall, with two dipole antennas A and B serving
as feeds/probes. (b) Experimental propagation of topological edge states around a
defect in a lattice of Si-based ring resonators from Ref. [185]. An artificial gauge
field is engineered via a hopping phase between resonators, which acts oppositely on
clockwise/anti-clockwise resonator modes due to TRS. The two pseudospins behave as
two independent quantum Hall systems with equal and opposite Chern number. (c) 2+1
D (two spatial dimensions and one temporal) system of helical waveguides as described
in Ref. [186]. Propagation of wave packets along z can be used to simulate temporal
evolution and observe CESs in the x, y plane. This so-called Floquet topological
insulator has broken z-reversal symmetry due to the waveguide helicity. (d) Polariton
lasing in the topological edge state of a 1D chain of micropillars from Ref. [187]. At low
pumping powers (left) all modes are incoherently populated whereas above threshold
(right) lasing occurs in a state residing in the bulk energy gap, localized at the edge
of the chain (inset). (e) Interface between a quantum emitter and topological system
from Ref. [188], where the boundary between two PhCs with different topologies (blue
and yellow regions) created by deforming honeycomb lattices (see right) supports CESs.
Radiative transitions of the quantum dot with opposite spins couple to the CESs
defining a topological waveguide.
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constitutes a Su-Schrieffer-Heeger (SSH) model [195] for photons, will be studied in

detail using spatially- and polarization-resolved PL spectroscopy. Starting from the

building block of a single micropillar with a discrete energy spectrum and progressing

towards a finite zigzag chain with a topological gapped spectrum, we will consider how

photonic spin-orbit coupling (SOC) affects the eigenstates of the system, perturbing

both the energies and tunnelling rates of confined states.

4.2 Photonic atoms and dimers

4.2.1 Zero-dimensional cavity

First we will consider a single micropillar as shown in Fig. 4.2. In Fig. 4.2(a) we

see a scanning electron microscope image of a typical micropillar. The fabrication

process [see Section 2.1] is used to create in this case cylindrical structures patterned

into Sample 2 with diameters of 3 µm and etch depths of ∼8 µm. The other etched

structures mentioned throughout this Chapter, which were all fabricated in the same

run on Sample 2, have the same parameters. This is sufficient to induce confinement

potentials on the order of 10 meV. In Fig. 4.2(b) we see a schematic of a single pillar,

showing the cavity layer sandwiched between vertical DBR stacks along the growth

direction. The red layer represents the position of the embedded QWs. Due to the large

negative cavity-exciton detuning in Sample 2, the polaritons are highly photonic. In

Fig. 4.2(c) we see the fundamental LP resonance of the micropillar. A fitted Lorentzian

gives a spectral width of around 85 µeV, corresponding to a Q factor of over 17000. The
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peak is typically broadened compared to the LP resonance of the unprocessed planar

cavity, resulting from extra etching-induced losses. Besides the vertical confinement

of photons from the DBRs, the large disparity between the refractive indices of the

cavity layer and the surrounding air leads to strong lateral confinement of photons via

total internal reflection at the sidewalls. As a result, there is quantization of both the

longitudinal and transverse wave vector of photons, so the micropillar is essentially a

0D circular waveguide. This three-dimensional confinement leads to a series of equally

spaced peaks in the energy spectrum, as can be seen in Fig. 4.2(d). The three peaks

shown correspond to the first three modes of the pillar and are reminiscent of the

electronic energy levels of an atom. Hence the micropillar is a “photonic atom”. As

we ascend in energy the increasing kinetic energy of polaritons means they are less

strongly confined in the potential well of the micropillar, until eventually the kinetic

energy is comparable to the barrier height and strong mode confinement no longer

occurs.

In Fig. 4.2(e) the normalized transverse profiles of the first two modes are plotted.

This corresponds to a cut through the centre of the pillar, whose potential profile is

represented in shaded grey. The 1D profiles of the confined modes are proportional to

the square of the wave functions and hence the amplitude at a given position determines

the probability of finding a particle there. The results strongly resemble the solutions

to a paradigmatic example of quantum mechanics, the “particle in a 1D finite potential

well” [196]. Inside the pillar we see stationary states with single and double-lobed

distributions reflecting the underlying symmetric and anti-symmetric wave functions,
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Fig. 4.2 (a) Scanning electron microscope image of a single micropillar cavity labelled
with characteristic length scales and with x, y and z directions defined. (b) Schematic
of a single micropillar showing the distributed Bragg reflector (DBR) layers and cavity
layer. (c) PL spectrum of the fundamental pillar mode with fitted Lorentzian. The x
axis represents the energy detuning from the fundamental resonance. (d) PL spectrum
showing the first three quantized pillar modes. (e) Transverse profiles of the E1 and
E2 modes in real space. (f) Real space PL spectrum (through a cut of the micropillar
at y = 0). (g) Tomographic real space image of mode at E2 energy. (h) Tomographic
real space image of mode at E1 energy. The scale bar at the bottom corresponds to 2
µm. (i) Angle-resolved PL spectrum. All contour plots (and in subsequent figures) use
the colour scale shown in (f). Note that the ‘min’ and ‘max’ values have been capped
so as to enhance the visibility of features.

whilst at the pillar boundaries the intensity exponentially decays into the classically

forbidden region. A spatially and spectrally resolved slice of the near field emission

through the centre of the micropillar is presented in Fig. 4.2(f), where the different

populations (intensities) of the two modes can be seen, reflecting their different photon

fractions and thermalization towards the ground state. In order to fully visualize the
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eigenstates of our system, the PL of the micropillar was scanned across the slit of the

spectrometer as described in Section 2.3.3. 2D spatial maps of the E1 and E2 modes are

shown in Figs. 4.2(g),(h). The cylindrical geometry of the potential well produces 2D

modes described by Bessel functions of the first kind [197], which differs from the case

of square pillars [107, 198] or non-planar mirrors [199]. In our case the eigenstates are

most appropriately described in a polar coordinate basis using quantum numbers n and

m which give the number of nodes in the radial and azimuthal directions respectively.

The E1 state has n = 0 and m = 0 whilst the E2 state has n = 0 and m = 1. The

azimuthal winding of the phase can be clockwise or anti-clockwise for the E2 state,

making it doubly degenerate [139]. In principle, if one takes a cut going through the

origin of the pillar for any azimuthal angle one should retrieve a 1D profile identical to

the one shown in Fig. 4.2(e) due to the axial symmetry of the micropillar. Here it can

be seen for the E2 mode that there is a slight variation in intensity in the azimuthal

direction. This is a result of imperfections in the confinement potential which preclude

the formation of perfectly axially symmetric modes [139, 200]. Finally, in Fig. 4.2(i)

we see a central cut of the energy spectrum of the micropillar in momentum space (the

far-field profile). We observe that the spectral isolation (Fig. 4.2(f)) and real space

localization (Fig. 4.2(g),(h)) of the pillar modes lead to narrow and flat modes with

broad angular extension.

When 0D cavities are coupled into an array or extended lattice, the in-plane cylin-

drical symmetry is broken and a Cartesian coordinate basis becomes more convenient,

in which eigenstates are described in the framework of Hermite-Gaussian modes. In
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this new basis the quantum numbers simply correspond to the number of nodes along

x and y directions. The E1 mode has a HG00 profile, while the E2 mode can be

decomposed into degenerate HG10 and HG01 modes. As can be seen in Figs. 4.3(c),(d),

these two degenerate modes are characterized by a node in the intensity profile along

orthogonal dimensions. Thinking of our micropillar as a photonic atom, we see that

the wave function of the HG00 mode is analogous to an electronic orbital with s-type

symmetry, and will henceforth be referred to as a photonic s orbital, whilst the HG10

and HG01 modes correspond to orbitals with p-type symmetry, featuring a two-lobed

“dumbbell” shape, and can be accordingly labelled as px and py orbitals.

Fig. 4.3 Calculated real space emission of micropillar eigenmodes. (a) The fundamental
mode with a cylindrically symmetric Gaussian profile is analogous to an s orbital. (b)
The first excited mode has a ring-shaped profile, and can be decomposed into HG10 (c)
and HG01 (d) modes, analogous to px and py orbitals respectively.

4.2.2 Coupled cavities

Now we shall consider the effect of finite coupling between a pair of 0D cavities.

Previously we dealt with an isolated micropillar whose photonic orbitals can be

classified in terms of numbers of nodes. When cavities are sufficiently close that wave

functions of the confined modes overlap, the finite tunnelling energy between cavities

splits the energy of the orbitals into new hybridized orbitals, which represent linear
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combinations of s and p orbitals and are now classified according to bonding character.

The mode structure of these bonded orbitals is determined by the electromagnetic

field overlap, where superpositions of orbitals with symmetric and anti-symmetric

wave functions are referred to as bonding and anti-bonding modes respectively. The

bonding strength can be tuned through the geometry of the micropillars and their

centre-to-centre distance [201]. As with the single pillar and the electronic orbitals of

an atom, now there is strong analogy with the hybridized electronic orbitals of diatomic

molecules in chemistry. In that case, the energy splitting and strength of bonding is

determined by Coulomb interactions between electrons [202].

In Fig. 4.4(a) we see a scanning electron microscope image of a photonic diatomic

molecule structure. We see that there is spatial overlap of the micropillars since the

diameter of the micropillars (3 µm) exceeds the centre-to-centre distance (2.55 µm)

which allows evanescent coupling of the photonic fields. A schematic of the molecule

comprising two identical cavities labelled as A and B is shown in Fig. 4.4(b). Each

pillar induces an approximately harmonic confinement potential and there is finite

tunnelling between pillars which is represented by some energy J , which encompasses

different terms Ji corresponding to different orbitals [7]. Using this notation a 2 ×

2 Hamiltonian for our photonic molecule (neglecting polarization) can be written as

follows:

Ĥ =

Ei Ji

Ji Ei

 , (4.1)
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Fig. 4.4 (a) Scanning electron microscope image of a photonic molecule comprising
two spatially overlapping micropillars with a centre-to-centre distance of 2.55 µm. (b)
Schematic of the photonic molecule overlaid with a sketch of the double potential
well experienced by polaritons. (c) PL spectrum of a photonic atom (solid green line)
and photonic molecule (solid orange line) labelled with the corresponding bare and
hybridized orbitals. (d) Real space PL spectrum (integrated along y) of the photonic
molecule.

where Ei is the energy of the ith orbital. For the s orbitals the eigenvalues of this matrix

are simply EB/AB
s = Es ∓ Js which corresponds to the bonding (EB

s ) and anti-bonding

(EAB
s ) modes. The energy separation between bonding and anti-bonding orbitals is

given by twice the tunnelling energies between the bare orbitals. For p orbitals, we can

no longer treat the px and py orbitals on the same footing, since coupling between pillars

is along the x direction, so px orbitals undergo “head-to-head” σ bonding whilst py

orbitals undergo “shoulder-to-shoulder” π bonding. These have very different energies
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due to the different spatial mode overlap, such that the off-diagonal terms in the

Hamiltonian become

Jp =

Jpx 0

0 Jpy

 . (4.2)

This gives eigenvalues EB/AB
px

= Ep ∓ Jpx and EB/AB
py

= Ep ∓ Jpy . Fitting to the

experimental data gives values of Jpx = 0.88 meV and Jpy = 0.18 meV. In principle,

there may also be a finite splitting between the bare energies of the px and py orbitals

if the potential well of the pillars does not have perfect cylindrical symmetry, such that

Epx ̸= Epy [139, 200].

In Fig. 4.4(c) we see a comparison of the energy spectrum of a single pillar

(corresponding to bare s and p orbitals) and the spectrum of a photonic molecule where

orbitals hybridize into new eigenmodes. Fig. 4.4(d) shows an energy-resolved slice of

the real space emission along the long axis of the molecule. We see discrete modes

characterized by nodes in their intensity, showing a marked thermalization towards the

ground state as with the single pillar. For the hybridized p orbitals, the lowermost and

uppermost modes have an energy separation approaching 2 meV, corresponding to a

tunnelling energy on the order of 1 meV, which is an order of magnitude larger than the

linewidth. Yet, there still remains a large gap between s and p modes, so there is no

hybridization between orbitals (interatomic matrix elements). Fig. 4.5 shows the real

space emission at the energy of the labelled peaks seen in Fig. 4.4(c). The hybridized

modes are classified according to bonding character and orbital symmetries. In the case
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of the photonic s orbitals, we see a merged wave function for the bonding mode, whilst

the anti-bonding wave function shows two separated peaks. These reflect the even (zero

nodes in intensity) and odd (one node in intensity transverse to molecule) parity of

the coupled modes. For the p orbitals, we see four different ways the modes can bond,

reflecting the spatial (axial) asymmetry of the underlying px and py orbitals. Note that

there is no tunnelling between orthogonal p orbitals. Taking into account solutions

with even and odd parity (bonding and anti-bonding), the dimerization between the

degenerate p orbitals of the 0D micropillars leads to four distinct orbitals. In order

of energy, these modes correspond to σ bonding, π bonding, π anti-bonding and σ

anti-bonding.

Fig. 4.5 Experimental tomographic real space images of the hybridized modes formed
by overlapping confined wave functions in the molecule structure.

In Fig. 4.6 the wave functions of the hybridized modes are approximated by

taking linear combinations of the underlying orbitals positioned in cavities A and B.

Assuming the two orbitals have the same parity, bonding modes can be constructed

by adding their wave functions and anti-bonding modes by subtracting one from the
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other (equivalent to reversing the parity of one orbital). The contour lines map the

electric field profiles of the modes.

Fig. 4.6 Calculated real space images of the hybridized modes formed by linearly
combining orbital wave functions from cavities A and B in the molecule structure. The
smaller images correspond to |E|2 whilst the larger contour plots correspond to E.

4.3 Polarization effects

4.3.1 TE-TM splitting

TE-TM splitting has previously been discussed in Section 1.4.2 in the context of planar

microcavities where it induces an energy splitting in the 2D polariton dispersion, which

scales quadratically with wave vector. The microcavity studied in this chapter features

a prominent TE-TM splitting, as can be seen in Fig. 4.7, engineered by creating
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an offset between the cavity mode and central frequency of the stopband through

judicious choice of heterostructure design parameters (see Appendix A). Due to the

highly photonic nature of the polaritons studied here, the TE-TM splitting exceeds

several hundred µeV at large oblique in-plane angles. In the case of 0D cavities, there is

no longer a continuous parabolic dispersion, as polaritons are confined to the previously

discussed quantized orbitals. As can be seen in Fig. 4.2(i), the fundamental s orbital

is centred at k = 0, whilst the p orbital mode comprises finite k vectors (an annulus in

Fourier space), meaning that the k2-dependent TE-TM splitting should be non-zero.

Its effect has previously been elucidated by Dufferwiel et. al. [203] where it was

shown that the spin angular momentum s (left or right circular polarization of the

electric field) and orbital angular momentum l (azimuthal winding of the phase due to

non-planar wave fronts) degrees of freedom become coupled by TE-TM splitting. A

similar effect was also explored in a photonic analogue of a benzene molecule consisting

of six coupled micropillars in a ring [109]. In both cases, the eigenmodes of the system

in the presence of TE-TM splitting are described by their total angular momentum

J = l + s since spin and orbital angular momentum quantum numbers s and l are no

longer conserved.

Let us now consider the two degenerate l = 1 modes of the 0D cavity introduced

in Section 4.2.1, where the single clockwise/anti-clockwise winding of the phase was

described. Including spin (polarization), we can then construct four possible states,

corresponding to either co- or counter-rotating spin and orbital angular momenta.

These new eigenmodes have J = 0,±2 and have been described in polariton systems



4.3 Polarization effects 103

as spin vortices (SVs) due to the fact that the linear polarization angle winds around

the core of the mode (in other photonic contexts such modes are referred to as vector

vortex beams [204–206]). They are also expected to be separated in energy, hence

inducing an on-site perturbation to the Hamiltonian describing confined polaritons

in coupled 0D lattice sites [see diagonal terms in Eq. 4.1]. Note that using a linear

polarization basis rather than a SV basis also introduces non-diagonal terms.

Fig. 4.7 Stokes linear polarization parameter S1 of a typical angle-resolved PL spectrum
in a planar unetched region of the sample. The TE-TM splitting induces a pronounced
splitting of the lower polariton branch.

Polarization-resolved measurements were performed on a single micropillar like

the one studied in Section 4.2.1 (with a slightly more negative detuning due to it

being at a different sample position1) allowing the Stokes parameters S1 and S2 to be

constructed. S1 characterizes the polarization state in the horizontal/vertical (H/V)

basis while S2 corresponds to diagonal/anti-diagonal (D/A), with both being required

to fully describe the linear polarization state of a photonic mode. Measurements in the
1There is a minimal change in the effective mass of particles since |C|2 approaches 1 at such large

negative detunings.
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pure circular polarization basis (S3) were not performed since all polarization effects

are in-plane. In Fig. 4.8(a) the total intensity of the PL emission (sum of all four

polarizations) is plotted. The lower energy peak corresponds to the l = 0 s orbital

which does not experience any on-site polarization perturbation, and the higher peak

corresponds to the l = 1 p orbital. As we see in Fig. 4.8(b), the latter peak is actually

a triplet, which can be fitted by Lorentzians of similar widths (∼ 90-100 µeV). The

middle peak corresponds to the J = ±2 spin anti-vortices and is the brightest due

to this double degeneracy. The peaks either side belong to the J = 0 SVs. Their

population disparity may be ascribed to different radiative losses [19]. Real space

polarization-resolved images at the energies of the spin-orbit coupled eigenmodes are

shown (in descending energy) in Figs. 4.8(c)-(e). The arrows depict the orientation of

the linear polarization detection angle, and at the far right we see the total emission

intensity. The upper and lower rows correspond to the radial and azimuthal SVs seen at

the high and low energy peaks in Fig. 4.8(b) respectively. In both cases a clear rotation

of the measured intensity distribution follows a rotation of the in-plane polarization

detection axis. In contrast, the mode(s) measured in Fig. 4.8(d) show little to no

variation in the emission pattern with detection polarization. Although each of the

two underlying spin anti-vortices has their own distinctive polarization texture (which

may be observed under certain circumstances [203]), their degeneracy means no net

polarization structure is generally observed. Whilst the total intensities of the modes

show approximately ring-shaped profiles as expected [203], the slightly elliptical nature



4.3 Polarization effects 105

of the confinement potential is evidenced by the double lobe structure visible in e.g.

the lower energy mode in Fig. 4.8(e) [200].

Fig. 4.8 (a) PL spectrum of a single micropillar showing the s and p orbital peaks.
(b) Close-up of the p orbital peak corresponding to the red box in (a) showing a fit
to the data (solid black line) with three underlying Lorentzian peaks (coloured lines).
The vertical dashed black lines lie roughly at the peak energies, and correspond from
right to left to the real space images shown in (c)-(e). (c) The higher energy J = 0
mode, which is a radial SV. (d) The zero-energy J = ±2 modes (separately orthogonal
hyperbolic spin anti-vortices) whose combination results in no net polarization. (e)
The lower energy J = 0 mode, which is an azimuthal SV.

In Figs. 4.9 and 4.10 we explore further the polarization structure of the different p

modes, comparing experimental and calculated results. Figs. 4.9(a),(b),(g),(h) show

the measured intensity difference of the emission in orthogonal polarization bases.

In contrast to the Stokes parameters, the differential intensities shown here are not

normalized to the total intensities of modes, in order to visualize the polarization

structure only in regions with large signal. Figs. 4.9(a),(b) and (g),(h) show the

differential intensities in the H/V and D/A bases respectively, given by IH − IV

and ID − IA, where the upper row corresponds to the radial SV and the lower row
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the azimuthal SV. In both cases, clearly orthogonal p orbitals couple to orthogonal

polarizations (e.g. px is H polarized and py V polarized in Fig. 4.9(a)). The spatially

varying polarization texture of the modes can be visualized by calculating for each

pixel the linear polarization angle defined as Ψ = 0.5 · arctan(S2/S1). The lines in

Figs. 4.8(c) and (i) are oriented at this angle, which winds from −π/2 to π/2 with

H and V polarizations being found at angles of 0 and π respectively. In the higher

energy mode the polarization generally points outwards, i.e. radially, and in the

lower energy mode it points tangentially to this direction, i.e. azimuthally. These

results can be compared with calculated SV modes representing linear combinations of

Hermite-Gaussian modes with their intensity nodes oriented at different angles. There

is good qualitative agreement between the experimentally measured and theoretically

calculated mode profiles, confirming that the measured eigenmodes of a single pillar

are not far from ideal SVs.

Fig. 4.9 Experimental and theoretical SV modes. Intensity difference of the radial
SV in the H/V basis (a),(d) and D/A basis (b),(e). (c) and (f) are traces of the real
space linear polarization angle convolved with the intensity. Intensity difference of the
azimuthal SV in the H/V basis (g),(h) and D/A basis (h),(k). (i) and (l) are traces of
the real space linear polarization angle convolved with the intensity.
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In Fig. 4.10 the linear polarization angle is plotted against position along a path

of fixed radius which encircles the core of the mode (the spatial coordinate is given

by the real space azimuthal angle θ = arctan(y/x)). A clear double winding of the

linear polarization angle accompanies a full revolution about the centre of the modes,

analogous to the pure phase winding of conventional vortex beams. Again we see

good agreement between experiment and theory. Finally, it should be noted that the

discrepencies between experiment and theory in Figs. 4.9 and 4.10 are consistent with

the previously mentioned ellipticity of the confinement potential which also affects the

observed intensity distribution [203]. Specifically, it can be seen that there is a slight

preference towards a certain polarization angle in the pillars which both distorts the

patterns shown in Figs. 4.9(c),(i) and bends the stripes plotted in Figs. 4.10(a),(b).

Fig. 4.10 Visualization of the double polarization winding of the SV modes. The upper
row corresponds to the experimental (a) and theoretical (b) radial SV and the lower
row to the experimental (c) and theoretical (d) lower energy azimuthal SV.
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4.3.2 Polarization-dependent tunnelling

Besides the on-site polarization splitting which occurs in single micropillars with sizeable

TE-TM splitting as we have just described, polarization effects also act on photons

as they hop between cavities due to different effective masses (governed by TE-TM

splitting) and lateral boundary conditions (governed by the geometry of the structure).

This polarization-dependent tunnelling has been explored experimentally [109] and

appears to have fascinating theoretical implications [207, 191, 74]. Here we consider

the single photonic molecule, or dimer, shown in Fig. 4.4(a) and measure the influence

of this effect directly by measuring the PL spectrum in H and V polarization bases.

These two linear polarizations have an electric field orientation which lies longitudinally

and transversely to the tunnelling direction (along x) respectively. In Fig. 4.11

polarization-resolved spectra of the s and p modes of a single dimer are presented.

As previously mentioned, bare s orbitals experience no on-site polarization splitting

in the presence of TE-TM splitting, due to their zero orbital angular momentum.

Therefore, the polarization splitting observed in the hybridized modes in Fig. 4.11(a)

arises entirely due to polarization-dependent tunnelling. As expected, the energy gap

between the bonding and anti-bonding peaks is larger for H polarization, reflecting the

larger tunnelling energy since it is longitudinal to the tunnelling direction. Below the

spectrum, we see real space images of the modes which exhibit high degrees of linear

polarization. In Fig. 4.11(d) the spectrum of bonded p orbitals is shown. In this case,

in addition to the polarization-dependent tunnelling, there is also the on-site TE-TM

splitting term which further contributes to polarization splitting of the four modes.
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The lowest and highest energy doublets appear to arise largely from hybridization of

px orbitals. From polarization-dependent tunnelling alone we would expect the very

lowest and highest energy peaks to have H polarization. However, the on-site TE-TM

splitting term pushes H polarized px orbitals (radial SV) up in energy and V polarized

px orbitals (azimuthal SV) down. The result is an asymmetry of the spectrum, where

both hybridized px orbitals have the same sign of polarization splitting. The inner two

doublets arise from hybridization of py orbitals. The polarization-dependent tunnelling

has the same effect as for the px orbitals. However, now the TE-TM splitting has

opposite sign such that V polarization gets pushed up in energy and H polarization

down. Once again this gives rise to a polarization asymmetry in the spectrum.

Revisiting the Hamiltonian of a photonic molecule for p orbitals

Ĥp =

Ep Jp

Jp Ep

 , (4.3)

the TE-TM splitting can be included as a perturbation to diagonal and off-diagonal

matrix elements using the basis states
∣∣∣pH

x

〉
,
∣∣∣pV
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〉
,
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y

〉
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〉
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Ep = 1
2



∆ESOC 0 0 ∆ESOC

0 −∆ESOC ∆ESOC 0

0 ∆ESOC −∆ESOC 0

∆ESOC 0 0 ∆ESOC


, (4.4)
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Fig. 4.11 Effect of polarization-dependent tunnelling. (a) Spectrum of the s modes of a
single dimer resolved in H (red) and V (blue) polarizations which are longitudinal and
transverse to the tunnelling direction respectively. (b) Real space images of bonding
modes formed from s orbitals. (c) Real space images of anti-bonding modes formed
from s orbitals. The images are ordered vertically according to their energies, which
are indicated by dashed vertical lines in (a). (d) Spectrum of the p modes of a single
dimer resolved in polarization. A baseline has been removed from the spectra. (e)
Real space images of bonding modes formed from px orbitals. (f) Real space images of
bonding modes formed from py orbitals. (g) Real space images of anti-bonding modes
formed from py orbitals. (h) Real space images of anti-bonding modes formed from
px orbitals. The images are ordered vertically according to their energies, which are
indicated by dashed vertical lines in (d).

where ∆ESOC represents the total energy splitting of p orbitals induced by TE-TM

splitting, and the off-diagonal terms reflect the fact that the eigenvectors of the

Hamiltonian are in fact SVs rather than uncoupled px and py orbitals. This basis was

chosen rather than a circular polarization basis since it allows for easier evaluation of

the matrix elements needed to determine the perturbed eigenmodes of Ĥp. Polarization-

dependent tunnelling can be introduced as a perturbation to the off-diagonal (hopping)

matrix elements in Eq. 4.3 such that
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Jp =



Jpx + δJpx/2 0 0 Jm

0 Jpx − δJpx/2 Jm 0

0 Jm −(Jpy + δJpy/2) 0

Jm 0 0 −(Jpy − δJpy/2)


, (4.5)

where δJpx and δJpy give the total energy splitting induced by polarization-dependent

tunnelling for px and py orbitals and Jm is a term that mixes orbitals in the same

SV manifold. By starting with the values for Jpx and Jpy extracted earlier, the full

Hamiltonian for the p orbital spin-orbit coupled dimer was solved numerically, giving

values of: ∆ESOC = 110 µeV, δJpx = 50 µeV, δJpy = 30 µeV and Jm = 115 µeV, which

provide a good fit to the experimental data and polarization-dependent tunnelling

energies consistent with extracted values in coupled micropillars from other works

[201, 109].

Now we have considered the confinement of polaritons in 0D cavities, photonic

coupling between two cavities, and the separate and combined effects of TE-TM

splitting and polarization-dependent tunnelling on their energy spectra. The p orbitals

of a single pair of cavities form a photonic spin-orbit coupled dimer. An interesting

next step is to use this as a building block to construct something more complex and

explore the polarization degree of freedom.
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4.4 Topological dimer chains

4.4.1 Edge states

A textbook example of topological physics is the so-called SSH model which admits 0D

topological edge modes [208]. It was recently shown in Ref. [187] that the p orbitals

of polariton micropillar lattices realize a two-fold "orbital" version of the SSH chain,

featuring an exponentially localized mid-gap state in one of the p orbital subspaces of

the form

Ψn ∝ (t/t′)n, (4.6)

where n denotes the unit cell counted from the edge, and t and t′ denote two hopping

amplitudes (within and between unit cells respectively). The size of the gap containing

the edge states is given by

∆ = 2|t− t′|. (4.7)

As previously discussed for the case of a single dimer, the two possible "head-to-head"

(σ) and "shoulder-to-shoulder" (π) bonding types of p orbitals feature a large difference

in tunnelling energy (Jπ ≈ 0.2Jσ was previously estimated for a dimer with its long

axis along x in the last section). One can see from this how a 1D chain of dimers with

90◦ bond angles implements a variant of the classic SSH model, since the hopping

energy alternates between strong and weak for one orbital subspace and vice versa for
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the orthogonal one. In principle, one can realize an SSH model using s orbitals and

relying on the dimerization provided by polarization-dependent tunnelling [208]. In

our case, for s orbitals we extract a tunnelling energy of Js = 0.37 meV, compared to

a polarization splitting of Js ∼ 30 µeV, meaning the size of the gap based on Eq. 4.7

is expected to be around 60 µeV, compared to a linewidth γs ∼ 85 µeV. Hence from

here onwards only p orbitals will be considered.

In order to study the polarization degree of freedom in the SSH chain, 1D arrays of

overlapping micropillars forming dimer chains in a zigzag geometry were fabricated [see

Fig. 4.12(a)]. In Figs. 4.12(b) and (c) the differential near field profiles of the p orbitals

of a single micropillar resolved in D and A polarizations are shown (corresponding to

the previous single pillar measurements), since the two orthogonal orbital orientations

and two orthogonal linear polarizations form the four basis states of our SSH chain.

Each zigzag chain thus constitutes four coexistent SSH models for photons.

In Fig. 4.12(d) the main hopping processes for p orbitals in the zigzag chains

are shown schematically. The thick and thin solid lines represent strong and weak

bonding respectively, and the colours of the bonds represent coupling of polarization

to tunnelling direction as verified in the last section. Note that for convenience x and

y directions are defined to be at a 45◦ angle with respect to the laboratory frame. Figs.

4.12(e) and (f) show the possible dimerization states of a zigzag chain with 10 sites, for

the separate px and py subspaces and two orthogonal polarizations. It can be seen that

when strong bonding occurs along the x direction, all sites in the chain couple to form

dimers (represented by ovals). This dimerization leads to a gapped spectrum, which
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Fig. 4.12 (a) Scanning electron microscope image of a typical zigzag chain of coupled
micropillars. (b),(c) Real space images of the confined l = 1 mode of a single micropillar,
perturbed in the presence of TE-TM splitting to form radial (b) and azimuthal (c)
spin-vortices. The colour contrast represents the intensity difference in D (red) and A
(blue) polarization bases [see (d)] and the white scale bar corresponds to 2 µm. (d)
Schematic of p orbital tunnelling processes, with strong and weak bonding represented
by thick and thin lines respectively. Note that there is only bonding between like
orbitals. The coordinate basis and D and A polarizations are defined underneath.
(e) Dimerization states of an N = 10 chain where px orbitals are strongly bonded,
with no resulting edge states. The two different polarizations have a different energy
due to TE-TM splitting. (f) Alternative dimerization states of an N = 10 chain
where py orbitals are strongly bonded. The leftmost and rightmost sites are weakly
bonded to the rest of the chain, hosting 0D topological edge states. Note that the
polarization splitting has opposite sign. (g) Experimental differential PL spectrum
(spatially integrated along transverse direction) against longitudinal position for an
N = 10 chain.

has the topology of a trivial insulator. However, when strong bonding occurs along the

y direction, the pillars at the left and right edges couple only weakly to the rest of the

chain. In the spectrum of eigenstates, states localized at the left and right edges exist

at zero energy (they are non-bonding states) which closes the energy gap and changes

the topology of the band structure, making it distinct from the trivial case of (e)2. Fig.

4.12(g) shows the experimentally measured differential near field spectrum of a 10 site
2Formally, the different topologies can be quantified via the Zak phase [209], where the topologically

trivial and non-trivial cases have a difference of π.
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chain. Within the chain (delimited by vertical dashed lines) we see two bands of states

extended across the whole lattice and separated by a large energy gap. Within the

gap, we see polarization doublets at the left and right edges. Their topological nature

is immediately evident by the fact they are spectrally isolated and do not penetrate

into the bulk. One may also observe that edge states at the left are higher in energy

than those at the right. This results from an energy gradient along the long axis of the

chain3. For the sake of clarity, we henceforth analyze the left and right sides of our

chains separately.

4.4.2 Odd chains

In chains where the number of sites N is odd, an extra site at the boundary of the lattice

exists. Now, the system configurations associated with strong bonding (dimerization)

along x and y directions have different topological properties compared to the N

= 10 (even) case previously discussed. In Figs. 4.13(a) and (b) the two types of

dimerization states for an N = 11 chain are shown schematically. We see immediately

that in contrast to the even case both dimerization states present non-bonding edge

states. Since the two configurations are formed from px and py orbitals respectively,

both subspaces are now topologically non-trivial, featuring exponentially localized

edge states at opposite sides of the chain. Furthermore, the TE-TM splitting couples

orthogonal p orbitals to orthogonal linear polarizations, meaning that the left and right
3Since it exceeds that expected to arise simply from the cavity wedge, there is most likely additional

strain introduced by etching.
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edge states in odd chains feature opposite signs of polarization splitting, unlike the

even case.

Fig. 4.13 N = 11 zigzag chain. (a) Dimerization states along x for D (upper) and A
(lower) polarizations. There are topological states in the px subspace at the left edge.
(b) Dimerization states along y for D (lower) and A (upper) polarizations. There are
topological states in the py subspace at the right edge. (c),(d) Real space images of the
left side of the chain corresponding to the dimerization states shown in (a). (e),(f) Real
space images of the right side of the chain corresponding to the dimerization states
shown in (b).

4.4.3 Polarization-dependent tunnelling

Previously the subtle interplay of polarization effects was investigated in a single

dimer. We have already seen how in the zigzag chain the TE-TM splitting acts as

an on-site perturbation, lifting the degeneracy between D and A polarized px and py

orbitals, as seen in the edge states in Fig. 4.12(g) and confirmed by their corresponding

spectra in Figs. 4.14(a),(e). The question that then naturally arises is if and how the

polarization dependence to the tunnelling energy affects the orbital SSH chain, and to

what extent this influence can be observed experimentally. In principle, the J and δJ

terms extracted in the single dimer case are the same in the zigzag chain and so give a

good idea of the tunnelling rates for the two polarizations. The disparity between the

two polarizations is expected to affect the penetration of the edge state into the rest of
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the chain via Eq. 4.6. One way to delineate its effect is then to consider the profile of

the spatial wave functions of the edge states.

Fig. 4.14 Experimentally measured left (a)–(d) and right (e)–(h) edge states for an
N = 10 chain. (a) Spectrum of midgap states at left edge in D (red) and A (blue)
polarizations. (b),(c) Real space images of the left side of the chain at the energies of
the edge states shown in (a). (d) Intensity against site number for the two polarizations.
(e) Spectrum of midgap states at right edge in D (red) and A (blue) polarizations.
(f),(g) Real space images of the right side of the chain at the energies of the edge states
shown in (e). (h) Intensity against site number for the two polarizations.

The effect of the polarization-dependent tunnelling term is demonstrated in Figs.

4.14(d) and (h) which show the intensity against site number at the edge state energies

extracted by applying a binning technique to the experimental data. According to Eq.

4.6 the intensity is expected to drop exponentially with the unit cell number (every

other site) with a decay length proportional to the ratio of strong and weak hopping

energies. In experiment, it can be difficult to reliably extract the true decay length

since beyond the first two unit cells the intensity becomes very small and comparable

to noise. However, it is instructive to compare the intensities of the first and second

unit cells at the edges of the chain, i.e. |Ψ0|2/|Ψ1|2, to give an indication of the rate at
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which the wave function is decaying. For both sides of the 10-site chain sketched in

Fig. 4.12 this quantity is smaller for D polarization than A polarization. Considering

the left side of the chain as an example, one can see that this result is expected since

the connection between the state on the first pillar with the rest of the chain is along

the x direction to which D (A) polarization is parallel (perpendicular). As a rough

measure of the different decays for the two polarizations, one may then take the ratio

of |Ψ0|2/|Ψ1|2 (which is proportional to the inverse localization length) for the two

polarizations, defining a new quantity

ξ = |Ψ∥
0|2/|Ψ

∥
1|2

|Ψ⊥
0 |2/|Ψ⊥

1 |2
, (4.8)

where ∥ and ⊥ denote the polarization which can be parallel or perpendicular to the

link. Using the values of strong and weak bonding of p orbitals extracted from a single

dimer (0.88 meV and 0.18 meV respectively) and polarization-dependent corrections to

these terms (50 µeV and 30 µeV respectively) we can estimate a ballpark theoretical

figure yielding ξtheory = 0.80. Physically this tells us that the inverse localization length

should be shorter for parallel polarization, i.e. the edge state penetrates more into the

rest of the chain when its polarization is parallel to the tunnelling link.

To test this experimentally, two values of ξ (one for each edge) have been calculated

for three different chains [see Fig. 4.15] using the same binning technique used to

evaluate the site intensities in Figs. 4.14(d) and (h). Remarkably, despite the crudity

of this approach, all values are <1 and lie between 0.68 and 0.89, providing an averaged
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Fig. 4.15 SEM image corresponding to the N = 8, 10 and 11 chains studied.

experimental value of ξexp. = 0.78 ± 0.07. Of course, caution must be taken, since

the quoted error is the standard deviation of the ξ values, whose individual errors are

not taken into account. Nevertheless, the results strongly suggest that polarization-

dependent tunnelling leads to different localization lengths for the two polarizations.

4.5 Summary and conclusions

To conclude, we have used spatially- and polarization-resolved spectroscopy to study

different 1D arrays of micropillars in the single-particle (low-density) limit. We

have considered the interplay between different polarization effects in etched lattice

environments, beginning with a single pillar, whose eigenstates in the presence of

TE-TM splitting become spin vortex modes, progressing to a single dimer, which

shows a polarization dependence to the rate of hopping between cavities due to the

interplay between various diagonal and off-diagonal perturbations to the Hamiltonian,

and eventually reaching a 1D topological chain of dimers where we observe not just an

energy splitting of the topological edge modes but a significant disparity in the rate
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at which orthogonally-polarized wave functions decay. Importantly, this result shows

the potential for engineering strong artificial gauge fields for photons in topological

systems using the polarization degree of freedom.



Chapter 5

Spatial, spectral and pseudospin

properties of a two-dimensional

Lieb lattice

5.1 Introduction

Arrays of etched micropillars were introduced in the last chapter, and the spectrum

of eigenstates of the zigzag chains may be treated with a simple tight-binding (TB)

Hamiltonian similar to that describing 1D polymer chains. In this chapter we will

consider 2D arrays of micropillars whose photonic energy bands have strong analogy

with the electronic energy bands of real world 2D (or quasi-2D) materials. This

exciting avenue of research began with pioneering papers showing that the π and π∗

bands of graphene arising from hybridization of the out-of-plane pz orbitals could be
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emulated by the photonic bands arising from hybridization of the fundamental s modes

of micropillars in a honeycomb lattice geometry [106, 114]. Owing to the large Kerr

nonlinearity, the authors also demonstrated non-equilibrium condensation in nonlinear

defect states [210] which form at the top of the π∗ band and move into the forbidden

energy gap under high-power incoherent excitation. Another fascinating feature is the

higher energy l = 1 bands with p-type symmetry, where the bulk energy spectrum

shows both Dirac cones and flat bands, and both flat and dispersive states are found

at the edges [115]. Such observations mean polaritonic lattices have attracted keen

interest as a versatile platform to study fundamental physical effects of solid state

materials in a nonlinear photonic environment, reaching regimes which may otherwise

be inaccessible [189]. The emulation of complex many-body phenomena is facilitated

by the high degree of control over polariton trapping potentials and the ability to

form bosonic macroscopically coherent phases such as condensates and superfluids

[27, 50]. Even more appealing is the ease with which polaritons can be loaded into

lattice potentials, and the direct access to the spatial wave functions, all available via

standard optical techniques.

The main focus of this chapter will be a 2D Lieb lattice [211] (line-centered square

lattice), a crystal structure found in nature in high-Tc cuprates and Perovskites [212].

The band structure of the Lieb lattice has celebrated topological properties arising from

the arrangement of its three-site unit cell which induces a geometric phase cancellation

effect: the destructive interference of linear eigenmodes associated with the different

sublattices leads to non-dispersive (flat) energy bands [213]. There are also Dirac
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cones in the spectrum which have interesting topology in their own right. Lieb lattice

modes have been realized experimentally in various different systems [see Fig. 5.1].

A 1D analogue of a Lieb lattice (Stub lattice) was studied in Ref. [111], where the

localization properties of a flat-band polariton condensate were studied, with measured

effects being attributed to the photonic potential disorder in the fabricated structure.

Fig. 5.1 Experimental realizations of Lieb lattices in different systems. (a) A non-
diffracting Lieb lattice flat-band state in a coupled waveguide array in fused silica.
The top left (right) inset shows an interferogram of the input (output) beam revealing
π phase shifts between spots. The lower left inset shows the intensity of the input
beam. Taken from Ref. [214]. (b) Engineering an optical Lieb lattice for ultracold
atoms by interfering multiple laser beams (left) to create a periodic potential (right)
from Ref. [215]. (c) Flat-band density of states in a vacancy lattice in a chlorine
monolayer revealed by scanning tunnelling spectroscopy in Ref. [216]. (d) Differential
conductance map at the flat band energy in an electronic Lieb lattice formed by CO
molecules on a Cu(111) surface from Ref. [217].

Here we will start by studying the linear properties of the 2D Lieb lattice using

low-power non-resonant excitation as in the last chapter, followed by regimes of high-

power quasi-resonant excitation where optical nonlinearities lead to renormalization of

the band structure, non-equilibrium condensation into s- and p-type flat bands and
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fragmentation of the condensate energies. Finally we consider the polarization degree

of freedom, and show that photonic spin-orbit coupling (SOC) generates pseudospin

textures in the flat band emission. Many of the main results can be found in Ref. [218].

5.2 Linear regime

5.2.1 Band structure

Firstly we will consider a 2D Lieb lattice of micropillars in the same sample studied in

Chapter 4. A scanning electron microscope image of the full microstructure is shown

in Fig. 5.2. As discussed in the previous chapter, microstructures in this particular

sample have been etched to a depth of ∼8 µm, and it can be seen that the micropillars

feature highly vertical sidewalls. The small structures that can be seen surrounding the

lattice arise from "micromasking", wherein masking material gets randomly redeposited

onto areas of the sample meant for uniform etching. Nevertheless, the high quality of

the etching (leading to deep confinement) and large negative cavity-exciton detuning

mean this sample is highly favourable for studying the band structure of the Lieb

lattice. Henceforth we will refer to this sample as the "photonic" sample, and the less

negatively-detuned sample (Sample 3) where high-power experiments were performed

will be known as the "excitonic sample", which features smaller etch depths of around

∼2.5 µm [218].

In Fig. 5.3 an angle-resolved PL spectrum of the photonic sample showing the s- and

p-type energy bands is presented, which was measured under low-power non-resonant



5.2 Linear regime 125

Fig. 5.2 Scanning electron microscope image of a fully etched 2D Lieb lattice. The etch
depth is approximately 8 µm and the lattice constant α is 5.1 µm, the width of one
unit cell (white box).

excitation. Since there is no energy renormalization in this low-density regime, the

measurements reveal the "single-particle" band structure of the lattice. First, one may

note the inhomogeneity of the emission intensity; for example, of the s bands only the

lowest energy band appears to be visible within the first Brillouin zone (BZ). This may

be attributed to a combination of far-field destructive interference and varying lifetimes

of different modes [218]. Otherwise, in both the s and p modes we see bands which are

dispersive, with both positive and negative curvatures (effective masses), and bands

which are approximately non-dispersive, implying infinite effective mass. These flat

bands are shown by dashed green lines. The origin of the flat bands is the destructive
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interference between the probability amplitudes of particle tunnelling processes in the

unit cell (A to B and C to B) which leads to zero net flow of particles to B sites.

Thus, a macroscopic number of momentum eigenstates become degenerate, and the

energy band is flat. This phase cancellation is purely geometric in origin, owing to the

three-site unit cell of the Lieb lattice. In reality, there is also finite coupling beyond

nearest neighbour sites, which has two effects: (i) it breaks the particle-hole symmetry,

such that the dispersive bonding and anti-bonding bands are asymmetric about "zero"

energy (the flat bands), and (ii) it adds a small k-dependence (waviness) to the energy

of flat bands [219].

Fig. 5.3 Band structure of the fully etched (photonic) sample at kx = 0. The green
dashed lines show the position of the flat bands. The solid grey vertical lines are the
boundaries of the first Brillouin zone. The inset shows a schematic of a single unit cell
labelled with A, B and C sublattices.
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Single-particle measurements were also taken in the excitonic Lieb lattice sample.

In contrast to the photonic sample, this structure is only partially etched down to 4–6

layers in the top DBR, such that the active layer of the microcavity remains intact

in the bulk of the lattice [218]. This helps to prevent etching-induced broadening

of the exciton resonance (due to surface recombination) which is expected to be

more prominent in this sample because of the smaller cavity-exciton detuning. Band

structures at three different values of kx are shown in Fig. 5.4, with calculated TB

curves plotted on top for reference. The TB model developed [218] does not include

the effects of polarization or coupling beyond nearest neighbours, but provides good

qualitative agreement with the observed bands as can be seen.

Fig. 5.4 Band structures of the partially etched (excitonic) sample at kx = 1.3, 1.5 and
2 (left to right). In this sample the lattice constant α = 5.8 µm.

In Fig. 5.5 the real space emission of the partially etched Lieb lattice is shown at

three energies. The images are constructed using the optical tomography procedure

described in Ref. [139]. In Figs. 5.5(a),(c) we see the real space emission of the s-

and p-type flat bands. Within a single unit cell (white boxes) it can be seen that

the intensity is almost entirely distributed on the A and C sublattices, with little to
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no population on the B sublattice. This gives rise to a distinctive diamond-shaped

intensity pattern for the flat band eigenmodes, as highlighted by the dashed green

lines. As previously mentioned, there is (ideally) zero net flow of particles to B sites

in flat bands, which is reflected here in the high degree of localization on A and C.

For comparison, the real space emission at the top of the s anti-bonding (AB) band is

shown in Fig. 5.5(b). This corresponds to the maxima of the highest energy s band,

at approximately 1.4645 eV in Fig. 5.4. Unlike the flat bands, emission can be seen

on all three sublattices, which reflects the fact that the particles are delocalized as is

normally the case for the linear eigenmodes of 2D lattices.

Fig. 5.5 Real space emission at the energies of the s flat band (a), anti-bonding band
(b) and p flat band (c). The white box delimits a single unit cell.

It is interesting to note the arrangement of px and py orbitals in the p flat band

seen in Fig. 5.5, where clearly px orbitals are predominantly occupied on A sites and

py orbitals on C sites. Intuitively, this offset in the populations of orbitals on different

sublattices creates a necessary imbalance to allow destructive wave interference and

flat band formation, given the fact that the hopping of p orbitals is highly directionally-

dependent. For example, px orbitals tunnel much more easily from C to B (along x)

than A to B (along y), so the population of px orbitals on A sites must be increased
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for the net propagation to be zero; the opposite holds for py orbitals. The real space

intensity patterns of p-type lattice modes have also been studied in photonic graphene

[106, 115].

5.2.2 Polarization properties

The polarization degree of freedom in micropillar lattices adds rich physics and is

expected to play an important role in the engineering of topological phases [191, 220]

and emulation of spinor phenomena in solid state systems [221]. The refractive index

step induced by the small physical size of etched microcavities, which is on a scale

comparable to the cavity photon wavelength, enhances so-called spin-orbit coupling

of light [74]. In addition, as previously discussed in earlier chapters, the polarization-

dependent reflection phase experienced by photons at oblique angles (TE-TM splitting)

is also present in microcavity systems, which can be tuned by structure design and

further increases polarization splitting. It has previously been shown in a hexagonal ring

of coupled micropillars that such polarization terms can lead to non-trivial pseudospin

textures [109].

In Fig. 5.6 we see Fourier space images from the photonic sample at the energy of

the s flat band showing the total emission and a corresponding polarization map (Stokes

parameters S0 and S1 respectively). The dashed green lines show the boundaries of

the second BZ, and it can be seen that the flat band emission resides predominantly

at its four vertices. In the polarization map it is evident that the polarization winds

around these points, which creates an in-plane gauge field for photons [207]. In the next
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section we will study the polarization properties of the emission in the high-density

regime in the excitonic sample. It should be noted that whilst the reported polarization

effects can also be observed in the linear regime in that sample, the narrowing of the

lattice modes in energy above the condensation threshold allows enhancement of the

polarization effects.

Fig. 5.6 Total intensity (S0, left) and rectilinear polarization map (S1, right) of the s
flat band emission in k space.

5.3 Nonlinear regime

5.3.1 High-angle excitation

High-angle coherent excitation has previously been employed in both planar [85] and

acoustically-modulated [222] microcavities to induce optical parametric oscillation

(OPO). It allows efficient direct scattering to low energy/k "signal" states (with a

corresponding high energy/k "idler" state) provided phase-matching conditions are

met: 2kPump = kSignal + kIdler. In order to enter an OPO regime in the Lieb lattice

system the excitation was taken to an angle of approximately 20◦ from the optical

axis, as represented schematically in Fig. 5.7, roughly at the lattice wave vector
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(kx, ky) = (−4π/α, 0). The pump energy was around 1.4685 eV, detuned by roughly

0.5 meV with respect to the polaritonic state at that wave vector, and -2.5 meV from

the bare exciton energy. The spectrally-resolved k space PL emission was recorded on

the CCD.

Fig. 5.7 Schematic of the OPO experiment with the Lieb lattice.

In Fig. 5.8 we see the power dependence of the Lieb lattice emission. For this

particular measurement, the pump was spectrally filtered to allow analysis of the states

at lower energy. The total intensity of these states against excitation power P is plotted

in Fig. 5.8(a), where clear threshold behaviour can be seen. In Fig. 5.8(b) the intensity

is broken down into the three states which are predominantly populated. It can be seen

that at low powers the p flat band dominates the emission spectrum, with an intensity

increasing linearly with power. Relaxation to these states occurs via polariton-phonon
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scattering. The fact that polaritons accumulate in the p states and the s states are

only weakly populated suggests that the p flat band presents a significant bottleneck in

the dispersion, perhaps due to the enhanced lifetime [19]. Even in this linear regime,

self-interactions in the pump mode renormalize the lattice energy spectrum as the

excitation power increases, changing both real and imaginary eigenvalue components

[90]. OPO behaviour switches on when the complex eigenvalue (where the imaginary

component describes losses) of a signal mode becomes real-valued, meaning there is net

gain [7]. At a time-averaged power of approximately 47 mW, the threshold power Pth

for the OPO regime is reached as the pumped polariton states blueshift into resonance

with the excitation laser, creating high particle densities favouring efficient polariton-

polariton scattering. At this power the total intensity starts to increase superlinearly

[Fig. 5.8(a)], which coincides with the appearance of the gap state whose population

also jumps rapidly, whilst the p flat band population starts to plateau [Fig. 5.8(b)].

Such behaviour is caused by the interplay between polariton-phonon, polariton-exciton

and polariton-polariton scattering. Note that no idler is registered in our experiment

due to its high angle and exciton content. As the excitation power is taken further

beyond the threshold power, the s flat band population starts to increase nonlinearly

[Fig.5.8(b)]. Simultaneously, depopulation of the p flat band occurs. This suggests

the opening up of a scattering or relaxation channel which allows the s flat band to

populate on faster timescales than the p flat band. Note that thermally-induced phonon

channels probably also play a role in polariton relaxation as the sample irradiance
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increases. Indeed, at the highest excitation powers sample heating started to induce a

small redshift of the energy bands.

Fig. 5.8 (a) Power dependence of the total emission intensity at energies below the
pump. The inset shows a schematic of the pumping scheme, where the laser is blue-
detuned with respect to the state at kx/(π/α) = −4. (b) Power dependence of the
three highly populated lattice modes.

The nonlinear gap state at ky/(π/α) = −2 is presented in Fig. 5.9 where the

emission is shown at threshold. Such modes are nonlinear defect states which are

highly favoured in lattice potentials owing to the negative effective mass of certain

states, which makes the product of the repulsive interaction term α > 0 and effective

mass m < 0 negative [210, 7]. This allows the formation of excited states bound to

the reservoir potential of the pump, which has been explored previously in polaritonic

lattices in Refs. [110, 222].

The spectra of the signal states in the Lieb lattice OPO are shown for various

excitation powers in Fig. 5.10. We see that well below threshold, only the p flat band

is visibly populated, whilst close to threshold the s bands also show intensity peaks.
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Fig. 5.9 k space emission around kx/(π/α) = −2 showing the band gap in the single-
particle spectrum (left) and state at the centre of the energy gap in the OPO regime
(right).

Just above threshold, the gap state peak dominates the excitation spectrum, and a

peak at lower energies attributed to the s flat band can be clearly seen. At even higher

excitation powers, one can observe that the s flat band has risen at a faster rate than

the gap states. Interestingly, a small energy splitting appears in the gap state, whose

origin is unclear.

5.3.2 Normal-incidence excitation

Experiments were also performed with the excitation laser incident normal to the

sample surface, as represented in Fig. 5.11, where the results were quite different. This

time the laser was detuned to approximately 1.47 eV, around 1 meV below the bare

exciton energy, and a horizontally-polarized beam of roughly 20 µm was used to excite

about 15 lattice unit cells.

The power dependence can be seen in Fig. 5.12. Threshold behaviour was seen

successively in the p flat band, gap states emerging from the s anti-bonding band

maxima and the s flat band [Fig. 5.12(a)]. Plotting the full-width at half-maximum
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Fig. 5.10 Evolution of the Lieb lattice emission spectrum with excitation power. The
pump energy is at a higher energy (horizontal arrow). The two insets show the total
k space emission below threshold (left) and the s flat band k space emission above
threshold (right), at an energy shown by the vertical arrow in the main panel.

Fig. 5.11 Schematic showing excitation of the Lieb lattice at normal incidence.
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(FWHM or linewidth) of the modes shows a sharp drop at the threshold excitation

powers. Angle-resolved PL spectra at increasing excitation powers as seen in Figs.

5.12(c)-(g) reveal both the sharp increase of intensity and narrowing in energy of the

three lattice modes above threshold. The corresponding real space emission from the

condensed modes is shown in Figs. 5.12(h)-(j). As expected, emission from the flat

bands shows dark B sites, while the gap states are formed on all three sublattices.

Fig. 5.12 (a) Intensity of lattice modes as a function of excitation power. (b) Full-width
at half-maximum (FWHM) of lattice modes as a function of excitation power. (c)-(g)
Evolution of the angle-resolved PL emission with excitation power. (h)-(j) Real space
images of the lattice condensates.

In the high-density regime above the multiple condensation thresholds, the presence

of polariton-polariton and polariton-exciton scattering leads to nonlinear renormaliza-

tion of the band structure. As previously mentioned, in quasi-flat bands the effective
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mass of particles tends to infinity, meaning kinetic energy (proportional to the curvature

of the bands) is quenched. As a result, flat band particles respond non-perturbatively

in the presence of on-site interactions [223]. Under quasi-resonant excitation as is the

case here, polariton-polariton and polariton-exciton scattering create a large interaction

energy as evidenced by significant blueshift of polaritonic modes. Above threshold, we

analyse small regions of the real space emission close to the pump spot and plot the

emission energy against lattice site in Fig. 5.13. In the case of the flat bands, significiant

energy variation can be seen across the condensates, represented by the artificial colour

plot, showing the nonlinear fragmentation in the presence of interactions. In contrast,

the nonlinear gap states emit at a constant energy across the lattice. Intuitively, the

localization of flat band eigenmodes means interacting macroscopic phases cannot

equalize the pump-induced potential energy by propagation to low potential energy

regions. In contrast, for the gap states there exists a dynamical balance of nonlinearity

and propagation [210], meaning the kinetic degree of freedom balances the effects of

interactions. Similar findings were reported in the 1D Lieb lattice counterpart [111].

Fig. 5.13 Artificial colour plots showing the real space energy variation of emission
from the s flat band (a), gap state (b) and p flat band (c).

In Fig. 5.14 we show a plot of the data presented in Fig. 5.13. Each data point

corresponds to the emission from one orbital lobe (1 and 2 bright lobes for the s
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and p orbitals respectively). Along the horizontal axis we see the intensity of the

identified peaks, normalized to the average intensity of the ensemble (the Gaussian

pump creates a broad distribution of intensities across the sites). Along the vertical axis

the energy detuning of the peaks relative to the average condensate energy is plotted.

A significant energy variation about the mean can be seen in the case of the flat-band

condensates, which is absent for the gap state condensates. A positive correlation

(positive slope) between the population (intensity) and on-site energy exists for the

flat bands as demonstrated by the solid fitted least squares lines, as is expected for a

blueshift arising from interactions, whereas the data points for the gap states all lie at

the mean energy (dashed black line). Note that the flat-band energy fragmentation

is on the order of 100-150 µeV, which lies within their spectral width (∼0.2 meV)

hence enabling the destructive interference required for their formation. The fact that

flat-band eigenmodes are localized also explains why they are favoured for condensation

in the first place, since injected particles (which act as a source for condensation) do

not propagate out of the pump region, maximizing the overlap integral of the pump

and final state [210].

5.4 Pseudospin textures

The Lieb lattice emission was also measured in the four linear polarization bases above

condensation threshold. When passing from below to above this threshold, there was a

sharp increase in the total degree of linear polarization of the emission, as is commonly
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Fig. 5.14 On-site energy (with respect to ensemble average) vs. normalized intensity of
individual photonic orbitals for data shown in Fig. 5.13.

reported in polariton condensates. A large contribution in this case comes from the gap

states which are strongly horizontally polarized. Since different decay rates exist for

different linear polarizations, maximum gain occurs in the state with the smallest total

losses. In contrast, in the flat bands, where we have already seen distinctive intensity

patterns [Fig. 5.5], macroscopic polarization textures were revealed in the emission.

Real space polarization maps of the s- and p-type flat band condensates are shown

in Fig. 5.15. Periodic polarization patterns extended across several unit cells can be

observed. This shows the presence of polarization terms with magnitude comparable

to or greater than the polariton decay rate, leading to a modest degree of linear

polarization in the measured PL emission. In Ref. [218], a phenomenological analysis

of the pseudospin textures was provided by E. Cancellieri [see Appendix B]. A simple

nearest-neighbour TB Hamiltonian with polarization-dependent hopping energies is

sufficient to explain and emulate the observed pseudospin patterns. It should be noted

that, compared to the last chapter, where analysis of the l = 1 (p) modes included an

on-site correction to their energies, the sample studied here features a combination of
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a smaller β factor, broader linewidths and larger exciton fraction, meaning that the

influence of TE-TM splitting was substantially smaller and did not play a significant

in the experimental observations, and hence was not included in the analysis.

Fig. 5.15 Rectilinear polarization maps (Stokes parameter S1) of emission from the s
flat band (a) and p flat band (b). Schematic of the nearest neighbour particle tunnelling
processes for s orbitals (c) and px,y orbitals (d).

The hopping processes described by this model are depicted in Figs. 5.15(c),(d).

Just as the combination of tunnelling constraints imposed by flat band formation and

directionally-dependent hopping has previously been shown to lock the orientation

of p orbitals [Fig. 5.5(c)], the polarization-dependent tunnelling here also creates

a staggered hopping effect which locks the polarization. Specifically, tunnelling of

horizontally-polarized orbitals in suppressed along the y direction (A to B sites),

leading to an increased population in these orbitals on the A sublattice to compensate.
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The opposite holds for tunnelling from C to B sites, where horizontal polarization is

favoured and hence vertical polarization is dominant on the C sublattice. This TB

model uses linear polarization splittings on the order of 10 − 100 µeV to successfully

replicate the intensity and pseudospin patterns in the flat bands.

5.5 Summary

To summarize, the spatial, spectral and pseudospin properties of 2D Lieb lattices

for polaritons have been studied in both linear and nonlinear regimes. The lattices,

fabricated via full and partial etching of planar microcavities, showed pronounced

band structure formation induced by the periodic modulation of the energy landscape,

and access to the spatial wave functions of different modes using optical tomography

revealed distinctive intensity patterns associated with the flat bands. Using pulsed

excitation at normal and oblique incidence, tuned to be (quasi-) resonant with polariton

states below band gap, high-density regimes were explored wherein large nonlinearities

were observed. Pseudospin textures arising from the polarization-dependent tunnelling

of polaritons between pillars were also revealed. The results show the potential for

engineering versatile lattice Hamiltonians for polaritons, highlighting the ease with

which spin-orbit coupling terms and population of higher orbitals can be implemented,

which presents a significant advantage of this system. Furthermore, the observation of

flat-band condensate fragmentation demonstrates the effect of many-body interactions

in the presence of quenched kinetic energy. An intriguing future prospect is studying
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quantum fluctuations as in recent polariton works [224, 149, 101] in lattice environments

where novel driven-dissipative phase transitions are expected. Currently the strength of

polariton-polariton interactions in a single lattice site (few µeV) [36] is comparable to

or less than the polariton decay rate. However, the ratio of these two quantities may be

further enhanced via polariton Feshbach resonances [225] or recently developed high-Q

open-access microcavities with strong lateral confinement [203]. This would open

the way to strongly correlated regimes described by driven-dissipative Bose-Hubbard

models in polaritonic lattices [226].



Chapter 6

Conclusions and outlook

6.1 Summary

In this thesis, monolithic and nanofabricated semiconductor microcavities have been

experimentally investigated in both linear and nonlinear regimes. In particular, internal

degrees of freedom in the system such as polarization and orbital angular momentum

have been considered in a variety of phenomena relating to pattern formation, topology

and nonlinear lattice effects.

In Chapter 3, planar microcavities were studied under high-power pulsed excitation

where the spontaneous formation of vortex patterns was observed. It was shown

that under conventional plane wave excitation, a ring of polariton states at fixed

wave vector is excited on the lower polariton branch, leading to a Bessel distribution

of injected polaritons, which becomes unstable against symmetry-breaking pattern-

forming instabilities beyond a critical pumping threshold. The spontaneous nucleation
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of even and odd polygon patterns of increasing order was observed as the polariton

density was increased, and it was shown how varying the central power density under

fixed pumping intensity enabled switching between patterns. The optically-controlled

rotation of patterns was addressed experimentally and theoretically. At the same

time, statistical properties of the microcavity emission were considered by studying

the second order coherence and signal noise. It was shown in the former case that

a narrow peak exists across the bistability threshold possibily related to superlinear

kinetics of the polariton system. In the latter case, an oscillating signal far above shot

noise was revealed in the amplitude fluctuations of the microcavity emission which

arise due to transitions between different pattern states and between lower and upper

stable branches in the vicinity of the threshold.

In Chapter 4, one-dimensional zigzag chains of micropillars were addressed under

low-power incoherent excitation, and the polarization degree of freedom was shown

to have different effects on the topological edge states of the system. Specifically, an

on-site polarization splitting term was shown to perturb the energies of the edge states

whilst a polarization-dependent tunnelling term was demonstrated to give different

localization lengths for the two polarizations. This represents to the best of this

author’s knowledge the first time spinor effects have been studied in photonic SSH

chains, where the huge enhancement of typically weak spin-orbit coupling of light is

made possible in modulated microcavity structure lattices due to the wavelength-scale

confinement of light in a structure with large in-plane index steps.
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In Chapter 5, two-dimensional Lieb lattices of micropillars were studied in low-power

and high-power non-resonant and quasi-resonant regimes. A multi-mode condensation

behaviour was reported under both high-angle and normal-incidence excitation, wherein

lasing occurred in the p modes followed by a relaxation towards the s modes at higher

powers due to nonlinear scattering. Intriguingly, the flat band emission was shown

to feature a pronounced pseudospin texture arising from the polarization degree

of freedom, and intensity pattern in the case of the p flat band as a result of the

directional dependence to hopping due to its axial asymmetry. Finally, the quenched

kinetic energy scale of flat-band particles was evidenced by analyzing the spectral

variation in the emission across different lattice sites, where a significant fragmentation

of the condensate energy was observed. The role of interactions was highlighted by the

correlation between mode blueshift and population.

6.2 Future directions

The work presented in this thesis paves the way towards many potential future studies

of exciton-polaritons in both planar and etched microcavities. A research direction of

considerable contemporary interest within and outside of the polariton community is

the engineering of topological phases for photons, for which confined polaritons in lattice

environments are an ideal platform to study novel nonlinear, spinor and non-Hermitian

phenomena associated with topology. Whilst the measurements from Chapter 3

were performed using unconfined polaritons, they shed interesting light on optical
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bistability, parametric instabilities and photon bunching in polariton systems, which not

only highlight potentially favourable features of polariton systems compared to other

photonic platforms but are yet to be studied in lattice environments where features such

as bistability may be exploited for use in topological states [227]. The results presented

in Chapters 4 and 5 provide some early indications of the numerous fascinating photonic

and polaritonic features associated with semiconductor micropillar lattices. Here a few

potential future research directions which build upon the experiments performed in

the previous chapters will be discussed.

6.2.1 Towards artificial gauge fields

Besides the Lieb lattices reported in Chapter 5, honeycomb lattices (i.e. polariton

graphene [106]) were fabricated as an another interesting lattice geometry to study. By

using the analytical tight-binding expressions for the π and π∗ bands in the presence

of nearest-neighbour (NN) and next-nearest-neighbour (NNN) coupling [228], curves

can be fitted to experimentally measured dispersions to extract the NN coupling (t)

and NNN coupling (t′) strengths. By fabricating several repeats of the lattice with

different periodicities, one can obtain a rough idea of the dependence between tunnelling

energy and pillar separation1, for use in the design of pseudomagnetic fields [see Fig.

6.1]. The interest in pseudomagnetic fields lies in the potential for studying artificial

magnetic effects in optical systems which are otherwise inaccessible due to the weak

magneto-optical response. For example, depending on the strain geometry different
1It should be noted that this of course depends on the particle effective mass (cavity-exciton

detuning) and confinement depth.
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edge states may be observed as discussed theoretically in a recent work [229] whilst

it has been shown theoretically [230] and experimentally using coupled waveguide

arrays [231] that photonic pseudo-Landau levels (pLLs) may be engineered using strain.

Based on preliminary calculations from the dependence extracted in Fig. 6.1, it seems

that it may be difficult to create well-separated pLLs within a realistic range of pillar

separations. However, triggering polariton lasing in pLLs may offer a way to circumvent

this issue.

Fig. 6.1 (a) Measured dispersions in honeycomb lattices with different lattice constants
from Sample 2, showing fitted tight-binding curves. (b) A plot of t and |t′| extracted
from experimental data for pillar separations ranging between 2.2 and 2.8 µm. The
dependence within this range is approximately linear, as shown by the best fit lines.
(c) Schematic of a preliminary strained honeycomb lattice design. Starting from the
central plaquette (six sites), the pillar separation changes slightly with each successive
coating, inducing pLLs in the dispersion.

Alternatively, effective magnetic fields arising from microcavity TE-TM splitting,

which was discussed in Section 1.4.2, may also be engineered in lattice environments.

For example, it has been shown theoretically for the case of a honeycomb lattice [207]
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that the reduced spatial symmetry of the periodic potential compared to a planar

microcavity transforms the double-winding TE-TM field, previously sketched in Fig.

1.9 and visualized in Fig. 2.9, into a Dresselhaus-type field in the vicinity of the Dirac

points, wherein the linear polarization angle is expected to wind singly around the K

and K ′ points.

Fig. 6.2 Upper panel: Experimentally measured dispersion relations for a honeycomb
lattice with periodicity a = 2.40 µm (shown at ky/(2π/3

√
3a) = 1) in H and V bases,

with the corresponding Stokes parameter S1 showing polarization splitting of the bands.
Lower panel: Corresponding Fourier space maps at the energies of the dashed lines in
the upper panel. It can be seen in the S1 map that the polarization winds only once
around the Dirac points (the six vertices of the hexagonal pattern).

Engineering lattices with large polarization splitting paves the way towards inter-

esting future studies of spinor phenomena in lattices, such as spin precession under

resonant injection of wave packets [207], spin-dependent barrier tunnelling [221], whilst

also fulfilling early criteria for the realization of topologically insulating phases with real

or self-induced (by spin-anisotropic interactions) Zeeman fields, not just in honeycomb

lattices [232, 191] but also Kagome [220] and Lieb [233] lattices.
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6.2.2 Other polaritonic systems

Besides the micropillar lattices which have been discussed in this thesis, other systems

capable of supporting exciton-polaritons may also offer certain advantages or capabilities

compared to etched microcavities. For example, another highly promising system to

study confined polaritons is in the slab waveguide geometry as in Refs. [36, 39], where

solitons, continuum generation and self-phase modulation2 have been studied in highly

nonlinear regimes (so far without lateral confinement). Perhaps more intriguingly, in

the paraxial approximation the evolution equation describing the waveguide system

becomes formally analagous to the nonlinear Schrödinger or Gross- Pitaevskii equations,

but with the propagation direction z replacing time t, which could allow the simulation

of topological [186] or PT symmetric [234] Hamiltonians.

Fig. 6.3 Two possible alternative candidates for future research into confined exciton-
polaritons. (a) Schematic of the GaAs-based slab waveguide device, where a guided
photonic mode couples to quantum well excitons embedded in the core layer, studied
in Ref. [39]. (b) Design schematic of a lattice in the open cavity geometry, formed
from periodically positioned concave mirrors and a tuneable air gap. Image courtesy
of M. Sich.

2The latter two effects are the subject of an upcoming publication by P. M. Walker.
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Another interesting geometry is the open cavity geometry [199, 235, 203, 101],

where strong lateral confinement has shown to lead to small mode volumes which are

not possible in micropillars. Open cavity lattices [see Fig. 6.3(b)] potentially allow

future studies of driven-dissipative phase transitions [236] and Bose-Hubbard models

[226], whilst also offering a possible route towards elusive quantum polaritonic regimes

[102].
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Appendix A

Further sample details

A.1 Layer structure of samples used

In this section, details of the layer structures of the microcavities are provided. In the

tables, cells shaded in blue represent layers in the distributed Bragg reflectors and cells

shaded in red correspond to the QW layers. The green-shaded cells (combined with

the QW layers) then form the cavity layer.
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A.1.1 Sample 1

Repeats Thickness (nm) Material

23 60.6 GaAs

23 71.0 Al0.85Ga0.15As

1 69.6 GaAs

3 10.0 GaAs

3 10.0 In0.04Ga0.96As

1 79.6 GaAs

27 71.0 Al0.85Ga0.15As

27 60.6 GaAs
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A.1.2 Sample 2

Repeats Thickness (nm) Material

23 60.94 GaAs

23 71.38 Al0.85Ga0.15As

1 3.8 GaAs

3 76.9 GaAs

3 10.0 GaAs

3 10.0 In0.04Ga0.96As

3 10.0 GaAs

3 10.0 In0.04Ga0.96As

1 90.69 GaAs

27 71.38 Al0.85Ga0.15As

27 60.94 GaAs
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A.1.3 Sample 3

Repeats Thickness (nm) Material

23 60.94 GaAs

23 71.38 Al0.85Ga0.15As

1 70.1 GaAs

3 10.0 GaAs

3 10.0 In0.04Ga0.96As

1 80.1 GaAs

27 71.38 Al0.85Ga0.15As

27 60.94 GaAs

A.2 TE-TM splitting

The TE-TM splitting in microcavities can be controlled by engineering an offset between

the cavity Fabry-Pérot frequency and the central frequency of the stopband (SB) of

the Bragg mirrors, as treated theoretically in Ref. [72]. In order to demonstrate this

using parameters relevant to the samples used here, Fig. A.1 shows an example of the

calculated TE-TM splitting against k vector for a heterostructure with a cavity mode

wavelength of 851 nm (similar to Sample 2), for three different SB centre wavelengths.

The enhanced TE-TM splitting as a function of offset between cavity mode and SB

centre can clearly be seen.
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Fig. A.1 Theoretical TE-TM splitting against in-plane wave vector. The simulations
use the transfer matrix method and were provided by Dr Paul Walker.





Appendix B

Lieb lattice tight-binding model

In order to explain the band structure and the polarization pattern observed in the

Lieb lattice the following tight-binding (TB) model was developed, for both the s

and p bands, with polarization-dependent hopping amplitudes. Only nearest-neighbor

terms are considered, since the contribution from higher order terms is negligible

[109]. As the p bands are formed from coupling of the first excited pillar mode, which

is a four-fold degenerate orbital (doubly-degenerate due to the dipole structure and

doubly-degenerate due to the polarization), orientation-dependent hopping probabilities

are also included, such that the coupling depends on whether the lobes are oriented

longitudinally or transversely to the tunnelling direction [237]. Once the kernel matrices

for the two TB models are found, it is possible to calculate the polarization-resolved

mode occupation on each pillar, and calculate the corresponding linear polarization

degree.



178 Lieb lattice tight-binding model

B.0.1 s bands

By defining aH,m,n and aV,m,n as the annihilation operators in the s orbital modes

of the A sublattice pillars with linear polarization along the horizontal and vertical

directions respectively (and similarly for the B and C sites), the Hamiltonian for the s

band can be written as:

Hs
Lieb = −

∞∑
m,n=−∞

b†
H,m,n[τ⊥(aH,m,n + aH,m−1,n) + τ∥(cH,m,n + cH,m,n−1)] +

b†
V,m,n[τ∥(aV,m,n + aV,m−1,n) + τ⊥(cV,m,n + cV,m,n−1)] + h.c.,

where the hopping probabilities are τ∥, τ⊥ when the polarization is aligned along

(parallel) or sideways to (perpendicular) the hopping direction. The on-site s orbital

energies are all equal and set to zero. Introducing the Fourier transform of the creation

and annihilation operators as:

aH,p,q = 1
N

∞∑
m,n=−∞

aH,m,ne
+iα(kpm+kqn), a†

H,p,q = 1
N

∞∑
m,n=−∞

a†
H,m,ne

−iα(kpm+kqn),

where α is the unit cell size of the TB model, and kp and kq are the x and y component

of the wave-vector, respectively. Similarly it is possible to define the Fourier transform

of the operators for the B and C sites and for the V polarization, it is possible to write

the above Hamiltonian in k-space. This can be written in a compact form as:
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Hs
Lieb = −2

∞∑
p,q=−∞

ψ†T

p,q

M
s
H,p,q 0

0 M s
V,p,q

ψp,q,

with

ψ†T

p,q = (a†
H,p,q, b

†
H,p,q, c

†
H,p,q, a

†
V,p,q, b

†
V,p,q, c

†
V,p,q)

and

M s
H,p,q =



0 τ⊥e
+ iαkq

2 cos
(

kqα
2

)
0

τ ⋆
⊥e

− iαkq
2 cos

(
kqα

2

)
0 τ∥e

+ iαkp
2 cos

(
kpα

2

)
0 τ ⋆

∥ e
− iαkp

2 cos
(

kpα
2

)
0


,

and

M s
V,p,q =



0 τ∥e
+ iαkq

2 cos
(

kqα
2

)
0

τ ⋆
∥ e

− iαkq
2 cos

(
kqα

2

)
0 τ⊥e

+ iαkp
2 cos

(
kpα

2

)
0 τ ⋆

⊥e
− iαkp

2 cos
(

kpα
2

)
0


.

The polarized eigenvector of the s band can be easily written in terms of the

function E[x, y] = −2xe− iαy
2 cos

(
yα
2

)
, where x is the hopping probability and y the

direction of propagation:
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e1 = 1
A1

{
0,−E[τ⊥, kq]

E[τ∥, kp] , 1, 0, 0, 0
}

e2 = 1
A2

−

√
|E[τ∥, kp]|2 + |E[τ⊥, kq]|2

E[τ⊥, kq]∗
,
E[τ∥, kp]∗
E[τ⊥, kq]∗

, 1, 0, 0, 0


e3 = 1
A3

+

√
|E[τ∥, kp]|2 + |E[τ⊥, kq]|2

E[τ⊥, kq]∗
,
E[τ∥, kp]∗
E[τ⊥, kq]∗

, 1, 0, 0, 0


e4 = 1
A4

{
0, 0, 0, 0,−E[τ∥, kq]

E[τ⊥, kp] , 1
}

e5 = 1
A5

0, 0, 0,−

√
|E[τ∥, kq]|2 + |E[τ⊥, kp]|2

E[τ∥, kq]∗
,
E[τ⊥, kp]∗
E[τ∥, kq]∗

, 1


e6 = 1
A6

0, 0, 0,+

√
|E[τ∥, kq]|2 + |E[τ⊥, kp]|2

E[τ∥, kq]∗
,
E[τ⊥, kp]∗
E[τ∥, kq]∗

, 1
 ,

where the six constants Ai are normalization constants. We see here that with these

assumptions the H and V polarized modes are completely independent since the kernel

matrix is a block matrix. Each block is basically the 3 × 3 kernel matrix for a single

mode Lieb lattice. The main difference here is that the hopping probabilities change

depending on the polarization and on the hopping direction.

First considering the unpolarized case (i.e. τ⊥ = τ∥ = τ) and fitting the s part of

the experimental band structure a value of τ = 0.165 meV is estimated. Next, the

degeneracy between the two tunnelling terms is lifted so that τ∥ = 0.165 meV and

τ⊥ = 0.145 meV. With these new values the calculated degree of polarization (S1)

of the flat-band eigenmodes is ±0.128, in excellent agreement with the experimental

value of ±0.13. To obtain this value the eigenvectors of Hs
Lieb are evaluated at each k
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point, giving the distribution of the H and V populations on the three pillars forming

the unit cell. This allows the evaluation, for each k point, of the relative H and V

population. As a final step, the weighted averages of the H and V populations over the

entire k-space are calculated for each pillar, giving the polarization on each pillar.

B.0.2 p bands

Similarly to the treatment of the s bands aHx, aHy, aV x, and aV y are the annihilation

operators for the p orbital modes of the pillar with H and V polarization and with the

lobes aligned along the x or y directions. The notation follows the same convention for

the creation operators and for the modes on the B and C sites. With these definitions,

the Hamiltonian for the p band in real space can be written as:

Hp
Lieb = −

∞∑
m,n=−∞

b†
Hxm,n

[τ t
⊥(aHxm,n + aHxm−1,n) − τa

∥ (cHxm,n + cHxm,n−1)]

−
∞∑

m,n=−∞
b†

Hym,n
[τa

⊥(aHym,n + aHym−1,n) − τ t
∥(cHym,n + cHym,n−1)]

−
∞∑

m,n=−∞
b†

V xm,n
[τ t

∥(aV xm,n + aV xm−1,n) − τa
⊥(cV xm,n + cV xm,n−1)]

−
∞∑

m,n=−∞
b†

V ym,n
[τa

∥ (aV ym,n + aV ym−1,n) − τ t
⊥(cV ym,n + cV ym,n−1)] + h.c.,

where the hopping probabilities τa
∥ , τ t

∥, τa
⊥, and τ t

⊥ correspond to modes hopping from

one site to another having the polarization parallel (∥) or perpendicular (⊥) to the

hopping direction and the lobes of the p orbital aligned (a) or transverse (t) to the
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hopping direction. As before one can introduce the Fourier transform of the creation

and annihilation operators and diagonalize the Hamiltonian in k-space. This time the

kernel matrix will be 12 × 12 since there are 2 modes with 2 possible polarizations on

each of the 3 pillars. In this case the Hamiltonian can be written in a compact form as:

Hp
Lieb = −2

∞∑
p,q=−∞

ψp†T

p,q



Mp
Hx,p,q 0 0 0

0 Mp
Hy,p,q 0 0

0 0 Mp
V x,p,q 0

0 0 0 Mp
V y,p,q


ψp

p,q ,

with

ψp†T

p,q = (a†
Hx,p,q, a

†
Hy,p,q, b

†
Hx,p,q, b

†
Hy,p,q, c

†
Hx,p,q, c

†
Hy,p,q, a

†
V x,p,q, a

†
V y,p,q, b

†
V x,p,q, b

†
V y,p,q, c

†
V x,p,q, c

†
V y,p,q),

and

Mp
Hx,p,q =



0 τ t
⊥e

+ iαkq
2 cos

(
kqα

2

)
0

τ t⋆
⊥ e

− iαkq
2 cos

(
kqα

2

)
0 τa

∥ e
+ iαkp

2 cos
(

kpα
2

)
0 τa⋆

∥ e− iαkp
2 cos

(
kpα

2

)
0


,
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Mp
Hy,p,q =



0 τa
⊥e

+ iαkq
2 cos

(
kqα

2

)
0

τa⋆
⊥ e− iαkq

2 cos
(

kqα
2

)
0 τ t

∥e
+ iαkp

2 cos
(

kpα
2

)
0 τ t⋆

∥ e
− iαkp

2 cos
(

kpα
2

)
0


,

Mp
V x,p,q =



0 τ t
∥e

+ iαkq
2 cos

(
kqα

2

)
0

τ t⋆
∥ e

− iαkq
2 cos

(
kqα

2

)
0 τa

⊥e
+ iαkp

2 cos
(

kpα
2

)
0 τa⋆

⊥ e− iαkp
2 cos

(
kpα

2

)
0


,

Mp
V x,p,q =



0 τa
∥ e

+ iαkq
2 cos

(
kqα

2

)
0

τa⋆
∥ e− iαkq

2 cos
(

kqα
2

)
0 τ t

⊥e
+ iαkp

2 cos
(

kpα
2

)
0 τ t⋆

⊥ e
− iαkp

2 cos
(

kpα
2

)
0


.

As before, the polarized eigenvectors of the p band can be easily written in terms

of the function E[x, y] = −2xe− iαy
2 cos

(
yα
2

)
, where x is the hopping probability and y

the direction of propagation:
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e1 = 1
A1

0,−E[τ t
⊥, kq]

E[τa
∥ , kp] , 1, 0, 0, 0, 0, 0, 0, 0, 0, 0


e2 = 1

A2

−

√
|E[τa

∥ , kp]|2 + |E[τ t
⊥, kq]|2

E[τ t
⊥, kq]∗

,
E[τa

∥ , kp]∗

E[τ t
⊥, kq]∗

, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0


e3 = 1
A3

+

√
|E[τa

∥ , kp]|2 + |E[τ t
⊥, kq]|2

E[τ t
⊥, kq]∗

,
E[τa

∥ , kp]∗

E[τ t
⊥, kq]∗

, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0


e4 = 1
A4

0, 0, 0, 0,−E[τa
⊥, kq]

E[τ t
∥, kp] , 1, 0, 0, 0, 0, 0, 0


e5 = 1

A5

0, 0, 0,−

√
|E[τ t

∥, kp]|2 + |E[τa
⊥, kq]|2

E[τa
⊥, kq]∗

,
E[τ t

∥, kp]∗

E[τa
⊥, kq]∗

, 1, 0, 0, 0, 0, 0, 0


e6 = 1
A6

0, 0, 0,+

√
|E[τ t

∥, kp]|2 + |E[τa
⊥, kq]|2

E[τa
⊥, kq]∗

,
E[τ t

∥, kp]∗

E[τa
⊥, kq]∗

, 1, 0, 0, 0, 0, 0, 0


e7 = 1
A7

{
0, 0, 0, 0, 0, 0, 0,−

E[τ t
∥, kq]

E[τa
⊥, kp] , 1, 0, 0, 0

}

e8 = 1
A8

0, 0, 0, 0, 0, 0,−

√
|E[τ t

∥, kq]|2 + |E[τa
⊥, kp]|2

E[τ t
∥, kq]∗

,
E[τa

⊥, kp]∗
E[τ t

∥, kq]∗
, 1, 0, 0, 0


e9 = 1

A9

0, 0, 0, 0, 0, 0,+

√
|E[τ t

∥, kq]|2 + |E[τa
⊥, kp]|2

E[τ t
∥, kq]∗

,
E[τa

⊥, kp]∗
E[τ t

∥, kq]∗
, 1, 0, 0, 0


e10 = 1

A10

{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−

E[τa
∥ , kq]

E[τ t
⊥, kp] , 1

}

e11 = 1
A11

0, 0, 0, 0, 0, 0, 0, 0, 0,−

√
|E[τa

∥ , kq]|2 + |E[τ t
⊥, kp]|2

E[τa
∥ , kq]∗

,
E[τ t

⊥, kp]∗
E[τa

∥ , kq]∗
, 1


e12 = 1

A12

0, 0, 0, 0, 0, 0, 0, 0, 0,+

√
|E[τa

∥ , kq]|2 + |E[τ t
⊥, kp]|2

E[τa
∥ , kq]∗

,
E[τ t

⊥, kp]∗
E[τa

∥ , kq]∗
, 1



where the twelve constants Ai are normalization constants. As for the s band, first

the unpolarized case is considered (i.e. τa
∥ = τa

⊥ = τa and τ t
∥ = τ t

⊥ = τ t) and values

of τa = 0.375 meV and τ t = 0.100 meV are estimated from experimental data. Next
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the polarization dependence is introduced: τa
∥ = 0.375, τa

⊥ = 0.125, τ t
∥ = 0.100 and

τ t
⊥ = 0.033 meV. With these values the calculated degree of polarization (S1) and

the ratio between px and py orbitals of the p flat-band eigenmodes are ±0.4 and 3.7

(the inverse applies to C sites) respectively, in good agreement with the experimental

results. To obtain these values the same procedure used for Hs
Lieb was employed.
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