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Abstract

The commutative theory of Unique Factorisation Domains
(UFDs) is well-developed (see, for example, Zariski-
Samuel[75], Chapter 1, and Cohn[21], Chapter 11). This thesis
is concerned with classes of non-commutative Noetherian rings
which are generalisations of the commutative idea of UFD.

We may characterise commutative Unique Factorisation
Domains amongst commutative domains as those whose height-1
prime ideals P are all principal (and completely prime ie R/P
is a domain). In Chatters[13], A.W.Chatters proposed to
extend this definition to non-commutative Noetherian domains
by the simple expedient of deleting the word commutative from
the above.

In Section 2.1 we describe the definition and some of the
basic theory of Noetherian UFDs, and in Sections 2.2, 2.3, and
2.4 demonstrate that large classes of naturally occuring
Noetherian rings are in fact Noetherian UFDs under this
definition.

Chapter 3 develops some of the more surprising conseq-
uences of the theory by indicating that if a Noetherian UFD is
not commutative then it has much better properties than if it
were. All the work, unless otherwise indicated, of this
Chapter is original and the main result of Section 3.1 appears
in Gilchrist-smith{30].

In the consideration of Unique Factorisation Domains the
set C of elements of a UFD R which are regular modulo all the

height-1 prime ideals of R plays a crucial role, akin to that



(ii)

of the set of units in a commutative ring. The main motivation
of Chapter 4 has been to generalise the commutative principal
ideal theorem to non-commutative rings and so to enable us to
draw conclusions about the set C. We develop this idea mainly
in relation to two classes of prime Noetherian rings namely PI
rings and bounded maximal orders.

Chapter 5 then returns to the theme of unique factor-
isation to consider firstly é more general notion to that of
UFD, namely that of Unique Factorisation Ring (UFR) first
proposed by Chatters-Jordan[17]. In Section 5.2 we prove some
structural results for these rings and in particular an
analogue of the decomposition R = SNT for R a UFD. Finally
Section 5.3 briefly sketches two other variations on the theme
of unique factorisation due primarily to Cohn{20], and Beaur-
egard{4], and shows that in general these theories are

distinct.



To my parents



(iv)

Acknowledgements

Above all I would like to thank my two supervisors Dr
J.T.Stafford and Dr J.C.McConnell for their invaluable guid-
ance and encouragement in my research and for their ready
willingness and availability to answer my gquestions and to
discuss my ideas.

I would also like to thank Prof J.C.Robson, Mr R.Hart,
Prof A.W.Goldie, and S.C.Coutinho for helpful and instructive
conversations.

A special mention should be made of Dr A.W.Chatters for
suggesting and motivating much of the work presented here and
for sharing his ideas with me.

Finally I would like to thank the School of Mathematics,
and the Science and Engineering Research Council and the ICI

Educational Trust for their financial support.



(V)

Contents

Abstract....eceeeeeveeennns e esecsaseescceaaseaecenens (i)
Dedication....eeveeeeeecscocanns ceeeee et eessenenses (ii1)
Acknowledgements .. ..ottt iaeaann (iv)
Contents.......ccec0e. t e e s oseceseacecevaceccceresesnusens (v)
0. Introduction.......... e o eeeceocecaaneasestncensarens 1

1. Basic definitions and results.

1.0. SUMMALY . eeeeeecocacccoscosecsoossonnsasoncassss 8
1.1. Quotient rings and the Ore condition........... 10
1.2. Orders and maximal orders.......cccceiieeeeceenn 17
1.3. Pl rings....veeeeereneeeeaoseanasosnsacnnnse ceeena 20
1.4. Dimension and rank techniques.................. 24
1.5. The Artin-Rees property.....c.ccieviereeeennnann 29
1.6. Stable range. .. ... i eeieeeeeeeeeesoonscococsnns 32
1.7. Lattice conditions and factorisation........... 38
1.8. Some classes of Noetherian rings............... 41
2. Unigue Factorisation Domains.
2.0. SUMMAYY..veveeeceensosanenan ettt ae e 48
2.1. Definition of Unique Factorisation Domains..... 49

2.2. Universal enveloping algebras are often UFDs... 58
2.3. Croup rings are sometimes UFDS.......0ovvuueun. 60

2.4. Some constructions of Noetherian UFDs.......... 67



(vi)

Some results on Noetherian UrDs
3.0. Summary.....cecoee ceseecaaas tecatsessaasscsscss 71

3.1. Noetherian UFDs are often PIDS.....cceeecoceoss 13

3.2. The stable rank of T...cceeeeveccasancnnce ceeeses 19
3.3. Cliques and localisation.......ccciveiueeeceeense 86
3.4. The centres of Noetherian UFDs...... ceeessenssn 99

. The principal ideal theorem

4.0. SUMMALY e et eoeovosccecenosososcsssanssscconcasns 104
4.1. Formulations of the principal ideal theorem... 106
4.2. The elements of I'............... cececsses eeee. 111
4.3. The height-1 prime ideals related to a given

prime ideal........ ..ttt 116
4.4. The principal ideal theorem in bounded

maximal orders......... e eeeen ceeenes s e e ... 120

4.5. Partial results on the principal ideal theorem 124

Unique Factorisation Rings and alternative Unique
Factorisation domains

5.0. SUMMAYY ¢t tooenenreeneeeeeeeceeneeenoneannsesas 129
5.1. Unique Factorisation Rings in the sense of

Chatters-Jordan

........................ eeeees. 130
5.2. The set C revisited.......... .. ... ..., 136
5.3. Alternative Unique Factorisation Domains...... 148



[ oadd

Chapter U. Introduction.

The theory of non-commutative rings is now well establ-
ished. Though much of the theory and many of the results arise
from naturally occurring non-commutative Noetherian rings,
it is also true that one of the most persistent themes in the
development of the subject has been the extension and
generalising of known results of commutative ring theory.
This thesis is concerned with three such theories: the
principal ideal theorem, Unique Factorisation Domains, and
localisation.

One of the major impetuses for the development of
commutative ring theory arose from the work of Kummer who
showed that not all rings of algebraic integers are Unigque
Factorisation Domains. There developed a need to determine
which domains are in fact UFDs and what could be said about
those that were.

Several attempts have been made to extend this theory to
non-commutative rings, notably by P.M.Cohn and
R.A.Beauregard. In 1984 A.W.Chatters proposed a new defin-
ition. In Chatters[13], he defined a (not necessarily commut-
ative) Noetherian Unique Factorisation Domain (UFD) to be a
Noetherian domain R with at least one height-1 prime ideal
such that (i) every height-1 prime ideal is principal, by the
same element, on both sides, and (ii) every height-1 prime
ideal P is completely prime, that is R/P is a domain. In
Chatters[13] he proved some basic results concerning Noeth-
erian UFDs and showed that certain classes of naturally

occurring Noetherian rings are in fact Noetherian UFDs with



tnis definition.

in Chapter 2 we describe some of these results and show,
in particular, that both enveloping algebras of finite-
dimensional Lie algebras and group rings of torsion-free
polycyclic-by-finite groups are often Noetherian UFDs. The
final section of Chapter 2 exhibits some quite natural results
that seem to indicate that the definition of Noetherian UFD is
a reasonable one. It includes a non-commutative version of
Nagata's Theorem which characterises Noetherian UFDs in terms
of certain localisations. It is the only original section of
this chapter.

Suppose that R is a Noetherian UFD. Consider the set C of
elements of R that are regular modulo every height-1l prime
ideal of R. If R were commutative then C would simply consist
of the set of units of R, U. In general however, the set C may
pe strictly larger than U. One of the fundamental results of
Chatters[1l3] is that the set C is always an Ore set and hence
that we may localise with respect to C. It turns out that this
localisation T has particularly nice properties and in
Chapter 3 we explore some of them.

Following the proposed definition of Noetherian UFD,
A.W.Chatters, J.T.Stafford, and M.K.Smith showed that for
certain classes of naturally occurring Noetherian UFD the
localisation T is actually a principal ideal domain (PID). In
Section 3.1 we show that this is the case in general, provided
that R is not commutative. Clearly this indicates a quite
serious and unexpected divergence in the theory since in the
commutative case T is equal to R and hence need not be a PID.

Perhaps one way to interpret this result is that it is an
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indicatioﬁ of how stringent a condition it is that a prime
ideal of a non-commutative ring be completely prime. We should
note that this result was proved independently by M.K.Smith
and it appears in Gilchrist-Smith(30].

In Section 3.2 we extend this result by showing that in
fact provided that R is not commutative then not only is T a
PID, but also T has stable rank one. This means that we have a
good grasp on the structure of T-modules since we have an
array of "cancellation" results at our disposal.

On a closer examination of the proof of the main result of
gection 3.2 it becomes clear that we have actually shown that
the set of height-1 prime ideals of a Noetherian UFD satisfy
the intersection condition. That is, if K is a right (or left)
ideal with KnC(P) # 4 for all height-1 prime ideals P then
KNC # &.

This was quite unexpected and we explore the implications
of this to localisation in Section 3.3. Broadly speaking, the
question of localisation in non-commutative rings is still a
vexed one and we have as yet only partial answers to the
problem. In commutative ring theory it is always possible to
localise at a prime ideal or set of prime ideals and it is
often very convenient to do so.

However in non-commutative ring theory, it is often not
possible to localise at a given prime ideal and the best we can
hope for is to localise at a clique of prime ideals that are
"} inked" together. In the presence of a condition known as the
second layer condition, a clique is localisable if and only if
it satisfies the intersection condition. Consequently it

becomes of great interest to determine when a set of prime



ideals satisfies the intersection condition.

Cenerally, for Noetherian rings, results in this direc-
tion have needed to assume the existence of an uncountable
central field in the ring in question. Then a counting
argument may be employed because cliques consist of only (at
most) countably many prime ideals. Using the method of Section
3.2, we are able to drop this uncountability hypothesis in
certain situations. Unfortunately the results of Section 3.3
are very limited in scope: essentially they require that a
clique X consists of completely prime ideals such that,
denoting their intersection by Q, R/Q is not commutative and
that for each prime ideal P of X, P/Q is a height~-1 prime ideal
of R/Q-.

wWe have been unable to extend this result significantly,
but in its present form we are able to show that cliques in
enveloping algebras of certain solvable Lie algebras are
localisable.

In Section 3.4 we consider the question of the centres of
Noetherian UFDs and show that for R a Noetherian UFD Z(R) is
always a Krull domain. Conversely, we also show, by an
explicit construction, that every commutative Krull domain
may be realised as a centre of a Noetherian UFD. Unless
otherwise stated all the results of Chapter 3 are original.

It is readily apparent that the set C of elements regular
modulo every height-1 prime ideal of a Noetherian UFD play an
important part in Chapter 3. We can consider this set (renamed
I in the general case) in the wider context of prime
Noetherianrings. In a commutative Noetherian domain the set T

consists solely of the set of units. In fact this statement is
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one of several equivalent formulations of the principal ideal
theorem due to Krull. This observation motivates Chapter 4
which explores this theme by considering several different
generalisations of the classical principal ideal theorem to
non-commutative Noetherian rings. These different
generalisations correspond to the different equivalent
statements of the theorem due to Krull.

The results of Chapter 4 primarily apply to two main
classes of prime Noetherian rings: PI rings and bounded
maximal orders. Sections 4.2 and 4.3 deal primarily with
results for Noetherian PI rings though we do prove them in a
slightly wider context. In Section 4.4 we consider bounded
maximal orders and in Section 4.5 we indicate how these
results might be extended to more general classes of rings.
This chapter ié largely inspired by numerous discussions and
correspondence with A.W.Chatters and many of the results of
this chapter were proved independently by him. The main
results are to appear in Chatters-Gilchrist(1l4].

The final chaptexr, Chapter 5, returns us to the theme of
Unique Factorisation. In some respects, nice though the -
theoty is, Noetherian UFDs are not an entirely satisfactory
generalisation of the commutative case. If R is a commutative
UFD then R{x] is also a UFD. However in Section 5.1, we exhibit
an example of a (non-commutative) Noetherian UFD such that
R[x] is not a Noetherian UFD. We note though that it is still
true that all the height-1 prime ideals of R(x] are principal.

This motivates the definition of a Noetherian Unique
Factorisation Ring (UFR) which was first proposed in

Chatters-Jordan{17]. A prime Noetherian ring is a Noetherian



UFR if every non-zero prime ideal contains a height-1l primé
ideal and every height-1 prime ideal is principal (by the same
element) on both sides.

Section 5.1 devlops the basic theory of Noetherian UFRs
and is mostly due to A.W.Chatters and D.A.Jordan, though we
o, in passing, use some of the results of this section to
construct examples of primitive Noetherian UFDs of any finite
Krull or global dimension.

As might be anticipated, the theory of Noetherian UFRs is
at one and the same time more natural and less tractable than
for Noetherian UFDs. In the case of Noetherian UFDs the fact
that the set C is Ore enables us to write any Noetherian UFD as
the intersection of a simple Noétherian domain and a PID. The
first part of Section 5.2 is devoted to proving that a
Noetherian UFR R may be written as the intersection of a
simple Noetherian ring and an ideal-principal ring. However
since the latter is not an order in the full quotient ring of R
this limits the utility of this result. For Noetherian UFRs we
have, in general, been unable to show that I" is an Ore set. For
bounded Noetherian UFRs the results of Chapter 4 and the fact
that Noetherian UFRs are maximal orders enables us to conclude
that I is simply the set of units. We give some more sufficient
conditions on Noetherian UFRs for T to be Ore.

We end Section 5.2 by presenting some preliminary results
on the structure of one-sided reflexive ideals of a Noetherian
UFR. These are inspired in part by similar results for
hereditary Noetherian rings proved by Lenagan in his thesis

[{47]. All the work in this section, with the exception of

Lemma 5.2.1, is original.
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As we stated earlier, there havé been several other
attempts to generalise the definition of UFD to non-commut-
ative rings. We end this thesis by answering a question of
P.M.Cohn. We show, with examples, that in general the notion
of Noetherian UFD is distinct from the definitions due to

P.M.Cohn and R.A.Beauregard.



Chapter 1. Basic definitions and resuits.
Section 1.0. Summary.

In this chapter we shall recall the basic techniques and
results of Noetherian ring theory which we will require
subsequently. Very little here will be original and it is
intended only to provide a ready source of reference and to
serve as an introduction to certain classes of rings which we
shall later discuss. Results will quite often not be stated in
their full generality, since, for the most part, we shall
generally have two-sided conditions present when often one-
sided ones would do. For this somewhat whistle-stop tour of
Noetherian ring theory we will use Chatters-Hajarnavis[1l6],
cohn[21], and (to appear) McConnell-Robson[51] as general
references and as a source for the precise statements of the
results.

Throughout all rings will have a 1 and all modules will be
unitary. Sub-rings will share the same unit element. Fields
will always be commutative. The notation of this chapter is
standard and will be used throughout this thesis.

Recall that, for a ring R, R is said to be right (left)
Noetherian if it satisfies the ascending chain condition on
right (left) ideals. A ring is Noetherian if it is both left
and right Noetherian.

A ring R is right (left) Artinian if it satisfies the
descending chain condition on right (left) ideals. A ring is
Artinian if it is both left and right Artinian.

Aring R is prime if, given two ideals A and B of R, then if



| A.B=0theneither A= 0oxr B =0. Equivalently, if aRb =0 then
either a=0 or b=0. Aring is semi-prime if, for an idealA, AZ -
0 implies that A = 0; equivalently, aRa = 0 implies that a=0.
We say that an ideal I is a prime (semi-prime) ideal if the
factor ring R/I is prime (semi-prime). A ring is a domain if
it has no non-zero zero-divisors. A prime ideal P is complet-
ely prime if R/P is a domain.

A right R-module MR is faithful if, for an element a of R,
Ma = 0 implies that a=0. A module is simple if it contains no
non-trivial sub-modules. We say that a ring R is right (left)
primitive if it has a simple faithful right (left) R-module.

A right (left) ideal is principal if it is of the form aR
(Ra) for some element a of R. An ideal is principal if it is
both left and right principal. We say that a domain R is a
principal right (left) ideal domain if every right (left)
ideal is principal, and a principal ideal domain if it is both
a left and right principal ideal domain. Aring is ideal-right
(ideal-left) principal if every ideal is right (left) prin-
cipal. We say that a ring is ideal-principal if every ideal is
both left and right principal.

Aring R is right (left) hereditary if every right (left)
ideal is projective. Aring R is hereditary if it is both left

and right hereditary.
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Section 1.1. Quotient rings and the Ore condition.

In commutative ring theory the method of localisation is a
very powerful and ubiquitous tool. Let R be a ring. Suppose
that S is a multiplicatively closed saturated sub-set S such
that 0£S. We seek to forma ring RS which is universal with
respect to the property that it is S-inverting. That is, (i)
Rs isaring with a ring homomorphism x :R—RS such that A (s)
is aunit in RS' for all seS, and (ii) given any ring
nomomorphism g:R——T with £(s) a unit in T, for all seS, then

there exists a unique ring homomorphism f :RS——-T such that

rm

L=\

In the case of a commutative ring such an Rs is easy to
construct. We define on RxS the equivalence relation = by
(r,s)=(xr',s') if and only if there exists an element teS with
t(rs'-sr')=0. Then we candefine RS to be the set of
equivalence classes of RxS with the operations of addition and
multiplication defined by (r,s}+[r',s']=[rs'+sr’',ss'] and
{(r,s].(r',s']=[rr',ss'].

This defines a ring RS and a unique ring homomorphism
N:R—Rg4 given by A(x)=[r,1)] which is universal S-inverting.
See for example Cohn[21], Theorem 11.3.1. For P a prime ideal
of R, the set R\P = S is amultiplicatively closed set. In this

case, Rg is a local ring with unique maximal ideal PR.; that is

s?
we have localised at P.

In the non-commutative case we have nowhere near the ease
of this theory. In fact it seems reasonable to say that non-

commutative ring theory has not yet quite surmounted this

first step. It is true to say that, given any ring R and a
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multiplicatively closed subset S of R, that there does exist a
universal S-inverting ring RS. However, in general, it is
almost impossible to do anything with this ring.

To have much hope of a useful theory of localisation we
need a simplifying idea due to 0.0re (and independeﬁtly
E.Noether). This concept enables us towrite Rs as a set of
elements of the form A\ (r) .)\(s)—l where the forms of addition
and multiplication are then easy to write down. However in
order to do this we need to be able towrite X(s)—l.). (r) in the
forn\X(r').X(s')_l, for some r'eR and s'eS. It is this proBlem

wnich the next theorem addresses.

1.1.1. Theorem: Let R be a ring. Let S be a multiplicatively
closed saturated subset of R such that:
(i) for all a€eR and seS, aSnsR ¥ ¢g;

(ii) for each a€eR and seS with sa=0, there exists teS with
at=0.

Then the elements of the univeral S-inverting ring R can
be constructed as fractions a/s, where a/s = a'/s' if and only
if au=a'u' and su=s'u', for some u,u'ek.

Moreover, the kernel of the canonical ring homomorphism

X:R——-oRS is Ker\ = {a€eR: at=0 for some teS}.
Proof: See Cohn{2l]), Theorem 12.1.2.

Suppose that S is a multiplicatively closed saturated

subset of a ring R. We say that S is a right denominator set if

it satisfies (i) and (ii) of Theorem 1.1.1. We may define a

left denominator set in a symmetrical fashion. In general, the
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two notions are distinct. If S consists of non-zero-divisors
then (ii) is superfluous and Ker): = 0.
Let S be a set of non-zero divisors in a ring R. We say that

S satisfies the right Ore condition if, given aeR and seS,

there exists beR and teS with at=sb. In this situation we say

that S is a right Ore set. The left Ore condition is defined

simiiarly. We say that S satisfies the Ore condition if it

satisfies both the left and right Ore conditions. In this

gituation, we say'that S is an Ore set.

1.1.2. Theorem: Let R be a ring. Suppose that S is a
multiplicatively closed subset of non-zero-divisors satis-
fying the right Ore condition. Then S is a right denominator
set and the canonical homomorphism A :R———R

3 is injective.

in this situation, we call the ring R the right partial

S
quotient ring of Rwith respect to S. For a left Ore set T, TR
denotes the left partial ring of quotients with respect to T.
1f 8 is an Ore set then sR = RS’
For a commutative domain R one of the most useful

constructions is the field of fractions of R in which we
invert all the non-zero elements of the ring. For a general
ring R, we say that it has a right full ring of qguotients Q(R)
which, if it exists satisfies:

(i) R is a sub-ring of Q(R);

(ii) each regular element of R is a unit of Q(R);

(iii) each element of Q(R) can be written in the form ac_*

’

for elements a,ceR with ¢ reguiar.
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Thus Q(R) is the right local.isation of R with respect to
the set of regular elements of R.

In this situation, we say that R is a right order in Q(R).
A left order is defined similarly and if both exist they are
equal. A right or left full quotient ring of quotients need
not always exist. However, in an important class of rings
A.W.Goldie has determined necessary and sufficient cond-
itions for a full quotient ring to exist.

Let R be a ring. Suppose that M is an R-module. A sub-
module N is essential in M if any non-zero sub-module of M has
non-zero intersection with N. A module M is uniform if every
non-zero sub-module is essential. We say that a module M has

finite Goldie rank n if there exists a direct sum of n uniform

submodules of M which is essential. The right (left) Goldie
rank of aring R is the right (left) Goldie rank of R as a right

(left) R-module.

In aring R, a right ideal I is a right annihilator ideal

if 1=r(S) = {r:sr=0 for all seS} for a subset S of R. Aring R

is said to be a right Goldie ring if (i) R has finite right

Goldie rank, and (ii) it satisfies the ascending chain
condition on right annihilator ideals.

Then we have the folowing very important result, due to

A.W.Goldie.

1.1.3. Theorem: Let R be any ring. Then R has a right full
quotient ring which is semi-simple Artinian if and only if R

is semi-prime right Goldie.

Further, R has a right full quotient ring which is simple

Artinian if and only if R is prime right Goldie.



14

in a ring R, we say that an element ¢ is right regular if

cx=0 implies that x=0; left regular is similarly defined and a
regular element is both left and right regular.

For an ideal I of R, we shall use the notation C'(I)
(respectively 'C(I))to denote the elements of R whose images
in the factor ring R/I are right regular (respectively left
regular). C(I) =C'(I)N'C(I) is the set of elements of R whose
images in R/I are regular. We shall say that a prime ideal P of

aring R is right (left) Goldie if R/P is right (left) Goldie.

Clearly, in a Noetherian ring, every prime ideal is both left
and right Goldie.

The following two results will be used implicitly in all
that follows. They are well known, but we record them here

explicitly. The first result is primarily due to A.T.Ludgate.

1.1.4. Theorem: Let Rbe aring. Suppose that S is an Ore set of
non-zero-divisors. Let I be an ideal of R. Then:

(i) IRs is an ideal of RS if and only if S¢ C° (IRSnR):

(ii) IR

SnR = I if and only if S ¢ 'C(I).

Furthermore, if R is Noetherian then IRS is an ideal of RS‘

Proof: (i) Suppose that S ¢ C° (IRSnR). Suppose that ceS and
ieR. Since S is an Ore set, there exist deS and reR such that cr
= id. Now ceC' (IRsnR) and so reIRS. Then c-li =rg ? € IRS.

Conversely, suppose that IRS is an ideal of RS‘ Suppose
that ceS and xe€R are such that cerRSnR. Then erRs, and hence

erRsnR. That is, gceC'(IRsnR).

(ii) Suppose that IRSnR = 1. Suppose that ceS and xeR
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are sucn that xcel. Then erRSnR = 1. Hence ce'C(I).
Conversely, suppose that S ¢ 'C(I). Suppose that for an
eilement xe€R, x=ic te IRgNR. Then xc = i €I, and so xel.
The final statement is proved as in Chatters-Hajar-

navis{16), Theorem 1l.31.

1.1.5. Theorem: Let R be a ring. Let S be a right Ore set of
non-zero-divisors.

(i) For every right Goldie prime ideal P' of Rs, the
intersection P'NR is a right Goldie prime ideal of Rwith P' =
(P'nR)Rs, and R/P'NR and RS/P‘ have the same full quotient
ring. ‘

(ii) For every righi;. Goldie prime ideal P of R disjoint from
s, the loca;viis;tio-rrm‘PRS is aright Goldie prime ideal of Rg
with P = PRSnR, and R/P and RS/PRS have the same full quotient
ring.

(iii) For every prime ideal P of R such that the elements of
s are all regular modulo P, the localisation PRS is a prime
ideal of RS with P = PRSnR. If PRS is right Goldie then P is
right Goldie. If Rs is right Noetherian then it is enough to

assume that the elements of S are left regular modulo P: in

this case P is always right Goldie.

Proof: Bell[6], Proposition 2.3.

| A prime ideal P is localisable if C(P) is Ore.
1.1.6. Lemma: Let R be a prime Noetherian ring. Let I be an

essential right ideal of R. Suppose that a is an element of R.

Then a + I contains a regular element of R.
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Proof: Since R is left Noetherian, R satisfies d.c.c. on right
anninilators. Let xel be with r(a+x) minimal. Let c=a+x. Let B
pe a rignt ideal of R with BncR = 0.Choose 0#beBnl. Then
c+bea+l. Because r(ct+b) = r(c)nr(b), r(ct+b) € r(c). By our
choice of ¢, r(c+b) = r(c). But b was chosen arbitrarily such
that beBnl. So xr(c) € r(b), for all beBni. So (Bnl)r(c) = 0.
3ince R is prime, either r(c) = 0 ox BNI = 0. If BNI =0 thenB =
0, since I 1is essential. Therefore cR is essential. By
Chatters-Hajarnavis[16], Theorem 1.10 and Corollary 1.13, cK

contains a regular element of R. Hence c is regular.

1.1.7. Lemma: Let R be a right Artinian ring. Then a right

regular element of R is a unit.

Proof: Let ¢ be a right regular element of R. Consider the
descending chain of right ideals cR > c’k>c’®R 2> ... . since R
is right Artinian, there exists an integer n such that c"rR =

"R =... . Sothere exists xeRwith c""*x = c". By the right

regularity of ¢, cx = 1. Also, c(xc-1l) = 0. So xc = 1.

We also record here a result which we will often have
cause to use. We say that an element s of aring R is normal if

sR = Rs.

1.1.8. Lemma: Let R be a ring. Let S be a multiplicatively

closed set of normal regular elements. Then S is an Ore set.

Proof: Suppose that aeR and seS. Since s is normal, there

3 T ] "
exist elements a',a"eR such that as = sa', and sa = a"s.
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Section 1.2. Orders and maximal orders.

In this section we consider the situation of a ring R with
a full (left and right) ring of quotients Q = Q(R). We say that
R is an order in Q. We refer to Maury-Raynaud [52] for furt;her
background material for this section.

Suppose that two rings R and S are both orders in Q. Then
we say that R and S are order-equivalent, or often Jjust
equivalent, if there exist units «,8,a',8' of Q such that
aRB c S and a'SA' ¢ R. ciearly, a and 8 may be chosen to lie in
R, and a' and B8' to lie in S. Order-equivalence defines an
equivalence relation on the set of orders of Q.

An orxrder R in Q is said to be maximal if R is maximal in the
equivalence class of R. That is, R is a maximal order if R is
contained in no other order of Q to which it is equivalent. For
an ideal I of R, let Or(l) = {qeQ:Iqc I} and let Ol(l) =
{geQ:ql € I}. We have the following characterisation of

maximal orders.

1.2.1. Theorem: Let R be an order in Q. Then the following are
equivalent:
(i) R is a maximal order;

(ii) For all non-zero ideals I of R, OI(I) = R = Ol(l).
Proof: Maury-Raynaud (52], Proposition 1.3.1.

1.2.2. Definition: Let R be an order in Q(R) = Q. Then a right

(left) R-ideal of Q is a right (left) R-sub-module of Q, I,

such that InU(Q) # g and there exists AeU(Q) such that Ix ¢ R
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(IN € R). An R-ideal is a left and right R-ideal.

An order R is an Asano order if the R-ideals of Q form a

qroup under multiplication. Equivalently, for every R-ideal I
contained in R, there exists an R-ideal 1_1 such that 1. I“1 -

4—1
1 “.1 = R.
Suppose that R is an order in its quotient rihg Q. Let I be

a one-sided R—ldeal of Q We can deflne I* = {qu ql ¢ R} and
£] = {qu Iq c R} and these are both one—slded R-—ideals of Q. |
Let I be a Ilght (left) R-ldeal of R Then I is teflexive if I = 3:
*(I*) (1 = (*I)*) _ : '
If R is a maximal order then for any R-1deal of Q. I, I* =

L3 For an ideal I of amax1mal ozder R, (I*)* = I** is an ideal
of R contalnlnq I. We say that I is reflex1ve if I - I“ We say

that an 1dea1 I of R is mvertlble if there exists an R—ideal

of Q, denoted by[ l.w1th1 I 1-1-"'.1 - R. Clearly any

‘invertible ideal is reflexive.
A ring R is said to be right (left) bounded if every

essential right (left) ideal contains an essential two-sided

ideal. R is right (left) fully bounded if every prime factor

ring of R is right (left) bounded. Bounded and fully bounded

rings are defined in the obvious way.

1.2.3. Theorem: Suppose that R is an order in Q. Then the
following are equivalent:

(i) R is bounded.

(ii) Suppose that S is a non-empty subset of Q such that
there exist units X\ and x4 of Q with \Su ¢ R. Then there exist «

‘and 8 in R, units of Q, such that a8 ¢ R and S8 ¢ R.

Further, let R be a bounded order in Q. If R is equivalent

to an order S, then S is bounded.
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Proof: Maury-Raynaud [52]}, Propositions 1.4.1 and 1.4.2.

1.2.4. Theorem: Let R be a maximal order in Q. Then R[x] is a
maximal order in Q(R[x]). Further, suppose that P is a
reflexive prime ideal in R. Then P{x] is a reflexive prime

ideal in R[x].

Proof: The first statement follows from Maury-Raynaud [52],
Proposition V.2.5. Now suppose that P = P** jis a reflexive
prime ideal of R. Clearly P(x] is a prime ideal of R{x] and so
it remains to show that P{x] is reflexive.
Clearly P*[x] ¢ Pix]*. Hence P{x]** € P*[x]*. Also
R[x] € P*[x] and so P*[x]* ¢ R[x]. Clearly also, since
P*[x]*.P*[x] € R[{x], we obtain that
P*{x]}*.P*[x].P[(x] < P[x].

Since R is é maximal order, if P*[x].P(x] ¢ P[(x] then
P*x[x] € R[x]. But this contradicts the fact that P is
reflexive. So we deduce that

P*[x]* c P[x] € P{x]** ¢ P*{x]*.

Therefore P[x] = P*¥[x]* = P[x]**,
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Section 1.3. PI rings.

Amongst non-commutative rings there is a large class of
rings whose analysis has proved to be more tractable than most
because they are in some sense "close" to being commutative
rings. The theory of these rings is both wide and deep , but we
shall draw out only a few of the salient and useful features of
these rings in order to apply them later on. We shall follow
McConnell-Robson{51] in otir treatment.

Let R be a ring. Let be F the free algebra on countably
many generators over the integers, Z. SoF = Z(xl,xz, ...”2. Let
r*=(zl,rz, ...) beany infinite sequence of elements of R. Then

r* defines a ring homomorphism 6:F

Rgiven by x e T

i
Conversely, any ring homomorphism fromF to R is of this form.
The image of feF under © we will write as f(r*). For an element
feF, we define its degree in the normal way. We say that feF is

multi-linear if £ = f(xl,...,xn) ={:aax where

(1) ¥a(n)"
aoez, and where the sum is over all ces . the symmetric group

on n letters.
We say that f is an identity of R if f(r*)=0, for all

choices of r*. Then R is a PI ring if it has a multi-linear
identity which has at least one of its coefficients equal to

+1.

1.3.1. Theorem: Let R be a primitive PI algebra of degree 4.
ThenR is a simple algebra of finite dimension n° over its

centre, where n € d/2.

Proof: See for example Cohn{21], Theorem 12.5.6.
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For our purposes, the properties of Pl rings we most

require are their relationship to their centres.

1.3.2. Theorem: Let Rbe a prime PI ring with centre Z(R). Then
every non-zero ideal of R intersects the centre non-trivial-
ly. Further,
(i) R has a left and right full quotient ring Q(R)=Q;

(ii) Q@ can be obtained by inverting the non-zero central
elements of R;

(iii) Q is a f.d. central simple algebra;

(iv) R is Goldie;

(v) Any multi-linear identity of R is an identity of Q.
Proof: See Cohn[21l], Theorems 12.6.7 and 12.6.8.

1.3.4. Corollary: Let Rbe aPI ring. ThenR is a fully bounded

ring.

With every prime PI ring R, we may associate with it a ring
T(R) known as the trace ring of R. Its construction is as
follows. Let Q be the quotient ring of R. Then, for some
integer n, Q has dimension n? over its centre K. Then, if AeQ,
A may be associated with ©,» an element of the endomorphism
ring of Q, by left multiplication by A. So we may regard 6, as
an n?xn® matrix over K. The matrix ®, satisfies its charact-
eristic polynomial over K which has degree n?. Hence A

satisfies the same polynomial over k.

Let T be the subring of K generated by Z(R) and the
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coefficients of the characteristic polynomials of A, as A runs
through all the elements of R. Then T is a commutative subring
of K. Now let T(R) = T.R. Then T(R) is the trace ring of R. We
have the following result which indicates that T(R) is

sometimes an easier ring to deal with than R.

1.3.5. Theorem: Let R be a A-affine prime PI ring. Then:
(i) T(R) is a f.g. T-module.
Further if A is Noetherian then:

(ii) both T and T(R) are A-affine and Noetherian, and the

centre of T(R) is also Noetherian.
Proof: See Small(63], Definition 52.

There is then a close relationship between prime PI rings
and their centres. One class of PI rings have a particularly

nice relation to their centres.

A ring R is an Azumaya algebra (over Z(R)) of rank t if

[R:Z(R)] is finite, R°p®R==Endz(R)(R). and, for every prime
ideal P of Z(R), RP is a free Z(R)P—module of rank t.
A ring R is properly maximal central of rank t if R is an

Azumaya algebra and R is a free Z(R)-module of rank t.

1.3.6. Theorem: Suppose that R is an Azumaya algebra. Then
(i) If I is an ideal of R then I = (INZ(R))R;

(ii) if J is an ideal of Z(R) then J = JRNZ(R).

Proof: McConnell-Robson{51}, Proposition 13.7.4 or BAus-

lander-Goldman(3], Corollary 3.2.
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To investigate PI rings further the notion of the generic
matrix rings was introduced. Formally, the ring of d nxn

generic matrices is the ringR=F (n) - k(x1 foao ,xd> such that

the following holds: Let S be any nxn-matrix ring over a
commutative k-algebra. R is universal with respect to the
property that every mapping x;F——a,, a, €S, may be extended to
a unique k-algebra homomorphism R——S,

An explicit construction of F(n) is obtained as follows.

We adjoin to the field k the dan? commuting indeterminants

‘.‘, u=i,...,4d; i,j=1,...,n. In the nxn-matrix ring

J
Mn(k[xigl)' consider R the sub-algebra generated by the d

Xj

matrices (x‘;j). #=1l,...,d. Then R is the generic matrix ring

of d nxn matrices.



Section 1.4. Dimension and rank techniques.

We review briefly two "measures" on Noetherian modules
and rings which are used extensively in Noetherian ring
theory. We record some results which will be useful later on.
We will use Gordon-Robson[32] and Chatters-Hajarnavis[1l6] as
our main sources.

The notion of Krull dimension for non-commutative rings
was first proposed by Rentschler and Gabriel and extended to
infinite ordinals by Krause. Let R be a ring. Let MR be a right
R-module. Then the Krull dimension of M may be defined by
transfinite induction as follows. If M = 0, then Kdim(M)=-l:.
if @ is an ordinal and Kdim(M)fa, then Kdim(M)=a if every
descending chainM = Mo ), Ml > M2 ... of R-sub-modules of M
witthim(Mi/Mi+l){a terminates. For example, Artinian
modules are precisely those modules with Krull dimension O.
For a module MR' it is possible that there exists no such
ordinal in which case we say that M has no Krull dimension. A

ring R has Krull dimension a, where Kdim(RR)ea,

1.4.1. Lemma: Let R be a ring.
(i) If N is a submodule of M then, if either side exists,
Kdim(M) = sup {Kdim(N),Kdim(M/N)}.
(ii) Kdim(R) = sup {Kdim(M): M f.g. R-module} if either side
exists.

(iii) Every factor ring of a ring R with Krull dimension has

P

Krull dimension < Kdim(R).

Proof: Gordon-Robson([32], Lemmas 1.1 and 1.2(1i).
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1.4.2. Theorem: (i) EveryVNoetherian.module has Krull dimen-

sion.
(ii) Every module with Krull dimension has

finite uniform rank.
Proof: CGordon-Robson{32], Propositions 1.3 and 1l.4.

We will apply the theory of Krull dimension to rings and

regular elements in rings.

i.4.3. Theorem: Let Rbe aring with Krull dimension. If ceR is

regular then Kdim(R/cR) ( Kdim(R).

Proof: Suppose that Kdim(R/cR) = Kdim(R). Consider the
infinite descending chain of right ideals of R, R > cR > cir )
... . Each factor in the chain is isomorpnic to R/cR. This

contradicts our definition of Kdim(R).

i.4.4. Theorem: Let R be a ring with Krull dimension.

(i)SupposethatP1 (P, are prime ideals of R. Then

Kdim(R/P ) < Kdim(R/Pl).
(ii) R satisfies the ascending chain condition on prime

ideals.
Proof: Gordon-Robson[32], Theorem 7.1 and Corollary 7.2.

1.4.5. Theorem: Let R be a right Noetherian ring. Suppose that

A and B are two ideals of R. Then
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Kdim(R/AB) = sup{Kdim(R/A),Kdim(R/B)}.
Proof: McConnell-Robson[51], Lemma 6.3.3.

1.4.6. Corollary: Let R be a right Noetherian ring. Let N be

the nilpotent radical of R. Then Kdim(R) = Kdim(R/N).

1.4.7. Theorem: Let R be a right Noetherian fully bounded

Noetherianring. Let M_ be a f.g. faithful right R-module.

R
Then Kdim(M) = Kdim(R).

Proof: Jategaonkar[40],Lemma 2.1.

1.4.8. Theorem: Let R be a right fully bounded Noetherian
ring. Let S be an arbitrary ring. Let SMR be an S-R-bimodule
wnich is £.g. as a right R-module. Then the Krull dimension of
the partially ordered set of all S-R-bi-submodules of M is
Rdim(Mg) .

Let R and S be fully bounded Noetherian rings. Suppose
that there exists an R-S-bimodule which is f.g. and faithful

on both sides. Then Kdim(R) = Kdim(S).

Proof: Jategaonkar[40], Lemma 2.2 and Theorem 2.3.

Let R be a ring with Krull dimension. We say that an ideal

i is weak ideal invariant, w.i.i., (strictly speaking right

weak ideal invariant) if, for every f.g. right R-module M
with Kdim(M) < Kdim(R/I), we have Kdim(M@I) < Kdim(R/1).

Equivalently, if K is a right ideal of R with Kdim(R/K) <



.Kdim(R/I), then Kdim(I/KI) < Xdim(R/I1). We say that R is ideal
invariant if given any f.g. R-module MR and an ideal I of R,
then Kdim(M®I) < Kdim(M).

Note that not all Noetherian rings are w.i.i. For example,
J.T.Stafford has shown that the the enveloping algebra (see
Section 1.8) U(slzxslz) is not w.i.i., see Stafford[71]). The
(slightly stronger) notion of ideal invariance was first
introduced in Krause-Lenagan-Stafford[45], and that of weak

jdeal invariance in Stafford[67].

1.4.5. Theorem: A Noetherian fully bounded ring is weak ideal

invariant.

Proof: Suppose that I is an ideal of R. Suppose that T is a
right ideal of R such that Kdim(R/T) < Kdim(R/I1). If x-
ann(R/T) = L then, by Theorem 1.4.7, Kdim(R/T) = Kdim(R/L).
Denote the left-hand analogue of Krull dimension by 1-Kdim.
Then we have, using Theorem 1.4.8, Xdim(I/TI) < Kdim(I/L1) =

i-Kdim(I/LI1) € 1-Kdim(R/L) = Kdim(R/T) < Kdim(R/I).

We now turn to another measure, known as the Coldie rank

or reduced rank of a module, which was first introduced by
A.W.Goldie. Here we follow Chatters-Hajarnavis[16]. Through-
out My will be a f.g. R-module over a right Noetherian ring.

First, suppose that R is semi-prirﬁe. Then, by Theorem
1.1.3, the full right quotient ring of R, Q, exists and is
semi-simplie Artinian. Then M®Q is a semi-simpie Q-module of
finite length over Q. We set p(M)=lengthQ(M®Q).

Alternatively, we could define p(M) to be the uniform rank



of M/T(M), where T(M) = {meM:mc=0 for some regular element c

in R}.

1.4.10. Theorem: Let R be a right Noetherian semi-prime xing
and M a £.g. R-module. If K is a submodule of M then

p({M) = p(K) + p(M/K).
Proof: Chatters-Hajarnavis{16], Lemma 2.1.

For a general right Noetherian ring recall that the
nilpotent radical N of R satisfies Nk = 0, for some integer k
and that R/N is semi-prime.

Let R be a right Noetherian ring with nilpotent radical N.
l.etMbeaf.g. right R-module. Suppose that Nk = (0. Define
o (M) = zl % R/N(MN “l/mv') which is well-defined since

each MN* /MN is a f.g. R/N-module.

1.4.11. Theorem: Let R be a right Noetherian ring with

nilpotent radical N. Let M be a f.g. R-module. Then:
(i) 1if K is a submodule of M then p(M) = p(K) + p(M/K);

(ii) p(M) = 0 if and only if, for all meM, there exists

ceC(N) such that mc=0.

Proof: Chatters-Hajarnavis [16], Theorem 2.2.
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section 1.5. The Artin-Rees property.

Let I be an ideal of a ring R. We say that I has the right

Artin-Rees property (AR-property for short) if, for each

right ideal K of R, there exists n, a positive integer, such
that KNI ¢ KI. A ring R has the right AR-property if every
ideal of R has the right AR-property. Left AR-properties are
defined analogously. A ring R has the AR-property if every
ideal has both the left and right-AR property. The following
result gives us a useful criterion for an ideal I to have the

AR-property.

1.5.1. Definition: An ideal I has a centralising set of

generators if I = alR + azR + ...+ anR. where aleZ(R) and for

each i > 1, the image of a, is central in R/(alnf .e. ¥a,

1.5.2. Theorem: Let R be a right Noetherian ring. Let I be an

ideal of R.

(i) If I has a centralising set of generators then I has
the AR-property.

(ii) If I has a single normal generator, that is I = aR =

Ra, for some aeR, then I has the AR-property.
Proof: Chatters-Hajarnavis[l6], Theorem 11.7.

As the next results illustrate, the AR-property is

closely related to the problem of localising at prime ideals.

1.5.3. Theorem: Let R be a right Noetherian ring. Let I be an

1—-1

R).
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ideal which has the right AR-property. Suppose that, for
each positive integer n, the ring R/In satisfies the right Ore
condition with respect to C(I/In) . Then R satisfies the right

ore condition with respect to C(1).
Proof: Smith{66], Proposition 2.1.

1.5.4. Theorem: Let R be a Noetherian AR-ring. Let P be a semi-
prime ideal of R. Then R satisfies the Ore condition with

respect to C(P).
Proof: Smith[66], Propostion 3.4.

1.5.5. Theorem: Let R be a Noetherian ring. Let P be a prime
ideal of R which has the AR-property. Suppose that C(P) =

c(p“), for all positive integers n. Then P is localisable.

Proof: We use Smith{66], Proposition 2.1 which says that P is
localisable if and only if, for all positive integers n, C(P)
c c(Pn), and the set.Kn=[reR:rcePn for some ceC(P)} is an
ideal.

Here Kn-{reRn:cc-:Pn for some ceC(Pn)} - p". So, clearly, K

is an ideal, for all n, and C(P) = C(Pn).

To end this section, we note a result which we will use

often.

1.5.6. Lemma: Let R be a prime Noetherian ring. Let P be a

localisable prime ideal of R. Let Q be a prime ideal of R with
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Q ¢ P. Then C(P) & C(Q). In particular, C(P) ¢ c(0).

Proof: Let K= {r:rceQ, for some ceC(P))}. Since C(P) is Ore, K

is an ideal of R. So K = Ei:TRai, for some elements a So

i
there exists ceC(P) with Kc € Q. Since Q is_a prime ideal,
either ceQ or K € Q. But Q c¢ P and so c£Q. Therefore K & Q.

Hence C(P) € C(Q).
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section 1.6. Stable Range.

In commutative Noetherian ring theory powerful results
have been proved by Forster-Swan, Bass, and Serre concerning
cancellation properties. These may be expressed as "large"
projectives have free dire¢t summands and free summands can be
cancelled if the module is “large".

We wish to determine some bounds on the "largeness"
required for these statements. The bounds rely on the notions
of stable range and general stable range. We will follow
McConnell-Robson{51] in our treatment.

Let R be any ring. Let Mbe a f.g. right R-module. We say
that n is in the stable range of M if, for all s?l1l, if
i=n+s

o = r h i
£1=l mlR M, then there exist elements fieR for

i=1,...,n+s-1 such that
M=1

The least n in the stable range of M is known as the stable

i=n+s-1

. .+
1=1 (ml n

n+sfi)R'

rank of M and denoted by sr(M). For aring R, sr(R) = sr(RR) .

t

We will call a row x* = (xl,...,xt)eR right unimodular if

ExiR = R. Then n is in the stable range of R if and only if, for
all s»1, for every unimodular row (xl, .o ,xm_s) in Rn+s’ there

exist elements fieR such that the row

+ £ ..., + i i i i
(x *x .5, X hs—1 xn+sfn+s—1) is right wunimodular in

n+s-1

R . Inthis situation we say that (xl, e X ) is stable.

n+s
So sr(R) = n if and only if every right unimodular row of
length ?» n+l is stable.

We can define two other closely related ranks as follows.

For n»l, define GL_ (R) to be the group of nxn invertible
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matrices over R. An element,AGGLn(RJ is elementary if it is of
the form In+aeij » where a€eR and eij is the matrix with a 1 in
the ijth position and zeroes everywhere else. Then En(R) is
the subgroup of GLn(R) generated by all the elementary
matrices.

We say that n is in the general stable range of R if and

only if, for all s>1, GLn 3(R) acts transitively on the set of

+

right unimodular rows of R"*®. The 1least such n is the

general stable rank of R, and is denoted by gsr(R). The

elementary stable range and elementary stable rank, esr(R),

are defined analogously, replacing GL_,g(R), by En+s(R)'

1.6.1. Theorem: For any ring R, gsr(R) < esr(R) < sr(R).

Proof: McConnell-Robson{51}, Theorem 11.3.1.

At first glance, it appears that these stable ranks rely
on whether we consider the right or left unimodular rows. The

next result shows that they are independent of side.

1.6.2. Theorem: Let R be a ring. Then the left and right stable
ranks of R are equal. The corresponding results also hold for

the general stable rank and the elementary stable rank.
Proof: McConnell-Robson[51], Theorem 11.3.4.
The significance of these ranks are demonstrated by the

following two theorems whose proofs are similar to that of

McConnell-Robson{51], Theorem 11.1.12.
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1.6.3. Theorem: Let S be a ring. Let M be a left S-module.

Suppose that SM has endomorphism ring EndS(M) « R.

t

(1) Supposethatx*-(xl,...,xt)eR is a stable right

unimodular row. Then the cokernel of the split monomorphism

Mt given by m——Fmx, is isomorphic to utL,

(ii) Suppose that y*-(yl, cee ,yt)eRt is a stable left

Gx:M

unimodular row. Then the kernel of the split epimorphism

t
e :M
Y

Mt'l.

M, given by (ml,...,mt)——-{:miyi, is isomorphic to

1.6.4. Theorem: For t a positive integer the following are
equivalent:
(i) t > gsr(R);

t t-1

(ii) If M, satisfies End(MS) =« R and MN « M~ then N =« M ;

S
(11i) If X, satisfies ROX = R then X = R'"!;
(iv) If x*eR" is left unimodular then x* is a column of an

invertible matrix in Mt(R)'
suppose that MR is an R~-module such that MGBRm o Rn, for
some integers m and n. Then we say that M is stably free of rank

(n-m) .

1.6.5. Corollary: R has general stable rank < n if and only if

all stably free R-modules of rank » n are free.

For stable rank, we have a stronger result. First a

definition. Let My be amodule over aring S. We will say that M

has the n-substitution property if given any split endo-
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morphimnn:MnﬁN———~M there exist S-module homomorphisms

#:M——M 6N and ©:M ®N——M such that 7y = ey = 1 and

N € Kero.

1.6.6. Theorem: Let.Ms be a module over a ring S. Suppose that
End(MS) «~ R. Then the following are equivalent:
(i) n is in the stable range of R;

(ii) Mg has the n-substitution property.

1.6.7.Corollary:IAﬁ:Ms be a module over a ring S. Suppose
thatEnd(MS)- R. Suppose that n is in the stable range of R

1

and that M"7'eX = M®Y. Then M"8X « Y.

To apply these results we need to be able to calculate
suitable upper bounds for gsr(R), esr(R), and sr(R) for a
ring R. One of the results obtained by J.T.Stafford is given

here.

1.6.8. Theorem: Let R be a right Noetherian ring. Suppose that

Kdim(R) = n. Then sr(R) < n+l.

Proof: Stafford [68], Theorem.

Clearly, the smaller the stable rank of a ring the better
to describe the structure of R-modules. For example, taking an

example from algebraic K-theory, if sr(R) =n, then K_(R) -
1

GLn+z(R)/En+z(R)‘ So a bound on the stable rank of a ring is

very useful.

In the case of stable rank one we can even sharpen the
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results of this section a liﬁtle further. Since in Chapter 3
we do show that certain rings have stable rank one we note
priefly a couple of these results.

For a ring R, suppose that M is f.g. R-module. Let g(M)
denote the minimal number of generators of M and let sr(M), as
before, denote the stable rank of M. We say that M is uniquely
presentable by a projective module P if there is an epi-
morphism P——M and that any two such epimorphisms are right
equivalent. That is, if f and g are any two such epimorphisms

then there exists an isomorphism y:P

P such that £ = g¥.
Let u(M) be the least integer m such that M is uniquely

pres entable by R™ .

1.6.9. Theorem: Let R be a ring. Suppose that M is a £.g. R-

module with sr(M) finite. Then u(M) < g(M) + sr(M).
Proof: Warfield[73], Proposition 3.

1.6.10. Theorem: Let R be a ring with stable rank one. Then

g(M) = u(M) = sr(M).
Proof: Warfield[73], Theorem 7.

We can also sharpen Corollary 1.6.7 as follows.
1.6.11. Theorem: Let R be a ring with stable rank one. Let S be

an arbitrary ring. Suppose that M is a S-module whose

endomorphismring is isomorphic to R. Suppose that there exist

s-modules X and Y such that



37

M X=MB®Y,.

Then X = Y.

Proof: McConnell-Robson[51], Theorem 11.4.9.
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section 1.7. Lattice conditions and factorisation.

In this section we recall some definitions and results
that arise when we consider the "factorisation” of elements of
a ring. We introduce the notion of modular lattice and Bezout
domain which we will use in Sections 3.4 and 5.3.

Let (X,<) be a partially ordered set (poset). We say that

two elements x and y of X have a least upper bound or sup,

denoted by xVy, if there exists an element z with x <z andy <
2z, and if w is any other upper bound on x and y, then z < w.

pually, we may define a greatest lower bound or inf, denoted

by xAy, in the obvious way.

A lattice is a poset such that any two elements have a sup
and an inf. A lattice is complete if any set of elements has a
sup and an inf. In particular, a complete lattice has a
greatest and a least element, denoted by 1 and 0 respectively.

Let L be a complete lattic.e. Given any two elements a,beL,
with a < b, we may define the interval, [a,b], as {xeL:a € x <
b}. We say a lattice is modular if av(bac) = (avb)a(avc), for
ail elements a,b,c, with a € ¢. For example, the lattice of
sup-modules for a module M is a modular lattice. In partic-
ular, the lattice of right ideals of a ring is a modular
lattice.

Suppose that a and b are two elements of a lattice. Let 1 =

{asb,a] and let J = [b,avb]. We may define order-preserving

maps a:1——J and B:J——1 by a(x) = xVb, and B(y) = aay. If L
is modular, then af = 1d,, and ga = 1d;. See, for example,
cohn[21], Section 2.1.

in an interval [a,b], a complement of ce[a,b] is an
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eiement d with cad = a and cvd = b. We have the following

criterion for a lattice to be modular.

1.7.1. Lemma: A lattice L is modular if and only if for each
interval I of L any two comparable elements of I which have a

common complement are equal.

Proof: Cohn{21], Proposition 2.1.3.

We now turn to the question of factorisation. In a ring R,
an atom is an element which cannot be written as the product of
two non-units. A domain is atomic if every non-zero element
can be written as the product of a finite number of atoms. To
investigate the factorisation of elements of a domain into
atoms we want to investigate when the sub-lattice of principal
right ideals of the lattice of right ideals is a modular
lattice.

Wwe define a right Bezout domain to be a domain R in which

for any two elements a,beR, aR+bR = cR, for some element ceR. A
ljeft Bezout domain and a Bezout domain are defined in the

obvious way.

1.7.2. Lemma: A domain R is a principal right ideal domain if

and only if R is an atomic right Bezout domain.

Proof: Suppose that R is an atomic right Bezout domain. Let 1
pe a right ideal of R. Since R is atomic, we may choose an
eiement a€l such that aR is a maximal principal right ideal

contained in I. If aR # I, choose beI\aR. Then aR+bR = cR 1,
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which contradicts our choice of a. Thus I is principal.

The converse is clear.

wWe shall, in Section 3.4, use this criterion to construct

a commutative principal ideal domain.



seciion 1.8. Some classes of Noetherian rings.

In this section we introduce some of the classes of
Noetherian rings to be considered in the subsequent chapters.
We will set out the basic definitions and properties of these
rings and draw upon this section as required.

In commutative ring theory, the polynomial ring R{x] in an
indeterminate plays a basic role. The corresponding concept
for non-commutative ring theory is the skew polynomial ring.

Let R be any ring. Let & be an automorphism of R and let &
pe a 6-derivation of R. That is; 8(ab) = 86(a)6(b)+ad(b). We
may define the ring S = R{x:6;8] as follows. Let S be the free
right R-module on the generators {l,x,x2 y---1, where x is an
indeterminate. Define on S the multiplication determined by
ax = x6(a) + 8(a) and extended by the ring axioms. Then S is a

skew polynomial extension of R. Note that every element of S

can be expressed uniquely in the form )'_‘,;:':xlai, for aieR.

With R,8,6 as above, we have the following useful result.

1.8.1. Let R be a right Noetherian domain. Then R[x:6;6] is a

right Noetherian domain.
Proof: McConnell-Robson{[51}, Theorem 1.2.9.

Let © be an automorphismof R. Then S = R{x,x ':6] denotes

the ring of polynomials over R in x and x ! subject to the

relation that ax = x6(a). This is a skew Laurent extension of

R. Let T = R[x:06] be the skew polynomial extension of R. Then,

since xR = Rx, the set C = {1,x,x?,...} is oOre, by Lemma 1.1.8.



42

it is easy to see that S =« TC'

1.8.2. Corollary: Let R be a right Noetherian domain. Then

R[x,x—lzel is a right Noetherian domain.

Many rings may be characterised either as skew polynomial
extensions or skew Laurent extensions. Here, we note just a
few examples that we shall use later on.

Let R be a ring. Let S = R[(x]. Let &6 be the derivation on §

such that 6(r) = 0,for all reR, and 6(x) = 1. Let AI(R) =

S[y:6]. We say that Ax(R) is the first Weyl algebra over R.
Clearly, AI(R) may be thought of as the ring freely generated
over R by x and y subject only to the relation xy-yx=1l.
Inductively, for any positive integer n, we may define An(R) -
Al(An—l(R))° By Lemma 1.8.1, if R is a right Noetherian
domain, then An(R) is a right Noetherian domain.

Suppose that A is a unit of R. Let T = R{x]. Let © be the R-
automorpnismon T which sends x to Ax. Let B,(R) = T[y:6]. Then
BX(R) may be thought of as the ring freely generated over R by
x and y subject only to the relation xy=\yx.

Let R be a right Noetherian domain. Then B)‘(R) is a right

Noetherian domain, by Lemma 1.8.1.

We now turn to two major sub-classes of naturally occuring
Noetherian rings.

First, suppose that L is a f.d. Lie algebra over a field of
characteristic zero. A sub-space of L, X, is an ideal of L if
{L,K)] <K. ALie algebra is simple if it has dimension greater

than 1 and contains no non-trivial ideals. A Lie algebra is



gemi-simplie if it may be written as adirect sum }:Ki. where the
Ki are ideals of L and simple Lie algebras themselves.

Let L. be a Lie algebra. Define, for positive integers n,
the ideals of L,c™(L) and Dn(L) » as follows. Let Cl(L) = L; and
ci*1ry = [L,eY(L)], for i > 1. Let D*(L) =L; and D ¥} (L) -
(pi(L), D (L)1, for i > 0. We say that L is nilpotent if, for
some integer c, CC(L) = 0, and the least such ¢ 1is the
nilpotency class of L. We say that L, is solvable if Dn(L) - o,
for some integer n.

For a £.d. Lie algebra over a field k, we can construct a
associative k-algebra U(L) and a unique k-linear map
A:L——U(L), which is universal with respect to the property

that M([x, YD) =M (X)X (Y)-M(Y)X(x), for all x,yeL (*).

That is., given any other k-linear map from L to a k-algebra A,

w:L A satisfying (*), then there exists a unique k-algebra
nomomorphism f£:U(L)——A with g4 = \f.

For a more explicit construction, we follow Dixmier[25],
Chapter 2. We define T to be the tensor algebra of L; that is

7 = lortor?

®..., where " denotes the n-fold tensor
product of L over k. Let J be the ideal of T generated by all
the terms of the form x®y-y®x-[x,y], as x,y run over L.

Then define U(L) = T/J. Note that, if L is Abelian, then
U(L) is isomorphic to the polynomial ring k[xl, .as ,xn] » where

n=dim L. The following result is a corollary of the

Poincare-Birkhoff-Witt theorem.
1.8.3. Theorem: The map M:L——U(L) is injective.

proof: Dixmier{25], Proposition 2.1.9.
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1.8.4. Theorem: Let L be afinite-dimensional Lie algebra over

a field of characteristic zero. Then U(L) is a Noetherian

domain.
Proof: Dixmier[25], Corollaires 2.3.8 and 2.3.9.

with U(L) we can also define Z(L), the centre of U(L).
gsometimes, however, this is a slightly too restrictive notion
and we need to consider the semi-centre of U(L) which is
defined as follows. Recall that for a Lie agebra L, we can
define L* = Homk(L,k).

since U(L) is a Noetherian domain, we may construct its
Givision ring of fractions D(L). For each \eL*, let D(L) \ be
defined by D(L)x = fueD(L):xu-ux=\(x)u for all xeL}.
Clearly,Dx(L)Du(ld c Dx+u(L)' for all A\,uel*; and it is easy
to see that DX(L) nDIL(L) =0, for all A#u4. Then the sum ZDX(L) '
over all \eL*, is direct and is a sub-algebra SZ(D(L)) of
D(L) . Now put U(L) \ D(L) )‘nU(L) . Let SZ(L) = EU(L)X' This
again is a direct sum and defines a sub-algebra of U(L), the

semi-centre of U(L). If char(k)=0 and L is finite-dimen-

sional, then SZ(L) 1is a commutative ring (Dixmier([25],
Proposition 4.3.5). If k is algebraically closed, then SZ(L)
is a unique factorisation domain. In general, SZ(L) is
contained in a unique factorisation domain (Delvaux-Nauwel-
aerts-Ooms[24], Theorem 1.2).

Now we turn to group rings. For a group G and a ring K we
can form the group ring, R = KG, which is the set of finite sums

of the form Zkg.g, for kgeK and geG. Addition is defined co-



ordinate-wise and multiplication is defined by rg.sh-rs;gh
for r,seK and g,heG, and extended by linearity.
Generally, we shall suppose that K is commutative.
Like universal enveloping algebras, the class of group
rings is a broad and interesting class of rings. We will only
make some basic definitions and record some useful results for
later.

For a group G, we define the following sub-groups: Z(G) is
the centre of G; A(G) is the set of elements of G with only
finitely many conjugates; and A*(G) is the intersection of all
the finite normal subgroups of G. For any group G, A" (G) is a
characteristic sub-group contained in A(G) and A(G)/A?(G) is
torsion-free Abelian.

Let G be any group. We may define the sugroups of G, Zi(G) v
for all integers i, as follows. Let ZI(G) =Z7Z(G). For i > 1, let
Zi*l(G)=={g€G=§€Z(G/Zi(G))}. If there exists an integer n
with 2"(G) = G, then we say that G is nilpotent and if the
least such integer is c, we say that G has nilpotency class c.

Let ][] denote a class of groups. Then a group G is said to be
poly-[l if there exists a sub-normal chain of sub-groups in G
such that (1> = Go < Gl £...€ Gn =G, with, for each i, Gi normal
inG;.y and G, ,/6G; belonging to []. Let [] and A be two classes
of groups. Then a group G is said to be a [[-by-A group, if there
exists a normal sub-group H of G such that H belongs to [ and

G/H belongs to A.

Let G be a poly-cyclic group. Then the Hirsch number of G,

h(G), is the minimal number of infinite-cyclic groups that

occur in a sub-normal chain of G.

We record the following two results.



1.8.5. Theorem: Let K be a commutative Noetherian domain. Let
¢ be a torsion-free poly-infinite-cyclic-by-finite group.

Then KG is a Noetherian domain.

Proof: Passman[54], Theorem 10.2.7, and Farkas-Snider{28]},
Main Theorem (for the case char(K)=0) and Cliff(18], Theorem 2

(for‘char(K)=p*0).

1.8.6. Theorem: Let G be a torsion-free nilpotent group. Then
G/2(G) is torsion-free nilpotent.

Proof: Passman{54], Lemma 11.113.

For a group ring KG we can define the augmentation ideal,

i - k g:Zk =0}.
I, by I {Tk g:1k, }

We can define a more general construction than a group
ring known as the skew group ring as follows. Let K be a ring
and G a group. Suppose that there exists a group homomorphism
0:6——Aut(K). Then denote 8(g) (r) by g(r). We may then define
K*G to be the free K-module with the elements of G as the free
pasis with addition co-ordinate-wise and multiplication
gefined by rg.sh = rg(s).gh, for all r,seK and g,heG. The
group ring KG is then simply the skew group ring K*G, where o

sends every element of G to the identity automorphism.

1.8.7. Theorem: Let K be a commutative Noetherian domain of

characteristic zero. Let G be a poly-infinite—cyclic group.

Then K*G is a Noetherian domain.



Prooi: We proceed by induction on the Hirsch number of G. The
result is clear for G an infinite-cyclic group.

Suppose that N is a normal poly-infinite-~cyclic sub-group
of ¢ such that G/N is infinite-cyclic. By McConnell-Robson
[51],Proposition.l.5.llq R*G=-R*N[x,x-l:e], for some
automorphism © of R*N. By induction, R*N is a Noetherian

domain. By Corollary 1.8.2, R*G is a Noetherian domain.
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Chapter 2. Unique Factorisation Domains.

2.0. Summary.

In this chapter we consider a non-commutative analogue of
the commutative unique factorisation domain, proposed by A.
w.Chatters, and give examples of rings satisfying these
conditions.

Section 2.1 will outline the definition and basic prop-
erties of UFDs. This work is entirely due to A.W.Chatters.
Sections 2.2, 2.3, and 2.4 will show that though the defin-
ition of UFDs appear very restrictive in fact large classes of
naturally occuring Noetherian rings actually satisfy the
conditions. So the development 5f a theory of UFDs may well
help in the study of these rings. Section 2.2 is effectively
in the literature and Section 2.3 is a simplified account of
results due to K.A.Brown. Section 2.4 gives a simple variation
on a theme used by many people and a non-commutative analogue
of Nagata's Theorem. It comprises the only original section of

this chapter.
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gsection 2.1. Definition of Unique Factorisation Domains.
Let R be a prime Noetherian ring. A height-1 prime ideal

is a prime minimal amongst the set of non-zero prime ideals of

R. We will call a non-zero element p of R a prime element if pR

= Rp is a prime ideal of R and R/pR is a domain. Following
Chatters, let C(R) = nC(P), where the intersection is over all
the height-1 prime ideals of R, be the set of all elements of R
which are regular modulo all the height-1 prime ideals of R.
1f there is no risk of confusion we shall write C for C(R).
Note that for a prime element p, C(pR) = R\pR.

Then we have (Chatters[13], Proposition 2.1)

2.1.1. Theorem: Let R be a prime Noetherian ring with at least
one height-1 prime ideal. Then the following conditions on R
are equivalent:

(1) Every height-1 prime ideal of R is of the foim PR = Rp
for some prime element of R.

(2) R is a domain and every non-zero element of R is of the
formcp Py- - Py for some ceC (as defined above) and for some
finite sequence of prime elements Py of R. Note that we will
follow the convention that the product of an empty set of

prime elements is 1.

Proof: Suppose that R satisfies (1). Let P be a height-1 prime
of R. Then P = pR for some prime element of R. For every
positive integer n, we have p" - pn‘R = an. Also px=0 implies
that Rpx = pRx = 0. Since R is prime, x = 0, and hence p is

n
regular. Suppose that NP~ = I # 0. Then there exists a regular
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, N - . -n
eiement x€i. Thus for eachn, xe¢ ; that is for each n, x =

n = ;
some X_ regular in R.
P xn ror n g

But then x,= px, , and Rx, < sz. But R » pR and x is

2
regular and so Rx1 e Rpx2 * sz. Similarly sz - Rpx3 * Rx3, and
so on. Thus the left ideals Rxn form an infinite strictly
ascending éequence which contradicts our assumption that R is
Noetherian.

Now let ceC(P). We shall show by induction that ceC(Pn)
for every postive integer n. Suppose that ceC(Pn) and that reR

is such that cr er'l. Then certainly cr ep? and so r-spn, for

some seR. Then cspnean+1 and so cseRp. Hence seRp and

rePn+l. By a symmetrical argument it follows that ceC(Pm'l) '
and hence, by induction, that ceC(E™) for all n. Also if cr=0
then ref™ for all n and hence r=0. Therefore ceC(0).

Let a be non-zero element of R. Then there is a positive

n+l. Thus a = pnb for some

integer n such that aeP" and agp
beC(P) and it follows that a is regular. Therefore K is a
domain.

Let X be a non-zero element of R. Because R is Noetherian
there are only finitely many prime ideals minimal over RxR. So
% lies in only finitely many height-l prime ideals of R.
Therefore there exist prime elements PysPyr---r P, Such that x
= cp;P;-- P for some ceC(R). Thus R satisfies condition (2).

Now suppose that R satisfies condition (2). Let P be a
height-1 prime ideal of R. Let x be a non-zero element of P.
Then X = CP1P;-- Py for some ceC and prime elements P,

Eecause ce€C(P) and piR = Rpi, for each i, it follows that pieP

for some i, and that P = P;R. So R satisfies (1).
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2.1.2. Definition: A prime Noetherian ring such that every
non-zero prime 1deal contains a height-1 prime ideal and which
satisfies one of the two equlvalent condxtlons of Theorem

2. l l is a Noethetlan Unlque Factorisation Domain (UFD)

It might be thought that the requirement that each heignt-

1 prime ideal is generated by the same element on each side is
unnecessarily restrictive and that we could make do with each
each height-1 prime ideal being of the form P = pR = Rq.
However it is easy to see that this gives us no more
generality. We have p=uq and g=pv for some elements u and v in
R. Then up=pw=ugw=upvw. But u and p are both regular and so
i=vw; that is v is a unit and similarly so is u.

We shall call a prime Noetherian ring R a Unique Fact-
orisation Ring (UFR) if we simply require that every non-zero
prime ideal of R contains a height-1 prime ideal which is
principal on both sides. We shall discuss Noetherian UFRs more
fully in Chapter 5.

Note that the condition that every non-zero prime ideal
- contains a height—l prime ideal ‘is not necessary for much of
the follbwing.lt is unknown, in general, whether Noetherian

rings satisfy the descending chain condition on prime ideals.

A.V.Jategaonkar
has, though, constructed examples of right Noetherian (even
principal right ideal domains) rings which do not have height-

1 prime ideals. See Jategaonkar{37] for the details.

second, we remark that, when R is a commutative ring this

definition of a Noetherian UFD coincides with the classical
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definition of UFD. Thus this definition is a plausible
generalisation of the commutative case. If R were commutative
then the set C = nC(P), defined as above, would simply be the
set of units of R, by the classical commutative principal
jdeal theorem. But when R is not commutative, the set C can be
strictly larger than the set of units of R. The question of
when C is precisely the set of units will concern us more in
Chapter 4 . For the moment we may consider two "generic"
examples. Let R, = kix,y], be the ring of polynomials in two
commuting variables over the field k of the complex numbers;
and let ring R2 be the enveloping algebra of the complex two-
dimensional solvable Lie algebra, which we may write as

k(x,y:xy-yx=y].

2.1.3. Lemma: Let k be the field of the complex numbersb. Let R
= k(x,y:xy-yx=yl]. Then R is a Noetherian domain. R has a
unique height-1l prime ideal P = yR = Ry. Further, R/P is
isomqrphic to the polynomial ring in one indeterminate over k.
Each height-2 prime ideal of R is of the form (x-a)R + yR, for

some «aE€EkK.

Proof: By Lemma 1.8.1, R is a Noetherian domain. Suppose that
f(x)eR[x] and g(y)ek[y]. Then £(x)y = yf(x+1) and xg(y)-g(y)x
= yg'(y), where g' denotes the y-derivative of g.

Clearly, P = YR = Ry is a height-1 prime ideal of R and R/P
= k[x]. Now suppose that Q is any non-zero prime ideal of R. We
shall show that yeQ. First, we claim that there exists f(x)eQ,

for some 0#f(x)ek[x]. Suppose not. Choose f = f(x,y) =
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i=n, i
Zisuzi(x)y , for fi(x)ek[x], for least n.

Then  xE(x,y)=£(x,y)x = L[Z0[xE, ()€, (x) (x+1) )y’

e pi=n i
Li.,fi(x)iy

- [Ei-n— 1

o ovtyy

= h(xX,Y)Y, where the y-degree of
h(x,y) is n-1. However, xf-fxeQ. Therefore, if Y£Q, then
h(x,y)€Q, which contradicts our choice of f(x,y). So there
exists 0 # £(x)e€Q. Now choose 0 # f£(x)eQ of least degree in x.
Then, by a similar argument to the above, f(x)y-yf(x) = h(x)y,
where h(x) is of lower degree in x. If yf£Q, then h(x)eQ, which
contradicts.our choice of f(x). So we are forced to conclude
that yeQ. Hence, Q is the unique height-1 prime ideal of R. The

rest follows easily.

So both Rl and RZ are Noetherian UFDs as defined above.
Then C(Rl) is the set of non-zero elements of k ie the units of
Rl’ However, since yRZ - Rzy is the only height-1 prime ideal
of RZ’ C(RZ) is the set of all polynomials not contained in yR2
= Rzy. Thus C(RZ) is a very much larger set than the units of
RZ‘

We shall now show that for R a Noetherian UFD, C(R) is
always Ore. The following result is a very slight general-

isation of the result by Chatters (Chatters{13],Proposition

2.5), but the extra generality will be useful in Section 2.4.

2.1.4. Theorem: Let R be a Noetherian domain, X a set of
height-1l prime ideals that are principal on both sides and

completely prime. Let C(X) = NnC(P), where the intersection
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runs over alil PeX. Then C(X) is Ore.

Proof: It is easy to see that every non-zero element d of R can
pbe written as d = eplpz. . .pn, where eeC(X) and each piR is a
member of X. Let ceC and a€eR.Since R is a Noetherian domain
there exist y and x€R such that cx = ay. Now y may be written as
y = €ep;P,y-- P where eeC(X) and piReX. But ceC(piR) for all i
80 X = WP;Py. . P - Therefore cw = ae as required. A symmet-

rical argument will then show that C(X) is Ore.

2.1.5. Corollary: Let R be a Noetherian UFD. Let C be the set
of elements of R which are regular modulo all the height-1

prime ideals of R. Th‘en C is Ore.

2.1.6. Theorem: Let R be a Noetherian UFD and let T be the
partial quotient ring of R with respect to C. Then:
(1) T is a Noetherian UFD.
(ii) The elements of C(T) are units of T.
(iii) Every one-sided ideal of T is two-sided.

(iv) AB = BA for all ideals A and B of T.

Proof: Lefl‘p be a prime element of R. Because C ¢ C(pR) it is
clear that pT = Tp and that T/pT is a domain. Also the height-1
primes of T are precisely the extensions to T of the height-1
prime ideals of R. This proves (i).

Let teC(T). Then t"ac-‘l for some a€eR and ceC. Thus a=tc
wnere ¢ is a unit of T. Then aeC(R) and so a ,and hence t. is a
anit of T.

Let x be a non-zero element of T. Then, by (i) and (ii), x =
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up;P;-- Py for some unit u of T and prime elements Py of T.
Clearly then xT = Tx and so every one-sided ideal of T is two-
sided.

Finally, if pT and qT are distinct prime ideals of T then
pTqT = pTNQT = gTpT and it follows easily that the multiplic-

ation of ideals is commutative.

To finish this section we prove some results concerning
UFDs and maximal orders. Recall from Section 1.2, that R is a
maximal order in its full ring of quotients Q if, whenever gegQ
and I a non-zero ideal of R are such that either gl < I or

ig € I, then geR.

2.1.7. Theorem: Let R be a Noetherian UFD and let pR be a
height-1 prime ideal of R. Then the classical localisation
RC(pR) exists and is a maximal order.

proof: The first statement follows from Theorem 2.1.4. Let S =
RC(pR) . Now observe that pS is the unique maximal ideal of S
and every ideal of S is of the form an, for some integer n.

Then it is easy to see that S is a maximal order and also that §

is a local Noetherian ring with Jacobson radical ps.

2.1.8. Theorem: Let R be a Noetherian UFD. Let T be the partial
guotient ring of Rwith respect to C. ThenT = nRC(P) , where
the intersection ranges over all the height-1 prime ideals P

of R. Further T is a maximal order.
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Proof: Let U = nRC(P)

for all height-1 prime ideals of R. Observe then that

, as above. Then T € U because C ¢ C(P)

RC(P) = TC(PT) for any height-1 prime ideal of R and that U =

0T (eT) "
Let ueU. Then xueT for some non-zero element x of T. By the

apove we may assume that x = plpz. . .pn, for prime elements pi
of T. Then PPy - .pnueT and v = py-- .pnueU. Hence vuceT for
some CeC(plT) . Then plvceplT so plveplT and hence pz. . .pnueT.
Proceeding, by induction on n, gives ueT.

Now let I be a non-zero ideal of T and let y be an element
of the quotient ring of T such that yI £ 1. Let Q be any

height-1 prime ideal of T. ThenyIT So, by

c@) € ey
i - - T - - . 5
Theorem 2.1.7, Y€ C(Q) So ye nTC(Q) T. Therefore T is a

maximal order.

2.1.9. Theorem: Let R be a Noetherian UFD such that every non-
zero prime ideal of R contains a height~1 prime ideal. Then R

is a maximal order.

Proof: Let D be the multiplicatively closed set generated by
the prime elements of R. Then AR = Rd for elements d in D. Hence
R satisfies the Ore condition with respect to D, by Lemma

1.1.8. S=-=RD is simple, since if I is a non-zero ideal of R
then IND # ¢ and so IS = S.

Now let I be a non-zero ideal of R and let q be an element
of the quotient ring of R such that qI ¢ I. Then qIS ¢ 1IS;

that is g5 € S and so geS. If T is the partial quotient ring

of Rwith respect to C(R), thengqIT ¢ IT. But IT is an ideal of
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T and, since T is a maximal order, qeT.
We shall complete the proof by showing that R = TnS, since
then geR is immediate. Let ueTnS. As ueS, there are prime
elements p ,p,s.-.,p, Of Rsuchthat p p_...p ueR. Also v =
P,-- .pnueT and so vceR, for some ceC(R). Then we have plvcele

and hence p,vep 1R. So P,-- .pnueR. Proceeding, by induction on

n, gives uek.

2.1.10. Corollary: Let R be a Noetherian domain such that
every non-zero prime ideal contains a height-1 prime ideal.
Then R is a Noetherian UFD if and only if:

(i) R is a maximal order;

(ii) every height-1 prime ideal is principal on one side and

is completely prime.

Proof: Immediate from Theorem 2.1.9 and Maury-Raynaud[52],

Proposition I.3.5.
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section 2.2. Universal enveloping algebras are often UFDs.

In this section we will show that two major sub-classes of
the class of enveloping algebras of Lie algebras are Noeth-
erian UFDS as defined in Section 2.1. This section will use

the material of Section 1.8 without further reference.

Following the definition of UFDs, A.W.Chatters observed
that for complex solvable Lie Algebras their enveloping
Algebras satisfied the conditions of Theorem 2.1.1. M.K.Smith
subsequently pointed out that the same is true for semi-simple

Lie algebras for any field of characteristic zero.

2.2.1. Theorem: Let L be a £.d. solvable Lie algebra over the

field of the complex numbers. Then U(L) is a Noetherian UFD.

Proof: First we remark that every prime ideal of U(L) is
completely prime by Dixmier{25], Theorem 3.7.2.

Now suppose that P is a minimal non-zero prime ideal of
U(L). By Dixmier[25]}, Theorem 4.4.1, P has a non-zero inter-
section with the semi-centre SZ(L) of U(L). So by Moeglin[53],
Theorem III.3, there exists a non-zero element pePNSZ(L)
which is irreducible as an element of U(L); that is ab = p
implies that either aepu(L) or bepU(L). Finally Moeglin [53],
Proposition IV.4 tells us that pU(L) = U(L)p is a two-sided

prime ideal of U(L) and so P = pU(L) = U(L)p.

2.2.2. Theorem: Let L be a semi-simple Lie algebra over a



59

field k of characteristic zero. Then U(L) is a Noetherian UFD.

Proof: Suppose that P is a minimal non-zero prime ideal of
U(L). By Dixmier[25], Proposition 4.2.2, PnZ(L) = Q is non-
zero. Conversely, Conze[23], Theorem 11.2 says that if J is a
prime ideal of Z(L) then JU(L) is a completely prime ideal of
u(L)-

Now Q is clearly a prime ideal of Z(L) and hence must be of
height 1, since any non-zero prime ideal contained in Q would
generate a prime ideal of U(L) strictly contained in P.
Finally Dixmier[25], Theorem 7.3.8(ii), implies that Z(L) is
a polynomial ring over k and hence is a commutative UFD. So Q

is a principal prime ideal and P = QU(L) is also principal.
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Section 2.3: Group rings are sometimes UFDs.

In this section we consider the question of when group
rings are UFDs. We shall use the notation and definitions of
gection 1.8 without comment. Following the definition of

Noetherian UFD M.K.Smith observed the following.

2.3.1. Theorem: For k an abitrary field and G a f.g. torsion-
free nilpotent group, the group ring R = kG is a Noetherian

UFD.

Proof: Since G is nilpotent, Z(G) is a non-trivial f.g. (by
carter[10], Theorem 4.9) torsion-free Abelian group. Hence
kZ(G) is isomorphic to a polynomial ring over k in finitely
many variables localised at the powers of the variables and is
then a commutative Noetherian UFD.

Recall, from Passman [54], Lemma 11.1.3 that G/Z(G) is
torsion-free and nilpotent. Now suppose that P is a height-1
prime ideal of R. Then P' = PnkZ(G) is a non-zero (by
Roseblade-Smith([61], Theorems B and C) prime ideal of kKZ(G).

Given any prime ideal of kZ(G), Q, we have that kG/QkC is
isomorphic to (KZ(G)/Q)*G/Z(G) the skew group ring of kZ(G)/Q
and 6/2(G), and this is a domain by Lemma 1.8.7. But then P'kG
is a completely prime ideal of kC and is contained in P and
nence is equal to P. Finally, P' must be a height-1 prime of

kZ(G) and so is principal. Therefore P is principal.

More recently K.A.Brown has considered the problem in the

more general setting of K a commutative Noetherian domain and
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¢ a polycyclic-by-finite ring. What follows in this section is
entirely due to him. Throughout K and G will be as here.
The problem really reduces to finding an appropiate
control subgroup of G; that is a subgroup S(G) with the
property that, if P is a height-1 prime ideal of KG, then P =
{PNKS(G))KG. Recall from Section 1.8 the definitions of A(G)
and A*(G) for a group G. First a result which we will have

cause to use several times

2.3.2. Theorem: For the group ring KG, K a domain, the
following are equivalent:
(i) KG is prime;
(ii) Z(KG) is prime;
(i1i1) G has no non-trivial finite normal subgroup;
(iv) A(G) is torsion-free Abelian;

vy aT(e) = 1.
Proof: Passman [54], Theorem 4.2.10.

2.3.3. Definition: A subgroup of H of a group G is orbital if
it has only finitely many conjugates (equivalently lG:NG(H) |
is finite). A plinth of G is a torsion-free Abelian orbital
subgroup A of G such that ARQ is an irreducible QT-module
for every subgroup T of N;(A) of finite index.

We say that a plinth is centric if IG:CG(A) i is finite

(equivalently A has rank one). Otherwise A is eccentric.

Denote by P(G) the plinth socle as defined by I.Musson,
the subgroup of G generated by the plinths of ¢. For H an

orbital subgroup of G, we can define the isolator of H, Is(H),
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to be the subgroup generated by all the orbital subgroups of G
containing H as a subgroup of finite index. A subgroup is
jsolated in G if Is(H) = H. Now define S(G) to be Is(P(G)):
that is S(G) = {xeG: xea*(G/P(G))}.

Then S(G) is a characteristic Abelian-by-finite sub-
group of G. The next theorem shows us that S(G) is the control

group we are interested in.

2.3.3. Theorem: If P is a height-1 prime ideal of KG then P =

{PNKS (G) )KG.
Proof: Brown [9], Theorem A.

Before we consider the affirmative results we should
observe the following. DefineD=< a,b: a tha=b 1, a’? = 1)

the infinite dihedral group.

2.3.4. Lemma: Suppose that G has a subgroup isomorphic to D
which is orbital and isolated. Let Q equal the augmentation
ideal of KD, and let P = anKG, where the intersection is over
all the elements of G ( though note that this reduces to a
finite intersection). Then P is a height-1l prime ideal of KG

which is not principal.
Proof: Brown [9], Lemma 2.2.
Clearly then in order to have any hope that KG is a

Noetherian UFD we must avoid this situation. We say that G is

"dihedral-free" if G contains no orbital subgroup isomorphic



63

to D.

The real crux to the argument comes in the next two

theorems, Theorems B and C of Brown [9].

2.3.5. Theorem: Suppose that K is a commutative Noetherian
UFD, that AY(G) = 1, and that G is dihedral-free. Let P be a
height-1 prime ideal of KG. Set J = PAKS(G) so that J = ng?,
where Q is a G-orbital prime of KS(G) and the intersection
runs over all the elements of G. Then the following are
equivalent:
(i) P is right principal;

(ii) Q has height one;

(iii) P contains a non-zero central element;

(iv) P contains a non-zero normal element;

(v) P contains an invertible ideal of KG.

Proof. Brown [9], Theorem B.

The next result makes it clear why it is that for KG to be a
UFD every plinth of G must be centric, and so we reproduce the

proof in full.

2.3.6. Theorem: Suppose that A*(G) = 1. Then the following are

equivalent:

(i) every non-zero ideal of KG contains a non-zero

invertible ideal;

(ii) every non-zero ideal of KG contains a non-zero

normal element;
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(iii) every non-zero ideal of KG contains a non-zero
central element;

(iv) every plinth of G is centric.

Proof: It is clear that (iii) holds implies that (ii) holds,
and that (ii) implies that (i) holds.

Now suppose that (i) holds and suppose that A is an
eccentric plinth. Let A° pe Is(A) and let I be the augment-
ation ideal of KA®. Then IG is aprime ideal of KGand Q = IS(G)
is prime since A° is isolated in G. It can be shown that
height(Q) = h(A) which is greater than 1l by assumption. But
the equivalence of (ii) and (v) of Theorem 2.3.5 implies that
P contains no non-zero invertible ideal of KG, a contrad-
iction.

Finally, suppose that (iv) holds. Then S(G) = A°(G), the
isolator of A(G). Suppose that P is a height~1 prime ideal of
KG. Then by Theorem 2.3.3, P = (PﬂKAo(G) JKG and so PnKAo(G) is
non-zero. But using Theorem 2.3.2 and that IAO(G) :A(G) is
finite we can deduce that there exists a non-zero element x of
PNKA(G) .

But x has only finitely many conjugates. So ﬂxg is a non-
zero central element of P. Since KG is Noetherian it is now
easy to deduce that every non-zero ideal of XG has non-zero

intersection with the centre of XGC.
Now we have

2.3.7. Theorem: Let K be a commutative Noetherian UFD, and let

G be a polycyclic-by-finite group. Then KG is a Noetherian UFR
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if and only if the following conditions hold:
(i) AT(6) = 1,
(ii) G is dihedral-free,

(iii) every plinth is centric.

Proof: Suppose that KG is a Noetherian UFR. Then KG is prime so
by Theorem 2.3.2 (i) follows. G must be dihedral-free
otherwise there would exist some non-principal height-1 prime
jdeal of KG and (iii) comes from Theorem 2.3.6.

Conversly if (i),(ii),and (iii) hold then KG is a prime
Noetherian ring. That every height-1 prime ideal is principal

comes from (iii) and Theorems 2.3.5 and 2.3.6.

2.3.8. Theorem: Let K be a commutative Noetherian UFD and let
G be a polycyclic-by-finite group. Then (a) KG is a Noetherian
UFD only if the following conditions hold:

(1) G is torsion-free,

(ii) all plinths are actually central (ie CG(A) = c),
and (iii) G/A(G) is torsion-free;

(b) if (i), (ii), and (iii)' G/A(G) is poly-(infinite

cyclic) hold then R is a Noetherian UFD.

Proof: (a) Suppose that KG is a Noetherian UFD. Since XG is a
domain, G is torsion-free ( D.Passman [54], L.emma 13.1.1). If
G/A(G) is not torsion-free then there exists geG\A(G) with
xggneA(G) for some n. Then there exists a height-1 prime ideal
P of KG containing the central element [[(xY-1), the product
over the distinct (finitely many) conjugates of (x-1). Since P

is completely prime by assumption, we may assume that (x-1)
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iies in P. But, if T is a transversal of (x> in {(g>, then set 8 =
rt, sum over teT. Clearly then s(g-l)e(x-1)KG < P. But
neither s or (g—-l) lie in P since P = (PNA(G))KG. This
contradicts our assumption that P is completely prime.

if A(G) is not central then it is possible to construct a
height-1 prime ideal of KG which is not completely prime so we
can deduce that (ii) must hold.

(b) Suppose that (i), (ii), and (iii)' hold. First, KG
is a domain, by Theorem 1.8.5. If P is a height-1 prime ideal
of KG then P is principal by Theorem 2.3.7 and in fact P = pKG
for p some non-zero element of KA(G). Then KG/P = KG/pKG is
isomorpnic to KA(G)/pKA(G)*G/A(G) and hence is a domain by

Lemma 1.8.7.

Remark: It remains an open question as to whether (iii) would
pe sufficient in (b) of the above theorem. It would follow if
one could prove a "twisted"™ version of the 2zero-divisor

conjecture.
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gection 2.4. Some constructions of Noetherian UFDs.

In this section we consider a "new for 0ld" technique to
enable us to construct UFDs from other UFDs. For the defin-

jtion of An(R) for a given ring R see Section 1.8.

Theorem 2.4.1: Let R be a Noetherian UFD such that char(R)=0.

Then A1(R) is also a Noetherian UFD.

Proof: Recall that if P is a prime ideal of R, then Al(R/P) is
isomorphic to Al(R)/PAl(R) and so is prime. In particular, if
P is completely prime then PAI(R) is a completely prime ideal
of A (R).

Suppose that P is a height-1 prime ideal of I‘&1 (R). Then we
shall show that PNR = Q is a non-zero height-1 prime ideal of
R. Suppose that Q = 0 and that reP is the element of least
degree in y in P.

j=n

s - 3
Sor 2j,0fj(x)y

r for some fj(x)eR[x].

. j=n L)1

Then rx-xr = f: . f.(x .

Li-1f5(x)3y
But 0 # rx-xreP and is of lower degree in y. Now fj (x)j=0
implies that fj(x)=0 and so we deduce that r=f0(x) . A similar
argument in the x-degree using ry-yr will then force re¢R.
So PAR = Q is a non-zero prime ideal of R and it is easy to

see that it must be height-1. Hence Q = pR = Rp for some prime
element of Rand P = PA (R) = A (R)p is a completely prime
ideal of Ax(R)'

2.4.2. Corollary: Let R be a Noetherian UFD. Then A (R) is a

Noetherian UFD.
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Proof: By induction.

2.4.3. Remarks: (a) Suppose that R is a Noetherian UFD. Then
essentially the same proof as for Theorem 2.4.1 would woxk for
the ring (as defined in Section 1.8) BX(R) , for X\ a central
unit of Rsuch that 1-2" is a unit for all integers n. Note that
here we do not need to assume that char(R)=0.

(b) Anticipating ourselves briefly, we
exhibit in Chapter 5 an example of a Noetherian UFD R such that
R[x] is a UFR and not a UFD. Since we may regard A1(R) as a skew
polynomial extension of R[x], it is clear that R{x] is an
example of a Noetherian UFR which has a skew polynomial
extension which is a Noetherian UFD.

(c) If R is a Noetherian UFD with char(R) = p

# 0, then we have the following

2.4.4. Theorem: Let R be a Noetherian domain with non-zero

characteristic p. Then in A (R) , generates a height-1 prime

ideal which is not completely prime.

Proof: Let I = (xp)Al(R). Suppose that A and B are ideals of
AI(R) containing I such that A.B ¢ 1. If I ¢ A then choose an
element f(x,y) = Ei=0f (x)y €A\l of 1least degree in vy.
Then fx—xf=):1_lfi(X)iy i-1 also lies in A and is of lower
degree iny. We may deduce then that £(x,y) = g(x,y®) + h(x,y),
where h(x,y)eI. Commuting f(x,y) with y we can similarly
deduce that there exists f(x,y)¢A such that f(x,y) = u(yp) +

v(x,yY), where v(x,y)el. But A.B ¢ I and hence B c 1I.
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Therefore xP generates a prime ideal, which must be of
height 1 by Jategaonkar{39], Theorem 3.1. Clearly I is not

completely prime.

we can also use Theorem 2.1.4 to construct UFDs from any

prime Noetherian ring containing at least one prime element.

2.4.5 Theorem: Let R be a prime Noetherian ring. Suppose that
X, the set of prime elements of R, is non-empty. Let C =
nC(pR). where the intersection runs over all the prime
elements p in X. Then C is Ore and the partial quotient ring Rc

is a UFD.

Proof: C is Ore just as in Theorem 2.1.4. Now suppose that P is
a height-1 prime ideal of T = RC' Then P = QT for some height-1
prime ideal Q of R. If Q is not generated by a prime element
then a simple argument cohsidering a non-zero element of Q
shows that QNC is non-empty. Thus all height-1 prime ideals of

7 are generated by prime elements of R.

This result means that results about Noetherian UFDs will

give us information about prime elements in more general

Noetherian domains.

In the commutative case there is a useful criterion to
determine when R is a UFD. In a commutative Noetherian ring R
suppose that S is a multiplicative set generated by prime
elements. Then Nagata's Theorem says that R is a Noetherian

UFD if and only if Ry is a Noetherian UFD. See, for example,
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cohn{21]), Theorem 11.3.5. To conclude this section we extend

this result to non-commutative Noetherian UFDs.

2.4.6. Theorem: Let R be a prime Noetherian ring. Suppose that
S is a set of prime elements of R. Let D be the multiplic-

atively closed set generated by S. Then R is a Noetherian UFD

if and only if R_ is a Noetherian UFD.

D
Proof: If R is a Noetherian UFD then it is easy to see that then
so 1is RD.

Conversely, suppose that RD is a Noetherian UFD and let P

be a height-1 prime ideal of R. If PR_ = R_ then DnP # ¢ and so

D D

gome prime element of S lies in P. ‘Hencé PRD is generated by gi
prime element. If PRD # RD' then PRD is é he\ight-l prime ideal

of RD. Since RD is a Noetherian UFD, PRD - pRD - RDp. where p is

of the form qd-l, for some deD and geR. So without loss of
generality P is generated by an element geR such that aR, =
RDq. Choose qeP with gR = Rqg, and such that gR is maximal. Then
qg’piR, for any prime element Py of R. Let 0 = gR = Rq. We claim

that P = Q. Suppose not, then choose reP\Q. Since rePk there

D’
. exists seRwithr = dclsq. Therefore, rd = sq. But quiR, for
any prime element of Py of R. By a simple argument, based on an
induction on the n such that d = P - Py sedR. Hence reRq,

wnich contradicts our choice of r. Therefore, P = qR = Rqg.

2.4.7. Corollary: Let R be a Noetherian UFD. Let D be the
multiplicative set generated by all the prime elements of R.

Let 8 = Ry. Then R[x] is a Noetherian UFD if and only if S[x] is

a Noetherian UFD.
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Chapter 3. Some results on Noetherian UFDs.

3.0. Summary.

The preceding chapter makes it clear that Noetherian UFDs
are objects of interest to study, both for their own sake and
for the approach they offer to answer questions about some
well-known classes of Noetherian rings. However, seen as a
possible analogoue of the commutative case, the results of
this chapter are surprising. We are able to prove actually
stronger results about Noetherian UFDs when we know that they
are not commutative. This enables us to draw conclusions about
PI or bounded Noetherian UFDs which are true provided that the
ring is not actually commutative. This appears to be a curious
state of affairs, and is an indication of how strong a
condition it is to require a prime ideal in a non-commutative
ring to be completely prime.

Let R be a Noethe;: ian UFD, and C = C(R). In Section 3.1, we
show that if R is not commutative, then the ring T = Rc is
aiways a principal ideal domain. This is a result first proved
for the enveloping algebra of a solvable Lie algebra by
A.W.Chatters and for group rings of torsion-free nilpotent
groups by M.K.Smith. We should remark that the result was
proved independently by M.K.Smith and it appears in Gilch-
rist-Smith [30].

Section 3.2 uses the result of the previous section to
improve the bound on the stable rank of some UFDs using a
similar technique to that of Section 3.1.

section 3.3 applies the technique of Section 3.2 to the

problem of localising at cliques of completely prime
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ideals. Whilst not directly concerned with the theory of
Noetherian UFDs, this section may have applications to the
theory of enveloping algebras of Lie algebras.

Finally, Section 3.4 considers the centres of Noetherian
UFDs.

In this chapter we will use the following notation.
Throughout, R will be a Noetherian UFD. C will denote the set
nC(P), where the intersection runs over all the height-1 prime
ideals P of R. D will denote the multiplicatively closed set
generated by the prime elements of R. The partial quotient

rings R, and R, will be denoted by T and S respectively.



gection 3.1. Noetherian UFDs are oiten PIDs.

in Chatters[l13], Theorem 3.3 shows that, if L is a non-
Abelian solvable Lie algebra, U(L) =R, and T = Rc, then T is a
principal ideal domain. M.K.Smith in a letter to J.T.Stafford
showed that the same is true for the group ring over a field k,
R = kG, where G is a torsion-free nilpotent group which is not
Abelian.

We prove that this is the case in general.

3.1.1. Theorem: Suppose that R is a Noetherian UFD which is
not commutative. Then every ideal which is contained in no

height-1 prime ideal has non-empty intersection with C.

Proof: It clearly suffices to prove the theorem for a prime

ideal, say P, whose height is greater than 1. So suppose that P

is such a prime ideal.

First, suppose that P contains no height-1 prime ideal.

Let a be any non~-zero element of P. Then a = CP,P,---Pu’ for
some ceC and prime elements P,rPyr-.-sp, - Here pn¢P and
ak =cp.p,.- .an =cp,p,.- ‘pn—lan € P. So cp,p,-- ‘pn-1€P‘ By

induction on n, we deduce that ceP.

If P contains exactly one height-1 prime ideal, say pR =
Rp, then choose aeP\pR and proceed as in the first case.
So suppose that P contains two distinct height-1 prime
ideals of R, pR = Rp and gR = Rg. For each positive integer n
and a fixed reR (to be specified later) define the element
tn - p+q(r+qn)eP.

Suppose that the theorem is false. Since each t =~ Cp...-P
n 1

ml
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for ceC and prime elements Py then at leas£ one of the pieP.
Hence tneln, where ln is a height-1 prime ideal of R contained
in P. Note that q;.’ln, since qeln would imply also that peln
which contradicts our assumption that p and g generate
distinct height-1 prime ideals.

Suppose that I =1, for distinct integers m and n, m < n.

So tm, tnezm. Hence tm-tnelm. So

c_‘m+1_ n+1 _ qm+1(1_qn—

m
q )elm.

since gfI_, we conclude that (l—qn'-m)elm ¢ P. But, since
qeP, this would imply that 1leP, a contradiction.

Thus the set of In's is infinite. Since R is Noetherian,
only finitely many height-1 primes lie over any non-zero
eiement of R and so t'lIn = 0, where the intersection runs over
all n.

We shall obtain a contradiction from this by exhibiting a
non-zero element of nIn. It is here that we have to use the

fact that R is not commutative.
The proof splits into three cases:

(a) Suppose that both p and g are both central. Choose reR
to be any non-central element. Then there exists se¢R such that
sr-rs # 0. Then [tn,s] = tns-stn = qrs-sqr = q(rs-sr). Since
qﬂn' 0 # (rs-sr)eln. This is true for all n.

(b) Suppose that pg = gp, but that q is not central. Then
there exists reR such that qr-rq # 0. Then [tn,q] = g(rg-gqr) =
0. So (rq-qr)eln, for all n.

(c) Finally, suppose that pg # gp. Let r = 0. We have

[tn'Q] = (pa-gp)el , for all n.

3.1.2. Corollary: Let R be a Noetherian UFD which is not
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commutative. Then T is a principal ideal domain.

Proof: Since T is Noetherian, it suffices to consider a right
jdeal I = xT + sT. By Theorem 2.1.5,(iii), I is an ideal and so
i is contained in some maximal ideal M of T. Now M = (MNR)T and
MNK is a proper prime ideal of R. By Theorem 3.1.1, MNK is a
height-1 prime ideal of R. Therefore M = qT, for some prime
element g of R.

But now the ideal J = g~ *

1 € T. By a Noetherian induction,
J is principal, say J = dT. Thus 1 = gdT is principal, as

required.

Remark: This seems to be a surprising result. If we consider a
polynomial ring R = k[xl, .o ,xn] over a field K, then R is a
Noetherian UFD and it is easy to see in this case that T = R.
But clearly, if n 2 2, then T is not a principal ideal domain.
1t seems to indicate that in the study of Noetherian UFDs
there are going to be significant differences in results
depending on whether or not R is commutative. To some extent
this is borne out by Section 3.2 when we come to consider the

stable range of some Noetherian UFDs.

3.1.3. Corollary: Let R be a bounded Noetherian UFD which is
not commutative. Suppose that every prime ideal of R contains
a height-1 prime ideal. ThenR is a principal ideal domain and
every one-sided ideal is two-sided.
Proof:
By {:hle proof of Theorem 2.1.9, R = TnS and InD # g, for ali non-zero

ideals I. Suppose that cek is a non-zero non-unit of K. If I is
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the pound of cR, then IND # ¢, and so IS = S‘. Thus ¢S = S and ¢
is a unit of S.

But then S is the full quotient ring of R. Hence T ¢ S.
Therefore R = T and the result follows from Theorem 2.1.6 and

Corollary 3.1.2.

3.1.4. Corollary: Let R be a Noetherian UFD satisfying a
polynomial identity. Suppose that R is not commutative. Then R
is a principal ideal domain and every one-sided ideal is two-

sided.

Proof: By Corollary 1.3.4, R is bounded. By Rowen{62], Theorem
5.2.19, R satisfies DCC on prime ideals. The result now

follows from Corollary 3.1.3.

3.1.5. Corollary: Let R be a Noetherian Azumaya algebra.
suppose that Z(R) is a Unique Factorisation Domain. If
Kdim(Z(R)) ? 2 then at least one of the height-1 prime ideals

of kK is not completely prime.

Proof: By Theorem 1.3.6, every height~l prime ideal of R is
principal. If every height-1 prime ideal of R were completely
prime then R would be a principal ideal domain, by Corollary
3.1.4. This is clearly not the case. Therefore, at least one

of the height-1l prime ideals of R is not completely prime.

Remark: Let R be an arbitrary Noetherian PI domain. Let C =
nC(pR), where the intersection runs over all the prime

elements p of R. By Theorem 2.1.4, the set C is Ore, and by,



Coroliary 3.1.4, Rc is a principal ideal domain. Thus by
localising at C, we have automatically localised away all the

prime ideals of height greater than 1.

Suppose that D is a division ring. Provided that D is not
commutative, not all one-sided ideals of D[x] are two-sided.
suppose that dfZ(D). Then, if eeD is such that de ¢ ed, then
(ed-de) eD[x}(x-d)D{x]). That is, (x-d)D{x] # D[x](x-d)D[x].
In particular, if D is a PI division ring, then D[x] is not a
Noetherian UFD. This enables us to give an amusing proof of

the following result.

3.1.6. Corollary: Let Dbe a PI division ring whose centreK is
not the whole of D. Then there exists a polynomial in K[x],

jrreducible over K, but which is reducible over D.

Proof: R = D[x] is a PI principal ideal domain which by the
foregoing remarks cannot be a Noetherian UFD. There exists
therefore a height-1 prime ideal P of D{x] generated by p(x)
in X[x] which is not completely prime. Clearly p(x) is
irreducible as an element of K[x]. We shall show that p(X) is
not irreducible as an element of D{x].

since p(x)R is not completely prime, there exists a right
ideal I of R such that p(x)R c I # R. Since R is a principal
ideal domain, I = a(x)R, for some non-unit a(x) € R. Hence p(x)
= a(x).b(x), for some non-unit b(x) € R. Thus p(x) is

reducible in D[x].

Remark: Of course, another proof of Corollary 3.1.6, may be
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optained by noting that K< F { D, for some splitting field F of
K. That is, some irreducible polynomial in K(x] is reducible

in F[x]}.

3.1.7. Corollary: Let Rbe a hereditary Noetherian UFD. Then R

is a principal ideal domain or primitive.

Proof: Immediate from Corollary 3.1.3 and Lenagan([47], Prop-

osition 5.1.9.

Note that primitive Noetherian UFDs do exist. Let D be the
quotient ring of the Weyl algebra I\1 (k), Kk the complex
numbers. Then D[x] is primitive (Amitsur-Small{l], Theorem 3)
and it is not hard to see that the height-1l prime ideals of
D[{x] are generated by central irreducible polynomials in
k[x]. Since these are all of the form (x-a), for a a complex

numper, the result follows. We shall significantly improve

this observation in Section §.1.
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section 3.2. The stable rank of T.

In Section 1.6 we discussed possible bounds for the stable
rank of a ring R and in particular recalled that, for a
Noetherian ring R, sx(R) < Kdim(R) + 1. For a Noetherian UFDR,
the partial localisation T, is a principal ideal domain by
Theorem 3.1.2. So we have sr(T) < 2. It is thus a natural
question to ask whether in fact sx(T) = 1. In this section we
show that this is indeed the case. Hence, in particular, if R
is a bounded Noetherian UFD which is not commutative, then

st (R) = 1.
First we have to prove a number-theoretic lemma

3.2.1. Lemma: Let k be a positive integer. Then there exist k
positive integers 1< ay < a, ... ¢ ay satisfying the

condition:

(*) (ai-aj) divides ay (and also aj), for all pairs idj.

Proof: By induction on k. Clearly a, = 1, a, = 2 satisfy (*) for
k= 2.

Now suppose that, for the integer k, we have a set a ¢ ...

1
(aksatisfying(*).Letb0=nai.Letbi-b0+ai, for i =

1,...+k. Then for i >0, (bi—bo) = a, divides b,; and for
0<¢j<i, (bi-bj) = (ai—aj) divides a, and hence divides bi'

| So l::0 < bl (...« bk is a set of (k+l) numbers satisfying
(*).
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a
Remark: A similar argument works with b, = Niq 3 and
24 24
bi-bo-(q -l)/q '

wnere q is any positive integer > 1.

L.et R be a Noetherian UFD which is not commutative. Then,
fromresults in Section 2.1 and Section 3.1, Rc = T is a
Noetherian UFD whose non-zero prime ideals are of the form pT
= Tp, for paprime element of R, and C(T) is the set of units of
T. Thus every non-unit of T lies in a height-1 prime ideal of
T.

The following Theorem relies heavily on this simple

result.

3.2.2. Lemma: Let m and n be positive integers with m dividing
n. Suppose that r is an element of a ring R. Then

(r"-1) € (£™-1)R.
proof: (r"-1) = (rm‘l)(l+rm+:2m+. ..+r(d-l)m), where n = m.d.

3.2.3. Theorem: Let R be a Noetherian domain. Suppose that
every non-unit of R lies in a height-1l prime ideal and that

every height-1 prime ideal is completely prime. Suppose also

that R is not commutative. Then sr(R) = 1.

Proof: Suppose that aR + bR = R. If a is a unit of R then we
have (a+b.0)R=R. If b is aunit of R, there exists c with bc =

1. Then (a + b.(c(1-a)))R=R. So, without loss of generality,

we may assume that neither a nor b is a unit.

The idea of the proof is similar to that of Theorem 3.1.1,



81

put a little more care is needed. We consider elements of the
form fn =a+ b.cn, for suitable choice of elements cneR and n a
positive integer. 1f none of the fn are units of R then, by
hypothesis, each fn must lie in at least one height-1l prime
ideal, say In. Then by commuting each fn with a suitable
element reR, we obtain a non-zero element [fn,z] of R which is
independent of n. Since R is Noetherian, [£n,r] can lie in
only k height-1 prime ideals, for some integer k. So if we
choose k+l distinct elements fn then at least two of them, say
fm and fn' lie in the same height-1l prime ideal, Im. Then
(fm-fn) lies in I and from this we will be able to deduce a
contradiction. We remark that a and b cannot both lie in the
same height-1 prime ideal of R since they generate R.
similarly, the elements a and (ar—l) ' for x a positive
integer, cannot both lie in the same height-1 prime ideal.

The proof has to consider several cases:

(i) First, suppose that ab # ba. Then (ab-ba) iies in
exactly k height-1 prime ideals of R for some integer k. By

Lemma 3.2.1, we can choose a sequence of positive integers a

1
$ a, (...« Ayl satisfying the condition (*) of Lemma 3.2.1.
a
Defj.nefn=a.+b.(an -~ 1), for n = 1,...,k+1. We may

suppose that, for eachn, f eI , for some height-1 prime ideal

I_.

n
a a
Then [ ,a] = (ba-ab)(a "-1) € 1 . If (a "-1) eI, then
ael . a contradiction. So (ab-ba) € 1.+ for all n. We can
deduce that there exist £ and £, m>n, such that fmei and
m
f el .

n n
Now fm-fn=b-(a -a )=b.a (a ™ n-l) €l . Suppose
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th:t be Im, then a € Im; and if a € Im then either beIm or
(a “-l)elm. These all lead to contradictions. We are forced to
a_—a

m n
l)eIm. But (am-an) divides an and hence,

. a
by Lemma 3.2.2, (a "-1)el .Butf =a+b.(a “l)el_, and 8o

deduce that (a
aeIm, a contradiction. This finishes case (i).

(ii) Now suppose that ab = ba. This case splits into
three sub-cases.
(a) Suppose that b is not central. There exists ceR
such that bc # cb and, by replacing c by (ac+l) if necessary,
we may assume that if aeJ, for some proper ideal J of R then cgJ
suppose that (bc-cb) lies in exactly k height-l prime ideals.

Choose, as before, positive integers, a, ¢ ... ¢ a

1

satisfying condition (*) of Lemma 3.2.1.
a

Let fn-a+b.(a n-l).c, forn=1,...,k+l. For each n, we

k+1

may suppose that fneln, for some height-1 prime ideal In of R.
a

Then [fn,b] =bh.(a n-l).(cb—bc) € In. As in case (i), if
a

either b € Inor (a n-l) € In' we can derive a contradiction.
Hence (cb-bc) € In' for n = 1,...,k+].

So there exist integexsmandn, m > n, such that fm € Im

and fn € Im' Consequently,

a a a a_ —a
m n
f-f =b.(a™aM.c=ba"(a™ "-1).ce I

a

Clearly, b g Im' and a " £ Im. Similarlyc e Im is ruled out
a_—a

by our choice of c. We are forced to deduce that (a n n—1) €

Im' Since (am—an) divides a,' We can proceed just as in case
(a) to derive a contradiction.

(b) Suppose now that b is central and that a is not
central. Then there exists d ¢ R such that ad # da. Suppose

that (ad-da) lies in exactly k height-1 prime ideals. As
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pefore choose positive integers a; < o.o. X a1 satisfying

condition (*) of Lemma 3.2.1.

Let fn-a—ban.(a—l), for n=1,..., k+l. We may suppose
that, for eachn, £ € L forasome height-1 praime ideal 1.
Then [f_,d] = (ad-da).(1-b ") €1 . If (1-b "y er, then

n

i= a-(a-l) € In' a contradiction. So (ad-da) € In for n =
1,....ktl.
Then there exist integers mand n, m > n, with fm € Im and

fn € Im' This implies that

a a a a -a
. - m_. n 1y e®w D m n_ _
r,m-fn (b b ).(a-1)=b .(b 1).(a-1) ¢ Lo

a_-a
Clearly b ¢ Im' and (a-1) ¢ Im' Hence (b m

n-l) el . Then
a m
(b ™-1) e 1, and this leads to a contradiction as pefore.
(c) Finally, suppose that both a and b are central.
since R is not commutative there exist elements of R, ¢ and d,
with cd # dc. As in (a) we may assume that if a € J, for some
jdeal J of R then ¢ £ J. Suppose that (cd-dc) lies in exactly k
height-1 prime ideals. As before, choose positive integers a,
¢ ... ¢ aril sati:fying condition (*) of Lemma 3.2.1.
Let fn- a+b.(a n—l).c v for m = 1,...,ktl. We may
suppose that, for eachn, fn € In' for some height-1 prime
ideal I of R. Then [fn,d] =h. (aan-l) . (cd-dc) € I- Now the
proof of (ii)(a) goes through almost word for word.

Since the four sub-cases we have considered cover all

possibilities the proof is complete.

3.2.4. Corollary: Let R be a Noetherian UFD which is not

commutative. Then T has stable rank 1.

Proof: As we remarked earlier, T satisfies the conditions of
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Theorem 3.2.3.

3.2.5. Corollary: Let R be a bounded Noetherian UFD which is
not commutative. Suppose that every non-zero prime ideal of R

contains a height-1 prime ideal. ‘Then R has stable rank 1.
Proof: By Corollary 3.1.3, R = T.

3.2.6. Corollary: Let R be a Noetherian UFD satisfying a
polynomial identity. Suppose that R is not commutative. Then R

has stable rank 1.

Remark: Just as in Section 3.1, this result is stronger than
one would expect from the commutative case. For example both
the integers Z and the domain K{x] for some field K are
principal ideal domains, but they both have stable range 2. We
have that (5,7) is a unimodular row over Z which is not stable
andiﬁmarow(x,l-xz) is unimodular and not stable in K[x].

J.T.stafford has conjectured that all affine PI rings
have stable rank at least 2, which is known for commutative
affine rings. Thus Corollary 3.2.6 is even more surprising
than at first sight.

Suppose that D is a division ring. Then D[x] is a
principal ideal domain and it is easy to see that (x,l—xz) is a
unimodular row which is not stable. So D{x] has stable range

2. This would give another proof of Corollary 3.1.6.

To finish this section it might be interesting to note

some of the properties of the sets of integers satisfying (*)
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of Lemma 3.2.1. Let us call a set {al, .o ,ak} a k-*-set if it
gsatisfies (*¥). Call a k-*-set coprime if the highest common
factor of the a; is 1. Then we can observe the following:
(a) Any subset of size m of a k-*-set is an m-*-set;
(b) There exists an infinite number of coprime k-*-sets
for all integers k;
(c) There does not exist an infinite *-set.
chrtainly (a) is true. To prove (b), note that it cetainly holds
| for k=1. For kK > 1, use the inductive construction of Lemma
3.2.1. To prove {(c) suppose that a, is the first element in
an infinite *-set. Then for alln, (an-al) divides a . But
this means that (an—al) < an/Z. Thus a, < Za\1 and so there
exist at most al+l terms in the *-set whose first texrm is aj-
Finally, for k = 2 to 7 the smallest k-*-sets are as
follows:
k=2 (1,2}
k=3 {2,3,4}
k=4 {6,8,9,12)
k=5 {36,40,42,45,48]}
k=6 {210,216,220,224,225,240}
k=7 {14976,14980,14994,15000,15008,15015,15120}
I would like to thank R.Everson for his enthusiasm in

determining these values.



86

Section 3.3. Cliques and localisation.

This section represents something of a meander in the flow
of this thesis, and is not directly concerned with the theory
of Noetherian UFDs. It arises from the observation that, in
proving Theorem 3.2.3, we are in effect proving the "inter-
section condition" (which we shall define later) for a set of
completely prime prime ideals. The method of Theorem 3.2.3
seems to be of independent interest and in this section we
shall discuss one possible application: to that of cliques and
localisation. We shall follow Warfield[74] in our treatment
of cliques.

The problem of localising at a prime ideal reduces to that
of showing that C(P) is left or right Ore. However it is often
the case that C(P) is not Ore and it therefore becomes of
interest to determine the largest subset of C(P) which is Ore.
We shall denote this set by S(P).

Let R be a ring. The notion of a "link" between two prime
jdeals P and Q of Rwas first introduced by A.V.Jategaonkar in
Jategaonkar[38]. Suppose that J is an ideal of R with
QP c¢ J < QNP such that QNP/J is torsion-free as a left R/Q-

module and as a right R/P-module. In this situation we say

that there is a second layer link, denoted by QA~P. The next
Lemma shows that the existence of a link between prime ideals

constitutes an "obstruction" to being able to localise at the

prime ideals.

3.3.1.Lemma: Let R be a Noetherian ring. Suppose that QAP

is a second layer link between the prime ideals P and Q of R.
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(i) Suppose that C is a left Ore set with Cc C(Q). ThenC c
c(P).

(ii) Suppose that D is a right Ore set with D c C(P). Then D
c C(Q)-

(iii) If E is an Ore set, then E c C(Q) if and only if E ¢

C(P).

Proof: Suppose that QP ¢ J c QnP is the second layer link.
That is, R/Q(QnP/J)R/P is an R/Q-R/P-bimodule torsion-free on
poth sides. In particular, l-annR(QnP/J) = Q and
r—annR(QnP/J) = P. Suppose that ceC and reR are such that
creP. We aim to show that reP.

Choose beQnNP. Since C is left Ore, there exist b'eR and
c'eCwith b'c = c'b. Clearly b'eQ. We have c'br = b'cr € QP ¢
J. But (QnP/J) is torsion-free as a left R/Q-module. There-
fore, since c'eC, breJ. But b was chosen arbitrarily in QnP.
Hence (QNP).r € J. We conclude therefore that re¢P, as
required.

The second statement of the Lemma follows by a symmetrical
argument to the above. The 1last statement then follows

immediately.

The graph of 1links of R is the directed graph whose
vertices are the prime ideals of R and whose arrows are given
by the second layer links. A clique of R is a connected
component of the (undirected) graph of links. If P is a prime
ideal of R then C1l(P) is the unique clique containing P. By
Lemma 3.3.1, it is immediate that S(P) c C(Q), for all the

prime ideals QeCl(P). It becomes, therefore, a natural
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question to ask when S(P) = nC(Q), where the intersection rAuns
over all the prime ideals QeCl(P).
For a set X of prime ideals of a ring R, let C(X) = nC(P),
where the intersection runs over all the prime ideals in X.
A.V.Jategaonkar has determined necessary and sufficient

conditions for when C(X) is Ore and the ring R R has

c(x) °X
particularly nice properties. We say that a clique X is

classical or classically localisable if the following cond-

itions hold.
(i) C(X) is a right and left Ore set;
(ii) for every prime ideal QeX, Rx/QRX is naturally
isomorphic to the Coldie quotient ring of R/Q;

(iii) for QeX, the prime ideals QRX of Rx are precisely the
primitive ideals of Rx;

(iv) the Rx-injective hull of every simple Rx-module is the
union of its socle sequence.

Note that if X is finite and condition (i) is satisfied,
then (ii) and (iii) are automatically satisfied. They are
added here to ensure that, in the case when X is infinite, the
ring Ry has "nice" properties. Condition (iv) is a useful
condition that may hold in general and certainly holds in all

well-known examples.

A prime ideal in a Noetherian ring satisfies the second

layer condition if the injective hull E(R/P)R contains no f.g.
sub-modules whose annihilator is a prime ideal other than P.
We say that a set X of prime ideals satisfies the second layer
condition if every member of X satisfies it. A ring R
satisfies the second layer condition if Spec(R) satisfies the

gsecond layer condition.
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The classes of Noetherian rings satisfying the second
layer condition include the class of fully bounded Noetherian
rings, the class of enveloping algebras of solvable Lie
algebras (Brown[8], Theorem 3.2, and Heinicke[35], Theorem
1), and the class of group rings KG, where G is a poly-cyclic-
pby-finite group and K is a field of characteristic zero
(Brown[7], Theorem 4.2).

Let R be a ring. A set of prime ideals X in R is said to

satisfy the right (left) intersection condition if, given a

right (left) ideal of R such that InC(P) # &, for all PeX,
then INC(X) # ¢g. X satisfies ﬁhe intersection condition if it
satisfies both the left and right intersection conditions.
Observe that, for example, if X is a localisable set of

prime ideals, then C(X) is Ore.

3.3.2. Lemma: Let R be a ring. Let X be a set of localisable
prime ideals of R. Suppose that X satisfies the intersection

condition. Then C(X) is Ore.

Proof: Choose ceC(X) and aeR. Let K = {r:arecR}. Then X is a
rignt ideal of R. Since, for each PeX, C(P) satisfies the Ore
condition, KNnC(P) +# g. Therefore, KNC(X) # ¢g. The left Ore

condition follows similarly.

The significance of the second layer and intersection

conditions is indicated by the following result.

3.3.3. Theorem: Let R be a prime Noetherian ring. Let X be a

clique of prime ideals which satisfies the second layer
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condition and the intersection condition. Then C(X) is Ore and

X is classical.
Proof: See Jategaonkar[43], Theorem 7.1.5 and Lemma 7.2.1.

It is clear, therefore, that if R satisfies the second
layer condition, then it becomes of great interest to
determine when a set of prime ideals satisfies the inter-
section condition.

For X a finite set of prime ideals we have the following.

3.3.4. Theorem: Let R be a prime right Noetherian ring. Let X =

{p ,...,Pn] be a finite set of prime ideals. If I is a right

1

ideal of Rwith InC(Pi) # g, for i=1,...,n, then INC(X) # &.

Proof: Order the prime ideals so that P, ¢ P, implies that k >

k™73
j.ThenPln...nPi¢P1+1, for i = 1,..., n-1. Suppose, by
induction , that there exists aeln C(Pl)n.. .nC(Pi). Then the image of
aR + I. (Pln.;.nPh)'generates an essential right ideal of R/P;,,- By
Lemma 1.1.6, there exists beI(Pln...nPi) such that
a+b€C(Pi+1). Since bePln. ..nPi, it is clear that a+beC(Pj) '

for j = 1,...,i+l. Induction completes the proof.

However, for infinite sets of prime ideals, the problem of
proving the intersection condition is more difficult and
there is as yet no complete answer. There are partial
solutions to this problem. However, these mostly rely on the
existence of an uncountable set F of central units such that

for any two distinct elements a,beF, (a-b)eF. In particular,
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this condition is satisfied if the ring under consideration is
an algebra over the complex numbers. We have, for example, the

following result due to J.T.Stafford and R.B.Warfield,Jr.

3.3.5. Lemma: Let R be prime Noetherian ring. Let X be a set of
prime ideals such that there is a uniform bound on the Goldie
ranks of the rings R/Q, QeX. Suppose that R contains a central
subfield K such that IKI > IXl. Then X satisfieé the

intersection condition.
Proof: See Warfield[74], Lemmas 1 and 6.

3.3.6. Theorem: Let R be prime Noetherian ring which contains
an uncountable central subfield. Let X be a clique of prime
ideals which satisfies the second layer condition. Stppose

that there is a uniform bound on the Goldie ranks of the rings

R/Q, for QeX. Then X is classical.

Proof: Since R is Noetherian, X is at most countable, by

stafford[70]}, Corollary 3.13. The result follows immediately

from Lemma 3.3.5 and Theorem 3.3.3.

To extend this result we would like to be able to remove
the condition that R contains an uncountable subfield. The
natural test-case to consider would be to assume that the X is
a clique in which all the prime ideals are completely prime.
Our aim in this section is to give some (partial) results on

localisations of cliques with this (very strong) condition.
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3.3.7. Theorem: Let R be a right Noetherian domain which is
not commutative. Let X be an infinite set of prime ideals, Pi'
jel, which are all completely prime. Suppose that, for any
infinite subset Jof I, nPj = 0, where the intersection runs
over all jeJ. Suppose that K is a right ideal of Rwith KnC(Pi)

# ¢ for all PieX. Then KNC(X) # d&.

Proof: The idea of the proof is similar to that of Theorem
3.2.3, but we have to do a little preparation first. Observe
that the conditions in the statement of the Theorem imply that
each non-zero element of R can lie in only finitely many
members of X.

If K is a cyclic right ideal cR, then ceC(X), and we are
done.

Since K is finitely generated, we may write
K--Ei':r:aiR. We shall proceed by induction on n. Let us

suppose that we have proved the Theorem for n= 2. Let I(i - aiR

+anR.Nowdefinethesets Ii-{j:KinC(P) # g}. If there

J
exists PjeX with jﬁli for i = 1,...,n-1, then

(aiR+ anR) c P for i = 1,...,n-1. But this contradicts our

3
assumption that KnC(Pj) # ¢§. Thus I = Uli'

Let Xi = {Pj:Pjeli}. For each Ki and set Xi, either Xi is
finite or the conditions of the Theorem still hold. So,
assuming that we have proved for the Theorem for right ideals
K generated by two elements, we may deduce that KinC(X ) * B

i
i=n-1
Choose bieKinC(Xi) . Let K' = ):i=1 biR' ThenK'nC(pi) £ g,
for all i. Therefore, by induction, K'nC(X) # ¢g. We can

therefore reduce to the case where X = aR + DbR.

The proof now proceeds exactly as in Theoren 3.2.3. We
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consider one case only and leave the rest for the reader.
suppose that ab # ba. Then (ab-ba) ePi, for exactly k
members of X, for some int‘eger k. By Lemma 3.2.1, we may choose

a sequence of positive integers 1< a ... ¢ a, satisfying

+1

(ai-aj) divides a;, for all choices of i and j with j ( i.
a

Let f =a+b.(a "-1), for n =1,..., k+l. If the Theorem

is false then each fnGPn, for some prime ideal Pnex. Then
a a
n n
(£,.2l " (ba-ab)(a "-1) € P . If (a "-1)€P_, thenaeP , which

is clearly a contradiction. Thus (ba-—ab)ePn, for
n=1,...,ktl. By our choice of k, there exist integers m and

n, m > n, with fm,fner. e s s
However, £ ,f eP  implies thatf —f =b.a Na™ M1) e
P.- 1f ber, then aeP , which contradicts our hypothesis that

; v a
(a,R+bR)nC(Pm) rg. If aer, then either ber or (a m-l) er.

and both of these lead to contradictions. Since Pm is

completely prime, we are forced to conclude that
n
(aa i'
(a m-l)er, and so a€eP , which again is a contradiction. Thus,
a

for some n, a + b.(a n-l) € C(Pi)' for all PieX.

-a
n-l) er. But then, by Lemma 3.2.2 and our choice of a

The other cases we have to consider (when ab = ba) go
through just as in Theorem 3.2.3 and we omit the details. This

finishes the case n = 2 and we are done.

To apply this result we will use the following definition.

We shall say that an infinite set of prime ideals X = {Pi: iel}

has the infinite-intersection property if, for all infinite

supsets J ¢ I, nPj = NP,, where the first intersection runs
over all jeJ and the second over all iel, that is, all the

prime ideals in X.
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3.3.8. Lemma: Let Rbe aring. Let X be an infinite set of prime
jdeals which has the infinite-intersection property. Let Q =
nP, where the intersection runs over all PeX. Then Q is a prime
jdeal. Further, if every prime ideal PeX is completely prime,

then Q is completely prime.

Proof: Suppose that a,beR are such that aRb g Q. Suppose that
afgQ. Then aePi, for only finitely many PieX. Hence bePi, for
infinitely many P eX. So beQ.

The second statement proceeds almost identically.

3.3.9. Theorem: Let R be a Noetherian ring. Let X be an
infinite clique of completely prime ideals. Suppose that X
satisfies the second layer condition and has the infinite-
intersection property. Let Q = NP, where the intersection runs
over all PeX. Suppose that R/Q is not commutative. Then X is

classically localisable.

Proof: By Theorem 3.3.3, it suffices to show that X satisfies
the intersection condition. Suppose that K is a right ideal of
R such that KnC(P) # ¢, for all PeX. Then (K + Q/Q)NC(P/Q) #
g, for all PeX. By Lemma 3.3.8, R/Q is a domain. We are in a
position to apply Theorem 3.3.7, and hence there exists xeK+Q
such that in R/Q, xe NC(P/Q), where the intersection runs
over ail PeX. So there exists yeK such that yeC(P), for all
PeX. Hence X satisfies the right intersection condition. By

symmetry., X also satisfies the left intersection condition.
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3.3.10. Corollary: Let R be a prime Noetherianring. Let X be a
clique of completely prime height-1 prime ideals. Suppose
that X satisfies the second layer condition. Then X is

classically localisable.

Proof: If R is commutative then X consists of a single height-
1 prime and the result follows. If X consists of only finitely
many prime ideals we may use Theorem 3.3.4. If X consists of
jnfinitely many prime ideals then X certainly has the
jinfinite-intersection property. The result follows immed-

jately from Theorem 3.3.9.

We finish this section by applying these results to the
enveloping algebras of solvable Lie algebras. We shall
require a series of Lemmas whose proofs, for the sake of

brevity, we shall omit.

3.3.11. Lemma: Let Q be a simple Noetherian domain. Let 8 be a

derivationon Q. Let S = Q[x:8]. Then any non-zero prime ideal

of S has height 1.

3.3.12. Lemma: Let R be a Noetherian domain. Let 8 be a
derivation on R. Let T = R{x:8]. Suppose that P is a prime

ideal of T such that PnR = 0. Then height(P) < 1.

3.3.13: Lemma: Let R be aring. Let 8 be a derivation on R. Let

T = R[x:0]. Suppose that C is an Ore set in R. Then C is an Ore

set with respect to T.
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3.3.14: Lemma: Let L. be a Lie algebra. Let N be an ideal such
that dim(L/N) = 1. Then U(L) « U(N)[x:8], for some derivation

of U(N).

3.3.15: Theorem: Let L be a solvable Lie algebra over a field
of characteristic zero. Then every prime ideal of U(L) is

completely prime.
Proof: Dixmier{25], Theoreme 3.7.2.

3.3.16. Theorem: Let N be a nilpotent Lie algebra over a field
of characteristic zero. Then every prime ideal of U(N) is

localisable.
Proof: McConnell[50], Theorem 3.2, and Theorem 1.5.4.

3.3.17. Lemma: Let L be a solvable Lie algebra over a field of
characteristic zero. Let N be a nilpotent ideal of L with
dgim(L/N) = 1. Let X = {Px: AeA} be a clique of prime ideals in

U(L). Then P, NU(N) = Q is independent of our choice of \eA.

Proof: Choose \eA. Let Q = P)‘nU(N). Then, by Dixmier{25],
Proposition 3.3.4, Q is a prime ideal of U(N). By Theorem
3.3.16, Q is localisable. Hence C = CU(N) (Q) = U(N)\Q is Ore in
U(N). By Lemmas 3.3.13 and 3.3.14, C is Ore in U(L).
Since X is aclique, by Lemma 3.3.1, (iii), cc¢
(iii) u(L) (Py)
U(L)\Pu' for all ueA. Therefore,
U(N)\U(N)NP, < U(N)\U(N)OP‘L. for all ueA.

But our choice of \eA was arbitrary and the result foliows.



3.3.18. Theorem: Let L be a solvable Lie algebra over a field
of characteristic zero. Suppose that there exists a nilpotent
jdeal Nof Lwith dim(L/N) = 1. Let X = {P)‘: AeA) be a clique of
prime ideals of U(L). Let Q = P)‘nU(N) » for any (and hence all)
reA. Suppose that U(L)/QU(L) is not commutative. Then X is

classically localisable.

Proof: By the remark before Lemma 3.3.2, U(L) satisfies the
second layer condition. So it suffices to show that X
satisfies the intersection condition.

Let Q =U(N)nP)‘, which, by Lemma 3.3.17, is independent of
our choice of MAeA. Then Q is a prime ideal of U(N). By Lemma
3.3.14, U(L) = U(N)[x:0], for some derivation & of U(N). Then
Q is a 6-stable ideal of U(N). Hence P = QU(L) = QU(N)[x:6] is a
prime ideal of U(L). Further, U(L)/P = (U(N)/Q)[x:6].

In U(L)/P, §xnU(N)/Q = 0, by the definition of Q. Hence,
by Lemma 3.3.12, ?x is a height-1 prime ideal. Hence X has
the infinite-intersection property. Finaliy, we may apply
Theorem 3.3.9 to deduce f.hat X satisfies the intersection

condition. Therefore X is classically localisable.

Remark: Note that a clique in an enveloping algebra over a
solvable Lie algebra need not have the infinite-intersection
property. Let L be the Lie algebra kx+ky+katkb, over the field
k of the complex numbers, where [x,y] = x and [a,b] = a, and all
other products zero. Then L is solvable. However, it can be
shown that {<(x,a,(y-n),(b-m)>:m,n integers) form a clique in

U(L). It is easy to see that X does not have the infinite-



intersection property.

38
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gection 3.4: The centres of Noetherian UFDs.

Following the notation of Section 3.1, suppose that R is a
Noetherian UFD and that T and S are the partial localisations
Rc and RD' respectively, as before. Throughout this section we
shall assume that every prime ideal of R of height greater
than 1 contains a height-1 prime ideal. Denote by Z(R) the

centre of a ring R.
3.4.1. Lemma: Let R be a Noetherian UFD. Then Z(R) = Z(T).

Proof: By Theorem 2.1.9, we know that R = SNT. So, if z€Z(R)
then clearly zeZ(T)NZ(S) .‘Conve_t_aely. 1f 2zeZ(T)NZ(S) then zeR
and is central in R. Now suppose that qeZ(T). Let 0 » I = {seS :
gseS}. Then I is an ideal of S and, since S is simple, is equal

to S. So geS and hence ge¢R.

Recall that a Krull domain is a commutative domain A with
a field of fractions K with the following properties.
(i) For all height-1 prime ideals P of A, AP is a principal
jdeal domain, and
(ii) for all non-zero xeA, xeP, for only finitely many
neight-1 prime ideals P.
with each height-1 prime ideal P of a Krull domain we may
associate an integer-valued valuation, Vps on A, defined by
vp(x) = max{n:xePn} and vP(x) = 0 if x¢P. Thus a Krull domain
may be characterised as a commutative domain A such that there

exists a family of integer-valued valuations with the follow-

ing properties.
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(iii) For any non-zero element x of A, v(x) » 0, for all veV,
with equality for all, but possibly finitely many v, and
(iv) A= NK_, where the intersection runs over all the

valuations veV, and Kv = [keK:v(k) » 0} for veV.

3.4.2. Theorem: Let R be a principal ideal domain. Then Z(R)

is a Krull domain.
Proof: Cohn{19], Theorem 6.2.4.

3.4.3. Corollary: Let R be a Noetherian UFD. Then Z(R) is a

Krull domain.

Proof: If R is commutative then R is certainly a Krull domain
(see, for example, Cohn[19], Section 6.2). Otherwise, T= RC
is a principal ideal domain and the result follows from Lemma

3.4.1.

We can in fact show a converse to the above result by
showing that any commutative Krull domain can be realised as
the centre of a Noetherian UFD. That is, Corollary 3.4.3 is
best possible. We will use a construction due to P.M.Cohn. For
a given Krull domain C, we shall construct a commutative

principal ideal domain A and an automorphism of infinite

order, o, of A, whose fixed ring A% - c.

3.4.4. Theorem: Let C be a commutative Krull domain. Then

there exists a Noetherian UFD R with Z(R) = C.
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Proof: We follow Cohn[19], Section 6.3. Lef, F be the field of
fractions of C. ThenC = an, where the intersection runs over
the set of Z-valued valuations V on F induced by the height-1
prime ideals of C.

We form the polynomial extension of F in infinitely many
variables, K= F[...,t_ ,t ,t ,...]. Observe that we can
extend each valuation v on F to a valuation on K by

v(k)=min{v(ai)}, where k = ):aitiltiz...tin.

Let L be the field of fractions of K. Then we can extend each
valuation veV to a valuation on L. For each valuation veV, we
can define

L, = {f/g:v(£)2v(g).g#0}.

Then define A = nLv' where the intersection runs over all veV.
Wwe claim that A is a principal ideal domain. If f,geA, by
multiplying by a suitable common denominator, we may assume
that £,geC[... 't—l'to ,t:1 +r-..]. Now take n to be any integer
greater than the total degree of f. Leth=f +t’g. We have
v(h) € v(f) and v(h) € v(g), for all veV. Hence £/h,g/hed, and
so fA+gA = hA. Therefore A is a Bezout domain as defined in
section 1.7. By a simple degree argument, it is easy to see
that A is atomic. By Theorem 1.7.2, A is a principal ideal
domain. Now define the F-automorphismonKk, o, by o(ti) =
tiﬂ' Clearly the fixed ring of o is F, and v(f) = v(o(f)), for
all veV.

We may extend o to an automorphism on A. The fixed ring of
o acting on A is A% - K°nA = FNA = C,

To recap so far; given a Krull domain C, we have

constructed a principal ideal domain A, and an automorphism o

of Awith infinite order, such that A° = C. We now proceed to



102

construct a Noetherian UFD.

Let R be the skew Laurent extension R = A[x, x ! H as
defined in Section 1.8. Then, for all aeA, ax = xo(a). In
particular, tix = Xti-n' We shall show that R is a Noetherian
UFD, and that the centre of R is C.

First, suppose that P is a height-1 prime ideal of R. If
PnA=P' # 0, then P' is principal. That is, P' = pA, and pK is a
prime ideal which is completely prime contained in P.

Therefore, P = pR.

Suppose that, instead, P' = 0. We shall derive a cont-

radiction from this. Choose f (x) =2i nxla eP, for 1least n.
t then t £(x)-f£(x)t. = Li™M¢ xla. —xia
Bu 0 n i=0 "0 i i‘n
- ):i_g i'(a t, LY t )
- g 1(a £yt

wnich is a polynomial of x-degree less than n, in P. This
contradicts our choice of £f(x).
Therefore, R is a Noetherian UFD. Now suppose that
i=n_1i

z(x) = Lj_ % @; is a central element of R. Then

0 = xz(x)-z(xX)x = }:1 Dy 1+1\ai-0\a )).

Thus, a, = o(ai). for all i = m,...,n.

=Ei “xlxa jtymagt, - This

Also, 0=t 2(x)-2(x)t
implies that a; = 0, for all i, except possibly i = 0.

Therefore, Z(R) = Aa = C,

This type of construction of UFD has enabled M.K.Smith to
give a simple answer, answering in the negative, to a question
of G.Bergman (among others). He asked whether, for any
principal ideal domain R, the centre of the full ring of

quotients of R was equal to the quotient ring of the centre of
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R. Tnis question has also been answered, using similar
constructions by M.Chamarie and , independently, P.M.Cohn and

A.Schofield. See Chamarie[l2] and Cohn-Schofield[22].
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Chapter 4. The principal ideal theorem.

section 4.0. Summary: This chapter forms the other main theme

of this work. It stems from the obvious interest that the set C
of the previous two chapters has for us and a desire to see how
the principal ideal theorem of commutative ring theory can
pest be generalised to non-commutative ring theory. Much of
the material of this chapter was first suggested by A.W.
Chatters and it consists of joint work with him. Most of the
results are to appear in_Chatters—Gilchrist {14).

In the study of a prime Noetherian ring it is natural to
consider the set T of elements which are regular modulo all
the height-1l prime ideals of the ring. The elements of T can be
thought of informally as being those elements of the ring with
no prime factor. As we saw in Chapters 2 and 3, they can play |
the role that in the case of a commutative ring is played by
the units.

It is then a natural question to ask: Let R be a Noetherian
ring. When is the set T the set of units? If R is a commutative
ring, the statement that I' is the set of units is proved using
the principal ideal theorem due to Krull. In fact, it is one of
a numper of equivalent formulations of the classical prin-
cipal ideal theorem. In Section 4.1, we shall consider some of
these equivalent statements. We shall show, with examples
‘that, even with quite strong conditions on these rings, that
the statements are not, in general, equivalent.

We should recall that there have been several other
formulations of possible generalisations of the principal

ideal theorem notably due to Jategaonkar and to Chatters-
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Goldie-Hajarnavis-Lenagan. We shall recall some of the varia-
tions on the principal ideal theorem in Section 4.1.

In Sections 4.2, 4.3, and 4.4, we shall prove some
positive generalisations of the classical principal ideal
theorem. These results will be shown notably for prime Pl
rings and for bounded maximal orders. In Section 4.5, we
discuss some tentative extensions of these results to larger
classes of rings.

For the purposes of the formulation of some of the results
of this chapter, we shall assume throughout this chapter thait
all Noetherian rlngs con31dered satisfy d.c.c. on prime

ideals. Thus all’ non-zero prlme ideals considered will

contaln at least one helght 1 ptlme 1dea1. :
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section 4.1: Formulations of the principal ideal theorem.

Wwe start by giving some equivalent forms of the classical
principal ideal theorem of commutative algebra. Throughout,
for a ring R, the set T (or T(R) to distinguish between rings
if necessary) will denote the set of elements regular modulo
every neight-1 prime ideal of R. That is, T = nC(P), where the

jintersection ranges over the height-1 prime ideals P of R.

4.1.1. Theorem: Let R be a commutative domain. Then the
following are equivalent:

(i) If a is a non-zero non-unit of R and P is a prime ideal
minimal over a then height(P) = 1;

(ii) The elements of T'(R) are units;
(iii) Every non-zero prime ideal is the union of the height-
1 prime ideals which it contains;

(iv) If P is a non-zero prime ideal of R then
C(P) = nC(Q), where the intersection runs over those height-1
prime ideals Q of R that P contains;

(iv)' If P is a non-zero prime ideal of R then

c(P) 2 nC(Q), with the same notation as (iv).

Proof: For any prime ideal P of R and any aeR, aeC(P) if and

only if afP.

4.1.2. Theorem: Let R be a commutative Noetherian domain. Then

one, and hence all, of the above statements are true.

Proof: See, for example, Kaplansky[44]), Theorem 142.
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The equivalent statements of Theorem 4.1.1 all suggest
non-commutative generalisations which are likely to be ineq-
uivalent and not generally true. Here, we give two examples of
non-commutative Noetherian rings which demonstrate the in-
equivalerice of some of these statements.

Note that, in general, it is not true that, for an element
ceR and prime ideal P, cgC(P) implies that ceP. This means
that by formulating statements in terms of agC(P) rather than
afP may help us in generalising the statements of results in
commutative Noetherian ring theory. In particular it seems
l1ikely that statements (ii) and (iv) are far more likely to
hold in non-commutative rings than (i) or (iii). The next

example illustrates this point.

4.1.3. Example: Let S = k[x,y] the commutative polynomial ring
in two variables over k a field and set R = MZ(S) + the ring of
2x2 matrices over S. In S, let P be the prime ideal generated
by x and y then P is a height-2 prime ideal of S and MZ(P) is a
height-2 prime ideal of R. Let a = diag(x,y) in R. Then RaR =
MZ(P) and hence MZ(P) is a minimal prime ideal over a. Clearly
then this provides a counter-example to statements (i) and
(iii) of Theorem 4.1.1, but as we shall see later R does in
fact satisfy (ii), (iv), and (iv)'. Further note that, for an
integer n, had we taken S = k[xl, .o ,xn] and R = Mn(S) ’ then

the element diag(x;,..,x ) generates a height-n prime ideal.

4.1.4. Example: Let R be the universal enveloping algebra of

the complex two-dimensional non-Abelian solvable Lie alg-
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ebra. Let kbe the field of the comélex numbers F. ThenR is the
k-algebra generated by x and y subject to the condition that
xy-yx=y. By Lemma 2.1.3, R is a Noetherian domain with a
unique height-1 prime ideal P = Ry = yR. Further, P is
completely prime and the maximal ideals of R all have the form
Q = {x-c)R + YR, for some cek.

S0 in this case, T(R) = R\yR. In particular, xel'. Since x
is not a unit and RxR = xR + YR, it is clear that none of the

statements of Theorem4.1.1 are true for this Noetherian ring.

Clearly, we shall have to impose some extra conditions on

the ring R in order to have any hope of obtaining a suitable

principal ideal theorem.

Wwe record here statements of principal ideal theorems for

non-commutative Noetherian rings that are already in the

literature.

4.1.5. Theorem: Let R be a right Noetherian ring. Let X be an
invertible ideal of Rwith X # R. Let P be a prime ideal minimal
over X. Then height(P) < 1.

Proof: See Chatters-Hajarnavis[16], Theorem 3.4.

4.1.6. Corollary: Let R be a right Noetherian ring. Let x be a
normalising element of R which is not a unit. Let P be a prime

ideal minimal over xR. Then height(P) < 1.

proof: See Jategaonkar[39], Theorem 3.1, or Chatters-
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Hajarnavis[16], Corollary 3.5.

4.1.7. Theorem: Let R be a prime Noetherian PI ring. Let c be a
regular non-unit of R. Let B be the largest two-sided ideal
contained in cR. Suppose that P is a prime ideal minimal over B

and that cgC(P). Then height(P)=1.
Proof: Chatters-Goldie-Hajarnavis-Lenagan{15]), Theorem 4.8.

Remark: Note that such a prime ideal P always exists, by an

argument due to A.W.Goldie. Effecf.ively the same proof will

used to prove Theorem 4.2.4.

The next two sections will concern statement (ii) of
Theorem 4.1.1 in the context of fully bounded Noetherian rings
all of whose non-zero ideals intersect the centre non-
trivially. We note that this class of rings is closed under
forming partial localisations at Ore sets.

There are two large classes of Noetherian rings which

satisfy these conditions.
4.1.8. Theorem: Let R be a prime Noetherian PI ring. Then R is
fully bounded, and every non-zero ideal of R intersects the
centre of R non-trivially.

Proof: Immediate from Theorem 1.3.2.

4.1.9. Let R be a prime Noetherian ring which is integral over

its centre Z(R). Then R is fully bounded and every non-zero

"be
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ideal of R intersects the centre non-trivially.
Proof: Suppose that P is a prime ideal of R. Choose an element

CECR/P(U) . By Lemma 1.1.6, there exists decR(o) such that the

image of d in R/P is c. By hypothesis, there exists elements

al,...,anGZ(R), such that d“+ald“-1+...+an-0. Then, for

least n, suppose that dn+a1dn—1+. . .+aneP. 1f aneP, then
.n—-1 -

d.(a +...+an_1) a €P.

But deC(P), and this forces a" el '+an—1€P’ which cont-
radicts our choice of n. Therefore, a, generates a non-zero
ideal in R/P. Hence R/P is bounded. By a similar argument, it

is easy to see that every non-zero ideal of R intersects the

centre non-trivially.
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Section 4.2. The elements of T.

We recall our standard notation I' = nC(P), where the

intersection ranges over the height-1 prime ideals P of R.

4.2.1. Lemma: Let R be a prime right Noetherian ring. Suppose
that R contains an infinite number of height-1 prime ideals.

Then T consists of regular elements.

Proof: Suppose that cel’ and O#reR are such that cr=0. Then reP
for all the height-1 prime ideals P of R. Hence every height-1

prime ideal of R is minimal over RrR # 0. This contradicts the

fact that R is Noetherian.

However, if R contains only finitely many height-l

primes, then it is possible for a zero-divisor to be in T.

4.2.2. Example: Let R be a Noetherian prime ring with a unique
proper ideal P, see for example J.C.Robson [59], Example 7.3.
Then?P = PZ. Suppose that P = le + ...+ an. for some xieP.
In Mn(R), the only height-1 prime ideal is Mn(P).

Then, for eachi=1,...,n, X, = Zizr{xjaji' for some
elements ajieP. In Mn(R) » let Abe the matrix (aij)' Clearly,
(A_In) ec(Mn(P)). Let X be the matrix all of whose rows are

(x) --- X)- Then X. (A=1) = 0. Hence (A-1_) is not regular,

but clearly (A-In) €l.

The following Lemma is well-known and is a consequence of

Krause-Lenagan-Stafford [45)], Lemma 3.
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4.2.3. Lemma: Let R be a fully bounded Noetherian ring with
nilpotent radical N. Let ceC(N). Then cR contains a non-zero

ideal of R.

Proof: For a right R-module M, denote the Krull dimension of M
by IMI. Since R is fully bounded, N has weak ideal invariance,
by Theorem 1.4.9. That is, if K is a right ideal of R, then
IR/KI ¢ IR/NI implies that IN/KNI ¢ IR/NI.

Now suppose that cR contains no non-zero ideal of R. Then
IR/cRI = IRl = IR/NI, by Corollary 1.4.6 and Theorem 1.4.7.

But ceC(N) and so IR/cR+NI| ¢ IR/NI, by Theorem 1.4.3. We shall

k

proceed, by induction on k, to show that IR/cR+N" < IR/NI,

for all integers k. Suppose that we have shown that

IR/cR+NST11 ¢ IR/NI. -

Then, by weak ideal invariance, IN/(cR+Nk‘1)N| < IR/NI.
Hence

| CR+N/CR+NX1 & IN/cN+NE

I < IN/(eR+NE"LyN1 ¢ IR/NI.
Thus, combining these inequalities, using Lemma 1.4.1, we
have

IR/cR+NkI = sup{ IR/cR+NI, lcR+N/cR+NkI } ¢ IR/NI.

But,forsomeintegerm,Nm = 0. So IR/cRI < IR/NI, a

contradiction.

Remark: Note that this is the only place in this thesis that we
use Krull dimension. It seems likely that a more elementary

proof exists, but we have been unable to find such a proof.

Recall that the bound of a right ideal I of R is the
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largest ideal of R contained in I.

4.2.4. Theorem: Let R be a prime fully bounded Noetherian ring
such that every non-zero ideal of R intersects the centre non-

trivially. Then the elements of T are units.

Proof: Choose cel'. Suppose that R contains an infinite number
of height-1 prime ideals. By Lemma 4.2.1, cel' implies that ¢
is regular. Suppose instead that R contains only finitely many
height-1 prime ideals, Ql""'Qn' Let I-an“‘nQn » 0.
Observe that ' = C(I). By Lemma 1.1.6, there exists xel such
that d=c+xeC(0). Suppose that we have shown that d is a unit.
Then R/1 is Artinian and I is the Jacobson radical of R. Thus R
is 1-dimensional and semi-local. Hence ¢ is a unit of R. Thus
we may assume, without loss of generality, that c is regular.
suppose that ¢ is not a unit. Let B be the bound of cR. Then
cR/B contains no non-zero ideal of R/B. Suppose that N/B is
the nilpotent radical of R/B, where N is an ideal of R. From
Lemma 4.2.3, we deduce that c¢C(N/B). So there exists a prime
ideal P minimal over B with cfC(P). Suppose that P is not a
height-1 prime ideal. Then let Q be a non-zero prime ideal of R
contained in P.
Suppose that 0 # deQNZ(R). We now use a reduced rank
argument to arrive at a contradiction.
For the positive integers n, let In - {r:cntedR} . Then In
is aright ideal of R. Forn=1,2,..., the In form an ascending
sequence of right ideals. Hence, there exists n, such that

n
In = In+1 = .... Soreplacingcbyc ', we may suppose that !1 -

1, and hence that an(c2R+cdR) = cdR.
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Let p(.) denote the reduced rank of a f.g. R/B-module.
fhen we have the following equalities
o (CR+AR/C2R+dR) + p(c?R4dR/c?R+cdR) = p(cR+dR/c’RécdR)  and
p (cR+dR/c’R+cdR) = p(cR+dR/CR) + p(CR/c’R+cdR)
= p(cR+dR/cR) + p(R/cR+dR)
= p(R/cR)
But p(ciR+dAR/cZR+cdR) = p(dR/(ARN(cZR+cdR))) = p(dR/cdR)
= p(R/cR}
So p(cR+dR/c2R+dR) = O

Therefore, there exists eeC(N) € C(P) such that ce =

c2x+dy. But B & Q and so ceC(Q). Then c(e-cx) = dy implies

that (e-cx)eQ. If wceP, then weeP. By choice of e, this
implies that weP. Hence ceC(P). But this contradicts our
choice of P.

Thus height(P) = 1. Since cel', this is a contradiction.

4.2.5. Corollary: Suppose that R is a prime Noetherian ring
which is either PI or is integral over its centre. Then T'(R) is

the set of units.

Proof: By Theorems 4.1.8 and 4.1.9, both classes of rings

satisfy the hypotheses of Theorem 4.2.4.

Remarks: (a) Essentially, this argument is no more than a
recasting of Goldie [31], Theorem 2.13.

(b) S.A.Amitsur and L.W.Small have previously shown
that if R is prime Noetherian PI and has only finitely many

height-1 prime ideals, then R is l-dimensional. See Amitsur-

small[2], Theorem 5.1.
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(c) L.W.Small and J.T.Stafford (Small~Stafford
[64), Example 3) have constructed an example of a prime
Noetherian PI ring R with an element ceC(0) and ‘a height-2
prime ideal P such that P is minimal over the bound of cR. In

this case, ceC(P).

Finally, note that we cannot drop the assumption that R is
fully bounded. For example, suppose that R is the enveloping
algebra of a non-Abelian nilpotent Lie algebra, Then every
jdeal of R has a centralising s'et of generators, but yet I' does
not consist only of the units. If I' were the set of units then,
by Theorem 2.2.1 and Corollary 3.1.2, R would be a principal

jdeal domain, which contradicts our choice of R.
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section 4.3. The height-1 prime ideals related to a given

prime ideal.

We now turn to the statements of (iv) and (iv)' of Theorem
4.1.1. For any ring R the statements (i) and (iii) are
equivalent. It might be thought that statements (ii) and (iv)
are also equivalent. It is however possible to give an example

of a prime Noetherian ring which satisfies (iv) and not (ii).

4.3.1. Example: Let S be a simple Noetherian domain with an
algebraically closed centre k. Let R = S[x]. Then R is a
Noetherian domain and every non-zero prime ideal of R is of
the form P = (x-a)R = R(x-a), where aek. Clearly each non-zero
prime ideal of R has height-1l and hence condition (iv) is
trivially satisfied. However, provided that S is not a
division ring there exist non-zexro non-units of S in R. Choose
one such element ¢c. Then ce NC(P), where the intersection runs
over all the height-1 prime ideals of R, but is not a unit.
Hence condition (ii) is not satisfied.

It is not hard to see that S[x,y] would provide another
(slightly less trivial) example of a ring satisfying (iv) and

not (ii).

Secondly, it is important to note that, even in well-
behaved rings, it is possible for condition (iv)' to hold when
condition (iv) fails. The next example demonstrates this. We
exhibit a prime Noetherian PI ring R with a height-1 prime
ideal Q contained in a height-2 prime ideal P and a regular

eiement ¢ such that ceC(P) and cgc(Q).
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4.3.2. Example: Let kbe a field of characteristic zero. Let R
pe the ring generated by two 2x2 generic matrices X and Y over
k ( see Section 1.3 for details). Let T = T(R) be the trace ring
of R. Then we know that T is a Noetherian PI domain and a
maximal order (Small-Stafford [65]).

Let tr( ) denote the trace of a given matrix and det( ) the
determinant. By Formanek-Halpin-Li[{29], Theorem 6 and Lemma
2, T.(XY-YX) is a height-1 prime ideal of T. Further, T/T. (XY~
YX) is isomorphic to a polynomial ring over k generated by the
images of X,Y¥Y,tr(X), and tr(Y).

Now det(X) = X.(tr(X)-X) by the Cayley-Hamilton Theorem.
Let P = T.X + T.(XY-YX). Then P is a height~-2 prime ideal of T.
Let a = det(X). Then aeP and a is central. Thus, by
Jategaonkar's principal ideal theorem (Jategaonkar[41l],
Theorem 2) there exists a height-1 prime ideal Q € P such that
acQ. Observe that XgQ. Then c = (tr(X)-X)eC(P)nC(O) and
c£C(Q) -

Note that in this example condition (ii) holds, by Theorem

4.2.4.

Now we turn to the positive results of this section. They
rely heavily on being able to reduce to the situation of

Section 4.2 and then being able to apply Theorem 4.2.4.

4.3.3. Theorem: Let R be a prime fully bounded Noetherian
ring such that every non-zero ideal contains a non-zero
central element. Let P be a non-zero localisable prime ideal

of R. Then C(P) = NC(Q), where the intersection ranges over
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all the height-1 prime ideals contained in P.

Proof: We have that R satisfies the Ore condition with respect
to C(P). By Lemma 1.5.6, C(P) € C(Q), for every prime ideal
Q ¢ P. In particular, C(P) consists of regular elements. Let
5 be the partial quotient ring of R with respect to C(P).
Let ce NC(Q), as above. The height-1 prime ideals of S are
of the form QS, where Q is a height-l1l prime ideal of R
contained in P. Thus c is regular modulo all the height-1
prime ideals of S. Hence ¢ is a unit of S, by Theorem 4.2.4. So

1= cad_l, for some aeR and deC(P). That is, ca = deC(P). Hence

ceC(P).

For a general prime ideal of R we have a slightly weaker

result.

4.3.4. Theorem: Let R be as in Theorem 4.3.3. Lét P be a non-
zero prime ideal of R. Then C(P)NnC(0) 2 NnC(Q), where the

intersection ranges over all the height-1 prime ideals Q with

OnZ(R) € PNZ(R).

Proof: Let P' = PNZ(R). Let S be the partial quotient ring of R
formed by inverting the elements of Z\P'.

Let ce NC(Q), as above. The height-1 prime ideals of S are
of the form QS, where Q is a height-1 prime ideal of R with
QnZ(R) € P'. Thus ¢ is regular modulo all the height~-1 prime
ideals of S. Hence c is a unit of S, by Theorem 4.2.4. So 1 =
cad_l, for some a€R and deZ\P'. So ca = deC(P)NC(0). Therefore

cec(P)NC(0).
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We have been unable to answer the following gquestion,
which is perhaps the most natural formulation of the principal
jdeal theorem for non-commutative rings. Let R be as in
Theorem 4.3.3. Let P be a non-zero prime ideal of R. Is it true
that C(P)AC(0) 2 NC(Q), where the intersection runs over all
height-1l prime ideals Q ¢ P?

A positive answer to this question would imply the
following: Let R be as in Theorem 4.3.3. If P is a prime ideal
with height(P)?2, then P contains an infinite number of
height-1 prime ideals of R. This is a result which is known in
the PI case (Resco-Small-Stafford[{57]), but is an open

question, in general, for fully bounded Noetherian rings.
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section 4.4. The principal ideal theorem in bounded maximal

orders.

We turn now to consider the situation in which R is a prime
Noetherian bounded maximal order. In this section, we show
that both conditions (ii) and (iv)' hold for this class of
rings. Primarily, this is because, for a regular element ¢, we
are able to show that a prime ideal minimal over the bound of
cR must have height 1. This is in marked distinction to the
situation of Section 4.2, where the Small-Stafford example
shows us that this need not be the case.

Let R be a prime Noetherian ring with full quotient ring
Q(R) = Q. Recall, from Section 1.2, that R is a maximal order
if, given geQ such that either ql ¢ I or Iqg 1, for some non-
zero ideal I of R, then geR. For further details we refer to
section 1l.2.

suppose that R is an order in its full quotient ring Q. For
1 an ideal of R, we set I* = {geQ:ql ¢ R}. If R is a maximal
order then I* = *I = {qeQ:Iq € R}. Further, I** is an ideal
of R which contains I.

Recall that, for a regular element ¢ of R, the bound of cR

is the largest two-sided ideal of R contained in cR.

4.4.1. Lemma: Let R be a prime Noetherian maximal order. Let B
be a reflexive ideal of R. Suppose that P is a prime ideal

minimal over B. Then P is reflexive and height(p) = 1.

proof: Suppose that P is minimal over B. By Goldie[31],

Proposition 1.06, P/B is a middle annihilator prime ideal in
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R/B. That is, there exist ideals X,Y © B such that XY & B and

XPY ¢ B.

Then XPYB* € R. Since R is a maximal order this implies
£hat PYB*X ¢ R and so YB*X € P*., Suppose that P is not
reilexive; that is, P # P**, But then P*P** ¢ R implies that
p.p*.P** ¢ P. Hence P.P* ¢ P and so P* ¢ R.

So YB*X ¢ R. Then B*XY € R. But this implies that
XY ¢ B** = B, which contradicts our choice of X and X.
Therefore P = P**,

Suppose that Q is a non-zero pr ime ideal of R with Q c P.
Then P*Q ¢ P*P ¢ R. Also PP* ¢ R implies that P.P*.Q ¢ Q.
Since P ¢ Q, we conclude that P*Q ¢ Q. But this implies that
P* c R which contradicts that fact that P is reflexive.

Therefore height(P)=1.

4.4.2. Lemma: Let R be a prime Noetherian maximal order. Let ¢
be a regular element of R such that the bound B of cR is non-
zero. Let P be a prime ideal of R minimal over B. Then cgC(P),

p is reflexive, and height(P)=1.

Proof : We have ¢ € R and so ¢ YeB*. Thus c lpxx € R; that
is, B** ¢ cR. It follows that B = B**. By Lemma 4.4.1, P is
reflexive and height (P)=1. Finally, suppose that ceC(P). Then
CRNP = cP 2 B. But then B.P* ¢ cP.P* = cR. This implies
that B.P* = B. Since R is a maximal order, this implies that P*
= R. But this contradicts the fact that P is reflexive. Hence

cf£C(P) .

4.4.3. Theorem: Let R be a prime Noetherian bounded maximal
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order. Then the elements of T' are units of R.

Proof: Choose cel'. First, suppose that c is regular. Then cR
nas anon-zero bound B. If ¢ is not a unit, then pick a non-zero
prime ideal of R minimal over B. By Lemma 4.4.2, height(P)=1
and cf£C(P). But this contradicts our choice of c.

To obtain the result, we have to consider two cases.
suppose that Rhas infinitely many height-1 prime ideals. Then
cel is regular, by Lemma 4.2.1. Hence, by the first paragraph,
c is a unit.

If R has only finitely many height-l prime ideals
Ql,...,Qn,set I--an...nQn # 0. We note that ' = C(1). Let
ceC(I). By Lemma 1l.1.6, c+x is regular, for some xel.
Therefore, by the first paragraph, c+x is a unit. Hence R/1I is
Artinian and 1 is the Jacobson radical of R. Hence ¢ is also a

unit. Further, R is l-dimensional and semi-local.

This shows that statement (ii) of Theorem 4.1.1 holds for
pounded Noetherian maximal orders. Now we show that (iv)"' also
holds for these rings (note that (iv) need not hold, by

Example 4.3.2).

4.4.4. Theorem: Let R be a prime Noetherian bounded maximal
order. Let P be non-zero prime ideal of R. Then C(P) 2 nc(Q),
where the intersection ranges over those height-1 prime

ideals Q c P.

Proof: Let ce NC(Q), as above. If P contains infinitely many

height-1l prime ideals then, by Lemma 4.2.1, ¢ is regular.
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suppose that P contains only finitely many height-l prime
ideals Ql""'Qn° Let I = an...nQn #* 0. By Lemma 1.1.6, there
exists xel such that c+x regular. Further, c+xeC(P) if and
only if ceC(P). Therefore, without loss of generality, we may
assume that c is regular.

Let B be the bound of cR. Suppose that cgC(P). Then we
must have that B ¢ P. Hence, by Lemma 4.4.1, there exists a
height-1 prime ideal Q € P such that B ¢ Q and cgC(Q). This

contradicts our choice of c.

4.4.5. Corollary: Let R be a prime Noetherian bounded maximal
order. Let P be a prime ideal with height(P)22. Then P

contains an infinite number of height-1l prime ideals.

Proof: Suppose that P contains only finitely many height-1
primeidealsle-..,Qn-Iﬁt I==Q1n...nQn. Then P/I is a non-
minimal prime ideal of the semi-prime Noetherian ring R/I.
Therefore, by Goldie's Theorem (see, for example, Chatters-
Hajarnavis[16], Theorem 1.10), there exists ceP such that

ceC(l). By Theorem 4.4.4, ceC(P), a contradiction.

Note that, in view of Example 4.1.4, we cannot delete the
word "bounded"” from the statements of the results in this

gection.
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gection 4.5: Partial results on the principal ideal theorem.

Let us recast the statement (iv)' of Theorem 4.1.1 as
mgyppose that ¢ is a regular element of a prime ring R and P a
prime ideal of R minimal with respect to the property that
c£C(P), then height(P)=l“. Let R be a prime Noetherian ring.
For the purposes of this section, we shall say that a prime
jdeal P of R satisfies PIT (principal ideal theorem) if C(P)
o nC(Q), where the intersection runs over the height-1l prime
jdeals Q@ contained in P. A set X of prime ideals satisfies
PIT if all members of X satisfy PIT. We shall say that R
satisfies PIT if Spec(R) satisfies PIT.

For an ideal I of R, define SpecI(R) to be the set of prime
jdeals not containing I.

In this section, we wish to extend the results of the

previous sections to rings which have a reasonably close

relationship to the rings of those sections.

4.5.1. Lemma: Suppose that R is a prime fully bounded
Noetherian ring. Let c be a regular element of R. Then the set

of prime ideals P, minimal with respect to c¢C(P), is finite.

Proof: | ‘

By a Noetherian iﬁduc;ion,zwe may suppose.that the result
ié t;ué for any prdper primé factor ring of‘R. Let B Se thefi
pound of cR. 1f P is a primé ideal of R.which does not contain
B, then ceC(P). There exist only finitely many prime ideals
minimal over B. Suppose that ceC(P) for one of these prime
ideals. Then, by our inductive assumption, in R/P, there exist

only finitely many prime ideals P' minimal with respect to
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cfC(P'/P). The result follows.

Note that we cannot drop the condition that R is fully

pounded in the preceding result.

4.5.2. Example: Let R = AI(Z) = Z[x,y:xy-yx=1], the first Weyl
algebra over the integers Z. By Theorem 2.4.1, R is a
Noetherian domain and the height-1 prime ideals of R are of
the formpR = Rp, for pprime inZ. R/pR = Al(l-‘p) » where E‘p is
the field of p elements. So, clearly, xeC(pR), for all p
primes of .Z.

However, by Theorem 2.4.4, xP generates a height-1 prime
jdeal of R/pR, for all p primes of Z. Let Qp = pR + xPR. Then
x#C(Qp) , for all primes p of Z. Clearly, each Qp is minim'al
with respect to this property. So, (by Euclid(27], 1X.2) there
are infinitely many prime ideals P minimal with respect to the

property that xgC(P).

4.5.3. Lemma: Suppose that R is a sub-ring of a ring S. Suppose
that R and S have a common non-zero ideal I. Then there
exists an order-preserving bijection between SpecI (R) and

spec (5).

pProof: Define maps e:SpecI (R) spe¢_~,I (s)

o:SpecI(S)

Spec (R)
by 6(P) = {se€S: Isl < P} and
o(Q) = {reR: Ixrl c Q} = RnQ.
Then the proof that these maps define an order-preserving

bijection is now straightforward.
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We are now in a position to extend the results of Sections

4.3 and 4.4 somewhat.

4.5.4. Theorem: Suppose that R is a subring of a ring S.
Suppose that R and 8 have a common non~-zero ideal I. If P is a
prime ideal of SpecI(S) satisfying PIT, then o(P) is a prime

jdeal of R satisfying PIT.

Proof: Suppose that ¢ is a regular element of R. Suppose that
cxeo(P), for some xf£o(P). Then x¢£€P and so cgC(P). Then
cf£C(Q), for some Q a height-1 prime ideal of S contained in
P. So there exists y£Q with cyeQ. But then cyl € o(Q) and
yl ¢ 0(Q). So c£C(o(Q)). Since o0(Q) is a height-l prime

ideal of R contained in o(P), the result follows.

we may use this in several situations.

4.5.5. Theorem: Suppose that R is a prime bounded Noetherian
ring which is a subring of a prime Noetherian maximal order S.
suppose that R is order-equivalent to S. Then R and S have a

common non-zero ideal I and SpecI(R) satisfies PIT.

proof: From Maury-Raynaud([52], Proposition l1.4.1, we have
that @S € R for some unit a of their common full quotient ring
Q(R) . Suppose that a= d:lc, where ¢ and d are regular elements
of S. Then ¢S & R. But, from Maury-Raynaud([52], Proposition
1.4.2, S is also a bounded ring. So ¢S contains a non-zero

jdeal 1 of S. Clearly, I is also an ideal of R.
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By Theorem 4.4.4, S satisfies PIT. Hence from Theorem

4.5.4, SpecI(R) also satisfies PIT.

One would of course like to show that Spec(R) satisfies
PIT in the above situation. In some cases, we may use Theorem
4.5.5 together with some slightly more detailed consideration

of the ring in question to show this.

4.5.6. Example: Suppose that S is a commutative Noetherian
domain of Krull dimension at least two. Suppose that I is a
non-zero ideal of S.

Let R = S 1
I8

Then R is a subring of T, the ring of 2x2 matrices over S.
Further, R and T have the common non-zero ideal MZ( . By
Theorem 4.3.3 or 4.3.4, T satisfies PIT and Spec(T) is in an
order—-preserving correspondence to Spec(S).

We canwrite Spec(R) = SpecI(R) UslUSZ' where S, is the set

1
of prime ideals of R containing I of the form

[1s]
I1s),
and 3, is the set of prime ideals of the form [ S 1 ]

1P ],
where P is a prime ideal of S.

Now, by Theorem 4.5.4, SpecI(R) satisfies PIT. Also, for
any prime ideal Q of Sl' R/Q is isomorphic to S/Q', where Q' is
the top left hand corner of Q. It is then easy to deduce that @
gatisfies PIT. By symmetry, the same is true for S2 and hence R
satisfies PIT.

A similar method will work to determine that certain prime

ideals of prime PI rings satisfy PIT by using the trace ring
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construction T(R).
To end this section, if we can show that a particular
prime ideal of a ring satisfies PIT, then we have the

following interesting conclusion.

4.5.7. Corollary: Let R be a right Noetherian ring. Suppose
that P is a prime ideal of R with height(P)» 2. If P satisfies
PIT then P contains an infinite number of height-l prime

ideals.

Proof: Suppose that P contains only finitely many height-1
primeidealsQl,...Qn.LetI'-an...nQn. Then P/1 is a non-
minimal prime ideal of the semi-prime right Noetherian ring
R/1. So, by Goldie's Theorem (see Chatters-Hajarnavis[16],
Theorem 1.10), P contains an element ceC(I). But if P

satisfies PIT, then ceC(P), a contrad{ction.
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Chapter 5. Unigue Factorisation Rings and alternative Unique

Factorisation Domains.

5.0. Summary.

Here we return to the theme of unique factorisation to
100k at some other related topics. In Sections 5.1 and 5.2 we
look at a generalisation of the notion of Noetherian UFD. Most
of Section 5.1 is due to A.W.Chatters and D.A.Jordan, but we
do in passing give some more examples of primitive Noetherian
UFDs. Section 5.2 we believe to be original and in it we
provide some structural results for Noetherian UFRs including
an analogue of part of the result of Theorem 2.1.9 that if R is
a Noetherian UFD then R is the intersection of a simple
Noetherian domain and a principal ideal ring. The main
stumbling block to further progress is that we do not always
know whether C = NC(P), where the intersection runs over all
the height-1l primes of R, is Ore. We do however provide some
suff1c1ent condltlons for this to be so.

Finally in Section S 3 we consider a question of P.M.Cohn
who asked if the definition of Noetherian UFD is different
from two other notions of Unique Factorisation Domain, namely
gimilarity- and projectivity-UFDs. We show that the answer is

"Yes"



130

gection 5.1. Unique Factorisation Rings in the sense of

Chatters-Jordan.

In many respects the definition of Noetherian UFD of
Chapter 2 has proved to be a satisfactory generalisation of
the commutative definition and has provided a useful tool in
‘considering certain classes of non-commutative Noetherian
rings. However there are several aspects of the theory in
which the definition of UFD seems to be too restrictive.

In the commutative case, if R is a Noetherian UFD then the
polynomial extension R[x] is also a Noetherian UFD (see, for
example, Cohn{21], Theorem 11.3.7). However it is possible
for a non-commutative UFD to have a polynomial extension which

is not a UFD.

5.1.1. Example: Let D be the division ring of the real
quaternions and let R be the ring D{x] (x)’ the polynomial
extension of D localised at the completely prime height-1
prime ideal (x). Then R is a Noetherian UFD. However, in R[y]
theheight-lprimeideal(y2+1)R[y]..RIY](YZ+1) is prin-
cipal, but is not completely prime since (y-1i) (Y+i)'(Y2+l) .
In fact, as we saw in Corollary 3.1.6, this is completely

typical behaviour for a PI division ring.

However, as we shall see later, it is true that if R is a
Noetherian UFD then the height-1 prime ideals of R[(x] are

principal on both sides. This inspires the following defin-

ition.
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5.1.2. Definition: A prime Noetherian ring R is called a

unique factorisation ring (UFR) if every non-zero prime ideal
of R contains a_t_n"on-zero prime ideal which is principal on
both si"des.’ In bar'_cicular every height-1 prime ideal is of the

form pR = Rp "fot'-.some regular element p of R.

Cleariy,. tl.'l:e élﬁss of Noetherian UFRs includes: (a) the
class of c'_b'nmv\u‘ta't:i,v»e’ﬁFDs; (b) the class of Noetherian UFDs;
v(c)‘niatrix riﬁg 'ext_ehsion_s M (R), for a Noetherian UFR R, and
| 'fo‘rv any éos_itive >integer n.

We shéll not develop the theory of Noetherian UFRs very
far, ;;eferr ing the reader to Cﬁat“.tera—Joxdan[l?] for further
aetails, but a few preliminary results are in order.

Let R be a Noetherian UFR. Then, just as for a UFD, let D =
{Tlp, : piRB Rp; a neight-1 prime ideal of R}, be the
multiplicatively closed set generated by the generators of

height-1 prime ideals. Then, by Lemma 1.1.8, D is an Ore set.

5.1.3. Lemma: Suppose that R is a Noetherian UFR, D as above.

Let S = RD’ Then S is a simple Noetherian ring.
Proof: Chatters-Jordan{l7], Lemma 2.1.

5.1.4. Lemma: Suppose that R is a Noetherian UFR and that P is

a height-1 prime ideal of R. Then P is localisable.

Proof: It is easy to prove that C(P) = C(pn) . for all positive

integers n. Then we may apply Theorem 1.5.5 to conclude that

c(p) is Ore.
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5.1.5. Theorem: Let R be a Noetherian UFR and S = RD as above.
ThenR = Sn(anR)' where the second intersection runs over
the family of partial localisations at the height-1 prime

jdeals of R.
Proof: Chatters-Jordan{[l7]}, Theorem 2.3.

5.1.6. Theorem: Let R be a Noetherian UFR. Then R is a maximal

order.

Proof: Essentially this is immediate after observing that §

and each R are maximal orders. See Chatters-Jordan{l7],

PR
Theorem 2.4.

5.1.7. Corollary: Let R be a Noetherian UFR. Let P be a height-

1 prime ideal of R. Then the partial quotient ring R is a

C(P)
principal ideal ring and is a bounded Asano order. Further,
PRC(P) is the Jacobson radical of RC(P) and the ring

Rc(P)/PRC(P) is simple Artinian.

Proof: Immediate from Maury-Raynaud([52], Theorem IV.2.15 and

Theorem IV.1.5.

5.1.8. Theorem: Let R be a Noetherian UFR. Then R[x) is a

Noetherian UFR.

pProof: Recall that S is a simple Noetherian ring. Then any

ideal I of S[x] is of the form I = f(x)S[x]) for some central
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polynomial f(x) of S[x].

Now suppose that P is a height-1 prime ideal of R[x]. If P'
= PAR # 0, then P' is a height-1l prime ideal of R and so is
principal. Then P' = pR = Rp for some peR. Thus P = pR[x] =
R{x]p-

Suppose now that PNR = 0. Consider PS[x] which is a prime
ideal of S[x]. Then PsS[x] = f(x)S{x], for some central
polynomial f(x) of 8{x). Thenf(x) = g(x)d":L for some g(x)eP
and deD. Note that dR = Rd. Then Rg(x) = Rf(x)d = f(x)R4d =
£(x)dR = g(x)R. Also g(x)x = xg(x). Thus g(x)R[x] = R{x]g(x),
and g(x)S{x] = S[x]g(x). Suppose that g(x)eP is chosen such
that g(x)R[x] = R{x]g(x) is maximal with respect to PS[x] =
g(x)s[x] = S[x]g(x). Suppose that g(x)R{x] # P. Choose
h(x)eP\g(x)R[x]. Then h(x)ePS[x] = g(x)S[x]. So, there exists
d'eD such that h(x)d'eg(x)R[(x]. Then d' is a product of
elements Py which generate height-1 prime ideals. By an
induction on the number of Py such that 4*' = I'lpi , we may
suppose that d' = p, where pR = Rp is a height-1 prime ideal.
Then h(x)p = g(x)b(x), for some b(x)eR[x]. Now g(x)R[x]b(x) =
R[{x]g(x)b(x) = R[x]h(x)p. If b(x)eR[x]p, then h(x)eg(x)R[x],
which contradicts our choice of h(x). So g(x)eR[x]p. But then
g(x) = g'(x)p, for some g'(x)eR[{x]. It is not hard to see that
g'(x)eP and that g'(x)R[x] = R{x]g’(x). But this contradicts
our choice of g(x). Therefore h(x)eg(x)R{x] and g(x)R[x] =F =

R{x]g(x).

It is possible to generalise this last result to some skew
polynomial extensions of R by either automorphisms or deriv-

ations, but we shall not go into this. For further details we
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refer the reader instead to Chatters-Jordan[1l7], Sections 4
and 5.

To finish this section we shall as promised return to the
question of ‘primtive UFDs. We use a result of A.D.Bell for
which I would like to thank S.Walters for bringing to my

attention.

5.1.9. Lemma: Let D be a division ring such that char(Z(D))=0.
If D[x] is a Noetherian UFD then D[x1 Peee ,xn] is a Noetherian
UFD for all integers n. Further, if Z(D) is algebraically

closed then D[x] is a Noetherian UFD.

Proof :.D[:I(IV, .. ..xﬁ] is a Noetherian UFR by Theorem 5.1.8 and
jnductionon n. Since D[x] is a Noetherian UFD, by hypothesis,
all the prime factor rings of D[x] are domains. By Bell[6],
Theorem A, for any integer n, every prime factor ring of
D[xl""'xn] is a domain. In particular, the height-1 prime
jdeals of D[x1' .- ,xn] are completely prime. So D[x1 Poas ,xn]
is a Noetherian UFD.

1f Z(D) is algebraically closed, then the height-1l prime
jdeals of D[x] are all generated by elements of the form (x-
k), for keZ(D). Hence all the height-1l prime ideals of D[x]
are completely prime. The second statement of the theorem

follows immediately.

5.1.10. Theorem: For any integer n, there exists a primitive

Noetherian UFD whose Krull and global dimension are both n.
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onof:LetAn(k) be the nth Weyl algebra over the complex
numbers, k. Let D = D be its quotient division ring. Then the
centreofDn is k. By Lemma 5.1.9, D[xl,...,xm] is a
Noetherian UFD for allm. In particular R= D[xl, cee ,xn] is a
Noetherian UFD. By Amitsur-Small{l], Theorem 3, R is prim-
itive. Finally, by Resco[55], Theorem 4.2, R has Krull and

global dimension n.
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section 5.2. The set C revisited.

For R a Noetherian UFR define, as before, C = nC(P), where
the intersection runs over all the height-1 prime ideals of R.
1f R is a UFD then Theorem 2.1.4 tells us that C is an Ore set.
However, in general it is unknown whether C is Ore or not. If R
is bound‘ed, then together Theorems 4.4.3 and 5.1.6 tell us
that C is simply the set of units (and is trivially Ore).
Taking our cue from the Noetherian UFD case, we might expect,
for a general Noetherian UFR R, that C is Ore and that Rc -
anR' where the intersection runs over the partial quotient
rings of R at the height-1l prime ideals of R. This would give
us, in particular, that R, is bounded from Maury-Raynaud[52],
Theorem IV.2.17. We could then also conclude that the set C is
equal to the units of R if and only if R is bounded.
unfortunately this is all conjecture.

we should also recall from Sections 2.1.and 3.1 that if R
is a Noetherian UFD which is not commutative, then R can be
written as the intersection of a simple Noetherian ring and a
pr incipal ideal domain. In this section, we shall prove a
result which can be regarded as an analogue for Noetherian

UFRs though it is significantly weaker.

et R be a rma and let R[x] be the polynomlal extenaion of

R in one variable. For' an element c(x) =c_ x’ tooote T,
n+rt,

t

.andl’..(c r)-c .

. defme T(c(x)) = C
I n+r

#0#c¢
where <, 0 n+

Let T(0) = L(O) = 0 For a right 1deal l of R(x}, define T(I) -
(T(c(x)) c(x)ell. and L(I) = (L(c(x)) c(x)eI}. Clearly. both
T(1) and L(1) are right 1deals of R.
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5.2.1. Lemma: Let R be a semi-prime right Goldie riﬁg. Let
R[x] be the polynomial extension of R in one variable. Suppose
that ¢ = c(x) € R[x]. Then cecR[x](O)

(i) if and only if L(cR(x]) is an essential right ideal of R,

(ii) if and only if T(cR[x]) is an essential right ideal of R.

Proof: Recall that a right ideal in a semi-prime right Goldie

ring is essential if and only if it contains a regular element

(Chatters-Hajarnavis(16], Theorem 1.10 and Lemma 1l.1l).

Observe that R[(x) is also a semi-prime right Goldie ring.
Suppose first that ceCR[x](O). Then cR{x] is an essential

right ideal of R{x]. Suppose that 0 » J is a right ideal of R.

Then there exists 0 # p(x) ecR[x]NJR[x]. Suppose that p(x) =

n+r

b
t...ta_ X where a_ and -
a X n+r ' " a4y are both non-zero. Then 0

¢areT(cR[x])nJ. ame«*an reI..(c]Tt[x])r\J. Since we chose J

+
arbitrarily, both L(cR[x]) and T(cR[x]) are essential.
Suppose now that there exists a polynomial

0#a(x)=ax"+...+a_  x" "eR[x] such that a(x)c(x) = 0.

m+s
Then, for all d(x)eR[x], a(x)c(x)d(x)=0. In particular,
arT(cR[x]) =0, and a_ L(cR[{x]) = 0. Hence both T(cR[x]) and

L(cR[x]) are not essential.

5.2.2. Lemma: Suppose that b(x),c(x),d(x)eR[x]. Suppose that
c(x).b(x) # 0 # d(x)b(x). Let w be any integer such that
w > deg(b)+deg(c). Then

(1) L(d(x)b(x)) = L{(c(x)+x"d(x))b(x)), and

(11) T(c(x)b(x)) = T((c(x)+x"d(x))b(x)).

Proof: Immediate from the definitions of L and T.
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5.2.3. Theorem: Let R be a Noetherian UFR. Let X be the set of
height-1 prime ideals of R{x] induced from R. That is, X =
{pR[{x]: PR = Rp a height-1l prime ideal of R]}. Then X

gsatisfies the intersection condition and C(X) is Ore.

Proof: Suppose that K is a right ideal of R[{x] such that
KnC(pR(x]) # ¢, for all prime ideals pR[x] of X. By Theorem
5.1.8 and Lemma 5.1.4, each pR[x] is localisable. Hence, by
Lemma 1.5.6, C(pR[x]) consists of regular elements. That is,
KnCR[x](O) # ¢g. Choosec = c(x)eKncR[x](O). By Lemma 5.2.1,
T(cR[x]) is an essential right ideal of R. So T(cR[x])
contains a regular element ¢' of R. By Chamarie[ll], Prop-
osition 1.8, c'eC(pR), for all, but finitely many height-1
prime ideals of R. By another application of Lemma 5.2.1,
c(x)eC(pR{x]), for all prime ideals in X, except possibly a
finite set [le[x],...,an[x]}.

Now,byTheorem3.3.4,thereexistsd(x)eKn(nC(piR[x])),
where the second intersection runs over i = 1,...,n.

Using the fact that R is Noetherian, T(c¢R[x]) =
Eg:TT(cbj)R, for some by = by (x)eR[x]. Similarly, for each
i =1,...,n, there exist €ig = eis(x)eR[x], such that
L(dR[x]+P ,R[x]/p;R[x]) ‘2::§L(deis)+piR/piR). We may
suppose that deisﬁpiR[x], for all i and s.

Letrx-nmx{deg(bj).deg(eis)] + deg(c). Let w = n+l. Let a
= a(x) =c(x) + x"d(x) . Then T(aR[{x]) 2 ET(abi)R 'ZT(Cbi)R:
by Lemma 5.2.2. Hence T(aR[x]) 2 T(cR[x]). So, by Lemma
5.2.1, a(x)eC(pR(x]), for all pR(x], except possibly P RIx],

for i = l,...,n.
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However, we also have that, for i = 1,...,n,
L(aR[x]+p;R[x]/p;R) 2 LL(ae; )R+p ,R/p;R =
):L(deis)R+pi R/piR. by Lemma 5.2.2. Hence
L(aR[x]+p;R[x))/p;R 2 L(dR(x]+p,R{x])/p;R. By Lemma 5.2.1
again, a(x)eC(piR[x]), for all i = 1 ,...,n. Thus
a(x)eC(pR[x]), for all pR{x]eX. Then X satisfies the right
intersection condition. By a symmetrical argument, X satis-

fies the left intersection condition. By Lemma 3.3.2, C(X) is

Ore.

Remark: Note that the hypotheses of the theorem could be
weakened slightly. Let R be a prime Noetherian maximal order.
Let X be the collecton of reflexive prime ideals of R. By
Theorem 1.2.3, R[x] is a maximal order. Let X[{x] = {P[x]: P a
reflexive prime ideal of R}. Then, again by Theorem 1.2.3, the
set X[{x] is a set of reflexive prime ideals. Finally, by
Hajarnavis-Williams{34], Lemma 2.1 and Corollary 3.4, each
P{x)eX[x] is a height-1 prime ideal and localisable. Then
exactly the same argument as in Theorem 5.2.3 will work to

show that X[x] satisfies the intersection condition in R[x].

5.2.4. Corollary: Let R be a Noetherian UFR. ThenR = SnTo ,
where S is a simple Noetherian ring and T is a prime

Noetherian ideal-principal bounded hereditary order.

Proof: Let S=Ry. Then, by Lemma 5.1.3, S is a simple

Noetherianring. With the notation of Theorem 5.2.3 , let T =
0

R[x]c(x). Then we claim that R = SnTo
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Clearly Rc SnTo. Now suppose that, in Q(R{x]), we have
£(x) g(x) = (npi)-l.r € SNT , where g(x)eC(X) and each p; is
a generator of a height-1 prime ideal of R.

Then plpz...pnf(x) = r.g(x). Since g(x)eC(X),
rapl...pnr', where r'eR. But then f(x)g(x)“1 = r' € R.

1t remains to show that To has the properties claimed.
Suppose that 1 is an ideal of To' Suppose that I is contained
in no height-1 prime ideal of the form pTo - Top of T, for peR a
generator of a height-1 prime ideal of R, pR = Rp. Therefore
InC(pR[x]) # ¢, for all height-1 prime ideals pR of R. Hence,
by Theorem 5.2.3, INC(X) # g. So I = To'

1£ 1 is contained in a height-1 prime ideal of T0 , say pTo
=T P then I = pJ for some ideal J of T,- By a Noetherian
jnduction, we may assume that J = dTo = Tod' for some d =
pz‘”pn' w}'\ere the Py generate prime ideals of R. Then Il =
PP,---PpTy = ToPP - --Ppe

By Maury-Raynaud[52], Proposition3.2.1, To is an Asano
order. Further, To - nToC(pTo) + where the intersection runs
over all the height-1 prime ideals of To . Thus 'I“l is a bounded
order by Hajarnavis-Lenagan[33], Theorem 3.5. Finally, Len-

agan{46], Theorem and Corollary tells us that T, is hered-

itary.

Remark: Suppose that the full ring of quotients of R, Q(R) = Q,
is empedded in Q(R[x]) in the obvious way. Then QnTo = T, where
T is the intersection of the partial localisations of R at the

height-1 prime ideals of R.

In many ways this result is unsatisfactory since it does
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not give us much information on the structure of R within its
ring of fractions Q(R). The rest of this section is devoted to
presenting some preliminary and tentative results in this
direction.

First we consider what extra conditions we could impose on

R to obtain that C is Ore. We need a definition.

5.2.5. Definition: A set X of prime ideals of a ring R is said

to satisfy the right reflexive-intersection condition if,

given a reflexive right ideal I such that InC(P) # g4, for all

P in X, then InC(X) # g. We define the left refliexive-

jntersection condition in a like manner.

Let R be a Noetherian UFR. Let S = RD as before. Let T =

nRC(P), where the intersection runs over all the height-1l

prime ideals of R.

5.2.6. Lemma: Let R be a Noetherian UFR. Let I be a reflexive
right ideal of R. Then

(i) 1T = ITNIS.

(11) IT = NIRy py, Where the intersection runs over

all the height-1 prime ideals P of R.

Proof: We use A.(BNnC) < A.BNA.C for any subsets of R.
Cclearly I ¢ nIRc(P)nIS. By the same token, we have

I%(NIR., 5 NIS) & NIXIR, _ NI*IS € NR

C(P) C(P) cp)™ - R
Solg¢c nIRc(P)nIS & I** = 1. This proves (i). We prove

(ii) in a similar fashion.

5.2.7. Lemma: Let R be a prime Noetherian maximal order.
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Suppose that a and c are elements of R with ¢ regular. Then the

rignt ideal K = {r:arecR}] is reflexive.

Proof: K* = {g:qK € R} 2 Rc™'a. Therefore

K** ¢ RN (Rc_la)* = (r:arecR} = K.

et X = {P:P = pR = Rp a height-1 prime ideal of R}.
consider the following seven conditions:
(i) R is bounded;
(ii) X satisfies the intersection condition;
(iii) C is the set of units;
(iv) X satisfies the reflexive-intersection condition;
c

(v) is Ore and T = R.;

Q

is Ore and R, is bounded;

(vi) ¢

(vii) C is Ore.

5.2.8. Theorem: Let R be a Noetherian UFR. Then we have the
following diagram of implications between the conditions
(1) ... (Vii):

(1) (ii)

VAYVAN

(iii) (vi) &= (v)E (iv)

W

(vii)

pProof: Note that all the conditions are left-right symmetric
so it suffices to consider one-sided conditions only. Suppose
that condition (i) holds, then by Theorem 4.4.2, (iii) holds,

and (vi) is clear.
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if condition (ii) holds then it is immediate that (iv)
holds. It is obvious that any of the conditions (iii),

(v), or (vi) imply that (vii) holds.

So it remains to prove the equivalence of conditions (iv),
{v), and (vi). Suppose that (iv) holds. Suppose that aeR and
ceC. Let K = {r:arecR}. Then, by Lemma 5.2.7, K is reflexive.
Each height-1 prime ideal in X is localisable, and hence
KnCc(P) # ¢, for all P in X. Condition (iv) then implies that
KNC(X) # ¢. Therefore C(X) = C is Ore. Further, if ge nRC(P) '
jet J = {r:qreR}. Then JINC(P) # g, for all PeX, and J is
reflexive. Thus JNC(X) is non-empty and now both (v) and (vi)
follow. Using Maury-Raynaud[52], Proposition IV.2.17, cond-
jtions (v) and (vi) are clearly equivalent. So it remains to
prove that (vi) implies (iv).

Suppose that (vi) holds. Suppose that I is a reflexive
rignt ideal such that InC(P) # ¢, for all PeX. Then, by Lemma
5.2.6, IT= nIRC(P) = ch(P) =Tm= Rc. Therefore INC(X) » d.

We can in fact show that C(X) is Ore in some naturally
occurring situations by using a counting argument very

gimilar to that of J.T.Stafford and R.B.Warfield in showing

that certain cliques in Noetherian rings are localisable.

5.2.9. Theorem: Let R be a Noetherian UFR. Let X be the set of

height-1 prime ideals of R. Suppose that R contains a central

sub-field such that IXi < IFl. Then C(X) is Ore.

Proof: By Lemma 3.3.2, it is enough to show that X satisfies

the intersection condition. If X is finite then we are done by
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Theorem 3.3.4. So suppose that X is infinite.

Suppose that K is a right ideal of R with KnC(P) # ¢ for
all PeX. By Lemma 1.5.6, we may choose ceK with ¢ regular. By
Chamarie[1l]}, Proposition 1.8, ceC(P) for all, but finitely
many PeX. By Theorem 3.3.4, we may choose deK such that for
each PeX either ceC(P) or deC(P).

By Jategaonkar({43], Lemma 7.2.10, there exists aecF with
c+daeC(X). That is KnC(X) # ¢g. The 1left intersection

condition is proved in a similar fashion.

Remark: It seems likely that C(X) is Ore in most naturally
occuring examples of Noetherian UFRs. In particular K.
McKenzie has shown that C(X) is Ore for a large class of group

rings which are UFRs and it seems reasonable to make the

following conjecture.

5.2.10. Conjecture: Let R be a Noetherian UFR. Let X be the set
of height-1 prime ideals of R. Suppose that the set (Goldie

rank(R/P) :PeX} is bounded above in the integers. Then C(X) is

Ore.

we conclude this section with two structural results

inspired by corresponding results in Lenagan[47], Chapter 4

for prime hereditary Noetherian rings.

5.2.10. Definition: We shall call a right ideal I of R

completely reflexive-faithful if, for all I < J ¢ K < R, where

J and K are reflexive right ideals, the module K/J is

faithful.
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5.2.12. Lemma: Let R be a prime Noetherian maximal order.
Suppose that S is an Ore set of non-zero-divisoxs such that RS
is also a maximal order of Q(R). Denote for a right (respec-
tively left) Rs-ideal of Q(RY J, J' = {qeQ:qJ C RS] (respec-
tively J' = {qeQ:Jq c Rs]).

Let I be aright ideal of R. Then RSI* - (IRS) ', and I**RS
= (IRg)''. In particular, if I is reflexive then IRg is

reflexive.

Proof: Clearly RSI* c (IRS) '. Now suppose that geQ(R) is such
that qIRS c Rs. Write I = }:in for a finite set {j=1,...,m}.

Then for each j, qij - cglsj , £or some cjes and s_€R. Then

J
there exists ceS such that cgls:.J - c"li'.:j , for tj €R. Thus
cql € R. So cqgel* and so qeRsI*. The corresponding result
for left R-ideals of Q(R) is clear.

x X - * L} = e
Then I RS (RSI ) IRS .
5.2.13. Theorem: Let R be a Noetherian UFR. Then § = UB*, where
the union is over all non-zero ideals B, and T = Ul *, where the

union runs over all the completely reflexive-faithful right

ideals of R.

Proof: The first result is clear. Now suppose ithat I is a
completely reflexive-faithful right ideal of R. Suppose that
pR is a height-1 prime ideal of R. Let J = (I + pPR). If Jx* # R,
then R/J** is not faithful, a contradiction. Tl:\us J¥*x = R,
Then, by Corollary 5.1.7 and Lemma 5.2.12, JR

c(pR) " Re(pry
So J n C(pR) # # and hence I N C(pR) # @. Therefore I'* c¢ Rc '

for some ceC(pR). So I* ¢ l"C(pR) . But PR was chosen
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arpbitrarily and so I* ¢ - T

"Re(pr)

Conversely, choose geT. Then, for each pReX, there exists
cpeC(pR) with qcpeR. Let I = Zch. Then gel*, and we claim that
1 is completely reflexive-faithful. Suppose not, then there
exist reflexive right ideals J and K with 1 < J ( K< R and a
non-zero ideal A such that (K/J)A = 0. But then JS = KS and also
JT = KT =T. So J = JTNIS = KTNnKS = K, which contradicts our

choice of J and K.

We end this section with what we might consider a

"decomposition” result.

5.2.14: Theorem: Let R be a Noetherian UFR. Let I be a
reflexive right ideal of R. Then I = JnK where:
(i) J = J** = JSNR and JS = IS;

(ii) K = K** = KTNR and KT = IT. Further K*x c S.

Proof: Choose J to be aright ideal maximal with respect to the
conditions that I ¢ J, that J is reflexive and that J/I is
unfaithful. Choose K to be a right ideal maximal with respect
to the conditions that I ( K, that K is reflexive and that XT =
IT.

By Maury-Raynaud([52], Proposition 1.3,7, JNK is ref-
lexive. So, by Lemma 5.2.6, JNK = (JNK)TN(JNK)S. Since J/I is
unfaithful, JS = IS. Hence (JNK)S = 1S. By our choice
of K, (JNK)T = IT. Therefore (JNK) = ISNIT = I.

Suppose that J # JSNR. Then J % (JSnR)**. But, by Lemma
5.2.12, (JISOAR)**S = ((JISNR)S)"'' = (JIS)'' = (IS)'' = I**S = IS

and this contradicts our choice of J. Therefore J = JSNR.
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The proof that K = KTnR is similar. Finally, since T is a

bounded ring, K is bounded. By Theorem 5.2.13, K* c S.
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section 5.3. Alternative Unique Factorisation domains.

In this section, we briefly consider two other variations
on the theme of generalising the notion of Unique Factoris-
ation domain from the commutative case. Whilst, in some cases,
these definitions are equivalent to the definition of Chapter
2, they are in general distinct. The first was proposed by
P.M.Cohn and the second is a natural generalisation proposed
by R.A.Béauregard. Both are essentially lattice-theoretic
notions. We shall give examples to indicate that these
definitions are in general different from our notion of
Noetherian UFD. This answers a question by P.M.Cohn.

There are two features common to all notions of unique
factorisation, the first being that of a distinction between
atomic and prime elements, and the second that of a factoris-
ation of elements into primes in some form. Recall that, in a
ring R, an atom is an element which cannot be written as a
product of two non-units. A domain R is atomic if every
element may be written as a product of atoms. In a commutative
ring R, a prime p is an element such that if a.b € pR for some
two elements a and b of R then either aepR or bepR. Even in
quite well-behaved commutative rings the two notions are
distinct. For example in Z[Vy-5], we have 6 = 2.3 = (1+vy-5)(1-
v-5), where all the factors are atoms, but none are primes. In
a commutative ring, we say that two elements a and b are
associates if a = u.b for some unit u of R . A commutative UFD
may be characterised by the property that all atoms are primes
and every element has a (necessar ily) unique factorisation as

a product of atoms, up to order and associates.
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We refer the readexr to Section 1.7 for the definitions of
lattice and modular lattice. P.M.Cohn considered the notion
of similarity as a generalisation of associate as follows. Let
R be a domain. Two elements a and b of R are said to be similar
if R/aR = R/bR as R-modules. The apparent asymmetry of this

definition is resolved by the following.

5.3.1. Theorem: Let R be a domain. Suppose that a and b are two
elements of R. Then R/aR = R/bR as right R-modules if and only

if R/Ra = R/Rb as left R-modules.

Proof: See Cohn([19], Corollary 2 to Theorem 3.2.1.

Note that, if R is commutative, then two elements are similar

if and only if they are associates because then they generate

the same ideal of R. Let R be a domain. Given an element ceR, we

say that ¢ = a ...a, is an atomic factorisation of ¢ if a; is an
atom, for all i.

Suppose that ¢ = aa,...a = blbz .o 'bm are two atomic
factorisations of an element c. We shall say that these two

factorisations are gimilarity-isomorphic if and only if m=n

and for some oesn, foreachi=1,...,n, ai is similar to

bo(i)' We call a domain a similarity-UFD if R is an atomic
domain in which any two atomic factorisations of an element
are similarity-isomorphic. It is clear that if R is commut-
ative then this reduces to the classical definition of UFD. We

have, in terms of lattices, the following useful criterion to

determine if a domain is a similarity-UFD.
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5.3.2. Theorem: A domain R is a similarity-UFD if, for each
ceR, the set L(cR,R) of principal right ideals between cR and
R is a modular sub-lattice of finite length of the lattice of

right ideals of R.

Proof: See Cohn[20], Theorem 5.6.

Let R be a domain. It is not hard to see that a,a'eR are
similar if and only if there exists an element b of Rwith aR +
bR = R and aRnNnbR = ba'R. R.A.Beauregard uses this to
generalise the notion of similarity as follows.

Suppose that a and b are two elements of a domain R. We
define (a,b)r to be the element (if it exists) d such that aR +
bR = dR. We def ine also [«':1,b]r to be the element (if it exists)
c such that aR n bR = cR. Define the corresponding elements on
the left, (a,b)land [a,b]l, in the obvious way. Then we say

that two elements a and a' of R are transitive if there exists

an element b such that (a,b)l =] and [a,b]r = ha', and we write
a tr a'. This relation is not necessarily symmetric, but we
may use it to define an equivalence relation. We say that two

elements a and a' of R are projectively equivalent if there

exist elements a ra RRTL of R such that a = g a'' = a

and, foreachi=1,...n, either aj_qtra or a; tra We

i-1°
write a pr a'.

It is easy to see that if two elements are similar then
they are projectively equivalent. In the case of a commutative
domain, 1if two elements are projectively equivalent, then

they are associates. If R is a Bezout domain then two

pzojectively equivalent elements are similar.
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‘Let R be a domain. Let c be an element of R. If c = a,...a, =

are two atomic factorisations of c, then we say that

bl...Dm

they are projective-isomorphic if m = n and for some element o

of Sn' foreachi=1,...,n, a; pr bo(i) . Just as in the case of
a similarity-UFD, we say that an atomic domain R is a

projectivity-UFD if all atomic factorisations of an element c

of R are projective-isomorphic. Again, if R is commutative
this reduces to the classical definition of a UFD.

It is clear that any PID is a similarity-UFD and a
projectivity-UFD. But, as we saw in Section 3.2, if D is the
division ring of real quaternions then D[x] is not a Noeth-
erian UFD in the sense of Chapter 2. Let R = Al(Z) , the first
Weyl algebra over the integers. Then in R we have the atomic
factorisations c = (xy+l)x = xzy. Thus in R not even the number
of factors in an atomic factorisation need be constant. But,
by Theorem2.1.4, A1(Z) is a Noetherian UFD in the sense of
Chapter 2. These two examples make it clear that these
generalisations of UFD are distinct.

In Beauregard [5], R.A.Beauregard proves an analogue of
Nagata's Theorem for projectivity-UFDs. To do so he has to
introduce a notion of prime element and it is perhaps ironic
to observe that he uses a definition of prime element

jdentical to that of Section 2.1.
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