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Abstract

In this thesis we investigate a sequence of important inverse problems associated
with the bio-heat transient flow equation which models the heat transfer within
the human body. Given the physical importance of the blood perfusion coefficient
that appcars in the bio-heat cquation, attention is focused on the inverse problems
concerning the accurate recovery of this information when exact and noisy measure-
ments are considered in terms of the mass, flux, or temperature, which we sampled
over the specific regions of the media under investigation.

Five different cases are considered for the retrieval of the perfusion coefficient,
namcly when this paramcter is assumed to be cither constant, or dependent on
time, space, tempcrature, or on both spacc and time.

The analytical and numecrical techniques that arc used to investigate the existence
and uniqueness of the solution for this inverse coeflicient identification are embed-
ded in an extensive computational approach for the retricval of the perfusion cocf-
ficient. Boundary integral methods, for the constant and the timc-dependent cascs,
or Crank-Nicolson-type global schemes or local mcthods bascd on solutions of the
first-kind integral equations, in the space, temperature, or space and time cascs,
are used in conjunctioﬁ either with Gaussian mollification or with Tikhonov rcgu-
larization mecthods, which are coupled with optimization tcchniques. Analytically,
a number of uniqueness and existence criteria and structural results are formulated

and proved.
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Chapter 1

Introduction

1.1 Motivational Background:

The Process of Blood Perfusion

Blood perfusion, defined as the blood volume flow exchanged through a given volume
of tissuc, is absolutcly essential for normal tissuc physiology and plays an important
part in the temperature regulatory system of the human body. Blood perfusion
is concerned with the local, multidirectional blood flow through the capillary and
intraccllular space of the living human body tissuc. Given the convoluted naturc
of the pathways through which it cvolves, blood perfusion is considered to be a
directionless quantity. Capillary and intraccllular space blood ﬂoW allows the oxygen
and nutricnts to travel in the human body in order to sustain the life processes. In
addition, in order to maintain a healthy system, blood perfusion is also responsible
for removing the waste gencrated by the same life processcs it is also fucling. Changces

in blood perfusion are a significant characteristic for several pathologic proccsscs.



As an example, tumors arc well-known for having a changed perfusion with respect
to the surrounding healthy tissue. This perfusion differencc has a very discrcpant
character in the casc of the cancer tumors. Thercfore, the perfusion information
can be used as an assisting control tool during certain clinical trcatment procedurces
where, as in the case of the skin cancer, some parts of the affected tissuc arc heated
above the human body tempcerature, 37°C.

The ability to infer the disruption of local perfusion could help detect and evaluate
the type and condition of, or the extent of intcgumentary tumors or other skin
lesions. The quantitative cvaluation of the blood perfusion would also help in the
asscssment of skin graft healing. Further, blood perfusion data on the peripheral
skin is uscful in cvaluating.normal and abnormal conditions in other tissucs, such
as the skeletal muscle, pulmonary or cardiovascular systems. Dircct asscssment
of the perfusion of myocardial, renal, intestinal, cerebral, spinal, and other tissucs
during surgery could also be very significant in the decision-making of the surgical
procedurcs and in the planning of patient prognosis. The ability to continuously
and accuratcly mcasure blood perfusion in recently repaired ischacmic tissuc can
predctermine and help prevent the common problem of reperfusion injury.

The knowledge and control of blood is becoming extremely important in the specific
situation of organ transplants. After the organs are collected from the donors, during
the time of their storage, or while they are transported toward the recciving paticnt,
the permanent knowledge and adjustment of the blood perfusion of the organ inside
the temporary storage container becomes crucially important for cnsuring that its
vital functions are kept unaltered.

The ability to reliably measure the blood perfusion would improve many clinical



applications. Scveral measurement methods, based on the clearance of a thermal or

chemical marker, require an invasive procedure.

1.1.1 Measurements of Local Blood Perfusion with an In-

vasive Character

The history of the mcasurcment of local blood perfusion using thermal methods
have been reviewed by scveral rescarchers, including Bowman et al. [8], Bowman
[9], Chato [26], Ebcrhart ct al. [48], Scott ct al. [98]. Most of the mcthods discussed
in thesc works arc invasive, and the most common mecthod uses a thermistor bead
inserted into the tissuc. A controlled power sequence is dissipated by the bead and
the temperature response of the bead is recorded. The two most common heating
methods that occur in practice are pulsc decay and stcp heating, as described in
Kress and Roemer [64]. Multiple probes and sinusoidal heating have also been used,
sce Valvano and Nho [112]. An analytical model is then used to determine the blood
perfusion from the experimental temperature response. However, the critical open
question regarding these procedures lics in their invasivencess character, which could
cause discomfort, possibly harming the paticnt, and has the effect of disrupting the
flow that is being measured. Moreover, when using invasive methods, the possibility

of patient infection becomes an important issuc.

1.1.2 Noninvasive Methods

Scveral noninvasive methods have becn attempted for the measurement of the blood

perfusion. In many of these methods, heat is supplied at the surface of the tissue,



whilst the temperature is measured at the same locations. The most common part
of the mcasurcment devices that has been used so far consists of a thermistor cov-
cred with insulation to supply heat and simultancously record the temperature, sce
Patel ct al. [80] and Wi et al. [116]. Castellana ct al. [23], used a thin film resistor
to supply hcat and to mcasurc the surface temperature.

Becausc of the transient heat loss to the insulation, Walsh and Bowman {113] added
a sccond active thermistor to control the heat entering the tissue. Holti and Mitchel
[57] used a thermopile between a heated copper disk and a surrounding non heated
ring, which both were placed on the skin. Valvano et al. [111] used a thermal imag-
ing technique to mcasure the temperature response due to a copper block placed
on the skin surface, and Cui and Barbenel [33] modelled the temperature responsc
when different types of materials were placed on the skin.

These methods exhibit a series of limitations. The first constraint consists in the
difficulty encountered for determining the actual heat flux into the tissuc, since the
ambient losses can be rclatively large for the noninvasive heating, as opposed to
the invasive heating where they are small. A sccond problem is determined by the
thermal contact resistance between the probe and the tissue, which is gencrally un-
known and varies on use. A third important problem is that the basic premisc of
heating leaves the potential for thermal tissue damage if the tempcrature of the
tissue exceeds about 42°C.

Another important class of measurement methods is the one that uses focused ul-
trasound as the heating source with a thermistor placed on the surface of the tissue,
sce Anderson and Burnside [2]. However, the ultrasound basced methods are limited

in their ability to measure blood perfusion in microcirculation. In order to overcome



this problem, lascr light was used instcad of sound, and this led to the development
of laser-Doppler blood flowmetry to measure perfusion. This noninvasive technique,
reviewed by Shepherd and Oberg [102], has reccived special attention over the last
30 years. The laser light is delivered to the tissuc and returned to a detector by optic
fiber light guides. Light in the tissue is diffusively scattercd by stationary tissuc.
This light rcaches the detector without being Doppler-shifted, while light intercepted
by moving red blood cells experience the Doppler effect. The earlicst measurecments
of blood flow using laser-Doppler techniques were made by Riva ct al. [96]. Tissuc
perfusion was first measured in 1975 by Stern [104] and he continucd this work with
the development of an instrument to permancently monitor the blood flow, see Stern
and Lappe [105] and Stern et al. [106]. The work has been continued in this field
with improvements of the instrumentation, sec Nilsson ct al. [75] and Adrian and
Borgos [3], which allowed the laser-Doppler systems to be commercialized for usc in
clinical blood perfusion mcasurcments. Although successful and noninvasive, this
mcasurcment system still has drawbacks and the results arc not well-quantifiable.
These type of mcasurements arc scnsitive to a varicty of cxternal influences that
arc not nccessarily corrclated with the media under investigation. Onc important
limitation is that only rclative, rather than absolute, perfusion measurements can be
made. Also, in this measurement method the red blood cell motion is recorded only
in onc direction, and this makes the obtained data dependent on the optical prop-
erties of the tissue that can vary with the location and between different patients.

The high cost of the equipment should also be considered.



1.1.3 Practical Measurements Using Minimally Invasive

Blood Perfusion Probes

Michener et al. [72] have described a probe based on a heat flux sensor that is
used to measure directly both the heat flux and the temperature at the skin surface.
This work has been further developed by Fouquet ct al. [52]. In order to avoid any
thermal destruction, the tissue was cooled rather than heated. Initially, the cooling
process was achieved by using water channcls, whose design makes them very difficult
for practical use. To overcome this issuc, O'Reilly ct al. [90] used pressurized air,
instead of water, to cool the tissue. This cooling process has produced a light weight,
and casy to usec, probe.

Scott et al. [98, 99] have described a method which is accurate, and cnables absolute
measurements to be made. The method is also cost effective and practical to usc.
The basic probe design is the one described by O’Reilly ct al. [90]. However, in
this new probe design, a mixture of heat flux and temperature scnsors form the core
component. The temperature is measured with a thermocouple, and the heat flux
is mcasurcd with a thermopile across a thin thermal resistance layer. In the heat
flux sensor, called the Omega HFS — 3, a type— K wire thermocouple wire is used
for the temperature measurements, while a type— K thermocouple foil is used as the
thermopile for the heat flux measurements. The sensors, which have a small thermal
capacitance, allow us to accurately follow the change in heat flux and temperature.
When a heat flux sensor, in equilibrium with the tissue, is subjected to outside
cooling, then the resulting temperature differential causes hecat to be conducted

through the sensor from the tissue. This heat feedback attempts to bring the tissue
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Figure 1.1: A scanned reproduction of the original "Figure 1. Illustration of probe
in contact with the skin tissue; (a) physical set-up and (b) numerical model”, which

has been published in [99].

back to equilibrium and recover any temperature loss that may enter through the
sensor into the tissue. This recovery is aided by the exchange of new warmer blood
within the volume of the tissue beneath the sensor to replace the blood that has lost
part of its thermal encrgy.

The front side of the probe, used by Scott et al. [98, 99] is placed in continu-
ous contact with the tissue, see Figure 1.1. During the short transient tests of up
to 120 s long, the back side of the probe, which has a thin, 0.038 em, sheet of alu-
minum attached, is cooled with small jets of air pointed normal to the tissue surface.
Velocities of less than about 100 m/s from a low pressure air supply, at room tem-

perature, are found to be sufficient to generate heat transfer coefficients in excess



of 200 W/(m2K). The probe is small, with a total arca of about 20cm?, having
a diamcter less that 2.5c¢m, has a simple structurc and is lightweight. In regard
to the experimental procedures followed in Scott ct al. [98, 99] the blood perfusion
probe was held stcady on the forcarm, being pressed with a low cnough force so that
the skin would not be indented. The probe was placed on the interior forcarm at
a spot located away from excessive hair or obvious large blood vessels. The top of
the probe was attached to a 1.0cm hose and fitting, through which air was supplied
at a gauge pressure of approximately 70 kPa. In order to allow the probe to rcach
thermal equilibrium, this was first placed on one of the patients forcarms for 300 s.
The probe was then transferred to the other forcarm and allowed to settle briefly in
order to obtain minimal thermal disruption of the tissuc. Once the steady-state con-
ditions have been achieved, namely constant heat flux and temperature profiles, the
cooling proccss was turned on for 60 s. During this period, the voltage output from
both the heat flux sensor and the probe thermocouple were logged at a rate of 32
measurcments per sccond. Also, the constant temperature of the cooling air strecam
was recorded with a scparate thermocouple sensor, while the body core temperature
was recorded using a thermocouple placed under the subject’s tongue. The only
signal processing applied consists of the amplification in the voltage outputs prior
to the recording. The voltages were then converted into heat flux and temperature
using the corresponding sensor calibration coeflicients described in [90]. It is very
important that, before starting the actual tests, the convection heat transfer coeffi-
cient from the air jets could be determined in separate tests by placing the heat flux
sensor and the thermocouple on the air side of the aluminium. The aluminium was

placed on a heated picce of copper while the air jets were operating. Time traces of



voltages from the heat sensor and thermocouple were recorded at 32 measurements
per sccond together with the temperature of the cooling air strcam. After converting
the voltages into heat flux and surface temperature, the convection cocflicient was
found as the ratio i—_”Ta;—, where A is the measured heat flux, T, is the tempcerature
at the top surfacc of the probe, and T, is the tempcerature of the air strcam. The
convection coefficient for the probe, taken as the average of the calculated valucs
over the 60 s period, was found to be approximately 700 W/(m?2K). It is important
to mention here that the heat transfer coefficient will be dependent on the probe

geomctry, air supply, as well as on the physical connections.

1.1.4 A Water-Sponge Experiment for Testing the Blood
Perfusion Measurement with a Minimally Invasive

Probe

Using a probe similar to that described and uscd in Scott ct al. [98, 99], Robinson ct
al. [97] have performed an experiment to simulate the thermal phenomena associated
with perfusion tests, using a porous medium spongg, acting as a tissuc phantom. The
sponge was assumed to be homogencous and no heat was assumed to be gencerated.
In this experiment, water was used instcad of blood as the perfusion liquid, sce
Figurc 1.2.

The probe itsclf is included in the model with the appropriate thermal propertics,
namcly having no perfusion and assuming convective boundary conditions at the
probe-cooling air interface. At the probe-sponge interface, the heat flux is equal to

the temperature difference in the porous media and on the probe surfaces divided



by the contact resistance. The thermal propertics of the sponge, the water, and the
probe, as well as the convective heat transfer coeflicient, werc assumed to be known
in the modcl.

From the design point of view, although similar to the onc described in Scott ct
al. [98, 99], the probe has several new features. A new type of scnsor, based on a
thermopile formed from ink-etching techniques, was used. This sensitive thermopile,
in which layers of dissimilar mctal junctions were placed across a layer of polymer,
is deposited on a sheet of anodized aluminum substrate and then covered with a
very thin picce of aluminum foil. In order to mcasure the surface temperature of
the probe, an isolated type—FE thermocouple is ecmbedded in the foil layer. The

probe is very small, with an arca of 2.9 cm?

and 0.07 cm thick, resulting in a low
thermal capacity, which cnables the accurate recording of the heat flux and tem-
perature. The front side of the probe remains in continuous contact with the tissuc
under investigation. Jets of air at room tempcerature cool the back side of the probe,
pointing normal to the surface of the probe.

A special setup, that provides a controlled rate of flow of liquid through a porous
media, is used as a test for the blood perfusion probe described above. This consists
of a small-pore sponge placed between a removable top and a metal plate within a
sample box. A variable speed peristaltic pump is inscrting water through the bottom
of the box. A central hole in the metal plate forces the upwards flow of water to pass
through the centre of the sponge before spreading out towards the sides. The skin is
simulated by having the top of the sponge covered with a thin layer of plastic wrap,

which prevents the flow from continuing out through the removable top. A large

hole in the centre of the removable top allows the probe to be positioned directly
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on the top of the plastic wrap and the sponge.

In order to keep this spccial sctting at a constant human body tempcerature, the
entirc experimental box is placed in a watcer bath maintained at a constant temper-
ature, 37°C. A thermistor, monitoring the water bath tempcerature, cnsurces that the
temperature is kept constant by switching on and off an embeddced controlled heating
systcm. A thermomcter is immersed in the bath so that the true bath temperature
can be permanently recorded. The water that flows through the sponge is also taken
from this bath. The sponge, the probe, and the water flow are brought to a priori
known thermal equilibrium. The variable speed peristaltic pump adjusts the water
flow rate. The probe is placed on the sponge so that both the thermocouple and
the thermopile are in direct contact with the plastic-sponge surface. Once thermal
cquilibrium is reached, room temperature compressed air, supplied at 70 kPa, is
switched on and allowed to flow through the probe housing over the upper side of
the sensor, which creates a convective cooling effect. The heat response is recorded
for approximatcly 60s. Then the procedurc is repeated scveral times for cach of
the four flow rates chosen in a range from zero to 2.92ml/s. A number of 36 scts
of data were obtained from various combination runs of this setup. The heat flux
sensor and the surface thermocouple are connected into an isolated, isothermal box
which is connected to a Keithley DAS-TC which transmits the data to a computer.
Having the probe described in this scction as a prototype, a more advanced measure-
ment tool, called the bioprobe, has been later developed and presented by Cardinali
et al. [22], which has been uscd to record blood perfusion data in two experiments
using a cannine medial saphenous fasciocutancous free tissue flap model, that allows

the experimental control of blood flow in the area of interest . The bioprobe consists
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of two distinct components, namely a physical sensor that records experimental data
and a tissue-probe computer model that determine the perfusion cstimate. Also this
time the scnsor consists of a combination of a thermocouple and thermopile, which
measures the heat flux and the temperature on the surface of the region under in-
vestigation. The information obtained from the sensors is coupled with the sccond
componcnt of the bioprobe, namely the tissuc-probe computer model, which consists
of a rcliable numcrical implementation of a mathematical model that governs the

cnergy balance of the tissue.

1.2 Mathematical Model: The Bio-Heat Equa-
tion

The experimental measurcments performed in all the works related to the investiga-
tion of blood pcrfusion have all been coupled with a data processing part in which
a key role is played by a mathematical model of the cnergy balance in the region
of intcrest in the human body tissue. Thce mathcmatical model is regarded as an
approximation of the actual cnvironment that it represents.

Well known and widcly accepted, since it was introduced in 1948 by Harry H. Penncs
[81], the bio-heat equation is the mathematical model considered and applied along
with all the experimental work described in the papers concerning the blood perfu-
sion mecasurement techniques that have been reviewed in the previous scction.

The bio-hcat equation is placed at the heart of an extensive quantitative analysis of
the relationship betwceen the arterial blood and tissue temperature. This equation

has been brought to light as the conclusion of an extensively complex experiment
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that took place in the laboratory of H.H. Pennes in 1948, in the Dcepartment of
Necurology, College of Physicians and Surgeons, Columbia University, New York.
This important cxperiment has been determined by @ priort obscrvations made in
the same laboratory regarding the temperature gradient in the intact human biceps
muscle and its coherent matching with the theory of heat conduction flow applied to
a localized arm segment. Figure 1.3 presents a scanned reproduction of the original
experimental sct-up that has been published in Pennes [81]. Without cntering into
the very complex dctails of Pennes’s original experiment, in essence, its first achieve-
ment consisted of a cutancous topography of temperature in the upper extremity
on the proximal forcarm, revealing links with both the presence of gradients and
the effects of the blood flow. Simultaneous temperature measurcments in rectal,
brachial arterial blood, and the decp forcarm region, have been recorded. Within
the setting created for this experiment, the blood flow acted as a warming agent,
both for the superficial tissue and for the forearm tissue between the skin and the
axis of the limb. After the stcady-state tissuc temperature-depth distributions have
been identified, the analytical theory of heat transfer has been applied in order to
determine the influence of the local heat production and circulation.

The conclusion of the experiment conducted by Pennces postulates that the effect
of the temperature difference between the blood supply and the tissuc acts as an
cnergy sink term, which we denote by Q, = w,p,c, (T — T,), where w, =the blood
perfusion rate, p, =the density of blood, c, =the specific heat of blood, T =the tissue
temperature and T, =the arterial blood temperature, scc Pennes [81]. Also, taking
into account the other quantitics that play a part in the heat transfer process within

the human tissue, that is k, =thermal conductivity of the tissue, p, =the density
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Fig. 3a. EXPERIMENTAL POSITION OF THE RIGHT AvM (superior surface). The pronated
forearm was centered between the 2 vertical supports of the wire controller shown in figure 4.
The elbow was supported by a soft rubber disc with a central opening just wide enough to receive
the medial malleolus of the humerus. The palm of hand was supported on a flat surface of linen
towels extended from the head of the metacarpals to the finger tips. Forcarm and distal half of
upper arin were completely in the air.  Inferior aspect of the forearm 3.0 cm. above base of the
wire controller (fig. 4}. Horizontal Line I indicates the plane of passage of the needle; line 17
indicates the level of figure 3c.; line 111 indicates the distal plane around the circumference of
which temperature was measured in 4 subjects (see section I11).

Fig. 3b. EXPERIMENTAL VIEW RIGHT FOREARM (lateral surface). Asterisk indicates point
of insertion of the needle of figure 1 (top}. This plane was always 8.0 cm. distal to tip of
ulna olecranon and midway between superior and inferior surfaces of the forearm, The needle
was directed perpendicularly to lateral aspect of the forearm. After penetration of the medial
side of the arm, the protruding lengths of needle were measured with millimeter-graduated flexible
rule. The sum of these two lengths subtracted from total needle length gave the length of the
experimental transverse axis. The thermocouple was drawn into the arm by pulling the needle
completely through; the ncedle was then discarded by clipping lead wirc. At end of experiment,
the thermocouple was removed by traction on ‘active’ wire so that the path was reversed.

Fig. 3¢. CROSS-SECTIONAL ANATOMY of pronated forearm at level 1I.  Broken arrow indi-
cates path of Y-model thermocouple. (Adapted from Morrig’s Textbook of Human Anatomy,
oth ed., p. 451, 1933.)

Figure 1.3: A scanned reproduction of the original "Figure 3”, which has been

published in [81] by Harry H. Pennes.
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of the tissue, c, =the specific heat of the tissue, as well as S, =the volumetric heat

source, Pennes [81] formulated the bio-hcat transfer cquation as
orT _
kAT - 0Q,+ 8, = pey in Q x (0,t,], (1.1)

where ¢, > 0 is the final time of interest, {2 is the spatial solution domain, and A
represents the Laplace operator. This cquation, in essence, is very similar to the
equation for the heat transfer in a fin, where the sink term represents the convective
heat loss to the surrounding.

After carrying out an appropriate normalization procedure, the dimensionless for-
mulation of the governing equation for the bio-heat flow in the bounded domain €2,

scc Chan [24] and Ren ct al. [94], can then be expressed as

oT

- P.T _-—
AT-PT+5=—,

Q x (0,t,], (1.2)

where ¥ is the heat source containing the heat generation due to the mectabolism

and heat deposition, and the coefficient

w, p,C, L
R (13)

where £ denotes the characteristic dimension of the tissue. Without confusion, in
what follows, we call P; the blood perfusion paramcter.

Given the central role played in the quantitative characterization of the rclation
between the arterial blood and the tissuc temperatures, it is worth mentioning that
the applications of the bio-hcat conduction equation range over several medical areas,
such as the field of modeling hyperthermia, thrombosis and vascular sclerosis, sce
Liu and Xu [69]. Notc that equation (1.2) ariscs also in other physical applications,
such as optical tomography, scc Klibanov et al. [63]. In what concerns the blood
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perfusion evaluation, the appcarance of Py as a paramcter in the bio-heat equation
(1.2) has special importance, creating room for a mathcmatical investigation, once

data arc madc available from practical mcasurcments.

1.3 Inverse Problem Formulation for the Blood

Perfusion Parameter Identification

The efforts presented in the experimental and analytical work of all the rescarchers,
which were briefly introduced and reviewed in the Section 1.1, can be regarded as
being all placed within the same framework of the blood perfusion coefficient identi-
fication, P;, that shows up in cquation (1.2). Through deccadces of intensive scientific
effort, as briefly highlighted in Section 1.1, different instruments and mcthods to
measure perfusion have been invented, developed and improved, in order to obtain
a better accuracy in the blood perfusion measured data. From the way the probes,
and later on the bioprobes, were designed, together with the fact that using thosc
probes in different parts of the body is not an easy or not always a possible task,
we could draw a first conclusion concerning the major difficulty that this blood per-
fusion identification problem inherits. All the works reviewed in Scction 1.1 have
considered the bio-heat equation as a working environment, making usc of the pow-
erful analytical tools it enables in asscssing their measurement accuracy. However,
it is exactly this environment, which characterizes the media under investigation,
that is unknown. This lcads to inverse problems in which the coefficients of the

governing equation, together with its corresponding solution, arc determined from

additional information.

17



The inverse problem formulation places this perfusion identification problem within
the following perspective. While initial and boundary conditions are specified to en-
sure the well-poscedness of the direct problem associated with the bio-heat cquation,
the additional information rcceived from the measured data, would make possible
a unique simultaneous retrieval of both the perfusion coefficicnt Py and of the solu-
tion of the corresponding bio-heat cquation for T'(z,t), without a prior knowledge
of cither of them.

The inverse problem formulation underlines the importance of the various measure-
ments, in terms of heat flux, temperature or energy, investigated by many rescarchers
in the briefly reviewed experimental work, and highlights the difficult problem of in-
verting these real world data. The need for interpretation of this tomographic data is
paving the way to focus more and more on developing new inversion techniques that
would enable us to recover the desired information from the measurements taken in
most difficult conditions on the human body. Because of the position, current tech-
nical limitations of the abilities in taking these mecasurcments, physiological state,
as well as the degrec of relaxation in which the body is found at the time when the
investigation is undcrway, a certain level of noisc exists in the measured data. This
can causc the inverse problem to become severely ill-posed, by which we understand
that small perturbations in the mcasured data can determine very large inaccuracics
in the final results.

A major advantage in solving this class of inverse problems in a wider and more
general sensc, considering various initial and boundary conditions, as wecll as a mix-
ture of scveral types of measurements, resides in a more accurate retricval of the

perfusion coefficient, given the current practical investigation abilitics. Morcover, an
?
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cqually or yct morc important aspect consists in the precious information, extracted
from the inversc problem solution, regarding how the future probes and bioprobes
should be actually built. The existence and uniquencss of the solution in this class
of inverse problems can give important design guidcelines in the manufacturce of the
new probes and in the development of new experimental methodologics. Thercfore,
all this cumulated effort, together with its design guidelines spiral effect, represents
an important step forward in assisting medical expertise with immediate impact,
since better accuracy in more flexible, larger area covering, and cventually more re-
laxed mcasurements, uscd in developed inverse problems methodologies, provides a
better and faster approximation of the perfusion coefficient, which finally results in
an improved therapeutics for a wider class of health problems. This is the major and
_most important incentive for which the investigation of this class of inverse prob-
lems, both analytically, in terms of existence and uniquencss, and from the point
of view of crcating robust numerical computations of their solution, represents the

focus of this thesis.
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Chapter 2

Preliminary Considerations

2.1 Introduction

Regarded as a central part in all the theorctical and practical investigations of the

biomedical heat transfer, scc Chato [25], the bio-hcat cquation

AT - PT+% = %T, Qx (0, 2.1)

where A = V” dcnotes the Laplace operator, has to be solved subject to appropriate
initial and boundary conditions. If Q, P; and ¥ are specified, then this gives rise
to a well-posed problem, sce Strohbehn and Roemer [107] for a review of numerical
solutions.
As stated in Chapter 1, this work is focused on inverse problems concerned with
the identification the blood perfusion rate, captured by the perfusion coefficient Pf
defined in equation (1.3). The identification of P; is sought under the presence of a
hostile environment, where the measurcments taken on parts of the boundary 99,
or inside 2 are inaccurate, or they may well be inaccessible.

There are several numcrical approaches for building direct solvers for the bio-hcat
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equation (2.1), mainly by using finite-difference or finite element methods and, in
particular, for the stcady state casc, thec Boundary Element Mcthod (BEM), sce
Chan [24)].

In our approach, in the non-stcady statec bio-hcat equation with cithcr constant or
time-dependent blood perfusion coeflicient P, during the inverse problem investi-
gation related to the perfusion coefficient identifications from Chapters 3 and 4, in
addition to the targeted theorctical aspects (such as uniquencss and existence of the
solution), from the numerical stand point, in order to construct the computational
solver, we will perform first a change of variable that will transform the cquation
(2.1) into the standard heat equation, and then apply the BEM, sce Brebbia ct al.
[7]. For the constant coefficient non-steady state case, this change of variable has
the form

o(z,t) = T(z,t)e ", (2.2)
from which T is recovered via the inverse transformation

Plt

T(z,t) = v(z,t)e (2.3)

In our attcmpt to solve the forward problems that arc cnbedded in the forthcoming
inverse problem investigations related to transient bio-hcat cquation with constant
coefficients, we formulate an alternative BEM, which is built dircctly for the bio-
heat equation (2.1). This ncw BEM will be the focus of our attention throughout

the rest of the current chapter.
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2.2 The Boundary Element Method

The associated adjoint equation to (2.1) in an infinite domain reduces to the form

A — Pid + 6z — £, —7) =_%‘§.
giving the fundamental solution, sce [24]:
H(t-
(I)(xa éa t T) = —_(—1— cxp "Pf(t - T) ” > € “ jl (24)
[An(t — 7)) 4t — 1)
where || - || is the usual Euclidean distance, d is the dimensionality of the domain

Q, and H(-) is the Heaviside step function. Thus, by using the Green theorem, the

integral expression for the solution of equation (2.1) is given by:

T(z,t) =

St

[ 2@, 6,6, EE (6, T) - 22(2, 6,8, )T (6, 7)] dTar
r (25)
!

+ [ [ ®(z,&,t,7)E(&, T)dQ dT + [ ®(z,€,1,0)T(€,0)dQ
Q 0
0

for any (z,t) € 2 x (0,t,), where n is the outward normal to the boundary I' = 6Q.

2.2.1 The Boundary Element Method Description

The Boundary Element Method (BEM) is an important tool that we will employ
within our investigation. While a complete description of the general BEM method-
ology can be found in Brebbia et al. [7], we will give here the main steps and the
subsequent proofs required by the case of our discussion. Let us start by recasting

the integral cquation (2.5) as

o(2)T(z,t) = ft J [4’ 2,6,1,7) o (6 T) — (a: £ t, T)T(E,T)] drdr
°r (2.6)
+J f{ ®(z,£,t,7)S(E, 7)dQ dT + [ B(z,€,t,0)T(€,0)dD
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for any € Q and any ¢ € (0, ts], ty > 0, where the coefficient

o(z)=1 VzeN

o(z) =3 Vz € (smooth)
is supplicd by reasons concerning the integration inside the closed region Q. Par-
ticularly in our case, the boundary I' being piecewise smooth, an approximatec ex-
planation of the above values for the coeflicients ¢ is that cxcept the points at the

corners, if we choose any other point £ € I' and we consider all the balls B(¢, 7), for

any arbitrarily small radius r, then

J 1ldz

B B(£,r)NQ2
lim =1. 2.
rl—~0 f l1dz (27)

B(¢,r)N(R*\Q)

Further details regarding this coefficient are given in Brebbia ct al. [7].
Since for the moment we eonsider ¥(z,t) = 0, the sccond integral in (2.6) vanishes,

so that, if we denote S, =T x (0,t7] and S, = Q x {0}, we can rcwrite (2.6) as

o(z)T(z,t) = Sf[‘I’(x,ﬁ,t,T)gTq;(ﬁ,'r)—T(£,T)§%(a:,§,t,r)] ds, (€, 7)
1 (2.8)
+ sf T(€,7)®(z,€,t,7)dS, (€, 7).

From now on, the forthcoming analysis will be carricd out in an onc-dimensional

sctting. The next step in our BEM approach is the discretization of the boundary

intcgral (2.8), which proceeds as follows:

(i) S, is discretized into a scrics of small boundary clements

N N

Su’—'-‘{O} X (O,tf]=U{0} X (tj—l’tj]’ Suz{l} X (Oa tf]=U{1} X (tj-l’tj]

Jj=1 j=1

and at the same time S, is discretized in a scrics of small cells
NO
8,=[0,1] x {0}=|J[z,_,,,] x {0}.
k=1
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The tempcrature 7 and the flux Q% arc assumed to be constant over cach

boundary clement (t,_,,t,], taking their values at the midpoint t~j = (t,_, +
t,)/2, and so we denote
T(0,t) = T(0,t) = Ty, Vte€(t,_,t,],
T(1,t) = T(,t) =: T,, Vte(t,_,t)], 29)
Fo = F08) = T, Vte(t,_t),
1) = ZL(LE) = T., Vte(t,_,t]
Also the tempcerature T is assumed to be constant over cach space ccll
[x,_,,z,), taking its value at the midpoint Z, = (r,_, +z,)/2, i.c.
T(z,0) = T(,,0) = T., Vz€lz,_,z,). (2.10)
(ii) The boundary intcgral (2.8) can now recast as
N L t;
o(z)T(z,t) = ZT;Jf th'rdT-i-ZT’ f(I)CL‘ltT)d
=1 J -1
N t,-
Z TOJ f g_f'(x’ 0,¢, T)dT - E le f gng(z, lit)T)dT
le =1 0 j= tj-l 1
No Ty
0
+3 T [ ®(z,6,1,0)d¢
k=1 =z, _,
(2.11)

for (z,t) € [0,1] x (0, ts], where ny, and n, represent the outward unit normals

at the boundary points £ = 0 and £ = 1, respectively.

(iii) By dcnoting

L

Cj(z,t) = [ ®(z,¢t,7)dr

t;_y
Y
Diwt) = [ (g tn)ir (212)
tiy
Ty
Ek(l‘,t) = f (I)(:r,f,t,O)dﬁ
Th-1
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we can rewrite equation (2.11) as

N
o(@)T(z,t) = 5 [ngc;’(z, t) +T/,Cl(z,1) - T,,D(z,1) - T,, D\ (=, t)]

=1

.

+§ T’E,(z,t),  V(z,t) € [0,1] x (0,].
B (2.13)

2.2.2 Analytical Expressions for the BEM Coefficients

We calculate now the analytical expressions of the coefficients involved in the com-
putation. As a gencral approach, we apply the change of variables z = V=T or
z = —_t\/lf—r for the correspondent integrals and then insert the primitive (A.1) when-
cver it is requested, scc Appendix A.

Let us consider the following notations:

r=lz—¢, 2, = VPf(t—tj—l ) zazvpf(t—tj)’

(2.14)
W =3 t:tJ__l’ Wa =3 :—zJ
For the coeflicients
L
Cj(z, t) = [ Oz, t,7)dr
a3 " » (2.15)
= | o [-B-n - f]er

we have the following cases:

Case 1: fort <t,_,
C;(z,t) =0.

Case 2: fort, , <t <t andr =0

t.

p H(it-r
i) = [ s enl-Re =i = Zery (/A1)

tiy
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. ¢
where erf is the standard error function, defined by erf(¢) = % e’ do,
0
V¢ € R, , scc Abramowitz and Stegun [1].

Casc 3: fort, , <t <t andr #0

Ci(a,1) = f Mo oxp [Pyt =) - | dr

- o [- ooy Fer e (VAT + a7 )
(—r/F) (1 +erf (\/TWTJ-_J“ 2\/@‘,_—1))] !

where er fc =1 — er f is thc complement of the crror function erf.

Casc 4: fortj<tandr=0

L
Ci(z,t) = N T P Bt - )
=1

2\}[71 lerf(V/Pr(t —t,.)) — er f(/Pi(t = £,))] -

Casc 5: fort, <tandr #0

Gt = pmen[-he-n i)
= T{cxp \/—)[erf( P 1) + 5 )

i ()

vesp-ry/F7) |ers (V=60 - 0
()

Thercfore, using the notation (2.14), we can summarize the coefficients C* (z, t) as
2

follows:
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Cf (z,t) =

[0 t<t,,
1 t,, <t<t,
Jeri(z)
r=10
17 [op(=rV/P) (Lt erf(z —w,) t, <t<t,
< — exp(ry/Py)er fe(z, +w,)] r#0
t. <t
e erd(2) = en (2)
r=20
g oo/ P S+ w) —erfetu) |t <
+ exp(—T\/Ff) (eTf(ZI - wl) - 67‘f(22 - 'U),))] r 7é 0

(2.16)

We proceed in a similar manner to calculate the coefficients

t

D:(:z:,t) = f a‘b(z & t,T)dr

_ H(t—1)z-¢€
- f—i\t/——(t—%)lexp[ Pt—-71)- %—(t—TL)]dT

which gives
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Di(z,t) =

(
0 t<t,
. t,, <t<t
1 [oxp(ry/Prler fe(w, + z,) + exp(—r/P))er fe(w, ~ 2,)]
r#0
4
. t,, <t<t,
r=20
Hexp(ry/By) (erf(w, + 2,) — er f(w, + 2,)) t
t, <
\ +CXP(_7'\/ Pf) (er.f(wz - 2'2) - erf(wl - 21))]
(2.17)
Finally, the coefficients E, (z,t) take the form
Ty
E(z,t) = [ ®(z,£1,0)d¢
Ty
Ty 2
= [ smew (_pft _ (z—}f)—) de (2.18)
Th-1

- e oy () - (2]

Numcrically , the error functions erf and erfc are cvaluated using the NAG routines
S15AEF and S15ADF, respectively.

We use now these coefficients in equation (2.13) and, provided that we know both the
initial condition on T'(z,t) for all (z,t) € S, and the Dirichlet boundary conditions
on T'(z,t) for all (z,t) € S,, we can compute the valucs of the Neumann data —85% (z,t)
for all (z,t) € S,.
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For this purposc we apply the integral cquation (2.13) at the boundary nodes (0, t~‘.)
and (1,%,) for i = 1, N and obtain a 2N x 2N lincar systcm of algcbraic equations
in the unknowns {Téj,Tl’j |7 = 1, N}, which is solved numcrically using a Gaussian
climination method.

Aftcr obtaining the solution of this system of lincar cquations, we usc it in equation

(2.13) and obtain the solution T'(z,t) at any point (z,t) in the region [0, 1] x [0,¢,].

2.2.3 Numerical Results and Discussion

The BEM that we have just described will be applied directly for solving the problem:

2

or oT

@) =520 = BT(z1),  (z,t)€(0,1)x(0,1], (2.19)
T(z,0)=z", z€[0,1] (2.20)

T(0,t) = 2texp(=Fyt),  te(0,1], (2.21)

T(1,t) = (2t + 1) exp(—Pst),  te(0,1], (2.22)

for a range of values of the perfusion coefficient Py, as well as for a sct of numbers
of boundary elements. In our attempt to investigate the power of this method, we
make a comparison between the present results and those obtained using another
mcthod based on a classical BEM for heat cquation that has already been tested.

This second method, in brief, is using first the change of variable:
Pft
v(z,t) = T(z,t)e ", (2.23)
so that the equations (2.19)-(2.22) are transformed into the hcat equation
O 8'v
2

E(I’ t) = 51:—(1', t), (z,t) € (0,1) x (0,1], (2.24)
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subjcct to

v(z,0) =2, z€l01] (2.25)
v(0,t) =2t, te(01], (2.26)
v(l,t)=2t+1, te(0,1], (2.27)

for which the BEM, as described by Lesnic [66], can be applied.

The analytical solutions of the problems (2.19)-(2.22) and (2.24)-(2.27) arc given by
T(z,t) = (z" +2t) exp (=Pt), v(z,t)=z +2¢ (2.28)

Figurcs 2.1, 2.2 and 2.3 show the L,—errors in the heat fluxes at z = 0 and z = 1,
and in the intcrior temperature, respectively, as functions of the number of boundary
elements N, for N € {20, 40, 80, 160, 320, 640, 1280}, which arc obtained by running
the BEM for both cquations (2.19) and (2.24). The number of space cells is taken
to be N, = N/2.

In cach of the Figures 2.1, 2.2 and 2.3 we have: (a) Py = 0.01, (b) Py = 0.1,
(c) P; = 1, and (d) Py = 10. In each of the plots, thc numbers in the legends
represent the coordinates of the marked points on the corresponding graph. The s
annotated and interpolated with a solid line stand for the graph of the Ly—errors
obtaincd directly by the BEM that we have proposed for the bio-hcat equation
(2.19), whereas the +s annotated and interpolated with a dash-dot linc stand for
the graph of the Ly—crrors obtained when the BEM, as described in Lesnic [66], is

applicd to the transformed heat cquation (2.24).
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Figure 2.1: Ly—errors for the flux at z = 0.
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Ly — errors for transformed and direct BEM
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Figure 2.2: Ly—errors for the flux at =z = 1.
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Figure 2.3: Lp—ecrrors for the interior temperature inside the solution domain Q x

(0,¢,] = (0,1) x (0,1].
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Using a fixed number N of boundary clements, we observe from the distribution of
the Lp—crrors in Figures 2.1, 2.2 and 2.3, for the two BEMs, as Py rangces over the
intcrval (0.01, 10), that for Py < 1 the BEM that we have proposed, applied directly
to the bio-hcat equation (2.19) gives a better accuracy than the BEM for the trans-
formed heat cquation (2.24). However, for Py > 1, using first the transformation
(2.23) and then applying the BEM to the hecat cquation gives rise to marginally
better results, with an increcase in accuracy, of the order 10”7 for N > 640. This
behaviour is present in all the numerical experiments that we have carried out, sec
Figures 2.1, 2.2 and 2.3. Moreover, the computation of the flux over the boundary,
shown in Figures 2.1 and 2.2, is in full agreement with the computation of the interior
solution inside the domain (0, 1) x (0, 1), sce Figure 2.3, so that the reccommended

best method to employ remains unchanged from all these perspectives.

2.3 Conclusions

The direct BEM for the transicnt bio-hcat cquation (2.19), which has been proposed
in this chapter, aims to be considered as a robust alternative to the commonly used
scheme where the BEM is applied after this cquation is transformed via (2.23)
into the heat cquation (2.24). The BEM that we have proposed does numcrically
converge, the L, —crrors decay almost quadratically as N increascs, for N = 1280 the
error becoming less that 10~ both for the flux at £ = 0 and for the intcrior solution,
sce Figurcs 2.1 and 2.3, and less than 107" for the flux at z = 1. However, both
mcthods perform cqually well and ecither of them can be employed with confidence

in the numerical computation of the bio-hcat conduction cquation (2.19).

34



Chapter 3

Inverse Constant Perfusion

Coeflicient Identification

3.1 Introduction

Projccted as the main focus for the entire work, the investigation for the retricval
of the perfusion coefficient is started by first considering the casc when P is a con-
stant coefficient of the steady state and the transient bio-heat conduction cquation
(1.2). Using both analytical and numcrical techniques, under the presence of initial
and Dirichlet boundary conditions, in this inverse coefficient identification problem,
the additional measurcment necessary to render a unique solution may be a hcat
flux, an interior temperature, or an average temperature measurcment at a single
instant. We should note the nonlinear character of the resulting inverse problems,
as both P and the temperature T arc considered simultancously unknown and arc
sought as a couple solution. Other inverse problems in which cither the heat source

% or parts of 002 are unknown, with application in tumors detection, have becn
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approached alrcady in various regards, sce Kleinman and Roemer [62], Ren ct al.
[94], and Partridge and Wrobel [78].

As this study represents a first attempt to recover the perfusion paramecter Py cn-
tering the equation (1.2), we consider Q = (0,1) to bc a onc-dimensional spatial
domain and restrict the non-dimensional time variation to an interval [0,1,], with
t, >0. For simplicity, we neglect the source £ and seek a solution for the constant

coefficient P;. Then equation (1.2) simplifies as follows:

o'T
ox®

(z,t) — PT(z,t) = %—f(z,t) (z,t) € (0,1) x (0,2,]. (3.1)

In the following scctions we formulate and investigate the existence and uniquencss
of the solution for four inverse problems that arc induced by the different types
of measurements considered, i.e. heat flux, temperature or mass, which are taken
at onc spacc point and onc instance in time, in both transicnt and stcady-state
regimes. For the numcrical approach, after performing the change of variable (2.2),
which transforms the bio-hcat cquation (3.1) into the standard heat cquation, the
boundary element method (BEM) is used for obtaining the computational results,
which are presented and discussed later in the chapter. As, in this particular casc,
the equation (3.1) is linear with constant coeflicients, so will be the heat equation
obtained after performing the change of variable (2.2), and thus a fundamental
solution is available. Since the BEM rcquires the discretisation of the boundary
only, and therefore it reduces the dimensionality of the problem by one, this method
is much morc advantagcous to usc than the traditional domain discretisation oncs,
e.g. the finite-difference, the finite element or the finite volume methods. The

robustness of the numerical method will be challenged by allowing the measurement
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data to be contaminated with random noise.

3.2 Mathematical Formulation

We consider the following inverse problems: find the temperaturc T(z,t) in
€' ((0,1) x (O,t,])ﬂ%”l'o([o, 1] x [0,¢,]), and the constant perfusion coefficient
P; > 0 satisfying the onc-dimensional bio-heat cquation (3.1), subject to the initial
condition

T(z,0) =T,(z), z€]0,1], (3.2)
the Dirichlet boundary conditions

7(0, t)y = f(t), te [0) tf]’ f(0)= T,(0),

(3.3)
T(1,t) = g(t), te[o,t,], g(0)=T,(1),
and onc of the following additional information:
a) a heat flux measurement at (0,t,) € {0} x (0,¢,]
oT
_'(79;(0'; to) = h,, (3-4)
b) a heat flux measurement at (1,¢,) € {1} x (0,¢,]
aT
%(1’ to) = hn (35)
c) a temperature measurement at an internal point (z,,t,) € (0,1) x (0,¢,]
T(z,,t,) = u, (3.6)
d) a mass measurcment at a single time t, € (0,t,]
1
/ T(z, t,)ds = £(1,). (3.7)

0
In what follows we assume that T, € €°([0,1]), f,g € €' ([0, t,])-
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3.3 A Steady-State Analysis

Before launching into examples and the numerical approach, let us asscss our inverse
problem in the stcady-state. The inverse problems (3.1)-(3.7) in the stcady-state

are rewritten in the following form:
T (z)-FT(z)=0, z€(01), (3.8)
subject to the Dirichlet boundary conditions

T(O)=f, T(1)=g, fig€eR, (3.9)

with onc of the following additional information:
a) flux measurement at z = 0, namely -7 (0) = A,

b) flux measurement at z = 1, namcly T'(l) =h,,

c) internal measurement taken at x, € [0, 1), T'(z,) = u,

1

d) mass measurcment [ T(z)dz = E.
0

Let us first notice that by integrating equation (3.8) we obtain
PE=h, —h, (3.10)
Since P > 0, by solving the ODE (3.8), we obtain the general solution

v Ve

T(z) =C,e + C’,e_ , C,,C, eR. (3.11)

Using the Dirichlet boundary conditions (3.9), we dctermine the constants C, and

C,, and obtain

38



By denoting

B = e‘/P—', (3.13)
we obtain
1 " 1-z
T(x) = gy |67 (06~ N +07 (f6~3)]. (3.14)
Therefore
’ 1 x 1-z
T'(0) = ok [ 68 - 1) - 87 (18- )], (3.15)
which cnablcs us to calculate
: 8 +1) f—20g|In(g , *+1) g-28fh
N L) GRS GRS LRE2IiC)
7 -1 71
(3.16)
Also, from (3.14),-we obtain both the internal measurcment
1 VB
=T (5) = m(f + 9), (3.17)
for the intcrnal point chosen to be z, = %, and the mass measurement
-1
e B-1)(f+9) (3.18)

(B+1)In(B) -

First, lct us consider casc ¢) in which the internal temperature measurement u is
supplicd at z, = 3.

Bascd on equations (3.14) and (3.17), we distinguish the following conclusions:
i) If u =0and f+ g # 0, then the inverse problem does not have a solution;

ii) If u =0 and f +g = 0, then the problem has infinitely many solutions Py > 0

and T'(z) = 5‘_%(51—3 — B7), where 8 = eﬁ;

iii) If u # 0 and (f+ g)2 -4’ < 0, then the problem docs not have a solution;
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iv) If u # 0 and (f + g)2 — 4u® > 0, then the problem has a unique solution, as

2 2 2
o [T e - [ el )

2u 2u

Another situation to consider is casc d) in which the additional information supplicd

is the mass measurement (3.18). Since the function

F:(1,00) = R,
(3.19)
F(B) = (33)—11',(,3_)’ for any 8 € (1, 00)
is strictly decreasing and
i 1 .
[131_'12 F(B) = 3 and 511—{& F(B) =0, (3.20)

we obtain that the inverse problem in case d) has a unique solution if and only if

&

0< —
f+g

<z (3.21)

N

Otherwise, it has no solution.

Finally, we analyzc the cascs a) and b), when the additional information supplied
is either a flux measurement h, at z = 0, or a flux measurement h, at z = 1. In
either of these cases the existence and uniqueness of the solution of the corresponding
inverse problem is related to the number of zeros on (1, 00) of the particular functions
F,(B), for the flux measurement at the left, or F,(3), for the flux measurement at

the right. These two functions are defined as follows:

F,(8) = (8" +1)f — 289) In(8) ~ (8" — 1)h,,
F(8) = ((8" +1)g—28f)In(8) - (8" — 1)h,.

Let us now consider some particular choices of the boundary conditions and meca-

(3.22)

surcments for which we can determine the numbers of zerocs of the functions defined

in (3.22). For example, if f = g, then

Fy(8)=—(8" - DfIn(B) + h,], F(8)=(8"—1)[fIn(8) - h,). (3.23)
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Therefore, if 0 < —bj} < 0o, then the inverse problem for the flux measurement at

z = 0 (casc a)) has a unique solution given by

ne(3). o

. Otherwisc, the inverse problem has no solution.

Il

f [ x 1—:]
- , 3.24
s[5+ (3:24)
h
where B=e 7
Also, if 0 < b« oo, then the inverse problem for the flux measurement at z = 1

!

(casc b)) has a unique solution given by

Py = (h?)z T(z) = E%-"i [ﬁ’ +ﬁ“'] , (3.25)

h
where 8 = e—f. Otherwise, the inverse problem has no solution.
In the rest of the chapter we consider the transient case given by the bio-hcat

conduction equation (3.1).

3.4 Analysis for the Flux Measurement

Let ¢ € €7 ((0,1) % (0,¢,1) N £ ((0,1] x [0, t,]) be the unique solution of the direct,

well-posed problem (3.1) - (3.3) with Py = 0, namcly

%(z, t) = -g—g(z, t), (z,t)€(0,1)x (0, t,, (3.26)
¢(z,0) = T,(z), z € [0, I]a (3:27)
#(0,2) = f(t), tel0,¢], f(0) =T, (0),
(3.28)
¢(11t) = g(t), te [0’ tf]’ 9(0) = To(l)'
Then the function
w(z,t) == eP!tT(a:,t) - ¢(z,t) (3.29)
satisfies the following problem:
%U(z, t) = %;,g(x, t), (z,t) €(0,1) x (0,¢,], (3.30)
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w(z,0) =0, z € [0,1], (3.31)

w(0,1) = f(t)(e” = 1) = F(t), telot,], F(0)=0,

(3.32)
Pt
w(i,t) = g™ 1) =3(t), te[0t,],7(0)=0,
and the flux measurement (3.4), namely
ow _ Pty 00
~ % (0,t,) =hse " + 51?(0, to)- (3.33)
Let us assume that a solution to the problem (3.30)-(3.33) cxists.
Since 7,7 € €°([0,t /1), we have the representation formula
t
5‘M oM
wz) = - [Sr@t-nFor+ [ e-Le-ngmarn, (30
0 0
where
2
M, o [ _§+—n)_:| , (3.35)

and H is the Heaviside step function, sce Hartman and Wintner [55] for details.

By differentiating equation (3.34) with respect to z, we obtain

/ et = n)F(r)dr + % M o —1,t = 1)g(r)ar. (3.36)
0
Since
%A;d-(w—f,t—f)=—%§f(r—£,t—r), TEE ST, (3.37)

it follows that

%1;—’(3:, t) = / %—J\T/[(x,t = 7)f(r)dr - / %—AT/I(I —Lt-r)g(r)dr.  (3.38)

On the other hand, let us first notice that, from equation (3.35), we obtain

imM(z—§t=7)=0, z#¢ (3.39)
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and since f,7 € € ([0, t,]), with f(0) = g(0) = 0, by using intcgration by parts in

(3.38), we have

g—ij(x, t) = — / A[(.’B,t — T)?I (T)dT + /AI(I - lat - T)gl (T)dT’ (340)

0

for all (z,t) € (0,1) x (0,t,]. By using now the Lebesgue’s Dominative Convergence

Theorem, sce Stroock [108], we obtain

t
ow

ii{,r(l) _B—z_(x’t) = - / M(0,t — T)?I (t)dr + / M(1,t— r)§' (7)dr (3.41)

for all t € (0,¢,].

For t € (0,t,] and P; € (0, 00), let us define

H*(t, Pf) := — / M(0,t - 7)7’ (r)dr + /.M(—l,t - 'r)y“l (r)dr, (3.42)
QR == (1w P + 01 " (3.49

and remark that cquation (3.33) implics
Q(Py) = h (3.44)

Thus, if the inverse problem (3.1) - (3.4) has a solution then the coefficient P
must satisfy equation (3.44). Morcover, the inverse problem (3.1) - (3.4) is actually

equivalent to the nonlincar algebraic equation (3.44) in the following scnse:

Theorem 3.4.1 Let f, g € € ([0, t,])) andT, € %*([0,1]). Then the inverse problem

(3.1) - (8.4) has a unique solution if and only if equation (8.44) has a unique positive

solution.

Proof: The proof follows a path similar to thc one used for Theorem 2.1 in

Cannon [10]. Assume that the inverse problem (3.1) - (3.4) has a unique solution
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T(z,t); P;). Therefore, from the above analysis, we find that equation (3.44) has
f

a positive solution FP.
Let us suppose, by reduction to absurd, that P; is not the only positive constant
that satisfies equation (3.44). Thus there exists P;; > 0 and P > 0, Py; # P,

such that both Py and Ppp arc solutions of cquation (3.44). If we consider

t 2
oM
8I2 (',B

t 2
Ta, )= " |ole.) - [ S (et =T (rar + ~1,t-7)g(r)dr |,
0

0

(3.45)
where f, (1) = f(T)(eri’—l) and g (1) = g(T)(ePf‘T—l), fori € {1, 2}, using both the
change of variable equation (3.29) and the representation formula (3.34), we obtain
that (T,(z,t); Pn) and (T,(z,t); Pe) arc both solutions of (3.1) - (3.4). Thercfore,
sincc Py # Pj immediatcly implics (7, (x,t); Py) # (T,(z,t); Pg), which contra-
dicts the uniqueness assumption for the inverse problem (3.1) - (3.4) that we have
considered, we obtain that equation (3.44) has a unique positive solution P.
Converscly, let us assume now that equation (3.44) has a unique positive solution
Ps. If we suppose by reduction to absurd that there exists two different couples
(T,(z,t); Py) and (T,(z,t); Pj) that arc both solutions of (3.1) - (3.4), then by
using again the change of variables equation (3.29) and following for cach of the
solutions all the argument described from equation (3.44) onward, before the state-
ment of our thcorem, we obtain that both P;; and P, are solutions of equation
(3.44). However, since cquation (3.44) is assumed to have a unique solution, we

obtain Pj; = Pjp = P;. Thercfore, the two functions

w,(z,t) = ertTi(:r, t) — ¢(z,t), ie{1,2}, (3.46)
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satisfy the same problem (3.30)-(3.33) and so, using the representation formula

(3.34), we obtain that w,(z,t) = w,(z,t), which finally implies that
T,(z,t) = T,(z, t). (3.47)

Thus we can conclude that the inverse problem (3.1) - (3.4) has a unique solution.

a

Remark 3.4.2 We notice that, using the definition (3.48) and equation (8.44), the
construction of the graph of Q(FP;) is sufficient to yield the numerical solution for

P;. A similar analysis holds for the heat flur measurement (3.5) instead of (3.4).

3.5 Analysis for the Internal Temperature Mea-
surement

Let ¢, be the unique solution of the problem (3.26) - (3.28) with T, = 0.

Theorem 3.5.1 Let f,g € €°([0,4,]), f(0) = g(0) =0, T =0, f >0,g >0,
f2 + 92 # 0. Then the inverse problem (3.1) - (8.3) and (8.6) has at most one

solution. Moreover, if u € (0,0,(z,,t,)) then the solution also erists.
Proof: The transformation
Pft
w(z,t) :=e T(z,t) (3.48)

recasts the problem (3.1) - (3.3) into

ow 8w
—at——(x,t) = —3?(1, t), (z,t) € (0,1) x (0,¢,], (3.49)
w(z,0) =0, z € [0,1], (3.50)
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Pst t
w(0,) = f(t)e”, w(l,t)=gt)e”, telot,] (3.51)
The internal temperature measurement (3.6) becomes

w(z,y, t,) = ue .

(3.52)

Since f,g € €°([0, t,]), we have the representation formula (3.34) which, when

applicd at (z,,1,), gives

u = H*(P), (3.53)
where H*(FPy) is defined as
to to
— oM Py(r—tg) oM Py (r—tg)
T+ (Fy) = —/—%(zo,to-—'r)f(T)e d7'+/ @ =1t =r)g(r)e”
0 0
(3.54)

By taking the derivative of H* with respect to Py and then using that f >0, g > 0,
%%(zoato —-7) <0, %_A:(xo -1,t,—7) >0, (z,,7) € (0,1) x [0,¢,], and f2 '|'g2 #0,
wc obtain

’

This mcans that the function H* : (0,00) — R is strictly monotonic decreasing.
Hence, H* is injective and therefore equation (3.53) has at most one solution.
aM

By using that Th/{rtl &2 (zy,t, —7) = 0 and f(0) = g(0) = 0, as wcll as the repre-
0

scntation formula (3.34) for ¢,, we have
0= I%linoo H*(Pf) < IlfllilOT{—;(Pf) = ¢(Zo, to)- (3.56)

Let us also note that from the maximum principle we obtain ¢,(z,,t,) > 0. Thus

we can conclude that the function

H*: (0,00) = (0, ¢, (z,,,)) (3.57)
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is bijective and hence equation (3.53) has a unique solution if
u € Range(H") = (0, 6,(2o, 4,))- (3.58)

Finally, the last part of our argument is identical to the proof of the Theorem 3.4.1.
Thercfore, we obtain the targeted conclusion that the inverse problem (3.1) - (3.3)

and (3.6) has at most onc solution, which, morcover, docs cxist if u € (0, ¢,(z,, 2,))-

a

3.6 Analysis for the Mass Measurement

Let T, = 0. If we consider the mass measurcment (3.7), then the representation

formula (3.34) and the change of variable (3.48) imply

Et,) = - w(m, t, — T)f(T)ePf(T-to)dex

(3.59)
My —1,t, — T)g(r)epf(r—tO)dea:.

After carrying out the intcgration by invoking Fubini’s thcorem and then taking

advantage of the fact that M is an even function with respect to x, we obtain

E@t,) = H'(P)), (3.60)

where TJT;(Pf) is defined as

t()
= Pp(r=tg)
B = [0t = 1) = M1ty = )(F(@) + g )" (361)
0
By making usc of the fact that M(0,¢, — 7) < M(1,t, — 7), wc obtain:

Theorem 3.6.1 Let f,g € %0([0, t,]), f(0) =g(0), f+g <0 and f2+92 2 0.
Then the inverse problem (3.1) - (3.8) and (3.7) has at most one solution. Moreover,

1
if E(t,) € (0,f¢)o(z,to)dx), then the solution also ezists.
0

47



’

Proof: Under these hypotheses we obtain immediately that H (Pr) < 0. Thus the

function H* : (0,00) — R is strictly monotonic decreasing and since the range of

— 1
H~is (O, [ ¢ (z, to)d:z), the theorem follows.
0

3.7 Examples and Numerical Results

3.7.1 Homogeneous Boundary Conditions

Let us first find the solution of the inverse problem (3.1) - (3.4) considering the

particular data for the initial condition
T(z,0) = sin(rz), =z €[0,1],
and the boundary conditions
T(0,t)=T(1,t)=0, te(0,t,,
while the flux measurement (3.4) is taken at a fixed point ¢, € (0,t,] as
or (1)t

—%(0, t,) = —me

By using the change of variable (2.23), we obtain the governing cquation
ov 8'v
—a—z(z, t) = 5;(1’, t), (.’L‘, t) € (0, 1) X (0, 1]
with the corresponding initial condition
o(z,0) = sin(rz), z€[0,1],
and the boundary conditions

v(0,t) =v(1,1) =0, te(0,t,).
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The flux measurement (3.64) transforms into

ov —(12+1)t Pyt
—5;(0, to) = —Te °e !

0

(3.68)

Howecver, by solving the heat cquation (3.65) with the initial condition (3.66) and

boundary conditions (3.67), wc obtain
—rnt
v(z,t) =sin(rz)e ", (z,t) €[0,1] x (0,¢,]. (3.69)

Thus from (3.68) and (3.69) we infer that

(ro+1)t Pyt ov 2,
- 0 0 -
—me e " =——(0,t,) =-me °

- (3.70)

(Pg—

Thercfore e ° =1 and so Py = 1. Using the solution (3.69), and going back-

2
wards through the transformation (2.23), we obtain T'(z, t) = sin(rz)e™™ ™

as the
corresponding solution for equations (3.1) - (3.3) and so

2
(7 +1)t

T(z,t) = sin(nz)e ;o Pr=1 (3.71)

is the unique solution for our inverse problem (3.1) and (3.62)-(3.64).
If instead of the flux measurement (3.64), we have the internal tempcraturc mea-
surement (3.6), this recasts our casc as

2
—to(n +1)

T(z,,t,) = sin(rz,)e . (3.72)
Then the transformation (2.23) gives

2
—to(ﬂ’ +1) Pft()

v(z,,1,) = sin(rz,)e e’ . (3.73)
Since sin(rz,) # 0, from (3.69) we obtain both P; = 1 and the unique solution
(3.71).

Also, if instead of the flux measurement (3.64) we have the mass mcasurcment (3.7)

2
2 ~tg{m +1)

1
£(t,) = / T(z, )z = 22—, (3.74)
0
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then the transformation (2.23) gives

1

2
2 —tg{r +1) P!zo
/ oz, 1)) = 2 e (3.75)

s
0

Using (3.69) we obtain again both P; = 1 and the unique solution (3.71).
Provided that the boundary conditions (3.3) arc homogencous, as in (3.63), the

above analysis can be gencralized to an arbitrary integrable function T, with

T,(0)=T,(1)=0
By considering T, € €°([0,1]), the solution of the problem (3.1)-(3.2) and (3.63),

may be obtained by scparation of variables and is given as follows,
T(z,t)=c¢e s Z (e " * sin (Irzx), (3.76)

1

where ¢, = 2 [ T,(€) sin(in€)dé, | = 1,2..., scc Horvath [58] and Tikhonov and
0

Samarskii [110]. By differentiating the Fourier series (3.76) with respect to z, we

obtain a uniform convergent scrics. Thus the derivative
P 7I'
(x t) =me ! Zl(e cos(lrz) (3.77)

is continuous on [0, 1] x [0,¢,].

Let us also introduce the mass function

£(t) = / T(z,t)dz, t>0. (3.78)
From (3.76) wc obtain
£y =D - (-1 (3.79)

I=1
We remark that the particular case of T (z) = sin(rz) falls within our current

1
general analysis, since {; =2 [ sin’ (r€)dz =1and {, =0 for all I > 2.
0
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Considering now the analytical expression (3.76) within the specific context of each

typc of mcasurcments (3.4)-(3.7), we obtain:

or

oo 2 2
—Pjt -t rt
h, = —%(0, t)=—-me '° ;lge °

(u)—ne ’°Z( 'ige "

=T(z,,t,) = e E C,e_l " sin(lrz,),
1=1

=1

)= | T(o,t)iz = 3 41 - (-1

(3.80)

(3.81)

(3.82)

(3.83)

From these cxpressions, using the existenee and uniquencss theorems from the previ-

ous sections, we obtain the necessary and sufficient conditions for the existence and

uniqueness of the perfusion coefficient P in cach of the four additional mecasurcment

cascs, namcly

Case 1: for the flux measurement (3.4):

0<Ai=—g——— <1,
Ty lGe” T
=1

Case 2: for the flux measurement (3.5):

hl
(_l)llcle-—lavrato

0< A:=

<1,
T

18

-
Ii

1

Casc 3: for the internal temperature measurcment (3.6):

0<A:= <1,
ZCl A  sin(lrz,)

Casc 4: for the mass measurement (3.7):

7r€(t0)
i -(21+1) "3ty

=0

O0< A=

(3.84)

(3.85)

(3.86)

(3.87)



From (3.81)-(3.83) wc obtain P; explicitly given by

(3.88)

Equation (3.88) shows that the stability of Py is of logarithmic type, and decrcascs
as t, decreascs.
Once P; has been determined, cquation (3.76) provides the temperature solution

T(z,1t).

3.7.2 A Numerical Example

While the above examples have embraced an analytical trecatment, in the following
cxample an important numecrical method comes into play. Taking for simplicity

t, =1, we consider the exact solution
T(z,t) = (z" +2) ' ; P=1 (3.89)

for the inverse coefficient identification problem (ICIP) given by cquations (3.1) -

(3.4), which in the casc considered, recast as follows:

%;(x, ) = PT(z,1) = %(z, ), @H)e01)x 0,1, (390
T(z,0) =z, z € [0,1], (3.91)

T(0,t) = 2te ", telo,1],
(3.92)

T(1L,t) = (1+2t)e™, te0,1).

Further, the flux measurement (3.4) is taken as

oT

~5-(0.t) =h, = 0. (3.93)

Employing the transformation (2.23), we obtain

v(z,t) =2 +2, P=1 (3.94)
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which is the corresponding cxact solution for the transformed problem given by

ov o’v
v(z,0)=2", z€[01] (3.96)
0(0,1) = 2, teo,1],
(3.97)
o(L,t) = @+, telo1],
ov
~5=(0,t,) =0. (3.98)

Using the BEM for solving (3.95) - (3.97), we obtain —22(0, t,; Py). Here, as well
as in all the other numcrical experiments throughout this subscction, we apply the
BEM with N = 320 constant boundary clements and the number of space cells
used to discretise the space domain (0, 1) is taken to be N, = 160. This number
of discretisations was found sufficiently large such that, in all the numecrical tests
considered in this subscction, any further incrcase docs not significantly affect the
accuracy of the numcrical results for the direct problem (3.95) - (3.97), with F

known. By plotting the function

5:(0,00) — R,
(3.99)

S(Py) = |-5:(0,t,; Py)|
we dctermine its global minimum which should be located at P; = 1. Figures 3.1
and 3.2 illustrate the variation of S, as a function of P; € (0, 2], when
t, € {t~1,t~,,t~ g,fN}, where fj, j = 1, N, denote the clement midpoint nodes of
a uniform discretisation of the time interval [0,¢, = 1]. As onc may notice, in
Figure 3.1(b), the computation for the plot associated with #, would have been
facing "a corner effect”, thus heavily affected by round-off errors and so very badly

bchaving. However, we treat this issuc by solving the problem again for a new
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0.5

Figure 3.1: Variation of S with P; when (a) the flux measurement is taken at (0,,),
(0, t:,}), (0,%,), and (b) the flux measurement is taken only at (0,¢,). In case (a)
we have: solid line for #,,, dashed line is for £, and dash-dot line for Z,. In case (b)

T

solid line is for #,.

final time ¢, := t,, and in this way the time boundary clement node £,, from the
initial computation, becomes the new ¢, see Figure 3.2(b), so that the corner effect
encountered before has now vanished and thus, for the Figures 3.2(a) and 3.2(b), the
plotted data have been obtained by using the code modified accordingly. Because
of the large difference in scales between the plots corresponding to ¢, and t,, which
are of the order of 10™°, relative to the ones corresponding to y and ¢, which are
of the order of 10, we recast the first two ones separately in Figure 3.2(b).

We consider now the ICIP given by (3.90)-(3.92) for the case of the flux measurement

(3.5) at the right boundary z = 1, namely

or s

oy (Lte) =h, =2e B (3.100)
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Figure 3.2: Variation of S with Py when (a) the flux measurement is taken at (0,1, ),

(0,t,), (0, f%{) or (0,%,), and (b) the flux measurements is taken at (0,%,) and (0, ,).

In both cases we have: dotted line for £, , dashed line for £, , dash-dot line for ¢,
T

and solid line for ¢, .

Using the transformation (2.23), the converted problem (3.95)-(3.97) receives the

flux measurement,

81) 2 —1)t
ol,t) = 2¢ 7.

(3.101)
Using again the BEM for (3.95) - (3.97) we obtain g—;(l,to;Pf). By plotting the

function

§:(0,00) — R,,
e (3.102)
S(P;) = |22(1,t,; P) — 2677

oz

we determine the global minimum which should be located at P; = 1. The corner
effect is again avoided by using the technique described in the case of the flux
measurement at x = 0. Figure 3.3 illustrates the variation of S, as a function of
P; € (0,2], when ¢, € {fl,fz,fg,f,v}. Again, because of the difference in scales

between the plots corresponding to #, and t,, which are of the order 10_2, relative
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(s) (b)

25

Figure 3.3: Variation of S with Py when (a) the flux measurement is taken at (1, i3

(1,20 (1,t1,¥) or (1,%,), and (b) the flux measurement is taken at (1,%,) or (1,t,).

In both (a) and (b) we have: dotted line for £, dashed line for ¢, , dash-dot line
k)

for £, and solid line for ¢,.

to the ones corresponding to ¢ y and ¢ ~» Which are of the order 10, we recast the
former ones scparately in Figure 3.3(b).

By comparing Figures 3.2 and 3.3, we notice that the numerical results have a very
similar structure for the two types of flux measurements at z = 0 and =z = 1.
Another importaﬁt aspect is the effect of noisy data in the flux measurement (3.100).

Here we take

oT =
5;(1, t,) =2¢ "(1+a), (3.103)

or

(Pr—1)t,

ov
'aE(l’ t,) =2e (14 a), (3.104)

where, throughout the subsection, « is considered the percentage of noise up to 4%.

Figure 3.4 shows the variation of S given by (3.102), as a function of Py € (0,2],
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when t, € {£,,1,, f¥,fN} for the amount of noisc a € {1, 2, 3,4}%.

From Figure 3.4 it can be scen, as expected also from (3.88), that the stability of
Ps dccreascs as t, dccreascs.

Next we illustrate that the problem (3.90)-(3.92) maintains the same genceral be-
havior when one employs cither the internal temperature (3.6), or the mass (3.7),
mcasurcment, as additional information.

Considering first the internal temperature measurement (3.6), namecly
T(zo,t,) = () +2t,)e °, (3.105)

the change of variable (2.23) transforms (3.105) into the internal measurement

(Pp=-1)tg

U(Zor t,) = (z. + 2t,)e (3.106)

associated with the converted problem (3.95)-(3.97).
In order toillustrate the typical numerical results obtained using the BEM for solving

(3.95)-(3.97), we compute v(z,,ty; Pf), for intcrnal temperatures taken at (0.5, %),

(0.5,%,), (0.5,) and (0.5, ). We plot the function
T T B

S:(0,00) — R,, (3107
(Pp=1)tg '

S(Pf) = ’v(xovto;Pf) - (:L‘: + 2to)“3

expecting to obtain a curve with the global minimum located close to the point
P; = 1. Figure 3.5 illustrates the variation of S given by (3.107), as a function

of Py € (0,2], when z, = 0.5, t, € {ZN,fN,fN,fN} and a € {0,1,2,3,4}% noisc

T 1 7

included in the mcasurements (3.105), as

T(zq,t,) = (T, +2t,)e ° (1 + @), (3.108)

or

~1)t,

V(Zor o) = (zo +2t.)e "0 (1 + a). (3.109)
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From Figure 3.5 it can be scen that the minimum of S is indeed achicved close to
Py = 1, Figurc 3.5(a), showing also the good stability of the numecrical results when
the noisy data (3.108) arc inverted, sce Figures 3.5(b)-3.5(c).

The final numerical test that we have considered for example (3.89) is for the casc

of the mass measurcment (3.7), namcly

1

/T(x, t,)dz = E(t,) = (% + 2t0) e . (3.110)

0

In this casc the change of variable (2.23) transforms (3.110) into

1

1
/ oz, t)dr =e CE(t) =€ (5 + 2t0> e . (3.111)
0

1
By applying the BEM for (3.95) - (3.97), we obtain [ v(z,t,; P;)dz and then plot
0

the function

S:(0,00) — R,,
) (3.112)

Jv(z,ty; Py)dz — el® (3 +2t,) e .
0

S(Fy) =

Figurc 3.6 illustrates the variation of S given by (3.112), as a function of P5 €

(0,2] when ¢, € {fN,fN,tN,t;,} and a € {0,1,2,3,4}% noisc is included in the
k)

4T 7

measurement (3.110), as

/1 T(z,t,)dz = (% + 2t0) e °(1+a), (3.113)

0

or

1

1
Pf‘O -ty
v(z,t,)dr=e 3 +2t, e "(1+0). (3.114)
0

Again, the same conclusions as those drawn from Figure 3.5 arc obtained.
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3.8 Conclusions

This work initially develops an analytical framework for the inverse coefficient iden-
tification problem regarding the determination of the constant perfusion coefficient
in the transicnt bio-heat conduction equation. The additional information provided
either through a flux measurement, an internal temperature mecasurcment or a mass
measurcment, is used to ensurc the uniquencss of the inverse problem. Provided
that any of thesc mcasurcments belong to a certain theoretically argued interval,
the solution of the inverse problem is also proved to exist. Morcover, from the proofs
we have performed, the existence of the unique solution associated with the inverse
problem turncd out to be equivalent to the fact that the corresponding perfusion
coefficient is actually the unique positive solution of a nonlinear algcbraic equation.
In the presence of homogencous boundary conditions, we have proved that the sta-
bility is of logarithmic type and once the perfusion coefficient has been determined,
then the temperature solution can be provided analytically.

For arbitrary initial and boundary conditions we have used numerical techniques to
compute the perfusion coeflicient P;. We usc for this thc BEM on a test example
that considers all the three typces of additional information discussed. In all three
cascs, the numcrical results arc accurate and stable with respect to noisy perturba-
tions of the input data. Further, it was noticed that the stability of the solution
increases with respect to increasing the non-dimensional time instant ¢, at which
the additional mcasurement is recorded.

In the next chapter we will extend this analysis to the inverse problem of recovering

a time-dependent perfusion coefficient.
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Chapter 4

The Inverse Time-Dependent

Perfusion Coefficient Identification

4.1 Introduction

The investigation opened in Chapter 3 with the constant coefficicnt case is now
naturally extended to the case when the perfusion coeflicient P; is dependent on
time.

Since, in the inverse problems under investigation, both the temperature T'(z, t) and
the time-dependent perfusion coefficient P;(t) are unknown, the nonlincar inverse
problems that arc gencrated by the sccond-order parabolic cquation (1.2) will be
solved under the prescription of initial and boundary conditions on the boundary
' = 01, when additional information is provided from one of various types of
mecasurcments that can be taken. As described in the experimental work reviewed
in Chapter 1, scc Cardinali et al. {22], Deng and Liu [45], Loulou and Scott [71],

Robinson et al. [97] and Scott et al. [98, 99], the mcasurcments accuracy, their
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invasiveness character or the extent of practical usc, as well as the ability to take
continuous mecasurcments, crcate constraints over the range of types of possible
additional information that can be considered. In a first approach described in
the previous chapter, the case where Py is constant has been discussed from both
analytical and numcrical stand points. However, the blood perfusion need not be
constant in time in all the regions of the body.

This chapter discusses the retricval of the time-dependent coefficient Pf(t) along
with the temperature T'(z, t) from various typces of mcasurcd noisy and cxact data.

The onc-dimensional version of equation (1.2) is given by

@) - HOTE) = e @D, @He@Dx 04l @

Since the technique described in this chapter can be casily extended to higher dimen-
sions, we focus our discussion on the onc-dimensional problem, when Dirichlet or
mixed boundary conditions are considered. As additional information, cither time-
dependent internal temperature measurements at fixed or moving points inside the
region (0, 1) are taken, or total mass or partial mass mcasurements arc supplicd, or
alternatively we have heat flux measurements on a part of the boundary I' = {0, 1}.
All the mcasurement data are assumed to exhibit both exact and noisy characteris-
tics.

Using an appropriate change of variable, which is of a similar nature with (2.2), the
equation (4.1) will be transformed into the standard heat equation form and then
the BEM will be employed. As we will sce in the forthcoming sections, by perform-
ing this change of variable, the unknown time-dependent cocfficient Py(t) will cause

the resulting boundary conditions, as well as the mecasurements, to become unknown
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for the obtained heat cquation problem. However, in both the induced boundary
conditions and the mcasurcments for the transformed equation, the inherited struc-
turc determined by the original equation (4.1) and by the change of variable will be
exploited in our attempt for the simultancous retricval of the unknowns Pf(t) and
T(z,1).

Although the inverse problems considered in this chapter may have a unique solu-
tion, they are still ill-posed, since the solution docs not depend continuously on the
measured data (4.4), (4.5) or (4.6). In other words, this mcans that small crrors in-
troduced in the mcasured data can causc large crrors in the solution (T'(z, t), Ff(t)).
In dealing with such a situation, regularization techniques based on the mollification

mcthod will be employcd.

4.2 Mathematical Formulation

In this chapter we consider the following inverse problems:
Find T(z,t) in & ((0,1)x(0,¢,]) N ‘51'0([0, 1] x[0,¢,]) and the time-dependent per-
fusion coefficient Py(t) in €°((0,¢ ;]) satisfying the one-dimensional time-dependent

bio-hecat equation (4.1) subject to the initial condition
T(z,0) =Ty (z), z€]0,1], (4.2)

the Dirichlet boundary conditions

T(0,t) = f(t), telo,t,], £(0) =T,(0),
(4.3)

T(1,t) = g(t), teo,t,], g(0)=T,(1),
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and, for the time being, onc of the following types of additional information:

a) a interior temperaturc measurcment at a given space point z, € (0, 1)
T(Io’t) = u(t), t € (0, tf)’ u(0) = T,(z,), (4.4)

b) a mass mcasurement

1 1

/T(x, t)dz = &(t), t € (0,t,), £(0) = /To(x)d:c, (4.5)

0 0

¢) a flux measurement
oT '
g(l,t) = h,(t), t € (0,t,), h,(0) =T, (1). (4.6)

The heat flux measurement (4.6) at z = 1 can be replaced, with no modification,
by a heat flux measurement at z = 0.

The non-local mass specification (4.5) arises in many important applications in hcat
transfer in which the source control paramcter P(t) nceds to be determined so that
a desired thermal energy (4.5) can be obtained over the spatial domain.

More gencral types of measurements will be considered at the end of the chapter, in
Sections 4.7 and 4.8. Further, as we will sce after Scction 4.6, the Dirichlet boundary
conditions may also be replaced with mized boundary conditions, i.e. where on a
part of the boundary I'y C ', we know only the temperature, while on I' \ T, we
know only the heat flux.

Defining

AR
7(t) := exp /Pf(T)dT , t€0,t,], (4.7)
0
the change of variable

v(z,t) = r(t)T(z,t) (4.8)
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transforms the time-dependent coefficient heat problem (4.1)-(4.3) into a constant

coefficient heat equation problem, namely

&'v Ov
(@ 1) = (@ t),  (z,t) €[0,1] x (0,,], (4.9)

v(z,0) =T, (z) =: vy(z), z€]0,1], (4.10)
'U(O,t) = T(t) = T(t)f(t), te [0’ tf]’ 7(0) = To(o)a

v(1,1)

(4.11)

I

g(t) :==r(t)g(t), te€0,¢,], g(0) =T,(1).
4.3 The Internal Temperature Measurement at a

Fixed Space Point

In this scction we investigate the inverse problem given by equations (4.1)-(4.4). In

(4.3) and (4.4), the conditions

f(O) = To(o)a 9(0) = To(l)a U(O) = To(xo) (4'12)

arc called compatibility conditions of order zero. Further, we nced compatibility
conditions up to first-order which require the conditions (4.12) be satisfied and in

addition

res T, (0)(x' (0)-T,, (zo))
£(0) =T, (0) + 2RO, e,
(4.13)

y " T, () ()T
g0 =T, (1) + PR R, T(z) >0
The solvability of the inverse problem (4.1)-(4.4) in the spaccs ¢**°, with o fixed
in (0,1) and k € N, of continuous functions with Holder continuous derivatives, sce

Friedman [53] and Ladyzhcenskaya et al. [65], has been established in Cannon et al.

[18] and Prilepko and Solov’ev [88], as follows:

Theorem 4.3.1 IfT, € €°7°([0,1]), f,9,u € %‘*“”([o,t,]), T,>0,f>0,¢9g>0,

uw > 0, and the compatibility conditions up to first order are satisfied, then there
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exists a unique solution (T € %2+a'l+a/2([0, 1] x [0,t,]), Py € fg"""([o, t,])) of the

inverse problem (4.1)-(4.4) which is continuously dependent upon data.

Remark that the thecorem docs not guarantee that the solution for Pf is positive,
henee only the uniquencss of the solution (T'(z,t), Ps(t) > 0) can be concluded.

Prior to this study, numerical methods based on finite differences, scc Baran [5], and
Dchghan [40, 42], and radial basis functions (RBF), sce Dchghan and Tatari [43],
have been developed for solving (4.1)-(4.4), with extensions to two-dimensional rect-
angular domains given in Baran and Fatullaycv [6], Cannon ct al. [19], and Dchghan
[36, 37, 39]. However, the finite-difference method is not easy to implement in higher
dimensional irregular domains, whilst the RBF mcthod is only an approximate mesh-
less method which lacks rigour. Therefore, in order to overcome some of these dif-
ficulties, in this section we propose the BEM for solving the inverse problem of
finding the solution (v(z,t), r(t)) withv € €™ ((0,1) x (0, t,]) N€"°(o, 1] % [0,¢,]),
re¥ ([0,t,]), 7' (t) >0 for t € (0,¢,], 7(0) = 1, which is satisfying (4.9)-(4.11) and

the transformed interior mcasurement
bz t) = r(tu(t)  te 0t u(0) =Ty(z,). (4.14)

Even though both the boundary conditions and the measured data for (4.10)-(4.14)
are unknown, an essential assistance in our approach comes from the integral rep-
resentation formula for the heat equation (4.9), namely
t
o(zp(t) = [] [‘1>($,t;€,7),§’7”£(§, ™)~ 8 (a,t;€, T)v(E, )| dTdr
0T

(4.15)
+[ 0@ 66,00 0d, (z) €[0,1] x (0,8))
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where Q@ = (0,1), [ = {0,1}, 0(0) = o(1) = 1 and o(z) = 1 for z € (0, 1), and

ooy HE=7) _(z=¢)
<I>(z,t,§,7)-—\/mcxp< 4(t—7')> (4.16)

is the fundamental solution for the onc-dimensional time-dependent heat equation.
For the heat cquation (4.9), maintaining the same notations used for the genceral

BEM described in Scction 2.2.1, but using the appropriate fundamental solution

(4.16), for j=1,N,k=1,N,, 2 € [0,1], £ € {0,1}, t € (0,¢,], the BEM coefficients

tj t
C:(z,t) = [ G(z,t;& 7)dr, D f a—G T, t; €, 7)dr,
t.
. (4.17)
Ek ((L‘,t) = f G(.’IJ, t;é., O)dga

can be cvaluated analytically as described in Lesnic [66]. Denoting &, = J__J.t'-;“‘,

j =1, N, let us now define the three nonlinear discretization-dependent maps:
c,D:[0,1] — LE®™,R"), E:[0,1] — LR",R"), (4.18)

given by:

a) for C and D:

C(z)(i,j) = C,(z,t), i=LN, j=TN,
C()G,j) = C,(x,t), i=1LN, j=N+12N, “19)
D(z)(i,j) = D)(z,t), i=LN,j=TN,
D(z)(i,j) = D,(z,t), i=1N, j=N+12N,
b) for E:
E(z)(j,k) = E,(z,1,), j=1N, k=1N, (4.20)

for all z € [0,1], where throughout this work, for any m,n > 1, by L(R™ R?) we

denote the spaces of linear operators defined on R™ and taking valucs in R", which
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can be represented as matrices of dimension (n x m). Using a BEM with constant
boundary elements, sce Brebbia ct al. [7], from (4.15) we obtain that, for any space

point z € [0, 1], the solution vector satisfies
o(z) [v(z, 1), ..., v(z, )] "= C(x)ﬁ; — D(z)d, + E(x)v,, (4.21)

where the superscript  denotes the transpose of a vector, the 2N —dimensional vee-

tor ¥, captures the Dirichlet temperature boundary conditions (4.3), the N, — dimen-

sional vector 7, gives the discretized initial condition (4.2), and the 2N —dimensional
By

vector 9, represents the flux 32 over the boundary I' = {0,1}. Thesc vectors are

configured as follows:

'T)r = [T(Z1)f(£1)a (a3 T(EN)f({N)’ r({l)g(i-l)’ teey T(EN)Q(EN)] i ) (422)

tr

~' ov ,. - ov, ~, Ov,, - ov ,. -
VL = B—no(o’ tl)a-"a ano (0’ tN)’_n_l(l’tl),m,_a—a(l’tN)] ) (4'23)
5= T3, ()] (4.24)

where n,, £ € I' = {0, 1}, are the outward normal dircctions and %, = (z,_, +z,)/2,

k=T, N,
Morcover, the boundary associated lincar operators Cy., D, € L(R?M R*¥) and E,. €

L(RNo, R?V), defined by

c(0 D(0) + [AI,, O, E
¢ - (0) D 0)+ | ] 5 (0) Cum

c(1) D)+ [0, 31] E(1)

I
o)
I

where I, € L(RY,R") is the usual identity opcrator and 0, € L(RV,R¥) is the

null opcrator, allow us to write the following 2N x 2N system of equations

C.%, - D,%, + E.v, =0, (4.26)



which is derived from cquation (4.21), for = € {0,1}. Equation (4.26) implics

4. = C. D, — C. E.%,. (4.27)

r r

Having chosen z, € (0,1), the measurement (4.14) cvaluated at the time nodes 2,
j = 1, N, supplies us with the vector

tr

rowi= [r(E)u,), .., r@y)uly)] (4.28)
which, via the equation (4.21), can be expressed as

Teu= C(:L'o){); — D(z,)0,. + E(z,)7,. (4.29)
Let us now denote with

7= () rE)] s @i= [u(E), o uy)] (4.30)

~ -~ ~ tr . ~ - tr
f=1[ft), - fE)] , §:= [g(tl),...,g(tN)] . (4.31)
the vectors induced by 7, u, f and g cvaluated at the nodes fj, j =1 N. Also,
throughout the entirc chapter, by diag(vec) we will understand the diagonal matrix
whose main diagonal is composed from the components of the vector vec, while
prescrving their order. Therefore, we obscrve that the vector r - u can formally be
written in diagonal matrix terms as
T+ u = diag(aQ)F. (4.32)
Then, using (4.27), equation (4.29) can bc expressed as
. ens -1 - -
dzag(u)r = (C(zO)CP Dr - D(Io))vr + (‘-C(IL‘O)CF lEp + E(Io))’lyo. (433)
Using the mapping G : (0,1) — L(R*N, RV) defined by
G(z) = C(z)C. D, — D(z), =z € (0,1), (4.34)
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and observing that the vector o, can be cxpressed as

diag(f)

S
[
ﬁ

F, (4.35)
diag(3)

from the equation (4.33) we obtain the following N x N lincar systcm of cquations

AF = (=C(z,)C. E,. + E(z,))7,, (4.36)
where
diag(f
A = diag(d) — G(z,) tag(f) . (4.37)
diag(g)

The solution 7 of the system of equations (4.36) is then used, via equation (4.7), to

obtain the time-dependent coefficient Py(t) in its discretized form as

- . 1 ot
Py = dzag(?)r , (4.38)
where we dcnoted
’ ’ . tr
F o= [r A (tN)] : (4.39)

Once the valucs of 7 have been found accurately, the flux vector 13; and the interior

tempcrature  can be obtained from equations (4.27) and (4.21), respectively. The

oT

2 . .
corresponding heat flux 3 = ;2 and the intcrior temperature solution T'(z,t) =

%t’)‘) are finally obtained from (4.8).

A test solution for our inverse problem (4.1)-(4.4) given by

2

t

T(z,t) = (z' + 2t) exp (—t - 5) ; Pi(t) = 1+t, (4.40)

provide us with experimental information and is further on used as a validation
tool for the computed results. Then, chosing for (0,1) x (0, t,) an appropriate
discretization, with N constant boundary clements and N, = % space cclls, we

72



solve the system of cquations (4.36) by using Gaussian climination.

Throughout the chapter, we will consider a discretization with N = 320 boundary
nodes and N, = 160 spacce cclls. Also, we will assume that the measurcd data (4.4)
arc perturbed by a percentage a € {0,1}% of random noise 7(t), which is sampled
from a uniform distribution on the interval [—1,1], for cach time £, j = 1, N, and
is supplicd by the NAG routine GO5DAF.

Taking z, = 0.5, from (4.40) we obtain the measurcd data

u(t) = T(0.5,¢) = (;11- + 2t) oxp (—t - f2—> (1+ an(?)). (4.41)
In the no noisc case, @ = 0, the computational results for 7 and Py(t) arc compared
with thcir analytical valucs and arc illustrated in Figurcs 4.1(a) and 4.1(b), respee-
tively. Both here, and in all the other forthcoming comparative figures included in
this chapter, we use a solid linc for the computed valucs and a dash-dot line for the
analytical oncs.
In Figure 4.1(a) we can scc almost a perfect agrecment between the valucs of r. This
agreement further extends for Py, as scen in Figure 4.1(b).

When there is @ = 1% of random noisc in (4.41), Figurc 4.2(a) shows that the com-

2

t+
s

puted 7 agrees rcasonably well with r(t) = obtained analytically from (4.8) and
(4.40). However, Figure 4.2(b) shows that in the case of P;(t) the computed data
and the analytical one arc in a big disagreement. Morcover, the numecrical results for
P;(t) are highly unstable and this is due to the differentiation of the noisy function
in 7 which is then used in (4.38) to obtain the perfusion function coefficient. One

way to overcame this ill-posed problem is to usc a Gaussian mollification scheme,

sce Murio [73], for obtaining the disercte derivative F'. In short, this scheme consists
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r(t)

Figure 4.1: The computed and analytical values: (a) for 7 and (b) for Py(t), when

there is no noise in the data (4.41).

(b)

r(t)
Py(t)

Figurc 4.2: Computed and analytical values of (a) (t) and (b) Py(t), when there is

o = 1% of noise in the data (4.41) .
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of two steps:

a) usc the Gaussian kernel

1 ~t

where § > 0 is the radius of mollification (or the regularization paramecter)

acting as an averaging filter and perform the convolution J; * 7, namcly

J, xr(t) = / J (7)r(t — 1)dr; (4.43)

b) differentiate J; * 7 to obtain J; * r’ = J; xT.

We should notice that the mollifier J; is always positive and becomes very close to
zero outside the interval centred at the origin and of radius 35. Therefore, good
results for (t) arc expected in the interval [35,1 — 34]. In our algorithm, the ra-
dius of mollification & is computed automatically by Genceralized Cross-Validation
(GCV). We also remark that although the numecrical valuc of r(t) in Figure 4.2(a)
is non-smooth, its mollification J * r(t) is a ¥~ function, and hence differentiable.

The computational program includes the mollification procedure, which cncompasses
a large part of the code supplicd to us by Profcssor D.A. Murio from the University
of Cincinnati. Using N = 320 boundary nodcs and N, = 160 spacc cclls, the prob-
lem was solved on a larger time interval {0, 2t ;= 2] and the results were retained
only on the restricted interval [0,¢, = 1]. This was found necessary duc to the end
effects of the mollification (4.43). This end effect could actually be scen near ¢ = 0,
where we could not solve the problem for ncgative times.

Figurcs 4.3(a) and 4.3(b) show the corrcsponding numcrical mollified results in com-
parison with the exact valucs for r and Py, respectively. Unlike the results of Figure
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Figurc 4.3: Computed and analytical values of (a) 7'(t) and (b) P;(t), when there

is a@ = 1% of noise in the data (4.41), after mollification.

4.2(b), from Figure 4.3(b) it can be seen that a stable solution is obtained after per-

forming the data mollification.

4.4 The Total Mass Measurement

In this scction we investigate the inverse problem given by equations (4.1)-(4.3)
and (4.5). For the data in equations (4.2)-(4.3) and (4.5) we assume the following

compatibility conditions:

1

f0) =T5(0), ¢(0) =T,(1), &(0)= [T,(z)dz,

0

; W T, (0)(E (0)=T. () +T’ (0
£(0) =T/ (0) + 2RE O, O) (4.44)

/ " T, (1) (€ (0)=T. (1)+T’(0
g(0) =T, (1) + 22O () > .

Then we have the following solvability theorem established in Cannon et al. (18]

and Lin [68].
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Theorem 4.4.1 If T, € €°°((0,1]), f,9.€ € €**([0,¢,]), T, 2 0, f > 0
g >0, £ > 0 and the compatibility conditions (4.44) are satisfied, then there exists
a unique solution (T € &[0, 1] % [0, t,)), Pr e ([0, t,])) of the inverse

problem (4.1)-(4.3) and (4.5), which is continuously dependent upon the data.

In the case where the Dirichlet conditions (4.3) arc replaced by Neumann or Robin
boundary conditions, similar solvability thcorems arc given in Cannon and Lin
[14, 15, 16] or Cannon et al. [17], respectively.

Prior to this study, numerical methods based on finite differences, scc Azari [4], Can-
non ct al. [18], Cannon and Yin [21], Dchghan [35] and Wang and Lin [115], have
been developed for solving (4.1)-(4.3) and (4.5) with cxtensions to two and three-
dimensional rectangular and cuboidal domains given in Dehghan [38, 41). However,
as the FDM is not easy to extend to higher dimensional irregular domains, in this
section we adopt the BEM.

First, recalling the definition (4.7), the change of variable (4.8) transforms the prob-

lem (4.1)-(4.3) into (4.9)-(4.11) and the total mass mcasurcment (4.5) becomes

/ o(s, )de =r(DEWR),  te0t]), £(0)= / T.(z)ds.  (4.45)

Our approach for the inverse problem (4.9)-(4.11) and (4.45) follows a path that
is similar to the one developed for (4.1)-(4.4). The BEM for the heat cquation

(4.9)-(4.11) provides us a space discrctization for the mass formula, namecly

Ny—-1 N,
T(t)g Z ($¢+1 z; )U Tiynt)= N“ ; (446)

i=0

Therefore, the vector

= [rE)ER), - r(E)EED] (4.47)

7



satisfies

N,
1 2 - o~ - -~ tr
r-&= N; ; [v(x‘.,tl), ...,v(ar:i,tN)] } (4.48)
Thus, via the cquation (4.21), for i = 1, N, we obtain

(ZC’ )v —-Z Yo, +ZE )v). (4.49)

Using (4.27), cquation (4.49) can be expressed as

N,
T.g:J\IIOZ(C(z)C D, - D@ ) ]—3,—{;( C(z‘:i)C;lE,,+E(ii))ﬁo

i=1

(4.50)
By dcnoting
-~ - tr
= [E(F), ... EE)] (4.51)
we notice that the vector 7 - £ can formally be expressed as
r & = diag(€)F. (4.52)

Using (4.35), and the mapping G defined in (4.34), equation (4.50) becomes

N, . F N,
S TN NCCLT- ) I IS R _
d@g,g(g) —N—ZG(.T‘) T+ —]\7-2 (—C(i‘)CFIEF +E(5J‘)> ’50
0 i . ~ o .
i=1 diag(g) =1
(4.53)
Therefore, by denoting
diag(f)
A := diag(€ Z G(z,) e L(RM,R"), (4.54)
=t diag(g)
we obtain the following N x N lincar systcm of cquations
AF = Z (-c@)C B + BG, )) v (4.55)

Once the system (4.55) has been solved, equation (4.38) is used to obtain the dis-

cretized time-dependent coefficient Fy(t).
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45

sk

r(t)

Figure 4.4: Computed and analytical values of (a) (t), and (b) P (t), when there is

no noise in the data (4.56).

The test solution (4.40) provides us with the mass measurement

1

)= [ Tl is = (5+2t) oxp (—t - %) (+an() — (456)

0

where the percentage a € {0, 1}% of noise 7(t) is involved.

Figure 4.4 illustrates the situation when there is no noise, @ = 0. In Figure 4.4(a)
we can sce almost perfect agreement between the values of 7 deduced analytically
and the computed ones. This agreement is further extended for P, as it is shown
in Figure 4.4(b).

In Figure 4.5 we illustrate the computed and analytical values for r, r and Py, when
the data (4.56) is affected by 1% noise. From Figure 4.5(a) it can be seen that the
noise from the additional information £(t) determines the results for the computed
7 to be noisy as well. Although these computed values of r are localized around the
exact values, their instability becomes a major problem for computing the numerical
derivative 7 (¢) of the noisy function 7(t) shown in Figure 4.5(a). However, a solution

79



r(t)

Figure 4.5: Computed and analytical values of: (a) r(t), (b) r'(¢), and (c) P;(¢),

when there is @ = 1% of noise in the data (4.56).
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for this problem is possible by using the mollification schemc in a manner similar
to that described in Section 4.3. The mollified results for the derivative of 7, as
shown in Figurc 4.5(b), agree with the analytical r'(t) =(1+ t)et“:-. After this, the
computed results shown in Figurces 4.5(a) and 4.5(b) arc used in cquation (4.38) to
obtain P, which, as shown in Figure 4.5(c), approximates reasonably well the exact

solution P;(t) =1+1.

4.5 Analysis for the Flux Measurement Case

In this scction we investigate the inverse problem given by the cquations (4.1)-(4.3)
and (4.6). For this problem we could not find solvability results in the litcraturc
and therefore, a first investigation is proposed below.

Let ® € €7°((0,1) x (o,t,])n%‘”([o, 1] x [0,¢,]) be the unique solution of the

well-posed problem:

2

2 et)= 22w, (@m0 e01)x O] (4.57)
®(z,0) = T (z), z €0, 1], (4.58)
¢(O’ t) = f(t)’ te [0) tf]» f(O) = To(O)a
(4.59)
#(1,t) =g(t), te0,t,], g(0) =T, (1).
The change of variable
w(z,t) == r(t)T(z,t) — ¢(z,t) (4.60)
transforms (4.1)-(4.3) into
%tv-(m,t) ~ %:i(z, B, (51 e©1)x (0] (4.61)
w(z,0) =0, z € [0,1], (4.62)
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w(0,8) = F)(r(t) = 1) = F(t), te[0,¢,], F(0) =0,

w(l,t) =g(t)(r(t) - 1) =:3(t),  t€[0,¢,], g(0)=0.

Let us first notice that, with no changes in analysis, the additional information (4.6)

(4.63)

may well be replaced by a heat flux measurement at z = 0, namcly

oT
—E(O’ t) = h,(t), for any t € (0,¢,]. (4.64)

The change of variable (4.60) transforms (4.6) or (4.64) into an additional informa-
tion for the problem (4.61)-(4.63), namcly:

i) a left boundary flux measurement:

ow _ ¢
=55 (0:8) = ho(t)r(t) + 7-(0,2) (4.65)
or
ii) a right boundary flux measurement:
ow _ ¢
55 (L) =h(t)r(t) + 5-(1,2), (4.66)

respectively.

However, the two cascs can be treated similarly and in the following we focus our
attention on the left boundary flux measurement (4.64). Let us assumc that a
solution to the problem (4.61)-(4.63) and (4.65) cxists.

Since ?,E e €°([0,¢ ;1), we have the representation formula, see [55],
t

w(z, t) = — / %;A/{(m, t— T)7(T)dT + / %—A;I(x —1,t —7)g(r)dr, (4.67)

where

n=-—00

M 0) = 65—2 > exp [_(5_2_?2_]. (4.68)
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By differentiating equation (4.67) with respect to r, wc obtain

t ., ¢

ow oM =
oy 5 @t =) g(7)dr. (4.69)
0 0
Since
oM M
—(,3—7_—(915—§,t—7')=—-(%2 (z=§&t—-7), z#£Et>T, (4.70)
it follows that
t
ow oM = BM _
Bg(x,t) = / —37(33,15 = 7)f(r)dr — —8*(:16 1,t — 7)g(r)dr. (4.71)
0 0

On the other hand, let us first notice, from equation (4.68), that we obtain
}_I;I%M(l‘-—f,t—T):O, T #E, (4.72)

and since f,7 € € ([0,¢,]), with f(0) = §(0) = 0, by using intcgration by parts in

(3.38), we have

%%(x,t) = —/M(z,t - 7)7 (r)dr +/M(:v -1,t- T)E' (1)dr, (4.73)

for all (z,t) € (0,1) x (0,1 j]. By using now the Lebesgue’s Dominative convergence

theorem, sce Stroock [108], we obtain

lim 2% /M 0,t—1)F (T)dT+/M(1 t—1)7 (r)dr (4.74)

z\0 8$

for all € (0,t,)-

For t € (0,¢,] and Py(t) > 0, let us define:

t

H(t, P(t)) /M t-—T)f (T)d’r+/.M( 1 t—T)g (1)dr (4.75)

0

and
ﬁ(t’ Pf(t)) + %3(0, t)

Q) = - aend,

(4.76)
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From the analysis (4.67)-(3.41) and the cquation (4.65), we obtain that
Q(Ps(t)) = ho(t) for all t € (0,¢,]. (4.77)
Thus, we arrive at the following remark:

Remark 4.5.1 If the inverse problem (4.1)-(4.3) and (4.64) has a solution then the

function P;(t) needs to satisfy equation (4.77).
A dircct consequence can be stated as follows:

Theorem 4.5.2 If equation (4.77) has a unique positive solution, then the inverse

problem (4.1)-(4.8) and (4.64) has a unique solution (T(z,t); Pr(t)).

4.5.1 BEM Treatment for the Flux Measurement at x =1

Lot us start by recalling that equation (4.27) supplics us with a formula for 13;,

where, from (4.23),

7 = [FED (), o T Ro () rE R (E)s oo P (E)] - (4.78)
If we further consider the vector and matrix notations
ho= (B, h(ED] . ie{0), (4.79)
then cquation (4.26) can be rewritten as
diag(}:b") 7~ Co'D, diag(f) = —C.'E,%, (4.80)
diag(h,) diag(g)

which is a 2N x 2N nonlinear system with the vectors 7 and h, as the unknowns.

However, we will show that, in order to obtain the unknown vector 7, we only need
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N lincar cquations of the system (4.80).

Let us define the orthogonal projection

:R2N RN,
e (4.81)
t
PN+1,2N ([xl’ Ty Tygyy e ng] r) = [IN+1’ veny InN]tr,

for all [Ty, Zns Tnsrs - Zan] € R2V. In order to disregard the unknown flux

information h,(t), by applying P

NTTIw to the system of cquations (4.80), we obtain

diag(h,) | _ p -1 diag(f) 5 o
Pm ' _ r— Ny N T r ' } Tz_PmCr Er.'Uo,
diag(h,) diag(q)
(4.82)
which is cquivalent to the following N x N system of lincar cquations
o L | diag() | o G
diag(h,)7™ —PN+1,2NCF D, = -—Pm . E_9,. (4.83)
diag(g)

Thus, if we are only supplied with the flux measurement at z = 1, h (¢t) for all
t € (0,t,], just by solving the lincar system (4.83), we arc able to obtain 7, which is
the BEM discretized version of r(t).

We remark here that the steps proposed so far arc symmctric in the sense that if
the flux information at z = 0, hy(t) is available, and the flux information at z = 1,
h,(t), is not known, then defining the complementary projection P which takes
a 2N-dimensional vector into its first N coordinates, a similar system is obtainced
and, thus, r(t) can be retricved again.

The test solution (4.40) provides us with the following heat flux measurement at
=1

2

h,(t) = %T:—c-(l, t) = 2cxp <—t - %) (14 an(t)). (4.84)
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Figure 4.6: Computed and analytical values of: (a) r(t) and (b) for Py(t), when

there is no noise in the data (4.84) .

For the no noise case, @ = 0, as shown in Figures 4.6(a) and 4.6(b), the computed
results are in a good agreement with the analytical values.

When 1% noise is included in the flux data A, (t), as in (4.84), the problem becomes
again dificult, since the computed 7 becomes noisy, so that the numerical derivative
7 mneeds special attention. However, by pursuing the same steps as in the case
of noisy mass or internal measurements, we solve the system of equations (4.83)
obtained for a discretization with N = 320 boundary nodes and N, = 160 space
cells for (0,1) x [0, 2], and perform the Gaussian mollification of the obtained results.
Then we restrict our problem to the domain of interest (0,1) x [0, , = 1] and, from
the results obtained in the previous step, we retain only the values corresponding to
this restriction. In Figure 4.7(a), the comparison between the results computed and
the analytical values for 7 unveil the fact that the noise from the flux measurements
have been propagated through the computation and have determined 7 to be noisy.

However, as shown in Figure 4.7(b), after mollification, the computed derivative
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Figure 4.7: Computed and analytical values of: (a) r(t), (b) r'(t), and (c) Py(t),

when there is 1% noise in the heat flux data (4.84).
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becomes very close to its analytical valuc. Finally, as shown in Figurc 4.7(c), the
perfusion coefficient Py (t) is retricved reasonably stable and fairly closc to its truc

value.

4.6 Mixed Boundary Conditions

A sct of mixed boundary conditions are uscd in this section to replace the Dirichlet
boundary conditions (4.3). Therefore, in this context, the inverse time-dependent
perfusion identification problem satisfying the bio-heat equation (4.1), with the ini-

tial condition (4.2), has to be solved subject to the mixed boundary conditions
oT
~o,=hy(0), el (1.85)

T(1,t) =g(t), te€0t,], g(0)=T,(1), (4.86)
while prescrving the same kind of additional information given by the internal tem-
perature measurcment (4.4), or the mass measurement (4.5).

The case of the additional information (4.6), bcing supplicd by the heat flux at
z = 1, is expected to produce qualitatively the same conclusions as those of subscc-
tion 4.5.1 and, in addition, since there is no theory on the solvability of this inverse
problem, we do not insist on this investigation. Instead, we concentrate on the
analysis of Scctions 4.3 and 4.4 in which the mixed boundary conditions (4.85) and
(4.86) rcplace the boundary conditions (4.3). Similar solvability thcorcms to thosc
of Scctions 4.3 and 4.4 can be established, see Carmon ct al. [17] and Prilepko and
Solov’ev [88], for the inverse problem (4.1), (4.2), (4.85), (4.86) and (4.4) or (4.5).

The change of variable defined in (4.7)-(4.8) transforms the inverse problems (4.1),
(4.2), (4.85), (4.86) and (4.4), and (4.1), (4.2), (4.85), (4.86) and (4.5) into mixed
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boundary condition problems for the standard heat cquation (4.9) subject to the

initial condition (4.10) and the mixed boundary conditions
v
—%(0, t) = r(t)h,(t), teo,t,], (4.87)

v(1,t) = r(t)g(t), t €[0,t,], g(0) = v,(1). (4.88)

and (4.14) or (4.45), respectively.

4.6.1 Internal Temperature Measurement

Recalling (4.22)-(4.25), (4.30)-(4.31), (4.35) and (4.79), the cquations (4.26) and

(4.29) recast as follows:

diag(h,) | _ diag(f)
r N Lt 7+ E\ 8, =0, (4.89)
diag(h, ) diag(g)
s diag(h,) diag(f)
diag(@)F = C(z,) | 7= D(,) 7+ E(z,)7,.  (4.90)
diag(h,) diag(3)
From (4.89), equation (4.90) can be expressed as
s | diag(f)
diag(@)F = C(z,)|C. D, 7 — C. E. 9,
diag(g)
) (4.91)
diag(f)
—D(z,) 7+ E(z,)7,.
diag(g)
Let us define the linear projection
P__:R*» 5 RN,
i,N
(4.92)

(NN SR 9 [ Rl R
T aN . -1
for all [z,,--TnsThprs ..I,y] € R?*". By applying PrN-CF to the 2/N-dimensional
opcrator cquation (4.89), we can discard from our analysis the unknown N-dimensional
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vector h,, containing the unknown boundary flux at z = 1, and we arrive at the

N-dimensional opcrator cquation

o - diag(f)7 o
diag(h,)T — Pi‘,wcl‘ D, +P__C. E.4,=0. (4.93)
diag(g)7 '
Let us denote

r-fi= [T(i'l)f(i’l)’ ) T(En)f(iN)]Ta (4‘94)

the BEM-discrctized version of 7(t) f(t). We can now remark that cquations (4.91)

and (4.93) form the following 2N x 2N lincar system of cquations

.
. ~ . -1 T'f -1
dzag(ho)r—PﬁCr D, +P__CUEfd, =0
diag(g)7 '
S s S A - (4.95)
diag(i)f = C(z,) |C. Dy - C_ E.%, '
diag(g)7
T-f
‘D(xo) + E(Io)lﬁo
L diag(g)7

in the 2N-dimensional vector of unknowns:

,"‘:
(4.96)
- f
Throughout the entire work, for an arbitrary matrix A, by col,(A) we understand

the i—th column of the matrix A. Let us define now the finite dimensional opcrators

D, = [col,(D.), -..,col ,(D,)] € L(RN , R?Y), (4.97)
Drﬁ+T§W = [COlN+l (Dr)’ "‘7COl2N(DF)] € L(RN,RzN), (498)
D(2) = [col,(D(2)), - coly (D(2))] € L(RY,RY), z€(0,1),  (4.99)
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D(2) geraw = [c0lyyr (D(2)), - Ly (D(z))] € LRY,RY), z€(0,1), (4.100)

and rcmark that the system (4.95) can be equivalently cxpressed as

4

{diag(izo) - P C D S dzag(g)} F— PT'_ﬁCr"Drmr f= —PTWCP"Erﬁo,

ﬁ {diag(@) - C(z,)C; ' Dy diag(d) + Dl rrrmdiag(d) } 7

|+ {~C@CT Do, + D)o 7o f = B}y = C(@,)C7 ey,
| (4.101)

A € L(RN,R?*"), defined by

Thus, the lincar opcrators A1 7 Axrow

) ~ _ P C_ID d -~
A :: dlag(hO) TN T " Tnggaw Zag(g) (4.102)

diag(i, ) — C(z z,)C. ‘D, N dzag(g)+D( Zo)yrran®iag(9)

d

and
—PWCP‘IDP
o (4.103)
~C(2,)C; ' D;__+D(z

o

cnable us to rewrite the system of equations (4.101)

) -P__C. E.,
Arﬁ’" + AN+1,2Nr -f= ' . . (4.104)
E(z,)3, — C(z,)C. E.%,

Defining the linear operator

A= [A__ A

1, N N+1,2N

] e L(R?N, R?Y), (4.105)

we can finally write the 2N X 2N lincar system of equations (4.104) as

3 —-P__C'E.%
A =| T . (4.106)
T f E(xo)ﬁo - C(xo)C;IEr'Do
Since, we arc only interested in the retricval of the vector 7, we arc going to disrcgard

from our considcrations the other half of the solution vector, which is summarized
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(a) ®)

45 v B - — e

Figurc 4.8: Computed and analytical values of: (a) r(t), and (b) P;(¢), when there

is no noise in the data (4.41) .

in the components of r - f.

The test solution considered in (4.40) supplies us with the internal measurement
(4.41). In the case of exact data, a = 0%, the computed results agree very well with
the analytical values, as shown in Figures 4.8(a) and 4.8(b).

On the other hand, in the case when o = 1% noise is included in the internal mea-
surement, we encounter the same difficulty as in the case of the Dirichlet boundary
conditions, namely, that the noise from the additional information is heavily reflected
in the computation of 7, which becomes both noisy and unstable. This causes major
difficulties in obtaining the numerical derivative % which is involved in the retrieval
of Py(t). However, for the retrieval of both the derivative of 7 and the coefficient
Ps(t), applying precisely the same mollification steps as the one used and described
in Sections 4.3-4.5, we similarly obtain good results that agree very well with the

analytical values, as shown in Figures 4.9(a), 4.9(b) and 4.9(c).
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Figurc 4.9: Computed and analytical values of: (a) r(t), (b) r'(t), and (c) Py(t),
when there is o = 1% of noise in the data (4.41) .
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4.6.2 Total Mass Measurement Case

When the additional information considered is the mass mcasurcment (4.5), the
mixed boundary value inverse problem (4.1), (4.2), (4.85), (4.86) and (4.5) focuscs
our interest. The equivalent inverse problem (4.9), (4.10), (4.87), (4.88) and (4.45)
allows us to recall and apply here the analysis from (4.45)-(4.49).

Using the definitions (4.22)-(4.25), (4.30), (4.31), (4.51), (4.79), we note first that
equation (4.89) is valid also in this case. On the other hand, in equation (4.49),

which is rewritten here as

- N diag(h
diag &) = % | L C@) )\ 5
= 'diag(;lx)
~ (4.107)
No diag(f) N,
- gD(xi) F+ 3 E(,)7, |,
= diag(3) =t
we use equation (4.89) to obtain
A No ) - diag(f)
diag(€)F = R ; C(z,){ C. D,  — C E, %,
- diag(g)
i (4.108)
No diag(f) N,
- Zl (xi T+ _ E(f:‘)’uo
. diag(3) =1

Using the projection (4.92) in (4.89), we arrive again at the N-dimensional opcrator

equation (4.93). Therefore, cquations (4.93) and (4.108) supply us the 2N x 2N-
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dimensional system

4
. B diag(f)7 o
diag(h,)T — PTNC‘" D, + Pi'_NC'F E. .7, =0,
diag(g)7
) 5 o - diag(f)F diag(f)7
diag(§)F = - X | C(@)C 'D - D(&,) )
diag(3)F diag(3)7
NO
12 (e "y
L +N0 = ( C(IE‘)CF El‘ + E(It)) vo»
(4.109)
with the 2/N-dimensional vector of unknowns
7 T
= 3 (4.110)

r-f diag(f)F
according to the definition. (4.94) of the vector r - f. Using the lincar opcrators

defined in (4.97)-(4.100), the system (4.109) is equivalently cxpressed as

,
. T = -1 e 1
diag(hy)T — PrﬁC'F {DFI,_Nr - f +DF~+1,2 dzag(g)r} + P—,TﬁcplErvo =0,

NO
diag(E)F = NLO;C )C" {D r- f+D NFIIN dzag(g)r}
NO
_N%,;{D( ) r- f+D(ii)N+1.2Ndiag(§)F}

NO
+1+ 3 (-CERICIE, + @) 5,
(4.111)

A

I,N' “"N¥1,2N

Thus, using again the lincar opcrator notations A__ € L(RM,R*) to

describe the matrices

diag(h,) — Py C; D; diag(g) W

N+1,2N

NO
diag(8) + x; 35 D(E)yprawdiog(d)

~ No _
Ldiag(g) - 5 gl C(z,)C.' D,
(4.112)

N+1,2N
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(a) )

Figure 4.10: Computed and analytical values of: (a) r(¢) and (b) Py(t), when there

is no noise in the data (4.56).

and : _
—Pr_Cr_]DIW
A = , (4.113)
Lr}; é (—C(i.«)C;'DFW + D(a":_.)w)

~P__C;'E,#,
Ay + Agemer f= | : (4.114)
0
_ DY (E(j,.)f;o = C(a’:i)C;lEFﬁo)

By defining the matrix A € L(R*M ,R?M) as in (4.105), the system (4.114) can be

written as

-1 -~
—PWCF E_ 9,

7':'

4 (4.115)

< ol
Ti f L NLO 1.—_21 (E(:‘Eg)ﬁo e C(i:)C;lEr'DO)

The system (4.115) is to be solved as a whole, however, of interest for us are only
the first N components of the solution vector, namely, 7, and we disregard here its
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last N component that form the computed vector 7 - f.

In order to validate our approach, we use again the test solution (4.40) which supplics
us with the total mass measurement (4.56). In the no noise case, o = 0%, the
computational results for both 7 and Py (t) match the analytical valucs, as shown in
Figures 4.10(a) and 4.10(b).

When a = 1% noise is introduced in the mass mcasurements, the computation
carricd out for solving the lincar system (4.115) is again heavily affected by the
propagated noise. However, the quantitics 7, and %, and finally P(t) arc rctricved
following the same discretization scheme and steps described in the noisy case for
the Dirichlet boundary value problem, from Scction 4.3. Figures 4.11(a),4.11(b)
and 4.11(c) show that the computed values for 7, 22 and P;(t) agree well with the

analytical valucs.

4.7 Internal Measurements on Arbitrarily

Non-Constant Time-Dependent Paths

So far in this chapter, all the intcrnal mcasurements considered were sct to remain
constant at one single point z, € (0,1), which in the (0,1) x (0, ¢ ;| domain represents
the measured value of the temperature T'(z,t) considered along the straight path
given by the function v, : (0, t,] — (0,1), %(t) := z,. Howcver, as we will sce
in the following, the function 7, need not be constant. We devote this section to
investigate both the Dirichlet and the mixed boundary conditions problem, when
the internal temperature mecasurement is taken on arbitrarily non constant paths

~ : (0,t,] = [0, 1]. Therefore, the Dirichlet inverse problem (4.1)-(4.3), or the mixed
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35

r(t)

f L L L
0 01 02 03 04 0s

Py(t)

Figurc 4.11: Computed and analytical values of: (a) for r(t), (b) r'(t), (c) Ps(t)

when there is @ = 1% of noise in the data (4.56).
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boundary value inverse problem (4.1), (4.2), (4.85), (4.86), rcccives in this scction

the following internal tecmpcerature measurement:

T(y(t),t) = u(t), t € (0,t,] (4.116)

for a fixed arbitrary v : (0,t,] — Q. Thus, after performing the change of variable

(4.7)-(4.8), the corresponding inverse problems (4.9)-(4.11) and (4.9), (4.10), (4.87),

(4.88) reccive the additional information

v(v(t),t) = u(t)r(t), t € (0,t,]. (4.117)

While the general BEM technique remains the method used for our numerical in-
vestigation, specific path dependent operators are defined as follows.

On the sct of all possible paths {v|v:(0,¢,] = [0,1]} let us define the following
mappings:

C*,D*: {v|v:(0,t,] = [0,1]} — L(R*N,RN), (4.118)
B {yl7: (0,8, = 0,11} — L(R™,RY), (4.119)
given by:
a) for C*(v) and D*()
C*(NG,4) =C,(v&).E),  i=L N, j=1L N

C*MG, ) =C,(v().t), i=TL N, j=N+1, 2N,

o (4.120)
D*('Y)(i,j) = Dj(’Y(ti)’ti)’ 7:=1, Na j‘:l’ Na
D*(v)(4,5) = D,(v(t),t), i=1, N, j=N+1, 2N,
b) for E*(7)
E*(3)(k,5) :== E,(x(t),t,), k=1, N, j=1,N,, (4.121)
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for all ~.

Then the BEM solution vector along v of the heat equation (4.9) satisfies
ry ry rg g T * ! * ~ * ~
() B, -0 E), BT = C (s - D*(E + B ()5 (4122)

We notice that the opcrators (4.120) are compatible with the ones defined in Section
4.3 and we will usc them in the subscctions that follow. It is worthwhile to remark
that equations (4.26) and (4.27) arc valid for the Dirichlet inverse problem (4.9)-

(4.11) and (4.117) and for the mixed boundary condition inverse problem (4.9),

(4.10), (4.87), (4.88) and (4.117).

4.7.1 The Dirichlet Inverse Problem Revisited
Using the notation (4.28), from (4.27) and (4.122) we obtain
r-u=(C"(1C; Dy — DM, + (-C*(NC, B, + E* ()5, (4.123)
After defining
G*(7) :=C"(1)C; Dy — D*(7) € L(®R*™,R"), (4.124)

from cquation (4.123), procceding in a similar manner as in the case of a fixed

internal point mcasurcment, we obtain the N x N lincar systcm

AF = (=C*(v)C. B, + E*(%))5,, (4.125)
where
diag(f
A = diag(@) — G*(v) o) : (4.126)
diag(g)

which clearly is similar in structure with the system of equations (4.36). Morcover,
if ~y is chosen to be the constant path v,(¢) = z,, for all ¢ € [0,¢,], we immcdiately
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r(t)

" 1 L L . L L Y
o 0.1 0.2 03 04 05 06 07 08 09 1

Figure 4.12: Computed and analytical values of: (a) r(t), and (b) P;(t), when there

is no noise in the data (4.128).

recognise that the systems (4.126) and (4.36) coincide, as was expected, since the

two inverse problems become the same. Let us consider the following path + :

[0,¢,] — (0, 1)

1 sint
’)’(t) = 5 + —4—, t e [0, tj]. (4127)

Then, the test solution (4.40) gives us the path measurement

T(o(t), 1) = ( (-;- = %’f) + 2t> o <——t s %) (1+an(®).  (4128)

In the no noise case, @ = 0%, after obtaining the solution of the system (4.125), as
shown in Figures 4.12(a) and 4.12(b), the computed results for 7 and P;(t), again
agree very well with the analytical values.

When a = 1% noise is introduced in the path measurement (4.128), the same types
of dificulties as those in the fixed point measurement case are encounterd, namely
the noise is strongly propagated through the system (4.125) in the computation
of the solution 7, which then causes major problems, especially for obtaining the
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Figure 4.13: Computed and analytical values of: (a) r(t), (b) for r'(t), and (c) Py(t),

when there is & = 1% of noise in the data (4.128).
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numecrical derivative %%. However, following preciscly the same steps as the oncs

described in Scction 4.3, we obtain good results both for the computation of 7 and
%? which rcsort in a retrieval very close to the analytical values of the coefficient

P;(t). Figures 4.13(a), 4.13(b) and 4.13(c) illustrate the agreement of the computed

and analytical valucs also in this casc of a non-constant path mcasurcment.

4.7.2 The Mixed Boundary Conditions Inverse Problem Re-
visited
Prescrving all the notations from Scction 4.6.1, equation (4.89) is valid for the

mixed boundary condition inverse problem defined by (4.9), (4.10), (4.87), (4.88)

and (4.117). However, equation (4.90) from Scction 4.6.1 is replaced here by

diag(f)

diag(@)F = C*(v) |C. D, # — C.'E,,
diag(g)
) (4.129)
diag(f)
—D*(v) T+ E*(7)7,.
diag(g)

Since (4.93) was obtained as an immediate implication of the equation (4.89), this
equation holds valid also in this case. Thercfore, the cquations (4.93) and (4.129)

form the 2N x 2N system
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. _ r-f
dz‘ag(ho)F—Pl,_NCFIDP +P__C'E.#, =0,
diag(g)7 '
! \ -1 r-f " (4.130)
diag(u)f = C*(v) |C. D, - C. E.%, '
diag(g)7
T f
~D*(v) + E*(7)P,,
\ diag(g)7

in the 2N-dimensional vector of unknowns (4.96).

Let us define the finite dimensional operators

D*(7) = [coly (D" (7)), ..., col o (D*(v)] € L(RY,R"), (4.131)

D* (M) = [00ha (D" (7)), s ol (D*(1))] € LR, RY).  (4.132)

By continuing now with an analysis that is identical with the one performed in (4.97)-

(4.103), we obtain the corresponding sub-matrices Amv’ A e L RN R2N ),

+1,2
which are defined as follows:
diag(h,) — P__C, DFN+1 i diag(g)

Ay = Ly o (4.133)
diag(@) = C*(MC, Dr __diag(g) + D" (1) yrrppdiag(g)

and
-P__C.'D,
Agmw = o : (4.134)
=C*(1C. D+ D* ()

1,

in addition to the right hand side part of the system

-1 -~
—PT_CF E 1,

(4.135)
E*(7)3, — C*(7)C; E, 3,
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Figurc 4.14: Computed and analytical values of: (a) for r(¢), and (b) F(t), when

there is no noise involved in the data (4.128).

Therefore, creating again the lincar operator A := [Aw A ] € L(R2N,R2N),

N+1,2N

we obtain the desired system

T —P .G B, 9,
A = - . (4.136)
T - f E*(’Y)ﬁo == C‘(’Y)CEIEFI.)O

Since we are only interested in computing 7, even though we solve the entire system
(4.136), we are going to disregard r - f, which is the second half of the solution
vector. To validate our approach, we consider again the test solution (4.40) and the
path measurement prescribed in (4.127)-(4.128).

In the no noise case, @ = 0%, as shown in Figures 4.14(a) and 4.14(b), the computed
results agree both for 7 and for Py(t) with their analytical values.

When a = 1% noise is introduced in the path measurements, the computed solution
of the system of equations (4.136) is heavily affected by the noise. However, apply-
ing the same aproach as in the noisy case for path measurements in the Dirichlet
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Figure 4.15: Computed and analytical values of: (a) r(t), (b) r'(t), and (c) Py(t),
when there is & = 1% of noise involved in the data (4.128).
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boundary conditions, we obtain yct again good agrecment between the computed
and analytical valucs of 7, 7 and P(t), as illustrated in Figures 4.15(a), 4.15(b) and

4.15(c).

4.8 Time-Dependent Partial Mass Measurements

A natural conncction with the previous section is revealed by a sensible relaxation of
the conditions given by the total mass mecasurement case from the inverse problems
of the Dirichlet type, (4.1)-(4.3) and (4.5), or of the mixed boundary condition type,
(4.1), (4.2), (4.85), (4.86) and (4.5).
However, as it occurs in most of rcal world situations, environment restrictions or
technical capabilitics prevent the total measurement of the mass, and instcad only a
partial mcasurcment is possible for a certain part of the mass. Thercfore, we devote
this scction to discuss both the Dirichlet and the mixed boundary type inversc
problems when the information (4.5) is replaced by the partial mass measurcment,
which is formally defined by

/ T(z, )iz =E(t), tele,), £(0)= / T, (2)dz, (4.137)

Alt) A(0)

where the set-valued map A : [0,1] — {[71 (t)ﬁz(t)] |t € (0, t,]}, given by
A(t) = [71 (0)73 (t)], t e [0, tf], (4138)

is supplicd by the a priori given paths 7,7, : [0, t,] — [0,1], ¥,7, € &' We
should observe here that the Lebesque measure of both A(t) and the frontier OA(t)
are smooth functions with respect to ¢.

The solvability of the inverse problem (4.1)-(4.3) and (4.137) has been cstablished
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in Cannon ct al. [17, 18], Cannon and Yin [20] and Lin [68], as follows.

Theorem 4.8.1 If T, € €'([0,1]), f, g € €(0,t,)), T, > 0, f 2 0, g > 0,
Y € € €', € > 0,7, =0, then there ezists a unique solution (T € € ((0,1) x
(0,t,)yNE([0, 1] x [0,¢,]), Py € €([0,t,])) of the inverse problem (4.1)-(4.8) and

(4.187) which is continuously dependent upon data.

After performing the change of variable (4.7)-(4.8), the corresponding inverse prob-
lems (4.9)-(4.11) and (4.9), (4.10), (4.87), (4.88) will reccive the additional informa-
tion

f o(e,)ds = r(ER),  te (), £(0)= / T.(z)dz. (4.139)

A(t) A(0)

Thus, in terms of the BEM, using a large cnough number N, of space cells to

discretize the entire space interval (0, 1), we obtain

AV
1 . .
r(02) = 5 Do rOT @ xay (3, (4.140)
i=1
where, for any non-empty arbitrary sct Q and any subset 51 c Q, the function

Xz, : Q0 — {0,1}

~

1, o€, (4.141)
Xz, (0) = o
0, o€ N\Q,

will be called the characteristic function of S~2, in Q. Using N time nodes to discretize

[0,¢,], from (4.140) we obtain the following N-dimensional equation

N,
~ 1 o . - o~ - L~ ~ tr _
diag(&)F =~ gdzag ([T(x‘-, t )X, (8, - T(E, tN)me)(a:,,)] ) 7. (4142)
Let us now define the integer
Ny(€) = ax Card ({3,]2, € A(E)}), (4.143)
=1
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where, in general, for any arbitrary sct Q, Card(f) is the cardinal of Q. Clearly,

N,(E) < N,. (4.144)
Dcnoting .A(EJ) = ( )n{ k} ,j=1,N,forl <i< N(E) for any | €
{0, ..., N,(€)}, we consider the lincar mterpolating paths 7, : [0,¢,] — [0, 1] given by
~,(t) = 0, and iteratively we define

)= min (A(t,—) \IL:JOv,(tj)) , if AlE)\ U w(t,) # 2,
max ('A(EJ)) ? OthCI'Wisc,

7.’({,')‘ + (1 - A)Ej—l) = 75(51))‘ + (1 - A)’Yi(i'j—l)) AE (0, 1)

(4.145)
Then, cquation (4.142) becomes
o . Ny () o .
diog©)F = 7 % dzag([T('y‘.(t,),tl),...T('y‘.(tN),tN)] );-
G .
- %z [c*()e;' D, = ()], (4.146)

5 z -0 B+ )]
4.8.1 Discussion of the Dirichlet Case

When the Dirichlet boundary conditions (4.3) are supplied, equation (4.146) be-

comes
Ny () diag(f
diag€)F = % L [C°()C;'Dr = D" ()] D
diag(3) (4.147)
Ny(&) 1
X [FC NG B+ B )] 8,

Thus, by defining the left hand side matrix A € L(RN, RY) as

Ny (€)

A= dzag(E) _ _1_ Z [C* C D D'('y )] diag(f)

, (4.148)
diag(3)
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r(t)

Figure 4.16: Computed and analytical values of: (a) r(t) and (b) Ps(t), when there

is no noise in the data (4.151).

we obtain the N-dimensional lincar system
No(€)
Mi=— N [—C*(m)CF E, + E*(%)] B, (4.149)

0 =1

Let us now consider the following particular set-valued map A given by

int in ¢
z€ [0.4+3n—,0.6+s—m—]}, t €0, 1]. (4.150)

A(t)={m€Q 1 :

Using the set-valued map A, the test solution (4.40) gives us the following time-
dependent partial mass measurement

/ T(z,t)dz = (x_; + 2t1‘> exp (—t - %)

A(t)

int
0.6+5‘§—

. tel0,1].  (4.151)
0.4+ 8int

As we can observe in the Figures 4.16(a) and 4.16(b), by solving the system (4.149),
given the shape of the measurcment, even though we have considered exact data
and the computation of 7 behaves satisfactory, the results obtained for P(t) are
highly unstable. The instability shown in Figure 4.16(b) is caused by the direct
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Figure 4.17: Computed and analytical values of: (a) r(t), (b) r'(t), and (c) Py(t),

when there is no noise in the data (4.151), after mollification.
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computation of the derivative 2 35 T using central differences. However, if we apply the
mollification steps described in Section 4.3, the results stabilizc and, as illustrated
in Figures 4.17(a), 4.17(b) and 4.17(c), the retricval of both 7, £ and P;(¢) is closc

to their analytical valucs.

4.8.2 Discussion for the Mixed Boundary Condition Case

When mixed boundary conditions are in place, the vectors [{T(l’ fj)}jJW] =gand
[{aj%%’—tﬁ}j:W] = fzo are known, while f and 711 arc unknown. A uscful remark is

that equation (4.93) holds valid. Thercfore, from (4.93) and (4.146) we obtain the

2N x 2N-dimensional system

|

. . diag(f)7 L
diag(ho)F—PWCF D, +P1,—NCP E.7, =0,
diag(g)7
No(£) diag(f)F digal FYF
| dgigd) = & 5 | (D, L P )
= diag ()7 diag(§)F
1 No®) * -1 . -
+ & (FC0ICT B+ B (0)) 4,
\

(4.152)
with the 2/N-dimensional vector of unknowns (4.110). Since, only the first N com-
poncnts of the solution for the system (4.152) arc of interest to us, the sccond half
of the components, namely 7 - f, arc disregarded.

By solving the system (4.152), we arrive to exactly the same difficulties as the ones
encountered in the Dirichlet case, sce Figures 4.18(a) and 4.18(b). The instability of
direct numerical differentiation of 7 using central difference, offer us again a highly
unstable P;(t). This issue is solved following a similar mollification method with

the one used in the Dirichlet case, and finally, as shown in Figures 4.19(a), 4.19(b)
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(b)

Figure 4.18: Computed and analytical values of: (a) r(t) and (b) P(t), when there

is no noise in the data (4.151) .

and 4.19(c), the results obtained agree well with the analytical values.

4.9 Conclusions

The inverse problem regarding the identification of the time-dependent perfusion
coefficient in the bio-heat equation has been investigated. Both exact and noisy
measurements were taken into consideration. For the cases of internal and total
mass measurements in the presence of Dirichlet or mixed boundary conditions, the
hypotheses of the solvability theorems results were satisfied. In the heat flux mea-
surement case, since there were no uniqueness results previously proved, we have
stated and proved a uniqueness criterion which translates the uniqueness issue to
the existence of a unique zero for a constructed functional. Natural generalizations
to path measurements and partial mass measurements were also approached in our

investigation both for the Dirichlet and for the mixed boundary conditions.
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Figure 4.19: Computed and analytical values of: (a) r(t), (b) r'(t), and (c) P(t),

when there is no noise in the data (4.151), after mollification.
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However, our main effort was focused on developing a general numecrical method
that allows us to retricve of the solution (T'(z, t); P(t)) globally, in a unified man-
ner, for all the types of boundary conditions and mcasurcments considered.

The numcrical method that we have developed consists of two parts. First, we have
constructed a BEM for the time-dcpendent inverse problem. Since in the noisy
measurement cascs, derivatives of noisy resulting functions have to be computed,
we have mollified the results using a Gaussian kernel.

The test examples considered show, in the cascs of cxact measurement, that the
analytical and the computed valucs match almost exactly. For noisy data, the re-
sults obtained from our mcthod approximatcs fairly well the analytical valucs of the
perfusion coefficient. The method proposed in this paper can be straightforward
extended and applicd to higher-dimensional versions of this inverse time-dependent
perfusion coefficient identification problem.

In the next chapter we consider the inverse problem concerning the identification of

the space-dependent perfusion coefficient.
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Chapter 5

Inverse Space-Dependent

Perfusion Coeflicient Identification

5.1 Introduction

After discussing the rctrieval of the constant and time-dependent perfusion coefli-
cient cases, in this chapter we will focus on the situation when Pf is dependent on
space. Given the heterogencity of the human body tissue, the blood perfusion will
vary between different regions of the body. However, since the perfusion Py(z) will
be a function of the position z, equation (1.2) will not have a fundamental solution,
and this constitutes a major difficulty in approaching the subscquent class of non-
lincar inverse problems.

For the space-dependent case, we investigate two classes of inverse problems. In the

first instance, the bio-heat equation

oT

AT-P@)T+Z=—,  (0,L)x (0], (5.1)
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will be subject to Ncumann boundary conditions, whercas in the last part of the
chapter Dirichlet boundary conditions will be considered.

In the Neumann case, we seck the retricval of the space-dependent cocfficient Py(z) >
0 along with the temperature T'(z,t) from cxact and noisy boundary temperaturce
mcasurements.

In the Dirichlet casc, we discuss two inverse problems, namely IP1 and IP2, concern-
ing the identification of the space-dependent coefficient P;(z) > 0 along with the
temperature T'(z,t) where, in the case of IP1, the additional information consists
of a heat flux measurement on a part of the boundary, and in the case of IP2, a
time-average temperature measurement is taken at cvery space point in (0, L).

For both the Neumann and the Dirichlct cascs, the numerical investigation will cm-
ploy a Crank-Nicolson-type finite difference scheme coupled with an optimisation
algorithm, which minimizes a lcast-squares functional that evaluates the difference
between the measured data and the computed valucs.

However, although, subjcct to certain imposed hypotheses, some uniquencss results
may be satisfied, the ill-posed character of all the inverse problems considered is re-
vealed by the stability issucs encountered in the numerical investigation. In dealing
with these aspects, regularization techniques, such as order—0 or order—1 Tikhonov
methods, together with the subscquent strategics that arc used for choosing their

regularization parameters, need to be employed.
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5.2 The Neumann Inverse Problem

In this section, the considered spacc-dependent perfusion coefficient identification
inverse problem is stated as follows:
Find the tempcrature T(z, t) such that T, T, € €([0, 7] %[0, o0)), T}, T., € F((0, 7) x
(0, 00)) and the space-dependent perfusion coefficient Py(z) € €([0, 7]), P; > 0, sat-
isfying the onc-dimensional time-dependent bio-heat equation (5.1) subject to the
initial condition

T(z,0)=0, z€0,n), (5.2)

the Ncuman boundary conditions

oT
oT
—a;(ﬂ,t) =p(t), t=>0, (5.4)

where p satisfies the following properties:

pe % ([0,00)), u(0)=p'(0)=0, p#0,

(5.5)
and there cxists ¢, > 0 such that p(t) =0 for all ¢t > ¢,
and the additional boundary tempcraturc mecasurement:
T(m,t)=g(t), t>0. (5.6)

The uniquencss of solution for this inverse problem has been established in Denisov

[46], pp.139-146, and is stated as follows:

Theorem 5.2.1 Let £ = 0 and u(t) satisfy conditions (5.5). If Pyi(z), Ti(z,t),
i = 1,2 are solutions, in the above regularity classes, of the inverse problem (5.1),
(5.2)-(5.4) and (5.6), then Py (z) = Pp(z) for z € [0,7] and Ty(z,t) = To(z,t) for
(z,t) € [0,7] x [0, 00).
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Note that if, instead of the boundary tempceraturc measurement (5.6) at the active

end z = 7, where a non-zero heat flux is applied, we supply the additional boundary

tempcerature measurement
T(0,t) =g,(t), t>0, (5.7)

at the inactive end z = 0, where no heat flux occurs, then, in order to obtain a
unique solution for the inverse problem (5.1),(5.2)-(5.4) and (5.7), we further need

to impose the condition
Pi(z) = Ps(r —z) for z € [0, 7], (5.8)

sce Denisov [46], p.144. This is becausc the additional condition (5.6) provides
more information on Pj(z) than condition (5.7). Furthcrmore, it is also possible
to uniquely determine the triplet (7'(z,t), Pr(z), u(t)), satisfying (5.1),(5.2)-(5.6),
under the assumption that g is non-negative, sce Denisov [46], p.145.

Note that instcad of the Neumann boundary conditions (5.3) and (5.4) onc can

prescribe the Dirichlet boundary temperature conditions
T(0,t)=0, t>0 (5.9)

and (5.6). In this case, the additional mcasurcment can be the heat flux (5.4). Then,
if g # 0 and there cxists t, > 0 such that ;fog(t)dt < 00, g(t) = 0 for all ¢ > ¢,, then
the inverse problem given by equation (5.1),(5.2), (5.4), (5.6) and (5.9) has a unique
solution, scc Picrce [83] and Ramm [92].
The uniqueness of the solution of the problem given by equations (5.1), (5.2), (5.6)
and (5.9) also holds under the additional final temperature measurcment, scc Choulli
[28] and Isakov [59],

T(z,t,) =e(z), z€[0,n]. (5.10)
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5.3 Numerical Approach

As a first step, a finite-difference algorithm based on the Crank-Nicolson scheme,
sec Dahlquist and Bjorck [34], pp.387-389, is developed in order to solve the direct
problem for the parabolic equation (5.1), in which the coefficicnt F; is considered
known, subject to the initial and boundary conditions (5.2)-(5.4). At this particular
stage we only wish to retricve the temperature T'(z,t) given the assumed knowledge
of the positive entry Py(z). Let us denote this particular computed solution by
T (Py; (2, 1))-

A sccond step involves a gradient based optimisation procedure, supplicd by the
NAG routinc E04FCF, which minimizcs the order-0 and order-1 Tikhonov regular-

izations: F,, F, : {P;| Py € 4([0,7]), P; >0} — R, defined by

Fy(Py) =|| T (Py; (z, 1)) = g(t) I, +X | Py II, (5.11)

comp

F () == T"™ (Ps; (z,1)) — g(t) s +X || Ph L, (5.12)

respectively, where A > 0 is a regularization paramecter to be prescribed. Remark
that when A = 0, expressions (5.11) and (5.12) coincide with the classical lcast-
squares functional which produces an unstable solution.

The NAG routine EQ4FCF is a comprehensive algorithm for finding an unconstraincd
minimum of a sum of squares of m nonlincar functions in n variables (m > n). Fur-
ther, no derivatives are required to be supplicd by the uscr, these being calculated
internally by the routine using finite differences.

The minimization algorithm is initialized with a positive continuous function P,

initial

which in our case is set to 1, i.e. Py (z) = 1. The constraint P; > 0 cannot be

imposcd directly in the NAG routine, but, if in the iteration process some compo-
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nents of the discretized Py happen to become negative, they are replaced by 1 at

the next iteration level. Let us consider the following test example. Let us choose

/

0 for t =0,
—1
,U,(t) = ﬁ 8[ i-e-H ] for t € (0, 1), (513)
0 fort>t, =1,

\

which satisfies conditions (5.5) and seek to retrieve a positive continuous perfusion
coefficient given by

P(z)=1 +2?,  for z € [0, 7] (5.14)

The spacc interval [0, 7] is discretized into N, = 90 uniform cclls and we discretisc a
finite time interval [0, ¢,] into N = 100t uniform time intcrvals, where ¢, € {1, 2, 4}.
Thorough this scction, all the computations arc performed on a 64-bit x86-Linux
cluster architecture, with all the opcrations carricd out in extended precision.

Figure 5.1 illustrates the results obtained with order-0 Tikhonov regularization for
exact measurement data (5.6) used in cach of the three time length intervals, where
the appropriate choices for the valucs of the regularization paramcter A are con-
sidered, namely: A = 1072 for t, = 1, A = 107 for t, = 2, and A = 10719
for t, = 4. In Figure 5.1(a), the natural logarithm of the functional given in
(5.11), In(F,), is represented as a function of the number of iterations obtained
for (t,,A) € {(1,107%), (2, 1071%), (4,1071%)}. Figurcs 5.1(b)-(d) show the com-
puted P; in comparison to the exact solution given in (5.14) for (t,,A) = (1,107%),
(t,,\) = (2,10719), and (t,, A) = (4,107"?), respectively. It should be noted that as
we incrcase the time interval, i.c. from ¢, = 1tot, = 2 and then to ¢, = 4, the

results obtained improve, becoming more stable and at the same time increasing the
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Figure 5.1: (a) Logarithm of the objective functional F;, for order-0 regularization,

as a function of the number of iterations, and the numerically obtained P;(z) for

b)t, =1, () t, =2, and (d) t, = 4, for exact data. In figures (b)-(d) the exact

solution (5.14) is shown with dashed line.
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Figure 5.2: (a) Logarithm of the objective functional F}, for order-1 regularization,
as a function of the number of iterations, and the numerically obtained P(z) for
(b) ¢, =1, (c) t; =2, and (d) t, = 4, for exact data. In figures (b)-(d) the exact

solution (5.14) is shown with a dashed line.
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accuracy, since more measurement information is added.

Figure 5.2 shows the results obtained for exact data when order-1 Tikhonov regular-
ization is cmployed for cach choice of the parameters (¢,,A) € {(1, 10718), (2,10718),
(4,107'%)}. In Figure 5.2(a), In(F}) is represented as a function of the number of
itcrations for these three choices of (¢,,A). Figurcs 5.2(b)-(d) represent the com-
puted P; in comparison to the exact solution given in (5.14) for (t,, A) = (1,107'8),
(t,, ) = (2, 107'8), and (t,,A) = (4,107'®), respectively. As expected, we can im-
mediately observe that the results are significantly better than the oncs obtained in
the casc of order-0 Tikhonov’s regularization, sincec morc smoothness is imposed onto
the numecrical solution. Morcover, using order-1 regularization, the results obtained
preserve the smoothness, the solution is stable and an accuracy of over 5 digits is
achieved over all the space region for (t,,A) = (4,1078). On the other hand, we
again obscrve that the quality of approximation increascs as ¢, increascs. Also, we
should mention that, for t, € {2,4}, very good approximation arc achicved even for
larger values of the regularization parameter A, namely for A € (1078, 10-4].

Next, given the fact that real life measurements are inherently contaminated with
errors, we test now the proposed algorithm on noisy data. Let us consider that
the measurcment g(t) is perturbed by 1% of random multiplicative noise that is
generated by a uniform distribution on the interval [-1, 1], for cach time node ¢,,
j={1, .. %}, and this noise is supplicd by the NAG routine GO5DAF.

Figure 5.3 shows the results obtained with order-0 Tikhonov regularization, when
the input mecasurement data g in (5.6) is corrupted by 1% multiplicative noise, for
cach choicc of the paramcters couple (t,,A) € {(1,10°1), (2,10°!%), (4,10712)}.

The functional In(F;) shown in Figure 5.3(a), as a function of the number of it-
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Figure 5.3: (a) Logarithm of the objective functional F;, for order-0 regularization,
as a function of the number of iterations, and the numerically obtained Pf(z) for
by t, =1,(c)t, =2, and (d) ¢, = 4, for 1% noisy data. In figures (b)-(d) the exact

solution (5.14) is shown with a dashed line.
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crations, is monotonically decaying in this noisy case, for all couples (¢,,A). The
results obtained for Py are highly sensitive to the level of noisc in the data, as
shown in the Figures 5.3(b)-(d) for (¢,,)) = (1,1071), (t,,A) = (2,107'1), and
(t,, A) = (4,107'%), respectively.

Figure 5.4 shows the results obtained when order-1 Tikhonov regularization is cm-

ployed and the input mcasurcment data g in (5.6) is corrupted by 1% multiplica-

tive noise, for cach choice of the paramecters couple (t,, \) € {(1, 10-1°), (2, 10;11 ),

(4, 10;10)}. Again, as in the no noisc situation, we can immediatcly sce that when

using the order-1 regularization in the noisy case we obtain a more accurate and
stable numecrical approximation than the onc obtained when using the order-0 reg-

ularization.

5.4 The Dirichlet Inverse Problem

For the remaining part of this chapter, we devote our attention to the class of inverse
problcms in which Dirichlet boundary conditions are considcred. We investigate two
inverse problems, IP1 and IP2, concerning the identification of the space-dependent
coefficient P;(z) > 0 along with the temperature T'(z,t), under prescribed initial
and Dirichlet boundary conditions, when, in the case of IP1, the additional informa-
tion considered consists of either a heat flux measurement on a part of the boundary
or, for IP2, a time-average measurcment is taken at every space point (0, L).

The two space-dependent perfusion coefficient identification inversc problems, IP1
and IP2, are sccking the couple (P;(x), T'(z,t)), when the following common ground

is assumed:
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The temperature T'(z, t), with T, T, € €([0, 1] x [0,0), T,, T,, € €((0,1) x (0, 0),
and the space-dependent perfusion coefficient Py(z) € ([0, 1}), Py > 0, arc satisfy-
ing the one-dimensional spacc-dependent transient bio-heat cquation (5.1), subject

to the initial condition
T(z,0) = uy(z), z€][0,1], (5.15)

and the Dirichlet boundary conditions
T(0,t) =p,(t), t=0, (5.16)

T(1,t) = p,(t), t>0. (5.17)

For cach of the inverse problems the additional information, stated individually, is

defined as follows:

e for IP1 the flux at £ = 1 is mcasurcd as:

or

At) = 5-(L1),  te(0,00) (5.18)

e for IP2 the timec-average measurement is taken across the space region (0,1)
as:
ty

£(z) = / T(z,t), z€(01). (5.19)

0

where t, > 0 is an arbitrary given time.

Remark 5.4.1 An inverse problem similar to IP1, as given by equations (5.1)

(5.15), (5.17), (5.18) and the Neumann condition
- oT

has been investigated theoretically, Denisov [{6], pp. 189-146, and numerically in the
previous section and in Rodrigues et al. [100]. Moreover, an overdetermined inverse
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problem, as given by equations (5.1), (5.15)-(5.18) and (5.20), has been investigated

numerically in Tadi et al. [109].

Remark 5.4.2 An inverse problem similar to IP2, as given by the equations (5.1),

(5.15), and (5.16), (5.17) or (5.18), (5.20), and the final temperature measurement
e(z) =T(a,t,), z € (0,1) (5.21)

has been investigated theoretically in Choulli [28], Choulli and Yamamoto [29, 30,
Isakov [59, 60], Prilepko and Kostin [89], Prilepko and Solov’ev [88], Rundell [101]
and Yu [118], and numerically in Chen and Liu [27], Deng et al. [44], Yang et al.

[11 7.
The following thcorems cnsure the uniquencss of the perfusion coefficient Pf(z).

Theorem 5.4.3 (Ramm [91, 92]) Let u, = p, = ¥ =0, and assume that p, 0
is compactly supported and integrable. Further, we assume that equation (5.1) is
satisfied at the boundary, z € {0, 1}, for t > 0. Then the IP1 has at most one

solution P € L:([0,1]).

Theorem 5.4.4 (Isakov [61], Sect. 9.2) Let £ =0, u, € €'([0,1]), u, > 0 and

€ —l_/e—rn/(‘“)p‘*(,’_)dT - € (54([0 m)) (r 29
Hys Ha \/ﬁ / H ) . 5.22)
Then the IP1 has at most one solution Py € L_((0, 1)).

Theorem 5.4.5 (Prilepko and Kostin [89]) Let u, = p, = p, = 0, L, %, €
L,((0,1) x (0,t,)), £ = 0, &, 2 0, and assume that &€ € Wi((0,1)), with E(z) >
tff To(m’ t)dt, z € (0,1), where T ® is the solution of the direct problem given by
0

equation (5.1) with Py = 0 and with homogeneous conditions (5.15)-(5.17). Then
the IP2 has at most one solution Py € £_,((0,1)), Py > 0, T € W2'((0,1) x (0, t,)).
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In Theorem 5.4.5, the Sobolev spaces W2((0, 1)) and Wi ((0,1) x (0, t,)) are defined

in the standard way, scc Ladyzhenskaya [65].

5.5 Numerical Approach

The numecrical approach is the same as that described in Section 5.3 except that we
minimize the order-one Tikhonov regularization functional F, : {P; | P € € ' ([0,1))

Py >0} — R, defined by

| T (P (L) = h(O) I, gy for IPL,
Fl(Pf) ’\” Pl “c ((01)) t,
comp . _ 2
I OfT (Py; (z,t))dt — E(z) ”L,(m.l)) for IP2,
(5.23)
where A > 0 is a rcgularization paramcter to be prescribed.
The problem is solved subject to both exact and noisy measurcments
h(t) = h(t)1 +an), te(0,00), (5.24)
Ez)=E@)1+an), z€(01), (5.25)

where a is the percentage of noise (typically 1%) and 7 arc random variables gen-
crated from a uniform distribution in the interval [-1,1], using the NAG routine
G05DAF. Suppose that we know an upper bound v > 0 such that

6,(a) :=[|h—h ”c,((o,m))s 7 (5.26)

bg(a) =1 € =& I, oun< - (5.27)
Then the regularization parameter A is chosen according to the discrepancy principle

as follows. Considering the functional F': [0, 00) — R, defined by

FO) = \[R(B) = M P} I, (g (5.28)
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the Morozov discrepancy principle suggests choosing the regularization paramecter

as being the largest value A > 0 for which

FQQ) <. (5.29)

5.6 Numerical Results and Discussions

Except otherwise specified, the space interval [0,1] is discretized into N, = 90k
uniform cclls, while the time interval [0,1,] is discretized into N = 100kt, uniform
timc intervals, where, for convenicnce, we take ¢, = 1 and the mesh tunning factor

k = 1,2. We also take, for simplicity, £ = 0 in cquation (5.1).

5.6.1 Numerical Example for IP1 with Homogeneous Initial

Condition

Let us choosc u, =0, £, =0, and

4
0 fort =0,
- Tl
| 0 for t >t, =1,

which satisfies the conditions of Theorem 5.4.3 for the uniquencss of solution of
problem IP1. We seck to retricve a positive continuous perfusion coefficient given
by

P(z)=1+2" forze[0,1). (5.31)
Since an analytical solution for the bio-hcat equation (5.1) with £ = 0, subject to

the above initial and boundary conditions, could not be determined, the measured
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Figure 5.5: (a) Logarithm of the objective functional F;, as a function of the number
of iterations, (b) the numerically obtained Ff(z), (c) the discrepancy principle for
exact data, o = 0, and (d) the discrepancy principle for o = 1% noisy data. The

amount of noise 7 is shown with continuous line (—) in figures (c¢) and (d).
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heat flux data (5.18) is generated numerically by solving the direct problem with P
given by equation (5.14) using the Crank-Nicolson finite-difference method, with a
mesh that uniformly discretises both the spacc interval [0, 1} in V; = 90 cclls and the
time interval [0,t, = 1] in N = 200 subintervals. In order to avoid committing the
so called "inverse crime”, the direct solver, involved in the minimization of (5.23)
for the IP1, uses N, = 90 and N = 100. In this way numcrical noisc is introduced in
the measured data (5.18) cven when cxact data, i.c. a = 0 in (5.24), arc considered.
Figure 5.5 shows the numecrical results, when both a = 0% and 1% noisc is per-
turbing the data h(t) as in (5.24). In Figurc 5.5(a) the natural logarithm of the
first-order Tikhonov functional given in (5.23), In(F,), is rcpresented as a function
of the number of itcrations, obtained when the data arc assumed both exact, for
A = 5 x 1078, and 1% noisy, for A = 1075, From this figure it can be scen that
the convergence of the minimization functional F| is immediatcly achieved in only
3 — 5 iterations. Figure 5.5(b) shows the plots of the computed solution for F.
From Figure 5.5(b) it can be scen that the computed results arc a very good and
stable (free of highly unbounded oscillations) approximation of the desired perfusion
coefficient given in equation (5.14). For the exact data, the maximum 4% relative
error to the exact solution (5.14), that occurs in the numecrical solution, is justified
by the numerical noise introduced when the mecasured data arc obtained by solv-
ing the dircct problem, as mentioned above. When 1% noise is included an crror
of maximum 16% is encountered in the numecrical solution; however, the numerical
solution is rcasonably stable.

Figures 5.5(c) and 5.5(d) show the discrepancy principle (5.29) for a = 0% and

a = 1%, respectively. From these figures it can be seen that the discrepancy prin-
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ciple cnables us to locate the regularization paramcter A, when both cxact and

perturbed noisy mecasurements are considered.

5.6.2 Numerical Example for IP1 with Non-homogeneous
Initial Condition

Throughout this scction, the initial condition (5.15), u,, as well as the Dirichlet
boundary conditions (5.16)-(5.17), u, and p,, arc taken to be non-zcro and arc
given by

u,(z) =€, ze€l0,1], (5.32)
p,(t) =€, p,(t) =€, te[o,00). (5.33)

If the additional heat flux measurement h(t) is given by
h(t) = 21, t € (0,00), (5.34)

then, with the input data (5.32)-(5.34), the IP1, given by cquations (5.1) with @ = 0,

(5.15)-(5.18), has the analytical solution:
T(z,t) =%,  Pi(z) =42 + 1. (5.35)

The direct solver involved in the minimization of (5.23) for IP1 uscs a mesh of
N, = 180 and N = 100 that is discretising uniformly both the space interval [0,1]
and the time intcrval [0,¢, = 1].

Figure 5.6 shows the numerical results when both cxact and 1% noisy crrors arc
considered in the measurement A(t) given by (5.34). In Figure 5.6(a), In(F)) is

presented, as a function of the number of iterations, for both exact and noisy data,
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Figure 5.6: (a) Logarithm of the objective functional F,, as a function of the number
of iterations, (b) the numerically obtained Pj(z), (c) the discrepancy principle for
exact data, a = 0, and (d) the discrepancy principle for @ = 1% noisy data. The

amount of noise 7 is shown with a continuous line (—) in figures (c¢) and (d).
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with the regularization paramecter chosen as follows: A = 1073 for cxact measure-
ments, and A = 1072 for the case when h(t) is perturbed by a = 1% noise. From
this figure it can be seen that the convergence of the minimization functional F, is
rapidly achicved in 10 — 15 iterations. Figurc 5.6(b) presents the computed Py(z)
in comparison to the cxact solution given in (5.35), showing that thc numcrically
obtained solution is stable (free of highly unbounded oscillations). The particular
choices for the regularization paramcter A have been found by applying the discrep-
ancy principle (5.29), as shown in Figures 5.6(c) and 5.6(d) for cxact and 1% noisy

mcasurements, respectively.

5.6.3 Numerical Example for IP2

In this scction the initial condition (5.15), u,, and thc Dirichlet boundary conditions

(5.16)-(5.17), , and p,, arc choscn as follows:
UO(I) = (IE e _1;2)2 + 20, T € [0, 1], (536)

p, (t) = 20e7", Lo (t) = 20e™t, t € [0, 0o). (5.37)

Also, considering t, = 1 and taking the timec-average temperature measurement

(5.19) as being
Ez)=(1-e)((z-2?+20), z€(0,1), (5.38)

for the IP2, given by (5.1) with £ = 0, (5.15)-(5.17), (5.19), we obtain the following

analytical solution:

zd — 223 + 1322 — 127 + 22
(z—2%)2+20

T(e,t) = e ((z =) +20),  Pi(a)= (5.39)
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The dircct solver involved in the minimization of (5.23) for IP2 uscs a mesh of
N, = 90 and N = 100 that is uniformly discretising both the space interval [0, 1]
and the time interval [0,¢, = 1]. Figurc 5.7 shows the numecrical results when both
exact data and 1% noisy crrors are considered in the measurement E(z) given by
(5.38). The functional In(F)), shown in Figure 5.7(a), as a function of the number
of iterations, is rapidly convergent in 8 — 10 itcrations, for both the exact and noisy
data. The results obtaincd for Py, for exact data and A = 1078, shown in Figurc
5.7(b), are acurate; however, for 1% noisy data and A = 0.8, they start to slightly
deteriorate. These choices for the regularization paramcter A have been obtained
by using the discrepancy principle (5.29), as shown in Figures 5.7(c) and 5.7(d) for

exact and 1% noisy mcasurements, respectively.

5.7 Concluding Remarks

The identification of the space-dependent perfusion coefficicnt in the bio-hcat cqua-
tion has been investigated when either Neumann or Dirichlet boundary conditions
are considered.

In thé presence of initial and Neumann boundary conditions, with exact and noisy
boundary temperature measurcments taken into consideration, the inverse and ill-
posed bio-heat conduction problem has been solved numecrically. The numecrical
method that we have developed consists of two parts. In the first step we develop
a direct solver based on the Crank-Nicolson finite-difference method, which is then
coupled with the second step given by an optimization routine. In effect, the algo-

rithm carries out a scarch over a class of continuous positive functions P; in order

138



to find a global minimum point for the nonlinear Tikhonov regularizing functional.
The Tikhonov zeroth- and first-order regularization procedurcs have been applicd.
Both in the case of exact and noisy boundary temperaturc measurcments, the results
obtained have shown that the first-order regularization is both stable and accurate
and performs better that the zeroth-order regularization for all the values of the
paramcter A that were considered by inspection.

The numcrical results presented are obtained for the mcasurement data g taken on
the restricted time intervals [0,¢,], for t, € {1, 2, 4}. As cxpccted, more accurate
and stable results can be obtained if a larger time interval of measurcments is con-
sidered.

The sccond part of this chapter is devoted to the Dirichlet inverse problem. In
the presence of the Dirichlct boundary conditions, two typcs of mecasurcments arc
considered as additional information, namely a flux measurement for IP1 and a
time-averaged mcasurement across the region of interest for 7/°2. These two inverse
ill-poscd problems are solved numcrically. For cach of them we have developed al-
gorithms that, in essence, are structured similarly and consist of two parts. In a
first part a direct solver based on Crank-Nicolson is developed. This part is then
coupled with a second one given by an optimization routine in which the perfusion
coefficient is found as a global minimizer of the first-order Tikhonov regularization
functional, over a class of positive %' functions. For all the examples considered,
the results obtained represent a good and stable approximation of the target space-
dependent perfusion coefficient P;. The discrepancy principle is used to identify
the appropriate regularization parameter A, in the presence of both exact and noisy

measurcments.
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Chapter 6

Inverse Temperature-Dependent
Perfusion Coefficient

Reconstruction

6.1 Introduction

In this chapter we investigate the identification of the temperature-dependent per-

fusion coefficient, P;(T), which appears in the bio-hcat conduction cquation

2

%;:-[,:(x,t) — Pi(T(z,t))T(2,t) + E(z,t) = %—f(x,t), (z,t) € (0,1) x (0,t,]. (6.1)

Given that the coefficient Py depends on the temperature, we immediatcly observe
the nonlincar character of the equation (6.1). This situation adds up to the dif-
ficulty already created by the nonlinear character of the induced inverse problem
determined by the fact that both P;(T) and T arc simultancously unknown.

Our investigation is focused on two inverse problems, namely IP1 when the source
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term ¥ # 0 is present, and IP2 when the source term is absent, i.e. £ = 0. In both
IP1 and IP2 we aim to identify the temperature-dependent cocflicient P7(T) > 0
along with the tempcerature T(z,t), under preseribed initial and Neumann bound-
ary conditions, when an additional temperaturc measurement is taken on a part of
the boundary along the time intcrval. It is noticed in the development of the nu-
merical algorithm that it is important to analytically discuss the conditions which
ensurc that the function P;(T)T takes its maximum range on the mecasurcment
path, namecly, in the case of our discussion, on that part of the boundary wherc the
temperature measurcment is taken.

In the devclopment of the numcrical scheme for the direct solver, when attempt-
ing to design a Crank-Nicolson-type scheme, a major difficulty is induced by the
nonlincarity of the system, which is caused by the solution dependence. One way
to overcome this situation is to introduce a time stepping extrapolation scheme for
approximating the valuc of the function P;(T)T given its computed valucs at the
previous time steps. Then, a linear system is obtained for computing the solution
T at the current time step. Further, this direct problem solver is coupled with an
optimisation scheme that is designed to obtain the minimum of a least-squares func-
tional which evaluates the difference between the measured data and the computed
solution at the measurement spacextime coordinates, when the space scarch is a
class of polygonal lines that approximates the unknown P;(T).

In order to obtain a stable solution, the ill-posed character of the inverse problems

under investigation require us to apply regularization methods.
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6.2 Mathematical Formulation

The two temperature-dependent perfusion coeflicient identification inverse problems,

namely
e IP1 when £ # 0,
e IP2 when ¥ =0,

seck the couple (Pi(T), T(z,t)), satisfying the bio-hcat cquation (6.1), subject to

the homogencous initial condition
T(z,0)=0, z€[0,1], (6.2)

and the Neumann boundary conditions

or

*8—:1:(0, t) = W(t), te (0, tf]’ (6.3)
oT
-8—117(1’ t) =0, te€ (Ov tf]) (64)

when additional information is given as a tempcerature measurcment at the boundary

point z = 0, along the time interval, namely

gty =T(0,t), te[ot,]. (6.5)

Let us denote
Then cquation (6.1) becomes

OT = (T(z, 1)+ Ela, ) = (2,
A (@ , 1) =5 (2, ), (z,t) €(0,1) x (0,t,). (6.7)
Morcover, IP1 and IP2 can cquivalently be rccast as inverse problems TP1 and

TP2 for finding the unknown quantity f(T'). This is performed immediately just

142



by replacing cquation (6.1) with cquation (6.7), where f is subject to the following

constraint:
f(0)=0. (6.8)

As soon as f is identified, the temperature-dependent perfusion coefficient Py is

found as the ratio

Py(T) = f—(TT—) (6.9)

provided that T is bounded away from zcro, except perhaps where f itsclf vanishes.
Prior to this study, the determination of the reaction function f(7') in the 1P2, given
by equations (6.2)-(6.5) and (6.7) with £ = 0, has been investigated in Cannon and
DuChatcau [13] and Fatullayev [50] in one-space dimension, and in DuChatcau and
Rundcll [47] and Fatullayev [51] in multi-space dimensions, whilst the TP1 with
¥, # 0 has becn investigated in Pilant and Rundell [84, 85, 86, 87]. For other inverse
formulations of parabolic cquations for dctermining a semilincar term we refer to
Cannon and DuChatcau [12], Choulli and Yamamoto [31], Li [67], Lorenzi [70],
Orlande and Ozisik [76] and Zeghal [119].

Let us define €%, a € (0,1], as the space of Hélder continuous functions with

cxponent ¢, which is cquipped with the usual norm

sup |u(P)|+ lu(P) — u(Q)]

sup

I lla= caa
PeDom(u) P,QeDomn(u) d(P’ Q)

(6.10)

and let us denote by %" the spacc of functions whose k-th dcrivative bclongs to
%*. In particular, for £ = 0, a = 1, the space ¢! coincides with the space of
Lipschitz functions. We dcnote by € the space of continuous functions and by ¢’
the spacc of smooth functions.

When f is known and belongs to the sct of Lipschitz functions with uniform Lipschitz
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constant, i.e.

fe{fed ®)If0) =0 | fl.<c}, (6.11)
onc can cstablish the existence and uniqueness of the temperature solution T of the
dircct problem given by cquations (6.2)-(6.4) and (6.7), sce Fricdman [53].

The following thcorem describes the propertics of the solution for the direct problem

given by cquations (6.2)-(6.4) and (6.7).
Theorem 6.2.1 Let us assume that f € ¢ (R), and consider the data
we {oe€(0,t,]) @(0)=0, &(t) <0, t € (0,¢,)},

26{56%”WQHXMQM%%Lnsm(anewJpqag@,
In addition, we suppose that there exists C > 0 such that |T(z,t)] < C, for all
(z,t) € [0,1] x [0,¢,].
Then the solution of the direct problem (6.2)-(6.4) and (6.7) has the following prop-

erty:

a)

oT

-5;($, t) <0, (z,t) € [0,1] x [0,¢,]. (6.13)
In particular, this implies that for any fired t € (0,t,), T(1,t) < T(z,t) <

T(0,t) = g(t), for all z € [0,1].

b) If, in addition, we suppose that ¥ — (e, f(€) >0, then T(z,t) > 0 for all

(z,8) € [0,1] x [0,2,].

Proof: The proof of part a) follows a path similar to the one made for Theorem 1.1

from Cannon and DuChateau [13]. Let us consider G(-,) : [0,1] x o, tf] — R an
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arbitrary non-negative continuous function G # 0, and lct us suppose that ¢(:,-) :

[0,1] x [0,t,] — R is the solution of the following problem:

(

2(5,0) + L3(z,1) = (D@ 1)z, 1) = G(z,1), (1) € (0,1) x (0.2,),

¢ o(z,t,) =0, z€(0,1),

#(0,t)=0, ¢(1,8)=0, te(0,¢,)

\

(6.14)
We note that the system (6.14) is backward in time but is well-posed due to the
reverse parabolic character of the partial differential equation.

Since f € ¥ (R) and o IT| < C, we obtain that f'(T(z,t)) is bounded in

(0,1) x (0,¢,). Thercfore, since G > 0, G # 0, using a maximum-minimum principle

argument, we obtain that
#(z,t) <0, (z,t) € (0,1) x (0,1,), (6.15)

which implies that

o¢
5-(0,1) <0, te(0z). (6.16)

Let us now evaluate the intcgral

fror
//g(z,t)G(m,t)dxdt. (6.17)

Using integration by parts and invoking Fubini’s thcorcm, we obtain

r

1
[ Gdzdt
0

O%:

-~

1 2 , f1 2
Ik (22 +2¢ - 7 (T)9) dzdt=0fof[%%?+%—£-g—m?—a—‘1[f(T)]¢] de dt

ty

]
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ty tr1, 4
=[T5+ 58 -1De]| a-]] (252 - £(1)%2] dedt - ffT%;%dtdz
=0
t s =1 tr1 ., t=t
=/ [T% + 538 — f(T)4] dt—ofof[‘;—x?g%-f(T) |dzat~ [T2| "zt
=0 t=()
fltffﬂa dtdz
a0
K aT - Looe| Y, U1 2
f[T—“ﬂ+ gLIe — f(T)e] - T3 dx+0fof%$[%§—(g§—f(7"))]dxdt.
z=0 t=0
Thercfore, since equation (6.7) implics
ty
//_¢ I py)| avar= [ [asar
0 0
wc obtain that
tr 1
[ [ ZGdx dt
00
t ==t 1 =ty tr1
f (T2 + 222 _ f(T)g]| dt— [T2| dz+ [ [2Sdzdt
0 z=0 0 t=0 00
t =1 1 , t:z! ty r=1 ty 1
— [+ 22 - fngl| - [T da+ [o5| a— [ ] Eedear
0 =0 0 t=0 0 =0 00
(6.19)

Let us note that ¢(z,t,) = 0, for all 0 < z < 1, implics that gf(x, t,) = 0, for all

0 < z < 1, and recall that T'(z,0) = 0. Thercfore
1
/ T

0

Similarly, from ¢(0,2) = ¢(1,2) = 0, for all 0 < ¢ < ¢, we obtain that 22(0,t) =

t=t £

QJIQJ
8o

= 0. (6.20)

t=0

8(1,t) = 0. This implics that

=1

] [T——f(T ] dt = 0. (6.21)

=0
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From ¢(0,t) = ¢(1,t) = 0 we also obtain that

ty z=1
[
0 =0

Finally, using the boundary conditions (6.3)-(6.4) we obtain that

dt = 0. (6.22)

=1 1

[T, .06
/aﬁ”@ﬂ*” m=—/@m%wﬂm (6.23)

z=0 0

Using cquations (6.20)-(6.23), cquation (6.19) rccasts as

tr 1 ty tr1
o (
JJ—; z,1)G(z, t)dz dt = Ofw )22(0,t)dt — [ [ Z(z, t)p(z,t)dcdt.  (6.24)
00

Thus, from cquations (6.15)-(6.16) and the hypotheses that w(t) < 0, ¢ € (0,¢))
) sy

and 2(z,1) <0, (z,t) € (0,1) x (0,t,), wc obtain

[k

Thercfore, given the fact that G was choscn as an arbitrary non-negative continuous

°’|3

(z,t)G(z, t)dz dt < 0. (6.25)

O\‘s

function, we conclude that

o n<n
(@ (z,t) € [0,1] x [0,2,). (6.26)

This follows immediately since, if we supposc by absurd that there cxists a ball
B((z,,t,),7) such that the continuous function 2 o | Bl(zg tg)r) rcmains strictly pos-
itive, i.e. 2L(z,t) > 0, (z,t) € B((zo1),7), then by choosing a non-negative
continuous function Gy, . )., # 0 so that its support is included in B((z,,t,),7),

we obtain that

;1

oT

a_x'(z’t)G(B(%,to):r) (z,t)dzdt >0 (6.27)
0 0

and this contradicts (6.25). This proves (6.26) and part a) of the thecorem
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Let un now prove part ) of the theorem. Since here we assume ¥ — I[nax | f(&)=o0,
ge(-c.c

from (6.7) we obtain that

2

%T;(x, t) - %;(r, )20, (z,t) €[0,1] x[0,¢,]. (6.28)

Then the desired conclusion that T'(z,t) > 0 for all (z,t) € [0,1] x [0,¢,] follows

from the argument involved at the end of the proof of Theorem 1.1 of Cannon and

DuChatcau [13], via the usc of the max-min Hopf principle, scec Cannon [11}, p.261.
This complctes the proof of the entire theorem.

a

The following thcorem ensures the local solvability of the inverse problem TP, given

by equations (6.2)-(6.8).
Theorem 6.2.2 (Pilant and Rundell [84]) Let us consider the data
4

we {@e s (0L 3(0)=0, &'(1) <0, te o]},

§ se{Eew (0 x 0.)) £ >0, (5,0 € (0,1 x (0,t,)},

| g€ {ae€([0,2))1 5(0) =0, §(0) =%(0,0), §'(t) > 0, t € (0,¢,)} -

(6.29)
Further, by taking ¢ to be the solution of the problem
(
% (1,1) - T4(z,1) = S(z,t),  (z,t) € (0,1) x (0,1,),
y ¥(z,00=0, z€0,1], (6.30)

| 2O =w®), ZLH=0 telot),

we assume that there exists C > 0 such that || ¢'(-) - %‘tg(O, I, < C.

Then, for the inverse problem IP1 given by equations (6.2)-(6.8), there egists a
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unique local solution (T, f(T)) in the class of functions:

() T(,t) € €*([0,1]), t € (0,t,),

() T(z,-) € €*([0,t,]), z € (0,1),

(iii) f € F(R).
Remark that the first two conditions in (6.29) are required in order to cnsurc that
T(0,t) = g(t) is monotonic increasing for all ¢ € [0,¢,], and, by the maximum
principle, that

T(z,t) <T(0,8),  (z,t) € [0,1] x [0,,], (6.31)

when f is given and satisfies (6.11).

Alternatively, these propertics can also be ensured, sce Pilant and Rundell [86], if

one assumes the first condition in (6.29) and that

5 e {E e ¥ ((0,1) x (0,t,))] Y(z,t) > 0, %—(ax, t) <0, (z,t) € (0,1) x (0,¢,)}.
(6.32)
In order to be able to recover f(T') over the entire range of the valucs of T'(z, t) that
appear in equations (6.2)-(6.8), it is nccessary to have the function T'(z,t) take on
its maximum range at the boundary z = 0, where the additional (overposed) data
(6.5) is prescribed. From (6.31) we obtain that the maximum of T' is obtained at
r = 0. In order to ensurc that the minimum of T is attained also at z = 0, the
additional hypothcsis of part b) of Theorem 6.2.1 needs to be satisfied, namely that
T —sup f(§) 2 0.
(R

The next theorem describes the propertics of the solution for the direct problem

given by equations (6.2)-(6.4) and (6.7) with X = 0.
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Theorem 6.2.3 (Cannon and DuChateau [13]) In the direct problem given by

(6.2)-(6.4) and (6.7) with L =0, let f € €(R) and piecewise differentiable,
we {3 B(0,L,)] 5(0) =0, () <0, L (0,1,)},

and assume that there ezists C > 0 such that |T(z,t)| < C, for all (z,t) € [0,1] x

[0,¢,].

Then we have

oT

@0 <0 () e1]x[0¢] (6.33)

In particular, for any fired t € (0,t,), g(t) = T(0,t) > T(z,t) > T(1,t), z € (0, 1).

Remark that the parts § of Theorem 1.1 and Corollary 1.1 from {13] do not apply

to our equation (6.1) since —f(T)T = —Py(T)T" < 0, as we have P(T) > 0.

Finally, the following thcorem cnsurcs the uniquencss for the solution of the inverse

problem 1P2.
Theorem 6.2.4 (Cannon and DuChateau [13]) Let
we {@e?(0,t,])] a(0)=0, &(t) <0, te(0,t,)}.
Suppose f,, [, € €(R) are piecewise differentiable and
9:,9. € {3 € €'(0,2,])] §(0) =0, g'(t) >0, t € (0,¢,)}

such that g.(t) =T(0,¢; f,,w), fort € [0,¢,], i =1,2.

Then it follows that:
a) if f(T) = £,(T) for 0 < T < T*, then g,(t) = g,(t) for 0 <t < t* and
gi(t‘) = T*’ i = 1’ 2;
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b) if f, and f, are distinct in L,([0, T#]) for some T# > 0, then g,(t) and g,(t)

are distinct in €([0,t*]) for some t# > 0.

Remark that for the solution P¢(7T) > 0 to exist, the data (6.3) and (6.5) must
satisfy
t

0> / w(rg(r)dr,  teot,). (6.34)

This incquality can be deduced immediately by remarking that in cquation (6.1),
after preforming a multiplication with T' and intcgrate the result with respect to
z from 0 to 1, and with respect to ¢t from 0 to ¢, we then can employ cquations

(6.2)-(6.5), and (6.34) follows.

6.3 Numerical Approach

A finite-difference algorithm based on a Crank-Nicolson-type finite-difference scheme,
sce Dahlquist and Bjorck [34], pp.387-389, is developed in order to solve the direct
problem for the parabolic nonlincar equation (6.7), subject to the initial condition
(6.2) and the boundary conditions (6.3) and (6.4). This algorithm is then connected
" with an optimization routine. After choosing a convenient residual functional, a gra-
dient based optimisation procedure is employed in order to minimize this functional

over the space of all polygonal lines that approximate the function f.

6.3.1 Polygonal Approximation for f(7T)

As remarked in Pilant and Rundell [86), in order to be able to recover f (T) over
the entire range of values of T'(z,t) that appcar in cquations (6.2)-(6.5) and (6.7),
it is necessary to have the temperature T'(z,t) take on its maximum range at the
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boundary z = 0, where the overposed data (6.5) is prescribed. Thus, if we assume

that the conditions of Theorem 6.2.2 are satisfied and that
0 < T(z,t) <T(0,1), (z,t) €[0,1] x [0, t,], (6.35)

then, we scck to determine f(T7) and subscquently Pp(T) on the interval I :=
[O,g(tf)]. Let 0=1t, <t, <..<ty =1, beauniform discrctization of the interval
[0,t,] with step At = I—Vt—é; Then, an a priori knowledge of a (N — 1)-dimensional
vector of angles, ©® = {6} e provides us with a polygonal approximation

f(©®;):1- R for f, which is defined by

f(&;T) =

(

(T —T(0,t,)) tané,, T € [T(0,t,),T(0,t,)],

S T € [T(0,t,), T(0,,,.))
(T —T(0,t,))tand, + kZ—jl(T(o, t,..) = T(0,t,))tand,,

\ 2<j<N-1L

(6.36)

6.3.2 The Direct Solver

In this step, we want to dctermine the tempcrature T(z,t), given the assumed
knowledge of an approximating polygonal line f(®; T). Let us denote this computed
solution by T°™*(©; (z,t)) and immcdiately remark that the initial condition (6.2)
implies that T (©; (z,0)) = 0.

According to the so-called method of lincs, sec Dahlquist and Bjorck [34], p.388, we
consider first a uniform space-discretization 0 = z, < z, < .. < Ty, = 1, of step
Az = ijl—_l Using central finite differences to approximate the Laplacian, we apply
this discretization to the equation (6.7) and obtain the following system of ordinary
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differential equations:

dTi _ Ti+1 - 2Ti +Ti—1
dt (Az)?

fi + E." =2, No -1, (637)

where, for any i € {1,...,N,}, the functions T}, f,, %, : [0,t,] — R are defined by:
T.() =T (®;z,,), f.(-) = f(T77(©;z,,)), and Z,(') := I(z,, -).

Further, we remark that, for any arbitrary t* € [0, ;= At], by integrating cquation
(6.37) over the interval [t*,¢* + At], we obtain

T, 1 (T)=-2T,(7)+T;_, (1)
Dt — f(r) + (7)) dr,

t*+At
T +A)-T() = [ |

t*

(6.38)
i=2, N, - L

Assuming t* € {t,,t,, ..., tx_, }, in order to numecrically integrate the right-hand side
of each of the equations from the system (6.38), we apply a degencrate trapezoidal

rule with one subdivision. Thus, by denoting T, ; = T,(t,), f,, = fi(t,), &, =

Ei(t;‘)1 for a‘n 1= 11 No7 J = 1, N, we obtain

T, oo=Te; 1 [Targpn=2Tigen+ Ty Ty ~2T 4Ty
SEL = 3 [ LRSI S ] = 3 [foss + i)
+3 [Son + 23] t=2,N,—-1,j=1,N-1
(6.39)
Using the initial condition vector {T;,} — = {0}._+ as a starting point, the
=1,Ng =540

solver proceeds to march forwards in time. For any time index j > 1, the unknown

vectors {T,.,j +1}.= and { fis +‘}.~=ﬁr will be obtained using the knowledge of the

1,Ng

vectors {T,.,J.}. - and {f,v'j}. = which have been computed at the time level
i=1,N, i=1,N,

j— 1. Given the knowledge of the vectors {f, } __, 1 £¢ < j, we extrapolate the
=4LNg
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veetor {f.; “}'—m‘ as follows:
=4

T, .., tan(6,), if j =1,

1,5+1

fi,j+1 = 3 1= 1, No- (640)
2fi,j - fi,j—l) if .7 22,

For any angles vector © and any time level j > 1, let us define the N, —dimcensional

vector {(©,5)(p)},rx 3S

tr
b(@,j)(p) = % [Eun + 250 Do T Yy ENO.J'H + ENo.j]
¢
T . (T ,-T,.) [f.; wt) wt.,,) .
i+ e B - S0 S ity =,
T, o124 1) foy .
Ty R TRETT if 2<p< N, - 1,
T,, , T_y;=T,) [ )
{ ‘ﬁ'{"’ (XA:,’.)5 __22..1_, lfp=N0
(6.41)
Also, lct us consider the N, x N, matrix A given by
([ 1
(A—xF+—A—l’ lszl’ lzlaNoa
——Lo,  ifk=141, I=1N,=1
2(Az)”!? 1 ) ’ 0 )
Ay =g 1 (6.42)

—=L,  ifl=k+1, k=1,N, -1,

{ 0, otherwisc.

Then, from the system (6.39) and cquations (6.40)-(6.42), the unknown vector

{T, ,+1} is obtained as the solution of onc of the following lincar systems of
i =1, N

equations:
a) if j =1, then
(A+ (en0)L ) (T}, = HO.NP), e n (643)
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b) if j > 2, then

N =

A {n'j+1}i=1,_N5 = {b(G’j)(p)}p=l,No - [2f1.:' - fx,j—n S 2fN0,j - fNO,j-l]tr ’

(6.44)

where 1 No is the N, x N,- identity matrix.

6.3.3 The Optimization Procedure

During the optimization procedure, in order to be able to use a NAG routine that
would obtain a minimum of a function defined on the entire R¥~!, it is convenient to
map bijectively the interval (0, Z) into R via the change of variable {() = tan(26 —
), 0 € (0,%). Thus, the angles vector © = {9,‘}k=l'_N__1 defines a corresponding

-vector Y 1= {yk}kzm, given by:

y, = ((6,) = tan (20, - g) , k=T, N-1 (6.45)

Then, via the transformation (6.45), for any ©, the computed solution 7% (©; (z, t))

induces a corresponding function ™ (¥; (-,-)) = R, given by
T (V5 (2,8) =T (8; (z,1)). (6.46)

Our aim is to identify an optimal vector of angles ® such that the corresponding
vector Y is the minimum of the order-one Tikhonov regularization functional F, :

£ ([0,1]) — R, defined by
RO=MYO L, I TGO =90 I, (647

where A > 0 is a regularization paramcter to be prescribed, and Y is regarded as
a discretization of the smooth function y. If onc assume continuity of y only, then
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2
£500p)

the first term X || ¥’ || in the order-one Tikhonov functional (6.47) should be

2

£or,) SIVIDG risc to the order-zero Tikhonov functional, which
20t

replaced by A || v ||
can also be employed with no major modifications.

Remark that when A = 0, expression (6.47) coincides with the classical least-squarcs
functional. However, as could be noticed also in Fatullayev [50, 51] where a similar
version of least-squares functional has been used, without using regularization, an
unstable solution is obtained.

We start the optimization procedurc with the initial guess ©° := {9:}k=1‘.m -
{%}kzm, and this is passcd to the direct solver, which computes the corresponding
aumerical solution T°°° (60; (z,t)). This solution is returncd to the optimization
routine which starts the scarch for minimizing F,, given in (6.47). For doing this,
we use the NAG routine EQ4FCF. Once the minimizer Y* := {y:}k=1‘,7v_—1 for F, has

been found, the corresponding vector of angles ©* = {9:}k= is obtaincd via the

TN-1

inversion formula

6; = k=T, N-1 (6.48)

The inverse problem under investigation is solved subject to both exact and noisy

measurements

g*(t) =g(t)(1+am), te(0)), (6.49)

where o is the percentage of noise and 7 arc random variables gencrated from a
uniform distribution in the interval [—1, 1], using the NAG routinc GO5DAF.

Supposc that we know an upper bound v > 0 such that

8,(a) =l 9= 9% Ml 00 pS € (6.50)
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Then the regularization paramcter A is chosen according to the discrepancy principle

as follows. Considering the functional F : [0,00) — Ry, defined by

F(A) = \/Fl W) = ANV 1%, 0, (6.51)

the Morozov discrepancy principle suggests choosing the regularization paramcter

as being the largest value A > 0 for which

F() <e (6.52)

6.4 Numerical Results and Discussions

Throughout this section, the space interval [0, 1] is discretized into N, = 90 uniform
cells, while the time interval [0, tf] is discretized into N = 100t , uniform time

intervals, where, for simplicity, we take ¢, = 1.

6.4.1 Numerical Example for IP1

Let us consider the Necumann boundary condition (6.3) given by
oT ¢
5,0 =wt)=-2(C-1), te[01] (6.53)

and the source ¥ given by
Y(z,t) =€ (z - 1)’ =2(" = 1)+ (z - 1)’(e' = 1) [(z —1)'e -1) + 1] ,

(z,t) €[0,1] x [0, 1].
(6.54)

If the temperature measurcment (6.5) is given by

T(O’ t) = g(t) = et -1, te [0, 1]» (655)
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Figure 6.1: Example for IP1. (a) Logarithm of the objective functional F,, as a

function of the number of iterations, (b) the numerically obtained P;(7), (c) the

discrepancy principle for exact data, o = 0, (d) the discrepancy principle for @ = 1%

noisy data, and (¢) the discrepancy principle for a = 3% noisy data.
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then, with the input data (6.53)-(6.55), the inverse problem IPI, given by cquations

(6.2)-(6.8), has the analytical solution
T(z,t) = (z—1)'(e' =1),  f(T)=T(T*+1). (6.56)
Using the transformation (6.6), we obtain the solution for the inverse problem IP1
T(z,t)=(z-1)"(e' =1), PT)=T*+1. (6.57)
Figure 6.1 shows the numerical results when both exact data, and 1% and 3% crrors
arc included, as in (6.49), in the measurement g(t) given by (6.55). The functional
In(F.), shown in Figure 6.1(a), as a function of the number of iterations, is very
fast converging for exact data in 5 itcrations, and for 1% and 3% noisy data in 25-
35 itcrations. From Figure 1(b) it can be scen that the results obtained for Py(T)
using exact data for A = 107%, 1% noisy data for A = 1073, and 3% noisy data
for A = 5 x 1073, are accurate and stable. These choices for the regularization
paramcter A have been obtained by using the discrepancy principle (6.52), as shown
in Figures 6.1(c), 6.1(d), and 6.1(c) for data which is cxact, 1% noisy, and 3% noisy,

respectively.

6.4.2 Numerical Example for IP2

For the IP2, the source term ¥ is absent, i.e. ¥ = 0. Considering here the same
Necumann boundary condition (6.53), we aim to retrieve the perfusion coefficient

P(T) =T +1 (6.58)
for the inverse problem I P2, which, via the transformation (6.6), can cquivalently
be formulated as the coefficient identification TP2, sccking to reconstruct

F(T) =T(T" +1). (6.59)
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Since in this casc an analytical solution for the dircct problem given by (6.1) with
¥ =0, (6.2), (6.4), (6.53) and (6.58) is not available, the additional Dirichlet bound-
ary tempcrature data (6.5) was computed numerically, by using the NAG routinc
CO5NCF to solve the resulting system of nonlinear finite-diffcrence cquations.

Figurc 6.2 shows the numcrical results, when o € {0, 1, 3}% noisc is perturbing the
data g as in (6.49). In Figurc 6.2(a), In(F,) is represented as a function of the
number of itcrations, obtained when the data arc assumed exact for A = 1078, 1%
noisy data for A =5 x 107*, and 3% noisy data for A = 10~%. From this figure it
can be scen that the convergence of the minimization functional F) is immediatcly
achicved in only 5 — 9 itcrations for a = 0 and 1% noisy data, and in 49 itcrations
for a = 3% noisy data. Figure 6.2(b) shows the plots of the computed solution for
Pf(T). From this figure it can be seen that the computed results are an accurate
and stable approximation of the exact perfusion coefficient given in cquation (6.58).
Figures 6.2(c), 6.2(d) and 6.2(e) show the discrepancy principle (6.52) for a = 0,
a = 1%, and a = 3%, respectively. From these figures it can be seen that the
discrepancy principle enables us to cfectively locate the regularization parameter A,

when both exact and perturbed noisy mcasurcments arc considered.

6.5 Conclusions

Two inverse problems concerning the identification of the temperaturc-dependent
perfusion coefficient in the bio-heat conduction equation (BHCE) have been investi-
gated. In the presence of initial and Neumann boundary conditions, a mcasurcment

of the tempcrature on a part of the boundary is considered as additional informa-
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Figurc 6.2: Example for IP2. (a) Logarithm of the objective functional

1)

function of the number of iterations, (b) the numerically obtained P;(T), (c) the

discrepancy principle for exact data, o = 0, (d) the discrepancy principle for o = 1%

noisy data, and (e) the discrepancy principle for a0 = 3% noisy data.
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tion in the presence of a source, £ # 0, for IP1, and without a source, i.e. £ = 0,
for IP2. Solvability results for these inverse problems have been provided. These
inverse and ill-posed problems have then been solved numecrically. For cach of them
we have developed algorithms that, in essence, are structured in a similar manner
and consist of two parts. In the first part, a direct solver based on a Crank-Nicolson
finite-difference technique is developed. This part is then coupled with a sccond onc
given by the first-order Tikhonov regularization method. The discrepancy principle
was employed to determine the appropriate regularization paramcter A, in the pres-
cnce of both cxact and noisy mcasurcments. The perfusion cocflicient is found as
the ratio between an optimal polygonal approximation of a temperature-dependent
function and the temperature itsclf. For both cxamples considered, the numeri-
cally obtaincd results represent an accurate and stable approximation of the desired
temperature-dependent perfusion coefficient P;(T). Extcnsions to two-dimensional
stcady and unsteady BHCE with polynomial tempcrature-dependent perfusion cocf-
ficient have been investigated very recently elsewhere, see Deng and Liu [45], Erhart
et al. [49], and Partridge and Wrobel [79], using the dual reciprocity boundary

clement mcthod.
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Chapter 7

Reconstruction of the Space- and
Time-Dependent Blood Perfusion

Coefficient in Bio-Heat Transfer

7.1 Introduction

In this chapter, we perform a numecrical investigation for the reconstruction of the
perfusion coefficient that is considered dependent both of spacc and time, Fj(z,t)
b )

which appcars in the bio-hcat conduction equation

I (w1~ Ble 0T 0 = S0, @He@)x O8] (1)

subject to initial and Dirichlet boundary conditions, when additional information
is provided in terms of exact a noisy tempcerature measurcments taken on a certain
fixed grid inside the spacextime domain.

Since in the small subregion occupiced by a thermocouple contact surface tempera-
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ture data are, in effect, recorded both in space, all across the contact region, and in
time, during an entirc measurement process, this inverse problem cssentially refers
to the blood perfusion rate which occurs in this small skin-thermocouple contact
interface. Also, in a different application, this inverse problem ariscs in an investi-
gation related to coastal cvolution and sediment transport, scc Reeve and Spivack
[95].

For the numecrical approach, at lcast two mcthods could be considered. A first
mcthod involving a Crank-Nicolson-type scheme combined with the minimization
of a first-order Tikhonov regularization functional, gives a global pecrspective. How-
cver, we can immecdiately obscrve that even if a very coarse grid is considered, we
unavoidably arrive to the situation in which systems with a very large number of
cquations (of the order of the number of discretization points in the spacex time
domain) arc to be solved during the optimisation stcp. This aspect alone can causc
a major downgrading effect on the accuracy and stability propertics of the numerical
results, especially for the case when the measured data are affected by noise. This
situation could be improved if a local approach is involved.

In the second strategy, both the first-order time derivative and the sccond-order
space derivative can be obtained by means of first kind Fredholm intcgral equations.
Since numerical solutions of the first kind integral equation have well-known inher-
ited instability issucs even for exact measurement data, regularization methods have

to be employed in order to obtain stable results.
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7.2 Mathematical Formulation

Let us consider a fixed uniform discretization of the space x time domain [0, 1]x[0, ¢ ]
? 1) f

using N time intervals and N, space cclls, ie. t, = jt /N, j = 1N, z, = i/N,,
i =0, N,. Let us define y, := (z, +z,_,)/2, i = 1, N,, be the midpoint of the intcrval
[z, 2] fori= 1, N,.

We wish to identify the couple (Pf(z,t), T(z,t)), satisfying the BHCE (7.1), subjcct
to the initial condition

T(z,0) =u(z), ze€[0,1], (7.2)
and the Dirichlet boundary conditions
T0,t)=f.(t), T(Lt)=f(t), te(0.¢], (7.3)
when additional information is supplicd on cither of the following two discretization
grids:
a) temperaturc measurements at {(z,, t:‘)}.-=ﬁ~0—_r),,~=i.‘ﬂ given by

G,(z,,t;) =T(z,,t;), i=1,(N,—1),j=T1N. (7.4)

b) temperature measurements at {(y;,¢,)},_ .,y &iven by
=4L,Ng.0=1,

G2(yi’tj) = T(yi’tj)’ i=LN,j=1N. (75)

Instead of the Dirichlet boundary conditions (7.3), Ncumann or mixed boundary
conditions can easily be considered.

The measurements (7.4) and (7.5) are set up at slightly different space positions only
for the convenience of explanation of Sections 3 and 4. All what one really needs to
know is that in principle we wish to determine P;(z, t) from the noisy measurcments
of T(z,1).
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7.3 Global Least-Squares Minimization Approach

A Crank-Nicolson-type finite-difference algorithm based on the method of lincs, sce
Dahlquist and Bjorck [34], pp.387-389, is developed in order to solve the direct
problem for the parabolic equation (7.1), subject to the initial condition (7.2) and
the Dirichlet boundary conditions (7.3). This algorithm is then conncected with an
optimization routine in order to obtain the perfusion coefficient P as the minimum

point for the least-squares functional F : €([0,1] x (0,¢ (1) — Ry, given by

No-1 N

Flg):= > > [T (@ (=.1)) - Gi(z.,.1,)]

i=1 j=1

Y qe%(0.1]x(0,¢), (7.6)
where Z([0, 1] x (0,¢,]) is the spacc of coﬁtinuous functions and T (g; (+,-)) is the
solution computed via the Crank-Nicolson-type algorithm for the gucssed continuous
function g(z,t) that is uscd as a replacement for the currently unknown perfusion
coefficient Py(z,t). In this formulation, uniquencss of the solution cannot in gencral
be assured, because the dependence on Py and T in cquation (7.1) is nonlincar, and
also onc is typically attcmpting to reconstruct a continuous function Ps(z,t) from
a finite N x (N, — 2) temperature measurements information. Associated with the
minimization of (7.6), one could also attach the physical constraint that the sought
perfusion coefficient is positive, but the problem is further complicated since the
measurcments (7.4) or (7.5) are subject to noisy crrors, or can be vanishingly small.

- - » : : . - . 0
The optimization procedure is started with an initial gucss {qi.j}i=‘x,'(~0-1),,-=1,

It

1, which is transmitted to the direct solver that computes the numerical solution
T°™ (¢° (z,t)). This solution is returncd to the optimization routine which starts
the search for minimizing F', given in (7.6). In order to do this, we usc the NAG

routine EO4FCF.
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7.3.1 Numerical Example

Let us sct, for simplicity, {, =1 and consider the initial condition (7.2) given by
T(z,0)=u(z)=e¢(z +4), =z€lo1], (7.7)
the Dirichlet boundary conditions (7.3) given by
T(0,t) = £,(t) = e (2t+4), T(Lt)=f,(t)= e (2t +5), t € (0,1], (7.8)

and the temperature measurements (7.4) given by

C.(z.t)=e€ ' (@2 +z, +4), i=1(N-1),j=1N. (7.9)

Then, the inverse problem given by equations (7.1), (7.7)-(7.9), has the analytical
solution

4z

—(xz+t)
( 2t +1* + 4’

T(z,t)=¢ " Q+z +4), Plz,t)=2- (7.10)

and this can be verified by direct substitution. For this global minimization ap-
proach, the time interval [0, t,] is discretized into N = 20 uniform time intervals
and the spacc interval [0, 1] is discretized into N, = 20 uniform cclls. Howcver, be-
causc the dimension of the least-squarcs resulting functional (7.6) is (N x (N, —2)),
with (N x (N, — 2)) unknowns, a finer discretization becomes computationally un-
feasible.

Figure 7.1 shows the contour plots of the numcrical results for Ps(z,t) obtained for
both cxact and 1% noisy data in comparison with the exact solution (7.10), in the
space X time domain [0,1] x [0,1]. As shown in Figure 7.1(b), using cxact data, by
minimizing the least-squarcs functional F' given by (7.6), the numcrically obtained
results represent a very good approximation, with four digits accuracy, to the cxact
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Figure 7.1: Contour plots for Py(z,t): (a) exact solution, (b) numerical solution
obtained with no regularization for exact data, and (c¢) numerical solution obtained
with the order—0 Tikhonov regularization of parameter A, = 1072, for 1% noisy

data.
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solution illustrated in Figure 7.1(a). Howcever, by perturbing the data (7.9) with a
percentage @ = 1% of random noisc n sampled from a uniform distribution over the

interval (-1,1), namely

G?(mwtj) = Gl(xi’tj)(l + an) i=1, (No - l)a j=L1LN, (7.11)

the results become very unstable and inaccurate. This is to be expected, since the
inverse problem under investigated is unstable, i.e. small crrors in the measurcment
data (7.9) causc large deviations in the solution for Ps(z,t). Numcrically, this insta-
bility is manifested in large unbounded oscillations in the solution, sce Orlande and
Ozisik [77]. In order to alleviate these oscillations, in the minimization algorithm,
the least-squares functional given in (7.6) is replaced by the order—0 Tikhonov reg-

ularization functional F, : €([0,1] x (0,¢,]) — Ry, given by

where ), > 0 is a rcgularization parameter to be prescribed.

We immecdiatcly observe that for A, = 0 the two functionals, F' and F,, coincide,
Figure 7.1(c) shows the results obtained for @ = 1% when minimizing F,, for the
rcgularization paramcter A, = 10~3. From this figure it can be secn that the results
obtained, when 1% noisc is perturbing the mcasurements, arc not oscillatory any-
more (in contrast to the casc when A, = 0, i.e no regularization is added, where we
have large oscillations), but they are still quite inaccurate. Other values of A, in
the range 10 <), < 10~ produced similar results, and, as expected, if X, is too
small, the solution in under-smoothed and it becomes unstable, whilst if A, is too
large, the solution is over-smoothed and it deviates from the exact solution.

The inaccuracy obscrved in Figure 7.1(c) led us to proposc and investigate a second
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approach for the case when noisy measurements arc considered.

7.4 Local Approach

In this second approach, we compute locally both the time first-order derivative %7[1
and the space sccond-order derivatives ‘3—? by mcans of Fredholm integral cquations
of the first kind, see Hanke and Scherzer [54] and Murio [73]. Altcrnative approaches
based on the mollification, see Murio [73], or on the finite-difference method, sce
Ramm and Smirnova [93] and Wang ct al. [114], could also be employed.

Everywherc in this scction, we consider a discretization in both time and space with
N = N, = 100 and we consider the numcrical cxample of scction 7.3.1 with the

initial condition (7.7) boundary conditions (7.8) and the temperature measurcment

(7.5) perturbed by a% of random noise 7 given by

G;l(y‘.,tj) = e"”i_ j (th + yf + 4)(1 + an) 3 = 1, Nm J = 1, N. (7.13)

7.4.1 Approximating the First-order Time Derivative

For any i = 1, IV, let us denote ¢, (t) := T(y,,t) — u(y,). Then from (7.2) we have
¢,.(0) =0. Also, & (y,,t) = ¢;i (t). Then we have

ty

8, (t) = / ¢, (7)dr = / ki (t7)¢, (T)dr,  teot), (7.14)

0

where the kernel k,(-,-) : R = R is given by

k, (ta T) = ’ (715)
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Let us consider the uniform grid 7, =1t,/(2N)+jt,/N, j = 0, N, such that ¢, =
2

(r,_.+7;)/2 for j =1, N. Then we approximate the integral in (7.14) as

t

f
k()8 (T)dT~Z¢ (t)/ (t, T)dr, (7.16)

0

where the coefficients f k,(t, 7)dr have the following analytical expressions:
T.

-1
,
. 0, t<,_,,
/ k(t,7)dr =14 t— Tion T <t <7, (7.17)
| T, — Tioas <t

By applying (7.16) at each ¢, I = 1, N, we obtain a system of cquations whose

N x N-matrix A is given by

T

A, = / k, (¢, T)dT, l,j=1,N, (7.18)

Tio1

and the N-dimensional right-hand side mcasurcments vector {5‘; (y,,t )} rw &iven
(R ]

by
Go(yt) =€ (2, +y +4)(1+an)—e “(y, +4), j=TN. (7.19)

Given the well-known instability of the solution of a first-kind integral cquation, and

the fact that in the resulting lincar ill-conditioned system of cquations

Alg, (t), - 8, )] = (G5 (W t)s o Gy ty)], (7.20)

the right-hand side vector contains crrors, the solution of (7.20) is sought by using

order—k € {0,1,2} Tikhonov regularizations, sce c.g. Phillips [82], namely

(A7 A+ AD,(N)"Dy(N)] [8], (8), s &, ) =AT[G (U ), -, G (o 1))

ke {0,1,2},
(7.21)
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Figure 7.2: L-curves for the first-order time derivative approximation with a =

1% noisy temperature measurements for: (a) order-0, (b) order-1, and (c) order-2,

Tikhonov regularizations.
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Figure 7.3: F irst-order time derivative %—f(yl, t) for @ = 1% noisy data obtained
using: (a) order-0 Tikhonov regularization with A, = 107%, (b) order-1 Tikhonov
regularization with A\, = 1, and (c) order-2 Tikhonov regularization with A, = 100.
Dash-dot line represents the computed results, while the solid line stands for the

analytical solution.
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where, for any natural number m > 3, the (m — k) x m dimensional order—k

smoothness matrices D, (m), k € {0, 1,2}, are defined by

Dy(m) = - , (7.22)

D, (m) = - , (7.23)

(1 21 0 o 0 \
0 1 =2 1 0 - 0
D,(m) = : (7.24)
\ 0 o0 0 1 -2 1 )

We solve the system of equations (7.21) using a Gaussian climination mecthod to
obtain the first-order time derivatives for the temperature, %(y‘, t), at cvery space
point y,, i = 1, N, For the choice of the regularization paramcter A\, we employ the
[-curve method, scc Hansen [56].

Figure 7.2 presents the L-curves, for order—k € {0,1,2} Tikhonov regularization

174



linear systems of equations, defined in (7.21), that are used to determine the time
derivative 2L (y,,t) at the fixed space point y,. As it can be scen from Figure 7.2,
the L-curve method docs apply for choosing the Tikhonov regularization parame-
ter in the cascs of order—0 and order—1 regularizations, but it docs not apply for
the order—2 regularization, although the results obtained with order—2 regulariza-
tion, for valucs of A, larger than 10~1, arc actually very good, and cven better that
the oncs obtained with the order—1 regularization, sce Figures 7.3(b) and 7.3(c).
Regarding the order—0 regularization, one may obscrve that although the L-curve
method docs apply for choosing the paramecter Aj, sce Figure 7.2(a), the results
obtained are rclatively poor in comparison to the one obtained with the order—1
and —2 Tikhonov regularization approaches.

The situation is very similar when computing the first-order time derivative 27 (y,, t)

at all the other v, i = 2, N, so that values for the paramcter A, for the order—k €

{0, 1,2} Tikhonov regularizations, that were chosen for the approximation of %'f (y,,1),

arc kept unchanged and applied also for these cascs.

7.4.2 Approximating the Second-order Space Derivative

For any j = 1, NV, let us denote ¢, (z) == T(z,t,)— (1=2)f,(t,) =2 f,(t,). Then from
(7.3) we have &, (0) = ¢, (1) = 0. Also, ¢:,, (z) = ‘?—I;T(z, t.). Then, as described in
Collins et al. [32], ¢” (z) can be regarded as the solution of the following Fredholm

first-kind integral equation:

5,0 = [@as s, zep (7.25)
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where the Green'’s function k,(z, s) is given by

s(z—-1), s<z
ka(z, 5) = (7.26)
z(s—1), z<s.

We approximate the right hand side of the integral equation (7.25) as

z,

1 N,
8,@) = [ k@ 9)sl (M =3 61 1) [ k@ (7.27)

Zi-y

T

where the coefficients [ k,(z,s)ds have the following analytical cxpressions:

Ti-1

2
( (2 2,
Tlo —Ti——5 +tzZ,.,), <1z,

i-1

X,

g P z’-ar, 2
/ k(z,8)ds=4¢ (z-1) (—2‘—“) +z (—% - Lg_{-‘{) y T,,<z<1,

- 22-1:2
((L‘ - 1) (._' 2|-1.> ’ J,"‘ S xI.
\

i-1

(7.28)
By applying the equation (7.27) for cach y,, I = 1, N, we obtain system of cquations

whose N, x N,-matrix B is given by

z;

B, - / (u,8)ds,  Li=T N, (7.29)

Zi1

and the N,-dimensional right-hand side measurcment vector {G, (y,, t,)},. - given
=H%

by

l—t

e “u T ~t, -t -
Colyot,) =€ ' 2+, +41+an)—(1-ye (2, +4)—ye " (2, +5),

1=T,N,
(7.30)

For the induced ill-conditioncd linear system of equations, given the inherited insta-
bility of the Fredholm first-kind integral equation, and becausc the right-hand side
vector is affected by noise, a solution is sought using order—k € {0,1,2} Tikhonov
regularization, namecly
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Figure 7.4: L-curves for the second-order space derivative approximation with o =

1% noisy temperature measurements for: (a) order-0, (b) order-1, and (c) order-2,

Tikhonov regularizations.
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2
Figure 7.5: Second-order space derivative %;?(m, t,) for a = 1% noisy data obtained
using: (a) order-0 Tikhonov regularization with g, = 107", (b) order-1 Tikhonov
regularization with u, = 107°, and (c) order-2 Tikhonov regularization with W, =

Dash-dot line represents the computed results, while the solid line stands for the

analytical solution.
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(BB + i Dy (N)) Dy (No)] 19, () 0 8 (401" = BTG, (s ), G i, )]

k€ {0,1,2},
(7.31)

where the k—th order smoothness matrices D, (N,) are defined in (7.22)-(7.24).
We solve the system of cquations (7.31) using a Gaussian climination mecthod at
every fixed time node t;, 7 = 1,N.

Figurc 7.4 presents the L-curves for order—k € {0, 1,2} Tikhonov regularization
used in linear systems of equations, defined in (7.31), corresponding to the sccond-
order space derivative at the fixed time point ¢, for 1% noisy data. As it can be seen
from the results presented in Figure 7.4, the L-curve method does apply for all three
methods of Tikhonov regularization, supplying us with a good-corner estimate for
the regularization paramcter, namely, p, = 1073 for order—0, p, = 1073 for order—1,
and p, = 1 for order—2.

Figure 7.5 shows a comparison between the analytical and numecrical results obtained
for the computation of the second-order derivative at the time node ¢, involving
order—0, order—1, and order—2 Tikhonov regularization that use the paramcters
identified by the L-curve method shown in Figure 7.4, when 1% noisc is added in
the measurcd data. Although satisfying the L-curve criterion, the results obtained
for order—0 regularization, as shown in Figure 7.5(a) arc poorer than the results
obtained both with order—1 and -2 regularizations, illustrated in Figures 7.5(b)
and 7.5(c), respectively. As we may note, out of the three Tikhonov regularization
aches, the best results are obtained using order—2, shown in Figure 7.5(c),

appro

with the L-curve choscn parameter p, = 1.
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7 4.3 Perfusion Reconstruction Results

In this subsection we compute the perfusion coefficient, for the inverse problem
given by cquations (7.1), (7.7), (7.8) and (7.13) using the techniques developed in
subsections 7.4.1 and 7.4.2 for computing the first-order time derivative and the
sccond-order space derivative, respectively.

For the computation of the first-order time derivatives, 8L (y,,t), i = T, V,, we usc

the order—1 Tikhonov regularization with the paramecter A, = 1 that was chosen

from Figure 7.2(b). The sccond-order space derivatives, %}}(x, t,), j = 1, N arc

computed using order—2 Tikhonov regularization with the paramecter i, = 1 that
was chosen from Figure 7.4(c). Then, the values of the space- and time-dependent
perfusion coefficient Py, at the grid points {(yf’t:‘)}s=m;.,-=rn’ are given by the

formula

2
Pr(y,»t )= %;;(y"’ti)- %%(y-"tj)
f\JirY; Gf(yiat,-) ’

i=LN, j=1LN, (7.32)

provided that G stays away from zcro. From (7.10) we have that this is the case in
our numerical example. However, if, in a different example, zcro points for Gy do
occur, then (7.32) should be understood in the limit sensc by applying the I'Hospital
rule.

Figure 7.6 presents the contour plots for the numerical results for Py(z,t) in com-
parison with the exact solution (7.10), when using the a = 1% noisy mcasure-
ments (7.19). While Figure 7.6(a) illustrates the exact solution, in Figure 7.6(b)
we show the results obtained numerically via the local method described in subsec-

tions 7.4.1-7.4.3 that represents a good and rcasonably stable approximation of the

space- and time- dependent perfusion coefficient Py(z,t). The numecrical approxi-
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Figure 7.6: Contour plots for Py(z,t): (a) exact solution (7.10), and (b) numerical

solution (7.32) for 1% noise.

mation of Py(z,t) carried out in subsections 7.4.1-7.4.3 is also placed in a favourable
contrast when compared to the numerical approximation obtained in Section 7.3
that is shown in Figure 7.1(c). We immediately observe that the numerical approx-
imation obtained via the local method, using Fredholm integral equations, that was
developed in subscctions 7.4.1-7 4.3, is more accurate than the one obtained via the

global Tikhonov regularization in Section 3.

7.5 Conclusions

This chapter has investigated the reconstruction of the space- and time- dependent
perfusion coefficient Ps(z,t) in the bio-heat conduction equation, under supplied
initial and boundary temperature conditions, when additional information is pro-
vided in terms of exact and noisy temperature measurements in the z x t—region

at a resolution imposed by the discretization chosen on the boundary. The problem
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is approached by two methods. A first method involving a Crank-Nicolson-type
scheme combined with the minimization of the order—0 Tikhonov regularization
functional, gives a global approach. For exact data, the approximation obtained via
this method is very good and stable, sce Figure 7.1(b). However, if the measured
data is perturbed by noise, this first method is not giving satisfactory results, sce
Figure 7.1(b).

For the case with noisc, we design a sccond and local approach, in which two first-
kind Fredholm integral equations are used to compute the first-order time derivative
and the second-order space derivative, at every fixed space point and in every fixed
time node, respectively. In the process of solving these first-kind integral equations,
we usc order—k € {0, 1, 2} Tikhonov regularization and apply the L-curve criterion
to choose the regularization parameter. The numcrical results obtained via the local
method arc better that the ones obtained using the global method and represent a

good and stable approximation of the perfusion coefficient.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The central focus of this work consists of finding new ways in which the blood
perfusion can be identified and characterized. Since the perfusion information is
encapsulated in the coefficient Py of the linear term in the transicnt bio-heat cou-
duction cquation (BHCE), the entirc investigation is mathematically formulated
and placed in the class of inverse problems regarding the retrieval of this parameter.
While initial and boundary conditions arc prescribed, additional information given
in terms of temperature, mass, or heat flux measurements, is supplicd at minimally
physically damaging locations within the region of interest or on its boundary, All
thesc measurcments are assumed to be both cxact and noisy.

We have organized our investigation on five major cases, namely for P, considered
as being: constant, time-dependent, space-dependent, temperature-dependent, and

time- and spacc- dependent.

In the constant coefficient case, we started our investigation by developing a new
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dircct Boundary Element Mcthod (BEM) solver for the forward problem. Unlike
the standard approach, which, via a change of variable, transforms first the bio-
heat equation in the standard heat cquation and then apply BEM, in the proposed
approach the BEM is constructed dircctly for the BHCE. The numerical tests consid-
cred reveal quadratic convergence for the new method, as well as a good agrecement
with the results obtained via the standard method.

The analysis for the inverse problem related to the determination of the constant
perfusion coefficient is started by developing a theoretical framework that discusscs
the existence and uniquencss of the solution. For this inverse problem, the addi-
tional information is supplicd cither as a mcasurcment of the flux, or of the internal
temperature taken at one single spacc point and onc single instance in time, or as
a time mass measurement considered at a fixed time. The existence of the unique
solution associated to the inverse problem is proved to be equivalent to finding g
as the unique positive solution of an induced nonlincar algcbraic cquation. Once
the perfusion coefficient is identified, the temperature solution is found analytically
by using the fundamental solution of the heat cquation.

When homogencous boundary conditions arc assumed, the stability is proved to be
of logarithmic type.

Assuming arbitrary initial and boundary conditions, the BEM is used to compute
the constant Py, for each of the three types of additional information considered.
We have found that the numecrical results are accurate and stable under noisy input
data.

In the time-dependent case, the perfusion coefficient P(t) is sought under the pres-

cnce of initial and both Dirichlet and mixed boundary conditions, when measure-
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ments for either the flux on parts of the boundary, or the temperature at a fixed or
moving intcrnal point, or total or partial mass data, arc considered.

When the Dirichlet boundary conditions arc assumed, and cither internal temper-
ature data at a fixed point or total mass measurements are supplied, the cxisting
uniqueness conditions are satisfied. However, since in the flux measurement casc
there were no uniqueness results previously proved, we formulated and proved an
uniquencss criterion which cquivalently expresses the uniquencss for the solution of
the time-dependent inverse problem in terms of a unique zcro for an analytically
induced functional.

On the computational side, we have developed a numerical method for the identi-
fication of FP(t) that approachcs globally all the types of boundary conditions and
measurements considered. In the first stage, the BEM is implemented for this time-
dependent inverse problem. Since the measurements are affected by random noise,
we used Gaussian mollification to obtain the derivatives of the induced noisy func-
tions. For cxact mcasurcments, the numcrical tests show an almost cxact match
between the computed and analytical valucs. Also, a reasonable approximation of
the analytical values is obtained in the case when the measurements are affected by
random noise. From the way this numecrical mecthod has been built, we immediately
notice that it can easily be extended and applied to higher dimensional cases of this
time-dependent inverse identification problem.

For the space-dependent perfusion coefficient case, the identification of /() is car-
ricd out in the presence of either Neumann or Dirichlet boundary conditions.
When Neumann boundary conditions are assumed, exact and noisy boundary tem-

peraturc mecasurcments are considered. The numecrical method developed for the
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retricval of Ps(z) consists of two parts. In the first stage, a Crank-Nicolson type
finite difference method is developed. This forward solver is then coupled in the
sccond stage with an optimization routine, which performs a scarch over the class
of ¢* functions in order to minimize the nonlincar order—k Tikhonov regulariza-
tion functional, £ = 0, 1. The numcrical tcsts performed with both exact and noisy
data show that order—1 regularization, where the results obtained are stable and
accurate, bchaves better than order—0 regularization, for all the values of the reg-
ularization paramcter A. Morcover, since the numcrical tests were performed with
temperature measurcments taken on cach of three types of time intervals [0, ¢,], for
t, € {1,2,4}, we remark, as expected, that better results are obtained for larger
valucs of ¢.

For the casc when Dirichlet boundary conditions are involved, two inverse prob-
lems are defined by the two types of additional information considered, namcly the
measurements available are either the flux over the boundary or the time-averaged
temperature data across the region of interest. For the numerical approximation of
Py(x), the methods developed for the two inverse problems arc very similar and fol-
low the structural path pursued in the casc of Ncumann boundary conditions casc.
Thus, oncc an appropriate Crank-Nicolson-type solver is developed for the direct
problem, then this is linked to a gradicnt based optimization routine which finds
P;(z) as the minimum point of the order—1 Tikhonov regularization functional, by
carrying out a scarch over all the positive functions from € ([0, 1]). The discrepancy
principle was applied for choosing the regularization paramecter A. The numerical
results obtained represent a good and stable approximation of the space-dependent

coefficient Ps(z).
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In the temperature-dependent casc, subject to initial and Neumann boundary condi-
tions, the retrieval of the perfusion coeflicient P;(T) is performed under the presence
of a source term 3(z,t), when the additional information is provided in terms of
both exact and noisy tcmperaturc measurcments on a part of the boundary. The
investigation is carried out on two major inverse problems, IP1 and IP2, that arc
defined by the cases when ¥ # 0 and £ = 0, respectively. Analytical results concern-
ing the solution of the inverse problems IP1 and IP2 arc presented and discussed.
A new theoretical result concerning the direct problem associated to IP1 is stated
and proved. This result, not only that gives a structural characterization of the
solution for the direct problem associated to IP1 by proving that, for any arbitrary
instance in time ¢t € (0,t,], T(:,t) monotonically dccrcases with respect to space,
but also ensurcs that thc maximum range of the function T is achieved along the
measurcment path, i.e. at the left boundary, which is of key importance in the
development of the dircct solver within the computational approach.

The two inverse problem are solved via two methods, which are very similar, that,
in essence, consist of two parts. In the first routine, a dircct solver incorporating
a Crank-Nicolson-type finite difference scheme, which is combined with an extrap-
olation technique, is developed. This routine is then linked with an gradient based
optimization subroutinc where an order—1 Tikhonov rcgularization functional is
minimized, which provides us with an optimal polygonal approximation of f(T')
and its corresponding tempcrature valucs. The regularization parameter A is chosen
via the discrepancy principle. The ratio between this optimal approximation of f(T)
and the corresponding tcmperaturc valucs provides us with an accurate and stable

approximation of the tempcrature-dependent perfusion cocfficient P;(T"), when both
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exact and noisy mcasurcments arc considered.

Finally, the investigation concerning the retricval of the space- and time- dependent
perfusion coefficient Ps(z,t) is carried out under specified initial and boundary con-
ditions, when exact and noisy temperaturc measurcments arc provided at a fixed grid
inside the z x t—region. The problem is investigated via both a global and a local
method. In the first approach, the global method, which combines a Crank-Nicolson-
type scheme with a minimization procedure for a order—0 Tikhonov regularization
functional, provides results that arc very good and stable for exact measurcments.
However, if the measured data are affected by noise, then the results arc not sat-
isfactory. This situation led us to pursuc a sccond approach for the noisy case.
In this approach we compute locally the first-order time derivative at every fixed
space point, and the sccond-order space derivative at cvery fixed time node, by
using two first-kind integral equations. In order to solve these integral cquations
we usc order—k € {0, 1,2} Tikhonov regularization. The regularization parameters
arc choscn via the L-curve criterion. The numerical results obtained via this local
mcthod are a good and stable approximation of the perfusion cocflicient Py(z,t).
The backward medical importance effect offered by the inverse investigation of per-
fusion identification problem is underlined by a variety of aspects and clinical sit-
uations. In order to illustrate a few of these cascs, where the inverse problems in-
vestigations produce valuable assistance, let us discuss some clinical situation when
a ccrtain part of the human body tissuc has to be heated above the average body
tcmperature of 37°C. This is a situation that occurs in various medical instances,
e.g. in ccrtain types of cancer, such as the skin cancer. In these cascs, medical

devices are used to heat up the tissue. However, since, in the medical practice,
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it is well known that tempcratures higher that 42°C causc nccrosis of the living
cells, the heat should be applied only on the tumor, while the destruction of the
surrounding hcalthy tissue should be avoided as much as possible. Therefore, a
calibration of the device only on the cancer tumor becomes an absolute necessity.
An answer to this problem can be given via perfusion identification. Given the fact
that the blood perfusion within the inside of the cancer tumor is abruptly different
from that in the surroundings, a retricval of this information becomes of a signifi-
cant importance in helping to gradually adjust the device to preciscly only on the
affected region. For doing this, a preliminary iterative procedure can be designed
to position the device. In the first step, in relatively bigger region §,, an arbitrar-
ily chosen subregion (1,, with Q, C Qi C ,, is hecated up to a safe temperature
<< 42°C during a time period t,, where, for a small € > 0, Q] is the e~bundle
of ,, namely Qi = {y € Q,|(F)z € Q, such that |z —y| < €}. Then we can im-
mediately distinguish that in the larger region €, at lcast the following three type
of inverse problems appear, namely: (a) on Q, \ Qi a time-dependent inverse prob-
lem, (b) on O \ ©, a space- and time- dependent inverse problem, and (c) on €,
a tempcraturc-dependent inverse problem. Using the analytical and computational
techniques developed in this thesis, we solve the three inverse problems and identify
the perfusion. If a large disruption in the perfusion occurs in the space- and time-
dependent zone, Qi, then we record that position. Then the region 2, will be variced
in size and moved around in §2, so that we cover all positions in 2,. Each time when
a disruption occurs in the corresponding Q:, then this is recorded. In this way we
manage to map the perfusion of the entire arca and morcover, to have a complete

picture containing all the perfusion disruptions, which allow us to localize the cancer
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cells and to calibrate the device that will be used after this preliminary strategy is
complcte. In this preliminary procedure, the advantage of the process of heating of
the moving variable size region Q,, over the time period ¢ 118 that the disruptions
in the perfusion that occur between the cancer and non-cancer arcas become more
visible than in the normal state when the tissuc is at the normal body temperature
and when many parts of these tumors may cven not be visible at all. This allows the
procedure to localize thesc arcas with a better precision so that all of them would
reccive appropriate treatment, while minimal damage would have been produced in
the hcalthy region.

Another very frequent medical situation where the knowledge of the perfusion infor-
mation is of ultimate importance occur when transplant organs neceds to be trans-
ported or stored between the moment when they are donated up to the time when
they are inscrted in the new transplant recciver paticnt. Further, the blood perfu-
sion monitoring remains important cven after the transplant is made, and should
continue up until the body fully accepts the implant. During all the storage time
the physiological properties of the organ arc dependent on a appropriate perfusion
rate that allows the nutrients to keep the tissuc alive. Dcepending on the shape of
the storage container and also on the type of the organ, the perfusion monitoring
problem can be expressed as a combination of time, space, spacc and time, and tem-
perature dependent inverse problems. The computational techniques developed for
solving these inverse problems arc used to monitor and maintain the physiological
balance of the transplant organ during its storage.

Finally, it is worth mentioning that the measuring instruments design and method-

ology are benefiting as well from the inverse problems investigation of the blood
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perfusion. The ability of the developed techniques to extract valuable perfusion
information from noisy data offers the design enginecrs the possibility of creating
simpler shapes and yet morc minimally invasive instruments, which would be able
to learn, adapt their measurements, and adjust their output along the way, by cither
performing yet fewer and less invasive measurements than the existing minimally

invasive instruments, or obtaining a better accuracy than the level achicved with

the existing oncs.

8.2 Future Work

A first priority is represented by the following inverse problem:

In the presence of Neumann boundary and initial data, from temperature mea-
surements taken on the entire boundary, we aim to rcconstruct the space- and
temperature- dependent perfusion coefficient Py(z,T), sce Nanda and Das [74],

where, initially, we will only consider an affine dependence on space, namely
Pf(I,T) = (1’—.’13)fl(T)+$f2(T), (81)

which satisfies the BHCE

a'T
%f—(z, t)= &T(I’t) ~ Pi(z,t)T(z,t) + X(z,t), (z,t) € (0,1) x (0, t,). (8.2)

Then, this problem will be continued with an analytical and computational investi-

gation of the case when Py(z,T) is of scparable form, namcly

Py(z,T) = fi(2)£,(T). (8.3)

After that, the investigation will move to two- and three-dimensional cascs for in-
verse coefficient identification problems where P; will be considered as cither space
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dependent, or space and time dependent, or temperature dependent.

In the tempcraturc-dependent case, the analytical result characterizing the struc-
ture of the solution, from Chapter 6, will be sought in the n—dimensional casc.

All these cases will later be revisited for an ample investigation in random hetcro-
gencous media, in an attempt to answer complex questions arising in the ficlds of

medical imaging, computational biology and matcrial scicnce.
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Appendix A

Analytical Expression for a Couple

of Special Integrals

A.1 An Important Primitive

We show that for > 0and 8> 0

2
-9 -5t
&

I, = [e dt

= = (e’merf (\/Bt—k 3@) +e ™ ers (\/—Bt - 3@)) +C.

(A.1)

Proof: Let us notice first that by using the substitution £(t) = /Bt + 3@ we obtain

_p = ¢ = 4 a
that —Bt' — § = —€ +2y/af and dt ﬁ+3§gdt.
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Thercfore
L, = [e»(-{+2/aB) (% + Jﬁ%dt)
= =209 [oxp(—€")de + ¥f [ oni Rl “fi”m dt
= LEE/Dorf(g) + ¥ [ S g
= EopElerf (\/B“L ’@) + JooPB/0) [ exp [-— (\/Bt + 3@)2] dt

= [l'i’;ﬂ\/%im'—lerf (\/B+ 3@) +%fﬁycxp (—ﬂt2 - —'}) dt.

t

(A.2)
On the other hand, if we use the substitution n = /3t - 3@ we obtain that —G¢" —
4 = —n' —2VaB and dt = I — Lndt.

Thercfore,

-
It

Jexp (- - 2vaB) (% - Fdt)
— exp!:/%\/@] fCXp(—na)dT] _ 3\/%‘[ Mdt (A3)

= ch""—;i‘\/al‘/—-"‘_@erf (\/Bt - 3@) - l%‘Ef;!;cxp (—ﬂt2 - f}) dt.

a,B

By adding up cquations (A.2) and (A.3) and then dividing by two, we obtain the

claimed identity (A.1).
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