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Abstract 

Fossil plants of Paleocene age (62 to 59.7 Ma) are preserved within lava sequences in the 

Hebrides and Northern Ireland. These lavas, collectively referred to as the British Tertiary 

Volcanic Group (BTVP), were fonned due to rifting in the North Atlantic. The fossil floras 

represent forests that grew between the lavas in periods of quiescence, during which fluvio­

lacustrine environments developed on the lava surfaces. The fossil plants provide infonnation 

on the composition of the Paleocene vegetation and the climate during that interval. 

New collections of fossil plants have been made from the Isle of Skye and other collections 

from Ardtun on Mull were studied. The Alit Mor locality on Skye (60.16 ± 0.45 Ma) has 

provided the majority of the specimens for this study and represents a pond deposit where 

broadleaved angiosperm and conifer leaves accumulated. Fourteen angiospenn morphotypes 

have been identified, many of which show similarities to modem families, including the 

Platanaceae, Cercidiphyllaceae, Betulaceae, Fagaceae, Juglandaceae, Vitaceae, Cornaceae and 

Trochodendraceae. Conifer fossils include three ovulate cone types and eight shoot 

morphotypes attributed to the Cupressaceae and Pinaceae. The Alit Mor assemblage indicates 

that mixed coniferous forests developed within a palaeovalley, with the vegetation fringing the 

valley sides and colonising the floodplains of the valley floor. The vegetation of Alit Mor was 

dominated by climax conifers similar to Metasequoia, Sequoia, Chamaecyparis and Thuja. 

Broadleaved angiosperms such as Platanites, Trochodendroides, Corylites and "Platycarya cf' 

dominated the riparian margins and fonned an understory of trees and shrubs in the conifer 

forests. Comparison with Paleocene floras from other Northern Hemisphere localities indicates 

that the floras of Skye are most similar to those of the Arctic, particularly those of Svalbard, 

Greenland and Canada, and were thus part of the Arcto-Tertiary floras of the northern high 

latitudes. 

Palaeoclimate estimates derived from the fossil angiospenn leaves indicate that the climate of 

Skye had a mean annual temperature (MAT) of -5°C to 9°C, was seasonal with warm summers 

(wann month mean 19.0°C to 25.8°C) and cool to cold winters (cold month mean -3.0°C to 

4.2°C). Comparisons with the flora of Ardtun on Mull (60.5 ± 0.3 Ma) reveal that, although 

these floras share many of the same taxa, the flora is different, with angiospenns dominant, and 

the conifers that are common in the Alit Mor assemblage are rare or absent. The Ardtun flora 

also contains thennophilic plants such as Camptodromites major, C. multinervatus and 

Amentotaxus gladifolia, which are not present on Skye. Palaeoclimate data from these fossil 

plants indicate significant cooling during the mid-Paleocene, con finned by other marine and 

terrestrial proxies, marking a cool climate phase in the middle of the otherwise globally wann 

Paleocene climate. 
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Chapter 1: Introduction 

1.1 Introduction 

Fossil plants of Paleocene age from the Hebrides and Northern Ireland have been known for 

over a century. They are present within sedimentary strata encased within lavas of the British 

Tertiary Volcanic Province (BTVP), formed during rifting and fonnation of the North Atlantic, 

and represent forests that grew on the lava field during quiescent intervals. These studies have 

largely focussed on the taxonomy of the floras (Forbes 1851, Bailey 1869, Gardner 1887, 

Gardner and Ettinghausen 1879-1882, Gardner 1883-1886, Seward and Holttum 1924, Johnson 

1914, 1933, 1937, Johnson and Gillmore 1921, Crane 1984, Crane 1988, Crane et al. 1988, 

Boulter and Kvacek 1989) and have shown that mixed conifer and angiosperm vegetation 

became established in solis that developed on weathered lava tops between eruptive intervals. 

Palynological studies of this region have also provided an understanding of vegetation patterns 

over wider geographical areas, as well as providing an insight into the palaeoecology of these 

floras (Boulter and Kvacek 1989, Jolley 1997, Jolley et al. 2009). 

New collections of fossil floras from the Isle of Skye, Scotland offered an opportunity to 

investigate a new Paleocene flora that has not been formerly described or analysed. This flora 

has contributed further taxonomic infonnation about the composition and palaeoecology of 

these new BTVP forests, as well as providing the first quantitative data about the palaeoclimate 

for this region. 

1.2 Paleocene world 

The Paleocene represents an interesting interval in Earth's history because significant biological 

and climatic events occurred during this period. Important events include the 

Cretaceous/Paleogene extinction (KlPg) and biotic recovery after this event, the appearance of 

modem groups of organisms, volcanism in the North Atlantic, and intense global warming at 

the end of the Paleocene (Paleocene-Eocene Thennal Maximum, PETM) 

The Paleocene spans -10 million years from the KlPg boundary at 65.5 ± 0.3 Ma to 

Paleocene/Eocene boundary at 55.8 ± 0.2 Ma (Gradstein et al. 2004). This interval is divided 

into three subdivisions, the Dania~, Selandian and the Thanetian (Table 1.1, Figure 1.1). The 

Paleocene has been been divided into numerous biostratigraphic zones, shown in Figure 1.1, 

along with the chronostratigraphy. 
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Table 1.1. Paleocene ages and their duration (Ma). Age boundaries derived from Gradstein et al. 

(2004). 

Period 

Paleocene Late 

Early 

55 56 57 58 59 60 6 1 

Age (Ma) 

t...l 
Q 
....l 

Ages 

Thaneti an 

Selandian 

Danian 

62 63 64 

Duration (Ma) 

58.7 ± 0.2 to 55.8 ± 0.2 

61.7 ± 0.2 ± t058 .7 ± 

0.2 

65.5 ± 0.3 to 61.7 ± 0.2 

~ }C1imatelb iotic 
:2 even ts 

65 66 

Figure 1.1. Combined magneto and biostratigraphical timescale for the Paleocene, showing major 
biotic and climatic events that occurred during this interval. Magnetostratigraphy (Chron) from 
Westerhold et al. (2008), NM LA = North American Land Mammal Ages from Alroy (2000), CNZ = 
Calcareous Nannoplankton Zones from Martini (1971), PFZ = Planktonic Foraminifera Zones 
from Breggren and Pearson (2003). Climatic and biotic events denoted by blue bars, width of blue 
bar denotes duration of the event. KlPg = Cretaceous/Paleogene boundary, LDE = Late Danian 
Event, ELPE= Early Late Paleocene Event, PETM = Paleocene/Eocene Thermal Maximum. Figure 
redrawn and modified from Westerhold et al. (20 II). 

1.3 Paleocene climate 

The Pa leocene was one of the wannest interva ls of the Cenozoic. Latitudinal temperature 

I:,Tfadien ts were low (Corfi eld 1994, Zachos et al. 200 I) (Figure 1.2, Figure 1.3) . Globally wann 

climate conditions meant that the polar regions lacked ice sheets and evidence from fossil plants 
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and sediments indicate that the climate was tempera te and humid at high latitudes (e.g. Wolfe 

1977. Mai 1991 , Mciver and Bas inger 1999, Tripati 200 1, Marwick 2007, Uhl et a!. 2007, 

Hennan et a!. 2009). Oxygen isotope records derived from benthic foraminifera indicate that 

benthic marine temperatures dUling the Paleocene were wann and ranged from - 6°C to 12°C 

(Zachos et al. 200 I, Zachos et a!. 2008, Westerhold et al. 20 II). 

u 

. 1 ·2 

0 

'( 
e;. 

2 0 
·c 3 

~,' 
'" 

! 

• , , 
, 

4 

5 

0 10 20 30 11) 50 60 70 
Ago (~. a) 

Figure 1.2. Global climate over the last 70 million )'ears. 013C and 0180 curved derived from 
benthic for aminife ra from Deep Sea Drilling Proj ect (DSDP) a nd Ocean Drilling Program (ODI» 
sites. Red line denotes I million yea r running mean of the data. Benthic temperatures calculated 
from 0180 record and based on the assumption of ice free oceanic conditions. Figure taken from 
Zachos et al. (2008) . 

The distribution of sediments tha t are ind icative of particu lar c limate regimes have bcen used to 

reconstruct broad climatic zones for the Paleocene (Parrish et a!. 1982, Scotese 2002. Markwick 

2007) (Figure 1.3 ). The presence of coals and thennophi lic organisms at the Equator indica tes 

that the climate was tropical and humid (Pan'i h e t al. 1982, Scotese 2002, Markwick 2007, 

Head et a l. 2009, Wing et al. 2009). The presence of evaporite and calcrete deposit s adjacent to 

the tropics indicates that the c limates of the low to mid latitudes were arid or seasonally arid 

(Parri sh et al. 1982, Scotese 2002, Markwick 2007) . Bauxi tes, lateri tes, coals and kaolinite 

deposits in mid latitudes indicate that the climate was wann-temperatc and humid (Parrish et a!. 

1982, Scotese 2002, Markwick 2007). Polar climates appear to have been cool temperate for 

much of the Paleocene as sediments indicative of wamler climates sueh as bauxites, laterites 

and evaporates are absent (Parrish et al. 1982, Scotese 2002, Markwick 2007). 
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Figure 1.3. Paleogeographic map of the Late Paleocene, showing the distribution of lithological climate proxies and climatic boundaries. Redrawn from Scotese 2002. 
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Fossil floras have provided quantitative palaeoclimate estimates for the terrestrial realm of the 

Paleocene. Mean annual temperate estimates derived from mid latitude North American floras, 

and range from near tropical 23.2 ± 2°C to temperate 6.5 ± 2.5 °c (Wolfe et a1. 1986, Davies­

Vollum 1997). This is in contrast to the lithological evidence, which suggests that the climate of 

much of North America was warm temperate (Figure 1.3). The climatic variability in the mid 

latitudes of North America has been related to several factors, such as climate change after the 

KlPg event, climatic variation in the Paleocene (i.e. wanning and cooling), latitudinal variation, 

and local variations in topography and climate (Hickey 1980, Wolfe et a1. 1986, Davies-Vollum 

1997, Johnson and Ellis 2002, Peppe 2010). Floras from the Western Interior of the United 

States (Wyoming, Montana, North Dakota, South Dakota and Colorado) indicate that the 

climate in this region was primarily temperate to warm-temperate throughout much of the 

Paleocene with MAT ranging from -SoC to 13°C (Hickey 1980, Wing 1998, Wilf 2000, Peppe 

2010). 

Oxygen isotopes from benthic foraminifera have provided a record of benthic marine 

temperatures throughout the Paleocene. This record indicates that benthic marine temperatures 

changed significantly through the course of the Paleocene (Kennett and Stott 1991, Corfield 

1994, Zachos et a1. 2001, Zachos et al. 2008, Westerhold et al. 2011). Temperatures increased in 

the early Danian as the climate warmed in the Early Paleocene. This warming trend was 

followed by a period of cooling in the oceans from the late Danian until the early Thanetian. 

This cooling was followed by warming throughout the Thanetian, which tenninated in a 

transient « 20 000 year) global warming event at the end of the Paleocene, the PETM (Kennett 

and Stott 1991, Zachos et al. 1993). 

Considerable research has been undertaken on the PETM to detennine its initiation, duration 

and intensity (e.g. Kennett and Stott 1991, Zachos et a1. 1993, Zachos et al. 2003, Zachos et al. 

2005, Higgins and Schrag 2006, Zachos et al. 2006, Roehl et al. 2007). The PETM began at 

5S.8 Ma and is marked by a negative peak of carbon and oxygen isotopes (Kennet and Stott 

1991, Zachos et a1. 1993). Evidence from benthic and planktonic foraminifera indicate that 

global temperatures may have increased by -6°C to 8°C in less than 20 000 years (Kennett and 

Stott 1991, Thomas and Shackleton 1996, Katz et al. 1999). 

The causal mechanisms for the PETM have been highly debated and have been linked to 

multiple mechanisms, which include bolide impact, volcanism, changes in ocean circulation, 

biomass burning and methane hydrates (e.g. Katz, et al. 1999, Svensen et al. 2004, Cramer and 

Kent 2005, Tripati and Elderfie1d 2005). 

Although the exact causal mechanisms for the PETM have not been determined its effects on 

the biosphere have been well documented. The PETM caused a major extinction of benthic 
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foraminifera as temperatures in deeper waters increased dramatically (Kennett and Stott 1991). 

Planktonic foraminifera diversified and the dinoflagellate Apectodinium dominated marine 

sequences in response to the PETM (Bujak and Brinkhuis 1998, Heilmann-Clausen and Egger 

2000, Crouch et aI., 2001, Scheibner et ai. 2005). 

Terrestrial vegetation was also greatly affected. Floral records from North America show that 

subtropical and paratropical vegetation migrated northward in response to warming (Harrington 

et ai. 2001, Harrington et ai. 2005). Leaf damage caused by insect herbivory prior to the PETM 

was of low diversity and intensity, but during the warming event both diversity and intensity 

increased substantially (Currano et al. 2008). Mammalian diversity also changed in response to 

the PETM, resulting in the greatest mammalian diversity of the Paleocene (Clyde and Gingerich 

1998). 

Other warming events have been recognised in the Paleocene and include the Late Danian Event 

(LDE) and the late Early Paleocene Event (LEPE) (Westerhold et al. 2011) (Figure 1.1). These 

warming events were of lower intensity compared to the PETM but demonstrate that rapid 

warming episodes were a significant feature of the Paleocene climatic regime (Westerhold et ai. 

20ll). 

1.4 Paleocene floras of the Northern hemisphere 

Paleocene fossil floras have provided an important insight into vegetation patterns at the 

beginning of the early Cenozoic, and have provided a wealth of information on plant 

systematics and evolution, on palaeoecology, as well as information on the response of 

vegetation to climate change. The Paleocene record of vegetation indicates that plants were 

diversifying rapidly and many modem groups appeared during this interval (Manchester 1999, 

Collinson and Hooker 2003). 

Paleocene floras have been described from across the Northern Hemisphere and include sites in 

the North America, Asia, Europe and the Arctic, and have provided an insight into the 

vegetation cover during the Paleocene and how it varied longitudinally and latitudinally. 

Vegetation in the high northern latitudes has been termed the Arcto-Tertiary floral zone. This 

floral zone is characterised by a variety of broad leaved deciduous angiosperms, conifers, 

herbaceous angiosperms and ferns (Mai 1991, Collinson 2001, Kvacek 2010). The use of term 

Arcto-Tertiary floral zone has been questioned, however, and vegetation of the Arctic has been 

referred to as polar deciduous forest or mixed-mesophytic forest, based on its composition and 

character (Wolfe 1977, Collinson and Hooker 2003). In this study the term Arcto-Tertiary is 

applied as it represents a useful term to describe this type of vegetation. It is used here to refer to 
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vegetation with predominately deciduous character composed of broad leaved angiosperms and 

conifers. 

Common broad leaved angiosperm families characteristic of this floral zone include members of 

the Platanaceae (planes), Cercidiphyllaceae (katsura), Betulaceae (hazel), Fagaceae (birch), 

luglandaceae (walnut), Ulmaceae (elm), Vitaceae (grape vine), Cornaceae (dogwood), 

Trochodendraceae (trochodendron) and the Hamamelidaceae (witch hazel). Important conifer 

families include the Cupressaceae (redwood), Pinaceae (pine) and Taxaceae (yew). In particular, 

deciduous conifers such as Metasequoia (dawn redwood) and Glyptostrobus (swamp cypress) 

are ecologically dominant components of this floral zone (Chaney 1950, Koch 1963, Wolfe 

1977, Mai 1991, Mai 1995, K vacek et a1. 1994, McIver and Basinger 1999, Collinson 2002, 

Collinson and Hooker 2003, LePage 2007). Figure 1.4 depicts a typical Arcto-Tertiary swamp 

community. 

Arcto-Tertiary floras are associated with cool-temperate to warm temperate climates with high 

humidity, and those growing in the Arctic Circle would have been subject to seasonal light 

variation (Koch 1963, Mai 1991, Mai 1995, McIver and Basinger 1999, Ubi et al. 2007, Kvacek 

2010). The Arcto-Tertiary floral zone persisted from the Late Cretaceous into late Paleogene, 

where cooling climates restricted its distribution. 

Paleocene vegetation in the mid latitudes of the Northern Hemisphere contained a mix of some 

Arcto-Tertiary elements and other components with a more thermophilic character. The 

combination of temperate taxa with subtropical to paratropical elements is of note, as no modem 

analogues exist where these elements coexist (Collinson and Hooker 2003). Fossil plants of this 

type have been reported from Europe, Asia and North America, which suggests this type of 

vegetation was widespread during the Paleocene. These subtropical and paratropical forests are 

typically dominated by angiosperms with rare occurrences of conifer and ferns (Mai 1995, 

Manchester 1999, Collinson and Hooker 2003, Kvacek 2010, Pigg and DeVore 2010). The 

composition of this mixed forest type varied regionally but was distinguished from the more 

temperate vegetation further north primarily by its physiognomy. The broadleaved angiospenn 

components of these floras had characteristic leaf physiognomies with entire margins, thick 

coriaceous textures that indicate that they were evergreen (Mai 1995, Collinson and Hooker 

2003 Kvacek 2010). 
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Figure I .... Reconstruction of a Paleocene Arcto-Teri a ry fl or a. Depicted is a swamp community 
dominated by the deciduous conifer Metasequoia, with a n understor y composed of woody 
a ngiosperms such as COI)"lites (Betul aceae) and Troc" oliel/liroilies (Cercidiphyll aceae), the fern 
Ol/odea a nd EquisetulII (horset a il ). Reconstructi on by J on Poult er. 

Charac teri sti c elements of this vegetation type included members of the famil ies Arecaceae 

(palms), Fagaceae (oa k), Lauraceae (l aurels) and Zingiberaceae (ginger), and fonns whosc 

affinities cannot be det ennined but have characteri sti c morphologies, such as entire margin and 

thi ck coriaceous lea f tex tures indicati ve of Wal111 er climates (Ma i 1995, Manchester 1999, 

Collinson and Hooker 2003, K vacek 20 I 0, Pigg and DeVore 20 I 0). Tropical rainforests have 

also been documented in the mid latitudes in the Paleocene. The Castl e Rock flora from 

Colorado in the United States represents a di verse fl oral communi ty that was growing in a \\'ann 

humid climate indica ti ve of tropica l ra in forest cond itions (Johnson and Elli s 2002) (Figure 1.5). 

One of the most remarkab le aspects of this fl ora is its age. The Castle Rock flora has been dated 

as 64. 1 Ma, whi ch suggc ts th at di ve rse fl oral communiti es had developed relatively rapidly 

a ft er the KlPg mass extinction in North America. 
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Figure 1.5. Artistic reconstruction of a 64 million yea r old tropical rainforest frolll Castle Rock 
Colorado, United stat e . Scene depicts rainforest growing along the nanks of the Rocky i\lollntains. 
Vegetation dominated by woody angiosperm trees that possess large, entire margined leaves with 
drip-tips. nderstorey vegetation composed of herbaceous angiosperms and cycads. The mammal 
Stylinodontine taeniodont is dep icted in the foreground. Artist J an Variesen, image taken from 
Denver Museum of Na turalllistory website (w\\'w.dmlls.o rg). 

1.5 North Atlantic Igneous Province Volcanism 

The N0I1h At lantic Igneous Province (NA IP) is one of the largest Continental Flood Ba alt 

(CFB) provinces of the Phanerozoic (Coffin and Eldholm 1994, Eldholm and Grue 1994). The 

AlP covered a wide area and includes large areas of the east and west Greenland-Baffin 

COlTidor, the Faeroe lIes, west em Scotland and orthern Ireland (Figure 1.6). Estimations of 

the scale of the AlP propose that , if the volcanic margins are included, the total area was 1.3 

x I 06 km2 with an estimated volume of 1.8 x 106 km3 (E ldholm and Grue 1994, Saunders et al. 

1997). Eruption rate were eq ually high with an estimate of 0.6 km 3/yr (Eldholm and Grue 

1994). Eldholm and Grue (1994) produced a second eruption rate estimate, assuming that if two 

thirds of the basalts were emplaced within 0.5 tn.y., then eruption rates would have been 2.4 

km3/yr. 
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The NAIP underwent two phases of activity, the first (pre-breakup phase) began approximately 

62 - 61 Ma in west and southwest Greenland and in northwest Britain and continued until-59 

Ma (Saunders et al. 1997, Storey et al. 1998, Courtillot and Renne 2003, Chambers et a1. 2004, 

Storey 2007) (Table 1.2). This phase of volcanism did not lead to the formation of the North 

Atlantic Ocean, but led to the generation of major plateau lava sequences in west Greenland, 

Northern Ireland and Scotland (Saunders et al. 1997, Storey et al. 1998, Courtillot and Renne 

2003, Chambers et al. 2005, Storey 2007). 

The second phase ofNAIP volcanism (syn-breakup phase) began at -56 Ma and continued to 

-54 Ma with eruptions centred in east Greenland and the Rockhall Plateau (Saunders et al. 

1997, Storey et al. 1998, Courtillot and Renne 2003, Chambers et al. 2004, Storey 2007) (Table 

1.2). This phase of volcanism was more voluminous than the first phase and led to the break-up 

of North Atlantic and the eventual separation of Greenland from northern Britain and Europe in 

the Late Paleocene at -55 Ma (Saunders et al. 1997, Storeyet al. 1998, Courtillot and Renne 

2003, Chambers et al. 2005, Storey 2007). 

The cause of the volcanic activity in the North Atlantic is related to the rifting and breakup of 

the Greenland and European landmasses and the formation of the North Atlantic Ridge 

(Saunders et al. 1997). The development of the Icelandic mantle plume in the North Atlantic has 

been postulated as major causal mechanism for the development of this CFB (Storey et a1. 

2007). Other mechanisms have been suggested to have led to the development of the NAIP and 

include crustal delamination, bolide impact, small-scale rift-related convection, and chemical 

mantle heterogeneities (Meyer et al. 2007). Meyer et al. (2007) reviewed these possible 

mechanisms and found that delamination and bolide impact did not support the current evidence 

of the NAIP formation, but small-scale rift-related convection may have contributed to the 

formation of the NAIP. 

The British Tertiary Volcanic Province (BTVP) represents a sub-province within the NAIP. The 

BTVP is composed of extensive lava sequences in Northern Ireland and the Hebrides. Included 

in this province are a range of intrusive bodies that range from dykes and sills to plutons, which 

represent the edifices of central volcanoes. The BTVP formed within first phase ofNAIP 

volcanism, with magmatic activity beginning -62 to 61 Ma and continued until -59 Ma 

(Chambers et al. 2005, Ganemd et al. 2010). The BTVP is of interest to this study as 

interbasaltic sediments between the lavas flows contain fossil plant remains that have been used 

in this investigation. A more extensive review of the BTVP is presented in Chapter 2. 
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Table 1.2. Radiometric dating ~o Arf9 Ar) of pre-breakup and syn-breakup igneous rocks from east 
and southeast Greenland, the Faeroe Islands and Scotland. Data from Storey et al. (2007). 

LocationiF ormation Plateau age ± 20" (Ma) 

Pre-breakup volcanism (Phase 1) 

East Greenland (Blosseville Kyst) 

Nansen Fjord Formation 57.7 ± 0.5 

Nansen Fjord Formation 59.2 ± 1.4 

SE Greenland 

Skjoldungen 61.4 ± 1.0 

Tugtilik (66 ON) 58.3 ± 0.9 

Tugtilik (66°N) 58.3 ± 0.9 

Faeroe Islands 

Lower Series, Lopra drill hole 56.8 ± 0.6 

Lower Series, Lopra drill hole 59.9± 0.7 

Lower Series, Lopra drill hole 60.1 ± 0.6 

Scotland 

Felsic ash layer Eigg 61.8± 1.0 

Syn-breakup volcanism (Phase 2) 

East Greenland (Blosseville Kyst) 

Skraenterne Formation (top) 55.1 ± 0.5 

Skraenterne Formation 55.0 ± 0.4 

Skraenterne Formation 54.9 ± 0.9 

Romer Fjord Formation 55.1 ± 0.5 

Romer Fkord Formation 54.4 ± 0.9 

MilneLand Formation 56.1 ± 0.5 

Faeroe Islands 

Upper Series 55.2 ± 0.7 

Middle Series 54.9 ± 0.7 
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1.6 Thesis aims and structure 

1.6.1 Aims 

The aim of this study is to investigate the nature of the Paleocene floras that lived at the time of 

the BTVP, which are now preserved in the interbasaltic sediments of Skye and Mull. These 

plant fossils contain information about Paleocene floras of this region and the climate at that 

time. The main questions these floras will help answer are: 

1. What are the main botanical components of the fossil floras of Skye? 

2. What can these fossils tell us about the composition and ecosystem structure of the 

Paleocene BTVP vegetation? 

3. How are the floras preserved within the volcanically dominated terrain of the BTVP, 

and what does this tell us about the palaeoenvironments in the lava field setting? 

4. How does the new flora from Skye compare with the well known flora from Mull? 

5. What do the floras tell us about the prevailing Paleocene climate of the BTVP region 

and how it is linked to the palaeoclimates across the Northern Hemisphere? 

6. How do the BTVP floras relate to other Northern Hemisphere vegetation during the 

Paleocene? 

1.6.2 Structure of this thesis 

The structure of this thesis is as follows: Chapter 1 contains a brief introduction into the 

Paleocene floras, climate and NAIP volcanism. A summary of the BTVP in which these 

Paleocene floras have been preserved, their age from radiometric dating, the sedimentary and 

depositional environments of the plant bearing beds on Skye, determined from the literature and 

personal observations is then presented in Chapter 2. 

Chapter 3 includes a discussion about the preservation of the angiosperm leaves and 

descriptions of the angiosperm leafmorphotypes from Skye. Conifers are described in Chapter 

4. The reconstruction of the vegetation of the Skye fossil leaf assemblages is presented in 

Chapter 5, with additional information from the published palynological record. 

Palaeoclimate analysis of the angiosperm leaf morphotypes of Skye, using Leaf Margin 

Analysis (LMA), Climate Leaf Analysis Multivariate Program (CLAMP) and Multiple Linear 

Regression Models (MLR), is presented in Chapter 6. The Palaeoclimate data from the plants 

are compared to that from other climate proxies. 

The Paleocene vegetation of Mull is discussed in. Chapter 7, based on published records and 

new observations, this is compared with results from this study on the Skye flora. Palaeoclimate 
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data from the Mull flora from this project are presented and compared to palaeoclimate data 

derived from the Skye flora. 

Chapter 8 brings together the results and compares the BTVP flora with those of other Northern 

Hemisphere regions, discusses how the BTVP volcanism may have affected BTVP vegetation, 

and how the climate record derived from the BTVP plants relates to the global Paleocene 

record. The main conclusions from this study are presented in Chapter 9. 
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Chapter 2: Geological setting 

2.1 Introduction 

Presented here is the geological of the British Tertiary Volcanic Province (BTVP), which is 

discussed in order to understand the environments in which the floras of this province lived. 

Understanding the chronological development of the BTVP is vital to provide a detailed 

temporal framework of the province as a whole, and provide precise ages of the fossil floras. 

The geological setting of the volcanic province is discussed in the context of the mechanisms 

involved in its formation, which provides a broader regional setting. The chronological phases 

of the BTVP development are described and the relative timing and duration of the constituent 

parts are outlined, with special reference to the lava fields. The sedimentary sequences of the 

BTVP are also outlined. Specific detail is given on the plant-bearing formations of Skye, with 

information regarding the depositional environments that gave rise to their formation. 

Determining the sedimentary environments in which the fossil floras grew is vital to understand 

how they were deposited and what palaeoenvironments they inhabited. 

2.2 Geological setting of the British Tertiary Volcanic Province (BTVP) 

The Paleocene igneous rocks of the Hebrides and Northern Ireland represent a sub-province 

within the North Atlantic Igneous Province (see Chapter 1 section 1.5). This sub-province is 

called the British Tertiary Volcanic Province (BTVP), which consists of extensive, 

predominately basaltic sub-aerial lava fields, dyke swanns and igneous intrusions ranging from 

sill complexes to the larger central complexes, which represent the roots of central volcanoes 

(Figures 2.1, 2.2) (Emeleus and Bell 2005). 
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Central Complexes 

• Onshore 

~ .'.': Offshore 

I. Skye Central Complex 

II. Rum Central Complex 

III . Ardnamurchan 
Central Complex 

IV. Mull Central Complex 

V. Bloodstones Bank 
Central Complex 

VI. North Arran Granite 
Pluton 

VII . Central Arran Ring­
Complex 

Lava Fields 

Onshore 

~ .' .': OfTshore 

A. Skye Lava Group 

B. Eigg Lava Formation 

C. Mull Lava Group 

D. Antrim Lava Group 

Figure 2.1. The British Terti a ry Vo lcanic Province (BTVP) showing the extent of the offshore lava 
fi elds and the central complexes. Redrawn and modified from E meleus and Bell (2005). 
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The presence of sedimentary and volcanoclastic sequences, and fossil plant assemblages 

preserved within the lava fields indicate that volcanic activity was not continuous (Boulter and 

Kvacek 1989, Williamson and Bell 1994, Jolley 1997) (Figure 2.2). The sedimentary sequences 

indicate that a variety of sedimentary processes and depositional environments developed on the 

lava fields during volcanic quiescent intervals. 

Mass-movement and debris flow deposits occur across the BTVP, with notable deposits present 

in the Preshal Beg Conglomerate Formation, west-central Skye, Malcolm's Point, Mull and 

Achateny, Ardnamurchan (Brown et a1. 2009). These deposits indicate that catastrophic 

deposition was common place, particularly during the early phases of quiescent intervals 

(Williamson and Bell, 1994, Brown et aI., 2009). 

Fluvial and lacustrine deposits indicative of braided rivers and overbank deposition are less 

frequently preserved but are locally extensive, such as those of the Minginish Conglomerate 

Fonnation of west-central Skye (Williamson and Bell 1994, Brown et aI., 2009). Associated 

with these facies are coals and plant rich siltstones (Williamson and Bell 1994, Brown et a1. 

2009), indicating that these environments were vegetated. These include the floras of Ardtun on 

Mull and Allt Mor on Skye, which are studied here. 

The presence of laterites and other weathering related deposits occur throughout the BTVP 

(Williamson and Bell 1994, Kerr 1995, Hill et a1. 2000, Brown et a1. 2009); this indicates that 

the local climate had a strong influence on the volcanic landscape. Figure 2.3 shows a 

generalised schematic diagram of the sedimentary processes and environments that were present 

in the BTVP during the Paleocene. 



PBCF 

North Skye 

F 

L 

' Vcst-central 
Sk)'c 

p 

F 
P 

EMF 

i\luck 

F 
F 

L 

F 
F 

F Canna/Sanday 
is eoASI 

~MCF L 

o Basaltic hawa iite • Pitchstone 

o Basa lt and hawai ite 
(undivided) o Trachyte 

Alkali olivine basalt Mugearite 

o Basa lt (undivided) o Hawaii te 

\ 8 

:'olull 

metres 

[

100 

50 

o 

North-\\est 
Rum 

O F p 

un f I 
Eigg 

P 

p 

ACF ~ 
• Tholeii ti c andesite 

(ieelandite) 
P Picritic 

Basaltic andesite F Feldspar-phyric 

• Tholeiitic basalt H lIyaloclastite de po its 

~ Conglomerate and other L Red beds (palaeosols 
o sedimentary rocks and iron tone ) 

Sedimentary formations and plant beds 

MCF Mingin ish Conglomerate F0n11ation 

• 

Plant beds: Alit Geodh ' a Ghamhna and 
Alit Mor 

EMF Eynort Mudstone 
Fonnation 

PBCF Preshal Beg Conglomerate 
Fonnation 

ACF Ardtun Conglomerate Fom1ation 
• Pl ant beds: Ardtun 
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Figure 2.3. Generalised schematic diagram of the sedimentary processes and environments that developed on the pre and post volcanic landscape of the BTVP. Redrawn 
and modified from Brown et al. (2009). 



20 

2.3 Evolution and chronological development of the BTVP 

The temporal evolution of the BTY P has been established in numerous srudies through 

stra ti graphic relationships and radiometri c dating of va rious igneous rocks. The radiometric 

dating and cross-cutting rel ationships preserved within the STY? indicate igneous ac ti vity 

initiated across the province at - 62-61 Ma (Emeleus and Bell 2005). The major lava fields 

developed rapidly between - 6 1-58 Ma (Figure 2.4). This phase of volcanism was followed by 

the establi shment of the central complexes, which were acti ve during and after the formation of 

the lava fields (Emeleus and Be ll 2005). Figure 2.4 summarises the current radiometric dating 

of the BTY? and Tables 2.1 and 2.2 di splay the ages of the lava fields and central complexes . 
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Figu re 2.4. Chronological development of the magmatic act ivity of the BTVP based on field 
relationships and radiometric dating. I. Ga nerod et al. (20 10) (Ar/A r ); 2. C hamber (2000) (A r /Ar): 
3. M.A. Hamilton unpublished data reporled in Emeleus and Bell (2005) (UlPb); 4. Chamber et a l. 
(2005) (Ar/A r) ; 5. Chambers and Pringle (2001) (Ar/A r ); 6 T roll 1.'1 a l. (2008) (Ar/A r ); 7. H amiliOn 
et al. (1998) (U/Pb). Modified, updaled and redrawn from Brown 1.'1 al. (2009). 
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Table 2.1. Age Determinations for the lava sequences ofthe BTVP. Ages are million years (Ma). 
Collated and updated from Emeleus and bell (2005). 

Locality Age Method Source 

Antrim Lava Group 

Lower Basaltic Fonnation 62.6 ± OJ Ar-Ar 1 

Tardee Rhyolite, Interbasaltic Formation 61.3 62.6 ± 0.3 Ar-Ar 1 

Upper Basaltic Fonnation 59.662.6 ± 0.3 Ar-Ar 1 

Eigg Lava Formation 

Sanidine in tuff near base of [onnation on Muck 60.56 ± 0.07 Ar-Ar 2,3 

Zircon in same tuff 61.15 ± 0.25 U-Pb 3 

Mull Lava Group 

Staffa Lava Fonnation 55-54.5 Palynology 4 

(Includes the fossil plant deposits of Ardtun) 60.56 ± 0.29 Ar-Ar 5 

58.35 ± 0.19 Ar-Ar 5 

Mull Plateau Lava Formation (top) 60.57 ± 0.24 Ar-Ar # 

Trachytic tuff, Calgary Bay 60.5 ± OJ Ar-Ar • 
Canna Lava Formation 

Hawaiites 60.00 ± 0.23 Ar-Ar 3 

Conglomerates within lavas, Rum and Canna 58.0-58.25 Palynology 4 

Skye Lava Group 

Sedimentary rocks of the Skye Lava Group 58-58.25 Palynology 4 

(Includes the fossil plant deposits of Alit Geodh' a' 
Ghamhna and Alit Mor) 

Sledale Trachytic Tuff, Skye Lava Group, Below Preshal 
58.91 ± 0.1 Ar-Ar 8 Beg Conglomerate Fonnation 

All radiometric age determinations quoted at the 2 sIgma level, except source 1 and 5 which are at 
the 1 sigma level. 1. Ganered et al. (20)0), 2. Pearson et al. (1996),3. Chambers et al. (2005),4. 
Jolley (1997), 5. Chambers and Pringle (2001), 6. Bell and Williamson (2002). # unpublished Ar-Ar 
analysis by S.P. Kelley (Open University). Reported in Emeleus and Bell (2005). *Unpublished U­
Pb analysis by M.A. Hamilton, Jack Satterly Geochonogy Laboratory, Department of Geology, 
University of Toronto. 
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Table 2.2. Age determinations for central complexes of the BTVP. Ages are million years (Ma). 
Collated from Emeleus and Bell (2005). 

Locality Age Method Source 

Ardnamurchan Central Complex 

Great Eucrite, pegmatic gabbro, Centre 3 59.05 Ar-Ar 1 5 

Tonalite, Centre 3 58.6 ± 0.2 V-Pb • • 

Mull Central Complex 

Loch Ba Felsite, Centre 3 58 ± 0.1 V-Pb • • 
58.48 ± 0.18 Ar-Ar 2 6 

Corra Bheinn Gabbro, Centre 2 58.3 V-Pb • • 

Skye Central Complex 

Eastern Red Hills Centre 

Beinn an Dubhaich Granite 55.89±0.15 V-Pb • • 
Pitchstone dyke cutting Beinn na Callich Granite 55.7 ± 0.1 V-Pb • • 

Western Red Hills Centre 

Marsco Granite 58.4 ± 2.1 V-Pb • • 
Southern Porphyritic Granite 57 ± 0.5 V-Pb • • 
Loch Ainort granite 58.58 ± 0.13 Ar-Ar 2 6 

Srath na Creitheach Centre 

Ruadh Stac Granite 57.5 Ar-Ar 1 5 

Cullin Centre 

Coire Vaigneich Granite 59.3 ± 0.7 Rb-Sr 3 4 

Pegmatic facies of Outer Gabbro 58.91 ± 0.08 V-Pb 4 2 

Arran 

North Arran Granite Pluton 58,58.4 Ar-Ar I 5 

· All radiometric age determlDations quoted at the 2 sigma level, except references 1 and 2 which are 
at the 1 sigma level. 1. Chambers (2000),2. Chambers and Pringle (2001),3. Dickin (1981), 4. 
Hamilton et al. (1998). *Unpublished U-Pb analysis by M.A. Hamilton, Jatk Satterly Geochonogy 
Laboratory, Department of Geology, University of Toronto. 

2.3.1 Lava fields 

The Lava fields of the BTVP were an important influence on the floras that grew in this region 

during the Paleocene. The lava fields and surrounding pre-Paleocene rocks provided the 

substrate on which the floras colonised and developed. Determining the structure and 

chronological development of the lava fields enables a more detailed understanding of the age 

of the floras, and how they may have developed in this landscape. The structure, size and 

chronological development of the Skye Lava Group is of direct relevance for this study as these 

lavas contain the fossil leaf beds (Figure 2.4). 
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2.3.1.1 Skye Lava Group (SLG): West-central Skye 

The Skye Lava Group (SLG) is subdivided into multiple sub-groups and volcanic sedimentary 

sequences in west-central and northern Skye and Canna (Williamson and Bell, 1994, Bell and 

WiIIiamson 2002). The SLG unconfonnably overlies Mesozoic and Neoproterozoic sediments 

(Williamson and Bell 1994, Bell and Williamson 2002). Eight main lava sub-groups comprise 

the SLG in west-central Skye and include the Rubh' an Dunain, Bualintur, Cruachan, Glen 

Caladale, Fiskavig, Loch Dubh, Gleann Oraid and Talisker sub-groups (Williamson and Bell 

1994). The SLG outcrops in west-central and northern Skye and extends to the boundary of the 

Skye Central Complex; the lavas of this fonnation extend offshore towards Canna and Rum 

(Figure 2.5). The current geographical extent of this lava field covers approximately 200 km2
; 

the thickness of these lava groups is variable and ranges from -100-330 m, its original overall 

thickness is estimated as being -1.5 km (England 1994, WiIIiamson and Bell 1994). 

Precise dating of the SLG has been established through radiometric dating and stratigraphic 

relationships. The age of the lowest unit of the SLG is 60.53 ± 0.08 Ma and the upper part is 

58.91± 0.07 Ma, which indicates that the lava pile fonned rapidly within a maximum interval of 

1.6 m.y. (Hamilton et aI., 1998, Chambers and Pringle, 2001). The age of the lower unit is 

derived from the presence of Rum derived clasts present within the intra-basaltic sediments of 

the Minginish Conglomerate Fonnation (between the Bualintur and Cruachan lava groups). The 

clasts within the sedimentary sequences on Skye appear to have been derived after the fonnation 

and un-roofing of the Rum Central Volcano, which fonned at 60.53 ± 0.08 Ma (Chambers et a1. 

2005). The upper age limit was derived from radiometric dating of the Cullin Gabbros, which 

cross-cut the SLG, and are therefore younger. This interval has been refined with the additional 

radiometric dating of the upper section of the SLG, which provided an age of 59.83 ± 0.12 Ma 

(Chambers and Pringle, 2001). This most recently published date indicates that the significant 

proportion of the SLG fonned in a shorter interval of 0.9 million years. 
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Figure 2.5. Map of lava fi elds, central complexes and fossil plant localit ies of the Inner Hebrides. 
Redrawn and modified from Emeleus and Bell (2005). 

2.3.1.2 Skye Lava Formation: N orthem Skye 

The lavas of northern Skye are divided into fi ve lava sub-groups: Beinn Edra Group, Ramascaig 

Group, Beinn Totaig Group, Bracadale Group and the Osdale Group (Anderson and Dunham, 

1966). Radiometric dates have not been obtained from the lavas or tuff layers. Detem1ining the 

stratigraphic relationships with west-central Skye is therefore difficult and it is unclear how 

these lava groups correlate within the development of the SLG in west-central Skye but are 

probably synchronous. 

2.3.2 Central complexes 

The volcanic rocks of the BTYP are not ent irely the product of fissure-fed eruptions. A variety 

of central complexes occur across the brea th of the BTYP (Figure 2.5). These central complexes 

represent eroded roots of central vo lcanoes. Although the central complexes vary enomlOusly in 

their structure, composit ion and developmental history, they do have several features in 

common (Emeleus and Bell 2005) . The majority of the central complexes are located on ridge 

of pre-Mesozoic rocks and in association wi th ancient fa ult systems, and the intrusions fonn a 
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circular structure up to 15km across (Emeleus and Bell 2005). Central complexes are known 

from Skye (Cuillin, Srath na Creitheach, Western Red Hills and Eastern Red Hills centres), 

Rum (Rum Central Complex), Ardnamurchan (Centres 1,2 and 3), Mull (Mull Central 

Complex), and Arran (North Arran Granite Pluton, Central Arran Ring-complex) (Bailey et al. 

1924, Gribble et al. 1976, Bell and Harris 1986, England 1992, Emeleus 1997). Well 

constrained dating of many of these centres (Figure 2.4) indicates they may have formed 

relatively rapidly within an interval of -1 m.y. but their development was not simultaneous. 

2.3.3 Chronological summary 

The dating of the lava fields and igneous centres of the BTVP indicate that the majority of the 

lava field development occurred between 61-59 Ma, and can be attributed to Chron26r (60.92-

57.91 Ma) (Chambers et al. 2005). The relative rates of development for each component of the 

BTVP were variable, but often rapid. The formation of the four main lava fields occurred 

rapidly within maximum durations of 0.92 m.y. (Eigg Lava Formation), 3.63 m.y. (Antrim Lava 

Group), 2.3 m.y. (Mull Lava Formation) and 0.9 m.y. (Skye Lava Formation). The development 

of these substantial lava fields indicates that the rate of magma generation was high and 

sustained during the late Early to mid-Paleocene, and consistent with an upwelling mantle 

plume, similar to current volcanism in Hawai'i (Hamilton et al. 1998). 

2.4 Sedimentary environments of the BTVP 

Volcanic activity within the BTVP was not continuous as indicated by inter-basaltic 

sedimentary sequences and fossil plant remains, which occur across the province and indicate 

that a variety of depositional environments developed during periods of volcanic quiescence 

(Figure 2.4, Table 2.3). 

Alluvial and fluvial deposits of braided river systems were widespread, but were best developed 

in the Minginish Conglomerate Formation in west-central Skye (Figure 2.2). These deposits 

show a cyclic pattern, beginning with conglomerate-sands tone-localised coal/siltstone deposits 

(Williamson and Bell 1994) (Table 2.3). These deposits represent shifts and maturation of the 

depositional environment from high-energy flow and channel deposits to low energy overbank 

and swamp pool deposits (Williamson and Bell 1994, Brown et al. 2009). Localised plant 

remains are present within the siltstone units (Williamson and Bell 1994, Brown et al. 2009), 

indicating that vegetation colonised the channel margins, flood plains and swamps associated 

with these braided river deposits. Similar deposits occur in the Staffa Lava Formation at Ardtun 

Head, Mull (Figure 2.2) and represent conglomerate-sandstone-siltstone sequences, with well 

preserved plant remains (Boulter and Kvacek 1989, Bell and Williamson 2002, Jolley et al. 

2009). 
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Laterite deposits and weathered flow tops are widespread, indicating that weathering rates were 

high. Laterite deposits and other weathering related sequences are a common feature of many of 

the lava fields, and typically occur as thin horizons (Williamson and Bell 1994, Keer 1995, Bell 

and Williamson 2002, Brown et a1. 2009). These laterite deposits can be extensive, however, for 

example the Interbasaltic Formation of Antrim, Northern Ireland represents lateritic deposition 

with localised development of up to 30 m thick (Hill et a1. 2000). 

Lacustrine deposits containing sediments associated with weathering products and leachates 

derived from the lavas occur across the BTVP, but are most well developed in parts of the SLG 

(Williamson and Bell 1994, Brown et a1. 2009). The Eynort Mudstone Formation is preserved 

between the Glen Caladale and Gleann Oraid Lava Groups of west-central Skye and are 

typically 2-15 m thick (Figure 2.2). Sediments of this formation are composed of clays, silts, 

ironstones, shales, thin lignites and thick laterite deposits (Williamson and Bell 1994) (Table 

2.3). These sediments are indicative of a quiescent interval characterised by intense weathering 

and runoff. Leachates and weathering products were then deposited in shallow, possibly 

ephemeral lakes and ponds that developed on the lava surface (Williamson and Bell 1994). The 

laterite sequences indicate that this environment underwent periods of emergence with possibly 

better drainage, which facilitated the development of these lateritic palaeosols. 

Mass wasting deposits are a common feature of BTVP sedimentary deposits, especially during 

the early phases of the quiescent intervals (Brown et a1. 2009). The magnitude and 

characteristics of the mass wasting deposits are strongly linked to the topographical setting and 

clast composition (Brown et al. 2009). Low level slope failures were associated with lava field 

settings, and major slope failures occurred at the margins of central complexes (Brown et aI., 

2009). Caldera collapses within the centres of some of the igneous centres have mass wasting 

deposits of up 500m thick and clast sizes up to 0.5km across (Brown et al. 2009). 

The Preshal Beg Conglomerate Formation of west -central Skye contains sediments that are 

characteristic of the mass movement deposition. These deposits are up to 20 m thick and are 

composed of heterogenous volcaniclastic material, conglomerates, breccias, grit, sands and 

tuffaceous silts. These sediments have been interpreted as rapidly accumulating talus and 

proximal alluvial fan deposits, which are typical of mass movement deposition within the BTVP 

(Williamson and Bell 1994, Brown et al. 2009) (Table 2.3). 
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Table 2.3. Summary of principal interbasaltic sedimentary lithofacies in the lava fields of the BTVP. From Brown et al. (2009). 

Interbasaltic Lithofacies Characteristics Examples Interpretation 

Polymict conglomerate Massive, c1ast- to matrix-supported Skye Lava Formation: Minginish Conglomerate Debris flow 
conglomerate, poorly sorted, locally with lobate Formation, Preshal Beg Conglomerate Formation 
geometries; clasts <I m 

Monomict conglomerate Massive, clast-supported conglomerate, poorly Skye Lava Formation: Preshal Beg Conglomerate Talus/alluvial fan 
sorted (locally breccias) clasts <1m Formation deposits 

Lenticular sandstone Fine to medium, massive sandstone, laminated Skye Lava Formation: Minginish Conglomerate Within-channel dune 
base Formation deposits 

Cross bedded sandstone and Fine to coarse, trough to planar cross bedded Skye Lava Formation: Minginish Conglomerate Channel dune/channel 
conglomerate sandstone and well sorted, normally graded Formation fill and scour 

conglomerate 
Mull Lava Formation: Ardtun Conglomerate Formation 

(hyperconcentrated 
flow?) 

Laminated sandstone and Fine sandstone, variable silt- to claystone, plant Skye Lava Formation: Minginish Conglomerate Overbank and 
siltstone, claystone and coal remains woody debris, locally carbonaceous Formation, Eynort Mudstone Formation, Preshal Beg quiescence ponds, 

Conglomerate Formation ephemeral lakes, swamps 

Mull Lava Formation: Ardtun Conglomerate Formation 
- --
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2.5 Chronology of the inter-basaltic sequences of Skye and Mull 

As mentioned in Section 2.3, precise dating of the lava fields and igneous centres has been 

achieved using radiometric dating and stratigraphic relationships. The interbasaltic sequences, 

however, are less well constrained as relatively few have been dated specifically. Presented here 

are the current age estimates of the Minginish Conglomerate Formation on Skye as these 

contain the fossil floras of AlIt Mor and AlIt Geodh' a' Ghamhna used in this study. 

The lavas field of the Skye Lava Group and the sedimentary sequences preserved within the 

flows were formed rapidly, within an interval-0.9 m.y. between 60.53 ± 0.08 and 59.83 ± 0.12 

m.y. (Hamilton et al. 1998, Chambers and Pringle 200 I). Each of the major sedimentary 

formations, (the Minginish Conglomerate Formation, Eynort Mudstone Formation and the 

Preshal Beg Conglomerate Formation) represent quiescent intervals, during which extrusive 

activity had either ceased or lessened dramatically. Since radiometric dates have not been 

obtained for each of these formations it is difficult to establish their original duration. Inferences 

can be made, however, from the sedimentary complexity and development of these deposits, 

along with the floral evidence, to determine their relative duration. 

The Minginish Conglomerate Formation probably represents the most mature sedimentary 

environment preserved within the Skye Lava Field as its deposits are not solely erosional or 

weathering features but reflect more evolved depositional environments and sedimentary 

processes (Williamson and Bell 1994). The cyclic fluvial deposition pattern of conglomerates­

sandstone-siltstone observed within the AlIt Geodh' a' Ghamhna Member, and to a lesser extent 

the AlIt Mor Member, indicate that this palaeoenvironment developed over a longer interval 

relative to other sedimentary formations (Williamson and Bell 1994). The presence offossil 

floras that represent a broad range of plant types indicate that this environment must have been 

stable for a moderate period of time to facilitate their colonisation and development into 

relatively mature ecosystems (Jolley 1997). 

The Minginish Conglomerate Formation is however, better constrained temporally than the 

other sedimentary formations with the Skye Lava Field based on its relationship with the Rum 

Central Complex. The lower age estimate of the Skye lava field is based on the clast 

composition within the Minginish conglomerates. Several of the conglomerates within the AlIt 

Mor and Alit Geodh' a' Ghamhna members contain many of the rock types of the Rum Central 

complex and their isotopic composition is comparable (Meighan et al. 1981, Williamson and 

Bell 1994). It is important to note that the study by Meighan et al. (1981) was published only as 

an abstract so full details regarding the geochemistry of the clasts in both the Rum Central 

Complex and the Minginish conglomerates is limited. Since the lower age estimate of the SLG 

is based solely on the presence of these clasts and their suggested origin from the Rum Central 
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Complex, the validity of these results is questionable. It is likely that these clasts were derived 

from the unroofed Rum Central Complex and that the SLG began its development at 60.53 ± 

0.08 Ma, but additional details of the original study of Meighan et al. (1981) must be published 

in fuB or a new study must be implemented to confirm this assertion. 

Palynological evidence has also been used to date the interbasaltic sequences and SLG as a 

whole. Jolley (1997) suggested an age of 58.23-57.99 Ma for the SLG based on the similarities 

of the palynomorph assemblages of Skye to offshore' West Shetland Basin deposits oflate 

Selandian (-59 Ma) to the early Thanetian age (-58 Ma). Abundant and distinctive 

palynomorph taxa from the interbasaltic sequences on Skye, Canna and Rum include 

Inaperturopollenites hiatus, Tricolpites, Retitricopites, Momipites, Laevigafosporifes haardi and 

Sequoiapo/lenifes polyformis (Jolley 1997). These taxa were regarded by Jolley (1997) to be 

typical of the late Se1adian and Thanetian interval. These taxa do, however, occur throughout 

the BTVP and are indeed common components of the sedimentary sequences (Jolley 1997). The 

occurrence of these taxa therefore suggests they are not necessarily useful for zonation. 

This dating method indicates that the entire Skye Lava Field formed within 0.28 m.y. interval, 

which is in contrast to the dating by Hamilton et al. (1998), which suggested an interval of 1.6 

m.y. This considerably shorter interval for the development of the entire SLG also seems 

unlikely as magma production rates would have to be an order of magnitude greater (Hamilton 

et al. 1998). It therefore seems more likely that radiometric dates are far more reliable than the 

palynological estimates of Jolley (1997) as they are more consistent with the chronological 

evolution of the province as a whole and are considered here as a more reliable age estimate for 

the Minginish Conglomerate Formation and the floras it contains. 

2.6 Stratigraphy and sedimentology of the Paleocene fossil plant beds of 

Skye 

2.6.1 Northern Skye 

The Palagonite Tuffs of northern Skye represent some of the earliest and most explosive periods 

of volcanic activity on Skye. The tuffs were deposited on Jurassic rocks in an aqueous 

environment (Anderson and Dunham 1966). The presence of agglomerates and widespread tuff 

deposits indicates periods of explosive volcanism, which is common feature of the early phases 

of volcanism of the BTVP (Anderson and Dunham 1966, Williamson and Bell 1994, Emeleus et 

al. 1996, Emeleus 1997). Plant remains consisting of Ginkgo and indetenninate conifers are 

present within some of the tuff horizons (Anderson and Dunham 1966), indicating the 

establishment of plant communities. These plant remains, which are stored in the National 

Museums of Scotland, Edinburgh were studied, but due to poor labelling it was difficult or 

impossible to determine the locality from which they were collected. Additionally, most of the 
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specimens were of low quality, and could therefore provide little taxonomic or clim atic value. 

and for these reasons they were not used in thi s study. 

2.6.1. 2 Glen Ostlllle 

Sequences of conglomerates, sandstones and mudstones are preserved below the Bracadale 

Lava Group (Anderson and Dunh am 1966) and are indicati ve of braided river deposition s imilar 

to that of the Mingini sh Conglomerate Fonnation of west-central Skye. Fossil leaves were 

collected as part of this project from a section in the Glen Osdale sedimentary sequence at G 

232 238 (Figure 2.5 ). The plant -bearing section is exposed on the nonh side of the river next to 

a waterfall (Figure 2.6-a). This sequence is composed of sandstone unit s interleaved with a 

rel a tively thin ( 10-15 cm) siltstone units, the overall thickness of the sequence is approximately 

182cm (Figure 2.6, 2.7). The base of the sequence is not exposed and further attempts to locate 

the base of the sequence along the River Osdale were unsuccessful. 

The sedimentary sequences sampled at Glen Osdale appear to reflect flu via l deposition , with the 

sandstone units represent ing hi gher energy flood regimes while the silt s and sha les probably 

reflect waning energy levels and overbank deposition. The occurrence of plant remains 

throughout the sequence suggest s the area around thi s site of deposition was vegetated. The 

poss ible rootlet s and plant stems within some of the beds indicate that these fl ooding urfaces 

were vegetated after deposition . The foss il ised leaves collected from Glen Osdale are poorly 

preserved and mos tl y h igh ly fra gmented. The leaves occur as iso lated fragments or less 

frequen tl y in low density c lusters. They are preserved primarily on the mud laminae within the 

s ilt stones but severa l are preserved within the silt layers but are more poorly preserved . 

Figure 2.6. a) Waterfall OVCf the interbasa lt ic sediments of G len Osdale, sed iments and foss il plants 
sa mpled adj acent to waterfall. b) Upper pa rt of the G len Osdale sed imentary sequence below 
co ntact between ove rl ying basa lt fl ow I, mass ive bedded fine-grained micaeceous sandstones, 2. 
sha les with ca rboni sed plant fr agments, 3, overlying lava fl ow of the Bracadale Formation. 
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Figure 2_7. Sedimentary log of the Glen Osdale fossil plant locality (NG 232 438). Log taken by 

Lyall Anderson (National Museums of Scotland, Edinburgh) during collecting trip for this study. 

2.6.2 Minginish Conglomerate Formation 

The oldest sedimentary sequence in the Skye Lava Group, the Minginish Conglomerate 

Fonnation of west centra l Skye, is preserved between the Bualintur and Crucachan Lava Groups 

(Figure 2.9, 2 .1 0). Three members of the Minginish Conglomerate are exposed: the Culnamean, 

Alit Geodh' a ' Ghamhna and Alit Mor members all outcrop between Loch Brittle and Eynort 

(F igure 2.8). The Alit Geodh ' a ' Ghamhna and Alit Mor members are the mos t complete 

sedimentary sequences on Skye and are typicall y 10-15 m thi ck (W illiamson and Bell 1994). 

This formation has also provided the maj ority of the foss il plant remains used in this study. 
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Figure 2.8. Sketch map showing the fossil localities in the Minginish Conglomerate Formation of 
west-central Skye. 

2.6.2.1 Alit Geodll' a' GIUlmlma Member 

Packages of massive conglomerates, lenticular sandstone bodies and localised silts and coals are 

present. These represent cyclic deposits that have been interpreted as braided river deposits, 

with the conglomerates being deposited by high-energy flow regimes (Williamson and Bell 

1994). The lenticular sandstone units represent waning energy levels resulting in lateral sheet 

and channel fill deposits . Localised silts and coal s indicate that floodplain ponds and swamp 

environments developed adjacent to the braided river system. Approximately three cycl es are 

apparent within the 15 m sequence, with a lower conglomerate and lenticular sandstone fonning 

the lowest packet; a second conglomerate, sandstone and thin coal overlying this, followed by a 

third package of conglomerate with thin coals and sandstones (Williamson and Bell , 1994). 

Fossil leaves from sediments within this sequence are stored in National Museums of Scotland, 

Edinburgh and were used in this study. The leaves were collected by Jason Hilton in 2004. The 

stratigraphy of the Alit Geodh' a' Ghamhna Member was documented by Williamson and Bell 

( 1994) and is figured in 2.9. The leaves are preserved in buff-grey sil t/sandstones, which 

probably reflect higher energy overbank deposition. The leaves are poorly preserved and 

typically occur as isolated, fragmentary specimens. 
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Figure 2.9. Sedimentary log of the plant-bearing sediments of the Alit Geodh' a' Ghamhna Member 
(NG 369197). Redrawn from Williamson and Bell (1994). 

2.6.2.2 Alit Mor Member 

The Alit Mor Member is exposed in the Alit Mor ravine by the AlIt Mor ri ver (NG 366204) in 

west-central Skye (Figure 2.8). The sedimentary sequence consists of conglomerates, 

sandstones and siltstones, which are preserved between the Bualintur and Cruachan Lava 

Fonnations (Will iamson and Bell 1994) . Williamson and Bell ( 1994) carried out an ex tensive 

examinati on of the sedimentary strata present within the A lit Mor ravine, They indica ted that 

the sedimentary sequence is similar to that of Alit Geodh ' a' Ghamhna Member 900 m to the 

SE, but di splays more complex interbedding relationship of both the sedimentary rocks and 

basaltic flows (Williamson and Bell 1994). 
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The strata exposed within the ravine have been divided into three sections by Williamson and 

Bell (1994). Presented here is a brief summary of these three sections; the fIrst two sections are 

from details within Williamson and Bell (1994). The third section, which contains the plant 

fossils, is based on details from Williamson and Bell (1994), but the beds that contain the plant 

fossils are described based on personal fIeld observations (Figure 2.10). 

The first section exposed on the south-east side of the ravine (NG 366 205) is composed of two 

conglomerates. The fIrst type is matrix supported and is massively to crudely graded and the 

second is clast supported with a highly variable structure (Williamson and Bell 1994). These 

conglomerates are interleaved with fIne grained pale-brown sandstones with an overall 

thickness of 6-7 m (Figure 2.11) (Williamson and Bell 1994). Both the sandstones and 

conglomerates pinch out towards the west of the ravine and are replaced by a lateritic surface 

(Williamson and Bell 1994). A unit of red arkosic sandstone of 1-1.5 m thickness is separated 

from the above mentioned strata by thin (9m thick) basaltic lava flows (Williamson and Bell 

1994). These arkosic sandstones are exposed on the opposite side of the ravine and are laterally 

continuous and show weak cross-bedding with foreset beds inclined 20-30° to the north or north 

east (Williamson and Bell 1994). 

The second section is exposed further upstream within the ravine (towards the north-east). Red­

brown sandstone of 1-2 m thickness overlies conglomerates (Williamson and Bell 1994). These 

conglomerates are interbedded with thin beds of coarse-grained sandstones that are often 

pebbly. Small lenses of sandstone occur within the conglomerate and these show lenticular 

bedforms with cross bedding that dips towards the north. The composition of these two 

conglomerates is quite different, the lowermost is 4 m thick and is mixed-matrix and clast­

supported. The second conglomerate (upstream) is 2 m thick with clasts of red arkosic 

sandstones, greenish siltstones and shale but with clasts of granophyres and amygdaloidal 

basalt. The size of these clasts is also quite variable, ranging from pebble to boulder sized 

fragments. The composition, size range and sorting of this conglomerate is typical of the 

conglomerates of the Alit Geodh' a' Ghamhna Member fragments (Williamson and Bell 1994). 



Lithology, grain size 
metres and structure 

4 V ", Iv v 

3.5 

Exposure obscured (1.5 Ill) 

1.5 

35 

Ul'scription 

Am) gdaloidal basall ic la, a 

Coarsening-up sandstone s<quene< (50 rill I. l3a," laminaled 
sllty-~.and.:.lOnc \\ ith ('oniii:r fragmcnt~ grading into l'OllP .. C 

~andston'-' rich in qU3rtL and fdth"par 

Lam inall'd light gn..'Y silt~tonc . with ll1i\':accou~ r artings and 
"washoll!" ' material (~O·30 em). Abllndant leaf impression, of 
an g. ill~p:nlls anll conif..:n. (ur~r h:afocd) 

!-.!"'!'~~~;t------- \'kathered organic.rich hlack pale,,,,,1 (3-5 "m) 

0 .5 

o 

~ 
" o 
u 

Grain size 

Ma. siv. bedded browni'h-grey . iliy sandstone (35 em). 
Rootlets abundant. particularly in the upper 10 ern 
of the t..·d 

Mnssi\'c bedded buff-grey tin~-m~d i ul11 

gmined sandstone (70 ern). mic:t and feldspar grains 
l 'U11l1ll0n 

Amygdaloid,,1 basaltic la, a 

Basalt 

o Snnd~tonc 

o Si lty-sandstone 

D 

• • 
ilt stol1c 

Paleosol 

Plant frag ments 

J. Rootlets 

Environment Facies 

La, a o f the 
l'ru:lI: han formati on 

Crl'\';J!\'"' !<tophlY. sand) 
o\'crh:lIlk 

or ~hcc l nood'! 

O\l: rh:lI1~ grad ing tn 
l'fl.'\ ;'''''l' ,pia) . ~:l nd)' U\ l'rb;lU).. 

or :-.hl'c t Iltllxl'! 

0, crh~ln).. 

4uil·~l·cni.: c 
pund 

(hcrbnnk 
qUIl''''Cl:IlCl' 

Jlond 

C'n:, a~~t: :-, play, ~h\!\."t Iloud 
or wi thm 1, .. h ~In Tl(.'I '.' 

-erosional b~Is('-
La , a of Ihe Ollalinlllr 

l-onn.11 ion 

Figure 2.10. Sedimentary log of the plant-bearing sediments of the upper leaf bed of the Alit Mor 
Member (NG 367 206). Log taken by Jon Poulter during collection trip for this study. 
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Figure 2.11. Section I of the Alit l\1or ravine display ing relati onships of conglomerates, sa ndstones 
and overlying lava flow. a) I, Mixed clast and matrix supported conglomer ate with vari ab le clas t 
sizes ranging from 1-30 em 2, Conglomerate grades into solely clas t supported, 3, b rown medium­
grained sandstone, 4, basaltic lava fl ow of the Cru aehan Lava Formation. b) Conglomer ate, both 
clast and ma tri x supported, sca le 17 cm. c) matri x supported conglomerate, matri x is fin e-mediulll­
grained sandstone. 

Figure 2.2 .12. 

The th ird sec tion is exposed fu rther upstream within the ravine and is similar to those previously 

mentioned with alternating sedimentary beds and lava f1 ows. The most downstream part of the 

third sec tion is composed of thin conglomeritic sandstone, overlain by a 15 m thick la\'a f1 ow, 

which is in tum overl ain by conglomerates, sa ndstones and pebbly sandstone fragments 

(Wi ll iamson and Bell 1994). The uppermost ex posure of the Alit Mor Member is composed ofa 

- 12 m thick unit of fine-medi um grained silty, pink feldspathi c sa ndstone. Siltstones are present 

at the watcrfa ll sec ti on (NG 367 200) and these contain lea f impressions and compressions, 

woody fragments and roots (Figures 2. 13, 12.1 4). A large 3-4 m fa ll en block of basalt is 

preserved within a sec ti on of these siltstones. Below th is fa ll en block the si lt stones show 

defomla ti on under its weight , Wi ll iamson and Bell (1994) report tha t plan t foss il s, inc ludin g 

leaf impress ions are preserved in the silts below the fa ll en block (Figure 2. l 2-a). Due to poor 

access and hi gh wa ter levels during the periods of collect ion foss ils were not collec ted from 

below the bl ock. Laterally eq ui va lent siltstones however, cont ained rich an d well preserved leaf 

impressions and large woody fraf,rments (Figure 2. 12-b,c) . 
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Figure 2.13. a) I, deformed siltstones containing abundant fo ssil leaves, 2, fallen block of hasa lt 
that has deformed the underlying siltstones . b) Silt stones of the lower lea f bed with large woody 
fragment (dashed lines represent exposed outline) of a trunk or branch. c) C lose up of the large 
woody fragment, showing the carbonised structure of the wood. Lens cap 6 cm. 

The si ltstones and sandstones preserved below the waterfall secti on at G 367 206 were 

sampled and measured more thoroughly and provided the bulk of the leaves that were examined 

for this study. Several field seasons between 2002-2009 were ean-ied out to col lect the leaf 

fossils, with the 2002 collection by Jane Francis, Jason Ilillon and Helena Eklund providing the 

majority of the leaf specimens used in thi s study. Two beds have provided the majority of the 

leaffossils and these are temled the lower and upper leaf beds. The lower leafbed (Figure 2.12-

b) is the lateral equivalent of the siltstone units below the fallen block shown in figure 2.12-a. 

The dark grey-brown siltstones of the lower bed are finely laminated and on certain lamina are 

crowded with leaf impressions, representing extensive lateral leaf mats. Other laminae, 

however, contain little leaf material. Carbon ised woody fragments are also abundant including a 

large, trunk or branch that is approximately 2 III long (Figure 2.12-b) . The vertical extent of 

thi s sequence is difficult to detellnine as modern overburden obscures the top of the exposure. 

The upper leafbed con ists of grey, black or buff finely-laminated si ltstones that contain 

abundant and well preserved plant fossils, particularly leaf impressions. The stratigraphy of the 

upper leaf is beller known as more of this vertical extent is exposed (Figure 2.10,2.11,2.13). 
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Figure 2.14. a) Upper leaf bed and overlying lava flow, I, siltstones and sandstones of the upper leaf 
bcd, 2, overlying basalt of the Cruachan Lava Formation. Yves Candela ri ght and J on Poutler left . 
b) Siltstones and sandstones above t he upper leaf bed, scale bar = 17 cm. c) I, laminated siltstones 
containing abundant plant fo ss ils, 2, coa rsening-up sequence of siltstones and sandstones, plant 
fossils restricted to lower 10 cm of the bed, 3, fin e to medium grained sandstones, plant fossils ra re. 
Lens cap = 6 cm. d) Contact between Cruachan Lava Formation and uppermost bed of the Alit 
Mor plant beds. Dashed line denotes the uneven contact between the feld spathie sandstone and 
overlying basaltic lava flow. Lens cap = 6 cm. 

The sedi mentary sequence of the lower and upper leafbeds is interpreted as reflecting pond 

deposition, where overbank flood s deposited the sediments into a natural hollow within the lava 

surface. The conglomerates, pebbly sandstones and feldspathic sandstones present in sections I 

and 2 of the Alit Mor Ravine have been in terpreted by Williamson and Bell (1994) as being 

deposited in a braided river system, whi ch flowed from the southeast to northwest following a 

natural palaeovalley. The high proportion of mica and feldspar within these clastic sediments 

suggests they were derived from local Tonidonian sequences and the unroofted Rum Central 

Vo lcano (Willi am son and Bell 1994). Vegetation coloni sed the margins of the ri vers. ponds 

and floodp lains and the ir remains were transported laterally by flood waters into the pond 

deposits. The foss il leaf deposits at Alit Mor are probably a combination of allochthonous and 

autochthonous elements, being derived from both local vegetation and plants across the 

pa laeova lley. The pond deposits at Alit Mor appears to have developed into a swamp for a short 

in terval because a organic rich palaeosol is present. The silty sandstone below this bed contains 

abundant rootlets, which indicates that the surface became vegetated, and their remains 

contributed to the development of the palaeosol. 
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The fossil leaves from AlIt Mor vary considerably in their abundance on each laminae, and their 

overall preservation and quality. Details about the overall quality and preservation of the leaves 

are discussed in more detail in Chapter 3 (see section 3.5). 

2.8 Summary 

The British Tertiary Volcanic Province represents one of the best studied large igneous 

provinces in the world and thus its development and evolution are well understood. Igneous 

activity within the BTVP began in Northern Ireland at -62 Ma (Ganeorod et al. 20 I 0), which 

was followed by the development of lava fields in the Inner Hebrides between 61-60 Ma. The 

development of the extensive lava field of Antrim, Skye and Mull occurred rapidly within an 

interval of 1 to 2 million years. Volcanic central complexes developed in relatively short periods 

-1 million years. Igneous activity was not continuous however, as sedimentary deposits are 

interbedded within the lava sequences. The composition of the sedimentary strata indicates a 

variety of depositional environments developed on the lava surfaces. Within some of these 

sedimentary sequences fossil plant remains are preserved. These remains indicate that during 

volcanically quiescent intervals vegetation colonised the lava surfaces and developed into rich 

plant communities. Most notable of these plant bearing units at Ardtun Head, Mull; Glen 

Osdale, northern Skye; and AlIt Mor and AlIt Geodh' a' Ghamhna, west-central Skye. All these 

localities are characterised by fluvial and lacustrine deposition associated with braided river 

systems, floodplain deposits and localised swamp development. Fossil plant remains are 

typically concentrated in the finer grained sands, silts and shales that represent localised lakes, 

ponds and pools that developed on the lava surface. Vegetation accumulated in these pools from 

plants growing around them, or were washed in by flood events. Radiometric dating and 

stratigraphic relationships within the Skye Lava Group have enabled relatively high resolution 

dating of the fossil leaf beds of the Minginish Conglomerate Formation. The radiometric dating 

estimates for the west-central Skye floras have provided an age estimate of 60.28 ± 0.45 Ma. 

This dating indicates that floras of Skye are mid Paleocene in age. 
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Chapter 3: Leaf collections and angiosperm morphotypes 

3.1 Introduction 

The fossil leaves from the plant-bearing sediments of Skye provide an opportunity to detennine 

the floral composition of this region during the Paleocene. Leaf fossils have been collected from 

three localities on Skye: Alit Geodh' a' Ghamhna, AlIt Mor and Glen Osdale. These localities 

have provided new collections of plant fossils, which are described for the first time in this 

study. This chapter presents the fossil leaf collections used in this study and the techniques used 

to describe and categorize them. Details regarding the number system used to catalogue the 

specimens, the broad taxonomic composition of the floras and the techniques used to begin the 

description process are outlined. The quality of the specimens, including details of their 

fragmentation, completeness, venation quality and size are presented. The concepts of 

angiosperm leaf classification and description and how this can be applied to fossil floras are 

outlined. The angiosperm leaf morpotypes identified from Skye are presented with detailed 

descriptions. Each morphotype description includes the specimen numbers, diagnosis and 

comparison with previously described fossil taxa where possible. A discussion of the 

morphological characteristics and variability, and its similarities to other fossil and modern 

floras is included. 

3.2 Numbering of specimens 

Specimens used in this study are housed at the National Museums of Scotland, Edinburgh. All 

specimens accessioned at the National Museums of Scotland are numbered. The numbering 

system is consistent and contains the year in which the specimen was accessioned in the 

collection, and to which series it belongs in the specimen catalogue followed by its own 

number. Each specimen begins with the letters NMS.G, which refers to the National Museums 

of Scotland Galleries. This is then followed by the year the specimen was accessioned e.g. 

NMS.G.2004, followed by second number which denotes the specimens collection number 

within the catalogue of specimens e.g. NMS.G.2004.29. This number is then followed by the 

sample number e.g. NMS.G.2004.29.083. Some rock specimens contain several individual leaf 

fragments. When this is the case for this study each is provided with a letter at the end of the 

specimen number e.g. NMS.G.2004.29.083-a. Not all individualleaffragments were given 

specific letters within this study, including the conifer fragments and the highly fragmented and 

poorly preserved angiosperm specimens. 
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The museums catalogue of specimens contains the details of the locality from which the 

specimens were collected including, geographical and geological infonnation, and taxonomic 

infonnation where possible. 

A portion of the NMS collection of fossil leaves from Skye is un-accessioned; this refers to the 

lack of placement of these specimens in the museum's catalogue. These specimens can be 

manipulated more readily i.e. spilt to provide more specimens. Since these specimens were to be 

re-examined several times during the course of this study it was decided that they should remain 

un-accessioned until the end of the study period. Un-accessioned specimens were given a 

different numbering system; firstly the locality name is stated as two letters followed by NA 

(not accessioned) e.g. AM.NA (AM = AlIt Mor, Skye), followed by the slab number and 

individual fossil specimens were given letters e.g. AM.NA.004-c. Thirteen samples were in the 

process of being accessioned but were not officially added into the museum catalogue. These 

samples were denoted firstly by ACC, which refers to near-accessioned status followed by the 

sample number e.g. ACC.OOl. A third series of samples were collected by Jon Poulter, Yves 

Candela, Edward Shaw and Daniel Bradshaw in two collecting seasons in 2008 and 2009. These 

specimens were collected from the upper leaf bed of AlIt Mor (see Chapter 2, section 2.6.2.1). 

These specimens were numbered firstly by the locality, followed by the year of collection, the 

sample number and a letter to denote specific leaf specimens e.g. AM.NA.08.00 I-a. These 

specimens will be accessioned at a later date, and given the standardized National Museums of 

Scotland specimen numbers. 

3.3 Specimen Information 

3.3.1 Alit Mor 

The collection offossil plants from the AlIt Mor locality comprises 379 fossil-rich samples, and 

approximately 2572 leaf fragments. Of these specimens, 1158 represent dicotyledonous 

angiospenn leaves and the remaining 1414 represent conifer shoots. The vast majority of these 

specimens were either individually photographed or drawn from the hand specimens. The 

overall composition of the Allt Mor flora is displayed in Figure 3.1. 
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• Angiospem1s 

• Conifers 

Figure 3.1. Percentage of angiosperm and conifer fossils in the Alit 1\1 or collection. 

The angiospenn leaves and conifer shoots are preserved as impressions or compress ions within 

grey, buff or orange siltstones and more rarely in fine grained buff sandstones. They occur 

either as scattered fragments, small clusters or as leaf mats (Figure 3.2) . Some laminae contai n 

an abundance of floral remains, while others are devoid of leaf foss ils. Wood and bark 

fragments are relatively common, roots are relatively rare and are typicall y restricted to specific 

horizons (see Chapter 2, Figure 2.10). The floral composition of each slab is variable; some 

contain a mix of angiospenn and conifer fragments, while others are dominated by one of these 

types (Figure 3.2). 

Angiospenn cuticle has not been observed on the specimens which may be a result of the 

intense heating caused by the overlying basaltic lava flows. Conifer cuticle is al so appears 

absent and the majority of the specimens are coalified, but some do show signs of potential 

cuticular impressions within the sediment. The overall quality of the specimens is fair , the 

angiospemls often have their overall leaf fonn , margin and venat ion patterns preserved . Most 

leaf specimens have primary and secondary venation preserved, and a high proportion have 

tertiary venation preserved. Higher order venation preservation , however, is uncommon. 
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Figure 3.2. Exa mples of specimens from the Alit l\1 or plant assemblage of Skye, showing differing 
preservation pattern. a) Example of scattered fr agmented lea f specimens (ACC.O 10), b) example 
of clustered arragement of angiosperm leaf specimens (N I\1 S.G.2004.29.055), c) examplc of Ica f-m a t 
composed primarily of angiosperm leaf fossils (A 1.N A.OO I), d) example of a conifer dominated 
sample (N IS.G.200.t.29.008), e) example of a lamina dominated by a ngiosperm leaves 
(AM .NA.084). Scale ba rs = I cm. 
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3.3.2 Alit Geodh' a' Ghamhna 

The Alit Geodh' a ' Ghamhna loca lity is small and has yielded only seven sampl es, whi ch were 

coll ec ted by Jason Hilton in 2004. The co ll ec tion includes eight angiospenn leaf speci mens and 

two wood fragments. The fl oral remains are preserved in fine to medium-gra ined bu ff 

sa ndstones that may correspond to the sandstone unit tha t is between the second and third 

cong lomerate unit s of the Alit Geodh ' a ' Ghamhna Member (see Chapter 2, Figure 2.9). The 

angiospeml leaves are poorl y preserved and their overall foml , margin and venati on patterns are 

uncl ea r (Fi gure 3.3). It is therefore difficult to establi sh thei r taxonomic affinity. Coni fe r shoots 

or fern frond s have not been fo und in the limited collection from Alit Geodh ' a ' Ghamhna. Two 

wood frab'lllent s are present (AGG.006, AGG .007) , their outer surfaces are relati ve ly we ll 

preserved and show some deta il s o f their original structure (Figure 3.3). Due to the lack of 

internal preserva ti on these wood specimens are not suitable fo r thin section to deteml ine the 

taxonomic a ffinit y or palaeoclim ate signals they may have provided . 

Figure 3.3. Examples of specimens from the Alit Geollh' a' Ghamhna plant assemblage of Skye. a) 
small a ngiosperm leaffragment (ACG .003), b) angiosperm fragment (AGC.OOS), c) thrre 
a ngiosperm lea f fr agments with better preservation (ACC.004), d) wood fragment (AGC.007), e) 
wood fragment (ACC.006). Sca le bars = I cm. 
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This locality has provided 35 samples that contain foss il angiospenn leaf fragment s, wood and 

roots. Forty three angiospenn lea f fragments have been identified, conifer shoots or fern fronds 

have not been found. The leaves are typically highly fragmented and are poorly preserved , but 

several specimens (e.g. NMS.G.2005.145.1 , NMS.G.2005.145 .1 3-a, NMS.G.2005 . 145 .13-b) 

have reasonably well preserved venation and margins (Figure 3.4). The leaves are preserved in 

fine to medium-grained buff, brown or grey sandstones and in some cases are preserved in 

orange to red clay laminar (Figure 3.4). Wood fragment s are present within thc sediments of 

Glen Osdale and include a relatively large, - 25cm long log (Figure 3.4). The internal structure 

of the wood is not preserved so it is not suitable for thin sectioning. Roots are common in the 

sample from Glcn Osdale but do not appear to be ill -s itll , but rather may have been transported 

into the assemblage (Figure 3.4). 

Figure 3.4. Examples of leaf specimens and fossi l wood from Glen Osdale leaf assemblage of Sk~'e. 
a) leaf fragment with well preserved venation (NMS.G.2005. 145. I), b) well preserved a ngiosperm 
leaf (NMS,G.2005. 145. 7-b), c) poorly preserved leaf specimen typical of the Glen Osdale 
assemblage (NMS.G.2005. 147.7), d) three angiosperm fragments prese rved in red clay lamina 
(Nl\IS.G.2005. 145.14), e) fo ssilised wood that may represent a large branch or slIIall trunk 
(Nl\IS.G.2205, 145.29). Scale bars = 1 cm. 
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3.4 Methods 

The fossil leaves were photographed and drawn firstly to provide a record of the specimens 

within the collections and secondly, to help determine their morphology and taxonomic affinity. 

The procedures used in this study are described in the following section. 

3.4.1 Preparation of the fossils 

Un-accessioned specimens were cleaned where possible. Initial attempts of rinsing with water 

proved unsuccessful, as this often led to the disintegration of the friable siltstones. Leaf 

fragments were cleaned more successfully with fine brushes, but thick layers of soil could not 

be removed without damaging the specimens. Specimens that could be readily split to reveal 

more leaf fragments were split using a fine chisel and small hammer. The friable nature of the 

sediments meant splitting was relatively easy along fossiliferous lamina. This procedure led to 

the discovery of several exceptionally well preserved specimens, and increased the collection 

size significantly. Specimens that were partly obscured by overlying layers of sediment were 

exposed using an electric engraving tool. 

3.4.2 Photography 

The earliest phase of description and identification of the fossil leaves was done through digital 

photography of the specimens. The specimens were photographed at the National Museum of 

Scotland using a Digital SLR camera. All slabs were photographed and individual specimens 

were photographed if they were either well preserved, or possessed interesting morphologically 

details. Each slab and specimen was photographed with and without a scale bar for later 

reference and digital manipulation of the photographs. 

Various lighting methods were tried to obtain the best results, and included ambient lighting, 

flash photography, and low angle lighting from lamps. Low angle lighting from side of the 

specimen proved the most successful method of capturing the details of the leaf specimens, but 

several lighting styles were used for the photography of each specimen. 

The digital photographs were later manipulated using Corel Paint Shop Pro X. Each image was 

adjusted for contrast, brightness, saturation, shadows, highlights and mid tones to reveal the 

morphological characters of the leaf specimens. 

3.4.3 Drawing 

Graphical representation of the angiosperm leaf architecture was achieved digitally. Digital 

photographs of the specimens were imported into Corel Draw X5 for tracing of the leaf margin 

and venation patterns. The angiosperm leaf specimens venation and margins were traced by 

using either a mouse or a digital drawing tablet. 
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Tracing of the true leaf margin was done in a solid low point line; areas where the true margin is 

not preserved were denoted by a dashed line. The order of the venation was depicted by varying 

line the thicknesses. Primary venation has the thickest line, followed by secondary then tertiary 

etc. This facilitates the recognition of the vein patterns and vein orders within the drawing. 

3.5 Preservation of the leaves 

3.5.1 Fragmentation and specimen quality 

The fossil angiosperm leaves of Skye represent foliar remains that have been shed from their 

parent plant and have either entered the site deposition directly or have been transported and 

deposited by water. Once at the site of deposition the leaves may become further degraded by 

detritivores and microbial decay. These combined processes can lead to fragmentation of leaves 

(Ferguson 1985). The level offragmentation of the specimens may therefore be a useful 

indicator of transport. The influences and implications of transport and deposition on leaf 

fragmentation is discussed in Chapter 5 (see 5.3.2.3). The degree of fragmentation is also an 

indicator of the overall quality of preservation of the leaf assemblage. 

To assess leaf fragmentation each specimen were placed into one of the three categories, 

adopted from Hayes (1999) (Table 3.1). The number of specimens in each fragmentation 

category for the Allt Mor collection is summarised in Figure 3.5. 

Table 3.1. Angiosperm fossilleaffragmentation categories and their description. 

Fragmentation category Description 

Small fragment Leaves that have no discemable margin or a very 
small percentage of margin preserved, and their 
original shape cannot be determined 

Fragment Leaves that have fairly clear margins preserved and 
partially preserved apex and base, although one of 
these may be missing 

Almost complete Leaves that are nearly intact, with a visible margin, 
base and apex 
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Figure 3.5. The degree of fragmentation of angiosperm leaves from the Alit Mor leaf assemblage, 
showing the number of specimens in three fragmentation categories. 

The Alit Mor assemblage is dominated by small fragments, which account for 654 of the 

speci mens (9 1 %). The fragment category account for 59 (8%) of the specimens and only seven 

( I %) of the specimens are considered to be almost complete (Figure 3.6). This indicates that the 

angiospem1 leaves of Alit Mor are highly fragmented. The cause of this fragmentation may be 

related to transport prior to deposition, but may also have ari sen due to collecting and splitting 

of the samples in preparation for this study. 

3.5.2 Leaf venation clarity 

To assess venation preservation and clarity the leaf specimens were placed into one of fi ve 

categories, which were adopted from Hayes ( 1999) (Table 3.2). These categories are based on 

the number of vein orders visible on the leaf specimen. The highest order vein preserved for that 

specimen is used to assign that specimen to the appropriate category i.e. a specimen with up to 

third order vena tion preserved is placed in the " fairly clear" category. The number of specimens 

in each venation clarity category for the Alit Mor collection is summaries in Figure 3.6. 
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Table 3.2. Definition of venation clarity categories of angiosperm leaves. 

Venation clari ty category 

Very clear 

C lear 

Fairly Clear 

Fairly Unclear 

Unclear 
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Venation clarity category 

Figure 3.6. Venation clarity of the Alit Mor angiosperm leaves, showing the number of specimens in 
each of the five venation clarity categories. 

The two categories with the largest number of leaf specimens are the "unclear" and "fairly 

clear", which account for 334 (46%) and 271 (38%) of the leaf specimens respectively (Figure 

3.6). This indicates that the majority of the angiospeml specimens have up to second or third 

venation preserved. The "very unclear" category accounts for only 65 (9%) of the specimens 

(Figure 3.6), which indicates that leaves with very poor venation clarity are rare. Leaves with 

vein orders higher than three account for 7% of the collection , which indicates that only a small 

percentage of specimens have well preserved venation (Figure 3.6). Overall the venation clarit y 

of the Alit Mor specimens appears to relatively good, as 45% of the specimens have third or 
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higher order venation preserved, and should fac il itate the recognition of the veins patterns, 

which in tum can be used to describe and identify the leaf specimens. 

3.5.3 Leaf margin preservation 

Angiospenn leaf margins have two important uses in palaeobotany, firstly, they can be used to 

identify the lea f types, and secondly, they can be for palaeoclimate analysis (see Chapter 6, 

section 6.2 .1). To access the marginal preservation of the Skye angiospenn leaves the specimens 

were assigned to one of three categories that were adopted from Hayes (1999) (Table 3.3). The 

number of specimens in each venation clarity category for the Alit Mor collection is 

summari zed in Figure 3.7. 

Table 3.3. Margin preservation categories of fossil angiosperm leaves and their description. 

Margi n preservati on category Description 

Margin absent 

Small percentage 

Margin clear 
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Leaf specimen has no margin preserved 

Small portion of margi n preserved, details of the 
margin unclear 
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detailed morphology and apparent 

c lear 

Margin preservation category 

Figure 3.7. Margin preservation of the Alit Mor angiosperm leaves, showing the number of 
specimens in each of the three margin preservation catego ries. 

Margin preservati on is quite poor as 558 specimens (78%) of the specimens do not have margin 

preserved. Leaf specimens that do have margin preserved primairly have only have a sma ll part 



51 

preserved (19%) and only 23 specimens (3%) have well preserved, clear margins. This indicates 

that a large percentage of the specimens may be of limited use for palaeoclimate analysis as this 

leaf character is important for deciphering palaeoclimates (e.g. Wolfe 1979, Wing and 

Greenwood 1993, Wilf 1998). The implications of limited margin preservation and its potential 

impacts on palaeoclimate analysis are discussed in Chapter 6 (see sections 6.3.1,6.4.4.2). 

3.5.4 Leaf apex and base preservation 

The apex and leaf bases of angiosperm leaves, like their margins, are useful for the identifcation 

of angiosperm leaves and can be used to decipher past climates. Determining the preservation of 

bases and apexes for the AlIt Mor specimens is therefore of importance in this study. To access 

the preservation of leaf apexes and bases the AlIt Mor angiosperm were assigned to one of three 

categories for base and apex preservation, adopted from Hayes (1999) (Table 3.4). The number 

of specimens in each apex and base preservation category for the AlIt Mor collection is 

summarized in Figure 3.8. 

Table 3.4. Apex and base preservation categories of fossil angiosperm leaves and their description. 

Apex/Base preservation category Description 

Missing Specimens apex or base not preserved 

Incomplete Specimens apex or base partially preserved 

Complete Specimens apex or base completely preserved 
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Figure 3.8. Apex and base preservation of the angiosperm leaf specimens of Alit Mor, showing the 

number of specimens with missing, incomplete and complete apexes or bases. 

Apex and base preservation for the Alit Mor specimens is poor as 692 (96%) and 640 (89%) of 

the specimens do not have apexes or bases preserved (Figure 3.8). Overall apex preservation is 

more limited with only 4% of specimens wi th ei ther incomple te or complete apex preservation, 

while II % of specimens have incomplete or complete base preservation . Ten specimens in the 

Allt Mor collection have both an apex and base preserved, which indicates that preservation of 

both structures on the leaves of Alit Mor is limited. This indicates that the use of apexes and 

bases for taxonomic or palaeoclimate interpretations may be reduced. 

3.5.5 Specimen preservation quality 

To assess the quality of preservation for each of the Alit Mor leaf specimens their degree of 

fragmentation , clarity of venation, margin preserva tion, apex and base preservation were 

considered. Each specimen was scored for its preservation quality based on these features; the 

scores given for each feature are presented in Table 3.5, which was adopted from Hayes ( 1999). 

The combined score for each leaf specimen was then used to determine its quality by giving it a 

rating that ranges very poor to excellent (Table 3.6) , i.e. a leaf specimen with a score 6 has a 

" fair" rating. The overall leaf rating for the Alit Mor collection is summarized in Figure 3.9. 
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Table 3.5. Scores for fossil leaf characters and features used to determine leaf specimen quality. 

Leaf character or feature Scoring Leaf character or feature Scoring 

Degree of fragmentation Almost complete = 3 Apex Complete = 2 

Fragment =2 Incomplete = 1 

Small fragment = 1 Missing = 0 

Clarity of venation Very clear = 5 Base Complete = 2 

Clear = 4 Incomplete = 1 

Fairly clear = 3 Missing = 0 

Fairly unclear = 2 

Unclear =1 

Margin Clear = 2 Both apex and base present Yes = 1 

Small percentage = 1 No=O 

Absent = 0 

Table 3.6. Preservation rating of fossil angiosperm leaves. 

Preservation Rating Score 

Excellent >12 

Very Good 11--12 

Good 9--10 

Fairly Good 7--8 

Fair 5--6 

Fairly Poor 4 

Poor 3 

Very Poor 2 
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Figure 3.9. Leaf rating of the Alit Mor fossil angiosperm specimens, showing the number of 
specimens in each category. 

The fossil angiospenn leaf rating ranges from very poor to very good, with poor (239 

specimens), fairly poor (206 specimens) and fair (125 specimens) being the most common leaf 

ratings (Figure 3.8). Leaves with very poor to fairly poor rating account for 75% of the 

specimens, while leaves with fair to very good ratings account for 25% of the specimens. This 

indicates that the overall preservation of the angiospenn leaves of Alit Mor is relatively poor, 

but some of the specimens are relatively well preserved. 

3.5.6 Estimates of leaf size and length:width ratios 

Detennining the original size of the fossil leaves of Skye is important because leaf size is used 

for palaeoclimate analysis, particularly precipitation estimates (Wolfe 1993, Wing and 

Greenwood 1993, Burham 1997, Wilf 1997, Wiemann et al. 1998). Length:width ratios are also 

an important aspect of palaeoclimate analysis and therefore must be detennined. Leaf size was 

detemlined digitally by using ImageJ software (Abramoff et al. 2004) . Digital photographs and 

line drawings of the fossil specimens were imported into ImageJ to measure each leaf 

specimen's laminar area. The perimeter of each leaf fragment was traced in ImageJ using the 

polygon se lection tool which enables accurate area measurements to be calculated more rapidl y. 

This method was compared with free hand tracing of the perimeter and was shown to be 

comparable, which indicated that the polygon selection tool was an accurate method for 

detennining laminar area. 
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The area estimate obtained from the tracing the perimeter of the leaf specimen can then be used 

to determine the original laminar size class used in leaf morphotyping and climate analysis (e.g. 

Wolfe 1993, Kovach and Spicer 1995, Wing and Greenwood 1993, Ell is et al 2009). The 

perimeter of more fragmented specimens are less likely to provide accura te estimates of the 

original size class of the leaf. To account for this, estimates of the original laminar were made 

by using the curvature of the leaf margin and the leaves symmetry to detennine its original area. 

Measurements of each specimen's laminar area were taken, for use in climate analysis, and to 

detennine the range of sizes in the Alit Mor collection. Leaf size classes were detemlined by 

Webb (1959) , which is regarded as a standard in palaeobotany (Wolfe 1993, Kovach and Spicer 

1995, Ellis et al. 2009) (Table 3.7). The distribution of leaf sizes for the Alit Mor collection is 

summarized in Figure 3.10. 

Table 3.7. Leaf size classes fro m Webb (1959). 

Leaf size Class Laminar area (mm2) Leaf size Class Laminar area (n1l112) 

leptophyll <25 Mesophyll 4500-18225 

Nanophyll 25-225 Macrophyll 18225-164025 

Microphyll 225-2025 Megaphyll >164025 

Notophyll 2025-4500 
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Figure 3.10. Leaf size class distribution for the fossil angiosperm leaves of Alit Mor. 
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The most abundant size class in the Alit Mor collection is microphyll, which accounts for 528 

(73%) of the specimens measured. Nanophyll and notophyll size classes are the next most 

abundant and account for 72 (10%) and 108 (15%) of specimens respectively. This distribution 

is largely a reflection of the degree ofleaffragmentation rather than the original size 

distribution of the leaves, as such a high percentage of the leaves (96%) are small fragments. It 

is likely therefore that Alit Mor flora was dominated by plants that had microphyll to mesophyll 

leaf size classes. 

Determining the length:width ratio of the leaves is only reliable if the leaf is nearly complete. 

Since less than 1 % of the collection was considered nearly complete it was decided that 

calculating the L: W ratios for the whole collection would provide an inaccurate representation 

of the flora. Individual ratios were calculated for some leaves that were more fragmented if their 

original lengths or widths on one side of the laminar were preserved. To determine the 

length:width ratio the leaf specimen's length and width were measured in ImageJ and the ratio 

was then calculated from these measurements. 

3.5.7 Summary 

The subsamp\e of 720 leaves used to assess the preservation of the AlIt Mor angiosperms 

indicates that the leaf specimens are highly fragmented, with poor to fair venation clarity and 

predominately lack marginal, apex or basal preservation. Leaf ratings based on these characters 

and features indicated that the most common ratings of the angiosperm leaves were poor to fair. 

Measurements of laminar size indicate the leaf fragments of AlIt Mor are predominately 

microphyll with notophyllous and nanophyllous specimens being the next most common. 

3.6 The morphotype concept 

The classification of modern angiosperms is based on their reproductive structures (Takhtajan 

1980, Ash et al. 1999), this is also applies to fossil plant taxa. For fossilized leaves to be 

accurately identified they must be attached to reproductive structures. Leaves attached to 

reproductive structures are, however, relatively rare, and disarticulated leaves are more common 

in fossil plant assemblages (Ash et al. 1999). It is common procedure, therefore, to divide the 

leaves into morphotypes by identifying morphological characters that are systematically useful. 

A morphotype is an informal taxonomic category that is independent of the Linnaean 

nomenclature system, the leaf morpho types are equivalents to biological species, but should not 

be considered to be precise species equivalents (Ash et al. 1999). 

Disarticulated fossil leaves dominate the plant assemblages of Skye, attached reproductive 

structures are absent, and seeds and fruits are too poorly preserved to be of systematic value. 

The angiosperm leaves from Skye were organised into morphotypes to classify them. 
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3.6.1 Visual and categorical grouping of leaves 

Angiosperm leaf morphology can be readily categorized into three broad aspects: laminar form, 

venation and margin. Several authors (Dilcher 1974, Hickey and Taylor 1991, Ash et al. 1999, 

Candela et al. 1999, Ellis et al. 2009) have used morphological characters of angiosperm leaves 

in an attempt to better characterize them and use these features to determine taxonomic 

relationships. Ellis et al. (2009) have produced a manual of leaf architecture, which describes 

aspects of angiosperm leaf morphology in great detail. This manual has proven exceptionally 

useful for identifying and describing the morphology of the Skye angiospenn leaves. 

3.6.2 Leaf morphological bins 

Leafbins represent broad morphological groups that share several characteristics in common. 

The Palaeobotany Project founded by the Denver Museum of Nature and Science 

(www.paleobotanyproject.org) has outlined the procedure of binning fossil floras. The flow 

chart (Figure 3.11) demonstrates the stages of binning flora. The initial phase involves 

separating the dicotyledonous angiosperms from angiosperm plant remains and other plant 

groups such as conifers and ferns. Woody dicots can be readily identified by their board leaf 

shape and net-like structure of their veins. 

Later stages of binning involve sorting the leaf collection by the morphological characters 

(Figure 3.11). Ideally all specimens should have all necessary characters preserved to be sorted 

into final leaf bins, but this is rarely the case. Leaves that are too poorly preserved to be 

categorized are placed into a separate unsortable bin and these specimens may still be 

recognisable. The binning process is a useful tool to quickly differentiate leaf types. The fossil 

specimens within the bins may represent different fossil taxa. A more detailed morphological 

approach is therefore required to differentiate the fossil specimens into separate morphotypes. 



A) Petiole attachment 
B) Lobed 
C) Primary venation pattern 
D) Margin 
E) Agrophic veins 
F) Secondary venation 
G) Lamina shape 
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Figure 3.11. Tree diagram used for binning fossil angiosperm leaves for morphotype recognition. 

Each box represents a morphological bin. Redrawn from the paleobotany project 

( www.paleobotanypro ject.org). 

3.6.3 Differentiating morpbotypes 

The best preserved specimens from the final bins and some leaves from the unsortable bin were 

selected to obtain a more detailed morphological profile of the leaf specimens. The leaf 

architectural manual (Ellis et al. 2009) was used to describe the morphology of the leaf 

specimens. 

Comparisons were also made with the fossil angiosperm leaves of Ardtun, Mull (Boulter and 

Kvacek 1989). This was done for three reasons: 1) the Ardtun leaf assemblage from Mull is 

from the same region as Skye (BTVP) and it is of a similar age (see Chapter 2, section 2.3), 2) 

initial comparisons of the floras of Skye and Ardtun, Mull indicate that they appear to share 

many of the same plant taxa, 3) fossil leaves from Ardtun are often exceptionally well preserved 

and often complete. The leaves from Ardtun were therefore used as a guide to help describe the 

morphology of the more fragmented angiosperm leaves of Skye. 
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3.7 Angiosperm morphotypes of Skye 

In total 14 woody dicotyledonous angiospenn morphotypes have been identified in the leaf 

assemblages of Skye. Sections 3.S to 3.16 contain detailed infonnation of each morphotype 

including the specimen numbers attributed to the morphotype, a diagnosis of its morphology, an 

identification to known fossil plant taxa (where possible), a discussion on the morphology and 

variability of each morphotype, and comparisons with possible fossil and modern relatives. 

3.8 Angiosperm morphotype I (AMI) 

3.8.1 Specimens 

The specimen numbers of this morphotype are: ACC: 001-c, 015, 016-a, AM.NA: 0001-c, 

0001-h, 0002-c, 0004-c, OOOS, OOIS-c, 0049-a, 0049-c, 0058, 0062-b, 0076, OOn-e, 007S-b, 

OOSO-c, 0096, 0111-a, 0112, 0113, o 125-a, 0125-b, 0125-c, 0126-c, 0130, 0136-a, 0144-a, 0147-

a, 0160-a, 0169-b, 0174-c, 0175-b, 0176-a, 0176-b, 0179-a, 0179-b, 0179-c, 0IS6-a, 0187-a, 

0196,0199, 0200-c, 0201, 0205, 0207-b, 0207-c, 0211-b, 0217, AM.NA.200S: 001-b, OOS-c, 

003-b, 005, AM.NA.200S: 020-a, 022-a, 022-d, 022-e, 024, 035-a, 035-c, NMS.G.2004.29: 015-

d, 028-b, 051-d, OS2, 063-a, 066-h, NMS.G.2006.S.1-a, ACC.AM.031-b. 

3.8.2 Diagnosis 

Leaf attachment petiolate. Blade attachment marginal, laminar size microphyll to macrophyll, 

laminar L:W ratio unclear, laminar shape obovate or elliptic, blade medially symmetric or 

asymmetric, base symmetrical, lobed, margin serrate. Apex nor preserved, base angle acute or 

obtuse, base shape concave-decurrent, concavo-convex or rounded. Primary venation 

palinactinodromous, naked basal veins absent, one, three or five basal veins, simple agrophic 

veins. Major secondary veins craspedodromous, interior secondary veins present, minor 

secondary course appears craspedodromous, major secondary vein spacing irregular, secondary 

vein angle irregular to increasing proximally, major secondary vein attachment proximally 

decurrent. Intersecondary span less than SO% of subjacent secondary, occur less than or more 

than one per intercostals area, proximal course parallel to major secondary, and distal course 

perpendicular to subjacent major secondary Intercostal tertiary veins mixed percurrent with 

obtuse vein angle that decrease exmedially. Epimedial tertiary veins opposite percurrent with 

proximal course acute to midvein and distal course parallel to intercostals tertiary. Quaternary 

vein fabric mixed percurrent. Quinternary vein fabric present but unclear, areolation 

development good, marginal ultimate venation unknown. Tooth morphology unclear. 
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3.8.3 Identification 

Leaves of angiospenn morphotype 1 (AM 1) are mostly highly fragmented and none are 

complete. Venation characteristics are, however, often well preserved, which enables a more 

reliable identification of this morpho type. AM 1 shows significant similarities to Platanites 

hebridicus of Ardtun, Mull (Crane et al. 1988, Boulter and Kvacek 1989). AMI and Platanites 

hebridicus share the same venation pattern; both leaf types have palinactinodromous primary 

venation with three major primaries and craspendodromous major and minor secondary 

venation. Platanites hebridicus has secondary vein angles that are between 45 0 to 60 0 (Crane et 

al. 1988), which falls within the same range of the AlIt Mor leaves (48 0 to 59 0). 

Both leaf types have pronounced interior secondary veins, which fonn distinctive arches. 

Intersecondary morphology is similar, as both leaf types either have several in each intercostals 

area or lack them entirely. When the intersecondary veins are present they have a relatively 

short course before they join the intercostal tertiary veins. Tertiary venation is similar for both 

AMI and Platanites hebridicus. Both have mixed percurrent intercostal veins, and opposite 

percurrent epimedials with an acute course relative to the midvein and a distal course that is 

parallel to the intercostal tertiary veins. Higher order venation is similar with mixed percurrent 

quaternary veins. One apparent difference in vein morphology between the Skye and Mull leaf 

types is that some of the Skye leaves have very pronounced thick veins, which are less 

pronounced in the Mull leaves. This may be due to differing preservation conditions between 

the localities or may be related to the larger size of the Skye fonns, which, as result of their 

larger laminar, areas had thicker veins. 

Both leaf types have concavo-convex or decurrent base shapes, where in the latter case the basal 

margin extends along the petiole, although this characteristic is more pronounced in the Skye 

leaves. Another similarity between the two leaf types is the presence of a long thick petiole. 

Platanites hebridicus leaves of Ardtun have two smaller leaflets present at or near the base of 

this petiole, which indicates the leaflet arrangement was trifoliate (Crane et al. 1988). The 

tenninalleaflet is larger, lobed with palinactinodromous primary venation, which is similar to 

the Skye specimens. The two smaller leaflets are pinnate and unlobed, but their secondary, 

tertiary and quaternary venation is broadly similar to the larger terminal leaflet. Lateral leaflets 

of AM 1 leaves have not been recognized from the Allt Mor assemblage, which may be a 

taphonomic anomaly due to the high degree of fragmentation associated with this morphorype. 

The similarities in venation patterns and basal morphology between AMI and Platanites 

hebridicus are strong. This indicates that the two leaf types may represent the same plant taxon. 

The lack of lateral leaflets of the Skye fonn to some extent limits the comparison between the 

two leaf types, but this may be related to the poor preservation of the Skye fonns rather than a 
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true morphological difference. It is therefore likely that these two leaf types represent the same 

plant taxon, and AMI is considered as Platanites hebridicus. 

3.8.4 Discussion 

This morphotype shows significant variability in overall fonn and size. Leaf size classes range 

from microphyll to macrophyll (1693- 48064 mm2). Due to the high degree of fragmentation of 

the specimens it is difficult to detennine their original size. Even though some of the specimens 

are highly fragmented it is clear that some were originally in the mesophyll size class, or 

possibly greater prior to fragmentation (e.g ACC.012, AM.NA.008, NMS.G.2006.S.l-a) (Figure 

3.12). Not all of the specimens of this morphotype are large, however, as two smaller specimens 

(AM.NA.002-c and 0077-e) are microphyllous (Figure 3.13). These smaller leaves may 

represent immature foliage that was dislodged from the source vegetation prior to its complete 

development, or they may represent smaller sun leaves from the canopy. The more common, 

larger leaves of this morphotype may represent shade or sucker foliage that developed in lower 

light conditions. 

Laminar shape is unclear but based on the widest part of the laminar preserved the leaves appear 

to be either elliptic or obovate. Laminar shape in AMI appears to be influenced by the angle of 

the outer primary veins. Leaves with more obtuse primary vein angles tend to be more obovate 

(e.g. ACC.OOl-c), while those with more acute angled primaries appear to be elliptic (e.g. 

AM.NA.2009.020-a, AM.NA.002, AM.NA.077-e, AM.NA.1 99-a) (Figure 3.12, Figure 3.13). 

Detennining if the leaves of AM 1 were lobed is difficult to detennine due to fragmentation of 

the specimens, but one specimen, AM.NA.002 appears to have a sinus between the midvein and 

outer primary, indicating that it may be lobed (Figure 3.12). A reconstruction of Plafaniles 

hebridicus leaf in Crane et al. (1988) indicates that the Ardtun fonns were indeed lobed, 

although relatively weakly. This indicates that Platanites leaves of Skye may have also been 

lobed. 

Base angle is variable. It can be acute (-68 0) (e.g. AM.NA.002, AM.NA.077-e), while one 

specimen ACC.001-c appears to have an obtuse base with an angle of -135°. Base shape is 

equally variable and several of the' microphyllous specimens have concave-decurrent base 

shapes (e.g. AM.NA.002, AM.NA.077-e) with laminar tissue extending along the petiole 

(Figure 3.12). This morphology is associated with leaves that have more acute outer primary 

veins relative to the midvein. Specimens with more obtuse outer primary veins appear to have a 

concavo-convex base shape (e.g. ACC.001-c). 
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Figure 3. I 2. Large but fragmented specimens of AM I a) ~i\lS.G.2006.5. I -a, b) line drawing of 
NMS.G.2006.5 .I -a, c) ACC.OI2, d) line drawing of ACC.OI2, d) Ai\1.NA.OOS, e) line drawing of 
Ai\1.NA.OOS. Scale bars = I CIll . 
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Figure 3.13. l\1icrophyll specimens of AM\, a) AM.N A.002-e, b) line drawing of AM.NA.002-e, c) 
AM.NA.077-e, d) line drawing of AM .NA.077-e. Seale bars = 1 em. 
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Figure 3.14. Specimens of AMI . a) ACC.OO I-c, b) d ra" ing of ACC.OO I-c. c) A\ I. :\A.199-a. d) 
drawing of Ai\1.NA. 199-a . Scale ba rs = I cm. 
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Venation patterns in this morphotype are highly distinctive, which has facilitated the 

identification of even highly fragmented specimens. The tertiary, quaternary and quinternary 

veins appear to have formed an impression in the sediments before they were consolidated. 

These impressions have been preserved and have led to an almost scale-like appearance (e.g. 

NMS.G.2006.5.1-a, AM.NA.008, AM.NA.199-a, AM.NA.179-b) (Figures 3.12 to 3.15). This 

feature appears to be restricted to the larger specimens, whose veins would have been thicker 

and therefore created a more pronounced mold or cast into the sediment. 

Interior veins, when preserved, are typically present in the upper portion of the laminar (e.g. 

AM.NA.179-b) where they form distinctive arches that curve towards the distal margin (Figure 

3.15). Spacing of the secondary veins is highly variable within the same specimen indicating an 

irregular spacing pattern. Secondary vein angle variability is equally inconsistent; vein angles 

typically range from 35 0 t054 0 in the central portion of the laminar, and 48 0 to 59 0 in the 

proximal section of the laminar. Intercostal tertiary veins are obtuse to the midvein; admedially 

they range from 107 0 to 141 0 and exmedially range from 109° to 122°, indicating that 

intercostals vein angle decreases exmedially. 

Tooth morphology is unclear as the margin is rarely preserved but some specimens do appear to 

have teeth but they are poorly preserved (e.g. AM.NA.2009.020-a, AM.NA.002-c) (Figures 

3.13-a and 3.15-a). Tooth shape is unclear but it appears that their shape may be concave on the 

distal flank and convex on the proximal flank. Ardtun specimens of Plafanites hebridicus have 

well preserved margins, which indicate that the leaves of AM 1 were toothed. 
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Figure 3. 15. Specimens of AM 1. a) AM.NA.2009.020-a, b) line drawing of AM.NA.2009.020-a, c) 
AM .NA. 179-b, line drawing of AM.NA.179-b. Scale bars = I em. 

3.8.5 Similarities to other foss il taxa 

Foss il representatives of the Platanaceae are common elements of on hem Hemisphere floras 

of the Late Cretaceous and Paleogene (Crane et a!. 1988, Pigg and Stockey 1991 , Manchester 

1999, Kvaeek et a!. 2001, Kvacek and Manchester 2004, Golovneva 2007, Tschan et al. 2008). 

Several leaf types have been recognized , which vary significantly in their overall f0n11 (Boulter 

and Kvacek 1989). AM I, as di scussed in section 3.8.3 is attributed to the fonn genus P/a{(Jlliles. 

This Paleocene representative of the Platanaceae with its distinctive trifoliate foli age has only 

been documented in Alberta and Scotland of Paleocene age (Crane et al. 1988, Mciver and 

Basinger 1993, Boulter and K vacek 1989, Manchester 1999). 
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Platanites leaves have been recovered from the Early Paleocene Ravenscrag Formation of 

Saskatchewan, Canada (Mciver and Basinger 1993). Platanites sp. of the Ravenscrag Formation 

shares many similarities with Platanites hebridicus with its distinctive trifoliate leaf 

arrangement, larger palinactinodromous terminal leaflet and smaller pinnate lateral leaflets. 

Both forms also share the same overall venation pattern (Crane et a1. 1988, Mciver and Basinger 

1993, Boulter and Kvacek 1989). The base shape is similar with a marginal extension along the 

petiole which is more pronounced than Platanites hebridicus of Ardtun, and resembles the base 

shape of the smaller specimens from Alit Mor (Crane et a1. 1988, McIver and Basinger 1993). 

The terminal leaflets of the Canadian Platanites do, however, differ from the Scottish forms. 

The margin of Platanites sp. has considerably more teeth and appears unlobed (Crane et a1. 

1988, McIver and Basinger 1993). The lateral leaflets are also smaller and more elongate 

compared to lateral leaflets of the Ardtun specimens (Crane 1988, McIver and Basinger 1993). 

The absence of this leaf type in other mid to high latitude plant-bearing sites is unusual, but this 

distribution indicates that plant species were able to migrate from North America into Scotland 

during the Paleocene. The Early Paleocene Canadian representative of Platanites is older (-64 

Ma) than mid Paleocene forms in Scotland, which may indicate that Platanites may have 

originated in North America and migrated into Scotland via the Arctic during the Early 

Paleocene. 

3.8.6 Similarities to modern taxa 

Fossil leaves of Platanites hebridicus share many characteristics with modem Platanus foliage 

(Crane et a1. 1988). The characteristic palinactinodromous primary venation, craspendromous 

secondary veins, higher order venation, and leaf polymorphism of modem Platanaceae is nearly 

identical to that of Platanites hebridicus (Crane et a1. 1988). Modem Platanus leaves do, 

however, lack lateral leaflets, which are a characteristic feature of Platanites (Crane et a1. 1988, 

McIver and Basinger 1993). Crane et a1. (1989) described fossil Platanaceae-like reproductive 

structures from Ardtun, Mull, which are tentatively associated with Platanites foliage. The 

fossil staminate flowers and fruiting heads share many characteristics with modem Platanus, 

but differ in several key morphological characters (Crane et a1. 1989). The dissimilarities of the 

fossil and modem reproductive structures indicate that the reproductive morphology of modem 

planes was not fully established in the Paleocene. The relatively fragmentary remains of P. 

hebridicus from Skye makes assigning of this morpho type to a modem taxon problematic. The 

close similarity of AM 1 with the well preserved leaves from Mull and Canada, and their 

similarities to modem planes, indicates that AM 1 represents an extinct fonn of the Platanaceae. 
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3.9. Angiosperm morphotype 2 (AM2) 

3.9.1 Specimens 

The specimen numbers of this morphotype are: AM.NA: 007-b, o 14-a, 014-c, o 14-d, 016-b, 

040-a, 059-b, 082-c, 082-i, 084-f, 084-i, 084-m, 097-a, 124-a, 138-a, AM.NA.2008: 005-a, 006-

e, 006-f, AM.NA.2008: 018-b, NMS.G.2004.29: 026-c, 004-b, 005-a, 023-g, 023-h, 031-d, 

034-c, 047-b, 055-i, 061-a, 072-c, 072-d, 079-a, 079-b, 079-c, 079-g, 081-d, NMS.G.2002.64: 

3-b, 3-e, 5-f, 5-1. 

3.9.2. Diagnosis 

Blade attachment marginal, laminar size ranging from microphyll to mesophyll, laminar 

length:width ratio varying from -I: I to -1.4: I, laminar shape ovate or elliptic, blade medial 

symmetry symmetrical to slightly asymmetrical. Margin is unlobed and serrate with an obtuse 

apex angle, shape unclear either convex or acuminate without a drip tip, reflex base angle, and 

cordate base shape. Primary venation is basal actinodromous with no naked basal veins, seven 

to nine to seven basal veins, and simple agrophics veins. Major secondaries simple 

semicraspedodromous with spacing that is irregular or increases abruptly proximally, 

inconsistent angles, and excurrent or deflected attachment to the midvein. Interior secondaries 

present, minor secondaries semicraspedodromous. Intersecondary veins absent. Intercostal 

tertiary veins mixed percurrent. Epimeidal tertiary veins mixed percurrent with a proximal 

course parallel to intercostal tertiaries and distal course acute to the midvein. Exterior tertiaries 

appear looped. Quaternary vein fabric mixed percurrent to irregular reticulate. Aerolation shows 

moderate to good development. Freely ending veinlets appear absent, marginal ultimate 

venation looped. Tooth spacing regular with one order of teeth and 2-3 teeth/cm. Sinus shape 

angular to rounded and tooth shape convex/convex or concave/convex. Principal vein present 

and terminates either at the tooth apex or the distal flank. Accessory vein course looped. Tooth 

apex appears simple. 

3.9.3 Identification 

Angiosperm morphotype 2 (AM2) is represented by many relatively well preserved leaf 

specimens. Its overall form, including margin, apex and base are present in some specimens and 

its venation clarity, is often clear. Due to this morphotype's higher degree of preservation it is 

possible to identify it to a known fossil taxon. The overallieafform of this of AM2 indicates 

that it is similar to Trochodendroides antiqua of Ardtun, Mull (Boulter and K vacek 1989). Both 

leaf types have the same elliptic laminar shape, cordate base and serrate margin with rounded 

tooth apexes. The venation patterns are identical at all orders providing further evidence that 

AM2 is the same taxon as Trochodendroides antiqua from Ardtun. AM2 and 

Trochodendroides antiqua have well defined teeth with convex distal and proximal flanks, or 
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less frequently convex distal flanks. Specimens from Ardtun often have elongated teeth that 

appear as finger-like projections from the margin. This character is less well developed in the 

AlIt Mor specimens but may be related to limited preservation of the margin at this locality. 

Based on the strong morphological similarities between AM2 and Trochodendroides antiqua 

they are regarded as the same species. 

3.9.4 Discussion 

The morphology of AM2, as mentioned in 3.9.3, is well understood because of several well 

preserved specimens (e.g. NMS.G.2004.29.047-b, NMS.G.2004.29.079-a, 

NMS.G.2004.29.072-c, NMS.G.2004.29.023-g, NMS.G.2002.64.5-f, AM.NA082-c) (Figures 

3.16, 3.17). Laminar size is variable and specimens range from microphyll (1031 mm2) to 

mesophyll (6505 mm2) (estimated original laminar area), but the majority are within the upper 

range of microphyll to lower range of notophyll. The preservation of this morphotype has 

enabled length to width ratios to be estimated. Laminar length:width ratio are typically -1: 1 

(e.g. NMS.G.2004.29.047-b, NMS.G.2004.29.072-c, NMS.G.2004.29.079-a) (Figures 3.16-a, 

c, e) but can be greater with ratios of -1.S:1 to 2:1 (e.g. NMS.O.2002.64.5-i, AM.NA.OS2-c) 

(Figures 3.l7-e, 3.18-e). 

The apexes of AM2 have been partially preserved in at least three specimens (AM.NA082-c, 

NMS.G.2002.64.3-e, NMS.O.2002.64.5-f) (Figure 3.17-c, e). Specimens AM.NA082-c and 

NMS.G.2002.64.5-f apex shape is convex (Figure 3.17-c, e), but specimen NMS.G.2002.64.3-e 

may have an acuminate apex shape (Figure 3.18-a). The curvature of the margin adjacent to the 

midvein indicates that it may have terminated below the preserved end of the midvein. This 

would suggest that the apex may be acuminate and comparisons with better preserved leaves 

from Ardtun, Mull indicates that some of the leaves have acuminate apexes but they lack the 

drip tip. This suggests NMS.G.2002.64.3-e may have had an acuminate apex shape that 

probably lacked a drip tip. Base shape appears to be exclusively cordate, but the depth of the 

basal sinus varies and it can be relatively shallow (e.g. NMS.G.2004.29.047-b, 

NMS.O.2004.29.023-h) or deep (e.g. NMS.O.2002.64.5-i) (Figure 3.16-a, 3.1S-c, e). 
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Figure 3. J 6. Examples of well preserved specimens of AM\, a) l\'MS.G.2004.29.047-b, b) drawing of 
NMS.G.2004.29.047-b, c) NMS.G.2004.29.079-a, d) drawing of l\'i\1S.G.2004.29.079-a, e) 
NMS.G.2004.29.072-c, f) drawing of NMS.G.2004.29.072-c. Scale bars == I em. 
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Fiollre 3.17. Specimens of A 1\12. a) NMS.G.200-t.29.023-g, b) line drawing of NI\1S.G .200-t.29.023-g. 
c) Nl\lSG.2002.6-t.5-f, d) line drawing ofNI\\SG.2002.6-t.5-f, e) AI\1.NA.82-c, f) line drawing of 
AI\1.NA.82-c. Scale bar = I cm. 
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Figure 3.18. Specimens of AM2 a) NMS.G.2002.64.003-e, b) line drawing of N:\l S.G.2002.M.003-e. 
c) NMS.G.2004.29.023-h, d) line drawing of Ni\1S.G.2004.29.023-h, e) NMS.G.2002.64.S- I, f) line 
drawing of Ni\1S.G.2002.64.5-1. Scale bars = I em. 
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The semicraspedodromous secondary veins are spaced irregularly in this morphotype with 

spacing ranging from 2mm to 9mm. The variability of the secondary vein angles is irregular; 

proximal vein angles range from 47 0 to 88 0 (mean 68 0), centrally 40 0 to 83 0 (mean 64 0
) and 

distally 53 0 to 73 0 (mean 59 0). Secondary vein attachment is typically excurrent, although 

towards the base the secondary attachment can become deflected resulting in a sinuous course to 

the central primary vein. 

Tooth shape is relatively consistent between specimens and the majority of teeth have 

convex/convex tooth shapes, but in some instances the teeth may have concave proximal flanks. 

Sinus shape is primarily angular, but where the teeth are more widely spaced the sinus is more 

rounded. 

3.9.5 Similarities to other fossil taxa 

The morphology of AM2 indicates that this morphotype is Trochodendroides antique. leaves 

attributed to the form genus Trochodendroides were a common element of Late Cretaceous and 

Paleocene floras of mid to high latitudes of the Northern Hemisphere (e.g. Brown 1939, Koch 

1963, Hsu 1983, Crane and Stockey 1985, Kvacek et at. 1994, Herman and Spicer 1996, McIver 

and Basinger 1999, Falcon-Lang et at. 2004, Craggs 2005, Sun et at. 2007, Akhmetiev and 

Beniamovski 2009, Herman et at. 2009). A detailed review of this form genus is beyond the 

scope of this study, but comparisons are made with Trochodendroides leaf types found in 

regions close to the British Tertiary Volcanic Province (BTVP) and a well preserved species in 

Alberta. 

Within the Brito-Arctic region (Scotland, Greenland and Svalbard) leaves associated with 

Trochodendroides and Cercidiphyllum-like leaves are abundant (Koch 1963, Boulter and 

Kvacek 1989, Kvacek et al. 1994). In west and east Greenland Cercidiphyllwn-like leaves occur 

throughout the Early Paleocene (pre-volcanic) and Early to mid-Paleocene (inter-basaltic) 

sequences (Koch 1963). The overall leaf form and venation pattern of the Cercidiphyllum 

arcticum of Greenland is similar to that of Trochodendroides antiqua of Mull and Skye. The 

tooth structure of C. arcticum indicates that it is different to the Scottish fonns, as its teeth are 

well rounded, broad, and have poorly developed tooth sinuses. 

In Svalbard two Paleogene species have been recognized, Trochodendroides crenulata and T. 

richardson;; (Kvacek et at. 1994). These two leaf types are typical of this form genus and share 

the same overall form and venation patterns with the Scottish species. T. richardson;; is similar 

to C. arcticum of Greenland with its more undulating margin type (Kvacek et at. 2004). This 

indicates that T. richardsonii is distinct from T. antiqua of Scotland, but may be related to the 

Greenland forms. T. crenulata is most similar to Scottish forms as its teeth are more distinct and 
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developed. The teeth of T. crenu/ata, however, are generally smaller and the tooth sinus is more 

rounded, which suggests these two species are distinct. 

Trochodendroides prestwichii leaves are present in southern England from the Late Paleocene 

to Early Eocene Reading Beds and Woolwich Beds of the London Clay Formation. The leaves 

are very abundant, and account for up to 80% of the fossil leaf specimens at some localities 

(Crane 1984). T. prestwich;; shares many similarities with T. antiqua in terms of its overall 

shape and size, but does differ in its apex and basal morphology. Specimens of T. prestwichii 

figured by Crane (1984) show that it has a convex or truncate base shape and is unlike the 

cordate base shapes of the Scottish forms. Boulter and Kvacek (1989) also noted that the apex 

of T. prestwichii was more acute and had an acuminate apex compared to the Ardtun specimens 

of T. antiqua. The differences in apex and base shape suggest that these two British forms of 

Trochodendroides represent two distinct species. 

Fossil leaves similar to Trochodendroides found in association with fruits, seeds and seedlings 

from the Late Paleocene of Alberta have provided the most complete insight into early 

Cercidiphyllum-like plants. The combined botanical elements ofleaves, inflorescences, seeds 

and seedlings were assigned to the genus Joffrea (Crane and Stockey 1985). Leaves of Joffrea 

at the Joffre Bridge locality are relatively uncommon, although the seeds and seedlings are 

highly abundant. Crane and Stockey (1985) suggested that this population structure indicated 

that Joffrea was an excellent coloniser of disturbed riparian environments and had an efficient 

dispersal strategy, but may not have been an ecologically dominant species (Crane and Stockey 

1985). Boulter and Kvacek (1989) also suggest that T.antiqua may have had a similar ecology 

to Joffrea and may have been a capable coloniser of lava flows and riparian environments of the 

BTVP. 

Foliage of Joffrea is broadly similar to T. antiqua and other Trochodendroides species from the 

Northern Hemisphere, which provides further evidence that T. antiqua is a member of the 

Cercidiphyllaceae. Tooth structure of Joffrea speirsii is significantly different to T. antiqua, as 

some specimens figured by Crane and Stockey (1985) have much smaller teeth and have more 

rounded tooth sinuses and, the base shape is truncate and different to the cordate base of T. 

antiqua of Scotland. 

The distribution of foliage attributed to the Cercidiphyllaceae suggests that this family was 

common and widespread in the Northern Hemisphere during the Paleocene. Comparisons with 

Trochodendroides antiqua (AM2) and other fossil species of this form genus suggest that the 

Scottish forms are related to other species in the Northern Hemisphere, but represent a distinct 

species that appears to be endemic to the BTVP. 
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3.9.6 Similarities to modern taxa 

The leaf morphology of AM2, like other members of the form genus Trochodendroides, 

indicates that it may be an ancestral member of the Cercidiphyllaceae (Crane and Stockey 1986, 

Boulter and Kvacek 1989). Both the fossil and modem representatives of this family indicate 

that it shares the same basic leaf form and venation pattern with modem Cercidiphyllum which 

suggests they may have a shared ancestry (Brown 1939, Crane and Stockey 1986, Boulter and 

Kvacek 1989). 

JofJrea from the Early Paleocene of Alberta, Canada has provided some of the strongest 

evidence for the presence of Paleocene representatives of this family. This plant has been 

identified as an ancestral genus of the Cercidiphyllaceae based on the preserved reproductive 

structures and attached foliar elements (Crane and Stockey 1985). Cercidiphyllum-like seeds 

have been identified from interbasaltic sequences of Northern Ireland (Boulter and Kvacek 

1989), which suggests that this family was present in the BTVP. Reproductive structures of 

Cercidiphyllum-like plants have not been found in Scottish localities of the BTVP, which 

prevents a definitive association with the Cercidiphyllaceae. The shared morphological 

similarity of Trochodendroides antiqua of the BTVP with both modem members of the 

Cercidiphyllaceae and extinct Paleocene forms suggests that it was most likely an ancestral 

member of this family. 

3.10 Angiosperm morphotype 3 (AM3) 

3.10.1 Specimen numbers 

The specimen numbers of this morphotype are: ACC: 001.a, d, I, 004-b, 007-a, 009, o to-a, 011, 

012-a, b, d, 013, AM.NA: 0001-a, i, n, 0, r, 002-a, 002-b, 003-a, b, 004-a, b, 006-a, c, 015-a, 

o 19-a, 024, 030, 034, 039-a, 043-a, 048, 049-b, 051-a, 055, 059-c, d, 061-c, 064-a, b, 073, 074, 

079-a, 080-a, 082-a, b, 084-b, 084-c, 084-q, 084-x, 089, 095-b, 110-a, 116-a, 124-c, 126-b, 140-

a, 141-d, 162, 170-a, 180-a, 185, 200-a, 200-b, 209, 216-a, 222, 227, AM.NA.2008: OOI-a, c, 

006-d, Oll-b, 012-e, 016-b, AM.NA.2009: 004, OIl-a, Oll-b, Oll-d, OII-e, 020-b, 025, 026-b, 

033-a, NMS.G.2004.29: 005-b, 008-1, 021-d, 023-e, 023-j, 023-m, 025-d, 028-a, 028-c, 028-e, 

047-c, d, g, 050, 051-a, b, 055-j, 061-b, 063-b, 065-a, b, 066-b, 066-i, 081-a, 082-a, 083-a, f, 

084, 096-b, 100-a, 2-c, 3-d, 5-g, 5-n. 

3.10.2 Diagnosis 

Leaf attachment petiolate. Blade attachment marginal, laminar size microphyll to mesophyll, 

laminar L:W ratio -1.5: 1 - 2: 1, laminar shape elliptic, blade medially symmetrical to 

asymmetrical, base symmetrical or with asymmetrical basal extension, Unlobed, margin serrate. 

Apex angle acute, apex shape straight or acuminate with a drip tip, base angle reflex or obtuse, 
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base shape cordate or convex. Primary venation pinnate, naked basal veins absent, three or five 

basal veins, compound agrophic veins. Major secondary veins craspedodromous, interior 

secondaries absent, minor secondaries craspedodromous, major secondary spacing decreasing 

proximally, secondary vein angle abruptly increasing proximally, attachment decurrent or 

excurrent. Intersecondary veins absent. Intercostal tertiary vein fabric opposite percurrent with 

obtuse vein angle that decreases exmedially. Epimedial tertiaries opposite percurrent, proximal 

course parallel to intercostals or perpendicular to midvein, distal course parallel to epimedial 

tertiaries or basi flexed. Exterior tertiary course terminating at the margin. Quaternary vein fabric 

mixed percurrent, higher order venation not visible. Tooth spacing regular to irregular with up 

to three tooth orders and 3 teeth/cm. Sinus shape angular, tooth shapes convex/convex, 

concave/convex, flexous/convex and straight/straight. Principal vein present and terminates at 

tooth apex, accessory veins unclear but appear looped. Tooth apex simple. 

3.10.3 Identification 

Angiosperm morphotype 3 (AM3) is the most abundant morphotype in the Alit Mor assemblage 

and as a result there are many well preserved specimens. The characteristic features of AM3 

include its cordate base, acuminate or acute apex, compound serrate margin, pinnate 

craspedodromous venation, compound agrophic veins and opposite percurrent tertiary veins. 

Because this morphotype is well preserved it has been possible to identify it as a known fossil 

taxon, Corylites hebridicus. 

Fossilised leaves of Corylites hebridicus are an abundant component of the Ardtun leaf beds 

(Boulter and K vacek 1989), and show a striking similarity to AM3 as both leaf types share the 

same characteristics mentioned previously. In addition to this shared morphological 

resemblance, leaves from both localities display a high degree of variation. This morphological 

variability is usually expressed in the overall size of the laminar, its length:width ratio, apex and 

base shape and tooth characteristics. The morphological variability of AM3 is discussed in 

greater detail in section 3.10.4. 

The leaves of Corylites hebridicus of Ardtun, Mull and AM3 of Skye are almost 

indistinguishable morphologically. This indicates that AM3 represents the same species as those 

of Ardtun and is regarded as Corylites hebridicus. The high abundance of this taxon in the leaf 

assemblages of Mull and Skye may indicate that this was important component of BTVP 

vegetation during the mid Paleocene. 

3.10.4. Discussion 

The abundance and good preservation of AM3 has enabled a detailed understanding of its 

morphological features and how they vary between specimens. Multiple well preserved 

specimens have provided information on the overall laminar form, venation and margin (e.g. 
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ACC.OOI-a, ACC.012-b, ACC.012-d, AM.NA.2008.012-b, AM.NA.2008.0 I 6-b, AM.NA.073) 

(Figures 3.19, 3.20). These specimens have enabled other poorly preserved specimens to be 

identified to this morphotype. 

The leaves of this morphotype are petiolate and their attachment is marginal. The petiole is quite 

long and ranges from -20mm to 50mm. Petiole preservation is relatively rare but provides some 

indication as to how the leaves were attached to the parent plant. Laminar size varies 

considerably and estimates of the original size of the specimens indicates that they range from 

BOO mm2 (microphyll) to in excess of BOOO mm2 (mesophyll). The most complete specimens 

(e.g. Acc-OOl-a, Acc-012-b, AM.NA200B.0 1 6-b, AM.NA.200B.016-b, AM.NA.2009.007-a, 

AM.NA.0164-a) range from 1907 mm2 to 5349 mm2
• The most common size class of leaves 

that can have their original size determined from measurements of their preserved area or 

specimens whose original area can be estimated straddle the upper range of microphyll to the 

lower range of notophyll. 

Laminar length:width ratio, like laminar size, is difficult to determine for the majority of the 

specimens due to fragmentation. Some specimens (e.g. Acc OOI-a, AM.NA2008.0l6-a, b, 

AM.NA.0015-a) have ratios of -1.7-2:1 (Figures 3. I 9-a, 3.20-b). Some of the larger specimens 

appear to be broader (e.g. ACC.OI2-b, AM.NA.073, AM.NAOll-a, b) (Figures 3.19-b, 3.20-e), 

but estimating their L:W ratios is more difficult to calculate as they are missing apexes. To 

estimate the original L:W ratio ofthese specimens the length of the specimen was estimated by 

using the curvature of the proximal margin as guide to the original length. If these estimates are 

accurate it suggests that some of the leaves had L:W ratios of -1.2-1.5: 1. Comparisons with the 

Mull specimens indicates that their L:W ratio varies to a similar degree as those of Skye. The 

variation in laminar size and L:W ratio may be due to leaf ontogeny (young or mature leaves) or 

may caused by environmental factors such as growth position and light intensity, which may 

influence leaf form (Upchurch and Wolfe 1987). 
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d) 

-

-
Figure 3.19. Well prese rved specimens of AM3. a) ACC.OO I-a, b) line drawing of ACC.OO I-a, c) 
ACC.O 12-b, d) line drawing of ACC.O 12-d , e) ACC.O 12-d, e) line drawing of ACC.O 12-d. Sca le bar 
= I em. 



79 

~ a) 

Figure 3.20. Well preserved specimens of A 13. a) AM.NA.200B.OI6-b, b) line drawing of 
AM.NA.200B.OI6-b, c) A~I.NA.200B.0I2-b, line drawing of AM.NA.200B.012-b, e) Al\l.NA.073, f) 
line drawing of AM.NA.073. Scale bars = Icm. 



so 

All specimens with preserved apexes have acute apex angles that range from 40 0 to 63°. The 

acuteness of this angle is linked to the apex shape, which is either straight or acuminate. Leaves 

with straight apex shapes (e.g. AM.NA. 19, AM.NA. 40-b, AM.NA. 180) have less acute apex 

angles that are -50 ° (Figure 3.21-a). Leaves with acuminate apex types (e.g. Acc.OOl-a, 

AM.NA.200S.016-b) have more acute apex angles that range from 40 0 to 50 0 (Figures 3.19-a, 

3.20-a, 3.21-c, e). The shape of the acuminate apex can be either hooked or fonning a drip tip. 

Leaves with hooked acuminate apexes have one flank that is straight or partially convex and 

another flank that is concave (e.g. NMS.G.2004.29.025-d, NMS.G.2004.29.060) (Figure 3.21-c, 

e). The distal section of the laminar curves away from the midvein and abruptly narrows and 

extends for -5 mm to IOmm in specimens with acuminate apexes that form drip tips (e.g. 

ACC.OOla, AM.NA200S.016-b) (Figures 3.19-a, 3.20-a). 

Base angles are either reflex or are obtuse, and like apex angle, are linked to base shape. Leaves 

with reflex angles have a cordate base shape, while those with more obtuse angles have a 

convex base shape (e.g. AM.NAOOI-a) (Figure 3.22-a). Leaves with cordate bases are the most 

common, but the depth and width of the basal sinus varies. Some specimens have relatively 

weakly developed cordate base shapes (e.g. AM.NA2008.016-b, AM.NA.OOlS-a), i.e. the sinus 

is short and narrow, while others (e.g. AM.NA004-b, AM.NA073, AM.NAOS9-b) have very 

broad and deep sinus (Figures 3.20-a, 3.20-e, 3.22-c, e). 

The lower order venation of AM3 is pinnate craspedodromous with compound agrophics that 

have a craspedodromous course. The course of the secondaries is typically straight but can be 

straight-curved, weakly curved or sinuous. All leaves have compound agrophics but the 

abundance of these veins and the extent they occur higher up the laminar varies. The agrophic 

veins are most numerous and tightly spaced in the most basal part of the laminar and are derived 

from the lowest pair of secondary veins. The number of agrophics then decreases further up the 

laminar. Some specimens (e.g. ACC.012-a, ACC.012-b AM.NA073, AM.L4.0S.0003-a) have 

agrophics high up in the laminar, while others (e.g. AM.NA.OS9-b, AM.UN.OS.0003-a) only 

have them in the proximal-middle portion of the laminar. 
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h) 

f) 

Figure 3.21. Examples ofleaf apexes of AM3. a) AM.NA.O 19-a, b) line drawing of AI\I.NA.O 19-a , c) 

NI\IS.G.2004.29.025-d, d) line drawing of NMS.G .2004.29.025-d, e) NMS.G.200.U9.060, f) line 

drawing of NI\ IS.G.2004.29.060. Scale bars = 1 Clll . 
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Figure 3.22. Specime ns of AM2 showing va riati ons in base sha p e a) A;\ J. ;\'A.OO I -a, b) A ;\J.~ A.OO l­
a, c) AI\1. 'A.OIS-a, d) line dra win g of Al\1. NA.015-a, e) Al\1.r\A .OO.t-b, f) line drawing o f 
Ai\1. NA.OO.t-b. Sca le bars = I e m. 
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Secondary vein frequency is high in AM3 and the secondary veins are often tightly spaced, with 

between 12 tol6 pairs major secondary veins present. The secondary veins appear relatively 

evenly spaced in the middle section of the laminar, but become more tightly spaced proximally. 

In the most basal section of the laminar near the petiole the veins may only be a few millimetres 

apart. The secondary veins in the middle section of the laminar are fairly uniform with vein 

angles of -30 0 to 35 0, but increase abruptly towards the base of the laminar with the most 

proximal basal veins having angles that range from -70 ° to 90 o. 

The intercostal tertiary veins are opposite percurrent, occasionally forked with straight, convex 

or sinuous courses. The intercostal tertiary veins are obtuse to the midvein and decrease 

exmedially. Admedially intercostals vein angle ranges from 120 ° to 150 0 and exmedially 

ranges from -100 0 to 130 0
, which indicates intercostals vein angles increase exmedially. 

Intercostal vein angles in the basal section of the laminar indicates that intercostals vein angle 

also decreases proximally. The epimeidal tertiary veins are opposite percurrent and have 

variable proximal and distal courses. The proximal course can be either parallel to the 

intercostal tertiary veins or perpendicular to the mid vein. The distal course can be parallel to the 

intercostals or basi flexed. The exterior tertiary veins typically terminate at the margin where 

they form the principal veins of teeth, or join the tooth sinus. Quaternary vein fabric is not well 

represented but appears to be mixed percurrent. Higher order venation and aerolation is unclear 

due to limited preservation. 

The margin of AM3 is distinctive, even very small fragments with margin preserved can be 

readily attributed to this morphotype. The teeth can be regularly spaced (e.g. AM.NA.019, 

ACC.O 12-b), or irregularly spaced (e.g. Acc.O 12-d) (Figures 3.19-c, e). Most specimens with 

margin preservation have compound teeth with three tooth orders. The first tooth order is 

primarily supplied by the major primary veins, the second order by agrophics or branches of the 

major secondaries and the third order teeth are supplied by the tertiary veins. Tooth sinus shape 

is uniformly angular, but the width of the sinus is variable. 

Perhaps the most variable characteristic of this morpho type is tooth shape, as tooth shape can 

vary even within the same specimen (e.g. ACC.012-b). The most common tooth shapes are 

convex/convex and concave/convex, but flexous/convex and straight/straight as well 

combinations of these are present. Tooth shape also varies in different parts of the laminar: 

along the basal margin the teeth are simple (one order) and have convex/convex or 

concave/convex shapes, with longer proximal flanks relative to distal flanks. Teeth derived from 

the margin along the leaf apex become less compound and have straighter distal and proximal 

flanks, which gives the teeth a triangular appearance (e.g. ACC.OOI-a, AM.NA.2008.016-b). 

Each tooth is supplied by a principal vein that terminates at the tooth apex, it can be derived 
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from either major secondary veins, agrophics or marginal tertiary veins. The apex of the teeth 

appears simple with no visible glands or projections. 

3.10.5 Similarities with other fossil taxa 

Fossil leaves of Corylites indicate that it was an abundant and important component of 

Paleocene floras of Northern Hemisphere and occurs in both high and mid latitude sites in North 

America, Europe, Asia and the Arctic (Laurent 1912, Crane 1981, Sun and Stockey 1992, 

Manchester and Chen 1996, Manchester and Guo 1996, Gemmil and Johnson 1997, Manchester 

and Chen 1998, Wilf et a1. 1998, Collinson and Hooker 2003, Manchester et a1. 2004, Herman 

2007a, Herman 2007b, Herman 2007c, Herman et a1. 2009, Moiseeva 2009, Moiseeva et a1. 

2009, Hao et a1. 2010). The broad latitudinal and longitudinal range of this leaf type in the 

Paleocene suggests it was an excellent disperser and coloniser, and based on its latitudinal range 

it appears to be tolerant of a broad range of climates. 

The distribution of Corylites hebridicus is not restricted to the BTVP as leaves of this taxon 

have been described from the Early Paleocene of Greenland and the Paleogene of Svalbard 

(Koch 1963, Kvacek et a1. 1994). Figured specimens from both sites indicate both leaf types 

share the same characteristic morphology as Scottish forms. This indicates that this plant 

species was common in the Brito-Arctic region in the Early and mid Paleocene. 

The Paleocene European record of betula ceo us foliage includes localities from southern 

England and France. Betulaceous leaves have been identified from the Upper Paleocene 

Reading Beds in southern England (Crane 1981). The foliage is found in association with 

infructescences of Palaeocarpinus laciniata, which indicates a betulaceous affinity for the 

leaves (Crane et a1. 1981). The leaves were designated to the form genus 

Craspedodromophyllum, which are distinct from the leaves of Corylites. The base shape is 

acute, are typically or rarely compound with straight sided flanks. 

Two species of Betulaceae-like foliage were figured by Laurent (1912), Corylus macquarrii and 

Alnus palaeoglutinosa from the mid Paleocene of Menat, France. The specimens of Corylus 

macquarrii are identical to Corylites, and the other betulaceous species at Menat Alnus 

palaeoglutinosa is probably a smaller representative of C. macquarrii. It is likely that these leaf 

species are Corylites hebridicus, which was suggested by Boulter and Kvacek (1989) to be the 

case. 

North American Paleocene records of Corylites foliage are extensive and several sites have 

associated reproductive structures preserved with the leaves. The infructescences of several 

species of the extinct betulaceous genus, Palaeocarpinus have been found in numerous 

localities in the western United States and Canada, and are often associated with Corylites-Iike 
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leaves (Sun and Stockey 1992, Manchester and Chen 1996, Manchester and Chen 1998, 

Manchester et a1. 2004). Palaeocarpinus joffrensis from the Early Paleocene Paskapoo 

Formation, Alberta are found in association with betulaceous leaves (Sun and Stockey 1992). 

The leaf specimens figured by Crane and Stockey (1992) do appear broadly similar to Corylites 

hebridicus as they have similar teeth and venation, but differ in that they have fewer, more 

widely spaced secondary veins and have a convex base shape. 

Palaeocarpinus aspinosa had a wide distribution in the western United States during the 

Paleocene with occurrences in Wyoming, Montana and North Dakota (Manchester and Chen 

1996). Fossil leaves attributed to Corylites occur with these reproductive structures. The figured 

specimens in Manchester and Chen (1996) are similar to the Scottish forms but have smaller 

teeth, a lower number of secondary veins that are widely spaced and have weakly developed 

cordate sinuses. 

Another species of Palaeocarpinus, P. dakotensis has been described with associated Corylites 

foliage from the Paleocene of North Dakota (Manchester et a1. 2004). The Corylites foliage 

associated with this species of Palaeocarpinus is most like the Scottish fonns in its overall leaf 

from, venation and tooth structure. It can, however, be differentiated from Corylites hebridicus 

by its much shorter apex, and in one specimen figured by Manchester et a1. (2004) near-lobate 

margin. 

A second genus of the Betulaceae was present in North America during the Paleocene. Cranea, 

which has foliage of Corylites associated with it (Manchester and Chen 1998). The various 

reproductive structures associated with Cranea share characteristics with most modern genera 

of the Betulaceae but it is regarded to be most similar to extant members of Ostryopsis 

(Manchester and Chen 1998). The associated Corylites foliage, like those associated with 

Palaeocarpinus, is unlike the Scottish forms. The leaves figured by Manchester and Chen 

(1998) have rounded or weakly developed cordate bases, and a greater number of secondary 

veins. 

The Betulaceae were not just diverse in the Paleocene of North America but were dominant 

members of many plant assemblages. Leaves of Corylites often dominate many of the floras 

from the Early to mid Paleocene Fort Union Fonnation of Wyoming where they account for 

-38% ofleaves recovered (Gemmill and Johnson 1997). Similar leaf abundances for Corylites 

were reported from the Late Paleocene of Wyoming, where they also dominate the plant 

assemblages (Wilf et a1. 1998). 

Corylites leaves are also present in Paleocene sequences in Asia and indicate that they had a 

similar diversity and abundance to Europe and North America during this interval, the leaves 

are also associated with Palaeocarpinus infructescences (Manchester and Guo 1996, Herman 
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2007a, Hennan 2007b, Hennan et al. 2009, Moiseeva 2009, Moiseeva et al. 2009). Leaves of 

Corylites beringianus are a major component of Paleocene floras across north eastern Russia 

and Alaska (Hennan 2007a, Herman 200Th, Hennan 2007c, Hennan et al. 2009, Moiseeva 

2009, Moiseeva et al. 2009). Corylites beringianus leafform indicates that is more similar to 

Corylites hebridicus than many of the North American taxa. Despite the close similarity in 

many of the character traits it is apparent that these two taxa are distinct. Figured specimens of 

C. beringianus show it has a much broader basal sinus and in some specimens appears near 

lobate. Paleocene leaves associated with Pa/aeocarpinus orienta lis in China are very similar to 

leaves of C. hebridicus, some specimens figured by Manchester and Guo (1996) look similar to 

some of the smaller specimens from Ardtun. The Chinese foliage is, however, distinct, as they 

have fewer secondary veins and the teeth on the larger specimens are smaller and more rounded. 

3.10.6 Similarities with modem taxa 

The leaves of Corylites hebridicus are characteristic of the Betualceae in their overall form and 

venation patterns. The leaves of this morphotype most closely resemble leaves of modem 

Cory/us, as their name implies. Based solely on foliar features it appears Corylites hebridicus of 

the BTVP is a member of the Betulaceae. 

Betulaceae inflorescences (Pa/eocarpinus) are often found in association with Corylites leaves 

(Crane and Stockey 1992, Manchester and Chen 1996, Manchester and Guo 1996, Manchester 

and Chen 1998, Manchester et al. 2004). The morphology of Pa/eocarpinus inflorescence 

suggests they are related to several modern genera while the associated leaves resemble Cory/us 

(Crane and Stockey 1992, Manchester and Chen 1996, Manchester and Chen 1998, Manchester 

et al. 2004). 

The presence of character traits associated of several modem genera within the same 

inflorescence, and the relatively consistent morphology of the leaves associated with these 

inflorescences indicates that the different plant organs within the Betulaceae evolved at different 

rates (mosaic evolution). The presence of morphological characters that occur in several modem 

genera indicate that the Betulaceae was in its early stages of evolution during the Paleocene, and 

had not yet diversified into distinct modern genera during this interval. 

The leaves of Corylites hebridicus from Skye and Mull indicate that the parent plant was a 

member of the Betulaceae. This family association is not unequivocal as no specimens of 

Paleocarpinus inflorescence have been found in the BTVP. Corylites leaves found in 

association with Paleocarpinus inflorescences at other localities suggests that these leaf types 

and the inflorescence represent the same plant species. The close resemblance of the BTVP 

leaves with those found in association with betulaceous inflorescences indicates that Corylites 

hebridicus is a member of the Betulaceae. Without associated inflorescences coupled with the 
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undifferentiated nature of this family in the Paleocene it impractical to assign AM3 to a modern 

genus. Cory/ites hebridicus is therefore considered as an archaic member of the Betulaceae with 

an unknown generic affinity. 

3.11 Angiosperm Morphotype 4 (AM4) 

3.11.1 Specimen numbers 

The specimen numbers of this morphotype are: ACC: 006, 0014, AM.NA.001-b,d, 006-b, 016-

a, 061-a, 084-a, 099, 109-a, 164-a, AM.NA.2008.016-a, NMS.G.2004.29: 01S-c, 019-a, 047-e, 

f, On-b, ACC.AM.032-b. 

3.11.2 Diagnosis 

Blade attachment marginal,laminar size microphyll to notophyll, laminar L:W ratio -2: I, 

laminar shape elliptic, Medially asymmetric, base possibly asymmetrical, unlobed, margin 

serrate. Apex angle acute, apex shape unclear acute and or acuminate with a drip tip, base angle 

unclear obtuse and or reflex, base shape unclear convex and or cordate. Primary veination 

pinnate, naked basal appear veins absent, three to five basal veins, compound agrophic veins. 

Major secondary veins craspedodromous, interior secondary veins absent, minor secondary 

veins craspedodromous, major secondary spacing decreasing proximally, secondary angle 

increasing abruptly proximally, major secondary attachment ex current or proximally decurrent. 

Intersecondary veins absent. Intercostal tertiary vein fabric opposite percurrent with obtuse vein 

angle that increases proximally. Epimedial tertiary veins opposite percurrent with proximal 

course parallel to intercostal tertiary veins or perpendicular to the midvein and distal course 

parallel to intercostals or basi flexed. Exterior and higher order venation not visible. Tooth 

spacing regular or irregular, with two orders of teeth and 2 to 3 teeth/ cm, sinus shape angular. 

Tooth shapes convex/convex, straight/convex and concave/convex. Principal vein present with 

termination at tooth apex. 

3.11.3 Identification 

Angiosperm morphotype 4 (AM4) overall fonn and venation pattern are similar to AM3 (see 

section 3.10), but is distinguished from this other morphotype by differences in medial 

symmetry, margin, base form and secondary veins. Specimens of AM4 are typically medially 

asymmetric; this is not a unique feature of this morphotype as AM3 also display this 

characteristic. The degree of asymmetry however, appears to be greater for AM3, but the 

precise differences between the two sides of the laminar cannot be determined due to the 

fragmentation of the specimens. 

The margins of both AM3 and AM4 are broadly similar but the teeth of AM3 are typically more 

rounded or triangular in shape compared to AM4, which often has a more prominent projection 
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of the tooth apex. The base shape of AM4 is partially preserved in several specimens but is not 

complete, but appears to be more rounded and possibly asymmetric compared to AM3. 

Perhaps the most distinguishing feature that differentiates the two morphotypes is the anatomy 

of the secondary veins. The major secondary veins of AM4 develop significant branches and or 

forks. The major secondary veins that are forked bifurcate near to the margin, which is rare or 

altogether absent in AM3. These differences in morphology are consistent enough to warrant 

their differentiation into two morphotypes. 

The close morphological resemblance of AM4 with AM3 suggests that it is a related species, 

and possibly another form of Corylites. The secondary vein branches and forking at the ends of 

the secondary veins, however, may indicate that this morphotype is related to family Ulmaceae. 

The genus Ulmus within the Ulmaceae is similar to both Corylites and modern Corylus 

(Betulaceae) in its overall form and venation patterns, but has secondary vein forks and 

prominent secondary vein branches that are similar to AM4. This may suggest that AM4 is 

Ulmus relative, AM4 was compared to Paleogene representatives of the Ulmaceae to determine 

if it is member of this family or another betulaceous leaf type. 

Specimens of Ulmites ulmifolius from the Paleocene and Eocene plant assemblages of Svalbard 

indicate that the two leaf types share some common features (K vacek et a1. 1994). Both leaf 

types have quite broad compound teeth, forked secondary veins and tightly spaced intercostal 

tertiary veins. The leaves of Ulmites ulmifolius are, however, unlike those of AM4 as the 

laminar is narrower, less asymmetric, the secondary vein forks are more frequent and they 

appear to lack agrophic veins. 

Ulmus okanaganensis from the mid-late Eocene of British Colombia displays significant 

polymorphism with its foliage, and some of these morphs are similar to AM4 (Denk and 

Dillhoff 2005). The larger, possibly sucker foliage is very similar to AM4 as the secondary 

veins forks develop further from the margin, the primary teeth are much larger than secondary 

teeth, and they posses agrophic veins. The smaller leaves of Ulmus okanaganensis are very 

similar to the smaller leaf specimens of Ulmites ulmifolius, which suggests polymorphism of 

ulmaceous foliage was prevalent in the early Paleogene. Leaves similar to the small leaves of 

Ulmites ulmifolius and Ulmus okanaganensis have not been observed in the Alit Mor 

assemblage. The absence of these leaf types may suggest that AM5 is not a representative of the 

Ulmaceae, or simply that these leaves have not been discovered or preserved within the 

assemblage. Another characteristic feature of Ulmites ulmifolius and Ulmus okanaganensis is 

their petiole, which is short and thick, which is typical of modern Ulmus (Denk and Dillhoff 

2005). Petioles of AM4 have not been observed, so it is not certain if the Skye leaves shared this 

feature. 
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Two specimens of Corylites hebridicus from Ardtun figured by Boulter and Kvacek (1989) 

(V.26316 and V.25109) appear similar to AM4 as they have prominent vein branches and 

forked secondary veins. These specimens may have been misidentified, and may potentially 

represent a distinct species that is comparable to AM4. Boulter and K vacek (1989) extracted 

and analysed cuticle from V.26316 to determine its affinity more comprehensively, the cuticle 

extracted was poorly preserved and thin, but showed features, particularly of stomatal 

morphology that are similar to the Betulaceae. The absence of Ulmaceae-like pollen from the 

BTVP (Jolley 1997, Jolley et a1. 2009) also suggests that AM4 is not a member of the 

Ulmaceae. 

The morphology of AM4 suggests it may either represent a member of the Ulmaceae or the 

Betulaceae. Evidence from leaf cuticles from Ardtun, the BTVP palynomorph record and shared 

morphological features of Corylites hebridicus indicates that AM4 is more likely a 

representative of the Betulaceae. The close similarity to Corylites hebridicus suggests that AM4 

may represent another related species, and is regarded as "Corylites cf.". This identification is 

tentative, however, as the leaves of AM4 are still similar to the Ulmaceae. Additional specimens 

with attached petioles and cuticular preservation are required to conclusively demonstrate its 

relationship with either the Betulaceae or Ulmaceae. 

3.11.4 Discussion 

The morphology and variation in leaf form of AM4 is relatively well understood as several well 

preserved specimens are present in the collection (e.g. AM.NA001-d, AM.NAOI6-a, 

AM.NA061-a, AM.NA.I09-d, AM.NA1 64-a, ACC.003-c) (Figures 3.23 and 3.24). The 

original laminar size can be estimated for some specimens (e.g. AM.NAOOI-d, AM.NA0061-a, 

AM.NAI09-d) due to their lower levels of fragmentation and margin preservation. Laminar 

size ranges between 1277 mm2 to 3073 mm2
, which indicates that the leaves fall within the 

microphyll to notophyll size classes. Laminar length:width ratios for some specimens (e.g. 

AM.NA061-a, AM.NA109-a, ACC.003-a) can be estimated and indicate that L:W ratios of the 

leaves are -2: 1 to 2.5: 1. Laminar shape appears to be unifonnly elliptic. 
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Figure 3.23. Specimens of A1\14. a) Ai\1.NA.06 1-a, b) line drawing of Ai\ 1.:'iA.06 1-a. c) Ai\1.:'iA.OO I­
d, d) line drawing of Ai\1.NA .OOI-d. Scale bars = I em. 
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Figure 3.24. Specimens of AM4. a) AI\1.NA.109-a, b) line drawing of AM.NA.109-a, c) ACC.003-c, 
d) line drawing of ACC.003-c, e) Al\1.NA.O 16-a, f) line drawing of AI\1.NA.O 16-a, g) AI\1.NA.16.t-a, 
h) line drawing of AI\1 .NA.164-a. Scale bars = I Clll. 
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The apex of AM4 is partially preserved and indicates that its shape was either straight (e.g. 

AM.NAOI6-b) or acuminate (AM.NAI09-a, ACC.003-c). The base shape of AM4 is unclear 

due to the partial preservation of this feature, but may be either cordate (e.g. AM.NA.OO l-d) or 

convex (e.g. ACC.003-c) (Figures 3.23-c and 3.24-c). Basal symmetry is also unclear, but in at 

least one specimen, (AM.NAOOI-d) the curvature of the midvein and partially preserved basal 

margin indicates that it may have been asymmetric (Figure 3.23-c). 

Major secondary vein angles are acute to the midvein and range from 30 0 to 40 0 in the central 

section of the laminar and increase abruptly towards the base where angles range from of 30 0 to 

70 o. Secondary vein branches and forks are characteristic feature of this morphotype and set it 

apart from the other leaf types from Skye. The secondary vein branches diverge from the major 

secondary veins between 25 to 50% of their length and have a course similar to that of the major 

secondary. The secondary vein forks diverge nearer to the margin and form principal veins for 

the first order teeth (Figure 3.23-a ,b, 3.24-a.) 

The intercostal tertiary veins are opposite percurrent and have a variable course that can be 

either straight, convex or sinuous (Figure 3.23-a). The angle of the intercostal tertiary veins is 

obtuse to the midvein and increases proximally. Admedial intercostal vein angles range from 97 

o to 130 0, but angles of -120 0 are more typical. Exmedially the intercostal vein angles increase 

slightly but proximally they are most obtuse to the midvein, with a range of 140 0 to 150 o. The 

epimedial tertiaries are opposite percurrent and have variable proximal courses that can be 

either parallel to the intercostal tertiary veins or perpendicular to the midvein. The distal course 

appears to be consistently parallel to intercostal tertiaries. 

Tooth spacing appears to be relatively uniform, and there are between 2 to 3 teeth/cm. There are 

two teeth orders, which is unlike AM3, which has up to three orders of teeth. Both tooth orders 

have similar shapes that can be either concave/convex or convex/convex, sinus shape appears to 

be consistently angular (Figures 3.23-a, 3.24-a, e). The teeth are supplied by a principal vein 

that terminates at the tooth apex. The first orders teeth are supplied by the ends of major 

secondary veins, agrophics, vein branches or forks, the second order teeth appear to be primarily 

supplied by tertiary veins. 

3.11.5 Similarities with other fossil and modern taxa 

The taxonomic affinity of AM4 as discussed in section 3.11.3 revealed that its systematic 

position is uncertain as it may represent a species of the Betulaceae or Ulmaceae. The 

morphological features and floral record of the BTVP indicated that AM4 is more likely a 

species of Corylites that is distinct from C. hebridicus. If AM4 is, indeed, a species of Corylites 

then its similarities to other fossil and modem taxa is likely similar to that of AM3 (see sections 

3.10.5 and 3.10.6). If AM4 is a member of the Ulmaceae it may have Paleogene relatives that 
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occur in Svalbard, Canada and China, which appear to be related to modem genera such as 

Ulmus and Zelkova (Kvacek et al. 1994, Feng et a1. 2003, Denk and Dillhoff2005, Wang et a1. 

2010). Additional specimens with cuticular preservation are required to resolve the systematic 

position of AM4, and until such specimens can be collected it will remain tentatively as 

"Corylites cf.". 

3.12 Angiosperm morphotype S (AMS) 

3.12.1 Specimen numbers 

The specimen numbers of this morphotype are: ACC.004-c, AM.NA.082-e, AM.NA.I09-a. 

3.12.2 Diagnosis 

Laminar size microphyll, laminar shape unclear possibly elliptic, blade appears medially 

symmetric, unlobed, margin serrate. Apex not preserved, base angle appears to be acute, base 

shape unknown. Primary venation pinnate, agrophic veins absent. Major secondary veins 

craspedodromous, interior veins absent, minor secondary veins absent, major secondary spacing 

appears regular, secondary angle decreasing proximally, major secondary attachment 

proximally decurrent. Intersecondaries absent. Tertiary and higher order vein fabric not visible. 

Tooth spacing regular, one order of teeth, two teeth per/cm, sinus shape angular. Tooth shape 

convex/straight to straight/straight. Principal vein present with termination at the tooth apex. 

Tooth apex appears simple. 

3.12.3 Identification 

Angiosperm morphotype 5 (AMS) is composed of three poorly preserved leaf specimens. 

Despite of these low numbers there is sufficient morphological features present to identify this 

morphotype to a known fossil taxon, Pagopsis groenlandica. This morphotype is attributed to 

Pagopsis groenlandica as it has the same secondary vein characteristics and tooth form. 

Specimens of Pagopsis groenlandica from Ardtun, Mull are well preserved and appear similar 

to AM5. The margin of both leaf types is markedly similar, as they both have convex/convex to 

straight/straight tooth shapes, angular tooth sinuses, proximal flanks that are two to three times 

longer than the distal tooth flank and have principal veins that terminates at the tooth apex. 

The secondary venation characteristics are also similar and both leaf types share the same 

numerous, uniformly spaced, nearly straight course, acute angled craspedodromous veins with 

proximally decurrent attachment. The absence of agrophic veins and intersecondary veins is 

another feature these leaf types share. Secondary vein angles of AM5 in the central half of the 

laminar range from 40 ° to 50°. These secondary vein angles are consistent with the Ardtun 

specimens (Boulter and K vacek 1989). 
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The strong similarity between AM5 and Fagopsis groenlandica indicates that this morphotype 

is represents the same plant species. The genus Fagopsis was applied to leaves with attached 

inflorescences; therefore disarticulated leaves without the attached inflorescences cannot be 

attributed to this genus (Manchester 1999). Leaves with a similar form to Fagopsis have been 

reclassified to a different form genus, Fagopsiphyllum (Manchester 1999). The lack of attached 

or associated inflorescences within the leaf assemblages of the BTVP prevents an association 

with Fagopsis, instead the leaves from Ardtun and those of AlIt Mor should be regarded as 

Fagopsiphyllum groenlandica. 

3.12.4 Discussion 

The three leaf specimens that comprise this morphotype have been assigned to AM5 based on 

their secondary venation patterns (ACC.004-c, AM.NA.082-e, AM.NA.l 09-a) and their tooth 

morphology (excluding AM.NA. 109-a) (Figure 3.25). The original size of the leaf specimens is 

difficult to determine due to the high degree of fragmentation. The least fragmented specimens 

of this morphotype, (ACC.004-c and AM.NA.l 09-a) have laminar areas of 620 mm2 and 1057 

mm2 respectively (Figure 3.25-a, c). These area measurements are based on the fragmented 

perimeter of the specimens, and are therefore lower than the original area of the leaf. The 

laminar area estimates and the section of the laminar these fragments represent indicate that the 

leaves were originally microphyll to notophyll prior to their fragmentation. Laminar shape is 

equally difficult to gauge, the curvature of the margin of ACC.004-c indicates the original leaf 

may have been elliptic but this is tentative. 

The secondary veins of AM4 are perhaps its most distinctive feature and were used to identify 

this morphotype as Fagopsiphyl/um groenlandica (Figure 3.25). Secondary vein spacing is 

regular with little variability «20%). The angle of the secondary veins is fairly uniform, but 

decreases slightly basally. In the basal section of the laminar the secondary vein angles ranges 

from 36 ° to 38 0, and in the middle section of the laminar vein angles range from 42 0 to 54 0. 

The course of the secondary veins is nearly straight, but in the lower section of the laminar the 

secondary vein course is curved as a result of the decurrent attachment to midvein (Figure 3.25). 

Tooth morphology is known from two specimens, ACC.004-c and AM.NA.082-e, the former 

has teeth with a rounded apex while the latter has an acute tooth apex (Figure 3.25-a, e). This 

variability in tooth shape is also present in the Ardtun specimens of Fagopsiphy/lum 

groenlandica (Boulter and K vacek 1989), which indicates that this variability in tooth shape is 

typical of this leaf type. The other aspects of the tooth morphology of ACC.OO4-c and 

AM.NA.082-e are broadly similar, which confirms their mutual affinity. 
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Figure 3.25. Specimens of AJ\1S. a) ACC.004-c, b) line drawing of ACC.004-c, c) AM.NA .I 09-11, d) 

li ne drawing of ACC.004-c, e) AM.NA.082-e, f) line d rawing of AJ\1.NA .082-e. Scale ba rs = I CIlI . 
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3.12.5 Similarities with other fossil taxa 

The distribution of the Fagopsiphyllum during the Paleogene indicates it was widespread, with 

occurrences in the North America, Greenland, Europe, Russia and Japan before it became 

extinct in the late Oligocene (Brown 1962, Koch 1963, Wolfe 1977, Wolfe and Wher 1987, 

Boulter and Kvacek 1989, Kvacek 1994, Tanai 1995). 

Fossil leaves that share the same characteristic features of Fagopsiphyllum groenlandica have 

been described from the Early Paleocene of Atanikerdluk, northwest Greenland under the 

synonym Quercus groenlandicus (Koch 1963). The Greenland leaves are remarkably similar to 

those from the BTVP, indeed, Boulter and K vacek (1989) reclassified the genus to F agopsis 

groenlandica (now Fagopsiphyllum groenlandica) as they considered it to be the same species. 

The presence of Fagopsiphyllum groenlandica in northwest Greenland during the Early 

Paleocene provides further evidence that Arctic floral elements were mixing with those of 

Scotland, and they crossed the volcanically active land bridge of the North Atlantic Igneous 

Province (NAIP). 

Paleogene Occurrences of Fagopsiphyllum are not restricted to the BTVP and the Arctic, as 

leaves of this type have been described from North America (Wolfe 1977, Wolfe and Wehr 

1987, Manchester and Crane 1983, Postnikoff 2009). Paleocene representatives of this leaf type 

have been described from the Rocky Mountain region, US and Alberta, Canada. Brown (1962) 

described Quercus groenlandicus (syn Fagopsiphyllum groenlandica?) from the Paleocene of 

the Rocky Mountains, if this species is the same as Fagopsiphyllum groenlandica it suggests 

that this species had a relatively wide distribution in the Paleocene. 

Fagopsiphyl/um praegroenlandicum from the Early Paleocene of the Ravenscrag Formation 

represents another possible species of this genus (Postnikoff2009). The specimens described in 

Postnikoff(2009), however, indicate that this species is markedly different to Fagopsiphyllum 

groenlandica. The secondary veins of Fagopsiphyl/um praegroenlandicum are less uniform in 

angle, curvature and spacing, the teeth are more irregular in size and shape, and the Tertiary 

vention is markedly different to Fagopsiphyl/um groenlandica of Ardtun, Mull. The 

morphology of Fagopsiphy/lum praegroenlandicum is different to the other North American 

species as well, including those associated with reproductive structures (Manchester and Crane 

1983). It is possible that this leaf type has been wrongly ascribed to this form genus and may 

represent another taxon entirely. 

Fagopsiphyllum leaves have also been described from the Middle Eocene of North America 

from the Republic region, Washington (Wolfe and Wehr 1987). Leaves described as Fagopsis 

undulata from these localities show the same overall features of Fagopsiphyl/um, but the teeth 

of F. undulata are more rounded and the base is more acute, and in some specimens asymmetric 
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(Wolfe and Wehr 1987). Fagopsis undulata is likely a close relative of Fagopsiphyllum 

groenlandica but it appears morphological distinct. 

Fagopsis longifolia is arguably the best characterized species of this leaf type as it has been 

found with attached inflorescences and fruits (Manchester and Crane 1983). These attached 

reproductive structures demonstrate that was an extinct member of the Fagaceae; the 

implications of this association are discussed in greater detail in section 3.12.6. The leaves of 

Fagopsis longifolia are very similar to Fagopsiphyllum groenlandica, more so than the other 

species of Fagopsiphyllum described previously. The margin and secondary veins appear almost 

identical in most respects, the L:W ratios of the two leaf types are also consistent with ratios of 

2-3: 1 for both leaf types (Manchester and Crane 1983, Boulter and Kvacek 1989). The age 

difference between the Paleocene Fagopsiphyllum groenlandica and the Oligocene Fagopsis 

longifolia indicates that these two leaf types represent two distinct species, but they may be 

closely related. 

3.12.6 Similarities with modern taxa 

The discovery of Fagopsis longifolia leaves with attached inflorescences and fruits has provided 

strong evidence that leaves of this type represent members of the Fagaceae (Manchester and 

Crane 1983). The reproductive characteristics indicate that this plant represents an extinct 

member of the Fagaceae that is unlike any modem genus of this family. Manchester and Crane 

(1983) have suggested that this genus may have appeared in the Paleocene and that the 

Fagaceae were potentially beginning to diversify in the Paleocene and Early Eocene. 

Manchester (1999) reclassifed the leaves of Fagopsis that lack any attached inflorescences to 

the form genus Fagopsiphyllum. Furthermore Manchester (1999) stated that true representatives 

of Fagopsis (those with attached inflorescences) have not been recorded outside North America. 

The absence of attached inflorescences with the leaves of Fagopsiphyllum groenlandica of Mull 

and Skye prevents a definitive association with the Fagaceae. 

The close morphological resemblance of Fagopsiphyllum groenlandica and Fagopsis longifolia 

does indicate that these two leaf types may represent closely related species. On this basis the 

leaves of AM5 from BTVP are tentatively associated with the Fagaceae and the genus Fagopsis, 

but this association requires the discovery of inflorescences to be definitive. 
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3.13 Angiosperm morphotype 6 (AM6) 

3.13.1 Specimen numbers 

The specimen numbers of this morphotype are: ACC.OOI-b, g, j, AM.NA.084-h. 

3.13.2 Diagnosis 

Leaf attachment appears sessile. Blade attachment marginal, laminar size microphyll, laminar 

shape appears elliptic, blade medially symmetric, basal insertion asymmetric, unlobed, margin 

not preserved. Apex not preserved, base angle obtuse, base shape convex. Primary venation 

pinnate, naked basal veins absent, three basal veins, agrophic veins absent. Major secondary 

veins semicraspedodromous, interior secondary veins absent, minor secondary veins absent, 

major secondary vein spacing irregular, secondary vein angle increasing proximally, major 

secondary attachment excurrent. Intersecondary span> 50% of subjacent secondary veins, occur 

one per intercostal area, proximal course parallel to major secondary, and distal course 

basi flexed or parallel to major secondary. Intercostal tertiary veins irregular reticulate. 

Epimedial tertiary veins reticulate with proximal course parallel to intersecondary and distal 

course parallel to intercostal tertiary veins. Exterior tertiary course looped. Quaternary vein 

fabric alternate percurrent. Quinternary vein fabric reticulate. Aerolation development moderate, 

freely ending veinlets absent. Marginal venation looped. 

3.13.3 Identification 

Angiosperm morphotype 6 (AM6) is a rare component of the AlIt Mor leaf assemblage with 

only four specimens that are considered to belong to this morphotype, three of which occur on 

the same laminar of one sample (ACC.OO 1). These specimens do not have their apex or margin 

preserved (except proximally on ACC.OO I-g) but have very clear venation clarity, which has 

facilitated the identification of this morphotype. 

One leaf type of Ardtun, Mull, Juglandiphyllites ardtunensis, closely resembles AM6 in both its 

venation pattern and basal morphology (Boulter and Kvacek 1989). The base shape of AM6 is 

convex with an asymmetric basal insertion of -2 mm which is identical to Juglandiphyllites 

ardtunensis. The base of AM6 appears to lack a petiole, which may suggest the leaves had a 

sessile attachment, which seems to be the case for Juglandiphyllites ardtunensis (Boulter and 

K vacek 1989). Both leaf types also have similar basal margin characteristics, which are entire 

and slightly erose. 

Venation patterns of both leaf types are broadly similar with pinnate, semicraspedodromous 

primary and secondary veins, an absence of agrophics, irregular reticulate intercostal and 

epimedial tertiary veins, irregular reticulate quaternaries and retic~late quinternary veins. One 
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difference has been observed in their venation characteristics, however, and that is the 

frequency and strength of the intersecondary veins. The intersecondary veins of AM6 are 

numerous, with typically one per intercostal area. The best preserved specimen of 

Juglandiphyllites ardtunensis (V25133) has only one intersecondary vein present. This 

intersecondary is present in the upper portion of the laminar and has a course that is similar to 

some of the intersecondary veins of AM6. 

The similarity in all vein orders and basal morphology indicates that these two leaf types may 

represent the same or closely related taxa. The only visible difference between the two leaf 

types is their intersecondary vein morphology. Whether the frequency of the intersecondary 

veins represents intra-specific variation or inter-specific differences is currently unclear because 

of the low number of specimens of both AM6 and Juglandiphyllites ardtunensis. 

It is likely that these leaf types are closely related, but whether they represent the same species 

is unclear. AM6 is therefore regarded as being in the same form genus as Juglandiphyllites 

ardtunensis but as a different species until further morphological evidence can be found that 

could unite the two leaf types. AM6 is therefore considered to be Juglandiphyllites sp.l. 

3.13.4 Discussion 

Specimens of AM6, although limited in number, have provided a good understanding of its 

overall form and venation characteristics (Figures 3.26 and 3.27). The original laminar area and 

size class of AM6 is difficult to determine due to the limited number of specimens and their 

fragmented preservation. Two of the specimens of AM6 are relatively complete, ACC.001-b 

and AM.NA.084-h (Figure 3.26-a and 3.27-a), which have laminar areas (fragmented perimeter) 

of 1849 mm2 and 1536 mm2 respectively. This indicates that the leaves were originalIy 

microphyll to notophyll prior to their fragmentation. The lack of margin preservation prevents a 

reliable determination of the shape of the leaf, but the venation near to where the margin would 

be in ACC.001-b and the curvature of its secondary veins indicate that its shape is elliptic. 

The base of AM6 is completely preserved in one specimen, ACC.OOI-g (Figure 3.26-c), which 

shows that that this leaf type had a convex base shape with an asymmetric basal insertion. The 

presence of an asymmetric basal insertion and apparent lack of petiole indicates that this leaf 

type may have had a sessile attachment, and possibly therefore the leaflets may have a 

compound arrangement. The base angle of ACC.OO I-g is -95 0, which indicates that the basal 

angle is obtuse but close to being acute. Margin is preserved around the base of ACC.OO I-g and 

is entire and slightly erose (Figure 3.26-c}.1t is unclear whether the rest of the margin was 

entire, comparisons with Juglandiphyllites ardtunensis of Ardtun suggests that the margin of 

AM6 may have possessed a limited number of small crenate teeth. Additional specimens of 
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AM6 are required to confim1 whether the margin was entire or toothed, which could help 

detennine if thi s morphotype is the same species as }/lglalldiphyllites ardtullellsis . 
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Figure 3.26. Specimens of Ai\16. a) ACC.OOI -b, b) line drawing of ACC.OOI-b, c) ACC.OOI-g, d) line 
drawing of ACC.OOI-g. Scale bars = I cm. 
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Figure 3.27. Specimens of A1\1 6. a) A1\1.NA .084-h, b) line drawing of A1\1 .NA.084-h, e) ACC.001 -j , 
d ) line drawing of ACC.001-j. Scale ba rs = 1 em. 
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The venation patterns of this morphotype are well preserved in three specimens, ACC.001-b, g 

and j (Figure 3.26-a, c and 3.27-c). Secondary vein spacing appears irregular on the most 

complete specimen (ACC.001-b), the cause of this irregular spacing may be related to the 

presence of the intersecondary veins. The intersecondary veins diverge from the laminar at 

irregular intervals, and may function in a similar way to the major secondary veins (contributing 

to their irregular spacing). Major secondary vein angles appear be relatively uniform with angles 

in the central to upper portion of the laminar ranging from 34 0 to 47 0 (mean 40 0
). ACC.OOI-g 

shows there is slight increase basally, with secondary vein angles of 40 0 to 59 o. 

The intersecondary veins of this morphotype are one of its diagnostic features and were used to 

establish its identity. The proximal course of the intersecondary veins appears not to vary and is 

parallel to the major secondary vein. The distal course of the intersecondary veins is more 

variable and can be basiflexed or parallel to the major secondary. 

The intercostal tertiary veins are irregular reticulate and form variable polygonal vein shapes, 

the epimedial tertiaries are reticulate with a proximal course parallel to intersecondary and a 

distal course parallel to the intercostal tertiaries. The marginal tertiaries form a series of small 

loops between the leaf margin and the outer edge of the secondary veins. The irregular reticulate 

quaternary and reticulate quinternary veins, along with the lower order venation form areoles of 

a fairly consistent size and shape indicating the areolation development is moderate to good. 

Freely ending veinlets appear absent, but venation of this high order is only preserved in limited 

areas of one specimen (e.g. ACC.001-g). 

3.13.5 Similarities to other fossil taxa 

The leaf form and venation characteristics of AM6 indicate it represents a member of the form 

genus Juglandiphyllites, which is associated with the family Juglandaceae. This form genus 

represents a useful if somewhat ambiguous taxon, with leaves that show affinities to the 

Juglandaceae but cannot confidently associated with a specific genus within this family 

(Manchester 1989). 

The fossil record of the Juglandaceae is extensive. Leaves, wood, pollen, and reproductive 

structures are known from across the Northern Hemisphere from the Cretaceous and Paleogene 

(Manchester 1989). The extensive review of the early history of the Juglandaceae by 

Manchester (1989) indicates that many modem genera including Platycarya. Cyclocarya, 

Pterocarya and Juglans as well several extinct genera had evolved in the Paleogene. 

Two species of Juglandiphyllites are present in the Ardtun leaf assemblage of Mull: 

Juglandiphyllites ardtunensis and Juglandiphyllites finlayii (Boulter and K vacek 1989). As 

discussed in section 3.13.3 Juglandiphyllites ardtunensis may represent a closely related species 
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to AM6, while the morphology of Juglandiphyllites finlayii is markedly different. 

Juglandiphyllitesfinlayii has a serrate margin with up two tooth orders, semicraspedodromous 

to craspedodromous secondary veins and weaker intersecondary veins that set it apart from 

AM6. 

Two species of juglandaceous affinity have been recognised from the Late Paleocene Cold Ash 

Quarry of the Reading Beds, southern England (Crane and Manchester 1982). One of these 

leaflets shows similarities to modem genus Pterocarya while the other although similar, is 

regarded to represent an extinct genus (Crane and Manchester 1982). These two leaf types are 

distinctly different to the leaves of AM6, their margins are finely serrate, and they lack the 

characteristic intersecondary veins and reticulate intercostal tertiary veins of AM6. 

Leaves associated with the Juglandaceae are present in the Early Paleocene of Greenland 

(Juglandiphy/lum denticulatum. Koch 1963). The base shape of J. denticulatum is straight with 

an acute angle and its margin is finely serrate (Koch 1963), these features show that it is distinct 

from AM6. 

Fossil leaves of Juglandiphyllites glabra from the Paleocene of Wyoming and Montana are 

exceptionally well preserved (Manchester and Dilcher 1997). This North American species has 

specimens that have their leaflets attached to a rachis, which indicates that the leaves were 

compound, with one terminal leaflet and five to seven lateral leaflets (Manchester and Dilcher 

1997). This leaflet arrangement is characteristic of the Juglandaceae, which is partially 

confirmed by the association of Polyptera fruits with the leaves. The leaves of AM6 are 

dissimilar to Juglandiphyllites glabra, which itself displays a resemblance to Juglandiphyllum 

denticulatum of Greenland. Leaves associated to the Juglandaceae have been reported from 

other North American Paleogene localities (Brown 1962, Wolfe 1966, Hickey 1977, Wolfe 

1977, Crane et al. 1990, Manchester and Dilcher 1997). All specimens of these juglandaceous 

leaf types have morphological characteristics that set them apart from AM6. 

The absence of jug landa ceo us leaf types similar to AM6 and Juglandiphyllites ardtunensis of 

Mull from other Northern Hemisphere regions may indicate that these plants were endemic to 

the BTVP. 

3.13.6 Similarities to modern taxa 

Boulter and K vacek (1989) discussed the affinities of Juglandiphyllites ardtunesis and stated 

their reticence in assigning this taxon to a modem group within the Juglandaceae. 

Juglandiphyllites ardtunesis and AM6 does share the same basic venation morphology of 

modem members of the Juglandaceae, as well the asymmetric basal insertion and apparent 

absence of a petiole (Manchester 1989). The Juglandaceae appear to have evolved in Late 
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Cretaceous or Paleocene, but relatively few modern genera have been identified in the 

Paleocene (Manchester 1989). It is unclear to which modern or extinct genus the Mull and Skye 

forms most resemble. 

The marginal characters of Juglandiphyllites ardtunesis are more indicative of Jugians but this 

association is tentative at best. In terms of gross morphology the leaves of the extant Juglans 

look remarkably like those of Juglandiphyllites ardtunesis and AM6. The modern leaves do, 

however, differ from fossil forms in their tertiary venation. The modem leaves have mixed 

percurrent intercostal tertiary veins that are unlike the reticulate tertiary veins of the Paleocene 

BTVP forms. 

Juglandaceous pollen is present in the interbasaltic sequences of the BTVP, and is both 

relatively common and diverse (Boulter and Kvacek 1989, Jolley 1997, Jolley et al. 2009). The 

presence of pollen attributed to the Juglandaceae suggests that this family was present in the 

BTVP during the Paleocene, and provides further support that AM6 may be a member of the 

Juglandaceae. Pollen genera found in the BTVP sequences include Caryapollenites, Momipites, 

Platycaryapollenites, and Plica polis (Jolleyet al. 1997, Jolley et a1. 2009). The diversity of 

juglandaceous pollen types suggests that juglandaceous plants were potentially diverse 

components of BTVP plant communities. Possible producers of the pollen include members of 

the sub-tribe Caryinae (Caryapollenites), basal members of the Engelhardioideae tribe 

(Momipites) and extinct forms of Platycaryeae sub-tribe (Piatycaryapollenites) (Manchester 

1989). Modem members of these sub-tribes have leaves that are unlike those of AM6, but this 

may be due to the relatively undifferentiated nature of Paleocene pollen attributed to the 

Juglandaceae (Manchester 1989). 

The absence of Juglandaceae reproductive structures from the Skye and Mull assemblages 

prevents an accurate assignment to this family. The distinctive leaf morphology of AM6 and 

presence of juglandaceous pollen does suggest it was probably a member of this family. On this 

basis AM6 is tentatively attributed to the JugJandaceae, but its generic affinity are unknown. 
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3.14. Angiosperm morphotype 7 (AM 7) 

3.14.1 Specimen numbers 

The specimen number of this morphotype is: NMS.G.2004.29.008-e. 

3.14.2 Diagnosis 

Laminar size nanophyll, laminar L:W unknown, laminar shape appears elliptic, blade appears 

medially symmetric, base symmetry unknown, unlobed, margin serrate. Apex not preserved, 

base angle appears acute, base shape unclear (appears convex or straight). Primary venation 

pinnate, number of basal veins unknown, agrophic veins absent. Major secondary veins 

semicraspedodromous, interior veins absent, minor secondary veins absent, major secondary 

vein spacing decreasing proximally, secondary vein angle smoothly increasing proximally, 

major secondary attachment excurrent. Intersecondary length <50% of subjacent secondary, 

proximal course parallel to major secondary, distal course parallel to subjacent major secondary, 

vein frequency -1 per intercostal area. Intercostal tertiary vein fabric unclear (appears 

percurrent with an acute angle), angle variability unknown. Epimedial tertiary veins opposite 

percurrent with a proximal course acute to midvein and distal course parallel to intercostal 

tertiary veins. Exterior tertiary course not visible. Higher order venation not visible. Tooth 

spacing irregular with two orders of teeth, and 3 teeth/em. Sinus shape angUlar, tooth shape 

concave/convex. Principal vein present with termination at apex of tooth. Tooth apex appears 

mucronate. 

3.14.3 Identification 

Angiosperm morphotype 7 (AM7) is represented by a single fragmented specimen 

(NMS.G.2004.29.008-a), but has enough morphological characteristics preserved to distinguish 

it from other angiosperm morphotypes from Skye. This morphotype has distinctive secondary 

and tertiary vein patterns, marginal characteristics. 

The shape, venation and marginal characteristics indicate that AM7 may be similar to 

Juglandiphyllites jinlayii of Ardtun, Mull (Boulter and K vacek 1989). The single specimen of 

AM7 although fragmented appears to have a similar shape to this taxon, which appears elliptic, 

relatively long and narrow (L: W -3: 1) and has appears to have an acute base angle. 

The major secondary veins of Juglandiphyllitesjinlayii are semicraspedodromous in the 

proximal portion of the laminar, which appears similar to AM7. Boulter and K vacek (1989) 

note that one of the characteristic features of Juglandiphyllites jinlayii is the asymmetry of its 

major secondary vein angles. The secondary veins on one side of the laminar are curved and 

relatively acute, while those on the other side have straighter courses and are obtuse to the 

midvein. This is apparant for AM7, but it is unclear if this pattern continues further up the 
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laminar. Juglandiphyllites ./inlayii also has intersecondary veins that appear similar to AM7. As 

they span <50% of the subjacent major secondary and have proximal and distal courses that are 

parallel to the major secondary veins. 

The margin of Juglandiphyllites finlayii is serrate with prominent teeth like AM6 but differs to 

this morphotype in that it has two teeth orders, which Boulter and Kvacek (1989) described as 

"coarsely double dentate". This feature is not apparent in AM7, but may be due to the limited 

number of teeth preserved. The teeth of AM7 have concave distal and convex proximal flanks 

and the tooth apex is nearly parallel to the midvein. The teeth of Juglandiphyllites finlayii have 

convex/convex shapes and the tooth apex is more obtuse relative to the midvein. The tooth apex 

of AM7 appears to have an opaque projection, which suggests it may be mucronate. The tooth 

apex of Juglandiphyllites finlayii appears simple and lacks any discernable projection. 

The shared characteristics between AM7 and Juglandiphyllites ./inlayii indicate that these two 

leaf types may be related, but significant differences in their margins shows they represent 

different species. AM7 also shares two features in common with AM6 (Juglandiphyllites sp.l) 

as well, which include the presence of intersecondary veins and the course of the most basal 

secondary veins. The basal most proximal vein course of AM6 appears to run along close to the 

margin before they join the supetjacent secondary vein close to the margin. 

The similarity of AM7 with two species of Juglandiphyllites indicates that it may be assignable 

to this form genus, but as a new species. Additional specimens of this morphotype are required 

to provide further evidence of its identity but based on its morphological characteristics its 

assignment to the form genus Juglandiphyllites appears justified. AM7 is therefore regarded as 

Juglandiphyllites sp.2. 

3.14.4 Discussion 

The single specimen of AM7, NMS.G.2004.29.008 (Figure 3.28) appears to be unique to the 

Alit Mor assemblage because of its small laminar size. The fragmented area of 

NMS.G.2004.29.008-a, is 80 mm2, estimates of its original size based on the curvature of the 

laminar indicate it may have been have been little more than 150 mm2. This morphotype is the 

only one in the Skye assemblages that appears to have a nanophyllleaf size, while the other 

angiosperm morphotypes appear to be least microphyll. 

The base of AM7 is not preserved so it is difficult to determine its original shape, but the 

curvature of the margin preserved in the proximal portion of the laminar indicates that the shape 

may have been convex or straight. The angle of the base is equally difficult to determine but 

appears to be acute with an angle of -70° . 
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Figure 3.28. T he single specimen of AM7. a) NMS.G.2004.29-008-a, b) li ne drawing of 
NMS.G.2004.29-008-a. Scale bars = 1 Col. 

The major secondary veins are simple semicraspedodromous and only fonn one loop between 

the secondary veins before they branch off towards the margin and become principal veins for 

the teeth . The major secondary vein angles vary on either side of the laminar, those preserved on 

the right side of the laminar are curved and have more acute vein angles, those on the left have a 

straighter course and have more obtuse angles (Figure 3.29). 

The tertiary venation is poorly preserved for this morphotype but appears to be opposite 

percurrent, the course of which varies from convex to straight. The variability of the intercostal 

secondary veins is unclear due to the limited number preserved but they appear to be obtuse. 

The epimedial secondary veins proximal course is acute to the midvein and its distal course is 

parallel to the intercostal tertiary veins. 

The marginal characteristics of AM7 are very distinctive because of the tooth shape and the 

orientation and features of the tooth apex. The distal flanks of the teeth are concave and the 

proximal flanks are concave with a relatively deep, angular tooth sinus (Figure 3.29) . The teeth 

appear almost hook like with the distal flank curving sharply inwards, causing the apex of the 

tooth to be close to the margin and pointing almost parallel with that of the midvein . A principle 

vein is present and enters the centre of the tooth and curves distally along the margin before 

tenninating at the tooth apex . The most completely preserved tooth of AM7 has an apex that 

f0n11S a vascularised opaque mass indicating it may be mucronate (Figure 3.29). 
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3.14.5 Similarities to other fossil and modem taxa 

This morphotype was identified as a new species, Juglandiphyllites sp.2. Its morphology and 

those of the other members of this form genus indicate that it is a member of the Juglandaceae 

whose generic affinity is uncertain. Comparisons with the fossil relatives of AM6 

(Juglandiphyllites sp.l.) discussed in section 3.13.5 indicate that this morphotype is unlike other 

Paleocene members of the luglandaceae from the Northern Hemisphere. These Paleocene 

members of the Juglandaceae discussed in section 3.13.5 are also different morphologically to 

AM7, which suggests that this morphotype, like AM6, may be endemic to the BTVP. 

AM7 appears to be similar to Juglandiphy/lites finlayii of Ardtun, Mull but was shown to be a 

distinct species (see section 3.14.3). Boulter and K vacek (1989) commented on the taxonomic 

affinity of Juglandiphyllites finlayii and suggested tentatively that this leaf type may be related 

to the modem genus Platycarya of the Juglandaceae. Platycarya-like pollen is known from the 

BTVP (Platycaryapollenites) (Jolley 1997, Jolley et al. 2009), which suggests Platycarya-like 

pollen producers were present in the BTVP. AM7, and possibly Juglandiphyllitesfinlayii do not 

appear to be that similar to modem or Paleogene representatives of the Platycarya (Wing and 

Hickey 1984, Atkinson and Upson 2006). Another morphotype from the AlIt Mor assemblage, 

AM8 (see section 8.15) appears to resemble this genus more, which suggests AM7 may 

represent another juglandaceous genus entirely. 

The leaf morphology of Juglandiphyllites finlayii and AM7 appears to be similar to modem 

Alafaroa of the Juglandaceae (Dilcher and Manchester 1986). The margin of AM7 in particular, 

is remarkably similar to modem species of Alafaroa (A. costaricaensis and A. costaricaensis 

spp.) figured in Dilcher and Manchester (1986) in both shape and the tooth apex form. The 

tooth apex of both AM7 and modem Alafaroa appears to have an opaque structure at the tooth 

apex and the shapes are both concave/convex. These features along with a broadly similarity in 

venation patterns may indicate that AM7 is related to Alafaroa. 

The genus Alafaroa is part of the Engelhardioideae tribe, which includes three other modem 

genera; Engelhardia, Oremunnea, and Aljaropsis (Manos and Stone 2001, Manos et a1. 2007). 

Fossil and molecular evidence of this tribe indicates they have shared ancestry, and first 

appeared in the Paleocene (Manchester 1989, Manos and Stone 2001, Manos et a1. 2007). Fruits 

of Cash oidia microptera from the Late Paleocene Cold Ash Quarry of the Reading Beds in 

southern England, may represent one of the oldest records of the Engelhardioideae tribe (Crane 

and Manchester 1982, Manchester 1989, Manos and Stone 200 I, Manos et al. 2007). The 

morphology of the winged fruits of Cash oidia microptera indicates that it was possibly an early 

ancestor of the Engelhardioideae tribe that is distinct from the modem genera in this tribe. 

Similar fruits are also present from the mid Paleocene of Menat, France (Manchester 1989), 

which suggests that early members of this tribe were common in Europe during the Paleocene. 
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Casholdia-like fruits have not been identified in any of the BTVP floral assemblages, but pollen 

attributed to the Engelhardioideae tribe is present (Momipites-type) (Jolley 1997, Jolley et a!. 

2009). Dispersed anthers of juglandacous affinity were found in association with Casholdia in 

the Cold Ash Quarry site, and the pollen extracted from these anthers was identified as 

Momipites (Crane and Manchester 1982). Momipites-type pollen is produced by modem 

members of the Engelhardioideae tribe and the presence of this pollen type from the Cold Ash 

Quarry and the BTVP provides further evidence that this tribe was present in Europe during the 

Paleocene. 

Four species of Momipites pollen are present within sedimentary sequences of the BTVP (Jolley 

1997, Jolley et al. 2009). The diversity and distribution of this pollen type indicates that 

Momipites-pollen producers were a common component of the BTVP flora. The association of 

Momipites with other members of the Engelhardioideae tribe is not unequivocal, however, as it 

has been found in association with other genera of the Juglandaceae in North America 

(Manchester 1989). In Europe, however, Momipites pollen has only been associated with the 

fruits of the Engelhardioideae tribe (Manchester 1989). This indicates that Momipites pollen, 

AM7, and possibly Juglandiphyllites finlayii may represent archaic members of the 

Engelhardioideae tribe. The association with this tribe is not definitive as Casholdia-like fruits, 

and leaves with cuticle preserved have yet to be discovered in the BTVP plant assemblages that 

could confinn this assertion. AM7 is therefore tentatively associated to the Engelhardioideae 

tribe until its relationship can be more conclusively determined. 

3.15 Angiosperm morphotype S (AMS) 

3.15.1 Specimen numbers 

The specimen numbers of this morphotype are: AM.NA.023, III-b, 184, AM.NA.2008: 006-a, 

008-a, OIO-a, 01 1-c, NMS.G.2004.29: 008-f, 01 I-c, 014-c, 023-f, i, 1, OSS-e, f, 066-a, 066-b, c,j, 

072-a, ACC.AM.099-b, NMSG.2002.64: S-a, b, c, d. 

3.15.2 Diagnosis 

Leaf attachment appears sessile, leaf organisation unclear (possibly pinnately compound), 

leaflet attachment sessile. Blade attachment marginal, laminar size microphyll to notophyll, 

laminar L:W ratio -2.8:1 to >5:1, laminar shape elliptic. Blade medially symmetrical or with an 

asymmetric basal insertion, unlobed, margin serrate. Apex angle acute, apex shape acute or 

acuminate with a drip-tip, base angle acute to slightly obtuse, base shape convex. Primary 

venation pinnate, naked basal veins absent, one basal vein present, agrophic veins absent. Major 

secondary veins craspedodromous, interior secondary veins absent, minor secondary veins 

craspedodromous, major secondary vein spacing decreasing proximally, secondary angle 

inconsistent, regular or smoothly decreasing proximally, major secondary attachment excurrent. 
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Intersecondary length> 50% of subjacent major secondary, proximal course parallel to major 

secondary, distal course parallel to major secondary, vein frequency < 1 per intercostal area. 

Intercostal tertiary vein fabric opposite percurrent with obtuse vein angle. Epimedial tertiary 

veins opposite percurrent with proximal course perpendicular to mid vein or parallel to the 

midvein and distal course parallel to intercostals tertiary veins. Exterior tertiary not preserved. 

Higher order venation not visible. Tooth spacing regular to irregular, two orders of teeth, and-2 

teeth per/cm. Sinus shape angular or rounded, tooth shapes straight/straight, flexous/straight or 

convex/straight. Principal vein present with termination at the tooth apex. Tooth apex appears 

simple. 

3.15.3 Identification 

Angiosperm morphotype S (AMS) is one of the more abundant leaf types of the Alit Mor 

assemblage of Skye and has many well preserved specimens, that have aided its identification. 

The venation and marginal characteristics of AM8 appear broadly similar to AM7 and 

Juglandiphyllites finlayii of Ardtun, Mull. Of these two leaf types, Juglandiphyllites finlayii 

appears most similar to AM8 but can be distinguished from this species by its margin 

morphology. The teeth of AMS are primarily simple, they have straight/straight, flexous/straight 

or convex/straight tooth shapes compared to the more convex/convex compound teeth of 

Juglandiphy/lites finlayii. The teeth of AM8 although serrate like Juglandiphyllites finlayii are 

more perpendicular to the trend of the margin (near dentate) compared to those of the Mull leaf 

type whose teeth follow the trend of the margin. These features, and the simple tooth apex of 

AM8 differentiates it from AM7. 

Despite of these differences in leaf form AM8 does appear to be related to these aforementioned 

leaf types, as its secondary veins have a similar curved course and the intersecondary veins 

appear broadly similar. This suggests that AM8 may represent another species of 

JuglandiphylJites. One feature in particular provides additional evidence that AM8 is a member 

of the Juglandaceae and that is its leaf attachment. Sample NMS.G.2004.29.66 has what appear 

to be three leaflets of AM8 attached to a rachis-like structure. This arrangement is typical of the 

Juglandaceae and has been observed in other Paleocene forms of this family (Manchester 1989, 

Manchester and Dilcher 1997). 

The leaf form of AM8 appears most similar to modern Platycarya strobilacea in its overall 

shape, apex and basal form, including attachment, margin and venation characteristics 

(Atkinson and Upson 2006). Platycarya-like pollen is present in BTVP including some of the 

Skye sequences (Jolley 1997), which are among the oldest records of this pollen type 

(Manchester 1989), this suggests that AMS may represent an ancestral species of Platycarya. 
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The absence of Plarycarya-like reproductive structures in the BTVP prevents a definitive 

association with this genus, however. It is likely that this morphotype represents a species of 

Platycarya, or species that is ancestral to this genus, it is therefore regarded as "Platycarya cf." 

until its relationship with modem and extinct representatives of Plarycarya can be more 

adequately determined. 

3.15.4 Discussion 

The morphology of AMS is well understood as number of specimens are well preserved (e.g. 

AM.NA.1 S4-a, NMS.G.2004.29.11-c, NMS.G.2004.29.066-b, NMSG.2002.64.5-a, 

AM.NA.200S.009-a, AM.NA.023-a) (Figures 3.29 to 3.31). This morphotype appears to be 

unique among the angiosperm morphotypes of Skye as its leaflet attachment is partially 

preserved. Three leaflets of AM8 (NMS.G.2004.29.066-b, h, i) appear to be attached to a rachis­

like structure (Figure 3.29). The arrangement and orientation of these leaves is consistent with 

the curvature of a plant organ that appears similar to a rachis (Figure 3.29-a). The bases of these 

specimens terminate at, or near the edge of the rachis. One leaflet (NMS.G.2004.29.066-b) 

appears to have an organic connection with the rachis-like structure, the primary vein at its most 

basal point gently curves towards the rachis and appears attached at this point (Figure 3.29-a, c). 

The leaflets appear to lack a true petiole, and none of the disarticulated specimens in the AlIt 

Mor collection have a petioles preserved (Figures 3.29-c, 3.20-a, c). This arrangement suggests 

that the leaflets had a sessile attachment to the rachis and may have been pinnatley compound. 

The termina11eaflet of this arrangement, if originally present, is not preserved. A disarticulated 

specimen (NMS.G.2004.29.011-c) may potentially represent a terminal leaflet (Figure 3.30-c). 

It is one of the largest specimens of AMS and appears to be longer and narrower than other 

specimens of this morpho type (L:W ratio -5: 1), but in venation and margin characteristics it is 

the same. If this specimen does represent a terminal leaflet, it may suggest that the leaflets had a 

variable form depending on their position on the rachis. The base of some specimens have been 

preserved (e.g. Figures 3.29-c, 3.20-a, c) and show that AMS had an asymmetric basal insertion, 

a feature it shares with AM6. This feature is common in leaves that have a sessile attachment, 

such as those in the Juglandaceae (Manchester 19S9); this suggests that AM6 may have also 

been attached to a rachis. 
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Figurc 3.29. Attac hment of AM8 lea fl ets to a rachis. a) Three leaflets (:\":\ IS.C .200.U9.066-b. h. i) 
that appear attached to the petuolule, b) line drawing of J\'M '.C .200-' .29.066-b. h, i lea fl ets and 
their associa tion with the petuolule, c) base of ;\:\1S.C.2004.29.066-b sho\\ ing it s attachment to the 
pctll ollllc, d) line drawing of J\'MS.C.2004.29.066-b. Sca le bars = lem. 
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Figure 3.30. Exa mples of well preserved specimen of A 18. a) AM. NA.1 84-n, b) linc drawing of 
AM.NA. 184-a, c) NI\1S.C .2004.29. II -e, d) line drawing of NI\1 S.C .2004.29.II-e, e) 
NMS.G.2004.29.066-b, f) line drawing of Ni\l S.C.2004.29.066-b, g) NMSC.2002.64.5-a, h) linc 
d rawing of NMSC .2002.64.5-a. Seale bars = I em. 

DeteJ111i ni ng the size range of thi s morphotype is more reli able than other more fragmented 

Illorphotypes of Skye as several specimens are nearly complete, or compl ete enough to reli abl y 

detennine thei r size cl ass (e.g. AM. A.O 1 84-a, MS .G.2004.29.0 II-c, MS.G.2004 .29.066-b, 

AM. A.2008.009-a) (Figures 3.30-a, c, e and 3.31-a). These specimens have laminar areas that 

range from 12 13 111m 2 to 2466 111m
2

, whi ch indicate that the leaves of AM8 were mierophyll to 

notophyll. Length:width ratio can be reli abl y detenn ined for at least two spec imens 
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(AM.NA.0184-a, NMS.G.2004.29.066-b) and approximated for a third (NMS.G.2004.29.011-c) 

(Figure 3.30-a, c, e). Specimens NMS.G.2004.29.066-b and AM.NAOI84-a have length:width 

ratios of -2.5: I and -2.8: I respectively and as discussed previously NMS.G.2004.29.011-c has 

significantly different L: W ratio of -5: I. 

Apex angle is acute, two specimens (NMS.G.2002.64.5 and AM.NAOI84-a) have apexes of 

-22.20 and-29 0, while NMS.G.2004.29.066-b has an apex angle of -69 o. Apex shape is 

variable it can be either acuminate with a distinct drip-tip (e.g. NMS.G.2002.64.5-a, 

NMS.G.2004.29.066-b,j) or straight (e.g. AM.NAOI84-a) (Figure 3.30-a, c, g). Base shape is 

convex with an asymmetric basal insertion. Base angle is variable and can be acute with an 

angle of82 0 (NMS.G.2004.29.011-c) to obtuse -1030 (AM.NA.OI84-a) (3.30-a, c). 

The course of AM8 craspedodromous major secondary veins are often strongly curved, this 

feature in conjunction with the presence of intersecondary veins was used to assign some of the 

more fragmented specimens to this morphotype. Major secondary vein spacing in the central 

portion of the laminar is fairly irregular, but categorically AM8 spacing is regarded to decrease 

proximally. 

Major secondary angle vein is variable, some specimens (e.g. NMS.G.2004.29.049-h, 

AM.08.L4.01-a) appear to have inconsistent vein angles across the course the laminar, while 

others s have veins whose angles either increase proximally (NMS.G.2004.29.023-I, 

NMS.G.29.084-a, AM.NA023-a), or decrease proximally (e.g. NMS.G.2004.29.011-c). The 

angles of the secondary veins in the central portion range from 49 0 to 82 0 but are typically 

between 50 0 to 70 o. The angle of the secondary veins appears to be strongly influenced by the 

degree to which the secondaries veins curve; the relatively straighter veins have more acute 

angles, while the curved veins are more obtuse. 

Intersecondary vein frequency is difficult to determine for AM8 as they are often poorly 

preserved because they are a lower gauge than the major secondary veins. Specimens that have 

higher venation clarity appear to have relatively few of them, with less than one per intercostal 

area. The length of the intersecondary veins are relatively short and none observed are longer 

than 50% of subjacent major secondary veins. The proximal course of the intersecondary veins 

is typically perpendicular to the midvein, but some are parallel to the major secondaries, the 

distal course is parallel to the major secondary veins. 
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Intercostal tertiary veins are rarely preserved for this morphotype. The specimen with the 

greatest intercostal tertiary vein preservation is AM.NA.023-a (Figure 3.31-c). The intercostal 

tertiary veins are percurrent with courses that can be nearly straight or sinuous. The angle of the 

tertiary veins is obtuse, and exmedially they range from lOS 0 to 144 0 (mean 119 0
). The 

epimeidal tertiary veins are percurrent with a variable proximal course that can be perpendicular 

or parallel to the midvein. The distal course of the epimeidal tertiary is unclear due to limited 

preservation, but appears to parallel to intercostals tertiary veins. 

The margin of AM8 is distinctive and is quite unlike any other leaf type from Alit Mor. The 

teeth are relatively large and extend away from the margin for some distance in the central part 

of the laminar, they become smaller towards the apex (Figures 3.30-a, c, e and 3.31-a). 

Typically the distal and proximal flanks are straight, which gives the tooth a distinctive 

triangular shape. The flanks of the teeth have different length, the distal flanks are 

approximately one third the length of the proximal flanks (Figure 3.31-a). 

The teeth are primarily of a single order, they show little range in sizes, except for a slight 

decrease in scale towards the proximal and distal portion of the laminar. A single specimen 

(NMS.G.2002.64.S-a) has a smaller tooth emerging from the proximal flank of the superajcent a 

tooth (Figure 3.30-h). The presence of this smaller tooth indicates that AM8 had up to two 

orders, but the majority of the teeth appear to be first order. The teeth are supplied by a principal 

vein that curves inside the tooth and terminates at its apex. 

3.15.6 Similarities to other fossil taxa 

Fossil leaves associated with Platycarya have not been reported from the Paleocene, the earliest 

records of this genus are fruits from the Early Eocene of Europe and North America (Reid and 

Chandler 1933, Wing and Hickey 1984, Manchester 1987). The morphology of AM8 is 

remarkably similar to modern Platycarya, which suggests that its related to this modern genus. 

The leaves of AM8 along with associated pollen in the BTVP may therefore represent one of 

the earliest records of Platycarya. 

Two Eocene species ascribed to Platycarya, P. americana and P. castaneopsis occur in 

association with Platycarya fruits from Wyoming and Dakota (Wing and Hickey 1984). The 

leaves of these two forms are markedly different to AM8 particularly in their base shapes and 

margin strcutre. The leaves of P. americana have an acute base angle with a straight base shape 

and its margin is finely serrate. The leaves of P. castaneopsis also have an acute base angle and 

straight base shape, the margin of this species has more prominent teeth, but they appear to be 

more irregular in shape and spacing, and nearly denate. These differences in base and margin 

form indicate that these leaf types are quite unlike AM8. Manchester (1987) suggested that 

although the fruits found at these localities represent ancestral members of the Platycarya, the 
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associated leaves were unlike those of this genus and may represent distinct genera, a view also 

shared by Boulter and Kvacek (1989). 

Platycarya pollen (Platycaryapol/enites) is used as a zone taxa for the Late Paleocene to Early 

Eocene in the Northern Hemisphere, particularly in North America where it becomes abundant 

and widespread during this interval (Wing 1984). The presence of this pollen type in the mid 

Paleocene of the BTVP (Jolley 1997), suggests it may have originated in this region, or 

elsewhere in Europe. The relatively sudden appearance of this pollen type in the Late Paleocene 

of the Northern Hemisphere may indicate that it had migrated from Europe through the North 

Atlantic Igneous Province (NAIP) and into the Arctic, where it spread throughout the Northern 

Hemisphere. 

3.15.7 Similarities to modern taxa 

As previously stated in section 3.15.3, AM8 appears remarkably similar to the modem genus 

Platycarya of the Juglandaceae. It shares the same overall form, venation patterns and leaflet 

attachment. The absence of Platycarya reproductive structures from the BTVP prevents an 

accurate assignment to this modem genus, and so AM8 is regarded as "Platycarya cf' until 

these structures can be found. One of the oldest unequivocal records of this genus are fruits of 

Platycarya richardsoni from the Early Eocene London Clay of southern England (Reid and 

Chandler 1933). These fruits indicate that members of this genus had appeared by the Early 

Eocene and AM8 may represent an ancestor or related species to those from the Eocene in 

southern England. 

3.16 Angiosperm morphotype 9 (AM9) 

3.16.1 Specimen numbers 

The specimen numbers of this morphotype are AM.NA: 059-a, 224, AM.NA.2008: 009-a, 013-

a, NMS.G.2004.29: 30-a, 039, 098-b, NMSG.2002.64.3-j. 

3.16.2 Diagnosis 

Leaf attachment petiolate, blade attachment marginal. Laminar size notophyll-mesophyll, 

laminar length:width ratios -1: I, laminar shape ovate, medial symmetry unclear possibly 

asymmetric, base symmetry unknown, unlobed margin crenate-serrate. Apex angle obtuse, apex 

shape convex or acuminate shape without a drip tip, base angle reflex, base shape cordate. 

Primary venation basal actinodromous, naked basal veins absent, five to seven basal veins 

present, agrophic veins compound. Major secondary veins semicraspedodromous, interior 

secondary veins absent, minor secondary veins semicraspedodromous, major secondary spacing 

irregular, secondary angle inconsistent, major secondary attachment ex current. Intersecondary 

veins absent. Intercostal tertiary vein fab~c alternate percurrent to mixed percurrent with obtuse 
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vein angle. Epimedial tertiary veins alternate percurrent with proximal course acute to midvein 

and distal course parallel to intercostal tertiary. Higher order vein fabric not preserved. Tooth 

spacing regular, with two orders of teeth, 3 teeth per/em, sinus shape rounded. Tooth shape 

convex/convex. Principal vein course unclear, tooth apex simple but indented. 

3.16.3 Identification 

Angiospenn morphotype 9 (AM9) is a relatively rare leaf type within the Alit Mort assemblage 

but includes one specimen that is nearly complete and others that have either well preserved 

venation margins or bases. This morphotype is characterised by its ovate to elliptic shape, 

strongly cordate base, basal actinodromous primary, semicraspedodromous secondary venation 

and crenate serrate margin. This morphotype shares a strikingly similar to Vitiphyl/um sewardii 

of Ardtun, Mull (Boulter and Kvacek 1989). 

Vitiphyl/um sewardii laminar shapes are ovate, which corresponds to the morphology of AM9. 

Laminar length:width ratios are comparable and are -1:1 or <1: 1. The apexes of both leaf types 

have obtuse apex angles with shapes that are either convex or acuminate without a drip tip. Base 

shape is unifonnly cordate with a reflex angle. The cordate bases have a long and broad basal 

sinus, which is characteristic of AM9 and Vitiphyl/um seward;;. The bases of Vitiphyl/um 

sewardii have an asymmetric basal extension, where one of the basal lobes is larger than the 

other. This feature has not been observed in the Alit Mor specimens due to the partial 

preservation of the base. 

The primary, secondary and tertiary venation of both leaf types is consistent as both have basal 

actinodromous semicraspedodromous arrangement with alternate percurrent-opposite percurrent 

tertiary veins. Both leaf types also have compound agrophic veins and five to seven basal veins 

present. 

The margin of AM9 is one of its defining characteristics, with its simple crenate-serrate teeth 

that have convex distal and proximal flanks. Two teeth orders are present; the first order is the 

least frequent and is supplied by lateral primary veins. The first order teeth are two to three 

times larger than the secondary teeth and often extend for some distance, giving the leaf a near 

lobate form. The second order teeth are approximately the same shape as the first order teeth 

and are widely spaced. This same marginal configuration is identical to Vitiphyl/um sewardii of 

Mull. 

The strong morphological similarities in overallieafform, venation and margin between these 

two leaf types indicates they represent the same species. AM9 is therefore identifed as 

Vitiphyl/um sewardii. 
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3.16.4 Discussion 

The leaves of AM9 vary in their degree of fragmentation. Most of the leaf specimens are small 

fragments but one specimen (e.g. AM.NA059-a) is nearly complete (Figure 3.32-a). This 

morphotype appears to be characterised by large leaves, even the highly fragmented specimens 

have fragmented areas of 2500 mm2 to 3500mm
2

• The most complete specimen, AM.NA.059-a 

has an estimated original laminar area of 4200 mm2
• These laminar area measurements suggest 

that the leaves were notophyll to possibly mesophyll in size. These size estimates are lower than 

Ardtun specimens of this leaf type, which are within the mesophyll to megaphyll size range. 

Laminar L:W ratios are difficult to detennine for most specimens due to fragmentation, but 

AM.NA059-a is complete enough to estimate at -1: I. Laminar shape is unclear due to 

fragmentation, but the curvature of the laminar indicates the leaves were originally either ovate 

or elliptic (Figures 3.32-a, c and 3.33-c). 

Apex morphology of this morphotype is known from two specimens (AM.NA.059-a and 

NMSG.2002.64.3-j) have different apex shapes. The shape of AM.NA.059-a is convex while 

NMSG.2002.64.3-j has a more accuminate apex that lacks a drip tip (Figures 3.32-a and 3.33-c). 

The apex angle is obtuse for both specimens, irrespective of apex shape. Basal preservation is 

limited two specimens (AM.NA.2008.012-a, NMS.G.2002.64.3-j), have cordate base shapes 

with a reflex angle of -2500 (Figure 3.33-a, c). 

The secondary venation of this morphotype is distinctive. The major semicraspedodromous 

veins are branched or forked, and fonn loops with adjacent secondary or primary veins near to 

the margin. Secondary vein spacing appears to be fairly inconsistent along the outer primary 

veins but increases proximally in the central primary vein. Secondary vein angles are difficult to 

detennine for most specimens due to fragmentation or limited preservation, but one specimen 

(AM.NA.2008.012-a) has sufficient preservation to detennine the vein angles. The major 

secondary veins diverge from the central primary with angles of 390 of 490 and appear relatively 

unifonn, the secondary veins on the outer primaries are not preserved in AM.NA2008.0 12-a so 

it is impossible to gauge if they have inconsistent angles like other specimens of this 

morphotype. 
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Figure 3.32. Specimens of AM9. a) AM.NA.059-a, b) line drawing of A;\I.\'A.059-a, c) r\\I.\,A.22.t. 
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The intercostal tertiary veins are primarily alternate percurrent, but some are opposite percurrent 

and have sinuous courses. Intercostal vein angle variability is difficult to access for this 

morphotype as the specimen with most complete and clear tertiary venation, AM.NA.224, lacks 

the majority of its laminar area. The epimedial tertiary veins are alternate percurrent and have 

proximal courses that are acute to the midvein and have distal courses that are parallel to 

midvein. Due to the limited number of specimens with tertiary preservation it is difficult to 

determine if there is variability in epimedial tertiary venation. 

The margin of AM9 is distinctive and a key characteristic of this morphotype. Only two 

specimens have teeth preserved, (AM.NA.59-a and AM.NA.224), AM.NA.S9-a has the most 

intact margin and most complete teeth (Figure 3.32-a, c). The margin of AM.NA.224 although 

reasonably complete appears to be fragmented and the teeth partially preserved making them 

difficult to access. The proximal and distal flanks of the teeth are convex but their lengths vary, 

typically the proximal flanks of the teeth are two to three times longer than that of the distal 

flanks. The teeth of AM9 are primarily simple, but the teeth with principal veins supplied by the 

outer primary veins are larger and appear to be compound with two orders of teeth. These larger 

teeth give the leaf an almost palmately lobed appearance, but the sinus between the veins is 

weakly developed so this morphotype is not considered to be lobed. A notable feature of some 

of the teeth of AM.NA.59-a are their indented apices (Figure 3.32-a). The structure of these 

indentations is not clear. There does not appear to any cavities or opaque tissues associated with 

them. Principal veins supply both tooth orders and appear to be derived from the primary, 

secondary and tertiary veins. 

3.16.5 Similarities to other fossil taxa 

Leaves associated with Vitiphyllum are relatively rare in the Paleocene and have only been 

described from Mull, Svalbard and Greenland (Boulter and K vacek, K vacek et a!. 1994, 

Birkenmajer and Zastawniak 2005). The latter was originally assigned to Acer but is regarded 

currently as Vitiphyllum (Kvacek et a1. 1994, Birkenmajer and Zastawniak 2005). A more recent 

collection from Svalbard by Birkenmajer and Zastawniak (2005) has provided more 

Vitiphyllum-like foliage. The specimens collected are poorly preserved and highly fragmented. 

preventing an accurate comparison. These specimens do not have any margin or apexes 

preserved and have poor venation clarity, but it is clear that they are not similar to BTVP forms. 

These leaves either represent another species of Vitiphyllum or another genus entirely. 

Additional better preserved specimens are required to improve its systematic position and 

determine whether they are comparable to the BTVP forms. 

Other Vitaceae-like foliage is reported from the Paleocene of west Greenland. The Greenland 

specimens described by Koch (1966) of Vitis olriki share some characters in common with 

Vitiphyllum. particularly the venation and the base shape. These leaves are distinct from 
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Vitiphyllum seward;;, however, in that they are more elongate with a more acute apex and have 

far fewer teeth. These two leaf types may be related but appear to represent distinct species 

associated with the Vitaceae. 

Boulter and K vacek (1989) discussed the similarities of Vitiphyllum with fossil representatives 

of the Vitaceae, and found that Vitiphyllum seward;; was unlike other Paleogene members of 

this group. This suggests that this leaf type may represent an endemic form of the Vitaceae that 

may be related to species in Greenland and Svalbard. 

3.16.6 Similarities to modern taxa 

Boulter and Kvacek (1989) discussed the affinities of Vitiphyllum sewardii in relation to modem 

families and concluded that this leaf type may represent a member of the Vitaceae based on its 

form, margin and venation characteristics. They did, however, refrain from formally associating 

it with the modem genus Vitis based on the absence of seeds or other reproductive structures 

(Boulter and Kvacek 1989). The Mull and Skye specimens of Vitiphyllum are probably 

representatives of the Vitaceae but without preserved reproductive structures the association to 

this family is tentative. If AM9 (Vitiphyllum sewardii) is a member of the Vitaceae it may 

represent a woody vine, which is a common habit of this family (Gianoli 2004). The other 

angiosperm morphotypes of the BTVP appear to represent woody shrubs or trees (Boulter and 

Kvacek 1989, Jolley 1997, Jolley et a1. 2009). Vitiphyllum sewardii therefore seems to represent 

the only plant with a liana habit in the BTVP. 

3.17 Angiosperm morphotype 10 (AM 10) 

3.17.1 Specimen numbers 

The specimen numbers of this morphotype are: AM.NA.2009: 026-a, NMS.G.200S.14S.013-b. 

3.17.2 Diagnosis 

Laminar size microphyll to notophyll, laminar L: W -2: I, laminar shape elliptic, medially 

symmetrical, base appears symmetrical, unlobed, margin entire. Apex angle acute, apex shape 

acuminate forming a drip tip, shape unclear appears convex, base shape unclear possibly 

convex. Primary venation pinnate, presence of naked basal veins and number of basal veins 

unknown, agrophic veins absent, minor secondary veins absent. Major secondary veins 

eucamptodromous, interior secondary veins absent, minor secondary veins absent, major 

secondary spacing decreasing proximally, secondary angles range uniform. Intercostal tertiary 

vein fabric opposite percurrent. Epimedial tertiary veins not preserved. Higher order venation 

not visible. 
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3.17.3 Identification 

Angiospenn morphotype 10 (AMIO) is a rare component of the Skye flora, but specimens of the 

this morphotype have been identified from AlIt Mor and Glen Osdale, and possibly from AlIt 

Geodh' a' Ghanhna, suggesting it was widespread in riparian environments on Skye. This 

morphotype shares many characteristics in its overallieaffonn, venation and margin 

characteristics with fossil leaves of Cornophyllum hebridicum from Ardtun, Mull. Specimens of 

from both localities appear to have elliptic laminar shapes and have approximateL:W ratios of 

-2: I to 2.5: I. Despite the limited preservation of the margin in the Mull specimens it appears to 

be entire as do the specimens from AlIt Mor and Glen Osdale, although several of the Alit Mor 

specimens (e.g. AM.09.L4.28-a and AM.09.L4.0036-a) appear to have slightly erose edges in 

the upper portion of the laminar. Apex shape is similar as both leaftypes have well developed 

acuminate apexes that fonn a prominent drip-tip. 

The venation of AM I 0 appears identical to Cornophyl/um hebridicum of Ardtun, and both share 

the same characteristic pinnate eucampatodormous arrangement. The basal eucamptodromous 

secondary veins curve steadily towards the apex and follow the edge of the margin for some 

distance. The more distal secondaries are less numerous and more widely spaced. Another 

distinctive similarity between these two leaf types is the course of the distal most secondary 

veins, which diminish in gauge and extend up the apex adjacent to the leaf margin. The tertiary 

venation of AM lOis poorly preserved but appears to be similar to Cornophyllum hebridicum as 

both have opposite percurrent intercostal veins that are widely spaced. 

The close similarity in the laminar form, venation and margin of AM 10 with Cornophyllum 

hebridicum suggests that these two leaf types represent the same species, AM lOis therefore 

regarded as Cornophyllum hebridicum. 

3.17.4 Discussion 

This morphotype is represented by a limited number of specimens, but these have enough 

morphological characters preserved to differentiate it from other morphotypes and provide an 

understanding of the overall form of this morphotype. The most complete specimens of AM 10, 

(AM.NA.2009.026-a and NMS.G.200S.145.013-b) (Figures 3.34-a and 3.35-a) have an 

estimated laminar areas of 1452 mm2 and I 785mm2 respectively, which indicates their original 

laminar size class was microphyll. The L:W ratio of the laminar is difficult to determine from 

the fragmented specimens, but is estimated to have been -2: I to 2.5: 1. Laminar shape is unclear 

but based on the curvature of the margin and vein course it appears to be elliptic. 

Medial symmetry is variable and appears to be related to the course of the primary vein. Leaves 

that have primary veins with a straight course are medially symmetric (e.g. 
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NMS.G.2005.145.013-b), while leaves with curved primary course are slightly asymmetric (e.g. 

AM.NA.2009.026-a). 

The margin appears entire, specimen NMS.G.2005.145.013-b has the most complete margin 

which extends from the base to approximately the middle of the laminar, appears to be entire for 

its entire preserved length (Figure 3.34-a). Specimen AM.NA.2009.026-a has margin preserved 

along the distal portion the laminar and along the apex and appears to be entire except for a 

small projection (Figure 3.35-a). Careful examination of this projection indicated that it was not 

a tooth as it appeared to lack any supporting venation, and may be a artefact of preservation or 

. an undulation in the entire margin. 

The apex of AM.NA.2009.026-a acute, its shape appears to be acuminate forming a distinct drip 

tip structure. The base of this morphotype is not preserved but margin near the base suggests its 

angle have been acute and had a convex shape (Figure 3.35-a). 

The major secondary veins of this morphotype are eucamptodromous, which is not seen in other 

morphotypes from Skye. The major secondary vein spacing in the lower, central, and basal 

portion of the laminar gradually decreases. Secondary vein angle variability across the laminar 

ranges from being appears to be unifonn, vein angle measurements from NMS.G.200S.14S.0 13-

bare 47 ° to 52 ° in the central portion of the laminar and proximally range from 49 ° to 52 o. 

The intercostal tertiary veins are poorly preserved but appear to be opposite percurrent with a 

primarily straight course, and widely spaced. 



126 

b) .' 

/it 
.. .. .. : . 

..1'0 

.' 

.' ' . 
,' . 

...... 

..... ,' .. 
. ' 

.... 

" . 

.•............................ 

d) 

Figure 3.34. Specimens of AMI O. a) Ni\ IS.C.200S.14S.I3-b, b) line dra\\ ing of ~;\I .C.200S.14S.13-
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Figure 3.35. Specimen of AM I O. a) AM .NA.2009.026-a, b) line d rawing of AM.NA.2009.026-11 . 

3.17.5 Similarities to other fo ssil taxa 

A comprehensive review of the at1inities and morphology of COrl1ophy llulIl was carried out by 

Manchester et aJ. (2009) who studied lea f material from the United States of America, Russia, 

Scotland and Greenland. Thi s study has confimled that at least some speci es of COrllop hy llll1Jl 

are attributable to the modern genus Comus, which has distinctive trichome morphology. 

Cornus sll 'il1g i i is a newly described Paleocene reprehensive of the Cornaceae and has been 

found in several localities in Montana, Wyoming, North and South Dakota. This species is 

reliably pl aced in the modern genus Comlls because it has trichomes preserved that arc 

characteri stic of th is modem genus (Manchester et al. 2009). Specimens of ConI/IS slt'ingii 

figured by Manchester et al. 2009 indicate that it hares some simi larities with Com ophyl/llllJl 

hebridicl/I/l (AM 10) of the BTV P, but differs markedl y in most respects. Both taxa share the 

same elliptic laminar shape, entire, sli ghtl y erose margin in the upper portion of the laminar and 

has eucamptodromous secondary veins. The major differences between Comus s1I"il/g ii and 

COn7ophy lftlJ1l hehridicUlIl includes its broader length :width ratio, the lack of a acuminate apex 
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with drip-tip, and it has three to five pairs of secondary veins opposed to four or five in 

Comophylllum hebridicum. 

Comus swing;; distribution is broad across the western interior of the United States, but 

Manchester et a1. (2009) noted its occurrence is patchy and is restricted to a few sites within this 

range, but where it does occur it is an abundant element of the flora. This distribution pattern 

seems to be similar for Comophyllum newberryi, which is putatively associated to the 

Cornaceae (Bercovici et a1. 2008). Specimens of Comophyl/um newberry; described by 

Bercovici et a1. (2008) share many characteristics with Comophyllum hebridicum, as their 

laminar shape is elliptic, the apex is acuminate, the margin is entire and the venation is broadly 

similar. There are key differences between these taxa, however, as Comophyllum newberryi has 

a greater number of secondary veins which are spaced fairly evenly across the laminar, the 

course of secondairy veins is less curved, and the secondary vein angle appears more obtuse 

compared to Comophyllum hebridicum. 

The Paleocene Atanikerdluk locality of Greenland also contains leaves associated to Comus, 

Comus hyperborea (Manchester et al. 2009). The venation characteristics of Comus 

hyperborea indicate that it has an affinity with the Cornaceae, but the characteristic Comus 

trichomes are not preserved, and it therefore cannot be considered definitively as Comus 

(Manchester et al. 2009). The highly fragmented specimens of Comus hyperborea figured by 

Manchester et al. (2009) are too poorly preserved to establish whether this taxon was similar to 

Comophyllum hebridicum. Manchester et al. (2009) noted that both Comus hyperborea and 

Comophyllum hebridicum have secondary veins that originate in the basal or central portion of 

the laminar and are infrequent more distally, which may suggest that they are similar. 

The European record of Comus includes the previously mentioned Comophyllum hebridicum of 

the BTVP and Comus platyphylla from the Late Paleocene of Sezanne, France. Specimens of 

Comus platyphylla described in Manchester et a1. (2009) show remarkable similarities to 

Comophyllum hebridicum in its laminar form, margin and venation characteristics. It does, 

however, differ to Comophyl/um hebridicum in that it has at least five pairs of secondary veins. 

The close morphological relationship between these two taxa and their close geographical and 

age suggests that these taxa may share a possible common ancestor. 

Two Asian species are described in Manchester et al. (2009), Comophyllum sWindiiformis and 

Comus krassilov;;. The single specimen of Comophyllum swindiiformis figured by Manchester 

et al. (2009) shows its venation patterns in the basal-central portion of the laminar are broadly 

similar to Cornophyllum hebridicum. The basal morphology of Comophyllum swindiiformis is 

much broader with a more obtuse base angle compared to Comophyllum hebridicum. Comus 

krassilovii has the characteristic Comus trichomes and is therefore considered as member of this 
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modem genus (Manchester et a1. 2009). Comus krassilovii differs significantly to 

Cornophyllum hebridicum in regards to its secondary veins which fonn loops at their 

extremities, a feature not observed in the BTVP fonns. 

It appears that members of the Comaceae, including members of the modem genus Comus were 

present and, indeed, widespread in the Paleocene. Cornophyllum hebridicum may be distantly 

related to these species, but appears to be most closely related to Comus platyphylla from the 

Late Paleocene of Sezanne, France. 

3.17.6 Similarities to modern taxa 

Boulter and K vacek (1989) accessed the similarities of C. hebridicum with modern taxa; the 

limited preservation and low number of the specimens they studied prevented them from 

making a finn association with modern taxa. Indeed they questioned whether the Cornaceae was 

present in the Cretaceous or early Paleogene (Boulter and K vacek 1989). 

Manchester et a1. (2009) has shown that that not only was the family Cornaceae present but that 

the modern genus Comus was already established in the Paleocene. The presence of the 

characteristic calcified trichomes, unique to Cornaceae are present in at least two species, 

Comus swingii of the US and Comus krassilovii of Russia. Manchester et a1. (2009) did not re­

examine the Ardtun specimens of Cornophyllum hebridicum and were therefore unable to 

detennine if this species was a member of the genus Comus. 

Further investigation of whether trichomes were present for both the Skye and Mull specimens 

of Cornophyllum hebridicum is required to access if they are representatives of Cornus. 

Therefore it is prudent to retain the fonn genus Cornophyllum for the BTVP fonns until it can 

be shown that they have calcified trichomes, Cornophyllum hebridicum (AM 10) is therefore 

tentatively associated to the family Cornaceae but has an undetennined generic affinity. 

3.18 Angiosperm morphotype 11 (AM11) 

3.18.1 Specimen numbers 

The specimen numbers of this morphotype are: AM.NA: 173, 219-b, AM.NA.2008.012-b, 

NMS.G.2004.29: 0.23-a, 024-d, 035-a. 

3.18.2 Diagnosis 

Leaf attachment petiolate. Blade attachment marginal, laminar size microphyll, laminar L:W 

ratio -1: 1, laminar shape appears ovate, elliptic or obovate, blade medially symmetrical, base 

symmetry unknown, unlobed, margin crenate-serrate. Apex angle unknown, apex shape unclear 

appears convex or acuminate without a drip-tip, base angle reflex or possibly obtuse, base shape 
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cordate or possibly truncate. Primary venation basal actinodromous, naked basal veins absent, 

six to eight basal veins, agrophic absent. Major secondary veins appear semicraspedodromous, 

interior secondary veins absent, minor secondary vein course unclear possibly 

semicraspedodromous, major secondary spacing abruptly increasing proximally, secondary 

angle inconsistent, major secondary attachment excurrent or decurrent. Intersecondary veins 

absent. Tertiary, and higher order venation not visible. Tooth spacing irregular, two orders of 

teeth, 3 teeth per/cm. Sinus shape rounded, tooth shape convex/convex. 

3.1S.3 Identification 

In overall appearance angiosperm morphotype II (AMIl) resembles AM2 (Trochodendroides) 

in its overall leaf form and its venation pattern, which may indicate that AMI I represents a 

second species of Trochodendroides. It does, however, differ to AM2 as its base shape, degree 

of bifurcation and number ofloops of the secondary veins, and its margin is markedly different. 

Fossil leaves of Zizyphoides appear to be the closest match morphologically to AM 11, two 

species Z. auriculata and Z.jlabella share many morphological similarities with AMII (Crane 

et at. 1991, Manchester et at. 1991). Both of these species are highly polymorphic in their leaf 

form, margin and venation patterns, which appears to be the case for AM II. 

The Miocene form, Z. auriculata has a variable shape that can be ovate, elliptic or obovate, the 

base shape can be rounded, truncate, concavo-convex or nearly cordate with an obtuse to reflex 

base angle, the apex is convex or emarginated with an obtuse or acute angle. The margin has 

prominent crenulations (teeth) that are highly irregular, and in some specimens can appear 

nearly palmately lobed. The primary venation is basal actinodromous, and the primary veins are 

relatively narrow gauge, the major secondary veins are semicraspedodromous that form loops 

near to the margin. The morphology of AM 11 is broadly similar to Z. auriculata as it appears to 

have similar laminar, base and apex shapes, its margin is also undulating and crenulated like Z. 

auriculata (Manchester et at. 1991). The primary veins of AM 11 are similar to Z. auriculata but 

the secondary veins do not appear to form loops as frequently as Z. auriculata, and the 

secondary veins bifurcate readily in AM 11. 

Zizyphoides flabella. was a widely distributed species that appears in Paleogene leaf 

assemblages in North America, Greenland, Svalbard and Asia (Crane et at. 1991). The 

secondary venation characteristics of Z. flabella appear most similar to AM 11, as its secondary 

veins bifurcate readily towards the margin. Like Z. auricula/a, Z. flabella is highly 

polymorphic, some of these morphs have basal shapes similar to AM 11, while others are 

rounded or have more acute basal angles. The margin of Z. jlabella is often entire, no entire 

margined species of AM 11 have been identified at Alit Mor. Morphs of Z. flabella with teeth 

have more rounded tooth shapes and have narrower tooth sinuses compared to AM II. 
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The morphological similarities of Z. auriculata and Z.jlabella with AMI 1 indicates that this 

morphotype appears to be a representative of the genus Zizyphoides. The differences in 

morphology between these two described species and AM 11 may be related to their 

polymorphism and the limited preservation of AM II, but may indicate that AM 11 represents a 

distinct species. The limited preservation of this morphotype prevents a more detailed diagnosis 

of its higher order venation patterns, which could help to determine its identity. It is therefore 

tentatively considered to be an indeterminate species of this genus, Zizyphoides sp. 

3.18.4 Discussion 

As discussed in the previous section (3.18.3) the leaves of AM II are polymorphic and display a 

wide variety of basal and margin differences, they can be recognised as the same morphotype, 

however, as their venation characteristics are similar. Specimens of AM 11 whose original 

laminar area can be estimated are microphyll, and range from 1273mm2 to 1712mm2
• Laminar 

length: width ratios are difficult to determine due to fragmentation of the specimens, but the 

most complete specimens (e.g. NMS.G.2004.29.024-d and AM.NA.I73) appear to have L:W 

ratios of -1: 1. Lamina shape appears to be highly variable, but difficult to detennine 

conclusively due to fragmentation. One specimen (AM.NA.I73) appears elliptic, another ovate 

(NMS.G.2004.29.03S-a) and one appears obovate (NMS.G.2004.29.024-d). Medial symmetry is 

unclear but it appears all specimens are symmetric (Figures 3.36-a, c, e). 

Three specimens have partially preserved apexes, which indicate that this morphotype had two 

apex shapes. Two specimens of AM 11 (NMS.G.2004.29.024-d and AM.NA.I73) appear to 

have acuminate apexes that lack a drip-tip, another specimen (NMS.G.2004.29.03S-a) appears 

to have a more convex apex shape. Base shape appears to be cordate for all specimens with 

bases preserved but the sinus is very broad which gives the base a near truncate or concavo­

convex appearance (e.g AM.NA.I73, AM.NA.2008.0 II-b and NMS.G.2004.29.024-d) (Figure 

3.36-a, c, 3.37-a). 
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Figure 3.36. Spec imens of Al\1 II. a) Nl\1S.G.2004.29.029-d, b) line drawing of ;\;\IS.G.2004.29.029-
d, e) A:\1.NA.173, d) line drawing of AM.lIIA.173, e) :\':\IS.G.2004.29.35-a, f) line drawing of 
NMS.G.2004.29.35-a. Scale bars = 1 em. 
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Fiourc 3.37. Spccimcns of AMII. a) AM.NA.200S.012-b, b) linc drllwing of AM.N A.200S.0 12-b, l') 
A;1.NA. 219-b. Scalc bars = Icm. 

The venation pattems of AM II are difficu lt to detcnnine as they are faintl y prcserved a trait that 

is shared with similar leaves from the Paleogene of Sva lbard (Clifton 20 I O. pers.eOIllIl1 ). Thc 

primary vei n are reasonably well preserved and their course is well understood, the secondary 
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veins are poorly preserved but show they fonn loops near the margin and bifurcate freely. The 

tertiary and higher venation is not preserved, which prevents an understanding of the higher 

order venation pattern of AM 11. The five primary basal actinodromous have a variable course 

that can be nearly straight, curved or sinuous. These primary veins often fork near the margin, 

where they appear to become the principle veins for the teeth in the distal portion of the margin 

(Figure 3.36-a). 

The margin of AM 11 is distinctive, it is crenate-serrate and the teeth are well rounded with 

broad rounded sinuses (AM.NA.2008.0 II-b) (Figure 3.36-e). Specimen AM.NA.219-b (Figure 

3.37-c) has a well preserved margin displaying several well preserved teeth and their sinuses, 

but has very poor venation clarity. The lack of venation clarity reduces the ability to identify, 

which morphotype it belongs to, the margin characterisitcs are similar to both Zizyphoides and 

Vitiphyllum seward;; (AM9). This specimen is regarded as a portion of Zizyphoides margin as 

the teeth lack the indentation at their apex, which is common in teeth of AM9, the tooth apex 

also appears blunter than the apexes of AM9. The teeth on specimen AM.NA.2I 9-b show there 

are two tooth present, which is also common in leaves of Zizyphoides auriculata, and to a lesser 

extent Zizyphoidesflabella. Tooth spacing is irregular and there are 2 to 3 teeth/em. Tooth 

venation is difficult to determine due to limited preservation, but there does appear to be a 

principle vein that tenninates at the tooth apex (AM.NA.200S.01l-b). 

3.1S.5 Similarities to other fossil taxa 

Determining the distribution of Zizyphoides from its leaves is hampered by its close 

resemblance to other leaf types, particularly Cercidiphyllum-like leaves such as 

Trochodendroides. This coupled with its high morphological variability may have given rise to 

numerous synonyms for the same taxon (Crane et a1. 1991). Paleogene fossil leaves that have 

confidently been attributed to Zizyphoides flabella are in sequences from Svalbard, Asia and 

North America, which suggests that it was a common component of high to mid latitude floras 

in the Northern Hemisphere (Crane et a1. 1991, Kvacek et a1. 1994, Herman et a1. 2009, Wanget 

a1. 2009) 

Leaves similar to AM 11 (e.g. Zizyphoides flabella) are absent from the Ardtun floral 

assemblage of Mull, but, another species ascribed to this genus, Zizyphoides ardtunesis is 

present. This species, however, is very unlike other examples of this genus, its shape is more 

elongated and narrower, the apex is acute, the base is rounded and the margin is finely serrated 

(Boulter and K vacek 1989). This species or one similar to it appears to be present in the Eocene 

of Svalbard and has been identified from new collections from the Aspelintoppen Fonnation 

(Clifton 2010 Pers. Comm). The morphology of Zizyphoides ardtunensis and its dissimilarity to 

other Zizyphoides leaf types indicates that it may represent another genus entirely. 
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Fossil leaves of Zizyphoidesflabella from Svalbard indicate that it was present throughout much 

of the Paleogene, and occurs in the Early Paleocene Firkanten Formation and Ny-Alesund 

subgroup, the Early to Middle Eocene Aspelintoppen Formation, and the Middle to Late Eocene 

Renardodden Formation (Kvacek et a1. 1994). As mentioned in section (3.18.3) AMI 1 appears 

similar to this species, and to specimens from Svalbard, which may indicate they may be 

related. Associated infructescences of Zizyphoides, Nordenskioeldia borealis, are present in the 

Paleocene of Svalbard (K vacek et al. 2001). 

Leaves of Zizyphoides flabella are an abundant element of the late Maastrichian and Danian 

Tsagayan Formation of the Amur Basin, and occur in both the Boguchan and Bureya floras 

(Herman et a1. 2009). Danian to early Selandian floras of the Tsagayan Formation of Russia 

(Pioneer flora) and the Wuyun Formation (Wuyun flora), Heilongjiang Province, China have 

yielded a high abundance of Zizyphoides flabella leaves. Indeed, along with Trochoc/endroic/es 

arctica and Tilliaephyllum tsagajanicum these taxa collectively account for 50 to 75% of the 

leaf macrofossils recovered from the Pioneer and Wuyun floras (Herman et al. 2009). Elsewhere 

in Asia Zizyphoidesjlabella has been described from Kazakhstan, Japan and Mongolia, which 

suggests it was widely distributed in Asia (Crane et a1. 1991). 

North American Paleocene leaf records of Zizyphoidesjlabella indicate that it was also 

widespread in this continent and has been described from localities in Alberta, Alaska, 

Montana, Wyoming, North Dakota, Wyoming and Washington (Crane et a1. 1991). 

The associated fruits of Zizyphoides, Nordenskioeldia, have an excellent fossil record and are 

common in North America, Asia and Europe from the Late Cretaceous to Miocene (Crane et a1. 

1991, Manchester et a1. 1991, Wang et a1. 2009). Wang et a1. (2009) compiled a comprehensive 

phytogeographic history of this plant based on the occurrence of the Nordenskioeldia 

infructescences from the Northern Hemisphere from the Late Cretaceous to the Miocene. The 

study by Wang et a1. (2009) suggested that this plant evolved in Asia during the Cretaceous, and 

subsequently spread into North America and Europe during the Late Cretaceous and Paleocene. 

Paleocene fossils of Nordenskioeldia indicate that its range expanded significantly during this 

interval with occurrences in Asia, North America, Greenland and Svalbard with a 

palaeolatitudinal range of 40 ON to 69°N (Wang et al. 2009). The Paleocene Asian record is 

extensive and includes localities in Russia, Mongolia, Japan, Kazakhstan and China (Wang et 

a1. 2009). The American record is broad and covers several localities in the Western Interior of 

the US, Alaska, Alberta and the Northwest Territories (Wang et a1. 2009). In the Arctic region 

Nordenskioeldia occurs in Greenland and Svalbard (Wang et a1. 2009). The Paleocene 

migratory pathway into Eurasia was suggested by Wang et a1. (2009) to have occurred across 
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the North Atlantic prior to rifting of this land bridge. The presence of Zizyphoides-like leaves on 

Skye (AM 11) during the mid Paleocene supports this Eurasian migratory route. 

3.18.6 Similarities to modern taxa 

Specimens of AM II (Zizyphoides sp.) from AlIt Mor provide little evidence for the association 

with a group due to their limited preservation. Leaves of Zizyphoides flabella, which is a 

possible relative of AM 11 have described from North America in assocaiton with reproductive 

structures. Crane et a1. (1991) noted that leaves of Zizyphoides flabella have similar venation 

patterns, long and short shoot morphology and the position of the gynoecium are typical of 

modem members of the Trochodendraceae. The morphological characters of Zizyphoides 

flabella are not entirely similar to modern members of the Trochodendraceae, as there are 

numerous morphological features intrinsic to this leaf type are absent from the modem, which 

indicates it may represent an early ancestor or archaic form (Crane et a1. 1991). The associated 

infructescences, Nordenskioeldia. share some characteristics with modern members of the 

Trochodendraceae, but there are a numerous morphological differences (Crane et a1. 1991), 

which appears to confirm the archaic nature of these Paleogene representatives. 

The absence of Nordenskioeldia infructescences from the BTVP and the poorly constrained 

systematic position of AM 11 with other Zizyphoides leaf types prevents an accurate association 

of this morphotype with a modern group, and is therefore tentatively associated with the 

Trochodendraceae. 

3.19 Angiosperm morphotype 12 (AM12) 

3.19.1 Specimen numbers 

The specimen number of this morphotype is: AM.NA.I06-c. 

3.19.2 Diagnosis 

Laminar size mesophyll, laminar shape unclear, blade symmetry unclear, unlobed, margin 

serrate. Apex and base not preserved. Primary venation pinnate, agrophic veins absent. Major 

secondary veins appear semicraspedodromous, interior secondary veins absent, minor secondary 

veins absent, major secondary vein spacing decreasing proximally, secondary vein angle 

inconsistent, major secondary attachment ex current. Intersecondary veins absent. Intercostal 

tertiary veins unclear opposite percurrent or mixed percurrent. Epimedial tertiary veins appear 

opposite percurrent reticulate with proximal perpendicular to the midvein and distal course 

parallel to intercostal tertiary veins. Exterior tertiary vein course unclear possibly looped. 

Higher order venation not preserved. Tooth spacing, order and number ofteethlcm unknown. 

Tooth shape unclear appears convex/convex, sinus shape unclear. Principle vein present with 

termination at apex. 
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3.19.3 Identification 

Angiospenn morphotype 12 (AM 12) is represented by one poorly preserved specimen, the 

preservation of its venation has enabled it to be distinguished from other morphotypes from 

Skye. The pinnate semicraspedodromous venation pattern of this morphotype appears similar to 

AM6, but lacks the characteristic intersecondary veins of AM6 and its reticulate tertiary veins, 

which indicates it is a separate morphotype. 

The limited preservation ofthis morphotype makes its identification to a known fossil taxon 

difficult, the absence of base, apex, low venation clarity and much of the margin limit its 

comparability. AM 11 appears to be similar to two species of poorly preserved leaves from 

Svalbard, Magnoliaephyllum sp.I and Magnoliaephyllum sp.2 (Budantsev and Golovneva 

2009). It appears to have the same primary, secondary and tertiary venation characteristics but 

cannot be conclusively attributed to this enigmatic taxon, AMI2 is therefore regarded as 

representing a woody dicotyledonous angiospenn with unknown affinity. Additional specimens 

that have the characteristics venation of AMI2 are required to provide a more accurate assement 

of its systematic position. Comparisons with other fossil and modern taxa cannot therefore be 

made and so these sections are omitted for this morphotype. 

3.19.4 Discussion 

The single specimen of AMI2 (AM.NA.I06-c) (Figure 3.38) provides little infonnation 

regarding its leaf fonn, the specimen appears to have been fragmented during transport or after 

it was deposited and part of the distal portion oflamina has broken away and been rotated. The 

specimen appears to relatively large leaves as it has a fragmented area of 3170mm2, and based 

on the curvature of the venation it appears to have been mesophyll prior to its fragmentation. 

The shape of the leaf is unclear but the widest preserved sections are in the middle and upper 

portions of the laminar, which may indicate it was elliptic or obovate originally. The laminar 

length:width ratio of this morphotype is difficult to determine but is estimated to have been 

-1.4:1. 

The major secondary veins appear to be semicraspedodromous as they appear to fonn loops 

with the adjacent secondary veins and branch towards to the margin. Additionalloops appear to 

be present exmedially and these appear to be fonned by secondary and tertiary veins. Secondary 

vein angle appears to be inconsistent and ranges from 33 0 to 60 o. The tertiary venation is 

poorly preserved but the intercostal tertiary veins appear to be opposite percurrent or alternate 

percurrent, which may suggest the overall pattern is mixed percurrent. 
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Figure 3.38. The single specimen of AMI2. a) Al\1.NA. 106-e, b) line drawing of Al\ I. i"A.I 06-e. Sca le 

ba rs = I em. 

The margin is partia ll y preserved in a small portion of the di stal laminar and indicates that 

AM 12 had a toothed margin , the tooth shape is unclear but both distal and proxim al flanks 

appear convex. A principa l ve in supplies the tooth and tenninates at the apex, it originates from 

a secondary vein loop but appears of narrower gauge and is considered to be a marginal terti ary 

velll. 

3.20 Angiosperm morphotype 13 (AM 13) 

3.20.1 Specimen numbers 

The specimen numbers of thi s morphotype are: AM.NA.061-d, 0082-d, 0163, AM . A.OI75-a, 

AM.NA.200S.004-c. 

3.20.2 Diagnosis 

Lamina size microphyll to meosphyll , length :width rat io unclear (possibly I: 1- 1.5 : I). shape 

appears elliptic and medially symmetric, base appears asymmetric (poss ible basal insertion), 

unlobed, margin serrate. Apex not persevered , base angle obtuse with a convex shape. Primary 

venation pinnate, naked base veins absent , one basa l vein present, compound agrophi c \'eins. 

Major secondary ve ins craspedodromous, interior secondary veins absent, minor 

scconsecondary angle increases smoothl y to abruptly prox imally, attachment proximally 
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decurrent. Intercostal tertiary veins opposite percurrent with obtuse vein angle that increases 

exmedially. Epimedial tertiary veins opposite percurrent with proximal course parallel to 

intercostals tertiary veins or perpendicular to midvein and distal course parallel to intercostal 

tertiary veins. Higher order venation not preserved. Tooth spacing and number of orders 

unknown, sinus shape rounded. Tooth shapes convex/convex. Principal vein present and 

terminating at the tooth apex. 

3.20.3 Identification 

Angiosperm morphotype 13 (AM 13) appears broadly similar to other pinnate craspedodromous 

leafmorphotypes of Skye such as AM3 and AM4. It can be distinguished from these leaf types, 

however, by the obtuse angle of its secondary and tertiary veins, the proximally decurrent 

attachment of its secondary veins and the asymmetric basal insertion. Although this morphotype 

can be distinguished from others from the AlIt Mor assemblage it cannot be readily identified to 

other fossil taxa because of its limited preservation. Two leaf types from the Eocene of Svalbard 

appear to be broadly similar Grewopsis and Ushia as they have a similar basal fonn, secondary 

and tertiary veins and major secondary vein attachment as AM 13 (K vacek et al. 1994). It is 

difficult to distinguish Grewopsis and Ushia from each other unless they are nearly complete 

and well preserved (Clifton pers comm. 2010). The margin of these two leaf types is useful 

feature to distinguish them, but is of limited value for AM 13 as only a small portion of lamina is 

preserved in one specimen. 

The limited preservation of AMl3 and its similarities to two other leaf types prevents an 

accurate assessment of this morphotypes identity and it is considered enigmatic. The collection 

of additional specimens of this leaf type may provide additional morphological information to 

confinn that it is related to either Grewopsis or Ushia. Due to the unresolved systematic 

position of AM 13 sections pertaining to its similarities to fossil and modern taxa have been 

omitted. 

3.20.4 Discussion 

Specimens of AM 13, although fragmented appear to have been originally large, estimations of 

their orginallamina area up to 5000 mm
2 

to 6000 mm
2
, which suggests they were mesophyll 

prior to fragmentation (Figure 3.39 and 3.40). The basal morphology of this morphotype is 

partially understood as specimens (AM.NA.200S.004-c and AM.NA.061-d) have them partially 

preserved (Figure 3.39-a, c). The bases on both specimens appear to be asymmetric with a basal 

insertion, this feature appears to be most developed in specimen AM.NA.061-d. 

The major secondary veins are a distinctive character of this morphotype with the proximally 

decurrent attachment, obtuse angle with a straight course. Secondary vein spacing is relatively 

unifonn across the lamina but does show a slight decrease proximalIy. The angle of the 
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secondary veins in the central portion of the lamina range from 33-50° but are most often 40-

50°, proximally vein angles increase to 50 0 to 60°. 

The intercostal tertiary veins are opposite percurrent with predominately convex course, 

although straight and sinuous courses do occur. The angle of the intercostals relative to the 

midvein is obtuse with admedial ranges of 100 0 to 125 0 and increase exmedially to 120 0 to 

140 o. The epimedial tertiary veins are opposite percurrent and have proximal courses that are 

parallel to the intercostal veins or perpendicular to the midvein, the former being most common 

closer to the intersection between the subjacent secondary and the midvein. The distal course 

appears to be solely parallel to the intercostal veins. 

The marginal characteristics of this morphotype are only known from the base of one specimen, 

AM.NA.061-d, which has a several partially preserved teeth. The flanks of the teeth are convex 

with longer proximal flanks. A principal vein is present and terminates at the margin. Accessory 

veins appear present and may be derived from the loops of the agrophic veins, but are too 

poorly preserved to determine definitely. 
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Figure 3.39. Specimens of Al\ I13. a) AM.NA.2008.00.f-c, b) line drawing of AM.NA.2008.004-c, c) 

AM.NA.061 -d, d) line drawing of Al\1.NA.2008.004-c. Scale bars = Iclll. 
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Figure 3.40. Specimens of AI\1l3. a) AJ\1.~A. 175-a , b) li ne dra\\ ing of A:\I.~ A.17S-a. e) 
Al\1.NA.1 63, d ) line drawing of A~1.~A. 1 75-a. Scale bar = I em. 

3.21 Angiosperm morphotype 14 (AM 14) 

3.21.1 Specimen numbers 

The specimen num ber of thi s morphotype is: ACC.OO I-e. 

3.21 .2 Diagnosis 

Blade attachment appears marginal, laminar size notophyll , laminar L: W ratio unclear. laminar 

shape appears e ll iptic , blade medi all y symmetrical. base appear symmenic. unlobed. margin 

unknown . Apex angle unknown. apex shape unkn own. base angle obtu e. bae ~hape appears 

concavo-convex . Primary pinnate , naked basa l ve ins ab en!. fi\c ba~al \eins. agrophic absent. 

Maj or secondary veins appear scraspedodromous. interior secondary \ cins prcscnt. major 

secondary spacing abruptl y dec reasing prox ima lly. secondary angle inconsistent. major 
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secondary attachment decurrent. Intersecondary veins absent. Intercostal tertiary veins irregular 

reticulate. Epimedial tertiary veins reticulate. Quaternary vein fabric alternate percurrent. 

Aerolation development good, freely ending veinlets absent. 

3.21.3 Identification 

Angiospenn morphotype 14 (AM14) is represented by a single specimen that has excellent 

venation clarity with at least four vein orders preserved over much of the laminar. This 

morphotype is characterised by its prominent interior secondary veins that extended between the 

major secondary veins. The only other morphotype with such pronounced interior secondary 

veins is AMI (Platanites hebridicus), but the leaves preserved in the AlIt Mor assemblage are 

palinactinodromous and not pinnate like AM14. The lateral leaflets of Plataniles hebridicus 

from Ardtun of Mull are pinnate but lack the interior secondary veins, which indicate AM 14 is 

not a specimen of AM I. 

Interior secondary veins are common in leaves that are lobed such as those in the Sapindaceae, 

particularly Acer (Ellis et a1. 2009). The leaf specimen of this morphotype is too poorly 

preserved to detennine if it is lobed, the secondary veins and interior veins connecting them 

indicate that if the leaf was lobed the sinuses were shallow. Acer arclicum from the Paleogene 

of Svalbard has similar interior secondary vein structure as AM 14 (Budanstev and Golovneva 

2009). This leaf type does differ significantly to AM 14 as it has actinodromous primary veins, 

while AMl4 is pinnate, which indicates it may not be related to the Sapindaceae. 

The lack of marginal, basal or apex preservation limits the ability to identify this morphotype to 

a known fossil taxon despite of its excellent venation clarity. It is therefore regarded as woody 

dicotyledonous angiospenn of unknown affinity. Comparisons with other fossil and modem 

taxa cannot therefore be made and so these sections are omitted for this morphotype. 

3.21.4 Discussion 

As mentioned in the previous section AMl4 is represented by one specimen (ACC. OOl-e) that 

has very clear venation preserved, but little of its overall lamina fonn is discemable from the 

fragmented specimen (Figure 3.41). The fragmented laminar area of the specimen is 1410 mm2, 

but the curvature and symmetry and symmetry of the laminar it appears it may have been> 

2500 mm2, suggesting it was notophyll prior to fragmentation. The laminar shape of AM 14 is 

difficult to detennine but appears it may have been elliptic, as the secondary veins in the central 

portion of the lamina have angles that are more obtuse and seem to extend further than those in 

the proximal and distal sections of the laminar. 
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The basa l morphology of thi s morphotype is difficult to detenn ine but a small porti on of basal 

margin is preserved (Fi gure 3.41 ). The basal margin appears to have a concave curvature away 

fro m the midvein which may indicate thi s morphotype had a concavo-convex base shape. 

The major secondary vein course of thi s morphotype is difficul t to detem1ine as points where 

they tertninate are not preserved. The course of the secondary vein takes exmedially and the 

distance between the major secondari es suggests that these veins may have been 

craspedodromous and may have fortned the principal vein for teeth . In section 3.2 1.3 it was 

suggested that AM 14 may have been lobed as it has interior secondary veins, which are 

common in lobed leaf types (Elli s et al. 2009). 

Figure 3.41. The single specimen of AM t4. a) ACC.OOt-e, b) line drawing of ACC.OOt-e. Sea le bars 
= I em. 

3.22 Summary 

T he fossil angiospenn leaves collec ted from the Skye plant assembl age are typ ica lly poorly 

preserved and are highly fragmented with low levels of venati on cl ari ty and limited margin, 

basal and apex preservation. Despite of these limitations enough we ll preseryed specimens are 

present in the coll ect ion to identi fy and construct leafmorphotypes. In total 14 angiospem1 1eaf 

morphotypes have been recogn ised from the Alit Mor plant assembl age. The understand ing of 

their overall lea f fonn and venation characteristics varies, many are well characteri sed by good 

specimens (e .g. AM I , AM2 , AM3 , AM4, AM 6, AM8, A M9, AM 10, AM I I) , while others arc 

represented by a small proport ion of poorly preserved specimens (e .g. AM7. AM 12. AM 13, 

AM 14). Of the 14 morphotypes it was possible to identi fy I I of them to previously described 
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fossil taxa. The morphology of these related fossil taxa and the leaf morphotypes from Skye 

indicate that they share similarities to modem plant families, which include the Platanaceae 

(AMI), Cercidiphyllaceae (AM2), Betulaceae (AM3 and AM4), Fagaceae (AMS), Juglandaceae 

(AM6, AM7 and AM8), Vitaceae (AM9), Comaceae (AM I 0) and the Trochodendraceae 

(AMll). The morphological Skye angiosperm leafmorphotypes and evidence from their 

relatives indicates that although these leaf types are related to modem representatives of these 

families they represent archaic, undifferentiated, or extinct forms. 

The leafmorphotypes of Skye are similar to other fossil taxa from the Northern Hemisphere, 

which suggests there was floristic interchange between northern Britain and these other regions 

during the Paleocene. Some of the Skye angiosperm morphotypes appear to be related to 

common components of Northern Hemisphere species such as Trochodendroides (AM2), 

Corylites (AM3 and AM4), Fagopsiphyllum (AMS), Cornophyllum (AM 10) and Zizyphoides 

(AM 11). These plant genera appear to have been ecologically important components of 

Paleocene Arctic floras. Their presence in the BTVP, therefore, indicates that this flora is 

similar to that of the Arctic and vegetation was able to mix between these two regions during 

the Paleocene. 

Not all of the angiosperm leaf morphotypes of Skye are similar to other Paleocene species from 

other Northern Hemisphere localities. Three leaf morphotypes that appear to represent members 

of the Juglandaceae are present in the AlIt Mor flora, and appear to be distinct from other leaf 

types attributed to this family from the Paleocene. Juglandaceous pollen is both abundant and 

relatively diverse component of the palynomorph assemblages of Skye (Jolley 1997). The 

abundance and diversity of representatives of this family indicates that they may have been 

diversifying in this region during the mid Paleocene. One morphotype in particular, AM8 

appears to be an early form of Piatycaraya, and may represent one of the oldest records of this 

genus, and suggests that it may have originated in Europe. 

Piatanites hebridicus is a common element of the Skye leaf assemblages; this genus of the 

Platanaceae has only been previously described from Ardtun, Mull and the Ravenscrag 

Formation of Canada. This unusual distribution indicates that it must have migrated across the 

Arctic during the Early Paleocene, but appears to have only been successful in the BTVP during 

the mid Paleocene as it is absent from floras from Greenland and Svalbard. 

The Skye angiosperms appear similar to other Northern Hemisphere floras from the Paleocene, 

but the presence of species that have only been recognised from the BTVP, suggests that it has 

its own distinct character. 
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Chapter 4: Conifer fossils of Skye 

4.1 Introduction 

Conifer shoots account for 55% of the fossil plant remains in the AlIt Mor plant assemblage on 

Skye, which indicates that they were an important component of this flora during the mid 

Paleocene. This chapter presents the descriptions of the conifers from the AlIt Mor plant 

assemblage of Skye. Three ovulate cone-types have been recognised along with eight shoot 

morphotypes, which indicates that the conifer component of the flora was relatively diverse. 

Currently Robert Mill from the Royal Botanical Gardens, Edinburgh is carrying out a detailed 

taxonomic study of the conifer fossils from AlIt Mor. A comprehensive taxonomic study is 

therefore not suitable here, but their gross morphology and their identities are considered in 

order to understand their role in the Paleocene floras of Skye. All descriptions and comparisons 

with fossil and modem taxa presented here are from personal observations and measurements. 

4.2 Differentiating the conifer fossils 

4.2.1 Differentiating conifer ovulate cone types 

There are two types of conifer fossils in the AlIt Mor assemblage: ovulate cones and leafy 

shoots. Fossils of ovulate cones in the AlIt Mor assemblage are relatively rare and often poorly 

preserved compressions or impressions of the external or internal anatomy. To differentiate the 

cone-types characteristics of their attachment to foliar material, their size and shape, scale 

orientation and cone scale features were considered. These characters were also used to 

determine their systematic position by comparing their morphology with modern relatives using 

Eckenwalder (2009) and Schulz et a1. (2005). 

4.2.1 Differentiating conifer shoot morphotypes 

Conifer shoots are the most abundant element of the AlIt Mor assemblage and indicate that a 

variety of conifer species inhabited Skye during the Paleocene. To differentiate the conifer 

shoots they were split into morphotypes in a similar manner as the angiosperm morphotypes, 

but instead of using leaf form and venation patterns to separate the specimens into morphotypes, 

leaflet shape was used. Three leaf shape categories were used to separate the conifer shoots and 

are I) flattened needle-like, 2) scale-like and 3) needle-like. Individual conifer morphotypes 

were identified from these broader shape categories based on more detailed morphological 

features of the leaflet arrangement and structure. These morphological features were also used 

to determine their taxonomic affinities by comparing them with modem relatives using 
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Eckenwalder (2009). The morphological description of each conifer shoot morphotype and its 

taxonomic affinities are presented in sections 4.4. 

4.3 Ovulate cone types of Alit Mor Skye 

4.3.1 Ovulate cone type 1 (OC1) 

Ovulate cone type 1 (OCl) are preserved as cross sections, so the interior of the cones is visible, 

but the external features are not preserved. The cones of OC 1 are typically small, with widths 

ranging from 10 mm to 20mm, and a lengths of 15mm to 20mm, they are rounded to slightly 

oblong in shape (Figure 4.1). The dark colouration of the cones indicates that they are woody. 

One specimen (AM.NA.041-b) has a peduncle attached at its base, which is relatively short 

-10mm and thin -2mm. The peduncle of AM.NA.041-b appears to lack any attached leaflets 

(naked) except near the base where a small scale-like leaf is attached (Figure 4.1). 

The internal structure ofOCI cones are characterised by their axis width, cone scale 

arrangement and an absence of a bract. The axis of OC 1 cones is relatively broad (3 mm to 

4mm) and is straight. The woody cone scales lack a distinct bract portion, which appears to be 

fused to the fertile cone scale (Figure 4.1). The cone scales have a thin profile as they diverge 

from the axis and expand abruptly near the outer margin of the cone, and become triangular or 

wedge shaped (Figure 4.1). The cone scales appear to be arranged in decussate whorls, those in 

the basal and upper sections are smaller and appear to be fused (Figure 4.1). The number of 

scales is difficult to determine because of limited preservation and the cross-sectional view of 

the cones, but there may have been 12 or more present originally. The outer appearance of the 

scales is difficult to determine but appears to have been indented in the centre. Seeds have not 

been preserved inside the cones. 

The peduncle morphology, woody composition and arrangement of the cone scales indicate that 

the OCI of AlIt Mor may represent a Paleocene fonn of Metasequoia. This member of the 

Cupressaceae has woody ovulate cones that have a naked peduncle, except for several small 

scale leaves at its base (Figure 4.1), which appears very similar to AM.NA.041-b. Metasequoia 

also lacks a bract on the cone scale (typical of the Cupressaceae) and has a whorled decussate 

arrangement of its cone scales (Eckenwalder 2009) (Figure 4.1). Shoots attributed to 

Metasequoia occidentalis have been identified from Ardtun of Mull, which suggests it was 

present in the BTVP (Boulter and Kvacek 1989). Similar shoots have also been recognised at 

AlIt Mor (conifer morphotype 1), which are discussed in section 4.4.1. The close morphological 

resemblance of OC 1 with those of extant Metasequoia and the presence of its foliage in the 

BTVP indicates that this cone type is attributable to this extant genus, and is considered to be 

Metasequoia occidentalis. 
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Figure 4.1. Examples of OC I. a) AI\1.NA.041-b, b) line drawing of A~I.:"A.O.t I-b den oting 
morphological features, c) NMS.G.2004.29.076, d) line drawing of J\;\JS .G.200.t .29.076. e) 
AM.NA.169, f) line drawing of Al\1.NA.169 denoting morph ologica l fea tu res, g) dra\\ ing of modern 
Metasequoia ovulate cOile from Eckenwalder (2009). Scale bars = 1 cm. 
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The second ovulate cone type (OC2) identified from the AlIt Mor assemblage are poorly 

preserved and represented by two specimens (AM.NAOOI-j, ACC.012-e) (Figure 4.2). The 

cones ofOC2 appear similar to OCI cones (Metasequoia occidentalis) except they are 

terminally attached to leafy shoots, which is uncharacteristic of Metasequoia (Chaney 1950, 

Schulz et a1. 2005, Echenwalder 2009). The OC2 cones are preserved as compressions; the 

cones appear to be woody, have a rounded shape and are small -10 mm long and -15 mm wide 

(based on AM.NAOOI-j). The better preserved of the two specimens (AM.NAOOI-j) has 

partially preserved impressions of its cone scales, which appear to be decussate only in the basal 

section of the cone. The arrangement of the other cone scales is unclear but may be spirally 

(Figure 4.2). 

The cones of both specimens ofDC2 have a short 2mm to 3mm peduncle which are attached 

terminally to a leafy shoot. The shoot structure is better preserved in AM.NAOO I-j and shows 

that the shoot bares flattened needle-like leaflets that appear spirally arranged around the axis. 

The leaflets are 3 mm to 5 mm in long and 0.5 mm to 1 mm wide, they have a prominent apex, 

which can be hooked or tapering (Figure 4.2). The leaflet arrangement of ACC.012-e near to its 

attachment to the cone is unclear but some of the leaflets preserved appear to have a similar 

arrangement to AM.NA.001-j. The arrangement of the leaflets on AM.NA.001-j appears to 

change further down its course, the leaves lower down the axis are decussate and alternate. 

These leaflets have a more rounded apex compared to those of AM.NAOO I-j and are 5 mm to 

10mm, the base of the leaflet appears to wrapped around the axis and there is no clear petiole. 

The morphology of DC2, their attachment to a leafy shoots, and the leaflet form is characteristic 

of the Cupressaceae, and in particular members of the subfamilies Taxodioideae and 

Sequoioideae and (Eckenwalder 2009). Of the Taxodioideae subfamily the genus Taxodium 

appears to have similar shoot morphology, in particular the decussate leaflets of ACC.012-e, but 

its cones are not typically attached terminally to leafy shoots (Eckenwalder 2009). The cones of 

Taxodium, when mature are larger with diameters of 15 mm to 40 mm and the cones scales of 

this genus break away rapidly after they mature (Eckenwalder 2009). Fossil ovulate cones of 

Taxodium are typically rare, and are usually represented by disarticulated cone scales, which 

suggests the cones break apart like their modern relatives (Chaney 1950, Kunzmann et a!. 

2009). These differences indicate that DC2 is not a relative of Taxodium. 
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Figure 4.2. Examples ofOC2. a) AM.NA.OOI-j , b) line drawing of AJ\ 1.NA.OO I-j denoting 
morphological features, c) ACC.O l2-e, d) line drawing of ACC.O 12-e denoting morphologica l 
features, e) drawing of a modern Sequoia cone from Eckenwaldcr (2009) . Scale bars = I COl. 

In the subfamily Sequoioideae two monotypic genera Sequoiadelldroll and Sequoia have 

ovulate cones and shoots sim ilar to OC2 (Eckenwalder 2009). The o\ulate cones of 

Sequoiadendron giganlell l11 are considerably larger when mature with di ameters of 15 to 30 

mm , the lea fl ets of th is species are more sca le-like and more tightl y arranged around the axi 

(Eckenwalder 2009), which suggests it is di stinct from OC2. 
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Both in its ovulate cone fonn and shoot morphology OC2 is are remarkably similar to Sequoia 

sempen!irens (Figure 4.2). The ovulate cones of Sequoia sempe1i'irens are attached tenninally 

to shoots that bare them, which is the same arrangement seen in OC2 (Eckenwalder 2009). The 

leaflets that develop from the cone bearing shoots in Sequoia sempe1i'irens are different to OC2, 

they are smaller and more scale-like in fonn (Eckenwalder 2009). The leaflets that develop on 

sterile long and short shoots of Sequoia sempe1i'irens are, however, very similar to those found 

on both specimens of OC2 (Eckenwalder 2009). This may indicate that the shoots of the AlIt 

Mor fonn have retained the leaflets of the sterile shoots and have not developed the modified 

leaflets that Sequoia sempe1i'irens has on its cone bearing shoots. 

This assertion is partially con finned by similar leaflet arrangement on ovulate cone bearing 

shoots of Sequoia affins from the Oligocene Florissant beds of Colorado. This Oligocene 

species of Sequoia is exceptionally well preserved, and has both staminate and ovualte cones 

attached to leafy shoots (Chaney 1950, McGinitie 1953). The leaflet arrangement and shape on 

shoots that bear ovulate cones in Sequoia ajJins are very similar to those of OC2 from AlIt Mor. 

The leaflets of Sequoia ajJins have a flattened needle-like shape, blunt apexes and spirally or 

decussate arrangement around the axis (Chaney 1950, McGinitie 1953). The presence of this 

leaflet arrangement in another Paleogene fonn of Sequoia, suggests that modified leaflets seen 

on cone bearing shoots of modem Sequoia may be a more recent feature. 

The similarity of the ovulate cones and leafy shoot structure of OC2 with both modem and 

Paleogene fonns of Sequoia indicate that this ovulate cone type is a member of this genus. The 

differences in leaflet fonn on the ovulate cone bearing shoots of OC2 and modem Sequoia 

sempen!irens indicates that this Paleocene representative may be a new species, and is therefore 

regarded as Sequoia sp. 

4.3.3 Ovulate cone type 3 (OC3) 

Two cones of OC3 have been identified and are attached to a shoot with scale-like leaflets 

(AM.NA.2009.030-d) (Figure 4.3). The two cones ofOC3 are small 1 mm to 2 mm in length 

and -1 mm in diameter. The small size of these cones may indicate that they are not fully 

mature, and have yet to develop into their maximum size. The ovulate cones of OC3 are 

attached to the shoot axis by relatively stout peduncles, the shoot axis appears to be devoid of 

leaf scales where these peduncles are attached. 

The ovulate cones of OC3 are poorly preserved, but each shows different anatomical features, 

the lower cone appears to be an external compression or impression but shows some features of 

the external cone scale anatomy (Figure 4.3). The upper cone is preserved in cross section and 

shows features of the cone axis and the cone scales (Figure 4.3). The external cone anatomy of 
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the lower cone is difficult to detennine but there appear to be three scales in the central portion 

of the cone, the upper sections of the cone are unclear and the scales may be fused. 

The cone scales in cross section are very thin where they meet the axis but expand abruptly at 

their periphery, where they fonn triangular scales (in cross section). The axis appears to 

relatively broad and approximately four times wider than the scales. The bract portion of the 

cone scale appears to be absent; its absence along with the attached shoot confinns its 

relationship to the Cupressaceae (Eckenwalder 2009). 

The lowennost attached cone (Figure 4.3-c) is attached to the axis by a short but relatively 

broad peduncle. The shoot axis, to which the cone is attached, appears to be modified as it lacks 

any scale leaves for most of its course. This cone is preserved as an external compression or 

impression and shows little external or internal detail (Figure 4.3-c). The number and 

arrangement of the cone scales is unclear due to limited preservation but they appear to fused, 

which indicates they may be immature and have not opened to release the seeds. 

The second cone is attached to an ultimate branchlet that has scale leaves. The second cone 

(Plate 4.3-c) is preserved as a cross section and shows some details of the internal structure of 

the cone. A short bract appears present on one of the cone scales but is greatly reduced to a 

small spur. Only two scales are preserved and appear to be very narrow laterally until they 

expand abruptly at the outer margin of the cone. In cross section the scales appear triangular in 

shape. The axis of the second cone appears to be relatively broad and is approximately four 

times thicker than the scales, the top of the axis may have several smaller or fused cone scales at 

its apex. 

The limited preservation of the cones provides little systematic infonnation ofOC3, other than 

that it appears to be a member of the Cupressaceae. The attachment point of the cones peduncle 

on the shoot axis, and the morphology of the attached shoot indicate that it represents a species 

within the Cupressoideae subfamily, and is broadly similar to genera such as Cupressus, Thuja 

and Chamaecyparis. The attached shoot is poorly preserved but is comparable with conifer 

shoot morphotype 4 (CM4), these shoots have a characteristic morphology, which has enabled a 

clearer understanding of the systematic position of both plant organs, and is discussed in section 

4.4.4. 
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4.4 Conifer shoot morphotypes 

The conifer shoot morphotypes from the AlIt Mor assemblage were split into three shape 

categories, and where sorted into morphotypes based on more detailed features of their 

anatomy. Morphotypes in the flattened needle-like category are presented in sections 4.4.1 and 

4.4.2, conifers with scale-like leaves are presented in sections 4.4.3 to 4.4.7 and one morphotype 

from the needle-like shape category is presented in 4.4.8. 

4.4.1 Conifer shoot morphotype 1 (CMl) 

Conifer shoot morphotype I(CMI) is characterised by its decussate phyllotaxis (leaflets 

oppositely arranged in two flat rows) of its needle-like leaflets (Figure 4.4). The base of the 

leaflets are petiolate with a rounded shape, the apex is rounded or mucronate (Figure 4.4). The 

leaflet petiole is short and very slender and where it joins the leaf base it is twisted and 

decurrent. The individual leaflets width is variable, and ranges from 2 mm to 5 mm, the length 

of the leaflets are also variable and range and from 10 mm to 30 mm and have a prominent 

midvein (Figures 4.4). The angle of the leaflets relative to the axis is typically 45° to 60° but can 

be more acute with angles of 80° to 90°. 

The distichous arrangement, where the two flattened rows of leaflets are oppositely arranged is 

unique to one genus in the Cupressaceae, Metasequoia (Chaney 1950, Eckenwalder 2009). The 

presence of ovulate cones characteristic of Metasequoia (OCI see section 4.3.1) and shoots of 

Metasequoia occidentalis from the Ardtun leaf assemblage of Mull provide strong evidence that 

this species was present in the British Tertiary Volcanic Province (BTVP).1t is likely therefore 

that the Skye forms represent the same species, and CM 1 is regarded as Metasequoia 

occidentalis, and is associated with the ovulate cones ofOCI from AlIt Mor. 
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Figure 4.4. Examples of Cl\II. a) Nl\1S.G.2004.29.00S-a, b) NMS.G .2004.29.027, c) 
NMS.G.2004.29.00S-b, high density of CM I NMS.G.2004.29.00S. Scale bars = I CIlI. 
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4.4.2 Conifer shoot morphotype 2 (CM2) 

Shoots of conifer shoot morphotype 2 (CM2) are broadly similar to those of CM 1 as the leaflets 

are flattened and needle-like and are arranged in pairs. The arrangement of the leaflet pairs is 

alternate and decussate (crisscross pairs) or slightly spirally and not truly distichous like CMl. 

This indicates that CM2 is not attributable to Metasequoia, but represents another conifer genus. 

The flattened needle-like leaflets of CM2 are arranged on the axis in two ways, they are either 

spirally arranged around the axis and have a course that is perpendicular, or nearly so with the 

course of the axis, but more frequently the leaflets diverge from the axis with angles of 20° to 

50° in decussate or spirally arranged alternate pairs (Figures 4.5 and 4.6). The base of the 

leaflets are wrapped around the axis and become partially distichously twisting of the leaflet 

base. The individual leaflets are 10 mm to 30 mm long and are 2 mm to 4 mm wide with apices 

that are typically obtuse, but may be acute. A single midvein is present in the centre of the 

leaflet but is often faint, possibly as a result of the relatively thick texture of the leaflets. 

One specimen ofCM2 and this specimens counterpart (NMSG.2002.64 and 

NMS.G.2004.29.100) have both long and short shoots preserved on the same specimen (Figure 

4.5). The long shoot is only partially preserved but appears to have spirally arranged flattened 

needle-like leaflets attached to the long shoot axis, which diverge at angles of 10° to 20° from 

the shoot axis. The leaflets on the short shoots have a decussate arrangement and diverge from 

the axis at angles of 20° to 50°. The arrangement of the leaflets on the short shoots indicates that 

they may have been persistent (non-deciduous), as several growth increments are visible (Figure 

4.6-a, b). It appears additional short shoots developed from the older shoots either terminally or 

laterally over successive growing seasons. 

Conifer shoots similar to CM2 have been described from the Ardtun leaf assemblage of Mull. 

Boulter and K vacek (1989) suggested that arrangement and shape of the leaflets on these shoots 

resembled Sequoia, but analysis of their cuticles indicated that they had affinities with 

Taxodium. Due to the conflicting evidence of their affmity Boulter and Kvacek (1989) assigned 

the shoots to the fonn genus £latocladus campbellii, but suggested that this conifer may be 

more closely related to Sequoia. Ovulate conifer cones described in section 4.3.2 (OC2) were 

ascribed to Sequoia sp., the leafy shoots attached to these cones show significant similarities to 

CM2, which suggests that they may represent the same taxon. The leaflet fonn ofCM2 is 

remarkably similar to both modem Sequoia sempervirens and the Alit Mor fonn, as they all 

have a sessile attachment to the axis, leaflet bases that do not narrow, an obtuse apex, similar 

divergence angles and a faint midvein (Chaney 1950). The combination of Sequoia-like cones 

(OC2) and shoots indicates that CM2 is a member of the genus, and is therefore regarded as 

Sequoia sp. 
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Fioure 4.5. Examples ofCi\12. a) NMSG.2002.64, b) counterpart ofNMS.G.2004.29.IOO. Scale bars .. 
I cm. 
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Figure 4.6. Examples ofCM2. a) AM.NA.037, b) AM .NA.200S.002, c) ~;\l S.G . 2004.29 .027. calc 
bar = I em. 
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4.4.3 Conifer shoot morpho type 3 (CM3) 

Conifer morphotype 3 (CM3) is represented by short shoots that have both scale-like and claw­

like leaflets that are spirally arranged around the axis of the stem (Figure 4.7). Conifer foliage 

with this configuration is often referred to as being cryptomerioid (Cryptomeria-like) 

(Ekenwalder 2009). Shoots of CM3 are often fairly short with lengths ranging from 30 mm to 

50 mm, although longer shoots with lengths of >80 mm are present in the AlIt Mor assemblage 

(Figure 4.7). Both claw-like and scale-like leaflets can be present on the same shoot, but claw­

like leaflets are more common. The scale-like leaflets are most abundant and developed at the 

base of the shoot and become progressively more claw-like further up the shoot axis (Figure 

4.7). The presence of claw-like leaves distinguishes CM3 from other conifer shoot morphotypes 

of the AlIt Mor assemblage with scale-like leaflets (CM4 to CM7). 

The cryptomerioid shoot form of CM3 is present in to several genera within the Cupressaceae 

including Glyptostrobus, Taiwania and Cryptomeria (Eckenwalder 2009). The foliage appears 

most similar to Glyptostrobus due the overlapping pattern of the scale-like leaflets and the size 

and shape of these leaflets is comparable. Sh~ots described as Glyptostrobus dunoyeri occur in 

Glenarm and Ballypaddy in Northern Ireland and Ardtun of Mull, which indicates that this 

genus was present in the BTVP during the Paleocene (Boulter and K vacek 1989). The Skye 

forms have the same claw-like leaflets that are spirally arranged around the stem axis like those 

of described from other BTVP localities. This indicates that CM3 represents the same species, 

and is therefore regarded as Glyptostrobus dunoyeri. 
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Figure 4.7. Examples of C~13. a) Nl\IS.C.200.t .29.062, b) ;\':\IS.C.200.t.29.0S7. c) .\:\1.:" .-\.2008.009. 
Sca le bars = I em. 
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4.4.4 Conifer shoot morphotype 4 (CM4) 

In section 4.3.3 ovualte cones (OC3) were described that were attached to a shoot (Figure 4.3) 

that appears to represent a member of the Cupressaceae in the subfamily Cupressoideae. The 

two attached ovulate cones of OC3 were too poorly preserved to determine their systematic 

position within the Cupressoideae. The shoot attached to the OC3 cones, and others similar 

shoots within the AlIt Mor assemblage may provide additional information to improve the 

identification of this conifer. 

The branchlets of conifer shoot morphotype 4 (CM4) appear to have been originally spirally 

arranged, as the compression of the individual branchlets is overlapping and does not appear to 

form sprays of branch lets (Figure 4.8). The leaflets on the branchlets are scale like and 

imbricate. The lateral leaflets are rounded and show little tapering, the apex is rounded and in 

some leaflets is slightly concave. The base of the facial leaflets are obscured by the laterals, as 

they intersect near their base. The facial leaflets appear to have a similar form to the lateral 

leaflets, suggesting the scales are monotypic (lateral and facial leaves same shape and size). The 

apex of the facial leaflets extends beyond the apexes of the adjacent lateral leaflets and joins the 

bases of the lateral leaflets above. The lateral leaflets on the major branchlets, or at the 

bifurcation of the minor branchlets have a different morphology. These laterals are longer, 

narrower and almost L-shaped in appearance, but in other respects are similar to the other lateral 

leaflets (Figure 4.8). One specimen (ACC.OOI-f), is well preserved and shows the arrangement 

and shape of leaflets clearly, as there contrast between the matrix and shoot impression (Figure 

4.8-a). 

The ovulate cones of OC3 associated to CM4 are too poorly preserved to provide a reliable 

identification of this conifers generic affinity. Comparisons with modem members of the 

Cupressoideae presented in Schulz et a1. (2005), indicates that the shoot architecture of CM4 is 

comparable with the genus Chamaecyparis, and in particular Chamaecyparis lawsoniana. 

The oldest known unequivocal representative of Chamaecyparis, C. eureka from the Middle 

Eocene deposits of the Buchanan Lake Formation of Axel Heiberg Island in the Canadian high 

Arctic (Kotyk et a12003) is similar to CM4. The leaflet arrangement and shape of the CM4 and 

C. eureka is broadly similar, except that the Canadian specimens have conspicuous resin glands 

on the facial leaves, although this feature is not diagnostic of this genus (Schultz et a1. 2005, 

Eckenwalder 2009).The attached ovulate cones and associated seeds of C. eureka are well 

preserved, which facilitated the accurate identification to the generic level. The ovulate cones of 

OC3 are too poorly preserved to make direct comparisons with C. eureka. The attachment of the 

ovulate cones to axis is perhaps the only comparable feature. The cones in C. eureka are 

attached to a leafy peduncle, this character is variable in the OC3 form as both leafy and naked 

peduncles are present. 
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The close morphological resemblance of the CM4 with that of modem and extinct members of 

the Challlae(lparis indicates that it may have a close affinity with thi s genus. The limited 

preservation of the attached cones prevents a reliable di agnosi , but what features are pre ent 

indicates that the cones are different to any known members of Chwllaec)paris. It is possible 

that thi s specimen is an archaic member of thi s genus, but cannot bc confimlcd with certainty. it 

is therefore considered as "Chamaec)paris cf.". If OC3 and its associa ted foliage CM4 are 

represent atives of Challlaec)paris it could extend the fossil record of thi s genus to the mid 

Paleocene. A detailed examination of the cones and collection of more specimens is required to 

a ffinn thi s assertion. 

Figure 4.8. Examples of Ci\1.t . a) ACC.OO I-f, b) A \1.~A.030-e. calc bars = I em. 
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4.4.5 Conifer shoot morphotype 5 (CM5) 

The leaflets of conifer shoot morphotype 5 (CM5) are sca le- like and imbricate, the branchlets 

are di stichou s and alternate. The best preserved spec imen of CMS (ACC.003-d) (Figure 4.9-a), 

represen ts a well articu lated shoot system with well preserved individua l leaflets. The latera l 

leaflets are rounded with a blunt apex. The interior margin of the faci al leaves can be s traight or 

slightly concave, although the forn1er is more common. The apex is blunt and well rounded or 

slightly convex . The lateral lea flet s join at their base and are ei ther partly or completely 

obscured basally by the proximal facial leaflet. The facial leaflets differ to the latera ls in shape 

and forn1. The facials are shorter and almost diamond shaped and have a prominent ridge 

medially, while the lateral leaflets are more elongated with a rounded obtuse apex (Figurc 4.9). 

The alternate di st ichous arrangement of the branchlets and the shape of the facial and latera l 

leaflets separate this morphotype from the other cupressaceous foliage of the Alit Mor 

assemblage. The absence of attached cones or cuticle prevent s a reliable ident i fication of thi s 

1110rphotype. Comparisons with modern members of the Cupressoideae in Schulz et al. (2005) 

indicate that C 15 has a close affinity wi th the genus Tllly·a. The diamond shaped appea rance of 

the facia l leaves with their prominent medial ridge is consisten t with the Alit Mor spec imens 

(F igure 4.9). Despite of it s close resemblance to Th l!ja it cannot be accura tely demonstra ted to 

represent this genus without further diagnostic infonnati on, such as cones or cuticle, and is 

therefore considered as "Tll/da cf.' ·. 

Figure 4.9. Exnmplcs ofCl\15 . n) ACC.003-d. b) Al\1.NA.066. calc bars = I em. 
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4.4.6 Conifer shoot morphotype 6 (CM6) 

The leaflets of conifer shoot morphotype 6 (CM6) are scale-like and imbricate, which indicates 

it represents another species associated with the Cupressoideae. This morphotype is represented 

by only two specimens (AM.NA.2008.013-e and NMS.G.2004.29.22) (Figure 4.10), but have 

features that distinguish them from other Cupressoideae morphotypes of Allt Mor. The lateral 

leaflets of CM6 are its most distinguishing feature, they have acute apexes, which can be 

straight or hooked in shape (Figure 4.10). The facial leaflets are poorly preserved but appear to 

be tapered at their base, they are straight sided and have an acute apex similar to the lateral 

leaflets. The lateral leaflets that develop where the branchlets bifurcate have a different 

appearance to the leaflets attached to the branchlets, as they are more widely splayed and are 

nearly L-shaped, with the apex directed _90 0 to the branchlet axis (Figure 4.1O-b). 

Comparisons with modern members of the Cupressoideae described in Schultz et at. (2005) and 

Eckenwalder (2009) indicate that CM6 is unlike any modern member of this subfamily. An 

extinct member of this subfamily, Mesocyparis appears to be most comparable to CM6. Two 

species of Mesocyparis from the Late Cretaceous and Paleocene have been described from the 

Alberta and Saskatchewan of Canada respectively (McIver and Basinger 1987, McIver and 

Alenback 1994). Both of these species resemble CM6 in the overall morphology of the leaflets, 

but the Canadian forms are more complete and have attached cones. The lateral leaflets are 

highly similar in shape to CM6, and have the same prominent pointed or hooked apex. The 

laterals at the bifurcation points of the branchlets are similar those of CM6. It is likely that CM6 

represents a species of Mesocyparis, and is therefore regarded as Mesocyparis sp. 
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Figure 4.10. Examples of CM6. a) AM.NA.2008.013-e, b) NMS.G.2004.29.22, image supplied by 
Robert Mill. Scale bars = 1 em. 

4.4.7 Conifer shoot morphotype 7 (CM7) 

Conifer shoot morphotype 7 (CM7) is based on a single poorly preserved specimen 

(NMS.G.2004.29.024-e) (Figure 4.11), it has scale-like leaflets that are imbricate, which 

indicates that it is a member of the Cupressoideae. This morphotype is distinguished from the 

other Cupressoideae morphotypes of Alit Mor by its greatly elongated facial and lateral leaflets 

and their apex morphology. Both the lateral and facial leaflets are rectangular in shape and are 

of a similar size, which indicates that they are monotypic. The apex of both facial and laterals 

are splayed away from the axis , and narrow towards the tip. The length of the leaflets gradually 

decreases distally, with the distal most scales being approximately a quarter the length of the 

proximal most scales. 

The arrangement and shape of the facial and lateral leaflets indicates that CM7 may be 

attributable to Calocedrlls, which has the same rectangular elongated leaflets (Eckenwalder 

2009). The single specimen of CM7 is too poorly preserved and incomplete to detennine its 

affinity confidently, and is therefore considered to be "Calocedrtts cf." . 
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Figure 4.11. Exa mple of CM7. N lS.C.2004.29.024-e image supplied by Robert 'I ill. cale bar = 1 

Col . 

4.4.8 Conifer shoot m orphotypc 8 (C 18) 

Conifer shoot morphotype 8 (CMS) is unique to the Allt Mor a sembI age as it ha needle-like 

leaves, which are characteristic of the Pinaceae (Eckenwalder 2009) (Figure -L 12). The needle 

are approx imately 40 mm to 50 mm in length and have a width <3 mm. The need les have broad 

base and taper prox imally and retain a rel ati vel y constant diameter fo r much of thei r length . The 

needles apex is often absent or poorl y preserved, but appear to rounded and relatively blunt. 

The texture and external struc ture of the needles are poorly pre er.·ed but appear to be light ly 

striated. 

The needles are too poorl y preserved and disa rt iculated to a cribe confidently to a particular 

genus with the Pinaceae. Similar needles have been desc ri bed from Northern Ireland and Mull 

and were attributed to Pinus p lulOnis (Boulter and K\"acek 19R9). Thi may suggest that the Alit 

Mor needles may represent a fonn of Pinus, but due to the limited preser.·ation they will be 

tenta ti vely associated to thi s genus. 
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Figure 4.12. An example of e1\18. AI\1.NA.078. Scale bar = I CIII. 

The preliminary descriptive and taxonomic review ofthc Alit Mor conifers of Skye in this study 

indicates that they were both abundant and relatively diverse components of the flora . Three 

ovu late cone types have been identified and the e show to similarities to Metaseqlloia (OC I). 

Seqlloia (OC2) and C/roIllOe(IJHlris (OC3). Eight conifer shoot Illorphotypes were identified 

and indicate that the conifers of Alit Mor are attributab le to the families Cupressaceae and 

Pinaceae. The cupressaceous con ifers are the most diverse conifer clement, with all three 

ovulate cone types and seven of the shoot Illorphotypes attributed to thi s fami ly. The even 

shoot morphotype represent three subfamilies within the Cupressaceae: the Sequoioideae, 

Taxod ioideae and the Cupressoideae. 

Two shoot morphotypes are attributed to genera within the Sequoioideae, CM I and CM2. These 

shoot morphotypes appear similar to Metaseqlloia (CM I) and Seqlloia (CM2) nnd are attribut ed 

to ovulate cone types OCI and OC2 respectively. The presence of both cones nnd abundnnt 

leafy shoots of these genera provides strong evidence for their occurrence on Skye during the 

Paleocene. Conifer shoots that appear similar to CM2 (Seqlloia sp.) hnvc been identified I'roll1 

Ardtun of Mull , and were described as Elatocladl/s ca ll/pbellii (Boul tcr and K vacek 19R9). The 

identity of thi s conifer was uncertain , but the con fimlati on th at Seqlloia was present in the 

BTVP suggests that the Mull form may be attribu ted to this genus. and thi s wns a com mon 

con ifer of the BTVP. The single representa ti ve of the Taxodioideae, eM3 nppears similar to 
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Glyptostrobus dunoyeri of Northern Ireland and Mull. The presence of this conifer across the 

BTVP suggests that it was an abundant component of the flora. 

The Cupressoideae subfamily is represented by four conifer shoot morphotypes and one ovulate 

cone type. The shoot morphotypes are tentatively associated to four genera, Chamaecyparis 

(CM4), Thuja (CMS), Mesocyparis (CM6) and Calocedrus (CM7). One specimen ofCM4 has 

attached cones (OC3), these cones are poorly preserved but their association with the leafy 

shoot indicates that it represents a form of Chamaecyparis. If this association is correct it could 

represent one of the oldest records of this genus. 

The Pinaceae are represented by one shoot morphotype (CM8), the needle-like leaves of this 

morphotype are characteristic of this family, but are too poorly preserved to establish their 

generic affinity. Similar needles attributed to Pinus have been described from Northern Ireland 

(Boulter and K vacek 1989), but it is currently unclear if the Skye form is related. 

The abundance and diversity of conifers in the Alit Mor flora indicates that this environment 

provided ideal growing conditions during the Paleocene. Continued work by Robert Mill of the 

Royal Botanical Gardens, Edinburgh may provide additional insights into these conifers and 

why they were so diverse on Skye during the Paleocene. 
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Chapter 5: Composition and vegetation structure of the fossil floras of 

Skye 

5.1 Introduction 

In this chapter the composition of the mid Paleocene vegetation of Skye is reconstructed. The 

relative abundance of each angiosperm and conifer morpho type is used to determine their 

ecological importance in the assemblages and to determine their growth habits. The taphonomy 

of the macrofossil assemblages of Skye are considered to determine its role in shaping of the 

plant assmebalges, and how the orginal vegetation compostion can be deciphered from the plant 

assemblages of Skye. The macrofossil record is compared to the palynomorph records from the 

Skye Lava Group to determine the more regional vegetation. These lines of evidence are used to 

reconstruct the vegetation of the macrofossil assemblages of Alit Mor, Alit Geodh' a' Ghamhna 

and Glen Osdale and the more regional vegetation of Skye during the mid Paleocene. 

5.2 Floral composition and abundance of the Skye macrofossils 

5.2.1 Floral diversity of Skye 

The plant macrofossils recovered from the interbasaltic sequences from Alit Geodh' a' 

Ghamhna, AlIt Mor and Glen Osdale have yielded a angiosperm and conifer flora. To date, 14 

angiosperm leaf morphotypes, three ovulate cone species and eight conifer shoot morphotypes 

have been recognised and described in Chapters 3 and 4. The AlIt Mor assemblage has provided 

the richest and best preserved fossil plant remains collected from Skye. Estimating the floral 

diversity of Skye from the plant macrofossils is therefore biased towards the Alit Mor 

assemblage. The AlIt Geodh' a' Ghamhna and Glen Osdale collections are limited and poorly 

preserved, and both contain only fossils of broad leaf angiosperms. 

The broadleaved angiosperm morphotypes recognised from the plant assemblages from the 

Skye Lava Group indicate that at least 14 angiosperm taxa were present in this region during the 

Paleocene (Figures 5.1, 5.2, 5.3). The affinities of many of these angiospenns have been 

determined by comparing their morphology with both fossil and modem taxa (Chapter 3). The 

morphotypes indicate that nine angiosperm families were present in Skye during the Paleocene 

(Table 5.1). The leaves are associated with the following families: Platanaceae, 

Cercidiphyllaceae, Betulaceae, Fagaceae, Juglandaceae, Vitaceae, Comaceae and the 

Trochodendraceae. The majority of these families are represented by a single morphotype, 

except for the Juglandaceae, which has three morphotypes associated to it. However, the generic 
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affinities of the angiospenn morphotypes cannot be detennined with certainty as no 

reproductive structures have been found associated with the leaves. 

Table 5.1. Fossil angiosperm morphotypes from Skye, showing their family affinity, described fossil 
species and localities from which they have been recorded. 

Morphotype number Family affinity Described fossil species Localities present 

AMI Platanaceae Platanites hebridicus AM,GO 

AM2 Cercidiphyllaceae Trochodendroides antiqua AM,GO 

AM3 Betulaceae Corylites hebridicus AM,AG,GO 

AM4 Betulaceae? "Corylites cf .. AM 

AM5 Fagaceae F agopsiphyl/um groenlandica AM 

AM6 Juglandaceae Juglandiphyllites sp.l AM 

AM7 JugJandaceae Juglandiphyllites sp.2 AM 

AM8 Juglandaceae "Platycarya cf" AM 

AM9 Vitaceae Vitiphyllum sewardii AM 

AM 10 Comaceae Cornophyllum hebridicum AM,AG,GO 

AMII Trochodendraceae Zizyphoides sp. AM 

AMI2 unknown unknown AM 

AM 13 unknown unknown AM,GO 

AM 14 unknown unknown AM 

Locality codes; AM, Alit Mor; AG, Alit Geodh' a' Ghamhna; GO, Glen Osdale. AMI, AM2 etc. = 

angiosperm morphotype. 
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Figure 5.1. Representatives of angio~perm n.lOrphotypes I to 5. a) AM I P/atclllites hehridiclis 
(ACC.OOI-c), b) MI2 TrocllO~/endr~:des alltlqua (Nl\1S.G.2004.29.47-~), c) A 13 CO/ylites hl'hritliCll.'· 
(ACC.OI2-b), d) AM4 "Cory/He.\' cr. (AM.NA.061 -n), c) Al\15 FagopslpiJyllulll grot'll/lll/(/iCll 
(ACC.004-c). Scale bars = I COl. 
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Figure 5.2. Rep resenta tives of angiosperm morphotypes 6 to 10. a) A;\16 JII~/ulldiphyllites sp.1 
(ACC.OO I-b), b) Al\17 Jug lallt/iphyllites sp.2 (:'I:;\lS.G.2004.29.008-a), c) Al\I8 "Platycarya cr." 
(Ai\1.NA. 184-a), d) Al\19 Vitiphylllllll sell'ardii (A;\1.;\A.059-a), e) A;\I 10 Comophylllllll hebridiclIIII 
(NJ\l S.G.2005. 14S.0 13-b). Sca le bars = 1 cm. 
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a) 

Figure 5.3. Representatives of angiosperm morphotypes II to 15. a) AM II Zi:yphoitfesflabella 
(AM.NA.173-a), b) AMI2 (AM .NA.I 06-c) c) AM13 (AM.NA.1 75-a), d) AM 14 (ACC.OO I-e). Scale 

bars = I cm. 
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Conifer macrofossils have been recovered only from the AlIt Mor locality but are diverse and 

abundant components of the flora. The conifer fossils comprise three ovulate cone types and 

eight shoot morphotypes (Figure 5.4, Table 5.2). Comparisons with fossil and modern conifer 

taxa indicate that eight distinct species of conifer were present at AlIt Mor during the Paleocene. 

These fossils show that two conifer families were present and include members of the Pinaceae 

and the Cupressaceae. Disarticulated needles associated with the Pinaceae were identified from 

the AlIt Mor assemblage, but were too poorly preserved to establish their generic affinity and 

were placed into conifer morphotype 8 (CM8). 

Macrofossils attributed to the Cupressaceae are the most diverse conifer component of the Alit 

Mor assemblage and are associated with three subfamilies: Sequoioideae, Taxodioideae and the 

Cupressoideae. Two ovulate cones (OCI and OC2) and two associated shoot morphotypes 

(CM I and CM2) were identified as representatives of the Sequoioideae and include 

Metasequoia occidentalis and Sequoia sp. The Taxodioideae is represented by a single shoot 

morphotype (CM3), which is attributed to Glyptostrobus dunoyeri. Macrofossils associated with 

the Cupressoideae are the most diverse element of the cupressaceous fossils and include four 

morphotypes that are tentatively associated with Chamaecyparis (CM4), Thuja (CMS), 

Mesocyparis (CM6) and Calocedrus (CM7). 

Table S.2. Conifer ovulate cone and sboot morpbotypes from Alit Mor, witb tbeir family and 
subfamily affinities and associated fossil taxa. 

Morphotype number Family affinity Subfamily affinity Associated taxa 

OCI Cupressaceae Sequoioideae Metasequoia occidentalis 

OC2 Cupressaceae Sequoioideae Sequoiasp. 

OC3 Cupressaceae Sequoioideae Metasequoia occidentalis 

CM2 Cupressaceae Sequoioideae Sequoia sp. 

CM3 Cupressaceae Taxodioideae Glyptostrobus dunoyeri 

CM4 Cupressaceae Cupressoideae "Chamaecyparis cf.'· 

CMS Cupressaceae Cupressoideae "Thuja cf." 

CM6 Cupressaceae Cupressoideae Mesocyparis sp. 

CM7 Cupressaceae Cupressoideae "Calocedrus cf." 

CM8 Pinaceae unknown unknown 

OC = ovulate cone type, CM = conifer sboot morpbotype. 
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-t::-___ i) -

Figure 5.5.4. Representatives of conifer macrofossils from Alit Mor, Skyc. a) ovulate COliC of 
Metawqlloia oreidel/tali.'· (OC I), b) Ovulate cOile of Seqlloia sp. (OC2), c) CM I Metaseqlloia 
oceidel/ta/is (Nl\1S.G.2004.29.008-e), d) CM2 Seqlloia sp. (NMS.G.2004.29. IOO-g), e) CM3 
G/yptostrobllS dill/oyer; (NJ\1S.C.2004.29.062-d), f) CM4 "ClwlI/aecJ'par;s cr." (AM .ACC.OO I-f), g) 
Cl\15 "Thuja cr.". (Nl\ IS.G.2004.29.003-c), h) CM6 MesocJ'lIpris sp. (AM.L4.M!,0004-c), i) Cl\17 
"Caloccdrus cr.". (N IS.C.2004.29.24-e), j) CM8 (AM.NA.078). 
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The macro-floral record of the Alit Mor assemblage shows that 23 plant taxa representing 15 

angiosperm and eight conifer morphotypes were present on Skye during the Paleocene. Nine 

angiosperm families are represented by the macrofossils, although it may have been higher 

because four of the angiosperm morphotypes cannot be identified to family level (AM 12-15). 

Conifer family-level diversity was lower with only two families recorded. These plant taxa all 

appear to represent woody shrub or tree taxa, but no herbaceous or aquatic vegetation has been 

identified at any of the plant localities, although Morphotype 10, Vitiphyl/um, may represent a 

liana if its affinities with the Vitaceae is correct. 

S.2.1 Diversity and morphotype richness 

Species richness is a measure of the total number of species within a given community or 

ecosystem and is the simplest measure of diversity (Magurran 1988). Species accumulation 

curves have been used in palaeobotanical studies to determine the effect that sampling effort has 

on capturing the species richness of plant assemblages (Wing and DiMichelle 1995). Enhanced 

sampling effort increases the probability that the majority of species will be sampled within a 

given assemblage until only the rarest taxa remain to be recorded. At this point increased 

sampling effort does not increase the number of species recorded. Species accumulation curves 

are produced from the cumulative number of species related to the sampling effort. 

The production of a species accumulation curve for a fossil plant assemblage is vital in order to 

understand that the effort to collect from that assemblage was adequate to capture the species 

richness preserved within the assemblage. Determining that sampling effort was sufficient and 

most fossil species were collected has important implications for the interpretation of floral 

diversity and palaeoclimate. 

To produce a species accumulation curve for the Allt Mor assemblage angiosperm leaves and 

conifer shoots were counted in each sample (rock slab). The Alit Mor collection includes 379 

fossil-rich samples, which represents 2572 individual leaf or cone specimens. Each plant 

specimen was identified where possible to its corresponding conifer or angiosperm morphotype 

(each representing an individual 'bin') and its abundance on each slab was recorded. Specimens 

that could not be reliably identified were counted and put into bins specifically designated for 

groups of unidentifiable specimens (Table 5.3). The species accumulation curve for the AlIt 

Mor assemblage was then produced using PAST statistical software (Hammer et a1. 2001) 

(Figure 5.5). 
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Table 5.3. Unidentifiable macrofossil bin categories, description and morphotypes represented by 
these bins. 

Macrofossil bin Bin description Probable 
morphotypes in 
thi s bin 

unidentifiable conifers conifer shoots whose identity cannot be determined CM 1-8 

unidenti fiable Sequoioideae shoots that cannot reliably di stinguished from CM 1-2 

Sequoioideae CM I or2 

unidenti fiable Cupressoideae shoots that cannot be reliably distinguished CM 4-7 
Cupressoideae from CM 4-7 

unidenti fiable angiosperm leaffragments too poorly preserved to determine AM 1-1 5 

angiosperms the morphotype or primary venation 

unidentifiable pinnate angiosperm leaf fragments with pinnate primary venation that AM 3, 4, 5, 6,7, 
angiosperms are too poorly preserved to identify to a pinnate morphotype 8, 10, 12, 13, 

14,15 

unidentifiable palmate angiosperm leaf fragments with palmate leaf form that are too AM 1,2, 9, II 

angiosperms poorly preserved to identify to a palmate morphotype 

eM = conifer morphotype, AM = angiosperm morphotype. 
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Figure 5.5. Species accumulation curve for the Alit Mor fossil plant assemblage. Blue lines 
represent 95% confidence intervals. Dashed lines refer to points where a high proportion or the 
maximum number of taxa within the assemble have been sampled. 
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The species accumulation curve indicates that between 15 to 25 of the taxa will be present 

within limited sampling effort of 500 specimens (Figure 5.5). To capture the remaining diversity 

significantly more sampling effort is required as the curve does not reach asymptote until -2000 

specimens are counted (Figure 5.5). The curve suggests that sampling effort in this study was 

sufficient to capture most of the floral diversity at AlIt Mor. Future collections from this site 

require sampling of greater than 2000 specimens to discover the rarer taxa in this assemblage. 

5.2.2 Relative abundance of floral elements 

Determining the diversity and relative abundance of each fossil plant taxon can provide insight 

into the species and vegetation composition of fossil plant assemblages. For example the high 

relative abundance of specific taxa within a fossil assemblage can show that they are either 

locally or more regionally dominant members of the plant community (Hickey 1980, Burnham 

et al. 1992, Wing and DiMichelle 1995). 

The relative abundance of each of the plant taxa from the AlIt Mor assemblage has been 

determined by identifying and counting each fossil plant fragment (Table 5.4). In total 2572 

individual conifer and angiosperm leaf fragments were counted and identified. Conifer shoots 

account for 55% of the specimens and angiosperms 45% of the specimens from the AlIt Mor 

assemblage. The relatively higher abundance of conifer shoots may indicate ecological 

dominance but may be attributed to a variety of taphonomic processes, which are discussed in 

section 5.3. 
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Table 5.4. Relative abundance of the floral components of the AlIt Mor assemblage. 

morphotypes or unidentifiable number of % of abundance 

bin types specimens specimens category 

Conifers 

unidentifiable conifer 43 1.7 uncommon 

unidentifiable Sequoioideae 253 9.8 common 

unidentifiable Cupressoideae 131 5.1 common 

CMI Metasequoia occidentalis 251 9.8 common 

CM2 Sequoia sp. 558 21.7 dominant 

CM3 GZyptostrobus dunoyeri 99 3.9 uncommon 

CM4 "Chamaecyparis cf." 23 0.9 rare 

CM5 " Thuja cf." 36 1.4 uncommon 

CM6 Mesocyparis sp. 2 0.1 rare 

CM7 "Calocedrus cf." 1 >0.1 rare 

CM8 Pinaceae-type 6 0.2 rare 

Angiosperms 

unidentifiable angiosperm 230 8.7 common 

unidentifiable pinnate angiosperm 452 17.5 dominant 

unidentifiable palmate angiosperm 6 0.2 rare 

AMI Platanites hebridicus 104 4.0 uncommon 

AM2 Trochodendroides antiqua 65 2.5 uncommon 

AM3 Corylites hebridicus 197 7.7 common 

AM4 "Cory/ites cf." 16 0.6 rare 

AM5 Fagopsiphyllum groenlandica 3 0.1 rare 

AM6 Juglandiphy llites sp.l 7 0.3 rare 

AM7 Juglandiphy llites sp.2 1 >0.1 rare 

AM8 "Platycarya cf." 47 1.8 uncommon 

AM9 Vitiphy llum sewardii 8 OJ rare 

AMIO Cornophyllum hebridicum 4 0.2 rare 

AM II Zizyphoides sp. 16 0.6 rare 

AMI2 affinity unknown I >0.1 rare 

AMI3 affinity unknown 11 0.4 rare 

AM14 affinity unknown I >0.1 rare 

total number of specimens 2572 

CM = conifer morphotype, AM = angiosperm morphotype. Abundance categories defined by 

relative percentages of each taxon; rare, <1 %; uncommon, 1-5%; common, 5%-10%; dominant 

>10%. 
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Specimen counts from the Alit Mor assemblage indicates that the majority of the speci men are 

attributed to a small number of morphotypes or bins (Table 5.4). The relatiye percentage of each 

morphotypelb in has been put into abundance categories (see Table 5.4) to expres their 

importance in the flora . Two morphotypeslb ins, CM2 (Sequoia sp.) and unidentifiable pinnate 

angiospenns are dominant componen ts of the Alit Mor flora and account for - 390
0 of the 

specimens (Figure 5.6). Five common morphotypeslbins (unidentifiable Sequoideae. CM I 

(Me{(/se(j lloia occidel1lC1/is), unidentifiable angiospenns, AM3 (Cory/ires hebridiclIs) and 

unidentifiable Cupressoideae) are common components and collectiyely account for -41 ~ 0 of 

the specimens (Figure 5.6). The remaining conifer and angio penn morphotype bin are 

considered uncommon (- 15%) or rare (- 4%) components collection (Figure 5.6). 

uncommon 
morphotype Ibins 

rare 
morphotypes/bins 

4.3 °0 

unidentifiable 15.\0 

5.1 % 
c upreSSOideae \ 

• AM3 Con'liles 
liehridiclIs 

7.7% 

• unidentifiable 
angiosperm 

8.9% 
• unidenti fiable 

Sequoioideae 
9.8% 

• eM2 Seqlloia ~p. 
21 .7°0 

• eM I .Ilelascqlloia 
occidclllali . 

9.8°0 

unidenti fiable 
pinnate angiosperm 

17.5°0 

Figure 5.6. Relative abundance of conifer and angiosperm morph o t~ pes a nd unid entifi able bin 
within the Alit Mor macrofossil assemblage. For details on th e specific morphotype or bin \\ ith 
these broader abundance categories see Table 5.4. 

The dominant and common members of the assemblage are apparent from the counts Crable 5"+. 

Figure 5.6) . These dominant and common taxa probably repre ent the local \egetatioll growing 

near to the depositional site at Alit Mor. This suggests the local \egetation was dominated by 

Sequoideae conifers such as Me({Jseq lloia (CM I ) and Sequoia ( 2) with common occurrences 

of Corylilcs (A M3) and Cuprcssoideae conifers. The remaining uncommon or rare taxa may 

have originall y been less abundant components of the vegetation, grew funher a\\ ay from the 

site of depositi on or may have had limited preservation potential. 



181 

5.2.3 Floral habit and palaeoenvironment associations ofthe conifer and angiosperms 

morphotypes of Skye 

Studies of modem vegetation and their associated environments have shown that the size of the 

plant, its habit and the community/environment that it grew in has a strong effect on the spatial 

patterns ofleaf litter production and accumulation (Roth and Dilcher 1989, Spicer 1989, 

Burnham et al. 1992, Greenwood 1992). Determining these factors for fossil plants is difficult 

as specific taxa are typically represented by disarticulated organs, so reconstructing the whole 

plant is difficult or impossible. In-situ vegetation is not preserved in any of the Skye fossil 

assemblages so the standing structure of the source vegetation cannot be determined with 

confidence, but inferences from modem vegetation, the macrofossil and palynological 

assemblages from Skye and other Paleogene floras may provide some insight into the size of the 

plants, their habit and their palaeoenvironmental associations. 

5.2.3.1 Growth habit of the Skye floras 

The growth or floral habit of plant refers to its vegetative posture and height e.g. short stature 

shrub or canopy tree. Determining the growth habit of macrofossils from Skye will provide 

insight into the vegetation structure in this region during the mid Paleocene. 

The relative height and possible growth habit of the Alit Mor conifers has been detennined from 

comparisons with modem relatives and the in-situ remains of MacCuI\och's Tree on Mull. The 

modem relatives of the Alit Mor conifers indicate that the fossil conifers were probably tall 

canopy trees (Table 5.5). 

Table 5.5. The nearest living relatives (NLRs) of the Alit Mor conifers and their mature heights. 
Height of modern realtive from Eckenwalder (2009). 

conifer morphotype nearest living relative mature height range (m) 

CMI Metasequoia occidelltalis Metasequoia g~vptostroboides 35 to 60 

CM2 Sequoia sp. Sequoia sempen'irells up to 112 

CM3 Glyptostroblls dunoyeri Glyptostroblls pellsilis 25 

CM4 "Chamaecyparis cr' Chamaecyparis spp. 30 to 65 

CM5 "Thllja cr'. Thllja spp. 10 to 50 

CM6 Mesocyparis sp. unknown unknown 

CM7 "Calocedrlls sp" Calocedrus spp. 23 to 46 

CM8 Pinaceae-type Pinaceae 2 to 100 
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MacCulloch 's Tree (NG 580 468) is an in-sitll conifer that was entombed by the lava of the 

Staffa Fomlation on Mull (Figure 5.7). This tree provides the only evidence of il/-sifl/ 

arborescen t vegetation from the BTVP. Although very little fossil wood remain. it i assumed 

that the trunk-shaped cavity formed around a standing tree. The tree was large, approximately I 

m wide and 12 m tall and is attributed to taxodiaceous conifers (Brown et al. 2009). The tree 

was growing in a swampy environment prior to the eruptions that preserved it (Emeleus and 

Bell 2005). The total height of MacCulloch ' s Tree cannot be determined as the upper portion of 

the trunk and canopy are not preserved. It s overall preserved proportions, however, indicate it 

was well with in the height range of modem taxodiaceous coni fers , such as ,\feraseqlloia and 

Glypfosfrobus (Table 5.5). 

Figure 5.7. Photograph of MacCulloch's Tree of Mull (NG 580 468). The mould of the tree is 
preserved within the lavas of the Staffa Formation. Photograph taken by D. J. Brown 
http: //www.davidjbrown.org.ukJDJB% 20Scotland.htm. An notated by Jon Poulter. 
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The large size of MacCulloch's Tree and the stature of modem relatives of the Sequoioideae 

and Cupressoideae fossils (Table 5.5) present at Alit Mor suggests that tall trees were a 

conspicuous element of the vegetation and they probably represented the climax canopy 

vegetation of Skye. 

Determining the growth form of Paleogene angiosperms from their modem relatives is 

problematic as many of the families, including those found on Skye such as the Platanaceae, 

Cercidiphyllaceae, Betulaceae, Fagaceae and Juglandaceae, were diversifying rapidly during 

this interval (Upchurch and Wolfe 1987, Wing et a1. 2005). A study by Upchurch and Wolfe 

(1987) showed that the physiognomy of modem woody dicotyledonous angiosperms reflects 

their growth habit. The morphology of the angiosperm leaf morphotypes from Skye may 

therefore provide some insight into their growth form. 

Leaves with palmate venation, cordate bases, drip-tips, toothed margins, large lamina areas and 

short length:width ratios are characteristic of understory vegetation and liana habit. Vegetation 

growing in successional or disturbed habitats often have thin membranaceous leaves, with lobed 

and/or compound foliage. Climax vegetation in megathermal climates has thick coriaceous leaf 

textures and in meso-microthermal climates tends to have membranaceous leaves (Upchurch 

and Wolfe 1987). The development of different physiognomic suites is a response to the local 

growing conditions, for example, understory vegetation or Hanas are subjected to limited light 

and high humidity under the canopy and have evolved particular leaf strategies to compensate 

for these conditions (Upchurch and Wolfe 1987). 

The physiognomic characters previously mentioned were scored for each of the angiospenn leaf 

morphotypes from AlIt Mor to determine their growth habit and how this might have affected 

their relative abundance in the vegetation The scored taxa were then analysed using cluster 

analysis to see if particular morphotypes formed specific groups that might represent past 

growth habits (Figure 5.8). The cluster analysis was generated using PAST statistical software 

(Hammer et a1. 2001). Two algorithms were used to test the robustness of the clusters; 

unweighted paired grouping average and Ward's Method. The former algorithm clustering is 

based on the average distance between groups, whilst the latter, forms clusters that reduce 

within group variation. 
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Figure 5.8. Dendrograms of leaf physiognomic data from angiosperm morphOI)·pes of Alit I\lor. a) 
Dendrogram using paired-grouping; b) dendrogram using Ward's Method. Coloured boxes 
represent consistent clusters using both algorithms. 

Three stable groups were produced from the cluster analysis (Figure 5.8) and include the 

Trochodendroides-Vitiphyllum-Platanites (AM 2, 9, I ) group, a Corylites hebridic/ls-"Corylites 

cr' (AM 3, 4) group, and AM I3-AM 14 group. The remaining morphotype clusters were 

inconsistent, which indicates that their clustering is not reliable . The morphology o f the 

Trochodendroides-Vitiphyllum-Platanites group is suggesti ve of understory and li ana vegetation 

as the leaves are palmate, have cordate bases, toothed margins, large lamina area and short 

length:width ratios. Trochodendroides and Platanities a re likely understory shrub or trees, 

while Vitiphyllwl1 , with its association with the Vitaceae, was poss ibl y a li ana. 

The COIylites It ebridicus-"Corylites cr' group is clustered on their shared morphological 

attributes such as cordate base, drip-tips, toothed margin and large lamin a areas. These taxa are 

also possible understory shrub or tree taxa which grew in the humid , dark conditions below the 

canopy. The AM 13-AM 14 group habit is less easily recognised as the morphology o f bo th 

morphotypes is incompl ete due the limi ted number of specimens and preservation . 

Morphotype 8, "Platycaraya c/", is the on ly angiosperm in the Alit Mor as emblage with 

compound leaf o rgan isa tion, and includes one specimen ( MS .G.2004 .29.66) with a rachi wilh 
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three attached leaflets this indicates that it may have been a member of early successional, 

disturbed environments. Platanites hebridicus (AM 1) may have also been adapted to these 

conditions as its leaf organisation and morphology suggest adaptations to these conditions. Well 

preserved specimens of the angiosperm from Mull show that the leaf organisation was trifoliate 

(one terminal leaflet and two lateral leaflets) and the terminal leaflets were near-lobate (Crane et 

al. 1988). These features indicate that this plant may have been well adapted to the understory 

and disturbed, successional environments. 

The floral habits that can be determined from the fossil plant remains from Skye indicate that 

tall cupressaceous and taxodiaceous conifers may have created a closed or shaded canopy 

(Table 5.6). The shaded, humid conditions of the understory contained a variety of angiosperm 

shrubs, trees and possibly a liana (Table 5.6). Disturbed conditions and open succesional 

environments are indicated by the two angiosperm taxa Platanites hebridicus (AMI) and 

"Platycaraya cf" (AM8) (Table 5.6). 

Table 5.6. Suggested growth habit types present on Skye and their associated morphotypes. 

Habit Morphotype 

Canopy forming vegtaion OCI/CMl Metasequoia occidenta/is 

OC2/CM2 Sequoia sp. 

OC3/CM4 "Chamaecyparis cf." 

CM5 "Thuja cf." 

CM8 

Understorey AMI Platanites hebridicus 

AM2 Trochodendroides antiqua 

AM3 Corylites hebridicus 

AM4 "Cory/ites cf." 

Liana AM9 Vitiphyllul1l sewardii 

Successional vegetation AMI Platanites hebridiclis 

AM8 "Platycarya cf." 
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5.2.3.1 Palaeoenvironmental associations of the macrofossil floras of Skye 

Combined evidence from the nearest living relatives of the Skye macrofossils, their relative 

abundance and palynological associations indicates that the plants that produced the 

macrofossils may have grown in a variety of palaeoenvironments and communities (Table 5.7). 

Three broad palaeoenvironmental facies are suggested: riparian, swamp and upland (Table 5.7). 

Riparian vegetation refers to plants growing in and around fluvial environments. Swamp 

conditions represent riparian environments with elevated water-table and waterlogged soils. 

Upland palaeoenvironments refer to extra-basinal conditions i.e. environments distal to the 

floodplain such as valley sides and tops and areas of elevated topography outside of the 

palaeovalleys. 

The leaf deposits of Skye were produced by fluvial deposition (Williamson and Bell 1994) and 

thus fossil leaves in these deposits are therefore likely to be dominated by local riparian 

vegetation. Sequoioideae (CM 1-2) and Cupressoideae conifers (CM 4-7) are among the most 

abundant components of the AlIt Mor floral assemblage (Table 5.4), which indicates that these 

conifers grew in or close to riparian environments (Table 5.7). Pollen attributed to these conifers 

is widespread and abundant across Skye (Jolley 1997) suggesting they were dominant taxa in 

riparian ecosystems. Modem representatives of these conifers are tolerant of flood-related 

disturbance, but may have developed in areas of the floodplain where flooding was less intense 

or infrequent, such as the distal margins of the floodplains (Eckenwalder 2009, Naiman et al. 

2010). 

The most abundant angiosperms of the AlIt Mor assemblages (Corylites (AM3), Platanites 

(AMI) and Trochodendroides (AM2» probably thrived in riparian environments (Table 5.7). 

Pollen associated with these taxa has been found in sediments associated with floodplain 

settings (Jolley 1997). This is consistent with other Paleogene riparian communities in the 

Northern Hemisphere, which often contain high abundances of these taxa (Crane and Stokey 

1985, McIver and Basinger 1994, Gemmil and Johnson 1997, Pigg and DeVoire 2009). 
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Table 5.7. Suggested palaeoenvironmental association of plant macrofossils from Skye, based on environmental preferences oftheir modern relatives, macrofossil and 
palynological evidence. 

morphotype nearest living relative modem environment palaeoenvironment evidence 

Conifen 

CMl Metasequoia oecidentalis Metasequoia glyptostroboides riparian/upland swamp/riparian/upland 1, 2,3 

CM2 Sequoia sp. Sequoia sempe,.virens riparian/upland riparian/upland 1, 2,3 

CM3 Gl;ploslrohus dunoyeri Glyptostrobus pensilis riparian/swamp swamp/riparian 1.3 

CM4 "Chamaeeyparis cr' Cupressoideae riparian/upland riparian/up land 1.3 

CMS "77lUja cr' Cuprcssoidcae riparian/upland riparian/upland 1,3 

CM6 Mesocyparis sp. Cupressoideae riparian/upland riparian/upland 1,3 

CM7 "Calocedrus cf" Cupressoideae riparian/upland riparian/upland 1,3 

eM8 Pinaceae-type Pinaceae upland upland 1. 2, 3 

Angiosperms 

AMI Platanites hebridicus Platanaceae riparian/upland riparian 1,2,3 

AM2 Trochodendroides antiqua Cercidiphyllaceae riparian riparian 1,2,3 

AM3 COIJ'lites hebridicus Betulaceae riparian/upland riparian 1,2,3 

AM4 "Corylites cj' ?Ulmaceae riparian/upland riparian 3 

AMS Fagiosiphy/lum groenlandiea Fagaceae riparian/upland riparian/upland? 3 

AM6 Juglandiphyl/ifes sp.1 Juglandaceae riparian/upland swamp/riparian? 1.2 

AM7 Juglandiphyl/ifes sp.2 Juglandaceae riparian/upland swamp/riparian? 1,2 

AM8 "PlafyealJ'a ej' J uglandaceae/ Platycarya riparian/upland riparian 1,2,3 

AM9 rifiphyllllm sewardii Vitaceae riparian/upland understory 

AMIO Cornophyllllm hebridicum Comaceae riparian/upland riparian 1,2 

AMI I Zi=yphoides sp. Trochodendraceae riparian/upland riparian 1.2 

eM = conifer morphotype, AM = angiosperm morphotype. Evidence: 1) modern relatives, 2) macrofossils of Skye, 3) Palynological evidence from Skye (Jolley 1991). 
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Floral inhabitants of swamp conditions are primarily indicated by pollen assemblages, which are 

dominated by taxodiaceous and juglandaceous pollen (Jolley 1997). Modem fonns of 

Metasequoia and Glyptostrobus are well adapted to swamp conditions, which suggest they were 

capable of growing in these conditions in the past (Eckenwalder 2009). This association is 

confinned from the Paleogene record of these plants as swamp deposits are often dominated by 

one or both of these plant taxa e.g. in the Paleogene forests of the Canadian Arctic (Greenwood 

and Basinger 1994, Pigg and DeVoire 2009). Three angiospenn morphotypes (AM 6-8) have 

been recognised from Allt Mor and may represent the juglandacous component of these 

swamps. 

Palynological evidence from the Skye Lava Group indicates that conifers attributed to the 

Cupressaceae and Pinaceae were widespread and were abundant components of the plant 

communities on Skye during the Paleocene (Jolley 1997). As suggested previously, several 

members of the Cupressaceae may have been components of riparian communities but their 

abundance in the pollen record and the tolerances of their modem relatives may indicate that 

they grew in upland environments as well (Table 5.7). Jolley (1997) suggested from his 

interpretations of the pollen record that members of the Pinaceae dominated the upland areas of 

Skye. This interpretation is partially indicated by the macrofossil record of the Pinaceae, which 

is composed of six poorly preserved needles, possibly indicating that they were growing away 

from the riparian environments due to their rarity in the macrofossil record. 

5.3 Taphonomy 

Fossil plant assemblages can provide infonnation on the original diversity and structure of the 

vegetation, but the fidelity to which they reflect the original vegetation is dependent on how 

they were accumulated and how they are interpreted (Roth and Dilcher 1978, Spicer 1981, 

Scheihing and Pfefferkorn 1984, Ferguson 1985, Burnham 1989, Spicer 1989, Greenwood 

1992, Behrensmeyer et at. 1992, Burnham et at. 1992, Gastaldo et at. 1995). The fossil plant 

assemblages of Skye provide a record of the vegetation that grew in this region during the 

Paleocene, but to what degree do these assemblages accurately portray the standing vegetation? 

For source vegetation to become fossilised it has to be subjected to a variety of processes 

(Figure 5.9). These processes can greatly affect the composition of the fossil plant assemblages 

and can lead to a biased or skewed perspective of the vegetation. Careful analysis and 

interpretation of these processes are required to interpret the original vegetation accurately as 

discussed in the following sections. 
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material. Figure provided by Robert Spicer. 
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5.3.1 Pre-depositional factors 

5.3.1.1 Abscission: deciduous or evergreen leal habit 

Abscission, the shedding of leaves and other plant organs, is the first stage of fossilisation; 

abscission however, is not unifonn across all vegetation. Herbaceous angiosperms and ferns do 

not typically abscise their leaves and so have little chance of being preserved (Spicer 1981, 

Ferguson 1985). Arborescent angiospenns and conifers do abscise their foliage but at different 

rates and times of year depending on whether they are deciduous or evergreen (Ferguson 1985, 

Burnham 1989, Burnham et a1. 1992). Abscission therefore represents the first bias in a fossil 

plant assemblage as some taxa have a greater chance of entering the depositional setting 

assemblage than others. Deciduous leaves are shed en-mass and in large numbers and so have a 

greater chance of being incorporated in an assemblage (Spicer 1981, Ferguson 1985). 

Deciduous leaves are, however, less resistant to decay compared to evergreen leaves (Ferguson 

1985) and therefore may have a reduced chance of surviving transport and preservation. 

To investigate this potential bias, the conifer and angiosperm leafmorphotypes from Skye and 

their modem relatives were examined to detennine if they were deciduous or evergreen, and 

their relative abundance in the assemblage assessed (Tables 5.8, 5.9). Three morphological 

characters were considered: coriaceous leaf texture (thick leaf texture), the presence of a drip­

tip, and the presence of an entire margin, as these may be characteristic of evergreen habit 

(Upchurch and Wolfe 1987). The leaf habit of modem conifer relatives in Table 5.8 was taken 

from Echenwalder (2009) and for the angiospenns the database of Watson and Dallwitz (1992 

onwards) was used. 

Table 5.S. Conifer morphotypes of the Alit Mor assemblage, their nearest living relatives and tbeir 
leafbabit. 

morphotype nearest living relative deciduous ever2l"een 
conifers 
CMl Metasequoia occidentalis Metasequoia £lvptostroboides X 
CM2 Sequoia sp. Sequoia sempervirens X 
CM3 Glvptostrobus dunoyeri Glyptostrobus pensilis X 
CM4 "Chamaecyparis cf.'· Chamaecyparis spp? X 
CM5 "Thuia cf." Thuja spp? X 
CM6 Mesocyparis sp. Cupressoideae X 
CM7 "Calocedrus cf" Cupressoideae X 
CMS Pinaceae-type Pinaceae X 
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Comparison with the modem relatives of the conifers from Allt Mor suggests that two of the 

eight conifer taxa were deciduous, Metasequoia and Glyptostrobus, and the remaining six 

morphotypes could have been evergreen (Table 5.8). The deciduous conifer taxa should 

theoretically be more abundant in the assemblage as they shed their short shoots synchronously, 

which should increase input of shoot material into the assemblage. Data from the Alit Mor 

assemblage (Table 5.4), however, shows that evergreen conifers account for -29% of the plant 

fragments, while deciduous conifers account for only - 14%. The majority of the evergreen 

conifer fragments (21 %) are attributed to Sequoia sp. (conifer morphotype 2), while the 

remaining evergreen taxa collectively account for -7%. This indicates that either evergreen 

conifer remains were preferentially preserved or that evergreen conifers were the dominant tree 

types. 

It is important to note that overall abundance of deciduous and evergreen conifers is incomplete 

because unidentifiable Sequoioideae were not included. This unidentifiable group could contain 

both deciduous Metasequoia and evergreen Sequoia, which would shift the ratio of relative 

abundance of deciduous or evergreen types. 

The angiosperm morphotypes of AlIt Mor, based on their morphology and nearest living 

relatives, appear to dominated by deciduous types, their abundance within the assemblage may 

be due synchronous leaf fall at the end of the growing season. 

5.3.1.2 Other factors that influence pre-depositional biases in leaf assemblages 

Studies that compare the forest structure with litter accumulation have shown that the relative 

abundance of tree taxa within a forest is reliably reflected in the leaflitter accumulations 

(Burnham 1989, Burnham et al. 1992, Greenwood 1992). Leaf litter accumulations on forest 

floors have not undergone transport or sorting that other fossil leaf assemblages have. Studies 

that have determined the effect that transport and sorting have on leaves in a variety of 

sedimentary environments have shown that dominant or common taxa in the source vegetation 

still preserve their relative abundance (Spicer 1989, Greenwood 1992, Gastaldo et al. 1995). 

The relative abundance of particular taxa within an assemblage can also be influenced by the 

height of the plants that produced them and their proximity to the site of deposition (Ferguson 

1985, Burnham et a1. 1992). 

The AlIt Mor assemblage is dominated by macrofossil remains of tall conifers and riparian 

plants, which suggests that this assemblage is preserving a biased, local record of the vegetation 

structure. The presence swamp vegetation such as members of the luglandaceae (AM 6-8) and 

Glyptostrobus (CM3), and upland trees attributed to the Pinaceae (CM8) and the Cupressaceae 

(CM6-7) show that representatives from a variety of palaeoenvironments were preserved in the 

assemblage at Alit Mor (Table 5.7). The presence of plants that were non-riparian indicates that 
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vegetation from more a regional area has been preserved at Allt Mor. Regional representatives 

are highly diluted by the local vegetation signal as these plants taxa (AM 6-8, CM6-8) are either 

uncommon or rare components of the assemblage (Table 5.4). 

5.3.2 Depositional factors that influenced leaf preservation and accumulation 

5.3.2.1 Ove",iew of the types of plant macrofossil assemblages 

Each depositional environments is characterised by particular processes and depositional 

patterns, which in tum can produce different plant assemblages (Roth and Dilcher 1978, 

Burnham 1989, Spicer 1989, Behrensmeyer et a1. 1992). The energy and degree of transport that 

plant debris is subjected to will affect its potential for preservation and the composition of the 

deposit (Spicer 1989). Three broad assemblage types have been recognised: autochthonous, 

parautochthonous and allochthonous, each representing varying degrees of transport of plant 

material and associated depositional environments. 

Autochthonous assemblages contain fossil plant material that was produced in-situ and has 

undergone no transport; these assemblages therefore provide a reliable record of the standing 

local vegetation (Behrensmeyer et a1. 1992). This assemblage type is characteristic of swamp, 

marsh or mire conditions where plant material is accumulated and preserved in-situ (Spicer 

1989). 

Parautochthonous assemblages represent plant fossils that have either been produced in-situ or 

have been transported a short distance but are still characteristic of the local riparian vegetation. 

Depositional environments such as abandoned channels or small lakes produce 

parautochthonous assemblages (Gastaldo et a1. 1995). 

Allochthonous assemblages include accumulations of plant debris that have been transported 

from their original source and deposited in a more distal location. Allochthonous assemblages 

can therefore provide a more regional perspective of the vegetation as plant material has been 

sourced from a wider catchment area. This assemblage type is associated with a variety of 

sedimentary environments or deposits such as crevasse-splay, overbank or channel lag deposits 

(Spicer 1989). 

The depositional environment and the preservation of the plant fossils on Skye evaluated to 

determine how the plant material accumulated at Alit Mor, and to which assemblage type it 

belongs. 

5.3.2.2 Depositional setting of Alit Mor 

The Alit Mor plant assemblage is preserved within the Alit Mor Member of the Minginish 

Conglomerate Formation, which was interpreted by Williamson and Bell (1994) as deposition 
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within a broad, fault-controlled valley that ran from the southeast to the northwest and drained 

by a braided river system. The conglomerates deposited by this fluvial system show regolith 

production to the south near to the Rum central volcano. Associated with the channel deposits 

are overbank sand and siltstones indicative of floodplain environments. These sediments often 

grade into localised silt and coal deposits, which represent swamp development. Debris flow 

deposits indicate instability at the margins of the valley sides. It is probable that tributaries 

flowed from the valley sides and may have transported plant material from the upland area. This 

depositional setting could therefore have allowed the growth of a variety of plant communities 

that were influenced by disturbance, water level and topography. Fossil leaves could have been 

sourced from a variety of plant communities within the broader catchment area or may represent 

one of these environments. 

The sediments of the AlIt Mor plant assemblage represent a natural depression on the 

underlying lava surface which fonned a ponded environment. This pond was progressively 

filled with overbank and higher energy flood event sedimentation. The leaf material is most 

abundant and best preserved in the fine grained, laminated siltstones but plant debris, including 

leaves, occur in the coarser silt and sandstone units. This site appears to have become vegetated 

at one stage because a thin palaeosol (-5 cm) with abundant rootlets in the sediments below 

suggest that the pond deposit was colonised by vegetation. This phase of stability appears to 

have been short-lived as the silt and sandstones above the palaeosol suggest flooding smothered 

the vegetated surface. These sediments are typical of overbank deposition and possible swamp 

development observed elsewhere in the Minginish Conglomerate Fonnation (Williamson and 

Bell 1994). 

The sediments of the Alit Mor plant assemblage appear to have be derived from low intensity 

overbank deposition and higher energy flooding events (see Chapter 2, Figure 2.10). These 

sediments could therefore have preserved plant material from both the local area and more 

regional sources (Figure 5.10). The fine grained, laminated silts represent overbank deposition 

and low energy levels. Leaf material from these deposits probably represents both local 

vegetation growing at the pond margin and riparian plants of the floodplain (Figure 5.10). The 

coarser siltstone and sandstone beds lack lamination and appear to have been deposited by 

higher energy flooding events and could have incorporated local and riparian elements, as well 

as plant debris transported and accumulated from the larger catchment area of the valley (Figure 

5.10). 

The AlIt Mor plant beds show similar facies patterns as abandoned channels, as they are 

c~mposed of fine to medium grained clastic fluvial sediments, which in many cases become 

vegetated during the later stages of their development (Gastaldo et a1. 1995). Plant assemblages 

recovered from these environments are composed of autochthonous vegetation such as 
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macrophytes (aquatic plants) and parautochthonous elements such as marginal vegetation and 

riparian elements (Gastaldo et al. 1995). Abandoned channels are typically characterised by 

fining upwards sequences related to waning energy levels and reduced inflow into the channel 

and eventual stabilisation and plant colonisation (Gastaldo et al. 1995). This pattern is partially 

observed in AlIt Mor assemblage but coarser units occur throughout sequence. These coarser 

deposits indicate that the river channels were in close proximity to the pond and coarser silts 

and sands from the channel's bed-load were periodically deposited into the assemblage. The 

deposition of the channel sediments would have increased the influx of allochthonous elements 

into the assemblage. 
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5.3.2.3 Size andfragmentation of the leaves 

To assess the relative inputs of allochthonous, autochthonous and parautochthonous elements 

within the AlIt Mor assemblage the size and degree of fragmentation of the angiospenn leaves 

was assessed. Several studies have shown that leaves that have undergone transport become 

progressively more fragmented and sorted (Roth and Dilcher 1978, Spicer 1981 , Ferguson 

1985). Larger leaves are less well represented if transport has taken place as they may become 

entangled or entrapped more easily, and tend to sink faster (Ferguson 1985). If the assemblage 

at AlIt Mor is dominated by small highly fragmented leaves it would indicate that transport of 

the leaf material had taken place. 

A sub-sample of 720 angiospenn leaves from the Alit Mor assemblage were scored based on 

their degree of fragmentation and their lamina areas, see Chapter 3 (sections, 3.5.1 and 3.5.6). 

The distribution of leaf fragments indicates that there is bias towards smaller leaf fragments 

within the Alit Mor assemblage (Figure 3.5). The high proportion of small fragments (91%) and 

fragment (8%) is indicative of degradation and damage. The fragmentation may have arisen 

through immersion and microbial decay, but appears to be limited as the leaves show little 

skeletonisation (loss of mesophyll tissue), which is associated with this process (Ferguson 

1985). Fragmentation of the leaves therefore appears to be a result of mechanical damage of the 

lamina through transport processes. 

The distribution of angiospenn leaf size within the Alit Mor assemblage is skewed to smaller 

leaf areas (figure 3.10). This suggests that transport has winnowed out the larger leaves, leaving 

smaller fragmented leaves in greater numbers. The size range of the angiospenn morphotypes 

and estimated original areas of some of the fragmented leaves indicates the leaves, prior to 

transport, were of a larger size. This indicates that the observed size of the angiospenn 

fragments appears to be a direct result of fluvial transport. 

5.3.3 Summary of depositional influences on the AlIt Mor leaf assemblage 

Investigation of multiple taphonomic factors has provided insight into the controls on the 

deposition of the fossil plant assemblages on Skye. These assemblages represent localised 

accumulations of plant debris and show that mixed conifer and angiospenn forests developed in 

fluvial environments during the Paleocene. The Alit Mor assemblage is dominated by 

Sequoioideae conifers such as Sequoia and Metasequoia with common occurrences of 

Cupressoideae conifers and the broad-leaved angiospenn Corylites. These taxa probably 

represent the local riparian vegetation growing close to the pond deposit and surrounding 

floodplain. 
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The abundance of conifer taxa, particularly those with evergreen habit, is related to their tall 

stature and resistance to decomposition and transport. These factors have favoured their 

preservation and abundance within the assemblage. Accelerated decomposition of deciduous 

elements does not appear to have been a significant preservational bias as deciduous 

angiosperms are highly abundant in the assemblage. 

The most abundant angiosperm taxa (Corylites, Platanites and Trochodendroides) may have 

been preferentially preserved because they were originally abundant members of the 

community. The physiognomy of Corylites, Platanites and Trochodendroides indicates they 

were understory trees or shrubs and so should have limited preservation potential. The relative 

abundance of these understory angiosperms suggests they grew close to the site of deposition at 

AlIt Mor or areas of active transport and sedimentation such as channel margins or floodplains. 

Pond deposits, such as those at AlIt Mor, typically contain plant debris that has autochthonous 

and parautochthonous origin (Gastaldo et al. 1995). The pond deposit at Alit Mor lacks any 

plants in growth position such as macrophytes (aquatic plants). Parautochthonous elements are 

present as local vegetation and floodplain taxa, including Sequoioideae conifers and 

angiosperms such as Platanites, Corylites, Trochodendroides and "Platycarya cf.". 

The fragmentation and small lamina size of the angiospenn leaves indicates mechanical 

damage, which is attributed to fluvial transport and indicates that a high proportion of the 

angiosperm leaf material has been sourced from a broader catchment area. This may indicate 

that the AlIt Mor assemblage contains both local, parautochthonous elements as well as 

regional, allochthonous elements. 

The suggestion that the assemblage provides regional floral information is supported by the high 

abundance ofrare taxa, which account for 83% of the richness but only 4% of the specimens. 

These rare taxa may represent more distal regional vegetation, which through transport has been 

winnowed to a few individual leaves by the time of deposition at AlIt Mor. The AlIt Mor 

assemblage therefore appears to represent both local and more regional aspects of the flora. 
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5.4 Palynological evidence of Paleocene vegetation on Skye 

5.4.1 Paleocene palynological record of Skye 

Palynological evidence from Skye provides important information that can help detennine the 

more regional floral diversity and vegetation composition . The macrofossi l remains from Skye 

described in thi s study can then be compared to the palynomorph assemblages to help detern1ine 

how they fit within the regional context. Palynology can also provide evidence on the overaJl 

di versity and relative abundance of the floras within the larger catchment area, which may not 

be apparent from the more locally deri ved leaf assemblages. 

Palynomorph assemblages have been coJlected from multiple sites across Skye and indicate a 

moderately diverse flora grew in thi s region during the Paleocene (Jolley 1997). Sedimentary 

sequences within the west-central and northern Skye lava field s were sampled for their 

palynomorph content (F igure 5. 11 ). All sites were characterised by low to moderately diverse 

palynomorph assemblages with low abundances of individual grains and poor preserva tion 

(Jolley 1997). 
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Figure 5.11. Map showing palynological sample sites from Paleocene interbasa ltic sediments of 
Skye. Redrawn from Jolley (1997). 
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A review of Jolley's (1997) data for this study indicates that there are several inconsistencies 

with the data. It is difficult or impossible to determine accurate palynomorph counts from the 

figures, and on several occasions the values for one sample contain greater than 100% 

palynomorph specimens. Comparisons of the palynomorph assemblages between sites indicates 

that there is little correlation (Figures 5.12, 5.13, Table 5.10), this is perhaps due to limited 

recovery of suitable numbers of palynomorphs coupled with poor preservation. The apparent 

lack of correlation between sites suggests that the palynomorphs from the Paleocene of Skye are 

not suitable for stratigraphic correlation or dating. Despite these limitations, the work by Jolley 

(1997) can still provide some insight into the overall diversity of the Skye floras, as well as 

possible palaeoenvironment associations. The following review represents a summary of the 

palynology at several localities and the interpretations made by Jolley (1997). Relative 

abundances of each taxa were converted to categories 'rare', 'uncommon', 'common' and 

'domInant' for each locality and presented in Figures 5.12 and 5.13. 

The palynomorph assemblages on Skye were interpreted by Jolley (1997) to indicate five 

distinct palaeosurfaces, which represented periods of volcanic quiescence when sedimentary 

environments and vegetation developed on the lava surfaces. Each palaeosurface is represented 

by a variety of palynomorph assemblages that equate to specific community types and 

palaeoenvironments (Jolley 1997), (Table 5.9). 

Table 5.9. Palaeosurfaces of the Skye Lava Group, their representative palynofloral assemblages 
and associated palaeoenvironments, based on the study by Jolley (1997). 

palaeosurface 

El 

E2 

E3 

E4 

E5 

palynofloral assemblage(s) 

Juglandaceae and Taxodiaceae swamp 
flora 

upland taxodiaceous forest 
streamside angiosperm communities 
montane Pinaceae dominated forest 

Juglandaceae dominated swamp 
Juglandaceae/fem swamp 
angiosperm/fern floodplain community 
montane Pinaceae dominated forest 

upland taxodiaceous forest 
streamside angiosperm communities 
montane Pinaceae dominated forest 

Juglandaceae dominated swamp 
angiosperm/fern floodplain community 
upland taxodiaceous forest, 
montane Pinaceae dominated forest 

palaeoenvironment(s) 

swamp 

upland forest 
riparian 
montane forest 

isolated swamp 
swamp 
npanan 
montane forest 

upland forest 
riparian 
montane forest 

isolated swamp 
riparian 
upland forest 
montane forest 
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Table 5.10. Palynomorph taxa from interbasaltic sediments of Skye showing their affinities, relative abundance and localities in which they occur. 

I palynomorph taxon family affinity AM(E2) TR(E3) AMC(E3) DB (E4) HR(E5) GO (E5) 

I Fungi 
Mu/ticellaesporites SJ>P. fungi common P I 

Pesavis tagluensis fungi P 

Bryophyta 
Stereisporites (S.) steroides BJYoph~a common P uncommon 

Filicopsida . 

De/toidospora adriennis Cyathaceae uncommon 
Laevigatosporites haardtii ?Blechnaceae. ?Thelypteridaceae dominant uncommon I 

Leiotriletes adriennis ?Schizaeaceae rare uncommon uncommon 

Gymnospermae 
Piceapollis spp. Pinaceae uncommon rare rare rare 
Pityosporites hap/ox Pinaceae common 
Pityosporites dipjox Pinaceae uncommon 
Pityosporites spp. Pinaceae rare rare uncommon uncommon 
Inaperturopollenites dubius T axaceae/Cupressaceae common 
Inaperturopollenites distichiforme Cupressaceae (syn. Taxodiaceae) rare 
Inaperturopollenites hiatus Cupressaceae (syn. Taxodiaceae) dominant dominant rare dominant uncommon 
Sequoiapollenites po/yformoslls Cupressaceae (syn. Taxodiaceae) uncommon 
Sciadopityspollenites serratus Sciadopjtyaceae rare 
Bisaccate pollen undif. Coniferopsida common 
Monoco/popollenites tl"anquilus Ginkgoaceae rare rare ,-- rare rare 
Locality codes; AM, Alit Mor (E2); TR, Tungadal River (E3); AMC (E3), Alit Mor, Carbostbeg; DB, Dun Beag (E4); HM, Hamara River (E5); GO, Glen Osdale (E5). 
Abundance categories; rare, <5%; Uncommon, 5-15%; Common, IS-30; dominant, >30%). 
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palynomorph taxon family affinity AM (E2) TR(E3) AMC(E3) DB (E4) HR(E5) GO (E5) 

An~iospermae 

Alnipof/enites verys Betulaceae rare rare 
Cuplllijeriopof/enites cingulllm juslls Fagaceae rare uncommon 
lupliliferiopollenites cingulum oviformis Fagaceae rare 
Liquidamharpollenites stigmosys Hamamelidaceae rare 
Momipites anelllls Juglandaceae uncommon 
Momipites tenuipolus Juglandaceae rare uncommon dominant 
Momipites cf. tenu;pollls Juglandaceae P 
Momipites spp. Juglandaceae rare 
Platvcarvapollenites platvcarvoides Juglandaceae rare rare 
Plicatopollis plicata Juglandaceae rare 
Nvssapollenites krushi anafepficlIs Nyssaceae rare 
Retitricolpites retiform;s Platanaceae rare P rare rare rare 

Retitricolpites anf{lIloluminoslIs Platanaceae P 
Triatriopolfenites subtriangulus Myricaceae rare 

Tricolpites hians Platanaceae/Cercidiohvllaceae? rare uncommon rare common rare 

Erdtmanipollis pachysandroides ?Buxaceae P 

unknown affinity 
Radialisporites radialus P 

Pediaslrllm bifidites P 

Total palynomorphs counted 121 598 1335 532 II 523 
-

Locality codes; AM, Alit Mor (E2); TR, Tungadal River (E3); AMC (E3), Alit Mor, Carbostbeg; DB, Dun Beag (E4); HM, Hamara River (E5); GO, Glen Osdale (E5). 
Abundance categories; rare, <5%; Uncommon, 5-15%; Common, 15-30; dominant, >30%). 
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The oldest palaeosurface, called E I, was derived from the Palagonite Tuffs in north and eastern 

Skye, which represent the earliest phases of volcanic activity of the Skye Lava Group 

(Anderson and Dunham 1966). Samples were collected from Camas Ban, Glen Uig and Camas 

Tianavaig, but the latter was the only site to yield palynomorphs (Jolley 1997) (Figure 5.11). 

The sedimentary sequence consisted of thin red boles with tuffs, shales and coals. 

Jolley (1997) suggested that this assemblage represents a lowland swamp flora dominated by 

Taxodium and juglandaceous angiosperms. This interpretation is partially confirmed by the 

sedimentology of the Palagonite Tuffs which were considered by Anderson and Dunham (1966) 

to represent deposition in a lowland basin, possibly in saline waters. The high proportion of 

subangular, equidimentional black wood within the samples was suggested by Jolley (1997) to 

represent both high degrees of oxidation and possible wildfires. 

The second palaeosurface identified by Jolley (1997), E2, is of most direct relevance for this 

study as the sedimentary deposits are from the Minginish Conglomerate Formation, which 

includes the Allt Geodh' a' Ghamhna and AlIt Mor plant assemblages. As outlined in Chapter 2 

the sedimentary environments of Minginish Conglomerate Formation were interpreted as a 

braided river system with overbank and localised swamp development. Although Jolley (1997) 

states that samples were collected from several sites in this sedimentary formation, only one 

sample is presented in the study and is from the AlIt Mor Member. The sample from Alit Mor is 

limited, with a total of 121 palynomorphs, and represents a low diversity assemblage of seven 

palynomorph species (Figure 5.12, Table 5.10) (Jolley 1997). The palynoflora is dominated by 

taxodiaceous conifer pollen, Pinaceae pollen and rare angiosperm pollen that comprises less 

than 5% of the assemblage. 

The palynomorph assemblage of surface E2 was interpreted by Jolley (1997) as representing an 

upland taxodiaceous conifer forest, with a cyathacean fern understory with streamside 

angiosperm communities dominated by taxa associated with the Platanaceae. The low diversity 

of the palynomorph assemblage at Alit Mor and the interpretation of the flora by Jolley (1997) 

contrasts with the interpretation of the macrofossils described in this study, and will be 

discussed in section 5.4.2.2. 

The third palaeosurface interpreted by Jolley (1997), surface E3, is represented by sedimentary 

sequences in west-central Skye between the Glen Caladale and Fiskavaig Lava Groups. The 

sediments ofthis quiescent interval were not recognised in the Williamson and Bell (1994) 

study and have no formal nomenclatural status. Jolley (1997) describes the sediments that 

outcrop at Carbost Burn, Tungadal River and AlIt Mor, Carbostbeg (Figure 5.11) as purple and 

reddened shales with minor coaly laminae. The palynomorph assemblages recovered from the 

Alit Mor, Carbostbeg locality have yielded the richest and most diverse samples from the Skye 
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Lava Group. Twenty two palynomorph taxa were recognised and are associated with fungi (1 

species), bryophytes (1 species), ferns (2 species), conifers (4 species), Ginkgo (1 species) and 

angiosperms (13 species) (Figure 5.12, Table 5.10). 

The samples from AlIt Mor, Carbostbeg are dominated by taxodiaceous conifer and 

juglandaceous pollen. Two other taxa that occur commonly in the samples include fern spores 

of Laevigatosporites haardti and platanaceous/cercidiphyllaceous angiosperm pollen of 

Tricolpites hians. The palynomorph assemblage shows some evolutionary changes with 

Sequoiapollenites polyformosus and CupuliJeroipollenites cingulum becoming increasingly 

abundant higher in the sequence. 

The assemblage at the Tungadal River section is similar to that of Allt Mor, Carbostbeg with 

dominant Inaperturopollenites hiatus and Momipites, although the latter is more abundant at 

this locality. Fern spores become increasingly abundant higher in the sequence with 

Laevigatosporites haardti accounting for up to -68% and Leiotriletes adriennis -20% of the 

uppermost sample. 

The palynofloras of the E3 surface have been interpreted by Jolley as representing a variety of 

palaeoenvironments and source vegetation types. The abundant and diverse assemblage at the 

AlIt Mor, Carbostbeg locality represents an isolated swamp community dominated by members 

of the Juglandaceae. The increasing abundance of Sequoia and angiosperm pollen higher in the 

sequence is suggested by Jolley (1997) to reflect increasing drying of the swamp and the 

development of mixed angiosperm/conifer community. The Tungadal River section is 

interpreted as a Juglandaceae-dominated swamp community similar that of AlIt Mor, Carbost 

Beg but with a richer fern component, which developed in close proximity to a fluvial system. 

The abundance of palynomorphs attributed to ferns and angiosperms indicates a better drained 

angiosperm/fern floodplain community. The presence of conifer pollen attributed to the 

Pinaceae is suggested by Jolley (1997) to have been sourced from higher elevated montane 

conifer forest. 

Palaeosurface E4 corresponds to the Eynort Mudstone Formation in west-central Skye. The 

extensive boles and red brown mudstones deposits occur above the Fiskavaig Lava Group and 

are overlain by the Gleann Oraid and Loch Dubh lava groups. The sedimentary units sampled 

by Jolley (1997) were taken from Loch an Sguirr Mhoir and Dun Beag (Figure 5.11). These 

sites yielded poor palynomorph recovery, but several samples contained high frequencies of 

Inaperturopo/lenites dubius, Liquidambarpollenites stigmosus, Deltoidspora adriennis and 

Pitysporites diplox and P. haplox. 

Jolley's (1997) interpretation of the depositional environments of surface E4 suggests an 

environment influenced by weathering and runoff. The lateritic composition of the sediments 
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was suggested to represent both unvegetated weathered flow tops and areas with greater 

stability and pedogenesis. In the lowland areas small ephemeral lakes developed which were 

supplied with the products of the weathered lava surface. The palynofloras of E4 were 

interpreted by Jolley (1997) as representing humid pine and taxodiaceous conifer forests in the 

upland areas with stream side angiosperm communities. 

The yougest palaeosurface recognised by Jolley (1997), surface E5, corresponds to the Preshal 

Beg Conglomerate Formation ofwest-centml Skye (see Chapter 2, section 2.4), which overlies 

the Gleann Oraid Lava Group and is overlain by the Talisker Lava Group. These sediments 

were correlated by palynological evidence with sites in northern Skye at Hamara River and Glen 

Osdale (Figure 5.11), the latter of which has provided macrofossils described in this study. 

Samples were collected from the finer grained facies of the Preshal Beg Conglomerate 

Formation at Preshal More (Figure 5.13), but were reported by Jolley (1997) to be limited 

(Table 5.ll). The palynoQlorphs that were present were interpreted as representing an upland 

taxodiaceous conifer forest with angiosperm-dominated streamside and swamp communities. 

The sediments from the Hamara River locality yielded low numbers of palynomorphs (Figure 

5.13) and so could not provide a reliable interpretation of the flora. Glen Osdale however, 

provided much richer samples representing a moderately diverse assemblage (Figure 5.13, 

Table 5.ll). The most abundant components of the flora include Momipites tenuipo/us, 

Inaperturopol/enites hiatus, Pitysporites spp, Laevigatosporites haardti and Stereisporites 

(Stereisporites) stereioides (Jolley 1997). Jolley (1997) interpreted the palynomorph 

assemblages at Glen Osdale as representing a variety of plant communities including montane 

conifer forest, taxodiaceous dominated upland forests, juglandaceous-rich swamp communities, 

angiosperm floodplain forests dominant in platanaceous types and low-nutrient iron-rich soil 

bogs. 

5.4.2 Comparison of the leaf and cones macrofossil with the palynomorphs of Skye 

5.4.2.1 Plant families represented by the macrofossil and microfossils 

The palynomorphs recovered from the interbasaltic sequences of Skye have provided an 

important record of the taxonomic composition of the Paleocene vegetation of this region. 

Thirty four palynomorph taxa were identified by Jolley (1997) which represent one bryophyte, 

three ferns, eleven gymnosperms, sixteen angiosperm species, two fungal types and one 

chlorophycean alga (Table 5.11). The affinities of these palynomorphs were presented in part in 

Jolley (1997), although were not comprehensive and the remaining affinities were determined 

from Jolley et al. (2009), and are presented in tables 5.11 and 5.12. Where possible, the 

macrofossil morphotypes of the conifers and angiosperms recovered from the plant beds of 

Skye are compared to the taxonomically-related palynomorphs. 



207 

The botanical affinities of the micro and macrofossils are similar for many of the conifers and 

angiosperm taxa, which suggests that the macro record of these plants is well represented in the 

palynological record. The palynological evidence, however, indicates that a wider range of 

taxonomic plant groups were present, including bryophytes, ferns, conifers, Ginkgo and 

angiosperms whereas only conifers and angiosperms have been recognised from the 

macrofossil assemblages on Skye in this study. This indicates that several plant types were 

either absent from the environments close to these depositional sites or have limited 

preservational potential. The palynological record is therefore an important record of these 

missing taxa. 

Conifer pollen indicates that there were four families present, representing the Cupressaceae, 

Taxaceae, Pinaceae and Sciadopityaceae. Only two ofthese families (the Cupressaceae and 

Pinaceae) are represented by leaf and cone macrofossils from Skye. Four pollen species are 

attributed to the Cupressaceae (Table 5.11), while there are seven macrofossil taxa. Jolley 

(1997) attributes the Cupressaceae pollen to taxodiaceous types such as Metasequoia, Sequoia 

. and Taxodium, but makes no mention ofCupressoideae conifers, which are both diverse and 

abundant in the macrofossil record. The limited diversity of Cupressaceae in the pollen record 

may be masked by the limited taxonomic variability and convergence prevalent in this family 

(Kunzmann et al. 2009), and one pollen taxon may represent multiple macrofossil species or 

genera. 

Pinaceae macrofossils are rare and poorly preserved and appear to represent a single genus or 

species, which is in contrast to the pollen record which has four species representing this family. 

The pollen record of the Pinaceae indicates these conifers were relatively diverse, widespread 

and abundant whereas the rarity of these conifers in the macro-record is related to their limited 

preservation potential as they probably grew in more distal, possibly upland settings. 

Fern spores are a common component of the interbasaltic sequences on Skye (Jolley 1997), but 

no fern leaves have been preserved. The absence of their macrofossils is related to their limited 

preservation potential as they do not abscise their leaves and require strong currents to remove 

the leaves. The fluvial deposits at Allt Geodh' a' Ghamhna and Glen Osdale are indicative of 

high energy flooding and may have had the potential to preserve fern fronds, but fern remains 

have not been observed, probably due to the limited sample size of these collections, but may 

indicate that the fern spore producers grew away from the sites of active sedimentation. 

Pollen of Monocolpopollenites tranquilus indicates that Ginkgo was present on Skye during the 

Paleocene. Macrofossils of this gymnosperm have not been observed in this study but were 

reported from the Palagonite Tuffs of Northern Skye by Anderson and Dunham (1966), which 

confirms their presence. 
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Table 5.11. Filicopsida and Gymnosperm families in the Skye floras as represented by macrofossils 
and palynomorphs. 

taxonomic macrofossil morphotype palynomorph 

group/family 

Filicopsida . 

Cyathaceae none Deltoidospora adriennis 

?Blechnaceae, none Laevigatosporites haardtii 

?Thelypteridaceae 

?Schizaeaceae none Leiotriletes adriennis 

Gymnosperms 

CM! Metasequoia Inaperturopollenites dubills 
Cupressaceae occidientalis Inaperturopollenites distichijomle 

CM2 Sequoia sp. Inaperlllropollenites hiatus 
CM3 Glyptostrobus dunoyeri Seqlloiapollenites polyfom/OS/ls 
CM4 "Chamaecyparis cf." 
CMS " Thuja cf." 
CM6 Mesocyparis sp. 
CM7 "Calocedms cf." 

Piceapollis spp. 
Pinaceae CM8 Pityosporites hap/ox 

Pityosporites diplox 
Pityosporites spp. 

Sciadopityaceae none Sciadopityspollenites serratus 

Ginkgoaceae none Monocolpopollenites trallqlli/lis 

eM= conifer morphotype 



209 

Angiospenn pollen and macrofossils are the most diverse element of the Skye floras with 16 

pollen species and 14leafmorphotypes identified. The family link of the pollen and leaves is 

possible to detennine for many of the taxa (Table 5.12). The families Platanaceae, 

Cercidiphyllaceae, Betulaceae, Fagaceae and Juglandaceae are represented by both pollen and 

leaf macrofossils (Table 5.12). 

Pollen associated with the Juglandaceae are the most diverse and often abundant component of 

the palynoflora (Jolley 1997) and is partially reflected in the macrofossil record as three 

morphotypes are attributed to this family. Pollen of Platycaryapo/lenites platycaryoides is 

attributed to "Platycal),a cf.", as both share affinities with the genus Platycarya. The other 

Juglandaceae morphotypes cannot be reliably associated with particular pollen taxa. 

The remaining eight angiospenn leaf types cannot be linked with pollen taxa as their own 

affinity is unknown or pollen attributed to their family has not been recovered from Skye. One 

pollen species Triatriopo/lenites suhtriangulus is widespread across Skye and is associated with 

the Myricaceae (Jolley 1997). Leaves with Myricaceae affinity have not been found in any of 

the leaf assemblages on Skye, which suggests that the pollen producer had limited preservation 

potential or grew in more stable environments away from sites of deposition. 
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Table S.12. Angiosperm families in the Skye flora as represented by maerofossUs and 
palynomorphs. 

family macrofossil morphotype palynomorph 

Platanaceae AMI Platanites hebridicus Retitricolpites retijormis 

Retitrico/pites anguloluminosus 

Tricolpites hians? 

CercidiphylJaceae AM2 Trochodendroides antiqua Tricolpites hians? 

Betulaceae AM3 Corylites hebridicus Alnipollenites verus 

AM4 "Corylites cf." 

Fagaceae AM5 Fagopsiphyllum groenlandica Cupulijeriopo/lenites cingulum fusus 

Cupulijeriopo/lenites cingulum oviformis 

Juglandaceae AM6 Juglandiphyllites sp. I Momipites anellus 

AM7 Juglandiphyl/ites sp. 2 Momipites tenuipolus 

AM8 "Platycarya cf." Momipites cf. tenuipolus 

Momipites spp. 

Platycaryapollenites platycaryoides 

Plicatopollis pUcata 

Vitaceae AM9 Vitiphyllum seward;; none 

Comaceae AMIO Cornophyllum hebridicum none 

Trochodendraceae AMII Zizyphoides flabella none 

Myricaceae none Triatriopollenites subtriangulus 

Altingiaceae none Liquidambarpollenites stigmosus 

?Buxaceae none Erdtmanipollis pachysandroides 

AM = angiosperm morphotype 
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5.4.2.2 Comparison of macrofossil and palynomorph record of Alit Mor 

The palynomorph assemblage from Allt Mor presented in Jolley (1997) is poorly preserved and 

low in abundance and richness. As mentioned in section 5.4.1, Jolley (1997) interpreted the 

vegetation of this deposit as an upland taxodicaeous (sub families Sequoioideae and 

Taxodioideae) conifer forest with streamside angiosperm communities, with higher stands of 

pines. This interpretation is partially reflected in the leaf record of AlIt Mor, as Sequoioideae 

foliage attributed to Metasequoia and Sequoia are the most abundant components of the 

assemblage (Figure 5.14). The streamside angiosperm community is also well represented in the 

leaf record by Platanites and Trochodendroides, which are among the most abundant 

angiosperm components of the flora (Figure 5.14). Pinaceae pollen present in the Alit Mor 

assemblage is matched by the rare occurrence of Pinaceae needles (Figure 5.14). 

The leaf assemblage however, is considerably more diverse and potentially more representative 

of the community (Figure 5.14). Indeed, the leaf record contains representatives from many of 

the assemblage types interpreted by Jolley (1997). Three morphotypes (Morphotypes 6-8) are 

attributed to the Juglandaceae, whose pollen is absent from the assemblage but abundant in the 

swamp communities interpreted by Jolley (1997) elsewhere on Skye. Corylites hebridicus 

(AM3), a betulaceous representative in the Allt Mor assemblage, is the most common 

angiosperm taxon in the leaf record but pollen attributable to this family is absent. Indeed, only 

two species of angiosperm pollen have been recovered from Allt Mor and account for less than 

five percent of the palynomorphs counted. This is in contrast to the 14 angiosperm leaf 

morphotypes that have been identified from this site. 

This trend is also observed in the conifers where eight leaf morphotypes have been recognised 

and only three pollen species have been recovered. Although the macrofossils are more diverse, 

there are palynomorph taxa present that are not present in the macrofossil record. Fern spores 

and Ginkgo pollen are present in low abundances but so far no leaf remains attributable to these 

plants have been identified. 

The palynological record of the Skye Lava Group and its interpretation by Jolley (1997) 

suggests that the topography of the lava field and pre-Paleogene landscape led to the 

development of heterogenous vegetation cover. The current macro-floral record from the Skye 

Lava Group is based on a more limited sample area and therefore cannot provide a detailed view 

of the regional vegetation. The composition of the floras that have been studied, however, 

suggest that the interpretations of Jolley (1997) may be more related to preservational or 

interpretation errors rather than true ecological signals. This appears to be the case for the AlIt 

Mor assemblage as 2572 leaf fragments have been identified, while only 121 individual 

palynomorphs have been collected from this site. 
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The lack of correlation between the palynomorph and leaf record has important implications for 

the vegetation composition of the Allt Mor assemblage and the Paleocene vegetation as a whole. 

The AIlt Mor assemblage has leaf taxa that are linked to a high proportion of the palynomorph 

taxa recorded from the Skye Lava Group (Tables 5.12 and 5.13). This indicates that the AlIt 

Mor assemblage is highly representative of the Paleocene regional vegetation of Skye as it 

contains both local and more regional floral elements. 

5.5 Vegetation reconstruction 

5.5.1 AlIt Mor 

The depositional setting of the AlIt Mor assemblage led to the accumulation of leaf material that 

originally grew in a variety of environments and communities (Figure 5.15). The Alit Mor 

assemblage includes vegetation with varied growth habits including climax canopy conifers, 

understory angiosperms, colonisers of disturbed habitats and a woody liana (Tables 5.6). Pollen 

and spores indicate that ferns and Gingko were present at Alit Mor (Jolley 1997). 

The assemblage is dominated by Sequoioideae (Sequoia and Metasequoia), which collectively 

account for -41 % of the specimens within the collection. Their abundance suggests that they 

were the dominant elements of the vegetation. PoIlen associated with these conifers is the most 

abundant component of the palynoflora, which supports the assertion they were ecologicaIly­

dominant trees at Alit Mor. Modem relatives of these conifers suggests that they represent the 

climax species in the community and would have formed tall canopy trees (Echenwalder 2009). 

The Sequoioideae conifers, particularly Metasequoia, may have been able to colonise the more 

disturbed sections of the floodplain because seedlings from the Paleocene of Alberta have 

shown that the trees were was capable of growing in these conditions (Falder et al. 1999). 

The abundance ofCupressoideae conifers (collectively 7.7%) and Corylifes hebridicus (7.7%) 

suggests these plants were ubiquitous elements of the vegetation. The Cupressoideae conifers 

were probably canopy trees of tall stature growing with Sequoioideae conifers in more stable 

conditions at the margins of the floodplain and on the valley sides. Corylites hebridicus was 

probably a short stature shrub or tree which was capable of growing under the canopy of these 

conifers, as well the more disturbed riparian environments (Figure 5.15). The possible liana, 

Vitiphy/lum sewardii, grew amid the canopy conifers and understory shrubs and trees. 

The other abundant angiosperm taxa, Plafanities hebridicus (4.4%) and Trochodendroides 

antiqua (2.5%), may have grown in variety of environments. Their physiognomy indicates that 

they were well adapted to the shaded, humid conditions of the understory but their relatively 

high abundance and occurrence at Alit Geodh' a' Ghamhna and Glen Osdale indicates that they 

were capable of growing in disturbed riparian environments. These disturbed riparian 
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environments would have supported angiospenn communities that included many of the 

angiospenn morphotypes of AlIt Mor including; Platanities hebridica, Trochodendroides 

antiqua, Corylites hebridca, "Corylites cf.", Cornophyllum hebridicum and Zizyphoidesjlabel/a 

(Figure 5.15). The physiognomy of "Platycarya cf." indicates that it was a coloniser of 

disturbed environments and may have formed dense thickets along channels margins and 

floodplains (Figure 5.15). 

The presence of an elevated water table and possible swamp development are indicated by the 

presence of Glyptostrobus dunoyeri and Metasequoia occidentalis, whose Paleogene and 

modern relatives are associated with water-logged conditions (LePage 2007, Greenwood and 

Basinger 1994). The palynological record of Alit Mor, Carbostbeg, a swamp deposit, indicate 

that juglandaceous angiospenns were abundant members of the swamp conditions of Skye 

(Jolley 1997). The rare morphotypes Juglandiphyllites sp.l and sp.2 (AM 6-7) may have been 

juglandaceous representatives of swamp conditions at Alit Mor and grew in association with 

Glyptostrobus and Metasequoia. 

Pinaceae pollen and needles indicate that pines grew in the more stable margins of the 

floodplain, valley sides and tops (Figure 5.15). The rarity of these macrofossil remains suggest 

that they were probably washed down from streams draining from the valley sides into the 

braided river channels where they were transported and deposited in the AlIt Mor pond deposit. 

Other rare conifers such as Mesocyapris sp. and "Calocedrus cf.". may have grown in similar 

environments as the Pinaceae and owe their rarity to their distal location and winnowing 

through transport. 
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5.5.2 Alit Geodh' a' Ghamhna and Glen Osdale assemblages 

The plant macrofossil assemblages of AlIt Geodh' a' Ghamhna and Glen Osdale are limited in 

tenns of preservation and numbers of specimens so it is difficult to detennine the original 

diversity and composition. Both sites do, however, share two features in common: they 

represent fluvial deposition and have yielded only angiospenn macrofossils. 

The absence of conifer macrofossils from these assemblages is perhaps partly related to the 

limited number of specimens but could represent a true ecological signal. The coarser grain size 

of the sediments and their interpreted palaeoenvironment suggests disturbed floodplain 

deposition. The angiosperm leaves present at these sites represent riparian communities, which 

were capable of surviving in these disturbed environments. 

Shared taxa between these sites are compared to Allt Mor to provide some insight into 

determining the habit of these plants. Two angiospenn taxa are present at all three localities and 

include Corylites hebridicus (AM3) and Cornophyllum hebridica (AM 10). The fonner 

morphotype is a common component of the Alit Mor flora and its presence at the other localities 

suggests that it was a ubiquitous element of Skye, growing in both disturbed riparian settings, as 

well as in the more stable understory. Cornophy/lum hebridica is a rare component of the AlIt 

Mor flora but several specimens occur at both AlIt Geodh' a' Ghamhna and Glen Osdale, so the 

presence of this morphotype in localities associated with higher intensity flooding suggests it 

favoured disturbed environments or was washed in from regional sites. 

Three other angiosperm morphotypes present at AlIt Mor occur at Glen Osdale and include 

Platanites hebridicus (AMI), Trochodendroides antiqua (AM3) and Morphotype 13. The 

presence of these taxa at Glen Osdale and their relative abundance at this site indicates that they 

represent riparian vegetation, although their physiognomy indicates they were adapted to 

understory conditions as well. 

The pollen record, however, indicates a wider variety of plants were present at Glen Osdale 

including taxodiaceous conifer forest and Juglandaceae swamps (Jolley 1997). The macrofossil 

assemblage has preserved only the local riparian angiosperm dominated community, whilst 

regionally the vegetation cover was more heterogeneous. This is perhaps the case at Alit Geodh' 

a' Ghamhna, which is part of the same fluvial system as Alit Mor (Willaimson and Bell 1994), 

and may have had a similar vegetation composition as Alit Mor. 
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5.5.3 Regional vegetation reconstruction of Skye 

The leaf and palynomorph assemblages from the interbasaItic sediments of the Skye Lava 

Group have provided important insights into the vegetation of this ~egion during the mid 

Paleocene. Four broad community types are recognised: Pinaceae-dominated upland forest, 

mixed conifer forest, riparian angiosperm vegetation and juglandaceae/taxodiaceous swamp 

vegetation (Figure 5.16). 

The pre-Paleogene landscape of Skye would have provided a more stable growth environment 

for vegetation development. These extra-basinal environments would have favoured the 

development of climax conifer forest (Figure 5.16). The pollen record indicates these upland 

environments were dominated by members of the Pinaceae, particularly in areas of greater 

elevation (Jolley 1997). Cupressaceous conifers may have grown amidst the pines, with ferns 

and angiosperms growing in the understory of these conifers. 

Mixed coniferous forests appear to represent the climax vegetation in the more stable areas of 

upland and lowland settings as pollen produced by members of the Cupressaceae are 

widespread and often dominant (Jolley 1997). The Alit Mor macrofossil assemblage is 

dominated by members of this community type, such as Sequoioideae and Cupressoideae 

conifers and broad leaved angiosperms Platanites, Trochodendroides and Corylites (Figure 

5.16). Tall stature conifers represent the climax canopy vegetation which may have been open in 

areas of disturbance or earlier stages of succession, but may have become progressively closed 

in more mature forests. 

In areas of greater disturbance, such as channel margins and proximal floodplain settings, 

vegetation with adaptations to these environments would have been favoured (r-selected taxa). 

Angiosperms associated with the Platanaceae, Cercidiphyllaceae, Betulaceae, Ulmaceae?, 

Juglandaceae, Cornaceae and Trochodendraceae are present in both the macro and microfossil 

record and may have been well adapted to these conditions (Figure 5.16). These riparian 

angiosperm-dominated communities may have contained ferns and Equisetum, which are 

capable of colonising these conditions. 
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Thin coals and shale deposits provide evidence of elevated water-table and swamp 

development. Two palynological samples (AlIt Mor, Carbostbeg and Tungadal River) represent 

swamp environments (Jolley 1997). Samples from these localities indicate there was 

considerable variability in the community structure of the swamp vegetation. Members of the 

Juglandaceae and taxodiaceaeous conifers appear to be the dominate members of these 

communities. Fern spores and angiosperm pollen indicates these communities were diverse and 

changed as drainage and stability increased (Jolley 1997) (Figure 5.16). 

The lava fields, depositional environments and pre-Paleogene landscape of Skye during the mid 

Paleocene provided a range of environments for vegetation to colonise and develop. The 

palynomorph and macrofossil record suggests that the vegetation of Skye was dynamic and 

influenced by disturbance, water-level and topography. The initial colonisers of disturbed 

environments were the ferns and angiosperms but greater stability and maturation of these 

environments and communities enabled conifers to colonise and ultimately dominate the 

communities. 
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Chapter 6: Climate analysis of the Paleocene floras of Skye 

6.1 Introduction 

The floras of Skye present an opportunity to reconstruct the climate conditions of this region 

during the Paleocene. Presented in this chapter are the methods, results and discussion of the 

palaeoclimate analysis using the angiosperm leaf fossils from Skye. The methodology of 

physiognomic and nearest living relative approaches are outlined to demonstrate their use in 

estimating past climatic conditions. Results for each method are presented and discussed in light 

of potential limitations and biases inherent in each approach. The palaeoclimate data obtained 

from the analyses are then presented and used to decipher the climate signals encoded in the leaf 

fossils. Factors pertaining to botany, environment and taphonomy are discussed to evaluate their 

potential influences on the palaeoclimate signal. The climate results from the leaves are then 

compared with other geological proxies to interpret the past climate conditions of Skye during 

the mid Paleocene. 

6.2 Palaeoclimate analysis 

6.2.1 Introduction to palaeoclimatic methods 

Plants are strongly influenced by climate. For plants to grow and reproduce successfully they 

have to be tolerant of the climate regime they occupy (Bailey and Sinnott 1915, 1916, Boyko 

1947, Holdridge 1947, Huntley 1991). Longer lived plants such as woody dicotyledonous 

angiosperms have to be tolerant of the full range of climatic variations within a given area over 

annual, decadal or centennial timescales (Bailey and Sinnott 1915, Wolfe 1993). The taxonomic 

composition of floras and their morphological adaptations can provide important climatic 

signals, and have been used to reconstruct terrestrial palaeoclimates (e.g. Wing and Greenwood 

1993 , Wolfe 1993, Mosbrugger and Utescher 1997, Wilf 2000). 

The morphology of leaves represents a trade-off between photosynthetic efficiency, tolerance of 

the ambient climatic conditions and the mechanical limitations of leaf construction (Spicer 

2000). These constraints have led to the development of convergent leaf morphologies that are 

indicative of particular climates (physiognomy). The relationship between leaf physiognomy 

and climate has long been established since Bailey and Sinnott (1915, 1916) recorded the 

relationship between leaf margin type of woody dicotyledonous angiosperms (referred hereafter 

as woody dicots) and mean annual temperature (MAT). The research of Bailey and Sinnott 

(1915, 1916) showed that entire margined leaves (leaves with a smooth outer margin) are 

dominant in the humid tropics, and toothed leaves (leaves with tooth-like marginal projections) 

are prevalent in cooler, humid climates of the temperate regions. Since the early research by 
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Bailey and Sinnott (1915, 1916) physiognomic methods have developed significantly and are 

outlined in sections 6.2.3 to 6.2.5 

The composition of floras is often related to the specific climatic conditions because through 

their evolutionary history plant groups have become adapted to specific climatic ranges 

(Mossbrugger and Utescher 1997). The taxonomic composition of a fossil flora can therefore 

provide signals of past climates if their modern relatives are restricted or characteristic of 

specific climatic ranges. The application and potential of this method in this study is outlined in 

sections 6.2.6. 

6.2.2 Scoring of physiognomic characters 

The physiognomy of each of the fossil woody dicot leaf morphotypes from Skye were scored 

for the climate analysis. The margin type of each morphotypes was determined by the presence 

or absence of teeth. Leaves that posses teeth receive a score of 1 (toothed) and those without 

receive a score of 0 (entire). The presence of a single tooth on leaf is sufficient to score it as 

toothed. Entire margined leaves, however, require a more complete margin to be scored. 

Individual leaves or leaf morphotypes that lack any marginal preservation are not scored for this 

leaf character. The margin type of the AlIt Mor morphotypes are presented in section 6.3.1 

(Table 6.2). 

Scoring for multivariate physiognomic approaches such as Climate Leaf Analysis Multivariate 

Program (CLAMP) and Multiple Linear Regression Models (MLR) requires the correct 

identification and scoring of multiple leaf character traits. Thirty one leaf character traits were 

scored in this study and are based on those outlined in Wolfe (1993) and Kovach and Spicer 

(1995). A detailed description with figured examples of these 31 character states and how to 

score them is present on the CLAMP website (http://clamp.ibcas.ac.cn). The 311eaf 

characteristics represent either discontinuous traits that are scored as being present or absent, or 

are continuous traits and require measurements to accurately score them. Continuous 

physiognomic characters used in this study include lamina size and lamina length:width ratios. 

These traits were measured for leaves complete enough for each morphotype using ImageJ 

software, the procedure for which is presented in Chapter 3, section 3 3.5.6. Leaves that are 

fragmented but retain enough lamina preservation to estimate their size and length:width ratio 

were estimated (See Chapter 3, section 3 3.5.6). Estimates of lamina size and length:width ratio 

were only used if they did not potentially overlap two categories (e.g. microphyll I and 

microphyll II). The combined percentage score for all 31 characters for the Skye flora is 

presented in section 6.3.1 (Table 6.4). 
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6.2.3 Leaf margin analysis (LMA) 

The relationship between the leaf margin of woody dicot species and mean annual temperature 

(MAT) has been a focus of scientific study since Bailey and Sinnott ( 1915, 1916) recognised the 

strong correlation between the percentage of entire margin leaves within a flora and MAT. 

Wolfe (1979) was the first to quantify the relationship of entire margin percentage and MAT by 

correlating the percentage of entire margin leaf species from the floras of East Asia with the 

MAT of those sites from climate stations. 

The correlation between margin percentage and MAT from the floras of East Asia was highly 

significant (p = <0.00 I) with an r2 value of 0.98 (Wing and Greenwood 1993). The study by 

Wolfe (1979) showed that a 3% increase in the number of entire margined species within a flora 

equates to a 1°C increase in MAT. Wing and Greenwood (1993) were able to establish the 

correlation and transfer function from the Wolfe ( 1979) dataset for the use in palaeoc limatic 

studies (Figure 6.1 and Table 6.1). 

This univariate model was termed Leaf Margin Analysis (LMA) and has provided robust 

measures of terrestrial MAT for the Cenozoic (e.g. Wolfe 1979, Wing and Greenwood 1993). 

The strong correlation between the percentage of margin type and MAT has been recognised in 

other regions (Table 6.1), which indicates that this correlation is robust across the Northern 

Hemisphere. Seven LMA equations have been selected in this study (Table 6. 1) because they 

represent primarily Northern Hemi sphere floras and climates, and are therefore likely to share 

similar characteristics with the Skye fossi l floras . 
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Figure 6.1. Correlation between mean annual temperature and proportion of entire-margined 
species in floras from East Asia, data set of Wolfe (1979). Each data point represents a single 
modern flora with multiple constituent woody dicotyledonous angiosperm species. Redrawn and 
modified from Wing and Greenwood (1993). 
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Table 6.1. Leaf margin analysis transfer functions used in this study from datasets derived from 
different regions. 

Transfer function Region r n SE Authors 

(1) MAT = 1.141 + 30.6 x P East Asia 0.98 34 0.8 (Wolfe 1979, Wing 

and Greenwood 

1993) 

(2). MAT = 2.240 + 28.6 x P North, Central and 0.94 9 2 (Wilf 1997) 

South America 

(3). MAT- -0.266 + 29.1 x P North and Central 0.76 106 3.4 (Wilf 1997) 

America and Japan 

(4). MAT = 2.223 + 36.3 x P North America 0.8 16 3.6 (Kowalski and 

Di1cher 2003) 

(5). MAT = 0.512 + 31.4 x P Europe 0.6 1835 1.7 (Traiser et at. 2005) 

(6). MAT = 1.320 + 29 x P North and Central 0.91 84 NA (Miller et at. 2006) 

America 

(7). MAT = 1.038 + 27.6 x P China 0.79 50 1.9 (Su et at. 2010) 

Numbers in parentheses e.g. (1) - (7) denote the different LMA transfer functions used in this 
study. MAT = mean annual temperature, P = proportion of woody dicots with entire margins, rl = 
strength of the correlation, n = number of sites sampled, SE = standard error. 

6.2.4 Climate Leaf Analysis Multivariate Program (CLAMP) 

Climate Leaf Analysis Multivariate Program (CL~MP), unlike LMA, is a multivariate 

statistical approach that uses multiple leaf characters to decipher the climate from leaf 

physiognomy (Wolfe 1993). This technique determines the relationship between the 

physiognomy of woody dicot leaves and meteorological variables of modern terrestrial 

environments (Figure 6.2). The relationship between modern leaf physiob'TIomy and 

meteorological data can then be applied to fossil leaf assemblages to determine past climatic 

conditions. CLAMP, unlike LMA, is able to determine not only MAT but also other climate 

variables related to seasonality and precipitation (Wolfe 1993). 
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Figure 6.2. Example of multidimensional relationship between the physiognomy of fl or al sites and 
climate. Redrawn from the CLAMP website (http: //clamp.ibcas.ac.cn). 

CLAMP as a technique is useful , particularly for older floras, as the taxonomic identity of the 

leaves is not required, rather the analysis relies on the convergence of physiognomic traits 

between plant taxa (Spicer 2000). However, angiospenn leaf morphotypes have to be correctly 

identi fied and characteri sed prior to the analysis, and their full range of physiognomic variation 

detennined. Once the angiospenn morphotypes have been established (see Chapter 3 for 

procedure) they are scored for the CLAM P analys is. CLAMP uses 31 leaf characters that are 

related to lobation, margin, lamina size, apex and base shape, lamina shape and length:width 

ratio . For details on scoring and definition of these characters see http://clamp.ibcas.ac.cn. The 

combined score for all morphotypes within the fossil fl ora is then matched aga inst the modem 

fl oras and meteorological data using Canonical Correspondence Analys is (CA OCO) statistical 

software (Ter Braak 1986), and now can be run via the CLAMP website 

(http://c lamp.ibcas.ac.cn). CANOCO ordinates the phys iognomi c and meteorological data 

(simplifies the variables) to detennine their relationship, which can then be applied to fossil 

fl oras. 

The current CLAMP calibration dataset consists of 173 modem sites (Physg3arcAZ), mostly 

from the Northern Hemisphere. Each site represents an individual fl ora composed of more than 

20 woody dicots whose physiognomy has been recorded along wi th the local climate from 

climate observations of greater than 30 years. A second calibration dataset is ava il able, which 

excludes the cold ' alpine-nest' sites (Physg4brcAZ). The use of this dataset is applicable if 
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initial results indicate a warm palaeoclimate, but in this study both physiognomic data sets have 

been used to establish which dataset is most comparable with the other methods. 

The meteorological data is available in two formats; the first is derived from >30 year averages 

from individual climate stations, the second dataset is derived from globaIly gridded climate. 

These data sets enable four analyses to be performed-two analyses that utilises the full 173 sites 

with gridded climate data (CLAMP 1), meteorological data (CLAMP2), and two analyses that 

use the reduced floral dataset (excluded cold sites) with gridded climate data (CLAMP3), and 

meteorological data (CLAMP4). All four analyses have been used in this study to firstly test the 

variability of each analysis and secondly to establish which provides the most congruent results 

with the other methods used. 

6.2.5 Multiple linear regression models (MLRs) 

Multiple linear regression models (MLRs) represent another application of multivariate 

physiognomic data for palaeoclimate analysis. Several MLRs have been derived from the 

CLAMP calibration datasets, but do not rely on ordination from CANOCO. Instead, regression 

analysis of the predictor variables (physiognomic characters) and dependant variables (climate 

variables) are calculated using the linear regression models. Three MLR models based on the 

CLAMP calibration datasets have been used in this study. All utilise the complete or selected 

leaf character states outlined by Wolfe (1993), for specific details on definition of scores see 

(http://clamp.ibcas.ac.cn). The three MLR models used in this study are presented below: 

a. MLR 1 model is derived from the Wing and Greenwood (1993) who used 74 sites from 

the CLAMP database and excluded sites with cold month mean temperature < _2°C. 

This model eliminated many of the 31 characters used in CLAMP to reduce 

multicollinearity (strong linear correlation between two or more dependent variables). A 

single character from each leafform category (e.g. margin characters, lamina shape etc.) 

was selected according to two criteria; a low correlation with other character states to 

reduce multicollinearity, and a high correlation between the physiognomic character 

and a specific climatic variable (Wing and Greenwood 1993, Wiemann et a1. 1998). 

b. MLR2 model is derived from Gregory and McIntosh (1996) and uses 106 sites from the 

CLAMP dataset and 29 of the 31 physiognomic characters. The 'teeth close' and 'teeth 

regular' characters were excluded due to their close correlation with (collinearity) the 

'no teeth' (entire margined) character (Gregory and McIntosh 1996). The character 

states used are presented in Table 6.2 and are defined and scored according to the 

CLAMP guidelines (see http://clamp.ibcas.ac.cn). 
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c. MLR3 model is derived from Wiemann et al. (1998) and represents untransfonned data 

from 144 sites from the CLAMP database. All 31 character states were used. The MLR 

model produced by Wiemann et al. (1998) selected the leaf characters most strongly 

correlated with MAT and growing season precipitation (GSP). 

6.2.6 Nearest living relatives (NLRs) 

This approach relies not on the physiognomic attributes of the fossil plants to reconstruct the 

past climate but the systematic relationship of the modern relati ves and their climatic tolerances. 

The use of nearest li ving relati ves (NLRs) as climate proxies for fossil assemblages is an 

establi shed method for estimating past climates (e.g. Heer 1855 , Greenwood and Wing 1993, 

Mosbrugger and Utescher 1997, Uhl et al. 2007) . This approach requires that the sys tematic 

identity of the plant is accurately detennined and the foss il plant has to have a modern relati ve, 

preferably a close one, with a well documented climate range (Mosbrugger and Utescher 1997). 

The coexistence approach developed by Mosbrugger and Utescher ( 1997) uses the principal of 

NLRs but al so uses the coexistence of taxa i.e. the range where all taxa overlap for a particular 

climate variable (Figure 6.3). This point of coexistence for the modern relati ves is used as the 

estimate of that particular climate variable for the fossil plant assemblage. 
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Figure 6.3. Demonstration of coexistence approach. Plant species A-J represent modern relatives of 

fossil taxa. Each plant species has a range of cold mean month temperatures they can tolerate. The 

shaded orange area represents the interval of coexistence where theoretically all taxa could coexist, 

in this example 3 °C to 5 0c. 
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6.3 Results 

6.3.1 Mean annual temperature estimates derived from leaf margin analysis (LMA) 

The fossil woody dicot leaves of AlIt Mor, Skye are dominated by morphotypes with toothed 

margins (Table 6.2). Of the twelve morphotypes with margin preserved only one, Cornophyl/um 

hebridicum (AM 10) has an entire margin. The percentage of leaf morphotypes within the AlIt 

Mor flora with entire margins is 8.3%. This percentage was converted to a proportion of the 

flora (0.083) and applied to the LMA equations presented in Table 6.1 to determine MAT, the 

results of which are presented in Table 6.3. 

Table 6.2. Margin type ofthe angiosperm morpho types of Alit Mor, Skye. 

Morphotype Toothed margin 

AMI Platanites hebridicus X 

AM2 Trochodendroides antiqua X 

AM3 Corylites hebridiclIs X 

AM4 "Coryliles cf." X 

AM5 Fagopsiphy/lum groenlandica X 

AM6 JlIgiandiphylliles sp.l 

AM7 Juglandiphyllites sp.2 

AM8 "Pialyca/ya cf." 

AM9 Vitiphy/llim sewardii 

AMIO COnlophy/llim hebridicllm 

AMI I Zizyphoides sp. 

AMI2 affinity unknown 

AM13 affinity unknown 

AMI4 affinity unknown 

? 

X 

X 

X 

X 

X 

X 

? 

Entire margin 

? 

X 

? 

AM = angiosperm morphotype, X - denotes margin type, ? - margin not preserved. 
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Table 6. 6.3. Mean annual temperature estimates of the mid Paleocene of Skye, derived from seven 

LMA equations 

Leaf margin analysis Mean annual temperature Standard error 
transfer function (0C) 

('sampling error') (± 0C) 

LMA(l) 3.7 2.4 

LMA(2) 4.6 2.3 

LMA(3) 2.2 2.3 

LMA(4) 5.2 2.9 

LMA(5) 3.1 2.5 

LMA(6) 3.7 2.3 

LMA(7) 3.3 2.2 

Numbers in parentheses denote LMA transfer function used, see table 6.1 for the source. Standard 
error calculated from Wilf (1997). 

The standard error for each LMA equation was calculated according to the calculation presented 

in Wilf (1997) and is presented below. 

(J (MAT) = JP(P -1) 
r 

where c refers to the slope of the correlation of the transfer function e.g. 30.6 for LMA (1) and 

28.6 for LMA (2) etc. P is the proportion ofleafmorphotypes within the flora with entire 

margins, in this case 0.083. r is total number ofleafmorphotypes used in the analysis, in this 

case 12. The calculated sampling error for each of the seven LMA transfer function equations is 

presented in Table 6.3. 

The calculation determined by W ilf (1997) yields the sampling error, which is typically greater 

than the standard error published in the original studies (see Table 6.1). Sampling error 

diminishes with greater number of species/morphotypes incorporated into the analysis or if the 

margin percentage is skewed e.g. 20% or 80%. The Alit Mor flora has only 12 morphotypes 

with margin preserved and should therefore have high sampling error, but because margin 

percentage is low at 8.3% it yields a standard error ranging from -2°C to 3 °C (Table 6.3). The 

standard error obtained from the Alit Mor flora is greater than all but two of the published 

standard errors for each equation (see Tables 6.1 and 6.3) but is around the minimum suggested 

by Wilf (1997) for MAT estimates derived from LMA. 

The MAT estimates derived from the seven LMA equations indicate a possible range of MAT 

of 2.2 ± 2.3 DC to 5.2 ± 2.9 DC (Table 6.3) during the mid Paleocene of Skye error taken into 
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account the maximum range is -0.1 °C to 8.1 °C. The mean of all of the estimates is 3.7 °C, 

which is suggestive of a cold temperate climate (Wolfe 1979). Three of the results appear to 

depart significantly from this mean including LMA (2), LMA (3) and LMA (4) (Table 6.3). The 

implications of these possible estimate outliers are discussed in section 6.4.4. 

6.3.2 Climate estimates derived from CLAMP analysis 

The physiognomic characters scored for the Allt Mor indicates the flora is dominated by 

unlobed, toothed leaf types, leaves with round teeth, leaves of microphyll III to mesophyll I 

size, leaves with acute and attenuate apexes, all base shapes, particularly acute, lamina 

length:width ratios of 1-2: 1 to 2-3: 1 and elliptic laminas. A completeness score of 0.6 was 

obtained from this flora. This completeness score equates to relative number of characters that 

have been scored for the flora. The calibration dataset floras (modem floras) have a 

completeness of score 1, i.e. 100% of the characters for each leaf species within the flora has 

been scored. Low completeness scores indicate fewer of the characters have been scored. Spicer 

et a1. (2005) suggest that a completeness score of 0.6 should be minimum for reliable climates 

estimates derived from CLAMP. 

The completeness score for the Skye floras is therefore at the minimum required for reliable 

estimates when using CLAMP. This low completeness score is due to the limited preservation 

of several of the morphotypes, particularly morphotypes AM4 and M 12-M 15. These 

morphotypes were included in the analysis to provide the full range of physiognomic characters 

represented in the AlIt Mor flora and to reduce the effects of limited diversity. 

Four versions of the CLAMP analysis were performed in this study and the predicted climate 

estimates are presented in Table 6.5. The standard error for each of the climate variables was 

generated by the analysis and are presented in Table 6.5. 
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Table 6.4. Leaf physiognomic characters scored for the AIlt Mor flora. 

leaf character percentage leaf character percentage 

lobed 0 apex shape: emarginate 0 

no teeth (entire margin) 8 apex shape: round 14 

teeth regular 50 apex shape: acute 43 

teeth close 50 apex shape: attenuate 43 

teeth round 63 base shape: cordate 27 

teeth acute 29 base shape: round 27 

teeth compound 25 base shape: acute 45 

lamina size: nanophyll 0 lamina length:width <1: 1 22 

lamina size: leptophyll I 0 lamina length:width 1-2:1 33 

lamina size: leptophyll II 0 lamina length:width 2-3:1 39 

lamina size: microphyll I 7 lamina length:width 3-4:1 6 

lamina size: microphyll II 7 lamina length:width >4:1 0 

lamina size: microphyll III 52 lamina shape: obovate 4 

lamina size: mesophyll I 19 lamina shape: elliptic 96 

lamina size: mesophyll II 10 lamina shape: ovate 0 

lamina size: mesophyll III 6 

For definitions of these character states see the CLAMP website (http://clamp.ibcas.ac.cn). 
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Table 6.5. CLAMP predicted climatic variables derived from the physiognomy ofthe Alit Mor flora. 

calibration MAT SE CMM SE WMM SE GSL SE GSP SE MMGSP SE 3WET SE 3DRY SE 

dataset eq eq eq (months) (mm) (mm) (mm) (mm) 

Physg3arc _ GridMet 

(CLAMP I) 10.3 1.7 0.0 3.0 20.8 1.8 6.3 0.8 1380.1 193.8 202.0 24.7 828.2 132.9 266.5 35.5 

Physg3arc _Met 

(CLAMP2) 10.9 1.8 1.6 2.6 20.8 1.8 6.8 0.9 1721.7 317.3 242.0 37.0 892.7 137.3 602.7 89.4 

Physg3brc_ GridMet 

(CLAMP3) ILl 1.1 0.5 1.9 22.2 1.4 6.7 0.7 1409.2 200 208.1 26.3 741.0 146.5 261.2 31.7 

Physg3brc_Met 

(CLAMP4) 11.1 1.2 1.6 1.9 22.8 1.6 7.1 0.7 1742.2 330.8 249.5 31.4 910.4 140.8 665.8 104.3 
.... - --- _._-

Calibration data sets used: Physg3arc_GridMet (CLAMP1) = 173 floral sites with gridded climate data, Physg3arc_Met (CLAMP2) = 173 floral sites with climate 
observation data, Physg3brc_GridMet (CLAMP3) = 144 floral sites with gridded climate data, Physg3brc_Met (CLAMP4) = 144 floral sites with climate observation data. 
SE = standard error, MAT = mean annual temperature, CMM = cold month mean temperature, WMM = warm month mean temperature, GSL = growing season length, 
MMGSP = mean monthly growing season precipitation, 3WET = three wet month precipitation, 3DRY = three dry month precipitation. 
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The predicted climate parameters from the four CLAMP analyses indicate a warm, seasonal 

climate with high precipitation (Wolfe 1993). The four analyses used in this study show 

significant variation in the minimum, maximum, mean and total range of the estimates produced 

(Table 6.6). 

Table 6.6. Climate variables derived from tbe four CLAMP analyses sbowing minimum, maximum, 
mean and range of estimates. 

Climate variable min max mean range 

(MAT) mean annual temperature caq 8.6 12.9 11.0 4.3 

(CMM) cold mean month temperature eC) -3.0 4.2 0.9 7.2 

(WMM) warm mean month temperature (oq 19.0 24.4 21.6 5.4 

(GSL) growing season length (months) 5.5 7.8 6.7 2.3 

(GSP) growing season precipitation (mm) 1186.3 2073.0 1563.3 886.7 

(MMGSP) mean monthly growing season precipitation (mm) 177.3 280.9 225.4 103.7 

(3WET) three wet month precipitation (mm) 695.4 1051.2 843.1 355.9 

(3DRY) three dry month precipitation (mm) 231.1 770.1 449.1 539.0 

Mean annual temperature estimates range from 10.3 ± 1.7 °C to 11.7 ± 1.2 °C and with the 

standard error taken into account the potential range is 8.6 °C to 12.9 °C with a mean of 11°C 

for the four estimates (Table 6.5, 6.6). These mean annual temperature estimates suggest that the 

climate was temperate to warm temperate (Wolfe 1993). Cold month mean temperature (CMM) 

estimates range from 0.0 ± 3 °C to 1.6 ± 2.6 and with the standard error taken into account have 

a range of -3.0 °C to 4.2 °C with a mean of 0.9 OC (Table 6.5, 6.6). The estimates for CMM 

show the greatest range between the four analyses but suggest that winter temperatures were 

cool, and frosts may have been frequent. Warm month mean temperature (WMM) estimates 

range from 20.8 ± 1.8 °C to 22.8 ± 1.6 °C. The maximum range in estimates of WMM with the 

standard error taken into account is 19.0 °C to 24.4 °C with a mean of 21.6 °C (Table 6.5, 6.6). 

Precipitation estimates indicate a humid climate state, but estimates derived from the four 

CLAMP analyses show significantly more variation than the temperature-related climate 

parameters (Table 6.6). Growing season precipitation (GSP) estimates range from 1380.1 ± 

193.8 mm to 1742.2 ± 330.8 mm (Table 6.5, 6.6). The total range between the estimates for 

GSP is 886.7mm (Table 6.6), which indicates the reliability of this climate parameter is limited. 

This pattern is also apparent in the mean monthly growing season precipitation (MMGSP), three 

wet month precipitation (3WET) and three dry month precipitation (3DRY) (Table 6.6). The 

level of precipitation is therefore obscured by the high standard error of these of these 

parameters and the variance between the estimates. 
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The four CLAMP analyses in this study as outlined in section 6.2.4 are derived from datasets 

with varying numbers of floral sites and different source climate data. There is a discrepancy 

between the analyses that are based on the gridded climate data (CLAMP 1 and CLAMP3) and 

those that are based on meteorological observations (CLAMP2 and CLAMP4) (Table 6.5). 

Precipitation estimates derived from the gridded climate datasets are appreciably drier than the 

meteorological observations (Table 6.5). This is consistent with the findings of Spicer et a1. 

(2009) who showed that the gridded dataset yielded drier estimates compared to the 

meteorological observations. This discrepancy is caused by the climate models, (that produced 

the gridded data) inability to determine fine scale precipitation patterns such as stonn events, 

which the meteorological observations have recorded (Spicer et a1. 2009). 

The estimates obtained from the full floral dataset (CLAMP I and CLAMP2) and those derived 

from the reduced dataset (CLAMP3 and CLAMP4) show a slight discrepancy in the 

temperature related parameters (Table 6.5). This discrepancy is expected as the reduced dataset 

has had the colder sites removed and so yields warmer temperature estimates, but, as the 

estimates show, this difference is slight. 

6.3.3 Climate estimates derived from MLR models 

The three MLR models used in this study have produced highly variable estimates of the 

climate, particularly CMM and mean annual range in temperature (MART) (Tables 6.7, 6.8). 

The standard error for each of the climate variables was obtained from their source publication 

(Table 6.7), except for MAT which was calculated using the methodology outlined by Wilf 

(1997). 

Table 6.7. MLR predicted climate variables from the physiognomy ofthe Alit Mor flora. 

MLR MAT SE CMM SE WMM SE MART SE asp SE 

model (0C) 
eC) eC) eC) (mm) 

MLRI 3.4 2.0 -7.6 3.6 20.0 2.9 16.8 5.0 1794.7 472 

MLR2 0.1 2.3 -14.8 3.5 23.3 2.5 30.9 3.8 1475.6 300 

MLR3 5.5 2.0 1705.1 512 

MLR models used MLRl- Wing and Greenwood (1993), MLR2 - Gregory and McIntosh (1996), 
MLRJ = Wiemann et al. (1998). MAT = mean annual temperature, SE = standard error, CMM = 
cold mean month temperature, WMM = warm mean month temperature, MART = mean annual 
range in temperature, MAP = mean annual precipitation, GSP = growing season precipitation. - = 
transfer function not available to determine this particular climatic variable. 
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Table 6.8. Climate variables derived from the three MLR models showing minimum, maximum, 

mean and range of estimates. 

Climate variable min max mean range 

(MAT) mean annual temperature (OC) -2.2 7.5 3 9.7 

(CMM) cold mean month temperature (OC) -18.3 -4 -11.2 14.3 

(WMM) warm mean month temperature (0C) 17.1 25.8 21.7 8.7 

(MART) mean annual range in temperature (0C) 11.8 34.7 23.9 22.9 

(GSP) growing season precipitation (mm) 1175.6 2266.7 1658.5 1091.1 

Mean annual temperature estimates from the three MLR models are highly variable and range 

from 0.1 ± 2.3 DC to 5.5 ± 2.0 DC, and with standard error taken into account the maximum range 

is -2.2 °C to 7.5 °C with a mean of 3 °C (Tables 6.7, 6.8). The estimates of MAT derived from 

all three MLR models indicate temperate to cool temperate climate state (Wolfe 1979). 

Estimates ofCMM are very low and range from 7.6 ± 3.6 DC to -14.8 ± 3.5 DC and with standard 

error the maximum range is -4 °C to -18. 3DC with a mean of -11.2 DC (Tables 6.7, 6.8). These 

CMM estimates suggest the winter temperatures on Skye during the mid Paleocene were severe 

and hard frosts were frequent. The two estimates for WMM are more comparable and range 

from 20 ± 2.9 °C to 23.3 ± 2.5 °C and with standard error the maximum range is 17.1 DC to 25.8 

DC with a mean of 21.7 °C (Tables 6.7, 6.8). 

The mean annual range in temperature (MART) estimates produced from MLRI and MLR2 

vary significantly (Tables 6.7, 6.8). The estimates range from 16.8 ± 5°C to 30.9 ± 3.8 °C and 

with standard error taken into account the range is 11.8 °C to 34.7 °C with a mean of23.9 °C 

(Tables 6.7,6.8). Estimates of MART derived from the MLRI model indicate that there was a 

lower annual range in temperature, which is supported by the relatively warmer CMM estimates 

and cooler WMM estimates. The MLR2 model, however, indicates that the annual range in the 

temperature was much greater which is supported by the CMM and WMM estimates from this 

model. 

Estimates ofGSP vary significantly and range from 1475.6 ± 300 mm to 1794.7 ± 472 mm, and 

with the standard error range from 1175.6 mm to 2266.7 mm with a mean of 1658.5 mm 

(Tables 6.7, 6.8). The MLR estimates ofGSP, like CLAMP, have high range between the 

estimates (1091.1 mm), which indicates that this climate perimeter is poorly constrained. 

Although the three MLR models have predicted a greater variation of estimates compared to 

CLAMP they show similar trends, which indicate the climate during the Paleocene of Skye was 
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cool temperate, strongly seasonal with warm summers and severe winters and humid during the 

growing season. 

6.3.4 Nearest living relatives approach 

The use ofNLRs as climate indicators has not been implemented in this study for several 

reasons, which are outlined below: 

a. The potential for the modem relatives of the Skye floras to have changed their climatic 

tolerances is high after -60 million years of evolution and Cenozoic climate change. 

b. Many of the conifer taxa on Skye have modem relatives that have restricted, relict 

distributions such as Metasequoia, Sequoia and Glyptostrobus (Eckenwalder 2009). The 

Paleocene record of these conifers, however, indicates that they had a much broader 

latitudinal and longitudinal ranges, and therefore broader climate tolerances than their 

extant relatives (Liu et al. 2007, LePage 2007). 

c. The angiosperm leaf morpho types of Skye can only be identified to family level with 

any degree of confidence. At such high taxonomic levels the accuracy of any estimates 

is likely to be limited. 

d. Paleocene angiosperms in many cases represent archaic, undifferentiated fonns that 

share morphologically characters with extinct and extant genera (Manchester 1999). 

The climate tolerances based on their NLRs are difficult to ascertain as they may have 

tolerances similar to one, or several of the genera. 

Because of these factors the use ofNLRs as climate proxies for the mid Paleocene of Skye 

suggests that the climatic estimates produced may be unreliable and of limited accuracy. The 

NLRs for the Skye floras will be considered in this study but only as qualitative 

palaeoecological and palaeoclimatic indicators. 

6.3.5 Summary of results 

Fourteen separate analyses have been performed in this study, which represent three forms of 

physiognomic climate analysis: LMA, CLAMP and MLRs. The climate variables that have 

been estimated by these analyses have provided climate signals for the mid Paleocene of Skye 

(Table 6.9). These estimates do, however, show significant variation (Table 6.9), the source of 

this variation is discussed in the following section 6.4. 
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Table 6.9. Climate estimates derived from the physiognomic analysis of the mid Paleocene floras of Skye using LMA, CLAMP and MLR models. 

Model 
MAT SE CMM SE WMM SE MART SE GSL SE GSP SE MMGSP SE 3WET SE 3DRY SE 

eq eq eq (oq (months) (mm) (mm) (mm) (mm) 

LMAI 3.7 2.4 - - - - - - - - - - - - - - - -
LMA2 4.6 2.3 - - - - - - - - - - - - - - - -
LMA3 2.2 2.3 - - - - - - - - - - - - - - - -
LMA4 5.2 2.9 - - - - - - - - - - - - - - - -
LMA5 3.1 2.5 - - - - - - - - - - - - - - - -
LMA6 3.7 2.3 - - - - - - - - - - - - - - - -
LMA7 3.3 2.2 - - - - - - - - - - - - - - - -
CLAMP 1 10.3 1.7 0.0 3.0 20.8 1.8 - - 6.3 0.8 1380 194 202 25 828 133 267 35 

CLAMP2 10.9 1.8 1.6 2.6 20.8 1.8 - - 6.8 0.9 1722 317 242 37 893 137 603 89 

CLAMP3 11.1 1.1 0.5 1.9 22.2 1.4 - - 6.7 0.7 1409 200 208 26 741 146 261 32 

CLAMP4 11.7 1.2 1.6 1.9 22.8 1.6 - - 7.1 0.7 1742 331 250 31 910 141 666 104 

MLRI 3.4 2.0 -7.6 3.6 20.0 2.9 16.8 5.0 - - 1795 472 - - - - 337 89 

MLR2 0.1 2.3 -14.8 3.5 23.3 2.5 30.9 3.8 - - 1476 300 - - - - - -
MLRJ 5.5 2.0 - - - - - - - - 1705 512 - - - - - -

~- --'------

MAT = mean annual temperature, SE = standard error, CMM = cold mean month temperature, WMM = warm mean month temperature, MART = mean 
annual range in temperature, GSL = growing season length~ GSP = growing season precipitation, MMGSP mean monthly growing season precipitation, 
3WET = three wet month precipitation. 3DRY = three dry month precipitation, - "" transfer function not available to determine this particular dimatic 
variable. 
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6.4 Discussion of results 

Climate estimates derived from the physiognomy of the angiospenn fossil floras of Skye 

indicate the climate was cool-temperate to wann-temperate, seasonal and humid. The results 

from the physiognomic analyses show considerable variation amoungst the climate predictions 

(Table 6.9). The source of this variation may be the result of methods themselves, which may 

impose certain biases, but may also be related to factors pertaining to the original source fossil 

floras of Skye. The following section discusses these potential sources of error to establish a 

better understanding of how this may influence the climate estimates and the interpretations of 

the palaeoclimate signal. Four climatic variables are considered here MAT, CMM, WMM and 

GSP as these variables offer a broader insight into the palaeoclimate and have been predicted by 

many of the 14 analyses used in this study, and so provide an opportunity for comparison 

between the methods. 

6.4.1 Predictions of MAT 

Mean annual temperature estimates derived from the three physiognomic methods show 

substantial variation between these techniques (Table 6.9, Figure 6.4). Estimates of MAT 

derived from LMA equations range from -0.1 °C to 8.1 °C, CLAMP 8.6 °C to 12.9 °C and MLR 

models -2.2 °C to 7.5 °C (Table 6.9, figure 6.4). The LMA and MLR estimates share a similar 

range although the latter methods estimates are cooler, particularly for MLR2. CLAMP 

estimates are appreciably higher than those ofLMA, 0.4 °C to 13°C and 1.1 °C to 15.1 °C 

wanner than the MLR estimates. These results raise important implications regarding the 

reconstruction of the palaeoclimate signal and the reliability of the physiob'1lomic methods. 
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Figure 6.4. Mean annual temperature estimates derived from phy iognomic analy i of the mid 

Paleocene floras of Skye. Red circles . = estimates derived from L"A tran fer function , green 

squares . = estimates derived from CLAMP analysis, blue triangles . = es timates derived from 

MLR models. 

The correlation of entire margin species and MATi the primary or ole variable for timating 

MAT for the three physiognomic methods (Wolfe 1979, \ olfe 1993, \ ilf 199 . \ iemann et 

a!. 1998, Spicer et a!. 2005). The discrepancy between the method i therefore urprising ince 

the margin percentage should be the overriding factor influencing the 1 T ignal. The addition 

of physiognomic characters may therefore be the primary cau e of thi di crepan y. The M T 

estimates, however, indicate that additi on of physiognomic characters doe not nece saril 

increase precision, as the estimates deri ved from the MLR models are more consi tent wi th 

those produced by LMA (Table 6.9. Figure 6.4) . Indeed the colde t T e timate. 0.1 ± 2.3
c
C 

was obtained from MLR2 model , which utili ses s ix phy iognomic character oppo ed to three 

for MLR1 and MLR3, which yielded warmer estimate (Table 6.9. Figure 6.4 ). 
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A similar discrepancy between LMA and CLAMP derived estimates of MAT was recorded 

from the early Paleocene floras of Williston and Raton basins of western United States (Davies­

Vollum 1997). The appreciably warmer CLAMP estimates were suggested by Davies-Vollum 

(1997) to be the result of the other physiognomic characters present in the floras that were 

influencing the MAT estimation. The three primary physiognomic characters that may have 

influenced the temperature signal were the large proportion of leaf morphotypes with acute 

bases, a small proportion of small leaves and a small proportion of wide leaves (Davies-Vollum 

1997). This physiognomic composition is similar to that of the Skye floras (Table 6.4), and 

could therefore account for the warmer CLAMP derived estimates. 

The MLR models used in this study utilise these traits for their analyses and should therefore be 

influenced by these character traits in similar way to CLAMP, but as the estimates show, this is 

not the case. Why CLAMP based MAT methods are providing a warmer MAT signal is 

currently unclear. The estimates of MAT in this study have to be reviewed in light of other 

sources of error related to fossil assemblages themselves (see section 6.4.4), other independent 

climate proxies or indicators from the BTVP and Northern Europe from this interval. 

6.4.2 Predictions of seasonality 

The seasonality of the palaeoclimate, i.e. how cold or warm the winter and summer 

temperatures were, has important implications for reconstructing the past climates of Skye. Two 

climatic variables CMM and WMM have been estimated using the four CLAMP analyses and 

two of the MLR models (MLRI and MLR2). The CLAMP derived estimates for CMM are 

reasonably consistent with a range of -3.0°C to 4.2 °C and for the MLR models are considerably 

colder and more variable with a maximum range of -18.3 °C to -4 DC. Estimates of WMM, 

however, are more consistent between CLAMP and MLR models with ranges of 19.0 °C to 24.4 

0C and 17.1 °C to 25.8 °C respectively (Table 6.9 and Figure 6.5). 



240 

a} 6 

4 

too t ,6 f 05 f 
2 1.6 

0 
G 
~ -2 

<:J .... 
.2 

-4 l':l .... 
CJ 
0-

E -6 
3 
c 

-8 -7.6 l':l 
<:J 

E 
-5 -10 
c 
0 
E - 12 
"0 
"0 
u -14 

- 14.8 
- 16 

- 18 

-20 
N ~ -.:t N 

Q.. Q.. Q.. Q.. 0::: 0::: 
~ ~ ~ ~ -l -.J 

<:: <:: <:: < ~ ~ 
-l -l -l -.J 
U U U u 

b) 28 

26 

G 24 
~ 23.3 

CJ 

t t
22 8 3 

c:; 22 f
20
+0 8 22.2 

.... 
'lJ 
0-
E 
~ 
c 20 20.0 
" 'lJ 

E 
..c 
C 18 0 
E 
l= 
C 
<'l 16 ~ 

14 

12 
N M -.:t ('I 

Q.. Q.. 0- 0- 0::: 0::: 
~ ~ ~ ~ -.J -.J 

<:: < -< -< ~ ~ 
-l -l -l -l 
U U U U 

Figure 6.5. a) cold mean month temperature (CMM), b) warm mean month temperatu re estimates 

derived from physiognomic analysis of the mid Paleocene fl oras of Skye. Green squares. = 

estimates derived from CLAM P analysis, blue t riangles " = esti mates deri ved from MLR models. 



241 

Both physiognomic methods indicate that the mid Paleocene winter conditions on Skye were 

cold with frequent frosts, but the estimates of CMM derived from the MLR models suggest that 

the winters were severe with hard frosts. The CMM estimates derived from the MLR models 

appear to be unrealistically cold for such a warm interval as the Paleocene (Zachos et al. 200 I) 

and are considered unreliable. 

The cause of the discrepancy between the CMM estimates is unclear. The MLR I model is 

influenced by the presence of emarginate apexes, which if in high relative abundance in a flora 

predict warmer CMM estimates. However, as Greenwood and Wing (1995) state, leaf types 

with emarginate apexes are relatively rare components of Eocene floras of North America, and 

are therefore likely to provide cooler MAT and CMM estimates when using the MLR 1 model. 

The absence of this character trait on Skye could account for the colder CMM estimates for 

MLRI. 

The estimates ofWMM derived from both CLAMP and MLR models have provided similar 

estimates of the summer temperatures on Skye during the mid Paleocene. These estimates 

suggest that the temperatures during the summer months were warm, which may facilitated the 

growth of the plants during these months. 

The physiognomic analysis of the floras of Skye suggest that the climate during the mid 

Paleocene was seasonal with cool to cold winter temperatures and warm summers. These results 

will be compared in light of other sources of error related to the fossils floras themselves and 

how comparable they are to other proxies. 

6.4.3 Predictions of precipitation 

Growing season precipitation (GSP) was selected as an indicator of the past precipitation 

patterns of Skye as it can be predicted by CLAMP and all three of the MLR models. The 

estimates derived from both methods are within error of each other and have a range of 1175.6 

mm to 2266.7 mm. The gridded climate data derived CLAMP estimates (CLAMPI and 

CLAMP3) of precipitation, as discussed in Section 6.3.2, produce drier estimates and so are 

considered less reliable for this parameter. 

The estimates of GSP indicate that the climate of Skye was humid with substantial levels of 

precipitation during the growth period of the vegetation (Table 6.9, Figure 6.6). The level of 

precipitation is comparable with that of modern temperate rainforests, which occur in regions 

with mean annual precipitation (MAP) that exceeds 1400 mm (Alaback 1991). GSP represents 

the precipitation for months during the growing season, but the estimates obtained from the 

Skye floras exceed the MAP requirements of this forest type. A single estimate of MAP was 
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determined by MLR I (Table 6 .9) which provided an estimate of 2521 ± 580mm, which 

indicates these forests received high levels of rainfall. 

The seasonality o f precipitation patterns has been estimated by the CLAMP analyses and 

indicates that wetter and drier months precipi tation are comparable, excluding gridded derived 

estimates which are considered unrel iable. The three wet month precipitation for CLAM P 2 and 

CLAM P4 range from 695 mm to 105 1 mm and for the three dry months range from 514 mm to 

770 mm respecti vely (Table 6.9). These estimates show there was little seasonal vari ation in 

precipitation patterns and the climate was probably annually humid. 
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Figure 6.6. Growing season precipitation estimates derived from phys iognomic analysis of the mid 

Paleocene floras of Skye. Green squares.= estimates derived from CLAM P analyses, blue 

triangles . = estimates derived from MLR models. 
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Precipitation estimates derived from physiognomic methods have been scrutinised for their 

reliability (Wiemann et al. 1998). In environments where water is not limiting (mesic 

conditions) leaf physiognomy has proven to be weakly correlated with precipitation, and when 

CLAMP and MLR models are calculated for modern sites they often over-predict the 

precipitation of these sites (e.g. Wing and Greenwood 1993, Jacobs and Denio 1996, Wilf et al. 

1998). Other physiognomic methods have been developed that rely on average leaf area of 

specimens (Wilf et al. 1998), but these techniques have not been employed in this study as the 

leaf specimens from Skye are too fragmentary. 

Determining precipitation level precisely for the mid Paleocene of Skye is difficult due to the 

potential uncertainties of the physiognomic methods, but what can be established is that the 

climate was humid and precipitation during the growing season was within the limits of modern 

temperate rainforest (Alaback 1991). 

6.4.4 Other potential sources of error 

6.4.4.1 Low floral diversity 

Low diversity of woody dicots in fossil assemblages has been regarded as a major source of 

potential error for estimation of palaeoclimates (Burnham 1989, Wolfe 1993, Wilf 1997, 

Burnham et al. 2001, 2005). Low floral diversity (small number of morpho types) is potentialIy a 

significant problem for univariate methods such as LMA if the ratio of the entire margined or 

toothed species is skewed. If the margin percentage for a flora is around 50% then floral 

diversity has to be high within an assemblage to ensure that this value is statistically significant 

(Wilf 1997). 

Woody dicot diversity in the Skye flora is relatively low with 14 morphotypes recognised, and 

only 12 with margin preserved. The floras of Skye are dominated by toothed morphotypes 

(Table 6.2) and hence have provided estimates of cool climates. The low diversity could 

potential mask the true ambient climate conditions, but because the flora is so heavily skewed to 

toothed taxa (91.7%) it is unlikely that this composition is the result of limited diversity. Indeed, 

for such a skewed margin percentage the necessity for high floral diversity diminishes (Wilf 

1997). The calculated sampling error for LMA according to Wilf (1997) for the Skye floras 

shows that error is relatively low at 2.2 °C to 2.9 °C (Table 6.3). The sample error for the LMA 

equations is near to the minimum suggested by Wilf (1997) for MAT predictions from 

physiognomic methods and suggests that the low diversity of the Skye floras has not adversely 

affected the accuracy of the MAT predictions. 

Limited floral diversity is also a concern for multivariate methods such as CLAMP analysis for 

which a minimum of 20 species/morphotypes is recommended for the analysis (Wolfe 1993). 
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Higher floral diversity is likely to capture the fuller range of physiognomy and reduce the effect 

of extreme or anomalous morphologies. In this study 15 morphotypes were used in the CLAMP 

analysis, which is below that recommended by Wolfe (1993). The physiognomic composition is 

distinctive and displays a narrow range of character states (Table 6.4). The flora is dominated by 

unlobed, toothed, large leaves, with acute or attenuate apexes, all base shapes, shorter L: W 

ratios and elliptic leaves. The physiognomic composition shows that there is relatively little 

physiognomic variation between morphotypes and perhaps the limited diversity has had little 

impact on the climate signal because the physiognomy is consistent. 

The effects of low diversity in this study cannot be directly solved and this is an issue for many 

Paleocene floras which often have reported low woody dicot diversity (e.g. Hickey 1980, 

Davies-Vollum 1997, Gemmil and Johnson 1997, Peppe 20 I 0). The palynological record of 

Skye also confirms the relatively low angiospenn diversity of this region (Jolley 1997). The leaf 

assemblage of Alit Mor contains a high proportion of the angiosperm types represented in the 

pollen record, which indicates that the relatively limited diversity of angiosperms is a true 

ecological signal and not the result of limited preservation. 

6.4.4.2 Taphonomy and preservation 

The impacts sorting and depositional environments have on the preservation ofleaf assemblages 

has been discussed in Chapter 5 (see section 5.3.2.3), but the impacts these factors have on 

palaeoclimate predictions can be significant. The loss of foliar characters due to transport, 

decomposition and preservation has been shown to have a profound impact on the climate 

estimates (Greenwood 1992, Spicer et al. 2005). 

In the Skye flora leaf preservation, as discussed in Chapter 3 (see section 3.5), is variable and is 

overall relatively poor for the majority of the leaf specimens. The leaf assemblage at AlIt Mor is 

dominated by small fragmented leaves (96%), which provide limited physiognomic 

information. The limited preservation of the floras is to certain extent mitigated by the presence 

of leaf specimens for each morphotype that are well preserved, and have a high proportion of 

physiognomic traits present. Traits such as margin, lamina size, base shape and lamina shape are 

well represented by the leaf specimens (Table 6.10). The completeness of each of morphotype 

i.e. the total number of characters present to be scored for each of the character categories is 

variable, ranging from 100% to 43% (Table 6.10). The overall completeness of the flora is 60%, 

which is the minimum suggested by Spicer et al. (2005) for CLAMP. Although the Skye floras 

are at the lower end of completeness the climate signal they provide should be reliable. 
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Table 6.10. Physiognomic character preservation of the angiosperm morphotypes of Skye. 

Morphotype Dissection Margin Size Apex Base L:W Shape Completeness 
(%) 

AMI Platanifes - X X - X X X 86 

hebridicus 

AM2 X X X X X X X lOa 
Trochodendroides 

antiqua 

AM3 Corylites X X X- X X X X 100 

hebridicus 

AM4 "Cory/ites cf." X X X X X X X 100 

AM5 Fagiosiphyllum X X X - X - - 57 

groenlandica 

AM6 JlIglandiphyllites X - X - X - X 57 

sp.l 

AM7 JlIglandiphyllites X X X - X - X 71 

sp.2 

AM8 "Platycalya cf." X X X X X X X 100 

AM9 VitiphyJlum X X X X X X X 100 

sewardii 

AM10 Cornophyllum X X X X X X X 100 

hebridicum 

AMI! Zizyphoides sp. X X X X X X X lOa 

AMI2 x X x - - - - 43 

AMI3 X X X - X - X 83 

AMI4 X - X - X - - 43 

AM= angiosperm morphotype, L:W-Iength:wldth ratIo, X- presence of scorable characters, - = 
absence of character trait, dissection = presence of lobing. 

Depositional environments may artificially alter the composition of a fossil floral assemblage 

through selective sorting or preservation (Roth and Dilcher 1978, Spicer 1981, Scheihing and 

Pfefferkorn 1984, Ferguson 1985, Burnham 1989, Spicer 1989, Greenwood 1992, 

Behrensmeyer et al. 1992, Burnham et al. 1992, Gastaldo et al. 1995). The leaf assemblages of 

Skye, as discussed in Chapter 5 (see section 5.3.3.2), were deposited in a pond environment 

close to fluvial system. The composition of the flora suggests that it contains elements of the 

local and more regional environment and therefore should provide not just a local but more 

regional climate signal. 
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Environments with waterlogged or wet soils have been shown to have a higher relative 

abundance of woody dicots with toothed margins compared to coeval stands in drier sites 

(Burnham et a1. 1992, Kowalski and Di1cher 2003). This phenomenon is thought to be caused 

by the need of plants growing in wet environments to rapidly transpire water from the leaves to 

facilitate root function in waterlogged environments (Burnham et a1. 1992, Kowalski and 

Dilcher 2003, Royer et a1. 2009). Fossil plant assemblages are often associated with saturated 

soil environments such as riparian, lacustrine and swamp conditi9ns (Roth and Dilcher 1978, 

Ferguson 1985, Spicer 1989) and so may provide cooler climate estimates. 

The leaf assemblages of Skye were deposited in fluvial settings and are associated with 

floodplain and swampy conditions where soil saturation may have been high. It is possible 

therefore that the floras may have an enriched toothed component, which could lead to cooler 

climate estimates. Kowalski and Dilcher (2003) produced an LMA transfer function to take into 

account the effects that wet soils may have had on MAT estimates.This transfer function, 

although still in an experimental stage, provided more accurate MAT estimates for wet soil sites 

in Florida. This transfer function was applied to the floras of Skye (LMA4), and produced the 

warmest MAT estimate (5.2 ± 2.9"C) derived from any of the LMA transfer functions. This 

estimate suggests the MAT signal derived from the floras of Skye may be cooler due to the 

effect of wet soils. But the estimates obtained from LMA4, although warmer are still within 

error of the LMA derived estimates, which suggests that if there was an effect due to wet soils, 

it was minimal. 

6.4.4.3 Altitude 

The relative elevation of the leaf assemblages of Skye may have a strong influence on the 

climate estimates obtained in this study. If the floras represent upland sites at higher elevations 

then the climate signals obtained may indicate a cooler climate than coeval floras at lower 

elevations or at sea level. 

Jolley (1997) suggested that the topography of the Skye Lava Formation was dynamic with 

significant uplift and subsidence events. The AlIt Mor plant assemblage was suggested by Jolley 

(1997) as being an upland site, with an elevation of approximately 1000 m. This interpretation 

was based on the thickness of the overlying Cruachan Lava Formation and the upland-aspect of 

the palynomorph assemblage. As stated in Chapter 5 (see section 5.4.2.2) the palynomorphs of 

AlIt Mor are poorly preserved and low in abundance. The leaffossils are more indicative of the 

AlIt Mor Carbostbeg locality, which was interpreted by Jolley (1997) as a lowland site. 

The uplift events were suggested by Jolley (1997) as being caused by inflation due to magma 

generation and the uplift of Cullins. The first factor may have certainly have caused a rise in 

topography but to what extent is difficult to ascertain. The second factor the, development of 
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Cullins is not supported by field observations (Williamson and Bell 1994) or radiometric dating 

(Hamilton et a1. 1998), which both show that the Cullins are younger than the Skye Lava 

Formation. Based on this evidence there is little to suggest that the floras of Skye were at 

elevations as great as 1000m. 

The sediments of the Minginish Conglomerate Formation indicate that the early development of 

this formation was characterised by fast flowing streams and mass movement deposits. As the 

depositional environment matured floodplains and swamps developed (Williamson and Bell 

1994). These environments are more indicative of lower topographical gradients and not 

mountainous conditions. The sediments of the Minginish conglomerate seem to suggest that the 

floras of AlIt Mor developed in a more lowland setting that permitted the development of 

floodplains and swamps. Altitude may have had some influence on the palaeoclimate estimates 

but these effects appear to be slight, and the cool climate signal derived from the Skye flora 

indicates that climate was indeed cool. 

6.S Palaeoclimate of Skye 

The palaeoclimate estimates derived from the leaf physiognomy of the Skye floras has provided 

evidence of the climatic conditions in this region during the mid Paleocene. Estimates of MAT 

indicate that the climate was cool-temperate to temperate (-0.1 °C 12.9 DC), with significant 

seasonal variation. Winter conditions were cool to cold (-18.3 °C to 4.2 0c) and frosts may have 

been frequent, while in the summer, temperatures were warm (19.0 °C to)5.8 0c) and would 

have provided favourable growing conditions for the vegetation. Precipitation estimates indicate 

that the climate was humid with high levels of precipitation falling in the growing season 

(1175.6 mm to 2266.7 mm). The three methods used in this study (LMA, MLR and CLAMP) 

have produced conflicted climatic evidence highlighting the importance of using multiple 

physiognomic techniques and other proxies to decipher palaeoclimates. 

Because ofthese potentiallyconflicting climate estimates, climate indicators and proxies from 

the mid Paleocene of Skye, the BTVP and Northern Europe will be considered. These other 

lines of evidence will firstly test the validity of the results in this study, and secondly will help 

detennine which physiognomic method has provided the most accurate palaeoclimate estimates. 

6.5.1 Floral climate indicators 

The fossil floras of the BTVP have been studied extensively for well over a century and have 

provided a wealth of information on the taxonomic composition, vegetation structure and 

palaeoecology of these floras. Both quantitative and qualitative assessments based on the fossil 

floras of the BTVP have led to varying climatic interpretations. Some researchers (e.g. Seward 

and Holttum 1924) suggested that the climate was temperate due to the high abundance of 
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deciduous plant types present in the plant beds of Ardtun on Mull. While other researchers 

(Boulter and Kvacek 1989, Jolley 1997) have argued that the composition of the BTVP floras is 

more indicative of warm temperate to subtropical climates. 

The composition of the leaf and palynomorph assemblages of Skye are not considered here as 

indicative of SUbtropical climates. The absence of thennophillic taxa such as palms, oaks, 

laurels or magnolia is more suggestive of temperate conditions. The study by Wolfe (1979) has 

provided an important framework for the vegetation patterns and their climate tolerances from 

the floras of East Asia. In Wolfe (1997) two important floral indicators of climate that are 

significance for this study were noted from the floras of East Asia. Firstly, woody dicots that 

produce notophyllous evergreen leaves only occur in regions where the CMM is greater than I 

0c. Secondly, deciduous woody dicots become increasingly more diverse and abundant in 

regions where MAT is 10°C or lower. The absence ofnotophyllous evergreen vegetation and 

the dominance of deciduous broadleaved taxa in the Skye floras indicates that the estimates of 

MAT (-0.1 °C to 12.9 0c) and CMM (-18.3 °C to 4.2 0c) obtained in this study are reliably 

reflecting the vegetation composition. 

Fossilised wood recovered from the BTVP and deposits from the Paleocene-Eocene London 

Clay have provided climatic signals from these two regions. The wood fossils from the London 

Clay typically lack distinct growth rings and have a high vulnerability index, this morphology 

was suggested by Crawley (1989) as an indicator of equable subtropical climatic conditions. 

Wood from the BTVP, however, possesses well developed rings and has a low vulnerability 

index. The wood from the BTVP is more indicative of cooler, seasonal climatic conditions with 

periods of water stress, possibly induced by freezing conditions (Crawley 1989, Woolnough and 

Overnell 2006). The wood record is in close agreement with that of physiognomic estimates for 

the BTVP, as both indicate cooler seasonal climates with possible winter frosts. 

The fossil floras of Ardtun Mull, are exceptionally well preserved and share many of the plant 

taxa found in the Skye leaf assemblages. The climate of Ardtun has been suggested to have been 

warm-temperate to subtropical (e.g. Boulter and K vacek 1989, Jolley 1997). The climatic 

interpretation of this flora is not discussed further in this section but is presented in Chapter 7 

(see section 7.5), where the physiognomic analysis of this flora has been applied. 

Paleocene floras from Western Europe have been identified in southern England, France, 

Belgium and Germany. These floras contain floral elements that are shared between both Skye 

and Europe. These include members of the families Platanaceae, Cercidiphyllaceae, Betulaceae, 

Juglandaceae and Cupressaceae, which suggests that some degree of floral connectivity existed 

between Scotland and Europe during the Paleocene (Crane 1981, Crane and Manchester 1982, 

Crane 1984, Mai 1995, Collinson and Hooker 2003, K vacek 20 I 0). The fossil floras of western 
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Europe do, however, differ considerably to those of Skye, despite of these shared taxa. The 

floras of western Europe are more typical of subtropical or paratropical climates and contain a 

large proportion of thermophilic taxa, particularly members of the Lauraceae and Fagaceae (Mai 

1995, Collinson and Hooker 2003, Kvacek 2010). 

The physiognomy of Western European floras is significantly different to that of Skye, as a high 

proportion of the leaf types are notophyllous evergreen (Mai 1995). This indicates that the 

climate of western Europe during the Paleocene was subtropical to paratropical with mean 

annual temperatures greater than 13 °C but less than 25°C, with mild winters with cold mean 

month temperatures above 0 °C (Wolfe 1987, Mai 1995, Collinson and Hooker 2003, Kvacek 

2010). 

6.5.2 Sedimentary climate indicators from the BTVP 

The sedimentary sequences of the BTVP have provided a wealth of information on the 

sedimentary processes, deposition patterns and palaeoenvironments of this region during the 

mid Paleocene. The presence of climate-sensitive sediments and features such as coals, laterites 

and mass movement/wasting deposits may provide indications of the palaeoclimate. 

Coals have been used as indicators of palaeoprecipitation patterns as they form in restricted 

conditions where rainfall, anoxia and plant productivity are high (Parrish et al. 1982). The 

distribution of Late Cretaceous and Paleogene coals indicates they formed in tropical low 

latitudes and cooler mid-high latitudes, a pattern which is consistent with modern peat 

accumulation patterns (Parrish et al. 1982). Lignite deposits are found across the BTVP, 

including the plant-bearing sections of the Minginish Conglomerate Formation (Williamson and 

Bell 1994, Brown et al. 2009). The presence of lignites on Skye and elsewhere in the BTVP is a 

strong indicator of high levels of precipitation. It is difficult to ascertain temperature from the 

coals, although these lignite deposits may represent temperate peat accumulation or conifer 

dominated swamps. 

Mass movement and mass wasting deposits occur throughout the BTVP and have been 

attributed to a wide variety of processes, ranging from small scale alluvial fans to caldera 

collapse (Brown et al. 2009). These mass movement events were facilitated by the tectonically 

active 'setting of the BTVP and the ambient climate conditions, which were suggested by Brown 

et al. (2009) to have been warm and humid. 

The rapid unroofing of the Rum central volcano indicates that weathering and erosion was 

intense in the BTVP. The Rum central volcano and Canna Lava Formation were generated and 

subsequently eroded within an interval of -0.92 million years (Emeleus 1983, Pringle and 

Parrish 2005, Brown et al. 2009). The erosion rates have been estimated to have been 1.8mm 
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per year, which is comparable with that of the Himalayas (Pringle and Parrish 2005, Brown et 

al. 2009). Brown et at. (2009) suggest that the rapid uplift caused by the development of the 

central volcanoes of the BTVP and the warm wet climate provided optimum conditions for 

rapid erosion. 

The Eynort Mudstone Formation of west-central Skye is another indicator of humid climatic 

conditions as the sediments of this formation have been interpreted as being deposited in 

ephemeral lakes which were fed by the products of weathering from the surrounding lava field 

(Williamson and Bell 1994). Laterite sequences occur in the Eynort Mudstone Formation and 

indicate periods of emergence,. development of palaeosols and intense chemical weathering 

(Williamson and Bell 1994). The presence of laterites is also a strong palaeoclimate indicator. 

Modern laterite development is restricted to regions with warm humid climates such as the 

tropics and subtropics (Scotese and Golonka 1992). The distribution of laterites has been used 

as palaeoclimate indicator due to the specific climate-related development patterns (Scotese and 

Golonka 1992). 

The dependence of warm, wet tropical climatic conditions for laterite development has been 

questioned due to the presence of laterites in high latitude Cenozoic sites in Australia, Iceland 

and Northern Ireland (Nilsen 1978, Taylor et al. 1992, Hill et al. 2000, Tabor and Yapp 2005). 

Basalt sequences in the Monaro Province of New South Wales, Australia contain interbasaltic 

laterites that span from the late Paleocene into the Oligocene (Taylor et at. 1992). The 

Paleocene laterites in the Monaro Province formed at a relatively high palaeolatitude of -57 .5OS 

(Taylor et at. 1992). The climate of this region has been interpreted as cool-temperate rainforest 

(comparable to Tasmania and southern New Zealand) based on palaeobotanical and oxygen 

isotope evidence (Idnurm 1985, Bird et at. 1990, Taylor et at. 1990, Taylor et at. 1992). 

The formation of laterites under this climate regime suggests they were capable of forming in 

non-tropical conditions. Taylor et al (1992) suggest that warmer summer temperatures, low 

erosion rates and high precipitation facilitated the slow development of laterites in this cool 

climate. The study by Taylor et a1. (1992) has been questioned by Retallack (2008) who 

suggested that the lateritic bauxites of the Monaro Province developed during episodes of acute 

climate warming in the late Paleocene and Eocene. 

Extensive laterite deposits are present within the Interbasaltic Formation of the Antrim Lava 

Group, Northern Ireland (Williamson and Bell 1994, Hill et al. 2000). The laterite sequences of 

the Interbasaltic Formation are extensive and measure up to 30 m (Hill et al. 2000). The 

development of such thick laterite sequences indicates that there was a prolonged hiatus in 

volcanic activity and intense weathering. These laterites contain a high abundance of gibbsite, 

which was interpreted by Hill et at. (2000) as an indicator of heavy rainfall, good drainage, and 
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high temperatures in subtropical climates. Atmospheric CO2 concentrations have been 

determined form these laterite sequences, which indicate that atmospheric CO2 was -2400 

ppmV during this interval (Tabor and Yapp 2005). 

Dating of the Interbasaltic Formation and the underlying and overlying Lower and Upper 

Basaltic formations of Antrim indicate that these sequences are older than Hebridean elements 

of the BTVP (see Chapter 2, section 2.3). The Tardee Rhyolite, an intrusive feature within the 

Interbasaltic Formation, has been dated as 61.3 ± 0.3 (Ganef0d et a1. 2010), and the Skye floras 

have been dated as 60.28 ± 0.45 Ma (Hamilton et a!. 1998, Chambers and Pringle 2001). The 

laterites of the Interbasaltic Formation may have therefore formed in warmer interval in the 

Paleocene, which facilitated the development of the laterites. 

The absence of such extensive laterites on Skye and elsewhere in the BTVP may support this 

assertion that the conditions for laterite development became less favourable through the course 

of the mid Paleocene. The laterites that do occur within the Skye Lava Fonnation are often thin 

(Williamson and Bell 1994) and in some instances they may represent weathered tuffs, rather 

than true laterites (Bell et a1. 1996, Emeleus et a1. 1996). The warm summer temperatures and 

high precipitation estimates from the floras of Skye indicate that conditions may have been 

suitable for limited laterisation in a cool climate state indicated by Taylor et a1. (1992). Detailed 

study of the laterite deposits of the BTVP is required to firstly ascertain if they are true laterites, 

and to what climate conditions they may have formed in. 

6.5.3 Mid Paleocene marine climate record of Europe 

Oxygen isotope records from the North Sea have yielded temperature estimates that indicate 

cool sea temperatures and gradual warming in the late mid-Paleocene. Stable oxygen isotope 

ratios from mollusc shells indicate that sea surface temperatures (SST) at -60 Ma were cool and 

range from 10°C to 14 °C (Buchardt 1977, Buchart 1978). Sea surface temperatures in the 

North Sea show a gradual increase to 11°C to 16.5 °C at -58 Ma (Buchardt 1977, Buchart 

1978). 

The SST estimates were, however, derived from bulk shell sampling, and the bivalves used 

were assumed to have dwelled in soft bottom communities at depths of 30 m to 150 m with no 

thermocline (Buchardt 1978).The results of this study are possibly unreliable, due to its 

methodology and the assumptions made. A more recent study using intrashell aragonite of 

Danish bivalves has suggested much warmer sea surface temperatures during the mid 

Paleocene. Summer SST estimates for the Danish North Sea were between 22-28 °C, and winter 

SST> 13°C (Schmitz 2003). 
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Iberian reefs show significant changes at the Danian-Selandian (61.7 ± 0.2 Ma) transition 

(Baceta et al. 2005, Aguirre et al. 2007). A hiatus in reef record extends across much of the 

Selandian, which is related to falling sea levels (Baceta et al. 2005, Aguirre et al. 2007). The 

reefs that are preserved from the late Selandian into the Thanetian (-59 to 58 Ma) are less 

diverse, and the main reef constructors are dominated by calcareous algae (Baceta et al. 2005). 

Calcareous algae diversity remained fairly constant throughout the Danian and suddenly 

increased from 11 to 29 species in the Selandian (Aguirre et al. 2007). This diversity decline 

and ecological shift is suggested by Baceta et al. (2005) to have been caused by climate cooling, 

rather than decline in nutrients or an increase in siliclastic sediment input. The composition of 

the calcareous algae also shows marked changes at the Danian-Selandian boundary. The tropical 

sporolithaceans become replaced by the melobesioids algae which are tolerant of broader range 

of temperatures, indicating cooler marine conditions in this region (Aguirre et al. 2007). 

Similar compositional shifts have been observed in foraminifera from the North Atlantic, which 

show a marked shift from thermophillic to cool water Arctic taxa between 60 to 58 Ma (Haq et 

al. 1977). The southward shift of cool water taxa into the Atlantic was suggested by Haq et al. 

(1977) as representing cooling during this interval, but oxygen isotope records from their study 

did not detect the decline in marine temperatures. 

6.6 Summary 

The fossil angiosperm leaves of Skye have provided the first quantitative estimates of 

palaeoclimate for this region. Three physiognomic methods have been utilised in this study and 

include LMA, CLAMP and MLR models. In total 14, separate analyses have been used to 

determine the palaeoclimate. 

The estimates obtained from the Skye floras have provided a mixed picture of the 

palaeoclimate. Climate estimates derived from LMA and MLR models indicate that the climate 

was cool-temperate to temperate with a MAT of -0.1 °C to 8.1 °C and -2.2 °C to 7.5 °C 

respectively. MAT estimates obtained from CLAMP are appreciably warmer with a range of8.6 

°C to 12.9 °C. The seasonality of the climate during the mid Paleocene has been estimated based 

on results of CMM and WMM. These parameters indicate the winters were cool and frosts may 

have been common, and possibly severe, while the summers were warm. Estimates of 

precipitation indicate that the climate state was humid and comparable with modern temperate 

rainforest conditions (MAP >2000 mm). The variability of the climate estimates highlights the 

possible problems of using a single physiognomic method to decipher climate signals from leaf 

physiognomy. 

Factors that may have resulted in inaccurate climate signals have been recognised and include 

low floral diversity, preservation, taphonomy, wet soils and altitude. These factors may have led 
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to cooler temperature estimates and therefore the upper range of the LMA and MLR estimates 

of the MAT are considered more reliable. 

Independent climatic indictors from the BTVP and Northern Europe have provided a mixed 

picture of the mid Paleocene climate. The climate of western Britain during the mid Paleocene 

appears to have been humid, with high levels of precipitation indicated by leafphysio!,rnomy 

and sediments of the BTVP. The floras of Skye indicate that the climate was cool temperate but 

the presence of extensive laterite sequences in the Interbasaltic Formation of Antrim, Northern 

Ireland are more indicative of warm subtropical conditions. The laterite deposits of the BTVP 

are, however, only extensive in Antrim and, the radiometric dating of these sequences suggests 

these deposits are 0.5 m.y to 1 m.y older than the floras of Skye. The laterite deposits may have 

therefore formed under more favourable conditions earlier in the Paleocene. 

Oxygen isotope records from bivalves of the North Sea indicate cool sea surface temperatures 

comparable with flora record (Buchart 1977, 1978). Although more recent research suggests 

warm summers and mild winter conditions in the Danish North Sea (Schmitz 2003). Reef 

building calcareous algae and foraminifera from Western Europe and the Atlantic suggest that 

the climate became cooler during the mid Paleocene 60 to 58 Ma (Haq et a1. 1977, Baceta et a1. 

2005, Aguirre et a1. 2007), which supports cool temperature estimates derived from the floras of 

Skye. 

The MAT estimates derived from LMA and MLR models may have under predicted the 

temperature, while CLAMP may have overestimated this parameter. The overlap between these 

estimates at 5 °C to 9°C may be a more accurate estimation of the actual MAT, as this range 

encompasses the majority of the physiognomic estimates and is more comparable with the 

independent climate indictors. 
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Chapter 7: Paleocene environments, floras and climate of Mull 

7.1 Introduction 

The Paleocene fossil floras of the Ardtun leaf beds on the Isle of Mull are well known and have 

been extensively studied for over a century (Forbes 1851, Bailey 1869, Gardner 1887, Gardner 

and Ettinghausen 1879-1882, Gardner 1883-1886, Seward and Holttum 1924, Johnson 1914, 

1933, 1937, Johnson and Gillmore 1921, Crane 1984, Crane 1988, Crane et a1. 1988, Boulter 

and Kvacek 1989). The exposures on Mull have been extensively excavated and now it is 

difficult to collect new specimens from the leaf-bearing strata. Good collections of the plant 

macrofossils are present at the Natural History Museum, London; British Geological Survey at 

Keyworth, Nottinghamshire; National Museums of Scotland, Edinburgh; and the Hunterian 

Museum, Glasgow. The extensive collections can provide sufficient information so new 

collections from Ardtun were not required for the purposes of this study. To date publications 

on the Mull flora have concentrated on the taxonomic identity of the flora, morphological 

descriptions and their biogeographic significance. Only Royer et al. (200 1) have used the 

Ginkgo leaves to determine atmospheric CO2 levels from this flora. A detailed analysis of the 

leaves for palaeoclimate estimates has not previously been undertaken. 

This chapter includes information on the geological setting of the Mull flora, its age, summary 

of the floral composition based on published reports of the taxa, and new observations 

undertaken for this study of the collections from the Natural History Museum, the Geological 

Survey and the National Museums of Scotland. The woody dicot leaves were scored for 

palaeoclimate analysis according to the same methodology as outlined in Chapter 6. 

7.2 Geological setting of the Mull flora 

7.2.1 Mull Lava Group 

The Mull Lava Group (MLG) covers most of the Isle of Mull, and extends north and west into 

the Inner Hebrides Trough and onto the mainland in Movern and eastern Ardnamurchan (Kerr 

1995) (Figure 7.1). The lava fields of Mull are the thickest within the British Tertiary Volcanic 

Province (BTVP) and measure up to -1000 m, although the original thickness would have been 

much greater (Kerr 1995). The Mull Lava Group is subdivided into the Staffa Lava Formation, 

overlain by the Mull Plateau Lava Formation (Kerr 1995). The lavas of the Staffa Lava 

Formation are -25 m thick and lie unconformably on Cretaceous carbonate sediments and 

Middle Jurassic clastic marine units (Kerr 1995). The lavas of the Staffa Lava Formation show 

columnar-jointing, pillow structures and are associated with hyaloc1astite facies (Keer 1995). 

These features along, with the sedimentary sequences between the lavas of the Staffa 
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F0n11ation, indicate that the lavas fOn11ed in a subaqueous setting associated wi th lacustrine or 

swamp conditions (Kerr 1995). 

o 
I I 

20 
I 

Figure 7. 1. Map of the Isle of Mull showing the extent of the onshore and offshore sequences of the 
Mull Lava Formation, and the Mull and Ardnumurchan central complexes. The location of the 
Ardtun leaf beds (denoted by leaf) and the Maculloch's Tree locality used for radiometric dating 
(Chambers and Pringle 2001 ) are shown. 

The Staffa Lava Fonnation is overlain by the much more extensive Plateau Lava Fonnation 

which is subdivided into the Ben More Main Member and Ben More Pale Member (KelT 1995) 

(see Chapter 2, Figure 2.2). Both of these members are largely comprised of interl eaved mass ive 

basaltic flo ws. Weathered fl ow tops are frequent but clastic sediments are currently unrecorded 

(Kerr 1995 , Emeleus and Bell 2005). The presence of weathered flow tops indicates that breaks 

in volcanic acti vity occurred, but the lack of clastic sedimentation suggests that these intervals 

were relatively short . 

7.2 .1 Stratigraphy and sed imentology of the Ardtun leaf beds of Mull 
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The lava sequences of the Staffa Lava Formation contain the plant beds of the Ardtun 

Conglomerate Formation. The sediments of the Ardtun Conglomerate Formation have provided 

leaf macrofossils, which are reviewed in this study. Three exposures of the Ardtun leafbeds are 

present in southwest Mull at Ardtun Head (Figure 7.1), two within a ravine in Ardtun (Figures 

7.2, 7.3), and the third exposure -30 m west of other two in a second ravine (Figure 7.4). The 

Ardtun plant beds have been studied by Argyll (1851) and by Gardner (1887). The description 

of the sediments and occurrence of the leaves is derived from the literature as no field 

campaigns were made to Ardtun in this study. 

The Ardtun leaf beds at the first ravine exposure overly a -24 m thick basaltic lava flow, which 

exhibits columnar joining until it nears the contact with the sediments above, where it becomes 

amorphous (Argyll 1851, Gardner 1887). The sediments at the east side of the ravine are 

composed of gravels, sandstones, shales and mudstones (Figures 7.2, 7.3). The dark grey-black 

shales of the 'black leafbed' and the dark mudstone above this bed are the only fossiliferous 

deposits in the eastern exposure of the ravine (Gardner 1887) (Figure 7.2). 

The western exposure is similar to that of the eastern side but has been quarried to extract the 

plant fossils (Figure 7.3). The 'black leaf bed' in this exposure has provided a rich variety of 

fern, conifer and angiosperm leaf fossils and other plant debris. Another plant bearing bed was 

exposed by quarrying and this occurs between the upper most gravel and the overlying basalt 

(Argyll 1851) but was found to be unfossiliferous by Gardner (1887). 
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Description 

Massive columnar jointed 
basal t flow with intrusivc sheet 
(composition not stated) 

Carbonaceous rubble between 
the contact of the underlying 
sandstone and overlying basalt 

Fissile sandstone with plant 
fragments in the upper 
portion of the bed (- 243c111) 

Indurated gra cI containing 
clasts lavas, chalk 
and flint (-213cm) 

Dark mud ' hard bcd' wi th 
plant fragments (- 30cm) 

Black shale ' black Icafbed' 
with numerous fossi l 
plant fragments (- 73cm) 

Indurated gravdy­
sandstone (-70cm) 

Amorphous basalt 
with rubble 

-End of excavated section-

Basalt [J Sandstone 

~ Gravel Shale 

~ Gravelly-
" sandstone Mudstone 

Environment Facies 

Lava flow 
with intrus ion 

Upper channel fill 

Lower channcl fill 

Swamp-overbank 

Swamp 

Chan ncl fi ll 

Lava flow 

-Plant fragments 

F igur e 7.2. Str at igraphic log of the Ardtun Conglomerate Formation exposed on the east side of t he 

fi rst r avine section (NG 13 72) at Ardtun Head M Ull. Section based on measurements a nd field 

observation from Gardner ( 1887). 
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Description 

Massive columnar 
jointed basalt 

Section obscured 

Gravel clasts of lava. 
chalk and flint 
(-400-500cm) 

Black shale 'black leaf bcd' 
with numerou ' fossil 
plant fragmen ts (- 90cm) 

Gravel clasts of lava, 
chalk and fli nt (-50cm) 

ButT or cream-coloured 
nated sandstone 

'light leaf bcd ' 
unfossiliferous (-30cm) 

Amorphous basalt 
-End of excavated section-

• Basalt D Sandstonc 

~ Gravel --- Shale 

~ Gravelly-
sandstone Mudstone 

Environment Facies 

Lava flow 

Channel Fill 

Swamp-overbank 

Swamp 

Channel Fill 

Sandy sheet flood 
or overbank? 

Lava Flow 

-Plant fragmen ts 

Figure 7.3. Stratigraphic log of the Ardtun Conglomerate Formation exposed on the west side of 
the ravine section (NG 1372) at Ardtun Head Mull. Section based on measurements and field 
observations Gardner (1887). 

The exposure in the second ravi ne shows simi lar facies patterns to the first ravine sec tions but 

has a greater vertica l exposure. T he second ravine exposure has beds that are present that occur 

below the basa l-most beds of the fi rst ravine exposure, and in addition, has provided some of 

the best preserved fossi l leaves (Gardner 1887, Boulter and K vacek 1989). The sediments of the 

second ravine a re composed of gravels, sandstones, siltstones, shales, muds tones and fine 
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grained limestones (Figure 7.4). Fossi l leaves occur in abundance in the fin er gra ined depos it s, 

but a re absent fro m the gravels (F igure 7.4) . 
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Figure 7,4, Stratigrap hic log of the Ardtun Conglomer ate Formation exposed at the second ravine 

sec tion (NG 1372) at Ard tun Head l\1 ull. Section based on measurements ll nd fi eld observa tions 

from Gar dner (I887}-

The sedimentary sequences of the Ardtun Conglomerate Fonn ation represen t de pos itional 

environments attributed to flu vial, lacustrine. overbank and swamp cond iti ons. The gra ve l 
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deposits contain basaltic clasts derived from the local lavas, as well as Cretaceous flints 

(Gardner 1887, Keer 1995). These gravels probably represent within-channel fluvial deposits, 

where both basalts and the older Mesozoic marine sediments were eroded, transported and later 

deposited by the river systems. The clays, shales and limestones are interpreted as overbank and 

lacustrine facies that developed in association with the river systems. The "black leaf bed" is 

more characteristic of localised swamp development, as it possesses an organic-rich matrix and 

an abundance of plant remains. 

The depositional pattern at Ardtun Head is similar to that of Minginish Conglomerate Formation 

of Skye, but the lateral flooding events appear to be of lower energy as fine grained overbank 

deposits are more frequent. The low frequency of sandstone units that may represent crevasse 

splay, sheet flood or intense overbank flooding may indicate that the fluvial system was lower 

course and more meandering compared to the rivers of the Minginish Conglomerate Formation. 

Recent investigations of the sedimentary sequences of the Staffa Lava Formation and the 

palynomorphs they contain have provided new insight into the depositional history of these 

sediments. Jolley et al. (2009) have interpreted the sediments of the Ardtun Conglomerate 

Formation as being deposited by an alluvial fan with south-east flowing channels with the finer 

grained sediments representing channel fill deposits. 

The preservation of the leaves is variable at Ardtun Head, the best preserved specimens being 

restricted to fine grained shales, clays and limestones. Although the "black leaf bed" is a fine­

grained shale the leaves within it are not exceptionally well preserved. The dark matrix reduces 

the clarity of the visible leaf venation, and often the leaves are fragmented. Boulter and K vacek 

(1989) also noted that the collection of these specimens may have been selective, with 

preferential collection of well preserved or particularly complete specimens. The collections 

from Mull housed at the National Museums of Scotland, Edinburgh, The Natural History 

Museum, London and the British Geological Survey, Keyworth lack any information pertaining 

to their original stratigraphical occurrence. These factors therefore make it difficult to determine 

the ecological relationships between the floras and the palaeoenvironment. 

7.3 Dating of the Ardtun leaf beds 

The age of the lava sequences, sedimentary horizons and the floras they contain is controversial, 

with results of radiometric dating at odds with the palynological record. Accurate dating of the 

Mull floras is essential to understand how this flora fits within the biological and climatic 

context of the Paleocene. 

Reliable radiometric dating of the Staffa Formation near to the exposure of McCulloch's tree 

(NG 580 468) have provided an age of 60.6 ± 0.3 Ma (Chambers and Pringle 200 1). This age is 
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consistent with older published dates for the Staffa Lava Formation of 60.5 ± 0.5 Ma (Mussett 

1986). The sample at the McCulloch's tree exposure is stratigraphically comparable with the 

Ardtun Conglomerate Fonnation (Kerr 1995). The radiometric ages obtained by Mussett (1986) 

and Chambers and Pringle (2001) therefore indicate that the Mull floras are mid Paleocene in 

age. 

The uppennost exposed section of the Mull lava field (700 m above sea level) at Ben Moire has 

provided an age of 59.05 ± 0.27 Ma (Chambers and Pringle 2001). These dates indicate that the 

Mull Lava Fonnation fonned relatively rapidly within a maximum time interval of -two million 

years. These dates are consistent with that of the Skye Lava Fonnation (see Chapter 2, section 

2.3.3) which suggests both of these extensive lava fonnations are contemporaneous. 

The palynomorph assemblages of the Ardtun Conglomerate Fonnation have been used by Jolley 

(1997) and Bell and Jolley (1997) to determine the age of this sequence, and like those of Skye, 

they differ from the radiometric dates. Jolley (1997) suggested an age of 55 to 54.5 Ma; this 

estimate places the sequence as latest Paleocene in age and associated with the Paleocene­

Eocene Thermal Maximum (PETM). The rationale for dating the microfloras of Mull as PETM 

is based on the correlation with palynomorph assemblages of the West Shetland Basin and the 

lava composition of the Staffa Lava Fonnation (Jolley 1997, Bell and Jolley 1997). Multiple 

lines of evidence have been used for this younger age assignment and are outlined below: 

a) The presence of pollen attributed to late Paleocene members of the Juglandaceae 

(Caryapo/lenites ). 

b) An abundance of Ginkgo pollen (Monocolpopollenites tranquilus) in the Mull 

palynofloras is shared with that of the West Shetland Basin. 

c) The presence of several species of Aqui/apol/enites, which are present in the Eocene 

deposits of the West Shetland Basin. 

d) Thoeliitic magma subtype of the Staffa Lava Fonnation, which is suggested as an 

indicator of lithospheric thinning associated with 'post rift' magmatism of the NOIth 

Atlantic. 

The dating based on the palynofloras has been questioned by Kerr and Kent (1998) who stated 

that study by Bell and Jolley (1997) did not incorporate the radiometric dating of M ussett 

(1986) as they considered these estimates to be unreliable. Kerr and Kent (1998) state that the 

estimates obtained by the Mussett (1986) study were reliable as they represent the true 

crystallisation ages of the basalt. The thoeliitic composition of the Staffa lavas was suggested by 

Bell and Jolley (1997) as being characteristic of lithospheric thinning caused by rifting of the 

North Atlantic during the latest Paleocene-Eocene. Kerr and Kent (I 998) state that the theoliitic 
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composition of the Staffa Lavas is not the result of lithospheric thinning but was the result of the 

assimilation of Moine crustal material and that originally the magmatic composition was similar 

to that of the overlying lavas of the Plateau Fonnation. 

Comparisons were made between the palynomorph assemblages of Mull and those of the latest 

Paleocene sequences of the Cobham Lignite in southern England. Both palynofloras share many 

of the same plant taxa including Inaperturopollenites, Platycaryapolleniles and 

Triporopollenites, suggesting that these plants were widespread in Britain during the Paleocene 

(Jolley 1997, Collinson et al. 2009). Thermophillic palynomorph taxa are relatively rare, with 

the exception of palm pollen in Cobham lignite (Collinson et al. 2009). Palynomorph taxa with 

theromophillic preferences including palm pollen are absent from the Mull flora. The climate 

during the late Paleocene was wann and humid and rapidly wanned at the PETM (Zachos et al. 

2001), which is evident from in the Cobham lignite. Although there is no apparent extinction or 

immigration at the onset of the PETM there is a significant change in the community and 

climate. The palynoflora shifts from a fern and woody angiosperm, fire-prone community to a 

humid taxodiaceous and palm-dominated community (Collinson et al. 2009). Floristic change 

has been documented in palynofloras from the USA during the PETM (e.g. Harrington et al. 

2004, Wing et al. 2005), which show an even more pronounced change. Jolley (1997) did not 

note a major change in the floral composition or community structure in Mull or the West 

Shetland Basin at this interval, which suggests that these floras are not latest Paleocene in age. 

Based on the potential uncertainties with the palynological dating, the more accepted 

radiometric age of 60.5 ± 0.3 Ma (Chambers and Pringle 200 1) is considered the best estimate 

of the age of the Ardtun Conglomerate Member. This date confmns the earlier study by Mussett 

(1986) and because this technique is less prone to interpretational errors and is more consistent 

with the chronological development of the BTVP as whole it is considered here as more 

reliable. 
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7.4 Fossil floras of Mull 

7.4.1 Plant macrofossil diversity of Ardtun, Mull 

The plant macrofossil record of Mull offers a useful opportunity to determine the vegetation 

composition of other leaf assemblages in the BTVP. Assessment of the Mull floras will also 

provide information on the variability in floral diversity and composition across the province. 

This study has not undertaken a taxonomic review of the Mull flora, but relies on the 

comprehensive study of Boulter and K vacek (1989). Instead new observations during this 

project based on the collections housed in the National History Museum, London; the British 

Geological Survey, Keyworth; and the National Museums of Scotland, Edinburgh are 

incorporated with the study of Boulter and K vacek (1989). 

In total 24 plant species have been recognised from Ardtun and include two species of 

marchantiophytes (liverworts), two pteridophytes, five gymnosperms and fifteen angiosperms 

were present (Boulter and K vacek 1989) (Table 7.1). The two species of marchantiophytes are 

represented by a single specimen each. Cuticular analysis of the fossil specimens revealed 

comparatively little regarding their higher taxonomic affinity except they may represent 

members of the orders Jugermanninales and Marchantities (Boulter and K vacek 1989) (Table 

7.1). 

Pteridophyte fossils include the fern Onoclea hebridica and the sphenophyte Equisetum sp. 

Fossil fronds of Onoclea hebridica are well represented in the flora, and particularly abundant 

in the 'black leaf bed' and siltstone deposits. The presence off ern fossils in the assemblage 

indicates that flooding events occurred with sufficient energy to abcise the fronds. 

The gymnosperm element of the Ardtun flora includes Ginkgo and conifers attributed to the 

Cupressaceae and Taxaceae. Fossilised leaves of Ginkgo gardneri are well preserved and 

display a wide range of lamina dissection patterns, from almost un-dissected to those with five 

or more lobes. 

Cupressaceous conifer fossils include Metasequoia occidentalis, Glyptostrohus dunoyeri and 

the enigmatic Elatocladus campbellii (Table 7.0. Boulter and Kvacek (1989) suggested the 

morphology of Elatocladus campbellii was similar to that of Sequoia, but cuticular analysis 

revealed similarities to Taxodium. The specimens of Elatocladus from Ardtun are similar to 

those found on Skye, and indeed appear nearly identical. The presence of Sequoia-like ovulate 

cones on Skye confirms the tentative association of Sequoia to the specimens of Elatocladus 

campbellii, which Boulter and Kvacek (1989) considered to be most similar to this genus. 

The Taxaceae are represented by a single sterile shoot species Amentotaxus gladifhlia (Table 

7.1), whose affinity with the Taxaceae is confirmed by cuticular characteristics, particularly the 
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arrangement of the stomata (Ferguson et at. 1978). Fossil and modern representatives of this 

genus are associated with warm temperate or subtropical climates (Ferguson et at. 1978, 

Eckenwalder 2009), which suggests that this conifer was possibly growing in a similar climate 

regime. 

Angiosperms are the most abundant and diverse component of the Ardtun flora with 14 leaf 

types recognised (Table 7.1, Figure 7.5). These angiosperms show similarities to families 

including the Platanaceae, Cercidiphyllaceae, Betulaceae, Fagaceae, Juglandaceae, Vitaceae and 

Cornaceae (Boulter and K vacek 1989). Among the floras of Mull are a variety of angiosperm 

leaf types that are enigmatic. These leaf types include Cupuiijerites rubrifolius, Camptodromites 

major, Camptodromites muitinervatus, Davidoidea hebridica, Davidoidea ardtunensis and 

Zizyphoides ardtunensis (Table 7.1 and Figure 7.5). All but the latter form have been attributed 

to the Hamamelididae due to the absence of other pollen types attributed to the Fagales and their 

overall morphology (Boulter and Kvacek 1989). 
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Table 7.1. Plant macrofossils from Ardtun Mull, showing their family affinity and their relative 
abundance within the flora. 

Taxon Attributed family Number of Relative Abundance 
specimens abundance (%) category 

I· Pterldopbyta ~ ': ;~ ~I.> ;.'. , 
;'. I. ". '". '. :. :~ ~~.: 

Equisetum sp. Equisetaceae 145 14.7 dominant 

Onoelea hebridica Dennstaedtiaceae 83 8.4 common 

9fnaDOIpermae " ." . , ; ,,;: .' 

Ginkgo gardneri Ginkgoaceae 33 3.4 uncommon 

Metasequoia occidentalis Cupressaceae 7 0.7 rare 

ElatocladLis campbelli Cupressaceae 36 3.7 uncommon 

Glyptostrobus dLinoyeri Cupressaceae 13 1.3 uncommon 

AmenotaxlIs gladifolia Taxaceae 36 3.7 uncommon 

Anlfospenoae '. '·:,1 

I .',,-.' 
Platanites hebridicus Platanaceae 145 14.7 dominant 

Trochodendroides antiqua Cercidiphyllaceae 58 5.9 common 

Corylites hebridiclls Betulaceae 142 14.4 dominant 

Fagosiphy llum groenlandica Fagaceae 14 1.4 uncommon 

ClIpuliferites rubrifolius Hamamelididae 8 0.8 rare 

Juglandiphyllites ardwnensis Juglandaceae 3 0.3 rare 

Juglandiphyllites filliayi Juglandaceae 1 0.1 rare 

Camptodromites major Hamamelididae 72 7.3 common 

Camptodromites multinervatlls Hamamelididae 95 9.7 common 

Davidoidea hebridica Hamamelididae 26 2.6 uncommon 

Davidoidea ardtllnensis Hamamelididae 42 4.3 uncommon 

Vitiphy llum sewardii Vitaceae 7 0.7 rare 

Zizyphoides ardtllnensis unknown 17 1.7 uncommon 

Cornophylilim hebridicum Comaceae 1 0.1 rare 

Abundance category - Rare <I %, uncommon 1-5%, common 5-10%, donunant > 10%. 
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Figure 7.S. Foss il angiosperm leaves of Ardtun. ~Jull. a) P/atal/ife.' hehridiclI .' (\ '250.t0). b) 
Trochot!el/{Iroitles al/fiqua (V2516.t), c) Cory/ifes hehritliclIs (\ '25080). d) Fa{:op.\iphy/llllll 
groel//al/diea (Y32357), e) JlIg/am/iphyllifes ardflll/eJ/sis (\ '25133), f) Call1pfOdromifcs major 
(\,25122). g) Dm'idoidea hehridica (\'25224), h) JlI{:/aII diphyllifes fill/ayii (\,26330). i) ClIplllijerifes 
rubrijo/ills (unregistered NH;\J ), j ) Da l'itioidea lIrtiwl/ emis (PBT 21.t). k) Call1pfotirolllife., 
IIII1/til/ervafliS (Y25073), I) Zi:yphoides artifll II ell sis (\'251 .t.t ). m) I 'ifiphy lllllll .\clI'lirdii (\ '25 18.t ). 
Sca le ba r = 1 em, 
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7.4.2 Vegeta tion composition and structure 

7.4.2.1 Relative abulldallce of flo ral elements 

The relative abundance of the plant taxa wi th in the Ardtun leafbeds and the growth habit of 

these plants will provide clues to the vegetat ion composition and structu re of thi s nora. Count s 

of the fossil plant specimens were made from the London and Edinburgh coll ections to 

detemline the relative abundance of each plant type within the nora. In total 984 individual 

plant macrofossil specimens were identified and counted. Angiospenn lea f fossils are the 111 0St 

abundant component of the collections and represent 64. 1 % of the spec imens, pt eridophyte 

fossils account for 23.2% and the gymnospenns are the least abundant with 12.7% (Figure 7.6) . 

angiosperms 
64.1% 

Fioure 7.6. Relative abundance of pteridophytes, gymnosperms and angiosperms in thc collections 
of ~he Ardtun fl ora of Mull. 

The relative abundance of angiospen11S in the collections indi ca tes these were the dominant 

fl oral element of the vegetation. The pteridophytes would have grown in di sturbed 

environments, in the understory or in the margins of the angiospeml-dol11inated vegetati on. The 

rela ti ve rarity of gymnospen11S suggests these component s o f the fl ora were sparsely di stributed 

in the vegetation or grew away from the site of deposition. 

It is important to note that the specimens in the foss il co llecti ons may be selecti ve and not 

representative of the original source n ora. This may be of parti cul ar s ib'11ificance to the 

angiospeml fossils which may have been selectively collected for complete, well preserved or 

rare species; these taxa may therefore be overrepresented in the collec tions. It is difficult to 

account for this potential b ias , but the rarity of the conifer foss il s appears to be genuine . Conifer 

shoots are high ly abundant in the Allt Mol' flo ra of Skye and Occur on surfaces with angiospeml 

leaves. The scarcity of conifers in the Ardtu n n ora even on larger slabs o f >200 ml11 slabs 

indicates these plants were rare flora l elements. Con ifer pollen is a lso relati ve ly uncommon in 
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the sediments from Ardtun (Jolley et al. 2009) , which suggests these plants were growing away 

from the site of deposition. 

The counts for individual leaf taxa indicates that there is significant variation in the relative 

abundance of each plant type within the Ardtun flora (Table 7.1 , Figure 7.7). The relative 

abundance of taxa was converted into abundance categories to establish which elements were 

dominant (> 10%), common (5 -10% ), uncommon (1-5%) or rare «1 %). 

Dominan t elements of the flora include Equisetllm sp ( 14.7%), P/atallites hebridiclIs ( 14.7%) 

and Cory/ites hebridicus ( 14.4%) (Table 7.1, Figure 7.7). Common components include 

Camptodromites mll/tinermtlls (9.7%), Onoclea hebridica (8.4%), Camptodrol1lites major 

(7.3%) and Trochodendroides antiqlla (5.9%). 

Uncommon components of the collection represent the most di verse component of the flora and 

collectively account for 22.1 % of the specimens (Figure 7.7). Uncommon taxa include 

Dm'idoidea ardtunens is (4.3 %), £Iatoc/adlls campbellii (3.7%), Amenotax/ls g/adifolia (3 .7), 

Ginkg o gardneri (3.4%), Dal'idoidea hebridica (2.6%), Fagosiphyllllm groen/alldica (1.4%) 

and G/yptostrobus dllnoyeri ( 1.3%) (Table 7.1). 

Rare floral elements are diverse and are represented by s ix species, collectively accounting for a 

smal l percentage (2.7%) of the flora (Figure 7.7). These rare taxa are primari ly angiosperms 

(Table 7.1) but a lso include the conifer M etasequoia occidentalis (0 .7%). 

uncommon taxa 
22 .1% 

Trochodelldroids 
allliqlla 

5.9% 

Call1ptodrolllites 
major 
7.3% 

Eqllisetlllll sp. 
I .. U % 

Camptodromites 
IIIII/till en 'a llIS 

9.7'}0 

P/araII itl!s 
hebridiclis 

14.70
0 

COlTlitt!s 
hehridiclis 

l .. t4°0 

Figure 7.7. Relative ab und ance of plant macrofoss il taxa within th e Ardtun nora of ;\Iull. 
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7.4.2.2 Vegetation structure 

Sedimentological, macrofossil and palynological evidence indicates that the 

palaeoenvironmental conditions and community structure of Ardtun were variable. The 

presence of facies associated with fluvial, lacustrine and swamp environments suggests flood 

regimes influenced the depositional environment and the vegetation that colonised and 

developed. 

Counts of specimens were made from the Natural History Museum, London collection from 

each rock sample. The rock samples lithology and the number of each plant taxon were 

recorded. Five broad lithologies were recognised and included fine grained sandstones, 

siltstones, mudstone/clay, fine grained limestone and black siltstone. Samples with sandstone 

and siltstone lithologies were grouped, as these sediments appear to represent fluvial deposits. 

The mudstone/clays and limestone lithologies were grouped as these sediments appear to reflect 

overbank or lacustrine deposition. The black shale samples were grouped as these appear to 

correspond to the 'black leaf bed' , which is attributed to swamp conditions. 

These lithological groupings and their associated plant macrofossils appear to reflect three broad 

community types and include a riparian community, marginal pondllake community and a 

swamp community (Table 7.2). 

The riparian community is based on sandstone and siltstone lithologies that represent marginal 

fluvial deposition. This community type is the most diverse with 18 species present; however, 

the majority of these are low in abundance (Table 7.2, Figure 7.8). The high diversity of this 

community and the low relative abundance may represent a taphonomic artefact. The fluvial 

origin of these sediments indicates that some of the plant material may have been transported 

and washed into these depositional sites (allochthonous origin), which could account for the 

high diversity and rarity of some of the taxa. The most abundant taxa within this community 

include Equisetum sp., Onoclea hebridica, Plataniles hebridicus, Camptodromites major, 

Corylites hebridicus and Ametotaxus gladifolia (Table 7.2, Figure 7.8). The lithology and flora 

of this community type is indicative of disturbed conditions related to flooding. 

Equisetum sp. and Onoc/ea hebridica may represent early colonisers of newly developed 

flooding surfaces. The habit of the Mull fern foliage and their association with flood deposits 

has been observed in the related taxa, Onoclea sensibilis from the Paleocene of Alberta. This 

related species appears to have been a coloniser of flooding surfaces along with Metasequoia 

and Palaeocarpinus (Betulaceae) (Rothwell and Stokey 1991). As flooding intensity or 

frequency waned the angiosperms Plataniles hebridicus, Camptodromites major and Corylites 

hebridicus would have developed in these environments, possibly along with the shrubby 

conifer Ametotaxus gladifolia. 
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Table 7.2. Community types represented by the leaf macrofossils ofthe Ardtun flora of Mull, their 
lithology, associated taxa and relative abundance within the community. 

Community type Lithology Associated taxa Relati ve abundance (%) 

Silstones and Equisetum sp. 26.5 
sandstones 

Riparian Community Onoclea hebridica 18.8 

Platanites hebridicus 14.3 

Camptodromites major 8.1 

Cory/ites hebridicus 7.0 

Amenotaxus gladifolia 4.8 

Limestone and Cory/ites hehridicus 23.7 
claystones 

Trochodendroides antiqua 11.5 

Marginal lacustrine Camptodromites major 10.2 

community 
P/atanites hebridicus 9.9 

Davidoidea ardtunensis 8.6 

Elatocladus campbel/i 6.8 

Davidoidea hebridica 6.8 

Ginkgo gardneri 6.3 

Amenotaxus gladifolia 6.0 

Black shale Camptodromites multinervatus 45.3 

Platanites hehridicus 20.7 

Swamp Community 
Equisetum sp. 17.9 

Onoclea hebridica 8.9 

Elatocladus campbel/i 3.9 

Glyptostrobus dunoyeri 2.2 

Cory/ites hebridicus l.l 



Riparian community 

Swamp community 
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Marginal-lacustrine community 

Plant m acrofossil taxa 

• Equiseltllll sp. 

• Ol/ocfe{l hehridica 

• Ginkgo gardl/eri 

D Ell/foell/dus campbellii 

• G/l p tusllVhus dll l/oyer i 

• AmenofcL'( lIs g ladifol ia 

• P/atallites hehridiclIs 

Tlnchol/endro ides 
alii i If Jl(l 

o COI:l'l ifeS hchridi('//s 

Call1l''oc/rolll i ' es 
IIIaj()r 

• 
Call1pfodrolll i tes 
IIIIlll i l/en '(J fllS 

D Dm'it/v ideo hehridica 

DGI'iduidea ar'l/lllll ellSi.\' 

o uncommon taxa 

• rare taxa 

Figure 7.8. Floral communities of Ardtun Mull, showing the plant taxa present within each 
community and their relative abundance. 

The marginal lacustri ne community is based on fine grained clay and limestone depo its and the 

leaf fossils preserved in these sediments. These sediments appear to correspond with the steel 

grey clays and limestone beds of the second ravine section at Ardtun head (F igure 7.4) . These 

sediments are interpreted as overbank sediments that were deposited into a swampy/lacustrine 

setting on the lava surface. 

This community contains 17 plant species, primaril y angiospen11S but Ginkgo and conifers are 

relati vely common (Table 7.2, Figure 7.8) . The most abundant components o f thi s community 

incl ude COIy lites hebridiclIs, Trochodelldroides antiqlla, Camptodromites lI1C!ior, P/atallites 

hebridicus and DGl"idoidea ardtunellsis. This community shares many of the same taxa with that 

of the ripari an community and indeed the marginal community may represent an advanced seral 

stage typified by lower disturbance. The limestone deposits may indicate that relati vely calm 

water condi tions with little clasti c input , which is suggested by the absence of Eqllisetlll11 and 
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the scarcity of Onoclea (0.3%). The plant fossils in these lacustrine facies appear to represent 

the local marginal environment, and the leaves may not been transported far prior to their 

depostion (parautochthonous assemblage). The high floral diversity and high relative abundance 

of multiple taxa in these sediments suggests that the margins of these ponds or lakes supported a 

diverse angiosperm-rich community. 

The swamp community is based on the black shales of the 'black leafhed'. This community is 

the least diverse with seven plant species recorded. This community is dominated by 

Camptodromites multinervatus, which accounts for 45.3% of the specimens. Camptodromites 

multinervatus is largely restricted to this lithological unit and suggests it may have been swamp 

plant or an early coloniser of swampy conditions. Platanites hebridicus, Equisetum sp. and 

Onoclea hebridica are common members of this community type, with rare occurrences of 

Elatocladus campellii, Glyptostrobus dunoyeri and Corylites hebridcus. 

The lithology of this community is based on the samples of the suspected 'black leafhed', 

which occurs in all three exposures of the Ardtun Conglomerate (Figures 7.2, 7.3, 7.4), this 

suggests that this swamp environment was laterally extensive. The 'black leafhed' appears to 

represent a channel fill deposit as it rests upon channel gravels (Figures 7.2, 7.3, 7.4). The low 

diversity of this community may be partly explained by the potential authochtonous origin of 

the deposit, which would have reduced the potential for transported leaf material. 

The high water table of this channel fill may have prevented the establishment of a diverse 

community, or the interval between flooding events was too short for community development. 

The vegetation structure of this community may have been relatively open, with a herbaceous 

ground layer of Equisetum and Onoclea with shrubby angiosperms such as Camptodromites 

multinervatus and Platanites interspersed with water tolerant conifers such as Glyptostrobus and 

Elatocladus. 

7.S Climate analysis of the Paleocene floras of Mull 

The fossil floras of Ardtun, Mull provide an opportunity to further access the palaeoclimate of 

the BTVP during the mid Paleocene. This flora has not been quantifiably used for palaeoclimate 

analysis, and therefore the results in this study will provide the first estimates of the 

palaeoclimate. The angiosperm leaf fossils of Mull were scored according to the same 

methodology as outlined in Chapter 6 (see 6.2.2). Fourteen angiosperm leaf types were 

recognised by Boulter and K vacek (1989), and these appear to represent valid leaf morphotypes. 

The angiosperm leaf fossils are dominated by toothed types, with entire margined species 

represented by only three taxa (Camptodromites major, Camptodromites multinen'atus and 

Cornophyllum hebridicum) (Table 7.3). Dal'idoidea ardtunesis possess teeth that are considered 
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spinose. Wolfe (1993) stated that spinose teeth represent an adaption against insect herbivory 

rather than an adaption to climate and should be scored as entire. Specimens of Davidoidea 

ardtunesis have spinose and serrate teeth and have therefore been scored as being both toothed 

and entire (score 0.5). 

Table 7.3. Angiosperm taxa of Ardtun, Mull showing their margin type. 

Angiosperm taxon Margin toothed Margin entire 

Platanites hebridicus X 

Trochodelldroides antiqlla X 

Corylites hebridicus X 

Fagiosiphyl/llm groell/alldica X 

CUPII/iferites rubrifolius X 

Jug/alldiphyllites ardtllllensis X 

JlIglandiphyllites jin/ayi X 

Camptodromites major X 

Camptodromites mll/tinen'atlls X 

Davidoidea hebridica X 

Davidoidea ardwllellsis X X 

Vitiphylilim sewardii X 

Zizyphoides ardtllllensis X 

Cornophy/lum hebridicum X 

The angiospenn leaf taxa were also scored for the 31 leaf character states for CLAM P and M LR 

analysis (see Chapter 6, section 6.2.2). The flora is dominated by unlobed, toothed leaves, 

leaves with lamina sizes ranging from microphyll II to mesophyll III, acute and attenuate 

apexes, all base shapes particularly acute, leaves with L:W of 1-2: 1 to 3-4: 1 and elliptic lamina 

shapes (Table 7.4.). 

The margin percentage of the Mull flora (25%) (i.e. the percentage of the flora with entire 

margins) and the combined floral score for the 31 physiognomic characters were used to 

establish the palaeoclimate for Mull using LMA, CLAMP and MLR models. The procedure and 

methods used were the same as those applied to the Skye flora (see Chapter 6, sections 6.2.3, 

6.2.4, 6.2.5). The sampling error for the LMA equations was carried out according to Wilf 

(1997), (see Chapter 6, section 6.3.1). The estimates obtained from the three physiognomic 

methods indicate that the palaeoclimate for Mull was warm, seasonal and humid (Table 7.5). 
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Table 7.4. Leaf pbysiognomic charaden scored for the Ardtua flora of Mull. 

leaf character percentage leaf character percentage 

lobed 3.5 apex shape: emarginate 0 

no teeth (entire margin) 25 apex shape: round 4 

teeth regular 30 apex shape: acute 64 

teeth close 45 apex shape: attenuate 32 

teeth round 41 base shape: cordate 29 

teeth acute 27 base shape: round 29 

teeth compound II base shape: acute 42 

lamina size: nanophyll 0 lamina length:width < 1: 1 17 

lamina size: leptophyll I 0 lamina length:width 1-2: 1 25 

lamina size: leptophyll II 0 lamina length:width 2-3:1 25 

lamina size: microphyll I 0 lamina length:width 3-4: 1 29 

lamina size: microphyll II 34 lamina length:width >4: 1 4 

lamina size: microphyll ill 25 lamina shape: obovate 0 

lamina size: mesophyll I 17 lamina shape: elliptic 82 

lamina size: mesophyll II 12 lamina shape: ovate 18 

lamina size: mesophyll III II 

For definitions of these character states see the CLAMP website (http://clamp.ibcas.ac.cn) 



275 

Table 7.5. Climate estimates derived from the physiognomic analysis of the mid Paleocene floras of Mull using LMA, CLAMP and MLR models. 

Model MAT SE CMM SE WMM SE MART SE GSL SE GSP SE MMGSP SE 3WET SE 3DRY SE 

eC) eC) (0C) (0C) (months) (mm) (mm) (mm) (mm) 

LMAI 8.8 3.5 - - - - - - - - - - - - - - - -
LMA2 9.4 3.3 - - - - - - - - - - - - - - - -
LMA3 7.0 3.4 - - - - - - - - - - - - - - - -
LMA4 11.3 4.2 - - - - - - - - - - - - - - - -
LMAS 8.4 3.6 - - - - - - - - - - - - - - - -
LMA6 8.6 3.4 - - - - - - - - - - - - - - - -
LMA7 7.9 3.2 - - - - - - - - - - - - - - - -
CLAMP 1 11.0 1.1 0.3 3.0 22.0 1.8 - - 6.6 0.8 1525 194 214 25 827 133 244 35 

CLAMP2 12.5 1.8 3.0 2.6 22.6 1.8 - - 7.5 0.9 2022 317 259 37 988 137 621 89 

CLAMP3 11.4 l.l 0.9 1.9 22.6 1.4 - - 6.8 0.7 1550 200 218 26 847 146 233 32 

CLAMP4 13.0 1.2 2.9 1.9 24.2 1.6 - - 7.8 0.7 2117 331 274 31 1035 141 698 104 

MLRI 8.0 2.0 -2.5 3.6 23.9 2.9 14.6 S.O - - 1263 472 - - - - 230 89 

MLRZ S.2 2.7 -S.9 3.5 26.S 2.5 33.7 3.8 - - 1476 300 - - - . - - -
MLR3 10.0 2.0 - - - - - - - - 1809 SI2 - - - - - -

-

MAT = mean annual temperature, SE = standard error, CMM = cold mean month temperature, \VMM = warm mean month temperature, MART = mean annual range 
in temperature, GSL = growing season length, GSP = growing season precipitation, MMGSP mean monthly growing season precipitation, 3WET = three wet month 
precipitation, 3DRY = three dry month precipitation, - = transfer function not available to determine this particular climatic variable. 
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7.5.1 Mean annual temperature estimates 

The MAT estimates derived from the Mull flora are indicative of temperate to warm temperate 

climates (Wolfe 1979). The estimates derived from CLAMP are the warmest (excluding LMA4) 

and range from 9.3 °C to 14.2 °C (mean 12.0 0c) (Tables 7.5, 7.6). The CLAMP estimates 

indicate that the climate was warm-temperate, and close to or above the microthennal­

mesothermal boundary at 13"C (Wolfe 1979). 

The LMA estimates range from 3.6 °C to 15.5 °C (mean 8.9 "C). The substantial range of 11.9 

°C for this method is related to the high sampling error. The Mull floras has a low diversity with 

14 leaf types and a the margin percentage of 25%, which has resulted in a high sampling error 

ranging from 3.2 °C to 4.2 "C, which is consistent with the findings ofWilf(1997) (Table 7.5). 

The MAT estimates derived from the MLR models are the coolest obtained and range from 2.5 

°C to 12°C (mean 7.7 0c) (Tables 7.5, 7.6). Both the LMA and MLR estimates are in close 

agreement and indicate that the climate was temperate to warm temperate during the mid 

Paleocene. 

The MAT estimates derived from LMA and MLR, although cooler than CLAMP, are 

comparable when the sampling error/standard error is taken into account, which suggests that 

the climate may be more comparable with that of a warm temperate climate. 

Table 7.6. Mean annual temperature (0C) estimates derived from LMA, CLAMP and MLR 
analyses showing minimum, maximum, mean and range of the estimates. 

Physiognomic method min max mean range 

LMA 3.6 15.5 8.9 11.9 

CLAMP 9.3 14.2 12.0 4.9 

MLR 2.5 12 7.7 9.5 

7.S.2 Seasonality 

Cold mean month temperature estimates derived from CLAMP and the MLR models indicates 

that the winter months were cool. The CLAMP estimates of CMM are appreciably warmer than 

the MLR estimates and range from -2.7 °C to 5.6 °C (mean 1.8 "C) and -9.4 "C to 1.1 "C (mean -

4.2 0c) respectively (Tables 7.5, 7.7). The estimates derived from the MLR models like those 

derived from the Skye floras appear to be unrealistically cold for the mid Paleocene. The 

CLAMP estimates indicate the winters were cool and frosts may have occurred. but may have 

been infrequent. 

The presence of a possible notophyllous evergreen species within the Mull flora. 

Camptodromites major, indicates that the CMM may have been above 1°C, which is the modern 
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threshold for plants with this physiognomy (Wolfe 1979). The low diversity of leaves with this 

physiognomy does suggest that the CMM may not have been much greater than 1 °C however, 

which is constant with the CLAMP estimates. 

The estimates for WMM derived from the CLAMP and MLR models are comparable, with a 

range of 20.2 °C to 25.8 °C (mean 22.4 0c) and 21 °C to 29 °C (mean 25.2 0c) respectively 

(Tables 7.5, 7.7). These estimates ofWMM suggest that the summer temperatures were warm 

and when compared with the CMM estimates the climate of Mull during the mid Paleocene 

appears to have been moderately seasonal. 

Table 7.7. Cold mean month (0C) and warm mean month (0C) estimates derived from CLAMP and 
MLR analyses showing minimum, maximum, mean and range of the estimates. 

Cold mean month temperature eC) 

Physiognomic method mm max mean range 

CLAMP -2.7 5.6 1.8 8.3 

MLR -9.4 1.1 -4.2 10.5 

Warm mean month temperature eC) 

Physiognomic method min max mean range 

CLAMP 20.2 25.8 22.4 5.6 

MLR 21.0 29.0 25.2 8.0 

7.5.3 Precipitation 

Estimates ofGSP derived from CLAMP and the MLR models have produced highly variable 

values, with large ranges when sampling error is taken into account. CLAMP produced a range 

of 1331 mm to 2448 mm (mean 1804 mm) and the MLR models range from 791 mm to 2321 

mm (mean 1516 mm) (Tables 7.5, 7.8). As noted in Chapter 6 (see section 6.3.2) the estimates 

ofGSP produced by CLAMP 1 and CLAMP3 may be unreliable for this parameter. The the 

estimates produced by CLAMP2 and CLAMP4 are 2022 ± 317 mm and 2117 ± 331 mm 

respectively, which indicates a humid climate state. The GSP estimates derived from the MLR 

models are generally drier than CLAMP2 and CLAMP4 but do overlap with these latter 

estimates. 
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Table 7.8. Growing season precipitation (nun) estimates derived from CLAMP and MLR analyses 
showing minimum, maximum, mean and range of the estimates. 

Physiognomic method min max mean range 

CLAMP l331 2448 1804 1117 

MLR 791 2321 1516 1530 

Estimates of 3WET and 3DRY month precipitation from CLAMP indicate precipitation may 

have been mildly seasonal. CLAMP2 and CLAMP4 estimate 3WET to have been 988 ± 137 

mm and 1035 ± 141 mm respectively, and for 3DRY the estimates are 621 ± 89 mm and 698 ± 

104 mm. These results indicate that precipitation patterns may have fluctuated annually, but are 

not indicative of seasonally arid or monsoonal conditions. 

As discussed in Chapter 6 (see section 6.4.3) precipitation estimates derived from physiognomic 

techniques in mesic environments are typically inaccurate. This prevents an accurate assessment 

of the past precipitation of Mull, but the high values derived CLAMP and the MLR models 

suggest that the climate was humid and comparable with modern temperate rainforest 

conditions (Alaback 1991). 

7.5.3 Potential sources of error 

The palaeoclimate estimates derived from the fossil floras of Ardtun, Mull, like those of Skye, 

may be influenced by a variety of taphonomic and environmental factors. As noted in section 

7.5.1 low floral diversity has resulted in high sample error for the MAT estimates derived from 

the LMA equations. This factor cannot be readily reconciled but does suggest that the low 

angiosperm diversity of Skye is a genuine ecology signal rather than a taphonomic bias and that 

floras of the BTVP were relatively impoverished. 

The fossil angiosperm leaves of Mull are exceptionally well preserved and a high proportion of 

the leaf types have specimens with complete preservation, and in many cases with high order 

venation present (Figure 7.6). A detailed analysis of leaf preservation for the Mull flora was not 

taken in this study, but the completeness score for the 31 character traits for the CLAMP 

analysis is 0.91. This translates to 91% of the traits being scored for the whole flora, which 

indicates that the physiognomic analysis is less affected by missing data, and the estimates 

obtained from CLAMP and MLR are more reliable. 

The wide variety of depositional environments represented by the sediments and floras of the 

Ardtun Conlgomerate Formation may have mitigated the effects taphonomy has on climate 

signals obtained from fossil leaf assemblages. The floras of Mull were deposited in a variety of 

palaeoenvironments attributed to fluvial, lacustrine and swamp conditions, which in turn 
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represent allochthonous, parautochthonous and autochthonous leaf assemblages. These 

depositional environments and leaf assemblages are likely to better preserve the overall floral 

diversity and composition as they are likely to capture different aspects of the overall flora. The 

varied facies types present at Ardtun and the multiple environments and plant communities they 

represent should provide a more representative climate signal. 

The effects of saturated s~ils on floral composition and physiognomy was discussed in Chapter 

6 (see section 6.4.4.2). This factor may have influenced the MAT signal from the Mull floras as 

they grew in partially or fully saturated conditions. Kowlaski and Dilcher (2003) noted that in 

wet soil sites in Florida there were higher proportion of toothed woody dicots compared to 

coeval drier sites. This phenomena does not appear to apply directly to the Mull flora, as 

Camptodromites multinervatus, an entire margined leaf type is almost exclusively restricted to 

the swamp facies of the 'black leaf bed' . This one exception may suggest this effect may be less 

important for the floras of the BTVP. 

7.5.4 Climate summary 

The climate estimates obtained from the fossil angiosperms of the Ardtun flora of Mull indicate 

that the climate was a humid warm-temperate, seasonal, with cool to mild winters and wann 

summers. The interpretations of the palaeoclimate of the Mull flora by previous authors have 

suggested that the climate was humid warm-temperate to subtropical (Boulter and Kvacek 1989, 

Jolley 1997). The results from this study suggest that a subtropical climate is unlikely but may 

have been at the upper end of the warm-temperate, and close to the micro-mesothennal 

boundary (MAT 13°C) (Wolfe 1979). The estimates from this study also suggest that the flora 

of Mull was growing in a warm-temperate, but may have been close to being subtropical, which 

is relatively consistent with the findings from previous studies. 

7.6 The fossil floras and climate of Mull and Skye: a comparison 

The fossil floras of Mull and Skye offer an opportunity to determine the floristic composition of 

the BTVP at more regional scales as well as providing a broader understanding of the climate of 

the mid Paleocene for this region. Comparisons are made regarding their relative ages, their 

floral diversity, their vegetation composition and the palaeoclimate signals obtained for each of 

the floras. 

7.6.1 Comparison ofthe relative ages of the Mull and Skye floras 

The relative age of these two floras has important implications for the comparisons that can be 

made of the floral composition and climate estimates. If the floras are of different ages it could 

account for any differences observed between them. The palynological dating of these two 

floras suggests that the floras of Skye are 58.23 to 57.99 Ma and floras of Mull are 55 to 54.5 
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Ma (Jolley 1997, Bell and Jolley 1997). As discussed in Chapter 2 (see section 2.5.1 and earlier 

in this chapter (see section 7.2) the palynological dates are considered unreliable estimates. 

The radiometric dates of the two floras indicate that they are mid Paleocene in age 60.5 ± 0.3 

Ma (Ardtun flora) and 60.16 ± 0.45 Ma (AUt Mor flora) (Hamilton et a1. 1998, Chambers and 

Pringle 200 I). The margin of error of these dates, however, could suggest these floras were not 

contemporaneous, which is supported by field relationships. 

The Staffa Lava Formation and the Ardtun plant beds contained within these lavas are 

stratigraphically below those of the thicker Plateau Lava Formation. The Mull Plateau lavas are 

compositionally similar and appear to represent a similar eruption style to those of Skye, and 

based on their radiometric dating appear to have formed contemporaneously (Chambers and 

Pringle 200 I). This is also confirmed by the magmatic composition of the Staffa lavas, which 

are tholeiitic, and therefore may correspond to early phases of volcanism of the BTVP (Kerr 

1998). Similar eruptions in Northern Skye at the base of the Skye Lava Formation may 

correspond with those of Staffa (Kerr 1998), which suggests this style of volcanism may be 

characteristic of the early phases of BTVP volcanism. 

The AlIt Mor floras are situated well within the plateau-style lavas of the Skye Lava Formation 

(see chapter 2, section 2.2), which suggests they are more contemporaneous with that of the 

Plateau Formation of Mull than the Staffa Formation eruptions. Although the radiometric dates 

do overlap there is a possibility that the Ardtun floras could be 0.4 to 1 million years older than 

those of Alit Mor. Floristic and climatic differences observed in these floras could therefore be 

result of transient changes in the mid Paleocene climate. 

7.6.2 Comparison ofOora) diversity and composition 

The floras of Mull and Skye are close geographically, are both mid Paleocene in age and both 

developed in similar environments in a volcanic landscape. The floral compostion should 

therefore be approximately similar. In terms of overall diversity the two floras are comparable 

since Mull has 24 leaf macrofossil types and Skye has 22, which suggests that the floral 

diversity of the BTVP was relatively low. 

Both floras share many of the same taxa, particularly the angiosperm elements (Tables 7.9, 

7.10). Conifers that occur in both floras include Metasequoia occidentalis (CM]), Elatocladus 

campbellii (CM2) and Glyptostrobus dunoyeri (CM3). Angiosperms that occur in both floras 

include Platanites hebridicus (AMI), Trochodendroides antiqua (AM2), Corylites hebridicus 

(AM3), Fagosiphyllum groenlandica (AM5), Vitiphyllum sewardii (AM9) and Comophyllum 

hebridicum (AM 1 0). The family association of these angiosperms is similar for both floras, with 
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representatives from the families Platanaceae, Cercidiphyllaceae, Betulaceae, Fagaceae, 

Jugladanceae, Vitaceae and Cornaceae occurring in both sites (Table 7.10). 

Table 7.9. Families and species/morpbotypes of Marchantiophytes, pteridopbytes and 
gymnosperms present in tbe floras of Mull and Skye. 

Order/family Speciesimorphotype Present on Mull Present on Skye 

Marchantioph)1a 

Jungermanniaies JlmgemlGnniopsis sp. X 

Marchantiales Marchantities sp X 

Pteridoph~1a 

Equisetaceae Eqllisetllm sp. X 

Dennstaedtiaceae Dlloclea hebridica X 

Gymnospermae 

Ginkgoaceae Ginkgo gardner; X 

Cupressaceae CM! Metasequoia occidentalis X X 

Cupressaceae CM21Elatocladus cam belli X X 

Cupressaceae CM3 Glyptostrobus dun oyer; X X 

Cupressaceae CM4 "Chamaecyparis cf." X 

Cupressaceae CM5 "Thuja cf." X 

Cupressaceae CM6 "Mesocypar;s cf." X 

Cupressaceae CM7 Calocednls sp. X 

Pinaceae CM8 X 

Taxaceae Amentotaxus gladifolia X 

CM = conifer morphotype (Skye flora) 

The two floras do however, differ markedly in their composition, with many types present in 

one flora and not the other. The Skye flora includes cupressaceous conifers (CM4-7) and a 

single species attributed to the Pinaceae (AM8). The Mull flora lacks any conifers associated to 

Cupressaceae (excluding taxodiceous types) or the Pinaceae, but includes gymnosperm 

elements not present in the Skye floras. Ginkgo and the Taxaceae conifer Amentotaxus 

gladifolia are relatively uncommon members of the Mull flora (Table 7.1), which are 

completely absent from the plant beds of Skye examined in this study. Pollen attributed to these 

two gymnosperms (Jolley 1997), as well leaves of Ginkgo found in Northern Skye (Anderson 

and Dunham 1964) suggest that these plants were present on Skye, but have not been preserved 

in the leaf beds of AlIt Geodh' a' Ghamhna, AlIt Mor and Glen Osdale. 
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The Mull flora also includes herbaceous elements including Equisetum and Onoclea, which are 

absent from the leaf beds of Skye. Their absence in the Skye floras may represent a taphonomic 

bias as these taxa are often preserved in higher energy flood deposits. 

Although the two floras share six of the same angiosperm taxa they do differ markedly (Table 

7.10). Angiospenns present exclusively to the Mull flora include Cupulijeriles rubrifolius, 

Juglandiphyllites ardtunensis, Juglandiphyllites finlayi, Camptodromites major, 

Camptodromites multinervatus, Davidoidea hebridica, Davidoidea ardtunensis and Zizyphoides 

ardtunensis.1t is possible however, that some of these taxa may be represented by some of the 

morphotypes on Skye. Juglandiphyllites ardtunesis and Juglandiphyllites finlayi as discussed in 

Chapter 3 (see sections 3.13 and 3.14) may potentially be the same species or closely related to 

AM6 and AM7 of Skye. 
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Table 7.10. Angiosperm families and species/morphotypes present in the Mull and Skye floras. 

Order/family Species/morphotype Present on Mull 

Platanaceae AM 1 Platanites hebridicus X 

Cercidiphyllaceae AM2 Trochodelldroides antiqua X 

Betulaceae AM3 Corylites hebridicus X 

Betulaceae AM4 "Corylites cf." ? 

Fagaceae AM5 Fagopsiphyllum groelllandica X 

Hamamelididae Cupuliferites rubrifolius X 

Juglandaceae AM6 Juglandiphyllites sp.1 

Juglandaceae AM? Juglandiphyllites sp.2 

Juglandaceae AM8 "Platycarya cf." 

Juglandaceae JlIglandiphyllites ardtllllensis X 

Juglandaceae JlIglandiphyllites finlayi X 

Hamamelididae Camptodromites major X 

Hamamelididae Camptodromites mliitinervatlls X 

Hamamelididae Davidoidea hebridica X 

Hamamelididae Davidoidea ardtullensis X 

Vitaceae AM9 Vitiphyllllm sewardi; X 

Cornaceae AM I 0 Cornophyllllm hebridicum X 

unknown Zizyphoides ardtunellsis X 

unknown AM 11 Zizyphoides flabella 

unknown AMI2 

unknown AMI3 

unknown AM14 

AM = angiosperm morphotype (Skye flora), ? - possibly present 

7.6.3 Comparison of vegetation structure 

Present on Skye 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

As outlined in the previous section the two floras share some similar floral components but each 

floral has taxa that are exclusive to each. The two floras also have markedly different vegetation 

structures. The Alit Mor flora of Skye is dominated by taxodiaceous and cupressaceous 

conifers, with common occurrences of angiosperms such as Corylites. Platanities and 

Trochodendroides. The Ardtun flora of Mull is dominated by angiosperms. most notably 
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Platanities, Corylites, Camptodromites multinervatus and C. major. Herbaceous elements 

including Equisetum and Onoclea are also common. In contrast to the Skye flora, conifers are 

typically uncommon, with Amentotaxus and Elatocladus being the most abundant forms. 

The depositional setting of these floras may be a significant factor, which could account for 

their different vegetation structures. The Alit Mor flora developed in a palaeovalley which was 

drained by a braided river system and the distal floodplains, swamps and valley sides were 

dominated by climax conifers such as Sequoia (Elatocladus-type) and Metasequoia, along with 

cupressaceous conifers such as Chameacyparis and Thuja. The valley sides and tops may have 

supported stands of pines with members of the Cupressaceae. In the understory and margins of 

this conifer-dominated vegetation angiosperms were common, most notably Plataniles, 

Cory/ites and Trochodendroides. 

The Ardtun flora of Mull developed on an alluvial fan with rivers, floodplains and localised 

swamp and lake development (Kerr and Kent 1995, Jolley et al. 2(09). The Mull flora appears 

to represent three community types: a riparian community with herbaceous pteridophytes and 

angiosperms, an angiosperm dominated marginal lacustrine community and an open 

pteridophyte-angiosperm-taxodiaceous conifer swamp community. The relatively rarity of 

conifers within the Ardtun flora may be related to the more disturbed depositional setting. This 

is confirmed by the palynological record which supports this assertion as their pollen is 

relatively uncommon component of the palynofloras of Ardtun (Jolley et al. 2009). 

These two floras, to a certain extent, grew in similar fluvial dominated palaeoenvironments. The 

Ardtun flora of Mull may have developed in a more disturbed setting, which prevented the 

establishment of climax conifers, or may represent a shorter quiescent interval between 

eruptions. The Alit Mor flora of Skye may represent a more mature ecosystem that either had a 

longer period for development or suffered less intense disturbance during its development. 

The ambient climatic conditions that the two floras grew in may also be responsible for apparent 

differences in the vegetation structure. The Mull flora contains more thermophillic elements 

such as Camptodromites major and C. multinervatus and Amentotaxus, while the Skye flora is 

composed almost entirely of Arcto-Tertiary elements. The differences in climate between these 

two floras and its potential effect on vegetation structure will be discussed in greater detail in 

section 7.6.5.2. 
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7.6.4 Palaeoclimate comparison between the Mull and Skye floras 

As indicated in the previous section, the floras of Mull and those of Skye appear to be 

physiognomically different, which should be reflected in the climate signals they provide. 

Estimates of MAT from the two floras indicate that the Mull floras were growing in a wanner 

climate than those of Skye (Table 7.11, Figure 7.9). The Mull floras are consistently wanner 

than those of Skye for all three methods used in this study and the LMA derived estimates on 

average are 5.1 oC warmer, for CLAMP 1 °C and for MLR 4.7 °C (Table 1.11, Figure 7.9). 

The CLAMP estimates for both floras are similar with on average only 1 °C difference in MAT. 

The cause of this close comparability of MAT between the floras may be related to their shared 

angiospenn taxa. The Skye and Mull floras share six of the same angiospenn leaf types; these 

shared taxa also display the same physiognomic ranges. The physiognomy of the floras coupled 

with their low diversity could account for the comparable MAT estimates obtained from 

CLAMP. 

Table 7.11. Mean annual temperature (0C) estimates from the mid Paleocene floras of Mull and 
Skye derived from LMA, CLAMP and MLR models. 

Mean annual temperature eC) 

Physiognomic method Mull Skye 

LMAI 8.8 ± 3.5 3.7 ± 2.4 

LMA2 9.4 ± 3.3 4.6 ± 2.3 

LMA3 7.0 ± 3.4 2.2 ± 2.3 

LMA4 11.3 ± 4.2 5.2 ± 2.9 

LMA5 8.4 ± 3.6 3.1 ± 2.5 

LMA6 8.6 ± 3.4 3.7± 2.3 

LMA7 7.9 ± 3.2 3.3 ± 2.2 

CLAMP I 11.0 ± 1.7 10.3± 1.7 

CLAMP2 12.5 ± 1.8 10.9 ± 1.8 

CLAMP3 11.4 ± 1.1 11.1 ± 1.1 

CLAMP4 13.0 ± 1.2 11.7 ± 1.2 

MLRI 8.0 ± 2.0 3.4 ± 2.0 

MLR2 5.2± 2.7 0.1 ± 2.3 

MLR3 10.0 ± 2.0 5.5 ± 2.0 
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Figure 7.9. Mean annual temperature estimates derived from the mid Paleocene flora s of Mull and Skye. Red Circles . = LMA derived estimates, green squares . = 
CLAMP derived estimates, blue triangles =& MLR derived estimates. 
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The margin percentage for the two floras is markedly different, the Skye flora has a margin 

percentage of 8.3% and Mull has a percentage of 25%. This difference in margin percentage is 

the primary factor for the difference in temperature estimates obtained from LMA and MLR. 

The estimates derived from these two methods are potentially more reliable as they are more 

strongly influenced by margin percentage, which is the most strongly correlated trait with MAT 

(Wolfe 1979, Wing and Greenwood 1993, Wilf 1997, Wiemann et a1. 1998). The CLAMP 

estimates from both floras appear to be less influenced by margin percentage, which may 

suggest this method is a less reliable indicator of MAT for the BTVP floras or other Paleocene 

floras. 

Estimates of seasonality (CMM and WMM) derived from the two floras indicate that the degree 

of seasonal temperature variation was different for the two floras. The climate estimates derived 

from the Skye floras indicate that the climate was more seasonal with greater range with colder 

CMM and cooler WMM estimates compared to those derived from Mull (Table 7.12, Fi!:,'Ure 

7.10). The CMM estimates for Skye are on average 0.9 DC cooler for CLAMP and 6.9 DC cooler 

than the MLR estimates derived from the Mull flora. 

Similarly the estimates ofWMM derived from the Skye floras are cooler compared to those of 

Mull, and are on average 1.2°C cooler for CLAMP and 3.6°C obtained from the MLR estimates. 

The degree of seasonality between the two floras appears to be relatively slight based on the 

CLAMP estimates, while those derived from the MLR models indicate the climate of Skye was 

considerably more seasonal compared to Mull. 

As discussed in Chapter 6 and previously in this chapter, the estimates of CMM obtained from 

the MLR models may be unrealistically cold for both floras. This has important implications 

regarding the seasonality if the MLR estimates are unreliable. The low MAT estimates of the 

Skye flora are more suggestive of a cooler climate but if the WMM estimates are reliable for 

both methods the climate may have been indeed highly seasonal based on the MAT. If the 

WMMs are unreliable then the degree of seasonality may have been more comparable. 
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Table 7.12. Cold month mean temperature and warm mean month temperature estimates from the 
mid Paleocene floras of Mull and Skye derived from LMA. CLAMP and MLR models. 

Cold mean month temperature (DC) Wann mean month temperature (OC) 

Physiognomic method Mull Skye Mull Skye 

CLAMP I 0.3 ± 3.0 O.O± 3.0 22.0± 1.8 20.8 ± 1.8 

CLAMP2 3.0±2.6 1.6 ± 2.6 22.6± 1.8 20.8 ± 1.8 

CLAMP3 0.9 ± 1.9 0.5 ± 1.9 22.6± 1.4 22.2 ± 1.4 

CLAMP4 2.9 ± 1.9 1.6 ± 1.9 24.2 ± 1.6 22.8 ± 1.6 

MLRI -2.5 ± 2.6 -7.6 ±3.6 23.9± 2.9 20.0± 2.9 

MLR2 -S.9± 3.5 -14.8 ± 3.5 26.5 ± 2.5 23.3 ± 2.5 
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Figure 7.10. Seasonali ty estimates from the mid Paleocene floras of Mullnnd Skye, 1\) cold menn 

month temperatures, b) warm mean month temperatures. 
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Estimates of precipitation for both floras are relatively high and both are comparable with 

modem temperate rainforest conditions (Alaback 1991). The estimates ofGSP derived from 

both floras are relatively comparable (Table 7.13, Figure 7.11). The estimates ofGSP obtained 

from CLAMP analysis of the Mull flora (excluding CLAMP I and CLAMP3) are on average 

338mm higher than those of Skye. The estimates derived from the MLR models are however, 

on average 143mm higher for the Skye flora. As discussed previously in this chapter the 

accuracy of these estimates should be treated with caution. On this basis and on the close 

overlap between the estimates of both floras it is difficult to access if these two floras were 

subject to different levels of precipitation during the growing season. 

Figure 7.11. Growing season precipitation estimates from the mid Paleocene floras ofMuU and 
Skye derived from LMA, CLAMP and MLR models. 

Growing season precipitation (mm) 

Physiognomic method Mull Skye 

CLAMP 1 1525 ± 194 1380 ± 194 

CLAMP2 2022 ± 317 1722 ± 317 

CLAMP3 1550 ± 200 1409± 200 

CLAMP4 2117 ± 331 1742 ± 331 

MLRI 1263 ± 472 1795 ± 472 

MLR2 1476 ± 300 1476 ± 300 

MLR3 1809± 512 1705 ± 512 
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Figure 7.12. Estimates of growing season precipitation from thc mid Paleocenc floras of Mull lind 
Skye. 

7.6.5 Discussion of the climatic estimates 

The results obtained in this study suggest the ambient climatic conditions changed during the 

time of the Mull and Skye floras. The Mull floras were growing in wann-temperate climate, 

whi le those of Skye were growing in a cool-temperate to temperate climate. This significant 

variation in temperature between the two floras cannot be explained by their difference in 

latitude as both localities were in their current configurations during the mid Paleocene 

(Ganerod el aJ. 2010), The difference in temperature must therefore be the result of climate 

change or differences in elevation. 

7.6.5.1 Elevation and climate 

The relative altitude of the two floras may represent a signi ficant factor which could account for 

the disparate climate estimates. The cooler MAT esti mates ob tained from the Alit Mor flora of 

Skye floras could indicate that this flora grew at relatively higher altitude compared to those of 

Ardtun. This has been suggested by Jolley (1997) who interpreted the Alit Mor leaf beds as 

representing an upland taxodicaeous conifer forest, which grew at an approximate elevation of 

I DOOm above sea level. The floras of Ardtun Mull could potenti ally represent a lowland setting 

as the lavas of the Staffa F0n11ation of Mull display features which suggest that they were 

erupted in a subaqueous, possibly lowland environment (Kerr and Kent 1995) . 
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As discussed in Chapter 6, section 6.4.4.3 the suggestion of an upland origin for the Allt Mor 

flora is questionable based on the relatively poor palynological record from this site. Indeed, the 

leaf record of AlIt Mor is more indicative of Jolley's (1997) lowland swamp community in 

many respects, which could suggest a lowland setting. Leaf physiognomy has been used to 

determine palaeoaltitude (Wolfe 1993, Wolfe 1995, Wolfe and Spicer 1999), but has been 

shown to relatively unreliable with high standard error ± 2 Ian (Peppe et al. 20 I 0). This high 

standard error would most likely mask the true altitudinal difference between the floras, and has 

not been considered a reliable method in this study. It is possible that the AlIt Mor flora 

developed at a higher elevation compared to that of Ardtun but constraining this factor is 

difficult, and other factors such as climate change could equally account for the disparity of the 

temperature estimates of the floras. 

7.6.5.2 Climate change 

Climate cooling in the mid Paleocene could be a potential explanation for the observed 

temperature differences obtained from the floras of Mull and Skye. Evidence of mid Paleocene 

cooling in Western Europe has been observed in oxygen isotope records from bivalves from the 

North Sea (Buchardt 1977, Buchart 1978), Iberian reef communities (Baceta et al. 2005, 

Aguirre et al. 2007) and Foraminifera assemblages from the Atlantic (Haq et al. 1977). Climate 

cooling could account for the observed differences in the vegetation composition of the two 

floras. The cooling climate may have forced potentially thermophillic elements such as 

Amentotaxus gladifolia and Camptodromites major and multinervatus away from the BTVP. 

The conifer-dominated flora of Allt Mor Skye may indicate the vegetation changed from warm­

temperate angiosperm-dominated vegetation to cooler temperate coniferous forest. 

If climate cooling is responsible for the observed temperature differences between the two floras 

then the results obtained in this study indicate that cooling during in this interval may have been 

rapid and of high magnitude. Mean annual temperature estimates derived from LMA and MLR 

models from both floras indicate that climate may have cooled as much as 4.7 OC to 5.1 OC in 

0.4 to I million years. The implications and causes of this cooling require further verification 

with other climate proxies from other areas in the Northern Hemisphere. These other proxies 

and the potential implications and causes of this mid Paleocene cooling event will be discussed 

in Chapter 8. 
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7.7 Summary 

The fossil floras and sediments of Ardtun Mull have provided an interesting insight into the 

floral and palaeoenvironmental dynamics of other regions of the BTVP. The sediments in which 

the floras are preserved represent fluvial-lacustrine deposition, with periods of vegetation 

colonisation and succession. This flora contains a variety of plant types including liverworts, 

ferns, horsetails, Ginkgo, conifers and angiosperms. 

Comparisons with lithology of the Ardtun leaf beds and the floras they contain indicate that 

possibly three community types are represented by the leaf assemblages. These include a 

disturbed riparian community associated with fluvial deposits, an angiosperm dominated 

marginal lacustrine flora, and a low diversity, open swamp community. 

Climate estimates obtained from the physiognomy of the angiosperm fossils indicate that the 

climate was humid warm temperate and mildly seasonal. Controversy regarding the dating of 

this flora is partly resolved by the climate estimates obtained in this study, which are not 

indicative of the PETM but more comparable with cooler mid Paleocene, which is consistent 

with the radiometric dating. 

Comparisons of the floristic composition of the Skye and Mull floras indicate that each shared 

similar vegetative components. The floras do appear to be distinct as each has taxa that are 

restricted to one site. The vegetation composition of the two floras is markedly different; the 

Skye flora represents a mixed coniferous forest, while the Mull flora is characterised as being 

angiosperm-dominated forest with minor conifer elements. 

A comparison of the climate estimates obtained from both floras indicates that the climatic 

conditions in which these floras were growing was significantly different. The climate estimates 

obtained from the Mull flora are considerably warmer than those of Skye, which suggests abrupt 

climate cooling may have occurred in this region during the mid Paleocene. 
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Chapter 8: Discussion 

8.1 Introduction 

This chapter summarises results about the composition of the vegetation of the BTVP during the 

mid Paleocene and the climate record derived from these floras. The floras of the BTVP are 

then compared to coeval floras in the Arctic, Europe, North America and Asia to determine any 

similarities and differences between these floral provinces. The impacts of volcanism on the 

BTVP floras is discussed to determine the effects that volcanism may have had on floral 

development in this region and how it may have impacted floras more widely in the Northern 

Hemisphere. The palaeoclimate data from the floras of the BTVP are compared to other climate 

proxies, firstly to determine if the climate estimates obtained in this study are valid, and 

secondly to determine key trends in Paleocene climate change. 

8.2 Paleocene floras of the Northern Hemisphere 

Paleocene fossil floras have been recorded across the Northern Hemisphere including the 

Arctic, Europe, Asia and North America (Figure 8.1). The composition of these floras suggests 

that persistent floral zones existed at this time; these floral zones represent bands of vegetation 

that relate to specific climatic ranges. For example the vegetation of the high northern latitudes 

is called by some palaeobotanists the Arcto-Tertiary floral province or the broadleaved polar 

forest (Mai 1991, McIver and Basinger 1999, Collinson and Hooker 2(03). The mid latitudes of 

the Northern Hemisphere appear to have contained a mixture of temperate and subtropical 

elements, and have been called mixed forest, subtropical forest or paratropical forest (Mai 1991, 

Mai 1995, Collinson and Hooker 2003, Kvacek 2010). 
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Figure 8.1. North Polar paleaeogeographie reconstruction of the mid Paleocene (59 l\1a) showing 
the distribution of plant macrofossil site. Palaeogeographic reconstruction modified from 
Markwick (2007). Location of plant sites from Collinson and Hooker (2003). 

This study of the foss il fl oras of the BTVP of the Isles of Skye and Mull has attempted to 

detern1ine how these floras relate to those in the Northern Hemisphere during the Paleocene. In 

the foHowing section the floras of the BTVP are compared to those of the Northem Hemisphere 

to establish which floras are most comparable, and to detern1ine which floral zone or forest type 

the BTVP floras represent. 

8.2.1 Paleocene floras of the BTVP 

The floras of the BTVP provide the only macrofossil record of Paleocene terrestrial vegetation 

of northern Britain, and represent some of the oldest Paleogene floras of thi s region. In this 

study new collections of plant macrofossils were collected from three localities on Skye, Alit 

Geodh ' a' Ghamhna, Alit Mor and Glen Osdale. The composition of these pl ant assemblages, 

plus the flora from Mull was compared with the known palynological record of Skye to 

detennine the floral diversity and composition during the mid Paleocene. 

Plant macrofossi ls and palynomorphs have also been recognised from other BTVP localities 

including the Small Isles (Rum, Canna, Eigg and Muck) and Northern Ireland (Boulter and 

Kvacek 1989, Jolley 1997). The combined floral evidence from this study and those of previous 

inves ti gations indica tes the floras of the BTVP were varied in their composition and structure, 
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and were greatly influenced by topography, disturbance and volcanism (Boulter and Kvacek 

1989, Jolley 1997, Jolley et al. 2009). 

All BTVP localities share several characteristic plant families, which appear to be ubiquitous 

elements of this regional flora. These ubiquitous elements include conifers attributed to the 

families Cupresseaceae and Pinaceae, and angiospenns that show similarities to the Platanaceae, 

Cercidiphyllaceae, Betulaceae, Fagaceae and Juglandaceae. Conifers such as Metasequoia, 

Glyptostrobus and Elatocladus (Sequoia and Taxodium) appear to be the most common conifer 

taxa. The most common angiosperms include Platanities hebridicus, Trochodendroides antiquo, 

Corylites hebridicus, Fagopsiphyl/um groenlandica, Vitiphyllum sewardii and Cornophyllum 

hebridicum. 

These common taxa mask the degree oflocality heterogeneity expressed in the sites of Skye, 

Mull and Northern Ireland. Each of these leafbearing localities appears to have markedly 

different vegetation structures and compositions. The leaf fossils of Alit Mor have provided the 

most extensive record of plant fossils on Skye; this flora represents a mixed coniferous forest 

with riparian angiosperm-dominated communities. The other two localities on Skye, Alit 

Geodh' a' Ghamhna and Glen Osdale lack any conifer macrofossils and appear to represent 

disturbed low diversity angiosperm-dominated riparian vegetation. 

The fossil floras preserved at Ardtun, Mull indicate that the vegetation was markedly different 

to that of Allt Mor on Skye. Conifer macrofossils, particularly members of the Cupressaceae, 

are rare components of the flora and angiospenns are the dominant element of the vegetation. 

Although both floras share similar ubiquitous types of angiospenns, the Ardtun flora includes 

angiospenn leaf types that are absent from the floras of Skye. These angiosperm leaf types 

currently have no clear affmity with modern families, but include forms such as 

Camptodromites major and C. multinervalus, whose physiognomy is more indicative of warmer 

climate conditions. The Ardtun flora also includes herbaceous plants including the sphenophyte 

Equisetum and the fern Onoc/ea, which have not been recognised in the leafbeds of Skye (see 

Chapter 7, Tables 7.9 and 7.10 for a comparison of floral components of Alit Mor, Skye and 

Ardtun, Mull). 

The floras of Antrim are again different to other BTVP localities and include conifers attributed 

to the Pinaceae such as ?Tsuga heerii and Pinus plutonis, as well as poorly preserved 

Cupressoideae shoots and cones, attributed to Cupressoconus machenryi. Antrim angiosperms 

include forms that have not been reported in other BTVP localities and include Ushia olafsenii. 

Platanites /raxinifolia, Macclinotockia dentala and the monocot Haemanlhophyllum 

nordenskioldii (Boulter and Kvacek 1989). The floras of Antrim in some respects are similar to 
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the AlIt Mor flora of Skye in tenns of the their abundance of conifers, but differ in the 

composition of the angiospenns. 

The leaf assemblages of Antrim, Mull and Skye show that these respective floras share a similar 

overall character, but display distinct local variations in vegetation composition and structure. 

This indicates that the vegetation cover of the BTVP was relatively heterogeneous, which may 

have arisen due to local differences in topography, palaeoenvironmental setting or climatic 

variation. This assertion is also indicated by the palynomorph record of the BTVP, which 

suggests several plant community types were present (Jolley 1997, Jolley et al. 2009). 

In lowland areas several plant community types developed. Fluvial margins and floodplains 

appear to have been dominated by angiospenns and ferns, with taxodicaeous conifers growing 

in less disturbed proximal settings. Localised swamps in lowland areas supported a variety of 

taxodicaeous conifers and angiospenns such as members of the Juglandaceae as well as ferns. 

The upland or extrabasinal vegetation appears to be characterised by climax mixed coniferous 

forest, with stands of pines in the most upland setting (Boulter and Kvacek 1989, Jolley 1997, 

Jolley et a1. 2009). This interpretation is supported by this study. The fossil floras of AlIt 

Geodh' a' Ghamhna and Glen Osdale. Skye and Ardtun Mull represent more disturbed riparian 

angiospenn dominated communities and the flora of AlIt Mor, Skye represents climax mixed-

coniferous forest. 

8.2.2 New discoveries from the BTVP 

The fossil floras of Skye examined in this study represent the first attempts to identify these 

plant remains. Several plant taxa from the AlIt Mor locality represent new species, which has 

significant bearing on the understanding of Paleogene vegetation as a whole. 

The recognition of seven conifer species attributed to the Cupressaceae from the AlIt Mor 

locality on Skye is of note. The presence of ovulate cones and shoots attributed to Sequoia, plus 

shoots and some ovulate cones attributed to Cupressoideae conifers such as Chamaec),paris, 

Thuja, Mesocyparis and Calocedrus indicates the BTVP provided an ideal setting for conifers in 

the Paleocene. The presence of Sequoia cones at AlIt Mor indicates that this genus was present 

in the Paleocene of Europe. Additional collections of these cones are required and details of the 

shoot cuticles are required to confinn this assertion. At present cuticular preservation has not 

been observed for the Sequoia-like shoots from Alit Mor, but future collections may yield 

specimens with sufficient preservation for accurate diagnosis. 

The presence of Chamaecyparis shoots with attached, albeit poorly preserved, ovulate cones 

may represent the earliest record of this genus. The current earliest unequivocal record of this 

genus is Chamaec),paris eureka from the mid Eocene of Axel Heiberg in the Canadian high 
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Arctic (Kotyk et al. 2003). If the AlIt Mor species of Chamaecyparis is a true representative of 

this genus, it could extend the fossil record by more than 10 million years. 

Paleogene conifer diversity in Europe is typically low (Kvacek 2010), which indicates that 

conifers were unable to gain a foothold in this region during this interval. The high abundance 

and diversity of conifers at Alit Mor is therefore surprising. Why conifers were able to thrive in 

Skye during the Paleocene and not elsewhere in Europe is still a mystery, but climate may be an 

important factor. 

Members of the family Juglandaceae are a common element of the palynomorph assemblages of 

the BTVP (Jolley 1997, Jolley et al. 2(09), which suggests that these plants were an important 

component of the BTVP vegetation. This family was beginning to diversify during the 

Paleocene, and both Europe and North America appear to have been important centres for 

diversification during this interval (Manchester 1987). 

Three leaf morphotypes attributed to the Juglandaceae (AM 6-8) have been recorded from Alit 

Mor Skye. Morphotypes AM6 and AM7 are too incomplete to determine their generic affinity 

and have been assigned to the form genus Juglandiphyl/ites, and are perhaps comparable to the 

two species of Juglandaceae from Ardtun Mull (Juglandiphyllites ardtunesis and 

Juglandiphyllites finlayii). Morphotype 8, however, is the fourth most abundant angiosperm leaf 

type at Alit Mor and is represented by multiple, well preserved leaf specimens. This 

morphotype appears to most closely resemble the leaves of the modern genus Platycarya. This 

association with this modern genus is also partially confirmed by the pollen record, which 

indicates that Platycarya-like pollen producers were present on Skye and elsewhere in the 

BTVP during the Paleocene (Jolley 1997). 

Currently no reproductive structures have been identified, which could confirm the presence of 

Platycarya, but if correct it could indicate that this genus may have appeared by the mid 

Paleocene with a European origin. If associated reproductive structures can be found in the 

plant-bearing sediments of the BTVP it would provide one of earliest records ofa modern genus 

of the Juglandaceae. Future collection and suitable site selection is required to find these 

remains. 

8.2.3 Paleotene floras of the Arttit and tomparilOn with those of the BTVP 

Paleocene Arctic floras have been recorded in Svalbard, Greenland, Canada, Alaska and eastern 

Asia. Arctic vegetation during the Paleocene was dominated by broadleaved deciduous 

angiosperms, deciduous conifers and herbaceous ferns and angiospenns (Mai 1991, Kvacek et 

al. 1994, McIver and Basinger 1999, Collinson 2002, Collinson and Hooker 2003, Herman et aI. 

2009). These floral sites, often referred to as the Areta-Tertiary floral zone, are characterised by 
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a selection of common taxa including the deciduous conifers Metasequoia and Glyptostrobus, a 

limited number offerns such as Osmunda, Onoclea and Coniopteris and angiosperms attributed 

to the families Platanaceae, Cercidiphyllaceae, Betulaceae, Fagaceae, Juglandaceae, 

Hamamelidaceae and Trochodendraceae (Chaney 1950, Mai 1991, Kvacek et al. 1994, McIver 

and Basinger 1999, Collinson 2002, Collinson and Hooker 2003, LePage 2007). Paleocene 

Arctic floras from Svalbard, Greenland, Canada, Alaska and Asia are compared to the floras of 

the BTVP to establish if there are any similarities. 

8.2.3.1 Paleocene floras of Svalbard 

Early Paleogene plant assemblages are well known from Svalbard (Schweitzer 19RO, Kvacek et 

al. 1994). The plant-bearing sediments of the Early Paleocene Firkanten Formation were 

interpreted by Schweitzer (1980) as having a coastal origin, with vegetation growing in costal 

bogs. These bogs supported a variety of conifers, most notably Metasequoia and Taxodium. In 

addition to these bogs, marginal and better drained environments supported mixed forests of 

Sequoia, Ginkgo and broadleaved deciduous angiosperms. The angiosperm taxa present in the 

Firkanten Formation include forms similar to those found in the BTVP including 

Trochodendroides-types, C01}'lites hebridicus and Zizyphoides jlabellum (Schweitzer 1980, 

K vacek et al. 1994). 

In many respects this floral composition is similar to that of the BTVP, which may indicate 

close connectivity between these sites during the Paleocene. The high abundance of conifers and 

their taxonomic associations are broadly similar, as are the angiospenn leaf types. The high 

proportion of conifers within the Firkanten flora, including Metasequoia, Taxodillm and Sequoia 

suggests that this flora is most similar to the Allt Mor flora of Skye. This is also indicated by the 

presence of Zizyphoidesjlabellum, which has been found at Alit Mor. 

The Firkanten floras of Svalbard do, however, differ from those of the BTVP in that they lack 

representatives of some of the key families of the BTVP including the Juglandaceae, Vitaceae 

and Cornaceae. Their absence may be the result of the older age of the Firkanten flora, (age 

estimates 63 ± 2 Ma and 64 ± 2 Ma) (Blythe and Kleinspehn 1998), in that these plant taxa may 

not have evolved or spread into this region by the earliest Paleocene. Representatives of the 

Juglandaceae and Vitaceae, including form genera and species present in the BTVP, are present 

in the Eocene floras of Svalbard (Kvacek et al. 1994, Birkenmajer and Zastawniak 2005). This 

indicates that these plants types had colonised Svalbard in the later Paleocene or Early Eocene. 

8.2.3.1 Floras of Greenland 

The Atanikerdluk flora of north-western Greenland is the core flora of the Arcto-Tertiary floral 

zone (Mai 1991). This Early Paleocene flora is composed of a variety of broadleaved deciduous 
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angiospenns, a minor broadleaved evergreen element, monocots, deciduous conifers and ferns 

(Koch 1963, Mai 1995). The Atanikerdluk flora is characterised by Koch (1963) as a 

Macclintockia-Metasequoia-Cercidiphyllum flora, which represents a climax forest state. 

The Atanikerdluk flora contains elements such as Metasequoia. Cercidiphyllum 

(Trochodendroides), Corylites and Fagopsiphyllum, which are also common elements of the 

BTVP floras. The west Greenland flora also includes Ginkgo and Cupuli/erites which are 

present in the Ardtun flora of Mull, and Macclintockia which occurs in Antrim, Northern 

Ireland. 

Although similar to the BTVP flora the Atanikerdluk flora contains numerous elements that 

have not been observed in the leaf beds of the BTVP. The presence of several leaf types that 

may represent broadleaved evergreen types is a notable feature of the flora, which includes 

forms attributed to the Lauraceae, Magnoliaceae and Ericaceae (Koch 1963, Mai 1995). These 

plant types have not been recorded in the BTVP floras, which are dominated by deciduous leaf 

types. 

The late Paleocene-Eocene Thyra 0 flora of northeast Greenland contains many Arcto-Tertiary 

elements such as Metasequoia, Ginkgo, Elatocladus and members of the Platanaceae, 

Cercidiphyllaceae and Betulaceae (Boyd 1990). This suggests that there is some similarity with 

the BTVP floras. The presence of Musophyllum groenlandicum, a possible banana relative, 

however, indicates that there are significant differences (Boyd 1992). Overall comparisons 

between the West and East Greenland floras and those of the BTVP suggest these floras shared 

some degree of connectivity during the Paleocene, but not all elements either migrated or 

survived in the BTVP. 

8.2.3.3 Floras of the Canadian Arctic 

Paleogene floras from Axel Heiberg and Ellsmere Island provide a wealth of information on 

high latitude vegetation of this interval, particularly forest structure and function in warm polar 

climates (e.g. Francis 1988, McIver and Basinger 1999, Kumagi et al. 1995, Williams et al. 

2003a, Williams et a1. 2003b, Williams et a1. 2009). Leaffossils from Ellsmere Island have in 

addition provided a record of Paleocene vegetation in the Canadian Arctic. 

Floras from the Expedition Fiord and Strand Bay Formations of Ellsmere Island have been 

dated as Early and mid Paleocene respectively (McIver and Basinger 1999). The Expedition 

Fiord flora represents a low diversity assemblage of deciduous conifers and angiospenns, with 

aquatic vegetation. The sediments and leaf fossils represent fluvial deposition with local swamp 

development, represented by fossilised trunks of taxodiaceous conifers with diameters up to 3m 

(McIver and Basinger 1999). 
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The most abundant conifers of Expedition Fiord flora include Metasequoia, Glyploslrohus. and 

a possible evergreen taxodiaceous conifer may have been present. Pollen records also indicate 

that members of the Pinaceae may have grown at higher elevations, or at the margins of these 

floodplain habitats (McIver and Basinger 1999). The most abundant angiospenns include U~hia 

and several species of Trochodendroides, and at one locality leaves of Coryliles and the possible 

liana Archeampe/os (Vitaceae) were recovered along with other angiospenn taxa (McIver and 

Basinger 1999). 

Floristically, the Expedition Fjord flora is similar to the BTVP with its abundance of deciduous 

conifers and angiospenns such as Trochodendroides and Coryliles. The presence of a possible 

liana from the family Vitaceae (Archeampelos), although distinct from Vitiphyllum sewardii of 

AlIt Mor and Ardtun of the BTVP, indicates that the Canadian and Scottish floras may have had 

a similar ecology. The Expedition Fiord flora does differ to the BTVP in its lower diversity and 

apparent lack of members of the Platanaceae, Fagaceae and Juglandaceae. 

The Juglandaceae are, however, represented by two species in the palynological record of the 

mid Paleocene Strand Bay Fonnation (McIver and Basinger 1999). Pinaceae pollen within the 

sediments of the Strand Bay Fonnation was suggested by McIver and Basinger (1999) to reflect 

extrabasinal upland pine forest. This interpretation is similar to the palynological record of the 

BTVP, and suggests that pine forests may have been a common feature of upland areas in the 

high and mid latitudes of the Northern Hemisphere during the Paleocene. The floras of Ellsmere 

Island therefore seem to be superficially similar to those of the BTVP, but differ in the low 

diversity of angiospenns. 

8.2.3.4 Arctic floras of Asia and Alaska 

Paleocene fossil floras from north eastern Russia and Alaska have provided an insight into 

Arctic vegetation of Asia and the links it had with North America during this interval. Early and 

mid Paleocene fossil floras have been studied from various localities in north eastern Russia and 

appear to share many characteristic plant taxa with coeval floras in Alaska (Hennan et al. 2009). 

Arctic Asian floras are typically of other Arcto-Tertiary localities in that they are dominated by 

broadleaved deciduous angiospenns, deciduous conifers and ferns (Akmetiev 2007, Hennan et 

a1. 2007a, 2007b, 2007c, Akmetiev and Beniamovski 2009, Hennan et a1. 2009). Important 

gymnospenn genera of Arctic Asia are broadly similar with those of the BTVP and include 

Ginkgo, Metasequoia, Sequoia, Glyptostrobus and Mesocyparis. Four important BTVP 

angiospenn fonn genera occur in Arctic Asian floral sites and include Trochodendroides, 

Coryliles, Juglandiphyllites and Zizyphoides (Akmetiev 2007, Hennan et a1. 2007a, 2007b, 

2007c, Akmetiev and Beniamovski 2009, Hennan et al. 2009). 
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Paleocene floras of Amaam Lagoon area in far northeast Russia share many similarities with 

floras of Northern Alaska, which indicates that floral interchange occurred via Beringia 

(Herman et al. 2009). The Sagwon floras of northern Alaska span from the Early Paleocene to 

the mid Paleocene. This flora contains several BTVP taxa such as Metasequoia, 

Trochodendroides and Corylites, suggesting that the flora is similar to the BTVP. The Sagwon 

floras contain several angiosperm leaf types such as Tiliaephyllum and Archeampelos, which are 

absent from the BTVP (Herman et al. 2009). 

The floral composition of Arctic Asian and Alaskan floras is similar to that of the BTVP 

providing further support for the widespread nature of these genera. The floras of Russia and 

Alaska do, however, differ to those of the BTVP in that they contain a wide variety of 

angiosperm leaf types that are absent from Scotland. These include form genera that are 

attributed to the families Platanaceae, Vitaceae, Cornaceae, Tiliaceae and Nyssaceae (Akmetiev 

2007, Akmetiev and Beniamovski 2009, Herman et aI. 2009). 

8.2.4 Paleocene floras of Western Europe 

Paleocene floras of Europe were perhaps the closest geographically to those of the BTVP, and 

therefore m share many floral similarities. Floral remains have been recovered from southern 

England, France and Belgium and have provided a record of mid to Late Paleocene vegetation 

in Europe (Mai 1995, Kvacek 2010), which can be used to establish any similarities with the 

BTVP floras. 

8.2.4.1 Paleocene floras of France 

The mid Paleocene floras of Menat, France have been dated as 60 to 61 Ma (Wappler et aI. 

2009) and are the closest in age to the BTVP floras than any other western European flora. The 

Menat flora is dominated by broadleaved angiosperm taxa, with rare conifer and fern 

components (Laurent 1912, Mai 1995). The angiosperm leaf types of Menat include several 

forms that are characteristic of the BTVP including members of the Platanaceae, Betuiaceae and 

Juglandaceae (Laurent 1912, Mai 1995, Wappler et al. 2009, Kvacek 2010). The Menat flora 

includes the form genus Corylites, a characteristic BTVP taxon, but the platanaceous and 

juglandaceous elements are unlike those found in the BTVP. 

Occurring with these temperate taxa are a host of thermophilic, possibly subtropical species 

attributed to the Fagaceae and Lauraceae (Laurent 1912, Mai 1995, Wappler et aI. 2009, Kvacek 

20 I 0). The most striking difference between the Menat flora and the BTVP is their respective 

physiognomies. The Menat flora includes a wide variety of coriaceous leaf types that appear to 

represent thermophilic evergreen elements (Laurent 1912, Mai 1995). Coriaceous leaf types in 

the BTVP are relatively uncommon, only Camptodromites major and C. multinen'atus present 

in the Ardtun flora are comparable with those Menat. This suggests that the Menat flora 
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developed in wanner palaeoclimate that selected for evergreen coriaceous leaf types, compared 

to the cooler climates of the BTVP, which favoured deciduous leaf types. 

The differences in physigonmy and taxonomy of the Menat flora indicates that it was quite 

unlike the flora of the BTVP, although their may have been some minor floral interchange as 

indicated by their shared taxa such as Corylites and Glyptostrobus. Overall the Menat flora 

appears to represent subtropical vegetation, which is distinct from the more temperate 

vegetation of the BTVP. 

8.2.4.1 Paleocene floras of England 

Similar floras to Menat occur in southern England at Herne Bay and Woolwich, and include 

types that are broadly similar to those found in the BTVP, including members of the 

Cercidiphyllaceae, Betulaceae and Juglandaceae (Crane 1981, Crane and Manchester 1982, 

Crane 1984, Mai 1995). The southern England floras also contain high proportions of 

thennophilic, possibly subtropical-tropical taxa (Mai 1995, Kvacek 2010). Late Paleocene floras 

from the Reading Beds in southern England again show this mix of temperate and subtropical 

taxa (Collinson 1983), which indicates that this flora although partially similar to those of the 

BTVP are distinct from this largely temperate vegetation type of the BTVP. 

The Cobham lignite of southern England as mentioned in Chapter 7 (see section 7.3) represents 

vegetation growing prior to, and during the onset of the PETM (Collinson et a1. 2009). The 

palynomorph assemblages of the Cobham lignite include forms similar to those found in the 

BTVP floras including members of the Juglandaceae (Platycarya) and members of the 

Cupressaceae (Collinson et al. 2009). Prior to onset of the PETM the vegetation of this area was 

dominated by ferns and woody angiosperm shrubs and trees, which developed in a fire-prone 

setting. At the onset of the PETM swampy conditions prevailed and supported taxodiaceous 

conifers and palms (Collinson et al. 2009). One of the most notable features of the Cobham 

lignite is the scarcity of pollen attributed to the Pinaceae; indeed only 10 bisaccate grains have 

been found. This is in contrast to the BTVP flora, which has a high proportion of Pinaceae 

pollen (Jolley 1997, Collinson et al. 2009). The Cobham lignite shares some taxa in common 

with the BTVP but was quite unlike the floras of the northern igneous province as it contains 

palms and a low abundance of pines. 

8.2.4.2 Paleocene floras of Belgium 

Late Paleocene floras from Belgium again show a mixed temperate and tropical character. The 

floras from Geliden, although in need of a reappraisal, show a similar aspect to other floras of 

the western Europe (Mai 1995, Akhmetiev and Beniamovski 2009, Kvacek 2010). The Geliden 

floras are dominated by angiosperms, the most important of which include several morphotypes 

of Ushia (Fagales) and Dryophyl/um types (Fagaceae or Juglandaceae). Both of these leaf types 
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occur in several European and Russian floras and are associated with wann climates 

(Akhmetiev and Beniamovski 2009, Kvacek 2010). Ushia has been reported from the BTVP 

floras of Northern Ireland, which suggests some floral connectivity (Boulter and Kvacek 1989). 

Palms have also been documented in this flora, which further indicates a wanner climate 

(Kvacek 2009, Fairon-Demaret et at 2003). 

A seed flora from the Dormaal Sand Member of Belgium is indicative of densely wooded 

landscape with numerous woody lianas (Fairon-Demaret and Smith 2002). The high proportion 

of woody lianas that bore fleshy fruits, their taxonomic association and the presence of 

crocodilians at this locality indicates a humid subtropical vegetation type (Fairon-Demaret and 

Smith 2002). 

In-situ fossilised trees at the Tienen Formation in Belgium indicate that a swampy environment 

was dominated by monotypic stands of the conifer Glytostrobus. The presence of Glyptostrobus 

indicates some similarity with the BTVP floras, its presence in the Menat flora (Laurent 1912) 

indicates that it was one of the few conifers that were widespread in Europe during the 

Paleocene. The presence of Sequoia is indicated in Belgium by the presence of cone casts, but 

these have not been recently appraised (Fairon-Demaret et at 2003). If these cones are indeed 

attributable to this genus then it may suggests that conifers present in the BTVP extended 

further south during the Paleocene. 

8.2.S Paleocene floras of Asia and North America 

Paleocene fossil floras from Asia and North America have been extensively studied and have 

provided a wealth of information on the vegetation cover spatially and temporally. Comparisons 

are made in the following sections to determine how the floras of North America and Asia relate 

to the floras of the BTVP. 

8.2.5.1 Paleocene floras of Asia 

A distinct vegetation type persisted from the Maastrichtian through to the early Selandian (early 

mid-Paleocene) in Asia and eastern Europe. This vegetation type is often referred to as the 

Tsagayan ecotype and represents a temperate mesophilic flora characterised by ferns, Ginkgo, 

conifers and broadleaved angiosperms (Akhmetiev 2007). 

Important fern taxa in the Tsagayan ecotype include Onoclea and Osmunda. which have 

similarities with the BTVP and Arctic floras such as Svalbard. Gymnosperms are a common 

component of this vegetation ecotype and include Ginkgo and members of the Cupressaceae, 

particularly taxodicaeous types. Broadleaved angiosperms are an integral component of the 

Tsagayan ecotype and include Trochodendroides-types and members of the families Cornaceae, 

Hamamelidaceae and Nyssaceae (Akhmetiev 2007). 
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The Tsagayan ecotype extended across Asia during the early Paleocene and has been reported in 

the Zeya-Bureya basin in south eastern Russia, areas around the lower, middle and upper Amur 

River, northeast China, Kamchatka Peninsula and Koryakia in Northeast Russia, northern 

Siberia, the Urals and Mongolia (Akhmetiev 2007, Akhmetiev and Beniamovski 2009). 

The Tsagayan flora of Asia is compositionally similar to floras from the Arctic and the BTVP. 

Riparian components of the Tsagayan flora include Ginkgo, taxodicaeous conifers, 

Trochodendroides-types and members of the Platanaceae-Hamamelidaceae (Akhmetiev 2007). 

This riparian composition is similar to that found in BTVP localities such as Alit Mor Skye and 

Ardtun Mull, which suggests similar ecological relationships occurred over much of the 

Northern Hemisphere during the Paleocene. 

The close similarity between the Tsagayan floras of Asia and the BTVP may indicate some 

degree of floral interchange took place in the early Paleocene. Floras from the Asia may have 

been able to reach the BTVP from two routes. The first route may have been overland via 

Europe or through Scandinavia and Svalbard. The presence of Metasequoia in the late 

Cretaceous Walbeck flora of Germany shows that Arcto-Tertiary elements were entering 

Europe during this interval (Kunzmann and Mai 2011). The migratory route taken by 

Metasequoia and other Arcto-Tertiary elements is currently unclear but may have been via Asia 

and the North Atlantic. 

Significant changes in sea-level and vegetation composition occurred in the mid and late 

Paleocene in Asia. The development of two seaways had a significant impact on floral 

development in western Russia and Siberia in the Late Paleocene and Eocene. These seaways 

include the West Siberia epicontinental seaway that connected the Peri-Tethys with the Arctic 

Ocean and a latitudinal expanse of sea that connected the eastern Peri-Tethys with the Atlantic 

Ocean (through Europe) (Akhmetiev 2009). These seaways would have hindered floral 

interchange between Europe and Asia. 

During the Selandian and Thanetian, floras similar to those of Geliden in Belgium (see section 

8.3) occurred in Volga basin of southwestern Russia. These paratropical floras are typified by 

Ushia, Chamaecyparis, Dewalquea, Macclintockia, Dryophyllum and members of the 

Lauraceae (Mai 1995, Akhmetiev 2009). The Late Paleocene Kamyshin flora of the Volga 

Basin is a typical example of this Paratropical flora in Russia, which is similar to those found in 

western Europe during this interval. Similar paratropical floras occur throughout the mid 

latitudes of Russia and Kazakhstan, which indicates a persistent band of vegetation of this type 

extended over much of Europe and Asia during the mid to late Paleocene (Mai 1995). 

As discussed in section 8.2.4, this paratropical flora type is significantly different to that of the 

BTVP floras. Despite similarities with Danian floras in Asia the mid and late Paleocene 
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vegetation composition is markedly different to that of the BTVP. The cause of this shift in 

vegetation may be related to climate change. Why the floras of the BTVP retained a cooler 

climate flora, while similar aged floras in Asia changed dramatically from the temperate 

Tsagayan-type to subtropical/paratropical Geliden flora is currently unclear. 

8.2.5.2 Paleocene floras of North America 

Fossil floras from the Great Plains and Rocky Mountain region of the USA and Canada have 

provided excellent record that spans from the Late Cretaceous into the Eocene, and has arguably 

provided the most comprehensive record of Paleocene vegetation for the Northern Hemisphere. 

A detailed review of these floras is beyond the scope of this study, but comparisons will be 

made with those of the BTVP. 

The Early Paleocene Paskapoo Fonnation of Saskatchewan and the Alberta Basin have 

provided an excellent record of vegetation from this region, which share many characteristic 

taxa with the BTVP floras. The Alberta Basin contains several floral localities most notably 

Genesse, Joffre Bridge and Munch's Hill (Chandrasekaram 1974, Mciver and Basinger 1993, 

Hoffman and Stokey 1999, Hoffman 2002). 

The early Danian Ravenscrag flora of Saskatchewan includes a highly characteristic BTVP 

genus, Platanites (Crane et a1. 1988, McIver and Basinger 1993). The Ravenscrag Platanites is 

remarkably similar to the BTVP fonn, but it is several million years older, which suggests that 

this plant may have migrated from southern Canada, through Greenland and then into Scotland 

in the Early Paleocene. The Ravenscrag flora also includes numerous conifers such as 

Elatocladus, Metasequoia and Mesocyparis, all of which occur in the BTVP (McIver and 

Basinger 1993). These shared floral components, provide further evidence for floral 

connectivity and interchange between North America and Europe in the Paleocene. This flora. 

does, however, differ to that of the BTVP as it lacks any members of the Betulaceae, and 

common components of the BTVP floras such as Glyploslrobus and Ginkgo are rare (Mciver 

and Basinger 1993). 

Floras from the Great Plains and Rocky Mountain region of the US contain a wealth of floras 

throughout the Paleocene. Of most direct interest for this study are the mid Paleocene 

(Tiffanian, North American land mammal age) floras. These floras show significant local 

variation, but are typically low in diversity compared to comparatively younger and older floras 

in this region (e.g. Hickey 1980, Wing et aI. 1995, Gemmill and Johnson 1997, Peppe 2010). 

This low diversity is potentially mirrored in the BTVP floras, which show similar diversity 

curves to those in North America (Peppe 2010) (see Chapter 5, Figure 5.5). This may indicate 

that mid to high latitudes floras in the Northern Hemisphere were relatively species-poor during 

the mid Paleocene compared to the Early and Late Paleocene. 
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A detailed ecological study of a mid Paleocene flora from the Fort Union Formation, Wyoming 

has provided a useful insight into North American vegetation patterns in the mid Paleocene. The 

flora is relatively species poor with 28 morphotypes recognised, four of which are ecologically 

dominant (Gemmill and Johnson 1997). The dominant taxa include Metasequoia, Corylites, 

Archeampelos (a possible member of the Cercidiphyllaceae) and the aquatic herb Fortuna cf. 

This combination of taxa, with exception of the aquatic herb Fortuna cf. is very similar to that 

of the AlIt Mor locality of Skye, suggesting similar forest types were widespread in the mid 

Paleocene. 

Mid Paleocene floras of the Rocky Mountains and Great Plains are characteristic of polar 

vegetation with a high proportion of deciduous broadleaved angiosperms and conifers 

characteristic of higher latitudes and the BTVP (Manchester 1999, Collinson and Hooker 2003, 

Pigg and Devore 2010). Important taxa common to both the North America and the BTVP 

include gymnosperms such as Metasequoia, Glyptostrobus, Mesocyapris and Ginkgo. 

Angiosperms attributed to the families Platanaceae, Cercidiphyllaceae, Betulaceae, Fagaceae, 

Juglandaceae, Cornaceae and Trochodendraceae occur in both regions (Manchester 1999). 

Specific angiosperm leafform genera that are characteristic of both regions include Platanites, 

CercidiphyllumITrochodendroides-types, Fagopsiphyllum, Zizyphoides, CornophyllumlCornus 

(Manchester 1999, Pigg and Devore 2010). Included in this list is the enigmatic seed Calycites 

ardtunesis, which occurs in North America and Ardtun, Mull (Manchester 1999). 

Paleocene floras from North America do, however, differ to those of the BTVP in a number of 

aspects. This indicates that although floral interchange did occur, not all North America taxa 

entered Europe during the Paleocene. Important North American taxa not present in the BTVP 

include members of the Lauraceae, Zingiberaceae several genera within the Juglandaceae and 

Platanaceae and a variety of aquatic macrophytes (Manchester 1999). These taxa either 

represent North American endemics, or plants that have migrated from Asia, and have not 

subsequently migrated further eastward into Greenland and the BTVP (Manchester 1999). Why 

certain elements freely crossed from North America into Europe and vice-versa is unclear, but 

may be related to climatic tolerances and or competition with other taxa. 

8.2.6 Summary of relationships of the BTVP floras with the Northern Hemisphere 
vegetation of the Paleocene 

The floras of the BTVP appear to share many floral components with a broad spectrum of 

Northern Hemisphere floras of the Paleocene. Important BTVP elements such as Onoc/ea, 

Ginkgo, Metasequoia, Glyptostrobus, Trochodendroides, Corylites, Zizyphoides occur across 

the Northern Hemisphere. Other important BTVP taxa such as Platanites and Fagopsiphyllum 

had a more restricted distribution, and occur only in the Arctic and North America. Although a 

high proportion of the BTVP plant taxa occur in other geographical regions it does contain 
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several taxa that appear to be endemic to northwest Britain during the Paleocene. These 

endemics include members of the luglandaceae, and leaf types with unknown affinities from 

Ardtun Mull such as Camptodromites and Davidoidea. 

A comparison with floras from other regions in the Northern Hemisphere has enabled a better 

understanding of how the floras of the STYP fit within the vegetation scheme of the Paleocene. 

Floras preserved in western Europe are the closest spatially to the floras of the BTYP, and share 

some similar angiospenn taxa. The floras of Western Europe, are however, considerably 

different to those of the STYP. Western European floras contain an abundance of thermophilic 

taxa , which indicate a wanner subtropical-paratropical climate state. The absence of these more 

tropical taxa in the STYP indicates that the climate in this region was possibly too cool to 

support these plant types during the mid Paleocene. The floras of the STYP contain an 

abundance and relatively high diversi ty of conjfers. Conifers are a relatively minor component 

of western European floras, which may be due to warmer palaeoclimate in Europe the 

Paleocene. The cool humid climate of the STYP may have been more favourable for conifers. 

The recent review of the Paleogene forest types present in western Europe, the STYP and the 

European Arctic by K vacek (20 I 0) indicates that wanner subtropical and paratropical forests 

were widespread across Europe during the Paleogene, but their upper limit may have extended 

only into the southern England. The boundary between the subtropical European flora and the 

wann-temperate to temperate fl ora of the STYP would have been several degrees of latitude 

further south than the STYP, possibly in central England during the Paleogene (Figure 8.2, 8.3) . 
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Figure 8.2. Palaeogeographic reconstruction of the early to mid Eocene of Eu rope sho\\ ing the 
boundaries between temperate (Arcto-Tertiary) noras and subtropical -paratropic noras. Redrawn 
and modified from Kvacek (2010). 
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Early Paleocene floras in Asia are similar to those of the BTVP and both regions share many 

common Paleocene floral elements such as Metasequoia, Glyptostrobus, Mesocyparis, 

Trochodendroides, Corylites, CornuslCornophyllum and Zizyphoides. Floras of a similar age to 

those of the BTVP in Asia are, however, markedly different, and appear more similar to the 

subtropical and paratropical forests of Europe. Why Asian floras underwent a significant change 

at the time of the BTVP floras is unclear but it is probably linked to both marine transgression 

events and climate change during this interval. 

North American floras indicate that vegetation in the Paleocene was broadly similar across the 

Northern Hemisphere as its composition is similar to Arctic, Asian and European floras. Mid 

Paleocene floras of southern Canada and the western interior of the US contain many BTVP 

taxa, most notably Plataniles and Fagopsiphyllum. The North American floras like those of 

Asia do differ to those of the BTVP in number of aspects and contain many elements that have 

not been recorded in the BTVP or the Paleocene floras of Europe. 

In overall terms of composition the floras of the BTVP appear to correspond most strongly with 

those of the Arctic, particularly floras from Svalbard, Greenland and Canadian Arctic. Important 

BTVP taxa such as Metasequoia, Glyptostrobus, Trochodendroides, Corylites, Fagopsiphyl/um, 

Cornophyllum and Zizyphoides are widespread and in some cases ecologically important 

components of Arctic vegetation. 

The BTVP flora is therefore regarded as a member of the Arcto-Tertiary floral zone based on its 

close similarities with vegetation of the Arctic Paleocene (Figure 8.3). Although similar to this 

cosmopolitan vegetation type, the BTVP differs from its counterparts in its high diversity of 

conifers (AlIt Mor) and the high diversity, and early appearance of members of the 

Juglandaceae in both the leaf and pollen record. 

Floristic interchange is indicated between the Arctic and the BTVP, which suggests vegetation 

was free to migrate across the volcanically active North Atlantic land bridge (Figure 8.3). This 

west to east migration may have started in the late Cretaceous or the early Paleocene, as floral 

elements that are highly characteristic of BrVp such as Platanites occur in southern Canada, 

which suggests that an earlier invasion of North American elements into the Arctic. 



BTVP fl ora 

• Arcto-Tertiary 
floral sites 

• Subtropical to 
Paratropica l 
floral sites 

310 

IXO"E 

___ Boundary between 
temperate and 
subtropical 
vegetation 

Flora l migratory routes 

9O"E 

Figure 8.3. North polar palaeogeographic reconstruction of the mid Paleocene (59 Ma) showing 
floral provinces, macrofossil localities and migratory routes. Palaeogeographic reconstruction 
modified from Markwick (2007). Location of plant macrofossil sites from Collinson and Hooker 
(2003). 
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8.3 The effects of Volcanism on the BTVP floras 

Volcanic environments are inherently hostile, as they impose numerous hazards and obstacles 

for organisms. Eruptive phases of volcanic environments can cause significant local, regional 

and global perturbations to the environment. These perturbations can be short-lived such as 

pyroclastic flows, or long term in the case of volcanic aerosols in the atmosphere. Areas of 

active volcanism pose serious challenges to colonising vegetation and ecosystem development. 

Modem volcanic environments can provide an important insight into how the vegetation of the 

BTYP was able to initially colonise and develop in volcanic environments. The Hawaiian 

Islands provide an excellent opportunity to study how plant succession may operate on large 

igneous provinces. Hawaii is also an excellent analogue for the BTVP as the substrate and 

eruption style are broadly similar. The Hawaiian Islands, although similar in many aspects to 

the BTVP, are different, however, as the BTVP was not a volcanic island surrounded by ocean, 

but was connected to both Greenland and Europe. Extensive research has been carried out on 

ecosystem development and plant succession on these islands, which can be used as a guide to 

determine the nature of palaeo-plant succession and ecosystem development of the BTVP. 

Plant succession on the Hawaiian Islands is influenced by numerous biotic and abiotic factors, 

such as substrate type, nutrient limitation, climate and altitude. The equable climate of the 

Hawaiian Islands provides excellent growing conditions for plants, enabling dense plant 

communities to develop on the volcanic substrates. Substantial variations in topography, 

substrate and its influence on the climate have produced a complex mosaic of environments on 

Hawaii (Raich et al. 1997). The diversity of these environments has enabled a variety of 

ecosystems to develop, each supporting distinct plant communities (Drake and Mueller­

Dombois 1993, Raich et al. 1997). These studies can therefore provide a useful analogue to 

plant succession on the BTVP. 

8.3.1 Colonisation of lavas 

Plants that colonise lava flows have to be able to cope with low nutrients and desiccation, and in 

addition they require suitable dispersal mechanisms to reach recently formed lava flows (Raich 

et al. 1996). Among the first colonisers of the lava flows in Hawaii are bryophytes and lichens, 

as these plants are capable of growing directly on the lava surfaces (Aplet and Vitousek 1994). 

Ferns soon establish, but they are dependent on cracks and fissures in the lava surface for their 

development (Aplet and Vitousek 1994). The dominant tree on Hawaii, Metrosideros 

polymorpha is an excellent coloniser oflava flows and high densities of seedlings can develop 

on lava flows within two decades (Drake and Mueller-Dombois 1993). 
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This pattern of colonisation may have been similar for the BTVP with the earliest colonisers 

being bryophytes and ferns, which are an abundant component of the palynomorph record 

across the BTVP (Jolley 1997, Jolley et al. 2009). The abundance of some of the angiosperm 

leaf types (e.g. Platanites hebridicus, Trochodendroides antiquo and Cory/ites hebridicus) and 

their association with disturbed riparian environments indicates that these plants were capable 

colonisers. This colonisation ability in sedimentary environments may also have benefited their 

establishment in newly formed volcanic substrates and lava flows. 

The ability of Metrosideros polymorpha's ability to colonise Hawaii lava flows is related to its 

seed dispersal mechanism. These trees produce thousands of small seeds that are transported by 

the wind, which enables them to colonise distant sites. M. po/ymorpha also synchronises its seed 

dispersal to coincide with heavy rain during a nine week period between late November and late 

January, which enhances germination success (Drake, 1992). Colonisers ofBTVP lava flows 

would therefore have to had suitable seed dispersal mechanisms to become established in the 

volcanic landscape. 

The presence of mature forests along the margins of recent flows may act as refugia on Mt St 

Helens, as they are a source of seeds and colonists (Fuller and Moral 2(03). Mature forest also 

provides a source of nutrients in the form of leaf litter and leached minerals from the soil. Leaf 

litter has been shown to increase the water holding capacity of the lava cracks, which further 

improves germination success and seedling establishment (Burton 1982, Drake, 1992, Raich et 

a1. 1997). Seedling density of M. po/ymorpha on Hawaiian lava flows was shown to be greatest 

around the margins of the mature forest. which suggests that conditions around these margins 

provided more optimum conditions for seedling development (Drake 1992). Adjacent 

established forests may therefore provide both organic nutrients and increase the habitability of 

newly formed volcanic surfaces. This indicates that lava flows are colonised faster at their 

margins, and over time colonists advance into the centre of the flow. 

Refugia in the BTVP may have played an important role in the colonisation of newly formed 

lava fields as they would have acted as islands of undisturbed forest within the newly formed 

flow or at their margins. These pockets of undisturbed forest would have provided nutrients in 

the form of leachates and leaf liner, as well as providing a source of colonists. Unlike Hawaii, 

which in many respects is closed system (little external recruitment of plant taxa). the BTVP 

would have bordered onto surrounding terrestrial areas in Northwest Britain and Greenland 

(Figure 8.4). Even during periods of intense volcanic activity where much of the vegetation of 

the BTVP was disturbed it could be later re-co10nised by the relatively pristine forests 

surrounding the BTVP migrating into the lava fields. 
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8.3.1.2 Plant succession in volcanic environments 

The study by Drake et a1. (1993) has provided an excellent insight into plant succession and 

forest development in Hawaii over a period of tens to thousands of years. The first colonisers of 

the lavas in Hawaii include lihens and mosses, which are capable of developing on the lava 

surface shortly after its formation. These earliest colonist can colonise lavas rapidly, and have 

been observed on flows within a year of their formation (Drake 1992). Following these early 

colonists are ferns, which are capable of dispersing over large distances and reaching newly 

developed, barren lavas. These ferns are able to develop in the cracks in the lavas surface where 

nutrients and water accumulate (Drake 1992, Drake 1993). 

After as little as two decades seedlings of the tree, Metrosideros polymorpha are able to 

establish on flows in montane Hawaii (Drake 1992). In Hawaii direct succession occurs, i.e. 

early pioneer taxa, in this case Metrosideros polymorpha also represent the dominant tree and 

climax vegetation type (Drake et a1. 1993, Muller-Dombois 1992). The introduction of non­

native species to islands has altered the succession patterns, however, and new climax 

communities are developing (Muller-Dombois 1992). 

Within 400 years Metrosideros polymorpha dominated forest is able to develop on lava flows in 

montane rainforest zone in Hawaii (Drake et al. 1993). This rapid forest development in Hawaii 

is permitted by the equable climate, particularly the high rainfall of this region (Drake et al. 

1993). It has been documented in even younger stands of 137 and 300 yrs that stem area of 

Metrosideros polymorpha has increased significantly from the early pioneer stands (Drake et al. 

1993), which suggests that the overall productivity of the ecosystem is expanding even at this 

early stage. 

In Hawaii forest stands of Metrosideros polymorpha begin to be out competed by tree ferns 

(Cibotium spp.), which reduce its ability to produce new cohorts of seedlings due to shading 

(Drake et al. 1993). Forests that have developed on 3000 year old flows appear to represent the 

climax forest type of humid montane parts of the Hawaiian Islands and are characterised by 

Metrosideros-Cibotium forest. These forests are muItistratal and include an upper stratum of 

Metrosideros polymorpha canopy trees, a middle stratum of other pioneer tree species, and a 

lower stratum of tree ferns (Drake et al. 1993). 

Plant succession in the BTVP may have had a similar pattern to that of the Hawaii, with a early 

colonisation phase followed by progressive seral stages until a climax community has 

established. A basic succession model has been produced for the BTVP floras to demonstrate 

the possible succession patterns that may have occurred in this region during the mid Paleocene 

(Figure 8.4). The first colonists of the lava flows like on Hawaii were likely to have been 

lichens, mosses and ferns (Figure 8.4). Following these plants would have been a wave of early 
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pioneer species, capable of dispersing into the barren flows and adaptable enough to survive in 

the oligotrophic and potentially dry environment of the flows. 

The first forests to develop on the lava flows of the BTVP were likely dominated by disturbance 

tolerant angiosperms (Figure 8.4). Common angiosperm elements of the BTVP are likely to 

have been the first pioneer shrubs and trees as they were probably capable of traversing the lava 

fields. Such angiosperm taxa may have included Platanites, Trochodendroides, Corylites and 

F agopsiphyl/um, but locally taxa such as "Platycarya cf." and Camptodromites major may have 

also been part of these early forest stands (Figure 8.4). These taxa may have formed stands, or 

thickets of woody shrubs and trees that at first would have been represented by a few hardy 

individuals and progressively would have formed closed canopy stands. Evidence on Hawaii 

indicates such forest stands can develop in as little as 400 yrs and it is possible such a rate of 

development may have been possible in the humid conditions of the BTVP (Figure 8.4). 

The climax community of the BTVP would have been unlike that of the Hawaii as it is unlikely 

that it developed directly from pioneer species. Indeed pioneer species of the BTVP, ferns and 

angiosperm shrubs and trees may have been ousted and possibly marginalised by later 

succession angiosperms and climax conifer taxa due to shading and competition. In Hawaii a 

stable climax community is capable of developing in less than 3000 years. It is difficult to 

determine the length of time required for climax forest to develop on in the BTVP. But based on 

the rapid formation of the lava fields and the wide spread occurrence of suspected climax forest 

species in the pollen record (Jolley 1997) it is likely that climax communities may have been 

able to develop in as little as 3000 to 5000 years (Figure 8.4). 



First coloni sts 
mosses and 
lichens 

Ferns coloni se 
cracks in the lava 
surface 

Organic matter 
trapped in lava 
cracks forming 
first soils 

Fi rst angiosperm 
shmb/tree eo loni sers 
di spersed from 
marginal vegetation 

Soil development, 
lateritic under 
suitable 

315 

Diverse angiosperm 
woodland with fe rn 
understory 

Increased soil 

Coloni sation 

Climax vegetation 
mixed coniferous 
forest 

Depletion of soilllut rients, 
underl ying lava 
leached of 
nutrient s 

V ~L 1 J L 1 Jl 1 J 
Barren lava Early Pioneer Mid-success ion Late-succession to 

now colonisers community woodland climax forest 

( I to 2 years) ( \0 to 50 years) (50 to 1000 years) ( 1000 to 3000 years) (5000+ years) 

Time 

Figure 8.4. Generalised plant succession transect showing the proposed stages of vegetation succession on the lava flows of the BTVP. I mage not to scale. 



316 

8.3.1.3 Nutrient limitation 

An important factor for the development of ecosystems on lava flows is nutrient limitation 

because newly formed or young lavas tend to provide little vital nutrients such as nitrogen and 

phosphorous (Raich et al. 1996). Plant communities that developed on the lavas of the BTVP 

would have had to cope with these low nutrient conditions. Studies on modern vegetation and 

soil nutrients on Hawaii may provide some insight into how the Paleocene vegetation of the 

BTVP was able to establish. 

Young volcanic sites are impoverished in nitrogen and phosphorous (Raich et a1. 1996). 

Weathering of volcanic the substrates and tephra introduces vital nutrients and cations for 

plants, particularly phosphorous. Phosphorus is essential for plant growth, and in most tropical 

forests it is impoverished (Vitousek 1984). Young volcanic sites in Hawaii are phosphorous­

limited, as insufficient weathering and erosion of the volcanic substrate has not yet taken place 

(Raich et al. 1996). As the minerals in the lava and ash decompose through weathering they can 

provide a major source of nutrients for vegetation, but these sources become impoverished after 

-100 000 years (Vitousek 2004). 

Nitrogen is another key element for plant growth and it too is limited in young volcanic sites. Its 

low concentration therefore hinders plant growth in the early stages of ecosystem development 

(Vitousek et a1. 1993). Nitrogen can be incorporated into the system through external sources, 

such as nitrogen-fixing lichen and bryophytes (Matzek and Vitousek 2003), and precipitated by 

cloud water (Heath and Hubert 1998). However, nitrogen inputs from both these sources are 

greatest when forest density and canopy cover are high (Heath and Hubert 1998, Matzek and 

Vitousek 2003). Younger sites with limited canopy cover are less likely to receive inputs of 

nitrogen from these sources, and so nitrogen accumulation is slowed, while older flows with 

more mature forest can obtain nitrogen from these sources. 

Volcanic eruptions can provide an important source of both phosphorous and nitrogen through 

degassing and thermal interaction between hot lavas and the atmosphere. Volcanic degassing on 

Hawaii has been shown to provide a source of plant accessible phosphorous in the form of 

phosphorous pentoxide (P 4010) (Yamagata et a1. 1991). The eruption of hot lavas can also 

provide a source of nitrogen to ecosystems, as the high temperatures of the lavas facilitates the 

fixing of plant accessible nitrate (N03) from the atmosphere (Heath and Heubert 1999, Heubert 

et a1. 1999, Mather et a1. 2004). Volcanic fog (vog) produced from eruptions has been shown to 

contain several orders of magnitude greater amounts of nitrate compared to normal background 

levels (Heubert et a1. 1999). Plant accessible nitrogen from volcanic sources is then deposited 

from the atmosphere where it can provide a vital source of nutrients to oligotrophic volcanic 

ecosystems (Heath and Heubert 1999). 
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It is probable that recently colonised lava flows in the BTVP would have been nutrient poor, 

thus reducing the potential for colonisation and development of early pioneer communities. The 

humid climate of the BTVP may have facilitated the weathering of the lava surfaces and ash 

deposits, which may have provided a vital source of phosphorous to the burgeoning plant 

communities. The large scale of the volcanic eruptions in the BTVP may have provided a 

significant source of nitrate through thermal fixation, and degassing of plant accessible 

phosphorous may have provided an additional source of nutrition to BTVP vegetation. The 

BTVP floras in their early stages of development may therefore have been dependent on 

allochthonous sources of nutrients for their development. 

An investigation by Jolley et a1. (2008) on the nutrient dynamics and plant communities of the 

Miocene Columbia River Basalt, United States has provided an important insight into the 

nutrient and floral dynamics of Continental Flood Basalts (CFBs). The findings of Jolley et a!. 

(2008) show that volcanically derived sources of nitrogen and phosphorous were vital for floral 

development at the Columbia River CFB. 

The proximity to eruption centres was shown to have a profound impact on vegetation patterns 

at Columbia River. Sedimentary sequences most proximal to eruption centres indicate that 

possible eutrophic conditions developed, with high algal and diatom abundances. Vegetation 

that was growing more distally appears to have received less volcanically derived nutrients 

(Jolley et a!. 2008). These communities were highly variable, some appear to be dominated by 

nitrogen fixing species, which were capable of improving soil nitrogen independent of 

volcanism. A second community type that lacks these nitrogen fixers, may have received 

nutrition from the weathering of volcanic ash (Jolley et a1. 2008). 

These findings indicate that nutrient levels in CFBs would have been highly variably spatially. 

The floras of the BTVP developing on lava surfaces may have received varying levels of 

volcanically derived nutrients depending on their proximity to eruption centres and whether 

volcanic ash was present. 

Over time nutrient dynamics on lava flows and the ecosystems they support changes. On Hawaii 

flows that are between 2000-5000 years old tend to have better developed soils with higher 

organic matter content, with higher plant-accessible nitrogen and phosphorus concentrations 

compared to younger flows (Raich et al 1997). Sites of this age range offer optimum conditions 

for plant growth and ecosystem development, but they are still nutrient impoverished compared 

to other tropical forests (Raich et al 1997). 

Soils on lava flows that are 5000 years old show a substantial decline in nutrient concentration 

and primary production, which indicates that these volcanic soils become exhausted relatively 

rapidly (Kitayama et al 1997). Modelling of long-term ecosystem development on Hawaii 
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showed that ecosystem stability was never reached and allochthonous sources of nutrients were 

still required even after a period of 20,000 years (Raich et al 2(00). This suggests that 

weathering of volcanic rock/ash and other allochthonous inputs are necessary for the long term 

development of volcanic ecosystems on Hawaii. 

Under the assumption that similar patterns of nutrient accumulation and subsequent depletion 

occurred in the BTVP as in Hawaii it may indicate that the plant communities of this volcanic 

province underwent three phases of development. The first stage was the initial colonisation of 

the lava flows on nutrient-poor soils. The second stage was a period where soil organic matter 

and nutrients were high and relatively stable, and thus supported a diverse plant community. 

The final stage was a developed, but oligotrophic community, where soil nutrients had become 

exhausted due to prolonged leaching (Figure 8.4). All of these communities would likely be 

dependent on allochthonous sources of nutrients for their continued development. 

8.3.1.4 The role o/volctlllic disturbtlllce Oil BTVP vegetlltioll 

Ecosystems developing on volcanic substrates not only have to contend with possible 

desiccation and nutrient limitation but also have to be able to cope with disturbances inherent to 

volcanism. Such disturbance include the development of new lava flows, which can rapidly 

destroy standing vegetation, and the wildfires that may spread from these eruptions can cause 

disturbance over wider areas than the flow (Del Moral and Grishin 1999) (Figure 8.S). Volcanic 

ejecta ranging from fine volcanic ash to pyroclastic material can either enhance ecosystem 

function by providing vital nutrients, or can severely devastate plant communities (Del Moral 

and Grishin 1999). Volcanic degassing can have a significant impact not just on local but on 

global scales, as large volumes of gases, principally CO2 and S~ (sulphur dioxide) can be 

emitted from volcanic eruptions (Siggurdsson 1990). 

The lava sequences of the BTVP indicate that high volume eruptions were formed in relatively 

short intervals of one to two million years (see Chapter 2 section 2.3). Individual flows would 

have covered tens of square kilometres and would have devastated standing vegetation (Figure 

8.5). The development of the BTVP lava sequences would have been perhaps the most 

important disturbance mechanism to BTVP vegetation. The effects lava flows had on BTVP 

vegetation is elegantly displayed at McCulloch's Tree on Mull, where lava flows had spread 

into a swampy environment and destroyed, and entombed the standing vegetation. 

Palynomorph assemblages found throughout the lava sequences of the BTVP suggest that 

although lavas may have greatly affected vegetation it did not decimate it entirely. The 

widespread occurrence of presumed climax taxa (taxodiaceous and pinaceous pollen) indicates 

that BTVP vegetation was resilient to volcanic disturbance and was able to re-colonise and 

develop into climax communities relatively rapidly after periods of volcanism. 
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The outer margins of the BTVP would have contained relatively pristine vegetation which could 

disperse into the BTVP during quiescent phases. The pre-Paleogene landscape with its diverse 

topography may have also provided refugia from the eruptions (Figure 8.5). Pockets of 

undisturbed forest within the lava fields would have provided a source of colonists to newly 

developed, barren lava flows and permitted the establishment of communities more rapidly. 

Fluvial systems may have also provided corridors for vegetation to colonise newly developed 

flows. The sedimentary environments produced by deposition of sediments in rivers and lakes 

may have provided a more hospitable environment for BTVP vegetation compared to the lava 

flows. The sedimentary record on Skye and MuIl indicates that rivers developed on the lava 

surface (Williamson and BeI11994, Kerr and Kent 1995), these fluvial environments may have 

therefore provided an important source of vegetation to the surrounding lava flows (Figure 8.5). 

Although the lavas may have devastated the standing vegetation it appears from the vegetation 

record that plants were able to cope with the frequent large scale eruptions, possibly because of 

these refugia. 

Wild fires that resulted from the lava flows could have the potential to cause significant 

disturbance to vegetation. The presence of subangular equidimentional black wood in 

palynological samples, particularly in the Palagonite Tuff plant beds of northern and eastern 

Skye indicates that wild fires may have been frequent (JoIIey 1997). Fire may well have affected 

the successional scheme of the BTVP vegetation by removing dominant species and enabling 

more disturbance tolerant species to re-establish (Figure 8.5). The humid conditions of the 

BTVP may have partially mitigated the intensity of these fires, however, and reduced 

widespread disturbance to BTVP vegetation. 

The presence of pyroclastic and tuff deposits indicate that more explosive volcanism occurred in 

the BTVP. Pyroclastic flows would have devastated local vegetation, much like recent 

pyroclastic events have had on Mt St. Helens (Fuller and Moral 2003). A high proportion of the 

pyroclastic deposits recognised in the BTVP have, however, been subsequently reinterpreted as 

mass movement deposits (see Brown et al. 2009). This suggests that these events may have been 

rare and perhaps restricted to sites near to central volcanoes (Emeleus and Bell 2005, Brown et 

al. 2009, Holohan et al. 2009). It is likely therefore that pyroclastic flows had a limited effect on 

BTVP vegetation as a whole, but may have been locally highly destructive to vegetation 

growing close to central volcanoes. 

Tuff deposits, however, are much more widespread and are common feature of interbeds across 

the BTVP, but are typically not extensive and generally are < 1m thick (Emeleus et al. 1996). 

The structure and composition of the crystals within these tuff deposits suggests they were 

deposited sub-aerially and may have a pyroclastic origin. The crystals and lithic fragments 
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within these tuff deposits often differ significantly to the surrounding lava flows and are more 

indicative of evolved magma types and explosive volcanism (Emeleus et a1. 1996). 

A high proportion of the tuffaceous deposits appear to represent short intervals, as their overall 

structure indicates that only low levels of weathering occurred prior to their entrapment by later 

flows (Emeleus et a1. 1996). It is likely therefore that these tuff deposits may mark periods of 

reactivation of volcanism following quiescent phases where more evolved magmas were 

erupted with the more basic effusive lavas. The combination of large scale effusive eruptions 

and localised explosive volcanism may have been a significant source of disturbance to BTVP 

vegetation. 

Volcanic gas emissions, particularly sulphate aerosols can have a significant impact on 

vegetation by causing severe damage to leaf tissues, which can result in major vegetation 

mortality events (e.g. Winner and Mooney 1980, Grattan and Pyatt 1994, Delmelle et a1. 2002). 

Leaf tissues often display signs of damage caused by volcanic gas emissions such as darkening 

of the tissue or necrosis (e.g. Winner and Mooney 1980, Delmelle et a1. 2002). Fossil leaves 

may therefore record the effects of volcanic gases on vegetation. These features have, however, 

not been recognised on the BTVP leaves. This perhaps is partly due to limited preservation of 

mesophyll tissue and damaged leaves may also degrade more rapidly in sedimentary 

environments and therefore have less preservation potential (Ferguson 1985). Although no 

direct evidence for damage caused by volcanic gas emission has been observed it is likely that 

volcanic degassing would have had a significant impact on vegetation of the BTVP. 

The scale of volcanic disturbance caused by BTVP volcanism would have varied significantly 

depending on the intensity and relative duration of the disturbance mechanisms. Lava flows 

would have had a more localised effect on vegetation, but the intensity of disturbance may have 

been severe resulting in complete destruction of established communities. Wild fires caused by 

the interaction of the hot lavas with vegetation may have extended the disturbance radius of the 

lava flows, as the fires may have been able to spread over larger spatial scales. The ejection of 

tuff from eruptions could have had the potential of effecting vegetation across the BTVP, 

because of its ability to be transported and subsequently deposited over large spatial scales. 

Volcanic degassing may have also introduced another source of disturbance, which could have 

severally damaged and killed standing vegetation. The vegetation record of the BTVP indicates 

that despite of these sources of disturbance plant communities were able to survive or re­

establish themselves after periods of volcanism. 
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8.3.2 Summary 

Modern volcanic environments, particularly the Hawaiian Islands have provided an important 

insight into how the volcanic environment of the BTVP may have affected the vegetation. The 

development of the extensive lava fields of the BTVP would have presented a significant 

challenge for vegetation entering this region. The vegetation of the BTVP would have had to 

cope with low nutrients and disturbance caused by volcanism. The fossil floral record indicates 

that despite of these obstacles plants were able thrive in the BTVP, and recover after 

disturbance. 

Plant succession patterns on Hawaii have provided an insight into how BTVP succession may 

have developed on the lava flows. Lichens, mosses and ferns were likely the first colonists. 

These would have been followed by woody angiosperm shrubs and trees, which were capable of 

colonising and surviving on the immature flows. Progressive increases of nitrogen and 

phosphorous through weathering of the volcanic substrate coupled with addition nutrients from 

external sources would have facilitated the establishment of late succession angiosperm 

dominated woodland. This woodland would have then been succeeded by mixed coniferous 

forests, which is suggested here as the climax community type for the BTVP. 

Disturbance caused by NAIP volcanism would have played a vital role in the shaping of the 

plant communities. Lava flows, wildfire, explosive volcanism and volcanic degassing may have 

contributed to the disturbance of plant communities. Despite of these potential disturbance 

mechanisms it is apparent from the floral record that vegetation of the BTVP was able to 

survive and indeed flourish in this volcanic environment. The margins of the BTVP and refugia 

within it would have provided a source of colonists and nutrients to the volcanic landscape 

during quiescent phases. 

8.4 Paleocene climate records 

8.4.1 Introduction 

The palaeoclimate estimates derived from the angiosperm leafmorphotypes of AlIt Mor, Skye 

and Ardtun, Mull have provided an insight into mid Paleocene climates. To test the reliability of 

these results they must be compared to other independent climate proxies from the Northern 

Hemisphere. The marine isotopic record, the terrestrial botanical record, atmospheric CO2 levels 

and other climate proxies are compared with those obtained from the BTVP ftoras. Firstly this 

will help establish ifthe results from this study are valid, and will secondly provide information 

on how these results fit within the global climate record of the Paleocene. 
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8.4.2 Isotopic record of Paleocene climate 

The Paleocene was wann with benthic marine temperatures ranging from 6 °C to 12 °C, and low 

latitudinal temperature gradients (Zachos et al. 2001). The general climate trend through the 

Paleocene was a decrease in marine temperatures during the Early and mid Paleocene (Danian 

to Selandian) followed by progressive wanning in the Late Paleocene (Thanetian), which 

culminated in by pronounced wanning at the end of the Paleocene with the Paleocene/Eocene 

Thermal Maximum (PETM) (Zachos et al. 2001, Zachos et al. 2008, Westerhold et at. 2011) 

(Figure 8.6). 

The high resolution Paleocene benthic isotopic record produced by Westerhold et al. (2011) 

(Figure 8.6) has provided an excellent basis to access climatic change during this interval, and 

to establish how the climate data obtained from floras of the BTVP relate to the oceanic record. 

The focus of this discussion is on the mid Paleocene climate record and events prior and 

proceeding this interval (-62 to 59 Ma), as this is most relevant to floras of the BTVP. 

The oxygen isotope record indicates that a period of relative cooling in the benthos began at -63 

Ma and continued throughout much of the Danian and Selandian until 59 Ma, with the greatest 

phase of cooling between -61 to 59 Ma (Zachos et al. 2001, Westerhold et at. 2011). The 

positive oxygen excursion during this interval indicates benthic marine temperatures declined 

by -3 °C from 63 to 59 Ma. This cooling in the oceans is consistent with cooling trend for the 

BTVP floras. 

The isotopic record does, however, indicate a warming event occurred at 61.75 Ma, and when 

marine temperatures increased rapidly by 2 °e (Westerhold et at. 2008, Westerhold et at. 2011). 

This wanning event is termed the Late Danian Event (LDE) (Figure 8.6), and is marked by a 

negative ol3e and 0180 values (Westerhold et al. 2011). 

The extensive laterite sequences of Inter basaltic Fonnation of Antrim, Northern Ireland may 

potentially correspond to the LDE. The interbasaltic formation has been dated as 61.3 ± 0.3 Ma 

(Ganerod et at. 2010). which would suggest it is younger than the LOE. This age is based on an 

intrusive feature, the Tardee Rhyolite that is younger than much of the laterite sequences. It is 

possible therefore that development of the extensive laterites of the Interbasaltic Fonnation 

coincide with the LOE, and their fonnation was facilitated by the enhanced wannth of the LOE. 

The absence of such extensive laterites elsewhere in the BTVP supports this assertion that the 

Antrim laterites fonned under warmer, possibly subtropical conditions compared to the more 

temperate conditions later in the BTVP's development. 
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The effects of the LDE hyperthennal event appear to have been short lived because -200kyr 

after its onset the general cooling trend of the mid Paleocene continued (Westerhold et al. 

20 11). Unfortunately the oxygen isotope data for the early Selandian, the interval in which the 

floras of Ardtun, Mull (60.5 ± 0.3 Ma) and Allt Mor, Skye (60.16 ± 0.45 Ma) were growing is 

sparse compared to other intervals (Figure 8.6). Peak cooling in Occurs in the late Selandian and 

coincides with the Early Late Paleocene Event (ELPE) and not with the BTVP floras. Benthic 

marine temperatures in the early at the time of the BTVP floras are, however, cooler compared 

to early Selandian and late Danian. This indicates that the floras of the BTVP are too old to 

record peak cooling in the Paleocene, but may be providing a cooling signal observed earlier in 

the Selandian. 

8.4.3 Botanical record of Paleocene climate 

The terrestrial climate record for the Paleocene has been established from physiognomic 

analysis offossil floras from this interval. The floral record of North America in particular has 

provided an excellent climate record for the Paleocene (e.g. Wolfe 1978, Hickey 19RO, Wing et 

al. 1995, Davies-Vollum 1997, Wing et al. 1998, Wilf2000, Johnson et al. 2003, Wilfet al. 

2003, Peppe 2010). 

Mean annual temperature (MAT) estimates derived from physiognomic analysis of Northern 

Hemisphere floras of the mid latitudes (>30 ON to 55 ON) and low latitudes «30 ON) sites were 

compiled from the literature to produce a temperature curves for the Paleocene shown in Figure 

8.7. These MAT curves were then compared with the Westerhold et al. (2011) oxygen isotope 

curve to establish if the terrestrial and marine records provide a similar climate record (Figure 

8.9). 

The majority of the floral sites used in the curves are from sites from the western interior of 

North America, but a single site from China and the two BTVP floras were used in the mid 

latitude curve (Figure 8.7). The BTVP floras although a member of the Areto-Tertiary floral 

zone are still mid latitude floral sites geographically, and have therefore been lumped with 

similar latitude floras in North America and China. The low latitude curve is composed of floras 

from the Mississippi Embayment area of the US (Wolfe 1978). It is important to note that MAT 

estimates derived from these floras were not published, but were detennined here using the 

margin percentage scores published in Wolfe (1978). The MAT estimates were detennined by 

applying the transfer function LMAI to these margin percentage scores (see chapter 6 section 

6.2.3 for procedure). 
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The MAT data in Figure 8.7 show that the floras of the KlPg boundary, the earliest Danian and 

the latest Thanetian have been most extensively analysed, while those of the late Danian and 

Selandian are sparse (Figure 8.7). The general trend for the mid latitude curve indicates that the 

climate of the Danian was variable but generally warm, the Selandian was cooler and 

temperatures progressively increased in the Thanetian (Figure 8.7). The low latitude curve, 

although limited indicates that the climate of the Mississippi Embayment area cooled 

significantly through the Selandian and early Thanetian, and temperatures had reached early 

Se1andian levels in the earliest Eocene (Figure 8.7). 

The mid latitude curve shows that MAT prior to the KlPg boundary steadily increased from -6 

0c to 12 °c to 13 °c to 19 °c at the boundary (Wilf et a1. 2003). Temperatures after the 

boundary appear to have been cooler, which is consistent with the oxygen isotope record 

(Zachos et a1. 2001, Westerhold et a1. 2011). Figure 8.7 does not display the cooling trend after 

the KlPg as clearly, as other North American floral sites appear to be significantly wanner than 

those obtained by Wilf et a1. (2003). Estimates for the first three million years of the Danian are 

highly variable (Figure 8.7). This variability may be the result of climatic changes caused by the 

KlPg extinction or latitudinal variation of the sample floras. 

Latitudinal variation between the floras of the mid latitudes as well as regional variation in 

vegetation may be partially responsible for the observed variability between the temperate 

estimates. For example the 64.1 Ma Castle Rock flora of Colorado represents a paratropical 

rainforest with an MAT estimate of22.2 ± 2 °c (Johnson and Ellis 2002), this flora is c,ontrast 

with coeval vegetation in Wyoming and Montana and southern Canada, which provided MAT 

estimates of 6.5 ± 2.5 °C and 7.0 ± 2 °c respectively (Davies-Vollum 1997, Wolfe 1986). 

The mid latitude floras have been lumped together as they occur within latitudinal range of -30 

"N to 55 ON. Due to potential changes in climate it is difficult to calculate latitudinal variation in 

temperatures through the Paleocene, particularly as latitudinal temperature gradients have not 

been adequately developed. Combing these floral estimates together may therefore provide a 

broader MAT signal for particular points in the Paleocene, and mask local or latitudinal 

variation within the mid latitudes. The absolute values may vary between sites but determining 

the MAT trend through the Paleocene is important to determine if the botanical record is 

comparable with the marine record. 

The B?"VP floras from Ardtun, Mull and Allt Mor Skye indicate that significant cooling 

occurred in the mid Selandian. The intensity of cooling between the time of the Ardtun floras 

and the AIlt Mor flora varies depending on the physiognomic method used, differences in MAT 

range from 1.0 °C to 5.1 °C. Coeval floras from Williston Basin, North Dakota also indicate mid 

Se1andian cooling, although ofa lower intensity. Peppe (2010) found that MAT signal from the 
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Selandian Williston Basin floras decreased from 6.9 ± 3.32 OC to 5.67 ± 3.37 OC between 60.66 

Ma and 60.15 Ma respectively. Younger, early Danian floras from this basin were a further 1 OC 

warmer, which suggests a total of 2 DC decrease from the early Danian to the mid Selandian. 

The floras of the Mississippi Embayment also show this cooling trend (Figure 8.9), two floras 

from 61 Ma indicate tropical to subtropical conditions (28.7 OC ± 2 and 25.3 ± 2 OC) but by 60 

Ma the MAT decreased to 21.9 ± 2 DC and continued to decline to ] 9.5 ± 2 OC at 58 Ma (Wolfe 

1978). The degree of cooling between 6] Ma to 60 Ma is difficult to determine due to the 

standard error (sample error) but indicates MAT decreased anywhere between 10.3 OC to 1.8 OC. 

The intensity of cooling obtained from mid Selandian floras appears to be highly variable 

regionally, the BTVP and Mississippi Embayment floras indicate that significant cooling may 

have occurred, while those of the Williston Basin suggest only minor cooling. This may suggest 

that local effects buffered or exacerbated climate cooling in the mid Paleocene. 

8.4.4 Paleocene COl record and cUmate 

The concentration of atmospheric CO2 in the Paleocene are estimated to be in the range of 

-200-4000 ppmv (Ekart et a!. 1999, Pearson and Palmer 2000, Cojan et a1. 2000, Royer et aI. 

2001, Nordt et a!. 2002). Stomatal index has produced some of the lowest estimates with mean 

estimates of -356 ppm, indicting near-present levels of atmospheric CO2 (Royer et a1. 2001, 

Beerling et a1. 2002, Royer 2003). 

The highest CO2 estimate was obtained from Ginkgo gardneri leaves from Ardtun, Mull with 

826 ppm. Royer et aI. (2001) suggested that the Ardtun floras were growing at 55.2 Ma during 

the time of the PETM, where CO2 increased dramatically. The Royer et a1. (200 I) study claims 

the dating of this flora is uncertain, and assigned this age based on the palynological dating by 

Jolley (1997). The potential inaccuracies based on the palynological dating of Ardtun have been 

discussed in Chapter 7 (see section 7.3), which suggests the age assignment used by Royer et aI. 

(200 I) may be unreliable. 

Accurate radiometric dating of the Staffa lava group, which contains the Ardtun leaf 

assemblage, has been dated as 60.56 ± 0.29, suggesting a mid Paleocene age (Chambers and 

Pringle 200]). Royer et a1. (2001) tested the Ardtun sediments for the negative carbon 

excursion, which could assign this flora to the PETM, but were unable to detect it. The 

palaeoclimate estimates from this study also refute a latest Paleocene age assignment, as the 

temperature estimates are too low compared to temperature estimates for the PETM (Wing et aI. 

1998, Wing et a1. 2000). The CO2 estimates derived from the stomatal index of fossil Ginkgo 

leaves presented in Figure 8.8 have been modified from Royer et a1. (2001) and Royer (2003), 
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with the appropriate mid Paleocene age assignment as indicated by the radiometric date for 

Ardtun. 

As to why the Ardtun Ginkgo gardner; leaves have provided higher CO2 estimate relative to 

other estimates in the studies conducted by Royer et a1. (200 I) and Royer (2003) may be related 

to species specific variation and local volcanic sources of CO2• The majority of CO2 estimates 

presented in Royer et a1. (2001) and Royer (2003) were obtained from Ginkgo adiantoides 

leaves from North America. This form of Ginkgo could potentially have a different response to 

C02 than Ginkgo gardner; of Ardrtun, Mull and may therefore, provide differing estimates of 

CO2. Ginkgo gardner; was also growing in volcanically active environment where CO2 may 

have periodically been higher than ambient levels due to volcanic degassing. It is therefore 

possible that the CO2 estimates derived from the Ardtun Ginkgo leaves may not be comparable 

to those from North America. The higher estimate from Ardtun may indicate that the 

atmospheric levels were higher in the Paleocene than the North American record suggests. 

Pedogenic carbonates have provided estimates of CO2 levels during the Early Paleocene (Cojan 

et a1. 2000, Nordt et al. 2002). These studies indicate that CO2 concentrations increased rapidly 

towards the K/Pg boundary from -700 ppm to 1400 ppm and declined suddenly at the boundary 

to -700ppm (Nordt et al. 2002). Atmospheric CO2 levels following the boundary show a 

gradual increase to -800 ppm at -64 Ma, and continued to increase in the Danian to -1500 ppm 

at -62 Ma (Cojan et al. 2000, Nordt et a1. 2002) (Figure 8.8). 

Boron istopes from planktonic foraminifera have provided CO2 estimates for the past 60Ma 

(Pearson and Palmer 2000). This method indicates that there was a significant decline in 

atmospheric CO2 from -3600 ± 1000 ppm at 60 Ma to 2400 ± 1000 ppm at 58 Ma. which was 

followed by a gradual increase in the Late Paleocene (Pearson and Palmer 2000) (figure 8.8). 

This method was criticised, however, because ocean chemistry, particularly pertaining to 

sediment influx and ion concentrations was not fully taken into account (Demicco et al. 2003). 

Demicco et al. (2003) recalculated atmospheric CO2 from Pearson and Palmer (2000) data, but 

incorporated marine pH into their modelling study. Estimates from this study produced CO2 

estimates that were -1000 ppm lower than Pearson and Palmer (2000) results (Demicco et al. 

2003). The trend of atmospheric CO2 calculated by Demicco et a1. (2003) was similar to 

Pearson and Palmer (2000), but the intensity of these fluctuations was reduced (Figure 8.8). 
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Figure 8.8. Atmospheric CO2 concentra tions during the Paleocene derived from multiple proxies. a) 
CO2 estimates derived from stomata l index offossil Ginkgo leaves, data from Royer et al. (2001) 
and Royer (2003). b) CO2 estimates derived from proxies and models. Pedogenic carbonates (I) 
data from Nordt et al. (2002), (2) data from Cojan et al. (2000), marine boron data from Pearson 
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from Demicco et al. (2003). Position of the Cretaceous/Paleogene boundary (KJPg), the floras of Alit 
Mor, Skye and Ardtun, Mull and the Paleocene/Eocene Thermal Maximum (PET!) shown. 

The Paleocene atmospheric CO2 record is patchy but by incorporating multiple proxies it has 

provided an insight into the changes in the concentrations of thi s greenhouse gas though thi s 

interval. Pedogenic carbonates indicate that significant changes occurred towards, during and 

after the KlPg boundary. This proxy has also shown that levels of atmospheric CO2 continued 

to increase in the Earl y Paleocene and reached leve ls that were greater than the latest Cretaceous 

(Cojan et a l. 2000, Nordt et al. 2002) . Marine boron and modelling of thi s CO2 proxy indicate 
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that concentrations of CO2 declined during the mid Paleocene and early Late Paleocene 

(Pearson and Palmer 2000, Demicco et a1. 2003). Stomatal index offossil Ginkgo leaves has 

provided the most well sampled record of CO2 for this interval (Royer et a1. 2001, Royer 2003). 

The estimates derived from this proxy are, however, considerably lower than the other proxies. 

With the exception of the highest estimate from Ardtun, Mull the overall record of C02 from 

this proxy displays a similar trend in the fluctuations of CO2 to the marine boron record. 

The decline in C02 during the mid and early Late Paleocene could be linked with the observed 

decline in temperatures in the oceans and the botanical record from the BTVP and the Northern 

Hemisphere. Indeed, the decline in CO2 could be a major factor contributing to cooling in the 

mid Paleocene and the cooling observed between the floras of Mull and Skye. 

8.4.5 Other mid Paleocene climate proxies 

Cooling in the mid Paleocene is also indicated from a variety of other climate proxies from 

across the Northern Hemisphere. Considerable changes in climate and weathering occurred 

across the Peri-Tethys at approximately 59 Ma. Clay mineral ratios show a widespread shift 

from kaolinite to an increase in smectite deposition (Bolle and Adatte 2000). Indicating 

precipitation became more seasonal, and the climate more arid (Robert and Kennet 1994). This 

climate shift from the wann-humid conditions of the Danian to a more seasonal and arid climate 

has been attributed to a cooling of the climate during the early-mid Selandian (Bolle and Adatte 

2000). This qualitative climate record is valuable as it indicates that significant climate change 

took place in the mid Paleocene across a wide geographic region. The changes in climate in the 

Peri-Tethys occurred after the BTVP floras, this may suggest the climate in lower latitudes may 

have been slower to respond to the cooling climate. 

The presence of glendonites (calcium carbonate concretions) in Paleocene marine sequences 

from Svalbard have been used to detennine the presence of sea ice. The study by Spiel hagen 

and Tripati (2009) indicate that sea ice fonnation may have occurred in the mid Paleocene in 

response to cooling. The presence of sea ice during the Paleocene is surprising considering the 

generally equable conditions of this period, but if correct it could suggest that cooling in the mid 

Paleocene was potentially significant at high latitudes. Dropstones in marine deposits in New 

Zealand during the mid Paleocene also suggest that sea ice may have existed in the Southern 

Hemisphere during the Paleocene (Leckie et a1. 1995). The development of sea ice provides 

further support for intense cooling in the mid Paleocene, which is consistent with the findings 

from this study. 

Biotic records also indicate that cooling may have had an effect on the distribution and 

evolution of organisms in the mid Paleocene. As discussed in Chapter 6 (see section 6.5.3) 

Iberian reefs and foraminifera in the Atlantic show significant changes that have been attributed 
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to climate cooling in the mid Paleocene (Haq et al. 1977, Baceta et al. 2005, Aguirre et al. 

2007). The maximum northern extent of crocodilians declined by several degrees of latitude in 

the mid Paleocene, which indicates climates with MAT> 14°C did not extend as far north in the 

mid Paleocene compared to the early and latest Paleocene (Markwick 1998, Markwick 2007). 

The distribution of the conifer Metasequoia also appears to have been affected during the mid 

Paleocene as its distribution declined from -33°N to 82~ in the early Paleocene to -42~ to 

79°N in the mid Paleocene (Liu et a1. 2007), which may suggest that climate cooling may have 

restricted the distribution of this presumably widespread species. 

8.4.6 Causes and consequences of mid Paleocene cooling 

The angiosperm leaves of the BTVP have provided evidence for significant cooling in the mid 

Paleocene. Climate cooling during this interval is also indicated in the terrestrial and marine 

realms (Figure 8.7), which suggests mid Paleocene cooling was global. Cooling during this 

period is not restricted to mid the Paleocene but extends from -63 Ma to -59 Ma (Figure 8.6). 

This suggests that a long period of climate cooling persisted in the Paleocene (Corfield 1994, 

Zachos et al. 2001, Zachos et al. 2008, Westerhold et al. 2011). The trigger for long term 

cooling is unclear, but peak cooling in the oceans occurred between -61 Ma to 59 Ma, which 

coincides with a decline in light carbon in the oceans (Figure 8.6). This increase in isotopically 

light carbon in the mid Paleocene is linked with enhanced primary productivity in the oceans, 

and the terrestrial realm (Shackleton 1987, Thomson and Schmitz 1997, Oberhansli and Perch­

Nielsen 1990, Corfield 1994, Kurtz et al. 2003). Enhanced primary productivity during this 

interval has been suggested to have led to significant carbon sequestration, which may have 

contributed to a decline in atmospheric CO2 (Oberhansli and Perch-Nielsen 1990, Corfield 1994, 

Kurtz et al. 2003). 

The cause of enhanced productivity in the mid to Late Paleocene has not been conclusively 

demonstrated, but North Atlantic Igneous Province (NAIP) volcanism may have been a 

contributing factor. In the following section the role NAIP volcanism may have had on climate 

cooling during the mid Paleocene is discussed. In part this may provide some insight into 

cooling signal obtained from the BTVP floras as well as providing mechanism for climate 

cooling during this interval. 

Volcanism as a driver for climate cooling has been suggested in both recent history and the 

geological record (e.g. Devine et al. 1984, Genin et al. 1995, Zielinkski 2000, Wignall 2001). 

The emission of S02 and its conversion to sulphate aerosols, along with tephra ejected in the 

atmosphere can lead to atmospheric cooling (e.g. Rampino and Self 1992, Zielinkski 1996, 

Thordarson and Self2003). Volcanic emissions can lead to cooling through two mechanisms, 

firstly through direct scattering and absorption of solar radiation and secondly through altering 

cloud microphysical properties, i.e. affecting the density and lifetime of clouds in the 
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atmosphere (Haywood and Boucher 2000, Penner et al. 2001). Cooling induced by volcanism, 

however, is generally short lived as tephra and sulphate aerosols are deposited from the 

atmosphere within days to years after to the eruption. They are therefore more likely to affect 

short-term climate change (Wignall 2001). Prolonged, large scale, repeated eruptions produced 

by Continental Flood Basalts (CFBs) such as the NAIP may have the potential to drive longer­

term climate cooling (Self et a1. 2005, Self et al. 2006). 

The impacts of volcanism on local climate have been investigated for the 1783 to 1784 AD 

eruption of Laki in Iceland by examining historical records and modelling the impacts of this 

eruption (Thordarson and Self 2003, Stevenson et a1. 2003). The findings from these studies 

indicate that during the time of the Laki eruption, and for four years following the eruption 

temperatures decreased in Iceland. The winter of 1783/1784 was particularly severe, and the 

coldest for -250 years with temperatures often falling below -15 ·C. The 1784 summer was also 

cold with frequent night time temperatures falling below freezing (Thordarson and Self 2003). 

Thordarson and Self (2003) found that the three years following the Laki eruption were 1.3·C to 

1.4 ·C cooler than the 31 year mean. 

Findings from these studies may indicate that volcanically induced cooling can have a profound 

impact on the local climate. The eruption of BTVP and NAIP lavas could have also had a 

similar short-term impact on the local climate. Although these climatic perturbations may have 

been short-lived they may have been have been of greater magnitude because of the scale of the 

eruptions. Progressive large scale eruptions in the BTVP may have favoured vegetation that was 

able to cope with periods oflow temperatures particularly in the winter, when severe frosts may 

have occurred due to volcanism. Vegetation that was unable to cope with these periods of cold 

during volcanic activity may have declined or died out in the BTVP. 

This could account for the disparity between the palaeoclimate estimates and floral 

compositions of AlIt Mor, Skye and Ardtun, Mull. The Ardtun flora was growing prior to the 

development of the major plateau lava sequences of the Hebrides, while the AlIt Mor floras was 

growing during the development of the Skye Lava Group and Mull Lava Group. The younger 

Allt Mor flora provided MAT and CMMT estimates that were significantly cooler than those of 

Ardtun. The floral composition of AlIt Mor is also different, this flora contains a higher 

proportion of conifers and deciduous angiosperms, which may have been more tolerate of cooler 

conditions. The Ardtun flora shares several of elements of the AlIt Mor flora, but also has 

forms such as Amentotaxus gladifolia and Camptodromites major, which may have been less 

tolerant of frosts. 

The onset ofNAIP volcanism between 62 and 61 Ma resulted in the development of extensive 

lava sequences in west and southeast Greenland, Scotland and Northern Ireland (BTVP) 
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(Eldholm and Grue 1994, Saunders et a1. 1997, Storey et a1. 2007). The initiation of volcanism 

corresponds with the decline in temperatures following the Late Danian Event (LDE) observed 

in the marine record (Figure 8.6). The cooling trend in the oceans and the increase heavy carbon 

begin to terminate after the cessation of BTVP volcanism (Figure 8.6). It is therefore possible 

that the first phase ofNAIP volcanism may have been a contributing factor to cooling in the mid 

Paleocene. The hiatus in volcanism between NAIP phase 1 and phase 2 may have been the 

cause of warming in the Late Paleocene. 

Volcanic eruptions may only have a relatively short-term impact on climate, but their effects on 

the biosphere may result in longer-term cooling. Continental flood basalt volcanism has been 

linked with mass extinctions, which may indicate their impact on the biosphere can be severe 

(Wignall 2001). The NAIP, however, does not correspond to any major extinction events, 

despite the scale of the eruptions (Wignall 2001). This suggests that NAIP volcanism may not 

have had such a negative effect on the biosphere. Indeed, NAIP volcanism may have had a more 

positive impact to biosphere, which may have increased primary productivity. 

The introduction of iron into the oceans from volcanic tephra may enhance phytoplankton 

growth, as iron is often limiting in marine ecosystems. The effect volcanically sourced iron may 

have on marine productivity is still unclear, but it is potentially a major contributing factor to 

the enhancement of productivity in the oceans (Duggan et a1. 2010). The introduction of iron 

into the oceans derived from NAIP ash deposition could have potentially enhanced marine 

productivity in the mid Paleocene. This process could have led to significant carbon 

sequestration and may have been a major sink for atmospheric CO2, thus leading to climate 

cooling. 

Gauci et a1. (2008) modelled the impacts of the 1783-1784 Laki eruption had on Northern 

Hemisphere wetlands and found that during the first 12 months of the eruption methane fluxes 

declined by 50%. The reduction in methane was the result of increased water acidity caused by 

sulphate deposition and reduced biological activity caused by cooler temperatures (Gauci et a!. 

2008). IfNAIP volcanism caused similar feedbacks to Paleocene wetlands it may have 

contributed to climate cooling, by reducing methane emissions. Wetland environments in the 

BTVP would have been greatly affected due to their proximity to the eruptions, and methane 

produced from these wetlands may have declined significantly. 

High atmosphere aerosol loading caused by volcanic eruptions increases the amount of diffuse 

radiation that enters the atmosphere through forward scattering, which has significant effect on 

photosynthesis (Mercado et a1. 2(09). Mercado et a1. (2009) modelled the effects S02 emissions 

produced by the 1991 Mt Pinatubo eruption and anthropogenic sources had on photosynthetic 

rates. Their study showed that photosynthetic rates increased following the eruption of Mt 
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Pinatubo in 1991, which enhanced terrestrial primary productivity for 2 to 3 years following the 

eruption. This greatly altered the global carbon sink, as increased photosynthesis effectively 

locked more light organic carbon from the atmosphere after the eruption. BTVP floras may have 

also experienced this enhanced productivity, but the proximity of the eruptions may have had 

more negative impact on the vegetation, thus offsetting any benefits. 

During the mid Paleocene much of the mid to high latitudes were densely forested. If 

photosynthetic rates were enhanced by NAIP volcanism they may have created a significant 

carbon sink, which may have contributed to climate cooling. Indeed, the marine carbon isotope 

record indicates that marine primary productivity increased significantly during the onset of 

volcanism (Figure 8.6) and reached its highest levels for the Cenozoic (Zachos et al. 2001). 

Indicators of marine productivity, such as black shales are sparse in the Paleocene (Kurtz et al. 

2003). This indicates that the increase in productivity, as indicated by marine carbon record, 

was not in the marine realm, but may have been terrestrial. The formation of coals and soils in 

terrestrial environments could be the primary sites of carbon sequestration during the Paleocene 

(Oberhansli and Perch-Nielsen 1990, Kurtz et al. 2003). Indeed, Oberhansli and Perch-Nielsen 

(1990) have postulated that the decline in temperatures in the mid Paleocene caused an 

expansion of Arcto-Tertiary floras, which were suggested to have been greater accumulators of 

biomass compared to the more thermophilic vegetation. 

The production of C02 over progressive eruptions may have had the potential to counteract 

these cooling feedbacks. Levels of atmospheric C02 during the mid Paleocene, however, 

indicate that C02 declined during this interval (Figure 8.8). Indeed, CO2 may not have increased 

until later in the Paleocene, perhaps after NAIP volcanism. This may indicate that primary 

productivity and carbon sequestration was removing more CO2 from the atmosphere than was 

being emitted by NAIP volcanism. 

The introduction aerosols and tephra into the atmosphere from NAIP volcanism would have had 

strong, but short term impact on climate cooling. The indirect feedbacks to biosphere caused by 

volcanism, however, may have contributed to long-term cooling in the mid Paleocene. The 

enhancement of primary productivity and carbon sequestration in the terrestrial realm, coupled 

with reduction in methane emissions from wetlands caused by periodic volcanism, and 

enhanced phytoplankton productivity in the oceans may have contributed to progressive cooling 

by sequestrating carbon and reducing atmospheric CO2• 

Subsequent eruptions and introduction of aerosols and tephra into the atmosphere may have 

continued to bolster these feedback mechanisms during the development of the NAIP, with the 

net effect being long-term cooling by reducing atmospheric CO2 and methane. These feedback 

mechanisms may have contributed to the changes in floral composition and lower temperatures 
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observed in the floras of the BTVP. This hypothesis is partly confirmed by the link between the 

decline in NAIP volcanism and the rise of global temperatures and atmospheric CO2 (Figure 

8.7,8.8). This suggests that volcanism could be a key component of mid Paleocene cooling. It is 

possible that cooling in the mid Paleocene was caused by other mechanisms that have not been 

identified, but NAIP volcanism may have exacerbated the cooling trend in the Paleocene. 

Regardless of the causal mechanisms mid Paleocene climate cooling appears to be responsible 

for the differences in composition and climate observed in the floras of Ardtun, Mull and AlIt 

Mor, Skye. 

8.4.7 Summary 

The climate estimates obtained from the angiosperm leaf morphotypes of the BTVP have 

indicated that rapid and pronounced cooling occurred in the mid Paleocene. Comparisons with 

marine oxygen isotope record support these results, as benthic temperatures also show a marked 

decline during this interval (Zachos et al. 200 I, Zachos et al. 2008, Westerhold et al. 20 II). 

By compiling MAT estimates derived from leaf physiognomy from Northern Hemisphere floras 

it was possible to reconstruct the terrestrial climate record for the Paleocene. The botanical 

record appears to correlate with the marine record and shows many of the climatic trends 

observed in the marine oxygen isotope record. This suggests that Paleocene vegetation 

particularly that from North America has provided a reliable record of terrestrial temperatures 

for this interval. Mid Paleocene floral sites from mid and low latitudes in North America 

indicate cooling occurred, which supports the results from this study. 

Atmospheric CO2 records show a decline during the mid Paleocene and may correlate with a 

cooling trend. Other independent proxies and biotic records indicate that cooling during the mid 

Paleocene was global and had an impact on a wide variety of organisms. 

The causes of mid Paleocene cooling may be linked to enhanced productivity in the mid 

Paleocene, which may have been the result of feedbacks from NAIP volcanism. The 

introduction of significant quantities of volcanic aerosols and tephra into the atmosphere may 

have had a strong but short term impact on the climate. However, indirect effects to the 

biosphere that resulted from volcanic eruptions may have led to progressive cooling through 

enhanced productivity, carbon sequestration and subsequent decline in greenhouse gases during 

the mid Paleocene. These feedbacks may have been a significant factor that changed the floral 

composition of western Scotland from a warm-temperate flora to a cool-temperate flora. 
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8.5 Chapter summary 

The floras of the BTVP have provided an important insight into Paleocene vegetation and 

palaeoclimate of northwest Britain. The composition of these floras indicates that they are most 

similar to floras of the Arctic, and appear to be part of the Arcto-Tertiary floral zone. Why these 

floras had a more temperate, Arctic aspect and not a subtropical aspect like coeval floras in 

Europe may be linked to climate cooling. The decline of global temperatures during the mid 

Paleocene may have promoted the southward migration of vegetation from the Arctic into the 

BTVP. Volcanism in this region may have contributed to this cooling and further promoted the 

southward migration of lower temperature tolerant vegetation, while preventing themlOphilic 

vegetation from migrating northward. 

Floras that reached the BTVP via the North Atlantic land-bridge would have had to cope with 

the volcanic environments of the BTVP. The BTVP may have been a hostile environment to 

vegetation as it may have been nutrient poor, prone to disturbance and eruptions may have led 

to short-term, but severe declines in temperature. The floral record, however, indicates that the 

vegetation was not just able to cope with these factors but was able to flourish in the volcanic 

environments of the BTVP. Indeed, the floras may have adapted through time to cope with 

lower temperatures caused by volcanic eruptions, as indicated by the changes in flora 

composition from the Ardtun and Alit Mor floras. 

A period of major floral interchange took place between Europe and North America during the 

late Paleocene and Early Eocene (Manchester 1999). This period of floral interchange coincides 

with global warming during this interval, which may have facilitated the expansion of 

vegetation northward. The climate cooling in the mid Paleocene may have therefore acted as a 

barrier to thermophilic floral elements from mixing between Europe and the rest of the Northem 

Hemisphere as the climate in the BTVP may have been too cool to support such vegetation 

during this interval. This period of cooling and volcanism in the BTVP may have prevented an 

earlier expansion and interchange of vegetation in the Northern hemisphere. 
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Chapter 9: Conclusions 

New collections of mid Paleocene fossil floras from the Isle of Skye, Scotland have been 

investigated to determine their composition, vegetation structure and palaeoclimate. This study 

is the first to describe these plant fossils and determine the palaeoclimate infonnation they 

provide. The fossil floras of Skye have also provided insight into their relationship with the 

previously-described floras of Ardtun, Mull, and floras from other localities in the British 

Tertiary Volcanic Province (BTVP). This comparison has provided infonnation that has helped 

reconstruct the vegetation composition and structure, and its variation across the BTVP during 

the Paleocene. Furthermore, these floras have provided not just infonnation on vegetation and 

palaeoclimate of Skye but have contributed to the understanding of the floral and climate 

history of the Northern Hemisphere during the Paleocene. 

In response to the questions that were raised in section 1.6.1 a summary of the major findings of 

this study are presented below. 

9.1. Summary of major findings 

1. What are the main botanical components of the foslB floras of Skye? 

i) The fossil floral remains present in the Skye plant assemblages include a variety of 

broadleaved angiospenns and conifers. Fourteen angiospenn morphotypes have 

been identified from the Allt Mor assemblage. Eleven of these morphotypes have 

been identified as Previously described fossil taxa and show similarities to modern 

members of the Platanaceae (AMI Platanites hebridicus), Cercidiphyllaceae (AM2 

Trochodendroides antiqua), Betulaceae (AM3 Corylites hebridicus, AM4 

"Corylites cf."), Fagaceae (AM5 Fagopsiphyl/um groenlandica), Juglandaceae 

(AM6 Juglandiphyllites sp.l, AM7 Juglandiphyllites sp2, AM8 "Platycarya cf."), 

Vitaceae (AM9 Vitiphyllum seward;'), Comaceae (AMIO Comophyllum 

hebridicum) and Trochodendraceae (AMI I Zizyphoides sp.). The three remaining 

angiospenn morpbotypes of Skye (AMI2, AMI3 and AMI4) are too poorly 

preserved to determine their taxonomic affinity and are considered to be enigmatic. 

ii) Conifer fossils are an abundant component of the Alit Mor assemblage of Skye, and 

three ovulate cone types and eight shoot morphotypes have been recognised. These 

cones and leafy shoots indicate that two conifer families were present on Skye 

during the Paleocene - the Cupressaceae and Pinaceae. Seven of the shoot 

morphotypes and all three ovulate cone types are attributed to the Cupressaceae, 

these floral remains indicating that seven genera were present, including 

Metasequoia (OCI and CMl), Sequoia (OC2 and CM2). G(vptoslrobus (CM3), 
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"Chamaecyparis cf." (CM4), "Thuja cf." (CMS), Mesocyparis sp. (CM6) and 

"Calocedrus cf." (CM7). 

iii) Published palynological evidence indicates that ferns also grew on Skye during the 

Paleocene (Jolley 1997). 

2) What can these fossils tell us about the composition and ecosystem structure of the 

Paleocene BTVP vegetation? 

i) The AlIt Mor plant assemblage contains abundant conifer and broadleaved 

angiospenn fossils, which indicates that mixed coniferous forests developed on 

Skye during the mid Paleocene. These mixed coniferous forests appear to have been 

dominated by climax conifers with an understorey of woody angiospenn trees and 

shrubs. 

ii) A large proportion of the floral elements of the AlIt Mor assemblage are considered 

to be rare elements of the flora «1 %), their rarity possibly related to their limited 

preservation potential, or because they may have grown further away from the site 

of deposition or may have been truly rare elements of the flora. Rarefaction curves 

of the of the AlIt Mor flora indicate that the collection effort in this study was 

sufficient to sample the diversity of the assemblage. The rarity of many of the floral 

elements may therefore indicate that vegetation was heterogeneous. 

iii) The AIlt Geodh' a' Ghamhna and Glen Os dale plant assemblages of Skye have 

provided only a limited number of specimens. In these assemblages only 

angiospenn leaves are recognisable. This suggests that these assemblages represent 

angiospenn-dominated riparian vegetation, similar to some components of the AIlt 

Mor assemblage. 

iv) The published palynomorph record of Skye (Jolley 1997) confinns that the 

macrofossil components of the Skye plant assemblages were represented in the 

poIlen record. The study by Jolley (1997) although comprehensive in the number of 

sites sampled, was hindered by the poor preservation of the palynomorphs. The 

macrofossil record, although more biased to local vegetation appears to be 

representative of the regional vegetation. 

v) The picture of the vegetation that has emerged from the Skye floral assemblages 

and palynomorph record indicates that the vegetation of this region varied spatiaIly 

in response to disturbance (both flooding and volcanic), topography and drainage. 

The less disturbed environments appear to have developed into climax, mixed, 

coniferous forests, with taxodiaceous types dominating in the lowlands and pines in 

the more elevated areas. Areas with greater disturbance intensity or frequency such 
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as riparian environments and the lava fields of the BlVP may have been more 

angiospenn-dominated. 

3) How are the floras preserved within the volcanically dominated terrain of the BTVP, 

and what does this teD us about the palaeoenvironments in the lava field setting? 

i) The angiosperm and conifer fossils of Alit Mor appear to have accumulated in a 

pond environment that developed on the lava surface. The fragmentation of the 

angiosperm leaf specimens and their size indicates that they represent both 

parautochthonous and allochthonous elements. The parautochthonous elements 

represent marginal vegetation growing around the pond deposit and vegetation that 

was growing close by. The allochthonous component of the flora appears to have 

been transported by rivers and flood events, which deposited the leaf remains into 

the pond. The Alit Mor flora is dominated by local floral elements, but the 

transported component of the flora has preserved the more regional vegetation as 

well. 

ii) The Alit Mor flora represents vegetation that grew in palaeovalley, which was 

drained by a braided river system. Within this palaeovalley a variety of fluvio­

lacustrine environments developed, which in tum supported different plant 

communities. 

iii) The vegetation growing on the valley sides and tops was probably dominated by 

conifers such as Metasequoia, Sequoia, members of the Cupressoideae (CM4 to 

CM7) and members of the Pinaceae (CM8). These conifers appear to have 

colonised the valley floor and the less disturbed sections of the floodplains, as their 

remains are common in the AlIt Mor assemblage, particularly Metasequoia and 

Sequoia. 

iv) The more disturbed sections of the floodplains and channel margins appear to have 

been dominated by woody angiosperms, in particular Platanites, Trochodendroides, 

Corylites and "Platycarya cf.". These angiosperm taxa may also have grown within 

the more conifer-dominated patches of forest, as the understorey. 

v) Waterlogged swamp or marginal lacustrine environments appear to have supported 

both angiosperms and conifers, in particular Metasequoia, Glyptostrobus and 

members of the Platanaceae, Cercidiphyllaceae, Betulaceae and Juglandaceae. 

4) How does the new flora from Skye compare with the weD known nora from MuD? 

i) The well studied flora of Ardtun, Mull contains many taxa that are also present in 

the Skye assemblages (see Chapter 7, Table 7.9 to 7.10), but includes elements that 

have not been found on Skye. Herbaceous elements, such as the fern Onoclea 
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hebridicus and Equisetum. have been identified in the Mull assemblages. 

Gymnosperms, such as Ginkgo gardneri and Amentotaxus gladifhlia. are relatively 

common at Ardtun but have not been found in the Skye assemblages in this study. 

The angiosperm component of the Ardtun flora has several species that are not 

present on Skye, including Camptodromites major, C. mU/linervalus, Dal'ic/oidea 

hebridica, D. ardtunensis, Cupuliferites rubrifolius and Zizyphoides ardtullensis. 

ii) The floral assemblages of Skye and Mull were formed in fluvio-lacustrine 

environments, which are broadly similar between these sites. Despite developing in 

a similar palaeoenvironment the vegetation structure of Ardtun, Mull differs 

markedly to AlIt Mor of Skye. The Ardtun flora represents an angiosperm­

dominated community and the conifers that are important in the Skye assemblage 

are either rare components of the flora or are absent. This difference in vegetation 

structure has also been noted in the palynomorph record, which indicates that 

conifers were a minor component of the Ardtun flora, but were common elsewhere 

on Mull. This suggests that the vegetation of the BTVP may have been broadly 

similar regionally but may have locally varied. This local heterogeneity may have 

been the result of differences in fluvial and volcanic disturbance, topography and 

local climate. 

iii) Another important difference between the floras is the presence of thermophilic 

elements in the Ardtun assemblage. These elements include Amentotaxus giac/ifo/ia, 

whose modern and past relatives are associated with warmer temperate and 

subtropical climates. Two angiosperms Camptodromites major and C. 

mu/tinen'atlls also appear to be thermophilic as they have entire margins and thick 

coriaceous leaf textures; Camptodromites major in particular appears to represent 

an evergreen species typical of warmer climates. 

5) What do the floras tell us about the prevailing Paleocene climate of the BTVP region 

and how it is linked to the palaeoclimates across the Northern Hemisphere? 

i) The angiosperm leaf morphotypes of Skye were used to determine the 

palaeoclimate of Skye during the mid-Paleocene. Three physiognomic methods 

were used: Leaf Margin Analysis (LMA), Climate Leaf Analysis Multivariate 

Program (CLAMP) and Multiple Linear Regression Models (MLRs). In total, 14 

separate analyses were used in this study. 

ii) These physiognomic methods indicate that the mean annual temperature (MAT) of 

Skye during the Paleocene was between -0.1 °C to 12.9 °C, although 5 °C to 9 °C is 

considered a more reliable estimate of the MAT. The seasonality of the climate was 

determined using CLAMP and MLRs; estimates of the cold mean month 
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temperature (CMM) range from -18.3 °C to 4.2 "C, and estimates ofwann month 

mean temperature (WMM) range from 19.0 "C to 25.8 "C, however the CLAMP 

estimates of CMM (-3.0 °C to 4.2 0c) are considered to be more realistic. Estimates 

of the growing season precipitation (GSP) were determined using CLAMP and 

MLRs and range from 1175.6 mm to 2266.7 mm, indicating that the climate of 

Skye during the mid-Paleocene was cool temperate to temperate, had seasonally 

cold winters and warm summers, and was humid. The palaeoclimate of Skye 

appears comparable to modern temperate rainforests, which is supported by the 

botanical composition of the flora. 

iii) The variation observed using the different methods indicates that caution should be 

used when a single method is used to determine palaeoclimate. The anomalously 

high temperature estimates derived from the CLAMP analysis may indicate that this 

method is less reliable for Paleocene or older floras. This assertion requires further 

scrutiny with better preserved and more diverse floras from this interval to test 

CLAMP's reliability using Paleocene or older floras. 

iv) The angiosperm leaf fossils of Ardtun, Mull were also analysed for palaeoclimate 

using the same methods. Estimates for MAT ranged from 2.5 °C to 15.5 °C, 

although a MAT of 7 °C to 13°C is considered to be more representative. Estimates 

ofCMM ranged from -9.4 °C to 5.6 °C, and for WMM ranged from 20.2 °C to 29.0 

°C. The CLAMP estimates of CMM (-2.7 °C to 5.6 0C), similar to those obtained 

from the Skye floras, are considered to be reliable. Estimates of GSP ranged from 

791 mm to 2448 mm. This indicates that the ambient climate of Mull was temperate 

to wann temperate, seasonal with cool winters and warm to hot summers, and was 

humid. 

v) The palaeoclimate results derived from the floras of Skye and Mull indicate that the 

climate changed significantly during the mid Paleocene. The MAT estimates from 

Mull are I.WC to 5.1 °C warmer than those obtained from Skye, which indicates that 

the climate cooled during the time interval separating the Mull and Skye floras. 

vi) The age of the Ardtun flora of Mull has been questioned, radiometric dating 

suggests that it was mid Paleocene in age (60.6 ± 0.3 Ma), while palynological 

dating osuggested the flora was latest Paleocene to earliest Eocene in age (55 to 

54.5 Ma). The composition of the Ardtun flora does not appear to be similar to 

floras of the latest Paleocene, which are associated with warmer climates. The 

palaeoclimate estimates for this flora obtained in this study also do not support the 

younger age assignment, as they are too cool compared to coeval floras in North 

America during the latest Paleocene. The radiometric dating of Ardtun was 

therefore considered to be more reliable, and the Ardtun flora of Mull is considered 

to be mid Paleocene in age. 
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vii) The palaeoclimate results derived from the BTVP floras were compared with other 

climate proxies from the Northern Hemisphere, which also indicate that cooling 

occurred during the mid Paleocene. Benthic marine oxygen isotopes indicate that 

cooling began at -63 Ma and reached its lowest temperatures between 60 to 59 Ma. 

Mean annual temperature estimates derived from fossil floras from sites in the mid­

latitudes of the western interior of the USA and the lower latitudes of the 

Mississippi Embayment area also show marked declines in temperature during the 

mid Paleocene. 

viii) The cause of mid Paleocene cooling is unclear, but appears to be linked with an 

increase in productivity and carbon sequestration in the terrestrial and marine 

realms, a decline in atmospheric CO2 and North Atlantic Igneous Province 

volcanism (including BTVP volcanism). The fossil floras of the BTVP have 

therefore provided further evidence for a distinct cool period in the mid-Paleocene 

prior to the intense warmth of the Paleocene/Eocene Thermal Maximum (PETM). 

6) How do the BTVP floras relate to other Northern Hemisphere vegetation during the 

Paleocene? 

i) The floras of the BTVP include representatives of common Paleocene Northern 

Hemisphere plant taxa such as Onoe/ea, Ginkgo, Metasequoia, Glyptostrohlls, 

Trochodendroides, Corylites, Fagopsiphyllllm, Cornophyllllm, Zi:yphoides. Ushia 

and Macclinotockia. These floral elements indicate that the BTVP had a similar 

character to many floral sites in the mid to high latitudes of the Northern 

Hemisphere, and in particular sites in Greenland, Svalbard and Canada. The 

similarities indicate that the BTVP floras were part of the Arcto-Tertiary floral 

zone. 

ii) Comparisons with coeval European floras indicate that they share a few floral 

elements but have markedly different characters. The European floras contain more 

thermophilic elements and appear to have grown in subtropical or paratropical 

climates, compared to the more temperate conditions of the BTVP. 

iii) The BTVP flora, although similar to the rest of the Northern Hemisphere, contains 

elements that are rare or absent elsewhere in Paleocene floras. Platanites, a 

common component of the Skye and Mull floras, has only been described from one 

site in Canada. Members of the Juglandaceae were a relatively common component 

of the BTVP floras and may indicate that this group was diversifying earlier in 

Europe than previously indicated. The diversity of conifers at AlIt Mor is of note, 

as they were uncommon or absent from many European floras. Why these conifers 

were well established in the BTVP and not elsewhere in Europe during the 
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Paleocene is currently unclear, but may be due to the cooler climate of the BTVP 

compared to warmer subtropical or paratropical climates of Europe. 

iv) The similarity of the BTVP flora with other Paleocene floras from the Northern 

Hemisphere indicates that vegetation was free to migrate from the Arctic and 

adjacent regions into northern Britain via the volcanically-active corridor of the 

North Atlantic land bridge. The BTVP and the NAIP therefore represented an 

important land corridor that enabled floral interchange between Europe and the rest 

of the Northern Hemisphere throughout the Paleocene. The North Atlantic was of 

vital importance to the significant period of floral interchange that took place in the 

Late Paleocene and Early Eocene. This phase of floral migration coincided with 

global warming, hence the cooler climates of the mid Paleocene and the relatively 

low temperatures of the BTVP may have, therefore, acted as barrier to 

thermophillic elements and may have prevented a floral interchange from taking 

place earlier in the Paleocene. 

9.2 Future work 

This study has provided an insight into the floras and palaeoclimate of the BTVP, but there is 

still scope further development and understanding. Several areas of research that could be 

improved or undertaken are briefly outlined below. 

• Investigating other sedimentary sequences in the BTVP for fossil plant remains may 

provide additional information on the floral diversity and structure of the BTVP. Jolley 

(1997) noted that the Alit Mor, Carbostbeg locality on Skye contains leaf and seed 

fossils, so this site should be investigated for additional information on vegetation 

composition. These floras could also provide additional information to improve the 

palaeoclimate estimates. 

• High resolution radiometric dating of the lavas and sedimentary sequences with the 

Skye Lava Group could improve the dating of the Skye floras to better date climate 

change during the mid Paleocene. 

• In Chapter 4 the conifer fossils of the Alit Mor assemblage were described and 

identified. These results are preliminary because Robert Mill of the Royal Botantical 

Gardens of Edinburgh is conducting a detailed botanical study of the conifers. Future 

collaboration with Robert MiH may provide a more detailed insight into the systematic 

relationships of these conifers and how they relate to other conifer species in the 

Northern Hemisphere. 
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• In Chapters 6 and 7 three physiognomic analyses were used to determine the 

palaeoclimates of Skye and Mull. These three methods include LMA, CLAMP and 

MLRs, these methods produced conflicting estimates of the climate, in particular mean 

annual temperature. The results obtained from CLAMP were often considerably wanner 

than those obtained from LMA and MLR. These results highlight the importance of 

using multiple methods to obtain palaeoclimate information from fossil floras, and 

caution should be taken when only a single method is used. The reliability of CLAMP 

analysis for Paleocene and older floras should be investigated with greater scrutiny, and 

preferably with more diverse floras to ensure that this factor is not responsible for the 

discrepancies observed in this study. 
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