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ABSTRACT 

Siagging and fouling during the combustion of pulverised coal in boilers is a 

major problem as power generators strive to improve the efficiency of plants. 

The coal type has a major influence on the slagging propensity in furnaces. The 

correlation between predicted results using some of the existing slagging 

indices and the actual observations made in most conventional boilers has been 

poor, especially when their use is extended to different coals. 

In this thesis, a numerical model to predict coal ash particle deposition rate in 

pulverized coal boilers has been developed. The overall sticking probability of 

the particle is determined by its viscosity and its tendency to rebound after 

impaction. The deposition model has been implemented in the Fluent 12.1 

software, and the effects of swirling motion ash particle viscosity on deposition 

rates have been investigated. The predicted results are in good agreement with 

the reported experimental measurements on the Australian bituminous coals. 

Also, a novel numerical slagging index (NSI) which is based on ash fusibility, 

ash viscosity and the content of ash in the coals has been developed. The 

incoming ash shows significant influence on slag accumulation in boilers. The 

results of assessment of the slagging potential using the NSI on a wide range of 

coals and some coal blends correlate very well with the reported field 

performance of the coals. The NSI has been modified to predict the slagging 

potential of some coal and biomass blends with < 20% biomass ratio. The 

results of predictions using the modified index on coals blended with sewage 

sludge and saW-dust are in good agreement with the experimental data. 
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1.1 General Background 

1 

CHAPTER 1 

INTRODUCTION 

The availability of energy in reliable and economical form is considered as a 

major pre-requisite for national development and it remains a major challenge 

for energy engineers (Mshelia, 1997). The world's energy demand is 

continuously growing, with higher growth rates in developing countries than in 

the developed ones. Energy suppliers are faced with numerous challenges, 

including environmental and operational related ones, and these challenges 

need to be fully understood before resolving them. 

In order to solve the problems related to energy generation, experimental and 

numerical techniques are been developed, and some of the features of the 

power generation facilities and their operational conditions are modelled in 

order to enhance the understanding of the system. So far, tremendous 

achievements in the use of numerical techniques have been recorded. 

However, still a lot needs to be done considering the increasing demand for 

energy and the fast depletion of some of the available energy resources. 

The increasing demand for energy is apparent in view of the population 

increase and technological advancements across the globe. In the International 

Energy Outlook for 2010, the Energy Information Administration (EIA, 2010) 
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projected that world energy consumption will increase by 49% from the year 

2007 to the year 2035, with the largest projected increase in energy demand 

from the developing countries. 

According to the EIA report, China and India, being the least affected by the 

current economic recession, continue to lead the world's economic growth and 

energy demand. The report also projected that the world marketed energy 

consumption by the year 2015 will be 543 quadrillion Btu as against 495 

quadrillion Btu in the year 2007 (EIA, 2010). 

According to Pimentel et a/. (1994), the United States (US), with only 4.7% of 

the world's population, consumes approximately 25% of the total world's fossil 

fuel used each year. They described this situation as critical in view of the fact 

that US now imports about half of its oil from other countries. They further 

stated that the domestic fossil fuel reserves in the US are rapidly being 

depleted, and their coal supply could be used up in a period shorter than the 

projected 100 years. 

Electric energy demand shows similar escalating trends. Estimates show that 

the total world energy and electric energy consumption will double in a couple of 

decades' time. According to some research reports, the doubling period is much 

shorter for developing countries, particularly those countries undergoing 

development programmes with a relative high population growth rates (Mshelia, 

1997). 
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The available sources of energy include the non renewable, such as, oil, gas, 

coal and nuclear, and the renewable, such as, biomass, geothermal, hydro 

power, solar and wind. These resources are distributed in different quantities 

and in different parts of the world. Although these energy resources are 

available in sufficient quantities, the financial and technological constraints 

hinder the successful harnessing of the resources in order to supply the energy 

that will meet its increasing demand. Also, it has become apparent that the 

processes of generating energy using most of the existing resources are 

accompanied with numerous challenges. 

Basically, energy is used for industrial processes, transportation, space heating 

and electricity generation. Electricity generation is more popular because of its 

direct application by billions of users from all parts of the world. The 

technological advancement makes it more difficult to meet the demand for 

electricity supply. Therefore, it has become necessary to explore all available 

options of generating electricity. However, the cost of generation electricity 

remains a major concern even in the developed countries. 

One of the most important ways of generating electricity is the burning of coal to 

generate the required steam to turn the turbines. Wigley & Williamson (1998) 

anticipated that coal will remain the major source of energy for electricity 

generation in the foreseeable future. Owing to its high heating value, coal is the 

most preferred source of energy despite its emission problems. Also, if not 

because of its alarming environmental impact, the burning of coal is considered 

as a relatively cheap means of electricity generation. 
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With the emergence of clean coal technologies, such as coal gasification and 

carbon capture & storage (CCS) technique, which are being used in order to 

minimize environmental issues on coal combustion, the need for more research 

work on coal combustion optimization should not be overstressed since the use 

of coal for energy generation is on the increase. 

According to the American Coal Foundation (ACF, 2010), nine out of every ten 

tons of coal being mined in the US today is used to generate electricity, and 

more than 50% of the total electricity in the country is coal generated. In another 

projection, the World Coal Institute (WCI, 2010) suggests that coal will fuel 

about 44% of the world electricity in the year 2030, and this prediction further 

highlights the important role of coal in the energy generation sector. 

The study of the combustion process is generally based on the laws of 

thermodynamics, chemical kinetics, heat and mass transfer, and fluid flow. It is 

considered as one of the most important processes in engineering, which 

involves turbulent flow, heat transfer, chemical reactions and other complicated 

physical and chemical processes (Versteeg & Malalasekera, 2007). Most of the 

processes involved in the combustion of coals are physically difficult to measure 

for individual particles due to high temperatures in boiler situations. This further 

complicates the process and informed the need for the use of numerical 

techniques. 

With the advent of highly technical modelling capabilities, several problems 

encountered in the combustion processes, including ash-related problems, are 

being investigated. More often, the ash generated through the combustion of 
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solid fuels, such as pulverized coal, stick to the heat exchange surfaces and this 

results in operational problems, such as slagging and fouling which results in 

increased cost of maintenance (Naganuma et al., 2009; Huang, Norman, 

Pourkashanian & Williams, 1996; Rushdi, Gupta, Sharma & Holcombe, 2005; 

Mueller, Skrifvars, Backman & Hupa, 2003). Also, slagging and fouling affect 

the availability of the energy due to untimely shutdowns. 

The influence of ash deposition in boilers leaves the energy engineer with the 

choice between coal quality and cost (Wigley & Williamson, 1998), and the 

need for an effective mechanism for the removal of deposits on the boiler 

surfaces in order to protect the downstream superheaters from damage due to 

fouling and erosion (Zhang & Ahmadi, 2001). 

Although it is very difficult to effectively determine the ash deposition processes 

at operating conditions close to actual boilers in the power stations (Su, Pohl, 

Holcombe & Hart, 2001b), Benson, Sondreal & Hurley (1995) summarized the 

behaviour of ash formation and deposition in coal combustion as dependent on 

the physical transformations that are involved in a high temperature suspension, 

which include: 

i. Selective elemental vaporization and subsequent condensation to form 

surface coating. 

ii. Coalescence of mineral grains within hot reactive char particles. 

iii. Char fragmentation and partial coalescence of included mineral grains. 

iv. Shedding of particles from the char surface. 

v. Fragmentation or fusion of liberated mineral grains. 
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vi. Convective transport of the volatile species within and between the char 

particle. 

vii. Formation of thin-walled ash spheres. 

However precise such a summary of ash behaviour can be. the understanding 

of the ash deposition process at high temperatures is still inadequate (Naruse et 

8/ .• 2005). Therefore. it is desirable to intensify studies on all the individual 

mechanisms responsible for ash particle deposition in pulverized fuel (PF) 

boilers. This is considered as a viable means of understanding the ash 

deposition processes in full. 

To overcome the difficulty of the experimental study of the ash deposition 

processes in high temperature combustion. several efforts have been made 

towards developing an acceptable and robust numerical prediction model 

(Rushdi et 81 .• 2005). The performance of the developed predictions tools have 

been tested using both pilot-scale and industrial facilities. Although the results 

obtained are encouraging. still a lot more need to be done. 

Although the problem of ash deposition is still not fully understood. it is 

generally agreed that the ash deposition is due to the cumulative effect of four 

main processes, namely; inertial impaction due to particles of large sizes, 

heterogeneous reactions, condensation of flue gas in the convective region of 

the boiler and change in temperature gradient which is referred to as 

thermophoretic effect (Huang et B/., 1996; Lee & Lockwood, 1999). 
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Each of the ash deposition pathways plays a significant and distinct role in the 

overall deposition rate of ash particles. Although several attempts are being 

made to understand or predict the ash deposition processes (Lee & Lockwood, 

1999; Baxter & DeSollar, 1993; Rushdi et a/., 2005), a comprehensive approach 

that may effectively reveal the effects of individual deposition pathways is 

required. However, modelling the individual pathways will enhance the 

understanding of how they influence the overall deposition process. 

In an attempt to understand the effect of individual parameters contributing to 

the overall deposition process of the ash particles during coal combustion, the 

thermophoretic particle deposition mechanism has been studied by several 

researchers. 

Most research results on ash deposition reveal that for fine particles sizes (0.3-

1.3 IJm), the thermophoretic force plays a significant role in their deposition 

process (Lin, Tsai, Tung & Chiang, 2008; Byers & Calvert, 1969), and such fine 

particles are said to be enriched with sodium and potassium elements (Takuwa, 

Mkilaha & Naruse, 2006). 

Condensation is the mechanism by which vapours in the boiler are cooled and 

deposited to the heat exchange surfaces. However, condensation process 

mostly occurs in the regions of low temperatures, especially in the downstream 

boiler region. Both condensation and chemical reactions are strongly dependent 

on temperature, giving rise to spatial variations in the composition of the ash 

deposits (Baxter and DeSollar, 1993). 
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Baxter and DeSoliar (1993) identified three different ways that lead to 

condensation, namely, heterogeneous condensation of vapour on the boiler 

walls, homogeneous nucleation of vapours resulting in fume formation which 

deposit on the walls, and vapours condensing on other particles that are already 

deposited on the heat exchange surfaces. All the three processes require that 

the vapour has to transverse the boundary layer and hit the boiler walls before 

deposition takes place. 

Large particles (~ 1 0 ~m) are often transported to the furnace walls by inertial 

forces (Huang et al., 1996; Strand storm , Mueller & Hupa, 2007; Zhao & Wu, 

2006; Costen, Lockwood & Siddique, 2000), and such particles are assumed to 

have sufficient inertia to transverse the gas streamlines and hit the furnace 

walls (Baxter & DeSollar, 1993). 

Several investigations on the deposition patterns for both fine and coarse coal 

ash particles, considering inertial impaction, thermophoretic effect and other 

deposition mechanisms, such as, condensation and kinetic reactions, have 

been conducted (Lin at al., 2008; Rushdi et al., 2005; Lee & Lockwood, 1999). 

However, it should be noted that the ash deposition mechanisms are mainly 

responsible for the transportation of particles to the heat exchange surface, and 

therefore, there is the need to numerically determine what will be the fate of the 

ash particles after impaction on the heat exchange surfaces. 
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Thermal conditions and the aerodynamics have been identified as some of the 

principal factors that can influence ash deposition characteristics in a furnace 

(Su, Pohl, Holcombe & Hart, 2001a). Also, these important features are being 

influenced by several other factors, such as, furnace input variables, swirling 

motion, coal type and properties, burner design, etc., which also need to be 

investigated (Rushdi et al., 2005). 

Any study on ash deposition processes that do not consider deposition 

characteristics due to the temperature and the operating conditions of a system 

is considered as a poor indicator of deposition (Nutalapati, Gupta, Moghtaderi & 

Wall, 2007). In addition to other deposition factors, such as coal type, reaction 

atmosphere (oxidizing process) and flow dynamics, the temperatures of the ash 

particle and the heat exchange surface have been emphasized (Naruse et al., 

2005). 

The use of particle viscosity to determine the capture efficiency of the ash 

particles has been reported (Huang at al., 1996; Lee & Lockwood, 1999). 

However, the choice of the reference viscosity, the varying wall temperatures 

and the ash particle composition bring about inconsistencies in the research 

results. 

The choice of suitable application models in the existing commercial software 

packages, in order to simulate a particular experiment, is also considered as a 

major challenge for the modelling engineers. More often, some assumptions are 

made to represent some of the situations that are very difficult, or sometimes 
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even impossible, to measure in real boilers. The accuracy of such assumptions 

always affects the prediction results. 

In the FLUENT software for example, the available discrete phase model (DPM) 

boundary conditions include reflect, trap, escape, wall-jet, wall-film and interior 

types. It is also possible to monitor particle erosion and accretion rates. The 

erosion rate is a function of the particle diameter, impaction angle and particle 

relative velocity. However, both the available wall boundary conditions and the 

erosion rates do not effectively account for the particle capture efficiency, which 

is very significant in ash deposit growth. 

In a related development, research activities on the problems being caused by 

coal mineral impurities in large boilers have received some attention (Raask, 

1979; Wigley, Williamson & Jones, 1990). However, the choice of coal has been 

the pre-combustion priority, and several attempts to produce a more reliable 

slagging and fouling indices are being made. When coals that are more suitable 

to the design of a particular boiler are identified, the operational problems 

related to ash deposition may be minimized. 

The prediction of coal ash deposition characteristics has been traditionally 

related to the chemistry of the bulk ash and ash fusion temperatures (Gupta, 

Wall, Creelman & Gupta, 1998). Also, the ash shrinkage rate is used to 

characterize the ash behaviour in boilers. 
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The general ash fusion test (AFT), the basic to acidic ash oxides ratio (BfA) and 

the ash viscosity have been widely used as tools for the characterization of coal 

ash in boilers. However, these slagging indices do not reliably predict the field 

slagging performance of all coals (Lawrence, Kumar, Nandakumar & 

Narayanan, 2008), and hence the need for a generic and more acceptable tool. 

In recent times, empirical research reports reveal that the ash shrinkage rate 

can be correlated with the field performance of the coal since it depends on the 

ash viscosity (Raask, 1979; Gupta at a/.1998; Lawrence at a/., 2008). Although 

this is a laboratory-scale test which may not account for the dynamic boiler 

situations, at least, it accounts for the ash chemistry and the effect of changing 

temperature gradients. 

The techniques of blending different coals and the co-firing of coal/biomass 

blends in existing coal facility are widely used for the generation of electricity. 

Although the practice of blending has significant advantages, such as, ensuring 

fuel availability, cost and emissions reduction, etc., slagging, fouling and boiler 

corrosion remain critical issues to contain with. Therefore, careful selection of 

the fuels for the blends is necessary in order to minimize operational problems. 

1.2 Statement of the Problem 

The main concern for a power system engineer is to generate electricity in a 

more reliable, economical and uninterrupted manner. In pulverized coal fired 

power stations, ash deposition on heated surfaces is an important factor in 
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determining the combustion performance. This problem, which is associated 

with slagging, fouling and other boiler drive problems, often results in untimely 

power outages and high maintenance cost. In view of the importance of energy 

supply in our global industrialization efforts, untimely outages are considered 

unacceptable. 

In order to eliminate, or minimize, unwanted power outages, the ash deposition 

mechanism needs to be well understood. However, in a high temperature 

environment, such as a pulverized coal combustor, the behaviour of ash 

particles is difficult to predict. This is because of the uncertainties caused by the 

turbulence eddies in the boiler and the changing physical properties of the fuel. 

Therefore, understanding particle trajectories, or predicting the ash particles 

deposition behaviour during pulverized coal combustion in boilers, is a major 

challenge. 

Despite several research studies in the field of ash deposition, the problem is 

yet to be fully understood. Since the combustion mechanism is virtually the 

same for all solid fuels, solutions to particle tracking problems in coal 

combustion will apply to other pulverized or pelletized fuels, such as biomass, 

co-firing of coal and biomass, etc., when the fuel properties are fully evaluated 

and integrated. 

In another approach, the problems of coal ash in boilers can be minimized by 

careful selection of the coal. However, most of the existing coal selection tools 

(the coal slagging indices) have been established for particular types of coal, 
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specifically, American and European coals. Furthermore, most of the existing 

coal slagging indices do not account for ash loading in predicting coal slagging 

potential despite its significant contribution in the accumulation of ash deposits 

in boilers. 

Although there are several investigation reports on coal slagging and fouling 

assessment tools, the search for a generic and more reliable coal slagging 

index continues. The use of coal blends and the co-firing of coal and biomass 

will add more pressures. Thus, the search for a better fuel selection tool will 

continue as long as scientists and engineers manipulate the available energy 

resources in order to supply a more efficient, reliable, and cost-effective energy 

that will meet the demands of the increasing world population. 

Coal slagging indices that are developed based on the properties of different 

coals may have their use been extended to coal blends and to even 

coal/biomass blends provided that the properties of the individual fuels and the 

interaction between them are properly accounted for. 

1.3 Research Motivation 

The world's energy demand is continuously growing and demand figures are 

doubling by decades. Although predictions show rapid depletion of fossil fuels, 

several researchers have predicted that the use of coal for electricity generation 

will remain dominant in decades to come. However, environmental problems, 

such as emissions, and operational problems, such as slagging and fouling, 
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have been identified as the major challenges in coal combustion processes, and 

these problems need to be fully understood in order to profound possible 

solutions. 

A number of research studies have already been performed in coal ash 

deposition. Several experiments have been conducted and various simulation 

techniques were applied, all in an attempt to fully understand the problem of ash 

deposition mechanism. However, this problem is still not completely understood 

and it remains a major impediment in the power generation industry. 

Large countries, such as America and China, use coal for more than 50% of 

their electricity generation. The story is the same even in the developing 

countries. For example, the Nigerian government, in the first quarter of 2011, 

has announced on its state media, i.e. the Nigerian Television Authority (NTA), 

a plan to establish five coal-fired plants in the country in order to boost power 

generation. 

The problems associated with coal combustion are extremely difficult to 

physically investigate because of the high temperature situations. However, the 

advent of new prediction techniques, such as Computational Fluid Dynamics 

(CFD), has encouraged researchers to work for better results while using 

different approaches to investigate combustion problems. It is expected that the 

efficiencies of coal and biomass combustors will one day reach a new optimal 

stage. 
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Several commercial software packages have recently been put into practice. 

These packages contain some parametric values that are likely to yield better 

prediction results. However, the use of the commercial software packages to 

obtain better prediction results depends, to a large extent, on the skills and the 

ability of the user. For example, the accuracy of the results obtained using the 

FLUENT software is largely dependent on the manipulative skills of the person 

implementing the simulations. 

Also, identifying a suitable fuel to burn in a given combustion facility will 

significantly reduce the ash slagging tendency in the boiler. One of the reliable 

ways of selecting fuel is by the use of assessment tools in order to distinguish 

between a good and a bad fuel. This is one of the reasons why several slagging 

and fouling indices are being developed and improved upon. In the meantime, 

there is no universally accepted slagging and fouling indices for coal/biomass 

blends, instead, some of the existing coal slagging indices are used to predict 

the slagging potential of the blends. 

1.4 Research Objectives 

The aim of this study is to numerically investigate how some of the physical and 

chemical properties of the coal, such as bulk ash chemistry and ash particle 

viscosity, influence the behaviour of coal-ash in boilers. In order to achieve this 

objective, a numerical model to predict ash particle deposition rates during 

pulverized coal combustion, in particular in the burner region where the 
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temperatures are very high (~ 1500 K), is developed on the basis of ash 

viscosity, among other factors. 

Inertial force is assumed to be the key pathway for ash particles to transverse to 

the wall boundary layer and reach the boiler walls. When the particles hit the 

heat exchange surfaces, the ash particle viscosity, surface energy and static 

contact angle are some of the factors considered in determining the fate of the 

particles in contact with the surfaces. Particle rebound tendency at impaction is 

also considered in determining the overall sticking probability of the ash 

particles. 

Some of the factors that have sufficient influence on the ash behaviour in a 

boiler, such as the swirling motion and the viscosity of the ash, are investigated 

in order to determine how they influence the ash slagging process under 

dynamic boiler situations. 

Another popular method for minimizing slag formation in boilers is the use of a 

reliable tool in selecting coal fuel before combustion. Also, this research study is 

aimed at developing a numerical slagging index (NSI) to predict the slagging 

potential over a wide range of coals. The NSI is to account for the effects of ash 

fusibility, ash viscosity and ash loading, in predicting the slagging potential of 

the coals. 

The slagging index is flexible such that can be used to predict the slagging 

potential of coal blends. Also, it is expected to predict coallbiomass blends if 
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additional work to account for the complex properties of biomass ash is done. In 

this thesis, attempt is made to extend the use of the coal slagging index to 

predict slagging potential of co-firing blends. 

CFD techniques are used in the implementation of the developed numerical 

models. The ash deposition model is hooked as DPM boundary condition in the 

FLUENT 12.1 commercial software in order to determine the fate of the ash 

particles upon impaction on the heat exchange surfaces. Although the NSI can 

be implemented using simple tool, such as Excel and MATH LAB, the execute­

on-demand command in the FLUENT software was used. The two models are 

validated using the available experimental measurements on coal combustion 

and co-firing. 

1.5 Scope and Limitations 

The ash particle deposition processes involve several steps; complete fuel 

combustion, particle trajectories and deposition processes are the key. Ash 

deposition is a cumulative effect of four main processes. These processes 

include both chemical and physical pathways, namely; inertial impaction, 

thermophoretic attraction, condensation and heterogeneous reaction between 

the ash particles and the deposition surface (Huang et al., 1996). 

The first part of this research study is mainly concerned with the determination 

of the fate of coal ash particles that may impact on the heat exchange surfaces 

of the furnaces. The numerical model developed is to determine whether a 
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particle sticks to the furnace walls upon impact or not. The existing models for 

combustion and particle transport are used in order to establish the required 

gas phase and particle trajectories in the boilers. 

The available combustion facility that has relevant experimental measurements 

is modelled, and a computational grid is generated from the available test 

facility using the design tools provided by the University of Leeds. Furnace 

dimensions and experimental operating conditions, as provided, are used in the 

simulations. 

The slagging performance of different coal types is assessed, and some 

important parameters, such as the swirl velocity and reference viscosity, are 

varied in order to assess the sensitivity of the model. The outcome of this is 

expected to be helpful in furthering our understanding of ash-related boiler 

problems. 

The second part of this research is basically to examine the various coal 

properties and propose a numerical technique that can be used to assess the 

slagging potential over a wide range of coals. This is to complement the 

numerous attempts that are being made towards the development of a more 

acceptable and robust coal slagging index. 

The coal ash fusibility, the ash viscosity and the content of ash in coals are 

some of the physical properties to be examined along side the bulk ash 
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chemistry in order to correlate the coal properties to its slagging field 

performance. 

The numerical models developed in this research are tested using the only 

available experimental data (Su et a/., 2001b). No experimental investigation 

has been performed in order to generate any measurements for further 

validation of the proposed numerical models. The results of the comparison 

between the measured and predicted data have been analysed. 

1.6 Thesis Outline 

This thesis contains a research report that is presented in eight chapters. The 

first chapter, which is the introduction, presents the basic information on the 

research activities, including the background information on the research, a 

statement of the problem, the motivation for the research, the objective of the 

research, and the scope and limitations of the research. This chapter provides 

an insight in to the general content of the thesis. 

In chapter two, a review of the existing literature on related research areas is 

been reported. The ranks of the coals, coal properties, coal combustion and 

combustion characteristics are some of the reviewed areas. Also under this 

chapter, the available numerical techniques for investigating coal combustion 

processes have been examined. Some of the reported existing coal deposition 

models and numerical slagging indices have been summarized and presented 

in separate tables. 
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The numerical steps adopted in developing the ash deposition model are 

reported in chapter three. The mathematical equations representing the various 

stages of coal combustion and ash deposition, such as, devolatilization, char 

burnout, turbulence, heat transfer, particle trajectories, etc, are also explained in 

this chapter. Basically, chapter three deals with the governing equations and 

their respective roles in the coal combustion processes. Most importantly, the 

chapter three contains one of the novel ideas (numerical equations) that is been 

developed during the course of this research. 

In chapter four, a procedural explanation on the test case used in validating the 

coal ash deposition mathematical model has been made. The geometrical 

modelling and grid generation processes are also described in this chapter. To 

make it more explicit, the chapter is further divided into three sections. Section 

one discusses the modelling of the test facility used in this study, while in 

section two, the properties of the tested fuels and the operating conditions used 

are reported. 

All the necessary steps for the implementation of the numerical models on the 

test facility, using the FLUENT 12.1 software are described in section three. 

These computational steps are very important since they determine the 

accuracy of the calculations. 

Chapter five contains the numerical results and discussions on the ash 

deposition model. The results of predictions using the ash particle deposition 

model are compared with the available experimental data, and analyses and 
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some conclusions are made. This chapter is divided into two sections. The first 

section discusses the results of calculations using the two-dimensional (20) 

domain, while the three-dimensional (3~) calculations using the same ACIRL 

furnace and the Australian coals are reported in the second section. 

In the sixth chapter, the modelling of the NSI and the results of the assessment 

of the slagging potential of different coals using the NSI and six other existing 

slagging indices are presented. Also, in this chapter, the results obtained from 

the prediction of the slagging performance of some coal blends using the 

proposed coal numerical slagging index are reported. All the reported results 

are therefore analysed, comparatively. Also, the properties of the coals used 

and the performance of some of the existing slagging indices are reported in 

this chapter. 

In chapter seven, the coal NSI has been modified in order to predict the 

slagging potential of coallbiomass blends with a low biomass ratio. Also, the 

results of predictions using the modified coal NSI on some coal/biomass blends 

are reported in this chapter. 

Chapter eight is the final chapter which contains the conclusions from the entire 

research study and the suggested future work. Reading chapter eight will give 

an insight into the findings and the general conclusions that have been made at 

the end of the investigation. Also, the suggested areas for future work are 

discussed in details in this chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

Looking at various concepts, combustion could be seen as a sequence of 

exothermic reactions that take place when fuel and oxidant come into contact. 

These chemical reactions are complex in nature and they are accompanied by 

the production of heat and sometimes light, depending on the nature of the fuel 

and the combustion process. 

The study of combustion is generally based on thermodynamics, chemical 

kinetics, heat and mass transfer, and fluid flow. "It is one of the most important 

processes in engineering, which involves turbulent flow, heat transfer, chemical 

reactions, radiative heat transfer and other complicated physical and chemical 

processes" (Versteeg & Malalasekera, 2007). 

Some of the types of combustion include smouldering, slow, rapid, etc. One of 

the most common types of combustion is the rapid form where oxidation is fast 

and temperatures are high (1320-1800K) (Murphy & Shaddix, 2006). This type 

of combustion situation is of significant interest to power generators. The 

chemical reaction between any form of fuel and oxidizer usually involves a 

significant release of heat energy. Although the fuel type determines, to a large 

extent, the combustion technology to be used, and to some extent, the 
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maximum flame temperature that is expected (Rushdi et al., 2005) . In reality , 

the actual energy-releasing reactions occur in the gaseous phase . 

The combustion of pulverized coal is a complex process that involves gas 

mixing , dispersion of particles, mass transfer, particle heating , gas and particle 

reactions , heat transfer, swirling and re-circulating fluid mechanics, pollutant 

formation , and mineral phase transformation (Brewster, Baxter & Smoot, 1988). 

However, it is important to note that most of the world 's energy comes from the 

combustion of fossil fuels . 

It was estimated that, in 2007 , fossil fuels constitute 86.4% of the world 's 

primary sources of energy (EIA, 2010). Energy is required for transportation , 

heating , industrial processes and most importantly for electricity generation . 

Coal combustion plays a significant role in the power generation sector because 

of its high calorific value . In 2006 , the World Coal Institute (WCI , 2006) reports 

that coal constituted 41 % of the total world electricity generation (see Fig . 2.1 ). 

Hydro 
16~. 

Fig . 2.1 

Coal 
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Total world electricity generations by fuel in 2006 . 

*Others include solar, wind , combustible renewable , geothermal & waste (lEA 
2008 data). Source: Coal & Electricity , World Coal Institute . 
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The EIA Energy Outlook (2010) puts the world recoverable coal reserves as at 

January 1, 2008 at 909.4 billion short tons . The availability and uses of coal also 

motivate further research into the potential and challenges of coal combustion . 

The coal fuel is being used in different ways, ranging from electricity generation 

to manufacturing and other industrial uses. The WCI gave a breakdown of the 

available reserves according to coal ranks and uses in Fig . 2.2 (WCI , 2010). 
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Fig . 2.2 Typical uses and the estimated percentage of the world's coal 
reserves by rank. (CC) Image: World Coal Institute 

Although the burning of coal is one of the most popular ways to generate 

electricity, the process has severe environmental and operational problems. 

The environmental challenges facing the coal combustion communities are as 

diverse and heterogeneous as the coal itself (Scaroni , 1989). All the processes 
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involved in coal combustion, from mining to burning and waste disposal, are not 

environmentally friendly. 

Finkelman (2004) enumerated some of the problems caused by surface and in­

ground coal fires as follows: 

• Visual blight and loss of potentially valuable acreage; 

• Destruction of the nearby ecosystem; 

• Forest fires; 

• Sources of windblown dust and siltation of streams; 

• Deterioration of cultural infrastructure by acid gases; 

• Disruption of families and communities; 

• Physical hazards from collapse and explosion; 

• Health hazard due to respiration of dust and aerosols, exposure to acid 

gases, potentially toxic trace elements, and organic compounds; 

• Pollution of surface and ground water; 

• Loss of valuable energy resources; 

• Significant source of C02, a major greenhouse gas. 

The operational problems associated with coal burning are equally complex. 

Scaroni (1989) states that coal is very difficult to ignite when compared to other 

types of fuel. He is also of the opinion that the kinetic and pyrolysis process is 

not fully understood by the researchers, especially the temperatures of rapidly 

devolatilizing coal particles that are universally acceptable have not yet been 

established. It may be true that a little more is known about the fundamentals of 

char burnout than of the pyrolysis; and the products of coal combustion, such as 
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ash and gaseous pollutants, are of serious concern to both the coal combustion 

communities and the power engineers. He then states that the burning of coal 

has been practised for centuries and misunderstood for centuries. 

2. 1. 1 Coal classification 

Coal is generally classified by rank, and this is a broad-based measure which 

depends on the average carbon content of the particular coal (Williams, 

Pourkashanian & Jones, 2000). The rank of the coal refers to its degree of 

maturity, or its age. Adequate knowledge of the coal rank enables an 

assessment of the most important properties of the coal that are likely to affect 

the efficiency of the combustion process, or suitability of the coal to other 

industrial processes. 

The coal properties, such as, volatile matter - which determines coal ignitability, 

and calorific value - which relates to the available heat in the coal and the 

physical changing stages of the coal during combustion (the swelling, caking 

and clinkering) are some of the important bases for coal classification. 

The early research studies revealed that coal classification could be based on 

the ratio of the fixed carbon to the volatile combustible matter (FC:VM). Frazer 

(cited in Moore, 1922) noted that it is only possible to classify coals according to 

their fuel ratio within wide limits, and he suggested the following divisions: 
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Hard-dry anthracite 100-12 (FCNM) 

Semi-anthracite 12-8 " 

Semi-bituminous 8-5 " 

Bituminous 5-0 " 

Lignite <5 " 

Frazer's ratio limits did not distinguish subbituminous and lignite coals from 

bituminous coals and this is a pointer to the deficiency of his ratio limits in 

modern use. Moore (1922) gave a general way of coal classification which was 

adopted by the International Geology Congress (IGC), and this is presented in 

Table 2.1. 

Table 2.1 Moore's coal classification system adopted by IGC (Speight, 2005). 

Classes of Coal FCNM CV (eal/kg) Mean Composition (%) 

C H O&N 

Anthracite 12 + 8000 - 8330 93-95 2-4 3-5 

Semianthracite 7 -12 8300 - 8600 90-93 4-4.5 3-5.5 

Anthracitic & high 4-7 8400 - 8900 80-90 4.5-5 5.5 -12 
carbon bituminous 

Bituminous 1.2-7 7700 - 8800 75-90 4.5- 5.5 6-15 

Low carbon 2.5- 3.3 6600 -7800 70-80 4.5-6 18 -20 
bituminous 

Cannel Yield 30 - 40% VM, with a resinous fracture of porous coke 

Lignitic 1.8- 2.5 5500 -7200 60-75 6-6.5 20-30 
(subbitiminous) 

Lignite 20% moisture 4000 -6000 45-65 6-6.8 30-45 
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One of the latest ranking schemes evolved in America and was adopted by the 

American Standards Association, originally known as the American Society for 

Testing and Materials (ASTM). This scheme identifies four main categories of 

coal, namely; anthracite, bituminous, sub-bituminous and lignite, as presented 

in Table 2.2 (Speight, 2005). 

Brief descriptions of the ranks of coal are summarized by Schobert (cited in 

Habib, 2001) as follows: 

Lignite coal: This is the lowest rank of coal. It has high moisture and volatile 

contents and produces smoky-flames. It is considered low quality coal due to its 

low heating value. 

Sub-bituminous coal: This is an intermediate rank of coal which tends not to 

have an apparent woody texture. It burns cleaner than lignite. 

Bituminous coal: This is the most widely used class of coal for power generation 

and other applications. It has a lower content of moisture and volatile matter. It 

has a high heating value and burns out with a clear and hot flame. 

Anthracite coal: This is the highest rank of coal. It possesses low volatile matter 

content and burns out with a hot, clean and uniform flame, with little or no 

smoke or soot. 
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Table 2.2 ASTM coal classifications by rank. 
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2.1.2 Proximate and ultimate analyses 

The fuel content of a coal is its actual heating value. The heating value can be 

calculated based on the chemical composition of the coal, and this could be 

defined in terms of proximate and ultimate (elemental) analyses. 

Proximate analysis: Moisture, volatile matter, ash and fixed carbon contents are 

the parameters used in determining the proximate analysis of a coal. The 

moisture in coal tends to reduce its heating value during combustion. It is 

basically regarded as the incombustible residues after burning coal to a 

constant weight. 

The rank of coals increases with decrease in its moisture content. For example, 

it is shown in Table 2.1 that the lignite (low rank) coal has 4000-6000 callkg with 

up to 20% moisture content, while the anthracite (high rank) coal has about 

8000 calories. In order to reduce the moisture content, coals are subjected to 

pre-combustion drying processes. 

Ash is a measure of inorganic content of a coal and it also reduces the coal 

heating value. Some of the problems of high ash content in coals include the 

following: environmental problems in ash disposals; the cumulative effect of the 

ash on the performance of the boiler; and the issues related to slagging and 

fouling, such as corrosion and high maintenance cost. 
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The ash content in coals varies according to the rank of the coals. Four US 

coals of different ranks have been investigated and their properties are shown 

in Table 2.3. The properties of the US bituminous discussed by Murphy and 

Shaddix (2006) correspond with the properties presented in Table 2 .3. 

Table 2.3 Properties of US coals of different ranks on moisture and ash free 
basis, wt % (Murphy & Shaddix, 2006; Coal science, 2011) . 

Coal HHV (Btu) FC VM Ash Moisture 

Anthracite 13,500 79 7 10 4 

Bituminous 12,900 48 38 9 5 

Sub-bituminous 8,250 33 35 7 25 

Lignite 6,800 29 27 6 38 

Ash analysis (wt %) 

Si02 Ah0 3 Fe203 Ti02 P20S CaO 

57.11 32.74 5.60 1.37 0.08 1.23 

MgO S03 Na20 K20 MnO 

0.73 0.92 0040 2.31 <0.01 

Table 2.3 shows that the ash content is not always a good indicator of good 

coals, since the anthracite and the bituminous coals are reported to have high 

ash content (10 and 9 wt %, respectively) . However, the moisture and fixed 

carbon contents are considered as good indicators of coal rank (Lee et a/., 

2010) . High coals have high FC and low moisture contents , while low rank coals 

have low FC and high moisture contents as shown in the Table 2.3. 

Also , in Table 2.3, the composition of coal ash is shown under ash analysis. 

The content of the individual species may vary depend ing on the type of coal. 
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The report of an investigation on the effect of high ash content in pulverized 

coal combustion suggests that, although the effect of high ash on char reactivity 

is negligible, the overall diffusion rate of the oxidant to the surface of the char is 

reduced significantly. This is due to the presence of a thick ash layer covering 

the char particle (Jayanti, Masheswaran & Saravanan, 2007). However, they 

reported that the flue gas temperature is relatively insensitive to the high ash 

content in the coal. 

The volatile matter (VM) is a measure for the tendency of a substance to 

vaporize at a given temperature. The volatiles are burnt out through the 

devolatilization process. High VM content helps to easily ignite coal combustion. 

Also, high volatile release during coal combustion enhances flame stabilization, 

and reduces the level of NOx emission (Lee et al., 2010). According to Lee et 

al. (2010), the major reason for the reduction of the NO with the increase of VM 

content in the coal is the production of hydrogen fuel, in the form of hydrogen 

cyanide (HeN), during the process of devolatilization. 

The solid combustible matter that remains after coal devolatilization is called 

fixed carbon. The higher the fixed carbon (FC) content in a coal, the higher is its 

heating value. Fixed carbon is determined as subtracting the sum of ash, 

volatile matter and moisture content from the total content of the coal. The coal 

rank increases with an increase in its fixed carbon content. For example, the 

anthracite is the highest ranking coal and it has about 80-90 wt % of FC content 

as shown in Table 2.2. 
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In coal combustion, a high Fe content may results in delayed ignition, which 

implies that greater activation energy is required (Kucukbayrak, Acma, 

Mericboyu & Yaman, 2001). Although the combustion of coal with a high FC 

content takes longer time than the coal with a low FC content, it yields higher 

energy content. 

Ultimate analysis: This is also referred to as the elemental analysis and it gives 

a quantitative determination of the carbon, hydrogen, sulphur, nitrogen and 

oxygen within the coal. The sulphur and nitrogen contribute to air pollution 

problems and frequently requires removal from the stack gases of utility boilers 

(Turns, 2006). Carbon and hydrogen are considered as the most important 

constituents of coal. Carbon amounts to 70-95% and hydrogen 2-6% by weight 

of the organic content of the coal (Speight, 2005). 

In order to have an effective control of emissions during the combustion of coal, 

a comprehensive data on the content of sulphur in the coal is essential 

(Speight, 2005). Usually, the sulphur content in coals is presented in two forms, 

namely, the dry sulphur content in coal before burning, and the content in the 

combustion by-products. 

The dry sulphur content in coal is a significant factor in the prediction of the ash 

behaviour in a boiler. For example, the ratio of the basic to acidic oxides of the 

ash is multiplied by the content of dry sulphur in coal, and it is being used as a 

slagging index (Lawrence et al., 2008) 
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Most importantly, the ultimate analysis of coal is used in determining the heating 

value of the coal. A formula for the calculation of the heating value of coal from 

its carbon, hydrogen, sulphur and ash content has been suggested by Mason 

and Gandhi (1983). They described the proposed formula as being 

advantageous for use in modelling and monitoring coal conversion processes. 

2.1.3 Calorific value 

This is the specific energy of the fuel, also referred to as its heating value. It is 

the amount of heat per unit mass of the fuel released on combustion. The 

calorific value can be expressed as gross or net. When performing a 

combustion test in the laboratory, the higher heating value (HHV) realized is 

gross. While during the actual combustion in a furnace, only the net value is 

realized and it is considered as a lower heating value (LHV). 

The heating value of solid fuels has a great importance, especially in the 

conversion of such fuels to energy (Mason & Gandhi, 1983). The high heating 

value of coal is one of the principal reasons why coal is still considered as a 

viable energy option despite its environmental impact. 

2.1.4 Types of flame 

In general, combustion occurs in non-flame and flame modes. The concept of 

non-flame and flame combustion has well been described in the literature 
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(Turns, 2006). Combustion flames are categorized into non-premixed, premixed 

and partially premixed types. 

Non-premixed flames: In the non-premixed (diffusion) flames, the fuel and the 

oxidizer diffuse into each other at an interface and flames occur. In this case a 

fuel and oxidizer are introduced to the combustion zone in two or more separate 

streams and subsequently brought together due to diffusion and mixing prior to 

combustion. 

The modelling of the non-premixed combustion involves solving the transport 

equations for one or two conserved scalars (mixture fractions). Instead of 

solving equations for individual species, the non-premixed model considers 

species concentration from mixture fraction fields. The thermo-chemistry 

calculations are pre-processed and then tabulated for look-up. An assumed­

shape probability density function (PDF) is used to account for the interaction of 

the turbulence and the chemistry. 

The non-premixed modelling approach is specific to the simulation of turbulent 

diffusion flames with fast chemistry. For such systems, the non-premixed model 

is of enormous advantage over the eddy-dissipation method. It allows for 

possible species prediction, disassociation effects and rigorous turbulence­

chemistry coupling. It is also computationally efficient since it does not require 

the solution of a large number of species transport equations. 
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Premixed flames: Contrary to the non-premixed flames, in the premixed flames, 

the fuel and the oxidizer are mixed at the molecular level before any significant 

chemical reaction occurs. Since the fuel and the oxidizer are mixed before 

coming into the combustion zone, reactions start at the combustion zone where 

the unburnt reactants and the burnt combustion products are separated. 

Application of the premixed model in some commercial software packages, 

such as FLUENT, has some limitations, which include the following: 

• The model is only available in the density-based solver. 

• It is valid for turbulent and sub-sonic flows only. 

• It cannot be used in conjunction with the pollutants, e.g. soot. 

• It cannot be used to simulate the reacting discrete-phase particles. 

Partially premixed flames: When the fuel-oxidizer ratio is non-uniform, the flame 

is referred to as partially premixed. This model is considered as a simple 

combination of the two models discussed above, i.e. the non-premixed and the 

premixed models. When applying the non-premixed and the premixed models in 

combination, it is worth noting that the single-mixture fraction approach requires 

two inlet streams, while the two-mixture-fraction approach requires three inlet 

streams. This approach will also require additional computational work. 

2.1.5 Devolatilization 

Coal is usually prepared before being fed into the burner. The preparation, 

which is called pulverization, is a process of grinding of the coal to smaller 
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sizes, generally, in the range of 75 to 300 ~m (Lawn, 1987). The minerals 

interaction in the initial burning of the coal particle is complex, and of particular 

interest to this research is the decomposition of the inorganic materials to form 

ash and then slag (Williams et a/., 2000). The processes involved in coal 

combustion are depicted in Fig. 2.3, where the left-hand side shows the 

heterogeneous steps, and the homogeneous reactions are shown on the right­

hand side. 

Oevolatilization is always considered as the first step in thermally driven coal 

conversion and utilisation processes and has a profound effect on the course of 

the combustion process (Brewster et a/., 1988). For combusting particles, 

devolatilization occurs when the particle mass is in excess of its non-volatile 

size, and its temperature reaches the vaporisation stage (Baum, 1971). 

When heated to a temperature range of 400 and 600°C, coal starts to 

decompose, giving out a mixture of combustible gases and non-combustible 

gases (Strezov, Lucas, Evans & Strezov, 2004). With an increase in 

temperature, the rate of devolatilization also increases significantly. 

The rate and extent of the thermal decomposition of coal particles is important 

in combustion processes. This is because about 50% of the coal feed may be 

volatile materials that are expected to burn in the gas phase (Badzioch & 

Hawksley, 1970). Therefore, adequate knowledge on the thermal 

decomposition rate is very important not only for investigating the ignition 
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process but also to have accurate information on subsequent heat releases in 

the furnace. 

According to Smith (1982), the combustion of most solid fuels involves thermal 

decomposition at the initial heating stage and the subsequent combustion of the 

porous solid residue from the first step. He added that, the decomposition of PF 

in flames take place within the order of 0.1 s, while the char burn-out time, which 

is usually longer, is about 1 s. 

Strezov at al. (2004) describe coal decomposition as an intrinsic chemical 

reaction step, and the effect of the process is of great importance for 

combustion optimization and increased efficiency. They further stated that the 

heating rate is one of the most important parameters that affect the 

devolatilization process. However, Fletcher & Kerstein (1990) are of the opinion 

that it is difficult to study the effect of heating rate on the yield of volatiles 

independently of the final temperature. 

In the numerical analysis of combustion, coal particles are assumed to be 

perfect spheres. They are also assumed to have a uniform density, while their 

burning diameters are reduced by an amount equivalent to the consumed 

carbon (Baum & Street, 1971). Numerical models that represent the interaction 

of the chemistry and turbulence often assume that coal VM has a constant 

elemental composition and heating value. To justify this assumption, Brewster 

at al. (1988) pointed at the uncertainties that exist in devolatilization and state 
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that the major elements. such as. carbon. hydrogen. nitrogen and sulphur. are 

released in proportion to the total mass evolution. 

Aslanyan & Maikov (1994) used the constant rate devolatilization model in 

simulating pulverized coal combustion in turbulent flows. This model requires 

the setting of the vaporization temperature which controls the onset of the 

devolatilization. The single rate model assumes that the rate of devolatilization 

is first-order and dependent on the volatiles remaining in the particle. and it is 

widely used in coal combustion (Rushdi at a/ .• 2005; Lee & Lockwood. 1999). 

The two-competing rates model is used to reproduce the observed temperature 

dependence on the volatile yield. Truelove & Holcombe (1990) used this model 

by setting the rate constant and the stoichiometric factors in order to set up their 

predictions for the devolatilization of bituminous coals. 

The chemical percolation devolatilization (CPO) model was developed in order 

to explain coal devolatilization on the basis of the initial chemical structure of the 

coal (Fletcher & Kerstein. 1990). The CPO model allows for a temperature­

dependent competition between the formation of side chains and char. which 

leads to changes in the yield of volatiles as a function of the heating rate. 

2.1.6 Char combustion 

Char combustion processes commence during or after devolatilization. This 

process is slower and it takes much more time than the devolatilization. In coal 
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combustion, the char oxidation process, which depends on the physical 

structure of the coal, is very important. At temperatures near 900°C, most of 

the volatile matter has been evolved. With the supply of sufficient air being 

mixed into the jet, burning is ignited. 
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The rate of coal char combustion can be affected by its mineral matter content, 

and since coal is not a homogeneous substance, it is characterized by wide 

variations in its properties and composition. A successful implementation of coal 

combustion simulations depends on a proper application of fundamental 

knowledge of combustion and modelling skills (Eghlimi, Lu, Sahawalla & Harris, 

1999). 

The use of CFD models to describe the combustion processes, including the 

char combustion process, has become an important aid in the optimization of 

coal combustion (Williams, 8ackreedy, Habib, Jones & Pourkashanian, 2002). 

The burning rate of a particle that is assumed to be spherical and homogeneous 

is determined from its size, velocity and temperature (Murphy & Shaddix, 2006). 

However, it is accurate to assume that the burning of all particles take place at 

the same rate (Field, 1969; Lee & Lockwood, 1999). 

The intrinsic char combustion model assumes that the order of the reactions is 

equal to unity. Using this model, the heterogeneous char combustion is 

predicted by a first-order ordinary differential equation, with a combine rate 

coefficient that accounts for the global diffusion of oxygen to the char surface 

and the chemical reaction rate of char oxidation (Lee & Lockwood, 1999; 

8ackreedy at al., 2005). 

The diffusion-limited model assumes that the surface reactions proceed at a 

rate determined by the diffusion of the gaseous oxidant to the surface particle 

(Dhumal & Saha, 2007). The model ignores the kinetic contribution to the 
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surface reaction and also assumes that the diameter of the particle remains 

constant (Eghlimi et 81., 1999). 

The kinetic/diffusion-limited model assumes that the surface reaction rate 

includes the effect of both the bulk diffusion and chemical reactions. This model 

is widely used for coal combustion (Xu, He, Azevedo & Carvalho, 2002; Li, Wei 

& Jin, 2003), and it is assumed to be a simple model (Sheng, Moghtaderi, 

Gupta & Wall, 2004). In this model, the rate of oxidation is limited by the kinetics 

and the rate of diffusion are coupled, where the flux of oxygen depends on the 

gradient of the available oxygen supplied by the decrease of oxygen with depth 

(Elberling, Nicholson & Scharer, 1994). 

With the multiple surface reaction model, the chemical state of the surface can 

be described by a set of surface coverage which specifies the fraction of the 

surface that is covered by a particular species (Miessen, Behrendt, 

Deutschmann & Warnat, 2001). The multiple surface reaction model has some 

limitations. For example, in the FLUENT software, the model is only available 

with the steady tracking and species transport options, and therefore it is not 

applicable with the premixed, non-premixed and partially premixed combustion 

models (Fluent Inc., 2009). 

2.2 Combustion of other Solid Fuels 

The burning of other solids, such as biomass, as a fuel in PF furnaces, is 

gaining more acceptance as a means of reducing emissions in the power 
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generation industry (Ma, Pourkashanian, Williams & Jones, 2006). Biomass 

fuels contain inherent inorganic elements that are involved in reactions leading 

to ash slagging and fouling in boilers (Jones, Darvell, Bridgeman, 

Pourkashanian, & Williams, 2007). In view of the two strong competing factors, 

C02 emissions reduction and slag formation, the co-firing of coal and biomass 

has been advocated for years as being advantageous both environmentally and 

economically (Backreedy et al., 2005). 

Although this thesis is mainly on coal combustion, an insight into biomass 

combustion and co-firing of coal and biomass is given. Also, the slagging 

potential of coal and biomass blends is investigated. This has become essential 

due to the fact that the combustion of solid fuels, especially biomass, follows a 

similar pattern to coal combustion (Williams et al., 2000). 

However, the huge difference in terms of the physical and chemical properties 

of biomass and coal, and the difference in the properties of their ashes need to 

be acknowledged if only we want to enhance the processes of co-firing. 

2.2.1 Biomass combustion 

Biomass is considered as a complex organic-inorganic solid product generated 

by natural and anthropogenic processes (Vassilev, Baxter, Anderson & 

Vassileva, 2010). Biomass fuel is C02-neutral and can be a good alternative to 

fossil fuels in view of the decreasing resources of the fossil fuels and their 

negative environmental effect (Zhou, Jensen & Frandsen, 2007). Using biomass 
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as a fuel in PF furnaces has been recognised as an important measure that is 

taken in order to reduce emissions in the power generation industry, and an 

industrial test of firing 100% biomass as a fuel has been performed (Ma et al., 

2006). 

Similar to coal, the proximate analysis in biomass is a measure to determine its 

moisture, ash, volatile matter and fixed carbon contents. The ultimate 

(elemental) analysis in biomass also measures CI, in addition to other similar 

coal properties such as C, H, N, 0 and S. 

In order to optimize the burning of biomass as a fuel, some important 

considerations have to be made. Some of these considerations include the 

following: 

• Choice of biomass fuel type and its calorific value. 

• Processes of drying, devolatilization, etc., towards reaching its available 

energy. 

• Problems such as slagging, fouling, corrosion, pollution, safety, ash 

handling, etc. 

Some of the issues mentioned above, coupled with other operational difficulties 

create bottle necks for the use of biomass as a fuel. Ma et al. (2006) noted that 

firing biomass presents a number of technical problems that substantially limits 

its use in existing coal fired plants and the formation of deposits is one of the 

key issues. 
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Deposition of ash particles on furnace and boiler surfaces leads to corrosion 

and a reduction of the heat transfer, which can cause subsequent plant 

shutdowns and increased operational costs (Joller, Brunner & Obernberger, 

2005; Plaza, Griffiths, Syred & Rees-Gralton, 2009). 

In order to increase the use of biomass for energy production, the ash related 

problems must be reduced (Forstner et al., 2006). The relative large size of 

biomass fuel particles, and their high moisture content, may also affect its rate 

of combustion. Owing to the large size biomass particles, inertial impaction 

becomes the most important mechanism for ash deposition (Mueller et a/., 

2005). 

Deposition characteristics of biomass fuel can be related to its ash content, 

which ranges from 2 to 20% depending on type and the growth conditions and 

handling (Nutalapati et al., 2007). However, to fully understand the deposit 

formation process in both biomass and coal combustion plants, several 

researches are ongoing (Mueller et al., 2005). With the increasing 

computational power in recent years, attempts are being made to describe 

deposition formation and build-up in boilers with combustion simulations using 

CFD techniques (Forstner et al., 2006). 

2.2.2 Coal! biomass co-firing 

The European Union (EU) initially set a goal to increase the total amount of 

energy from renewable sources from 6 to 12% by 2010 (Sroda, Makipaa, Cha & 
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Spiegel, 2006). However, this goal was not achieved and now a new goal of 

20% total energy from renewable sources by 2020 has been set by the EU 

(Munir, 2010c), and co-firing is considered as a good option for the utilisation of 

biomass and coal to deliver the renewable energy option (Heinzel, Siegle, 

Spliethoff & Hein, 1998). A great variation of biomass fuels, from wood pellets to 

straw co-fired with coal is used in combustion units with a thermal power 

ranging from a few kW to several hundred MW (Backreedy et al., 2005). 

Co-firing offers a short-term, low-cost and high-social benefit energy option that 

is much required in the energy market (Baxter, 2005). According to Ghenai & 

Janajreh (2009), the advantages of biomass co-firing include the following: it is 

the fastest means of increasing the use of biomass for power generation; it 

minimizes cost by using the existing coal-fired infrastructure; and it offers 

environmental advantages, as well as benefiting from efficiencies of scale. 

However, the implementation of co-firing in existing coal-fired facilities is still 

under investigation. So far, feasibility of different combustion systems has 

pointed out the management of ash-related problems as the major area 

requiring a better understanding (Heinzel et al., 1998). The different types of 

biomass sources intended for co-firing include wood residue, agricultural 

residues, energy crops and sewage sludge. 

Although each form of biomass has its different composition and properties, 

typical biomass fuel has a lower inorganic content than coal, but the alkalis in 

biomass could change the properties of the fuel when co-fired with coal, thus 
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resulting to higher deposition rate (Wigley. Williamson. Malmgren & Riley. 

2007). Ma at al. (2006) are of the opinion that the presence of inorganic species 

in biomass. particularly potassium. can increase its deposition tendencies by 

significantly lowering its fusibility. 

Therefore. it is suggested that the use of biomass fuel in combustion systems 

comes with added operational difficulties related to ash deposition (Lokare at 

al .• 2006) and the implementation of co-combustion in existing coal power 

plants and its engineering consequences are some of the problems being 

investigated (Heinzel at al .• 1998). The results of these investigations can be 

used to minimize deposit formations. 

The different mineral matter composition of biomass may results in increased 

slagging and fouling tendency in the boilers. Also. biomass has higher content 

of moisture. volatile matter and oxygen. and it has a lower density. ash content 

and heating value than the coal (Molcan at a/ .• 2009). Although there is no 

available index that predicts the slagging and fouling of biomass. unequivocally. 

some of the coal slagging indices are used for biomass (Munir, Nimmo & Gibbs. 

2010a). 

2.3 Boiler Furnace Design 

In boiler furnace design considerations. heat generation and heat absorption 

are key issues. A typical boiler furnace is enclosed by a water wall. The burner 

fires the fuel in flames and the resultant heat is radiated to the furnace walls. In 
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some boiler furnaces, superheater, reheater and economiser surfaces are 

added in order to cool the flue gas leaving the furnace. 

The general requirements of furnaces are summarized as follows (8asu, Kefa 

& Jestin, 1946): 

• The furnace should provide the physical space and time required to 

complete the combustion of the fuel. 

• To ensure the safe operations at the downstream convective area, the 

furnace should have adequate radiative heating surfaces to cool the flue 

gas. 

• The air motion in the furnace should prevent flame impingement on the 

water walls to ensure uniform heat distribution. 

• The furnace should provide reliable conditions for natural circulation of 

water through the water walls tube. 

• There is the need to optimize the use of steel or any other materials used 

in constructing the furnace. 

Swirl burners usually generate swirling combustion air with the use of guiding 

vanes. The swirling air creates recirculation zones which assist in igniting the 

fuel and this accelerates the process of combusting the air and fuel. In an axial 

vane burner, the intensity of the swirling secondary air is regulated by moving 

the axial vane wheel, which allows a fraction of the secondary air to flow straight 

without passing through the axial vane. While in a tangential vane swirl burner, 

the intensity of the secondary air is adjusted by changing the inclination angle of 

the tangential guide vanes (8asu at a/., 1946). 
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The swirling jets are helpful in controlling the flame shape, flame stability and 

temperature distribution in combustion chambers (Kwark, Jeong, Jeon & 

Chang, 2004). The swirling influences axial pressure gradients in the region of 

swirl decay which may be strong enough to set up recirculation flow zone near 

the jet exit (Alecci, Cammarata & Petrone, 2005). 

The swirling flows are normally classified as strong, medium and weak swirling, 

depending on the strength of the recirculation flow zone they can create, and 

swirl intensity can be quantified by an exponential parameter called swirl 

number, SN, (Alecci at al., 2005). The SN is defined as a non-dimensional 

number representing the ratio of the angular momentum flux and the axial 

momentum flux (Kwark at al., 2004). 

The swirl number could therefore be varied by varying the ratio of axial and 

tangential bulk flow rates. Non-premixed flames are efficiently stabilized by the 

swirling motion; hence swirl burners are widely used. However, the 

uncertainties in the inlet conditions of a swirl burner limit the use of some good 

measurements for validating the computational models (Hubner, Tummers, 

Hanjalic & Van der Meer, 2003). 

2.4 Ash Particle Deposition 

Ash deposition in boilers makes it almost impossible for the engineer to supply 

a sufficient and uninterrupted power. Generally, slagging deposits occur on the 

surfaces directly exposed to the flame radiations, such as, the furnace walls in 
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the burner region , while fouling are deposits in regions not directly exposed to 

flame radiations , such as, in the convection section of the boiler (Lawn , 1987). 

Siagging deposits are molten , while fouling deposits are sintered . 

Fig . 2.4 shows a simple schematic diagram of a typical coal-fired boiler. The 

furnace region where temperatures are high is directly exposed to the flame 

radiations, and that is where slagging takes place. The high temperature region 

is the main concern of this investigation . 

Hot air 

t~ot e : AP H is the air preheater 

Superheated 
steam R heated 

steam 

Reheater . 
~ HI h Pressure 

turbine exhaust 

steam 
EconmlsE'1 
~ Oeaeraied 

boi ler f eedwat er 

Flue gas 

Fan 

Fig. 2.4 A simple schematic diagram of a typical coal-fired power plant steam 
generator-boiler. Source: http://en.wikipedia .org/wiki/File :Steam_Generator.png 

The deposition that takes place at the convective section of the boiler (fouling) 

affects the boiler walls, as well as the super heaters, reheaters and the 

economisers. Fouling is mainly due to thermophoretic effect on fine ash 

particles (Lin et al., 2008) . When the fine ash particles are transported to the 
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heat exchange surfaces, they condense and agglomerate into sintered deposits 

(Naganuma et a/., 2009). 

The thermal efficiency of boilers is highly affected due to slagging. Other 

deposit factors, such as corrosion, also affect the physical properties of the 

boilers. Several researchers agree that during coal combustion, the slagging 

propensity is usually measured by indices derived from the chemical properties 

of coal and or ashes (Lee & Lockwood, 1999; Rushdi et a/., 2005). 

Experimental methods for measuring ash deposition are not easy because of 

the high temperatures involved and the uncertainties in the high turbulence 

situation. Although Laursen, Frandsen & Larsen (1998) in their coal burn test, 

based their selection of sub-bituminous coal on its combustion behaviour rather 

than the ash deposition propensity, they classified the deposits collected on the 

probe into porous, powder, iron-rich, semi-fused slag and fused slag. 

The slag classification described above depends on the properties of the coal 

and the location of the probe in the boiler. Therefore, it only gives an idea on the 

contribution of individual ash elements to the formation of the slag, and not on 

the deposition mechanism. 

In a separate study on slagging propensities of coals/blends, Su et al. (2001 b) 

agree that different coals yield different types of slag. The photographs of the 

slag produced by some of the coals they have tested are shown in Fig. 2.5. 

Also, their report indicates that more molten and sintered deposits were formed 
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in the burner region and this was attributed to the high temperatures in that 

region . 

Figure 2.5 shows some deposit samples of various Australian coals . The 

photographs show the visual characteristics of the slagging deposits of coals 

with different ash material contents, presented as types A, B, C & D. For 

example, deposits from coal type 0 in Figure 2.5 appear brighter and this may 

be due to its high silicon oxide (Si02) content. The silica content in coal ash is 

significant in determining the ash behaviour (Huang et aI., 1996), unlike the 

case of biomass where potassium plays a pivotal role (Jones et aI. , 2007) . 

Coal A Coal B 

Coal C Coal 0 

Fig . 2.5 Photographs of molten and sintered deposits of Australian coals (Su et 
al., 2001b). 
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On the mechanism of deposition, Huang at BI. (1996) agreed with the high­

temperature high-deposit propensity assumption. They also suggested that an 

increase in the particle diameter results in a rapid increase in the impaction 

temperature. Similarly, high-density particles are assumed to have less heat 

dissipation and thereby impacting furnace walls at high temperature (Huang et 

BI., 1996). Therefore, large sizes of particles and high temperatures increase 

the particles sticking propensities. 

However, the deposition of large particle in the region of high temperatures is 

mainly due to unburnt carbon. Coal particles that are not completely burnt may 

become molten and sticky at high temperatures, and due to their high density 

they can posses sufficient inertial force to transverse the boundary layer and 

impact on the heat exchange surface (Ma at BI., 2006). 

The ash particle transport to cooled boiler surfaces, the thermo-chemical 

properties of particle, particle sticking tendency, local steady state deposit 

thickness and particle rebounding probability have also been identified as some 

of the necessary parameters to be considered while quantifying deposit growth 

rates (Mueller et BI., 2005). For a better understanding of the deposition 

mechanism, it is important to understand the extent of the influence of the 

above mentioned parameters on ash particle deposition rate. 

The thermo-chemical properties of the coal ash particle are used as slagging 

indices. For example, the ratio of the basic to acidic oxides of the ash is used to 

predict the ash behaviour in a boiler (Lawrence et BI., 2008). Also, the content 
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of silica and iron oxide in the ash are good indicators of the slagging potential of 

coal. 

According to Walsh (cited in Forstner et a/., 2006), the ash particle sticky 

probability at impaction can be expressed as a function of the sticky 

probabilities of both the particle and the impact wall. This suggests that the 

impacting particle will stick if either the particle or the wall is sticky. They further 

argue that around the boiler section of the furnace, the cooled walls have 

temperatures low enough to condense a considerable amount of ash forming 

vapour and this may result in a sticky wall that may capture silicon based fly ash 

particles. 

In order to model the mechanism for the deposition of ash particle in a boiler, an 

understanding of the outcomes of empirical investigations on the deposition 

processes of the ash particle is necessary. The experimental measurements will 

reveal most of the data required for the modelling, and where there is 

insufficient data due to measurement difficulties, correct assumptions and/or 

approximations are possible. 

The slagging and fouling potential of coal ash can be empirically determined in 

a number of ways. Basu et a/. (1946) have described some empirical methods: 

the alkali components of ash can guide us towards the determination of the 

fouling tendencies of coal ash, sodium oxide (Na20) has the greatest influence 

on the deposition surface in a furnace; another approach is to use the 

deformation of ash cone to measure the ash deformation temperature, and the 



55 

ash deformation temperature can also be used to characterize the slagging 

tendency; and the third criterion is by determining the ash viscosity, which 

depends on the deposit temperature and ash composition. 

The latter approach requires physical measurement of particle temperature 

inside the boiler, which makes it difficult to implement experimentally (Basu et 

al., 1946), but an empirical correlation can be used to obtain the slag viscosity 

(Huang at al., 1996). 

2.4.1 Review of existing deposition models 

This review is limited to ash deposition models that use coal chemical 

properties. In fluid dynamics, the particle behaviour is of considerable 

importance. In the combusting situation, the particle velocities and trajectories 

are more complicated due to the effects of high temperatures and large eddies 

(Williams at al., 2000). 

However, the knowledge of the statistical properties of particle tracers 

influenced by turbulent flow is very important for stochastic Lagrangian 

modelling (Biferale, Boffetta, Celani, Lanotte & Toschi, 2005). For particles with 

a small Reynolds number (Re), Stokes linearly approximated the drag 

coefficient to be 24/Re. However, Morsi & Alexander (1972) observed that this is 

not always the case, especially at sufficiently high values of Re. They argue that 

at very high values of Re, the drag coefficient becomes constant at a value of 

approximately 0.4. 
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Several attempts have been made to accurately compute the paths of particles 

in a fluid; these have resulted in the development of a set of governing 

equations. Amongst the set of equations, those presented by Morsi & Alexander 

are validated and widely used by researchers (Huang at al., 1996; Lee & 

Lockwood, 1999). 

To this development, Lapple & Shepherd (1940) observe that all such 

equations, except those for the motion in a centrifugal field, are developed for 

the motion of particles in a fluid at rest. However, they accepted that the 

equations will still apply for a fluid medium in motion provided all particle -

velocity terms are redefined as relative to the fluid. 

In modelling particle tracking, a combined two phase flow model can be used (Li 

at al., 2003) or one can use the Eulerian gas and Lagrangian particle models 

(Huang et al., 1996; Ma et al., 2006). 

A number of research attempts have been made to accurately predict ash 

deposition rates in boiler situations. Results of such research works continue to 

improve with the introduction of better techniques and mathematical models. 

The significant influence of boiler operation conditions and temperatures in 

modelling coal ash particle deposition rates may be one of the reasons why 

researchers use the ash particle viscosity to determine the capture efficiency of 

the ash particle at impaction on the boiler walls (Huang et al., 1996; Lee & 

Lockwood, 1999; Rushdi et al., 2005). 
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However, the choice of values for the reference viscosity and combustion 

codes, the varying wall temperatures and the properties of the coal fuel used, 

cumulatively, left the particle viscosity approach in the ash deposition research 

open-ended. Any variation in the parameters listed above may result in 

significant difference in the results obtained. 

Israel & Rosner (1983) used the generalized Stokes number technique to 

determine the capture efficiency of a non-Stokes ian particle from a 

compressible gas flow. This technique uses a non-Stokes drag correction factor 

which is defined as a function of the particle Re. In one of the reported 

investigations, a coal ash deposition model was developed using the ash 

particle viscosity and the generalized Stokes' number to determine the particle 

stickiness and drag coefficient, respectively. 

Although the model described above was successfully implemented in a drop­

tube furnace and a pilot-scale combustor, significant discrepancies between 

experimental and predicted results were reported at high temperatures (~ 1327 

K), which was attributed to ash build-up that affects the effective heat transfer 

to the tube (Huang et al., 1996). 

Wang and Herb (1997) developed a deposition sub-model that included the 

affects of both the ash chemistry and operating conditions. The particle 

stickiness was calculated based on the particle temperature and composition. 

The model was implemented with both pilot-scale and utility-scale facilities, and 

fairly good results were reported. 



58 

However, the use of the particle cloud method by Wang and Herb (1997) in 

order to determine the impaction rates is based on the assumption that all the 

particles in a single computational parcel have the same properties (Smoot & 

Smith, 1985). Therefore, this approach has failed to account for the deposition 

processes of individual particles. 

Several similar research activities have been reported, with various levels of 

success. Most studies consider only the ash particle viscosity to determine the 

particle collection efficiency (Rushdi et al., 2005; Costen et al., 2000). The 

surface energy and static contact angle of the ash particle are also essential in 

determining the particle's overall sticking probability. 

The effect of the above mentioned factors on particle stickiness have been 

examined in biomass combustion and a strong influence was reported (Ma et 

al., 2006; Strandstorm et al., 2007). In the area of coal combustion, very little 

has been reported on the effects of the particle surface energy and static 

contact angle on its stickiness at impaction on heat exchange surfaces of a 

boiler. 

Although a wide range of values for the static contact angle is reported to 

produce the same or similar effects (Mao et al., 1992), the inclusion of the static 

contact angle in the model makes it more comprehensive. 

The assumptions embedded in various combustion codes have a great 

influence on the predicted results. For example, in devolatilization, some 
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models assume that volatiles are being released at a constant rate, while others 

assume that the release of volatiles is first-order dependent on the amount of 

remaining volatiles in the particle (Field, 1969; 8aum & Street, 1971; 

Stephenson, 2003). 

Also, during devolatilization process, the heated coal particle behaves in an 

unsteady manner. Therefore, the devolatilization process is better described by 

a model that accounts for the exchange of heat between the surface of the 

particle and the surface of the heat exchanger (Komatina, Manovic & Saljinikov, 

2006). 

In char burnout, factors such as chemical reactions and diffusion rates of 

oxidant are considered by different models (Lee & Lockwood, 1999; Muller et 

al., 2003) and they show significant differences. In the diffusion and reaction 

model, the burning of the char particle is considered to take place at constant 

size with mainly carbon monoxide as the first product of the surface oxidation 

(Lee & Lockwood, 1999). While the diffusion rate model assumes that the 

surface reaction is determined by oxidant diffusion to the surface of the particle 

(8ackreedy et al., 2006). 

Therefore, a suitable choice of combustion model enhances the quality of the 

predicted gas temperature which has a direct influence on the radiant heat 

fluxes and deposition rates (Su et al., 2001a). In modelling the ash particle 

deposition rates, the combustion model may also be modelled, and where they 

are not, the existing combustion models are used. 
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In order to highlight the differences between some of the existing coal ash 

particle deposition models and the one that have been proposed in this thesis, a 

summary of the reviewed deposition models and the one been proposed are 

presented in Table 2.4. The various approaches used in determining the particle 

impaction and collection efficiencies are presented in the Table 2.4. 

Also, presented in the Table 2.4 is a brief description on individual model, and in 

the last column, the mathematical representation of the models are shown. In 

this investigation, the mathematical equation presented in the last row in Table 

2.4 has been developed and implemented using the FLUENT software in order 

to determine the fate of ash particles that hit the heat exchange surfaces of a 

boiler. 

The proposed ash deposition model has accounted for the effects of particle 

impact temperature, ash viscosity and the rebound tendency of the particle that 

may impact on the heat exchange surfaces in order to determine if the particle 

sticks to the surfaces. The Watt- Fereday viscosity method is used to determine 

the viscosity of the particle, while the rebound tendency of the particle is 

obtained using the particle static contact angle and surface energy. The 

proposed deposition model is discussed in more detail in Chapter 3. 
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Table 2.4 Summary of some of the coal ash deposition models. 

Author(s) Impaction Collection Model description Deposition Model 
efficiency efficiency 

Baxter & Inertia, Particle The 4 deposition dml 
DeSollar, thermophoresis, residence time pathways & -= I,GI+1i+G+1i 

dl 
1993 condensation & composition stickiness are 

& chemical modelled w. r. t. T 
reaction and t 

Huang et Inertia & Watt-Fereday Inertial deposition "'''' 
aI., 1996 thermophoresis viscosity in terms of particle m = J J 1(P/o x/)dfXlx 

model density and size 00 

Wang & Particle cloud Viscosities of Heat fluxes; particle 
Herb, model both particle & impaction rates, 
1997 incorporated in impact wall, size and -PCGC-3 composition 

Lee & Particle arrival Urbain Deposits in terms of 
Lockwood, rate, y+ = 5 viscosity inertial deposition 
1999 model rate & time interval -

Costen, Particle arrival Kalmanovitch Deposit surface K 
Lockwood rate, y+ = viscosity temperature & heat Q =-(r.-r .. ) 
& Siddique 11.63 model fluxes 

x 

Rushdi et Particle impact T-shift Inertial deposit in Mn = RnepA, 
al.,2005 velocity viscosity terms of particle 

method density & size 

Proposed Inertial & Viscosity, Deposition rate in 
thermophoretic surface energy, terms of particle 

. 1" . forces contact angle trajectories & M= A L (mll:/.I·~) 
& rebound sticking probability I ,~O 
tendency 

2.5 Siagging Indices 

Siagging refers to molten ash deposition in the furnace region of the boiler 

where the heat transfer is predominantly by radiation (McLennen, Bryant, 

Bailey, Stanmore & Wall, 2000), while sintering is sintered deposits at the 

convective section of the boiler (Erickson at al., 1995). These processes are 

better described as the fast melting of particles in the flame zone of high 
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radiation, and low sintering of agglomerated particles at low temperatures 

(Raask, 1979). 

The ash fusion temperature, ash particle viscosity and ash chemistry are three 

popular bases of characterizing coal ash deposition and slagging (McLennan et 

al., 2000). Most of these indices use laboratory ash to measure the properties of 

interest (Wigley et aI., 1990). 

2.5.1 Coal fusibility 

Different researchers have used different characteristics temperatures, but in 

general, fusion temperatures and cone melt down testing have been employed 

in evaluating the slagging behaviour of coal ash, yet the criterion did not yield a 

better tool for selecting good coal (Lawrence et al., 2008). Coal with a low ash 

fusion temperature is said to have a high slagging potential (McLennan et al., 

2000). 

Although estimating ash fusion temperature from coal chemical composition is 

complex because the relation between most of the interacting factors are 

unknown (Yin, Luo, Ni & Cen, 1998), several researchers agree that the 

increased percentage of basic oxides in coal will lower its fusibility (Lawrence et 

al., 2008; McLennen at al., 2000). Ash fusibility can be expressed in terms of 

the initial deformation temperature (lOT) and the hemispherical temperature 

(HT) of coal, and coals with fusibility greater than 1343 °c are said to have a 

low slagging potential (McLennen et al., 2000). 
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Research reports indicate that the use of the fusion temperature as a criterion to 

distinguish between good and bad coals can lead to detrimental situations. 

According to Lawrence at al. (2008), the AFT which determines the 

temperatures at which the various stages of ash softening, melting and flow 

take place, is considered more as an observation rather than a measurement 

and hence is susceptible to subjective assessment. Therefore, it may not 

accurately predict the coal performance in real boiler situations (Lawrence at al., 

2008). 

2.5.2 Ash viscosity 

The range of ash particle viscosity is an important factor in determining the 

extent of the capture and consolidation of the ash particles on furnace walls 

(Wigley at al., 1990). Although the viscosity of the slag in a boiler has to be low 

enough to ensure smooth flow and operations, most coals exhibit a continuous 

increase in viscosity with a decrease in temperature, and therefore the viscosity 

is a major physical property that affects the deposit strength in regions of high 

temperature (> 1093 °e) (Arvelakis, Folkedahl, Dam-Johansen & Hurley, 2006). 

At high temperatures, coal ash slag behaves as a Newtonian fluid and its 

measured viscosity is independent of the shear rate. However, as the slag is 

cooled and forms solid crystals, its viscosity becomes non-Newtonian 

(Browning, Bryant, Hurst, Lucas & Wall, 2003), and therefore, viscosity is no 

longer linearly-dependent on the temperature. In Fig. 2.6, the viscosity of a 

coal/biomass blend was measured against temperature in two separate 
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experiments, with different viscometer bob speed, and the results show that at 

critical temperature (approximately 1150°C) the slag is no longer Newtonian as 

the temperature decreases (Arvelakis et al., 2006) . 

IOOOO ~-------------------------------------------. 
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Fig. 2.6 Temperature-dependent viscosity for synthetic coal/corn slag 
showing critical viscosity, Tev, (Arvelakis et al., 2006). 

Several models to predict the ash slagging using the viscosity method have 

been developed. These models include those developed by Urbain and other, 

Watt-Fereday, Raid-Cohen and Kalmanovitch-Frank (Vargas, Frandsen & Dam-

Johansen, 2001). However, the viscosity models are also facing criticism from 

researchers. 

According to McLennan et al. (2000) , the application of the viscosity of slag to 

predict the slagging potential is limited to viscosities measured accurately for a 

sample that is predominantly liquid . They added that if a limited portion of the 
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bulk ash melting at a lower temperature is responsible for slagging, then the 

bulk ash viscosity measurement may not be indicative of the slagging potential. 

Further investigations on the viscosity models are also focusing on non­

homogeneous products, where solid crystals are formed at lower temperatures 

and the fluid is treated as a mixture of liquid and solids. According to Kondratiev 

and Jak (2001), the viscosity of the mixture is determined in terms of the solid 

concentration and the composition of the liquid. 

The determination of the solids concentration is performed using a prediction 

code (Kondratiev and Jak, 2001), and since this method is subjected to the 

performance of a prediction tool, it may not always be accurate. 

2.5.3 Ash chemistry 

Coal ash has high levels of silicon and aluminium. Silicon and aluminium oxides 

make up to 80 to 90% of the total ash (McLennan et a/., 2000). Silicon, 

aluminium and titanium oxides form the acidic oxides of coal ash. The basic 

oxides of coal ash have a high percentage of iron oxide, which is the third 

abundant element in coal ash chemistry. 

From the ash properties, the basic oxides are those of iron, calcium, 

magnesium, potassium and sodium, while acidic oxides are those of silicate, 

aluminium and titanium. The ratio of the total sum of the basic oxides to that of 

the total sum of the acidic oxides, which gives the ratio BIA, also assists in 
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distinguishing between good and bad coals. An increase in the BfA of coal, 

lowers its fusibility and hence increases the slagging potential. Coals having 

BIA S 0.11 are considered as good coals (Lawrence et al., 2008). 

The empirical slagging index (Rs), which has been derived by multiplying the 

percentage of dry sulphur content in the coal, S, by the ratio BfA was developed 

based on American and European coals, where iron is typically present in iron 

sulphite (FeS2) as pyrite. However, in low sulphur coals, where there is strong 

correlation between iron and carbonate (FeC03) as siderite, including Australian 

coals, it was suggested that the slagging index be better defined as the product 

of BIA and Fe203· 

According to McLennan et al., (2000), ifthe slagging index of a coal, determined 

using the product of BIA and dry S, is less than 0.6, the coal is said to have low 

slagging potential. Since this index is based on particular coal properties, the 

misleading results when it is tested on other coals are not unexpected 

McLennan et al., 2000). 

Other criteria that are used for the selection of coals which are based on ash 

chemistry include the percentage of iron oxide in the ash and the percentage of 

silica in the ash. The most successful coals have their iron level in ash below 

6%, and for silica content, 72-80% is considered the range for good coals 

(McLennan et al., 2000; Lawrence et a/., 2008). 
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2.5.4 Ash shrinkage 

According to Lawrence et al. (2008), the AFT does not always accurately 

predict the performance of coal in PF combustion, because the test is more of 

observation than measurement. Although the AFT is still the most widely 

accepted means of assessing the slagging and fouling characteristics of coals, 

of particular concern is the estimation of the lOT (Gupta et al., 1998). 

Others slagging indices, such as the BIA, iron percentage and silica 

percentage, are established for particular types of coal properties and therefore 

their use is not necessarily reliable when extended to other types of coals, 

(Lawrence et a/., 2008). Neglecting the ash loading in coal may result in a 

misleading result, (Rushdi et a/., 2005). 

In an attempt to correlate the slagging index to the field performance of the 

coals, Lawrence et a/. (2008) conducted a laboratory test to study the 

relationship between various shrinkage events due to the melting of ash pellets 

on heating. They reported different stages of shrinkage pattern when ash the 

pellets are heated from an ambient temperature to 1400 °c. Their report 

indicated that a 5% to 40% shrinkage occurs at temperatures between 1120 °c 

and 1200 °c, which they attributed to particle initial deformation process. 

On the basis of their experimental results, Lawrence et a/. (2008) proposed an 

empirical slagging index based on the relative shrinkage rate of ash and the 

weight of ash per Mkcal. They concluded that the slagging in boiler furnace 
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depends on the combined effects of the liquid forming tendency of the ash, the 

temperature experienced in the furnace and the ash loading in coal. 

In another similar experiment on Australian coals, Gupta et al. (1998) conducted 

a mechanistic study, in which coal is heated with its shrinkage rate measured 

continuously up to a temperature of 1600 °e. They reported four maximum 

shrinkage rates with different temperatures. A summary of their report is as 

follows: 

• At temperatures below 900°C, there was no significant shrinkage in 

most coal ash samples. 

• Lower temperature peaks up to 1100 °C were related to activities in the 

Si02 - AI203 - K20 system. 

• At 1200 °C, peaks were observed and they were related to the Si02 -

AI20 3 - FeO system. 

• Peaks between 1220 °c and 1440 °c have been correlated to the 

FeO/CaO reaction with various proportions of Si02 and A120 3. 

They concluded that since the viscosity, calculated from the ash chemical 

composition, gives estimations for the temperatures for the ash particle to be 

sticky, it can therefore be related to the extent of the shrinkage measured at 

these temperatures. Therefore, the shrinkage level is appropriate as a criterion 

for the ash stickiness. 

Attempts to correlate ash shrinkage to the slagging of coal started some 

decades ago. According to Raask (1979), the ash shrinkage measurements can 
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give useful information on the sintering potential of the ash. He reported a 

method which could be used for the studies of the coalescence of hot ash 

particles as a routine test of the slagging characteristics. 

A summary of some of the existing coal slagging indices, which are based on 

the fusibility, viscosity and chemistry of the ash, are presented in Table 2.5. The 

available literature suggests that most of the existing slagging indices have 

been developed based on some specific properties of the coals, and this calls 

for the need to search for a more robust slagging index. 

A more generic slagging index is expected to account for the effects of various 

physical and chemical properties of ash, such as, chemical composition, 

fusibility, viscosity and content in coal. Such a model should be able to predict 

the slagging potential over a wide range of coals. 

Also, the parameters of a robust slagging index should be made flexible such 

that it can accommodate the properties of different solid fuels. As shown in the 

last row of Table 2.5, the proposed numerical slagging index is based on the 

weight of the incoming ash and the viscosity of the ash. In determining the 

weight of the incoming ash, the ash content of the coal and its heating values 

are considered. Also, the ash viscosity is computed based on some important 

properties of the ash, such as, the ash softening temperature, the bulk ash 

chemistry, etc. The wide range of ash properties considered in modelling the 

NSI makes the model very sensitive and flexible. Refer to Chapter 6 for further 

details. 
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Table 2.5 Summary of some of the coal ash slagging indices. 

Author(s)J Basis Siagging index Siagging potential 
reported by 

Low Medium High severe 

McLennan et at. Fusibility AF= 4IDT+HT > 1343 °c 1232 -1343 °c 1149 -1232 °c < 1149 ° 
Energy & fuel 2000 s C 

Yin et at. Fuel Fusibility ST = a(Si02) + b(AI203) + c(Fe203) + d(CaO) + e(MgO) + J(a) + g - -
1998 
Watt & Fereday J. Viscosity L () m.I07 
Inst. Fuel 1969 og Ii = (T -150)2 +c 

Lawrence et at. Silica ratio SR = 100(Si02/ Si02+ Fez03 + CaO+ MgO) 72-80 65-72 50 -65 -
Fuel 2008 
McLennan et at. Percentage of Index = % Fe203 in ash <6% 6-7% >7% -
Energy & fuel 2000 Fe203 

Lawrence et at. BIA ratio BI A = Fez03+CaO + MgO + KzO+ NazO < 0.11 0.11 - 0.14 > 0.14 -
Fuel 2008 SiO z + Alz03+ TiD 2 

Lawrence et a/. Sulphur content 
Fuel 2008 

Index = (B / A) x S < 0.6 0.6 - 2.0 2.0 - 2.6 > 2.6 

Lawrence et at. Shrinkage rate Rm No standard scale shown. but from the report. 
Fuel 2008 Index=-xW, ~ 55 shows no slagging relative to others T", 

, Proposed NSI Viscosity. fusibility Sx = r / Log(p,) High index-value = high slagging potential 
& ash loading 
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CHAPTER 3 

MATHEMATICAL MODELLING 

This chapter discusses the general approach and specific steps followed in the 

development of the theoretical models used in the calculations. The basic 

principles underlying the existing models that have been adopted and/or 

developed, including the ash particle deposition rates model, are presented in 

this chapter. 

3.1 Governing Equations 

In modelling combustion systems, the conservation laws of physics are adopted 

to numerically represent the entire governing system of equations. The law of 

conservation of mass, Newton's second law of motion and the first law of 

thermodynamics are the fundamental laws (Versteeg & Malalasekera, 2007). 

The basic variables to be considered in the modelling of the fluid dynamics for a 

non-reactive gaseous flow are the velocity components and the thermodynamic 

properties. 

3.1.1 Fluid flow equations 

A summary of the conservative form of the governing equations of fluid flow 

(representing the continuity, equation (3.1); momentum, equations (3.2)-(3.4); 

and energy, equation (3.5», are given as follows (Versteeg & Malalasekera, 

2007): 
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op ot +div(pu) = 0 

0(';) + div p(uu) = -t + div(p grad u) + Smx 

o(pv) + div p( VB) = - of, + div(p grad v) + Smy at Vf 

O(IM') + div p( WU) = Of + div(p grad w) + Smz at uZ 

0(1i) + div(piu) = - P div u + dive k grad T) + <I> + Si ot 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

where Sm, S, and <I> are the momentum source, internal energy source and 

dissipation function, respectively, k is the Boltzmann constant, p is the fluid 

density, u is the velocity vector, u, v and ware the velocity components, p is 

the fluid pressure, T is the temperature of fluid, and i is the specific internal 

energy. 

For a transported quantity with property;, its transport process is represented 

as follows 

o(pt)) + div(p¢Ju) = div(fgrad;) + S; ot (3.6) 

The rate of change and the convective terms are presented on the left hand 

side of the equation (3.6), while the diffusive and the source terms are on the 

right hand side of the equation, and f is the diffusion coefficient. 
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3.1.2 Energy equation 

Heat transfer can take place through three main methods; conduction, 

convection and radiation. The total energy (in terms of temperature), includes 

sensible energy, chemical energy and kinetic energy. It is the total energy per 

unit mass, also referred to as the specific energy. 

For the non-adiabatic non-premixed combustion models, the total energy 

(enthalpy, H), from the energy equation, is given by 

P....(pH) + V . (f:NH) = V .(~ VH)+Sh ot (3.7) 

The first term on the right hand side of equation (3.7) represents the ratio of 

turbulent thermal conduction (thermal diffusivity) term to the species diffusion 

term, while the second term which appears in non-conservative form, 

represents the contributions from the viscous dissipation and the radiation 

source terms where applicable (Barths, Hasse and Peters, 2000; Fluent Inc., 

2009). 

3.1.3 Radiation model 

The radiative heat transfer is always considered when the radiative heat flux is 

large compared to the heat transfer due to conduction and convection. The P-1 

Radiation model and Discrete Ordinate (DO) model are commonly used in coal 

combustion (Ma et al., 2006; Huang et al., 1996; Lee & Lockwood, 1999). 
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The P-1 radiation model is a simplified case of the P-N model which is 

expressed in terms of normalized spherical harmonics (Sazhin, Sazhina, 

Saravelon and Wild, 1996). The P-1 model is not Central Processing Unit (CPU) 

intensive and it is mostly applicable for combustion models with large optical 

thickness (Lee & Lockwood, 1999). 

On the other hand, the DO model is more intensive in terms of CPU demand, 

but it has the advantage of spanning the entire range of optical thicknesses. 

Also in the DO modelling, the energy transfer due to radiation, I(r,s), as a 

function of position, r, and direction, s, is governed by the Radiative Transfer 

Equations (RTE) given as follows (Chui & Raithby, 1993): 

d/~,s) = -(Ka + as)/(r,s) + Ka/b(r) + asI(r,s) (3.8) 

where Ka and as are the absorption and scattering coefficients, /b and I are 

black body and in-scattering coefficients, respectively. Therefore, the four terms 

on the right hand side of equation (3.8) represent the absorption, out-scattering, 

emission and in-scattering coefficients, respectively. 

3.2 Turbulence Modelling 

In modelling combustion, the two flow phases are calculated separately. Based 

on the CFD techniques, the Eulerian reference frame is used to calculate the 

gas phase of the combustion, while the Lagrangian reference frame is used to 

calculate the particle motions and combustion. In turbulent flows, the particle 
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velocity is decomposed into its steady mean value, u, with a fluctuating 

component, U I , (Versteeg & Malalasekera, 2007), namely; 

U(t) = u +u'(t) (3.9) 

This conventional Reynolds decomposition method can be used in a constant 

density turbulent fluid flow. However, in combustion, the heat release leads to 

density fluctuations which give rise to more uncertainties. Therefore, the density 

weighted averaging is used to cater for the fluctuating terms. 

In turbulent fluid flows, the continuity equation, along with the Navier-Stoke (N-

S) equations, is characterized by a dimensionless parameter called the 

Reynolds number. This is the ratio of the convective to diffusive terms and is 

defined as follows (Tums, 2006): 

(3.10) 

where u and L are the velocity and length scales, respectively, while p and J..l 

are the density and viscosity, respectively. 

3.2.1 Averaging method 

Reynolds averaging: 

In the Reynolds averaging approach, the conserved scalar tP is defined as 

follOWS: 

(3.11) 
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Favre averaging: 

Here we average as follows: 

and this implies that 

¢='i +¢" (3.12) 

where ¢" is the superimposed fluctuation. 

The Favre fluctuation averaging is of advantage considering the elimination of 

the density-velocity cross product terms in the momentum equations (3.2) -

(3.4), which is an effective way to account for the effect of density fluctuations 

due to turbulence (Habib, 2001). 

3.2.2 RANS equations 

Averaging the density and velocity, leads to averaged forms of the general 

equations. Representing the momentum conservation, continuity and scalar, for 

high Reynolds number, we obtain the following (Versteeg & Malalasekera, 

2007): 

au ~) 
fry = - p81J = pC ~ + Ox 

UA.J ' 

(3.13) 

(3.14) 

(3.15) 



where 

/j._{O for; *j 
'J - 1 for; = j 
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(3.16) 

(3.17) 

The equations (3.13), (3.15) and (3.17) represent the momentum, continuity and 

scalar transport, respectively. Equation (3.14) is part of the momentum 

equation, representing the Newtonian fluid. Further, U; represents the fluid 

velocity, uij represents the stress, and F; represents the body forces. 

3.2.3 K- epsilon model 

Modifying the governing equations introduces additional variables, and a 

turbulence model is required in order to determine these variables in terms of 

known quantities. The K-E model is the most popular, because it is robust, 

economical and reasonably accurate for many flows involving turbulence. 

The assumption in the K- E model is that the flow is fully turbulent and the effect 

of molecular viscosity is negligible. This method is based on modelling the 

transport for the turbulence kinetic energy (K) and its dissipation rate (E). The 

turbulent viscosity in the high Re limit is calculated as follows: 

(3.18) 

and the default value of the constant, C", is 0.0845, which is very close to the 

value in the standard K- E model (Launder & Spalding, 1972). 
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To improve upon the standard K-£ model, the RNG K-£ model was derived from 

a statistical technique called the 'renormalized group theory'. Most importantly, 

the RNG K-£ model includes the effects of swirling flows and it also accounts for 

low values of the Re. Modifying equation (3.18) to account for swirling effects 

(Backreedy, Fletcher, Ma, Pourkashanian & Williams, 2006), gives the RNG K-£ 

model as follows: 

jJ4 = /J1o/(as,n,~) (3.19) 

The turbulent viscosity without swirl and the characteristic swirl number are 

represented by /J1o and n, respectively, while the swirl factor as takes a default 

value of 0.07. However, for strong swirl flows, the swirl factor can assume a 

higher value. Numerically, the striking difference between the standard and 

RNG K- £ models is that the RNG model has an additional term in the £ equation 

(Orszag, 1993 quoted in Fluent inc., 2009). 

3.3 Combustion Modelling 

3.3.1 Non-premixed model 

Modelling the mixing and transport of the chemical species can be achieved by 

solving the conservation equations that describe the convection, diffusion and 

reaction sources for each component species. However, the non-premixed 

combustion model is considered more suitable for pulverized coal furnaces. It is 

specific for the simulation of turbulent diffusion flames with fast chemistry, 
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computationally it is efficient, and it takes a pre-processed thermo-chemistry 

through the PDF table (Versteeg & Malalasekera, 2007). 

The non-premixed model works under the assumption that the thermo-

chemistry can be reduced to a single parameter (mixture fraction) representing 

the mixture fraction of the local mass fraction of burnt and unburnt fuel stream 

elements (Jones & Whitelaw, 1984). The mixture fraction, f, is determined 

from: 

z,-z,.0.'l 
f = Z"foe/-Z,.O.'l 

(3.20) 

where Z, is the elemental mass fraction for the element i, The subscripts ox 

and fuel represent values of Z, at the oxidizer and the fuel stream-inlets, 

respectively. Equation (3.20) was derived from the generalized relation for 

species concentration (mass fraction) given by Sivathanu & Faeth (1990). They 

stated some relationship functions for hydrogen reacting with the oxygen-

nitrogen mixture, and for the mass fractions of oxygen, carbon dioxide and 

water vapour. 

The non-premixed model requires some inputs in creating the look-up PDF 

table. The non-adiabatic systems require the computational process to update 

the properties, such as density, temperature, species mass fraction and 

enthalpy from the PDF table in order to account for the varying pressure of the 

system. The PDF table accounts for the interaction of the turbulence and 

chemistry (Williams et al., 2000). 
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The double delta PDF and the beta PDF are the two types of PDF commonly 

used in commercial software packages. The double delta PDF is considered to 

be faster, while the beta function may be a more accurate representation of the 

PDF (Fluent Inc., 2009). 

3.3.2 Single rate devolatilization model 

The single rate devolatilization model assumes that the rate of devolatilization is 

first-order dependent on the amount of volatiles remaining in the particle 

(Rushdi et al., 2005). Based on this assumption, the devolatilization rate of the 

combusting particle is expressed as follows: 

-d;: = k[ mp - (1- /v. 0 )(1- /W.O )mp.o] (3.21) 

where mp and mp.o are the current and initial particle masses, and /V.O and /W.O 

are the mass fractions of the volatiles initially present in the particle and that of 

the evaporating or boiling material in wet combustion. Badzoich & Hawksley 

(1970) gave the fundamental equations representing the volatile matter of char, 

the change in volatile matter, char yields and the weight loss during initial coal 

heating. The results of their research work led to equation (3.21). 

In the discrete phase modelling, the exchange of mass from the discrete phase 

to the evaporating phase due to the devolatilization of combusting particle 

occurs. Therefore, in the non-premixed model, the DPM mass source is equal 

to the DPM burnt-out plus DPM evaporation. 
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3.3.3 Kinetic/diffusion limited model 

The kinetic/diffusion-limited model assumes that the surface reaction rate 

includes the effect of both bulk diffusion and chemical reactions. This model, 

was derived from two separate equations; one representing the diffusion 

rate, Do, and the other representing the kinetic rate, R . The two equations were 

described by Baum & Street (1971) and Field (1969), respectively: 

(3.22) 

where the surface area of a droplet and the partial pressure of the oxidant 

species surrounding the combusting particle are denoted by Ap and Pox, 

respectively. 

3.4 Deposition Model 

Several research attempts have been made in order to improve the accuracy of 

predicting the coal ash deposition in utility boilers. The viscosity method is 

widely used in the prediction of ash behaviour in boilers. However, the different 

approaches employed by researchers and the selection of prediction software 

packages result in inconsistent prediction results. 

For example, the particle cloud method has been used to predict the effect of 

turbulence on the dispersion of particles in the furnace (Wang and Herb, 1997). 

However, this method assumes that particles in a single stream have the same 

properties and are considered as a single parcel instead of being treated 
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individually. Also, some deposition models use only one or two parameters in 

determining the fate of an ash particle upon impaction on the heat exchange 

surfaces. Baxter and DeSoliar (1993) used particle residence time and 

composition to predict collection efficiency. In many case, only the particle 

viscosity is used to determine the sticking probability of the particle (Huang et 

al., 1996; Wang & Herb, 1997; Lee & Lockwood, 1999; Rushdi et al., 2005). 

The technological advancement has produced more flexibility with the recent 

CFD tools, such as, FLUENT 12.1 commercial software. In the past, software 

packages which have more limited modelling capabilities, such as TEACH have 

been used in predictions (Rushdi et al., 2005). 

In this section, a numerical model to predict the ash particle deposition rates in 

the burner region of coal-fired furnace is developed. Most the existing coal ash 

deposition models that uses viscosity method do not consider the rebound 

tendency of the particle after impaction, and the rebound tendency is significant 

for particle with excess energy at impaction (Ma et al., 2006). 

Therefore, the ash particle stickiness in the proposed deposition model is 

computed based on the particle viscosity, surface energy and static contact 

angle, where the overall sticking probability of the ash particle at impaction is 

determined based on the particle stickiness and its tendency to rebound after 

impaction. 
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The viscosity of the particle is determined from the chemical properties of the 

ash and the impact temperature of the particle, and then the particle viscosity is 

compared with a reference viscosity in order to determine its stickiness. 

Combustion codes in the new FLUENT 12.1 software have been used to 

implement the proposed ash particle deposition rates model. 

3.4.1 Impaction efficiency 

To calculate the discrete phase particle trajectories in a Lagrangian frame of 

reference, the force balance equations for the x -direction can be written in 

terms of the drag force, Fa gravitational acceleration, gx I and other forces, Fx I , 

(such as the change in the pressure gradient and the thermophoretic force), as 

follows (Huang, et al. , 1996): 

(3.23) 

The drag force acting on a particle ash, which is determined in terms of particle 

relaxation time (1P), is given as follows: 

(3.24) 

(3.25) 

The relative Reynolds number Rc is defined as follows: 

(3.26) 
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and the drag coefficient is given as 

(3.27) 

U, = fluid phase velocity 

Up = particle velocity 

Jl = fluid molecular viscosity 

p = fluid density 

Pp = particle density 

dp = particle diameter 

a"az and a) are constants (functions of Rc) that apply to smooth spherical 

particles (Morsi & Alexander, 1972). For example, when Rc is ~1 0000, the 

constants take the following values a,= -1662.5, a 1 = 5.4167x106 and a)= 

0.5191. 

The gravitational acceleration and the virtual mass forces are also included in 

the energy balance equation (3.23). Considering the forces due to the change in 

the pressure gradient and the thermophoretic effect, which are also acting on 

the particle, the virtual forces can be determined as follows (Talbot, in Huang et 

al., 1996): 

6mfpJl2Cs( K + GIG.) 1 aT 
F;,; = - p(1 + 3C",IG. )(1 + 2K + 2 GIG. ) mpT ax (3.28) 

where the Knudsen number K" = 2A. / dp and the mean free path 
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K=klkp 

k = fluid thermal conductivity 

kp = particle thermal conductivity 

Cs = 1.17, Ct = 2.18, Cm = 1.14 

mp = particle mass 

T = local fluid temperature 

The energy balance equation of a fly-ash particle, which is solved along its 

trajectory to obtain the corresponding temperature at the point of impact, is 

given as follows (lee & lockwood, 1999): 

(3.29) 

Cp = particle specific heat 

Tp = particle temperature 

q c = convective heat transfer coefficient 

Too = bulk phase temperature 

Having subscribed to the popular opinion that inertial impaction (Ii ), 

thermophoretic effect (Ti), condensation (C;) and heterogeneous reaction (Ri) 

are the major processes of particle deposition, the rate of deposition of an ash 

particle at its residence time, t, relative to the injection time is determined as 

follows (Baxter & DeSollar, 1993): 

dm dt' = I,(t, r) + 1',(t, r) + C,(t, r) + R,(t, r) (3.30) 
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The second time frame, 1', in the equation (3.30), is referred to as the elapsed 

laboratory time relative to an arbitrary time of the day, is independent of the 

particle residence time. 

In the burner region, where the temperature is very high, there is little or no 

condensation of fly ash. Therefore, it has been assumed that the inertial 

impaction is the major pathway for the larger particle deposition. Although the 

particle may not be a perfect sphere, but using the spherical drag law, it is also 

assumed that the ash particle is spherical. 

3.4.2 Collection efficiency 

Particles may stick to the furnace walls after impaction if either the wall or the 

particle or both are sticky. However, in the burner region, where there is little or 

no condensation of ash-forming vapours due to the high temperatures, the 

sticky probability will largely depend on the impacting particle, because the 

sticky probability of such a wall is computed in analogy to the silicate particle 

sticky probability. 

For particles rich in salts, typical in biomass, the sticky probability is determined 

by their melt fraction and/or softening temperature (Ma et a/., 2006). However, 

for silica-rich particles, as in coal, the sticky probability (~ ) can be determined 

from the particle viscosity (pp) and a reference viscosity, called the critical 

viscosity (Pc), as follows (Harb, Zygarlicke & Richards, 1993): 
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"i = 1 

(3.31) 

(3.32) 

In determining the ash-particle viscosity, the particle temperature and its 

chemical composition are required as input. The particle viscosity is determined 

using the Watt & Fereday model as follows (Huang et al., 1996): 

(3.33) 

where the slope, m, and the intercept, c, are functions of the bulk ash chemistry, 

and are been computed from the species concentration in weight percentages, 

as follows: 

m = (0.00835)8,02 + (0.0060 1)A12 0 3 - 0.109 (3.34) 

The slope and intercept are determined on the basis that 

S,02 + Al20 3 + Equiv.Fe2 + CaO + MgO = 100(wt%) 

3.4.3 Reference viscosity 

(3.36) 

To assess the sticking probability of the ash particle using the viscosity method, 

a reference viscosity has to be chosen. It is sometimes called the critical 

viscosity, Pc, and its value varies in different research studies. More often 104
-

108 (Pa.s) are reported (Rushdi et al., 2005; Lee & Lockwood, 1999). 
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Yilmaz and Cliffe (cited in Rushdi et a/., 2005) conducted a laboratory-scale 

study in 1997, and they reported that deposition starts when the particle 

viscosity is less than 6.7x109 (Pa.s). In this investigation, 108 (Pa.s) has been 

chosen as the reference viscosity (Rushdi et a/., 2005). 

3.4.4 Particle rebound 

Particle with high impact velocity may possess excess energy to rebound. This 

is in addition to the sticky probability of the surface wall and the particle. The 

rebound tendency can be predicted as a function of viscosity, impact velocity 

and static contact angle of the particle. If a particle has excess energy, Ex, 

greater than zero, it is assumed to rebound, otherwise it sticks. The particle 

excess energy is calculated as follows (Ma et a/., 2006; Mao, Kuhn & Tran, 

1997): 

D2 3D2.3 2 
EX=4(1-cosa)-25 (1-cosa)o.63+ 3D -1 (3.37) 
where D is the ratio of the maximum deformation particle diameter to the 

particle diameter, determined as follows: 

(3.38) 

The Weber number is obtained from equation (3.39), while the Reynolds 

number has been redefined in terms of particle velocity in equation (3.40). a 

and 8 are the static contact angle and the surface energy of the particle. 

p,u 2d 
We=§ 

ppud 
Re = Jip 

(3.39) 

(3.40) 
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3.4.5 Deposition flux 

The deposition flux for a single particle that hits the wall of a furnace is 

evaluated from the mass flux of the particles, represented by their trajectories 

(mUj,;) (Forstner et al., 2006), and the sticking probability of the impacting 

particle (K; ). Therefore, on a wall face, the total deposition flux is determined as 

follows: 

. 1 ~ (. ) M = A L..J Tntrj,;· K; 
f ;=0 

(3.41) 

3.4.6 Assumptions and limitations 

The limitations of some of the existing deposition models that have been 

discussed in Chapter 2 include the following: the use of particle cloud to predict 

the properties of individual particle; the use of only viscosity to determine 

particle sticking tendency; and assuming a single deposition pathway. The 

model developed in this thesis addresses some of the limitations, such as 

particle rebound tendency and the effect of particle surface energy on its 

stickiness. Nevertheless, there remain the following assumptions and 

limitations: 

i. Ash particles with viscosity less than or equal to the reference viscosity 

are considered to be sticky. 

ii. Particles with possess excess energy (> 0) at impaction may rebound. 

iii. The deposition panels are considered as clean surfaces. 

iv. The reference viscosity of 108 (Pa.s) was chosen from empirical results. 
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v. The ash properties used in the calculations may change in a dynamic 

boiler situation. 

3.6 Summary 

In this chapter, the major theoretical models used in this numerical investigation 

are presented. The assumptions of both the adopted and the developed codes 

are also stated. The law of conservation of mass and the fundamental laws of 

thermodynamics are the governing equations for the fluid flow and the enthalpy 

calculations, while the effect of radiation is obtained using the DO model. 

Turbulence is calculated according to the RNG K-E model, and the combustion 

is computed using the non-premixed model, which is found suitable for turbulent 

diffusion flames with fast chemistry. The thermo-chemistry is pre-processed 

using the ~-function PDF lookup table. The rate of release of volatile matter is 

assumed to be first-order dependent on the amount of volatiles remaining in the 

particle, while the kinetic/diffusion-limited model which has been used includes 

the effects of bulk diffusion and chemical reactions. 

The effects of the drag force, gravity and other forces, such as, thermophoretic 

force and pressure gradient are considered while calculating the particle 

trajectories. The overall sticking tendency of the particle is determined on the 

basis of its calculated viscosity at impaction on the boiler walls and its tendency 

to rebound after impaction. A reference viscosity of 108 (Pa.s) was used to 

define the state of the ash particle relative to its computed viscosity. 
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CHAPTER 4 

IMPLEMENTATION OF THE DEPOSITION MODEL 

In order to successfully validate the coal ash particle deposition rates model that 

has been developed in this investigation, comprehensive coal combustion 

codes are required in order to establish the gas phase temperature and velocity 

fields. Hence, the combustion models that are available in the FLUENT 12.1 

commercial software (Fluent inc., 2009) have been used in computing the 

turbulent fluid flow, as well as the gas and particulate combustion phases. The 

proposed ash particle deposition rates model has been successfully 

implemented through the use of a user-defined function. 

This chapter has been divided into four sections. The first section discusses the 

method adopted in the implementation of the ash deposition model. Section two 

describes the test case used in validating the model and, therefore, the furnace 

geometry, the computational grid, the fuel properties and the furnace 

operational conditions have all been explained. The third section of this chapter 

is mainly on the solver settings and the solution procedures that have been 

adopted. Finally, the fourth section contains a summary of the conclusions of 

the chapter. 

4.1 Methodology 

In an attempt to improve combustion efficiency, modelling and numerical 

simulations of PF combustion processes are considered as an important tool for 
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diagnostics and predictions of the operations and boiler situations (Filkoski, 

Belosevic, Petrovski, Oka & Sijercic, 2006). In order to predict the deposition 

mechanism of the ash particles, some important steps have to be followed. 

Therefore, this research study has been guided by the following salient steps: 

• Generating a computational grid to represent the combustion furnace 

that has been used in the calculations, and identifying the furnace 

operational conditions. Also in this initial stage, the combustion fuel (coal) 

type and its properties have been identified. 

• Setting up simulations using the available and suitable CFD codes in 

FLUENT 12.1 software, by selecting suitable models for the fluid flow 

and its various characteristics, such as, turbulence, heat transfer, 

chemical kinetics, etc., in an Eulerian frame of reference in order to 

establish the gas phase of the combustion process. 

• In the second, discrete, phase of the combustion process, suitable sizes 

of the coal particles have been injected into the furnace. Simulations 

involving the interaction between the continuous and the discrete 

phases, including energy and radiation effects, have been iteratively 

solved. Also, the particle trajectories in a Lagrangian frame of reference, 

with the effects of drag and other forces acting on a particle in fluid, have 

been computed. A non-adiabatic PDF look-up table for the gas phase 

has been prepared in the FLUENT 12.1 software. 

• In a sequel to the proceeding stage, the temperature distribution and 

velocity profiles, and some other properties of the gaseous phase, such 

as the heat fluxes, have been examined and reported. 
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• A theoretical model to predict the coal ash particle deposition rates in 

boilers has been developed. The model has been hooked into the 

FLUENT 12.1 software, as a UDF boundary condition in order to 

determine the fate of the ash particles that may impact on the surfaces of 

the heat exchanger. This stage is of major concern to this research 

study, being a test point for the effectiveness or otherwise of the 

proposed model. 

• At this stage of the computational process, the particle trajectories and 

stickiness have been determined. The particle's stickiness has been 

defined based on the ash viscosity, the bulk properties of the ash and 

some other physical properties of the ash particles, such as the impact 

velocity, static contact angle and surface energy. 

• The results of the predictions using the developed deposition code are 

compared with the available experimental data in order to validate the 

proposed code. This step was followed by the post-processing analyses 

and a discussion on the results of predictions using the proposed 

deposition model. 

Fig. 4.1 depicts a flow chart illustrating an overview of the necessary 

computational steps for the prediction of the ash deposition rates in boilers 

which are based on the salient steps explained above. Fig. 4.1 shows that the 

required input into the commercial software for the initial set of calculations 

include a completed computational grid representing the various sections of the 

test boiler, the physical and chemical properties of the fuel, and the operational 

conditions of the boiler. When a converged solution of the first set of 
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computational iterations is obtained, the temperature and velocity fields, and the 

heat fluxes, are recorded and analysed. 

The second phase of the calculations, as shown in Fig. 4.1, is basically on the 

particle trajectories and the determination of the fate of the particles when they 

are transported to the boiler walls. The particle trajectories are calculated under 

the influence of turbulence, particle dispersion effects, high temperature and 

pressure gradients, etc. 

For the ash particle that possess sufficient energy and velocity to transverse the 

boundary layer and hit the boiler walls, the viscosity, surface energy and excess 

energy of the particle are computed in order to determine whether the particles 

stick to the walls or rebound. 

4.1.1 CFD codes 

The complexity of some engineering phenomena, such as combustion, makes it 

very difficult to have an accurate and precise measure of a" the parameters 

involved. The need to study the characteristics of such vital engineering 

activities has led to the development of CFD codes. 

CFD is the analysis of systems involving fluid flow, heat transfer and associated 

phenomena, such as chemical reactions, by means of computer-based 

simulations (Versteeg & Malalasekera, 2007). This powerful technique spans a 
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wide range of industrial and non-industrial application areas with acceptable 

performance results, and chemical processes such as combustion are inclusive. 

Fig. 4.1 
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Compute stickiness of ash 

particle trajectories 
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Flow chart for the prediction of the ash particle deposition rates. 

In relation to other computational processes, the CFD differential models based 

on solving the conservation equations, offer some local values of the relevant 

variables in the computational domain regarding the geometry and its operating 
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conditions, the fuel characteristics, and the complex operations of the plant 

(Filkoski et al., 2006). 

In general, modelling assists in solving problems that are related to PF 

combustion. Numerical predictions of boilers using CFD codes have been in the 

coal industry for some time, and reasonable advances have been made. 

Modelling and simulations of the processes of PF furnace combustion can be 

used to diagnose and predict the operational conditions in boilers, and the 

results obtained may be used to improve the combustion efficiency. 

However, it is still not easy to use CFD techniques for detailed furnace design 

processes, and this is due to the increasing computational demands (Backreedy 

et al., 2006). Therefore, the modelling engineers and scientists should know the 

potential, assumptions, limitations and the steps that are involved in CFD 

(Eaton, Smoot, Hill & Eatongh, 1999). 

The CFD codes, which are structured around the numerical algorithms that can 

tackle fluid flow problems, consist of three basic stages, namely, pre-processor, 

solver and post-processor. 

Pre-processor: This is mainly the input of the flow problem to a CFD program. 

The pre-processor stage is dominated by the user activities, such as: 

• Defining the computational domain. 

• Generating meshes for the domain. 

• Selecting the physical and chemical processes to be modelled. 
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• Defining the fluid properties. 

• Specifying the boundary conditions. 

Solver: Based on the control-volume technique, the numerical algorithm 

consists of three basic steps: 

• Integrating the governing equations of the fluid flow over the finite control 

volume of the domain. 

• Discretizing the resulting integral equation into sets of algebraic 

equations. 

• Iteratively solving the governing algebraic equations. 

The choice of the solver, for example in the FLUENT software, is limited to the 

pressure-based or the density-based and the segregated or the coupled types 

of solver (Fluent Inc., 2009). The pressure-based solver was originally 

developed for low-speed incompressible flows. In this approach, the pressure 

field is extracted by solving the pressure equation which is obtained by 

manipulating the continuity and momentum equations (Versteeg & 

Malalasekera, 2007). 

post-processor: The CFD post-processing packages are capable of displaying 

the domain grid, vector plots, contours of measured quantities, particle tracking, 

animations of the dynamic results, etc. With the increasing popularity of 

engineering workstations, a large amount of developmental work has recently 

taken place in the post-processing field. 
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4.1.2 User-defined functions 

The CFD models are usually developed based on several variables and 

assumptions, all in an attempt to investigate if the codes can closely predict the 

actual situations in the engineering field. The CFD codes are expected to 

provide reasonable engineering or scientific conclusions. 

The user defined function (UDF) is a code, developed by a user, which can be 

dynamically loaded with the solver of a commercial software package, e.g. 

FLUENT, in order to further enhance the features of any of the existing codes. 

Also, the UDF can be used to incorporate user defined features, such as 

erosion rates, deposition rates and scalar values along the existing particle 

trajectories equations. 

The ash deposition model has been incorporated into the FLUENT 12.1 

software using the UDF, as a boundary condition, in order to customize the 

DPM to include additional body forces, such as particle collection efficiency at 

impaction. 

Also, the numerical slagging indices for both coal and the coal and biomass 

blends have been implemented as a 'define-on-demand' UDF. Although the 

slagging models assess the slagging performance of the coals and blends 

before combustion, they are also considered as user-defined programs which 

are executable in the FLUENT software using the 'execute-on-demand' 

command. 
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4.2 Test Case 

The deposition model has been tested on the ACIRL furnace using the 

Australian bituminous coals. The geometrical modelling, grid generation, fuel 

properties and the operational conditions are discussed in this section. 

4.2.1 Geometry 

The Australian Coal Industries Research Laboratories (ACIRL) swirl furnace 

has been modelled in these calculations in order to validate the proposed ash 

particle depOSition rate model. The vertically fired pilot-scale furnace is being 

operated at a firing rate of 0.2 MW. The cylindrical furnace, which is 2.5 m long, 

has a diameter of 0.65 m, and has been found suitable for studying the slagging 

and fouling tendencies of coals (Su et a/., 2001a). 

Three slag panels were designed on the furnace to represent water walls in the 

pulverized fuel boilers. The panels are water cooled to maintain an average 

temperature of about 773 K, assuming clean surface conditions (Rushdi et a/., 

2005). Each panel has an area of about 0.038 m2
, and designed to collect the 

deposits. Determining the thermal conditions in the radiant section of a boiler is 

essential for the study of slagging propensities. Therefore, sampling of gas 

phase temperatures in the furnace was undertaken at the ACIRL during coal 

firing (Su et a/., 2001 b). The ACIRL burner and furnace designs are 

schematically shown in Fig. 4.2 and Fig. 4.3, respectively. 



Furn ace 
Heigh t -2500 

M oveab le Block 
SWi rl Generato r 

l 

100 

Gas Torch 

-- Secon dary AI r In 

.,.:" 1 

.,.19 

Fu rn ace Lin Ing 
(ref rac tory) 

Fig. 4.2 Schematic of the ACIRL Burner with dimensions in 
millimetres (source: ACIRL, Australia) . 

Tu nnel 

B ottom ASh 
Hopper 

\ 

Water Jackel 

In su lalmg 
Ref ractol'( 

Fig. 4.3 Schematic of the ACIRL Furnace with dimensions in 
mill imetres (Source: ACIRL, Australia) . 
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The burner section, as shown in Fig. 4.2, consists of the gun torch. the primary 

air and fuel inlet, as well as the secondary swirl air inlet. The swirl burner has a 

conical shape at its exit. and it is designed to admit the secondary tangential air 

at an angle of 25° to the horizontal flow. 

Fuel and primary air enters the vertically fired furnace from the horizontal 

primary inlet, while the secondary air enters vertically at a higher temperature 

(623 K) through the secondary inlet. The diameters of the gun torch, the primary 

inlet, the secondary inlet and the exit are 0.019, 0.051, 0.095 and 0.65 m, 

respectively. 

The main furnace is shown in Fig. 4.3. The three slag panels, namely, panels 1, 

2 and 3, are located at 0.333, 0.999 and 1.665 meters away from the burner 

exit, respectively. The rest of the walls are refractory lined to minimize the lost 

of heat. 

4.2.2 Grid generation 

The first step towards obtaining a CFO solution is the creation of a 

computational grid (Abolhassani & Stewart, 1994). A 2-dimensional (20) 

axisymmetric set up of the ACIRL furnace has been modelled in these 

calculations. Although the modelling of pulverized coal combustion in an 

axisymmetric furnace with swirl is complex (Saljnikov, Komatina & Goricanec, 

2006), the axisymmetric view of the ACIRL furnace modelled in these 

calculations is shown in Fig. 4.4. 
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Fig. 4.5 Computational grid employed in the calculations. 
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The partial differential equations governing the fluid flow and heat transfer are 

not readily responsive to analytical solutions of large cases. Thus, in order to 

analyze the fluid flow, the domain is divided into sub-domains and the 

discretized partial equations are solved in each of the domain cells (Samareh, 

1998). 

In order to simplify the mesh structure, the fuel inlet is represented by fifteen 

rectangular cells, while the air inlet is represented by twenty five rectangular 

cells, as shown in Fig. 4.5. At about 1.6 m from the exit of the furnace onwards, 

the domain was represented by square-equivalent cells of the same cross­

sectional area. At the initial stage, the furnace was represented by a 

computational grid consisting of about 0.05 million cells. 

The grid was later refined continuously, using the solution-adaptive grid 

refinement technique in order to reduce the numerical errors in the solution and 

ensure that a grid-independent solution is obtained. Assuming that the 

maximum error is in the region of high temperature gradient, the evolving flow 

field information has been used to derive the adoption process (Habibi, Merci & 

Heynderickx, 2007). At the end of the refinement process, up to 0.25 million 

cells have been obtained with no significant change in results thereafter. 

4.2.3 Fuel properties and operating conditions 

The chemical properties of the coals (Rushdi at al., 2005), the physical 

properties of the coals and the furnace operating conditions (Sheng at al., 2004) 
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that have been used in these calculations are shown in tables 4.1 and 4.2, 

respectively. All the coals have heating values within the range of typical 

bituminous coals (- 33 MJ/kg). Coal A has the highest volatile matter content 

(45.90 wt %), and it is next to the coal D in terms of the ash content value. This 

may result in increased slagging potential. 

Although coal A has a relatively high content of Si02 in the ash, its high volatile 

matter content may yield a large amount of low-viscosity materials which may 

increase its slagging potential. Coal B has the lowest volatile matter content 

(25.70 wt %), and it also has a lower content of Si02 and a higher content of 

Fe20 3 in the ash than coal A (58.40 and 7.20 wt %, respectively). 

The Australian coal C has a high content value for Fe203 and a low content 

value for Si02 in the ash (10.80 and 51.80 wt %, ·respectively). Its low ash 

content value (3.20 wt %) may reduce its tendency to accumulate slag in the 

boiler. Coal 0 has the highest content of ash and AI203 in the ash (12.70 and 

36.80 wt %, respectively). Its volatile matter content and the content of Si02 in 

the ash are relatively low when compared with the other coals. The low Si02 

content may increase the slagging potential of the coal. 

The range of the coals tested in this investigation is relatively narrow, and 

therefore, a single value for the density, 1200 kg/m3
, and a single value for the 

specific heat, 1400 J/kg K, has been used for all the coals. Also, a swelling 

factor of 2 has been used, assuming that the final particle diameter doubles 

when all the volatiles have been released. 
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Table 4.1 Proximate, ultimate and ash analyses of the Australian coals A-D 
and their respective ashes tested using the ash deposition model (wt %, db) 
(Rushdi et al., 2005). 

ASH COAL 

Ash Coal Coal Coal Coal Ultimate Coal Coal Coal Coal 
A B C D A B C D 

Si02 71.50 58.40 51.80 54.60 C 70.00 77.50 76.30 72.40 

AI20 3 15.90 35.30 18.90 36.80 H 5.31 4.60 4.96 4.66 

Fe20 3 1.80 7.20 10.80 2.80 N 0.97 1.83 2.08 1.91 

Ti02 2.20 1.80 1.30 1.60 S 0.39 0.40 0.38 0.61 

CaO 4.20 2.60 7.10 0.90 0 13.70 7.87 13.10 7.72 

MgO 1.30 0.70 2.50 0.42 

Na20 0.58 0.25 0.77 0.27 Proximate 

K20 0.27 1.30 0.42 1.00 Ash 9.60 7.80 3.20 12.70 

Others 2.25 2.32 6.41 1.53 VM 45.90 26.70 38.50 12.70 

CV 33.20 34.99 33.57 34.49 Fe 44.50 65.50 58.30 56.70 
MJ/kg 

Table 4.2 Physical properties of the tested coals & the operating conditions. 

Property Value 

Density (kg/m3
) 1200 

Specific heat (kJ/kg K) 1400 

Vaporization temperature (K) 773 

Thermal conductivity (W/m K) 0.33 

Emissivity 0.9 

Swelling coefficient 2 

Coal mass flow rate (kg/s) 0.0075 

Primary air mass flow rate (kg/s) @ 363K 0.0122 

Secondary air mass flow rate (kg/s) @ 623K 0.0497 
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4.3 CFD Simulations 

The CFD solver type, the solver settings and the solution procedures adopted in 

these calculations are discussed in this section. Also, in this section, the CFD 

codes employed for different combustion processes have been discussed and 

summarized. 

4.3.1 Solver settings 

The ANSYS FLUENT CFD Software version 12.1 has been employed in the 

calculations. The pressure-based solver is the only option available for the non­

premixed coal combustion simulations in the FLUENT software. The segregated 

pressure-based solver, which requires low CPU memory and provides flexibility 

in solution procedures (Fluent Inc., 2009), has been employed in the 

calculations. The segregated solver algorithm, shown in Fig. 4.6, solves the 

energy equation after solving the momentum equations. 

In the segregated pressure-based solver, the fluid properties, such as density, 

viscosity, etc. are updated along side the turbulent viscosity at the initial stage. 

Then, the solver computes the momentum equations sequentially using the 

updated fluid properties. The pressure correction is then obtained using the 

recently updated values for the pressure and face mass fluxes. 

In the next step, the face mass flux, pressure and velocity fields are determined 

from the pressure correction. Subsequently, if any additional scalars, such as 
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the turbulent quantities, energy and radiation intensity exist, they are 

recalculated using the most recent values of the solution variables. 

The source terms arising from different iteration phases, for example, the 

source term for the carrier phase due to the discrete particles, are updated. The 

final stage is the checking for the convergence of the equations. If the equations 

converge, the iterations terminate, otherwise the procedure starts all over again 

by updating the fluid properties . 

.I Update properties 

Solve sequentially 
Uvel , Vvel & Wvel 

Solve pressure-correction 
(continuity) equation 

Update mass flux, 
pressure & velocity 

Solve energy, species, 
turbulence & other scalar 
equations 

Yes No I Converged? 1 
l J 

Stop 

Fig. 4.6 
2009). 

Overview of the pressure-based segregated algorithm (Fluent Inc., 
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4.3.2 Models used 

The non-premixed combustion model: The non-premixed model has been used 

for the reaction chemistry under an equilibrium state. The inlet diffusion option 

was selected for the non-adiabatic PDF table that has been used. The fuel is 

injected through the primary inlet and the species (mixture) transport phase was 

coupled with the dispersed phase to exchange mass, momentum and energy 

during the calculations. 

The combustion simulation has been modelled using the PDF mixture fraction 

approach, where the non-premixed combustion model has been employed for 

the reaction chemistry. The non-premixed combustion model solves transport 

equations for one or two conserved scalars and mixture fractions (Barths et a/., 

2000), and their concentrations have been derived from the predicted fraction 

distribution. 

The properties of the species have been accessed through a chemical 

database (Fluent Inc., 2009), and the turbulence chemistry has been 

implemented using a ~-shape PDF. While generating the PDF lookup table, it 

has been assumed that the mixture fraction can diffuse out of the domain 

through the inlets and the outlet (Fluent Inc., 2009). 

Using the empirical fuel stream, the fuel composition has been defined in terms 

of the ultimate analysis. The heating value and the specific heat of the fuel are 

maintained as in Tables 4.1 & 4.2. The temperatures at the fuel and oxidizer 
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inlets are set to be 363 and 623 K, respectively (Rushdi et a/., 2005). The air. 

oxidizer consists of 21 % oxygen and 79% nitrogen (Fluent Inc., 2009). A 

maximum of 20 of the most prominent species are by default generated from 

the ~-shape PDF, and these species have been considered after performing the 

equilibrium calculations. For the calculations of the enthalpy, a minimum 

temperature of 298.15 K was used (Habibi et a/., 2007). 

The Weighted-Sum-of-Gray-Gases Model (WSGGM) has been employed in 

computing the absorption coefficient of the mixture of gases. In this approach, 

the non-gray gas has been replaced by a number of gray gases for which the 

heat transfer rates are calculated independently (Habibi et a/., 2007). The total 

heat flux was then determined by adding the heat fluxes of the gray gases as a 

function of certain weight factors. The WSGGM assumes that the total 

emissivity over a distance can be determined as a function of the emission and 

absorption coefficients of the gray gas (Fluent Inc., 2009). 

Particles size distribution: The medium-volatiles com busting coal particles, 

represented by ten different size groups, have been injected into the boiler 

through the fuel inlet. The velocities of the particles are assumed to be the 

same as the primary air velocity at the inlet (Rushdi et a/., 2005). 

The particles are spatially distributed at the inlet and the particle diameter 

distribution has been calculated according to the Rosin-Rammler distribution 

size model (Huang et a/., 1996), with 70 lJm as the minimum particle diameter 

and 200 lJm as maximum particle diameter. 
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The mean particle diameter was maintained at 134 IJm and a spread parameter 

of 4.52 has been used according to the Rosin-Rammler particle diameter 

distribution. With 10 injection points, each representing a parcel of 10 particles, 

a total of 100 particles have been tracked in every discrete phase calculations. 

The assumed spherical particles are in constant interaction with the continuous 

phase while they are being tracked using the spherical drag law, see equation 

(3.24). 

The effect of turbulence on the particles was compensated by the use of a 

dispersion stochastic sub-model; the Discrete Random Walk (DRW) model. The 

DRW model tracks representative particles from each aerodynamic size group 

for a defined number of times in order to simulate the ash particles dispersion 

by the fluid turbulence. 

In order to improve the computational accuracy, an arbitrary number (10), for 

the stochastic tracks, has been used in the calculations. Although such a high 

number of tracks may increase the CPU demand and possibly introduce 

instabilities into the calculations, the under relaxation factors have been 

reduced. For example, DPM under relaxation factor was reduced to 0.25 in 

order to enhance the solution stability and convergence. 

Single rate de volatilization: In modelling deposition rates, an accurate 

calculation of the temperature field is a key issue and this largely depends on 

the combustion models. The combustion model follows the approach previously 

used by some of the present authors (8ackreedy et al., 2006; Ma et al., 2009). 
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The model uses a first-order devolatilization step for the coal followed by a 

global one-step reaction for the combustion of the volatiles. 

The kinetic rate is defined according to the Arrhenius type pre-exponential 

factor and activation energy. The least amount of surmountable energy for a 

chemical reaction to occur was set at 7.4 )( 107 J/kg mol (Li et a/., 2003). The 

coal vaporization temperature was initially set at 363 K (the same as that of the 

fuel inlet temperature) in order to enhance ignition. After the flame has 

stabilized, after a few iterations, the coal vaporization temperature of 773 K was 

then used. 

Kinetics/diffusion-limited model: The char combustion begins when most of the 

volatiles are released and it is assumed that the reaction rate is dependent on 

either the chemical reactions or on the bulk diffusion (Backreedy et a/., 2005; 

Backreedy et a/., 2006). The particle size was assumed to remain constant, 

while the particle density decreases. 

Both the char particles and the subsequent ash particles are subject to 

fragmentation processes but only in the experimental circumstances. In these 

calculations, the effect of the fragmentation process has been assumed to be 

insignificant (Backreedy et a/., 2006), and therefore the process was not 

included in the proposed ash particle deposition model. For the medium 

volatiles coals, the activation energy was set to be 7.9 )( 107 J/kg mol (Williams 

et a/., 2002; Murphy & Shaddix, 2006). 
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The RNG K-£ model: This turbulence model is said to be more suitable than the 

standard K-£ model in similar calculations that have been reported, especially, 

considering the furnace size. This is because the model accounts for the effects 

of both small scales and swirl motions (Ma et al., 2006; Ma et al., 2009; Fluent 

Inc., 2009). The RNG is an anisotropic K-E model that includes the effects of 

strained flows, and this greatly improves the predictive accuracy (Eaton et al., 

1999). 

Radiation model: Heat transfer between the particle and the boiler walls due to 

radiation is implemented using the Discrete Ordinates (DO) model (Ma et al., 

2009). Values higher than the default ones were chosen for the angular 

discretization in order to refine the computational steps for better results, but 

with additional computational cost (Fluent Inc., 2009). 

To obtain more accurate results, the heat transfer calculations are repeated 

after every five calculations of the continuous phase. At the end of these 

calculations, the gas phase temperature and velocity fields have been 

established. Also the heat fluxes on the three slag panels were recorded. 

Particle trajectories: The trajectories of the ash particles have been calculated in 

the Lagrangian approach. The simplified equation of motion for a particle 

moving in a viscous environment, equation (3.23) has been employed. 

Ash particles deposition: The second part of the calculations, which is part of 

the original work in this investigation, is mainly to predict the behaviour of the 
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ash particles in the furnace using the established gas phase temperature and 

velocity fields. The ash particles deposition process includes the following: the 

transportation of the particles to the heat exchange surface; the tendency of 

each particle to stick to the surface upon impaction; and/or the particle's 

tendency to rebound after impaction. 

Inertial impaction is the most prominent pathway for the transportation of the 

large particles (~ 10 J,Jm) to the heat exchange surface (Baxter & DeSollar, 

1993). Inertial impaction can occur where the distance travelled by a particle 

before it adjust to the changes in the fluid velocity is greater than the length 

scale of an object submerged in the fluid, and the rate of inertial impaction 

mostly depends on the gas aerodynamics, particle size, and geometrical design 

(Naganuma at a/., 2009). 

Although it has been assumed, in the region of high temperatures, that the 

inertial impaction is the major transport mechanism for the particles to the boiler 

walls, it is a common knowledge that the initial deposit layer is formed due to 

the condensation of the vapour of alkali metallization compounds, such as 

sodium, that occur during evaporation (Naganuma at a/., 2009). 

The fine particles that make up the initial deposit layer are transported to the 

heat exchange surface by thermophoretic forces, which is part of the virtual 

forces represented in equation (3.28). The thermophoretic force is applied over 

a broad range of Knudsen numbers. 
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The impaction efficiency, which is defined as the ratio of the number of particles 

that hit the exchange surface to the number of particles that are directed at the 

surface from the free stream, is the main factor determined by equation (3.30). 

Each moving particle possesses a particular velocity, mass and composition, 

and the CFD code calculates the corresponding temperature for the particle 

according to equation (3.29). 

The particle sticking probability when it hits the surface is determined using 

equations (3.31 & 3.32), by comparing the particle's viscosity to a reference 

viscosity. The Watt-Fereday model has been employed to determine the 

viscosity of the particle. In order to assess the sticking probability of the ash 

particle, a reference viscosity of 108 Pa s has been chosen. 

The sticking probability of particles having a viscosity less than or equal to the 

reference viscosity has been assigned the value of unity. While for particles with 

a viscosity greater than the reference viscosity, the sticking probabilities are 

determined between the reference viscosity and their actual viscosity, and such 

particles are assumed to be non-sticky. 

The probability for a particle to rebound after impacting on the wall surface 

depends on whether it possess excess energy or not, and this is determined by 

equation (3.37). The parametric values used in implementing the particle's 

excess energy calculations are a = 45°, 8 = 0.7N/m and IJp = 10 (Pa.s). These 

values are chosen from the results obtained from empirical investigations (Jung 

& Schobert, 1992; Forster et aI., 2004; Melchior, Putz and Muller, 2009). 
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Particles with an excess energy after impact are assumed to rebound, 

otherwise they stick to the walls. The viscosity of each particle is calculated 

from its chemical composition and impact temperature. 

The particles capture efficiencies are estimated based on their sticking and 

rebound tendencies. All particles with a viscosity less than or equal to the 

reference viscosity (108 Pa.s) and do not possess enough energy to rebound 

are assumed to stick to the walls. The code records the particle location along 

the walls of the furnace. Therefore, the particle rate of deposition on the heat 

exchange surface is directly proportional to their capture efficiencies, as in 

equation (3.41). 

Naturally, the initial deposit layer is formed on a clean wall, while subsequent 

deposit layer are formed on the initial layer. However. in this investigation, it has 

been assumed that the subsequent deposit layers are also formed on similar 

clean walls. This assumption was made because the proposed ash particle 

deposition rate model did not account for deposit build-up. 

Complete steady-state calculations are performed and the results of predictions 

obtained. using the proposed deposition model, have been compared with the 

available experimental data. A summary of some of the mathematical models 

used for various aspects of coal combustion in these calculations are shown in 

Table 4.3. 
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4.3.3 Solution procedures 

The steady state RANS calculations have been performed using the ACIRL grid 

as described in section 4.2.2 of this chapter. A 2D-steady axisymmetric swirl 

case was set up, and the simulations were performed in two phases. The gas 

aerodynamics is solved using an Eulerian approach, while the ash particle 

trajectories and tracking were calculated separately in a Lagrangian frame of 

reference. An overview of the solution procedure is shown in Fig. 4.7. 

Table 4.3 Summary of the combustion models employed in the calculations. 

Activity Model Used 

Turbulence RNG k-epsilon 

Absorption coefficient WSGGM 

Radiation Discrete ordinates 

Combustion Non-premixed (PDF) 

Particle diameter distribution Rosin-Rammler 

Particle dispersion Stochastic DRW 

Devolatilization Single rate 

Char burnout Kinetics/diffusion - limited. 

The governing equations for the flow field, swirl velocity, turbulence, energy, DO 

and PDF have been solved sequentially. Since the equations solved are 

primarily nonlinear, suitable under-relaxation factors were selected in order to 

enhance the solution convergence. 
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The PRESTO pressure scheme. which accounts for the effect of the steep 

pressure gradient involved in swirling flows (Fluent Inc., 2009), with first-order 

discretization, was initially used in the simulations. After obtaining a converged 

solution, the second-order upwind discretization scheme was applied for more 

precise solutions. Using the pressure-based solver, the equations were solved 

iteratively in the natural variables of pressure and velocity using the SIMPLE 

method which caters for instabilities due to mesh skewness. 

Set the solution 
parameters 

Initialize the 
solution 

Enable the solution 
monitors of interest 

Check for convergence 

Fig. 4.7 

Modify solution 
parameters of grid 

An overview of the solution procedure. 

The flexible linear solver has been implemented for all the variables. The choice 

of the under relaxation factors. which are used in order to stabilize the iterative 

process, is better made through experience. Therefore, the under relaxation 
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factors for the pressure, momentum, swirl velocity, turbulence, radiation, 

discrete phase sources, mixture fraction and mixture fraction variance, were 

maintained below unity. For example, the default under relaxation value 0.3 was 

maintained for the pressure, and 0.4, 0.95 & 0.25 have been set for the 

momentum, radiation and discrete phase sources calculations, respectively. 

The solution limits for the magnitudes of the computed quantities were kept 

within reasonable values for all the quantities that have been evaluated. For 

example, the maximum absolute pressure was maintained at 5x105 Pa, while 

the maximum temperature was maintained at 5000 K (Fluent Inc., 2009). 

After setting all the boundary conditions, especially, for the inlets, walls, outlet, 

etc., the solution was initialized. The iterative procedure, illustrated in Fig. 4.7, 

requires the initialization of all the variables before calculating a solution, and a 

realistic guess of the initial values improves the solution stability and 

convergence. 

The accuracy of the converged solution is evaluated by validating the predicted 

results for the gas phase temperatures around the slag panels, heat fluxes on 

the panels and the ash deposition rates on the panels, against the experimental 

measurements (Williamson, Drake, Hack, Jakob & Swirz-trauber, 1992). The 

accuracy of the results is within ± 5%. Further accuracy evaluation has been 

done by varying some input parameters and observing how the predicted 

results change. The model was found to be most sensitive to swirling velocity 

and particle viscosity, and the results are discussed in Chapter 5. The model 
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had low sensitivity to particle swelling number and the gravitational effect, and 

therefore these results are not presented. 

A good initial value guess is required for some of the variables. For example, a 

high temperature region is required in order to initiate the chemical reactions. 

Therefore, in these calculations, 1500 K has been used as the initial guess for 

the temperature field. For the other variables, such as the velocity components, 

turbulence, mean mixture fraction and mixture fraction variance, the default 

values in Fluent are maintained. 

While performing the calculations, the solution convergence was determined 

both qualitatively and quantitatively. Monitoring the magnitude of the scaled 

residuals of all the species has been used in order to assess the solution 

convergence in qualitative terms. 

The scaled residuals for the major flow fields established, such as the velocity 

components and continuity have decreased by 3 orders of magnitude from the 

initial value of a single order, while the scaled energy and radiation residuals 

decreased to 10-6 before convergence was achieved. The scaled residuals for 

the species have decreased to 10-5, and this is necessary in order to have 

species balance. The converged solution has also been monitored 

quantitatively by ensuring that the properties conservation was satisfied. Some 

convergence difficulties have been experienced after switching to the second 

order discretization. However, when the under relaxation factor were reset to 

the values given above, the convergence was achieved. 
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4.4 Summary 

The ash deposition model developed in this investigation has been successfully 

tested on the ACIRL vertical furnace using the Australian bituminous coals. 

The coal combustion codes available in the FLUENT 12.1 software have been 

used in order to generate the required gas phase temperature and velocity 

fields. 

The calculations have been performed in two separate phases. The time­

averaged gas aerodynamics has been solved using an Eulerian approach, while 

the particle trajectories and tracking are determined separately in a Lagrangian 

approach. 

The proposed ash deposition model has been hooked to the FLUENT 12.1 

commercial software as a UDF boundary condition which determines the fate of 

the ash particles that may impact on the furnace walls. 

A computational grid representing a single radian slide i.e. axisymmetric case of 

the ACIRL furnace has been employed for the calculations. The generated grid, 

the fuel properties and the furnace operating conditions have been used as 

simulation input for the commercial software. 

Suitable solver parameters were set, and solution procedures that are 

amenable to the axisymmetric calculations have been followed. Converged 

solutions have been obtained. 
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The solution convergence was determined in two ways: firstly, by monitoring the 

magnitudes of the scaled residuals such that the residuals for all the properties 

except energy and radiation have decreased to 10-3
; and secondly, by checking 

the overall mass and energy balances, such that the net imbalance for each 

property is less than 0.2%. 

post-processing of the data from the converged solution has been performed 

and the results of predictions correlate with experimental measurements. The 

accuracy of the predicted results is between about 5%. Details of results and 

analyses are discussed in Chapter 5. 
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CHAPTER 5 

RESULTS AND DISCUSSION OF THE DEPOSITION MODEL 

The ash deposition model that has been proposed in this study has been 

implemented according to the procedures explained in the preceding chapter. 

The results of the predictions using the proposed ash deposition model have 

been compared with experimental measurements of Australian coals. 

A comparison and discussion of the results are presented in this chapter. Also, 

some conclusions are drawn from the discussions and these are presented at 

the end of this chapter. Therefore, this chapter is mainly concern with 

discussion of the results of prediction using the deposition model which was 

described in the preceding chapter. 

The discussion in this chapter has been divided into three sections. In the first 

section, the results of calculations using the 2D domain are presented and 

discussed. The second section discusses similar calculations in the 3D domain. 

Fina"y, conclusions are drawn from a" the analyses in this chapter and these 

are presented in section three. 

5.1 20 Calculations 

In order to enhance the discussion, this section is further divided into seven 

sub-sections. In the first sub-section, the scaled residuals have been discussed. 

The predicted gas temperature and velocity fields have been compared with the 
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experimental measurements, and a comparative analysis is presented in the 

second sub-section. 

Sub-section three discusses the particle temperature and residence times. In 

sub-section four, the predicted heat fluxes on the slag panels have been 

compared with the reported experimental data, while the predicted and 

measured ash deposition rates are compared and discussed in sUb-section five. 

The effects of reference viscosity and swirl motion on ash deposition rates are 

discuss in sub-sections six and seven, respectively. 

5.1.1 Scaled residuals 

The scaling of the species residuals during calculations using FLUENT is 

automatically done by the software, as shown in Fig. 5.1 and Fig. 5.2, in order 

to give a measure of solution convergence. The results of the initial non­

reacting solution calculations, shown in Fig. 5.1, indicate that the residuals for 

the velocity components and the turbulence fields are fast converging under a 

non-reacting flow after a few iterations. However, the solution was not allowed 

to converge completely since there is no particular interest in the non-reacting 

flow solution. Starting the with the non-reacting flow is a popular way of solving 

a reacting flow and it is known as a 'two step process' (Fluent Inc., 2009). 

At the end of about 99 iterations, the DPM phase was set to interact with the 

continuous phase, with twenty continuous phase iterations per DPM iteration. 

This activates the discrete phase calculations. 
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Also, at this point, the energy, radiation and PDF models were activated to 

make the flow a reacting one. Fig. 5.2 shows the residuals of the reacting flow 

after twenty iterations. The sudden change in velocity and turbulence fields may 

be due to the heat released when the pulverized coal was injected in to the 

boiler. 

Injecting coal particles and the oxidant into the boiler, coupled with the initial 

temperature guess of 1500 K, ignites the combustion flame, and this resulted in 

large changes in the temperature which in turn introduces instability into the 

flow solution as shown in Fig. 5.2. To control this phenomenon, the under 

relaxation factors for the density and the species were reduced. 

5.1.2 Gas phase temperature and velocity fields 

The results of the calculations obtained revealed a characteristic recirculation 

zone near the exit of the burner, as shown in Fig. 5.3a. As stated earlier, this 

strong recirculation, which is caused by the swirling and turbulence effects in 

the furnace, is essential for the ignition of the fuel, and it also assists in 

maintaining the continuous and steady combustion of the fuel (Lee & Lockwood, 

1999). Fig. 5.3b shows exactly where the recirculation in the ACIRL furnace 

occurs, i.e. at the entrance of the furnace. 

The gas phase temperature and velocity profiles are shown in Fig. 5.4 and Fig. 

5.5, respectively. Fig. 5.4 shows that the combustion of the injected particles 

starts immediately after the particles have mixed with the oxidizing air at the exit 
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of the burner. Also shown in Fig. 5.4 is the flame displacement in the horizontal 

direction which may be due to the influence of the strong swirling motion 

established in the furnace. 

In pulverized-coal fired boilers, the adiabatic flame temperature is in the range 

of 1973 - 2273 K, but the exact value of the temperature remains a function of 

the furnace type and fuel quality (Lawn, 1987; Sheng et a/., 2004). For the 

medium-volatiles coals, such as the one used in these calculations, the flame 

temperature may be higher than 1800 K (Rushdi et a/., 2005). This is in good 

agreement with the result of this calculation, which shows a maximum flame 

temperature of 1920 K while simulating the combustion of Australian bituminous 

coal C. 

A maximum velocity of about 6 m/s was obtained in the secondary air inlet 

through which the swirling air is introduced into the furnace. Fig. 5.5 depicts the 

contours of the velocity magnitude while simulating combustion using coal C, 

and inside the furnace, the interaction between the axial velocity and the 

swirling motion resulted in a lower velocity magnitude. 

The influence of the swirl motion on the overall velocity magnitude is an 

indication that the strength of the swirl air has effect on the particle residence 

time. A strong swirl may lead to a strong recirculation zone in the furnace, and 

this may increase the particle residence time thereby enhancing the complete 

burning of the particle. In other words, particles have relatively longer residence 

time with higher recirculation of particle stream (Vuthaluru & Vuthaluru, 2006). 
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Fig . 5.3a A characteristic recirculation zone in the entry part of the furnace 
while simulating the combustion of coal C. 
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Fig . 5.3b A section of the ACIRL furnace showing the recirculation zone 
depicted in Fig. 5.3a. 
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The Fig. 5.6 shows the predicted gas phase and particle temperatures around 

the slag panels while simulating the combustion of coal C. Also, the measured 

gas phase temperatures around the slag panel of the ACIRL furnace, measured 

for Australian coal C during the pilot-scale test at the firing rate of 0.2 MW (Su et 

a/., 2001a), are shown in the Fig. 5.6. The predicted flame temperatures in the 

regions of the slag panels are in agreement with the experimental 

measurements for coal C (within an accuracy of ± 5%) as shown in Fig. 5.6. 

The predicted and measure gas phase temperatures for all the tested coals (A­

D) are shown in Fig. 5.7. Although the numerical results are under predicted, 

the temperature difference for all the slag panels show similar trends. For 

example, the temperature difference between slag panels 1 and 2 for coal D, 

both measured and predicted, is about 80 K. Also, the temperature drop 

between slag panels 2 and 3 for both measured and predicted results on coal C 

is about 50 K. 

The under-prediction of the gas temperature is better explained by the lower 

value of the swirl velocity (10 m/s), which is the given experimental value, used 

in the calculations and the effect of the water-cooled wall temperatures, in view 

of the corresponding size of the slag panels used for the axisymmetric case. 

Although the reported swirl velocity was used in the calculations in order to 

obtained deposition results that will compare to the experimental 

measurements, different values of the swirl number have also been tested in 

order to investigate the influence of the swirl motion on the deposition rates. 

The results are reported later in this chapter. 
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5.1.3 Particle temperatures and residence times 

The particle static temperature and residence time for coal A are shown in Fig. 

5.8a and Fig. 5.9a, respectively. Simulating the combustion of coal A has 

produced a peak flame temperature of 1910 K, and the burning particles have 

maximum residence time of 2.66 s. Particle traces for two injection streams (5th 

and 10th
) are presented 5.8a, and the contours show that, in both cases, high 

temperature particles are traced near the exit of the burner. As the burning char 

particle is consumed, its temperature decreases gradually as shown towards 

the exit of the furnace. 

As shown earlier in Fig. 5.4, the maximum flame temperature for coal C is about 

. 1920 K, and the burning particles, with a maximum residence time of about 3 s, 

form part of the high temperature flame. Also, two injection streams each for 

particle temperature and residence time of coal C are traced as shown in Fig. 

5.8b and Fig. 5.9b, respectively. 

The particle temperature in the furnace is higher than the temperature of its 

surrounding gas. This is because the gas temperature is built up from the heat 

released by the burning particle. The predicted gas and particle temperatures 

for coal C are compared in Fig. 5.6, and the results show that there is a 

temperature difference between the burning char particle and its surrounding 

gas in the furnace. 
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The predicted results show that the particle temperature, especially in the 

burner region, is higher than the gas temperature. The particle is about 50°C 

hotter than the gas phase, and this difference reduces to about 5 °c at a 

distance of about 1.6 m from the burner exit. The decrease in the temperature 

of the particle with time is due to the fact that it continuously releases its heat 

energy to the gas phase. 

This prediction is in good agreement with the assumption that the gas phase 

takes its heat energy from the burning particles, and that the temperatures of 

the burning particle can significantly exceed the temperature surrounding the 

particle (by up to 300°C, depending on the coal type) at the initial stage (Basu 

et al., 1946). 

The particle residence time is considered as a measure of the particle inertia 

and it denotes the time scale with which any slip velocity between the particle 

and the fluid is equilibrated (Srinivasachar, Helble & Boni, 1990). Particle with 

longer residence times have more tendency to penetrate the boundary layer 

due to the influence of recirculation forces. Also, if particles have longer 

residence time, the concentration of the VM in the environment increases, 

which may result in improved flame stability (Xiaohong et al., 2011). 
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5.1.4 Heat fluxes 

One of the significant influences on the slagging behaviour is the incident heat 

flux on the furnace walls, which can be used to determine the temperature of 

the deposit. The ratio of the net radiant heat flux to the incident heat flux could 

be used to characterize the amount of slagging deposits on the walls (Su et al., 

2001 a). In conventional boilers, the incident heat flux from the flame is in the 

range of 400-700kW/m2 (Chattopodhyay, 1995; Littler et al., 1991 in Su et al., 

2001a). 

Fig. 5.10 to Fig. 5.13 are comparing the incident radiant heat fluxes on the three 

slag panels for the four different coals. All the figures show a higher predicted 

value of the incident heat fluxes near the burner mouth. This is reasonable 

when compared with the experimental results as shown in the Fig. 5.10 to Fig. 

5.13. 

However, the general under prediction that have been reported may not be 

unconnected with the general characteristics of axisymmetric flows which 

assume that there are no circumferential gradients in the flow, but in reality 

there may be non-zero circumferential velocities during the calculations (Fluent 

Inc., 2009). 

In Fig. 5.10, the measured and predicted heat fluxes on the three slag panels of 

the ACIRL furnace while burning coal A have been compared. On slag panel 2 

for example, the difference between the measured and the predicted results is 

less than 20 kW/m2. However, on the first and third slag panels, the difference 
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between the measured and predicted results is higher, and this may be due to 

the decrease in temperatures coupled with the cooling effect of the water walls. 

The differences between the measured and the predicted results on the slag 

panel 1 may be due to the reported inaccuracy of the measurement data on the 

slag panel 1 (Su et al., 2001 a). For the slag panel 3, the discrepancy between 

the measured and the predicted results may be attributable to the low 

temperatures in that region of the furnace. The predicted furnace temperature 

around the slag panel 3 has been affected by the temperature on the water­

cooled panel. 

In similar results, the predicted heat fluxes for coals C and 0 have compared 

well with the measurement data, as shown in Fig. 5.12 and Fig. 5.13. However, 

Fig. 5.11 shows a fairly large discrepancy between the predicted and the 

measured results for coal B. Although this could not be explained numerically, 

but some levels of inconsistency in the experimental results of coal B have been 

reported (Su et al., 2001a). 

The heat flux from the flame to the slag panels can determine the deposit 

temperatures (Su et al., 2001a), which can, in turn, determine the rate of slag 

accumulation on the panels. In some cases where the deposition rates are not 

measured directly from the experiment, the measured heat fluxes are used to 

characterize the coal ash behaviour under the boiler conditions (Su et aI., 

2001a). 
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Fig . 5.11 Measured and predicted incident radiant heat fluxes on the slag 
panels with coal B. 
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5.1.5 Deposition rates 

The main causes of ash deposition include the quality of the coals, boiler 

designs, and operational conditions, among others (Lee & Lockwood, 1999). 

Whatever the system and conditions of the coal combustion, there will always 

be problems with the ash, because the fate of the inorganic materials 

associated with coals is not fully understood. 

The main concern of this investigation has been in ash deposition problems that 

are related to the boiler aerodynamics and fuel properties. The large pyrite 

particles that may hit the furnace walls before they are completed burnt are a 

major cause of deposition. This factor is significant in high temperature regions 

of furnaces where most particles are still burning. 

The large particles that are not completely burnt may possess enough inertial 

force to transverse the boundary layer and impact the heat exchanger, and the 

high temperatures in the boiler region may soften the particles thereby 

increasing their tendency to stick to the walls. 

The presence of iron, calcium, sodium and potassium in significant amounts 

may lower the melting temperatures of the coals, thus resulting in higher 

deposition tendencies. In the tested coals, the content of iron, calcium and 

sodium oxides are highest in coal C, while the content of potassium oxide is 

highest in coals Band D. These factors, according to the existing coal slagging 

indices, are expected to affect the slagging tendencies of the coals. 



140 

However, the content of ash in the coals poses more concern in terms of slag 

accumulation in boilers. This is because the weight of the incoming ash is one 

of the major determinants of the rates of the deposit accumulation in the 

furnace. The coals that have an insignificant amount of ash accumulate less 

deposit, even when their contents of iron, calcium, sodium and potassium 

oxides in the ash are significant. This has been shown in the performance of 

coale. 

The deposits on panels 2 & 3 on the ACIRL furnace were experimentally 

measured and presented in the works of Su et al. (2001b). However, they 

acknowledged that it is practically impossible to attempt to collect the ash 

deposits on slag panel 1 due to the high temperatures in that region which 

results in the deposit shedding. Therefore, the measured heat fluxes through 

panel 1 for all the coals are used in assessing the slagging propensities 

although the heat flux approach is not a reliable method for assessing the 

slagging propensities for all the coals (Rushdi et al., 2005; Su et al., 2001 b). 

This may be the reason for the wide discrepancies between the measured and 

predicted results on slag panel 1 for all the coals investigated. 

The predicted and measured deposition rates for coal A have been compared in 

Fig. 5.14. At distances of 0.999 and 1.665 meters away from the burner exit, 

where the slag panels 2 and 3 are located, respectively. The measured and 

predicted results have compared fairly well. For example, on slag panels 2 and 

3, the predicted deposition rate results correlate with the experimental data 

better than on slag panel 1. 
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Similarly, the predicted and measured deposition rates for coals B, C and Dare 

shown in Fig. 5.15, Fig. 5.16 and Fig. 5.17, respectively. For coal B, although 

the gas temperatures around slag panel 2 are over predicted, the deposition 

rates on the slag panel have been over predicted. These results appear 

inaccurate, but when compared with the performance of other coals, the 

predicted results are not unexpected. Therefore, this over prediction may be 

related to the reported measurement results. 

Away from the exit of the burner, where the direct effect of the recirculation 

zone is minimal, the particle and gas temperatures are relatively close, and the 

predicted deposition rates correlate well with the measurement data as shown 

on slag panel 3 for coals Band 0 (Fig. 5.15 & Fig. 5.17). 

In general, on slag panels 2 & 3, where the temperatures are relatively low, the 

measured and predicted deposition rates are in better agreement for all the 

tested coals, as shown in Fig. 5.18. For example, the measured results on 

panels 2 & 3 for coal B, which are 0.87e-5 and 0.65e-5 kg/m2 s, respectively, 

are close to the predicted values of 1.50e-5 and 0.50e-5 kg/m2.s, respectively. 

The wide change in the deposition rate from slag panel 2 to 1 in the 

measurement results for coal D (-4.0e-4) was not accounted for, but it has 

been assumed to do with experimental procedures. 

In effect, the predicted ash deposition rates are consistent with the measured 

rates as discussed above. However, the predicted rates are slightly lower than 

the measured rates under similar operating conditions. 
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Fig.5 .14 Measured and predicted ash deposition rates for coals A. 
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Fig . 5.15 Measured and predicted ash deposition rates for coals B. 
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Fig . 5.16 Measured and predicted ash deposition rates for coals C. 
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Fig . 5.17 Measured and predicted ash deposition rates for coals D. 
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Fig . 5.18 Measured and predicted ash deposition rates for coals A-D. 

5.1.6 Effects of reference viscosity on deposition rates 

As reported in the literature, the value of the reference viscosity varies in many 

research studies. For example, it has been reported that the reference viscosity 

of ash particles range from 105 to 108 Pa s (Srinivasachar et a/., 1990). It is 

expected that by decreasing the value of the reference viscosity, the total 

deposition rate will also decrease (Rushdi et aI. , 2005) . Fig . 5.19 shows the 

deposition rates of coal A for different values of the reference viscosity . The 

prediction using the highest reference viscosity (108 Pa.s) produced results 

much closer to the experimental measurement. 

The predicted results show that the deposition rates on the three slag panels 

decrease as the value for the reference viscosity gradually decreases from 108 
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to 104 Pa.s. When the particle temperature decreases, the viscosity of the 

particle increases, and in turn, the sticking tendency of the particle decreases. 

In Fig. 5.19, the predicted results show no deposition rates on all the slag 

panels when the reference viscosity was reduced to 104 Pa s. Analysing this 

result, based on the viscosity model employed in these calculations, it indicates 

that either all the ash particles have a viscosity greater than 104 Pa s, or the 

viscosity model used in this investigation do not account for very low viscosity 

values. This phenomenon has been explained in the literature as follows: 

i) Sodium-silica glass particles show that deposits are formed when particle 

viscosities are between 105 and 107 Pa s (Hunold & Bruckner cited in 

Senior & Srinivasachar, 1995). 

ii) The critical viscosities for boiler conditions of interest are between 105 to 

108 Pa s (Srinivasachar et al., 1990). 

iii) The difference in coal sticking coefficients is attributed to the differences 

in ash particle composition-based viscosities (Senior & Srinivasachar, 

1995). 

An increase in the reference viscosity from 104 to 105 Pa s has yielded some 

deposits on slag panel 1. However, further away from the burner exit, i.e. on 

slag panels 2 & 3, the temperatures have decreased and particles have gained 

more viscosity (> 105 Pa s), thus resulting in a zero deposition rate. In the range 

of viscosities (10
6 

- 108 Pa s), varying levels of deposits are formed on all the 

three slag panels as shown in the Fig 5.19. 
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Also, a reference viscosity value of 109 Pa s has been tested, but the predicted 

results are the same with the results obtained using the reference viscosity of 

108 Pa s. 

5.1.7 Effects of swirling motion on deposition rates 

The conical shape at the burner mouth is designed to admit swirling motion into 

the furnace, and the slagging process in the burner region is affected by the 

swirling motion. Fig. 5.20 illustrates the effect of the swirling motion on the 

predictions of the deposition model. From the Fig. 5.20, it can be observed that 

increasing the swirl number improves the CFD predictions. 

When the swirl number was reduced from 0.67 to 0.27, the ash particle 

deposition model predicts a very low deposition rate on all the three slag panels 

when compared to the experimental measurements. Moreover, the predicted 

deposition rates on the slag panel 2 become higher than what was predicted on 

slag panel 1. 

A gradual increase in the air swirling number increases the deposition rates on 

all the slag panels, where the maximum deposition rates are recorded on the 

uppermost slag panel. An increase in the swirl number strengthens the flow 

entrainment ability to transport more particles to the heat exchange surfaces 

walls (You & Zhou, 2006). 
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However, it has been reported (You & Zhou, 2006) that increasing the swirl 

number may enhance the combustion of small particle due to proper mixing of 

the fuel and the oxidant by recirculation forces, and hence reducing the number 

of fine particles that may hit the heat exchange surfaces. This is evident in Fig. 

5.20, which shows that prediction using the highest swirl number (1.00), yielded 

deposition results very close to the experimental measurement. 

5.2 3D Calculations 

Following the successful implementation of the ash deposition rates model in 

the two-dimensional domain of the ACIRL furnace, a 3D domain has been 

successfully modelled. The ash deposition model has been implemented in the 

3D domain and results of calculations are obtained. 

In general, the fundamental difference between the 20 and the 3D in terms of 

modelling is the space in which the object is defined, and the ability to render 

such an object as an image or shadow (Fluent Inc., 2009). 

Although the 3D calculations have some advantages, such as flexibility and 

better representation of the physical system, it is more complex to model than 

the 20 case, and it is intensive in terms of CPU demand. The 20 assumption is 

sufficient to characterize a given 3D system taking into account that it may 

under estimate some of the flow features (Fluent Inc., 2009). 
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5.2.1 Grid generation 

The full 3D geometry of the ACIRL furnace has been modelled and Fig. 5.21 

shows the geometry of the furnace modelled using the GAMBIT software. The 

size and specifications of the furnace have been described in Chapter 4 of this 

thesis and therefore not repeated here. 

In the initial stage, a computational grid consisting of 0.5 million cells was 

generated for the full furnace which is 2.5 m long and has a diameter 0.65 m. 

The grid has been refined continuously in search of a grid independent solution, 

and finally about 1.5 million grid cells have been obtained. Further refinement of 

the grid does not yield any significant change in the solution obtained during the 

calculations. Therefore, with 1.5 million cells it has been assumed that the grid 

is sufficiently fine for the 3D calculations. 

Fig. 5.22 shows the final grid employed in these calculations. The meshes are 

mostly hexahedral with very negligible cell squish and skewness « 1) although 

the cells are stretched where the flow is assumed to have been fully developed. 

5.2.2 Operational conditions & settings 

The 3D set-up was intended to run just a single set of calculations, with low 

swirl number (0.25), in order to assess the performance of the ash deposition 

model in a 3D domain. It may also provide a basis for comparison between the 

2D and the 3D calculations under the same operating conditions. 
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Fig. 5.21 The full 3D domain of the ACIRL furnace . 

Fig . 5.22 The burner region of the 3D computational grid employed in the 
calculations. 
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The properties of the Australian coal C, which has been used in the 3D 

calculations, were presented in Table 4.1. The operating conditions used in the 

20 calculations have been maintained in the 3D calculations, except some few 

changes in the parametric values in order to enhance solution convergence. For 

example, the value used for the swelling coefficient, specific heat and 

vaporization temperature are 1.2, 1300 J/kg-K and 700 K, respectively, as 

against the values presented in Table 4.2. 

In general, the solver settings did not change, except that in the 3D case, the 

3D solver has been employed instead of the 20 axisymmetric solver used for 

the 20 case. Thus, appropriate options for the 3D case in the FLUENT 12.1 

software have been selected. However, the models used for energy, radiation, 

turbulence, etc., have been remained to be those employed in the 20 

calculations. 

In order to obtained more accurate results, and for better comparison with the 

completed 20 calculations, the 3D calculations are performed using the second­

order upwind discretization scheme although the second-order discretization 

scheme requires fine grid cells, and hence, additional computational effort and 

time. 

5.2.3 Solution procedure 

After setting up all the required parameters in the software, non-reacting flow 

calculations were first performed for about 100 iterative steps. This was to 
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enable the successful initialization of the gas phase velocity field in the furnace 

before introducing the reacting materials. 

The energy and PDF equations are then activated. Also, the discrete phase was 

set to continuously interact with the gas phase, i.e. allowing for the exchange of 

momentum, heat, etc., between the two phases. Initially, the reacting flow 

calculations have been performed using the first-order discretization scheme for 

all the properties and species involved. When the flow fields have been 

established and the calculations have become stable using the first-order 

discretization scheme, the second-order discretization scheme was then 

switched on for all the species. As earlier stated, the second-order discretization 

scheme is necessary in order to obtain more accurate solutions from the 

calculations. 

5.2.4 Solution convergence difficulty 

After about 0.4 million seconds of computations time on a 4GB memory 

processor, the radiation (~O) and the energy equations started to diverge. 

Although the calculations were started with 0.5 million grid cells, the grid was 

refined continuously in order to improve the solution. About 1 million cells were 

obtained after the initial refinement, and then additional calculations were 

performed. However, diverged solutions, similar to those described above, have 

been obtained. Further grid refinement yielded about 1.5 million gird cells, and a 

significant improvement in the solution convergence was obtained during the 

calculations. 
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Although there is no universally accepted settings for the under relaxation 

factors, the factors have been adjusted continuously, based on experience and 

reported setting in the literature (Tai, Hsieh & Chieng, 2005), in order to obtain a 

converged solution. For example, the under relaxation factors for momentum, 

DO and species concentration were reduced to 0.2, 0.9 and 0.15, respectively. 

This step, coupled with the low swirl number used, has produced a converged 

solution. 

The effect of the swirl motion in the furnace is considered massive especially on 

turbulence effect (Rushdi et al., 2005), and the 3D calculations with high 

swirling motion are always difficult to converge because most of the models that 

performed well in other conditions fail to perform under a high swirling motion 

(Dinesh, Malalasekera, Ibrahim & Kirkpatrick, 2005). 

It is important to note that the converged solution at this stage is necessary 

before we can integrate the proposed ash deposition model into the FLUENT 

codes. Without the proper establishment of the gas phase temperature and 

velocity fields, and subsequent tracking of the particle trajectories in the discrete 

phase, the proposed ash particle deposition model can not be implemented as 

a boundary condition that determines the fate of an ash particle that may hit the 

boiler walls. 
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5.2.5 Discussion of the 3D simulations 

The 30 non-reacting flow simulations have been successfully started in a 

similar way to the completed 20 calculations. All the species residuals tend to 

fast convergence after about 100 initial iterations. As shown in Fig. 5.23, the 

scaled residuals for the turbulence and all the velocity components have been 

reduced to about 10-2
• 

Also, the introduction of the coal particles into the burner did not show any 

unusual flow from the scaled residual behaviour although the temperature and 

pressure gradients are expected to increase. 

The surge in the scaled residuals at about 100 iterative steps in Fig. 5.24 was 

due to the ignition when the fuel and the oxidant are mixed in the burner region. 

Although the calculations are stable at this stage, the speed of the calculations 

has been reduced to less than a single iterative step in about two minutes. 

Fig. 5.25 shows contours of the static temperatures in the furnace. The 

maximum flame temperature obtained is about 2180 K. The gas temperatures 

for the 30 case, the 20 cases and the experimental data are compared in Table 

5.1. The peak flame temperature is not provided in the experimental 

measurement. However, 1973 - 2273 K has been used as the adiabatic flame 

temperatures for coal (Lawn, 1987). 
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The results show that the maximum flame temperature predicted in the 3D 

domain is within the range of the adiabatic flame temperature of coal, while in 

the 20 cases the peak flame temperature was under predicted. Also, in different 

zones within the domain: flame zone 1 is about 0.3 m away from the burner exit, 

zone 2 is about 1.0 m away and zone 3 is about 1.7 m away, measurements 

have been taken. In all the flame zones, the results show over predictions in the 

3D case and under predictions in the 20 cases. 

In order to draw reasonable conclusions, the 3D results are compared with the 

results of the 20 Case 2. The 20 Case 2 calculations have been performed with 

exactly the same operating conditions and parameters with the 3D calculations. 

In this analysis, the 20 calculations earlier reported in section 5.1 of this 

Chapter five has been considered as 20 Case 1. 

Although the same results are not expected from the 20 and 3D calculations 

since the difference in geometry can significantly influence the nature of the flow 

(Luo, Hinton, Liew & Tan, 2004), the 3D and the 20 Case 2 predicted 

temperatures in the flame zones 1 and 2 show a similar trend. 

As shown in Table 5.1, the results indicate that the surrounding gas 

temperatures at 1.0 m away from the burner exit is higher than the temperature 

in the region that is much closer to the burner exit (0.3 m away). The case is not 

the same with the results of the experiment and the 20 Case 1 calculations. 
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The phenomenon described above is not unusual, and more often, it is 

attributed to the low swirl velocities which affects the particle residence times 

and the particle entrainment in the boiler. A low swirl number « 0.4) results in a 

weak recirculation zone that .affects the flame stabilization (Eldrainy, Jaafar & 

Lazim). 

The contours of the incident radiations for the 3D calculations are presented in 

Fig. 5.26. The results show that the incident radiations are higher in flame zone 

2 where the temperatures are also very high. The heat fluxes on all the slag 

panels show a similar trend. The slag panel 2 has the highest heat flux of about 

666 (kW/m2.s) as shown in Table 5.2. The heat flux on the slag panel 1 is the 

least in the 3D case. Also, the 20 Case 2 calculations produced similar results, 

where the highest heat fluxes are recorded on the 2nd slag panel. 

The contours of the ash deposition rates in the 3D domain while simulating the 

combustion with Australian coal C are shown in Fig. 5.27. The results show that 

slag panel 2 has the highest ash deposition rate of 9.5e-05 (kg/m2.s), as shown 

in Table 5.3. Similarly, the results of the 20 Case 2· calculations show the 

highest deposition rate (1.1 Oe-05) on the 2nd slag panel. 

However, the experimental and the 20 Case 1 results have shown the highest 

deposition rates on the slag panel 1. The deposition trend in the 3D calculations 

may not be accurate, and this attribute to the reduced swirling motion (Rushdi et 

al., 2005). 
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Fig . 5.27 Ash deposition rates (kg/m2 s) in 3D combustion simulations with 
Australian coal C. 

Although the prediction trend for the ash deposition in the 3D calculations is not 

consistent with the experimental results, they have correlated well with the 20 

Case 2 calculations, and it is now evident that the deposition model has been 

successful in the three dimensional predictions. Therefore, the 3D and the 20 

case 2 results are clear indications of the repeatability of the ash particle 

deposition model that have been developed in this investigation. 
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Table 5.1 Comparison of flame temperatures (K) in the 20 and 3D 
calculations with the experimental data. 

SN Peak Zone 1 Zone 2 Zone 3 

Exp 0.45 1973-2273 1693 1613 1573 

201 0.45 1920 1602 1524 1455 

202 0.25 1910 1530 1608 1530 

3D 0.25 2180 1724 1816 1724 

Table 5.2 Comparison of heat fluxes (kW/m2) in the 20 and 3D calculations 
with the experimental data. 

SN Panel 1 Panel 2 Panel 3 

Exp 0.45 518 422 380 

201 0.45 480 420 331 

202 0.25 388 400 344 

3D 0.25 520 666 591 

Table 5.3 Comparison of deposition rates (E-05 kg/m2.s) in the 20 and 3D 
calculations with the experimental data. 

SN Panel 1 Panel 2 Panel 3 
Exp 0.45 2.95 0.59 0.42 

201 0.45 1.00 0.40 0.20 

202 0.25 0.30 1.10 0.80 

3D 0.25 0.50 9.55 2.01 

5.2.6 Remarks 

The 3D calculations on the ACIRL furnace have been performed in order to 

further test the proposed ash particle deposition model. Advanced CFO 

techniques are used in the implementation of the model in FLUENT 12.1 

commercial software. Although solution convergence difficulty has been 
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experienced, the predicted results obtained are reasonable within the available 

boundary conditions. Therefore, the following conclusions are made: 

• The ash particle deposition model developed in this investigation has 

successfully predicted in both the 2D and 3D domains. 

• The 3D results are over predicted when compared to both the 2D 

calculations and the experiment. 

• Higher deposition rates are obtained on slag panel 2 instead of the slag 

panel 1 as reported in the experiment (Su et al., 2001). This 

phenomenon is attributable to the low swirl number used in the 

calculations (Rushdi et al., 2005) which results in the formation of a weak 

recirculation zone. 

• The 3D calculations with higher swirl number may require further 

refinement of the gird cells, more computational time and, probably, the 

use of different combustion models or parameters. 

• Further calculations using the 3D case could not be performed due to 

financial constraints. However, additional 3D calculations are 

recommended for future work since there is no available report on similar 

work using the ACIRL furnace. 

• Although the 2D axisymmetric assumption of the test case is suitable for 

the intended investigations, the 3D results will offer a more flexible 

visualization and manipulation of the results. 
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5.3 Conclusions 

The non-premixed combustion models, based on a CFD technique, have been 

implemented for pulverized coal fuel. The models were applied to the ACIRL 

furnace to establish the gas phase temperature and the velocity fields. This is a 

necessary step towards the study of slagging and fouling propensities. The 

measured and predicted results of the temperature profiles and heat fluxes in 

the ACIRL furnace have been compared. 

A deposition model based on the temperature-dependent viscosity of the ash 

particles has been developed. The model has been validated against 

experimental data on four different types of Australian bituminous coal using 2D 

axisymmetric and full 3D cases of the ACIRL furnace. 

Although modelling the ACIRL furnace using the axisymmetric assumptions has 

been recommended, especially where there time limitation, the 3D modelling 

provides added flexibility to the analysis of the results. 

In general, the predicted results are in good agreement with the experimental 

measurements, and the following conclusions are made: 

• The predicted thermal conditions, such as the gas temperatures and the 

heat fluxes, are in good agreement with the experimental data (± 5%). 

Therefore, the CFD set-up has been found to be suitable for the 

investigation of ash slagging tendencies. 
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• The ash deposition model developed in this investigation has been 

successful in the prediction of the deposition rates of the homogeneous 

coal ash slag in high temperature regions. However, in 3D calculations, 

convergence difficulty was experience with the experimental swirl 

number. 

• The sticking tendencies of the ash particles downstream of the boiler, 

where the temperatures are low, have not been accurately predicted in 

this investigation. 

• The reported experimental ash deposition rates on slag panels 2 and 3 

are in a better correlation with the predicted results using the 20 case 

when compared to the results obtained for slag panel 1 which has no 

accurate deposit measurements. 

• Strong recirculation zones have been established near the exit of the 

burner. The recirculation is due to the turbulence/swirl flow, and it 

enhances the ignition and flame stability. 

• Both the flame temperature and the ash deposition rates have been 

under predicted with the 20 calculations. The under predictions may be 

attributed to the low swirl velocity and the low temperature of the slag 

panels that have been used in these axisymmetric calculations. 

• The temperatures of the burning particles at the burner region are found 

to be higher than the temperatures of their surrounding gas. However, 

away from the burner region, the difference in particle and gas 

temperatures decreases. 

• The choice of reference viscosity affects the ash deposition rates. When 

a higher value for the reference viscosity is chosen, more particles that 
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have sufficient inertia to hit the boiler walls have higher tendency to stick 

to the walls. 

• The swirling motion helps in stabilizing the flame, resulting in a more 

even temperature distribution in the furnace. Higher swirling motion 

increases the temperature of the particles, and in turn, increases the 

tendency of the particles to stick to the heat exchange surfaces. 

• However, lower swirl numbers reduces the particles residence times and 

weaker recirculation zones are created resulting in decreased tendency 

of particles entrainment. 
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CHAPTER 6 

ASSESSMENT OF COAL SLAGGING POTENTIAL 

In this chapter, the numerical modelling of the coal slagging index has been 

described. The model has been tested over a wide range of coals and some 

sets of coal blends in order to predict their slagging performance. Also, in this 

chapter, the results of the predictions using the proposed numerical slagging 

index (NSI) and some of the existing slagging indices on a wide range of coals 

have been presented and discussed. The chapter contains the results of 

predictions on some sets of coal blends using the NSI. 

The chapter is divided into six sections. The numerical modelling steps are 

presented in the first section. The flow chart on the computational steps 

involved in predicting the slagging potential of coals and blend using the NSI 

has been explained in the second section. In the third section, the individual 

performance of the NSI and four existing slagging indices on four Australian 

bituminous coals has been presented. 

Section four discusses, comparatively, the performance of the NSI (Sx) and six 

existing slagging indices, namely, ash fusion test i.e. deformation temperature 

(AFT), viscosity index (~), the silica ratio (SR), percentage of iron oxide in the 

ash (%Fe203), basic to acidic oxides ratio (B/A) and the dry sulphur content 

index (Rs), on a wide range of coals. The use of the NSI has also been 

extended to coal blends. In section five, the results of predictions using the 

proposed NSI are compared with the reported performance of some existing 
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slagging techniques on coal blends. Finally, the conclusions drawn from the 

discussion made in this chapter are presented in section six. 

6.1 Modelling of the Coal Siagging Index 

At this stage, another numerical model has been developed. The proposed 

model is to predict the ash slagging potential of coals. In the development of the 

proposed numerical slagging index, the combined effect of some of the major 

contributing factors in the slag formation, namely; the viscosity of the ash, the 

ash fusibility and the weight of the incoming ash (the ash content in the coal), 

have been considered. Whereas most of the existing coal slagging indices are 

based on only the fusibility, viscosity or the chemistry of the ash (Lawrence et 

al., 2008). 

The slagging in a boiler furnace depends on the combined effects of the liquid 

forming tendency of the ash, the temperature experienced in the furnace and 

the ash loading in the coals (Lawrence et al., 2008). Since the viscosity which is 

calculated from the ash chemical composition gives estimations of the 

temperatures of the ash particle to be sticky, it can therefore be related to extent 

of the shrinkage measured at these temperatures (Gupta et a/., 1998). 

Therefore, the shrinkage level is appropriate as a criterion for ash stickiness. 

For effective modelling, the following assumptions have been made on the 

basis of the results of some empirical studies (Lawrence et al., 2008; Wigley et 

al., 1990; Gupta et al., 1998): 
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• Peak shrinkage patterns are obtained at temperatures between 1100-

1440 °c, and these temperatures fall within the softening temperatures of 

most coals. 

• Since ash shrinkage is considered as an appropriate criterion for 

determining the ash particle stickiness, it can be related to the ash 

particle viscosity. 

• In equation (3.33), T represents the ash particle temperature at 

impaction, and for a sticky particle, T is equal to the softening 

temperature of such particle, ST, which is also the temperature at which 

the ash particle is more plastic and has a high tendency to stick to the 

surface upon impaction. 

• The accumulation of the slag in the boiler is directly proportional to the 

weight of the ash in the coal, while the slagging potential is inversely 

proportional to the slag viscosity. 

The Watt-Fereday viscosity model has been used to calculate the ash particle 

viscosity using the ash composition and impact temperature, where the weight 

percentages of Si02, AI20 3, Fe203, CaO and MgO have been recalculated to 

100%. However, the Watt-Fereday model did not account for the MgO content 

in the ash. 

In order to account for the content of MgO as an important fluxing agent, the 

Bomkamp modified version of the Watt-Fereday model (equation (3.33», which 

accounts for the content of MgO in the ash, has been used in evaluating the 

slope and intercept as follows: 
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m ::;; 0.01404294(SI02) + 0.01 00297(Ah03) - 0.296285 (6.1) 

c::;; 0.0154148(SI02)-0.0388047(Ah03)-O.0167264(Fe203)-O.0089096(CaO) 

-O.012932(MgO) +0.04678 (6.2) 

The softening temperature is (OC) has been determined as follows (Chen & 

Jiang cited in Yin at al., 1998): 

ST == a(Si02) + b(Ah03) +c(Fe203) + d(CaO) + e(MgO) + f(z)+ g (6.3) 

where 

Z ::;; 100 - (Si02 + Ah03 + Fe203 + CoO + MgO) (6.4) 

and the values for the constants (a,b,c,d, e,j and g) in equation (6.3) are given 

based on the percentages of SI02, Ah03 and Fe203 available in the ash 

content, as contained in Table 6.1 (not normalised). 

Table 6.1 The values for the constants in equation (6.3) as a function of the 
content of silica, alumina and iron oxide in the ash (Yin at al., 1998). 

Content in ash a b c d e f g 

Si02 S 60% 69.94 71.01 65.23 12.16 68.31 67.19 -5485.70 

A120 3 > 30% 

Si02 s 60% 

AI20 3 s 30% 92.55 97.83 84.52 83.67 81.04 91.92 -7891 

Fe203 s 15% 

Si02 s 60% 

Ab03 s 30% -3.01 5.08 -8.02 -9.67 -5.86 -3.99 1531 

Fe203> 15% 

Si02 >60% 10.75 13.03 -5.28 -5,88 -10.28 3.75 453 

The effect of the incoming ash has also been accounted for in the proposed 

NSI. The level of ash in coals is generally reported as a percentage (Lawrence 

at al., 2008), but in practical boilers situations, the heating value of the fuel is 

more important. Therefore, the ash loading in pulverized coal fuel is determined 
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from the ultimate analysis and the heating value of the coal sample in terms of 

weight (kg) per MJ (dry ash basis), as follows: 

ash content kg per kg 
r = CV(MJ / kg) 

(6.5) 

More often, the CV of the coals are given along side the coal properties. Where 

the CV is not given, it is determined, on dry ash basis, from the ultimate 

analysis of the coal as follows (Mason & Gandhi, 1983): 

CV = 151.2(C) + 499.77(H) + 45.0(S) -47.7(0) + 27.0(N) (6.6) 

where C, H, S, 0 and N are the carbon, hydrogen, sulphur, oxygen and nitrogen 

contents in the coal (dry ash basis), and the gross CV is calculated in Btu/lb. 

At this stage, the weight of the ash has been determined in terms of the ash 

content and the heating value of the coal. The ash viscosity is determined from 

the bulk ash composition and the softening temperature, while in determining 

the softening temperature the properties of the bulk ash have been used. It is 

assumed that the slagging potential is directly proportional to the weight of the 

incoming ash, but inversely proportional to the ash viscosity. 

Therefore, the proposed NSI, Sr, has been defined in terms of the ash viscosity, 

J.l, and the weight of ash in the coal, r, as follows: 

Sx = r / Log(J.l) (6.7) 
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6.2 Implementation of the Proposed NSI 

Fig. 6.1 shows a flow chart which illustrates the computational steps involved in 

predicting the slagging potential of the coals using the proposed NSI. The ash 

properties and the ash content in the coal, with the coal heating value, are first 

introduced into the code, as the initial input, in order to generate the weight of 

the incoming ash in kg per MJ, and the softening temperature of the ash in °C. 

Si02, A1 20 3, Fe203, CaO, 
MgO, Ash, CV. 

Softening temperature, 
slope and intercept. 

Ash viscosity 

Compute 

Compute 

Siagging index 

Ash per MJ 

Fig. 6.1 Flow chart for the prediction of coal slagging potential using the 
proposed NSI. 
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However, where the heating value for the coal is not known, the ultimate 

analysis of the coal has been used as input for the code in order to generate the 

calorific value of the coal (in MJ/kg) according to equation (6.6) which has been 

described in this Chapter. 

The ash softening temperature and other ash related parameters, such as, the 

slope and the intercept, which are described in equations (6.1) and (6.2), are 

considered as input data for the second phase of calculations using the 

developed coal ash slagging index. At this stage, the predicted ash viscosity 

and the weight of the ash which is determined according to equation (6.5) are 

automatically fed back into the code in order to finally predict the slagging 

potential of the coal that is been tested. 

6.3 Performance of the Siagging Indices 

In this section, the existing slagging indices, namely, AFT, ~, SR, %Fe203, B/A 

and Rs, and the proposed coal NSI have been tested on a single set of four 

Australian bituminous coals in order to review and assess the modi operandi 

and the performance of the indices against the reported experimental data. 

(Rushdi et al., 2005; Su et al., 2001b) 

The slagging performance of the tested coals has been reported (Su et al., 

2001 b). Also, the proposed ash particle deposition rates model has been used 

to predict the performance of the coals. Therefore, the predicted results using 

the deposition model and the reported experimental results have been used in 

validating the slagging indices. 
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6.3.1 Test-coal properties 

Four Australian bituminous coals (A-D) are tested for slagging using the existing 

slagging indices and the proposed NSI. The properties of the coals have been 

presented in Table 4.1. In general, the Australian bituminous coals have high 

heating values and low ash content. Details of the coal properties have been 

discussed in chapter four of this thesis. 

6.3.2 Ash fusibility test 

The results of the AFT on the investigated coals are presented in Fig. 6.2. The 

coals with low fusibilities are said to have high slagging potential (McLennan at 

al., 2000). Fig. 6.2 shows that coal D has the highest deformation temperature 

of about 1493 °c, followed by coal A and then coal B. Coal C has the least 

value of fusion temperature, about 1278 °C. According to the AFT therefore, 

coal C is expected to have the highest. slagging potential, while coal D is 

expected to have the lowest slagging potential. The low fusibility predicted for 

coal C may be due its high content of the basic oxides (Wigley at aI., 1990). 

6.3.3 Viscosity slagging index 

The viscosities for the four coals that have been investigated are presented in 

Fig. 6.3, which shows that all the coals exhibit a glassy behaviour due to the 

high content of Si02 (> 50%) and low content of Fe203 « 1 0%) in their slag 

(Zhang & Johanshahi, 2001; Oh, Brooker, De Paz, Brady & Decker, 1995). 
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A large amount of silica in the slag results in a higher degree of polymerization, 

and this behaviour yields a liquid phase with a high viscosity, and hence a low 

slagging potential (Su at al., 2001b). Coal A has the highest viscosity, followed 

by coal 0, and then coal B and the least is Coal C. Guided by the viscosity 

index, the coal C, which has the lowest viscosity, -250 (Pa.s) at 1550 K, is 

expected to show a higher slagging tendency, while coal A to have the lowest 

slagging tendency due to its relatively high viscosity. 

6.3.4 Siagging indices based on the bulk ash chemistry 

The performance of the slagging indices that are based on the bulk ash 

properties, such as, the SR, %Fe203 and the B/A ratio, have also been 

investigated. Although the indices show similarity in their prediction 

characteristics, they yield inconsistent results in a few of the cases investigated. 

Silica ratio: High silica content in coal increases its fusibility and hence 

decreases its slagging tendency (Lawrence at al., 2008). The percentage of 

silicon oxide in the coals A-O, as shown in Fig. 6.4, indicates that coal A has the 

highest percentage of silica in the ash (71.50%), and then coals B, 0 and C in 

descending order. 

Therefore, according to the silica ratio principles, the coals will have a reversed 

order in terms of the severity of their slagging potential, where coal C is 

expected to have the worst slagging potential and coal A to have the least 

slagging potential. 
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Percentage of iron oxide in ash: Another important parameter in determining the 

ash slagging potential is the percentage of iron oxide available in the ash. 

Higher iron oxide content usually lowers the slag viscosity (Zhang & 

Johanshahi, 2001), and this may result in a high slagging tendency. Coal ash 

with Fe203 < 6% has a low slagging tendency (Lawrence et al., 2008). 

The percentages of iron oxide for coals A-O have been computed and the 

results are also presented in Fig. 6.4. The results show that coal C has the 

highest content of Fe203 in the ash (10.80%), followed by coal B, and then coal 

C and coal A. Therefore, we expect their slagging propensities to take the same 

descending order from coal C. 

Basic to acidic oxides ratio: The B/A ratios are also used in distinguishing 

between good and bad coals. An increase in the B/A ratio of the coal will lower 

its fusion temperature (Wigley et al., 1990). 

The computed values for the ratio of the BfA oxides for the four types of coals 

investigated are shown in Fig. 6.5. The results indicate that the slagging 

potential of coal C is expected to be the worst, and then coal B, coal A and coal 

0, in decreasing order. 

Although the predicted results using the BfA ratio also suggest that the coal C 

has the highest slagging potential, as also predicted using the SR and %Fe203 

indices, the results in Fig. 6.5 suggest that coal 0 has the lowest slagging 

potential. 
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Ratio of basic to acidic oxides multiplied by the content of dry sulphur in the 

coal: The slagging index, Rs , for coals with more pyrite content than siderite, is 

the product of the BfA ratio and the percentage of dry sulphur in the coal. While 

for coals with more siderite than pyrite, the slagging index is the product of the 

BfA ratio and the percentage of iron oxide in the ash. 

Notwithstanding the factor multiplied with the BfA ratio, the dry sulphur content 

in the coal or the content of iron oxide in the ash, the coals with Rs < 0.6 are 

said to have a low slagging potential (Lawrence et al., 2008). 

The results of predictions using the two slagging techniques described above 

on the set A-D of Australian coals that are investigated, are presented in Fig. 

6.6. The results suggest that coals A and D have a low slagging potential, 

followed by coal B, then coal C in increasing order. These results are consistent 

with the results earlier predicted using the %Fe203 index. 

Although the predicted index values using the two indices discussed above are 

slightly different, the values show a consistent slagging trend for all the coals. 

Also, it is important to note that the results of the predictions using all the bulk 

ash based indices are similar, especially when tested on the same coal. 

This suggest that the slagging indices that are based on the bulk ash chemistry 

can only accurately predict the slagging potential of coals whose properties are 

the bases on which they are established, otherwise they all produce misleading 

results. 
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6.3.5 The proposed NSI 

The results of predictions using the NSI have been compared with the results of 

predictions using four slagging indices, namely; %Fe203, S/A, Rs and ~, that 

have been tested in this investigation, as shown in Fig. 6.7. The NSI prediction 

results suggest that the coal C has the lowest slagging potential, despite its very 

low ash viscosity. This may be due to the low ash content of the coal (3.20%) 

(Rushdi et al., 2005). 

The NSI also predicted coal D to have the highest slagging potential, followed 

by the coal A. These NSI predicted results are consistent with both the 

experimental measurements (M), and the results of predictions using the 

deposition model that was earlier developed in this study (P), as shown on the 

Fig. 6.7 (Su et al., 2001b). 

On the other hand, the existing coal slagging indices that have been tested in 

this investigation, show inconsistencies in predicting the field performance of 

the Australian coals, and this may be because the slagging indices are 

specifically established for coals other than the Australian coals (McLennan et 

al., 2000). 

The inconsistency in the results of the predictions using the existing slagging 

indices is a major concern in selecting good coals. These inconsistencies, 

especially when the application of the indices is extended 'to a wide range of 

coals, are what the proposed NSI seeks to address. 
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6.4 Performance of the Siagging Indices on a Wide Range of Coals 

In order to establish the robustness of the proposed numerical slagging index, it 

has been tested on seventeen different coals, ranging from the Indian low rank 

coals to bituminous coals from Australian, Columbia, Indonesia, South Africa, 

UK and the US. 

The properties and the slagging potential of the coals that have been 

investigated, both empirically, and in some cases, numerically, are reported by 

different research groups. In this section, the reported field performance of the 

tested coals has been compared with the results of the predictions using the 

NSI and the existing slagging indices. 

6.4.1 Scaling of the Siagging Indices 

Table 6.2 shows the scaling of the coal slagging indices discussed in this 

chapter (Lawrence et al., 2008; Watt and Fereday, 1969; McLennan et al., 

2000). Although the proposed NSI has not yet been scaled, its relative 

measurements suggest that a higher index value represents a higher slagging 

potential, while for the viscosity index, a higher index value represents a low 

slagging potential. 

From Table 6.2, it can also be seen that for the AFT, SR, and the ~ indices, a 

higher index value represents a lower slagging potential. The coals with very 

low fusibility, < 1422 K, are expected to have severe slagging potential 

(Lawrence et al., 2008). 
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Table 6.2 Scaling of some of the investigated coal slagging indices 
(Lawrence et al. , 2008) . 

1 ',I ('f"I,, ' 

AFT > 1616 K 1505 -1616 K 1422 -1505 K < 1422 K 

SR 72- 80 65-72 50-65 

Fe20 3 <6% 6-7% >7% 

BfA < 0.11 0.11 - 0.14 > 0.14 

Rs < 0.6 < 2.0 ~ 2.0 

~ > 108 (Pa.s) t 105 
- 108 (Pa.s) t ::;; 104 (Pa.s) t 

Sx < 0.3 t 0.3 - 0.6 t > 0.6 t 

t Indicative values derived on the basis of investigations reported in this thesis 

6.4.2 Properties of the tested coals 

Seven slagging indices, including the NSI , have been tested on seventeen 

different coals. The proximate analyses, the ash analyses and the heating 

values for the tested coals are shown in Table 6.3 (Lawrence et al., 2008 ; 

Rushdi et al., 2005; Degereji et al., 2011 ; Laursen et al., 1998; Lee & 

Lockwood, 1999; Zygarlicke, Pavlish , Gunderson and McColior, 2000). 

From Table 6.3, it is clear that the Indian coals have low heating values (13-17 

MJ/kg) and medium-high volatile matter content. The Indian coal 1 has low ash 

content (2.42%) and a very high content of Fe203 and CaO in the ash (16.90 

and 34.30%, respectively). The coal 1 may likely behave as a refractory 

material, and it may not yield to any slagging index predictions due to its high 

content of Fe20 3 and CaO in the ash. 
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All the Indian coals, except Indian coal 1 , have high ash content (33 - 50%). The 

coal 5 has relatively low ash content (33.72%), and a low content of Si02 and 

Fe20 3 in the ash. The rest of the Indian coals have very high ash content, about 

45% on average, and this may result in a high slagging potential. Indian coal 3 

has a relatively low ash content (43.13%) and the highest heating value (17.04 

MJ/kg) when compared with Indian coals 2 & 4, and this may reduce slagging 

tendency of the coal. 

The properties of the Australian coals (1-4), as shown in Table 6.3, are the 

same with the properties of Australian coals (A-D) earlier discussed in Table 

4.1. The coals have heating values above 33 MJ/kg, and this is within the range 

of values for typical bituminous coals. 

Australian coal 3 has a high content value for Fe203 and a low content value for 

Si02 in the ash (10.80% and 51.80%, respectively). The low ash content of 

Australian coal 3 (3.20%) may reduce its tendency to accumulate slag in the 

boiler. 

Although the Colombian, the Indonesian, and the South African coals are from 

different regions, they appear to have similar calorific values, with different 

levels of ash content. The Indonesian sub-bituminous coal has a slightly higher 

volatile matter (41.23%) compared with the Colombian and the South African 

coals, but it has low ash content (7.69%). 
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The Indonesian and the South African coals have a similar content of Si02 in 

the ash, while the content of AI203 in the ash is higher in the South African coal. 

The Fe203 content in the ash varies significantly for all the coals, with 

Indonesian coal having the highest content value (11.10%). 

Table 6.3 Properties of the 17 tested coals (wt%, db) using the slagging 
indices (Lawrence et al., 2008; Rushdi et al., 2005; Degereji et al., 2011; 
Laursen et al., 1998; Lee & Lockwood, 1999; Zygarlicke, Pavlish, Gunderson 
and McCollor, 2000). 

SIN Coal FC VM Ash HHV (MJ/kg) (db) 5102 AI20 s FezOs CaO MgO 

1 Indian 1 50.23 47.35 2.42 28.59 16.20 12.30 16.90 34.30 8.70 

2 Indian 2 27.70 25.56 46.74 15.89 61.30 24.70 6.40 4.70 1.30 

3 Indian 3 30.44 26.43 43.13 17.04 62.70 27.30 5.10 1.20 0.70 

4 Indian 4 25.48 24.31 50.21 13.52 62.50 27.00 5.30 1.10 0.60 

5 Indian 5 41.31 24.97 33.72 20.21 60.50 31.80 3.70 1.00 0.60 

6 Australian 1 44.50 45.90 9.60 33.20 71.50 15.90 1.80 4.20 1.30 

7 Australian 2 65.50 26.70 7.80 34.99 58.40 25.30 7.20 2.60 0.70 

8 Australian 3 58.30 38.50 3.20 33.57 51.80 18.90 10.80 7.10 2.50 

9 Australian 4 56.70 30.60 12.70 34.49 54.60 36.80 2.80 0.70 0.42 

10 Indonesian 1 51.1 41.23 7.69 29.77 48.50 25.40 11.10 2.13 2.24 

11 Columbian 2 52.29 34.67 13.04 29.17 61.00 20.40 7.60 3.07 0.63 

12 S. African3 60.60 24.24 15.16 26.06 47.10 30.80 3.15 6.73 1.65 

13 US 1 43.95 45.35 10.70 23.20 32.8 18.90 4.80 20.20 0.70 

14 US2 48.70 39.56 11.74 27.32 53.10 20.30 14.20 3.40 1.60 

15 UK 1 51.35 30.29 18.36 33.92 53.10 25.70 12.00 1.90 1.10 

16 UK2 48.53 33.12 18.35 34.60 53.00 25.00 9.90 5.40 1.90 

17 UK3 49.18 32.82 18.00 34.62 45.7 25.0 25.0 1.10 0.60 

The US coals appear to have a similar content in terms of volatile matter, fixed 

carbon and ash. However, the US coal 2 has a significantly higher content of 

Si02 and Fe20 3 in the ash when compared with the US coal 1, while the content 

of CaO in coal 1 is much higher than in coal 2. 
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The properties of the UK coals that have been investigated are very similar, 

except in the content of CaO and MgO in the ash, where Coal 2 is significantly 

higher than the two other UK coals. From Table 6.3, the UK coals have a higher 

content of Fe203 in the ash than all the other coals, and this has been reported 

(Lee & Lockwood, 1999). 

6.4.3 Predictions results and discussion 

The predicted results using the NSI and the existing indices, namely, AFT, SR, 

%Fe20 3, BfA ratio, Rs and ~ techniques, on seventeen different coals, have 

been compared with the reported field performance of the coals. 

The coals investigated include five Indian low-rank coals, eleven bituminous 

coals from the UK, US, Columbia and South Africa, and a sub-bituminous coal 

from Indonesia. The slagging potential of coals is inversely proportional to the 

AFT, SR and ~ indices, therefore, the inverse of their values have been plotted 

in order to enhance comparative analysis. 

Indian coals: The field performance of the Indian coals has been reported in one 

of the references (Lawrence at al., 2008). Lawrence and others also reported 

the performance of a new slagging index which was based on thermo­

mechanical analyses (TMA). The TMA-based index has been defined in terms 

of the relative shrinkage rate of the ash and the weight of ash in the coals. The 

report show that the TMA results correlate with the field performance of the 

Indian coals. 
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In Fig. 6.8, the results of the predictions using the NSI and the six slagging 

indices mentioned above have been compared with the reported field 

performance of the Indian coals. The coal 1 appears not to fit well in these 

predictions, and this may be due to its unusual content of Fe203 and CaO in the 

ash (16.90 and 34.30%, respectively), as stated earlier in this chapter. 

The Indian coal 4, which has the highest ash content in the ash (47.3%), has 

the highest slagging potential as predicted using the NSI when compared with 

other Indian coals tested in this investigation, while the Indian coal 3 has been 

predicted to have the lowest slagging potential. 

The predicted results are in good agreement with the reported field performance 

of the Indian coals. All the other slagging indices that have been tested on these 

coals, predicted the Indian coal 2 to have the highest slagging potential, and 

most of the indices predicted the Indian coal 5 to have the lowest slagging 

potential assuming that coal 1 is exceptional due to high content of CaO and 

Fe20 3 in the ash which may make it behave as a refractory material. 

Australian coals: For the Australian coals, an ash deposition model which was 

earlier developed in this study, equation (3.41), yielded results that agree very 

well with their field performance (Degereji, Derek, Ma, Pourkashanian & 

Williams, 2011). 

In this investigation, the field performance of the coals has been compared with 

the predicted results using NSI and the existing slagging indices. As shown in 
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Fig. 6.9, the NSI predictions suggest that, amongst the Australian coals, coal 3 

has the least slagging potential despite its low silica and high iron oxide content, 

and this result is in agreement with the measurement data. 

The low slagging potential of coal 3 may be attributed to its very low ash content 

(3.20%), which can significantly affect the accumulation of slag in boilers. All the 

existing slagging indices tested on the Australian coals suggest that coal 2 is 

the second highest in terms of slagging. Similarly, all the indices, except the 1-1 

index which suggests coal 4 to have the worst slagging, predicted coal 3 to be 

the worst. 

Columbian, Indonesian, and South African coals: In a study on the influence of 

probe temperatures on the composition of ash deposit, the deposition rates of 

three different coals (Indonesian sub-bituminous, and Colombian and South 

African bituminous coals), under the same operating conditions, have been 

reported (Laursen et al., 1998). The reported deposition rates have been 

compared with the results of the predictions using the slagging indices that have 

been investigated. 

The results of the predictions using the NSI suggest that coal 2 has the worst 

slagging potential, followed by coal 3. These predictions are in very good 

agreement with the reported boiler behaviour of the coals as shown in Fig. 6.10. 

Other slagging indices, such as, %Fe203, BfA ratio and the 1-1 index, all 

predicted coal 1 to have the highest slagging potential. 



187 

US coals: Zygarlicke and others have investigated the ash behaviour and the 

combustion performance during the co-firing of rice straw and coals (Zygarlicke 

et al., 2000). They reported the ash deposition growth rates for two types of US 

coals (Absaloka and Illinois). The reported deposits growth rates of the tested 

coals have been compared with the results of predictions using the slagging 

indices that have been investigated. 

As shown in Fig. 6.11, the results of predictions using the NSI correlate well 

with the reported measurement data. The US coal 1 has a very high level of 

slag compared to coal 2. The performance of the US coals was also accurately 

predicted by all the existing indices that have been tested in this investigation, 

except the O/OFe203 and the Rs indices. 

UK coals: The deposition propensities of Bentinck, Daw Mill and Silverdale 

coals have been numerically investigated and some results from a test rig were 

reported (Lee and Lockwood, 1999). The reported results have also been 

employed in further validating the proposed NSI. The predicted results for the 

three coals using seven different slagging indices are shown in Fig. 6.12. 

The NSI predictions suggest that coal 3 has the highest slagging potential with 

an index value of 0.93, and very close values have been predicted for coal 1 

and coal 2 (0.86 and 0.84, respectively). Although all the predicted values are 

very close to the experimental measurements, the experiment indicates that 

coal 1 is better than the coal 2 in terms of slag formation. The AFT, SR and the 

BfA ratio accurately predicted the slagging behaviour of the British coals. 
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The overall prediction results: Fig. 6.13 compares the performances of all the 

slagging indices on all the coals investigated. In general, the proposed NSI 

suggests that the Australian coals have the least slagging propensity, followed 

by the Indonesian coals, and then, US, South African, UK, Columbian and 

Indian coals, in increasing order of slagging. From Fig. 6.13, the proposed NSI 

gives a better overall predicted result for all the coals when compared with the 

other slagging indices tested in this investigation. 

The existing indices have only accurately predicted the slagging potentials of 

the US and the UK coals. The inability of the existing slagging indices to 

accurately predict the ash behaviour of other coals is not unexpected, since 

such indices were originally derived for the US and the European coals 

(McLennan et al., 2000). 

The results presented in Fig. 6.13 are further analysed in Table 6.4, which 

shows how the individual indices were able to rank all the tested coals. The 

coals are represented according to their numbering in Table 6.3. For example 

Indian coals 1, 2, 3, 4 & 5 are in the first five columns in Table 6.4. The 

performance of the coals are arranged in the order of decreasing slagging 

propensity. 

According to the reported field performance of the Indian coals, coal 4 (#4), has 

the worst performance, while coal #1 has the best relative slagging 

performance. The reported results are in good agreement with the results of the 
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predictions using the proposed NSI. The same analysis applies for all the 

remaining sets of coals that have been tested. 

The last but one row shows the reported performance of the coals on a case­

by-case basis. The first five columns in that row represent the Indian coals, as 

stated earlier, with coal 4 having the highest slagging potential, followed by coal 

2, and then coal 3. The columns 6 - 9 are for the four Australian coals 1-4, 

columns 10 - 12 are for the Indonesian, Columbian and South African coals, 

columns 13 & 14 are for the US coals 1 & 2, and columns 15 -17 are for the UK 

coals 1-3 (Lawrence et al., 2008; Degereji et al., 2011; Laursen et al., 1998; 

Zygarlicke et al., 2000; Lee and Lockwood, 1999). 

The last row in Table 6.4 shows the indices that have successfully predicted 

each set of the tested coals. The results show that it is only the proposed NSI 

that satisfactorily predicted the field performance of the Indian, Australian, 

Indonesian, Columbian and South African coals. On the other hand, the last two 

columns of the last row show that all the tested existing coal slagging indices 

were successful in ranking the UK and the US coals. 

In the overall analysis, the proposed NSI predictions correlate well with the 

reported field performance of all the coal types that have been investigated in 

this study. On the other hand, the tested existing slagging indices, which are 

derived mostly on the basis of the ash chemistry, have only accurately predicted 

the slagging potential of the UK and the US coals. Such indices were originally 

derived for UK and US coals (McLennan at al., 2000). 
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Sensitivity of the NSI: Fig. 6.14 shows the predicted effects of varying the 

percentage of incoming ash on the slagging potential of the coals. Using the 

Indian coal 2, the proposed NSI shows a steady and proportional increase in 

the slagging potential of the coal as the percentage of the ash loading 

increases. 

The direct proportional increase in the slag build-up with an increase in the ash 

content suggests that the availability of low viscosity ash particles determines 

the rate of deposit accumulation on the water wall surfaces (Lawrence et al., 

2008). 

For between 38 and 40% ash loading, the slagging potential increases sharply 

before it returns to a steady increase. This phenomenon has been described 

relative to the ash shrinkage rates and the ash loading. If either the ash 

shrinkage rate, or the ash content, is very high, while the other is very low, the 

overall slagging under furnace dynamic conditions may not be significant 

(Lawrence et al., 2008). 

In this investigation, the ash shrinkage rate is indirectly related to the ash 

viscosity, and the viscosity of Indian coal 2 is within the range of high slagging 

tendency, 105-107 Pa.s (Gupta et al., 1998). Therefore, when both the ash 

content in the coal and the shrinkage rate are moderate, a high slagging 

potential is expected. However, if either the ash content or the ash shrinkage 

rate or both are low or high, a low slagging potential is expected (Lawrence et 

al., 2008). 
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Table 6.4 Performance of different coal slagging indices on 17 tested coals: tabular analysis of Fig. 6.13. 

Slagging potential of all the coals tested in decreasing order 

Index Indian coals Australian coals Indonesian, US coals UK coals 
Colombian & SA 
coals. 

AFT 1 2 4 3 5 3 2 1 4 3 1 2 1 2 3 2 1 

SR 1 13 17 11 8 3 2 1 4 2 1 3 1 2 3 2 1 

Fe203 17 1 14 15 10 3 2 4 1 1 2 3 2 1 3 1 2 

BIA 1 13 17 14 8 3 2 1 4 1 2 2 1 2 3 2 1 

Rs 14 1 10 13 11 3 2 1 4 1 2 3 2 1 - - -

1..1 1 17 13 9 10 4 2 3 1 1 2 2 1 2 3 1 2 

Sx 4 5 2 3 1 4 1 2 3 2 3 1 1 2 3 1 2 

Exp 4 2 3 5 1 4 1 2 3 2 3 1 1 2 3 2 1 

Correct S S S SR, BfA,~,S ST, SR, BfA, ~, S 
x x x x x 

predictions 
--- ---
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of Indian coal 1 as predicted using the NSI and viscosity index. 

In Fig . 6.15 , the ratio of the iron to silicon oxides, being the dominant basic and 

acidic oxides, respectively, was considered when investigating the sensitivity of 

the NSI. While gradually decreasing the weight percentage of the silicon oxide 

for Indian coal 2, from 61 .0 and increasing that of the iron oxide above 6.4, the 

slagging index predicts a small but steady decrease in the slagging potential of 

the coal. 

However, when the silicate was reduced to less than 59%, and the iron oxide 

increases to about 9%, the NSI predicts a sharp increase, which became steady 

afterwards. This trend is consistent with the prediction principles of the silica 

ratio and percentage of iron oxide. 
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The Si02/AI203 ratio affects the viscosity and melting characteristics of the coal 

ash (Luxsanayotin, Pipatmanomai & Bhattacharya, 2010). The low content of 

Si02 in the ash lowers the particle viscosity, which results in a higher sticking 

probability (Huang et al., 1996). 

The effects of Si02/AI203 have been investigated, and in Fig. 6.16 the predicted 

results using the NSI indicate an increase in the ash viscosity and a decrease in 

the NSI value as the Si02/AI203 ratio increases, and hence decreasing the 

slagging potential. This investigation was conducted on Indian coal 2, however 

the Australian coals have high Si02/AI203 ratios and they have been predicted 

to have a low slagging potential. 

6.5 The Performance of the Proposed NSI on Coal Blends 

The use of the NSI has been extended to coal blends in order to assess it 

flexibility. The reported field performance of a few coal blends have been 

compared with the results of the predictions using the NSI on those sets of 

coals and blends. A comparative analysis and conclusions on these tests are 

reported in this section. Also, in this section, the reported performance of some 

slagging techniques has been compared with the performance of the NSI, and a 

comparative analysis has been made. 

6.5.1 Properties of tested coal blends 

The properties of the parent coals and their blends are presented in Table 6.4. 

The parent coals A, Band E are Australian bituminous coals, and the properties 
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of coals A and B are the same as the properties of the Australian coals 1 and 2 

in table 6.2. Although coal E has the least content of ash (7.4%), the proximate 

analysis data appears similar for all the coals. 

The elemental ash content of the blends appears to be proportional to the 

blending ratio. For example, silica content for coals A and Bare 71.5 and 

58.4%, respectively, and for blend AB, with blending ratio 3: 1, is 67.2%, while 

for blend BA, with blending ratio 1 :3, is 62.7%. The blending ratio is shown in 

Table 6.5. 

Also, this linearity has been observed in the computed weight of ash, as shown 

in the last column of Table 6.5. For example, coals A and B, and blends AB and 

BA have 0.32, 0.24, 0.30 and 0.27 weight factors, respectively. Ordinarily, one 

will expect the linearity shown in the ash elemental content of the parent coals 

and their blends, to extend to their respective ash behaviour in boilers. Table 

6.6 shows some measured and derived properties of the tested coals/blends 

that have been discussed in this Chapter. 

Table 6.5 Properties of the coals/blends tested using the NSI (wt%, db) 
(Rushdi et al., 2004). 

SIN Coal I Blend FC VM Ash C H N S 0 Sl02 AI203 Fe203 CaO MgO 

1 A 45.5 45.9 9.6 70.0 5.3 11.0 0.4 13.7 71.5 15.9 1.8 4.2 1.3 

2 AB 51.4 39.6 9.0 72.5 5.1 1.2 0.4 11.8 67.2 19.0 3.6 3.7 1.1 

3 BA 58.6 33.0 8.4 75.0 4.8 1.5 0.4 9.8 62.7 22.2 5.4 3.1 0.9 

4 B 65.5 26.7 7.8 17.5 4.6 1.8 0.4 7.9 58.4 25.3 7.2 2.6 0.7 

5 AE 48.8 42.3 8.9 72.3 5.2 1.2 0.4 11.9 66.4 17.7 4.3 4.5 1.2 

6 EA 54.4 37.5 8.1 75.5 5.0 1.5 0.4 9.6 59.5 20.2 7.6 4.9 1.0 

7 E 58.7 33.9 7.4 17.8 4.9 1.8 0.3 7.8 54.4 22.0 10.1 5.2 0.9 
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Table 6.6 Measured and derived properties of the tested coals/blends (Rushdi 
et 81.,2004; Su et 81., 2001b). 

Coal/Blend Blending Fe20JiCaO TMA Viscosity (Pa.s) Ash content 
Molar ratio Penetration % Order Factor (ka/MJ) 

A - 0.26 8.89 7.4 0.32 
AB 67% A : 33% B 0.65 16.00 7.1 0.30 
BA 33%A: 67% B 0.84 7.37 6.9 0.27 
B - 1.41 12 6.6 0.24 

C - 0.51 14.25 6.7 0.10 
CO 75% C: 25% 0 0.76 3.49 6.5 0.18 
DC 50%C:50%O 0.94 1.23 6.3 0.26 
0 - 4.10 1.93 6.1 0.42 

A - 0.26 8.89 7.4 0.32 
AE 67% A: 33% E 0.48 16.48 7.2 0.29 
EA 33% A : 67% E 0.60 3.68 7.0 0.26 

E - 0.67 5.68 6.6 0.23 

6.5.2 Results of slagging tests on coal blends 

Two research groups have reported some slagging tests results on Australian 

bituminous coalslblends. One group has reported on the use of the scanning 

electron microscopy (SEM), thermo-mechanical analysis (TMA) and the ash 

bulk analysis, in testing the slagging potential of coals/blends (Rushdi, Sharma 

& Gupta, 2004). The other group has used the Fe20yCaO molar ratio to predict 

the slagging potential of the Australian coalslblends, and they compared the 

predicted results with deposit growth rate measurements from the ACIRL 

furnace (Su et al., 2001 b). 

SEM method: The scanning electron microscopy has been used to obtain the 

average deposition layer thickness for the Australian coals and blends on 

alumina probe in a drop tube furnace. The results obtained using this technique 

was considered as the baseline data, which was used to validate the TMA and 

the bulk ash analysis results. 
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TMA method: The thermo-mechanical analysis was used to study the thermal 

behaviour of the ash from the same coals and blends, in terms of the slagging 

potential. This technique basically assesses the melting of the ash as a function 

of the temperature. It was reported that the results obtained using the TMA 

have good correlation with the baseline (SEM) data. According to the report, for 

the set of coalslblends A-B, the blend AB appears to have the highest slagging 

potential, followed by the parent coal B, and then the parent coal A (Rushdi et 

al., 2004). As shown in Fig. 6.17, the reported results show consistency 

between the SEM and the TMA techniques. 

In similar consistent reported results, in Fig. 6.18, both the SEM and TMA 

suggest that blend AE has the highest slagging potential for the set A-E. The 

parent coal A is the second highest in terms of slagging, and the blend EA has 

the lowest slagging potential. 

f.l and Rs methods: The use of the viscosity method and the product of the basic 

to acidic ratio and the dry sulphur content in the coal, to predict the slagging 

potential of the same sets of coals and blends, has been reported to be 

unsuccessful (Rushdi et al., 2004). 

Observation: In a separate investigation, Su and others have observed the 

deposit build-up rates for the same sets of Australian coals/blends on three slag 

panels of the ACIRL furnace (Su et al., 2001 b). The observed data has been 

used to validate the results of the slagging predictions using some of the 

existing coal slagging indices. 
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Fe20 :lCaO method: The Fe20JiCaO molar ratio has been used to predict the 

slagging potential of the coals and blends. It was assumed that eutectics are 

formed between 0.3 and 3.0 ratio values, and severe slagging occurs at about 

1.0. This index did not properly account for the molar ratio values that are above 

1.0, or much less than 1.0. Although a satisfactory correlation between the 

Fe20 JiCaO molar ratio and the observed slagging propensity of coals and 

blends has been reported, it is clear from Fig. 6.19 that the blend BA has a ratio 

value 0.84, and therefore it is assumed to have the highest slagging potential. 

However, the observed data shows that blend AS has the highest slagging 

potential, and this is followed by the source coal A. 

In Fig. 6.20, the reported molar ratio values for all the coals and blends in set A­

E, are less than 1.0, and therefore it was reported that there was no slagging 

problem for this pair of blends (Su et al., 2001 b). However, the measurement 

data reveals that the source coals A and E have the highest and the lowest 

relative slagging potentials in that set. 

It is important to mention here that, although the correlation between the SEM 

and the TMA analyses is better than that of the Fe20JiCaO molar ratio when 

compared with the observed data, the SEM results are inconsistent with the 

results of several investigations on the same source (Australian) coals (Rushdi 

et al., 2005; Su et al., 2001b; Degereji at a/., 2011). For example, the above 

references have reported that the parent coal A has a higher slagging potential 

than the parent coal B, and this is consistent with the observed results reported 

in Fig. 6.19. Therefore, in view of this, the observed deposition rates in the 
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ACIRL furnace (Su et aI. , 2001b) are considered as the baseline data for this 

investigation. 

However, wi thin the reported investigations, when one attempts to compare the 

performance of the TMA and the Fe20 3/CaO molar ratio techn iques using the 

observed deposit growth rates for the set of coals and blends (A-B), it appears 

that the TMA pred ictions are far better in accuracy when compared to the 

Fe20 3/CaO pred ictions, as shown in Fig . 6.21 . The TMA technique predicted 

blends AB and BA have the worst and the least slagging potentials , 

respectively , and th is is in agreement with the observed data . On the other 

hand , the Fe20 3/CaO pred icts the source coals B and A to have worst and least 

slagging potentials , respectively , which is inconsistent with the observed data . 
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Fig. 6.17 Comparing ash deposit measured using the SEM and the 
percentage penetration obta ined using the TMA technique for coals/blends set 
A-B (Rushdi et al., 2004 ). 
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Fig . 6 .18 Comparing ash deposit measured using the SEM and the 
percentage penetration obta ined using the TMA technique coals/blends set A-E 
(Rushdi etaf , 2004 ). 
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Fig . 6.20 Comparing ash deposit growth rate measurement with the results 
of predictions using the Fe20 3/CaO molar ratio for coals/blends set A-E (Su et 
a!. , 2001 ). 
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Fig. 6.21 Comparing measured ash deposit growth rate with the results 
obta ined using the TMA and Fe20 3/CaO molar ratio for coals/blends set A-B 
(Su et a!. , 2001 ; Rushd i eta!., 2004) . 
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6.5.3 Results and discussion of the predictions using the NSI on coal 
blends 

The results of the prediction using the NSI have been compared with the 

measurement data on the Australian coals and blends in set A-B, as shown in 

Fig. 6.22. The reported growth rate measurements show that the blend AB has 

the highest slagging potential, while the source coal B has the lowest slagging 
, 

potential. The NSI predicted the blend BA to have the second highest slagging 

potential, while the measurement data show that the source coal A has the 

second highest slagging potential. 

In the second set of coalslblends (A-E), in Fig. 6.23, the. growth rate 

measurements show that the parent coal A has the worst slagging potential and 

the parent coal E has the least slagging potential, while the proposed NSI 

predicted blend AE to have the worst slagging potential and the source coal E 

to have the least. 

The results of predictions using the proposed NSI also suggest that the source 

coal A has the second highest slagging potential, while the reported 

measurement data suggest that the blend AE is the second. The parent coal A 

has a higher content of Si02 in the ash, as shown in Table 6.4, which is 

expected to reduce the slagging tendency of the coal A when compared to other 

coals. 

Also, the blend AE, has a higher content of Fe203 in the ash (4.3%), compared 

to that of the parent coal A (1.8%), and this is another pointer that the blend AE 
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may have a higher slagging than the parent coal A. The ash content in the coals 

is another important factor that affects the accumulation of slag in boilers, and 

Table 6.4 shows that the ash content of the source coal A is slightly higher than 

that of the blend AE by 1.5%. Although all these are significant indicators of the 

slagging tendency, it is reported to be difficult to predict the ash behaviour of the 

coal blends relative to their parent coals (Su at al., 2001 b). 

Fig. 6.24 shows the performance of four coal blends, relative to one another. 

There is a very good correlation between the measurement data and the results 

of the predictions using the NSI for all the tested blends. This good correlation 

suggests that the NSI has successfully ranked the coal blends according to their 

field performance, irrespective of their source coals. 

The results presented in Fig. 6.24 show that blend AB has the highest slagging, 

followed by the blends AE, BA, and then EA in descending order. Some of the 

properties of the coal blends also suggest that the predicted slagging potentials 

are satisfactory. For example, coals with high ash content are expected to yield 

high slag accumulation. From Table 6.4, blends AB, AE, BA and EA, have 9.0, 

8.9, 8.4 and 8.1 weight percentages of ash content, respectively. 

The better set of predictions results obtained, using the proposed NSI, may be 

attributed partly to the ability of the model to account for the following 

conditions: if either the ash shrinkage rate or the ash content in coal is high, 

while the other is less, the overall slagging, under furnace dynamic conditions, 

may not be significant. 
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Fig. 6.22 Comparing ash deposit growth rate measurement and ash deposit 
thickness measurement with the results of predictions using the NSI for set of 
coals and blends (A-B). 
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Fig. 6.23 Comparing ash deposit growth rate measurement and ash deposit 
thickness measurement with the results of predictions using the NSI for set of 
coals and blends (A-E). 
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Fig . 6.24 Comparing ash deposit growth rate measurements with the results 
of predictions using the NSI for two sets of four coal blends (A-B and A-E) . 

However, if both the viscosity of the ash and the ash content are moderate, a 

high slagging is expected (Lawrence et al., 2008) ; the viscosities of a high 

slagging tendency are within the value range of 105-107 (Pa .s), and such 

viscosity range is considered as moderate (Gupta et al., 1998). The ash 

viscosity and the ash content techniques are also incorporated in the proposed 

NSI. 

6.6 Summary and Conclusions 

The burning of coal will remain the dominant source of power generation for 

many years to come . However, slagging and fouling in coal-fired boilers remain 
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a challenge for the energy engineers as they strive to optimize the combustion 

efficiency. 

The selection of a suitable coal as a fuel has been identified as one effective 

way of tackling boiler problems that are related to ash. However, the existing 

coal selection tools yield misleading results when their use is extended to a 

wide range of coals. 

Although the ash fusion temperature, the ash particle viscosity and the bulk ash 

chemistry are the three most popular bases for characterizing coal ash 

deposition and slagging, the content of ash in the coal, and the mineral matter 

transformation and associations can also influence slag accumulation in boilers, 

significantly. 

In this investigation, a numerical slagging index has been developed based on 

the viscosity of the ash, the softening temperature of the ash and the ash 

content in the coal, with some basic assumptions. The Bomkamp modified 

version of the Watt-Fereday model has been used to determined the ash 

viscosity. 

The particle softening temperature is determined from the bulk chemistry of the 

ash. The incoming ash is expressed in terms of kg per MJ, rather than weight 

percentage. 

The NSI model has been implemented using the 'define-on-demand' UDF in the 

FLUENT 12.1 software, and it has been tested over a wide range coals, 
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including lignite and bituminous coals, and some sets of coal blends form 

different regions. 

The general performance of the code on the tested coals and blends is very 

good when compared with the performance of the existing slagging indices. 

The flexibility of the model has also been tested by varying the values of some 

important input parameters, such as the ash loading, the percentages of iron 

and silicon oxides, and the ratio of silica to alumina. 

From the results of the predictions using the proposed NSI and some of the 

existing slagging indices, the following conclusions are made: 

• A numerical slagging index has been developed based on the viscosity 

of the ash, the softening temperature of the ash and the ash content in 

the coal. 

• The numerical slagging index has been successful in ranking about 90% 

of the seventeen different coals tested in this investigation. 

• The six existing slagging indices that have been tested in this 

investigation, accurately predicted the performance of the UK and the US 

coals, but yielded poor performance when their use was extended to 

other coals, such as, the Australian, Indian and South African coals. 

• The NSI has a better overall slagging prediction on all the coals tested 

when compared with the performance of the six existing slagging indices 

that have been investigated. 
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• The NSI has a better prediction of the performance of the sets of coals 

and blends that have been investigated. when compared with the 

reported performance of some of the prediction tools. 

• The NSI has successfully predicted the performance of four coal blends 

that have been investigated. 

• The proposed numerical slagging index is a step forward in the drive for 

a more generic method for predicting the pre-combustion slagging 

behaviour of coals in boilers. 

• In addition to the chemistry of the ash. the mineral distributions and 

transformations. the ash loading in the coals have a significant effect on 

the rate of the ash accumulation in the boilers. 

• The presence of low-viscosity materials and the ash content in 

coalslblends enhances the slagging propensity. 

• The conclusion by Rushdi et al. (2004) and Su et al. (2001 b). namely. the 

performance of blends may not be interpreted linearly from that of their 

parent coals. is upheld. 

• It is important to note that the interaction of different ash particles on the 

deposit surface and how this affects deposit build-up needs to be well 

understood in order to provide a better prediction tool for coals and 

blends. 
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CHAPTER 7 

ASSESSMENT OF CO-FIRING SLAGGING POTENTIAL 

7.1 Introduction 

The co-firing of biomass with pulverized coal in the existing coal fired facilities is 

widely used in order to reduce CO2 emissions (Sami, Annamali & Wooldridge, 

2001). It has been estimated that a reduction of about 300 Mt of CO2 emissions 

can be achieved if only 5% of the total world energy generated using coal is 

substituted with biomass (lEA, 2009, cited in Munir et al., 2010a). This 

estimation gives incentive to the co-firing practices. 

However, the complex nature of the mineral matter composition of biomass may 

result in an increased slagging tendency during co-firing (Wigley, Williamson, 

Malmgren and Riley, 2007). Also, since biomass has a higher content of 

moisture, volatile matter and oxygen, and lower density, ash content and 

heating value than coal, an in-depth understanding of the characteristics of the 

blended fuels is necessary in order to achieve high co-firing efficiency (Molcan 

et al., 2009). 

Although several research activities, including the use of CFD techniques, are 

ongoing in order to fully understand the deposition mechanism in co-firing, still 

there is no available tool that predicts the slagging and fouling of biomass 

unequivocally, and therefore, coal specific ash fusibility correlations are used in 

practice for biomass (Munir, Nimmo & Gibbs, 2010b). 
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For blends with < 20% biomass, the ash mixture is still predominantly alumino­

silicate, and the pure coal slagging indices can be used with caution, to predict 

the slagging potential of such blends (Tillman, Conn & Duong, 2009; Starn, 

Livingston, Cremers & Brem, 2009). 

Using pure coal slagging indices to assess co-firing may not guarantee 

prediction accuracy. This is because the ash behaviour during co-firing is not 

yet fully understood (Shao et al., 2010). Additionally, the composition of 

biomass differs from that of coal. For example, the inorganic matter in coal is in 

the form of minerals, while a substantial part of the alkali metals in biomass are 

present as salt (Zheng, Jensen, Jensen, Sander & Junker, 2007). 

According to Heinzel et al. (1998), whether co-firing deposits show the 

behaviour of two single ashes or that of a mixture of ash under boiler conditions 

needs to be understood. Also, the knowledge of the nature of potassium release 

during biomass combustion is still inadequate. Although the release of 

potassium during co-firing is said to be mainly KCI in the fly ash, K2S04, K­

silicate and K-aluminium-silicates (Zheng et al., 2007), other species, such as 

CaS04 which may possess lower mobility than the K2S04, can also deposit on 

the boiler walls (Shao et al., 2010). 

In this thesis, the development of a numerical slagging index to predict the 

slagging potential of coals has been reported earlier. At this stage, the proposed 

coal slagging index has been modified such that it can predict the slagging 
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potential of coal and biomass blends by accounting for the introduction of a 

small percentage of biomass ratio « 20%) in a coal fired plant. 

Although the model is expected to predict the slagging potential of coal and 

biomass blends, more work still needs to be done, especially in integrating the 

effect of minerals transformation and association into the model in order to 

improve its performance. 

7.2 Some of the Siagging Parameters 

In order to understand the ash behaviour of coal/biomass blends, and to be able 

to come up with a reliable co-firing slagging tool, it is critical to evaluate the 

properties of both the coal and the biomass and the potential interaction 

between them (Tillman et a/., 2009). 

The properties of coal and biomass in Table 7.1 are some of the factors that 

can influence slagging. Although the blends are made in percentages, in terms 

of either weight or energy, certain properties of the blends, such as reactivity 

may not necessarily behave according to the ratios of the fuels (Tillman et al., 

2009). 

I n Table 7.1, any of the parameters listed under coal can be used to 

characterize the slagging of coal, likewise for the biomass. However, any 

prediction tool that has been developed for a particular fuel, based on the 

cumulative effect of all the parameters listed under the fuel, may produce better 
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predictions, especially when compared to the results of pred ictions using a 

single parameter. 

Table 7.1 Some of the fuel properties that have an influence on the slagging 
potential. 

1 Viscosity Melt fraction 

2 Softening temperature Softening temperature 

3 Ash loading Ash loading 

4 Ash elements (Si02, Fe20 3, etc.) Ash elements (K20 , P20 5, Na20 , etc.) 

5 Interaction and association of Interaction and association of biomass 
coal elements elements 

6 Interaction and association between coal and biomass elements 

In an attempt to answer the question 'whether the blend 's ash behaves as two 

individual ashes or as a mixture ash', in this investigation , the ash of the blends 

is considered with dual characteristics . At the initial stage of calculations, the 

coal ash and the biomass ash are assumed to behave independently. At high 

levels of reactivity , the components of the individual ashes may interact and 

result in additional species. This has not been considered here. 

The coal numerical slagging index earlier reported in chapter 6 of th is thesis 

considers the viscosity, fusibility and the weight of the ash in the coal to assess 

the slagg ing potential of the coal. In a similar manner, the softening 

temperature, weight of the ash and the ash composition are considered in 



217 

assessing the biomass component of the blend. Also, the content of some 

important species, such as Fe203, K20 and Ti02, continue to change by varying 

the biomass ratio (BR) in the blend (Molcan et al., 2009), as shown in Fig. 7.1. 

In addition, the release of some elements, such as potassium, chlorine, sodium, 

etc., during and after devolatilization, coupled with the boiler thermodynamics, 

may strongly influence the slagging potential of the blends. Therefore, there is a 

need to establish the rates at which some of the alkali metals react with silicate, 

iron oxide and calcium oxide that are released from the coal ash. Also, the 

effects of the transformations and association of minerals are important. 

7.3 Numerical Modelling 

For effective modelling, it has been assumed that the individual properties of the 

fuels and the interactions between them under high temperatures are 

responsible for the ash slagging. Ash particles that transverse the boundary 

layer and hit the boiler walls may stick, and can cause slagging. 

The stickiness of a silica-rich particle can be determined from its viscosity 

(Oegereji et al., 2011), while for a particle rich in salt, its stickiness can be 

determined from its softening temperature and/or melt fraction (Ma et al., 2006). 

Also, it was found that the content of alkali metals (K, Na & Ca), as well as 

AI20 3 and P205, were enriched in the deposited ash under co-firing conditions 

(Shao et al., 2010). On the other hand, a significant decrease in the content of 
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Fe20 3 in the ash and an increase in Ti02 content in the ash as the biomass ratio 

(SR) increases, are reported (Molcan et a/., 2009). 

Although coal slagging indices are currently used to assess the slagging 

potential of coallbiomass blends with < 20% SR, in this chapter, the coal 

slagging index reported in chapter 6 has been modified in order to account for 

the effect of biomass blending. 

The coal numerical slagging index in equation (6.7) is expressed in terms of the 

incoming ash, r, and ash viscosity, p, as defined in equations (6.S) and (3.33), 

respectively. 

For coallbiomass blends, the effects of biomass addition on deposit sintering 

can be predicted by determining the viscosity of the blend ash from the ash 

content and ash chemistry of the individual fuels (Wigley et a/., 2007). Thus, the 

weight of the incoming ash has been defined in terms of the content of the ash 

and the heating value of the individual fuels as follows: 

(7.1) 

where x, y, Yc and r" are the ratio of coal in the blend, the ratio of biomass in 

the blend, the weight of coal ash and the weight of biomass ash, respectively. 

Also, the ash viscosity has been redefined to account for the softening 

temperatures of both the coal (Tc) and the biomass (Tb ), analogous to equation 

(3.33), as follows: 
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(7.2) 

Where Ts 2 represents the combined softening temperatures of the coal and 

biomass particles, which replaces Tc in equation (3.33), and is defined as: 

(7.3) 

The individual softening temperatures of the coal and biomass particles are 

determined as (Oegereji at al., 2011; Ma at al., 2006): 

Tc = a (Si02) + b(Ah03) + c(Fe203) + d(CaO) + e(MgO) + f(a) + g + 150"C (7.4) 

Tb = I.81CaO + 4.20A1203 - 2.41K20 + 5.31P20s + l017°C (7.5) 

In order to account for the interaction between the species of coal and biomass 

ash particle, results of some empirical studies have been reviewed. Molcan at 

al. (2009) reported the characteristics of some of the elements of the blends 

under high temperatures as shown in Fig. 7.1. 

The Fig. 7.1 shows that the content of K20 in the blend ash increases rapidly 

with increase in BR. However, this trend reverses when the BR is greater than 

15%. On the other hand, the content of Fe203 reducing characteristics as the 

percentage of BR increases. Also, it has been reported that devolatilization and 

incomplete condensation affect the concentration of K20 and P203 in the ash 

deposit of blends (Wigley at al., 2007). 
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Fig . 7.1 Analysis of selected minerals in the inert matter of the 
coal/biomass blend from test Case 2. 

In sequel to the review of the behaviour of some components of the blend ash 

as described above, four sub-models representing the softening temperature of 

the blend ash have been proposed are tested. The numerical results of the 

proposed sub-models are compared with experimental measurement as shown 

in Table 7.2. 

Table (7.2) shows that the results of calculations using the sub-model with the 

k factor (serial number 2 in Table 7.2) gives better correlation with the 

experimental data when compared with the other sub-models. The sub-model 

predicts that slagging potential of the blend increases with increase in BR when 

the percentage of the BR in the blend is less than 20%. 
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Table 7.2 Comparing the slagging potential of coal/biomass blends using 
different softening temperature sub-models with experimental data - test Case 2 
(Molcan et a/., 2009) . 

1 Experimental 0.75 0.81 0.82 0.95 1.00 

2 T/ =xTc2+(y l k)Tp2 0.89 0.96 0.93 1.00 0.90 

3 T.2 = (xTc + yTb) 2 0.98 1.00 0.93 1.00 0.88 

4 T/ = xT} + yTb 2 0.98 1.00 0.93 1.00 0.89 

5 Tl = xTc2 + yTb 1.00 0.98 0.85 0.90 0.72 

Therefore, the softening temperature sub-model in equation (7 .3) is used in 

assessing the slagging potential of the coal and biomass blends according to 

equation (7 .2) , and the factor, k, is defined as follows: 

(7.6) 

7.4 Test Cases 

In order to validate the proposed co-firing slagging index, some reported 

experimental results on the slagging potential of some forms of coal/biomass 

blends have been used . The results of the predictions using the proposed co-

firing slagg ing index are compared with the reported experimental 

measurements on some sets of coal and biomass blends. A total of three cases 

have been investigated as discussed below, and the properties of the tested 

blends are shown in Table 7.3. 
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7.4.1 Case 1 

The deposition rates on the slag ports of a vertical slagging test rig during co­

firing of South African bituminous coal with various percentages of sewage 

sludge, saw-dust and refuse derived fuel have been reported (Kupka, Mancini, 

Irmer & Weber, 2008). The slagging test was performed in a vertically fired 

reactor with ash collecting facility. The reactor is about 4.0 m long with a 

diameter of 0.25 m, and it has a nominal 50kW fuel input. Also, it has been 

reported that the reactor has very accurate control system and measurement 

equipment which results in very good repeatability. 

The reactor was used to burn the blends of South African bituminous coal with 

sewage sludge (SS), saw-dust (SO) and refuse derived fuel (ROF), at different 

test times. The details of the properties of the fuels have been reported (Kupka 

et BI., 2008). The blending ratios of 5%, 10%, 15%,20% and 100%, by energy 

(LHV), have been tested for both the SS and the SO. However, only 5% and 

100% ratios of the refuse derived fuel tests have been reported in this Case 

(Kupka et BI., 2008). 

The experimental results show high slagging with SS blends when compared 

with the SO blends and the pure coal. According to the report, the addition of 

SO to the coal appears to have reduced the slagging potential of the coal. Also, 

it has been reported that the gradual increase in the BR to 20% results in a 

linear increase in the slagging potential of both SS and SO blends (Kupka et BI., 

2008). 
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7.4.2 Case 2 

The concentration of fly ash collected from the flue section of a furnace during a 

co-firing test using the South African coal and pelletized saw dust (mixture of 

oak & pine woods), with BR of 0%, 5%, 10%, 15% and 20%, has been reported 

(Molcan et al., 2009). A 3 MWth horizontally fired test facility has been used to 

characterize the biomass and coal co-firing. Saw-dust with 80% oak wood and 

20% pine wood was blended with the South African coal. 

The blending ratios are similar to those described in Case 1 (0-20%), but in this 

Case, the blending is by weight percentage. The fly ash collected during the co­

firing has been analysed according to the weight of the unburned carbon, 

volatile matter and inert matter. 

Also, the mineral analysis of the inert matter (ash) has been reported (see Table 

7.3). According to the experimental data, the content of the fly ash is lower in 

pure coal combustion, and it keeps increasing linearly with increasing BR to 

15%, and then, the content of the fly ash slightly reduces when BR was 

increased to 20%. 

The experimental results further suggest that a complex characterization of the 

blends was produced which has been attribute to the varying properties of the 

biomass fuel. 
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7.4.3 Case 3 

The superficial ash deposition rates during co-firing of white pine pellets and 

lignite coal, with BR of 0%, 20%, 50%, 80% and 100%, have been reported. 

(Shao at al., 2010). The ash deposition study on co-firing biomass and coal was 

performed using a fluidized-bed combustor. 

Although the blending ratios in this case are different from the two other cases, 

using a fluidized-bed reactor in this case may offer a basis for comparison 

between the test results using different facilities. The ash properties of the 

crushed lignite and the white pine pellets used in this test are shown in Table 

7.3 (Shao et al., 2010). 

The test results show a slight increase in the deposition rates (0.5 g/m2/h) as 

BR increases from 0% to 20% BR. It has been reported that the lignite has a 

higher surface deposition tendency, although the ratio of the ash feeding rate of 

the crushed lignite to the ash feeding rate of the blends shows that the 

combustion of 100% white pine pellets produced a slightly greater slagging than 

does 100% lignite coal (Shao at al., 2010). 

Also, it has been reported that the ash produced during the co-firing of the 

woody biomass and the lignite coal was found to be rich in some alkali metals, 

such as K, Na and Ca, as well as Ab0 3 and P205. 
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Table 7.3 Mineral analyses of the inert_matter from the three Cases investigated {Ku~ka et a/., 2008; Molean et a/., 2009; Shao et aI., 2010). 

Mineral Content {% wt} 
% Biomass in the blend Si02 AI20 3 CaO Fe203 S03 MgO Ti02 P20S K20 Na20 Ash content 1% wt} CVIMJ/kg} 
Case 1-55 (as received) LHV 

0 40.49 32.21 12.29 5.02 0.72 3.86 1.81 1.73 0.93 0.94 10.64 26.54 
5 36.38 28.39 13.07 7.71 0.17 4.01 1.60 6.53 1.22 0.91 12.49 25.32 
10 34.20 26.15 13.18 9.36 0.32 3.79 1.49 9.30 1.31 0.90 14.17 24.22 
15 32.48 24.30 13.40 10.73 0.49 3.73 1.38 11.21 1.37 0.92 15.70 23.21 
20 30.29 22.48 13.16 11.22 2.95 3.76 1.30 12.43 1.48 0.94 17.10 22.30 

Case 1-5D (as received) LHV 
0 40.49 32.21 12.29 5.02 0.72 3.86 1.81 1.73 0.93 0.94 ' 10.64 26.54 
5 39.68 31.65 12.66 4.69 1.65 4.05 1.78 1.85 1.11 0.88 9.88 25.78 
10 39.78 31.76 13 5.01 0.86 3.94 1.73 1.75 1.33 0.83 9.16 25.06 
15 39.86 31.72 13.17 5.1 0.74 3.93 1.71 1.65 1.36 0.76 8.48 24.38 
20 38.37 30.5 13.47 5.01 2.59 4.13 1.71 1.79 1.57 0.86 7.84 23.73 

Case2-5D (dry basis) HHV 
0 42.50 29.40 8.09 5.72 2.54 1.64 1.40 1.35 0.64 0.10 14.60 27.80 

5 44.90 31.50 7.51 4.76 1.47 1.39 1.68 1.59 0.66 0.10 14.10 27.29 
10 41.90 30.90 8.76 4.95 1.66 1.64 1.57 1.68 0.78 0.13 13.59 26.77 

15 44.90 31.10 6.60 4.74 1.16 1.11 1.58 1.49 0.87 0.07 13.09 26.26 
20 42.60 31.40 9.23 4.07 1.60 1.85 1.67 1.53 0.85 0.13 12.58 25.74 

Case3-WPP (dry basis) HHV 
0 38.05 15.33 7.51 0.76 0.60 12.26 9.26 5.27 4.63 0.81 22.00 21.80 

20 35.28 18.34 8.41 0.84 0.52 16.58 3.64 5.27 5.53 0.65 18.22 21.56 

50 35.60 16.88 7.11 0.60 3.38 12.92 4.21 4.95 4.39 3.17 12.55 21.20 

80 28.93 12.48 6.21 0.52 6.56 13.81 5.43 6.66 3.49 4.72 6.88 20.84 

100 29.58 4.33 25.44 0.19 0.37 8.85 18.47 2.59 1.70 1.22 3.10 20.60 
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7.5 Predicted Results and Discussion 

The normalized results for the measured and the predicted slagging potential of 

coal and biomass blends for the Case 1 are reported in Fig. 7.2. The predicted 

results have a very good correlation with the experimental results for all the 

blend ratios. The results show an almost linear increase in the slagging 

potential with increasing BR. The maximum slagging potential is recorded when 

the ratio of the SS in the blend reaches 20%. 

The poor slagging performance of the SS may be attributable to a number of 

factors. For example, the content of the ash in the SS is very high (29.93 wt %) 

when compared with the ash content in the coal (10.64 wt %) (Kupka et al., 

2008). Similarly, the SS has a higher content of sulphur (2.0 wt %) and a lower 

CV (13.8 MJlkg) compared to the tested coal which has 0.83 wt % and 26.54 

MJlkg for sulphur content and CV, respectively. Also, its P20S content is high 

(12.43 wt %) for 20% BR. 

Also, from the ash collected in the cyclone, it has been reported that the ash is 

enriched with some alkaline materials, such as K20 (about 1.48 wt %) with 20% 

BR when compared with 100% coal (0.93 wt %). All these factors, coupled with 

some chemical reactions that might have not been accounted for, may result in 

the high slagging potential predicted. Therefore, one can conclude that the 

proposed co-firing numerical slagging index has successfully predicted the 

slagging performance of the sewage sludge and coal blend with BR up to 20%. 
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In Fig. 7.3, the measured and the predicted results of the slagging potential on 

saw-dust and coal blends are presented. The normalized results are in good 

agreement. The experimental results show that the maximum slagging potential 

occurs with 100% coal. It then decreases with 5% and 10% BR. The second 

peak is reached when the SR is 15%. Above 15% SR, the slagging potential 

begins to decrease again. The experimentalists reported that the continuous 

addition of the SO ratio in the blend may yield a lower slagging potential than 

that for pure coal (Kupka et a/., 2008). 

The predicted results show that the slagging potential of the blend is highest 

with 15% SR, and it is lowest with 0% and 5% SR. Contrary to the 55, the 

reported properties of the SO show a very low content of ash (0.74 wt %). Also, 

the SO has a heating value (16.62 MJ/kg) greater than that of the SS (13.8 

MJlkg). The ash of the SO has a lower content of Na20, Fe203 and AI203 than 

that of the pure coal. 

In another test using the woody biomass, the normalized values of the 

measured and predicted slagging potential of coal and saw dust blends for the 

Case 2 (Molcan et a/., 2009) are reported in Fig. 7.4. The predicted results have 

a good correlation with the experimental results, especially for BR s 15%. For 

20% BR, the model predicted a decrease in the slagging potential when 

compared with 15% BR, while the reported experimental data shows an 

increase. 
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Although the reported increases in the content of alkali metals when biomass 

addition is greater than 15% may result in increased slagging, the significant 

reduction in the ash content and the content of Fe203 in the ash may decrease 

the slagging potential, and the predicted result for 20% BR is consistent with the 

both the measurements and predictions in Case 1 (with SO). Therefore, the 

predictions of the coal/SO blends using the proposed co-firing slagging index 

are also considered to be accurate. 

In Fig. 7.5, the normalized values for the measured and predicted slagging 

potential of coal and white pine pellets blends for the Case 3 (Shao et al., 2010) 

are shown. For BR greater than 20%, the model predicted almost a linear 

decrease in the slagging potential of the blends, and this trend agrees with the 

experimental data. 

The decrease in the slagging potential with an increase in the BR is not 

unexpected since the biomass used in this case (white pine wood) has a very 

low ash content (3.1 wt %) compared to the ash content for the lignite coal (22 

wt %) (Shao et al., 2010). Although there are no data between 0% and 20% BR, 

the experimental data suggests an increase in the slagging potential of the 

blends which is in agreement with the measured data in Case 2. It is evident 

here that the model is consistent in its predictions when BR is between 15% 

and 20%, and the three experimental cases on woody biomass show some 

inconsistencies. 
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Some of the potential transformations and association that are likely to occur 

when the content of the biomass in the blend becomes significant, such as the 

formation of eutectic, sulfation, reaction between silica and alkali metals, etc., 

need to be investigated. 

The performance of the proposed co-firing slagging index on different blends 

depends on the properties of the blends and the properties of their respective 

ashes. For example, the results of predictions using the index on coal/saw dust 

blends in Cases 1 and 2 produced different results. For Case 1, the index 

predicted 0.52 and 0.53 slagging potential for 5% and 10% BR (not normalised). 

Similarly, the index predicted 0.62 and 0.60 for 5% and 10% BR in Case 2. The 

prediction results show that the blend in Case 2 has higher slagging potential. 

This may be attributed to the high ash content in Case 2 (14.6 wt %) compared 

to that of Case 1 «10.64 wt %). 

It is important to mention that the model was successful in predicting a high 

percentage (> 20%) of biomass in the blend by simply assessing the softening 

temperatures of the biomass which is subsequently correlated to the BR in the 

blends. 

7.6 Challenges 

i. Although the ash viscosity may be sufficient to determine the sticking 

tendency of coal ash, which is predominantly alumino-silicate, the 

softening temperature of the biomass particle may not be sufficient to 



232 

determine its sticking tendency. Therefore, there is the need to 

understand the potential interactions between the coal and the biomass 

elements and incorporate them into the model for better predictions. 

ii. Two of the available co-firing cases that have been tested in this 

investigation are basically woody biomass, whose ash is less complex 

compared to other forms of biomass. Although sewage sludge has also 

been investigated, there is a need to test other forms of available 

biomasses in order to draw a general conclusion. Also, it is important to 

investigate blends with not more than 20% SR, this is because at this 

stage the emphasis has been on 20% BR. 

iii. The availability of data on industrial scale co-firing slagging is also 

considered as a limitation to the implementation of the proposed co-firing 

numerical slagging index. It is expected that further enhancement of the 

features of this model will assist in the assessment of the slagging 

potential of coal and biomass co-firing. Also, with a better understanding 

of the slagging mechanism of the blends, its use can be extended to 

higher values of SR. 

7.7 Conclusions 

i. The existing coal slagging index has been modified in order to predict the 

slagging potential of coal/biomass blends. The working principles of the 

modified slagging index are based on the weight of ash and the heating 

value of the individual fuels, as well as their individual softening 

temperatures. 
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ii. The model has satisfactory predicted the slagging potential of 

coal/biomass blends, especially for BR < 20%. The results of the 

prediction using the modified index are in very good agreement with the 

measured data, especially with sewage sludge and woody biomass. 

iii. Although the experimental results show some inconsistencies when the 

BR is greater than 15%, the predicted results are consistent with all the 

experimental results that are reported. 

iv. Some minor discrepancies between the measured and predicted results 

do exist, especially where the difference in the reported experimental 

results for two successive blending ratios is insignificant. 

v. The content of some of the ash elements in the blends, such as 

potassium, titanium and iron, correlate with the overall ash slagging 

behaviour. 

vi. The weight of the incoming ash has a significant influence on the 

slagging potential of the blends. This has been shown by both the 

experiments and the predictions. 

vii. The potential interaction between the particles of coal and biomass in the 

boiler needs to be understood and integrated into the modified slagging 

index in order to enhance the performance of the index. 

viii. There is a need for further testing of the modified slagging index to cover 

all types of biomass and coals. 
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CHAPTERS 

GENERAL CONCLUSIONS AND FUTURE WORK 

In this chapter, the conclusions derived from the research findings are 

presented. This thesis is considered as a conceptual basis for broader research 

activities towards the understanding of the ash behaviour for all solid fuels. 

Therefore, some areas of future research work are identified and discussed at 

the end of this chapter. 

8.1 General Conclusions 

In an attempt to contribute towards a better of the boiler slagging problems, 

CFD techniques are used in the implementation of the ash particle deposition 

rate model and the numerical slagging index that have been proposed in this 

thesis. The two models have been validated using the available experimental 

data on coal combustion, and some conclusions are drawn. 

8.1.1 Ash particle deposition model 

The existing models for various phases of coal combustion are used in order to 

establish the gas phase temperature and velocity field which are necessary for 

ash deposition studies. The particle trajectories are predicted in a Lagrangian 

reference frame. 
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Inertial impaction has been considered as the major pathway for the 

transportation of particles to the boiler walls. The overall sticking tendency of 

the particle was determined on the basis of its calculated viscosity at impaction 

on the boiler walls and its tendency to rebound after impaction if it possesses 

excess energy. 

Some of the predicted results that have been compared with the measurement 

data include the following: the flame temperatures in the regions of the slag 

panels; the heat fluxes on the three slag panels; and most importantly, the ash 

deposition rates on the three slag panels. 

The following general conclusions are made based on the investigations 

performed using the proposed ash particle deposition rates model that is 

reported in this thesis: 

~ A numerical model to predict ash deposition in furnaces has been 

developed based on the temperature-dependent viscosity of the ash 

particle has been developed. The model also incorporates the particle 

rebound tendency after impaction on the boiler walls. 

~ The proposed model has successfully predicted the ash deposition rates 

for four Australian bituminous coals that have been tested in this 

investigation. The results. of prediction using the deposition model 

correlate very well with the reported slagging performance of the coals. 
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,. The ash particle deposition model is found suitable for the prediction of 

the deposition rates of homogeneous coal ash slag in a high temperature 

region. 

,. The performance of this model at the downstream boiler where 

temperatures are low has not been tested and therefore is not 

guaranteed. This is because at low temperature regions, condensation is 

considered as a major deposition pathway, and also, ash crystallization 

may occur, thereby introducing non-homogeneous characteristics in the 

ash. The effects of these transformations due to the change in 

temperature gradient are not accounted for in the model. 

,. The gas phase temperatures are found to have a significant effect on the 

ash deposition rates. The peak flame temperatures obtained vary for 

different coal types since the operating conditions are the same. 

,. Also, the heat fluxes on the walls of the ACIRL furnace are found to 

have a significant effect on the rates of ash deposition on the slag 

panels. According to reports, the heat fluxes can be used to characterize 

ash deposition on the water-walls of a boiler (Su at 81.,2001 a). 

,. It has been observed that the viscosity of the ash particle in the furnace 

determine, to a large extent, the particle deposition rates. Reducing the 

value of the reference viscosity results in a lower rate of ash deposition. 

This suggests that at very low viscosity « 1 04 Pa.s), little or no 

deposition is recorded. 

,. The swirling motion of the particles in the boiler seems to increase their 

tendency to penetrate the boundary layer and hit the heat exchange 

surfaces. Consequently, this increases the overall stagging propensity. In 
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this investigation, it has been observed that an increase in the swirl 

number, result in proportional increase in the rate of ash particle 

deposition. This is attributed to the particle entrainment due to strong 

recirculation zone created with high swirl numbers. 

~ This ash deposition model has not been tested on an industrial scale 

boiler due to the non availability of field performance data at the time of 

this investigation. However, the results of the test on the pilot-scale 

furnace are good representation of the large scale boilers since they are 

operated under similar conditions. 

~ An attempt to model the ACIRL furnace in 3D scale has been only 

successful with a low swirling velocity, and the results of the 3D 

calculations correlate with those of 20 calculations under the same 

operating conditions. This has confirmed that the ash deposition model 

developed in this investigation can predict in both 20 and 3D domains. 

8.1.2 Coal slagging index 

Also, a numerical slagging index has been proposed based on the viscosity of 

the ash, the softening temperature of the ash and the ash content in the coal, 

with some basic assumptions. The slagging index is to predict the pre­

combustion slagging potential of a wide range of coals. 

The model has been tested on seventeen coals with different properties, 

ranging from low rank coals from India to bituminous coals from Australian, 
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Columbia, Indonesia, South Africa, the UK and the US. The index has also 

been tested on some sets of coal blends in order to establish its robustness. 

In order to examine the flexibility of the slagging index, it has also been tested 

on some sets of coal blends and satisfactory prediction results are obtained. 

Although nonlinear slagging performance for the coal/blends has been 

observed, the availability of the ash analysis for the tested blends helps in the 

accurate predictions using the slagging index. 

In order to establish a genuine basis for comparison, the slagging performance 

of all the tested coals has also been evaluated using six existing coal slagging 

indices. The predicted results using the proposed NSI and the six existing 

indices have been compared with the reported slagging performance of the 

coals/blends, and the following conclusions are drawn: 

~ In the second investigation reported in this theSis, a numerical slagging 

index that correlates with the field performance of coals/blends has been 

developed. The NSI is based on the ash viscosity, ash fusibility and ash 

loading in coals. 

~ The proposed slagging index has been validated against measurement 

data on seventeen different coals, including lignite and bituminous coals. 

Although the coals tested are from different parts of the world, the NSI 

has been so robust to have satisfactorily predicted the slagging 

performance of all the coals. 
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y The slagging index has also been tested on some few sets of Australian 

coal blends. The proposed slagging index has been successful in ranking 

the coalslblends being investigated according to their reported field 

performance. When compared with the reported performance of some 

empirical techniques, such as TMA, SEM and ash chemistry, the 

proposed slagging index stands out. 

y The slagging index predicted increased slagging potential with increase 

in the percentage of the incoming ash. While decreased slagging has 

been predicted with increase in the viscosity of the ash. 

y In comparison, the six existing slagging indices that have been tested 

only accurately predicted the performance of UK and US coals. 

y In addition to the chemistry of the ash, the mineral distributions and 

associations, the ash loading in the coals have a significant effect on the 

rate of the ash accumulation in the boilers. 

y The presence of low-viscosity materials and the ash content in 

coalslblends enhance the slagging propensity. 

y The performance of blends may not be interpreted linearly from that of 

their parent coals. 

y The proposed numerical slagging index is a step forward in the drive for 

a more generic method of predicting the pre-combustion slagging 

behaviour of coals in boilers. 

y It should be noted that the interaction of different ash particles on the 

deposit surface and how this affects deposit build-up needs to be better 

understood, in order to provide a better prediction tool for coals and 

blends. 
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8.1.3 Co-firing stagging index 

The coal numerical index has been modified to predict the slagging potential of 

coal and biomass blends. The softening temperatures, ash composition and the 

content of ash of the individual fuels have been considered in modelling the co­

firing index. 

The proposed co-firing slagging index has been tested on some sets coal 

blends with sewage sludge and woody biomass. The results of prediction using 

the co-firing index correlate very well with the reported experimental data, and 

therefore, the following conclusions are made: 

~ A coal slagging tool developed reported in this thesis has been modified 

to predict the slagging potential of coal and biomass blends. The ash of 

the blend is considered both as individual fuel ash and a mixture ash. 

Also, the behaviour of the ash elements are considered in the numerical 

modelling. 

~ The proposed model has satisfactory predicted the slagging potential of 

coal and biomass blends, particularly the blend of coal and saw-dust 

and that of coal and sewage sludge. 

~ Although the model has successfully predicted the slagging potential of 

blends with higher percentage of biomass than coal, it is originally 

designed to predict blends with < 20% BR whose ash is assumed to be 

predominantly alumino-silicate. 
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~ In order to improve the performance of the model, the potential 

interaction between coal and biomass particles needs to be accounted 

for. 

8.2 Future Work 

In this thesis, two numerical models have been developed; one is to predict the 

coal ash particles deposition rates in the upstream burner region of a furnace, 

and the other, is to predict the slagging potential of a wide range of coals. The 

coal slagging model has been modified to predict coal and biomass blends. The 

successful testing of these models informed the need for further investigations 

along the same line. Thus, the following investigations can take bases from the 

content of this report: 

i. The ash deposition rates model has only been tested on a pilot-scale 

furnace because there was no experimental deposition data on industrial 

scale boilers that was ready available at the time of this investigation. 

Therefore, there will be the need to run the ash deposition model on a full 

3D industrial scale boiler when data is available. 

ii. The ash deposition model can be extended to predict the ash deposition 

in the convective section of a boiler. This can be achieved by 

incorporating the effect of the factors that can influence deposition at low 

temperatures, such as condensation and agglomeration. For a 
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successful implementation of the model at the downstream boiler, it is 

essential to consider the heterogeneous nature of the coal ash. 

At the convective section of the boiler, the slag begins to solidify due to 

decrease in the temperatures. The solid crystals that may form due to the 

decrease in the temperatures will form part of the slag. Therefore, the 

slag will now contain both liquid and solid particles. At this stage, the slag 

flow will not longer be Newtonian, and therefore, the viscosity method of 

predicting slagging potential may not be sufficient to yield accurate 

results. 

50 far, some attempts have been made in order to describe the non­

Newtonian behaviour of the ash at low temperatures. According to the 

reported empirical investigations, the ash behaviour can be predicted if 

the concentration of the particle in the slurry is determined (Kondratiev & 

Jak, 2001). Although there are criticism that the determination of the 

concentrations of the particles is done using a prediction tool, the 

technique will provide a better understanding of the non-Newtonian slag 

flow in the downstream boiler. 

iii. The 3D calculations using the deposition model need improvement. 

There is a need to model an industrial boiler in full 3D domain in order to 

predict high swirling scenario. 
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iv. The use of the ash deposition model can be extended to biomass 

provided that the ash properties of biomass are fully integrated into the 

model. However, some major changes have to take place. For example, 

in biomass, ash elements such as potassium, phosphorus, ammonia, 

etc., are said to have significant effect on the ash deposition. 

Also, the stickiness of the ash particle is determined based on the melt 

fraction of the particle unlike the silica-rich particle, where the particle 

sticking tendency is determined by its viscosity. In some case where the 

biomass particle is not completely burnt, the melt fraction of the particle 

is also used in order to determine its stickiness. Some research reports 

suggest that when 30% of the particle has melted it is completely sticky 

(Ma et al., 2006). 

The relatively large size of biomass pellets is another issue to worry 

about. Owing to its large size, the biomass particle may posses adequate 

inertial force to transverse the boundary layer and impact on the boiler 

walls, which may result in increased slagging potential. 

v. The proposed coal slagging index has also been tested on some coal 

blends, and the predicted results are encouraging. After little 

modification, the numerical slagging index has successfully predicted the 

slagging potential of coal and biomass blends with < 20 BR. This suggest 

that, with more investigations on the biomass ash behaviour and the coal 

biomass interaction, the features of the numerical slagging index can be 
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extended to predict the slagging potential of coal and Ibiomass blends 

with higher percentage of BR. 
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