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( i) 

Abstract 

The commutative theo~y of Unique Facto~isation Domains 

(UFDs) is well-developed (see, fo~ example, Za~iski­

Samuel[75], Chapter 1, and Cohn[2l], Chapte~ 11). This thesis 

is conce~ned with classes of non-commutative Noethe~ ian rings 

which are gene~alisations of the commutative idea of UFD. 

We may characterise commutative Unique Factorisation 

Domains amongst commutative domains as those whose height-l 

pr ime ideals P ar e all pr inc ipal (and completely pr ime ie RIP 

is a domain). In Chattere[l3], A.W.Chattere proposed to 

extend this def inition to non-commutative Noether ian domains 

by the simple expedient of deleting the word commutative from 

the above. 

In Section 2.1 we describe the definition and some of the 

bas ic theory of Noether ian UFDs, and in Sections 2.2, 2.3, and 

2.4 demonstr ate that large classes ,of natur ally occur ing 

Noetherian rings are in fact Noetherian UFDs under this 

definition. 

Chapter 3 develops some of the more surprising conseq­

uences of the theory by indicating that if a Noether ian UFD is 

not commutative then it has much bette~ properties than if it 

were. All the work, unless otherwise indicated, of this 

Chapter is or ig inal and the main result of Sect ion 3.1 appear s 

in Gilchrist-Smith[30]. 

In the consideration of Unique Factorisation Domains the 

set C of elements of a UFD R which are regular modulo all the 

height-l prime ideals of R plays a crucial role, akin to that 
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of the set of units in a commutative ring. The main motivation 

of Chapter 4 has been to generalise the commutative principal 

ideal theorem to non-commutative rings and so to enable us to 

draw conclusions about the set C. We develop this idea mainly 

in relation to two classes of pr ime Noether ian rings namely PI 

rings and bounded maximal orders. 

Chapter 5 then returns to the theme of unique factor­

isation to consider firstly a more general notion to that of 

UFD, namely that of Unique Factorisation Ring (UFR) first 

proposed by Chatters-Jordan[17]. In Section 5.2 we prove some 

structural results for these rings and in particular an 

analogue of the decomposition R - snT for R a UFD. Finally 

sect ion 5.3 br ief ly sketches two other var iat ions on the theme 

of unique factor isation due pr imar j ly to Cohn[ 20], and Beaur­

egard [4], and shows that in general these theor iea are 

distinct. 
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Chapter O. Introduction. 

The theory of non-commutative rings is now well establ­

ished. Though much of the theory and many of the results arise 

from naturally occurring non-commutative Noetherian rings, 

it is also true that one of the most per s istent themes in the 

development of the subj ect has been the extens ion and 

generalising of known results of commutative ring theory. 

This thes is is concerned with three such theor ies: the 

principal ideal theorem, Unique Factorisation Domains, and 

localisation. 

One of the major impetuses for the development of 

commutative ring theory arose from the work of Kummer who 

showed that not all rings of algebraic integers are Unique 

Factorisation Domains. There developed a need to determine 

which domains are in fact UFDs and what could be said about 

those that were. 

Several attempts have been made to extend this theory to 

non-commutative rings, notably by P.M.Cohn and 

R.A.Beauregard. In 1984 A.W.Chatters proposed a new defin­

ition. In Chatters [13], he def ined a (not necessar ily commut­

ative) Noetherian Unique Factorisation Domain (UFO) to be a 

Noetherian domain R with at least one height-l prime ideal 

such that (i) every height-l prime ideal is principal, by the 

same element, on both sides, and (ii) every height-l prime 

ideal P is completely prime, that is RIP is a domain. In 

Chatters[l3] he proved some basic results concerning Noeth­

er ian UFDs and showed that certain classes of naturally 

occurring Noetherian rings are in fact Noetherian UFDs with 



this definition. 

In Chapter 2 we describe some of these results and show, 

in particular, that both enveloping algebras of f inite­

dimensional Lie algebras and group rings of torsion-free 

polycyclic-by-finite groups are often Noetherian UFDs. The 

final section of Chapter 2 exhibits some quite natural results 

that seem to ind icate that the def inition of Noether ian UFD is 

a reasonable one. It includes a non-commutative version of 

Nagata I s Theorem which character ises Noether ian UFDs in terms 

of certain localisations. It is the only original section of 

this chapter. 

Suppose that R is a Noetherian UFO. Consider the set C of 

elements of R that are regular modulo every height-l prime 

ideal of R. If R were commutative then C would simply consist 

of the set of units of R, U. In general however, the set C may 

be strictly larger than U. One of the fundamental results of 

Chatters[l3] is that the set C is always an Ore set and hence 

that we may localise with respect to C. I t turns out that this 

localisation T has particularly nice properties and in 

Chapter 3 we explore some of them. 

Following the proposed definition of Noetherian UFO, 

A.W.Chatters, J.T.Stafford, and M.K.Smith showed that for 

certain classes of naturally occurring Noetherian UFO the 

localisation T is actually a principal ideal domain (PIO). In 

section 3.1 we show that this is the case in general, provided 

that R is not commutative. Clearly this indicates a quite 

serious and unexpected divergence in the theory since in the 

commutat i ve case T is equal to R and hence need not be a P 10. 

Perhaps one way to interpret this result is that it is an 
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indication of how st~ingent a condition it is that a p~ime 

ideal of a non-commutative ~ ing be completely pr ime. We should 

note that this result was proved independently by M.K.Smith 

and it appea~s in Gilchrist-Smith[30]. 

In Section 3.2 we extend this result by showing that in 

fact provided that R is not commutative then not only is T a 

P ID, but also T has stable ~ank one. This means that we have a 

good grasp on the structure of T-modules since we have an 

array of ·cancellation" results at ou~ disposal. 

On a closer examination of the proof of the main result, of 

section 3.2 it becomes clear that we have actually shown that 

the set of height-l p~ime ideals of a Noetherian UFD satisfy 

the intersection condition. That is, if K is a right (o~ left) 

ideal with KnC(p) ~ ¢ for all height-l prime ideals P then 

Knc 'jI< ¢. 

This was quite unexpected and we explore the implications 

of this to localisation in Section 3.3. Broadly speaking, the 

question of localisation in non-commutative rings is still a 

vexed one and we have as yet only partial answers to the 

problem. In commutative ring theory it is always possible to 

localise at a prime ideal or set of prime ideals and it is 

often very convenient to do so. 

However in non-commutative ring theory, it is often not 

poss ible to localise at a given p~ ime ideal and the best we can 

hope for is to localise at a clique of prime ideals that a~e 

"linked" togethe~. In the p~esence of a condition known as the 

second layer condition, a clique is localisable if and only if 

it satisf ies the intersection condition. Consequently it 

becomes of great inte~est to determine when a set of prime 
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ideals satisfies the intersection condition. 

Generally, for Noetherian rings, results in this direc­

tion have needed to assume the existence of an uncountable 

central field in the ring in question. Then a counting 

argument may be employed because cliques consist of only (at 

most) countably many pr ime ideals. Us ing the method of Section 

3.2, we are able to drop this uncountability hypothesis in 

certain situations. Unfortunately the results of Section 3.3 

are very limited in scope: essentially they require that a 

clique X consists of completely prime ideals such that, 

denoting their intersection by Q, R/Q is not commutative and 

that for each prime ideal P of X, P/Q is a height-l prime ideal 

of RiQ· 

We have been unable to extend this result significantly, 

but in its present form we are able to show that cliques in 

enveloping algebras of certain solvable Lie algebras are 

localisable. 

In Section 3.4 we consider the question of the centres of 

Noetherian UFDs and show that for R a Noetherian UFD Z(R) is 

always a Krull domain. Conversely, we also show, by an 

explicit construction, that every commutative Krull domain 

may be realised as a centre of a Noether ian UFD. Unless 

otherwise stated all the results of Chapter 3 are original. 

It is readily apparent that the set C of elements regular 

modulo every height-l pr ime ideal of a Noether ian UFO play an 

important part in Chapter 3. We can consider this set (renamed 

r in the general case) in the wider context of pr ime 

Noether ian rings. In a commutative Noether ian domain the set r 

consists solely of the set of units. In fact this statement is 
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one of several equivalent formulations of the pr incipal ideal 

theorem due to Krull. This observation motivates Chapter 4 

which explores this theme by considering several different 

generalisations of the classical principal ideal theorem to 

non-commutative Noetherian rings. These different 

generalisations correspond to the different equivalent 

statements of the theorem due to Krull. 

The results of Chapter 4 primarily apply to two main 

classes of prime Noetherian rings: PI rings and bounded 

maximal orders. Sections 4.2 and 4.3 deal primarily with 

results for Noetherian PI rings though we do prove them in a 

slightly wider context. In Section 4.4 we consider bounded 

max imal order s and in Sect ion 4.5 we ind icate how these 

results might be extended to more general classes of rings. 

This chapter is largely inspired by numerous discussions and 

correspondence with A.W.Chatters and many of the results of 

this chapter were proved independently by him. The main 

results are to appear in Chatters-Gilchrist[14]. 

The final chapter, Chapter 5, returns us to the theme of 

Unique Factorisation. In some respects, nice though the 

theory is, Noetherian UFDs are not an entirely satisfactory 

generalisation of the commutative case. If R is a commutative 

UFD then R[x] is also a UFD. However in Section 5.1, we exhibit 

an example of a (non-commutative) Noetherian UFD such that 

R[x] is not a Noetherian UFD. We note though that it is still 

true that all the height-l pr ime ideals of R[x] are pr incipal. 

This motivates the def inition of a Noether ian Unique 

Factorisation Ring (UFR) which was first proposed in 

Chatter s-Jordan [17]. A pr ime Noether ian ring is a Noether ian 



UFR if every non-zero prime ideal contains a height-l prime 

ideal and every height-l pr ime ideal is pr incipal (by the same 

element) on both sides. 

section 5.1 devlops the basic theory of Noetherian UFRs 

and is mostly due to A.W.Chatters and O.A.Jordan, though we 

do, in pass ing, use some of the results of this sect ion to 

construct examples of primitive Noetherian UFOs of any finite 

Krull or global dimension. 

As might be ant ic ipated, the theory of Noether ian UFRs is 

at one and the same time more natural and less tractable than 

for Noetherian UFDs. In the case of Noetherian UFOs the fact 

that the set C is Ore enables us to wr ite any Noether ian UFD as 

the intersection of a simple Noetherian domain and a PID. The 

first part of Section 5.2 is devoted to proving that a 

Noetherian UFR R may be written as the intersection of a 

simple Noetherian ring and an ideal-principal ring. However 

since the latter is not an order in the full quotient ring of R 

this limits the utility of this result. For Noether ian UFRs we 

have, in gener aI, been unable to show that r is an Or e set. For 

bounded Noether ian UFRs the results of Chapter 4 and the fact 

that Noether ian UFRs are maximal orders enables us to conclude 

that r is simply the set of units. We give some more sufficient 

conditions on Noetherian UFRs for r to be Ore. 

We end Section 5.2 by presenting some preliminary results 

on the structur e of one-s ided ref lex i ve ideals of a Noether ian 

UFR. These are inspired in part by similar results for 

hereditary Noetherian rings proved by Lenagan in his thesis 

[47). All the work in this section, with the exception of 

Lemma 5.2.1, is original. 
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As we stated ea~lie~, the~e have been several other 

attempts to gene~alise the definition of UFD to non-commut­

ative ~ings. We end this thesis by answe~ing a question of 

P.M.Cohn. We show, with examples, that in gene~al the notion 

of Noethe~ian UFD is distinct f~om the definitions due to 

P.M. Cohn and R.A.Beau~ega~d. 



Chapter 1. Basic definitions and results. 

section 1.0. Summary. 

In this chapter we shall recall the basic techniques and 

results of Noether ian ring theory which we will require 

subsequently. Very little here will be original and it is 

intended only to provide a ready source of reference and to 

serve as an introduction to certain classes of rings which we 

shal11ater discuss. Results will quite often not be stated in 

their full generality, since, for the most part, we shall 

generally have two-sided conditions present when often one­

sided ones would do. For this somewhat whistle-stop tour of 

Noetherian ring theory we will use Chatters-Hajarnavis[16], 

Cohn[2l], and (to appear) McConnell-Robson[Sl] as general 

references and as a source for the precise statements of the 

results. 

Throughout all rings will have a 1 and all modules will be 

unitary. Sub-rings will share the same unit element. Fields 

will always be commutative. The notation of this chapter is 

standard and will be used throughout this thesis. 

Recall that, for a ring R, R is said to be right (left) 

Noetherian if it satisfies the ascending chain condition on 

right (left) ideals. A ring is Noetherian if it is both left 

and right Noetherian. 

A ring R is right (left) Artinian if it satisfies the 

descending chain condition on right (left) ideals. A ring is 

Artinian if it is both left and right Artinian. 

A ring R is pr ime if, given two ideals A and B of R, then if 



A.B = 0 then either A'" 0 or B = O. Equivalently, if aRb" 0 then 

either a:::O or b=O. A ring is semi-pr ime if, for an ideal A, A 
2 

-

o implies that A - 0; equivalently, aRa c 0 implies that a-O. 

We say that an ideal I is a prime (semi-prime) ideal if the 

factor ring R/I is pr ime (semi-pr ime). A ring is a domain if 

it has no non-zero zero-divisors. A prime ideal P is complet-

ely prime if RIP is a domain. 

Aright R-module MR is faithful if, for an element a of R, 

Ma ::: 0 implies that a=O. A module is simple if it contains no 

non-trivial sub-modules. We say that a ring R is right (left) 

primitive if it has a simple faithful right (left) R-module. 

A right (left) ideal is principal °if it is of the form aR 

(Ra) for some element a of R. An ideal is pr incipal if it is 

both left and right principal. We say that a domain R is a 

principal right (left) ideal domain if every right (left) 

ideal is pr inc ipal, and a pr inc ipal ideal domain if it is both 

a left and right pr inc ipal ideal domain. A ring is ideal-r ight 

(ideal-left) principal if every ideal is right (left) prin­

cipal. We say that a ring is ideal-pr incipal if every ideal is 

both left and right principal. 

A ring R is right (left) hereditary if every right (left) 

ideal is projective. A ring R is hereditary if it is both left 

and right hereditary. 
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Seclion 1.1. Quotient ~ings and the OIe condition. 

In commutative ~ ing theo~y the method of localisation is a 

very powerful and ubiquitous tool. Let R be a Iing. Suppose 

that S is a multiplicatively closed saturated sub-set S such 

that OIS. We seek to fo~m a ~ ing Rs which is unive~sal with 

respect to the property that it is S-inverting. That is, (i) 

R is a ring with a Iing homomorphism ~:R-Rs such that >-(s) 
S 

is a unit in RS' rOI all SES, and (ii) given any ~ing 

homomorphism p.:R-T with Po(s) a unit in T, for all seS, then 

the~e exists a unique ring homomorphism f :RS-T such that 

In the case of a commutative ~ ing such an Rs is easy to 

construct. We define on RXS the equivalence ~elation a by 

(r,s)s(r' ,s') if and only if there exists an element t€s with 

t (r s' -sr' ) =0. Then we can def ine Rs to be the set of 

equivalence classes of RxS with the operations of addition and 

multiplication defined by [~,s]+[~' ,s']-[rs'+sr',ss'] and 

[r,sl.[r' ,s']-[rr' ,ss']. 

This defines a ring Rs and a unique ring homomorphism 

>":R-RS given by >-(r)-[r,l] which is universal S-inverting. 

See for example Cohn[2l], Theo~em 11.3.1. For P a p~ime ideal 

of R, the set R\P - S is a multiplicatively closed set. In this 

case, Rs is a local r ing with unique max imal ideal PR
S

; that is 

we have localised at P. 

In the non-commutative case we have nowhere near the ease 

of this theory. In fact it seems reasonable to say that non­

commutative ring theory has not yet quite surmounted this 

first step. It is true to say that, given any ring R and a 
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multiplicatively closed subset S of R, that thel:e does exist a 

universalS-invel:tingl:ingRs . However, in general, it is 

almost impossible to do anything with this ring. 

To have much hope of a useful theory of localisation we 

need a simplifying idea due to O.Ore (and independently 

E. Noethel:) . This concept enables us to wr ite RS as a set of 

elements of the form >..(r) .>..(s)-l where the forms of addition 

and multiplication are then easy to write down. However in 

ordez: to do this we need to be able to write ).(s)-l.>.(r) in the 

-1 form >..(r').>"(8') , for some r'ER and S'ES. It is this problem 

which the next theorem addresses. 

1.1.1. Theoz:em: Let R be a ring. Let S be a multiplicatively 

closed satuz:ated subset of R such that: 

(i) for all aeR and SES, aSnsR ~ ¢; 

(ii) for each aeR and SES with sa-O, there exists teS with 

at-O. 

Then the elements of the univeral S-inverting ring RS can 

be constructed as fractions a/s, where a/s - a' /s' if and only 

if au-a'u' and su-s'u', for some u,u'€R. 

Moreover, the kernel of the canonical ring homomorphism 

)':R~RS is Ker). = {a€R: at=O for some t€S}. 

Proof: See Cohn[2l], Theorem 12.1.2. 

Suppose that S is a multiplicatively closed saturated 

subset of a r lng R. We say that S is a right denominator set if 

it satisfies (i) and (ii) of Theorem 1.1.1. We may define a 

left denominator set in a symmetr ieal fashion. In general, the 
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two notions a~e distinct. If S consists of non-ze~o-diviso~s 

then (ii) is supe~fluous and Ker~ - o. 
Let S be a set of non-zero div isors in a ring R. We say that 

S satisfies the right Ore condition if, given a~R and s£S, 

there exists b~R and t~s with at-sb. In this situation we say 

that S is a right O~e set. The left O~e condition is defined 

similarly. We say that S satisfies the Ore condition if it 

satisfies both the left and ~ight Ore conditions. In this 

situation, we say that S is an Ore set. 

1.1. 2. Theorem: Let R be a ~ ing. Suppose that S is a 

multiplicatively closed subset of non-zero-divisors satis­

fying the ~ight Ore condition. Then S is a ~ight denominator 

set and the canonical homomorphism ~ :R-RS is injective. 

In this situation, we call the ring RS the right partial 

quotient ~ ing of R wi th respect to S. Fo~ a left Ore set T, TR 

denotes the left partial ~ing of quotients with respect to T. 

If S is an Ore set then sR ~ RS. 

For a commutative domain R one of the most useful 

constructions is the field of fractions of R in which we 

invert all the non-zero elements of the ring. For a general 

ring R, we say that it has a right full ring of quotients Q(R) 

which, if it exists satisfies: 

(i) R is a sub-ring of Q(R); 

(ii) each regular element of R is a unit of Q(R); 

(iii) each element of Q(R) can be written in the form ac-1 , 

for elements a,c€R with c regula~. 
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Thus Q(R) is the ~ight localisation of R with ~espect to 

the set of ~egula~ elements of R. 

In this situation, we say that R is a ~ight o~de~ in Q(R). 

A left o~de~ is defined simila~ly and if both exist they a~e 

equal. A ~ight o~ left full quotient ~ing of quotients need 

not always exist. Howeve~, in an impo~tant class of rings 

A. W. Goldie has dete~mined necessa~y and suff icient cond­

itions fo~ a full quotient ~ing to exist. 

Let R be a ~ing. Suppose that M is an R-module. A sub­

module N is essential in M if any non-zero sub-module of M has 

non-zero inte~section with N. A module M is uniform if eve~y 

non-zero sub-module is essential. We say that a module M has 

finite Goldie rank n if there exists a direct sum of n uniform 

submodules of M which is essential. The right (left) Goldie 

rank of a ring R is the ~ ight (left) Goldie rank of R as aright 

(left) R-module. 

In a ~ing R, a ~ight ideal I is a ~ight annihilator id~al 

if I = reS) = {r:s~=O for all s€S} for a subset S of R. A ring R 

is said to be a right Goldie ring if (i) R has finite right 

Goldie rank, and (ii) it satisf ies the ascending chain 

condition on ~ight annihilato~ ideals. 

Then we have the folowing very important result, due to 

A.W.Goldie. 

1.1.3. Theorem: Let R be any ring. Then R has a right full 

quotient ring which is semi-simple Artinian if and only if R 

is semi-prime right Goldie. 

Further, R has a ~ight full quotient ring which is simple 

Artinian if and only if R is prime ~ight Goldie. 
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In a ~ing R, we say that an element c is ~ight yegula~ if 

cx-O implies that x-O; left ~egula~ is s imila~ ly def ined and a 

~egula~ element is both left and ~ight ~egular. 

For an ideal I of R, we shall use the notation C'(I) 

(respectively 'C(I»to denote the elements of R whose images 

in the factor ring R/I are right regular (respectively left 

regular). C(l) - C' (I)n'C(I) is the set of elements of R whose 

images in R/I are regular. We shall say that a pY ime ideal P of 

a ring R is Yight (left) Goldie if R/P is ~ight (left) Goldie. 

Clear ly, in a NoetheY ian ring, every pr ime ideal is both left 

and right Goldie. 

The following two results will be used implicitly in all 

that follows. They are well known, but we record them here 

explicitly. The first result is primarily due to A.T.Ludgate. 

1.1. 4. Theorem: Let R be a ring. Suppose that S is an Ore set of 

non-zero-divisors. Let I be an ideal of R. Then: 

(i) IRS is an ideal of Rs if and only if S S; C' (IRsnR); 

(ii) 1RSnR - I if and only if S ~ 'C(I). 

Furthermore, if R is Noether ian then I Rs is an ideal of RS' 

Proof: (i) Suppose that S !; C' ( I RSnR). Suppose that c €S and 

i€R. Since S is an Ore set, there exist d€S and r€R such that cr 

- ide Now c€C' (IRsnR) and so r€IRs ' Then c-1i - rd- 1 E IRs' 

conversely, suppose that IRS is an ideal of RS' Suppose 

that c€S and x€R are such that cx€IR .. nR. Then x€IR , and hence ::; S 
X€IRsnR. That is, ~CEC' (IRSnR). 

(ii) Suppose that 1RSnR - I. Suppose that C€S and x€R 
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are such that xc€I. Then x€IRsnR - I. Hence c€'C(I). 

Conversely, suppose that S ~ 'C(I). Suppose that for an 

element x€R, x - ic -1 € IRsnR. Then xc - i eI, and so XE I. 

The final statement is proved as in Chatters-Hajar-

navis[16], Theorem 1.31. 

1.1.5. Theorem: Let R be a ring. Let S be a right Ore set of 

non-zero-divisors. 

(i) For every right Gold ie pr ime ideal P' of RS' the 

intersection pi nR is aright Goldie pr ime ideal of R with P' -

(P I nR) RS' and RIP I nR and RS/P' have the same full quotient 

ring. 

(ii) Fo~ eve~y right Goldie prime idealP of R disjoint from 

5, the localisat ion PRS is a ~ ight Gold ie pr ime ideal of Rs 

with P ... PRSnR, and RIP and RS/PRS have the same full quotient 

ring. 

(iii) For every pr ime ideal P of R such that the elements of 

S are all regular modulo P, the localisation PRS is a pr ime 

ideal of RS with P - PRsnR. If PRS is right Goldie then P is 

right Goldie. If Rs is right Noetherian then it is enough to 

assume that the elements of S are left regular modulo P: in 

this case P is always right Goldie. 

Proof: Bell[6], Proposition 2.3. 

I A p~ime ideal P is localisable if C(P) is Ore. 
I 

1.1.6. Lemma: Let R be a p~ime Noetherian ~ing. Let I be an 

essential right ideal of R. Suppose that a is an element of R. 

Then a + I contains a regular element of R. 
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Proof: 5ince R is left Noetherian, R satisfies d.c.c. on right 

annihilators. Let x€I be with r(a+x) minimal. Let c-a+x. Let B 

be a right ideal of R with BncR - O.Choose O¢beBnI. Then 

cTbea+I. Because r(c+b) - r(c)nr(b), r(c+b) ~ r(c). By our 

choice of c, r(c+b) ... r(c). But b was chosen arbitrarily such 

that beBn!. 50 r(c) £ reb), for all bEBn!. 50 (BnI)r(c) - O. 

Since R is prime, either r(c) - 0 or BnI - O. If BnI - 0 then B -

0, since I is essential. Therefore cR is essential. By 

Chatters-Hajarnavis[16], Theorem 1.10 and Corollary 1.13, cR 

contains a 'regular element of R. Hence c is regular. 

1.1.7. Lemma: Let R be a right Artinian ring. Then a right 

regular element of R is a unit. 

Proof: Let c be a right regular element of R. Consider the 

descending chain of right ideals cR > cll<. > c 3 R > •.•. Since R 

is right Artinian, there exists an integer n such that cnR -

cnT lR ....... So there exists xeR wi th c nT lx - c n . By the right 

regularity of c, cx - 1. Also, c(xc-l) - O. 50 xc - 1. 

We also record here a result which we will often have 

cause to use. We say that an element 5 of a ring R is normal if 

sR ... Rs. 

1.1.8. Lemma: Let R be a ring. Let 5 be a multiplicatively 

closed set of normal regular elements. Then 5 is an Ore set. 

Proof: Suppose that aeR and SES. Since s is normal, there 

exist elements a',a"eR such that as - sa', and sa = a"s. 
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section 1.2. Orders and maximal orders. 

In this section we consider the situation of a ring R with 

a full (left and right) ring of quot ients Q - Q (R) . We say that 

R is an order in Q. We refer to Maury-Raynaud [52] for further 

background material for this section. 

Suppose that two rings Rand S are both orders in Q. Then 

we say that Rand S are order-equivalent, or often just 

equivalent, if there exist units a,p,a',p l of Q such that 

aR,8~ Sanda'S,8' ~ R. Clearly, aandPmaybe chosen to lie in 

R, and a' and P' to lie in S. Order-equivalence defines an 

equivalence relation on the set of orders of Q. 

An order R in Q is said to be maximal if R is maximal in the 

equivalence class of R. That is, R is a maximal order if R is 

contained in no other order of Q to which it is equivalent. For 

an ideal I of R, let Or (I) - {q€Q: Iq f; I} and let 01 (I) -
(qeQ:qI ~ I). We have the following character isation of 

maximal orders. 

1.2.1. Theorem: Let R be an order in Q. Then the following are 

equivalent: 

(i) R is a maximal order; 

(l'i) For all non-zero ideals I f R () o , Or I - R - 01(1). 

Proof: Maury-Raynaud [52], Proposition 1.3.1. 

1.2.2. Definition: Let R be an order in Q(R) - Q. Then a right 

(left) R-ideal of Q is a right (left) R-sub-module of Q, I, 

such that InU(Q) 'I' ¢ and there exists )"eU(Q) such that n ~ R 
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(I~ ~ R). An R-ideal is a left· and right R-ideal. 

An order R is an ~sano order if the R-ideals of Q form a 

qroup under multiplication. Equivalently, for every R-ideal 1 

contained in R, there exists an R-ideal I-I such that I. I-I -

1- 1 .1 - R. 
Suppose that R is an order in its quotient ring Q. Let I be 

a one-sided R-ideal of Q. We can define 1* - (qeQ: qI f; R) and 

* I - (qeQ: Iq ~ R) and these ar~' both one-a'ided R-ideai~ of Q. 
, , • ' , "~ • ~ ~, l' 

Let I be aright (left)R-ideal of R. ~hen 1 is reflexive if I -

*(1*). (1 = (·1)*). 

If R is a max imal order then for any R- ideal of Q, I, 1* -

*1. For an id~al I of a maximal order R, (1*')* - 1** is an ideal 
, 

of R containing I. We say that I is ref lexi ve if I - 1**. We say 
. , 

that an ideal I of R is invertible if there exists an R':"ideal 
: "-1 -1 . -.1 ! 

of Q,' denoted by I , with 1 • I - I • I R. Clearly any 

invertible :ideal is reflexive. 
A ring R is said to be right (left) bounded if every 

essential right (left) ideal contains an essential two-s ided 

ideal. R is right (left) fully bounded if every prime factor 

ring of R is right (left) bounded. Bounded and fully bounded 

rings are defined in the obvious way. 

1.2.3. Theorem: Suppose that R is an order in Q. Then the 

following are equivalent: 

(1) R is bounded. 

(ii) Suppose that S is a non-empty subset of Q such that 

there exist units)., and J.L of Q with )"SJ,L S R. Then there exist a 

'and ~ in R, units of Q, such that as S R and S~ ~ R. 

Further, let R be a bounded order in Q. If R is equivalent 

to an order S, then S is bounded. 
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Proof: Maury-Raynaud [52], Propositions 1.4.1 and 1.4.2. 

1.2.4. Theorem: Let R be a maximal order in Q. Then R[X] is a 

maximal order in Q(R[x]). Further, suppose that P is a 

reflexive prime ideal in R. Then P[x] is a reflexive prime 

ideal in R[x]. 

Proof: The first statement follows from Maury-Raynaud [52], 

Proposition V.2.5. Now suppose that P a P** is a reflexive 

prime ideal of R. Clearly P[x] is a prime ideal of R(x] and so 

it remains to show that P[x] is reflexive. 

Clearly P*[x] £ P[x]*. Hence P[x]** Go P*[x]*. Also 

R[X] ~ P* [xl and so p* [x] * £ R[x]. Clearly also, since 

p*[x)*.P*[x] ~ R[x], we obtain that 

P*[x]*.P*[x].P[x] ~ P[xj. 

Since R is a maximal order, if P*[x].P[x] £ P[xl then 

P* [x) Go R[x]. But this contradicts the fact that P is 

reflexive. So we deduce that 

P*[x]* ~ P[x] ~ P[x]** ~ P*[x]*. 

Therefore P[x] - P*[x]* - P[x]**. 
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section 1.3. PI ~ings. 

Amongst non-commutative ~ings the~e is a la~ge class of 

rings whose analys is has proved to be more tractable than most 

because they are in some sense "close" to being commutative 

rings. The theory of these rings is both wide and deep, but we 

shall draw out only a few of the salient and useful features of 

these rings in order to apply them later on. We shall follow 

McConnell-Robson[5l] in our treatment. 

Let R be a ring. Let be F the free algebra on countably 

many generators over the integers, Z. So F =- Z<x l ,x2.' ••• >. Let 

r:t .. (r l ,r
2

, ••• ) be any infinite sequence of elements of R. Then 

rAt def ines a ring homomorphism a :F-R given k,ly x ir---r i. 

Conversely, any ring homomorphism from F to R is of this form. 

The image of f€F under a we will write as f{r*). For an element 

f €F, we def ine its degree in the normal way. We say that f €F is 

multi-linear if f -f(x , ••• ,x ) -La x { ) .•• x ( )' 
1 n 001 on where 

a eZ, and where the sum is over all oeS , the symmetl: ic gl:OUp a n 

on n letters. 

We say that f is an identity of R if f(r*)-O, for all 

choices of r*. Then R is a PI ring if it has a multi-linear 

identity which has at least one of its coefficients equal to 

±l. 

1.3.1. Theorem: Let R be a primitive PI algebra of degree d. 

Then R is a simple algebt:a of finite dimension n 2 over its 

centre, where n ( d/2. 

Proof: See for example Cohn[2l], Theorem 12.5.5. 
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For our purposes, the properties of PI rings we most 

require are their relationship to their centres. 

1.3.2. Theorem: Let R be a prime PI ring with centre Z(R). Then 

every non-zero ideal of R intersects the centre non-trivial-

ly. Further, 

(i) R has a left and right full quotient ring Q(R)-Q; 

(ii) Q can be obtained by inverting the non-zero central 

elements of R; 

(iii) Q 15 a f.d. central simple algebra; 

(iv) R is Goldie; 

(v) Any multi-linear identity of R is an identity of Q. 

Proof: See Cohn[21], Theorems 12.6.7 and 12.6.8. 

1. 3.4. Corollary: Let R be a PI ring. Then R is a fully bounded 

ring. 

With every pr ime PI ring R, we may assoc iate with it a ring 

T(R) known as the trace ring of R. Its construction is as 

follows. Let Q be the quotient ring of R. Then, for some 

integer n, Q has dimension n 2 over its centre K. Then, if A€Q, 

A may be associated with eA , an element of the endomorphism 

ring of Q, by left multiplication by A. 50 we may regard 9
A 

as 

2 2 .• K Th t· an n )(n ma-c.r lX over . e rna r lX 9A sat isf ies its char act-

er istic polynomial over K which has degree n 2 • Hence A 

satisfies the same polynomial over k. 

Let T be the subring of K generated by Z(R) and the 
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coeff icients of the character istic polynomials of A, as A runs 

through all the elements of R. Then T is a commutative subr ing 

of K. Now let T(R) - T.R. Then T(R) is the trace ring of R. We 

have the following result which indicates that T(R) is 

sometimes an easier ring to deal with than R. 

1.3.5. Theorem: Let R be a h-affine prime PI ring. Then: 

(i) T(R) is a f.g. T-module. 

Further if h is Noetherian then: 

(ii) both T and T(R) are h-affine and Noetherian, and the 

centre of T(R) is also Noetherian. 

Proof: See Small[63], Definition 52. 

There is then a close relationship between prime PI rings 

and their centres. One class of PI rings have a particularly 

nice relation to their centres. 

A ring R is an Azumaya algebra (over Z(R» of rank t if 

[R:Z(R)] is finite, ROPeR'" EndZ(R) (R), and, for every pt:ime 

ideal P of Z(R), Rp is a free Z(R)p-module of rank t. 

A ring R is properly maximal central of rank t if R is an 

Azumaya algebra and R is a free Z(R)-module of rank t. 

1.3.6. Theorem: Suppose that R is an Azumaya algebra. Then 

(i) If I is an ideal of R then I - (InZ(R»R; 

(ii) if J is an ideal of Z(R) then J = JRnZ(R). 

proof: McConnell-Robson [51], Propos it ion 13. 7 .4 or Aus­

lander-Goldman[3], Corollary 3.2. 



To investigate PI ~ings fu~the~ the notion of the generic 

matrix rings was introduced. Pormally, the ring of d nXn 

gener ic matr ices 1s the ~ ing R - P (n) - k<x
1

, ••• , xd} such that 

the following holds: Let S be any nXn-matrix ring over a 

commutative k-algebra. R is universal with respect to the 

property that every mapping xit-ai , a i £S, may be extended to 

a unique k-algebra homomorphism R----S. 

An explicit construction of F (n) is obtained as follows. 

We adjoin to the field k the dn 2 commuting indeterminants 

x.~, ~-l, .•. ,d; i,j-l, .•. ,n. In the nXn-matrix ring 
1.J 

M (k[Xi~])' conside~ R the sub-algebra gene~ated by the d 
n J 

matrices (Xi j ), ~~l, ••• ,d. Then R is the generic matrix ring 

of d nxn matrices. 
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SecLion 1.4. Dimension and rank techniques. 

We review briefly two "measures" on Noetherian modules 

and rings which are used extens ively in Noether ian ring 

theory. We record some results which will be useful later on. 

We will use Gordon-Robson[32] and Chatters-Hajarnavis[15] as 

our main sources. 

The notion of Krull dimension for non-commutative rings 

was first proposed by Rentschler and Gabriel and extended to 

inf inite ordinals by Krause. Let R be a ring. Let MR be aright 

R-module. Then the Krull dimension of M may be defined by 

transfinite induction as follows. If M - 0, then Kdim(M)--l; 

if a is an ordinal and Kdim(M)fa, then Kdim(M)-a if every 

descending chain M - MO ) Ml > M2 )... of R-sub-modules of M 

withKdim(M./M. lila terminates. For example, Artinian 
1 1+ 

modules are precisely those modules with Krull dimension O. 

For a module MR, it is poss ible that there exists no such 

ordinal in which case we say that M has no Krull dimens ion. A 

ring R has Krull dimension a, where Kdim(RR;-a. 

1.4.1. Lemma: Let R be a ring. 

(i) If N is a submodule of M then, if either side exists, 

Kdim(M) = sup {Kdim(N),Kdim(M/N)}. 

(ii) Kdim(R) - sup (Kdim(M): M f.g. R-module} if either side 

exists. 

(iii) Every factor ring of a ring R with Krull dimension has 

Krull dimension ( Kdim(R). 

Proof: Gordon-Robson(32], Lemmas 1.1 and 1. 2 (i) . 



1.4.2.. Theot:em: (i) Evet:y Noethez:ian module has Kz:ull dimen-

sion. 

(ii) Evet:y module with Kz:ull dimension has 

finite unifoz:m z:ank. 

proof: Got:don-Robson[32], Pz:opositions 1.3 and 1.4. 

We will apply the theoz:y of Kz:ull dimension to rings and 

regulax: elements in t:ings. 

1.4.3. Theorem: Let R be a z:ing with Kx:ull dimension. If c£R is 

regular then Kdirn(R/cR) < Kdim(R). 

pz:oof: Suppose that Kdim(R/cR) - Kdim(R). Consider the 

infinite descending chain of z:ight ideals of R, R> cR) c 2
i<. ) 

., .. Each factor in the chain is isomorphic to R/cR. This 

contradicts our definition of Kdim(R). 

1.4.4. Theorem: Let R be a ring with Krull dimension. 

(i) Suppose that P 1 ( P 2 ar e pr ime ideals of R. Then 

Kdim(R/P
l

) < Kdim(R/P
1
)· 

(ii) R satisfies the ascending chain condition on pz:ime 

ideals. 

Proof: Gox:don-Robson[32], Theorem 7.1 and Cox:ollary 7.2. 

1. 4.5. Theor em: Let R be a z: ight Noethez: ian z: ing. Suppose that 

A and B az:e two ideals of R. Then 
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Kdim(R/AB) = sup{Kdim(R/A),Kdim(R/B)}. 

Proof: McConnell-Robson[Sl], Lemma G.3.3. 

1. 4..6. Corollary: Let R be aright Noether ian ring. Let N be 

the nilpotent radical of R. Then Kdim(R) - Kdim(R/N). 

1.4.7. Theorem: Let R be a right Noetherian fully bounded 

Noetherian ring. Let MR be a f.g. faithful right R-module. 

Then Kdim(M) ~ Kdim(R). 

Proof: Jategaonkar[40],Lemma 2.1. 

1.4.8. Theorem: Let R be a right fully bounded Noetherian 

ring. Let S be an arbitrary ring. Let SMR be an S-R-bimodule 

which is f. g. as aright R-module. Then the Krull dimens ion of 

the partially ordered set of all S-R-bi-submodules of M is 

Kdim(MR)· 

Let Rand S be fully bounded Noetherian rings. Suppose 

that there exists an R-S-bimodule which is f.g. and faithful 

on both sides. Then Kdim(R) - Kdim(S). 

Proof: Jategaonkar[40], Lemma 2.2 and Theorem 2.3. 

Let R be a ring with Krull dimension. We say that an ideal 

I is weak ideal invariant, w.i.i., (strictly speaking right 

weak ideal invariant) if, for every f.g. right R-module M 

with Kdim(M) < Kdim(R/I), we have Kdim(M0I) < Kdim(R/I). 

Equivalently, if K is a right ideal of R with Kdim(R/K) < 



Kdim(R/I), then Kdim( I/KI) < Kdim(R/I). We say that R is ideal 

invar iant if given any f . g. R-module MR and an ideal I of R, 

then Kdim(M®I) ( Kdim(M). 

Note that not all Noether ian rings are w .i. i. For example, 

J.T.Stafford has shown that the the enveloping algebra (see 

section 1.8) U(sl xsl ) is not w. i. i., see Stafford[71]. The 
2 2 

(slightly stronger) notion of ideal invar iance was f 1r st 

introduced in Krause-Lenagan-Stafford[45], and that of weak 

ideal invariance in Stafford[G7]. 

1.4.9. Theorem: A Noetherian fully bounded ring is weak ideal 

invariant. 

proof: Suppose that I is an ideal of R. Suppose that T is a 

I ight ideal of R such that Kdim(R/T) < Kdim(R/I). If r­

ann(R/T) - L then, by Theorem 1.4.7, Kdim(R/T) - Kdim(R/L). 

Denote the left-hand analogue of Krull dimension by l-Kdim. 

Then we have, using Theorem 1.4.8, KdimCI/TI) (Kdim(I/LI) -

l-Kdim(I/LI) ( l-Kdim(R/L) - Kdim(R/T) < Kdim(R/I). 

We now turn to another measure, known as the Goldie rank 

or reduced rank of a module, which was first introduced by 

A.W.Goldie. Here we follow Chatters-Hajarnavis[lG]. Through-

out MR will be a f.g. R-module over aright Noether ian ring. 

First, suppose that R is semi-prime. Then, by Theorem 

1.1.3, the full right quotient ring of R, Q, exists and is 

semi-simple Artinian. Then M®Q is a semi-simple Q-module of 

finite length over Q. We set p(M)=lengthQ(M®Q). 

Alternatively, we could def ine p (M) to be the uniform rank 



of M/T(M), where T(M) a {m€M:mc-O for some regular element c 

in R}. 

1.4.10. Theol:em: Let R be a l:ight Noetherian semi-prime ring 

and M a f.g. R-module. If K is a submodule of M then 

p(M) = p(K) + p(M/K). 

Proof: Chatters-Hajarnavis[l6], Lemma 2.1. 

For a general right Noetherian l:ing recall that the 

nilpotent radical N of R satisf ies Nk = 0, for some integer k 

and that R/N is semi-prime. 

Let R be aright Noether ian ring with nilpotent radical N. 

Let M be a f . g. right R-module. Suppose that Nk O. Define 

i-k i-1 i 
p(M) .. Li=lPR/N(MN IMN) which is well-defined since 

i-1 i each MN IMN is a f.g. R/N-module. 

1.4.11. Theor em: Let R be aright Noether ian ring with 

nilpotent radical N. Let M be a f.g. R-module. Then: 

(i) if K is a submodule of M then p(M) - p(K) + p(M/K); 

(ii) p(M) - 0 if and only if, for all m€M, there exists 

c€C(N) such that mc=O. 

Proof: Chatters-Hajarnavis [16], Theorem 2.2. 



section 1.5. The Artin-Rees property. 

Let I be an ideal of a ring R. We say that I has the right 

Artin-Rees property (AR-property for short) if, for each 

right ideal K of R, there exists n, a positive integer, such 

that Kn In £ KI. A ring R has the right AR-property if every 

ideal of R has the right AR-property. Left AR-properties are 

defined analogously. A ring R has the AR-property if every 

ideal has both the left and right-AR property. The following 

result gives us a useful criterion for an ideal I to have the 

AR-property. 

1.5.1. Definition: An ideal I has a centralising set of 

generators if I - aIR + a R + ••• + a R, where a eZ(R) and for 
2 n 1 

each i > 1, the image of a i is central in R/(a1R+ +a. R). 
1-1 

1. 5.2. Theorem: Let R be aright Noether ian ring. Let I be an 

ideal of R. 

(i) If I has a centralis ing set of generators then I has 

the AR-property. 

(ii) If I has a single normal generator, that is 1- aR -

Ra, for some aeR, then I has the AR-property. 

Proof: Chatters-Hajarnavis[lG], Theorem 11.7. 

As the next results illustrate, the AR-property is 

closely related to the problem of localis ing at pr ime ideals. 

1. 5.3. Theorem: Let R be aright Noether ian ring. Let I be an 
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ideal which has the right AR-property. Suppose that, for 

each positive integer n, the ring R/l n satisfies the right Ore 

condition with respect to C(I/I n ). Then R satisfies the right 

Ore condition with respect to C(I). 

Proof: Smith[66], Proposition 2.1. 

1. 5.4. Theorem: Let R be a Noether ian AR-r ing. Let P be a semi­

prime ideal of R. Then R satisfies the Ore condition with 

respect to C(P). 

Proof: Smith[6G], Propostion 3.4. 

1.5.5. Theorem: Let R be a Noetherian ring. Let P be a prime 

ideal of R which has the AR-property. Suppose that C(P) -

C(pn ), for all positive integers n. Then P is localisable. 

Proof: We use Smith[6G], Proposition 2.1 which says that P is 

localisable if and only if, for all positive integers n, C(P) 

£ C(p n), and the set K =[r€R:rc€pn for some c€C(P)} is an n 

ideal. 

n n n HereKn-{r€R:rc€P for somec€C(P )} -P . So, clearly, Kn 

is an ideal, for all n, and C(P) - C(pn ). 

To end this section, we note a result which we will use 

often. 

1.5.6. Lemma: Let R be a prime Noetherian ring. Let P be a 

localisable pr ime ideal of R. Let Q be a pr ime ideal of R wi th 
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Q C P. Then C(P) £. C(Q). In particular, C(P) £ C(O). 

Proof: LetK- (r:rcE:Q, for some CE:C(P)}. Since C(P) is Ore, K 

i-n 
is an ideal of R. So K - t. Ra., for some elements a

i
. So 

1-1 1 

there exists CE:C(P) with Kc £ Q. Since Q is_a prime ideal, 

either CE:Q or K £ Q. But Q c P and so ctQ. Therefore K c Q. 

Hence C(P) ~ C(Q). 
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section 1.6. stable Range. 

In commutative Noethe~ian ~ing theo~y powe~ful results 

have been p~oved by Forste~-Swan, Bass, and Se~~e concerning 

cancellation properties. These may be exp~essed as ·la~ge· 

projectives have free dire~t summands and free summands can be 

cancelled if the module is Wlarge ". 

We wish to determine some bounds on the "largeness· 

r equ ired for thes e statements. The bounds rely on the not ions 

of stable range and gene~al stable range. We will follow 

McConnell-Robson[Sl] in our treatment. 

Let R be any ring. Let M be a f.g. ~ight R-module. We say 

that n is in the stable ~ange of M if, for all 8)1, if 

t"i=~-t-sm.R = M, then there exist elements f . ER for 
'"'i=.L 1 1 

i-l, ... ,n+s-l such that 

i=n+s-l 
M ~ Li=l (IDi+mn+sfi)R. 

The least n in the stable ~ange of M is known as the stable 

~ank of M and denoted by sr (M) • For a ~ ing R, sr (R) - 5r (RR) . 

We will call a row x* - (Xl' ••• ,Xt ) ERt ~ight unimodular if 

Ex. R = R. Then n is in the stable range of R if and only if, for 
1 

all 5)1, for eve~y unimodular row (xl' ••• ,x ) in Rn+s, there n+s 
exist elements fiER such that the row 

(xlTxn+sfl,···,xn+s-l+xn+sfn+s_l) is ~ight unimodular in 

R
nTs - l . In this situation we say that (x ,. ,x ) is stable 

1 •• n+s . 

So sr(R) - n if and only if every right unimodular row of 

length) n+l is stable. 

We can define two othe~ closely ~elated ranks as follows. 

For n)l, define GLn(R) to be the group of nXn invertible 
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matr ices over R. An element A€GL (R) is elementary if it is of n 

the form I +ae i ., where a€R and e i . is the matt: ix with a 1 in 
n J J 

the ijth position and zeroes everywhere else. Then En(R) is 

the subgroup of GLn(R) genet:ated by all the elementat:y 

matrices. 

We say that n is in the genet:al stable range of R if and 

only if, fot: all s)l, GLn+s (R) acts tt:ansitively on the set of 

. d 1 f Rn+s • right unlmo u ar rows 0 The least such n is the 

general stable rank of R, and is denoted by gsr(R). The 

elementary stable t:ange and elementary stable rank, esr(R), 

are defined analogously, t:eplacing GL (R), by E (R). n+s n+s 

1.6.1. Theot:em: Fot: any ring R, gsr(R) ( esr(R) ( sr(R). 

Proof: McConne11-Robson[Sl], Theorem 11.3.1. 

At first glance, it appeat:s that these stable ranks rely 

on whether we cons ider the right or left unimodular rows. The 

next result shows that they are independent of side. 

1. 6 .2. Theor em: Let R be a ring. Then the left and right stable 

ranks of R are equal. The corresponding results also hold for 

the general stable rank and the elementary stable rank. 

Proof: McConne1l-Robson[Sl], Theorem 11.3.4. 

The significance of these ranks are demonstrated by the 

following two theorems whose proofs are similar to that of 

McConne11-Robson[Sl], Theorem 11.1.12. 
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1.6.3. Theorem: Let S be a ring. Let M be a left S-module. 

Suppose that sM has endomorphism ring Ends(M) w R. 

(i) suppose that x*-(Xll •.• ,Xt)€Rt is a stable right 

unimodular row. Then the cokernel of the split monomorphism 

t t-l ex:M----M given by m----Emx i is isomorphic to M • 

(ii) supposethatY*-(YlI ••• ,Yt)€Rt is a stable left 

unimodular row. Then the kernel of the split epimorphism 

t e
y

: M -M, given by (ml , ••• , mt ) -Lmi Y i I is isomorphic to 

t-l M . 

1.6.4. Theorem: For t a positive integer the following are 

equivalent: 

(i) t ) gsr(R); 

(ii) If MSsatisfies End(MS) "'RandMGlNCIOMtt.henNCIOMt - l ; 

(iii) If XR satisfies RGlX w Rt then X ... Rt - l : 

t 
(iv) If x* €R is left unimodular then x* is a column of an 

invertible matrix in Mt(R). 

suppose that MR is an R-module such that MEDRm .. Rn , fot: 

some integers m and n. Then we say that M is stably free of rank 

(n-m). 

1.6.5. Corollary: R has general stable rank ( n if and only if 

all stably free R-modules of rank) n are free. 

For stable t:ank, we have a stronger result. First a 

definition. Let MS be a module over a ring s. We will say that M 

has the n-substitution property if given any split endo-
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morphism 71:MntDN-M there exist S-module homomorphisms 

n n 
.,:M-M eN and e:M eN-M such that 71., - 61' - 1M and 

N ~ Kere. 

1. 6.6. Theorem: Let MS be a module over a ring S. Suppose that 

End(M
S

) w R. Then the following are equivalent: 

(i) n is in the stable range of R; 

(ii) MS has the n-substitution property. 

1.6.7. Corollary: Let Ms be a module over a ring S. Suppose 

that End (MS) OK R. Suppose that n is in the stable range of R 

n+l n and that M $X a Mey. Then M $X ~ y. 

To apply these results we need to be able to calculate 

suitable upper bounds for gsr(R), esr(R), and sr(R) for a 

ring R. One of the results obtained by J.T.Stafford is given 

here. 

1. 6.8. Theorem: Let R be aright Noether ian ring. Suppose that 

Kdim(R) - n. Then sr(R) ( n+l. 

Proof: Stafford [68], Theorem. 

Clear ly, the smaller the stable rank of a ring the better 

to deset ibe the structure of R-modules. For example, taking an 

example from algebraic K-theory, if sr (R) =- n, then K (R) .. 
1 

GLn+
2 

(R)/En+ 2 (R). So a bound on the stable rank of a ring is 

very useful. 

In the case of stable rank one we can even sharpen the 
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results of this section a little further. Since in Chapter 3 

we do show that certain rings have stable rank one we note 

briefly a couple of these results. 

For a ring R, suppose that M is f.g. R-module. Let g(M) 

denote the minimal number of generators of M and let sr (M), as 

before, denote the stable rank of M. We say that M is uniquely 

presentable by a projective module P if there is an epi­

morphism P----M and that any two such epimorphisms are right 

equivalent. That is, if f and g are any two such epimorphisms 

then there exists an isomorphism ~:P----P such that f - g~. 

Let u(M) be the least integer m such that M is uniquely 

m presentable by R • 

1.6.9. Theorem: Let R be a ring. Suppose that M is a f.g. R-

module with sr(M) finite. Then u(M) ~ geM) + sr(M). 

Proof: Warfield[73], Proposition 3. 

1.6.10. Theorem: Let R be a ring with stable rank one. Then 

geM) - u(M) - sr(M). 

Proof: Warfield[73], Theorem 7. 

We can also sharpen Corollary 1.6.7 as follows. 

1.6.11. Theorem: Let R be a ring with stable rank one. Let S be 

an arbitrary ring. Suppose that M is a S-module whose 

endomorphism ring is isomorphic to R. Suppose that there exist 

S-modules X and Y such that 



M ex ... M E9 Y. 

,Then X ... 'i.. 
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Proof: McConne11-Robson[51], Theorem 11.4.9. 

UNlVERSIrrUBRARY[E2JS 
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section 1.7. Lattice conditions and factorisation. 

In this section we ~ecall some definitions and ~esults 

that ar Lse when we cons ide~ the" f acto~ isation" of elements of 

a ring. We introduce the notion of modular lattice and Bezout 

domain which we will use in Sections 3.4 and 5.3. 

Let (X,() be a pa~tially o~de~ed set (poset). We say that 

two elements x and y of X have a least upper bound o~ ~, 

denoted by xvy, if the~e exists an element z with x ( z and y ( 

z, and if w is any other uppe~ bound on x and y, then z ( w. 

Dually, we may define a greatest lower bound or inf, denoted 

by x~y, in the obvious way. 

A lattice is a poset such that any two elements have a sup 

and an inf. A lattice is complete if any set of elements has a 

sup and an info In particula~, a complete lattice has a 

greatest and a least element, denoted by 1 and a respectively. 

Let L be a complete lattice. Given any two elements a, b€L, 

with a ~ b, we may define the interval, [a,b], as {x€L:a ( x ( 

b}. We say a lattice is modular if aV(b~c) .. (avb)~(a'Vc), for 

all elements a,b,c, with a ( c. For example, the lattice of 

sub-modules for a module M is a modular lattice. In partic­

ular, the lattice of right ideals of a ring is a modular 

lattice. 

Suppose that a and b are two elements of a lattice. Let I -

[a~b,a] and let J = [b,avb]. We may define order-preserving 

maps a:I-J and ,B:J-I by a(x) ... x'Vb, and .B(y) = a~y. If L 

is modular, then a,B - Id I , and,Ba. ... Id
J

• 

Cohn[2l], Section 2.1. 

See, for example, 

In an interval [a,b], a complement of c€[a,b] is an 
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element d with c6d - a and cvd a b. We have the following 

criterion for a lattice to be modular. 

1.7.1. Lemma: A lattice L is modular if and only if for each 

interval I of L any two comparable elements of I which have a 

common complement are equal. 

Proof: Cohn[2l], Proposition 2.1.3. 

We now tuz:n to the question of factoz: isation. In a ring R, 

an ~ is an element which cannot be wr itt en as the product of 

two non-units. A domain is atomic if every non-zez:o element 

can be wr itten as the product of a finite number of atoms. To 

investigate the factorisation of elements of a domain into 

atoms we want to investigate when the sub-lattice of pr incipal 

right ideals of the lattice of right ideals is a modular 

lattice. 

We define a right Bezout domain to be a domain R in which 

for any two elements a, b€R, aR+bR - cR, for some element cER. A 

left Bezout domain and a Bezout domain are defined in the 

obvious way. 

1. 7 . 2. Lemma: A domain R is a pr inc ipal right ideal domain if 

and only if R is an atomic right Bezout domain. 

Proof: Suppose that R is an atomic right Bezout domain. Let I 

be a right ideal of R. Since R is atomic, we may choose an 

element a€I such that aR is a maximal principal right ideal 

contained in I. If aR .;. I, choose b€ I \aR. Then aR+bR = cR ( I, 
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which cont~adicts ou~ choice of a. Thus I is p~incipal. 

The conve~se is clea~. 

We shall, in Section 3.4, use this c~ite~ion to const~uct 

a commutative p~incipal ideal domain. 
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SecLion 1.8. Some classes of Noethe~ian ~ings. 

In this section we int~oduce some of the classes of 

Noethe~ ian rings to be cons idered in the subsequent chapters. 

We will set out the bas ic def initions and prope~ties of these 

~ings and d~aw upon this section as required. 

In commutative ~ lng theo~y, the polynomial ring R[x] in an 

indeterminate plays a basic role. The corresponding concept 

fo~ non-commutative ring theo~y is the skew polynomial ~ing. 

Let R be any ring. Let 9 be an automorphism of R and let 0 

be a 9-de~ivation of R. That is; O(ab) = O(a)9(b)+aO(b). We 

may define the ring S - R[x:9;O] as follows. Let S be the f~ee 

right R-module on the generators {1,x,x 2
, ••• }, where x is an 

indeterminate. Define on S the multiplication dete~mined by 

ax'" x9(a) + O(a) and extended by the ring axioms. Then S is a 

skew polynomial extension of R. Note that every element of S 

can be expressed uniquely in the fo~m r ~-nx i a. , fo~ a. ER. 
1-0 1 1 

With R,9,O as above, we have the following useful result. 

1.8.1. Let R be a right Noethe~ian domain. Then R[x:9;O] is a 

right Noetherian domain. 

p~oof: McConnell-Robson[Sl], Theo~em 1.2.9. 

Let 9 be an automorphism of R. Then S - R[X,X- 1 :9] denotes 

the ring of polynomials over R in x and x -1 subj ect to the 

relation that ax ... x9(a). This is a skew Laurent extension of 

R. Let T - R[x:9] be the skew polynomial extension of R. Then, 

since xR = Rx, the set C .. {1,x,x 2
, ••• } is Ore, by Lemma 1.1.8. 
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It is easy to see that S ~ TC. 

1.8.2. Corollary: Let R be a right Noetherian domain. Then 

R[X,X-1:e] is a right Noetherian domain. 

Many rings may be characterised either as skew polynomial 

extensions or skew Laurent extensions. Here, we note just a 

few examples that we shall use later on. 

Let R be a ring. Let S = R[x]. Let 0 be the derivation on S 

such that OCr) = O,for all reR, and O(x) ... 1. Let Al (R) -
S[y:O]. We say that Al (R) is the first Weyl algebra over R. 

Clearly, Al (R) may be thought of as the ring freely generated 

over R by x and y subject only to the relation xy-yx-l. 

Inductively, for any positive integer n, we may define A (R) -n 

A (A (R». By Lemma 1.8.1, if R is a right Noetherian 
1 n-I 

domain, then An(R) is a right Noetherian domain. 

Suppose that A is a unit of R. Let T - R[x]. Let e be the R-

automorphism on T which sends x to ).x. Let BA (R) - T[y:e]. Then 

B (R) may be thought of as the ring freely generated over R by 
A 

x and y subject only to the relation xy=).yx. 

Let R be aright Noether ian domain. Then BA (R) is aright 

Noetherian domain, by Lemma 1.8.1. 

We now turn to two major sub-classes of naturally occur ing 

Noetherian rings. 

First, suppose that L is a f.d. Lie algebra over a field of 

characteristic zero. A sub-space of L, K, is an ideal of L if 

[L,K] <: K. A Lie algebra is simple if it has dimension greater 

than 1 and contains no non-trivial ideals. A Lie algebra is 
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semi-simple if it may be wr itten as a direct sum tK i , where the 

Ki are ideals of L and simple Lie algebras themselves. 

Let L be a Lie algeb~a. Define, fo~ positive intege~s n, 

n the ideals of L, C (L) and Dn(L), as follows. Let C1 (L) - L; and 

ciorl(L) = [L,Cl(L)], . 0 iorl for 1 ) 1. Let D (L) - L; and D (L) 
. i 

[Dl(L),D (L)], for i ) O. We say that L is nilpotent if, for 

some integer c, cC (L) - 0, and the least such c is the 

nilpotency class of L. We say that L is solvable if Dn (L) - 0, 

for some integer n. 

For a f.d. Lie algeb~a ove~ a field k, we can construct a 

associative k-algebra U(L) and a unique k-linear map 

). :L-U(L), which is universal with respect to the property 

that A([X,Y])-A(X)A(Y)-A(Y)A(X), for all x,YEL ( * ) . 
That is, given any other k-linear map from L to a k-algebra A, 

f,L:L-A satisfying (*), then there exists a unique k-algebra 

homomorphism f:U(L)----A with ~ - Af. 

For a more explicit construction, we follow Dixmier[25], 

Chapter 2. We def ine T to be the tensor algeb~a of L; that is 

012 n T = L tDL tDL tD •• - , where L denotes the n-fold tensor 

product of Lover k. Let J be the ideal of T generated by all 

the terms of the form x®y-y®x-[x,y], as x,y ~un ove~ L. 

Then define U(L) = T/J. Note that, if L is Abelian, then 

U (L) is isomorphic to the polynomial ring k[ xl' •.. , x
n
], where 

n := dimkL. The following result is a corollary of the 

poincare-Birkhoff-Witt theorem. 

1.8.3. Theorem: The map A:L----U(L) is injective. 

Proof: Dixmier[25], P~oposition 2.1.9. 



44 

1. 8.4. Theot:em: Let L be a f ini te-dimens ional Lie algebt: a ovez: 

a field of chat:actez:istic zet:o. Then U(L) is a Noethet:ian 

domain. 

Proof: Dixmiet:[25], Corollaires 2.3.8 and 2.3.9. 

With U(L) we can also define Z(L), the centre of U(L). 

Sometimes, howevet:, this is a slightly too z:estz:ictive notion 

and we need to considet: the semi-centre of U(L) which is 

defined as follows. Recall that foz: a Lie agebra L, we can 

define L* - Homk(L,k). 

Since U(L) is a Noetherian domain, we may construct its 

d iv i510n r lng of fractions 0 (L) . For each ~€L*, let D(L). be 
A 

defined by D(L)A = [u€D(L):xu-ux~A(x)u for all x€L). 

Clearly, D). (L)D~(L) ~ D).+~(L), foz: all ~,~€L*; and it is easy 

to see that D). (L) nD ~ (L) - 0, for all ~.,.~. Then the sum ED). (L) , 

over all A€L*, is direct and is a sub-algebra SZ(D(L» of 

D(L). Now put D(L». = D(L».nU(L). Let SZ(L) ""LU(L» •• This 

again is a direct sum and defines a sub-algebra of U(L), the 

semi -centre of U (L). I f char (k) =0 and L is f inite-dimen-

sional, then SZ(L) is a commutative ring (Dixmier[25), 

proposition 4.3.5). If k is algebraically closed, then SZ(L) 

is a unique factorisation domain. In general, SZ(L) is 

contained in a unique factorisation domain (Delvaux-Nauwel-

aerts-Ooms[24], Theot:em 1.2). 

Now we tut:n to group t:ings. For a group G and a ring K we 

can form the group ring, R" KG, which is the set of finite sums 

of the form I:kg . g , for kg€K and g€G. Addition is defined co-
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ordinate-wise and multiplication is defined by rg.sh-rs.gh 

for r,s€K and g,h€G, and extended by linearity. 

Generally, we shall suppose that K is commutative. 

Like universal enveloping algebras, the class of group 

rings is a broad and interesting class of rings. We will only 

make some bas ic def initions and record some useful results fOI: 

later. 

FOI: a gI:OUp G, we define the following sub-groups: Z(G) is 

the centre of G; 6(G) is the set of elements of G with only 

finitely many conjugates; and 61-(G) is the intersection of all 

the finite normal subgroups of O. For any group 0, Il T (G) is a 

characteristic sub-group contained in 6(G) and 6(G)/IlT(G) is 

torsion-free Abelian. 

Let G be any group. We may def ine the sugroups of G, Z i (G) , 

for all integers i, as follows. Let Z 1 (G) - Z (G). For i > 1, let 

Zi1"l(G) = {g€G:g€Z(G/zi(G))}. If there exists an integer n 

with Zn(G) = G, then we say that G is nilpotent and if the 

least such integer is c, we say that G has nilpotency class c. 

Let n denote a class of groups. Then a group 0 is said to be 

poly-O if there exists a sub-normal chain of sub-groups in G 

such that (1) = Go (; Gl ( ... ( Gn - G, with, for each i, G
i 

normal 

inG, land G'+l/G, belonging to n· Let n and I\. be two classes 
1+ 1 1 

of groups. Then a group G is said to be a n-by-I\. group, if there 

exists a normal sub-group H of G such that H belongs to nand 

G/H belongs to 1\.. 

Let G be a poly-cyclic group. Then the Hirsch number of G, 

h(G), is the minimal number of infinite-cyclic groups that 

occur in a sub-normal chain of G. 

We record the following two results. 
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1.8.5. Theol: em: Let K be a comrnutat i ve Noether ian doma in. Let 

G be a torsion-fl:ee poly-infinite-cyclic-by-finite group. 

Then KG is a Noetherian domain. 

Proof: Passman[54], Theorem 10.2.7, and Farkas-Snider[28], 

Main Theorem (for the case char(K)-O) and Cliff[lS], Theorem 2 

(for char(K)=p~O). 

1. 8.6. Theorem: Let G be a tOl:S ion-free nilpotent gl:oup. Then 

G/Z(G) is torsion-fl:ee nilpotent. 

Proof: Passman[54], Lemma 11.1.3. 

For a gl:OUp ring KG we can define the augmentation ideal, 

i, by I - {tk g: tk -0). 
9 9 

We can define a more general constl:uction than a gl:OUp 

l: ing known as the skew gl:OUp ring as follows. Let K be a ring 

and G a group. Suppose that thel:e exists a gl:OUp homomorphism 

9:G-Aut(K). Then denote 9(g) (r) by g(r). We may then define 

K~G to be the fl:ee K-module with the elements of G as the fl:ee 

basis with addition co-ol:dinate-wise and multiplication 

defined by l:g.sh = rg(s).gh, fOl: all l:,s€K and g,h€G. The 

gl:OUp l: ing KG is then simply the skew gl:OUp l: ing K*G, whel:e 9 

sends every element of G to the identity automol:phism. 

1.8.7. Theorem: Let K be a commutative Noethel:ian domain of 

charactel:istic zero. Let G be a poly-infinite-cyclic group. 

Then K*G is a Noetherian domain. 
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Proof: We proceed by induction on the Hirsch number of G. The 

result is clear for G an infinite-cyclic group. 

Suppose that N is a normal poly-inf inite-cyclic sub-group 

of G such that GIN is infinite-cyclic. By McConnell-Robson 

[51], Proposition 1.5.11, R*G'" R*N[x,x-1:ej, for some 

automorphism e of R*N. By induction, R*N is a Noetherian 

domain. By Corollary 1.8.2, R*G is a Noetherian domain. 
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Chapter 2. Unique Factorisation Domains. 

2.0. Summary. 

In this chapter we consider a non-commutative analogue of 

the commutative unique factor isation domain, proposed by A. 

w.Chatters, and give examples of rings satisfying these 

conditions. 

section 2.1 will outline the definition and basic prop­

erties of UFDs. This work is entirely due to A.W.Chatters. 

sections 2.2, 2.3, and 2.4 will show that though the defin­

ition of UFDs appear very restr ictive in fact large classes of 

naturally occur ing Noether i~n rings actually satisfy the 

conditions. So the development of 1 theory of UFDs may well 

help in the study of these rings. Section 2.2 is effectively 

in the literature and Section 2.3 is a simplified account of 

results due to K.A.Brown. Section 2.4 gives a simple variation 

on a theme used by many people and a non-commutative analogue 

of Nagata IS Theor em. It compr ises the only or ig inal section of 

this chapter. 
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section 2.1. Definition of Unique Facto~isation Domains. 

Let R be a prime Noethe~ian ring. A height-l prime ideal 

is a p~ ime minimal amongst the set of non-ze~o p~ ime ideals of 

R. We will call a non-zero element p of R a pr ime element if pR 

_ Rp is a prime ideal of Rand R/pR is a domain. Following 

Chatters, let C(R) = nC(p), where the inte~section is ove~ all 

the height-l pr ime ideals of R, be the set of all elements of R 

which are regula~ modulo all the height-l prime ideals of R. 

If there is no risk of confusion we shall write C for C(R). 

Note that for a prime element p, C(pR) - R\pR. 

Then we have (Chatters[13], Proposition 2.1) 

2.1.1. Theorem: Let R be a pr ime Noethe~ ian ~ ing with at least 

one height-l prime ideal. Then the following conditions on R 

a~e equivalent: 

(1) Every height-l p~ ime ideal of R is of the form pR - Rp 

for some prime element of R. 

(2) R is a domain and eve~y non-ze~o element of R is of the 

formcPlP2 ... Pn' for some C€C (as defined above) and for some 

f ini te sequence of p~ ime elements p. of R. Note that we will 
1 

follow the convention that the product of an empty set of 

prime elements is 1. 

p~oof: Suppose that R satisf ies (1). Let P be a height-l p~ ime 

of R. Then P K pR for some prime element of R. For every 

n n n 
positive integer n, we have P - P R - Rp . Also px-O implies 

that Rpx a pRx = O. Since R is prime, x - 0, and hence p is 

n 
regular. Suppose that np - I ~ O. Then there exists a regular 



element x€I. Thus for each n, xepn that is for each n, x -

pnXn for some xn regular in R. 

But then x l - pX
1 

' and RX l !;. RX
Z

• But R ... pR and Xz is 

regular and so RX l - RPX1 F RX Z• Similarly RX 1 - RPX 3 F Rx 3 , and 

so on. Thus the left ideals RX n form an inf inite str ict1y 

ascending sequence which contradicts our assumption that R is 

Noetherian. 

Now let C€C(P). We shall show by induction that ceC(pn) 

for every postive integer n. Suppose that ceC(pn) and that reR 

n+1 . n n is such that cr eP Then certal.nly cr eP and so r-sp, for 

. n n+1 some seR.Tnen csp eRp and so cseRp. Hence seRp and 

repn+1. By a symrnetr ical argument it follows that cec(pnTl), 

and hence, by induction, that cec(pn) for all n. Also if cr-O 

then repn for all n and hence r=O. Therefore CECCO). 

Let a be non-zero element of R. Then there is a positive 

n • n+1 n integer n such that aeP ana atP . Thus a:o p b for some 

beC(P) and it follows that a is regular. Therefore R is a 

domain. 

Let x be a non-zero element of R. Because R is Noetherian 

there are only finitely many pr ime ideals minimal over RxR. So 

x lies in only finitely many height-l prime ideals of R. 

Therefore there exist pr ime elements PI' PZ' •.• , Pn such that x 

= cPlP2,.,Pn for some c€C(R). Thus R satisfies condition (2). 

NoW suppose that R satisfies condition (2). Let P be a 

height-l pr ime ideal of R. Let x be a non-zero element of P. 

Then x = cPl P2· •. Pn for some ceC and pr ime elements Pi. 

Because C€C(P) and piR = RPi' for each 1, it follows that p. eP 
1 

ror some i, and that p = PiR. So R satisfies (1). 
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2.1.2. Definition: A pzime Noethezian zing such that evezy 

non-zezo pz ime ideal contains a height-l pz ime ideal and which 

satisfies one of the two equivalent conditions of Theorem 

2.1.1 i5 a Noethe't ian Unigue Factor isation Domain (UFD). 

It might be thought that the requirement that ea'ch heigm:.-

1 prime ideal is generated by the same element on each side is 

unnecessar ily restr ictive and that we could make do with each 

each height-l prime ideal being of the fOl:m P - pR - Rq. 

Howevel: it is easy to see that this gives us no mOl:e 

generality. We have p=uq and q=pv fOl: some elements u and v in 

R. Then up=-pw-uqw=upvw. But u and p al:e both zegular and so 

l-VWi that is v is a unit and slmilal:ly so is u. 

We shall call a pl:ime Noethel:ian l:ing R a Unique Fact­

ozisation Ring (UPR) if we simply zequil:e that evel:Y non-zel:O 

pzime ideal of R contains a height-l pzime ideal which is 

pr inc ipal on both sides. We shall discuss Noethez ian UFRs mOl: e 

fully in Chaptez 5. 

Note that the condition that every non-ze~o prime ideal 

contains a height-l prime ideal'ls not necessary for much of 

the following.lt is unknown, in genel:al, whether Noetherian 

rings satisfy the descending chain condition on pz ime ideals. 

A.V.Jategaonkaz 

has, though, constructed examples of right Noetherian (even 

pr inc ipal right ideal domains) zings which do not have height­

I prime ideals. See Jategaonkar[37] for the details. 

Second, we remark that, when R is a commutative ring this 

definition of a Noetherian UFD coincides with the classical 
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definition of UFD. Thus this definition is a plausible 

generalisation of the commutative case. If R were commutative 

then the set C - nC(p), defined as above, would simply be the 

set of units of R, by the classical commutative principal 

ideal theorem. But when R is not commutative, the set C can be 

strictly larger than the set of units of R. The question of 

when C is precisely the set of units will concern us more in 

Chapter 4 . For the moment we may consider two "generic" 

examples. LetR1 - k[x,y], be the ring of polynomials in two 

commuting variables over the field k of the complex numbers; 

and let ring R2 be the enveloping algebra of the complex two­

dimensional solvable Lie algebra, which we may wr ite as 

k[x,y:xy-yx-y]. 

2.1. 3. Lemma: Let k be the field of the complex numbers. Let R 

- k[x,y:xy-yx=y). Then R is a Noetherian domain. R has a 

unique height-l prime ideal P = yR - Ry. Further, RIP is 

isomorphic to the polynomial ring in one indeterminate over k. 

Each height-2 prime ideal of R is of the form (x-a)R + yR, for 

some a€k. 

Proof: By Lemma 1.8.1, R is a Noether ian domain. Suppose that 

f (x) €R[X] and g(y) e:k[y]. Then f (x)y - yf (x+l) and xg(y)-g(y)x 

- yg'(y), where g' denotes the y-derivative of g. 

Clear ly, P - yR - Ry is a he ight-l pr ime ideal of R and RIP 

... k[x]. Now suppose that Q is any non-zero pr ime ideal of R. We 

shall show that ye:Q. First, we claim that there exists f(x)e:Q, 

for some O~f(x)e:k[x]. Suppose not. Choose f - f(x,y) _ 



L~-ni.(x)yi, for fi(x)Ek[x], for least n. 
1-0 1 

i-n i 
Then xf(x,y)-f(x,y)x - Li_o[xf i (x)-f i (x) (x+i)]y 

- L~-nf i(x) iyi 
1-1 

i-n-1 1 
- [Li-o hi(x)y]y 

- h(x,y)y, where the y-degree of 

h(x,Y) is n-l. However, xf-fx€Q. Therefore, if y;'Q, then 

h(x,y)€Q, which contradicts our choice of f(x,y). So there 

exists a ". f (x) €Q. Now choose a '" f (x) EQ of least degree in x. 

Then, by a similar argument to the above, f(x)y-yf(x) - h(x)y, 

where hex) is of lower degree in x. If y;'Q, then h(x)€Q, which 

contradicts·our choice of f(x). So we are forced to conclude 

that y€Q. Hence, Q is the unique height-l prime ideal of R. The 

rest follows easily. 

So both Rl and R2 are Noether ian UFDs as def ined above. 

Then C (R l ) is the set of non-zero elements of k ie the units of 

R
l

. However, since yR2 - R2y is the only height-l pr ime ideal 

of R
1

, C (R 2 ) is the set of all polynomials not contained in yR
2 

= R1y. Thus C (R2 ) is a very much larger set than the units of 

We shall now show that for R a Noetherian UFD, C(R) is 

always Ore. The following result is a very slight general­

isation of the result by Chatters (Chatters[13],Proposition 

2.5), but the extra generality will be useful in Section 2.4. 

2.1.4. Theorem: Let R be a Noetherian domain, X a set of 

height-l prime ideals that are principal on both sides and 

completely prime. Let C(X) - nc(p), where the intersection 
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runs over all PeX. Then C(X) is Ore. 

proof: It is easy to see that every non-zero element d of R can 

be written as d - eP1P2·· .Pn ' where eeC(X) and each P 1R is a 

member of X: Let ceC and aeR.Since R is a Noetherian domain 

there exist y and xeR such that cx ... ay. Now y may be wr itt en as 

y'" eP1P2' •. Pn ' where eeC(X) and PiReX. But ceC(piR) for all i 

so x = wP1P2-. -Pn - Therefore cw - ae as required. A symmet­

rical argument will then show that C(X) is Ore. 

2 _1. 5. Corollary: Let R be a Noether ian UFD. Let C be the set 

of elements of R which are regular modulo all the height-l 

prime ideals of R. Then C is Ore. 

2.1.6. Theorem: Let R be a Noetherian UFD and let T be the 

partial quotient ring of R with respect to C. Then: 

(i) T is a Noetherian UFD. 

(ii) The elements of C(T) are units of T. 

(iii) Everyone-sided ideal of T is two-sided. 

(iv) AB - BA for all ideals A and B of T. 

Proof: Let P be a pr ime element of R. Because C c;. C(pR) it is 

clear that pT = Tp and that T/pT is a domain. Also the height-l 

primes of T are precisely the extensions to T of the height-l 

prime ideals of R. This proves (i). 

Lett€C(T). Thent-ac-
l 

for some aeR and ceC. Thus a=tc 

where c is a unit of T. Then aeC(R) and so a ,and hence t, is a 

unit of T. 

Let x be anon-zero element of T. Then, by (i) and (ii), x-
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up.p .... p , for some unit u of T and prime elements Pi of T • 
.1. i. n 

Clear ly then xT - Tx and so everyone-sided ideal of T is two-

sided. 

Finally, if pT and qT are distinct prime ideals of T then 

pTqT - pTnqT - qTpT and it follows eas ily that the multiplic-

ation of ideals is commutative. 

To finish this section we prove some results concerning 

UFDs and maximal orders. Recall from Section 1.2, that R is a 

maximal order in its full ring of quotients Q if, whenever q€Q 

and I a non-zero ideal of R are such that either qI ~ I or 

iq ~ I, then q€R. 

2.1.7. Theorem: Let R be a Noetherian UFD and let pR be a 

height-l prime ideal of R. Then the classical localisation 

RC(pR) exists and is a maximal order. 

Proof: The first statement follows from Theorem 2.1.4. Let 5 -

R R). Now observe that pS is the unique maximal ideal of S 
C(p 

and every ideal of S is of the form pns, for some integer n. 

Then it is easy to see that S is a maximal order and also that S 

is a local Noetherian ring with Jacobson radical pS. 

2.1.8. Theorem: Let R be a Noetherian UFD. Let T be the partial 

quotient ring of R with respect to c. Then T - nR , where 
C(P) 

the intersection ranges over all the height-l prime ideals P 

of R. Further T is a maximal order. 
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Proof: Let U - ORC(p)' as above. Then T ~ U because C ~ C(P) 

for all height-l prime ideals of R. Observe then that 

RC(p) -TC(PT) fOI: any height-l pI:ime ideal of R and that u­

nTC(PT)' 

Let UEU. Then xUET fOI: some non-zeI:O element x of T. By the 

above we may assume that x - Pl Pz ••• Pn , fOI: pr ime elements Pi 

of T. Then PlPZ' •• PnuET and v - Pl" .PnUEU. Hence vucET for 

some cEC(PlT). Then PlvceplT so PlveplT and hence Pl" .PnuET. 

Proceeding, by induction on n, gives uET. 

Now let I be a non-zero ideal of T and let y be an element 

of the quotient ring of T such that yI S I. Let Q be any 

height-l prime ideal of T. ThenyITC(Q) !;, ITC(Q)' So, by 

Theoreml.1.7,YETC(Q)·soyenTC(Q) - T. Therefore T is a 

maximal order. 

2.1. 9. Theorem: Let R be a Noether ian UFD such that every non-

zero pr ime ideal of R contains a height-l pr ime ideal. Then R 

is a maximal order. 

pI:oof: Let D be the multiplicatively closed set generated by 

the pr ime elements of R. Then dR - Rd for elements d in D. Hence 

R satisfies the Ore condition with respect to D, by Lemma 

1.1.8. S" ~ is simple, since if I is a non-zero ideal of R 

then InD F ~ and so IS - S. 

Now let I be a non-zero ideal of R and let q be an element 

of the quotient ring of R such that qI ~ I. Then qIS ~ IS; 

that is qS ~ S and so qES. If T is the partial quotient ring 

of R with respect to C(R), then qIT ~ IT. But IT is an ideal of 
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T and, since T is a maximal order, q€T. 

We shall complete the proof by showing that R - TnS, since 

then qeR is immediate. Let uETns. As UES, there are prime 
.. 

elementsPl,P2, ••• ,PnofRsuchthatP1P2 .•• PnUER. Also v -

P •.. p UET and sovcER, for someceC(R). Thenwehavep VCEp R 
2 n 1 1 

and hence P1V€P1R. SO P
2 
••• Pnu€R. Proceeding, by induction on 

n, gives UER.. 

2.1.10. Corollary: Let R be a Noetherian domain such that 

every non-zero prime ideal contains a height-l prime ideal. 

Then R is a Noetherian UFD if and only if: 

(i) R is a maximal order; 

(ii) every height-l prime ideal is principal on one side and 

is completely prime. 

Proof: Immediate from Theorem 2.1.9 and Maury-Raynaud[52], 

proposition 1.3.5. 
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section 2.2. Unive~sal enveloping algeb~as a~e often UFDs. 

In this section we will show that two majot: sub-classes of 

the class of enveloping algeb~as of Lie algeb~as a~e Noeth­

erian UFOS as defined in Section 2.1. This section will use 

the material of Section 1.8 without fu~ther reference. 

Following the definition of UFOs, A.W.Chatte~s obse~ved 

that fo~ complex solvable Lie Algeb~as thei~ enveloping 

Algebz:as satisfied the conditions of Theot:em 2.1.1. M.K.Smith 

subsequently pointed out that the same is t~ue fo~ semi-simple 

Lie algebt:as for any field of characteristic zero. 

2.2.1. Theorem: Let L be a f.d. solvable Lie algebt:a over the 

field of the complex numbe~s. Then U(L) is a Noethe~lan UFO. 

proof: First we remark that every prime ideal of U(L) is 

completely prime by Oixmier[2S], Theorem 3.7.2. 

Now suppose that P is a minimal non-ze~o p~ime ideal of 

U(L). By Oixmier[25], Theorem 4.4.1, P has a non-ze~o inter­

section with the semi-centre SZ (L) of U(L) . So by Moeglin[ 53] , 

Theorem I I 1.3, there exists a non-zero element pEPnsz (L) 

which is irreducible as an element of U(L); that is ab - p 

implies that either aEpu(L) or bEpU(L). Finally Moeglin [53], 

proposition IV.4 tells us that pU(L) - U(L)p is a two-sided 

prime ideal of U(L) and 50 P = pU(L) - U(L)p. 

2.2.2. Theorem: Let L be a semi-simple Lie algebra over a 
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field k of char acter istic zero. Then U (L) is a Noether ian UFD. 

Proof: Suppose that P is a minimal non-zero prime ideal of 

U(L). By Dixmier[2S], Proposition 4.2.2, pnZ(L) - Q is non­

zero. Conversely, Conze [23], Theorem 11. 2 says that if J is a 

pr ime ideal of Z (L) then JU (L) is a completely pr ime ideal of 

U(L). 

Now Q is clear ly a pr ime ideal of Z (L) and hence must be of 

height 1, since any non-zero prime ideal contained in Q would 

generate a pr ime ideal of U (L) str ictly contained in P. 

Finally Dixmier[2S], Theorem 7.3.8(ii), implies that Z(L) is 

a polynomial ring over k and hence is a commutative UFD. So Q 

is a principal prime ideal and P - QU(L) is also principal. 
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section 2.3: G~oup ~ings a~e sometimes UFDs. 

In this section we conside~ the question of when g~oup 

rings a~e UFDs. We shall use the notation and definitions of 

section 1.8 without comment. Following the definition of 

Noetherian UFD M.K.Smith observed the following. 

2.3.1. Theorem: Fo~ k an abitrary field and G a f.g. torsion­

free nilpotent group, the group ring R - kG is a Noetherian 

UFD. 

Proof: Since G is nilpotent, Z(G) is a non-trivial f.g. (by 

carter[lO], Theorem 4.9) torsion-f~ee Abelian group. Hence 

kZ(G) is isomorphic to a polynomial ring over k in finitely 

many var iables localised at the powe~s of the va~ iables and is 

then a commutative Noethe~ian UFD. 

Recall, f~om Passman [54], Lemma 11.1.3 that G/Z(G) is 

torsion-f~ee and nilpotent. Now suppose that P is a height-l 

p~ime ideal of R. Then pi - pnkZ(G) is a non-zero (by 

Roseblade-Smith[6l], Theorems B and C) prime ideal of kZ(G). 

Given any prime ideal of kZ(G), Q, we have that kG/QkG is 

isomorphic to (kZ(G)/Q)*G/Z(G) the skew group ring of kZ(G)/Q 

and G/Z(G), and this is a domain by Lemma 1.8.7. But then PlkG 

is a completely prime ideal of kG and is contained in P and 

hence is equal to P. Finally, pi must be a height-l prime of 

kZ(G) and so is principal. Therefore P is principal. 

More recently K.A.Brown has considered the problem in the 

more general setting of K a commutative Noether ian domain and 
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G a polycyclic-by-f inite1: ing. What follows in this section is 

entirely due to him. Th1:oughout K and 0 will be as he1:e. 

The problem really reduces to finding an appropiate 

control subgroup of 0; that is a subgroup S(O) with the 

property that, if P is a height-l prime ideal of KO, then P -

(pnKS(G»KG. Recall from Section 1.8 the definitions of ~(O) 

and ~-t(0) for a group G. First a result which we will have 

cause to use several times 

2.3.2. Theorem: For the group ring KG, K a domain, the 

following are equivalent: 

( i) KG is prime; 

(ii) Z(KG) is prime; 

(iii) G has no non-trivial finite normal subgroup; 

(i v) ~(G) is torsion-free Abelian; 

(v) ~+(O) -1. 

Proof: Passman [54], Theorem 4.2.10. 

2.3.3. Def inition: A subgroup of H of a group 0 is orbital if 

it has only finitely many conjugates (equivalently 10:NG(H) I 

is finite). A plinth of G is a torsion-free Abelian orbital 

subgroup A of 0 such that A&Q is an irreducible QT-module 

fOI every subgroup T of NG(A) of finite index. 

We say that a plinth is centr ic if I G: C (A) I 
G is finite 

(equivalently A has rank one). Otherwise A is eccentric. 

Denote by P(G) the plinth socle as defined by I.Musson, 

the subgroup of G generated by the plinths of G. FOI H an 

orbital subgroup of G, we can define the isolator of H, Is(H), 
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to be the subgroup generated by all the orbital subgroups of 0 

containing H as a subgroup of finite index. A subgroup is 

isolated in 0 if Is(H) - H. Now define 5(0) to be Is(P(G»; 

that is 5(0) - {X€G: X€A+(G/P(O»}. 

Then 5(0) is a cha~acte~istic Abelian-by-finite sub-

group of G. The next theorem shows us that 5 (0) is the control 

group we are interested in. 

2.3.3. Theorem: If P is a height-l pr ime ideal of KG then P -

(pnKS(G»KG. 

p~oof: Brown [9], Theo~em A. 

Before we consider the affirmative ~esults we should 

-1 -1 2 observe the following. Def ine D - < a, b : a ba - b , a - l) 

the infinite dihedral group. 

2.3.4. Lemma: Suppose that G has a subg~oup isomo~phic to D 

which is o~bital and isolated. Let Q equal the augmentation 

ideal of KD, and let P >= nQgKG, whe~e the intersection is over 

all the elements of G ( though note that this ~educes to a 

finite intersection). Then P is a height-l prime ideal of KG 

which is not p~incipal. 

Proof: Brown [9], Lemma 2.2. 

Clearly then in order to have any hope that KG is a 

Noether ian UFD we must avoid this situation. We say that G is 

"dihedral-free" if G contains no orbital subgroup isomorphic 
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to D. 

The ~eal c~ux to the a~gument comes in the next two 

theorems, Theo~ems Band C of B~own [9]. 

2.3.5. Theo~em: Suppose that K is a commutative Noethe~ian 
... UFD, that t::. (G) - 1, and that G is dihed~al-f~ee. Let P be a 

height-l p~ime ideal of KG. Set J - pnKS(G) so that J - nQ9, 

where Q is a G-orbital p~ime of KS(G) and the intersection 

~uns over all the elements of C. Then the following are 

equivalent: 

(i) P is ~ight p~incipal; 

(ii) Q has height one; 

(iii) P contains a non-ze~o cent~al element; 

(iv) P contains a non-ze~o no~mal element; 

(v) P contains an inve~tible ideal of KG. 

p~oof. Brown [9], Theo~em B. 

The next result makes it clea~ why it is that fo~ KG to be a 

UFD eve~y plinth of G must be cent~ ic, and so we reproduce the 

proof in fulL 

+ 2.3. G. Theorem: Suppose that t::. (G) - L Then the following a~e 

equivalent: 

(i) every non-zero ideal of KG contains a non-zero 

invertible ideal; 

(ii) every non-zero ideal of KG contains a non-ze~o 

normal element; 
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(iii) eve~y non-ze~o ideal of KG contains a non-zero 

central element; 

(iv) eve~y plinth of G is cent~ic. 

Proof: It is clea~ that (iii) holds implies that (ii) holds, 

and that (ii) implies that (i) holds. 

Now suppose that (i) holds and suppose that A is an 

eccent~icplinth. LetAO be Is(A) and let I be the augment­

ation ideal of KAo. Then I C is a p~ime ideal of KG and Q _ IS(G) 

. . AO is pr lme Slnce is isolated in G. I t can be shown that 

height(Q) = heAl which is g~eate~ than 1 by assumption. But 

the equivalence of (ii) and (v) of Theorem 2.3.5 implies that 

P contains no non-zero inve~tible ideal of KG, a contrad-

iction. 

Finally, suppose that (iv) holds. Then S(G) - aO(G), the 

isolator of a (G). Suppose that P is a he ight-l pr ime ideal of 

KG. ThenbyTheorem2.3.3, P- (Pf"IKao(G»KGandsopnK60(G) is 

non-zero. But us ing Theorem 2.3.2 and that 16° (0) : a (G) 1 is 

finite we can deduce that the~e exists a non-zero element x of 

Pf"lK6(G). 

But x has only f ini tely many conj ugates. So nxg is a non­

ze~o central element of P. Since KG is Noetherian it is now 

easy to deduce that every non-zero ideal of KG has non-zero 

intersection with the centre of KG. 

Now we have 

2.3.7. Theor em: Let K be a commutat i ve Noether ian UFD, and let 

G be a polycyclic-by-f inite group. Then KG is a Noether ian UFR 
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if and only if the following conditions hold: 

T 
(1) 6 (G) - 1, 

(ii) G is dihedral-free, 

(iii) every plinth is centric. 

Proof: Suppose that KG is a Noether ian UFR. Then KG is pr ime 50 

by Theorem 2.3.2 (i) follows. G must be dihedral-free 

otherwise there would exist some non-pr incipal height-l pr ime 

ideal of KG and (iii) comes from Theorem 2.3.6. 

conversly if (i),(ii),and (iii) hold then KG is a prime 

Noether ian ring. That every he ight-l pr ime ideal is pr inc ipal 

comes from (iii) and Theorems 2.3.5 and 2.3.6. 

2.3.8. Theorem: Let K be a commutative Noetherian UFO and let 

G be a polycyclic-by-finite group. Then (a) KG is a Noetherian 

UFO only if the following conditions hold: 

(i) G is torsion-free, 

(ii) all plinths are actually central (ie CG(A) - G), 

and (iii) G/6(0) is torsion-free; 

(b) if (i), (ii), and (iii)' 0/6(G) is poly-(infinite 

cyclic) hold then R is a Noetherian UFD. 

Proof: (a) Suppose that KG is a Noether ian UFO. Since KG is a 

domain, G is torsion-free ( D.Passman [54], Lemma 13.1.1). If 

G/6(G) is not torsion-free then there exists 9€0\6(G) with 

x""gn€6(G) for some n. Then there exists a height-l prime ideal 

P of KG containing the central element TI(xY -1) • the product 

over the distinct (f initely many) conjugates of (x-l) . Since P 

is completely prime by assumption, we may assume that (x-l) 
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lies in P. But, if T is a tr ansver sal of <x> in <g>, then set s -

Et, sum over t€T. Clearly then s(g-l)€(x-l)KG c;.. P. But 

neither s or (g-l) lie in P since P - (pnA(G»KG. This 

contradicts our assumption that P is completely prime. 

If A(G) is not central then it is possible to construct a 

height-l pr ime ideal of KG which is not completely pr ime so we 

can deduce that (ii) must hold. 

(b) Suppose that (i), (ii), and (iii)' hold. First, KG 

is a domain, by Theorem 1.8.5. If P is a height-l prime ideal 

of KG then P is principal by Theorem 2.3.7 and in fact P = pKG 

for p some non-zero element of KA(G). Then KG/P - KG/pKG is 

isomorphic to KA(G)/pKA(G)*G/A(G) and hence is a domain by 

Lemma L 8. 7. 

Remark: It remains an open question as to whether (iii) would 

be suff icient in (b) of the above theorem. It would follow if 

one could prove a "twisted" version of the zero-divisor 

conjecture. 



67 

section 2.4. Some constructions of Noetherian UFOs. 

In this section we consider a "new for old" technique to 

enable us to construct UFOs from other UFOs. For the defin-

ition of A (R) for a given ring R see Section 1.8. n 

Theor em 2.4.1: Let R be a Noether ian UFO such that char (R) -0. 

Then A (R) is also a Noetherian UFD. 
1 

Proof: Recall that if P is apr ime ideal of R, then Al (RIP) is 

isomorphic to Al (R) /PA
1 

(R) and so is pr ime. In particular r if 

P is completely pr ime then PAl (R) is a completely pr ime ideal 

of A (R). 
1 

Suppose that P is a height-l pr ime ideal of A (R). Then we 
I 

shall show that pnR ... Q is a non-zero height-l pr ime ideal of 

R. Suppose that Q = 0 and that r€P is the element of least 

degree in y in P. 

50 r 

Then 

But 0 :;. rx-xr €p and is of lower degree in y. Now f j (x) j=O 

implies that f j (x) =0 and so we deduce that r-f 0 (x). A similar 

argument in the x-degree using ry-yr will then force r€R. 

So pnR - Q is a non-zero pr ime ideal of R and it is easy to 

see that it must be height-I. Hence Q - pR - Rp for some pr ime 

element of Rand P =- pAl (R) = Al (R) P is a completely pr ime 

ideal of A1(R). 

2.4.2. Corollary: Let R be a Noetherian UFO. Then A (R) is a 
n 

Noetherian UFO. 
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Proof: By induction. 

2.4.3. Remarks: (a) Suppose that R is a Noetherian UFD. Then 

essentially the same p'Ioof as fo'I Theo'Iem 2.4.1 would wOl:k fo'I 

the ring (as defined in Section 1.8) B). (R). fo'I >. a cent'Ial 

unit of R such that 1-), n is a unit fo'I all intege'Is n. Note that 

he'Ie we do not need to assume that cha'I(R)=O. 

(b) Anticipating oU'Iselves b'Iiefly. we 

exhibit in Chapte'I 5 an example of a Noethe'I ian UFO R such that 

R[x] is a UFR and not a UFO. Since we may 'Iega-rd Al (R) as a skew 

polynomial extension of R[x], it is clear that R[x] is an 

example of a Noether ian UFR which has a skew polynomial 

extension which is a Noetherian UFO. 

(c) If R is a Noetherian UFD with char(R) - p 

~ 0, then we have the following 

2.4.4. Theorem: Let R be a Noethe'Iian domain with non-zero 

characteristic p. Then in Al (R), xP gene-rates a height-l prime 

ideal which is not completely prime. 

Proof: Let I - (XP)A
1 

(R). Suppose that A and B are ideals of 

A (R) containing I such that A.B ~ I. If I c A then choose an 
1 

i=n i 
element f(x,y) ... Li=Of i (x)y €A\I of least degree in y. 

i-n i-1 
Then fx-xf ... L1-l f i (x) iy also lies in A and is of lowe'I 

degree in y. We may deduce then that f (x,y) - g(x,yp) + h(x,y). 

where h(x,y)€I. Commuting f(x,y) with y we can similarly 

deduce that there exists f(x,y)€A such that f(x,y) - u(yp) + 

v(x,y), where v(x,y) € I. But A.B ~ I and hence B £; I. 
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Therefore xP generates a pr ime ideal, which must be of 

height 1 by Jategaonkar[39], Theorem 3.1. Clearly I is not 

completely prime. 

We can also use Theorem 2.1.4 to construct UFOs from any 

pr ime Noether ian ring containing at least one pr ime element. 

2.4.5 Theorem: Let R be a pr ime Noether ian ring. Suppose that 

X, the set of prime elements of R, is non-empty. Let C -

nC(pR), where the intersection runs over all the pr ime 

elements P in X. Then C is Ore and the partial quotient ring RC 

is a UFD. 

Proof: C is Ore just as in Theorem 2.1. 4. Now suppose that P is 

a height-l pr ime ideal of T - RC' Then P - QT for some height-l 

prime ideal Q of R. If Q is not generated by a prime element 

then a simple argument considering a non-zero element of Q 

shoWS that Qnc is non-empty. Thus all height-l pr ime ideals of 

T are generated by prime elements of R. 

This result means that results about Noetherian UFOs will 

give us information about prime elements in more general 

Noetherian domains. 

In the commutative case there is a useful criterion to 

determine when R is a UFO. In a commutative Noetherian ring R 

suppose that S is a multiplicative set generated by prime 

elements. Then Nagata's Theorem says that R is a Noetherian 

UFO if and only if RS is a Noetherian UFD. See, for example, 
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cohn[ 21], Theorem 11. 3.5. To conclude this section we extend 

this result to non-commutative Noetherian UFDs. 

2.4.6. Theorem: Let R be a pr ime Noether ian ring. Suppose that 

S is a set of prime elements of R. Let D be the multiplic-

atively closed set generated by S. Then R is a Noether ian UFO 

if and only if RO is a Noetherian UFD. 

Proof: If R is a Noether ian UFD then it is easy to see that then 

so is RO· 

Conversely, suppose that RD is a Noether ian UFD and let P 

be a height-l pr ime ideal of R. If PRD - RO then Dnp 'jI sz! and so 

some prime element of S lies in P. Henc~ p~ is generated by a 

pr ime element. If PRD ~ RD, then PRO is a he ight-l pr ime ideal 

of RD. Since RO is a Noetherian UFD, PRO - pRD - ROp, where p is 

of the form qd- l , for some d€D and q€R. So without loss of 

generality P is generated by an element q€R such that qRD -
RDq. Choose q€p with qR - Rq, and such that qR is maximal. Then 

q,tp.R, for any prime element p. of R. Let Q - qR - Rq. We claim 
1 1 

that P = Q. Suppose not, then choose r€P\Q. Since rEPR
D

, thez:e 

exists s€Rwith r = d-lsq. Therefore, rd - sq. Butq.ip.R, fo'[ 
1 

any pr ime element of Pi of R. By a simple argument, based on an 

induct ion on the n such that d - P ••• p, s €dR. Hence r €Rq I 
1 n 

which contradicts our choice of r. Therefore, P - qR - Rq. 

2.4.7. corollary: Let R be a Noetherian UFD. Let D be the 

multiplicative set generated by all the prime elements of R. 

Let S - RD· Then R[x] is a Noetherian UFD if and only if S[x] is 

a Noetherian UFD. 
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Chapter 3. Some ~esults on Noethe~ian UFDs. 

3.0. Summa~y. 

The preceding chapter makes it clear that Noetherian UFDs 

are objects of interest to study, both for their own sake and 

for the approach they offer to answer questions about some 

well-known classes of Noetherian rings. However, seen as a 

possible analogoue of the commutative case, the ~esults of 

this chapter are su~prising. We a~e able to prove actually 

stronger results about Noether ian UFOs when we know that they 

are not commutative. This enables us to d~aw conclusions about 

PI or bounded Noethe~ ian UFOs which a~e true provided that the 

ring is not actually commutative. This appears to be a cur ious 

state of aff airs, and is an indication of how strong a 

conci ition it is to require a pr ime ideal in a non-commutative 

ring to be completely prime. 

Let R be a Noetherian UFO, and C" C(R). In Section 3.1, we 

show that if R is not commutative, then the ring T - RC is 

always a pr incipal ideal domain. This is a result first proved 

for the enveloping algebra of a solvable Lie algebra by 

A.w.Chatters and for group rings of torsion-free nilpotent 

groupS by M.K.Smith. We should remark that the result was 

proved independently by M.K.Smith and it appears in Gilch­

rist-Smith [30]. 

section 3.2 uses the result of the previous section to 

improve the bound on the stable rank of some UFDs using a 

similar technique to that of Section 3.1. 

Section 3.3 applies the technique of Section 3.2 to the 

problem of localising at cliques of completely prime 
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ideals. Whilst not di~ectly conce~ned with the theory of 

Noetherian UFOs, this section may have applications to the 

theory of enveloping algebras of Lie algebras. 

Finally, Section 3.4 considers the centres of Noetherian 

UFDs. 

In this chapte~ we will use the following notation. 

Throughout, R will be a Noetherian UFO. C will denote the set 

nC(P), whe~e the inte~section ~uns ove~ all the height-l p~ime 

ideals P of R. 0 will denote the multiplicatively closed set 

generated by the prime elements of R. The partial quotient 

rings Rc and Rn will be denoted by T and S respectively. 
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section 3.1. Noetherian UFus are often PIus. 

In Chatters[13], Theorem 3.3 shows that, if L is a non-

Abelian solvable Lie algebra, U(L) - R, and T - Rc' then T is a 

ptincipal ideal domain. M.K.Smith in a letter to J.T.Stafford 

showed that the same is ttue for the group ring over afield k, 

R - kG, where G is a torsion-free nilpotent group which is not 

Abelian. 

We prove that this is the case in general. 

3.1.1. Theorem: Suppose that R is a Noetherian UFO which is 

not commutative. Then every ideal which is contained in no 

height-l prime ideal has non-empty intersection with C. 

proof: It clearly suffices to prove the theorem for a prime 

ideal, say P, whose height is greater than 1. So suppose that P 

is such a prime ideal. 

First, suppose that P contains no height-l prime ideal. 

Let a be any non-zero element of P. Then a - cp p .•. p, for 
1 2 n 

some c€C and pt ime elements p , P , •.• , p . Here p IP and 
1 2 n n 

aR:: cP1Pz·· .PnR'" CPIP2·· .Pn-1RPn ~ P. So cPIP2'· .Pn-l €P. By 

induction on n, we deduce that C€P. 

If P contains exactly one height-l prime ideal, say pR-

Rp, then choose a€P\pR and ptoceed as in the first case. 

So suppose that P contains two distinct height-l prime 

ideals of R, pR - Rp and qR - Rq. For each positive integer n 

and a fixed r€R (to be specified later) define the element 

t - p+q(r+qn)€p. 
n 

suppose that the theorem is false. Since each t - cp .•. p , 
n 1 m 
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i ot: c eC and pt: ime elements Pi' then at least one of the Pi eP. 

Hence tn el n' whel:e In is a height-l pt ime ideal of R contained 

in P. Note that q,tI n , since qeI n would imply also that peI n 

which contt:adicts our assumption that p and q generate 

distinct height-l prime ideals. 

Suppose that Im- In' fot: distinct integet:s m and n, m < n. 

So t , t el . Hence t -t el • So m n m m n m 
qrn~l_qnTl _ qm+l(l-qn-m)EI

m
. 

n-m Sinceq,tI,weconcludethat(l-q )el !:';. P. But, since rn m 

qeP, this would imply that leP, a contradiction. 

Thus the set of In'S is infinite. Since R is Noethetian, 

only finitely many height-l pr imes lie ovet any non-zetO 

element of R and so nl - 0, whet:e the intersection tuns ovel: n 

all n. 

We shall obtain a contl:adiction fI:om this by exhibiting a 

non-zet:o element of nl • It is heI:e that we have to use the n 

fact that R is not commutative. 

The proof splits into thI:ee cases: 

(a) Suppose that both p and q are both central. Choose reR 

to be any non-centtal element. Then there exists seR such that 

sr-rs ~ o. Then [tn's] ... tns-stn ... qI:S-sqI: - q (l:S-St). Since 

qtIn, 0 ~ (ts-St)el n . This is ttue fot all n. 

(b) Suppose that pq - qp, but that q is not centtal. Then 

there exists teR such that qr-rq ~ o. Then [t ,q] - q(rq-qr) po 
n 

o. So (rq-qr)el n , for all n. 

(c) Finally, suppose that pq ~ qp. Let t = O. We have 

[tn,q] = (pq-qp)el n , for all n. 

3.1.2. Corollary: Let R be a Noethetian UFO which is not 
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commutative. Then T is a p~incipal ideal domain. 

Proof: Since T is Noether ian, it suff ices to cons idex: a x: ight 

ideal I -x:T+ sT. By Theox:em2.l.5,(iii), I is an ideal and so 

I is contained in some maximal ideal M of T. Now M - (MnR)T and 

MnR is a proper prime ideal of R. By Theorem 3.1.1, MnR is a 

height-l p~ime ideal of R. The~efo~e M - qT, fo~ some p~ime 

element q of R. 

But now the ideal J - q -1 I !;, T. By a Noethe~ ian induct ion, 

J is principal, say J - dT. Thus 1 - qdT 1s principal, as 

required. 

Remark: This seems to be a su~p~ising ~esult. If we consider a 

polynomial ring R - k[x
1

, ••• ,xn ] ove~ a field K, then R is a 

Noether ian UFD and 1 t is easy to see in this case that T - R. 

But clear ly, if n ;. 2, then T is not a pr inc ipal ideal domain. 

It seems to indicate that in the study of Noetherian UFDs 

there are going to be significant differences in results 

depending on whether or not R is commutative. To some extent 

this is borne out by Section 3.2 when we come to cons ider the 

stable range of some Noetherian UFDs. 

3.1.3. Corollary: Let R be a bounded Noetherian UFD which is 

not commutat i ve. Suppose that every pr ime ideal of R contains 

a he ight-l pr ime ideal. Then R is a p~ inc ipal ideal domain and 

everyone-sided ideal is two-sided. 

Proof: 

By the proof of Theorem 2.1.9. R - Tns and I nD ~ ¢, for all non-zero 

ideals I. Suppose that cdt is a non-zero non-unit of R. If I is 
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the bound of cR, then InD r/& s6, and so IS - S. Thus cS - Sand c 

is a unit of S. 

But then S is the full quotient ring of R. Hence T ~ S. 

Therefore R - T and the result follows from Theorem 2.1. 6 and 

Corollary 3.1.2. 

3.1.4. Corollary: Let R be a Noetherian UFD satisfying a 

polynomial identity. Suppose that R is not commutative. Then R 

is a pr inc ipal ideal domain and every one-s ided ideal is two­

sided. 

Proof: By Corollary 1.3.4, R is bounded. By Rowen[62], Theorem 

5.2.19, R satisf ies DCC on pr ime ideals. The result now 

follows from Corollary 3.1.3. 

3.1.5. Corollary: Let R be a Noetherian Azumaya algebra. 

Suppose that Z (R) is a Unique Factor isation Domain. If 

Kdim(Z(R» ~ 2 then at least one of the height-l prime ideals 

of R is not completely prime. 

Proof: By Theorem 1.3.6, every height-l prime ideal of R is 

pr incipal. I f every height-l pr ime ideal of R were completely 

prime then R would be a principal ideal domain, by Corollary 

3.1.4. This is clearly not the case. Therefore, at least one 

of the height-l prime ideals of R is not completely prime. 

Remark: Let R be an arbitrary Noetherian PI domain. Let C _ 

nC(pR), where the intersection runs over all the prime 

elements P of R. By Theorem 2.1.4, the set C is Ore, and by, 
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Corollary 3.1. 4, RC is a pr inc ipal ideal domain. Thus by 

localis ing at C, we have automatically localised away all the 

prime ideals of height greater than 1. 

Suppose that D is a division ring. Provided that D is not 

commutative, not all one-sided ideals of D[x] are two-sided. 

Suppose that d~Z(D). Then, if e€D is such that de ~ ed, then 

(ed-de)€D[x](x-d)D[x]. That is, (x-d)D[x] ~ D[x](x-d)D[x]. 

In particular, if D is a PI division z:ing, then D[xJ is not a 

Noetherian UFD. This enables us to give an amusing proof of 

the following z:esult. 

3.1.6. Corollary: Let D be a PI division z:ing whose centre K is 

not the whole of D. Then there exists a polynomial in K[x], 

iz:reducible over K, but which is reducible over D. 

Proof: R = D[x] is a PI principal ideal domain which by the 

foregoing remarks cannot be a Noetherian UFD. There exists 

therefore a height-l prime ideal P of D[x] generated by p(x) 

in K[x] which is not completely prime. Clearly p(x) is 

irreducible as an element of K[x]. We shall show that p(X) is 

not irreducible as an element of D[x]. 

Since p(x)R is not completely prime, there exists a right 

ideal I of R such that p(x)R C I ~ R. Since R is a principal 

ideal domain, I - a(x)R, for some non-unit a(x) € R. Hence p(x) 

- a(x) .b(x), for some non-unit b(x) € R. Thus p(x) is 

reducible in D[x]. 

Remark: Of course, another proof of Corollary 3.1.6, may be 
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obtained by noting that K <; F <; D, for some splitting field F of 

K. That is, some irreducible polynomial in K[x] is reducible 

in F[x]. 

3.1. 7. Corollary: Let R be a hereditary Noether ian UFD. Then R 

is a principal ideal domain or primitive. 

Proof: Immed late fI:om COI:ollaI:Y 3.1.3 and Lenagan [47], PI:OP­

os it ion 5.1. 9. 

Note that pI:imitive NoetheI:ian UFDs do exist. Let D be the 

quotient I: ing of the Weyl algebI:a Al (k) , k the complex 

numbers. ThenD[x] is pI:imitive (Amitsur-Small[l], Theorem 3) 

and it is not hard to see that the height-l prime ideals of 

D[x) are generated by central irreducible polynomials in 

k[x). Since these are all of the fOI:m (x-a), fOI: a a complex 

number, the result follows. We shall significantly improve 

this observation in Section 5.1. 
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Section 3.2. The stable %ank of T. 

In Section 1. 6 we discussed possible bounds fo% the stable 

z:ank of a ring R and in particular recalled that, for a 

Noether ian ring R, sr (R) ~ Kdim(R) + 1. For a Noether ian UFD R, 

the pa%tial localisation T, is a p%incipal ideal domain by 

Theorem 3.1.2. So we have sr(T) ~ 2. It is thus a natu%al 

question to ask whethe% in fact Sl: (T) - 1. In this section we 

show that this is indeed the case. Hence, in pal:ticular, if R 

is a bounded Noethe%ian UFD which is not commutative, then 

sr(R) :or 1. 

Fil:st we have to pl:ove a numbel:-theoretic lemma 

3.2.1. Lemma: Let k be a positive integer. Then there exist k 

positive integers 1 ~ a
1 

( a 2 ( ••• < a
k 

condition: 

satisfying the 

Proof: By induction on k. Clear ly a l - 1, a 2 - 2 satisfy (*) for 

k = 2. 

Now suppose that, for the integer k, we have a set a
1 

< 

<aksatisfying(*).LetbO·nai·Letbi-bo+ai' fo% i -

1, ... ,k. Then for i > 0, (b.-bO) -a. dividesb . 
1 1 i' and fo% 

o < j < i, (bi-b j ) - (ai-a j ) divides a i and hence divides b
i

. 

So b O < b 1 < ••• < b k is a set of (k+l) numbers satisfying 

( * ) . 
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a 
Remark: A similar argument works with bO - nq j and 

. . a i a i 
Di-bO.~q -l)/q 

where q is any positive integer > 1. 

Let R be a Noetherian UFD which is not commutative. Then, 

from results in Section 2.1 and Section 3.1, RC - T is a 

Noether ian UFD whose non-zero pr ime ideals are of the form pT 

so Tp, for p a pr ime element of R, and C(T) is the set of units of 

T. Thus every non-unit of T lies in a height-l prime ideal of 

T. 

The following Theorem relies heavily on this simple 

result. 

3.2.2. Lemma: Let m and n be positive integers with m dividing 

n. Suppose that r is an element of a ring R. Then 

(rn-I) € (rm-l)R. 

n m m 2m (d-l)m Proof: (I -1) ... (r -1) (l+r +I + •.• +r ), where n - m.d. 

3.2.3. Theorem: Let R be a Noetherian domain. Suppose that 

evelY non-unit of R lies in a height-l prime ideal and that 

every height-l prime ideal is completely prime. Suppose also 

that R is not commutative. Then sr(R) - 1. 

Ploof: Suppose that aR + bR - R. If a is a unit of R then we 

have (a + b.O)R - R. If b is a unit of R, there exists c with bc _ 

1. Then (a + b.(cp.-a»)R- R. So, without loss of generality, 

we may assume that neither a nor b is a unit. 

The idea of the proof i3 3 imilar to that of Theorem 3.1.1, 
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but a little mor e cat: e is needed. We cons ider elements of the 

form f - a + b.c , for suitable choice of elements c €R and n a n n n 
positive integer. If none of the fn are units of R then, by 

hypothesis, each fn must lie in at least one height-l prime 

ideal, say I . Then by commut ing each f with a suitable 
n n 

element r €R, we obtain a non-zero element [f n' I] of R which is 

independent of n. Since R is Noethet:ian, [fn,I] can lie in 

only k height-l prime ideals, for some integer k. So if we 

choose k+l distinct elements f n then at least two of them, say 

f and f , lie in the same height-l prime ideal, 1 • Then 
m n m 

if -i ) lies in I and ft:om this we will be able to deduce a 
"m n m 
contradiction. We remark that a and b cannot both lie in the 

same height-l pt: ime ideal of R since they generate R. 

Similarly, the elements a and (aY-l). for a positive 

integer, cannot both lie in the same height-l prime ideal. 

The proof has to consider several cases: 

(i) First, suppose that ab ~ ba. Then (ab-ba) lies in 

exactly k height-l prime ideals of R for some integer k. By 

Lemma 3.2.1, we can choose a sequence of positive integers a l 

< a
Z 

( ... < a k +l satisfying the condition (*) of Lemma 3.2.l. 
a 

Definefn=a+b.(a n - 1), fat: n = l, ••• ,k+l. We may 

suppose that, for each n, fn€ln' fat: some height-l prime ideal 

I . 
n an a 

Then [fn,a] ... (ba-ab) (a -1) € In. If (a n_ 1 ) € In' then 

a€i , a contradiction. So (ab-ba) € I , fot: all n W n n· e can 

deduce that there exist f and f ,m) n, such that f €I and m n m m 

f €I • 
n m a a a a-a 

NoW f -f .., b. (a m_a n) - b.a n.(a m n_ 1 ) m n € I . m Suppose 
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that b £ I , then a £ I ; and if a £ I then either bel or m m m m 
a 

(a n-1)el . These all lead to contradictions. We are forced to 
m a-a 

deduce that (a m n_ 1 ) €Im. But (am-an) divides am and hence, 
. am am 

by Lernma 3.2.2, (a -l)elm. Butfm-a+b.(a -l)el m, and so 

ael
m

, a contradiction. This finishes case (i). 

(ii) Now suppose that ab - ba. This case splits into 

three sub-cases. 

(a) Suppose that b is not central. There exists ceR 

such that bc .. cb and, by replacing c by (ac+l) if necessary, 

we may assume that if aeJ, for some proper ideal J of R then c;J 

Suppose that (bc-cb) lies in exactly k height-l pr ime ideals. 

Choose, as before, positive integers, a l ( .•. < a
k

+
l 

satisfying condition (*) of Lemma 3.2.1. 
an 

Letf -a+b.(a -l).c, for n - l, ... ,k+l. For each n, we 
n 

may suppose that f el , for some height-l pr ime ideal I of R. 
n ~ n 

n 
Then [fn,b] - b. (a -1). (cb-bc) e I . As in case (i), if 

a n 
n 

either b £ I or (a -1) £ I , we can derive a contradiction. n n 

Hence (cb-bc) € In' for n - l, ••. ,k+l. 

So there exist integers m and n, m > n , such that fm € 1m 

and f € 1 . Consequently, n m a a a a -a 
f -f = b.{a m_a n).c = b.a n.(a m n_1).c € I . 
m n a m 

Clearly, b;' I , and an;. I . Similarly c E I is ruled out m m m 
a -a 

by our choice of c. We are forced to deduce that (a m n_ l ) € 

1m. Since (am-an) divides am' we can proceed just as in case 

(a) to derive a contradiction. 

(b) Suppose now that b is central and that a is not 

central. Then there exists d € R such that ad p da. Suppose 

that (ad-da) lies in exactly k height-l prime ideals. As 
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before choose positive integel:s a l < •••• < ak+l 
satisfying 

condition (*) of Lemma 3.2.1. 
an 

Let f - a - b • (a-l), fot n - 1, .•. , k+l. We may suppose 
n 

that, for each n, fn ~ In' fOt:ome height-l ptaime ideal In. 

n n 
Then (fn,d] - (ad-da). (l-b ) € In. If (l-b ) € In' then 

1- a - (a-l) € 1 , a contl:adiction. So (ad-da) € 1 for n -n n 

l, ... , k+ 1. 

Then thete exist integets m and n, m } n, with fm € 1m and 

f € I . This implies that 
n m a a a a -a 

f -f - (b m_b n). (a-l) - b n. (b m n_ 1 ). (a-l) E I . 
m n a -a m 

Clearly btl , and (a-l) t I . Hence (b m n_1 ) € I. Then m m m 
a 

(b m_l) € 1m and this leads to a conttadiction as befote. 

(c) Finally, suppose that both a and bate centtal. 

Since R is not commutative thete exist elements of R, c and d, 

with cd ~ dc. As in (a) we may assume that if a € J, for some 

ideal J of R then c t J. Suppose that (cd-dc) lies in exactly k 

height-l pr ime ideals. As befote, choose pos itive integers a l 

< ••• < a k+ l satisfying condition (*) of Lemma 3.2.1. 
an 

Letf -a+b.(a -l).c fOl: n .. l, ... ,k+l. We may 
n 

suppose that, for each n, f n € In' fOl: some he ight-l pt ime 
a 

ideal I of R. Then (f ,d] - b. (a n_ 1 ). (cd-dc) E 1. Now the 
n n n 

ptoof of (ii)(a) goes through almost word for word. 

Since the four sub-cases we have considered cover all 

possibilities the ptoof is complete. 

3.2.4. Corollary: Let R be a Noetherian UFD which is not 

commutative. Then T has stable tank 1. 

Proof: As we remarked earliet, T satisfies the conditions of 
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Theorem 3.2.3. 

3.2.5. Corollary: Let R be a bounded Noetherian UFO which is 

not commutat i ve. Suppose that every non-zero pr ime ideal of R 

contains a height-l prime ideal. ~hen R has stable rank 1. 

Proof: By Corollary 3.1.3, R = T. 

3.2.6. Corollary: Let R be a Noetherian UFD satisfying a 

polynomial identity. Suppose that R is not commutative. Then R 

has stable rank 1. 

Remark: Just as in Section 3.1, this result is stronger than 

one would expect from the commutative case. For example both 

the integers Z and the domain K(x] for some field K are 

principal ideal domains, but they both have stable range 2. We 

have that (5,7) is a unimodular row over Z which is not stable 

and the row (x,1-x 2
) is unimodular and not stable in K[x]. 

J.T.Stafford has conjectured that all affine PI rings 

have stable rank at least 2, which is known for commutative 

affine rings. Thus Corollary 3.2.5 is even more surprising 

than at first sight. 

Suppose that D is a division ring. Then D[x] is a 

principal ideal domain and it is easy to see that (x,1-x 2) is a 

unimodular row which is not stable. So D[x] has stable range 

2. This would give another proof of Corollary 3.1.6. 

To finish this section it might be interesting to note 

some of the properties of the sets of integers satisfying (*) 
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of Lemma 3.2.1. Let us call a set (a l , •.• ,ak ) a k-*-set if it 

satisfies (*). Call a k-*-set coprime if the highest common 

factor of the a i is 1. Then we can observe the following: 

(a) Any subset of size m of a k-*-set is an m-*-seti 

(b) There exists an infinite number of coprime k-*-sets 

for all integers ki 

(c) There does not exist an infinite *-set. 

I Certainly (a) is true. To prove (b), note that it cetainly holds 

for k = 1. For k > 1, use the inductive construction of Lemma 

3.2.1. To prove (c) suppose that a l is the f hst element in 

an inf inite *-set. Then for all n, (a -a l ) divides a • But n n 

this means that (an-a l ) (an/2. Thus an -( 2a l and so there 

exist at most a l +1 terms in the *-set whose first term is a l . 

Finally, for k - 2 to 7 the smallest k-*-sets are as 

follows: 

k=2 {I, 2] 

k=3 {2,3,4) 

k:4 {6,8,9,l2) 

k-5 {36,40,42,45,48} 

k=6 {2l0,2l6,220,224,22S,240} 

k-7 {14976,14980,14994,lSOOO,lS008,lSOlS,lS120) 

I would like to thank R.Everson for his enthusiasm in 

determining these values. 
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Section 3.3. Cliques and localisation. 

This section t:ept:esents something of a meandet: in the flow 

of this thesis, and is not dit:ectly concet:ned with the theot:y 

of Noethet:ian UFDs. It at:ises ft:om the obset:vation that, in 

pt:oving Theot:em 3.2.3, we at:e in effect pt:oving the "intet:­

section condition" (which we shall def ine latet:) fot: a set of 

completely pt:ime pt:ime ideals. The method of Theot:em 3.2.3 

seems to be of independent interest and in this section we 

shall discuss one possible application: to that of cliques and 

localisation. We shall follow Wat:field[74] in out: tt:eatment 

of cliques. 

The pt:oblem of localis ing at a pt: ime ideal t:educes to that 

of showing that C(P) is left ot: t:ight Ot:e. Howevet: it is often 

the case that C(P) is not Ot:e and it thet:efot:e becomes of 

interest to detet:mine the largest subset of C(P) which is Ot:e. 

We shall denote this set by S(P). 

Let R be a t: ing. The notion of a "link" between two pt: ime 

ideals P and Q of R was fit:st intt:oduced by A.V.Jategaonkat: in 

Jategaonkat:[38]. Suppose that J is an ideal of R with 

QP ~ J C Qnp such that QnP/J is tot:sion-ft:ee as a left R/Q­

module and as a right RIP-module. In this situation we say 

that thet:e is a second layet: link, denoted by Q~P. The next 

Lemma shows that the existence of a link between pt: ime ideals 

constitutes an "obstruction" to being able to localise at the 

prime ideals. 

3.3.1.Lemma: Let R be a Noetherian t:ing. Suppose that Q~P 

is a second layer link between the pt: ime ideals P and Q of R. 



87 

(i) Suppose that C is a left Ore set with C C C(Q). Then C C 

C (P) • 

(ii) Suppose that D is a right Ore set with Dc C(P). Then D 

c C (Q) • 

(iii) If E is an Ore set, then E c C(Q) if and only if E c 

C(P). 

Proof: Suppose that QP ~ J C Qnp is the second layer link. 

That is, R/Q(Qnp/J)R/P is an R/Q-R/P-bimodule torsion-free on 

both sides. In particular, l-annR(QnP/J) - Q and 

r-annR(QnP/J) = P. Suppose that C€C and r€R are such that 

cr€P. We aim to show that reP. 

Choose beQnp. Since C is left Ore, there exist bieR and 

C r eC with b r c - c' b. Clear ly b' €Q. We have c' br - b' cr e QP S; 

J. But (Qnp/J) is torsion-free as a left R/Q-module. There-

fore, since cleC, breJ. But b was chosen arbitrarily in Qnp. 

Hence (Qnp).r !; J. We conclude therefore that reP, as 

required. 

The second statement of the Lemma follows by a symmetr ical 

argument to the above. The last statement then follows 

immediately. 

The graph of links of R is the directed graph whose 

vertices are the prime ideals of R and whose arrows are given 

by the second layer links. A clique of R is a connected 

component of the (undirected) graph of links. If P is a prime 

ideal of R then Cl(P) is the unique clique containing P. By 

Lemma 3.3.1, it is immediate that S(P) C C(Q), for all the 

prime ideals QeCl(P). It becomes, therefore, a natural 
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question to ask when S(P) - nC(Q), where the intersection runs 

over all the prime ideals QeCI(P). 

For a set X of prime ideals of a ring R, let C(X) - nC(p), 

where the intersection runs over all the prime ideals in X. 

A.V.Jategaonkar has determined necessary and sufficient 

conditions for when C(X) is Ore and the ring RC(X) - Rx has 

particular ly nice properties. We say that a clique X is 

classical or classically localisable if the following cond-

itions hold. 

(i) C(X) is a right and left Ore set; 

(i i) for every pr ime ideal QeX, Rx/QRX is 

isomorphic to the Goldie quotient ring of R/Q; 

naturally 

(iii) for QeX, the pr ime ideals QRx of Rx are precisely the 

primitive ideals of RX; 

(iv) the Rx-injective hull of every simple Rx-module is the 

union of its socle sequence. 

Note that if X is finite and condition (i) is satisfied, 

then (li) and (iii) are automatically satisfied. They are 

added here to ensure that, in the case when X is inf inite, the 

ring RX has "nice" properties. Condition (iv) is a useful 

condition that may hold in general and certainly holds in all 

well-known examples. 

A prime ideal in a Noetherian ring satisfies the second 

layer condition if the injective hull E(R/P)R contains no Lg. 

sub-modules whose annihilator is a prime ideal other than P. 

We say that a set X of pr ime ideals satisf ies the second layer 

condition if every member of X satisf ies it. A ring R 

satisf ies the second layer condition if Spec (R) satisf ies the 

second layer condition. 
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The classes of Noethe~ian ~ings satisfying the second 

layer condition include the class of fully bounded Noethe~ ian 

rings, the class of enveloping algebras of solvable Lie 

algebras (B~own[8], Theo~em 3.2, and Heinicke[3S], Theorem 

1), and the class of g~oup ~ ings KG, whe~e G is a poly-cyclic­

by-f inite g~oup and K is afield of cha~acte~ istic ze~o 

(Brown[7], Theo~em 4.2). 

Let R be a ~ing. A set of p~ime ideals X in R is said to 

satisfy the right (left) intersection condition if, given a 

~ight (left) ideal of R such that InC(p) ~ ¢, for all P€X, 

then InC(X) ~ ¢. X satisfies the intersection condition if it 

satisfies both the left and right intersection conditions. 

Observe that, fo~ example, if X is a 

prime ideals, then C(X) is Ore. 

localisable set of 

3.3.2. Lemma: Let R be a ring. Let X be a set of localisable 

prime ideals of R. Suppose that X satisfies the intersection 

condition. Then C(X) is Ore. 

Proof: Choose C€C(X) and a€R. Let K - {r:a~€cR}. Then K is a 

right ideal of R. Since, fo~ each P€X, C(P) satisfies the Ore 

condition, Knc(p) ~ ¢. The~efo~e, Knc(x) ~ ¢. The left Ore 

condition follows simila~ly. 

The significance of the second layer and inte~section 

conditions is indicated by the following ~esult. 

3.3.3. Theorem: Let R be a prime Noethe~ian ring. Let X be a 

clique of p~ ime ideals which satisf ies the second laye~ 
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condition and the intel:section condition. Then C(X) is Ore and 

X is classical. 

Proof: See Jategaonkar[43], Theorem 7.1.5 and Lemma 7.2.1. 

It is clear, thel:efore, that if R satisfies the second 

layer condition, then it becomes of gl:eat intel:est to 

determine when a set of pl:ime ideals satisfies the inter-

section condition. 

FOl: X a finite set of pr ime ideals we have the following. 

3 .3.4. Theor em: Let R be a pl: ime right Noethel: ian r lng. Let X -

[P , ... ,P I be a finite set of pl:ime ideals. If I is a l:ight 
1 n 

ideal of Rwith InC(P i ) rI: szl, for i - l, •.• ,n, then InC(X)" szl. 

Proof: Order the pr ime ideals so that P
k 

C P j implies that k ) 

j. ThenP1n ... nP i c;tP i + 1 , for i-I, ... , n-l. Suppose, by 

induction, that there exists a€In C(P 1 )n .•. nc(p i). Then the image of 

aR + I. (P 0 ••• Op· )'generates an essential right ideal of RIP '+ • By 
,1 n 1 1 

Lemma 1.1.6, thel:e exists b€I(P o ... np.) such that 
1 1 

a+b€C(P, ). Since b€P n ••. np., it is clear that a+b€C(P,), 
1+ 1 1 1 J 

for j a l, ... ,i+l. Induction completes the proof. 

However, for inf inite sets of pr ime ideals, the problem of 

proving the intersection condition is more difficult and 

there is as yet no complete answer. There are partial 

solutions to this problem. However, these mostly rely on the 

existence of an uncountable set F of central units such that 

for any two distinct elements a,b€F, (a-b)€F. In particular, 
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this cond ition is satisf ied if the 1: ing unde1: cons ide1: at ion is 

an alg ebr a over the complex number s. We have, f or example, the 

following result due to J.T.Staffo1:d and R.B.Warfield,Jr. 

3.3.5. Lemma: Let R be p1: ime Noethe1: ian ring. Let X be a set of 

pr ime ideals such that there is a uniform bound on the Goldie 

ranks of the rings R/Q, QeX. Suppose that R contains a central 

subf ield K such that I K I > I X I. Then X satisf ies the 

intersection condition. 

p1:oof: See Watfield[74], Lemmas 1 and 6. 

3.3.6. Theorem: Let R be p1: ime Noether ian ring which contains 

an uncountable central subfield. Let X be a clique of prime 

ideals which satisfies the second layer condition. Suppose 

that there is a uniform bound on the Goldie 1:anks of the rings 

R/Q, for QeX. Then X is classical. 

Proof: Since R is Noetherian, X is at most countable, by 

Stafford[70], Corollary 3.13. The result follows immediately 

from Lemma 3.3.5 and Theorem 3.3.3. 

To extend this result we would like to be able to remove 

the condition that R contains an uncountable subfield. The 

natural test-case to consider would be to assume that the X is 

a clique in which all the prime ideals are completely prime. 

Our aim in this section is to give some (partial) results on 

localisations of cliques with this (very strong) condition. 
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3.3.7. Theorem: Let R be a right Noetherian domain which is 

not commutative. Let X be an infinite set of prime ideals, Pi' 

i€I, which are all completely prime. Suppose that, for any 

inf inite subset J of I, np j - 0, wheI:e the intersection runs 

over all j eJ. Suppose that K is a I: ight ideal of R wi th Knc (P 1) 

~ ¢ for all Pi€X. Then KnC(X) ~ ¢. 

pI:oof: The idea of the proof is similar to that of Theorem 

3.2.3, but we have to do a little pI:eparation first. Observe 

that the conditions in the statement of the TheoI:em imply that 

each non-zero element of R can lie in only finitely many 

members of X. 

If K is a cyclic right ideal cR, then ceC(X), and we are 

done. 

Since K is finitely generated, we may write 

i==n K"'E. a.R. We shall proceed by induction on n. Let us 
1=1 1 

suppose that we have pI:oved the Theorem for n - 2. Let K. - a. R 
1 1 

+ anR. Now define the sets Ii - {j:K1nC(P
j

) ~ ¢}. 

exists Pj€X with jt1i for i - l, ••• ,n-l, then 

If there 

(a.R + a R) £ P. for i-I, ... ,n-I. But this contradicts OUI: 
1 n J 

assumption that Knc(p.) ~ ¢. Thus 1- UI .. 
J 1 

LetX. "" {P.:P.€I.}. FOI: eachK. andsetX., either X. is 
1 J J 1 1 1 1 

finite or the conditions of the Theorem still hold. So, 

assuming that we have proved for the Theorem for right ideals 

K generated by two elements, we may deduce that K. nc (X.) ~ ¢. 
1 1 

Chooseb.eK.nC(X.). LetK' =E~~n-lb.R. ThenK'nc(P.) 
1 1 1 1=1 1 1 ¢, 

for all i. Therefore, by induction, K'nc(x) ~ ¢. We can 

therefore reduce to the case where K - aR + bR. 

The proof now proceeds exactly as in Theoren 3.2.3. We 
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consider one case only and leave the rest for the reader. 

Suppose that ab .. ba. Then (ab-ba) eP i' for exactly k 

members of X, for some integer k. By Lemma 3.2.1, we may choose 

a sequence of positive integers 1 ~ a
1 

< ••• < ak +
1 

satisfying 

(a.-a).) divides ai' for all choices of i and j with j < i. 
1 a 
Letf -a+b.(a n_1), for n "1, ... , k+l. If the Theorem 

n 

for some pr ime ideal P eX. 
a n 

e P • If (a n -1) eP , then aeP , 
n n n 

is f als e then each f n eP n ' 
an 

[fn,a] - (ba-ab) (a -1) 

is clearly a contradiction. Thus (ba-ab)eP , for n 

Then 

which 

n - 1, ... ,k+l. By our choice of k, there exist integers m and 

n, m ) n, with fm,fnePm• 
a a -a 

However, f m, fn eP m implies that fm -fn - b. an. (a m n_ l ) t: 

P • If beP , then aeP , which contradicts our hypothesis that m m m 

(aR+bR)nC(p ) "16. If aeP , then either beP or (a am_l)eP
m

, . m m m 
and both of these lead to contradictions. Since P 

m 
is 

completely prime, we are forced to conclude that 
a -a 

(a m n_1 ) EPm• But then, by Lemma 3.2.2 and our choice of ai' 
am 

(a -1) ePm, and so aePm, which again is a contradiction. Thus, 
an 

for some n, a + b.(a -1) e C(P i ), for all PiEX. 

The other cases we have to consider (when ab - ba) go 

through just as in Theorem 3.2.3 and we omit the details. This 

finishes the case n - 2 and we are done. 

To apply this result we will use the following def inition. 

We shall say that an inf inite set of pr ime ideals X - {P i: iEI} 

has the infinite-intersection property if, for all infinite 

subsets J!; I, np j - np i' where the first intersection runs 

over all jeJ and the second over all ieI, that is, all the 

prime ideals in X. 
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3.3.8. Lemma: Let R be a ring. Let X be an inf inite set of pr ime 

ideals which has the infinite-intersection property. Let Q -

nP, where the intersection runs over all PeX. Then Q is a prime 

ideal. Further, if every pr ime ideal P eX is completely pr ime, 

then Q is completely prime. 

Proof: Suppose that a, beR are such that aRb S;; Q. Suppose that 

aiQ. Then ae:P i' for: only finitely many Pi e:X. Hence be:P i' for 

infinitely many Pie:X. So beQ. 

The second statement proceeds almost identically. 

3.3.9. Theorem: Let R be a Noetherian ring. Let X be an 

infinite clique of completely prime ideals. Suppose that X 

satisfies the second layer condition and has the infinite­

intersection property. Let Q = np, where the intersection runs 

over all PeX. Suppose that R/Q is not commutative. Then X is 

classically localisable. 

Proof: By Theorem 3.3.3, it suff ices to show that X satisf ies 

the intersection condition. Suppose that K is a right ideal of 

R such that Knc(p) ~ ¢, for all PeX. Then (K + Q/Q)nC(P/Q) ~ 

¢, for all PeX. By Lemma 3.3.8, R/Q is a domain. We are in a 

position to apply Theorem 3.3.7, and hence there exists x€K+Q 

such that in R/Q, xe nC(P/Q), where the intersection runs 

over all PeX. So there exists y€K such that yeC(P), for all 

PeX. Hence X satisfies the right intersection condition. By 

symmetry, X also satisfies the left intersection condition. 
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3.3.10. Corollary: Let R be a pr ime Noether ian ring. Let X be a 

clique of completely prime height-l prime ideals. Suppose 

that X satisf ies the second layer condition. Then X is 

classically localisable. 

Proof: If R is commutative then X consists of a single height-

1 prime and the result follows. If X consists of only finitely 

many prime ideals we may use Theorem 3.3.4. If X consists of 

inf initely many pr ime ideals then X certainly has the 

infinite-intersection property. The result follows immed­

iately from Theorem 3.3.9. 

We finish this section by applying these results to the 

enveloping algebras of solvable Lie algebras. We shall 

require a series of Lemmas whose proofs, for the sake of 

brevity, we shall omit. 

3.3.11. Lemma: Let Q be a simple Noetherian domain. Let 0 be a 

derivation on Q. Let S - Q[x:O]. Then any non-zero prime ideal 

of S has height 1. 

3.3.12. Lemma: Let R be a Noetherian domain. Let 0 be a 

derivation on R. Let T = R[x:O]. Suppose that P is a prime 

ideal of T such that pnR - O. Then height(p) ~ 1. 

3.3.13: Lemma: Let R be a ring. Let 0 be a der ivation on R. Let 

T ... R[x:O]. Suppose that C is an Ore set in R. Then C is an Ore 

set with respect to T. 
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3.3.14: Lemma: Let L be a Lie algebra. Let N be an ideal such 

that dim(L/N) = 1. Then U(L) ... U(N) [x:O], for some derivation 

of U(N). 

3.3.15: Theorem: Let L be a solvable Lie algebra over afield 

of characteristic zero. Then every prime ideal of U(L) is 

completely prime. 

Proof: Dixmier[2S], Theoreme 3.7.2. 

3.3.16. Theorem: Let N be a nilpotent Lie algebra over a f leld 

of characteristic zero. Then every prime ideal of U(N) is 

localisable. 

Proof: McConnell[SO], Theorem 3.2, and Theorem 1.S.4. 

3.3.17. Lemma: Let L be a solvable Lie algebra over afield of 

characteristic zero. Let N be a nilpotent ideal of L with 

dim(L/N) -1. LetX- (P).: ).eA} be a clique of prime ideals in 

U(L). Then p).nU(N) - Q is independent of our choice of ).EA. 

Proof: Choose ).eA. LetQ-P).nU(N). Then, by Dixmier[25], 

proposition 3.3.4, Q is a prime ideal of U(N). By Theorem 

3.3.16, Q is localisable. Hence e - eU(N) (Q) - U (N) \Q is Or e in 

U(N). By Lemmas 3.3.13 and 3.3.14, e is Ore in U(L). 

Since X is a clique, by Lemma 3.3.1, (iii), e c C (P) 
U(L} JJ. 

U(L)\P , for all ~eA. Therefore, 
JL 

U(N)\U(N)np). C U(N)\U(N)nPJL' for all JLEA. 

But our choice of ).eA was arbitrary and the result follows. 
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3.3.18. Theox:em: Let L be a solvable Lie algebx:a ovex: a field 

of charactex: istic zex:o. Suppose that thex:e exists a nilpotent 

ideal N of L with dim(L/N) - 1. Let X - {P~: >"EJ\} be a clique of 

pI ime ideals of U(L). Let Q = FA nU(N), fox: any (and hence all) 

AEJ\. Suppose that U(L)/QU(L) is not commutative. Then X is 

classically localisable. 

px:oof: By the x:emax:k befox:e Lemma 3.3.2, U(L) satisfies the 

second layex: condition. So it suff ices to show that X 

satisfies the intex:section condition. 

LetQ =U(N)nP A, which, by Lemma 3.3.17, is independent of 

our choice of AEJ\. Then Q is a px:ime ideal of U(N). By Lemma 

3.3.14, U(L) .. U(N) [x:O], fox: some derivation 0 of U(N). Then 

Q is a O-stable ideal of U(N). Hence P - QU(L) - QU(N) [x:O] is a 

prime ideal of U(L). Further, U(L)/P ~ (U(N)/Q)[x:O]. 

InU(L)/P, p~nU(N)/Q .. 0, by the definition of Q. Hence, 

by Lemma 3 .3 .12, P ~ is a he ight-l pr ime ideal. Hence X has 

the infinlte-intex:section px:operty. Finally, we may apply 

Theorem 3.3.9 to deduce that X satisfies the intersection 

condition. Therefore X is classically localisable. 

Remark: Note that a clique in an enveloping algebra ovex: a 

solvable Lie algebra need not have the infinite-intersection 

property. Let L be the Lie algebr a kx+ky+ka+kb, over the field 

k of the complex numbers, where [x,y] - x and [a,b] - a, and all 

other products zero. Then L is solvable. However, it can be 

shown that {<x,a,(y-n),(b-m»:m,n integers} form a clique in 

U(L). It is easy to see that X does not have the infinite-
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intersection property. 
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section 3.4: The centres of Noetherian UFDs. 

Following the notation of Section 3.1, suppose that R is a 

Noether ian UFD and that T and S are the partial localisations 

RC and Ro' respectively, as before. Throughout this section we 

shall assume that every prime ideal of R of height greater 

than 1 contains a height-l prime ideal. Denote by Z(R) the 

centre of a ring R. 

3.4.1. Lemma: Let R be a Noetherian UFD. Then Z(R) - Z(T). 

Proof: By Theorem 2.1.9, we know that R a snT. So, if ze:Z(R) 

t.hen clearly zeZ(T)nz(s) .converaely, if ze:Z(T)nZ(S) then z£R 

and is central in R. Now suppose that qe:Z(T). Let 0 " I - {seS : 

qs e:S}. Then I is an ideal of 5 and, since 5 is simple, is equal 

t.o s. So qeS and hence qeR. 

Recall that a Krull domain is a commutative domain A with 

a field of fractions K with the following properties. 

(i) For all height-l pr ime ideals P of A, Ap is a pr inc ipal 

ideal domain, and 

(ii) for all non-zero xe:A, xe:P, for only finitely many 

height-l prime ideals P. 

With each height-l pr ime ideal P of a Krull domain we may 

associate an integer-valued valuation, v p ' on A, def ined by 

vp(x) .. max{n:xe:p
n

} and vp(x) - 0 if x;'P. Thus a Krull domain 

may be character ised as a commutative domain A such that there 

exists a family of integer-valued valuations with the follow­

ing properties. 
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(iii) For any non-zero element x of A, vex) ) 0, for all veV, 

with equality for all, but possibly finitely many v, and 

(iv) A - nKv ' where the intersection x:uns ovex: all the 

valuations veV, and Kv - [keK:v(k) ) 0) fox: veV. 

3.4.2. Theox:em: Let R be a px:incipal ideal domain. Then Z(R) 

is a Krull domain. 

Proof: Cohn[l9], Theorem 6.2.4. 

3.4.3. Cox:ollary: Let R be a Noethex:ian UFD. Then Z(R) is a 

Kx:ull domain. 

proof: If R is commutative then R is cex:tainly a Krull domain 

(see, for example, Cohn[19], Section 6.2). Othex:wise, T - RC 

is a pr incipal ideal domain and the result follows from Lenuna 

3.4.1. 

We can in fact show a converse to the above result by 

showing that any commutative Krull domain can be realised as 

the centre of a Noetherian'UFD. That is, Corollary 3.4.3 is 

best possible. We will use a constI:uction due to P .M.Cohn. For 

a given Krull domain C, we shall constI:uct a commutative 

pI: inc ipal ideal domain A and an automorphism of inf ini te 

order, 0, of A, whose fixed ring AO - c. 

3.4.4. Theorem: Let C be a commutative Krull domain. Then 

there exists a Noetherian UFD R with Z(R) - C. 
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Proof: We follow Cohn[ 19], Section 6.3. Let F be the field of 

fractions of C. Then C - nF , where the intersection runs over v 

the set of Z-valued valuations V on F induced by the height-l 

prime ideals of C. 

We form the polynomial extension of F in infinitely many 

V ariables, K - F[ .•. ,t ,t,t, ••• ]. Observe that we can 
-1 0 1 

extend each valuation v on F to a valuation on K by 

v(k)amin{v(a1.)}, where k - La.t i t .••• t .• 
1 1 12 ln 

Let L be the field of fractions of K. Then we can extend each 

valuation veV toa valuation on L. For each valuation veV, we 

can define 

Lv = {f/g:v(f»)v(g),g#O}. 

Then define A - nLv ' where the intersection runs over all veV. 

We claim that A is a principal ideal domain. If f,geA, by 

multiplying by a suitable common denominator, we may assume 

thatf,g€C[ •.. ,t ,t,t , ••• ]. Now take n to be any integer 
-1 0 1 

greater than the total degree of f. Let h - f + t ~g. We have 

v(h) .:; v(f) and v(h) .:; v(g), for all Vf..V. Hence f/h,g/heA, and 

50 fA+gA - hA. Therefore A is a Bezout domain as defined in 

section 1.7. By a simple degree argument, it is easy to see 

that A is atomic. By Theorem 1.7.2, A is a principal ideal 

domain. NowdefinetheF-automorphismonK, a, bya(t.) -
1 

t. . Clearly the fixed ring of 0 is F, and vCf) - v(a(f», for 
I-t-l 

all veV. 

We may extend a to an automol:phism on A. The fixed ring of 

A · Aa a a acting on 1S - K nA - FnA - c. 

To recap so far; given a Krull domain C, we have 

constructed a pr incipal ideal domain A, and an automorphism a 

of A with infinite order, such that Aa - C. We now proceed to 
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construct a Noetherian UFD. 

-1 Let R be the skew Laur ent extens ion R - A[ x, x : oj, as 

defined in Section 1.8. Then, for all a€A, ax - xo(a). In 

Part1culat', t. x - xt. • We shall show that R is a Noether ian 
1 l~l 

UFO, and that the centre of R is c. 

First, suppose that P is a height-l prime ideal of R. If 

pnA-P'" 0, thenP' is principal. That is, P' - pA, andpR is a 

pr ime ideal which is completely pr ime contained in P. 

Therefore, P = pRo 

Suppose that, instead, P' - O. We shall derive a cont­
ian i rad1ction from this. Choose f (x) = Li x a. eP, for least n. 
-0 1 

i-n 1 i. 
But then tof(x)-f(x)tn - Li_otox ai-x ai~n 

i-n i - t. x (a.t.-a.t ) 
1-0 1 1 1 n 
1-n-1 i 

- Li-o x (aiti-aitn ). 

which is a polynomial of x-degree less than n, in P. This 

contradicts our choice of f(x). 

Therefore, R is a Noetherian UFD. Now suppose that 

z(x) - t~=nxia. is a central element of R. Then 
1-m 1 

o - xz(x)-z(x)x - E~-nXi~l(ai-o(a.». 
I-m 1 

Thus, a. = o(a.). for all i - m, ... ,n. 
1 1 

1 O· () () t ~ i-n i.. .. A so, = 'Coz X -z X 0" "'i"'mx ~ail:.i-ai~o}. This 

implies that a i .. 0, for all i, except poss ibly i - O. 

Therefore, Z(R) - AO - c. 

This type of construction of UFO has enabled M.K.Smith to 

give a simple answer, answer ing in the negat i ve, to a question 

of G.Bergman (among others). He asked whether, for any 

principal ideal domain R, the centre of the full ring of 

quotients of R was equal to the quotient ring of the centre of 
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R. This question has also been answez:ed, using similaz: 

constz:uctions by M.Chamaz:ie and, independently, P.M.Cohn and 

A.Schofield. See Chamaz:ie[12] and Cohn-Schofield[22]. 
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Chapter 4. The principal ideal theorem. 

Section 4.0. Summary: This chapter forms the other main theme 

of this work. It stems from the obvious interest that the set C 

of the pr ev ious two chapter s has f or us and a des ir e to see how 

the principal ideal theorem of commutative ring theory can 

best be generalised to non-commutative ring theory. Much of 

the material of this chapter was first suggested by A.W. 

Chatters and it consists of joint work with him. Most of the 

results are to appear in Chatters-Gilchrist [14). 

In the study of a prime Noetherian ring it is natural to 

consider the set r of elements which are regular modulo all 

t.he height-l pr ime ideals of the ring. The elements of r can be 

t.hought of informally as being those elements of the ring with 

no pr ime factor. As we saw in Chapters 2 and 3, they can play 

the role that in the case of a commutative ring is played by 

the units. 

It is then a natural question to ask: Let R be a Noether ian 

ring. When is the set r the set of units? If R is a commutative 

ring, the statement that r is the set of units is proved using 

the pr incipal ideal theorem due to Krull. In fact, it is one of 

a number of equivalent formulations of the classical prin­

cipal ideal theorem. In Section 4.1, we shall consider some of 

these equivalent statements. We shall show, with examples 

. that, even with quite strong conditions on these rings, that 

the statements are not, in general, equivalent. 

We should recall that there have been several other 

formulations of possible generalisations of the principal 

ideal theorem notably due to Jategaonkar and to Chatters-
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Goldie-Haj arnav is-Lenagan. We shall recall some of the var ia-

tions on the principal ideal theorem in Section 4.1. 

In Sections 4.2, 4.3, and 4.4, we shall prove some 

positive generalisations of the classical principal ideal 

theorem. These results will be shown notably for prime PI 

rings and for bounded maximal orders. In Section 4.5, we 

discuss some tentative extensions of these results to larger 

classes of rings. 

For the purposes of the formulation of some of the results 

of this chapter, we shall assume throughout this chapter that 

all Noetherian rings considered satisfy d.c.c. on prime 

ideals. Thus all' non-zero pr ime ideals considered will , .. 
contain at least one height~~ pr ime ideal. , 
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section 4.1: Fo~mulations of the p~incipal ideal theo~em. 

We sta~t by giving some equivalent forms of the classical 

p~incipal ideal theo~em of commutative algebra. Throughout, 

for a ring R, the set r (or r (R) to distinguish between rings 

if necessary) will denote the set of elements ~egular modulo 

every height-l prime ideal of R. That is, r - nC(p), where the 

intersection ~anges ove~ the height-l p~ime ideals P of R. 

4.1.1. Theorem: Let R be a commutative domain. Then the 

following are equivalent: 

(i) If a is a non-ze~o non-unit of Rand P is a p~ime ideal 

minimal over a then height(P) - 1; 

(ii) The elements of r(R) a~e units; 

(iii) Every non-zero prime ideal is the union of the height-

1 prime ideals which it contains; 

(iv) If P is a non-zero prime ideal of R then 

C(P) so nC(Q), where the intersection runs over those height-l 

prime ideals Q of R that P contains; 

(iv)' If P is a non-zero prime ideal of R then 

C(P) 2 nC(Q), with the same notation as (iv). 

Proof: For any prime ideal P of R and any a€R, a€C(P) if and 

only if al-P. 

4.1.2. Theorem: Let R be a commutative Noetherian domain. Then 

one, and hence all, of the above statements are true. 

Proof: See, for example, Kaplansky[44], Theorem 142. 
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The equivalent statements of Theo~em 4.1.1 all suggest 

non-commutative generalisations which a~e likely to be ineq­

uivalent and not generally t~ue. Here, we give two examples of 

non-commutative Noetherian rings which demonstrate the in-

equivalence of some of these statements. 

Note that, in gene~a1, it is not true that, fo~ an element 

ceR and p~ime ideal P, ctC(P) implies that cePe This means 

that by fo~mulating statements in te~ms of atC(P) rathe~ than 

aiP may help us in gene~alising the statements of ~esults in 

commutative Noetherian ring theo~y. In pa~ticula~ it seems 

likely that statements (ii) and (iv) a~e fa~ mo~e likely to 

hold in non-commutative rings than (i) or (iii). The next 

example illustrates this point. 

4.1.3. Example: Let 5 - k[x,y] the commutative polynomial ring 

in two va~ iab1es over k afield and set R - H2 (5), the ring of 

2x2 matrices ove~ 5. In 5, let P be the prime ideal generated 

by x and y then P is a he ight-2 pr ime ideal of 5 and M2 (P) is a 

height-2 prime ideal of R. Let a - diag(x,y) in R. Then RaR -

M2 (P) and hence M2 (P) is a minimal prime ideal over a. Clearly 

then this provides a counter-example to statements (i) and 

(iii) of Theorem 4.1.1, but as we shall see later R does in 

fact satisfy (ii), (iv), and (iv)'. Further note that, fo~ an 

integer n, had we taken 5 - k[x 1 , ••• ,xn ] and R - Hn(S), then 

the element diag (x l' •. , xn ) gener ates a he ight-n pr ime ideal. 

4.1.4. Example: Let R be the universal enveloping algebra of 

the complex two-dimensional non-Abelian solvable Lie alg-
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ebra. Let k be the field of the complex numbers F. Then R is the 

k-algebra generated by x and y subject to the condition that 

xy-yx=y. By Lemma 2.1.3, R is a Noetherian domain with a 

unique height-l pr ime ideal P - Ry - yR. Further, P is 

completely pr ime and the maximal ideals of R all have the fo:rm 

Q ~ (x-c)R + yR, for some c€k. 

So in this case, rCR) - R\yR. In particular, X€r. Since x 

is not a unit and RxR - xR + yR, it is clear that none of the 

statements of Theorem 4.1.1 are t:rue for this Noether ian ring. 

Clearly, we shall have to impose some extra conditions on 

the ring R in o:rder to have any hope of obtaining a suitable 

principal ideal theo:rem. 

We record he:re statements of principal ideal theorems for 

non-commutative Noethe:rian :rings that are already in the 

literature. 

4.1. S. Theorem: Let R be aright Noethe:r ian ring. Let X be an 

invertible ideal of R with X" R. Let P be apr ime ideal minimal 

over X. Then height(P) , 1. 

Proof: See Chatters-Hajarnavis[l6], Theorem 3.4. 

4.1.6. Corollary: Let R be a right Noetherian ring. Let x be a 

normalising element of Rwhich is not a unit. Let P be a prime 

ideal minimal ove:r xR. Then height(P) ( 1. 

p:roof: See Jategaonkar[39], Theorem 3.1, or Chatters-
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Hajarnavis[16], Corollary 3.5. 

4.1.7. Theorem: Let R be a pr ime Noether ian PI ring. Let c be a 

regular non-unit of R. Let B be the largest two-sided ideal 

contained in cR. Suppose that P is a pr ime ideal minimal over B 

and that ctC(P). Then height(P)=l. 

Proof: ChatteIs-Goldie-Hajarnavis-Lenagan[lS], TheoIem 4.8. 

Remark: Note that such a pIime ideal P always exists, by an 

argument due to A.W.Goldie. Effectively the same proof will be 

used to pIove Theorem 4.2.4. 

The next two sections will concern statement (11) of 

Theorem 4.1.1 in the context of fully bounded NoetheI ian I ings 

all of whose non-zeIO ideals inteIsect the centIe non­

trivially. We note that this class of Iing5 is closed undeI 

forming partial localisations at QIe sets. 

TheIe are two large classes of NoetheIian rings which 

satisfy these conditions. 

4.1.8. Theorem: Let R be a prime NoetheIian PI ring. Then R is 

fully bounded, and eveIY non-zeIO ideal of R intersects the 

centre of R non-tIivially. 

Proof: Immediate from Theorem 1.3.2. 

4.1. 9. Let R be a pI ime Noether ian I ing which is integral oveI 

its centre Z(R). Then R is fully bounded and every non-zero 
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ideal of R inte~sects the cent~e non-t~ivially. 

p~oof: Suppose that P is a p~ ime ideal of R. Choose an element 

CfCR/P(O). By Lernma 1.1.6, the~e exists dfCR(O) such that the 

image of d in RIP is c. By hypothesis, the~e exists elements 

n n-l a , ... ,a fZ(R), such that d +a d + •.• +a -0. Then, fo~ 
1 n 1 n 

n n-l 
least n, suppose that d +a 1 d + ..• +an €P. I f an €p, then 

.n-l d (0 + ••• +a )--a (P. . n-l n 

But d€C(P), and this fo~ces d n- 1 + •.• +a {p, which cont-
n-l 

radicts our choice of n. Therefore, a generates a non-ze~o n 

ideal in RIP. Hence RIP is bounded. By a simi lar argument, it 

is easy to see that every non-zero ideal of R intersects the 

centre non-trivially. 
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section 4.2. The elements of r. 

We recall our standard notation r - nC(p), where the 

intersection ranges over the height-l prime ideals P of R. 

4.2.1. Lemma: Let R be a pr ime right Noether ian ring. Suppose 

that R contains an infinite number of height-l prime ideals. 

Then r consists of regular elements. 

Proof: Suppose that cer and O"reR are such that cr-O. Then reP 

for all the height-l pr ime ideals P of R. Hence every height-l 

prime ideal of R is minimal over RrR " O. This contradicts the 

fact that R is Noetherian. 

However, if R contains only finitely many he ight-l 

primes, then it is possible for a zero-divisor to be in r. 

4.2.2. Example: Let R be a Noether ian pr ime ring with a unique 

proper ideal P, see for example J. C. Robson [59], Example 7.3. 

Then P - p2. Suppose that P - X1R + ••• + x R, for some x. €P. 
n 1 

In Mn(R), the only height-l prime ideal is Mn(P). 

f h · 1 i=n Then, or eac 1 - , ••. , n, x. - t. lX' a .. , 
1 1- J J 1 

for some 

elements aji€P. InMn(R), letAbe the matrix (a
ij

). CleaIly, 

(A-In) eC(Mn(P». Let X be the matrix all of whose IOWS aIe 

(xl'" xn )· Then X. (A-In) - O. Hence (A-In) is not regulaI, 

but clearly (A-In)€r. 

The following Lemma is well-known and is a consequence of 

Krause-Lenagan-StaffoId [45], Lemma 3. 
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4.2.3. Lemma: Let R be a fully bounded Noetherian ring with 

nilpotent radical N. Let c€C(N). Then cR contains a non-zero 

ideal of R. 

Proof: For aright R-module M, denote the Krull d imens ion of M 

by I MI. Since R is fully bounded, N has weak ideal invar iance, 

by Theorem 1.4.9. That is, if K is a right ideal of R , then 

IR/KI < IR/NI implies that IN/KNI < IR/NI. 

Now suppose that cR contains no non-zero ideal of R. Then 

IR/cRI = IRI - IR/NI, by Corollary 1.4.6 and Theorem 1.4.7. 

But c€C(N) and 50 I R/cR+N I ( IR/NI, by Theorem 1.4.3. We shall 

proceed, by induction on k, to show that IR/CR+Nkl 

for all integers k. Suppose that we have shown that 
I R/CR+Nk-ll < I R/N I . . .. _- .... 

Then, by weak ideal invariance, IN/(CR+Nk-l)NI 

Hence 

< IR/NI, 

< IR/NI. 

I CR+N/CR+Nk I ( IN/CN+Nkl ( IN/(CR+Nk-1)NI < IR/NI. 

Thus, combining these inequalities, using Lemma 1.4.1, we 

have 

IR/CR+Nkl - sup{IR/cR+NI, ICR+N/CR+Nkl} ( IR/NI. 

But, for some integer m, Nm ... o. So I R/cR I < I R/N I, a 

contradiction. 

Remark: Note that this is the only place in this thes is that we 

use Krull dimension. It seems likely that a more elementary 

proof exists, but we have been unable to find such a proof. 

Recall that the bound of a right ideal I of R is the 
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largest ideal of R contained in I. 

4.2.4. Theorem: Let R be a pr ime fully bounded Noethe1: ian 1: ing 

such that every non-zero ideal of R intersects the centre non-

trivially. Then the elements of r are units. 

Proof: Choose C€r. Suppose that R contains an inf inite number 

of height-l prime ideals. By Lemma 4.2.1, C€r implies that c 

is regular. Suppose instead that R contains only finitely many 

height-l prime ideals, Q , ••• ,Q . Let I - Q n •.• nQ 
1 n 1 n 

o. 

Observe that r - C(I). By Lemma 1.1.6, there exists x€I such 

that d=c+xEC(O). Suppose that we have shown that d is a unit. 

Then R/I is A1:tinian and I is the Jacobson radical of R. Thus R 

is I-dimensional and semi-local. Hence c is a unit of R. Thus 

we may assume, without loss of generality, that c is regular. 

Suppose that c is not a unit. Let B be the bound of cR. Then 

cRIB contains no non-zero ideal of RIB. Suppose that NIB is 

the nilpotent radical of RIB, where N is an ideal of R. From 

Lemma 4.2.3, we deduce that c,tC(N/B). So there exists a prime 

ideal P minimal over B with c,tC(P). Suppose that P is not a 

height-l pr ime ideal. Then let Q be a non-zero pr ime ideal of R 

contained in P. 

Suppose that 0 ~ d€QnZ(R). We now use a reduced rank 

argument to arrive at a contradiction. 

For the positive intege1:s n, let In - {r:cnl':€dR}. Then In 

is a right ideal of R. For n -1,2, ... , the In form an ascending 

sequence of right ideals. Hence, there exists n, such that 

In" In+ l - .... Soreplacingcbycn , we may Suppose that 11 -

I and hence that dRn(c
2

R+cdR) - cdR. 
1 
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Let p(.) denote the reduced rank of a f.g. R/B-module. 

Then we have the following equalities 

p (CRtdR/c 2R+dR) -+ P (C 2R+dR/C 2R+cdR) - p (CR+dR/C 2R+cdR) and 

p(CRtdR/c 2 R+cdR) - p(cR-+dR/cR) + p(cR/c 2R+cdR) 

- p(cR+dR/cR) + p(R/cR+dR) 

- p(R/cR) 

But p(c 2R+dR/c 2R+cdR) - p(dR/(dRn(c2R+cdR») - p(dR/cdR) 

- p(R/cR) 

So p(CRtdR/c 2R+dR) - 0 

Therefore, there exists e£C(N) ~ C(P) such that ce -

c 2xTdY. But B ~ Q and so ceC(Q). Then c(e-cx) = dy implies 

that (e-cx)£Q. If wc£P, then weeP. By choice of e, this 

implies that weP. Hence c£C(P). But this contradicts our 

choice of P. 

Thus height(P) - 1. Since cer, this is a contradiction. 

4.2.5. Corollary: Suppose that R is a prime Noetherian ring 

which is either PI or is integral over its centre. Then r(R) is 

the set of units. 

Proof: By Theorems 4.1.8 and 4.1.9, both classes of rings 

satisfy the hypotheses of Theorem 4.2.4. 

Remarks: (a) Essentially, this argument is no more than a 

recasting of Goldie [31], Theorem 2.13. 

(b) S.A.Amitsur and L.W.Small have previously shown 

that if R is prime Noetherian PI and has only finitely many 

height-l prime ideals, then R is 1-dimensional. See Amitsur­

Small[2]. Theorem 5.1. 
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(c) L.W.Small and J.T.Staffo~d (Small-Staffo~d 

[64], Example 3) have const~ucted an example of a p~ ime 

Noethe~ian PI ring R with an element CECCO) and 'a height-2 

pr ime ideal P such that P is minimal ove~ the bound of cR. In 

this case, C€C(P). 

Finally, note that we cannot d~op the assumption that R is 

fully bounded. Fo~ example, suppose that R is the enveloping 

algebra of a non-Abelian nilpotent Lie algeb~a, Then eve~y 

ideal of R has a cent~alis ing set of gene~ato~s, but yet r does 

not consist only of the units. If r we~e the set of units then, 

by Theorem 2.2.1 and Corollary 3.1. 2, R would be a pr inc ipal 

ideal domain, which contradicts our choice of R. 
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section 4.3. The height-l p~ime ideals ~elated to a given 

pr ime ideal. 

We now turn to the statements of (iv) and (iv)' of Theo~em 

4.1.1. For any ~ ing R the statements (i) and (i i i) ar e 

equivalent. It might be thought that statements (ii) and (iv) 

are also equivalent. It is however possible to give an example 

of a prime Noethe~ian ~ing which satisfies (iv) and not (ii). 

4.3.1. Example: Let S be a simple Noetherian domain with an 

algebraically closed centre k. Let R = S[x]. Then R is a 

Noetherian domain and every non-zero prime ideal of R is of 

the form P ,., (x-a)R - R(x-a), whe~e a€k. Clearly each non-zero 

prime ideal of R has height-l and hence condition (iv) is 

trivially satisfied. However, provided that S is not a 

division ~ing there exist non-zero non-units of S in R. Choose 

one such element c. Then c€ nc(p), where the intersection runs 

over all the height-l prime ideals of R, but is not a unit. 

Hence condition (ii) is not satisfied. 

It is not hard to see that S[x,y] would provide another 

(slightly less trivial) example of a ring satisfying (iv) and 

not (i i) . 

Secondly, it is important to note that, even in well­

behaved rings, it is possible for condition (iv)' to hold when 

condition (iv) fails. The next example demonstrates this. We 

exhibit a prime Noetherian PI ring R with a height-l prime 

ideal Q contained in a height-2 prime ideal P and a regular 

element c such that C€C(P) and ciC(Q). 
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4.3.2. Example: Let k be a field of characteristic zero. Let R 

be the ring generated by two 2x2 gener ic matr ices X and Y over 

k ( see Section 1. 3 for details). Let T - T (R) be the trace r 1ng 

of R. Then we know that T is a Noetherian PI domain and a 

maximal order (Small-Stafford [65]). 

Let tr ( ) denote the tr ace of a given matr ix and det ( ) the 

determinant. By Formanek-Halpin-Li[29], Theorem 6 and Lemma 

2, T.(XY-YX) is aheight-lprime ideal of T. Further, T/T.(XY­

YX) is isomorphic to a polynomial ring over k generated by the 

images of X,y,tr(X), and trey). 

NoW det(X) - X.(tr(X)-X) by the Cayley-Hamilton Theorem. 

Let P - T. X + T. (XY-YX). Then P is a he ight-2 pr ime ideal of T. 

Let a :r det(X). Then a€P and a is central. Thus, by 

Jategaonkar's principal ideal theorem (Jategaonkar[41], 

Theorem 2) there exists a height-l pr ime ideal Q ~ P such that 

a€Q. Observe that X,tQ. Then c - (tr(X)-X)€c(p)nC(O) and 

c,tC(Q). 

Note that in this example condition (ii) holds, by Theorem 

4.2.4. 

NoW we turn to the positive results of this section. They 

rely heavily on being able to reduce to the situation of 

Section 4.2 and then being able to apply Theorem 4.2.4. 

4.3.3. Theorem: Let R be a prime fully bounded Noetherian 

ring such that every non-zero ideal contains a non-zero 

central element. Let P be a non-zero localisable prime ideal 

of R. Then C(P) - nC(Q), where the intersection ranges over 
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all the height-l p~ime ideals contained in P. 

Proof: We have that R satisf ies the Ore condition with respect 

to C(P). By Lemma 1.5.6, C(P) S; C(Q), for eve~y prime ideal 

Q ~ P. In particular, C(P) consists of regular elements. Let 

S be the partial quotient ~ing of R with respect to C(P). 

Let c€ nC(Q), as above. The height-l prime ideals of S are 

of the form QS, whe~ e Q is a he ight-l pr ime ideal of R 

contained in P. Thus c is regular modulo all the height-l 

prime ideals of S. Hence c is a unit of S, by Theorem 4.2.4. So 

-1 1 = cad , for some aeR and deC(P). That is, ca - deC(P). Hence 

ceC(P). 

For a general prime ideal of R we have a slightly weaker 

result. 

4.3.4. Theorem: Let R be as in Theorem 4.3.3. Let P be a non-

zero prime ideal of R. Then C(p)nC(O) 2 nC(Q), where the 

intersection ranges over all the height-l pr ime ideals Q with 

QnZ(R) ~ pnZ(R). 

Proof: Let pi - pnz (R) . Let S be the partial quotient ring of R 

formed by inverting the elements of Z\P'. 

Let c€ nC(Q), as above. The height-l prime ideals of S are 

of the form QS, where Q is a height-l prime ideal of R with 

Qnz (R) £. P'. Thus c is regular modulo all the height-l pr ime 

ideals of S. Hence c is a unit of S, by Theorem 4.2.4. So I _ 

cad- l , for some aeR and deZ\P'. So ca - deC(p)nC(O). Therefore 

ceC(p)nc(O). 
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We have been unable to answer the following question, 

which is perhaps the most natural formulation of the principal 

ideal theorem for non-commutative rings. Let R be as in 

Theorem 4.3.3. Let P be a non-zero prime ideal of R. Is it true 

that c(p)nC(O).2 nC(Q), where the intersection runs over all 

height-l prime ideals Q ~ P? 

A positive answer to this question would imply the 

following: Let R be as in Theorem 4.3.3. If P is a pr ime ideal 

with height(P»)2, then P contains an infinite number of 

height-l pr ime ideals of R. This is a result which is known in 

the PI case (Resco-Small-Stafford[57]), but is an open 

question, in general, for fully bounded Noetherian rings. 
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section 4.4. The p~incipal ideal theo~em in bounded maximal 

o~ders. 

We tu~n now to conside~ the situation in which R is a p~ime 

Noethe~ian bounded maximal o~de~. In this section, we show 

that both conditions (ii) and (iv)' hold fo~ this class of 

:rings. P~ima:rily, this is because, fo:r a ~egula~ element c, we 

a:re able to show that a p~ ime ideal minimal ove~ the bound of 

cR must have height 1. This is in ma~ked distinction to the 

situation of Section 4.2, whe~e the Small-Staffo~d example 

shows us that this need not be the case. 

Let R be a p~ime Noetherian ring with full quotient ring 

Q(R) - Q. Recall, f~om Section 1.2, that R is a maximal oI:de~ 

if, given q€Q such that either qI !;. I o~ Iq!i I, for some non­

zero ideal I of R, then q€R. For further details we refer to 

section 1. 2. 

suppose that R is an order in its full quotient ring Q. For 

I an ideal of R, we set 1* - {q€Q:qI ~ R}. If R is a maximal 

order then 1* - *1 - {q€Q:Iq ~ R}. Furthe~, I*t is an ideal 

of R which contains I. 

Recall that, for a regula~ element c of R, the bound of cR 

is the largest two-sided ideal of R contained in cR. 

4.4.1. Lemma: Let R be a p~ime Noethe:rian maximal o:rder. Let B 

be a ~eflexive ideal of R. Suppose that P is a p~ime ideal 

minimal ove~ B. Then P is reflexive and height(p) - 1. 

Proof: Suppose that P is minimal over B. By Goldie[31], 

p:roposition 1.06, P/B is a middle annihilator prime ideal in 
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RIB. That is, there exist ideals X,y ~ B such that XY 9 Band 

XPY ~ B. 

Then XPYB* ~ R. Since R is a maximal order this implies 

that PYB*X !: R and so YB*X !: P*. Suppose that P is not 

reflexive; that is, P .. P**. But then p*p** !; R implies that 

P.p*.P** ~ P. Hence P.P* ~ P and so P* £ R. 

So YB*X ~ R. Then B*XY !; R. But this implies that 

Xy ~ B** - B, which contradicts our choice of X and Y. 

Therefore P - pit. 

Suppose that Q is a non-zero prime ideal of R with Q C P. 

Then p*Q ~ pip ~ R. Also pp* ~ R implies that P.P*.Q c;. Q. 

Since P cf. Q, we conclude that P*Q c;. Q. But this implies that 

P* ~ R which contradicts that fact that P is reflexive. 

Therefore height(P)-l. 

4.4.2. Lemma: Let R be a pr ime Noether ian maximal order. Let c 

be a regular element of R such that the bound B of cR is non-

zero. Let P be a pr ime ideal of R minimal over B. Then c,tC (P) , 

P is reflexive, and height(P)-l. 

-1 -1 -1 
Proof: We have c B £. R and so c 4:B*. Thus c B** ~ R; that 

is, B** ~ cR. It follows that B - B*t. By Lemma 4.4.1, P is 

reflexive and height(P)-l. Finally, suppose that c€C(P). Then 

cRnp = cP 2 B. But then B.P· !; cP.P* - cR. This implies 

that B.P* - B. Since R is a maximal order, this implies that p* 

= R. But this contradicts the fact that P is reflexive. Hence 

c,tC(pj. 

4.4.3. Theorem: Let R be a prime Noetherian bounded maximal 
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order. Then the elements of r are units of R. 

Proof: Choose CEr. First, suppose that c is regular. Then cR 

has a non-zero bound B. If c is not a unit, then pick a non-zero 

prime ideal of R minimal ovez: B. By Lemma 4.4.2, height(P)-l 

and ctC(P). But this contradicts ouz: choice of c. 

To obtain the z:esult, we have to considez: two cases. 

suppose that R has inf initely many height-l pr ime ideals. Then 

CEr is regulaz:, by Lemma 4.2.1. Hence, by the fiz:st paragraph, 

c is a unit. 

If R has only finitely many height-l pr ime ideals 

°
1

, ..• ,On' set I .. Qln ••• nQn " O. We note that r - C( I). Let 

ceC(I). By Lemma 1.1.6, c+x is regular, for some XEI. 

Therefore, by the fiz:st paz:agz:aph, c+x is a unit. Hence R/I is 

Az:tinian and I is the Jacobson z:adical of R. Hence c is also a 

unit. Fuz:ther, R is l-dimensional and semi-local. 

This shows that statement (ii) of Theorem 4.1.1 holds for 

bounded Noether ian maximal oz:dez:s. Now we show that (iv) I also 

holds for these z:ings (note that (iv) need not hold, by 

Example 4.3.2). 

4.4.4. Theorem: Let R be a pz:ime Noethez:ian bounded maximal 

order. Let P be non-zero pz:ime ideal of R. Then C(P) ;2 nC(Q), 

where the intersection ranges over those height-l pr ime 

ideals Q S;; P. 

Proof: Let CE nC(Q), as above. If P contains infinitely many 

height-l prime ideals then, by Lemma 4.2.1, c is regular. 
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Suppose that P contains only finitely many height-l p~ime 

ideals Ql' •.• ,Q • Let I - Q n •.• nQ .. O. By Lemma 1.1.6, the~e n 1 n 

exists x€I such that c+x ~egula~. Further, c+X€C(P) if and 

only if c€C(P). The~efo~e, without loss of gene~ality, we may 

assume that c is regular. 

Let B be the bound of cR. Suppose that ctC(P). Then we 

must have that B ~ P. Hence, by Lemma 4.4.1, the~e exists a 

height-l pr ime ideal Q ~ P such that B £ Q and ctc (Q). This 

contradicts our choice of c. 

4.4.5. COIolla~y: Let R be a p~ime Noethe~ian bounded maximal 

order. Let P be a p~ime ideal with height(P»)2. Then P 

contains an infinite numbe~ of height-l prime ideals. 

Proof: Suppose that P contains only finitely many height-l 

pr ime ideals Ql'· •• ,Qn· Let I - Qln ••• nQn. Then P /1 is a non­

minimal prime ideal of the semi-p~ime Noetherian ~ing R/I. 

Therefore, by Goldie's Theorem (see, for example, Chatters-

Hajarnavis[16], Theorem 1.10), there exists C€p such that 

c€C(I). By Theorem 4.4.4, C€C(P), a contradiction. 

Note that, in view of Example 4.1.4, we cannot delete the 

word "bounded" from the statements of the results in this 

section. 
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section 4.5: Partial results on the pr incipal ideal theorem. 

Let us recast the statement (iv)' of Theorem 4.1.1 as 

"suppose that c is a regular element of a pr ime ring Rand P a 

prime ideal of R minimal with respect to the property that 

ctC(P), then height(P)=l". Let R be a prime Noetherian ring. 

For the purposes of this section, we shall say that a prime 

ideal P of R satisfies PIT (principal ideal theorem) if C(P) 

;! nC(Q), where the intersection runs over the height-l pr ime 

ideals Q contained in P. A set X of prime ideals satisfies 

PIT if all members of X satisfy PIT. We shall say that R 

satisfies PIT if Spec(R) satisfies PIT. 

For an ideal I of R, def ine Spec I (R) to be the set of pr ime 

ideals not containing I. 

In this section, we wish to extend the results of the 

previous sections to rings which have a reasonably close 

relationship to the rings of those sections. 

4.5.1. Lemma: Suppose that R is a prime fully bounded 

Noether ian ring. Let c be a regular element of R. Then the set 

of prime ideals P, minimal with respect to c,tC(P), is finite. 

proof: 

By a Noether: ian induction, ,we may suppose that the result 

is true for any proper prime factor ring of R. Let B be the' 

bound of cR. If P is a prime ideal of R which does not contain 

B, then C€C(P). There exist only finitely many prime ideals 

minimal over B. Suppose that C€C(P) for one of these prime 

ideals. Then, by our inductive assumption, in RIP, there exist 

only finitely many prime ideals P' minimal with respect to 
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ctC(P'/P). The result follows. 

Note that we cannot drop the condition that R is fully 

bounded in the preceding result. 

4.5.2. Example: Let R - Ai (Z) - Z[x,y:xy-y~-l], the first Weyl 

algebra over the integers Z. By Theorem 2.4.1, R is a 

Noetherian domain and the height-l prime ideals of R are of 

the form pR - Rp, for p prime in Z. R/pR" A (F ), where F is 
1 P P 

the field of p elements. So, clearly, x£C(pR), for all p 

primes of.Z. 

However, byTheorem2.4.4, i P generates a height-l prime 

ideal of R/pR, for all p pr imes of Z. Let Q - pR + xPR. Then 
P 

x,tC (Qp) , for all pr imes p of Z. Clear ly, each Q
p 

is minimal 

with respect to this property. So, (by Euclid[27], IX.2) there 

are inf initely many pr ime ideals P minimal with respect to the 

property that x,tC(P). 

4.5.3. Lemma: Suppose that R is a sub-r ing of a r Ing S. Suppose 

that Rand S have a common non-zero ideal I. Then there 

exists an order-preserving bijection between Spec I (R) and 

specIeS). 

proof: Define maps e:spec
I 

(R) 'Spec 1(8) 

o:specl(S) 'Spec I (R) 

by e(p) - {s£S: lsI ~ P} and 

o(Q) - {r£R: IrI £ Q} - RnQ. 

Then the proof that these maps define an order-preserving 

bijection is now straightforward. 
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We are now in a position to extend the t:esults of Sections 

4.3 and 4.4 somewhat. 

4.5.4. Theot:em: Suppose that R is a subt:ing of a ring S. 

Suppose that Rand S have a common non-zet:o ideal I. If P is a 

prime ideal of Spec I (S) satisfying PIT, then a(P) 1s a prime 

ideal of R satisfying PIT. 

Proof: Suppose that c is a regular element of R. Suppose that 

CXEO(P), for some xto(P). Then xtP and so ctC(P). Then 

ctC(Q), for some Q a height-l prime ideal of S contained in 

p. So there exists ytQ with CYEQ. But then cyI ~ ceQ) and 

yI ¢ o(Q). So ctC(o(Q». Since o(Q) is a height-l pr ime 

ideal of R contained in a(P), the result follows. 

We may use this in several situations. 

4.5.5. Theorem: Suppose that R is a prime bounded Noetherian 

ring which is a subr ing of a pr ime Noether ian maximal order S. 

suppose that R is order-equivalent to s. Then Rand S have a 

common non-zero ideal I and specI(R) satisfies PIT. 

Proof: From Maury-Raynaud[S2], Proposition 1.4.1, we have 

that as ~ R for some unit a of their common full quotient ring 
j-1 

Q (R) . Suppose that a= ll" A" wher e c and d ar e regular elements 

of S. Then cS £; R. But, from Maury-Raynaud[52], Proposition 

1.4.2, S is also a bounded ring. So cS contains a non-zero 

ideal I of S. Clearly, I is also an ideal of R. 
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By Theorem 4.4.4, S satisfies PIT. Hence from Theorem 

4.5.4, SpecI(R) also satisfies PIT. 

One would of course like to show that Spec(R) satisfies 

PIT in the above situation. In some cases, we may use Theorem 

4.5.5 together with some slightly more detailed cons ideration 

of the ring in question to show this. 

4.5.6. Example: Suppose that S is a commutative Noetherian 

domain of Krull dimension at least two. Suppose that I is a 

non-zero ideal of S. 

Let R -

Then R is a subring of T, the ring of 2x2 matrices over S. 

Further, Rand T have the common non-zero ideal M2 (I). By 

Theorem 4.3.3 or 4.3.4, T satisfies PIT and Spec(T) is in an 

order-preserving correspondence to Spec(S). 

We can wr ite Spec (R) - Spec I (R) US 1 Us 2' whe'te 51 is the set 

of prime ideals of R containing r of the form [ P r ], I S 

and 52 is the set of prime ideals of the form [ 5 I ], I P 

where P is a prime ideal of s. 

Now, byTheorem4.5.4, Specr(R) satisfies PIT. Also, for 

any pr ime ideal Q of S l' R/Q is isomorphic to S/Q I , wher e Q I is 

the top left hand corner of Q. It is then easy to deduce that Q 

satisf ies PIT. By symmetry, the same is true for 52 and hence R 

satisfies PIT. 

A similar method will work to determine that certain pr ime 

ideals of prime PI rings satisfy PIT by using the trace ring 
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construction T(R). 

To end this section, if we can show that a particular 

pr ime ideal of a ring satisf ies PIT, then we have the 

following interesting conclusion. 

4.5.7. Corollary: Let R be a right Noetherian ring. Suppose 

that P is a prime ideal of Rwith height(P») 2. If P satisfies 

PIT then P contains an infinite number of height-l prime 

ideals. 

Proof: Suppose that P contains only finitely many height-l 

prime ideals Ql'·· ·Qn' Let 1- Q1n ••• nQn. Then P/I is a non­

minimal prime ideal of the semi-prime right Noetherian ring 

R/I. So, by Goldie's Theorem (see Chatters-Hajarnavis[16], 

Theorem 1.10), P contains an element C€C(I). But if P 

satisfies PIT, then c~C(P), a contradiction. 
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Chapter 5. Unique Factor isation Rings and alternative Unique 

Factorisation Domains. 

5.0. Summary. 

Here we return to the theme of unique factorisation to 

look at some other related topics. In Sections 5.1 and 5.2 we 

look at a generalisation of the notion of Noether ian UFD. Most 

of Section 5.1 is due to A.W.Chatters and D.A.Jordan, but we 

do in passing give some more examples of primitive Noetherian 

UFDs. Section 5.2 we believe to be original and in it we 

provide some structural results for Noether ian UFRs including 

an analogue of part of the result of Theorem 2.1.9 that if R is 

a Noether ian UFD then R is the intersection of a simple 

Noether ian domain and a pr inc ipal ideal ring. The main 

stumbling block to further progress is that we do not always 

know whether C - nC(p), where the intersection runs over all 

the height-l primes of R, is Ore. We do however provide some 

{sufficient condition~ fo~ this ~o ,be 80. 

Finally in Section 5.3 we consider a question of P.M. Cohn 

who asked if the definition of Noetherian UFD is different 

from two other notions of Unique Factor isation Domain, namely 

similarlty- and projectivity-UFDs. We show that the answer is 

"Yes". 
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section 5.1. Unique Factor isation Rings in the sense of 

Chatters-Jordan. 

In many respects the definition of Noetherian UFO of 

Chapter 2 has proved to be a satisfactory generalisation of 

the commutative definition and has provided a useful tool in 

·cons ider ing certain classes of non-commutative Noether ian 

rings. However there are several aspects of the theory in 

which the definition of UFO seems to be too restrictive. 

In the commutat i ve case, if R is a Noether ian UFO then the 

polynomial extension R[x] is also a Noetherian UFO (see, for 

example, Cohn[2l], Theorem 11.3.7). However it is possible 

for a non-commutative UFO to have a polynomial extens ion which 

is not a UFD. 

5.1.1. Example: Let D be the division ring of the real 

quaternions and let R be the ring D[x] (x) , the polynomial 

extension of D localised at the completely prime height-l 

pr ime ideal (x). Then R is a Noether ian UFD. However, in R[y] 

the height-l pr ime ideal (y2+ l )R[y] - R[y] (y2+l) is pI: in­

cipal, but is not completely prime since (y-i) (Y+i)_(y2+1). 

In fact, as we saw in Corollary 3.1.6, this is completely 

typical behaviour for a PI division ring. 

However, as we shall see later, it is true that if R is a 

Noetherian UFD then the height-l prime ideals of R[x] are 

principal on both sides. This inspires the following defin­

ition. 
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5.1.2. Definition: A prime Noetherian ring R is called a 

unique factor isation ring (UFR) if every non-zero pr ime ideal 

of R contains a non-zero prime ideal which is principal on 

both sides. In particular every height-l prime ideal is of the 

form pR = Rp for-some regular element p of R. 

Clearly, the 6lass of .Noetherian UFRs includes: (a) the 

class of commutative UFDs; (b) the class of Noetherian UFDsi 

(c) matrix ring extensions Mn (R), for a Noether ian UFR R, and 

'for any positive integer n. 

We shall not develop the theory of Noetherian UFRs very 

far, referring the reader to Chatters-Jordan[17] for further 

details, but a few preliminary results are in order. 

Let R be a Noether ian UFR. Then, just as for a UFD, let D -

{TIPi: PiR'" RPi a height-l prime ideal of R}, be the 

multiplicatively closed set generated by the generators of 

height-l pr ime ideals. Then, by Lemma 1.1. 8, D 1s an Ore set. 

5.1. 3. Lemma: Suppose that R is a Noether ian UFR, D as above. 

Let S = RD. Then S is a simple Noetherian ring. 

proof: Chatters-Jordan[l7], Lemma 2.1. 

5.1. 4. Lemma: Suppose that R is a Noether ian UFR and that P is 

a height-l prime ideal of R. Then P is localisable. 

Proof: It is easy to prove that C(P) - C(pn ), for all positive 

integers n. Then we may apply Theorem 1.5.5 to conclude that 

C(P) is Ore. 
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5.L5. Theorem: Let R be a Noetherian UFR and S - RD as above. 

ThenR - Sn(nRpR)' where the second intersection runs over 

the family of partial localisations at the height-l prime 

ideals of R. 

proof: Chatters-Jordan[17], Theorem 2.3. 

5. L 6. Theorem: Let R be a Noether ian UFR. Then R is a maximal 

order. 

Proof: Essentially this is immediate after observing that S 

andeachRpR are maximal orders. See Chatters-Jordan[17], 

Theorem 2.4. 

5.1. 7. Corollary: Let R be a Noether ian UFR. Let P be a height-

1 pI ime ideal of R. Then the partial quotient ring RC(p) is a 

principal ideal ring and is a bounded Asano order. Further, 

PRC(p) is the Jacobson radical of RC(p) and the ring 

RC(p)/PRC(p) is simple Artinian. 

Proof: Immediate from Maury-Raynaud[52], Theorem IV.2.1S and 

Theorem IV.1. 5. 

5.1.8. Theorem: Let R be a Noetherian UFR. Then R[x] is a 

Noetherian UFR. 

proof: Recall that S is a simple Noetherian ring. Then any 

ideal I of S[x] is of the form I - f(x)s[x] for some central 
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polynomial f(x) of S[x]. 

NoW suppose that P is a height-l pr ime ideal of R[x]. If P' 

_ pnR ~ 0, then P' is a height-l prime ideal of R and so is 

principal. Then P' - pR - Rp for some peR. Thus P - pR[x] -

R[x]P· 

Suppose now that pnR - O. Consider PS[x] which is a prime 

ideal of Sex]. Then PS[x) - f(x)S[x), for some central 

-1 polynomial f(x) of S[x]. Then f(x) - g(x)d for some g(x)€p 

and deD. Note that dR - Rd. Then Rg(x) - Rf(x)d - f(x)Rd -

f(x)dR - g(x)R. Also g(x)x - xg(x). Thus g(x)R[x] - R[x]g(x), 

and g(x)S[x] - S[x]g(x). Suppose that g(x)ep is chosen such 

that g(x)R[x] - R[x]g(x) is maximal with respect to PS[x] -

g(x)S[x] - S[x]g(x). Suppose that g(x)R[x] ~ P. Choose 

hex) eP\g(x)R[x]. Then hex) ePS[x) - g(x)S[x]. So, there exists 

diED such that h(x)d'eg(x)R[x). Then d' is a product of 

elements Pi which generate height-l prime ideals. By an 

induction on the number of Pi such that d' - nPi' we may 

suppose that d' - p, where pR - Rp is a height-l prime ideal. 

Then h(x)p -= g(x)b(x), for some b(x) eR[x]. Now g(x)R[x)b(x) -

R[x]g(x)b(x) ... R[x)h(x)p. If b(x) eR[x]p, then hex) eg(x)R[x], 

which contradicts our choice of h(x). So g(x) eR[x]p. But then 

g(x) - g' (x)p, for some g' (x)eR[x]. It is not hard to see that 

g'(x)eP and that g'(x)R[x] - R[x]g'(x). But this contradicts 

our choice of g(x). Therefore hex) eg(x)R[x] and g(x)R[x] - p -

R[X]9(X). 

It is possible to generalise this last result to some skew 

polynomial extensions of R by either automorphisms or deriv­

ations, but we shall not go into this. For further details we 
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refer the reader instead to Chatters-Jordan[17], Sections 4 

and 5. 

To finish this section we shall as promised return to the 

question ofprimtive UFDs. We use a result of A.D.Bell for 

which I would like to thank S.Walters for bringing to my 

attention. 

5.1.9. Lemma: Let D be a division ring such that char(Z(D) )-0. 

If D[x] is a Noetherian UFD then D[X
1

, ••• ,xn] is a Noetherian 

UFD for all integers n. Further, if ZeD) is algebraically 

closed then D[x] is a Noetherian UFO. 

Proof: D [x 1 ' ••• , xn 1 is a Noether ian UFR by Theor em 5.1. 8 and 

induction on n. Since D[x] is a Noetherian UFO, by hypothesis, 

all the prime factor rings of O[x] are domains. By Bell[6], 

Theorem A, for any integer n, every prime factor ring of 

O[x , ... ,x ] is a domain. In particular, the height-l prime 
1 n 

ideals of D[X
1
,·· ,Xn] are completely prime. So O[X

1
,··· ,xn ] 

is a Noetherian UFO. 

If ZeD) is algebraically closed, then the height-l prime 

ideals of D[x] are all generated by elements of the form (x­

k), for keZ(D). Hence all the height-l prime ideals of O[x] 

are completely prime. The second statement of the theorem 

follows immediately. 

5.1.10. Theorem: For any integer n, there exists a primitive 

Noetherian UFO whose Krull and global dimension are both n. 
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Proof: Let An (k) be the nth Weyl algebra over the complex 

numbers, k. Let Dn - 0 be its quotient division ring. Then the 

centreofD isk.ByLenunaS.1.9, D[x , ••• ,x] is a n 1 m 

NoetherianUFDforallm. InparticularR-D[x , ••• ,x] is a 
1 n 

Noetherian UFD. By Amitsur-Small[l], Theorem 3, R is prim-

itive. Finally, by Resco[55], Theorem 4.2, R has Krull and 

global dimension n. 
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section S.2. The set C revisited. 

For R a Noetherian UFR define, as before, C - nC(p), where 

the intersection runs over all the height-l prime ideals of R. 

If R is a UFD then Theorem 2.1. 4 tells us that C is an Ore set. 

However, in general it is unknown whether C is Ore or not. If R 

is bounded, then together Theorems 4.4.3 and 5.1.6 tell us 

that C is simply the set of units (and is trivially Ore). 

Taking our cue from the Noether ian UFD case, we might expect, 

for a general Noether ian UFR R, that C is Ore and that RC -
nR

pR
' where the inte~section runs ove~ the partial quotient 

rings of R at the height-l prime ideals of R. This would give 

us, in particular, that RC is bounded from Maury-Raynaud[ 52], 

Theorem IV. 2 .17. We could then also conclude that the set C is 

equal to the units of R if and only if R is bounded. 

Unfortunately this is all conjecture. 

We should also recall from Sections 2.l.and 3.1 that if R 

is a Noetherian UFD which is not commutative, then R can be 

wr itten as the intersection of a simple Noether ian ~ ing and a 

p~incipal ideal domain. In this section, we shall prove a 

result which can be regarded as an analogue for Noetherian 

UFRs though it is significantly weaker. 

Let R be' a ring and let R{x] be the polynomial extension of 
, !. 

R in ono variable. Forlan eleme~t c(x) - e x'I+ ••• +c xn+r, 
, , ," r, ,n+r I 

where c r ~ 0 '/: cn +r ' define T(c(x» - c , and L(e ) - c 
" . I" n+I n+r· 

Let T(O) - L(O) 0: O. Por a right 'ideal I of R[x], define T(I)'-
• . l' ' .. I'. " 

{T(c(x»:c(x)eI}, and L(I) s: (L(c(x»:c(x)eIl. 'ClearlY', both 

T(I) and L(I) are right ideals of R. 
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5.2.1. Lemma: Let R be a semi-p~ime ~ight Goldie ~ing. Let 

R[X] be the polynomial extension of R in one va~ iable. Suppose 

that c - c(x) € R[x]. Then C€CR[x](O) 

(i) if and only if L( cR[x]) is an essential ~ ight ideal of R, 

(ii) if and only if T(cR[x]) is an essential ~ight ideal of R. 

Proof: Recall that a ~ ight ideal in a semi-pI ime ~ ight Goldie 

~ ing is essential if and only if it contains a regular element 

(Chatters-Hajarnavis[16], Theorem 1.10 and Lemma 1.11). 

Observe that R[x] is also a semi-prime right Goldie ring. 

Suppose first that C€CR[x] (0). Then cR[x] is an essential 

right ideal of R[x]. Suppose that 0 " J is aright ideal of R. 

Then there exists 0 ~ p(x) €cR[x]nJR[x]. Suppose that p(x) -

a .... x'I+ ••. +a xn+'I, whe'Ie a and a + a~e both non-zero. Then a 
~ n+'I r n r 

" a eT(cR[x] )nJ, and 0" a + eI.(cR[x] )nJ. Since we chose J r n 'I 

arbitrarily, both L(cR[x]) and T(cR[x]) are essential. 

suppose now that the~e exists a polynomial 

s m+s o "a(x) - a x + ••• +a + x eR[x] such that a(x)c(x) - O. s m s 

Then, for all d(x) €R[x], a(x)c(x)d(x)-O. In particular, 

a~T(CR[X]) =- 0, and am+sL(cR[x]) - O. Hence both T(cR[x]) and 

L(cR[x]) are not essential. 

5.2.2. Lemma: Suppose that b(x) , c (x) , d (x) €R[x]. Suppose that 

c(x).b(x) " 0 " d(x)b(x). Let w be any integer such that 

w ) deg(b)+deg(c). Then 

(i) L(d(x)b(x» - L«c(x)+xwd(x»b(x», and 

(ii) T(c(x)b(x» - T«c(x)+xwd(x»b(x». 

Proof: Immediate from the definitions of Land T. 
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5.2.3. Theor em: Let R be a Noether ian UFR. Let X be the set of 

height-l prime ideals of R[x] induced from R. That is, X -

{pR[X]: pR - Rp a height-l pr ime ideal of R}. Then X 

satisfies the intersection condition and C(X) is Ore. 

Proof: Suppose that K is a right ideal of R[x] such that 

KnC(pR[x]) ~ ¢, for all prime ideals pR[x] of X. By Theorem 

5.1.8 and Lemma 5.1.4, each pR[x] is localisable. Hence, by 

Lemma 1.5.6, C(pR[x» consists of regular elements. That is, 

KncR[x] (0) ~¢. Choosec-c(x)€KnCR[x](O). By Lemma 5.2.1, 

T(cR[x]) is an essential right ideal of R. So T(cR[x]) 

contains a regular element c' of R. By Chamarie[ll], Prop-

osition 1.8, c'€C(pR), for all, but finitely many height-1 

prime ideals of R. By another application of Lemma 5.2.1, 

c(x)€C(pR[x]), for all prime ideals in X, except possibly a 

finite set (P1R[X],· •. ,PnR[x]). 

Now, by Theorem 3.3.4, there exists d(x) E:Kn(nC(p
1
R[X]», 

where the second intersection runs over i - l, .•• ,n. 

Using the fact that R is Noetherian, T(cR[x]) -

L~ .. m1T(Cb,)R' for someb, -bJ,(X)€R[X]. Similarly, for each 
J- J J 

i - 1, ... ,n, there exist e, - e, (x) €R(x], such that 
lS lS 

s-t 
L(dR(X]+PiR[X]/PiR[x]) aLs_1L(deis)+PiR/PiR). We may 

suppose that deistPiR[X], for all i and s. 

Let n - max{deg(b j ) ,deg(e is )} + deg(c). Let w - n+1. Let a 
w 

- a (x) - c (x) + x d (x) . Then T (aR [x]) ;2 ET (ab i ) R - ET (cb i) R, 

by Lemma 5.2.2. Hence T(aR[x]) ;2 T(cR[x]). So, by Lemma 

5.2.1, a(x)E:C(pR[x]), for allpR[x], exceptposslblYPiR[X], 

for i = 1, ... , n . 
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However, we also have that, for i • l, .•• ,n, 

L(aR[X]+PiR[X]/PiR) 2 EL(aeis)R+PiR/PiR • 

EL(deis)R+Pi R/PiR, by Lemma 5.2.2. Hence 

L(aR[x]+PiR[x])/PiR;2 L(dR[X]+PiR[X])/PiR. By Lemma 5.2.1 

again, a(x)€C(piR[X]), for all i - 1 , ... ,n. Thus 

a(x)£C(pR[x]), for all pR[x]eX. Then X satisfies the right 

intersection condition. By a symmetrical argument, X satis­

f ies the left intersection condition. By Lemma 3.3.2, C(X) is 

Ore. 

Remark: Note that the hypotheses of the theorem could be 

weakened slightly. Let R be a pr ime Noether ian maximal order. 

Let X be the collecton of reflexive prime ideals of R. By 

Theorem 1.2.3, R[x] is a maximal order. Let X[x] - {P[x]: P a 

ref lexi ve pr ime ideal of R}. Then, again by Theorem 1. 2.3, the 

set X[x] is a set of reflexive prime ideals. Finally, by 

Hajarnavis-Williams[34], Lemma 2.1 and Corollary 3.4, each 

P[x]€X[x] is a height-l prime ideal and localisable. Then 

exactly the same argument as in Theorem 5.2.3 will work to 

shoW that X[x] satisfies the intersection condition in R[x]. 

5.2.4. Corollary: Let R be a Noetherian UFR. Then R - snT o ' 

where 5 is a simple Noether ian ring and T o is a pI: ime 

Noetherian ideal-principal bounded hereditary order. 

Proof: Let S· RD· Then, by Lemma 5.1.3, S is a simple 

Noether ian ring. With the notation of Theorem 5.2.3, let T 
o 

R[xlC(X). Then we claim that R - snT o • 

-
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ClearlyR!; snT o ' Now suppose that, in Q(R[x]), we have 

-1 -1 
f(x).9(X) - (npi) .r €snT o ' whereg(x)€C(X) and each Pi is 

a generator of a height-l prime ideal of R. 

Then p p ••• p f(x) - r.g(x). Since g(X)EC(X), 
I 2 n 

rap .•. p y', wheye r'ER. But then f(x)g(x)-1 - rt E R. 
I n 

It remains to show that To has the properties claimed. 

Suppose that I is an ideal of To. Suppose that I is contained 

in no height-l prime ideal of the form pT - T P of T, for pER a o 0 

generator of a height-l prime ideal of R, pR - Rp. Therefore 

InC(pR[x]) p. ¢, for all height-l prime ideals pR of R. Hence, 

by Theorem 5.2.3, InC(X) p. ¢. So I - To. 

If I is contained in a height-l pr ime ideal of To' say pT 0 

_ T p, then I - pJ for some ideal J of T . 
o 0 

By a Noether ian 

induction, we may assume that J - dT - T d, for some d -o 0 

PI •.. Pn , w~erethepi generate prime ideals of R. Then I. 

PP 1 ···PnT o - ToPPI···Pn· 

ByMaury-Raynaud[52], Proposition3.2.l, To is an Asano 

order. Further, To - nT oC(pT )' where the intersection runs 
o 

over all the height-l pr tme ideals of T . Thus T is a bounded o 0 

order by Hajarnavis-Lenagan[33], Theorem 3.5. Finally, Len-

agan[ 46], Theorem and Corollary tells us that T o is her ed-

itary. 

Remark: Suppose that the full ring of quotients of R, Q(R) - Q, 

is embedded in Q(R[x]) in the obvious way. Then QnT - T. whez:e 
o 

T is the intersection of the partial localisations of R at the 

height-l prime ideals of R. 

In many ways this result is unsatisfactory since it does 
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not give us much information on the structure of R within its 

ring of fractions Q(R). The rest of this section is devoted to 

presenting some preliminary and tentative results in this 

direction. 

First we consider what extra conditions we could impose on 

R to obtain that C is Ore. We need a definition. 

5.2.5. Def inition: A set X of pr ime ideals of a ring R is said 

to satisfy the right reflexive-intersection condition if, 

given a reflexive right ideal I such that InC(p) " ¢, for all 

p in X, then InC(X) ~ ¢. We define the left reflexive-

intersection condition in a like manner. 

Let R be a Noether ian UFR. Let S = Rn as before. Let T -

nRC(p)' where the intersection runs over all the height-l 

prime ideals of R. 

5.2.6. Lemma: Let R be a Noetherian UFR. Let I be a reflexive 

right ideal of R. Then 

(i) I - ITnIS. 

(ii) IT - nIRC(p)' where the intersection runs over 

all the height-l prime ideals P of R. 

Proof: We use A.(BnC) ~ A.BnA.C for any subsets of R. 

Clearly I ~ nIRC(p)nIS. By the same token, we have 

1*(nIRC(p)nIS) ~ nI*IRC(p)nl*IS ~ nRC(p)ns - R. 

50 I £ nIRC(p) nI5 C;; 1** - I. This proves (i) . We prove 

(ii) in a similar fashion. 

5.2.7. Lemma: Let R be a prime Noetherian maximal order. 
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Suppose that a and c al:e elements of R with c l:egular. Then the 

right ideal K - {r:ar£cR} is reflexive. 

pl:oof: K* - {q:qK C R} ~ Rc-la. Thel:efore 

K** £ Rn (RC-la)* - {r:ar€cR} - K. 

Let X - {P:P - pR - Rp a height-l prime ideal of R}. 

consider the following seven conditions: 

(i) R is bounded; 

(ii ) X satisfies the intel:section condition; 

( iii) C is the set of units; 

(iv) X satisfies the l:eflexive-intersection condition; 

(v) C is Ol:e and T - Re; 

(vi) C is Ore and RC is bounded; 

(vii) C is Ore. 

5.2.8. Theorem: Let R be a Noethel:ian 'UFR. Then we have the 

following diagl:am of implications between the conditions 

(i), ..• ,(vii): 

(i) (ii) 

,/ ~\ II '\\ 
tJ "i:J if \) 

(iii) (vi)¢===?(v)~(iv) 

~ ~ J' 
~ (vii) 

Proof: Note that all the conditions al:e left-l:ight symmetric 

so it suffices to consider one-sided conditions only. Suppose 

that condition (i) holds, then by Theorem 4.4.2, (i1i) holds, 

and (vi) is clear. 
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If condition (ii) holds then it is immediate that (iv) 

holds. It is obvious that any of the condltions (111). 

(v). or (vi) imply that (vil) holds. 

So it remains to prove the equivalence of conditions (iv). 

lV). and (vi). Suppose that (iv) holds. Suppose that a€R and 

C€C. Let K "" {r:al:€cR}. Then. by Lemma 5.2.7. K is l:eflexive. 

Each height-l pl:ime ideal in X is localisable. and hence 

KnC(P) ~ ~. for all P in X. Condition (iv) then implies that 

KnC(X) ~~. Therefore C(X) - C is Ore. FUl:ther. if q€ nRC(p)' 

let J - {r:qr€R}. Then JnC(p) ~ ~, for all P€X, and J is 

reflexive. Thus JnC(X) is non-empty and now both (v) and (vi) 

follow. Using Maury-Raynaud[52]. Proposition IV.2.l7. cond­

itions (v) and (vi) are cleal:ly equivalent. So it remains to 

prove that (vi) implies (iv). 

Suppose that (vi) holds. Suppose that I is a reflexive 

right ideal such that InC(p) ~ ~, for all P€X. Then. by Lemma 

5.2.6, IT III nIRC(p) - nRC(p) = T - Re. Thel:efore InC(X) " ~. 

We can in fact show that C(X) is Ore in some naturally 

occurr ing situations by us ing a counting argument very 

similal: to that of J.T.Staffol:d and R.B.Warfield in showing 

that certain cliques in Noetherian rings are localisable. 

5.2.9. Theol:em: Let R be a Noether ian UFR. Let X be the set of 

height-l pr ime ideals of R. Suppose that R contains a central 

sub-field such that IXI < IFI. Then C(X) is Ore. 

Proof: By Lemma 3.3.2, it is enough to show that X satisfies 

the intersection condition. If X is finite then we are done by 
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Theorem 3.3.4. So suppos~ that X is infinite. 

Suppose that K is a right ideal of R with KnC(p) ~ ¢ for 

all P€X. By Lemma 1.5.6, we may choose c€K with c regular. By 

Chamarie[ll), Proposition 1.8, C€C(P) for all, but finitely 

many P€X. By Theorem 3.3.4, we may choose d€K such that for 

each P€X either C€C(P) or d€C(P). 

By Jategaonkar[43), Lemma 7.2.10, there exists a€F with 

cTda€C(X). That is KnC(X) ~ ¢. The left intersection 

condition is proved in a similar fashion. 

Remark: It seems likely 'that C(X) is Ore in most naturally 

occur ing examples of Noether ian UFRs. In particular K. 

McKenz ie has shown that C (X) is Or e for a large class of group 

rings which are UFRs and it seems reasonable to make the 

following conjecture. 

5.2.10. Conj ecture: Let R be a Noether ian UFR. Let X be the set 

of height-l prime ideals of R. Suppose that the set {Goldie 

rank(R/P) :P€X} is bounded above in the integers. Then C(X) is 

Ore. 

We conclude this section with two structural results 

inspired by corresponding results in Lenagan[47], Chapter 4 

for prime hereditary Noetherian rings. 

5.2.10. Def inition: We shall call aright ideal I of R 

completely reflexive-faithful if, for all I " J < K " R, where 

J and K are reflexive right ideals, the module K/J is 

faithful. 
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5.2.12. Lemma: Let R be a prime Noetherian maximal order. 

Suppose that S is an Ore set of non-zero-divisors such that Rs 

is also a maximal order of Q(R). Denote for a right (respec-

tive1y left) RS-ideal of Q(R) J, J' - {qeQ:qJ C RSl 

tively J' - {qeQ:Jq C RS}). 

(respec-

Let I be a right ideal of R. Then RsI* - (IRs)', and 1**Rs 

- (IRS) , '. In particular, if I is ref lexive then IRS 

reflexive. 

is 

Proof: clearlyRsl* 5;; (IRS)'. Now suppose that qeQ(R) is such 

thatqIRscRs.writel-I:ijR for a finite set {j-l, ... ,m}. 

-1 
Then for each j, qi j - c j Sj' for some c j eS and Sj eR. Then 

-1 -1 
there exists ce5 such that c. s. - ct. , for t. eR. 

J J J J 
Thus 

cql ~ R. So cqel* and so qeRsI*. The corresponding result 

for left R-ideals of Q(R) is clear. 

5.2.13. Theorem: Let R be a Noether ian UFR. Then S - UB*, where 

the union is over all non-zero ideals B, and T - U I *, where the 

union runs over all the completely reflexive-faithful right 

ideals of R. 

Proof: The first result is clear. Now suppose that I is a 

completely reflexive-faithful right ideal of R. Suppose that 

pR is a height-l pr ime ideal of R. Let J - (I + pR). If J** '" R, 

then R/J** is not faithful, a contradiction. Thus J** - R. 

Then, by corollary 5.1.7 and Lemma 5.2.12, JR - R 
C(pR) C(pR)' 

50 J n C (pR) " SiS and hence Inc (pR) " SiS. Therefore I~* c Rc -1, 
! -

for some ceC(pR). So 1* ~ RC(pR). But pR Jas chosen 
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arbitrarily and so 1* ~ nRC(pR) - T. 

Conversely, choose q€T. Then, for each pR€X, there exists 

c €C(pR) with qc €R. Let I - Ec R. Then q€I *, and we claim that 
p p p 

I is completely reflexive-faithful. Suppose not, then there 

exist reflexive right ideals J and K with I ( J < K ( R and a 

non-zero ideal A such that (K/J) A - o. But then JS - KS and also 

JT - KT = T. So J = JTnJS = KTnKS - K, which contradicts our 

choice of J and K. 

We end this section with what we might consider a 

"decomposition" result. 

5.2.14: Theorem: Let R be a Noether ian UFR. Let I be a 

reflexive right ideal of R. Then I - JnK where: 

(i) J - J** - JSnR and JS - IS; 

(ii) K - K** - KTnR and KT - IT. Further K* c S. 

Proof: Choose J to be aright ideal maximal with respect to the 

conditions that I < J, that J is reflexive and that J/I is 

unfaithful. Choose K to be a right ideal maximal with respect 

to the conditions that I < K, that K is reflexive and that KT -

IT. 

By Maury-Raynaud[S2], Proposition 1.3,7, JnK is ref-

lexive. So, by Lemma 5.2.6, JnK = (JnK)Tn(JnK)S. Since J/I is 

unfaithful, JS .. IS. Hence (JnK)S = IS. By our choice 

of K, (JnK)T - IT. Therefore (JnK) - IsnIT - I. 

Suppose that J ~ JsnR. Then J ~ (JSnR)**. But, by Lemma 

5.2.12, (J'snR)**S'" «JSnR)S)" .. (J5)"" (IS)" - 1**S - IS 

and this contradicts our choice of J. Therefore J - JsnR. 
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The proof that K - KTnR is similar. Finally, since T is a 

bounded ring, K is bounded. By Theorem 5.2.13, K* C S. 
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section 5.3. Alternative Unique Factorisation domains. 

In this section, we br ief ly consider two other var lations 

on the theme of generalising the notion of Unique Factoris­

ation domain from the commutative case. Whilst, in some cases, 

these definitions are equivalent to the definition of Chapter 

2, they are in general distinct. The first was proposed by 

P.M.Cohn and the second is a natural generalisation proposed 

by R.A.Beauregard. Both are essentially lattice-theoretic 

notions. We shall give examples to indicate that these 

definitions are in general different from our notion of 

Noetherian UFO. This answers a question by P.M. Cohn. 

There are two features common to all notions of unique 

factorisation, the first being that of a distinction between 

atomic and pr ime elements, and the second that of a factor is­

ation of elements into primes in some form. Recall that, in a 

ring R, an atom is an element which cannot be written as a 

product of two non-units. A domain R is atomic if every 

element may be wr itten as a product of atoms. In a commutative 

ring R, a prime p is an element such that if a.b E pR for some 

two elements a and b of R then either aepR or bepR. Even in 

quite well-behaved commutative rings the two notions are 

distinct. For example in Z[";-5], we have 6 - 2.3 - (1+";-5) (1-

";-5), where all the factors are atoms, but none are primes. In 

a commutative ring, we say that two elements a and bare 

associates if a - u.b for some unit u of R . A commutative UFO 

may be character ised by the property that all atoms are pr lmes 

and every element has a (necessar ily) unique factor isation as 

a product of atoms, up to order and associates. 
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We refer the reader to Section 1.7 for the definitions of 

lattice and modular lattice. P.M. Cohn considered the notion 

of similar ity as a generalisation of associate as follows. Let 

R be a domain. Two elements a and b of R are said to be similar 

if R/aR ~ R/bR as R-modules. The apparent asymmetry of this 

definition is resolved by the following. 

5.3.1. Theorem: Let R be a domain. Suppose that a and b are two 

elements of R. Then R/aR '" R/bR as right R-modules if and only 

if R/Ra '" R/Rb as left R-modules. 

Proof: See Cohn[l9], Corollary 2 to Theorem 3.2.1. 

Note that, if R is commutative, then two elements are similar 

if and only if they are associates because then they generate 

the same ideal of R. Let R be a domain. Given an element c€R, we 

say that c - a
l 
... a n is an atomic factorisation of c if a

i 
is an 

atom, for all i. 

suppose that c - a a ••• a - b b ••• b 
1 l nIl m 

are two atomic 

factorisations of an element c. We shall say that these two 

factorisations are Similarity-isomorphic if and only if m - n 

and for some O€S , for each i-I, ... ,n, a. n 1 
is similar to 

bO(i). We call a domain a similarity-UFD if R is an atomic 

domain in which any two atomic factorisations of an element 

are similarity-isomorphic. It is clear that if R is commut-

ative then this reduces to the class ieal def inition of UFD. We 

have, in terms of lattices, the following useful cr iter ion to 

determine if a domain is a similarity-UFD. 
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5.3.2. Theorem: A domain R is a similarity-UFD if, for each 

c £R, the set L( cR, R) of pr inc ipal right ideals between cR and 

R is a modular sub-lattice of finite length of the lattice of 

right ideals of R. 

Proof: See Cohn[20], Theorem 5.6. 

Let R be a domain. It is not hard to see that a,a'€R are 

similar if and only if there exists an element b of R with aR + 

bR = Rand aRnbR - ba'R. R.A.Beauregard uses this to 

generalise the notion of similarity as follows. 

Suppose that a and b are two elements of a domain R. We 

define (a,b) to be the element (if it exists) d such that aR + 
r 

bR" dR. We define also [a,b]r to be the element (if it exists) 

c such that aR n bR - cR. Def ine the corresponding elements on 

the left, (a,b)l and [a,b]l' in the obvious way. Then we say 

that two elements a and a l of Rare transitive if thez:e exists 

an element b such that (a,b) 1 - 1 and [a,b]r - ba l
, and we write 

a tr al. This relation is not necessarily symmetric, but we 

may use it to define an equivalence relation. We say that two 

elements a and a l of Rare projectively eguivalent if there 

existelementsao,a1, ••• ,a ofRsuchthata-a , a' =a , non 

and, for each i-I, ... n, either a i 1 tr a. or a. tr a. 1. We 
- 1 1 1-

write a pr a l • 

It is easy to see that if two elements are similar then 

they are projectively equivalent. In the case of a commutative 

domain, if two elements are projectively equivalent, then 

they are associates. If R is a Bezout domain then two 

projectively equivalent elements are similar. 
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'Let R be a domain. Let c be an element of R. If c - a
l
•• .an -

b ... 0 are two atomic factorisations of c, then we say that 
I m 

they are projective-isomorphic if m - n and for some element a 

of Sn' for each i - 1, •.• ,n, a i pr b a ( i). Just as in the case of 

a similar ity-UFD, we say that an atomic domain R is a 

projectivity-UFD if all atomic factor isations of an element c 

of R are projective-isomorphic. Again, if R is commutative 

this reduces to the classical definition of a UFD. 

It is clear that any PID is a similarity-UFD and a 

projectivity-UFD. But, as we saw in Section 3.2, if D is the 

division ring of real quaternions then D[x] is not a Noeth-

erian UFD in the sense of Chapter 2. Let R II: Al (Z), the first 

Weyl algebra over the integers. Then in R we have the atomic 

factorisations c - (xy+l)x - x 2y. Thus in R not eVen the number 

of factors in an atomic factor isation need be constant. But, 

by Theor em 2.1. 4, Al (Z) is a Noether ian UFD in the sense of 

Chapter 2. These two examples make it clear that these 

generalisations of UFD are distinct. 

In Beauregard [5], R.A.Beauregard proves an analogue of 

Nagata's Theorem for projectivity-UFDs. To do so he has to 

introduce a notion of prime element and it is perhaps ironic 

to observe that he uses a def inition of pr ime element 

identical to that of Section 2.1. 
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