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ABSTRACT 

Radial swirler were investigated for gas turbine combustor applications. with 

low NOx emissions as the main aim of the project. The flow regime of the 

combustor which was imposed by the radial swirler flow was shown by flow 

visualisation to feature a conical shaped swirling shear layer boundary and a 

comer recirculation zone. The flow patterns was independent of the swirl-vane 

angle but was a function of the swirler passage depth. 

A minimum swirler expansion ratio of 1.8 was required to achieve an 

adequate combustion efficiency. A high efficiency was not achieved in the weak 

region until there was a significant outer expansion and associated recirculation 

zone. However, there was a little influence of the expansion ratio on the weak 

extinction limit. 

Various non-conventional fuel injection methods such as swirler vane 

passage. radial central and wall injection were used with gaseous propane and 

natural gas and liquid kerosene and gasoil. Passage injection was undertaken to 

exploit the twin benefits of peripheral fuel injection and partial fuel and air 

mixing upstream of the swirlers outlet. Generally, most of the mixing between 

fueVair took place in the shear layer. However. there was a major influence of the 

method of fuel injection on the NOx emissions. Low NOx emissions were 

achieved with the radial central injection, but ultra-low NOx emissions. 

comparable with the premixed situation. were achieved for passage and wall 

injection. This was due to the dependency of the local shear layer mixing near the 

swirler exit on the fuel placement as shown by the radial gas analysis traverse 

results in the plane just downstream of the radial swirler. 

Staged air and fuel combustion was investigated using lean-lean combustion 

concept. Low NOx emissions compatible with a high combustion efficiency was 

demonstrated with stable switching from pilot to main stage combustion. Finally, 

a double radial swirler with a high air flow was investigated using co and counter 

swirl and demonstrated ultra low NOx with a good stability with central injection 
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into counter rotating swirler. 

These systems were shown to have the potential for dry solution to the 

industrial gas turbine NOx emissions regulations with a very high combustion 

efficiency. 
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NOMENCLATURE 

A1 Approach flow pipe cross sectional area. 

A2 Effective open flow area of the radial swirler. 

A3 Swirler outlet cross sectional area. 

R1 Inner radius of curvature of the passage. 

R2 Outer radius of curvature of the passage. 

R3 Radius of centre for Rl and R2. 

L Vane depth (height). 

h Minimum passage width. 

n Number of swirl vanes. 

do Vane inlet diameter. 

d Swirler outlet diameter. 

D Combustor diameter. 

V1 Mean inlet (approach) velocity. 

V 2 Mean velocity inside the passages. 

V3 Mean outlet velocity. 

Vr Radial velocity. 

Va Tangential velocity. 

Cc Contraction coefficient (free discharge coefficient). 

Cd Discharge coefficient. 

mr Mass accelerated toward the centre. 

me Mass rotating tangentially. 

m Total mass of the flow. 

Fe Axial flux of angular mometum. 

Fx Axial flux of linear momentum. 

Ie Intencity of rotation. 

S Swirl number. 

M Mach number. 

DId Expansion ratio. 

Re Reynolds number. 

H Enthalpy. 



Hf Enthalpy of fonnation. 

p Inlet pressure. 

P a Atmospheric pressure. 

P propane fuel. 

NG Natural gas fuel. 

llP/P Pressure loss. 

-xi-

R Gas constant for air (287.04 J/Kg. K) 

T Flame temperature. 

Tin Combustor inlet temperature. 

rlR Dimensionless radial distance from the centre of combustor. 

EQR Equivalence ratio. 

A/F Air to fuel ratio by weight (AFR). 

GREEK LETTER 

e Radial swirler vane angle 

1'\ Combustion efficiency. 

J.1 Vis~sity. 

'Y Ratio of spccific heat. 

p Density. 
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CHAPTER ONE 

1.1 GENERAL INTRODUCTION 

Swirl is used extensively in combustion systems as a means of increasing 

mixing rates, reducing the flame size,improving the completion of combustion, 

reducing pollutants and stabilizing the flame. Swirl is thus a powerful 

aerodynamic "tool" in the hands of the designer and need to be better understood 

if full advantage is to be taken of it. The swirler investigation in the present work 

'nCl'lle applications in lean burning primary zones of gas turbine combustion 

chambers and in furnace burners. 

Conventional gas turbine combustion chambers essentially consist of three 

main sections. These are primary, intennediate and dilution zones. A typical 

schematic diagram of the three zones is shown in Fig.l.l. The most vital section 

for the combustion chamber designer is the primary zone since combustion of fuel 

is initiated in this section. Conventional primary zones involves complex 

aerodynamics with large spatial variation in air/fuel, temperature and 

turbulence(1-5), and it is these variation that result in many of the pollution 

problems of gas turbines. The achievement of complete combustion in the 

primary zone which was the aim of the present work reduces the need for other 

sections of the combustor especially that of the intennediate zone, fulfilling the 

requirements of small size and weight which are of importance area in gas 

turbines. For industrial gas turbines,NOx legislation exists in several countries 

that can only be met by using water or steam injections with an associated 

perfonnance penalty. The present work is concerned with dry combustor design 

solutions. Using lean well mixed swirling flow primary zone. The level of 

reduction in NOx emission in lean primary zones is closely related to the quality 

of the improved fuel and air mixing and this will be decided using internal gas 

composition traverses. 

The present work was carried out on a simulated lean primary zone gas 

turbine. Single and double co and counter rotating radial swirler were used to 
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stabilise the flame. Ahmad et al(85) investigated single axial vane swirlers for 

lean primary zone applications. They showed for both single and counter rotating 

swirlers that the radial flame propagation was very slow due~'ilie large swirler size 

relative to the combustor diameter. It was concluded that a larger expansion ratio 

from the swirler was necessary to ensure rapid flame spread. In the present work 

this was much easier with the radial swirlers as the swirler diameter can be varied 

without changing the flow area or swirler pressure loss. This is due to the ability 

to change the radial passage depth as the swirler diameter is changed so as to 

maintain the same flow area. 

In previous investigation of radial swirler system for low emission gas 

turbine combustors, the radial passages have been carried through a bend into 

annules around a central fuel injector, thus becoming a fonn of axial swirler but 

with the benefit of greater passages fuel and air mixing time(173). In the present 

work several fuel injection system were investigated to achieved different mixing 

by the turbulence generated at the shear layer of jet boundary. Good mixing 

between fuel and air will reduce the size of the zones of highest temperature and 

hence the NOx emissions. Thus NOx emission will be sensitive to the method of 

injection into the same turbulent swirling shear layer. 

Staged combustion is used to modulate combustion stoichiometry so that 

NOx and CO emissions are both well controlled at high and low powers. The 

most common type of staged combustion is the rich-lean concept However, 

staged combustion can be more complex and involve various fuel injection 

locations and types of injectors, various combustion regions, variable air flow 

geometry and sophisticated fuel scheduling. In the present work double swirler 

staged combustion was investigated with a lean-lean concept, which involved air 

and fuel staging to permit the completion of combustion efficiently and with low 

NOx emissions. Combustion aerodynamics were investigated using a full size 

perspex water study the flow pattern generated by the radial swirlers. 
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1.2 SWIRL REVIEW 

1.2.1 INTRODUCTION 

The generation of swirl in a flowing medium is simply the impartation of a 

tangential or azimuthal velocity component to the flow. Various modes of swirl 

generation have been used to accomplish this task(6): I-Guide vanes, 

2-Tangential entry swirler, 3-Rotating honey comb(7) or thick perforated disk, 

4-High speed rotating of a pipe(5) and 5-Ijmuiden or moveable-block type 

swirler(6,9). 

Obviously several structural or geometrical perturbations may exist for each 

mode of swirl generation with their accompanying disparities in swirl generation 

efficiencies and resultant velocity profiles. Since the velocity profiles existing 

from the swirler determines, in part, the downstream flowfield aerodynamics, it is 

important to examine the shape of such profiles. The tangential velocity profile is 

generally discused in terms of the forced vortex flow. Forced vortex flow is 

categorized as a subset of rotational flow. A float or marker following circular 

stream lines in rotational flow will rotate about its own axis (in Eulerian sense). 

Free vortex flow which describes the approximate motion in tornadoes and whirl

-pools, is classified as an example of irrotational flow. A float in irrotational flow 

will flow a circular stream line without rotation about its own axis. Additional 

characteristics, such as the tangential velocity distribution, the angular velocity, 

the vorticity (at a point), and the circulation, which describe the forced and free 

vortices are given in ref(6,17). Tangential velocity profiles issuing from swirl 

generators generally assume a combination of the forced and free vortex 

distributions. The mean tangential velocity in the field must go to zero on the axis 

of symmetry, and hence, solid-body rotation necessarily exists in the centreline 

region. Since the tangtial velocity must go to zero either within the enveloping 

stagnant fluid (free jet) or at the reaction chamber wall (enclosed jet). A free 

vortex distribution, form a resultant profile denoted as the combined, Burgers or 

Rankine vortex. The terms forced and free vortex serve as rough guides for the 
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apparent behavior of the vortex. The location of the tangential velocity maximum 

and its interaction with the axial velocity proflle constitute critical elements in the 

downstream aerodynamics, The central forced vortex region exhibits flowfield 

and turbulence characteristic which appear to be significantly different from those 

displayed by the surrounding irrotational vortex flowfield. This central region is 

often defined as the inner viscous or vortex core. The vortex core(6,1O-14) is 

described as being "shear" or "strain" free, but not vorticity free. The core is 

generally limited to that region of flow with substantial rigid-body rotation, but 

the core boundary has also been extended to the radius of maximum tangential 

velocity. 

1.2.2 VORTEX BREAKDOWN 

Concentrated vortex cores as a function of swirl magnitude and Reynolds 

number, exihibit a number of remarkable features. As swirl and / or Reynolds 

number are slowly increased, a number of different flow states or disturbances 

emerge. Each disturbance fonns in the evolutionary heirachy (numbered, by Faler 

and Leibovich(15» in reverse order from six to zero, generally migrater to a new 

position somewhat upstream from its predecessor. They used a dye filament to 

study swirler aerodynamics. At the near zero degree vane-setting the central dye 

filament traced the inner vortex core without a noticeable change. As the swirl 

level was increased a slight oscillatory behavior was initiated at a particular 

downstream location. The oscillation increased in amplitude with axial distance 

downstream until the filament is broken up. For large swirl, the "bubble" or near

axisymmetric breakdown (disturbance type 0 and 1) evolve from the spiral 

breakdown. 

It is this breakdown fonn which is most prevalent in axisymmetric swirling 

flow in tubes, and which has been extensively studied both experimentally and 

theoretically. The near-axisymmetric breakdown is identified by a slowly varying 

vortex core which undergoes an abrupt and rapid deceleration, forming a free 

stagnation point followed by a region of flow reversal. The dyed filament within 



-5-

the core appears to spread symmetrically and smoothly from the stagnation point 

and to enclose the recirculation region. A pronounced divergence and swelling of 

the stream surfaces occurs near the axis, However, the aft or near portion of the 

recirculation bubble generally is not closed, due to a complex filling and 

emptying process which exchanges fluid between the recirculation zone and the 

exterior flow. Immediately downstream of the bubble, a new vortex core is 

established which is significantly larger than the vortex core upstream of the 

bubble. The axial velocity distribution within the core may resemble the velocity 

defect profile of a conventional wake behind a solid obstacle. The new core may 

deflect, often forming a second vortex breakdown form, before breaking into 

large scale turbulence. At large swirl only the bubble breakdown form is 

evident.Increasing the swirl will move the bubble upstream until it reaches a solid 

boundary. Further increases in swirl may eventually form a "Columnar" vortex 

with reverse flow a long the entire axis. This was seen in the water flow 

visualization studies in the present work. 

Divergence of the stream tubes must occur at the stagnation point since the 

core cannot convectively penetrate the recirculation ~one. Only fluid originating 

from the centre of the upstream vortex core may attain entrance to the nearly 

closed axisymmetric bubble, either by a circuitous route through an injection 

(filling) location at the rear of the bubble or by viscous diffusion (assuming a 

laminar approach flow). The amount of fluid actually recirculated from the 

upstream core is usually relatively small compared to the total inlet flow rate( 16). 

Vortex breakdown also redistributes the azimuthal velocity in the vicinity of the 

bubble envelope (17,18,19,20). Fluid particles adjacent to the bubble boundary 

travel on trajectories which originate near the tube axis and thus carry little 

angular momentum As a fluid particle flows radially outward in its traverse 

around the bubble, angular momentum must be conserved (except for viscous 

effects), forcing the region of the exterior bubble surface to exhibit a very low 

tangential velocity. 
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In some turbulent approach flows. however. swirl velocity magnitudes are 

not diminished within the recirculation zone. This substantial radial transfer of 

circumferential velocity to the bubble is probably associated with turbulent 

diffusion mechanisms(19.21). The direction of the spin of the swirl component 

within the reverse flow zone is in the same direction as the exterior flowfield(15}. 

An increase in the swirl level tends not only to move the bubble upstream. but 

also tends to increase the rotational frequency of the tail and to move the location 

of the emptying tail closer to the axis(15}. Not only does vortex breakdown 

provide evidence of complex azimuthal asymmetry. but it also displays 

unsteadiness in the axial direction(16.21). These axial excursions are completely 

random and take place about same mean breakdown position. The axial drift may 

range from very small lengths to distances on the order of thew chamber radius. 

but it generally does not exceed the order of a few vortex core diameters. Vu and 

Gouldin(19) suggest that the strong diffusional effects in turbulent flowfields may 

dominate the inertial effect in the wake region preventing the second breakdown. 

1.23 PRECESSING VORTEX CORE 

Vortex breakdown is believed to be the phenomenon primarily responsible 

for centreline recirculation zone formation in many swirling combustion systems. 

and not simply a precursor to a higher Reynolds number mechanism(21.23}. 

Although the Reynolds number for such systems are usually large and well into 

the turbulent regime. periodic oscillations and associated instabilities are still 

prevalent. The predominant nonaxisymmetric. 3-D time dependent coherent 

structure is often referred to as the precessing vortex core. or simply as the PVC. 

The PVC has been documented pictorially in a number of visualization 

experiments(17.24.25.26.27). Gouldin and his colleagues(19.21.28) believe the 

oscillations which their systems experienced were associated with the lower 

energy fluctuating and axial excursions. rather than large energy PVC. The PVC 

is defined as a central forced vortex core which becomes unstable and begins to 

precess about the axis of symmetry. The PVC is usually situated in the immediate 

vicinity of. but outside of. the reverse flow zone boundary(13.17 ,24.25,29.30,31}. 
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The reverse flow zone may act as the feedback mechanism for the PVC(32). 

The definition of the term PVC has also been extended to encompass 

precessional vortex behavior in the wake, in which the PVC appears to wind 

around in the axis in rotating spiral configuration(26,27). The PVC is responsible 

for high levels of fluctuating pressure and temperature(24,25,29) and for the 

associated high levels of turbulence mixing within (or near) the recirculation zone 

envelope(13.29). The apparent turbulence intensity levels. of times maximising 

near the centreline. may be raised above their true base values by the precession 

or unsteadiness of the core (11.21). 

Although the phenomenon of precessing vortex cores may be patentially 

beneficial in the sense that it promotes mixing and aids in extending the range of 

flame stability. it is usually not a desirable characterestic in industrial burners. 

The large PVC may couple resonantly with fundamental modes of oscillation in 

the furnace. thus creating violent flame pulsation and noise pollution at levels 

above the normal combustion roar(24). A survey of the conditions under which 

the PVC is damped or amplified has been conducted by Syred and co-workers 

(13,24.25,29.31). The classic reasoning for the disparity in PVC stability is 

borrowed from the Rayleigh criterion advocated for axisymmetric disturbances in 

inviscid flow with zero axial mean flow but it has served as a precursor for 

Richardson numbers and more complex stability analyses. The Rayleigh criterion 

proposes that a system is: 

1- Stable ifpwr increases locally with r (e.g Isothermal forced vortex). 

2- Neutrally stable if pwr is constant with r (e.g Isothermal free vortex). 

3- Unstable if pwr decreases with r. 

For isothermal system. the free vortex segment of an idealized Rankine 

profile dictates that disturbances are not suppressed. In fact. small deviations from 

the free vortex profile could easily amplify the disturbance. Accordingly. the 

precessional trajectory of PVC is situated outside of the reverse floW boundary 

near the radius of the maximum azimuthal velocity(24). The enhanced PVC 
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damping effect noted(24,31) for diffusion flames may be explained by the 

positive radial density gradient induced by the annular ring of air around the 

flame. The excited instability of the premixed flames seems to be associated with 

small negative radial density or pressure gradients(31). 

Despite the detailed observational studies of vortex breakdown an acceptable 

theoretical understanding of the phenomenon has proven elusive. However, the 

existence of a centreline reverse flow zone may be parially understood from a 

simplified analysis of the role of pressure and centrifugal forces. If it is assumed 

that the flow field upstream of a breakdown varies little in the axial direction 

(axial gradients much less than radial gradients) and that the streamtube 

surrounding the vortex core is essentially cylindrical, the corresponding 

simplification to the equations of motion is termed the "quasi-cylindrical" 

approximation(11,18,19,33). Application of the quasi-cylindrical approximation 

to the radial component of momentum, with the added assumption of 

axisymmetric, steady-state laminar flow yields: 

dP w2 

-=p
drr 

.... (1.1) 

The above equation represents a balance between the centrifugal forces 

accelerating a fluid volume and the restraining pressure force which is transmitted 

to the walls of the tube enclosure. If the fluid particles were released from the 

constrains of the enclosure the particles would tend to trace a straight line of flight 

tangent to their original circular trajectory(6). Integrating equ.1.1 with respect to r 

from the axis to the reactor wall and then differentiating with respect to x, the 

resultant expression is equ.l.2: 

.... (1.2) 

The first term on the right hand side is relatively small, although it may 

apparently be negative(21), positive(33), or identically zero (if the upper 

integration limit is radial infinity). The integrated angular momentum term on the 

right hand side generally decays continuously with axial distance down the 
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reactor inducing a significant adverse (positive) axial pressure gradient along the 

symmetry axis. This type of adverse axial pressure gradiant was found in the 

present work. when the centreline adverse pressure gradient is sufficiently steep 

to completely decelerate the axial flow, vortex breakdown ensues. It should be 

noted that eq.(1.1) and (1.2) apply only to upstream "cylindrical" flow; when the 

recirculation zone begins to form and axial gradient become appreciable, the 

quasi-cylindrical equations must fail, just as boundary layer equations must fail at 

the point of incipient separation(22,33,34) 

The decay rate of the integrated angular momentum term in eq.(1.2) in the 

laminar case, is subject to the convective or inertial terms in the momentum 

equations, as well as viscous dissipation or transport. However, the abruptness or 

rapidity of the onset of the breakdown transition as well as an order of magnitude 

analysis of the terms in the Navier-stokes equations, suggests that the dominant 

underlying mechanism for vortex breakdown is inertially controlled, viscous 

diffusion forces being secondary(20,22,35). For that reason, inviscid wave and 

stability theories, which rely particularly on the quasicylindrical equations 

(without the viscous terms), have been used extensively for the study of 

disturbance mechanisms in vortices (22,34,36,37). 

Ribeiro and Whitelaw(38,39) claim that the upstream swirling flowfield is 

initially dictated by inertial forces, but gradually becomes more dependent on 

turbulent diffusion as the centrifugal effects decay. Gouldin et al(21) argues very 

strongly that turbulent momentum transport is significant only in the regions of 

large mean velocity gradients and turbulence intensities, such as in the mixing 

shear layer between concentric jet or in the vicinity of the reverse flow zone. The 

approach flow, in which the formation breakdown mechanism operates is only 

weakly influenced by dissipative or turbulent diffusional processes. 

1.2.4 REVERSE FLOW ZONE 

In an isothermal or inert jet, swirl acts to enhance the rate of jet growth, 

entrainment, and mean velocity decay relative to a nonswirling jet(30,40,41). In a 
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reacting system, the swirl induced, toroidal recirculation zone primarily aids in 

flame stabilization. Flame retention requires that there an adequate flame velocity 

and that sufficient heat is conveyed for stable ignition(6). In a non swirling flow 

field, the flame stabilisation mechanism (fluid mechanical) is controlled either by 

a wall boundary layer velocity gradient or a recirculation zone / eddy induced by a 

reaction chamber expansion or a mechanical flame holder. In swirling flow 

systems the recirculation zone, engendered by vortex breakdown, provides the 

aerodynamic blockage and reduced velocities necessary to stabilize the 

flame(30,42). The recirculation zone has traditionally been regarded as a 

reservoir or store of heat and active chemical species(6,17,31,42,43). The reverse 

flow zone cyclically transports hot combustion products from downstream region 

into the flame. The high temperature products, despite the dilution effect, serve as 

an energy source for preheating(44), fuel preparation such as evaporation and 

devolatilization (45) and ignition assistance(30). 

While the heat source effect does play a role in flame stability, the 

predominant mechanism is thought to occur via turbulent transport(28,45,46). 

Between the forward flow and the reverse flow zone boundary is a region of steep 

velocity gradients and high intensity turbulence, which promotes high intensity 

turbulence, which promotes high entrainment rates and rapid mixing between the 

fuel and air (in diffusion flame systems). Hence, the recirculation zone is regarded 

as a well mixed region, in which large turbulent diffusion prohibits complete 

recirculation, and in which flame stabilization is provided by intimate mixing of 

hot active species and fresh reactants. As a results of the high entrainment and 

increased mixedness of the jets, swirl reduces both flame lengths and flame 

attachment length and consequently shortens the combustion chamber length 

necessary for complete combustion(17,30,42). Swirl also promotes high 

combustion efficiency, easy ignition, reactant residence time, pollutant 

optimization, potential and widened stability and blow-off limits(30,47,48). The 

blow-off velocity is the mean axial velocity of air and fuel at which flame 

extinction occurs For non-swirling systems, the optimum fueVair ratio for 
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maximum fuel through put lies well into the fuel lean regime; consequently. the 

fuel through put load at the stoichiometric ratio. near which it is often desirable to 

operate industrial burners. is relatively small. One of the major benefits of swirl is 

that it displaces the optimum fueVair ratio towards the fuel rich regimes that occur 

during normal process operations and~~glarging the blow-off limits( 17,45,49,50). 

1.2.5 EFFECT OF SWIRL LEVEL 

1.2.5.1-In Isothermal System 

A large number of experimental research facilities where swirling flow 

studies have been conducted, have yielded a wide variation in parametric effects 

and observations. Differing swirl generators, swirler outlet geometries, chamber 

geometries. flow rates and fuels, all produce details and differences which may 

not be easily resolved. With an increase in swirl level, the breakdown 

recirculation zone bubble has generally been observed to migrate upstream toward 

and of times into the inlet pipe not only in experimental studies(15,19,51) but also 

in theoretical predictions(52,53). This latest effect can not occur in practicle axial 

and radial vane swirlers. An increase in swirl with large expansion from the 

swirler expands the width of recirculation zone somewhat but particularly 

increases the length(6,25,31,41,54,55). Theoretical prediction also display the 

same qualitative effect(26,44,53,56). The extent of the expansion tends to 

approach an asymptotic limit dicated by the chamber or inlet 

confinement(25,31 ,41 ,57). 

After the initial expansion, well established recirculation zones may either 

remain essentially unaltered in size with an increase in swirllevel(57 ,58) or begin 

to decrease in length with significant increase in width (31,59,60,61,62,63). Other 

perturbations may also exist at high swirl such as reverse flow extending over the 

entire length of the furnace(54) approaching columnar back flow, or a forward 

velocity region, surrounded by an annular reverse flow region developing in the 

aft section of the bubble(64). Recirculated mass flow rates increase with swirl 

magnitude (25,31,57,64) and vary greatly. Quoted values, expressed as a percent 
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of the inlet flow rate range from 10% or less(17,19,46,57) to 25% (25,42,55) to 

50%(31), and even to 82%(43). In accordance with the recirculated mass flow 

rate, both forward and reverse mean velocities have been observed to increase 

with an increase in swirl strength(19,31,55,57). The same trend is also followed 

by the turbulent kinetic energy(19,25,41,57,61). Increased swirl consequently , 
promotes greater jet spreading angles mixedness, reduction of the potential core 

and transport variable decay(6,30,41,59,65). 

l.2.5.2-In Combustion Systems 

Flame interaction with a bubble recirculation zone displays an evolutionary 

history as the swirl strength is systematically varied. Leukel and Fricker(58) 

describe two separate flame characterizations drived from their IFRF trials. The 

natural gas diffusion flame, with relatively low secondary swirl or high primary 

flow rate, produced a "bubblous" combustion zone near the inlet with a long 

luminous flame "tail" i.e type 1 flame. Here, the fuel jet had completely 

penetrated the recirculation zone forming an annular "doughnut" reverse flow 

region. Similar results were found by Syred et al(31). The long flame tail 

appeared to be a consequence of delayed mixing within the oxygendepleted core. 

A second flame structure, at high swirl or low primary flow rate, displayed a short 

and intense blue flame (i.e type 2 flame) In this case the recirculation zone had 

sufficient strength relative to the primary fuel jet to force the fuel through an 

abrupt radial arc a way from the centreline, circumventing the bubble. thus, it can 

be seen that increased swirl, as result of intensified mixing generally produces a 

decrease in flame length(41,48), as well as moving the flame upstream(46,66). 

Claypole(25) , Beltagui and MacCallum(57) provides detailed description of four 

flame type, lettered "a" through "d". Under weak swirl or type 'a' conditions, no 

recirculation zone is formed and a long, yellow turbulent diffusion flame 

stabilizes at a detached location remote from the inlet nozzle. At a slightly 

incremented swirl strength, a small recirculation zone forms with the flame 

stabilized in low velocity highly turbulent wake region. This type 'b' flame retain 

characteristics very similar in nature to the IFRF type 1 flame. Larger swirl levels 
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significantly increase the strength of the reverse flow zone. The flame type 'c' 

moves upstream into reverse flow region and stabilizes on the envelope of the 

recirculation zone as a pure blue flame, which is very reminiscent of the IFRF 

type 2 structure. The 'tulip-shaped' type 'd' flame, which exists at even larger swirl 

levels, retains the basic type 'c' appearance with added detail that the recirculation 

zone has grown in length and row extends downstream of the main flame region 

A high level of radial turbulent diffusion is apparent at the recirculation zone 

boundary. Both entrainment of fresh reactants into the unreacted forward flow 

occur, with subsequent quenching. The reverse flow zone is characterized as a 

well uniform mixed region with a uniform temperature distribution. However, the 

maximum temperature generally appear to lie immediately within the bubble 

envelope in an area reasonably coincident with the location of the PVC and 

maximum turbulent kinetic energy(17,24,43,44,57). 

1.2.6 COMPARISON BETWEEN ISO TllERMAL AND REACTING FLOW 

A combusting system affects the flow field by accelerating the axial mean 

velocity, expanding the gas, and decreasing the density(67). The interaction of 

such an effect upon a given inlet swirl level may, in part be intuitively deduced by 

examining the swirl number. The swirl is useful as a relative measure of the 

azimuthal momentum imparted to the flow and is approximately defined as the 

axial flux of angular momentum divided by the product of the appropriate limiting 

radius and the axial flux of axial momentum. Both the numerator and 

denominator are idealistically conserved in a free, isothermal system. The 

temperature increase and gas acceleration accompanying reaction serves to 

increase the jet momentum quantity in the denominator relative to the angular 

momentum term in the numerator, thus decreasing the apparent swirl number at a 

given axial location. Therefore the evolutionary and transitionary recirculation 

patterns observed in isothermal systems may necessitate a somewhat IQrger inlet 

swirl number in combusting systems to generate a recirculation bubble of 

comparable magnitude, strength and location. 
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Comparisons between the isothermal and reacting counter parts generally 

confmn the above expectations(19,54). Both predictions and observations 

demonstrate that combustion usually causes the recirculation bubble to slightly 

increase in width and reduce in length(25,30,43,44,57,68). Although the width or 

size of the recirculation zone may have increased with combustion, the 

recirculation mass flow rate is lower because of the appreciable decrease in 

density( 17,25,30,44,57). The reverse velocities in combustion systems appear to 

be higher than the isothermal equivalents(44,47,57,68) due to the lower density, 

but the turbulent kinetic energy or rms velocities may be either lower in 

combusting systems(25,41) or higher(30,47,68,69). Burning jets with swirl may 

expand more rapidaly with an increased rate of jet spread than the corresponding 

isothermal jets(48,57). However, downstream mean velocity decay in combusting 

systems tends to be less than the decay observed in isothermal systems (41,44). 

1.2.7 COMBUSTOR GEOMETRY EFFECT ON RECIRCULATION 

ZONE 

The location and the shape of the recirculation zone are a function of the 

various inlet and swirl generator configurations, enclosure size extent of reaction 

and any other factor which manipulates the imposed pressure gradient. 

Confinement has been observed to noticeably affect the central recirculation zone 

dimensions(54,70). In particular, the maximum width and length of a bubble are 

observed both experimentally (31,57) and theoretically(44) to increase with the 

chamber diameter. The initial spreading rate of enclosed jets appears to be 

noticeably more rapid than the corresponding unconfined jet, although opinion 

differs as to which offers the stronger or more pronounced reverse flow (57 ,59). 

Syred et al(31) suggested that smaller chamber diameters reduce the 

interference between the flowfield and the furnace enclosure, thus providing a 

recirculation zone which is longer and more advantageous for flame stabilization. 

An inlet quarl encourage the swirling jet to follow the slope of the wall, thus 

promoting stream tube divergence and intensifying the centreline adverse pressure 

gradient. Such divergent nozzles aid in swirling flow deceleration ~~~gment the 
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existing reverse flow, or reduce the swirl number necessary to achieve a particular 

level of recirculation(6,17,21,25,30,42,43,60). Numerical predictions also support 

this conclusion(26,53). Chamber exits with a convergent angle or with contraction 

blocks positioned at downstream location may have an opposite effect(60-62,71). 

The contraction nozzle accelerates the flow producing a favorable pressure 

gradient which is superimposed on the adverse pressure gradient promoted by 

swirl. Hence, in cenain cases where the contraction is strong enough to influence 

the upstream flowfield, the size of the bubble is diminished. Any means of 

changing the pressure field, such as hub or bluff body along the inlet centreline or 

a mass flux imbalance between the primary and secondary jets, may have 

pronounced effects on the wave reinforced vortex breakdown. Experimentation 

dealing with influence of various inlet configurations swirl generators, fuel 

injectors, quarl lengths and angles, confinement ratio, etc. has been performed by 

several investigators(17,25,30,31,45, 57,58,59,70,72). 

1.3 SWIRL FLOW CHARACTERISTICS 

1.3.1 Swirl number 

Experimental studies have shown that the flame size, shape, stability and 

combustion intensity are affected by the degree of swirl imposed on the flow. This 

degree of swirl is denoted by the swirl number S, which is a non-dimensional 

number characterizing the amount of rotation imposed to the flow. In general the 

swirl number defined by Beer and Chigier(6,9) as the normalized ratio of the 

fluxes of angular and linear momentum is now widely used for characterizing the 

intensity of swirl in enclosed and fully separated flows. The parameter can be 

given as: 

s = 

Where 

G. = axial flux of angular momentum 

Gx = axial flux of axial momentum 

.... (1.3) 
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.... (1.4) 

.... (1.5) 

2 

or alternatively a static pressure distribution instead of p ~ may be used in the 

expression for G x. For cases where mixing at the boundary of the recirculation 

zone is dominated by the action of a precessing vortex core another parameter is 

required for characterization of rotating flow. Claypole and Syred(114) proposed 

a geometrical swirl no. Sg which was taken as non-dimensional measure of the 

tangential momentum supplied to the flow and if the perfect mixing on 

conservation of momentum is assumed, then the swirl no. can be defined in terms 

of the geometry of the combustor, where: 

s = ro 1t re ( tangential flow )2 
g At total flow 

.... (1.6) 

where 

A = Area of tangential inlets. 
t 

r = Radius of the exit of the combustor. 
e 

ro = Radius of the tangential inletsftr<re centre of the combustor. 

Beltagui et al (1) have correlated their results for flow conditions under 

which the CRZ appeared in their furnace, by a swirl number S. which was based 

on the furnace and not the swirler diameter. The critical value for establishment of 

the CRZ was found to be 0.11. 

Various investigations on the effects of swirl on the flame stability have shown an 

increasing fueVair mixing as the degree of swirl was increased (45,90,91). The 

size and strength of the central recirculation zone also increases by an increase in 

swirl intensity (55). At low flow rates or swirl number a long, yellow and highly 
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luminous flame is produced (90) indicating a poor mixing. However, when the 

swirl number is increased, the CRZ increases in size, initially in width until 

restricted by the diameter of the combustor and then begins to increase in length 

(90). Measurements of flame length and stabilisation distance carried out in a 

series of Butane-propane-air flames with swirl (91) have shown that both decrease 

markedly with increasing degree of swirl. In the present work swirl number has 

been suggested based on the mean swirler outlet axial velocity (based on the 

outlet area) for axial momentum and the tangential vane passage outlet velocity 

(based on minimum flow area) for the tangential momentum. As will be discused 

in the following chapter. 

1.3.2 CENTRIFUGAL EFFECTS 

An advantage of swirling flow combustion is the fact that a centrifugal force 

field, present in swirling or vortex flow, tends to accelerate the mixing of two 

flows having different densities and thus increase the reaction rate in the 
. 

combustion processes (90). The importance of the centrifugal forces have been 

neglected until recently (90,92-94). The centrifugal forces act on pockets of burnt 

gas having lighter densities, to move them inwards relative to heavier unburnt gas. 

This can greatly increase the rate of mixing if the combustion is initiated at the 

periphery rather than the central region. In the latter case the rate of mixing can be 

retarded by the movement of light burnt gases inwards to the rich centre core (95) 

and forcing the air to the outer region. It can be shown that the diameter of a 

liquid droplet at equilibrium in a swirling field is proportional to the distance from 

the centre of the rotation. Thus the heavier fuel droplets will be in the outer region 

of the swirling flow relative to the lighter or smaller diameter droplets. 

The centrifugal force acting on the droplet must be equal and opposite to the 

drag force. 

centrifugal force = drag force 

3 v2 
2 

d tan C 2 1td 
Pd' 6" . ~ = d' 1/2 ·PI • V rad' 4 .... (1. 7) 
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where 

P d = Droplet density 

p = Air density 

V tan = Tangential velocity of fuel droplet and air 

V rad = Radial inward velocity of air 

d = Droplet diameter 

R = Radius of swirl flow 

Cd = Drag coefficient 

Assuming small Reynolds number at the vicinity of the droplet, the stokesian flow 

exists. Thus 

C = 24 
d R 

e 

and 

where Re is Reynolds number of flow and" is air viscosity. Also assuming a free 

vortex flow 

Therefore equation (1.7) becomes 

V 
~ =constant 
V rad 

VIM! 
d. = constant 

R 

In free vortex flow 

V 1M! • R = constant 

Therefore d ... constant. R 

This shows that larger droplets will be sent to larger radius from the centre of 

rotation and hence close to the wall relative to the smaller droplets which stay 

close to the centre. Swirl in variable density flows may suppress or enhance 

turbulence (96). For swirl combustion, this interaction is significant and may not 

be neglected in turbulence model development. 
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be neglected in turbulence model development. 

Investigations on the effects of centrifugal force in swirling flows are rare 

(97-101). Lewis (102) investigated the effect of centrifugal forces on a 

stoichiometric mixture of propane and air in a rotating pipe combustor. His results 

showed that appling a centrifugal field to a burning fuel-air mixture can 

substantially increase the rate of combustion. 

The need for proper aerodynamic design to most effectively use centrifugal 

effects to increase fuel evaporation and subsequent mixing was outlined by 

Shekleton (103). He showed that substantial benefits can be achieved by the use 

of centrifugal force to control combustion (93). He concluded that fine and 

accurately located fuel droplets dominate the design of the typical small vortex 

combustors. 

1.3.3 SW1RLER PRESSURE DROP 

FueVair mixing in gas turbine combustors are important both in terms of 

emissions (104,105) and for future poorer fuel quality (106,107). The problem of 

coal derived gaseous fuels with low calorific values and high combustion exit 

temperatures (108,109) and heavy residual fuels (110,111) all involve improved 

mixing within the combustor as a key element in the solution of these problems. 

To achieve rapid fuel and air mixing downstream of a swirl stabiliser, 

turbulence must be generated to promote the mixing. Turbulent energy is created 

from pressure energy dissipated downstream of the stabiliser. In swirlers, 

turbulence can be generated by increasing the blockage or pressure drop of the 

swirler. This can be done by a number of ways with the axial swirler(85): 

a) increasing the degree of swirl, b) decreasing the swirler outer diameter (dID) 

or increasing the swirler hub diameter, c) increasing the number of vanes. All 

these factors also increase the size of the recirculation zone. An increase in the 

size of the recirculation together with the turbulence generated in the shear layer 

region can increase fueVair mixing significantly. In the present work the 
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swirler diameter can be varied without changing the flow area or pressure loss. 

This is due to the ability to change the radial passage depth as the swirler diameter 

is changed so as to maintain the same flow area. 

Values of pressure loss in a typical gas turbine combustor lie between 2 to 

7% (59) at reference Mach number of 0.047 (155). The pressure loss can be 

calculated by using the following equation: 

~P = 1..( M . ~)2 
P 2 Cn A2 

where 

llP = swirler pressure loss 
P 

'Y = ratio of specific heat 

M = air flow Mach number 

Co = swirler discharge coefficient 

Al ' A z = combustor and swirler open area 

... (1.8) 

The calculation of swirler pressure drop and discharge coefficient are detailed 

in Appendix (AI) together with the correction of the pressure drop to a reference 

Mach number and the calculation of Reynolds number. 

1.3.4 Combustor wall static pressure 

The flow aerodynamics downstream swirlers of various pressure losses are 

different due to the change in the recirculation zone size, flow expansion, wall 

impingement, etc. These variations have a direct effect on the wall static pressure 

(5), the profiles of which can be a good indication of the flow aerodynamics 

inside the combustor. Le. flow impingement, recirculation zone size, etc (31). 

Syred et al (31) showed that the centrifugal forces present in the swirling 

flow affect the radial static pressure distribution at any given section in the 

combustor. The radial pressure profiles were obtained by integration of p W Z 
/ r 

(centrifugal force) across a given radial section 
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...... (1.9) 

where 

p = static pressure 

p = density 

w = tangential velocity m/sec 

r =radius 

1.3.5 SWIRL STABILISED FLAMES 

The primary zone air flow pattern of gas turbine combustors is of major 

importance to flame stability. Various types of air flow pattern are employed, but 

one feature common to all is the creation of a toroidal flow reversal. This toroidal 

vortex system plays an important role in flame stabilisation since it entrains and 

recirculates a portion of the hot combustion products to mix with the incoming air 

and fuel. The high intensity turbulence that prevails in the vortex region 

continously transports heat and mass from combustion products to the fresh 

combustible mixture. 

One of the most effective ways to induce flow recirculation in the primary 

zone is by fitting a swirler around the fuel injector. A toroidal vortex type 

recirculation zone is set up in the central region in the wake of the swirler if the 

angular to linear momentum ratio exceeds a critical value. This type of 

recirculation zone may provide better mixing than that obtained by other means 

such as bluff bodies. This is because of the strong shear regions, high turbulence 

and rapid mixing rates produced by the swirling action. Swirlers have other 

advantages in that the presence of a solid surface exposed to high temperatures is 

reduced . and the deposition of coke such as occurs on bluff bodies in 

heterogeneous combustion is also reduced. 

These advantages have Ie ,d to air swirlers being widely employed in furnaces 

and gas turbine combustors 0,6,17,28,31,59,66,72). Swirlers can be of various 

types, single (20) or double with co or counter rotating air flows (21,22), or radial 
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swirlers (23). The swirl vanes are often flat for ease of manufacturing, but curved 

vanes may sometimes be preferred for their potentially better aerodynamic 

properties (24). 

The recirculation zone in swirl flows is rather similar to a well-stirred reactor 

since the temperature and gas composition within the reverse flow zone are 

almost uniform (25). The levels of temperature and gas composition can be 

controlled by the nature of the fuel injection and the amount of fuel injected into 

the zone. 

The dimensions of the recirculation zone can be varied by the degree of swirl 

imposed on the flow. The degree of swirl is usually denoted by "swirl number" S, 

which is a non-dimensional number. The recirculation zone size is also 

dependent on the ratio of the combustor diameter to that of the swirler outer 

diameter (Old). The existence and size of the comer recirculation zone is also 

influenced by the Old ratio. The blockage ratio of the swirler causes a pressure 

drop in the air flow which generates the turbulence necessary for fueVair mixing. 

All swirling flows produce a centrifugal field in the flow which can increase the 

burning rate of the combustible mixture depending on the nature of the fuel 

injection employed. 

All the above mentioned factors and their influence on the recirculation size 

and mixing will be discussed in the subsequent sections. 
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1.4 EMISSIONS IN SWIRL STABIUSED COMBUSTION 

1.4.1 GAS TURBINE AND FURNACE EMISSIONS 

Emission performance· has become of overriding concern for both the 

designer and user of combustion devices in recent years. Exhaust emissions that 

are normally considered pollutants are produced in the combustion system, either 

during the thermochemical reactions or in the post-flame zones. It is in the 

reaction zone of the combustor where most of the emission abatement work has 

been most effective. Emission reduction has become the most important 

combustion design objective, which must be optimized during the development 

and engineering of a combustion system for any new machine size or application. 

The emissions from gas turbines which give rise to concern are generally 

recognised to be those of oxides of nitrogen (NOx), smoke, carbon monoxide 

(CO) and unburned hydrocarbon (UHC). The two former emissions occur largely 

at high power conditions, whereas the latter two pollutants are only problems at 

low power. The larger part of a typical gas turbine's operating cycle is covered at 

high power conditions. Therefore, concern has been centred on NOx and smoke 

emissions (76,77) at high power. However, the CO and UHC emissions occur 

largely in the vicinity of airports and for industrial gas turbines at ground level 

and are therefore of interest. Also many low NOx and smoke designs have a CO 

and UHC emissions problem at some conditions. 

The engine emissions threat to the stratosphere at high power condition are 

mainly water vapor and carbon dioxide which could produce a green house effect 

on the earth's atmosphere and NOx emissions which could deplete the ozone 

layer. Sulfur compounds in the fuel also cause a problem for industrial gas 

turbines as these could lead to acid rain and particulate formation which could 

divert solar radiation away from the earth. This problem can be dealt with by 

removal of sulfur at the refinery. The pollutant of main interest for both aero and 

industrial gas turbines is oxides of nitrogen which could deplete the ozone layer 

and allow increased penetration of solar ultraviolet radiation. The reation 
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mechanism could be shown as: 

NO + 0 ----- NO + 0 2 2 

As shown above, ozone is destroyed by the flrst reaction and the reformation 

of nitric oxide NO is shown in the second reaction. The uncertainty of the 

importance of this reaction mechanism to the stratospheric ozone concentration 

has led to more intense research in the reduction of NOx emission levels. 

1.4.2 POLLUTION FROM GAS TURBINES 

The main atmospheric pollutants emitted from gas turbine combustors are 

carbon monoxide (CO), unburned hydrocarbon (UHC), oxides of nitrogen (NOx) 

and smoke together with combustion noise. Species concentration measurements 

have been performed by many investigators using gas analysers(1,5,96,112,115) 

and recently by new techniques (114). various investigators have examined the 

effects of different parameters such as inlet air swirl, pressure, fuel and air 

velocity, etc on exhaust emissions (28,110-113). The parameters governing the 

formation of the above mentioned pollutants and the techniques employed to 

reduce these emissions will be discused below. 

1.4.3 NOx EMISSIONS 

The two major sources for NOx production in vehicular and stationary 

combustion sources are thermal and organic NOx. NOx is the term given for the 

combination of NO which is mostly emitted from combustors, and N02 which is 

the dominant form of NOx in lean burning gas turbines (96,119) in the exhaust of 

the combustors. conditions favorable to NO formation are those of high 

temperature, long residence time, high pressure and high oxygen availability. 

Nitric oxide can be produced by three different mechanisms; thermal, prompt and 

fuel nitrogen. 
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1.4.3.1 Thermal NO 

Thennal NO is produced by oxidation of atmospheric nitrogen in the 

postflame gases (119,120). It is now well established that NO fonnation in 

combustion processes proceeds by the Zeldovich chain mechanism (121,122). 

O2 ----+ 20 .... (1.10) 

0+ N2 ----+ NO + N .... (1.11) 

N + O2 -----+ NO + 0 .•.. (1.12) 

The main reaction governing the fonnation of NO in fuellean mixtures is the 

breakup of the strong triple bond holding N molecule together. This is done by 

the free oxygen from the equilibrium dissociation of unburned oxygen molecules 

which initiate the chain. 

In their experiments on lean CO-air mixtures in a jet stirred reactor, Molte 

and Pratt (123) showed that the fonnation of NO in a low temperature fuel lean, 

well stirred combustion may be produced via N2 O. They proposed a set of 

reaction mechanism through which N2 0 is fonned and destroyed to produce NO. 

N2 + 0 + M -----. Np + M .... (1.13) 

Np + 0 -----.NO + NO .... (1.14) 

N 0 + 0 ----. N + 0 .... (1.15) 2 2 2 

1.4.3.2 Prompt NO 

Prompt NO is produced by high speed reactions at the flame front in 

hydrocarbon fuels (124-126,159). Fenimore (127) showed that NO is formed by 

the enhanced reaction rates as a result of interactions among the many 

intermediate species produced during the main hydrocarbon air reactions. He 

estimated that prompt NOx account for 30% of the total NOx emitted from gas 

turbines under nonnal operating conditions. It will be shown in the present work 
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that prompt NOx is a major source of NOx emissions in lean burning swirl 

stabilised flame. 

Claypole and Syred (115) investigated the influence of levels of swirl on 

aerodynamics and NOx emissions. They found that the major area of NOx 

formation was the reaction zone in the flame front. The moderate flame 

temperatures and the rapid formation of NO indicated that NO was formed via the 

prompt mechanism. Similar results for the NO formation zone was found in the 

present work. Radial gas concentration profiles will be presented in the present 

work. These show that the prompt NO mechanism is the major source of NOx 

emissions from swirl stabilised combustors with central injection of fuel. The 

major part of NO is formed in the flame front close to the stabiliser with little 

burnt gas thermal NOx. 

1.4.3.3 Fuel NO 

Fuel NO is produced by oxidation of nitrogen contained in the fuel. The fuel 

nitrogen is converted to HeN in the flame zone (128) and depending on the 

degree of nitrogen conversion, the fuel NO can represent a considerable portion of 

the total NO (129). 

Fuel NO does not form any part of the NO in the present work for gaseous 

flames. For liquid fuels, kerosene does not contain any fuel bound nitrogen 

(130,131), but gasoil contains a significant amount of nitrogen (in order of 50-100 

ppm). The higher levels of NOx for gasoil tests in the present work may be due to 

this fuel nitrogen content. The work of Appleton et al(132) on vane swirled 

combustor at atmospheric pressure showed that the degree of fueVair mixing was 

a major factor covening the degree of conversion of fuel nitrogen to NO. 

Unfortunately, analytical technique was not available in the present work to 

quentify the fuel nitrogen at 100 ppm level. Associated work on nitro

PAH(130,131) has shown the gasoil used comain NPAH. 
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1.4.3.4 NOz emissions .. 

N02 which is the major source of atmospheric pollutant is formed by the 

oxidation of NO in the atmosphere This is because at low temperatures N02 is 

more stable than NO. Normally, NOx emissions from combustion are dominated 

by NO. However, evidence has shown that N02 can be fonned in the combustor 

where large amounts of excess air is present (133-135). Hori(52) in his 

measurement of NO:JNOx ratio in a laboratory swirl combustor, reported that it is 

likely that N02 can be formed and survive in the mixing region between the hot 

combustion gas and the cool air stream near the combustor wall under very fuel-

lean conditions. 

The sampling devices used for measuring emissions usually do so by freezing 

the reactions. This could create regions within the sampling probes suitable for 

the formation of N02(135, 157). The extent of the conversion of NO to N02 in the 

probes varies considerably according to the probe parameters and the sample gas 

parameters. The measurements of N02 with a probe having a high cooling rate of 

the sample and high sample pressure, greatly overestimates the proportion of N02 

in high temperature regions (96,112) 

Sano(166)has shown by numerical simulation that N02 formation is to be 

expected in the mixing region of cool air and combustion gases. Sano(167) has 

also shown by simulation that N02 formation in mixing region should be 

enhanced by the presence of unburned hydrocarbons. This conclusion is 

supported by the experimental findings of Jaasma and Borman(168). Recent 

results obtained by Bromly et al(169) showed that the presence of the combustible 

agent UHC strongly facilitated the oxidation of the NO to N02• It was found that 

the hydrocarbons had a greater effect than either hydrogen or carbon monoxide. 

1.4.4 NOx reductions 

The study of emissions regulations especially that of NOx has been (136) and 

still is under investigation (137-139). Many ways have been adopted to decrease 
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NOx emissions such as water or steam injection (140), dry controls (141,142), or 

selective catalytic reduction (143,144). Water injection has some major 

drawbacks such as A) requirement of large source of water, B) reduction of 

thermal efficiency, C) increased CO emissions and D) increased pressure 

oscillations within the combustor (145). The main problem with regard to 

developing a catalytic combustor is the durability of catalysts. The catalysts 

deteriorate during high temperature operation. However, this problem can be 

improved (146). Premixing is an effective way to reduce NOx emissions 

(116,147,148). Beyler and Gouldin (28) showed that premixing/prevaporising 

combustors operating either on lean mixtures or on rich mixtures as the flfSt stage 

of a rich-lean combustor are attractive candidates for low NOx combustors, 

especially in gas turbines. 

Mikus and Heywood (117) in their work on automotive gas turbines 

concluded that leaning out the primary zone or reducing the residence time of 

conventional combustor designs using conventional fuel injection techniques was 

unlikely to reduce NO emissions enough to meet the 1976 emission standards. 

This was due to the presence of stoichiometric fueV air ratio in parts of the flow 

within the primary zone even if excess air was present. To achieve a significant 

reduction in NO emissions, combustors need to be developed with both a leaner 

and much more homogeneous fueVair ratio distribution in the primary zone than 

is attainable in conventional designs. The present work focuses on injecting fuel 

in the passages between the vanes of the radial swirler and at the periphery of the 

wall as well as the conventional method of central fuel injection to produce such a 

homogeneous fueVair ratio distribution in the primary zone and thus to reduce 

NOx emissions significantly. Conclusion can be made that the dry low NOx 

schemes seek to lower the NOx emissions through the reduction of stoichiometric 

regions in the combustor. This can take a variety of forms(175), (each with 

specific problems) including (1) premixing prior to combustion to prevent local 

stoichiometric region (stability and CO emission problems), (2) very lean 

combustion to minimize stoichiometric region (potential CO emission problems), 
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(3) catalytic combustion to pennit very lean combustion (potential catalyst 

durability and transient problems). and (4) staged combustion to modulate 

combustion stoichiometry so that NOx and CO emissions are both well controlled 

(more complex combustion system and operation). 

1.4.5 CO AND UHC EMISSIONS 

These pollutants are sometimes. extremely low. except during start-up and 

very low-load conditions. Unburned hydrocarbon emissions are due to vaporized 

unburned fuel or partially burned products which exit the combustion reaction 

zone and are emitted in the exhaust. Carbon monoxide is an intermediate species 

of the combustion process which. after it has been formed. is one of the slowest of 

all the combustion reactions to reach completion. It is a well known fact that 

carbon monoxide is a poisonous gas and can be very harmful at high 

concentrations. Carbon monoxide is an inevitable intermediate in hydrocarbon 

combustion. Emission levels of CO can therefore only be minimized by 

completing. as far as equilibrium allows. its oxidation to carbon dioxide. 

Conditions favourable to its oxidation are high temperatures. oxygen availability. 

high pressure and long residence time. The predominant mechanism for CO 

oxidation is (149.150) 

co + OH ------ CO + H 2 •... (1.17) 

Investigations in both experimental and theoretical techniques have shown 

that CO formation and destruction are kinetically controlled (154,155). 

Unburned hydrocarbons are the main source of the odors at the vicinity of the 

airports. On its own, it does not posses any major threat to the environment 

However, together with nitrogen oxides and the presence of sunlight. it can 

produce a 'photochemical smog' which is usually prevailing in large cities. 

Conditions favourable to CO oxidation such as those mentioned above are 

also beneficial for hydrocarbon combustion. The trends for UHC emissions. 

therefore. follow those for CO emissions (153). In practice. it is found that 
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engines capable of meeting CO emission standards are generally capable of 

meeting the UHC standards too (154). However, an additional factor in UHC 

emissions could be due to quenching of hydrocarbon oxidation near the 

combustor wall at idling conditions, or poor fueVair mixture resulting in locally 

rich zones in the combustor (153,155). The present work also shown that in 

general CO emissions dommenat the inefficiency except very close to the weak 

extinction when UHC becomes more important 

1.5 FLAMMABILITY UMITS IN SWIRUNG FWW 

Not all fuel-air mixtures will burn, flames can propagate through fuel-air 

mixture only within certain limits of composition if small a mounts of 

combustible fuel gas or vapor are added gradually to air, a point will be reached at 

which the mixture just becomes flammable. The percentage of fuel gas at this 

point is called the lower flammable limit, or weak limit or lean limit If more fuel 

is added another point will eventually be reached at which the mixture will no 

longer is called the upper flammable limit or rich limit. Analysis of experimental 

data suggests that the weak limits for aparticular fuel correspond to minimum 

flame temperature for methane this is about 1400 K, as compared to 

stoichiometric flame temperature of about 2200 K(160). 

1.5.1 Flame Stability 

In swirling flames there are many factors that could cause blowoff, i.e cause 

the contours of zero axial velocity, fuel concentration, and air concentration not 

overlap properly. Rawe and Kremer(50) found that excessive swirl can impart 

centrifugal forces that force the fuel-air contours to move too far radially outward 

and thus eliminate the critical region of overlap Fig.l.2. 

Claypole and Syred(25,46,115) have shown that for swirl flows with 

recirculation, the flame stabilises on the recirculation zone boundary with 

majority of the chemical reaction downstream of the recirculation zone(115). The 
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mechanism of flame stabilisation in this region is similar to the mechanism of 

flame stabilisation behind a bluff body in that the flame stability in well stirred 

shear layer regions in the wake of the reverse flow zone in which the low 

temperature fresh reactants become intimately mixed with hot active species(25). 

They have also shown that there was a little reaction in the reverse flow zone 

which contains burnt gases inside the recirculation zone by the centrifugal force 

action. Claypole and Syred(25) shown that the maximum root mean 

square(R.S.M) velocity contours in the combustion lie on the boundary of the 

high temperature reverse flow zone and they are of similar levels to those in the 

isothermal case. Furthermore, they found(176) that the location of the flame was a 

function of turbulent flame speed and not the equivalence ratio, assuming that the 

flame front was in the mean temperature range of 1200 to 1400 K and was formed 

when the coherent eddy structures grew in size until a point was reached where 

the increase in the turbulent Reynolds number produced a turbulent flame speed 

equal to the local non-isotropic turbulence intensities(L.T.I) which were based on 

the total root mean square(R.M.S) turbulent velocity component and the vector 

sum of local mean velocities. They also shown(25) that increasing the swirl 

number would move the flame front upstream. Tangirala et al(165) identified 

three blowoff limits, they were correspond to maximum fuel velocity, a maximum 

swirl velocity, and a minimum swirl number. By using anon-intrusive LDV and 

Rayleigh scattering diagnostics, they shown that blowoff due to excess fuel 

velocity occurred after the fuel jet penetrated and reduced the recirculation 

bubble. Excessive swirl caused visible stretching and fragmentation of the flame 

and caused local acceleration near the recirculation zone edge Fig.(1.2). 

Margolin and Karpov(162) and somewhat later followed by Babkin et 

al(170)used rotating cylinderical combustion chamber to initiate laminar swirling 

flow. They found out that, for swirling flow the rate of decrease in the flame 

propagation velocity depended on the speed of rotation, the greater the rotational 

speed, the more rapid the decrease in the propagation velocity of the flame. 

Babkin et al(170)considered the rotational speed gradient of the gas dw/dr, as one 
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of the possible factors influencing the flame quenching process. They noted that 

this gradientcould cause considerable stretch of the flame along the flame front 

They considered that flame quenching as a result of this stretch was less probable 

than quenching as a result of heat loss from the hot gases to the wall. On the other 

hand from the work of Zawadzki(163)in which the temperature of the swirling gas 

was measured, it follows that under conditions of much more intense swirl and 

turbulent flow the combustion gases were not cooled during the passage of flame 

from the centre of the cylindrical combustion chamber towards its periphery, and 

the flame was not extinguished, despite the fact that the propagation velocity of 

the flame was not much higher than the laminar burning velocity. It follows that 

the heat loss from the hot gases to the walls was not important during the 

extinction process . It should be noted that as the heat loss increased from the 

flame to the wall. The thickness of the cooled flame increases and the burning 

velocity decreases(161). In the limit case the flame was quenched at the wall in 

the same manner as it is in a quenching channel. The flame quenching initiated at 

the wall, spreads over the entire surface of the flame. Under conditions of intense 

turbulent swirling flow no flame quenching action was observed(161,163).The 

flame propagated over the entire volume. The burning velocities were 

independent of the parameters of turbulence and were contained within the same 

range of values as found by Andrews and Bradley(164) for laminar flames . 
• 

1.5.2 The influence of the initial temperature on flammability 

The data obtained by White and quoted in the book by Bone and 

Townend(171)indicate that an increase in the initial temperature of a mixture 

results in an apparently linear rise in the flammability limits. An analysis made 

by Egerston and Powling(172) showed that the reduction in the heat of chemical 

reaction per unit volume of the mixture due to the'lowering of the lower limit was 

approximately compensated for by increase initial enthalpy of the mixture. In the 

present work the influence of inlet temperature on stability was important as 

preheat up to 600 K was needed. 
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CHAPTER TWO 

RADIAL SWIRLERS COLD FLOW CHARACTERISTICS 

AND MODEllING 

2.1 INTRODUCTION 

When fuel and air are not premixed prior to ignition, the case of diffusion 

flames, aerodynamics become the rate-determining factor of the progress of 

combustion(1). This means that the important over-all characteristics of diffusion 

flames; spatial distributions of velocity and of concentrations, the physical 

dimensions of flarne ... etc. can be determined from fluid-flow consideration alone. 

The aim of the present work was to investigate the aerodynamics of radial flow 

swirler (curved-vane type) so as to understand some of their behaviour in the real 

combustion case. 

A Water model was used to investigate the flow and mixing induced by the 

swirlers using dye as fuel tracer or air bubbles as a flow tracer. It is generally 

accepted that "seeing is believing" and to observe exactly what is happening to 

the flow in relation to its constraining boundaries yields valuable information to 

confIrm whether or not a design is satisfactory. or where a design can be modifIed 

to improve aerodynamic performance. Many hours of development can be saved 

by applying the data obtained from few minutes observation of a flow 

visualisation model. For the present work a perspex model rig was desiged to 

accommodate the radial swirlers and other stabilisers to study their flow 

pattems(2). 

2.2 RADIAL SWIRLER DESIGN 

The radial swirlers used a curved blade pass~ge design in an attempt to avoid 

flow separation in the channels. The design features are shown in Fig.2.1 and 

plate 2.1 which details the vane angle e. The vane angle e was the effective 

radial vane passage jet outlet angle. As will be discussed shonly, water flow 

visualization showed that the outlet flow attached to this blade surface. 
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Table 2.1 shows the various dimensions of the radial flow swirlers used in the 

present work, with a vane angle range between 0 - 70 degrees. The 45 degrees 

angle swirler were made in two peripheral diameters, 76mm and 127mm with 

outlet diameters of 40mm and 76mm respectively. They were manufactured in 

various vane depth so as to investigate the effect of pressure loss on the overall 

performance of the swirler. 

Generally, the swirlers can be grouped into three different categories, one with 

approximately equal effective open area but with various vane angle. The vane 

depth and passage widths were made of different dimensions to keep more or less 

the same flow area with the same swirler outlet diameter. Secondly, large swirlers 

with various effective open area but constant vane angle and Thirdly, small 

swirlers with various effective open area but constant vane angle. The later 

effectively they have the same open area as the former, but with different 

expansion ratios. 

2.3 GEOMETRICAL CHARACTERIZATION OF SWIRL NUMBER 

The swirl number is usually defined as the of the fluxes of angular and linear 

momentum(3,4) and it is used for characterizing the intensity of swirl in enclosed 

and fully separated flows. 

The parameter can be given as: 

G~ 
S=2-~ 

G.D x 

In the combustion literature, two formulation of the swirl number are 

commonly used those which included the static pressure term in the axial 

momentum equation and those which used only the dynamic term. For cases 

where mixing at the boundary of the recirculation zone is dominated by the action 

of a precessing vortex core another parameter is required for characterization of 

rotating flow. A nondimensional frequency parameter similar to that suggested by 

Cassidy and Falvey(5). The derivation of such parameter was demonstrated by 

Syred and Beer(6). 
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The swirl number can be computed from geometric and parameters of swirl 

generators(1,7), when the swirl number is calculated from the input velocity 

distribution in the swirl generator rather than the velocity distribution in the jet, 

the static-pressure term can be omitted and the swirl number be given with good 

approximation(1) For a guide-vane cascade in a radial flow, the angular 

momentum can be expressed as: 

M2 
G =CJ.---

• p27tB 

If the Reynolds number influence is assumed to be negligible, the swirl 

number depends only upon the geometrical dimensions of the guide-vanes in the 

axis perpendicular cross-section. 

2.3.1 SlVIRL NUMBER 

The determination of the swirl number for radial swirlers from swirler 

geometry is difficult and no simple formulae exists that is equivalent to that of 

Kerr and Fraser(21) for axial swirler. Inthe present work a swirl number based on 

the mean axial outlet area velocity of the swirler and the mean blade passage 

throat velocity as the basis of the tangential velocity is suggested. The intensity of 

rotation can be defined as follows:-

Tangential velocity 
Axial velocity 

Now, from Fig.2.2, we have: 

By conservation of mass:-

Where Cc is the contraction coefficient of the radial vane passage jets which is 

equivalent to the free discharge coefficient. 
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The velocity of flow inside the vane passages will have two components after 

leaving the passages. 

Va= V2 sin e .... (2) 

from equation(1), we have: 

AI 
V = -. sin 9 (3) 

e CA 
c 2 

and, 

V R = V2cos9 .... (4) 

or 

AI 
V R = -C . cos9 .... (5) 

c
A2 

from the continuity equation, we have; 

VI AI = V3 A3 .... (6) 

hence, 

AI 
V3 = - VI .... (7) 

A 
3 

Hence, 

Intensity of rotation,(22) 

or 

2 
1 1tR3 . 

I =-.-.sm9 
e C

c 
8.l.h 

i.e the intensity of rotation: 

2 
1t R3 

I = - . - . sin 9 .... (9) 
e n.C l.h 

c 

Swirl number can be defmed as: 

S = Angular momentum flux 
R . Axial momentum flux 
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The flux of angular momentum will be generated by the moment of momentum of 

the mass of the flow which is rotating tangentially around the centre of the radial 

flow swider i.e II1a 

Where the total mass , 

m =ma+~ .... (11) 

The ratio of 

I11e V2 sin e --mR V l cose 

i.e 

ma 
- = tane .... (12) 
~ 

by subs. equation(12) in (11), we have, 

m 
rna = ( ) .... (13) 

1+.J...e 
tan 

Fa = rna· Va· R3 .... (14) 

Hence, 

F 9 = ( m 1 ) . V 2 sin e. ~ 
1+-

tanS 

and 

F =m. V .... (15) 
x x 

Since 

Hence 

m 
Swirl number ,S = ---

I 
1+-8 

tan 
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.... (16) 

or 

re-arranging the above equation, we have: 

S -_ tanS A3 . S 
---. • SIn 
tanS + 1 Cc A2 

But 

A3 
Ie = CA' sinS 

c 2 

Therefore, 

tanS 
S = . I 

tanS+1 e 
..... (17) 

.... (18) 

2.4 COMPARISON WITH PREVIOUS FORMULA 

Previous workers(1,6) suggested the following expression as a measure for 

the swirl for guide - vane cascade in a radial flow:-

1 tana 
cr = .------------

1-", 

Where 

1t 
1 + tana. tan"2 

'" = z . S is a blockage factor 
2 1t Rl . cosa 

S = thickness of the vanes. 

z = number of vanes 

a = Angle of the swirler outlet 

The above expression does not hold for all radial flow swirlers, infact some of the 

results obtained from the above equation are misleading. 

Claypole and Syred(23) reported a geometric swirl number, based on the 

combustor geometry, where the air was supplied tangentially: 
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S = ro 1t re ( Tangential flow )2 
8 At Total flow 

Where 

~ = Area of tangential inlets 

r = Radius of the exit of the combustor o 

ro = Radius of the tangential inlets the combustor. 

For the present work, we have:

S = ro 1t ro [ tane ]2 
8 ~ tane+l 

The results for Sg obtained by the above expression were in reasonable agreement 

with the present work results as shown in Table. 2.1a. 

2.5 DISCHARGE COEFFICIENTS AND WALL STATIC PRESSURE 

PROFILES 

The test rig shown in Fig.2.3 was used to measure the discharge coefficients 

of the radial swirlers. This was done by passing a metered air flow through the 

radial swirler and combustor tube and monitoring the static pressure loss upstream 

of the swirlers relative to the atmospheric pressure discharge. Two can 

combustors 330mm long were used. The first was of 76mm 1.0 which gave the 

swirler expansion ratios of 1.9 and 1.0 for the 40mm and 76mm outlet swirlers 

respectively. The second 330mm long can combustor was 140mm 1.0. The two 

outlet swirlers gave expansion ratio of 3.5 and 1.8 respectively in this combustor. 

The 140mm combustor was a similar size to many gas turbine can combustor 

such as the Rolls Royce 'Spey and Tay' and Ruston 'Tornado' combustor. 

The CD was calculated according to the general appendix-A. 

Table 2.2 summerised the measured discharge c.oefficient for the various radial 

swirlers ,for both combustors compared with that of free discharge coefficient or 

the contraction coefficients. Figs.2.4 - 2.12 illustrates the variation of discharge 

and contraction coefficients(Co, Cc)with Reynold number Re and shown that both 

CD and Cc were only slightly dependent on Re for the range of Reynolds 
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number used in the present work. The radial swirlers discharge coefficients were 

low, approximately 0.6 compared with that of zero swirl, approximately 0.9 

(ie.swirler K), shown in Table 2.2. This indicates that it is the vane angle that 

given poor CD and not just the 90 inlet and outlet blade. This led to a major 

consideration of the flow field inside the radial swirler passages as the low CD 

implied that flow separation occured inthe passages in spite of the curved vanes. 

Table(2.2) shows that the measured (CD) associated with the large swirler 

outlet used in the 76mm combustor was lower than the corresponding values of 

(CC). This was due perhaps, to the presence of the 76mm combustor, and the 

additional wall friction and velocity profiles. place. 

Figs.2.5 and 2.6, and Table 2.2 show that when the passage width and vane angle 

were kept constant the discharge coefficient was inversely proportional to the 

passage depth. Similarly, this has been noticable in Figs.2.8 - 2.9 and for 

contraction coefficients in Figs.2.11a -2.11 b. 

The reason behind this was probably due to the reduction of separation inside the 

passages due to the reduction of the depth, because as the passage depth was 

reduced the separation on the vertical back plate of the radial swirler seems to be 

reduced. Furthermore, flow visualisation showed that the contraction at the outlet 

of the swirler was reduced with an impingement point for the lower passage depth 

swirler was near to the swider outlet than the others. The variation of discharge 

and contraction coefficient with passage vane depth for the 40 and 76mm outlet 

45 degrees swirlers is shown in Fig.2.12. The combination of B&C double 

swirlers, discussed in chapter six, resulted in a further data point at higher area 

ratio. These calibration lines should be used in future designs of this type of 

swider. 

2.7 ZERO-VANE ANGLE SWIRLER 

With zero vane angle the radial inlet jets showed the classic behaviour of a 

straight confmed jet with a flow system containing large outer recirculation zone 

in the comer between the jet boundaries and the confining walls. Exchange of 
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mass then takes place between the expanding jet and the recirculation flows all 

along the jet boundary between the two flows(8). 

Figs.2.15 and Fig.2.18, show that the recovery by the flow from the stabiliser 

in the 76mm combustor was much earlier than when the same stabiliser was used 

in the 140mm combustor. With the later case, the sudden enlargement adds more 

loss in energy for the fluid in flow(9 ,10).Moreover, the flow in the later case 

exhibits larger corner recirculation zone than the former case. However, the jets 

issues from stabiliser(K) in both combustor size 76mm and 140mm were 

impinged on the walls at more than one combustor diameter which is in 

agreement with Wu at el(ll) and Rhode at el(10). The impingement points can 

be estimated from Fig.2.15 and 2.18 to be approximately at twice the combustor 

diameter. 

2.8 WALL STATIC PRESSURE PROFILES 

Figs.2.13 - 2.18 show the measured wall static pressure profiles at ambient 

temperature for the radial swirlers with different vane angles and area ratios for 

the two sizes can combustors 76mm and 14Omm. diameter. The wall static 

pressure profiles exhibited some major features, these are the presence of zones 

with high wall static pressure regions which increase as the swirler flow area A2 

is decreased. These features are associated with recirculation zones and are 

influenced by the swirler design(12-16) The radial static pressure distribution at 

any given section in the combustor occurs mainly due to the centrifugal force 

w Ir of the swirling flow. Furthermore, due to the sudden expansion and mixing 

effect, the tangential velocity shows a rapid decay downstream of the swirler. This 

tangential velocity decay was proponional to x!D(27). However, the radial 

distribution of the static pressure inside the combustor can explain some of the 

complex flow pattern that occurs with highly confined flow(27). In the present 

work, as will be demonstrated later by a flow visualisation, the flow expands due 

to the radial pressure gradient with an outer corner recirculation zone and an 

internal recirculation zone established downstream of the swirler outlet. 
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For a swirler with a vane angle of (45 ) and a range of area ratios the wall static 

pressure profiles are shown in Figs.2.13a, 2.14 and 2.17. Figs.2.13a and 2.17 

show that for the same swirler expansion ratio in the two combustor sizes the 

comer recirculation zone size was similar. The minimum in the static pressure 

profile represent the maximum width of a recirculation zone, when the swirler 

flow dynamic pressure is high. Typical wall static pressure profiles and the 

associated flow patterns are shown in Fig.2.18a. The minimum in Fig.2.18a is the 

shear layer impingement point with maximum tangential wall velocities. This 

occured at the same axial position for both combustors. Upstream of this point 

was the low velocity comer recirculation with a high wall static pressure and 

downstream was the central recirculation zone of maximum width at the 

minimum in the minimum in the static pressure profile. Downstream of this 

region was a free vortex flow region with a reverse core region of reduced width 

with axial distance, gving a high static pressure at the wall. 

These flow profiles are clearly shown by the dye injection flow visualisation 

results discussed later. The CFD prediction of the flow also support this in 

representation of the wall static pressure profiles. As the passage depth decreased 

and hence the effective open area decreases, the swirl number increased and the 

wall static pressure increased accordingly. Furthermore, as the swirl number 

increased the corner recirculation zone size decreased as was shown using flow 

visualisation. Similarities in the profiles between the 40mm outlet swirler used in 

the 76mm combustor with that of the 76mm outlet swirler (45 ) used in the 

140mm combustor. Thus the aerodynamics of the two combustors was similar and 

scaling between the two size combustors could be investigated, as discussed in 

chapter four. The effect of no swirler expansion on the wall static profiles is 

demonstrated in Figs.2.14 and 2.15 for the 76mm outlet swirlers in 76mm 

combustor. Due to the high tangential velocity the static pressure remained at a 

high level. These highly potential level of tangential velocity depended on the 

swirler geometry, especially the passage depth and the angle of rotation. 

There was no effect for the combustor inlet temperatures on the wall static 

pressure profiles as demonstrated by Fig.2.13b. 
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2.9 SEPARATION IN THE VANE CURVED PASSAGES 

2.9.1 Behaviour oj separated flows 

A separated flow is usually divided into two regions: 

1- Flow between the separation limiting-stream line skeleton and the wall (ie. the 

stalled, stagnant or back flow region). 

2- Shear flow, containing the former boundary-layer vorticity, between the free 

stream and the limiting streamline skeleton. 

The common boundary of these regions is a zone of a certain and unsteady shape 

and character. However, separation occurs because too much diffusion of the 

boundary layer is demanded. 

2.9.2 Flow visualization ojpassages 

A simple perspex model was assembled for flow observation through the 

curved passages of the radial swirler, as shown in Fig.2.19a. This comprised a 

152mm I.D perspex tube as the approach water supply pipe which was covered on 

its two ends by square perspex sheets of 200x200 mm . The whole structure 

connected to four bolted bars and in between the sheets and the approach pipe 

rubber gaskets were placed to prevent any water leakages. The water outlet was 

through the middle part of the swirler using the fuel pipe hole. This created a flow 

restriction which limited the maximum flow to 50 Vmin. However, that was quite 

sufficient to give turbulent flow in the vane passages and to observe the flow 

inside the passage with help of beam of light projected through the passage inlet. 

Plate 2.2 ,demonstrates the results of the present observation. Flow 

separation occured at the radial passage inlet at the outer radius of curvature of the 

passage. Flow reattachement occured within the passage, but the flow was 

controlled by the direction of the passage wall with no flow separation. However, 

the existance of a separation inside the curved passages was not surprising, since a 

rather abrupt reduction of the geometrical blockage creates a strong radial 

decelaration. The separation creates a blockage in addition to the geometrical 
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blockage. This was the main reason to the low CD values discussed above and the 

curved blades may be concluded to be of no advantage in avoiding flow 

separation. 

The flow separation in the blade passage was three dimensional There was 

separation at the blade inlet tip and separation off the curved vane surface as 

discussed above. Separation has also been observed by others in two dimensional 

cases without swirl(17). The recent work by Hassa et al(30) reported a separation 

of the flow at the downstream side of the blade when testing a radial swirl 

generator with profiled radial vanes in a fuel nozzle model. 
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2JO COMBUSTOR FLOW PATTERNS 

2.10.1 Rig Description 

The water model rig which was used in the present work to study the flow 

field imposed by the radial swider is shown in plate 2.3. The perspex rig was 

designed to accommodate different sizes of can combustors mainly, 76mm, 

140mm and 250mm I.D perspex combustors. This can be mounted in a larger 

rectangular perspex tank. This was connected to the main water model circuit 

shown in Fig.2.19. Water was the main working fluid with air bubbles or dye as 

tracer. A slit light was arranged such that either a longitudinal or radial section 

could be illuminated. 

For the present work the water flow rate was in the range of 90 Vmin - 120 

Vmin with dye injection at the rate of 3.5 Vmin - 4.5 Vmin. A conventional 35mm 

Camera with a 35-20mm macro zoom lens was used to photograph the combustor 

flow patterns. 

2.10.2 FLOW REGIME DISCRIPTION ISSUED BY RADIAL SWIRLERS 

Radial vane swirlers are commonly used for industrial burners, and create a 

Rankine type vortex which has a solid body rotation core surrounded by a free 

vortex region. Analytical demonstration for this type of vortex was described by 

Benjamin(l8). Some of the visualization results of the present work are 

illustrated by plates 2.4 - 2.7. The flow regime can be categorised into six 

different regions as follows: 

a-Region 1: Swirler outlet contraction 

In this region the motion of the water is implying a fully solid body rotation 

flow with vortex radius much less than the swirlers outlet diameter which was 

ranging between 0.4-0.5 d. This type of swirl flow contraction continued for some 

distance, x=15-20mm, away from the swirler outlet before it was deflected 

towards the combustor walls where at approximately 45mm (ie. at 0.32 x/D) the 

impingement point was observed and recorded for the large swirler(B) and at 
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70mm ( 0.5 x{D) for the smaller swirler(A) in 140rnm combustor model as shown 

in plate 2.4. In general, the radial swirler outlet gave Rankine vortex type that can 

separated into two regions, a rotational core where the recirculation increases with 

increasing radius and irrotational region which is which is surrounding the core 

region. Both these regions plays an an important part in stabilising and 

de stabilising the swirl flame due to their immediate interaction with fuel jet. 

b- Region 2: Corner recirculation zone 

Corner recirculation zone was predominant in this region which was a 

function of swirler outlet and the degree of confinement or the expansion ratio 

DId as can be shown in plate in plate 2.4 for the two swirlers with 40mm and for 

76mm outlet or swirler(A) and (B) respectively. However, in this region the 

expectation for the axial and tangential velocities can be very low and turbulent 

level high. The corner recirculation zone will then experience the circular motion 

which is counter clock-wise upon its center plus the circulation in the direction of 

the main swirling flow. This is encountered just upstream of the impingement 

point on the combustor wall as shown in plate 2.7. Plate 2.6 shows the cross

sectional view of the region 30mm downstream. of the swirler, the central 

swirling core flow is sharply separated from the corner recirculation flow. 

c-Region 3: Outer recirculation zone 

Another peripheral recirculation zone was created due to the flow 

impingement on the combustor walls as shown in plate 2.7. The rotational motion 

in this case counter rotating the one in region(2). Furthermore, the viscous force 

perhaps is the main dominant in this part of the flow. However, it was certainly a 

very good function of the main velocity of the flow. 

d-Region 4: Central recirculation zone 

The main feature of this region was its strong participation in feeding the 

central vortex core with air bubbles all the way, along the combustor length after 

the impingement point had occur, this can be shown after careful examination of 
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the flow pattern which is shown in plate 2.4 ,2.5 and plate 2.7. However, 

visualization has shown that some of the air bubbles loses its rotational speed to 

take a different rotational path, near the centre of the rotation or vortex core. This 

depends on thier initial speed after the vortex breakdown to form a reverse 

recirculation zones. All the air bubbles near to the combustor wall region escape 

through the combustor outlet and the one which is at radius of between O.O-O.7d 

can join in the formation of the vortex core region. 

The size ofregion-4- always depends on the main flow inlet velocity and the other 

physical properties of the flow. In fact, region-3- and region-4- can be considered 

as a double cell structure region where the fIrst cell always have forward velocity 

in the centre and the second cell is reverse in the centre. 

e-Region 5: Vortex core or flu; .ctuating central-spiral reverse zone 

This is clearly shown in plate 2.4 and 2.5. This vortex core region exhibited a 

precessing vortex of the type discussed by Syred et al(5). The existance of the 

precessing vortex core has been ascribed to the inertial wave perturbations by 

Lilley and coworkers(36-38) for their experimental results using an axial swirler. 

r-Region 6: Shear layer between 2&3 

This region is the conical shaped shear-layer which is between the counter 

rotating swirling recirculation zones of region 2 and 3. This shear-layer plays 

very vital part in the mixing processes as will be discussed later. 

b-Region 7: Shear layer between 4&5 

The existance of this region is due to the interaction between the precessing 

vortex core and the central recirculation region. 

2.10.3 Effect of expansion ratio(Dld) 

With swirling flows, the swirler expansion ratio (DId) has a dominant effect 

of the flow in the comer reverse flow region as shown in plate 2.4 by comparing 

swirler (B) with expansion ratio of 1.8 and swirler (A) with expansion ratio of 3.5. 
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Both swirlers have the same effective open flow area but different outlets. 

However, swirler A promoted a much larger corner recirculation zone than 

swirler(B) which is indicated by the two impingement points at x=45mm and at 

x=70mm for swirler (B) andswirler(A) respectively. 

Solid-body rotation is imposed on the swirler(B) flow field (not shown), 

when used with an expansion ratio of D/d=1, ie. the swirler outlet and combustor 

internal diameter are the same dimensions, which means that there is no space for 

the flow to expand. 

One of the major differences between swirler(A) and (B) was that of the 

vortex core in the swirlers outlet. The swirler(B) had a bigger core diameter of 

(40mm) than that of the small swirler(A) of (20mm), ie. approximately half the 

swirlers outlet diameter. However, visualization observation showed that the 

swirling jet issued from swirler(A) with expansion ratio of (3.5) seems to have a 

more rapid forward rotation jet on axis than the jet with a smaller expansion ratio 

of (1.9) issued by the same swirler which is similar, to the observation reported by 

Syred and Dahman(27). 

2.10.41njluence of vane angle passage depth onjlow pattern 

Flow visualization results showed no effect of the radial-vane angle on the 

main flow features for the vane angle range between 20-60 degrees which have 

more or less the same effective open area. The only noticable effect was when 

changing the depth of the swirler passages. This was done with the 45 degrees 

angle swirler when it was placed in 140mm 1.0 combustor. The observed points 

of impingement are illustrated in Table 2.3. 

By comparing the above results with those for the swirl number and for the 

same radial swirlers, one can detect that the jet spread increased with the increase 

of the swirl number, caused by the decrease of the passages depth. The vane 

passage depth is the dominant factor in controlling the magnitude of the tangential 

velocity issued to the combustor which was due perhapes to the decrease of the 
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separation effects in the passages. 

2.10.5 Mixing Process 

For the present work dye was injected through central radial fuel injection 

system at rate of 4.5 Vmin, in flow field of water rated at 90 Vmin. The flow 

visualisation results are shown in plates 2.8 and 2.9 for swirlers (B) and (A) 

respectivel y. 

The six flow region discussed above a clearly visible from the flow path taken by 

the dye. A key feature is that the centrally injected dye (radial holes) directly feed 

the shear layer and not the corner recirculation zone or the central vortex core. 

The dye mainly follow the second inner recirculation zone and is well mixed in 

this. It is clear, that the direction of the column of the vortex core region was in 

the opposite direction to that of the main flow which is evident from the presence 

of fresh water in the centre that is coming from the combustor outlet region. 
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2.11 MATHEMATICAL MODELLING 

2.11.1 Introduction 

Over the last few years, the use of the computer as an engineering tool has 

increased which was due to better computational software and facilities in terms 

of computer access, storage, speed and relative cost. 

There has been also a substantial increase in the use of computational fluid 

dynamics(CFD) in gas turbine combustor applications(31). Sturgess et al(31) 

suggested that it is important to note the CFD applications for gas turbine 

combustors are driven not only by the potential cost and times saving but also to 

provide additional insight into complex problems that do not lend themselves to 

analytical solutions and may be too costly and time consuming to pursue 

experimently. 

A generic description for most type of computer codes is schematically 

outlined in Fig.2.20. Time averaging is applied to the basic. The Reynolds stress 

terms that appear are modeled using an eddy viscocity concept where the 

turbulence model used for closure is the K-E model. This provides two additional 

transport equations, one for the turbulent kinetic energy and one for eddy 

dissipation rate(32). In the present work, the computer code FLUENT (33-35) 

was used to predict the present isothermal flow which is imposed by the radial 

swirler. The FLUENT computational code was successfully demonstrated by the 

recent work done by Hand et al(41), on the interaction calculation of 

turbulence/chemistry where their results shows good quantative agreement 

between local experimental data and overall model prediction. Two turbulence 

models were investigated, the widely used K-E and algebriac stress(ASM) or 

Reynolds stress models. The method of so called "stair-step" was adapted to 

handle the complex geometric shapes of the radial swirler. Through this method 

the discretizes curved surfaces into a series of steps. 

The present work was considered to be the fIrst attempt to compute fluid flow 

through this type of radial swirler with curved passages. The geometrical shape 
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of the radial swirler was considered to be too complicated to do a reasonable time 

computational work on it. However, there have been various attempt to compute 

similar domain to the present work. Computational afforts was done by Blumcke 

et al(28) and Harvay and Leuckel(29) on straight vane radial swirler. 

Furthermore, work was done by Hassa et al(30) on complex swirl generator which 

used a radial curve vanes to predict the profiles at the swirler outlet. 

2.11.2 PRESENT APPROACH 

The numerical prediction of a combustor flows depends on the correct 

prescription of inlet conditions(31). Blumcke et al(28) reported the necessity of 

starting the computation in the fuel nozzel at the outlet of the swirl generators, 

because the reverse flow region of the combustor reaches into the nozzle. Since, 

the development of the flow patterns in the combustor is known to be sensitive to 

the amount of swirl issued at that inlet. there was a need to determine the velocity 

profiles there. 

Two computational approaches were made to solve the present problem; first, 

to predict the flow field at the swirlers outlet using 3-D calculation in a polar

coordinates. The flow field issued by the radial swirler was assumed to be 

symmetrical and each 45 sector identical to that of the opposite side. Only a 45 

sector of the whole domain was considered to be sufficient and it was computed 

using the conventional method of turbulent model (K-E) and Algebraic Stress 

Model (ASM). 

Fig.2.21 Shows the polar coordinates computational grid using the well known 

method of "stair-step" for the curved passage and inclinde surfaces(33-35,40) The 

main inlet boundary condition for the radial swirler calculation were obtained 

from similar measured cold run on the main rig such as inlet pressure, mean inlet 
, 

velocity, Reynold no .... etc.). Swirler(B) was taken as the modelling example for 

the present case. 

Second, was to predict the combustor flow field in a 2-D calculation applying 

polar-coordinates as well for the main domain. Furthermore, the three profiles of 
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the velocities V, V, W obtained from the first computational calculation were 

used as an inlet profiles to start the calculation in the main combustor. This was 

done by applying polynomial relation between the variables(V, V, W) and the 

outlet radius intervals which proved to be inaccurate especially for polynomial to 

the 3rd degree which is what "Fluent" is limited to use, or by using the Patch 

option available to insert the true values from the previous solution. 

Alternatively, the available swirler outlet computation were used on the inlet cells 

to provide the true inlet profiles. In the present work the later was applied in both 

models together with one polynomial relation applied to K-E case for comparison 

using the proper constants for each velocity profile as shown in Table 2.4 where 

the general form equation-19 was used to estimate each individual velocity profile 

of (V,V,W) with respect to Y-axis at swirler outlet and neglect their variation with 

respect to Z-axis since it is used for 2-D case. 

For the present work the number of grid point that have been used was as 

follows: 

For 3-D case, number of grid = X. Y . Z 

= 11 * 52 * 17 

=9724 

For 2-D case, number of grid = X . Y 

=66 * 44 

=2904 
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2.11.3 PREDICTION RESULTS 

Using the K-E method, forthe 3-D and 2-d case, the time for each iteration 

was 85 and 25 seconds respectively. Using (ASM) method, the time for each 

iteration for both cases was 95 and 25 seconds respectively. So, the time 

consumption in 3-D cases was quite high to get an accurate and reliable solution. 

In three dimensional cases both methods predicted small separation in the curved 

passages in the Z-direction but a noticable separation in X-direction. This was 

due to the flow being deflected sharply at the entry point to the swirlers passages. 

From Figs.2.22 and 2.23 the profiles at the outlet was the combined vortex or 

known as "Rankine Vortex" profile. This can start close to the centre of the outlet 

indicating that the solid body rotation was followed by a sharp fall in the 

indicating the free vortex region. 

The tangential velocity profiles assuming from swirl generators generally 

assume a combination of the forced and free vortex distributions. Figs.2.22 and 

2.23 show that the mean tangential velocity in the flow field goes down to zero at 

the axis of symmetry and hence solid body rotation exists in the centerline region. 

Moreover, a free vortex is a characteristics of the outer jet skirt and the two vortex 

distributions patched together to form a resultant profile denoted as the combined 

Burgers or Rankine vortex. The location of the maximum tangential velocity and 

its interaction with the axial velocity profile constitutes the critical element in the 

downstream aerodynamics development. Some of the results which were 

predicted by K-E model for the 3-D case are shown in Figs.2.24a - 2.31. Both K

E and ASM models predicted a small separation starting in the leading edge of the 

inlet to the passage which is due perhaps to the sharp gradient near to the sharp 

edge at that end. However, the similarities between the predicted flow field in the 

passage and that of plate 2.2 can be noticed in the general pattern. Numerical 

results also, show that there was another separation in the vertical plane of the 

back plate of the swirler which is caused by the flow being deflected at the sharp 

turning angle as can be demonstrated by Fig.2.25. 
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Fig.2.26 illustrates the spatial axial velocity distribution of the radial swirler 

where constant contour lines in the centre indicates the solid body rotation in that 

region and also it is a sign of flow contraction. The outer diameter of the 

contracted jet is at 0.65 swirler diameters which approximately corresponds to the 

measured value. Figs.2.27 and 2.28 shows the tangential velocity distribution at 

two planes 14 and 8 which were oriented on the Z and X-direction respectively. 

Again the centre of the swirler shows the constant velocity line, indicating the 

flow contraction in that region. This can be seen also in Fig.2.29. The large K.E 

of turbulence can be located in the centre core region of the radial swirler as 

shown in Fig.2.30 where the large eddy dissipation occurs in that region as shown 

in Fig.2.31. Figs.2.32 - 2.41 and Figs.2.42 - 2.54 illustrated some of the 2-D 

combustor flow-field results as predicted by the K-E and ASM models 

respectively. 

Using the estimated velocity profiles by the polynomial equation(19) with the 

K-E model gives unexpected results. This method was denoted by K-E2 and the 

others by K-El where the true velocity profile obtained from the 3-D was used. 

K-E2 model results predicted the correct flow regime at the first section of the 

140mm combustor which is approximately 1/3 of the combustor length. 

Furthermore, it predicted the correct size of the corner recirculation zone and the 

exact location of the impingement pointof the flow on the combustor wall. This is 

demonstrated by Figs.2.32a- 2.36a. However, K-E2 model failed to predict the 

correct length of the central reverse flow or the vortex core. On the contrary, the 

K-El and algebraic stress model(ASM) predicted a large reverse flow in the 

centre core region of the combustor but failed to predict the correct size of the 

corner recirculation zone. Furthermore, they predicted much earlier impingement 

on the combustor wall. This can be shown in Figs.2.42 - 2.46. 

Fig.2.55 illustrates the wall static pressure as a function of the combustor length 

for the experimental and predicted results using both prediction models. It is a 

good demonstration of the differences between K-E and algebraic stress (ASM) or 

Reynolds stress models. It is obvious, that K-El and ASM over predicting the 
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wall static pressure in the ftrst section of the combustor near the swirler outlet due 

to the inadquancy in predicting the size of the corner recirculation zone. 

However, the model predicted the wall static pressure with reasonably good 

agreement with measured values at the section beyond X=75mm while the K-E2 

model under estimating the central region and hence gave lower static wall 

pressure than the measured values. Fig.2.56 shows a comparison between the 

flow pattern imposed by the radial swider in 2-D combustor flow regime for the 

present work using K-E2 results with that of references(20,39). Although, each 

flow regime being predicted by different models (CFM) and different inlet 

boundary conditions. There are similarities in the flow fteld between the three 

patterns. This is probably accounted by the shape and distribution of all the three 

mean velocity components. The profiles provided upstream of the confluence or 

expansion plane rather than immediately downstream. At that location the jets are 

rapidly evolving and interacting and are more easily influenced by wakes, mixing 

layers, reverse flow boundaries .. etc. 
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2.12 Predicted Swirl Number 

The following equation was used with the average velocity U and W to 

calculate the predicted swirl number by the two models. Equation-20 was used to 

avoid complexities due to the non-uniform velocity profiles and the pressure 

thrust term was not included in the axial momentum flux, unlike the conventional 

definition ( 42). 

fWU2 ldr 
S - _R.:..I .....-__ _ 

o R 

R
2
ju2

rdr 

RI 

...... (20) 

From Fig.2.22 and Fig.2.23 the average axial and tangential velocities were 26.23 

m/s ; 71.17 m/s and 27.11 m/s ; 68.94 m/s for both ASM and K-E models 

respectively. Thus, the calculated swirl number from equ.20 were as follows: 

For K-E ,S = 1.82 

For ASM, S = 1.67 

Compared to 1.41, which was calculated by equ.18. 
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2.13 CONCLUSIONS 

1- Visualization is a useful and necessary augmentation of the measurements 

and prediction work described above, because fIrst, "still" photographs 

complement some of the experimental schematic by providing a 

characterization of the physical hardware. Second, still photograph of the 

flow pattern provide a time-averaged view that is desirable for direct 

comparison to the spatial distribution of the time-averaged mean traverse 

measurements. 

2- Visualization is a documentation of the flame dynamics and scale of the 

turbulent mixing. Although not quantitative, successive frames from a high

speed photographic sequence provides a visual indication of the dynamics 

underlying the time-averaged flow fIeld and the scales of turbulent mixing, 

both of which are critical to the interpretation of a modeling data base. 

3- The precessing vortex core was present. 

4- The reason for the low discharge coefficients was due to the combination of 

two flow separations in the vane passages. They occured in the leading 

edge of the outer curvature of the passage and the vertical back plate of the 

swirler. With promed radial flow swirler, the discharged coefficients can be 

increased with minimum losses. This will include a smooth nozzle type 

entrance to the vane passages to minimise the inlet flow separation. 

5- The combustor flow regime can be catergorised into seven different zones 

according to its participation in forming the main flow patterns. 

6- Mixing of the radially injected fuel simulated by the dye injection starts 

immediately after it incountered the forced vortex of the flow inside the 

swirlers inlet core and when the vortex breakdown, it will follow the same 

path-lines as the combustor flow-fIeld pattern which is imposed by the 

radial swirler flow regime. 
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7- Using the computer code "FLUENT" proved to be reasonably adequate to 

simulate the isothermal flow-field of the present geometry. 

8- The structure of the predicted recirculation zone is a function of the 

accuracy of the inlet conditions and the finite difference scheme used. 

However, the widely used K-E and algebriac stress (ASM) models under 

estimated the size of the comer recirculation zone and the impingement 

point on the combustor wall. The direct comparison of the predicted flow 

patterns led to conclude that in the analysed cases the Reynolds stress 

model was not far superior to the widely used K-E model. 
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TABLES 



Table (2.1) 
Radial swirlers design details 

Swirler A At A2 A3 B C D E F G H I J K 

Rl 46.0 46.0 46.0 46.0 78.0 78.0 78.0 78.0 61.2 70.0 84.7 88.7 92.3 * 

R2 54.0 54.0 54.0 54.0 94.3 94.3 94.3 94.3 84.8 90.0 97.0 97.9 98.8 * 

R3 35.0 33.0 33.0 33.0 59.2 59.2 59.2 59.2 35.0 44.0 54.0 61.0 66.0 * 

L 30.5 21.5 15.0 12.2 15.0 11.5 8.0 6.2 8.0 9.0 14.5 19.5 32.0 11.0 

h 8.0 8.0 8.0 8.0 16.3 16.3 16.3 16.3 23.6 20.0 12.3 9.2 6.5 17.0 

n < 8 > 

e < 45.0 > 20.0 30.0 50.0 60.0 70.0 0.0 

S 0.54 0.63 0.77 0.86 1.41 1.84 2.18 2.59 0.41 0.98 2.15 2.91 3.25 0.0 

do < 76 >< 127 > 

d < 40 >< 76 > 

* Straight radial vanes; zero vane angle 



Table (2.1a) 

ompanson 

A 

Al 

A 1.1 .77 

A 1. I 

B 1. 7 1. 



Table (2.2) 
Measured Discharge & Contraction Coefficients 

Radial With 76mrn Combustor With 140mm combustor Free Discharge 
Swirler 
Type (A2/At) DId CDt (A2/At) DId CD2 Cc 

A 0.4280 1.9 0.45 0.1273 3.5 0.42 0.42 

At 0.3017 = 0.53 0.0898 = 0.52 0.51 

A2 0.2105 = 0.62 0.0626 = 0.59 0.60 

A3 0.1710 = 0.68 0.0509 = 0.65 0.66 

B 0.4289 1.0 0.54 0.1276 1.8 0.59 0.58 

C 0.3288 = 0.55 0.0978 = 0.61 0.58 

D 0.2288 = 0.64 0.0681 = 0.64 0.71 

E 0.1773 = 0.71 0.0528 = 0.68 0.77 

F 0.3298 = 0.62 0.0981 = 0.67 0.67 

G 0.3000 = 0.58 0.0893 = 0.65 0.62 

H 0.3180 = 0.56 0.0946 = 0.60 0.61 

I 0.3250 = 0.54 0.0967 = 0.58 0.58 

J 0.3368 = 0.57 0.1002 = 0.63 0.63 

K 0.3280 = 0.96 0.0976 = 0.92 0.87 



Table (2.3) 
Influence of passage depth on impin~ement 

point for large and small radial sWIrIer. 

Lar~e Impingement Small Impingement 
Swir er point(mm) SwirIer point(mm) 

B 45 A 70 

C 36 At 55 

D 32 A2 40 

E 25 A3 35 



Table (2.4) 

Regression Output for U-velocity profile 

Constant 
Std Err of Est. 
R Squared 
No. of Observations 
Degrees of Freedom 

Y coefficients 
Std. Err of Coef. 

3.7 
0.8 

-0.2 
0.0 

16.7 
4.6 
0.8 

24.0 
20.0 

0.0 
0.0 

Regression Output for V-velocity profile 

Constant 
Std Err of Est. 
R Squared 
No. of Observations 
Degrees of Freedom 

Y coefficients 
Std. Err of Coef. 

-1.155 
0.308 

0.074 
0.019 

0.717 
1.855 
0.427 

24.000 
20.000 

-0.001 
0.000 

Regression Output for W-velocity profile 

Constant 
Std Err of Est. 
R Squared 
No. of Observations 
Degrees of Freedom 

Y coefficients 
Std. Err of Coef. 

22.9 
1.5 

-1.3 
0.1 

-1.3 
8.8 
0.9 

24.0 
20.0 

0.0 
0.0 

Velocity (U, V, W) = a + by + c:y2 ...... (19) 
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Fig.2.2 Schematic of the regions considered to 
calculate the Swirl number. 
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2. 88E+05 
9.S0E+04 

Lx 

----- -~~ 

-- .---_ .. _ --

z ____ _ 

RADIAL SWIRLER VANE-FLOW (K-E) MODEL. ORIENT = Z FLUENT V2.9 

CONTOURS OF EDDY DISSIPATION (M .SQ/SEC/SEC/SEC) PLANE = 14(~ 
LMAX . = 2.87816E+06 LMIN . = O. OOOOOE-O-l- 3-D DOMAIN CREIIRE It{; ~J 

Fig . 2.31 



--KEY 
1.88E-02 
1.S8E-02 
1.49E-02 
1.30E-02 
1. 10E-02 
9.07E-03 
7.13E-03 
5.18E-03 
3.24E-03 
1.30E-03 
6. 46E-04 
2.59E-03 
~ . 53E-03 

6.47E-03 
8.42E-03 

COMBUSTOR FLOW=FIELD(K-E) MODEL =-::--:--_-j ORPL!~T== Z1 FLUENT V2.8 
CONTOURS OF STREAM FUNCTI~(M . SQ/SEC . ) ru~~(~ 

MAX . = 1.97534E-02 MIN . = -9 .38841E-03 2-D ~IN ~ I~ ~) 

Fi g . 2 . 32 



KEY 
1.1lE-t2 
1.47E-02 
1.11E-02 
7.46E-03 
3.8SE-03 
2.31E-O'" 
3. 38E-03 
7.00E-03 

-I 

~~CO~~~~~T~OR~FL~OW~-~FI~EW~(K=-E~) ~M~O~==~~ ____ ~~~uI~8fi~~=-=~Zl FLUENT ~ 
ca..~ RASTER PlOT CF STREAM FUNCTION (M.SQ/SEC.) rI .. l\Ill; {~ 

~MA-X~. ~=~2~.:.;.:O 1=71-:-'18===E~-O;:;:2:--=-:-':';:=-::;-M7;-I ;-7'N .~= ':;:';"-~8 .-::87:05=-==O==:9E~-~03:""-~2-=.!.!D:'=:00MA=--I-N!......J aBRE IN: ~ J 



KEY - ... 

!.45E-02 
1.33H2 
1.22H2 
1. 11E- 02 
9. 90E-03 
8.76E-03 
7.61E- 03 

I~~ 
6. 46E-03 
5. 32E-03 -
4.17E-03 -
3. 02E-03 

I .BBH3 
7.2BE-04 
.4 . 19E-04 
I.S7E- 03 

~ 

y 

Lx 
z 
COMBUSTOR FLOW-FiELOIK-EJ MODEL ~ORiENT " Z ~ ~ .• 

CONTOURS OF STREAMFUNCTION (M .SQ/ SE(:C=:- PCA~E ~._j ENT® 
MAX . :: 1. 50653E- 02 TMI N. = -2 . 13939E-93 2-D DOMAIN CREARE INC 

Fig . 2.32a 



I: 
0' 
II 

I' 
I' 
!I 
I' 

. f f /I ~~'I'. 
II I I I llllllilllllillll!lll!!l/ 

VELOCITY VECTORS (METRE=-=S"""'/S=E=C-) -----1 L1\m: - .c~ 
COMBUSTOR FLOW-FIELDWE) MODEL -- -pO~!-lENTtt"-_; 19FL-UENT V2.' 

MAX . = 9.8881 OE+ 01 2-D oOMiJiL a:/EARE It-t '?) J 

Fig.2.33 



KEY 

... ... ... ... ... ... 

... ... .. .. 

~C~OM~BU~S~TO:::=R:-:-:-F~LO~W~-F~I~EL=D.:.:..:( Kc.....::-E=+;) 7.:M~OD~E~L = -;--_ _ --l-::O:..:.:RI=.::EN~T -= -=-Z -j F L UEN T YZ.& 

VELOCITY VECTORS (METRES/ SEC) PLANE = 1 (~ 
~M-AX~.~=~2.~8=58~8~OE~+~O~1--~I==~==~------~2=-D~D~OM-A-IN~~I~ ~) 

Fig.2.33a 



.---__ .=-= ___ =_=--==.==_. __ . __ -===--==:.:..-=====-=-_=_ =._==--o 
KEY 

Lx z __________ -=_---== == 
COMBUSTOR FLOW-FIELO(K-E) MODEL - .Op~!ENNE-f== Z1- FLUE-N-T V2:i 

PROFILES OFlFVELOCITY (METRES/SEC) W\ ( (?:., 
MAX. = 4.34000E+Ol lMIN-. ;:-:-i~9E+Of 2=DDOHAIN ~ It-t ~J 

Fig.2.34 



KEY 

~CO~M~BU:::::S..!..!TO~R~F;:=:LO:..:,:Wo-.=-F--71 E==L~D (;,:.:,K"..;-E,=":) :77M=OD=EL~=~--""--_-l-.:::0pRL=!~~~N~T=_= -=-Z 1-l FLU E N T Y2.' 
PROFILES OF U-VELOCI TY (METRES/SEC) ru~c (~ 

~MA-X-. ~=~1=. 6~8~32~8=E+~O~1==r7.M'I~N~. ~==-~6~. 6~46~O~3E~+~OO~~2-=D~D-OM-AI~N-l~I~ ~J 

Fig.2 . 34a 



1 1 

II I I il / / II :; II II II 

COMBUSTOR FLOr/-FIELO(K-E) MODEL ORIENT = Z FLUENT Y2.' 
~~~~P~R~OF~IL~E~S~OF~~W-:V~EL~OC~I~TY~:~(M~E~TR~ES~/~SE~C~):=~~PL~m~E~==~l (~ 

MAX. = 1. 28000E+02 I MIN. = O.OOOOOE-Ol 2-D DOMAIN CI<EARE I~ '?) 

Fig.2.35 



~~KE=Y~======'-====~='-==~~==" ========'=================~ 

11 

v V / /1/ 

COMBUSTOR FLOW-FIELD(K-El MODEL ORIENT = Z FLUENT V2.' 
~_!...!.PR~O:....,:F I~L.:.:ES~OF:~W --7-VE=L=OCrI~TY~.....:.(~ME=-=-T=RE;:.;:S7.!/S~EC~)~--+~PL:::.::AN~E_=_--...:l~ (~ 

MAX . = 2.41085E+Oll MIN . = O. OOOOOE-Ol 2-D DOMAIN CREARE I~ '?») 

Fig.2.35a 



KEY 

Lx 
z ---------===== 
COMBUSTOR FLOW~m[[j t"K -ElMOOEL ----- iiiiEirr .-t/F---L------ V2.8 

.~P:..:.=.ROF1LES OF V-VELOCIIL~~TRE~/SECf=-___ ~LANE-~~~ UENT(~ 
MAX . = 4.85174E+Ol I MIN . = -1 . 08729E+Ol 2-D DOMAIN ~~---=~~J 

Fig.2_36 



KEY 

~C~OM~BU~S~TO~R-:-!:F~LO~W~-F--71 E~L;T.:D ~(K;;-;;-E::;)~ ;:;-;M=OD=EL7:-==:-:-::-::=-:-_--I--.:::0R~IE=:..:NT~= ~Z F L UEN T V2.8 

PROFILES OF V-VELOCITY (METRES/SEC) PLANE = 1 (~ 
~MA~X~. ~=~1~. 2=74~3=7E~+~Ol~~I~M~IN~.-=~-5~. ~Ol~88~1=E+~O~0-4~2-~D~DO-M-AI~N ~l~ ~J 

Fi g.2.36a 



KEY 
' . 13801 
3.70E+01 
3.27E+01 
2.84E+01 
2. (1E+01 
1.99801 
1.5SE+01 
1.13801 
7.01E+00 
2.13800 
1 . 55E~00 

5.83800 
1. 01E+01 
1.«E+01 
1.81801 

COMBUSTOR FLOW-FIECiJTK=EfMODEL -OpRL-!~== zi FLUENT V2.' 
CONTOURS OF U-VELOCITY """'(M=E=TR=ES~/=SE:"-=C-'-) ----+-".;..c::n~I'It:---=----l {~ 

MAX . = 4.34000E+Ol MIN . = -2.0B119E+Ol - 2-D DOMAIN !IDRE It{; ~J 

Fig.2 . 37 



[K~(-· --==----.= =- ._-.:.= __ .:=:::-===-_-..:c-:=;==-_ -= =-=-:-;::-:;:-::.-::..-;:.-"=:.- - -:.-=-"--=.:=-:.:,,~-: --::: 7:::-::--::-._. __ _ 

1.6IE~OI 

1.45E+Ol 
1.29E+Ol 
1.14E~Ol 

9.79E+OO 
8.22E+OO 
6.66E+OO 
5. 09E+OO 
3.53E+OO 
1.96E+OO 
3.98E-Ol 
1.17E+OO 
2.73E+OO 
4.30E+OO 
5.86E+OO 

Lx 
z ___ ===:-::::" - _ ___ .=_.=. =-- - -_=-:--=:.._-= __ '"= ==--".-=--=-_==~ 

COMBUSTOR FLOW-FIELD(K-EJ MODEL 0pRL'AIENNET= = Zl FLUENT 1'2.9 
CONTOURS OF-:7U-7.VE~L~OC~I~TY:-;=::':;:(';-;-;t~E=T=RE=S--:-;/S=EC-=-:)---+I ~:::":":""'=---=--l (~ 

MAX . = 1.68328E+01 MIN . = -6 .64603E+00 To-oOMAIN -- CREARE INC "?)) 

Fig .2.37a 



KEY 
1.22802 
1.13E+02 
1.05802 
9.BSE+Ol 
8.82E+Ol 
7.98E+Ol 
7.14E+Ol 
6.30E+Ol 
5.46E+O l 
4.S2E+Ol 
3.78E+Ol 

I~ ~ 2.94E+Ol 
2.10E+Ol 
1.26E+Ol 
4.20E+00 '\~ 

Y 

Lx 
z 
COMBUSTOR FLOW-FIELD( K-E) MODEL ORIENT = Z FLUENT \"2.8 CONTOURS OF W-VELOCITY (METRES/SEC) PLANE = 1 ~Itl: ~ MAX . = 1.26000H02 I MIN. = O. OOOOOE-Ol 2-D DOMAIN 

Fig . 2 . 38 



KEY ·-lr=-========================~~========:========~ 
2.33E+01 
2.17E+01 
2.01E+01 
1.85E+01 
!.69E+01 
1.53E+01 
1.37E+01 
1.21E+01 
1.04E+01 
8.84E+00 
7.23800 
5.S3E+00 
4.02800 
2.41E+00 
8.04E-01 

Lx 

= 

z 
COMBUSTOR FLOW-FIELD(K-El MODEL ORIENT = Z -FL-U-E-NT 1'2.8 

CONTOURS OF W-VELOCm==;(~ME=T=RE=S~/S=E=-C)"---l"":'P:":':LA=NE:":"'=--=---j1 (~ 
MAX. = 2.41085E+Ol MIN. = O.OOOOOE-Ol 2-D DOMAIN CREAR!: ItI: '?)J 

Fig.2.38a 



KEY 
1.231:+03 
1. 13803 
1.03803 
9.3SE+02 
8.~+02 

7.3SE+02 
6.37802 
5.3BE+02 
4.38E+02 
3.39802 
2.39802 
1.40802 : 4.05801 
5.88E+01 
1.58802 

-

y 

Lx 
z 
COMBUSTOR FLOW-FIELO(K-E) MODEL ORIENT = Z FLUENT \7.' CONTOURS OF PRESSURE (PASCALS) PLANE = 1 

CREARE It¥; ~ MAX . = 1.28297E+03 I MIN . = -2 .07937E+02 2-D DOMAIN 

Fig.2.39 



KEY 
5.01802 
4.87802 
4.32802 
3.97802 
3.63802 
3.2eE+02 
2.94802 
2.59E+02 
2.25802 
1.90802 
1.56E+02 
1.21802 

8.64801 
5. 18E+01 
1.13801 

I~----~ 

~C~OM~BU~S~TO:;;.:R~F~LO~W=-=-F~IE~L:=::D(=.K~-E:::-) -7M=-:OD~EL~;-;~ ___ ~pORL.!!;!~:::.!rr-NT.!.-=_= =-Zl~FLUENT Y2.' 
CONTOURS OF PRESSURE (PASCALS) ro,c (~ 

MAX . = 5. 1B424E+02 MIN . = O. OOOOOE-Ol 2-D DOMAIN ~ l~ ~J 

Fi g.2.39a 



KEY 
3.13802 
2.92E+02 
2.70802 
2.49802 
2.27802 
2.05802 
1.84802 
1.62E+02 
1.41802 
1.19802 

9.73801 

7.57801 
5.40801 
3.24801 
1. 08E+01 

~C~OM~BU~S~TO~R 7-F=:::LO::-::-W -7-:F~I E~LD~( =-=K -=E ):-:-M=:O::::DE=L--:-::-~=-::-7::-==-:---I~ORPL::':'ANEI:::.;EN:..:....T=_= .!:-.jZl FLUE N T V2.8 
CONTOURS OF K.E. OF TURBUlENCE (M .SQ/SEC/SEC) .(~ 

kM~AX-:-'.~=~3~.~2 4~2~76;;:;:EC:-+O;;-;2;-:':~M:;;:I;';:N .::::....-.: -:':';;:'0 .~07:0 O~O;;OE;;=-;';O 1:--+72-=:;D~D=OM:-:AI""';N ~ ~ It(; ~) 

Fig.2.40 



KEY 
7.39E+O I 
6.88E+OI 
6.37E+OI 
5. 8SE+O I 
5.35E+OI 
4. B4E+O I 
4. 33E+O I 
3. B2E+O I 
3.31E+O I 
2. BOE+O I 
2. 29E+O! 
1.7BE+O I 
1. 27E+0! 
7.64E+OO 
2. 55E+OO 

COMBUSTOR FLOW-FiliO(K-EljiODEL _ ________ -~OR:=I :::..;EN~T _= -=-Z ---lFLUENT V2.8 

CONTOURS OF K.E. OF TURBULENCE (M .SQ/ SEC/SEC) PLANE = 1 (~ 
MAX . = 7.64276E+Ol MIN . = O. OOOOOE-Ol 2-D DOMAIN CREARE I~ ~) 

Fig.2.40a 



KEY .-
2.40Et08 
2.23808 
2. 07E+08 
1.90Et08 
1.74Et08 
1.57E+08 
1.41Et08 
1.24Et08 
1.07E+08 
9.09E+05 
7.44Et05 
5.79E+05 
4.13805 
2.4BE+05 
8.27804 

COMBUSTOR FLOW-FIRD(K-El MODEL ORIENT " Z FLUENT Y2.8 

CONTOURS OF EDDY DISSIPATION (M .SQ/SEC/SEC/SECl PLANE~~ (~ 
~X.- = 2. 47977E+06 I MIN . ;--'-:O-"':. =OO~O::'O~O'-C.E=-O;;' ;"'1·-~2-::;';;D=DO-MA·-I-N=-lCREARE l~ '?)J 

Fig.2.41 



KEY 
S.34E+04 
5.90E+04 
5.46E+04 
5.03E+04 
4.59E+04 
4.1 5E+04 
3.71E+04 
3. 28E+04 
2.84E+04 
2. 40E+04 
1.97E+04 
1. 53E+04 
1. 09E+04 
S.55E+03 
2. 18E+03 

COMBUSTOR FLOW-FIELD(K-El MODEL ____ --t-=0Ro:..::IENT = Z FLUENT \'2.9 

CONTOURS OF EDDY DISSIPATION (M .SQ/SEC/SEC/SEC) PLANE = 1 .(~ 
MAX . = 6.55482E+04 MIN . = O. OOOOOE-Ol 2-D DOMAIN CREARE._I_I-l:_'?)~:...J) 

Fig . 2.41a 



KEY 
1.8.(E-02 
1.64E-02 
1. 44E-02 
1.23E-02 
1. 031:-02 
8.31E-03 
6.29E-03 
4. 2BE-03 
2.2SE-03 
2. 48E-04 
1.77E-03 
3.78E-03 
5.80E-03 
7.81E-03 
9.83E-03 

~C=OM=BU;..::S~TO~R~F:7LO=-=W-=--F-=,I E=:L:::-D (:7:A-=,;:SM:7-::J 7::M==.:OD:7.EL'7---c:-:-:-:::~~,..--~OR=I E=NT~= =---lZ FLU E N T V2.t 
CONTOURS OF STREAM FUNCTION (M .SG/ SEC . ) PLANE = 1 (~ 

I----,-,M~AX~. ==""-'-'-'1~.'='93==9~49=E;=-:-O~2:=:..::..:.-r-=:-M-;;-I:-TN .~= --7'-1."'-:-O~83=7~6E:=--7:0 2:---+'::-2:-===0 =OO--M-" I N CI1EAIi'E I~ "?) } 

Fig.2.42 



KEY 

, 'i -+--+--+-1>-. ................ ~ ............................... ... 

, '1.-+ --+ -... -. ...... -. ... ... ... ... ... ... ... ... ... ... ... ... ... ... \ Z ~ ~ ~ , ...... ~ ~ ... ... ... ... ... ... ... ... ... ... ... ... ... 

1 r ! : ;' : ~ : : : : : : : : : : : : : : : 
~I ..... (" "1 ....... ~ ..... . . 
~~ : .... , , . , .... , ..... ... . 
I1r "., .................... . 
'" ~ • r , y ~ ~ ~ ~ ~ ~ ..... - .. - .... -

~ . - - - - - - - - - - - - - - - - - - - -
'~: : : : : : : : : : : : : : : : : : : : : 

~C~OM.::;8U:::.:;S~TO:::::R,.,..;-F~LO~~W~-F==I E~L=-D (~AS=-M7.) =M;=:OD=.EL~~ ____ ~ORp,= 1IENE~NT",-___ = =---4Z
1 

FLU ENT V2.t 

VELOCITY VECTORS (METRES/SEC) Ln .(~ 
MAX. = 8. 7548UE+O 1 I 2-D DOMAIN CREAR!: It¥; ~) 

Fig .2. 43 



KEY 

II V j l) 
f ( ( I 

COMBUSTOR FLOW-F I7=EL~D~(AS::=:M,=)= ::-:-,MO=DE=L:-:=:::-=-c==::-~_+-=ORIENT = Z FLUENT V2.8 

PROF ILES OF U-VEl Q¥lIL (METRES/ SEC) PLANE = 1 .c~ 
MAX . = 4.45000E+Ol I MIN . = -2 .22607E+Ol 2-D OOMAiN- CI(£ARE II'l: ~J 

Fig . 2.44 



KEY 

II II 

COMBUSTOR FLOW-FIELD(ASM) MODEL ORIENT = Z FLUENT V2.8 

PROFILES OF W-VELOCITY (METRES/SEC) PLANE = I (2-.. 
MAX . = 1.40000E+02 I MIN . = -1.BS4=S2=E.!...+-O-1-j-.:.2=-O::":::OO=--MAIN CREARE INC ~. 

Fig.2.4S 



COMBUSTOR FLO\4-FIELO(ASM) MODEL ORIENT = Z FLUENT V2.8 

PROFILES OF V-VELOCITY (METRES/SEC) PLANE = . ..L (~ 
MAX . = 5. 03094E+01 MIN . = -9 . 2208"""3E~+-O-O--+2'-=-D:"::"':=-DOMMN CREARE l~ "?Do 

Fig . 2.46 



KEY 
4.23E+O! 
3.78E+O! 
3.34E+O! 
2.89E+Ol 
2.45E+Ol 
2.00E+O! 
! .56E+O! 
1. 11E+Ol 
6.S7E+OO 
2.22E+OO 
2.23E+OO 
6.S8E+OO 
! . !!E+Ol 
1.56E+Ol 
2.00E+Ol 

Lx z 
COMBUSTOR FLOW-FIELO(ASM) MODEL ORIENT = Z FLUENT vz.e 

~~~~C~O~N~T..!!..O~U=R~S~O~~F~U:-77.V,-,=E~L~OTC~I-:;;'T"Y:-,:~~( M~E:-:;:;T:,..:.::R~E:-;:;-S::~/:S=E~C~~)-=--=---=--:-:o:.P-=L::':A.::.::N=::-E":.-~_=-=--_~l .c ~ 
MAX . = 4.45000E+01 MIN. = -2 .22607E+Ol 2-D DOMAIN CIO£I.RE INC ~) 

Fig.2 . 47 



KEY 
1.35802 
1.24E+02 
1.14Et02 
1.03802 
9.24EtOI 
8.19E+Ol 
7.13E+01 
6.07E+Ol 
5. 02EtOI 
3.96E+Ol 
2.90EtOI 
1.84E+Ol 
7. 88EtOO 
2. 69E+OO 
1.33801 

~C~OM~BU~S~TO==R-:7.F~LO~W=-=-F-71 E;=::;L7.=:D (~AS~M~) ~M=OD=EL~=~~_~OR.:.!..:IE:::..:.t-rr.!.-.-= ~Z FLU ENT \'2.8 

~~~CO~N~TO~U~RS~~O~F~W~-~VE=L~OC=I~TY~~(M~E7TR~E=S/~S~EC~)~_+~PL~A~~=~1 {~ 
MAX. = 1.40000E+02 MIN . = -1.85452E+Ol 2-D DOMAIN CREARE I~ ~) 

Fig.2 . 48 



KEY 
8.78E+02 
7.77802 
6.75E+02 
5.73802 
4.71802 
3.70802 
2. 68E+02 
1.8SE+02 
6. 42801 
3.75E+O l 
1.39E+02 
2.41E+02 
3.43E+02 
4.45E+02 
5. 4SE+02 

_._-------------=-=== 

COMBUSTOR FLOW-FIELD(ASH) HODEL 
CONTOURS OF PRESSURE (PASCALS) 

MAX . = 9. 29148E+02 MIN . = -5.9715SE+02 

Fig.2.49 

ORIENT " Z FLUENT V2.8 
PLANE = 1 (~ 
2-D DOMAIN CREAR!: It{: ~. 



KEY 

COMBUSTOR FLOW -F I ELD ( ASM j- MODEL OR I ENT = Z FLU E NT V2.S 
PROFILES OF SH=-EA::::R:....!:S=T=RE=SS:::-:-::::UV7==-:(·:-:-M--:::. S:7"Q/=S=ECC-:-/ S=EC:-C )---J-...::P~LA:':::NE~= -=---11 (~ 

MAX . = 1.37 495E+02 MIN . = -1. 04403E+02 2-D DOMAIN CREARE I~ ~) 

Fig . 2 . 50 



Krr-Ir=============·==========~=============~ 

I---':!:C~OM~BU~S~TO~R-==F;=.:.LO=-=W-=:-F::7.IE=-:=L~D(7.::AS==M::~) ~M77:-0D7=!EL~=-:-:=-::--,=,.---~OR~I:E::!.!NT.!.-" =---IZ FLUENT Y2.8 
PROF I LES OF SHEAR STRESS UW (M. SO/SEC/ SEC) PLANE = 1 {~ 

~M~AX~. ~=~1~.7.0B~4~26~E~+O~2~;~M~IN~.~=~-9~.~36~B~65=E~+~Ol--~2-~D~OO~M~AI~N~~I~ ~J 

Fi g. 2 .51 



KEY 

, , , , , , 

D , , , , , , 
, , 

! 
, , , , 

i 
I, 

i 
I 

) 

y 

Lx 
z 
COMBUSTOR FLOW-FIELD(ASM) MODEL ORIENT = Z FLUENT yz.e PROFILES OF SHEAR STRESS VW (M.SQ/SEC/SEC) PLANE :: 1 

CREARE It{: ~ MAX . = 1. 08526E+02 I MIN . = -5.01222E+Ol 2-D DOMAIN 

Fig.2 . 52 



KEY 
3.13E+02 
2.92802 
2.70E+02 
2. 49E+02 
2.27E+02 
2.051:+02 
1.84E+02 
1.621:+02 
1.40Et02 
1.19E+02 
9.73E+Ol 
7.57E+Ol 
5.40E+Ol 
3.24801 
1.08801 

COMBUSTOR FLOY/-FIELD(ASM) MODEL ORIENT = Z FLUENT V2.8 
~~~CO~N~TO~~~S~OF~K.~E~.7.0F~TU~R=~~E=N=CE~~(M~.7SQ~/=sE~C~/S~EC~)--~P~LA~N~E~=~~1 .(~ 
~M~AX~.~;~3~.~27.42~2~8E~+~02~~~M~lN~. ~;~O~. ~oo~O·~OO~E~-O~1--+72-7D~D=OM~AI'~N~~)~ ~) 

Fig.2.53 



r-KEy 
3.SIE+06 
3.3SEt06 
3.IIE+06 
2. 88E+06 
2.S2Et06 
2.37Et06 
2.12E+06 
1.87E+06 

I; 1.62E+06 
1.37Et06 
1.12806 
8.72E+05 
S.23E+05 W 3.7.tE+05 
1.25E+OS I 

I 

~ 

I\~ 

y 

Lx 
z 
COMBUSTOR FLOW-FIELD(ASM) MODEL ORIENT = Z FLUENT V2.9 

CONTOURS OF EDDY DISSIPATION (M.SQ/SEC/SEC/SECI PLANE = 1 
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Plate 2 . 2 Separation in the curved-passage of radial swirler (8) . 
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Plate 2.3 Assembled perspex water-model rig used for visualization studies. 

a-Water inlet 

b-Dye inlet 

c-Straightener 

d-Approach pipe 

e-Injector 

f-140mm combust~r 

g-Outlet 

h-Air-bubbles 

releif valve 

i-Illumination 

light 

j-Holder 

k-Opal-light 



BWIRLER (B' 

BWIRLER (Al 

Plate 2. 4 Comparison between flow field issued by radial swirler (8) and (A) 
in 140mm combustor, scale= 1.56/1 
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Plate 2. 7 Longitudinal view demonstrating the corner- recirculation zone and the jet boundaries 
imposed by radial swirler (B) flow regime in 140mm combustor, scal= 0.77/ 1 



Plate 2. 8 Radial central dye-injection development in flow regime issued by radial swirler (8) 
in 140mm combustor, scale= 2 .8/1 
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CHAPTER THREE 

INTERNAL FLAME STRUCTURE 

3.1 INTRODUCTION 

The objective of this work is to obtain detailed internal measurements on 

relatively simple but geometrically realistic combustion systems where the flow 

conditions can be more easily controlled and some of the uncertainties thereby 

reduced. Detailed internal measurements within actual gas turbine combustors are 

very difficult to obtain because of limited access; and only a few publications 

have been mentioned in the open literature. Tuttle et al(1,2) reported 

measurements of main species and 'temperature in Allison J-33 

combustor.Emissions data for the internal flame in the axial direction and exhaust 

plane for simulated gas turbine primary zone at typical combustor operating 

conditions are reported. Their results indicated that with a well atomised fuel 

spray the large scale turbulent mixing controls the flame stoichiometry and hence 

the emissions characteristics. Vranos and Taback(3) also measured species 

concentrations and temperature. However, actual combustion chambers are 

usually not ideal for testing and development of model (e.g. turbulence, 

combustion model etc.). Uncertainties associated with the inlet air portions 

entering through various dilution holes and cooling slots make unambiguous 

interpretation almost impossible. 

Jones et al(4) reported detailed composition measurements in a propane 

fuelled model combustor operating at 5 bars. However, the flow pattern was 

thought to be closely representative of practical combustion chambers. Noyce et 

al(5) worked on more realistic configuration with a variable primary port area. 

They used commercial -grade propane as fuel and the data included composition 

and temperature measurements for two different fuel injectors at atmospheric 

pressure. Toral and Whitelaw(6) reported a studies in a sector of an annular 

combustion chamber comprising two fuel holes. The combustor fuelled with 

natural gas and measurements of mean velocity, temperature and species 
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concentration were obtained at atmospheric pressure. The data was completed 

with isothermal velocity profiles and a passive scalar map for which helium was 

injected into the air flow through the fuel injectors. 

The influence of dilution air onthe primary zone combustion was studied by 

Nakamura et a1(7). They operated propane (97% purity) fuelled can type 

combustion chamber with swirl introduced somewhat upstream and reponed 

concentration, temperature and residence time measurements in the hot flow as 

well as the penetration of the dilution jets measured with an argon trace method in 

the cold state. These experiments were restricted to atmospheric pressure. Jones 

and Tora1(8) have obtained concentration and temperature measurements in a can 

type propane fuelled combustion chamber. Their investigations were made at 

atmospheric pressure for two different inlet air temperature (313 K and 523 K). 

Their results show that chemical equilibrium conditions prevail only for locally 

fuel-lean conditions and there is strong evidence that both fuel breakdown and CO 

to C02 oxidation rate, are partly controlled by finite rate chemical kinetic 

mechanisms. Velocity and concentration profiles in a kerosene fuelled flow were 

reported by EI Banhawy and Whitelaw(9). Their study included the influence of 

the mean droplet diameter on the combustion process for three different swirler 

vane angles. 

Hori(lO) reported species concentration measurements mainly NO and N02, 

under a fuel-lean overall equivalence ratio of 0.37, using propane as fuel in 

laboratory swirl combustor. He concluded that N02 can be formed in the region of 

the combustor were the strong mixing occurs between the hot combustion gas and 

the cold air stream. 

Heiter and Whitelaw(11) reported isothermal and combustion flow 

characteristics of a model can-type gas turbine combustor; their conclusion was 

that in primary zone, combustion controlled more by physical than chemical 

kinetic processes and the formation of pollutants was well described by a partial 

equilibrium model. Recently, Bicen et al(12) reponed temperatures and species 
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concentration measurements in a model combustor operating at an inlet 

temperature of 515 K and atmospheric pressure. The combustor was fuelled with 

natural gas with purity of 94% CH4, which was delivered by T-vaporisor injector. 

Their results showed that the combustion efficiency was raised from 69% to 

94.2% with an air/fuel ratio of 29; when raising the inlet temperature by 200 K. 

Detailed measurements were reported by Takagi et 81(13) of gas species 

concentration mainly NOX, CO, and hydrocarbons together with the temperature 

in a flame formed around a fuel propane jet surrounded by a swirling air flow. 

They noted that mixing and combustion of the fuel layer flowing around the 

recirculation zone in the swirling flame structure controlled the formation and 

emission of NOX, CO and UHC. Theoretical and experimental investigations 

into the aspects of axisymmetric confmed swirling flows were reported by 

Wilhelmi(33). Experimental data for flows representing the primary zone of gas 

turbine combustion chambers were obtained, the data included LDA 

measurements of the mean velocities in three directions. For the reacting flow, 

probe measurements of the major species and temperature were also reported. 

Various techniques are available to study the behaviour of turbulent flames in 

combustors. These may be non-intrusive techniques such as the laser doppler 

anemometer techniques for velocity measurements or intrusive methods such as 

thermocouples for temperature measurements, five hole probe for velocity and 

sampling probes for species concentration measurements. In the present work the 

latter technique has been adopted for emissions measurements. This was carried 

out both at the exhaust and internal sections of the combustor by means of a multi 

hole and single hole water cooled sampling probe respectively. Fig.3.t shows 

schematic diagram of the sampling probes which have been used in the present 

work. 

3.2 EXPERIMENTAL EQUIPMENT 

A (6.4mm) thick stainless steel cylindrical combustor of 140mm internal 

diameter and 330mm long, built for pollution measurements on various stabilisers 
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such as swirlers, jetmix, gridcones, etc. The 330mm combustor length was a 

typical minimum size for aero gas turbines and was much shorter than most 

industrial gas turbines. Consequently, combustor residence times were 

representative of the minimum practical value. 

The air was heated to the required inlet combustor temperature by a 108 KW 

electric heater. The gases were exhausted into a 140mm diameter water cooled 

tube and then to the exhaust stack. A schematic layout of the test rig can be seen 

in Fig.3.2 and plate 3.1. The flame tube and swirlers were only cooled by natural 

convection. Ignition was achieved by means of a 12 Joule surface discharge 

igniter mounted 25mm downstream of the stabiliser. This was mounted flush with 

the combustor wall so that no flow interference could be caused by the igniter. 

Air was supplied to the combustors by an air blower via a venture meter with a 

throat diameter of 34.9mm designed to BSI042(14). The combustor was 

receiving air from an approach pipe which is connected to the air supply pipe 

downstream of an electric heaters. 

The inlet temperature to the combustor was measured l00mm upstream of 

the swirler using a chrome-alumel type K thermocouple and the inlet pressure was 

monitored using a ring of four static pressure tappings 150mm upstream of the 

flame stabilister linked to an electronic micromonometer. To obtain a mean gas 

sample, an 'X' configuration stainless steel water cooled probe was used at the 

exhaust with twenty holes at centres of equal area. A single point water cooled 

stainless steel tube was traversed across the horizontal combustor plane in order to 

obtain local gas samples radially at different axial positions. 

The gas samples were transported to the gas analysis equipment along a 7.6m 

long heated teflon sample line. Sample gases were analysed for oxygen (02), 

hydrogen (H2) and carbon monoxide and dioxide (CO, C02), oxides of nitrogen 

(NO, NOx) and unbumt hydrocarbon (UHC) using on line rapid response 

analysers. Plate 3.2 show view and schematic illustration of the gas analysis 

technique used in the present work. The mean gas sample probe was designed to 
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be similar to that used by Lister and Wed1ock(15} and the gas analysis technique 

followed the EPA standards(16,17}. 

3.3 GAS ANALYSIS SYSTEM 

3.3.1 MEAN EXIT SAMPLING 

An 'X' configuration gas sampling probe was used for mean exit sampling. It 

consisted of two stainless steel tubes welded eccentrically with water circulating 

in between the tubes to cool the gases and the probes. Sample gases were 

withdrawn through 20 holes of Imm diameter, drilled at centres of equal areas in 

the inner tube. The sampling probe was designed to be similar to the oil cooled 

probe used by Lister(15). The gas analysis probe is shown in Fig.3.1.A 

In order to check the accuracy of the mean gas sampling processes, the 

derived gas analysis equivalence ratios were compared with the rig metered 

equivalence ratios. This was carried out for all the tests performed. Fig.3.3-3.4 

shows sample of results for each method of fuel injection. This indicates that a 

reasonable mean gas sample was obtained and the deviations were less than those 

reported in other similar studies (18,19). may be caused by a number of effects. 

The following were thought to be the main: 

Calibration of gas analysis: This should be random as different calibration gas 

bottles were used over the period in which the tests were performed. Thus 

they may contribute to the data scatter, but not to the consistency of richer 

mixtures in gas analysis. Later on in the tests, High purity calibration 

bottles of high accuracy were purchased and used. This could significantly 

reduce the errors. 

Air or Fuel Metering Errors: Any error in air or fuel metering could result in some 

consistent differences but every effort had been made to minimize the 

accurance of this type of error. 

Mean Exhaust Gas Sampling Error: This is probably the main cause in the 
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sampling errors. Large radial composition gradients are present in swirl 

flows which make it difficult to obtain a reliable mean sample using the 

multi hole probe. 

3.3.2 INTERNAL TRA VERSE SAMPliNG 

The radial traverse sampling probe was a single-point, water-cooled stainless 

steel tube, traversed across the horizontal combustor plane, was used to obtain 

internal gas samples. A remotely operated motorized traverse system was used to 

traverse the probe through the combustor side ports and the system was accurate 

to better than + Imm. The probe shown in Fig.3.1B had an external diameter was 

1Omm, and the Imm diameter gas sample hole was located on the side of the tube, 

Imm from the end, and was positioned so as to face the swirler. The axial shown 

in Fig.3.1 C traverse sampling probe was used to traverse along the combustor 

centre line. The probe outer diameter was 17mm, and the Imm diameter sampling 

hole was located at front tip of the probe. The total length of the probe which can 

be inserted inside the combustor is 380mm. The sampling probe was positioned 

so as to face the incoming flow. It is acknowledged that the use of a stainless 

steel probe in the present work is likely to give to some undesirable catalysis 

effects (mainly NO to N02 conversion) as reported by Allen(24) and Kyukuo et 

al(25). These problems could have been overcome by the use of a quartz micro 

probe. However, this was not possible due the high temperatures promoted by the 

combustion processes and the difficulty of getting over the problem of avoiding 

reheating of the sample. 

The internal traverse sampling probe is shown in Fig.3.1.B and 3.1.C and 

plate 3.1. The flow blockage caused by the probe increased as it was traversed 

across the combustion plane. In the initial wall region, where the probe was only 

inserted a short distance, the flow disturbances were less than at the end of the 

traverse at combustor centre-line where the blockage was about 10%. Visual 

observation of the flame showed no major flame disturbances due to the fully 

inserted probe, as Oven et al (20) had also noted in a similar situation. However, 



-79-

there are a number of factors can influence the accuracy of a local gas sampling 

probe, some of which has been pointed out in various studies concerning the 

probe effects (21-23). 

Clark and Mellor (21) investigated the effects of probes in gas turbine 

combustor emission measurements. Four types of stainless steel probes were 

designed to assess the effects of tip shape, tip to body proximity, and probe entry 

point into the flow field on measured pollutant concentrations. The probe entry 

point and tip to body proximity were shown to imperceptibly affect the pollutant 

concentrations, but the probe tip geometry was shown to have a significant impact 

on the measured pollutant levels. The tapered-tip probe was shown to yield 

depressed CO and UHC and elevated NO concentrations compared with blunt tip 

probes. In the present work in order to check the accuracy of the traverse gas 

sampling processes, the equivalence ratio based on C02 measurements were 

compared with the equivalence ratio based on 02 measurements as can be 

illustrated by Fig.3.5 - Fig.3.1O. 

The radial gas sampling traverses were carried out at six axial position of 10, 

30, 50, 110, 200, and 300mm, although in general the radial profiles are 

approximately symmetrical about the centre line, there are deviations from 

symmetry as reported by Andrews et al(26) their results showed that these 

deviations may be associated with differences in the fuel supply to the different 

type of injectors which they have been using or due to the improper alignment. 

Oven et al(20) in a similar situation, concluded that sample probe effects are most 

significant in the swirl recirculation downstream of the swirler. However, beyond 

0.3 pipe diameter the probe disturbances are small, except in regions of rapid 

property variations. 

At the present, there are no non-intrusive devices that can make these 

measurements. The laser CARS system has yet to be demonstrated for low level 

pollution gas concentration. 
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3.5 CENTRAL FUEL INJECTION TRA VERSE 

3.5.1 Radial gas composition profiles 

3.5J.1 Comparison o/internalflame structure o/propane and natural gas 

Two fuel were investigated, propane and natural gas, propane is gaseous fuel 

representative of vaporized kerosene fuel, and natural gas is the dominant current 

fuel for industrial gas turbines. The radial traverse were carried in five axial 

planes. They were at 10, 30, 50, 110, 210mrn away from the vertical plane of the 

radial swider. The radial gas composition traverse were carried out at 600K inlet 

air temperature at an equivalence ratio of approximately 0.42. This was the 

equivalence ratio at which the mean exhaust gas analysis showed the lowest NOx 

emissions with at least a 0.01 % combustion inefficiency as can be seen for central 

fuel injection from Fig.3.11 and Fig.3.12. 

The results of various combustor traverses are illustrated throughout Fig.3.13 

- Fig.3.21. These show the radial variation for various axial directions equivalence 

ratio, air/fuel ratio, total NOx, combustion inefficiency,carbon monoxide, 

unburned hydrocarbons, ,oxygen, and flame temperatures respectively. Fig.3.13 

shows the distribution of both fuels was more or less unifonn in the core region 

after the 30mm axial position. At the near swirler IOmm position, the central fuel 

injector created a rich near stoichiometric zone in the shear layer region. This rich 

zone acted to stabilise the flame. However, the rich shear layer was rapidly 

mixing with the peak equivalence ratio reduced from 1.2 to 0.8 between 10 and 

30mm and to 0.7 at 50mm, with complete near unifonn mixing by IIOmm. It is 

this rapid mixing that gives rise to the lower NOx emissions. 

Since the same central radial fuel injector holes were used, the different fuel 

densities resulted in different fuel jet velocities for the same fuel mass flow. This 

may influence the local fuel and air mixing, although the fuel jet momentum was 

not a major part of the mixing process. In addition the low molecular weight and 

hence high diffusivity of natural gas mean that the fuel quickly disperses in the 

turbulent regions of the jet boundary where there is an active shear layer. The 
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initial fuel-air mixing processes affected the details of the flame structure at axial 

plane 10 and 3Omm. However, in spite of these fuel injection momentum 

difference, the fuels behaived in a similar way. 

The most significant feature of plane the lOmm was the peak in the 

equivalence ratio for the natural gas and propane which is exceeded the 

stoichiometric limit at radial position approximately equal to O.3R by 30% and for 

the propane at approximately 0.2R radial position by 20%. At axial planes of 50-

210mm the burnt-gas eddies downstream of reaction zone would be more uniform 

in composition which is due to how the fuel have been distributed throughout the 

reaction zone. As the flow moves through the combustor, the action of turbulence 

and molecular diffusion will change the distribution. At the 50mm axial plane, 

the equivalence ratio of the natural gas had a richer shear layer zone, but by 

110mm axial position both distributions were almost completely uniform. 

The CO and UHC emissions were low in the central core region, Fig.3.15 and 

Fig.3.16, this was the result of the increase in air fuel ratio, Fig.3.14 which 

resulted in the entrainment of larger concentrations of 02, Fig.3.21 . However, 

this consisted of fully burnt combustion products. The inefficiency near the 

swirler vertical plane, Fig.3.17 showed better combustion efficiency was 

exhibited by propane. both fuel promoted low combustion inefficiency of less 

than 0.1 % at axial position 30mm. The main flame development was from the 

inner jet boundary shear layer into the outer recirculation region. Natural gas 

exhibited a higher combustion inefficiency near the wall region at axial planes of 

110 and 21Omm, which were due to the higher rate of emissions of CO and UHC. 

The highest temperatures promoted by the two fuels were in the core region. 

Gas analysis based temperature profiles were the similar for both gaseous 

fuel. The main difference was the hotter core temperature for propane at the 

lOmm axial position where the temperature profile rose to above 1800K in the 

vicinity of swirler plane and showed values in excess of 1700K almost to the 

210mm plane. The temperature at the centre line and near O.2R were in excess of 
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2050K. This together with the flow and mixing visualization results in the 

previous chapter show that the influence of the radial swirler were stronger in the 

centre of the combustor due to the existance of the vortex core. Fig3.18 shows 

that by the 110mm position the temperature profiles were close to uniform steady 

profiles for both fuel types and the flame propagation was mainly complete. 

The difference in temperature profiles were due to small variations in the 

mean equivalence ratio. The NOx levels at all axial planes position were 

relatively high for propane as shown in Fig.3.19. The higher NOx emissions for 

propane were well established at all radial positions and this difference was 

maintained through to the 210mm axial plane except for the 50mm axial position 

at O.5R where natural gas exhibited higher NOx level than propane. The 

dominant mechanism for NOx generation thus appears to be by a prompt NOx 

mechanism, with only small thermal NOx contribution. A strong thermal 

contribution should have resulted in a strong axial variation of NOx emissions. 

Good fuel and air mixing minimised the thermal NOx production, However, 

there are few location where the flame temperatures were sufficient to generate 

thermal NOx rapidly. The higher level of C02 concentration in Fig.3.20 

indicated that the reaction rate of formation of C02 from CO for propane was 

faster than for natural gas and was completed at 210mm plane. It seems that the 

low molecular weight and hence high diffusivity of natural gas means that the fuel 

quickly dispersed in the turbulent region of the shear layer and hence resulted in 

low NOx formation. However, for both fuels the combustion was mixing 

controlled. NOx was only formed in the early part of the combustor which 

contained the radical rich turbulent flame reaction zone. The NOx was mainly 

NO , as reported by Appeleton et al(28). Further mixing over the remainder of 

the combustor did not increase the NOx level. 
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3.5.1.2 Effect of small equivalence ratio variation on species 

concentration 

Changing the equivalence may put the whole system into a region where high 

NOx emission or other pollutants are emitted beyond the exited regulation limits. 

Myers and Lefebvre(36) noted that the flame speeds increase with the fueVair 

ratio and attain their maximum value at a mixture strength close to stoichiometric. 

Fig.3.22 - Fig.3.31 illustrate the effects on species profiles concentration for a 

central injection propane system fuelled at two equivalence ratios of 0.37 and 

0.42. They show radial traverse profiles at three different axial planes 50, 110, 

210mm positions. The higher equivalence ratio seems to enhance the flame 

spread towards the wall region, Fig.3.22. That was due to the more effective 

penetration of the fuel jet to the jet boundary of the incoming flow from swirler 

that will give rise to the higher UHC, Fig.3.25 and lower CO emissions, FigJ.24 

near the centre core for the higher equivalence ratio mixture. This was 

accompanied by lower UHC with higher CO concentrations in the wall region and 

corresponding changes in the combustion inefficiency , Fig.3.26. A higher 

combustion inefficiency promoted by the lower equivalence ratio mixture occured 

in the near wall region. The gas analysis based temperature profiles Fig.3.27 were 

similar due to the small difference in local equivalence ratio. Major differences 

were only found at the 1l0mm axial position, and were an order of 300K. The 

NOx levels were influenced by the two equivalence ratio Fig.3.28, due to the 

differences in flame temperature. For 0.4 the core temperature at 110mm was 

above the high NOx generation temperature of 1800K, whereas at 0.37 the core 

was below this temperature. The differences in the NOx were quite large inspite 

of the small difference in the equivalence ratios. 

3.5.1.3 Influence of large variation in equivalence ratio on species 

concentration 

Figs.3.32 - Fig.3.33 demonstrate the effect of large variation on various 

species concentrations profiles for a system fuelled with natural gas at 
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equivalence ratios of 0.42 and 0.80 using central injection method. At the 0.8 

equivalence ratio combustion excessive heat and radiation from the 140mm 

combustor which was beyond the limitation of the experimental rig, the radial 

traverse was limited to one plane only which was the 210mm axial plane. A 

0.014 Mach number condition was used with a 600K air inlet temperature. A 

. large effect on emissions was exhibited by the higher equivalence ratio especially 

at the centre core of the combustor where the CO level was 0.5% compared to the 

lower equivalence ratio flow of 25 ppm. The reason was the higher levels of 

equilibrium CO for the 0.8 mixture. The equivalence ratio profiles show that at 

both equivalence ratios fairly uniform mixing had occured by the 210mm 

position. The flame temperature was also fairly uniform but the NOx profile at 0.8 

was strongly bi reach to the centre, where at the weak mixture it was uniform. 

This may be due to the greater residence time of the centre core at high 

temperature. A strong thermal NOx and hence residence time dependence would 

be expected at the 0.8 condition. 

3.5.1.4 Influence oj primary zone Mach number on species concentrations 

The investigation were carried out on two Mach number 0.014 and 0.02 using 

central natural gas injection with an air inlet temperature of 6OOK. The traverse 

procedures were carried out at a fixed overall equivalence ratio of 0.42, and the 

results are shown in Fig.3.34 - Fig.3.42. Similar equiValence ratio profiles were 

exhibited by both Mach numbers Fig.3.34. However, difference were found at the 

210mm axial position where higher equivalence ratio was found in the core. This 

produced a higher flame temperatures, Fig.3.39 in the centre which exceeded the 

temperature for the higher Mach number flow by approximately lOOK. The 

reason for this temperature difference at 210mm may be a result of the lower 

pressure loss at the lower Mach number which gives slower mixing of the lean 

lower temperature outer flow with the core. 

The NOx results in Fig.3.40 do not follow the flame temperature trends. 

There was a large difference in NOx between the two Mach number at all these 
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axial traverses and no dependency of the NOx level on these axial distance or 

residence time, as should occur for Zeldovich thermal NOx. In the core region 

there is a large decrease in NOx with axial distance at both Mach numbers. Only 

in the wall region did the NOX increase with distance. However, the temperatures 

here were below 1800K at all axial distances and thermal NOx is negligible in this 

temperature region. the increase in NOx in the wall region was due to turbulent 

mixing with the higher NOx core region. It is considered that the prompt NOx 

mechanism close to the swirler was the main contributer to the results. Thermal 

NOx will contribute in the initial shear layer combustion upstream of 50mm 

position, where rich zone greater than those in Fig.3.34 will exist; it is this 

thermal NOx which will be sensetive to the Mach number as the shear layer 

residence time will vary in proportion to the Mach number. Fig.3.40 shows that 

this initial difference in NOx is maintained throughout the combustor with 

thermal NOx generation in the burnt gases negligible. 

3.5.1.5 Internal axial gas composition 

The axial centre line gas composition traverse were carried out at 600K inlet 

air temperature at a constant equivalence ratio of 0.37 for propane using central 

fuel injection with a Mach number of 0.02. Also axial traverse were carried out 

for a central injection of natural gas at two different Mach numbers, 0.014 and 

0.02, at constant equivalence ratio of 0.42. These were the equivalence ratio at 

which the mean exhaust gas analysis showed the lowest NOx emission with at 

least 0.01 % combustion inefficiency, Fig.3.1l and Fig.3.12. Figures 3.43 - 3.51 

illustrates the axial gas composition profiles at the centre of the 140mm 

combustor. By sampling gases only at the combustor centreline, it should be 

possible to assume that the sample is the same as would result from an adiabatic 

burner(29). In general the equivalence ratio Fig.3.43 and the gas analysis based 

temperature profiles Fig.3.48 were similar in in shapes. Figure 3.43 shown that 

the near swirler region was richer than the mean equivalence ratio, but not 

excessively rich even though central fuel injection was used. 
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Figures 3.45 - 3.47 shown that the core region was rapidly fully burnt by 10% 

of the axial distance(30mm). This was because it was a region of recirculated 

burnt gases. The main combustion was in the shear layer and the outer swirling 

flow. The decrease in equivalence ratio, temperature and NOx with distance was 

mainly due to turbulent mixing with this outer region. Fig.3.49 illustrates clearly 

that there was little burnt gas thermal NOx generation, even for the low Mach 

number natural gas results when the temperature was above 1800K for the flrst 

half of the combustor.4. 

Some of the NOx emissions in Fig.3.49 was generated near the swirler outlet 

and were due to a contribution of thermal NOx as well as prompt NOx 

mechanism as discussed above. The 1800K flame temperature for rapid thermal 

NOx generation was exceeded at the swider outlet. Good fuel and air mixing 

minimised the thermal NOx contribution. The NOx emission level promoted at a 

Mach number of 0.02 by burning propane were approximately double that by 

burning natural gas. The lower Mach number natural gas flame produces higher 

NOx emissions and that was due to the longer shear layer residence time as 

discussed a bove. The highest NOx level emitted by propane and natural gas 

flame at 0.02 and 0.014 Mach number were 32.5, 25.7 and 33ppm respectively 

Fig.3.49 and the lowest being at the combustor exit plane 21, 13 and 19.5ppm 

respectively. These are corresponding to 13.8, 7.6 and 10.6ppm NOx corrected to 

15% oxygen and standard day humidity Fig.3.2B. 
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3.6 PASSAGES FUEL INJECTION 

3.6.1 Introduction 

Passage fuel injection gave partial fuel and air mixing in the short curved 

passages in between the radial swirler vanes as shown in Fig.3.52. The objective 

was to quantify the expected reduction in stability and NOx emissions that this 

improved mixing would entail. A Mach number of 0.02 was used as the higher 

pressure loss would give greater turbulent mixing and lower NOx emissions as 

well as better liquid fuel atomisation in the radial vane passages. The ratio of the 

primary zone Mach number, 0.02 to the reference Mach number ,0.047, gave the 

simulated proportion of the total combustor air that was passed through the 

swirler as 43%. The radial swirler used had a pressure loss of 4.2% at the 0.02 test 

Mach number, which is a typical conventional combustor pressure loss. 

3.6.2 Internal radial traverse composition profiles 

The radial gas composition traverses were carried out at a 600K inlet 

temperature at an equivalence ratio of 0.43. This was the equivalence ratio at 

which the mean exhaust gas analysis showed the lowest NOx emissions with at 

least a 0.1 % combustion inefficiency as shown in Fig.3.53 and Fig.3.S4. Detailed 

gas composition data was obtained at six axial position as shown in Fig.3.S5 -

3.63. Data for Gasoil was not obtained in the near burner region but was 

determine for propane and Kerosene. Fig.3.5S shows that at the 10mm position 

the propane fuel distribution was much more uniform than for Kerosene, which 

had a richer core region probably due to the transport of larger droplets into the 

core due the radial swirler passage air momentum. Propane was better mixed 

inside the passages giving the more uniform distribution. However, by the 30mm 

axial position the Kerosene was more uniformlr distributed in the core region 

with only the outer recirculation zone being relatively weak. At the 110mm plane 

the Kerosene distribution was almost complete. The equivalence ratio profile for 

Gasoil at the 50mm axial position had a richer shear layer zone but it was 

uniformly distributed by 110mm axial plane. At the 200 and 300~ axial planes 
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the equivalence ratio profiles were very uniform for all three fuels. 

The CO and UHC emissions shown in Figs.3.53 and 3.58, were low in the 

central core region even at the near swider lOmm axial position. The core region 

is thus fully burnt recirculation gases, as also found with central fuel injection. 

The combustion inefficiency in this region for Kerosene was less than 10% at the 

lOmm position and less than 2% at the 30mm position, and better results were 

found for propane. The main flame development was from the shear layer to 

outer recirculation region.This outer recirculation zone was high in UHC, as 

shown in Fig.3.58 at the lOmm position and hence there was a high combustion 

inefficiency Fig.3.59, for both propane and Kerosene. Propane combustion 

inefficiencies were higher than for Kerosene in the wall region. This was also the 

case at the 30mm plane with inefficiencies in the .wall region of 60% and 30% for 

propane and Kerosene respectively. This lower combustion inefficiency for 

Kerosene gave slightly higher temperatures in the wall region than for Propane, in 

spite of the much leaner local composition as shown in Fig.3.60. The combustion 

inefficiency at the 200 and 300mm positions were below 0.3% at all radial 

position for all three fuels. However, there was still evidence of the radial 

propagation of the flame with the outer regions with the worst inefficiency. 

The gas analysis based temperature profiles in Fig.3.60 show that the central 

core region was at high temperature due to the high combustion efficiency. The 

wall region was at a relatively low temperature for both fuels up to the 30mm 

position. Kerosene and propane had very similar temperature profiles with the 

main difference being the hotter core temperature for kerosene at the 10mm 

position, due to locally richer mixtures, Fig.3.60. Also at the 110mm position the 

temperature profiles was close to uniform for all three fuels and flame 

propagation was predominantly complete. The differences in temperature were 

due to small differences in the mean equivalence ratio. At 200 and 300mm axial 

plane the temperature was very uniform for all three fuels. 

The NOx levels at the near swirler position was relatively high as shown in 
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Fig.3.61 . At the 30mm axial plane position the higher NOx emissions of kerosene 

were well established at all radial positions and this differences was maintained 

through to the 300mm axial plane. The origin of the higher NOx emissions for 

kerosene can clearly be seen to be the higher temperature richer core region at 

IOmm position. The NOx level for kerosene was approximately 15ppm compared 

with 9ppm in the centre at the 300mm position. Even in the wall region the 3ppm 

NOx level at the IOmm position only increase to 8ppm at the 300mm position .. 

The dominant mechanism for NOx generation thus appears to be by a prompt 

NOx mechanism with only a small thermal NOx. contribution. A strong thermal 

NOx. contribution should have resulted in a strong axial variation of NOx. The 

good mixing of fuel and air minimised the thermal NOx production as there were 

few locations where the flame temperatures were sufficient to generate thermal 

NOx. rapidly. Fig.3.60 shows that 1800K was not exceeded for propane at any 

radial positions. This is the temperature beyond which thermal NOx. generation 

becomes rapid. Figure 3.61 shows that at the 50mm position the gasoil NOx 

emissions were considerably higher than for kerosene, but with a similar radial 

profile shape. However, the NOx. level for gas oil at the 300mm axial plane was 

less than at the 50mm position in the central region and less than at most radial 

positions at the 110mm position. Thus thermal NOx was not the cause of the 

higher NOx emissions for gasoil. The cause of the higher NOx was likely to be 

due to the prompt NOx mechanism. but in the absence of data upstream of 50mm 

axial plane the presence of locally richer zones than for kerosene cannot be 

excluded. At the 50mm axial plane. there was a 35ppm peak in the gasoil NOx. 

profile in the shear layer region, which was the richest zone. This shear layer zone 

may have had higher NOx. levels due to richer local mixtures upstream of 50mm, 

as indicated by the leaner weak extinction results for gasoil at 600K which will 

discussed later. There may have been a fuel NOx contribution for gasoil and this 

would also give rise to early production of NOx. William et al(35) have shown 

that gasoil contains lower level fuel nitrogen (40 ppm.). 

AT axial plane 200 and 300mm, the NOx. emissions were very uniform 
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reflecting the uniformity of the equivalence ratio and flame temperature profiles. 

These uniform NOx emissions were identical to the mean NOx emissions at 0.43 

equivalence ratio for all three fuels, Fig.3.53. The origin of the relatively large 

differences in NOx emissions between the three fuels was shown by these traverse 

results to be in the near burner swirling shear layer region and was not due to 

differences in thermal NOx generation. 

3.7 INFLUENCE OF SWIRL GENERATION METHOD ON SPECIES 

CONCENTRATION 

The primary goal of the present comparison is to assess how the fuel-air 

mixing effected by generating swirl with two different means of swirl generation. 

Radial and axial swirlers were compared at the present work. Both swirler had 

central fuel injection fuelled with propane of the same purity and approximatly 

the same expansion ratio (Old) of about 2.0 and the same swirl angle 45 degrees, 

this would allow a relatively direct comparison of internal flame structure for both 

swirlers. Fig.3.64 and 3.65 show the mean gas analysis results for the NOx 

corrected to 15% oxygen variations with combustion inefficiency and mean 

equivalence ratio for both swirlers. This is an illustration of the general 

characteristics the radial swirler is slightly better than the axial swirler. 

The effects of the differences in swirler design on the radial profiles are 

shown in Figs.3.66 - 3.75. These show the radial gas analysis profiles for the SW6 

axial swirler compared with those for the type B radial swider, both with central 

fuel injection at a Mach number of approximately 0.02 in the 140mm combustor. 

The traverses were carried out at an equivalence ratio of approximately 0.42. The 

equivalence ratio at three axial planes are shown in Fig.3.66, which shows that 

both swirler had lean equivalence ratios in the wall region. This indicated that the 

fuel had not yet fully mixed into the wall region. These was a peak equivalence 

ratio at 0.8R for both swirlers. The axial swirler had a richer peak than the radial 

swirler indicating that better mixing had taken place in later flow field than for the 

fonner at the 50mm position. At the 110 and 210mm axial plane position the fuel 
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distribution was also more uniform for the radial than the axial swirler. 

Both concentrations for both swirlers the CO and UHC profiles were similar 

at all axial position, were low at the centre and high at the wall region. A low 

combustion inefficiency existed all the way through the combustor centre line due 

the existence of the same recirculation vortex core features for both swirlers. The 

Flame temperature profiles in Fig.3.71 were similar to the equivalence ratio 

profiles. The highest temperature was exhibited by the axial swirler at plane 

50mm away from the swirler due to the richer mixture at this position. The 

temperature profiles were more uniform for the radial swirler at axial planes 110 

and 21 Omm indicated better mixing. The temperature profile for the radial swirler 

at the 210mm position was uniform indicating that the flame propagation. was 

predominantly complete. as shown in Fig.3.20 by an inefficiency less than 0.2% 

at all axial positions. However, the flame downstream of the axial swirler spread 

more slowly than for the radial swirler. This is consistent with experimental 

observation Smith et al(34) who reported lower wall temperatures with axial 

swirlers in the near burner region. 

The NOx levels in Fig.3.72 for the axial swirler were relatively higher than 

that for the radial swirler especially at the centre line of the combustor for the 

three axial planes. In the wall region the NOx emission exhibited by both swirler 

were similar except at the 210mm plane, where the NOx level differ by an order 

of 7ppm. The difference in NOx emission between the two swirlers at 50, 110, 

210mm axial planes where 37,13, 17ppm respectively. These correspond to 15,6, 

9ppm NOx corrected to 15% oxygen and standard day humidity, as can be seen 

from Fig.3.73. The good mixing exhibited by the radial flow swirler in the near 

swirler region and at the 50mm axial plane was for the lower NOx than for 

axial swider flow promoted. However, chemical kinetic mechanisms can not be 

rulled out in axial swirler case especially at 210mm plane, perhaps that is why the 

UHC had two peaks Fig.3.69 and the level of CO increased Fig.3.68. This is 

supported by the work reported by Bromly et al(30) The results obtained showed 

that the presence of the combustible agent strongly facilitated the oxidation of NO 



-92-

to N02. It was found that the hydrocarbons had a greater effect than hydrogen or 

carbon monoxide. It was also observed that the presence of NOx sensitised the 

hydrocarbon oxidation. Sano(31) has shown by simulation that N02 formation in 

a mixing region would be enhanced by the presence of unburned hydrocarbons. 

This conclusion is supported by the experimental findings of Jaasma and 

Borman(32). 

3.8 CONCLUSIONS 

1- Most of the mixing between fuel and air takes place in the shear layer 

between the jet boundary of the swirling flow and the reverse flow zone. It is 

also here where ignition occurs and the flame is stabilized. Therefore, fuel 

injection should always take place into this region. 

2- The only significant difference between propane and natural gas operation 

was in the NOx emissions, where natural gas had approximately half the NOx 

emissions of propane for the same test condition. 

3- Radial vane swirlers with fuel injection in the vane passages improved the 

fuel and air mixing compared to central fuel injection. There was sufficient 

unmixedness in the stabilising swirling shear layer to give a considerable 

extension of the premixed stability limits, although inferior to those for 

central injection as will be discussed in chapter five. 

4- Most of the differences of the influence of fuel type originated in the near 

swirler region. Thermal NOx was not a major contributor to the overall NOx 

emissions or to the differences between the fuel type used for central and 

passage injection. 

5- Noticable improvement in performance and NOx emission of the radial over 

that of the axial swirler were due to the immediate contact of fuel with the 

turbulent swirled air as it leaves the central fuel injector. In the case of the 

axial swirler the fuel traveled some distance before coming into contact with 

the turbulent airstream. 



-93-

6- The internal gas composition measurements showed that for the central and 

passages injection fuel injection method, the fuel and air mixing was good 

quite close to the swirler and this was the key to the low NOx emissions. The 

maximum local equivalence ratio for passage injection was 0.75 for mean of 

0.43 and for central injection was approximately 1.2 for a mean of 0.42 and 

this occured in the swirler shear layer and was responsible for the enhanced 

stability_ 
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CHAPTER FOUR 

CENTRAL RADIAL FUEL INJECTION 

4.1 INTRODUCTION 

The most common method of fuel injection in swirl stabilised flows axially 

through the centre of the swirler . However, another variation from conventional 

central axial fuel injection is to inject the fuel radially from the central axis across 

the entering air jet The present work is involved with the later method of fuel 

injection. Comparison between axial fuel injection and injection at a range of 

inclinations to the axis leading to the radial injection have been reported by 

Leuckel and Fricker(1,2). Similar fuel injection to the present work was 

demonstrated by the recent work by Beltagui et al(3). They investigated two 

radial fuel injectors which had different number of radial fuel holes. In their work, 

two fuel injection modes, central radial and peripheral fuel injection were 

compared. One of the central radial fuel injectors had 8 radial holes and the other 

one 16 holes. The present work used 8-holes, one for each swirler vane passage. 

Ahmad et al(12-16) investigated single axial vane swirlers for lean primary zone 

applications. They showed for both single and counter rotating swirlers system 

that the radial flame propagation was very slow due to the large swirler size 

relative to the combustor diameter. It was concluded that a larger expansion ratio 

from the swirler was necessary to ensure rapid flame spread. It was one of the 

objective of the present work to investigate the influence of radial swirler outlet 

diameter or the influence of the combustion performance of the swirler expansion 

ratio(D/d). This is much easier to do with radial swirlers as the swirler diameter 

can be varied without changing the flow area or swirler pressure loss. This is due 

to the ability to change the radial swirler passage depth as the swirler diameter is 

changed so as to maintain the same flow area. 

Radial swirlers are common in large scale burners for boiler and furnace 

applications. They are also common in reverse flow industrial gas turbines and the 

present swirlers are similar in design to those used in the Ruston Tornado 
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combustor, but with increase flow capacity. Radial swirlers have also been 

featured in some previous low emission gas turbine investigations(14-16) using 

radial vane passage as fuel injection and partial premixing channels. For the 

present chapter all the work was using the modified conventional central radial 

fuel injection system. In the present work the vane angle was varied at constant 

flow area, so that vane passage depth increased with vane angle, as discussed in 

chapter two. 

4.2 FUEL INJECTORS 

The swirlers were tested with central radial fuel injection using both propane 

and natural gas fuels at 3mm downstream of the upstream face of the radial 

swirlers. The same eight holes 12.7mm diameter injector was used for each fuel 

with a hole diameter of 2.2mm. The different fuel densities resulted in differences 

in fuel jet velocities for the same fuel mass flow. This may influence the local fuel 

and air mixing although the fuel jet momentum was not a major part of the mixing 

process. The geometry of the fuel jet system is more imponant in controlling 

mixing than fuel jet momentum(3). 

4.3 COMBUSTION AND ANALYSIS SYSTEMS 

4.3.1 COfl,IBUSTION SYSTEMS 

Figs.4.1 and 4.2 show schematic diagram of the combustion systems used for 

the present investigation, these mainly comprised two simple uncooled can 

combustors 330mm long. The first was of 76mm 1.0. and was used in the 

previous investigations with axial swirlers(9-13). This combustor gave the 40mm 

and 76mm outlet swirlers an expansion ratio,D/d of 1.9 and 1.0 respectively. The 

second combustor was 140mm I.D. This had an upstream plenum chamber air 

feed and was connected to the exhaust system with a water cooled pipes. The two 

swirlers outlet diameters of 40mm and 76mm gave expansion ratios, Old, of 3.5 

and 1.8 respectively. Both combustors had similar expansion ratios of 1.8-1.9 

when the 76mm and 40mm outlet swirlers were fitted respectively. This allowed 

the influence of combustor scalling at the same Old to be investigated. 
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It was decided to operate two swirler sizes in both combustors at approximately 

the same pressure loss of 2.5% and to accept the difference in the Mach number 

for the two combustor tests. It was previously shown for non-swirling jet mixing 

system that Mach number effects on stability, combustion efficiency and NOx 

emissions were relatively small provided that the pressure loss was maintained 

constant(4,20). Mach number,M effects were important, particularly for NOx, if 

the same combustor, had tested at different M there would be a pressure loss and 

hence turbulent mixing variation with Mach number. It will be demonstrated in 

the present work that the same conclusion applies for radial swirlers, thus 

permitting the comparison of the results from the two combustors at different 

Mach number but the same pressure loss. 

Both combustors used the same electrically heated air supply. Two inlet 

temperatures were used, 400 and 6ooK, to simulate low and high power operation 

respectively. Both combustors were instrumented with a line of wall static 

pressure tappings and Type K mineral insulated thermocouples. For both 

combustors mean gas samples were obtained 

from a water cooled 'X' configuration probe mounted at the combustor exit 

plane. These were used to determine the overall combustor performance and 

emissions as a function of equivalence ratio. 

4.3.2 GAS SAMPLING SYSTEM 

To obtain a mean gas sample ,an 'X' configuration stainless steel water cooled 

probe was mounted in the exhaust plane at either 330mm or 1160mm from the 

swirler as shown in fig.4.3. This had twenty Imm diameter holes on the centers of 

equal area.The probe only gave a true mean gas sample if the velocity and 

temperature distributions were uniform.The extent to which the probe deviated 

from this ideal may be assessed by comparing the computed air to fuel ratio of the 

mean gas sample and that determined from the measured flow rates. 

The sample gas outlet temperature from the probes was monitored and kept 

above(150C) by regulating the coolant flow rate. The sample was transported 
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along an electrically heated (150C) Teflon line to aheated sample pump and filter 

system housted in an oven.Electrically heated pump furnance to the heated 150C 

chemiluminescence NOX analyser and and the analysis automation heated flame 

ionisation detector for unburned hydrocarbon(UHC) measurements. CO and C02 

were analysed using analytical developement corporation non-dispersive infra-red 

analysers, with samples cooled and dried prior to analysis. 

The gas analysis were used to calculate 'wet' concentration of CO and C02 the air 

to fuel ratio the combustion efficiency equilibrium NOX emissions corrected to 

3% in the present work. 

The flame temperature calculation was based on an energy balance, assuming no 

heat losses and no dissociation. A full equilibrium programme was used to check 

the range of equivalence ratios over which this latter assumption was valid. For the 

mean exhaust plane gas sample ,the flame temperature was computed based on 

the rig metered air to fuel ratio and the combustion efficiency based on the 

measured CO and UHC concentration. 
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4.4 INFLUENCE OF RADIAL VANE ANGLE ON COMBUSTION 

PERFORMANCE 

4.4.1 Weak Extinction 

The influence of the radial vane angle on the measured weak extinction are 

illustrated in Table 4.1. The weak extinction for all vane angles up to 50 degrees 

at an inlet temperature of 400K were around 0.3 equivalence ratio (A/F=55/l) for 

propane and around 0.4 equivalence ratio for the natural gas The 60 degrees vane 

angle had a slight improvement in the weak extinction. These results reflected the 

difference in the combustion properties for the two fuels at low power. However, 

for the 600K inlet condition ,similarities existed in the weak limits between the 

vane angle 20 and 30 degrees for both propane and natural gas which was due to 

perhaps the same mixing pattern at low rate fuel flow caused by the more or less 

the same contraction at the inlet of the two swirlers. 

Similarly, in the case of the 45 and 60 degrees angles for the combustor fuelled 

with propane but not with natural gas. However, superior weak extinction limit 

was promoted by the 45 degrees angle swirler over the other swirlers using 

natural gas as fuel. The weak extinction equivalence ratio was 0.03 (A/F=553/l). 

However, as the vane angle was increased to 50 and 60 degrees the weak 

extinction limit deteriorated which was perhaps more due to the increase to the 

vane depth together with the local axial and the tangential velocity increase in the 

vicinity of the injecter tip, thus there was less chance to sustain the flame at very 

weak limits. 

Generally, flame stabilisation and burning occured in the shear layer between 

the swirling jet and the main recirculating zone. 

Most mixing takes place in the shear layer before the shear layer flow impinges 

on combustor wall. Furthermore, continued burning of the mixture takes place 

even after the impingement point in the conical shear layer where the recirculated 

hot combustion products meet the annular forward jet. 
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4.4.2 WALL STATIC PRESSURE AND TEMPERATURE PROFILES 

Figs.4.4 and 4.7 shows the axial developement of the measured wall static 

pressure and temperature profiles for different vane angle radial swirlers at two 

inlet inlet temperatures of 400K and 600K respectively. The influence of inlet 

temperature on the profiles was very little. However, all vane angles exhibited the 

same static pressure and temperature profile shapes and the point of impingement 

evidently clear was not changed. Flame development was complete on the end of 

the outer recirculation zone, especially at 6OOK. Both at 400K and 600K flame 

development appeared to be more rapid for 30 degrees swirl vane angle. This 

vane angle also had the best NOx and combustion inefficiency characteristics, as 

discussed later. 

4.4.3 MEAN COMBUSTOR EXIT EMISSIONS 

The measured results of the mean exhaust plane emissions for the different 

vane angle radial swirlers at Mach Number of 0.014 and for the inlet temperature 

of 400K and 600K are shown in figs.4.8 - 4.31 for propane and natural gas. 

4.4.3.1 Emissions at 400K 

The CO and UHC emissions as function of the metered equivalence ratio are 

shown in figs.4.8 - 4.11 Only slight differences due to the vane angle variation 

can be noticed in the emission levels of these two major species, this is an 

indication that the rate of oxidation rate for all vane angles was similar with the 

exception of the 60 degrees radial swirler, which had slightly higher CO 

emissions. The combined effects of CO and UHC emissions can be seen as 

combustion inefficiency versus the metered equivalence ratio in figs.4.8 and 4.9 . 

The lowest combustion inefficiency for propane combustion was just below the 

0.5 equivalence ratio and for the natural gas just above 0.5. 

Figs.4.14 - 4.15 and figs.4.16 - 4.17 shows the NOx emissions as a function 

of equivalence ratio and the gas analysis calculated flame temperature 

respectively. The 60 degrees radial swirler exhibited more NOx emissions at all 
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associated equivalence ratio for both fuels which was due to , perhaps to more 

fuel and air mixing indicated by slightly the higher CO emissions and the better 

weak extinction. However, NOx emissions are strong function of the flame 

temperature as shown in figs.4.16 - 4.17. 

For propane the NOx level increase rapidly beyond 1600K and for natural gas the 

rapid increase was encountered beyond 1800K. Low NOx emissions are only 

useful if they are achieved in combination with a high combustion efficiency. An 

optimum operating equivalence ratio can be determined by plotting the 

combustion inefficiency against the NOx emissions corrected to 15% oxygen and 

standard day humidity. The results in figs4.18 - 4.19 were plotted on this basis for 

propane and natural gas respectively. The measured results for the 60 degrees 

radial vane angle show significantly higher optimum NOx emissions than for the 

lower vane angles that ultra low NOx can be achieved with associated combustion 

efficiency of better than 99.9% for both fuels. The lowest NOx corrected were 5.5 

and 4.5 (ppm) for propane and natural gas respectively and for the 20 and 30 

degrees vane angle swirlers for a 0.1 % combustion inefficiency 

4.4.3.2 Emissions at 600K 

The different radial vane angles swirlers exhibited the same CO emissions as 

shown in figs.4.20 - 4.21 for both propane and natural gas. The profile of UHC 

emissions as a function of equivalence ratio are shown in figs.4.22 - 4.23. The 

radial swirler with a vane angle of 20 degrees shows slightly more emissions than 

higher radial vane angles and that was for propane only. In general, all vane 

angles exhibited low CO and UHC emissions. These low emissions was reflected 

on the combustion inefficiency as shown in figs.4.24 - 4.25 where combustion 

efficiencies of better than 99.9% were achieved for almost all different vane angle 

swirlers .. 

The different vane angle swirlers gave more or less similar trends of NOx 

emissions as shown in figs.4.26 - 4.27 for both gaseous fuels. 

The correlation between the NOx emissions corrected to 15% oxygen and 
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standard day humidity and combustion inefficiency are shown in figs4.30 - 4.31 

All radial swirlers with different vane angles promoted low NOx compatible with 

very low combustion inefficiency. Significantly lower optimum NOx were 

generated at lower swirl, 6ppm for 20 and 30 degrees swirlers for natural gas 

compared with 8ppm to 45 and 50 degrees vane angles and lOppm for 60 degrees 

swirler. For propane the NOx range was between 9 to lSppm with increasing vane 

angle. High swirl may increase the residence time in the rich stabilising shear 

layer and thus increase the NOx emissions. 

Investigation of the flow patterns using water flow visualisation reveals the 

similarity between all the vane angles, particularly the conical shape of the 

swirling jet shear layers and the comer recirculation zone size, which were almost 

identical as shown in chapter two. A slight variation in the contraction 

coefficients that give rise to different mixing patterns in the vicinity of the radial 

swirler outlets was observed. All the radial swirlers with different vane angle had 

the most important feature in common which was that the lean burning of the 

fuel/air mixture takes place on the inside of the conical shear layer where the 

recirculated hot combustion products meet the forward swirling jets. However, 

most of the mixing takes place in the shear layer between the fuel and air jets 

before they impinge on the combustor wall. It was demonstrated previously for 

the 45 degrees swirler using radial gas sample traverses that the unburned 

hydrocarbon level were reduced rapidly from a maximum to very low values near 

the wall reattachment point of the swirling jet shear layer. 
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4.5 INFLUENCE OF SWIRLERS OUTLET ON THE EMISSIONS 

Four 45 degrees blade angle radial swirler configurations were investigated, 

consisting of the 40 and 76mm outlet swirlers tested in both of the 76 and 140mm 

combustors. The pressure loss was approximately the same with little variation. 

However, the 76mm combustor was tested at a Mach number of 0.03 and the the 

140mm combustor at 0.014 as shown in Table(4.2). For the 140mm combustor, 

the pressure loss was kept constant by using different swirler blockages, as shown 

in Table(4.2), in the two combustors with the lower blockage in the 76mm 

combustor. 

4.5.1 WEAK EXTINCTION 

The weak extinction was determine at a constant air mass flow rate or Mach 

number and the fuel flow was gradually reduced until the flame was extinguished. 

The process was observed directly from the control room through a 100mm 

diameter air cooled window in the exhaust. Weak extinction was also easily 

identified by a sudden increase in the UHC emissions. Weak extinction data were 

reproducible to within +/- 0.02 of an equivalence ratio. The measured weak 

extinction results are listed in table(4.2) for both propane and natural gas fuels at 

the 400 and 600K inlet temperatures at atmospheric pressure. The results show 

that very similar weak extinction were obtained for different Mach numbers, this 

also showed little influence of Mach number on weak extinction for both 

combustors. This was also found by Al Dabbagh and Andrews(21) for premixed 

grid plate stabilised flames. The effect was attributed to the dependence of the 

stability on local turbulent burning velocity in the shear layer which varies 

directly with Mach number due to the dependence of pressure loss and hence 

turbulence on Mach number. Similar arguments apply to the present non

premixed work. 

There are two important features of the weak extinction results; the similarity in 

the weak extinction results for the 76mm and 40mm outlet swirlers in both 

combustors and the very great difference in the weak extinction characteristics of 



-106-

the two swirlers. The results show that the swirler expansion ratio had no 

influence on the weak extinction for the same swirler. This is in direct contrast 

with the strong effect the expansion ratio on the combustion efficiency which will 

be discussed later. The implication of the results is that the flame stability does 

not depend on the outer recirculation lone, neither on the presence of the zone nor 

on its temperature. It is considered that the stability is controlled by the local 

equivalence ratio within the conical swirling shear layer between the inner and the 

outer recirculation zones. Plate 4.1 shows cross-sectional view of the central 

propane injection flame near the weak extinction region at an equivalence ratio of 

0.1 and 600K inlet temperature. 

The weak extinction results show that the 76mm outlet swirler had an extremely 

wide stability, which is as good as most conventional gas turbine combustors. 

This occured in both combustors even though, as will be shown later the 

combustion efficiency was poor for no expansion situation. For axial swirlers, 

Ahmad et al(12) showed that at 600K the premixed weak extinction for propane 

in the 76mm combustor was 0.41 equivalence ratio, close to the present central 

radial fuel injection weak extinction of 0.38 in the 76mm combustor. The reason 

for this difference between the 40 and 76mm outlet swirlers was the local 

differences in the mixing at the swirlers outlet. Plate 4.2 shows cross-sectional 

view of the central propane injection flame for different expansion ratios. The 

flame stabilisation and burning clearly occured in the shear layer between the 

annular swirling jet and the main recirculation zone. However, swirler(A) or the 

40mm outlet swirler had 30.Smm vane depth which was twice that for the larger 

swirler or swirler (B). Thus the fuel was injected 27mm upstream of the swirIer 

outlet and considerable mixing with the swirler vane outlet flows was possible. 

The larger swirler with smaller depth (swirler B) and greater distance of the fuel 

jets from the vane passage outlets would not have this internal swirIer mixing and 

would inject the fuel into the base of the conical rotating shear layer with the 

resultant of high stability. 

These features of the local swirler mixing have been discussed in the previous 

chapter. 
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From plate 4.2 and plate 4.3, the thickness of the shear layer annular flame 

can be estimated to be approximately 5.0mm for propane and perhaps a little less 

than this value for natural gas. The difference in the colours is due to the physical 

properties of the two fuels which gives diffrent combustion characteristics(30). 

4.5.2 WALL STATIC PRESSURE AND TEMPERATURE PROFILES 

Figs.4.32 and 4.33 shows the axial development of the combustor wall static 

pressure/dynamic head as a function of the combustor walls axial distances for the 

different expansion ratios. The quite difference axial static pressure profiles 

indicate different aerodynamics. High static pressure was the feature of the 

swirler with no expansion (D/d=!) which is an, indication that the highly swirling 

flow continued throughout the axial length of the combustor with little decay of 

the outer high velocity flow. It was these high velocity regionthat caused the slow 

development of the flame as indicated from the combustor wall temperature 

development in fig.4.33. For swirl flow with an outer expansion the outer 

recirculation zone caused a rapid decrease in the radial swirl flow. The wall 

temperature profiles shows that with the Old of 1.8, the flame developed much 

earlier than with no expansion. This has confirmed previously and has been 

observed by others(25,26) in furnace situations with larger expansion ratios than 

the present work. 

4.5.3 MEAN COMBUSTOR EXIT EMISSIONS 

4.5.3.1 At 400K inlet temperature 

The measured values of CO and UHC emissions as a function of equivalence ratio 

is shown in Figs.4.34 - 4.37 for both propane and natural gas. The results show 

that except for the zero expansion ratio situation, the UHC emissions were 

negligible at less than tOppm for all equivalence ratios, except cHose the weak 

extinction. The inefficiency results in Figs.4.38 - 4.39 were similar to those for 

CO and were predominantly due to the CO emissions for the two fuels. Hence it 

may be concluded that the CO oxidation is the limiting factor controlling the 

combustion inefficiency. However, the large swirler with no expansion had a 
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very large inefficiency with propane and the level of unburned hydrocarbons was 

so high that it was not safe to continue testing or to repeat the same condition with 

natural gas as the fuel. All the other swirler configurations exhibited inefficiencies 

much less than 1 % over a range of equivalence ratios. Hence it may be concluded 

that an expansion ratio DId of approximately 1.8 is required to achieve an 

adequate combustion efficiency with an enclosed swirler. 

An inefficiency of less than 1 % is required at low power conditions and 

Figs.4.38 and 4.39 show that this was easily achieved for both combustor sizes 

provided the DId was 1.8 or greater. The influence of a large DId of 3.5 was 

somewhat greater than at 600K as will be discussed later, but still remained a 

small effect compared with the difference between a DId of 1 and 1.8. For the 

140mm combustor, the efficiencies were less than 0.1 % over the equivalence 

ratios 0.45 - 0.65 for both propane and natural gas. 

These are quite remarkable results and can be achieved by few conventional 

combustor designs. 

Figs.4.40 - 4.43 show the NOx emissions as a function of the metered 

equivalence ratio and gas analysis calculated flame temperature for both propane 

and natural gas. Higher NOx emissions were exhibited by the swirler with no 

expansion due to the existance of the rich core region which is very clearly shown 

in plate( 4.2). The nonunifonnities in the distribution of the fuel in the shear layer 

caused differences in the NOx levels between the swirler configurations. 

However, the lowest NOx level was found for swirler(A) with an expansion ratio 

of 3.5 in a combustor fuelled with natural gas as shown in Fig.4.41, although it 

exhibited the same flame temperature as the large swirler with an expansion ratio 

of 1.8 as shown in Fig.4.43. The cause of lower NOx emissions was the better 

mixing promoted by swirler(A) before the impingement on the combustor wall. 

The correlation between the c~mbustion inefficiency and the NOx emissions 

corrected to 15% oxygen and standard day humidity are shown in Figs.4.44 and 

4.45 for both propane and natural gas respectively. The small swirler exhibited 
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much lower corrected NOx than the other swirlers. The lowest corrected NOx 

were lOppm and 5ppm compatible with better than 99.9% combustion efficiency 

for propane and natural gas respectively. The large expansion ratio did not help to 

improve the stability limits. Thus, it seems that the best choice is that of the 

swirler(B) for its wide stability limits and comparatively low NOx level which 

can meet the EPA standard of 20ppm for both fuels. 

4.5.3.2 At 600K inlet temperature 

Figs.4.46 - 4.49 show the CO and UHC emissions as a function of the 

metered equivalence ratios for propane and natural gas. Similar conclusion can 

be applied for the simulated high power condition as for the low power one. The 

UHC results show that except for the zero expansion ratio test, the UHC 

emissions were negligible at less than lOppm for all equivalence ratios except 

close to the weak extinction. Therefore, the inefficiency was predominantly due 

to CO emissions as can be seen in Figs.4.46 and 4.47. These two figures have 

similar trends as the inefficiency profiles as a function of equivalence ratios in 

Figs.4.50 and 4.51. 

The combustion inefficiency for a zero expansion ratio, for the 76mm outlet radial 

swirler in 76mm combustor, were relatively poor using propane, with a maximum 

efficiency at 600K of only 98% compared with better than 99.9% for the other 

configurations. This was considered to be an unacceptable performance and no 

tests were carried out on natural gas as there was no evidence from the other 

swirler tests that natural gas had a much better efficiency than propane at any test 

condition. 

The 76mm outlet swirler in the 140mm combustor with a DId of 1.8 had a 

minimum inefficiency of 0.01 %, which is difficult to achieve even at very high 

combustor pressures using conventional combustors. Furthermore, an inefficiency 

better than 0.1 % was mantained over a wide range of equivalence ratios from 0.3 

_ 0.6, with the apparent inefficiency at higher equivalence ratios being 

predominantly equilibrium CO. Fig.4.51 shows that the combustion inefficiency 

was similar using natural gas. 
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The main difference was in the lean burning region, weaker than an equivalence 

ratio of 004, where natural gas had an inferior combustion inefficiency than 

propane. For example at a 0.28 equivalence ratio, close to the overall equivalence 

ratio at high power, natural gas had an inefficiency of 1 % compared with 0.1 % for 

propane. 

The large differences in the combustion inefficiency in the two combustors, 

for the same swirl number, shows that the poor combustion efficiency with no 

expansion ratio cannot be due to excessive swirl. The expansion ratio allows the 

swirl to decrease in the combustor, as well as creating the outer recirculation 

zone. It has been shown above that the Did did not influence the weak extinction. 

The stability was extremely good for the 76mm outlet swirler in both combustor 

sizes with better stability achieved with a Did of one. However, FigA.50 shows 

that there is a very significant difference in their combustion efficiences with a 

much superior performance with a Did of 1.8. The expansion ratio creates an 

outer recirculation zone, which although it it does not effect the stability, clearly 

has an important influence on the combustion efficiency. 

Ahmad et al(12-16) showed for axial swirlers that a low Did also gave a poor 

combustion efficiency, even for the premixed situation. The reason was shown to 

be due to the difficulty of the flame spreading across the outer high velocity 

swirling flow. Most of this work was carriedout for a range of expansion ratios 

from 1.2 to 1.6. It was concluded that expansion ratio was a major parameter 

affecting the swirler performance. Large expansion ratios are difficult to achieve 

with high air flow axial swirlers, which was reason for using radial swirlers in the 

present work. It is likely that the present Did of 1.8 is close to the minimum 

acceptable for the flame to spread rapidly downstream of swirler. 

The very low combustion inefficiencies in Fig.4.50 and 4.51, demonstrate 

that large rich local zones are unlikely in the recirculation zones, as these would 

generate high CO which would be difficult to completely burn later. It is thus 

clear that the local rich zone in the rotating conical shear layer, which give the 
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extremely good stability characteristics, do not form the main heat release region 

which must occur in a better mixed zone. 

The smaller swirler (A) results for both combustors in Fig.4.50 and 4.51, 

show a very similar low inefficiency compared with the larger swider in the 

140mm combustor. For the same Old of 1.9, the inefficiency was slightly inferior 

in the 76mm combustor than for the Old of 1.8 in the 140mm combustor. This 

was probably due to a residence time effect caused by the differences in Mach 

number as will be discussed later. This quite small difference between the 

combustors indicates that for the same Old, swirlers will have a similar 

combustion performance, irrespective of the combustor size .. The poor stability of 

the 40mm outlet swirler, discussed above and attributed to better internal mixing 

upstream of the swirler exit phase, prevented any comparison of results in the 

very lean region. 

The results for an expansion ratio of 3.5 with the 40mm swirler in the 140mm 

combustor show a small improvement in inefficiency compared with a Old of 1.9 

in the 140mm combustor. However, it is clear that expansion ratios as high as this 

are not necessary to achieve either a high combustion efficiency or good stability. 

The weak extinction results indicate that the 40mm swirler has considerable 

premixing upstream of the swirler exit plane. However, comparison with the 

76mm outlet swirler results in the 140mm combustor shows no major advantage 

in terms of combustion efficiency in this premixing. The 76mm outlet swirler 

results conclusively show that it is possible to achieve a wide stability with good 

mixing in the main combustion zones. 

The NOx are emissions presented as a function of equivalence ratio and gas 

analysis calculated flame temperature in Figs.4.52 - 4.55 for both propane and 

natural gas. The propane results in Fig.4.52 show that for the 76mm outlet swirler 

with no expansion or Old of one, not only was the combustion efficiency poor, 

but also the NOx emissions were high. Ahmad et al(12-16) showed for axial 

swirlers that this was caused by the generation of rich zones in the central core 
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region with high NOx as a consequence. The expansion from the swirler was 

found to be necessary not only for a low combustion inefficiency but also for low 

NOx emissions and hence for good fuel and air mixing. Fig.4.52 shows similar 

conclusions may be made for the present radial swirlers. The 76mm outlet swirler 

with a 1.8 expansion ratio had NOx emissions of below 20ppm corrected to 15% 

oxygen and standard day humidity over a wide range of equivalence ratios (0.2 -

0.4). 

The 40mm outlet swirler in both combustors had much lower NOx emission 

than for the larger swirler at the same equivalence ratio. This was due to the 

partial premixing upstream of the swirler exit plane, as discussed above in relation 

to the weak extinction results. 

Unfortunately, the poor stability for the 40mm outlet swirlers in a very narrow 

range of equivalence ratio(0.4-0.5) close to the weak extinction over which 

corrected NOx emissions less than 20ppm were achieved. The natural gas results 

in Fig.4.53 were substantially lower than those for propane in Fig.4.52. The 

reduction was approximately a factor of 2 and this has also been found by Abdul 

Hussain and Andrews(7) for a non-swirling interacting jet shear layer system. 

All three swirlers may thus be described as having ultra low NOx 

characteristics for natural gas. There is a 40K difference in the peak adiabatic 

flame temperatures between propane and natural gas and this often attributed to 

the cause of the lower NOx emissions with natural gas as shown in Figs.4.54 and 

4.55. However, although this is a significant factor in the lower NOx emissions it 

is considered that the two fuels have diffrent 'prompt' NOx mechanisms with 

possibly lower prompt NOx for natural gas. The reason for this are the much 

larger number of hydrocarbon intermediate compounds for propane combustion. 

Internal flame gas sample traverses of these enclosed swirl flames have shown the 

importance of prompt NOx with an early formation of NOx close to the swirler. 

Low NOx emissions are of little consequence unless they can be achieved 

with a low combustion inefficiency. Thus the combustion inefficiency and NOx 
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correlation is an important method for assessing the viability of low NOx systems. 

The present results for propane and natural gas are shown in Figs.4.56 and 4.57 

respectively and the optimum low NOx conditions compatible with an acceptable 

inefficiency are summarised in Table(4.3). With the exception of the unity 

expansion ratio situation, all three swirler configurations exhibited corrected NOx 

emissions of less than 20ppm with a combustion inefficiency of below 0.2%. For 

natural gas Fig.4.57 and Table( 4.3) show that all three swirlers can achieve 

IOppm corrected NOx with an inefficiency of less than 0.1 %. Table(4.3) also 

shows that approximately 50% lower optimum NOx emissions were achieved for 

natural gas compared with propane. It may be concluded that the low NOx 

emissions were achieved without any combusti~n efficiency penalty. 

The poor stability of both 40mm outlet swirler system was a problem as the 

optimum equivalence ratio minimum NOx was too close to the stability limits in 

Table(4.2) for viable use in combustors. This is the same situation as most 

premixed/prevaporised designs, although they often have a combustion efficiency 

problem as well as a stability one. Table(4.2) shows the wider stability of the 

76mm outlet swirler (B), allowed optimum NOx emissions to be achieved that 

were close to those for the 40mm outlet swirler (A) which had much lower NOx 

for the same equivalence ratio. Also the optimum equivalence ratio for swirler (B) 

gave a factor of 3 margin on the weak extinction equivalence ratio as shown in 

Table(4.2). 

4.6 INFLUENCE OF PRIMARY ZONE MACH NUMBER ON 

COMBUSTION 

The primary zone Mach number is based on the combustor cross sectional 

area AI, the total primary zone air mass flow and the upstream temperature 

(Appendix·~. The ratio of the primary zone Mach number to the reference Mach 

number for the combustor gives the proportion of the air flow that is being 

simulated in the primary zone. It was necessary to test the two combustor sizes at 

different Mach numbers if the same swirlers were to be used in each combustor 
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with similar pressure loss. 

One swirler (A) was investigated in the 76mm combustor at 0.03 and 0.0467 

Mach number for two inlet temperatures of 400K and 6OOK. Three swirlers A, B 

and C were investigated in the 140mm combustor at 600K inlet temperature and 

for propane and natural gas. The 40mm outlet swirler was tested at two Mach 

numbers 0.008 and 0.014. The 76mm outlet swirler were tested at Mach number 

of 0.014 and 0.02. 

4.6.1 WEAK EXTINCTION 

The measured weak extinction of diffrent primary zone Mach number at two 

combustors are presented in Table(4A). For swirler(A) in the 76mm combustor 

for both fuels propane and natural gas, the influence of the primary zone Mach 

number was small at both 400K and 600K inlet temperatures. A slight 

improvement was found at the reduced Mach number. The same swirler in the 

140mm combustor had a similar stabilities as shown in Table(4A), for the inlet 

temperature of 600K. The effect of operating different primary zone Mach 

number on the same geometry swirler was more for the swirlers (B) and (C) in the 

140mm combustor fuelled with natural gas where the lower Mach number 

promoted wider stability limits. This may have been due to exceeding the 

minimum possible fuel concentration within the stabilisation region at higher 

Mach numbers. However, for the combustor operating at the same conditions but 

fuelled with propane the influence was small for both large swirlers at 600K inlet 

temperature. 

4.6.2 MEAN COMBUSTOR EXIT PLANE EMISSIONS 

The measured combustor exit plane emissions are presented as a function of 

the metered equivalence ratio in Figs.4.58 - 4.65. Little effect can be noticed due 

to the variation of the primary zone Mach number on the CO and UHC emissions 

as shown in FigsA.58-4.61 for both propane and natural gas which is due to the 

combustion being completed at earlier stages. Furthermore, the similarity between 
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the flow regime probably gave the same mixing pattern along the initial 

combustor length before the combustio was completed which promoted more or 

less the same CO and UHC emissions. This is also shown by the combustion 

inefficiency as a function of equivalence ratio in Figs.4.62 and 4.63. However, 

the effect of the primary zone Mach number was significant for NOx emissions as 

shown in Figs.4.64 and 4.65 for both propane and natural gas respectively. 

The variation of NOx emissions corrected to 15% oxygen and standard day 

humidity are shown as a function of combustion inefficiency in Figs.4.68 and 

4.69 for propane and natural gas respectively. The influence of Mach number for 

the lower blockage 76mm swirler (B) had little influence on the inefficiency as 

both were less than 0.1 % inefficient. However, there was a significant increase in 

the NOx emissions at lower Mach number which was not necessarily due to the 

increased residence time but may have due to the decrease in the fuel and air 

mixing at lower pressure loss and hence lower turbulence level at lower Mach 

number. That can be seen from the general performance of the 76mm outlet 

higher blockage swirler (C). The test of the higher blockage swirler (C) at 0.014 

and 0.02 were carried out to assess this. The NOx level exhibited were found to 

be somewhat lower than the lower blockage swirler (B) at the 0.02 Mach number 

in spite of the higher residence time. Moreover, ultra low NOx emissions were 

demonstrated by swirler (C) with a pressure loss of more than 7% using natural 

gas as fuel. Thus, it may be concluded that it is valid to compare the swirlers at 

different Mach numbers, provided that the pressure loss is maintained at a similar 

level. 
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4.7 INFLUENCE OF CENTRAL RADIAL FUEL POSITION ON 

EMISSIONS 

This work was carried out to investigate the effect of the distance of the 

central fuel placement from the swider back-face on the emissions and stability 

limits of swirler (A) in the 76mm combustor using natural gas as fuel. A circular 

shaped baffle of 40mrn diameter and 3mm in thickness was also used in 

conjuction with a long central radial fuel injection as shown in Fig.4.1. The aim 

was to inject the fuel much further downstream of the swirler outlet to the base of 

the conical shear layer and to establish a central reverse flow zone where burned 

gases are recirculated to mix with and ignite the fresh fuel and air flow(27). This 

76mm combustor with 40mm swirler was the pilot stage of the two stage 

combustion investigated in chapter7. An improved stability at low power was 

essential. 

4.7.1 Weak Extinction 

Table( 4.5) illustrates the effect of the central fuel injection position without a 

baffle on the lean stability limit using radial swirler(A) for this perpose since as 

previously discussed was encountered with very narrow stability limits on the 

lean side. However, the combination of the flame observation with the measured 

weak extinction limits conflrmed that the blow-out was determined by processes 

occuring in the region near to the injector tip in the vicinity of the fuel outlet holes 

and was uneffected by the injector position. It was considered that the centre 

vortex flow carried the fuel back to the swirler back plate whatever axial position 

was used. The baffle was used to stop this back flow of the fuel. 

Using the baffle injecter promoted a situation where the flame stabilised in 

the low speed flow region approaching the forward stagnation point (or small 

recirculation zone) immediately after the baffle edge. The results showed a 

maximise extension of the stability with the baffle in place. This imply that a 

large recirculation zone, is not an essential flow feature for combustion 

stabilization. This conclusion supported by the work reported by Panton and 
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Sweat(28) and that of Oven et al(29). 

4.7.2 MEAN EXIT PLANE EMISSIONS 

The measured CO and UHC emissions as a function of equivalence ratio are 

shown in Figs.4.70-4.71. The lowest CO emissions was exhibited by the injecter 

at 3mm at an inlet temperature of 600K which is due to higher residence time and 

more chance of mixing prior to the outlet of the swirler which means higher 

oxidation rate than the formation rate. The placement of the injector at 70mm 

position away from the vertical back plane of the swirler increased the CO and 

UHC emissions relative to the standard 3mm results. However, the effect was 

small as found for the stability. This confIrm that the predominant action in the 

reverse flow carrying the fuel to the swirler backplate and into the base of the 

shear layer with a very similar performance to that of injection close to the swirler 

backplate. The circular baffle was placed at the 70mm position with the injector 

approximately 3mm downstream of the baffle. The flow will generate a small 

central recirculation zone immediately after the baffle of encounting a low 

velocity rich core region close to injector which stabilises the flame. That was 

clear from the direct flame observations where flame luminosity was associated 

with use of the baffle, which is an indication of a rich core region. Poor mixing 

takes place at equivalence ratio of 0.45 which is indicated by the high emissions 

of CO and UHC at 400K. Reducing the fuel flow rate will tend to promote a 

reduction in the fuel spread radially towards the conical rotational flow with more 

fuel being continued in the rich core region downstream of the baffle with 

increment by high CO and UHC. The combined effects of CO and UHC 

emissions are presented in Fig.4.72 as combustion ineffIciency and as a function 

of metered equivalence ratio. The highest combustion ineffIciency was exhibited 

by the baffled injector at 400K inlet temperature and the lowest was associated 

with the injector holes at 3mm away. 

The NOx emissions as a function of equivalence ratio and flame temperature 

are shown in Figs.4.73 and 4.74 respectively. Higher NOx was generated with 
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the 70mm fuel injector position with and without the baffle. This was 

unsurprising as there was little change in the stability which is commonly an 

indication of fuel and air mixing changes. However. NOx is sensitive to factor 

which influences the densities of unifonn zones of around 0.8 equivalence ratio, 

where NOx • production is unmaximised, which are not the zones that govern 

stability.re. The correlation between the combustion inefficiency and the 

corrected NOx to 15% oxygen and a standard day humidity are shown in Fig.4.75 

where the best results the injecter holes positioned at 3mm away from the vertical 

back plane of the swirler but with deterioration in the weak stability limits as 

discussed previously. 

The injector holes positioned at 70mm exhibited the same combustion 

inefficiency but with higher NOx which was due to worse fuel and air mixing. 

Lower combustion inefficiency was promoted by the baffle injector at the 70mm 

position for both inlet temperatures. Placing the circular baffle on the position 

70mm away from the back plane of the swirler will extend the weak stability limit 

but with a major sacrifice on the NOx emissions and combustion efficiency. 

Thus, this method of extinding the flame stability cannot be recommended. 
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4.8 RADIAL FLOW SWIRL BURNER FOR FURNACE APPLICATIONS 

4.8.1 Introduction 

Swirl burners have been designed and produced in different varieties for 

burning different types of fuel. Some typical industrial radial swirl flow burners 

have been reported in reference(32). However, typical industrial swirl burners 

employing a single swirl flame stabiliser present several problems from the 

viewpoint of stability and pollutant emissions. Recently, there is tendency towards 

the use of the two-stage rich-lean burners, due to better controlling of the flame 

temperature and NOx emissions. The specific requirements for NOx as revised 

by the Europian committions in February, 1985 (33), are indicated in Table(4.6). 

4.8.2 SIMILARITY BETWEEN HIGH INTENSITY BURNERS AND LOW 

EMISSION GAS TURBINE COMBUSTORS 

To minimise NOx emissions from gas turbine combustors it is necessary to 

increase the primary zone air flow and to improve the fuel and air mixing(34). 

Many low emission gas turbine combustor designs aim to pass as much air 

through the combustor head as possible with the remaining air added further 

downstream. The primary zone is thus a burner configuration of a flame stabiliser 

with a down stream tube burner. Although gas turbine combustors conventionally 

require some air to cool the combustor walls, the present work had no film 

cooling. The present work is thus identical to a high intensity burner configuration 

as shown in Figs.4.1 - 4.3. 

Another similarity between gas turbine combustors and high intensity burners 

is the operating conditions of mean velocity, VI, and burner pressure loss, ~p. or 

'windbox pressure'. VI is based on the burner approach pipe area AI, which is the 

downstream combustion area. In the present work, ~p is often given directly as 

mbar or mm WG for burners but is usually referred to as a percentage of upstream 

absolute pressure in gas turbines l:!.P/P. Pressure loss is related to the velocity VI 

and the burner stabiliser open area A2 by eq.I(34): 
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A U 1 A M A Ll!. = 1/2 (--1..l (--.!.)2 = .1. (_ . --.!.)2 .... (1) 
P CD R T A2 2 CD A2 

Where CD is the burner discharge coefficient defined by Eq.2: 

Where m is the burner mass flow and p is the upstream gas density p = ~ 
RT . 

where R is the gas constant and T the upstream temperature). 

Equation 1 shows that the pressure loss is simply expressed in terms of the burner 

approach Mach number, M, which includes both the velocity and temperature 

effects. For gas turbine combustors a typical Mach number is 0.05, which gives a 

mean approach velocity of 16 rn/s at 300K and 24 rn/s at 6ooK. These are typical 

of the maximum burner velocities used in some high intensity burners. 

For the present work the burner velocities were used in the range of 2 - 10 

rn/s at 305K or to 24 rn/s at 600K which covers a wide range of practical burner 

approach velocities. 

Gas turbine combustor pressure losses are generally in the range of 2 - 5% 

which convert to burner wind box pressures of 200 - 500 mmWG, which is typical 

of many high intensity burners. Pressure losses of approximately between 100 -

300mm WG have been used for a range of Mach number between 0.0064 - 0.047. 

Use of Eq.2 with the stated Mach number ranges and pressure loss shows that the 

AI 
practical range of - for both gas turbine primary zones and burners is 

A2 

approximately (2 - 12). This area ratio is more often expressed as burner 

A 
blockage (1 _.2.) and the practical range is approximately 50 - 90%. 

AI 

Gas turbine combustor must have a very wide stability range as there is a 

factor of 2 - 3 difference in the operating air/fuel ratio at high and low power 

output and a wide stability margin on the operating condition is required. This 

design condition is similar to the requirement of a wide turndown ratio in high 

intensity burners. The major difference is that burners are designed to give their 
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maximum output just on the weak side of stoichiometric (EQR=O.9), whereas 

materia1limitations in gas turbines limit the maximum power output to EQR<O.4. 

However, the primary zone with only a proportion of the combustion air will 

operate closer to the burner equivalence ratio situation. 

4.8J BURNER CONFIGURATION 

Figure(4.3) shows an outline of the equipment and test facility that was used 

in the present work. It consists of an air supply from a fan, venturi flow metering 

,electrical preheater,1.5 m long 140mm diameter approach pipe,flange mounted 

swirler with integral central fuel injector, a 330mm long 140mm 1.0. burner and 

an exhaust system with a flame observation window located a short distance from 

the burner exit.The stainless steel burner wall were ucooled except by natural 

convection. This was also coupled with a water cooled wall of the same internal 

diameter. The burner length was varied from 330mm to 1160mm by placing a 

water cooled pipe. A water cooled twenty holes 'X' configuration mean gas 

sampling probe was either at 330mm or at I 160mm from the swirler. The 330mm 

position was to demonstrate that combustion was completed close to the burner 

with good fuel and air mixing characteristics. The longer burner wall was required 

investigate residence time influence on NOx emissions. Ignition was achieved 

using a 12 Joules surface discharge igniter mounted 25mm down stream of the 

swirler. 

The method of fuel injection used in the present work was direct central fuel 

injection using an eight hole nozzle with radial natural gas injection which give a 

radial jet velocity between 55rn/s-180rn/s depending on the fuel flow rate. There 

was no axial component of the gas momentum, which might penetrate the vortex 

core region as the burner throughput was increased. The fuel used was a natural 

gas analysed by gas chromatography (92.45% C~, 5.34% C2H6, 0.40%C3Hg, 

0.45% CO2, 1.24% N2• 0.12% 02)' This was taken from the 76mm diameter 

mains and heated to 1 bar gauge pressure in a boost fan. This was then fed via a 

flow metering panel in the control room to the rig. Two different inlet air 

temperature were used (305K and 600K) simulating the ambient and the 
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preheated operating conditions at a flow velocity of 2.5m/s at 305K inlet 

temperature and 3.3m/s at 600K inlet temperature 

4.8.4 WEAK EXTINCTION 

The blowoff limits are of importance in the design of industrial burners as 

they determines the turndown ratio. 

The flame stability or blowoff was determined by keeping the air flow rate 

fixed and decreasing the fuel flow. The process was observed directly from the 

control room through a lOOmm diameter air cooled window in the exhaust. Weak 

extinction was also monitored through the gas analysis and was accompanied by a 

sudden increase in UHC emissions. The flame stability data were reproducible to 

within +0.02 of an equivalence ratio and are summerised in Table(4.7). 

At conditions close to the weak extinction limit, the region of maximum peak 

wall temperature moved closer to the swirler and there was much less combustion 

in the forward stream adjacent to the CRZ. However, there was much more 

unburnt gas present within the CRZ (35), and the appearance of the flame 

becames less steady. 

From Table(4.7) the weak extinction results show that at lower inlet air 

temperature, extinction occured at higher equivalence ratios and that was due to 

the wider flammability limits at higher inlet temperatures Table(4.7) also shows a 

close similarity between the flammability limits, and the flame stability limits, 

indicating that the fuel and air mixing was rapid and that the swirler(A) was 

behaving as through it was premixed. The reason for this was the relatively large 

swirler depth (30.Smm) with fuel injected at the base of the swirler. 

The flame stability depends on the location of the reaction zone within the 

flow field near to the burner exit and the reason for flame extinction were(35): 

-radial shift of the flame front in regions of excessive local fluid velocities. 

-lifting of the flames by exceeding the maximum possible fuel concentration 

within the stabilisation region. 
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4.8.5 WALL STATIC PRESSURE PROFILES 

The radial distribution of static pressure inside the burner can identify the 

complex flow patterns that occur with highly confined flows(36). The wall static 

pressure profiles in the present work are plotted as dimensionless quantity in 

tenns of the burner inlet dynamic head Fig.4.76 shows that the wall static pressure 

profile exhibits three zones with high wall static pressure separated by lower wall 

static pressure regions. A low wall static presure followed by a high value is 

associated with a recirculation zone(RZ). the static pressure corresponding to the 

maximum width of the recirculation zone with high swirl velocities. The size and 

number of these recirculation zones are influenced by the swirler design. 

It was previously shown using the water model technique. that the small 

swirler(A) swirling flow generated two peripheral recirculation zones counter 

directions each other and the impingement point was 0.5D from the swirler outlet 

vertical plane. The two peaks in the static pressure profiles in Fig.4.26 are the 

points where the flow axial velocity approaches the minimum at the the end of a 

recirculation zone. The first point where the values of static pressure is minimum 

indicates the potential flow going in the reverse direction of the flow to fonn the 

first outer corner recirculation zone. The second minimum value was inward 

recirculation zone that followed the shear layer wall interaction. The shear layer 

thus separates these two counter rotating recirculation zones. 

4.8.6 AXIAL DEVELOPMENT OF BURNER WALL TEMPERATURE 

From temperature surveys Beltagui et al(37) showed that at a condition 

sufficiently removed from the extinction limit. the central recirculation initiated 

combustion of the main forward flow and peak temperatures were observed in this 

forward flow within a distance of 0.5 to 1 swirlers diameters downstream from the 

swirler exit. their results were in agreement with the observations of Syred et al 

(38) and Claypole and Syred (39) using a tangential entry swirl burner. 

For the present work. the axial temperature profile of the uncooled burner 
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tube was monitored using nine grounded junction, mineral insulated type K 

thermocouples. The wall temperature is related to the inner gas temperature and 

hence gives a good indication of the rate of flame development and location of the 

main heat release region. Fig.4.77 shows the variation of burner wall 

temperatures along the burner length for both conditions ie. with and without the 

water cooled pipe connected to the main burner. 

The main feature of Fig.4.77 is the two peaks in the temperature, the first 

peak indicated the presence of high temperature regions adjacent to the wall. The 

two high temperature points coincide with the two recirculation zones discussed 

above. The wall temperatures were lower for the 305K inlet temperature as 

expected due to the lower flame temperatures. However, it is clear that the flame 

is stabilised close to the burner for both situations. 

4.8.7 MEAN COMBUSTOR EXIT EMISSIONS 

The carbon monoxide and unbumt hydrocarbons concentration variation with 

the equivalence ratio, are shown in Fig.4.78 and 4.79 respectively. Their 

combined effect as combustion inefficiency is shown in Fig.4.80, this was 

dominated by the CO emissions. Visual observation and photographs of the 

flame showed it to be predominantly blue with no luminous zones in the main 

flame reaction zone. The short uncooled burner gave the highest CO emissions 

and combustion inefficiency at both inlet temperatures. 

The associated combustion inefficiency levels with water cooled pipe were much 

lower than for burner without water cooled pipe on, mainly due to the extra length 

for the CO and UHC burnout, which was not strogly effected by the cooling. 

Fig.4.81 shows the NOx formation results as a function of equivalence ratio 

and the correlation of NOx formation with flame temperature is shown in 

Fig.4.82. The NOx level rises until it reaches the maximum at 0.8 equivalence 

ratio as predicted by the Zeldovich NOx kinetics. There was very little effect of 

burner length on NOx emissions at both inlet temperatures. It may be that the 

cooling action of the water cooled pipe cancelled the increase in NOx due to the 
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residence time effects. However, the residence time change was too large for this 

to be likely. Hence it may be concluded that NOx was generated in the early 

stages of the combustion and the internal traverse have confIrmed this with the 

other swirler. 

Fig.4.83 shows the correlation between NOx emissions and the combustion 

inefficiency.The NOx emissions have been corrected to a 3% oxygen condition to 

conform with industrial furnace NOx regulations. With the water cooled pipe 

section connected to the main burner rig ,it is evident that there was no 

appreciable change in NOx concentration but there was an improvement in the 

combustion ineffIciency due to the extra residence time. However, the 

ineffIciency after 330mm was generally quite low. 

4.8.8 INFLUENCE OF APPROACH VELOCITY VARIATION ON 

EMISSIONS AT 30SK 

In order that the effect of higher flow on the combustion performance can be 

investigated, work was carried out to test the burner at a higher air mass flow rate 

and hence thermal output which gave a higher pressure loss of 3.3% at inlet 

temperature of 305 K. 

Fig.4.84 and 4.85 shows the concentration of CO and UHC as a function of 

overall equivalence ratio respectively. In general the two conditions exhibits no 

major changes in the CO and UHC emissions for the higher air mass flow rate and 

lower residence time. The exhaust plane combustion efficiency results are 

presented on an ineffIciency basis as a function of equivalence ratio in Fig.4.86. 

This shows clearly, that there was no influence of higher air mass flow rate or 

lower residence time on the combustion ineffIciency. 

Lower NOx emissions were measured at the lower approach velocity of 2.5m/s as 

shown in Fig.4.87 and Fig.4.88. This was partially due to the better turbulent 

mixing at higher pressure loss and partially to the lower residence time. Fig.4.89 

shows the correlation between the burner combustion ineffIciency and the NOx 

emissions corrected to 3% oxygen and standard day humidity. However, the the 
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burner at U1=3.3rn/s exhibited lower corrected NOx compatible with a higher 

combustion efficiency which is mainly due to the higher turbulent mixing rate at 

higher pressure loss and the lower residence time. 

The above discussion was also applicable with even higher air mass flow 

rates or approach velocity at the 305K inlet temperature. Figs.4.92 - 4.95 

demonstrates this for two gaseous fuels propane and natural gas, with the small 

swirler(A) in the 76mm combustor with an associated approach velocity of 

11.1 rn/s and the large swirler(B) in 140mm combustor with an associated 

approach velocity of 5.1rn/s, both at ambient conditions. 

4.8.9 BURNER THERMAL OUTPUT 

Figs.4.96 and 4.97 shows the burner power output as a function of metered 

equivalence ratio. The influence of radial swirler vane angle was minimum for a 

fixed burner inlet approach velocity and preheated air temperature as shown in 

Fig.4.96. However, there was influence on burner thermal output which was due 

to the variation of the inlet temperature This effected the inlet velocity to the 

swirler and hence the power output as shown in Fig.4.97. The highest thermal 

output was exhibited at ambient temperature of 305K. 
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4.9 CONCLUSIONS 

1- The radial vane angle did not influence the combustor exit plane emissions. 

2- The swirler expansion ratio, DId, and hence the size of recirculation zone, 

does not influence the flame stability. This is controlled by mixing in the 

conical shaped swirling shear layer. 

3- The small swirler(A) with a large depth has considerable partial premixing of 

fuel and air upstream of the swirler exit plane. This achieves low NOx 

emissions, but with an inadequate stability margin. 

4- A swirler expansion ratio of approximately 1.8 is required to achieve a high 

combustion efficiency. A larger DId of 3.5 did not produce any major 

improvement in combustion efficiency, but there was a small NOx reduction. 

5- The only significant difference between propane and natural gas operation 

was the NOx emissions where the natural gas had approximately half the 

NOx emissions of propane for the same test condition. 

6- The radial swirler system for natural gas exhibits ultra low NOx emissions of 

lOppm or less corrected to 15% oxygen at 1 bar, with a combustion 

efficiency better than 99.9%. 

7 - The upstream mixing inside the \~e swirler was not a crucial feature of the 

low NOx emissions.The large swirler achieved low NOx emissions without 

the flame stability problem of the small one. 

8- The length of the radial swirl burner did not influence the NOx emissions due 

to higher residence time, but reduced the combustion inefficiency. 

9- Radial swirl burners with natural gas can nearly meet the E.E.C standard 

regulation for the present and for the year 1995. 
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TABLES 



Vane angle 
(Degrees) 

2()O 

3()O 

450 

5()O 

6()O 

Table (4.1) 
Measured weak extinction limits for various radial vane 

angles at Mach number = 0.014. 

Fuel type Inlet Weak Extinction 
Temp.K EQR. A/F 

Propane 400 0.334 47 

600 0.092 171 

Natural 400 0.418 40 
Gas 

600 0.322 52 

Propane 400 0.362 43 

600 0.113 139 

Natural 400 0.418 40 
Gas 

600 0.322 52 

Propane 400 0.329 48 

600 0.038 413 

Natural 400 0.422 39 
Gas 

600 0.030 553 

Propane 400 0.325 48 

600 0.077 205 

Natural 400 0.389 43 
Gas 

600 0.076 219 

Propane 400 0.260 60 

600 0.038 412 

Natural 400 0.354 47 
Gas 

600 0.060 276 

Pressure 
Loss% 

3.8 

3.5 

3.8 

3.5 

4.0 

4.0 

4.0 

4.0 

3.8 

3.8 

3.8 

3.9 

3.8 

4.2 

4.0 

4.0 

3.8 

3.9 

3.8 

3.8 



Radial Mach 
Swirler No. 

A 0.03 

0.014 

B 0.014 

C 0.03 

Table (4.2) 
Measured weak extinction for different outlet radial 

swirlers in 76mrn and 140mrn combustor. 

D/d Fuel Inlet Weak Extinction 
Type Temp.K EQR. (A/F) 

1.9 P 400 0.473 33 

600 0.379 41 

NG 400 0.432 38 

600 0.376 44 

3.5 P 400 0.396 40 

600 ,0.363 43 

400 0.430 38 

600 0.360 46 

1.8 P 400 0.063 247 

600 0.062 252 

NG 400 0.316 52 

600 0.077 215 

1.0 P 400 0.031 508 

600 0.024 666 

(6P/P)% 

2.0 

2.1 

2.0 

2.0 

2.3 

2.3 

2.3 

2.3 

2.5 

2.5 

2.5 

2.5 

2.0 

2.2 



Radial Combustor 
Swirler J.D. 

(mm) 

A 76 

140 

B 140 

Table (4.3) 
Optimum Primary Zone Conditions 

at600K. 

Did Mach Fuel NOxc 
No. Type ppm. 

1.9 0.03 P 21 

NO 9 

3.5 0.014 P 18 

NO 9 

1.8 0.014 P 17 

NO 10 

Ineff.% EQR. 

0.06 0.45 

0.06 0.47 

0.01 0.48 

0.01 0.52 

0.20 0.28 

0.20 0.32 



Radial Mach 
Swirler No. 

A 0.047 

0.03 

A 0.014 

0.008 

B 0.014 

0.02 

C 0.014 

0.02 

Table (4.4) 
Influence of the primary zone Mach number 

on the measured weak extinction. 

Fuel Inlet Weak Extinction 
Type Temp.K EQR. (A/F) 

76mm Combustor 

P 400 0.486 32 

600 0.394 40 

NG 400 0.500 33 

600 0.399 41 

P 400 0.473 33 

600 0.379 41 

NG 400 0.432 38 

600 0.376 44 

140mm Combustor 

P 600 0.363 43 

NG 600 0.360 46 

NG 600 0.365 45 

P 600 0.062 252 

NG 600 0.077 215 

P 600 0.080 195 

NG 600 0.283 59 

P 600 0.038 413 

NG 600 0.030 552 

P 600 0.078 201 

NG 600 0.343 48 

(6P/P)% 

4.7 

4.7 

4.7 

4.7 

2.0 

2.0 

2.0 

2.0 

2.3 

2.3 

1.8 

2.5 

2.5 

4.2 

4.2 

3.9 

4.0 

7.7 

7.7 



Table (4.5) 
Influence of central radial position on the weak exctinction 

for radial swirler (A), 76mrn combustor, Mach no. 0.03. natural gas. 

Injector holes Inlet Weak Extinction (~P/P)% 
position Temp. EQR. (A/F) 

3mrn 400 0.432 38 1.9 

600 0.376 44 1.9 

70mrn 600 0.368 45 1.9 

70mm & Baffle 400 0.016 1056 1.9 

600 0.018 900 1.8 



i -

11-

Table (4.6) 
Proposed Emission Limit Values (or Oxides of Nitrogen in 

Waste Gases from Stationary Combustion Plant. (33) 

lFuel Plant Size NOx (expressed as N02, mg/m3 
Mw Th. 

from 1.1.1985 after 31.12.1995 

~oIid >300 < 650 <200 

300-100 <800 

<100 < 800 but < 400 as a rule 
< 1300 for < 800 for 
pulverised hard 
coal firing wi th 
extraction of 

pulverised hard 
coal firing with 
extraction of 

fused ash. fused ash. 

Liquid All > 50 < 450 < 150 

Gas All > 50 < 350 <100 

Waste gas volume refered to 273 K and 1 atm; 3% 02 for liquid and gaseous 
fuels, 6% 02 from solid fuels, 200mg NOdm3 = 97.5 ppmv. 

Continuous monitoring from which half-hour and daily average are to be 
calculated. Compliance requires that over a calender year. 

- none of the daily mean values exceed the emission limit value. 

- 97% of the half-hourly values do not exceed (6/5) x the limit value. 

- none of the half-hourly values exceed 2 x the limit value. 



Table (4.7) 
Measured Weak Extinction limits for swirler (A) in 

140 nun burner. 

(t.P/P) % Weak Extinction Combustor inlet Approach 
Velocity (UI) EQR (A/F) temperature, K 

2.5 0.59 28 305 

3.6 0.37 45 600 

1.1% 

2.5 0.53 31 305 with W.C.P. 

3.6 0.41 40 600 with W.C.P. 

3.3 2.1% 0.49 34 305 with W.C.P. 
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FIG .4.25 INFLUENCE OF RADIAL VANE ANGLE ON EMISSIONS. 
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FIG.4 .34 INFLUENCE OF RADIAL SWIRLER OUTLET ON EMISSIONS, 
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FIG.4.35 INFLUENCE OF RADIAL SWIRLER OUTLET ON EMISSIONS, 
FOR 76mm & 140mm COMBUSTO~ NATURAL GAS; 400 K. 
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FIG.4.37 INFLUENCE OF RADIAL SWIRLER OUTLET ON EMISSIONS. 
FOR 76mm & 140mm COMBUSTOR; NATURAL SAS: 400 K. 
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FIG.4.38 INFLUENCE OF RADIAL SWIRLER OUTLET ON EMISSIONS, 
FOR 76mm & 140mm COMBUSTOR; PROPANE; 400 K. 
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FIG.4.39 INFLUENCE OF RADIAL SWIRLER OUTLET ON EMISSIONS, 
FOR 76mm & 140mm COMBUSTOR; NATURAL GAS; 400 K. 



. 
E 
a. 
Q. 

>< o 
Z 

LOG10 

xc; D/d-1.0 

<I A: D/d-1.9 

OA; D/d-3 . 5 

+8; D/d-1.S 

2t-~~~~~~~~~'-~~~~~~~~~~ 

1 

O+-~~~~~~~~~,-~~~~~~~~~~ 
o 5 10 

EQUIVALENCE RATIO 

FIG .4.40 INFLUENCE OF RADIAL SWIRLER OUTLET ON EMISSIONS. 
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FIG.4 . 41 INFLUENCE OF RADIAL SWIRLEA OUTLET ON EMISSIONS. 
FOR 76mm & 140mm COMBUSTOR; NATURAL GAS: 400 K. 
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FOR 76mm & 140mm COMBUSTOR NATURAL GAS; 400 K. 
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FIG.4.45 INFLUENCE OF RADIAL SWIRLER OUTLET ON EMISSIONS, 
FOR 76mm & 140mm COMBUSTOR; NATURAL GAS; 400 K. 
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FIG.4.47 INFLUENCE OF RADIAL SWIRLER OUTLET ON EMISSIONS. 
FOR 76mm & 140mm COMBUSTOR: NATURAL GAS; 600 K. 
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FIG.4.49 INFLUENCE OF RADIAL SHIRLER OUTLET ON EMISSIONS, 
FOR 76mm & 140mm COMBUSTO~ NATURAL GAS: 600 K. 
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FIG .4.52 INFLUENCE OF RADIAl SWIRLER OUTLET ON EMISSIONS, 
FOR 76mm & 140mm COMBUSTOR: PROPANE: 600 K. 
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FIS .4.53 INFLUENCE OF RADIAL SWIRLER OUTLET ON EMISSIONS, 
FOR 76mm & 140mm COMBUSTOR NATURAL GAS; 600 K. 
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FIG.4.54 INFLUENCE OF RADIAL SWIRLER OUTLET ON EMISSIONS. 

. 
Ii 
a. 
a. 
X o 
z 

X102 

FOR 76mm & 140mm COMBUSTOR PROPANE: 600 K. 

x8: O/d-1.8 

~A: D/d-i.9 

i~~~~ __ ~~~~~~~~~~~-r~~~~ 

o~~~~~~~~~~~~~~~~~~~~~ 
o 1 2 3 

FLAME TEMPERATURE. K. 

FIG.4.55 INFLUENCE OF RADIAL SWIRLER OUTLET ON EMISSIONS. 
FOR 76mm & 140mm COMBUSTOR NATURAL GAS: 600 K. 
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FIG .4.56 INFLUENCE OF RADIAL SWIRLER OUTLET ON EMISSIONS, 
FOR 76mm & 140mm COMBUSTOR: PROPANE; 600 K. 
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FIG.4.59 INFLUENCE OF PRIMARY ZONE MACH NO. ON EMISSION~ 
FOR 140mm COMBUSTO~ NATURAL GA~ 600 K. 
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FIG.4.61 INFLUENCE OF PRIMARY ZONE MACH NO. ON EMISSIONS. 
FOR 140nun COMBUSTOR: NA TUAAL GAS: 600 K. 
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FIG.4 .63 INFlUENCE OF PRIMARY ZONE MACH NO. ON EMISSIONS. 
FOR 140mm COMBUSTOR: NATURAL GAS: 600 K. 
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FIG.4 .64 INFLUENCE OF PRIMARY ZONE MACH NO. ON EMISSIONS, 
FOR 140mm COMBUSTO~ PROPANE; 600 K. 
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FIG.4.65 INFLUENCE OF PRIMARY ZONE MACH NO. ON EMISSIONS. 
FOR 140mm COMBUSTO~ NATURAL GAS: 600 K. 
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FIS.4.66 INFLUENCE OF PRIMARY ZONE MACH NO. ON EMISSIONS, 
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FIG.4.67 INFLUENCE OF PRIMARY ZONE MACH NO. ON EMISSIONS, 
FOR 140mm COMBUSTOR; NATURAL GAS: 600 K. 
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FIG.4 .71 INFLUENCE OF CENTRAL FUEL INJECTOR POSITION ON EMISSIONS 
SWIRLER (A) IN 76mm COMBUSTOR; MN-. 03; NA TURAL SA~ 400 & 600K. 
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FIS.4.72 INFLUENCE OF CENTRAL FUEL INJECTOR POSITION ON EMISSIONS 
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FIG .4.73 INFLUENCE OF CENTRAL FUEL INJECTOR POSITION ON EMISSIONS 
SWIRLER CA) IN 76mm COMBUSTOR; MN-. 03; NA ruRAL SAS; 400 & 600K. 
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FIG . 4.81 INFLUENCE OF BURNER LENGTH ON EMISSIONS FOR SNIRLER CA) 
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Plate 4.1 Near Weak Extinction for propane central injection using 
radial swirler(B) in 140mm combustor with pressure loss 
of 4. 2% and inlet temperature= 600K~ EQR.=O.1 . 
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CHAPTER FIVE 

COMBUSTION CHARACTERISTICS WITH PASSAGES AND WALL FUEL 

INJECTION 

S.1INTRODUCTION 

The conventional mechanism for combustion in a non-premixed swirl burner 

system is by central fuel injection. Most of the experimental basis for the 

favorable properties of swirling flames comes from studies of furnace burners or 

free flames with central fuel injection (1.2.3,4). 

The application of swirling flow to gas turbines involves enclosures whose 

dimensions are much closer to those of the swirler than for furnace applications 

and this can significantly alter the swirler aerodynamics. Also. it allows the fu'el to 

be injected at the periphery of the swirler rather than at the centre. This was 

demonstrated by Ahmad et al(5.6) and more recently by Beltagui and 

MacCallum(7). In the present work similar technique have been used but by 

using two fixed wall injectors of diameters 76mm and 140mm with eight injector 

holes inclined upstream at 30 and 15 degrees to the vertical respectively. These 

were used in combination with the 76mm and 140mm combustors as shown in 

Fig.5.l. Fuel injection inside the vane passages of radial swirler have been used 

in some low NOx combustion designs. this a particular advantage of radial 

swirlers (8,9.10,11,12,13,14,15). In their investigations of radial swirl systems for 

low emission gas turbine combustors. Smith et al(11.12,13.14,15) used radial 

vane passages with a bend into an annulus around a centre body. thus becoming a 

form of axial swirler but with the benefit of greater passages fuel and air mixing. 

For the present work the fuel was injected through a shorter passages. using the 

benefit of the radial air flow for partial mixing with the injected fuel before being 

introduced to the primary zone. The sudden expansion from the radial swirler 

outlet gave a very rapid swirler expansion and strong shear layer which were 

advantageous to the swirler performance. 

Although centrifugal forces are important, in swirl combustion. they have 
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been neglected until recently(16-19). The local density differences, due to 

combustion of pockets of gas surrounded by unburnt gas, cause the lower density 

hot gas to move inwards, relative to the high density unburnt gas. This relative 

movement promotes unburntlburnt gas mixing and increases the flame 

propagation .rate. this feature has not been included in numerical models of 

turbulent combustion(20), although the related problem of buoyancy induced 

burnt/unburnt gas mixing has been included in the theory of Bray and Moss(21). 

The purpose of the present work was to investigate the significance of these 

centrifugal forces in enclosed swirling flames that simulate practical gas turbine 

primary zone conditions and to exploit the additional mixing forces on a low NOx 

combustor design. Many recent experimental combustors designed for low 

emissions and future fuels call for the use of swirl flame stabilisation with most of 

the combustion air flow passing through the swirler(8,9,16,19,22-24). It is well 

known that NOx emissions can be reduced by using lean well mixed primary 

zones, but the level of reduction is closely related to the quality of improved fuel 

and air mixing. Premixed fuel and air systems offer the lowest NOx emissions but 

involve major practical problems(25) . One of the major problems is that flame 

stability which may be overcome by fuel staging between a diffusion flame pilot 

and premixed main burner(26-28). 

An alternative technique for overcoming the stability problem is that of 

variable air staging, with air switched from primary zone to dilution zone at low 

power and in reverse direction to give a lean primary zone at high power. This 

involves the complexity of moving parts in a high temperature environment and 

there have been few successful applications of this technique in small gas tqrbine 

combustor sizes, but it is more easily achieved in large industrial gas turbines(29). 

Andrews et al(30) have developed a range of techniques for low NOX gas 

turbine primary zones with good flame stability, all of which use fuel injection 

into the base of jet shear layers. Low NOx emissions have been demonstrated for 

non-swirling jet shear layer for both gas and liquid fuels(31,32) and as 
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demonstrated in chapter four using just straight radial flow with central injection 

gaseous fuel. Thus the conclusion of Mestre(33) regarding non-swirling systems 

are not supported. However, the present work investigates techniques to produce 

further reductions in NOx emissions for radial swirlers, using the radial swirler 

passages as a partial fuel and air premixing zone. 

5.2 REVIEW OF RELEVANT STUDIES 

Perhaps one of the superior advantages of using radial flow swirler is the 

pennittability of use of swirl vane passage fuel injection system to promote partial 

premixing of the fuel and air. The only previous work on passages injection 

which is close to the present work is that of Smith et al(1l,12,13,14,15). They 

used filetest rig and the fuel injection modes which are shown in Figs.5.a - 5.b. In 

their work the radial passages were carried through a bend into an annulus around 

a central fuel injector, thus becoming a form of axial swirler but with the benefit 

of a greater passage fuel and air mixing time. 

Ahmad et al(34) found problems in the achievement of an adequate 

combustion efficiency and stability with lean primary zones using large air flow 

axial swirlers with central fuel injection. By the use of radial swider these 

problems could be overcome, with their quite different near swirler aerodynamics. 

Ahmad and Andrews(34) and Andrews and Kowkabi(35)showed that for a fixed 

axial swirler the position and direction of fuel injection had a major influence on 

the flame development and NOx emissions The objective of the present work was 

to investigate the potential for NOx reduction using better fuel placement in radial 

swirl stabilised combustor primary zones. One of the main advantages with 

swirling flow combustion is due to the fact that a centrifugal force field is 

generated which tends to accelerate the mixin~. of two flows having different 

densities and thus increase the reaction rate in combustion processes. This 

inherent property of swirling flow has frequently been utilised in premixed 

combustion to aid flame spread (10,34,36). 
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For central fuel injection in a swirling flow, the higher density fuel is 

centrifugally forced towards the wall of the combustor as soon as it passes the 

swirler vanes, thus promoting fueVair mixing. For direct injection of fuel the two 

methods of forcing the fuel towards the wall is by injection at the wall or by 

central radial injection. The use of fuel injection at the wall has not been 

investigated previously for practical enclosed axial vane swirler stabilised flames. 

The technique is particularly suited to gas turbine combustor applications as the 

swirler expansion (DId) is limited to less than two and hence the swirl velocities 

in the wall region remain sufficiently high for mixing and atomisation of the 

liquid fuel. 

The CIVIC combustor design of Shekleton(9.37) was aimed at the 

exploitation of the centrifugal mixing effects. However. the fuel was injected 

closer to the centre than the wall. Vranos et al(17) have also recognised the 

possibilities of enhancing flame propagation rates by initiating combustion at the 

periphery of a swirl flow. but only a low swirl was investigated and no detailed 

gas composition measurements were taken. Previous investigation of swirling 

flames with liquid fuel injection at the wall was reported by Mestre(18.33) and 

Kowkabi(16). The former was aiming at the exploitation of the centrifugal mixing 

forces for a kerosene fuelled system. However. it was applied to an annular swirl 

flow with the inside cylinder water cooled and was a rather unrealistic situation 

for gas turbines. However. the results (33) included gas composition 

measurements for both swirling and non-swirling flows. These showed a 

significant improvement in the combustion efficiency and a reduction in the NOx 

levels with wall injected fuel and swirling flow compared with non-swirling flow. 

This was attributed to the beneficial influence of centrifugal mixing forces and 

better atomisation with the swirling flow(16). 

Beltagui and Maccallum(7,48) demonstrated the better flame development 

for axial swirlers with peripheral fuel injection. Natural gas was introduced 

through an annular slit of 2mm width around the periphery of an air swirler. 

Comparing their results with central fuel injection systems they showed that the 
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peripheral injection systems with even weak swirl gave much more rapid mixing 

and combustion and uniform temperature in shorter furnace lengths. Axial central 

fuel injection, which is the most frequently used mode of fuel injection in swirl 

combustion, resulted for a confined swirl flame in a very rich core region for a 

weak overall mixture. Radial central fuel injection produced much better mixing, 

which was further improved by fuel injection at the swirler periphery. 

Investigations of central radial injection of fuel are rare. Most of the central 

injection systems studied are multi hole divergent nozzles with divergent angles 

less than 90 degrees(38-40). Leuckel and Fricker(41) investigated flames 

produced when natural gas was injected directly into an internal reverse flow zone 

induced by strong rotation of the combustion air. They carried out a series of tests 

on central fuel injection systems with various nozzle divergent angles and an 

annular axial fuel gas jet. Their results indicated that with an angle of zero, i.e. a 

central axial fuel injection, a long slow mixing luminous flame was produced. 

The use of the annular axial gas jet with the same injection velocity, however, 

produced a short intense blue flame. the use of very large values of injection 

angles greater than 40 degrees also produced a. well mixed intense flame 

depending on the velocity of the fuel. 

Takagi et al( 42) showed that the flame was elongated and concentrated in the 

centre of the tube. In their swirling flame, the main part of the burnt and unburnt 

gas species existed mostly in the central part of the flame with a radius of 10mm 

where the radial gradient of species were high. Charles and Samuelson(27) have 

shown a major improvement in the flame development of their air staged swirler 

flame when the direction of the central fuel injection was changed from 

predominantly axial to predominantly radial. The present investigation of passage 

fuel injection were undertaken to exploit the twin benefits of peripheral fuel 

injection and partial fuel mixing upstream of the swirler. For liquid fuels, passage 

injection also has the advantages of high airflow air blast atomisation. 
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5.3 PASSAGES FUEL INJECTION RESULTS 

In the present work gaseous and liquid fuel injection into the radial swirler 

vane passages was investigated. Passage fuel injection was undertaken to exploit 

the twin benefits of peripheral fuel injection and partial fuel air mixing upstream 

of the swirler. For liquid fuels, passage injection also has the advantage of high 

velocity air blast atomisation. A Mach number of 0.02 was used with blockage 

suitable for the generation of a pressure loss 4%, similar to conventional 

combustors. This pressure loss was needed to create good turbulent fueVair 

mixing with low NOx emissions, as well as good liquid fuel atomisation in the 

radial vane passages. The ratio of the primary zone mach number, 0.02, to the 

total mach number, 0.047 gave the primary zone proportion of the total combustor 

air that was simulated using the swirler above as 43%. 

5.3.1 INFLUENCE OF FUEL TYPE ON MEAN EMISSIONS 

5.3.1.1 Weak Extinction results 

At a constant mean velocity and inlet temperature the fuel flow was gradually 

reduced until visual observation, through the lOOmm window in the exhaust, 

showed the flame to go out. The extinction process was also detectable from the 

gas analysis by a sudden increase in UHC emissions. The weak extinction results 

were repeatable to +/- 0.02 equivalence ratio and are summarised in Table(5.1) for 

radial vane passage fuel injection of propane, kerosene and gas oil. The simulated 

overall weak extinction was determined by mUltiplying the measured weak 

extinction A/F by the ratio of the reference Mach number to test Mach number 

(0.047/0.02). This assumed that the addition of the remaining air would have no 

influence on the primary zone swirler weak extinction. This is valid for dilution 

air injected well downstream of the primary zone. 

Comparative results are also included in Table(5.1) for central injection of 

propane using an eight hole radial fuel injector. Weak extinction data for central 

injection has also previously been obtained for a Mach number of 0.014 Alkabie 
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et al (43). This work also included data for natural gas which had a similar weak 

extinction to propane. However, the radial passage gas injector fuel feed system 

was complex and a third one was not available for the larger hole sizes needed for 

natural gas. 

The weak extinction results showed that for propane the radial passage 

injection resulted in a marked deterioration in the weak extinction compared with 

central injection. However, it was still a 56% improvement on the premixed weak 

extinction and the simulated overall flame stability was well outside the 

operational requirements. This indicated that, as expected, there was better fuel 

and air mixing with fuel injection into the radial passages. Part of the imprOVed 

mixing was due to the increase in pressure loss from 4.2 to 5.8% caused by the 

aerodynamic blockage of the fuel in the radial vane passages. This 1.6% increase 

in pressure loss was halved when using liquid fuel, indicating that full 

vaporisation did not occur in the radial vane passages. 

The kerosene weak extinction were very similar to those for propane, but 

slightly wider. This indicated a substantially similar combustion performance to 

propane, which the gas analysis results support. The significantly wider stability 

limits for gas oil at 600K indicated less vaporisation in the radial vane passages 

than for kerosene, and richer regions at the base of the stabilising swirling jet 

shear layer, as shown by the radial traverses discussed later. Plate 5.1 shows 

cross-sectional view of the kerosene and gasoil flame for an equivalence ratio of 

0.44 and 600K inlet temperature. At 400K gas oil had a worse stability than for 

kerosene and was no better than the premixed situation. The poor vaporisation at 

4QOK would produce insufficient fuel vapor to create a rich zone at the base of the 

shear layer. The main burning was then downstream of the shear layer in the wall 

region where the fuel was more completely vaporised and mixed with the air. The 

combustion results support this with a Gas Oil combustion efficiency superior to 

that of kerosene and similar to that of premixed combustion at 400K. 
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5.3.1.2 Wall static pressure and temperature profiles 

The axial wall temperature profiles at 400 and 600K inlet temperature are 

shown in Figs.5.2 and 5.13 at various equivalence ratio. The results show that the 

type of fuel had a significant influence on the axial temperature profiles. The 

internal gas composition results showed that passage injection carried fuel to the 

centre of the combustor creating a richer core than for central injection. This 

created a leaner wall region and a slower flame development, as shown by the 

wall temperature results. 

Kerosene behaved in a similar way to propane, but the gas oil temperature 

profiles were substantially different to kerosene with a more rapid development of 

the flame. The internal traverses showed the propane and kerosene flames 

developed similar radial temperature profiles in the initial region near the wall, 

but gas oil burned hotter near the wall. This was because at 600K the delayed 

vaporisation of gas oil resulted in a richer shear layer and outer recirculation zone 

than for kerosene. 

5.3.1.3 MEAN COMBUSTOR EXIT EMISSIONS 

The measured mean combustor exit emissions are shown in Figs.5.14 - 5.21 

The unburned hydrocarbon (UHC) emissions at 400 and 600K are shown as a 

function of the equivalence ratio in Figs.5.16 and 5.17 respectively. At 400K both 

propane and gas oil had very low UHC emissions for equivalence ratio as weak as 

0.55. However, the kerosene emissions were much higher and were coupled with 

high CO emissions as shown in Figs.5.14 and 5.15. These results indicate that the 

kerosene flame had achieved sufficient vaporisation to stabilise the flame with a 

rich zone at the base of the shear layers. For gas oil the vaporisation was slower 

and flame stabilisation occured further downstream where more mixing had 

occured. The weak extinction results also indicated better mixing and worse 

stability for gas oil at 400K. At 600K all three fuels gave low UHC emissions, 

but gas oil gave the highest and these were higher than at 400K. The gas oil flame 

was stabilised in the shear layer, as shown by the wall temperature profiles and 
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the better stability. The slower vaporisation than kerosene would produce richer 

shear layer regions and hence higher UHC and CO emissions, as shown in 

Figs.S.17 and 5.15 for mixtures richer than 0.48. 

The combustion inefficiencies are shown as a function of equivalence ratio in 

Figs.5.16.a and 5.17.a for 400 and 600K respectively. Apart from kerosene at 

400K an inefficiency of approximately 0.1 % was achieved by all the fuels in the 

weak region. The 98% efficiency for kerosene at 400K and one atmosphere 

pressure is a quite reasonable performance for a conventional combustor design. 

These results show that passage injection of liquid fuels did not produce any 

major problems of poor atomisation and vaporisation which would result in very 

high UHC emissions. The results also mean that there could be no major problem 

of radial passage wall wetting and fuel dribble from the passage exits because this 

would also cause high UHC emissions. 

The NOx emissions at 600K are shown as a function of equivalence ratio in 

Fig.S.19. Kerosene and propane had similar low NOx emissions, except close to 

weak extinction where the kerosene NOx emissions were slightly higher. The 

internal traverse results in chapter three showed that these higher NOx levels were 

generated by local differences in mixing in the near burner shear layer region. The 

gas oil NOx emissions were higher at all equivalence ratios tested, but still 

relatively low. The higher emissions were caused by the richer burning in the 

shear layer, as discussed above. They may also have been increased by the 

significant levels of fuel nitrogen that occur in gas oil but not in kerosene 

Williams et al(44) The NOx emissions at 600K corrected to 15% oxygen and the 

standard day humidity are shown as a function of the inefficiency in Fig.S.2I. The 

minimum NOx emissions compatible with a low inefficiency may be obtained 

from Fig.S.2!. For an inefficiency of approximately 0.1 % or lower the minimum 

corrected NOx emissions were 2.5, 6 and I3ppm for propane, kerosene and gas 

oil respectively. These are ultra low NOx emissions for both propane and 

kerosene. The gas oil results are the lowest attained by any combustor design for 

this fuel and are as low as for central injection with propane. 
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The EPA 75ppm NOx regulation converts, using the thermal NOx square 

root pressure relationship, to 20-24ppm at atmospheric pressure for the 15-20 bar 

operating pressure range of many industrial gas turbine combustor The present 

results indicate that for gas oil approximately half the EPA NOx limit may be 

achieved with a factor of ten reduction possible for propane and natural gas. Lean 

primary zones using radial swirlers with passage fuel injection thus offer one of 

the best potential solutions available for low NOx emissions, without the 

problems of a fully mixed system. 

5.3.2 INFLUENCE OF INLET TEMPERATURE ON THE MEAN 

EMISSIONS FOR NATURAL GAS 

5.3.2.1 Weak extinction 

The measured weak: extinction data for four air inlet temperature are summarised 

in Table(5.2). A slight improvement on the weak extinction was found when the 

inlet temperature risen was increased to 740K. There was reasonable agreement 

between the results for the mean adaibatic flame temperature at weak extinction. 

The effect of inlet temperature expected to be minor. Due to the low molecular 

weight of natural gas which permit it to disperse quite easily through incoming 

swirling air, With liquid fuels the situation may be different due to the 

dependency of vaporisation rate on the inlet temperature. 

5.3.2.2 Wall static pressure and temperature profiles 

Fig.5.22 - 5.29 demonstrates wall static pressure and temperature profile of 

the 140mm combustor for inlet temperature of 550,600,670 and 740K. The main 

feature of temperature profiles were that they showed the flame development was 

much faster as the inlet temperature increased The higher the equivalence ratio 

and the inlet temperature the faster the axial and radial flame flame development. 

However, for inlet temperatures of 600K and 550K the wall temperature profiles 

showed a cooler wall region adjacent to the swirler and a slower axial flame 

development. This is occured at nearly all equivalence ratios tested. For an inlet 
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temperature of 600K at equivalence ratio above 0.5 the wall temperature profile 

showed a faster flame development. The fIrst drop in the wall temperature was 

associated with the impingement point where the swider flow splits on wall 

region at a point approximately 0.32 combustor diameters downstream of the 

swider Two flows recirculating in opposite directions were demonstrated in 

chapter two from the flow visualization studies. 

5.3.2.3 MEAN COMBUSTOR EXIT EMISSIONS 

The influence of the four inlet temperature upon the emission of carbon 

monoxide and unburned hydrocarbons are shown in Fig.5.30 and Fig.5.31 as 

function of metered equivalence ratio. The main feature of these two figures were 

the sudden increase of CO and UHC emissions as the equivalent ratio approach 

the weak extinction limits. Inside the weak extinction the CO and UHC emissions 

were very low at all high inlet temperatures as was the combustion inefficiency 

Fig.5.32. The equivalent mean flame temperature for the point of sudden increase 

in CO was 1650K and 1700K for UHC. for all inlet temperatures. 

The major effect of inlet temperature was on NOx emissions as shown in 

Fig.5.33 and Fig.5.35. As the equivalence ratio was increased the NOx promoted 

by all inlet conditions were rapidly increased until it reach 0.4 equivalence ratio 

where the flame temperature about 1800K. This is the temperature beyond which 

thenna! NOx generation become rapid. but as can be seen from Fig.535 the NOx 

fonnation increases slowly which means that thermal NOx was not the dominant 

mechanism for NOx generation. Thus prompt NOx appears to be the dominant 

NOx formation mechanism with small contribution from thermal NOx. 

The NOx level at an equivalence ratio of 0.4 was less than 4.5. 4.5. 8 and 

lOppm for 550, 600, 670 and 740K inlet air temperature respectively. These 

corresponded to 2 and 3ppm NOx corrected to 15% oxygen and standard day 

humidity as shown in Fig.5.34. Thus, radial passage fuel injection with natural 

gas has demonstrated ultra low NOx emissions at high inlet temperatures. The 

760K inlet temperature is that of RB211 industrial gas turbine and hence this 
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design offers good prospects for a solution to the NOx emissions problem. This 

design is currently being assessed at high pressure condition by Rolls Royce. 
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5.4 WALL FUEL INJECTION RESULTS 

Fuel injection at the periphery of the swirler or the wall overcomes a partial 

problem of radial swirl vane passage fuel injection namely that of spontanous 

ignition. It also exploit the centrifugal mixing forces inhance in swirling flows. 

In the present work two configuration were investigated radially inward fuel 

injection at the swirler outlet (76mm wall injector) and radial inward fuel 

injection at 140mm combustor wall as shown in Fig.5.60. 

5.4.1 Weak Extinction 

Table(5.3) shows the measured weak extinction data for the wall injection 

system used in the present work. With liquid fuels there was a marked 

deterioration in the weak extinction. This effect was surprising as liquid fuel 

injection generally extend flame stability limits leanward, as reponed by Mizutani 

and Nishimoto(45) and confirmed by Myers and Lefebvre(46). Their 

investigations concluded that the presence of droplets serve to wrinkle and 

lacerate the flame surface thereby increasing the flame speed(45). However, drops 

serve as high temperature ignition sources, extending the flammability limits and 

accelerating the burning velocity of adjacent flame elements. In the present 

situation, the deterioration in the weak extinction limit is considered to be 

associated with the action of the swirl flow on the fuel droplets. During the 

vaporisation process droplets will come under the action of centrifugal forces 

created by the swirl flow(37,47). These will force the droplets will be 

concentrations in the flame stabilising shear layer will be much lower than for gas 

injection. 

5.4.2 INFLUENCE OF WALL INJECTION PLACEMENT ON EMISSIONS 

5.4.2.1 Axial wall static pressure and temperature profiles 

Fig.5.36 - 5.43 illustrates the combustor wall static pressure and temperature 

profiles for two gaseous fuels propane and natural gas using two different modes 

of wall injection. The first mode was to inject fuel immediately in the outer 
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(peripheral) recirculation zone using 140mm I.D wall injector and the second 

mode was to inject the fuel in the high potential rotational flow after leaving the 

radial swirler outlet before the flow being expanded to the combustion chamber. 

The time delay in expanding the flow to the main combustor would give more 

time for fuel to be mixed with the air. 

The main feature with 140mm wall injector profiles were the high 

temperatures at 25mm axial distance. This associated with the fuel being injected 

into the peripheral (corner) recirculation zone creating a rich zone burning with a 

higher temperature. Downstream of the corner recirculation zone the flame 

development was more uniform as shown in Fig.5.37 and 5.41. For the 76mm 

wall injector Fig.5.38 - 5.43 show that the flame development was more or less 

uniform, this was due to the better mixing generated earlier in the extension 

length of the 76mm wall injector before being issued to the 140mm combustor. 

Plate 5.2 shows cross-sectional view of natural gas and propane flame using 

76mm wall injection for an equivalence ratio of 0.46 and 600K inlet temperature. 

5.4.2.2 MEAN COMBUSTOR EXIT EMISSIONS 

Fig.5.48 - 5.53 demonstrate the effect of using the two modes of wall 

injection on the mean exhaust emissions. Carbon monoxide and unburned 

hydrocarbons emissions as a function of metered equivalence ratio are shown in 

Fig.5.48 and 5.49. Minimum CO emissions occured at a weaker equivalence ratio 

using 140mm wall injection as was found for the relative lean flammibility limit. 

For rich mixture the wall mixing of the 140mm wall injection produced higher 

CO emissions than for the 76mm wall injector. UHC emissions were found to be 

negligible except close to the weak extinction equivalence ratio. Fig.5.48 illustrate 

the combustion inefficiency variation with the ~etered equivalence ratio which 

more or less similer to Fig.S.50. Both modes of wall fuel injection were exhibited 

combustion efficiency more than 99.9% at approximately 0.4 equivalence ratio 

for the propane and at 0.54 for the natural gas where it exhibits the minimum CO 

level. CO emissions dominated the combustion inefficiency except at near weak 
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extinction equivalence ratio where UHC contribution to the combustion 

inefficiency was high. 

NOx emissions are generally are correlated as a function of flame 

temperature as this is one of the major factor governing NOx formation. Flame 

temperature is preferable to equivalence ratio for correlating NOx as it takes into 

account any variation in the combustion efficiency. NOx emissions are shown as 

a function of both the metered equivalence ratio in Fig.5.51 and flame 

temperature in Fig.5.53. These show a marked increase in NOx emissions, 

especially with propane as the fuel, at a flame temperature of 1800K. The large 

gradient in NOx emission in reference to the flame temperature indicated that 

most of the NOx emissions beyond a flame temperature of 1800K were due to 

the thermal NOx mechanism. The much higher NOx emissions for the 140mm 

wall injection were due to the injection of fuel into the corner reciculation zone, 

making this a high residence time fuel rich region and hence prove to the 

generation of thermal NOx. However, the 76mm wall injection mode gave ultra 

low NOx emissions using natural gas as fuel. This was partly due to the good 

mixing between natural gas and air since the former has lower molecular weight 

than propane which means high diffusivity action and natural gas will be quickly 

dispersed into turbulent region of shear layer and hence low NOx formation. 

Fig.5.52 shows the NOx corrected to 15% oxygen and standard day humidity as a 

function of combustion inefficiency. Using the 76mm wall injection fuelled with 

natural gas would be generating less than 1 ppm with the highest combustion 

efficiency but more than 10 times higher by using 140mm wall injector which is 

still a low NOx combustor design. These are the lowest NOx characteristic ever 

published for a gas turbine combustor design, including premixed and catalyst 

system ~d clearly wanting further development. Therefore, by injecting the fuel 

at the periphery of the jet boundary will enhances mixing between fuel and air 

rapidly much more than injecting the fuel in the corner recirculating zone using 

the 140mm wall injector. The 140mm injector did not extend the stability limits 

sufficiently to offset the disadvantage of the higher NOx emissions. 
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5.4.3 INFLUENCE OF FUEL TYPE ON MEAN EMISSIONS 

The foregoing conclusion with 76mm wall injection system led to the present 

investigation whereby four different fuels were tested. Swirler(C) was used with 

the 76mm wall injector in the 140mm combustor Propane, natural gas, kerosene 

and gas oil fuels were used at combustor inlet temperature of 600K and at a Mach 

number of 0.014, the pressure loss of was 4% which is typical conventional 

combustor pressure loss. 

5.4.3.1 Axial wall static pressure and temperature profiles 

Previously, the axial wall static pressure and temperature profiles for propane 

and natural gas were discussed see Fig.5.38 - 5.39 and Fig.5.42 -5.43. Similarly 

Figs.5.44 - 5.47 show the combustor wall pressure and temperature profiles for 

kerosene and gas oil respectively. Fig.5.45 indicated that full vaporization was 

exhibited by kerosene and flame development was faster at equivalence ratios 

above 0.6 especially after the impingement point. However, a vaporization delay 

was indicated in Fig.5.47 for gas oil and hence slower flame development beyond 

50mm away from the swirler. The flame was fully developed beyond 150mm due 

to the evaporation and combustion being completed. 

5.4.3.2 MEAN COMBUSTOR EXIT EMISSIONS 

Measured mean species emissions are shown in Figs.5.54 -5.59. Fig.5.54 

shows that the emission of CO to decreased initially to a minimum level then to 

increase in the leanwards region. The kinetic behaviour of the combustion 

reaction is such that for lean mixtures both the rates of production and oxidation 

of CO increase with increasing in the metered equivalence ratio. Therefore, the 

results indicate that initially the rate of CO oxidation exceeds the rate of 

production due to oxygen availability, thereby decreasing CO emissions until an 

equivalence ratio was reached above which the rate of production of CO exceeded 

the oxidation rate due to locally rich mixture generating high CO. All fuels 

exhibited high combustion efficiency of better than 99.9% as can be seen in 
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Fig.5.56. For propane this optimum efficiencies corresponded to a 0.43 

equivalence ratio, but for natural gas this was about 0.55. However, for liquid 

fuels the lowest combustion inefficiency occured at 0.5 and 0.4 equivalence ratio 

for kerosene and gas oil respectively. 

NOx for gas oil combustion were the highest, as indicated by Fig.5.59 where 

the NOx is shown as a function of metered equivalence ratio. The greatest change 

of NOx with equivalence ratio was found for gas oil. The unmixedness which was 

promoted in the early stage (see wall temperature profile) was the reason behind 

the creation of the rich local zones which create the higher NOx also there may 

have been a fuel Nitrogen contribution(44) due to low level level fuel nitrogen. 

NOx was generated by natural gas fuel. 
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5.5 INFLUENCE OF FUEL PLACEMENT 

Combustion perfonnance is controlled by the mixing of fuel and air 

(oxidant). Mixing effectiveness controls emissions, heat release, stability and 

combustion intensity( 49). Central axial injection is the most common method of 

fuel injection ,some dual fuel burners use spuds located away from the centre to 

inject the gas fuel while the centre pipe carries the other fuel. However, the fuel 

can be throughly mixed with the air before introducing the mixture to the 

combustor as in premixed combustion. 

It is the intention of the present study to compare passages and wall fuel 

injection with premixed and central radial fuel injection. The central radial fuel 

injection is another variation from conventional central axial fuel injection which 

directed the fuel radially from the central axis across the rotational air as shown in 

chapter three and four. Some comparisons between axial fuel injection and 

injection at a range of inclinations to the axis leading to the radial have been 

reported by Leuckel and Fricker(50). 

5.5.1 FUEL INJECTION MODES 

Fig.5.60 shows the modes of fuel injection which have been investigated in 

the present work. They were numbered according to their positions relative to the 

jet boundary as follows: 

1- Premixed fuel injection 

2- Central radial fuel injection. 

3- Passages fuel injection. 

4- 76mm Wall fuel injection. 

5- 140mm Wall fuel injection. 

Each mode of fuel injection will contribute different mixing characteristic to 

the swirling jet shear layer and its surrounding recirculating flow. In the present 

work the use of passages injection will give partial fuel and air mixing in the short 

curved passage between each two radial vanes. However, each tangential vane 
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passage flow emerges from each single passage to be combined with 

neighbouring and opposing jets and this will enhance the mixing between air and 

fuel before introducing the mixture to the combustion chamber. 

The 76mm wall injector injected the fuel around the outer periphery of the air 

jet which makes the use of high shear zones around the air jet and due to the 

centrifugal buoyancy forces which has been setup between air and fuel from one 

side and the hot combustion products from the other. These will tend to move the 

cold air outwards and the hot flame products inwards. 

The 140mm wall injector inject the fuel in the high residence time 

outer(corner) recirculating zone. This created locally rich zone and high NOx, as 

discussed above. 

5.5.2 Weak Extinction 

The weak extinction results are shown in Table(5.4) Central radial fuel 

injection had the best stability, indicating the presence of the richest local mixture 

in the stabilising shear layer, which was confmned by the internal traverses in 

chapter three. The 140mm wall injection had a leaner stability limit than the 

76mm wall injection system. 76mm wall and vane passage injection was more or 

less the same indicating similar local mixing. Both were a significant 

improvement on the premixed weak extinction, indicating that local rich zones 

were still created in the shear layer. 

5.5.3 MEAN COMBUSTOR EXIT EMISSIONS 

The general influence of fuel injection method on the characteristics of the 

mean emissions is demonstrated by Figs.5.61 - 5.66. The mean combustion 

inefficiency results shown in Fig.5.63 were very similar for all method of fuel 

injection with a minimum of well below 0.1 % at an equivalence ratio of 0.4 at 

600K. However, there was a major influence of the method of fuel injection on 

the NOx emissions as shown in Fig.5.66. 76mm wall injection gave better results 

to the passage injection and was close to the premixed NOx emissions with a 
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reduced flame stability problem. The minimum NOx compatible with the lowest 

combustion inefficiency were shown in Table(5.5). This show that 76mrn wall 

injection has lower optimum NOx than for premixed combustion, due to its better 

stability. 

The radial traverse results just downstream of the swirler and near the exit 

place are shown in Fig.5.67. The strong influence of the method of fuel injection 

on local shear layer mixing near the burner is clearly shown with passage 

injection having half of the peak equivalence ratio of central injection. This was 

the main reason for the lower NOx emissions with passage injection. At the 

exhaust plane, there was no influence of the method of fuel injection on mixing or 

combustion temperature and inefficiency. However, there were large differences 

in the NOx emissions which originated in the near burner region and were due to 

a prompt NOx mechanism with little thermal NOx generation. 

5.6 COMPARISON BETWEEN RADIALANDAXIALSWIRLERS 

5.6.1 Weak Extinction 

Table(5.6) shows the measured weak extinction for both type of swirlers and 

it is evidently clear that they have the same weak extinction limits. 

5.6.2 Mean exit plane emissions 

Comparison of the mean combustor exit emissions work that have been 

reported previously by Kowkabi(16) using 140mm Wall injection system in 

140mm combustor are to be compared with the present 140mm wall injection 

results using propane as fuel. The two axial swirler were SW6 and SW5 

compared with radial swirler(C), which gave approximately same pressure loss at 

a Mach Number of 0.014 for the same operational inlet air temperature which was 

600K. The radial traverse results showed that the mixing for the radial swirler to 

be taking place earlier on than the axial swirler using the same fuel and central 

radial injector. Although, the mean combustor exit emissions were showing the 

same results, there was evidence to prove that mixing for the radial swirler was 
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completed by the third of combustor length while for the axial swirler mixing was 

completed in nearly twice that distance. 

Figs.5.68 - 5.73 show the mean exhaust gas analysis results for both type of 

swirlers. Injecting fuel in the comer recirculation zone gave similar NOx 

emissions no matter what type of swirler was used. The radial swirler showed 

slightly better combustion efficiency than for the axial swirler Fig.5.70, which 

was due to lower CO emissions as shown in Fig.5.68. The NOx emissions were 

nearly the same at all equivalence ratios. the NOx level between 0.3 and 0.4 

equivalence ratio which is due to perhaps experimental error. The difference in 

the NOx corrected to 15% oxygen are shown in Fig.5.72 . The radial swirler had a 

slightly higher optimum NOx than for the axial swirler, but both swirler had 

relatively high NOx compared with the other method of fuel injection for the 

radial swirler. 

The general conclusion which can be drawn is that for the radial and axial 

swirlers with the same expansion ratio and approximately the same pressure loss, 

the mean combustor exit emissions characteristics approximately the same, 

provided that the same fuel and injector were used. This may be not true for other 

fuel systems which cannot be made identical, such as the passage injection 

technique. The work reported by Smith et al(12) which have been conducted on 

radial and axial swirler showed that the axial swirler gave higher NOx emissions 

than for radial swirler. By numerical analyses they showed that the combustor 

flow pattern downstream of the axial swirler was different from the flow pattern 

with the radial swirler. Their numerical analyses indicated a lack of a strong 

central recirculation zone in the burner with the axial swirler. 
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5.7 CONCLUSIONS 

1- Radial vane swirlers with fuel injection in the vane passages improved the 

fuel and air mixing compared with central fuel injection There was a 

sufficient unmixedness in the stabilising swirling shear layer to give a 

considerable extension of the premixed stability limits, although inferior to 

those for central injection. 

2- For propane at 600K inlet temperature the radial passage injection reduced 

the minimum corrected NOx emissions, compatible with a 0.1 % 

inefficiency, from 13 to 2.5 ppm. NOx emissions very close to a fully 

premixed system were thus obtained. 

3- For kerosene and gas oil the combustion development was very similar to 

propane. The minimum corrected NOx emissions were 6 and 13 ppm for 

kerosene and gas oil respectively. Thus the radial swirler passage fuel 

injection achieved low NOx emissions for liquid fuels. 

4- The internal gas composition measurements showed that the fuel and air 

mixing was good quite close to the swirler and that this was the key to the 

low NOx emissions. The maximum local equivalence ratio was 0.75 for a 

mean of 0.43 and this occurred in the swirler shear layer and was 

responsible for the enhanced stability. The differences between the NOx 

emissions for the three fuels originated in the near swirler region. Thermal 

NOx was not a major contributor to the overall NOx emissions or to the 

differences between the three fuels. 

5- There was a minor effect of inlet temperature on combustion efficiency 

using natural gas passage injection, but a major effect on the NOx 

emissions. Ultra low NOx emissions at a 740K inlet temperature were 

demonstrated. 

6- Ultra low NOx was achieved by using 76mrri wall injector fuelled with 

natural gas but with deterioration in the stability limits. The optimum NOx 
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was lower than for the passage and premixed injection. 

7- With liquid fuel wall injection the favourable emissions characteristics for 

gaseous fuel wall injection were maintained but with a significant increase 

in NOx, although still at low level. 
the 

and 'flame was established in rich 

wall regions downstream of the recirculating flow. 

8- The general combustion characteristics of the 76mm wall injection were 

superior to that of 140mm wall injection due to the injection of fuel into the 

corner recirculation zone with the later. 

9- There was strong influence of the method of fuel injection on local shear 

layer mixing near the burner where most of the mixing occurs. 
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FIG.S.30 INFLUENCE OF INLET TEMPERATURE ON CARBON MONOXIDE 
EMISSIONS FOR RADIAL SWIRLER(B) IN 140mm COMBUSTOR 
USING NATURAL GAS WITH PASSAGE INJECTION. MN-O .02. 

X 670K c 740K 

LOBi0 
~550K +600K 

4 

. 
s 
~ 
~ 

~ 3 
0 

~ 
< 
0 
0 a: 

~ 2 

fi} 
! 
~ 

~ 
~ 1 

EQUIVALENCE RATIO 

FIG .S. 31 INFLUENCE OF INLET TEMPERATURE ON UNBURNED HYDROCARBONS 
EMISSIONS FOR RADIAL SWIRLER(B) IN 140mm COMBUSTOR 
USING NATURAL GAS WITH PASSAGE INJECTION. MN-O .02 . 
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PLATES 



Plate 5 . 1 Kerosene and Gasoil passage injection using radial 5wirler(B) 
in 140mm combustor with pressure 105s=5.1% and Tin= 600K 

EQR . =O .44. 



Plate 5.2 Wa ll injection, propane and natural gas using radial 
swir1er(C) in 140mm combustor for EQR .=O.4fi and 
pressure 10ss=4.2%, Tin= 600K. 
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CHAPTER SIX 

CO-SWIRL AND COUNTER-SWIRL STABIUSED FLAMES 

6.1 INTRODUCTION 

One of the common method of varing fuel-air mixing in industrial plant is to 

impart different amount of swirl to the combustion air. Changing the air swirl has 

the effect of altering the initial air direction ,velocity, turbulence and recirculation 

pattern in the combustion chambe. In gas turbine combustor, swirlers have been 

used to inject swirling air around the fuel injecter and coupled with the radial 

primary zone jets to establish a stable primary recirculation zone (I). For low 

emission gas turbines lean primary zones are required and for swirl systems this 

requires larger swirlers and a major increase on the 10% of the total air flow 

typically used for current primary zone swirlers. High air flow primary zone 

swirlers would operate with no radial primary zone jets, as this air would be 

incorporated into the swirler air. Various types of swirler designs have been 

investigated for this low emissions lean primary zone application (2-7). One 

design with the potential for good mixing was the counter rotating double axial 

swirlers(2,3 ). 

In high velocity gas turbine flow systems fuel and air mixing requires high 

turbulence levels and these result from the combustor pressure loss. Whether this 

pressure loss is generated by a jet flow system or a swirl system, the air inlet 

aerodynamics generate shear layers which create the turbulence. For both 

swirlers and jet systems these shear layers are the zone of flame stability in lean 

burning systems (8-13). For swirlers the use of counter rotating systems may 

generate a larger shear region with more intense mixing characteristics than for a 

single swirler. The counter rotating action may also tend to dissipate the swirl so 

that in confined flows there is a more rapid decay of the high velocity outer swirl 

floW. Ahmad and Andrews(14,15) showed previously with axial swirlers that this 

high velocity outer region prevented the radial spread of the flame from the 

stabilising shear layer region and this was responsible for the poor performance of 



-158-

single swirler systems. Hence, flames may spread radially more rapidly in a 

counter rotating swirler system. 

For furnace applications, where there is a large expansion from the swirler, 

this problem does not arise as the outer swirl flow can expand rapidly and the 

decay of the swirl flow is more rapid. For gas turbine applications with large air 

flow swirlers the expansion from the swirler is limited by the combustor diameter, 

D, and decreases as the swirler diameter, d, increases to accommodate the higher 

air flow at the same pressure loss. However, this problem is not encountered with 

radial flow swirlers since the radial swirler outer diameter can be maintained 

constant and the vane depth increases to accomodate more air to achieve the 

pressure loss required. The expansion ratio for gas turbine applications should be 

more than 1.5, to create a corner recirculation zone and it is these regions which 

contribute to the rapid flame spread in furnace swirl burners (8-19). 

6.2 REVIEW OF PREVIOUS WORK 

There have been relatively few publications relating to the perfonnance of 

double radial swirl flow systems, even though they are used in some combustion 

systems (41,43,44,46) 

By comparing the co-swirl and counter-swirl systems Halthore and Gouldin(34) 

found that there was more dilution in counter-swirl system than co-swirl, which 

was consisted with the higher turbulence levels observed in the mixing layer 

between the jets for counter-swirl (35). In both cases ,they were using premixed 

natural gas and their radial flow configuration was similar to the second co-swirl 

assembly used in the present work. Bluncke et al(41) investigated a counter swirl 

airblast atomizer experimentally and numerically. The ratio of primary to 

secondary air swirlers was 1 to 2.25. They reported that the flow pattern shows 

the typical features· of swirl flow with an inner recirculation zone and that the 

general features of the flow could be predicted with reasonable accuracy. 

The work reported by Drake and Hubbard(43) invovled co-rotating swirlers 

with tangential air vanes. The expansion ratio was much higher than the present 
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work. However, their work showed that the position of maximum external 

recirculation moves towards the burner outlet as the swirl intensity was increased 

in the primary air swirler while maintaining the secondary air swirler at lower 

swirl intensity. This trend was reversed at higher secondary swirler vane angles. 

Further, they reported the magnitude and position of the recirculation zones were 

important in achieving the optimum combustion conditions. 

Most of the previous investigation were done on the action of double co

rotating or counter-rotating axial swirler because they were more commonly used 

than the radial flow swirler. A series of combustor tests were conducted by 

Mularz et al (29) to evaluate three improved designs of swirl-can combustor 

modules, using axial swirlers and their objectives were to obtain low levels of 

exhaust pollutants while maintaining a high combustion efficiency at combustor 

operating conditions. The swirl can modules consisted of three components; a 

carburetor, an inner swirler and a flame stabiliser. The functions of the module 

were to mix fuel and air, swirl the mixture, stabilise combustion in its wake and 

provide large interfacial mixing areas between the bypass air around the module 

and combustion gases in its wake. One of the combustor models incorporated 

concentric swirlers for each module, with the air swirling in opposite directions 

from the two swirlers (counter swirl). The fuel was injected downstream of the 

swirlers by splashing against a 1.9 cm diameter disk attached to the inner swirler 

hub. They found that their swirl-can combustor model performed with high 

combustion efficiency at all conditions tested but the NOx emissions were still 

higher than the maximum allowable level of 20ppm which was needed to achieve 

the 1979 EPA emissions standards. 

Thompson et al (30) examined the structure of unconfined propane flames 

stabilised on a NASA contra-swirl can, similar to that used by Mularz et al (29). 

In their investigations the diameter of the duct surrounding the can was selected 

so as to provide a bypass air flow rate of 82.2% with 7.1 % and 10.7% air flow for 

the inner and outer swirler respectively. The fuel supply nozzle had been found to 

provide the best flame structure when placed close to the inner swirler hub, Imm 
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upstream and accurately centralised. A non-axial location or a significantly larger 

distance between the fuel inlet and swirler hub caused significant changes to the 

flame structure. A highly compact flame was obtained over a narrow band of fuel

air ratio and was confirmed by chemical concentration profiles, temperature 

profiles and sodium chloride seeding experiments. Together with the axial 

recirculation core, they found that the flames also had a torroidal recirculation 

region over the bluff region between the inner and outer swirlers. However, at 

lower reference velocities, their laser doppler velocimetry measurements showed 

that a secondary recirculation region was not present. 

One of the most intensive investigations of swirler designs was undertaken as 

part of the NASA swirl module combustion system development (3,4). This 

compared the performance of single and double swirler designs for swirl systems 

with a large proportion of baffle air bypass flow. The swirler air flow was varied 

from approximately 10-40% with the remainder passing around the swirler over a 

baffle. For this system it was found that the more complex counter rotating double 

swirler designs had little advantage compared with simple single swirlers(3). 

6J PRESENT APPROACH 

The radial swirlers combustor and fuel injector configurations used for the 

present work are shown in Fig.6.1 consisted of two concentric confined swirling 

jets. The first configuration comprised two large radial swirlers (B) and (C) and 

the second configuration comprised the small swirler (A) and large swirler (C), 

For both cases the radial swirler (A) and (B) was the primary swirler. The radial 

swirler (C) was either co-rotating or counter-rotating relative to the other swirlers. 

For the first combination (B&C) the expansion ratio for the flow were 1.0 and 

1.84. However, for the second configuration the expansion ratio were 1.9 and 3.5 

for the small swirler (A) and 1.0 and 1.84 for the large swirler (C). The second 

configuration was tested only with co-swirl condition. 

For both assemblies the air split between the primary and secondary radial 

swirlers were 57% and 43% of the total flow respectively. This gave the ratio of 
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the primary to secondary air jet of 1.33/1. The motivation for conducting such 

work was to provide an improved understanding of combustion processes in 

swirling flow controlled by radial flow swirlers. Two method of fuel injection 

were used, they were direct central radial and 76mm wall (peripheral) fuel 

injection. Two air inlet condition with propane fuelled through a central injecter 

were tested which simulated the low and high power operation (ie. 400K and 

600K inlet temperature). The air flow were simulated 60% of the total primary 

zone air with a Mach Number of 0.028 to give an approximately 4.4% pressure 

loss. 

6.4 WEAK EXTINCTION 

The measured weak extinction results are summarised in Table(6.1), together 

with the weak extinction of a single radial swirler for comparison. For central 

propane and natural gas injection with radial swirlers (B&C) at 600K the swirl 

direction had a little influence on the weak extinction but at 400K the co-swirl 

system was more stable than the counter-swirl system. Visual observation of the 

co-swirl case, at 600K showed the flame at very near weak extinction setback 

inside the swirler core. Thus, for direct central propane or natural gas injection the 

generation of local rich zones extended the flame stability limits. For wall 

injection the stability with liquid fuels was poor but similar to that for propane. 

With counter swirl the liquid fuel central injection weak extinction were much 

lower than for propane, but for wall injection were again similar. The weak 

extinction was much worse than for propane at 600K 

For central liquid fuel injection Table(6.1) shows that for central injection 

with gasoil but similar for kerosene with co-swirl. The co-swirl system for 

kerosene was much superior to the counter-swirl at 600K. This was possibly due 

to the evaporisation rate with the counter-swirl system having a slower 

vaporasation rate and not achieving sufficient fuel recirculation into the core 

region. 
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Using the peripheral or the 76mm wall injector drastically reduced the flame 

stability with central propane and kerosene for co-swirl and for propane with 

counter swirl. The swirl direction had little influence on the stability for wall 

injection. 

For small radial swirler configuration (A&C), the central injection system 

stability were deminated by the rotational field which was imposed by the small 

radial swirler (A) outlet flow field. This had a poor stability with central injection 

as discussed in chapter four, thus poor stability limits were found for the NC 

swirler combination. However, for peripheral injection the results show that the 

weak extinction was demonited by the expansion immediatly after the 76mm 

injecter because the results show a similar trend to that of (B&C) essembly with 

wall injection. Comparing the weak extinction results to that of a single swirler 

one can deduce that for assembly (A&C) using peripheral injection the stability 

limits were controlled by the rotational action of the large radial swirler (C). 

6.5 WALL STATIC PRESSURE AND TEMPERATURE PROFILES 

Figs.6.2 - 6.35 show the measured combustor wall temperature and static 

pressure/dynamic head as a function of combustor length. For the co-swirl 

system with central fuel injection, the main features of the wall static pressure and 

temperature profiles were the initial low static pressure which indicated a high 

velocity corner recirculation zone upstream of the impingement on the wall about 

SOmm from the swirler outlet. The corner recirculation zone was relatively high in 

temperature which shows that the flame development was inside that 76mm 

section. The point of impingement on the combustor wall where the dynamic 

pressure was converted into static caused a peak in the wall static pressure 

profiles. This region had low wall temperature,s especially at 400K. At wall 

impingement point the flow split into two counter recirculation zones, upstream 

and downstream of the impingement point. These create the two minimum values 

in the wall static pressure profiles. 
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The delay in flame development with liquid fuel was caused by the delay in 

the vaporisation process, during which the droplet was under the action of 

centrifugal forces created by the swirl flow. These forced the droplets radially 

outwards towards the wall region, thus most of the droplets will be concentrated 

in the high velocity outer swirl flow and the vapor concentrations in the flame 

stabilizing shear layer will be lower than for gas injection. For the gasoil case as 

shown in Fig.6.9, the flame was likely to be initiated in the wall region as 

indicated by the relatively high temperature at 75mm away from the outlet 

However, for the kerosene the flame propagation started much earlier on as 

shown in Fig.6.11, but both proflies follow similar trends as the 400K case with 

propane Fig.6.S. 

Using the 76mm wall injection system a hot outer recirculation zone was 

created. The fuel injected can be carried away by the outer jet boundary, more 

mixing will take place after the swirl jet impinges on the wall and splits. The main 

feature of this type of injection with the co-rotating double swirler system was the 

initial high wall temperature. This was due to the development of a hot region in 

the corner recirculation zone caused by an early flame development near to the 

swirler outlet region. However, the flame development was slow along the 

combustor length reaching its peak just by the point 200mm away from the outlet 

as shown in Figs.6.7 and 6.13. 

For the counter-swirl system, the point of flow impingement moved further 

away from the swirler outlet. This was due to the reduction of the tangential 

velocity imposed by the counter rotating action by swirler (C), as can be shown in 

Figs.6.16 - 6.23 and Figs.6.32 - 6.33. The size of the comer recirculation zone 

was larger with the counter-swirl system but the reaction zone shape was the same 

as the co~swirl system as reponed by Halthore and Gouldin(34). Their results 

confum that the reaction zone began further upstream of the recirculation zone 

and for the most part lies outside it for counter-swirl compared with co-swirl the 

same reason Figs.6.15, 6.17 and 6.23 show that there was a more uniform axial 

flame development than the for co-swirl system. 
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Visual observation of the counter-swirl flames showed for central fuel 

injection with propane at 600K, that below an equivalence ratio of 0.3 the flame 

was stabilised in the 76mm section and for higher equivalence ratios the flame 

started to flash in and out of the 76mm section until the flame stabilised in the 

140mm combustor. The reason was that local rich zones were generated close to 

the swirler. At weak mixture these stabilises the flame close to the swirler 

whereas at rich mixture the flame was too rich to burn and developed further 

downstream. In the case of the 76mm wall injection fuelled with propane at an 

inlet temperature of 600K, the flame tended to move inside the swirler outlet 

section at an equivalence ratio of 0.53. This is understandable from the work done 

by Myers and Lefebvre(38), they shown that the flame speed increased with the 

fueVair ratios. In the present work the burning velocity exceeded the incoming 

flow velocity and the flame tended to go inside the extended section towards the 

points where the fuels meets the incoming flow. For central natural gas injection 

in the counter- rotating system, the flame tended to move inside the 76mm outlet 

towards swirler (B) for equivalence ratio below 0.29 where the flame started to 

flash-in and out of the 76mm section, then it sat back into the core of radial 

swirler (B). 

The co-swirl jets generated by the combination of radial swirlers (A&C) had 

static pressure profiles as shown in Fig.6.24 which indicates the presence of three 

strong recirculation zones. With central injection the proftles were substantially 

different from the B and C swirler in Fig.6.2. The aerodynamics of this A&C 

swirler combination are complex and dependent on the method of fuelling. The 

central and wall injection static pressure profiles in Fig.6.24 and 6.26 are quite 

different. The wall temperature profiles showed that the flame development took 

place over the first two recirculation zones which occupied a greater axial 

distance from A&C than B&C. Both flow visualisation and internal gas 

composition traverses are required to understand these complex aerodynamics. 

In general, the propane flame was stabilised for both mode of injections ie. 

central and wall injection by making use of the shear layer boundaries of the inner 
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and outer recirculation zone and the jet boundary imposed by the swirling flow. 

However, for kerosene the flame was stabilised by vaporised fuel recirculated into 

the core region, by which stage it will be well mixed with air. Hence, combustion 

was governed by the portion of kerosene which was recirculated into the core 

region. Slow vaporisation of kerosene and gasoil is thus a key to the poor flame 

stability. The action of centrifugal forces in this situation is two fold: firstly, in the 

initial outer swirl flow any vaporised fuel with density greater than that of air will 

be forced to remain in the wall region, secondly, when the combustion has been 

initiated in the outer swirl flow, downstream of the recirculation zone, centrifugal 

mixing of burnt and unburnt gases enhances the mixing and rates of flame spread 

which is in agreement with the work reported by Ahmad and Andrews(36,37) for 

axial swirlers. 

6.6 CO-SWIRL STABILISED FLAME 

6.6.1 MEAN COMBUSTOR EXIT EMISSIONS 

6.6.1.1 Fuel type influence on combustion performance 

The fuel type influence on metered mean emissions are illustrated in 

Figs.6.36 - 6.41. The carbon monoxide emissions are shown as a function of the 

metered equivalence ratio in Fig.6.36 at inlet temperature of 600K and for four 

different fuels. The similarity in profiles between CO and combustion 

inefficiency as a function of equivalence ratio in Fig.6.38 is an indication that the 

combustion inefficiency was mainly due to the carbon monoxide emissions and 

hence was caused by locally rich zones in the heat release region. The 

combustion inefficiency in Fig.6.38 summerises the net effect of CO and UHC in 

Figs.6.36 and 6.37 respectively. Thus it is useful way of presenting the combined 

emissions. However, the kinetic behaviour of the combustion reaction in such that 

for lean mixture both rates of production and oxidation of CO increase with 

increasing equivalence ratio. Therefore, Figs.6.36 - 6.38 indicate that initially the 

rate of CO oxidation exceeded the rate of production, thereby decreasing CO and 

UHC emissions. Hence combustion inefficiency decreased until the equivalence 
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ratio are reached above which the rate of production of CO exceeded the 

oxidation rate. 

Fig.6.39 show that the natural gas contributed to the NOx emissions between 

30% to 50% less than what propane generated. 

Liquid fuels exhibited slightly larger combustion inefficiencies than gaseous 

fuels. That was due to the vaporisation delay which caused a slower flame 

development. This is shown by comparing the wall temperature profiles in Fig.6.3 

for propane and 6.11 and 6.9 for kerosene and gas oil. The very low NOx 

emissions for kerosene and gas oil indicate that there was no deterioration in 

mixing with liquid fuels. The lower residence time at high flame temperature for 

liquid fuels probably produced the low NOx emissions. These liquid fuel NOx 

emissions are the lowest of any swirler configuration. The optimum NOx 

corrected to 15% oxygen in Fig.6.40 is 3.5ppm for kerosene and 8ppm for gas oil. 

There are lower NOx emissions than for passage injection in chapter five. 

However, it is possible that at pressure the vaporisation delay will be eliminated 

and flame will develope more quickly. The NOx level then increase to be closer 

to that of propane. 

6.6.1.2 Central fuel injection combustion performance 

In previous work, the small 40mm outlet diameter radial swirler A with a 

large blade depth had a considerable partial premixing of fuel and air upstream of 

the swirler exit plane. This achieved low NOx emissions, but with an inadequate 

stability margin. In the present work it was combined with the larger radial swirler 

C, with an improved stability However, the stability improvement has not of the 

order of the swirler flow split and hence considerable swirler air mixing must 

occur before the shear layer stabilising region. 

The mean combustor exit emissions are illustrated in Figs.6.48 - 6.53 for 

central radial injection. Due to the fuel restriction in the 76mm wall injecter, the 

test for natural gas was tenninated. The tests were not carried out with liquid fuels 
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for central injection due to the noise generation. 

Figs.6.48 - 6.49 shows the CO and UHC emissions as a function of metered 

equivalence ratio for central radial injection with the co-swirl system for the 

combination of A&C as compared with B&C for the same inlet test conditions. 

The combination of A&C showed a slight improvement in CO and UHC 

emissions for central gaseous fuel injection and reduced the NOx emissions from 

10 to 7ppm at 15% oxygen for natural gas, as shown in Figs.6.52. 

6.6.1.3 Wall injection combustion performance 

The A&C and B&C wall injection results are compared in Figs.6.54 - 6.59 

for propane and kerosene. For propane the A&C results were very similar to B&C 

for both CO, UHC and NOx emissions. For each emission component A&C with 

wall injection was slightly worse than B&C. The low NOx characteristics of 

76mm wall injection were maintained with the A&C co-swirl system, but there 

was no advantage of A&C compared with B&C. For kerosene A&C was much 

worse than B&C, both in tenns of NOx and combustion efficiency. Visual 

observations of the propane flames shows that increasing the equivalence ratio 

with this system using central fuel injection will tend to let the flame goes out of 

the 76mm section to the expansion region of 140mm combustor and vice versa for 

lower equivalence ratios. However, the situation was different for the 76mm wall 

injection where the flame tended to go inside the 76mm section and by gradually 

decreasing the equivalence ratio the flame tend to leave the 76mm section to burn 

in the outer recirculation zone. This gives some indication of why the NOx 

emissions were high at large equivalence ratio for both modes of fuel injection. 

In general, the NOx emissions for A&C combination were lower than B&C 

combinat~on using central fuel injection but the opposite was found using the 

76mm wall injection as shown in Fig.6.59. 

Low NOx emissions are of little consequence unless they can be achieved 

\\k:h a combustion inefficiency and NOx correlation in an important method for 

assessing the viability of low NOx systems. The present results for both co-swirl 
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systems and fuel injection modes are shown in Figs.6.52 and 6.58. The optimum 

low NOx conditions compatible with lowest combustion inefficiency are 

summarised in Table(6.2). 
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6.7 COUNTER·SWIRL STABILISED FLAME WITH CENTRAL FUEL 

INJECTION 

6.7.1 Influence of/uel type on combustion performance 

The B and C swirler combination was converted to counter swirl by reversing 

swider C and inserting a splitter plate. The metered mean combustor exit 

emissions are shown in Figs.6.42 - 6.45. These figures demonstrate the major 

species emissions as a function of equivalence ratios for natural gas, propane and 

kerosene. For gasoil fuel there was unsuccessful attempts in igniting the fuel 

which was due perhaps to the rate of vaporisation or atomization characteristics 

that makes very hard to light-up. Propane and natural gas had similar CO and 

UHC emissions with a similar combustion inefficiency as shown in Figs.6.42 -

6.44. The equivalence ratio at which the UHC and CO increases was richer for 

natural gas, 0.45 compared with 0.35 for propane. Kerosene CO and UHC 

emissions were much higher than for propane or natural gas, indicating an 

atomisation problem with counter swirl which may be associated with the more 

rapid jet spread and velocity decay giving lower atomisation velocities. 

The greater rate of swirling jet spread due to the two counter rotating resulted 

in earlier flame stabilisation as was shown by the wall temperature profiles. 

However, the most effective shear layer mixing did not increase the NOx 

emissions due to the earlier flame stabilisation, as shown in Fig.6.63. All these 

fuels with counter rotating jet and central injection gave very low NOx emissions 

as shown in Figs.6.45 - 6.47. The very low kerosene NOx results was due to the 

slow flame development and poor efficiency. The natural gas NOx emissions was 

substantialy below that of propane with optimum of 2.5ppm at 15% oxygen and 

0.1 % inefficiency close to that of passage injection into swirler B in chapter five. 

The lower NOx from natural gas, which was a factor of 4 at the same conditions, 

may have a contribution due to different near injector mixing due to the low 

molecular weight and hence high diffusivity of natural gas which means that the 

fuel quickly disperses in the turbulent regions of the primary zone. 
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These results show that central injection with counter rotating radial swirlers 

has ultra low NOx characteristics with a wide stability limit. It thus has a major 

stability benefit over the other ultra low NOx configuration discussed in this 

Thesis. 

6.8 COMPARISON BETWEEN CO-SWIRL AND COUNTER SWIRL 

SYSTE~1 

6.8.1 Using central radial injection 

The carbon monoxides and unburned hydrocarbons results at 600K and 400K 

as a function of metered equivalence ratio are shown in Figs.6.60 - 6.61 for 

propane central injection in co-swirl and counter-swirl system with the 

combination of (B&C) radial swirlers. Similarity, in the emissions of CO and 

UHC was exhibited by both systems at 600K inlet temperature. However, at 400K 

inlet condition the counterswirl had CO and UHC emissions and a deterioration in 

the stability limits. That effected the combustion inefficiency. However, co-swirl 

system premoted higher combustion efficiency than the counter-swirl as 

demonstrated in Fig.6.62. In general, the inefficiency difference were small and 

were predominantly due to CO emissions This is confirmed by the similarity in 

CO emissions profiles in Fig.6.60 and that of combustion inefficiency Fig.6.62. 

Higher NOx emission levels was promoted by the co-swirl system as shown 

in Figs.6.63 - 6.65. The correlation between combustion inefficiency and NOx 

corrected to 15% oxygen and day humidity is shown in Fig.6.64. This shows that 

the counter-rotating swirlers system contributed less corrected NOx than the co

rotating system, the lowest being 3-5ppm compatible with minimum combustion 

inefficiency of 0.1 % for 600K inlet temperature. The NOx corrected for the other 

conditions were below 20ppm which is within the EPA regulations. 

6.8.2 Using 76mm wall injection (peripheral) 

The overall performance and detailed flow field structure of a non-premixed 

swirl-stabilised distributed reaction are sensitive to modest changes in the inlet 
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conditions (e.g. fuel injection placement(27), inlet geometry, and swirl vane 

solidity(42). Injecting the fuel around the outer periphery of the air jet for co-swirl 

or counter-swirl system makes use of the high shear zones around the air 

jet(27,33). These major features were carried out in the present work to 

investigate their extended effects on the double rotating swirl systems. 

The mean combustor exit emission of the major combustion species as a 

function of equiValence ratios are shown in Figs.6.66 - 6.69. Higher rates of 

oxidation were exhibited by the co-swirl system as shown in from Fig.6.66. The 

counter-swirl system had much higher CO emission with kerosene as the fuel. 

That was due to the evaporation rate and spray characteristics due the more rapid 

swirling jet spread and more atomisation as resultant of the lower velocities(41). 

The combined effect of CO and UHC emissions are represented in terms of 

combustion inefficiency as a function of metered equivalence ratio in Fig.6.68. 

For both systems achievement of 0.1 % combustion inefficiency or even less 

seems to be within reach except for the counter-rotating swirlers fuelled with 

kerosene. 

The NOx emissions as a function of equivalence ratio and flame temperature, 

computed from the mean gas composition are shown in Figs. 6.69 and 6.71 

respectively. For the co-swirl system fuelled with propane low NOx emissions in 

the range of 0.4-0.5 equivalence ratio but higher NOx level were found for liquid 

fuels for both systems. However, propane with counter-rotating swirlers system 

offers lower NOx emissions for equivalence ratio of 0.5. The NOx emissions of 

the co-swirl system fuelled with gasoil were dramatically different to those for 

kerosene and are at high level at all equivalence ratios. This may have due to the 

slow vaporization rate which did not achieve sufficient fuel recirculation into the 

core region to achieve a flammable mixture. The resultant flame downstream of 

the recirculation zone has rich regions in the wall region which generate the high 

NOx emissions. 

The combustion inefficiency as a function of NOx corrected to 15% oxygen 
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and day humidity are shown in Fig.6.70 for both systems. The co-swirl system 

fuelled with propane injected at the peripheral offers the lowest NOx corrected to 

15% oxygen which equal to 3ppm. compatible with the minimum combustion 

inefficiency of 0.05%. The counter-swirl system exhibited ultra low NOx 

corrected of 6ppm but with 0.1 % combustion inefficiency. The co-swirl system 

fuelled with wall fuel injection can contribute NOx emissions for kerosene which 

are within the EPA regulations of 2Oppm. 

6.9 COMPARISON WITH PREVIOUS WORK 

In general there was no comparative work found to be similar to the present 

investigations of double-radial swirlers. There was some similarity in flow field of 

the present (A&C) co-swirlers combination with that reported by Gouldin and 

coworkers(25,34,35,45) or the work of Drake and Hubbard(43). Few aspects in 

the work reported by Blumcke et al(41) can be compared with the present work 

although, their primary to secondary air swirl ratio was 1/2.25 which is lower than 

in the present work. 

For counter rotating double axial swirlers the most significant work has been 

that relating to the NASA swirl modules and sponsored work relevant to these 

(3,25,29,30). Mularz et al for both single swirl modules (3) and arrays of swirlers 

(29) have shown that there was no major performance improvement resulting 

from the extra complexity of double swirlers. 

Thompson et al (30) investigated a single NASA double swirl module in an 

open flame configuration. Their temperature and gas composition profiles showed 

that there was a burnt gas high temperature central region and a rapid fall in 

temperature in the outer swirl flow. Oven et al (25) investigated a simplified test 

geometry of a double swirl system, without any practical vane swirler. The central 

swirler was operated premixed and the outer swirler was air. For an overall 

equivalence ratio of 0.2 and 30% of the air in the central swirler, they found that 

the overall combustion inefficiency was higher for counter swirl than for co swirl. 

Internal traverses by Oven et al (25) showed more rapid mixing for counter swirl 



-173-

than for co swirl. 

Ahmad and Andrews (31) have investigated the influence of counter rotating 

swirl in a three axial swirlers system and compared it with that for co swirl. The 

influence of the swirl direction was found to be small, especially for flame 

stability. The influence on the combustion efficiency was significant, but 

dependent on the inlet temperature. Comparison with the single swirler results in 

a cylindrical combustor showed considerable improvements for both swirl 

directions for the three swirler rectangular combustor. This was due to the greater 

outer expansion from the swirlers and the associated interswirler aerodynamics. 
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6.10 CONCLUSIONS 

1- Central propane and natural gas with co and counter (B&C) radial swirlers 

had similar exellent flame stability characteristics, but the counter rotating 

swirler had much lower NOx emission than for co-swirl system. 

2- Central kerosene injection showed a large extension of the flame stability 

limits due to the presence of a rich core and better vaporization with the co

swirl system. But in general, the liquid fuel showed some deterioration from 

the central gaseous injections due to the centrifugal forces action on the fuel 

droplets forcing them into the outer swirl flow where more vaporization 

takes place. Kerosene showed a better weak extinction than gasoil. 

3- A slight improvement in the weak extinction with the combination of small 

swirler (A) with the large radial swirler (C) was found for the co-rotating 

swirl system. However, results showed that the weak extinction was still 

dom i nated by the flow field of the small radial swirler using the central 

radial fuel injection system. 

4- Using central radial propane injection, the counter-swirl system contributed 

less corrected NOx than the co-swirl system which was 3.5ppm compatible 

with 0.1 % combustion inefficiency for propane and 2.5ppm for natural gas. 

5- Using 76mm wall injection(peripheral) with propane, the co-swirl system 

exhibited ultra low corrected NOx of 2.5ppm compatible with 0.05% 

combustion inefficiency. 

6- The corner recirculation zone was considerably larger in the counterswirl 

condition than in co-swirl, as shown by the wall static pressure proflles. 
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Table (6.1) 
Measured Weak Extinction for the Double-Rotating 

Radial Swirlers 

Fuel I~ection Inlet Weak Extinction 
Type ethod Temp.K 

EOR. A/F 

Propane C.I 600 0.019 834 

400 0.143 109 

Wall 600 0.323 48 

Gas oil C.I 600 0.329 45 

Wall 600 0.340 43 

Kerosene C.I 600 0.046 323 

Wall 600 0.400 37 

Natural Gas C.I 600 0.038 441 

Counter Propane C.I 600 0.019 828 

400 0.440 36 

Wall 600 0.361 43 

Kerosene C.I 600 0.450 33 

Wall 600 0.296 50 

Natural Gas C.I 600 0.010 1599 

Co Propane C.I 600 0.274 57 

Wall 600 0.352 45 

Kerosene Wall 600 0.383 39 

Natural Gas C.I 600 0.313 53 

Single Swirler 

Propane C.I 600 0.394 40 

Propane C.I 600 0.080 195 

Premix 600 0.466 34 

Propane Wall 600 0.307 51 

Kerosene Wall 600 0.368 40 

Gas oil Wall 600 0.381 39 

Pressure 
Loss % 

4.8 

5.0 

4.8 

5.0 

5.0 

5.1 

5.0 

4.8 

4.4 

5.0 

4.4 

4.4 

4.3 

4.4 

4.5 

4.6 

4.7 

4.7 

4.7 

4.2 

4.4 

4.2 

4.2 

4.2 



Table (6.2) 
NOx corrected compatible with lowest combustion 

mefficiency. 

Co-Swirlers I¥ecter Fuel NOxc(ppm) Lowest combustion 
Combination ype Type Inefficiency % 

(A&C) C.I Propane 15 < 0.1 

C.I Natural Gas 9 < 0.1 

Wall Propane 5 < 0.1 

Wall Kerosene 25 > 0.1 

(B&C) C.I Propane 15 < 0.1 

C.I Natural Gas 10 0.1 

Wall Propane ,< 3 < 0.1 

Wall Kerosene 15 < 0.1 
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CHAPTER SEVEN 

TWO-STAGE COMBUSTION SYSTEM 

7.11NTRODUCTION 

The extremely low emission levels of NOx that are currently being sought by 

engine manufacturers to meet existing or suggested future regulations (15 ppm in 

some Japanese markets(1» for industrial gas turbine applications has led to the 

development of new combustion concepts. Furthermore, the deficiencies in the 

water or steam injection into the combustion chamber have led to the 

development of so-called dry low NOx combustion system. A common design 

concept used in new low NOx combustors is that of staged combustion. 

Staged combustion is a general term which refers to the addition of fuel and! or 

air in various regions of the combustor to promote different combustion 

environments in different sections of the combustor. Staged combustion is used 

to modulate combustion stoichiometry so that NOx and CO emissions are both 

well controlled. The most common type of staged combustion is probably the 

rich-lean concept, where partial combustion of fuel initially takes place under fuel 

rich conditions so that the temperature and oxygen concentrations are low to 

minimize NOx formation both thermal and prompt and air is rapidly added to 

bring the mixture to lean conditions to permit the completion of combustion. 

Either circumferential, radial, or axial staging may be employed(2), but in 

practice circumferential fuel staging actually increases NOx instead of the fuel 

being distributed uniformly around the liner, it is injected at a small number of 

points where it produces regions of high temperature. This high lights the fact 

that both fuel and air must be staged for effective emissions reduction(2). Staged 

combustion can, however, be more complex and involve various fuel injection 

locations and types of injectors, various combustion regions, variable air flow 

geometry and sophisticated fuel scheduling (1,3-9,11,18,19). 
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7.2 REVIEW OF PREVIOUS WORK 

Kuroda et al(10) developed a two-stage combustor to meet stringent NOx 

limitations in Japan. Their combustion system has a fuel-air control mechanism to 

ensure stable switching from one-stage to two-stage combustion. They reported 

that NOx emissions were very low not only at full load but also in the entire gas 

turbine operating range. 

A partial oxidation staging concept for gas turbine combustors using broadened 

specification fuels has been demonstrated by Clayton(12). The concept was 

proposed as a means of controlling NOx, CO and UHC pollutant emissions to 

ultra low levels while maintaninig acceptable lean blowout limits. 

Sjoblom et al(13) tested double recirculation zone two stage combustor which 

was aimed to reduce all gaseous emissions by using the rich-lean combustion 

concept. The UHC goal was met and the CO concentration was close to the goal 

whereas the NOx level was reduced by 25 - 30%. Furthermore, Sjoblom(14) 

investigated the effect of primary/secondary fuel flow split on emissions. Hash 

vaporization was employed to ensure complete vaporisation of the secondary fuel, 

which was heated to 600K by the combustor inlet air. The best configuration 

reduced the NOx by 54%, CO by 59% and UHC by 97% as compared to emission 

levels for some standard combustor. 

By using radial flow swirler White et al(16,20) developed a combustor 

concepts for the dry reduction of thermal NOx, the control of NOx from fuels 

containing high levels of organic nitrogen, and the control of smoke from low 

hydrogen content fuels. They used lean-lean and rich-lean combustion concepts 

for a wide variety of fuels and operation of their combustion system involved lean 

primary zone operation for the low energy content fuels and rich-lean mode for 

the medium energy content fuel. Their results met the goals of providing NOx 

levels below 75 ppm corrected to 15% oxygen, and were generally insensitive to 

inlet pressure and temperature conditions. Lewis and Holladay(15) developed a 

burner using an air and fuel staging concept, where the combustion zone was 

divided into two equal parts, a pilot zone and a secondary zone. The engine light-
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off and idle was on the pilot zone fuel only. Secondary zone fuel was added as the 

engine accelerated and the fuel-air ratios in the two zones became equal at high 

power levels. The mixing inside the burner was achieved at reasonable pressure 

loss by swirling the pilot and secondary combustion zones in opposite directions 

(counter-swirl system). 

Smith(17) developed a burner with the concept of fuel staging through primary 

fuel injection and a pilot fuel injector which was situated downstream of the 

fonner. The pilot flame was intended to operate only at simulated part load 

operation to provide an ignition source for the primary combustion process. Pilot 

fuel was introduced onto external surface of the injector centerbody where it 

mixed with air-assisted flow. The pilot was designed to operate at a higher fueVair 

ratio than the primary combustion process and, consequently, was considerably 

more stable than the main flame. 

Rosfjord et al(18) employed rich-lean concept on a stationary gas turbine 

combustion system to evaluate the synthetic fuel character effects on combustor 

emissions, performance, and durability. Four synthetic fuels and NO.2 petroleum 

distillate fuel were tested in a subscale combustor over a wide range of conditions. 

They showed that rich-lean combustor results indicated an increase in smoke and 

liner heating but NOx emissions were very low and insensitive to combustor 

pressure and fuel bound nitrogen. Rosfjord et al(19) used gaseous fuels produced 

from coal with heating values much lower than natural gas. Their objective was to 

evaluate the performance and emission characteristics of a rich-lean staged 

combustion and achieve ultra low NOx and CO emissions for coal gas fuel with 

heating values of 210 kJ/mol or higher. Lean combustion needed to achieve the 

same with lower heating values. Moreover, they reported that staged combustion 

had the ability to limit the NH3 to NOx conversion rate to less than 5 percent. 

Sotheran et al(21) demonstrated an axially staged premixed low NOx emissions 

combustor. particular emphasis was placed on the many mechanical and thennal 

problems which were encountered and which seem characteristic of the type, of 

these, the risks of autoignition and flash back in the premixing duct were perhaps, 
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the most severe. 

TheGeneral8ectric company developed various dry combustor methods to 

reduce NOx emissions(4). Their low NOx development work had progressed to 

the point that by 1980, the dry low NOx combustor had .volved to a dual fuel, 

two-stage combustion system with six primary nozzles arranged in an annulus and 

one secondary nozzle in the centre body. The modes of operation of this 

combustor are suIl1IIl4rised in Fig.7.2. Ignition, acceleration and low load 

operation take place with the flame only in the primary zone. Low power 

operation was possible on the fIrst stage burning where typical diffusion flames 

existed to provide a good flame stability and low CO emissions. Second stage 

burning provided to reduce NOx levels compared with the primary combustor but 

at the cost of an increase in CO and UHC. In the lean-lean mode a trade-off was 

possible between NOx emissions and CO and UHC at a fixed overall equivalence 

ratio where NOx emissions were reduced as the second stage fuel flow was 

increased and CO and UHC increased as the secondary fuel flow was increased. 

Finally, the premixed mode offered low NOx emissions at high power conditions. 

During this premixed operation, the fuel split was .varied to achieve optimum 

emissions. However, CO and UHC were found to increase when the operation 

was switched to the premixed mode. 

There are other methods which offer a dry reduction in gaseous pollutants. 

One of those involved the catalytic combustion technology which have been 

investigated by some workers(22,23,24). However, more development efforts are 

needed to make such equipment commercially viable. Catalyst materials must be 

developed that will have long life and thermal resistance. The catalyst bed should 

withstand about 1300C for near future gas turbines with a high thermal shock 

resistance However, no catalyst is currently good enough to meet all these 

requirements. 
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7.2.1 OXIDES OF NITROGEN FROM STAGED COMBUSTION 

The NO fonnation rate is strongly dependent on temperature and hence for 

the adiabatic combustion in gas turbines is strongly dependent on the equivalence 

ratio(25). In view of difficulties establishing the extent of NO to NO:z reaction in 

the gas sample probe(26,29) the results are mainly reported as NOx(NO+N02). 

The NO to NOz conversion in the flame, may occur via the H02 radical where the 

cooler air swirling around the central hot combustion products from the pilot 

region mixes. 

There have been some reports on two stage combustion as a means of controlling 

prompt NO(40). Martin et al(37) investigated the behavior of fuel NO in two 

stage combustion. Similar work was conducted by Gerhold et al(38). The control 

of both thermal NO and fuel NO by two stage combustion was reported by 

Sadakata et al(27,39). In their investigation(27), they reported the effect of air 

preheating upon the emissions of NO, HCN and NH3 from two stage combustion. 

Their results demonstrated that air preheating up to 300C did not significantly 

increase the thennal NO and fuel NO and that the concentration of the 

hydrocarbon and HCN which might be an intermediate product, during the 

conversion process from NH3 to NO was decreased by 50% in the primary stage 

of the two-stage combustion. In general, rich/lean two stage systems are need to 

reduce NOx emissions for fuels with significant fuel nitrogen. For other fuels 

lean/lean two stage combustors are required. 

7.3 PRESENT APPROACH 

The lean/lean two-stage combustion system used for the present investigation 

is illustrated in Fig.7.4 and plate.7.1 which consists of two burning zones arranged 

in series. The aim was to achieve lean combustions at 0.4 equivalence ratio at 

both low and high power conditions which was produce minimum NOx and CO 

emissions at all powers. 

The objective was to provide a long residence time at the lower power condition, 

to minimize CO and UHC and to provide rapid combustion followed by 
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quenching, thereby minimising NOx emissions. The hot products leaving the 

76mm combustor(pilot zone) pass through another small 76mm extension 

section(main zone), which comprises the peripheral injecter at the throat of a 

140mm combustor(main stage) the fuel added through the 8 holes via the 76mm 

wall injecter. The action of the second stage radial swirler serves to quickly mix 

and distribute the main fuel with air plus the dilution with hot products from the 

pilot stage to achieve a uniformly lean mixture. The pilot stage fuelled by central 

radial fuel injection. However, it provides all the temperature rise needed for low 

power operation. The two-stage combustion system was operated at conditions 

corresponding to three different air split ratios between the pilot stage and the 

secondary main stage which they were successively at (50, 30 and 17% pilot 

combustor air flow) or 1.041/1 ,0.587/1 and 0.333/1 for the inlet temperature of 

400K and 600K. 

In the previous chapter, the co-swirl system gave a good overall performance 

using large swirlers in conjunction with peripheral fuel injection. The same 

principles were adapted in the present work. 

The test plan intended for this investigation was to use different combustor 

lengths for the pilot stage starting with 320mm, 160mm, 80mm and using the 

same configuration as the double-swirl systems. However, only the 320mm 

combustor length was investigated for the different air split ratios of pilot/main 

stage. This was because similar outer plenum chamber casings were not available 

for different pilot lengths. 

Axial staging may take any of several forms, but a typical approach would 

involve the following features(2): 

1- A lightly loaded pilot zone employing well mixed fuel injection which acts as a 

source of heat for other downstream combustion zones and provides the 

temperature rise at idle condition. 

2- One main stage or more additional combustion zones with its own separate 

supply of well-mixed fuel and air. 
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Fig.7.3 illustrates the control of combustion temperature with staged 

combustion for three staged system(2). 

The gas analysis results were recorded for each inlet temperature and for pilot or 

both pilot/main stages separatly. 

For the present work only one main stage was used. The main aim was the 

regulation of combustion temperature to achieve minimal emissions at all 

operating conditions. 

7.4 TEST PROCEDURES 

The main test procedures were the same as for single stage combustion in 

Appendix(F) except for the light-up of the second stage combustor. The greater 

the first stage ignition fuel flow rate, the smaller the fuel flow rate necessary for 

second stage ignition. In other words, the more intensive the flame in the first 

stage, the more easily the fuel in the second stage ignites. However, there was an 

igniter to help light-up the fuel in the second stage as shown in Fig.7.3. When the 

two stages were working at the same time, the pilot stage was then sustained at a 

specific equivalence ratio and the fueVair was varied in the main stage combustor. 

The main stage equivalence ratio was set for the minimum NOx emissions 

compatible with a high combustion efficiency. 

7.5 WEAK EXTINCTION 

The weak extinction equivalence ratio was measured for each stage following 

the general procedures in Appendix-F. Two main steps were carried out in order 

to record the weak limits, first, was to measure the pilot stage weak extinction 

alone. Second, was to maintain the pilot stage at a specific equivalence ratio while 

recording the weak extinction of the second stage. The measured weak extinction 

data are summarised in Table(7.1), which shows the comparison between the 

three air split ratios of pilot/main stage for the different conditions stated. 

Flame observation indicated that the second stage weak: extinction was a very 

strong function of the first stage equivalence ratio. The 600K tests conducted with 
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two pilot equivalence ratios for the system fuelled with natural gas at an air split 

of (0.333/1) showed that the weak extinction of the second stage combustion was 

nearly 2.5 times lower when the pilot operational equivalence ratio was changed 

from 0.11 to 0.23. Similar results were found by Oven et al(29) who used a 

double-swirl combustor. Their results indicated that reaction takes place outside 

the recirculation zone, in a thick turbulent flame and that the flame stabilised in 

the low speed flow approaching the forward stagnation point. A stagnation point, 

but not a large recirculation zone, is the essential flow feature for combustion 

stabilisation. Their work was supported by the work reported by Panton and 

Sweat(35) who have studied gaseous diffusion flame stabilised by vortex 

breakdown generated in the boundary layer of a delta wing at high angle of attack. 

Their observations indicated that both the axisymmetric and the spiral form of 

vortex breakdown are capable of stabilising combustion. The spiral form is 

characterised by stagnation points in the vortex core, but there are no significant 

zones of organised recirculating flow(36). 

In the present work, baffled central radial fuel injection was used in conjunction 

with radial swirler(A) which previously, has been demonstrated poor lean stability 

limits compared with others. By placing the baffle in the way of the spiral reverse 

flow can break the vortex core earlier on before it reaches the vertical plane of 

radial swirler outlet. Furthermore, the injecter was placed approximately (70mm) 

downstream of swirler vertical back plate so, the fuel injected in the inner 

boundary, just before the swirl jet impingement on the pilot combustor wall. The 

results showed that by using this technique superior weak weak extinction limits 

were achieved to that achieved by other conditions and for both stages, but with 

sacrifices in the combustion efficiency as demonstrated previously with single 

swirler combustor test. 

The reason behind the superior weak: extinction limits in the second stage 

combustor was due to the generation of the high levels of highly combustible 

species such as CO and UHC which generated local rich zones in the second stage 

inlet section and that extended the weak extinction. The spiral reversed flow 

seems to be vital to recirculate the unburned species upstream for more burnout. 
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That led to the abandonment of the baffle with the central injection system. 

Introducing a smaller flow area swirler change the air split ratio of pilot/main 

stage to (0.58711). This gave good improved stability limits for both stages. Using 

a thin smaller swirler gave an air split ratio of (0.333/1) and the lean stability for 

the second stage combustion was more or less the same for Kerosene and Natural 

gas when combined with pilot at an equivalence ratio of 0.11. Large 

improvements in stability limits were achieved when changing the latter 

equivalence ratio to 0.23. This was due to the change in the pilot outlet 

temperature which gave rise to a higher central core temperature of the second 

stage which stabilised the main flame. 

For the pilot stage, decreasing the swirler depth to reduce the airflow tend to 

increase the swirl number, thereby increasing the potential rotational ring at the 

swirler outlet region. This will estabilish stagnant points in that region which 

gives a wider lean stability. It has been demonstrated using the water model 

technique with radial swirler(A) that the rotational potential ring was very close to 

the central injecter. This tended to give narrow stability limits. 

7.6 WAU STATIC PRESSURE AND TEMPERATURE PROFILES 

In the present work there was no measurement of the pilot stage combustor 

wall static pressure or axial temperature profiles, and the only the second stage 

combustor wall static pressure and temperature profiles were measured with the 

twO stages operational and the pilot stage sustain at specific equivalence ratio. 

Figs.7.5 - 7.24 illustrates those profiles for the second stage combustor wall for 

the different air split ratios of pilot/main stage. 

Fig.7.7 shows that for an air split ratio of (1.041/1) using natural gas, there 

were two aerodynamic zones. The first one was associated with the impingement 

of the second stage swirler flow shear layer when it expanded through the 140mm 

combustor, and the second one was associated with the flow emerging from the 

central core of the second stage swirler which was promoted by the pilot 
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combustor. Those two zones followed by the decay of swirl flow. The 

temperature profiles in Fig.7.8 reflect the above flow experience where the initial 

high wall temperature was associated with fuel being injected peripherally and 

combustion initiated there. 

For the 0.587/1 pilot/main stage air split ratio at 400K inlet temperature. the static 

wall pressure showed the same two aerodynamics zones as at the 1.041/1 flow 

split as shown in Fig.7.9. The wall temperature profiles are also similar with a 

high emissive temperature at the second swirler shear layer impingement region, 

indicating good combustion of the second stage fuel. stage combustor unifonnly 

except for equivalence ratio of 0.42 where slow propagation of the flame 

indicated by low temperature at first. and developed until it reaches its peak 

beyond 200mm downstream. At 600K inlet temperature. the wall static pressure 

and temperature profiles are shown in Figs.7.11 and 7.12 respectively and are 

again similar to those at 400K with two aerodynamics zones and flame 

development as the first. 

Perhaps the most unusual profiles were that associated with the flow split ratio of 

0.333/1 as shown in Figs.7.13 - 7.24. Investigating the temperature proflles one 

can notice the sudden drop in the wall temperature for propane and natural gas. 

The sudden drop is located at an axial distance of 75mm downstream of the 

76mm wall injecter(peripheral). It is considered to be due to the secondary swirler 

shear layer flow impingement without this region burning. but the corner 

recirculation and inner recirculation either side of the shear layer burning. At this 

low pilot air flow the combustion characteristics are clearly worse than for other 

flow splits. The emission results also show that this flow split was worse than 

0.587/1. 

7.7 MEAN COMBUSTOR EXIT EMISSIONS 

7.7.1 pilot/Main air split ratio of (1.04111) 

The measured mean exhaust results for this condition were presented in 

Figs.7.25 - 7.44 for two inlet temperature and fuels types. 

A baffled central injecter was used in the pilot stage to inject the fuel at 
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approximately 70mm away from the swirler vertical back plate. This action gave 

very wide stability limits but with sacrifice on the combustion efficiency which 

was due to the poor mixing between the fuel and swirling air. As demonstrated 

previously using the water model technique that there was a vortex core present 

with the swirler and by placing the baffled injector 70rnm away downstream of 

the swirler back plate the vortex core could not transfer fuel upstream. This gave a 

shorter residence time for combustible species such as CO and UHC to bum-out 

which gave a higher combustion inefficiency as can be seen from Figs.7 .25 and 

7.26 for 400K inlet temperature and from Figs.7.33 - 7.34 for 600K inlet 

temperature. So, it seems breaking-up the central vortex core was not in the 

benefit of good combustion performance. However. at higher inlet temperature 

(ie.600K) the CO and UHC emissions were substantially reduced. 

The combined effect of high CO and UHC emissions at 400K inlet condition gave 

a higher combustion inefficiency as shown in Fig. 7 .27. The lowest combustion 

inefficiency being encountered with propane injection at an equivalence ratio of 

0.45 which was just below 1.0%, while for the natural gas it was above 2.0%. The 

NOx emission profiles followed inversely the same trends as the combustion 

inefficiency as shown in Fig.7 .28. Perhaps. the presence of the combustible agents 

such as UHC strongly facilitated the oxidation of NO to NOz as reported by 

Bromly et al(25). 

The NOx corrected to 15% oxygen and standard day humidity as a function of 

combustion inefficiency is shown in Fig.7.29. The propane and natural gas 

promoted approximately 20 and 14ppm compatible with the lowest combustion 

inefficiency of 0.7% and 1.7% respectively. Fig.7.30 shows the NOx corrected to 

15% as a function of equivalence ratio where the natural gas can be seen to 

exhibit nearly half of the NOx corrected to that of the propane. 

For both' stages at 600K inlet temperature. with the pilot maintained at an 

equivalence ratio of 0.241 for propane and 0.269 for natural gas, the system 

exhibited less CO and a very small contribution of UHC as shown in Figs.7.31 

and 7.32 for all equivalence ratios except for those very near the weak limits. The 

combined effect of low CO and UHC emissions yielded a low combustion 
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inefficiency as shown in Fig.7.33. A low combustion inefficiency was promoted 

by both gaseous fuels and the combustion efficiency was better than 99%. 

However, the NOx levels promoted by the two fuels with this air split ratio were 

high which were mainly due to the high formation of NOx emissions in the pilot 

stage, much more than in the main stage as shown in Fig.7 .34. 

The NOx level were maintained at the same level as the pilot stage for 

equivalence ratio ranging between 0.241-0.500 and between 0.269-0.500 for 

propane and natural gas respectively. The contribution of the second stage 

combustion to NOx was small with natural gas compared with propane fuel as 

shown in Fig.7.34. Thus, for this air split ratio the lowest NOx corrected to 15% 

oxygen and day humidity were 24 and 14ppm compatible with the lowest 

combustion inefficiency of 0.025% and 0.015% for propane and natural gas 

respectively as shown in Figs.7.35 and 7.36. Although, these are low NOx 

emissions, they are considerably higher than than the ultra low NOx of the single 

stage 76mm swirlers. 

7.7.1.1 Oxides of Nitrogen 

For the present work the moderate flame temperatures and the rapid 

formation of NO, indicate that NO is formed via the prompt mechanism as can be 

seen from Figs.7.37 - 7.38 for the pilot only at 400K inlet temperature and 

Figs.7.39 - 7.44 for both stages at 600K inlet temperature for propane and natural 

gas. Fig.7.39 shows nitric oxides as a function of the metered equivalence ratio. 

The NOz contribution to the total NOx up to an equivalence ratio of 0.241 is 

approximately lOppm. However, beyond that equivalence ratio the NO becomes 

the major predominant con tributer to the total NOx emissions and the NOz 

contribution was nearly half that of NO. When using the system at high power 

below an 'equivalence ratio of 0.4 the NOz production becomes predominant in the 

production of the NOx emissions as shown in Fig.7.40 for the system fuelled with 

propane. 

Figs.7.41 and 7.42 show the nitric oxides as a function of equivalence ratio 
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for the system fuelled with natural gas for the pilot stage and for both stages 

respectively at the inlet temperature of 600K. Below an equivalence ratio of 0.269 

the N02 was the main contributer in the NOx production. However. beyond this 

equivalence ratio NO becomes the major promoter of the NOx formation. This 

was propably due to the temperature rise with a lower oxygen concentration. NO 

is sensitive to the flame temperature more than the N02 as this formed most 

rapidly at low temperatures. 

With both stages fuelled with natural gas while the pilot stage was sustained 

at a 0.269 equivalence ratio(A!F=62/l) the NO contributed the major part of the 

NOx which was kept constant throughout the equivalence ratio range shown in 

Fig.7.42. The reason for the high NO was due to the initial mixing of fueVair. 

Variation of NOx formation as a function of flame temperature are shown in 

Figs.7.43 and 7.44 for propane and natural gas respectively. The moderate flame 

temperatures and the formation of NO rapidly. indicate that NO formed via 

prompt mechanism. perhaps with a little contribution from thermal NO due to 

local rich region in the pilot. 

7.7.2 Pilot/Main air split ratio 0/(0.58711) 

The combustor exit emissions products as a function of equivalence ratio are 

shown in Figs.7.45 - 7.50 for a double staged system with an air split ratio of 37% 

pilot air and 63% for the main stage burner. 

The main interest was the condition at 400K inlet temperature which simulate the 

low power operation and the 600K inlet temperature for both stages which 

simulated the high power operation. The other tests were carried out for 

comparison reason and to investigate the influence of each mode on the 

combustion performance and emissions. 

Figs.7.45 and 7.46 shows the CO and UHC emissions as a function of equivalence 

ratio. The pilot at 400K inlet temperature exhibited higher CO emissions than at 

higher power conditions at an inlet temperature of 600K. While the pilot stage 

was sustained at a 0.116 equivalence ratio or (AIF= 135/1). the main stage fuel 
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flow to the air ratios were varied. Fig.7.46 shows that there was only a trace of 

UHC emissions for all operational equivalence ratio except that near weak: 

extinction where UHC emissions increased. The combined effects of CO and 

UHC emissions can be deduced from the combustion inefficiency as a function of 

equivalence ratio which is shown in Fig.7.47. The system exhibited a low 

combustion inefficiency of less than 0.1 %, except for pilot at 400K inlet 

temperature where the inefficiency was equal to 0.1 %. However, the pilot at the 

400K inlet condition exhibited IOppm of uncorrected NOx emission which was 

compatible with a 99.7% combustion efficiency as shown in Figs.7.47 and 7.48. 

The 600K inlet condition promoted an ultra low uncorrected NOx emission of 

6ppm at an equivalence ratio of 0.116 and stays on until the second stage 

combustion was initiated at equivalence ratio of 0.4. Thereafter, the NOx 

emissions increased which was due to the rise in the flame temperature as will be 

discussed later. The correlation between combustion inefficiency and the level of 

NOx emited from the system corrected to 15% 02 and standard day humidity is 

shown in Fig.7.49, where the lowest corrected NOx was exhibited at high power 

operation(ie.600K inlet temperature) with both stages on. The low Nox emissions 

can be achieved with very low power operation and with both stages on as shown 

in Fig.7.50 and without a sacrifice in the combustion efficiency of 99.9%. Thus, 

staging the combustion process with an air split ratio between the pilot/main stage 

of 0.587/1 can promote low NOx emissions which easily meet the EPA standard 

of 75ppm at 15% 02, which convert to 20 - 24ppm at 1 bar for most industrial gas 

turbines. 

7.7.2.1 Oxides 0/ Nitrogen 

Nitric oxides formation as a function of metred equivalence ratio are 

presented in Figs.7.51 - 7.54 for the two inlet temperatures of 400K and 600K and 

for both stages. These plots give the general picture of the dominant species 

behind the formation of NOx emissions. It is clear that NO was the dominant part 

of the NOx, with little contribution by N02 to the total NOx which it did not 

exceed 5ppm at all operational equivalence ratios. 
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Figs.7.55 and 7.56 shows the total NOx formation as a function of gas analysis 

based flame temperature which proves beyond doubts that the moderate flame 

temperatures and the rapid formation of NO, indicates that the NO is formed via 

the prompt mechanism. This is in strong contrast with the 1.041/1 flow split when 

significant levels of N02 were generated. 

7.7.3 Pilot/Main split ratio 01(0.333/1) 

The improvement in the emissions level when reducing the air split led to the 

consideration of a lower proportion of pilot stage air. This pilot air mass flow rate 

was designed to be about 25% of the total inlet air, while maintaining the same 

overall pressure loss as before of around 4.2%. Three fuels were tested in the 

main stage section, using the 76mm wall injection system(peripheral). These fuels 

were propane, natural gas and kerosene. However, only two fuel were used in the 

pilot stage. they were propane and natural gas. 

7.7.1.1 Using propane lor both stages 

Figs(7.57) and (7.58) show the CO and UHC emissions as a function of the 

metered equivalence ratio for the low and high power operation fuelled with 

propane in both stages. The results of the pilot at 600K inlet temperature and of 

both stages burning together at the 400K inlet condition were for comparison 

reasons and to investigate the influence of simulated power output on the 

emissions characteristics. It should be noticed that when operating the pilot and 

main stage together ,the pilot was sustain at an equivalence ratio of 0.1 at 400K 

inlet temperature and at 0.096 at 600K inlet temperature for which at these two 

equivalence ratios the lowest NOx were encountered compatible with a 

combustion efficiency of better than 99.6%. However, for pilot stage at 400K the 

lowest CO emissions were encountered at an equivalence ratio of O. I (AIF= 142/1) 

and below this value the production rate exceeded the oxidation rate. as the 

temperature was too low. A different picture for the pilot at 600K inlet 

temperature was found, the oxidation rate was predominant and the lowest CO 

encountered was at equivalence ratio of 0.096 or (A!F=163/1) fuel air ratio. The 
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emission of UHC were very low for both inlet temperature. The highest UHC 

emissions were exhibited near the weak limits. However, the improvement in the 

emission production were evidently clear from figs(7.57) and (7.58) at the high 

power condition or the 600K inlet temperature. The combined influence of CO 

and UHC emissions are presented as combustion inefficiency as a function of 

equivalence ratio as shown in Fig.7.59. 

Fig.7.60 shows the NOx emissions as afunction of equivalence ratio. The high 

power condition exhibited higher NOx emissions then the lower power which was 

due to increase NO formation as can be seen from Fig.7.63 and 7.64, since the 

NO formation rate is strongly dependent on temperature(25) Sadakata et al(27) 

reported that the effect on NOx of air preheating up to 300C was three times 

higher than that of non preheated case using city gas in a two stage combustion 

system. Emissions of both thermal NO and fuel NO were not significantly 

increased. Thus the present low NOx at 600K indicate that the NO was formed 

via the prompt mechanism. The contribution of N02 emissions to the total NOx 

emissions was constant at just above 5ppm. Figs.7.65 and 7.66 show the rapid 

formation of NO as a function of the flame temperature, and the much lower NOx 

emissions of the main stages. 

The lowest NOx corrected to 15% oxygen and standard day humidity compatible 

with the lowest combustion inefficiency are presented in Figs.7.61 and 7.62. 

Again with this system the EPA NOx standard can be met easily. 

7.7.3.2 Comparison Between Propane and Natural-Gas Combustion 

The general characteristics of the two-stage sytem for the pilot/main stage air 

split of (0.333/1) fuelled with propane or natural gas are shown in Figs.7.67 -

7.76. The propane pilot equivalence ratio was 0.1. The pilot fuelled with natural 

gas was used with two different equivalence ratios of 0.11 and 0.23 at 600K inlet 

temperature or the high power condition. That was to investigate the influence of 

varying the pilot equivalence ratio on the performance of the main stage 

combustion and the combustor exit emissions. Fig.7.67 shows that propane 

exhibited lower CO emission than natural gas at an equivalence ratio of 0.4 when 
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both stages were working together at the simulated high power condition. 

Natural-gas exhibited higher UHC emissions than propane as shown in Fig.7.68 

for all operational equivalence ratios due to the slower reaction rate(30). The 

highest UHC emissions occured for the two stages fuelled with natural gas while 

keeping the pilot stage running at 0.11 equivalence ratio and operating the main 

stage at equivalence ratios higher than 0.4. Due to the high UHC emissions level 

the test had to be terminated. The resultant very high combustion inefficiency is 

shown in Fig.7.69, the combustion inefficiency was above 10%. To overcome this 

problem, the pilot equivalence ratio was raised to new level of 0.23. As expected, 

this resulted in an improvement in the total emissions of CO and UHC and the 

combustion inefficiency as shown in Fig.7.69. At 0.52 (AIF=32I1) the natural gas 

promoted a high combustion efficiency of better than 99.9%. However, propane 

promoted the same combustion efficiency at a lower equivalence ratio of 0.4 

(A!F=4011 ). 

The total NOx emissions as a function of equivalence ratio is shown in Fig.7.70. 

The pilot stage fuelled with propane was kept running at an equivalence ratio of 

0.096 which exhibited low NOx emissions of 5.Sppm. This shows that there was 

a good mixing effects between the fuel and air The pilot stage fuelled with natural 

gas was operated at two equivalence ratios of 0.11 and 0.23, where the NOx 

emissions exhibited were Sppm and 20ppm respectively. Propane exhibited a 

rapid increase in NOx emissions beyond an equivalence ratio of 0.4 when the two 

stages were operating together. This was due to the high production of NO as 

shown in Fig.7.73. Which shows that NO was the dominant part in the production 

of the total NOx formation. The same argument applied to the natural gas case as 

shown in Fig.7.74 for the pilot at 0.11 equivalence ratio. However, when the pilot 

was at 0.23 equivalence ratio the system exhibited N02 levels nearly half that of 

NO and that occured at an equivalence ratios below 0.4 as shown in Fig.7.7S. 

That was the same equivalence ratio where the UHC was at high level. The above 

results contradicted some of the work of previous workers(2S,31,32) who found 

that the presence of highly combustible species such as the hydrocarbons had a 

greater effect than carbon monoxides and strongly facilitated the oxidation of NO 
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The pilot and main NOx emission were constant over the temperature range 

(1400-1900K) for the natural gas case while in the propane case, it increased 

rapidly as shown in Fig.7.76. 

The lowest NOx corrected to 15% oxygen and standard day humidity were 

exhibited by propane as shown in Figs.7.71 and 7.72, for equivalence ratios below 

0.45. The NOx level was below IOppm for equivalence ratios below 0.45 for 

propane and for natural gas the corrected NOx vel was IOppm and above for the 

equivalence ratios below 0.45 and that was when the pilot kept on equivalence 

ratio of 0.23. Low levels of corrected NOx was exhibited by the pilot fuelled with 

natural gas at an equivalence ratio of 0.11, but was more of a sacrifice in tenns of 

combustion efficiency as shown in Fig.7.71. For both propane and natural gas the 

NOx levels were higher than for the main radial swirler alone with wall or 

passage injection. 

7.7JJ Influence of using combination of two differentfuels 

Two different fuels were used in this section. The pilot stage was fuelled with 

propane and the main stage with liquid kerosene. This was done to investigate 

potential main stage problems with liquid fuel. NO dual fuel system was available 

for liquid fuels. The use of the propane pilot was merely to simulate the first pilot 

flow in the main swider liquid fuel tests. Propane is often used to simulate 

vaporised kerosene fue1(30). In the present work two inlet temperatures were 

investigated to study the influence of different power output on the general 

characteristics of emissions. For the inlet temperature 400K the pilot stage was a 

working equivalence ratio of 0.115 (AIF=13511) and at 600K inlet condition the 

pilot stage was kept running at 0.096 (A!F= 163/1). These two equivalence ratios 

were compatible with the lowest pilot NOx emissions and a combustion 

inefficiency of more than 99%. 

Figs.7.77 and 7.78 shows the CO and UHC emissions as a function of metered 

equivalence ratio. At 600K inlet temperature the system exhibited much lower CO 
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and UHC than at 400K inlet which was due to the generation of higher heat 

release from the pilot stage(inner jet). This was an improvement to the 

vaporisation level in the second stage combustor inlet region which was reflected 

in the combustion inefficiency profIle as shown in Fig.7.79. The low combustion 

efficiency at 400K inlet temperature was attributed to the reaction quenching due 

to the mixture dilution in the shear layer. At both temperature a high efficiency 

was demonstrated, indicating no major combustion efficiency problem at any 

power output. 

Fig.7.80 shows the total NOx as a function of equivalence ratio Imperfect 

fuel and air mixing was thought to be the main reason behind the rapid NO 

fonnation(33). It is most propably that NO was only fonned in the early part of 

the main stage combustor which contained the radical rich turbulent flame 

reaction zone. Furthermore, NO is very sensitive to flame temperature which 

explain the rapid increase in the NOx fonnation. However, the increase in NOx 

and the NOx levels were higher than for a single radial swirler with wall injection. 

The N02 fonnation contributed very little to the total NOx level as shown in 

Figs. 7 .83 and 7.84. The N02 was at a constant level throughout the indicated 

equivalence ratios. That was contradictory to what has been reported by other 

workers (25,31,32). NO fonnation was the major part of the NOx emissions. 

The lowest Nox corrected to 15% oxygen and a standard day humidity was 

attained at a 0.45 equivalence ratio as shown in Figs.7.81 and 7.82. However, the 

lowest corrected NOx compatible with the lowest combustion inefficiency at 

600K inlet temperature was 17ppm and for the 400K inlet temperature was 

approximately the same. However, there is reason to believe that this system 

could be improved to obtain much lower NOx emissions than the present level, 

and that could be done by using a shorter pilot combustor than the present one so 
. . 

as to minimise pilot NOx. Moreover, a shorter pilot combustor might increase the 

shear stresses between the two swirling jets(inner and outer) and by increaSing the 

shear acting on the liquid film, produce a finer spray(34), which means more 

unifonn mixing between fuel and air and less NOx fonnation. 
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7.7.4 COMPARISON BETWEEN THE DIFFERENT AIR SPLIT RATIOS 

Figs.7.87 and 7.88 show the CO and UHC emission of the two stage 

combustion system fuelled with propane in both stages as a function of 

equivalence ratio for different pilot/main stage air split ratios but the same 

pressure loss. The low CO emissions were exhibited for all air split ratios but the 

lowest CO was achieved with split ratios of 0.587/1 and 0.333/1, the same applied 

to the UHC emissions. That was due to the higher residence time acquired by the 

low split air ratios pilot stage. The combined effects of CO and UHC emissions 

were reflected on the combustion inefficiency of the system as shown in Fig.7.89. 

The lowest combustion efficiency promoted by the system with air split ratio of 

(0.587/1) was better than 99.9%. All split ratios exhibited a minimum combustion 

inefficiency of less than 0.1 %. 

The total NOx emissions contributed by the two split ratios of 0.587/1 and 

0.333/1 were much lower than that of 1.041/1. Moreover, ultra low NOx of 

approximately 5.0ppm was found for the split ratio of (0.587/1) at an equivalence 

ratio of 0.4 (A/F=40/1). 

The NOx corrected emissions to 15% oxygen and a standard day humidity are 

presented as a function of combustion inefficiency and equivalence in Figs.7.91 

and 7.92 respectively. The split ratios of 0.587/1 and 0.333/1 exhibited similar 

NOx and were the lowest NOx corrected compatible with the lowest combustion 

inefficiency which easily met the EPA NOx regulation 

So, from the above discussion the split ratios acquired by the two stage 

combustion system should lie between the ratio of 0.587/1 and 0.333/1 to achieve 

lower NOx corrected, an order of 5ppm at most compatible with high combustion 

efficiency of 99.9%. These NOx emissions are close to, but higher than, the ultra 

low NOx single swirler results with passage or 76mm wall injection in chapter 

five. 
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7.8 CONCLUSIONS 

1- The preliminary tests conducted in the present work using the dry lean-lean 

two-stage combustion concept have confIrmed that the goal of EPA 

. be h' d h'l . rYlng • regulatIon may ac leVe ,W 1 st satIs' operatmg power range. 

2- The combustor is capable of stable swiching from the pilot stage to two stage 

combustion without difficulties. 

3- The total air split ratios for pilot/main stage to achieve good combustion 

performance with low NOx emission should be lie between 0.587/1 and 

0.333/1. 

4- Ultra low NOx emissions of approximately 5ppm were achieved with 

combustion efficiency better than 99.9% using propane as fuel for the 

existing confIguration with air split ratio of 0.587/1. 

5- It is evidently from the NO and N02 formation profiles as a function of 

metered equivalence ratio that the NO was the major contributor to the total 

NOx formation with the present system, and' there was only little N02 

contribution to the total NOx. 

6- Ultra low NOx emissions can be achieved with other fuels such as natural gas 

and kerosene without sacrifices in terms of the combustion efficiency by 

reducing the pilot stage combustor length thus to increase the shear acting 

between the swirling jets. 

7 - The present combustor is considered to be a good basic confIguration for 

further investigation to reduce all emissions. 
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TABLES 



Table (7.1) 
Measured Weak Extinction for Two-Stage Combustion 

~ir Split Fuel Type Inlet Weak Extinction Overall 
!Ratios Pilot/Main Temp. (EQR.) (A/F) Pressure 
;Pilot/Main Pilot/Main Pilot/Main Loss % 

1.041/1 Propane 400 0.012(Pilot) 1290(Pilot) 4.9 

600 0.011/0.058 1379/269 4.6 

Natural 400 0.049(Pilot) 341(Pilot) 4.9 
Gas 

600 0.013/0.095 1235/175 4.6 

0.587/1 Propane 400 0.112/0.171 140/92 5.0 

600 0.045/0.203 345/77 4.8 

00.333/1 Propane 400 0.093/0.228 168/69 4.7 

600 0.057/0.216 275/72 4.2 

Propane/ 400 0.093/.290 168/51 4.7 
Kerosene 

600 0.057/0.272 275/55 4.2 

Natural 600 0.076/0.296 217/56 4.2 
Gas 

600 0.076/0.115 217/144 4.2 



FIGURES 



FIRST STAGE 8URNING TWO STAGE BURNING: LEAN - LEAN 

SECOND STAGE 8URNING FmST STAGE I'HEMIXEU - SECOND STAGE BURNING 

FIG .7. 1 Dry Low NOx Combustor Operating Modes(4) . 
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FIG.7.29 INEFFJ V. NOXC FOR PILOT/MAIN AIR SPLIT RATIO OF(1.041/1). 
USING NATURAL GAS OR PROPANE FOR PILOT ONLY.MN-.02B. 400K. 
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FIG.7.30 NOXC V. EGR. FOR PILOT/MAIN AIR SPLIT RATIO OF(1.041/1). 
USING NATURAL GAS OR PROPANE FOR PILOT ONLY.MN- .02B. 400K. 
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FIG.7.31 COl V. EGR. FOR PILOT/MAIN AIR SPLIT RATIO OF(1.041/1). 
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fIG.7.32 UHC V. EGR. FOR PILOT/MAIN AIR SPLIT RATIO OF(1.041/1). 
USING NATURAL GAS OR PROPANE FOR BOTH STAGES.MN-.02B. 600K. 
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FIG .7.33 INEFF% V. EGR. FOR PILOT/MAIN AIR SPLIT RATIO OF(1.041/1). 
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FIG.7.34 NOX V. EGA. FOR PILOT/MAIN AIR SPLIT RATIO OF(1.041/1). 
USING NATURAL GAS OR PROPANE FOR BOTH STAGES.MNa .02B. SOOK. 
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FIG.7.35 INEFFI V. NOXC FOR PILOT/MAIN AIR SPLIT RATIO OF (1.041/1). 
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FIG.7.36 NOXC V. EGA. FOR PILOT/MAIN AIR SPLIT RATIO OF(1.041/1). 
USING NATURAL GAS OR PROPANE FOR BOTH STAGES.MN-.028. SOOK. 
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FIG .7.37 NITRIC OXIDES V. EGA. FOR PILOT/MAIN AIR SPLIT RATIO 
OF(1.041/1) : PROPANE OR NATURAL GAS: PILOT ONL~MN-O . 028: 400K . 
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FIG.7 .38 NOX V. FLAME TEMP . FOR PILOT/MAIN AIR SPLIT RATIO OF 
(1 .401) ; PROPANE OR NATURAL GAS; PILOT ONLY; MN-o.028. 400K. 
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FIS.7.39 NITRIC OXIDES V. EGR. FOR PILOT/MAIN AIR SPLIT RATIO. 
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FI6.7.40 NITRIC OXIDES V. EGR. FOR PILOT/MAIN AIR SPLIT RATIO. 
OF (1.041/1). USING PROPANE FOR BOTH STAGES.MN-.028. SOOK. 
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FIG.7.41 NITRIC OXIDES V. EGR. FOR PILOT/MAIN AIR SPLIT RATIO. 
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FIG.7.42 NITRIC OXIDES V. EGR. FOR PILOT/MAIN AIR SPLIT RATIO, 
OF(1.041/1).USING NATURAL GAS FOR BOTH STAGES.MN-.02B. 600K. 
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FIG.7.43 NOX V. F.TEMP. FOR PILOT/MAIN AIR SPLIT RATIO OF 
(1.041/1). USING PROPANE FOR 80TH STAGES.MNa.028. 600K. 
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FIG.7.44 NOX V. F.TEMP. FOR PILOT/MAIN AIR SPLIT RATIO OF 
(1.041/1). USING NATURAL GAS FOR BOTH STAGES.MNa.028. 600K. 
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FIG.7.45 CO% V. EGR. FOR PILOT/MAIN AIR SPLIT RATIO OF(O.587/1). 
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FIG.7.46 UHC V. EGR. FOR PILOT/MAIN AIR SPLIT RATIO OF(O.5B7/1). 
USING PROPANE FOR BOTH STAGES.MN=.028. FOR 400K & 600K INLET. 
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FIG.7.47 INEFF% V. EGR. FOR PILOT/MAIN AIR SPLIT RATIO OF(O.587/1). 
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FIG.7.48 NOX V. EGR. FOR PILOT/MAIN AIR SPLIT RATIO OF (0.587/1) , 
USING PROPANE FOR BOTH STA6ES,MNa.028, FOR 400K & 600K INLET . 
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FIG.7.49 INEFF% V. NOXC FOR PILOT/MAIN AIR SPLIT RATIO OF (O.5B7/1) , 
USING PROPANE FOR BOTH STAGES,MN-.02B, FOR 400K & SOOK INLET . 
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FIG.7.50 NOXC V. EGR. FOR PILOT/MAIN AIR SPLIT RATIO OF (O .5B7/1) , 
USING PROPANE FOR BOTH STAGES,MN-.028, FOR 400K & SOOK INLET. 
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FIG.7.51 NITRIC OXIDES V. EGA. FOR PILOT/MAIN AIR SPLIT RATIO. 
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FIG.7.52 NITRIC OXIDES V. EGR. FOR PILOT/MAIN AIR SPLIT RATIO. 
OF (0.587/1). USING PROPANE FOR BOTH STAGES.MN-.028. 400K. 
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FIG.7.53 NITRIC OXIDES V. EGA. FOR PILOT/MAIN AIR SPLIT RATIO, 
OF (0.587/11 , USING PROPANE FOR PILOT ONLY, MN-.028. 600K. 
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FIG.7.54 NITRIC OXIDES V. EGR. FOR PILOT/MAIN AIR SPLIT RATIO. 
OF (0.587/1J , USING PROPANE FOR BOTH STAGES.MN-.028, 600K. 
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FIG.7.55 NOX V. F.TEMP. FOR PILOT/MAIN AIR SPLIT RATIO OF 
(0.587/1), USING PROPANE FOR BOTH STAGES,MN-.028. 400K. 
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FIG.7.56 NOX V. F.TEMP. FOR PILOT/MAIN AIR SPLIT RATIO OF 
(0.587/1). USING PROPANE FOR BOTH STAGES,MN-.028. 600K. 
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FIS.7.57 COX V. EGR. FOR PILOT/MAIN AIR SPLIT RATIO OF(0.333/1). 
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FIG.7.58 UHC V. EGA. FOR PILOT/MAIN AIR SPLIT RATIO OF (0.333/1). 
USING PROPANE FOR BOTH STASES.MN-.02B. FOR 400K & 600K INLET. 
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FIG.7.59 INEFF% V. EGA. FOR PILOT/MAIN AIR SPLIT RATIO OF(O.333/1). 
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FIG.7 .S0 NOX V. EGR. FOR PILOT/MAIN AIR SPLIT RATIO OF(O.333/1). 
USING PROPANE FOR BOTH STAGES.MN-.028. FOR 400K & SO OK INLET. 



LOB10 

x 600. (PILOT) 

<I 400. (PILOT) 

c 600. (PILOT&MAIN) 

+ 400. (PILOT&MAIN) 

Ol~----~~~~~~~r-----~-T~~~~~ 

~ ffi -1 
... 
o ... 
u. 
Ib 
:z 
H 

o 2 
LOG10 

NOX (CORRECTED TO 15S 02). ppm. 

FIG.7.S1 INEFFS V. NOXC FOR PILOT/MAIN AIR SPLIT RATIO OF(O.333/1). 
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FIG.7.62 NOXC V. EQR. FOR PILOT/MAIN AIR SPLIT RATIO OF (0.333/1) , 
USING PROPANE FOR 80TH STAGES,MN-.028. FOR 400K & SOaK INLET. 
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FIG.7.63 NITRIC OXIDES V. EGR. FOR PILOT/MAIN AIR SPLIT RATIO. 
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FIG.7.64 NITRIC OXIDES V. EGR. FOR PILOT/MAIN AIR SPLIT RATIO. 
OF(O.333/1).USING PROPANE FOR 80TH STAGES.MN-.02B. 600K. 



f! 
0. 
0. 

X o z 

XiOi 
~ (PILOT) + (PILOT/MAIN) 

4i~~~~r-~~~~~~~~~~~~~~ 

2 

FLAME TEMPERATURE, K. 

FIS.7.65 NOX V. F.TEMP. FOR PILOT/MAIN AIR SPLIT RATIO OF 
(0.333/1), USING PROPANE FOR BOTH STAGES,MN-.02B, 400K. 
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FIG.7.66 NOX V. F.TEMP. FOR PILOT/MAIN AIR SPLIT RATIO OF 
(0.333/1),USING PROPANE FOR BOTH STASES,MN-.02B. 600K. 
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FIG.7.67 COX V. EGR. FOR PILOT/MAIN AIR SPLIT RATIO OF (0.333/1). 
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FIG.7.6B UHC V. EGA. FOR PILOT/MAIN AIR SPLIT RATIO OF (0.333/1). 
USING NATURAL GAS OR PROPANE FOR BOTH STAGES,MN-.028, 600K. 
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FIG .7.69 INEFFI V. EGA . FOR PILOT/MAIN AIR SPLIT RATIO OF(0 .333/1) . 
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FIG .7.70 NOX V. EQR. FOR PILOT/MAIN AIR SPLIT RATIO OF (0 .333/1) . 
USING NATURAL GAS OR PROPANE FOR BOTH STAGES.MN- .02B. 600K. 
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FIG.7.71 INEFFS V. NOXC FOR PILOT/MAIN AIR SPLIT RATIO OF(O.333/1). 
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FIG.7.72 NOXC V. EGA. FOR PILOT/MAIN AIR SPLIT RATIO OF (0.333/1) , 
USING NATURAL GAS OR PROPANE FOR BOTH STAGES,MN-.028. 600K. 
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FIG .7.74 NITRIC OXIDES V. EGA . FOR PILOT/MAIN AIR SPLIT RATIO. 
OF (0 .333/1). USING NATURAL GAS FOR BOTH STAGES. MN- .028. SOOK . 
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pressure taps. 
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12- Water inlet 
pipe . 

13- Water outlet 
pipe. 

Plate 7.1 Two-Stage Combustion Rig Assembly. 



-202-

CHAPTER EIGHT 

CONCLUSIONS AND RECOMENDATION FOR FUTURE WORK 

At the end of each chapter there are more detailed conclusions. However, the 

general conclusions drawn from the present work are as follows: 

8.1 GENERAL CONCLUSIONS 

1- Water-model visualisation shown that the flow imposed by radial swirler 

have many characteristics and can be divided into 7- regions each with separate 

properties. These are:-

Region 1: Swirler outlet flow contraction 

Region 2: Corner recirculation zone. 

Region 3: Outer recirculation downstream the impingement point. 

Region 4: Central recirculation zone. 

Region 5: Flu t;tuating central-spiral reverse zone. 

Region 6: Shear layer between 2&3. 

Region 7: Shear layer between 4&5. 

These regions can be considered as a documentation of the turbulent mixing 

scale and flame dynamics. Visualisation technique, although simple but very 

crucial to the iterpretation of a modelling data base. 

2- A low discharge coefficient was caused mainly by separation in the 

passages of the swirler. This was experienced in the back plate vertical plane and 

at the entry to the passages near the outer curvature of the passages. These can be 

minimise by a specially profiled radial swirler and approach duct. 

3- Flame stability was controlled by fuel and air mixing in the shear layer 

between the outer corner recirculation and 'the opposing direction inner 

recirculation. The vortex core played no part in mixing process. 

4- The stability limits of the fuel injected into the base of the swirling shear 

layer. The centraly radialy outward proved to be superior to those for the fuel 
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injected anywhere else. 

5- Improvement in the fueVair mixing was demonstrated by radial vane 

swirlers with fuel injection in the curved passages, though there was some 

unmixedness in the stabilising swirling shear layer to give a considerable 

extension of the premixed stability. 

6- The radial traverse results demonstrated the strong influence of the fuel 

injection method on the local shear layer mixing near the swirler outlet. The 

passage injection peak equivalence ratio was half of that for the central injection. 

This was the main reason for the lower NOx emissions with passage fuel 

injection. The NOx originated in the near burner region and concluded to be due 

to the prompt NOx mechanism with little contribution of thermal NOx generation, 

as temperature above I800K had been eleminated. 

7- Placing a 76mm wall injector immediately after the swirler outlet, can 

give more mixing between fueVair with lower NOx levels than for passage 

injection. The wall injector increases the high velocity shear layer flow residence 

time. Also centrifugal burntlunburnt gas mixing is inhanced. 

8- Radial swirler systems for natural gas exhibits ultra low NOx emissions 

approximated by 30% - 50% or more than that of propane for the same tests 

conditions. 

9- Comparison between axial and radial swirler reveals that even though the 

mean emissions at the exit plane of the combustor were the same, there were 

difference in the mixing process especially near the swirlers outlet region which 

gave a greater chance for the radial swirler turbulent flow to contact the fuel jet as 

it leaves the injector. In case of axial swirler the fuel travelled some distance 

before coming into contact with the turbulent air jet. Thus the fuel/air mixing 

processes effected the details of the flame structure and the axial swirler had 

slightly higher NOx emissions than radial swirlers. 
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10- The test program on dry lean-lean two-stage combustion concept proved 

to be capable of a good stability by switching from pilot to main stage combustion 

and can achieve low NOx levels at 1 bar pressure condition. 

11- The isothermal flow-field calculation using the computer code 

"FLUENT" proved the importance of an accurate and complete inlet boundary 

conditions and it is paramont in swirling system. The calculations were sensitive 

to the shape and distribution of all three mean velocity components. 3D 

computation through the swirler vanes were carried out for the first time. 

8.2 ClIARACTERISATION OF TlIE EXPERIMENTAL DATA 

The relation between the combu$tion performance to the main operating 

variables such as pressure, temperature, mass of the air flow and combustor 

dimensions is one of the requirements of the gas turbine designer. Such 

relationship was established by Lefebvre(1,2) which summerised the past 

experience data that have been done on several combustors. These data were 

correlated against all important variables. Fig.8.1 and 8.2 shows such chart in 

which the combustion efficiency and inefficiency were plotted against e 
parameter that it was ct1-ived from burning velocity consideration where e is given 

by the following: 

T 
p'1.75 A DO.75 (2 ) 

" ref ref exp 300 
e = 

m 
a 

Where 

p z = inlet pressure, Pa 

T z = inlet temperature, K 

Are! = maximum cross sectional area of combustor, m2 

D = maximum diameter or width of the combustor, m 
ref 

m = combustor air mass flow, kg/s 
I 

The e parameter for the present work were calculated from the conditions of 

the optimum cases of the combustors fuelled with gaseous and liquid fuels. These 
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results were plotted on the same chart of Lefebvre(1) for comparison. However, 

the present results achieved much lower combustion inefficiency at low and high 

load conditions as shown in Figs.8.1 and 8.2 than all the systems considered by 

Lefebvre(1,2), in spite of the high pressure which is favourable for even less 

inefficiency used in the conventional combustor data. 

Table 8.1 shows the summarised optimum low NOx results of some previous 

and recent published works. Representation of the results were corrected to 15% 

oxygen for both NOx and CO emissions and some of the published results were as 

a function of engine load. Some investigators were operating their test section at 

high inlet pressures. To prevent any complexities in the present comparison the 

NOx emissions of the other workers were corrected using the Zeldovich NOx 

kinetics square root pressure correction relation and tabulated in Table 8.1 

together with present atmospheric operated results. 

As demonstrated by Table 8.1, the present results can be considered in some tests 

superior especially using a combustor fuelled with natural gas using the non 

conventional passage or wall injection fuel systems. 

Brown Boveri one of the large industrial gas turbine manufacturers 

developed a low NOx burner which used steam or water injection that can be used 

for liquid fuel injection and capable of NOx reduction as low as 38-60 ppm for 

150 MW gas turbine(14). Moreover, there is a second generation combustor still 

under development with a dual fuel conical premix burner to meet the future NOx 

emissions limits down to 25 ppm. which is well below the present and planned 

limits for gas or liquid fuels without having to inject steam or SCR. 

8.3 COMPARISON BETWEEN THE RADIAL SWIRLER AND JET MIX 

PERFORMANCE 

Some of the present results were compared with the work done by Abdul

Hussain et al(18) on the Jet mix stabilisers which were obtained on the same 

combustion rig at 1 bar condition. Fig.8.3 shows the comparison between the two 

results using three fuel injector configurations, passages, central and 76mm wall 
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injection with swirler B, B&C counter rotating and swirler C respectively. It is 

evidently clear that the radial swirler system is superior to that of jet mix system 

and it is capable of achieving Ultra low Nox levels lower than the existing Jet mix 

combustion system at a combustion efficiency better than 99.9%. 

8.4 NOX PRESSURE DEPENDENCY 

Fig.8.4 shows that the NOx pressure dependency of the low NOx work done 

by Furuya et al(15) seems to disapear. This is an unusual result compared to that 

of conventional combustor data when thermal NOx gives a pl12 pressure 

dependence. However, it has also been reported by Ekstedt et al(16) that there is 

no apparent effect of pressure on NOx during catalytic combustor tests at 0.41 

MPa and 1.1 MPa. Moreover, Roffe and Venkataramani(17) have found that the 

NOx emission level were independent of operating pressure for premixed 

systems. Thus, perhaps for the radial swirlers system which demonstrated highly 

good mixing ability with minimal thermal NOx especially with the non

conventional fuel injection systems such as passage injection, have a weak 

dependence of the NOx emissions (mostly dominated by prompt NOx) with 

pressure 

Furuya et al(15) showed that for a 100mm diameter catalyst combustor tested at 

atmospheric pressure the NOx formation was just below 10 ppm uncorrected to 

15% oxygen for fuel methane. The present NOx results are below these catalytic 

results. 

8.5 RECOMENDATION FOR FUTURE WORK 

1- Plate 8.1 shows three types of radial swirlers designed by the author. 

These radial swirlers can be used for different fuel injection modes and two 

different size of radial central fuel injection system. It will be very crucial to 

compare their performance and flow regime patterns with the present work to 

determine the influence of the radial inlet shape on the overall characteristics of 

swirl generation. 
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2- Investigation on the passages and 76mm wall injector can be extended to 

study other means of improving the stability limits on these two systems. Such 

as, increasing the number of holes or making some improvement on the present 

injectors design. 

3- More work needs to done on the combination of two or more swirlers that 

have the same passages depth to be compared with that of a single swirler with 

equivalent passage depth as the combination. Fuel staging between the passage 

should be investigated. 

4- The counter rotating double swirler should be extensively investigated as 

the central injection system had ultra low NOx emissions with a wide stability. 

5- \Vork can be carriedout on the double staged combustion system to study 

the influence of the pilot length on the combustion performance of the main stage 

combustor. 

6- Finally, The measurements of local velocity profiles and the turbulent 

intensities of the combustor flow-field especially that near the swirler outlet will 

add crucial information to the present experimental and theoretical results. 
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TABLES 



Table (8.1) 

Present work results as compared with some of the previous and recent publications 

References Emissions at 15% oxygen. ppm. 
NOx CO 

Sotheran et al(3) 12 5900 
Aoyama et a1(4) 11 • 

Becker and Schulten 
(5) 9% pilot 6 5 

Kuroda et al(6) 13.6 50 
Maghon(7) 

0% premixed 15 90 
92% premixed 2 7 
Smith et al (8) 

EQR.",0.65 7 4S 
EQR.=O.72 11 45 

Smith et al(9) 6 7 
Smith and Cowel1(10) 

EQR.=0.32 4 170 
EQR.=0.35 8 420 
Smith (11) 
Methanol 3 160 

Smith et al (12) 
Natural gas 

(configuration(A) <3 1000 
Injector(configuration(B) =3 100-200 

(configuration(C) 3 800 
Davis and Washam(11) 

Natural Gas 6 15 
Liquid Fuel 40 15 

PRESENT WORK AT600K 
Direct Central Injection(p) 10 21 

Direct Central Injection(NG) 7.0 20 
Premixed (P) 1.5 8 
Passage(P) 2.3 20 

Passage(NG) 1.3 22 
76mm Wall(P) 1.6 12 

76mm Wal1(NG) 1.0 12 
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Plate 8.1 New designs of three types of radia l f l ow 
swirlers , designed by the author . 
a- Straight -Vanes. 
b- Straight -Passages . 
c- Circular -Holes. 
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GENERAL APPENDIX 

APPENDIX A 

A.I SlVIRLER PRESSURE DROP AND DISCHARGE COEFFICIENT 

The swider pressure drop and discharge coefficient were measured 

downstream a flame tube with different pressure monitoring devices. The total 

and static pressure difference can be shown to be the same (1). 

5WIRLER COMBUSTOR 

1 3 

I I 
AIR I .. 

I 

~ 
I 

I 
I 
I 
I 
e 

Provided that the velocities at plane 1 and 3 are uniform, then the stabiliser 

pressure drop is equal to the static pressure at plane 1 with reference to the 

atmosphere. 

p=p -p =Ch -h )f..g 
1T 3T 1T 3T w 

........ Al 

Since the velocity is constant then equation A 1 will be 

p = 1'. - P = (h - h ) ,0 • g ........ A 2 
15 35 1S ~/w 

P =Ah * 9787.03 ........ A 3 

The pressure drop as percentage of upstream pressure is: 

~ pip % =ru> * 100 ICP. +~p ) ........ A4 

where 

h = pressure in 1\0 



6 P = pressure loss N/m2 

t'w = water density Kg/rn3 
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g = gravimetric acceleration 

6 h = pressure difference in Hp 
p. = atmospheric pressure in N/m2 

A-I.I Discharge Coefficient 

It can be shown that the pressure loss can be expressed in tenns of discharge 

coefficient CD 
1/2 

m = CD' A2 (2f /::,p) ........ A5 

where 

6. p = measured pressure loss 

A2 = swider open area 

f = inlet density 

CD = overall discharge coefficient 

1/2 
C

D
= m / ~ (2 f l1P) ......... A 6 

P =(JRT ........ A 7 

0'5 0'5. J).S 0.5 
M = V /(VRT) = R/y). m T lAP =(1NfP ). ril/A1 ...... A 8 

Equations A 6 and A 8 may be combined to get: 
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A-l.2 Correction of the pressure drop to reference Mach No. 

The pressure drop is a function of Mach no., equation A 9. It is useful to 

corr~ct the measured pressure drop of the stabiliser to the standard Mach no. of 

0.0467 (Mref). 
2 

(6P/P)corr = (6P/P)meas. [M ref/M meas.] .... A 10 

A-l.3 Calculation of Reynolds Number 

R.= VfDlf ....... All 

from the ideal gas law and Mach no. definition: 

0'5 
R. = (VIRT) ~. M . D I r ....... A 12 

2 3 4 
=~n I (S 1 + S2 .S + S3 .S + S4 .S + S5 .S ) * IOE-6 ........ A 13 

where 

Tin = combustor inlet temperature K 

S = 100{fin S3 = 13.5083 

SI = 0.552795 S4 = 39.3531 

S2 = 2.81089 S5 = -41.4194 

A-l.4 Pressure Loss Due to Change ill The Area 

The pressure loss due to a flow expansion in the pipe may be given by the 

Borda-Carnot equation below (1) 
2 

K = ( 1 - A IA ) 
11 1 2' 

.......... A 14 

A-2 CALCULATION OF AIR MASS FLOlV AND ~fACH NUMBER: 

Air mass flow rate was calculated according to BS1042 (1). The basic 

equation of the mass flow rate is given by 

~=CZEEAJ2tJP 

where C = Discharge Coefficient 

Z = Correction factor 

.......... Al 
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f., = Expansibility factor expressed as 

.,. ¥1 1 ("1.1)/"1 t 1 - s 1 - r 1/2 
= {---'-- --w--} .......... A2 

"1 -1 1-~i'J l-r 

1 = Ratio of the specific heats at constant pressure 

to that at constant volume. 

and r = Ratio of the absolute pressure at the upstream 

tapping to that at the venturi throat. 

A = Throat area m 

l1P = Pressure difference in (Pa) 
2 

E = 1/(1-s ) where s= (dID) 

d = Throat diameter, m 

D = Pipe diameter, m 

For a venturi type metering device with throat 

dia.=0.0352806 m and upstream pipe dia. = 0.158344 m 

s = 4.96 E-2 

E = 1.0012 

From Figure 52.A , BS 1042 

Co= 0.9865 

A =0.993 and 

R = Gas constant for air = 287.04 

Equation A 1 becomes 
1/2 

m=7.969E-3 *C* <p, H/V .......... A3 

where 
H

1
= Pressure difference in MHO 

~ = Inlet pressure (N/M ) 

T1 = Inlet temperature K. 
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For 76 rom or 140 mm dia. pipe the flow velocity V3 

~=m/fA .......... A4 

and the flow Mach no. = flow speed / speed of sound 

0-5 0-5. o.s 
M = ~/(iRT) = (RrI) * ~m T )/ AP .... AS 

~ is sometimes referred to as the reference velocity. 
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APPENDIXB 

B-1 FUEL FLOW CALCULATION 

Fuel flow calculations are perfonned for both gaseous (propane 
and methane) and liquid fuel (kerosene and gas oil). 
B-I.I GASEOUS FUEL 

The composition of propane and methane was 
regularly analysed using a gas chromatography instrument. 

o 
All the rotameters were calibrated by the manufacturer at 15 C 

and 760mm Hg. To account for the change in the fuel density the 
relationship between the volumetric flow and density in the flow metering 
devices is taken as follows: 

The densities of industrial propane and Methane were calculated 
by the following equations. 

(\J =O.ol( X . t:.. +X . fi> +X· ~ 
f propane C2H6 C2H6 C3H6 f C3H6 C3H8 C3H8 

+X./3?) .......... Bl 
C4HlO C4HlO 

p = O.ol( X . ~ + X . /0 +X· /J 
f methane CH4 CH4 C2H6/ C2H6 C3H8 I C3H8 

+X·C +X ·IO+X • fi) ) .. B2 
C02 C02 N2/N2 02'02 

Where 0 

p = density of industrial propane at 0 Cor 273 K 
!propane 

o 
p = density of methane at 0 C or 273 K 
/methane 

x = The fraction of fuel compositions in 

percentage. 

f 
o 

=The density of fuel compositions at 0 C 

(.) = 1.339 Kg/rJ P = 0.7157 Kg/m3 

I C2H6 ICH4 

(0 = 1.875 " 
I C3H6 

P = 1.965 " 
I C3H8 

P =2.59" 
/ C4HlO 

~2 

fo2 

= 1.2498 " 

= 1.4276 " 

to = 1.9635 " 
I C02 

The G.E.C rotameter reading was corrected using the equation B3 to account 
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for the density changes of the fuel to the rotameter actual temperature and 

pressure. 

where 

= (iJ * (273/(T + 273») * ((PAT + .00187h)/0.76) 
'fuel 

IV = The actual density of the fuel (propane 
I fuel A 

or methane) in the rotameter 

jO = The density of the fuel (propane or 
I fuel D 

methane) at 0 C and 760mm Hg. 
D 

T = Fuel temperature in C 
f 

h = Rotameter static pressure inch W.O. 

PAT = Atmospheric pressure in m Hg 

The fuel mass flow rate was calculated by equation B4 

~ = V /60000 * (f' 
f fuel A 

* f!) .......... B4 
CxHys 

where D 

~ = density of CxHy at 15 C and 760mm Hg 
/CxHys 

x=1 , y=4 for CH4 (methane) 

x=3 ,y=8 for C3H8 (propane) 

V = Indicated fuel flow lImin 

m = Mass flow rate Kg/sec 
f 

B.l.2 LIQUID FUELS 

........ B3 

The mass flow rate for kerosene and gas oil were corrected by equation B5 

and B6 respectively 

v * (0.8 -0.7E-3 (Tf - 15.0») 
m = ----------------------------------- .......... B5 
f 60 

V * (0.828 - 0.67E-3 (Tf -15.0» 
m = ----------------------------------- .......... B6 
f 60 

where . 
V = Indicated fuel flow 

D 

Tf= Fuel temperature in C 
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The liquid fuel rotameter was calibrated for kerosene by the manufacturers. 

The rotameters had to be re-calibrated in order to get the actual fuel flow rate for 

gas oil. This was done experimentally by allowing a quantity of gas oil to pass 

through the rotameters and measuring the indicated fuel flow rate, and also 

measuring the actual fuel flow rate at the fuel injection point. A 6 degree 

polynomial was then fitted through the sample points and the coefficients of the 

polynomial were calculated. In this way every time the indicated flow rate was 

given, the actual fuel flow rate was calculated using the polynomial equation B7 . 

. 2 .6 
V =a +a V+a V+ .... +a V 
A 0 1 2 6 

V = Actual fuel flow rate for gas oil 
A 

a = O.2128E-l 
o 

a = -0.20960 
1 

a = 0.4155E+l 
2 

a = -0.139IE+2 
3 

a = O.2661E+2 
4 

a = -0.252E+2 
5 

a = O.9284E+l 
6 

.......... B7 
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APPENDIXC 

C-1 ELEMENTS ATOMIC BALANCE EQUATIONS 

The air and fuel reaction equation was considered as follows: 

RCxHy+Z(02+NORN2+A1H20+A2C02+A3AR)= 

A4C02+ASCO+A6H20+A702+A8NO+A9N02+A10AR+A11CsHt+A12N2 

from the rig metered air-fuel ratio (AFR). 

where 

R = FM/fuel molecular weight (FMWT) 

Z = AM/air molecular weight (AMWT) 
AMWT 

R = Z ------------ * FAR .......... C1 
FMWT 

FAR = l/AFR 

carbon atomic balance 

RX + Z * A2 = A4 + AS + SAIl 

Hydrogen Atomic Balance 

R Y + 2 Al Z = 2 A6 +T All 

Oxygen Atomic Balance 

.......... C2 

.......... C3 

Z(2 +A1 +2A2) = 2 A4+AS+A6+2A7+A8+2A9 

Nitrogen Atomic Balance 

.......... C4 

Z + NOR + 2 = A8 + A9+2 A12 .......... C5 

Argon (AR) Balance 

A3Z=AlO 

For 100 moles of products 

.......... C6 

A4+A5+A6+A7+A8+A9+AlO+A11+A12 = 100 

Equations C 1 to C 7 are to be solved for 

A6, R, Z, A12, A7 and AlO 

.......... C7 

For six unknowns, six equations are necessary for the exact solution; in this case 

the seventh equation will be used for checking the accuracy of metering air-fuel 

ratio and gas analysis measurements. 
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C-2 FOR CO AND C02 DRY AND VIlC, NO AND NOX ANALYSED ON 

WET BASIS (C02 BASE) 

Solution of equation Cl to C6 while C7 left for accuracy checking. Also the 

calculated moles of 02 can be checked with the measured moles of 02 for 

accuracy checking. 

A4 = DC02 (1-0.01 A6) 

A5 = DCO (1-0.01 A6) 

From equations C1, C2, C3 and C9 

.......... C8 

.......... C9 

DC02-0.01 DC02 A6 +DCO-O.Ol A6 DCO + SAIl 
~ = ----------------------------------------------------------------

X. FAR .(AMWTIFMWT) + A2 

From Cl and C3 
2A6+TAll 

~ = -----------------------------------------------
Y . FAR .(AMWT/FMWT) + A2 

Assume 
Bl = X. FAR .(AMWT/FMWT) + A2 

B2 = Y. FAR .(AMWT/FMWT) + 2 Al 

solution to equation CIO and Cll 

(DC02+DCO+S All)B2 - Bl TAll 
A 6 = ----------------------------------------------

2 Bl +B2 (0.01 DC02 +0.01 DCO) 

............ CIO 

............ CII 

.......... Cl2 

Air and fuel moles can be calculated from equations Cl1 and Cl 

respectively. A7, A4, A5, Al2 and AIO can be calculated from equations C4, C8, 

C9, C5 and C6 respectively and C7 is left for final check. 
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For CO and 02 dry and UHe, NO and NOx analysed on wet basis (02 Base). 

Here the calculated C02 can be checked with the measured C02 for accuracy 

checking. 

A7 = 002 (1- 0.01A6) .......... CI3 

From CI, C2, C4, C8 and C13 

O.0IA60CO-OCO-2SA11+A6+2002-0.02A6002+A8+2A9 
Z = .......... CI4 

2+AI+2A2-2.(AMWT/FMWT).FAR-2A2 

From C14,Cl1 and assuming B3 =X. FAR.(AMWT/FMWT)-1-0.5 Al 

B2(DCO-A8+2SAlI-2D02-2A9)-2TAII B3 
A6 = --------------------------------------------------------- .......... CI5 

B2 (0.01 OCO+ 1-0.02D02)+4B3 

The rest of the unknowns can be calculated as 

mentioned above in C 2. 

APPENDIXD 

CALCULATION OF COMBUSTION PERFORMANCE 

FRO,l! EXHAUST GAS ANALYSIS 

D-I ELEMENTS ATOMIC BALANCE EQUATIONS 

The general equation of fuel and air combustion can be written 
as follows: 

R C H + Z (0 +NOR N +A4 H 0 +A2 CO +A3 Ar) = 
Xy e e e e 

A4CO+A5CO+A6H O+A70e+A8NO+A9 NO +A lOAr+A I 1 C H +A12 N 
e e eST e 

The fuel was taken as a mixture of hydrogen and carbon at atomic ratio of 

eIH =X/Y and R = No. of moles of fuel. 

Air was taken as a mixture of oxygen, nitrogen, argon, C02 and H20 which 

can be calculated from the atmospheric humidity. The concentration of N2, Ar, 

C02 and H2O is taken as ratio to oxygen. 

For 100 moles of products the hydrogen, oxygen, carbon, nitrogen and argon 

balances are given as follows: 

1. Carbon Balance, 

R ... X + Z ... A2 = A4 + A5 + A 11 ... S .......... 01 
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2. Hydrogen Balance, 

Y * R + 2 * Z * Al = 2 * A6 + T * All .......... D2 

3. Oxygen Balance, 

Z (2 + Al + 2 A2) = 2A4+A5+A6+2A7+A8+2A9 ........... D3 

4. Nitrogen Balance, 

Z + NOR * 2 = 2 * A12+ A8+ A9 .......... D4 

5. Argon Balance, 

Z*A3=AlO 

6. Total Moles, 

.......... D5 

A4+ A5+ A6+ A7+ A8+ A9+ AI0+ All+A12 = 100 ........... D6 

From the above equations X and Y are known from the type of fuel used. 

NOR, A2 and A3 are taken from standard atmospheric air tables, and A 1 is 

calculated from the known atmospheric temperature and humidity. A4, A5, AS, 

A9 and A 11 are the measured concentration of the respective gases in the exhaust. 

The equations are to be solved for R, Z, A6, A7, AlO and A12. 

From equations D5, D6 and D3 

Z(2 + Al+ 2 A2+ 2 A3)= 200- A5- A6- A8- 2 All- 2 A12 

from equations D4 and D7 

Z(2 +Al +2 A2+2 A3+2 NOR)= 200- A5 -A6 +A9 -2 All 

from equation D2 

R = (2 A6+ T*All- 2Z*Al) / Y .......... D9 

Sub D9 in equation Dl to eliminate R 

X/Y (2A6+ T*All- 2Z*Al) +ZA2 = A4+ A5+ All *S 

Z= (A4+ A5+ All *S-X/Y(2*A6+T*All»/ (A2-2X/Y AI) 

Equations D8 and DlOa solve for A6 

........... D7 

.......... D8 

.......... DlO 

......... DlOa 

200-A5-A6+A9-2A 11 A4+A5+All *S-X/Y(2+A6+T*AIl) 
_________________________________ - ---------------------------------------------------- t ••••••••• D 11 

2+Al+2A2+2A3+2NOR (A2-2X/Y AI) 

Two procedures are shown bellow. One is C02 base where 02 is calculated 
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and checked with the measured amount (D 2), and the other (D 3) is 02 base, ie. 

C02 is calculated and checked with the measured C02 for accuracy checked. 

D-2 For CO and C02 dry analysis while NO,NOx and UHC analysed 

on wet basis (C02 base), 

This sampling technique was used for all the test. ie. a heated sample pump 

was used for NO and UHC but water was always removed for CO and C02 gas 

analysers. 

A4 = DC02 (1-0.01 A6) 

AS = DCO (1-0.01 A6) 

Here equation D 11 will be 

200-DCO-A9-2All+A6 (O.OlDCO-I) 

----------------------------= 
2+AI +2A2 +2A3 +2NOR 

.......... D12 

.......... DI3 

DC02+DCO+All *S-X.T.A1I/Y-A6(0.01DC02+0.01DCO+2X/Y) 

Assume, 

A2 - 2X. Al /Y 

BI = 200-DCO-A9-2A11 

B2 = 0.01 DCO-1 

B3 = DC02+DCO+A11S-X.T.All/Y 

B4 = 0.01 DC02+0.01DCO+2X/Y 

GI = 2 +AI +2A2 +2A3 +2NOR 

G2 = A2 - 2X.A1 /Y 

Solution of equation DI4 will be 

GI*B3-BI*G2 
A6 = --------------------------------

B2 * G2 + B4 * G 1 

Z = (B 1 + A6 * B2) / G 1 

R = (2A6 + TAll - 2 Z A I) / Y 

.......... DIS 

.......... 016 

.......... DI7 

...... 014 

D.3 FOR CO AND 02 DRY ANALYSIS lVITH NO,NOX AND UHC 

ANALYSED 

on wet basis (02 base), 

A7 = 002 (1-0.01 A6) .......... DI8 
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Eliminating A4 from D3 and D 1 

Z = ( A6 * B2 + B 1)/ G2 

From Dl1 and D8 

.......... 019 

Where 

A6 = (G2 * B2 - G1 * BI)/(G1 *B3 - G2* B4) 

B1 = All (X.T/Y-S)-0.5 DCO +DC02+ 0.5A8+A9 

B2 = 200-DCO+A9-2All 

B3 = 2X/y +0.0050CO+0.5-0.0ID02 

B4 = 0.01 DCO-1 

G1 = 2 +A1+2A2+2A3+2NOR 

G2 = I+A1 (0.5 + 2X/Y) 

......... 020 

Z, R, A4, AIO and Al2 can be found from D19, D9, D1, D5 and D4. D6 is left 

for final check. Also DC02 can be checked with the measured value for accuracy. 

Based on gas analysis the air/fuel ratio equation 

AFR = (Z * Air MW) / (R * Fuel MW) .......... D21 

MW = Molecular Weight 

The stoichiometric air/fuel ratio 

(32.0+NOR*28.0+AI * 18.0+A2*44.01+A3*39)*(X+Y/4) 
AFFtS = -------------------------------------------------------------------- ........... D2~ 

(12.01 * X + 1.008 * Y) 

Equivalence Ratio 

o = AFFtS / AFR .......... D23 

Knowing the pollutant concentration and the fuel moles used to produce this 

pollutant, the emission index, defined as the ratio of grams of pollutant to 

kilogramme of fuel, can be calculated as follows, 

EI = 44.0(A8 +A9)IR(X* 12.01 + y* 1.008) 
NOx 

EI = 28.01 A5/ R(X*12.01+Y*1.008) 
CO 

EI = 16.04*All/ R(X*12.01+Y*1.008) 
HC 

.......... D24 

.......... D25 

.......... D26 
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D-4 CALCULATION OF SPECIFIC HUMIDITY AND ATMOSPHERIC 

WATER VAPOUR MOLAR RATIO 

For a mixture of air and water vapour, at atmospheric condition, the 

saturated water vapour partial pressure as a function of atmospheric temperature 

was expressed by the following polynomial equation: 

p = a + bT + cT + dT + eT 
sat 

o 

.......... 027 

Where T = ambient temperature in C and the constants 
a 

a =592.3 
b = 53.3 
c = 0.8106 
d =0.03299 
e = 4.714E-4 

From the relative humidity definition 

p = p * RH/lOO 
WV sat 

2 
P = Water vapour N/m 

WV 

RH = Relative humidity % 

.......... 028 

The specific humidity (A), or the Mole fraction of water vapour in relation to 

dry air, is given by the following equation: 

A = (R *MW!R *MW )* P /(P-P) .......... 029 
a aWVWVWVWV 

Where R, MW and R, MW are the gas constant(.287 KJlKg K), molecular 

weight of air and the gas constant(,4624 KJlKg K) and molecular weight of water 

vapour respectively. P = atmospheric pressure N/m2 

D-S CALCULATION OF AIR MIXTURE CONCENTRATION 
" 

Air is taken as a mixture of oxygen, nitrogen, carbon dioxide, argon, and 

water vapour. 

The ratio of N2, C02. Ar and water vapour are used in the general chemical 

equation and is determined as follows: 
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For 100 moles of air 

Argon is taken as a fixed percentage of 0.93 

C02 = 0.035%, nitrogen-oxygen ratio = 3.72 and water 

vapour is calculated as shown in the previous section. 

02 = (100.0 - (C02 + Ar + A»/ (1 + NOR) 

Al = A/02 = P / 02 
WV 

A2 = C02 / 02 = 0.035 / 02 

A3 = Ar / 02 = 0.93 /02 

NOR = 3.72 

D.6 COMBUSTION EFFICIENCY 

......... 030 

Combustion inefficiency is calculated due to the inefficiency of unburned 

hydrocarbon and carbon monoxide measured at the combustor exit. 

~ =1 -"1 HC inef/1. CO ineff 
.......... 031 

mCO*CVCO "'f) = 1 ___ m_H_C_*_C_V_H_C_ 

L m *CV 
............. 031 

f f 

Where 
m = mass flow rate 

CV= calorific value 

For an air and fuel combustion 

1 + AFR = M * MWT / ri1 
Substituting 032 in 031 

m *CV 
f f 

.......... 032 

MHe * MWTHC * CVHC Mea * MWTca * evea tt =1- --------(1+AFR)- (1+AFR) 
Mp* MWTp* cv, MWTp * ev, * Mp 

ev = 67.6 Kcal/Mole 
eo 

ev = 222.8 Kcal/Mole 
CH4 

CV = 530.6 Kcal/Mole 
C3H8 

.... D33 
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The formula recommended by the Enviromental Protection Agency (4) was 

used to adjust nitrogen oxide levels. The 15% oxygen in the exhaust is typical of 

full power stationary gas turbines and 3% oxygen for furnances application. 

Where 

NOx = NOx * (20.9-CORR) /( 20.9 - 0 % actual) 
Cobs 

NOx = Corrected NOx to 15% PPM 
C 

NOx = Measured NOx PPM 
obs 

CORR = 15% or 3% oxygen in the exhaust for the gas 
turbine or furnace application respectively. 

o = Oxygen concentration in the exhaust gases % 
2 

........ D51 

Further correction is also recommended to adjust to ISO standard dry 

condition by the following ambient condition correction factor: 

Where 

NOx =NOx * 
C 

19(H - 0.00633) 
obs D 2 e ............. 5 

H = Specific humidity of ambient air at test and e = 2.718 
obs 

APPENDIXE 

FLAME TEMPERATURE AND COMPOSITION CALCULATIONS 

E-1 CALCULATION OF UNDISSOCIATED FLAME TEMPERATURE 

(TUD) 

The undissociated products of hydrocarbon fuel and air combustion 

are C02, H20, N2, Ar, CO and 02. Oxygen exists only at lean mixtures 

(0< 1) and its value is zero at stoichiometric while CO exists only 

at rich mixtures (0) 1). 

For lean mixtures the chemical equation including water vapour, 

carbon dioxide and argon in the atmospheric air is given by: 

RC H + Z /0 (02 +NORN2 +AH20 +A2C02+ A3Ar)=C02 +H20 +02 +N2 +Ar 
Xy 
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If the unburned hydrocarbon is measured as methane in % and fuel is used as 

propane, equation D33 will be: 

YL =1- 0.065(1+AFR) * UHC % - 0.00197 * (1+AFR) * CO % ....... D34 

If unburned hydrocarbon is· measured as propane as a % and the fuel used is 

propane, equation D33 will be: 

~ =1- 0.01544 * (l+AFR) + UHC %-0.00197 * (1+AFR) * CO% ........... D35 

The datum of complete combustion (1-~=0) when both CO and UHC at the 

combustor exit is equivalent to zero. This is not the case if equilibrium 

concentration of CO is taken into account. Combustion inefficiency due to CO 

equilibrium is calculated using CO equilibrium obtained from the flame 

temperature calculations and substituted in equation D33. However, for liquid 

fuel another procedures were adapted to calculate the combustion efficiency(7). 

The ratio (mp! m
t
) is given as in ref.(7) to be: 

(mp! m
t
) = 1 + AFR 

Where 

m
t 
= Fuel mass flow rate. 

mp= Wet products mass flow rate. 

AFR = Air to fuel ratio. 

............ D36 

Due to equation (D36) it can be deduced that the volumetric rate of 

the exhaust gases (Qe) is: 

Qe =(m !IJ ) = m (1 +AFR)! e. pl. • ........... D37 

. f. = The density of the exhaust gases. 

The volumetric rate of CO = Qe* AS!! 00 ........... D38 

The volumetric rate of UHC= Qe* A11!100 ........... D39 



-228-

f = 1.185 Kg/m at 15 C and atmospheric pressure. 

CO 

Then the density at the test conditions will be 

-3 p 

f = 3.3682*10 * ---------- .............. D46 
Ta 

CO 

P and Ta are the pressure and temperature at the sample test conditions. 

Knowing that the universal gas constant=8.3143 N.m/mol K and assume: 

TM= Total moles at exit. 

W =Total exit gases weight. 

W =All * 16.042+AI2*28.0134+A 10*39.948+A 7*32+A6* 18.01534+A4*44.01 

+A5*28.01+A8*30.0067+A9*46.0067 

Also 

Then the ratio (/Off) can be evaluated as: 
CO e 

cf / f) =28.004*TMIW 
CO e 

(f / f )=16.03435*TM/W 
He e 

........... D47 

........... D48 

The unburned hydrocarbon was measuerd as methane in %. 

The calorific values according to ref. (9) are: 

CV =10.101265 MJ/kg. 
CO 
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CV =50.03684 MJ/kg. 

CH4 

CV = 46.5 MJ/kg 

Kerosene 

CV = 45.6 MJ/kg 

Gas Oil 

Then the inefficiency can be found as follows: 

A-FOR KEROSENE 

From equations D44 • D45 • D47 and D48 : 

TM A5 
(1-17 )= 6.0833509* ----------- *(1 +AFR)* ---------

v W 100 
CO 

TM All 
(1:'0>= 17.2539 * --------- *(1 +AFR)* ----------

W 100 
HC 

From eq.(D42) 

1- YL = 
TM 

---------*(1 +AFR)* (6.0833509* A5+ 17.2539* Al 1)/100 
W 

B-FOR GASOIL 

Similar steps to that in (A) will give: 

1- t = 
TM 

--------*(1 +AFR)*( 6.203417* A5+ 17.59448* All) /100 
w 

D-7 NITROGEN OXIDES CORRECTION 



-231-

The source of C02 in the products is equal to the sum of atmospheric C02 

and C02 formed from the burning of the fuel carbon, and similarly with H20. 

To calculate the adiabatic temperature (Tud), assuming no work or heat 

transfer from the system, the energy released by the reactant (r) must be absorbed 

by the products (P) and the enthalpy balance will be given by: 

o 0 
:EX (AH +llH ) =:EX (AH

t 
~H ) 

r r TI r P TUd P 

Where 

~ H = Rise in sensible enthalpy from 298.15 to T 
T 
o 

l:l H = Enthalpy of formation 
f 

....... El 

X X= No. of moles of reactants and products respectively 
r P 

Ti, Tud = Initial and undissociated temperatures ( K) 

In equation El the reactant and product concentration are known, Hand H 

obtained from JANAF tables (2). Only Tud was assumed and changed until the 

right hand side of equation El is equal to the left hand side. 

The enthalpy change associated with the combustion process must take into 

account dissociation for near stoichiometric flames. Generally for flame 

temperatures less than 1800 K dissociation isnot important and an undissociated 

flame temperature calculation procedure can be used. The thermal balance 

method between the enthalpy released by the reactants and that absorbed by the 

products to find the adiabatic flame temperature was allright for gaseous(ie. 

Propane and Methane) since the sensible enthalpy and the heat of formation were 

available in JANAF Tables and other well known tables. But for liquid fuels (ie. 

Kerosene and Gas Oil) the above values were not available in these tables. If a 

Chromatography analysis for Kerosene and Gas Oil is done it might be possible to 

get the percentages of the components of the fuel of known enthalpies in the 
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tables. This was variable from test to another and it will be very complicated to be 

sure of the percentages which are reacted during the combustion process. 

Therefore the following way was adopted with Kerosene and Gas Oil to find the 

adiabatic flame temperature. 

The calorific values of Kerosene and Gas Oil (at room conditions) are 

obtainable from reference (4), also their calorific values can be found by a test in 

the laboratory on a sample of the fuel with calorimeter under constant pressure or 

at constant volume and then converted to that of constant pressure. The calorific 

value is defined as: [The heating provided by the combustion of a specified 

quantity of a fuel in a standard apparatus (calorimeter) under specified conditions] 

(4). 

From the above definition, and taking into consideration the heat treatments 

to raise the temperatre of the fuel from the room conditions to the inlet 

temperature which are subtracted from the calorific value to get the heating value 

(HI) of the fuel at (Tin) as mensioned in the previous section it can be deduced 

that: 

R * HI = (Hp) - (Hp) 
T2 T1 

or 

(Hp) = (Hp) + R * HI ........... E2 
T2 TI 

Where 
Hp = Rise in sensible enthalpy of the products from 298.15 K to T. 

TI = Initial temperature of the fueVair mixture. 

T2 = The theoritical flame temperature. 

HI = The Fuel heating value at constant pressure. 

R = No. of moles of the fuel. 

It is assumed in the above equation as shown that the reaction goes to 

completion in an adiabatic process. In other words all of the heating value of the 

fuel is used to heat the products of combustion. 
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The lower calorific value was used since the water vapor in the products is 

very definitely in the vapor state at the flame temperature. 

Since the products of. combustion are a mixture of several gases, the 

determination of the undissociated flame temperature can be found by a trial and 

error method. 

The rise in sensible enthalpy from 298.16 K to the inlet temperature or the 

equilibrium flame temperature can be taken from JANAF tables 2 . 

E-2 ADIABATIC FLAME TEMPERATURE INCLUDING DISSOCIATION: 

The total enthalpy of the burned products in equilibrium may be computed in 

this case depending on the chemical reaction equation shown in Appendix C 

which includes the dissociated products of combustion. The combustion 

efficiency was affected mainly by dissociation at temperatures higher than 1800 

K. Therefore it was taken into consideration in the calculation of the heating value 

of the fuel. So eq.(E2) will be written here as: 

(Hp) = (Hp) + ID*R* ........... E3 
T2 Tl 

(Hp) could be taken as the same as that computed in the 
Tl 

previous section at inlet temperature. 

\Vhile ( Hp) here is the total enthalpy of the burned mixture 
T2 

(including those of the dissociation products) at the equilibrium 
temperarure. 
~ = The combustion efficiency 

The combustion efficiency was taken in the calculations to find the 

experimental flame temperature at the whole range of (AIF) ratios to be compared 

with the ideal flame temperature. 
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APPENDIXF 

All the instruments were calibrated prior and after completion of each test by 

calibration gas cylinders from Morgan's and Rank Hilger. These cylinders 

contained a cocktail of all the gases above and were analysed by B.O.C. All the 

NOx calibration gases were cross calibrated against a reference B.O.C. 

Spectroseal calibration gas. Towards the end of the test programme this procedure 

was adopted for all other gases. This was to check the accuracy of the calibration 

cylinders to reduce any possible errors that might be caused by calibration as 

explained before. 

The gas analysis were used to compute 'wet' concentrations of CO and C02, 

the air to fuel ratio, combustion efficiency, eqUilibrium CO, NOx emissions 

corrected to 15% oxygen and the flame temperature. The flame temperature 

calculation was based on an energy balance, assuming no heat losses and no 

dissociation. A full equilibrium program was used to check the range of 

equivalence ratios over which this latter assumption was valid. All the 

calculations are set out as in the previous Appendices. 

F-2 GENERAL TEST PROCEDURE 

The experimental procedure for mean exit and radial gas sampling are as 

follows: 

1- Switch on the gas analyser system power about 1 hour before light up to 

stabilise the analyser's electronics and the NOx and FID analysers oven 

temperatures. Also switch on the sampling oven, the heated teflon 

sampling line and the heated lines to the flO and NOx analysers. 

2- Switch on the vacuum pump for the NOx analyser and light up the FlO 

He/I-U-air detector flame. Pass the zero gas and then the calibration gas 

through all the analysers to set up their calibration ready for 
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measurements. 

3- For mean sampling, set up the sampling probe at the combustor exit, or for 

radial sampling, aline the sampling probe with the appropriate port hole at 

the side of the combustor for traversing. For axial traverse the probe alined 

with the combustor centreline at the combustor outlet. 

4- Start the main air blower, switch on the control panel and set the reference 

or reduced Mach number at the desired inlet temperature 305K, 400 K or 

600 K corresponding to low or high power. 

5- The following readings are taken before light up: venturi static pressure, 

atmospheric pressure, venturi differential pressure, venturi temperature, 

combustor inlet static pressure and inlet temperature, air humidity and 

ambient temperature and combustor wall static pressure profiles. 

6- The light up procedure is as follows: 

A. Supply cooling air to the observation window. 

B. Open the sampling probe cooling water 

C. Switch on the ignitor and observe the spark 

through the window. 

D. Energies the fuel solenoid valve. 

E. Open the nitrogen purge valve 

F. Open the fuel valve and supply fuel to the 

rig for 10 seconds. If light up is not successful, 

shut the fuel valve and repeat the procedure after 

the nitrogen purge sequence. 
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For mean exit sampling 

7 - Establish a weak stable flame, correct the air mass flow and inlet 

temperature, find the noise limit by increasing the fuel flow and carry out 

a weak extinction (WEI). 

8- Light up again and establish a condition close to the noise limit. Note all 

readings in 5 and CO, C02, UHC, NO, NOx, 02, H2, fuel flow, fuel 

temperature, fuel pressure, relative humidity, ambient temperature and gas 

sample probe outlet temperature. 

9- Decrease the A/F ratio in small steps of 0.05 equivalence ratio. Repeat all 

readings in 8 at each fuel setting and determine the maximum efficiency 

equivalence ratio. Establish weak extinction (WE2). 

For radial and axial traversing 

10- Establish a weak stable flame. Move the probe into the combustor and 

position such that the probe sampling point is flush with the wall. Note the 

gas sample readings. Traverse the probe in radially or axially at small 

increments taking notes of the gas sample readings at each point. 

11- Remove the sampling probe and position at the next port hole along the 

combustor. Repeat the procedure in 10. 

12- Remove gas analysis probe. Light up again for flame photography. 

13- Check zero and span on gas analysers. 

14- Purge the fuel line with nitrogen. 



Axial Vane 

Table (G.A1) 
Axial Swirler Design Detalls(9) Used For Comparison 

With Radial Swirler (B) 

Blade I h dh d 
Swirler Angle Type 

tb A2 Swirl Pressure I 
number loss % I 

SW5 

SW6 

where 

I = 

h = 

tb = 

dh = 

d = 

A2 = 

(nun) (mm) (mm) (mm) (mm) (mm)2 

30 Straight 46.5 7.5 0.98 47.3 70 1697.66 

45 " 26.2 5.8 1.57 40.60 70 1663.32 

Vane depth 

Axial distance between hub and swirler outer flange 

Swirler vane thickness 

Swirler hub diameter 

Swirler outer diameter 

Swlrler perpendicular open area 

0.49 1.18 

0.81 1.70 
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