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Abstract

This project is primarily concerned with the incorporation of quantum effects into
physical models for heterojunction field effect transistors. Several simulations have been
developed including a one-dimensional Schottky-gate model which self-consistently
solves the effective mass Schrodinger equation with Poisson's equation. This model
employs a fast, accurate and robust solution algorithm based upon an expanded Newton
scheme. This work is extended to two-dimensions, permitting charge transport and hence
adding the current-continuity equation. All three equations are solved under non-
equilibrium conditions. Finally a quasi-two-dimensional HFET model has been written,

also including quantum mechanics which produces excellent agreement with measured

characteristics

As a rigorous solution of the full two-dimensional Schrodinger equation and
corresponding transport equation is very demanding and computationally expensive the
problem has been simplified by assuming the electron wavefunction to take the form of
Bloch, or travelling wave solutions is the directions parallel to the heterojunction. The
component normal to the heterojunction interface is then solved by taking multiple one-

dimensional solutions sampled at various positions throughout the device.

This new approach requires alternative solution algorithms to be developed since the
conventional schemes are not applicable. This thesis reviews the physics behind
semiconductor heterojunctions, discusses the solution schemes used in the models and

presents results from the one-dimensional, two-dimensional and quasi-two-dimensional

simulations.
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Chapter. 1~

Introduction

1.1 A brief historical background

Over the past thirty years solid state technology has rapidly matured, moving from
germanium and silicon, the original materials used to make semiconductor devices, to
more exotic materials, in particular III-V compound semiconductors. One material in
common use is gallium arsenide (GaAs) although there is a lot of interest in other
compounds such as indium-gallium arsenide (InGaAs) and indium phosphide (InP).
These materials are used because of their superior performance when compared with
germanium and silicon, particularly due to their higher low field electron mobilities,
which permit faster devices to be produced. Unfortunately much of the original silicon
technology was not transferable to these new materials, for example the most popular
silicon FET devices separate the gate from the rest of the device via a thin oxide layer,
thus forming a Metal Oxide Semiconductor Field Effect Transistor (MOSFET). Although
the first GaAs technologies were also aimed at producing enhancement mode insulated
gate structures (IGFET) it was soon discovered that the surface states present at the
GaAs/insulator interface were three or four orders of magnitude greater than that with
silicon [Haigh, 1989]. Consequently the vast majority of the electrons induced by the
gate were trapped and unable to participate in charge transport. The rectifying gate
structure was therefore made using a Schottky contact [Mead, 1966}, thus producing the

MEtal Semiconductor Field Effect Transistor (MESFET).

Modem processing techniques, namely Molecular Beam Epitaxy (MBE) and Metal-
Organic Vapour Phase Epitaxy (MOVPE), have made possible the fabrication of many
novel structures, some pushing device technology into the quantum regime. One such
device, the Heterojunction Field Effect Transistor (HFET) is produced by varying the
material composition of the crystal from which the device is made. Consequently the
electron wavefunctions can be engineered, significantly altering them from their classical
form. These altered wavefunctions can then be used to improve device performance. In

general these devices all follow a similar basic prescription whereby a doped wide band
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gap material is grown, whilst maintaining a true crystalline structure, on top of a narrow
band gap material. For example a common configuration consists of a bottom layer of
epitaxial, unintentionally doped GaAs approximately 1 pm thick on top of which is
grown a heavily doped AlGaAs layer. This upper layer, the larger band gap material, is
typically doped at around 10** donors m?, has an aluminum mole fraction between 0.2
and 0.4 and is less than 500 A thick. The wafer is then processed in a similar fashion
to the GaAs MESFET, with a Schottky gate evaporated onto the surface, used to

modulate the current flowing between two ohmic contacts, the source and drain,

illustrated in Figure 1,1.

Source Drain
n - AlGaAs
initial transfer 2DEG
of electrons
GaAs
Figure 1,1

Cross-section of a typical AlGaAs/GaAs HFET

Although different technologies are used an analogy can be drawn between the
MOSFET and the HFET, based upon the layered structure of both devices. The abrupt
change in band gap across the interface present in both devices produces a thin sheet of
carriers in the narrow band gap material, Si and GaAs respectively. These carriers are
contained within a potential well of approximately atomic dimensions and thus are
described not by classical mechanics, but rather quantum mechanics. However

MOSFETs differ from HFETS in that they are not made from a single crystal, but rather
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from the crystalline/amorphous structure formed from the silicon and SiO, layers. The
crystalline nature of the HFET interface allows the electrons in the wide band gap
material to transfer to the lower energy states present in the narrow band gap material'.
Here the analogy with the MOSFET ends, as this transfer is not possible since any
electrons present in the Si0, layer are bound locally (SiO, is an insulating material) and
not permitted to travel into the silicon channel. This analogy is useful because the first
quantum models, self-consistently solving Schrodinger's equation with Poisson's

equation, were produced for MOS devices, and then later modified for use in

heterostructure devices.

The accumulation of charge at the interface of a heterojunction was first demonstrated
by Anderson, using a Ge/GaAs structure, where the electrons in the wider band gap
material (GaAs) diffused across the junction to the lower energy states present in the
germanium [Anderson, 1960]. This was validated by the experimental measurement of
the I-V characteristics of this structure, which demonstrated the rectifying properties of
these junctions. This work was taken further by Esaki and Tsu who proposed that device
characteristics could be improved if the structure were selectively doped, that is if the
narrow band gap material is populated by electrons that have transferred from a larger
band gap material but is itself left undoped, [Esaki, 1970]. This would separate the
charge carriers from their parent ions and thus reduce ionic impurity scattering, one of
the dominant scattering mechanisms that degrades the electron mobility'. The first
modulation doped structure was grown by Dingle et al. Here an AlGaAs/GaAs
superlattice was grown, doping the wide band gap AlGaAs layers and leaving the GaAs
undoped. The electron accumulation layers, labelled a 2 Dimensional Electron Gas
(2DEG) exhibited higher mobilities than are obtainable through either a uniformly doped
superlattice structure or "equivalently doped" bulk GaAs, [Dingle, 1978]. The first
working devices were produced by Mimura et al., who reported HFETs with mobilities
that were "significantly higher than those of the GaAs MESFET" at both 77K and 300K
[Mimura, 1980]. Mimura produced both HFETs and MESFETs having the same
geometric dimensions and measured their characteristics. At low temperature (77K) a
dramatic increase in the transconductance of the HFET over the MESFET was observed

and Mimura consequently predicted that "the high speed performance of HFET should

Discussed more fully in Chapter 2, The Physics of Heterojunctions
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be three times superior to that of the MESFET at 77K". Hiyamizu et al. continued
developing the HFET, further separating the 2DEG electrons from their parent ions by
incorporating an undoped AlGaAs spacer layer between the doped AlGaAs and undoped
GaAs layers, [Hiyamizu, 1983]. They were rewarded with around an order of magnitude
increase in the mobility of the carriers, at least when the device was operated below
77K. Unfortunately the spacer layer has a detrimental effect on the 2DEG density, which
reduces with increasing spacer layer thickness. Consequently the thickness of this layer

has to be optimised to produce the highest carrier mobility whilst retaining the largest

number of free carriers.

Hence by 1983 the basic components of a modem HFET were in place, a MESFET-like
terminal configuration, used to modulate the current flowing through a layered crystal
structure containing a 2DEG, formed at the heterojunction interface, and possessing a
high mobility due to it's separation from the ionic impurities. Each of the above workers
labelled this device differently, and hence HFETs are also known by several other
acronyms, each derived from a different part of the devices manufacture or operation.
These include MOdulation Doped Field Effect Transistor (MODFET), High Electron
| Mobility Transistor (HEMT) and Two-dimensional Electron Gas Field Effect Transistor
(TEGFET). HFET is the chosen acronym in this work because it is more general

encompassing the whole spectrum of heterostructure devices.

1.2 HFET Performance

The HFET is one of the most promising devices over a range of criteria including
outright performance and processing requirements. The following table is taken from
Morkog and Solomon's review [Morkog, 1984], illustrating the ranking of HFETS versus
other integrated circuit technologies. This table, giving the HFET the lowest score
predicts this device to be one of the dominant devices in high speed IC applications,

although it assumes all the parameters to have and equal weighting and fails to include

economic factors.



Parameters Josephson HFET GaAs Vertical HBT Silicon BIT

Junction MESFET FET MOSFET
Speed 1 1 3
Power-delay 1 1 2
product
Lithography 2 2 3
requirements
Threshold 3 4 4
control
Processing 4 2 1 4 5 3 5
| complexity
Materials 5 4 3 5 4 1 2
problems
Score 16 14 16 21 17 16 17
Table 1.1

Relative ranking of IC technologies, after Morkog. (1 = excellent, 5 = poor)

The high speed of these devices due to an increased average electron mobility has many

benefits. The first, high frequency operation, is determined by the conventional equation,
equation (1.1).

Em

- (1.1)
21 (Cgs+Cgp)

fr

Where g,, is the transconductance and Cgg and Cg,, are the gate to source and gate to

drain capacitances respectively.

The higher average mobilities increase the average velocity which together with the
improved charge control increases the transconductance, g, and therefore the cutoff

frequency, f;. This reaches a theoretical limit in excess of 300 GHz for 1 pm gate

length GaAs devices [Haigh, 1989]. Conventional HFETs have shown good cutoff
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frequencies, with Chao [Chao, 1983] publishing values in excess of 70 Ghz for a 0.25
pm gate AlGaAs/GaAs HFET. If the average velocity is increased further by using
material other than GaAs, InGaAs for example, still higher cutoff frequencies are
possible. Hikosaka et al. review the cutoff frequencies of various different types of
HFET devis:es [Hikosaka, 1988], showing the increase in f, with decreasing gate length
and chang{ng material composition, Figure 1,2. Other reported figures include cutoff

frequencies in excess of 100 Ghz for a 0.1 um gate length AllnAs/InGaAs
pseudomorphic? HFET, [Wang, 1988).

10073
70:
o . o lattice matched HFET
2 40 « pseudomorphic HFET
% ] — conventional HFET
20
.
=]
S
107
1]
4 T T TTTT] T | S S B I R R
Q.2 0.4 0.7 10 20 4.0 70 100
Gate length /um
Figure 1,2

Variation of f; with gate length and device type, after [Hikosaka, 1988]

For high frequency operation, particularly with regard to MMICs, one of the principle
benefits of HFETSs is their low noise [Ladbrooke, 1989]. Delagebeaudeuf et al. has

shown evidence that the minimum noise equation for MESFETS, equation (1.2), is

?  Both AlGaAs and GaAs materials have a similar lattice constant, the size of the crystal cell. However

this is not always the case, with some HFETs being made form non-lattice matched materials, for example
InGaAs. These devices accommodate a small amount of strain, typically only using a thin layer of the non-
matching material, and are called "pseudomorphic" HFET:.
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applicable to HFETSs [Delagebeaudeuf, 1985).

R.+R 0.5
Np o = 1+2.5<.)ch( : D] (1.2)
8m

where Ng,., is the minimum noise figure,  the frequency, C,. the gate to channel

capacitance and R and R, the source and drain access resistances respectively.

The increased transconductance of HFETs when coupled with their lower source and
drain access resistances (the latter due to the higher low-field mobility?®), reduce their
noise figure with respect to MESFETSs. This has been verified by Pospieszalski et al.
who reported an HFET with a noise figure between 0.4 and 0.5 dB with an associated

gain between 14.2 and 15.1 dB for a device operating at 8 GHz at room temperature
[Pospieszalski, 1988].

1.3 Modelling of HFETSs

It has become apparent, especially in recent years, that good semiconductor device
design is aided by good physical models. The main aims of device models are to give
a better understanding of device operation and to accurately predict device performance,
both of which can then used to aid the design of better devices. The former, specifically
for the device engineer, gives insight into the variation of both microscopic and
macroscopic variables for different device layouts and configurations. For example, the
location of the seed for avalanche breakdown can be monitored and factors such as the
shape and depth of the gate recess altered to delay the onset of this effect. Accurate
simulation is necessary such that the performance of a particular device can be tested
and optimised before production and hence reduce both the time and expense involved

in developing a new device. The 'performance’ of a device is quite a subjective term,

*  Most of the source-drain potential is dropped over the gate region, consequently the source and drain
access regions are relatively low-field.
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formed from absolute measures of operation such as gain, cutoff frequency and noise
figure and other factors such as the susceptibility of these parameters to the variations
in fabrication which necessarily accompany the manufacture processes. It is obviously

desirable not only to have fast, high gain devices but also to obtain a high yield.

All physical device models, provided they are correct, fulfil the first aim automatically,
as they provide a window into the device and enable the user to monitor the evolution
of variables, including those that may be either difficult or even impossible to measure.
The processes occurring deep within the device are immediately observable, and the
effects of changes in the device layout and composition can readily be checked. This
information can then be fed back, acting as a guide for device improvement and
optimization, and may even be automated, running the device simulations as part of an

optimisation package, homing in on parameters such as the 'best' doping profile and

device layout.

Unfortunately the second aim is harder to fulfil since an accurate simulation requires
both accurate physical equations, a suitable choice of domain and corresponding data.
The choice of the physical equations is not trivial; too rigorous and the simulation will
produce a challenging algorithm and require excessive computation time and too simple
and the simulation may fail to model important device characteristics. Both extremes
defeat the object of accurate device simulation making their respective schemes either
too slow or too inaccurate to operate as a predictive tool. Even when appropriate device
equations have been chosen further problems arise as they may require information that
is not readily available. In the case of the HFET these unknown parameters include
values for the energy band alignment across the heterojunction interface, accurate
velocity - energy curves and even on a more mundane level accurate values for the
trapping densities at the surface. Hence the device modeller is required to use his or her
judgement at an early stage in the design of a semiconductor device model, both in the

choice of device equations, modelled domain and in assigning values to the parameters

that are either unknown or have uncertain values.

GaAs MESFETs have a whole array of physical models, both Monte Carlo and
hydrodynamic, which have been adapted for the simulation of HFETs. The Monte Carlo
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schemes have the advantage that they are quasi-exact, requiring few assumptions and are
able to take account of most microscopic processes including non-stationary dynamic
effects, velocity overshoot and ballistic transport. Also current continuity is guaranteed
and noise properties are automatically obtained. However they are very computer
intensive relying on long simulation times to improve the statistical accuracy of the
results [Salmer, 1988]. Also it is unclear how they would manage a changing sub-band

energy structure, and the effects this would have on the scattering probabilities*.

The hydrodynamic schemes started with the analytic device models, progressing through
the drift-diffusion approximations to the current 'state of the art' two-dimensional models
which are based upon a full solution of the Boltzmann transport equation. The first of
these, the analytic models, requires many simplifications to the physical device equations
and the modelled domain to produce a tractable scheme. Several examples of these
models are available in the literature including [Park, 1986], [Weiss, 1988] and [Hida,
1986]. The drift-diffusion equations using an exponential relationship for the
discretization of the current continuity equation was first employed by Scharfetter and
Gummel [Scharfetter, 1969] and an example of these equations being applied to
heterostructure devices is given by [Mawby, 1988]. Finally the more comprehensive

non-equilibrium transport models have been developed by Shawki, [Shawki, 1990a] and
[Shawki, 1990b].

However the new devices made possible by the advanced fabrication methods, with
features close to the atomic scale, require new models that take account of the novel
effects that occur in the quantum regime. Conventional models, even the highly
sophisticated non-equilibrium transport hydrodynamic schemes are based in the classical
world, using approximations for the electron wavefunction derived at the classical limit.
These schemes start to conflict with fundamental concepts in physics once the scale over

which events occur approaches the deBroglie wavelength, (1.3).

¢ Monte Carlo models follow the time evolution of the particles, allowing them to be accelerated by the

electric fields present, scattering the particles from one another according to a predetermined scattering
probability. If this probability varies as a function of the sub-band structure a comprehensive Mote Carlo model

would be much more complicated and several orders of magnitude slower, being required to calculate the new
scattering probabilities at each new time step,
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Ay = (1.3)

Boltzmann's transport equation is deterministic, with both position and momentum
specified at the same time. The Heisenburg uncertainty principle states that these
quantities cannot be resolved simultaneously, rather these quantities can only be

evaluated to within a certain accuracy, given by equation (1.4).

Ax.Ap =h (1.4)

where Ax and Ap are the uncertainties in the values of position and momentum

respectively and 4 is Plank's constant.

Thus the BTE is fundamentally in conflict with the Heisenburg uncertainty principle at
these dimensions®. Consequently the simplifying assumptions used to derive the semi-
classical device equations are no longer valid and parameters such as the electron
wavefunction which were assumed to have a travelling wave form (the classical limit)
now have to be calculated explicitly. In typical HFET devices this results in an electron
sub-band energy structure, with the allowed energy states in the conduction band
discretized, and accompanied by a corresponding change in the density of states. These
changes have two principle effects, the first is to change the electron density, which now
spreads out, blurring the sharp profiles across the heterojunction discontinuity obtained
when using classical schemes. The second is to alter the transport properties of the
electrons. The modelling of HFET's therefore requires a different transport equation that
can accommodate this feature. Several alternative theories have been developed
including the density matrix formalism, Feynman path integral and Wigner distribution
function [Wang, 1989]. Several authors have attempted to include quantum physics in
a physical device model, with perhaps the most successful, from the physics point of

view being that of Yablik et al., who self-consistently solves the three-dimensional time-

 The Boltzmann transport equation is always in conflict with the Heisenburg uncertainty principle but

when the scale lengths are large with respect to the deBroglie wavelength the relative error arising from the
uncertainty principle is small.



11

dependent Schrodinger equation with Poisson's equation, [Yablik, 1989]. The principle
disadvantages with this model is "the numerical problems encountered in specifying the
boundary conditions at the contacts of the device" and "the inclusion of dissipative
effects into the Schrédinger equation”. Also this method is very expensive in terms of
computer resources. The paper only reports results for a very small device possessing
a 26 nm gate and 120 nm total width, which has been simulated for only 0.01 ps. The
paper predicts a 1 ps simulation to take approximately 70 hours on a CRAY X-MP
computer. This is acceptable, although not desirable, for research purposes but a device

engineer requires a model that runs at least two orders of magnitude faster.

Zhou and Ferry, [Zhou, 1993] also model small devices, although this is probably to
emphasize the differences between the quantum and classical solutions. Their model

incorporates quantum mechanics by including a 'quantum pressure’ term in the electron

energy, equation (1.5)

_1 *_.2 3 .
w=om'y +EYkBT’+ Uy (1.5)

where v is the average velocity, T, the electron temperature, y the degeneracy term due
to Fermi-Dirac statistics and U, the quantum pressure term. This additional term is
calculated via a moments solution of the Wigner distribution function and is corresponds
to retaining the phase information contained within quantum mechanics from the
potential energy. The conventional hydrodynamic equations are then solved with this
correction. Whilst this method is better than the classical hydrodynamic schemes alone,
and more tractable in terms of computer resources than the model proposed by Yablik,
it fails to account for the phase information contained in the kinetic energy terms and

also neglects any change in the density of states, and the consequent discretization of
the 2DEG particle's motion.

A different approach is taken by T. Wang and C.H. Hsieh, [Wang, 1990], and S.H. Hg
et al, [Ng, 1991), both of which choose to solve the one-dimensional Schrédinger

equation normal to the heterojunction interface, and use classical transport mechanisms

to evaluate current parallel to the heterojunction. These models are much simpler in that
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they are almost quasi two-dimensional in nature, only permitting current flow parallel
to the heterojunction. Whilst this is correct for the 2DEG, and excellent quasi two-
dimensional MESFET models have been produced based upon this assumption, it is

questionable whether the inclusion of quantum effects which may be a second order

correction is worth the effort in a first order model.

1.4 Aims and scope of current research

This thesis reviews some of the physics and numerical techniques required to produce
a complete self-consistent two-dimensional model of a Heterojunction Field Effect
Transistor. Subsequently several models have been produced both in one- and two-
dimensions all including quantum mechanics. The one dimensional models are
essentially used to simulate the epitaxial layer structure of these devices, starting with
a simple Schottky-gate model and progressing to include some transport effects. The
two-dimensional FET models were produced with particular attention is focused upon
the introduction of quantum mechanics and the effects this causes. In an effort to
minimise the computational demands, and thus produce a model useful for device
design, the equations were simplified, whilst allowing transport in both the x- and y-
directions. This model, reported in Chapter 5, is superior to previous quantum models,
as it accounts for the restricted degrees of freedom of the 2DEG whilst allowing a
thorough two-dimensional analysis of current transport around the gate. The inclusion
of the important quantum effects whilst maintaining a reasonable simulation speed has
lead to a new model. This solves the Schrodinger over a two-dimensional grid assuming
that the electron wavefunction parallel to the heterojunction is described by 'free
electron’ or 'Bloch state’ wavefunctions. This assumption is justifiable since no events
occur in this direction of a scale comparable to the deBroglie wavelength, and hence
there is nothing to precipitate the quantisation of electron motion in this direction.
Further this assumption allows the one-dimensional Schrédinger equation to be solved
in slices across the device, under non-equilibrium conditions, and provides a natural and

straight forward method for the partitioning of the electrons into their two- and three-
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dimensional components. Current flow is permitted in two-dimensions®, thus a proper
analysis of substrate injection and the transfer of electrons participating in parallel

MESFET conduction is possible. This scheme also solves Poisson's equation with the

classical transport equations.

Chapter 2 details the physics underlying the heterojunction in equilibrium and non-
equilibrium conditions. The effect of the heterojunction upon the unbiased 'bulk’
parameters is discussed, together with a review of the methods used to determine the
conduction and valence band offsets. The equations governing the heterojunction are
presented together with their origins, and quantum mechanics introduced. The effects of
the discrete nature of the sub-band structure at the interface is discussed, concluding

with a description of the transport equations in this novel structure.

Chapter 3 reviews the general numerical techniques used in the subsequent FET models,
-and includes sections on the discretization and scaling of the device equations. The
choice of independent variable is discussed, and the evaluation of all the dependent
parameters described. This chapter finishes with a review of the solution schemes

available for non-linear systems, and presents reasons for the choice of the particular
method used in the FET models.

The simulation of heterojunction devices starts with a one-dimensional substrate model,
reported in Chapter 4 and follows the work of [Stern, 1984], [Vinter, 1983] and
[Yoshida, 1986]. Here the model assumes no current flow which is adequate for reverse
biased Schottky gates. This was then extended to include current flow, requiring
Schrédinger's equation to be solved under non-equilibrium conditions. Both one-
dimensional models are fast, robust and accurate, based upon a modified Newton-
Raphson iterative solution scheme. Particular attention is drawn to the form of the partial
derivatives of the quantum electron density, required by the solution scheme, and which
turn out to be surprisingly straight forward. This chapter concludes with a section on the
results of this model, simulating several different structures, and a brief discussion on

how the one-dimensional model can be extended to produce rough guides for the design

¢ Only the bulk three-dimensional electrons are allowed to participate in motion across the heterojunction.
The electrons associated with the 2DEG are bound in this direction and hence motion in this direction is
forbidden.
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of transistors.

The full two-dimensional model is described in Chapter 5, outlining the assumptions
used in the scheme. This chapter continues by describing the modelled domain, the
associated boundary conditions and the discretization schemes required for the current
continuity equation. Results from classical simulations on GaAs MESFETs are followed

by examples of HFET devices, illustrating the variation of the electron wavefunction

across the device and the effect of quantum mechanics.

Chapter 6 describes an alternative model, reviewing the quasi two-dimensional (Q2D)
scheme, including quantum mechanics. An improvement on the conventional Q2D model
is presented, that is more self-consistent with the device physics. This produces results
that are in excellent agreement with the measured characteristics of a pulse doped

pseudomorphic HFET which are illustrated in the final section of this chapter.

Chapter 7 draws conclusions from all the preceding chapters and outlines further work
on both the full two-dimensional and quasi-two-dimensional simulation schemes. The
outline for a new model is presented, an intermediate scheme between the full two-
dimensional and quasi-two-dimensional models that should be one or two orders of
magnitude faster than the present full two-dimensional model but still retain two-
dimensional current flow. Finally the use of this work is outlined and the future

possibilities regarding applications discussed.



Chapter 2

Physics of Heterojunctions

2.1 Introduction

A heterojunction is defined within the context of this work to be a junction between two
different materials, possessing different bulk parameters, whilst maintaining a single
crystalline structure. This chapter discusses the effects of placing two different materials
in such intimate contact under both equilibrium and non-equilibrium conditions. It
outlines the equations that describe the junction, introducing the quantum mechanics

used in the subsequent device models and the novel effects this causes.

2.2 Heterojunction formation

At a junction between two different semiconductors a transition region will form across
the interface, perturbing the equilibrium electron distribution of each bulk material, and
possessing different properties from both of the original semiconductors. In order to
visualize the formation of a heterojunction we can consider the two solids in isolation,
and the effects of bringing them closer together, until they are in crystalline contact. At
large separations the materials will have no effect upon one another, and thus all
parameters will have their bulk, equilibrium values, illustrate in Figure 2.1. As the
semiconductors are brought closer together the wavefunctions associated with the
conduction band electrons' in both materials start to overlap and consequently these
electrons start to spend time on each side of the heterojunction. When the two
semiconductors are finally brought together forming a single crystalline structure the
potential barrier caused by the vacuum between the two solids ceases to exist and the
wavefunctions can extend fully into both materials. The conduction band electrons now

have the freedom to travel throughout the whole structure, and will distribute themselves

! Note that only the conduction band electrons participate in chemical reactions, since the valence band

electrons are too tightly bound to the nucleus.
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Energy band diagrams for two different semiconductors in isolation

in the lowest energy states possible. In the modulation doped structures typically used
in n-type HFET's, this results in an initial migration of electrons across the
heterojunction from the wide to narrow band gap material. The resulting local space-
charge region creates an electric field which in turn opposes further diffusion.
Equilibrium occurs when the drift and diffusion currents cancel to produce no net

transport. Figure 2.4 shows a typical band diagram for such a junction under equilibrium

conditions.

There are limitations to the choice of materials that can be used to make heterojunctions,
one property that needs to be matched is the lattice constant, ie. the size of the crystal
cell. Figure 2.2 shows a scatter plot of the lattice constant and band gap for some of the
common materials used in heterostructure devices. Most heterostructure devices are
made from lattice matched materials, AlGaAs/GaAs, InP/InGaAs, AlGaSb/GaSb,
InAlAs/InP etc., though in some cases a small strain is accommodated producing a
'pseudomorphic’ device. A good example of the materials commonly used in
pseudomorphic devices is given by the AlGaAs/InGaAs/GaAs system. From Figure 2.2

it is evident that even small mole fractions of Indium in the InGaAs layer will increase



17

5_
s
>
A o AlP
& 3- o AlAs
on
g
5 GaAs
: . -
L‘ -]
l— -]
Ge GaSb InAs
[ ]
0

I I ] | I | 1
54 5.5 5.6 57 5.8 59 6.0 6.1

Lattice constants /A @ 25 °C

Figure 2.2
Energy band versus lattice constant for several

semiconductor materials and compounds

the mismatch between the more usual AlGaAs GaAs interface. This device is fabricated

to take advantage of the smaller band gap of the InGaAs compared with GaAs,
producing a larger conduction band discontinuity at the AlGaAs/InGaAs interface and

consequently increasing the effects of the heterojunction.

2.3  Bulk parameters at the interface

Physical parameters such as permittivity and effective mass are functions of the local
energy band structure and together with the band gap are usually assumed to maintain
their bulk values up to the interface, producing a discontinuity in these quantities at the
heterojunction. These properties are only strictly defined for the bulk, and although to
a first order approximation the above assumptions are valid, it is physically more correct

to model the changing energy band structure throughout the transition region, and derive
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the dependent parameters explicitly. This is not a trivial task, becoming heavily involved
with quantum mechanics. A reasonable simplifying assumption would be to model the
effects of the interface, assuming that they decrease logarithmically with distance,
essentially returning the energy band structure to that of the bulk material within a few
lattice constants of the heterojunction. This type of decay means that parameters such
as effective mass only vary significantly from their bulk values over a few nanometres,
and thus is very sharp indeed. In the models discussed in chapters 4, 5 and 6 these
parameters are further simplified by using a linear approximation for their variation with
position, which occurs as a natural consequence of the discretization scheme. The typical
grid over which the device equations are solved, particularly in the two-dimensional
model, will have a large internodal separation with respect to atomic dimensions, usually
greater than 1-2 nm. Consequently the transition region for these parameters is contained
within one or two nodal spacings. The discrete nature of the solution scheme linearly
interpolates the value of any parameter positioned in between the grid points and hence
linearly approximates the values of the parameters within the transition region. One may
argue that the internodal separations should be small enough to resolve the changes in
energy band structure, but on this scale, apart from the practical problems associated
with implementing a model with far more mesh points, it becomes questionable whether
other simplifying assumptions used to derive the device equations are still appropriate.
With spatial discretization on this scale it may therefore be necessary to perform a full

quantum analysis of the device.

The values for the bulk parameters for GaAs and AlGaAs used in the models described

in chapters four and five are all taken from [Adachi, 1985], and have the following

form.

E; = 1.424 + 1.25x + 0.143x? (2.1)

m* = 0.067 +0.083x (2.2)
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e, = 13.18 -3.12x (2.3)

where x is the aluminium mole fraction in the Al, Ga,, As.

24 Conduction and valence band discontinuities

Whilst the bulk properties such as effective mass and relative permittivity are able to be
approximated by a straight-forward linear interpolation, there is no simple derivation for
the alignment of the energy bands. Consequently two of the most important parameters,
the conduction and valence band edge discontinuities, have to be determined in a more
rigorous fashion. These discontinuities, when coupled with the band bending at the
interface, can form a two-dimensional potential well parallel to the heterojunction having
dimensions of a few nanometres. This narrow well is responsible for many of the novel
applications of heterojunction devices. The evaluation of the correct conduction and
valence band edge discontinuities forms one of the most critical parameters in the
analysis and modelling of heterojunction structures, with small errors amplified due to
the exponential nature with which the electron density varies with energy. The difference
in band gaps may be distributed between both the conduction and valence bands, and
whilst it is apparent that the sum of the conduction and valence band discontinuities
must equal the total change in band gap the exact values of these parameters is not yet
known. The ratio of offsets may depend upon many variables including the quality of
the materials and the interface, strain, doping profiles, temperature and in the
AlGaAs/GaAs system the aluminium mole fraction. Considerable effort has been
devoted to both calculating and/or measuring the exact values of these discontinuities,
but to date the band offsets have only been evaluated to within an average accuracy of
around = 150 meV. A good review of the methods used to obtain the conduction and

valence band edge discontinuities is given by Morkog [Morkog, 1991], and is briefly
summarised below.



20

2.4.1 Theoretical models for the conduction band offset

One of the simplest theoretical models, proposed by Anderson [Anderson, 1962}, sets
the vacuum level constant across the heterojunction in equilibrium. This has the
consequence that the conduction band edge discontinuity is equal to the difference in the

electron affinities of the two semiconductors, denoted A and B, leading to equation
(24).

AEc = x5-x, (2.4)

thus the valence band discontinuity is given by equation (2.5)

AE, = E,

A

—EG

-AE, (2.5)

As the value of electron affinity depends upon a given surface the conduction band
discontinuity in this model depends upon the orientation of the crystal. Note also that
the electron affinity is quite difficult to measure, depending strongly upon external

variables, and thus this approach simply replaces one difficult problem with another!

Other simple theoretical models include those based upon a different constant parameter
such as intrinsic level or conduction band edge, whilst more complicated versions
generally include quantum mechanics. One such quantum mechanical approach is the
'Tight Binding Model' proposed by Harrison, where the valence band alignment is given
from a method based upon linear combination of atomic orbitals (LCAO), [Harrison,
1977]. Another is based upon zeroing the charge associated with the Metal-Induced Gap
States (MIGS), [Tersof, 1984], which are energy levels introduced into the energy gap

of the semiconductor when the heterojunction forms.
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Ratio of valence band offset to total band gap [Wang, 1986]
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2.4.2 Experimental techniques for finding the conduction band offset

Experimental techniques for measuring the conduction band offset are just as varied as
the theoretical approach, including thermionic emission (I-V), Capacitance-Voltage (C-
V) and an array of optical emission and absorption experiments. Thermionic
measurements have been performed on a GaAs/AlGaAs/GaAs structure, forming a SIS
capacitor, [Hickmot, 1985]. Here the conduction band discontinuity produces a potential
barrier, ie. the 'insulator’ in the SIS arrangement. The low voltage I-V data is then
analyzed assuming the current is dominated by thermionic emission and the built in

potential barrier, AE., extracted. This scheme works well provided the AlGaAs layer
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is thick enough and not too heavily doped® to prevent a significant tunnelling current.
Capacitance-Voltage measurements of a Schottky-barrier structure were used by
Kréemer. Here the junction is reverse-biased and the sheet electron density obtained.
This is then used with Gauss' law to determine the conduction band offset, [Kroemer,
1980]. This has problems resolving the electron sheet density on a scale below the
Debye length due to the charge screening effect. Finally one of the optical methods uses
absorption spectra of the approximate square wells produced by very thin GaAs-InGaAs-
GaAs heterostructures [Dingle, 1974]. The discrete energy levels of the bound quantum
states within the 2DEG produce associated peaks in the spectra from which the
conduction band discontinuity can be extracted. Both of these latter methods require

good models of the heterojunction structure to evaluate their respective data and deduce

the energy band alignment.

Unfortunately many of the reported measurements of the conduction band and valence
band discontinuities are only performed on one sample, thus there is little information
on the variation of this important parameter with variables such a doping concentration,
temperature etc. Figure 2.3 illustrates the wide variation in the published data on this
variable. Taking the average of this data the valence band offset to band gap ratio in the
AlGaAs/GaAs system is 0.33 with a standard deviation of 0.09. This compares with 0.23

from Anderson's rule, just outside these error limits.

2.5 Thermodynamic equilibrium

When the interface is at thermodynamic equilibrium the system can be described by the
equations of state [Finn, 1986]. At a constant temperature, volume and number of

particles equilibrium will occur when the Helmholtz free energy, F, is minimised,

equation (2.6)

* A highly doped AlGaAs layer will induce a lot of band bending near the heterojunction, again leading

to a narrow potential barrier.
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5F (2.6)

It
o

where & denotes a small increment

Consider two materials, denoted A and B, with electrons allowed to flow across the

interface until equilibrium is achieved. Equation (2.6) can be rewritten in terms of partial

derivatives, equation (2.7).

sF = OF

oN

6NA+EF_

8N, = 0 @7
. N

B

where 8N, and 8N, are the number of electrons flowing out of regions A and B

respectively. Since the total number of electrons is conserved the number flowing out

of region A equals the number flowing into region B, hence

5N, = -5N, (2.8)

Substituting equation (2.8) into equation (2.7) it is evident by inspection that at thermal

equilibrium the partial derivatives of F with respect to N on either side of the

heterojunction must be equal, ie.

oF
aN

),

- (2.9)
, OoN

B

Electrons are added or removed from the system at the electro-chemical energy (the

Fermi-level), thus the rate of change of energy with respect to number of electrons is
this quantity, equation (2.10)



— =E, (2.10)

Consequently at thermal equilibrium the Fermi-level is constant across the
heterojunction. This result can also be derived by considering electron currents derived
from the Boltzmann Transport Equation, see Appendix B. Expressing the electron

density as a function of energy it can be shown that in the isothermal case’.
J=pnVE, (2.11)

where J is the net electron current, p the mobility and n the electron density. At

equilibrium J = 0 and since p and n are both non-zero
VE.=0 (2.12)

In equilibrium both approaches give a constant Fermi-level throughout the whole device,
and hence this parameter can be used as good reference point. With no current flowing

and the band discontinuities evaluated the energy band profile is obtainable through

equation (2.13) and equation (2.14).

E,=Eg-q.¥ (2.13)

E, = E.-E, (2.14)

where E, is the potential associated with the conduction band discontinuity and is
therefore dependent upon the material type and thus position. The electrostatic potential,

v, is given from the self-consistent solution of Poisson's equation with the charge
density, equation (2.15).

3

In equilibrium the carriers are all at the same temperature, that of the lattice, T,
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V.(eVYy) +g.p =0 (2.15)

For a typical n-type heterojunction this produces an energy band diagram similar to that
shown below in Figure 2.4 clearly illustrating the two-dimensional potential well parallel
to the interface. In this example both materials are doped at 10” donors m™. When the
narrow band gap material is left undoped the conduction band edge on this side is raised
such that the Fermi-level tends to the centre of the band gap of this material. In typical
HFET structures the wide band gap material is usually thin and terminates in either a
Schottky gate or a free surface. In both cases the conduction band edge on this boundary
is also raised above its equilibrium value, effectively reverse biased. In the case of the
Schottky barrier this is due to the 'built-in' voltage and on the free surfaces due to the
electrostatic field set up by filled traps. Hence the potential barriers seen by the electrons

are raised at both extremes, increasing their confinement within the potential well.

Under equilibrium conditions the Fermi-level is determined from equation (2.12) and y
found from Poisson's equation. However when the device is biased, and therefore placed
under non-equilibrium conditions, there is no simple solution for the Fermi-level. Also
the net electron momentum is now non-zero and the electron energy may be other than
that of the lattice*. To model the device under these conditions Poisson's equation has
to be supplemented by other device equations, one for each independent variable. These
usually take the form of conservation equations, including the particle (current

continuity), momentum and energy conservation equations.

2.6 Origin of the independent device equations

Semiconductors are modelled by solving the set of physical equations with their
associated variables. However not all equations are independent, with some redundancy,

and hence one is required to choose the ‘independent variables', and relate all other

4

Charges moving in electrostatic fields will gain or lose energy as work is done by or on the electric field
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Energy band diagram of an Aly; Ga,; As/GaAs heterojunction

variables in these terms. The choice is relatively arbitrary and made to simplify the
solution of the whole set of equations. The choice of independent variable used in the

FET models described in chapters 4,5 and 6 is discussed at the start of Chapter 3, and
the following equations are labelled accordingly.

The basic physical device modelling equations, Poisson's and current continuity, can be

derived from Maxwell's electromagnetic equations, (2.16) to (2.19), see [Selberherr,
1984].

V.D

"
©

(2.16)

V.B

[
o

(2.17)



VxE = -9B (2.18)
ot

VxH = J+_82 2.19)
ot

At low frequency® and in the steady state limit the partial derivatives with respect to

time can be neglected, hence Maxwell's third equation becomes

VxE =0 (2.20)

From differential vector calculus it can be shown that if the curl of a vector is zero it

may be expressed as a gradient field.

VxE = 0 - E = —V‘l’ (2.21)

Substituting equation (2.21) into Maxwell's first equation we obtain Poisson's equation,

the first device modelling equation.

V.(eV§)+p =0 (2.22)

where ¢ is the total permittivity, ege,

The second principle device equation, which expresses current continuity, is obtained

by taking the divergence of Maxwell's fourth equation, again at the low frequency limit

The term 'low’ here means sub MHz. A rough guide is to set the displacement current density less than

1% of the drift and diffusion current densities, at approximately 10° Am2, The displacement current is given by
the product of permittivity and the partial derivative of electrostatic field with respect to time. Given the above

limit and typical fields of the order 10° Vm™ the minimum increment in time is 10 s, corresponding to a
frequency 1 Mhz. ‘
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V.(VxH) =V.J =0 (2.23)

The third and fourth device equations, momentum and energy conservation are usually

derived from the Boltzmann Transport Equation (BTE), although this is strictly incorrect

at the heterojunction®.

Expressing the probability of a particle having a given momentum at a certain position
at a particular time as a distribution function, the electron current, momentum and
energy conservation equations may be derived formally through Liouville's theorem
[Selberherr, 1984]. This states that the derivative of the distribution function with respect

to time over a particle trajectory is zero, equation (2.24).

df(x,k,t)

=0 (2.24)
dt

Expanding equation (2.24) explicitly in terms of x, k and ¢ gives the Boltzmann
Transport Equation.

af _of [ok of 9xof _,

. . (2.25)
dt ot ot dk ot ox

By substituting Force for the partial derivative of k with respect to time and velocity for
the partial derivative of x with respect to time one obtains the BTE in its more

conventional form, equation (2.26).

& FOf, of

. — = (2.26)
dt ot h ok ox 0

6  This has already been mentioned in the introduction chapter and is expanded further in the non-

equilibrium section later in this chapter
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From classical mechanics the distribution function f (x,k,f) is given by the Fermi-
function (electrons are Fermions), and taking the first moment of the BTE this

distribution can be shown to give the classical current equation, see A ppendix B.

J = punVE, (2.27)

Evaluating the second and third moments of the BTE give the momentum (2.28) and

energy conservation (2.29) equations, [Blgtekjer, 1970].

0 d
—al’t- +V.(vp) = qnE - V(nk,T) + (?I:)C (2.28)
W 9. (W) = qnv.E-V.(vnk,T) -v.Q +(¥ (2.29)
ot ot Jc
where
(.‘?2) - _mny (2.30)
ot C tp(w)

(2.31)

Both these equations have fairly straight forward phenomenological explanations based
upon Gauss' law, which states that the rate of change of a quantity within a certain
volume equals the net rate at which that quantity is flowing across the boundaries of that
volume minus the rate at which the quantity is being destroyed within that volume. For
example the terms in the energy conservation equation can be described, in order, as the
rate of change of energy plus the flux of energy across an arbitrary boundary equals the

Joule heating minus the energy lost to electron pressure minus the energy lost to heat
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flow to the electron gas minus the energy lost to the lattice within that boundary.

2.7 Origin of the dependent device equations

The principle device variables, electrostatic potential, Fermi-level, momentum and
electron energy are supplemented by dependeht parameters such as electron and ionised
donor density and electron mobility. For example the net charge density, p, used in
Poisson's equation, equation (2.22), is given by the sum of the charge of the unbound
electrons’ and holes, ionised donors, acceptors and traps. Some of these variables are
less important, for example if the material is predominantly n-type then the
concentration of holes and ionised acceptors is low, and also if traps are neglected the
net charge density reduces to the sum of ionised donors and electrons. These extra

variables need to be expressed in terms of the independent variables, giving the

following 'dependent’ equations.

2.7.1 Ionised donors

The ionised donors are created by dopants such as silicon losing an electron to the
conduction band. The empty donor sites then form free states in the band gap of the
semiconductor, Figure 2.5, which are positively charged when vacant, and neutral when
occupied. The probability of the donor sites being occupied is given from Fermi-Dirac

statistics, hence the number of non-ionised donors is given by equation (2.32)

N,
np = 2 (2.32)
1 + g oo T

where E, is the donor ionisation energy and a is usually taken as 0.5. Here o is

17

The valence band electron's charge is cancelled by the atomic nucleus.



31

Energy w—
tri
o

---------------------- E;
EA
Ev

k a—)
Figure 2.5

Total density of states of a doped semiconductor, showing the conduction band,

valence band and the states created by donor and acceptor doping.

introduced because each site at the donor energy can only accept one electron, as
opposed to the conduction band where each site can accept two, one electron in each

spin state. N, the ionised donor density is given by N, - n,: [Peirret, 1987]

Np = Np-n, = No (2.33)
1 +2¢EElhT

From this equation it is apparent that the ionised donor density approaches its maximum
when the Fermi-level is far below the conduction band edge. E,, the donor jonisation
energy varies as a function of the aluminum mole fraction. Equation (2.34) is used for

the donor ionisation energy - conduction band minimum separation (measured in mev),
[Adachi, 1985].

E, =52+79x+7.1x? (2.34)
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2.7.2 Electron density

It is evident from the conduction band profile shown in Figure 2.4, that in highly doped
devices the band bending at the heterojunction coupled with the sharp change in
conduction band edge produces an approximately triangular potential well that can
approach atomic dimensions. When events occur that are smaller than or equal to the
size of the electron's wavepacket, the de-Broglie or thermal wavelength, classical
approximations are no longer valid, and quantum effects have to be taken explicitly into

account. From quantum theory the electron density is given by the square of the electron

wavefunction, equation (2.35).

n(x,t) = (B*(r,t)¥(r,t)) (2.35)

where the angle brackets denote an average over the entire ensemble of electrons and

the electron wavefunction, W(r¢), is given from the solution of Schrédinger's equation,
equation (2.36).

ih%‘!’o(r,t) = T(r0) %y (1) + Ulr, ) Fy(rs1) (2.36)

Here T(r,t) and U(rt) are the kinetic and total potential energy operators respectively.

The kinetic energy is simply given from the classical description, equation (2.37)

(2.37)

where the momentum is usually converted into the-ihV operator [Eisberg, 1985].

Potential energy on the other hand is rather more complicated, being formed from the
sum of both microscopic and macroscopic components. The latter corresponds to
macroscopic electric fields resulting from any externally applied biases and any bulk

charge displacement, U, in Figure 2.6. The microscopic term however, is more
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complicated, being formed from the local electric fields derived from the lattice ions.
This term can be further separated into two components, the first U, corresponding to
the potential of a perfectly periodic lattice, with the ions in their equilibrium positions,

and the second Ug, a random scattering potential introduced to include the lattice ions

motion.

Ug |

T
U, '

I
Us A

I

Figure 2.6

The three components of the potential energy of an electron, after [Datta, 1989]

If the temporal and spatial components of wavefunction are separated, equation (2.38),

the two sides of Schrddinger's equation can be evaluated separately.
P(r,t) = () E(r) (2.38)

Which when substituted into the electron density equation (2.35) gives equation (2.39)

n=Y Y (00 0,6) Ean £ (2.39)
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Solving the temporal components of the Schrdinger equation involves the left hand side
of equation (2.36), producing a first order differential equation. Assuming the total

energy to be constant with time gives equation (2.40)

‘Dm(t) = e-iEm(k)tlh (2.40)

In device modelling the solutions are typically sought over a long time scale compared
with the quantum fluctuations which has the result that the summation over the entire
ensemble of electrons, under equilibrium conditions, produces the familiar Fermi

function, equation (2.41), [Datta, 1989].

(o1 0,0) - { W) e (2.41)

0 , m#n
Substituting this function into equation (2.39) the electron density equation becomes

Z JoE) Enln) B (2.42)

Consequently a similarity with the classical analysis can be drawn [Dekker, 1958], with

the summation over m replacing the integral over energy and the &, '(r)§, (r) product

corresponding to the density of states.

The periodic nature of the potential modifies the free particle wavefunction, producing

Bloch state spatial wavefunctions.

B(r) = uy(r)esr @43

where u,(r) is a function of the crystal having the same periodicity as the lattice. When
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these wavefunctions are used in the Schrodinger equation it can be manipulated, with
the lattice potential, and hence the u,(r) part of the wavefunction taken into the kinetic

energy term, producing the effective mass Schrodinger equation, equation (2.44).

2
-2+ (Ul - &)k = O (2.44)
2m*

where m” is the effective mass. Here the energy dispersion curves for the perfectly

periodic lattice potential, Figure 2.7, are analyzed, and the effective mass deduced.

Energy (eV)

O . Sy T G — —

1 .
A X UK 2 r

Wave Vector, k

Figure 2.7
Energy dispersion curves for GaAs, [Morkog, 1991}

Fortunately the energy band diagram is nearly parabolic at its minima, producing a
constant effective mass with respect to electron energy. Thus the true wavefunction is

formed from a product of the periodic wavefunction associated with the lattice and an
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'envelope’ function derived from the solution of the effective mass Schrédinger equation.

2.7.3 Electron density at the classical limit

At the classical limit, with flat energy bands, the electron envelope wavefunctions take

the form of travelling waves, equation (2.45).

(2.45)

where Q is the total volume of the domain under consideration.

The sum over k-states in the electron density equation (2.42) can be converted to an
integral, producing a density of states that is proportional to the square root of the

electron's energy. Thus the total number of electrons is given by a Fermi-integral,

equation (2.46).

E,-E
n=Ne-2 5, ( F C) (2.46)
2

Here the conduction band edge - Fermi-level separation has been substituted for electron
energy. It is instructive to note that both the classical and quantum mechanical

treatments produce the same result, in accordance with the correspondence principle.

2.7.4 Electron density at the quantum limit

If one considers a simple one-dimensional structure comprising of two layers of different

materials, and there is a change in the electron's potential energy over a scale
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comparable to the deBroglie wavelength at the interface, then the electrons
wavefunctions can no longer described by the solutions obtained at the classical limit.
Here the wavefunction is again split into it's temporal and spatial components, with the
former again producing the Fermi-function. In this case however, the spatial
wavefunctions can be split further, into components parallel and perpendicular to the
interface. The parallel wavefunctions are unbound, and hence can be written as free
electron wavefunctions, but the normal components (in the y-direction) now have to be

calculated explicitly from the effective mass Schrédinger equation solved across the

heterojunction.

¥ d ( 1 08(¥,¢)

9 3v + - = (2.47)

where U, , the macroscopic potential energy is comprised of several terms including the
electrostatic potential, the energy associated with the heterojunction conduction band
discontinuity and the electron-electron exchange correlation energy. This case is

evaluated fully in Appendix A, and leads to a relatively straight forward derivation of
the electron density, equation (2.48).

nyp®) = Ne, T 18,0) 2 In(1 + E020T) (2.48)
k

where E,(y) and A, are the eigenvectors and eigenvalues obtained from the effective

mass Schrodinger equation, [Datta, 1989], [Stern, 1972] and [Vinter, 1984].

Comparing the quantum electron density, equation (2.48), with that at the classical limit,
equation (2.46), it is apparent that one of the principle effects of introducing quantum
mechanics is to modify the density of states term, which changes from a parabolic curve,

g(E) =< E2 to a spatially dependent term proportional to the square of the electron
wavefunction, Figure 2.8.

LEEDS UNIVERSITY LIBRARY
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All the above arguments can be applied in the general case, solving the full Schrédinger
equation. However it is not clear, due to the changing band structure, whether using the
effective mass Schrddinger equation is valid across a heterojunction. The original
effective mass Schrddinger equation was derived for the bulk case, with a single
semiconductor material, and hence the effective mass was outside the spatial partial
derivative. Morrow and Brownstein [Morrow, 1993} however have shown that the

effective mass equation can be applied to heterostructures provided the kinetic energy
operator has the form of equation (2.49).

T = —(m®*pmPpm*®) (2.49)

N =

where p is momentum and m is the effective mass and where o and B are given by
equation (2.50).

20 +p = -1 (2.50)

The kinetic energy operator used in equation (2.44) satisfies the above criterion, and can
be derived from more phenomelogical arguments, namely keeping the electron envelope
wavefunction and its first derivative continuous at the interface. This operator is also
Hermitian, and it can be shown that if quantum transport were explicitly included then
current continuity would be guaranteed. Unfortunately a full solution of Schrédinger's
equation under non-equilibrium conditions is not trivial, requiring the boundary

conditions to be defined at the contacts, [Yablik, 1989]. Thus a simplified scheme is
used which is described more fully in the Chapter 5.

The case described above creates a sub-band structure, splitting the conventional

conduction band in the 2DEG potential well. This creates conceptual problems when

describing the effective mass in such systems.
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2.7.5 Derivation of the effective mass

The effective mass parallel to the heterojunction can be calculated from the energy
dispersion curve in this direction. In the classical limit, near the conduction band

minimum, the energy dispersion curve is approximately parabolic with wave vector,

given by equation (2.51), [Chambers, 1990].

E = Egy+ a(kl+k; + k) (2.51)

where o. is a constant. The effective mass is given by equation (2.52).

= 1 azkx

= 2.52
® %2 3E? 29

Thus, differentiating equation (2.52) twice with respect to k, and inverting one obtains
a constant value, irrespective of the value of k, and k,. When Schrodinger's equation is
solved the density of states in the y-direction becomes quantised. This forms a step
function, which intersects the classical isotropic energy dispersion curve at discrete
values of k,. This produces a set of energy dispersion curves, one for each sub-band,
which are described by the same parabola as the classical conduction band minima,
simply shifted up the energy axis, Figure 2.8. One can conclude that the effective mass

of each of the sub-bands parallel to the heterojunction is the same as the classical

conduction band effective mass.

However, the density of states formed in the y-direction of this system causes conceptual
problems when the effective mass is considered. The usual description of effective mass,
given in equation (2.52) predicts either zero or an infinite mass® depending on the
electrons energy. This is clearly inconsistent with the constant value used in

Schrodinger's equation used to derive the sub-band structure. On the other hand an

8 The discretization that occurs in this direction limits the wavevectors to certain values, forming delta

functions in energy. Hence the derivative of E with respect to k, is zero.
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Two-dimensional density of states, and the corresponding

sub-band dispersion curves in the k, and &, directions.

infinite effective mass will produce the quantised bi-dimensional motion for this
structure that many researchers predict. One must conclude that the definition of
effective mass in such systems is not as straight forward as equation (2.52). For bulk
systems the effective mass was originally derived from the periodic nature of the crystal,
and hence my only explanation is that the electron has the normal effective mass at
certain energies, defined from the Schrédinger equation, and is effectively infinite
elsewhere. This interpretation is used in the subsequent device models, where the
Schrodinger equation is solved using the normal classical effective mass but the current
equations modified. If the separation between consecutive bound state energies is larger
than the thermal energy then charge transport is restricted to two dimensions, those
parallel to the heterojunction. This effect is not discussed in most of the literature
concerning the self-consistent solution of the effective mass Schrodinger equation, with

all the afore mentioned papers on this subject using the straight forward classical value

for this parameter.
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2.7.6 Quasi-continuous conduction band edge

The potential well associated with most HFET structures is roughly triangular in shape,
gradually curving to the equilibrium conduction band edge positions. As this well
widens the separation between consecutive sub-bands decreases and the two-dimensional
density of states approaches the classical parabolic curve. In an effort to again reduce
the computational demands only the bound states up to this point are calculated with the
contribution to the total electron density beyond this point approximated by the classical
Fermi-integral, extending from a 'quasi-continuous conduction band edge to infinity, see
Chapter 3. The quasi-conduction band edge is defined from the intersection of the real
conduction band edge and the energy at which the separation between consecutive bound
state drops below the thermal energy. The quasi-continuous conduction band is

illustrated as the hatched region in Figure 2.9.
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Figure 2.9

Separation of the quantum and classical electron density
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2.8 Non-equilibrium conditions

When the device or structure is biased the system is perturbed away from equilibrium.
Currents will flow in an attempt to bring the system back to equilibrium once again.

Classically current can be described by equations of the form in equation (2.53).

J = qnv (2.53)

where n is the electron density and v the mean velocity.

The electron density in these conditions can be approximated by the equilibrium
distributions, although strictly they should be derived from non-equilibrium statistics,
typically a displaced Maxwellian distribution, and hence the equations for the electron
density derived in the earlier sections in this chapter can be used. The mean velocity
causes more problems, being a complex function of time and energy. The conventional
hydrodynamic approach is to obtain v from an approximate solution of Boltzmann's
transport equation. As discussed in the introduction, the Boltzmann transport equation
is inappropriate at these dimensions, and a rigorous analysis would involve solving a
transport scheme based firmly in the quantum regime. Several theories have been
developed, discussed more fully in [Wang, 1990]. These schemes are non-trivial, not
fully developed and do not follow the same strategy. The desire to produce a modelling
scheme usable by device engineers, and thus one that is comparatively computationally
inexpensive whilst maintaining accuracy has lead to some simplifications. A similar
scheme to the classical description is used for the heterojunction system, but here the

equation for mobility is non-isotropic, differing from that used in the classical case.

When the dynamics of an electron's motion within the 2DEG are considered it is
apparent that when the electron moves in a direction perpendicular to the interface it
must exchange energy with the system, gaining or losing energy as work is done by or
on the electric field. This change in energy is transferred to the kinetic energy of the
particle's motion in this direction. From the density of states diagram,
Figure 2.8, Figure 2.9, it is evident that in the direction normal to the heterojunction

there are no vacant energy states available for the particle to move into and hence this
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event is forbidden. Consequently the particle is not allowed to move’® in this direction
corresponding to ‘zero' mobility. The two-dimensional well that forms at a heterojunction
is roughly triangular in shape, and as the width of the well increases with energy the
separation between consecutive bound states decreases. Once this separation is smaller
than k, T, the thermal energy, the electrons are again permitted to move in this direction
as they now have enough energy to transfer to the vacant states. The correspondence
principle is again confirmed, with the quantum mechanical solution tending to that

described in the classical limit when the scale length of the potential energy increases
beyond the debroglie length.

However, in the direction parallel to the heterojunction there is no such sub-band
structure and hence electrons travelling in this direction are allowed to scatter into new

states having a different energy, and thus are allowed to move. The mobility in this

direction therefore possesses a more conventional shape.

In summary, when the scale length of the electron potential energy is less than the
debroglie length one can conclude that the electron mobility is no longer isotropic, but
is separated into two components, one perpendicular and one parallel to the
heterojunction. The normal component of mobility is then zero for electrons associated
with sub-band energy levels whose separation from neighbouring bound state energy
levels is less than k, T, the thermal energy, and the parallel component given from the
two-dimensional mobility discussed in the following section. Once the bound state
energy separation is Jess than the thermal energy full three-dimensional motion is
regained and the mobility in all directions is given by the conventional three-dimensional
mobility equation. The total electron density in such systems is therefore separated into
two components; 'quantised’ electrons, restricted to motion parallel to the heterojunction,
and 'bulk’ electrons possessing all three degrees of freedom. Current normal to the
heterojunction is calculated from the conventional current equation, with the exception
that only the three-dimensional bulk, electron density is used. Current parallel to the
interface includes all the electrons, both two- and three-dimensional, however the

mobility associated with each type is different.

%  This explains why the valence band electrons do not participate in charge transport as their energy bands

are essentially full and thus there are very few vacant states for these electrons to scatter into.
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2.9 Conventional solutions of the Boltzmann Transport Equation

A full solution of the Boltzmann transport equation is non-trivial, even when at the
classical limit, where various simplifying assumptions can be made. Although some
work was done on the solution of a full non-equilibrium transport scheme it was found
that the solution of the energy conservation equation in a scheme including Schrédinger's
equation was very difficult. This model was not robust, and failed to converge for any
drain-source bias in excess of 1 volt. Consequently the problem was simplified further,
implementing the drift-diffusion approximation to describe charge transport. Although
not satisfactory for an accurate device model with sub-micron features, the drift-
diffusion approximation allowed the solution of Schrédinger's equation within a two-
dimensional device model to be investigated and it was hoped that when the problems

associated with this scheme were resolved the model could be extended to include non-

equilibrium transport effects.

In the drift-diffusion approximation carrier heating is neglected, and assuming that the
carriers are at the same temperature as the lattice, then the electron velocity can be

expressed as the product of mobility and the gradient of the Fermi-level, equation (2.54),

see Appendix B

y = = nVo (2.54)

where ¢ is the Fermi-potential and p, the electron mobility, is a function of electric
field.

When the separation of the carriers is performed, splitting them into their two- and

three-dimensional components, the currents in the x- and y-directions take on different

forms, equations (2.55) and (2.56) respectively.
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Jy = 4 (BapMyp * Hyp Myp) % (2.55)

- ob
Iy = Qb (2.56)

2.10 Electron mobility

The problem thus reduces to finding p, the electron mobility in terms of ¢, y and Vy,
the electrostatic and Fermi potentials and the electric field respectively. This term is

formed from a combination of various scattering mechanisms, Figure 2.10, including
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Figure 2.10
Figure of the various scattering mechanisms

encountered by the electrons

ionic impurity and phonon absorption and emission scattering. An increase in the
number of ionised donors increases the probability of the electrons being scattered by

this mechanism, and thus reduces the overall mobility. This effect is reduced within a
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heterostructure device by taking advantage of their ability to spatially transfer electrons
from one region to another. Thus by modulating the doping profile, with a high doping
density in the wide band gap material the electrons can be positioned in a region of low
ionised donor density. Thus the electrons are physically separated from their parent ions,
creating a 2DEG with a high carrier density in a region of high mobility. This effect is
only prominent in the low field characteristics of the electron velocity curve, as other

scattering mechanisms, including polar optical [Morkog}, become dominant in high field

transport, illustrated in the mobility curves shown in Chapter 3.

2.11 Two-dimensional electron mobility

Electrons confined within the 2DEG are subject to a different set of scattering events
to those in the bulk material, and hence one would expect a different mobility. Since
these electrons are restricted to two-dimensional motion they are subject to any
scattering event that involves transport normal to the heterojunction interface. The two-
dimensional mobility is further complicated by the sub-band structure present in the
potential well. In the bulk material the ‘negative differential resistance' displayed by
GaAs and InGaAs is attributed to the transfer of electrons from a low energy band, I,
the higher energy and lower mobility L and X bands. This transfer can also occur
between the electron sub-bands of the 2DEG system, but only if there is a low electron
density, where the upper levels are relatively unpopulated and hence permit vacant states
for the electrons to scatter into. This effect is reported by Stdrmer et al. where a
Schottky gate system was used to vary the population of the 1% and 2™ sub-bands
[Stormer, 1981]. A decrease in the electron mobility was demonstrated once the second
sub-band began to be populated corresponding to the onset of inter sub-band scattering.
However if the 2DEG density rises such that the upper sub-bands fill up and this
scattering process is reduced. This reduction in the inter sub-band scattering is not
expected to occur in the bulk GaAs since the separation of the I', L and X bands are at
least an order of magnitude greater than that of the energy levels in the sub-band

structure, and hence would require exceedingly high electron densities to significantly
fill the upper bands in this system.
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Although there have been several calculations of the low field two-dimensional mobility
and its variation with carrier density and lattice temperature [Drummond, 1981},
[Hirakawa, 1986] and [Luo, 1988] there has been little work on the field dependence of
this variable. Most workers use the temperature dependence of the low field mobility,
fitting the 'temperature’ with an equivalent electron temperature. This assumes the
electron density to be described by an equilibrium-type distribution function, either
Boltzmann or Fermi-Dirac. One author and his coworkers [Lei, 1986a] and [Lei, 1986b]
have investigated the mobility/field relationship using a non-Boltzmann balance
_equation. Here the first two sub-bands are approximated by the Fang-Howard-Stem

variational method and used to calculate an electron mobility that includes an inter sub-

band scattering term.

The case of an HFET is more complicated still since the number of sub-bands and their
energy levels and wavefunctions vary along the channel. Thus the field dependent two-
dimensional mobility curves would also vary along the channel. One possible solution
to this problem would be to model the mobility with two parameters, field and the
electron density. This would produce a different mobility under the gate from the rest
of the device due to the reduced carrier density in this region. Perhaps the only rigorous
solution would be to calculate the electron mobility in situ, as part of the FET model
itself. In this scheme the 'true' electron wavefunctions, energy levels and populations
could be used to produce a local mobility. This scheme would necessarily be very
computer intensive, probably increasing the run time by one or two orders of magnitude.
This would be unsuitable for CAD purposes and consequently with present

computational limits the 'two-parameter' electron mobility is probably a good

compromise between speed and accuracy.



Chapter 3
Numerical Modelling of Heterojunction

Field Effect Transistors

3.1 Introduction

The numerical modelling of semiconductor devices requires the physical equations
outlined in Chapter 2 to be expressed in terms transferable to computer code. This
chapter describes the general numerical schemes used to discretize, scale, evaluate

and solve these equations. The primary device equations are obtained from Maxwell's

equations and the Boltzmann transport equation:

V.(eV§)+g(Np-n) =0 3.1)
on 1
—+=V.J = 3.2)
ot ’ q 0
o, V.(vp) = qnE -V(nk,T) + op 3.3)
ot B\ at)e
CLN V.(vW) = qnv.E -V.(vnk,T) - V.Q + W (3.4)
ot )¢

The electron density is formed from the sum of the two- and three-dimensional
components
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n = Ny, +Ny, 3.5
where
mo0) = Ne,, 30 18:0) P nl + B IIkT) (3.6)
- ?\2 a l aEk(¢’¢) + _ = (3.7)
'2—'5;[';:——3)}—] (Us lk(¢’¢))ek(¢,¢) 0
and

E;~E¢ 3.8
n3D = NCm -71[ ] ( )

Finally the other dependent variables are given by equations (3.9) and (3.10).

Np =Np-n, = Ny (3.9)
1 +2 ¢ ErEkT

ko= p(w,e) (3.10)

Although these equations comprise a full description of carrier dynamics in an HFET
they are not trivial to solve, even if the quantum treatment of the electron density is
neglected. For this reason the full hydrodynamic treatment of carrier dynamics is

omitted and the older and simpler drift-diffusion approximation used instead. This
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approach is strictly only valid for long gate length devices, exactly the opposite to
what is generally produced, but greatly reduces the complexity of the numerical
schemes, halving the number of independent variables. Once the effects of explicitly
including quantum mechanics into a simple device models have been investigated,
and satisfactory numerical schemes produced that are both accurate and robust they
may be included in a more comprehensive device simulations involving the
momentum and energy conservation equations. The drift-diffusion approximation
neglects the energy transport equation, or at least omits the Joule-heating term,
setting the carrier temperature to that of the lattice. The second term in the
momentum conservation equation is also assumed to be small with respect to the

right hand side, and thus the electron velocity can be expressed in terms of the

Fermi-level, equation (3.11)

y = p—F (3.11)

With the momentum and energy conservation equations solved the problem is then

reduced to solving Poisson's and the current continuity equations self-consistently.

3.2 Choice of independent variables

Most conventional drift-diffusion models are based upon a Boltzmann statistics
description for the electron density, rewriting the equation for velocity, equation

(3.11), in terms of field and the gradient of electron density', equation (3.12)

! Hence the name: drift (field) and diffusion (Vn)
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Vv = uE-D_ (3.12)

where D is the electron diffusivity. The Einstein relationship [Selberherr, 1984] is

usually assumed and D is written in terms of p, the electron mobility, equation
(3.13).

D = (3.13)

This permits the simulation designers to choose W and n, the electrostatic potential
and electron density respectively, to be independent variables. This is the preferred
set because although the overall self-consistent solution is non-linear, each separate
device equation is linear in at least one variable and hence easily soluble requiring
only one matrix inversion. For example conventional algorithms usually follow a
simple Gummel scheme solving first for potential using Poisson's equation, assuming
the charge density to be fixed, and then for electron density using the current
continuity equation assuming the mobility to be fixed. However this does have
disadvantages, particularly in the solution of the current continuity equation. Probably

the simplest and most common scheme uses the semi-implicit time discretization,
equation (3.14).

nk+1_nk _ V.Jk*l*'V.Jk (3.14)
At 2

Even in this method, which calculates the current at the k+I™ time step, the time
increment has to be kept small to guarantee stability. The maximum permissible

increment to maintain stability is given by equation (3.15), [Selberherr, 1984]
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At < min| 222 (3.15)
wn

Difficulties also occur in the discretization of this equation. The partial derivative is
commonly evaluated by taking the difference of the currents at the half-node
positions. The electron density however varies exponentially with position, and hence
a simple algebraic average is not appropriate to find the half-node values of this
variable. The linear differencing is replaced by one that varies exponentially with

position, the Scharfetter-Gummel differencing scheme [Scharfetter, 1969].

Unfortunately when quantum mechanics proper are introduced the problem in this
form is no longer tractable for several reasons. The first is that the electron density
is no longer a simple exponential function of energy and hence the Scharfetter-
Gummel scheme is not applicable. Secondly the solution of Schrédinger's equation
requires the Fermi-level to be determined. Whilst it may not be impossible to derive
E from the independent variables y and n, it does require the inversion of equation
(3.6). This approach is complex, lengthy and does not produce an elegant solution?,

consequently an alternative approach is used, changing the independent variables.

If the electron density is replaced by the Fermi-potential as an independent variable
the scheme immediately becomes more tractable. Working with the set {y, ¢}
instead of {y,n} has the advantage that all dependent variables, ionised donor
density, electron density and mobility?, are simple functions of W and ¢. This has the
added bonuses that the electron density can never be less that zero, and also because

both independent variables are linear functions of position, and do not vary

exponentially like the electron density, their internodal values are calculable from a

2 One method proposed for effectively inverting the two-dimensional electron density equation uses an

iterative scheme, re-solving the electron density equation for different Fermi-levels until the output matches the

true electron density. This scheme is inelegant and time consuming since it requires Schrédinger's equation to
be solved many times, once for each new guess at the Fermi-level.

3 In the drift-diffusion problem the electron mobility is derived as a simple function of electric field.
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simple linear combination of the values at the nodes, equation (3.16)

Flisg =(1-0) fi+afi, : O0<a<1 (3.16)

One of the main disadvantages of this choice of variables is that the principle device
equations, Poisson's and current continuity, are no longer linear in the independent

variables, in fact quite the opposite, as they now depend exponentially upon both y

and ¢. This means that the simple solution scheme used in conventional models is
not applicable, at least not without an inner iterative loop within the Gummel scheme
to solve each equation. An alternative solution scheme is therefore necessary, with
the standard for non-linear systems, Newton-Raphson, chosen for this work [Kurata,
1982], [Press, 1989]. This solution method is more complicated than the Gummel
scheme, requiring the evaluation of the Jacobian, a matrix formed from the partial
derivatives of each equation with respect to each variable, but has the advantage of
quadratic convergence as opposed to the logarithmic convergence of Gummel's
scheme. A further disadvantage, because the {y, ¢} set are a relatively unpopular

choice for independent variables, it that there is very little literature published on the

solution of the device equations in this form.

33 Discretization

The principle device variables, W and ¢, are solved self-consistently by sampling their
values at different positions within the device domain and linking them to one
another via the principal device equations, Poisson's and current continuity. Sampling
the variables at set positions requires the spatial derivatives in all the device
equations to be discretized, which can be performed by several schemes, the most
common being finite difference, finite element and their variations. In general all

discretization methods can be used to solve a problem, but in practice some schemes
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are more applicable to certain problems. For example, in models with irregular
boundaries the finite element discretization is usual as this scheme can easily adapt
to non-rectangular shapes. The discretization chosen in this work follows the well
tested central-difference scheme which is conceptually simple and thus avoids any
unnecessary numerical complications. All finite difference schemes can be derived
from a Taylor expansion of the variables as follows. Consider a uniform grid with

an arbitrary variable, g, that is a function of position. We have, by expanding a(x+h)

a(x+h) = a(x) +hM

ox

P

i oh?) 3.17)

X

where O(h’) is the sum of all components of third order and greater. Combining with
a similar expression for a(x-h) one can derive the central difference equations, which

to second order accuracy are given by equations (3.18) and (3.19)

Sa| _ a(x+h) -a(x-h) (3.18)
x|, 2.h
Fa)| _ a(x+h) -2.a(x) + a(x-h) (3.19)
ax? h? .

When discretized variables are used the expansions for a(x+h) are laid over a mesh
of grid points. The terms a(x), a(x+h) and a(x-h) are replaced by a, a,, and q,,

respectively, where A is the internodal separation and i the nodal index.

34 Mesh refinement

In order to model a device accurately the discretization error that occurs due to the
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finite number of samples must be minimised, which in turn means that the distance
between consecutive nodes must be small. In regions where there is little change in
the variables the discretization error is small and hence it is wasteful in both
computational time and memory to have a high node density in these areas; the gain
in accuracy is minimal compared with the expense of solving the extra equations. A
more efficient scheme will cluster the grid nodes in the regions where rapid changes
occur in the variables, typically the electrostatic potential, and reduce the node
density elsewhere. Unfortunately a non-uniform grid has incomplete cancellation of
the second order terms in the Taylor expansions of the variables and thus the
derivatives will not quite be second order in accuracy, but this is compensated for
by the reduction in the sampling error in these regions. Further the central finite-
difference equations have to be modified to work on non-uniform grids, taking

account of the varying internodal separation, and thus producing equations (3.20) and
(3.21), [Snowden, 1988].

ga| _ @n-ay) (3.20)
ac|, (B +h_)
Fal| _ 2a,,  2aq . 2a,, (3.21)
ax?|, . thoD) hhy B (hrh)

A scheme is employed to fit the nodes, increasing their density in regions where
rapid changes occur. Conventional mesh refinement schemes add and/or delete lines
of nodes at certain positions, fitting the internodal separation to a variable. To
accommodate the changing number of nodes the models store the device variables
in either oversized arrays, larger than the average number of nodes, or incorporate

a dynamic memory allocation scheme®, The former is wasteful in computer memory,

4 This method stores each node as a separate entity possessing several attributes, including the values of

the device parameters at that point, the internodal positions and pointers to the neighbouring nodes. Thus the

addition of a new node only requires the allocation of some free memory and the alteration of the pointers and
internodal separations of the adjacent nodes.



56

and thus is undesirable especially if the program is to run on a personal computer.

The latter is more efficient in memory at the expense of generally more complicated

code.

In the two-dimensional case however, the discretization, coupled with the solution
scheme produces a large sparse set of linear equations. It is computationally very
advantageous for the matrix inversion routine to keep the same pattern of zero/non-
zero elements during the simulation. This in turn means that the number of nodes and
their arrangement in the mesh may not be changed and hence the conventional
method of adding and removing lines of nodes is not appropriate. A new method of
mesh refinement has been developed where the nodes are rearranged in space,
maintaining the same neighbours, but creating high node densities in regions of rapid
change. This scheme first interpolates the values of the independent variables y and
¢ using a standard cubic spline routine. A fitting curve for the internodal separations
is then extracted from one of the device parameters, typically the electric field, which

is then used to find the new nodal positions using the scheme illustrated in
Figure 3.1.

—
=

internodal separation

Figure 3.1

Internodal spacing fitting scheme
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Here the fitting curve is shown at the top of Figure 3.1. An angle, 6, is chosen and
the nodal positions are produced at the intersection of the line marked I" with the x-
‘axis. The angle © is then varied, first using a bounding algorithm and then by
bisection until the number of steps taken to reach the end of the modelled domain
matches the number of nodes. Note the ratio o} is the ratio of the minimum to
maximum mesh size. Once the new mesh has been produced the independent

variables are then fitted back to the new nodal positions using the original splined
data.

This method produces a non-uniform mesh with nodes clustered around the edges of
the contacts, at the surface and at each of the heterojunction interfaces. Figure 3.3

shows a typical non-uniform grid produced by this scheme for a single heterojunction
FET.

It was found that the solution of the

device equations depends critically upon '

B I

the aspect ratio of the grid cells, —Q@Q————0-
especially in regions of high field. I 8:
Although the equations were solved, the — ‘ _——— -
residual error was less than the | |
convergence limit, the simulation

Figure 3.2

produced results that were definitely

h aspect ratio
non-physical. Mesh asp

A simple single heterojunction FET was modelled using a simple drift-diffusion
current equation and classical statistics. This device showed a large droop in current
as the bias was increased into the saturated region of device operation. There were
no terms in the equations to produce such a response, and hence the solution
algorithm was investigated. It was found that the simulation was using a grid with
a very poor aspect ratio, greater than 20:1, and the solution depended upon the mesh.
When the aspect ratio, h:g in was reduced to less than S:1 the solutions became

independent of the mesh producing true physical characteristics, with the current
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Figure 3.3

A typical non-uniform grid consisting of 60x45 nodes

slowly increasing with bias. This restriction on the aspect ratio is particularly
significant in heterostructure devices, were highly doped materials are common. The
high doping produces a model domain with a large aspect ratio (active region depth
: source-drain separation), and thus requires many more nodes in the x-direction than
the y-direction to maintain a cell aspect ratio of less than 5:1. This causes problems
since to accurately model the heterojunction a large number of nodes are required in
the y-direction. If an even larger number of nodes are required in the x-direction to
maintain a good aspect ratio the overall scheme will become very large indeed! In
the two-dimensional simulations discussed in Chapter 5 a non-uniform mesh is
employed that is only non-uniform in the x-direction. This results in a much lower
probability of a poor aspect ratio in a critical region, ie. in the potential well at the
drain edge of the gate. With this mesh refinement the grid has the same nodal pattern

in the x-direction shown in Figure 3.3, but a uniform internodal separation in the y-
direction.
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Ips-Vps curves for several different mesh configurations

3.5 Scaling of the variables

The conventional argument used for scaling the device variébles is based upon
changing their absolute values to be of around the same order of magnitude,
preferably unity, aiming to reduce the possibility of round-off error. With
workstations and modern compiler's providing double and quadruple precision
variables, possessing a range of +10°* or more the problem of round-off error is not
so prominent. In practicellittle or no change is observed when scaling has been
incorporated into the models discussed in chapters 4,5 and 6. However scaling is still
employed in the program code to simplify the equations, reducing the number of
terms, and consequently omitting a lot of factors at the beginning of the code. This
is more significant when the solution process is considered, which in both the one-
and two-dimensional models requires the derivative of the device equations with

respect to each of the variables. Fewer terms in the equations produces shorter more
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compact code with less opportunity arising for programming errors. The variables are

scaled according to a modified DeMari scheme, [DeMari, 1968], but where n;, the

intrinsic electron density in the DeMari scheme is replaced by N g, the density

of states in GaAs, Table 3.1. It is worth noting that this scaling scheme produces

dimensionless scaled variables.

Table 3.1

3.6 Evaluation of the dependent variables

#
Variable Description Scaling Value
factor (at 300K)
v, ¢ Potentials i 38.67
kT
n, p, Charge 1 2.30x10%
Np', N, Ny densities Ne Gas
X, Y, Positions and k;Te, |3 5.52x10%
h, g internodal separations 2
4°Ne Gass

Table of the variable scaling factors

Some of the dependent variables are not straight forward to obtain, for example the

two-dimensional electron density requires the solution of Schrddinger's equation, the

three-dimensional electron density has no algebraic solution, and the electron

mobility is obtained from Monte-Carlo data has to be characterised. This next section

deals with the evaluation of these variables.
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3.6.1 Two-dimensional electron density

The electron density is modelled by splitting it into two components, n,, and nyy,

as discussed in Chapter 2.
Ry = Mop+ My (3.25)

The two-dimensional electron density is obtained from the solution of the one-

dimensional effective mass Schrodinger equation, (3.26), see Appendix A.

_lz_a_( 1 98(v.9)

2 0y|m* 0y ]+(UE-A‘k(¢b¢))Ek(¢,¢) =0 (3.26)

where U, is the total potential the electron experiences. Here the Schrédinger
equation is solved in each vertical slice, perpendicular to the heterojunction,
throughout the whole of the simulation domain. Upon each iteration of the global
solution scheme there will be N separate solutions® of Schrddinger's equation.
Schrédinger's equation is more complicated to solve than most partial differential
equations, principally because there is no unique solution. Indeed in the modelling
of the heterojunction we desire the first k solutions, until the separation between
consecutive bound state energies is less than the thermal energy. The partial
derivatives that form the first term in Schrédinger's equation are discretized using
central finite differences, in a similar fashion to Poisson's equation, converting the
whole equation to a matrix form. Many different techniques have been developed for
solving the eigensystems of general matrices, for example Jacobi transformations,
Householder reduction and QR/QL algorithms, to name but a few [Press, 1989], but
since Schrodinger's equation is only required in one-dimension and its corresponding

discretized matrix is tridiagonal we can take advantage of this special form.

s

Where N is the number of nodes in the x-direction



62

Considering a general eigenvalue problem, equation (3.27)
Ax = Ax (3.27)
it is apparent that if the zero vector is omitted eigenvalues occur when
det|A-AI| =0 (3.28)

where [ is the identity matrix.

Thus we can expand out the determinant into an N* degree polynomial and search
for the roots. In general this is not a good computational method for finding
eigenvalues, [Press, 1989], but in the case of a tridiagonal matrix the characteristic
polynomial associated with the determinant is straight forward to evaluate. The roots
are therefore found using the bisection method operating upon a Sturm sequence
[Wilkinson, 1971]. This counts the number of changes of sign of the characteristic
polynomial, and hence the number of roots. Here the upper and lower limits are
initially set using Gershgorin's theorem, [Stder, 1980], and then updated from the
previously calculated eigenvalue. It is apparent that unless the system is degenerate
the k+I" eigenvalue must be larger that the k*, and thus the lower limit for the
bisection algorithm can be set to this value. Unfortunately this does not produce a
radical improvement in the speed of the eigenvalue solver as it only reduces the
search region by a small amount®, but since this information is available and there
is no penalty in applying it, the lower limit is updated. Once an eigenvalue is
computed it is checked for degeneracy, separation from the previous eigenvalue and
position with respect to the conduction band edge at the top and bottom surfaces. The
first check is to prevent problems in the calculation of the partial derivative of the

two-dimensional electron density with respect to the electrostatic potential. This term

6

Note: a 50% reduction in the search region will only reduce the number of bisections by one.
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includes a denominator of the form A, - A,,, which if the eigenvalues were
degenerate would be identically zero, and thus the partial derivative infinite which
is clearly non-physical. The second term checks for the quasi-continuous conduction
band minimum, which occurs when the separation is less than the thermal energy and
terminates the solution of Schrodinger's equation, assuming the electron density
beyond this point is approximated by the Fermi-integral. Finally the boundary check
is to ensure the solutions of Schridinger's equation are true bound states, otherwise
a quantum mechanical current is possible which is not included in the model. This
is therefore accommodated within the scheme by truncating the solution of further
'bound' states and setting the quasi-continuous conduction band minima to this energy

as opposed to the energy separation criterion.

If the eigenvalue passes all these tests it is taken as being a true bound state and used
for the calculation of the 2DEG density. The eigenvalue is substituted back into
Schrédinger's equation and the corresponding eigenfunction solved for using LU

decomposition. Again the matrix is tridiagonal allowing a special LU decomposition
algorithm to be used.

Part of the total potential, U, used in Schrodinger's equation, though not particularly
significant is the exchange-correlation energy. This term is associated with 'many-
body effects' that accompany the change from a single particle description. The
exchange-correlation energy is purely a quantum mechanical effect, and can be

approximated by the analytic equation below, equation (3.29) described by [Stem,
1984].

V.(x) = -[1+0.7734B10g‘(1+[3‘1)][nir)Ry' (3.29)

where
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1
-[A )3 - _ & (3.30)
* (%) » PEBw =
-_1. 4 2
rx) = (%Tta'?’n(x)) i, a' = _”%0)6;2;_ (3.31)
X

and Ry" is the Rydberg constant.

This term is included for completeness as it does not effect the speed and/or
robustness of the model even thought it does not significantly alter the solution. Note

this term is also relatively inexpensive to calculate in terms of computational time
and memory.

Attempts have been made to approximate the solution of the one-dimensional
effective mass Schrodinger equation assuming a triangular potential well
[Delagebeaudeuf, 1982] and [Widiger, 1985]. This shape has known solutions, taking
the form of Airy functions, but is highly dependent upon the choice of empirical
fitting parameter, producing worse results than simple Boltzmann statistics if chosen
incorrectly [Yoshida, 1986]. Since this scheme is highly empirical, and the solution
of Schrodinger's equation is not overwhelmingly more difficult, it was decided to

include a fully self-consistent solution of Schrédinger's equation in the device
models.

Self-consistent solutions of Schrddinger's equation over semiconductor interfaces
were initially performed for the SiO,/Si junction in silicon MOSFETs [Stern, 1968}
and [Stern, 1972]. Here the abrupt change in band gap again produces a roughly
triangular potential well parallel to the heterojunction, but in this case, because it
cannot penetrate into the insulator, the wavefunction is assumed to tend to zero at the
interface instead of at the free surface. There are numerous publications on the self-
consistent solution of the one-dimensional effective mass Schrédinger equation over
AlGaAs/GaAs heterojunctions, including papers by [Vinter, 1983], [Stern, 1984] and

[Shey, 1988]. A good review of the classical Boltzman and Fermi-Dirac statistic
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solutions, the triangular well approximation and the full self-consistent solution of

Schrodinger equation is given by [Yoshida, 1986].

3.6.2 Three-dimensional electron density

The three-dimensional component of the total electron density is approximated using

the Fermi-integral, equation (3.32)

nyp = N gp

/
[EF‘EC] (3.32)
12|

k,T

but integrating from the quasi-continuous conduction band minima as opposed to the
classical conduction band edge. The quasi-continuous conduction band edge is
formed from the merging of the 'discrete’ quantised sub-band structure, which occurs
when the separation between consecutive bound state energies is less than the thermal
energy. This profile is modelled by taking the intersection of the classical conduction
band edge, derived from the electrostatic potential, and the first bound state energy
satisfying the above criterion. This is illustrated in Figure 2.9 which shows the
classical conduction band edge, the sub-band structure and the quasi-continuous
conduction band profile. Also shown is the separation of the total electron density

into the two- and three-dimensional components corresponding to 2DEG and bulk
electrons.

The Fermi integral is not analytically soluble, and is therefore modelled using a curve
fit approximation. Several curve fits have been proposed by different authors, the one
chosen in this work, equation (3.33), is described by D. Bednarczyk and J.

Bednarczyk [Bednarczyk, 1978)] having a relative error of less than + 0.5% over the
whole range of arguments.



66

e
2 (3.33)
F1p(n) = -
cn) +e™
where ¢(n) is given by equation (3.34).
3
4 ﬁ 3.39)

c(n) = —
(50 +n* +33.6m.(1 - 0.68¢ 01D

This curve is displayed in Figure 3.5 in conjunction with its asymptotic expansions.

10

Ry |

103

F (n)

Figure 3.5

Curve fit Fermi-integral of order ¥ and its asymptotic expansions

In both the one- and two-dimensional models, bulk electrons only occur when the
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quasi-continuous conduction band edge is well above the Fermi-level, thus this term
could be approximated using Boltzman statistics instead. However, the overall
solution method requires an initial starting point which is provided by solving the
equations using the classical approximations, namely the with the electron density
described by the Fermi-integral. Thus the function for the Fermi-integral is coded and

since there is no penalty in incorporating it into the final code it is used in the

simulations.

3.6.3 Ionised Donor density

The ionised donors are also modelled using Fermi-Dirac statistics as described in
chapter two. The modelling of this variable is therefore very straight forward,
involving only the evaluation of one exponential function and its derivative with
respect to energy. The only complication with the evaluation of this variable arises
in ensuring that the exponential term does not overflow. This is simply done by
capturing values outside the overflow limit. In most cases this is not required since
the normal range of energies expected is well within the range of arguments, ie. the

conduction band - Fermi-level separation is unlikely to be greater than 7 eV.

3.6.4 Traps

Tonised traps are treated in the same fashion as donors, with the exception that they
are negative when filled and neutral when empty. Traps are used on the upper surface
of the modelled domain to produce the surface potential. The surface potential is of
a similar value as the Schottky 'built-in' bias, approximately 0.5 V, and provides the
necessary band bending at this boundary to guarantee the confinement of the electron

wavefunction. Hence this parameter allows the boundary conditions for the

wavefunction to be defined, &, |, = 0. The depth and density of the surface states
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is fairly arbitrary, chosen such that they penetrate approximately 10-20 nm and

produce a surface potential of the correct value.

3.6.5 Mobility

For simplicity the mobility is modelled using the conventional three-dimensional
mobility equations described by [Snowden, 1984].

{+_ BSx10°E?

3001, moEo (1 -53x10T,) (3.35)
po= :
T, (1+(EIEy")
where
0.8
fo T (3.36)
1+ Np '
103
and
E, = 4x10° (3.37)

This produces the set of curves shown in Figure 3.6, illustrating the variation of the

three-dimensional electron velocity with both field and ionised donor density.

In the previous chapter the two-dimensional mobility was discussed but for simplicity
is omitted in the FET models produced as part of this work. This term will be
important but to date there is little published data on the form of this parameter and

suitable fitting curves. Indeed there may be no unique curve for this parameter as it
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Electron velocity versus electric field

N+ = 10%, 10%, 10%, 10® and 10% from the top down

is likely to be a function of the electron wavefunction profile and hence will be
strongly dependent upon the FET structure and operating bias. It may be the case that
to produce a fully self-consistent model the electron mobility will have to be
evaluated during the solution process, changing from one iteration to the next, which

will have the consequence that the simulation will become more computationally
intensive and probably less robust.

3.7 Solution schemes

The discretized device equations using the chosen variables form a set of coupled,
highly non-linear equations. The standard solution method for non-linear equations

is the Newton-Raphson scheme (abbreviated to Newton scheme). This scheme
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approximates the solution by a taking a series of tangents to the curve f(x), and given
the correct conditions is able to rapidly home in on the root of a non-linear equation.
Preconditions for good convergence include a well behaved function containing no
discontinuities in either the curve or its first derivative and a good initial guess. If
these criteria are satisfied the scheme possesses quadratic convergence properties

typically requiring less than 10-15 iterations to reduce the error below the numerical

noise level for these device equations.

f(xp)

i =0 f(x0)

Figure 3.7

One step in the Newton scheme

The basic Newton scheme can be described with the aid of Figure 3.7. Given an
initial guess, x,, an improved solution is found, equation (3.38), at the intersection
of the x-axis and the tangent to the curve f(x,). Once the new guess for the solution

is obtained the procedure can be repeated until the convergence criteria are satisfied.
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% 0

(3.38)

There are three common criteria used for terminating the iteration sequence, the first
is simply to stop after N steps. This is useful for setting an upper limit on the
number of iterations, ie. if the solution scheme takes more than N steps it probably

is not going to solve at all. The second method checks for the magnitude of the step

taken by the solution vector, equation (3.39).

|%har =% s € (3.39)

Again this method is probably best used as a check for the non-convergence of the
scheme. If the solution vector is very small and the error in the residual large then

again the equations are probably not going to converge in a reasonable number of

iterations. The third and best method is to check for the error in the residual,
equation (3.40). This method is infallible, since it is independent of the path taken
to the root. The safest scheme will employ this last method as the test for

convergence, and the other two methods as checks for non-convergence.

Mxk)| < a (3.40)

As stated earlier Newton's scheme requires the curve f(x) and its first derivative f/(x)
to be continuous. It is also desirable for the curve to be smooth, with no local
maxima, minima or inversion points between the current guess and the root. It is
evident from Figure 3.7 why this is the case; if the curve has a region where the
gradient is near zero, the solution increment would tend to +eo, causing the scheme
to diverge. Also it is evident why in general a good guess for the root is required,

as this will minimise the region over which the function has to be well behaved.
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When more than one independent variable is present, Newton's method has to be
extended to solve several equations at the same time (a unique solution requires at
least as many independent equations as variables). This is made possible by

rearranging equation (3.38), and substituting &x for x, - x,.

where J, the Jacobian denotes the matrix formed by the partial derivatives of the
equations with each of the independent variables and i the index referring to different
independent variables. The solution vector is calculated from a set of linear
equations, which is then added to the original value to form the updated guess for

the root ie. x, = x, + 8x. A three variable case is illustrated in Figure 3.8.

J® - dx = -f(x)

?_fl , ofp , of) 5 ¢

ox, . 0Ox, + OX % T

afz E---a-fz.-‘:--.af:z-- [ -

-a_xl : 5-){2 : 8_x3 ze - -fz

of, + ofy ¢+ of '

AR I R *;
Figure 3.8

Three variable Jacobian formed from partial derivatives

After discretization the device equations produce many independent variables, one
for each of the main device variables, y and ¢, at each of the grid nodes. Note that

in the text that follows each independent variable at each of the nodes will be
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labelled a minor variable, and each global device variable a major variable. A full
2D model having a typical mesh of 100x50 nodes will have at least 5000
independent minor variables for each major variable, all of which require their own
equation for which a root has to be found. The large number of variables causes
many practical computational problems associated with machine size and speed. Each
major variable, dependent as well as independent in the above case requires 40
KBytes, and if a full Jacobian matrix were used it would require up to several
GBytes of memory. Fortunately these minor variables are not all explicitly linked,
each connected to no more than Nx5 other variables’. Consequently the majority of
the partial derivatives that occur between these minor variables are identically zero
and the Jacobian matrix has few non-zero values (less than 0.1% for the above
example). This makes the matrix inversion procedure much less computationally

intensive and consequently much quicker, The Jacobian matrix thus forms a large,

Figure 3.9

Figure illustrating the banded nature of the two-dimensional model Jacobian

sparse set of linear equations, which in this case, can be divided into four sub-
matrices, with each sub-matrix in turn being pentadiagonal due to the grad and

div.grad operators. Many numerical techniques, including both direct and iterative

7

Where N denotes the number of independent major variables
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methods, have been used to solve this set of linear equations, briefly reviewed in the

next section.

38 Matrix inversion routines

The iterative schemes used include Gauss-Siedel and its variations, where the set is

linearised by stepping through the equations, solving for one independent variable

whilst holding the others constant, equation (3.42).

okt fl(ak’ pk’yk)
Yo fila®hpR )

(3.42) Example of a Gummel routine for three independent variables

The Gauss-Siedel scheme requires the equations to be well conditioned, ie. diagonally
dominant, to work well. It is evident that if too great a dependence on the values of
neighbouring nodes is present then the system is prone to oscillation which in turn
means poor convergence if at all. This effect can be reduced by relaxing the solution

increment, with each updated solution the sum of new and old components, equation
(3.43), [Cole, 1993].

xk+l = ach:ulmed + (1 - a)xk 3.43)

Although the Gauss-Siedel scheme worked well for the device under low Drain-
Source biases it had difficulty converging once the saturated current regime was
entered. One must conclude that whilst the device equations are relatively well

conditioned in the ohmic region of device operation they become ill conditioned once
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the saturated region is entered. This is confirmed by a calculation of the L-infinity
condition number of the Jacobian, which increases with the drain-source bias,
indicating less well-conditioned matrices. This causes problems for convergence even

when the equations are re-arranged to provide an excellent approximation for the
solution.

The usual matrix equation to be solved has the form of equation (3.44).
J(x5.8x = -f{xH) (3.44)

but by adding J(x).x to each side, and noting that x * + 8x = x**' this becomes:

J(xH.x¥ = JxH.xt-fxh) (3.45)

If the relative change in x is not large then x **' ~ x*, and the scheme should be
close to solution. This method solves directly for the next guess at the root of the
equations, rather than the increment between guesses used in the conventional
Newton scheme. This method was implemented, and even though it displayed an
initial improvement, the ill-conditioning of the Jacobian again precluded convergence

once the saturated current region of device operation was entered.

An alternative Gummel scheme was also developed which avoided the necessity of
the inversion of a large matrix. This scheme solves Poisson's and the current
continuity equations at each node using a local Newton scheme, producing a matrix
with a rank of only two or three, depending on the number of independent global
variables, y, ¢, T, etc. The corresponding inversion of this local Jacobian is much
easier when compared to the inversion of the full mesh matrix. The grid nodes are
then stepped through sequentially, resolving each mesh point until no further change
takes place. Although this scheme avoided the computational expense connected with

inverting a large sparse matrix it was unusable because each updated mesh point had
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to be considerably relaxed to avoid oscillation and hence the overall scheme became

very slow to converge.

Another method, that was semi-iterative in nature, divides the mesh into vertical or
horizontal lines, sub-dividing the Jacobian into a set of tridiagonal matrices. The
inversion of tridiagonal matrices using direct methods is fairly straight forward, with
a solution to the whole Jacobian, the set of tridiagonal matrices, found by iterating
each line solution within a relaxed Gummel loop. This scheme is more attractive
when the tridiagonal matrices are solved using an LU decomposition algorithm,
which can be stored and used to find the solution of the tridiagonal matrix upon
subsequent iterations®. Again this scheme worked well at low biases but took
progressively longer to converge as the drain-source bias is increased, until

eventually it becomes unfeasible for device simulation, requiring millions of
iterations.

Several direct methods were also tried including routines based upon Gaussian
elimination and LU Decomposition. These were initially written by the author but
more efficient routines were found in packaged routines, namely 'LINPAK' and
'‘SPARSE'. The latter of these programs is currently being used written by K.S.
Kundert and A. Sangiovanni-Vincentelli [Kundert, 1988]. This routine works by LU
decomposition and typically solves the matrix equation to within a normalised error
of less than 10"V, close to machine accuracy for these equations. Direct methods have
the advantage that they produce a solution even when the matrix is ill-conditioned,
although they can suffer from round-off error, where initially small errors in the
solution at one end of the matrix are amplified, becoming large by the time the
solution at the other end of the matrix is calculated. This effect can be reduced by
reordering the matrix elements, an operation performed automatically within
'SPARSE'. If the matrix retains the same zero/non-zero pattern the reordering
procedure need only be invoked once, at the beginning of the simulation, and the

same reordering scheme used for all subsequent matrices. This is why the new mesh

¥ This procedure only requires the multiplication of the inverted matrix with the old solution, hence in

the case of a tridiagonal matrix is performed in just 2xN operations, where N is the rank of the matrix
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refinement algorithm was developed, mentioned in section 3.4, which retains the

same nodal pattern.

If problems still occur a more accurate solution can be found using an iterative
scheme with an approximate solution produced by SPARSE used as an initial starting

point. This has not been necessary within the solution schemes incorporated into the

full two-dimensional HFET model discussed in Chapters 5.



Chapter 4

One-Dimensional Models

4.1 Introduction

This chapter presents the modifications and additions to the numerical schemes described
in the last chapter that are required to solve the device equations for the one-dimensional
models. When Schottky barriers are modelled, due to their very low leakage current, the

electron transport can be neglected, greatly simplifying the problem. This was the first
model to include quantum mechanics developed in this study and although similar
schemes are reported frequently in the literature an elegant, robust and fast scheme is
described for the solution of the device equations for this structure. The conduction
band, sub-band structure, wavefunctions and carrier profiles are displayed for several
different heterostructures, clearly demonstrating the formation of one or more 2DEGs.

Current is then introduced in the one-dimensional case as a prelude to the two-

dimensional model, and the two schemes compared.

4.2  Schottky Gate / Heterojunction charge control model

The central problem with physical device modelling lies in accurately, robustly and
efficiently solving the set of non-linear partial differential equations that describe the
device operation. One of the simplest cases is demonstrated by a charge control model
including a Schottky gate as one of the contacts. In this case, if the gate dimensions are
assumed to be large with respect to the events occurring at the heterojunction, one can
neglect the gate fringing effects and formulate the problem in one-dimension. The model
can further be simplified when the rectifying properties of the Schottky junction are
considered. The gate, which is usually operated in reverse bias, has an exceedingly low
leakage current and thus to a good approximation this structure can be modelled
neglecting electron transport. This has the consequence that the current continuity

(particle conservation), momentum conservation and energy conservation equations are
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all automatically solved. The device is effectively in equilibrium, and hence the Fermi-

potential is flat. Since potentials are arbitrary variables, the Fermi-potential may be set

at the reference point for all positions, equation (4.1).

$=0 (4.1)

Also the net momentum is zero, equation (4.2).
D= 0 4.2)

Finally, since there are no driving terms present in the energy conservation equation the

average energy is the thermal energy of the carriers and set equal to that of the lattice,
equation (4.3).

w = %ka T, 4.3)

This leaves \, the electrostatic potential, to be found via a self-consistent solution of
Poisson's equation with the charge density. From the previous chapter the charge density
is chosen to be a dependent variable, formed from the difference of ionised donors and

electron density, both of which are functions of the conduction band edge - Fermi-level
separation.

4.2.1 Boundary conditions

In all models the device equations derived in chapter two only apply within the
simulation domain. On the surface they are complimented by the equations describing
the boundary conditions. In one-dimension the boundary conditions are relatively simple

as only the two extreme nodes are involved. In the Schottky - gate model ¢, p and w
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are solved hence only the boundary conditions for y are required. The Schottky gate
contact is modelled simply by pinning the conduction band edge at the applied gate bias
plus the Schottky 'built-in' potential, equation (4.4).

E, = Vy+V, (4.4)

As V,, the conduction band discontinuity is known y can be obtained from equation
4.5).

1|J = H - — (4'5)

There are two options available for the substrate boundary condition. Both are derived
by stipulating that this boundary is in equilibrium, and thus should be unaffected when
the gate bias is altered. The first option, method A, is to set the conduction band -

Fermi-level separation constant, such that there is no net charge present at this point,

equation (4.6).

p=Ny-n=0 (4.6)

This equation is still highly non-linear due to the exponential terms present in both the
ionised donor and electron densities. The second option, method B, is also true in

equilibrium and sets the gradient of the conduction band edge to zero, implying no
further change beyond this point.

VEg.n =0 @.7)

where n is the unit vector normal to the boundary.

Both methods are valid, and if the modelled region extends far enough into the substrate

they will both solve for the same value of conduction band edge. The first method is
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used in this work because if the modelled region is truncated too early it will produce
an error that slightly raises the conduction band edge above the true value, whereas the

second method will tend to pull the conduction band edge down, Figure 4.1

0.8 .

0.6 -
> ' truncated
© 044 ' simulation
a method A ‘g region
& .
g 024

0.0 4

0.2 T r

0 50 100

Figure 4.1

Conduction band edge under different boundary conditions

A raised conduction band edge, although strictly incorrect, will help contain the electron
wavefunctions associated with the two-dimensional electrons, and consequently makes
the model more robust. Thus in the one-dimensional Schottky gate - substrate model
both boundaries are modelled using Dirichlet boundary conditions, even though the

value of the substrate conduction band edge is not explicitly known.

4.2.2 Solution scheme

Once the boundary equations have been derived one has an equation for y at each of

the nodes; Dirichlet's equation at the first, setting y to the Schottky gate potential,
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Poisson's for all internal nodes and Dirichlet again for the substrate end, setting y such
that the net charge is zero. This system is non-linear and consequently is solved using
the Newton scheme described in Chapter 3. This involves the calculation of two
components, the Jacobian and the residual. The evaluation of the latter is straight
forward, again using the methods described in Chapter 3, whereas the Jacobian which
is formed from the partial derivative of Poisson's and the Dirichlet equations with

respect to \, and is discussed below.

4.2.3 Derivation of the 1D model Jacobian

The Jacobian is a matrix formed from the partial derivatives of the equations with each
of the independent variables. In the Schottky gate model this translates to the matrix
formed by the partial derivatives of Dirichlet's and Poisson's equations with respect to
V. The leading diagonal elements of the Jacobian correspond to the partial derivatives
of the equations with respect to the value of y at the same position, while the off-

diagonal elements are the partial derivatives with respect to the neighbouring nodes.

Writing Poisson's equation and expanding p, the total charge density, we have equation
(4.8).

de 0 92 N
—éf-g‘y“- re. ay"z’ + (NSO ~nyp(W) ~myp(¥)) = O “.8)

When the central difference scheme is implemented the grad and div.grad elements,
together with the € and grad € terms can be expressed in terms an operator matrix, P

°, which works upon y by multiplication, equation (4.9).
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2\

In one-dimension P°? forms a tridiagonal matrix, with the elements constant throughout
the simulation and independent of the value of . Thus differentiating these terms with

respect to y simply returns the same operator elements, equation (4.10).

O(PP.¥) _ pop (4.10)
oy

This 'operator’ notation is exploited in the program code, with the elements calculated
at the beginning, stored, and then used in both the formulation of the Jacobian matrix
and the evaluation of the residual error in the equations. The remaining terms in Poisson
equation to be differentiated are the charge densities which are simply functions of the
local potential, and hence are independent of the potentials at other positions in the
device. This has the consequence that they contribute no off-diagonal elements to the
Jacobian. Thus the derivative of Poisson's equation, labelled F1, with respect to y can

be written as equation (4.11) and is illustrated in Figure 4.2.

oF1 aNp ony, dmy,

— = PP,

E oy oy oy

(4.11)

where the partial derivatives of the charges are derived in the next section.

The Dirichlet equations describing the boundary conditions have no off-diagonal
elements, but take different forms. At the Schottky contact the boundary is given by
equation (4.2). Differentiating this with respect to y returns a constant, 1. The substrate
boundary on the other hand is more complicated, given by equation (4.6), and its
derivative is formed from the difference of the donor and electron density partial

derivatives at that point. It is the exponential functions in these terms that make the

system highly non-linear.
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The Jacobian matrix showing the origin of the terms

4.2.4 Calculation of the partial derivatives of the charges

All the bulk charge terms, N,* and n;, (N, p and N, if included) are simply functions

of the local difference in conduction band edge and Fermi-level. This translates to the

chosen variables as a sum, equation (4.12), where both ¢ and y are of the same sign.

'(Ec'Ep) = _Q-(‘I’-VH"‘(b) 4.12)

Thus the partial derivative with respect to vy is the same as that with respect to ¢.
Although these partial derivatives are not required in the 1D Schottky model they are

used in more complicated simulations where current flow is included.
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4.2.5 JIonised donor density

The partial derivatives of N,* are straight forward to calculate, equation (4.13) as this
is a simple expression involving only one exponential dependent upon the (y+¢) sum.
The only modification of this equation, when implemented on a computer, is to check
for overflow of the argument. This check could possibly be omitted since if the (y+¢)

sum is too large to be evaluated the whole scheme is probably in error and failing.

-4 N
aNp (¥, 0) i k, T ° (4.13)

£ (1 + 3 -VI0D 12

4.2.6 Bulk electron density

The bulk, three-dimensional electron density, n,, is given by an expression that is not

analytically soluble, &,,(n), the Fourier integral, equation (4.14).

n E.-E
Myp = NC\J_—;- 5’1,2[ ;BTF (4.14)

This term is evaluated using a curve fit equation described in Chapter 3, and thus

although not elegant the derivative is obtainable by differentiating this curve fit equation.
Note that even if there were an exact method for evaluating the derivative of the Fermi-

integral the Jacobian requires the derivative of the equations used in the model, which

in this case is the curve fit equation.
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4.2.7 Two-dimensional electron density

As shown in Appendix A the two-dimensional electron density is given by an equation

of the form, equation (4.15).

4 -
nZD('psd)) = chn ; lEk(‘IJ)lz 10g¢(1+e kT(¢ (*))) (4.15)

The derivative of n,, with respect to ¢ is relatively straight forward since neither &, nor

A, depend upon ¢.

ony (U, 0) 2 1 dex, (¥, d)
DV _ N . (4.16)
ad ‘w; 15w 1+ex,(¥,0) 80

where

L (&-2,(¥)
enu,0) = e BT ) (@1
dex, (¥,
Xk;::: ¢) - quexk(‘l’a(b) (4.18)
B

The derivative with respect to y is not so apparent since both &, and A, depend upon
this variable and one needs to resort to perturbation theory to obtain this parameter.

Differentiating n,, with respect to W and explicitly expressing the derivatives of &, and

A, gives equation (4.19).
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anZD { ("l’)
oY zk: & (1 rex(¥:0) B oy (4.19)

EW)*  dexy(w,9)
l+ex,(¥,9) ov

where

Oex(¥,¢) _ 9 A (1))

il SR b

(4.20)

The partial derivatives of &, and A, with respect to y are calculated as follows. From

the first principles of calculus one can define a partial differential as

da(y) _ a(y+H) - a(¥)
oy H

(4.21)
H-0

Expanding the wavefunction and energy levels in terms of H, a small perturbation in

energy, and truncating to first order gives equations (4.22) and (4.23).

Se(W+H) = £ (¥)+ 38, (H) (4.22)

A(W+H) = A (¥) + 81, (H) (4.23)

hence upon substitution one obtains

% | 8, ) (4.24)
E  H |,
Ok Sh(H) (4.25)
8E  H |,
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The charge on the electron is negative, thus energy is proportional to -\, and the partial
derivatives of &, and A, with respect to y are

K | % (4.26)
3y
Py 4.27)
3y O
Applying perturbation theory to equations (4.22) and (4.23) one obtains
8A(H) = [E; HE, (4.28)
8, (H) = 3 a)(H)E (¥) (4.29)
i
where
& (H) = JeHy, (4.30)
(A-4,)
and o, is obtained by normalising &,’E,.
1
ay(H) = (1 - af)z 1 (431)
Isk

As H, the energy perturbation operator, has no off-diagonal elements it may be taken
outside the integral, giving'

! The elements of &, form an orthonormal set
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3A(H) = H [E;E, = H (4.32)

t = [EHE =H[EE =0 (4.33)
and substituting o, into equation (4.31).

ak =0 (4.34)

Substituting equations (4.32), (4.33) and (4.34) into (4.24) and (4.25) one obtains the

partial derivatives of &, and A, with respect to .

—* - (4.35)
oy
% g (4.36)
oy .
Finally using this result in equation (4.19) one has
an L (9-%)
e Eanr®
) 1+e”(¢-l') ?
and by inspection it is evident that
Mo _ SMap (4.38)

Upon reflection this result is not wholly surprising as the electron potential energy is not
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a function of the absolute value of the conduction band edge, but measured with respect
to a reference, the Fermi-level. Thus an equivalent change in electron potential energy

is possible by moving either the conduction band edge or the Fermi-level in the opposite

directions.

np _ _Onyp (4.39)
aEc OE.
and since
E.=q(Vy-V¥) and E. =q.¢ (4.40)

the partial derivatives of n,, with respect to y and ¢ are identical.

4.3 Solution of the Jacobian and Hasselgrove relaxation

The Schottky gate charge control model is one-dimensional and thus the potential at
each node is only explicitly linked to that of its two nearest neighbours. As discussed
in the previous section this creates a tridiagonal Jacobian matrix. Tridiagonal matrices
are special in that they can easily be inverted requiring only 2N operations®. This is a
consequence of their special format which does not produce any fill-in's (ie. non-zero
values in positions where there previously were none), and thus also allows them to be
stored very efficiently as three vectors, one for each of the diagonal lines. One of the
most efficient solution algorithms for tridiagonal matrices is based upon the LU

decomposition algorithm [Press, 1989] and is used in this simulation.

The updated 'guess' for the solution vector is produced from the sum of the current value
and the increment calculated from the Jacobian matrix equation. In some cases the

solution scheme is more robust if relaxed, with the new solution vector formed by only

2

Matrix inversion is usually an N* operation, where N is the rank of the matrix.
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adding a fraction, o, of the solution increment, equation (4.41).

k+1

x¥l = xk+ g dx (4.41)

where o lies between 0 and 1.

From experience this system of equations generally does not require relaxation and thus
if the scheme was permanently relaxed it would be significantly slowed down. Note that
with no relaxation an ideal Newton's scheme has quadratic convergence properties, when
moderate relaxation factors (0.6-0.9) are used this is reduced to super-linear
convergence, and at high relaxation factors (<0.3) can even become logarithmic,
asymptotically approaching the solution. Therefore a good compromise between speed
and stability is given by the Hasselgrove scheme, [Powell, 1970}, which checks for
convergence upon each iteration and only introduces the relaxation factor if this criterion
fails. A record is made of the original values, the increment added and the new variable
checked for convergence. If the new error is greater than that produced by the original
variable this step is repeated with a relaxed increment. The increment can be
successively reduced until convergence is obtained. One obvious problem with this
scheme is that the solution vector can be reduced to such an extent that the new 'guess'’
for the solution vector is almost the same as the original, and hence no real change has
occurred, and therefore the next iteration will produce a similar result. Consequently the
model places a lower limit on the relaxation factor, which is typically not permitted to

drop below 0.1, even if this initially causes the overall error to increase. A typical
solution flow chart is illustrated in Figure 4.3.
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Figure 4.3

Flow chart of the Newton solution process

Figure 4.4 shows the typical convergence properties obtained for the Newton scheme
applied to these equations, note the logarithmic scale on the y-axis. It is also worth
noting that this curve corresponds to the first solution point, hence the initial guess for
the solution, whilst not poor, is certainly not excellent. Subsequent bias points, provided

the increment in bias is not too great, have a much better initial starting point using the
previous bias' solution.
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Figure 4.4

Plot of the residual error versus iteration for a typical heterojunction structure.

4.4  Results of the one-dimensional Schottky gate model

This model has been implemented on several one-dimensional structures, including a
simple single AlGaAs/GaAs heterojunction, a pseudomorphic AlGaAs/InGaAs/GaAs
heterojunction, a multi-channel AlGaAs/GaAs/AlGaAs/GaAs structure and a
homogeneous delta-doped MESFET structure. All simulations produced quantised bound

states and the conduction band edge and sub-band structure, bound state wavefunctions

and total electron density profile are shown below.

The single heterojunction structure is formed from a 30nm Al,,Ga,,As layer, doped at
1.5x10* m? on top of an undoped GaAs substrate 100nm deep. The pseudomorphic
device is similar except here a thin (10nm) undoped In,,Ga,;As placed between the
AlGaAs and GaAs layers. The multi-channel structure is formed from four layers, 30nm

of Aly;Gay,As, 20nm GaAs, 20nm of Alj,Ga,,As, followed by 100nm GaAs. Both
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Figure 4.5
Cross-sections of the devices modelled with the 1D Schottky gate model

AlGaAs layers are doped at 1.5x10%* m and both GaAs layers left undoped. Finally the
delta-doped structure is formed from a narrow layer of highly doped material, again

1.5x10** m?, placed 40nm from the Schottky gate and extending a further 10nm into the

substrate.
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Single heterojunction conduction band profile, with the first 4 bound states
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Pseudomorphic HFET conduction band profile, with the first four bound states



98

1.6 5
1.4
1.2
1.0
0.8 4

0.6 4™

Electron density / x10°m’

0.4 -

0.2 -

0.0

Figure 4.12
Delta-doped MESFET electron profile

0.8 .

0.6 -

Conduction band edge / V

Position [ nm

0 30 100 150

Figure 4.13
Delta-doped MESFET conduction band profile, with the first 4 bound states



99

These solutions were compared to the classical results and errors of up to 10 - 15% were
found in the sheet electron density. This confirms the work done by Yoshida who
compared schemes including classical Boltzmann, classical Fermi-integral, full quantum

mechanics, and the triangular well approximation, [Yoshida, 1986].
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2.0*10'6-

2

Sheet electron density / m

1.5+1016-

1.0+10'6-

5.0%10"-

0.0*10°

Gate bias | V

Figure 4.14

Classical and quantum sheet electron densities for a pseudomorphic HFET
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4.5 Rapid evaluation of device characteristics

This model, although simple, omitting many of the more complicated effects due to
charge transport, is still useful in device design, quickly giving an indication of the
amount of charge control of the gate. Also, although to be treated with caution, it can
be utilised to give an indication of device operation. For example if the gate fringing
effects are neglected, corresponding to a large gate width, the gate capacitance can be
modelled. Further if the electron velocity under the gate is assumed to be constant with

gate bias, again more likely to be true for long gate length, an average velocity can be
used and the transconductance of the device obtained.

Transconductance is defined by equation (4.42)

3] i

s,

& = (4.42)

Assuming a constant 'average' electron velocity I,,; can be expressed by equation (4.43)
Is =qZnyv (4.43)

where Z is the device length (the length of the gate fingers) and n, is the sheet electron
density, given from the integral of electron density over the modelled region. Thus as

g, Z, and v are constant with gate bias they can be taken out of the partial derivative

giving equation (4.44)
8 = qZv—— (4.44)

This simple model can be extended further to obtain characteristics such as the cutoff-

frequency and minimum noise figure. These parameters are calculated from an
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equivalent circuit model [Ladbrooke, 1989], and take the following form:

Em
- (4.45)
fr 2% (Coe *Cop)
and
Ry+R,
NF,, = l+K,mCGC[ s G] (4.46)
Em

These equations have been incorporated into the one-dimensional Schottky gate model
and the following plots produced showing the variation of these values with parameters
such as doping density. The simulation was chosen to model a proposed structure for
a power device from M/A-COM inc. The layout shown in Figure 4.15 incorporates two
pulse doped layers that supply the channel with electrons. A section under the gate has
been modelled with the one-dimensional simulator using the layer structure shown in
Table 4.1. Here the last layer is the superlattice buffer and hence is formed from
undoped alternating layers of AlGaAs and GaAs. The resulting conduction band profile
and electron density is shown in Figure 4.16, together with the channel capacitance,

Figure 4.17, Figure 4.18, transconductance, Figure 4.18, and minimum noise figure,
Figure 4.19.

These parameters were all taken at zero gate bias and using an average velocity under
the gate of 5x10* ms™. The figures illustrate that there is no point in raising the doping
density above 4x10* donors m?, as this is the value at which the transconductance
plateaus. Indeed if the doping density is increased the model predicts that the
transconductance will start to oscillate with donor concentration. This is due to the two
pulse doped layers bending the conduction band enough to create two potential wells,

and consequently two 2DEGs. The alternating transconductance is due to the two 2DEGs
and their interplay.
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Drain
—\ 0.25 pm T-Gate
n+ GaAs cap
n- AlGaAs
undoped InGaAs \
n AlGaAs -—\
Doping pulses

undoped AlGaAs/GaAs superlattice buffer

Cross-section of the proposed M/A-COM power HFET

Figure 4.15

Layer N°. Width / nm % Al % In Np / m?
1 50 24 0 2x10%
2 ! 24 0 1x10% ||
3 | 24 0 2x10%
4 12 0 20 1x10%
5 1 24 0 2x102
6 1 24 0 1x10% "
II 7 50 24 0 2x10% ||
II 8 100 2410 0 1x10% “
Table 4.1

Table of the composition of the layers in the proposed M/A-COM power HFET
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Conduction band edge and electron density for the proposed M/A-COM power HFET
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Total and channel capacitances versus pulse doping density
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4.6 One dimensional current model

Numerous problems presented themselves in the development of the full two-
dimensional model, many linked with the new form of the current continuity equations
used in this simulation. In an effort to reduce the number of variables, and hence the
complexity of this scheme, charge transport was added to the one-dimensional model
in order to study its effects, and solve the associated problems in a simpler system
before returning to the full FET model. This was done and its results discussed more
fully in the next chapter, but had the consequence that the one-dimensional model
including current was developed which was able to validate the flat Fermi-level
assumption in the Schottky gate model. Figure 4.20 illustrates a typical solution, with
the Fermi-level in the charge transport model pinned at the gate bias. Both schemes
were implemented on the same structure and the total electron density calculated for
various bias points. Figure 4.21 shows that these curves only deviate once the intrinsic
reverse bias, the Schottky ‘built-in' bias is removed by external potentials. Thus in

normal operating circumstances, with the gate reverse-biased the simple Schottky gate

model is accurate.

12-
» 087
E 0.6
04- conduction band edge
0.0 — vV Fermi-level
02 Y T 1
0.0*10° 5.010* 1.0*10” 154107
Position [ m
Figure 4.20

Fermi-level and conduction band edge of a pseudomorphic HFET

The simulation includes current flow, with the gate reverse biased at -0.5 V
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Figure 4.21
Sheet electron density versus gate bias for one-dimensional

current and Schottky gate models

It is worth noting that only a drift-diffusion current was included, with a much greater
current expected if tunnelling was allowed. A greater current implies a larger gradient
in the Fermi-level, which would be produced by reducing the sharp drop present at the
gate distributing it throughout the rest of the device. Even so under the gate this gradient
would still be small compared with the electric field and thus the simple model

excluding charge transport is still valid, although probably over a slightly smaller range.



Chapter §
Two-Dimensional HFET Model

5.1 Introduction

This chapter describes the equations and numerical schemes used in the two-dimensional
models. It describes how the quantum mechanical equations are solved over
two-dimensions to obtain the two-dimensional electron density, and how this effects the
transport within the device. Also a review of the charge transport equations is given and
the numerical schemes required to solve them are discussed. The boundary conditions
used in the two-dimensional models are presented and the methods used to obtain
convergence when the scheme becomes very ill-conditioned. Finally this chapter
concludes with some results and discusses their relevance to the future of HFET

modelling.

5.2 Quantum mechanics in two-dimensions

The rigorous solution of Schrodinger's equation in two-dimensions is non-trivial, and
certainly is not as straight forward as the solution in one-dimension. The principal
problem associated with the solution over two-dimensions is related to the form of the

quantum transport equation, (5.1).

oo = =22 ((VEYE - £°(VE)) (5.1)
2m

For the net current to be real the value of the term within the angle brackets must be

complex; i* = -1. This is satisfied if the wavefunction, &, has solutions in the form of

travelling waves, equation (5.2).
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E(k) = 2": et (5.2)

Taking the gradient of the § with respect to r would then return k&, and hence the term
within the angle brackets would indeed be complex. The first problem associated with
this solution is that a wavefunction formed from travelling waves is itself complex, and
hence the solution of the Schrddinger's equation would require much more computational
effort. This would complicate the code and although not straight forward would in itself
not produce an intractable problem. However the second problem is much harder to
solve. This relates to the boundary condition of a travelling wave. For the bound state
solution produced by the one-dimensional scheme the boundary conditions for the
wavefunctions are straight forward, the wavefunctions tending to zero at both extremes.
However when current is present this condition is certainly not applicable at the
terminals, and possibly not applicable on the artificial internal boundaries perpendicular
to the heterojunction. There is no clear method for resolving this problem and although
there would be the additional benefit that a rigorous solution of Schrodinger's equation

automatically guarantees current continuity the full two-dimensional equations have to

be simplified to produce a tractable problem.

A simpler scheme has been devised whereby Schrodinger's equation is solved over
two-dimensions by taking multiple solutions of the one-dimensional equation in slices
across the heterojunction interface, Figure 5.1, and assuming the electron wavefunctions
parallel to the heterojunction have the form of travelling wave solutions. This
assumption can be justified by considering the size of the ‘events' the electron
encounters. Perpendicular to the interface the conduction band edge changes over
approximately 10 nm, just small enough to produce bound states with energies that are
separated by more than k, T, the thermal energy. In the direction parallel to the interface
however, no events on such a small scale occur. The gate, the smallest feature in this
direction, is at least an order of magnitude larger than the debroglie wavelength, the
minimum size required to produce quantised motion. Consequently the electron
wavefunctions in these directions can be assumed to be formed from Bloch states and

the two-dimensional electron density derived using the equations from Chapter 2 and

Appendix A.
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continuity solved in
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Figure 5.1

Diagram of the one-dimensional slices over which Schrédinger's equation is solved

The quantum solver stops once the separation between consecutive bound states drops
below k ,T, and the contribution to the total electron density beyond this point is
calculated from a Fermi-integral as described in section 2.7.6. This leads to a natural
partitioning of the charge and its respective degrees of freedom, also it is worth noting
that although there is current flow in the direction normal to the heterojunction interface
it is not inconsistent with the chosen solution of Schridinger's equation, even though the
wavefunctions in this direction are not complex. The only electrons participating in
transport in the y-direction are derived from the classical Fermi-integral with the

electrons associated with the Schrodinger equation solution restricted motion parallel to

the heterojunction.

§.3 Two-Dimensional Boundary Conditions

In the full 2D model there are essentially four different types of boundary, ohmic and

Schottky contacts, the free surface and the artificial internal boundaries, illustrated in
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Figure 5.2.

ohmic boundaries

free surfaces
/ /?\

Schottky boundary

|~a———— internal boundaries ———e—

Figure 5.2

Boundaries present in the two-dimensional model

Schottky barriers place the semiconductor in intimate contact with a high conductivity
material, the gate metal, and hence it is reasonable to assume, due to the low resistance
of the gate metal that the Fermi-level on the Schottky surface is fixed constant at the
gate bias. Across the junction there exists a discontinuity in the conduction band edge,
principally determined by the surface states [Sze, 1981], which pin it on the

semiconductor side to the Schottky ‘built in' bias, V ,;, above the Fermi-level, Figure 5.3.

Ohmic boundaries on GaAs form similar energy band profiles to the Schottky gate, but
in this case a highly doped region is created in the semiconductor next to the contact
resulting in a spike in the conduction band edge that is thin enough for a considerable
tunnelling current to occur. Thus they form low resistance non-rectifying contacts. Again
one can expect the Fermi-levels to align either side of the junction, at a constant

potential due to the very low resistance of the contact metals.

As discussed in the section 5.2 problems occur with the solution of Schrodinger's

equation at this contact due to the large currents flowing in the direction perpendicular
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Schottky gate energy band diagram showing the empty and filled surface states

to the heterojunction. In these regions the true solution of Schrodinger's equation will
produce Bloch state wavefunctions. Consequently the approximations used to separate
the full two-dimensional solution of Schrédinger's equation into a quasi-two-dimensional
form are no longer applicable. The model initially simulated HFETSs by avoiding this
inconsistency, separating the modelled region into three sections. The first and last
sections, under the source and drain contacts respectively, were modelled employing the
classical approximation for the electron wavefunctions and hence the electron density
was evaluated solely via the Fermi-integral from the conventional conduction band edge.
The middle section, under the gate, possesses much less current flow across the
heterojunction and hence was modelled by explicitly calculating the electron
wavefunctions from the quasi-2D solutions of Schrodinger's equation. This scheme was
inherently ill-conditioned, with large discontinuities in the electron density occurring at
the junctions between the two types of region. This ill-conditioning was reduced by
truncating the modelled region, between the Schottky and ohmic contacts, and setting
the Fermi-level on edges of the modelled region constant at the source and drain biases.
The potential lost over the source and drain access resistances is then added to the
applied bias after the device equations have been solved. This scheme is justified by the

relatively low access resistances possessed by FETs and the large pad areas that are
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typically employed. The low resistance means that very little potential is dropped
between the ohmic contacts and the artificial boundary, and the large pad area means
that the potential across the slice will be approximately constant. This assumption can
be readily checked when the equipotential lines produced by conventional
two-dimensional models are considered, and it is observed that in these regions the

equipotential lines are approximately parallel and perpendicular to the interface'. This

produces a model domain similar to that shown in Figure 5.4.

At the free surface one can assume the material above the semiconductor is non-
conducting, hence there is no current crossing this boundary, restricting the current flow

to within the semiconductor material. As current is characterised by equation (5.3).

r gate \

AlGaAs

source
bt
~
o]
ureIp

GaAs

Figure 5.4
Diagram of modelled domain and the connections to the

source and drain via the lumped access resistances

! Itis also worth noting that this approximation is employed in quasi-two-dimensional models which have

been shown to produce very accurate results [ref]
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J = ugn V¢ (5.3)

it is apparent that Vé.n = 0, where n is the unit vector normal to the surface. The
conduction band edge at this boundary is solved via Poisson's equation, assuming that
the normal component of electrostatic field above the surface is zero. Note this surface

will have a relatively high trapping density due to surface oxidation/contamination and

crystalline defects.

Finally the artificial internal boundary in the substrate is chosen arbitrarily such that
there is no change in the device characteristics if it is moved. It is obviously
unnecessary and wasteful to model the 'whole' device, extending to regions that have no
effect on the transistor operation. It is therefore necessary to truncate the model
dimensions, only including the important regions. One suitable boundary condition
assumes these areas are far enough from the active regions to be in equilibrium and thus
to forbid current flow across these boundaries. If current were permitted to cross these
boundaries then they are not in equilibrium and it is probable that moving them would
effect the simulated characteristics. If this boundary condition distorts the current flow
within the device then the internal boundaries have been poorly chosen and should be
moved further from the active region. Thus, as on the free surface, the Fermi-level is
set such that V¢.n = 0 and the conduction band edge by solving Poisson's equation with

the normal component of field is set to zero on the boundary.

Before the truncated device domain was implemented a method was developed to reduce
the singularities that occurred at the quantum/classical interfaces. This scheme blended
the two solutions for the electron density, smoothly changing from classical to quantum
and back to classical, Figure 5.5. Although this improved the performance of the model,
making it more robust, the scheme was still ill-conditioned and failed to converge for
most biases. This method of blending was also used on the contacts, merging the
Neuman and Dirichlet boundary conditions. Conventional device models switch abruptly
between the two surface types producing sharp singularities in the solutions at these
points. It is difficult to believe that such abrupt change physically exist, especially when

the device manufacture process is considered, diffusing alloys into the semiconductor
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1.0

0.0

Figure 5.5

Variation of the fitting parameter o with lateral position

material. Thus a more physical description smooths the change in boundary conditions,
allowing some nodes to have a fraction of one boundary condition and the remainder
in the other boundary condition. The smoothing is achieved by assigning a value
between 0 and | to a variable representing the contribution of Dirichlet boundary
conditions. Thus a value of 0 implies 100% Neuman, 1 100% Dirichlet and otherwise

a blend of the two types, equation (5.4).

Boundary condition = & Dirichlet + (1 - «) Neuman (3.4)

This also allows a very general and elegant description of the surface, and if the internal
equations are substituted for ‘Neuman' in the above equation then the Dirichlet biasing

at the ohmic contacts can be extended into to device, below the surface.

This scheme makes the solution process more robust by decreasing the size of any
singularities that may occur at the contact edges, hence it is applied for numerical

reasons, although as the above argument illustrates it should produce a more physical
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simulation.

The two-dimensional FET model solves a similar set of equations to the one-dimensional
Schottky gate model. Poisson's equation is expanded to include the partial derivatives
with respect to x, thus producing a Jacobian sub-matrix with a pentadiagonal structure
as opposed to the tridiagonal format produced in the one-dimensional scheme.
Schrédinger's equation is solved at each vertical line of nodes using the same techniques
deployed in the one-dimensional model, and finally the current continuity equation using

Newton's method applied to the discretization described in the next section.

5.5 Discretization of the charge transport equations

As derived in chapter two the steady-state charge transport in the absence of holes is

given by equation (5.5).

VJ=0 (5.5)
where J, the electron current is given by equation (5.6).
V.J =V.(aqnVd) =0 (5.6)

Two schemes were originally considered for the discretization of this equation. The first

explicitly expanded the equation in terms of its grad and div.grad operators, equation
5.7.

V.J = pnVi + V(pn).Vd =0 (5.7
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Here g, the electronic charge is dropped from both sides. The pn term varies
exponentially with position and consequently the V(un) tern cannot be formed from a
simple linear discretization. This term was evaluated by again expanding it, but this time

in terms of the independent parameters, ¢ and v, giving equation (5.8).

Viun) = i(a%”l.v\p R ﬂa%’ﬂ.w (5.8)

This expansion produces grad terms operating upon linear variables, thus the simple
linear finite differences can be used without undue errors. Thus there are no
'‘Bernoulli-like' terms present that are required in more conventional schemes, where n
is chosen as an independent variable. One disadvantage of this method is that when the
Newton scheme is used to solve the equations it requires the dependent variables p and
n to be differentiated twice with respect to the independent parameters y and ¢, once
for equation (5.8) and once when this equation is differentiated to be used in the
Jacobian. This discretization method was implemented, and although it worked well for
low biases and has the advantage that the current continuity equation is simply a linear
function of the grad and div.grad operators, as discussed in section 4.2.2, it was found
to be poor when modelling the saturated regime of the device characteristics. The
discretization was found not to conserve current, which was later attributed to a poor
approximate of the derivative of p In the drift-diffusion model p is a function of three
variables, y, ¢ and | E|, the electrostatic and Fermi potentials and the absolute value of
the electrostatic field respectively. The partial derivative of pn with respect to position,

used in equation (5.7) should therefore take the form of equation (5.9).

Viun = OB o . Sun a(un
(br) = S22V -(—)% Vo + -él—illvw] (5.9)

This last term is itself a function of y (E = -Vy) was not taken explicitly into account

2 J i e
Newton's scheme itself can operated even if inaccurate guesses for the elements of the Jacobian matrix

are used but when the function itself includes a partial derivative, this term must be evaluated accurately to
produce an accurate overall solution.
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in the original scheme, and became very important in regions were the electrostatic field
varied rapidly. This effected the current continuity, producing the spikes on the current
plot shown in Figure 5.6, which should be constant between the source and drain
contacts. This method should be more easily applied to non-equilibrium simulations
where the electron mobility, W, is a function of ¢, y and w, the Fermi- and electrostatic
potentials and electron energy only. Thus the derivative of mobility with respect to each

of these parameters is straight forward to calculate.

A better scheme investigated, which is still used in present models, is derived from a

lateral current

source gate i

Figure 5.6

The total electron current density in the x-direction

form of Gauss' law and discretizes the current continuity equation at its highest level,

equation (5.10).

v.J = Jewep ~hewpy  Hom dywam
hap + By 8up * 8uy-1 (5.10)

2 2
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where h and g are the internodal separations in the x- and y-directions respectively. If
one considers a rectangular Gaussian surface drawn at the half-nodes, Figure 5.7, and
assumes the current across each boundary line to be constant then equation (5.10) can

easily be derived by integrating the current density normal to the surface.

Figure 5.7

Gaussian surface draw around node (i,j) for the solution

of the current continuity equation

This method requires the dependent variables p and n to be evaluated at the half-node

positions.

Whilst mobility is a linear variable of position electron density is not, consequently an

arithmetic average of this variable is not adequate.

(nhl + ni)

no . (5.11)
"m 2

The electron density, at least in the classical limit, is an approximately exponential
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function of ¢ and y, which do vary linearly with position thus a geometric average is

potentially applicable though is not strictly correct for anything other than Boltzmann

statistics.

M = (M. (5.12)

Here, if the electron density is expressed in exponential form, the geometric average

can be shown to evaluate it at the half node by taking the algebraic or half node values

of the independent variable

(e'l. e'lol )lfl = e(‘a*‘ul)ﬂ (5.13)

Since the Fermi-integral and the 2DEG electron density in the classical and quantum

regimes respectively are not strictly exponential functions of the electron potential
energy the FET model evaluates the mobility and electron density as functions of the

half-node potential energy, equation (5.14).

mﬂﬂ(wa(b) = n[‘l’“lz.’.wt, ¢i+12+¢i] (5.14)

As stated earlier these independent parameters y and ¢ vary linearly in between the
nodes and consequently an arithmetic average is applicable to find the half-node values
of these variables. This scheme requires three times the computer memory, storing the
values of the electron density at the node, and at the half-nodes in both the x- and
y-directions, but is guaranteed to produce a more accurate value for the half-node
parameters than either of the two simpler schemes. The partial derivatives of the
half-node variables are also returned from the same function, but here they are with
respect to the half-node electron potential energy. To describe these derivatives in terms

of the independent variables, Y and ¢ at the node, this half-node potential energy has
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to be further differentiated, equation (5.15), (5.16).

ani‘,ln = ani#lﬂ . aUEldﬂ (5-15)

U, U, =~ U,

Since U, = 0.5*(U g, + Ug,,,) the derivative of n,,,, with respect to each independent
variable at the node is simply half that of the derivative at the half-node, equation
(5.16).

an,,m - 05 an‘,m

Uy o AUy, .

(5.16)
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5.6 Results of a GaAs MESFET simulation

This current discretization scheme was first implemented on the GaAs MESFET
structure illustrated in Figure 5.8, omitting the quantum solutions. This was to ensure
that the equations solved to the expected values on a simple structure before attempting
the simulation of a more complex heterojunction device. Since this simulation omits the
solution of Schrodinger's equation the more conventional simulation boundaries were
chosen, extending the modelled region underneath the source and drain contacts. This

scheme produced the following results, illustrated in Figures 5.9 to 5.12.

Source Gate Drain
/AR a
4.(////1 77777 1}

. 0.12 ym
n+ implants \ Active region, 1.5)(1023111'3 ‘

i

0.5 pm

Substrate, 1.0x107°m°

Figure 5.8
0.5 pm gate GaAs MESFET structure
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Fermi-level for a 0.5 pm gate MESFET

The above Figure displays the Fermi-level for a GaAs MESFET biased at 2.5 V4 and
0 Vgs. This parameter is pinned at the source, gate and drain potentials along the top
edge of the diagram, with all other surfaces defined using Neuman boundary conditions,
preventing current from leaving the simulated domain. It is instructive to note the
equipotential lines in the active channel under the gate are nearly parallel and normal
to the ‘free-surface’. This feature is the underlying principle behind the

quasi-two-dimensional FET models described further in Chapter 6.

Immediately under the gate the Fermi-level is pulled up to the gate bias, with the

subsequent gradient being the driving force behind the gate conduction current.
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Figure 5.10
Conduction band edge for a 0.5 pm gate MESFET

This figure shows the equivalent conduction band edge to the Fermi-level on the
previous page. Here the conduction band edge is raised above the equilibrium value at
the surface due to the Schottky built-in bias and the surface traps. The substrate is
simply low-doped, and hence is only raised slightly above that of the active channel. If
traps were to be included in this region the substrate would become semi-insulating and

the conduction band edge would be raised further and hence produce a much greater

confining potential.

The conduction band at the source and drain contacts is degenerate, lying below the

Fermi-level due to the high doping present immediately undemeath these contacts.
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Figure 5.11
Electron density for a 0.5 pm gate MESFET

This figure again illustrates the MESFET biased at 2.5 Vg, 0 V5 but here the electron
profile is displayed. The high doping under the ohmic contacts produces the high
electron densities at these positions, which rapidly reduced to the ambient active channel
level and then lower still as the substrate is entered. The surface traps and 'built-in' gate
bias deplete the free electron density on the top surface, which extends approximately
0.1 um into the active channel. Under the gate, especially at the drain edge, the
source-drain bias tends to reverse bias the gate further extending the depletion region
almost to pinch off. At this point the effect of substrate injection is apparent, increasing

the electron density in the substrate by several orders of magnitude.
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Figure 5.12
Ips-Vps characteristics for a 0.5 ym gate MESFET

Finally the I55-Vps characteristics for this device are shown in Figure 5.12. These curves
appear correct, showing a typical transconductance, pinch-off and output conductance.
This model has no problems with convergence, with the source-drain bias taken greater
than 10 Volts and the source-gate bias varied over several volts. The overall solution
scheme is very fast solving the above curves, requiring 200 individual solutions in
approximately 1 hour 20 minutes, which is at least an order of magnitude faster than the

more conventional time-dependent Gummel based algorithms.

Overall these results compare very well with those expected for a GaAs MESFET,

which can be determined from the results presented by [Barton, 1988] and [Lee, 1993]
in their respective theses.
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5.7 Results of an A1GaAs/GaAs simulation

The scheme incorporating quantumn mechanics was then used to simulate the single
channel conventional AlGaAs/GaAs HFET structure illustrated below. At present the

simulation does not include a gate recess model, and hence only planar structures were

modelled.

Source Gate Drain

N\ N\ a
2222 77777 ?

implan \_/ 2 33300
n+ implants AlGaAs, 1.5x10 m g

0.1 ym

GaAs substrate, 1.0x10°m

Figure 5.13
0.5 pm gate single channel HFET structure

This simulation had many problems associated with numerical stability and convergence,
the results of which are apparent in the I~V curves, Figure 5.20, where the quantum
simulation is truncated above 1.5 Volts. This instability is linked to the inclusion of
quantum mechanics, and the resulting discretization that occurs. When small changes in
potential energy can alter the number of bound states a particular potential profile can
support it is not surprising the scheme has difficulties converging. This effect is
particularly prominent once the drain-source bias is sufficient to 'saturate' the output
current. Here the potential well at the drain edge of the gate is pulled out and hence

cannot support a 2DEG. Either side of this point the potential well gradually returns,
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supporting one and then more bound states. At these positions the number of 'quantum’
solutions is particularly prone to oscillation, with the residual error in the global device
equations correspondingly unstable. This can be attributed to a functional that has either
local maxima, minima or an inversion point between the current estimate for the solution

and the true value of the root. Note also that there may even be multiple roots.

The situation can be improved by reducing the increment in the drain-source bias, and
hence decreasing the probability that a maxima/minima or inversion point exists between
the current estimate and the true root. This was incorporated into the two-dimensional
FET model, which incorporated an algorithm that reduced the drain-source increment
if a satisfactory solution is not found within N iterations, where N was typically between
50 and 100. This allowed the scheme to converge for slightly higher biases, increasing
the range by approximately 10%. This modification has a limited application since

beyond a certain bias the increments became prohibitively small, producing a FET

model that was impractical for device design.

Alternative solution schemes were also tried, in an effort to reduce the effect of the poor
solution curve. These incorporated Gummel's algorithm at different levels. The first
method, already mentioned in Chapter 3, reduces the global solution scheme to a local
one, whereby a solution is found for each node, stepping through the device mesh in
sequence. This corresponds to using Newton's algorithm on a local scale and linking
consecutive local solutions via Gummel's scheme. The second method solved each
global equation, Poisson's and current continuity, independently using Newton's
algorithm and then successively iterated these solutions within Gummel's scheme until
a self-consistent solution was obtained. Both these alternatives worked for low biases,
although not as quickly or robustly as the original solution scheme, and both failed at
higher biases for the same reason. Gummel's algorithm requires that the equations being
solved to be reasonably well behaved, otherwise excessive relaxation factors have to be
incorporated to prevent oscillation. The Poisson and current-continuity equations, when
solved self-consistently with Schrddinger's equation become very ill-conditioned,
especially at higher drain-source biases. Hence both the above schemes had to be

relaxed to such an extent that they again were impractical for device simulation.
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One further improvement that increased the numerical stability of the scheme was to
simply decrease the inter-nodal spacing. The finer meshes produced in this case were

able to extend the maximum drain-source bias by a further 10-20%. This improvement

is then limited by the machine size and speed.

Figure 5.14

Fermi-level for a single-channel HFET

VGS = 0.0, VDS = 1.7

This figure illustrates the Fermi-level for the 'quantum’ solution, biased at 1.3 Vpq,
0 Vgs, just beyond the 'knee' and entering into the saturated current region on the Ip¢-

Vs curves. This pfoﬁle is very similar to the MESFET curve, at least in shape, with the

biases being pinned at the source, gate and drain contacts.

The HFET Fermi-level would differ from the MESFET curves if the source and drain
contacts were modelled in a more conventional way, placing them on the top edge of

the modelled domain. In this case, because of the significant current in the y-direction,
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the Fermi-level would be split into two sections. The top layer, in contact with the top
surface would retain its present shape, but the lower section, below the heterojunction
would be altered. Here, because of the spike in the conduction band edge there is a
corresponding low electron density, and hence a large access resistance to the 2DEG.
To maintain a significant current through this region the driving forces (the gradient of
the Fermi-level) must compensate for the low carrier density. Thus a significant
proportion of the drain-source bias would be dropped over this region, and hence the
2DEG would experience a lower driving force. This effect will be reduced because of
the large source and drain pad area, although it may still exist at the gate edges of these
contacts. To model the whole ohmic pad area would be prohibitive due to the extra
computational demands, and hence the scheme used in the present model was adopted

whereby the regions around the ohmic contacts are modelled via lumped access

resistances.
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Figure 5.15

Conduction band profile for a single-channel HFET
VGS = 0.0, VDS = 1.7

Figure 5.15 shows the conduction band profile for the single channel HFET. Here the
modelled domain is truncated to within 0.8 um either side of the gate, with the true
source and drain contacts connected via 1.7 Q lumped access resistances. The local
source-drain bias (omitting the lumped access resistances) is 1.3 Volts. The conduction
band profile clearly illustrates the abrupt change across the heterojunction, although the
spline routine used to produce the graphics has tended to smear out this discontinuity.
It is also visible that the two-dimensional potential well is pulled up at the drain edge
of the gate, and this corresponds to a reduction in the number of bound states. This
effect increases as the device is biased, and at the point shown the well will not support
any 'bound' states, and hence all the electrons at this point are derived from classical

mechanics and free to travel in both the x- and y-directions.

Again the gate and surface pull the conduction band edge up, as in the case of the

MESFET, guaranteeing the electrons wavefunctions are bound at this surface.
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Figure 5.16

Total electron density of a single-channel HFET
Vps = 0.0, Vpg = 1.7

Figure 5.16 shows the total electron profile for the device at the same bias point as the
conduction band profile on the previous page. The 'spike' of electrons in the 2DEG is
clearly visible at the heterojunction interface. In the quantum case the 2DEG extends

into the AlGaAs region than with classical mechanics, penetrating the high potential of

this region.
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Figure 5.17

First bound state wavefunction for a single-channel HFET

The y-component of the first three bound states for the single channel HFET are shown
in Figure 5.17, Figure 5.18 and Figure 5.19. Apart from the drain edge of the gate these
take on the form illustrated in Chapter 4, increasing the number of peaks with bound
states. The figures also show the wavefunction solutions at the drain edge of the gate,
even though in the model this information is omitted and the electron density calculated
from the classical Fermi-integral. At this point, as discussed earlier the potential well is

drawn out to such an extent that it will not support any 'bound' states, and consequently

the wavefunctions illustrated at this point are incorrectly bound at the substrate

boundary, where in reality they take the form of travelling waves.

The other two components of the wavefunctions (in the x- and z-directions) take the

form of Bloch state travelling waves over the whole modelled domain.
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Figure §.18

Figure 5.19

Third bound state wavefunction for a single-channel HFET
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Figure 5.20 shows the I¢-Vg characteristics for the HFET device shown in Figure 5.13.
The quantum and classical solutions are compared over a range of drain-source and gate
biases. Generally the curves are similar, one would not expect too great a change as
current classical schemes produce reasonably accurate simulations. Here the quantum
current approximately 20% lower than the classical case. This drop in current is
attributed to the lower free electron density produced in the quantum simulation, and not

the restriction in the degrees of freedom allowed for the 2DEG electrons.
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Figure 5.20

Ips-Vps Characteristics for a single channel HFET

The same device was also modelled changing the maximum number of bound states and
the degrees of freedom of the 2DEG. Figure 5.21 illustrates these results. The maximum
number of bound states was unset for most simulations, with the typical number
calculated around 3 or 4. The 2DEG was allowed to participate in transport in the
y-direction in two cases, labelled "quantum, 2D motion, 1 bound state" and "quantum,
2D motion". The former of these was restricted to one bound state only, with all the rest
of the electrons evaluated by classical statistics, When the 2DEG was allowed to move

in the y-direction the current increased slightly due to the increased freedom within the
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system, but even when there was only one bound state, and hence the incorporation of

quantum mechanics was minimal, the current didn't approach the classical solution.

14— . classical
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Figure 5.21

Comparison of the classical and quantum Ipg-Vpg curves

5.8 Results of a pulse-doped pseudomorphic HFET simulation

The full two-dimensional simulation was then run on a pulse-doped pseudomorphic
HFET structure, similar to that described in section 4.5. Here the second doping pulse
was omitted to simplify the structure, which took the form illustrated in Figure 5.22.
This simulation again produces a Fermi-level with a similar profile to the MESFET and
the single-channel HFET, Figure 5.23, but here the potential drop at the drain edge of
the gate is slightly more abrupt. This is due to the reduced substrate injection in this

device which maintains a low carrier density out of the InGaAs layer. Consequently any
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significant current in these regions requires a large driving force, and hence a large

gradient in the Fermi-level.

Source Gate Drain
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Figure 5.22
0.5 um gate pulse-doped pseudomorphic HFET structure

Figure 5.23
Fermi-level for a pulse-doped pseudomorphic HFET
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Figure 5.24

Conduction band profile for a pulse-doped pseudomorphic HFET

This figure illustrates the conduction band edge for this device. Here the sharp changes
in the conduction band edge are more visible due to the larger conduction band
discontinuity of the AlGaAs/InGaAs system as opposed to AlGaAs/GaAs. The low
doped upper AlGaAs layer is apparent under the gate, where the potential induced by
the Schottky built-in bias decreases linearly to the channel as opposed to both the

MESFET and single-channel HFET profiles which decrease quadratically’.

The electron density and ionised charge density profiles are shown in Figure 5.25 and
Figure 5.26. The ionised charge density is essentially zero for most of the device,

becoming negative at the surface due to the surface traps, and positive in the pulse

doped region.

3 The charge under the gate in these devices is roughly constant at the donor density.
With values in excess of 1.0x10? m? the solution of Poisson's equation gives a quadratic

profile, whereas lower than this and the donor density is effectively zero, which then produces
a linear profile.
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Figure 5.26

Ionised charge density for a pulse-doped pseudomorphic HFET
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Figure 5.27

First bound state wavefunction for a pulse-doped pseudomorphic HFET

Figure 5.27, Figure 5.28 and Figure 5.29 show the first three bound state wavefunctions
for this device. Again only the y-component is displayed with the x- and z-components
taking the form of travelling waves. In this device, due to the deeper potential well the
2DEG is supported, even under the drain-edge of the gate. Here the first two

wavefunctions have true solutions, producing the 2DEG, with the third neglected as this

in no longer bound by the well.
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Second bound state wavefunction for a pulse-doped pseudomorphic HFET

Figure 5.29

Third bound state wavefunction for a pulse-doped pseudomorphic HFET
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classical (Fermi-integral) simulation
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Figure 5.30
Ips-Vps curves for quantum and classical simulations of a

pulse doped pseudomorphic HFET

Figure 5.30 illustrates the Ips-Vps characteristics for this device, comparing the quantum

and classical solutions. Again the quantum solution reduces the output current by

approximately 20%, tracking the classical solution fairly closely.

5.9 Discussion

The results presented in the previous two sections illustrate the significant change in
output characteristics that occur when quantum mechanics is included to explicitly
calculate the electron wavefunction across a heterojunction interface. These results

generally imply a 20% reduction in the output current throughout all applied biases. The
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importance of the correct determination of the electron wavefunctions are demonstrated,
producing significantly different results even without modifying the transport equations.
If a more rigorous analysis were performed, with the 2DEG mobility calculated as part

of the simulation process one might expect further changes, only increasing the

requirement for a full quantum analysis of the device.

The low-doped AlGaAs layer in the pulse-doped pseudomorphic device allows the
Fermi-level under the gate to vary more freely than in the case of the single-channel
HFET. Consequently more of the drain-source potential is dropped between the source
and the gate in this device creating a smaller electric field at the drain edge of the gate.
Also, due to the deeper potential well, the pseudomorphic device retains true bound
states in this region, and therefore it is in this device that the largest effects of a rigorous
determination of the two-dimensional mobility are expected to be observed. The electron
density in the single-channel structure is nearly 'pinched-off with no corresponding
shape produced in the pseudomorphic device. This is probable due to the greater
potential dropped at the gate in the single-channel structure, raising the potential well
further above the Fermi-level. If a greater drain-source bias were applied to the

pseudomorphic device a similar electron profile could be expected in this structure also.

The 'discrete’ nature of the quantum mechanical solutions produces many numerical
problems, with the maximum drain-source bias attained in the region of 2.0 - 2.5 Volts.
Reducing both the mesh spacing and the bias increment between solutions helps to
stabilize the solution procedure, perhaps adding a further 25% to the maximum
attainable drain-source voltage. One further modification that could possibly increase the
stability of the solution process would be to make the scheme time dependent. This
would slow down the steady-state solution process by at least an order of magnitude but

with the wavefunctions allowed to evolve along a slowly changing path extra stability

may be introduced.



Chapter 6
Quasi Two-Dimensional Models

6.1 Introduction

If the regions around the contacts are omitted and substrate injection is low then the
Fermi-level can be considered approximately one-dimensional, independent of the depth
into the device. Hence the full two-dimensional problem can be reduced to a 'Quasi Two
Dimensional' (Q2D) scheme whereby the two-dimensional Schrédinger and Poisson's
equations are solved self-consistently with a one-dimensional transport equation. This
can be used to greatly simplify the device equations, rewriting them in a 'current-driven’
form, and consequently radically improving the solution times. Current driven solvers,
as their name implies, require the imposition of a drain-source current and calculate the
corresponding drain-source voltage as opposed to both the Schottky-gate and full two-
dimensional FET models discussed in Chapters 4 and 5, which set the biases on the
contacts and calculate the resulting current. Q2D device models are discussed fully in

[Panoja, 1990] and [Rodrigues, 1991] and briefly summarised below.

6.2 Quasi-two-dimensional Models

Consider a slice in the y-direction, away from the contacts, through an HFET device,
illustrated in Figure 6.1. The current normal to this surface is given by the surface

integral of the current density in this direction, equation (6.1).

I=§Jndydz (6.1)

where n is the unit vector in the x-direction.

If the fringing effects at the ends of the gate fingers are neglected the current density

can be considered independent of position in the z-direction, thus integrating in this
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Figure 6.1

Slice through an HFET for use in the quasi-two-dimensional simulation

direction simply multiplies the other terms by Z, the gate finger width. Expanding the

current density in terms of electron density and velocity gives equation (6.2).

I= qunv.dy (6.2)

If the Fermi-level is independent of y then the gradient of the Fermi-level is also

independent of y. Expanding v, the electron velocity in terms of the driving force gives

equation (6.3).

V=Hd— (6.3)

The low field electron mobility does vary with position corresponding to the local
ionised donor concentration but since the majority of the current occurs in the 2DEG
and hence the narrow band gap material this quantity can be taken as a constant and

equal the the narrow band gap value. Thus the velocity term is approximately
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independent of position in the y-direction and can be taken outside the integral.

Consequently the equation for current becomes (6.4).

I-= qZp.Vd)fn.dy (6.4)

If the sheet electron concentration can determined the gradient for the Fermi-level can
be calculated from the current equation, which when integrated over the length of the
device gives the source-drain potential. The problem then reduces to finding a suitable
approximation for the sheet electron charge density. Conventional Q2D HFET

simulations do this by approximately solving Poisson's equation (6.5).

A A I I T
= + ayz + >y (ND-n) =Q (6.5)

By integrating over the slice the electron density can be substituted by terms from the
current-continuity equation. Further replacing the partial derivatives of y with respect

to position with the electric field and neglecting the diffusion component of the current
one has equation (6.6).

E. OE
J‘(%+__!._£Ng],dy- ar_ _g (6.6)

where d is the total depth into the device.

Multiplying through the equation by the field in the x-direction and expanding the first
partial derivative using a backward-differencing scheme one has a quadratic equation in
E,|,. Here the partial derivative with respect to y and the ionised donor term are usually
grouped together and solved assuming the field in the x-direction is zero. This function
is performed at the begining of the simulation, using the Schottky-gate model described

in Chapter 4, and produces a look-up table varying as a function of the surface
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conduction band edge - channel potential' separation.

d d OE, q .. dr _ (6.7)
ZEJ‘Q - ZExl'Exl-l +Exl.f(—a;' - :ND .dy + eZu = 0

A typical plot of sheet-electron density versus surface potential is illustrated in
Figure 6.2.
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Figure 6.2

Variation of the sheet electron density with surface potential

6.3 Two-dimensional look-up table

The 'zero-field' assumption used to derive this relationship is quite accurate when the

partial derivative of E, with respect to x tend to minus infinity, however as this term

I The "channel-potential " corresponds to the Fermi-potential in the absence of a diffusion current.
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tends to plus infinity problems occur, as this equation would produce a negative electron
density. This has been investigated with the one-dimensional Schottky-gate model by
adding a term to the one-dimensional Poisson's equation to represent the partial
derivative with respect to x. This term is constant accross the modelled domain which
is self-consistent with the Q2D approximation. This simulation produced the following
results, varying dEx/dx at a constant gate bias. The simple approximation is shown to
fail when the partial derivative is large and positive as it would continue the gradient

from the left of the figure into the 'negative electron' region, illustrated in Figure 6.3 by
the dotted line.
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Variation of sheet electron density with the gradient of electric field

To incorporate these effects, which are important because they effect the most
significant region of the FET, the drain edge of the gate, a model has been written
whereby a two-dimensional look-up table is produced at the beginning of a simulation,
giving the values of the electron density for varying surface potentials and rate of
change of the field in the x-direction. However, the two-dimensional look-up table is

expensive in both time and computer memory. It would be preferable to approximate
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Figure 6.4

Two-dimensional variation of the sheet electron density

this shape using curve-fits and fewer calculations. One possible scheme would be to
approximate the curve of sheet electron density with respect to dEx by one or two linear
curves and an exponential tail. This curve could be obtained from 5-6 solution points
at a constant surface potential and different dEx. This curve is easily invertable and
hence is would be trivial to translate it on the dEx axis such that is corresponds to the
full two-dimesnional curve, Other alternatives include simple series expansions, although

care would have to be taken to ensure the curves had the right shapes at the extremities.

Apart from the large increase in speed, Q2D models offer other advantages, including
a relatively simple formulation of the energy conservation equations and subsequently
non-equilibrium transport. The energy conservation equations can all be formulated in

a backward difference form and solved as the scheme progresses from one node to the
next, equation (6.8).

Also other important physical parameters such as the gate recess are relatively easily

introduced, with different sections of the device simply requiring different look-up
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tables. One region of concern may be the walls of the recess, which if obliquely angled
would require many different look-up tables and hence become expensive in
computational effort, although at it may be possible to simply interpolate between to
different look-up tables for this region. Further problems may be associated with the
memory requirements for extra look-up tables and the computational effort required to

produce them, especially if the program is designed to run on a PC.

6.4 Quasi-two-dimensional model results

This model has been used to simulate a pulse doped pseudomorphic device produced by
M/A-COM inc. The two-dimensional look-up table was produced with approximately
400 samples and used in conjunction with the above equations. It is evident that this
scheme corresponds fairly well to the device characteristics, remarkably well for such
a simple scheme. There was no fitting performed on the device parameters. The
discrepancies between the measured and calculated I-V characteristics can be explained,
for example the higher saturation currents would be reduced if DX centre trapping were
included, which would decrease the number of free electrons, secondly the higher output
conductance could be achieved if a substrate injection model were incorporated. One
possible method of performing the latter would be to extend the one-dimensional
substrate solver to solve for 'hot-electrons'’, and thus produce a three-dimensional look-up
table. The problems with size and computational effort are considerable, especially when
it is desirable to produce a fast simulations suitable for CAD purposes, but these

problems could be greatly reduced if the curves are fitted to polynomial expansions or

other series.

The modelled device is shown in Figure 6.5, with five gate fingers of S0 pm, giving a
total gate length of 0.25 mm. Figure 6.6 illustrates a typical band diagram produced by

the model, in this case taken at a drain-source bias of approximately 0.65 V. Here the
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gate recess is simply modelled by decreasing the surface potential in the regions under
the GaAs cap layers. Figure 6.7, Figure 6.8 and Figure 6.9 show the corresponding

electron temperature, sheet electron density and electric field respectively.

Source Gate Drain
\ / \ [ n+ GaAs cap
Silicon plane ~ n- Al, 2408,,,AS
—Z-DEG;' _________ In,,Gag,As
GaAs/ Al ,Ga 076AS
superlattice

Figure 6.5
Pulse doped pseudomorphic HFET
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The model was solved for a range of drain-source currents and gate biases, producing
the Ips-Vps characteristics displayed in Figure 6.10. These results compare very well
with the measured characteristics of this device, despite the simple nature of this model.
This would imply that the majority of the fundamental device physics has been included
and the model can be 'fine-tuned' with some additional parameters such as the inclusion

of D-X trapping centres and a substrate injection model discussed at the beginning of

this section.
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Figure 6.10
Calculated results for the M/A-COM pulse-doped pscudomorphic HFET
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Figure 6.11
Measured results for the M/A-COM pulse-doped pseudomorphic HFET
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Modern field effect transistors with their ultra-small features and complex processing
technologies are entering into the quantum world. The physical intuition that
accompanied the design of larger devices, namely Silicon and GaAs MESFETS, is not
applicable to these smaller structures, producing apparently anomalous effects if
quantum analysis is omitted. Since quantum mechanics is counter-intuitive and deeply
mathematical these structures will be most reliably designed with the aid of a physical
model, able to accurately predict device performance quickly and robustly, The intention
of this study was to produce a simulation that filled this role, incorporating quantum

mechanics into a conventional FET model, for use in the design and characterisation of
HFETS.

This work has produced several new models including a one-dimensional Schottky-gate
model, a one-dimensional diode model, a full two-dimensional HFET model and a quasi-
two-dimensional HFET model, all of which solve Schrddinger's equation in order to
calculate the 2DEG concentration. A clear compromise is required between the accuracy
and speed in these simulations when used for CAD purposes, with a good scheme able

to cover all important criterion affecting the operation of the device while being fast
enough to enable interactive design.

The one-dimensional Schottky-gate model has been developed that solves Schrédinger's
equation self-consistently with Poisson's equation. Here the current-continuity and
momentum and energy conservation equations are all set at their respective equilibrium
values due to the extremely low current densities. This equations are solved using an
expanded Newton algorithm which produces an extremely efficient code that is both fast

and robust. This model clearly demonstrates the different results produced when

quantum mechanics is explicitly taken into account, illustrating the sub-band structure



156

of several different heterostructures. This model was extended to extract the gate-channel
and gate-drain capacitances from which the transconductance, cut-off frequency and
minimum noise figure can be approximated. Although straight-forward in nature, this
scheme can give an indication of the general performance of a new device structure
which is useful where no similar devices have previously been produced, and
consequently no 'rules of thumb' exist to guide the designer. This scheme could be used

to set limits on the device configuration from which a more accurate simulation could

work.

The Schottky-gate model was extended further to include charge transport, producing
the diode model. This scheme was used to validate the ‘zero current' approximation of
the Schottky-gate model, which was found to be accurate provided the surface was
reverse biased. Once, V,, the Schottky built-in potential was removed by external

biasing the two schemes diverged, with the simpler Schottky-gate model significantly

overestimating the sheet electron density.

The two-dimensional HFET model self-consistently solves the Poisson,
current-continuity and Schrédinger equations, again within the fra;'ncwork of a modified
Newton algorithm. The solution of Schrddinger's equation in two dimensions is
non-trivial, especially under non-equilibrium conditions. Consecquently this task is
performed assuming the events in the x- and z-directions arc large enough to allow a
classical description of the electron wavefunction in these directions. The wavefunction
normal to the heterojunction interface is then determined by multiple one-dimensional
solutions. This new model, solving the two-dimensional Schrdinger equation under non-
equilibrium conditions, separates the total electron density into two components. The
electrons associated with the 2DEG are found from quantised states where the inter sub-
band separation is greater than the thermal energy of the electrons. Since transport
normal to the heterojunction requires scattering to different energy levels, and the energy
separation is greater than the energy of the electron, this event is forbidden and
consequently the 2DEG is restricted to motion parallel to the interface. The potential
well that creates the 2DEG widens as the energy increases, and consequently the bound
state energy levels get closer together until the thermal energy of the electrons is

sufficient to produce a 'quasi-continuous conduction band', Electrons associated with the
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higher energy levels, and hence the quasi-continuous conduction band are treated like
normal 'bulk’ carriers and have all three degrees of freedom. The calculation of the
three-dimensional electron density is further simplified by approximating it with the
Fermi-integral taken from the onset of the quasi-continuous conduction band edge to
infinity. It is these carriers that permit a current to exist normal to the heterojunction
allowing substrate injection to occur and the transfer of the electrons involved in parallel
MESFET conduction. This novel sectioning of the electrons and their respective degrees
of freedom reduces the output current, but only by 1-2%. This small change from an
effect that appears to be far more significant can be attributed to the low current
densities normal to the heterojunction, indeed the only position within the modelled
domain to have a significant current in the y-direction is at the drain-edge of the gate.
In the case of the single-channel HFET both the quantum and classical simulations
produce a potential well has been pulled out to such an extent that it will not support
any 'quantised’ bound states. Consequently both schemes have a similar number of three-
dimensional electrons able to move into the substrate. The pseudomorphic device
however, is slightly different since the potential well in this case is deep enough to
support the 2DEG at the drain-edge of the gate and hence in this device the quantum
and classical treatments do produce very different electron densities able to travel into
the substrate. Here the restricted degrees of freedom of the 2DEG does not alter the
output currents profoundly due to the much smaller current crossing the interface in this
device. The reduced substrate current is caused by the increased potential barrier
presented by the substrate. If quantum transport, and consequently a tunnelling current,
were explicitly included, the simulated domain could be extended under the source and
drain contacts where one could expect the reduced mobility of the 2DEG to play a more

important role due to the larger current densities normal to the interface.

The solution of Schrddinger's equation prevented the conventional solution techniques
from being applied to this model, and consequently a scheme was developed where the
device equations are solved using an expanded Newton's scheme, which although more
complex to code generally possesses fast and efficient convergence propertics. The
equations are discretized over a non-uniform grid for which a new refining algorithm
has been produced. The overall scheme solves each bias at least an order of magnitude

faster than the more conventional time-dependent Gummel based algorithms, typically
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2-3 minutes per bias point on a SUN IPX workstation. The discrete nature of the
quantum solution produces a numerically unstable scheme that has problems converging
for high drain-source biases. The instabilities are assumed to be caused by the profile
of the solution curve which may possess local maxima, minima or inversion points in
between the initial guess and the root of the equations. Further the solution may not
even be unique. The scheme was successfully improved by taking smaller increments
in bias between consecutive solution points and incorporating a relaxation algorithm to
the solution process. Although this produces more bias points in any given voltage
sweep it is not much more expensive in computational resources since each point
generally requires less iterations to solve. One other improvement that worked for some
device structures was to simply increase the node density and hence reduce the
internodal separation. This is certainly more expensive since the matrix inversion
procedure requires between N? and N® operations, where N is the number of nodes.

Further this scheme was not reliable producing worse results for some device

configurations.

This quantum HFET model has been used to model several devices including a
MESFET, a simple single-channel AlGaAs/GaAs HFET and a pulse-doped
pseudomorphic HFET. Whilst several important effects have been omitted, namely non-
equilibrium transport and the two-dimensional electron mobility, both HFET simulations
have demonstrated a significant change from the classical results. These different devices
produce similar output characteristics, with the drain current reduced by approximately
20% by the quantum description. This is attributed to the lower free electron density
produced by the quantum simulation, since the restriction on the degrees of freedom
were found not to effect the steady-state results by more than a few percent. Further
changes are expected if a rigorous derivation for the two-dimensional electron mobility
were included, although the inclusion of non-equilibrium transport may well counter-act
this since the heated electrons should gain enough energy to scatter to the higher sub-
bands and restore all three degrees of freedom.

The results from the full-two-dimensional simulations, in particular the potential profiles
encouraged work on a quasi-two-dimensional model. The Fermi-level was almost one-

dimensional in all cases, perpendicular to the active channel. Thus the
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quasi-two-dimensional approximation appears to apply to heterostructure devices as well
as MESFETS. The conventional Q2D device equations were investigated and found to
be inadequate for HFET simulation, especially at the drain-edge of the gate where large
positive gradients in the electric field exist. A new scheme was therefore developed,
moving the solution of the two-dimensional Poisson equation to the sheet electron
density look-up table'. This produces a sheet electron density that varies as a function
of two parameters, the surface potential and the gradient of the electric field. The
electron density was then self-consistently solved with the current continuity and energy
conservation equations. This model was applied to the structure of a pulse-doped
pseudomorphic device produced by M/A-COM inc. from which the D.C. Ips-Vig
characteristics were obtained and found to be in remarkable agreement with measured
results. This was without the model parameters being fitted and hence is very
encouraging for such a simple model. Although this new Q2D model needs to be

verified on other different structures it may be the route for HFET CAD design.

7.2  Further development

The full two-dimensional model could be developed in five main areas, the first three
are related to the charge transport equations, followed by the incorporation of a gate
recess model, with the last targeted on the numerical stability, One of the first additions
to the model would be that of non-equilibrium transport. This is not trivial, even in the
simple single band approximation where at least one other variable would be added,
increasing the rank of the Jacobian matrix by 50% and requiring more than twice the
computational effort to produce. In the case of an HFET these equations arc complicated
further by the sub-band structure occurring in the two-dimensional potential well. Non-
equilibrium effects occur when the electrons gain enough energy from the field to
transfer to the higher energy L and X bands. If other bands are present, ie. the sub-bands
at the heterojunction interface, the electrons can scatter to these levels as well. The

equations governing this system become more complicated, not only due to the larger

' The conventional Q2D scheme splits the solution of Poisson's equation. The y-component is used to

determine a onc-parameter electron look-up table with the second ‘x-component’ solved with the transport
equations in the channel simulator.
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number of available bands but also because the bands are closer together and may move
relative to one another. The electron sub-bands will change electron population and
hence alter the number of vacant sites available. Work was done on the incorporation
of the energy conservation equations into both the one- and two-dimensional models, but
just using the classical two-band format. Although the one-dimensional model had
limited success the two-dimensional FET model was found to be extremely numerically
unstable with few drain-source biases in excess of 1 Volt successfully solved. This
model incorporated the same macroscopic discretization scheme for the energy
conservation equation as the current-continuity equation, evaluating the energy flux at
the half-node positions. The electron temperature was assumed to vary lincarly in
between the nodes, which was perhaps the source of the numerical instability. The next
step in the incorporation of the energy conservation equation could therefore be to use

an exponential variation for the electron temperature similar to that used in more

conventional models.

The second development for the two-dimensional FET model would be to include a
more rigorous determination of the two-dimensional electron mobility. This parameter
has already been discussed in Chapters 2, 3, and 5. In conclusion, the modelling of this
parameter within present computational limits is probably best done using predetermined

mobility surface varying as a function of two-parameters, the electric field and the
electron density.

The third improvement in the transport equations, and most complicated, is the inclusion
of a tunnelling current. In regions where there exists a significant current in the y-
direction the band profiles will be effected by a tunnelling current through the potential
spike at the heterojunction. To fully describe this phenomena quantum transport has to
be included, with all the associated problems discussed in the introduction to Chapter
5, section 5.1. Hence this route is certainly non-trivial and probably too expensive in
computational resources to be applied. Therefore a simpler approximation is required
that doesn't require the evaluation of the 'free’ electron wavefunctions. Further if
tunnelling were introduced the regions directly beneath the source and drain ohmic

contacts could be included in the modelled domain.
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Most modern FET structures include gate recesses as part of the device layout. At
present the two-dimensional FET model omits this important detail. A more practical
FET model would therefore be produced if a gate-recess were included. There are
several ways in which this could be done. One common scheme discretizes the modelled
domain and simply neglects the nodes falling in the recess region. A better alternative
is to include these nodes, and further extend the simulated gate vertically upwards to the
real gates boundaries. The nodes between the gate and the free surface can then be given

the attributes of air of the pacifying material. In this way the effects of the different gate
shapes can be investigated.

Finally work could continue on the solution algorithm, making it more robust and able
to simulate devices under higher biases. Whilst the Is-Vps curves generated to date by
the quantum solution follow those produced by the classical scheme this may not always
be the case. One could argue that as the gate bias is increased and the potential well is

pulled out that the effects of the quantum transport will become more pronounced as the

effects of inter sub-band scattering becomes more prominent.

7.3 Full two-dimensional current driven model

Work on both the full two-dimensional and quasi-two-dimensional (Q2D) models has
resulted in the outline of an intermediate scheme being developed, using some of the
approximations used in the quasi-2D scheme, but allowing full two-dimensional
treatment of charge transport. The proposed scheme uses the current driven sections of
the Q2D model and some of the assumptions about the surface potential, but instead of

using a sheet electron density expands the slice through the device and solves the
transport equation in this direction also.

If one considers a slice through the device, perpendicular to the heterojunction interface,
we can draw gaussian surfaces around each node. If the current density from the left is
known the gradient of the Fermi-level to the left of this slice can be determined using

a backward differencing scheme. Hence the Fermi-level on the slice can also be
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calculated by integrating in the x-direction. This could be used to find a self-consistent
solution of the conduction band edge and the charge density via Poisson's equation. With
the charge density, field and Fermi-level determined the current flow in the y-direction
can be calculated and hence by Gauss' law the current exiting each cell from the right.

Thus current continuity from one slice to another is maintained.

:‘: Jxap = Jxatp + Jyasn - Jyap

Figure 7.1

One-dimensional slice through FET used in current driven solver

This model would require additional information on the boundaries of each slice, but
one could use a scheme similar to that used in the Q2D models, for example the

conduction band edge / Fermi-level separation on the surface could be determined from

the surface and gate potentials.

This scheme would perform a full two-dimensional simulation of semiconductor devices,

whilst making a significant improvement in the speed of the simulation, In the full two-
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dimensional scheme described in Chapter 5 each bias point requires a few minutes to
solve. In this model over 90% of the simulation time is spent inverting the Jacobian
matrix equation, a task that requires approximately N® operations, where N is the
number of nodes. The one dimensional scheme would possess a tridiagonal matrix
structure, and enable the whole device to be solved in 3xN operations, offering a
significant increase in speed. This would be particularly useful where the features

change over a small scale typical of heterojunctions and the simulation requires many
nodes.

7.4  Applications

This work is useful, both in the results it has produced, and the possible future
applications of the full two-dimensional and quasi-two-dimensional models. Although
the full two-dimensional model omitted an accurate description of the electron transport,
and consequently is not expected to produce reliable predictions on device behaviour,
it is instructive to observe the different results produced when quantum mechanics is
included in a FET model. These significant changes occur even with a bulk mobility
used for the 2DEG. The techniques developed to solve Schrédinger's equation in two-
dimensions, provide a better approximation for the bound state wavefunctions and their
associated energy levels than has previously been available. This information could be
used to explicitly calculate the scattering rates occurring in the 2DEG and hence
determine the two-dimensional electron mobility directly. Unfortunately this scheme

would probably be very computationally intensive, adding another layer of complexity.

The quasi-two-dimensional model is still probably the best tool for CAD since this
scheme offers accuracy to within processing tolerances and impressive speed. Full
parameter extraction including D.C., pulsed I-V and s-parameter is available within
seconds. This allows the automation of device design to become a real proposition, with

iterative procedures that home in on the best device configuration being able to produce
useful results within minutes.
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Appendix A

Derivation of the electron charge densities

One of the fundamental principles of quantum mechanics is that when taken to the
macroscopic limit the results derived should agree with those predicted by classical

mechanics. This ‘correspondence principle' is demonstrated for the bulk three-

dimensional electron density in semiconductors.

In general the electron distribution is given as the integral over all space and time of the

square of the electron wavefunction.
n=(P"(r,t)¥(r,t)) (A.1)

where the angle brackets denote summation over the entire ensemble of electrons, and

¥(r,¢) is given from a solution of the Schrddinger equation, equation (A.2).

” —Tﬁ'ﬁ H® () (A2)

If H, the Hamiltonian or total energy operator, is independent of time then the total

wavefunction may be split into temporal and spatial components, ®(r) and y(r)
respectively, giving equation (A.3).

T(r,t) =), ®,(0)E,.(r) (A3)

Upon substitution into equation (A.1) this gives
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n= 3 Y (@) 8,(1)) En(r) Ex(r) (A4)

Since ®_(t) is summed over a very large number of electrons, and involves time
averaging over long periods compared with the time scale of the microscopic

fluctuations (~10'? seconds) it can be shown that

(2o, 0) = {57 7o a9

m+n
where f,(E,,) is the Fermi-Dirac factor, equation (A.6).

1
F(E,) = (A.6)
o( M) e(E-'Er)/le +1

thus the equation for electron density becomes

n(r) = Y f,(Eq) 1En() 2 (AT)

The form of £_, the spatial electron wavefunction, depends upon the scale of the events
it encounters with respect to it's own wavelength, If the scale of the conduction band

edge is large compared with the deBroglie (or thermal) length, equation (A.8).

_h

my

A, = (A.8)

then the wavefunction can be approximated by Bloch states, equation (A.9).
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g

&) = (A.9)
Q

[ ]]

where Q is the volume of the device.

When substituted into the Schrodinger equation the corresponding eigenstates are given
by equation (A.10).

(A.10)

It is worth noting that here the electron density is independent of position.

The summation over k is converted to an integral over energy and the classical Fermi-

integral to the power half is formed.

1

_(@m )2 f (E-E)*dE (A.11)
2} J GEENNT |

which can be rearranged to equation (A.12).
E.-E
n = No-2 (-F_ﬂ] (A.12)
2

where

. 3
N, = _1_(2'" kBT)z (A.13)
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In practical heterojunction FET's, typically doped in excess of 10%* donors m?, one
cannot assume the electrons wavefunctions to be accurately approximated by Bloch
states as the abrupt change in conduction band edge creates a potential well on the scale
of the order 10-20 nm. This is clearly comparable or smaller than the deBroglie
wavelength, which is ~30 nm in GaAs at 300K. In this case 'quantum sub-bands' are
formed accross the heterojunction, and if the energy separation between consecutive
energy levels is greater than the thermal energy, k,T, then the electron's motion in this
direction will become discretised. As the smallest event in the directions parallel to the
heterojunction is produced by the gate, ~500 nm, one can assume the electron
wavefunctions in these directions can still be approximated by the the classical Bloch
states. Thus the spatial electron wavefunction is split further, into components parallel

and normal to the heterojunction interface. In this case the electron wavefunction has

the form of equation (A.14).

ikx ikz
Cm (1) = £ £ (A.14)

VA

where A is the cross-sectional area. '

Substituting this into the time-independent Schrédinger equation we obtain the
corresponding eigenstates.

2
Mg g @) = A+ 2"‘ (k2 +12) (A.15)
m

With the electron density, in this case, given by equation (A.16).

nG) = Y, o, 18,00 (A.16)

where
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o - 3o HOhR) a1

x4

Again converting the summation over k, and k, to an integral over energy it can be

shown that

0p = B [ (A.18)
TR JEEIMT g

hence

m*k,T

xh2

Oy =

In(1+e *nEolhaTy (A.19)

and finally

m*k,T

7h?

n(y) = E | Em(y) ‘2 In(1+ e’(l.‘ﬁr)/kﬂ') (A.20)

where both £(m) and A(m) are given by a solution of the one-dimensional Schrddinger

equation in the direction normal to the heterojunction.



Appendix B

Derivation of the classical charge transport equation

In steady state flow the electron distribution function, which is a function of space,
momentum, will be different from that in thermal equilibrium in the absence of flow,
f,- For small changes from equilibrium the new distribution function can be expanded

in terms of the original distribution via perturbation theory, giving, to a first

approximation

fIREL) = £, (%,6) +f (£,K,1) (B.1)

The steady state is defined by Liouville's equation (B.2) which when explicitly expanded
gives the Boltzman Transport Equation (BTE) equation (B.3)

af(zky) _ (B.2)

dt

af _of , of ok, Of ox

. . B.3
dt at gaf ot % ot 0

substituting F for %1‘. and u for -g;f one obtains the BTE in its more conventional
t

form



,h.V,‘f -Z.Vf (B.4)

For small perturbations the distribution function can be assumed to relax back to

equilibrium in an exponential fashion, with a time constant 7.

f-f, = (constant)e™"* : . It (B.5)

Substitution of (B.5) into (B.4) gives a simplified Boltzman Transport Equation, from
which the first order perturbation correction can be calculated.

f(7K2) = r({.v,f, + a’.fo;) (B.6)

From semiconductor statistics the equilibrium electron distrubution functions is obtained

from Fermi-Dirac statistics.

: 1
Xkyt) = ——————— :
fz.k,) T (B.7)

If g-E > kT then the unity term in the denominator is negligible, and hence

Boltzman statistics can be used

Flt ) = e EENT )

where E, the energy of the electrons, is the sum of their potential and Kinctic
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components

= =

n.k.k
2m*

E(*”i‘) = Eco(f) -q.y (f) + (B.9)

When either of these distribution functions are substituted into (B.6) the partial

derivatives of f with respect to x and k can be evaluated.

VW, = L agﬂ (B.10)
m* )OE oE
E-E 3
VS, = [-ﬁ-V,Ep- T’ .v,r)_a% (B.11)

where

% _ -f(t-1) (B.12)
k,T

for F-D statistics and

20 (B.13)

for Boltzman statistics.

Assuming the temperature to be constant throughout the device equation (B.11) can be

simplified and the first order correction is calculated as
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of,

[ = T8~ V.

(B.14)

The electron current is the product of the group velocity and distribution function

summed over all k-space

Substituting (B.14) for f' gives
7 = Z_l ‘!' -tf,(1 -kl?-‘i;:,V,Ep
which gives
J =qunv,é
where qp = E, and p = qc

3

(B.15)

(B.16)

(B.17)
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