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been expected • • . On the other hand a hay- stack seems to form a very 

perfect obstacle. 

- Lord Rayleigh 



Acknowledgements 

List of Symbols 

Chapter 0 

Chapt er 1 

Chapter 2 

Chapter 3 

Chapter 4 

Chapter 5 

Chapter 6 

Appendix A 

Appendix B 

Appendix C 

Appendix D 

Appendix E 

Appendix F 

Appendix H 

Appendix G 

CONTENTS 

Introduction and Abstract 

Review of Literature 

Pag e 

2 

6 

8 

Scattering Theory for fibrous media23 

Single scatterer theory 

Multiple scattering theory 

Exp~rimenta1 results 

Discussion and conclusions 

Waves in fluids 

Waves in solids 

Scattering coefficients 

Expressions for computer 
program 

Energy dissipation calculations 

.. Constants, basic expansions, 
List of samples 

Viscoelastic absorber~ 
scattering coefficients 

Spherical scatterer-solid 
stress components 

Photographs 

Resum~ of sample data 

Graphs 

References 

31 

41 

56 

61 

74 

80 

95 

101 

107 

110 

I1b 



1 . 

Acknowl edgements 

I should l i ke to record my deep grati tude to Professor R. Ho 

Evans until recentlY9 Head of the Faculty of Applied Sci ence 9 for 

realising that there was room for such work as has formed the 

basis of t h i s thesi s 9 and f or maki ng avai l able t he necessary 

f i nancial support for three years . 

I am also indebt ed to my Uncle 9 Mr . Wi lliam Houghton~Evans ? 

Seni or Lecturer i n Archit ecture 9 for his consi s t ently wise 

counsel and constant encouragement ; and both to Mr . Alan Yettram 9 

at present Reader in Struc t ur es in t he Mechanical Engi neeri ng 

Depart ment a t BruneI UniversitY 9 and Mr. Paul Yaneske 9 my former 

"acous t i cal research" colleague 9 for many helpful discussions. 

The work involved in performing the relevant computations 

was made relatively simple by the assist ance of my col leagues 

Dr . Debendra Nath Hazarika 9 in the writing , and Mr. Dipeskanti 

Bhattacharrya ~ in the execution of the computer programs. 

I sincerely thank Mr. Roy Duxbury of the technical staff, 

for taking the photographs necessary and Miss Pam Bennion of 

the Earth Sciences Department for performing the arduous and 

complicated task of typing . 

Lastly ~ but by no means least ~ I offe~ my sincere thanks 

to Dr. "John" L. A. Walker g Lecturer in Building Science and 

my supervisor throughout this work , for hiB careful encourage

ment of my often wild endeavours and for his painstaking 

checki ng of the substance of this work 9 despite the many and 

frequent other demands upon his time. 



Li st of Symbols 

Superscripts : 

Subscripts : 

A 
'" 
ABC D n n n n 

B 

B = (/ (JP/~/~ 
Cb 

d 

dij 

~ij 

2. 

f refers to flui d proper t y 

B refers t o solid property 

1 defined in context below 

• c .0lII}?1 <ex; conjugate 

D si gni f i es dilat a t ional wave proper ty 

TH " thermal " " 
T " viscous shear II " 
b " bulk value 

" equi l i brium value 

normal inci dence absorbtion coefficient 

viscous wave vector potent al 

coefficients in expansion of seri es for wave potentials o 
Defined in 3.120-

unit vector in ~, 9 direction 

prODucts of f ibre r adius and propagati on constants, 
at normal incidence 

ditto , at oblique incidence 

radius of volume of integration (Appendix E) 

Bulk modulus 

bul k wave velocity 

dilatational isothermal wave velocities 

specific heats 

product of fibre radius and axial phase constant 

slab thickness 

rate of strain tensor 

Kronecka delta 

gradient operator 



')!. ( ) 

\l j..( ) 
("-J 

~i j 

E 

E 
0 

F 

g 

h1 gh2gh3 

i 

J gH n n 

K 

K 
,-oJ 

~ 
Kf KS 

• 
Kf Kf Kf 
D 91"H' ...,... 

KS KS KS 

n 9 111
g 

1"" 

l 

L 

N 

N 

Nf . Ns 

p 

t 
Pij 

Pij 

PAT 

r 
A 
T 

} 

di ver gence oper ator 

curl operator 

strai n tens or 

wave energy per unit normal area per unit time 

incident wave energy per unit normal area per uni t time 

surface 

far=fi el d scatt ering amplitude (as defined by Twersky) 

curvilinear coordinate paramet ers 

Cylindrical Bessel functions of order n 

axial phase constant 

propagation vect or 

bulk propagation constant 

thermal conducti vities 

propagation constants of dilat ational , thermal and 

viscous (shear) waves . respectively 

pro j ected di stance of any poi nt f r om origin of coordinate 
system (fi g 0 3011 page 3/) 

lengt h of cylindrical fibre 

concentration of fibres 

outward drawn normal from surface F (Appo E only) 

coefficients (Ch o 3) . defined in Appendici es A and B 

pressure 

viscous part of fluid stress tensor 

total fluid stress tensor 

atmospheric pressure 

radial coordinate (fig 0 3.11 page j I) 

unit vector in r - direction 



R 

Re ( 

1m ( 

t 

T 

u 

u 

u .v . 
JI J 

v 

w 

Z 
n 

radi us of fibre 

real . part of ( 

imagi nary part of ( ) 

time 

temperature 

specifi c i nternal energy 

di splacement vector 

velocity vector 

t h j ~omponent of displacement 9 velocity 

vol ume 

4. 
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unit vector in z=direct ion 
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6. 

SOUND DISSIPATION IN POROUS MEDIA 

INTRODUCTION AND ABSTRACT 

0. 1 . The particular f ield that has been the concern of this work is that 

of Buil ding Science . The porous media of i nterest are consequently those 

commonly used as absorbents in Archi tectural Acoustics~1) 

The ob ect of t he work has been t o formulate quantitati vely a theory 

of t he dissi pati on of sound in ~uch materials, 60 that a basis can be laid 

for optimi s i ng and predicting t heir coef ficient s of absorption. The theory 

has aimed at avoidi ng t he inclusion of empirical constants. 

0.2 A review of literature is made involving a somewhat wider range of 

porous media , includi ng those of interes~ in the fields of Geophysics and 

Engi neer i ng Geology . Porous fluids, a term employed by A.B. Wood (in 

"A t extbook on Sound" Ch.3 ) , as they occur, for instance, in Underwater 

Acous tics are also considered . Further, . the literature concerned with sound 

propagati on in more general inhomogeneous and composite fluids and solids , 

is examined, where the theoretical techniques are relevant to our study. 

0.3 It is found that the literature specifically related to sound absorbing 

materials and also to unconsolidated or consolidated granular media:-

(a) develops theories vhich are essentially macroscopic and do not 

allow adequately for the microstructure of non- isot ropic flexible framed 

media i.e. fibrous media . 

(b) provides l ittle realistic descri ption of the 

dissi pation in closed pore viscoelastic absorbers e . g. cellular rubber . 

0.4 A theoretical technique, previously reserved for problems in under-

water acoustics and sound propagation in suspensions is applied, as an 

alternative,to cases of fibrous and viscoelastic foam media. 
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The predictions of absorb on h s, obtained for f i brous medi a are 

found t cor r eI a e easonab y w' t h experi, en data on g a_s f i bre bock 

srunp es o 

Fur her g an exp ana i on of t he physi s of s und absorbtion i n ce ular 

viscoe_as io mad ' a s gges ed and con nsiona and observat i ons of pr evious 

l ite a ture are orroborated. 

The literature is exami ned i n t he wider context previously ment i oned. 

As might be expect ed 9 t he field of interest has deter mi ned t he particular 

t ype of porous med ' um considered; t he model assumed ; and often t he 

theoret ical t echni que . 

The fold~ ut dia.gram shows t hes e links 9 toge t her with t hose discussed 

in t he t hesis and provi des a classifica i on for t he review. Models 

numbered i n t he chart are now discussed. 

Chapter 1 Review of Literat r e 

Model Thi s is the basic con ept ual model which under ies most of 

t he work on Bound absorbi ng materi als . 

Essent i a Y9 he porous medi um i s assumed to have a r i gid solid g 

continuous frame c ntaini ng a number of para!. el cylindrical pores open a t 

t he surface of t he material and normal 0 t his surface. 

1.1 1 Aft er i nitial work by Rayl eigh(3) and Crandall(4) dissi pation can be 

postul a ted to take place accordi ng t o such a model by : 

(a) vis cous l osses i n t he boundary l~er of t he walls of each capillary 

tube owing 0 r elative mo 'ion between t he cont ained viscous g conducting and 

compr essible f l u d and he solid walls; and 



(b) heat conduction , i .e. exchanges of heat energy bet ween contained 

fluid and pore walls during cycles of f l uid compres sion and rare - fac t ion . 

Thi s stems from t he Helmholtz~Kirchoff theory for s ound pr opagat ion 

in a rigid wal led tube cont aining a compressi ve, vi scous conducting fluid. 

1 . 12 Zwikker and Kost en(5) ext end t hi s t heory t o a complete medi um cor-

responding t o Model 1 . In or der to allow for irregularity in t he pore 

cross sections ; viz. deviations f r om circul ar cross- section and changes 

in effective r adius causing a variation in t he fluid particle velocity 

across each capillary pore (superimposed on t he vari at i on due to viscous 

drag at the pore walls) ; the flu i d particle velocity is replaced by an 

average particle velocity over the cross- section of any pore . This can 

then be related to the volume flow through t he por ous material by Dupuit 's 

R I t
" (6) 

e a l.on :~ 

volume flow = [ porosity x average particle velocity] 

1.13 The viscous drag effects i n the separate capillary pores are combined(8) 

by the introduction of t he speci f ic resistance or f l ow resi stance coefficient 

(0() for the porous material which relates volume flow with t he pressure 

var "ation through t he material . I ts steady state val ue corresponds to the 

case wher e the equation of motion in the indivi dual pores reduces to that for 

Poiseuille flow . Then the equation of motion for vol ume flow i n the total 

medium i s Darcey ' s empirical law(6)(for non-turbulent f l ow) and the flow 

resistance is equival ent to an inverse permeability coefficient. 

The high frequency extreme where the Hel mholt z annular effect(7) can be 

considered to exist in the capill ary pores is given an approximate value by 

Crandal l. An expression for the flow r esi stance coefficient which applies 

at intermediate frequencies is computed by Zwikker and Kosten.(9) 

The characteristic impedance and propagation constant for a medium 

corresponding to Model 1. are derived considering viscous and thermal effects in 
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10 2 Mo~ - a genera isat ' on of model 10 

The porous medium is r egarded as having a continuous s o ' d flexi ble 

frame containi ng pores g t he s r uc ures of whi ch are not s pecified , apart 

from the requi rement t ha t he med 'urn be homogeneous and isotropic o 

10 21 . Zwi kker and Kos en( 16 ) ex en d hei r previous work f or t he r' gi d 

framed model 1 0 the more general flexible frame model 2 9 by : ntr oducing 

t he concept of f actor 0 This f ae or inc· udes the i ner ial and 
====-.-;;~--

vi s ous coup i ng be ween he so i d frame and he pore f ui d r esulting from 

t heir r~ltltive motion o The parame era of Egros i 

flow resistance coe ff icient are re ai ned i n modi i ed eq ' ations of mot ion 

and continuity f or bo h pore fl i d and solid frame o Thi s procedure does 

not require t he more r i gorous calcula tions f or complex densi ty and s ti ffness 

f or the rig ' d y framed model 1 0 The solution of t hese equations provi des 

f or ·he existence of wo t ypes of coupled waves g which become decoupl ed 

i nto separat e compressi onal waves f or frame and pore f luid at cert ain 

f r equenci es dependi ng on t he compressi bi ity of t he frame 0 

10 22 Ot h t h ( 17 ~ 18 9 1 9) . . . 1 al f l . bl f d 1 er au ors , uS1ng a S1m1 ar gener eX1 e r ame mo e 

bas ed on a r igi d frame approach , define paramet ers l ess easil y i dentifi able 

with the structural properties of actual material s" In particular an 

effec ive dynamic mass factor (m) ' s i ntroduced 9 defined as t,he ratio of 

the effective mass of air i n he pores to t he mass of an equal volume of 

"fr ee " ai r o Th ' s is meant t o contai n t he effec t of the presence and motion 

of t he so i d skelet on on t he mot i on of the fluid o Thi s paramet er reduces 

t o uni t y i" e 0 t o he Bame value as Zwi kker and Kosten 0 s s t r ucture fac t or 9 for 

a medium correspondi ng to Model 1 wi h a rigi d frame and all the pores 

parallel 0 t he w~ve vect or · of t he i ncident (pl ane) sound wave . Re t tinger(20) 

defines a slightly di f f er ent paramet er r epresenting t he amount of vibrating 
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air mass per uni t vo ume of t he med "um o This differ s by a factor of bulk 

density from the above defini ion due t o Morse and Bolt ~1 8 ) 
( 21 ) 1023 Beranek appl i e s t he coup i ng facto appr oach t o model 2 t ype medi a o 

However 9 greater concer n with f ibrous materials i s ShOWfi 9 "n that frict i on 

between f ibres i s i ntr oduced as a further considerat i on 9 i n the equa t ion of 

(22) 
mot i on of t he solid frame o Kosten and Janssen expr ess doubt as t o the 

( 21 ) correctness of Beranek os derivation of he coupl i ng f actor and po nt ou 

hi s mi s int erpr etati on of he str ucture f actor as a "dynami c Maas " coeffic i ent 

similar t o mo Further (22) t he co pIing f act or derivati on of Zwi kker and 

Kos t en(1 6 ) i s adapted to include the more compl ete express "ons for complex 

density and complex stiffness of air .i n a rigid~walled po~e~5 ) 

It i s remarked t hat t o be f l y r i goro s these expressi ons shoul d i n 
I 

fact be devel oped for a gas cont ai ned i n a flexibly walled cylindri cal pore o 

1024 Zwi kker and Kosten(23) compare t heir theoret i cal pr edict ions for model 

2 with experimental observation for wood~fibre pl ate and hair- felt . Kosten 

(22) and J anssen further compare the modi f ied theory wi th experimental results 

for more flexibly framed f i brous medi a o The correlation i n t hi s latter case 

is found good 9 if9 as is required for the earlier theory~5) some suitable 

estimation of the structure factor is made o 

Paterson(24) applies the Zwikker and Kost en(5)(16) theory further to 

fly.~d~saturated granular 1IIaterials and obtains reasonable correlation wi th 

' 03 Model 3 - appli ed particul arly i n the cont ext of flui d- sat urated 

granular medi a , where concern i s more wi th sound propagati on t han sound 

absorbti on. 



The P!)2'o'US ed ' is eg d~ as a. 'id~'3at; - a t ed aggr ga'e of 

C 056 y- pa 'ed sphe.eso e ep er B ar assWXl"d e as and .' n c::mt ac 

au tha app ~ed i 60 op~c press IS cha."lge.s i he area of con'ac 

b t een ad j acen spher So The i s assumed incompressible 

and .nvis ci do 

B and (25) "onsiders a randomly pa ked array of four di fferent s phere 

sizes such t ha each sma e size .::omple e y f 1 B t he voids of t he next 

larger s ' ze 0 a cons an frac i on o A non~linear s r eas - s a n relat ionsh p 

for such a ode1 i s 0 tained by calculating he di 1at a ional deformation of 

s phere r ad ' us as a fun ion of he for e be ween he par 'c1eso 

A s'mi1ar model i s used by Duffy and Mind in(26 ), however t angential 
/' 

as weI as normal con~ac ' pr essure is i nc1uded g and t he frictional l oss 

per cycle due 0 s i p is considered . In both cases the va ocity of com~ 

pressiona1 waves through such a frame is cal culatedo 

04 Model - of brous materials. 

The f i bre block i s consi dered as an air~fibre composite medi um i n 

which para11e fibr es of uni form d ameter and lengt h are ei ther free y 

suspended i n ai r g 0 bound elastical ly t o fixed positions i n space o 

10 1 Kawaaima(27 ) chooses his model as an al ernative to models 1 or 2 for 

t he case of a f l exible and fibrous acoustic ma erialo The: i nc i dent sound 

is r ric ed heoret ' cally t pl ane waves pr pagating i n t he direct ion 

per pendi c ar to t he fibre axeso In he elastically bound case 9 a s tring 

mode and a onded rigi d bar mode are differ~n i ated o In t he former case 

t he fibres are assumed to move aBclamped s trings i oe o as t hough t he major 

frae i on ( g/1f" 'l- ) of hei r length were a rigi d bar 9 and the remainder 

fixed permanent ly at the equilibri um position o The latter case is a simp1i-

fi cation of t hi s 9 where he whole of t he fibre i s assumed 0 oscillate as a 

rigid bar 9 cons r a i ned according t o Hooke os Law o 



1 . 2 The clamped string model i s devel oped as a general Gas~ and the 0 her 

two cases are considered to be special cases of this . Equations of on

tinui ty , introducing porosity, motion of fibres ~ and volume flow of air are 

deduced , together with equations of motion of fibres and air ? derived from 

HamiltonO s Princi ple , and incorporating a resistance coaffi ient for each 

fibre . This resistance coefficient is given by Stoke Os law f or a "long 

e lipsoi d of gyration" and gives a frequency dependent expression for 

specific flow resistance when the equations of motion f or fluid and fibres 

are combi ned in terms of relative veloci t y . 

The general form . because of the model assumed ? predi cts to al 

absorbtion at resonant frequencies of the elastica! y bound fibres . 

1 043 A similar model of an array of i den i al parallel rods uni f or mly 

spaced i n air has been adopted by Lang ( I O~) i n di s cussi ng the absorbtion 

proper~ties of cellular plasters e . g. polyeurethane foam . The t heory used 

is essent i ally based on Zwi kker and Kos en. However. by choosing thi s 

particular model he avoids the use of their structure factor . Thermal 

dissi pation is not considered. 

1 . 5 . Model 5 - of particular importance in discussi on of sound pr opagati on 

through unconsolidated g granular ? fluid- saturated media where dissipati on 

is also considered. 

The medium is considered to consist of an elastic solid matrix . 

saturated with a compressible , viscous fluid . No specific assumptions are 

made about micro~structure. However, certain restrictions apply at some 

stages . 

1 . 51 The literature based on this type of model is more concerned with the 

formal derivation of the equation of mo ion of the solid frame .via a stress

strai n constitutive relation than the previously discussed theorieB~5 , 7 , 8-23) 



A linear stress- strain relationship involving porosity is derived by 

Biot~28) Analytic expressions for the resulting six elastic coefficients 

are obtained from three equations of equilibrium and three equations 

, fD' 1 (6) B' t(29) th ' representing a general1sed form oarcy saw. 10 : uses 18 

formulation together with a Lagrangian form of the equations of motion to 

derive Wave equations. 

1.52 , K t ( 16) d "Q . - (21), l't The coupling factor of ZWl.kker and os en an .l.Lel'aneK, 1s sp 1 

up into its inertial and viscous components for this mod~l . The inertial 

coupling is introduced into the equations of motion via t hree "mass" co-

efficients derived empirically . 'The viscous coupling is introduced allowing 

for the variation of the viscous dissipation with the micro~velocity field 

across the pores i.e. v&PiatigR gf the vis~o~s QissipatioR I~th the mi~pg 

weloei~y fiela aep9S6 the POF8& i.e. variation with frequency and with 

change of cross-sectional pore shape. These effects are combined into a 

viscosity function which depends on frequency, a characteristic dimens i on 

of the pore (extremes of shape being parallel walled sli ts and circular 

capillaries), tortuosity(6) ~d the kinematic viscosity of the pore fluid. 

The effect of tortuosity of the pores, in particular is contained by a 

structural factor . (30) Th f ddt" t f ti ' e requency epen en V1.BCOSl. y unc on 1.S a 

more comprehensive, microstructurally sensitive representation of the 

, f ' , (16-21) dynamic flow res1stance coe f1Cl.ent than that used by other authors. 

1.53 In a later paper, Biot(3
1 ) rederives the elastic stress- s t rain relation 

for a porous medium, considering both "closed" (fluid not free to circulate 

in and out of the medium) and "open" pore situations, (as do Gassman(32) and 

Paterson(24) for model 3). Anisotropy of the medium is also considered in 

this paper, together with the effects of heat conduction between grains and 

pore fluid and internal friction between the grains of the unconsolidated solid. 
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The la er two cons ' dera i ons are i ntr odu ed under t he ga eral headi ng of 

" heI'moe as i effects" and previ ous t heories (33 ) of irreversible thermo~ 

dynamics are evoked . resulting i n t he repl acement of he e~ asti c coeffi c ients 

by operators o The eq a io of ot .i on ar . de :i ed in a di ffer en f orm 9 

red c:'ng t he 
(29) 

brae mass coeffi cients used previa 6 y o a s "ng e coef~ 

f i cient dependent on he pore geome ry ~ . i oeo mere s ' mply analogous t o t he 

i ner i al par f t h ' f t (- 6 . 21 ) o e coup ~ng ac or o 

Anot her paper (34) sees t he introduct ' on of a vis codynami oper at·o i n 

an equat i on of relative motion of flu ' d ' n he pores o Thi s r epresents a 

generalisati on of a me thod previousl y used 0 obtain t he complex vis os ' y 

function 0 The equa i on of relat "ve mo i on 9 oge her with an equat ' on of 

mo ion representing the time der ' vative of t he t o al momen t um of t he fluid-

so i d mi xture . are used rat her than separate equations of mot i on for f uid 

, t ' 1 (28 . 29,31 ) A t " t h d . d h ' h and 60 ~d respe ~ve Yo wave equa 10n ~s en er1ve w 1C can 

be analysed as previoUSlY9( 28 9 29 ~ 3 )into ,t wo compressional and one shear wave . 

1054 Hardi n and Richart ( 35) poi nt out t ha t he elas ic constants i ntr oduced 

by Biot (28,29) are di fficult to measure i n practice o In t he ir t heory there-

for t he Young Os modUlus of the elastic frame is derived f r omJDuf!y and Mind i n ' s 

analysis (26) accordi ng t o model 3 9 and this i s subst t t ed into the Biot 

(24) 
theor y 0 Brutsaer (36 ) extends analysis based on Model 5 t o the case of a 

three phas e me diu.a19 a porous granular medi um saturated with air 9 some grains 

bei ng covered with a wetting flui d o A Lagrangian approach v for the equati ons 

of motion ~ similar to that of Bi ot ' s i sotropic medi um theory(29) ~ i s usedo 

The diff iculty with Bi ot es el astic coefficients(28 . 33 ~ 34) i s partially avoided 

by emp oyi ng Br andt ' s approach(25 ) for elas ieity of Mode 3 9 poi nting 0 t 

t hat the r emainder of Brandt Os theory for t he compressional wave velocity 

assumes t hat the fluid and sol id move toget her and exhi bit t he same di sp ace~ 
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ments . Vi scous effects i n the air are i ncluded accordi ng t o Zwi kker and 

Kosten for Model 1~ 5) and t hose i n t he liqui d accor di ng t o Bi ot is v~ s osi ty 

functio~~9) The e ffe c s of change of pore shape ~ ort uos i ty of por es . and 

heat conduction are not considered and i t i s assumed t hat t he t wo f' ui ds 

do not occupy the same pore at t he same time . 

1 . 6 Model 6 = represents a "finite element" approach t o the probl em. 

The medium is considered to consi s t of a number of i dentical e ements 

of vol ume or "cells" containing proportions of fluid and solid . 

1061 A rigi d g porous 9 sound absorbing material i s compared by Beranek(~7 ) 

to a model contai ni ng a series of rectangular cells divi ded i nto proportions 

of rigi d so i d and flui d accor di ng to he volume porosi y . Fl ow res istance 

is also i ntroduced int o a t heory i n which th~ equations of ~ontinuity and 

f luid mot i on are deduced f r om f i rst pri nci ples , maki ng no specifi c assumpti ons 

about pore characteristics but maki ng a number of rest r icting approxi mat i ons . 

(21 ) . 
Thi s model and approach were rejected by Ber anek n favour of Model 2 . 

However 9 McGrath(38 ) poi nts out that an analytic solution f or model 6 is 

possi ble without the number of approxi mations used and that r easonabl e 

results can be obtai ned with two acoustic materials with fai r l y rigid frames. 

1. 62 Tyu eki n(39) devel ops a theory for a hypothetical rubber~ i ke material 

containing an array of parallel cylindrical ducts with their axes normal 

to the incident plane wave front o The medium i s treated as if i t con-

siated of an array of identical close-packed hexagonal "prisms" g each of 

which contai ns an infinitely long cyli ndrical channel . Each "prism" or cell 

is approximated to a cylinder with a radi ally fas ened external surface for 

the purpose of applyi ng simple boundary conditions for continui t y of radial 

displacement and transverse stress of the boundary . The boundary conditions 

together with the requirement of continuity of direct and t ransverse stress 
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at t he channel boundaries furnish a wave equation f or each cell cor r es ponding 

t o that f or t he propagation of axi ally symmetric elas t ic waves i n a so i d 

r od with a free surface . 

1.63 
(40a ) 

A cel l model approach is also used by Nesterov o describe sound 

propagation in a concent rat ed suspensi on of heavY 9 rigid sol id part icles in 

a vi s cous flui d . Each cel l i s postulat ed t o consist of a double plug i. e . 

a cylindrical solid plug surrounded by a coaxial cylindrical liquid plug . 

For a r egul ar array of particles g t he assumed cylindrical s hape of the 

liquid plug i s an approxi mation to t he rectangul ar box shape obviously 

required for a represent ation of the act ual medium . 

Neglecting thermal effects 9 equations of motion for the liqui d and 

the soli d are obtained and used to defipe a comple·x density for t he 

suspensi on which includes the viscous effects i n much t he same way as the 

complex density deri ved by Zwi kker and ~osten(5) for the rigi d walled tube . 

( 40b) 
Bysova and Nesterov extend t hi s cell model to in lude t hermal 

effects . In this case the spherical shape is chosen f or t he l i qui d-

soli d plug . A complex compressibili ty is thus defined expressi ng the 

thermal attenuation withi n t he concentrated suspension (c . f . Zwi kker and 

Kosten(5),s complex sti ffness for a medium with r i gi d walled por es) . The 

theory(40a 9 b) i s suggested as being more applicable to concentrated SUB-

o th t h t h . (41) h " h d t·]. d " t t" · be' t-pens~ons an 0 er - eor1es w 1C 0 no 1nc u e 1n erac ~onB ween 

the particles . 

Model 7 appl icabl e to various t ypes of suspensions i n fluids ; and of 

inhomogeneous or composite soli ds . 

1.71 The suspension or i nhomogeneous solid i s considered 0 contai n a 

distribution of di s conti nuities according t o the following forms ~ -

(a) spherical fluid discontinui t i es n a denser fluid medi um 
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(b) spherical f l ui d di s continuities in a less dense f~Uid medium 

( c ) spherical rigi d or el a s t i c solid discontinuities i n a flui d 

medi um . 

(d) spher ical or i8.rbi trariliY shaped s olid 9 flui d or cavi y 

discont i nui t i es i n a solid medium. 

When dissi pation is calculated for (a) 9 (b) or (c) i t i s based on t he 

solution of t he scattering problem for a single s cat t er er and extended by 

simple addit i on to the total medi um . i .e . t he s cat terer s are as sumed to have 

only a slight effect on the properties of the imbeddi ng medium. 

1 . 72 Rayleigh(42) develops the spherical harmonic approach to the single 

scatterer , problem where the incident wavelength is large compared with the 

radius of the scattering obstacle . Lamb(43) extends t hi s anal ysis to i nclude 

viscous effects and de~iv.esscattering coefficients for a rigid sphere free 

to move, from rate of change of momentum considerations . The first appli 

cation to a number of obstacles i s made by Sewel l(44) for a suspens i on of 

'fixed 9 rigid 9 solid obstacles in a viscous fluid . A corr ect ion i s applied 

in this treatment to account for movement of the obstacles . A more rigorous 

approach 9 for suspensions of types (a) 9 (b) and (c) is given by Epstein( ~5) 

This is revised and extended by Epstein and Carhart(46) for types (a) and 

(b) , to include the effects of heat exchange between particles and jmbedding 

medium . It is shown that the irreversible effect s due to viscosi t y and 

heat conduction are simply additive to wi t hin a close approxi mat i on 9 a t 

audio- frequencies. The attenuation coefficient for the medium is cor-

respondingly calculated from dissipation func t ions represent i ng viscous loas 

and thermal l oss separately . Chow(47) considers suspensions of t ype (a) 

and (b) and includes surface tension effects . (46) . 
The theor y 1 S shown to 

be applicable even in the case of large displacements of the scatterers(47) 
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i oe. the boundary conditi ons us ed for ea h 6catter er retai n the same form 

when either t he or~ gin of coordi nates i s fixed in spac~ or a lowed t o mo~e 

(2) d t t' . b bbl t b with the scatterer . Wo d cons e s a ' enua ~on 1n y wa er y a 

scattering procedure . 
" (48) 

The same problem i s considered by Dev11n by a 

somewhat di ffer ent t echni que ~onsidering he pass age of t he sound wave aa 

a small perturbation on t he volume of the bubble Cc. f . model 3) . The 

equations of motion are derived using generalised. coor di nates and a Lagrangian 

( 49a) ( 46 ) 
approach. Zi nk and De sasso app y t he Epstei n and Carhart theor y to 

suspensions t ype (c ) ; poi nting out Epstein Qs onclusi on(45) tha t when onl y 

viscous attenuati on i s considered 9~ dissi pation becomes almost independent 

of densitY9 (when the densi ty of t he solid obs acles is much greater than 

t hat of he i mbeddi ng flui d) . I t i s further remarked t hat 9 in such media g 

l)sses due to (i) the mal effects ~ · thin he s cat erers ( ii ) relaxati on 

phenomena and (ii ' ) spherical s cat ered wave format i on (removi ng energy 

f r om the i ncident p ane wave front = um.i rnpo t ant in reverberati on 

measurements ( 45)) are negl ' gible compared wi h t he eff ects of vis ous and 

thermal attenuat i on • 

• 73 Attenua ion i n i nhomogeneous so i ds of type (d) i s onsidered by Yi ng 

and Tr u~11~50) The particular obst acles considered are ( i ) isotropi c elastic 

sphere 9 (i i ) rigi d sphere and ( ii ) s pherical cavity embedded i n an ~laBtic 

solido The average energy removed as a fraction of t he incident energy per 

unit area per part icle by spherical compressi onal and shear wave f ormation 

in scattering, is calculated . 

The case of scattering of high f r equency s ound by arbitrarily shaped 

and ori ent a ted grai ns i n pol ycrystalline materials i s developed by Bhatia(51) 

as a pr oblem of "slight " scattering Le. where t he properties of the scattering 

medium differ only slightly from t hose of the i mbedding medium . The effect 



21. 

of mul ipl e s cattering . L e . t he e-ffectr of the material surroundi ng a singl e 

grain ~ being " granulat" r s and not bulk materi al ~ i s di s regarded because of 

the grai ns ' random ori entati on with respect t o each other . 

1 074 Urick and Ament(41 ) consider the propagation of sound i n a fini te slab 

region , (thi ckness d) 9 contai ni ng a concen ated sus pensi on f el a s t i c 9 solid 

particles , the :failbeddi ng fluid being v-iscous and non conducting o Model 7 

condi t i ons are assttmed withi n the s l ab i oe. the wave i nci dent nor ma l yon 

the s l ab is assumed t o be a close approxi mation t o that i nci dent on each of 

the particles. The i nhomogeneous natur e of t he s ab medi um is brought i n 0 

account by assumi ng plane reflected and t ransmi tted waves either s i de of 

the slab whi ch are respectively the sum of the backward scat tered and forward 

s cat t ered waves from the parti cles . The single s cat t erer oeffi ci ents for 

an elastic sphere f r ee to move i n a non- conduct ing viscous f l ui d as 

(43 ) . 
calculated by Lamb are used for each par 1 le o The propagat ion constant 

and complex vel ocity of t he model are calcula t ed on the s uppos i i on that the 

scatteri~gfrom the i nhomogeneous slab region is i dent i cal wi th transmitted/ 

reflected components from the homogeneous s l ab o The vi s cous attenuat ion 

expression is shown to be the same as predicted by the relevant s ingle s catterer 

theory~43 , 45) Correlation is also shown with the derivati on of Urick(68) 

based on a theory of the viscous drag process between fluid and particles 

according to Stoke Os Law . Duykers (92) shows that t his i n t urn can be related 

to Biot ' s theory(28,31 ) for viscous attenuati on i n a relevant model . 

108 Model 8 ~ a more concentrated version of model 7 . 

This model applies where the wave incident on each s cat t erer wi t hi n the 

suspension is not necessarily approxi mately the same as the source plane wave 

i . e. the obstacles do not scatt er i ndependentl y t o any reasonable approxi-

mation. 
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(52 ) (53 ) (54=56) 
Morse and Feshbach 9 Wat erman and Tr ue .1 and Twersky 

i nc ude t he i nteract i on be ween he par i es of model 8 caused by mul t i pl e 

s ca tteri ng 0 The firs (52 ) i s on er ned wi h pr paga i on i n bubb y wa t er s 

and bas es t he echni que of s o i on n he ons t r uc i.on of a Gr een os function 

for he compl e e case o The ot her ef erences (53=56) deal with a more general 

class of pr obl ems by cons tru t ng i n egral eq a i ons f or t he excit i ng fi el d 

on any s ea t erer i n t he medi um o Twer s / 56 derives b l k paramet er s for a 

mu t "pl e s _at t ering s ab medi um cont ain"ng a r andom array of s i milar y 

aligned 9 i dentical s cat ter ers of general sha peo In a f i r s t f ormalism(5
4) 

these are computed i n t er ms of he propert i es of the i mbeddi ng medi m and 

the singl e s cat teri ng coeffi c "ent s f or an i sol a t ed s ca t t er er i n the imbeddi ng 

medi um 0 A second formalism(55 ) derives t he bulk parameters i n t erms of a 

generali sed i solated s ea t ering ampl itude correspondi ng t o each s catterer 

being exci ted by t he coherent mult ipl e s a t eri ng f i el d but r adi a t ing i nto 

the imbeddi ng medi um. Thi s is consi der ed , 0 be more accurate t han the 

f i rst formali sm. 

(57) Embleton applies t he firs forma i sm(54) t o the a t tenuati on of 

sound by compr essional wave s ca t t ering i n f or est s by consideri ng t he case 

of sound i ncident on a s l ab region of paralle r i gi d cylinders 9 their axes 

normal to t he i ncident plane wave vector o 



Chap er 2 Diss~a~on ' n F ' brous Med a 

Fi brous materials are now very commonly used as sound absorbi ng 

' t b d '1 bl ( 1 ) mat eri als and a large var iety of proprie ·arJ r .iPl s are aval. a e . 

b ' h t " (5·9" . t h They a so provide t he best sound absor tl.on arB. , erl.S l C S , l.n e 

audio- frequency range . Thus, i t i s i mportant t hat there should be 

adequate theore tical work avai abl e t o explain t heir performance and 

lay t he basis for t heir desi gn . 

2 01 Cri ici sm of existing models ? theories and resulting parameters 

Although several authors speci fically concerned with Architectural 

Acousti cs have suggested that their theories(5 y 17- 21 ) are applicable to 

fibrous media 9 certai n i nadequacies of their work can be point ed out . 

These stem basically from he differences between the mi crostructure of 

the conceptual mode s (1 . 2) behi nd t heir heoretical work and that of t he 

materials under consideration . I t is proposed t ha the materi al parameters 

on which the dissipative capacity depends t end t o represent macros copic 

, ( 14) (17 18) propertl.es and are often frequen cy dependent . ~ The most com-

prehensive treatments are those due to Zwikker and Kosten(5) and Biot(~8-31) 

thus their parameters are the primary ones reviewed. 

2.11 Structure Factors 

(10) , 
As remarked ' n 1.1 4 , the structur e factor 1 S i ntr oduced to allow 

for effects of orienta ' ion of pores and of side- holes . Also , at least for 

that theory based on the rigi d framed Model 9 the factor is required to 

include the effect of the motion of t he frame( 'IO) io e . a slight frequency 

dependence is i ntroduced as in the effective air mass parameter~17 . 18.21) 

The result for all absorbing materials is a · factor which cannot be exactly 

measured(12) and is calculated s imply as a factor required to bring 

theoretical prediction into line with experimental obser vation . It can 



only be predic ad in fact fo spe i al ases of "ar ifi ::: ' al medi a" e og o 

sacked glass stl"aws (59) wh 'ch are un ' ke y 0 c: r respond i n s truc+ure 

o mat erials used for sound absorb ion ~ of he hi gh flexi bi i tY 9 low f ' ow 

, (5 21) resl.S an e ca+agorY 9 ~ s ch as g ass fibr e woolo The stru ture fact or 

may be more viable for hi gh dens i y g i gh f low r esistance material~ au h 

(60) 
as wood- fibre pIa e ; where i ' woul d ser e as a "persistence fae or " 

measuring the persis ence of a pore 'n di e i on and cross- sectional area 

i n a section paralle to t he "common" direc ion of t he fibres 0 For such 

materials i t may be expect ed t hat he f i bres are lose~packed ' oeo in 

contact for t he major portion of t heir eng h wi h 0 her f i bres and thus 

, (10) 
such concepts as capillary pores 9 s de=holes g orient a tl.on and 

tortuosity(6 9 30) have meani ng o For 1 osely compacted fi bre wools 9 where the 

fibres cannot be expected t o be i n contact f or any appre ia.bl e port ion of 

their l ength s h concepts a ,9 these have I i t e place 0 Only t hat of 

tortuos ' y of streamline f1 w(6) retains any meani ngo 

2012 Flow Resistance 

(5 14- 21 ) This parameter is :ntroduced by authors 9 to express t he 

viscous boundary lay~ a tion 9 a t he so ' d- flu ' d i nterfaces within 

porous materials 9 i n the equations of mot "on o It i s given an accurate 

r epresentation (1.13) as a frequency dependent func t 'on onl y for Model 1 

(carried over t o Model 2) i oe o for t he case of periodic moti on of a 

viscous 9 compressi ble f ui d in a fixe d g r i gi d walled 9 circular 9 cylindrical 

pore . For model 5 ( 1052) 9 a ~iscosity func 1on( 29) is introduced to express 

t he more general periodic micro=velo ity f i eld s 'tuation a cross a pore of 

arbitrary shape 9 with a limi ted motion of he rigid por e wal1 9 i oe . uni di-

rectional mot i on parallel to the induced pressure gradient o An analysis of 

incompressi ble 9 viscous flui d fl ow inside a cylindrical tube with el astic 
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wal S 9 whi h are massive and capab e of hree d ' mensi na mo ion ~ i s made 

b ( 6 , t h . t b " f h" d f ... " y Womsrs .ey 9 e ana y so on e1ng 1n erma 0 un~ a:~ e ~~C ~1 0ns o 

Fi brous materi a in which cap ' llary pores can be "eii ned 9 such as the wood~ 

f ibre p1ates already mentioned ~ wou .d req ire an ana~ysis 0 vis cous . 

compressib. 1& 9 cond ct" ng flui d mo ion wi hin pores of arbitrary shape. 

possess ng massiv8 9 conducting e as ic W ' 13 9 capa Ie of three dimensional 

motiono C ear f r t his aL~~ and for oos l y aompa ed woollen mat erials 

where capi llary pores cannot be defi ne 9 an analytic expressi on for t he 

(5 14- 21 ) 
dynamic flow r esistance oeff 'oien necessary in t he re . van t heories , . 

i .... f t h bl t' ff " t( 62) t h t even n ~erms 0 e measura e 6 a ~c coe ~c~en . presen 5 a 60mew a 

i ntractable pr b em. Thus t he pr ac 'icabili'Y of dynamic f ow resistance 

as a paramet er f or f exi ble g fibr o s absorbing me di a must be questionabl eo 

2 01 3 Concept of a con inuously framed and i so ropi c medium 

The heories of p opagation 9 based on models 2 9 3 and 5 9 predict pl ane 

" frame waves tl
9 coupled or deco p ed with the motion of t he s a ura ting 

flui d o Thi s r equi es he exi sten e of a contin s solid frame t hrough 

t he medium or at l e ast a discontinuous frame which will transmi t the effect 

of periodic l oadi ng on t he "front" surface of t he mediumo A continuous 

r i gid s olid f r ame 9 of COurS8 9 is an i n egral s pe ification of model 10 

The req irement of ontinui y of frame i s met i n ac t ual mat erials of 

t he acousti pl aster 9 wood f "bre pIa e {fr m t he observations of 2 011 ) 9and 

granUlar 9 types 0 Where t he wood f bre an granular materials ma~y be 

expected t o show a non=linear el asticity due to t heir essenti al discontinuity -

~ poi nted out by some author s oncerned with models 3 and 5 (1 03 and 1 054) 

and by Jones~63) 



However ~ he corre ation a h ' eved by Kawasima(27) between theory 

based on ';he unhonded versi on of Model (64) and experi mental observation 

on gl ass fib e materia.l 9 wou d s eem t o i ndicate hat. i n such materials l for 

t he smal disp acements and velocities i nvolved i n an acousti c disturbance 

t he f i bres reac quite i ndependently of each ot her , at least at high 

frequenc:i This is not t rue in t he pr essence of resin bonding. 

Further 9 he condition of iso ropy , required i n many of t he continuum 

mechani al t heories(5 ,1 9 921 , 35 936 ) based on models 2 9 3 and 5, is not 

necessarily satisfied by f i brous materials if t he fibres have a "preferred" 

direction u Thus materials must come under the ca tagory of materials not 

adequa ely deso i bad i n t heir sound abcor bi ng propert ies by t heories based 

on homogeneous, i sotropic media~ 65 ) 

202. !2EE cation of t he unhonded version of Model 4 

2 021 Kawa6i~a os Theor~ - advan ages and dis advan ages 

By hoosi lg a model for t he fibrous material as described in 104 

Kawas i ma avo ' ds many of the difficu tiea menti oned i n t he previous section. 

However 9 nE'W p oblems are introduced in a ttempti ng to apply B. continuum 

me chani cal approa.ch to thi,g model. An approxi mation i s introd ced with 

t he r e8 ' eta! . ' f . t ( 66 ) . coer '. Cl.en 1. q e 0 1m application of Stoke ' s Law for 

motion of a ody through a viscous f luid . Fur her v t he heat conducti on 

efie t can n y be introduced assumi ng a square array offibreB~67) Al.so v 

the compresGibi itY9 and t hree dimensional strain of the elastic fibres 

are not aken into account by t he assumed rigi d fibre modelo 

2.22 A ~.9~tter~ t heor:l, 

Mode' 4 9 at least with unbound or l i ghtly bound conditions 9 may also 

be regarded as a version of model 7 or 80 Thus t he fibrous medium may be 

consi dered to be a suspension of f i bres n air and the teChniques of 



analys r eviewed i n 10 7 and 1 08 may be applied . Each fibre may be compared 

t o an el asti ~ cylindrica~ conducting so id s catterer i mmersed i n a Vi S COUE 

conducting , compressible flui d medium. The tractabi i ty of this approach 

is ens ured for most materials i n use as sound absor bi ng ma ' er ' als by the 

ver y small dimens i ons of the component material f i bres (diameters bet ween 

3 and 10 mi qrons i n most i nstances) o Thi s means that t he harmoni c functi ons 

used i n the s ca t tering theory are rapi dly convergent and need only 'be expanded 

for the first few orders of their arguments ; L e . Rayleigh s ca t.tering 

conditions exist 9 he wavelength of t he i ncident sound being much greater 

than the radi us of t he s ca tteri ng obst acles for t he frequency range (100-

6000 cis) of i nt erest . 

2 . 23 Dissi pat i on i n Fi brous. Medi a on a s cat t ering model 

(46) 
Epstein and Carhart ana yse sound propagation in a viscous ~ 

conducting ~ compressible flui d medi um i nto three ypes of waves; t wo 

compressional waves and one rot at i onal or shear wave . Within a small 

approximati on one of the compressional waves i s shown to be ascribable 

purely to thermal effect s g t he other corresponding to dilatational 

propagati on in an i nvi sid g non~conducting f ui d . It is noticed t hat the 

shear (vi s cous) wave and the "thermal" wave are rapi dl y attenuat ed in ai r 

and water . The attenuation of sound in i s passage through fl i d 

6uspensions g as described i n 1.7 9 can then be attri but ed t o t he "mode 

conversion" of i ncident pl ane dilatational waves int o t hermal and vi s ous 

waves by scattering at the various obst acles (suspended part icles) . 
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i s 
This mode conversion into viscous waves / accepted by Wri Ck(68) , Chow(47 ) 

and Cantensen and Schwan(69) as equivalent t o t he more convent i onal 

representation of viscous drag o Urick (68 ) shows that t he attenuati on 

coefficient derived by Lamb(43 ) ~an be di vi ded i nto t wo parts related 

to the scattering l~s and viSCO~S loss respectively 9and proceeds to 

verify that the viscous part can be deri ved independently by means of 

Stoke's equation o Ch (47) C ow simi larly shows 9 that the first or der l ow 

frequency) approximation of the viscous dnug (as a fun ction of re ative 

velocity) on water droplets in air 9 subject to an i ncident sound wave 

according to the Epstei n and Carhart (46) formulat i on 9is equival ent t o 

(47) 
Stoke's law for spheres moving wit~ the same vel ocity o Further . Chow 

derives the first order (low frequency) approximation of the heat transfer 

rate for this formulati o~ i ncludi ng heat conduction effects for each . 
I 

droplet . as equivalent to the standard expressi on for heat t ransfer t o 

a sphere when Reynolds number tends to zero and heat exchange is by 

conduction only o 

It may therefore be expected that the expressions for dissipation 

given by mode conv'ersion wi thin Model 4 (as a type of Model 7) are 

accurate representations of the mechanisms of dissi pation in an ideal 

fibrous medium previously inaccurately represented by theories using flow 

resistance etc o The main parameters in this approach are; radius of 

fibres Q their elasticity , number (average) per uni t volume and properties 

of the imbeddimg medium (air). Such quanti t i es are readi l y measurable 

compared with the less convenient ,parameters previously required , and i ndeed a 

scattering theory is more directly related to the mi crostructure of a 

fibrous material o 
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2 03 . Restri t ione and ~=s~u=m~p~~~~~== s c: a.t teri n&.. .heorx 

2031 The un-bonded version of Model 4 ' s t he only one whi . corresponds t o 

Model 7 0 Each fibre i s a s sumed freely suspended i n air s o that boundary 

conditi ons of con inui y f pr essure j ve oei y ~ temperature and heat f ow 

can be app ie t o any poi nt on its surface o Thus t he contac t be t ween 

f ibres j necessari y occurring n a ual ma. eri al s j i s neglected j i ntr o-

ducing a systematic error in so far as hey i nduce "frame" waves o 

Fri ction bet een fibres is al so negle ted , as is he e f fec t of 

resin bonding which alters the apparent elasticity of the f i bres , their 

orientati on and degree of contact wi t h ·each other o The influence of resin 

or cross bonding of t he f ' bres i s t o de crease the sound absorption at low 

frequenci es and in rease i t a t hi gh frequ~eies(70) o It may be con-

s i der ed t hat a bonded mat eri al is mor e amenable to analysis based on 

cont inuous frame models (2 013) t han a l oose pi le o 

2 032 When a s ingl e scat teri ng approach specif ' t o Model 7 i s used , 

t he t' me 8.verage of t he power di ssi pa.L ed per s atter er 9 as a fraction 

of t he i ncident ene gy.is calcu a.ted t o give he a.ttenuat i on coefficient 

of t he medium. The power di e,eipated per s a t terer i s fo nd by in egrating 

t he dissipat i on functi ons over a large v l ume surrounding each scatterero 

This volume mUt3t be at least large enough for t he viscous and t hermal 

waves t o have di ed 0 before reaching ' t s surface o Thus a minimum 

r adius of t he volume of integrat ' oll must be t he wave decrement distance 

for t he viscous and thermal waves (roughly equal(46» 0 It follows that 

this me t hod of calculat ' on requires the s catterers t o be separated by 

a t least t wice hi s di stance so that the vi s cous and thermal waves do not 

i nterfere o The r equired separati on i n air has been calculated t o be 



(46) Y I 0.02 cm • n a f i brous block 9 t his r equir ement i s unlikel y t o be me t 

over t he whol e l engt h of every f i bre 9 and mus t pr ovi de another source of 

systemati c error o 

2 033 In view of t he concentra t i on of f i bres t o be expected in actual medi a 

and the vari at i on in thei r separation 9 t he s i ngl e s ca t tering theory can 

only provide a crude approximat i on o The mul tiple s ca t teri ng t heory 

appropriate t o model 8 s hould i mprove on t h i s by i ntroducing t he 

possi bility of s catter ed dilatat ional wave int erf er ence . In t he multiple 

s catteri ng t heori es avai lable 9 however 9 for general s i tuationE, viscous 

and thermal wave mult i ple s cattering are not considered . 

The work of Waterman and TlU ell(53) would seem to indi cate that 

symmetr y arguments discount any effect of viscous (shear) wave mult i ple 

s ca t teri ng among spherical scatterers . More general situations 9 however 9 

require modi f i cation of the heoretical arguments used to allow for 

shear wave i nter action o 

Furt her 9 the firs t formalism of Twer sky c'54) 9 a1 t hough allowing for 

random spacing of the fibres , requi res them t o be parall el along t heir 

whole length . The extra refinement of s cattered wave i nteraction 

therefore limits the flexibility of t he s i ngle s ca t tering technique as 

regards the orientation of each fibr e with respect to the incident wave 

front . 

'/ for fre<}uenc,es > SSD Hz 



CHAPTER 30 SCATTERING BY A SI NGLE FIBRE 

The s cattering approach t o the problem of sound di ssipation in a f i bre 

block 9 as indicated i n t he previous chapt er 9 r equires t he solution of t he 

scattering probl em for a s ingl e fibre. 

Each f i bre may be approxi mated by an e astic 9 conduct i ng solid cylinder9 

which i s suspended i n a viscous 9 conducting flui.d viz o air 9 f or t he cases of 

interesto 

Scattering by soli d cylindrical objects i s considered by LambCBO ) 9 Morse(81 ~ 

Morse and Feshbach(82 ) and LY&mshev (IIO) o Furt her t he cylindrical s cattering 

problem for pl ane acoustic waves is i nvestigat ed by White(77 ) and Tyutekin(78 9 79) 

both for normal and oblique i nciden e on fluid f illed or evacuated cavities • 

. . ( 77) The trea'tment of WhJ.te allows both shear and compr essi onal wave incidence o 

None of t he lit erature 9 howe'ver v considers di ssi pat ion 9 due to the scat-

teri ng of viscous and thermal waves 9 around a cyli ndrical obj ect ; this 9 t here-

for e 9 must be i nvestigat ed o 

3010 Scatt ering by an elastic. oonduct~. solid cylinder imbedded i n ~ 

viscous, conducting f 1 i d 

30110 Oblique incidence ~2 
I 

e 

/ 
/ 

f 

/ 

/ 
/ 

/ 

x 

.. 
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Fol lowing White (77 )9 consider a plane compressi nel waV'e i nci dent on the 

cyli nder 9 choosi ng a system of coordi nates as shown above 9 with thei r origi n 

i nsi de t he cylinder9 and t he z~axis coi ncident wi th t he axis of t he y i nder o 

For aimplicity(77 979) the i nci dent wave vector i s chosen to lie i n the 

x~- plane o The i nc i dent wave potential may t herefor be written 

us ing the convention tha t thi s r epres ents a progressive wave 9 travelling in 

the positive X directioD 9 and stipulating tha t 1~ must sati sfy the s calar 

Helmholtz equation o 

30 2 0 Ot her potent ials 

In general as both t he f l uid and the sol i d are all owed t o support shear . 

i t i s necessary t o consider more general sol t i ons of the vector Helmholtz 

equati on o 

For certain coordi nate systems [~\ )i~)~~] 9 by (83) . it i s possible to 

. repr esent t he vector pot entials of the velocity fields i n t erms of two 

scalar potentials:-

A 

where w = wlt) and ~9 i s 8r unit vector parallel to t he axie representing 

the coordinate f \ (with parameter unity in t he curvi inear system) 9 and 

both satisfy the scalar Hel mholtz equation o 

Thus it i s necessary to consider nine scalar potentials in t he scattering 

problem f or oblique inci dence 9 including t he dil ati onal . thermal and shear 

potent ials deri ved i n Appendices A and B for both f luid and sol ido 
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According t o the conventional treatments( 80 ~ 8 1 ) i is possible to expand 

the incident plane wave together with scatter ed and induced wave potentia1B ~ 

as soluti ons of the s calar He mholtz equati on 9 in cy ' ndrical harmonics vizo 

writing X = re . .£)\'.9 I,( ~ K"; s'v-.. ,0 I K~~ = K; c.... S ,0 and E-j\. =- 5 1) (\ ~ 0 
\. .6 '\ l :L, (I.. >0 

¢. '" f4.'VlllI.2.) Ll E:-~~I\. T",(K~~,) LVr..C"g) (30122) 
~ ~~~ 

where the 11\. are cylindrical Bessel fun i ons of the first ki nd and order""-- ~ 

and the time dependence ~G,wC)is understood o 

The outgoing fluid scattered waves may simi ar y be written . furt her 

suppressing t i me dependence : 
0() 

¢yf e..1<~(~ 1<2.) L ~ g. 'to- \\, ll(~f-\) UlS ("Q) """ " L 
'l ~ O 

¢,: 4\l (i.\("2) t 'B f. . '" ~"ll(~ t) tD\ ~\}) 'l\.L (30123) 
,, ~o 

f~ ~~ (iYCz')t c! ~#. \·L, (..¢I-) ~s. (,.Q) 

Y! = ~~ (~\{"Z) ~"o t, D;·t H ... (\(;r) ~l",Q) 

where the ~~ are Hankel functions of the first kind and or der ~ (repr esenting 

outgoing. waves) . 

The induced solid wave potentials may also be written i n expansi ns of 

cylindrical harmonics . again suppressing time dependence • 

.,t;. 

~: ~?l'~z.) r; f\! t J.,J\(~~,} w;(,,~) 
" e. o 

r~ ~~C\(~ t 'g~ l'" J:(\(~\"') Ul~(.,G) 
... ~o 

(3 0 124) +s " -4?(;~Z) L t h), ~" T,J'(~\-) ul2.(t-tf') 
,,~o 

x.s, 4~(~v3j [, 1); ~"J~l<;\"') ~GtQ) 
wh,ere "0.<> 

! ~ f. , ~ \(~ tos. 0~ v'- ~/ c.osf K, ,~ T.t ,-.. "T 



and the z dependence of all the waves relates the scattered and refr acted 

angles to the angle of incidence, assuming a "generalised Snell ' s law,,(85) 

to hold viz. 

The expressions (3. 123) and (3 . 24) i ntroduce ei ght sets of unknown 

coefficients . However g t here are 8 boundary conditions which may be applied 

at the surface (r = R) of the cylindrical f ibre viz . continuity of pressure 

(three components), continuity of vel ocity ( three components); continuity 

of temperature and continuity of heat flow . 

3.13 . Boundary conditions 

3. 131 Velocity (or displacement) 

I t is necessary t o deduce the components of vel ocity \I of the flui d 
f'/ 

or displacement u. of the solid from t he form 

+ c..ux\ A 
"" 

( see Appendix A) 

in cylindrical polars . 

Now from (3. 121) the particular case of cylindrical polars gives(83) w(~:) ~ I 

"-and G., -;z.. (unit vector in the Z direction) 
rv' 

Thus the expression required for ~ and ~ is 

Calling upon the 

c..ur-\ e-w-\ l ') 
&.i"(~~) 
cw-\ l~~) 

and the scalar Helmholtz equations satisfi ed by t and X viz :-

( Vl- + K~ ') (1) . = 0 

The expression for ~\ A: can be transfor med to 
/V 

c..w-l 1\ ~ ~[~~+ ~ ~\PX)]+ e[l~"+ -~~J'--tzrt--fH:tl (3.1:311) 
,.., ~th r \j~ r ~~h_ h L~?-~ J 
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Th f ( 1 11 ) d t h .. ~ ,,() . l ' d . al 1 (84 ) us r om 30 3 an e express~on lor t Ln cy ~n r~c po ars 
f'.. "-

~() ~l~()+~~l,)+z.~( ') 
~r \" ~~ V~ 

the components of f uid ve ocity or s lid di sp acement may be wri t t en 

r UlM<yClI.kt - ?J:. + d).4 + K T ~ 1-
dl ~~r 7" ~'& 

e to ""-'Yo (\(.-.\. (:: I~ + l~ 
+ ~ ", ~~) (3 01 31 2) 

t-~e \" Q'b-~"Z--

'2.. ~po.'\.t-,...t -M + d~+ + \{~ + 
h .. ~"Z.).. 

Suhstitut 'on of the relevant poten ' a expansions (30 123) and (3. 124 )? 

where the solid f i bre velocity components are given by t he part ial derivative 

woroto time of the displacement comp nents ~ and r ememberi ng t hat t he t ot al 

fluid field must include both scattered and in~ident potentials , t hen yi e ds . 

for example, for continuity of t"" component of velocity [ Vr =- ~r J :-, 
_ ~<~ (\~~) l ~ ~! ~<~":l<:") ,,'l.&} ... Z "';\'''~ ,;V:;,) .. ,(,\)) t = R 

+ t ~,,;:~~~ T .... 'l\(~~r) LoSl/\.GJ} 

{

oj, ",C<..l t~ R 

+ \10( e..~,,« ~z..) ~o c..~ ~/ll'\~~ H~ L\(~~t) UJ~l,,~) t" ~ 
+ !\.\(! ~('.Kz.)) r: D!"'~ "/ll~\l-)~~fl'}> , l "'~ 'J\~ R 

[ -.. "c,,,,,,) { t, A> .. :' T,\<~") ""t. \)) + t~ \\! t <~ r,.' «~ t) <0' t.\)')~ ] 
,<>R 

~_ . ll'\t /l~ J _,~ ['ll( .JU("l~\(2) { [: c~~"" ~ -r; k:.st)~l.l,,-8) + .I\.¥;~ ~})~ I."T" l\(~st-') Cc~l/\B)l 



where t he not a tion 's underst od for he 

cylindrical Bess el Fun tions o 

Thi s boundary condi t ion ay then e s i mp i fied by mu tip ica i on 

through with the factor :- " 
~I\ R ·l.l- I\')...>L'J('~l-: \iC-z..) j c..o!':.l",,\i-} 

" 0 
such t hat t he orthlOlgonalH y of c-Ds l MQ ) i s invoked viz . 

1\ 

J Co' (""'\)) '-", l,& ') Je 
o 

-fo " h 
I I 

Thi s has t he e f f ect of picking out t he ~ ~ ~ t erms 0 S mi ar fact rs 

may be used f or s i mplif ica t i on of t he other boundary onditi ons g in part i

cular t he continui y f 8- ompt 0 of vel o . t y and t-B ompt. of at es s 

r equire t he correspondi ng or t hogonal property of s ~(\. lM.Q) 0 

Introducing t he notat i n 1.(1 ~ R- ' \1- ~' ~ 'R.. ~ b(- ~' '-R = 2.~ "'" ().. 
~ ,-~ ,-- I 

The 

~;SR 'i \'C' ~ R "'- b~ w::;'S R _ I S :. C-. 
',.~ 

.,. _ c... 
I 

vel ocity boundary conditi ns f inal y yi e d the f ms g-

- t.' £- [Eo" T~ to;.~ + A~ \t~ l~~)J - b'~ ~J "~ lb' /-) -+ ~~ c.: t c:.; \\ ~ L~I-) -+ .... ~~ t>:+1,J~~) 
::: -iw ~ -c:.~ ~,,\J~ ~~ -b!.~A<;'J .. llb\s)+ ~1(~Sc.:T: LC.? +I\\(.,s»;~~S)} 

IV [ ~~ T~ lc:~+ ~:~.J~~')+ B;"Jb\~ -l\iCc...tI\,,~f) ] - \'C~ ~~~: *~lc.'0 
= - Iv-) l r\. [f\;'J .. ~') -\- ~~J"l~S) -,KL;J",(L\) ] - 1C~ e' 5J):J,,'(i') 1 

- l\( [ eo" -:\" (AI) + Al ~,,(c.'~) -+ ~: H .... lt:~) ] + (I(~~ - I<~ c1 "J2~ 
~ - ~w [1\; T"Cc:s) -+ B;J,-C .. bs) J - cW l~l.--~~) a TJLS) 
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f rom Appendix A ~ t he t o 'al f l i d s ess may be wr:ll.t t <en ~.~ 

Fu' t her 9 f r m t he expressions f o,r t he SI . a i n mponen -, i n y i n i .c' 

po are ~ gi ven in Appendi x B ~ whi ch pp. y eq y weI 0 he 

components ~ where di s p acement s are eplaced by v ~locities for he f 1 i • 

it may be seen ha t g= 

Als 9 i den i cal forms f or C't'I ) csr.Q ) ot:"l- eris 9 where he f ' id 

potent i als are r epl aced by correspondi ng ' potentials and t he f 1 i d 

c nst ants are r epl aced by t he relevant ool i d on ants . 

Use i s made in ea h case of • ~S:.._ 
/ ,. - respective y o 

I 
Intr du i ng t he further n t a t ion K'K."" &: ? the on in i f; of s t· e 6 



a t h e f bre boundary gives 9 e sen oi al y y t he proced i n 

301322 

= l ~ A: 8~J,,\(~~)+ (~~-J~_t}rJ~S) ] + ~~ [b\ S1~' (\J\S)-+ (f-t ~)J"lb\~ J ( 
L +- ~~Ls~~~'(~s) 4 5 

--I- (\ l(~ 'D~ [ Lg J~lL\) - J'"-L~~ J j 

I\.. [e::'"- [C:~J:l~~ - 1,(~1-) ] -+ A.~[~~\\~ (r:~) -14,,~~)] +- \3; [~\~"~ l~~) - \-\" ~~~)J J 
- ~~ c:: [c~\1~ (21-) - 11" l~ t) J 

+ j)~< Gr-I\:C2 f) -~P- ij;\lc.'f-) - ~~\.J(~) J 

::: I "-[ A~ G ~"J,,'l~l) -Jr1~!)J -+ ~: [~\SJ,,\(bi)-JJ'o'~))- ;"Ln~ ~lJl\f((t) -JJllm 

+ "l\S Sr\~"T\(II\ IS)..T"rls) >--rtll)] 
Y,,\(,. LL. ,J,,\c...) - <:': '-I",-c... -(\ -J,,\S-

.l. 
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3. 133. Temperature and Heat flow 

From Appendix A, the fo lowing expressi on for the temperature 

vari ati on within the fluid holds : -

where 

and 

which from eqn (A.20) 

further, from Appendix B, for the 

T S ... _ ex rt. s 
(Tn 

where ~ ,...,., - ~s llWf~ +- ~~ ) 
(!.S ~'!. o-~ 

Thus temperature continuity at t he 

solid 

v'S _ J on the assumption t ha 0 r_ 

Q.I\ cl. N S -= Co S "l 

fibre surface gives 

~ [~t--r",(~f)+i\:~",l~~)) +F~:",J~f-) ::: -Cx'E~T"U;!.:) 

(~~ ~T~ " .; dT~ ) 
and continuity of heat flow v · z . ~ ~r t":R gi ves 

'\(~ l tQ.~ [,,-,,-r:(~f-) + A.th~~ (~Q-)] + rb\~B!\lX~~)} -= -~ Ct n' 1B;l",,-'l~ ~') 
,0. 1332 ) 

From the eight boundary conditions (3.1313) , (3. 322) , (3 . 1331 ) and 
~ 

(3 . 1332) the coefficients 1\", required (see Appendix E) for attenuation 

calculations, for normal or oblique incidence, may be calculated (see 

Appendix C), showing their dependence on fluid and fibre properties 

(Appendix D). 

3.2 . Attenuation due to a s i ngle cylindrical s catterer 

From Appendix E, the energy loss per s catterer per unit time is given by 

W = 
for a normally incident plane wave , for which 

through unit area normal to its direction may 

the energy carried per unit time 

be written (46 , 47) , ~p~Kf = E 
"i. 1° b 0 
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Thus a "dissipati on cr oss sect i on" ( u·) i for ea hun t l engt h of 

cylindri cal Bcatterer parallel to t he i ncident wave front may be def i ned 

by 
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Chapter ABSORPTION OF A NORMALLY INCIDENT PLANE SOUND WAVE BY A 

FIBROUS BLOCK , BACKED BY A RIGID PLANE . 

In t he dis USB ' on of hapters " and 2 i t i s suggest ed that a mode 

for the f i brous bloc s i milar 0 that used by Kawasima(27)may be chosen , 

In par i cu ar g if ' he bl ock is rega .. dE'd as a r egi on of space ( i mbeddi ng 

fluid) containing an ar a:y f para! e f bres 9 which are completel y 

separa e and f r ee 0 mo e in he i nc ent f i eld g a 6 at t ering a pproach 

is suitabla. Thi s appr B.ch may e based on either t he s i ngle scattering 

t echni que assoc ated ' t h mode 7 or he mul iple scatteri ng techni que 

used with model 8. 

The speci al eir umstanee of a ri gi d plane backing is also considered 

i n order to correspond wi h t he physical s itua i on of impedance tube 

measurement . 

4. 1 . Si ngle Scatt eri ng Theor~ 

4. 01 Attenuati on cons tant 

Ea h f bre is considered to be a .ight eir ular ylinder g so t hat 

t he analysis of hapter 3 app i e60 

If t he wave ' nci ent on ea.h f'bre is assumed to be identical wi t h 

t hat incident on t he b 0 k sur ace and a 1 t he fibr es are assumed paralle1 9 

hen t he t t al ener gy removed from he i ncident wave front by s cattering g 

per unit volume ·of t he fi re bl ock 's ( NW) g i . e . the product of the average 

number of f i bres ross ng unit area normal t o t heir axes and the ti~e ~ 

average of the overall energy l oss thr oughout a volume t hat is large com-

pared with he decrement di s t ance of he t hermal and viscous waves (Appendix 

E) . Thus g if E repr sen s "he ' me averaged energy flux 9 then the energy 

loss during t raver sal of t hickness element dx of the block is given by 



) 2 . 

(from Appendix E and 3,1. ) 

where ,?$. i s t he direction of propagati on of t he i ncident wave front 0 

The s ol ution of h i s i s 

and hence Ncr may b F' ~ egarded as the a 'tenua i on coe f ficient of t he medium . 

Writing f ": A ~p~"if ·- vJt-) 0 repr esent t he internal field pot enti al f or 

t he mode1 9 with bulk propa.gat i on constant, 

t he f or m of b may be dedu.ced i . e . 

s i nce 

t b t d
(49b ) 

may e no e 

b 

ha t t his de initi on of b 9 i ncl udes only t he effects 

of convers i on of t he incident plane wave i nt o viscous and her mal waves at 

t he f i bre boundari es . 

To e complete ot her eff ects , ment i oned i n 1 . 72 9 should be i ncluded . 

Of t hese , t h e dissipation due t o normal wave mo tion wi thi n t he imbedding 

flui d has a ready been neglected in t he deri vati on of W, by as suming 

t o be real. 

Further , t he t ime averaged power l OSs identifiabl e with the convers ion 

of t he i ncident pl ane wave i nto cyl i ndrical scatt ered dilatational waves 

a t t he fibre boundari.es , under Rayleigh s catteri ng condi t i ons may also be 

negl ected , as follows~ ~ 

The time aver aged power per uni t lengt h of 6cat terer 9 carr ied out 

( t hrough s urface F 9 of a l arge volume V surrounding the s catterer) by 

t he scattered dila 'a~ional wave .an be shown to be given by 



The process of i nt egr ati on us ed previously i n Appendix E ~ then gives t he 

followi ng expressi on for t h i s t erm g-

This expression is of the same order as the s econd term of W (E010) and 

thus may be neglect ed by t he argument of Appendix (E03) 0 As remarked by 

Epstein(45) ~ t his wave conversion will not anywaY 9 represent energy "loss" 

i n reverberation measurements 9 s i nce the energy r e=enters the enclosure o 

It should be ment ioned that t he simi larity of the expression for the 

s cattered energy above 9 and t hat for t he t ot al ener gy loss in the r egion 

surrounding a s cat terer , gi ven by Eo1 0 or Appendix E, i s fortuitous 0 The 

latter has consi dered vi scous and thermal dissipati on throughout a volume , 

and develops (Epst ein and Carhart) to t he form Eo1 o only after some mani -

pulation o The "Rayleigh Scattering" expression above is a first state-

ment of the scattered energy carried across a surface o The subsequent 

evaluations of these expressions must di ffer since the dissipation integral 

includes both incident and scattered dilational potentials (~and f; ), 
whilst with t he s ca t tering i ntegral ~~f alone is involved o 

4 012 Surface normal impedance 

For a single scat terer therefore ~ (3 021) refresents the main part 

of the dissipat ion of energy from the incident beam o 
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I<' ~ 
1<" Q 

/' 

± CtJ / 

---+ / 

From the above erg ment t he sing e 

s a ering mode1 9 predicts dissi pati on 

flbtul.<S as i n (4 0 ) u As a f irs t approxi mation 
bl()(..\( - C'-- ~hi5 may be cons i dered as t he onl y 

('ill eff ec of t he presence of t he fi bres 

x'" 0 
on t he propert i es of he i mbeddi ng 

medi mo 

Thus v i n t he f oIl wing s i mp e analyti t rea m ~ . u t he r : br e block i s repl ace 

by a homogeneous a enuating medi um having a pr opagat ion cons tant given by 

I(b 
\,(J + i. Nv 

= 1> T (4 01 03 ) 

Assumi ng he f or ms ~ = .IUC? ( ~l,(t~ ) ~~ l-i...:ll: ') for t he i nc "den wave 

4", 4? C:- ~ l(t.)l.)U?(-' ....:Jl:) fo he refl ected wav 

"k ~? l~ \.{b ;X ') 4 Y(-;...:ll:) f OT t he forward wave } 1- ~"l-~ '-<Io~) q~l-i...Jt) f or the ba kward wave 

i ns i de t he s l ab/ 

the l a tter pair assume he f i e d °nside t he fi r ous bock t o be plane and 

compr essi onal 0 

Wr i ting ~ f or he to ' al f i eld peten i al at any poi nt 9 t he pr essure 

and vel ocit y along he +ve d "r ection are given a t any poi nt by 

lWp} ± 
- ~1 

;:) ~ 

and t he boundary conditions of con i n ity of norma pressure and veloci t y 

a :at.=' -& and zero velocity a t )( -= 0 9 ne es sary f or t he "i mpedanc e tube" 

s ituati on are given by 



Thus t he surface normal i mpedance , 

Zt\. ~ - 'Vxx I 
v" )( -=- _ & 

may be written 

L:::Pct f" 4'Y('; ~~~) + +11. ~\'cv<~&.)} 
\(; \ ~?l-il';~A) - 4~'~.'Cy li>{t~) 

~'b { ~ ~,,(-i'\& ') + +_ 4?l;>{b~) ~ 
~b 'f-t ~'Y,(.,.;>J. ... &) - t- 4I(C,>{..,&')J 

I + -4~(J;V<b~) 1 
I - ~'1.'~(~ ,"\(,i') ~ 

where Cu~ ~ is t he complex velo i ty of sound waves i n the bulk medium . 
~\ 

W iting Z 
n. 

t he normal i ncidence absorb ion coeffici.ent i s rela ed to these expressions 

by( 91 ) 

where t-f\. and ~r\. deri va from (4.1.5 ) 

4 02 Mult i p e s catteri ng t heory 

The singl e s ca teri ng approach previous y detailed enables arrange-

ment of the f i bres obli quely t o he surface of t he bl ock t o be considered 

as the s cattering coeffic ' ent s used in or may be made appropriate to either 

normal or oblique incidence condi t i onso Further , distributions of variously 
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inc i ed fibres may als be c ns : d r d 9 req i r i ng only tha t Nv be replaced 

by an appropriate summation viz :2, N<L~ 9 where NiL i s 'he no.of(paralle ) 
0(. 

f i bres i nc i.ned at angl e 0( 0 e b .:1 surra e ( per uni vo~ ume of t he 

block) and ~ i s the s atte ng c ass 5 ction of h se f i bres empl oying 

t he re evant ob i q e i n i de C t!- s cat t;ex'ing e>fi'i c ' ent s . 

These s t rs.i ght fo ward is toget he ' t h . 1 .3 are only possible 
. 1.5 ) 

however i f t he i n er a i n S 9 'liari) S Be t er ed compressi onal 

waves i nsi de t he b- c 9 are neg" eo ed o 

Restric i ng g for the momen 9 he pr obl em 0 one of norma l incidence 

on a bl ock ontaining fibres para! e t he ock surface g t he s i ngl e 

scat eriIlg theory may be improved p In by us i ng 'he fi r st for malism of 

(54) 
Twer sky • 

By thi s appr ach f r'~rard and hac war p ane waves: representing t he 

bl ock 0 s i nternal f i e d are derh'e a s i nt egral summations of t he for ward 

and backward s catt ered waves " i thi n t he r ' .le,vant s catter ng r egion . 

4 021 S: ngle scatteri ng !llDp ', t ude 

Ini tally 9 i t i s necessar 0 der:, e the s ng e s ca tter ing ampl itude 

(54) of interest io eo for a cy indri .~ f~bre 9 i n t he form used by Twersky 0 

Considering only nor~a incidence g t he s ea ered di a~ional wave from any 

f i bre i s given by : -
~ 

2:, A~ l~ H~(I(:-r) ~os~9) 

At l arge r, t he asympt ti form f he Ha:clI:e func t ion (Appendix E) may be 

used viz . 



I " 
,.,-)..'1\.'" (,, _Q)" 

since -'<..- '- - " ... 
l 

an 

Thus t he far field form of ;6pt is 

1.. 06 

(" ~ \'2. ~V C'K;r) L: A: ~ s, ((\li ') 
("I<~ r ) .. ~'" 

In genera1 9 Twersk/54 ) (eqn o (2 0'7) po 702) g "ves hi s far fiel d form as 

j{ (1(/,) ~ (2- / ~ ) 
where i-{(If~~r) = G~r)i-u,?Ul\tr) and r/QI~) ~ ~(9) ) 

Et being the angle bet ween t he d Orect ion of i n i den e and observation 

Comparing 402 0 and 402020 

40202 0 Internal field 

(~) 

(4 02 04) 

(time dependence underst ood ) 

Nowg consideri ng t he general 

r ansmi ssion case fo t he fibrous 

b ck g as shown 9 t he f orward and 

backward waves within t he slab may 

be t aken directly from equations (3 01) 

of Twer sky(54) th suitable limit 

modifications viz o 

~ " 

~~l\>(tX)[ I + Lt?~\\(J'( ')[ ~i+t&:r)+~14:.l())J Jr} 
4~ t'~~) S~ 4~ l;\(;{)LL-~\'\h(~/() +~+JT\J)J&( 

;Jl. 
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where ~ f or n rmal i nc i dence 9 and cyl ' ndr ' ca s at erers 9 from (4 02 . 3) 

(and t he axes chos en here 

c.. IN 
1(" 1 

'i> ( 4) Z 
differ from Twersky I S 5 i.e x.chosen to lie along 

he fi re axes 9 and ~ i s as shown) . 

The t otal i er nal field tL ~ -toT- -+ f- 9 now represents a mul t i ple 

scattering process i n t he i mbeddi ng f lui d 9 t he f ield at any fibre at point 

~ i nside he f i bre b ock 9 being assumed t o consist of con rib t i ons f r om 

he i nci den pl ane wave ; t he backward eca ered waves from f i bres beyond :r.. 

and forward s cattered waves from fibres n f r on ' of £ • 

4. 2 . 3 Bulk propaga i on constant 

If a bulk propagation constan Kllis now a t t ributed t o t he s cattering 

r egion 9 s o hat the in ernal waves may be written i n t he alternative form 

t he second differenti als (w ,\. t . x..) of (4 . 2. 4) and (4 . 2 . 5) give t ogether 

an expression for V(b viz . 

r. r ,~_II) ~ ? _ I , 
. 't', ( (l\(! + 1') -c:-~t). J ''"r"!- = - v.~ -f-r 

I 

L e . Kb = t \(!~- .l~I(")FL~ + C:-(~'l--c;)1"i- (4 . 2 . 6) 

Thi s may be separated out into r eal and imaginary components a and b viz . 

6 



where 

and 

f\ :y ~J'- -I- H-IM N ~ - e.}. [Qe. A,~Q~Ao~ - -rMArI~ Aul J 
Q, rv - t+«'L (\l'~ e- [~~Af lMA,t-+T""A!Q~I\r] 

i 
~ and ~ here are t aken t o have appr oxi mat e values 9 

~\'"'" Af-+A~ 
\l 0 I 

~\ A}- - A~ 
consist ent -: t h t he approxi mation of E01 10 which are 

40204 Low concent rations 

When Cg and Cg1 are very sma and can be negl ected abov e f irs t order, 

)..-

K'b 'V f-y .1' C. t ~ - ~ (j~1l 

Kb "V ~ - .i: N~ (4 0207) io e o K~ 
I(~~ 

where use has been made of he B~~mial expans i on . 

This s i tuati on corresponds t o very sparse concent rations where t he 

effect of mul t i ple scat tering i s l i kely t o be smal l. (4 0207) indica t es an 

attenuati on constant given by - IN ~'L~ 0 Thi s orresponds to (4 01 01 ) ~ 
I(, ~- \J 

agai n if the ~~ are small and may b; neglected above f i rst order o 

However 9 it should be not ed that the real part of Kb in (40207) i oe o 

the phase cons tant 9 i s gi ven by _ 

0.. =: V\; -+ ~~ ~ S\. ( 4 0208 ) 
t(~ \l 

This does not correspond to the assumpti on of the small perturbation theory 

i n 401 i oe o the singl e scat eri ng theory does no t completely correspond to 

t he l ow concentrat ion s i tuation as predicted by the multiple scattering 

theory 0 

Thus the mult i pl e s catteri ng theory predicts a change i n phase as 

well as attenuati on of the incident flui d wave o 
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40205 Surface norma_ i mpedance 

The coeffic ients in roduced in equati on (4 0205) may be evaluated , 

for t he fibrous block s i tuation of i nterest , by us i ng boundary conditions 

corresponding t o the t wo di mensi onal f orms of Twersky(5
4) modified for 

normal i nc i dence and s ca er ers symmetri cal t o ref lection in the surface(s) 

of t he slab viz o 

where 

l 
j 

The f irst t wo equati ons of (4 .209) are gi ven by direct substitution of 

(40205) int o t he f irs deri va ive of (4. 204) , namely , 

f:!1 ~ ( ;1(; + ~) t:t i ~ rf:r 
The thi r d equa ' on equires that the forward travelling wave at the surface 

( It:: - &) of the s lab must be t he i nciden ' wave at the plane 0 Finally the 

fourth equation of (4 02 09) represents t he requirement that the backward 

travelli ng wave mus t cease to exist at the surface ~ -:: + &. . 

(4 0 2 09) may be solved for At and the results substituted in the expression 

for the total internal field to give 

where 

1I t~ + t- ~ ) G -Q )~~ ~(I(~- l(t)J[ e.ll<';x+ Q ~K"tlJ-"'-) J 
[t _ Q).-~ ml(~c9-]-\ 

Simi larly, the r eflected wave amplitude is given by 



(4 02 010 ) 

and he t ransmi tted wave amp i ude by 

[tT ~(~>{}s.) l~ ~c\ '" 
f, ~ 
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f+ (-&,f) 

(I _QL) 4\, [t(\(b-({)JA]J> 
If now t he i mpedance ube s i t a · on is onsidered ~ by repl a i ng he part 

of t he s ab 0 ~ ~ ~ &.. by a r i gi d medi um , provi d ng a r i gi d plane a t ~ =0 

t he method of i mages may be i nvoked t o compute t he new i n ernal and 

ref ec ed f i el ds o 

For a wave l' '" ~(- ll\~~ ( he i mage of ¢ ': Q.~ i'l;:.f).1.) ) ,in i dent on 

t he sur face ~ = - cl of he s l ab g he new i nternal waves may be wri t ten 

(4 02 011 ) 

It is easily seen t hat he boundary condit ions (4 02 09) are unchanged i oe o 

t he A-t) ~ are iden i cal for bo h ~ and 11 i n . dent o Thus the new i nternal 

wave pot enti al fI and he new reflected wave and r ansmit ted wave 

ampli tudes , ~ and ~T are given by repl a cing ~ by -~ i n the expressions 

of ( 4 02 010 ) 0 

The me t hod of i mages requi res that the t o al i nternal and reflected 

field potentials (Ix and l.) f r the i mpedance ube s i t uat i on previ ously 

r eferred tO g should be gi ven by 

and 



i . eo substitut ing for D 

Similarly 

(I--Q) <...;[I\!>-I(n el ~ .e...d~~ Q....- C\(b;:,1J 

(( _ Q.Q....~\l\b& ) 
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(4 02 012) 

(4 . 2 013) 

At this point 9 it is necessary t o note that in the notat i on of Twersky(5
4), 

which has been used here ~ the wave potentials 11 ~ etc . correspond to 

acoustic pressure and not t o acousti c velocity as required in Chapter 3 

and 402 0 

The potentials can be transformed by 

pressure 

and 

- -' ~$ '" -~ fv = veloci t y -
rwf ~~ d:R. 

where ~ refers to t he potentials so far used in 4 . 2 ~ and ~ to the 

potentials required o 

The surface normal impedance for the layer -&~ ~ ~ '0 now fo l lows 

f rom 2.1\. "'- - 'P:o:.: a t ::.t.- :. - ~ as i n 40.1 0 
v~ 

The t otal potenti al required 

to be ei ther .J. -t ;r: or t. for calculation of <P;w.lC and v;e. may be taken 'r rl!.. 

Thus 
l~or-- { ('_ ' t&) _ ~?(-,l(f&) (Q - ~ 1,l\koct ) Z 

"'/ ~ lK"p (( _ ~ ,e...1.'1(bJ..) J 

{ ~? (-l~~~) + ~f(-~,I(/~) l; = t~~~~JJ 

fo~~~ (I-G) f \ +:"!?(J , l(btl)} (402 01 4) 

(t-fQ) l t - U?(.2')(Vl ) 



Thi s expressi on corresponds t o (4 0105) i f (l-~) may be taken to be 
1+"-

the relati ve characteristic °mpedance of the material on a multiple scattering 

theory vi z . i f : (I!~~) 
Thus using sea tering theor y on an i deal ised model ? the 

f i brous block i s shown to behave l i ke a homogeneous medium g having a 

propagation constant Kb gi ven by (4 0206) and a bulk density given by 

= fQ~c.J tll -Q) 
fb c: t l +0) 

substituti ng for Q and using the approximate form for :J and 9' 

The expressi on (4 02015) 

f()~ V\b l~K/ + l A ,~c-+ ~I(I» 
'Kp'l- C,"(l + 9-A!c.. + \.~\>") 

i s derived by Twersk/54 ) for t he case of a 

slab region of s ca t erers 0 ~ ~~& bounded by an infinite fluid o It 

can be s een t hat the conditions (4 0209) replace g effectively in the 

mu i pl e s cattering case ? t he boundary conditions (4 0104) for the single 

40 2060 Oblique Incidence ~
. 

Jz 
1

0 

~7 _ _ () .0 
x • v 

scattering case o 

The mUltiple scattering theory has g t hus far g been restricted to 

normal incidence on t he fibrous block o <54) Twersky 0 s, theory 9 however 9 

allows more generally for arbitrary incidence o 

(i) Oblique i nc idence i n the ~ plane 

For this situation g the incident plane wave front is still normally 

incident on fibres with their axes running parallel to the z axis o 

1 The forms of g and g are therefore unaffected 9 and the only result 

of the oblique incidence is to introduce a phase dependence along the 

fibrous block surface normal to the oX: di rection (parallel to the y 

direction) 0 This alters t he expressions both for the propagation constant 
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in the scatteri ng region and for the effect ive relati ve characteristic 

impedance . 

These are now given by 

I( ~ == 
b 

v.:~> 
I) - J+.;N(j + (~ )l-( 1~_ ,~) 

K)I- cc$.o(. ~ ~ (4 Q2 017) 

and ehCi. 
. ~ , r:J. + L (%-=1Jt

) + ~Kb (4.2 018) Lttol" '::: lKt> ~IA\. 

~t- l~p~ s.~p!. + (. l~ +~) + lKb 

where ( ': .lJ (4 . 2 019) 

I(,f- t.;Js tI-
t> ~ 

for i ncidence at angl e ~ i n the.J?..y plane 0 

( ii ) Oblique incidence i n t he £z.. pl ane 

For fibres with their axes parallel t o the z axis obl i que i ncidence 

i n the :£.Z... plane will i ntroduce a phase dependence along them according 

to the general theory of Chapter 30 
1 Thus g and g must be calculated from the obli que i ncidence 

~ f. 
scattering coefficients Ao and A, given in (C 01.1) 0 

The alteration i n these scattering ampli tudes must then be supe'r -

imposed on the expressions corresponding to (4 02 017 ) and (4 . 2 . 18) to give 

the relevant I(b and z.~ . 

(iii) Departure from continuum behaviour 

Both situations (i) and (ii) would i ndi cate that the behaviour 

of the idealised model used for the multiple scattering theory , departs 

considerably from that of a contJnuum slab . when the angle of incidence 

of the incident pl ane wave i s varied. 

This follows from the fact t hat bot h the propagation constant and 

the relative characteristic impedance attributable to the model vary with 

t he angle of incidence of i ncident sound . 
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A behaviour such as t hi s is poss i bly t o be expected i n a model which 

allows t he i nc i dent wave t o penetrate 9 gradually alter i ng i n phase and 

amplitude 9 t he i nt ernal i ncoher ent f ield represented by ~ being a 

l i miting s t a te o 

This penetration can easily be s een fr om t he simpli f i ed s i tuati on 

corresponding 0 s mall N (as i n 40201 and using 40 2 019) gi ving f r om 

(54 ) 
Twersky p o 708 

io e o t he propagation constant i s t ha t of he i n i dent pl ane wave modified 

in phase and amp, i tude by a s i ng e=s catter ing travers al of uni t thickness 

of t he material o 

It i s t o be expect.ed t hat t he behavi our of actual fibrous blocks 

wil l di ffer fr om t hat of continuum materi als t o t he extent t ha t t he 

blocks correspond to t he i dealised model used o 



CHAPTER 5 ABSORPTION MEASUREMENTS AND THIDRETICAL RESULTS 

5 . • Experimental Procedure 

5 0 Absorption Coeffi i ent 

The absorpt i on coeffic en i. e. t he frac tion of i ncident sound energy 

absorbed j is the parameter of great est practi~al s i gnificance in assessi ng 

t he performance of absorbing materi als i n vari ous situati ons . 

In order t o subst antiate t he heory devel oped i n Chapt er 4. t he 

i mpedance tube me t hod of measurement was used t o obt a i n norma i ncidence 

absorption coefficient s for several f i bre glass materi als . 

5 0 02. St anding Wave Method 

Thi s method of measurement which requires re a ivel y sma 1 s amples of 

material ~ probes the sound field 9 gener ated at discrete frequenc ies withi n 

a closed tube o The sample . cut into t he shape of a disc j i s posit i oned at 

one end of t he tube o 

From the standard t heory(93 j 95) . the ratio of the magnitudes of the 

pressure maxima and minima ~ corresponding to the "pseudo,,(95) standing wave 

pattern Cs nodes and an i nodes , may be used to ca culat e t he normal incidence 

absorption coefficient ~o : -

where n P MA l< 

P MIN 

5 0 03 0 Materials 

Sampl es of glass fibre qui t. (as specified in Appendix F)j in layers 

of 2054.cm and 5008 cm o.thickness and 3 cm. and 10 cm. diameter . circular 

cross- section , wer e t estedo The vari ous bulk densities were ~omputed by 

weighing a known volume of each of the sample types o The weight of the 
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enclosed vol ume of ai r was no t t aken into account , f or t he purpose of 

t he theoretical calcul ati on (Appendi x D) . 

5 . 1 . 4 . Apparatus 

Use was made of t he Br uel and Kjaer (B & K) Standing Wave Apparatus 

(Type 4002) , 

Basically t his apparat us i ncludes : 

( i) a large t ube of i nt ernal di amet er 10 cm which was found to 

be applicable in t he fr equency r ange 300 Hz - 1800 Hz 

( ii ) a smal ler t ube of i nternal di amet er 3 cm'9 applicable in the 

frequency range 1800 Hz ~ 6000 Hz . 

( iii ) sample hol der s of appropriat.e and adjustable s i ze . 

( i v) a speaker wi th a cone approxi mately 10 em . di ameter . 

(v) a condenser microphone with a wheeled carr iage and probe tube 

attachment s . 

The speaker was dri ven by a B & K Beat Frequency Osci llator (Type 1022) 

and the mi crophone was connected t o a B & K Frequency Analyser (Type 2107) 

Used as an ampli f i er . 

5 . 1 .5 . Error s 

Val ues for t he normal i ncidence absorption coefficients were read 

directly from t he calibr at ed scales on t~e B .~ K Frequency Analyser . This 

procedure requires corrections for air-absorption and non- rigidity of the 

tube walls and t erminat ions . 

Furt her i naccuracies are i ntroduced due t o: 



(a) t he small di s turbance on t he s t andi ng wave patter n in the t ube 
p robe 

caused by t he geometrical shape of theltube(93 . 94) . 

( b ) t he non- i nfinitely h gh i mpedance of the probe tube openi ng . 

( c ) t he contradictor y r equirements for flexi ble . fi br ous mat erials . 

( i ) an airtight sample fi t 

and (ii ) avoi danc e of a situation in which the i mpedance tube walls 

hampe~ t he vi bration of t he materials consti t uent fibres 

by compress i on. 

(d) t he non- plane and non-verticalfir~nt surfaces of the samples used 

(e) t he l eakages and resonances in the sys t em e . g. the leakage around 

t he probe t ube channel passing t hrough t he speaker cone . 

(f) t he possi bi i ty of t he wavefronts . generated by the speaker . 

differi ng from p ane wavefronts at t he surface of the samples: this is a 

(93 94) large problem when t ransver se modes are excited 9 

5 .1. 6 . Alt er native Met hods 

of 

Kosten and Janssen(22 ) review a met hod in which the whole tube is filled 

with c' r cular di s cs of t he mat eria1 9 each di sc cont ai ning a triangular notch 

in its centre 9 to all ow t he passage of the probe tube . This allows the direct 

measurement of t he characteri sti c i mpedance of t he mat erial . which is another 

quanti t y of i nt erest . Furt hermore . the probl em of sample fi t . in the 

standard method . is SUbst antiall y reduced. Anot her method suggeeted by 

TaYlor(96 ) . di spenses wi t h t he probe tube 9 and hence the error of 5.1.5(a). 

The method uses a microphone diaphragm 9 ae one end of the tube . and a pieton 

which can be used t o alt er the effective length of the tube . as the other 

end. 
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However~ the standard method used was consi dered adequat e f or 

observing t he vari a t ion with f i bre radius 9 s l ab density and s l ab t hi ckness 

of the frequency dependan mat eri al absor pti ons . Further 9 t he results of 

measurement are B fficiently a curate f or ompari son with the sca t tering 

theory predictions . 

5 . 2. Compari son of alcul a ted and measured absorption coefficients 

The measured absorpt i on=frequency characteristics are shown i n graphs 

1 and 2 . Some of t he ca c a t ed charact eristics are pl ot ted for comparison 

in graphs 3~7. 

5 . 2. 1. Low freg ency di screpancy 

The absorption- fre q en y characteristics calcul ated for the free f i bre 

model have t he same genera s hape as t hos e measur ed for t he r elevant materials. 

However 9 it can be seen from graphs 3=5 t hat consi derable differences in 

coefficient magni t ude s exist a t ow f r equencies . Thi s discrepancy is greater 

(gr aphs 3 and 5c ) for t he 2054 em. layers t han for t he 5008 cm . layers 

(graphs 4 9 5a and 5b) 0 Fur her for t he l a tter t hickness 9 better correlation 

is obtai ned t he l ess dense th~ material considered . 

5..20~o Dependence on assumed f i bre radius 

The r es pective (aver age) f i br e radii for t he Rocksil materials and the 

Rocksi l - K (resin bonded ) mat erials are given to be 5 p (microns) and 3;U 

respectivel y . Therefore t he comput er programs were designed (Appendix D) 

to out put a values f or bo t h r adii (for t he same values of t he other variables) o • 
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As may be seen f r om graphs 5a 9 5b and 5c the mul tiple s ca t teri ng calculation 

for the free f i bre model is sensi tive to t he assumed fibre radius; however , 

greatest cor relat i on i s obtained by t aki ng R = 5 microns for t he Rocksil - K 

materi als . The correlation i s be t er 9 he t hicker t he l ayer consideredo 

5 0203 . Dependence on s l ab dens ' ty and thicknes~ 

The calcul a t ed absor pt i on characteris cs show the expected improvement 

wi t h increased t hicknesa f r om 2 . 54 em t o 5 . 08 em . 

The impr ovemen i n absorption with s l ab density for 2 . 54 cm. layers 

(graph 1) is obtai ned with t he a c lated curves 9 i f R = 5 mi crons is used 

for the Rocksi - K mat eri als (gr aph 6) . The measured eurves for the 5.08 em . 

layers show an inversion of t he rank orderi ng accordi ng to density in the 

range 1250 H~ ~ 2500 H~ (graph 2) . A s i mil ar i nversi on is observed in the 

calculated curves bu (usi ng R = 3 microns for t he Rocksil- K materials) in 

a lower range viz . 600 ~ 1600 Hz ( graph 7) . 



CHAPTER 6 DISCUSSION OF ~LTS AND CONCLUSIONS 

60 1. Com~rison of s i ngle Bcat er i ng (SS ) and mul t i ple s catter i ng (MS) 

The 55 f o m of he a t enuation const ant = frequency cha.ract eristic 

for a part ie l ar dens i ty .o f i bres on t he f r ee f i b e model ( graph 9) is 

s i mi l ar to t hat obta i ned by Epstei n and Carhart( 46 ) and Chow(47) 9 f or 

aerosols. 

Thi s indi ca es that wi t h a scatt eri ng t heory applied both to t he 

fibre model and 0 a s uspension of liqui d dropl etsg neither the geometry 

nor the concentra t i on of s catt erers seriously alters the f r equency 

dependence of t he at enua t i ono 

E t ' d C ha t (46, figo2) th ' lIt d h t' t ' ps e1n an ar r compare e1r ca cu a e c arac er1S 1C 

with measured values o It may be observed that t he di fference bet ween 

t hese curves ~ corresponds roughly to t he di fference between the SS and 

MS attenuati on characteristics on t he free fibre model ( graph 9) 0 Thus 

neglect of multi ple s ca t eri ng effect s by Epst ein and Carhart9 even at 

t he sparse concentrat i ons involved g must be a great er source of error 

t han t hey estimat e o 

MS a lso provides a consi der able improvement on SS for t he calculation 

of absorpt i on - frequency characteristics (graph 3) by the methods of Ch. 4 0 

The assumption of a r eal density for sound propagati on g equal to the actual 

bulk densi y of t he fibrous block 9 i n the 88 t heory iS 9 t herefore g a 
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severely limiting one. I t would seem that the MS prediction of a complex 

density for sound propagation i n f i brous medi a i s more accurate o 

6 020 1imitations of MS t heory f or flexible. fibrous medi a 

602010 Motion of a single fibre 

For a s i ngle f i bre freely suspended and parallel to the incident wave 

front the mode of vibration resulting from the analysis of Chapter 3 may be 

taken to be t hat of simple oscillation without distort i on . ioe. that derived 

b E t 
. (45 . pp o 180=182) 

y ps 'eJ.n i n the analogous situati on for a spherical 

droplet 0 For oblique incidence where dependence along the f i bre axis is 

introduced . end effect s have been neglected by assumi ng the fibre length 

to be infinite o Clearly ~ end effects are also important where the fibres 

parallel to t he i nci dent wave front are bound . or must satis fy some boundary 

conditions of contact at their extremities o The s ituation i nsi de fibrous 

materials embraces both vari ously orientated fibres and fibres bound or in 

contact at randomly distributed nodeso Therefore the theory for a single 

sC.atterer should be extended to include end effects and thus to allow 

flexural end torsional modes of vibrati ono 

60202 0 Macroscopic effects of bondi ng or contact 

From a more macroscopi c point of view the bondi ng or fibre contact 

will result in motion and di stortion of "groups" of fibres rather than 

i ndividual fibres o These groups of fibres wi ll represent individual 

"frameworks of motion" withi n the total slab mediumo The number of bonds 

defining a particular framework and the size of the framework will increase, 



wi ·h i ncr ease i n he wave en gt h of t he i ncident sound , llnti at l ow 

frequencies ~ where t he wavelengt h i s much larger t han the t hickness of 

the material ~ he s l ab wi 1 t end t move as a whole o 

This picture is consi stent wi th he t heory of Kos t en and Janssen 

(K o and J . )( 22 ~ whi ch accordi ng 0 t he di s cussi on of 02 i s t he most 

refi ned of t hose oncerni ng flexi ble sound absorbi ng mat eria ls and 

usi ng a con ".nuous framework modelo 

K & J pr edi c s t ha ~ 

(a ) a t hi gh frequenc "es t he flexible skeleton is so i nert that 

it does not vibra e appr eciably L eo t he air and skele on are almost 

decoupled o 

(b) a t low frequencies ~ the coupling between air and frame is 

so tight ·t hat t hey t end t o move t oget her o 

Thi s means j i n effect g t hat sound propagati on i nflexible fibrous 

medi a should be domi na· ed by "frame action" in t he low frequency range 

and by t he air~wave at hi gher frequencies o 

On the ME t heory a compari s on of absorpti on characteri s tics based 

on f i bres (i) f r eely suspended and (ii) rigidly fixed in space ~ shows 

negli gi bl e differences above a clearly defined lower l i mit in the audible 

f r equency range o Si nce the ME t heory r epresents a purely "air- wave" for 

all frequencies in t he "rigi dl y fixed" case ~ the correspondence of (i) 

and ( ii ) above a lower lim.i t i ng frequency . confi rms predicti on (a) of 

Furt her t he di s crepancy between t he absorption charact eristics 

predicted by the free f i bre MS theory and those measured (graphs 3- 5c) 
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is l arges ' a l ow fre quencies and i ncreases with decrease i n f r equency. 

This suggest s hat K & J Os predi i on (b) is correct and that the neglect 

of fibr e contact and b ndi ng ( previously discussed i n 2.3) is the 

pr.i nci pal error of he pr esent heory . Thus t he discussi.on of 6 02 .1 

indi ca es he equi red e ens on of the scatteri ng t heory. 

6 . 2 03 . Decoupling 

The MS t heo y for f ee fibres makes some allowance f or frame action. 

Thus the frequen i es at which t he MS absorption curves for fibres rigidly 

fixed in space begi n to fo low t hose f or free fibres and give an ind.i cation 

of the decoupli ng f equencies discussed by Zwi kker & Kosten(16) . From 

graphs 3 and 4 f or "Acous ic Blanket" ~ decoupli ng frequencies are seen to 

be approximately 1200 H~ f or 2054 cm. , and 750 Hz for 5.08 em . layers . 

6 . 2 . 4 . Impervious coveri nge 

. ( 16) 
Zw~kker and Kosten (Z & K) consider the effect of closing the 

surface of an el ast ic porous layer with a t hin i mpervi ous covering, for 

t he s i mpl i f i ed case of uni porosity . Havi ng deduced the propagation 

constant for an elasti porous layer , Z & K derive a for a closed layer 
o 

by alteri ng t he boundary condit i ons a t the closed surface. These then 

express t he fact t hat t he enclosed f l uid and the solid frame are constrained 

to move together at t his surface . 

This ·procedure cannot be used with the free fibre model , as no such 

frame exi s ts . Moreover, t he presence of a solid skin at x =-d 9 introduces 

the complication of " r eflected" s cattered waves into the analysis of the 

s catteri ng theor y (4 0 2 . ) 0 



6.3. Effec h e Radius 

The r es i n bond.i ng i n he Ro ksil~K mat eri als (Appendi x H) can 

frequent.ly be 0 s erved 0 b Ond f i bres along the ma j or i ty of their 

lengt hs . This "cl umpi ng" of f i bres along t heir lengt hs r epresents 

a form of " framework of motion" not di s cussed i n 6. 2 . 2 . As each 

f i bre " clump" wi ll move as an individual uni t the effect of " clumpi ng" 

must be to increase t he apparent physical size of the f i bres . Thus ~ 

assumi ng that small departu ,es from acyl ndrical cross section do 

not substantia 1.y a ffe the heory of Chapt er 3 ~ t he effect of this 

type of bondi ng co d be eluded i n t he MS theory ~ by t aking t he 

effec ive r adi us of t he f i bres to be gr eater t han the actual mean 

r adi us . Evidence for t hi s argument i s gi ven by t he results di scussed 

i n 502 0 

Usi ng MS theo~y g herefore ~ it must be possi ble t o choose an 

"effect i ve r adi aU g gi ving g eates t correlation bet ween calculati on 

and measurement f or any gi ven mat eri al , whi ch radius will represent 

t he ext en of t hi s ype of f i bre contact or bonding . 

6 . 4 . Predic i on of oblique i ncidence behaviour 

(97) 0 

Zwikker and Kosten argue that flex1ble , porpus layers should 

be locall y reacting t o i ncident pressure variation i.eo the velocity 

component perpendicular to t he surface should depend only on the 

pressure and not on t he angle of incidence of the incident wave. 

This argument depends on the high · ~amping of the incident wave, 

predicted by t heir theory ~ and is affected only by the extent of 

int erc nnee i on of t he pores i n a "si deways" directiono Pyett( 98) 
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develops a "frame" heory for an anisotropic s i tua t i on g which predic s 

considerable departure from l ocal ly reacting behavi our . A similar 

predi ' on is made by Ford 9 Landa and West ( 99) by a t heoryg in whi h 

both di l a. a 'i ona and s hear waves are allowed t o propagat e in t he solid 

part of a f l uid=s olid mixtur e as a result of obliquely incident waves. 

Locally react i ng behaviour requires that Z should be cons t an - g 
n 

and tha t the ob i q e i ncidence surface i mpedance ( Z~) from which t he 

absorp i n coeff ' ' ent a.(o() can be ca l cula t ed g should be gi ven by Z 
n 

cos 0( (97 ) 0 A pl ot of ZO( i n t he complex pl ane t herefore g for a 

part ic l a r f equencY 9 should yi eld a straigh line of slope (X ~;I~n) 

for a range of 0(. 

The MS heory g pr ed1 s 'angJ,.tIll.' dependent funct i ons for both pro~~ 

gati on cons ant and cha ac er ' stic i mpedance (4 02 . 6 ( iii» . It is 

t herefore evi den t ha he MS t heory will pr edi c t consi derable depart ure 

from locally rea t i ng behavi ouro In fact g graph 11 shows that this 

departure r educes consi derably with i ncrease i n thickness of layer and 

reduces s lightly wi t h increase in f r equency . The tendency towards locally 

r eacting behaviour with increase i n thickness is consistent with the 

extremely high dampi ng of t he i n 'emal wave ca lculated on the MS theory 

(graph 10 ) 9 the effect bei ng parti cularly marked at low frequencies. 

The absorp ' on coeffi c .' ent for t he 10 27 cm. layer cas 'e i ncr eases rapidly 

with ~ i oeo t he random i n dence coefficient may be deduced to have 

a somewhat higher value hanQ,. 
o 

for thi n l ayers . Thicker layers (5.08 cm) 

have calculated va ues of absorp on coefficient which ar e roughly 

constant wi t h 0( 0 



~n6H ax Dependence of Diss i pa ion single fibre 

f 
The f orm of t he expres s i ons (C o2 04 ~ C o 3. ~) f or Ao 

{
and A 9 , 

i dica e tha ( i A 
~ 

represents t he thermal par t of t he diss i pation 
0 

and ( ii ) A~ , 
These cone. us ns are 

's associated p i ma r i ly wi t h viscous diss i pation. 

deduced by Epstei n and Car hart( 46) for t he case 

of a spher' cal dr plet o 

Thus t he fol owi ng int erpre a i n may be pl a ced on t he r.esul t s 

of t he ca l cula i ons (D. 2) for he Db i que i nci dence s ea t ering coef

fic;ients. (by °obliq e O here i s meant t hat f i n fi g 3 .1 '1 i s ot her than 

zer o) ypi a l forms 0 whi h a e shown i n gr aph 1 2 ~-

(i ) ' he hermal di ssi pation i ncreases s t eadily with 

obli q i Y of 'nc." dence 

~ , he vi s cous d'ssi pat i on decr eases r api dl y wi th 

ob i qu 'ty of i ncidence 

and apparen y ends towards a limi ting condit ' on of zer o di ssi pation 

a t 900 i.e o gr azi ng i nci dence , 

(ii ) mi ght occur ', t w' h 'he forma tion of sur face waves along t he cylinder 

, , d ( 100) h b t h I d b It ' at grazing 1nC1 ence were y ere wou e no re a 1ve moti on between 

t he cy i ndri a l f i b e and the imbedding fl i d . 

6.6 . of MS heory 

6.601 . Granular media. 

( 14) 
RoW. Morse s gge ts he pos s i bili t y of using a "microscopic" 

s cat ering theory for r ' g ' d grai ned granular medi a . Indeed t he wave 

moti.on through a suspensi on of rigi d. spherical scatterers may be 

analysed by a MS heory. However 9 such a model departs considerably from 



granular media~ where grain con a t i s ' nevitable ~ and problems of 

" i nterference" of the s ca ttered flui d vi scous and t hermal waves at and 

a r ound each i nt er =grai n boundary of contact must be considered . 

Any extension to elas ic grain s i tuations will introduce the 

problem (anal ogous to he fibrous one) of frame wave contributi on. 

Further he problem of fric i on bet ween the grains mus~ oe considered. 

This is probabl y gr eat er han i n f i brous media because of the r ougher 

surfaces i nvolved. 

(i ) Materi als such a.s acoustic plaster do not lend themselves very 

r eadily t o a wave analys ' s of t he type employed i n the MS theory. 

Consi der first a general case ~ where the persistent direction of the 

pores is not normal 0 the surface of the model or the incident (plane) 

wave fron. It i s necessary to choose wave functions inside fluid and 

solid which must satisfy boundary c onditions both at the pore walls and 

a t the surface of the mat eri a L The surface would be a fluid/solid 

interface for he so i d waves and a pore entrance for the fluid waves. 

The latter s i t a t i on equires consi derati on of problems of diffraction 

effects at t he edges f t he por e entrances which wi ll interact with 

r eflected waves f r om t he solid surfaces and radiat ion f r om the pore 

interior. Further fo t he case which should represent a simplified 

.situation ~ where t he pore axes are normal to the surface (model . 1 with 

flexible frame) 9 one f i nds an ambi guity in the wave analysis . This is 

. (100) 
due to the eAistence of surface waves along the pore bo~ndar~es • 



(1 0 t'iO't ) ( 6 ) 
Numerous au hors • ~ have consi dered relevant cases of 

flui d wave propaga i on in elasti walled tubes. Ches er(1 02) has 

cons ' dered propaga ion i n a rigid walled tube whose entrance is 

surrounded by an infinite baffle ; a case 9 whi ch might be applicable 

t o Model 1 but t ends 0 i n rica e analys is . Apart f r om this~ a 

less refined appro a h could neglect near =surface diffraction effec s 

by assuming hat wi h ' a few wavelengths of the surface t he wavelets 

would have recombi ned as an effec i ve plane wave. 

(ii) However 9 t he sea ering theory does give an explanation of 

the poor absorp i on eharac 'eri s tic observed with stiff framed 9 

consolidated medi a when the i r fnont surfaces are sealed( 103) . In 

this s i tuati on 9 a reasonable model is one of a continuous "imbedding" 

solid frame contai ning a "sus pension" of cylindrica1 9 fluid- f i lled 

pores whi h do not eu he sur face. The pores will scatter waves 

propagati ng from t he so i d surface and the single scatterer situati on 

will correspond to t he " i nverse" of that analysed in Chapter 3. 

The energy cal c l a ion corresponding to Appendix E9 t herefore? 

pr edicts a dissi pat i on cross·-section (rJ) dependent only on t he 

internal fri tion of the sid. Even for very large concentrations 

of pores 9 the t ot al di ssi pat i on i s thus very small except when the 

solid is very elastic and has hi gh i nternal losses. 

6. 603. Polymer oams 

Many materi als referred to as flexible "foams" have an open-

celled structure which differs gr eatly from models 19 2 9 3 and 5 and 

are consequen ' ly UDBu ' t abl e for t he application of theories based on 



hes mode~s o Taki' g po . bane foam as an example of su h medi a ne 

can d ' stingui s h w 

i ) Ri gid p I hane f oam ( pla e 3 ) has i ts poros i t y compl et el y 

based on s eal d of por es hus correspondi ng t o t he pr evious ly 

di s cussed cas e of cove ed conso i dat ed medi a (6 . 6 . 2) . 

( ii ) Fl exi b e po yure hane foam nsist s essentially of a continuous 

three di mensi onal la t ice of polygons (usually hexagons) of polymer 

f i br e. Oc as i ona " s i des " of t he l attice are f i lled i n wi th skins 

of t he polymer (pIa e 

Wi th such a mi cr os has t he i nt er connected., porous 

structure of a f i brous mat er i a l i nt er s per sed wi t h clos ed or "seal ed-

off" por es 9 wher e he po ymer ski ns a re concentrated. 

In vi ew of he f ac ts ha 

(a ) t hese ma eria l s have absorption char a ct eri sti cs ver y s i mi lar 

t o t hose of gl ass f i bre 

( 104) . 
and (b ) Lang obt a1ns r easonabl e result s with an analys i s s i mi lar 

o tha of Kawasi ma(27) {see 

t he MS heary shou d a so be applicable . 

However 9 t he p ob em of a conti nuous ne t wor k of " f i bres" is there 

f r om the outset and some knowledge of t he pol ymer elast icit y i s requi red. 

I t i s possi ble t ha t an equi val ent geomet rical f orm (q . v . 6 . 3) could be 

devi s ed which woul d make t he s cattering probl em tract able . Further 9 

s ca t ter i ng by geomet i cal f orms ot her t han spher e or cir cular cylinder 

must be solved. 
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6.7 • • 

Thi s type of absorber is menti oned by Zwi~r and Kosten( 1
05) and 

Furrer (1 06 . I t is described as consisti ng of a rubber~,like s olid 

matrix con 'a i ning a random dist ribut ' on of closed por es. A particular 

porous medium model i s no suggested . A qualita ive assessment ~ only ~ 

f . t . , ( 05) . t f . t 1 f ' t ' ' b ' o ~ s per ormance ~s g1ven 1n erms 0 1n er na r1C ~on ascr1 1ng 

a complex s iffness ( r bulk modul us) to t he material. 

6.7 02 0 MS des n 

A viscoel asti c mat eri al may be regarded as havi ng complex propagation 

const ants for both di a a i onal and shear waves ~ signi fyi ng bot h compressional 

and shear viscosi es. A rubber - l i ke ma t eri al in particular~ exhi bi ts 

very little effec due 0 compressi onal vi s cosi y compar ed with t hat due 

(1 07 
to shear • 

Thus a pore- di s on i nui ty i nside such a materia l wil19 from the 

s cattering viewpoint 9 alter part of any in~ident ~owpressional wave into 

shear wave b mode con ersi on a t i t s boundary ~ thus caus i ng dissi pation 

( t he shear wave bei ng damped ) . Thi s mechanism is simi lar to t hat 

previ ously cited for a fibre i mbedded in a viscous fluid , but now wi th 

the solid as i mbeddi ng medium • 

. ( 108) 
VOVk 9 Past ernak and Tyutek1n suggest the controlled manufacture 

of such absorbents with hi gh absorption. Their main advantage over the 

traditional fibrous or " foam" absorbents would be ? of course ? that their 

surfaces are impervi ous i. e . they do not rely on the penetration of the 

i ncident fluid wave for heir absorptive propert y . This means that their 



su,rface a c s as a vapour and/or dust barri er 9 these bei ng important 

. d ' . ,. I d h . t 1 V k t ( 108) cons~ er a ~ons ~ say ~ n sw~mm~ng poo s an osp~ a s o ov e sec 

i n fact onsi der t he specia l ca s e of a mat eri al contai ning cylindri cal 

channels normal 0 he au f a ce and radi5~ l ' f as t ened g followi ng t he 

cell model t heory of Tyu ek i n(39) (see 106) 0 The ma erials should 

still absorb g however g a.ccording t o the MS descr i ption g. whe. her or ne t 

he pores cut he surf a ce o Thi s s t a t ement i s consis ent wi th t he 

observa i on y K 6 en( 93 ) hat ve y f lexi ble materi als i oeo materials 

l i ke sponge rubber ( wi h a viscoelasti c frame) do not have t heir 

abs orp 'ion impaired by vering t he i r surf a ce wi t h a l i gh coati ng 0 

Indeed g ' is s a ed hat coa ' ng i mproves the absorption a t l ow 

frequenci es g and i s not pa r ticularly det r i mental a t hi gh frequencieso 

Thus choosing a " sus pens i.on" model for such a viscoelastic 

absorbe~ enables a deduction of i ts absorb i ve ! behavi our i n terms 

of:-(i) 'he numbe of di scontinui t i es per unit volume ( i i ) their 

di mensions and ( i ii ) he elastic properties of the imbeddi ng visco~ 

elasti c ma~rix o I n Appendix Gg an. outline is gi ven of the theory 

for a s i ngle scat t e r e i n this absor ber fol lowi ng t he work of Chapt er 30 

For simpl i c ' tYg the.rmoelasticity i s neglected g and the pore dis continuities 

are assumed evacua t ed o Moreover a phenomenolggi~aldescription is used 

for t he v ' s coelas ic behaviour o The t heory t herefore requires modifi~ 

ca i on for a more exac h~ory of vis oela~ticity and t he pre.ence of air 

in the pores o The pr opagat i on constant and characteristic impedance 

for a s l ab r egion of such di s con i nuities may then be derived g following 

40 2 0 The impedan e of a layer of viscoelastic absorbe~ agai nst a r i gid 

back i ng g may subseq ent y be calcula t ed by assumi ng t he layer to be 
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homageneous ~ con ' a i °ng 0 war d and backward ( plane ) waves , wi h 

he propagati n constan and cha r ac' eri s t.ic i mpedance as pr evi ously 

derived 0 

This p aced e' ~ h weve 9 i ntr oduces s ome i nconsi s t ency i nto 

he ma as c pic pic re as he s urfa ce of t he l ayer will act as a 

r eflee of s ea er ed waves 9 hence a probl em a:;'m'o a r 0 t ha 

men i oned i n 6 02 03 
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APPENDIX A. SMALL AMPLIT DE WAVE PROPAGATION I N A VI SCOUS , CONDUCTING , 

COMPRESS BLE FLUI D 

F 1 ., ' d h t ' f t " t (71 ) b . tt or a compress e I , 9 e equa 1 n 0 con 1 n U1 'y , may e WT1 en:-

o 

t hus wher e &;" l fr~:) ~ f ~ ~ . : . lX,,, '£ 4- C ~to! f i- ). Y..-

and 
&p~ ~l + (~~ft) . ~ -+-dt de: 

~l + lJ:,v'!.- ~ 0 (A. 1 ) 

a-t 
t hen 

If the usual assumption for a normal acous t ic di sturbance is made 

i . e. that al t he velo 'i ties 9 di s pl acements , et c . are small, such that 

t he produc t s of he pert bations intr oduced may be neglect ed e.g . the 

densi t y alt ers wi h l s fo~ + c\ p~ , ( fot- being ' t he equ ' 1ibrium value ). 

and the product (a~!-) ( ~ .. ,,~) m.ay be neglect ed; then the equation of 

conti nui ty be omes, 

d.f~ + fct Ai\j '! 0 

clt (A. 2) 

Negl ecting body for ce g t he equa i on of motion(72 ) i s, 

l J"" 
I 

- ~ + ~ ~~l 
Jt h ., ~ $. ' 

\. ~ 

where ~ 'i)' It + ir~) y + ~ V'l... \ .. 
~ ct,\{ V ~' ,..,. f Y, 

d~' 
J 
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Here 9 he summati n conven 'ion is impli ed . and the viscosity 

coeff 'cien s 1 9~ have een assumed 'sotropic o 

, and 

the s ma] disturban e assump ' on , t he above equation of motion may 

be trans f o ed t o: -

The energy equati n(73) may be written 

wher :: and 

che r .h .s. of 
The B con t rm i n At he e ergy equation, may be ignored , by the 

sma 1 iat an e ass mption , leaving, 

(A. 4) 

Further, f or u 

Thus with (7 ) 

C ~~ )e- c...v 

f 

( ~V) (Ao6) 
':: T~B - '\> '<,,, \" 

<Jp - c...v - ~1.C!:, I C-
10 f" 

l~}Ft = ~ ~ 
/ 
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( A. 5 ) becomes 

and the mod" fied en U eq a. on ( A. 4) gives 

f} &.;" '!... C~-0 tv + lc." ~T - ,,/ \1':>-1 ~ 0 (A. 8 ) 
~ Jt 

+ 
<9.,\, ~ (01) ) d:.e. + (u \ (j( T (A. 9) 

c\.\:; ~l \ cit ~T ~f ctt 

Similar y :f p "" p II J I) t hen 

and with (A.2) and (A06 ); (00 9) becomes 

(A.10) 

Now a."1d from (A.6) 

and not" ng that the s al d":'sturbance assumption makes t he total and partial 

deri~ative "th resp c to time approximately equal e.go 

the time der" vative f (A.3) becomes 

(A.11) 
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Pos t 'l a 'ing a e dependence exp(- i wt) v where all t he variables take 

on t he s· gn . f" cane; f a'llpli de var." ati on from eq 11'· br· urn v-alues e. g . 

where T' epr es& s t he t t a val e T pre~iously used g then (Au11 ) may 

be written 

-+ 

and ( Ao ) may be writt n 

, p .. , 
+ p} ~ lvJ 'II - N ;w'I J~ ,,~ + ;vJV""'! 'I. C'[ J( 'f..) 

'( 

-0 

:vJ-\ -+ (J"( ,\I~T - (y;-;') d~" '!- ;. 0 

~ 

( A. 12 ) 

Furt he g if t he parti , e ve oci y i s writt en i n terms of ~tential funct i ons 

'Iv "=' - 'l rf -t- e.w\ A 
( A. 14 ) 

J.;-.rl\ 0 

where ~ and ~sat · sfY he scalar and vector Hel mholtz equations respectively 

i "e . l \] l- + 'ij) ~ } -= 0 
(A. 15 ) 

( q~ + '\)..) 1- 0 

hen f r om ( Ao 1 ) 
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The RoH oSo of thi s eq a t ! n may be transfor med to V i. rw~f\ - iv.wV1A ] ,...., l',......, ,..../ 

This is ze 0 y (Ao 5 ) if 

(Ao 17) 

wher e epr esents t he vi~ ~8 wave propaga _ n onst ant o 

The LoHoSo of (Ao16 ) may hen be us ed w"th (Ao 1 ' ) 0 elimi nate T and 

gi 'Ve t he f 11 'ring i harm ni c for m for 1 ~= 
p - l oY~l-w~ + ~\w l{ - I} 1 

\:/"(;>-{~-~wN)v't-f+ --c P-' ') \/l-1 
~ +l,w ~ - ,wN 

( 

whi ch can be seen t o correspond to t wo di latational waves satisfying 

\ \jl- + K\h)f,~o and l~~ + ~t~) 1~ = 0 where ~\ ~ 4~ :0 f 
and 

e and f repre enting t he s ma11 quanti ties IL -= NvJ and t- = ; W 
_5 cr>- c:.J ~ 

which are both < W r-./ 10 at 1000 Hz (as an upper limit) 
tJ~ 

Hence 
~b--, 

(~y [I - ~l"- n~) +:t ] 

~ - (~)>- ~ t 

where se haa been made of t he bi nomial expansion and the small quantities 

e and f have been negl e ed above f i rst order " 

Inspection shows t hat ~: may be i dentified compl etely with thermal wave 
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propagation? and ~,~ with the usual compressi onal wave 9 i .e. one may 

write with f urther appr ox o 

I(t = 
'j> 

and 

(A.19) 

(A.20) 

These two expr essi ons correspond t o t hose derived by Epstein and Carhart(46) . 

f . . ( 75) The expressi on for KT 1 8 ~so der1ved by Mason 0 
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APPENDI.!J1. SMALL AMPLITUDE WAVE PROPAGATION IN A LINEAHj_,ELAS!!,S,. 

CONDUCTING ~ 

The equat i ons of moti on and ener gy balance for such a solid can be 

written a~76 ) g~ 

and 

respecth'e y ; where T refers t o t he steady state t emperature such that 
0 

I I 
repr esent s t he di ffer ence (T ~ T ) . T bei ng he actwel t emperature at 

0 

( Bo 1 ) 

(B. 2 ) 

T 

time 

As with t he fluid ( Appendix A) 9 postulati ng time dependence exp( - i wt) and 

consider i ng and s i milar 

mani pulat ions yi e. d f r om (B. 1 ) :-

t . 

From t he RoBoS o of this equation ; t he sol ution sat i sfying t he vector Helmholtz 

equation for A gives 
'V 

(B.4 ) 

representing t he s t andard shear wave pr opagati on constant i n the solid , whi ch 

is r eal i. e 0 non- dissi pa ive for a linear . elasti.c solid with no rel axation . 

(B.2 ) may be trans formed to 



· s S _ -r (l.,SQg , ,,-:"J 
tw f c.. " l + 10 \_ 0 lW V Y 

which together with the L.H.S. of (B .3) and t he third relati on of (A.6) 

yields a biharmonic equation for ¢ 

o (B.5) 

where ~~ (A + J-r) ~ ':: " f \ . ,the isothermal 

soli d , may be obta'ned from setting T 

dilatationa~ velocity of sound 

in the = ° in the L. H.S. = ° of (B.3) 

and use has been made of (A.6) . 

Analysing in a similar aanner to that of Appendix A, the resultant 

propagati on constant s lutions may be written ~ -

: _ (~\~ c~ 1 ~ _ l~{)~~ 
c.o~) .l ~ WC1~ ~~ l cj). 

where + B~ ({'- I) 
( os '-s >

, a-' l 
and the small quantity ' W 'a' 

c1>-
has been neglec ed above first order i n binomial expansions (~""" 5 x 10'5 cm/sec). 

Under the further approximation that (~s_ \ ) is small (this is necessary as 

SS"" c;).), the propagation constants may be separated out as 

~s ::.. , 
c W,) J \ - ~~ c..~ ~-i) ( 

c: L .lfS~ ~ J 
(, + ~ \ l~ )~ S \ + ~~l'() - I) ( 
u ) .l(Js'6~ 1.. fS~)' j 

Using these in L. H. S. bracket of (B . 3) = 0, with ¥ = 1\+cf~ 

(B.6) 
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+ 't 4 \ -+- ~ 4 :l- 9 say 

It can be seen from (Bo6) and ( Bo7) that 9 i t is convenient t o make 

t ""s __ \ ( ) he approximation u a reasonable one for solids 9 for then 

the propagation const ants may be i dentif i ed with di latational and 

thermal waves respecti'Vely 9 as in the flui d cas e (Appendix: A) viz . 

and the temperature expressi on reduces to 

where 

as for 
/ 

o 

I<: S are standard and t he f or m for ,-Here the resul ts for Ki and 

corresponds to that for ~~ (Appendix A). 
'1\ 

l''' .,. C p
· I\! 0 G\ b ave, . 

(B.B) 



APPENDIX C CALCULATION OF SI NGLE FI BRE SCATTERING COEFFICIENTS 

E1.astic Fi bre 

Co" o The boundary condit' ons (3 01 31 3) ~ (3 01 322) 9 <3 0.1331) and (301332) for 

oblique i ncidence 9 may be collected together as ,below 

(C .101 ) 

t [ (O-.. J:.(CA' I) -1- Ai· \\.J~\-)J + ~&~\\Y\('<l~) .~ - &-~':JI\Cb\S) 

/ { ~c..lf-[€-,. T~(~~)..\- ~l "~(~r-)) -+ tb'f ~ i ~: (~\01 = - ~ (;_hIS e~'3~ lh'9 

-~~ [C,. T",\~ r) + f\i\\~~~)J -~~~/h-l~('o\~) -+ \\(c:rc.,t "'~t2 ~) ~M(~:blH,,(~'t-) 

-= - \\.J S _~3f\-;T,,\l~'") - bS &;J,,:t~9 + ~.<:c'l0T:k~) 
t + ,,,~j);J.(L~} 

fL (e-.... T .. l~C.) 4- A! K,,(~\'-) + g!«.Jb'(J -It.<c.!~~l~() J - 1(' ... 1-~P.'Dl"~(2I) 

=-\'"{,, (A;r,,~94- t,,11Jb'§-l\(~ r,,~I)J - 1(;t.,sJ>,,~J'; Q:.:9 5 
-i\( [c::..,:r~ lc..' ~ ) + A-.hl"CcJ) +£ill,Jb'r)1 + c...~·t-v;l-') c ~ ".J2') 

~ -KW{ t\-':T,,(2~) +e,;J"l~~)J - .:....,(K!)..-"'l-)C~J ... C.2Q) 

/' l~"'[c.'fJ~(~() -+ (~~ £--~) T .. ~r·)1 -+ A:l~~ H~lr.'r)+l~~- &~- "''-) \\)c.'f)~j"'" 
+ ~: t ~1' "Xb") -+ (~}.- ~~- ,{-) ",S~~) ] + ;K ~i-l-Ctl1~'lc'.I-)+I\K,I-):f~'lI~~'~Hi,,\~I-) 1 

'= I[ 1\~ t ~lT:Cc:") -+ l\~ct: -~"J;...~'1 + £~ ~b'~ J .. I('cJ't) +(('- cl.'~-· t\~)J"L~~) 1] 
+ 'K.shc.~T~'l(.S,) -+ 1\\(~~;{2""'~C.2 1) - J,,~~)J 

I r ~(l'::""lcLl-'J~(dn - "JJC:')) +A:[C:~II~(().II-) - 't"~V)J) -+ I(:~:(c~~~'~)-C.I~'" ... \~~)} 
l +8~(~~"·:(~~) - 1\~u:~)J - l,(C:[l~~~Ct.rf) - "#.(c.~)] .).. - ":--H,,\c' ~) J. 

" ! 5 I\. (f\;~s 'JJc:~ - 1.J~~1 -+ 6~ (~"~"I( b'S) - 'J.J ~t) J) -+ -<; 1>1 ( c.:'T.:(~~) ~l~'T.."t~~)t 
il - \\(C.:[~ST,,'C2t) - 'f"Ce'l)) 1. " - i\~"(Ll) / j 

I'! ~ - \.\( (~ ... ~~'J"'(o.l") 4- A!"'~ 14:( e.'e.~ -+ !:b'~ ~ .. 't ~I-)) + ~~c. •. \1'- K')II~W) + :~,t~:"Jtt)! 

eft. -'I<~~ ~s-r~to.:~) -+ g1 ~;SJI\'(b'J) J -+ ~rL; (~\.- .c-) 'JX2~) -+ ~~ ~!-r .. ~l)} 
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In particular t he so ut ' ons f or normal i ncidence for the elastic 

fibre case are required (Chapter 4). 

At normal i ncidence the axi al phase constant K i s zero ()? ~ 0 i n 

, If J II If equation 3.125) and thus the Bessel funct10n arguments a if C etc . 
) ' ) 

lose their dashes . Furt her it can be seen t hat with k ~ ~ g the equat ions 

of (C.1 .1 ) represent' ng t he cont i nuity of Ve and PiO can only be satisfied 

i f C", + and Gros, are arbitrary ( r trivial viz. en t = C
I1 

S -:. 0 ) L e . the .... ave 

potentials yf and ~ ~ 9 representi ng t he part of t he , vector fi eld 

, (77) normal t o the r coord1nat e surface are redundant and t herefore may be 

rejec t ed. 

Thus the equations of (C. 1 . 1) have t hei r z dependence removed and 

reduce to the six below:-

(C. 1 .2) 

, [to" T" lcf) 4- ~~ \\"lo.()J + f~: ~Jb~) ~ - G- ~~T" (~) 

l ~ ~ ~ lL,,~Ilc.I-)+ ~~~~lJ)1-+h~~~ t\~ lb~)] '~ - \(~ G-b ~~ -r; (~) 

~ :L!'o.:J,,\~)-+ A~~~lcf)j -i s!\l~(\J) -+ ,,~~f-})~~Jt~ 
= - lw{-cfA!-r~(AS) - bSD:-r~l'rn -+ t\.~~ t>:T .. (c')1 

I\.l~ .. T ... lCAI-) -+ ~:tl..JGn4- ~i~J\)~)J - \(~C.I' \ :~~(J-) " -"'+ ( A;JJ~) + ~; •• lb')] ~ ~/ <' D~ T:lt~ 1 
I~ t"lc:r~lt)-T ~tJ.-t!-)i,Jl)J + A~(a.'~:(J)+ lc.~ -~)~Jcf)Jl 

l + ~ [b~~:llf) + l~ -~).) ~.J\i)J 4 ;\\(~ Di l~~~lcP-)- Il .. (~t)J 
'" S) A~ [().gJ,,'(~) ..\- l~{ -t.~)J.Jc/) J -+ f!, ~ L b~J .. 'Ch~-T( { -rt)-r..( Io!)] S 
r l + t\~r'b,,{[{sJ:.'k) -J..Jt-")J J 

~ [tI. { €:.- [fr,,'lo.'-)-rJof)J + -A:~h\~(c.~) -".JJ-)] ( 4- oK./ J:>~ [~~ 4"(l: -!~~I\~(l)lO 
r + !\t[bF-"~(If) - II,JIcf)] r ~ - II ".Jc) 

:0 / LtI. ~ A; (e:rJ~) ;~l~)] 4- g:[blrJbi) ~JJb~l+ .(~~S{t!:\~);:~:~\~~J 



[ 

For t hi s sit ation ~ f rom t he f o t h and s ixth equa t i ons of (C o1. 2) 

the onl y possi ble sol t ion f or 1>; and ':D: i s t he t r i vi al one 1>; e "\),,1 -=- 0 

Otherwi se y~~)y: are arbi t rarY 9 t heir contr ' bution for ~.o vani shi ng 

anyway fr om t he rema ' n ' ng equat i ons . 
(' (46 ) 

This means that as in t he spher i cal case ' 9 t he zero order coeff i cients 

are independent of the shear wave potenti al s of both f l ui d and solid . 

The boundary conditions may now be written :-

f [ -ro(o.') -+- f\:f\otct)] + f ()Q~\\ o \n~) "'" - & ~~Jo\bt) 
(C . 2. 1 ) 

I<~t to..~ [J~len-+ ~~It~ll)J -\- \=b~&h~\'ol)} ':: - r;: s c.bS~S J~l\'S) 

- e! l Tu'(o.~) + A-of-~~(c.~}J - ~t~Jtl;(b~) =- -'IW~-c!~_;T.'(c.l)-\n;Jo'(\'\)] 

r~ t [ ~~T,,'lc-~) + ~ l.~lcn J +~! [ o.~- "~\(/)+ l~l.)~.lc.')J+ £! [~J ~ \~I) + (~)Vol~~} 
\ == / ~ ~ : [ctJo'(e.9)+ r roCa.S) ] + B; [b!J~ l'o~) + (~'- )"r.( b') ] 1 

Further ~ the fo l owing sma 1 argument Bessel Function expansi ons can 

b . . ~ s S , h ( - S) e used for func ~ l. On5 ot (): 1 c... and <!... ; all of whl.c are ver y small ""' 10 ; 

also 

Tol;x:') ,-v , "J~l~) - - -:f,(lIQ) ~ - =i 
~'T~'l)1.)+"'J~~) = -)LJul~) hen e J o1'( )Q.) ~ - ~ 

\ 
HQ (~) == - l1,b) 

where use has been made of the small argument relation(86) 

\ l:t) .... J.JlQ.) -7 -, "'i 
~~o M . 

(C . 202) and the Recurrence relati ons 9 which appl y where R~ i s either ~~ 

or H ... (87) 
:r.. ~~l*-) "'- (\ Q"l~) - ~ ~oI.+J!lQ) 

:l R~'t1l'.) -+ e~~ ') " ~~J1I'.) - :(.l("l~) 
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and thus the set (C .2. )becomes : 

~ [ \ + A~ ~olcI) 1 + \= '\St \\Jl:f) ;. - ex~; -rvlhS
) 

~t\-e!L -~ - ~!"\lc.~)J - ~\)~~ll\1)~o~} '" - ~SC.bl'i3;TJ~) 

u~ l ~ + f\;~\ lJ')] 4- b~~\lb~) rgo~ - lw t f\.; + \,S\s:TJ~!)} 

/1l(C.~).-f;) -\ A!~\\.l(\.~)-uh\\tJ)] + 6;(fl\"t'o')-6~~\(b~)J~ 

'" / t-i (c.S)._ (!..1 ~ 1\; + '¥,; [ ~l Jot ~i) - \Fr, (\,l) J j 

say 

and thus in the first equation 

say 

where X, Yt W and Z have straightforward connotations . 

In the third equati on , substitut i on for~: and~! wil l not add 

appreciably to the coefficient of f\: ;!. Y and -! Z. both being L .. :< .. c.~" ,(c.f-) 
~ ~~~) 



. t d \ b t h 11 d nf I-l,C,r) ..-v_ - .l_; Sl.nce - an - are 0 very sma ,an '" v 

F ~ " 
; fUrther , 

By i nspection, as 

particular with terms i n the f irst bracket on t he RoH. So; and neglecti ng 

again t compared wi t h .£ and with : 1. (thi s time)-
C. ~ 

p - ~ bt-~ .(b~) 
~ ~ - c.; -+ 
• ~C!} ~,lo..~) . S ~} ",(o.n 

r 
(C. 2.4) 

where S t: L H .lb~) - \(~b~",(bl) Jo(b~) ] 
v-q b ~ "I, (\:f) 

/ 

For this case 81.1 six equations of the set ( C.1.2) must be retained, 

however. the fol lowing smal l argument forms(86 987) f or the Bessel functions 

q.. s s 
. involving Co.. • e-. and c... may be used : -



Furt her 

88 . 

~ Q,' ( 'I1.) - [- ~ QI' (" » +l\ - ~)Q.,l~)J - R..,()Q} 

)2.l-e ,l.~") - l.e,c.~") -+ o.~ R: (>C) 

l 
In particular 9 when R ~ J this becomes '~ ~ 

I I lC...- ;>' 0 r H- 4-

The set (C.' .2 ) may then be wr' t t en (where ~~ = 2 f or ~ = 1 ) : -

f- [e5--\ I\~ \I}~~) J -+ f ~ ,I- 1+ ,tb~) '"- - &~,3 J,( ~f) 

~~[ t-o.l-[l+ ~~It~l~)] -+ H~(S,~~,'(91)} = - 1C ! ~\,s eh~(b1) 

'-Co.-~ [ 1-+ I\f ~II(~I-) J - b~~f H,'CIJ) -+ "}'l\~ H , (t~) 

= - lW{ - o.S i~ _ bgg ,S T,'(~\)41(,\~ ~ J 
ct-'t A!",\~~) -+ e,h\lb'') -- ~.f L~ D/I\:lc-f) 

.=- - ~ vV f A ,3 t -+ ~~T, \~"} - 1(';; ~? 1 

rt 1 ().:e.~~ -+ A~[llt,'(o!-) +(~l-- \)",l~f)J + O,~[b·~,'(bl)+ (~1_ 1) H,('J)j ~ 
+ "'"lI-D,!- [(,~Il,I(c..I) - J.\- ,k')] ~ 

~ r' t A ~ ~ ( f -{) + ~.' [ "J,'lt')t(t' -I}r, ( b~ J- .~o"1l:} 
~Cc!'3 A~[~ Ilf) _ 11)11 r[I'(I) ll(I)04~ t J)~[t.I~\tt.~)J1 = S~A~(- t.\/,,) ~ r l ~ -+ tt, a. ~,Il< \l ,It. J -\ ~I ~", ~ - ", \j ~ \ - .1t'"~lli) j r l~ ~\S(~,s-'l" ' ("\) -~,I~l1 

+ "'~!t.' 7 r 1>,~ 
From thefi rst two equat i ons of (C . 3. 2 )9 i t is possible t o vrite, 

As with C\.~O 9 s i nce If I i s small (approx. 10- 7 at 1000 cis) , 



SUbsti tuti on of (C o3.3) i n ei t her of the first t wo equat ~ons of 

(C o 3 o ) does not appr eciably affect the coeffici ents of ~f ( for i ns t ance 

c..i- H, (cf) ~ - ~ ) or the constant t erms ( Ct
t ) 0 

"'i\ 

Fur t her from the f i f t h equati on cf (C o30 2 ) if ~If. may be writ ten 

~ L 

f M. 
then 

and the smal l size of I t I _1If-
(~IO at 1000 cIs ) may again be cal led upon 

to indicate that S~ 9 also has a negligi b e effect on he l as'l:; wo 

equations of (Co302) o Thus f r om these, 

It can furt her be seen , that i n subtract ion of the l ast two 
s~ ~ 

equations cf (C o3 02) and neglecting ~ compared with 1 (<,-s .-....' 10-
1
:1-

1. I' l-

at 1000 c/s) , ~~ terms vanish anyway , and e:., terms do not contribute 

anything appreciable compared with other terms (by the previous arguments), 

thus, 
AI' c..~c..i4-r~ - ~fc.S "1rS l\s e rr!ll~ + I-Y )-\l\lJ'>k~ - r-~c!~\I\~f) '«-!'}~ 

~ ~ L ~ 1-

i.e. in the second equati on of (Co30 1 ) , ~; may be e i minated 

r1 T ~~~ let) - K ~c..f-p ~ ~ 'Cc.t-) .c l J~.v ) Llo.' c...
9 

\ r-:~~~\ttc:) ~~ - ""tc...~ ~\llC);t;I-D~ 
\ \ '(" \ \ S~)... /- , - \ • / -_ . '\ 

f'C- __.l.. L 

giving, finally , with further use of relevant recurrence relations, 

~C.3 . 6) 
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I t may be not ed t hat he PI" ced r e used f or Act and A: a.bove 

i nvolves a some wha more r efi ned argument g i n each ase g t han t hat 

employed by Epst ein and Carhart (46 ) f or t he spheri al ~~~ (flui d/fl uid ) . 

r 
Where g f or the corresponding Ao 9 'he hea t fl ow equat i on ' s di vi ded 

through by I<~ f 9 and t he t er m i n .t t hen neglected ; a..'1d for t he cor 
r 

responding ~\~ , t he temperat ure and heat flow equations are made i denti cally 

zero , negl ecting B; , and ~: , terms i n t he remai ni ng equati ons. 

c.4. Fibre rigidly f i xed i n space 

For investi gating the effect of vari ation i n t he angle of i ncidence 

of the incident pl ane wave on the s catteri ng coeffi cients At , it is 

convenient to consi der the simpl ified case of a f i bre rigidl y fixed in space. 

This case i s also , of i nterest , when consideri ng t he effect on the 

absorption characteri stics of a f i bre bl ock of resin bondi ng (Chapter 5 )0 

For a rigi d fibr e , the potential s f~ 9 ¢~ , ~f ' and X
S 

vanish 9 Le o 

the coefficients A,.,':. 9 ~t\~ , L; and"J); are all zero . Thus if the fibre 

is also fixed in space , the boundary conditions which may be applied, are 

merely , continui ty of t emperat ure (i . e . zero vari at i on) and the necessity 

for zero veloci ty (di splacement) at the f i bre boundary. The temperature 

gradient is not necessari ly zero a t thi s boundarY 9 however , the condi tions 

cited are suffici ent t o evaluate the Af 

From the set (C. 1 .1 ) , the relations (C . 2. 2) and t he argument of Co2 

which concerns the ~,,~ , t he rel evant condi t ions may be written: ·· 
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f [ I -t ~ o~H JJ~)] -4- t= ~ ;HJ~I~) = 0 

~~ [~ -+ A:H\lc.'~) ] -t\}~S~~I(bl~) - \\(c.\ ~cll1.l~r)", 0 

- \~[ \ + AJ Hotc:~) +- ~"I-"~l\ol~) ] + (I(:~- ~l-) LJHol21-) ~ 0 

1 J (c . 4.1.1 ) 

From t he f ' rs t eq a ti.on 

~o~ ~ - ~ S I + Ah.l~f) 1 
fHolb\~)l ~ 

which can be subst it t ed i n the remai ni ng t w equat i ons , negl ect ing 

terms in ~ wherever possi ble i oe. i n a s imilar manner t t he procedure 

of Co2 , giving : ~ 

Hence 

Co 40 2 o 

r A_I~~ _ '6\hJ,tb'~)] Af I' 1\ 'r r\ L"" r 11 + oc...t\-l\tG.-~/-'~c..'·c..oJ.\\(t.' )= D 
l. ~ H.l'o'r-) 

- l~ 

[ ~P-_ H'~H,ll1()]-\-
.l. ~ "olb't) 

r - ~~t~Jc.'f) "c.t~~) 
L " lV(,h_\(~)Ho(i!-) 

,,:>-c...\f-H,lc.'I) 

( 'I:/"'-W(")H.l~f-) 

- ~" ".(~') J 

Similarly from the set (C o . 1) and t he rel ations (Co301 ) 

~[~~+ A\~fl\t~~)J -+ ~~t"J~~) -=- 0 

- ~~- ll + A,!-I1\I~!-)J - Io\fe,;t\,l\)\~) + ~Kc:..'~H\\(ef)C} 

+ V(T~f>/ \-l\(L~) '=- 0 

~ C.401o2.) 
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The first equat ' on of thi s set ! again shows that the effect of (),f-

in the other equati ons is ent i re y negli gi bl e . 

Thus from the l ast equation of (C. 4. 2. 1 ) . 

L \' =- ~ \ [i!..I~ + Atl-\\tol~) 1 
I (~~_'«)..) IW'-) J 

SUbstituti on of this into the sum of t he second an.d thi rd equati ons 

of (C. 4. 2. 1) then gives , after rearrangement 

f- ~ 
and finally? substi t ution for both L, , and~, i nto the thi rd 

equation gives: -

Af-
t 

(C . 4.2 . 2) 

C.5. Normal Incidence 

For ~ = 0 the boundary conditions exi s ting and required reduce 

to three and four in number for (l = 0 and 1,\ " \ , respectively , and the 

expressions for ~: and A,~ for normal incidence are simply given by 

putting k = 0 in (C . 4. 1. 2) and (C . 4. 2. 2) ; and removing the dashes , viz : -

At- b - f b~~\(b~) A--
_ c.. 

+ 0 

.1 "'~" ll..V) \ 
\= l1J.b~) c..I'-\\ ,leY) 

and 

~~ 
(l 

"'--' Cc 
\ 

C t\ lr!-) + J-~ Lt.I-) \\,'kf) ] 
\ 1. H-Jt.~ ) 



6 je t o ' he appr oxima t i ons nvo v Ylg ma e p evi s y o 

A~ C06. The e ffe t of t he s a t erer proper ties on the f\ " 

It i s easy 0 see tha he expressions ( C05 01) and C02 . 4) f o 

nor mal in .idence differ only as F"oll,t)di ffers fr m S 

Thus allo'w' ng 
f 

!S.s -;> 0 i mmedi ate_y makes t he two expressi ons i den ical 9 
V\ 

i 06 0 al, owing the f ' bra a become i nf ' n ' te y cond c ng 9 removes t he 

~ dependence of A~ on he fibre p per i es o 

It s so of in erest 

Now 

Thus as 

and using he asymptoti 

Appendi x E9 

and 

i oe o 

exami ne t he effect f l - ';> 06 

I 

= (\ + ~ ) ( ~: fS) ~ «. 

b!. -> 06 

f orms of t he Bessel funct'ons i ntroduced i n 

Hence 9 t he expect ed r esu t t hat t he va ue for flt t ends to that for 

a f i br e rigidly f i xed in space as t he density of t he scatter i ng fibre 

i ncreas es . 

C. 6 0 2 

Comparison of t he expressions ( C. 5 . 2) and (C . 3. 6) for A/' a t normal 

, 'd t ' l~/~~ 1nC1 ence 9 shows hat they d1ffer f r om each ot her onl y as t he t erm 
roSe).. 



di ffers from zero . 

Now lWrc..r '). ;w l( ~r. ) ((~ 
~ ~~-l 

~ s .... r pt r c; 

t! (7t) R 1-

for ~ ~ from t he expressi ons (Append1x A and B) (", ) v.: T and t he definit i ons 

of f S 
L , (.. (Chapter 3) . 

~ 
Hence 9 again t he expect ed result t hat allowing e. -') 0 implies the 

p~ 

r eduction of A ,f t o the value for a fi bre rigidly fixed i n space . 
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APPENDIX D CALCULATION OF ABSORPTION COEFFICIENTS AND SCATTERING 

COEFFICIENTS; COMPUTER PROGRAMMES 

D. 0 Normal Incidence scattering coefficients 

Using the expressions (C2 . 4), (C3.6) , (C5 01 ) and (C5 02) , from 

Appendix C, together with the approximate expansions of Besse Functions 

given in Appendix F , t he real and imaginary parts of the relevant 

scattering coefficients for an elastic fibre and a rigi dl y fixed f i bre 

may be calculated as follows :-

Elastic fibre ' ~ - " N ( ((~ - W 8 ) K~ Ao ::.. 

J- ( Al- -+ ()~) 

- At- _ f>- " N l wA + (Z€:, ) 1M. 0 -= - ,,0: + 
If .l (A~+ 5~) 

where ~ ~ IN : Re.- kotb~) - M ~ I M t4. o(.kF) ~ L 

and A L ~ (WZ.-RY) 
~ ""- - M - ~~ (\\IY + lZZ) 

where 
Q.. :0 R~ CbP-~,(b\!-)J -w = 1:~ [tP H,('o~)J 

~y -= R<- [ '.Cb') J -+-2 =- 1:M [ T.(") J ' ) 

'ttJlbS
) bl T\ (bS

) 

where 

~~~~ == - 1\ ef (I - ~ k) e..(-~ ) - At ~ I t-iM. \ = + - R.~A \ \ 
J.. (flll-4- BI>-) SI 

II -=- W ' 
po-

i~ ~>- ) c-

Al r C 

6' J.y (1 -~ t..') -=- J...'X (l-~k) - \ -gl' -:: 

and X = R<-l ~ ,(e') J y = :rM [ H,lt') J 
e!'HJJ) c...f uJt) 



R· s i d f i br (! R~ ~} = - TtN ( ~L..+vJM) 
"- (~+ fv\l.-') 

"LV\ ~o~ - - "J)- - liN ((ZM - WL) 
J.t- J-(t:-+M~) 

~ hy 
1<..e.. Itl - 1\ 6. 

(:1)(- \ )~ + 4-yl.-

D.2 Obl i que Incidence s cattering coefficients 

Simi l arl y from t he expressi ons (C4 . 1. 2) and (c4 . 2. 2) t he oblique 

i nci dence scat t eri ng coeff i cients for a f i br e rigidly f i xed i n space may 

be calcula ted as follows : -

Re. A: : tA + \3.]) - A f lM 0 

A).- -+- ()l.-

where A - ~+H~ ~ 

C. 
\-).. 

J) -:: - c..: - E... +G. 
' .1-

~ -=- - R~ \' i ~ I-Il.l~r) ] t= '" - Ifv\ [£ bI t· ",t~~)J 
L ~ ~Jbl~) ) ~ 1\-,,( b't) ) 

and the appr oxi mations 

H ~ l~ 0 ~ (+ ~ z.. 

+ ~~~~) ~ b~ 
c.:; 

- 1-\ - Cx-L - ~ 
1\ 

H 
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have been made ~ which rely on the definitions of b'r-~ <:..' f- given i n 

Chapter 3 and the fact that tw~ and ~;. are small quanti ties. 
cr~ c.:;>-

This is an equivalent approxi mation to the assumpti on that v(J is 

real. 

Similarly f<t A\~ ~ - ,,~~~[ ~(b+J.Y) - blo-.+J?< -J)] 

where 

I 
-z.. 

lz.' 

c! H:(J-) 
H .cd-) 

(0--+ .J...X-().)~ + (b+~Y)"" 
and th 't' 'b'~'~ e approx1ma 10n concern1ng ? C is agai n assumed 

Do3 Absorption Coefficient 

The Twersky theory in general (see Chapter 4) gives : 

where 

.... ~).. 
~b '=' Ks> -

.iN and 

K/ c.o~ eX. 

4-~~Q -+ C-l{+~)(~-CJ") 

~ ~ ~l A~ 1 ~I = ~\I llY'~: 

The form of g is t o the approximation suggested in Appendix Eo 

= 
and 

~: I A~ may be evaluated from D.1 and thus 

v::~~- ~ - ~ : N ~ - k-c.l- fit A~ 

0... + ~b 
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where generally 

~::>- + If---N I~~ - ?{-c-}- [~~ A!Q,,-A~ - II-1A~l&AA ~J 

- tpi RQ.. ~ - 4-~}- [R~ ~} Il.dr ~ + T~ fI; Ql1. A I~ J 
To be consistent with t he previ ousl y used conventi on for a forward 

travelling wave (Chapter 3 ) g(a) must be real and positive o 

Further from Chapter 49 t he r elative characteri stic i mpedance is given by 

~ ~ + ~~ 
) 

J('Qe...A~ - b cl 

and the surface normal impedance 

Z fI.. ~ f/ C} (I{ + ~ W ) ( (( + ~ ~) 
where 

Thus finall y 

{' I + .e:-.l\:'J (lo$. ~c...! -+ \S~ J~cl) J 
f I - e.- .2~J (~~ Jo-.& -+ \~~ ~cl)] 

4- (v(I-~w) 

C VR - S, W + \)~ -+ (R. vJ + V ~ )~ 
The following computer ~ogram. written in Al gol 60 for use with -the 

English E1~ctric - Leo- Marconi KDF- 9 machine at Leeds University, was 
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Used for calculation of normal incidence absorption coeffic ients according 

to expressi on (D. 3) . 

The various materials for whi ch experi mental values existed , were typed 

in terms of mean fibre radi us 9 slab density and slab thi ckness and t his data 

toget her with the constan t s tabled in Appendix F were input . 

It should be noted that the program , as wri t t en , outputs va l ues of 

~o ' for a given slab densi ty and thi ckness, for each of the values of mean 

fibre radius fed in . 



1000 

This program was modified to calculate absorption coeffici ents 

for oblique incidence in the XY plane 9 by including an extra loop for 

va ues of i ncident angle from 00 to 900
9 and by replacing t he 

expressi ons fo r Kb 9 ~o ' V and W 9 as i n ' D03 by devi at ions c f them 

based on express i ons 4 02 01 7 to 402 01 90 Similarl y a progr am was 

written to comput e oblique i nci dence s cat t ering coe ffi c: en t s 

ac cording to the expressi ons (4 02 01 7 to 4 0 20 19)0 



begin 

-: 

comment 

. , 

Calculation of normal incidence absorption coefficient 

against frequency for fibre glass by a scattering theory 

developed by Attenborough. Variation with fibre radius 

slab density and slab thickness is also considered.; 

librar y Ar' , A6; 

integer i,j,k,n,m,s,kt,1,fO,f1,f2,f3; 

real w,gamma,rof,ros,kf,ks,cpf,cps,muf,mus,pi,rog,b,af,Cof, 

Cos, N,nuf ,kdf ,C,es, c, Z, Y, W,R2, L,M, A,B,ReAOf, ImA( 'f, P ,Q, 

S, T ,LL, YY, X,x,Re A 1f, ImA 1f , ReRigA('f, ImRigAnf, ReRigA If, 

ImRigA 1f ,yxz ,V, gg ,WW,RR,SS,kfg,a(' ,NN,Reg,Img,d,e,ff,g,mm, 

pp,AA,BB,AAA, BBB,sigmaf,sigmas,delta,a,bb,ll,yy,xx; 

open(2(' ); open(7n); 

f O:= forma t (12s+d .ddd1o+ndl); 

fl:= format (12s+nddd.dddddl); 

f2:=format (12s+d.dddw+ndcl); 

f3:= format(12s+ndddl); 



begin 

Cof:=read(2 n); garnrna :=read(2 (\); rof:=re ad(2 (1 ); 

rog : = ros: =re ad (2(\ ); kf :=read (2 (1 ); k s : =re ad (2 (1) ; 
I 

cpf: =r e ad (2" ) ; cp s: =re ad (2 (1 ); Cos: =read (2 0) ; 

muf:=read(2 (1); mus:=re ad(2 () ); n:=read(2(1); 

m:=re ad(2 0); s:=read(2(1); kt:=read(20); 

in tege r array 

array R[l:m], 

for 1 : =1 s t ep 

for i:= 1 step 

f or i:=l step 

for 1:=1 step 

close(20); 

f[l:n); 

t[l:s], ro [ 1 :kt]; 

unti l n d o f [ i] : =re ad ( 20 ) ; 
.. .. 

until m do R[i) :=read(20 ); 

until s do t[l] :=read(2(1); 

until kt do ro[i):=re ad(2 ('); 

p i:=3.142; nuf:=muf/rof; sigmaf :=kf/(rofxcpf); 

sigma s:=ks/(rosxcps); 

wri te text (7 c.',112cli12s1J12s1112s1k12s1V16s1WWl6s1a16s1 
bb[6s ]a(' [ 4s] ImRigA 1f' [2c]]); - - -------..- -- -----= 



... 

fo r i:= 1 step 1 until n do 

begin w:=2xplXf [i]; N:=( gamma-l)xwxs i gmaf/Cof i 2; 

kdf:=w/Cof; 

for j:=l step unt il m do 

begin b:=sqrt(w/(2xsi gmas))XR[j]; af:=wxR[j]/Cof; 

cs:=sqrt(ros/mus)XR[j ]XW; 

c:=( w/ nuf)XR[j] i 2; 

Z:=(-12-bi 4/36)/(48+bi 4); 

Y:=(48+2Xbi 4)/(48xbi 2+bi6)x(-1); 

x:=wXR[j] i 2/(4xsigmaf); W:=2/pi+x; 

xx :=(ln(sqrt(w/sigmaf)/2XR[j])); 

R2 :=2xx/pi-4xx/piX(xx+(~ . 5772) ; L:=O. 5+(xx+(). 5772) x2x 

x/pi-2xx/pi; 

M:= (~ . 5xx- (xx+(' . 5772)X2/pi; 

A:=L-kf/ksX(R2XZ+WXY); B:=-M-kf/ksx(R2XY-WXZ); 

delta:=w/nufxR[j]i2; 

. , 
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Re P..( l f: ::::-piXNX (R2XP..- VJXB) / (2X (A i 2+Bi2) ) ; 

ImA(\f: ::::-p iXafi2/4+piXNX(VJXA+R2XB) /(2x( Ai2+Bi2) ); 

yy o::::( (l 5772+'1 t;vln(('»_ln(2) \. • • • r • . • "J"~"" \ - I -- I J- j 

P:=c/(2xpi)-C/pixyy+ct2/32;Q:=2!pl-Ci2/8xl 

/p ix(-5/4+yy)+c 

/4; 

S:=c/pi-ct 3/48xl/piXYY-Ci 2/16; 

T:=4/pi+Ci2/(16xpi)X(4xyy-3); 

X:=(PXS+QXT)/(Si 2+Ti 2); 

LL:::::mufxw/musxCS i 2; 

AA:=2XXx(1-deltaxLL)-1-deltaxLL; 

YY:=(TXP-QXS)/(Si2+Ti2); 

BB: =2XYYx(1-deltaxLL); 

Re Alf:=-plXBBX(1-deltaxLL)xafi2/(2x(AAi2+BBi2)); 

ImAlf:=ReAlfXAft ! BB; 

ReRigAOf:=-o .5xpiXNX(R2XL+WXM)/(Li2+Mi2); 

ImRigAOf: =-pixafi 2/4-piXN/2X(R2XM-VJXL)/(Li2+Mi 2); 

ReRigAlf:=-pixafi2XYY/((2XX-l)i2~4xYYt2); 

ImRigAlf:=O.5xReRigAlfX(2XX-l)/YY; 



fo r 1 :=1 s tep 1 un t il kt do 

begin NN :=ro [1 ]/( piXR [j ]i 2xrog); 

C:= 2xNN/kdf;Reg: =ReAOf+ReA1f; 

Img : = ImAOf + ImP. 1 f; 

Aft fl :=kdfi 2+4xNNXlmg-4xCi 2X 

(Re A 1 fxRe AOf - ImA 1 fXIm A()f) ; 

BBB:=-4xNNxReg-4xCi2X 

(Re A (~fxIm A 1 f+ImAOfxRe A 1 f) ; 

a:=sqrt( O.5X(AAA+sqrt(AAAi2+BBBi 2))); 

bb:=BBB/(2xa ) ; 

d:=kdf+2xCxImAlf+a ;e:=2xCxReAlf-bb; 

ff:=kdf+2xCXImAOf+a;g :=2xCXReAOf-bb; 

for k:=l step 1 unti l s ~ 

begin yxz :=exp (-2xbbxt [k]); 

11:=1+yxzxsin(2xaxt[k)); 

mm:=yxzxcos(2xaxt[k]); 

pp:=1-yxzxsin(2xaxt[k)); 

gg:=gi2+ffi2;kfg:=ppi2+mmi2; 

V:=(exg+dxff )/gg;vnv :=(dxg-exff)/gg ; 

RR:=(11xpp-mmi2)/kfg;SS:=mmx(pp+ll)/kfgj 



a l' : =4x( VXRR-SSXVlVl ) /( (VXRR-SSX\oJltl+ 1) i2 

+(RRXWW+VXSS)i2); 

wrlte( 7l) ,f3,1) ;wrlte(7n,f3,j) ;wrlte(7() ,f3,1) ;"'1!'lte 

(70, f3,k) jwrl te (70 ,f 1, V) ;vlrlte( 70,f1, WW) ;wrl te (70,f1, a 

); wrlte(7() , fl , bb) ;"'1!'lte(7 ~" fl,aO ) ;wrlte(70,f2,ImRlgA1f); 

end; 

Reg :=ReRlgAof+ReRlgAl f; 

Img:=ImRlgAOf+lmRlgA1f; 

AAft :=kdfi2+4xNNxlmg-4xCi2X 

(ReRlgAlfxReRlgAOf-ImRlgA1fxlmRlgAOf); 

BBB:=-4xNNxReg-4xCi 2X(ReRlgAofxlmRlgA1f 

+ImRlgAr'fXReRlgA 1 f) ; 

a: =sqrt ( () . 5X( AA A+sqrt (A/I./li2+BBBi2) ) ) ; 

bb:=BBB/(2xa ); 

d:=kdf+2xCXlmRlgA lf+aje:=2xCxReRlgAlr-bbj 

fr:=kdf+2xCxlmRlgAOf+aj g:=2XCxReRlgAOf-bbj 



end~ 

for k :=l step 1 until s do 

begin yxz:=exp (-2xbbxt[k]); 

11:=1+yxzxs in(2xaxt[k]); 

1nIl1 : =_y~"'{zxcos (2xaxt [k] ) ; 

pp :=1-yxzxsin(2xaxt[k] ); 

gg :'=gi2+ffi 2; kfg :=ppi2+mrni2; 

V:=( exg+dXff )/gg ;\VW :=(dxg-exff)/gg; 

RR :=( 11xpp- rnmi2)/kfg; 

SS:=rrmx (pp+ll)/kfg; 

a 0 :=4x(VXRR- SSX\fW) /((VXRR-SSXWW+l)i2 

+(RRXWW+VXSS) i 2); 

wri te (7(1 ,f3, i) ;\,lri te (7{) , f3, j) ;wri te (7(1 ,f3, 1) ; write ( 

7 (1 , f 3 , k) ; wr it e ( 7 ( I , f 1 , V) ; wr i t e ( 70 , f 1 , WW) ; wr it e ( 7 () , f 1 , a) ; 

wri te(7( ' ,fl,bb) ; vvrite(7",f2, a n); 

end 

end end end end ;close(70 ) 
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APPENDIX E. ATTENUATION DUE TO A SINGLE CYLINDRICAL SCATT~ 

Eo1 . The Di ssipation Integral 

46 ) 
Briefly outlining Epst ei n and Carhart Os approach for fluid spheres , 

the time average of t he overall ener gy l oss consists of viscous and thermal 

parts·· viz : = VJ W + w" r 
where W

f = J ~,,~ \\J 'l J~ -\- J \,? \f . ~'2 A\I 
f ~ I\v " A~ 

and Wo- -=: L (~.I C V'T) ~v ~-J 

i n which N s i gnifies t he comp nent of ~iJ i n t he dire tion of t he out ward 

normal drawn from the surface F of a large volume V surrounding t he scatt~rer 

concerned. 

Rememberi ng that y~ 

and have time dependence 

•• 

and 'V N' conta ined i n the time average are complex 
(-iwl:) ~ 
~ i and i ntroducing the complex number notat~on 

The energy l osses ar'e gi ven by t he integration and time average OJf 

the viscous and t hermal di s sipation functions 

1 
( \\~ i s t he di ssi pat i ve part 

and of the t otal stress tensor) 

respectively . 

Tbe viscous dissipati on function T~has the standard form introduced by 

R~l&igh ("Theory of Soun~'vol o I . Ch. 4) . the tensor eXl,reasion above being 

used by Mason(71) . The t hermal di ss pation function ~rr i s derived by Tolman 

and Fine (Rev oMod.Phys . gQ. 51 , 1948 )0 
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the time mean can be cons i dered from 

- .:Ii.we ,l 'w t 
± R~(x\) = ~ e~ ex {'oJ. ) 

as t he t er ms i n e and e C vani sh in the : me a.we-r aging . 

Thus t he dissipation expr essions above can be writt en i n he forms 

Wr ~ ~ t IF "tv,,~~r -+ fv ~-fr~ · ~ ~v 1 
Wo- iTb R~~ K~jl'\1-(~3}~f - KLI~V~\ c\v~ 

The analysis( 46 ) shows t hat t he sum of t he second terms ( i. e . t he 

vol ume i nt egrals) of each expressi on i s zero whils t t he fi r s t t erm of 

VV~ i s negl igi bl e l eavi ng t he total 

W ~ ~ RIL J V .'~\>N· d..f 
.1 f J ~ 

i n which t he time dependence is now suppres s ed . 

This argument i s unaf fec t ed by change from a s pher ' cal t o a 

cyli ndri cal coor dinate syst em , t hus for a s i ngle cylindrical fibr e 

choosi ng V to be a l arge c mcentric cyl indrical vol ume 9 r adi us B and 

surface F, the i ntegral (E . 1) can be evaluat ed agai n f llowing Epstein 

and Carhart (46) wher e the contributions of t he surface i n egrals over 

the i nt erior and ext erior surfaces F~ and F~ of t he s cat ter er cancel ~ 

(E. 1 ) 

due to the continuity of .both t he 

( t he ~K~ bei ng equal and opposi te 

V · and))N ' acros s 
~ ~ 

t he s catterer boundary 

for F2 and F
3

) . 

If the radius B i s chosen sufficient l y l arge t he hi ghly damped 

ther mal and vis cous potentials will not contribute at F1 and i n the 

~ ~ 
expressi ons f or '/4 and rN~ viz . (3 . 1312 ) and (3 .1 321 ) terms i n t- may 



be neglec t e d c ompared 'Wi th 't erms i n l"" 
0 

- \ 
a ga i nst t- terms 0 

Thus . t i s poss e t o ' ' t e 

and 

wher e 

_l-
9 and r terms neg ected 

F r , arge r, obvi usl y he product v:~s may be negls , ~d (e .g. 

ompare d with vtYrr ) a s it decr eas es wi t h ~).. 9 t hus it i s r e quir e d 

to obtai n on~ 

I n general (89 ) the e , ement of area on he s urfa ce ~ , -;:0 cons t . 

i n curvi inear coordinates ~ , '~ }..) ~3 w' t h parameters \-... \ ) \.- ~ ) h.~ i s 

tt f :: ~). k 3 ~ ~ ~ ~ L 
i. e . for cy i ndrical polar's ~~, -= 15&t'JA.'Z. and [, QF , :: J" l « J.Q J\.. cl~ 

f , 0 • 

Furt her 9 defini ng 

t h en 

and 



where 1\.. '" 0 

1\.>0 

104 0 

Now assuming K~~ is r eal i oeo neg ec i ng he dampi ng f he f id 

t he order of sma q ant t' es g see Appendi x A) , d " a t a i onal wave .. 
~\ >.1 \ ..-
LI "At< 

04 

~ ~~ [Go" TI''(~~~Y,) + ~: ~~ ((~IIS)J [~~"J",lYi~B) + ~~'11 \I:(\C~ri)J 

Then usi ng t he r ecurrence relat'o~87) 
x'KXX)+I\.~l'\lx') -.:. ',(~ ... _,(x) . wher e R,, ::: J" or H" 

and t he arge t · i t ' (90) argumen approx_ma 10n8 9 

-r"G) ex ) )( ~~ l ;x )~ Co3 G - t1\(~~ ~) J 
H;'}(l<) .~ (;x)I- ~~ C)( - ~\TI (I\+ ok)] 

:0 (~I\~\ - ~ ~~'yr,," - lj~ - \ -~ -r")~,, 

Sill'dlarly 



The second t e m vanishes anyway for (\ ... 0 ; and may be nagle e d 

ot herwise i f he condition ')( - > 00 ~ which allowed t he appr oximate f orms 

of T ..... and H" 01 be l5ed ~ 0 a i ns 

e 

It shou d be noted hat hi s argument equ i r e s B 0 be very large 

(as I(;~ i s small ) vi z . B "" \OC.~ a 'S 1 0 \cc..(S and B rv 10 c..M . a · 50 "f(c..( ~ . 

Further f rom t he "generalised Snel • s l aw" of (}o 125) and also f rom 

Appendix Ao 

(E o 8 ) 

thus us i ng 
C~ : . ""I'- ",,~ , n) ,,~- I:) .,~ p ..... U( 

- r-
( ) ( 

~ K~ 
E o3 - E 08 ) i n (E o2 ) ~) .6 ~ ~ 

W ~ - .1wfof- (I + H-S~@ LQ~ [~o (1\1 + t,,~1\ A/) J 
t he fit: hav e t heir ob q e ' ncidence values ( Appen di x C4) 0 where 

For the part i e ar ease of nor mal i nciden c e r~quired in Chapt er 4 9 

K = 0 ( he Z· C1Dmpon ent s of t he v~ and '\>r{J vanish) the A~ ake on t hei r 

nor mal i n i dence va u es (Appendi x C) and he t ime averaged ener gy l oss 

per s ca tterer of length L i s given by 

IN = -J~fo~LR~ [g~(Af+ ±,,~;A~*)] (E o 10) 

As can be seen f r om Appendix C. t he '\I'a! e s of he ~: will i nvolve 

~ lit ~ Af-or ders of higher powers of 0.. a s I\. i ncreases e . g . I ~ will be at least c..: I< ", 

~ - 5 
Thus as Q .vIO over the audio f r equency 

range of i nter est g it seems a sati sfactor y approxi mat ion (followi ng Epstein 

and Carhart (46 » to ' d nl t h f "~ d A ~ , ' t i ons~ er y e va es 0 no an I ~o e . 1 S 

possi b' e to writ e 

(Eo 11 ) 
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where further ~; A!t has bf!'sn n<"'glected compare d wit;1, ~~ {ca1culation 

sh01ftl:i.~g th at 
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1\ ~Ah r. ~ where further tty\. ,.. has been neglected compared Wi th n~ (calculation 

showing that even at higher frequencies). 
\ 
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APPENDIX F 

Ao Material Constants used in c:~a.tiSl~(4b) 91) 111 J 112 ) 

AIR GLASS 
----------~~~------~--~--------~---=--- =~------

0.1825 x 10=3 g cm~~sec ~1 41 x 1010 dyne.~rlcm2 (fibre) 

f~ 

,- -
Lv -

B 

1017 x '10=3 g em =3 203 g <:m'-3 

3044 X 104 "'m se,,_~1 - 749 105 ,"1 
v ~ '0 x em sec 

PAT 

1/T (absolute) 

'~ 00 

·-1 ~1 ,,1 
0000-155 cal sec .,c em 

6 0 10 -2 
~ 0 21 x 10 dynes em 

400 x 1011 dynes cm->2 (fibre) 

205 x 10-5 °K~·1 

B. Approximate expansions of Bessel Functions 

Using the well-known expansions(8?) for the cylindrical Bessel 

function of the first kind and the Weber Bessel function of the second 

kind respectivelY9 ioe. 
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where '( (Euleros constant) = 0.5772 00. 

the following approximate expressions can be derlwsd ;,-, 

(F 0 -:) 

h f2.(' f t f 4 were c = lO and c is small such tha or higher powers than it may 

be neglected compared with 10 

Similarly ~ '-".(J) c g _ r _ r l '6' -+~ \ .... ~ -\",1') -+ ~).-, ~ 
, ~ i6 Il-f-n ~ ~st.. 

- ~ [*' -+£1i~~(r+~~~-\"l-)-3J J (F.2) 

Further 

(F.4) 

(r.6) 
\ 

where ~~'" (\+\)l:$)R-(\.\.~)6 ,say, and b is small such that 

powers of b higher than the fourth may be negleoted compared with 1. 

!he expression (r.1) for c f , also applies for b f which is of the same 

order L\;,~ '" (1 + i) (~])iR J 
Further 

\-\J\f) ~ 0·5 4- .l~ (t.le y') - ~ 4- ~ ('0+,) 
1\ 



where 

the zero order Weber Bessel function being gill·en by 

f similar expressions to (Fa?) also being valid for c: v 

Co Fibrous materials examined 

1090 

.... l ') 
K 

Rocksil and Roeksil -K resin bonded materials were used, supplied 

by Cape Insulation Limited in 1" and 2" thick circular disc samples, as 

specified below:~ 

Name and spec~fied Density Measured Density Average fi bra 
(lb/ ) go 011-3 radius R 

Roeksil-K 1 000184 .3 

" 105 0002462 3 

" 2 00 0288 3 

" (MoDoS.) 5 000825 3 

" (HoDoS.) 6 00 0863 3 

Rocksil Building Slab 00 0874 5 

Rocksil Acoustic Blanket 000636 5 
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Appendix H 

YiBcoelasti,e Absorb~ 

Following Nowacki (Dynamics of Elastic Systems :963 Chapman and Hall 

Ltd.) neglecting thermoelasticity~ t.he const.it.l1tiy«'l relation, for the standard 

viscoelastic mode1 9 may be written" 

~ S (r + t l ) 
"'-f ~ )..)t 

('-H, ~ ) 

(60'0 

for a periodic situation~ ~ ~ -lw and on comparison with the tensor 
~I::-

constitutive relation for a normally elastic 5Q,lid vbv 

Ot~ = Jr-SeiJ +). .Q~K ~~ 
it can be seen that the effect of viscoelasticity is to replace the 

elastic real constants b, frequency dependent c.omplex variables Leu if 

-? 

I I 
where r and \ are given by (601) the form of the constitutive relation, 

propagation constants and strese expressions for the normally elastic 

problem may be retainedo 

This corresponds to the Voigt case as given by Kolsky (Stress Waves in 

\+ \ C'-lwt~) 
In detail r 

(! - lwt-,) 

and {-+ >-1 .1 [,i. + E: So 
.'l S (t-lwt,.')], :: lr ,\ 3r (\ - iW~1 ') 
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I [A -l- 3rs - I( S(prl)] :::-
~ 

\ G - ~r~r\] :=. }; 

~ ~ I 
-:: - "1 F1 

X 

i. e. . in this case therefo.re it is only 

necessary to retain one frequency dependent elastic coefficient. 

N • B 0 this relationship is equivalent to putting B 
1 

"" 0 i [ B -;> B( 1 + B 1 iJ 
found to be roughly true for rubber-like materials as the effect of 

B
1 • I 

1S very much smaller than for fA- . 

The wave propagation constants may then be written 

';(1)1/£5 = [f ] :t 
W ~A(\ +>.') + r"(t+fJ 

~ '" [ (~A. r:/ + :;~~ (r,r 
< w [ (lA+,.f 11/ + r'rf 

\ 15 

l - ~I(~~+r ') J r--

~ » !. 

when r y. 

.,(.~ 

w Cr(Jrl')' and \{,. :: 

I 

~~\ ( ) \(,. 

\ 4 r , 
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Consider now the model of the hypothetical absorber to be a ,~ontinuou.6 

viscoelastic solid matrix~ containing a random distribution of spherical 

or cylindrical cavities sealed off from ea.ch other and fr.:>m t.he surface 

by intervening layers of viscoelastic materialo This model is obviously 

susceptible to the s~e kind of scattering approach as that employed for 

the fibrous materialo 

Firstly ~ it is necessary to consider the problem of .scatt.ering by a 

spherical or cylindrical. cavity imbedded in a semi.,"inf:ini h viscoelastic 

Solido 

(a) S.Eherical 

For simplicity the amplitude of the incident ·;,;'s.vre may be taken 

as unity (it is i_aterial to the expression for the attenuat.ion du.e to 

a single scatterer)0 

Then the coefficients representing the scattering inside a viscoelastic 

Solid are given simply by the boundary c:onditi.ons for a ca'd ty inside 

a normally elastic solid with the real elastic coefficients and 

constanta r~placed by the relevant complex ones vizo 

( ~vr..~?- N O(kS, ~: (o...Vl:'!.) -+ j o...l/U >. I/~~ ~ lo...v~j) + 1\.( I\. ~ \)~ "{~I' (c....IH) ] 

+ (~S [c..'''~).. N'\~\.~ (e-~~) + ~c..M A Vi! k~ (o...'lU) -\- I\lM I) ,\"'-! h,,,, lc..'1~~ J 
+ Jr"Ht\(r\~~C"'!.(k.Jc..VH)~c..."H<lLYH)) =- 0 



which express the fact that 'the radial udl e 
the boundary of the cavity mast be zero. 

113. 

==- 0 ' 

campt. of stress at 

From these equations) where use has been. made of the Te.lation 

~~e ~(~~8. ?~\) := t\ (~+ )?" (~~9) 

for n = 0 the 9 dependence vanishes 

C\.V'iS ')- N '(.~ J~\ (o..."f,.~) .f. J c...'lkS A VI<S~'u\ l t'J. V~) -+ A:f:S [ ~ v~,P·NVf;.~ ~~I (c.."f.~) 

+ Jc..VfS
).. vla~! lcxVH) ] =- 0 

thus 

[ .''' 'tt"S:(~'")''' ~~"\"'~; C,-H) j 
[ Cl-.V~S >-'N'lt\.~' lo..'ln)-+ ~1\.,(H~,(kSk~lo..~9.) J 
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Now the functions JI\. and k .... satisfy BessePs differential equati.on 

/J II 
"'", 4-

and as 

, ( v<s' 
Further the small argument forms for J" \C<. I from Epstein and Carhart 

may be used. vizo 

similarly 

. ( V~~) t"v . l VH) "" l~ i~ ((Am) ......... ~l-J>l 0<. ~I C>.. 3 \5 

(l;~ . • \I - t ) JQ ""-' 

e,...'f=-":. ,.. N «~~ ~ 11\ (c,..VH) + l o..'1t~ ~ I(CJ',' (o..vtg) +- J,\Yl.J Jc..VU) 

+ A,(tS [e...t~~ '"N 'Il:.'l ,,-,he c..Vf.9) -t ~~'f~ >. vt:\: lc..I'f..l) + ~~ {f\ .lo.'fH) J 

+ H-r Vf:S. c( iE~ [\-.I (c...VU
) - c... .. t!h,' (~vt~) ] 0 
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r'" { U' (.''') - ""'j,' l~ ,.,)] + A.' [h.l. ''') - ",'" h: C~,,,) J 
+ ~S [ ll-. I Cc-vr:s) - -.l C_·,~S ~'" ," (e. vkS) J 1 -= 0 

.. vf-~ 3/ 
- c... /15 

cylindrical For gentlrali ty oblique 5ln,::;iden.ce is cOXlsidere:L Howe1rer ~ 

this meane that even when the surface of the material is ,dosed with an 

impervious la.;yer 9 the existence of end effects at, the cylindrical channel 

intersections with the materialboWldaries is a complication which 

requires consideration over and above the following~ where they are 

lIILeglectedo 

From Appendix ( c ); again neglecting thermoelasticity 9 where the symbols 

have obvious meanings, dropping superscripts9 where redundant:-

for ~ r \ ~ J~ c,.o) + ~:- K» J. C.') + A, [ .. ~~ (.') + (\ -,(~ I\,(~) ]. t« '('.";'(,') } 0 

r {- '.e [~'r.'(.') + Aoe.' "~(.) J + <'t. (K~ -K~ H:C,') J < 0 

and for ,~ 
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a[~J,'ld) + (~-K---I)J;(~)] -+ A, [~~II(~) -+ (C-~_~~_I) H,(CA')] 

.+.'\(C,..'l-t,H,"(c...') -t IC,'i\ [c..I«,I(c.I) ~ H,(c.')] "- 0 

l[c.'J,I(a..I) -1JC:')] + A\[c.IH,I(~)_~\(c.I)J -\- lKt,[c.-I",I(c.I
)- H,LC')] 

-I- J>, [c....1 Hi (1:-1
) - c....1). H I'\(C.

I
) - H, (c') ] -- 0 

Appendix Go 

Solid stress in spherical polar coordinates for a normally elastic 

solido 

and for the axially symmetric problem (ind.of~) .e..t~ ~ ~9.f '"' 0 

thus 

ore-

also V-, 

and u'S-

thus 0--;:, 

- ~~ ~ ~~B ~8 C~~~ . ~!) 
- 1 ~4 - 1 ~ (t: 1\,1') 

r Te r~, \ . 

.2 .. > -ti - _I ~ (£~\). ~~ of 1- i (s.~~. A~) ~ 
T' l h). ~$':"'~ ~e ~~.;.B ~N~ .s 

-+ A &~II IA. 
and thus after some manipulation ~ 

o-,Q ':. - :!:J¥ - ~~ -\- l~~ (_\ . ~ ~~~.A!))-\- ~ ~s._ ~~ 
r dr~& t ~G r ~ !.-S II\) rl--

. ~\~ 



Plate 1 Plan view of sample of Rockeil Acoustie Blanket 

Plate 2 Side elevation of Acoustic Blanket showing the tendency 
of the fibres to lie in layers parallel to the surtace 
(netting) of the sample. 





Plate 3 Surface of rigid polyurethene foam sample (approx 5 x magnific.tio~) 

Plate 4 Sample of coarse ~ flexible polyurethene foam in which all "skins" 
have been dissolvedo The basic "fibrous" lattice framework i.e 
clearly shown o -





Plat.,2 Finer sample of flexible polyurethene foam in which the "skins" 
are retained o 

Plate 6 S~face of Rookail-K Resin Bonded sample 9 showing the tendency 
towards "clumping"" 
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RESUME OF DATA RELATING TO FIBROUS MATERIALS 

Name and specified Densi.ty Measured Density A1I'erage fibre 
(lb! f~3) go cm~3 radius R (microns) 

Rocksil-K 1 000184 3 

" 105 0.02.462 3 

Ii 2 000288 3 

" (M.DoS o) 5 000825 3 

" (HoD.So) 6 000863 3 

Rocksil Building Slab 000874 5 

Rocksil Acoustic Blanket 000636 5 

" 
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