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Abstract 

Constraint-based systems are increasingly being used to support the design of products. 

Several commercial design systems based on constraints allow the geometry of a product 

to be specified and modified in a more natural and efficient way. However, it is now widely 

recognised the needs to have a close coupling of geometric constraints (i.e. parallel, tangent, 

etc) and engineering constraints (Le. performance, costs, weight, etc) to effectively support 

the preliminary design stages. This is an active research topic which is the subject of this 

thesis. 

As the design evolves, the size of the equation set which captures the constraints can get 

very large depending on the complexity of the product being designed. These constraints 

are expected to be solved efficiently to guarantee immediate feedback to the designer. Such 

requirement is also necessary to support constraint-based design within Virtual Environ­

ments, where it is necessary to have interactive speed. However, the majority of constraint­

based design systems re-satisfy all constraints from scratch after the insertion of a new 

design constraint. This process is time consuming and therefore hinders interactive design 

performance when dealing with large constraint sets. 

This thesis reports research into the investigation of techniques to support interactive 

constraint-based design. The main focus of this work is on the development of incremental 

graph-based algorithms for satisfying a coupled set of engineering and geometric con­

straints. In this research, the design constraints, represented as simultaneous sets of linear 

and non-linear equations, are stored in a directed graph called Equation Graph. When a 

new constraint is imposed, local constraint propagation techniques are used to satisfy 

the constraint and update the current graph solution, incrementally. Constraint cycles are 

locally identified and satisfied within the Equation Graph. Therefore, these algorithms ef­

ficiently solve large constraint sets to support interactive design. Techniques to support 

under-constrained geometry are also considered in this research. The concept of soft con­

straints is introduced to represent the degrees of freedom of the geometric entities. This is 

used to allow the incremental satisfaction of newly imposed constraints by exploiting under­

constrained space. These soft constraints are also used to support direct manipulation of 

under-constrained geometric entities, enabling the designers to test the kinematic behaviour 

of the current assembly. A prototype constraint-based design system has been developed 

to demonstrate the feasibility of these algorithms to support preliminary design. 
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Chapter 1 

Introd uction 

1.1 Motivation 

In the early design phases of a product the designer needs freedom to explore design alter­

natives. A large proportion of the cost of a product is decided at the early design stages 

[84] and therefore considerable saving can be made if the design decisions are sound as 

possible [38]. In addition, increasing world-wide competition is imposing pressures on the 

designer to reduce both the costs and the time it takes to market. Therefore, it is important 

to provide design analysis tools that support timely and accurate information upon which 

designers may enhance their ability to make quickly quality decisions. However, traditional 

CAD tools are inadequate for supporting the early design stages, since they only supply 

tools for developing detailed geometry [67]. Non-geometric information, such as the weight, 

forces, stress and cost of a product, which are essential considerations during the initial 

design stages [115], are not well supported. 

In recent years, constraint-based design has emerged as a design methodology for providing 

the decision support required by engineers [22]. Today, this approach is present in most 

commercial systems such as PTC's Pro-Engineer [24], D-Cubed's DCM [74] and SDRC's 

I-DEAS [92]. It is noted that there has been an increasing use of these commercial systems 

in industry [49, 78]. Early attempts in geometric modeling required an object to be defined 

in terms of absolute positions and dimension of its constituent geometric elements [18J. 

In this approach, considerable algebraic manipulation is required to determine the values 

1 



CHAPTER 1. INTRODUCTION 2 

and positions of these dimensions, restricting the designer's creative methods. In contrast, 

the definition in terms of constraints allows the geometry of a product to be specified and 

modified in a more natural and efficient way [87]. Such facilities are very important in the 

preliminary design stages where the engineer iteratively analyses different design alternatives 

until design specifications are satisfied. Therefore, the constraint-based paradigm is seen as 

a strong candidate to support early design stages since it provides flexibility for creativity. 

In a typical preliminary design scenario, an engineer specifies design considerations in terms 

of both geometric constraints (such as parallel, tangent, etc.) and engineering constraints 

(expressed in terms of engineering equations representing performance, costs, weight, mo­

ment of inertia, etc.). As Chung and Schussel pointed out in [23], design tools that allow the 

coupling of both geometric constraints and engineering constraints are necessary for sup­

porting the analysis of preliminary design. Equally, at this stage, the designer is interested 

in exploring different what if scenarios by changing design parameters and constraints and 

also interested in testing the kinematic behaviour of the current assembly and to analyse 

the geometric profiles (e.g. the cutting envelope described by a backhoe). 

As the design evolves, the size of the equation set which defines the design can get very 

large depending on the complexity of the product being designed. In addition, constraint 

cycles are constantly emerging as a result of newly imposed constraints by the user [75]. 

These constraints must be solved efficiently in order to guarantee immediate feedback to 

the designer. Although a number of constraint-based systems have been discussed in the 

literature, the majority of these systems re-satisfy all constraints from scratch due to the 

insertion of a new design constraint [14, 18, 43, 60, 61, 74, 93]. This process is time con­

suming and therefore hinders an interactive design performance when dealing with large 

constraint sets [117, 33]. In addition, these systems require the designer to make sure the 

design is fully constrained. This could obstruct the designer's creativity in testing different 

design alternatives by exploiting under-constrained space. 

1.2 Objective and Research Goals 

The objective ofthis research is to study efficient algorithms for interactive constraint_ 

based design that combines both engineering and geometric constrains. 

The following research goals have been identified in order to accomplish the above objective: 
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1. to develop a taxonomy to classify current constraint-based approaches in order to 

identify advantages and disadvantages of each approach; 

2. to derive incremental constraint-based algorithms that can speed up the constraint 

satisfaction and propagation process; 

3. to investigate techniques that can support engineers to explore under-constrained 

models; 

4. to demonstrate the feasibility of these algorithms through a prototype system and 

case studies. 

1.3 The Engineering Design Process 

The process of designing a product is constraint-oriented since most of this process involves 

the recognition, formulation and satisfaction of constraints arising from diverse engineering 

and management areas [33, 67, 92]. Although it can vary from one terminology to another 

[93], according to French [35], Pahl and Beitz [76] and Thornton [109], most engineering 

design processes can be decomposed into the following major stages: clarification of the 

task, conceptual design, embodiment design and detail design. 

Clarification of the Task 

At this stage, design specifications for the product are identified according to the client's 

needs. The main result of this process is a requirement list describing the general properties 

and conditions (Le. constraints) that the product should satisfy. These include: marketabil­

ity, costs, performance, safety, assembly, maintenance etc. Some of those constraints could 

also be expressed as mathematical equations such as: product unit $ x pounds. Although 

the requirement list can change throughout the design process, evolving designs are con­

stantly checked against this list in order to avoid expensive errors in later stages of the 

design [109]. 
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Conceptual Design 

Conceptual design starts with a problem statement in the form of the requirement list 

and outcomes a set of preliminary solutions in the form of concepts. First, a relationship 

between the inputs and outputs of the product is derived. This relationship is called overall 

function. Depending upon the complexity of the design, the overall function can be broken 

down into simpler sub-functions (function structures). This facilitates the search for 

engineering principles as solutions to fulfill each sub-function. Next, these solution principles 

are combined to fulfill the overall function. Suitable combinations are then selected and 

firmed up into concept variants which, in turn are evaluated against the demands of the 

requirement list. On the basis of this evaluation, the best solution concepts are selected for 

further refinements. During this stage, abstract geometry (incomplete geometric information 

that is subject to change at later stages) is often used. 

Embodiment Design 

During this stage, the designer gives geometric forms for the design concepts. It is of­

ten necessary to produce and evaluate several layout drawings until a definitive layout is 

determined in order to develop the product according to technical and economic criteria. 

Preliminary engineering functions such as tolerance analysis and design optimisation are 

often performed as corrective steps. According to Pahl and Beitz [76], "the definitive lay­

out must be developed to the point where a clear check of function, durability, production, 

assembly, operation and cost can be carried out". 

Detail Design 

At the detail design stage, individual geometric elements of the definitive layout are refined 

with exact dimensions and tolerances and complete details of the geometric shape of the 

design object are specified for production. The main purpose of this stage is to assure the 

designer that the design object can be manufactured and that it will work. 
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Summary of Design Stages 

statement of the problem 
(client's needs) 

1 
Clarlncallon 

ofthe Task 

design specifications 
(requirement list) 

Conceptual concepts variants 

,. ... D.es~lg.n ..... ~ 

Embodiment 

Design 

Upgrading and Improvements 

definitive layout 

Detail 

Design 

Figure 1.1: The Product Design Process 

documents {or 
production 

! 

5 

Engineering design is an iterative process. According to the inserted constraint, different 

stages interact with each other for upgrading and improvement. Figure 1.1 shows the flow of 

work during the design process. At every stage, decisions must be made to identify whether 

the next stage should be carried out or previous stages must first be repeated. The figure 

shows the main inputs and outputs for each design stage. 

In addition, design constraints are often numerous, complex and conflicting since they are 

continuously being inserted, deleted and modified throughout the design process. This fact 

reflects the need to evaluate different design alternatives in order to produce the best possible 

solution. Therefore, constraint management tools should be provided to enable engineers 

to manipulate and control this "up and down" constraint flow during the iterative design 

cycle. Such tools are being developed as essential elements to build concurrent engineering 

environments that support the concurrent interaction among all stages of design [52, 69, 84]. 

The next section therefore describes current constraint-based techniques that can be used 

as a computer-based aid tools for the design process. 
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1.4 Design Constraints 

As mentioned in Section 1.1, during preliminary design, a design is expressed in term of 

geometric constraints and engineering constraints. 

Cl 

.... length 

theta ..... force -
L2 

Geometric Constraints: 

· Ll perpendicular to L2 

· CI tangent to Ll 

Engineering Constraints: 

· rl = 0.05.force 
.force = 0.5. weight / (tan(theta .0.01745)) 
· weight = length .density 

Figure 1.2: Geometric and Engineering Constraints 

Geometric constraints are geometric relationships imposed on distinct geometric entities 

(e.g. a tangency constraint between a line and a circle). Engineering constraints are equa­

tions used to represent basic engineering principles such as the stress in a part, the length 

of a shaft, the performance of an electric motor etc. The ladder design of Figure 1.2 il­

lustrates the concept of geometric constraints and engineering constraints used throughout 

this thesis. 

Both engineering and geometric constraints can be seen as a unique set of equations [23, 

61]. Thus, given such a mathematical platform, the distinction between engineering and 

geometric constraints cannot be determined by the computer. This distinction is, in fact, 

determined by the designer when deciding to impose either a geometric or an engine('ring 

constraint during the design process. This distinction is useful since different constraint 

satisfaction techniques which are more suitable for a particular type of constraint can be 

used to achieve efficiency. 

Inequalities are also considered as engineering constraints since they are of fundamental 

importance for design. However, inequality constraints are not currently investigated in the 

context of this thesis. 
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1.5 Constraint-based Design 

Traditional CAD systems can only support detailed geometry [67] since they require an 

object to be defined in terms of specific dimensions and locations of its constituent parts. 

In the field of solid modeling, these systems faU into two main categories : Constructive 

Solid Geometry (CSG) and boundary representation (B-rep) [82]. CSG modelers are binary 

trees constructed from regularised set operations on primitives that are parameterised by 

their sizes and locations. Examples of CSG modelers are PADL [83] and NONAME [114]. 

B-rep modelers store object's boundary in term of vertices, edges, faces and their topological 

relationships. Typical examples are ACIS [102] and PARASOLID [99]. 

Such representations require the designer to perform considerable algebraic manipulation 

to determine the values of the absolute positions and dimensions of the object models. 

Besides, any change in the definition of the object will require the recalculation of the 

affected values [18]. In contrast, definition of models in terms of geometric constraints such 

as tangency, concentricity, between the constituent geometric elements of objects, is seen 

as an intuitive way to capture the engineer's design intent [23]. This reflects the ability 

to change the data and to propagate it to downstream applications which naturally is a 

decisive and competitive factor for the current design market. For this reason, researchers 

have pointed out that traditional CAD and solid modeling tools are being rapidly replaced 

by constraint-based design systems [94]. However, in spite of being more attractive from 

the designer's point of view [27, 52, 84], considerable difficulties arise when implementing 

constraint-based systems [18, 33]. These difficulties are most related to the automation of 

algebraic manipulations (solution of constraint sets) required by the designer. 

In recent years, two main approaches have emerged to support constraint-based design: 

the equation-based approach and the geometric constructive approach. The equation-based 

approach translates aU sets of constraints into a system of simultaneous equations. The 

design model is updated by solving this system of equations. These systems rely on nu­

meric techniques such as the Newton-Raphson iterative method to solve the equations 

[48, 61, 62, 43, 101, 105]. The main disadvantages of iterative methods is that they present 

convergence problems and are computationally expensive and therefore they are not suit­

able for interactive design [33]. Graph-based techniques have been introduced to represent 

and decompose the equations into smaller sets in order to achieve a more efficient equation 

solving [93]. 
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The geometric constructive approach provides a high level representation to deal with geo­

metric constraints. In this approach, geometric entities and geometric constraints are not 

treated as equations directly. Instead, a set of constructive steps is provided which place 

geometric elements relative to each other through operational transformations, according 

to their degrees of freedom [14,37,60,74,112, 116J. Degrees of freedom are the number of 

independent coordinates which are necessary and sufficient to define the position of a rigid 

body [44, 45J. The constructive technique has been recognised as more intuitive and superior 

to iterative equation-based approach for solving geometric constraints, since it avoids nu­

meric instability [89]. However, the technique is only suitable to solve geometric constraint 

problems, since it works nominally with specific geometric knowledge. It does not efficiently 

support engineering constraints [5]. Thus, this approach is inadequate for supporting the 

early design stages, since it only supplies tools for developing detailed geometry [67]. 

Furthermore, both approaches present common limitations: 

• The majority of these systems work on the following basis: 'find a configuration for a 

set of geometric objects which satisfies a set of given constraints among them'. This 

means that the user has to specify a consistent and sufficient set of dimension and 

constraints and explicitly requests the system to satisfy them. It has been notE'd that 

such constraint assignment is tedious and error-prone [87J. Besides, the whole set of 

constraints must be evaluated from scratch due to the insertion of a new constraint. 

This can hinder immediate feedback for designers [70]; 

• The designer has to make sure that the specified constraints compose a fully-constrained 

set, since efficient and reliable mechanisms to handle under and over-constrained situ­

ations are not often available. This obstructs the designer's task in exploring different 

design alternatives [33]; 

• There is also a limited use of graphical interaction techniques in such systems [40, 

87, 100]. Therefore, the user cannot directly manipulate geometric entities and thus 

explore under-constrained spaces. This results on a non-intuitive way of specifying a 

complete set of constraints [85]. 

Therefore, this research has been directed towards the development of algorithms that 

can speed up the constraint satisfaction process of a constraint-based design system. These 

algorithms avoid satisfying the constraint set from scratch each time a constraint is inserted 
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or deleted. This work also includes the investigation of interactive techniques to provide 

more friendly design environments. This allows the designer to explore the degrees of 

freedom of under-constrained models through direct manipulation techniques. This should 

offer the potential to develop highly interactive constraint-based design systems as well as 

to improve the efficiency of such systems during the process of design. 

1.6 Thesis Organisation 

This thesis is divided in seven chapters including this introduction. Chapter 2 presents an 

overview of the state-of-the-art in constraint-based design. The research carried out in this 

thesis is built upon these advances. 

Chapter 3 presents a set of algorithms to support the incremental satisfaction of engineer­

ing constraints. These algorithms maintain an evolving solution of the constraint set and 

allow engineering constraint cycles to be locally identified and solved. The cantilever beam 

problem is used throughout the chapter to demonstrate the feasibility of the algorithms. 

Chapter 4 shows how these incremental algorithms are extended to support the coupling of 

engineering constraints and geometric constraints. The concept of soft constraints is also 

introduced to allow direct manipulations of under-constrained geometric models. 

Chapter 5 is concerned with the implementation of a prototype constraint engine developed 

in C++ on a SGI XS24/4000 Indigo. The constraint engine has two main modules: the 

Graphical User Interface (GUI) and the Constraint Manager. The Constraint Manager 

is composed of four sub-modules: the Equation Graph, the Incremental Equation Solver 

(INCES), the Geometric Relationship Graph and the Geometric Cycle Solver. The GUI 

has been developed using an object-oriented graphics toolkit called Iris Inventor [104]. The 

Equation Graph is a data structure which supports the coupling of geometric constraints and 

engineering constraints. The INCES algorithm incrementally solves the Equation Graph 

when linear and nonlinear equations are inserted. The Geometric Relationship Graph is 

a high level representation of the geometric entities used to handle direct manipulations 

of under-constrained models. The Relationship Graph is also used to identify geometric 

constraint cycles which are solved by the Geometric Cycle Solver. The chapter covers a 

brief description of Iris Inventor and details the implementation of the constraint engine. 

Chapter 6 presents the results and discusses the advantages and limitations of the constraint 
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engine. The design of the internal-combustion engine is used to demonstrate the capabilities 

of the constraint engine. The benefits of the proposed techniques are then discussed in 

comparison to previous work. In addition, several limitation are identified and suggestions 

for improvements are presented. 

Finally, Chapter 7 presents the conclusions for this work and recommendations for future 

research. 



Chapter 2 

Characterisation of 

Constraint-based Approaches 

2.1 Introduction 

There have been several attempts to develop constraint-based algorithms to support engi­

neering design. The purpose of this chapter is to present a characterisation of the current 

constraint-based design approaches. The main features of these approaches are discussed 

with references to some key research in the area. 

I Constraint-based Approaches J 
• ~ l Equation-based J l Geometric Constructive] 

J 1 C ~ 1 ! 
Numerical Symbolic r Graph-based Rule-based ( Graph-based ] 

Lin el al. 81, Kondo92, J I Aldejeld88, 

Lighl-Gossard82. Buchanan93. Yamaguchi·Kimura90, 
Sohrt·Bruderlin91, 

Ve"ou",1 el al. 92. 

Local Local 
Procagation Global Propagation Global 

Sannella93, Se"ano-Gossard92 Arhah-Wang89, Ow"n91, 
Hosobe el al. 94, Fa93, Munlin95, Kramer92, 

Zanden92. Tsai96 Brunkhart94, 

.llmllJ10 el 01 95. 

Figure 2.1: Approaches for Constraint Solving in Design 

11 
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As shown in Figure 2.1, the current constraint-based approaches can be divided into two 

main categories: Equation-based approach and Geometric Constructive approach. 

2.2 Equation-based Approach 

This approach deals with constraints as equations. In this approach, geometric and/or 

engineering constraints are all converted into a system of equations and solved by using 

a variety of equation manipulation techniques. These can be characterised as: IlumC'ric, 

symbolic and graph-based. 

2.2.1 Numeric Approach 

Numerical solvers translate a set of design constraints into a system of nonlinear equations. 

Instances of a geometric model are derived by solving the system of equations using iterative 

numeric techniques such as Newton-Raphson method [48, 62, 61, 72, 101]. 

The Newton-Raphson Method 

The Newton-Raphson method is a well-known technique for finding the roots of a function 

in one variable which can easily be generalised to find roots in multiple variables [16,68, 79J. 

This section presents a brief introduction to Newton's method in one dimension and shows 

its extension to multiple dimensions. 

To illustrate how Newton's method works, consider Figure 2.2 where p is the root for the 

function y = f( x). The method starts by considering Po as a initial guess for the root. Then, 

the point PI is calculated by intersecting the line tangent to the curve at point (Po, f(po» 

and the x-axis. 

Note in Figure 2.2 that PI will be closer to p than Po. 

(PI. 0) and (po'/(Po) is given by: 

m = 0 - f(po) = !'(Po). 
PI- Po 

The slope m of the line through 

(2.1) 

Equation 2.1 can be rearranged to find the value for PI as in Equation 2.2: 

f(po) 
PI = Po - /'(po) (2.2) 
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If the initial guess is sufficiently close to the root P, the process above can be rf'peated to 

obtain a sequence {Pk} that converges to p. This sequence can be obtained as: 

!(Pk-t) 
Pk = Pk-l - !'( )' k = 1,2, ... 

Pk-t 
(2.3) 

or 

(2.4 ) 

y 

(pOj(pO)) 

pO x 

Figure 2.2: Geometric Construction for the Newton-Raphson Method 

This means that for a given continuous function with continuous first derivative, there exists 

an initial guess Po for the root p, such that 1!(Po)1 ~ e. Providing that Po is sufficiently 

close and using Po as an initial guess, Newton's method will converge to some Pn such that 

Ip - Pnl :$ Ip - el, for an arbitrary e > O. 

Newton's method can be modified to solve constraint problems involving systems of equa­

tions with multiple variables. For example, given the following system with n variables and 

k constraints, 
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Equation 2.4 can be seen as: 

(2.5) 

where P represents the vector [x}, X2, ... , xnJ, F represents the vector [J} (P), f2(P), ... , h(P)J 

and J represents the Jacobian matrix. The Jacobian matrix is the generalisation of the 

"derivative" for systems of functions of several variables [68J 

o/J o/J o/J 
ox} OX2 oXn 

J= 
Ofk Ofk Ofk 
ox} OX2 oXn 

Note that the Jacobian matrix must be nonsingular (i.e. J-} must exist). Otherwise 

Equation 2.5 can not be solved. This implies that the Jacobian must be a square matrix 

and therefore n = k. In this case, researchers refer to the system of equations as a fully 

constrained system. This approach has been used in the design systems reported in [61 62 , , 
101J. 

Although the numeric approach has the potential to solve configurations that may be non­

solvable using other approaches, it performs in lengthy solution times and therefore is inap­

propriate for interactive design [14, 33J. Furthermore, as the system of equations may have 

multiple solutions, convergence to the required solution cannot be guaranteed. Although 

the user can control the solution by choosing a set of starting guesses, this is not a robust 

approach to determine all or particular solutions [18]. 

2.2.2 Symbolic Approach 

In the symbolic approach, the constraints are translated into a system of algebraic equations 

and solved through symbolic algebraic methods, such as Grabner basis [19]. 

Grabner Basis 

Given a set of nonlinear equations, its Grabner basis is a canonical form where the resulting 

equations are ordered to produce a solution [9, 47]. Therefore, the Grabner basis is a 

set of equations which is mathematically equivalent to the original set. It is obtained by 

eliminating variables between equations, in much the same way that Gaussian elimination 
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is applied to a system of linear equations. For example, given the system of equations: 

the two following Grabner basis can be derived: 

x+y-5=O 

y3 _ 16y2 + 75y - 114 = 0 

x+y-5=O 

x3 + x2 
- lOx + 14 = 0 

Note that in both cases, the second equation contains only one unknown. This equation can 

be solved numerically and the roots may be substituted into the first (this process is called 

back-substitution) to obtain the value of the other unknown and thus to solve the system. 

As an application of Grabner basis, consider the triangle with vertices PI, P2 and P
3 

with 

sides defined by the constraints in Figure 2.3. 

distance(p 1.p2.5) 

distance(p2.p3.4) 

distance(p3.p 1.3) 
PI 

P3 

5 

Figure 2.3: Geometric Constraints for a Triangle Model 

P2 

Fixing PI = (1,1) and P2x = 4, produces the following system of equations: 

9 + (1 - P2y? - 25 = 0 

(4 - P3x)2 + (P2y - P3y)2 -16 0 

(P3x _1)2 + (P3y _1)2 - 9 = 0 

Note that this system of equations is not triangularised and therefore requires a numeric 

solution. However, one Grabner basis for this system is: 

16p3y + 3P2yP3x - 12p2y - 3P3x - 4 = 0 

P~y - 2P2y - 15 = 0 

25P5x - 104p3x + 16 = 0 

Note that this system is now triangularised and can be solved using back-substitution from 

the last equation. The following solution is then produced: (P3x = 4 or P3x = 0.08), 
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(P2y = 5 or P2y = -3) and P3y = 1. This leads to the problem of multiple solutions. 

However, the back-substitution procedure can be performed in a rigorous manner that 

unwanted roots can be eliminated at each step [17]. Thus, if the user selects P3x = 4 and 

(P2y = 5 the final solution for this problem will be the one presented in Figure 2.4. 

y 

5 P2 ................. 

4 

3 

2 
PI P3 

1 2 3 4 5 x 

Figure 2.4: Solution for the Triangle Model 

Symbolic solvers are more robust than standard numeric techniques when solving general 

nonlinear constraint problems. Constraint design systems such as those reported in [18, 56] 

have used Grabner basis to solve their systems of constraint equations. However, this 

approach is still computationally expensive [14, 17]. 

2.2.3 Graph-based Approach 

Graph Theory Terminology 

A brief introduction to the graph terminology used in this section follows. Graphs are gen­

erally chosen to represent constraint networks because they have the following advantages 

[92]: 

1. they are a very general domain-independent representation; 

2. they allow both qualitative and quantitative operations; 

3. there are a large number of applicable algorithms from the graph theory literature. 
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Graph Definition 

A graph G = (V, E) consists of two sets: a finite set V of elements called vertices (or nodes) 

and a finite set E of elements called edges (or arcs) [1, 107]. Each edge is identified with a 

pair of vertices. An edge defines a binary relation between its constituent vertices. 

(a) Undirected (b) Directed 

Figure 2.5: Undirected and Directed Graphs 

If the edges of a graph G are identified with ordered pairs of vertices, then G is called a 

directed graph (or digraph). Otherwise, G is called an undirected graph. Figure 2.5(a) and 

Figure 2.5(b) illustrate the concept of undirected and directed graphs, respectively. 

A path in a directed graph is a list of vertices (VI, V2, •.. ,Vk) such that there is an arc from 

each node to the next, i.e. Vi --+ Vi+1 for i = 1,2"" ,k. For example, (a, b, d, e) and (a, c, e) 

are paths in the directed graph of Figure 2.5(b). A node a is called an ancestor of node d 

if there is a path from a to d. In turn, d is called a descendant of a. In Figure 2.5(b), node 

b is an ancestor of node e. 

A cycle in a directed graph is a path that begins and ends at the same node. For example, 

in the graph shown in Figure 2.5(b) the paths (b, d, c, b) and (b, d, e, b) define two distinct 

cycles. If a graph has one or more cycles, it is referred to as a cyclic graph. If there are no 

cycles, the graph is said to be acyclic. The concept of ancestor and descendant nodes does 

not apply to the nodes inside a cycle. 

Bipartite Graphs 

A graph G = (V, E) is called a bipartite graph if its vertex set V can be partitioned into 

two disjoint subsets VI and V2 (Le. VI n V2 = 0) such that each edge of E has one vertex in 

Vt and another in V2. Figure 2.6(a) shows an example of a bipartite graph. 
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(a) (b) (c) 

• .... ,. • • ., 
./ ... ~, ........ ;. .' 

,../~ 

• ....... ~ • • 
/ 

", / 

J', 

• ", / • ><. 
/ '. 

" ./ • 
VI V2 VI V2 VI V2 
Figure 2.6: A Bipartite Graph and Two Maximum Matchings 

Given an undirected bipartite graph G = (VI, V2, E), a matching is a subset of edgf's 

M ~ E such that for all vertices v E VI U V2, at most one edge AI is incident on v. A 

maximum matching is a matching of maximum cardinality, that is, a matching .AI such 

that for any other matching M', IMI ~ IM'I [25]. In other words, a maximum matching 

is a largest subset of E with the property that no two pairs share a common element in 

the same Vi or V2 • A bipartite graph can have more than one maximum matching between 

the elements of VI and V2 • Figure 2.6(b) and Figure 2.6(c) show two different maximum 

matching for the bipartite graph of Figure 2.6( a). 

2.2.4 Graph-based Equation Solvers 

Graph-based equation solvers [50, 90, 93] first translate the set of constraints into an undi­

rected graph. This graph is composed of two distinct sets: constraints (equations) and vari­

ables. Each variable is connected to the constraint it belongs to, through an edge. Then, 

different techniques are used to direct the graph edges in order to produce a sequence of 

constraint satisfaction. This approach can be further divided into two other distinct ones: 

global and local propagation approaches. 

Global Approach 

In this approach, the entire set of constraints is evaluated from scratch on the insertion 

of a new constraint. Thus, a new undirected graph is generated and a new constraint 

dependency inside the graph is derived globally to produce the new constraint satisfaction 
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sequence. 

Serrano presents a system to support Conceptual Design (called Concept Modeler), which 

is based on the global approach [93]. In order to illustrate Serrano's approach consider the 

following set of equations: 

C1 
MY 

(7---=0 
I 

C2 M - FL = 0 
lVH3 

C3 1---=0 
12 

II 
C4 Y--=o 

2 

C5 K _ 3El = 0 
L3 

FL2 
C6 </>--=0 

El 

The problem is to identify the values of the variables L, H and lV, given </>, M, E, K and (7. 

The main steps of the algorithm are as follows: 

1. Represent the equations in an undirected graph: Figure 2.7 shows the undirected graph 

representing equations Cl - C6· Again, in this graph nodes represent variables and arcs 

represent constraints. Two variables are connected through an arc if and only if they 

belong to the same equation. 

H\~ "/"w 
I 

Figure 2.7: Undirected Equation Graph 

2. Derive the constraint dependency: the user is required to specify the known and un-
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known variables in the equations. The system then automatically derives dependency 

information through an assignment of every unknown variable to a constraint equa­

tion. First, a bipartite graph G = ({U, C}, A) is constructed where U represents 

the unknown variables and C represents the constraints. A is a set of arcs that 

link every unknown variable to the constraint equations it belongs to (Figure 2.8( a)). 

Note that this is a new graph and not the one used to represent the original constraint 

network. Next, a maximum matching is found between the elements of U and C. 

Figure 2.8(a) presents a maximum matching in the bipartite graph compos('d of the 

unknown variables and constraints. The dashed lines indicate the assignments that 

were not used. Each variable in this matching is set as the output of its matched 

constraint in the original constraint network. 

Once the assignments are made, a directed graph is generated (Figure 2.8(b)). In this 

graph, the known variables are represented as squares whereas the unknown ones are 

represented as circles. The unmatched constraint-variable arcs are removed from the 

previous undirected graph. The arc direction defines the constraint dependency inside 

the network. For example, n ~ Y in the graph means that 1I "depends on" Y, i.e. 

n is going to be calculated using equation C4, after the value of Y is identified. 

Figure 2.8: Maximum Matching and Directed Graph 

3. Identify strongly connected components: The next step is to check if the constraint 

network contains special loops called strongly connected components. Given a di­

rected graph, a strongly connected component (SC) is a maximal set of nodes inside 

a subgraph such that every node ill the subgraph is reachable from every other node 

in the same subgraph [1]. 
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I 

sc 
• 

I 
I 

I 

,1 ",..--------

," ~~c 
,.~ 6 , ' , 

Figure 2.9: Tree-like Representation and a SC 

The dashed curve in Figure 2.9 shows a strongly connected component. Note that the 

loop between F and L is inside the loop composed by F, L and I. Thus, the latter is 

considered as the SC because it is maximal. Serrano's approach treats a SC as a cycle 

of constraints that must be solved simultaneously through a numeric solver. SCs are 

located by search-based algorithms which traverse the network labelling the visited 

nodes and storing the identified cycles [7] (the graph of Figure 2.8(b) has been written 

as a tree-like representation in Figure 2.9 to help the reader to identify the constraint 

cycle composed by the variables F, L, and I inside the dashed ellipse). 

4. Derive the sequence of constraint satisfaction: With the formation of strongly con­

nected components, the constraint network is now seen as a directed acyclic graph 

(DAG) as shown in Figure 2.10. A fundamental operation on DAGs is to process all 

parent nodes before any of their children. This operation is called topological sorting 

and is shown as a dashed line in the DAG of Figure 2.10. Serrano's algorithm first 

performs a topological sort on the remaining DAG after SCs are identified. Then, the 

algorithm reverses this topological order to produce the sequence of satisfaction. Thus, 

according to Figure 2.10, the sequence of satisfaction after the reverse topological sort 

is: SC-Y-H-W. In other words: 

• calculate the values of F, L, and I within the SC node, by solving the system of 

equations composed by C2, C5 and C6, using a numeric solver; 
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• calculate Y using Cl; 

• calculate H using C4; 

• calculate W using C3' 

.-
I 
\ 

.... , 
\ 
I 

Figure 2.10: Topological Sorting in a Directed Acyclic Graph with SCs 

Note that all the necessary information to calculate a variable is provided either by 

known variables (such as (7 and M when calculating Y through Cl) or previously 

satisfied equations (such as Y when calculating H through C4). 

Serrano handles under- and over-constrained situations by counting the number of con­

straints (c) and the number of unknown variables (u). If c > u the system is over­

constrained. The system is under-constrained if c < u. When the system is over-constrained, 

there will be unmatched constraints in the bipartite graph that may prove to be either re­

dundant or conflicting. In this case, the subset included in the matching is evaluated. Next, 

the unmatched constraints are used to verify the results of the evaluation. If an unmatched 

constraint can be satisfied using the results obtained in the bipartite matching, it is con­

sidered as redundant. On the contrary, if an unmatched constraint cannot be satisfied it is 

considered as conflicting. When the constraint network is under-constrained, Serrano asks 

the user to either fix variables or insert more constraints. 

Serrano claims that at a feasible solution there are often as many inequality constraints 

satisfied by the equality condition (=) of the inequality ($), as there are design variables. 

In addition, at a point in the space which produces a feasible solution, not all inequalities 

are active while other behave as equalities [92]. Therefore, Serrano uses the maximum 

matching in the bipartite graph as a starting point to determine a possible constraint set 
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which defines a solution. Then, inactive constraints are used to check on the values of the 

computed parameters and may either prove to be redundant or conflicting. 

The global graph-based approach has proven to be more efficient than numeric and symbolic 

techniques [92]. However, this approach could still be expensive for a large set of equations 

since it derives the sequence of satisfaction from scratch whenever a new constra.int is 

inserted. 

Local Propagation Approach 

In this approach, the directed graph is locally updated to absorb the newly imposed con­

straint. Thus, only part of the current graph is affected. Algebraically, this approach works 

by propagating the value of a variable to all constraints in the constraint set that depend 

on that variable. When the value for an unknown variable is defined, the local propagation 

technique checks its associated constraint (or constraints) to see if only one unknown vari­

able is remaining in the equation. If so, the constraint is solved by making the unknown 

variable the output variable. The new value of the output variable is then propagated to 

the downstream nodes of the network by resatisfying them. 

However, local propagation is only effective for systems of constraints that can be ordered 

into lower triangular form [16, 29]. Figure 2.11 shows two triangular system!>. 

x - 3y + 2z + 5w = 4 

Y + 5z + 3w = 2 

3z + 2w = 0 

w=3 

x2 + 4y3 - 2z2 + 3w = 2 

2y2 + w = 0 

3z3 = 8 

w2 = 5 

Figure 2.11: Two Triangular Systems 

A necessary and sufficient condition to solve a set of constraints through local propagation 
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is that of having a constraint with only one remaining variable, whenever known values 

are propagated to the constraint set. If such a remaining (or unknown) variable cannot be 

identified, it is deduced that the constraint network has a set of constraints which must 

be solved simultaneously (i.e. a constraint cycle) and a numerical solution is required. 

Figure 2.12 shows a system of constraints which can not be triangulariscd and therefore 

forms a constraint cycle. 

x - 3y + 5w = 4 

x + 2y + 3t = 0 

3z + 2w - 5t = 2 

2z - 3w + 2t = 3 

5z + 4w - 3t = 5 

Figure 2.12: A Constraint Cycle 

The local propagation approach identifies output variables for each constraint through a 

set of methods. Each method is a procedure which is invoked to satisfy the constraint, i.e. 

it defines how to calculate the value of the output variable given the value of the input 

variables. For example, the constraint a = b + c would present the following methods: 

a _ b + c, b _ a - c and c - a - b, where - denotes assignment, in contrast to =, which 

denotes the equality constraint. Some methods allow multiple variables to be considered 

as output at the same time (multi-output methods). For example, suppose that x and y 

are variables that represent the Cartesian coordinates of a point. Similarly, the variables 

p and 0 represent the polar coordinates of the same point. To keep this representation 

consistent the following two methods could be defined: c: (x, y) - (p cos 0, p sin 0) and 

c: (p,O) _ h/x2+y2,arctan(x,y)). These method graphs are respectively shown in 

Figure 2.13 where the constraint c is represented as a square and the variables as circles. 

(a) (b) 

Figure 2.13: Multiple Output Methods 
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Researchers in this subject also refer to this approach as an incremental technique. Such 

techniques have been recognised as suitable to achieve interactive performance [117, 32]. 

This section presents current systems which are based on the local propagation approach. 

DeltaBlue is an incremental constraint solver based on constraint hierarchies [36]. The 

constraint hierarchy theory (how strongly a constraint should be satisfied [13]) is introduced 

to define the sequence of constraint satisfaction and to help the solver in handling under­

and over-constrained networks. 

When using DeltaBlue, the user is required to specify strength attributes to all the con­

straints involved. A strength value for each variable is then derived by DeltaBlue to predict 

the effect of inserting a new constraint. This information is called the walkabout strength of 

the variable that is defined as follows: 

When variable v is determined by method m of constraint c (Le. v E c) the walk­

about strength of variable v is the minimum of c's strength and the walkabout 

strengths of m's input. 

If a variable is not determined by any constraint then its walkabout strength is defined as 

the weakest value. To illustrate the concept of walkabout strength consider Figure 2.14. 

This figure shows part of a directed graph which is used by DeltaBlue to represent the 

current solution for a set of constraints. 

strong 

weak 

Figure 2.14: Walkabout Strengths of Output Variables 

In this figure, the method c +- a - b is chosen to satisfy the required constraint cl : a = 

b + c. In an increasing order, the strengths used are weak, strong and required. Thus, 

the walkabout strengths of variable c (output variable) is weak, because it is the minimum 

strength of the constraint c1 (required) and the input variables a and b for the chosen 

method (strong and weak). 

When a new constraint is inserted, DeltaBlue incrementally accommodates this constraint 
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into the current solution. This is achieved by selecting the weakest variable associated 

with the constraint as the potential output. If the constraint is weaker than the weakest 

associated variable then the constraint cannot be satisfied. 

weak 

(a) 
strong 

weak 

(b) 
strong 

weak required strong 

strong 
(c) c ---g---&----0 

weak strong 

weak required required 

(d) b ---@---
strong weak strong strong 

strong weak required required 

(e) [£Z}--@---@---
strong strong strong strong 

Figure 2.15: Constraint Insertion in DeltaBlue 

Figure 2.15 shows the process of inserting a constraint. Figure 2.15(a) shows the initial 

constraint network. In Figure 2.15(b), a strong constraint on d (c5) has been inserted. 

Since the walkabout strength of variable d is weaker than that of constraint c5, the algorithm 

sets d as the output of c5. As a result, variable d becomes the output of constraints c4 and 

c5. This situation is called constraint conflict and must be avoided since it does not make 

sense to have the value of one variable being calculated by two different constraints. 

To avoid such a conflict, the algorithm revokes constraint c4 which previously flowed into 

d and caused its strength to be set as weak. This leads to the situation shown in Fig­

ure 2.15( c). Note that now the walkabout strength of variable d is set as strong because of 

constraint c5. Since constraint c4 is stronger than the walkabout strength of its variables 

c and d, the algorithm knows that constraint c4 can be satisfied. Thus, c is chosen as the 

output variable since it has the weaker walkabout strength and c4 is re-satisfied in the new 

direction, as shown in Figure 2.15(d). This causes the constraint flowing into variable c to 

be revoked and this constraint propagation process continues until the algorithm finds a 

constraint that can not be satisfied. This is the case with constraint c2 in Figure 2.15(e) 

where c2 is weaker than the walkabout strength of its variables. In such cases, the constraint 

is left unsatisfied which terminates the algorithm. The dotted lines for constraint c2 mean 
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that its methods are temporarily unused. If constraint c5 was weaker than the walkabout 

strength of variable d (e.g. very weak), it would have remained as unsatisfied. 

DeltaBlue has been used as an equation solver for the WAYT Why-A re- You- There? system 

presented by MantyHi [67]. This system has been designed to support preliminary design 

by allowing the user to manipulate conceptual geometric entities and to specify their inter 

dependencies as a set of equations that are maintained by DeltaBlue. However, DeltaBlue 

is limited to a simple domain (only linear equations), despite its significance for interactive 

applications. As pointed out by Miintylii, a more elaborate constraint satisfaction and 

propagation mechanism is required. 

Sky Blue [90] is a successor of the DeltaBlue algorithm by allowing the presence of cycles 

and multi-output methods. When a cycle is encountered, several external cycle solvers a.re 

called that try to find values for the cycle output variables. For example, if all constraints 

are linear equations, a cycle solver incorporating a simultaneous linear equation solver could 

produce values that satisfy the constraints inside the cycle. However, the algorithm can also 

detect constraint cycles which can not be satisfied by the available cycle solvers. In this 

case, the variables inside the cycle are left invalid and the downstream method graphs that 

depend on that cycle are not executed. 

When trying to satisfy a multi-output constraint using one of its outputs, SkyBlue uses 

backtracking when faced with constraint conflicts at a downstream node. In this case, 

the algorithm backtracks to reach the original constraint in order to try another output. 

However, there is no guarantee that this new attempt will not find another constraint 

conflict. This process could take exponential time [117]. In addition, according to the chosen 

methods the algorithm might report a cycle when in fact it is possible to find an acyclic 

solution. Sky Blue has been used as an equation manipulation tool in the Pika simulation 

system [3]. Pika constructs simulations in domains such as electronics or thermodynamics 

by collecting algebraic and differential equations representing relationships among objects 

attributes. 

Hosobe et al. have presented a similar incremental algorithm based on constraint hierarchies 

for satisfying linear constraints [50]. The algorithm decomposes the method graph into 

subgraphs called constraint cells. A constraint cell is a set of variables and constraints where 

each variable and each constraint can belong to only one constraint cell in the solution graph. 

Hosobe's algorithm associates the concept of walkabout strength with each constraint cell 
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and not with variables as in DeltaBlue. In fact, given a constraint cell p, the walkabout 

strength of p is the weakest among p's internal strength and walkabout strengths of cells with 

variables adjacents to p. When a constraint is inserted, the algorithm identifies 'victimised' 

constraint cells with weaker strength that will absorb this insertion. Thus, the constraint 

dependency is updated and a new constraint cell partitioning is produced. Figures 2.16(a) 

and 2.16(b) shows how Hosobe's algorithm uses the partitioning of cells (boxes with round 

corners) to solve the constraint problem illustrated in Figures 2.15(a) and 2.15(b) 

strong weak 

weak 
(a) 

~~ 
(b) ~T_i~~J--

weak weak 

required required 

strong strong 

Figure 2.16: A Method Graph Partitioned into Constraint Cells 

strong 

Incremental constraint satisfaction algorithms based on constraint hierarchies force the user 

to specify a strength value for each and every constraint. Therefore, this could obstruct the 

designer's train of thought since they need some understanding about how the algorithm 

works. Thus, less restrictive approaches are required to support the designers. 

Vander Zanden has proposed an incremental algorithm for solving systems of linear con­

straints [117], which does not depend upon constraint hierarchies. In this approach, a 

directed graph is also used to represent the dependency between constraints and variables 

and to define the order of constraint satisfaction. When a new constraint is inserted, the 

constraint-variable dependency is locally updated. All the constraints are equally satisfied. 

However, nonlinear constraints and constraint cycles are not allowed. 

2.3 Geometric Constructive Approach 

In this approach, constraints are not translated into a system of equations as in the 

Equation-based approach. Instead, a set of constructive steps is provided which place 

geometric elements relative to each other. This is achieved through rigid body transfor­

mations according to the degrees of freedom of the geometric elements. The techniques 
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developed under this approach can be divided into two main categories: rule-based and 

graph-based. 

2.3.1 Rule-based Approach 

Rule-based constructive solvers apply rewrite rules to discover and execute the construction 

steps. Briiderlin presents a Prolog-based system for building 3D geometric objects using 

geometric constraints [15]. First, a symbolic solution plan is determined by applying geo­

metric rules on a set of geometric Prolog facts. Then, the solution is numerically determined 

by procedures written in Modula-2. For example, consider the following geometric prohlem 

written as a set of Prolog predicates: 

c(P1, [100,100]). 

c(P2, [200,100]). 

d(P1, P3, 75). 

d(P2, P3, 80). 

d(P3, P4, 50). 

s(P2, P4, 90). 

/* the coordinates of point PI are (100,100) * / 
/* the coordinates of point P2 are (200,100) * / 
/* the distance from PI to P3 is 75 * / 
/* the distance from P2 to P3 is 80 * / 
/* the distance from P3 to P4 is 50 * / 
/* the slope between points P2 and P4 is 90 * / 

The first two predicates fix points PI and P2 (known geometry) by specifying their Cartesian 

coordinates. The next three predicates declare geometric constraints specifying the distance 

between two points. Finally, the last predicate specifies that point P2 and P4 have the same 

:J: coordinate (Le. the slope of a line passing through both points is 90°). 

Given this database of Prolog predicates, a set of geometric rules are applied to derive a 

symbolic solution. These rules are of the form if L then R (or L => R) and express geometric 

knowledge based on a ruler-and-compass construction basis. For this particular problem, 

the derived solution is as follows: 

c(P1, [100,100]). 

c(P2, [200,100]). 

c(P3, intersection(circle(c(P1), 75), circle(c(P2), 80))). 

c(P4, intersection( circle ( c(P3), 50), line( c(P2), 90))). 

This constraint satisfaction sequence is interpreted as: 
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1. fix the positions of points PI and P2; 

2. calculate the position of point P3 by intersecting the circle centered in PI with radius 

75 and the circle centered in P2 with radius 80; 

3. calculate the position of point P4 by intersecting the circle centered in P3 with radius 

50 and the line that passes through P2 with slope 900
• 

PI 1100,100) P2(200,1001 

75 80 

P4 

.. 
x 

Figure 2.17: Geometric Solution for a Symbolic Rule-based Problem 

Note that the sequence of constraint satisfaction is constructed from known to unknown 

geometric entities. Note also that evaluating some of these operations algebraically may 

result in more than one solution as for example when calculating point P3 by the intersection 

of two circles. In this case, Briiderlin uses implicit order information of points given by the 

sketch. When the intersection of the two circles with centers PI and P2 is performed, it is 

possible to decide which of the two intersection points is on the right and which is on the 

left side of the line going from PI to P2. The default solution for Briiderlin is "the one that 

corresponds to the sketch measured by this criterion, and therefore looks most similar to 

the sketch". 

Recently, Briiderlin has extended his work to support automatic definitions of constraints 

through direct manipulations [100]. Other similar rule-based solvers are reported in [2, 106, 

112, 116]. Although this approach is faster than pure numeric or symbolic approaches, ex­

cessive time is still required to find a constraint satisfaction sequence through the searching 

and matching of rules. 
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2.3.2 Graph-based Approach 

In the graph-based approach, a graph is used to represent a set of constraints. In this 

graph, nodes represent geometric entities and edges (arcs) represent geometric constraiuts. 

Current graph-based techniques falls into two categories: global and local propagation. 

Global Approach 

In the global approach, the geometric constraints are first represented in an undirected 

graph. This undirected graph is then analysed and a plan of construction steps is derived. 

Each construction step is then executed by satisfying constraints algebraically. 

Kramer has proposed a new technique called Degrees of Freedom Analysis that is able to 

automatically derive a sequence of actions to satisfy a set of given geometric constraints 

[60]. To satisfy a geometric constraint, the degrees of freedom (DOF's) of a geometric 

entity are consumed by moving the geometric entity through operational transformations. 

Two fundamental operations are used to satisfy binary constraints: Action Analysis and 

Locus Analysis. Action Analysis searches for those constraints where one of the geometric 

entities is "fixed-enough" so that the other geometric entity can be moved to satisfy the 

constraint. If the "fixed-enough" concept can not be applied, the algorithm tries to satisfy 

the constraint through Locus Analysis. Locus Analysis identifies the intersection of the 

locally determined loci of two partially constrained geometric entities to satisfy a specified 

geometric constraint between them. To illustrate Kramer's approach, consider the following 

example. 

(a) (b) ... --- ... ,II' ... , G 
I ' I , 

I \ 

.. ___ .... \" ... c--'{ 
Ls U 

p. 
L 

Figure 2.18: A Geometric Constraint Problem and its Graph Representation 
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Figure 2.18( a) presents a set of geometric entities with the following configuration: 

• circle C with fixed position, orientation and radius; 

• infinite line L with fixed position and orientation; 

• a fixed point P; 

• line segment L, with fixed length and free to rotate and translate in the same plane 

as C and L; 

• circle G which is free to translate and change its radius. 

Additional geometric constraints to be solved are: 

• C1: dist:point-point(end-l(L,), P,O); 

/* the distance from the first end point of L, to point P is 0 * / 

• C2: dist:point-point(end-2(L.), center(G), 0); 

/* the distance from the second end point of L, to the center of circle G is 0 * / 

• C3: dist:line-circle(L, G, 0); 1* the distance from line L to circle G is 0 * / 

• C4: dist:circle-circle(C, G, 0). /* the distance from circle C to circle G is 0 * / 

Figure 2.18(b) shows the graph representation for this constraint problem. Darkened nodes 

represent grounded (fixed) geometries. Geometric constraints are shown as arcs in the 

graph. Kramer's approach first traverses the graph searching for those constraints that can 

be solved using Action Analysis. Thus, constraints CI, C3 and C4 can be satisfied in this 

order since P, Land C are respectively grounded which allows the other entity to be moved 

to satisfy the constraint. Constraint C2 cannot be satisfied by Action Analysis because L, 

and G are partially constrained and therefore both are not "fixed_enough" in relation to 

each other. In this case, Locus Analysis takes place. 

According to its degrees of freedom, the locus for the line segment L, is a circle shown as 

Lc in Figure 2.19. Similarly, the locus for the circle G is a parabola shown as Lp. The 

intersection of these two loci is then performed. Since multiple intersections are possible, 

the user is required to choose one of them. Then, Action Analysis is again performed 

to move L. and G towards the chosen solution, which grounds them both. The final 
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solution for this geometric problem is shown in Figure 2.19. To implement Action and 

Locus Analysis, Kramer has proposed a set of specialised routines called plan fragments. 

These routines specify how the configuration of a set of rigid bodies must be changed to 

satisfy a set of constraints. Clearly, one drawback of this approach is the difficulty to 

write plan fragments for each specific geometric problem. Recently, Kramer has presented 

a methodology that uses a specific knowledge base of rules to automatically synthesize plan 

fragments [10]. Although the rules are difficult to write Kramer argues that the total effort 

to write and debug these rules is less than writing every piece of code. He intends to extend 

this methodology to more complex constraints and geometries. 

Figure 2.19: Solution for the Constraint Problem of Figure 2.18 

An acyclic geometric constraint graph can easily be solved by Kramer's approach by iterative 

applications of action and locus analysis. In contrast, geometric loop problems are more 

complex. In this case, Kramer's algorithm uses a technique known as contraction [16]. This 

technique works by traversing the constraint graph and contracting sets of three nodes into 

a single node which is treated as a rigid body. The contraction process involves two action 

analyses and one locus analysis. For example, in Figure 2.18(b) consider the grounded 

nodes P, Land C as a unique node referred to as RB (for Rigid Body). Thus, the graph 

now contains three nodes RE, G and LB' To contract these three nodes, the algorithm 

applies action analysis to fix G and L8 with respect to RB and then applies locus analysis 

to fix G and LB with respect to each other. Given a geometric loop problem, contraction 

is iteratively applied until the entire graph is contracted into a single node [59]. However, 

Kramer's algorithm is unable to solve 2D geometric problems that involve the contraction 

of more than three nodes since it is necessary to use a numeric solution technique, such 

as the one suggested by [16]. Furthermore, the system still requires re-satisfaction from 

scratch when a new constraint is inserted into the constraint graph. 
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Pabon has presented a system referred to as HyperGEM [75] to support preliminary de­

sign. HyperGEM is also based on the Degrees of Freedom Analysis technique to satisfy 

geometric constraints for a specific set of configurations. The system allows the definition 

of engineering constraints which are solved through numeric techniques. After satisfying 

the engineering constraints, the values of variables specifying dimensional attributes are 

propagated to the set of geometric constraints. Figure 2.20 shows the basic architecture 

of the HyerGEM system. If a new geometric constraint is inserted, the entire set of geo­

metric constraints is satisfied from scratch. The same happens with respect to the set of 

engineering constraints due to the insertion of an new engineering constraint. 

engineering numeric .. 
constraints equation solving 

geometric 

'--_e_nt_ill_"es __ --' ~ ! 
specialized constructive updated .. .. 

r---------./ geometric 

graph algorithms geometry geometry 

constraints 

Figure 2.20: HyperGEM's Architecture for Constraint-driven Design 

Bouma presents an algorithm that solves geometric constraint problems by creating and 

combining sets of geometries and constraints to form rigid bodies called clusters [14]. Given 

the undirected graph representing the geometric constraint problem, the algorithm first 

places any two geometric elements (graph nodes) with respect to each other, by means of 

construction steps. 

The construction steps such as placing a point on a line, placing two lines at a given 

angle etc, correspond to solving standardised small systems of algebraic equations. The 

algorithm stops when no further cluster formation is possible. Once a cluster is formed, 

the algorithm starts constructing another cluster in the same way. All generated clusters 

are then recursively grouped by placing one with respect to the other, using a rigid body 

transformation. 

To illustrate Bouma's approach, consider the user sketch of Figure 2.21( a), annotated with 

constraints, which is translated into the undirected graph of Figure 2.21(b). In this graph, 

d is a distance constraint, a an angle constraint and p represents the perpendicularity. A 
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tangent constraint is expressed as a distance constraint between the centre of the circle and 

the line tangent to the circle. All the other graph edges represent incidence. Line segments 

are defined by specifying that the distance from the endpoints to the undprlying line is 

zero. For instance, in the sketch of Figure 2.21(a), line segment a is given by ZPfO distances 

from points A and B to its underlying line. Similarly, arcs are defined by distances from its 

endpoints to the centre of the underlying circle with fixed radius. For this reason, there is 

no node in the graph corresponding to arc c, but only distances to the underlying circle's 

centre X. 

(a) 
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Figure 2.21: Sketch Example and Corresponding Undirected Constraint Graph 

To start forming a cluster, the algorithm first picks any two geometric elements that are re­

lated by a constraint and place them with respect to each other. For example, the algorithm 

could start with nodes a and B (dotted curve 1 in Figure 2.22(a». These two elements 

are now known and all other geometries are unknown. Next, the algorithm looks for any 

unknown geometric element with two constraints relating to the known geometric elements. 

Note that node b has two constraints related to the current known elements (distance and 

angle constraint). Thus, it is placed with respect to the known ones by a construction step 

(curve 2). Now, the placed geometric element b is also known. This process is repeated and 

nodes C (curve 3) and X (curve 4) are also inserted into the known set. Since no unknown 

geometric element with two constraints related to the known set is found, the algorithm 

stops and the first cluster U of Figure 2.22(b) is complete. 
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Figure 2.22: Cluster Formation from the Undirected Graph 

Note that, at this point, the algorithm does not know where point A is situated and how 

far the arc c extends. Thus, the algorithm tries to form new clusters. In this example, two 

other clusters are determined. One consists of the circle center X, the points D and E and 

the line segments d and e (cluster V). The other consists of point' A and the line segments 

a and e (cluster W). 
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Figure 2.23: Clusters V and W of Figure 2.21 

Note that for subsequent cluster formation, one of the two initial geometric elements may 

already belong to an existing cluster. Figure 2.23 shows these two remaining clusters. After 

all clusters are formed, the algorithm starts recursively placing one cluster with respect 
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to the other, using rigid body transformations. For example, the algorithm could start 

by fixing cluster U. Then, since clusters U and W shares the line segment a, cluster W 

is positioned with respect to cluster U through this line segment. Finally, by positioning 

cluster V with respect to cluster W (through line segment e) the sketch of Figure 2.21 is 

generated. 

Owen presents an algorithm that consist of breaking the graph into small subgraphs of 

constraints that can be solved quadratically and in turn combine these subgraphs to get the 

final solution [74]. The set of geometric constraints are first translated into an undirC'cted 

connected graph. An undirected graph is said to be connected if every pair of nodes is 

connected by a path [25]. An articulation pair in an undirected connected graph G is a 

pair of nodes whose removal disconnects G. 

P5 ~-----tot P4 
10 

Figure 2.24: A Simple Dimensioned Drawing with Its Constraint Graph 

Owen's algorithm has been used to develop the Dimensional Constraint Manager which is a 

constraint-based design system commercially available by D-Cubed Ltd [26]. Figure 2.24( a) 

shows a simple drawing with dimensional constraints and its respective undirected constraint 

graph in Figure 2.24(b). 

Similarly to Bouma's approach, Owen's algorithm decomposes the constraint graph into 

smaller subgraphs that can easily be solved quadratically. However, the decomposition 

process is different. First, DCM looks for one articulation pair in the constraint graph 

and splits the graph into two subgraphs. Note that in Figure 2.25 the nodes P2 and P5 

define an articulation pair which is, in turn, used to break the original constraint graph into 

Subgraph I and Subgraph II. Next, the splitting process is repeated for each subgraph. 

For instance, in Subgraph I the nodes Ll and PI form another articulation pair. Thus, 

AH'lMBn AllSM3AINn smTI 
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this subgraph is also decomposed through the articulation pair deriving the Triangle 1 

subgraph. The remaining subgraph can also be broken since the nodes L5 and PI form 

another articulation pair. Thus, Triangle 2 and Triangle 3 subgraphs are also determined. 

The process is equally repeated for Subgraph I I. The algorithm stops when no further 

decomposition is allowed (no more articulation pairs are found). Finally, Ow('n's algorithm 

combines the triangles in a similar way to that of Bouma's when grouping dustprs. At 

the end of the splitting process, only triangle subgraphs and/or single edges arp expected. 

Remaining subgraphs with more than three nodes are solved numerically. 

Subgraph [ 

Triangle 2 

/ 
Triangle 3 

Subgraph Jl 

Figure 2.25: Constraint Graph Decomposition in DCM 

Although the global approach has been recognised as suitable for interactive response [89], 

its constraint re-satisfaction process may hinder immediate feedback for engineers, when 

dealing with very large set of geometric constraints. Besides, this approach does not provide 

tools to support the representation and satisfaction of engineering constraints [5], which 

restricts its application to preliminary design. 
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Local Propagation Approach 

In the local propagation approach, constraints are satisfied one at a time following the 

user's design sequence. Every geometric constraint inserted is locally accommodated into 

the current solution graph. Constraints are always specified from the known to the unknown 

geometries and are solved incrementally. 

Based on this approach, Rossignac proposes a technique whereby CSG representations are 

specified through graphic input, in terms of constraints between boundary elements [86,87]. 

Geometric constraints imposed on CSG solid models are independently evaluated through 

operational transformations in a user-specified-order. Although this technique avoids the 

problem of converting the constraints into a large set of equations, it poses two problems: 

1. the user is responsible for deriving the sequence of operations as well as dealing with 

conflicting constraints; 

2. the technique is not able to solve problems where many constraints must be satisfied 

simultaneously (constraint cycles). 

At Leeds University, Fa has extended Rossignac's approach to support assembly model­

ing within virtual environments. He has presented an Interactive Constraint-based Solid 

Modeler (ICBSM) which avoids the re-satisfaction of constraints during constraint insertion 

[32]. In this approach, a directed graph is used to represent a geometric constraint problem. 

Geometric constraints are automatically recognised through direct manipulations within a 

virtual environment. A technique referred to as Allowable Motion is used to support cou­

straint satisfaction and direct manipulations of under-constrained models, according to their 

DOFs. When a geometric entity is being manipulated, it propagates rigid body transfor­

mations to its children nodes, according to the dependency established by the arc direction. 

Figure 2.26 illustrates the principles of ICBSM. In Figure 2.26( a) the user can grab and 

manipulate block B since it is free to translate and rotate in space. The user can specify an 

Against constraint between the bottom face of block B and the top face of block A (dark 

faces) by moving block B towards block A. An Against constraint is recognised when the 

two surfaces are within a predefined tolerance. This constraint is represented in the directed 

graph as shown in Figure 2.26(b). At this moment, the degrees of freedom of block Bare 

re-calculated and its current allowable motion is captured and maintained in the graph. For 

example, in this case, the allowable motions for block B are translation on the plane (top 
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face of A) and rotation about any axis normal to the plane of block A's top face. If the user 

translates block A, this motion is propagated to block B. Next, by moving block B to the 

right, ICBSM similarly recognises that a Coincident constraint can be imposed between the 

right faces of both blocks. Thus, the final geometry and direct graph are again updated as 

shown in Figure 2.26(c). 

Moving Direction .. 

Figure 2.26: Integrating Geometric Constraints and Direct Manipulations in ICnSM 

By introducing Allowable Motion and rigid body transformations, Fa avoids the updating 

of geometry through the use of numeric/algebraic techniques. This provides faster geomet­

ric constraint solution. Munlin [70] has extended Fa's work by supporting more complex 

assembly geometric constraints such as screw fit, gear contact etc. 

However, Fa's ICBSM is unable to solve geometric constraint loops when simulating closed­

loop mechanisms. Recently, Tsai has solved this problem by introducing an incremental 

geometric constraint solver [110]. Nevertheless, as mentioned before, these approaches are 

unable to represent engineering constraints and are therefore not adequate to be used in 

the early stages of design. Similar techniques have been reported in [6, 30, 31, 57]. 

2.4 SUlumary and Conclusions 

This chapter has presented a survey of recent progress in constraint-based design. Two main 

approaches have emerged to support engineering design defined in terms of constraints: the 

Equation-based approach and the Geometric Constructive approach. The Equation­

based approach translates every constraint into an equation and thus allows the coupling of 

geometric and engineering constraints. For this reason, researchers argue that this approach 

provides a better mathematical platform to support preliminary engineering functions such 

as Tolerance Analysis and Sensitivity Analysis [23,27]. Although the numeric [62,61, 101] 
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and symbolic [18, 56] approaches are general enough to solve these equations, they are 

time consuming and not robust. The global graph based approach [93] provides a better 

performance but still could be expensive for large sets of constraints, since it satisfies the 

constraint network from scratch, whenever a new constraint is inserted. Algorithms based 

on the local propagation approach provide the best performance for equation-based systems 

[50,91,117]. Zanden's approach seems to be a better algorithm for supporting design since 

it doesn't forces the designer to specify strength values for each constraint as in Sky Blue. 

However, this algorithm doesn't handle nonlinear equations and constraint cycles in its 

current form. 

The Geometric Constructive approach deals mainly with geometric constraints. The tech­

niques developed under this approach mainly use geometric knowledge and degrees of free­

dom analysis to provide efficient constraint satisfaction algorithms. The rule-based approach 

[2, 15, 100, 116, 112] has proven to be still computationally expensive due to its rule uni­

fication process. The global graph-based approach [14, 16, 60, 74], although more efficient 

than pure numeric solvers, still perform the constraint satisfaction from scratch whenever 

a new constraint is inserted. Better computer performances have been achieved with the 

algorithms based on the local propagation approach [6, 32, 110]. However, this approach 

satisfies the constraints one at a time, in response to the designer's sequence. 

Inasmuch as the Geometric Constructive Approach provides constructive steps to satisfy a 

set of geometric constraints, it provides a faster constraint satisfaction process than those 

approaches that rely on numeric techniques [89]. Furthermore, since it provides a high level 

representation of the geometric entities this approach has the potential to support direct 

manipulation techniques which allow the development of highly interactive constraint-based 

systems [100, 33]. Nevertheless, the Geometric Constructive approach as a whole doesn't 

provide a unique representation for integrating engineering and geometric constraints. 

A major conclusion from this survey is that most current constraint-based design systems 

re-satisfy the set of design constraints from scratch, to satisfy a newly imposed constraint. 

This can hinder interactive performance when dealing with design models defined with very 

large sets of constraint equations. However, the local propagation approach is the best way 

to support highly interactive constraint-based design systems. Furthermore, the survey also 

concludes that the Equation-based approach is more appropriate for supporting preliminary 

design. 



Chapter 3 

Incremental Engineering 

Constraint Satisfaction 

3.1 Introduction 

This chapter presents a set of techniques for supporting the incremental satisfaction of engi­

neering constraints. A graph structure is used to represent a set of engineering constraints 

which are expressed as equalities. The underlying constraint satisfaction algorithms are 

based on the local propagation approach because it is computationally efficient. These 

algorithms maintain an evolving solution of the engineering constraint set. 

The remainder of this chapter is organised as follows. Section 3.2 shows how engineering 

constraints are represented through a graph structure. Section 3.3 describes an incremental 

equation solver to speed up the constraint satisfaction process. Finally, a summary of this 

chapter is given in Section 3.4. 

42 
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3.2 Engineering Constraint Representation 

3.2.1 Basic Techniques 

This section presents the basic techniques used to represent and solve design collstraints. 

In [103], the term constraint is defined as a relation stating what should be true about one 

or more objects. In the Equation Graph, objects are variables and a constraint equation 

defines a relation among its variables. Thus, the Equation Graph which is also referred 

to as a constraint network is a declarative structure which expresses relations among 

equations and variables. 

The Equation Graph is a bipartite graph that maintains the constraints. The two disjoint 

sets of this bipartite graph are the class of nodes representing the constraint equations (C) 

and the class of nodes representing the variables (V). Thus, the set E of edges (arcs) is 

defined as: E = {(v,c) E V X C I v is constrained by c (i.e. v belongs to c)}. 

Figure 3.1(a) shows how the graph maintains the constraint c1 : a = b + c. In this figure, 

variables are represented as ellipses and constraints as hexagons. Any time a constraint 

is inserted, it is solved for one of its variables (according to the algorithm presented in 

Section 3.3), establishing a constraint-variable dependency in the graph. For example, the 

fact that variable a is chosen to solve for c1 is represented by the arc direction given in 

Figure 3.1(b). In this case, a is called the output variable of c1 while band c are called 

the input variables. This means that once given the values of the input variables band c, 

constraint c1 can be satisfied. The value of a variable v can be fixed through an equation 

such as Ci : v = k, k E JR. 

(a) 

~ 
Figure 3.1: Constraint Representation and Constraint Satisfaction 

Method Gmphs 

A constraint is said to be satisfied when the value of its output variable is calculated. Dif­

ferent constraint satisfaction techniques are provided, according to a constraint '8 linearity. 

Each linear constraint is associated with methods, called method graphs, which are used 
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to satisfy the constraint. These methods are procedures that read the values of the input 

variables and calculate the value of the output variable [117,90,50]. For example, consider 

constraint c1 : a = b + c, in Figure 3.1. This constraint can be satisfied by any of the 

following methods: a := b + c, b := a - cor c := a - b (see Figure 3.2). 

(a) (b) (c) 

~ 
Figure 3.2: Satisfaction Method Graphs for c1 : a = b + c 

This means that a constraint can be satisfied by the execution of any of its methods. The 

selected method only depends on the output variable. In addition, in Figure 3.2( a), the 

constraint c1 could be maintained by executing the method a := b + c, even if the value of b 

or c (or both) were changed. This property is very important for design circumstances where 

the designer wants to try different configurations by only changing the value of variables. 

Given a set of constraints with their selected output variables, the constraint network is 

viewed as a directed bipartite graph. For example, Figure 3.3 shows an Equation Graph for 

the constraints c1 : a = b + c and c2 : e = a + d. In this graph, real numbers attached to each 

constraint node (Le. 100, 150) indicate the order of satisfaction with lower numbers being 

satisfied before higher numbers. Thus, according to Figure 3.3, the order for satisfying the 

constraints is el, c2. 

~-0 150 

~b+< =;;]teD 
Figure 3.3: Number Attachment to Represent the Satisfaction Sequence 

Nonlinear Constraints 

If the engineering constraint is a nonlinear constraint, then it is symbolically processed 

according to its output variable [28,21,81]. The NAG-Fortran [71] library is used to solve 

nonlinear constraints. An arbitrary solution is chosen from the multiple solutions presented 

in a nonlinear constraint. 
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A constraint's linearity is automatically determined when the constraint is created and set 

as a flag for the constraint node. However, when updating the constraint dependency within 

the Equation Graph, it is not known if a constraint is linear or nonlinear. The identification 

of the constraint's linearity takes place only during constraint satisfaction, where linear 

constraints are satisfied through method graphs and nonlinear constraints through symbolic 

processing. 

3.2.2 Engineering Constraint Networks 

Given a set of engineering constraints with their selected output variables, the engineering 

constraint network is viewed as a directed bipartite graph. Consider, for example, the four­

bar mechanism in Figure 3.4( a) where Barl is fixed. This figure represents a simple design 

problem (adapted from [45]), where the length of each bar is given by d, a, band e. From 

Figure 3.4( a) the Freudenstein's equation, which relates the input angle 8 to output angle 

1/J as a function of the sizes of the linkages, is expressed as: 

where, 

el 

e2 

c3 

(a) Four-bar linkage 

kl = die; 

k2 = dla; 

k3 = (a2 
- b2 + c2 + d2 )/2ac. 

(b) Equation graph 

Figure 3.4: Four-bar Linkage and a Solution Graph 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

An Equation Graph, which consists of the engineering constraints el, c2 and c3, is shown 

in Figure 3.4(b). In this graph, numbers attached to each constraint node (i.e. 100, 110 
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and 120) indicate the increasing order of constraint satisfaction. Thus, according to Fig­

ure 3.4(b), the order for satisfying the constraints is: c1, c2 and c3. Note that it makes 

sense to satisfy constraint c1 before constraint c2, since variable d is an input variahle for 

c2 and an output for c1. 

Note that for the current graph of Figure 3.4(b) the output variables are d, "2 and "3. If 

the user is satisfied with this configuration and is looking for the calculated values for thpse 

output variables, he needs to specify the values of the input variables (k}, a, b, c) according 

to the current Equation Graph. 

3.3 Incremental Equation Solver 

This section presents an Incremental Equation Solver, referred to as INCES. Based on 

local propagation techniques, this solver is designed to speed up the constraint satisfaction 

process. INCES locally accommodates a newly inserted constraint within the Equation 

Graph. The INCES algorithm has extended Vander Zanden's approach in ordN to support 

preliminary design. As pointed out in Chapter 2, Vander Zanden's approach does not 

support either nonlinear constraints or constraint cycles. This poses a significant drawback 

for design applications since simple geometric relationships, such as distance and orientation, 

as well as some design specifications, give rise to nonlinear constraints [41]. In addition, 

constraint cycles as well as under- and over-constrained situations are constantly emerging 

according to the designer's input and must he handled robustly [16,75]. Therefore,INCES 

has made the following improvements to Vander Zanden's approach: 

• Nonlinear constraints are allowed in the constraint network. These constraints are 

symbolically processed according to their output variable and are solved by a numer­

ical equation solver (Section 3.2.1); 

• Constraint cycles are locally identified and solved. These cycles are evaluated and 

handled according to their constraint states, i.e. fully, under- or over-constrained; 

3.3.1 Inserting Engineering Constraints 

This section discusses how INCES allows the incremental insertion and satisfaction of engi­

neering constraints and also how constraint cycles are locally handled. The following case 
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study (adapted from [93]) is used to illustrate the algorithm. The case study presents the 

problem of designing a cantilever beam. The relevant engineering constraints are pr('sented 

below and their respective geometries are shown in Figure 3.5. 

C1 
MY 

(3 .. 5) ('1- -- = 0 
I 

C2 M - FL = 0 (3.6) 

C3 1- W/I3 = 0 
12 

(3.7) 

C4 y_lI=O 
2 

(3.8 ) 

C5 1\ - 3EI = 0 
£3 

( 3.9) 

C6 </>_FL2 =0 
E1 

(3.10) 

('1 is the bending stress in the beam, I is the cross sectional area moment of inertia, Al is the 

maximum bending moment due to the load F, Y is the distance from the neutral axis to a 

fiber on the surface ofthe beam, J( is the stiffness of the beam and E is the Young's modulus 

of elasticity. L, 1I and Ware the length, height and width of the beam, respectively. </> is 

the slope of the beam. The problem is to identify the values of the dimensions L, 1I and 

W, given </>, M, E, K and ('1. 

L 
~I 

w 

Figure 3.5: The Cantilever Beam Problem 

In building up this problem, each time a constraint is inserted, the INCES algorithm carries 

out the following steps to update the Equation Graph . 

• STEP 1: Search the Equation Gmph to find a free variable to absorb the new con­

stmint. A free variable is a variable that belongs to only one constraint. During 
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this step, the variables of the new constraint are checked for a free variable. If this 

fails, then the algorithm searches for a free variable in the ancestor subgraph of the 

variables of the new constraint . 

• STEP 2: Update the Equation Graph locally. This step locally derives a constraint 

satisfaction plan. If there is a free variable in the new constraint, this variable is 

set as the output of the new constraint. This new constraint is then inserted into 

the constraint satisfaction plan after the maximum numbered constraint of its input 

variables. In situations where a free variable is only available in the ancestor subgraph, 

the constraint satisfaction plan is locally updated from the free variable down to the 

new constraint . 

• STEP 3: Satisfy the Equation Graph locally. This step performs the constraint 

satisfaction process for the affected area of the Equation Graph. 

(a) F (b) 

Figure 3.6: Inserted Free-variable Constraint and its Updated Equation Graph 

For example, consider the case in Figure 3.6(a) where the user intends to insert constraint 

C3 into the Equation Graph which currently consists of constraints C1 and C2. First, the 

algorithm searches for free variables in the inserted constraint and identifies that variables 

Hand Ware free variables for constraint C3 (STEP 1). When updating the constraint 

dependency it is important to have only one output variable for each constraint. This 

corresponds to the triangularisation process for local propagation techniques as explained 

in Section 2.2.3. Therefore, any of these two variables can be selected as the output variable. 

The algorithm chooses, for example, variable W. The next step is to insert the constraint 

in the constraint satisfaction plan (STEP 2). Note that a constraint can only be satisfied if 

the values of its input variables are provided. Thus, this new constraint must be satisfied 
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after the constraints which calculate the value of its input variables. Therefore, C3 must be 

satisfied after CI since variable I is the output variable for CI and input variable for C3. 

Thus, the new constraint satisfaction plan is CI, C3 and C2. The numbers on the constraint 

nodes have been updated to reflect the new constraint satisfaction plan (Figure 3.6(b)). 

Constraint C3 can now be locally satisfied (STEP 3). 

Under certain situations, the inserted constraint may not have a free variable. This is 

the case in Figure 3.7 when one tries to fix the value of variable 4> by inserting constraint 

C7: 4> = 3. Note that variable 4> is not a free variable, since it belongs to constraints C6 

and C7. In this case, the INCES algorithm searches the ancestor subgraph of the variables 

of the new constraint looking for a free variable (STEP 1). A node v is called an ancestor 

of node w if there is a directed path from v to w. The ancestor subgraph of variable 4>, due 

to the insertion of constraint C7, is shown in Figure 3.7. 

I , 
I 

\ 
\ 

Ancestor subgraph ~ ~- - - -
" ,'" "," 

, , , 
, 

",,~~,"~~' 

----------------- . . -----
......... , 

---~C7, 
I ... , ... 

new inserted 
con.,traint 

Figure 3.7: An Ancestor Subgraph 
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\ 
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, , , 

The ancestor subgraph corresponds to the set of constraints that can be triangularised (Sec­

tion 2.2.3) with the inserted constraint C7. The new constraint can only be accommodated 

and solved using local propagation techniques if a triangularised constraint set can be found 

within the ancestor graph (i.e. if there is a free variable within the ancestor graph). How­

ever, sometimes only part of the ancestor graph needs to be processed to accommodate the 

new constraint. This is explained below with an example. 



CHAPTER 3. INCREMENTAL ENGINEERING CONSTRAINT SATISFACTION 50 

The new constraint C7 is the first to be visited in the ancestor subgraph. A constraint node 

is always visited with its associated variables. Therefore, variable ¢ is considered visited 

with C7. Every variable of a visited constraint is checked for the status of free varia.ble in 

order to "absorb" the new constraint. Since variable ¢ is not a free varia.ble, the search 

continues by visiting its ancestor node C6. 

Figure 3.8: Local Propagation During Solution Graph Construction 

During this process, only the input variables are potential candidates to become free vari­

ables. For example, as the construction reaches C6, the algorithm detects that E, Land 

I are free variables, since they belong to only C6 in the ancestor subgraph. Variable E is 

selected as a free variable, in this example. Then, the algorithm starts defining the new 

constraint satisfaction plan by re-writing the constraint dependency in the Equation Graph 

from variable E (STEP 2). Variable E is then set as the output for constraint C6 and its 

constraint dependency is updated as shown in Figure 3.8(b). The algorithm takes care to 

insert C6 before C5 in the satisfaction sequence, since E is now one of C5's input variable. 

1/40 

Figure 3.9: Updated Solution Graph After C7 Insertion 
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Local propagation then continues by setting 4> as the output for C7. Again, the algorithm 

takes care to insert C7 before C6 in topological order because 4> is now one of C6's input 

variables. Therefore, the constraint dependency inside the Equation Graph is rp-written 

without the need to visit other ancestor variables such as those belonging to C2 and Cg. 

Figure 3.9 shows the updated Equation Graph (STEP 2). Finally, only the affected arpa 

of the the graph (constraints C7, C6 and C5) are locally re-satisfied through constraint 

propagation (STEP 3). 

3.3.2 Engineering Constraint Cycles 

If a free variable cannot be found in the ancestor subgraph, as explained in the previous 

section, the inserted constraint cannot be eliminated through local propagation. This means 

that the constraint network contains cycles, as explained in Section 2.2.3. In such situations, 

the INCES algorithm locally solves this set of simultaneous constraints. 

, , , 
I , , 
\ 
\ 
\ 

\ 

, , , 

, 
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"­ --

.. ' .. ' --~--------------- ---
--

Figure 3.10: Current Equation Graph Before Fixing the Value of /{ 
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I 

Figure 3.10 shows the current equation graph when one tries to fix the value of variable /{ 

(constraint CI0), after inserting all the six constraints and fixing the values of 4>, AI and E, 

through constraints C7, C8 and C9, respectively. As can be noted, the ancestor subgraph 

(dashed ellipse) will not have a free variable in this case. In INCES, such constraint sets are 

solved simultaneously, using numerical techniques (Newton-Raphson method). However, 

in order to provide a more efficient solution, the algorithm tries to reduce the size of the 
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Jacobian matrix which is decomposed during each iteration of Newton-Raphson [53, 79], by 

minimising the constraint set to be solved simultaneously. 

First, the algorithm traverses the ancestor subgraph and eliminates those constraints which 

fix the value of a variable (Fix Value constraint, Ci : v = 0:,0: E llt) and keeps their attached 

numbers. These constraints are represented as smaller dashed ellipses in Figure 3.11. The 

number attached to the remaining constraints C2, C5 and C6 are removed since these 

constraints will be solved at the same time. 

I 
I 

I 

\ 
\ 

, 
~ 

~ , 

1050 

Figure 3.11: Constraint Cycle Updating 

MacroConstrailll 
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In order to represent the constraint cycle, the algorithm creates another constraint called a 

MacroConstraint. This constraint is a node in the Equation Graph which contains a set of 

constraints to be solved simultaneously through numerical techniques (larger dashed ellipse 

in Figure 3.11). At this point, if the newly inserted constraint is of the type FixValue, it is 

inserted in the constraint satisfaction plan after the highest-numbered Fix Value constraint 

inside the ancestor subgraph. The MacroConstraint is, in turn, inserted after the inserted 

constraint. If the new constraint is not of the type Fix Value then it is included into the 

MacroConstraint. 

Precautions should be made to avoid taking the variables inside the MacroConstraint as 

the output variables for the subsequently inserted constraints. Therefore, the constraint 

dependency is rearranged in such a way that each variable inside the MacroConstraint is an 
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output for exactly one constraint. For example, in the graph of Figure 3.11, F is an input 

variable for constraints C2 and C6. It must be rearranged so that it becomes an output 

variable to one constraint inside the cycle. 

F •• -. ---... C2 
.,,' 

.' 

L~C5 

I~C6 
Figure 3.12: A Maximum Matching Inside the MacroConstraint 

This interdependency updating is achieved by finding a maximal matching in the bipartite 

graph composed of the variables and constraints inside the MacroConstraint (Section 2.2.3). 

Figure 3.12 presents a maximum matching in the bipartite graph of the MacroConstraint of 

Figure 3.11. The dashed lines indicate the assignments which were not used. Each variable 

in this matching is set as the output of its matched constraint. 

MacroConstraint 
., l 991 , , , 

.... , " ... 
... .t ... , , , 

I 
I 

Figure 3.13: Current Solution After Fixing the Value of ]( 

The constraint dependency inside the MacroConstraint is updated accordingly as in Fig­

ure 3.13. Now, during the constraint satisfaction process in topological order, the algorithm 

relies on numerical techniques when it reaches a constraint cycle and applies the methods 

associated to the other constraints. 
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In addition, when another constraint is inserted, the algorithm avoids visiting the internal 

constraints of a MacroConstraint when searching the ancestor subgraph for a free variable. 

The solution of the constraints inside a MacroConstraint is propagated downstream to the 

remaining set of constraints in the graph. Therefore, the MacroConstraint dof's not have 

any ancestors other than the Fix Value constraints and thus the algorithm saves time by not 

visiting them. Besides, the constraints inside a MacroConstraint will remain nou-triangular 

after the insertion of another constraint. Figure 3.14 shows how a MacroConstraint bf'haves 

inside the Equation Graph. After being calculated through numerical techniques, the values 

of the variables inside a MacroConstraint are just propagated downstream to the descendant 

nodes during constraint propagation. 

MacroConstraint 

991 

1040 

Figure 3.14: Downstream Constraint Propagation from a MacroConstraint 

INCES also handles under- and over-constrained cycles. A constraint cycle is said to be 

under-constrained if it has more variables than equations and it is over-constrained if it has 

more equations than variables. A fully constrained cycle has an equal number of constraints 

and variables. Identifying and correctly solving such cases is very important in real-world 

design .. When the constraint cycle is under-constrained, INCES asks the user to fix the 

value of some variables to make the cycle fully constrained. For example, if the cycle has 

four variables and three constraints, the algorithm asks the user to fix one of the variables. 

For over-constrained cases, excessive constraints are deleted through user intervention. The 

cycle is then solved as shown above. Consistency of over-constrained cycles [55] is not 
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evaluated in the current version of the algorithm. 

Since INCES locally identifies a subset of constraints which is under- or over-constrained, 

it is able to provide efficient debugging tools to help the user analyse and handle such 

situations. This approach is more appropriate for interactive design than previous systems 

which identify under- and over-constrained networks by considering the entire constraint 

graph [61, 93]. 

3.4 Sumluary 

This chapter presented a set of techniques to support the incremental satisfaction of engi­

neering constraints. A directed graph, referred to as an Equation Graph is used to rep­

resent engineering constraints which are expressed through linear and nonlinear equations. 

The chapter also described an incremental equation solver (INCES). The main contribution 

of this solver is that it allows highly nonlinear equations to be incrementally inserted and 

satisfied in the Equation Graph. Engineering constraint cycles are also locally identified 

and solved. Only a small part of the Equation Graph is visited due to a constraint insertion. 

The next chapter discusses how these incremental techniques are extended to support the in­

cremental satisfaction of a coupled set of engineering constraints and geometric constraints. 



Chapter 4 

Engineering and Geometric 

Constraint Coupling 

4.1 Introduction 

Chapter 3 has presented a set of algorithms for incrementally satisfying engineering con­

straints. This chapter shows how these algorithms are extended to support geometric con­

straints. As already pointed out, the coupling of geometric and engineering constraints 

is very important to support early design stages [23]. In fact, the geometric attributes 

of the constituent of a part are in general defined by the satisfaction of engineering con­

straints [23, 75]. This chapter also discusses how the degrees of freedom of geometric entities 

are explored to support direct manipulations of under-constrained geometry. 

The remainder of this chapter is organised as follows. Section 4.2 discusses how geometric 

entities with their respective degrees of freedom are represented in the Equation Graph. 

Section 4.3 presents the equations which are derived from a set of geometric constraints. 

Section 4.4 discusses how the equations derived from geometric entities and geometric con­

straints are coupled with engineering constraints in the Equation Graph. Section 4.5.1 

describes a high level graph, referred to as Relationship Graph, which is used to represent ge­

ometric entities. The techniques used to support direct manipulations of under-constrained 

geometry are explained in Section 4.5. Finally, a summary of this chapter is given in Sec­

tion 4.6. 

56 
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4.2 Representation of Geometric Entities 

This section explains how geometric entities are represented as equations within the Equa­

tion Graph. The values used to represent a geometric entity are referred to as chamcteri~tic 

elements. The degrees of freedom of a geometric entity are associated with these charac­

teristic elements. The basic geometric entities supported are lines, circles and arcs. In the 

following, the thesis explains how these geometries are represented. 

4.2.1 Line Segments 

The representation of a geometric entity in the Equation Graph is achieved through the 

concept of soft constraints. Soft constraints are constraints imposed on the initial (default) 

values of the characteristic elements of a geometric entity to express its degrees of free­

dom. This means that there is a one-to-one mapping between degrees of freedom and soft 

constraints. 

For example, a line segment a is represented by its starting point Pl(Xl a, Yla), slope () and 

its length a, as in Figure 4.1(a). Thus, when a line segment is created, soft constraints are 

imposed on these variables, to represent translational, rotational and dimensional DOFs. 

A line segment in the plane has four degrees of freedom which are represented by the soft 

constraints on the characteristic elements. I.e. 

2 Translational DOFs -

1 Rotational DOF -

1 Dimensional DOF -

soft constraint on (Xla, Yla) 

soft constraint on () 

soft constraint on a 

In addition, constraints C1 and C2 below are used to calculate the coordinates of the end 

point P2(X2a, Y2a) to display the line segment 

C1 : X2a = Xl a + a X cos () 

C2 : Y2a = Yla + a X sin () 

(4.1 ) 

( 4.2) 

The constraint network (Equation Graph) for a line segment is shown in Figure 4.1(b). 
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(a) (b) 

a 

\ e 
I 

_____ 1. ______ _ 

Pt( xla ,yla ) 

Figure 4.1: Equation Representation for a Line Segment 

The direct manipulation of geometric entities is supported by changing the values of the 

soft constraints. For example, when the user wants to rotate a line segment, the values 

of e are updated and propagated to the constraint network, according to the constraint 

dependency. 

4.2.2 Circles 

A circle is represented by its center and radius. Note that in 2D, a circle has only three 

degrees of freedom: two translational and one dimensional. The translational degrees of 

freedom are represented by imposing soft constraints on the circle center and the dimensional 

degree of freedom by imposing a soft constraint on the radius. Therefore, given the circle 

C( Cr , Cy, r), the following soft constraints are created: 

C1: Cx = kli 

C2: Cy = k2i 

C3: r = k3; 

( 4.3) 

( 4.4) 

(4.5) 
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4.2.3 Arcs 

Arcs are represented by the two end points Pl(Xl, yd and P2(X2, Y2) and the radius r 

of the underlying circle. Given these characteristic elements, the center C(xc,Yc) of the 

underlying circle can be calculated and hence the arc can be derived. Two equations are 

used to calculate the center coordinates: 

110 

Cl : IIC - PIli = r => (Xc - XI)2 + (Yc - Yl)2 = r2 

C2:IIC-P2 11=r => (Xc -X2)2+(Yc-Y2)2=r2 

! 

Figure 4.2: Equation Representation for an Arc 

130 

( 4.6) 

(4.7) 

Figure 4.2 presents the constraint network that is created to represents an arc. Note that 

in this figure constraints Cl and C2 have the same number (150). This means that these 

constraints form a cycle (as shown by the arc flow) and are solved simultaneously. This 

procedure is explained in Section 3.3.2. When the cycle is solved, two solutions are found 

for the position of the centre C( XC, Yc). In turn, for each centre two other solutions can 

be derived for the arc: the solid arc and the dotted arc in Figure 4.2. This produces 

a total of 4 solutions. However, in the current implementation, one solution for the arc 
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centre is arbitrarily chosen and the arc is drawn in an anticlockwise direction from point 

P2 (right-hand side point) to point Pl. 

Summary 

Figure 4.3 summarises and illustrates the characteristic elements used for the basic geometric 

entities. 

Line segment Circle Arc 

. starting point P(x1a, Yla); . center C(Cx,Cy); . radius r. 
• length a; 

P2 . radius r. . end points PI and P2; 
. the slope {} 

C9 Q ~P2 
PI .... ' " 

PI , e ".' , I C ---- - -'--

Figure 4.3: Basic Geometric Entities and Their Characteristic Points 

4.3 Geometric Constraint Representation 

Constraints between geometric entities are represented in terms of a set of generic con­

straints which are specified between points and line segments. These generic constraints 

are represented as equations in the Equation Graph. The generic constraints are: 

Yl = Y2 

( 4.8) 

( 4.9) 

( 4.10) 

Note that this property is a particular case of the distance between two points (d = 0) 

above. However, this representation is chosen because it involves only linear equations 

and thus these constraints can be solved more efficiently due to the methods graphs 

attached to them (Section 3.2.1). 



CHAPTER 4. ENGINEERING AND GEOMETRIC CONSTRAINT COUPLING 61 

3. Distance d from point P1(Xb yt} to line segment I 

PI 

k x 

Figure 4.4: Distance from Point to Line Segment 

Consider Figure 4.4 where P2(X2, Y2) is the starting point for the line segment I. In 

the figure, the unit vector v is used to represent (cos 0, sin 0), where 

This implies that 

and hence 

k.] = 

cos (J = 
IIkllll]1I cos (J 

d 

IIkll 

k.] = 1I]lId 

't 
.. J .. 
k . -:;- = d => k· it = d, 

IIjll 
where it is the unit vector of] and it 1. v. 

(4.11) 

( 4.12) 

( 4.13) 

(4.14) 

Thus, given the point P1(X1, yt} and the starting point P2(X2, Y2) of line segment I, 

the distance d from PI to 1 is given by: 

4. Angle a between a pair of line segments (/1,12) 

cos (J2 = cos (h cos a - sin 01 sin a 

sin O2 = sin 01 cos a + cos 01 sin a 

( 4.15) 

( 4.16) 

( 4.17) 
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The line segments 11 and 12 do not necessarily have to have a common end point. To 

demonstrate the use of these equations, consider Figure 4.5. In this figure, an angle a 

is given between two vectors u( ux , uy) and v( Vx • vy). The length of both vectors is L. 

y 

x 

Figure 4.5: Angle a between Line Segments 

From the figure it can be seen that 

Similarly, 

Ux 
cos 81 = -

L 

• II u y 
SInU1 = -

L 

=> Ux = L cos (h 

=> u y = L sin 81 

cos82 = cos(81 + a) = 7 

sin 82 = sin(81 + a) = ~ 

( 4.18) 

(4.19) 

( 4.20) 

(4.21) 

Using the trigonometry formulae for cos(81 + 0) in Equation 4.20 it follows that: 

v i = cos 81 cos a - sin 81 sin a => 

Vx = L cos fh cos a - L sin 91 sin a 

( 4.22) 

( 4.23) 
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From Equations 4.18 and 4.19, Equation 4.23 can be seen as: 

v.., = u.., cos Q - uy sin Q (4.24 ) 

Now, considering vectors il and v as the unit vectors of the underlying line seg­

ments to impose an angle Q and also that il and v can be respectively represented by 

(costh,sinth) and (cos82 ,sin82), Equation 4.24 can be written as Equation 4.16, i.e. 

cos 82 = cos 81 cos Q - sin 81 sin Q (4.25 ) 

Similarly, Equation 4.21 can be used to derive Equation 4.17. 

Summary 

Figure 4.6 presents a summary of the generic constraints and corresponding equations for 

various geometric constraints. In the figure, the (cos 8,sin()) components used in the math­

ematical representation of a line segment are represented by the unit vector U(Ux • [Ty) for 

simplicity. 

Generic Constraints Equations Geometric Con.~traints 
distance: point-point 

P2 II PI-Plil =d tangent:circle-circ/e 
~. 

coincident: point-point 
coinc.:lineSeg-lineSeg (end pts.) 

P2(x2.y2) xl =x2 

PI(xl.yl) • coinc:lineSeg-arc (end pIS.) .... ". yl-y2 concenlric:circ/e-circ/e 

distance:point-lineSeg 
P2 

& (PI-Pl). N=d tangent:circle-/ineSeg 
d 
,-

PI • 

U(Ux,Uy) 

angle: IineSeg-lineSeg parallel:lineSeg-lineSeg 

V~ 
Vx = Uxcos a - Uysin a 

Vy = Uxsin a + Uycosa. 
perpendicular:lineSeg-lineSeg 

U(Ux.Uy) 

Figure 4.6: Geometric Constraints Supported by the Constraint Engine 
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4.4 Coupling of Design Constraints 

As mentioned earlier, the coupling of geometric constraints and engiI1l'ering constraints is 

very important to support preliminary design as well as to capture the engineer's design 

intent more effectively [23]. This section shows how the Equation Graph maintains the set 

of engineering and geometric constraints and also presents how such coupling is used to 

support the concept of composite objects. 

4.4.1 Coupled Constraint Network 

To illustrate how the Equation Graph maintains the coupling of engineering constraints and 

geometric constraints, consider Figure 4.7 which shows the design of the internal-combustion 

engine as an application of the slider-crank mechanism [64, 95]. Table 4.1 presents some of 

the constraints related to the design of this mechanism. 

p = P 
.····.211'" Ib 

........... 

---

a: crank b: connecting rod 

~I 

r 
---

C top-gap 

c: slider (piston) d: frame (fixed) 

Figure 4.7: Internal-Combustion Engine (Slider-Crank Mechanism) 

Constraints C1 - C3 in Table 4.1 are engineering constraints where a is a constant used 

in the computation of the engine powerj displacement is the volume of mixed air and 

fuel consumed per engine cyclej compression_ratio is the approximate ratio between the 

maximal and minimal pressures during the compression part of the cycle; a is the length of 

the rotary part of the crankshaft; top_gap is the length of the minimal distance between the 

top of the cylinder and the piston top during the cycle; n is the number of engine cylinders 

and r is the radius of the engine's cylinders. 
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Equations Constmint Type 

C1 : power = a x displacement x compression_ratio 

C2 : compression_ratio = 2X:o~~~-:ap Engineering constraints 

C3 : displacement = 2 x a X 11" X r2 X n 

C4: X2a = Xl<> + a * cosBa 

C5 : Y2a = Yla + a * sin Ba 

C6 : X2b = Xlb + b * cos Bb Geometric constraints 

C7 : Y2b = Ylb + b * sin Bb 

CS : X2a = Xlb 

C9 : Y2a = Ylb 

Table 4.1: Design Constraints for the Internal-Combustion Engine 

Constraints C4 - C5 and C6 - C7 are used to create the line segments which represent 

the crank a and the connecting rod b, respectively. In addition, constraints CS and C9 

are created to satisfy the revolute joint (coincident constraint) between the crank and 

connecting rod at points P2a and Plb. 

Figure 4.8: Coupling of Engineering Constraints and Geometric Constraints 

Figure 4.S shows an Equation Graph for these constraints. Note, for example, that the user 

can try different values for the length of the crank a or connecting rod b, by simply changing 

the value for the soft constraints 140 and 200, respectively. Thus, easy geometry updating 

derived from engineering constraints is achieved. 
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4.4.2 Composite Objects 

The Equation Graph also allows the user to build composite objects by combining a set of 

basic geometric entities. All geometric and dimensional constraints related to the composite 

objects are then treated as a unique constraint set. For example, the piston c of the internal­

combustion engine in Figure 4.7 is treated as a rectangular shape created from four line 

segments 11, 12 , hI and h2 as shown in Figure 4.9. Constraints such as right angle constraints 

(8) and coincident end points constraints (.) can be imposed among the line s('gments to 

define the composite objects as in Figure 4.9. 

12 

h2 hI 

/J 

Figure 4.9: A Rectangular Shape as a Composite Object 

Finally, the following engineering constraints can be introduced in any order to control the 

dimensional attributes (length and height) of the rectangular shape. 

Cl 12 = 11 

C2 h2 = hI 

Figure 4.10 shows the constraint network derived from the definition of the rectangular 

shape. In this figure, y coordinates and numbers used to show the sequence of constraint 

satisfaction are omitted for simplicity. x coordinates are written in the form xiii or Xihi, 

i = 1,2. The engineering constraints Cl and C2 are shown coupled with the geometric con­

straints. Constraints with the symbol = represent the equations derived from the coincident 

end points constraints. Constraints C3 - Ca represent the constraints for the line segments 

end points as explained in Section 4.2.1. Soft constraints are imposed on the main length 

attributes to support parameterised models. Thus, the user can try different rectangular 

shapes by changing the values of It and hI. In addition, the user can translate and rotate 

such rectangular shape as illustrated by the soft constraints on xll1 and 811, respectively. 
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~ 
@--X11 ----8r-----. 

-~·8~--( 

Figure 4.10: Partial Constraint Network for a Rectangular Shape 

The construction of this rectangular shape illustrates that the system allows the user to 

create more complex objects based on the existing set of geometries and constraints. Fur­

thermore, an excessive work is saved since the user does not need to worry about the 

complexity of the Equation Graph, such as the one in Figure 4.10. 

4.4.3 Inserting Geometric Constraints 

When a geometric constraint is imposed between two geometric entities, one geometric 

entity is chosen to be the reference and the other is chosen as the target. Then the constraint 

dependency is established from the reference (parent) to the target object (child). The 

target object moves towards the reference to satisfy the imposed constraint according to its 

degrees of freedom (DOFs). When both objects have the same DOFs, the first one to be 

picked by the user is selected as the reference. 

For example, consider the scenario in Figure 4.11(a), where the user wants to impose a 

coincident constraint between line segments. In this case the constraints {Xld = Xl c } and 

(Yld = Ylc) are established in the Equation Graph as in Figure 4.11(b} {the figure only 

shows the constraints between the x coordinates}. 

In order to insert this constraint, the algorithm searches the ancestor graph of the variable 

on which the constraint is imposed {Xlc in the example}, looking for a free variable. Note 

that in this case the algorithm is already establishing the arc direction for the inserted 



CHAPTER 4. ENGINEERING AND GEOMETRIC CONSTRAINT COUPLING 68 

equation (constraint dependency from the x coordinate of tIle reference object to the x 

coordinate of the target object). Variables with soft constraints are treatE'd as frpe variables 

and they are used to absorb the new constraint. In the above example, the variable Xl c is 

chosen to be the output variable to absorb the new constraint, as explained in Section 3.3.1. 

The soft constraint attached to the variable is then deleted as in Figure 4.11. The updated 

geometry and the constraint network after the insertion and satisfaction of the coincident 

constraint are shown in Figure 4.12(a) and (b). 

(b) 

reference 

• 
(xld,yld) d (x2d,y2d) 

Figure 4.11: Inserting a Coincident Constraint 

4.5 Direct Manipulations of Under-constrained Models 

The ability to directly manipulate constrained models provides an easy way for the designer 

to explore under-constrained spaces [70]. Direct manipulation techniques have been recog­

nised as an intuitive approach for many CAD systems [8, 11, 12,20,54, 73,80,96]. Direct 

manipulations of under-constrained geometries is supported by exploiting their respective 

degrees of freedom. This is achieved through both the soft constraints in the Equation 

Graph and a high-level abstraction representing the constraint sub-graphs corresponding 

to the geometric entities and composite objects. This representation is referred to as Rela­

tionship Graph (RG). 
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4.5.1 Geometric Relationship Graph 

In the Relationship Graph, nodes represent geometric entities and arcs represent geomet­

ric constraints. The nodes maintain information about the type of the geometric entities 

(lines, circles, etc) and point to their corresponding constraints and variables in the Equa­

tion Graph. This is used to pick geometric objects and to support direct manipulation as 

well as kinematic simulation of assemblies, efficiently. For example, Figure 4.12 shows the 

links between the nodes of the Relationship Graph and the Equation Graph. The figure 

shows that a coincident (Equal) constraint has been imposed between line segment c and 

line segment d as discussed in Section 4.3 (only x coordinates are shown for simplicity). The 

degrees of freedom for each geometric entity can be found by searching for its variables with 

soft constraints. The knowledge about the degrees of freedom of individual geometric enti­

ties is used to support the direct manipulation and the kinematic simulation of assemblies. 

This is explained in detail in the following section. 

(a) Geometry (b) Relationship Graph (RG) (c) Equation Graph 

(x2c,y2c) 

c 

(xld,yld) d 

Figure 4.12: The Relationship Graph and the INCES's Underneath Constraint Network 

A geometric object selected by the user (through the GUI) is associated with a node in the 

Relationship Graph. As mentioned above, this node maintains the information about the 

characteristic elements of the geometric object it represents. Thus, the degrees of freedom 

for each geometric entity can be determined by searching for the variables of its characteristic 

elements that have soft constraints imposed on them. The Relationship Graph can take the 
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form of a directed acyclic graph (DAG) or a directed cyclic graph (DCG). The idpntifiratioll 

of one of these graph types and the knowledge about the degrees of freedom of individual 

geometric entities is used to support direct manipulations as well as the kinematic simulation 

of mechanisms. 

4.5.2 Direct Manipulations within a DAG 

The Relationship Graph is said to be a DAG if it contains no cycles. A DAG is maintained 

in a consistent format to support direct manipulations as well as cycle detection. The 

format used for a DAG is shown on the right side of Figure 4.13 where it rppreRents an open 

linkage of five line segments. The DAG takes the form of a tree, where the root node has 

no parent and all other nodes have only one parent. The arcs always go from the parent 

node to the child node. All geometric entities are considered as a root node when they are 

first created. They loose this root status when geometric constraints are imposed on them 

i.e, when they become a child node. 

• Root node 

a 

Figure 4.13: Standard Form of a Directed Acyclic Graph 

Two operations are used to support direct manipulations: Translation and Rotation. The 

user is supposed to choose one of them when he selects a geometric entity. \Vhen the user 

manipulates a geometric entity, the DOF of the selected entity are checked to determine the 

validity of the manipulations. If the manipulations are allowed then the values of the DOF 

variables (soft constraints) of its characteristic elements are updated. Next, the updated 

values are propagated to the descendant nodes in the Equation Graph to locally upda.te the 

geometry. If the DOFs of the geometric entity do not allow the user's manipulations, then 

the DOFs of its parent node are checked to see if it can support the manipulations. 

For example, suppose the user wants to translate line segment d in Figure 4.12( a). This 

line has a translational DOF, according to its soft constraints in the Equation Gra.ph in 
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Figure 4.12(c). The translation vector, determined by the GUI, is applied to the Xld and 

Yld coordinates of line d. Then, the values of the descendant nodes are updated through 

constraint propagation. The effect of these values are also propagated to line c. Thus, both 

lines move together. If the user wants to rotate line d, the CUI determines the angle of 

rotation and thus the line is rotated about the point (Xld, Yld). 

Now, suppose the user wants to translate line c. In this case, it is identified that such an 

operation is not allowed since line c has no translational DOF. In this case, the parent noele 

of line c (line d) in the Relationship Craph is checked to absorb this translation. Since line 

d has a translational DOF, the operation is performed on this line as explained above. 

4.5.3 Direct Manipulations within a DCG 

The form of a direct cyclic graph (DCC) is as shown in Figure 4.14. In this form, there is 

one root node and one last node. The direction of arcs always starts from the root node 

and ends at the last node of the cycle. 

Figure 4.14: Standard Form of a Directed Cyclic Graph 

A geometric constraint cycle is detected by maintaining a dependency hierarchy list for E'ach 

node in the Relationship Graph. When a new constraint is imposed between two geometric 

entities, an intersection is performed between their dependency hierarchy list to check for 

any cycle. If this intersection is not empty, then the geometric nodes have at least a common 

parent and therefore a cycle is detected. 

Consider, for example, the four-bar mechanism of Figure 4.15(a). In this figure, the designer 

wants to impose a revolute joint (coincident end-pis constraint) betweE'n bar b and bar c 

(dashed bars). Figure 4.15(b) shows the dependency hierarchy for each node before the 

constraint is imposed. After the constraint is satisfied, the intersection of bar b's and bar 

c's dependency lists is bar d. Therefore, a cycle is formed and bar d is considered to be 
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the root node (Figure 4.15(c)). After a cycle is detected, the constraint d('IH'ndpIlcy in 

the Relationship Graph is always re-written to maintain the consistent format as shown ill 

Figure 4.14. 

[c.d] [c.b.a.d) 

(a) Four-bar mechanism (b) RG Before Constraint Satisfaction (c) RG After Constraint SatisfaClion 

Figure 4.15: Geometric Cycle Detection 

To support direct manipulations within a DCG, a set of algorithms developed by Tsai 

and Fernando [110, 111] is used. These algorithms are based on the Degrees of Freedom 

Analysis technique as proposed by Kramer [60]. The main advantage of these algorithms 

is that they handle under-constrained geometric cycles incrementally, without resorting to 

numerical methods. 

4.6 Summary 

This chapter discussed how the incremental algorithms used to satisfy engineering con­

straints are extended to support geometric constraints. Such extension allows the coupling 

of engineering and geometric constraints in the Equation Graph. The concept of soft con­

straints was also introduced. Soft constraints are used to identify the degrees of freedom of 

geometric entities. They are also used to satisfy geometric constraints by using local propa­

gation techniques. Finally, a high level graph representation called a Rela.tionship Graph was 

also presented. This representation supports the direct manipulations of under-constrained 

geometric models, according to the DOF's determined by their soft constraints. 

The main contribution of these techniques is that incremental constraint satisfaction and the 

handling of under-constrained geometry is supported by the coupling of design constraints 

associated with the concept of soft constraints. 



Chapter 5 

Implementation 

5.1 Introduction 

This chapter describes the implementation of a prototype constraint-based engine to demon­

strate the feasibility of the techniques and algorithms proposed in Chapter 3 and Chapter 4. 

The prototype system has been implemented in C++ on a SGI XS24j4000 Indigo. There 

are two main components involved in this implementation: the Graphical User Interface 

(GUI) and the Constraint Manager. 

The rest of this chapter is organised as follows. Section 5.2 presents an overview of the 

prototype constraint engine. Section 5.3 details the implementation of the Constraint Man­

ager. Section 5.4 briefly describes the implementation of the GUI. Section 5.5 shows the 

information flow between the GUI and the Constraint Manager through several design ac­

tivities supported by the constraint engine. Finally, a summary of this chapter is given in 

Section 5.6. 

5.2 Overview of the Constraint Engine 

As shown in Figure 5.1, the constraint engine has two main modules: the Graphical User 

Interface (GU!) and the Constraint Manager. The Constraint Manager is composed of 

four sub-modules: the Equation Graph, the Incremental Equation Solver (INCES), the 

73 
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Geometric Relationship Graph and the Geometric Cycle Solver. The G VI of the constraint 

engine provides the user with a set of geometric entities (Le. lines, circles, arcs) and the 

ability to specify constraints between geometric entities through menus. These facilities 

enable the user to sketch the geometry of the design by picking geometric entities and 

applying constraints between them. Engineering constraints are inserted through nH'nu 

interaction. 

Graphical User Interface (GUI) 

Update Scene 

Create! 
Direct 
Manipulations 

Geometric 
Relationship Graph 

Geometric 

Cycle Solver 

Model 
Editing 

Equation Graph 
geometric constraints and 
engineering constraints 

Incremental Equation Solver 

IINeESI 

Figure 5.1: Constraint Engine Architecture 

The geometric and engineering constraints specified by the user are translated into equations 

and maintained in the Equation Graph. The degrees of freedom of the under-constrained 

geometric entities are represented in the graph using soft constraints imposed on the corre­

sponding variables. These soft constraints are maintained in the graph to support the direct 

manipulation of under-constrained models. The Incremental Equation Solver (INCES) 

solves the Equation Graph using efficient local propagation algorithms when linear or non­

linear constraints are inserted. Constraint cycles are identified and solved locally. 

The Geometric Relationship Graph maintains a high-level representation of the ge­

ometric entities and the constraints between them. In this graph, each node maintains 

information about the type of geometric entity and arcs maintain the constraint types (Le. 

tangent, parallel etc). Each node in the Geometric Relationship Graph maintains pointers 

to its corresponding nodes in the Equation Graph. The purpose of this Geometric Relation­

ship Graph is to provide a high-level abstraction for separating the geometric constraints 

from the engineering constraints, within the Equation Graph, to support efficient direct 

manipulation of geometric entities. This graph can also be used to identify geometric COI1-
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straint cycles and apply efficient algorithms to solve them through the Geometric Cycle 

Solver. 

5.3 The Constraint Manager 

The Constraint Manager is composed by three main components as shown in Figure 5.l. 

They are the Equation Graph, the Incremental Equation Solver (INCES) and the Re­

lationship Graph. This section shows how each of these components are implemented. 

5.3.1 Implementation of the Equation Graph 

The Equation Graph supports the coupling of geometric constraints and engineering con­

straints. It is a bipartite graph that maintains the information about the solution of the 

current constraint set. The two distinct types of nodes in this bipartite graph are nodes 

representing the variables and nodes representing the constraint equations. Each constraint 

node maintains a list of its associated variables. In turn, each variable node maintains a 

list of constraints that it is input and output for. 

Representation of Constraint Equations 

The constraint equation node is implemented as a class in C++. Figure 5.2 shows the 

data structure used to define the main data members of the constraint node. In the figure, 

the TYPE field indicates the constraint type, either a linear or a nonlinear equation. The 

POSITION field identifies the constraint position in the sequence of constraint satisfaction 

(Le. its number in the Equation Graph). The OUTPUT field maintains the current output 

variable of the constraint. Finally, VAR_LIST maintains a pointer pointing to the list of 

variables belonging to the constraint equation. 

TYPE 

POSITION 

OUTPUT 

VAR_LIST. I--.. I VARl3--1 VARl+-- ---I VARn I 
Figure 5.2: Data Structure for a Constraint Equation Node 
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Representation of Variables 

Variables are also implemented as a C++ class. Figure 5.3 shows the data structure used to 

define the main data members of the variable node. The NAME field is a string of characters 

that give the name of the variable. The variable name can either be created by the user 

or derived automatically as in the case of those representing the coordinates of geometric 

entities. The VALUE field holds the current value of the variable. The rest of the structure 

is composed by three main pointers. 

NAME 

VALUE 
CNT_LIS Cl 3--1 C2 +-- .--1 Cn 

OUT_LIS'f Cl 3--1 Cl +-- ... ~I Cn 

Cl 3--1 C2 +-- .--1 Cn 

Figure 5.3: Data Structure for a Variable Node 

eNT ..lIST points to a list of constraint equation nodes that the variable belongs to. This 

information is used to identify if the variable is a free variable during constraint insertion. 

OUT ..lIST points to a list of out constraint nodes, i.e. the set of constraints that the variable 

is an input for. Similarly, IN.LIST points to a list of in constraint nodes, i.e the set of 

constraints that the variable solves for (output variable). In fact, this list should always 

have only one element. If the system identifies that the number of elements in this list 

is greater than one, it triggers a flag detecting a constraint conflict. This is because the 

algorithms of the constraint engine are based on the fact that each variable will be the 

output to at most one constraint. 

5.3.2 Constructing the Equation Graph 

The Equation Graph is implemented as a linked list of constraint nodes. This linked list 

is dynamically constructed through the INCES algorithm presented in Section 3.3. This 

allows the solution represented by the Equation Graph to be incrementally updated. This 

section illustrates how this incremental updating is implemented using an example. 

Suppose that the user wants to use the constraint engine to satisfy the following set of 
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equations: 

C1: a = b + c 

C2: c = d 

C3: b = e - f 

77 

The user could start inserting constraint C1 as shown in Figure 5.4(a}. The engine then cre­

ates the node of the linked list as represented by the shaded rectangular box with rounded 

corners. Each node of the linked list representing the Equation Graph is a structure COll­

taining two main fields: a pointer to a constraint equation and a pointer to the next elt-mpnt 

in the list. Next, INCES seeks for free variables in the inserted constraint. 

(a) (free variable) 
, , 
, a I t -b - ~ (free variable) 

... _........ " .... _ .... 
'~'~/( 
), ' , , , 

t -c '~ (free variable) 
'-' 

(b) 

ccu 
CM!J 

Figure 5.4: Dynamic Updating of the Equation Graph - Constraint C1 

Since C1 is the first constraint to be inserted, all its variables are seen as free variables 

because they belong to only one equation (C1). The algorithm chooses any of these variables 

to be the output variable, c for example, and a number (e.g. 100) is attached to constraint 

C1 (Figure 5.4(b)). Since this is the first node of the linked list the field that maintains the 

pointer for the next constraint in the satisfaction sequence is nil. 

(a) 

te, ,--, @ 
'-'--, ·' ..... r-- .. '~ / ~ 

I C2 I (free variable) 
' ........... 

'-ei' 
... --~ , 

JI 

I 
I 

(b) 

ccucru 
C!3-CEV 

Figure 5.5: Dynamic Updating of the Equation Graph - Constraint C2 

Next, constraint C2 is inserted and the algorithm again starts searching for free variables 

in this constraint. At this moment, the list pointed by the CNT...LIST pointer of variable c 
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contains two elements (constraints Cl and C2) whereas the same list of variable d contains 

only one element (constraint C2), as shown in Figure 5.5( a). Therefore, variable d is a 

free variable. Thus, variable d is chosen as the output for constraint C2 and the constraint 

dependency is updated. 

The next step is to insert constraint C2 in the linked list representing the constraint sat­

isfaction plan. This new constraint must be satisfied after the constraints which calculate 

the value of its input variables. Therefore, C2 must be inserted after C1 because variable 

c is the input variable for C2 and c belongs to Cl. Thus, the algorithm chooses a number 

greater than that of constraint C1 (100) to be attached to C2 (110) and now the node 

representing constraint C1 in the linked list points to C2 (Figure 5.5(b)). 

(a) , (free variable) -.... , .... , --
.' b 'r - - J C3 r - -.' e ~ 

_, l ... ("" ... _ ... 

(b) 

1 ti .... ~ 
(fre~ w;;.iable) 

(ci~ /' ___ ' 

caJ@ 
~ 

105 

WJlc3lillJ 
~ 

Figure 5.6: Dynamic Updating of the Equation Graph - Constraint C3 

Then, constraint C3 is inserted and the algorithm identifies e and f to be free variables 

for this constraint (Figure 5.6(a)). Variable e is selected to be the output variable and the 

constraint dependency is again locally updated. Similarly, constraint C3 must be inserted 

after constraint Cl. Since constraint C2 was previously inserted after constraint C1, the 

number to be attached to constraint C3 (105) must be between the numbers attached 

to constraint C1 (100) and constraint C2 (110), respectively. When an integer number 

cannot be found between the number attached to the extreme constraints, the new allocated 

number can be calculated through the arithmetic median between the extreme numbers. 

The pointers in the linked list are also updated as shown in Figure 5.6(b)). 

Finally, the user wants to fix the value of variable d through constraint C4. Since there is 

no free variable in this case, the algorithm visits the ancestor subgraph and finds variable 

a to be a free variable (as shown by the dashed path in Figure 5.7{a)). The algorithm sets 

a as the output for C1 and starts changing the dependency. Next, variable c is chosen to 

be output for constraint C2. Thus, constraint C2 must be inserted before C1 in the linked 

list. To achieve this, the algorithm destroys C2 from its current position and updates C3's 
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pointer to nil. Then, constraint C2 is inserted before Cl and its number (90) is updated 

to be less than Cl's number. Similarly, constraint C4 is inserted before C2, receiving 80 as 

its position number. Figure 5.7(b) shows the updated Equation Graph and its respective 

linked list. 

105 

(b) 105 

CEUIc3l@ 
~ 

Figure 5.7: Dynamic Updating of the Equation Graph - Constraint C 4 

5.3.3 Implementation of the Geometric Relationship Graph 

The Relationship Graph (RG) is a directed graph composed by a unique set of nodes 

representing the geometric entities and a set of arcs representing gpometric constraints. 

Since the RG has only one type of nodes, it cannot be classified as a bipartite graph as 

the Equation Graph. The direction of the arcs denotes the direction in which geometric 

changes are propagated in the design model. The Relationship Graph is implemented as a 

linked list of geometric constraints. 

Representation of Geometric Constraints 

Geometric constraints are implemented as a Ctt class. Figure 5.8 shows the data structure 

used to define the main data members of the geometric constraint class. 

In the figure, the TYPE field indicates the constraint type, such as distance, tangency, angle, 
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etc. A geometric constraint is usually a binary relationship between two gt'ometric t'ntities. 

As explained in Section 4.4.3, these geometric entities are referred to as reference and target 

geometric entities, according to their DOFs. This information is respectively stored as the 

fields Ref GO and TarGO as shown in Figure 5.8. 

TYPE 

RefGO 

TarGO 

Figure 5.8: Data Structure for a Geometric Constraint Edge 

Representation of Geometric Entity Nodes 

Nodes in the Relationship Graph are also implemented as C++ classes. Figure 5.9 shows 

the data structure used to define the main data members of a node in the Relationship 

Graph. 

GEOMETY 

STATUS 

LOOP 

TRANS 

ROT 

DII-LIST • ~ Nt +-1 N2 3-- ---I Nn 

IN-LIST. ~ Ct +-1 C2 3-- ---I Cn 

OUT-LIST. t--- Ct +-1 C2 3-- ---I Cn 

Figure 5.9: Data Structure for a Node in the Relationship Graph 

The GEOMETY field maintains a pointer to the geometric entity created by the Constraint Man­

ager. This geometric entity is also implemented as a class in C++. In turn, this geometric 

entity class maintains the pointers to the variables of the characteristic elements that define 

it. For example, consider that the GEOMETY field maintains a pointer to the class 'Line­

Segment'. This class will in turn contain, as its data members, pointers to the variables 

corresponding to the coordinates of the initial point, the length and the angle of the line 
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segment. Since these variables are represented in the Equation Graph, the link hetwepn the 

Relationship Graph and Equation Graph is established. 

The STATUS field in the structure indicates whether the geometric entity is und<'f-collstrained, 

fully constrained or over-constrained. The LOOP field maintains a flag indicating w\tpther 

the geometric entity belongs to a loop or not. This information is lIst'd to support di­

rect manipulations within geometric loops as explained in Section 4.5.3. The fiplds TRANS 

and ROT indicate the current allowable translation and allowable rotation of the geoJn<>tric 

entity, respectively. The DH-LIST field maintains a pointer to a list of ancestor nodes of 

the geometric entity. This information is used to detect a cycle of geometric constraints 

(Section 4.5.3). The IN-LIST field maintains a pointer pointing to a list of in constraints 

which are imposed on the geometric entity. Finally, the OUT-LIST field maintains a pointer 

pointing to a list of the out constraints which are the dependent geometric entitips. 

5.4 The Graphical User Interface 

The GUI is based on Iris Inventor which is an object-oriented graphics toolkit [104]. The 

GUI handles the user's interaction events and provides an interface to the Constraint Man­

ager. This is achieved through callback mechanisms provided by Iris Inventor. 

5.4.1 Iris-Inventor Toolkit 

Iris Inventor toolkit provides an object-oriented framework for describing scenes contain­

ing geometric objects and operations on them. It provides high level support for writing 

graphical applications that may make use of 2D or 3D interaction. This provides the abil­

ity to directly manipulate geometric objects. The toolkit library consists of three main 

components: scene database, interaction and node kits. 

The scene database maintains a graphical representation of geometric objects in a graph. 

This graph maintains information about geometric objects such as their shapes, matt'rial 

and position as well as how the scene is to be viewed (lights, cameras, etc). Iris Inventor 

provides different types of nodes such as shape nodes, ProlJerty nodes and group no(/cs to 

construct the scene database. Figure 5.10 shows a graph for a scene database representing 

the four line segments of the 4-bar mechanism in Figure 4.15(a). 
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Color Transform Coordln.t .. LlneSet Manipulator Color Transform Coordlnarel LineS.. Manipulator 

Figure 5.10: A Graphical Scene Data Base 

First, a group node Scene is created to contain the scene and a Camera and a Light nodes 

are added to it so that the scene is visible. Then, each line segment is created through a 

node kit and added to the scene (Figure 5.10 shows only two of the created lines). Node 

kits facilitate the creation of structured, consistent graphical databases. Each node kit is 

a collection of database nodes with a specified arrangement. They are useful to create 

high-level objects that provide application-specific behaviour. Essentially, it combines some 

scene database subgraphs with attachment rules and other policies into a single class. A 

template associated with the node kit determines which nodes can be added when necessary 

and where they should be placed. For example, the LineKit of Figure 5.10 represents 

a line segment object. Its template allows room for Colour, Geometric Transformation 

(Transform) before the LineSet node in the node kit. This node is then followed by an 

interaction node called Manipulator. 

The interaction section of Inventor introduces nodes that process events. An example of 

such node is the selection node which provides an easy way for applications to maintain a 

list of selected objects. The manipulator node is another type which responds to interaction 

events. Such nodes provides an easy way to allow the user to pick and drag a geometric 

entity. For example, when the Line d node receives an event from user's manipulations 

it passes the event to each child. The first three children rejects the event since they are 

property nodes. The event is then passed to the LineSet node. Again, this node rejects the 

event because it is a shape node. Finally, when the event is passed to the manipulation 

node it checks the event type and reacts to the event in some way such as moving the object. 

The manipulation node then returns to its parent node that the event was handled to 

update the geometry. 

As mentioned earlier, the Graphical User Interface is built based on the facilities provided 
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by Iris Inventor. The Graphical User Interface essentially acts as a high-level application 

interface between the Iris Inventor toolkit and the Constraint ManagPf. Figure ri.1l shows a 

snapshot ofthe Graphical User Interface. The top line of the window shows the "pull-down" 

menu created through the library provided by Iris Inventor. 

Figure 5.11: A Snapshot of the Graphical User Interface 

Each option in this menu is used as follows. 

• File: designed to allow the user to open and save a file with the information about its 

design model. These functions are not currently implemented. Another option allows 

the user to quit the system. 

• Manipulate: allows the user either to translate or rotate a geometric entity. 

• Create2D: allows the user to create geometric entities such as line segments and circles. 

• GeomConstraint: presents the user with the set of geometric constraints. Current 

geometric constraints supported include coincident end-pts, circle-circle tangent and 

angle constraint. 

• EngConstraint: allows the user to create engineering constraints. Simple linear equa­

tions such as x = y + z and x = y - z are supported. The system does not provide a 

general equation parser and therefore nonlinear constraints cannot be inserted through 
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the GUI. Thus, the GUI does not support the full functionality of the syst(,1ll in its 

current version . 

• Variable: allows the user to create or destroy a variable in the Equation Graph. 

5.5 Interface Between the Constraint Manager and the GUI 

The purpose of this section is to describe the information flow between Iris Inventor and the 

Constraint Manager through the GUI. The section explains the stf'pS carriNI out wlH'n the 

user performs operations to create geometric entities, variables, engineNing and geom('tric 

constraints. The information flow during direct manipulation of geometric f'ntities is also 

discussed. 

5.5.1 Creating a Geometric Entity 

Figure 5.12 shows the interface between Inventor and the Constraint :Manager during the 

creation of a line segment d. The actions carried out by the us('r and the information flow 

between Inventor and the Constraint Manager are as follows. 

Inventor 
, anager 

Relationship Graph 

Equation Graph 

Figure 5.12: Implementation Steps to Create Geometric Entities 

• The user selects to create a line segment from the Create2D option. 

• Inventor creates a node kit for a line segment. 

• Inventor sends a request to the Constraint Manager to create a line sf'gment. 
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• The Constraint Manager constructs a RG node and an Equation subgraph to represent 

the node. 

• The Constraint Manager passes the coordinates of the line segment to Inventor for 

displaying purposes. 

• Inventor displays the line segment. 

5.5.2 Creating Variables and Engineering Constraints 

Some variables in the Equation Graph are automatically created during the creation of 

geometric entities. However, some ofthe variables must be created by the user. For example, 

variables kt, and k2 must be created for the engineering constraints C4 : k1 = die and 

C5 : k2 = dla, as shown in Figure 5.13. The information flow to create additional variables 

and engineering constraints are respectively as follows (Figure 5.14). 

Equation Graph 

Relationship Graph 

Constraint Mana er 

Figure 5.13: Implementation Steps to Create Variables and Engineering Constraints 

• The user selects to create a variable from the Variable menu option. 

• Inventor sends a request to the Constraint Manager to create an additional variable. 

• The Constraint Manager creates a node in the Equation Graph to represent the vari­

able. No information is sent back to Inventor since variables are not graphically 

represented in the current implementation. 
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• The user selects to create an engineering constraint from the EngConstraint menu 

option. 

• Inventor sends a request to the Constraint Manager to create an engineering con­

straint. 

• The Constraint Manager creates the engineering constraint as a node in the Equa­

tion Graph (for example, constraint C5 in Figure 5.13). The INCES algorithm is 

then invoked to locally update the constraint dependency for the inserted constraint. 

Then, the POSITION and OUTPUT fields for the constraint equation node are updated. 

In addition, the CNT...LIST, OUT...LIST and IN.LIST fields for each variable node of the 

constraint is updated. 

• After updating the constraint dependency, the descendant nodes are locally satisfied 

through constraint propagation. The geometric information affected by this constraint 

propagation process is then sent to Inventor to be updated on the screen. 

5.5.3 Imposing Geometric Constraints 

This section explains how a coincident end-pts geometric constraint is imposed between two 

line segments. The steps carried out are as follows. 

• The user selects the GeomConstraint menu option to impose a geometric constraint 

and then picks the two line segments he wants to impose the constraint on. 

• Inventor requests the Constraint Manager to impose the requested geometric con­

straints. It also informs the Constraint Manager of the two selected geometric entities. 

• The Constraint Manager creates the equations derived from the coincident end-pts 

constraint and inserts them in the Equation Graph. The constraint dependency is lo­

cally updated. The inserted constraints are then satisfied to update the line segments' 

coordinates. The constraint dependency in the Relationship Graph is also updated. 

First, the fields Re/GO and TarGO of the created geometric constraint are updated. 

This geometric constraint is then seen as an edge in the Relationship Graph by up­

dating the OUT-LIST and IN-LIST fields of the Re/GO and TarGO nodes respectively 

(Figure 5.9). Finally, the Constraint Manager passes the new coordinates of the line 

segments to Inventor for display purposes. 
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• Inventor dislays the line segments in their new position. 

Inventor 

Camera 

.. Gr~"ictil.U~I~telfttce· (GUl) 
,Y::' 

Relationship Graph 

Constraint Manager 

Figure 5.14: Implementation Steps to Impose Geometric Constraints 

5.5.4 Direct Manipulation and Degrees of Freedom Inference 

When a geometric entity is created, it is set to be free to translate and to rotate. This is 

identified by the soft constraints imposed on the characteristic elements of the geometric 

entity. When geometric constraints are imposed on the geometric entity, its TRANS and ROT 

fields are updated according to which soft constraints are consumed to satisfy the imposed 

geometric constraint. The information flow between Iris Inventor and the Constraint Man­

ager when the user is manipulating a geometric entity is as follows . 

• The user selects a translate or rotate operation from the Manipulate menu and picks 

a geometric entity. 
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• Inventor sends the picked object and the transformation matrix to the Constraint Man­

ager, requesting the object to be directly manipulated. 

• The Constraint Manager updates the 80ft constraints on the characteristic elements 

of the picked geometric entity according to the transformation matrix. For example, 

if a line segment is picked to be translated, the coordinates of the initial point are 

updated. Similarly, for a rotation the value of the angle 0 is updated. The other 

coordinates of the geometric entity are updated through constraint propagation as 

explained in Section 4.2. The Constraint Manager then passes the new coordinates of 

the geometric entity to Inventor. 

• Inventor then displays the geometric entity in its new position. 

5.6 Summary 

The constraint engine allows the representation and satisfaction of coupled engineering 

and geometric constraints through the integration of the Equation-based approach and 

Geometric Constructive approach. 

This chapter has described the implementation of the constraint engine proposed in this 

thesis. The engine is composed by two main components: the Graphical User Interface 

(GUI) and the Constraint Manager. The GUI is based on Iris Inventor which is an Object­

Oriented Graphics Toolkit. The Constraint Manager has been built through graph-based 

techniques to maintain the geometric information necessary for Iris Inventor to update 

the design geometry. The chapter has also described the callback mechanisms used for 

establishing the interaction between these two main components. In addition, this chapter 

has discussed the implementation of the Equation Graph and its dynamic updating as well 

as the implementation of the Relationship Graph. 

The next chapter presents the results and discusses advantages and limitations of the pro­

totype constraint engine. 



Chapter 6 

Results, Discussions and 

Improvements 

6.1 Introduction 

The purpose of this chapter is to demonstrate the main features of the interactive constraint­

based design engine discussed in the previous chapters. The internal-combustion engine has 

been used as a case study to demonstrate these features. Finally, the limitations and future 

improvements are discussed in this chapter. 

6.2 Main Features of the Constraint Engine 

The main features of the constraint engine discussed in this chapter include 

• The incremental nature: this is evaluated according to the percentage of the con­

straint equation nodes in the Equation Graph that is visited due to a constraint 

insertion. A constraint node is said to be visited when it is first encountered by the 

INCES algorithm during the search for free variables in the Equation Graph. 

• The handling of under-constrained geometry: this evaluates how a newly in­

serted geometric constraint can be satisfied without the need to fully specify the entire 

constraint set. 

89 
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6.2.1 Case Study 

The problem of designing the internal-combustion engine as an application of the slider­

crank mechanism is used as a case study to illustrate the properties of the constraint engine. 

Figure 4.7 is replicated here as Figure 6.1 for the convenience of the reader. A rectangular 

shape (composite object) is used to represent the piston c and its casing box e as shown in 

Figure 4.10. 

--- ---
d 

........... 
Coincident 

C top-gap 

a: crank b: connecting rod c: slider (piston) d: frame (fixed) 

Figure 6.1: Copy of Figure 4.7 

6.2.2 Incremental Nature of the Constraint Engine 

The purpose of this section is to show the efficiency of the constraint engine in solving design 

constraints. This efficiency is measured by checking how much of the Equation Graph is 

affected when design constraints are inserted. The time taken for inserting a constraint is 

also presented in this section. Table 6.1 shows an approximate timing and percentage of the 

Equation Graph visited due to the insertion of the engineering and geometric constraints 

during the design of the internal-combustion engine. Each constraint was incrementally 

inserted in the Equation Graph in the order presented in Table 6.1. These constraints were 

inserted after the creation of the frame d, the piston c and its casing box e. 

Constraints C1- C7 presented a free variable when they were first inserted. This is reflected 

in the decrease in percentage of nodes visited and also in the same time for inserting 

them. A greater percentage of the Equation Graph is visited due to the insertion of the 

geometric constraints C8 and C9 because such insertion requires the search for free variables 
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as explained in Section 4.4.3. This is the reason for an increased time to insert these 

constraints. In cases where a soft constraint or a free variable can not be found, the 

percentage of the Equation Graph visited is further increased. For example, the percentage 

of the Equation Graph visited in Figure 3.10 in Chapter 3 (where a constraint cycle is 

locally identified for the cantilever beam problem) is 70%. 

Equations Percentage Timing (!Jsec) 

C1 : power = a x displacement x compression_ratio 2.00% 1.01327 

C2 . compression ratio = 2xa+top...,gap 
• - t~ 2.00% 1.01327 

C3 : displacement = 2 x a x 7r x r? x n 1.75% 1.01327 

C4: X2a = Xl a + a * cos()a 1.75% 1.01327 

C5 : Y2a = Yia + a * sin ()a 1.75% 1.01327 

C6 : X2b = Xlb + b * cos ()b 1.70% 1.01327 

C7 : Y2b = Ylb + b * sin ()b 1.65% 1.01327 

C8 : X2a = Xlb 3.25% 2.02655 

C9: Y2a = Ylb 3.25% 2.02655 

Table 6.1: Visited Percentage and Timing During Constraint Insertion 

Although the case study presented in this section contains a reasonable number of equations 

(approximately 50 equations), the gain of efficiency in solving design constraints is equally 

expected for larger constraints networks, due to the incremental nature of the constraint 

engine. Other case studies have been presented in the literature [16,74] where the constraint 

set can reach the order of over 400 equations. 

6.2.3 Ability to Handle Under-Constrained Geometry 

The purpose of this section is to demonstrate the ability of the constraint engine to handle 

under-constrained geometry. In Figure 6.2( a) the user has already imposed a coincident 

constraint between frame d and the crank a. Next, a coincident end-pts constraint is 

inserted between the crank a and the connecting rod b. Figure 6.3 shows the equation 

derived from this geometric constraint (dashed lines). 
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(a) Plate Before Imposing a Coincident Constraint - Crank a and Connecting Rod b 

Figure 6.2: (b) Plate After Imposing a Coincident Constraint - Crank a and Connecting 

Rod b 
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Note that before this constraint insertion, crank a and connecting rod b are under-constrained. 

Crank a has a rotational DOF and connecting rod b has a translational and rotational nOFs. 

These nOFs are maintained in the Equation Graph using soft constraints. Figure 6.2 shows 

that the coincident end-pts constraint has been satisfied even though the crank a and the 

connecting rod b are not fully constrained. 

Equation Graph 

(connecting rod) 
~----

\9~o 
\ 

~, &---@ 
~ , 

Figure 6.3: Updating of the Equation Graph 

However, the soft constraint on Xlb (and Ylb) have now been removed to reflect the new 

DOF of connecting rod b as seen in Figure 6.2. Approximately, 5% of the Equation Graph is 

visited to satisfy the equations derived from this constraint. This shows that the constraint 

engine is able to efficiently satisfy geometric constraints and handle under-constrained ge­

ometry. 

6.2.4 Coupling of Engineering and Geometric Constraints 

The p f thO t' . to show the coupling of engineering and geometric constraints urpose 0 IS sec IOn IS • 

Figure 6.4( a) and (b) respectively show the updating of the geometry after a coupled set of 

engineering and geometric constraints is satisfied. The updating of the geometry after the 

satisfaction of engineering constraints is explained as follows. 
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(a) Plate Before the Satisfaction of Engineering Constraints 

Figure 6.4: (b) Plate After the Satisfaction of Engineering Constraints 
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Figure 6.5(a) shows the current Equation Graph after the insertion of the engineering con­

straints. In this figure, the user wants to fix the value of variable n which represents the 

number of cylinders l • To fix variable n, the INCES algorithm searches for a free variable in 

the Equation Graph. Thus, the soft constraint on rl is eliminated and the constraint depen­

dency is updated as shown in Figure 6.5(b). After satisfying the engineering constraint C3, 

the radius rl of the piston c is updated. The radius r2 of the casing rectangular box is also 

updated through the propagation to the engineering constraint r2 = rl' Constraint propa­

gation continues downstream the Equation Graph until all remaining geometry coordinates 

are updated. 

Figure 6.5: Updating of Geometry through Engineering Constraint Satisfaction 

When fixing variable n only 6% of the Equation Graph is visited to locally insert this con­

straint. After satisfying the engineering constraint C3, approximately 32% of the Equation 

Graph is visited through constraint propagation to update the geometry. 

ISince n is always supposed to have an integer value, constraint satisfaction techniques where a specific 

domain for variables is defined [97] is worth investigating. 
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6.2.5 Direct Manipulations 

The purpose of this section is to show how the constraint engine supports direct manipula­

tions of under-constrained models. 

Figure 6.6: Frame Showing the Simulation of the Internal-combustion Engine 

Figure 6.7: Another Frame of Simulation of the Internal-combustion Engine 
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Figure 6.6 shows that the user selected the crank a. This is illustrated by the circle created 

by Inventor when a geometric entity is selected for rotation. As shown in Figure 6.5, the 

crank a has a rotational degree of freedom (soft constraint on (}a). Since the internal­

combustion engine corresponds to a close-loop mechanism (slider-crank), the constraint 

engine uses the techniques discussed in Section 4.5.3 to support direct manipulation within 

a geometric constraint cycle. The constraint engine handles the geometric constraint cycles 

without resorting to numerical methods. This illustrates how the constraint engine can 

efficiently support direct manipulations of under-constrained geometry. Figure 6.7 shows 

another frame of the mechanism after the direct manipulation of the crank a. 

6.3 Comparison with Previous Work 

The purpose of this section is to discuss the advantages of this work in comparison with 

previous work in the literature. This discussion is based on the two case studies carried 

out in this thesis: the cantilever beam problem and the design of the internal-combustion 

engine. Table 6.2 below presents a general comparison of the capabilities of the constraint 

engine (referred in the table as to INCES) against some of the current constraint-based 

systems. 

System SkyBlue CONSTRAINT GCE D-Cubed Erep DesignPack INCES 

Reference (90) (117) [60) (74) (14) (93) thesis 

Incremental .,; .,; x x x x .,; 
Nonlinear X X .,; .; .; .; .; 
Equations 

Constraint x x .,; .; .; .; .; 
Cycles 

Constra.int .,; .; X X X .; .; 
Coupling 

Handling of Under- .; .; x X x x .; 
Constra.ined Nets. 

Table 6.2: Capabilities of Known Constraint-based Systems 



CHAPTER 6. RESULTS, DISCUSSIONS AND IMPROVEMENTS 98 

6.3.1 Efficiency in Solving Design Constraints 

Previous approaches re-satisfy the entire constraint set due to the insertion of a new con­

straint [14, 60, 93]. In contrast, the INCES algorithm avoids satisfying the constraint set 

from scratch by visiting only a small percentage of the Equation Graph. Therefore, an 

evolving solution is maintained by locally updating the previously satisfied constraints. 

This saves a significant amount of time when updating the geometry. Such incremental 

approach is required to allow the constraints to be solved quickly enough to provide the 

user with immediate feedback in interactive design. 

Furthermore, in other approaches such as that proposed by Serrano [93], the user is involved 

in deriving the sequence of satisfaction since he is required to specify the set of known and 

unknown variables any time a new constraint is inserted. This procedure can be time­

consuming and error-prone for large networks. On the contrary, the proposed constraint 

engine avoids such requirement since the constraint dependency is always automatically 

updated due to a constraint insertion. 

It has been shown that for an acyclic constraint network composed only by linear constraints 

the time complexity of local propagation algorithms for inserting a design constraint is, in 

general, O( n) where n is the total number of constraints [65, 117]. Such behaviour is also 

expected by the INCES algorithm under the same conditions. However, in real design 

situations, nonlinear constraints and constraint cycles always emerge during the design 

process. In addition, the performance of the algorithm depends on how far a free variable is 

from the inserted constraint. Thus, as the size of a set of design constraints becomes larger 

and larger, it is expected that the performance of the IN CES algorithm is exponential. 

6.3.2 Handling of Under-constrained Geometry 

As mentioned before, most of the current constraint-based design systems do not handle 

under-constrained situations [14, 16, 60]. These systems require the user to specify a fully 

constrained set of design constraints. For example, in Figure 6.2, these systems would not 

satisfy the coincident end-pis constraint between the crank a and the connecting rod b at 

that stage, since more geometric constraints would be required to fully constrain the entire 

constraint set defined by the internal-combustion engine. This can obstruct the designer's 

train of thought during preliminary design. The constraint engine supports such constraint 
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assignment by the consumption of soft constraints in the Equation Graph (see Figure 6.3). 

Furthermore, current systems do not support direct manipulations of under_constrained 

geometric entities. Instead, after deriving a sequence of satisfaction for a fully-constrained 

set, these systems allows the kinematic simulation of mechanism by iteratively changing the 

value of a variable [16, 74]. For example, one could simulate the internal-combustion engine 

as presented in Section 6.2.1 by iteratively changing the angle between the crank a and the 

frame d. However, if the user wants to manipulate another link, all constraint satisfaction 

sequence is derived from scratch in these systems, since this requires the deletion and 

insertion of new constraints. In contrast, the constraint engine supports under-constrained 

geometry through the concept of soft constraints. Soft constraints identify the degrees of 

freedom of picked geometric entities. This allows the constraint engine to update the values 

of the soft constraints according to the direct manipulation handled by the user. Fast 

geometry updating is also achieved through local constraint propagation in the Equation 

Graph (see Section 4.5). 

6.4 Limitations and Itnprovements 

The constraint engine reported in this thesis is only a prototype to demonstrate the feasi­

bility of the proposed techniques. This section describes a number of limitations identified 

from initial experiments with the prototype engine and discusses possible solutions to them. 

As mentioned in Section 3.3.2, a constraint cycle is solved through numeric iterative meth­

ods. Although nonlinear systems may have an exponential number of solutions, the New­

ton..Raphson iteration method will find only one. Thus, if the user obtains a solution that 

he did not expect, there is no standard way for debugging it. The user would have to ex­

periment with different values for input variables until he gets the desired result. However, 

from a practical point of view, this might be tedious and time consuming. 

Another limitation is related to the incremental insertion of geometric constraints. As ex­

plained in Section 4.4.3, when an algebraic equation derived from a geometric constraint 

is inserted in the Equation Graph, the INCES algorithm searches for a free variable in the 

ancestor subgraph. However, more than one 80ft constraint can be found at the same level 

dUring this searching process and therefore the constraint engine has to decide which 80ft 

constraint is to be used. This requires the use of procedures for each specific geometric con-
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straint problem. The development of such specific geometric knowledge is seen as a general 

disadvantage as pointed out by researchers when referring to the Geometric Constructive 

Approach [16, 60]. To illustrate this problem, consider for example Figure 6.8. In this 

figure, the user wants to impose a tangent circle-circle constraint between circles C1 and 

C2. Circle Cl is fixed. 
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Figure 6.8: A Geometric Constraint Problem 

The equation derived by the constraint engine to satisfy this constraint is: 

x 

(6.1 ) 

Figure 6.9(a) shows the inserted constraint C. As it can be seen, circle C2 has soft con­

straints imposed on CXz, CYz and T2, at the same level. This means that anyone of these 

constraints could be destroyed to locally satisfy the inserted constraint (as represented by 

the? symbol). Thus the circle C2 could either be translated or have its radius increased 

to satisfy the tangency constraint. The current version of the constraint engine translates 

the circle to satisfy the constraint. This process is carried out in two steps. First, the 

constraint engine calculates a new value Cy for the soft constraint on variable CY2 (this 

is shown by the dar ked constraint node in Figure 6.9(b)). This value is taken from the 

interval between CYI and CYI + (Tl + T2) as shown by the geometry in Figure 6.8. Next, 

the soft constraint on CX2 is destroyed and CX2 is chosen as the output for the constraint 
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equation C. Equation 6.1 is then satisfied and circle C 2 is translated to satisfy the tangent 

constraint. The two remaining soft constraints on r2 and CY2 shows that circle C 2 can still 

have its radius increased and also to translate around circle Cl. 

This also demonstrates that there can be multiple solutions when satisfying geometric con­

straints. Multiple solutions can also emerge when the system is dealing with non-linear 

engineering constraints. The system currently chooses an arbitrary solution which may not 

be the one expected by the user. Therefore, further investigation is required to provide 

means for presenting the user with multiple solutions derived from engineering and geo­

metric constraints and also to allow him to choose one of the solution. For example, with 

respect to the problem of Figure 6.8, the constraint engine could present the two solutions 

to the user (two dashed circles in Figure 6.8) and ask him or her to select one of them. 

Another alternative would be to use a set of rules based on the concept of signed distance 

or signed angle to automatically calculate the natural solution [37]. 

Figure 6.9: Choosing a Specific Soft Constraint 

Other limitations identified during experiments with the constraint engine include. 

Assembly Modeling 

The prototype engine supports only simple 2D geometric constraints such as tangency, 

coincident and angle constraints. This is not enough for industrial applications [88, 98]. 

Other assembly relationships such as against, cylindrical fit and spherical fit need to be im­

plemented. In addition, techniques to automatically recognise these assembly relationships 

might be beneficial for interactive design. Techniques such as automatic constraint recogni-
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tion developed by Fa [32] and Munlin [70] can improve the interactive assembly modeling. 

Equation Editor 

An editor for mathematical formulae is required. This will offer the engineers the possibility 

to express algebraic equations or logic formulae in a way they are used to. In addition, a 

parser will be necessary to convert the expressions explicitly typed by the engineer to the 

representation used in the Equation Graph. Representation of dimensional variables in the 

graphical window is also required. 

6.5 Summary 

This chapter presented the internal-combustion design problem to show how the proposed 

local propagation techniques can be used for supporting preliminary design. The feasibility 

of the GUI was demonstrated throughout the internal-combustion problem. The efficiency 

gain of the proposed incremental techniques were discussed and the advantages of this work 

in comparison with previous work were described. Limitations of the prototype constraint 

engine were also discussed and suggestion for further improvements were made. 

The next chapter concludes this research work and consider long-term future research. 



Chapter 7 

Conclusions and Future Work 

7.1 Introduction 

This thesis reports on work to design and implement an interactive constraint-based engine 

to support preliminary design. A new approach has been developed that integrates the 

Equation-based Approach and the Geometric Constructive Approach. A prototype system 

has been implemented in C++ on a SGI XS24/4000 Indigo. The system has been evaluated 

using well known design problem. 

This chapter draws some conclusions and discusses possible long-term research. 

7.2 Conclusions 

The primary contribution of this work is the study of new incremental algorithms for inter­

actively supporting constraint-based design that combines both engineering and geometric 

constraints. A new taxonomy for current constraint-based approaches has been developed 

to identify advantages and disadvantages of each approach. This has resulted in the imple­

mentation of an experimental constraint-based design engine. This engine has been used to 

demonstrate several techniques towards supporting interactive preliminary design. These 

include: 

103 
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• An Equation Graph is used to represent the current sequence of satisfaction of design 

constraints expressed as linear and nonlinear equations. This frees the user from the 

need to maintain constraint consistency. 

• The INCES algorithm incrementally updates the Equation Graph through local prop­

agation techniques. Constraint cycles are locally identified and solved. This allows 

interactive design since only a small percentage of the Equation Graph is affected due 

to a constraint insertion. In addition, the graph is locally updated to aid in efficiently 

propagating the changes to the relevant design constraints. 

• The concept of soft constraints is used to represent the degrees of freedom of geometric 

entities. These soft constraints are consumed to locally accommodate a geometric 

constraint in the Equation Graph through the INCES algorithm. 

• A Relationship Graph is used to represent geometric entities and geometric con­

straints among them. This representation supports the direct manipulations of under­

constrained geometric models, according to the DOF's determined by their soft con­

straints in the Equation Graph. This allows the simulation of the kinematic behaviour 

of mechanisms in response to direct manipulations. 

An experimental constraint engine has been built based on the above techniques. This 

constraint engine has demonstrated the capability to efficiently solve a coupled set of engi­

neering and geometric constraints since a small percentage of the Equation Graph is visited 

due to a constraint insertion. In addition, the constraint engine has also demonstrated 

the ability to handle under-constrained geometry. Providing these features within a design 

scenario enables the user to interact directly with the design model and receive immediate 

feedback on the changes to the model. 

This research has opened the way to further areas for research including the investigation of 

how to use the proposed techniques in 3D modeling, the handling of inequalities and feature­

based modeling and the investigation of debugging tools to help engineers in analysing 

under- and over-constrained situations. 

The next section considers how this work could be extended to conduct future research into 

these areas. 
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7.3 Further Research 

It is the author's assertion that the constraint engine developed in this thesis will improve 

the productivity of designers by better supporting the early stages of design. Future work 

is needed to validate this assertion and this would involve experiments through a realistic 

engineering design scenario. The work in interactive constraint-based preliminary design 

can be developed in a number of ways as given below. 

1.3.1 Extension to 3D and VR Environments 

A future research area is to extend the application domain of the constraint engine to 

support 3D geometry. This is important since currently the interactions between engineers 

and CAD workstations become more three-dimensional [75]. Extension of the proposed 

techniques presented in this thesis is worth investigating since a design model in 3D is also 

seen as a set of simultaneous nonlinear equations, where the variables are derived from the 

geometric elements and the equations are derived from the geometric constraints. In fact, 

3D geometric elements could also be represented by characteristic elements. For example, 

a plane can be defined by its unit normal and its distance from the origin. The unit 

normal n could in turn be represented by two angles </> and 0 which are the inclination 

(angle from z axis to vector n) and the azimuth (angle from the x aJds to the projection 

of n on the xy plane) angles, respectively. In addition, spatial relationships between 3D 

geometric objects (e.g. against, fit) can be mathematically expressed as equalities and 

inequalities [4, 77]. Therefore, further research can be carried out to investigate how the 

concept of soft constraints and how the Equation Graph can be used to support such 

constraint representation and constraint satisfaction in 3D. An alternative way to support 

3D information is to allow the user to derive a 2D profile using the constraint engine and 

then to use sweeping techniques to derive the 3D model. This alternative has been used in 

systems such as EREP from Purdue University [14] and Pro-Engineer [24]. 

Another area of investigation is to study the use in virtual environment applications. Cur­

rently, research is underway in the Virtual Working Environment Group at Leeds to support 

maintenance simulation within virtual environments. One of the research issues involved 

in this project is the investigation of techniques to simulate physical constraints such as 

gravity, friction and forces within a virtual environment [108]. Since these constraints are 



CHAPTER 7. CONCL USIONS AND FUTURE WORK 106 

expressed as equations and efficiency is required in solving them, the incremental techniques 

proposed in this thesis can contribute to such virtual simulation. 

7.3.2 Feature-based Modeling 

Features are meaningful collections of geometry and constraints that corresponds to shapes 

of engineering significance [67, 75]. Non-geometric information can be associated with fea­

tures and thus the designer can better examine different and more complete design concepts. 

A great deal of research has been carried out towards the development of techniques to sup­

port the representation and the manipulation of high level features [46, 58, 66, 113]. The 

author therefore believes that the concept of composite objects as proposed in this thesis 

can be explored in order to contribute to the development of such feature-based modeling 

techniques. 

7.3.3 Debugging Tools 

It has been pointed out that engineers experience difficulty in constructing and understand­

ing large set of design constraints [55, 91]. Therefore, another research area is to investi­

gate extension mechanisms that provide engineers with debugging tools for displaying and 

analysing constraint networks. When evaluating different design alternatives, it is crucial 

to help engineers to understand the behaviour of constrained models. Essentially, such 

debugging tools should allow the user to visualise and explore the constraint dependency 

inside both the Relationship Graph and the Equation Graph. 

7.3.4 Inequality Constraints 

During the design process, many design specifications and performance measures are de­

fined in terms of inequalities. Therefore, further research is required in order to allow the 

constraint engine to support inequality constraints. It is believed that new mechanisms 

to represent an inequality constraint may not be required since such constraint can also 

be represented as a hexagon node in the Equation Graph. Nevertheless, the constraint 

satisfaction process must be re-evaluated. Consider, for example, Figure 7.1. This figure 

presents a constraint conflict on variable x since it is set as the output for both constraints 

C2 and C3. Note however that such constraint conflict causes no damage to the solution 
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set since both constraints are simultaneously satisfied. On the other hand, jf constraint C1 

is replaced by Cl : y = 0.5 such constraint conflict is unacceptable. Clearly, investigation 

to deal with such constraint conflicts is required. Debugging tools could be used here to 

guide the user to identify the value for variable y as the cause of the conflict and to suggest 

him to change its value. Additional symbolic processing of constraints may also be requirf'd 

due to inequality constraints since the goal of the constraint satisfaction process is to find a 

point in the search space that does not violate any constraints. Finally, the problem of how 

to solve a constraint cycle composed by inequalities constraints must also be investigated. 

C3 
C3:x< 4 

C2:x+ y=5 

Figure 7.1: Constraint Conflict with Inequality 

7.4 Concluding Remarks 

This research has demonstrated an interactive constraint-based design engine based on local 

propagation techniques. This work makes contribution in the following areas: 

• the development of a new taxonomy for current constraint-based approaches; 

• the development of an incremental algorithm (INCES) that supports highly nonlinear 

engineering constraints and constraint cycles efficiently; 

• the use of soft constraints to represent the DOF of geometric entities. These soft con­

straints are used to satisfy geometric constraints and to support direct manipulations 

of under-constrained geometry. 

This work contributes to enhance the understanding of techniques for supporting interactive 

constraint-based preliminary design. 



Bibliography 

[1] Aho, A.V. and Ullman, J.D., Foundations of Computer Science, Computer Science 

Press, New York, 1992, ISBN 0-7167-8233-2. 

[2] Aldefeld, B., Variation of Geometries Based on a Geometric Reasoning Method, 

Computer-Aided Design, Vol. 20, No.3, pp. 117-126, April 1988. 

[3] Amador, F.G., Finkelstein, A. and Weld, D.S., Real-Time Self-Explanatory Simula­

tion, In Proceedings of the Eleventh National Conference on Artificial Intelligence, 

pp. 562-567, AAAI Press/The MIT Press, July 1993. 

[4] Ambler, A.P. and Popplestone, R.J., Inferring the Positions of Bodies from Specified 

Spatial Relationships, Artificial Intelligence, Vol. 6, pp. 157-174, 1975. 

[5] Anderl, R. and Mendgen, R., Modeling with Constraints: Theoretical Foundation and 

Application, Computer-Aided Design, Vol. 28, No.3, pp. 155-168, March 1996. 

[6] Arbab, F. and Wang, B., A Constraint-Based Design System Based on Operational 

Transformation Planning, In Proceedings of the 4th International Conference on the 

Applications of Artificial Intelligence in Engineering, pp. 405-426, Cambridge-UK, July 

1989. 

[7] Baase, S., Computer Algorithms: Introduction to Design and Analysis, Addison-Wesley, 

Reading, Mass., 1978, ISBN 0201003279. 

[8] Badler, N.J., Manoochehri, K.H. and Baraff, D., Multi-dimensional Input Techniques 

and Articulate Figure Positioning by Multiple Constraint, In Proceedings of the 1986 

Workshop on Interactive 3D Graphics, Crow, F. and Pizer, S. (Eds), ACM Press, 

pp. 151-169, October 23-24 1986. 

108 



BIBLIOGRAPHY 109 

[9] Becher, T. and Weispfenning, V., Grobner Bases - A Computational Approach to Com­

mutative Algebra, Graduate Texts in Mathematics, Springer-Verlag, New York, 1993, 

ISBN 0-387-9791-9. 

[10] Bhansali, S., Kramer, G.A. and Hoar, T.J., A Principled Approach Towards Symbolic 

Geometric Constraint Satisfaction, Journal of Artificial Intelligence Research, Vol. 4, 

pp. 419-443, 1996. 

[11] Bier, E. A., Skitters and Jacks: Interactive 3D Positioning Tools, Visusal Computer, 

pp. 183-196, October 1986. 

[12] Bier, E. A., Snap-dragguing in Three Dimensions, 1990 Symposium on Interactive 3D 

Graphics, pp. 193-204, 1990. 

[13] Borning, A., Freeman-Benson, B. and Wilson, M. Constraint Hierarchies, Lisp and 

Symbolic Computation, Vol. 5, No.3, pp. 223-270, September 1992. 

[14] Bouma, W., Fudos, r., Hoffmann, C., Cai, J. and Paige, R., Geometric Constraint 

Solver, Computer-Aided Design, Vol. 27, No.6, pp,487-501, June 1995. 

[15] Briiderlin, B., Constructing Three-Dimensional Geometric Objects Defined by Con­

straints, In Proceedings of the 1986 Workshop on Interactive 3D Graphics, Crow, F. 

and Pizer, S. (Eds), ACM Press, pp. 111-129, October 23-24 1986. 

[16] Brunkhart, M.K., Interactive Geometric Constraint Systems, Master's thesis, Com­

puter Science Division/University of California, Berkeley, 1994. 

[17] Buchanan, S.A., Some Theoretical Problems when Solving Systems to Polynomials 

Equations using Grabner Bases, ACM SIGSAM Bull., Vol. 25, No.2 pp. 24-27, 1991. 

[18] Buchanan, S.A. and de Pennington, A., Constraint Definition System: a Computer­

Algebra based Approach to Solving Geometric-Constraint Problems, Computer-Aided 

Design, Vol. 25, No. 12, pp. 741-750, December 1993. 

[19] Buchberger, B., A Theoretical Basis for the Reduction of Polynomials to Canonical 

Forms, ACM SIGSAM Bull., Vol. 39, pp. 19-29, 1976. 

[20] Butterworth, A.D., Hench, S. and Marc Olano, T., 3DM: A Three Dimensional Mod­

eller Using Head-Mounted Display, 1992 Symposium on Interactive 3D Graphics, 1992. 



BIBLIOGRAPHY 110 

[21] Char, B.W., Geddes, K.O., Gonnet, G.H., Leong, B.L., Monahan, M.B. and Watt, 

S.M., First Leaves: A Tutorial Introduction to Maple V, Springer-Verlag, 1992. 

[22] Chen, X. and Hoffmann, C.M., Design Compilation of Feature-Based and Constraint­

Based CAD, ACM/SIGGRAPH Third Symposium on Solid Modeling and Applications, 

pp. 13-19, Salt Lake City, Utah, May 1995. 

[23] Chung, J. and Schussel, M., Comparison of Variational and Parametric Design, In 

Proceedings of A utofact '89, pp. 5/27-5/44, 1989. 

[24] Clarke, C., Pro-Engineer, CAD/CAM, Vol. 12, No.1, January 1993. 

[25] Cormen, T. H., Leiserson, C.E. and Rivest, R.L., Introduction to Algorithms, The MIT 

Press, Cambridge, Massachusetts, USA, 1994. 

[26] D-Cubed Ltd., The 2 Dimensional DCM Technical Overview, Technical Report, 

November 1993. 

[27] Dohmen, M., A Survey of Constraint Satisfaction Techniques for Geometric Modeling, 

Computers £3 Graphics, Vol. 19, No.6, pp. 831-845, 1995. 

[28] Drinkart, R.D. and Sulinski, N.K., MACSYMA: A Program for Computer Algebra 

Manipulations, Naval Underwater Systems Center, Newport, Rhode Island, NUSC 

Technical Document 6401, 1981. 

[29] Edelen, D.G.B and Kydoniefs, A.D., An Introduction to Linear Algebra for Science and 

Engineering, 2nd edition, American Elsevier Publishing Company, Inc., 1976, ISBN 

0-444-0019-56. 

[30] van Emmerik, M.J.G.M., Creation and Modification of Parameterized Solid Models by 

Graphycal Interaction, Computers £3 Graphics, Vol. 13, No.1, pp. 71-76, 1989. 

[31] van Emmerik, M.J.G.M., Interactive Design of 3D Models with Geometric Constraints, 

The Visual Computer, Vol. 7, No. 5/6, pp. 309-325, 1991. 

[32] Fa, M., Interactive Constraint-based Solid Modeling, PhD thesis, Leeds University, 

School of Computer Studies, UK, September 1993. 

[33] Fa, M., Fernando, T. and Dew, P.M., Interactive Constraint-based Solid Modelling 

using Allowable Motion, A CM/SIGGRA PH Symposium on Solid Modeling Foundations 

and CAD/CAM Applications, pp. 243-252, May 1993. 



BIBLIOGRAPHY 111 

[34] Fernando, T., Fa, M., Dew, P.M. and M.Munlin, Constraint-based 3D 

Manipulation Techniques within Virtual Environments", Virtual Reality 

Applications,Academic Press, 1995, pp. 71-89, ISBN 0-12-227755-4. 

[35] French, M., Conceptual Design for Engineers, 2nd edition, Design Council, London, 

1985. 

[36] Freeman-Benson, B., Maloney, J. and Borning, A., An Incremental Constraint Solver, 

Communications of the ACM, Vol. 33, No.1, pp. 54-63, January 1990. 

[37] Fudos, I., Editable Representations for 2D Geometric Design, Master thesis, Purdue 

University, USA, December 1993. 

[38] Geiger, T.S. and Dilts, D.M., Automated Design-to-Cost: Integrating Costing into the 

Design Decision, Computer-Aided Design, Vol. 28, No. 6/7, pp. 423-438, Junho/Julho 

1996. 

[39] Gifford, R., Workstations Bring Benefits of Variational Geometry to Mechanical Engi­

neers, MicroCAD News, pp. 56-58, November 1990. 

[40] Gleicher, M.L., Integrating Constraint and Direct Manipulations, 1992 Symposium on 

Interactive 3D Graphics, pp. 171-174,1992. 

[41] Gleicher, M.L., Practical Issues in Graphical Constraints, First Principles and 

Practice of Constraint Programming Workshop (PPCP'93), Newport, RI, 1993, 

ftp:/ /wilma.cs.brown.edu/pub/ppcp93. 

[42] Gleicher, M.L., A Differential Approach to Graphical Interaction, PhD thesis, School 

of Computer Science, Carnegie Mellon University, Pittsburgh, USA, November 1994. 

[43] Gossard, D.C., Zuffante, R.P. and Shakurai, H., Representing Dimensions, Toler­

ances and Features in MCAE Systems, IEEE Computer Graphics and Applications, 

pp. 51-59, March 1988. 

[44] Green, W.G., Theory of Machines, 2nd ed., Blackie & Son Limited, 1962. 

[45] Grosjean, J., Kinematics and Dynamics of Mechanisms, McGraw-Hill Book Company 

Ltd, London, England, 1991. 

[46] Gupta, S.K., RegU, W.C and Nau, D.S., Manufacturing Feature Instances: Which 

Ones to Recognize? ACMjSIGGRAPH Third Symposium on Solid Modeling and Ap­

plications, pp. 141-152, Salt Lake City, Utah, May 1995. 



BIBLIOGRAPHY 112 

[47] Harper, D., Wooff, C. and Hodgkinson, D., A Guide to Computer Algebra Systems, 

John Woley & Sons, 1991, ISBN 0-471-92910-7. 

[48] Hillyard, R.C. and Braid, I.C., Analysis of Dimensions and Tolerances in Computer­

Aided Mechanical Design, Computer-Aided Design, Vol. 10, No.6, pp. 161-166, June 

1978. 

[49] Hoffmann, C.M. and Rossignac, J.R., A Road Map To Solid Modeling, IEEE Trans­

actions on Visualization and Computer Graphics, Vol. 2, No.1, March 1996. 

[50] Hosobe, H., Miyashita, K., Takahashi, S., Matsuoka, S. and Yonezawa, 

A., Locally Simultaneous Constraint Satisfaction. Second Principles and Prac­

tice of Constraint Programming Workshop (PPCP'94), Washington, USA, 1994, 

ftp://ftp.cs.washington.edu/pub/constraints/ppcp94. 

[51] Juster, N.P., A Graph Based Approach to Tolerance Analysis, PhD thesis, Department 

of Mechanical Engineering, The University of Leeds, UK, September 1988. 

[52] Juster, N.P., Modelling and Representation of Dimensions and Tolerances: a Survey, 

Computer-Aided Design, Vol. 24, No.1, pp. 3-17, January 1992. 

[53] Kahaner, D., Moler, C., and Nash. S., Numerical Methods and Software, Prentice Hall, 

Englewood Cliffs, NJ, 1989. 

[54] Kaufman, A. and Yagel, R., Direct Interaction with a 3D Volumetric Environment, 

1990 Symposium on Interactive 3D Graphics, pp. 33-34, 1990. 

[55] Keirouz, W.T., Kramer, G.A. and Pabon, J., Exploiting Constraint Depen­

dency Information for Debugging and Explanation, First Principles and Prac­

tice of Constraint Programming Workshop (PPCP'93), Newport, RI, 1993, 

ftp:/ /wilma.cs.brown.edu/pub/ppcp93. 

[56] Kondo, K., Algebraic Method for Manipulation of Dimensional Relationships in Geo­

metric Models, Computer-Aided Design, Vol. 24, No.3, pp. 141-147, March 1992. 

[57] de Kraker, K.J., Dohmen, M. and Bronsvoort, W.F., High-level Constraints in Interac­

tive CSG Modelling, In Proceedings of CSG94: Set-theoretic Solid Modelling Techniques 

and Applications, pp. 275-289, Ed. Information Geometers Ltd, Winchester, UK, 13-15 

April 1994, ISBN 1-874728-05-4. 



BIBLIOGRAPHY 113 

[58] de Kraker, K.J., Dohmen, M. and Bronsvoort, W.F., MUltiple-way Feature Conversion 

to Support Concurrent Engineering, ACM/SIGGRAPII Third Symposium on Solid 

Modeling and Applications, pp. 105-114, Salt Lake City, Utah, May 1995. 

[59] Kramer, G.A., Solving Geometric Constraint Systems: A Case Study in Kinematics, 

MIT Press, Cambridge, Massachusetts, 1992. 

[60] Kramer, G.A., A Geometric Constraint Engine, Artificial Intelligence, Vol. 58, 

pp. 327-360, December 1992. 

[61] Light, R. and Gossard, D., Modification of Geometric Models through Variational 

Geometry, Computer-Aided Design, Vol. 14, No.4, pp. 209-214, July 1982. 

[62] Lin, V.C., Gossard, D.C. and Light, R.A., Variational Geometry in Computer Aided 

Design, ACM Computer Graphics (SIGGRAPH'81), Vol. 15, No.3, pp. 171-175, Au­

gust 1981. 

[63] Lucas, W. K, Kim Roddis, W.M. and Brown, F.M., Constraint-Based Reasoning for 

Structural Concrete Design and Detailing, Constraint-9S: Workshop on Constraint­

Based Reasoning, FLAIRS-95, April 1995. 

[64] Mabie, H.Il. and Ocvirk, F.W., Mechanisms and Dynamics of Machinery, John Wiley 

and Sons, 1978. 

[65] Maloney, J., Using Constraints for User Interface Construction, PhD Thesis, Depart­

ment of Computer Science and Engineering, University of Washington, August 1991. 

[66] Mandorli, F., Otto, H.E. and Kimura, F., A Reference Kernel Model for 

Feature-based CAD Systems Supported by Conditional Attributed Rewrite Sys­

tems, ACM/SIGGRAPH Second Symposium on Solid Modeling and Applications, 

pp. 343-354, Montreal, Canada, 1993. 

[67] Miintylii, M., A Modeling System for Top-Down Design of Assembled Products, IBM 

Journal of Research Development, Vol. 34, No.5, pp. 636-659, September 1990. 

[68] Mathews, J.H., Numerical Methods for Mathematics, Science and Engineering, 

Prentice-Hall International, Inc., 1992, ISBN 0-13-625047-5. 

[69] Maxfield, J., Fernando, T. and Dew, P.M., A Distributed Virtual Environment for Con­

current Engineering, in Virtual Prototyping - Virtual Environments and the Product 

Development Process, Chapman & Hall, July 1995. 



BIBLIOGRAPHY 114 

[70) Munlin, M., Interactive Assembly Modeling within a Virtual Environment, PhD thesis, 

Leeds University, School of Computer Studies, UK, September 1995. 

[71) Numerical Algorithms Group Limited, The NAG Fortran Library Manual - Mark 15, 

1995. 

[72) Nelson, G., Juno, A Constraint-based Graphics System, SIGGRAPlI'85, Vol. 19, No. 

3, ACM Press, pp. 235-243, San Francisco, July 1985. 

[73) Nielson, G. M., Direct Manipulation Techniques for 3D Objects Using 2D Locator 

Devices, In Proceedings of 1986 Workshop on Interactive 3D Graphics, pp. 175-182, 

Crow, F. and Pizer, S.M. (Eds), October 1986. 

[74) Owen, J.C., Algebraic Solution for Geometr.y from Dimensional Constraints, 

ACM/SIGGRAPH Symposium on Solid Modeling Foundations and CAD/CAM Ap­

plications, pp. 397-407, June 1991. 

[75] Pabon, J., Young, R. and Keirouz, W., Integrating Parametric Geometry, Features 

and Variational Modelling for Conceptual Design, International Journal of System 

Automation: Research and Applications (SARA), Vol. 2, pp. 17-32, 1992. 

[76) Pahl, G. and Beitz, W., Engineering Design, Design Council, London, 1984. 

[77] Popplestone, R.J., Ambler, A.P. and Bellos, I.M., An Interpreter for a Language De­

scribing Assemblies, Artificial Inteligence, Vol. 14, pp. 79-107, 1980. 

[78] Porter, S., Winds of Change: Are Users Ready to Switch CAD Systems to Get the 

Benefits of Solids?, Computer Graphics World, pp.34-40, February 1991. 

[79) Press, W.H. et al., Numerical Recipes in C: the Art of Scientific Computing, Cambridge 

University Press, 2nd edition, 1992. 

[80) Prime, M.J., Human Factors Assessment of Input Devices for EWS, Technical report, 

Rutherford Appleton Laboratory, April 1991. 

[81] Rayna, G., REDUCE: Software for Algebraic Computation, Springer-Verlag, 1987, 

ISBN 038796598X. 

[82] Requicha, A.A.G., Representations for Rigid Solids: Theory, Methods and Systems, 

Computing Surveys, Vol. 12, No.4, December 1980. 



BIBLIOGRAPHY 115 

[83] Requicha, A.A.G., Representations of Tolerance in Solid Modeling: Issues and Al­

ternative Approaches. In Solid Modeling by Computers from Theory to Applications, 

1984. 

[84] Requicha, A.A.G. and Rossignac, J.R., Solid Modelling and Beyond, IEEE Computer 

Graphics and Applications, pp. 31-44, September 1992. 

[85] Roller, D., An Approach to Computer Aided Parametric Design, Computer-Aided De­

sign, Vol. 23, No.5, pp. 385-391, June 1991. 

[86] Rossignac, J .R., Contraints in Constructive Solid Geometry, In Proceedings of 19S6 

Workshop on Interactive 3D Graphics, pp. 93-110, Crow, F. and Pizer, S.M. (Eds), 

October 1986. 

[87] Rossignac, J.R., Through the Cracks of the Solid Modeling Milestone, Eurographics'9J 

State of the Art Report on Solid Modeling, pp. 23-109, 1991. 

[88] Roy, U. and Lin, C.R., Establisment of Functional Relationships Between Product 

Components in Assembly Database, Computer-Aided Design, Vol. 20, pp. 579-580, 

December 1988. 

[89] Salomons, O.W, van Slooten, F. and Kals, H.J.J., Conceptual Graphs in Constraint 

Based Re-design, ACM/SIGGRAPH Third Symposium on Solid Modeling and Appli­

cations, pp. 55-64, Salt Lake City, Utah, May 1995. 

[90] Sannella, M., The Sky Blue Constraint Solver and Its Applications, First Principles 

and Practice of Constraint Programming Workshop (PPCP'93), Newport, RI, 1993, 

ftp:/ /wilma.cs.brown.edu/pub/ppcp93. 

[91] Sannella, M., Analyzing and Debugging Hierarchies of Multi-Way Local Propagation 

Constraints, Second Principles and Practice of Constraint Programming Workshop 

(PPCP'94), Washington, USA, 1994. 

[92] Serrano, D., Constraint Mangement in Conceptual Design, PhD Thesis, Massachusetts 

Institute of Technology, Department of Mechanical Engineering, October 1987. 

[93] Serrano, D. and Gossard, D., Tools and Techniques for Conceptual Design, In Artificial 

Intelligence in Engineering Design, Vol. I, C. Tong and D. Sriram (Eds), pp. 71-116, 

1992. 



BIBLIOGRAPHY 116 

[94] Shapiro, V. and Vossler, D.L., What is a Parametric Family of Solids?, 

ACM/SIGGRAPH Third Symposium on Solid Modeling and Applications, pp. 43-54, 

Salt Lake City, Utah, May 1995. 

[95] Shigley, J.E. and Vicker Jr, J.J., Theory of Machines and Mechanisms, McGraw-Hill 

Book Company, 1980. 

[96] Sistare, S. Graphical Interaction Techniques in Constraint-based Geometric Modeling, 

Graphics Interface '91, pp. 85-93, 1991. 

[97] Smith, B.M and Grant, S.A., Where the Exceptionally liard Problems Are, Technical 

Report No. 95.35, School of Computer Studies, Leeds Universtiy, 1995. 

[98] Subramaniam, S., Turner, J.and Sanderson, A., Establishing Part Positions in Assem­

bly Modelling, In Product Modelling for Computer-Aided Design and Manufacturing, 

pp. 199-226, Elsevier Science Publishers B.V. (North-Holand), 1991. 

[99] Inc. SHAPEDATA, PARASOLID Programming Reference, 1992. 

[100] Sohrt, W. and Briiderlin, B., Interaction with Constraints in 3D Modeling, In Pro­

ceedings Symposium on Solid Modeling Foundations and CAD/CAM Applications, 

Rossignac, J. and Turner, J. (Eds), ACM Press, pp. 387-396, 1991. 

[101] Solano, L. and Brunet, P., A System for Constructive Constraint-based Modeling, In 

Falcidieno, B. and Kunii, T. (Eds), Modeling in Computer Graphics, Springer-Verlag, 

pp. 61-84, 1993. 

[102] Inc. Spatial Technology, ACIS Geometric Modeler, 1993. 

[103] Stephamopoulos, G., A Knowledge-Based Framework for Process Design and Con­

trol, NSF-AAI Workshop on Artificial Intelligence in Process Engineering, Columbia 

University, New York, N.Y, March 1987. 

[104] Strauss, P. S. and Carey, R., An Object-Oriented 3D Graphics Toolkit, 

SIGGRAPH'92, Vol. 26, No.2, pp. 341-349, July 1992. 

[105] Sutherland, 1., Sketchpad, A Man-Machine Graphical Communication System, In 

Proceedings of Spring Joint Conference IFIP, pp. 329-345,1963. 

[106] Suzuki, H" Ando, H. and Kimura, F., Synthesizing Product Shapes with Geometric 

Design Constraints and Reasoning, In Proc. of the IFIP TC 5/WG 5.2 Workshop on 

Intelligent CAD, pp. 309-322, Cambridge, UK, September 1988. 



BIBLIOGRAPHY 117 

[107] Swamy, M.N. and Thulasriraman, K., Graphs, Networks, and Algorithms, John Wiley 

& Sons, Inc., 1981, ISBN 0-471-03503-3. 

[108] Thompson, M., First Year Report, Technical Report, School of Computer Studies, 

University of Leeds, September 1996. 

[109] Thornton, A.C., Constraint Specification and Satisfaction in Embodiment Design, 

PhD thesis, University of Cambridge, Department of Engineering, UK, July 1993. 

[110] Tsai, Y., Fernando, T. and Dew, P.M., Exploiting Degrees of Freedom Analysis for 

Interactive Constraint-based Design, In Proceedings of The Fourth International Con­

ference in Central Europe on Computer Graphics and Visualization (lVSCG'96), Thal­

mann, N. and Skala, V. (Eds), pp. 377-387, Plzen, Czech Republic, February 1996. 

[111] Tsai, Y., Incremental Geometric Constraint Satisfaction Algorithms, PhD thesis, The 

University of Leeds, School of Computer Studies, UK, September 1996. 

[112] Verroust, A., Schonek, F. and Roller, D., Rule-oriented Method for Parameterized 

Computer-aided Design, Computer-Aided Design, Vol. 24, No.3, pp. 531-540, October 

1992. 

[113] Waco, D.L. and Kim, Y.S., Geometric Reasoning for Machining Features Using Con­

vex Decomposition, A CM/SIGGRA PH Second Symposium on Solid Modeling and Ap­

plications, pp. 343-354, Montreal, Canada, 1993. 

[114] Wickens, L.P., NONAME Training Courses, Technical report, Department of Me­

chanical Engineering, Leeds University, UK, July 1982. 

[115] Wolter, J. and Chandrasekaran P., A Concept for a Constraint-based Representation 

of Functional and Geometric Design Knowledge, ACM/SIGGRAPll Symposium on 

Solid Modeling Foundations and CAD/CAM Applications, pp. 409-418, 1991. 

[116] Yamaguchi, Y. and Kimura, F., A Constraint Modeling System for Variational Ge­

ometry, In Wozny, J., Turner, J. and Preiss, K. (Eds), Geometric Modeling for Product 

Engineering, North Holand, pp. 221-233, 1990. 

[117] Vander Zanden, B.T., A Domain-Independent Algorithm for Incrementally Satisfying 

Multi-Way Constraints, Technical report CS-92-160, University of Tennessee, Com­

puter Science Department, 1992. 


