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ABSTRACT

This Thesis presents a solution to a problem of elasto=-
hydrodynamics of normal approach ie, the motion of two elastic
circular cylinders approaching each other along the line joining
their centres and separated by a viscous film. Elastic
deformation of the cylinders is accounted for, and the viscosity
of the separating film is taken to be a function of pressure
and temperature, A numerical method of solution making the
use of an electronic computer is devised, and the problenr is
solved assuming a constant load being applied to the cylinders,

An investigation into the nature of the temperature rise
in the oil film due to the motion showed that under certain
circumstances this would be rather small, of the order of a few
degrees centigrade. This makes the assumption of isothermal
conditions in the lubricant film a reasonable approximation
under these circumstances and the resulting simpler problem,
where viscosity is regarded as a function of pressure alone,is
given a more general numerical treatment.

It is found that a very large pressure may be developed in
the fluid film at a finite separation of the two cylinders,

As the film thickness is further reduced,the value of the
maximum pressure goes down and as the film thickness approaches
zero, the pressure distribution seems to converge to the Hertszian,

dry contact form,
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For a given load appliedlto the cylinders, the value of
the maximum pressure reached seems to depend mainly upon the
value of parameter «£E, i.e., the product of the pressure
coefficient of viscosity and the reduced Youngs modulus of the
elastic system, It was found that the higher the value of «E,
the higher the pressure would go for a given load under other- @
wise equal conditions, Furthermore, for a load high enough ?
to produce sufficiently large pressuresya small increase in load
will produce a large increase in maximum pressure, This gain
is also dependent upon the parameter &E and is higher for
increased values of XE.

Finally, a series of experiments were performed in order to
check some of the theoretical predictions made. These
experiments consisted of letting a loaded steel ball normally
approach the polished surface of various materials, the surface
being covered by a lubricant film, and measuring up the plastic
deformations produced in the surface. These tests showed
clearly the influence of the lubricant in that in every case
the depth of the impression with lubricant was significantly largé
than -the ones produced under Hertzian, dry contact impacts, under ‘
otherwise equal conditions. The éxﬁerimental results also
indicate a correlation between the value of the parameter «E and

pressure developed in the lubricant film as predicted by theory.




Abstract

Notation

Chapter

Chapter

1.
1.

2.

9.

10.

11.

12,

CONTENTS

INTRODUCTION
Elasto-Hydrodynamic Lubrication

Investigations described in this Thesis

THEORY

General Equations

General Equations of Motion
General Equation of Continuity
General Equation of State

General Equation connecting Viscosity

with pressure and Temperature
The General Energy Equation
The General Elastic Equation

Additional Assumptions and Simplified
Equations of Motions

Solution of the Equations of Motion in

Bipolar Coordinates

Solution of the Equations of Motion of a
Compressible Fluid with Variable Viscosity

The Energy Equation

Viscosity and Density

W

II

Vi1

10
19
21

22
25
30

38

41

62
75



Chapter

Chapter

Chapter

Chapter

13,

14,

3.
1.
2.

3

b,
1,

2.

3

1.

2.

Equation of Motion under Isothermal

conditions

Summary of Theory

COMPUTATION
Computation
Programming

Checks

RESULTS
Adiabatic Case

Case a; Constant Viscosity, Rigid

Boundaries

Case b; Variable Viscosity, Rigid

Boundaries

Case c; Variable Viscosity, Elastic

Boundaries
Velocity of Approach

Isothermal Case

DISCUSSION

Discussion of Validity of Assumptions

Discussion of Results

EXPERIMENTAL
Introduction

Description of Apparatus and
Experimental Procedure

78
82

85
92
98

101

102

109

112

117
121

123

134
135
137

161

162

167



Appendix A,

Appendix B.

References

Experimental Results

Conclusions

THE EFFECT OF VARIABLE VISCOSITY ON THE

NAVIER-STOKES EQUATIONS

SOLUTION OF THE LINEAR HEAT CONDUCTION

EQUATION FOR A COMPOSITE SOLID

Acknowledgements.

174
189

193

200

209

arn



Vil

NOTATION,

The following is a list of the main notation used.

Special symbols are defined in the text,

e [ 1) e L1 L 1) (1] o0 o0 (1) e

we

Youngs modulus.

Initial central filmthickness
Filmthickness

Filmthickness at point of maximum pressure,
Stress

Pressure,

Maximum pressure,

Radius of cylinders; .°. 1/R = 1/Ry + 1/Rg
Temperature,

Time,

Component velocities; also elastic displacements
in the x,y,z directions,

Velocity of approach,

Load per unit length of cylinder,

Cartesian Coordinates,

Pressure coefficient of viscosity,

Rate of shear strain; also direct strain,
Elastic displacement,

Rate of direct strain; also direct strain,
Elastic constant = (-2/%){[1-v2]/B1 + [1-v8)/Esl
Dynamic viscosity; also micron = 1/10 000 cm
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Dynamic viscosity under atmospheric conditions,

Poissons ratio,

Density.
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INTRODUCTION

Page.

l. Elasto-Hydrodynamic Lubrication 2

2e Investigations described in this Thesis. b



1.1 Elasto-Hydrodynamic Lubrication

The principles of hydrodynamics have long been apvrlied to
problems in lubrication. As long ago as 1886 0. Reynolds read
his now classical paper on hydrodynamic lubrication to the Royal
Society, and since that time much work has gone into elaboration
of this theory. Most of this theory, however, is applied to
journal bearings and thrust bearings, i.e., confined to cases
where the pressures encountered are not very high and the
assumptions are sufficiently close approximations. During the
last 20 years, the theory has also been applied to such machine
elements as gears, heavily loaded rollers etc., whéerethe pressures
encountered are very much higher, The consequence of this is
that now the concept of constant viscosity of the lubricant must
be abandoned and instead a variable viscosity must be used.
Equally important, however, is the fact that now the boundary
materjals can no longer be assumed rigid structures, but that
due consideration must be given to the deformation of these
surfaces under the preesures and the influence this will have
on the hydrodynamic film shape.

Problems of this sort then fall within the domain of
Elasto-hydrodynamic Lubrication. Briefly, the solution of a
problem in Elasto-Hydrodynamics consist of finding the proper

solution of the following system of equations (fig. 1.1.l1.)



1.1.
8 T he - .
’gk‘{% %;}+%E?L% %5}:6Ug—1;+6wg-123-12v
t1
h=C + f(x) +)\/Pln(r)dr
Lo
where
b = o0il film thickness,
P = pressure in the oil film.
M = lubricant viscosity.
U = velocity in X direction,
W = velocity in Z direction,
V = velocity in normal dirdction,
f(x) = undeformed geometry of film shape.
r = distance between a point where deformation

is calculated and the pressure element

producing it.

A = constant, depending upon the elastic properties

of boundaries.
C = an arbitrary additive constant.
& = Total area over which the pressure acts.

The first of these equations is the Reynolds equation
governing the hydrodynamics, The second is the elastic equation
controlling the deformation of the boundaries,

In 1916 Martin (1) assuming constant viscosity and rigid
teeth, showed theoretically the possibility of hydrodynamic

lubrication in gears,
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Later, more complete theories, taking account ot variable
viscosity and tooth flattening, have been put forward by various
writers: Grubin (2), Petrusevich (3), Poritsky (4), Weber and
Saalfeld (5) and Dowson and Higginson (6). These writers have
all attempted to solve numerically the equation 1.1.1, with the
appropriate boundary conditions in one way or another,

All these theories consider the simplitied problem o1
steady rolling ana sliding of two circular cyclinders separated
by a lubricatins 1ilm, and the elasto-hydrodynamic problem of
normal approach seems to have received little attention in the
literature, In this problem the motion ot the two cyclinders
are along the line joining their centres, Such a motion is
encountered in gears, Yotating machine elements where vibrations

are present etc.
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Investications described in this Thesis.

The problem investigated here is that of two circular
cylinders in normal approach under some load. The problem had
its origin in the more limited problem oi evaluating the velocity
of approach for various film thicknesses under constant load,
since this had some interest in connection with gears, It was
hoped that this solution could be used to estimate the thickness
of the lubricating film separating the meshing teeth, and also
give some indication as to the amount of tip relief needed.

In the preliminary attempts to solve this problem a film
shape, which was taken to correspond to the deformed boundaries,
was assumed and the nydrodynamics was thus solved using these
assumed boundaries, E.g. it was assumed that the deformed
geometry could still be represented by two cylinders, but with
different radii than the original undeformed cylinders,

Apart from being arbitrary, it soon become clear that this
process could not be expected to lead to a satisfactory solution,
since this solution was very sensitive to film thickness.

Furthermore, it was discovered that under certain conditions,
the pressure generated in the lubricating film might reach very
high values, This high pressure might have some effect on the
material boundary, and affect the wear characteristics of the

gears
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It was therefore decided to investigate the elasto-
hydrodynamic problem of normal approach of cylindrical rollers
in a more general way by a direct numerical attack on equ.
1.1.1.

Fortunately, the University's electronic, digital computer

was available for this work,
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2.1 General Equatiops,

The system is in general governed by eight equations,
together with the appropriate boundary and initial conditions,
this being sufficient to determine the eight unknowns.

These are the three velocity components, pressure,density,
viscosity, temperature and the elastic deformation of the
boundary solids.

Three of these equations are expressions for three
conservation principles of physics, i.e. the conservation
of mass, momentum and energy. Of the remaining three relations,
two connects the fluld properties of viscosity and density
to pressure and temperature, while the remaining equation
connects the elastic displacements of the bounding solids
with the fluid pressure,

For completeness these equations will be derived in
convenient form in the following sections.

Before attempting to derive these equations some basic
assumptions regarding the fluid and the boundary solids
must be laid down, It is consequently assumed that the fluid
can be regarded as a continous, homogeneous medium and that
any irregularities in the fluid or in the bounding solids
are sufficiently small and can be ignored.



2.2 The General Equation of Motion,

Stregses_in a fluid in motjion.

Referring to £ig.2.2.1, consider a small parallelepiped
with centre P(x,y,z) and sides dx, 4y, §z parallel to the
axis of a fixed coordinate system situated in the moving
fluiad,

The stresses at the centre of the face §ySz away from
the origin are:

Prx + &g§116x ; Py +%§§3ndi ; Pzz + &§§£!ax

where as usual the first suffix denotes the direction of the
normal to the plane considered, and the second denotes the
direction of the component stress,

At the centre of the opposite face the corresponding

stresses are:

Pzz - %g—%ufx ; Pry - i-g;’_i“d‘x ; Prz - i_éP:zd.x_

The force arising from these stresses are:
Razgy ; Fugy ; Lazgy 2,2,

where 6V = §xdyd'z
and similarly for the other directions. Hence there are in
all nine stress components at a point,

Considering the couples arising from the forces we
have:

—P:zdv'l- PSUW
about OY and OZ respectively.

e}



$z

STRESSES IN FLUID
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On considering the equlibrium of the parallelepiped
under these forces and letting the edges diminish to zero

we have

(«Pxz + Pz1)6V = O

e e P2z = Pz

and similarly for the other directions., Hence the nine stress-

componenss are thus reduced to six,

Bodyfopces_apd Ipertiaforces,

In addition to the surface forces, the fluid may also
be subjected to bodyforces such as gravitational forces and
inertiaforces,

The bodyforce per unit volume acting on a fluid particle
situated at a point P may be expressed as p F where p is the
density and F the forcevector at the point,

The inertiaforce may be derived by considering the motion
of a particle situated at a point P(x,y,2z) at time t and .
having a velocity u.

At time t + &t the same fluidparticle will be situated at the
point P'(x+48x,y+8y,2z+8z) and have a velocity y + 4y,

The components of the vector u will be denoted by u,v,w in
the x,y,z directions respectively.

Considering the x component of velocity, if we assume

a E(I:Y’z’t)
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Taylors theorem gives
u+6\1=u+£ug—:+vg—ui+w%+%u€ t + higher terms in 6t

The component acceleration is now given by

Du ou ou ou ou
B et AR A R R 2.2.2

where the operator—%% defined above is known as the total
derivative,

Similar expressions can be found for the component of
acceleration in the other two directions,

Equating the components of surface- and bodyforces to

the corresponding components of rate of change of momentum:

3P 23
pg% = px +-Baz S+ gt 2.2,3

with similar expressions for the y and z directions,

Stregses_apd Velocityarsdiente,
Equation 2,2,3 is the equation of motion in terms of the

stresses in the fluid, In general it ies more convenient to

have the stresses expressed in terms of the velocitygradients.
The stresses in a fluid are not, by definition, dependant

upon its translation or rotation, dbut only upon the relative

motion dr its parts i.e. the rates of strain of the particle.
If a fluid particle is situated at a point P(x,y,z)

and having a velocity u and a nearbdby pnrticle is at a point
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P'(x+0x,y+dy,2z+5z) at the same instant of time and moving
with a velocity u +6u, the relative velocity between the two
particles 1is:

du = 6& +-§§6y + €z
dv =-g§€k +-g;6& +rg%€z r 2.2.4
aw --3—61 + 356? + 3—52

Defining now the rate of strain components:

€ = 2% P § = 2% ; €z = 2%—;— 2.2.5

B ) (FF ) e (08

and the eomponents of vorticity:

ow du du dw . _{ ov _ o
e (Fog)ine(BoE)ine (B8 nae
Substituting this into eqn, 2.2.,4
2du = €;4x + yrydy + yzzdz + Yaz - Ndy 2,2,7

with similar expressions for 4v and Aaw,

Erecting on the point P a new set of orthogonal axis
x',y',2' orientated in such a way that the strains are
parallel to these new axis, then the stresses on surfaces
perpendicular to theseaxis will be normal stiresses only.
These new axis will be called principil axis and the normal
stresses principal stiresses and denoted by Py, Py, Ps,

Let the direction of the principal axis at a point P
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2,2

relative to another set of rectangular axis be specified by
directioncosines 1. ,m ,ni i = 1,2,3

in the usual manner,

Also let
] au ! - . Q_';' Py - —
€} = 25;; 3 € = Zay, ; €1 = 262' 2.2.8

where the primed quantities refer to the principal axis,
We then have:

€ = 1%} + 18} + 13€ 2.2.9
and similarly for € and €z

Also

vy = Limi€! + 1amg€) + lsms€ 22,10

with similar expressions for yyz and y:z

Considering now the equilibrium of a small tetrahedron,
neglecting inertia- and external forces of higher order of
small gquantities, we find

Pzz = P11? + P18 + Pe1}

Pyy = Psnf + Pgnd + Pemi | 2,2,11

Pzz = Pyn? + Pend + Pand
and similearly

P"U = P, 1.-. + Pg 1;-; + P; 1'..'
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PUZ = Pymins + Pgmgng + Psmans 22,12
Pzz = Pyngly + Pangls + Psnsls

Hence, the six stresscomponents have been expressed in
terns of the principal stresses,
Now, making the assumption that the principal stresses

are linear functions of the rates of straln i.e,
P, = -P +N(€} + & + € ) + 2ue}

Pg = =P +\(€} + € + € ) + 2ug} } 2.2.,43

Py = =P +\(€} + € + € ) + 2ue} )

where -P is the hydrostatic pressure
U4 is the coefficient of viscosity
By addition, since Py + P + Pg = ~3P, it follows that

3)\+2u=0

Hence, from 2,2,9; 2,2,11; 2,2,13 we find,

' a2 ou ov ow Jgu
Pzz "P-3"('&'+‘6’i+37)+2"&-
2 ov ov
Puu = «P - 3‘&(% +—§ +%;—) + 2#5 > 2.2.'"4
Pzz = -P-§y(% "%*%) +2y%

Now substituting the relations 2.2.1k4; 2.2,15 for the stress-

components into eqn. 2.,2.4 we obtain the equations of motion
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in their most general form

Boo- BB R-F) BAE-E)

FE T ) N B F

+

pg—; pY-%+§%“(%-%)+%ﬂ(g-§%)+

EE)HET) [ 2216

+

B

oG BHR-R) B E-F)

+%ﬂ(%+%)+-§;ﬂ(%’+§%)

If one can justify the assumption that the terms
arising from variable viscosity are small and can bde
neglected, (appendix & ) the equations can be further reduced

to the more familiar form:

p%‘%gpx-%li:+%pg—:A+pV°u W
pg—z= pY-g—;+§p%A+,uV'v i 2,2.,47
;% pz-g—P+§Mg§A+‘N’w )



2,2

2 ] 2
v = —g—x g + -g—ya + 'g;g s the Lapla cian operator,

The above equations are the well known Navier -~ Stokes

equations of motion,

&



2.3 General Equation of Cont inuity,

This equation is the mathematical formulation of the
principle of conservation of mass,

Referring again to fig, 2.2,1, let the fluid particle
centred on P(x,y,z) be of density p and have a velocity u.
The flow into the parallelepiped in the x-direction in time

dt is then given by

[ pu - %%( pa )éx ]b“yé”zd‘t

Similarly the outflow through the opposite face is

given by
[ pa + %%;( pua )Jx‘]Jszft

Hence the excess of outflow over inflow is
-%i( pa )6xdydzdt

with similar expressions for the other directions,
Now, the mass originally inside the volume is
pdxdydz, and equating the rate of change of this to the

excess outflow gives

{.g%( pa ) +-%?( pv ) +'%i( o )}81656’&t = -g€€x€y€:€t

19
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.'-%§+%;(m)+%&(m)+-g—z(pw)=o 24301

Performing the differentiation this can also be

written as

H+pa=o0 2.3.,2

If the fluid is incompressible the equation of

continuity takes the simpler form

du OV  Ow o, 2,3.3

A='E+_a-i + 3z =

20
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2,4 General Equation of State.

The equation of state is a relation between the density
and the pressure and temperature at a point in a fluid, and

may formally be indicated by

p =p( P,T )

In the case of am ideal gas the function p(P,T) may be
explicitly written as P/RT where R is the gas constant and
which depends only upon the kind of gas.

In the case of most liguids ,however, no such simple
mathematical form seems to exist and resort must therefore
be made to various empirical relations, One way to do this
is to assume that the density can be expressed as a
polynomial in P and T, and determine the coefficients from
measurements on the liguid,

Alternatively, the equation of state may be defined
numerically by giving a table of ¢ for various values of
pressure and temperature obtained from measurements,

Many liquids are fairly incompressible and have a low
expansioncoefficient. Then as a first approximation the
density may be taken as being independant of pressure and

temperature, In this case the equation of state reduce to the
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2.5 General Equation connecting Viscosity with

Tem t o

This relation is analogous to the equation of state and
may formally be indicated by
p=pu( P,T)
where u is the dynamic coefficient of viscosity.

no general theoretical expression for the viscosity of
liquids seem to exist, although a number of empirical
relations connecting viscosity with pressure and temperature
have been proposed, A common feature of all these expressions
is that they contain arbitrary coefficients which values must
be determined from measurements made on the ligquid in question,

The pressure and temperature range within which the
expression used will yield reasonably accurate values depends
to a large extent upon the liquid., At higher pressures a
lubricating oil will tend to solidify, but this effect may
be offset or reduced by increasing the lubricant temperature.
Also the rate of shear the lubricant is subjected to may
influence its properties to a large extent, At high rates of
shear or shearstress the fluid may deviate from the newtonian,
i.e. the shearstress may no longer be a linear function of

velocity gradient. Various values for this critical shear-
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stress are found in the literature, a typical value seenms
to be 500 000 dgyn/cm® (7).

An equation that will be used in this work appears in

(8), and is of the form

( 10810#9:1-\ )’ = a(T)P + ( 103‘10#0‘,‘. )3 2.5.1

where

Hhpt = viscositly at pressure P and temperature T,millipois
a(T) = function of temperature alone.

P = pressure above atmospheric, atm,

Boy = Viscosity at atm, pressure and temperature T, millipois

The above equation was found to be accurate to within
a few percent for pressures less than 40 000 pes.i. in the
case of two lubricants supplied by the Thornton Research
Centre (8). At higher pressures the equation tends to
underestimate the viscosity.

If (logiokr+ )® is plotted against P, & family of
straight lines is obtained, one line for each value of T,
Furthermore, it is known (8) that allrthese lines will pess
through one point, and hence the viscosity at any pressure

and temperature may be obtained by drawing a straight line
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through this point and the relevant value of ( logiokor )*
obtained from viscosity measurements on the lubricant at
atmospheric pressure.

Under isothermal conditions a viscosity equation of
the form
p = poexp( aP ) 2,5.2
will sometimes be used in the following, on account of
its mathematical simplicity, The coefficients uo and a are
characteristics of the lubricant and must be determined by
measurements,

The expression 2,5.2 agrees with egn. 2,5.,1 for small
values of P, as can be seen from expanding the argument in

a binomial series retaining only the first two terms,
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2,6 The General Energyequation,

In a moving viscous fluid irreversible work will be
done by the shearforces, and this work willl appear in the
fluld in the form of heat,

The energy equation express the energy balance, and is
a formulation of the principle of conservation of energy.

Referring to fig. 2.2,1, consider the energy balance for
the fluid element centred on P(x,y,z) moving with velocity
components u,f,w in the x,y,z directions.

The rate at which work is done on the element Dy the
bodyforces 1is
{ Xu + Yv + Zw:] 2.6.1

Also, the rate at which work is being done by the
surface stresses can be evaluated by considering the
difference in the rate of work done on each of two parallel
surfaces, neglecting small quantities of higher order,

Consider for the normal stress component in the x

direction

~Prsudydz + ( Py +-§§ii€x )( u +-§§€x )&y&z =
= 3:( uP:: )6xéydz 2,6.2

and similarly for the other stresses,
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Hence, the rate of work being done by the surface stresses

becomes
{:—?&( uPrz + vPry + wPzz ) +—g§( uPy: + VPyy + wPhy2 ) +
+-%g( uPzz + VPzy + WPz )}€x€y€z 2.6.3

Expanding this and substituting for the stresses from

egn. 2,2.3
{-p(ux+vY+wZ)+%pg;,( u® +v? + w? ) -PA +
+{2(‘?«.;“)*+2<%)*+2(§§)* P BT (el

+ (-%% +1%¥ )8 - §AP:]€x€y€z

20601‘»
The terms in the square bracket represent the
irreversible friction work due to viscosity.
Defining a dissipation function
2 2 2 2 J
"“[2(‘?&“) +v2(E) +2(3) s (R
+(-5— “5;) zA'] 2.6.5

With this notation expression 2.6.4 becomes

{ -AE + ##(gw) - P }o‘v | 2.6.6
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where u 1s the velocity field

F is the force field due to the bodyforces,

In addition to energy supplied to the fluid element by
work done upon it, energy is also supplied by conduction and
convection neglecting radiation which is negligable exept
for very high temperatures,

The rate of energy supplied by conduction is
KVAT4V 2.6.7
where K is the coefficlient of thermal conductivity.

Similarly the rate of convection of kinetic and internsl

energy is

_{.g;[ m( KE + £ )] + 5l pv( KB + E )] + 55l pw(KE+E)]_§W

where 2.6.8

KE = kinetic energy/unit volume = #( y~*g)
E = internal energy/unit volume = cT where ¢ is
the specific heat of the fluid,
Equating the rate of energy supplied to the element by
2,6,1, 2,6.,6, 2.6,7, 2.6,8 to the rate of increase of

kinetic and internal energy within the element:
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{ P Xu + Yv + Zw ) = p( Xu + Yv + Zw ) + %p%i( u? +v3 4wl ) -
-PA + & + KV3T -[-gi(pu(KE +E )] +-§§[ pv( KE + E)] +
+2[ w( kE + E)]:BJ‘V =20 o( XE + E))6V 2.6.9

Rearranging the terms and remembering that from

continuity

-] [-) 0 _ 0
*5i(pu) +‘5§(PV) +‘3§(P') = -;%
the energy equation finally becomes

P-?r% = =PA + KV3T 4+ & 2.6.10

Initial and boundary conditions to egn., 2.6.,10 are
T =% = £(x,y,2) att =0

Where the fluid meets up with another substance, and
assuming that heat transfer across the boundary takes place
by conduction only, and denoting the normal to the boundary

at the point by p we have

oT dTb
fon = oan
where suffix b refer to substance on the other side of the

boundary.

Two limiting conditions can here be recognized, One is
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characterized by letting K = Ky =+ e'e T =2 Ty
t > 0, This is the isothermal condition,
The other is obtained by putting Kgs = 0; t > 0
This may be termed the adiabatie condition, All heat
developed in the fluid stays there and goes to increase the

temperature,

29



2.7 The General Elastic Equation,

The derivation of the equation of motion for a
homogeneous, isotropic, elastic s80lid is completely
analogous to that given for a fluid in section 1,2, and the

equation of motion or equilibrium in the x direction is

"% Px* %Ju g‘?“ 2.7.1

where the symbols u, v, w have now been redefined to mean
displacements in the x, y, z directions respectively.
As before a hypothesis connecting stresses and stralns

is needed and this i1s provided by Hookes law which states:

€ = é[ Pzz = V( Pyy + P2z )]

§ = é[ Pyy - v( Pzz + Pzz )] 2e7e2

g

€ = i[ Pzz - v( Pxz + PByy )]

where

E = Youngs modulus for material
v = Poissons ratio for material
and as previously

638% ;EU-%; H Ezs%'—

- (& LA

Yy a!"’%x!)"'"’(az*ax )3 w;s(%';-r;;

Pry = Gyyy ; Pyz = Gyzz ; Pyz = Gyyz 2.7¢3
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where

G = modulus of rigidity ='§(T—;—;j

Eliminating the stress components in 2,7.1 by using

Hookes lew and expressing the stress components in terms of

displacements neglecting inertia- and bodyforces gives the

equation of equilibrium in terms of displacements i.e,

H
(o)

(x+e)-g§+ev=u

(xN+a )%$-+ GV3v = 0 ¢

(AN+a )%$-+ GV3w = O )

where

A= (1 +v ?%71 - 2v )
n ov ow

A a—'x'l'a—y'l--rz
A general solution to eqn. 2.7.4 is

u= ¢ - ﬂ-{i—v)gi( $o + X$s + ¥éa + zés )

Y = ¢s "ETTéi)%i( $o + XPs + Yps + Zds )

w =g -“ErTég)%;( $o + Xps + YPa + Z$s )

2.7.4

e 2,75

where the ¢; are harmonic functions 1.0, satisfies

VB, = O 3 1=0,1,2,3
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Suppose that a concentrated normal force F is applied
at the origen of a semi infinite elastic body bounded by
the plane z = O,

Symmetry suggest that one can take ¢1 = ¢3 = 0O, hence

the solution to the equation of equilibrium becomes

. )

u = -mg;( $o + zds )
¥ = —W—l—;)g—y( ¢o + z¢3 ) g 2.7.6

Y= o) %o + 28 ) + 4

-

The associated stress pattern then becomes

Pu=§(—1—%)[2v%£°_a_ -ZEtSJ 277

with similar equations for P,y and Psz
Py =7(1—'S—g)[ %’%g + z%’g;-] ]
Pu=-2-(1—'f—v)|:§§§+z§§;-(1-2u)g¥l: |
o] § 0 ol (g

Boundary conditions demand that on the gurface

2.7.8

o

gm0 ; Pzz = Pz = Pgy = O
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Taking
%%Q = (1 -2v )¢s ; Pzz and Pzy becomes zero at z = O

Choosing for the function ¢s the harmonuc -ﬁ-, where
R® = x® 4+ y® + z? ; A constant, Pzz; likewise vanish at z = 0
Hence the boundary conditions are satisfied.

In order to determine the constant A, consider the
equilibrium of a small cylindrical disc having the z axis
as its symmetry axis and of thickness ¢ and radius a,

The shear stresses vanish in the limit ¢ -+ 0, hence

qQ
F = «[29rP224r ; r® = x® 4+ y® 2.7.9

o
a 8

' AvG
fe B = ’12'2 1R 4 =95

o.o A g%’F

Hence, the vertical displacement at the surface

corresponding to this value of ¢; is

1 -v® )F ,
W2z0 -4 5T ) 2,7.10

In the case where a distrubeted load or pressure is
applied, the deformation of the surface 1s obtained from the

a bove equation by superposition, and 1is given by

33
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2,7

wz.0 = 6 =«%§2?//2%§L!2dydx 2,7.41

where the integration extends over the whole of the
pressure distribution.
In a different coordinate system x',y', specified by

the coordinate transform

x' =+ x
y' =n+y
z' = z

equation 2,.7.11 becomes

1 - v [[ B(x',y")ax'ay"
‘=T//~/%'1%7’-)%‘l‘h? 2112

where agaln the integration extends over the whole of the
pressure distribution,

In the two dimensional case the pressure must be regarded
as a function of x' only, and the deformation must be
independant of the n coordinate,

Considering therefore the deformation due to a pressure
distribution over a rectangle x' = Y a ; y'alp

we have



f ) 2.7013

Assuming now that 8 >> |x - £| and that the term

( x = §&/8 )® is negligable compared to unity, we have

6‘:-.—21 1'5 ad l/P(x')ln i-f ax'

* *
201 oV )mp/ P(x')ax" -.&,-i-f—)/ P(x')ln|x'- &laxt
- - 2,741k

The first integral is the total load on the material.

Thus if W' denotes the total load and W the total load per

unit length in the y' direction, we have

=‘%'? = / P(x*)ax'
-ot

If a positive pressure P(x') is applied, the integral
can not vanish, Therefore if B is infinite W' must be infinite,
but W may be finite. The whole term, however, is infinite due
to the factor 1n(28). This result is not unexpected since
the material was assumed to extend to infinity in the -z
direction,

The change of shape of the surface z = 0 is due entirely

to the second term in 2.7.14. Discarding the infinite constant
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we have

«
6 = -2 1v£7v’ )/-P(x')1n|x' - &lax' 2,7.15

and this will be denoted the local deformation,

Writing x' - £ = r, we have

d = -2( 11,% U )/P 1n(r)dr 207.16
£l

If the undeformed filmshape is given by the equation

h = £(x) + ho

then after undergoing deformation the filmshape 1is specified by
h=H+(x)+ k/ P(x')ln|x' - x|ax’ 2.7.17
(<8

where H is an arbitrsry consta nt which is so chosen that
the filmthickness at some given point has a specified value,
Eg. if the central filmthickness shall have the value ho then

clearly
H=he - )\/ P(x')1ln(x')ax’
L

If both the boundary surfaces are deformed, and the
materials are specified by the elastic properties E;, vy and

Eg, vg, then
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2.7

>\=_{1E§_Vi+%#:| 2.7.18

The calculation of filmthickness is based on eqn, 2.7.17.
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2,8 Additional Assumptions snd Simplified
Equations of Motion,

The equations governing the motion of the fluid derived
in the preceding sections are much too general to be solved
directly.

In order to simplify and reduce these equations to a more
manageable formbadditional assumptions are introduced, The
purpose of this sectlion is to state these assumptions and give

some justification for introducing them.

A1 The motion will be considered to take place in a two
dimensional space only,

A2 The terms arising from the inertia of the fluid in the
momentum equation are small compared to the viscous terms
and may be neglected,

A3 The terms due to external bodyforces acting on the fluid
are small compared to the viscous terms and may be
neglected,

AL No temperature gradient exists across the film,
Mathematically the assumption A1 means that with the

previous definition of the coordinate system one may put
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'=—gf'zn-0

The physical interpretation is that no velocities nor
any gradients exists in the z direction, or as an approximation
that these gradients are small and can be neglected compared
with corresponding gradients in other coordinate directions,
This condition is fulfilled if the dimensions in the z direction
are large compared with the x and y dimensions, This condition
may not be met in the present problem and hence solutions
obtained using A1 may not give a true description of the flow,

The component of the inertia force in the x direction

is given by
Be - o 3 enlevd

V3x X dh
and this is of order of nagnitude—eﬁy— 1 “%h 3%

where: V is the velocity of approach.

The corresponding viscous forces are
-
LV = u{ - +-Q1r }

and this is of the order of 12u§§%
The ratio of the inertia forces to the viscous forces kmown

as the Reynolds number Re then becomes



2.8

R, 2-%( 1 -2—:%:1-)

Under conditions where we have R, << 1 the introduction of
assumption A2 may not cause great error on the solutions.
Similarly the influence of the bodyforces may be
investigated, The only bodyforce assumed present is gravity
acting in the -y direction, The order of magnitude of the

ratio of the bodyforce to the viscous forces is
e
uVx
and if the order of magnitude of this quantity is small
compared with unity, bodyforces may be neglected.

Taking account of A1, A2 and A3 the momentum equation

22,17 reduce to

P 1.0
2,8.1

—%5 =-%ﬂ%§A + uViy
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2.9 Solution of the Equations of Motiop in
Bipolar Coordinates.

Investigating the case of motion of an incompressible
fluid of constant viscosity, bounded by rigid surfaces, the

momentum equation takes the form ( fig., 2.9.1 )

oP _ 1,0 8

x = 3‘“axA + W 2.9.1
oP 1.9 2

-7 wMAT VY 2. .2
oy 3'“ayA + U 9

and the equation of continuity becomes

a X0

-& + -a? 209.3

Now introducing the Lagrangian streamfunction y defined

in the usual way by

u‘___%; vg% 2.90‘4

the continuity equation is satisfied,

Differentiating .1 and .2 by y and x respectively,
subtracting and substituting the relation .4, we obtain
Vty = O 2.9.5
i.e, the streamfunction is a solution of the biharmonic
equation,

Differentiating .1 and .2 by x and ¥ respectively and adding
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we get on account of .4
V8P = O

Defining the vorticity

ov ou
(z—a—i-?a—y— :V’V
we have
V3C =0

2.9.6

2.9.7

2.9.8

i.,e. the pressure and vorticity are conjugate harmonic

functions.

The problem is now reduced to finding solutions of .5

satisfying the boundary conditions,

For the geometry in this problemit will be convenient

to employ bipolar coordinates defined by

z = 1b cathif

z =X+ 1y ; 3

Solving for £

z + 1d
€=1n"7p

and separating real and imaginary parts

b sinf
cosha - cospf

b s
y = coiﬁa - cosp

X =

a + ip

2.9.9

2.9.10

2.9.11%

2.9.12

2.9.13

3
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and defining the transformation parameter

bK = cosha - cospB 2.9.14
Now, let one cylinder be represented by the equation

a= a

and the other cylinder by a = ag = 0

Then if Ry and Rg is the radius of the first and second

cylinder respectively and D; and Dg the distance of thelr

centres from the origin, we have

b b

R1 =‘s—fi-h"a;; Rg =’s—m=“ 209.15
Dy =B +ho =goipm i  Da = goipgy = ® 249.16

Now, in bipolar coordinates the Laplacian becomes
v = k(-3 +-%r) 2,947
and on changing the .dependant variable from y to Ky we have
VY = { K("ggr +’%%I ) - 281nha%a - 231nﬂ§%—+
+ cosha + cosB }(Ky) 2,9.48

Applying the operator again we get for the biharmonic

Ty = {W . 2_1_? zg? % j(xy) = 0 2,919
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which 1s a linear equation with constant coefficients,

The coordinate @ has a finite discontinuity of 2% on
the line x = O, The pressure, however, is a continous function
and moreover must be symmetrical about x = O, Seeking solutions
that are periodic in 2% and which will give a symmetric
pressure distridbution, we are interested in solutions of the

form

Ky = £(a)sin(nB) 2.9.20
Assuming a solution of this form, the equation for

f(a) becomes

{% = 2( n%+ 1 )‘?—a;- +(n®-1)" }r(a) = 0 2,9.21

Assuning solutions of the form f(a) = e"® we obtain
£(a) = Apcosh(n+1)a+ Bpcosh(n-1)a+

+ Cpnsinh(n+1)a + Dpsinh h(n-1)a n2?2 2.9.,22

For n = 1 the solution becomes

r(a) = Ajcosh2a + By + Cysinh2a + Dia 2.9.23
and forn= 0
f(a) = Agcosha + Boacosha + Cosinha + Doasinha 2.9.24

Hence the complete solution is given by
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Ky = ( Ao + Boa )cosha + ( Co + Doa )sinha +
+ [ Ascosh2a + By + Cisinh2a + Dia }sinﬂ +
r
+ Y sin(ng) ’LAncosh(nH )Ja + Bpcosh(n-1)a +
=2

+ Cnsinh(n+1)a + Dpsinh(n-1)a j 2.9.25
The vorticity is given by
v( = {:( cosha = cosf )( %:—‘s +~g%§‘ ) -251nha-g"'a -
- 2sinﬁg§ + cosha + cosp }(Kw) 2.9.26

Now, from reasons of symmetry it will be seen that temms
arising from n = 0 must vanish, Furthermore we will assume
that a solution can be obtained using only the terms arising

from n = 1, Thus we have
Ky = { Ajscosh2a + By + Cisinh2a + Dia }sinﬁ 2.9.27

vC = 4( Cisinha + Ajcosha )sing -

- ( Cisinh2a + Ajcosh2a )sin28 2,9.28.

The pressure can now be determined with the aid of the
Ca uchy - Riemann equations, since pressure and vorticity

are conjugate functions,

stb/%dﬂ-rc
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e PP = C = L4( Gicosha + Assinhx )cosB +

+ ( Cicosh2a + Agsinh2a )cos2B 2.9.29

where C is an arbitrary constant .
Now, if vq and us are the component velocities of the
fluid in the positive direction of a and B( fig. 2.9.2 )

we have
va = 3% = —35(Ky) + %%)sinﬁ

k¥ = g‘—z(xv) - %g)sinha

va = ( Ascosh2a + B, + Cisinhfa + Dia ) lo;hgoghggggﬂ

Up

Up = i‘ 2A3sinh2a + 2Cscosh2a + Dy ) - 2.9.30

a
- ( Ajcosh2a + By + Cysinh2a + Dya ) cosﬁé?f cosﬁ}sinﬁ

Consider the system at an instant when the surface
a = 0 coincide with the x axis as shown in fig, 2,9.1,
The boundary conditions are:
1.0na=°’u‘=°
Hypothesis of no slip
2oona=a19u‘=o
3. The relative velocity of approaeh of the two surfaces

@ =a; and a = 0 18 ¥

Substituting B,C.1., gives 2C4 + Dy = O
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B.C.2 gives two relations for the constants, namely

( 2a38inh2a; + 2Cjicosh2ay - 2C4 )coshay -

- ( Ajscosh2ay; + By + Cisinh2ay - 2C a4 )sinha,, =0

2A;8inh2ay + 2C4cosh2ay - 2C4 = O

- (24 .
RIS 2.9.3

1 = cosh2ay

The velocity of the lower cylinder a = O is

29432

Ya:0 = A1 + By = 2C4 [ 1 giggggfai_.'. ay ]

At the top surface @ = a; we get
'a:ai = 0

and since we also have u, 0, the fluid velocity at this

surface is zero, Hence, in order to satisfy B.C.3 we must

take vg-0 = vo

o sinh2a,
e®e Ca = 4V 1 - cosh2a; + a;sinh2a; 209435

Now, from previous we have the relations

b
sinhay =-p- . tanha, 8"542__53

1 +
«+ coshay = 1 +-%g—
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Expanding the cosh, we have

_&1%{.._
coshas = 1 + 51 * o1+ + =1 +.§%

Since-%% is small, the value of cosh®; will be nearly 1.
Taking therefore only the first two terms in the expansion

we get

ag“"%:‘ ? ete X =a/ "2'%‘.:'

Similarly ex panding the sinh, and neglecting terms

of ai and higher
b = Ray = +/2hoR,

and to the same approximation

cosh2ay = 1 +%§

In this work the order of magnitude of the parameter
ho/Rs 18 2°10~¢

Hence we have the inequalities
41,0000 € cosha £ 1,0002 a  ay

Hence, by taking cosha ~ 1, errors of less than 0,1%
are introduced.,

To the same order of approximation we also have
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Ay = - C1ag
and since sinha  @; we have for terms such as Aisinha ~ Ciaf
which are small and may be neglected in comparison with terms
of the form Csycosha,

Similarly, for the coefficient Cy, we get
Cy ~ ‘3%

Taking account of this and also determining the constant
C such that the pressure will va nish at infinity, the

expression for the pressure becomes

bP =-§¥-[ 3 + cos2pB - h.coeB:I

o.o P S'%L( cosﬁ -1 )2 209.3‘4

The load supported by the f£ilm is the integral over

the pressure distribution.

ot W=}%&b /o( cosf - 1 )ag
=J_;{$#V;;Ci 2,935

Now, we previously had
b sing

cosha - cosp

X =

and to the same approximation as previously this may Dde

written as



52
2,9

2b2
cosf - 1 ~ =33 T

Sub stituting this into eqn. 2.9.34, the pressure is

transformed ( approximately ) into cartesian coordinates

o 6uVR 6LVR
»to F =ﬁ(%ho + x3/2R )* =~_ﬁ’_. 209436

This result shows that to the given approximation the
pressure is constant across the f£ilm, Furthermore, it is seen
tha t the pressure has an appreciable value only on a narrow
zone centred on the line x = O, and that within this zone
the approximation to the geometry h = ho + x*/2R is acceptable,
Geometrically this is equivalent to replacing the circular
cylinder with part of a parabolic cylinder,

By calculating the cartesian approximations to the
velocity components u and v, and then differentiating these

twice w,r.t, x and y, we may show that

confirming a result obtained by means of a order ofmagnitude

analysis,
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2,10 Solution of the Equations of Motion of s
Compressible Fluid with Variable Viscosity,

The solution arrived at in the previous section is
only valid for an incompressible fluid having a constant
viscosity and confined within rigid boundaries, In this
section the restrictions on the physical properties of the
fluid will be removed,

If we assume that the general conclusions drawn at the
end of the previous section, i.e, that the terms 9%u/dx?;
o%v/ax3; 0%v/0y® are sufficiently small to be neglected in
comparison with #*u/dy®, that the main pressures are confined
to a narrow strip at the centre and that the pressure does
not vary appreciably across the film, then in view of the
assumption that temperatures are not varying across the film,
the fluid properties, density and viscosity will not be
functions of y,

The momentum equation in cartesian coordinates then

take the form ( fig, 2,40.1 )

t
Lodbaruly 2.10.1

where A is a term arising from compressibility and is
gliven by

e 9, _ O%u v
e Tx® Tx¥ Toxoy

and this is of the order of magnitude of terms previously
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neglected, Neglecting these terms does not mean that
compressibility effects are ignored, since these will arise

again in the continuity eguation.

Thus,
P 2
%;-_= “3}%‘ 2,10,2

Integrating twice w.r.t. y

J7253 =§—££+ Ciy + Cg

and applying the boundary conditions of no slip

u(x,0) = 0 }
u(x,h) = O

Substituting these boundary conditions:

The equation of continuity for a compressible fluid
is

A= -*%[:-%e + u%% + vgg{]
and the tern-gg'vanish from the assumption that the properties
do not. vary with y,

Integrating w.r.t. y, taking account of the fact that

v = 0 on the lower surface and - dh/dt on the upper:
h

%“/{'%(%%*“%f)*%’}d! 2,10,4

o

Substituting for u from 2,10,3, we get after
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2.10
rearrangement

. .
2. (pn) =—§;[%§] 2,10.5

This equation may be termed the Reynolds Eguation for
the motion and may be solved numerically if required. Before
attempting to do so, it may be profitable to investigate
closer any possibility of simplifying it further,

It has previously ( 2.7.17 ) been shown that the equation
for the filmshape can be written

h(x,t) = ho(t) + £(x) + g(x,t)

where the last term arises from deformation of the boundary

material, Hence,

& . S + 3= (8)

It is thus seen that the velocity of approach consists
of two terms, The first oho/dt is the motion of the cylinder
as a whole, the second term is the contribut ion from the
rate of deformation and varies along the film, If the rate
of deformation is small we may introduce an average velocity
for the surface as a whole and use this in eqn, 2,10,5.
Adopting this procedure and defining

h
o =" v

where V is regarded as being a funstion of time onily.
We then have
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d _oho _ _ v 9
B3t © ot on oh

and egqn, 2,10,5 becomes

0 _ 90 h® oP
If the fluid is regarded as incompressible, the equat ion

reduces to

X
P=/1—121#!de 2,10.7
[+ 2]
after two integrations and substitution of the boundary
conditions
$=0; 20,20

lim P=0;t 20

X~» QO

It 1s thus seen tha t the simplification arising from
the assumption of incompressibility is considerable,

The compressibility effects are represented in the
eqn, 2,10.5 mainly by the term

() = p+nge

Now, if for purposes of investigating more closely the
influence of compreseibility it is assumed that density is
a function of pressure only, then for liquids such as
lubricating oils which are fairly inconpreasiblq,the first
term predominates, The second term in addition to being smaller
is also of opposite sign, at least in the most interesting



58
2,10

range near the centre,For this reason, retaining only the
rfirst term, equation 2,10.,6 integrated once gives

pn® P 9 |
(o}
Defining:

1 x
Qz =-E;'/'p dx ; x#+ O

! 2.10,9
Qr = 1 y X = 0
and integrating again:
b 3
P = /1—;"16‘3’5 Qzdx 2.10,10
o

Now, assuming that density is a linear function of

pressure

Pp= po( 1 + aP )

q_: QP. =%-£-°_

where pa 1is density corresponding to maximum pressure P,
Po 1is density at atmospheric conditions,
With this 2.10,9 becomes:

X X
P -
Qx=%/(1+¢?)u=.§2{1+—%/—ﬂdx,} e Uei
o o

Expanding p~* in a binomial series retaining only the

first two terms
X

X
- P P _ 1 [E P
Q:-1+§/§;dx-q§; 1 +‘1va/f’.“""‘r@‘.] 241011
© o
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The term
x
1 P P
B(x) = x| 5 dx - T has the approximate value
0£BL05 for 0 x o

depending upon the shape of the pressure distribution,
The value of B computed for some typical pressure distributions
are shown in fig. 2.10.2,

Substituting the resmlt 2,410,141 into the expression for

the pressure egn., 2,10,10:
X x
P= /l%#‘—’l ax. + q / 129X p(x)ax 210,12
or . 4

The first integral represent the incompressible case,
the second is the contribution to pressure from compressibility,
Since B varies from about 0 - 0,5 and the value of q may de
taken t o be about 0,10 - 0,15 for some lubricating oils,
. it. seems that the influence of density variation on pressure
will only be of the order of a few percent. One may therefore
be justified in calculating the pressure from the simpler
eqn. 2.10.7 rather than from the complicated but more
accurate egn, 2.10,6,

The total load carried by the film ie given by

ao [ 4

w,/pdx =2!de;_

-0
Denoting the integral

X

R(x) = /-’%-95 | 2,40.13
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we have

Qo
W = 24V /R(X)dx 2,10, 14

©

Hence the velocity of approach becomes

W
V ='m- 2010015
Q@©
In. this notation the relation for the pressure
becomes
p =%£§Q 2,10,17

The integrals R(x) and S can be obtained by numerical

integration using a convenient quadrature formula, once the

appropriate values of viscosity and filmthickness have been

determined,

-1
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The general energy equation as derived in section 2.6

was
)]
PgT=-PA+KV’T+¢ 2,11.1

where @ is the source function,
Taking account of the additional assumptions this

becomes

cp -g% + u%%i] = - P‘:-%% +
and & is now given by
® = u[ 2(%2—)'+ 2(%)' +( ax) 3 qu ay) ] 2.11.3

Substituting for u from eqn 2,10.,3 and integrating w,r.t,
y from O to h, writing 8/9t = - V 3/dh, we get

cp v:‘”- ——]_-/PMy+Kh-g-£1 /my

¥

X

2
]+K9—I'OT+Q 2,11,2

. K T . 0T T 1
o B -FR R - /m *(zn) = 0 2414

where

n
2(x,h) ""c%fn_[m’

Now for liquids such as lubricating oils with small
heatconduction coefficlents, it appears that the conductiem
tern is small compared with the o@her terms in the equation
and can be neglected,

The term 2(x,h) is entirely due to variation in density.
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In the previous section it was concluded that the influence
of compressibllity on the solution of the momentum equation
was relatively slight, a few percent, and this was disregarded
80 a8 to obtain a considerable simplification of the equation,
A similar argument is not available in the case of the
energy equation, for although the factor A is small it is
multiplied by the pressure which may be large, and hence the
complete term may contribute significantly to the temperature
rise,

Making use of the same argument that was employed in
section 2,10 for the derivation of the pressure, the function
2(x,h) may be written:

a(x,h) = -c—p{{{ %ﬁ-%ﬁ] 2.11.5

Previously it was shown that the order of magnitude
of the velocity gradients dd/dx, ov/dx, ov/dy were all small
compared to the value of du/dy.
If this is made use of the scurce function becomes
@ = u(g—; :

The argument br;aks down, however, near the axis
0 < x € hyy since within this narrow range du/dy is very
small, and 0u/dx and &v/dy may well be the dominating terms.
It seems therefore desirable to include the effects of du/éx
and dv/dy in this range, |

:_;,_éh‘gl[h(y-hhx%%(%—sy)]
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From symmetry it is apparent that in the range
0 € x € ho, oh/0x will be small. Neglecting the term

containing this factor we have

%="%Vi¥'(y-h) -ho < x <€ ho 2.11.6
Similarly

& =(y-n)

Substituting this into 2,11,.3, we get
2 du. 8
Q:y[u(g‘—;) +('55;):l

n
1 12,V [ x®
'ﬁﬁz_/ wtay = 325 (‘E‘ + 0.l ) 2,11.7
[~}
The term O.,4 is that due to the gradientsdu/dx and
ov/oy.

Substituting into egn. 2.11.4 we obtain

%%-%-%ﬁ#(—ﬁ;w o.u)-n(x,h)=o  2,11.8
It was mentioned previously that the limiting cases
of the boundary conditions were:
1, Adlabatic conditions, 9T/on = O where n is the normal
at the boundary. Thie condition implies that.all heat
developed in the film stays there and increases the flu 1id
temperature,
2, Isothermal condition, T(x,t) = T(x,0) i.e. all the heat ﬂggi“
developed is imediately removed aﬁd no temperature rise
takes pla ce im the fluid, |
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probably in between the two limiting cases, but as the

properties eg. viscosity, may be critically dependant upon
temperature, it will be of interest to see which of the two
limiting cases gives the best approximation, and to obtain
some measure of the closeness of this approximation.

Instead of attempting to solve eqn. 2.11.8, the much
simpler problem of linea r heatconduction in a composite
solid will be solved,and it is believed that this solution
will give some indication as to what is happening in the
fluid,

Consider a composite solid consisting of a finlte
medium - 1 < x £ 0 of temperéture T4 with heatconduction
coefficient Ky, and thermal diffusivity a; etc., in contact
with a semi infinite medium x 2> O of temperature Ts and
properties Kz, ag etec,

The equations governing the flow of heat are:

°T. 4 or L
W m e e g— | -1Kx<0
0. 1 am 2,11.9
*
—a—y-g-z-ia—sr=0 x20
The initial and boundary conditions may be taken as
Ki“g% =Ka%§t—' x=0
Ty = Tg t20
Kt%—zo x==1;t>0
lim. Tg = O t>0
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"
(o]

T:.(I’O) = Tg(x,O) =0 t

The solution to this system is given by (see appendix B )

oo
= 4 o T n 2n- 2(n+1)
{: = 1 o+1 Z(-1) mi erfc—zx—§+ erfc —z—x**{) 2’11.10
=0

where

T, is the average adiabatic temperature of the finite medium
€=y/1 xX* = ayt/1%

K = var/ag a‘=%K s=21

and where i1 is an integral operator operating on the erfec
functions and defined by

@
i erfc x = / erfe (4¢

X
Equation 2,14,10 was solved on the computer for four

different values of 1 = h/2, corresponding to x-stations

2, 6, 10 a nd 14x10"®* cm from the centre of the cylinder,
For each x-station six different values off = y/1 were used
i.e. £=0, 0,2, Ouiy 0.6, 0.8 & nd 1.0

In each case six timesteps were taken: t = %, 1, 1%, 2, 2%
a nd 3 milliseconds,

The solutions are shown in figs. 2.11.1 to 2,11.4, one
figure for each value of 1, These show Ts/T: £ as a funet iom
of £, one curve for eaach value of the timeinterval,

The analysis takes no account of the fact that the
bou ndaries are moving i,e, that 1 is a function of time,
Some allowance can be made for this effect by making Yo
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a function of time, the appropriate function being determined
from filmthickness/time relationship available for the
motion in question,These values Of £y, = Yma, /1 are
dra wn in on the graphs of T,/T;, and only values of £ to
the left of this line for a ny value of t have any meaning,
In order to find the actual temperature in the fluid
the adiabatic temperatures must be made available, The
analysis demands that these must be calculated from.an
expression of the form T = KNt, where K is an appropriate
constant, If now the adiabatic temperatures are taken from
the computer solution of the case a, constant viscosity,
rigid materials, these temperatures for any given x-station
approximately follows the above law, These temperatures are
given in fig, 2.11.5.
True filmtemperatures taking account of heatconduction

can now be computed as functions of £ and t by:
Ts = ( Te/Tyx100% ) x T,

The ma ximum values at any x-station are reached at
£ = &pax* TheSe maximum temperatures are plotted in fig,
2,11.6 as a function of time.

These curves show that the maximum temperature in the

£i1m occur at the x-station of about 10x10~2

cm, and has the
value of about 6%. The maximum adiabatic temperature on: the
other hand is of the order of uo’c. It is thus clear: that

a large amount of the heat generated in the film is

conducted away, and into the metal boundaries, and that the
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2.11
true fluid temperatures are very much lower than those
predicted by the adiabatic hypothesis,

The minimum filmtemperatures occur, as expected, on
the metal boundary, and are of the order less than 1% for
all x-stations for all times, It thus appear that the average
temperature across the film will only be a few degrees.

The above analysis is only a crude approximation of the
Physical case since it fails to account for the two-
dimensional aspect of the latter, does not account properly
for the motion of the boundaries, assumes that heat is
generated evenly across the film, and neglecting convection
entirely. These effects properly accounted for would, it is
believed, give lower maximum temperatures than the ones
calculated here, hence the present analysis provides upper
limite for the fluid temperatures,

From this it seems clear that of the two available
working hypothesis the isothermal hypothesis provides the
best approximation to the physical case and should be used
under conditions such as these investigated here,

This conclusion depends to a large extent upon the
thermal properties of the rfluid and boundary materials, as
well as other factors, Thus under other conditions, a
different conclusion might well have been reached, and the
adiabatic hypothesis might have proved to give the best
approximation.
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2.12 Viscosity and Density.

Vigcosity.
The general relation was stated in section 2,5, and

was written as:
8 _ g ]
( logypup,p )* = a*(T)P + ( logygug p ) 2.12,1

Let Py, Ty and P3, T3 be two sets of pressures and

temperatures, we then have

( logyoup q,)? a(T1)Ps+ ( logyoko,r, )*

( 108, n,)°

2.12,2

a(Ts)Pa" ( logyug p, )*

These equations represent straight lines, and intersect
at a point P _( 1o )3
P { 10810k

At the point of intersection we must have

( Logypup,,1, )* = ( logyomp, o, )* = ( Logyoiy )*

- 2,12, 3
P1 = P2 = Pk
Hence
p. - ( logsgh )? = ( logsok )® )
k - a(Ty) - a(T3)
( logsomy )? = a(Ts)Pk + ( logzoﬂo’T1 )% = f 2,12.4

= a(Ta)R + ( logiokg,p, )*

The constants a(Ti), a(Ts), ( 10gsoky p )%and
( logaokg m, )® can be determined from viscosity measurements
made on the lubricant and hence the characteristic pa rameters

may be determined,
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2,12

Hence, we have for any temperature

a(T) = ( :|.081.O;"L]_S )2 - ( 1083,0#0.T )a 2.12.5

Py

The viscosity at any pressure and temperature may now
be determined provided values of logiouo,T s the viscosity
at atmospheric pressure is available, These values may be
obtained from standard viscosity mea surements for various
values of the temperature,

From a computational point of view, however, it is more
convenient to have the viscosity expressed by an egquation
than by a table of values,

Assuming that ( 108*°“0,T )® is adequately expressed
by an equation of the form

( logiokg, p )3= Ksexp(-yT) 2,12.6

where the constants K; and y may be chosen so that the
vallies obtained give a sufficiently close agreement with
the measured values.

Substituting 2,12,6 into 2,12,1, taking the square root
and inverting the log gives

7T
Mp,p = XD [‘/‘(i)P + Kqe ] millipois 2.12,7
Ogio0€

where a(T) is given by 2,12.5 A
Multiplying by 1072 = exp( -6.90776 ), substituting
2.12.,5 gives finally in pois:



2.12

(Logiom )%E + Kiejﬁh-g] - 6.90776 logioe
= exp '\/ P P, P . 810 :I
uP’T [. logioe€ k

2.12,8

Density

The equation of state was discussed in section 2.4 and
it was suggested that the density could be expressed as a

polynomial in pressure and temperature,

Adopting this suggestion we may write

p=[aP +bp T + [ cP + 4] 2,129

where the constants a, b, ¢, 4 must be so chosen that the
values obtained give a sufficiently close agreement with

the measured values over the whole range of pressure and

temperature,
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2.13 Eguations of Motion under Isothermal Conditions.

If the motion is assumed to take place under isothermal
conditions, the equations governing the motion are capable
of further simplification.

The viscosity may then be given with sufficient

accuracy by an expression of the form

b= poe™

Equation 2,10.10 then becomes after integrating once

oP _ 12g_qe§2§aP)Vx 243,41
x = " h -1

.*. exp(-aP) @P = =~ 12”%3‘ dx

Integrating:
1 1 - exp(-ap) ] =_jF13E%¥£_Q£. 2,13.2
Now define, ]
I(x) = fﬁ.ﬂl 241343
3 =;(0) = '/o-‘—h‘}l 2.13.4
Then, )}
aP = = 1n [ 1 = 12u0aVI(x) ] 241345

At the center x = 0, the pressure becomes Py, the

meximum pressure, For this station:

1 - exp(-aPy) = 6uoVad



2.13

. 1 - e -aP,
*e 6uoVa = exp(-aPy ) 2,13.6
and hence,
@ =-1n[ 1 - (1 - exp(-ak))+] 2.13,7
The load is again given by
@
oW = 2 / (aP)ax 2,13,8
o

If the boundaries are rigid,egn, 2.13.7 is capable
of analytic solution. In this case the filmthickness is

given by

h=ho+%;

and the function I(x) becomes

X

I(x) = /‘—hgl=§-§,- 2.13.9
J i
= Sh¥ 213,10
Thus,
@ = - 1nf 1 - [ 1 = exp(-aPo)][-24® } 2.13.11

Expanding the log in a Taylor series, writing

&= [ 1 - exp(-aPo)]ng

f + 1
P =-1n[1-32]= Gf:—;?m:— 2,13412
Nzo

This series converges uniformiy for



2.13

§§'< 1 o.o PO <w
for all values of h 2 he

The load now becomes:

-4 Qo +4
aN = 2 / (eP)ax = 2 /Eﬁ)—?ﬂﬂ‘u 2013413
(=] o

»20

Interchanging the order of integration and summation,
rerforming the integratiom and expressing the summation in
terms of the gammafunction:

[ 4
aW = 24w ¥ZRB D[ 1 - exp(-aBp))ns LH2BE/AL 2,434y

A=O

The sum of the series depends only upon the value of
aPo, the central pressure, hence the above eguation defines
load as a function of central filmthickness ho for a
specified maximum pressure,

For Pog = « we have
oW = 2 ¥2Rhg ( 2 - V2 )w 2,13.,15

Summing the geries in egn. 2.13.14 with 180 terms on
the computer for various values of the parameter aPy, gave
the result shown in the following table,

Since 1 - exp(=30) ~ 41 - 1072 ~ 1 ~ 1 ~ exp(-w)
the sum for dPo = 30 should have been very near
(2 ~W42 ) N7 =1.,04 i,e, the value obtained is about 5%

80

small, This is due to the very poor convergence of the series

for values of 1 - exp(=aPy) near 1,
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Summation of the series

-aPo T 2n + 2
2(1-e ) Tt on + 3

n=o

aPo >
0.9858
.985L
.9827
9776
. 9646
. 93141
.8738
7727
«6132
.3678
0,2018

W
N W EFE 0y © O O

-

M-A

Table 2,13.1




2,14 Summary of Theory.

Although it has previously been concluded that the
isothermal hypothesis probably gives the best description
of the conditions under which the motion will take place,
it will never the less be of interest to see the influence
of temperature on the solution,

For this case the motion is described by the

simultaneous solution of the system of equations:

b 4
P = /+1§ T ax 2.10.7
h=H+2£(x) + A /IP(I”)lnIX' - x| ax' 2,7.17
{-%% cph [ + 0-“] - 2(x,h) = 0 2,11.8

\°P =T, B
Hp,p = eXp [\/(1°51°"k) P, tKae (1"1'-‘] ) - 6.90776] 2,12,8

1ogi0€
p=[aP+b]T + [ eP+a ] 2.12.9
®
W=2/de.

o]
The various constants in these equations must be

empirically determined from tests done on the actual fluid,
and from boundary and initial conditions,

If the motion 1s assumed to take place under isothermal
conditions the system may be reduced to the simultaneous

solution of two non-linear integral equations,



2.14

afP = - In{ 1 - [1 - exp(-aP,)] -I—g—’i)i 2.13.7

h=H+ £(x) + N [ P(x'")ln|x'—x]|ax’ 2,717
- o

oW = zc/ (aP) ax 2,13,8

It has not been possible to find an analytic solution
to this system of equations and numerical methods have

been used.
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3.1 Computation

The solution of the system of equations given in the
previous chapter was effected with the help of a Ferranti
Pegasus computer. It was therefore necessary to re-arrange
these equations so that they would be in a form suitable for
numerical solution.

For this reason the domain will be covered by a =zrid
(fig. 3.1.1). The interval size in the x - direction being
Ax and in the h (or - t) direction by Ah, A general point in
this grid will be denoted by ¢ i, j, where the subscript i refer
to the x - coordinate and j to the h coordinate.

The value of the definite integrals can now be obtained for
each grid point by ordinary quadrature, after the appropriate
values offpand h have previously been made available,

Similarly, the values of viscosities and densities may be
found for each grid point from the equation in which the varioub
parameters now have been replaced by an appropriate number.

The film thicknesses can be computed from equation 2,7.17
once the value of the pressure is known at each grid point,

The function of F (x) being known from undeformed geometry.

The integrand has a singularity at x = x' and al£hough the
integral converges, direct quadrature cannot be employed.

This difficulty can be surmounted in a number of ways, of

which two will be described here and used in this work,
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3.1

If the singularity occurs for x = x' = nAx, then no
difficulty is encountered in the range O - (n - 1)Ax and
(n + 1)Ax - Nax, where N is number of points, and direct
quadrature may be used for this range. To obtain the

contribution from the pressures Pn e Pn and P

-1 n4t

corresponding to X' = (n - 1)Ax, nAx, and (n + 1)Ax, a parabola
may now be fitted through the three points,

The parabola is given by

P=oax? + fx + 7%

Hence for the contribution from this portion

Ax
6“=-,,—§-/[ax’+ﬁx+y]1nxdx
-Ax

The coefficients are given by

J

Substituting this and the limits:



3.1
24x
6"‘=-—3ﬁ{[1=m + Py + 4P )0 nax -1 ] - ]
Hence the local deformation at Xy is
P -1 "

b = Q; + Q?-o— 1l + é
where

Qi -1 denotes quadrature from o to (i - 1) Ax

N

Q;, | denotes quadrature from (i + 1) A x to NAx

The above procedure is quite involved from the point of
view of coding it for an automatic computer, and is fairly time
consuming in execution., In order to have a simpler and faster
routine, the following procedure was adopted for the solution of
the isothermal system.

The discontinuity in the integrand at x = x° may be avoided
by, instead of taking the value of ln®O ~ to be = @ as it should
be, to give it an arbitrary finite value. This is equivalent to
computing the integral not at x' = iAx, but at x' = §Ax +& ’

wherefis some arbitrary small quantity.



Since & is small, the integrand will be very unsmooth in the
vicinity o: x' = iAx and a quadrature formula will generally not
be able to follow, but will give a too large value. I his
tendency is partly offset by the fact that the parts of the
contribution of the integral between 1 A x and i A x + & will be
ignored.

py judicious selection of £ , therefore, the resulting total
error incurred may be made a minimum, and sufticiently small to
be neglected.

vhe routine resulting from this procedure is much more
straight forward and less time consumincg than the previous describe
method, although of less accuracy.

In the solution of the equations described so far, it has not
been necessary to refer to the time history of the motion, i.e.,
the equations are solved along a line only. The energy equation
being a partial differential equation with indspendent variables
x and h, this is not so any longer, and the solution must
be effected on a surface.

The temperature at a point (i, j) may be obtained by

expansion in a Taylor Series.

i.e.
oT:
i..‘,: = Ti;’ + Ax ———L—bx" 3 + O(Axl)
- - Tt
Ti--r,: = %5 _ Qx LA + O(ax?)

-3¢
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3.1

Subtracting, a finite difference approximation to the

partial derivative

oT\,y/ox is obtained

oT, ',, Tum = Ti-ay | 0(2x3) 3.1.1
Similarly

oT T - T

%J = - LIJE Ll 3.1.2

The forward difference approximation used for%%-is not the
best available. It leads, however, to an explicit equation in
Ti,J+1 and is therefore simple to handle,

The use of the more accurate central difference approximation
would lead to a set of simultaneous equations for the solution of

the Ti.j+1'g,

Substituting 3,1,1, 3.1.2 into equation 2,11.8 and re-

arranging,

- 12uvx* Ah x
Tygez = Tuy + Ah?ﬁ%‘l ILJ - 'QE'EIL,_,( Tiegy = Ti-ay ) -
(J

- AhnL'J 30105
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3.1

The correction for compressibility.y in terms of finite
di. ferences becomes

Ahnl'J cp LJ( 20x hl ( Pisay = Pl-1y ) -

3.1.4

- ( PLy+s = Py ) )

The temperatures along the line (j + 1) may now be computed
in terms of previous temperatures on the jEB line, and the
appropriate values are provided by the boundary condition'along

the lines j = O and 1 = O.



3.2 Programming.

a. The adiabatic case.

The program was organized in the normal way used with
digital computers, i.e. it consists of a number of sub-routines
doing the actual operations indicated, and the whole being under
control of a master program.

nine sub;routines were written:

a. Pressure and velocity

b. viscosity.

Ce Density.

d, Temperature.

e, iemperatnre corrections for compressibility;
f. Deformation and film thicknesses.

g Test.

h. Simpson Quadrature,

i. Cutput.

The first six of these are solving the egquations, using the
Simpson routine when indicated. The test routine would determine
when the iterations had been taken far enough, and then pass
control to the output routine which would punch out the final
jterated answer,

For starting values in the zero iteration cycle at any line

Jy the final iterated values of the previous line was used, with
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3.2

appropriate changes as for film thickness where the previous
values h- Ah were used., On the first j = O line, the starting
values were partly determined from boundary conditions, and
partly assumed.

The cycle is started by the master program setting the
appropriate starting values for the first order iteration of the
pressure, and the velocity and the first sub-routine is entered,
This then will calculate the pressure at the gridpoints, the
load corresponding to this pressure distribution, and also the
corresponding velocity and store these away in the backing store,

Next, the viscosities were computed, using the currently
calculated pressures and the temperatures obtained from the last
iteration cycle of the previous line, and store these.

In a similar way the densities were computed.

In the case of the temperatures, it should be noted that it
is not values on the current jsg'line that is computed, but those
belonging to the next, j + 12 1ine, This is evident from eqn.
3ele3.

Finally, the firat order iteration of the deformations and
film thicknesses on the current line is computed. The sub-
routine uses the first of the two previously described processes.

The decision whether the so far iterated values are a close
enough approximation to the solution of the equations is

determined by the Test routine.
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Not only the values of the current nEE iteration are stored,
but also those of the previous (n - 1) iteration, The Pest
routine extracts an appropriate pair from the store, examines
their difference, and compares this with a pre set acceptable
tolerance. If the diiference is within this tolerance, the test
is said to be passed, and the routine then passes on to test the
next pair etc. If the whole test is passed, control is taken
by the master program, which arranges for printing out the
solution via the output routine, and then makes re:dy for starting
of iteration on the next (j + 122) line.

In the case that any one of the individual examinations fail,
the whole test is said to have failed and the master program then
arranges for a new (n + 1) iteration an the current jEE line.
This procedure is kept up until the test is passed.

The test was applied to the velocity, load pressure
distribution and deformation, in this order.,

The program proved, nat unexpectedly, to be very time
consuming,

A flow diagram is shown in fig. 3.2.1.

b. The isothermal case.

The organization of the program for this case followed the

same lines as for the previous case, but owing to the simple system

of equations to be solved, only three routines were now writtens
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3.2

a. Hydrodynamics
b, Elasticity

Coe Output.

Endeavour was made to make the program as fast as possible.
For this reason, the second of the two methods of integrating
the elasticity equation was used, It was also found that for
various reasons the trapezoidal rule of integration gave better
results than Simpson, and hence the simpler quadrature formula
was used,

The test was applied only to the load in this case, and
was taken care of by the master progranm, A special suberoutine
was therefore not needed for this operation.

The program proved very much faster in operation than the
one for the previous case,

The flow diagram is given in fig. 3.2.2.
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3.3 Checks

Mistakes in a calculation may be due to three different

reasons:

1, Slip in the algebra or numercal analysis
2e Slip in programming.

3. Mistakes due to computer fault.

Case 3 is rare in practise, the computer usually being able
to detect if it has made a mistake, and give appropriate warning.

In order to guard against the cases 1 and 2, checks were
incorporated into the program, or performed in the computed
results afterwards. |

The general programs were written in such a way that by
simple alterations they could be made to compute more special
solutions, {.,e.,, get the solution for constant viscosity or for
rigid boundary materials etc. Hence computing the solution for
constant viscosity and rigid boundary, this solution could be
comparel with the analytic solution available for this case.
Similarly for the isothermal case, the solution for pressure
dependant viscosity, rigid boundaries could be computed and
compared with the series solution available for this case.

In the case of the temperature distribution, this could be

checked by a different method. In moving from h1 2

i

to h. uhder the
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constant load W, the work done is given by W (hl - hZ)' For
adiabatic conditions and for rigid boundaries, this work is
nearly all spent into increasing the temperatures of the
lubricant,

The increase in heat content of the lubricant is given by

/epTdV

v

where T is the increase in temperature from hl‘—* h2 and V the
volume of the lubricant. This temperature increase can be for
instance obtained from the computed temperature distribution for
the case constant viscosity, rigid boundaries, and from this case
the value of the above integral could be estimatedf This should
be approximately the same as the work done, Approximately only,
since the computed temperatures are approximate, and secondly
even though T approaches zero as x increases, tl;e product AV
may be large even though T may be diminishingly small, and this
makes estimation of the integral difficult.

However, when this check was applied, agreement to within a
few percent was obtained,

The routines calculating the elastic displacements were

checked by feeding into the computer values of Hertzian pressure
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obtained from the relation
/ X\ 2
aPn = aPy 1+ Gg)

o
1]

The elasticity routine was then made to operate on this pressure
distribution, the resulting deformations should then be the
Hertzian, i.e. a flat surface over the loaded zone, Deviations
from the flat would indicate errors.

This method was also used to determine the best value of
the parameter £ described in the second process for calculating
displacements., & was in fact adjusted so that the deviation
from the Hertzian flat was as small as possible, and negligable

in comparison with the film thicknesses considered in this work.,
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4,1 Adiabatic case.

The results for this case were related to an apparatus
planned to be built for the purpose of checking some of the
conclusions reached from the theoretical treatment. This
apparatus was to consist of a cylindrical steel roller of
radius 5 ©m, and width 1 ¢m, and a flat steel plate. The roller
was to be restrained, so as to move normal to the plate under a
constant load applied by a spring. The lubricant planned to
be used was HVI, 1074, supplied by Shell, and data on this oil
was obtained from Thornton Research Centre (8). In addition
to these data, it was also necessary to obtain values for the
viscosity for various temperatures at atmospheric pressures.
Viscosity measurements were therefore made on the oil, using a
standard U-tube viscometer, and the tests were made according to
British Standard.

The values of the viscosity at atmospheric pressure are
given in fig, 4,1.,1. In fig. ¥.1.3, is shown the viscosity
as a function of pressure at various temperatures. These
curves were made partly from the data supplied from Thoranton
Research Centre and partly from the data obtained in the standard
viscosity test performed,

From these viscosity values, the parameters in eqn, 2,12,8

were calculated. The following values were found:
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Kl = 2471

X = 0°01534

P, = =1620+5 atm
1°glo_/“-k = =0611

The variation of density as a function of pressure and
temperature was calculated from data given in (8) and is shown
in fig. 4.1.2.

From this, the parameters in eqn. 2,12.9 were calculated

and found to be:

a = 0007 x 1o"6

b = =0°505x 10~

¢ = 0024 x 10

d = 0919

No measurements were available for the specific heat or
thermal conductivity of the lubricant. These parameters were
calculated from the usually accepted formula (8), giving the

results,

Specific heat Cc = 0424 cal/goc

Thermal conductivity K = 0311 x 10‘3 cal/o sec om.
¢



cS

500

measured

KINEMATIC VISCOSITY

T W"' of O|L T. |°74
at atmospheric press.
FIG 4.1
N
[ \ "
o 20 60 80 0o

o -



2000

DYNAMIC VISCOSITY & DENSITY
| ot OIL T.1074

\ at atmospheric pressure
1800
\ FIG 4.1.2
\
1600 t
|
‘ \
1400 J‘~
|
L)
% 1200 0-90 §
o
3 \\ :
I

0-89

800 X

, o-s8
\ |
600 , 4 , _ 0-87

< 0-86

| \
200 ' e ‘

, e N4 O-85

o-84
40 60




/‘ vT  pole

l

7
[Nele}]le)
307xiS
s
879%10
2:-33x D‘
557X 10
118 x Ig
211Ix IJ
)
300xI0

2-90x10"

VISCOSITY
OIL T 1074
FIG 4:1.3
A
)4
| A
i //
A |
= AN )
g 7/ /j/§ //*60
17////// A7
/ // A LA™
e §
7
° $000 10000

P atm

*c



7

L
The elastic constants were taken to be:

E 21 x 10 dyn/cm2

\) = 0'3

The constant applied load was taken as 120-106 dyn/cm.
Three different special cases were calculated:

a) Constant viscosity, rigid boundaries.

b) Variable viscosity, rigid boundaries.

¢c) variable viscosity, elastic boundaries.

In all three cases, pressure distribution, velocity of
approach, temperature distribution were found. In addition,
in case b and ¢, the viscosity distribution was also calculated;
in case ¢, also the film thickness.

In all cases, the initial central film thickness ho was
taken as h° - 1%y_ and the calculation proceded in steps of

Ah

lp . The interval in the x - direction was kept constant
Ax = 100/& and 32 points were used in the x - direction,
The initial temperature distribution was taken as T (x, hoinit)
= 20°,
The test was set to accept a difference of 1% or less, and
it was found that in general 3 or 4 iterations were necessary

to achieve this, That the accuracy of the iteration process is

1% does not mean that the final answer is obtained to this



log

L,1

accuracy. The accuracy of the final answer depends upon the
accuracy of the various numerical processes, such as
quadratures etc., and is the sum of all these individual

contributions,
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4,2 Case a, Constant viscosity, rigid boundaries

The main interest in this case is its use in checking
the working of the computer program, as the pressures and
velocity of approach can easily be obtained by analytical means
for this case.

However, when it comes to the temperature distribution,
this is not readily available, since even for this comparatively

simple case, the energy equation is not easily solved analytically.

Since in this case all the functions are well behaved and
reasonably smooth, no particular numerical difiiculties were
met and the solution proceeded smoothly all the way down to
h, = 1@ , the last value computed for,

The obtained pressure distribution for 4 values of ho is
plotted in fig. 4.2.1. The correspondins temperature

distribution is shown in fig. 4.,2.2.
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L,3 Case b, Variable viscosity, rigid boundaries

This case is of more interest than the preceding one in
that an analytic solution is not easily available, Also, due
to the variation o1 viscosity with pressure and temperature, some
of the functions involved were far from smooth in parts of the
range, and very steep gradients were involved, The comnsequence
of this is that the accuracy of an integration process is
expected to fall off, and now fundamental difficulties may arise
in handling numbers in the machine.

The Pegasus computer is a fixed print machine, i.e., it can
only handle numbers within the range - <=wn =1 - 2-38 with
a maximum accuracy of about 1l decimal digits. In general,
therefore, numbers must be scaled so as to be within the above
range., In particular, this applies to viscosity values, which
have to be computed explicitly at each grid point. It can be
seen from fig, 4,3,2, that the variation of viscosity is very
great for small values of ho/R; it ranges from several thousand
poise at the centre line to less than 1 poise, In order to
scalethis so that the highest value is within range, significant
figures are lost for the lower viscosities and this leads to
large errors, In general, two techniques are available for

avoiding this difficulty,

First, one can operate with double length numbers, i.e.,
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4,3

each number is represented to about 23 decimal digits in the
machine, To do this would require much extra programming,
which would greatly reduce the speed of the computation, and
since the program was already slow it was not thou.ht advisable
to make it slower,

The same objection is leveled against the second technique
available, that of floating point representation. In this
scheme, a number is represented as a -Zb where "a" is a fraction
within range, and "b" and integer, All the ordinary arithmetic
operations can be performed on such a number, However, such
a repregsentation is not natural to a Pegasus computer and would
greatly reduce the speed of a program,

To avoid slowing down the program, the solugtion attempted
was that of placing an arbitrary ceiling to the viscosities,
This would mainly affect the viscosities near the centre line
and would therefore result in reduction in maximum pressure.
Since the error is confined to a narrow band, it would not
greatly influence the accuracy of the load, or on quantities
mainly dependant upon load. The pressure distribution is
plotted in fig. 4.3.,1. The corresponding viscosity and
temperature distributions are shown in fig., 4.3,2, and 4.3.3

respectively.
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L4t  Cgse ¢, Variable viscosity, elastic boundaries

This is the most general of the various cases treated.
The numerical difficulties connected with variable viscosity
also arise in this case, and in addition, the irregularities
due to the deformation of the boundaries are beginning to be
apparent at smaller values of film thickness, For these reasons,
it was not possible to take the solution below ho = 2/0 o
For values of ho below this, the convergance of the iteration
process becomes poor, and it was evident that errors were
building up.

As for the previous two cases, the pressure distribution,
viscosity and temperature distributions were plotted, and

are shown in figs. 4.4.1, 4.4.2 and 4.4.3.




\Ua

Si

(o)} S (]
o]
T~
NN
A
/ Q90|
W
Q
W F
B
1*v-v 914 ;/ _
o002
s?14DpuUnNOq >11sD|? M\)
A3}150351A 2|QD DA M

NOILNBIY1SId 3YNSS3dd

000%



10000

pois

1000 7

\0042-00

log_ut

%00

io41:00

VISCOSITY VARIATION

elastic boundaries

FIG 4-4-2

IR R S g

X-10% cm

20



TEMPERATURE INCREASE

variable viscosity

ho‘?-/v elastic boundaries
\ FIG 4.4-3

AT °c

30

20

e

/
/

11

o2\



‘el

L5 Velocity of approach

In addition to the pressures etc., the velocity of
approach was also calculated for tne above cases as function

of central 1ilm thickness ho'

The variation of velocity oif approach is shown in

fig. 4.5.1.
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4,6 Isothermal case

In distinction to the previous case waich had to be
related to a physical apparatus, no such restrictions have been
made in this case,

An immediate consequence of this is that a more natural way
of solvini the systew of equations can be attempted, In
particular, instead of solving for a constant load W, the
more natural condition of keeping the maximum pressure constant,
and then computinz the corresponding load could be used,

Furthermore, it seemed advantageous to use dimensionless
gquantities in the comvutation, A dimensional analysis reveals

as possible dimensionless forms:

Dimensionalless load = “&u
Dimensionalless pressure = aP
Dimensionalless velocity = ﬁt%?!
Dimensionalless film thickness = _%%_

Dimensionless pressure distribution, film thickness and
loads were computed for values of constant maximum pressure
ranging from o&Po = 10 down to o&Po = 1, as functions of
dimensionless central film thickness.

This was done for three different values of the parameter

* E, namely:



2.4

L.,6
(w:)l = 700
(mE)‘2 = 1,000
(oue:)3 = 1,400

Since explicit values of viscosity are never required,
but are always represented by its pressure coefficient, the
diificulty arising in the adiabatic case was never encountered
in the case o! constant temperature.

However, the difficulty connected with the deformation of
the boundaries is more serious in this case, since the solutious
are carried to smaller values of film thickness. As can be seen
in fig, 4,6,5, the deformation will cause "bumps' in the film
shape at some finite distance away from the centre. This will
cause the integrands in the I and J integrals to be very
unsmooth in the vicinity of this bump, and the hisher derivatives
(or differences) entering into the remainder of a gquadrature
formula will be large, Because of this, a simple quadrature
formula which does not make use of the higher differences may
be tound to give the best results. This was found to be so in
the prescu. case, anu 1or this reason tne trapezoidal rule, rather

than Simpsons rule was used in the integrations.

In order to increase the accuracy of the solution, the

number of prints used in the integration were increased to N = 40
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4,6

throughout. In order to best utilize these points, three
difierent interval sizes were used, i.e., A x = 0¢01, 0-005
and 0+0025. The changeover from one interval to the next was
not automatic, but had to be decided in each case by lookins at
the output. The changeover was then efiected by teeding into
the computer a tape, containing the necessary corrections,
Values of non-dimensional load as function of central
film thickness ho/R for eacnh value oi the parameter a E are
shown in figs., 4.6.1 - 4,6.,4, and film shapes corresponiing to
x E = 1,000, e(Po = 4 are shown in fig. L.6.5.
Finally, fig. 4.6.6 - 4,6.8, shows estimated values of the

velocity parameter Aig?ji
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5.1 Discussion of validity of assumptions

In chapter II where the mathematical equations governing
the problem were described, it was found necessary to introduce
a number of physical assumptions and approximations. ;

These assumptions can be viewed as beins on two levels,
i.e., those implicit in the general equation, and secondly the
additional assumptions and approximations that had to be
introjuced in order to reduce these general equations suificiently
to solve them.

One of the first level assumptions not often discussed in
the literature is the assumption of constant viscosity introduced
into the Navier-Stokes equations, in order to reduce them from
their general form 2.2.16 to the form 2.2.17 usually given,

This approximation is checked numerically for the present
case, and it is found that only for the highest pressures used
would the variaole viscosity influence the results appreciable an
cause a reduction in the pressure gradient near the centre line,

The analysis is given in appendix A,

Of the more important approximations introduced on the
second level, was the assumption that the inertia terms in the
momentum equation could be dropped. The argument was supported
by an order of magnitude analysis.

This assumption implies a finite discontinuity in the

velocities at zero time and hence cannot hold in the initial
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stages of the motion, If, however, the initial film thickness
is taken large enough, the prescence of inertia reactioa will
not influence the later stages oi the motion, and ior this
stage the assumption is acceptable,

In the case of the energy equation, it was tound necessary
to introduce the assumntion that the temperature would be
constant across the film, It was argued that since the
film thickness considered was so small, it was unlikely that
any great temperature sr.dients would exist across it. An
argument similar to the one that was used to show that if metals
were used for the boundary materials, isothermal conditions
would approximately be realized in the oil film, could also be
used in order to justify this assumption, Since, in that case,
adiabatic conditions were postulated, it would be neces:ary to
put the coefricient of heat conduction of the boundary material
equal to zero, and assume some form for the space distribution
ol the heat sources. This analysis is given in appendix B.

Finally, the results obtained are all derived for a two
dimensional space, which implies they would only be valid if the
length of the bodies was very much larzer than the width of the
pressure zone, If this condition is not fullfilled,
discrepancies might be expected due to side leakage of the

lubricant,
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5e¢2 Discussion oi Results

The results presented in the previous chapter fall into
two catezaries, characterized by the assumptions made about the
temperature condition. The adiabatic assumption is the more
general in that it includes the isothermal assumption as a
particular case. However, as was pointed out earlier,
difficulties are met with in its solution, In addition to this,
it was also felt that the adiabatic case was too ambitious, in
the sense that the solution contains a comparatively large
number of parameters, In order to determine the influence of
these parameters, a larie number of cases in which these
parameters would have to be varied in an orderly fashion, would
have to be worked out. This would be very time consuming,
especially as the program was inherently slow, Therefore, when
it also turned out that the isothermal condition seemed to be
the more realistic one, the main attention was focused on this
case,

This does not mean to say that the work spent on the
adiabatic case was considered to be wasted. Apart from the
interest of the results themselves, considerable experience of
programming for an electronic computer was gained during this

phase, Also, a better understanding of the physical and
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mathematical problems involved were obtained,

Turning to the results obtained in the adiabatic case,
it is seen from tig. 5.2.1 that the introduction of variable
viscosity considerably alters the pressure distribution. The
maximum pressure obtained tor a given film thickness is hizher
for variable than for constant viscosity. In addition, very
high pressure gradients occur in tne region of the peak
pressure, and this provides the pressure distribution with a
very pointed appearance.

On the other hand, the pressure of elastic boundaries
does not seem to atfect the pressure appreciably for the film
thickness considered, even though the surfaces are considerably
deformed, The reason for this will be clearer when the
isothermal results are considered.

Turning to the temperature distribution, the increase in
film temperature is slow when the film thickness is large, but
it increases repidly as the film thickness approaches zero,
Since the temperature is a cumulative quantity, the actual
increase obtained at any film thickness is dependant on the
initial film thickness, However, if this is chosen sufficiently
large, no great difference will occur between different initial
states as the rate of increase at the beginninz of the motion

is slow,
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Computing the total heat content as a function of central
film thickness, this comes out as a linear function of ho.
This must obviously be so, since the heat generated is due to

¥
the work done by the load i,e. J/ Wdho
y

Introduction of variable viscosity have asain a marked
efiect. As was found for the pressures, the temperature
gradient in the region of the maximun temperature becomes very
steep and the maximum temperature is increased. At the sarme
time the position of the maximum has moved closer to the centre
of the cylinder. This is clearly due to the influence of
pressure and temperature upon the viscosity.

This effect is illustrated in fig. 4.3.2, which showes the
viscosity distribution for various values of ho. The presence
of a high central pres.;ure together with a low temperature in
this region produces a very high value for the viscosity. At a
little distance from the centre the pressure is considerably
reduced, while on the other hand the temperature is a maximum,
This- will cause a rapid reduction in viscosity, dependinz upon
the sensitiveness of viscosity on pressure and temperature. At
larger distance from the centre, viscosity will asynuptotically
approach its normal value. Consequently, over a large portion
of the range, viscosity may be appreciably lower than the value

under normal conditions and this, one might expect, would have
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a considerable influence upon the motion. A single parameter
that will perhaps best measure this iniluence tor constant
load is the velocity of approach. Yrom previous the velocity

of approach is expressed by

W

vV = Shs
where
W = constant load

s =j°l“?"£2

o x

i.e., the velocity of approach is only dependant upon viscosity
and its distribution in the case of rigid boundary materials,

Fige. 4.5.1, showes the velocity of approach as a function
of central film thickness ho for the various cases, anua showes
the influence of viscosity very clearly.

At some value of film thickness ho «£ H, the velocity of
approach of the variable viscosity case is larger than tfor the
corresponding constant viscosity case. In fig. 4.5.1, the
estimated value of velocity of approach tor the isothermal case
has also been plotted, is expected this always is lower than
the constant viscosity velocity.

These curves also show the small influence of the elastic

deformation for the range of film thicknesses considered, Apart
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from an approximate constant difference, corresponiing curves
for rigid and elastic cases are nearly identical. The constant
difference arises from tune fat that what is computed is the
relative velocity oi the two surfaces. Since in the elastic
case, derormation produces a surface velocity apposite in sense
to the general motion of the cylinders, this will have the

efiect of reducins the velocity of approach as detined here.

Isothermal case:

The simplifications brought about by the assumption of
isothermal conditions are considerable in two ways. First the
mathematical relations themselves can be expressed in a simpler
form that is more amenable to numerical treatment, Secondly,
the number of parameters involved is reduced, and this makes the
results easier to interpret,

Dimensional analysis of the isothermal problem reveals the

following possible set of non-dimensional main parameters:

mo= &b
ﬂ’z - “E
where
& is the pressure coefficient of viscosity
° is maximum pressure
E is an expression involving the elastic constants

of the boundary materials
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The non-dimensional tform of the nain independant variables is

Wy = h. /R

Y, = X/2Rne

The form of th: equation 2.13.7, show that the condition
of constant load is not a matural one 1irom a mathematical point
of view, and it is petter to solve for constant maximum pressure
rather than constant load, That such a procedure is rarely
realized in nature does not matter if one assumes that the
equations have a unique solution, which seem to be a reasonable
assumption from physical considerations.

In contradistinction to the adiabatic case where numerical
solution of several particular cases such as rigid boundaries,
constant viscosity etc., had interest, the isothermal case only
have two particular cases, ie., elastic boundaries, with
constant or variable viscosity. This is so since in the isotherm
problem the rigid solution can be obtained by analytic methods.
Since viscosity is expressed by a law of the form /Lb:i/4o ef*P
the case constant viscosity can strictly speaxing be obtained

as the limit of the general case with & — o

As, however, the limit can never be obtained by numerical means,
this property has not been employed. No fundamental numerical

differences occur between the two cases, and since the case of
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variable viscosity yields the more interesting results,
emphasis have been given to this case.

The main results are given in tig. 4.6,1 - 4.,6.3. Here
the load is plotted as a function of central film thickness
for a range of values of maximum pressure. The three ficures

correspond to the three different values of the parameter aE

Fig. 4.6.3 dE = l,‘+00
b,6,2 «E = 1,000
L+06.l aE = 700

By comparing these curves with the corresponding rigid
solutions fig. 2.13.2, some conclusions can immediately be drawn,
It is apparent that the elastic loads for a given ho and Po
are always greater than the rigid load, and furthermore as the
film thickness increases, this difference becomes smaller so
that the two loads will approach each other asymtotically as
ho increases, Furthermore, by comparins corresponding curves
for the three values of the parameter X E, it is seen that for
a given ho'the largest difference occurs for the case with the
lower value ofXxE, i,e,, «E = 700 and the least diiference for the
case &E = 1,400, The reason tor this is reaiily apparent

when we consider that for constant value of & in the three cases,

the case with the lower value of XE represent a "soft" material.
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For such a material the detormation for any load will be srcater
and hence the influence of this deformation will be more stron-ly

felt.

Similarly, for a given value of al, the diiiernece for any

value of ho is greater for higher values of c(Po. For the
smaller values ofo(Po, i.e., for small loads, the elastic loads
nearly coincide with the rigid ones, except for very small
values of film thickness,

The most conspicuous feature of the load curves is that
they all exhibit a minimum at some specific value of film
thickness. This feature is comoletely absent from the rigid
loads, which all converzes uniformly to zero as film thickness
approaches zero. The 1ilm thickness at which the minimum
occurs, depends upon the value of maximum pressure s(Po and on
the parameter « £, growing larger with increasingo(Po and XE.
Furthermore, it will be observed that the minimum load necessary
to produce a given maximum pressure is less, the higher the value
ofxE, i.e., the more rigid the boundary material is, Also in
order to increase the maximum pressure from aP_ to of+S(R)

a load increment 8(%}‘) must be applied and this
increment is getting smaller the higher the value of &« P and the
o

lower the value of &E, The result is shown in fig, 5.2.3.

It is observed that for a sufficiently high value of aP_,
o
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the curve with®E = 1,400 is drawn with a small 3radient,
i.e., a small increase in load will result in a large increase
in maximum pressure, For the curve ak = 700, the gradient
is larger, i.e., a larger load increment must be applied in
order to effect the same change in pressure, or looked upon

in a different way, the value of'aPo must be hither in order
to have the same gradient,

The reason for this behaviour is sugzested by the
appearance of the rigid load curves fig. 2.13.2. At a
sufficiently high value oi’dPo, a very small increase in load
is sufticient to bring about a large increase in central

pressure. Indeed, an infinite value of pressure can be

obtained at any film thickness by the application o1 a tinite load

R

This is because of the exponential viscosity. vhen elastic
materials are considered, the behaviour is modified by the
deformation oi the surfaces. The loai is still bounded, but

due to the deformation, the load that must be applied in order

to raise the central pressure to infinity is now a function of
the elastic properties of the material, and incre-ses with
decreasing values of en, Lhe result is in any case of
theoretical interest only, ana would not be realized in practice.

Returning to the load curves fizs. 4,6,1 - 4.6,3, another

important characteristic ot the motion is suggested. If the

Hertzian load given by the equation
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2
oy _ 4 (oPg)
R -7 &

and which represent the dry contact load between elastic
¢ylindrical bodies as function ot the maximum pressure
developed and the elastic properties o1 the bodieg,is computed
and set out alony the load axis, then a *'reasonable
extrapolation of the load curves drawn to zero film thickness
would terminate the load curves at their corresponding Hertzian
loads. This feature is perhaps broucht out clearest in Fig,
4,6,2 for values of maximum load ofP_ = 2, 3 and b,

If this conjecture is correct, a corresponding convergence
of the pressure distribution towards that ot the Hertzian
ellipse should be noticable as film thickness is decreased,
That this seems to be so is shown in fig. 5.2.4 where pressure
distributions are drawn for the values pf «Po = &4 and
«E = 1,000, These curves taken in conjuction with the load
curves, also show that the pressure distribution is very sharp
at the point of minimum load, This must clearly be so and is
indeed the reason for the minimum obtained in the loads,

Considering now the change of film shape as film thickness

is reduced, this was shown in fig. 4.6,5, The effect of
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deformation is seen to reduce the cylinuer curvature, and as
film thickness is further reduced/to reverse it in a region
near the centre line. Thus a bump is produced at some distance
away from the centre, This teatur: of the solution is

common to the rolling or sliding solutions whicn also show a
characteristic bump at the outlet end of the loaded zone,

As the film thickness approach the minimum load value, the
relative amplitude of the bump increases, and at the same time
it is moving outwards awav from the centre, The region
between the bump and the centreline is gradually flattened

out and approaches the Hertzian flat,

Returning once more to the load curves, ii tor any given
value of dPo we form the ratio of the Hertzian load to that of
the minimum load corresponding to the chosen value ofxxPo
then, within the accuracy of the calculation, this ratio appears
to be independant of o E,

Forming this ratio tfor the various values of:xPo, the

result is given in the table below,
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Wwh/Wm
*F AE= xE= xE= | Mean | Max. %
1400 1000 700 Value | Dev.Mean

1 1°12
2 1438 132 128 133 37
3 1°59 1-61 1+59 159 1-25
7 199 193 195 196 1-50
S 247 2430 2438 238 370
6 311 292 2496 2499 L+Q
8 L-80 k67 L .60 L.69 2°3

10 7+00 6+90 675 6-88 1+9

Here the ratio Wh/Wm is formed for the three diiferent values
of «aE, the arithmetic mean is calculated and the maximum
percentage deviation from the mean found., This deviation is
within the accuracy with which the load curves were calculated,
If this ratio is now plotted as a function of «Po, the
points indicated by crosses in fig. 5.2.5 is obtained’and
attempting to fit a least square parabola to these points, the

full line drawn in fig. 5,2.5 appears. This suggests that a

simple mathematical relation holds for the ratio

; aW, 2
dgh/-_ﬁl = 0,082 (aPo) + 1 5e2e1
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The deeper significance of this, if any, is not yet clear.

Since the expression for the Hefttzian load is known to be

W oy (2) 5.2,2

then the equation for the minimum load becomes

a
aW. _.m (aPp ) 2
- U.EI 1 + K(aPo) ] 5243
where K = 00582

This must then be the equation for the curves drawn in
fige 5.2.3. Assuming that it also holds for values of«iPo > 10
and for different values of «E than the ones used, this
expression can be used to extrapolate the curves fig, 5.2.3 to
higher value of qPo and for different «E,

In particular the expression should hold for the case of
constant viscosity, i.e., by taking « = O, In this case

5.2.1 gives
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i.,e., the minimum load should coiside with the Hertzian,

In order to check this prediction, and also for its own
intrinsic interest, the constant viscosity case was computed.
The load curves for this case was shown in fiz, 4.6.4 for
g = 10% dyn/cma.

The predicted behaviour that the minimun load should
coincide with the Hettzian appears to be verified, In
addition it is also noticed that the load tiat must be avplied
in order to get a specified maximum pressure is very much
increased as expected.

In order to describe the various features of the solution
in more natural terms, suppose a hypothetical experiment is
periormed.

Let an elastic cylinder with negligable mass of radius
R = 5 cm and of unit length/made of a material with the
elastic constants E = 1275 «x 10° dyn/cma, V = 0°3 approach
an elastic flat plate of the same material unier a constant load
W = 150 x lO6 dyn/cm., Furthermore let the lubricant
separating the bodies have a pressure coefficient of viscosity

- -1
of a= 1 x 10 9(dyn/cm2)

We thus have *E = 700 . 2%1—: O.05

The motion will be described by a horizontal straight line in

fig. 4.6.1 passing through the value of load “w/p = 003,
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The maximum pressure in the oil {ilm at succeeding stages ot
the motion is given by the intersections of the straight path
with the load curves. The values of maximum pressure is
plotted in fig. 5.2.6. If now the experiment is repeated with

9 dyn/cma, V= 0°3,

a harder material i.e., E = 1820 x 10
AaE = 1,000 the motion is described by a similar line in fig,
4'602.

The value of maximum pressure in the oil film at any stace

of the motion for the three cases

aE = 700, « P max = 3‘14'5
afE = 1,000, aP max = ’4’50
«E = 1,400, «P max = 8°00

is shown in fig. 5.2.6.

From these curves it is apparant that a very high pressure
occurs in the o0il film at a finite film thickness., The value
of the maximum pressure is proportional to aE, and the film
thickness at which it occurs is inversly proportional to «E,

If now these experiments are repeated, but this time applying
a load 6°6% higher than in the previous serivs, a new set of
curves is obtained.  The maximum pressure reacied fig, 5.2.7

is now higher, and relative to the first series}increase of

maximum pressure is Le+35%, 6°7%, and 25% respectively.
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Hence for «xE = 1,400 for an increase o1 loai of only
6°6%, the maximum pressure has increased by 25%. If the
pressure distribution is examined for the film thickness where
the maximum pressure peak occurs, this is iound to be very sharp
and the high pressure will only be anplied over a very small
area and for a short time,. Such a pressure distribution might,
however, produce larre shear stresses close to the surface of
the cylinders, and the material might yield. Furthermore, if
the pressures were a:plied in rapid succession, a largze number of
times, one might be led to think that this could lead to fatigue

failure of the surface,

PR

If the cylinders in our experiment were desizned accordingz
to the Hertzian criterian, i.e., assuming that the maximum
pressure would be obtained at Hertzian dry contact, and then
calculating the design load from a suitable maximum value for 5
this pressure, the present results show that the actual pressure
obtained would be higher than those predicted by the Hertzian
theory. Indeed, tig. 5.2.5 may be looked upon as giving the

safety factor by which the Hertzian load must be reduced in order !

that the maximum pressure shall not exceed a specified value.
In our example for«P = 10 (say), this factor has the

considerable value of 6°8, Hence only about 15% of the Hertzian
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load may be applied in order that tne - aximum pres ure suLall

not exceed 10. This tfizure mi~ht be reduced if{ compressibility
and thermal effects ha. been considered. Only in the case of
constant viscosity would the Hertzian theory nave or:dicted the
right maximum pressures., The results nere s.ow that the
maximum pressure would coincide with the Lertzian,

Generally, these results show that it woul' bc advantageous
to use materials with a low value of Youngs modulus, and
lubricants with small values of the pressure coefficient. For
some lubricants, the value of« decreases with increasing
temperatures, hence these considerations point to the use of
"soft" materials and lubricants kept at a high temperature,
Other considerations might lead to another conclusion. Nothing
definite can be decided about these questions at the present
tinme, More work, both theoretical and experimental is needed
before the results presented here can be fitted into a general
theory of surface failure and used as a basis for design

criteria,
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6.1 Introduction

The experimental work described in this chapter was
devised in order to check some of the general predictions made
by the theory, and at the same time intended to be assimnle
as possible.

The experiment consisted of dropping a suitably loaded
steel ball from a height under gravity on to the polished
surface of a metal specimen. The surface was covered by a
film of lubricating oil, and the resulting plastic deformation
of the specimen surface, if any, was measured with a Talysurf
surface recorder, By varying the load on the ball, and
by using varying metals in the specimen, different values
of the elasto-hydrodynamic load Wand of the parameter «E
could be obtained. Only qualitative confirmation of the
theoretical results could be hoped for from an experiment of
this kind, because of the following two main reasons,

a. The theory was worked out for the normal

approach of two cylindrical bodies or, as
a special case, on an elastic cylinder
moving normal to an elastic flat plate.
For reasons of simplicity an elastic ball
rather than a cylinder was used in the
experiment, The governing equations

for the special case can be shown to have
much the same form as for the cylindrical

case, Hence, we might expect that the
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solutions would be of similar iorm althouch the numerical

values mizht be widely different.

It was shown in section 2 that under certain conditions the inert
of the fluid could be neglected, and these conditions are
probably satisfied in the present system. The inertia of the
gravitating ball system cannot be ignored, however, and hence

the governing equation is

.

MZ + Mg = W (ho,V) 6.1.1

where

M 1is total mass of falling ball systen.
W 1is the elasto-hydrodynamic force develcped,

V is the velocity ot approach as defined in

Section 2,

Z the coordinate of the centre of ball.

with ini ‘tial conditions

Z (O) = H+ R
. t = o
Z = [o]
We then have ;
z = R + ho - A 60102
d

where ~is the deformation of the elastic surfaces, ;

Differentiating w.r.t time:

Z = b - &
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VA = V + Vé
where
Vo is the absolute velocity of the ball system
relative to the fixed coordinate system.
v is the relative velocity between the elastic
surfaces as defined in section 2.
Vs, is the deformation velocity.
Also

If we neglect Y andb. as small we get

Y |
M\I:—(T‘;: WLhcjv\~Hg b-i-3
Vo\ '-'\/
or
. dV
Wih,v) = Mg +V Ty ) bel-H

The equation 6.1.3 can be solved for the given physical
system provided the appropriate function W(ho,V) is available.
This is not so in the present case and hence eqn,., 6,1.3 cannot
be solved .

For this reason, although no quantitative agreement
between theory and experiment is possible, there are never=-

theless some general predictions made by the theory that
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the experiments are capable of testinz,

In fig. 5.2.3 it is observed that for two materials
having the same dynamic yield characteristics, but having
different values of «E, then the minimum load necessary to
cause yielding will be smaller for the material having the
larger value of *E, other conditions being equal. To detect
the onset ol yield would be difiicult, We might expect,
however, this could also be interpreted so that for the
same load, the size (depth) of the plastic deformation would
be larger in the material having the larger value of «E,

If therefore the experiment is periormed on say aluminium

12 dyn/cmz) and steel (E = 2°1 x lOladyn/cq

bronze (E = 1.3 x 10
using in each cise the same lubricant and droppine the ball
from the same initial height, one might expect that the
depth of the resultin- plastic deformation would be larger in
the steel than in the aluminium bronze, provided the dynamic
yield characteristics of the two materials could be assumed |
to be comparable,

It might also be of some interest to see how depth of
deformation varies witn yield stress for a constant value of
Youngs modulus, Refering to fig. 5.2.3 it is observed that

for higher values of<xP°, the gradient of the curve is small,

this is particularly noticeable for the hicher values of the
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parameter xE, This sugzests that the load necessary to
cause yielding would be fairly insensitive to the yield
stress of the material. Or again, because of the diftficulty
of detecting the onset of yield,.the depth of the impressions
for any load would be fairly independant of yield stress.

There is one snag to this extrapolation to finite
plastic deformation. The depth of the depression depends
not only on the magnitude of the pressure applied, but one
would also expect that it would depend on the length of time
this pressure was being apolied. From fig. 5.2.7 it appears
that the time of application of a sufficiently high pressure,
decreases with increasing value of yield stress. Thus, the
variation of depth with yield stress would be larger than one
would be led to expect from a consideration of fig. 5.2.3
alone,

There is also the complication that with finite
deformations the material might considerably work-harden,

For this last reason it was thought that when finite
deformations were considered, tensile fracture strength rather
than some proof stress would provide a fairer basis for

comparison, and this has been adopted in the following.
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6.2 Description of apparatus ani experimental procedure,

The main details of the apparatus is shown in fig. 6.2.1,
6.2.2 and 6.2.3.

D is a %" thick plate supporting the 4 steel columns,
In a horizontal groove milled out, it also supports and
guides the metal specimens (:). The specimens themselves
were closely machined to size 5" x X" x %", the top surface
being carefully ground and polished. The columns support
the top plate to which an electro-magnet (:) is fixed.
The height of the magnet can be slightly adjusted by the
micrometer (E), which allow adjustment to an accuracy of a
few microns. A larger and coarser adjustment is provided
by the nuts (E). Round the lower end of the magnet is fixed
a brass ring (:),which serves as a guide for the magnet
armature,

Fig. 6.2.2 shows details of the way the test ball is
clamped, and the loading arrangements. (:) is the test ball,
a ¥"® hardened steel ball-bearing ball, held by the nut (@)
which screws onto the brass fixing (E). The plate (E) also
serves as supports for the loose steel disc weights .

At the top of the spindle is fastened the magnet armature@.
The photograph fig. 6.2.3 shows the apparatus assembled and

ready for an experiment.
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To prepare the apoaratus for an experim nt, thc vertical
level o: the magnet was adjusted vy tue coarse adjustment,
until the distance betwecn tihe vall ani the specicen was of
the order of a few runired microus and the axis o: the
snindle vertical. Fine adjustment ol the level was made
with the micrometer,

To prepare the specinmen, the suriface o1 this and ol the
ball was thorougnly cleancd by washins with alcohol,. After
dryin:, the lubricunt was put onto th: surituce, care being
taken to see that no dirt or air bubbles was present near
the area where contact was to be made. In order to ston the
lubricant trom flowing away from the surface, a thin strip
of cellotape was put round the edges ot the specimen, thus
forming a shallow trough, The o0il film could thus be kept
at a thickness of a few hundred microns,

Switching on the current activating the magnet, the ®all
assembly could then be fitted into place and would be held up
by the magnet, and the ball assembly loaded up with the
required number of weights.

In order to set the initial height of the drop accurately,
the ball was lowered by means of the micrometer until it just
touched the specimen surface, This could be detecte: by measu
ing the electrical resistance across the oil film. The

registance dropping instantly when metallic contact was
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established. For measuring the resistance, an ordinary

Avo meter was connected across the specimen and the ball

assembly. Having by this means fixed the zero level, the

ball was raised the required amount by means of the micrometer,
Checking the accuracy of this procedure with the help of

slip gauges, it was found that the initial height o1 the drop

could be set with an accuracy of a tew microms.

Switching off the current to the magnet, the armature

would be released and the ball drop on to the specimen surface.i
For suitably chosen values of load and initial height, the
specimen surface would plastically deform under the pressure
developed in the lubricant,

The deformation was measured up by means of a Talysurf
surface roughness recorder, On account of the small
dimensions involved, care was taken to ensure that profile
sections across a diameter was obtained,

In most cases the diameters of the depression could also
be measured by means of a travelling microscope. This method,
however, using very oblique lightinz, proved unsatisfactory, |
since the edges of the impressions frequently were ill defined
and this caused considerable scatter in the microscope
measurements, Also, no information of the depth of the
deformation could be obtained from the microscope measurements.?
However, when the size of the deformations were so small that |

they were of the same oder as the general surface roughness,



\73

it became very difficult to distinguish these on the
Talysuri records, For these cases, microscope measurements

of the diameters were used.
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6.3 Results.

The experimental results are divided into three zroups.
Group I contains the results desizned to brins out any
correlations between depth of depression and the value of
the parameter «&,

The results in group Il were desisned to show the
connection between denth of impression and strength, while
the results in group III were intended to show the variation
of impression with initial height of the drop for a constant
load., The lubricant used was T.N. 1074, described earlier,
In group I and II the initial height was kept at 50 , the
loads running from 710 grams. to 6120 grams. in staps of
~900 grams. In group III the load was kept constant at

6120 grams., and the initial height of the drop varied,

Group I:

Three different specimens were used here, i.e.,
aluminium-alloy, aluminium-bronze and steel, the elastic
constants of which is given in table below. These were
measured from tests done on the same bars from which the

specimens had been made.
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Group I, Specimens

TABLE 6,3.1.

75

. Tensile Youngs god. | Vickers hardn,
Code | Material strength Kg/mma Kg/cm VPN
1A Alum.-alloy 380 0-715)(106 110
3B | Alum,bronze 785 13 x106 240
25 | KFk6 steel 81°5 2 x0° 248

The tensile failure stress is taken as being representative

of the strength of the material,
The approximate values of the
and its depth as obtained irom the
in Table 6.3.k4.
shown in figs. 6.3.1 - 6,3.3 incl,

In order to clearly bring out

diameter of the depression

Talysurt records are given .

Reproductions ot the records themselves are

the influence of the

lubricant, the experiments in group I was repeated with no

lubricant present,

These results are given in Table 6.3.5,

and the records reproduced in figs, 6,3.1 and 6.3,2.

Group II:

Three different steel specimens, having approximately

the same value of Youngs modulus but difierent strengths, were

used,

table below.

The measured elastic constants are given in the
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Group II, Specimens

TABLE 6.3.2

) Younzs mod, .
. Tensile ke Vickers Hrdn,
Code | Material strengtth/mmZ Kg/cm2 VEN
1S Mild steel 63+0 2*1 x 106 200
Ls KF 1b 9C 0 22 x 106 254
58 KFlb Hardn, 14240 20 x 106 363

The results are shown in table 6.3.6. Reproductions of the
records are given in figs. 6.3.,4 and 6.3,5., As for the
previous group, the experiments in group II were repeated
with no lubricant present, These results are given in
Table 6.3.7, and the records reproduced in figs. 6.3.h4,
Group III:

Only one steel specimen was used in this group. The

constants for the specimen were measured to be
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6.3
Group III, Specimen
TABLE 6.3.3.
_ Tensile Younygs mod, {Vickers hardn,
Code | Material strenzth Kz/mm K,;/cm2 VPN
38 Steel 1750 19 x 106 L6k

The results are given in Table 6.3.,8, and the records

reproduced in tigs. 6.3,6.

was also pertormed,

A3 usual, the no

In this case, no surface

at all couli be .detected under a microscope.

lubricant test

ietorration
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TABLE 6,3,k

Group I, with lubricant

Code 1A 3B 28
load [ Diam |Depth Diam | Depth Diam | Depth
grams; uw M M A A M

710
1608 100 175

1) 1)

2511 175 175

3411 175 | 0°50 175 | 1+00
L313 || 175 | 0-75 200 | 080 225 | 1°35
5216 || 300 | 140 200 | 0+85 250 | 160
6120 || 400 | 1°50 225 | 1°10 275 | 175

1) Microscope measurement only.

\78



6.3
TABLE 6.3.5
Group I: No lubricant
Code 14 3B 25
ioaa Diam | Depth Diam | Depth Diam ;| Depth
grams M Vs F /L P M
710
1608
2)
2511 f
»2)
3411 200
4313 250
>1)
5216 450 | 0465 300 }
2)
6120 550 0°75 325 1

1) Microscope measurements only

2) Could be seen under the microscope as a faint marking of

the surface, but could not be measured,

\79
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TABLE 6.3.6

GROUP II: with lubricant

Code 1S 4s 55

Load Diam |Depth Diam | Depth Diam | Depth

grame | + |/ ol s il N
710

1608 162 150 | 1) 100 L

2511 200 } ! 250 | 1+00 150 |{r1)

3411 275 1-15 275 | 125 175

4313 325 1-50 350 | 135 225

5216 Loo 2+00 350 | 150 225 0°+65

6120 L2g 2°10 350 | 160 225 075

1) Microscope measurements only,
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6.3
TABL 6.3.7
GROUP II: no lubricant
Code 1S 4 55
Load Diam Depth Diam Depth | Diam Depth
grams /u. //‘ //* //& //¢ /Au
710 ‘
1608
2511 |
3411 |
4315 >2) r 3) L 3)
5216 | E
6120 350 060 )

1) Microscope measurements only

2) Could be seen under the microscope as a faint marking of

the surface,

but could not be measured

3) Could not be seen neither with the naked eye or under

the microscope.
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GROUP III

1) Microcsope measurement only,

TABLE 6.,3.8

Code 3s
Initial Diam Depth
height/~ /& /&
50 125
1)

100 175

150 250 0+70
200 300 100
250 koo 1-12
300 450 1.20

182
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6.4 Conclusions

Comparing the detormations obtained with lubricant with
the Hertzian,or dry contact deformations,under otherwise equal
conditions, it is seen thac the influence of the lubricant on
the shape of the plastic detiormations is considerable,

Compared with the dry contact, the deformations in the presence
of lubricant are in every case deeper and sometimes also having
a smaller diameter, thus causing the depressions to appear

more conical. If the average radius of curvature of a

depression is defined as

where D is the maximum diameter of the depression
d is the depth,

Then this quantity is smaller ior the depressions made in cthe
presence of the lubricant. Sometimes this quantity is even
smaller than the original radius of the indentins ball.

In the experiments, where in particular the har:ier
specimens were used, no dry contact deformations at all, or at
best very faint markings which could not be measured, were found,
even for the highest loads used, The correspondins deformations
with lubricant were easily detectable, even for much smaller

loads., This again demonstrates the considerable influence of

the lubricant.



190

Turnins now to the results of Group I ziven in table
6.3.4, these seem to bear out the theoretical prediction of
the inverse relationships between the parameter A X and the
maximum pressure developed in the oil film. Comparing the reults
for the aluminium-bronze (3)B and the steel (2S), it is seen
that for all loads the deformation in the steel is deeper than
the corresponding one in the aluminium-bronze. Indeed even for
the harder steel(4S) table 6.3.6, the deformation is deeper
than in the bronze, even though this steel has a strength
15% higner.

Unfortunately, the results for the aluminium-alloy
(1A) are not as conclusive, A comparison with the bronze (3B)
shows that the deformations are larger for equal loads in spite
of the fact that E for aluminium-alloy is some 45% lower than
for bronze, However, the strength of the bronze is nearly
twice as high, and this may account for the discrepancy,
Hardness tests of the surface of the aluminium-alloy seem to
indicate that the top surface layers are softer than the bulk
of the material. The stress quoted was measured in a tensile
test, and thus represents the bulk of the material while, as

far as the experiments are concerned, it is the stress of the
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surface that is relevant. This softening and lowering of the
stress of the surface layer may have been brousht about by the
grindinz and polishinz operations done. At any rate, comparing
the aluminium with the steel, the discrepancy vanishes. The
impressions in the stecl are considerably larger, even though
the strength of the steel is also very much higher,

Turning to the results in Group Il, it is se.a that the
depth of the deformations decrease with increasing stress, and
that the decrease is more pronounced in the regions of lower
stress, This may mainly be due to diiference in the times of
application of the pressures, In tig., 6.4.1 is drawn the
depth of the deformation against tensile fracture stress for the
highest load.

In the case of the results in Group III, these are much
as expected and show &n increase ifor increasing initial height
of the drop.

Since in this case a high tensile steel was used in the
specimen, no Hertzian or dry contact deformations were obtained

at all.
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Appendix A.
The effect of Variable Viscosity on the

Navier-Stokes Equatdons.

The x component of the general eguation of motion without

making the assumption of constant viscosity is as previously

shown
o= - S e (B-T) 2L (B
esn (Z+8)+ T (E+F) a
Rearranging the viscous terms these becomes
%“giA + uV3u --%Agg + 2%5 g% + ( g% +-g§ ) gg + ( g% +'g§ ) %%‘
where 4 = g% + g% + %%

Restricting the treatment to the
assuming constant properties across
terms arising from compressibility,

2 o ou
uw*u + 2dx 3

With the previous approximations

now becomes

two dimensional case,
the film and neglecting

this becomes

A2

the equation of motion

3
Eoafregn :



A,
By incompressible continuity
ou_ _ ov
ox oy
. OP 9%u ou ov

o.'a_x"ﬂé_? Zaxay

Integrating:

Boundary conditions are:
u=0for y=0and y=nh

"

: ®hn 2

'°Ci'ax2+hax/"dy
[

Y
2 20u /1 ¥
u-?_#ax( -.vh)-max H/vdy-/de)
[»]

Defining the average value of v:
n
V:l dey
h

c

Then for terms in the last bracket, we have

y
'-/ d)(Vh
(yv ovy

If we define,

\ay



€=€(x,y,t)=\1,—h<ﬁ-/yvdy>

it follows that 0 < € <1

Substituting into 5 we get

1_0oP

=2—l-“§(y2-yh)-gg&th A6

U ox

As previously

n

o}
V = = /.u dy
[
. o ( _ h® 9P 9 (2 W =
V= =S - = T
x| 124 ox } ox L H ox Vhe
h
where € =~%-/.€ dy € = €(x,t) < €nax
[&]
. _ 9 (n* op 2LVE oy
e V=% @ x<1+h a::)} AT

assuming that viscosity is a function of pressure only.
The last term is due to the variable viscosity., If this

term is small and is neglected,eqn. 7 reduces to

ve2 (bl 9B’
T oox 124 ox )
as was previously obtained.

The influence of the variable viscosity on the pressure

can be seen by solving for OF/dx

195"



A,
oP _ _ 12uVx _ A8
ox n® [ 1 +2%Ve g%l

In this case, since the term gﬁyég%-is non-negative,
its influence is to reduce the pressure gradient, In ternms
of a fix ed central pressure Po, this means that the load
necessary to produce this Py at a given ho is larger than
if this term is neglected.

Assuming that the viscosity is given by
U = Hoexp(aP)
the variable viscosity correction may conveniently be

expressed in the form

_ augV 24€ exp(aP)
K, = S = A9

If this quantity is < 1, the influence of the variable
viscosity on the Navier-Stokes equation is small and may
be neglected,

In order to establish bounds for the function €, assume
that v is expressible in the form
v = Zan(%)n A10

nso
where the coefficients are functions of x and t i.e.
an = an(x,t)

The boundary conditions on Vv demands
V = Zan and ag = O

ooy
= n+1

L

<l
!
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Substituting this, the expression for & becomes

€= %J/nzan(%)”ay-/Zan(%)dyj A1

1
EF

ny(h_) j

and the average value of € becomes

]|
I

"%V'Eiln+1)?h+2) &n

and substituting the series for V we get

na
n+1)(n+2

) en
"

In order to proceed further, some knowledge of the

mi

A12

analytical form of the function v must be obtained or

assumed,

From previous, ignoring variable viscosity, we have

-V = /ax L -%ﬁ g; ( 2y® - 3y%h ) }

This form suggests taking for the ap:

) n = 2,3 A13

ag

]
(o3
»

51

a7z
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These values give for the parameter‘§=

Ml

1 X oh
=1—2—<1.2-O.635}?> A1l

after substitution of the ap's.
This show that the variation of € is
0< €< 0.1
The max imum value is obtained for x = O, which gives
€ =0,10; x =0
This value of € is used in expression 9. The result is

given in fig, A1, computed for various values of aPy, for

three different values of aE,
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Appendix B,
Solution of the Linear Heatconduction Eguation for
a_Composite Solid,

Consider a composite solid consisting of a finite medium
-1 <x <0, of temperature T, and properties Ki, c1, p1
ete, in contact with a semi-infinite medium x 2 O, of
temperature Tz and properties Kz, c3, pz etc,

Consider further that heat is generated in the finite
medium at a rate $(x) t"° " where m may take integral values.

The governing equations are,

d2T 1 QT ™
o S s S EEEE AL >
2
_ _Ka
where a3 = 5§%i and %z = PaCg

The initial and boundary conditions will be taken as

K1%=K3%3 x=20 B3
T:_:Ta t>0 BLJ'

Ke & = 0 x=-1;£>0 B5

lim Tg = O t >0 _ B6

X+ o

Ts(x,0) = Ta(x,0) t=0 B7

Taking the Laplace transform defined by
o)
L [£(4)] = / £(t)e-stat
(4]
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the subsidiary equations become

a3y o (T B8
L - atv. - -gE
d.sz 2 =0 B
ax3 =~ QzVe = j 9
where v = [ [T]

Q1 = Ns/as dz2 = ¥8/Ug3

The boundary conditions transforms into

dvg

K1 —d-x— = Kz E B10
x=0
V4 = Vg ] B41
Ky $¥2 = 0 Xx=-1 B12
lim vg = O B13
N-=p P

A formal solution to egn., 8 is

o0
= N 2A
= Beds ¥ Ce~9: % _L‘:'H - D
Vi e + Ce + KiqZs ™ = @ B4

Az0

where D is the ordinary differential operator d/dx.

Boundary condition 12 gives

m 2A+1

The restriction will now be placed on the function ¢
that it is symmetric about the point x = - 1., This implies
that D3A+21 @(-1) = 0; N = 0,1,2,3%--"

% C = Be'QQ|£
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The solution of 9 with boundary condition 13 is

veg = E e" W B15

The remeining constants can now be found from

boundary condition 10 and 11

@) @)+ Y BT a0

o.o B = - B16
(0 + 1)[ 1 + Be 2% ] Kiqfs"™P

@) B o et (o o)

E = I ®(0) B17
K,q2s™® L 1 + Be 2 (o +1) _;

where, following Carslaw and Jaeger (9) we define :
K=qz/q1 ; 0 =(Ka/Ks)K ;3 B=(0=1)/(c +1)

Expanding the denominator in a binomial series,

substituting into egn. 14 and rearranging,

as (%) c i— aiD3A
: —_—0
Ky L 4_ Si-b-)\-bwa

a1D"" Q(O) o a{«ﬁlzna»\u. Q(O) N
L o+ githe i a'+1 gitrHm+ /2 _]
A

Z(-ﬂngn[ e-a(ent-3) o o-althen) 4] } B18

=0

Vq =

Treating 17 in a similar way and substituting into

eqne 15 gives



a:0(3) (1 + B Y B 2(0)

Ko (1) ot

Ve =

[ecd
Z(_1)nﬁn [ éq,[anhk:c_] + e-q,[z«t(n+1}+kﬂ] B19

N=0o

Teking the inverse transform,18 transform into

)\+m
Ti _ -alr( ) ‘Za)‘ ZA /2 Q _
K, &= T(1+Am/2)
o + 2¥ast iD fL»&L
- D) oD 2(0) (L) Wa(q)ngngarem
o+ 1 Az0 N=0O
- 2nl - x 21(n+1) + x ‘
L-erfc-§73q5r~ + erfe SSut b ] j B20

Similarly 19 transform into

asT(8) 1 + 2oLt iD = =

Ta =- D ) oaD* a(0) (ut M+ WRyRAeR (g )ngn
Ky o + 1 A=C nao
[ erfc 7——,——31%1;:1{" + erfe 2%5,2:12* Kx B24

where the D operates on F(x) at x = 0, and the i operator
is operating on the errorfunctions.

i
(o)

Adiabatic conditions are characterized by Kz = <3
i,ee putting 8=-1 ;0=0; K = o

in the above equations.
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The average adiabatic temperature Ti cannot be influenced

by the presence of the heatconduction terms, since these
only serve to shift the temperatures about.

Defining the average adiabatic temperature

T, = / T:dé&
C
we get
I
= o, T(B) tV2
T = 5,T(1 + 02 /‘Mf Bal

where we have defined the non-dimensional variables
E=x/1; x® = a;t/1%2
and redefined ¢ to be a function of x/1

For the special case & = constant; m = 1 we get

T1=2—g-}£°-¢ B25

Ty/Ts =1 = {ﬁ L(-ﬂ"ﬁ" [ierfc %n(:ﬁ + ierfe 2(‘21;1) + f:] B26
n=20 '

Equation 20 may also be used to investigate the
varia tion of temperature across the film under adiabatic
conditions, Putting = - 1; 00 = 0; K = « and also applying
the coordinate transform y = 1 + X, redefining £ to mean

y/1 we get
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B,
ay T(3)tm2 (—\‘?4 XA -
Ky Lé_ T'(1+A+m/2)

N P

_E: 2:2“*1x3**1D’*’*Q(0)(ut)xia**“‘i

A Al

2n+1) - 2n+1 B
[ erfc (2§+ ) £ 4 erfc ﬁ—%%—l—i—ﬁ; J} B27

Ty =

o]

Now, taking ¢ to be a quadratic in £ restricted by the
boundary condition ®(0) = 0,i.e. & = A%, and taking m = 1

we obtaln
-
Ty =-3%‘%{—E—5— \L 362 + Lx® - 127X
(-4
E:T i%erfc &%%ill_:_f + i3%erfec (2g;j) + & ] } B28
n=90
,f - Zau\/—_tq A
sy = BK'

THT < 367 + bx® - 1247x ) 1%erre BBHIE | jacpeo(2H1)4E)

B29

n=o

The variation of 29 with x is shown in fig. B,

Equation 29 was solved on the computer for three values
of lo corresponding to the x-stations 6, 10 and 14x10~3cm
from the cylinder axis. In all cases the parameter &£ was
taken as £ = 1, The relation required between 1 and t was
taken from the velocity of approach curve for the case a:

constant vigcosity, rigid material,
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The solution is showm in fig. B2,

It i% not so much the function (T - T)/T that is of
interest but rather (T - T), since if this is small,
temperature variation across the film will have little effect
on the physical properties such as viscosity and density.
Taking the values of T from the computer solution for the
case a : constant viscosity, rigid material,the obtained
values of (T - T) are shown in fig. B2. The value of the
thermal diffusivity used in the calculation was taken as
a; = 0,81x10°® cm?/sec,

It is believed that the results obtalned are more severe
than the true solution allowing for the motion of the
boundaries, and hence provide an upper limit for the

temperature variation.
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o=
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