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ABSTRACT 

This Thesis presents a solution to a problem of elasto­

hydrodynamics of normal approach ie. the motion of two elastic 

circular cylinders approaching each other along the line joining 

their centres and separated by a viscous film. Elastic 

deformation of the cylinders is accounted for, and the viscosity 

of the separating film is taken to be a function of pressure 

and temperature. A numerical method of solution making the 

use of an electronic computer is devised, and the problem is 

solved assuming a constant load being applied to the cylinders. 

An investigation into the nature of the temperature rise 

in the oil film due to the motion showed that under certain 

circumstances this would be rather small, of the order of a few 

degrees centigrade. This makes the assumption of isothermal 

conditions in the lubricant film a reasonable approximation 

under these circumstances and the resulting simpler problem, 

where viscosity is regarded as a function of pressure alone)is 

given a more general numerical treatment. 

It is found that a very large pressure may be developed in 

the fluid film at a finite separation of the two cylinders. 

As the film thickness is further reduced,the value of the 

maximum pressure goes down and as the film thickness approach •• 

zero, the pressure distribution seems to converge to the H.rtz1a~ 

dry contact form. 



IR 

For a given load applied to the cylinders, the value of 

the maximum pressure reached seems to depend mainly upon the 

value of parameter ~E, i.e. the product of the pressure 

coefficient of viscosity and the reduced Youngs modulus of the 

elastic system. It was found that the higher the value of o(E, 

the higher the pressure wouldr;o for a given load under other-

wise equal conditions. Furthermore, for a load high enough 

to produce sufficiently large pressures,a small increase in load 

will produce a large increase in maximum pressure. This gain 

is also dependent upon the parameter «E and is higher for 

increased values of ~E. 

Finally, a series of experiments were performed in order to 

check some of the theoretical predictions made. These 

experiments consisted of letting a loaded steel ball normally 

approach the polished surface of various materials, the surface 

being covered by a lubricant film, and measuring up the plastic 

deformations produced in the surface. These tests showed 

clearly the influence of the lubricant in that in every case 

the depth of the impression with lubricant was significantly lar 

than the ones produced under Hertzian, dry contact impacts, under 

otherwise equal conditions. The experimental results also 

indicate a correlation between the value of the parameter ocE and 

pressure developed in the lubricant film as predicted by theory. 
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NOTATION. 

The following is a list of the main notation used. 

Special symbols are defined in the text. 

E : Youngs modulus. 

H : Initial central filmthickness 

h : F1lmthickness 

ho : Filmthickness at point of maximum pressure. 

PIoJ Stress 

P : Pressure. 

Po : Maximum pressure. 

R : Radius of cylinders; 

T : Temperature. 

t : Time. 

• • • 11ft = 1/Ri + 1/Ra 

U,Y,. : Component velocities; also elastic displace.ents 
in the x,7,Z directions. 

V : Velocity of approach. 

W : Load per un! t length of cylinder. 

x,y,z ; Cartesian Coordinates. 

a : Pressure coefficient of Viscosity. 

YIoJ : Rate of Shear strain; also direct etraiD. 

o : Elastic displacement. 

Et. : Rate of direct strain; also direct strain. 

A : Elastic constant • (-2/~){[1-vlllEi + [1-vlllE.l 

~ : Dy.naaic Viscosity; also .icron • 1/10 000 ca 

V" 



~ : Dynamic viscosity under atmospheric conditions. 

v : Poissons ratio. 

p : Density. 

'I'" 



CHAPTER 1 

INTRODUCTION 

1. E1asto-Hydrodynamic Lubrication 

2. Investigations described in this Thesis. 

Page. 
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1.1 Elasto-Hydrodynamic Lubrication 

The principles of hydrodynamics have long been applied to 

problems in lubrication. As long ago as 1886 o. Reynolds read 

his now classical paper on hydrodynamic lubrication to the Royal 

Society, and since that time much work has gone into elaboration 

of this theory. Most of this theory, however, is applied to 

journal bearings and thrust bearings, i.e., confined to cases 

where the pressures encountered are not very high and the 

assumptions are sufficiently close approximations. During the 

last 20 years, the theory has also been applied to such machine 

elements as gears, heavily loaded rollers etc., wh&rethe pressures 

encountered are very much higher. The consequence of this is 

that now the concept of constant viscosity of the lubricant must 

be abandoned and instead a variable viscosity must be used. 

Equally important, however, is the fact that now the boundary 

materials can no longer be assumed rigid structures, but that 

due consideration must be given to the deformation of these 

surfaces under the pressures and the influence this will have 

on the hydrodynamic film shape. 

Problems of this sort then fall within the domain of 

~lasto-hydrodynamic ~ubr1cation. Briefly, the solution of a 

problem in E1asto-Hydrodynamics consist of finding the proper 

solution of the [0110w1n« s1stem of equations ~fig. 1.1.1.) 



1.1. 

1.1~ 1 

h = C + f(x) + '}.. L P1n(r)dr 

where 

h = oil film thickness. 

p = pressure in the oil film. 

p = lubricant viscosity. 

U = velocity in X direction. 

W = velocity in Z direction. 

V = velocity in normal direction. 

f(x) = undeformed geometry of film shape. 

r = distance between a point where deformation 

is calculated and the pressure element 

producin-s it. 

= constant, depending upon the elastic properties 

of boundarie •• 

C • an arbitrary additive constant. 

~ = Total area over which the pressure acts. 

The first of these equations is the Reynolds equation 

governing the hydrodynaaics. The second is the elastic equation 

controlling the deformation of the boundaries. 

In 1916 Martin (1) assuming constant viscosity and rigid 

teeth, showed theoretically the possibility of hydrodyna.1c 

lubrication in gears. 
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1.1. 

Later, more complete theories, taking account 01 variable 

viscosity anj tooth flattening, have been put forward by various 

writers: Grubin (2), Petrusevich (3), Poritsky (4), Weber and 

Saalfeld (5) and Dowson and Higginson (6). These writers have 

all attempted to solve numerically the equation 1.1.1. with the 

appropriate boundary conditions in one way or another. 

All these theories consider the simplified problem 01 

steady rolling anl sliding of two circular cyclinders separated 

by a lubricatin~ 1ilm, and the elpsto-hydrodynamic problem of 

normal approach seems to have received little attention in the 

literature. In this problem the motion of the two cyclinders 

are along the line joining their centres. Such a motion is 

encountered in gears, rotating machine elements where vibrations 

are present etc. 

5 
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1.2 

Investigations described in this Thesis. 

The problem investigated here is that of two circular 

cylinders in normal approach under some load. The problem had 

its origin in the more limited problem of evaluating the velocity 

of approach for various film thicknesses under constant load, 

since this had some interest in connection with .gears. It was 

hoped that this solution could be used to estimate the thickness 

of the lubricating film separating the meshing teeth, and also 

give some indication as to the amount of tip relief needed. 

In the preliminary attempts to solve this problem a film 

shape, which wad taken to correspond to the deformed boundaries, 

was assumed and the llydrodynamics was thus solved using these 

assumed boundaries. E.g. it was assumed that the deformed 

geometry could still be represented by two cylinders, but with 

different radii than the original undeformed cylinders. 

Apart from being arbitrary, it soon become clear that this 

process could not be expected to lead to a satisfactory solution, 

since this solution was very sensitive to film thickness. 

Furthermore, it was discovered that under certain conditions, 

the pressure generated in the lubricatin~ film might reach very 

high values. This high pressure might have some effect on the 

material boundary, and affect the wear characteristics of the 

gears 



1.2 

It was therefore decided to investigate the elasto­

hydrodynamic problem of normal approach of cylindrical rollers 

in a more general way by a direct numerical attack on equ. 

1.1.1. 

Fortunately, the University's electronic, digital computer 

was available for this work. 

7 



1 

2 

3 

4 

Chapter 2 

Theory 

General Equations. 

General Equations of Motion. 

General Equation of Continuity. 

General .Equation of State. 

5 General Equation connecting Viscosity with 
Pressure and Temperature. 

6 

7 

The General Energy Equation. 

The General Elastic Equation. 

8 Additional Assumptions and Simplified 
Equations of Motion. 

9 Solution ot the Equat10n of Motion in 
Bipolar Coordinates. 

10 

11 

12 

13 

14 

Solution ot the Equations ot Kotion ot a 

Compressible Fluid with Variable Viscosity. 

The Energy Equation. 

Viscosity and Density. 

Equation of Motion under Isothermal Cond1tions. 

Summary ot Theory. 

10 

2., 

2.5 

30 

'II 

53 

b2. 

75 

82. 

B 



q 

2.1 General Equations' 

The system is in general governed by eight equations, 
together with the appropriate boundary and initial conditions, 
this being sufficient to determine the eight unknowns. 
These are the three velocity components, pressure,density, 
viscosity, temperature and the elastic deformation o~ the 
boundar7 solids. 

Three o~ these equations are expressions for three 
conservation principles of physics, i.e. the conservation 
o~ mass, aoaentua and energy. Of the remaining three relatiOns, 
two connects the fluid properties of viscosity and density 
to pressure and temperature, while the remaining equation 
connects the elastic displacements o~ the bounding solids 
with the fluid pressure. 

For completeness these equations will be derived in 

convenient fora in the toll owing sections. 
Be~ore atteapting to derive these equations some basic 

~ 

assUilptions regarding the auid and the boundary solids 
aust be laid down. It is consequently assuaed that the auid 
can be regarded as a continoua, hoaogeneo1l8 ae4iUII and that 
any irregularities in the auid or in the bounding solids 
are surt1ciently small aDd can be ignored. 



2.2 The General Equation of Motio~ 

St~eAs~s_iD A ~yig ~_m~tlon. 
Referring to fig.2.2.1, consider a small parallelepiped 

with centre p(x,y,z) and sides dX, 6y, OZ parallel to the 
axis of a fixed coordinate system situated in the moving 
fluid. 

The stresses at the centre of the face 6y~Z away from 
the origin are: 

where as usual the first suffix denotes the direction ot the 

normal to the plane considered, and the second denotes the 

direction of the component stress. 

At the centre ot the opposite face the correspoDding 

stresses are: 

C)P z 
Pxz - i~cfx 

The force arising from these stresses are: 

where crv = cfxcfycfz 

2.2.1 

and siailar17 for the other directions. Hence there are in 

all Dine stress coaponents at a point. 

Considering the couples arising froa the forces we 

haTe: 

-P:u6V+ PsulV 

about Oy aDd OZ respectiTe17. 

10 
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2.2 

On considering the equlibrium of the parallelepiped 

under these forces and letting the edges d1m1D1sh to zero 

we have 

(-pxz + pzx)OV = 0 

• • • Pxz = Pzx 

\2. 

and s1ailar17 tor the other directions. Hence the nine stre8s-

components are thus reduced to six. 

~osiYt.o~cjls_aJ1d_lDel:t1ato.£C.ls ... 

In addition to the surface torces, the tluid _a7 also 

be sUbjected to bod7forces such as gravitational torces and 

inertiatorces. 

The bod7force per unit volume acting on a tluid particle 

81 tuated at a po1nt P may be expressed as P I where p is the 

density aDd ! the torcevector at the point. 

The 1nertiatorce ma7 be derived b7 considering the motion 

ot a particle situated at a point P(x,7,z) at ttae t and ' 

having a velocit7 ~. 

At time t + ht the saae tluidpart1cle w111 be s1tuated at the 

point p' (x",c§x,Yi-6y,z+oz) and have a velocit7 ~ + 6~. 

The coaponents ot the vector ~ will be denoted by u,v,. in 

the X,7,Z directions respect1ve17. 

Cons1dering the x coaponent ot velocit7, it .e •• suae 

Ji • Jl(x,7,z,t) 
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Taylors theorem gives 

u + cfu = U + b u: + vt + w~ + ~ J~ + higher terms in ~t 

The component acceleration is now given by 

au Du em au Ou au 
ot.!~ Tt = Dt = c}t + u c}x + T"c}y + W c}z 

D where the operatorlft defined above is known as the total 

derivative. 

S1ailar expressions can be found for the coaponent ot 

acceleration in the other two directions. 

Equating the components ot surtace- and bodytorces to 

the corresponding components of rate ot change ot lRoment,.: 

~ = pX + ~;% + g;W% + g!z:t 

with s1ailar expressions tor the y and z directions. 

~t~eA8"s_&Ad_V.Rl.2ci.tZG:a~i.RDs1s&. 

,~ 

Equation 2.2.3 is the equation ot aotion in teras ot the 

stresses in the tluid. In general it is .ore convenient to 

have the stresses expressed in terms ot the velocitygradienta. 

The stresse8 in a tluid are not, by definition, dependant 

upon its translation or rotation, but only upon the relative 

aotion ot its parts i.e. the rates otstrain ot the particl •• 

It a tluid particle is situated at a pOint p(x,y,z) 

aDd hav1ng a velocity ~ and a nearby particle 1s at a point 
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pt(x+ox,y+oy,z+oz) at the same instant of time and moving 

with a velocity y +o~, the relative velocity between the two 

particles 1s: 

Detining now the rate ot strain components: 

. , . , a" 
Ez = 2rz 2.2.5 

TZY=( -& +~ ) ; TYZ = ( ~ + .~ ) ; TZZ = (~ + t ) 
aDd the components ot Tortic1t7: 

nz = ( ~ -~ ) ; Sly = ( ~ - :: ) ; 1lz = ( 1-~) 2.2.6 

SubstltuttDg this into eqn. 2.2.4 

2du = EzdJt + Tzu47 + Tzzdz + Slydz - nzd7 2.2.7 

with s1ailar expressions tor dT aDd dw. 

Erecting on the point P a new set ot orthogonal axis 

x' ,7' ,z' orientated in such a .... 7 that the strains are 

parallel to these new axis, then the stresses an surtace. 

perpendicular to theseaxls will be DOraal stresses 0Dl7. 

'rheae new axis will be called pr1Dcipal uis and the l101'IIal 

stresses pr1Dclpal stresses aDd denoted b7 P~, Pa , Pa• 

Let the direction ot the principal axis at a point P 

\'1 
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relative to another set of rectangular axis be specified by 

directioncosines lL,mL,nt.i = 1,2,3 

in the usual manner. 

Also let 

. , av' .::.t - 2-
..." - i)y' • , Ow' ei = 2az • 

where the primed quantities refer to the principal axis. 

We then have: 

and s1Jlilarly for Ey aDd Ez 

Also 

with s1ailar expressions tor ,yz aDd ,~z 

Considering now the equilibriua ot • saall tetrahedron, 

neglecting inertia- aDd external torces ot higher order ot 

•• all quantities, we tind 

Pzz • p~Dr + p.uI + p.n: 

aDd .1ailar17 

1S 
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Puz = P1.m1.n1. + Psamansa + Pamella 

r 
2.2.12 

P1.n1.l1. PZX = + Panala + P3nela J 

Hence, the six stresscomponents have been expressed in 

terms ot the principal stresses. 

Now, making the assumption that the principal stresses 

are linear tunctiODS ot the rates ot stra1n i.e. 

P1. = -P +X(e! +91 + el ) + 2~e! 

Pa = -P +x(e! +EU +Ei ) + 2~91 2.2.13 

Pa = -p +A(el +91 +el ) + 2~el 

where -P is the h7drostatic pressure 

~ is the coetticient ot v1scosity 

By addition, since P~ + Pa + Pa = -3P, it tollows that 

3A + 2~ = 0 

Hence, troa 2.2.9; 2.2.11; 2.2.13 we t1nd, 

P%% • -P - ~"\ ~ + t + ~ ) + 2P~ 

Puu = -p - ~"\ ~ + * + t ) + 2P~ 

Pzz • -p - ~'\ ~ + ~ + ti- ) + 2Pil 

2.2.14 

\b 

Bow sUbat1tutiDa the relatioDS 2.2.14; 2.2.15 tor the atreaa­

caapoDente 1nto e~ 2.2.4 we obta1n the equat10aa ot aotion 
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2.2 

in their most general form 

.])v dP 2d III en (}u) 2d (~ U.) 
Ij)t = pY - dy + 30Y \ OJ - ox + W\ Oi - dz· + 

,])w dP 2d (aw em) 2d (aw CJY) 
"'M = pZ - Tz + 3OzI", Tz - cb: + !OzP, (}z - ay + 

J 

If one can justify the assumption that the terms 

arising fro. variable viscosity are saall aDd can be 

neglected, (appendix A ) the equations can be turther reduced 

to the .ore faailiar tora: 

Du elP 1 cl PDt = pX - CJi + "!I'tiil1 + llV"u 

where 



\8 

a8 .2.! .Q! va = OX8 + ay8 + OZ8 , the Lapla cian operator. 

The above equations are the well known Navier - Stokes 

equations of motion. 



2.3 General Equation of Cont inuity. 

This equation is the mathematical formulation of the 

principle of conservation of mass. 

Referring again to fig. 2.2.1, let the fluid particle 

centred on p(x,y,z) be of density p and haTe a Telocity ~. 

The flow into the parallelepiped in the x-direction in time 

ot is then g1 Ten by 

[ po. - i ~x ( f1ll ) ox lyozot 

S1ailarly the outflow through the opposite face is 

given by 

[ po. + t~( po. )ox lyozot 

HeDCe the excess of outtlow over inflow is 

with s1ailar expressions for the other directions. 

:l01f, the .. ss orig1nall~ inside the voluae is 

pOXQ70S, and equatina the rate ot change ot this to the 

excess out~01f gives 
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... 1t + ~x( po. ) + iy< pv ) + tz< pw ) = 0 

Performing the differentiation this can also be 

written as 

If the fluid is incompressible the equation of' 

continui t7 takes the simpler form 



2.4 General Equation or State. 

The equation of state is a relation between the density 

and the pressure and temperature at a pOint in a fluid, aDd 

may rormally be indicated by 

p =p( P,T ) 

In the case or aD ideal gas the function p(P,T) may be 

explicitly written as P/RT where R is the gas constant aDd 

which depends only upon the kind or gas. 

In the case ot .ost liquids ,however, no such staple 

aathematical tora seeas to exist and resort aust theretore 

be made to various empirical relations. One war to do this 

is to assuae that the deDSi ty can be expressed as a 

polJDGaial in P aDd T, and deteraine the coerticients traa 

.easure.ents on the liquid. 

Alternativel,., the equation or state m&7 be detiDed 

uaaerical17 by g1v~ a table or p ror various values ot 

pressure aDd te.perature obtained trom .easureaents. 

IaD7 liquids are rair17 1Dcoapressible and have a low 

expaD8ioncoetticient. Then as a tirst approxt.ation the 

ZI 

densi t7 "7 be taken as being iDdepeDdant ot pressure aDd 

te.perature. In thi. case the equation ot .tate reduce to ~ 



2.5 General Equation cOnnecting Viscosity with 

Pressure and Tempera tun. 

zz 

This relation is analogous to the equation of state and 

may formally be indicated by 

p. = p.( P,T ) 

where p. is the dy.Daaic coefficient of Viscosity. 

no general theoretical expression tor the viscosity ot 

liquids seem to exist, although a number ot empirical 

relations connecting ViSCOSity with pressure aDd temperature 

have been proposed. A comaon teature ot all these expressions 

is that they contain arbitrary coetficients which values .nst 

be determined trom measurements made on the liquid in question. 

The pressure and teaperature range rithin which the 

expression used will yield reasonably accurate values depends 

to a large extent upon the liquid. At higher pressures a 

lubrica ting oil rill tend to aolidit7, but this etrect -&7 

be oftset or reduced by iDCreasing the lubricant teaperature. 

Also the rate ot shear the lubricant is sub~ected to JI&1 

influence its properties to a larae extent'. .At high rates ot 

shear or shearstress the fluid 881' dev1ate tro. the D8~D1aD, 

i.e. the 8hearstres8 "1' no longer be a linear tUDction ot 

velocity gradient. Various values tor this critical ahear-
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stress are found in the literature, a typical value seems 

to be 500 000 dyn/cm8 (7). 

An equation that will be used in this work appears in 

(8), and is of the form 

). = a(T)P + ( log~o~~ • 
2.5.1 

where 

II = viscosity at pressure P and temperature T,millipoi8 r-P,T 

aCT) = function of temperature alone. 

P = pressure above atmospheric, atm. 

IJ.~T = Vi8cosity at atm. pressure and teaperature T, .1111po1a 

The above equation was found to be accurate to within 

a few percent tor pressures les8 than 40 000 p.s.1. in the 

case of two lubricants supplied by the Thornton Research 

Centre (&). At higher pressures the equation tends to 

underest1aate the Tiscos1ty. 

It (log~olJ.~~ ). 18 plotted aga1Dst P, a taa1ly ot 

stra1ght lines is obtained, one line for each Talue ot T. 

Furtheraore, it 1s known (8) that all these lines will paS8 

throUjb one point, and hence the Tiseosity at any pressure 

aDd te.perature "7 be obtained by drawing a straight line 
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through this point and the relevant value ot ( log2.o#o T ). 
I 

obtained trom viscosity measurements on the lubricant at 

atmospheric pressure. 

Under isothermal conditions a viscosity equation ot 

the torm 

IJ. =- /J.oexp( aP ) 2.5.2 

will sometimes be used in the toll owing, on account ot 

its aathematical simplicity. The coefticients IJ.o and a are 

characteristics ot the lubricant and must be determined by 

measurements. 

The expression 2.5.2 agrees with eqn. 2.5.1 tor saall 

values ot P, as can be seen trom expanding the argument in 

a binomial series retaining only the tirst two terms. 



2.6 The General EnergYeguation. 

In a moving viscous fluid irreversible work will be 

done by the shearforces, and this work will appear in the 

fluid in the form of heat. 

The energy equation express the energy balance, and is 

a formulation of the principle of conservation of energy. 

Referring to fig. 2.2.1, consider the energy balance for 

the fluid element centred on p(x,y,z) moving with velocity 

components u,v,w in the x,y,z directions. 

The rate at which work is done on the element bY' the 

bodyforces is 

{ Xu + YT + Zw ] 2.6.1 

Also, the rate at which work 1s be1DS done bY' the 

surface stresses can be evaluated by c0D81der1ng the 

difference in the rate of work done OD each of two parallel 

surfaces, neglecting saall quantities of higher order. 

Consider for the normal stress coaponent in the % 

direction 

-P~uucfycfz + ( P%% + ~cfx )( u + ~cfx )cfycfz = 

= ~{ uP%% )0%070'1. 2.6.2 

aDd siailar17 for the other stresses. 
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Hence, the rate of work being done by the surface stresses 

becomes 

[ ~( uPxx + VPx" + wP:tZ ) + gy( uP,p + VP"" + WPyz ) + 

+ gZ( uPzx + VPZ" + WPZZ ) JOXOYOZ 2.6.3 

ExPllDding this aDd substituting for the stresses from 

[ -pC uX + vY + wZ ) +i~( ua + va + wa ) -PA + 

+ { 2(~)a + 2(~). + 2(~)a + (~ + ~ ). + ( .~ + ~ )a + 

+ ( ~ + ~ ) a - ~A. JcS'x6'y~Z 
2.6.4 

The teras in the square bracket represent the 

irreversible friction work due to viscosity. 

Defining a dissipation function 

[
eN.. ~ • 

• =~ 2{ di) + 2( a,y ) 

eN. iIw· 2 ] + ( Tz + ~) - :/~. 2.6.5 

With this notation e%pression 2.6.4 becoaea 

2.6.6 
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where y is the velocity field 

! is the force field due to the bodyforces. 

In addition to energy supplied to the fluid element by 

work done upon it, energy is also supplied by conduction and 

convection neglecting radiation which is negligable exept 

for very high temperatures. 

The rate of energy supplied by conduction is 

2.6.7 

where K is the coefficient ot thermal conductivity. 
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Similarly the rate of conTection ot kinetic and internal 

energy is 

- [txr pu( KE + E)] +iy[ py( KE + E)] +-iz[ pw( KE + E»)jv 

where 

KE :II kinetic energy/un! t volume = i( ll~ll) 

E = internal energy/un! t Toluae :II cT where c is 

the specitic heat ot the tluid. 

2.6.8 

Equating the rate ot energr supplied to the ele.ent b7 

2.6.1, 2.6.6, 2.6.7, 2.6.8 to the rate ot increase ot 

kinetic and internal energJ with~ the element: 



ze 
2.6 

[ p( Xu + Yv + Zw ) - p( Xu + Yv + Zw ) + t~t( Ul + VI + Wi ) -

-p~ + ~ + KV'IT - [ ~(pu(KE + E )] + ~[ pv( KE + E)] + 

+ iz[ ".( KE + E)]JJOV = ~t[ p( KE + E)]6V 2.6.9 

Rearranging the teras and remembering that from 

continuity 

~x(pu) + ~(py) + ~(pw) = -* 
the energy equation t'inal17 becomes 

DE ~ f1)t = -p~ + Av-T + • 2.6.10 

In! tial and boUDda17 coDdi tiona to eqn. 2.6.10 are 

at t = 0 

Where the t'luid aeets up with another substance, and 

assuaing that heat transt'er across the bOUDda17 takes place 

b7 coDduction onl7, aDd denoting the noraal to the bOUDda17 

at the po1nt by D we haTe 

where sut'r1x b ret'er to substaDCe on the other s1de ot' the 

Two Ita1 t1q coD4i ticma can here be recognized. ODe 1. 
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characterized by letting K = ~ ~ ~ ••• T ~ To 

t > O. This is the isothermal condition. 

The other is obtained by putting K: = 0; t > 0 

This may be termed the adiabatic condition. All heat 

d~loped tn the fluid stays there and goes to increase the 

temperature. 



2.7 The General Elastic Equation. 

The derivation of the equation of motion for a 

homogeneous, isotropic, elastic solid is completely 

analogous to that given for a fluid in section 1.2, and the 

equation of motion or equilibrium in the x direction is 

J)u pX ~+~+~ PDt • + ox u.y dz 

where the syabols u, 'Y, W have now been redefined to mean 

displaceaents in the x, y, z directions respectively. 

As before a hypotheSis connecting stresses and strains 

is needed and this is provided by Hookes law which states: 

EI • ~[ PII - ~( Pyy + Pz z )] 

ev = *[ Pyy - v( PIX + Pzz )] 

Ez = j[ Pzz - v( PIX + Pyy )] 

where 

E = Youngs aodulua for aaterial 

~ = POiSSODS ratio tor .. terial 

aDd as previouslY 

at! bY -EI • -=- ; Ey • 1ii ; Ez = Tz 

YIY • <-I + ~); YIZ • <:: + -I ); Yu z • <¥. + ~ ) 

2.7.2 
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where 

E G = modulus of rigidity = 2(1 + v) 

Eliminating the stress components in 2.7.1 by using 

Hookes lew and expressing the stress components in terms of 

displacements neglecting inertia- and bodytorces giTes the 

equation of equilibrium in terms of displacements i.e. 

( A+G )~+ G~u = 0 

( A+G )~ + GVST = 0 2.7.4 

( A+G ):~ + Gvaw = 0 

where 

A • '( 1 + v yf 1 - 2v ) 

A general solution to eqn. 2.7.4 is 

u= ;2- 1 ~ ( 
- 4(1-v)di ;0 +-X;2- + 7;. + Z;e ) 

T = 1 ~ ( 
;. - 4(1-v)Oj ;0 + %;1 + 7;. + z;. ) 2.7.5 

1 ~ ( 
W - ;& --4(1-v)~z ;0 + %;~ + 7;. + z;& ) 

where the ;" are haraOD1c tactiou 1 •••• at1.n •• 
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Suppose that a concentrated normal force F is applied 

at the origen of a semi infinite elastic body bounded by 

the plane z = o. 

Symmetry suggest that one can take ;~ = ;. = 0, hence 

the solution to the equation of equilibrium becomes 

u= 1 V)~( ;0 + z;a ) 
- 4(1 -

1 
T c - 4(1 _ v)~y( ;0 + z;. ) 

1 
v)tz( ;0 + zrh ) +;. w= - 4(1 -

The associated stress pattern then becoaes 

G .r a;a a·,o a·,. ] 
p~% = 2(1 - v~ 2vai - ax' - zai' 

with s1a11ar equat10ns ~or P"y and Pzz 

P:ty = -G {~ ~J 2( 1 - 11 + Z 

P~z c 2(1 ~ V)[ g;s: + Z'~; - (1 - 2v 

'Pzy -G [~ • 2(1 - v) . • + .§it. - (1 - 2v 

)~J 

)~ ] 

BOUDdar;r ccmd1t1ou d.a " that OIl the nrtaoe 

• • 0 ; Pzz II: Pz z = Pzy • 0 

2.7.6 

2.7.7 

2.7.8 

32. 



Talt1Dg 

gto = ( 1 - 2v );. ; Pz x aDd Pz y becomes zero at z = 0 

ChoosiDg for the t'unctlon ;. the harmonuc ~ where 

R8 = x8 + 78 + Z8 ; A constant, Pzz llkewlse yanish at z == 0 

Bence the boUDdar,J coDdltlons are satlsfied. 

In order to determiDe the constant A, consider the 

equillbrll11l of a small c7l1ndrical disc havlng the z axis 

as its 8~etr7 axis and of thickness c and radlus a. 

The shear stresses yanish in the l1ai t c -+ 0, hence 

• • • 

• • • 

Q 

-!2wrpzzdr ; r a c x8 

C) 

j~ ~ 3· 
., • - 2W"2(1_V)R' dr 

A=~F 

+T' 

AwG = i-v 

BeDCe, the yertlcal dleplac .. ent at the surface 

correepoDdlng to thi8 yalue of ~a 18 

wZr:O = ( 1 - VI )1' 
iti 

2.7.9 

In the caee where a d1strubetedload or pressure is 

applled, the deforaat1oD of the surface· 18 obtained troa the 

a boye equa tl0D b1' euperpo8i t1on, aDd 18 g1 Ten b1' 

33 
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2.7.11 

where the integration extends oyer the whole of the 

pressure distribution. 

In a different coordinate system x',y', specified by 

the coordinate transform 

x' = ~ + x 

y' = " + 7 

z' = z 

equation 2.7.11 becoaes 

2.1.12 

where again the integration e%tends oyer the whole of the 

pressure distribution. 

In the two diaenaioDal case the pressure nst be regarded 

as a tunction of %' only, and the detoraatian .ust be 

iDdepeDdant ot the " coordinate. 

Considering therefore the defor.aation due to a pressure 

t + • '. + distribution OTer a rectaDi1e % • _ a , y a _.~ 

we haTe 



Assuming now that P» Ix - ~I and that the term 

( x - ~/p )8 is negligable compared to unity, we have 

.... 
o = 2( 1 - ". '/ p(x')ln ~dX' wE {x-~} 

-01 
~ 01. 

= 2( i,ri VI )ln2P / p(x' )dx' 
-0( 

2( \;1 VI) J P(x' )lnlx'- ~Idx! 
-0( 

The rirst integral is the total load on the aaterial. 

Thus ir W' denotes the total load and W the total load per 

unit length in the y' direction, we have 

D4 

W' / w = 2P = P(x' )dx' 
-0( 

Ir a positive pressure P(x') is applied, the integral 

can not vanish. Theretore it P is iDtin1te W' aust be infinite, 

but W aa7 be tinite. The whole tera, however, is in:t1n1te due 

to the factor In(2~). This result is not unexpected siDee 

the .. terial was assuaed to exteDd to 1n:rini t7 in the -IS 

direction. 

'!'he change ot shape ot the surtace z • 0 1s due ent1re17 

to the secoDd tara in 2.7.14. D1acard1nB the 1Dtin1te conatant 
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we haTe 

G( 

0= _2( \rE va )f P(x')lnlx' - fldx' 2.7.15 
-oC 

and this will be denoted the local deformation. 

Writing x' - ~ = r, we haTe 

o = _2( iii v8 )/ P 1n(r)dr 

:.c&. 

2.7.16 

If the Ul'ldeforaed filmshape is giTen by the equation 

h = f(x) + ho 

then after undergoing deforma~ion the filmshape is specified by 

2.1.17 

where H is an arbitrery consta nt which is so chosen that 

the filathicmess at so.e given point has a specified value. 

Eg. it' the central tilathickness ahall have the value he then 

clear17 

It both the bcnmdar7 surtaces are det01'lled, aDd the 

a.terial. are specitied by the elastic properties E~, v~ aDd 

E., v., then 
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2.7.18 

The calculation of f1lmthickness is based on eqn. 2.7.17. 



2.8 Additional Assumptions and Simplified 

Equations of Motion. 

The equations governing the motion of the fluid derived 

in the preceding sections are much too general to be solved 

directly. 

In order to simplify and reduce these equations to a more 

aanageab1e form/additional assumptions are introduced. The 

purpose of this section is to state these assumptions and give 

saae justification for introducing thea. 

Ai The motion will be considered to take place in a two 

ddaensional space only. 

A2 The terms arising fro. the inertia o~ the t1uid in the 

moaentua equation are small compared to the viscous teras 

and may be neglected. 

A3 The ter..s due to external bodyrorces acting on the t1ui4 

are small coapared to the viscous teras and may be 

neglected. 

A4 Bo teaperature gradient exists across the ~ila. 

Matheaatica1l7 the assuaption Ai means that with the 

preTiou8 4e~iD1tion of the coordinate sTste. one "7 put 
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The physical interpretation is that no velocities nor 

any gradients exists in the z direction, or as an approxiaation 

that these gradients are amall and can be neglected compared 

with corresponding gradients in other coordinate directions. 

This coDdition is rultilled it the dimensions in the z direction 

are large co.pared with the x and '1' dimensions. Thi. condition 

1187 not be met in the present problem and hence solutions 

obtained using A1 lIa7 not give a true description ot the flow. 

The component ot the inertia torce in the x direction 

is given by 

~ = p[ ~ + u: + v~ J 
and this is ot order ot magnitude p~:x[ 1 -~~ J 
wher .. V is the velocity ot approach. 

The correspoDd1ng viscous torces are 

aDd thi8 is ot the order ot 12~f. 

!be ratio ot the inertia torce. to the yiacoua torc •• kaDwD 

a. the ReJDOl4s DUaber Re then becoaee 



2.8 

Under conditions where we have Re « 1 the introduction or 

assumption A2 may not cause great error on the solutions. 

S1ailarly the inrluence of the bodyforces may be 

investigated. The only bodytorce assumed present is gravity 

acting in the -y direction. The order of magnitude of the 

ratio o~ the bo~orce to the viscous forces is 

~x 
aDd ir the order of mapi tude of this quantity is small 

compared with uni tYJ body1'orces may be neglected. 

Taking account ot A 1, A2 and A3 the aoaentua equa tioD. 

2.2.17 reduce to 

ap 1 a - = -p-~ + "V-u ax 3ax ,.. 



..." 

2.9 So1ut1on of the Equations of Motion in 

Bipolar Coordinates. 

Investigating the case of motion of an incompressib1e 

f1uid of constant viscosity, bounded by rigid surfaces, the 

momentum equation takes the form ( fig. 2.9.1 ) 

aDd the equation of cont1nn1ty becomes 

Bow introdUCing the Lagrangian streud'unction , defined 

in the usua1 way b,. 

the continuity equation is satisfied. 

Ditterentiatiq .1 aDd .2 b7 7 aDd x reepectiTe17, 

eubtracting and substitut1Dg the relation .4, we obtain 

V6', • 0 2.9.5 

i. e. the streaaranct10n is • so1ut1on of the b1harllonic 

equation. 

Differentiating .1 aM .2 b7 x aDd 7 reepectiTe17 aDd a441D1 
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BIPOLAR COORDINATES 
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2.9 

we get on account of .4 

2.9.6 

Defining the vorticity 

, = : -: = va" 2.9.7 

we have 

2.9.8 

i.e. the pressure and vorticity are conjugate harmonic 

:t"unctions. 

The problea is now reduced to finding solut10ns of .5 

satisty1ng the boundary conditions. 

For the gea.etry in this problemi t will be convenient 

to eaplo7 bipolar coordinates defined by 

z = 1b cs tb.i~ 2.9.9 

Z II: X + i7 ; E = a + 1/3 2.9.10 

Solving for E 

In Z + 1b 
~= Z -lb 

and separating real and iaagiDar7 parts 

b aW 
x • coiha - cos6 
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and defining the transformation parameter 

bK = cosha - cos~ 2.9.14 

Now, let one cylinder be represented by the equation 

a = a1. 

and the other cylinder by a = a. = 0 

Then if R1. and R. is the radius ot the first aDd secoDd 

cylinder respectively and D1. aDd D. the distance ot their 

centres trom the origin, we have 

R1. b • R. b 2.9.15 = siDh~ , = s1Dha. = -

D1. R1. + ho = b 
D. = b 2.9.16 = tanha1.; tiliiba. = -

Bow, in bipolar coordinates the Laplacian becoae8 

and on changiDg the .. dependant variable t'rca. , to K, we have 

bV·, • [ K{ ::. +{j. ) - 281Dh~ - 281D#9~ + 

+ cosha + C08~ )(X,) 
Appl7ing the operator apa .e get tor the biharaODic 

2.9.11 

VCr, :. [ ~ 2~ _ 2aa ~aa ~ 1 JCK,) • 0 2.9.19 
~ + aa'afjlacii + -aiiI +.~ + 
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which is a linear equation with constant coefficients. 

The coordinate ~ has a finite discontinuity of 2~ on 

the line x = O. The pressure, however, is a continous function 

and moreover must be symmetrical about x = O. Seeking solutions 

that are periodic in 2~ and which will give a symmetric 

pressure distribution, we are 1nterested in solutions of the 

t'ora 

K" I: t'(<<)s1n(~) 2.9.20 

Assuming a solution ot' this :torm, the equation for 

t( a) becoaes 

2.9.21 

AsSUJliDg solutions ot the torm t(<<) I: en- we obtain 

tea) = Ancosh(n+1)a+ Bncoah(n-1)a+ 

+ CnsiDh(n+i)a + ~s1Dh h(n-i)a 

Por n a: 1 the solution becoa.s 

tea) = A~cosh2a + B~ + C~s1nh2a + D~a 

aDd :tor D. == 0 

n~2 

t(CI) • Aeooaha + BoClCoaha + Cos1Dha + DoaeiDha 

ReDo. the caaplete solution is siTeD. b7 

2.9.24 
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K, = ( Ao + Bocx )coshcx + ( Co + Docx )sinhCX + 

+ [ A~cosh2cx + B~ + C~sinh2CX + D~cx JSinP + 
( 

+ l=~sin(~) lAnCOSh(n+1)CX + Bncosh(n-1)cx + 

+ Cnsinh(n+1)cx + Dnsinh(n-1)cx J 
The vorticity is given by 

b( = [( coshcx - cos{3 ) ( ~:I + g;a ) -2SinhCXt -
- 2SiD.8:{3 + coshcx + cos{3 J(K,) 

4b 

Now, ~ca reasons o~ SJlUlet17 it will be seen that teras 

arising. ~roa n = 0 aust TaniO. Purthel'llore we will assUJIe 

that a solution can be obtained using only the teras arising 

:trom n :: 1. Thus we have 

2.9.27 

be • 4( C~s1Dhcx + ~coshCX )8~ -

'!'he pres8ure can DOW be deteraiD8d with the aid ot the 

Ca uch7 - Rieaaun equations, since pressure and vorticity 

are con3ugate :runctions. 



• • • bP = C - 4( O~cosha + A~si~ )cos~ + 

+ ( C~cosh2a + A~sinh2a )cos2~ 

where C is an arbitrary constant, • 

Now, it Va and U, are the component velocities o~ the 

tluid in the positive direction ot a and ~( ~ig. 2.9.2 ) 

we haTe 

u, = K~ c :a(K,) - ~81nha 1 
= ( A~cosh2a + B~ + C~81D12a + D~a ) 1 - c08hacos 

Va COSDa - C08 

u, • t( 2A~s1Dh2a + 2C~cosh2a + D~ ) -

- ( A.cosh2a + B. C i-~2 D ) sinha } ~_Q .. • + ~s """ a + ~a cosha _ cos/J JS~ 

Consider the system at an instant when the sur~ace 

a :I: 0 coincide 1t'1th the x axis as shown in ~ig. 2.9.1. 

The boundary coDditioDS are: 

1. On a = 0, UJ II 0 } Hypothesis o~ no slip 
2. On a = a~, U, = 0 

3. The relative velocit7 or approach o~ the two sur~.oea 

a .~ and a = 0 is Y 

SUbstituting B.C.i. lives 2C~ + D~ • 0 

I.f? 
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B.C.2 gives two relations for the constants, namely 

• C 1 - cosh2a~ 
• • A~ = ~ slDh2~ 

B - C{ 1 - cosh2a~ + 2ex.. ] 
~ - slnh2a~ • 

The velocity of the lower cylinder ex = 0 is 

TCI~O = A~ + B~ = 2C1, [ 1 - cosh2~ + fY~ ] 
slDh2ex~ -;a. 

At th.. top surface ex = a~ we get 

and since we also have U. = 0, the fluid velocity at this 

surface is zero. Hence, in order to eatiat7 B.C.3 we must 

take TCI:O = V. 

• i.V 81Dh2~ 
• • C~ = ~ 1 - c08h2a~ + a~81Dh2«i 

Bow, from previous we haTe the relations 

b 
s1Db.«i .~ ; b 

taDh~ = Ri + hO 

• • cosh«i = 1 +* 

2.9.33 
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Expanding the cosh, we have 

cosha~ = 1 + ~, + ~ + •• + = 1 + t-
Since t is small, the value of cosha~ will be nearly 1. 

Taking therefore only the first two terms in the expansion 

we get 

• • • 

S1ailarly ex panding the sinh, and neglecting terms 

of at and higher 

aDd to the same approximation 

cosh2ezs. I: 1 +~ 

In this work the order of aagni tude of the paraeter 

Hence we haTe the inequalities 

1.0000 , cosha '1.0002 ex, ~ 
Hence, by taking cosha - 1, errors of less than 0.1 ~ 

are introduced. 

To the B ... order of approxtaat1on we a1ao haTe 

50 
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As. = - Cs. as. 

and since sinha ~ as. we have for terms such as As.sinha - Os.af 

which are saall and may be neglected in comparison with terms 

ot the torm Cs.cosha. 

Similarly, tor the coefficient Os., we get 

Taking account of this and also determining the constant 

o such that the pressure will va nish at infinity, the 

expression for the pressure becomes 

bP = -i [ 3 + c08213 - 4cos13 ] 

• • • P =~( cos13 - 1 )8 2.9.34 

The load supported by the tilm is the integral OYer 

the pres8ure di8tribution. 

o 

••• W = Y-b I ( C08{j - 1 )d/3 
'1r 

= 3G¥ift8/a 

:low, we previousl,- had 

b s1Jl.8 
% • cosha - cos~ 

aDd to the 8 .. e approxiaation a8 previousl,. this a.7 be 

written a8 



62 

Sub stituting this into eqn. 2.9.34, the pressure is 

transtormed ( approximately ) into cartesian coordinates 

• 6uVR 6uVR 
• • p = ( ho + xl/2R )L = h sa 

This result shows that to the given approximation the 

pressure is constant across the film. Furthermore, it is seen 

tha t the pressure has an appreciable value only on a narrow 

zone centred on the line x = 0, aDd that wi thin this zone 

~he approximation to the geometry h = ho + x·/2R is acceptable. 

Geometrically this is equivalent to replacing the circular 

cylinder with part ot a parabolic cylinder. 

By calculating the cartesian approxiaatlQQS to the 

velocity caaponents u and v, and then ditterentiating theee 

twice w.r.t. x aDd y, we may show that 

cont1ra1ng a result obtained by means ot a order otaagn1tade 

analysis. 



2.10 Solution or the Equations of Motion of a 

Coapressible Fluid with Variable Viscosity, 

The solution arrived at in the previous section is 

only valid for an incompressible rluid having a constant 

viscosity and confined within rigid boundaries, In this 

section the restrictions on the physical properties of the 

rluid will be removed. 

53 

If we aSS'WDe that the general conclusions drawn at the 

end of the previous section, i.e, that the terms O&q/~8; 

oav/~a; aav/a,y8 are suffiCiently small to be neglected in 

comparison with a-u!Uy., that the main pressures are confined 

to a narrow strip at the centre and that the pressure does 

not vary appreciably across the rila, then in view of the 

asswaption that temperatures are not varying across the film, 

the t1udd properties, density and viscosity will not be 

1Unctions or y. 

The ao •• ntua equation in cartesian coordinates then 

take the tora ( fig. 2.10.1 ) 

where b is a tera arising trom compressibility and is 

given by 

an ~ 
6=0i+-W 

, 0 A o·u oav 
, • Qiu = ()iW" + Oxo y 

and this is ot the order ot .agn1 tude ot teras pt'evioua17 
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neglected. Neglecting these terms does not mean that 

compressibility effects are ignored, since these will arise 

again in the continuity equation. 

Thus, 

Integrating twice w.r.t. y 

and applying the boundary conditions of no slip 

u(x,O) = 0 

u(x,h) = 0 } 
Substituting these boundary conditions: 

2.10.2 

2.10.3 

The equation o~ continuity ~or a coapressible ~lu1d 

is 

A = - ~ [ ~ + uM + vf ] 

55 

and the tel'll ~ vanish ~rom the aSS1lllptioD that the propertie8 

do not. Tar1 with ". 

Integrating w.r.t. 7, taking account of the tact that 

v = 0 on the lower surface and - ilb/ ilt on the upper: 
... 

eft = - f [ .~ ( ~ + u~ ) + ~ r 2.10.4 
o 

Substituting for u ~roa 2.10.3, we get after 
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rearrangement 

This equation may be termed the Reynolds Equation ror 

the motion and may be solved numerically if required. Betore 

attempting to do so, it may be proritable to investigate 

closer any possibility of simplifying it further. 

Sb 

It has previously ( 2.7.17 ) been shown that the equation 

for the tilmsbape can be written 

h(x,t) = ho(t} + t(x) + g(x,i.:) 

where the last term arises rrom deformation or the boundary 

aaterial. Hence, 

~. ~ + :t (g) 

It is thus seen that the veloc1 t7 ot approach consists 

ot two te~8. The tirst abo/at 1s the aotion ot the cyl1D4er 

as a whole, the secoDdL tera is the contribut ion tro. the 

rate or 4eroraat1on and Tarle. along the t1la. It the rate 

ot deformation 18 aaall we ma7 lntroduce an aTe rage Telocit,. 

tor the surtace as a whole and use this in eqn. 2.10.5. 

Adopting this proce4ure and detiD1ns 

ell c)t=-V 

where V is regarded a8 betna a taDct10a ot ttae onlF. 

We then haTe 
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d dh d d 
at = dt dh = - V db 

and eqn. 2.10.5 becomes 

d() d [P!f.dPJ - V ali ph = ox 12it ox 2.10.6 

It the fluid is regarded as incompressible, the equat ion 

reduces to 

2.10.7 

atter two integrations aDd substitution ot the boundar,y 

conditi0D8 

elP O. clx= , x.o,t~O 

118 P = 0 ; t ~ 0 
)(~Q) 

It is thus seen tha t the siaplitica tion ar1sing fro. 

the assuaptian ot incaapressib111ty 1s cons1derable. 

The co.pressib11i t7 etrects are represented in the 

eqn. 2.10.5 aa1D17 by the tera 

-k (ph) = P + h-l-
Now, 1t tor purposes ot 1nTest1p t1ns aore cl08e17 the 

iDt'luence ot coapreae1bil1t,. it i8 aaauaed that dena1ty 1e 

a ranction ot preaaure oDlJ, then tor liquids such a8 

lubr1catiDg 011s which are ta1r17. 1DOa.prea.1ble~ the tirat 

tera pred_iDatea. The aecoM tem in addition to be1q _11_ 
is alao ot opposite sign, at leaat in the .ost tnterestiDi 
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range near the centre. For this reason, retaining onlY the 

r1rst term, equation 2.10.6 integrated once gives 

/ib.8 c)P x 

121-' cb: = - V jP d.x 2.10.8 
e 

Defining: 

1 x 

Q:t --I P dX • x :#: 0 

} -Itt , 
0 

Q:t = 1 . x = 0 , 
2.10.9 

and integrating again: 
)( 

p = ! 1 ~,Vx Q;tdx 

lID 

Now, ass'WIling that densit;y is a linear f'unction or 

pressure 

P == Po( 1 + cxP ) 

q -= cxP. =PrJ-Po 
Po 

where PrJ 

Po 

1s densit;y corresponding to .~ pressure p. 

i8 densit;y at ataospberic condit1ons. 

With this 2.10~9 becomes: 
~ x 

Q;t = -l ! ( 1 + czP ) dx == ~ [ 1 + .!!j-k 41. ) ~ _. I (:. -ij 

o 0 

BxpandiDg p-~ iD a binomial series retaining oDlJ the 

t'irst two terms 
~ x 

Q. = 1 +!fJ ~. dx ~ = 1 + q L t J~. 4lt - i. ] 2.10.11 
o 0 

Sa 
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The term. 
)t 

Q(%) - 1- /1:.- dx 
#J - % p. 

o 

_.1:.. has the approximate value p. 

o ~ /3 ~ o. 5 ~or 0 ~ % ~ co 

depending upon the shape of the pressure distribution. 

The value of /3 computed for soae typical pressure distributions 

are shown in fig. 2.10.2. 

Substituting the res~t 2.10.11 into the expression for 

the pressure eqn. 2.10.10: 
x x 

p • / 1f"VX dx. + q / 1 !fVX /3(x)dx 
011 0"" 

The first integral represent the 1ncoapress1ble case, 

the second 1s the contribution to pressure tro. co.pre8sibilit~. 

Since /3 varies fro. about 0 - 0.5 and the value ot q aa~ ba 

taken t 0 be about 0.1 0 ~ 0.15 for soae lubricating oils, 

itt 8eeas that the influence ot density variation on pres8Ure 

will on17 be of the order of a ~e. percent. ODe may theretore 

be justified in calculating the pressure from the simpler 

eqn. 2.10.7 rather than from the coaplicated but more 

accurate eqn. 2.10.6. 

The total load carried by the tila is giTen b~ 
_ lIP 

._jPdx a2jPdx 
Denoting the integral 

)( 

R(x) = / u.x dx h-.. 2.10.13 
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we have 
.» 

W = 24V J R(X)dx 
o 

Hence the Telocity of approach becomes 

w 
V = 248 

OJ> 

8 = I R(x)d% 

In_ this notation the relation for the pressure 

becomes 

P _..!.lli1 
- 2 S 

The integrals R(x) and S can be obtained by nuaerical 

integration usins a convenient quadrature toraula, once the 

appropriate Taluea of Viscosity and tilmthickneas have been 

deterained. 

61 
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2.11 The EnergY Equation. 

The general energy equation as derived in section 2.6 

was 

~~ = -PA + l(V8T + ~ 

where I 1s the source function. 

Taking account of the additional assumptions this 

becomes 

cp [ : + u: ] = - P [ = +: ] + K g:i + I 

and ~ 1s now g1 Ten by 

[ aa· iN • ft iN· 2(mt iN)· ] 1="" 2 (ax-) + 2(CJi) + <ely + ax~ - 3 clx + ely 2.11.3 

Substitut1ng tor u tra. eqn 2.10.3 and integrating w.r.t. 

y tros 0 to h, wri t1ng a/at III - V a/ ah, we get 
h ~ 

cp [ vx~ - Vb: ] = - J Plldy + KhfJ + J Idy 
o 0 

" • K a8T ~,iIl Hr 1! &.1_ n( h) 0 • • cpv 1ii - h ~ + db. - cpTh "W\J.t1 + x, = 2.11,.4 
o 

where 
n 

n(x,h) • c:Vh /lldy 

Now tor l1quids 8uch a8 lUbricating oils with saall 

heatcoDduc.tion coettic1ents, it appears that the coDduClt1ea 

tera is small coapared ... i th the other teras in the equa t10a 

am can be neglected. 

The tera n(x,h) 18 entirely due to Tariation in dena1ty. 
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In the previous section it was concluded that the influence 

of compressibility on the solution of the momentum equati~ 

was relatively slight, a few percent, and this was disregarded 

so as to obtain a considerable simplification of the equation. 

A similar argument is not available in the case of the 

energy equation, for although the factor ~ is small it is 

multiplied by the pressure which may be large, and hence the 

complete term may contribute significantly to the temperature 

rise. 

Making use of the same argument that was employed in 

section 2.10 for the derivation of the pressure, the function 

n(x,h) "1' be written: 

Previously it was shown that the order 01: JDagni tUde 

01: the velOCity gradients i)d/ax, i)y/ax, i)y/i)y were all small 

coapared to the value of ()uj i)y. 

11: this i8 aade use of the source function becoaes 

. 
The arguaent breaks down, however, near the axis 

o ~ x ~ he, since wi thin this narrow range ()uj iiy is Ter7 

pall, and ;,oJ ax and iJy / iIT m..,. well be the dominating teras. 

It se_s therefore desirable to include the ettects of iJo/ ax 
aDd itr / ~ in this range. 
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From symmetry it is apparent that in the range 

o ~ x ~ ho, ab/ax will be small. Neglecting the term 

containing this factor we have 

c}u 6VI( ax=- h y-h) 2.11.6 

Similarly 

: = 6~i( y - h ) 

Substituting this into 2.11.3, we get 

n a 
cp% J tdy = !~~ (V + 0.4 ) 

o 

The tel'll. 0.4 is that due to the gradient.Wax 8l'ld 

Substituting into eqn. 2.11.4 we obtain 

x (It iJr 12V V ( xa ) ( ) h cb: - db. - cpb }iF + 0.4 - n x,h = 0 2.11.8 

It was mentioned previously that the It.iting cases 

of the boundary conditions were: 

1. Adiabatic cOMi t1ona, iff/On = 0 where n 1s the DOl"IUll 

at the boundary. This coDdition lJIpliea that"·)all heat 

developed in the f1la sta,-! there and 1ncreases the flu 1d 

teaperature. 

2. Isothermal condition. T(x,t) • T(x,O) i.e. all the heat 

developed is taediately reaoTed aDd no temperature ria. 

takes pIa ce 1a the flu1d. 



2.11 

probably in between the two limiting cases, but as the 

properties eg. viscOSity, may be critically dependant upoa 

temperature/it will be of interest to see which of the two 

limiting cases gives the best approximation, and to obtaia 

some measure of the closeness of this approximation. 

Instead of attempting to solve eqn. 2.11.8, the much 

simpler problem of linea r heatconduction in a composite 

solid will be solved,and it is believed that this solution 

will give some indication as to what is happening in the 

fluid. 

Consider a composite solid consisting of a finite 

medium - 1 ~ x ~ 0 of temperature T~ with heatconduction 

coefficient K~, and thermal difrusivity a~ etc. in contact 

with a semi infinite medium x ~ 0 of temperature T. and 

properties K., a. etc. 

The equations governing the now of heat are: 

It f-I 
= - K~ - l~ x ~ 0 

x~O 

The initial and boundary coD4i tioDS may be taken as 

It n. = K. 
cl'.r& 

} 
x .. 0 ~- W-gy 

T~ = T. t~o 

Nl 0 x I: - 1 • t > 0 K~ iJ7 = , 

llll, fa • 0 t>O 
Y~()IJ 

b5 
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t = 0 

The so1ution to this system is given by (see appendix B ) 
(II:) 

t- = 1 - cr~1 I (-1 )n~i (erf'c §~-f+ er:fc 2~~+1) +€) 
-':0 

where. 

T1 is the average adiabatic temperature o:f the :finite medium. 

~ = y/1 x-- = a1 t /1a 

cr = tK {3 - cr-1 
- cr+1 

and where i is an integral operator operating on the er:fc 

functions and defined by 

" i erfc x • J erfc Cd' 
x 

Equatlon 2.11.10 was solved on the co.puter tor tour 

difterent values ot 1 = h/2, corresponding to x-statlons 

2, 6, 10 a nd 14x10-' cm trOll the centre of' the cylinder. 

For each x-station six dlf'f'erent values ote • y/l were used 

1.e. e = 0, 0.2, 0.4, 0.6, 0.8 a DO. 1.0 

In each case six tiaesteps were taken: t • i, 1, ii, 2, 2i 

a nd 3 aillisecODda. 

The solutions are shown in figs. 2.11.1 to 2.11.4, ODS. 

figure tor each value or 1. '!'hese ahow T~i. ~ as a runet. ioa 

ot " one curve tor .. ach Talue ot the tim.interval. 

The analysis takes no account ot the tact that the . 

bou ndaries are: aoving i.e. that 1 is a tunation ot tiae. 

Soae allOD.DCe can be lIade tor this e:ttect by malt1Dg 7 .. _ 
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a function of tima, the appropriate function being determined 

from filmthickness/time relationship available for the 

motion in question-These values of ~mo~ = y~~ 11 are 

dra wn in on the graphs of T~/T~, and only values 01 f to 

the left of this line for a ny value of t have any meanina. 

In order to find the actual temperature in the fluid 

the adiabatic temperatures must be made available. The 

analysis demands that these must be calculated from an 

expression of the form T = K~t, where K is an appropriate 

constant. If now the adiabatic temperatures are taken fr~ 

the computer solution of the case a, constant viscosit7, 

rigid materials, these temperatures for &n7 given x-stat1on 

approximately follows the above law. ~ese temperatures are 

given in fig. 2.11.5. 

True r1lmtemperatures taking account of heatconductioD 

can DOW be computed as t'unet1oDS of e aDd t b,-: 

The aa x1aua values at any x-station are reached at 

,= ~max. These maximum temperatures are plotted 1n fiS. 

2.11.6 as a function of t1me. 

These curves Show that the max1Jl\lll teaperature in the 

tilm occur at the x-station. of about 1 Ox1 0·2CJll , and haa the 

value of about 6~. The maximum adiabatic temperature- OIL the 
o 

other hand 1s of the order of 40 C. It is thus clear:·1;hat 

a large amount ot the heat senerated in the fila is 

conducted away, and into the metal boUDdarie8, aDd that the 

b7 
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true rluid temperatures are very much lower than those 

pred1cted by the adiabatic hypothesis. 

The minimum r1lmtemperatures occur, as expected, on 

the metal boundary, and are or the order less than 1% ror 

all x-stations for all times. It thus appear that ~e average 

temperature across the film will only be a few degrees. 

The above analysis is only a crude approximation of the 

physical case since it fails to account ror the two­

dimensional aspect of the latter, does not account properly 

for the motion of the boundaries, assumes that heat is 

generated evenly across the film, and neglecting convection 

entirely. These effects properly accounted for would, it is 

believed, give lower maximum temperatures than the ones 

calculated here, hence the present analysis provides upper 

limits for the fluid temperatures. 

From this it seems clear that or the two available 

working hypothesis the isothermal hypothesis provides th~ 

best approximat1on to the physical case and should be used 

under conditions such as these investigated here. 

This cODClusion depends to a large extent upon the 

thermal properties of the fluid aDd boundary materials, as 

well as other factors. Thus UDder other conditions, a 

different conclusion might well have been reached, and the 

adiabatic hypothesis might have proved to give the best 

approximation. 



2.12 Viscosity and Density. 

The general relation was stated in section 2.5, and 

was written as: 

2.12.1 

Let P~, T~ and Pa, Ta be two sets of pressures and 

temperatures, we then have 

( 10g1 ~,T~)2 = a(T1)P~+ ( 10g1cf'o,T~ )8 

2.12.2 
( 10g1 ct'li, Ta ) 8 = a(T8 )P8 + ( 10g1 c:Po, T2 )8 

These equations represent straight lines, and intersect 

at a pOint Pk } 10g1~ )8 

At the point of intersection we must have 

( 10g1~~,T~ )a = ( 10g1~8,T8 )8 = ( 10g1~ 
Pi = P2 = Pk 

Hence 

( loa~o~ )a = a(T~)Pk + ( 10g~OPo,T~ )8 = 
= aCTa )Pk +.- ( 10Bs,oPO,Ta )8 J 

2.12.4 

The constanta a(T~), a(T8), ( log~PO,T~ )8aDd 

75 

( logs,~O,T. )1 can be determ~ed tram viscosit~ aeaaureaents 

_de on the lubricant and hence the characteristic pa ruetera 

a&7 be deterained. 



Hence, we have tor any temperature 

aCT) = ( log10~ )8 - ( log10~0.T )8 
Pk 

The viscosity at any pressure and temperature may now 

be determined provided values of log10~0,T ' the viseosity 

at atmospheric pressure is available. These values may be 

obtained trom standard viscosity mea surements for various 

values of the temperature. 

76 

From a computational point of view, however, it is more 

convenient to have the Viscosity expressed by an equation 

than by a table ot values. 

Assuming that ( log10~0,T )8 is adequately expressed 

by an equation of the form 

2.12.6 

where the constants Ks. and 'Y may be chosen so that the 

val.es obtained give a sufficiently close agreement with 

the measured values. 

SubstituWing 2.12.6 into 2.12.1, taking the square root 

aDd inverting the log gives 

= exp [J a(T)P + Ks.e-Yl' ] millipOis 
#P,T log10e 

2.12.7 

where aCT) is given by 2.12.5 

Multiplying by 10-3 = exp( -6.90776 ), substituting 

2.12.5 giTes finally in pois: 
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2.12.8 

12e.as1t z 
The equation o~ state was discussed in section 2.4 and 

it was suggested that the density could be expressed as a 

polynomial in pressure and temperature. 

Adopting this suggestion we may write 

p = [ aP + b ] T + [ c P + d ] 

where the constants a, b, c, d must be so chosen that the 

Talues obtained give a sufficiently close agreement with 

the measured values over the whole range ot pressure and 

temperature. 

7? 



2.13 Equations .of Mo~ion under Isothermal Condit~. 

If the motion is assumed to take place under isothermal 

conditions, the equations governing the motion are capable 

of further simplification. 

The viscosity may then be given with sufficient 

accuracy by an expression of the torm 

aP 
JL = /Joe 

Equation 2.10.10 then becomes after integrat1ng ODCe 

2.13.1 

In1;egrat1ng: 
x 

~[ 1 _ exp(-aP) ] =_! 12~!X dx 

ell 

Now define, 
t( 

I(x) = J ~.d% 
ttl' 0 

J . = I ( 0) = / x hiX -
Then, 

aP = - ln [ 1 - 12~CXVI(x) ] 

At the center x = 0, the pressure becomes Po, the 

maximum pressure. For this stat1on: 

78 
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_1 _---iijeFxp~( -_cx...=P..lIt.O..L..) ••• 6~VCl = J 

and hence, 

aP = - ln [ 1 - ( 1 - exp ( -ctPo » ~ ] 

The load is again given by 
I:P 

cxw = 2 I (aP)dx 
o 

2.13.6 

2.13.7 

If the boundaries are rigid,eqn. 2.13.7 is capable 

of analytic solution. In this case the filmthickness is 

given by 

x· 
h = ho +21 

and the function lex) becomes 
)( 

I(x) I x dx R = hi = 2h1 -R 
= 2iiI" J 

Thus, 

aP = - lnl 1 - [ 1 - exp( -«po) ] [ ~,. 1 

Expanding the 108 in a Ta710r series, writing 

~ = [ 1 - exp(-aPo)]hI 

aP • - In[ 1 - ! .. ] .tnffi\.In.1 
"aO 

This series cODYerges uniformly ror 

2.13.11 
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f.<1 • • • Po < 00 

for all values of h ~ bo 

The load now becomes: 

aN= jd' J(Jp~ en+:t. 
2 (aP)dx = 2 Lln+1) hln+1 dx 

o 0 ta .. o 

Interchanging the order of integration and summation, 

performing the integratiom and expressing the summation in 

terms of the gammafunction: 
OP 

aN = 2¥Tr ~2RhO 2I 1 - exp(-aPo)]"+:t. ~f ~~+r~~ , 2.13.14 
A-O 

The sum of the ser1es depends only upon the value of 

«Po, the central pressure, hence the above equat10n defines 

load as a funct10n of central filmth1ckness h4 tor a 

spec1fied maximum pressure. 

For Po = 00 we bave 

aW = 2 t/2RhO ( 2 - t{2 )'IT 

Summing the ser1es in eqn. 2.13.14 with 180 terms on 

the computer tor var10us values ot the pe.:raaeter aPo, gave 

the result shown in the tollow1ng table. 

Since 1 - exp(-30) - 1 - 10-~' - 1 - 1 - exp(-oo) 

the su tor aPo = 30 shoUld have been very near 

80 

( 2 - t{2 ) t{ff = 1.04 1. e. the value obtained 1s about 57& 

small. T.b1s is due to the ver7 poor convergence ot the seri.s 

tor values ot 1 - exp (-aPo) near 1. 
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Summation of the series 

~(1 -aPO ) rf 2n + 3/2 ) 
~ - e r 2n + 3 ) n::o 

exPo ~ 

30 0.9858 

10 .9854 

8 .9827 

7 .9776 

6 .9646 

5 .9341 

4 .8738 

3 .7727 

2 .6132 

1 .3678 
1 0.2018 2 

Table 2.13.1 



2.14 Summary of Theory. 

Al. though it has prevlbously been conclUded that the 

isothermal hypothesis probably gives the best description 

of the conditions under which the motion will take p1ace, 

it will never the less be of interest to see the influence 

of temperature on the solution. 

For this case the motion is described by the 

simultaneous solution of the system ot equations: 
)( 

P = J 1~~VX dx 

oP 

h = H + t(x) + 1\ 1 p(xl.)lnlx' - xl dx' 
:A. 

x iIr i!I£ 12M! [X8 . 0 4 ] ( ) 11 Ox - dE: -cph h-"'. - n x,h = 0 

p ~ [ aP + b ]T + [ cP + d ] 

CP 

W = 2 J P dx.. 
o 

2.10.7 

The various constants in these equations Jlust be 

empirically determined trom tests done on the actual ~lu1d, 

and trom boundary and in1tia1 coDditions. 

It the motion is assumed to take place UDder isothermal 

condi tiona the system may be reduced to the saUl taneous 

so1ution of two non-1inear integral equations. 

BZ 
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2.14 

h = H + f(x) + A 1 p(xt)lnlxt-xldx' 
(p .a.. 

<t.W = 2 j (aP) dx 2.13.8 

It has not been possible to find an analytic solution 

to this system of equati.ona and numerical methods have 

been used. 



CHAPTER III 

COMPUTATION 

1. Computation 85" 

Programming 

Checks. 



3.1 Computation 

The solution of the system of equations given in the 

previous chapter was effected with the help of a Ferranti 

Pegasus computer. It was therefore necessary to re-arrange 

these equations so that they would be in a form suitable for 

numerical solution. 

For this reason the domain will be covered by a ~rid 

(fig. 3.1.1). The interval size in the x - direction being 

A x and in the h (or - t) direction by Ah. A general point in 

this grid will be denoted by ¢ i, j, where the subscript i refer 

to the x - coordinate and j to the h coordinate. 

The value of the definite integrals can now be obtained for 

each grid point by ordinary quadrature, after the appropriate 

values of~and h have previously been made available. 

Similarly, the values of viscosities and densities may be 

found for each grid point from the equation in which the various 

parameters now have been replaced by an appropriate number. 

The film thicknesses can be computed from equation 2.7.17 

once the value of the pressure is known at each grid point. 

The function of F (x) being known from undeformed geometry. 

The integrand has a singularity at x = x' and although the 

integral converges, direct quadrature cannot be employed. 

This difficulty can be surmounted in a number of ways, of 

which two will be described here and used in this work. 



2 N 
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3.1 

If the singularity occurs for x = x' = nAx, then no 

difficulty is encountered in the range 0 - (n - l)~ and 

(n + l)Ax - NAx, where N is number of pOints, and direct 

quadrature may be used for this range. To obtain the 

contribution from the pressures Pn ., 'Pn and Pn ., 

corresponding to x' = (n - l)~x, nAx, and (n + l)Ax t a parabola 

may now be fitted through the three points. 

The parabola is given by 

P = GQ:8 + {3x + y 

Bence for the contribution from this portion 

tf' = - ax8 + {3z. + y ] l.nx dx 

The coefficients are given by 

Substituting this and the limits: 



.. -- ... ~-~-=-======:;~ 

ox = - ~: [ [ Pt+:L + Pt- ~ + 4Ft ] [ lnA'x - ; ] - 4Ft J 

where 

Hence the local deformation at xi is 

+ + 

~i - 1 denotes quadrature from 0 to (i - 1) Ax 
'0 

Q N denotes quadrature from (i + 1) A x to NA x 1 + 1 

The above procedure is quite involved from the point of 

vie. of coding it for an automatic computer, and is fairly time 

consuming in execution. In order to have a simpler and faster 

routine, the following procedure was adopted for the solution of 

the isothermal system. 

The discontinuity in the integrand at x = x' may be avoided 

by, instead of taking the value of lnD " to be - Q) as it should 

be, to give it an arbitrary finite value. 'l'bis is equivalent to 

cOllputing the integral not at x' :E iAx, but at x' = idx +E. , 

.here{is some arbitrary small quantity. 



Since £ is small, the integrand will be very unsmooth in the 

vicinity 0:' X· = i6 x and a quadrature formula will generally not 

be able to follow, but will give a too large value. 'l'his 

teniency is partly offset by the fact that the parts of the 

contribution of the integral between iA x and i 6 x +~ will be 

ignored. 

~y judicious selection of~ , therefore, the resulting total 

error incurred may be made a ainimum, and sufficiently small to 

be neglected. 

'J.'he routine resulting from this procedure is much more 

straight forward and less time consumin~ than the previous describe 

method, although ot less accuracy. 

In the solution of the equations described so far, it has not 

been necessary to refer to the time history of the motion, i.e., 

the equations are solved along a line only. The energy equation 

being a partial differential equation with indape'ndent variables 

x and h, this is not so any longer, and the solution must 

be effected on a surface. 

The temperature at a point (i, j) may be obtained by 

expansion in a Taylor Series. 

i.e. 

T 
i·.'·,:3 

• 

= 

+ 6.x 

- A)( 

~T",~ 
~X 

~Tt. .. ~ 
~)( 
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Subtracting, a finite difference approximation to the 

partial derivative 

is obtained 

3.1.1 

Similarly 

~= 

The forward difference approximation used for~ is not the 

best available. It leads, however, to an explicit equation in 

Ti,j+l and is therefore simple to handle. 

The use of the more accurate central difference approximatioQ 

would lead to a set of simultaneous equations for the solution of 

the T 
i,j+l's. 

Substituting 3.1.1, 3.1.2 into equation 2.11.8 and re-

arranging. 

T Ab. 12p.Vx" I .6h XI (T T ) TL,J+~ = I.,J + Cpb4 L,J -"$ 1i I.,J L+ 1,J - 1.- i,J -
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The correction for compressibility~in terms of finite 

dioferences becomes 

&n - P I (Ln A.I ( ) L,J - cpl L,J 2Ax h L,J PL + 1,J - PL- 1,J -

3.1.4 

- ( P~J+1 - p~J ) ) 

The temperatures along the line (j + 1) may now be computed 

th in terms of previous temperatures on the ~ line, and the 

appropriate values are provided by the boundary condition along 

the lines j = 0 and i = O. 
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3.2 Programming. 

a. The adiabatic case. 

The program was organizei in the normal way used with 

digital computers, i.e. it consists of a number of sub-routines 

doing the actual operations indicated, and the whole being under 

control of a master program. 

Rine sub-routines were written: 

a. Pressure and velocity 

b. ~iscosity. 

c. Density. 

d. Temperature. 

e. Temperature corrections for compressibility. 

f. Deformation and film thicknesses. 

g. Test. 

h. Simpson Quadrature. 

i. Output. 

The first six of these are solving the equations, using the 

Simpson routine when indicated. The test routine would determine 

when the iterations had been taken far enough, and then pass 

control to the output routine which would punch out the final 

iterated answer. 

For starting values in the zero iteration cycle at any line 

j, the final iterated values of the previous line was used, with 



appropriate changes as for film thickness where the previous 

values t\- Ah were used. On the first j = 0 line, the starting 

values were partly determined from boundary conditions, and 

partly assumed. 

The cycle is started by the master program settint.; the 

appropriate starting values for the first order iteration of the 

pressure, and the velocity and the first sub-routine is entered. 

This then will calculate the pressure at the gridpoints, the 

load corresponding to this pressure distribution, and also the 

corresponding velocity and store these away in the backing store. 

Next, the viscosities were computed, using the currently 

calculated pressures and the temperatures obtained from the last 

iteration cycle of the previous line, and store these. 

In a similar way the densities were computed. 

In the case of the temperatures, it should be noted that it 

is not values on the current jth line that is computed, but those 

belonging to the next, j + l~ line. This is evident from eqn. 

3.1.'. 
Finally, the first order iteration of the deformations and 

film thicknesses on the current line is computed. The sub-

routine uses the first of the two previously described processes. 

The decision whether the so far iterated values are a close 

enough approximation to the solution of the equations is 

determined by the Test routine. . 



th Not only the values of the current n-- iteration are stored, 

but also those of the previous (n - 1) iteration. The fest 

routine extracts an appropriate pair from the store, examines 

their difference, and compares this with a pre aet acceptable 

tolerance. If the di1 i'erence is within this tolerance, the test 

is said to be passed, and the routine then passes on to test the 

next pair etc. If the whole test is passed, control is taken 

by the master program, which arranges for printing out the 

solution via the output routine, and then makes re:\dy for starting 

th of iteration on the next (j + 1--) line. 

In the case that anyone of the individual examinations fail. 

the whole test is said to have failed and the master program then 
th 

arranges for a new (n + 1) iteration on the current j-- line. 

This procedure is kept up until the test is passed. 

The test was applied to the velocity, load pressure 

distribution and deformation, in this order~ 

The program proved, nat unexpectedly, to be very time 

consuming. 

A flow diagram is shown in fig. 3.2.1. 

b. The ieothermal ca ... 

The organization of the program for this case followed the 

same lines as for the previoue case, but OWing to the simple syste_ 

of equations to be solved, only three routines were now written& 
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a. Hydrodynamics 

b. Elasticity 

c. Output. 

Endeavour was made to make the program as fast as possible. 

For this reason, the second of the two methods of integrating 

the elasticity equation was used. It was also found that for 

various reasons the trapezoidal rule of integration gave better 

results than Simpson, and hence the simpler quadrature formula 

was used. 

The test was applied only to the load in this case, and 

was taken care of by the master program. A special sub-routine 

was therefore not needed for this operation. 

The program proved very much faster in operation than the 

one for the previous case. 

The flow diagram is given in fig. 3.2.2. 
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3.3 Checks 

Mistakes in a calculation may be due to three different 

reasons: 

1. Slip in the algebra or numereal analysis 

2. Slip in programming. 

3. Mistakes due to computer fault. 

Case 3 is rare in practise, the computer usually being able 

to detect if it has made a mistake, and give appropriate warning. 

In order to guard against the cases 1 and 2, checks were 

incorporated into the program, or performed in the computed 

results afterwards. 

The general programs were written in such a way that by 

simple alterations they could be made to compute more speCial 

solutions, i.e., get the solution for constant viscosity or for 

rigid boundary materials etc. Bence computing the solution for , 

constant viscosity and rigid boundary, this solution could be 

comparel with the analytic solution available for this case. 

Similarly for the isothermal case, the solution for pressure 

dependant viscoSity, rigid boundaries could be computed and 

compared with the series solution available for this case. 

In the ca3e of the temperature distribution, this could be 

checked by a different method. In moving from hl to hi uDder the 



constant load W, the work done is given by W (hl - h
2

>. For 

adiabatic conditions and for rigid boundaries, this .ork is 

nearly all spent into increasing the temperatures of the 

lubricant. 

The increase in heat content of the lubricant is given by 

where T is the increase in temperature from hl -+ h2 and V the 

volume of the lubricant. This temperature increase can be for 

instance obtained from the computed temperature distribution for 

the case constant viscosity, rigid boundaries, and from this case 

the value of the above integral could be estimated. This should 

be apprOXimately the same as the work done. Approximately only, 

since the computed temperatures are approximate, and secondly 

even though ~ approaches zero as x increases, the product fAV 

may be large even though T may be diminiahingly small, and this 

makes estimation of the integral difficult. 

However, when thia check was applied, agreement to within a 

few percent was obtained. 

The routines calculating the elastic displacements were 

checked by feeding into the computer values of Hertzian pre.sure 
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obtained from the relation 

b 
2R = aE aPo 

The elasticity routine was then made to operate on this pressure 

distribution, the resulting deformations should then be the 

Hertzian, i.e. a flat surface over the loaded zone. Deviations 

from the flat would indicate errors. 

This method was also used to determine the best value of 

the parameter e. described in the second process for calculating 

displacements. ~ was in fact adjusted so that the deviation 

from the Hertzian flat was as small as possible, and negligable 

in comparison with the film thicknesses considered in this work. 
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Chapter 4 

Results 

1. Adiabatic Case ,02-

2. Case a, Constant Viscosity, Rigid Boundaries \oq 

3. Case b, Variable Vis c osi ty , Rigid Boundaries , \ 2-

4. Case c, Variable Viscosity, Elastic Boundaries U? 

5. Velocity of Approach \2. , 

6. Isothermal Case. ll. 1, 
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4.1 Adiabatic case. 

The results for this case were related to an apparatus 

planned to be built for the purpose of checkin~ some of the 

conclusions reached from the theoretical treatment. This 

apparatus was to consist of a cylindrical steel roller of 

radius 5 cm. and width 1 cm, and a flat steel plate. The roller 

was to be restrained, so as to move normal to the plate under a 

constant load applied by a spring. The lubricant planned to 

be used was HVI. 1074, supplied by Shell, and data on this oil 

was obtained from Thornton Research Centre (8). In addition 

to these data, it was also neces~ary to obtain values for the 

viscosity for various temperatures at atmospheric pressures. 

ViscOsity measurements were therefore made on the oil, using a 

standard U-tube viscometer, and the tests were made according to 

British Standard. 

The values of the viscosity at atmospheric pressure are 

given in fig. 4.1.1. In fig. 4.1.3, is shown the viscosity 

as a function of pressure at various temperatures. These 

curves were made partly from the data supplied from Thornton 

Research Centre and partly from the data obtained in the standard 

viscosity test performed. 

From these viscOSity values, the parameters in 2 12 8 eqn. • • 

were calculated. The following values were found: 



4_1 

Kl = 24-71 

}( = 0-01534 

Pk = -1620-5 atm 

loglO .)i k = -0-611 

The variation of density as a function of pressure and 

temperature was calculated from data given in (8) and is shown 

in fig _ 4 _1.2. 

From this, the parameters in eqn. 2.12.9 were calculated 

and found to be: 

-6 a = 0-07 x 10 

b = -0-505 x 10-3 

c = 0-024 x 10-3 

d = 0-919 

No meaaurements were available for the specific heat or 

thermal conductivity of the lubricant. These parameters were 

calculated from the usually accepted formula (8), giving the 

results, 

Specific heat 

Thermal conductivity 

C 

1C 

• 

• 

0·424 ca1/g0 c 

0·311 x 10-3 ca1/o 
c 

sec 011. 

\03 
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The elastic constants were taken to be: 

E 

J 

= 

= 

2 
2·1 X 10 dy-n/cm 

The constant applied load was taken as 120.10
6 

dyn/Cm. 

Three different special cases were calculated: 

a) Constant viscosity, rigid boundaries. 

b) Variable viscosity, rigid boundaries. 

C) variable viscosity, elastic boundaries. 

In all three cases, pressure distribution, velocity of 

approaoh, temperature distribution were found. In addition, 

10"7 

in case band c t the viscosity distribution was also calculated; 

in case c, also the film thickness. 

In all cases, the initial central film thickness h was 
o 

taken as h 
o • l2t- and the calculation proceded in steps of 

A h = If". The interval in the x - direction was kept constant 

Ax = lOO~ and 32 points were used in the x - direction. 

The initial temperature distribution was taken as T (x, h init) 
o 

The test was set to accept a difference of 1% or less
t 

and 

it waS found that in general 3 or 4 iterations were necessary 

to achieve this. That the accuracy of the iteration process i8 

1% does not mean that the final answer is obtained to this 
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accuracy. The accuracy of the final answer depends upon the 

accuracy of the various numerical processes, such as 

quadratures etc., and is the sum of all these individual 

contributions. 

108 



4.2 Case as Constant viscosity. rigid boundaries 

The main interest in this case is its use in checking 

the working oi the computer program, as the pressures and 

velocity of approach can easily be obtained by ~.nalytical means 

for this case. 

However, when it comes to the temperature distribution, 

this is not readily availa~le, since even for this comparatively 

simple case, the energy equation is not easily solved analytically. 

Since in this case all the functions are well behaved and 

reasonably smooth, no particular numerical difficulties were 

met and the solution proceeded smoothly all the way down to 

ho tit lf-' the last value computed Jor. 

The obtained pressure distribution for 4 values of h is o 

plotted in fig. 4.2.1. The correspondin~ temperature 

distribution is shown in fig. 4.2.2. 
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4.3 Case b, Variable viscosity, rigid boundaries 

This case is of more interest than the preceding one in 

that an analytic solution is not easily available. Also, due 

to the variation 01 viscosity with pres~ure and temperature, some 

of the functions involved were far from smooth in parts of the 

range, and very steep gradients were involved. The consequence 

of this is that the accuracy of an integration process is 

expected to falloff, and now fundamental difficulties may arise 

in handling numbers in the machine. 

The Pegasus computer is a fixed print machine, i.e., it can 

only handle numbers within the range -I 1!S V'I ~ 1 - 2-38 with 

a maximum accuracy of about 11 decimal digits. In general, 

therefore, numbers must be 6c3led so as to be within the above 

range. In particular, this applies to viscosity values, which 

have to be computed explicitly at each grid point. It can be 

seen from fig. 4.3.2, that the variation of viscosity is very 

hOIR great for small values of ; it ranges from several thousand 

poise at the centre line to less than 1 poise. In order to 

scale this so that the highest value is within range, significant 

figures are lost for the lower viscosities and this leads to 

large errors. In general, two techniques are available for 

avoiding this difficulty. 

First, one can operate with double length numbers, i.e., 
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each number is represented to about 23 decimal digits in the 

machine. To do this would require much extra programming, 

which would g'reatly reduce the speed of the computation, and 

since the program was already slow it was not thou~ht advisable 

to make it slower. 

The same objection is leveled against the second technique 

available, that of floatin~ point representation. In this 

scheme, a number is represented as a .2 b where "a" is a fraction 

within range, and "b" and integer. All the ordinary arithmetic 

operations can be performed on such a number. However, such 

a representation is not natural to a Pegasus computer and would 

greatly reduce the speed of a program. 

To avoid slowing down the program, the solu~tion attempted 

was that of placing an arbitrary ceiling to the viscosities. 

This would mainly affect the viscosities near the centre line 

and would therefore result in reduction in maximum pressure. 

Since the error is confined to a narrow band, it would not 

greatly influence the accuracy of the load, or on quantities 

mainly dependant upon load. The pressure distribution is 

plotted in fig. 4.3.1. The corresponding viscosity and 

temperature distributions are shown in fig. 4.3.2, and 4.3.3 

respectively. 
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4.4 Gase c, Variable viscosity, elastic boundaries 

This is the most general of the various cases treated. 

The numerical difficulties connected with variable viscosity 

also arise in this case, and in addition, the irregularities 

due to the deformation of the boundaries are beginning to be 

apparent at smaller values of film thickness. For these reasons, 

it was not possible to take the solution below ho = 2~ • 

For values of h below this, the convergance of the iteration 
o 

process becomes poor, and it was evident that errors were 

building up. 

As for the previous two cases, the pressure distribution, 

viscosity and temperature distributions were plotted, and 

are shown in figs. 4.4.1, 4.4.2 and 4.4.3. 
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4.5 Velocity of approach 

In addition to the Dre~sures etc., the velocity of 

approach was also calculated for the above cases as function 

of central lilm thickness h • 
o 

The variation of velocity of :1pproach is shown in 

fig. 4.5.1. 
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4.6 Isothermal case 

In distinction to the previous cade which haJ to be 

related to a physical apparatus, no such restrictions have been 

made in this case. 

An immediate consequence of this is tha~ a more natural way 

of solvin~ the systeffi of equatioDd can be attempted. In 

particular, instead of solving for a constant load W, the 

more natural condition of keeping the maximum pressure constant, 

and then computin3 the corresponding load could be used. 

Furthermore, it seemed adv~ntageous to use dimensionless 

quantities in the comoutation. A dimensional analysis reveals 

as possible dimensionless forms: 

Dimensionalless load ~W = R 

Dimensionalless pressure = ott> 

Dimensionalless velocity = "'jA=" " R 

Dimensionalless film thickness h = ~ 
Dimensionless pressure distribution, fil:n thickness and 

loads were computed for values of constant maximum pressure 

ranging from 0\ P = 10 down to 0\ P = 1, as functions of o 0 

dimensionless central film thickness. 

This was done for three different values of the parameter 

~ E, namely: 
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( x E)l 

(oc.E)Z 

(~ E)3 

= 

= 

= 

700 

1,000 

1,400 

Since explicit values of viscosity are never required, 

but are always represente'l by its pressure coefficient, the 

dilficulty arising in the adiabatic case was never encountered 

in the case of constant temperature. 

However, the difficulty connected with the deforr;:,:ltion of 

the boundaries is more serious in this case, since the solutions 

are carried to smaller values of film thicKness. As can be seen 

in fi~. 4.6.5, the deformation will cause "bumps" in the film 

shape at some finite distance away from the centre. This will 

cause the integrands in the I and :J integ;rals to be very 

unsmooth in the vicinity of this bump, and the hi~her derivatives 

(or differences) entering into the remainder of a quadrature 

formula will be large. Because of this, a simple quadrature 

formula which does not make use of the higher differences may 

be found to give the best results. This was found to be 60 in 

the presell~ c~s~, an~ lor this reason tne trapezoidal rule, rather 

than Sill'lpsons rule was used in the integrations. 

In order to increa3e the accuracy of the solution, the 

number of prints used in the integration were increased to N = 40 
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throughout. In order to best utilize these points, three 

dif1erent interval sizes were used, i.e., ~x & 0.01, 0.005 

and 0·0025. The changeover from one interval to the next was 

not automatic, but had to be decided in each case by lookin>~ at 

the output. The changeover was then ef1ected by feeding into 

the computer a tape, containin~ the necessary corrections. 

Values of non-dimensional load as function of central 

film thickness ho /R for eaci1 value of the parameter ~ E are 

shown in figs. 4.6.1 - 4.6.4, and film shapes corresponiing to 

()( E = 1,000, 0<. P = 4 are shown in fig. 4.6.5. a 

Finally, fig. 4.6.6 - 4.6.8, shows estimated values of the 

j.,LQO(V velocity parameter -R 
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Chapter 5 

Discussion 

1. Discussion of Validity of Assumptions 

2. Discussion of Results. \ '37 



5.1 Discussion of validity of aSJumptions 

In chapter II where the mathe~atical equations governing 

the problem were described, it was found necesiary to introduce 

a number of pbysical assumptions an~ approximations. 

These assumptions can be viewed as bein~ on two levels, 

i.e., those implicit in the general equation, and secondly the 

additional assumptions and approximations that had to be 

introjuced in order to reduce these general equations sUlficientl 

to solve them. 

One of the first level assumptions not often discussed in 

the literature is the assumption of constant viscosity introduced 

into the Navier-Stokes equations, in order to reduce them from 

their general form 2.2.16 to the form 2.2.17 usually ~iven. 

This approximation is checked numerically for the present 

case, and it is found that only for the highest pressures used 

would the variaole viscosity influence the results appreciable an 

cause a reJuction in the pressure gradient near the centre line. 

The analysis is given in appendix A. 

Of the more important approximations introduced on the 

second level, was the assumption that the inertia terms in the 

momentum equation could be dropped. ~he argument was supported 

by an order of magnitude analysis. 

This assuaption implies a finite discontinuity in the 

velocities at zero time and hence cannot hold in the initial 
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stages of the motion. If, however, the initial film thickness 

is taken lar~e enough, th~ prescence of inertia reaction will 

not influence the later stages of the motion, and lor this 

stage th~ assumption is acceptable. 

In the case of the energy equation, it was found necessory 

to introduce the assum~l tiun that the temperature would be 

constant across the film. It was ar~ued that since the 

film thickness considered was so small, it was unlikely that 

any great temperature ~r~dients would exist across it. An 

argument similar to the one that was used to show that if metals 

were used for the boundary materials, isothermal conditions 

would approximately be realized in the oil film, could also be 

used in order to justify this assumption. Since, in that case, 

adiabatic conditions were postulated, it would be neces~ary to 

put the coeflicient of heat conduction of the boundary material 

equal to zero, and assume some form for the space distribution 

of the heat sources. ~his analysis is given in appendix B. 

Finally, the results obtained are all derived for a two 

dimensional space, which implies they wouL'!. only be valid if the 

length of the bodies Wqs very much larser than the width of the 

pressure zone. If this condition is not fullfilled, 

discrepancies might be expected due to side leaka~e of the 

lubricant. 
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5.2 Discussion 01 ilesults 

The results presented in the previous chapter fall into 

two cate~aries, characterizeJ by the ad~umptions made about the 

temperature condition. The adiabatic assumption i~ the more 

general in that it includes the isothermal a~sumption as a 

particular case. However, as was pointed out earlier, 

difficulties are met with in its solution. In addition to this, 

it was also felt that the adiabatic case was too ambitious, in 

the sense that the solution contains a comparatively lar6e 

number of parameters. In order to determine the influence of 

these parameters, a 1ar~e number of cases in which these 

parameters would have to be varied in an orJer1y fashion, would 

have to be worked out. This would be very time consumin~s, 

especially as the program was inherently slow. Therefore, when 

it also turned out that the isothermal condition seemed to be 

the more realistic one, the main attention was focused on this 

case. 

This does not mean to say that the work spent on the 

adiabatic case was considered to be wasted. Apart from the 

interest of the results themselves, considerable experience of 

programming for an electronic computer was gained during this 

phase. Also, a better understanding of the physical and 



5.2 

mathematical problems involved were obtained. 

Turning to the result~ obtained in the aiiabatic case, 

it is seen from fig. 5.2.1 that the introduction of variable 

viscosity considerably alters the pressure distribution. 'Ehe 

maximum pressure obtained for a given film thickness is hi2;her 

for variable than for constant viscosity. In addition, very 

high pressure gradients occur in the re~ion of the peak 

pressure, and this provides the Dressure distribution with a 

very pointed appearance. 

On the other hand, the pressure of elastic boundaries 

does not seem to affect the pressure appreciably for the film 

thickness considered, even though the surfaces are considerably 

deformed. The reason for this will be clearer when the 

isothermal results are considered. 

Turning to the temperature distribution, the increase in 

film temperature is slow when the film thickness is lar~e, but 

it increases repidly as the film thickness approaches zero. 

Since the temperature is a cumulative quantity, the actual 

increase obtained at any film thickness is ,iependant on the 

initial film thickness. However, if this is chosen sufficiently 

large, no great difference will occur between different initial 

states as the rate of increase at the beginnin~ of the motion 

is slow. 
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Computing the total heat content as a function of central 

film thickness, this comes out as a linear function of h • 
o 

This must obviously be so, since 

the work done by the loaci i.e. 

the heat generated is due to 
"'2. J Wdh o 

"" 

Introduction of variable viscosity have a~ain a marked 

effect. As was found for the pressures, the temperature 

gradient in the region of the maximun temperature becomes very 

steep and the maximum temperature is increa-;ed. At the sarr.e 

140 

time the position of the maximum has moved closer to the centre 

of the cylinder. This is clearly due to the influence of 

pressure and temperature upon the viscosity. 

This effect is illustrated in fig. 4.3.2, which showes the 

viscosity distribution for various values of h • 
o 

The presence 

of a high central pres~ure together with a low temperature in 

this region produces a very high value for the Viscosity. At a 

little distance from the centre the pres~ure is considerably 

reduced, while on the other hand the temperature is a maximum. 

This· will cause a rapid reduction in viscosity, depending upon 

the sensitiveness of viscosity on pressure and temperature. At 

larger distance from the centre, viscosity will asymptotically 

approach its normal value. Consequently, oVer a large portion 

of the range, viscosity may be appreciably lower than the value 

under normal conditions and this, one might expect, would have 
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a considerable influence upon the motion. A single parameter 

that will perhaps best measure this influence tor constant 

load is the velocity of approach. }~Offi previous the velocity 

of approach is expressed by 

where 

v = 
W 

248 

W = constant load 

8 
o .--

i.e., the velocity of approach is only dependant upon viscosity 

and its distribution in the case of rigid boundary materials. 

Fig. 4.5.1, showes the velocity of approach as a function 

of central film thickness h for the variou~ cases, an~ showes 
o 

the influence of viscosity very claarly. 

At some value of film thickness ho ~ H, the velocity of 

approach of the variable viscosity case is larger than for the 

corresponding constant viscosity case. In fig. 4.5.1, the 

estimated value of velocity of approach for the isothermal case 

has also been plotted. As expected this always is lower than 

the constant viscosity velocity. 

These curves also show the small influence of the elastic 

deformation lor the range of film thicknesses considered. Apart 
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from an approximate constant difference, corresponiin~ curves 

for riGid and elastic cases are nearly identical. 'l'he constant 

difference arises from toe fat that what is computed is the 

relative velocity 01 the two surfaces. Since in the el~stic 

case, delormation produces a surface velocity apposite in sense 

to the general motion of the cylinders, this will have the 

effect of reducin~ the velocity of approach as detined here. 

Isothermal case: 

The simplifications brought about by the assumption of 

isothermal conditions are considerable in two ways. First the 

mathematical relations themselves can be expressed in a simpler 

form that is more amenable to numerical treatment. Secondly, 

the number of parameters involved is reduced, and this makes the 

results easier to interpret. 

Dimensional analysis of the isothermal problem reveals the 

following possible set of non-dimensional main parameters: 

where 

ot is the pressure coeffiCient of viscosity 

"0 is maximum pressure 

E is an expression involving the elastic constants 
of the boundary materials 
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The non-dimensional form of the n,ain indeoendant V'ariablt;s is 

'\\~ = h,,/R. 

\\Lj- X~2R nc 

fhe form of th equa'tion 2.1.5.7, show that the condition 

1'-'4 

of constant loal is not a matural one 1rom a mathematical point 

of view, and it is better to solve for constant maxi~um pressure 

rather than constant load. That such a procedure is rarely 

realized in nature does not matter if one assumes that the 

equations have a unique solution, which seem to be a reasonable 

assumption from physical considerations. 

In contradistinction to the adiabatic C3se where numerical 

solution of several particular cases such as rigid boundaries, 

constant viscosity etc., had interest, the isothermal case only 

have two particular cases, ie., elastic boundaries, with 

constant or variable viscosity. This is so since in the isotherm 

problem the rigid solution can be obtained by analytic methods. 

~P Since viscosity is expressed by a law of the form ~ =~o e 

the case constant viscosity can strictly speaKing be obtained 

as the limit of the general case with ~ ~ 0 

As, however, the limit can never be obtained by numerical means, 

this property has not been employed. No fundamental numerical 

differences occur between the two cases, and since the Case of 
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variable viscosity yields the more interesting results, 

emphasis have been given to this case. 

The main results are given in fig. 4.6.1 - 4.6.3. Here 

the load is plotted as a function of central film thickness 

for a range of values of maximum pressure. The three fi~ures 

correspond to the three different values of the parameter aE 

Fig. 4.6.3 0<: E = 1,400 

4.6.2 0( E = 1,000 

4.6.1 O\E = 700 

By comparing these curves with the corresponding ri~id 

solutions fig. 2.13.2, some conclusions can immediately be drawn. 

It is apparent that the elastic loads for a given hand P o 0 

are always greater than the rigid load, and furthermore as the 

film thickness increases, this difference becomes smaller so 

that the two loads will approach each other asymtotically as 

h increase",. 
o Furthermore, by comparinf; corresponding curves 

for the three values of the parameter O(E, it is seen that for 

a given hOJ the largest difference occurs for the case with the 

lower value oflXE, i.e., «.E = 700 and the least dirference for the. 

case ~E = 1,400. The reason for this is reaiily apparent , 
f 

( 

when we consider that for constant value of«in the three cased, 

the case with the lower value of OCE represent a "soft" material. 



ILIb 

For such a material the de1orr:'atio:1 for any load will be r:r(}ater 

and hence the influence of this deformation will be more stron~ly 

felt. 

Similarly, for a given value of ""E, the dii ;ernece for any 

value of h is greater for higher values of «.P • o 0 
For the 

smaller values ofo<P , i.e., for small loads, the elastic loads 
o 

nearly coincide with the rigid ones, except for very small 

values of film thickness. 

The most conspicuous feature of the load curves is that 

they all exhibit a minimum at some specific value of film 

thickness. This feature is cOIDJletely absent from the rigid 

loads, which all conver~es uniformly to zero as film thickness 

approaches zero. The 1 illl! thickness at which the minimum 

occurs, depends upon the value of maximum pressure ~Po and on 

the parameter «. E, growing larger with increasing 0( P and OI;.E. o 

Furthermore, it will be observed that the minimum load necessary 

to produce a given maximum pressure is les~the higher the value 

ofQ(E, i.e., the more rigid the boundary material is. Also in 

order to increase the maximum pressure from O(.P t.o O("Po + !(ctPo ) 
o 

a load increment ~(~) must be applied and this 

increment is getting smaller the higher the value of" P and the 
o 

lower the value of~E. The result is shown in fig. 5.2.3. 

It is observed that for a sufficiently high value of~Po' 
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the curve with p<.E = 1,400 is drawn with a small "~radientt 

i.e., a small increaje in load will result in a large increa3e 

in maximum pressure. For the curve ~E = 700, the ~rndient 

is larger, i.e., a larger load increment must be applied in 

order to effect the same change in pressure, or looked upon 

in a different way, the value of Q.P must be hi,;her in order a 

to have the same gradient. 

The reason for this behaviour is sug~ested by the 

appearance of the rigid load curves fig. 2.13.2. At a 

sufficiently high value of o(J? , a very small increase in load 
o 

is sufficient to bring about a large increase in central 

pressure. Indeed, an infinite value of pressure can be 

obtained at any film thickness by the application 01 a finite 

This is because of the exponential viscosity. .hen elastic 

materials are considered, the behaviour is modified by the 

deformation 01 the surfaces. The loa I is still bounjed, but 

due to the deformation, the load that must be applied in order 

to raise the central pressure to infinity is now a function of 

the elastic properties of the material, and increHses with 

decreasin.s values of <Ii..I!.. The result is in any case of 

J 

load! 
} 

~ , 

theoretical interest only, ana woula not be realized iu practice. 

Returning to the load curves figs. 4.6.1 - 4.6.3, another 

important characteristic of the motion is suggested. If the 

Hertzian load given by the equation 



and which represent the dry contact loaJ between elastic 

cylindrical bodies as function of the maximum pressure 

developed and the elastic properties oi the bodie~is computed 

and set out alonw; the load axis, then a "reasonable" 

extrapolation of the load curves drawn to zero film thickness 

would terminate the load curves at their corresponding Hertzian 

loads. 'rhis feature is perhaps broUf~ht out clearest in Fi~. 

4.6.2 for values of maximum load OfDCP = 2, 3 and 4. o 

If this conjecture is correct, a corresponding convergence 

of the pressure distribution towards that of the Hertzian 

ellipse should be noticable as film thickness is decreased. 

That this seems to be so is shown in fiiS. 5.2.4 where pressure 

distributions are drawn for the values of o<P 
o = 4 and 

0( E = 1,000. These curves taken in conjuction with the load 

curves, also show that the pressure distribution is very sharp 

at the point of minimum load. This must clearly be so and is 

indeed the reason for the minimum obtained in the loads. 

Considering now the change of film shape as film thickness 

is reduced, tLis was shown in fig. 4.6.5. 'rhe effect of 
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deformation is seen to reduce th~ cylinJer curvature, and a0 

film thickne:5':; is fur ther reduced, to reverse it in a res-ion 

near the centre line. Thus a bump is producen at some ~istance 

away from the centre. This ieatur2 of the solution is 

comlltOn to the rollin,s or sliding solutions whicll also show a 

characteristic bump at the outlet end of the loaded zone. 

As the film thickness approach the minimum load vulue, the 

relative amplitude of the bump increases, and at the same time 

it is moving outwards away from the centre. The region 

between the bump and the centreline is gradually flattened 

out and approaches the Hertzian flat. 

Returning once more to the load curves, if 10r any given 

value of ~p we form the ratio of the Hertzian load to that of 
o 

the minimum load correspondin~ to the chosen value of ~p 
o 

then, within the accuracy of the calculation, this ratio appears 

to be independant of OlE. 

Forming this ratio lor the various values of 0( P , the 
o 

result is given in the table below. 



152. 

-
\~h/.~m 

O'\.p 
0\£= IXE= cXE= Mean Max. % 0 

1400 1000 700 Value Dev _Mean 
f----- ------ --

1 1-12 

2 1-38 1·~2 1-28 1·33 3·7 

3 I-59 1·61 I-59 I-59 1·25 

7 1-99 1-93 1-95 1·96 1·50 

5 2-47 2-30 2-38 2-38 3·70 

6 3 -11 2-92 2-96 2 ·99 4·0 

8 4·80 4-67 4-60 4·69 2·3 

10 7·00 6-90 6-75 6-88 1·9 

Here the ratio Wh/'Nm is formed for the three dil ferent v;:ilues 

of ~E, the arithmetic mean is calculated and the maximum 

percentage deviation from the mean found_ This deviation is 

within the accuracy with which the load curvea were calculated. 

If this ratio is now plotted as a function of ~p , the 
o 

points indicated by crOS3es in fig. 5.2_5 is obtained,and 

attempting to fit a least square parabola to these points, the 

full line drawn in fig_ S_2_5 appears_ This suggests that a 

simple mathematical relation holds for the ratio 

a 
= 0.0582 (aPo) + 1 5.2.1 



\5~ 

FIG 5·2·5 

7 

b Ii 
5 / 

, If 
V 

/1 
--

:21 
I I 

o 
o b 8 10 

-



15"1 

The deeper significance of this, if any, is not yet clear. 

Since the expres~ion for the He~tzian load is known to be 

then the equation for the minimum load becomes 

where K = 0·0582 

This must then be the equation for the curves drawn in 

fig. 5.2.3. Assuming that it also holds for values of o(P > 10 
o 

and for different values of :lfE than the ones used, this 

expression can be used to extrapolate the curves fig. 5.2.3 to 

higher value of O\P 0 and for different «E. 

In particular the expression should hold for the case of 

constant viscosity, i.e., by taking 0( = o. In this case 

5.2.1 gives 

'Nm = Wh 
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i.e., the minimum load should coiside with the Hertzian. 

In order to check this prediction, and also for its own 

intrinsic interest, the constant viscosity case was computeJ. 

The load curves for this case was shown in fi~. 4.6.4 for 

B = 12 2 10 dyn/cm. 

The predicted behaviour that the minimu~ load shoulj 

coincide with the Hettzian appears to be verified. In 

addition it is also noticed that thp load t "a t. must be a!)plied 

in order to get a specified maximum pres3ure is very much 

increa~ed as expected. 

In order to describe the various features of the solution 

in more natural terms, suppose a hypothetical experiment is 

performed. 

Let an elastic cylinder with negligable mass of radius 

R = 5 cm and of unit lengt~made of a material with the 

elastic constants E = 1275 x 109 dyn/cm
2 , V = 0·3 approach/ 

an elastic flat plate of the same material unier a constant load 

W = 150 x 10
6 

dyn/cm. Furthermore let the lubricant 

separating the bodies have a pressure coefficient of viscosity 

of ~ = 1 x lO-9(dyn/cm2)-1 

We thus have 0( E = 700 . 

The motion will be described by a horizontal straight line in 

fig. 4.6.1 passing through the value of load Ol W/R = 0·03. 
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The maximum pressure in the oil film at succeedin~ stages 01 

the motion is given by the intersections 01 the straight path 

with the load curves. The values of maximum pressure is 

plotted in fig. 5.2.6. If now the experiment is repeated with 

a harder material i.e., E = 1820 x 109 dyn/cm
2

, ~ = 0·3, 

0( E = 1,000 the motion is described by a similar line in fig. 

4.6.2. 

The value of maximum pressure in the oil film at any sta,::ce 

of the motion for the three cases 

= 700, '" P max = 

= 1,000, at P max = 

= 1,400, ~P max = 

is shown in fig. 5.2.6. 

From these curves it is apparant that a very hi~h pressure 

occurs in the oil film at a finite film thickness. 'llhe value 

of the maximum pressure is proportional to ~E, and the film 

thickness at which it occurs is inversly proportional to o(E. 

If now these experiments are repeated, but this time applying 

a load 6·6% higher than in the previous serivs, a new set of 

curvea is obtained. l'he maximum pressure reaeiled fig. 5.2.7 

is now higher, and relative to the first series increase of 
I 

maximum pressure is 4·35%, 6·7%, and 25% respectively. 
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Hence for o..E = 1,400 for an increase 01 loai of only 

6·6%, the maximum pressure has increased by 25%. I f the 

pressure distribution is examined for tLe film thickness where 

the maximum pressure peak occurs, this is found to be very sharp 

and the high pressure will only be a~plied over a very small 

area and for a short time. Such a pressure distribution mi~htt 

however, produce lar~e shear stresses close to the surface of 

the cylinders, and the material mi~ht yield. Furthermore, if 

the pressures were a:plied in rapid succession, a large number of 

times, one might be led to think that this could lead to fatigue 

failure of the surface. 

If the cylinders in our experiment were designed accordin3 

to the Hertzian criterian, i.e., assumin:s that the Jr.aximum 

pressure would be obtained at Hertzian dry contact, and then 

calculating the design load from a suitable maximum value for 

this pressure, the present results show that the actual pressure 

obtained would be higher than those predicted by the Hertzian 

theory. Indeed, fig. 5.2.5 may be looked upon as givin~ the 

safety factor by which the Hertzian load must be reJuced in order 

that the maximum pressure shall not exceed a specified value. 

In our example for 0( P = 10 (say), this factor has the o 

considerable value of 6·8. Hence only about 15% of the Hertzian 



load may be applied in order that tII8 .aximum pre,; ure ;3Lall 

not exceed 10. This fi~ure roi~ht be reduced if compressibility 

and thermal effects ha, been considered. Only in ~h~ case of 

constant viscosity woull the Hertzian theory nave l)r ~dicted tl1e 

rip;ht maximum pres;3ures. The resul t > l:e rt: ,.;. ow t ha t the 

maximum pressure woul·-] coincide with the ~ertzian. 

Generally, these results show that it woul' be advanta~eou6 

to use materials with a low value of Youngs modulus, and 

lubricants with small values of the pressure coefficient. For 

some lubricants, the value of~decreases with increasing 

temperatures, hence these considerations point to the use of 

"soft" materials and lubricants kept at a high temperature. 

Other considerations might lead to another conclusion. Nothing 

definite can be decided about these questions at the present 

time. More work, both theoretical and experimental is needed 

before the results presented here can be fitted into a general 

theory of surface failure and used as a basis for design 

criteria. 
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6.1 Introduction 

The experimental work described in this chapter was 

devised in order to check some of the general predictions made 

by the theory, and at the same time intended to be as simple 

as possible. 

The experiment consisted of dropping a suitably loaded 

steel ball from a height under gravity on to the polished 

surface of a metal specimen. The surface was covered by a 

film of lubricating oil, and the resulting plastic deformation 

of the specimen surface, if any, was measured with a Talysurf 

surface recorder. By varying the load on the ball, and 

by using varying metals in the specimen, different values 

of the elasto-hydrodynamic load Wand of the parameter Cl(E 

could be obtained. Only qualitative confirmation of the 

theoretical results could be hoped for from an experiment of 

this kind, because of the following two main reasons. 

a. 'fhe theory was worked out for the normal 

approach of two cylindrical bodies or, as 

a special case, on an elastic cylinder 

moving normal to an elastic flat plate. 

For reasons of simplicity an elastic ball 

rather than a cylinder was used in the 

experiment. The governing equations 

for the special case can be shown to have 

much the same form as for the cylindrical 

case. Hence, we might expect that the 
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801ution~ would be of similar lorm although the numerical 

values mi~ht be widely different. 

b. It was shown in section 2 that under certain conditions the inert 

of the fluid could be ne~lected, and these conditions are 

probably satisfied in the present system. ~he inertia of the 

gravitatin~ ball system cannot be ignored, however, and hence 

the governing equation is 

MZ + Mg 

where 

= W (h ,V) 
o 

M is total mass of falling ball system. 

W is the elasto-hydrodynamic force developed. 

V is the velocity 01 approach as defined in 

Section 2. 

Z the coordinate of the centre of ball. 

with in1 ·tial conditions 

Z (0) = H + R } • t = 0 
Z = 0 

We then have 

Z = R + h - b 0 6.1.2 

where ~i8 the deformation of the elastic surfaces. 

Differentiating •• r.t time: 

• • 
Z = h - <5 o 

6.1.1 
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where 

Also 

VA. = V + V6 

VA is the absolute velocity of the ball system 

relative to t.he fixed coordinate system. 

V is the relative velocity between the elastic 

surfaces as defined in section 2. 

V~ is the deformation velocity. 

.. 
. 

If we neglect 0 andb as small we get 

or 

IbLI 

b·j·l/ 

The equation 6.1.3 can be solved for the given physical 

system· provided the appropriate function ~(ho'V) is available. 

This is not so in the present case and hence eqn. 6.1.3 cannot 

be solved • 

For this reason, although no quantitative a~reement 
o 

between theory and experiment is possible, there are never-

theless some general predictions made by the theory that 
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the experiments are capable of testin~. 

In fig. 5.2.3 it is observed that for two materials 

having the same dynamic yield characteristics, but having 

different values of ~E, then the minimum load necessary to 

cause yielding will be smaller for the material havin~ the 

larger value of o(.E, other conditions being equal. To detect 

the onset 01 yield would be diflicult. We might expect, 

however, this could also be interpreted so that for the 

same load, the size (depth) of the plastic de formation would 

be larger in the material having the larger value of ~E. 

If therefore the experiment is performed on say aluminium 

12 2 12 bronze (E = 1.3 x 10 dyn/cm) and steel (E = 2·1 x 10 dyn/cuJ 

using in each c~se the same lubricant and droppin~ the ball 

from the same initial height, one might expect that the 

depth of the resultinr plastic deformation would be lar~er in 

the steel than in the aluminium bronze, provided the dynamic 

yield characteristics of the two materials could be assumed 

to be comparable. 

It might also be of some interest to see how depth of 

deformation varies witn yield stress for a constant value of 

Youngs modulus. Refering to fig. 5.2.3 it is observed that 

for higher values of ~p , the gradient of the curve is small, 
o 

this is particularly noticeable for the higher values of the 
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parameter .x.E. This sug~ests that the loal necesaary to 

cause yielding would be fairly insensitive to the yield 

stress of the material. Or again, because of the difficulty 

of detecting th0 onset of yield, the depth of the impressions 

for any load would be fairly independant of yield stress. 

There is one snag to this extrapolation to finite 

plastic deformation. The depth of the depre3sion depends 

not only on the magnitude of the pressure applied, but one 

would also expect that it would depend on the length of time 

this pressure was being apolied. From fig. 5.2.7 it appears 

that the time of application of a sufficiently high pressure, 

decreases with increasing value of yield stress. Thus, the 

variation of depth with yield stress would be larger than one 

would be led to expect from a consideration of fig. 5.2.3 

alone. 

There is also the compl±cation that with finite 

deformations the material might considerably work-harden. 

For this last reason it was thought that when finite 

deformations were considered, tensile fracture strength rather 

than some proof stress would provide a fairer basis for 

comparison, and this has been adopted in the following. 
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6.2 Description of apparatus ani experimental procedure. 

The main details of the apparatus is shown in fig. 6.2.1, 

6.2.2 and 6.2.3. 

Q) is a %" thick plate supporting thl: 4 steel columns. 

In a horizontal ~roove milled out, it also support3 and 

guides the metal specimens ®. The specimens themselves 

were closely machined to size 5" x ~II X ~II, the top surface 

being carefully ground and polished. The columns support 

the top plate to which an electro-magnet Q) is fixed. 

The height of the magnet can be slightly adjusted by the 

micrometer @, which allow adjustment to :1n accuracy of a 

few microns. A larger and coarser adjustment is provided 

by the nuts ®. Round the lower end of the ma,'J;net is fixed 

a brass ring ® .which serves as a guide for the magnet 

armature. 

Fig. 6.2.2 shows details of the way the test ball is 

clamped, and the loading arrangements. <V is the test ball, 

a J4" ~ hardened steel ball-bearing ball, held by the nut CID 
which screws onto the brass fixing ®. The plate (2) also 

serves as supports for the loose steel disc weights (!g). 
At the top of the spindle is fastened the magnet armature(!!). 

The photograph fig. 6.2.3 shows the apparatus assembled and 

ready for an experiment. 
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To prepare th~ apoaratu5 j"or an experi~ nt, the vertical 

level 01 the ma·:,;net was a,jjusted uy tin" coarse adjustment, 

until th.:: distfmce betweell tiie ball an i til,' :::i~wci"!' n W':i3 of 

the order of a fel> Lun·-J.rej micron:; it:lli til,' axi:::i 0: the 

s~indle vertical. Fine adjustmt?nt 01 the It'vcl w:w mad\~ 

with the micrometer. 

'ro prepare th<: speciLlen, the surLtce 01 this an.J 01 the 

ball was thorouc>;nly clea n,d by wasl.in": w it b :llc ohol. After 

dryin.:;, thu lubricdnt wa.:;; put onto th·, surL,ct:, cart: bein,,; 

taken to see that no dirt or air bubbles was prt'sent near 

the area where contact was to be made. In order to ston the 

lubricant from flowin~ away fro!:l tLe surface, a thin strip 

of cellotape was put round the ed~es 01 the speCimen, thus 

forming a shallow trough. The oil film could thus be kept 

at a thickness of a few hundred microns. 

Switching on the current activatin~ the magnet, the \all 

assembly could then be fitted into place and wouli be held up 

by the magnet, and the ball assembly loaded up with the 

required number of weights. 

In order to set the initial height of th~ drop accurately, 

the ball was lowered by means of the micrometer until it just 

touched the specimen surface. This could be detectei by measu. 

ing the electrical resistance acro.ss the oil film. The 

resistance dropping instantly when metallic contact was 
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established. For measuring the resistQnce, an ordinary 

Avo meter Was connected across the specimen clnd the ball 

assembly. HavinK by this means fixed the zero level, the 

ball wus raised the required amount by means of the micrometer. 

Checking the accuracy of this procedure with the help of 

slip gauges, it was found that the initial height of the drop 

could be set with an accuracy of a lew microns. 

Switching off the current to the magnet, the armature 

would be released and the ball drop on to the specimen surface. 

For suitably chosen values of load and initial height, the 

specimen surface would plastically deform under the pressure 

developed in the lubricant. 

The deformation was measured up by means of a Talysurf 

surface roughness recorder. On account of the small 

dimensions involved, care was taken to ensure that profile 

sections across a diameter was obtained. 

In most cases the diameters of the depression could also 

be measured by means of a travalling microscope. This method, 

however, using very oblique lightin;, proved unsatisfactory, 

since the edges of the impressions frequently were ill defined 

and this caused considerable scatter in the microscope 

measurements. Also, no information of the depth of the 

deformation could be obtained from the microscope measurements. 

However, when the size of the deformations were so small that 

they were of the same oder as the general surface roughness, 
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it became very difficult to distin~uish these on the 

Talysurf records. For these cases, microscope measurements 

of the diameters were used. 



17'{ 

6.3 Results. 

The experimental resulta are divided into three sroups. 

Group I contains the results desi?,ned to brin~ out any 

correlations between depth of depression and the value of 

the parame ter 0( i;. 

The results in group II were desi~ned to show the 

connection between denth of impression and strength, while 

the results in group III were intended to show the variation 

of impression with initial height of the drop for a constant 

load. The lubricant used was T.N. 1074, described earlier. 

In group I and II the initial height was kept at 50 t the 

loads running from 710 grams. to 6120 grams. in staps of 

"-' 900 grams. In group III the load was kept constant at 

6120 grams., and the initial height of the drop varied. 

Group I: 

Three different specimens were used here, i.e., 

aluminium-alloy, aluminium-bronze and steel, the elastic 

constants of which is given in table below. These were 

measured from tests done on the same bars from which the 

specimens had been made. 



6.3 

Group I, Specimens 

TABU; 6.3.1. 

Material Tensile 
2 

Youngs ~od. Vickers hardn.1 Code strength Kg/mm Kg/em VPN 

lA Alum.-alloy 38·0 0·715xl06 110 
I 

3B A1um.bronze 78·5 1·3 xl06 240 
i 
I 

2S KF46 steel 81·5 2.1 xl06 248 

The tensile failure stress is taken as bein~ repreientatlve 

of the strength of ~he material. 

The approximate values of the diameter 01 the depression 

and its depth as obtained from the ~alysurf records are given 

in Table 6.3.4. Reproductions of the records themselves are 

shown in figs. 6.3.1 - 6.3.3 incl. 

In order to clearly bring out the influence of the 

lubricant, the experiments in group I was repeated with no 

lubricant present. These results are given in Table 6.3.5, 

and the records reproduced in figs. 6.3.1 and 6.3.2. 

Group II: 

Three different steel specimens, having· approximately 

the same value of Youngs modulus but dirlerent strengths, were 

used. The measured elastic constants are given in the 

table below. 
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Group II, Specimens 

TABU; 6.3 .2 

_. _.-

'£ensile Youn~s mod. Vickers Hrdn. Code Material strengthKg/mm 2 Kg/cm 2 
VPN 

lS Mild steel 63·0 2·1 x 106 200 

4s KF 11, 90·0 2·2 x 106 254 

5S KFlb Hardn. 142·0 2·0 x 106 363 

The results are shown in table 6.3.6. Reproductions of the 

records are given in figs. 6.3.4 and 6.3.5. As for the 

previous group, the experiments in group II were repeated 

with no lubricant present. These results are given in 

Table 6.3.7, and the records reproduced in fi~s. 6.3.4. 

Group III: 

Only one steel specimen was used in this group. The 

constants for the specimen were measured to be 
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Group III, Specimen 

'rABU 6.3 • .3. 

Code Material '1'e ns ile 
2 

Y oun ,,8 mod. V ici{er.i hardn. 
stren·z:th Kg/mm K~icm.2 VPN 

-- ------ ---

3S Steel 175·0 1·9 x 106 464 

The results are given in Table 6 • .3.8, ~nd the records 

reproduced in ligs. 6.3.6. A~ usual, th~ no lubricant test 

was also performed. In this case, no 8uri.'lce ielorr.:.'1tion 

at all coul-i be Jetecte1 un,i.t~l· a microscope. 



\78 

Group I, with lubricant 

Code 1A 3B 2S 

load Diam Depth Diam Depth Diam Depth 
grams ft- ~ r f'- r ,}A-

----- ---.-.-- t-----------r-

710 

1608 100 
} 1) 

175 
} 1) 

2511 175 175 

3411 175 0-50 175 1·00 

4313 175 0·75 200 0080 2·?5 1°35 

5216 300 1 040 200 0°85 I 
250 1-60 

6120 400 1-50 225 1°10 275 1-75 

1) Microscope measurement only. 
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TABLE 6.3.5 

Group I: No lubricant 

Code lA 3B 2S 
.- ._._ ..... .. _-- --- --_ . 
load Diam Depth Diam Depth Diam Depth 
grams f- t- t- l- t- r--_ .. _---- _ ... __ .-

710 

1608 
2) 

2511 
2) 

3411 

I 
200 

4313 I 250 
I 

1) 
5216 450 0-65 300 

2) 
6120 550 0·75 325 

J 

1) Microscope measurements only 

2) Could be seen under the microscope as a faint marking of 

the surface, but could not be measured. 



\80 

6_3 

'I'ABLE 6_3_6 

GROUP II: with lubricant 

~---

I 
Code IS 4s 5S 

Load Diam Depth Diam Depth Diam Depth 
grams r- l- t- r )A ~ 

710 

1608 162 } .) 
150 1) 100 

2511 200 250 1-00 150 1) 

3411 275 1-15 275 1-25 175 

4313 325 1-50 350 1-35 225 

5216 400 2-00 350 1-50 225 0-65 

6120 425 2-10 350 1-60 ~25 0-75 

1) Microscope measurements only_ 



6.3 

TABU 6.3.7 

GROUP II: no lubricant 

- ¥~.---.--

Code lS 4S 5S 
- .--... -.-~ F=---::="='==-:::=-=-=-==c",,~=-"---= ~- - --

Load Diam Depth Diam Depth Diam Depth 
grams 

~ ,r r ~ / r 
---- --

710 

!I 
1 1608 
I 

2511 I 
i I 

3411 

I r 3) 

2) 3) 
4313 

! 

5216 I , 
j 

6120 0-60 
j 

350 j J 

1) Microscope measurement~ only 

2) Could be seen under the microscope as a faint markin~ of 

the surface, but could not be measured 

3) Could not be seen neither with the naked eye or under 

the microscope. 
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TABLE 6.3.8 

GROUP III 

Code 3S 

Initial DiaD! Depth 
heightr / I 

50 125 } 1) 
100 175 

150 250 0·70 

200 300 1·00 

250 ~OO 1·12 

300 450 1.20 

1) Microcsope measurement only. 
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6.4 Conclusions 

Comparins the Jeiormation8 obtained with lubricant with 

the Hertzian}or dry contact deformations/under otherwise equal 

conditions, it is seen thae the influence of the lubricant on 

the shape of the plastic deformations is considerable. 

Compared with the dry contact, the deformations in the presence 

of lubricant are in every case deeper and sometimes also having 

a smaller diameter, thus causing the depressions to appear 

more conical. If the average radius of curvature of a 

depression is defined as 

R = 

where D is the maximum diameter of the depression 

d is the depth. 

Then this quantity is smaller for the depressions made in the 

presence of the lubricant. Sometimes this quantity i~ even 

smaller than the original radius of the indentin~ ball. 

In the experiments, where in particular the harder 

specimens were used, no dry contact deformations at all, or at 

best very faint markings which could not be measured, were found, 

even for the highest loads used, The correspondin~ deformations 

with lubricant were easily detectable, even for much smaller 

loads. This again demonstrates the considerable influence of 

the lubricant. 
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Turnin~ now to the results of Group I ~iven in table 

6.3.4, these seem to bear out the theoretical prediction of 

the inverse relationships between the parameter oaI. E and the 

maximum pressure developed in the oil film. Comparing the reults 

for the aluminium-bronze (3)B and the steel (2S), it is seen 

that for all loads the deformation in the steel is deeper than 

the corresponding one in the aluminium-bronze. Indeed even for 

the harder steel(4S) table 6.3.6, the deformation is deeper 

than in the bronze, even though this steel has a strength 

15% higher. 

Unfortunately, the results for the aluminium-alloy 

(lA) are not as conclusive. A comparison with the bronze (3B) 

shows that the deformations are larger for equal loads in spite 

of the fact that E for aluminium-alloy is some 45"" lower than 

for bronze. However, the strength of the bronze is nearly 

twice as high, and this may account for the discrepancy, 

Hardness tests of the surface of the aluminium-alloy seem to 

indicate that the top surface layers are softer than the bulk 

of the material. The stress quoted was measured in a tensile 

test, and thus represents the bulk of the material while, as 

far as the experiments are concerned, it is the stress of the 



surface that is relevant. This softenin~ and lowering of the 

stress of the surface layer may have been brou~ht about by the 

grindin~ and polishin~ operation3 done. At any rate, comparing 

the aluminium with the steel, the discrepancy vanishes. The 

impres~ions in the steal are considerably larger, even though 

the strength of the steel is also very much higher. 

Turning to the results in Group II, it i3 se",ll tha~; the 

depth of th~ deformations decrease with increasing stress, and 

that the decrease is more pronounced in the re~ions of lower 

stress. This may mainly be due to dilference in the times of 

application of the preSGures. In fig. 6.4.1 is drawn the 

depth of the deformation against tensile fracture stress for the 

highest load. 

In the case of the results in Group III, these are much 

as expected and show in increase for increasin~ initial height 

of the drop. 

Since in this case a high tensile steel was used in the 

specimen, no Hertzian or dry contact deformations were obtained 

at all. 
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Appendix A. 

The e.ffe.c.t o.f. Ya.r.i.a:ble_ .Vi.~9..o_s_~.tY_O_I!t.M. 

Navier-Stoke.s_EClua tdlo1!§.. 

The x component of the general equation of motion without 

making the assumption of constant viscosity is as previously 

shown 

Rearranging the viscous terms these becomes 

.:! II~ A + IIr7li1u 2 A ~ 2PE: au (iN au) E.1! (au + Ow ) OIlL 
3""oxu 

,...v - 3~cli + Ox Ox + ax + Oy oy + OZ ax dE 

au iN Ow 
where l:J. = ax + oy + oz 

Restricting the treatment to the two dimensional case, 

assuming constant properties across the film and neglecting 

terms arising from compressibility, this becomes 

A2 

With the previous approximations the equation of motio~ 

now becomes 

A3 



A. 

• • • 

By incompressible continuity 

Integrating: 

J.LU - 2~ / v dy + C1.Y + C2 

Boundary conditions are: 

u = 0 for y = 0 and y = h 

• • • 

h 

U = t~ ~~ (y2 - yh) - ~~ ( ~ J v dy 
o 

Defining the average value of v: 

n 

v=~IVdY 
o 

o 

Then for terms in the last bracket, we have 

':J 

(yV- JVdY)<Vh 
o 

It we define, 

A5 



A. 

:J 

E = E(x,y,t) = ~ ( yV - ! v dy ) 
o 

it rollows that 0 ~ E < 1 

Substituting into 5 we get 

u = L of ( y2 _ yh ) _ £ 9J!:. EVh 
2 J,J. ox f.L ox 

As previously 
h 

V=~JUdY 
o 

o r h 3 of 1 
• • • V = ox l - 1 2J,J. ox J 

h 

where E = ! ! E dy 

• • • 

o 

E = e(x,t) < E max 

A6 

A7 

assuming that viscosity is a function of pressure only. 

The last term is due to the variable viscosity. If this 

term is small and is neglected.eqn. 7 reduces to 

V _ . .£... (~ of )' 
- Ox 12f.L Ox 

as was previously obtained. 

The influence of the variable viscosity on the pressure 

can be seen by solving for oP/ Ox 



A. 

A8 

~-OJ!:. In this case, since the term h Eop is non-negative, 

its influence is to reduce the pressure gradient. In terms 

of a fix ed central pressure P~this means that the load 

necessary to produce this Po at a given ho is larger than 

if this term is neglected. 

Assuming that the viscosity is given by 

J1. = J1.o exp (aF) 

the variable viscosity correction may conveniently be 

expressed in the form 

K _ ~ 24e exp(aP) 
JJ. - R h/R A9 

If this quantity is < 1, the in:f'luence of the variable 

viscosity on the Navier-Stokes equation is small and may 

be neglected. 

In order to establish bounds for the function E, assume 

that v is expressible in the form 

v = Un (t )n 
n~o 

where the coefficients are functions of x and t i.e. 

an = an(x,t) 

The boundary conditions on v demands 

v = ~n 

- \~ 
v = Lin+1J 

'iI 

and ao • 0 

A10 



A. 

Substituting this, the expression for E becomes 

il :J 
1 ( r Lan n n "' 

E = X (i ) dy J ~ an ( i-) dy J Vh , h 
l .J n 

A11 

.:;. 0 

1 fljanY 2JanY ( * )n 
""' j = Vh ~ n+1 - n+1 

n 1'\ 

and the average value of e becomes 

- 1 \: n 
E = 2V L(n+1) (n+2) an 

on 

and substituting the series for V we get 

A12 

In order to proceed furthe~some knowledge of the 

analytical form of the function v must be obtained or 

assumed. 

From previous, ignoring variable viscosity, we have 

j-eu 0 r 1 of 2y" - 3y2 h ) J - v = ox dy = Ox l 12jldi ( 

This form suggests taking for the an: 

as = - hS ~ r -L oP J 
Ox l 12JL ax 

n = 2,3 A13 

aa h 2 0 r 3h OP J = ox lm~ 



A. 

These values give for the parameter E: 

- 1 ( x oh ) E = 12 1 .2 - 0.6 h ax 

after substitution of the an'S. 

This show that the variation of E is 

o ~ e ~ 0.1 

A14 

The max imum value is obtained for x = 0, which gives 

E = 0.10; x = 0 

This value of E is used in expression 9. The result is 

given in fig. A1, computed for various values of aPo, for 

three different values of aE. 
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Appendix B. 

Solution of t,ne Linear He.nc.Q,nJl.1J:clli,n Equation for 

Consider a composite solid consisting of' a finite medium 

- 1 ~ x ~ 0, of temperature T:1. and properties K:1., C:1., P:1. 

etc. in contact with a semi-infinite medium x ~ 0, of 

temperature T:a and properties K:a, ca, Pa etc. 

Consider further that heat is generated in the finite 

200 

medium at a rate :rex) t Ill/L
-' where ~ m may take integral values. 

The governing equations are, 

02 ;:1. 1 ~ 
If;ttrl/l. -, 

- 1 ~x ~ 0 B1 - - = - --x;-oX CX1 

o2T L OT 2 0 X ~ 0 ~2 = B2 Ox cxa ot 

K:1. and <X:a K:a 
where (%:1. = = Paca P:1. C :1. 

The initial and boundary conditions will be taken as 

K:1. rx~ = K:a ~ 

1 

x = 0 B3 

T1 = Ta t > ° B4 

K:1. cYl'1 
= 0 X = - 1; t > ° B5 ox 

lim T:a = 0 t > 0 B6 
X_GIl 

T:1.(x,O) = Ta(x,O) t = ° B7 

Taking the Laplace transform defined by 
(>0 

£. [f(t)] = J t(t)e-sidt 
c, 



B. 

the subsidiary equations become 

1 , 
j 

B8 

B9 

where v = [[T] 

q1. = ~ 

The boundary conditions transforms into 

K dV:L K dVa 

1 
:L dx = a ax 

V:L = Va 

B10 

x = 0 
B11 

.J 

K1 dV:L = 0 ax x = - 1 B12 

lim va = 0 B13 
)('-lep 

A formal solution to e~n. 8 is 

WI ~ 

C -'l:1 rCr) L( D + e I + K a NIl:. -
1~:LS q:L B14 

,\::0 

where D is the ordinary differential operator d/dx. 

Boundary condition 12 gives 

The restriction will now be placed on the function ~ 

that it is symmetric about the pOint x = - 1. This implies 

that D2~~1 ~(-l) • 0; A = 0,1,2,3···· 

• •• C = Be -a'l,l 



B. 

The solution of 9 with boundary condition 13 is 

The remaining constants can now be found from 

boundary condition 10 and 11 

••• B = 
r(-l)[o-L(~) 2>' + L(~) 2).+ 1 ] ~(O) 

(0- + 1) [ 1 + /3e 2'l,' ] K19.f sm/2 

B15 

B16 

(0- + ~ ) 

j ~(O) (0- + 1) 

where, following Carslaw and Jaeger (9) we define : 

{3 = (0- - 1 )/(0- + 1) 

Expanding the denominator in a binomial series, 

substituting into eqn. 14 and rearranging, 

<b(O) J 
CP 

2:"(-1 ) n)i" [ e-~·(·n'- xl + e-~.l,*, .. 1 + ~ ] J B18 
n=:o 

Treating 17 in a similar way and substituting into 

eqn. 15 gives 

2.02. 

B17 



B. 

IP 

[(-1 )npn [ e'l,(2ne+k:r;] + e-'l,[2fl( n+:!.) + k~1 ] B19 
0-::00 

Taking the inverse transformJ 18 transform into 

[ 
erfc 2nl - x + erfc 2l(n+1) + x ] j' 

2iJ (x.:!. t' 2iJ (x.:!. t' B20 

Similarly 19 transform into 

B21 

where the D operates on i(x) at x = 0, and the i operator 

is operating on the errorfunctions. 

Adiabatic conditions are characterized by Ka = ~a = 0 

i.e. putting ~ = - 1 ; ~ = 0; K = 00 

in the above equations. 

20'3 



B. 

The average adiabatic temperature T~ cannot be influenced 

by the presence of the heatconduction terms, since these 

only serve to shift the temperatures about. 

Defining the average adiabatic temperature 
I 

T~ = J T~df 
~ 

we get 

where we have defined the non-dimensional variables 

~ = x/I ; 

and redefined ~ to be a function of X/I 

For the special case ~ = constant; m = 1 we get 

~ 

B24 

B25 

T~/T~ = 1 - ~:1 ~ (-1)"pr [ierfc §~-E + ierfc 2(~;1) + ~ B26 
n:o 

Equation 20 may also be used to investigate the 

varia tion of temperature across the film under adiabatic 

conditions. Putting ~ = - 1; ~ = 0; K = ~ and also applying 

the coordinate transform y = 1 + x, redefining ~ to mean 

y/l we get 



B. 

B27 

Now, taking ~ to be a quadratic in ~ restricted by the 

boundary condition ~(o) = O,i.e. ~ = A~, and taking m = 1 

we obtain 

T, = 2,d.. Vf A 
3K. 

The variation of 29 with X is shown in fig. B1. 

B29 

Equation 29 was solved on the computer ror three values 

of 10 corresponding to the x-stations 6, 10 and 14x10-8 cm 

rrom the cylinder axis. In all cases the parameter ~ was 

taken as ~ = 1. The relation required between 1 and t was 

taken from the velocity of approach curve for the case a: 

constant viscosity, rigid material. 

20S 



20b 

B. 

The solution is showm in fig. B2. 

It is not so much the function (T - T)/T that is of 

interest but rather (T - T), since if this is small) 

temperature variation across the film will have little effect 

on the physical properties such as viscosity and density. 

Taking the values of T from the computer solution for the 

case a : constant viscosity, rigid material,the obtained 

values of (T - T) are shown in fig. B2. The value of the 

thermal diffusivity used in the calculation was taken as 

a~ = O.81x10-a cm2/sec. 

It is believed that the results obtained are more severe 

than the true solution allowing for the motion of the 

boundaries, and hence provide an upper limit for the 

temperature variation. 
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