
Inverse Problems for Blood Perfusion 
Identification 

Dumitru Trueu 

Submitted in accordance with the requirements for the degree of 

Doctor of Philosophy 

The University of Leeds 

Centre for Computational Fluid Dynamics 

School of Mathematics 

School of Process, Environmental and Materials Engineering 

June 2009 

The candidate confirms that the work submitted is his own, except where work which 

has formed part of jointly-authored publications has been included. The contribution 

of the candidate and the other authors to this work has been explicitly indicated 

overleaf. The candidate confirms that appropriate credit has been given within the 

thesis where reference has been made to the work of others. 

This copy has been supplied on the understanding that it is copyright material and 

that no quotation from the thesis may be published without proper acknowledgement. 



Acknowledgment 

I would like to express my deepest respect and gratitude for my Lead Supervisor, 

Professor Daniel Lesnic, from School of Mathematics, Department of Applied Math­

ematics, as well as for my Second Supervisor, Professor Derek B. Ingham, from Cen­

tre for Computational Fluid Dynamics and School of Process, Environmental and 

Materials Engineering, and to thank them for their continuous guidance and advice 

during my three years of PhD studies, July 2006 to June 2009, at The University of 

Leeds. 

A special thanks is addressed to the European Union, European Research Com­

mission, who has fully supported the entire research for my PhD by awarding me 

with a three-years Marie Currie EST Research Fellowship, July 2006-July 2009, in 

the Centre for Computational Fluid Dynamics at The University of Leeds. I want 

to thank the members of staff in the Centre for Computational Fluid Dynamics, 

Professor Mohamed Pourkashanian, Dr Kevin Hughes and Dr Lin Ma, for their very 

helpful comments, support and encouraging remarks over the past three years. 

A warm thanks goes to my very good friends Dr. Liviu Marin, from Institute of Solid 

Mechanics, Romanian Academy, Dr. Radu-Bogdan Munteanu, from University of 

Bucharest, and Dr. Tomas B. Johansson, from School of Mathematics, University 

of Birmingham, who have continuously encouraged me in the specially honest, high 

valuable and always reliable discussions that we had during my PhD studies. 

Finally, I would like to thank to my entire family, my parents Dumitru and Elena 

Trucu, my sister Iuliana Trucu, my brother Nicolae and my sister-in-law Mirela 

Trucu, as well as to my two nieces Maria Trucu and Stefania Trucu, which together 



have stood by me in my hardest life challenges, giving me strength in moments of 

weakness, bringing me the peace of mind at times of unrest, making me feel that 

more than anybody else they want me to win, and always living with the most 

sincere happiness for every success that I had. 

ii 



Abstract 

In this thesis we investigate a sequence of important inverse problems associated 

with the bio-heat transient flow equation which models the heat transfer within 

the human body. Given the physical importance of the blood perfusion coefficient 

that appears in the bio-heat equation, attention is focused on the inverse problems 

concerning the accurate recovery of this information when exact and noisy measure­

ments are considered in terms of the mass, flux, or temperature, which we sampled 

over the specific regions of the media under investigation. 

Five different cases are considered for the retrieval of the perfusion coefficient, 

namely when this parameter is assumed to be either constant, or dependent on 

time, space, temperature, or on both space and time. 

The analytical and numerical techniques that are used to investigate the existence 

and uniqueness of the solution for this inverse coefficient identification are embed­

ded in an extensive computational approach for the retrieval of the perfusion coef­

ficient. Boundary integral methods, for the constant and the time-dependent cases, 

or Crank-Nicolson-type global schemes or local methods based on solutions of the 

first-kind integral equations, in the space, temperature, or space and time cases, 

are used in conjunction either with Gaussian mollification or with Tikhonov regu­

larization methods, which are coupled with optimization techniques. Analytically, 

a number of uniqueness and existence criteria and structural results are formulated 

and proved. 
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Chapter 1 

Introduction 

1.1 Motivational Background: 

The Process of Blood Perfusion 

Blood perfusion, defined as the blood volume flow exchanged through a given volume 

of tissue, is absolutely essential for normal tissue physiology and plays an important 

part in the temperature regulatory system of the human body. Blood perfusion 

is concerned with the local, multidirectional blood flow through the capillary and 

intracellular space of the living human body tissue. Given the convoluted nature 

of the pathways through which it evolves, blood perfusion is considered to be a 

directionless quantity. Capillary and intracellular space blood flow allows the oxygen 

and nutrients to travel in the human body in order to sustain the life processcs. In 

addition, in order to maintain a healthy system, blood perfusion is also responsible 

for removing the waste generated by the same life processes it is also fueling. Changes 

in blood perfusion are a significant characteristic for several pathologic processes. 
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As an example, tumors are well-known for having a changed perfusion with respect 

to the surrounding healthy tissue. This perfusion difference has a very discrepant 

character in the case of the cancer tumors. Therefore, the perfusion information 

can be used as an assisting control tool during certain clinical treatment procedures 

where, as in the case of the skin cancer, some parts of the affected tissue are heated 

above the human body temperature, 37°C. 

The ability to infer the disruption of local perfusion could help detect and evaluate 

the type and condition of, or the extent of integumentary tumors or other skin 

lesions. The quantitative evaluation of the blood perfusion would also help in the 

assessment of skin graft healing. FUrther, blood perfusion data on the peripheral 

skin is useful in evaluating -normal and abnormal conditions in other tissues, such 

as the skeletal muscle, pulmonary or cardiovascular systems. Direct assessment 

of the perfusion of myocardial, renal, intestinal, cerebral, spinal, and other tissues 

during surgery could also be very significant in the decision-making of the surgical 

procedures and in the planning of patient prognosis. The ability to continuously 

and accurately measure blood perfusion in recently repaired ischaemic tissue can 

predetermine and help prevent the common problem of reperfusion injury. 

The knowledge and control of blood is becoming extremely important in the specific 

situation of organ transplants. After the organs are collected from the donors, during 

the time of their storage, or while they are transported toward the receiving patient, 

the permanent knowledge and adjustment of the blood perfusion of the organ inside 

the temporary storage container becomes crucially important for ensuring that its 

vital functions are kept unaltered. 

The ability to reliably measure the blood perfusion would improve many clinical 
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applications. Several measurement methods, based on the clearance of a thermal or 

chemical marker, require an invasive procedure. 

1.1.1 Measurements of Local Blood Perfusion with an In-

vasive Character 

The history of the measurement of local blood perfusion using thermal methods 

have been reviewed by several researchers, including Bowman et al. [8], Bowman 

[9], Chato [26], Eberhart et al. [48], Scott et al. [98]. Most of the methods discussed 

in these works are invasive, and the most common method uses a thermistor bead 

inserted into the tissue. A controlled power sequence is dissipated by the bead and 

the temperature response of the bead is recorded. The two most common heating 

methods that occur in practice are pulse decay and step heating, as described in 

Kress and Roemer [64]. Multiple probes and sinusoidal heating have also been used, 

see Valvano and Nho [112]. An analytical model is then used to determine the blood 

perfusion from the c:xperimental temperature response. However, the critical open 

question regarding these procedures lies in their invasiveness character, which could 

cause discomfort, possibly harming the patient, and has the effect of disrupting the 

flow that is being measured. Moreover, when using invasive methods, the possibility 

of patient infection becomes an important issue. 

1.1.2 Noninvasive Methods 

Several noninvasive methods have been attempted for the measurement of the blood 

perfusion. In many of these methods, heat is supplied at the surface of the tissue, 
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whilst the temperature is measured at the same locations. The most common part 

of the measurement devices that has been used so far consists of a thermistor cov­

ered with insulation to supply heat and simultaneously record the temperature, see 

Patel et al. [80] and Wei ct al. [116]. Castellana ct al. [23], used a thin film resistor 

to supply heat and to measure the surface temperature. 

Because of the transient heat loss to the insulation, Walsh and Bowman [113] added 

a second active thermistor to control the heat entering the tissue. HoIti and Mitchel 

[57] used a thermopile between a heated copper disk and a surrounding non heated 

ring, which both were placed on the skin. Valvano et al. [111] used a thermal imag­

ing technique to measure the temperature response due to a copper block placed 

on the skin surface, and Cui and Barbenel [33] modelled the temperature response 

when different types of materials were placed on the skin. 

These methods exhibit a series of limitations. The first constraint consists in the 

difficulty encountered for determining the actual heat flux into the tissue, since the 

ambient losses can be relatively large for the noninvasive heating, as opposed to 

the invasive heating where they are small. A second problem is determined by the 

thermal contact resistance between the probe and the tissue, which is generally un­

known and varies on use. A third important problem is that the basic premise of 

heating leaves the potential for thermal tissue damage if the temperature of the 

tissue exceeds about 42°C. 

Another important class of measurement methods is the one that uses focused ul­

trasound as the heating source with a thermistor placed on the surface of the tissue, 

see Anderson and Burnside [2]. However, the ultrasound based methods are limited 

in their ability to measure blood perfusion in microcirculation. In order to overcome 
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this problem, laser light was used instead of sound, and this led to the development 

of laser-Doppler blood flowmetry to measure perfusion. This noninvasive technique, 

reviewed by Shepherd and Oberg [102]' has received special attention over the last 

30 years. The laser light is delivered to the tissue and returned to a detector by optic 

fiber light guides. Light in the tissue is diffusively scattered by stationary tissue. 

This light reaches the detector without being Doppler-shifted, while light intercepted 

by moving red blood cells experience the Doppler effect. The earliest measurements 

of blood flow using laser-Doppler techniques were made by Riva et al. [96]. Tissue 

perfusion was first measured in 1975 by Stern [104] and he continued this work with 

the development of an instrument to permanently monitor the blood flow, see Stern 

and Lappe [105] and Stern et al. [106]. The work has been continued in this field 

with improvements of the instrumentation, see Nilsson et al. [75] and Adrian and 

Borgos [3], which allowed the laser-Doppler systems to be commercialized for use in 

clinical blood perfusion measurements. Although successful and noninvasive, this 

measurement system still has drawbacks and the results are not well-quantifiable. 

These type of measurements are sensitive to a variety of external influences that 

are not necessarily correlated with the media under investigation. One important 

limitation is that only relative, rather than absolute, perfusion measurements can be 

made. Also, in this measurement method the red blood cell motion is recorded only 

in one direction, and this makes the obtained data dependent on the optical prop­

erties of the tissue that can vary with the location and between different patients. 

The high cost of the equipment should also be considered. 
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1.1.3 Practical Measurements Using Minimally Invasive 

Blood Perfusion Probes 

Michener et al. [72] have described a probe based on a heat flux sensor that is 

used to measure directly both the heat flux and the temperature at the skin surface. 

This work has been further developed by Fouquet ct al. [52]. In order to avoid any 

thermal destruction, the tissue was cooled rather than heated. Initially, the cooling 

process was achieved by using water channels, whose design makes them very difficult 

for practical usc. To overcome this issue, O'Reilly et al. [90] used pressurized air, 

instead of water, to cool the tissue. This cooling process has produced a light weight, 

and easy to use, probe. 

Scott et al. [98, 99] have described a method which is accurate, and enables absolute 

measurements to be made. The method is also cost effective and practical to use. 

The basic probe design is the one described by O'Reilly et al. [90]. However, in 

this new probe design, a mixture of heat flux and temperature sensors form the core 

component. The temperature is measured with a thermocouple, and the heat flux 

is measured with a thermopile across a thin thermal resistance layer. In the heat 

flux sensor, called the Omega H FS - 3, a type-K wire thermocouple wire is used 

for the temperature measurements, while a type-K thermocouple foil is used as the 

thermopile for the heat flux measurements. The sensors, which have a small thermal 

capacitance, allow us to accurately follow the change in heat flux and temperature. 

When a heat flu.x sensor, in equilibrium with the tissue, is subjected to outside 

cooling, then the resulting temperature differential causes heat to be conducted 

through the sensor from the tissue. This heat feedback attempts to bring the tissue 

6 



Top VIew 

a. 

Estimation of blood perfusion 

Probe 

1r=+=~ TISsue Insulaled 
Bounda'Y 

Symmetric 
Boundary 

• • • • • 
• • • • • • • • • • 

b. · 

Finite Difference 
Partial Mesh 
(25x150 Tolal NodeS) 

Semi· lnfinite 
Boundary 

Figure 1.1: A scanned reproduction of the original "Figure 1. Illustration of probe 

in contact with the skin tissue; (aJ physical set-up and (b) numerical model", which 

has been published in [99]. 

back to equilibrium and recover any temperature loss that may enter through the 

sensor into the tissue. This recovery is aided by the exchange of new warmer blood 

within the volume of the tissue beneath the sensor to replace the blood that has lost 

part of its thermal energy. 

The front side of the probe, used by Scott et aL [98, 99] is placed in continu-

ous contact with the tissue, see Figure 1.1 . During the short transient tests of up 

to 120 s long, the back side of the probe, which has a thin, 0.038 em, sheet of alu-

minum attached, is cooled with small jets of air pointed normal to the tissue surface. 

Velocities of less than about 100 m/ s from a low pressure air supply, at room teID-

perature, are found to be sufficient to generate heat transfer coefficients in excess 
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of 200 rv / (m2 K). The probe is small, with a total area of about 20 em2
, having 

a diameter less that 2.5 em, has a simple structure and is lightweight. In regard 

to the experimental procedures followed in Scott et al. [98, 99] the blood perfusion 

probe was held steady on the forearm, being pressed with a low enough force so that 

the skin would not be indented. The probe was placed on the interior forearm at 

a spot located away from excessive hair or obvious large blood vessels. The top of 

the probe was attached to a 1.0 em hose and fitting, through which air was supplied 

at a gauge pressure of approximately 70 kPa. In order to allow the probe to reach 

thermal equilibrium, this was first placed on one of the patients forearms for 300 s. 

The probe was then transferred to the other forearm and allowed to settle briefly in 

order to obtain minimal thermal disruption of the tissue. Once the steady-state con., 

ditions have been achieved, namely constant heat flux and temperature profiles, the 

cooling process was turned on for 60 s. During this period, the voltage output from 

both the heat flux sensor and the probe thermocouple were logged at a rate of 32 

measurements per second. Also, the constant temperature of the cooling air stream 

was recorded with a separate thermocouple sensor, while the body core temperature 

was recorded using a thermocouple placed under the subject's tongue. The only 

signal processing applied consists of the amplification in the voltage outputs prior 

to the recording. The voltages were then converted into heat flux and temperature 

using the corresponding sensor calibration coefficients described in [90]. It is very 

important that, before starting the actual tests, the convection heat transfer coeffi­

cient from the air jets could be determined in separate tests by placing the heat flux 

sensor and the thermocouple on the air side of the aluminium. The aluminium was 

placed on a heated piece of copper while the air jets were operating. Time traces of 
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voltages from the heat sensor and thermocouple were recorded at 32 measurements 

per second together with the temperature of the cooling air stream. After converting 

the voltages into heat flux and surface temperature, the convection coefficient was 

found as the ratio T _;,. , where h is the measured heat flux, T. is the temperature 
If a1.r 

at the top surface of the probe, and Tair is the temperature of the air stream. The 

convection coefficient for the probe, taken as the average of the calculated values 

over the 60 s period, was found to be approximately 700 ~V/(m2 K). It is important 

to mention here that the heat transfer coefficient will be dependent on the probe 

geometry, air supply, as well as on the physical connections. 

1.1.4 A Water-Sponge Experiment for Testing the Blood 

Perfusion Measurement with a Minimally Invasive 

Probe 

Using a probe similar to that described and used in Scott et al. [98, 99], Robinson et 

al. [97] have performed an experiment to simulate the thermal phenomena associated 

with perfusion tests, using a porous medium sponge, acting as a tissue phantom. The 

sponge was assumed to be homogeneous and no heat was assumed to be generated. 

In this experiment, water was used instead of blood as the perfusion liquid, see 

Figure 1.2. 

The probe itself is included in the model with the appropriate thermal properties, 

namely having no perfusion and assuming convective boundary conditions at the 

probe-cooling air interface. At the probe-sponge interface, the heat flux is equal to 

the temperature difference in the porous media and on the probe surfaces divided 
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by the contact resistance. The thermal properties of the sponge, the water, and the 

probe, as well as the convective heat transfer coefficient, were assumed to be known 

in the model. 

From the design point of view, although similar to the one described in Scott et 

al. [98, 99], the probe has several new features. A new type of sensor, based on a 

thermopile formed from ink-etching techniques, was used. This sensitive thermopile, 

in which layers of dissimilar metal junctions were placed across a layer of polymer, 

is deposited on a sheet of anodized aluminum substrate and then covered with a 

very thin piece of aluminum foil. In order to measure the surface temperature of 

the probe, an isolated type-E thermocouple is embedded in the foil layer. The 

probe is very small, with an area of 2.9 em2 and 0.07 em thick, resulting in a low 

thermal capacity, which enables the accurate recording of the heat flux and tem­

perature. The front side of the probe remains in continuous contact with the tissue 

under investigation. Jets of air at room temperature cool the back side of the probe, 

pointing normal to the surface of the probe. 

A special setup, that provides a controlled rate of flow of liquid through a porous 

media, is used as a test for the blood perfusion probe described above. This consists 

of a small-pore sponge placed between a removable top and a metal plate within a 

sample box. A variable speed peristaltic pump is inserting water through the bottom 

of the box. A central hole in the metal plate forces the upwards flow of water to pass 

through the centre of the sponge before spreading out towards the sides. The skin is 

simulated by having the top of the sponge covered with a thin layer of plastic wrap, 

which prevents the flow from continuing out through the removable top. A large 

hole in the centre of the removable top allows the probe to be positioned directly 
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Figure 1.2: A scanned reproduction of the original "Figure 3. Experimental Setup ", 

which has been published in [97]. 
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on the top of the plastic wrap and the sponge. 

In order to keep this special setting at a constant human body temperature, the 

entire experimental box is placed in a water bath maintained at a constant temper­

ature, 37°C. A thermistor, monitoring the water bath temperature, ensures that the 

temperature is kept constant by switching on and off an embedded controlled heating 

system. A thermometer is immersed in the bath so that the true bath temperature 

can be permanently recorded. The water that flows through the sponge is also taken 

from this bath. The sponge, the probe, and the water flow are brought to a priori 

known thermal equilibrium. The variable speed peristaltic pump adjusts the water 

flow rate. The probe is placed on the sponge so that both the thermocouple and 

the thermopile are in direct contact with the plastic-sponge surface. Once thermal 

equilibrium is reached, room temperature compressed air, supplied at 70 kPa, is 

switched on and allowed to flow through the probe housing over the upper side of 

the sensor, which creates a convective cooling effect. The heat response is recorded 

for approximately 60 s. Then the procedure is repeated several times for each of 

the four flow rates chosen in a range from zero to 2.92 mll s. A number of 36 sets 

of data were obtained from various combination runs of this setup. The heat flux 

sensor and the surface thermocouple are connected into an isolated, isothermal box 

which is connected to a Keithley DAS-TC which transmits the data to a computer. 

Having the probe described in this section as a prototype, a more advanced measure­

ment tool, called the bioprobe, has been later developed and presented by Cardinali 

et al. [22], which has been used to record blood perfusion data in two experiments 

using a cannine medial saphenous fasciocutaneous free tissue flap model, that allows 

the experimental control of blood flow in the area of interest . The bioprobe consists 
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of two distinct components, namely a physical sensor that records experimental data 

and a tissue-probe computer model that determine the perfusion estimate. Also this 

timc the sensor consists of a combination of a thermocouple and thermopile, which 

measures the heat flux and the temperature on the surface of the region under in­

vestigation. The information obtained from the sensors is coupled with the second 

component of the bioprobe, namely the tissue-probe computer model, which consists 

of a reliable numerical implementation of a mathematical model that governs the 

energy balance of the tissuc. 

1.2 Mathematical Model: The Bio-Heat Equa-

tion 

The experimental measurements performed in all the works related to the investiga­

tion of blood perfusion have all been coupled with a data processing part in which 

a key role is played by a mathematical model of the energy balance in the region 

of interest in the human body tissue. The mathematical model is regarded as an 

approximation of the actual environment that it represents. 

Well known and widely accepted, since it was introduced in 1948 by Harry H. Pennes 

[81], the bio-heat equation is the mathematical model considered and applied along 

with all the experimental work described in the papers concerning the blood perfu­

sion measurement techniques that have been reviewed in the previous section. 

The bio-heat equation is placed at the heart of an extensive quantitativc analysis of 

the relationship between the arterial blood and tissue temperature. This equation 

has been brought to light as the conclusion of an extensively complex experimcnt 
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that took place in the laboratory of H.H. Pennes in 1948, in the Department of 

Neurology, College of Physicians and Surgeons, Columbia University, New York. 

This important experiment has been determined by a priori observations made in 

the same laboratory regarding the temperature gradient in the intact human biceps 

muscle and its coherent matching with the theory of heat conduction flow applied to 

a localized arm segment. Figure 1.3 presents a scanned reproduction of the original 

experimental set-up that has been published in Pennes [81]. Without entering into 

the very complex details of Pennes's original experiment, in essence, its first achieve­

ment consisted of a cutaneous topography of temperature in the upper extremity 

on the proximal forearm, revealing links with both the presence of gradients and 

the effects of the blood flow. Simultaneous temperature measurements in rectal, 

brachial arterial blood, and the deep forearm region, have been recorded. Within 

the setting created for this experiment, the blood flow acted as a warming agent, 

both for the superficial tissue and for the forearm tissue between the skin and the 

axis of the limb. After the steady-state tissue temperature-depth distributions have 

been identified, the analytical theory of heat transfer has been applied in order to 

determine the influence of the local heat production and circulation. 

The conclusion of the experiment conducted by Pennes postulates that the effect 

of the temperature difference between the blood supply and the tissue acts as an 

energy sink term, which we denote by Qb := WbPbCb(T - T..), where Wb =the blood 

perfusion rate, Pb =the density of blood, cb =the specific heat of blood, T =the tissue 

temperature and To =the arterial blood temperature, see Pennes [81]. Also, taking 

into account the other quantities that playa part in the heat transfer process within 

the human tissue, that is k, =thermal conductivity of the tissue, p, =the density 
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Figure 1.3: A scanned reproduction of the original "Figure 3", which has been 

published in [81] by Harry H. Pennes. 
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of the tissue, ct =the specific heat of the tissue, as well as S" =the volumetric heat 

source, Pennes [81] formulated the bio-heat transfer equation as 

(1.1) 

where t
f 

> 0 is the final time of interest, n is the spatial solution domain, and ~ 

represents the Laplace operator. This equation, in essence, is very similar to the 

equation for the heat transfer in a fin, where the sink term represents the convective 

heat loss to the surrounding. 

After carrying out an appropriate normalization procedure, the dimensionless for-

mulation of the governing equation for the biD-heat flow in the bounded domain 0, 

see Chan [24] and Ren et al. [94], can then be expressed as 

(1.2) 

where E is the heat source containing the heat generation due to the metabolism 

and heat deposition, and the coefficient 

(1.3) 

where £, denotes the characteristic dimension of the tissue. Without confusion, in 

what follows, we call PI the blood perfusion parameter. 

Given the central role played in the quantitative characterization of the relation 

between the arterial blood and the tissue temperatures, it is worth mentioning that 

the applications ofthe biD-heat conduction equation range over several medical areas, 

such as the field of modeling hyperthermia, thrombosis and vascular sclerosis, see 

Liu and Xu [69]. Note that equation (1.2) arises also in other physical applications, 

such as optical tomography, see Klibanov ct al. [63]. In what concerns the blood 
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perfusion evaluation, the appearance of P, as a parameter in the biG-heat equation 

(1.2) has special importance, creating room for a mathematical investigation, once 

data are made available from practical measurements. 

1.3 Inverse Problem Formulation for the Blood 

Perfusion Parameter Identification 

The efforts presented in the experimental and analytical work of all the researchers, 

which were briefly introduced and reviewed in the Section 1.1, can be regarded as 

being all placed within the same framework of the blood perfusion coefficient identi­

fication, P" that shows up in equation (1.2). Through decades of intensive scientific 

effort, as briefly- highlighted in Section 1.1, different instruments and methods to 

measure perfusion have been invented, developed and improved, in order to obtain 

a better accuracy in the blood perfusion measured data. From the way the probes, 

and later on the bioprobes, were designed, together with the fact that using those 

probes in different parts of the body is not an easy or not always a possible task, 

we could draw a first conclusion concerning the major difficulty that this blood per­

fusion identification problem inherits. All the works reviewed in Section 1.1 have 

considered the biG-heat equation as a working environment, making use of the pow­

erful analytical tools it enables in assessing their measurement accuracy. However, 

it is exactly this environment, which characterizes the media under investigation, 

that is unknown. This leads to inverse problems in which the coefficients of the 

governing equation, together with its corresponding solution, are determined from 

additional information. 
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The inverse problem formulation places this perfusion identification problem within 

the following perspective. While initial and boundary conditions are specified to en­

sure the well-posedness of the direct problem associated with the bio-heat equation, 

the additional information received from the measured data, would make possible 

a unique simultaneous retrieval of both the perfusion coefficient PJ and of the solu­

tion of the corresponding bio-heat equation for T(x, t), without a prior knowledge 

of either of them. 

The inverse problem formulation underlines the importance of the various measure­

ments, in terms of heat flux, temperature or energy, investigated by many researchers 

in the briefly reviewed experimental work, and highlights the difficult problem of in­

verting these real world data. The need for interpretation of this tomographic data is 

paving the way to focus more and more on developing new inversion techniques that 

would enable us to recover the desired information from the measurements taken in 

most difficult conditions on the human body. Because of the position, current tech­

nical limitations of the abilities in taking these measurements, physiological state, 

as well as the degree of relaxation in which the body is found at the time when the 

investigation is underway, a certain level of noise exists in the measured data. This 

can cause the inverse problem to become severely ill-posed, by which we understand 

that small perturbations in the measured data can determine very large inaccuracies 

in the final results. 

A major advantage in solving this class of inverse problems in a wider and more 

general sense, considering various initial and boundary conditions, as well as a mix­

ture of several types of measurements, resides in a more accurate retrieval of the 

perfusion coefficient, given the current practical investigation abilities. Moreover, an 
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equally or yet more important aspect consists in the precious information, extracted 

from the inverse problem solution, regarding how the future probes and bioprobes 

should be actually built. The existence and uniqueness of the solution in this class 

of inverse problems can give important design guidelines in the manufacture of the 

new probes and in the development of new c:xperimental methodologies. Therefore, 

all this cumulated effort, together with its design guidelines spiral effect, represents 

an important step forward in assisting medical expertise with immediate impact, 

since better accuracy in more flexible, larger area covering, and eventually more re­

laxed measurements, used in developed inverse problems methodologies, provides a 

better and faster approximation of the perfusion coefficient, which finally results in 

an improved therapeutics for a wider class of health problems. This is the major and 

~ost important incentive for which the investigation of this class of inverse prob­

lems, both analytically, in terms of existence and uniqueness, and from the point 

of view of creating robust numerical computations of their solution, represents the 

focus of this thesis. 
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Chapter 2 

Preliminary Considerations 

2.1 Introduction 

Regarded as a central part in all the theoretical and practical investigations of the 

biomedical heat transfer, see Chato [25}, the bio-heat equation 

aT 
D.T - PIT + ~ = -at' (2.1) 

where D. = \7
2 

denotes the Laplace operator, has to be solved subject to appropriate 

initial and boundary conditions. If n, PI and ~ are specified, then this gives rise 

to a well-posed problem, see Strohbehn and Roemer [107] for a review of numerical 

solutions. 

As stated in Chapter 1, this work is focused on inverse problems concerned with 

the identification the blood perfusion rate, captured by the perfusion coefficient PI 

defined in equation (1.3). The identification of PI is sought under the presence of a 

hostile environment, where the measurements taken on parts of the boundary an, 

or inside n are inaccurate, or they may well be inaccessible. 

There are several numerical approaches for building direct solvers for the bio-heat 
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equation (2.1), mainly by using finite-difference or finite element methods and, in 

particular, for the steady state case, the Boundary Element Method (BEM), see 

Chan [24]. 

In our approach, in the non-steady state biG-heat equation with either constant or 

time-dependent blood perfusion coefficient PI, during the inverse problem invcsti-

gat ion related to the perfusion coefficient identifications from Chapters 3 and 4, in 

addition to the targeted theoretical aspects (such as uniqueness and existence of the 

solution), from the numerical stand point, in order to construct the computational 

solver, we will perform first a change of variable that will transform the equation 

(2.1) into the standard heat equation, and then apply the BEM, see llrebbia et al. 

[7]. For the constant coefficient non-steady state case, this change of variable has 

the form 

PIt 
v(x, t) = T(x, t)e , (2.2) 

from which T is recovered via the inverse transformation 

-PIt 
T(x, t) = v(x, t)e . (2.3) 

In our attempt to solve the forward problems that are embedded in the forthcoming 

inverse problem investigations related to transient biG-heat equation with constant 

coefficients, we formulate an alternative BEM, which is built directly for the biG-

heat equation (2.1). This new BEM will be the focus of our attention throughout 

the rest of the current chapter. 
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2.2 The Boundary Element Method 

The associated adjoint equation to (2.1) in an infinite domain reduces to the form 

giving the fundamental solution, see [24]: 

H(t - T) [ \I x - ~ Wl 
<I> (X, ~,t, T) = d exp -Pf(t - T) - ( ) 

[47r(t _ T)]' 4 t - T 
(2.4) 

where II . II is the usual Euclidean distance, d is the dimensionality of the domain 

0, and H(·) is the Heaviside step function. Thus, by using the Green theorem, the 

integral expression for the solution of equation (2.1) is given by: 

t 

T(x, t) = J J [<I> (x, ~,t, T) %r~ (~, T) - Z: (x,~, t, T)T(~, T)] dr~dT 
o r ~ ~ 

t 
(2.5) 

+ J J <I> (x, ~,t, T)E(~, T)dO~dT + J <I> (x, ~,t, O)T(~, O)dn~, 
on n 

for any (x, t) EO x (0, tf)' where n is the outward normal to the boundary f = an. 

2.2.1 The Boundary Element Method Description 

The Boundary Element Method (BEM) is an important tool that we will employ 

within our investigation. While a complete description of the general BEM method-

ology can be found in Brebbia et al. [7], we will give here the main steps and the 

subsequent proofs required by the case of our discussion. Let us start by recasting 

the integral equation (2.5) as 

a(x)T(x, t) = 
t 

J J [<I> (x, ~,t, T) :: (~, T) - :: (x,~, t, T)T(~, T)] df,dT 
or' , 

t (2.6) 
+ J J <I> (x, ~,t, T)E(e, T)dO,dT + J <I> (x, ~,t, O)T(e, O)dO" 

on n 
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for any x E n and any t E (0, tf]' tf > 0, where the coefficient 

{ 

a(x) = 1 Vx En 

a(x) = ~ Vx E r(smooth) 

is supplied by reasons concerning the integration inside the closed region n. Par-

ticularly in our case, the boundary r being piecewise smooth, an approximate ex-

planation of the above values for the coefficients a is that except the points at the 

corners, if we choose any other point ~ E r and we consider all the balls B(~, r), for 

any arbitrarily small radius r, then 

J 1dx 
B(~,r)nn 

~~ -~J-'----l-d-x = 1. (2.7) 

B(~,r)n(lRd\n) 

Further details regarding this coefficient are given in I3rebbia et al. [7]. 

Since for the moment we consider 1:(x, t) = 0, the second integral in (2.6) vanishes, 

so that, if we denote S1 = r x (0, tf] and S2 = n x {O}, we can rewrite (2.6) as 

(2.8) 

+ J T(C T)<I>(X,~, t, T)dS2(~t T). 
S2 

From now on r the forthcoming analysis will be carried out in an one-dimensional 

setting. The next step in our BEM approach is the discretization of the boundary 

integral (2.8), which proceeds as follows: 

(i) Sl is discretized into a series of small boundary clements 

N N 

Sll={O} x (O,tf]=U{O} x (t;_l,t;], S12={l} x (O,tf]=U{1} x (ti_l,t;] 
j=1 j=1 

and at the same time 82 is discretized in a series of small cells 

No 

82 = [0,1] x {O} = U [X lc _ l ' x,.] X {O}. 
k==1 
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The temperature T and the flux ~~ are assumed to be constant over each 

boundary clement (t;_ll tjl, taking their values at the midpoint i; = (t j_1 + 

t;)/2, and so we denote 

T(O, t) - T(O, ij) -. To;, Vt E (t;_ll tjl, 

T(l, t) T(l, ~) _. 
T1;, Vt E (t;_ll t;], 

(2.9) 
aT (0 t) aT -

T~;, Vt E (t;_l,t j], an ' an (0, t;) -

~ (1, t) aT -
T:;, Vt E (t;_l' tJ - an (1, t;) -

Also the temperature T is assumed to be constant over each space cell 

[X
Ic

_
1

' Xlc)' taking its value at the midpoint Xlc = (X Ic _ 1 + x lc )/2, i.e. 

(2.10) 

(ii) -The boundary integral (2.8) can now recast as 

N t; N t; 

O'(x)T(x, t) = E T:. J <I>(x, 0, t, T)dT + E T:. J <I>(x, 1, t, T)dT 
. 1 J . J 
J= t;_l J=1 j-l 

N ~ N ~ 
- E To; J g: (x, 0, t, T)dT - E T1j J !if> (x, 1, t, T)dT 

. 1 0 . 1 1 J= t;_l J= t;_l 

No xlc 

+ E T: J <I> (x, ~,t, O)d~ 
k=1 x

lc
_

1 

(2.11) 

for (x, t) E [0,1] x (0, tf]' where no and n 1 represent the outward unit normals 

at the boundary points ~ = ° and ~ = 1, respectively. 

(iii) By denoting 

D{(x, t) -
J 

t; 

J <I>(x,~,t,T)dT 
t;_l 

t; 

J g: (x,~, t, T)dT 
t
j

_
1 

( 

Xlc 

EIc(x, t) - J <I> (x, ~,t, O)d~ 
X

Ic
_

1 
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we can rewrite equation (2.11) as 

a(x)T(x, t) = 

(2.13) 

2.2.2 Analytical Expressions for the BEM Coefficients 

We calculate now the analytical expressions of the coefficients involved in the com-

putation. As a general approach, we apply the change of variables z = vT=T or 

z = A for the correspondent integrals and then insert the primitive (A.l) when-

ever it is requested, see Appendix A. 

Let us consider the following notations: 

(2.14) 
w - r W _ r 

1 - 2Jt-t;_1' 2 - 2Jt-tj • 

For the coefficients 

c~ (x, t) , 
tj 

J <I>(X,~,t,1")d1" 
t;_1 

_ It; H(t-r) e [p (t ) (X_Q2] d 
t
j

_

1 
2J7r(t-r) :xp - f - 1" - 4(t-r) 1" 

(2.15) 

we have the following cases: 

Case 1: for t ~ t;_1 

C~(x,t)=O. , 

Case 2: for t j _1 ~ t ~ tj and T = 0 
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(; 2 

where er f is the standard error function, defined by er f (() = Jrr I e -a da, 
o 

V( E IR+, see Abramowitz and Stegun [1]. 

Case 3: for t;_1 < t ~ t; and r =I a 

C{(x, t) = , 

where er f c = 1 - er f is the complement of the error function er f. 

Case 4: for t. < t and r = a , 
t; 

C{ (x, t) = I ~ exp( -Pj(t - T))dT 
, t 2 1r(t-T} 

;-1 

- 2~ [er f( y' Pj(t - t;_I)) - er f( y'Pj(t - t;))] . 

Case 5: for t. < t and r i= a , 

C~(x,t) = It; 1 exp [-Pj(t - T) -~] dT 
, 2..j1r(t-T} 4(t-T} 

t;_1 

- ~ {exp(rJPj) [er! (y'Pf(t - t·_ I ) + 2k,) 
4y Pf ' t t;_1 

- er! ( y'Pf(t - t;) + 2F,) 1 

+exp(-ry'Pf) [er! (y'Pf(t-t j _ J - 2k,) 
- erf ( y'Pf(t - tj) - 2F,) l}· 

Therefore, using the notation (2.14), we can summarize the coefficients c{ (x, t) as , 

follows: 
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o 

r=O 

k [cxp(-rJP/) (1 + erf(zl - wJ) 
4 y Pj 

r=O 

k [exp(rJP/) (er f(ZI + wJ - er f(Z2 + w2)) 
4 y Pj 

+ exp( -r/Pj) (er f(ZI - wJ - er f(Z2 - w2))] 

(2.16) 

We proceed in a similar manner to calculate the coefficients 

tj 

J :~ (x,~, t, T)dT 
t
j

_
1 

D~(x,t) = 
:1 

t. 

_ J:1 H(t-T)lx-~1 exp [-P (t _ T) _ (X-d ] dT 
4- '7r(t-T)3 f 4(t-T) ' t

j
_

l 
y 

which gives 
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o 

o 

i [cxp(r~) (er f(w2 + Z2) - er f(w t + ZI)) 

+exp(-r/Pf) (erf(w2 - Z2) - erf(w1 - ZI))] 

Finally, the coefficients E/c (x, t) take the form 

X/c 

E/c(x,t) = J <I>(x,~,t,O)d~ 
X/C_l 

rfO 

r=O 

= exp(;P1t) [er f (X~Jt-l ) - er J (x
2
-;t )] . 

(2.17) 

(2.18) 

Numerically, the error functions erf and erfc are evaluated using the NAG routines 

S15AEF and S15ADF, respectively. 

We use now these coefficients in equation (2.13) and, provided that we know both the 

initial condition on T(x, t) for all (x, t) E S2 and the Dirichlet boundary conditions 

on T(x, t) for all (x, t) E SI' we can compute the values of the Neumann data ~~ (x, t) 

for all (x, t) E S1· 
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For this purpose we apply the integral equation (2.13) at the boundary nodes (0, () 

and (1, t.) for i = 1, N and obtain a 2N x 2N linear system of algebraic equations 

in the unknowns {T~j' T;j Ii = 1, N}, which is solved numerically using a Gaussian 

elimination method. 

After obtaining the solution of this system of linear equations, we use it in equation 

(2.13) and obtain the solution T(x, t) at any point (x, t) in the region [0,1] x [0, tl]' 

2.2.3 Numerical Results and Discussion 

The BEM that we have just described will be applied directly for solving the problem: 

aT a2
T 

-(x, t) = -a 2 (x, t) - PfT(x, t), (x, t) E (0,1) x (0,1]' 
at x 

(2.19) 

T(x, 0) = x
2

, x E [0,1], (2.20) 

T(O,t) = 2texp(-Pf t), t E (0,1], (2.21) 

T(l, t) = (2t + 1) exp( -P,t), t E (0,1], (2.22) 

for a range of values of the perfusion coefficientP" as well as for a set of numbers 

of boundary clements. In our attempt to investigate the power of this method, we 

make a comparison between the present results and those obtained using another 

method based on a classical BEM for heat equation that has already been tested. 

This second method, in brief, is using first the change of variable: 

PIt 
v(x, t) = T(x, t)e , (2.23) 

so that the equations (2.19)-(2.22) are transformed into the heat equation 

av a2v 
at (x, t) = 8x2 (x, t), (x, t) E (0,1) x (0,1]' (2.24) 
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subject to 

v(x,O) = X
2

, X E [0,1]' (2.25) 

v(O, t) = 2t, t E (0,1]' (2.26) 

v(l, t) = 2t + 1 , t E (0,1]' (2.27) 

for which the BEM, as described by Lesnic [66], can be applied. 

The analytical solutions of the problems (2.19)-(2.22) and (2.24)-(2.27) are given by 

2 2 
T(x, t) = (x + 2t) exp (-PIt) , v(x, t) = x + 2t. (2.28) 

Figures 2.1, 2.2 and 2.3 show the L2 -errors in the heat fluxes at x = 0 and x = 1, 

and in the interior temperature, respectively, as functions of the number of boundary 

clements N, for N E {20, 40, 80,160,320,640, 1280}, which are obtained by running 

the BEM for both equations (2.19) and (2.24). The number of space cells is taken 

to be No = N/2. 

In each of the Figures 2.1, 2.2 and 2.3 we have: (a) PI = 0.01, (b) PI = 0.1, 

(c) PI = 1, and (d) PI = 10. In each of the plots, the numbers in the legends 

represent the coordinates of the marked points on the corresponding graph. The *s 

annotated and interpolated with a solid line stand for the graph of the L2-errors 

obtained directly by the BEM that we have proposed for the bio-heat equation 

(2.19), whereas the +s annotated and interpolated with a dash-dot line stand for 

the graph of the L 2-errors obtained when the BEM, as described in Lesnic [66], is 

applied to the transformed heat equation (2.24). 
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Using a fixed number N of boundary clements, we observe from the distribution of 

the L2-errors in Figures 2.1, 2.2 and 2.3, for the two BEMs, as PI ranges over the 

interval (0.01,10), that for PI < 1 the BEM that we have proposed, applied directly 

to the biG-heat equation (2.19) gives a better accuracy than the BEM for the trans-

formed heat equation (2.24). However, for PI ~ 1, using first the transformation 

(2.23) and then applying the BEM to the heat equation gives rise to marginally 

better results, with an increase in accuracy, of the order 10-
7 

for N > 640. This 

behaviour is present in all the numerical experiments that we have carried out, sec 

Figures 2.1, 2.2 and 2.3. Moreover, the computation of the flux over the boundary, 

shown in Figures 2.1 and 2.2, is in full agreement with the computation of the interior 

solution inside the domain (0,1) x (0,1), sec Figure 2.3, so that the recommended 

best method to employ remains unchanged from all these perspectives. 

2.3 Conclusions 

The direct BEM for the transient biG-heat equation (2.19), which has been proposed 

in this chapter, aims to be considered as a robust alternative to the commonly used 

scheme where the BEM is applied after this equation is transformed via (2.23) 

into the heat equation (2.24). The BEM that we have proposed docs numerically 

converge, the L2 -errors decay almost quadratically as N increases, for N = 1280 the 

error becoming less that 10-
7 

both for the flux at x = 0 and for the interior solution, 

-5 
see Figures 2.1 and 2.3, and less than 10 for the flux at x = 1. However, both 

methods perform equally well and either of them can be employed with confidence 

in the numerical computation of the biG-heat conduction equation (2.19). 
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Chapter 3 

Inverse Constant Perfusion 

Coefficient Identification 

3.1 Introduction 

Projected as the main focus for the entire work, the investigation for the retrieval 

of the perfusion coefficient is started by first considering the case when PI is a con­

stant coefficient of the steady state and the transient bio-heat conduction equation 

(1.2). Using both analytical and numerical techniques, under the presence of initial 

and Dirichlet boundary conditions, in this inverse coefficient identification problem, 

the additional measurement necessary to render a unique solution may be a heat 

flux, an interior temperature, or an average temperature measurement at a single 

instant. We should note the nonlinear character of the resulting inverse problems, 

as both PI and the temperature T are considered simultaneously unknown and are 

sought as a couple solution. Other inverse problems in which either the heat source 

E or parts of an are unknown, with application in tumors detection, have been 
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approached already in various regards, see Kleinman and Roemer [62], Ren ct al. 

[94], and Partridge and Wrobel [78]. 

As this study represents a first attempt to recover the perfusion parameter Pf en-

tering the equation (1.2), we consider 0 = (0,1) to be a onc-dimensional spatial 

domain and restrict the non-dimensional time variation to an interval [0, t f]' with 

t f > 0. For simplicity, we neglect the source E and seck a solution for the constant 

coefficient Pf. Then equation (1.2) simplifies as follows: 

a2 T aT 
ax2 (x, t) - PfT(x, t) = Ft(x, t) (x, t) E (0,1) x (0, t f ]. (3.1) 

In the following sections we formulate and investigate the c:xistence and uniqueness 

of the solution for four inverse problems that are induced by the different types 

of measurements considered, i. e. heat flux, temperature or mass, which are taken 

at one space point and one instance in time, in both transient and steady-state 

regimes. For the numerical approach, after performing the change of variable (2.2), 

which transforms the bi<rheat equation (3.1) into the standard heat equation, the 

boundary clement method (BEM) is used for obtaining the computational results, 

which are presented and discussed later in the chapter. As, in this particular case, 

the equation (3.1) is linear with constant coefficients, so will be the heat equation 

obtained after performing the change of variable (2.2), and thus a fundamental 

solution is available. Since the BEM requires the discretisation of the boundary 

only, and therefore it reduces the dimensionality of the problem by one, this method 

is much more advantageous to usc than the traditional domain discretisation ones, 

e.g. the finite-difference, the finite element or the finite volume methods. The 

robustness of the numerical method will be challenged by allowing the measurement 
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data to be contaminated with random noise. 

3.2 Mathematical Formulation 

We consider the following inverse problems: find the temperature T(x, t) in 

<;f2.1 ((0,1) x (0, t f ]) n ee
l
•
O 
([0,1] x [0, t f ]), and the constant perfusion coefficient 

P, > ° satisfying the onc-dimensional bio-heat equation (3.1), subject to the initial 

condition 

T(x, 0) = To(x), x E [0,1]' 

the Dirichlet boundary conditions 

T(O, t) - I(t), t E [0, t f ], 1(0) = To(O), 

T(l, t) - g(t), t E [0, t f ], g(O) = To(l), 

and one of the following additional information: 

a) a heat flux measurement at (0, to) E {O} x (0, tf ] 

b) a heat flux measurement at (1, to) E {I} x (0, tf ] 

c) a temperature measurement at an internal point (xo' to) E (0,1) x (0, t
f

] 

d) a mass measurement at a single time to E (0, t
f

] 

1 J T(x, to)dx = t(to)· 
o 

In what follows we assume that To E <;f0 ([0,1]), I, 9 E eel ([0, t
f
]). 
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3.3 A Steady-State Analysis 

Before launching into examples and the numerical approach, let us assess our inverse 

problem in the steady-state. The inverse problems (3.1)-(3.7) in the steady-state 

are rewritten in the following form: 

" T (x) - PfT(x) = 0, x E (0,1), 

subject to the Dirichlet boundary conditions 

T(O) = j, T(I) = g, j, 9 E ffi., 

with one of the following additional information: 

I 

a) flux measurement at x = 0, namely -T (0) = ho 

I 

h) flux measurement at x = 1, namely T (1) = hI' 

c) internal measurement taken at Xo E [0,1]' T(xo) = u, 
1 

d) mass measurement JT(x)dx = E. 
o 

Let us first notice that by integrating equation (3.8) we obtain 

Since Pf > 0, by solving the ODE (3.8), we obtain the general solution 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Using the Dirichlet boundary conditions (3.9), we determine the constants C
1 

and 

C
2

, and obtain 

T(x) = (eV'i) 2 -1 [ (e V'i)" (geV'i - I) + (e V'i) (I-x) (Ie V'i -g)] . 
(3.12) 
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By denoting 

.JPi (3:= e , (3.13) 

we obtain 

(3.14) 

Therefore 

(3.15) 

which enables us to calculate 

I [((32 + 1) J - 2(3gJn((3) I [((32 + 1) 9 - 2(3J]ln((3) 
ho=-T(O)= (32_1 ,hl=T(l)= {32-1 . 

Also, from (3.14), we obtain both the internal measurement 

for the internal point chosen to be Xo = ~, and the mass measurement 

£ = ({3 - 1)(1 + g) 
({3 + 1) In({3) . 

(3.16) 

(3.17) 

(3.18) 

First, let us consider case c) in which the internal temperature measurement u is 

supplied at Xo = ~. 

Based on equations (3.14) and (3.17), we distinguish the following conclusions: 

i) If u = 0 and J + 9 =I 0, then the inverse problem docs not have a solution; 

ii) If u = 0 and J + 9 = 0, then the problem has infinitely many solutions P, > 0 

and T{x) = rh.((31-", - (3"'), where {3 = e JPi; 

( 
7. 7. 

iii) If u =I 0 and J + g) - 4u ::; 0, then the problem docs not have a solution; 
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iv) If u =I 0 and (f + g)2 - 4u
2 > 0, then the problem has a unique solution, as 

fJ = [f+9+i li:')' -•• ' r, thus Pf = [In ([ f+9+ i1i:')' -4.' n r 
Another situation to consider is case d) in which the additional information supplied 

is the mass measurement (3.18). Since the function 

F: (1, (0) --.lR, 
(3.19) 

F(f3) = (.B+~)I~I(.B)' for any f3 E (1,00) 

is strictly decreasing and 

lim F(f3) = ~ and lim F(f3) = 0, 
.B~l 2 (3~oo 

(3.20) 

we obtain that the inverse problem in case d) has a unique solution if and only if 

Otherwise, it has no solution. 

£ 1 
0< -- <-. 

f+g 2 
(3.21) 

Finally, we analyze the cases a) and b), when the additional information supplied 

is either a flux measurement ho at x = 0, or a flux measurement hI at x = 1. In 

either of these cases the existence and uniqueness of the solution of the corresponding 

inverse problem is related to the number of zeros on (1, (0) of the particular functions 

Fo(f3), for the flux measurement at the left, or FI (f3), for the flux measurement at 

the right. These two functions are defined as follows: 

Fo(f3) = ((f32 + l)f - 2f3g) In(f3) - (fl - l)ho, 

FI(f3) = ((f32 + 1)g-2f3f)ln(f3) - (f32 -l)h l • 

(3.22) 

Let us now consider some particular choices of the boundary conditions and mea-

surements for which we can determine the numbers of zeroes of the functions defined 

in (3.22). For example, if f = g, then 

(3.23) 
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Therefore, if 0 < -~ < 00, then the inverse problem for the flux measurement at 

x = 0 (case a)) has a unique solution given by 

(3.24) 

h 

where f3 = e -=j. Otherwise, the inverse problem has no solution. 

Also, if 0 < '7 < 00, then the inverse problem for the flux measurement at x = 1 

(case b)) has a unique solution given by 

(3.25) 

h 

where f3 = e T. Otherwise, the inverse problem has no solution. 

In the rest of the chaptcr we consider the transient case given by the bio-heat 

conduction equation (3.1). 

-3.4 Analysis for the Flux Measurement 

Lct ¢ E CC
2
,\ (0, 1) x (0, t I]) n CC1,o ([0, 1] x [0, t I]) be the unique solution of the direct, 

well-posed problem (3.1) - (3.3) with PI = 0, namely 

84> 8
2 
¢ 

at (x, t) = 8x2 (x, t), (x, t) E (0,1) x (0, tIl, (3.26) 

4>(x, 0) = To(x), x E [0,1], (3.27) 

¢(O, t) = J(t), t E [0, tIl, J(O) = To(O), 
(3.28) 

¢(1, t) = get), t E [0, tIl, g(O) = To(l). 

Then the function 

PIt 
w(x, t) := e T(x, t) - ¢(x, t) (3.29) 

satisfies the following problem: 

8w 8
2
w 

7it(x, t) = 8x2 (x, t), (x, t) E (0,1) x (0, tIl, (3.30) 
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w(x, 0) = 0, x E [0,1]' 

w(O, t) = f(t)(e
Pft 

- 1) =: ](t), t E [0, tf]' ](0) = 0, 

w(l, t) = g(t)(e
Pft 

- 1) =: g(t), t E [0, t f ], g(O) = 0, 

and the flux measurement (3.4), namely 

Let us assume that a solution to the problem (3.30)-(3.33) exists. 

Since ], 9 E 1f" ([0, tfD, we have the representation formula 

t t 

J
aM - JaM w(x, t) = - ax (x, t - 7)f(7)d7 + ax (x - 1, t - 7)g(7)d7, 

o 0 

where 

A!(~, (1) := H};1 f exp [- (~+ 2nY~1 ' 
yK(1 4(1 

n=-oo 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

and H is the Heavisidc step function, see Hartman and Wintner [55] for details. 

I3y differentiating equation (3.34) with respect to x, we obtain 

t t 

~ jdM - jdM ax = - ax2 (x, t - 7)f(7)d7 + ax2 (x - 1, t - 1)g(7)d7. (3.36) 

o 0 

Since 

aM a2 
A! 

aT (x - ~,t - 7) = - ax2 (x -~, t - 7), X i= ~, t > 7, (3.37) 

it follows that 

t t 

aw JaM - JaM ax (x, t) = a7 (x, t - 7)f(7)d7 - a7 (x - 1, t - 7)g(7)d7. (3.38) 
o 0 

On the other hand, let us first notice that, from equation (3.35), we obtain 

lim Al(x - ~,t - 7) = 0, x i=~, 
T/t 

(3.39) 
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and since 1,g E CCI([O,tI]), with 1(0) = g(O) = 0, by using integration by parts in 

(3.38), we have 

t t 

aw J -' J ' ax (x, t) = - Af(x, t - T)f (T)dT + Af(x - 1, t - T)9 (T)dT, (3.40) 
o 0 

for all (x, t) E (0,1) x (0, tIl. By using now the Lebesgue's Dominative Convergence 

Theorem, see Stroock [108], we obtain 

t t 

aw J -' J ' lim -(x, t) = - Af(O, t - T)f (T)dT + Af(1, t - T)9 (T)dT 
x'.o ax 

(3.41) 
o 0 

for all t E (0, tIl· 

For t E (0, tIl and Pf E (0, (0), let us define 

t t 

H*(t,Pf ) :=--J Af(O,t-T)i(T)dT+ J Af(-I,t-T)g'(T)dT, (3.42) 
o 0 

(3.43) 

and remark that equation (3.33) implies 

(3.44) 

Thus, if the inverse problem (3.1) - (3.4) has a solution then the coefficient Pf 

must satisfy equation (3.44). Moreover, the inverse problem (3.1) - (3.4) is actually 

equivalent to the nonlinear algebraic equation (3.44) in the following sense: 

Theorem 3.4.1 Let f, 9 E eel ([0, tID and To E CC\[O, 1]). Then the inverse problem 

{3.1} - {3.4} has a unique solution if and only if equation {3.44} has a unique positive 

solution. 

Proof: The proof follows a path similar to the one used for Theorem 2.1 in 

Cannon [10]. Assume that the inverse problem (3.1) - (3.4) has a unique solution 
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(T(x, t) j Pf ). Therefore, from the above analysis, we find that equation (3.44) has 

a positive solution Pf. 

Let us suppose, by reduction to absurd, that Pf is not the only positive constant 

that satisfies equation (3.44). Thus there exists Pfl > 0 and Pf!~ > 0, Pf1 =1= Pf2 , 

such that both Pf1 and Pf2 are solutions of equation (3.44). If we consider 

-PI,t [ jt a2 
M _ jt a2 

At _] 
~(x,t)=e ¢(x,t)- 0 ax2 (x,t-r)f,(r)dr+ 0 ax:! (x-1,t-r)g,(r)dr , 

(3.45) 

where 1,(r) = f(T)(/W -1) and g.(r) = g(r)(/fi
T 

-1), for i E {I, 2}, using both the 

change of variable equation (3.29) and the representation formula (3.34), we obtain 

that (T1(x, t) j Pf1 ) and (T2 (x, t) j Pf2 ) are both solutions of (3.1) - (3.4). Therefore, 

since Pf1 =1= Pf2 immediately implies (T1(x,t)jPf1 ) =1= (T2 (x,t)jPf2 ), which contra-

diets the uniqueness assumption for the inverse problem (3.1) - (3.4) that we have 

considered, we obtain that equation (3.44) has a unique positive solution Pf. 

Conversely, let us assume now that equation (3.44) has a unique positive solution 

Pf. If we suppose by reduction to absurd that there exists two different couples 

(T
l
(x,t)jPf1 ) and (T2 (x,t)jPf2 ) that arc both solutions of (3.1) - (3.4), then by 

using again the change of variablcs equation (3.29) and following for each of the 

solutions all the argumcnt described from equation (3.44) onward, before the state-

ment of our theorem, we obtain that both Pf1 and Pf2 are solutions of equation 

(3.44). However, since equation (3.44) is assumed to have a unique solution, we 

obtain Pf1 = Pf2 = Pf. Therefore, the two functions 

(3.46) 
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satisfy the same problem (3.30)-(3.33) and so, using the representation formula 

(3.34), we obtain that w 1 (x, t) = w2 (x, t), which finally implies that 

(3.47) 

Thus we can conclude that the inverse problem (3.1) - (3.4) has a unique solution. 

o 

Remark 3.4.2 We notice that, using the definition (3.43) and equation (3.44), the 

construction of the graph of Q(Pf ) is sufficient to yield the numerical solution for 

Pf' A similar analysis holds for the heat flux measurement (3.5) instead of (3.4). 

3.5 Analysis for the -Internal Temperature Mea-

surement 

Let ¢o be the unique solution of the problem (3.26) - (3.28) with To = 0. 

Theorem 3.5.1 Let j, 9 E ceO ([0, t f ]), f(O) = g(O) = 0, T = 0, j 2:: 0, 9 2:: 0, 

l + / t 0. Then the inverse problem (3.1) - {3.3} and {3.6} has at most one 

solution. Moreover, if u E (0, ¢o(xo, to)) then the solution also exists. 

Proof: The transformation 

Pft 
w(x, t) := e T(x, t) (3.48) 

recasts the problem (3.1) - (3.3) into 

aw a'J. w 
m(x, t) = ax'J. (x, t), (x, t) E (0,1) x (0, t f ], (3.49) 

w(x,O) = 0, x E [0,1], (3.50) 
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t E [0, tJ (3.51) 

The internal temperature measurement (3.6) becomes 

(3.52) 

Since 1,9 E Cffo ([0, tID, we have the representation formula (3.34) which, when 

applied at (xo' to), gives 

(3.53) 

where H*(Pf ) is defined as 

(3.54) 

By taking the derivative of H* with respect to Pf and then using that 1 2: 0, 9 2:: 0, 

we obtain 

(3.55) 

This means that the function H* : (0,00) -4 lR is strictly monotonic decreasing. 

Hence, H* is injective and therefore equation (3.53) has at most one solution. 

By using that lim aaM 
(XO! to - T) = 0 and 1(0) = 9(0) = O! as well as the repre­

T/to x 

sent at ion formula (3.34) for ¢o! we have 

(3.56) 

Let us also note that from the maximum principle we obtain ¢o(xo, to) > O. Thus 

we can conclude that the function 

(3.57) 
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is bijective and hence equation (3.53) has a unique solution if 

(3.58) 

Finally, the last part of our argument is identical to the proof of the Theorem 3.4.1. 

Therefore, we obtain the targeted conclusion that the inverse problem (3.1) - (3.3) 

and (3.6) has at most one solution, which, moreover, docs exist if u E (0, ¢o(xo, to)). 

o 

3.6 Analysis for the Mass Measurelnent 

Let To = 0. If we consider the mass measurement (3.7), then the representation 

formula (3.34) and the change of variable (3.48) imply 

1 to 

£(to) = - J J 0:: (x, to - r)1(r)/f(T-tO
) drdx 

o 0 
1 to 

+ J J °a": (x --1, to - r)g(r)/f(T-tO
) drdx. 

o 0 

(3.59) 

After carrying out the integration by invoking Fubini's theorem and then taking 

advantage of the fact that M is an even function with respect to x, we obtain 

(3.60) 

where H*(Pf ) is defined as 

to 

H*(Pf ) = J (M(O, to - r) - M(l, to - r))(1(r) + g(r))/f(T-tO
) dr. (3.61) 

o 

By making use of the fact that M(O, to - r) < M(l, to - r), we obtain: 

Theorem 3.6.1 Let 1, 9 E ceo ([0, t f ]), 1(0) = g(O), 1 + 9 :::; 0 and t + / ¢ o. 

Then the inverse problem {3.1} - {3.3} and {3.7} has at most one solution. Moreover, 

if £(to) E (0, I ¢o(x, to)dX) , then the solution also exists. 
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Proof: Under these hypotheses we obtain immediately that H* (PI) < 0. Thus the 

function H* : (0,00) ~ 1R is strictly monotonic decreasing and since the range of 

H* is (0, I <Po (x, to)dX) , the theorem follows. 

o 

3.7 Examples and Numerical Results 

3.7.1 Homogeneous Boundary Conditions 

Let us first find the solution of the inverse problem (3.1) - (3.4) considering the 

particular data for the initial condition 

T(x,O) =sin(7rx), x E [0,1]' 

and the boundary conditions 

T(O, t) = T(l, t) = 0, t E (0, t f ], 

while the flux measurement (3.4) is taken at a fixed point to E (0, t
f

] as 

_ 8T(0 ) __ -(".:l+l)to 
8x ,to - 7re . 

By using the change of variable (2.23), we obtain the governing equation 

8v 8:lv 
at (x, t) = 8

x
:l (x, t), (x, t) E (0,1) x (0,1] 

with the corresponding initial condition 

v(x,O) = sin(7rx), x E [0,1], 

and the boundary conditions 

v(O, t) = v(l, t) = 0, t E (0, tf]' 
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The flux measurement (3.64) transforms into 

(3.68) 

However, by solving the heat equation (3.65) with the initial condition (3.66) and 

boundary conditions (3.67), we obtain 

2 

V(X, t) = sin(rrx)e -,.. I, (x, t) E [0,1] x (0, tJ]' (3.69) 

Thus from (3.68) and (3.69) we infer that 

(3.70) 

(PJ-l)IO U 1 1 ( ) Therefore e = 1 and so PI = 1. sing t le so ution 3.69, and going back-
2 

wards through the transformation (2.23), we obtain T(x, t) = sin(rrx)e -(1\" +l)t as the 

corresponding solution for equations (3.1) - (3.3) and so 

2 

( ) 
• ( ) - (11" +l)t T x, t = sm rrx e (3.71) 

is the unique solution for our inverse problem (3.1) and (3.62)-{3.64). 

If instead of the flux measurement (3.64), we have the internal temperature mea-

surement (3.6), this recasts our case as 

(3.72) 

Then the transformation (2.23) gives 

(3.73) 

Since sin(rrxo) =1= 0, from (3.69) we obtain both PI = 1 and the unique solution 

(3.71). 

Also, if instead of the flux measurement (3.64) we have the mass measurement (3.7) 
1 2 

J 
2e -IO(1\" +1) 

£(to) = T{x, to)dx = rr ' (3.74) 

o 
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then the transformation (2.23) gives 

(3.75) 

Using (3.69) we obtain again both PI = 1 and the unique solution (3.71). 

Provided that the boundary conditions (3.3) are homogeneous, as in (3.63), the 

above analysis can be generalized to an arbitrary integrable function To with 

By considering To E ,&,2 ([0,1]), the solution of the problem (3.1)-(3.2) and (3.63), 

may be obtained by separation of variables and is given as follows, 

00 2 2 
-Pit ~ -I". t 

T(x, t) = e L.J (Ie sin(lrrx), (3.76) 
l=l 

1 

where (I = 2JTo(()sin(lrr()d(, 1- 1,2 ... , see Horvath [58] and Tikhonov and 
o 

Samarskii [110]. By differentiating the Fourier series (3.76) with respect to x, we 

obtain a uniform convergent series. Thus the derivative 

aT -Pit ~ _1
2 
"t 

ax (x, t) = 7re L.J lee cos(lrrx) (3.77) 
l=l 

is continuous on [0,1] x [0, tf]. 

Let us also introduce the mass function 

1 

E(t) = J T(x, t)dx, t ~ o. (3.78) 
o 

From (3.76) we obtain 

(3.79) 

We remark that the particular case of To(x) = sin(rrx) falls within our current 
1 

general analysis, since (1 = 2 J sin 
2 
(rr()dx = 1 and (I = 0 for all I > 2. 

o 
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Considering now the analytical expression (3.76) within the specific context of each 

type of measurements (3.4)-(3.7), we obtain: 

(3.80) 

(3.81) 

(3.82) 

1 -PIta 00 l l 

c(to) = J T(x, to)dx = ~ I: ~I [1- (_1)I]e-
1 

,. to. 

o 1=1 

(3.83) 

From these expressions, using the existence and uniqueness theorems from the previ-

ous sections, we obtain the necessary and sufficient conditions for the existence and 

uniqueness of the perfusion coefficient PI in each of the four additional measurement 

cases, namely 

Case 1: for the flux measurement (3.4): 

(3.84) 

Case 2: for the flux measurement (3.5): 

(3.85) 

Case 3: for the internal temperature measurement (3.6): 

u o < A:= 00 2 2 < 1, 
~ -I" t ( ) L.J (Ie a sin l'!rxo 

(3.86) 

1=1 

Case 4: for the mass measurement (3.7): 

0< A := 7rc(to) 
00 I" 2 2 2 ~ ~ -(21+1) " to 
L.J 21+1 e 
1=0 

<1. (3.87) 

51 



From (3.81)-(3.83) we obtain PI explicitly given by 

(3.88) 

Equation (3.88) shows that the stability of PI is of logarithmic type, and decreases 

as to decreases. 

Once PI has been determined, equation (3.76) provides the temperature solution 

T(x, t). 

3.7.2 A Numerical Example 

While the above examples have embraced an analytical treatment, in the following 

example an important numerical method comes into play. Taking for simplicity 

t
f 

= 1, we consider the exact solution 

T(x, t) = (x2 + 2t)e -t; PI = 1 (3.89) 

for the inverse coefficient identification problem (ICIP) given by equations (3.1) -

(3.4), which in the case considered, recast as follows: 

a2T aT 
ax2 (x, t) - PIT(x, t) = [jt(x, t), (x, t) E (0,1) x (0,1], 

x E [0,1], 

T(O, t) 

T(l, t) 

-t 
- 2te , 

Further, the flux measurement (3.4) is taken as 

Employing the transformation (2.23), we obtain 

t E [0, 1], 

v (x, t) = X 
2 + 2t, PI = 1 
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(3.90) 

(3.91) 

(3.92) 

(3.93) 

(3.94) 



which is the corresponding exact solution for the transformed problem given by 

av a2 v 
at (x, t) = ax2 (x, t), (x, t) E (0,1) X (0,1] 

v(x, 0) = x'l, X E [0,1]' 

v(O, t) 

v{I, t) 

(PrI)1 
- 2te , tE[O,I], 

{2t + l)e(Pr
I
)t, t E [0,1], 

av 
- ax (O, to) = O. 

(3.95) 

(3.96) 

(3.97) 

(3.98) 

Using the BEM for solving (3.95) - (3.97), we obtain -~~(O,tojPf). Here, as well 

as in all the other numerical experiments throughout this subsection, we apply the 

BEM with N = 320 constant boundary clements and the number of space cells 

used to discretise the space domain (0,1) is taken to be No = 160. This number 

of discretisations was found sufficiently large such that, in all the numerical tests 

considered in this subsection, any further increase does not significantly affect the 

accuracy of the numerical results for the direct problem (3.95) - (3.97), with PI 

known. By plotting the function 

(3.99) 

we determine its global minimum which should be located at PI = 1. Figures 3.1 

and 3.2 illustrate the variation of S, as a function of Pf E (O, 2], when 

a uniform discretisation of the time interval [0, t
f 

= 1]. As one may notice, in 

Figure 3.1{b), the computation for the plot associated with tl would have been 

facing" a corner effect", thus heavily affected by round-off errors and so very badly 

behaving. However, we treat this issue by solving the problem again for a new 
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Figure 3.1: Variation of S with Pj when (a) the flux measurement is taken at (0, i 2 ), 

(0 , iN)' (0 , tN)' and (b) the flux measurement is taken only at (O,t]). In case (a) 
T 

we have: solid line for tN' dashed line is for t N and dash-dot line for t2. In case (b) 
T 

solid line is for i1 • 

final time t
f 

:= ill and in this way the time boundary element node ill from the 

initial computation, becomes the new iN' see Figure 3.2(b) , so that the corner effect 

encountered before has now vanished and thus, for the Figures 3.2(a) and 3.2(b), the 

plotted data have been obtained by using the code modified accordingly. Because 

of the large difference in scales between the plots corresponding to tJ and t2 , which 

are of the order of 10-
3

, relative to the ones corresponding to iN and iN' which are 
T 

of the order of 10, we recast the first two ones separately in Figure 3.2(b). 

We consider now the ICIP given by (3.90)-(3 .92) for the case of the flux measurement 

(3.5) at the right boundary x = 1, namely 

(3.100) 
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Figure 3.2: Variation of S with Pj when (a) the flux measurement is taken at (0 , iJ, 

(0 ,t2 )' (0 , £ N) or (O ,tN )' and (b) the flux measurements is taken at (0, £1 ) and (0 ,t2 )· 
"T 

In both cases we have: dotted line for £ N , dashed line for £ N , dash-dot line for i2 
"T 

and solid line for t1 . 

Using the transformation (2.23) , the converted problem (3.95)-(3.97) receives the 

flux measurement 

(3.101) 

Using again the BEM for (3.95) - (3.97) we obtain ~~ (1 , to; PI) . By plotting the 

function 

S : (O , oo)~ ~+, 
(3.102) 

we determine the global minimum which should be located at Pj = 1. The corner 

effect is again avoided by using the technique described in the ca e of the flux 

measurement at x = O. Figure 3.3 illustrates the variation of S, as a function of 

PI E (0, 2], when to E {ill £2,t N,tN }. Again, because of the difference in scales 
"T 

between the plots corresponding to i ] and t2 , which are of the order 10-
2

, relative 
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(1,t2), (1 , iN) or (l,tN) , and (b) the flux measurement is taken at (1 , i J ) or (1,t2)' 
"T 

In both (a) and (b) we have: dotted line for iN' dashed line for iN' dash-dot line 
"T 

for [2 and solid line for t1 • 

to the ones corresponding to iN and iN' which are of the order 10, we recast the 
"T 

former ones separately in Figure 3.3(b). 

By comparing Figures 3.2 and 3.3, we notice that the numerical results have a very 

similar structure for the two types of flux measurements at x = 0 and x = 1. 

Another important aspect is the errect of noisy data in the flux measurement (3.100). 

Here we take 

(3.103) 

or 

(3.104) 

where, throughout the subsection, a is considered the percentage of noise up to 4%. 

Figure 3.4 shows the variation of S given by (3.102), as a function of Pf E (0 , 2], 
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when to E {tll t2 ,tN,tN} for the amount of noise a E {l,2,3,4}%. 
~ 

From Figure 3.4 it can be seen, as expected also from (3.88), that the stability of 

Pf decreases as to decreases. 

Next we illustrate that the problem (3.90)-(3.92) maintains the same general be-

havior when one employs either the internal temperature (3.6), or the mass (3.7), 

measurement, as additional information. 

Considering first the internal temperature measurement (3.6), namely 

(3.105) 

the change of variable (2.23) transforms (3.105) into the internal measurement 

(3.106) 

associated with the converted problem (3.95)-(3.97). 

In order to illustrate the typical numerical results obtained using the BEM for solving 

(3.95)-(3.97), we compute v(xo, to; Pf ), for internal temperatures taken at (0.5,tN)' 

(0.5, t N)' (0.5, t N) and (0.5, t N)' We plot the function 
"2"" "4 "B" 

S: (0, (0) ---. IR+, 

S(Pf ) = Iv(xo,to;Pf ) - (x: +2to)e(pr
1

)
tol, 

(3.107) 

expecting to obtain a curve with the global minimum located close to the point 

Pf = 1. Figure 3.5 illustrates the variation of S given by (3.107), as a function 

of PI E (0,2]' when Xo = 0.5, to E {t N,t N' tN' tN} and a E {O, 1,2,3, 4}% noise 
"B" "4 "2"" 

included in the measurements (3.105), as 

(3.108) 

or 

(3.109) 
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From Figure 3.5 it can be seen that the minimum of S is indeed achieved close to 

Pf :;::;:j 1, Figure 3.5(a), showing also the good stability of the numerical results when 

the noisy data (3.108) are inverted, see Figures 3.5(b)-3.5(e). 

The final numerical test that we have considered for example (3.89) is for the case 

of the mass measurement (3.7), namely 

(3.110) 

In this case the change of variable (2.23) transforms (3.110) into 

(3.111) 

1 

By applying the BEM for (3.95) - (3.97), we obtain J v(x, to; PI )dx and then plot 
o 

the function 

S: (0,00) --+ lR+, 

S(Pf ) = Ii v(x, to; Pf )dx - /fto (1 + 2to) e -to I. (3.112) 

Figure 3.6 illustrates the variation of S given by (3.112), as a function of Pf E 

(0,2] when to E {tN,tN,tN,t:} and a E {0,1,2,3,4}% noise is included in the 
1> 4" "'I 

measurement (3.110), as 

1 J T(x,to)dx= (~+2to) e-
tO

(l+a), (3.113) 

o 

or 
1 

J Pfto ( 1 ) -to v(x, to)dx = e "3 + 2to e (1 + a). 
o 

(3.114) 

Again, the same conclusions as those drawn from Figure 3.5 are obtained. 
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3.8 Conclusions 

This work initially develops an analytical framework for the inverse coefficient iden­

tification problem regarding the determination of the constant perfusion coefficient 

in the transient bio-heat conduction equation. The additional information provided 

either through a flux: measurement, an internal temperature measurement or a mass 

measurement, is used to ensure the uniqueness of the inverse problem. Provided 

that any of these measurements belong to a certain theoretically argued interval, 

the solution of the inverse problem is also proved to exist. Moreover, from the proofs 

we have performed, the existence of the unique solution associated with the inverse 

problem turned out to be equivalent to the fact that the corresponding perfusion 

coefficient is actually the unique positive solution of a nonlinear algebraic equation. 

In the presence of homogeneous boundary conditions, we have proved that the sta­

bility is of logarithmic type and once the perfusion coefficient has been determined, 

then the temperature solution can be provided analytically. 

For arbitrary initial and boundary conditions we have used numerical techniques to 

compute the perfusion coefficient PI. We use for this the REM on a test example 

that considers all the three types of additional information discussed. In all three 

cases, the numerical results arc accurate and stable with respect to noisy perturba­

tions of the input data. Further, it was noticed that the stability of the solution 

increases with respect to increasing the non-dimensional time instant to at which 

the additional measurement is recorded. 

In the next chapter we will extend this analysis to the inverse problem of recovering 

a time-dependent perfusion coefficient. 
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Chapter 4 

The Inverse Time-Dependent 

Perfusion Coefficient Identification 

4.1 Introduction 

The investigation opened in Chapter 3 with the constant coefficient case is now 

naturally extended to the case when the perfusion coefficient PI is dependent on 

time. 

Since, in the inverse problems under investigation, both the temperature T(x, t) and 

the time-dependent perfusion coefficient Pf(t) are unknown, the nonlinear inverse 

problems that are generated by the second-order parabolic equation (1.2) will be 

solved under the prescription of initial and boundary conditions on the boundary 

r = an, when additional information is provided from one of various types of 

measurements that can be taken. As described in the experimental work reviewed 

in Chapter 1, see Cardinali et al. [22], Deng and Liu [45], Loulou and Scott [71], 

Robinson ct al. [97] and Scott et al. [98, 99], the measurements accuracy, their 
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invasiveness character or the extent of practical usc, as well as the ability to take 

continuous measurements, create constraints over the range of types of possible 

additional information that can be considered. In a first approach described in 

the previous chapter, the case where P, is constant has been discussed from both 

analytical and numerical stand points. However, the blood perfusion need not be 

constant in time in all the regions of the body. 

This chapter discusses the retrieval of the time-dependent coefficient P,(t) along 

with the temperature T(x, t) from various types of measured noisy and exact data. 

The one-dimensional version of equation (1.2) is given by 

a2
T aor 

-2 (x, t) - Pj(t)T(x, t) = -a (x, t), (x, t) E (0,1) x (0, t f ]. (4.1) ax t 

Since the technique described in this chapter can be easily extended to higher dimen-

sions, we focus our discussion on the one-dimensional problem, when Dirichlet or 

mixed boundary conditions are considered. As additional information, either time-

dependent internal temperature measurements at fixed or moving points inside the 

region (0,1) are taken, or total mass or partial mass measurements are supplied, or 

alternatively we have heat flux measurements on a part of the boundary r = {O, I}. 

All the measurement data are assumed to exhibit both exact and noisy characteris-

tics. 

Using an appropriate change of variable, which is of a similar nature with (2.2), the 

equation (4.1) will be transformed into the standard heat equation form and then 

the BEM will be employed. As we will see in the forthcoming sections, by perform-

ing this change of variable, the unknown time-dependent coefficient Pj(t) will cause 

the resulting boundary conditions, as well as the measurements, to become unknown 
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for the obtained heat equation problem. However, in both the induced boundary 

conditions and the measurements for the transformed equation, the inherited struc­

ture determined by the original equation (4.1) and by the change of variable will be 

exploited in our attempt for the simultaneous retrieval of the unknowns Pf{t) and 

T{x, t). 

Although the inverse problems considered in this chapter may have a unique solu­

tion, they are still ill-posed, since the solution docs not depend continuously on the 

measured data (4.4), (4.5) or (4.6). In other words, this means that small errors in­

troduced in the measured data can cause large errors in the solution (T(x, t), Pf(t)). 

In dealing with such a situation, regularization techniques based on the mollification 

method will be employed. 

4.2 Mathematical Formulation 

In this chapter we consider the following inverse problems: 

Find T(x, t) in ce2,1 ((0,1) x (0, t,D n ce1,o ([0,1] x [0, t,D and the time-dependent per­

fusion coefficient Pf(t) in ceO ([0, t,]) satisfying the one-dimensional time-dependent 

bio-heat equation (4.1 ) subject to the initial condition 

T(x, 0) = To(x), x E [0,1]' (4.2) 

the Dirichlet boundary conditions 

T(O, t) - !(t), t E [0, t,]' !(O) = To(O), 
(4.3) 

T(l, t) 
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and, for the time being, one of the following types of additional information: 

a) a interior temperature measurement at a given space point Xo E (0,1) 

T(xo' t) = u(t), 

b) a mass measurement 

1 J T(x, t)dx = £(t), 
o 

c) a flu..x measurement 

aT 
-(1, t) = hI (t), ax 

1 

t E (0, tf)' £(0) = J To (x)dx, 
o 

(4.4) 

(4.5) 

(4.6) 

The heat flux measurement (4.6) at x = 1 can be replaced, with no modification, 

by a heat flux measurement at x = o. 

The non-local mass specification (4.5) arises in many important applications in heat 

transfer in which the source control parameter PI (t) needs to be determined so that 

a desired thermal energy (4.5) can be obtained over the spatial domain. 

More general types of measurements will be considered at the end of the chapter, in 

Sections 4.7 and 4.8. Further, as we will see after Section 4.6, the Dirichlet boundary 

conditions may also be replaced with mixed boundary conditions, i.e. where on a 

part of the boundary ra c r, we know only the temperature, while on r \ ro we 

know only~the heat flux. 

Defining 

(4.7) 

the change of variable 

v(x, t) = r(t}T(x, t) (4.8) 
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transforms the time-dependent coefficient heat problem (4.1)-(4.3) into a constant 

coefficient heat equation problem, namely 

flv 8v 
OX2 (x, t) = ot (x, t), (x, t) E [0,1] x (O, t,]' (4.9) 

v(x, 0) = To (x) =: vo(x), x E [0,1]' (4.10) 

v(O, t) 1(t) := r(t)f(t), t E [0, t,]' 1(0) = To(O), 
(4.11) 

v(l, t) - g(t):= r(t)g(t), t E [0, t,]' g(O) = To (1). 

4.3 The Internal Temperature Measurement at a 

Fixed Space Point 

In this section we investigate the inverse problem given by equations (4.1)-(4.4). In 

(4.3) and (4.4), the conditions 

(4.12) 

are called compatibility conditions of order zero. Further, we need compatibility 

conditions up to first-order which require the conditions (4.12) be satisfied and in 

addition 

(4.13) 

The solvability of the inverse problem (4.1)-(4.4) in the spaces CC
H

<>, with a fixed 

in (O, 1) and kEN, of continuous functions with Holder continuous derivatives, see 

Friedman [53] and Ladyzhenskaya at al. [65], has been established in Cannon et al. 

[18] and Prilepko and Solov'ev [88], as follows: 

cp2+a ([ ]) 1+<>/2 [ Theorem 4.3.1 If To E To 0,1, j,g,u E C(j' (O,t,]), To ~ 0, j ~ 0, 9 ~ 0, 

u > 0, and the compatibility conditions up to first order are satisfied, then there 
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exists a unique solution (T E CC
2

+
0

, 1+0/2 ([0,1] x [0, tiD, PI E CCO
/

2 ([0, tiD) of the 

inverse problem (4.1)-(4.4) which is continuously dependent upon data. 

Remark that the theorem does not guarantee that the solution for PI is positive, 

hence only the uniqueness of the solution (T(x, t), Pf(t) > 0) can be concluded. 

Prior to this study, numerical methods based on finite differences, see Baran [5], and 

Dehghan [40, 42], and radial basis functions (RBF), see Dehghan and Tatari [43], 

have been developed for solving (4.1)-(4.4), with extensions to two-dimensional rect-

angular domains given in Baran and Fatullayev [6], Cannon et al. [19], and Dehghan 

[36,37,39]. However, the finite-difference method is not easy to implement in higher 

dimensional irregular domains, whilst the RBF method is only an approximate mesh-

less method which lacks rigour. Therefore, in order to overcome some of these dif-

ficulties, in this section we propose the BEM for solving the inverse problem of 

finding the solution (v(x, t), r(t)) with v E CC
2

•

1

((0, 1) x (0, tiD nCC
1

•
O
([0, 1] x [0, tiD, 

r E CC1 ([0, tiD, r'(t) > 0 for t E (0, ti ], r(O) = 1, which is satisfying (4.9)-(4.11) and 

the transformed interior measurement 

v(XO ' t) = r(t)u(t), (4.14) 

Even though both the boundary conditions and the measured data for (4.10)-(4.14) 

are unknown, an essential assistance in our approach comes from the integral rep-

resent at ion formula for the heat equation (4.9), namely 

t 

CT(X )v(x, t) = J J [<I> (x, t;~, T) ;:: (~, T) - :: (x, t; €, T)V(~, T)] dr~dT 
ore e 

(4.15) 

+ J <I> (x, t;~, O)v(~, O)dn~, 
n 

(x, t) E [0,1] x (0, til, 
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where n = (0,1), r = {O, I}, (J(O) = (J(I) = ~ and (J(x) = 1 for x E (0,1), and 

<I> H(t - r) ((X _ ~)2) 
(x, tj~, r) = J47r(t _ r) exp 4(t - r) (4.16) 

is the fundamental solution for the one-dimensional time-dependent heat equation. 

For the heat equation (4.9), maintaining the same notations used for the general 

BEM described in Section 2.2.1, but using the appropriate fundamental solution 

(4.16), for j = 1, N, k = 1, No, x E [0, 1], ~ E {O, I}, t E (0, tl], the llEM coefficients 

tj 

C'(x,t) = J G(x,tj~,r)dr, , 
t
j

_
1 

t. 
, J 

D. (x, t) = J aaG (x, tj~, r)dr, , n, 
t
j

_
1 (4.17) x" 

E,,(x,t) = J G(x,tj~,O)d~, 
X"_l 

can be evaluated analytically as described in Lesnic [66]. Denoting tj = tj_~ H j 
, 

j = 1, N, let us now define the three nonlinear discretization-dependent maps: 

2N N 
C, D : [0,1] ---+ L(IR , IR ), [] 

No N 
E: 0,1 ---+ L(IR ,IR), (4.18) 

given by: 

a) for C and D: 

C(x)(i,j) .- C;(x, t;}, 

C(x)(i,j) .- C~ (x, ti ), 
J 

i = 1, N, j = N + 1, 2N, 
(4.19) 

D(x)(i, j) - D~(x, tJ, 
J 

i = 1, N, j = 1, N, 

D(x)(i, j) .- D\x,tJ, 
J 

i = 1, N, j = N + 1, 2N, 

b) for E: 

E{x)(j, k) := Elc(X, tj ), (4.20) 

for all x E [0,1]' where throughout this work, for any m,n 2:: 1, by L(IRm,IRn) we 

denote the spaces of linear operators defined on Rm and taking values in Rn, which 
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can be represented as matrices of dimension (n x m). Using a BEM with constant 

boundary clements, sec Brebbia et al. [7], from (4.15) we obtain that, for any space 

point x E [0, 1], the solution vector satisfies 

a(x) [v(x, iJ, ... , v(x, tN)]tr = C(x)v~ - D(x)vr + E(x)iio, (4.21) 

where the superscript tr denotes the transpose of a vector, the 2N -dimensional vec-

tor vr captures the Dirichlet temperature boundary conditions (4.3), the No - dimen-

sional vector 'lTo gives the discretized initial condition (4.2), and the 2N -dimensional 

vector v~ represents the flux ~~ over the boundary r = {O, I}. These vectors are 

configured as follows: 

(4.22) 

(4.23) 

(4.24) 

where n~, ~ E r = {O, I}, are the outward normal directions and X/c = (X Ic _
1 
+x,J/2, 

k = 1, No' 

Moreover, the boundary associated linear operators Cr , Dr E L(JR2N, JR2N) and Er E 

(4.25) 

where IN E L(JRN,JRN) is the usual identity operator and ON E L(JRN,JRN) is the 

null operator, allow us to write the following 2N x 2N system of equations 

, 
Crvr - Drvr + Ervo = 0, (4.26) 
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which is derived from equation (4.21), for x E {O, I}. Equation (4.26) implies 

(4.27) 

Having chosen Xo E (0,1), the measurement (4.14) evaluated at the time nodes ti' 

j = 1, N, supplies us with the vector 

(4.28) 

which, via the equation (4.21), can be expressed as 

, 
r . u = C(xo)vr - D(xo)vr + E(xo)vo. (4.29) 

Let us now denote with 

(4.30) 

(4.31) 

the vectors induced by r, u, f and 9 evaluated at the nodes ti' j = 1, N. Also, 

throughout the entire chapter, by diag(vee) we will understand the diagonal matrix 

whose main diagonal is composed from the components of the vector vee, while 

preserving their order. Therefore, we observe that the vector r . u can formally be 

written in diagonal matrix terms as 

r· u = diag(u)f. (4.32) 

Then, using (4.27), equation (4.29) can be expressed as 

Using the mapping G : (0,1) --+ L(]R2N, ]RN) defined by 

G(x) := C(X)C;l Dr - D(x), x E (0,1), (4.34) 
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and observing that the vector vr can be expressed as 

_ _ [ diag(j) ] _ 
vr - r, 

diag(g) 
(4.35) 

from the equation (4.33) we obtain the following N x N linear system of equations 

(4.36) 

where 

[ 

diag(j) ] 
A := diag(u) - G(xo) • 

diag(g) 
(4.37) 

The solution r of the systcm of equations (4.36) is then used, via equation (4.7), to 

obtain the time-dependent coefficient Pj (t) in its discretized form as 

where we dcnoted 

- 1 I 

PI = diag( -::)r , 
r 

I 

(4.38) 

(4.39) 

Once the values of r have been found accurately, the flux vector v and the interior 
r 

temperature v can be obtained from equations (4.27) and (4.21), respectively. The 

au 
corresponding heat flux ~~ = fc0 and the interior temperature solution T(x, t) = 

V;(~;} are finally obtained from (4.8). 

A test solution for our inverse problem (4.1)-(4.4) given by 

T(x, t) ~ (x' + 2t) exp ( -t - ~) ; (4.40) 

provide us with experimental information and is further on used as a validation 

tool for the computed results. Then, chasing for (0,1) x (0, tf) an appropriate 

discretization, with N constant boundary clements and No = ~ space cells, we 
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solve the system of equations (4.36) by using Gaussian elimination. 

Throughout the chapter, we will consider a discretization with N = 320 boundary 

nodes and No = 160 space cells. Also, we will assume that the measured data (4.4) 

are perturbed by a percentage 0: E {a, 1}% of random noise TJ(t), which is sampled 

from a uniform distribution on the interval [-1, 1], for each time tj , j = 1, N, and 

is supplied by the NAG routine G05DAF. 

Taking Xo = 0.5, from (4.40) we obtain the measured data 

u(t) = T(O.5, t) = (~+ 2t) cxp ( -t - t;) (1 + "ry(t)). (4.41) 

In the no noise case, 0: = 0, the computational results for rand PI(f) are compared 

with their analytical values and are illustrated in Figures 4.1 ( a) and 4.1 (b), respec-

tivcly. Both here, and in all the other forthcoming comparative figures included in 

this chapter, we usc a solid line for the computed values and a dash-dot line for the 

analytical ones. 

In Figure 4.1(a) we can see almost a perfect agreement between the values of r. This 

agreement further extends for PI, as seen in Figure 4.1 (b). 

When there is 0: = 1% ofrandom noise in (4.41), Figure 4.2(a) shows that the com-
2 

puted f agrees reasonably well with ret) = /+~ obtained analytically from (4.8) and 

(4.40). However, Figure 4.2(b) shows that in the case of PI(t) the computed data 

and the analytical onc are in a big disagreement. Moreover, the numerical results for 

PI(t) are highly unstable and this is due to the differentiation of the noisy function 

in f which is then used in (4.38) to obtain the perfusion function coefficient. One 

way to overcame this ill-posed problem is to use a Gaussian mollification scheme, 
, 

sec Murio [73], for obtaining the discrete derivative f . In short, this scheme consists 
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Figure 4.1: The computed and analytical values: (a) for r and (b) for Pf(t ), when 

there is no noise in the data (4.41). 

Figure 4.2: Computed and analytical values of (a) r(t) and (b) Pf(t), when there is 

a = 1% of noise in the data (4.41) . 
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of two steps: 

a) use the Gaussian kernel 

& > 0, ( 4.42) 

where & > 0 is the radius of mollification (or the regularization parameter) 

acting as an averaging filter and perform the convolution J6 * -P, namely 

00 

J6 * r(t) = J J6 (r)r(t - r)drj ( 4.43) 

-00 

, , 
b) differentiate J6 * f to obtain J6 * r = J6 * r. 

We should notice that the mollifier J6 is always positive and becomes very close to 

zero outside the interval centred at the origin and of radius 3<5. Therefore, good 

results for r' (t) are c:xpected in the interval [38,1 - 38]. In our algorithm, the ra-

dius of mollification 8 is computed automatically by Generalized Cross-Validation 

(GCV). We also remark that although the numerical value of r(t) in Figure 4.2(a) 

is non-smooth, its mollification J * r(t) is a C(/OC function, and hence differentiable. 

The computational program includes the mollification procedure, which encompasses 

a large part of the code supplied to us by Professor D.A. Murio from the University 

of Cincinnati. Using N = 320 boundary nodes and No = 160 space cells, the prob-

lem was solved on a larger time interval [0,2t, = 2] and the results were retained 

only on the restricted interval [0, t f = 1]. This was found necessary due to the end 

effects of the mollification (4.43). This end effect could actually be seen ncar t = 0, 

where we could not solve the problem for negative times. 

Figures 4.3(a) and 4.3(b) show the corresponding numerical mollified results in com-
, 

parison with the exact values for r and PI, respectively. Unlike the results of Figure 
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Figure 4.3: Computed and analytical values of (a) r'(t) and (b) Pj(t), when there 

is a = 1% of noise in the data (4.41) , after mollification. 

4.2(b), from Figure 4.3(b) ~it can be seen that a stable solution is obtained after per-

forming the data mollification. 

4.4 The Total Mass Measurement 

In this section we investigate the inverse problem given by equations (4.1)-(4.3) 

and (4.5). For the data in equations (4.2)-(4.3) and (4.5) we assume the following 

compatibility conditions: 

1 

1(0) = To(O) , g(O) = To (1), £(0) = J To (x)dx, 
o 

1'(0) = T"(O) To(O)(E'(O) -T~(1)+T~(O)) 
o + £(0) 

(4.44) 

'(0) = T" (1) + To (1)(£' (O)-T~ (l)+T~ (0)) 
g 0 £(0)' £(0) > O. 

Then we have the following solvability theorem established in Cannon et al. [18] 

and Lin [68]. 
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Theorem 4.4.1 If To E 1&'2+" ([0,1]), f, g, £ E 1&'1+0 /2([0, t f ]), To 2: 0, f 2: 0, 

g 2: 0, £ > a and the compatibility conditions (4-44) are satisfied, then there exists 

a unique solution (T E 1&'2+",1+"/\[0,1] x [0, t f)), PI E 1&'''/2([0, t f ))) of the inverse 

problem (4.1)-(4.3) and (4.5), which is continuously dependent upon the data. 

In the case where the Dirichlet conditions (4.3) are replaced by Neumann or Robin 

boundary conditions, similar solvability theorems are given in Cannon and Lin 

[14, 15, 16] or Cannon et al. [17], respectively. 

Prior to this study, numerical methods based on finite differences, see Azari [4], Can-

non et al. [18], Cannon and Yin [21], Dehghan [35] and Wang and Lin [115], have 

been developed for solving (4.1)-(4.3) and (4.5) with extensions to two and three-

dimensional rectangular and cuboidal domains given in Dehghan [38, 41]. However, 

as the FDM is not easy to extend to higher dimensional irregular domains, in this 

section we adopt the BEM. 

First, recalling the definition (4.7), the change of variable (4.8) transforms the prob-

lem (4.1)-(4.3) into (4.9)-{4.11) and the total mass measurement (4.5) becomes 

1 1 

J v(x, t)dx = r{t)£{t), t E [0, tf]' £(0) = J To(x)dx. ( 4.45) 

o o 

Our approach for the inverse problem (4.9)-(4.11) and (4.45) follows a path that 

is similar to the one developed for (4.1}-(4.4). The BEM for the heat equation 

(4.9)-(4.11) provides us a space discretization for the mass formula, namely 

No-l No 

r(t)E(t) ~ I: (XHI - x')V(Xi+ll t) = ~ I: v(X., t). (4.46) 
i=O 0 i=l 

Therefore, the vector 

r· E:= [r(t1)E(t1), ... ,r(tN)E(tN)f
r 
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satisfies 

( 4.48) 

Thus, via the equation (4.21), for i = 1, N, we obtain 

r . £. = ~o (~C(x.lV; - ~ D(x,lvr + ~ E(X.)Vo) . ( 4.49) 

Using (4.27), equation (4.49) can be expressed as 

iVo No 

r . E = ~ L ( C(iJC;1 Dr - D(iJ) Vr + ~ L ( -C(iJC;1 EI' + E(iJ) vo' 
o i=l 0 i=l 

(4.50) 

By denoting 

(4.51) 

we notice that the vector r . E can formally be expressed as 

r . E = diag(£)r. (4.52) 

Using (4.35), and the mapping G defined in (4.34), equation (4.50) becomes 

- 1 iVo [ diag(j) 1 1 No -
diag(E)r = No L G(iJ . _ r + No ~ ( -C(iJCr 1 Er + E(iJ) vo· 

l=l dzag(g) l=l 

(4.53) 

Therefore, by denoting 

(4.54) 

we obtain the following N x N linear system of equations 

(4.55) 

Once the system (4.55) has been solved, equation (4.38) is used to obtain the dis-

cretized time-dependent coefficient PI (t). 
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Figure 4.4: Computed and analytical values of (a) r(t), and (b)Pf(t), when there is 

no noise in the data (4.56). 

The test solution (4.40) provides us with the mass measurement 

£(1) = j T(x, I)dx = G + 2t) cxp ( -t - ~ ) (1 + <>ry(t)) 
o 

(4.56) 

where the percentage a E {O, 1}% of noise TJ(t) is involved. 

Figure 4.4 illustrates the situation when there is no noise, a = O. In Figure 4.4(a) 

we can see almost perfect agreement between the values of r deduced analytically 

and the computed ones. This agreement is further extended for Pf , as it is shown 

in Figure 4.4(b). 

In Figure 4.5 we illustrate the computed and analytical values for r, r' and Pf , when 

the data (4.56) i affected by 1% noise. From Figure 4.5(a) it can be seen that the 

noise from the additional information £(t) determines the results for the computed 

r to be noisy as well. Although these computed values of r are localized around the 

exact values, their instability becomes a major problem for computing the numerical 

derivative r' (t) of the noisy function r(t) shown in Figure 4.5(a). However, a solution 
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Figure 4.5: Computed and analytical values of: (a) r(t), (b) r'(t), and (c) p/(t), 

when there is a = 1% of noise in the data (4.56) . 
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for this problem is possible by using the mollification scheme in a manner similar 

to that described in Section 4.3. The mollified results for the derivative of f, as 
2 

shown in Figure 4.5{b), agree with the analytical r' (t) = (1 + t)et+~. After this, the 

computed results shown in Figures 4.5(a) and 4.5(b) are used in equation (4.38) to 

obtain P" which, as shown in Figure 4.5(c), approximates reasonably well the exact 

solution P,(t) = 1 + t. 

4.5 Analysis for the Flux Measurement Case 

In this section we investigate the inverse problem given by the equations (4.1 )-( 4.3) 

and (4.6). For this problem we could not find solvability results in the literature 

and therefore, a first investigation is proposed below. 

Let 4> E CC2
,1 ((0,1) x (0, tfD n <cI,D ([0,1] x [0, tfD be the unique solution of the 

well-posed problem: 

4>(x, 0) = To(x), x E [0,1]' 

¢(O, t) = 1(t), t E [0, t f ], 1(0) = To(O), 

¢(1, t) = g(t), t E [0, t f ], g(O) = To(1). 

The change of variable 

w(x, t) := r(t)T(x, t) - ¢(x, t) 

transforms (4.1)-(4.3) into 

w(X,O) = 0, x E [0,1]' 
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(4.59) 

(4.60) 
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w(O, t) = f(t)(r(t) - 1) =: ](t), 

w(l, t) = g(t)(r(t) - 1) =: g(t), 

t E [0, t f ], ](0) = 0, 

t E [0, t f ], g(O) = 0. 
(4.63) 

Let us first notice that, with no changes in analysis, the additional information (4.6) 

may well be replaced by a heat flux measurement at x = 0, namely 

for any t E (0, tf]' (4.64) 

The change of variable (4.60) transforms (4.6) or (4.64) into an additional informa-

tion for the problem (4.61)-(4.63), namely: 

i) a left boundary fllLx measurement: 

(4.65) 

or 

ii) a right boundary flux measurement: 

aw a¢ 
ax (1, t) = hl (t)r(t) + ax (1, t), (4.66) 

respectively. 

However, the two cases can be treated similarly and in the following we focus our 

attention on the left boundary flux measurement (4.64). Let us assume that a 

solution to the problem (4.61)-(4.63) and (4.65) exists. 

Since f, 9 E ceO ([0, tfD, we have the representation formula, see [55], 

t t 

JaM = JaM -w(x, t) = - ax (x, t - 7)f(7)d7 + ax (x - 1, t - 7)g(7)d7, (4.67) 

o 0 

where 

M(E, a) := H(a) ~ exp [_ (E + 2n)lj. 
..j1W L-t 4a 

n=-oo 

(4.68) 
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By differentiating equation (4.67) with respect to x, we obtain 

t t 

8w J 82 

M = J 82 

At -8x = - 8x2 (x, t - T)f(T)dT + 8x2 (x - 1, t - l)g(T)dT. (4.69) 

o 0 

Since 

8M ElM 
aT (x - €, t - T) = - 8x2 (x - €, t - T), X f €, t> T, (4.70) 

it follows that 

(4.71) 

On the other hand, let us first notice, from equation (4.68), that we obtain 

limM(x -~, t - T) = 0, x f~, 
T/t 

(4.72) 

and since 1,9 E eel ([0, t f )), with 1(0) = 9(0) = 0, by using integration by parts in 

(3.38), we have 

8w Jt =' Jt -' 
8x (x, t) = - M(x, t - T)f (T)dT + M{x - 1, t - T)g (T)dT, (4.73) 

o U 

for all (x, t) E (0,1) x (0, tJ By using now the Lebesgue's Dominative convergence 

theorem, see Stroock [108], we obtain 

t , t 

lim 8w (x, t) = - J M(O, t - T)f (T)dT + J M(l, t - T)9' (T)dT (4.74) 
x,,"o 8x 

o 0 

for all t E (0, tfl· 

For t E (0, t f ] and Pf(t) > 0, let us define: 

t , t 

ii(t, Pf(t)) := - J M(O, t - T)f (T)dT + J At( -1, t - T)9' (T)dT, (4.75) 
o 0 

and 

Q(P (t)) := _ H(t, Pf(t)) + ~(O, t) 
f r(t) , (4.76) 
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From the analysis (4.67)-(3.41) and the equation (4.65), we obtain that 

for all t E (0, tJl. (4.77) 

Thus, we arrive at the following remark: 

Remark 4.5.1 If the inverse problem (4.1}-(4.3) and (4.64) has a solution then the 

function Pf(t) needs to satisfy equation (4·77). 

A direct consequence can be stated as follows: 

Theorem 4.5.2 If equation (4-77) has a unique positive solution, then the inverse 

problem (4.1)-(4-3) and (4.64) has a unique solution (T(x, t)j Pf(t)). 

4.5.1 BEM Treatment for the Flux Measurement at x = 1 

, 
Let us start by recalling that equation (4.27) supplies us with a formula for vr ' 

where, from (4.23), 

If we further consider the vector and matrix notations 

i E {O, I}, (4.79) 

then equation (4.26) can be rewritten as 

(4.80) 

which is a 2N x 2N nonlinear system with the vectors rand ho as the unknowns. 

However, we will show that, in order to obtain the unknown vector r, we only need 
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N linear equations of the system (4.80). 

Let us define the orthogonal projection 

(4.81) 

for all [Xll ••• ,XN,XN+l, ••• ,X2Nt E ]R2N. In order to disregard the unknown flux 

information ho(t), by applying P __ to the system of equations (4.80), we obtain 
N+l,2N 

P r - P CDr = -P C E V 
[ 

diag(ho) ] -1 [ diag(j) ] -1 

N+l,2N _ N+l,2N r r N+I;2N r r 0' 

diag(h 1 ) diag(g) 

( 4.82) 

which is equivalent -to the following N x N system of linear equations 

- -1 [ diag(j) 1 -diag(hl)r -P __ Cr Dr r = -p C 1 Ervo• 
N+l,2N N+l,2N r 

diag(g) 
(4.83) 

Thus, if we are only supplied with the flux measurement at x = 1, hI (t) for all 

t E (0, t
f

], just by solving the linear system (4.83), we are able to obtain r, which is 

the BEM discretizcd version of r(t). 

We remark here that the steps proposed so far are symmetric in the sense that if 

the flux information at x = 0, ho(t) is available, and the flux information at x = 1, 

hI (t), is not known, then defining the complementary projection P T;N which takes 

a 2N-dimensional vector into its first N coordinates, a similar system is obtained 

and, thus, r(t) can be retrieved again. 

The test solution (4.40) provides us with the following heat flux measurement at 

x = 1: 

aT (t2) hl(t) = ax(l,t)=2exp -t- i (l+a7J(t)). (4.84) 
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Figure 4.6: Computed and analytical values of: (a) r(t) and (b) for PJ(t), when 

there is no noise in the data (4.84) . 

For the no noise case, a = 0, as shown in Figures 4.6(a) and 4.6(b), the computed 

results are in a good agreement with the analytical values. 

When 1% noise is included in the flux data hl (t), as in (4.84), the problem becomes 

again dificult , since the computed i becomes noisy, so that the numerical derivative 

i ' needs special attention. However, by pursuing the same steps as in the case 

of noisy mass or internal measurements, we solve the system of equations (4.83) 

obtained for a discretization with N = 320 boundary nodes and No = 160 space 

cells for (0, 1) X [0 ,2]' and perform the Gaussian mollification of the obtained results. 

Then we restrict our problem to the domain of interest (0, 1) X [0, t, = 1] and, from 

the results obtained in the previous step, we retain only the values corresponding to 

this restriction. In Figure 4.7(a), the comparison between the results computed and 

the analytical values for i unveil the fact that the noise from the flux measurements 

have been propagated through the computation and have determined r to be noisy. 

However, as shown in Figure 4. 7(b), after mollification, the computed derivative 
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Figure 4.7: Computed and analytical values of: (a) r(t), (b) r' (t) , and (c) Pj(t), 

when there is 1% noise in the heat flux data (4.84). 
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becomes very close to its analytical value. Finally, as shown in Figure 4.7(c), the 

perfusion coefficient PJ(t) is retrieved reasonably stable and fairly close to its true 

value. 

4.6 Mixed Boundary Conditions 

A set of mixed boundary conditions are used in this section to replace the Dirichlet 

boundary conditions (4.3). Therefore, in this context, the inverse time-dependent 

perfusion identification problem satisfying the bio-heat equation (4.1), with the ini-

tial condition (4.2), has to be solved subject to the mixed boundary conditions 

(4.85) 

T(1, t) = g(t), t E [0, t f ], g(O) = To (1), (4.86) 

while preserving the same kind of additional information given by the internal tem-

perature measurement (4.4), or the mass measurement (4.5). 

The case of the additional information (4.6), being supplied by the heat flux at 

x = 1, is expected to produce qualitatively the same conclusions as those of subsec-

tion 4.5.1 and, in addition, since there is no theory on the solvability of this inverse 

problem, we do not insist on this investigation. Instead, we concentrate on the 

analysis of Sections 4.3 and 4.4 in which the mixed boundary conditions (4.85) and 

(4.86) replace the boundary conditions (4.3). Similar solvability theorems to those 

of Sections 4.3 and 4.4 can be established, see Cannon ct al. [17] and Prilepko and 

Solov'ev [88], for the inverse problem (4.1), (4.2), (4.85), (4.86) and (4.4) or (4.5). 

The change of variable defined in (4.7)-{4.8) transforms the inverse problems (4.1), 

(4.2), (4.85), (4.86) and (4.4), and (4.1), (4.2), (4.85), (4.86) and (4.5) into mixed 
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boundary condition problems for the standard heat equation (4.9) subject to the 

initial condition (4.10) and the mixed boundary conditions 

v(l, t) = r(t)g(t), t E [0, tf]' g(O) = vo(1). (4.88) 

and (4.14) or (4.45), respectively. 

4.6.1 Internal Temperature Measurement 

Recalling (4.22)-(4.25), (4.30)-(4.31), (4.35) and (4.79), the equations (4.26) and 

(4.29) recast as follows: 

C
r 

[ :::::~:: 1 r - Dr [ ::::::~ 1 i+ EA ~ 0, 
( 4.89) 

diag(u)r = C(Xo) [ diag(:o) 1 r - D(xo) [ diag(j) 1 r + E(xo)vo· 
diag(h1 ) diag(g) 

( 4.90) 

From (4.89), equation (4.90) can be expressed as 

(4.91) 

Let us define the linear projection 

(4.92) 

for all [Xl' .. XN'XN+1 ' ••• X2N( E R2N. By applying P_C-
1 

to the 2N-dimensional 
l,N I' 

operator equation (4.89), we can discard from our analysis the unknown N-dimensional 
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vector hI' containing the unknown boundary flux at x = 1, and we arrive at the 

N-dimensional operator equation 

(4.93) 

Let us denote 

(4.94) 

the BEM-discretized version of r(t)f(t). We can now remark that equations (4.91) 

and (4.93) form the following 2N x 2N linear system of equations 

[ 
r· f 1 - -1 -1 

diag(ho)r - P_Cr Dr + P_Cr Ervo = 0 
l,N l,N 

diag(g)r 

( 4.95) 

in the 2N -dimensional vector of unknowns: 

( 4.96) 

Throughout the entire work, for an arbitrary matrix A, by coli(A) we understand 

the i-th column of the matrix A. Let us define now the finite dimensional operators 

(4.97) 

(4.98) 

D(x)- := [coli (D(x)), ... , colN (D(x))] E L(jRN, jRN), X E (0,1), (4.99) 
l,N 
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D(X)N+l,2N := [colN+1 (D(x)), ... ,COl2N (D(x))] E L(]RN,]RN), x E (0,1), (4.100) 

and remark that the system (4.95) can be equivalently expressed as 

(4.101) 

Thus, the linear operators Al,Jil' A N+l,2N E L( RN, R2N ), defined by 

(4.102) 

and 

(4.103) 

enable us to rewrite the system of equations (4.101) as 

(4.104) 

Defining the linear operator 

A := [A_ A_-] E L(]R2N ]R2N) 
l,N N+l,2N " 

(4.105) 

we can finally write the 2N x 2N linear system of equations (4.104) as 

(4.106) 

Since, we are only interested in the retrieval of the vector r, we are going to disregard 

from our considerations the other half of the solution vector, which is summarized 
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Figure 4.8: Computed and analytical values of: (a) r(t), and (b) Pf(t), when there 

is no noise in the data (4.41) . 

in the components of r . f· 

The test solution considered in (4.40) supplies us with the internal measurement 

(4.41). In the case of exact data, 0: = 0%, the computed results agree very well with 

the analytical values, as shown in Figures 4.8(a) and 4.8(b). 

On the other hand, in the case when 0: = 1 % noise is included in the internal mea­

surement, we encounter the same difficulty as in the case of the Dirichlet boundary 

conditions, namely, that the noise from the additional information i heavily reflected 

in the computation of r, which becomes both noisy and unstable. Thi causes major 

difficulties in obtaining the numerical derivative ~: which is involved in the retrieval 

of PJ (t). However, for the retrieval of both the derivative of r and the coefficient 

Pf(t), applying precisely the same mollifi ation steps a the one used and described 

in Sections 4.3-4.5, we similarly obtain good results that agree very well with the 

analytical values, as shown in Figures 4.9(a), 4.9(b) and 4.9(c) . 
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Figure 4.9: Computed and analytical values of: (a) r (t), (b) r' (t), and (c) PJ (t), 

when there is a = 1% of noise in the dat a (4.41) 
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4.6.2 Total Mass Measurement Case 

When the additional information considered is the mass measurement (4.5), the 

mixed boundary value inverse problem (4.1), (4.2), (4.85), (4.86) and (4.5) focuses 

our interest. The equivalent inverse problem (4.9), (4.10), (4.87), (4.88) and (4.45) 

allows us to recall and apply here the analysis from (4.45)-(4.49). 

Using the definitions (4.22)-(4.25), (4.30), (4.31), (4.51), (4.79), we note first that 

equation (4.89) is valid also in this case. On the other hand, in equation (4.49), 

which is rewritten here as 

- (NO [ diag(ho) 1 
diag(£)r = ~o ~ C(iJ _ r 

~-1diag(hl) 

No [ diag(j) ] No ) - L D(iJ r + ?: E(iJvo , 

1=1 diag(g) ~=1 

(4.107) 

we use equation (4.89) to obtain 

diag(£)r - ~o (~e(XJ le;l Dr [ diag(]) 1 r -e;l Ervo) 
1-1 diag(g) 

- ~ D(iJ [ diag(j) 1 r + ~ E(Xi)VO]. 
1=1 diag(g) ~=1 

(4.108) 

Using the projection (4.92) in (4.89), we arrive again at the N-dimensional operator 

equation (4.93). Therefore, equations (4.93) and (4.108) supply us the 2N x 2N-
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dimensional system 

( 4.109) 

with the 2N -dimensional vector of unknowns 

( 4.110) 

according to the definition (4. 94) of the vector r . f. U sing the linear operators 

defined in (4.97)-( 4.100), the system (4.109) is equivalently expressed as 

diag(£)r = 

(4.111) 

Thus, using again the linear operator notations A_, A-_ E L(RN, R2N) to 
l,N N+l,2N 

describe the matrices 

~.-
l,N .-

_ No No 

diag{E) - ~ L: C{iJC;1 Dr diag(g) + ~ L: D{iJmT2Ndiag{g) 
o i=l N+1,2N 0 i=l +1,2N 

(4.112) 
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Figure 4.10: Computed and analytical values of: (a) r(t) and (b) PJ(t), when there 

is no noisc in the data (4.56). 

and 

A := 
N+l , 2N 

(4.113) 

the systcm of equations (4.111) recasts as 

A r+A r·f= 1,N N+r;2N 
(4.114) 

By defining the matrix A E L(JR2N ,JR2N
) as in (4.105), the system (4.114) can be 

written as 

(4.115) 

The system (4.115) is to be solved as a whole, however, of interest for us are only 

the first N components of the solution vector, namely, r, and we disregard here its 
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last N component that form the computed vector r . f. 

In order to validate our approach, we use again the test solution (4.40) which supplies 

us with the total mass measurement (4.56). In the no noise case, a = 0%, the 

computational results for both r and Pf(t) match the analytical values, as shown in 

Figures 4.10(a) and 4.1O(b). 

When a = 1% noise is introduced in the mass measurements, the computation 

carried out for solving the linear system (4.115) is again heavily affected by the 

propagated noise. However, the quantities r, and ~:, and finally Pf (t) are retrieved 

following the same discretization scheme and steps described in the noisy case for 

the Dirichlet boundary value problem, from Section 4.3. Figures 4.11(a),4.11(b) 

and 4.11(c) show that the computed values for r, ~ and Pj(t) agree well with the 

analytical values. 

4.7 Internal Measurements on Arbitrarily 

Non-Constant Time-Dependent Paths 

So far in this chapter, all the internal measurements considered were set to remain 

constant at one single point Xo E (0,1), which in the (0, 1) x (0, t f ] domain represents 

the measured value of the temperature T(x, t) considered along the straight path 

given by the function 10 : (0, t f ] --.. (0,1), 10(t) := xO. However, as we will see 

in the following, the function 10 need not be constant. We devote this section to 

investigate both the Dirichlet and the mixed boundary conditions problem, when 

the internal temperature measurement is taken on arbitrarily non constant paths 

I : (0, t
f

] --.. [0,1]. Therefore, the Dirichlet inverse problem (4.1)-(4.3), or the mixed 
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Figure 4.11: Computed and analytical values of: (a) for r(t), (b) r'(t), (c) p/(t), 

when there is a = 1 % of noise in the data (4.56) . 
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boundary value inverse problem (4.1), (4.2), (4.85), (4.86), receives in this section 

the following internal temperature measurement: 

T('y(t), t) = u(t), (4.116) 

for a fixed arbitrary "I : (0, tIl -t n. Thus, after performing the change of variable 

(4.7)-(4.8), the corresponding inverse problems (4.9)-(4.11) and (4.9), (4.10), (4.87), 

(4.88) receive the additional information 

v('y(t), t) = u(t)r(t), (4.117) 

While the general BEM technique remains the method used for our numerical in­

vestigation, specific path dependent operators are defined as follows. 

On the set of all possible paths {"I I "I: (0, tIl -t [0, In let us define the following 

mappings: 

C*,D*: {"I 1"1 : (O,t,] -t [0, In -t L(R2N,RN), 

E*: {"II"I: (O,t,] -t [0, In -t L(RNo,RN), 

given by: 

a) for C*('y) and D*('y) 

C*('y)(i,j) := C;('y(ti ), tJ, 

C*('y)(i, j) := C; ('y(tJJJ, 

D*('y)(i,j) := D;('y(ti ), ti ), 

D*('y)(i,j) := D;('y((), tJ, 

b) for E*("!) 

i = 1, N, j = 1, N 

i = 1, N, j = N + 1, 2N, 

i = 1, N, j = 1, N, 

i = 1, N, j = N + 1, 2N, 

E*('y)(k, j) := E; ('y(t) , t,J, k = 1, N, j = 1, No, 
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(4.121) 



for all,. 

Then the BEM solution vector along, of the heat equation (4.9) satisfies 

(4.122) 

We notice that the operators (4.120) are compatible with the ones defined in Section 

4.3 and we will use them in the subsections that follow. It is worthwhile to remark 

that equations (4.26) and (4.27) are valid for the Dirichlet inverse problem (4.9)-

(4.11) and (4.117) and for the mixed boundary condition inverse problem (4.9), 

(4.10), (4.87), (4.88) and (4.117). 

4.7.1 The Dirichlet Inverse Problem Revisited 

Using the notation (4.28), from (4.27) and (4.122) we obtain 

(4.123) 

After defining 

(4.124) 

from equation (4.123), proceeding in a similar manner as in the case of a fixed 

internal point measurement, we obtain the N x N linear system 

(4.125) 

where 

[ 

diag(j) 1 A := diag(u) - G*(-y) , 
diag(g) 

(4.126) 

which clearly is similar in structure with the system of equations (4.36). Moreover, 

if, is chosen to be the constant path ,o(t) = xo, for all t E [0, t,l, we immediately 
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Figure 4.12: Computed and analytical values of: (a) r(t), and (b) PJ(t), when there 

is no noise in the data (4.128) . 

rccognise that the systems- (4.126) and (4.36) coincide, as was expected, since the 

two inverse problems become the same. Let us consider the following path , : 

1 sin t 
, (t) = 2 + 4 ' 

Then, the test solution (4.40) gives us the path measurement 

1 sint t 

( 2 ) ( 2) T(,(t) , t) = (2 + 4) + 2t exp -t -"2 (1 + O;T)(t))). 

(4.127) 

(4.128) 

In the no noise case, 0; = 0%, after obtaining the solution of the system (4.125), as 

shown in Figures 4.12(a) and 4.12(b), the computed results for f and PJ(t), again 

agree very well with the analytical values. 

When 0; = 1% noise is introduced in the path measurement (4.128), the same types 

of dificulties as those in the fixed point measurement case are encounterd, namely 

the noise is strongly propagated through the system (4.125) in the computation 

of the solution f, which then causes major problems, especially for obtaining the 
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Figure 4.13: Computed and analytical values of: (a) r(t) , (b) for r' (t) , and (c) Pj(t) , 

when there is a = 1% of noise in the data (4.128) . 

102 



numerical derivative ~~. However, following precisely the same steps as the ones 

described in Section 4.3, we obtain good results both for the computation of rand 

~~ which resort in a retrieval very close to the analytical values of the coefficient 

P,(t). Figures 4.13(a), 4.13(b) and 4.13(c) illustrate the agreement of the computed 

and analytical values also in this case of a non-constant path measurement. 

4.7.2 The Mixed Boundary Conditions Inverse Problem Re-

visited 

Preserving all the notations from Section 4.6.1, equation (4.89) is valid for the 

mixed boundary condition inverse problem defined by (4.9), (4.10), (4.87), (4.88) 

and (4.117). However, equation (4.90) from Section 4.6.1 is replaced here by 

[ 

-1 [ diag(j) 1 - 1 diag(u)r = C*(-y) Cr Dr. . _ r - C/ Ervo 
dwg(g) 

[ 

diag(j) ] 
-D*(-y) r + E*(-y)vo. 

diag(g) 

(4.129) 

Since (4.93) was obtained as an immediate implication of the equation (4.89), this 

equation holds valid also in this case. Therefore, the equations (4.93) and (4.129) 

form the 2N x 2N system 
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diag(u)f 
( 4.130) 

in the 2N-dimensional vector of unknowns (4.96). 

Let us define the finite dimensional operators 

(4.131) 

(4.132) 

By continuing now with an analysis that is identical with the one performed in (4.97)-

(4.103), we obtain the corresponding sub-matrices A.--.-r, A E L(RN, R2N), 
I, '" 1il+r.2N 

which are defined as follows: 

[ 

diag(ho) - P_C;1 Dr diag(g) 1 
A- := I,N N+l,2N 

I,N 

diag(u) - C*(-y)C;1 Dr diag(g) + D*(-y)-_diag(g) 
N+r;2Ff N+l,2N 

(4.133) 

and 

[

-P C-lD 1 - r r A __ := I,N l,"N 
N+l,2N , 

_C*(-y)C;l Drl,"N + D*(-y)r,N 
(4.134) 

in addition to the right hand side part of the system 

[ 

_p_C;l Ervo 1 
I,N 

E*(-y)vo - C*(-y)C;1 Ervo 
(4.135) 
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Figure 4.14: Computed and analytical values of: (a) for r(t), and (b) Pf(t), when 

there is no noise involved in the data (4.128). 

Therefore, creating again the linear operator A := [Al,lV 

we obtain the desired system 

[ 

-P C;l E rvo 1 T:N 

E*('y)vo - C*('y)C; l Ervo 

(4.136) 

Since we are only interested in computing r, even though we solve the entire system 

(4.136) , we are going to disregard r . f, which is the second half of the solution 

vector. To validate our approach, we consider again the test solution (4.40) and the 

path measurement prescribed in (4.127)-(4.128) . 

In the no noise case, Q = 0%, as shown in Figures 4.14(a) and 4.14(b), the computed 

results agree both for r and for Pf(t) with their analytical values. 

When Q = 1% noise is introduced in the path measurements, the computed solution 

of the system of equation (4.136) is heavily affected by the noise. However, apply-

ing the same aproach as in the noisy case for path measurements in the Dirichlet 
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Figure 4.15: Computed and analytical values of: (a) r(t), (b) r'(t), and (c) PJ(t) , 

when there is a = 1% of noise involved in the data (4~28). 
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boundary conditions, we obtain yet again good agreement between the computed 

, 
and analytical values of T, T and P,(t), as illustrated in Figures 4.15(a), 4.15(b) and 

4.15(c). 

4.8 Time-Dependent Partial Mass Measurements 

A natural connection with the previous section is revealed by a sensible relaxation of 

the conditions given by the total mass measurement case from the inverse problems 

of the Dirichlet type, (4.1)-(4.3) and (4.5), or of the mixed boundary condition type, 

(4.1), (4.2), (4.85), (4.86) and (4.5). 

However, as it occurs in most of real world situations, environment restrictions or 

technical capabilities prevent the total measurement of the mass, and instead only a 

partial measurement is possible for a certain part of the mass. Therefore, we devote 

this section to discuss both the Dirichlet and the mixed boundary type inverse 

problems when the information (4.5) is replaced by the partial mass measurement, 

which is formally defined by 

J T(x, t)dx = £(t), 
A(t) 

t E [0, tf)' £(0) = J To(x)dx, 

A(O) 

where the set-valued map A : [0,1] --+ {['Y1 (t), 'Yl(t)ll t E (0, tfn, given by 

(4.137) 

(4.138) 

should observe here that the Lebesque measure of both A(t) and the frontier 8A(t) 

are smooth functions with respect to t. 

The solvability of the inverse problem (4.1)-(4.3) and (4.137) has been established 
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in Cannon et al. [17, 18], Cannon and Yin [20] and Lin [68], as follows. 

Theorem 4.8.1 If To E 'if1 ([0,1]), j, 9 E 'if([0, t,])' To ~ 0, j ~ 0, 9 ~ 0, 

12' £ E 'if1, £ > 0, 11 == 0, then there exists a unique solution (T E ("6"2.1 ((0,1) x 

(0, t
f
]) n 'if([0, 1] x [0, t,D, PI E 'if([0, t,D) of the inverse problem (4.1)-(4.3) and 

(4- 137) which is continuously dependent upon data. 

After performing the change of variable (4.7)-(4.8), the corresponding inverse prab-

lems (4.9)-(4.11) and (4.9), (4.10), (4.87), (4.88) will receive the additional informa-

tion 

J v(x, t)dx = r(t)£(t), 

A(t) 

t E (0, t,]' £(0) = J To(x)dx. (4.139) 

A(O) 

Thus, in terms of the BEM, using a large enough number No of space cells to 

discretize the entire space interval (0,1), we obtain 

N 1 0 

r(t)£(t) ~ N :E r(t)T(x" t)XA(t) (x.), 
o i=l 

(4.140) 

where, for any non-empty arbitrary set n and any subset 01 C 0, the function 

X- : 0 -+ {O, I} 

°1 \1, 
X- (0') = 

°1 
0, 

(4.141) 

- -
will be called the characteristic function of 0 1 in O. Using N time nodes to discretize 

[0, t,]' from (4.140) we obtain the following N-dimensional equation 

Let us now define the integer 

(4.143) 
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where, in general, for any arbitrary set 0, Card(O) is the cardinal of O. Clearly, 

( 4.144) 

Denoting A(tj) := A(tj) n Vck } k=1,Nj)' j = 1, N, for 1 ~ i ~ No(£), for any l E 

{O, ... , No(£)}, we consider the linear interpolating paths "Ii : [0, tJ] -+ [0,1] given by 

lo{t) = 0, and iteratively we define 

if 

otherwise, 

A E (0,1). 

Then, equation (4.142) becomes 

NoC£) 
diag(£)r = ~o ~ diag ([Tbi(t1)JJ, ... Tb.(tN)JN)),r) r 

4.8.1 Discussion of the Dirichlet Case 

(4.145) 

(4.146) 

When the Dirichlet boundary conditions (4.3) are supplied, equation (4.146) be-

comes 

Noel) [ diag(j) ] 
diag(£)f - ~o ~ [C*bJC;1 Dr - D*bJ] T 

,-1 diag(g) 

NoeE) 

+~o ~ [-C*bi)C;I Er +E*bJ] Vo· 

(4.147) 

Thus, by defining the left hand side matrix A E L(JRN, JRN) as 

NeE) [ -] _ 1 0 * -1 diag(f) 
A:= diag(£) - N ?: [C bJCr Dr - D*bJ] , 

o t=1 diag(g) 
(4.148) 
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Figure 4.16: Computed and analytical values of: (a) r(t) and (b) Pf(t) , when there 

is no noise in the data (4.151) . 

we obtain the N -dimensional linear system 

N o(£) 

Af = ~ L [-C*(rJC;lEI' +E*(rJ] vo· 
o i= l 

Let us now consider the following particular set-valued map A given by 

{ I [
sin t sin t] } 

A(t) = x E it x E 0.4 + 4 ' 0.6 + 4 ' t E [0 , 1] . 

(4.149) 

(4.150) 

Using the set-valued map A the test solut ion (4.40) gives us the following time-

dependent partial mass measurement 

J T(x,t)dx = (x; +2tX) exp (-t _ t~ ) 
A(t) 

0 . 6+Si~ t 

t E [0 , 1]. (4.151) 
0.4+ S i~ t 

As we can observe in the Figures 4.16(a) and 4.16(b), by solving the system (4.149) , 

given the shape of the measurement , even though we have considered exact data 

and the computation of f behaves satisfactory, the results obtained for Pf(t) are 

highly unstable. The instability shown in Figure 4.16(b) is caused by the direct 
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Figure 4.17: Computed and analytical values of: (a) r(t), (b) r'(t), and (c) Pj(t), 

when there is no noise in the data (4.151), after mollification. 
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computation of the derivative ~: using central differences. However, if we a.pply the 

mollifica.tion steps described in Section 4.3, the results stabilize and, as illustrated 

in Figures 4.17(a), 4.17(b) and 4.17(c), the retrieval of both r, ~~ and Pf(t) is close 

to their analytical values. 

4.8.2 Discussion for the Mixed Boundary Condition Case 

When mixed boundary conditions are in place, the vectors [{T(l, tJ};=T."N] = 9 and 

{ 8' i } "__ = ho are known, while f and hI are unknown. A useful remark is 
[ 

8T(O l ) ] - - -
n J-I,N 

that equation (4.93) holds valid. Therefore, from (4.93) and (4.146) we obtain the 

2N x 2N -dimensional system 

diag(£)r 

(4.152) 

with the 2N-dimensional vector of unknowns (4.110). Since, only the first N com-

ponents of the solution for the system (4.152) are of interest to us, the second half 

of the components, namely r . f, are disregarded. 

By solving the system (4.152), we arrive to exactly the same difficulties as the ones 

encountered in the Dirichlet case, see Figures 4.18(a) and 4.18(b). The instability of 

direct numerical differentiation of r using central difference, offer us again a highly 

unstable Pf(t). This issue is solved following a similar mollification method with 

the one used in the Dirichlet case, and finally, as shown in Figures 4.19(a), 4.19(b) 
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Figure 4.18: Computed and analytical values of: (a) r(t) and (b) Pj(t), when there 

is no noise in the data (4.151) . 

and 4.19(c), the results obtained agree well with the analytical values. 

4.9 Conclusions 

The inverse problem regarding the identification of the time-dependent perfusion 

coefficient in the bio-heat equation has been investigated. Both exact and noisy 

measurements were taken into consideration. For the cases of internal and total 

mass measurements in the presence of Dirichlet or mixed boundary conditions, the 

hypotheses of the solvability theorems results were satisfied. In the heat flux mea-

surement case, since there were no uniqueness results previously proved, we have 

stated and proved a uniqueness criterion which translates the uniqueness issue to 

the existence of a unique zero for a constructed functionaL Natural generalizations 

to path measurements and partial mass measurements were also approached in our 

investigation both for the Dirichlet and for the mixed boundary conditions. 
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Figure 4.19: Computed and analytical values of: (a) r(t), (b) r'(t), and (c) Pj(t), 

when there i no noise in the data (4.151), after mollification. 
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However, our main effort was focused on developing a general numerical method 

that allows us to retrieve of the solution (T(x, t); PJ(t)) globally, in a unified man­

ncr, for all the types of boundary conditions and measurements considered. 

The numerical method that we have developed consists of two parts. First, we have 

constructed a BEM for the time-dependent inverse problem. Since in the noisy 

measurement cases, derivatives of noisy resulting functions have to be computed, 

we have mollified the results using a Gaussian kernel. 

The test examples considered show, in the cases of exact measurement, that the 

analytical and the computed values match almost exactly. For noisy data, the re­

sults obtained from our method approximates fairly well the analytical values of the 

perfusion coefficient. The method proposed in this paper can be straightforward 

extended and applied to higher-dimensional versions of this inverse time-dependent 

perfusion coefficient identification problem. 

In the next chapter we consider the inverse problem concerning the identification of 

the space-dependent perfusion coefficient. 

115 



Chapter 5 

Inverse Space-Dependent 

Perfusion Coefficient Identification 

5.1 Introduction 

After discussing the retrieval of the constant and time-dependent perfusion coeffi-

cient cases, in this chapter we will focus on the situation when Pf is dependent on 

space. Given the heterogeneity of the human body tissue, the blood perfusion will 

vary between different regions of the body. However, since the perfusion Pf(x) will 

be a function of the position x, equation (1.2) will not have a fundamental solution, 

and this constitutes a major difficulty in approaching the subsequent class of non-

linear inverse problems. 

For the space-dependent case, we investigate two classes of inverse problems. In the 

first instance, the bio-heat equation 

(5.1) 
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will be subject to Neumann boundary conditions, whereas in the last part of the 

chapter Dirichlet boundary conditions will be considered. 

In the Neumann case, we seek the retrieval of the space-dependent coefficient PJ(x) > 

o along with the temperature T(x, t) from exact and noisy boundary temperature 

measurements. 

In the Dirichlet case, we discuss two inverse problems, namely IPI and IP2, concern­

ing the identification of the space-dependent coefficient PJ(x) > 0 along with the 

temperature T(x, t) where, in the case of IPl, the additional information consists 

of a heat flux measurement on a part of the boundary, and in the case of IP2, a 

time-average temperature measurement is taken at every space point in (0, L). 

For both the Neumann and the Dirichlet cases, the numerical investigation will em­

ploy a Crank-Nicolson-type finite difference scheme coupled with an optimisation 

algorithm, which minimizes a least-squares functional that evaluates the difference 

between the measured data and the computed values. 

However, although, subject to certain imposed hypotheses, some uniqueness results 

may be satisfied, the ill-posed character of all the inverse problems considered is re­

vealed by the stability issues encountered in the numerical investigation. In dealing 

with these aspects, regularization techniques, such as order-O or order-l Tikhonov 

methods, together with the subsequent strategies that are used for choosing their 

regularization parameters, need to be employed. 
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5.2 The Neumann Inverse Problem 

In this section, the considered spaccrdependent perfusion coefficient identification 

inverse problem is stated as follows: 

Find the temperature T(x, t) such that T, T", E ~([O, 11"] X [0, (0)), T" T",,,, E ~((O, 11") X 

(0, (0)) and the space-dependent perfusion coefficient Pf(x) E <"6'([0,11"]), Pf > 0, sat-

isfying the oncrdimcnsional timcrdependent bicrheat equation (5.1) subject to the 

initial condition 

T(x,O) = 0, . x E [0,11"], (5.2) 

the Neuman boundary conditions 

aT 
ax (0, t) = 0, t ;::: 0, (5.3) 

aT 
ax (11", t) = J-L(t), t;::: 0, (5.4) 

where J-L satisfies the following properties: 

{ 

J-L E ~2([0,00)), J-L(O) = J-L'(O) = 0, J-L ~ 0, 
(5.5) 

and there exists to > ° such that J-L(t) = 0 for all t ;::: to, 

and the additional boundary temperature measurement: 

T(1I", t) = g(t), t > O. (5.6) 

The uniqueness of solution for this inverse problem has been established in Denisov 

[46], pp.139-146, and is stated as follows: 

Theorem 5.2.1 Let E = 0 and J-L(t) satisfy conditions {5.5}. If Pfi(x), 'li(x, t), 

i = 1,2 are solutions, in the above regularity classes, of the inverse problem {5.1}, 

{5.2}-{5.4} and {5.6}, then Pf1 (x) = Pf1!(x) for x E [0,11"] and T1(x, t) = T2 (x, t) for 

(x, t) E [0,11"] X [0, (0). 
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Note that if, instead of the boundary temperature measurement (5.6) at the active 

end x = 7r, where a non-zero heat flux is applied, we supply the additional boundary 

temperature measurement 

T{O, t) = go(t), t > 0, (5.7) 

at the inactive end x = 0, where no heat flux occurs, then, in order to obtain a 

unique solution for the inverse problem (5.1),{5.2)-{5.4) and (5.7), we further need 

to impose the condition 

(5.8) 

see Denisov [46], p.144. This is because the additional condition (5.6) provides 

more information on Pj{x) than condition (5.7). Furthermore, it is also possible 

to uniquely determine the triplet (T{x, t), Pj(x), JL{t)) , satisfying (5.1),(5.2)-(5.6), 

under the assumption that JL is non-negative, see Denisov [46], p.145. 

Note that instead of the Neumann boundary conditions (5.3) and (5.4) one can 

prescribe the Dirichlet boundary temperature conditions 

T(O, t) = 0, t;::: 0 (5.9) 

and (5.6). In this case, the additional measurement can be the heat flux (5.4). Then, 
to 

if 9 ¢ 0 and there exists to > 0 such that J g(t)dt < 00, g(t) = 0 for all t > to, then 
o 

the inverse problem given by equation (5.1),(5.2), (5.4), (5.6) and (5.9) has a unique 

solution, see Pierce [83] and Ramm [92]. 

The uniqueness of the solution of the problem given by equations (5.1), (5.2), (5.6) 

and (5.9) also holds under the additional final temperature measurement, see Choulli 

[28] and Isakov [59], 

T{x, to) = e(x), x E [0,7r]. (5.1O) 
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5.3 Numerical Approach 

As a first step, a finite-difference algorithm based on the Crank-Nicolson scheme, 

sec Dahlquist and Bjorck [34], pp.387-389, is developed in order to solve the direct 

problem for the parabolic equation (5.1), in which the coefficient PI is considered 

known, subject to the initial and boundary conditions (5.2)-(5.4). At this particular 

stage we only wish to retrieve the temperature T(x, t) given the assumed knowledge 

of the positive entry Pf(x). Let us denote this particular computed solution by 

T
camp 

(PI; (x, t)). 

A second step involves a gradient based optimisation procedure, supplied by the 

NAG routine E04FCF, which minimizes the order-O and order-1 Tikhonov regular-

izations: Fo' Fl : {PI I PI E 1f([0, 7rD, PI > O} ~ lR+ defined by 

(5.11) 

camp 2 2 
Fl (PI) :=11 T (PI; (X, t)) - g(t) 112 +A II P; 112' (5.12) 

respectively, where A > 0 is a regularization parameter to be prescribed. Remark 

that when A = 0, expressions (5.11) and (5.12) coincide with the classical least-

squares functional which produces an unstable solution. 

The NAG routine E04FCF is a comprehensive algorithm for finding an unconstrained 

minimum of a sum of squares of m nonlinear functions in n variables (m ~ n). Flir-

ther, no derivatives are required to be supplied by the user, these being calculated 

internally by the routine using finite differences. 

The minimization algorithm is initialized with a positive continuous function PI, 

which in our case is set to 1, i.e. p;nitial (x) = 1. The constraint PI > 0 cannot be 

imposed directly in the NAG routine, but, if in the iteration process some compo-
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nents of the discretized PI happen to become negative, they are replaced by 1 at 

the next iteration level. Let us consider the following test example. Let us choose 

0 for t = 0, 

JL(t) = e 
[-1-(t~~)2 ] 

for t E (0,1), (5.13) 

0 for t 2: to = 1, 

which satisfies conditions (5.5) and seek to retrieve a positive continuous perfusion 

coefficient given by 

. 2 
PI(x) = 1 + x, for x E [0,7r]. (5.14) 

The space interval [0,7r] is discrctized into No = 90 uniform cells and we discretise a 

finite time interval [0, t I] into N = lOOt I uniform time intervals, where tIE {I, 2, 4}. 

Thorough this section, all the computations are performed on a 54-bit x85-Linux 

cluster architecture, with all the operations carried out in extended precision. 

Figure 5.1 illustrates the results obtained with order-O Tikhonov regularization for 

exact measurement data (5.6) used in each of the three time length intervals, where 

the appropriate choices for the values of the regularization parameter A are con-

sidered, namely: A = 10-20 for tl = 1, A = 10-19 for tl = 2, and A = 10-19 

for tl = 4. In Figure 5.1(a), the natural logarithm of the functional given in 

(5.11), In{Fo), is represented as a function of the number of iterations obtained 

for (t
l

, A) E {(I, 10-2°), (2,10-19
), (4,1O-19

)}. Figures 5.1{b)-(d) show the com-

puted PI in comparison to the exact solution given in (5.14) for (t / , A) = (1,10-20), 

(t
l

, A) = (2,10-19), and (t l • A) = (4,10-19
), respectively. It should be noted that as 

we increase the time interval, i.e. from t I = 1 to t I = 2 and then to t I = 4, the 

results obtained improve, becoming more stable and at the same time increasing the 
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Figure 5.1: (a) Logarithm of the objective functional Fo , for order-O regularization, 

as a function of the number of iterations, and the numerically obtained PJ(x) for 
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= 1, (c) t
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= 2, arrei (d) t J = 4, for exact data. In figures (b)- (d) th exact 

solution (5 .14) is shown with dashed line. 
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accuracy, since more measurement information is added. 

Figure 5.2 shows the results obtained for exact data when order-1 Tikhonov regular­

ization is employed for each choice of the parameters (t l , A) E {(I, 10-18), (2,10-18), 

(4,1O-18)}. In Figure 5.2(a), In(F1 ) is represented as a function of the number of 

iterations for these three choices of (tl' A). Figures 5.2(b)-(d) represent the com­

puted PI in comparison to the exact solution given in (5.14) for (tl' A) = (1,10-18), 

(tl' A) = (2,10-18
), and (tl' A) = (4,10-18

), respectively. As expected, we can im­

mediately observe that the results are significantly better than the ones obtained in 

the case of order-O Tikhonov's regularization, since more smoothness is imposed onto 

the numerical solution. Morcover, using order-1 regularization, the results obtained 

preserve the smoothness, the solution is stable and an accuracy of over 5 digits is 

achieved over all the space region for (tl' A) = (4,10-18
). On the other hand, we 

again observe that the quality of approximation increases as t I increases. Also, we 

should mention that, for tl E {2, 4}, very good approximation are achieved even for 

larger values of the regularization parameter A, namely for A E [10-18 ,10-14]. 

Next, given the fact that real life measurements are inherently contaminated with 

errors, we test now the proposed algorithm on noisy data. Let us consider that 

the measurement g(t) is perturbed by 1% of random multiplicative noise that is 

generated by a uniform distribution on the interval [-1, 1], for each time node ti' 

j = {I, ... , *}, and this noise is supplied by the NAG routine G05DAF. 

Figure 5.3 shows the results obtained with order-O Tikhonov regularization, when 

the input measurement data 9 in (5.6) is corrupted by 1% multiplicative noise, for 

each choice of the parameters couple (tl' A) E ((1,1O-11 ), (2,10-11 ), (4,1O-12)}. 

The functional In(Fo) shown in Figure 5.3(a), as a function of the number of it-
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erations, is monotonically decaying in this noisy case, for all couples (t f' >.). The 

results obtained for P, are highly sensitive to the level of noise in the data, as 

shown in the Figures 5.3(b)-(d) for (t f , >.) = (1,10-11 ), (tf' >.) = (2,10-11
), and 

(tf' >.) = (4,10- 12
), respectively. 

Figure 5.4 shows the results obtained when order-1 Tikhonov regularization is em-

ployed and the input measurement data 9 in (5.6) is corrupted by 1% multiplica­

tive noise, for each choice of the parameters couple (t f' >.) E {(1, 10-1°), (2, 10;11), 

(4, 10;10) }. Again, as in the no noise situation, we can immediately see that when 

using the order-1 regularization in the noisy case we obtain a more accurate and 

stable numerical approximation than the one obtained when using the order-O reg-

ularization. 

5.4 The Dirichlet Inverse Problem 

For the remaining part of this chapter, we devote our attention to the class of inverse 

problems in which Dirichlet boundary conditions are considered. We investigate two 

inverse problems, IP1 and IP2, concerning the identification of the space-dependent 

coefficient P,(x) > 0 along with the temperature T(x, t), under prescribed initial 

and Dirichlet boundary conditions, when, in the case of IPl, the additional inform a-

tion considered consists of either a heat flux measurement on a part of the boundary 

or, for IP2, a time-average measurement is taken at every space point (0, L). 

The two space-dependent perfusion coefficient identification inverse problems, IPI 

and IP2, are seeking the couple (Pf(x), T(x, t)), when the following common ground 

is assumed: 
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The temperature T(x, t), with T, Tz E 1f([0, 1] x [0, 00), ~, Tu E 1f((0, 1) x (0,00), 

and the space-dependent perfusion coefficient Pj(x) E (6'([0, 1]), Pj > 0, are satisfy-

ing the one-dimensional space-dependent transient bio-heat equation (5.1), subject 

to the initial condition 

T(x, 0) = uo(x), x E [0,1]' (5.15) 

and the Dirichlet boundary conditions 

T(O, t) = ILl (t), t ~ 0, (5.16) 

T(l, t) = IL2(t), t ~ O. (5.17) 

For each of the inverse problems the additional information, stated individually, is 

defined as follows: 

• for IP1 the flux at x = 1 is measured as: 

aT 
h(t) = ax (1, t), t E (0,00], (5.18) 

• for IP2 the time-average measurement is taken across the space region (0,1) 

as: 
tf 

£(x) = J T(x, t), x E (0,1). (5.19) 

o 

where t f > a is an arbitrary given time. 

Remark 5.4.1 An inverse problem similar to IP1, as given by equations (5.1), 

(5.15), (5.17), (5.18) and the Neumann condition 

- aT 
h(t) = ax (0, t), t E (0,00), (5.20) 

has been investigated theoretically, Denisov !46j, pp. 139-146, and numerically in the 

previous section and in Rodrigues et al. [100). Moreover, an overdetermined inverse 
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problem, as given by equations (5.1), (5.15)-{5.18) and (5.20), has been investigated 

numerically in Tadi et al. [109}. 

Remark 5.4.2 An inverse problem similar to IP2, as given by the equations (5.1), 

(5.15), and (5.16), (5.17) or (5.18), (5.20), and the final temperature measurement 

x E (0,1) (5.21) 

has been investigated theoretically in Choulli [28J, Choulli and Yamamoto [29, 30J, 

Isakov [59, 60J, Prilepko and Kostin [89J, Prilepko and Solov'ev [88J, Rundell [101J 

and Yu [118J, and numerically in Chen and Liu [27J, Deng et al. /44J, Yang et aI. 

[117}. 

The following theorems ensure the uniqueness of the perfusion coefficient PI (x). 

Theorem 5:4.3 (Ramm [91, 92]) Let U o = J-Ll = ~ = 0, and assume that J-L'J ¢ a 

is compactly supported and integrable. Further, we assume that equation (5.1) is 

satisfied at the boundary, x E {a, I}, for t > O. Then the IPl has at most one 

solution PI E .c1 ([0, 1]). 

Theorem 5.4.4 (Isakov [61], Sect. 9.2) Let ~ = 0, Uo E <"6'4([0, 1]), Uo > a and 

{
. 1 Joo _T

2
/(4t) * 4} 

J-LllJ-L2 E .Jii 0 e J-L (T)dT J-L* ECif ([0,00)). (5.22) 

Then the IP 1 has at most one solution PI E .coo « 0, 1)). 

Theorem 5.4.5 (Prilepko and Kostin [89]) Let U o = J-Ll = J-L2 = 0, ~'~t E 

L
2
«0, 1) x (0, t,)), ~ ~ 0, ~t ~ 0, and assume that £ E Wi(O, 1)), with £(x) > 

t 

jTO(x,t)dt, x E (0,1), where TO is the solution of the direct problem given by 
o 
equation (5.1) with PI = a and with homogeneous conditions (5.15)-{5.17). Then 

the IP2 has at most one solution PI E .coo «0, 1)), PI ~ 0, T E Wi,l«(O, 1) x (0, tJ))' 
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In Theorem 5.4.5, the Sobolev spaces Wi((O, 1)) and Wi,l((O, 1) x (0, tf)) are defined 

in the standard way, see Ladyzhenskaya [65]. 

5.5 Numerical Approach 

The numerical approach is the same as that described in Section 5.3 except that we 

minimize the order-one Tikhonov regularization functional Fl : {PI I PI E elfl ([0,1]) 

PI > O} ~ lR+ defined by 

aTcomp :l II -----a;-(PIj (1, t)) - h(t) 11£2«0,00» for IPl, 

Fl(PI):=>"1I P; 1((0,1» + t
f 

II [Tcomp(PIj (x, t))dt - E(x) 11:
2

«0,1)) for IP2, 

(5.23) 

where>.. > ° is a regularization parameter to be prescribed. 

The problem is solved subject to both exact and noisy measurements 

h(t) = h(t)(1 + QrJ), t E (0,00), (5.24) 

£(x) = £(x)(1 + QrJ), x E (0,1), (5.25) 

where Q is the percentage of noise (typically 1%) and rJ are random variables gen-

crated from a uniform distribution in the interval [-1,1], using the NAG routine 

G05DAF. Suppose that we know an upper bound 'Y > ° such that 

(5.26) 

(5.27) 

Then the regularization parameter>.. is chosen according to the discrepancy principle 

as follows. Considering the functional F : [0, 00) ~ R+, defined by 

F(>..) '= V F (P ) - >.. II pi 11:l 
• 1 I I £2«0,1))' (5.28) 
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the Morozov discrepancy principle suggests choosing the regularization parameter 

as being the largest value>.. > 0 for which 

F(>") :::; 'Y. (5.29) 

5.6 Numerical Results and Discussions 

Except otherwise specified, the space interval [0, 1] is discretized into No = 90k 

uniform cells, while the time interval [0, t f ] is discrctized into N = 100ktf uniform 

time intervals, where, for convenience, we take t f = 1 and the mesh tunning factor 

k = 1,2. We also take, for simplicity, ~ = 0 in equation (5.1). 

5.6.1 Numerical Example for IP1 with Homogeneous Initial 

Condition 

Let us choose U o = 0, J.Ll = 0, and 

o for t = 0, 

J- H,IV 1 for t E (0,1), (5.30) 

o for t ;:::: to = 1, 

which satisfies the conditions of Theorem 5.4.3 for the uniqueness of solution of 

problem IPl. We seck to retrieve a positive continuous perfusion coefficient given 

by 

(5.31) 

Since an analytical solution for the bio-heat equation (5.1) with ~ = 0, subject to 

the above initial and boundary conditions, could not be determined, the measured 
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Figure 5.5: (a) Logarithm of the objective functional F1 , as a function of the number 

of iterations, (b) the numerically obtained PI (x), (c) the discrepancy principle for 

exact data, a = 0, and (d) the discrepancy principle for a = 1% noisy data. The 

amount of noise I is shown with continuous line (- ) in figures (c) and (d). 
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heat flux data (5.18) is generated numerically by solving the direct problem with PI 

given by equation (5.14) using the Crank-Nicolson finite-difference method, with a 

mesh that uniformly discretises both the space interval [0, 1] in No = 90 cells and the 

time interval [0, t
f 

= 1] in N = 200 subintervals. In order to avoid committing the 

so called "inverse crime", the direct solver, involved in the minimization of (5.23) 

for the IP1, uses No = 90 and N = 100. In this way numerical noise is introduced in 

the measured data (5.18) even when exact data, i.e. Q = 0 in (5.24), are considered. 

Figure 5.5 shows the numerical results, when both Q = 0% and 1% noise is per­

turbing the data h(t) as in (5.24). In Figure 5.5(a) the natural logarithm of the 

first-order Tikhonov functional given in (5.23), In(F1 ), is represented as a function 

of the number of iterations, obtained when the data are assumed both exact, for 

,\ = 5 X 10-8 , and 1% noisy, for ,\ = 10-5• From this figure it can be seen that 

the convergence of the minimization functional Fl is immediately achieved in only 

3 - 5 iterations. Figure 5.5(b) shows the plots of the computed solution for PI. 

From Figure 5.5(b) it can be seen that the computed results arc a very good and 

stable (free of highly unbounded oscillations) approximation of the desired perfusion 

coefficient given in equation (5.14). For the exact data, the maximum 4% relative 

error to the exact solution (5.14), that occurs in the numerical solution, is justified 

by the numerical noise introduced when the measured data arc obtained by solv­

ing the direct problem, as mentioned above. When 1% noise is included an error 

of maximum 16% is encountered in the numerical solution; however, the numerical 

solution is reasonably stable. 

Figures 5.5(c) and 5.5(d) show the discrepancy principle (5.29) for Q = 0% and 

Q = 1%, respectively. From these figures it can be seen that the discrepancy prin-
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ciple enables us to locate the regularization parameter A, when both exact and 

perturbed noisy measurements are considered. 

5.6.2 Numerical Example for IPI with Non-homogeneous 

Initial Condition 

Throughout this section, the initial condition (5.15), uo, as well as the Dirichlet 

boundary conditions (5.16)-(5.17), I-Ll and 1-L2' are taken to be non-zero and are 

given by 

If the additional heat flu.xmeasurement h(t) is given by 

t E (0,00), 

(5.32) 

(5.33) 

(5.34) 

then, with the input data (5.32)-(5.34), the IP1, given by equations (5.1) with Q = 0, 

(5.15)-(5.18), has the analytical solution: 

(5.35) 

The direct solver involved in the minimization of (5.23) for IP1 uses a mesh of 

No = 180 and N = 100 that is discretising uniformly both the space interval [0,1] 

and the time interval [0, t f = 1]. 

Figure 5.6 shows the numerical results when both exact and 1% noisy errors are 

considered in the measurement h(t) given by (5.34). In Figure 5.6(a), In(Fl) is 

presented, as a function of the number of iterations, for both exact and noisy data, 
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Figure 5.6: (a) Logarithm of the objective functional F1 , as a function of the number 

of iterations, (b) the numerically obtained PI (x), (c) the discrepancy principle for 

exact data, a = 0, and (d) the discrepancy principle for a = 1% noisy data. The 

amount of noise , is shown with a continuous line (- ) in figures (c) and (d). 
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with the regularization parameter chosen as follows: A = 10-3 for exact mea..<;ure-

ments, and A = 10-2 for the case when h(t) is perturbed by a = 1% noise. From 

this figure it can be seen that the convergence of the minimization functional PI is 

rapidly achieved in 10 - 15 iterations. Figure 5.6(b) presents the computed Pf(x) 

in comparison to the exact solution given in (5.35), showing that the numerically 

obtained solution is stable (free of highly unbounded oscillations). The particular 

choices for the regularization parameter A have been found by applying the discrep-

ancy principle (5.29), as shown in Figures 5.6(c) and 5.6(d) for exact and 1% noisy 

measurements, respectively. 

5.6.3 Numerical Example for IP2 

In this section the initial condition (5.15), uo' and the Dirichlet boundary conditions 

(5.16)-(5.17), J-Ll and J-L2' are chosen as follows: 

x E [0,1]' (5.36) 

t E [0,00). (5.37) 

Also, considering t J = 1 and taking the time-average temperature measurement 

(5.19) as being 

x E (O, 1), (5.38) 

for the IP2, given by (5.1) with 1; = 0, (5.15)-(5.17), (5.19), we obtain the following 

analytical solution: 

(5.39) 
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Figure 5.7: (a) Logarithm of the objective functional Fll as a function of the number 

of iterations, (b) the numerically obtained Pj (x), (c) the discrepancy principle for 

exact dat a, a = 0, and (d) the discrepancy principle for a = 1% noisy data. The 

amount of noise I is shown wit h a continuous line (- ) in figures (c) and (d). 
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The direct solver involved in the minimization of (5.23) for IP2 uses a mesh of 

No = 90 and N = 100 that is uniformly discretising both the space interval [0, 1] 

and the time interval [0, t f = 1]. Figure 5.7 shows the numerical results when both 

exact data and 1% noisy errors are considered in the measurement E(x) given by 

(5.38). The functionalln(F\), shown in Figure 5.7(a), as a function of the number 

of iterations, is rapidly convergent in 8 - 10 iterations, for both the exact and noisy 

data. The results obtained for Pf, for exact data and ). = 10-8
, shown in Figure 

5.7(b), are acurate; however, for 1% noisy data and), = 0.8, they start to slightly 

deteriorate. These choices for the regularization parameter ). have been obtained 

by using the discrepancy principle (5.29), as shown in Figures 5.7(c) and 5.7(d) for 

exact and 1 % noisy measurements, respectively. 

5.7 Concluding Remarks 

The identification of the space-dependent perfusion coefficient in the bio-heat equa­

tion has been investigated when either Neumann or Dirichlet boundary conditions 

are considered. 

In the presence of initial and Neumann boundary conditions, with exact and noisy 

boundary temperature measurements taken into consideration, the inverse and ill­

posed bio-heat conduction problem has been solved numerically. The numerical 

method that we have developed consists of two parts. In the first step we develop 

a direct solver based on the Crank-Nicolson finite-difference method, which is then 

coupled with the second step given by an optimization routine. In effect, the algo­

rithm carries out a search over a class of continuous positive functions PI in order 
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to find a global minimum point for the nonlinear Tikhonov regularizing functional. 

The Tikhonov zeroth- and first-order regularization procedures have been applied. 

Both in the case of exact and noisy boundary temperature measurements, the results 

obtained have shown that the first-order regularization is both stable and accurate 

and performs better that the zeroth-order regularization for all the values of the 

parameter A that were considered by inspection. 

The numerical results presented are obtained for the measurement data 9 taken on 

the restricted time intervals [0, tJ ], for tJ E {I, 2, 4}. As expected, more accurate 

and stable results can be obtained if a larger time interval of measurements is con-

sidered. 

The second part of this chapter is devoted to the Dirichlet inverse problem. In 

the presence of the Dirichlet boundary conditions, two types of measurements arc 

considered as additional information, namely a flux measurement for I PI and a 

time-averaged measurement across the region of interest for I P2. These two inverse 

ill-posed problems arc solved numerically. For each of them we have developed al­

gorithms that, in essence, are structured similarly and consist of two parts. In a 

first part a direct solver based on Crank-Nicolson is developed. This part is then 

coupled with a second one given by an optimization routine in which the perfusion 

coefficient is found as a global minimizer of the first-order Tikhonov regularization 

functional, over a class of positive CCl functions. For all the examples considered, 

the results obtained represent a good and stable approximation of the target space­

dependent perfusion coefficient PI' The discrepancy principle is used to identify 

the appropriate regularization parameter A, in the presence of both exact and noisy 

measurements. 
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Chapter 6 

Inverse Temperature-Dependent 

Perfusion Coefficient 

Reconstruction 

6.1 Introduction 

In this chapter we investigate the identification of the temperature-dependent per-

fusion coefficient, Pf(T), which appears in the bio-heat conduction equation 

dT aT 
ax

2 
(x, t) - Pf(T(x, t))T(x, t) + E(x, t) = 8i(x, t), (x, t) E (0,1) x (0, tf]. (6.1) 

Given that the coefficient Pf depends on the temperature, we immediately observe 

the nonlinear character of the equation (6.1). This situation adds up to the dif-

ficulty already created by the nonlinear character of the induced inverse problem 

determined by the fact that both Pf (T) and T arc simultaneously unknown. 

Our investigation is focused on two inverse problems, namely IPI when the source 
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term E ¢ 0 is present, and IP2 when the source term is absent, i. e. E == o. In both 

IPI and IP2 we aim to identify the temperature-dependent coefficient PJ(T) > 0 

along with the temperature T(x, t), under prescribed initial and Neumann bound­

ary conditions, when an additional temperature measurement is taken on a part of 

the boundary along the time interval. It is noticed in the development of the nu­

merical algorithm that it is important to analytically discuss the conditions which 

ensure that the function PJ(T)T takes its maximum range on the measurement 

path, namely, in the case of our discussion, on that part of the boundary where the 

temperature measurement is taken. 

In the development of the numerical scheme for the direct solver, when attempt­

ing to design a Crank-Nicolson-type scheme, a major difficulty is induced by the 

nonlinearity of the system, which is caused by the solution dependence. One way 

to overcome this situation is to introduce a time stepping extrapolation scheme for 

approximating the value of the function PJ (T)T given its computed values at the 

previous time steps. Then, a linear system is obtained for computing the solution 

T at the current time step. Further, this direct problem solver is coupled with an 

optimisation scheme that is designed to obtain the minimum of a least-squares func­

tional which evaluates the difference between the measured data and the computed 

solution at the measurement space x time coordinates, when the space search is a 

class of polygonal lines that approximates the unknown PJ (T). 

In order to obtain a stable solution, the ill-posed character of the inverse problems 

under investigation require us to apply regularization methods. 
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6.2 Mathematical Formulation 

The two temperature-dependent perfusion coefficient identification inverse problems, 

namely 

• IPI when E ;fo 0, 

• IP2 when E = 0, 

seek the couple (Pj(T), T(x, t)), satisfying the bio-heat equation (6.1), subject to 

the homogeneous initial condition 

T(x,O) = 0, x E [0,1], (6.2) 

and the Neumann boundary conditions 

8T ax (0, t) = w(t), t E (0, t I], (6.3) 

aT ax (1, t) = 0, t E (0, t,]' (6.4) 

when additional information is given as a temperature measurement at the boundary 

point x = 0, along the time interval, namely 

g(t) = T(O, t), t E [0, t,l. (6.5) 

Let us denote 

f (T) := Pj (T)T. (6.6) 

Then equation (6.1) becomes 

dT 8T 
-2 (x, t) - f(T(x, t)) + E(x, t) = -a (x, t), (x, t) E (0,1) x (0, t,). (6.7) ax t 

Moreover, IPI and IP2 can equivalently be recast as inverse problems I PI and 

I P2 for finding the unknown quantity f(T). This is performed immediately just 
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by replacing equation (6.1) with equation (6.7), where 1 is subject to the following 

constraint: 

1(0) = o. (6.8) 

As soon as 1 is identified, the temperature-dependent perfusion coefficient PI is 

found as the ratio 

(6.9) 

provided that T is bounded away from zero, except perhaps where 1 itself vanishes. 

Prior to this study, the determination of the reaction function 1 (T) in the I P2, given 

by equations (6.2)-(6.5) and (6.7) with ~ = 0, has been investigated in Cannon and 

DuChateau [13] and Fatullayev [50] in one-space dimension, and in DuChateau and 

Rundell 147] and Fatullayev [51] in multi-space dimensions, whilst the I PI with 

~ ¢. 0 has been investigated in Pilant and Rundell [84, 85, 86, 87]. For other inverse 

formulations of parabolic equations for determining a semilinear term we refer to 

Cannon and DuChateau [12], Choulli and Yamamoto [31], Li [67], Lorenzi [70], 

Orlande and Ozisik [76] and Zeghal [119]. 

Let us define ~a., a E (0,1]' as the space of Holder continuous functions with 

exponent a, which is equipped with the usual norm 

II u Ila= sup lu(P)1 + sup 
PEDom(u) P,QEDom(u) 

lu(P) - u(Q)1 
d(P,Qt 

(6.10) 

and let us denote by ~k+Q the space of functions whose k-th derivative belongs to 

~. In particular, for k = 0, a = 1, the space 1f0+! coincides with the space of 

Lipschitz functions. We denote by 1f the space of continuous functions and by 1fl 

the space of smooth functions. 

When 1 is known and belongs to the set of Lipschitz functions with uniform Lipschitz 
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constant, i.e. 

f E {1 E cco
+

1
(JR)1 1(0) = 0, II 1 IIl~ c}, (6.11) 

one can establish the existence and uniqueness of the temperature solution T of the 

direct problem given by equations (6.2)-(6.4) and (6.7), see Friedman [53]. 

The following theorem describes the properties of the solution for the direct problem 

given by equations (6.2)-(6.4) and (6.7). 

Theorem 6.2.1 Let us assume that f E CC
1
(JR), and consider the data 

wE {W E CC([O, t,DI w(O) = 0, w(t) < 0, t E (0, t,)}, 
(6.12) 

In addition, we suppose that there exists C > 0 such that IT(x, t)1 ::; C, for all 

(x, t) E [0,1] x [0, ttl· 

Then the solution of the direct problem (6.2)-(6.4) and (6.7) has the following prop-

erty: 

a) 

(x,t) E [0,1] x [O,t,]. (6.13) 

In particular, this implies that for any fixed t E (O,t / ), T(l,t) ::; T(x,t) ::; 

T(O, t) = g(t), for all x E [0,1]. 

b) If, in addition, we suppose that E - max f(~) 2:: 0, then T(x, t) 2:: ° for all 
{E[-C,Cl 

(x, t) E [0,1] x [0, tIl· 

Proof: The proof of part a) follows a path similar to the one made for Theorem 1.1 

from Cannon and DuChatcau [13]. Let us consider G(·,·) : [0,1] x [0, t/] -+ JR an 
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arbitrary non-negative continuous function G oj. 0, and let us suppose that ¢(".) : 

[0,1] x [0, t
f

] --+ JR is the solution of the following problem: 

~(x, t) + B(x, t) - j' (T(x, t))¢(x, t) = G(x, t), (x,t) E (0,1) X (O,t f ), 

x E (0,1), 

¢(O, t) = 0, ¢(1, t) = 0, 

(6.14) 

We note that the system (6.14) is backward in time but is well-posed due to the 

reverse parabolic character of the partial differential equation. 

Since f E eel (JR) and max ITI ~ C, we obtain that j' (T(x, t)) is bounded in 
[0,1] x [O,tf ] 

(0,1) x (0, tf)' Therefore, since G 2:: 0, G to, using a maximum-minimum principle 

argument, we obtain that 

¢(x, t) < 0, (x, t) E (0,1) x (0, tf)' (6.15) 

which implies that 

a¢ ax (0, t) < 0, (6.16) 

Let us now evaluate the integral 

tf 1 

J J ~~ (x, t)G(x, t)dx dt. (6.17) 

o 0 

Using integration by parts and invoking Fubini's theorem, we obtain 

tf 1 

J J ~~Gdxdt 
o 0 

tf 1 [2 ] tf 1 [ 2 
= J J aT a4> + f4 - J' (T)¢ dx dt = J J aT EJi + aT 4 - .2... [f(T)] A-] dx dt ax at ax ax at ax ax ax 'P 

o 0 0 0 
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x=I 
tJ tJ I [ 2 I tJ 2 =1 [T a¢ + aTa¢ - f(T)¢] dt - II ~~ - f(T)~] dxdt - I IT.!!J!..dtdx at ax ax ax ax ax r'Jxat 
o x=o 0 0 0 0 

x=I 
t J t J 1 2 1 I t=t, 

=1 [T~ + aT~ - f(T)¢] dt - II [~~ - f(T)~] dxdt - IT~ dx+ at ax ax ax ax ax ax 
o x=o 0 0 0 t=o 

1 tJ 
II 8T~dtdx at ax 
o 0 

Therefore, since equation (6.7) implies 

we obtain that 

tJ 1 

I I ~~Gdxdt 
o 0 

x=l 
tJ 1 It=t, t, 1 

= I [T~ + aT ~ - f(T)¢] dt - I T0P. dx + I I !!.P.r.dx dt at ax ax ax ax 
o x=O 0 t=o 0 0 

x=l t t x-I 

(6.18) 

tJ I 1=' t, - tJ 1 
= I [T~ + ~~~ - f(T)¢] dt - IT~ dx + I ¢E dt - I I ~;¢dxdt 

o x=O 0 t=O 0 x=O 0 0 

(6.19) 

Let us note that ¢(x, t,) = 0, for all 0 ::; x ~ 1, implies that ~(x, t,) = 0, for all 

o ::; x ~ 1, and recall that T(x, 0) = O. Therefore 

1 t=t, 

f T 8¢ dx = O. 
8x (6.20) 

o t=o 

Similarly, from ¢(O, t) = ¢(1, t) = 0, for all 0 < t < t f we obtain that ~(O, t) = 

a¢ (1 t) = O. This implies that 
at ' 

x=I 

dt = O. (6.21) 

x=o 
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From 4>(0, t) = 4>(1, t) = 0 we also obtain that 

x=l 

dt = O. (6.22) 

o x=o 

Finally, using the boundary conditions (6.3)-(6.4) we obtain that 

x=l t, 
dt = - J w(t) ~~ (0, t)dt (6.23) 

x=o o 

Using equations (6.20)-(6.23), equation (6.19) recasts as 

tIl t, tIl 

J J ~~ (x, t)G(X, t)dx dt = - J W(t)~(O, t)dt - J J ~; (x, t)4>(X, t)dx dt. (6.24) 
o 0 0 0 0 

Thus, from equations (6.15)-(6.16) and the hypotheses that w(t) < 0, t E (0, t,), 

and ~; (x, t) :::; 0, (x, t) E (0, 1) x (0, t,), we obtain 

t, I 

J J: {x, t)G(x, t)dx dt < O. (6.25) 

00 

Therefore, given the fact that G was chosen as an arbitrary non-negative continuous 

function, we conclude that 

aT 
ax (x, t) :::; 0, (x, t) E [0,1] x [0, t,]. (6.26) 

This follows immediately since, if we suppose by absurd that there exists a ball 

B((x ,to),r) such that the continuous function ~TIB(( )) remains strictly pos-o x xo,to ,T 

itive, i.e. ~~(x,t) > 0, (x,t) E B((xo,to),r), then by choosing a non-negative 

continuous function G(B(%o,to),r) t= ° so that its support is included in B((xo, to), r), 

we obtain that t, I 

J J: (x, t)G(B(:Z:o,to),r) (x, t)dx dt > ° 
o 0 

and this contradicts (6.25). This proves (6.26) and part a) of the theorem. 
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Let un now prove part b) of the theorem. Since here we assume E - max f(~) 2: 0, 
{E[-C,C) 

from (6.7) we obtain that 

(x,t) E [0,1] x [O,t,]. (6.28) 

Then the desired conclusion that T(x, t) 2: 0 for all (x, t) E [0,1] x [0, t,] follows 

from the argument involved at the end of the proof of Theorem 1.1 of Cannon and 

DuChateau [13], via the use of the max-min Hopf principle, see Cannon [11], p.261. 

This completes the proof of the entire theorem. 

o 

The following theorem ensures the local solvability of the inverse problem I PI, given 

by equations (6.2)-(6.8). 

Theorem 6~2.2 (Pilant and Rundell [84]) Let us consider the data 

W E {w E Cjfl+1([O, tfDI w(O) = 0, Wi (t) < 0, t E [0, tfl} , 

E E {E E 1fO+1«0, 1) x (0, t,))1 E(x, t) > 0, (x, t) E (0,1) x (0, t,)} , 

9 E {g E Cjf1+1([0, tf))1 g(O) = 0, g'(O) = E(O, 0), g'(t) > 0, t E (0, tf )}. 

(6.29) 

Further, by taking 1/J to be the solution of the problem 

~(x, t) - ~(x, t) = E(x, t), (x, t) E (0,1) x (0, tf)' 

1/J(x,O) = 0, x E [0,1]' (6.30) 

~(O, t) = w(t), ~(1, t) = 0, 

we assume that there exists C > 0 such that II g'(.) - ~(O,.) 111< C. 

Then, for the inverse problem I PI given by equations {6.2}-{6.8}, there exists a 
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unique local solution (T, f(T)) in the class of functions: 

(i) T(·, t) E CC2+1([0, 1]), t E (0, t,), 

(ii) T(x,') E ("6'1+1([0, t,]), x E (0,1), 

(iii) f E CtfO+1(lR.). 

Remark that the first two conditions in (6.29) are required in order to ensure that 

T(O, t) = g(t) is monotonic increasing for all t E [0, t,]' and, by the maximum 

principle, that 

T(x, t) :::; T(O, t), (x, t) E [0,1] x [0, t,]' (6.31) 

when f is given and satisfies (6.11). 

Alternatively, these properties can also be ensured, see Pilant and Rundell [86], if 

one assumes the first condition in (6.29) and that 

- 1+1 ())I -() aE E E {E E Ctf ((0,1) X O,t, E x,t > 0, ax (x,t):::; 0, (x,t) E (0,1) x (O,t,)}. 

(6.32) 

In order to be able to recover f(T) over the entire range of the values of T(x, t) that 

appear in equations (6.2)-(6.8), it is necessary to have the function T(x, t) take on 

its maximum range at the boundary x = 0, where the additional (overposed) data 

(6.5) is prescribed. From (6.31) we obtain that the maximum of T is obtained at 

x = O. In order to ensure that the minimum of T is attained also at x = 0, the 

additional hypothesis of part b) of Theorem 6.2.1 needs to be satisfied, namely that 

E - supf(~) ~ O. 
{ElR 

The next theorem describes the properties of the solution for the direct problem 

given by equations (6.2)-(6.4) and (6.7) with E = O. 
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Theorem 6.2.3 (Cannon and DuChateau [13]) In the direct problem given by 

(6.2)-{6.4) and (6.7) with ~ = 0, let f E CC(JR) and piecewise differentiable, 

wE {w E CC([O,t,))1 w(O) = 0, w(t) < 0, t E (O,t,)} , 

and assume that there exists C > ° such that IT(x, t)1 ~ C, for all (x, t) E [0,1] x 

Then we have 

aT 
ax (x, t) < 0, (x, t) E [0,1] x [0, t,]. (6.33) 

In particular, for any fixed t E (0, t,), g(t) = T(O, t) > T(x, t) > T(1, t), x E (0,1). 

Remark that the parts b) of Theorem 1.1 and Corollary 1.1 from [13] do not apply 

to our equation (6.1) since - f(T)T = -Pf (T)T
2 

:::; 0, as we have Pf(T) > 0. 

Finally, the following theorem ensures the uniqueness for the solution of the inverse 

problem I P2. 

Theorem 6~2.4 (Cannon and DuChateau [13]) Let 

wE {w E CC([O,t,DI w(O) = 0, w(t) < 0, t E (O,t,)}. 

Suppose fl' f2 E CC(JR) are piecewise differentiable and 

such thatg,(t) =T(O,t;f"w), fort E [O,t,]' i = 1,2. 

Then it follows that: 

g,(t*) = T*, i = 1,2; 
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b) if fl and f2 are distinct in £2([0, T#]) for some T# > 0, then gl(t) and g2(t) 

are distinct in CC([O, t#]) for some t# > o. 

Remark that for the solution Pf(T) ~ 0 to exist, the data (6.3) and (6.5) must 

satisfy 
t 

o ~ J w(r)g(r)dr, (6.34) 

o 

This inequality can be deduced immediately by remarking that in equation (6.1), 

after preforming a multiplication with T and integrate the result with respect to 

x from 0 to 1, and with respect to t from ° to t, we then can employ equations 

(6.2)-(6.5), and (6.34) follows. 

6.3 Numerical Approach 

A finite-difference algorithm based on a Crank-Nicolson-type finite-difference scheme, 

see Dahlquist and Bjorck [34], pp.387-389, is developed in order to solve the direct 

problem for the parabolic nonlinear equation (6.7), subject to the initial condition 

(6.2) and the boundary conditions (6.3) and (6.4). This algorithm is then connected 

with an optimization routine. After choosing a convenient residual functional, a gra-

dient based optimisation procedure is employed in order to minimize this functional 

over the space of all polygonal lines that approximate the function f. 

6.3.1 Polygonal Approximation for f(T) 

As remarked in Pilant and Rundell [86], in order to be able to recover f(T) over 

the entire range of values of T(x, t) that appear in equations (6.2)-(6.5) and (6.7), 

it is necessary to have the temperature T(x, t) take on its maximum range at the 
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boundary x = 0, where the overposed data (6.5) is prescribed. Thus, if we assume 

that the conditions of Theorem 6.2.2 are satisfied and that 

° :$ T(x, t) :$ T(O, t), (x, t) E [0,1] x [0, tl], (6.35) 

then, we seck to determine f(T) and subsequently PJ(T) on the interval I := 

[0, g( t I)]' Let ° = tl < t2 < ... < t N = t I be a uniform discretization of the interval 

[0, tl] with step ~t = :~1' Then, an a priori knowledge of a (N - I)-dimensional 

vector of angles, 8 := {Bk}k=I,N_I' provides us with a polygonal approximation 

f(8; .) : I ~ R. for f, which is defined by 

f(8jT) := 

T E [T(O, tJ, T(O, t:/)], 

j-l T E [T(O, t j ), T(O, tj+l)], 
(T - T(O, tj)) tanBj + ~1 (T(O, t k+l ) - T(O, tJ) tanBk' 

2:$j:$N-1. 

(6.36) 

6.3.2 The Direct Solver 

In this step, we want to determine the temperature T(x, t), given the assumed 

knowledge of an approximating polygonal line f(8; T). Let us denote this computed 

solution by T comp (8j (x, t)) and immediately remark that the initial condition (6.2) 

implies that T
comp

(8j (x, 0)) = 0. 

According to the so-called method of lines, see Dahlquist and Djorck [34], p.388, we 

consider first a uniform space-discretization ° = Xl < x'l < " < X No = 1, of step 

~x = N 1_
1

, Using central finite differences to approximate the Laplacian, we apply 
o 

this discretization to the equation (6.7) and obtain the following system of ordinary 
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differential equations: 

i = 2, No - 1, (6.37) 

where, for any i E {I, ... , No}, the functions ~,fi' L:. : [0, tfl -+ 1R are defined by: 

Further, we remark that, for any arbitrary t* E [0, t f - ~t], by integrating equation 

(6.37) over the interval [t*, t* + ~t], we obtain 

(6.38) 

i = 2, No-1. 

Assuming t* E {tl' t2 , ••• , tN_J, in order to numerically integrate the right-hand side 

6f each of the equations from the system (6.38), we apply a degenerate trapezoidal 

rule with one subdivision. Thus, by denoting T.,; := T.(t;), fi,; := f.(tj)' L:.,j := 

~i (t
j

), for all i = 1, No, j = 1, N, we obtain 

+-21 [L: -+1 + E_ -] , 
I" ',3 i = 2, No -1, j = 1, N - 1. 

(6.39) 

Using the initial condition vector {~1} _ = {O} __ - as a starting point, the 
I i=l,No ,-l,Na 

solver proceeds to march forwards in time. For any time index j ~ 1, the unknown 

vectors {T',Hl} __ and {f',Hl} _ will be obtained using the knowledge of the 
.=I,No .=~ 

vectors {~,;} _ and {f.,;} __ , which have been computed at the time level 
'=I,No .=I,No 

j - 1. Given the knowledge of the vectors {f.,q} __ , 1 ::5 q ::5 j, we extrapolate the 
.=I,No 
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vector {f. '+I} _ as follows: 
1,.1 i=l,N

O 

7'.,;+1 tan(BJ, if j = 1, 

f.,;+1 - i = 1, No. (6.40) 

2 f, , - f, '1' if J' ~ 2, 
J '.' 1,,-

For any angles vector e and any time level j ~ 1, let us define the No -dimensional 

vector {b(e,j)(p)}P=I,N
o 

as 

if P = 1, 

+ T. (T +1 ,-2T ,+T 1') f, ::e..1.. + P,J p,J P- ,J _ ~ 

l:!..t 2 (l:!..x) 2 2 , 

(6.41) 

Also, let us consider the No x No matrix A given by 

1 + 1 
(l:!..x) 2 l:!..t' 

if k = I, 1= 1, No, 

1 if k = 1+1, 1= 1, No - 1, - 2(l:!..x)2 , 
AIe,1 := (6.42) 

1 ifl = k + 1, k = 1,No -1, - 2(l:!..x)2, 

0, otherwise. 

Then, from the system (6.39) and equations (6.40)-(6.42), the unknown vector 

{7'.,HI} '=I,N
o 

is obtained as the solution of one of the following linear systems of 

equations: 

a) if j = 1, then 

(6.43) 
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b) if j ~ 2, then 

(6.44) 

where I is the No x No- identity matrix. 
No 

6.3.3 The Optimization Procedure 

During the optimization procedure, in order to be able to use a NAG routine that 

would obtain a minimum of a function defined on the entire IRN-l, it is convenient to 

map bijectivcly the interval (0, %) into R via the change of variable ((0) = tan(20-

%), ° E (0, %). Thus, the angles vector 8 := {OJk=T,N=I defines a corresponding 

vector Y:= {Yk } --, given by:-k=I,N-I 

k = I,N-1. (6.45) 

Then, via the transformation (6.45), for any 8, the computed solution T
comp

(8; (x, t)) 

induces a corresponding function T
comp 

(Y; (', .)) ~ R, given by 

camp ( ()) comp T Y; x, t := T (8; (x, t)). (6.46) 

Our aim is to identify an optimal vector of angles e such that the corresponding 

vector Y is the minimum of the order-one Tikhonov regularization functional PI : 

Pl (y):=,.\ II y'(t) II: (0 t ) + II T camp 

(y; (0, t)) - g(t) II: (0 t ) 
2 'I 2 'I 

(6.47) 

where ,.\ > ° is a regularization parameter to be prescribed, and Y is regarded as 

a discretization of the smooth function y. If one assume continuity of y only, then 
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the first term A II y' 112 ) in the order-one Tikhonov functional (6.47) should be 
£2(0,11 

replaced by A II Y 112 giving rise to the order-zero Tikhonov functional, which 
Co 2 (0,1

/
) 

can also be employed with no major modifications. 

Remark that when A = 0, expression (6.47) coincides with the classical least-squares 

functional. However, as could be noticed also in Fatullayev [50, 51] where a similar 

version of least-squares functional has been used, without using regularization, an 

unstable solution is obtained. 

We start the optimization procedure with the initial guess eO := {e:}It~1.N=T = 

{1!:} __ , and this is passed to the direct solver, which computes the corresponding 
4 1t=I,N-I 

numerical solution TcomP(eo; (x, t)). This solution is returned to the optimization 

routine which starts the search for minimizing PI' given in (6.47). For doing this, 

we use the NAG routine E04FCF. Once the minimizer Y* := {y*} for F has It 1t~1.N=T I 

been found, the corresponding vector of angles e* = {e:} 1t=T;7V-T is obtained via the 

inversion formula 

k = 1, N - 1. (6.48) 

The inverse problem under investigation is solved subject to both exact and noisy 

measurements 

l~(t) = g(t)(1 + aT}) , (6.49) 

where a is the percentage of noise and T} are random variables generated from a 

uniform distribution in the interval [-1,1], using the NAG routine G05DAF. 

Suppose that we know an upper bound I > 0 such that 

(6.50) 
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Then the regularization parameter ,\ is chosen according to the discrepancy principle 

as follows. Considering the functional F : [0, 00) ~ ~+, defined by 

(6.51) 

the Morozov discrepancy principle suggests choosing the regularization parameter 

as being the largest value ,\ > ° for which 

F('\) ~ c. (6.52) 

6.4 Numerical Results and Discussions 

Throughout this section, the space interval [0, 1] is discrctized into No = 90 uniform 

cells, while the time interval [0, t J ] is discretized into N = 100tJ uniform time 

intervals, where, for simplicity, we take t J = 1. 

6.4.1 Numerical Example for IP1 

Let us consider the Neumann boundary condition (6.3) given by 

or t 
-(0, t) = w(t) = -2(e - 1), ax 

and the source E given by 

t E [0, 1], (6.53) 

E(x, t) = et(x - 1)~ - 2(e
t 
-1) + (x - 1)2{e

t 
-1) [(x - l)"(e

t - 1)~ + 1] , 

If the temperature measurement (6.5) is given by 

T(O, t) = g(t) = e' - 1, 

157 

(x, t) E [0,1] x [0,1]. 

(6.54) 

t E [0,1]' (6.55) 
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Figure 6.1: Example for IPl. (a) Logarithm of the objective functional Fll as a 

function of the number of iterations, (b) the numerically obtain d PI (T), (c) the 

discrepancy principle for exact data, a = 0, (d) the discrepancy principl for a = 1% 

noisy data, and (e) the discrepancy principle for a = 3% noisy data. 
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then, with the input data (6.53)-(6.55), the inverse problem 1 PI, given by equations 

(6.2)-(6.8), has the analytical solution 

2 t 
T(x, t) = (x - 1) (e - 1), f(T) = T(T2 + 1). (6.56) 

Using the transformation (6.6), we obtain the solution for the inverse problem 1 PI 

2 t 

T(x, t) = (x - 1) (e - 1), (6.57) 

Figure 6.1 shows the numerical results when both exact data, and 1% and 3% errors 

are included, as in (6.49), in the measurement g(t) given by (6.55). The functional 

In(FJ, shown in Figure 6.1(a), as a function of the number of iterations, is very 

fast converging for exact data in 5 iterations, and for 1% and 3% noisy data in 25-

35 iterations. From Figure 1 (b) it can be seen that the results obtained for PI (T) 

using exact data for A = 10-6
, 1% noisy data for A = 10-:1, and 3% noisy data 

for A = 5 X 10-3, are accurate and stable. These choices for the regularization 

parameter A have been obtained by using the discrepancy principle (6.52), as shown 

in Figures 6.1(c), 6.1(d), and 6.1(e) for data which is exact, 1% noisy, and 3% noisy, 

respectively. 

6.4.2 Numerical Example for IP2 

For the 1 P2, the source term E is absent, i.e. E = O. Considering here the same 

Neumann boundary condition (6.53), we aim to retrieve the perfusion coefficient 

(6.58) 

for the inverse problem 1 P2, which, via the transformation (6.6), can equivalently 

be formulated as the coefficient identification 1 P2, seeking to reconstruct 

f(T) = T(T2 + 1). (6.59) 
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Since in this case an analytical solution for the direct problem given by (6.1) with 

~ = 0, (6.2), (6.4), (6.53) and (6.58) is not available, the additional Dirichlet bound­

ary temperature data (6.5) was computed numerically, by using the NAG routine 

C05NCF to solve the resulting system of nonlinear finite-difference equations. 

Figure 6.2 shows the numerical results, when Q E {O, 1, 3}% noise is perturbing the 

data 9 as in (6.49). In Figure 6.2(a), In(F1 ) is represented as a function of the 

number of iterations, obtained when the data arc assumed exact for A = 10-6 , 1% 

noisy data for)' = 5 X 10-4
, and 3% noisy data for)' = 10-3• From this figure it 

can be seen that the convergence of the minimization functional Fl is immediately 

achieved in only 5 - 9 iterations for a = 0 and 1% noisy data, and in 49 iterations 

for a = 3% noisy data. Figure 6.2(b) shows the plots of the computed solution for 

Pf(T). From this figure it can be seen that the computed results are an accurate 

and stable approximation of the exact perfusion coefficient given in equation (6.58). 

Figures 6.2(c), 6.2{d) and 6.2{e) show the discrepancy principle (6.52) for Q = 0, 

a = 1%, and Q = 3%, respectively. From these figures it can be seen that the 

discrepancy principle enables us to efectivcly locate the regularization parameter A, 

when both exact and perturbed noisy measurements arc considered. 

6. 5 Conclusions 

Two inverse problems concerning the identification of the temperature-dependent 

perfusion coefficient in the bio-heat conduction equation (BHCE) have been investi­

gated. In the presence of initial and Neumann boundary conditions, a measurement 

of the temperature on a part of the boundary is considered as additional informa-
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discrepancy principle for exact data, Q = 0, (d) the discrepancy principle for Q = 1 % 
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tion in the presence of a source, ~ ¢. 0, for IP1, and without a source, i. e. ~ == 0, 

for IP2. Solvability results for these inverse problems have been provided. These 

inverse and ill-posed problems have then been solved numerically. For each of them 

we have developed algorithms that, in essence, are structured in a similar manner 

and consist of two parts. In the first part, a direct solver based on a Crank-Nicolson 

finite-difference technique is developed. This part is then coupled with a second one 

given by the first-order Tikhonov regularization method. The discrepancy principle 

was employed to determine the appropriate regularization parameter A, in the pres­

ence of both exact and noisy measurements. The perfusion coefficient is found as 

the ratio between an optimal polygonal approximation of a temperature-dependent 

function and the temperature itself. For both examples considered, the numeri­

cally obtained results represent an accurate and stable approximation of the desired 

temperature-dependent perfusion coefficient Pf(T). Extensions to two-dimensional 

steady and unsteady BHCE with polynomial temperature-dependent perfusion coef­

ficient have been investigated very recently elsewhere, see Deng and Liu [45], Erhart 

et al. [49], and Partridge and Wrobel [79], using the dual reciprocity boundary 

clement method. 
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Chapter 7 

Reconstruction of the Space- and 

Time-Dependent Blood Perfusion 

Coefficient in Bio-Heat Transfer 

7.1 Introduction 

In this chapter, we perform a numerical investigation for the reconstruction of the 

perfusion coefficient that is considered dependent both of space and time, Pf(x, t), 

which appears in the bio-heat conduction equation 

a2T aT 
-2 (x, t) - Pf(x, t)T(x, t) = -a (x, t), (x, t) E (0,1) x (0, t/], (7.1) ax t 

subject to initial and Dirichlet boundary conditions, when additional information 

is provided in terms of exact a noisy temperature measurements taken on a certain 

fixed grid inside the space x time domain. 

Since in the small subregion occupied by a thermocouple contact surface tempera-
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ture data are, in effect, recorded both in space, all across the contact region, and in 

time, during an entire measurement process, this inverse problem essentially refers 

to the blood perfusion rate which occurs in this small skin-thermocouple contact 

interface. Also, in a different application, this inverse problem arises in an investi­

gation related to coastal evolution and sediment transport, see Reeve and Spivack 

[95]. 

For the numerical approach, at least two methods could be considered. A first 

method involving a Crank-Nicolson-type scheme combined with the minimization 

of a first-order Tikhonov regularization functional, gives a global perspective. How­

ever, we can immediately observe that even if a very coarse grid is considered, we 

unavoidably arrive to the situation in which systems with a very large number of 

equations (of the order of the number of discretization points in the space x time 

domain) are to be solved during the optimisation step. This aspect alone can cause 

a major downgrading effect on the accuracy and stability properties of the numerical 

results, especially for the case when the measured data are affected by noise. This 

situation could be improved if a local approach is involved. 

In the second strategy, both the first-order time derivative and the second-order 

space derivative can be obtained by means of first kind Fredholm integral equations. 

Since numerical solutions of the first kind integral equation have well-known inher­

ited instability issues even for exact measurement data, regularization methods have 

to be employed in order to obtain stable results. 
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7.2 Mathematical Formulation 

Let us consider a fixed uniform discretization of the space x time domain [0, 1] x [0, t,] 

using N time intervals and No space cells, i.e. tj = jt,IN, j = 1, N, Xi = ilNo' 

i = 0, No. Let us define Yi := (Xi +xi_J/2, i = 1, No, be the midpoint of the interval 

[X
i
_ 1 , x.] for i = 1, No· 

We wish to identify the couple (Pf(x, t), T(x, t)), satisfying the BHCE (7.1), subject 

to the initial condition 

T(x, 0) = u(x), X E [0,1]' (7.2) 

and the Dirichlet boundary conditions 

T(O, t) = /1 (t), T(I, t) = 12 (t), (7.3) 

when additional information is supplied on either of the following two discretization 

grids: 

a) temperature measurements at {(Xi' t.)}. . ~ given by 
J ,-1,(No -1)"=1,,. 

b) temperature measurements at {(Yil tj )}i=l,N
o

,j=1.N given by 

(7.5) 

Instead of the Dirichlet boundary conditions (7.3), Neumann or mixed boundary 

conditions can easily be considered. 

The measurements (7.4) and (7.5) are set up at slightly different space positions only 

for the convenience of explanation of Sections 3 and 4. All what one really needs to 

know is that in principle we wish to determine Pf(x, t) from the noisy measurements 

of T(x, t). 
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7.3 Global Least-Squares Minimization Approach 

A Crank-Nicolson-type finite-difference algorithm based on the method of lines, see 

Dahlquist and Bjorck [34], pp.387-389, is developed in order to solve the direct 

problem for the parabolic equation (7.1), subject to the initial condition (7.2) and 

the Dirichlet boundary conditions (7.3). This algorithm is then connected with an 

optimization routine in order to obtain the perfusion coefficient Pf as the minimum 

point for the least-squares functional F : CC([O, 1] x (0, t f ]) ---+ IR+, given by 

No-l N 

F(q) := L L [Tcoml'(q; (Xi' t,)) - G1 (X" t,)f ' q E CC([O, 1] x (0, tfD, (7.6) 
i=l j=l 

where CC([O, 1] x (0, t
f
]) is the space of continuous functions and Tcoml'(q; (', .)) is the 

solution computed via the Crank-Nicolson-type algorithm for the guessed continuous 

function q(x, t) that is used as a replacement for the currently unknown perfusion 

coefficient Pf(x, t). In this formulation, uniqueness of the solution cannot in general 

be assured, because the dependence on Pf and T in equation (7.1) is nonlinear, and 

also onc is typically attempting to reconstruct a continuous function Pf (x, t) from 

a finite N x (No - 2) tempcrature measurements information. Associated with the 

minimization of (7.6), one could also attach the physical constraint that the sought 

perfusion coefficient is positive, but the problem is further complicated since the 

measurements (7.4) or (7.5) are subject to noisy errors, or can be vanishingly small. 

The optimization procedure is started with an initial guess {qo.}. . = 
',J ,=l,(No -l),J=l,'N 

1 which is transmitted to the direct solver that computes the numerical solution , 

Tcomp(qOj (x, t)). This solution is returned to the optimization routine which starts 

the search for minimizing F, given in (7.6). In order to do this, we use the NAG 

routine E04FCF. 
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7.3.1 Numerical Example 

Let us set, for simplicity, t I = 1 and consider the initial condition (7.2) given by 

T(x,O) = u(x) = e-:Z: (x
2 + 4), x E [0,1]' (7.7) 

the Dirichlet boundary conditions (7.3) given by 

T(O, t) = 11 (t) = e -t (2t + 4), T(I, t) = 12 (t) = e -t-l (2t + 5), t E (0,1], (7.8) 

and the temperature measurements (7.4) given by 

i = 1, (No - 1), j = 1, N. (7.9) 

Then, the inverse problem given by equations (7.1), (7.7)-(7.9), has the analytical 

solution 

-(",H) ';I) 
T(x, t) = e (2t + x + 4 , Pf(x t) = 2 _ __ 4_x=--_ 

, 2t + x';l + 4' (7.10) 

and this can be verified by direct substitution. For this global minimization ap-

proach, the time interval [0, tIl is discretized into N = 20 uniform time intervals 

and the space interv~l [0,1] is discretized into No = 20 uniform cells. However, bo-

cause the dimension of the least-squares resulting functional (7.6) is (N x (No - 2)), 

with (N x (No - 2)) unknowns, a finer discretization becomes computationally un-

feasible. 

Figure 7.1 shows the contour plots of the numerical results for Pf(x, t) obtained for 

both exact and 1% noisy data in comparison with the exact solution (7.10), in the 

space x time domain [0,1] x [0,1]. As shown in Figure 7.1{b), using exact data, by 

minimizing the least-squares functional F given by (7.6), the numerically obtained 

results represent a very good approximation, with four digits accuracy, to the exact 
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, for 1% noisy 

data. 
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solution illustrated in Figure 7.1(a). However, by perturbing the data (7.9) with a 

percentage 0: = 1% of random noise 7J sampled from a uniform distribution over the 

interval (-1,1), namely 

i = 1, (No - 1), j = 1, N, (7.11) 

the results become very unstable and inaccurate. This is to be expected, since the 

inverse problem under investigated is unstable, i. e. small errors in the mea.surement 

data (7.9) cause large deviations in the solution for Pf(x, t). Numerically, this insta-

bility is manifested in large unbounded oscillations in the solution, sec Orla.ndc and 

Ozisik [77]. In order to alleviate these oscillations, in the minimization algorithm, 

the least-squares functional given in (7.6) is replaced by the order-O Tikhonov reg-

ularization functional Fl : <tf([O, 1] x (0, tID -+ R+, given by 

2 

F1(q) := F(q) + Ao II q II , q E <tf([O, 1] x (0, tID, (7.12) 

where Ao 2:: ° is a regularization parameter to be prescribed. 

We immediately observe that for Ao = ° the two functionals, F and F I , coincide. 

Figure 7.1(c) shows the results obtained for 0: = 1% when minimizing Fll for the 

regularization parameter Ao = 10-3
. From this figure it can be seen that the results 

obtained, when 1% noise is perturbing the measurements, are not oscillatory any-

more (in contrast to the case when Ao = 0, i.e no regularization is added, where we 

have large oscillations), but they are still quite inaccurate. Other values of Ao' in 

the range 10-" < Ao < 10-
2 

produced similar results, and, as expected, if Ao is too 

small, the solution in under-smoothed and it becomes unstable, whilst if Ao is too 

large, the solution is over-smoothed and it deviates from the exact solution. 

The inaccuracy observed in Figure 7.1(c) led us to propose and investigate a second 
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approach for the case when noisy measurements are considered. 

7.4 Local Approach 

In this second approach, we compute locally both the time first-order derivative tJJT 

2 

and the space second-order derivatives ~} by means of Fredholm integral equations 

of the first kind, see Hanke and Scherzer [54] and Murio [73]. Alternative approachcH 

based on the mollification, see Murio [73], or on the finite-difference method, sec 

Ramm and Smirnova [93] and Wang et al. [114], could also be cmployc(i. 

Everywhere in this section, we consider a discretization in hoth time and space with 

N = No = 100 and we consider the numerical example of scction 7.3.1 with the 

initial condition (7.7) boundary conditions (7.8) and the temperature mea.<;urcment 

(7.5) perturbed by Q% of random noise 'r} given by 

(7.13) 

7.4.1 Approximating the First-order Time Derivative 

For any i = 1, No, let us denote 4>lIi (t) := T(Yn t) - u(yJ. Then from (7.2) we have 

4>lIi (0) = O. Also, ~T (Yn t) = 4>:i (t). Then we have 

t t, 

4>1I/t ) = J 4>:/r)dr = J kl (t, r)4>:/r)dr, (7.14) 
o 0 

where the kernel k1 (·,·) : JR2 -4JR+ is given by 

( 

0, 
k1(t,r):= 

1, 

t < T, 

(7.15) 
t > T. 
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Let us consider the uniform grid 7; =t,/(2N)+jt,/N, j = O,N, such that t; = 

(7;_1 +7,)/2 for j = 1, N. Then we approximate the integral in (7.14) as 

t, T. 

N ' 
4> (t) = J kl (t, 7)¢'. (7)d7 ~ " 4>'. (t J.) J kl (t, 7)d7, ~ ~ ~ ~ 

o j=l 
T,_1 

(7.1G) 

T; 

where the coefficients J kl (t, 7 )d7 have the following analytical expressiom;: 
T;_1 

T; 

J kl (t, 7)d7 = (7.17) 

T;_1 

By applying (7.16) at each tp I = 1, N, we obtain a system of equations whoHe 

N x N-matrix A is given by 
T, 

AI; = J kl (t p 7)dT, (7.18) 

T;_1 

and the N-dimensional right-hand side measurements vector {G(~ (y. , t .)} . given 
:I • , ,~l,N 

by 

j = 1, N. (7.19) 

Given the well-known instability of the solution of a first-kind integral equation, and 

the fact that in the resulting linear ill-conditioned system of equations 

(7.20) 

the right-hand side vector contains errors, the solution of (7.20) is sought by using 

order-k E {O, 1, 2} Tikhonov regularizations, sec e.g. Phillips [82], namely 

171 

k E {O, 1, 2}, 

(7.21) 



(a) 
10' 

(h) 
10' 

10' 

10' 

10' 

--a.f 10' 
:::: .; 
"9 1 

1O' 

10· ' 
10· ' 

10· ' 
10· ' 

10-' 10-' 10- t 1O' 10' 10' 10· ' 10 ' 1O' 

II At~ , - {Z; II IIA rf! - -;:' II - v, 

1O' 
(e) 

10' 

10' 

10' 

~ 10-1 

10-' 

10-' 

1 0~ 

10~ 
10· ' 10-' 10. 1 

II Af~ , - iXll 
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where, for any natural number m :2: 3, the (m - k) x Tn dimensional order-k 

smoothness matrices D,.(m), k E {O, 1, 2}, are defined by 

100 0 

010 0 
(7.22) 

o 0 o 1 

1 -1 0 0 0 

o 1 -1 0 0 
(7.23) 

o 0 o 1 -1 

1 -2 1 0 0 0 

o 1 -2 1 0 0 
(7.24) 

o 0 o 1 -2 1 

We solve the system of equations (7.21) using a Gaussian elimination method to 

obtain the first-order time derivatives for the temperature, ~~ (y" t), at every space 

point y" i = 1, No' For the choice of the regularization parameter .\,. we employ the 

L-curve method, see Hansen [56]. 

Figure 7.2 presents the L-curvcs, for order-k E {O, 1, 2} Tikhonov regularization 
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linear systems of equations, defined in (7.21), that are used to determine the time 

derivative ~I (Yl> t) at the fixed space point Y1 • As it can be seen from Figure 7.2, 

the L-curve method docs apply for choosing the Tikhonov regularization parame-

ter in the cases of order-O and order-1 regularizations, but it docs not apply for 

the order-2 regularization, although the results obtained with order-2 regulariza-

tion, for values of A2 larger than 10-1
, arc actually very good, and even better that 

the ones obtained with the order-l regularization, sec Figures 7.3(b) and 7.3{c). 

Regarding the order-O regularization, one may observe that although the lrcurve 

method docs apply for choosing the parameter Ao, sec Figure 7.2(a), the results 

obtained arc relatively poor in comparison to the one obtained with the order-l 

and -2 Tikhonov regularization approaches. 

The situation is very similar when computing the first-order time derivative ttf(y,. t) 

at all the other Y" i = 2, No, so that values for the parameter Ale for the oreier-A: E 

{O 1 2} Tikhonov regularizations, that were chosen for the approximation of aT (y t) , , i)t l' , 

are kept unchanged and applied also for these cases. 

7.4.2 Approximating the Second-order Space Derivative 

For any j = 1, N, let us denote ¢\ (x) := T{x, tj)- (1-x)!l (t j ) -X!2(tj)' Then from 

(7.3) we have ¢t.{O) = ¢t.{I) = O. Also, ¢;'.{x) = ~:I(x,tj)' Then, as described in 
,J J 

Collins et al. [32], ¢;'. (x) can be regarded as the solution of the following Fredholm 
J 

first-kind integral equation: 

1 

¢t. (x) = J k2(x, s)¢:'. (s)ds, 
J J 

x E [0,1] (7.25) 
o 
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where the Green's function k2 (x, s) is given by 

{ 

s(x - 1), 
k2 (x, s) = 

x(s - 1), 

s<x 

x ~ s. 

We approximate the right hand side of the integral equation (7.25) as 

Xi 

(7.26) 

(7.27) 

where the coefficients J k2 (x, s)ds have the following analytical expressions: 
X

i
_

1 

X X. 1 

( 

2 2 ) 
X -t - Xi - '2 + X i_ 1 , 

Xi J k2 (x, s)ds = 

Xi_l 

(7.28) 

By applying the equation (7.27) for each YP 1 = 1, No, we obtain system of equations 

whose No x No-matrix B is given by 

Xi 

Bli = J k2 (y" s)ds, 1, i = 1, No, (7.29) 
X

i
_

1 

and the No-dimensional right-hand side measurement vector {G~(y" tJ},=T:N::" given . () 

by 

1 = 1, No. 

(7.30) 

For the induced ill-conditioned linear system of equations, given the inherited insta-

bility of the Fredholm first-kind integral equation, and because the right-hand side 

vector is affected by noise, a solution is sought using ordcr-k E {a, 1, 2} Tikhonov 

regularization, namely 
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k E {O, 1, 2}, 

(7.31 ) 

where the k-th order smoothness matrices DIc(Na) arc defined in (7.22)-(7.2·1). 

We solve the system of equations (7.31) using a Gaussian elimination method Ilt 

every fixed time node t j' j = 1, N. 

Figure 7.4 presents the L-curves for order-k E {O, 1, 2} Tikhonov rep;ulilrilmtioll 

used in linear systems of equations, defined in (7.31), corrcsponninp; to the scco1ll1-

order space derivative at the fixed time point tt for 1 % noisy nata. As it can he s('en 

from the results presented in Figure 7.4, the L-curve method noes apply for all tlm'l) 

methods of Tikhonov regularization, supplying us with a good-corner estimate for 

the regularization parameter, namely, /-La = 10-3 for order-O, /-Lt = 10-3 for orll('r-1, 

and /-L2 = 1 for order-2. 

Figure 7.5 shows a comparison between the analytical and numerical results obtained 

for the computation of the second-order derivative at the time node tt involvinp; 

order-O, order-I, and order-2 Tikhonov regularization that usc the parameters 

identified by the L-curve method shown in Figure 7.4, whcn 1% noise is acide(l in 

the measured data. Although satisfying the L-curve criterion, the results obtained 

for order-O regularization, as shown in Figure 7.5(a) are poorer than the results 

obtained both with order-l and -2 regularizations, illustrated in Figures 7.5(1)) 

and 7.5(c), respectively. As we may note, out of the three Tikhonov regula.rbmtion 

approaches, the best results are obtained using order-2, shown in Figure 7.5(c), 

with the L-curve chosen parameter J-L'l = 1. 
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7.4.3 Perfusion Reconstruction Results 

In this subsection we compute the perfusion coefficient, for the invcnie probh'lll 

given by equations (7.1), (7.7), (7.8) and (7.13) using the techniques develoJled ill 

subsections 7.4.1 and 7.4.2 for computing the first-order time derivative awl the 

second-order space derivative, respectively. 

fi d fJT· --For the computation of the rst-or er time derivatives, at (y" t), 1. = 1, Nn , we use 

the ordcr-1 Tikhonov regularization with the parameter .xl = 1 that was choHcn 

from Figure 7.2 (b). The second-order space derivatives, ~:I (x, t;), j = I, N arc 

computed using order-2 Tikhonov regularization with the parameter IL'J = 1 that 

was chosen from Figure 7.4(c). Then, the values of the space- all(i tirne-dcpendl'l1t 

perfusion coefficient Pf, at the grid points {(y" ti)}i=r.N;;.j~1,N' arc ~iven by the 

formula 

(7.32) 

provided that G~ stays away from zero. From (7.10) we have that this is the CIl .. 'iC in 

our numerical example. However, if, in a different example, zero points fur G~~ (iu 

occur, then (7.32) should be understood in the limit sense by applying the 1'1Imipital 

rule. 

Figure 7.6 presents the contour plots for the numerical results for Pf(x, t) in COJll-

parison with the exact solution (7.10), when using the Q = 1% noisy mea.'mrc-

ments (7.19). While Figure 7.6(a) illustrates the exact solution, in Figure 7.6(h) 

we show the results obtained numerically via the local method described in sllbsec-

tions 7.4.1-7.4.3 that represents a good and reasonably stable approximation of the 

space- and time- dependent perfusion coefficient Pf(x, t). The numerical approxi-
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Figure 7.6: Contour plots for Pf(x, t): (a) exact solution (7.10), and (b) num ri ) 

solution (7.32) for 1% noise. 

mation of Pf(x, t) carried out in subsections 7.4.1-7.4.3 is also p) d in a [ :v m abl 

contrast when compared to the numerical approximation obtain d in li n 7. 

that is shown in Figure 7.1(c). We immediately observe that the num ri al appr x-

imation obtained via the local method, using Fredholm int gral quati ns, thaL W ' • 

developed in subsections 7.4.1-7.4.3, is more accurate than th ne bLain d via th 

global Tikhonov regularization in Section 3. 

7.5 Conclusions 

This chapter has investigated the reconstruction of the spa and Lim d p no nL 

perfusion coefficient Pf(x, t) in the bio-heat conduction quation, und r uppli 0 

initial and boundary temperature conditions, when additional inf rm tion is PI' -

vided in terms of exact and noisy temperature measur ments in th x x t- r gi n 

at a resolution imposed by the discretization chosen on the boundary. Th pr bl m 
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is approached by two methods. A first method involving a Crank-Nicolson-type 

scheme combined with the minimization of the order-O Tikhonov rcgularizatioll 

functional, gives a global approach. For exact data, the approximation obtainccl via. 

this method is very good and stable, see Figure 7.1(b). However, if the mea.'illrccl 

data is perturbed by noise, this first method is not giving satisfactory rc~mlts, I'C'() 

Figure 7.1(b). 

For the case with noise, we design a second and local approach, in which two fir:it­

kind Fredholm integral equations are used to compute the finit-ordcr time deriva.tive 

and the second-order space derivative, at every fixed space point and in ('very fix('<i 

time node, respectively. In the process of solving these first-kinei integral eqlla.tions, 

we use order-k E {O, 1, 2} Tikhonov regularization and apply the L-cnrve criterioll 

to choose the regularization parameter. The numerical results obtained via. the local 

method arc better that the ones obtained using the global method anci reprCI'{,Ilt a 

good and stable approximation of the perfusion coefficient. 
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Chapter 8 

Conclusions and Future Work 

8.1 Conclusions 

The central focus of this work consists of finding new ways in which the hlood 

perfusion can be identified and characterized. Since the perfusion infurmatiun is 

encapsulated in the coefficient PI of the linear term in the tran .. .,icnt hio-hcat COIl­

duction equation (BHCE), the entire investigation is mathematically formulated 

and placed in the class of inverse problems regarding the retrieva.l of this pa.rameter. 

While initial and boundary conditions are prescribed, additional informa.tion given 

in terms of temperature, mass, or heat flux measurements, is supplied at minima.lly 

physically damaging locations within the region of interest or on its boundary. All 

these measurements are assumed to be both exact and noisy. 

We have organized our investigation on five major cases, namely for J} considered 

as being: constant, time-dependent, space-dependent, tempcratuf(,,-dcpcncicnt, Ilnd 

time- and space- dependent. 

In the constant coefficient case, we started our investigation by developing a ncw 
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direct Boundary Element Method (BEM) solver for the forward problem. Unlike 

the standard approach, which, via a change of variable, transforms first the bio­

heat equation in the standard heat equation and then apply BEM, in the propm;ccl 

approach the BEM is constructed directly for the BIICE. The numerical tests consid­

ered reveal quadratic convergence for the new method, as well as a good agreement 

with the results obtained via the standard method. 

The analysis for the inverse problem related to the determination of the constant 

perfusion coefficient is started by developing a theoretical framework that diHcus1:icS 

the existence and uniqueness of the solution. For this inver1:ie prohlem, the addi­

tional information is supplied either as a measurement of the flux, or of the internal 

temperature taken at one single space point and one single instance in time, or as 

a time mass measurement considered at a fixed time. The existence of the unique 

solution associated to the inverse problem is proved to be equivalent to finding PI 

as the unique positive solution of an induced nonlinear algebraic equation. Once 

the perfusion coefficient is identified, the temperature solution is found analytically 

by using the fundamental solution of the heat equation. 

When homogeneous boundary conditions are assumed, the stability is proved to be 

of logarithmic type. 

Assuming arbitrary initial and boundary conditions, the HEM is used to compute 

the constant PI, for each of the three types of additional information considered. 

We have found that the numerical results are accurate and stable under noisy input 

data. 

In the time-dependent case, the perfusion coefficient PI(t) is sought under the pres­

ence of initial and both Dirichlet and mixed boundary conditions, when measure-
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ments for either the flux on parts of the boundary, or the temperature at a fixed or 

moving internal point, or total or partial mass data, arc considered. 

When the Dirichlet boundary conditions arc assumed, and either internal temper­

ature data at a fixed point or total mass measurements are supplied, the existing 

uniqueness conditions are satisfied. However, since in the flux mea..c,;urement ca.se 

there were no uniqueness results previously proved, we formula.ted and proved an 

uniqueness criterion which equivalently expresses the uniqueness for the solution of 

the time-dependent inverse problem in terms of a unique zero for an analytically 

ind uced functional. 

On the computational side, we have developed a numerical method for the identi­

fication of Pj(t) that approaches globally all the types of boundary conditions and 

measurements considered. In the first stage, the BEM is implemented for this timo­

dependent inverse problem. Since the measurements are affected by random noise, 

we used Gaussian mollification to obtain the derivatives of the induced noisy func­

tions. For exact measurements, the numerical tests show an almost exact match 

between the computed and analytical values. Also, a reasonable approximation of 

the analytical values is obtained in the case when the measurements are affected by 

random noise. From the way this numerical method has been built, we immediately 

notice that it can easily be extended and applied to higher dimensional ca..",es of this 

time-dependent inverse identification problem. 

For the space-dependent perfusion coefficient case, the identification of PJ (x) is car­

ried out in the presence of either Neumann or Dirichlet boundary conditions. 

When Neumann boundary conditions arc assumed, exact and noisy boundary tem­

perature measurements are considered. The numerical method developed for the 
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retrieval of Pf(x) consists of two parts. In the first stage, a Crank-Nicolson type 

finite difference method is developed. This forward solver is then coupled in the 

second stage with an optimization routine, which performs a search over the class 

of CCIc functions in order to minimize the nonlinear order-k Tikhonov regulari,m­

tion functional, k = 0, 1. The numerical tests performed with both exact and noisy 

data show that order-1 regularization, where the results obtained are stable and 

accurate, behaves better than order-O regularization, for all the values of the reg­

ularization parameter A. Moreover, since the numerical tests were performed with 

temperature measurements taken on each of three types of time intervals [0, t,], for 

t, E {I, 2, 4}, we remark, as expected, that better results are ohtaine(i for larger 

values of t,. 

For the case when Dirichlet boundary conditions arc involved, two inverse prob­

lems are defined by the two types of additional information considered, namely the 

measurements available are either the flux over the boundary or the time-averaged 

temperature data across the region of interest. For the numerical approximation of 

Pf(x), the methods developed for the two inverse problems arc very similar and fol­

low the structural path pursued in the case of Neumann boundary conditions case. 

Thus, once an appropriate Crank-Nicolson-type solver is developed for the direct 

problem, then this is linked to a gradient based optimization routine which finds 

Pf(x) as the minimum point of the order-1 Tikhonov regularization functional, by 

carrying out a search over all the positive functions from CC1([0, 1]). The discrepancy 

principle was applied for choosing the regularization parameter A. The numerical 

results obtained represent a good and stable approximation of the space-dependent 

coefficient Pf (x). 
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In the temperature-dependent ca.<;e, subject to initial and Neumann boundary condi­

tions, the retrieval of the perfusion coefficient PJ(T) is performed under the presence 

of a source term ~(x, t), when the additional information is provided in terms of 

both exact and noisy temperature measurements on a part of the boundary. The 

investigation is carried out on two major inverse problems, IP! anci IP2, that arc 

defined by the cases when ~ ¢ ° and ~ == 0, respectively. Analytical results concern­

ing the solution of the inverse problems IP! and IP2 arc presented and discussed. 

A new theoretical result concerning the direct problem associated to IP! is stated 

and proved. This result, not only that gives a structural characterization of the 

solution for the direct problem associated to IP! by proving that, for any a.rbitrary 

instance in time t E (0, tf]' T(., t) monotonically decrea.c.;es with respect to space, 

but also ensures that the maximum range of the function T is achieved along the 

measurement path, i. e. at the left boundary, which is of key importance ill the 

development of the direct solver within the computational approach. 

The two inverse problem arc solved via two methods, which are very similar, that, 

in essence, consist of two parts. In the first routine, a direct solver incorporating 

a Crank-Nicolson-type finite difference scheme, which is combined with an extrap­

olation technique, is developed. This routine is then linked with an gradient based 

optimization subroutine where an order-1 Tikhonov regularization functional is 

minimized, which provides us with an optimal polygonal approximation of f (T) 

and its corresponding temperature values. The regularization parameter A is chosen 

via the discrepancy principle. The ratio between this optimal approximation of f (T) 

and the corresponding temperature values provides us with an accurate and stable 

approximation of the temperature-dependent perfusion coefficient PJ (T), when both 
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exact and noisy measurements arc considered. 

Finally, the investigation concerning the retrieval of the space- and time- dependent 

perfusion coefficient Pj(x, t) is carried out under specified initial and boundary con­

ditions, when exact and noisy temperature measurements are provided at a fixed grid 

inside the x x t-region. The problem is investigated via both a global and a local 

method. In the first approach, the global method, which combines a Crank-Nicolson­

type scheme with a minimization procedure for a order-O Tikhonov regllla.ri7.ation 

functional, provides results that arc very good and stable for exact measurements. 

However, if the measured data are affected by noise, then the results arc not sat­

isfactory. This situation led us to pursue a second approach for the noisy case. 

In this approach we compute locally the first-order time derivative at every fixed 

space point, and the second-order space derivative at every fixed time node, by 

using two first-kind integral equations. In order to solve these integral equations 

we use order-k E {O, 1, 2} Tikhonov regularization. The regularization parameters 

arc chosen via the L-curve criterion. The numerical results obtained via this local 

method arc a good and stable approximation of the perfusion coefficient Pj(x, t). 

The backward medical importance effect offered by the inverse investigation of per­

fusion identification problem is underlined by a variety of aspects and clinical sit­

uations. In order to illustrate a few of these cases, where the inverse problems in­

vestigations produce valuable assistance, let us discuss some clinical situation when 

a certain part of the human body tissue has to be heated above the average body 

temperature of 37°C. This is a situation that occurs in various medical instances, 

e.g. in certain types of cancer, such as the skin cancer. In these cases, medical 

devices are used to heat up the tissue. However, since, in the medical practice, 
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it is well known that temperatures higher that 42°0 cause necrosis of the living 

cells, the heat should be applied only on the tumor, while the destruction of the 

surrounding healthy tissue should be avoided as much as possible. Therefore, a 

calibration of the device only on the cancer tumor becomes an absolute necessity. 

An answer to this problem can be given via perfusion identification. Given the fact 

that the blood perfusion within the inside of the cancer tumor is abruptly differcnt 

from that in the surroundings, a retrieval of this information becomcs of a signifi.­

cant importance in helping to gradually adjust the device to precisely only on the 

affected region. For doing this, a preliminary iterative procedure can he designed 

to position the device. In the first step, in relatively bigger region 0:1' an arbitrar­

ily chosen subregion 0 1 , with 0 1 C 0: C 0:1, is heated up to a safe temperature 

« 42°0 during a time period t l , where, for a small c > 0, 0: is the c-hundle 

of 0
1

, namely 0: := {y E ft.ll (3)x E 0 1 such that Ix - y I ~ c}. Then we can im­

mediately distinguish that in the larger region O2 at least the following three type 

of inverse problems appear, namely: (a) on 0l \ 0: a time-dependent inverse prob­

lem, (b) on 0: \ 0 1 a space- and time- dependent inverse problem, and (c) on 0 1 

a temperature-dependent inverse problem. Using the analytical and computational 

techniques developed in this thesis, we solve the three inverse problems and identify 

the perfusion. If a large disruption in the perfusion occurs in the space- anci timc'­

dependent zone, 0:, then we record that position. Then the region 0 1 will be varied 

in size and moved around in O2 so that we cover all positions in 0l' Each time when 

a disruption occurs in the corresponding 0:, then this is recorded. In this way we 

manage to map the perfusion of the entire area and moreover, to have a complete 

picture containing all the perfusion disruptions, which allow us to localize the cancer 
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cells and to calibrate the device that will be used after this preliminary stratcp,y is 

complete. In this preliminary procedure, the advantage of the process of heating of 

the moving variable size region °1 , over the time period t J' is that the ciisruptions 

in the perfusion that occur between the cancer and non-cancer areas become more 

visible than in the normal state when the tissue is at the normal body temperature 

and when many parts of these tumors may even not be visible at all. This allows the 

procedure to localize these areas with a better precision so that all of them would 

receive appropriate treatment, while minimal damage would have been produced in 

the healthy region. 

Another very frequent medical situation where the knowledge of the perfusion infor­

mation is of ultimate importance occur when transplant organs needs to be trans­

ported or stored between the moment when they are donated up to the time when 

they are inserted in the new transplant receiver patient. Further, the blood perfu­

sion monitoring remains important even after the transplant is made, and shou1({ 

continue up until the body fully accepts the implant. During all the storage time 

the physiological properties of the organ are dependent on a appropriate perfm;ion 

rate that allows the nutrients to keep the tissue alive. Depending on the shape of 

the storage container and also on the type of the organ, the perfusion monitoring 

problem can be expressed as a combination of time, space, space and time, and tem­

perature dependent inverse problems. The computational techniques developed for 

solving these inverse problems arc used to monitor and maintain the physiological 

balance of the transplant organ during its storage. 

Finally, it is worth mentioning that the measuring instruments design and method­

ology are benefiting as well from the inverse problems investigation of the blood 
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perfusion. The ability of the developed techniques to extract valuable pcrfm;ion 

information from noisy data offers the design engineers the possibility of creating 

simpler shapes and yet more minimally invasive instruments, which would be able 

to learn, adapt their measurements, and adjust their output along the way, by either 

performing yet fewer and less invasive measurements than the existing minimally 

invasive instruments, or obtaining a better accuracy than the level achieved with 

the existing ones. 

8.2 Future Work 

A first priority is represented by the following inverse problem: 

In the presence of Neumann boundary and initial data, from temperature mea-

suremcnts taken on the entire boundary, we aim to reconstruct the space- and 

temperature- dependent perfusion coefficient Pf(x, T), sec Nanda and Dus [74], 

where, initially, we will only consider an affine dependence on space, namely 

Pf(x, T) = (1 - X)fl (T) + Xf2 (T), (8.1) 

which satisfies the BHCE 

or a2
T 

-(x t) = -2 (x, t) - Pf(x, t)T(x, t) + ~(x, t), 
at' ax (x, t) E (0,1) x (0, tf)' (8.2) 

Then, this problem will be continued with an analytical and computational invcsti-

gation of the case when Pf(x, T) is of separable form, namely 

(8.3) 

After that, the investigation will move to two- and three-dimensional cases for in-

verse coefficient identification problems where PI will be considered as either space 
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dependent, or space and time dependent, or temperature dependent. 

In the temperature-dependent case, the analytical result characterizing the struc­

ture of the solution, from Chapter 6, will be sought in the n-dimensional ca.'ie. 

All these cases will later be revisited for an ample investigation in random hetero­

geneous media, in an attempt to answer complex questions arising in the fidds of 

medical imaging, computational biology and material science. 
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Appendix A 

Analytical Expression for a Couple 

of Special Integrals 

A.1 An Important Primitive 

We show that for a 2:: 0 and f3 > 0 

2 
-~-l1t 

I - Je t dt 
"',11 

- 4'h (e2~ er f ( vmt + ¥) + e -2~ er f ( vmt - ¥)) + C . 

(A.I) 

Proof: Let us notice first that by using the substitution ~(t) = .JlJt + if we ohtain 

that _f3t
2 

- 4 = _~2 + 2VQ;3 and dt = ~ + ff2 dt. 
t V~ v~t 
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Therefore 

1
0

,(3 = J exp( -~ + 2v'afJ) ( ~ + $2 dt) 

- exp~..jQffJ J exp( -~~)d~ + $ J CXP(-€:i2~)dt 

,ficXP(2JQ:3)erj(') + ~ J cxp(-~~ +2v'a!1)dt 
- 2..;73 c;,..;73 t2 

- ,fiex;j;@)erj (..JIj + ¥) + yacx~v'a!1) J ~ exp [- (VJ1t + ~) ~l dt 

- ,ficx;J/aE) er j ( VJ1 + ¥) + ~ J ~ exp ( -/3t~ - ?-) dt. 
(A.2) 

On the other hand, if we use the substitution Tl = V7Jt ~ ¥ we obtain that _j3t
l 

-

?- = -Tl~ - 2vf(iiJ and dt = -jb - ftt2 dt. 

Therefore, 

1",(3 = J exp (-r/ - 2Ja/3) (&h - ~dt) 
(A.3) 

- v'1rcx~j;ros)er j ( VJ1t - ¥) -1- J ~ exp ( -/3tl 
- ?-) lit. 

By adding up equations (A.2) and (A.3) and then dividing by two, we obtain the 

claimed identity (A.l). 

o 
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