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Abstract 

Understanding the dynamics of plankton populations is of major importance since 

plankton form the basis of marine food webs throughout the world's oceans and play 

a significant role in the global carbon cycle. In this thesis we examine the dynami­

cal behaviour of plankton models, exploring sensitivities to the number of variables 

explicitly modelled, to the functional forms used to describe interactions, and to the 

parameter values chosen. The practical difficulties involved in data collection lead to 

uncertainties in each of these aspects of model formulation. 

The first model we investigate consists of three coupled ordinary differential equa­

tions, which measure changes in the concentrations of nutrient, phytoplankton and 

zooplankton. Nutrient fuels the growth of the phytoplankton, which are in turn grazed 

by the zooplankton. The recycling of excretion adds feedback loops to the system. In 

contrast to a previous hypothesis, the three variables can undergo oscillations when 

a quadratic function for zooplankton mortality is used. The oscillations arise from 

Hopf bifurcations, which we track numerically as parameters are varied. The resulting 

bifurcation diagrams show that the oscillations persist over a wide region of param­

eter space, and illustrate to which parameters such behaviour is most sensitive. The 

oscillations have a period of about one month, in agreement with some observational 

data and with output of larger seven-component models. The model also exhibits fold 

bifurcations, three-way transcritical bifurcations and Bogdanov-Takens bifurcations, 

resulting in homo clinic connections and hysteresis. 

Under different ecological assumptions, zooplankton mortality is expressed by a 

linear function, rather than the quadratic one. Using the linear function does not 

greatly affect the nature of the Hopf bifurcations and oscillations, although it does 

eliminate the homoclinicity and hysteresis. We re-examine the influential paper by 

Steele and Henderson (1992), in which they considered the linear and quadratic mor­

tality functions. We correct an anomalous normalisation, and then use our bifurcation 

diagrams to interpret their findings. 

A fourth variable, explicitly modelling detritus (non-living organic matter), is then 



added to our original system, giving four coupled ordinary differential equations. The 

dynamics of the new model are remarkably similar to those of the original model, as 

demonstrated by the persistence of the oscillations and the similarity of the bifurcation 

diagrams. A second four-component model is constructed, for which zooplankton can 

graze on detritus in addition to phytoplankton. The oscillatory behaviour is retained, 

but with a longer period. Finally, seasonal forcing is introduced to all of the models, 

demonstrating how our dynamical systems approach aids understanding of model 

behaviour and can assist with model formulation. 
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Chapter 1 

Introd uction 

1.1 Why model plankton populations? 

The sunlit surface waters of the world's oceans are populated by tiny plankton. Plank­

ton is a general term used to describe freely-floating and weakly-swimming marine 

and freshwater organisms. Plankton are broadly divided into two groups. Phyto­

plankton are the plants and are mostly microscopic in size and unicellular; they are 

consumed by zooplankton, the animals. The zooplankton in turn are eaten by larger 

organisms, and consequently plankton form the basis of food webs around the world, 

supporting a diverse range of life, from shrimps and cod to blue whales and man. 

Perhaps of greater importance is phytoplankton's role in influencing the Earth's 

climate. Phytoplankton synthesise energy-rich organic molecules from inorganic ma­

terials via the process known as photosynthesis, which requires carbon dioxide that 

is dissolved in seawater. Although most of the organic matter is rapidly recycled in 

the surface waters, a small proportion sinks to the deep water in the form of faeces 

and dead plants and animals. This biological pump has led, for example, to carbon 

concentrations in the deep waters of the North Pacific exceeding those in the surface 

waters by 20% (Evans and Fasham, 1993). Ocean circulations eventually bring deep 

waters to the surface, but such processes can take hundreds of years. On a shorter 

time-scale, the carbon dioxide lost from the surface waters is replenished by carbon 

dioxide from the atmosphere. The amounts of carbon dioxide entering and leaving 

1 
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the oceans are usually close to global balance each year, but at present it is not known 

whether likely feedbacks from marine biota in response to climate-related changes will 

act in a positive or a negative direction (Denman et al., 1996), either mitigating or 

enhancing the greenhouse effect. 

Understanding the dynamics of plankton populations is therefore of major impor­

tance in predicting future fish harvests and in assessing the possible consequences of 

global warming. Direct measurement of plankton biomass is difficult and expensive. 

Historically, data has come from analyses of samples taken 'over the side' from ships, 

and is inevitably sparse and patchy. More recently it has been possible to use satellite 

observations, though the identification and interpretation of the part of the radiation 

spectrum which relates to plankton is a formidable task (Robinson, 1990). 

In this situation, the modelling of plankton populations is an essential tool to 

improve our understanding of the physical and biological processes which affect the 

population dynamics. Models are thus used to not only to simulate ecosystems and 

predict future behaviour under possibly changing climate scenarios, but also to en­

hance our knowledge of oceanic processes. 

The word plankton comes from a Greek word (7r).Q:Zlltro~) meaning wandering 

or drifting, and was introduced by the German scientist Victor Hensen in 1887. At 

around the same time, the French mathematician Henri Poincare was laying down 

the foundations for a geometric approach to analysing the dynamics of nonlinear 

systems. In this thesis we invoke the theory of dynamical systems that has arisen 

from Poincare's pioneering work to investigate the behaviour of plankton population 

models. 

1.2 The physics of the plankton's environment 

Phytoplankton require sunlight and nutrients to perform photosynthesis. The amount 

of sunlight that an area of ocean receives depends upon factors such as latitude, time 

of day, time of year and atmospheric transmittance. The tilt of the earth's axis 

combined with the earth's orbit around the sun provide the seasonal variation, which 
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is most pronounced at the poles and least pronounced at the equator. Geometric 

calculations give the flux of radiation per unit area at the sea-surface (neglecting 

atmospheric effects) as a function of latitude, time of day and time of year. However, 

the variation in the transmission of light through the atmosphere due to absorption 

and scattering by clouds is much harder to model. This variable transmission can 

have a dramatic effect on the amount of radiation reaching the sea surface (e.g. Figure 

1.2 of Sathyendranath and Platt (1990) shows a large variation in the observed surface 

irradiance during a seven-week cruise), and different cloud-cover algorithms give quite 

different results, as shown by Figure 4 of Fasham (1993). 

Some of the light that does reach the ocean gets reflected from the surface, de­

pending on the angle of incidence with which the light strikes the water. When the 

light then penetrates the water column, the water itself absorbs some of the light. 

In the clearest tropical water sufficient light for photosynthesis may reach a depth of 

120 m. But elsewhere, living and non-living particles in the water absorb or reflect 

light, restricting photosynthesis to much shallower depths. The modelling of this at­

tenuation of light through the water column is discussed in Chapter 2 and Appendix 

A. 

Energy from the sun plays a second important role in defining the plankton's 

environment, by heating the surface waters. Warm water is less dense than, and 

hence floats upon, colder water. The narrow depth-range which exhibits the most 

rapid change in temperature is called a thermocline, and acts to separate the warm 

surface layer of water from the colder deeper layer. The surface layer is kept well­

mixed by wind-induced wave action, and hence is called the mixed layer. In many 

models (e.g. Fasham et al., 1990; Steele and Henderson, 1992) it is thus assumed to 

be a biologically homogeneous environment. 

A strong thermocline is a persistent feature of tropical oceans, since the lack of 

seasonal variation provides warm conditions throughout the year. In polar seas a 

slight thermocline may appear only during the short summer period. In the interme­

diate temperate waters, no thermocline occurs in the winter due to the cold stormy 

conditions. With the onset of the warm and calm conditions of spring, a thermocline 
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forms and persists through the summer months. In autumn the amount of solar energy 

decreases with the sun appearing lower in the sky and the days becoming shorter, 

and eventually the density of the surface waters reaches a similar value to that of the 

underlying waters. The two water masses then become mixed, and the thermocline 

disappears for the winter. 

The stable mixed layer of the tropical waters, together with favourable year-long 

sunlight, meant that in the late nineteenth century most biologists expected to find 

more plankton in these waters than in the colder oceans. However, Victor Hensen's 

Plankton Expedition in 1889 found the reverse to be true. This was later deduced 

to be due to the lack of nutrients in the warmer waters - because the thermocline 

persists all year long, when the nutrients get used up in the mixed layer they cannot 

be easily replenished, since there is little mixing with the deep nutrient-rich water. 

Whereas during winter in the temperate regions, the thermocline breaks down and 

the deep nutrient-rich water becomes mixed with the depleted surface water. When 

the thermocline forms in spring the mixed layer contains nutrient-rich water, and 

together with the favourable sunlight conditions provides the perfect environment for 

phytoplankton to flourish - a spring bloom can then occur. 

However, 20% of the world's open-ocean surface waters are light-rich and abun­

dant with the major nutrients required by phytoplankton, such as nitrate and phos­

phate, but phytoplankton populations remain low. These so-called high-nitrate, low­

chlorophyll (HNLC) regions are the eastern equatorial Pacific, the ice-free Southern 

Ocean and the open subarctic North Pacific Ocean. Recent ambitious and successful 

experiments in the former of these regions investigated whether extremely low con­

centrations of iron, an essential trace element required by phytoplankton, have the 

potential to prohibit phytoplankton from fully utilising the major nutrients (Mar­

tin et ai., 1994; Frost, 1996; Coale et ai., 1996). The experiments involved infusing 

dissolved iron into the water from a ship, staying with the iron-enriched patch of 

water, and monitoring the biological and biogeochemical changes in the surface wa­

ters. Results from the second experiment, IronEx II, included a 20-fold increase in 

phytoplankton abundance coupled with a reduction in half of nitrate concentration 
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(Coale et al., 1996), and a three-fold increase in the concentration of dimethyl sul­

phide (Turner et al., 1996). Dimethyl sulphide is formed from the breakdown of 

dimethylsulphonium propionate, a salt produced by phytoplankton, and it can react 

in the atmosphere to produce particles about which water vapour condenses to form 

clouds (see Fell and Liss, 1993). This is another example of plankton's importance, 

since any large-scale changes in cloud formation could have profound climatological 

consequences. 

1.3 The biology of plankton 

In addition to being partitioned into phytoplankton and zooplankton, plankton have 

also been classified by their size. The classes range from macroplankton, 0.2 - 2 mm 

in size, to the ultraplankton which are less than 5 pm (= 5 X 10-6 m), although 

these ranges are not absolute definitions, and different authors use different values 

(e.g. Nybakken, 1982, and Tait, 1981). The ultraplankton are too small to be captured 

in nets, since the required mesh-size would be so fine that when the nets were pulled 

behind a boat, the water would not be able to pass through the nets. Ultraplankton 

can be obtained by filtering water samples on fine filters or by centrifuging water 

samples. Exceptionally large plankton, above 2 mm in size, are called megaplankton. 

Another division of plankton concerns the life history of the organisms. Holo­

plankton (permanent plankton) are organisms who spend their entire life span as 

plankton, whilst meroplankton (temporary plankton) are organisms who spend only 

a portion of their life span as plankton. The great majority of marine animals spend 

hours, and often several weeks, as developmental stages such as eggs or larvae, during 

which time they are considered as meroplankton. For the purpose of this thesis we 

only need to consider the partition of plankton into phytoplankton and zooplankton, 

and we now give a short summary of the nature of the constituents of these two 

divisions. 
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1.3.1 Phytoplankton 

The larger phytoplankton consist predominantly of two groups, diatoms and dinoflag­

ellates. The majority of diatoms are unicellular, with an external skeleton that con­

sists largely of silica, giving a transparent glassy quality. The skeleton comprises two 

overlapping halves, called valves, which in the simplest diatoms overlap to fit together 

as a simple flat cylinder, much like a petri dish. Between species, the valves can vary 

in shape, being circular, elliptical, triangular, square or polygonal, and some have 

large projections such as protruding spines. Some diatoms join up to form chains by 

interlocking these spines, and others unite together by means of sticky secretions. 

Simple asexual division of the cell is the usual method of reproduction of diatoms. 

Under favourable environmental conditions this may occur three or four times a day, 

yielding a rapid growth in numbers. The two valves gradually separate, resulting in 

two daughter cells which each grow a new second valve. 

During unfavourable conditions for growth, some diatoms can form resistant 

spores which sink to the bottom, and in shallow waters may return at a later date 

to germinate. In polar regions, spores become trapped in sea ice during the winter 

months, and then germinate when the ice melts. 

The dinoflagellates possess, as their name suggests, two flagella which they use to 

move themselves through the water, but such powers of locomotion are so weak that 

the organisms do not move far compared to the distances that they are transported by 

the water motion. Typically, one flagellum is wrapped around the cell, lying within 

a groove encircling the cell. The second flagellum is like a whip projecting behind 

the cell, and the combined effects of the movement of the flagella drive the organism 

forward along a spiral path. Unlike diatoms, dinoflagellates rarely form chains, but 

they do reproduce by asexual division. 

Dinoflagellates are capable of producing toxins. When dinoflagellates are ex­

tremely abundant (hundreds of thousands of cells per millilitre of water in some 

cases) the cumulative effects of the toxins may affect other organisms, causing mass 

mortality. Such extreme concentrations, or blooms, are called red tides because of 
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the discolouration of the water. Red tides is a general term covering more than just 

toxic blooms which colour the water red - the water can also turn brown or green, or 

not be discoloured at all. Furthermore some blooms can discolour the water but are 

not toxic. 

Anderson (1994) gives a lucid account of some of the devastating effects that red 

tides can have on marine organisms and humans. In 1987, 14 humpback whales died 

and were washed ashore in Cape Cod Bay, on the eastern coast of the USA. Anderson 

and many other scientists concluded, after intense investigations, that the most likely 

cause of these mortalities was that toxins produced by dinoflagellates had worked 

their way up the food web, via zooplankton and mackerel. The whales may have 

been killed directly by the toxins, or may have become disorientated and unable to 

resurface after diving. 

Humans can be directly affected by toxins when they eat shellfish, such as clams 

or mussels, which have consumed the phytoplankton. The toxins accumulate in the 

tissues of the shellfish, but only slightly harm the shellfish. Sometimes one clam can 

contain enough toxin to kill a human; over 300 deaths have been documented world­

wide. Human illnesses from poisonings include diarrhoea, abdominal pain, dizziness 

and permanent loss of short-term memory. 

Some dinoflagellates are highly pigmented, and in large numbers can give the 

water a distinctive green, red or yellow tint. Some species are even highly biolu­

minescent. An example is Noctiluca which sometimes occurs in swarms around the 

British Isles, and their luminescence can be visible to the naked eye when stimulated 

by the breaking waves on a beach or in the wake of a boat. 

The remaining constituents of phytoplankton include blue-green algae, coccol­

ithophores and silicoflagellates. Despite being classed as a blue-green alga, Tri­

chodesmium erythraeum is actually red in colour, a feature which gives the Red Sea 
\ 

its name. 
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1.3.2 Zooplankton 

The group of zooplankton known as copepods dominate the zooplankton through­

out the world's oceans. These small crustaceans are of vital importance to oceanic 

ecosystems, since by grazing on the phytoplankton they provide the link between the 

primary producers, the phytoplankton, and all the carnivorous creatures, great and 

small. 

Copepods are generally between one and several millimetres in length, and swim 

weakly with a characteristic jerky movement. They capture their food either by 

means of a complex filtering mechanism that sieves phytoplankton from the water, or 

by grasping phytoplankton with their appendages. Copepods predominantly feed on 

phytoplankton, although some are carnivorous and some are omnivorous. Zooplank­

ton can also feed on detritus, which consists of dead plankton and faecal pellets, and 

bacteria (Fasham et al., 1990). The models investigated in Chapters 3-6 consider 

zooplankton grazing solely on phytoplankton, whereas in Chapter 7 we investigate 

the effect of allowing zooplankton to additionally feed on detritus. 

Copepods reproduce sexually, with the sperm transferred to the female as pack­

aged spermatophores. The fertilised eggs hatch as nauplius larvae and progress 

through six distinct naupliar stages and then five copepodite (juvenile) stages before 

becoming sexually active adults. This cycle typically takes about two months. 

Other types of zooplankton include fish larvae, arrowworms, salps and krill, the 

latter forming the diet of blue whales, the largest animals on Earth. 

The general background information concerning oceanographic processes presented 

in these introductory sections has been taken from the books by Parsons and Taka­

hashi (1973), Bougis (1976), Raymont (1980, 1983), Tait (1981), Nybakken (1982) 

and Thurman (1997). 

1.4 Plankton population models 

There have been numerous plankton models produced over the past few decades, vary­

ing in temporal, biological, chemical and physical structure, with many differences in 
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the mathematical formulae used to model these processes. The models comprising of 

differential equations may be crudely divided into two classes. 

The first class, containing models composed of many coupled nonlinear differential 

equations, is amenable only to numerical experimentation. The seven-component 

mixed-layer model formulated by Fasham et al. (1990) is an example. It consists 

of seven coupled ordinary differential equations to model the state variables, plus 

two time-dependent functions to represent the seasonal changes in mixed-layer depth 

and incident radiation. These two functions are used to force the system through 

the year. The model has a total of 30 parameters, some of which are so difficult 

to measure or prescribe values to that they are kept free, and their values adjusted 

to try and fit the model to data from Bermuda Station "S" near Bermuda, 1120 

km east of South Carolina in the Atlantic Ocean. This ecosystem model has been 

coupled with a general circulation model of the North Atlantic (Fasham et al., 1993; 

Sarmiento et al., 1993), to more explicitly incorporate the physics of the ocean. The 

biological model has since been modified by Fasham (1993), and the modified model 

has provided the base model for investigations by Yool (1997) regarding the number 

of components that need to be retained in order to reproduce the results of the full 

system. 

Whilst Fasham's models consider just two plankton compartments, one for phyto­

plankton and one for zooplankton, Hofmann and Ambler (1988) explicitly modelled 

two phytoplankton size classes, plus five stages of zooplankton. With further equa­

tions representing nitrate, ammonium and detritus, the model has a total of ten 

coupled ordinary differential equations. The model of Taylor et al. (1993) has twelve 

ordinary differential equations, yet the authors still refer to it as a 'a simple model' 

- a view taken from a biological rather than a mathematical viewpoint. The degree 

of mathematical complexity of such models renders them too complex to approach 

from a dynamical systems viewpoint, in particular using analytical (non-numerical) 

techniques. 

The second class of models covers models consisting of only two or three ordinary 

differential equations, (e.g. Steele and Henderson, 1981; Evans and Parslow, 1985; 
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Truscott and Brindley, 1994). These recognise the uncertainties and shortcomings 

in observational data, and refrain from trying to fit model output to specific data, 

instead seeking to capture aspects of the qualitative behaviours to be expected from 

the models. 

The models investigated in this thesis are based on the nutrient-phytoplankton­

zooplankton (NP Z) model of Steele and Henderson (1981), extended in the manner of 

Steele and Henderson (1993). The N P Z model will be described in detail in Chapter 

2, and amendments to it will be detailed in subsequent chapters. The two-component 

phytoplankton-zooplankton model of Steele and Henderson (1981) has since been used 

as a fish model (whereby the variables represent fish populations rather than plankton 

populations) by Collie and Spencer (1994) to model fluctuations in abundances of 

Pacific hake (predator) and Pacific herring (prey) off the west coast of Vancouver 

Island, British Columbia. Evans and Parslow (1985) showed, with an N P Z model 

and a P Z model, how a spring phytoplankton bloom may occur even without a rapid 

shallowing of the mixed layer, provided that the phytoplankton growth rate is high 

enough. 

Steele and Henderson (1992) demonstrated that the choice of functional form and 

parameter values used to model zooplankton mortality can have a major influence on 

the dynamics of simple models. They found that, for their particular parameter val­

ues, limit cycle behaviour (unforced oscillations) which occurs for linear zooplankton 

mortality does not occur when quadratic zooplankton mortality is used. In contrast 

to this, our first N P Z model, investigated in Chapter3, has quadratic zooplankton 

mortality and exhibits limit cycle behaviour over broad ranges of parameters. This 

motivates us to re-examine our N P Z model, but with linear rather than quadratic 

zooplankton mortality, in Chapter 4. Our results then prompt a review of the results 

of Steele and Henderson (1992) in Chapter 5. 

Our crude separation of models into two classes may seem to suggest that there is 

no interchange of ideas between 'small' and 'large' models, but this is certainly not so. 

Indeed, results from simple models can indicate to modellers dealing with large models 

which aspects of model formulation are most crucial in determining the output. In 
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particular, the works of Evans and Parslow (1985) and Steele and Henderson (1992) 

are often considered when larger models are being formulated (e.g. Fasham, 1993). 

In this thesis we shall not consider species diversity of plankton, or spatial patch­

iness of plankton populations. However, these two features of plankton populations 

have been the focus of recent research. Pitchford (1997) has extended the work of 

Truscott (1994) to explicitly model multiple species of plankton. Whilst Matthews 

and Brindley (1997) have added diffusion-driven instability and spatially-varying forc­

ing to Truscott's model, concluding that the former mechanism is unlikely to be a 

mechanism capable of producing observable spatial patterns. One of the important 

features of simple models is that they are amenable to such extensions in ways that 

the changes in behaviour due to the modifications can be understood. This is evident 

in the work presented in Chapters 6 and 7, in which we add a fourth component, 

explicitly modelling detritus, to the original N P Z model. 

Although the models in this thesis consist of deterministic differential equations, 

other types of equations have been used to model plankton populations. Woods and 

Barkmann (1994, and references therein) have developed the Lagrangian Ensemble 

method. 'Families' of plankton follow trajectories through the environment, which is 

described by chemical and physical values at points on a fixed array of spatialloca­

tions (usually one metre cubes). Each 'family' comprises an identical set of plankton 

organisms - to track each single organism would be too computationally expensive. 

Demographic analysis can be performed, since the progress of each family (involving 

birth, natural mortality and predation) is recorded chronologically in a 'Parish Reg­

ister'. For models comprising of ordinary differential equations, such as those in this 

thesis, the mixed layer is assumed to be a homogeneous environment, and biologi­

cal entities are expressed as volumetric concentrations, preventing the abstraction of 

detailed demographic information. 

Further approaches that have been advocated as useful tools for biological oceanog­

raphy come from the fields of network analysis, thermodynamics and statistical me­

chanics (Plattet al., 1981; Ulanowicz and Platt, 1985). A branch of dynamical 

systems that we do not consider in this thesis involves coupled maps, or difference 
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equations. A recent model proposed by Platt et al. (1997) consists of a pair of cou­

pled maps, and is used to show how intermittent forcing of the mixed-layer depth 

may produce an HNLC situation. 

Over 100 models are surveyed by Totterdell (1993), who groups them together 

according to features of their formulation, such as physical structure, temporal forcing 

and how many biological components are explicitly modelled. 

Ryabchenko et al. (1997) have recently investigated the occurrence of short-term 

oscillations which can arise in both phytoplankton data (Williams, 1988) and in 

the output of large ecosystem models (Fasham, 1993, Fasham et al., 1993). Such 

oscillations occur some years in the North Atlantic Ocean during the summer, and 

have a period of the order of one month. For the remainder of the year such short­

term oscillations do not occur. This suggests that the seasonal forcing of some of the 

parameters may be taking the system from a region of parameter space where the 

unforced system would be attracted to a stable steady state, into a region during the 

summer months where the unforced system would exhibit stable oscillatory behaviour. 

In this thesis we show such regions of oscillatory behaviour for each of our models, 

as defined by the location of Hopf bifurcations, and incorporate seasonal forcing into 

all of our models in Chapter 8. 

McCauley and Murdoch (1987) analysed data from over 30 studies in 12 coun­

tries which reported the seasonal dynamics of the crustacean zooplankton Daphnia 

and their phytoplankton prey across a wide variety of freshwater habitats. Excluding 

data from the spring rise and fall in populations, which is driven by external envi­

ronmental factors, they found internally-driven cycles of the populations in 15 cases. 

The means of the periods of the cycles range from 25-54 days, and the cycles were 

claimed to be internally driven because of similarities with laboratory populations, 

from which external influences are excluded. We find internally-driven cycles of such 

periods in our models in this thesis; the models are not forced by any external factors 

(until Chapter 8), and so the cycles must be internally driven. Although the work 

of McCauley and Murdoch (1987) is concerned with freshwater rather than marine 

plankton, we mention it here as evidence that the cycling of populations does oc-
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cur; in the ocean, the less-stable environment could act to conceal any clear signal 

identifying such cycles. 

1.5 A dynamical systems approach 

The nature of .the Steele and Henderson (1981) model and the subsequent models 

developed from it in this thesis, consisting of relatively few coupled ordinary differ­

ential equations, makes them amenable to rational study using a dynamical systems 

approach. Such an approach firstly involves locating steady states of the systems and 

examining their stability. For each of our models we attempt to calculate the steady 

states analytically, without specifying numerical values for the parameters, but the 

nonlinearity of the equations means that not all of the steady states can be explicitly 

written down. For these states numerical methods are necessary. Numerical methods 

require specification of parameter values, and so we take the values used by Steele 

and Henderson (1981) as 'default' parameter values, and determine realistic ranges 

for each parameter from values used by previous authors across a broad spectrum of 

models (this is detailed in Chapter 2). 

For our first NPZ model (Chapter 3), with the parameters at their default values 

a steady state is found by integrating the system in time from an initial condition. 

The rate of zooplankton mortality, d, was varied by Steele and Henderson (1981), 

and so we choose to increase it. We find that the steady state loses stability at a 

Hopf bifurcation, and then regains stability at a second Hopf bifurcation, as d is 

increased. By constructing two-parameter bifurcation diagrams which demonstrate 

how the Hopf bifurcations persist as each of the other parameters in the model is 

independently varied, together with d, we build up a picture of the bifurcational be­

haviour of the model across all parameters. By repeating this process with amended 

versions of the models in subsequent chapters, we can then easily compare the dy­

namical behaviour of the models, identifying which amendments to the models are 

most critical in determining the output. 

As well as Hopf bifurcations, we find an array of dynamical features, including 
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transcritical bifurcations, 'three-way' transcritical bifurcations and fold bifurcations 

of steady states; fold bifurcations and period-doubling bifurcations of limit cycles plus 

homo clinic connections arising from Bogdanov-Takens bifurcations. The definitions 

of these will become apparent when they are discovered during the investigations. 

The mathematical details regarding the theory of dynamical systems can be found 

in the books by Guckenheimer and Holmes (1983), Thompson and Stewart (1986), 

Wiggins (1988, 1990) and Kuznetsov (1995). 

We emphasise here that we have not needed to 'search around' parameter space 

in the pursuit of Hopf bifurcations; using the original parameters of Steele and Hen­

derson (1981), and varying d within the range that they used, we come across such 

bifurcations. By varying a second parameter within its realistic range we then find 

the further bifurcations that we have just mentioned. 

Although much attention in this thesis will be given to oscillations, motivated by 

the work of Steele and Henderson (1992) and arising from the prevalence of Hopf 

bifurcations, our philosophy is that the bifurcation diagrams we compute represent 

qualitative features across broad regions of parameter space, and tell us more than 

just information regarding oscillations. If one model exhibits Hopf bifurcations but 

a second does not, then we would expect this to also translate into quantitative 

differences between computed time series of the models. This expectation is borne 

out by the time series we present for all of our models in Chapter 8. 

The numerical investigations in this thesis have involved a combination of the 

numerical bifurcation packages AUTO (Doedel et al., 1994) and LOCBIF (Khibnik 

et al., 1992) to examine the bifurcations, and the dynamical systems packages TraX 

(Levitin and Khibnik, 1991) and Dstool (Guckenheimer et al., 1991) to integrate 

and observe trajectories. The graphics package IDL (Interactive Data Language) 

was used to produce the diagrams from the output of LOCBIF, whilst the built-in 

graphics program PLAUT was used to produce diagrams from AUTO. The computer­

algebra package Maple was used for some of the more complex analytical calculations 

(such as those involving tenth-order polynomials) and for calculations of some graphs 

(including the null surfaces presented in Chapter 4). 
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1.6 Outline of thesis 

This thesis contains investigations into the dynamical behaviour of two N P Z models 

and two N P Z D models, where N, P, Z and D represent nutrient, phytoplankton, zoo­

plankton and detritus respectively. The two NPZ models (Chapters 3 and 4) contain 

different zooplankton mortality functions, and our results prompt a re-examination 

of the results of Steele and Henderson (1992) in Chapter 5. The two N P Z D models 

(Chapters 6 and 7) assume different feeding practices of the zooplankton. All four of 

our models are then seasonally forced in Chapter 8, demonstrating the usefulness of 

our approach in explaining the dynamics of the models. We now briefly explain the 

contents of each chapter in turn. 

In Chapter 2 we formulate the N P Z model, which is essentially that of Steele 

and Henderson (1981). The model consists of three coupled ordinary differential 

equations, and forms the basis of all the models formulated in this thesis. In Appendix 

A the phytoplankton growth term is explicitly formulated using the canonical form 

of primary production derived by Platt et al. (1990) and Platt and Sathyendranath 

(1993), correcting a slight anomaly in the original formulation of the model. For 

each parameter in the model, a range of numerical values is obtained from the values 

used by previous modellers. These ranges reflect the uncertainties involved in the 

estimation of parameter values, and form the basis for our numerical investigations 

in the subsequent chapters. 

We investigate the dynamical behaviour of the N P Z model in Chapter 3. An 

analytical ('paper and pencil') approach is taken initially, to try and calculate steady 

states and their stabilities without specifying the numerical values of the parame­

ters. The nature of the equations means that this analysis only provides limited 

information about the system, and so a numerical approach is required. Simulations 

of the system show that as time proceeds, N, P and Z may either settle down to 

steady-state values or undergo oscillations, depending on the value of d, the parame­

ter representing the higher predation on the zooplankton. This suggests the presence 

of a Hopf bifurcation of a steady state, which is confirmed by computation of bifur-
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cation diagrams. Further bifurcation diagrams illustrate how the region of oscillatory 

behaviour, as defined by the locations in parameter space of two Hopf bifurcations, 

persists as each of the parameters, together with d, is varied. Fold bifurcations also 

occur, delineating regions of multiple steady states, and the presence of homo clinic 

behaviour is illustrated. Further two-parameter diagrams show how the period of the 

oscillations vary with respect to each parameter, and finally the behaviour associated 

with a Bogdanov-Takens bifurcation is explicitly shown. 

A quadratic function is used to model the mortality of zooplankton in Chapter 

3. As discussed earlier, Steele and Henderson (1992) demonstrated that the precise 

function used to model zooplankton mortality can have an influential effect upon the 

dynamics of a system. This motivates us, in Chapter 4, to investigate the model 

studied in Chapter 3, but with the quadratic mortality term replaced by a linear 

term, representing different ecological assumptions. The analytical calculation of the 

steady states is more tractable than for the quadratic mortality model, and the nu­

merical investigations again reveal Hopf bifurcations. The construction of bifurcation 

diagrams allows comparison with the quadratic mortality model across parameter 

space. 

Results from Chapters 3 and 4 showing that oscillations occur whichever function 

is used to model zooplankton mortality, contrast with some of the results of Steele 

and Henderson (1992), and so we re-examine their influential paper in Chapter 5. 

The bifurcation diagrams of the previous chapters aid us in explaining the differences 

between our findings and those of Steele and Henderson. 

In Chapter 6 we add a fourth component to the N P Z model of Chapter 3, to 

explicitly model detritus, D. The investigation into the dynamical behaviour reveals 

similar dynamics to that of the N P Z model. In Chapter 7 we then alter the structure 

of the four-component model, allowing zooplankton to graze on detritus as well as on 

phytoplankton. Bifurcation diagrams indicate that this structural change has more of 

an effect on the dynamical behaviour than that of adding the detritus compartment 

to the original N P Z model. 

Finally, in Chapter 8 we add seasonal forcing to the N P Z and N P Z D models, 
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and demonstrate how the results from our dynamical systems approach explain and 

predict the output of the models. We present our conclusions in Chapter 9. 

Sections of Chapters 2 and 3 have already appeared in print (Edwards and Brind­

ley, 1996). 



Chapter 2 

Formulation of the 

three-component model 

2.1 Introduction 

We present the three-component model which is used as the basis for the analytical 

and numerical investigations throughout the thesis. The model is based on that of 

Steele and Henderson (1981), with one modification in a similar fashion to that of 

Steele and Henderson (1993). We use the parameter values of Steele and Henderson 

(1981) as our default parameters, and obtain a range for each parameter by taking 

values used by previous authors across a broad class of models. The model consists 

of three coupled ordinary differential equations, modelling changes in concentrations 

of nutrient, phytoplankton and zooplankton. The equations are presented in Section 

2.2; a slight anomaly in the model derivation is discussed and corrected in Appendix 

A. The parameter ranges are presented in Section 2.3. 

2.2 The mathematical model 

We follow closely the approach of Steele and Henderson (1981), hereafter referred 

to as SH8l, using a simple three-component model explicitly representing nutrient, 

phytoplankton and herbivorous zooplankton, the concentrations of which are given by 

18 
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N, P and Z respectively. The interactions between these components are illustrated 

in Figure 2.1. The arrows indicate flows of matter through the system, and the 

parameterisations of the rates of these flows are indicated on each arrow. The input 

to the system is the keNo - N) arrow, and arrows not ending in the N, P or Z 

compartments are losses from the system. The phytoplankton take up nutrient, and 

are then grazed upon by the zooplankton; the various recycling effects make the 

situation more complicated than a simple food chain. The flows and the equations 

are discussed in detail in Section 2.3. 

We assume that the layer in which the plankton growth takes place is thoroughly 

mixed at all times, so that there are no spatial gradients of concentrations and the 

changes in N, P and Z can be represented by three coupled ordinary differential 

equations: 

dN 
dt 
dP 

_ -uptake + respiration + Z excretion + Z predation excretion + mixing, 

dt 
dZ 
dt 

_ uptake - respiration - grazing by Z - sinking - mixing, 

_ growth - higher predation. 

The specific functional forms used (discussed in Section 2.3) are: 

dN 

dt 
dP 
dt 
dZ 
dt 

(2.1) 

(2.2) 

(2.3) 

Units of N, P and Z are 9 C m-3
, and time units are days. The conversion 

equivalences, as used by SH81, are 1 9 C = 20 mg ChI = 10 m mol N, where C 

is carbon, ChI is chlorophyll and N here is nitrogen. All parameters are positive, 

with ex + (3 :s; 1 and 'Y :s; 1 required from their definitions. The original SH81 model 

considered mesocosm experiments (mesocosms are giant plastic test-tubes, 5-lOm in 

diameter and 15-20m deep, which are placed in the sea, enclosing a fixed volume of 

sea water). We have adapted it to the more usual 'open sea' case by incorporating 

diffusive mixing with deep water, in a similar way to Steele and Henderson (1993), 
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(1-y)dZ 2 

z 
(1-a-J3)G1 

p 
rP 

k(N,;-N) 

Figure 2.1: Interactions between nutrients (N), phytoplankton (P) and zooplankton 

(Z). Arrows indicate flows of matter through the system, and the rates of these flows 

are labelled. Arrows not starting or not finishing at a compartment indicate input to 

and losses from the system. U is the phytoplankton uptake function, and Gl is the 

zooplankton grazing term. 
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and defer consideration of a varying mixed-layer depth until Chapter 8. The only 

difference between our model and that of SH81 is therefore the inclusion of the -kN 

term in (2.1) and the -kP term in (2.2). We discuss the va.lue of k, related to the 

mixed-layer depth, in Section 2.3. 

The equations have not been nondimensionalised. Although this is not usual 

mathematical practice it means that, when a parameter is varied in the model, it 

is clear exactly which single biological or physical effect is being considered. In fact 

non-dimensionalising the system only reduces the number of parameters from 14 to 

9, which is not worthwhile for the analysis. Also a, band c could be redefined as 

two distinct parameters, but are kept separate as b represents a physical property of 

the water, while c is the self-shading effect of the phytoplankton, and alb gives the 

maximum phytoplankton growth rate, all of which have different values in different 

models. 

2.3 The range of parameter values 

For the numerical investigations in subsequent chapters, we require ranges of val­

ues for all of the parameters. To obtain a realistic range we abstract values from 

twelve other models, ranging in complexity from a simple two-component model to 

larger seven-component models. Table 2.1 gives our default parameter values, taken 

from SH81, plus the range of values used in the other models; these partly reflect 

different geographical or other physical influences, but are somewhat attributable to 

uncertainties and lack of data. 

"The models considered are abbreviated as follows: Steele and Frost (1977) - SF77, 

Evans and Parslow (1985) - EP85, Frost (1987) - Fr87, Hofmann and Ambler (1988) 

_ HA88, Wroblewski (1989) - Wr89, Fasham et al. (1990) - FDM90, Taylor and Joint 

(1990) - TJ90, Steele and Henderson (1992) - SH92, Fasham (1993) - Fa93, Steele 

and Henderson (1993) - SH93, Armstrong (1994) - Ar94, and Henderson and Steele 

(1995) - HS95. 

A description of the functional forms we use {in the order in which they appear in 
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Parameter Symbol Default value Reported range 

alb gives maximum P growth rate a 0.2 m-1 day-l 0.07 - 0.28 

Light attenuation by water b 0.2 m-1 0.04 - 0.2 

P self-shading coefficient c 0.4 m 2g-1 0.3 - 1.2 

Higher predation on Z d 1 m 3g-1day-l 0.25 - 2.0 

Half-saturation constant for N uptake e 0.03 9 m-3 0.02 - 0.15 

Cross-thermocline exchange rate k 0.05 day-l 0.0008 - 0.13 

P respiration rate r 0.15 day-l 0.05 - 0.15 

P sinking loss rate s 0.04 day-l 0.032 - 0.08 

N concentration below mixed layer No 0.6 9 m-3 0.1 - 2.0 

Z growth efficiency a 0.25 0.2 - 0.5 

Z excretion fraction f3 0.33 0.33 - 0.8 

Regeneration of Z predation excretion "( 0.5 0.5 - 0.9 

Maximum Z grazing rate ,\ 0.6 day-l 0.6 - 1.4 

Z grazing half-saturation coefficient J.L 0.035 9 m-3 0.02 - 0.1 

Table 2.1: Abbreviations, default values and ranges of the parameters. The ranges 

are those used by a variety of authors in different models, as discussed in the text. 
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the equations) and the parameter ranges used by other authors (converted into 9 m-3 

values using the aforementioned equivalences, where 9 represents grammes of carbon) 

are given below. Variation of parameter values across models is inevitable and direct 

comparisons are not always easy since different functional forms are sometimes used, 

but in many cases the parameter definitions are the same, allowing Table 2.1 to be 

constructed. 

Following SH81 we consider a fixed mixed-layer depth of 12.5m. This designa­

tion of a fixed depth is borne out by the data given by FDM90, Fa93 and SH93 

at Bermuda Station "S" and Ocean Weather Station (OWS) "India" in the North 

Atlantic Ocean, which display remarkable uniformity of mixed-layer depth over the 

period May to October. The mixed layer deepens considerably during the winter 

months, and inclusion of this process explicitly into the model would require a forc­

ing (time-dependent) function, plus incorporation of a dilution rate of the N, P and 

Z concentrations, as proposed by EP85. However, it is insightful to first understand 

the behaviour of the unforced system, with the physical conditions set to summer 

values. In Chapter 8 we do force the mixed-layer depth through an annual cycle, and 

show how the investigations into the bifurcations of the unforced models, presented 

in Chapters 3, 4, 6 and 7, explain the output of the forced models. The mixed-layer 

depth is implicitly incorporated in the values of a, k and s, as is discussed below. 

A Michaelis-Mentenfunction Nj(e+N) models nutrient uptake by phytoplankton; 

a standard choice by many authors. Values of the half-saturation constant e vary from 

0.02 (g m-3 ) by Wr89 and SH93, to 0.03 by SH81, 0.05 by EP85 and FDM90, 0.1 by 

Fr87 and 0.15 by HA88. Thus in Table 2.1 our default value of e is 0.03, the SH81 

value, and our range is 0.02-0.15. 

The term aj(b+cP) represents (non-nutrient limited) phytoplankton growth with 

limitations due to both light attenuation by the water (b) and self-shading of the 

phytoplankton (c). The value of ajb gives the maximum daily growth rate averaged 

over the depth of the mixed layer. The term aj(b + cP) was equated by SH81 to 

the depth-averaged daily phytoplankton growth rate 2.58Vpj(b + cP)Zm derived by 

SF77, where Vp is the maximum phytoplankton growth rate under optimal light 
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conditions and Zm represents the depth of the mixed layer. However, this derivation 

was implicitly based on the equation for the photosynthesis-light curve given by Steele 

(1962) which, as Platt and Sathyendranath (1993) have indicated, should be avoided 

since it includes photoinhibition and has no extended range of light-saturation. Also, 

the equation of Steele (1962) implies that the maximum photosynthesis rate occurs 

at a depth which is independent of the surface irradiance, which should not be the 

case. 

In Appendix A we show that the function a/(b + cP) can, however, still be used, 

since it can be obtained from the canonical form for primary production derived by 

Platt et al. (1990) and Platt and Sathyendranath (1993). This provides a formulation 

of our parameter a in a way that will allow the value of a to be explicitly calculated 

for any location and for any time of the year. It is then possible to prescribe how 

the value of a will vary through the year, due to changes in incident radiation and 

daylength, such that a can be used to provide temporal forcing of the system. 

Care must be taken when translating values of 'maximum P growth rate', to see 

whether such a value is equivalent to our alb (and is thus, in a mixed-layer model, 

the non-nutrient-limited daily maximum phytoplankton growth rate averaged over the 

depth of the mixed layer), or whether the 'maximum P growth rate' is an equivalent 

v;, value which is put into some formula which then averages over the depth of the 

mixed layer. The first case covers the values used by SH92, Ar94 and HS95, which 

were, respectively, 0.35 (day-l), 1.4 (and 0.7 for a micronutrient-limited case) and 

0.5. Keeping b fixed, these are equivalent to values for a in the range 0.07-0.28. 

Values of v" used were 1.25 (day-l) for OWS "India" and 2.9 for Bermuda Station 

"S" by Fa93, and 2.0 by EP85 and Wr89. In Appendix A we use these locations and 

values to calculate values for a, and obtain a range of summertime values for a of 

0.11-0.16. This falls within the range of 0.07-0.28 just obtained, which is therefore 

the range that we use, with the SH81 value of a = 0.2 m-1 day-l as our default value. 

Light attenuation by the water is represented by b, where b = (In 100)/ Ze cor­

responds to the 1% light maximum at a depth of Ze metres (taken by SH81 to be 

20m, giving b = 0.2 m-1
). SF77, EP85 and HS95 used b = 0.1 (m-1), corresponding 
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to Ze = 46m, the usual definition for the euphotic zone, while Fa93 and SH93 took 

b = 0.04, giving Ze = 115m. The term cP represents phytoplankton self-shading; as 

the phytoplankton concentration increases the average light received per organism, 

and therefore the average growth rate, is reduced. The coefficient c, for which SH81 

used the SF77 value of 0.4 (g m-3t 1 m-t, was taken to be 0.3 by SH93 and Fa93, 

0.5 by HS95, and EP85 used 1.2 while suggesting the possible use of 0.6. 

The default respiration rate of r = 0.15 (day-I) from SH81 is the SF77 value 

at 10°0 for a 10-JLm diameter cell at the North Sea temperature. HS95 used 0.05 

and EP85 used 0.07. FDM90 had no respiration term as such, but they did have an 

equivalent natural mortality rate of 0.09 day-I, some of which is subsequently recycled 

back through the microbial loop, becoming a food source for both phytoplankton and 

zooplankton. FDM90 found that this linear phytoplankton loss was the most sensitive 

and hardest to measure parameter, and allowed it to vary freely in order to fit the 

data. Our respiration term is recycled immediately into nutrient (as were those of 

HS95 and EP85), whilst none of our linear sinking term is recycled. We consider r to 

represent both respiration and natural mortality, since both processes are modelled 

by other authors as linear losses. 

A sigmoidal Holling type III zooplankton grazing term, >.p2/ (JL2 + P2), is used, 

with maximum zooplankton grazing rate of >. = 0.6 (day-I) and half-saturation con­

stant of JL = 0.035 (g m-3
). The type III form is chosen by SH81 (and SH93) based on 

the zooplankton grazing data presented by Adams and Steele (1966) which indicates 

low grazing rates at low phytoplankton concentrations. EP85 used a Holling type II 

(or Michaelis-Menten) function with a lower grazing threshold. Such a function can 

be smoothly approximated by the type III function with the same values of >. and 

JL, and can be inferred from the data of Parsons et al. (1969). HS95 used a type II 

function, the seven-component model of FDM90 had alternative food sources (phyto­

plankton, bacteria and detritus) for the zooplankton, while Ar94 used a non-standard 

piecewise linear function (for simplification reasons), but in all cases equivalent values 

of >. and JL were given. The values used for>. were 1.0 by FDM90, SH93 and HS95, 

and 1.4 by Ar94, while JL was taken to be 0.02 by SH93, 0.025 by HS95, and 0.1 by 
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EP85 and Ar94. 

Values used for the zooplankton growth efficiency a were 0.2 by SH93, and 0.5 

by EP85 and SH92. The proportion f3 of zooplankton grazing represents zooplank­

ton excretion, and is regenerated immediately into the nutrient compartment. The 

remaining fraction 1 - a - f3 is zooplankton faecal pellets, which are assumed to sink 

out of the mixed layer. Values of f3 used were 0.5 by SH92 and 0.8 by SH93, thus for 

both of these models a + f3 = 1, and so there was no loss from the system (all of the 

phytoplankton consumed were either converted to zooplankton growth or recycled 

into nutrient). However, EP85 did not have such a f3 term in their N P Z model, and 

thus 0.5 of consumed phytoplankton was lost from the system (1 - a = 0.5). 

Fa93 had a zooplankton assimilation efficiency of 0.75 multiplying the zooplankton 

grazing term, together with zooplankton excretion being a constant proportion of 

zooplankton biomass (rather than a proportion of consumption, such as our (3). Thus 

the Fa93 value of 0.75 should not be assigned to our a. The remaining fraction 0.25 of 

the grazing in Fa93 represents unassimilated food, and enters a detritus compartment 

as faecal pellets which can then sink out of the mixed layer; this is similar to our 

1 - a - f3 fraction which is lost from the system. In Chapter 6 we add an explicit 

detritus compartment to our N P Z model. We thus have a range for a of 0.2-0.5, and 

a range for f3 of 0.33-0.8; our default values of a = 0.25 and f3 = 0.33 sum to 0.58, 

allowing both regeneration and a loss from the system. 

Higher predation of the zooplankton by invertebrate carnivores, such as ctenophores, 

is modelled by the quadratic form -dZ2
, since the carnivore population is assumed 

to change in proportion to the zooplankton population. SH81 showed, for their meso­

cosm case, the initial paths of some trajectories of the system for various values of 

d. They noted that the system changed its behaviour significantly at a value of d 

around 1.0 (g m-3t 1 day-\ their range of d considered was 0.25-1.75. Their results, 

together with the fact that d is a particularly difficult parameter to measure and 

assign a fixed value to (SH93 stated that in any model it is essentially a free choice), 

motivate us to use d as the primary bifurcation parameter, with a range of 0.25-2.0 

and a default value of 1.0. 
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We have commented in Chapter 1 on the potential significance of the functional 

form of the zooplankton mortality closure term. SH93 used the quadratic form with 

a default value of d = 1.0 which was allowed to vary in order to fit the model to 

data, and T J90 also used a quadratic closure term, defining it as zooplankton canni­

balism. SH81 and SH92 discussed the use of either a linear or a quadratic function 

_ FDM90 used the simple linear term -qZ. In Chapter 4 we investigate the conse­

quences of replacing the quadratic form with the linear form. Holling-type functions, 

which saturate for large Z, have been used in the higher-order models of Fr87, HA88 

and Fa93, but require estimation of an extra poorly known parameter (see SH92). 

However, in a recent paper Fasham (1995) investigated a six-component ecosystem 

model which explicitly modelled carnivores grazing on herbivorous zooplankton using 

a Holling type III function. He concluded that, if the carnivores are then not to be 

explicitly modelled (as in our case), then a quadratic closure term (in the herbivorous 

zooplankton equation) is indeed an appropriate function to use. 

The parameter "( is the proportion of the zooplankton loss that is regenerated 

as nutrient, taken by SH81 and SH92 to be 0.5, and by SH93 to be 0.8. FDM90 

considered linear zooplankton losses due to both mortality and excretion, of which 

89% was retained in the system (but would undergo further losses before being utilised 

by phytoplankton), and 90% of the loss in Fa93 was similarly recycled. Some models 

(e.g. Franks et al., 1986) consider a totally conservative system from which nothing 

is lost, thus "( = 1.0, whereas EP85 did not consider any such recycling. 

The k( No - N) term models the exchange of nutrients with the water below the 

mixed layer, where the exchange rate k defines the fraction of the mixed layer which 

is exchanged daily with the deeper water due to diffusive processes, and No is the 

sub-mixed-layer nutrient concentration. SH92 used k = 0.033 (day-I) and 0.1 and 

found, with linear zooplankton mortality, that 0.033 gave a steady state of the system 

(which, when the system was forced, simply tracked the forcing), but 0.1 (or a larger 

No value) resulted in limit cycles. FDM90 used a cross-thermocline mixing rate of 

0.1 m day-I which Fa93 later decreased to 0.01 m day-I to give an improved fit to 

summer phytoplankton data. Dividing these rates by our mixed-layer depth (and 
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their approximate minimum depth) of 12.5m to obtain the daily exchange rate yields 

the respective values of k = O.OOS (day-I) and O.OOOS. EPS5 used a much higher 

mixing rate of 3 m day-l (which they noted was a particularly uncertain estimate), 

and from their graph of seasonally varying mixed-layer depth a range for k of 0.03S 

_ 0.13 can be abstracted, the lower values representing winter levels due to a deep 

mixed layer (whereas the aforementioned low values of O.OOS and O.OOOS were due to 

low mixing rates). 

FDM90 suggested the No range of 0.1-0.2 (g m-3
) and used No as a free parameter 

tuned so that the output best fitted the data, because of the difficulty in assigning a 

constant value to it. HS95 used No = 0.3, TJ90 used 0.6, and EPS5 used 1.0, whilst 

FrS7 took a range of 0.7 - 2.0. 

The final parameter to be discussed is the sinking rate, s, of phytoplankton out 

of the mixed layer. SHS1 took s = 0.04 (day-I) to correspond to a sinking velocity of 

0.5 m day-I, the same velocity used by SH93. FDM90 did not have a sinking term, 

but did have a linear phytoplankton mortality rate, as discussed earlier with respect 

to the respiration term. HS95 assumed a range of 0.4 - 1.0 m day-l, with a varying 

mixed-layer depth used to determine the loss rate, which would equal 0.032-0.0S using 

our fixed mixed-layer depth. 

In Edwards and Brindley (1996), where the bulk of this chapter has already been 

published, we inadvertently equated the aforementioned Fa93, EPS5 and Wr89 values 

of v;, to our alb, and also included the Fa93 assimilation efficiency of 0.75 when 

constructing the range for O!. This simply resulted in the corresponding two-parameter 

bifurcation diagrams of Figures 4( a) and 4(h) in Edwards and Brindley (1996) showing 

too large a range of values for alb and O!, but does not affect the results (the corrected 

diagrams are Figures 3.4(a) and 3.4(h) in Chapter 3). We thank Trevor Platt and 

Shubha Sathyendranath for highlighting these minor anomalies. 



Chapter 3 

Dynamical behaviour of the 

three-component model 

3.1 Introduction 

We now investigate the dynamical behaviour of the N P Z model formulated in Chap­

ter 2. We firstly proceed analytically, without substituting actual parameter values 

into the equations. The steady states of the system are calculated in Section 3.2, but 

only those where zooplankton are absent can be expressed explicitly, and so numerical 

methods need to be invoked. 

In Section 3.3 we present the trajectories of N, P and Z when all of the parame­

ters are set to their default values, and show that this picture changes qualitatively 

when the higher predation on zooplankton, d, is set at a higher value. Section 3.4 

demonstrates precisely how this change occurs by constructing one-parameter bifur­

cation diagrams for which d is continuously increased. Section 3.5 then indicates how 

these one-parameter diagrams change as each of the other parameters in the model 

is varied, in turn, across the default ranges of values given in Table 2.1. This is 

done by tracking the location of Hopf bifurcations. In Section 3.6 we show explicitly 

how the one-parameter diagram for N changes as the sub-mixed-layer nutrient con­

centration, No, is increased, revealing an interesting array of dynamical behaviour. 

'Period-contour diagrams' are constructed in Section 3.7, showing how the periods of 

29 
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the oscillations change as each parameter is varied. Finally, in Section 3.8 we con-

struct the complete bifurcation diagram for No against d, illustrating local and global 

bifurcations of limit cycles, as well as the local bifurcations of steady states. 

The equations for the model, as formulated in Chapter 2, are 

dN N a f3>.p2 2 
(3.1) 

dt 
- -~b pP + rP + 2 P2 Z + "(dZ + k(No - N), e+ +c I" + 

dP N a >.p2 
(3.2) 

dt 
- ~b pP-rP- 2 p2 Z -(s+k)P, e+ +c J.L + 

dZ a>.p
2 

Z _ dZ2• (3.3) 
dt 

- 1"2 + p2 

3.2 Analysis 

The analysis of this section provides the groundwork for the numerical investigation 

presented in Sections 3.3-3.8. The powerful reduced nullsurface technique used by 

McCann and Yodzis (1995), in their analysis of the three-species food chain proposed 

by Hastings and Powell (1991), cannot be used here. This is due to the more com­

plicated formulation of our equations, which is in part due to the recycling effects 

which are present in the system. The nullsurfaces, the equivalents to the nullc1ines 

of a two-component system, are the surfaces in N - P - Z space defined by each of 

dN/dt = O,dP/dt = 0 and dZ/dt = O. Points at which all three surfaces intersect 

define the steady states of the system, but plotting them for this system does not 

help greatly, due to the difficulties in displaying three intersecting surfaces on one 

figure. However, the nullsurfaces do help when comparing the current model to the 

model with linear zooplankton mortality investigated in Chapter 4, and we thus defer 

nullsurface discussion to Chapter 4. 

The steady states of the system and their stability are now calculated. The anal­

ysis of a general NPZ system by Truscott and Brindley (1994) and Truscott (1994) 

can be partly followed and is extended for our model. We firstly perform the analysis, 

and then numerically compute the bifurcational behaviour to graphically illustrate 

the analytical results. 

A steady state, or equilibrium, is a solution (N, P, Z) to dN/dt dP/dt 
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dZ / dt = o. The stability of a steady state is determined by the eigenvalues of the 

Jacobian matrix, which is given by 

A= aeP 

o 

(e+N)~~cP)2 + r + ~~~~~r 
abN k 2A/!,2PZ 

(e+N)(HcP)2 - r - s - - (!£2+p2)2 

2aA/!,2 PZ 
(1J.2+p2 )2 

evaluated at the steady-state values of N, P and Z. 

~+2'VdZ IJ. +P I 

There is a steady-state solution of the form (N, P, Z) = (No, 0,0), which exists 

for all parameter values. The Jacobian at (No, 0, 0) is 

-k _ aNa +r 
b(e+Na) 0 

A= 0 aNa k 
b(e+Na) - r - s - 0 

0 0 0 

It can be seen that there is always one zero eigenvalue for (No, 0, 0), and the other 

two eigenvalues are -k and <P, where 

aNo <P = - r - s - k. 
b(e+No) 

Truscott calculated the centre manifold for such a steady state, and concluded 

that for <P < 0 (No, 0, 0) is stable, and for <P > 0 it is unstable. At <P = 0, (No, 0, 0) 

has two zero eigenvalues and undergoes a 'three-way transcritical bifurcation' of codi­

mension two, which is discussed below. For the default parameter values <P = 0.71, 

and <P remains positive as anyone parameter varies over its reported range. <P can 

become negative if more than one parameter is allowed to vary (but this only oc­

curs for certain extreme values within the ranges), or if the mixed-layer depth, which 

appears implicitly in three of the parameter definitions, is increased (recall that the 

ranges in Table 2.1 assume a constant mixed-layer depth). But <P remains positive 

throughout our numerical investigations of Sections 3.4-3.8, since we only vary one 

of these parameters at a time. 

Two steady states of the form (N1*,P1*,0) and (N2*,P2*,O) also exist, where 

Nl *, N2 * are solutions to the following quadratic equation, which is obtained by solv-
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ing the simultaneous equations dN/dt = 0 and dP/dt = 0 (with Z = 0): 

ckN' + [;~: :~ - b(s +k) + ck(e - No)] N - [b(s +k) + ckNo] e = 0, (3.4) 

and PI *, P2 * are given by 

P,.* _ keNo - Nt) 
,- s + k (3.5) 

for i = 1,2. 

The constant term of the quadratic is negative, so the discriminant is strictly 

positive and the solutions for NI *, N2 * are real, and one is positive (call this NI *) while 

the other is always negative (N2 *). (N2 * , P2 * ,0) is therefore ecologically unrealistic 

and can never enter the positive octant of phase space, given by {N, P, Z ;::: a}. From 

(3.5) it is clear that PI * > ° for NI * < No, and PI * < ° for NI * > No. By considering 

the quadratic for P obtained by substituting (3.5) into (3.4) it can be shown that 

PI * > ° for ~ > 0 and PI * < ° for ~ < 0. When ~ = 0, (NI*' PI*, 0) = (No,O,O), 

which is the previously calculated steady state at the codimension two bifurcation. 

The third row of the Jacobian of (NI *, Pt *,0) is 

(0 ° 
The third term is therefore an eigenvalue, and since it is always positive (for PI * =J 0), 

the steady state (NI *, PI *, 0) can never be stable. 

From (3.3) it is clear that steady-state solutions (N*, P*, Z*) with Z ::f. ° must 

satisfy 

(3.6) 

Substituting this into (3.1) and (3.2), equating these equations to zero, and eliminat­

ing N from them, results in a tenth-order polynomial in P, the solution of which gives 

the non-zero steady-state value of P*. Such a polynomial precludes the possibility of 

writing down an analytical form for (N*, P*, Z*). When the polynomial is written 

such that the coefficient of plo is one, the constant term of the polynomial is W, 

where 
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\If _ bkJ.L8( e + No)if) 
- c(s + k)(r + s + k)" 

Therefore \If -+ ° as «T> -+ 0, and at if) = 0, P = ° becomes a solution of the 

tenth order polynomial. The (N*, P*, Z*) solution thus degenerates to (No, 0, 0), at 

the three-way transcritical bifurcation point if) = O. 

Equation (3.6) can be used to simplify the Jacobian at (N*, P*, Z*), which be-

comes 

a.eP _ k 
(e+N)2(b+cP) 

A= a.eP ~N 2~~~ 
(e+N)(b+cP)2 - r - s - k - a2).p3 

° -dZ 

The third row of A now has two non-zero terms, and further analysis of the stability 

is not viable. 

Our analytical deductions concerning the local behaviour about the three-way 

transcritical bifurcation at <P = 0 can be summarised as: 

• «T> < ° - (No,O,O) stable, (NI*,PI*'O) ecologically unrealistic (PI* < 0), 

(N*, P*, Z*) undetermined; 

• if) > ° - (No, 0, 0) unstable, (NI *, PI *, 0) realistic and unstable, 

(N*, P*, Z*) undetermined; 

and we know that (NI *, PI *,0) and (N*, P*, Z*) pass through (No, 0, 0) as <P goes 

through zero. 

We now illustrate, in Figure 3.1, how the steady states (No,O,O), (NI*,PI*'O) and 

(N*, P*, Z*) intersect at the three-way transcritical bifurcation. This is done by 

setting all of the parameters to their default values given in Table 2.1, calculating the 

values and stabilities of the steady states, and then computing how these properties 

of the steady states change as the respiration rate, r, is varied. The parameter r is 

chosen since it appears in the definition of <P, and thus at some value will give <P = 0, 

where the three-way transcritical bifurcation occurs. Any of the other parameters 
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Stability of steady stotes: 

(No. O. 0) 

stable; eigenvalues 0.-.-

saddle; eigenvalues 0.-.+ 

(N.·. p. '. 0) and (N·. p '. z·) 

stable; eigenvolues -.- .-

saddle; eigenvalues -.-.+ 

saddle; eigenvalues -.+.+ 

0.20 

0.15 
c:: 
() 

~ 
c:: 
~ 0.10 
~ 
~ 

(d) 

Figure 3.1: Location and stability of (No,O,O), (Nl*,Pl*,O) and (N*,P*,Z*) as r 

is varied. The key indicates the signs of the real parts of the eigenvalues, plus the 

corresponding stabilities. The three-way transcritical bifurcation occurs at r = 0.86. 
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that appear in the definition of <P could equivalently have been used. The default 

value of r is 0.15, for which <P > 0 when all of the other parameters are fixed at their 

default values. The realistic range of r given in Table 2.1 was 0.05-0.15. <P = 0 occurs 

when r = 0.86 (to two decimal places), clearly out of the biologically realistic range, 

but in Figure 3.1 we plot r from 0 to 1.2 as we wish to show what happens when 

<P > 0, <P = 0 and <P < o. As mentioned in the analysis, <P > 0 always holds when 

anyone of the parameters in the definition of <P is varied over its biologically realistic 

range, but <P = 0 can occur if two of the parameters are set to extreme realistic 

values or the mixed layer deepens, and so the three-way transcritical bifurcation is an 

ecological possibility as well as a mathematical curiosity. The numerical calculations 

were performed using the bifurcation package LOCBIF (Khibnik et al., 1992), and 

the graphics package IDL was used to produce the diagrams. 

The three steady states are colour-coded - (No, 0, 0) is green, (Nl *, P1 *, 0) is blue 

and (N*, P*, Z·) is red. Solid, dotted and dashed lines are used to indicate the 

stability of the steady states and the signs of the real parts of the eigenvalues (of the 

Jacobian at the steady states), as indicated by the key in Figure 3.1. 

Consider firstly the green line in Figure 3.1(a), which indicates how the N value 

and stability of the steady state (No, 0, 0) change as r is varied. This behaviour 

is simply deduced from the analysis. The default value of No is 0.6, so clearly 

(No,0,0)=(0.6,0,0) for all values of rj hence the green line is horizontal. The de­

fault value of r is 0.15, for which <P > 0, and so we know from the analysis that 

(No, 0, 0) has eigenvalues with signs 0, -, + and is unstablej this is indicated by the 

green line being dotted at r = 0.15. As r is increased, <P remains positive, and so 

(No, 0, 0) remains unstable, until CI> = ° at r = 0.86. At r = 0.86 the three-way 

transcritical bifurcation thus occurs, and for r > 0.86, CI> < 0 and (No, 0, 0) is sta­

ble, the solid line indicating this stability, and indicating that the real parts of the 

eigenvalues have signs 0, -, - (the analysis shows that the eigenvalues are real, and 

the stability is determined by a centre manifold analysis). The green lines in Figures 

3.1(b) and (c) represent the P and Z value of (No,O, 0) respectively, and are thus 

simply at P = 0 and Z = O. (The green and blue curves in Figure 3.1(c) are slightly 
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offset from zero for clarity). Figure 3.1(d) shows how the steady states move about 

in three-dimensional N - P - Z phase space as r varies; the green point indicates 

that (No,O,O) just sits in the same location. 

The blue curves in Figure 3.1 show the behaviour of the steady state (Nl "', Pl "', 0) as 

r varies. At r = 0.15 it is a saddle point with one eigenvalue having positive real part, 

as indicated by the dotted line. As r is increased, NI '" increases and PI'" decreases, 

and (NI "', PI"" 0) passes through (No, 0, 0) at r = 0.86. For r > 0.86, H'" < 0, and 

(NI "', PI"', 0) has two eigenvalues with positive real part, as indicated by the dashed 

line. Figure 3.1(d) shows how (NI "', PI"', 0) moves in a straight line, as given by 3.5, 

and leaves the positive octant through (No, 0, 0), whilst remaining in the plane Z = 0. 

The red curves indicate the behaviour of (N"', P*, Z"'). It is stable for r < 0.86, 

losing stability at the three-way transcritical bifurcation. As (N"', P"', Z"') passes 

through the bifurcation, P'" becomes negative. This leaves (No, 0, 0), which is now 

stable, as the only biologically feasible steady state. (N"', P"', Z"') is the only steady 

state for which the zooplankton are not extinct, and because its stability cannot be 

feasibly determined analytically, we focus on this steady state for the main numerical 

investigation. 

With the aid of Figure 3.1, it thus appears that the full local behaviour about the 

three-way transcritical bifurcation at <P = ° is: 
• <P < ° - (No,O,O) stable, (NI"',PI"',O) ecologically unrealistic (PI'" < 0), 

(N"',P"',Z"') ecologically unrealistic (P'" < 0); 

• <P > ° - (No, 0, 0) unstable, (NI "', PI"', 0) realistic and unstable, 

(N"', P"', Z"') realistic and stable; 

with the exchange of stability occurring at <P = 0. 
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3.3 Time series and phase portraits 

In Figure 3.2( a) we show the time series and the trajectory in N - P - Z space of the 

system from the initial condition (N, P, Z) = (004,0.1,0.05), with all of the parameters 

fixed at their default values. It is seen that N, P and Z all settle down to steady-state 

values of (N, P, Z) = (0.31,0.034,0.072) after a transient time of about 50 days. The 

initial large rise in P is due to the excitable nature of the system (see Truscott and 

Brindley, 1994), which can be partly deduced from the two-dimensional nullsurfaces. 

Starting from a range of other initial conditions, trajectories converge to the same 

steady state, the transient time remains roughly the same, and the actual nature of 

the transient trajectories depends upon the position of the initial points with respect 

to the nullsurfaces. By substituting the default parameters into equations (3.1), (3.2) 

and (3.3) and numerically solving the tenth-order polynomial discussed in Section 3.2, 

it can be shown that this steady state is the only steady state with strictly positive 

values of N, P and Z. 

In Figure 3.2(b) we increase the value of the higher predation on zooplankton, 

d, from the default value of 1.0 to 1.5, and re-run the system from the same initial 

conditions. It is seen that the system now settles down to a periodic orbit, or limit 

cycle, after a short transient time. Again, this behaviour is independent of the ini­

tial conditions. The cycles show large amplitude fluctuations in N, but at values 

remaining lower than the steady-state value for d = 1.0. The minimum cyclic value 

of P is roughly the same as the d = 1.0 steady-state value, while Z undergoes small 

oscillations about the d = 1.0 steady-state value. The oscillations have a period of 35 

days, which is consistent with the observational data and output of large ecosystem 

models discussed in Chapter 1. The fact that we find such oscillations and our model 

has a quadratic zooplankton mortality term contrasts with the results of Steele and 

Henderson (1992), and motivates us to now investigate the nature of the oscillations, 

using d as the primary bifurcation parameter. 

LEEDS UNIVERSITY LIBRARY 
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(a) d = 1.0 - N, P and Z settle down to steady-state values after a short transient. 

Figure 3.2: The time series and phase-space trajectory at (a) d = 1.0 and (b) d = 1.5 

(next page), with all of the other parameters fixed at their default values. Units of 

N, P and Z for all diagrams are 9 C m-3
, as used in the equations for the model. 



Three-component model 

0.50 

0.40 

0.30 

0.20 

0 . 10 

0.00 
0 

N 
- - _ . p 
-_ ._-_ ... Z 

, ; 

• ' •• • __ /-. - • " • • __ __ >'" :C . .. " . ... __ ;; _--: - .. . " .. -.. . ;.,; ./..- . . - ~. 
,_/ -- ....... - '-

0.50 

0.10 

50 100 
Time (days) 

150 

(b) d = 1.5 - the system settles down to a stable limit cycle. 

39 

200 



Three-component model 40 

3.4 One-parameter bifurcation behaviour 

Clearly there is a qualitative difference between Figures 3.2( a) and 3.2(b); the change 

from a steady state to oscillatory behaviour suggests that there has been a Hopf 

bifurcation at some value of d between 1.0 and 1.5. We now construct bifurcation 

diagrams in which d is varied continuously, indicating the exact value of d at which 

a Hopf bifurcation does indeed occur, and showing the steady-state values and limit 

cycle ranges orN, P and Z as d is varied. 

Figure 3.3( a) shows how the steady-state value of the nutrient concentration, 

defined as N*, varies as d changes, while the other parameters are kept fixed at their 

default values. At d = 1.0, N* = 0.31, as indicated by Figure 3.2(a). The solid line 

passing through d = 1.0 in Figure 3.3( a) indicates that the steady state is stable. As 

d increases from 1.0, the steady state goes from being stable (solid line) to unstable 

(dashed line) via a Hopf bifurcation (solid square) which is labelled A, and then 

regains stability at a second Hopf bifurcation, labelled B. At d = 1.5 Figure 3.2(b) 

showed that trajectories are attracted onto a stable limit cycle. This is indicated 

in Figure 3.3(a) by the solid circles, which represent the maximum and minimum 

nutrient concentrations attained along the limit cycle. 

Hopf bifurcation A is supercritical, which means that the branch of limit cycles 

which emanates from it is stable and coexists with the unstable steady state. Thus in 

Figure 3.3( a) the branch of limit cycles which emanate from Hopf bifurcation A appear 

as d is increased, rather than decreased. Hop£ bifurcation B is also supercritical, so 

the resulting limit cycle branch appears as d is decreased, and it is seen that in fact 

just the one branch of limit cycles joins up the two Hopf bifurcations (Le. no secondary 

bifurcations of the limit cycles occur). 

Figures 3.3(b) and 3.3( c) are the equivalent diagrams for phytoplankton and zoo­

plankton, which have default steady-state values of P* = 0.034 and Z* = 0.072. 

Although d is the predation rate on Z, the stable-steady state concentration Z* (Fig­

ure 3.3( c)) remains fairly constant for all except low d. A proportion, (default value 

0.5) of the higher predation is directly recycled into the system as the +,dZ2 term 
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Figure 3.3: Variations in the steady-state values of (a) nutrient, (b) phytoplankton 

and (c) zooplankton as d, the higher predation on the zooplankton, is changed. A 

solid line is a stable steady state, a dashed line is an unstable steady state, a solid 

square is a Hopf bifurcation and solid circles indicate the maximum and minimum 

values of the stable limit cycles. The Hopf bifurcations are labelled A and B. 
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(c) The zooplankton bifurcation diagram. (d) The period of the limit cycles (solid 

circles) remains virtually constant throughout the region of oscillatory behaviour; the 

corresponding stability of the steady state is indicated by the horizontal line. 
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of the dN/dt equation (3.1), but increasing d actually causes the steady-state level 

N* to decrease (Figure 3.3(a)), due to the increase in P* (Figure 3.3(b)). Increasing 

predation on zooplankton would not directly cause the phytoplankton population to 

increase, and any definitive 'cause and effect' consequences cannot be deduced, due 

to the recycling effects propagating through the system. 

During the oscillations, the value of P reaches levels far higher than those attained 

by any steady-state value, and for d E (1.48,1.73) the maximum P value along the 

limit cycle is over three times the minimum value; the variations in the amplitude of 

Z are much smaller. 

Figure 3.3(d) shows how the period of the limit cycles changes as d varies between 

the values at which the Hopf bifurcations occur (the only relevant range of d). It 

is clearly seen that the period is very insensitive to the value of d, remaining at the 

previously discussed value of 35 days across the whole range. 

3.5 Two-parameter bifurcation behaviour 

Figure 3.4 shows how the location of the two Hopf bifurcations changes as each of the 

other parameters is independently varied across the range reported in Table 2.1. The 

axis range plotted for each parameter is from zero to (approximately) its maximum 

reported value. Figure 3.4 thus indicates how the qualitative nature of the steady­

state bifurcation diagrams depicted in Figure 3.3 will change as one other parameter 

is varied. 

For each parameter the bifurcation diagram from Figure 3.3 is shown as a horizon­

tal line at the default value of the parameter, since the parameter was held constant 

in Figure 3.3. A solid horizontal line represents a stable equilibrium, a dashed hor­

izontal line is unstable, and squares represent the Hopf bifurcations, as for Figure 

3.3. In the region of d where the equilibrium is unstable, limit cycles occur, as was 

illustrated in Figure 3.3. In Figure 3.4 the positions of the two Hopf bifurcations are 

tracked as both d and one other parameter are varied. A (non-horizontal) solid line 

shows the location of a supercritical Hopf bifurcation, and where it becomes dashed 
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Figure 3.4: Two-parameter bifurcation diagrams showing how the positions of the 

Hopf bifurcations in Figure 3.3 change as each other parameter, together with d, is 

independently varied from its default value. The steady-state stabilities from Figure 

3.3 are shown as a horizontal line at each default parameter value. Hopf A and (ctd.) 
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Hopf B are indicated in (a). Non-horizontal solid curves starting from the original 

Hopf bifurcations (the squares) indicate supercritical Hopf bifurcations, and non­

horizontal curves of short dashes show where Hopf bifurcations are sub critical. In 

(d), (g) and (i), curves of long dashes indicate fold bifurcations of the steady state. 
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indicates that the Hopf bifurcation has become sub critical (meaning that the branch 

of periodic orbits emanating from it will be unstable and will coexist with the stable 

steady state). The curve of long dashes in Figures 3.4(d), (g) and (i) represent a 

fold bifurcation of the steady state. The effects of variations in a and b have been 

combined as alb in a single diagram for the maximum phytoplankton growth rate, so 

that there are 12 distinct bifurcation diagrams. 

Figure 3.4(a) shows that an increase in alb causes the two Hopf bifurcations A 

and B from Figure 3.3 to remain supercritical, but to coalesce at alb = 1.43. Above 

this value the steady state remains stable for all values of d, and does not undergo a 

Hopf bifurcation. A decrease in alb causes the Hopf bifurcations to increase their d 

values, and eventually move out of the range of d which we are considering. 

Figure 3.4(b) is the diagram for c, the phytoplankton self-shading parameter, 

against d. It is seen that an increase in c causes the Hopf bifurcations to remain 

supercritical and coalesce, as occurred in Figure 3.4(a). As c is decreased from the 

default value, Hopf A becomes subcritical (dashed line), but at a value which is below 

0.3, the minimum reported value of c. Thus across the reported range of c, as d is 

varied, the steady state can either undergo two supercritical Hopf bifurcations, which 

are joined by a branch of stable limit cycles as in Figure 3.3, or it simply remains 

stable. 

The diagram for e, the half-saturation constant for nutrient uptake, Figure 3.4( c), 

is qualitatively similar to that for c, but the Hopf bifurcations coalesce at a high value 

of d which is outside of our range. Thus increasing e from the default value causes 

the region of stable limit cycles in the original diagram, Figure 3.3, to shift to the 

right and move out of our range of d, as occurred in Figure 3.4(a), resulting in just a 

single stable steady state for high e. 

Figure 3.4( d) for k, the cross-thermocline exchange rate, shows that increasing k 

causes Hopf A, and then Hopf B, to become subcritical. Figure 3.5(a) shows how 

the branch of limit cycles can still join up the Hopf bifurcations when k = 0.07 (for 

which Hopf A has become subcritical whilst Hopf B has remained supercritical). We 

wish to demonstrate qualitative effects, and so only the nutrient value is shown, and 
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a fold bifurcation and still joins up the two Hopf bifurcations. The open circles 

corresponding to the maximum nutrient values cannot actually be seen due to the 

close proximity of the fold bifurcation and Hopf bifurcation at d ~ 1.40. 
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(b) k = 0.085 - both Hopf bifurcations are subcritical and the limit cycle branch 

becomes stable via fold bifurcations close to each Hopf bifurcation. 

Figure 3.5: The original Figure 3.3( a) diagram of N against d changes as k is in­

creased. Open circles represent the maximum and minimum nutrient values for un-

stable cycles. 
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the d scale is chosen to illustrate the region in question. Figure 3.5( a) is thus to be 

interpreted in the same way as Figure 3.3( a). Solid circles still represent the maximum 

and minimum nutrient values for stable limit cycles, and the open circles represent 

the values for unstable cycles. The four open circles in Figure 3.5( a) indicate the 

minimum nutrient value of the unstable cycle at the corresponding values of d. The 

maximum values cannot be seen on the diagram due to the proximity of the maximum 

stable limit cycle values to the Hopf bifurcation. 

The stable limit cycle branch emanating from the supercritical Hopf B persists as 

d is decreased, and then undergoes a fold bifurcation at d = 1.394, and the resulting 

unstable cycles join up to the subcritical Hopf A at d = 1.397. A fold bifurcation 

of a limit cycle is similar to a fold bifurcation of a steady state - two cycles (of 

dissimilar stability) coexist for a particular parameter value, and as this parameter 

is decreased their orbits become closer together and then annihilate each other at 

the fold bifurcation; at values of the parameter below the fold bifurcation neither 

cycle exists. For clarity fold bifurcations of limit cycles are not shown in Figure 3.4; 

we discuss bifurcations of limit cycles in Section 3.8. Thus for the narrow region 

d E (1.394,1.397) the stable steady state and stable limit cycle coexist, but for the 

remainder of the diagram the situation is qualitatively equivalent to Figure 3.3( a), 

and in this case the fact that Hopf A has become subcritical as k has increased is 

fairly insignificant. 

Figure 3.5(b) shows what happens when k = 0.085, for which both Hopf bifurca­

tions are now subcritical. The unstable branch from the subcritical Hopf B undergoes 

a fold bifurcation to become stable. This stable branch persists as d is decreased and 

undergoes another fold bifurcation to join up to Hopf A, in the same manner as for 

k = 0.07. So for k = 0.085 there are two narrow regions of d for which a stable limit 

cycle and stable steady state coexist. For k > 0.091 the steady state undergoes fold 

bifurcations (indicated by the curve oflong dashes in Figure 3.4(d)), and for k > 0.11 

only one Hopf bifurcation occurs; the consequent limit cycle behaviour shall be shown 

in Section 3.6 for an equivalent region in the No diagram. 

The diagrams for independent changes in phytoplankton respiration rate, r, phy-
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toplankton sinking rate, s, and the regeneration of excretion by the predators on the 

zooplankton, 'Y, Figures 3.4(e), (f) and (j), respectively, are qualitatively very similar. 

Both Hopf bifurcations remain supercritical across the entire feasible ranges of each 

parameter, and furthermore the length of the interval of d for which the limit cycle 

behaviour occurs remains virtually constant in each case. Thus the model can be said 

to be insensitive to changes in these parameters, in the sense that varying each of 

them independently will cause hardly any change in the qualitative behaviour of the 

system. We note that rand 'Y represent recycling effects in the system (as illustrated 

by Figure 2.1), but the model appears insensitive to the level (or absence) of such 

recycling. Furthermore, FDM90 found that their specific linear phytoplankton loss 

parameter (essential~y r + s in our model) was the most sensitive, and most difficult 

to determine, parameter in their system, whereas in our model such a loss is among 

the least sensitive parameters. 

Figure 3.4(g) for the sub-mixed-layer nutrient concentration, No, shows that in­

creasing No causes both Hopf bifurcations to become subcritical and then cross over 

(in terms of their d values). A curve of fold bifurcations of the steady state also arises 

(shown as a curve of long dashes). The Hopf B bifurcation curve terminates at the 

fold curve, at No = 1.97, at a point known as a Bogdanov-Takens bifurcation point, 

which shall be discussed in Section 3.8. The qualitative changes in behaviour as No 

is increased through this region are demonstrated in Figure 3.6, and are discussed 

in Section 3.6. Qualitatively similar behaviour also occurs when f3 is varied, Figure 

3.4(i). Now, f3 represents a recycling term, but its bifurcation picture is not as simple 

as those for the other recycling terms rand 'Y. Instead, it is similar to k and No. Al­

though k affects both nutrient input and phytoplankton loss, as shown in Figure 2.1, 

it would appear that changes in k have, in some sense, more influence as a nutrient 

input. This is because the k diagram is similar to the No diagram and not to the s one 

_ s and No only appear once each in the model and thus have only one direct influence 

on the system. So k and f3 have similar pictures to No, implying that k and f3 have 

most influence as an input to the nutrient compartment. Similarly, r is both a linear 

loss from the P equation and an input to the N equation, and seemingly 'behaves' 
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more like s than No. However, this tentatively constructed view does not extend to 

the results to be shown in Section 3.7 concerning the periods of the oscillations. 

Figures 3.4(h) and (k) show that increasing a, the zooplankton assimilation effi­

ciency, or '\, the maximum zooplankton grazing rate, causes the Hopf bifurcations to 

move out of the d range, as occurred for a decrease in a/b. Decreasing a or ,\ causes 

the Hopf bifurcations to be shifted towards d = O. 

Finally, Figure 3.4(1), for the zooplankton grazing half-saturation coefficient, /-£, 

is similar to Figure 3.4(a) for a/b, except that Hopf A becomes sub critical as /-£ is 

decreased, before it moves out of the range of d. 

3.6 Bifurcation behaviour at different levels of No 

As an example of the behaviour associated with the various regions of parameter 

space investigated in Section 3.5, we now discuss the behaviour of the system as 

No is increased. At each fixed value of No, the single bifurcation diagram of nutrient 

against d is shown in Figure 3.6. Figure 3.6 thus indicates how the original bifurcation 

diagram in Figure 3.3( a) changes as we increase No through Figure 3.4(g)j each Figure 

3.6 picture can therefore be considered as a horizontal slice through Figure 3.4(g). 

Figure 3.4(g) only gives information about the bifurcations of the steady statesj in 

Figure 3.6 we also demonstrate the qualitative changes in limit cycle behaviour as No 

is increased. Such changes can affect both the transient and asymptotic behaviour of 

the system. From these computations we then, in Section 3.8, sketch the complete 

bifurcation diagram of No against d, adding the bifurcations of limit cycles to the 

steady-state bifurcations already shown in Figure 3.4(g). The scales of the Figure 

3.6 diagrams are not all the same, since they are chosen in order to highlight the 

qualitative changes that occur as No is increased. 

Figure 3.6(a), for No = 0.75, shows essentially the same behaviour as Figure 

3.5(a) for k = 0.07, whereby Hopf A is subcritical and Hopf B is supercritical, and 

the limit cycle branch undergoes a fold bifurcation close to Hopf A. Figure 3.6(b), 

for No = 1.0, shows that the limit cycle branch joins up the two Hopf bifurcations in 
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(a) No = 0.75 - Hopf A has become subcritical and the limit cycle branch is 

qualitatively the same as Figure 3.5( a). 
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(b) No = 1.0 - a region of multiple unstable steady states exists, and a branch 

of limit cycles connects the two Hopf bifurcations. 

Figure 3.6: The Figure 3.3(a) diagram changes dramatically as No is increased (ctd.) 
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( c) No = 1.1 - the unstable cycles near Hopf B now become homoclinic to the 

saddle point, and the Hopf bifurcations are no longer connected by a continuous 

branch of limit cycles. 
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(d) No = 1.25 - the stable steady states exhibit hysteresis, and thus for 

d E (1.2123,1.2145) a stable limit cycle coexists with two stable steady states. 

The stable limit cycle branch still terminates at the right-hand end at a fold 

bifurcation - this is inferred semi-analytically (and not shown in the diagram) 

since the numerical computations become unreliable. 
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(e) No = 1.35 - no fold bifurcations of the unstable limit cycle branch occur, thus no 

stable limit cycles arise and the unstable cycles become homoclinic. The region of 

coexistence of the steady states, now the sole attractors, is larger than in (d). 
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(f) No = 1.5 - similar to (e) except that the values of d at the homoclinic 

connections have altered. 
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(g) No = 2.0 - Hopf A has now become a fold bifurcation. 

the same way as in Figure 3.5(b) for k = 0.085, but the unstable steady-state branch 

now undergoes two fold bifurcations; however it does not regain stability in-between 

the two Hopf bifurcations, and hence no new attractors appear. On Figure 3.4(g) 

Hopf B becomes subcritical at No = 0.92 and the fold bifurcations of the steady state 

appear (at a cusp point) at No = 0.93; since these values are so close we do not show 

the intermediate one-parameter bifurcation diagram in Figure 3.6 (i.e. that for which 

Hopf B is subcritical and the steady state does not undergo a fold bifurcation, as in 

Figure 3.5(b)). 

Figure 3.6(c), for No = 1.1, shows that the limit cycles now no longer form a 

single branch connecting up the two Hopf bifurcations. A region of stable limit 

cycles arises from Hopf A in the same manner as for No = 1.0. This branch again 

undergoes a fold bifurcation (as d increases), but the resulting unstable branch then 

becomes homo clinic (as d then decreases) to the saddle point on the middle steady­

state branch, rather than joining up to Hopf B. In other words, the cycle in N - P - Z 

space approaches the saddle point, leading ultimately to a homoclinic connection in 



Three-component model 55 

which the unstable manifold of the saddle point joins up in a loop (formerly the cycle) 

with its own stable manifold; see Thompson and Stewart (1986), Wiggins (1988,1990) 

or Kuznetsov (1995) for further details. The unstable branch which arises from Hopf 

B also terminates at a homoclinic connection to the saddle point (at a different d 

value). The behaviour of the stable attractors has not qualitatively changed from 

No = 1.0. 

In Figure 3.6( d), for No = 1.25, Hopf A now occurs at a slightly higher value 

of d than Hopf B, as illustrated by the crossing of the Hopf bifurcation curves at 

No = 1.24 in Figure 3.4(g). The system can therefore exhibit hysteresis in moving 

between the two stable steady states coexisting at the same value of d. 

At the right-hand endpoint of the branch of stable limit cycles the numerical 

computations become unreliable. Resorting to computing trajectories in time, we 

find that a stable limit cycle exists at d = 1.21761, and is close in N - P - Z space to 

the saddle point of the middle branch of Figure 3.6( d). Increasing d to 1.21762 yields 

no stable cycle, even starting from a range of initial conditions, including values at 

and close to points which were part of the stable cycle at d = 1.21761. In Section 

3.8 we prove that the stable limit cycle branch cannot terminate at a homo clinic 

connection, but rather that it (almost certainly) undergoes a fold bifurcation, and 

it is the resulting unstable branch that terminates at a homo clinic connection, as 

in Figure 3.6(c). In Edwards and Brindley (1996), which was published before the 

work in Section 3.8 had been done, we mistakenly thought that the stable limit cycle 

branch does actually terminate at the homoclinic connection - this was a perfectly 

valid interpretation of the available numerical evidence. 

The stable limit cycle branch coexists with at least one of the stable steady states; 

for the (rather pathological) narrow region d E (1.2123,1.2145) there are three coex­

isting stable attractors, namely two stable steady states plus a stable limit cycle. As 

d increases from this region, one steady state becomes unstable at Hopf A, and then 

the stable limit cycle branch undergoes the aforementioned fold bifurcation, and the 

lowest steady-state branch becomes the sole attractor. 

At No = 1.35, Figure 3.6( e), the fold bifurcation of the unstable limit cycle branch 
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from Hopf A no longer occurs and this branch does not become stable; instead it 

becomes homo clinic to a saddle point (as does the branch from Hopf B) and no 

stable limit cycles exist. The system undergoes hysteresis, indicated by the region 

of coexisting stable steady states. Figure 3.6(f), for No = 1.5, shows that Hopf B 

has got closer to the fold of the steady state, and that the homoclinic connections of 

the unstable limit cycle branches have shifted slightly along the saddle point branch. 

Figure 3.6(g), for No = 2.0, shows that Hopf B has disappeared and the steady 

state now loses stability due to a fold bifurcation, since the Hopf bifurcation curve 

in Figure 3.4(g) terminates at No = 1.97 when it joins up with the fold curve at a 

Bogdanov-Takens point, to be discussed in Section 3.8. 

3.7 Dependence of the period of oscillations on the 

parameter values 

In Figure 3.2(b) we showed that, when d = 1.5 and the other parameters are set to 

their default values, N, P and Z settle down to oscillations with a period of about 

35 days. Figure 3.3( d) then showed that this period remains fairly constant as d is 

varied across the region of oscillations, i.e. between the two Hopf bifurcations. We 

now investigate how the period of the oscillations changes with respect to each of the 

other parameters in the model. 

In Figure 3.7 we plot 'contours', or isochrones, of constant period, within the 

regions of oscillatory behaviour defined in Figure 3.4. The numbered curves are the 

contours, along which the period takes the constant value, in days, specified by the 

number. Contours are plotted at increments of 5 days. The key for the remaining 

features of these diagrams is the same as for Figure 3.4 - the solid squares show the 

Hopf bifurcations at the default parameter values; the un-numbered curves passing 

through the squares indicate how the positions of the Hopf bifurcations change as 

each parameter is varied, with solid curves again representing supercritical and dotted 

curves representing sub critical Hopf bifurcations; and curves of long dashes indicate 
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Figure 3.7: The steady-state bifurcation diagrams of Figure 3.4 are reproduced, and 

within the regions of oscillations the variations in period of stable limit cycles are 

indicated by contours of constant period. The numbers indicate the period, in days, 

along each contour. 
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Figure 3.7 (ctd.) 
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fold bifurcations of the steady state. The range of d shown in each diagram is now 

1.0-2.0, since no oscillations occur for d < 1.0; (for the a and>' diagrams, oscillations 

do actually occur for d < 1.0, but at values below the minimum ranges of a = 0.2 

and ,\ = 0.6 given in Table 2.1, thus we still plot d from 1.0-2.0). We firstly describe 

how the contours are calculated, and then discuss each diagram in turn. 

The period contours are computed using LOCBIF. When following a branch of 

limit cycles, the period is treated as a parameter. Two parameters need to be allowed 

to vary in order to trace a branch, and these two parameters mayor may not include 

the period, depending on whether or not a contour of constant period is required. 

The ease with which LOCBIF allows selection and deselect ion of active (varying) 

parameters is exploited to compute contours and find starting points for them. For 

the default parameter values an orbit of 35 days occurs when d = 1.46; this orbit 

is used as the starting point in each diagram. Figure 3.3( d) suggests that, for each 

parameter, a 35 contour should exist close to the default value of the parameter 

across most of the range of d. Consider firstly Figure 3.7(a), the diagram for alb, 

which shows contours of 25, 30, 35, 40 and 45 days (the 45 contour is not labelled 

due to its short length). The 35 contour is computed first. Starting from the orbit 

at d = 1.46, the period is held fixed at 35 days and alb and d are active (allowed to 

vary), so that the 35 contour is traced out in each direction. The contour terminates 

at each end at the Hopf bifurcation curve, i.e. the limit cycle being traced collapses 

onto the steady state. To then find the starting point for, say, the 30 contour, the 

original period-35 orbit at d = 1.46 is selected, and d is held fixed and alb and the 

period are made active. As alb increases, the period decreases until it reaches 30, 

and this point is used as the starting point of the 30 contour. 

This process is repeated to find the starting point of the 25 contour, and a similar 

method used to find starting points for the other contours. During the searching 

process, the edge of the oscillatory region (i.e. the Hopf bifurcation curve) may be 

reached before the period has reached the next required value. This occurs, for 

example, when starting from d = 1.46 on the 35 contour and decreasing alb in order 

to find a period-40 orbit to start the 40 contour. This is overcome by simply fixing alb 
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at a point just above the Hopf curve, and then increasing d until a period-40 orbit is 

reached. Thus, extending this process, by keeping one of the two parameters fixed we 

can trace along limit cycles branches by moving vertically and horizontally through 

the oscillatory region until each required period is reached. Moving horizontally, with 

alb fixed, and d and the period varying, is just what we did in Figure 3.3( d) when 

alb was fixed at its default value. 

We now show that no contours of 20 days can start from the Hopf bifurcation 

curve in the alb diagram. By definition, two of the eigenvalues of the Jacobian of 

the steady state at a Hopf bifurcation exist as a complex and conjugate pair with 

zero real part, which we denote as ±wi. The period of a limit cycle which emanates 

from a Hopf bifurcation is then given, sufficiently close to the Hopf bifurcation, by 

21r I w (see, for example, Wiggins (1990), page 272). The contour of 35 days therefore 

terminates on the Hopf bifurcation curve at (or at least arbitrarily close to) the 

locations where w = 21r 135. Thus, by noting the values of w as we move along the 

Hopf bifurcation curves we can determine, prior to actually calculating any limit 

cycles, where the contours will terminate, and what the minimum and maximum 

contours which terminate on the Hopf bifurcation curve will be. For the alb curve, 

the maximum value of w is 0.303, corresponding to a minimum period of 20.7 days, 

and is reached on the upper-left portion of the curve. This does not quite guarantee 

that no 20 contours will exist at all, since a contour could form an isolated closed loop 

(inside which the period is less than 20). But this seems unlikely given the decreasing 

nature of the period as we move towards the upper-left point of the oscillatory region. 

Indeed, tracing limit cycles by moving horizontally and vertically through the upper 

left region does not find any orbits with a period of 20 days, virtually verifying that 

no closed-loop 20 contours exist. 

LOCBIF computes the Floquet multipliers of limit cycles, and detects local bifur­

cations of limit cycles such as fold, period doubling or Naimark-Sacker bifurcations. 

No such bifurcations were found along any of the contours in the alb diagram (and 

hence the limit cycles are always stable), or indeed in the diagrams for any of the 

parameters except for k, No, f3 and J.L for which fold bifurcations occur; in these dia-
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grams the contours only represent the period of stable orbits. The contour diagrams 

will now be discussed in turn. 

Figure 3.7(a) shows that an increase in alb, due perhaps to increased sunlight, 

tends to decrease the period of the oscillations. Thus a higher maximum phytoplank­

ton growth rate gives faster oscillations, as might be expected since the phytoplankton 

can respond to events more quickly. The contours are fairly horizontal, implying that 

at various levels of alb the period remains insensitive to the value of d, as occurred 

for Figure 3.3(d), for which alb = 1. Figure 3.3(d) showed that most variation of the 

period occurs close to Hopf A. This explains why the contours tend to double back on 

themselves just before terminating at Hopf A. So, if alb is fixed and d is decreased, 

the period stays fairly constant, but drops slightly just before Hopf A is reached. 

Figure 3. 7(b) shows that the period tends to increase as the phytoplankton self­

shading, c, increases. An increase in c reduces the phytoplankton growth term 

~ a p 
e+Nb+cP , 

and would be expected to have the same effect as a reduction in alb. This is con­

firmed by the behaviour of the period, which increases as either c increases or alb 

decreases. Similarly, increasing e reduces the growth term, and Figure 3. 7( c) shows 

that increasing e tends to increase the period. However, the 40 contour shows that if 

d = 2.0, then increasing e from 0.05 will initially increase the period to above 40, but 

then decrease it to below 40. The 'doubling back' of the 40 contour thus does not 

occur as close to the Hopf curve as was the case in Figure 3.7(a). (Note that Hopf 

A becomes sub critical at low c and e values, thus stable cycles must undergo fold 

bifurcations in these regions, but none of the contours actually demonstrate this). 

The diagrams for k, No and /3, Figures 3.7(d), (g) and (i) respectively, are very 

similar. We describe in detail the No diagram, since in Figure 3.6 we have already 

shown the one-parameter bifurcation diagrams of nutrient versus d, at increasing fixed 

levels of No. 

The contours computed are at intervals of 5 days up to the 100-day contour, and 

then the 125 contour is shown. There is no noticeable difference on the diagrams 
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between the (unlabelled) 100 and 125 contours. When the Hopf bifurcations are 

sub critical, as shown by the lines of short dashes in Figure 3.7(g) and seen more clearly 

in the original Figure 3.4(g), unstable cycles emanate from the Hopf bifurcations and 

can become stable at fold bifurcations. Figure 3.6(b), for No = 1.0, shows how the 

fold bifurcation of the limit cycles near Hopf A must occur at a d value to the left 

of Hopf A. In Figure 3.7(g) the fold of the limit cycle branch is indicated by the 

terminations of the contours, since we do not plot the contours for points where the 

cycles are unstable, and these terminations occur to the left of the curve of sub critical 

bifurcations. It is seen that the region of coexistence of stable limit cycles and stable 

steady states, which is bounded by the subcritical Hopf curve and the termination of 

the contours, is fairly small, and that the oscillations occur in a region which is only 

slightly larger than the region bounded by the Hopf bifurcation curves. 

Figures 3.6(d) and (e) suggest that, at some No value between 1.25 and 1.35, the 

fold bifurcations of the limit cycles disappear, most likely by coming together at a 

cusp point (on a diagram of No against d) - this will be discussed in Section 3.S. For 

No values above this cusp point no stable cycles, and hence no period contours, exist. 

Figures 3.6( c)-(g) show that the unstable cycles can terminate at homoclinic con­

nections to saddle points. As a cycle approaches a homoclinic connection its period 

tends to infinity. Along a branch of cycles the period changes continuously, even 

through a fold bifurcation. This helps explain why we find stable cycles with rela­

tively large period in the No diagram - in Figures 3.6( c) and (d) the fold bifurcations 

of stable limit cycles occur very close to where the subsequent unstable cycles go 

homoclinic. The diagrams for k, No and (3 are the only ones for which we find fold 

bifurcations of steady states, and subsequent homo clinic behaviour, and this helps 

explain why these are the only diagrams exhibiting stable cycles with a period greater 

than 50 days. 

Figure 3.7(e) shows that the period increases as r is increased, whilst Figure 3.7(f) 

shows that the period decreases as s is increased. Now, s is purely a linear loss of 

phytoplankton whilst r appears in the equations as both a linear phytoplankton loss 
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and as a nutrient input. The bifurcation diagrams (without the contours) for rand 

s are very similar, and this was interpreted in Section 3.5 as implying that r behaves 

more like s, as a phytoplankton loss, than as, say, No, a nutrient input. But this is 

contradicted by the contour pictures - the period behaves more like No, increasing 

with increased r or No, even though the actual bifurcation picture is different. The 

increase in period for r is not as dramatic as that for No. Since the sensitivity of the 

period to s is actually quite weak, the consequence of an increase in r acting as a 

nutrient input is to pull the period up, overcoming the much weaker reduction due to 

its behaviour as a phytoplankton loss (like s). However, such interpretations should 

be treated with caution, since the actual loss is r P, and increasing r could actually 

cause r P, averaged over one cycle or taken at equilibrium, to decrease, a counter­

intuitive but feasible notion. Figure 3.7(j) shows that the'Y picture is similar to the r 

picture, which agrees with the notion of r being considered more as a nutrient input. 

Figures 3.7(h) and (k) show that a and), have similar minor influences on the 

period. Neither the 30 or 40 contours were reached in the region shown, and a 

decrease in either parameter increases the period slightly. So increasing the maximum 

zooplankton grazing rate, )., has the opposite effect on the period to increasing the 

maximum phytoplankton growth rate, a/b. 

Finally, Figure 3.7(1) shows that decreasing the zooplankton half-saturation con­

stant, p, increases the period. A decrease in p will directly increase the grazing 

function ).p2 Z/(J.L2 + P2), but this (tentatively) has an opposite effect on the period 

to that of increasing )., which will also increase the grazing function. For p, the 50 

contour is reached. Excepting k, No and /3, which exhibited homoclinic behaviour, 

this is the only parameter variation for which the period reaches 50 days. 

The overall picture that emerges is that, except for the homoclinic cases of k, No 

and (3, as parameters are independently varied the period is confined to roughly the 

range 25-50 days, only reaching 25 in one case and 50 in one other. The insensitivity 

to d, originally illustrated in Figure 3.3( d), seems to persist, since the contours tend 

to remain fairly horizontal. The large periods reached for k, No and {3 are explained 

by the presence of homoclinicity. 
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3.8 Limit cycle bifurcations - the complete picture 

for No 

For mathematical completeness we now present the complete bifurcation diagram of 

No against d, adding the bifurcations of limit cycles to the steady-state bifurcation 

diagram shown in Figure 3,4(g). The one-parameter diagrams of Figure 3.6 plus the 

No contour diagram 3.7(g) together suggest how the complete bifurcation picture 

looks. We take Figure 3,4(g), and onto it sketch the bifurcations of limit cycles, 

namely curves of fold bifurcations and of homo clinic connections. Only parts of the 

fold curves ~ould be numerically traced; the remainder are deduced approximately 

from theory and numerics. The resulting bifurcation diagram is shown in Figure 3.8. 

We shall firstly briefly discuss the diagram, and then explain in detail how it has been 

constructed. 

The key for the curves of steady-state bifurcations remains as for Figure 3,4, 

namely solid squares are the default Hopf bifurcations, unlabelled solid curves are su­

percritical Hopf bifurcations, curves of short dashes are subcritical Hopf bifurcations 

and curves of long dashes are fold bifurcations. All bifurcations of limit cycles are 

represented by labelled solid curves. The two points labelled BB are Bautin bifurca­

tions, and occur where each of the Hopf bifurcations changes criticality. From each 

of the Bautin bifurcations arises a curve of fold bifurcations of limit cycles, labelled 

FCl and FC2, which then join up at a cusp point (FC2 is sketched, and thus the cusp 

point does not look definitively 'cusp-like'). BT is a Bogdanov-Takens bifurcation, 

where a curve of Hopf bifurcations terminates on a curve of fold bifurcations of steady 

states. From this point arises a curve of unstable homo clinic orbits, H1, which joins 

up at a cusp point with a second curve of unstable homoclinic orbits, H2. FC2, Hl 

and H2 could not be computed and are sketched, based on the following analytical 

and numerical discussion. 

A point in parameter space at which a Hopf bifurcation changes from being super­

critical to subcritical is called a Bautin bifurcation (Kuznetsov, 1995). Such points 

exist on each of the Hopf bifurcation curves, and are labelled BB in Figure 3.8. A 
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Figure 3.8: The complete bifurcation diagram for No against d, adding curves of 

bifurcations of limit cycles to Figure 3.4(g). BB are Bautin bifurcations, BT is a 

Bogdanov-Takens bifurcation, FCl and FC2 are curves of fold bifurcations of limit 

cycles, and Hl and H2 are curves of unstable homoclinic orbits. The key for the 

remaining curves is the same as that for Figure 3.4. FCl is explicitly computed, 

whereas FC2, Hl and H2 are sketched, based on the numerical evidence. 
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curve of fold bifurcations of limit cycles must commence from a Bautin bifurcation 

due to the change in criticality of the Hopf bifurcation (see Kuznetsov (1995) for the 

generic picture). This can be seen by comparing Figures 3.3(a) and 3.6(a) - as No 

increases from 0.6 to 0.75 Hopf A changes from being to supercritical to sub critical, 

yielding a fold bifurcation of the limit cycle branch. Thus we have two curves of 

fold bifurcations of limit cycles, labelled FC1 and FC2, commencing from each of 

the Bautin bifurcations. Note that here, and for the remainder of this section, we 

assume that the required non degeneracy conditions hold. Part of FCl is numerically 

computed using LOCBIF, actually tracing out the fold curve as the parameters vary, 

but these computations break down. The remainder of the curve is drawn by simply 

joining up the left-hand endpoints of the period contours, since the endpoints of the 

contours indicate, when the appropriate Hopf bifurcation is subcritical, the fold bi­

furcations of the limit cycles. FC2 could not be numerically computed except for the 

initial part close to the Bautin point, and so most of the curve is sketched, based on 

the forthcoming analysis. The reason that FCl and FC2 then join at a cusp point 

will become apparent. 

Local steady-state analysis reveals another bifurcation which gives us informa­

tion about bifurcations of limit cycles, namely a Bogdanov-Takens, or double-zero, 

bifurcation (Kuznetsov, 1995). Indicated BT in Figure 3.8, this is the point where 

a Hopf curve terminates on a fold bifurcation curve, and the steady state has two 

zero eigenvalues. A curve of homo clinic orbits must then arise from the Bogdanov­

Takens bifurcation (again, see Kuznetsov (1995) for the generic picture). This curve 

is sketched (not computed) and labelled Hl in Figure 3.8. A Bogdanov-Takens bifur­

cation also occurs in Figure 3.4( d) for k, at the value of k = O.ll. 

Comparing Figures 3.6(f) and (g) one can see how the Hopf curve and homo clinic 

curve collapse onto the same point on the fold curve (in No - d space), and that at 

this point the nature of the fold bifurcation of the steady state changes. In Figure 

3.6(g) the stable steady state loses stability at the fold bifurcation, whereas in (f) a 

saddle point changes stability at the fold bifurcation (but it remains a saddle point 

_ the signs of the eigenvalues go from -, +, + to -, -, +, whereas in (g) they go 
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from -, -, - to -, -, +). Figure 3.6(g) suggests that a second curve of homo clinic 

orbits passes through No = 2.0, this is the curve H2. We now combine some theory 

and numerical investigation to show how the homo clinic curves H1 and H2, and the 

fold bifurcation curves FC1 and FC2, all fit together on Figure 3.B. We cannot say 

for certain that this is the picture, but the picture produced is consistent with the 

numerical evidence. 

It is along the middle branch of saddle steady states that homoclinic connections 

occur in Figures 3.6( c)-(g). We now show that all such homo clinic connections involve 

unstable, and never stable, homoclinic orbits. The Andronov-Leontovich theorem 

(Kuznetsov, 1995; Glendinning and Laing, 1996) essentially states that the stability 

of a homo clinic orbit (and consequently the branch of cycles close to it in '. parameter 

space) is determined by the sum of the dominant eigenvalues of the saddle equilibrium 

point. The dominant eigenvalues, when the eigenvalues are real, are the negative 

eigenvalue closest to zero and the positive eigenvalue closest to zero. 

Consider Figure 3.6( d), for No = 1.25. The eigenvalues at the right-hand steady­

state fold bifurcation are all real and have signs -,0, +. Close to the fold bifurcation, 

along the lower of the two branches (i.e. the middle branch of steady states when 

looking at the whole diagram), the eigenvalues have signs -, -, +, and following the 

notation of Glendinning and Laing (1996) we denote these eigenvalues as 1I2 < III < 

0< A1. The dominant eigenvalues are thus III and A17 and would be expected to vary 

in size as we move further along the branch (i.e. decrease d). 

Now, at a homo clinic connection, the orbit, the cycle having infinite period, is 

stable if the dominant eigenvalues satisfy I III I > A1, otherwise it is a saddle cycle 

(we shall assume the term 'unstable cycles' to include saddle cycles). Monitoring the 

eigenvalues as d decreases we find that they remain real, and that I III I < A1 along 

the entire middle branch of Figure 3.6( d)i therefore any homo clinic connections must 

involve unstable cycles. Consequently, the stable limit cycle branch, towards the 

right-hand end of which the numerics become unreliable, cannot become homo clinic 

to a saddle point. 

In Section 3.6, for No = 1.25 we found that a stable limit cycle occurs for d = 
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1.21761, but that no stable cycles exist for d = 1.21762. This discounts the possibility 

of a period doubling bifurcation or a Naimark-Sacker bifurcation, since these would 

both require stable cycles at d = 1.21762. Stable cycles can also go homo clinic 

to a saddle cycle rather than a saddle point (Gaspard and Wang, 1987), but we 

exclude this possibility since no other branch of saddle cycles appears to exist in this 

region (the branch from Hopf B ends at a homoclinic connection to a saddle point 

at d = 1.2164). Thus we conclude that the stable limit cycle branch undergoes a 

fold bifurcation, and it is the subsequent branch of unstable (saddle) cycles which 

terminates at a homo clinic connection, as in Figure 3.6(c) for No = 1.1. 

The fact that the negative eigenvalues remain real along the saddle-point branch, 

and do not coalesce to form a complex and conjugate pair, is instructive, since it 

means that the saddle point does not change from being a saddle node to become a 

saddle focus. This means that we cannot have homo clinic orbits to a saddle focus 

(Glendinning and Sparrow, 1984; Mullin, 1993), and eliminates the possibility of 

multiple homo clinic orbits exhibiting period-doubling cascades to chaos. 

The eigenvalues satisfy V2 < Vl and IV21 < Al (together implying that IVll < Al) 

along the saddle-point branch of Figure 3.6( d) right down to d = 1.203; the fold then 

occurs at d = 1.201, and between these values we have IV21 > All but IVtl < At still 

holds. At d = 1.203 there is a neutral saddle with IV21 = At. 

Now, returning to Figure 3.8, we find that IV21 < At along the whole of the right­

hand curve of fold bifurcations of the steady state (the third eigenvalue being zero), 

and from the cusp point up to the point where No = 1.06 on the left-hand fold curve. 

At this point the eigenvalues are V2, 0, Al, with IV21 = At. When No = 1.25 and 

d = 1.203 we also have IV21 = AI, as previously discussed. Starting from this point 

in No - d space, and varying No and d, we can trace out a neutral-saddle curve, 

along which IV21 = At. This curve, which we do not display, remains close to the 

steady-state fold curve, reaching the fold curve at No = 1.06 as No decreases, and 

continuing past No = 2.0 as No increases. To the right of the curve it would seem 

likely that we have a large region for which IV21 < AI' This region is bounded by 

the neutral-saddle curve, along which IV21 = At, and the parts of the fold curves with 
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IV21 < '\1. Providing that V2 < V1 holds throughout the region, and there is no other 

neutral-saddle curve with IV21 = A1, we are guaranteed that IV11 < A1 and thus all 

homo clinic orbits are unstable. Looking at the numerical values of the eigenvalues, 

it seems likely that these two conditions on the eigenvalues are satisfied. Indeed, 

by crossing the diagram horizontally at constant values of No (at increments of 0.1) 

and monitoring the eigenvalues, we verify that V2 < V1 and IV21 < A1 appear to hold 

throughout the region. 

Thus the saddle point remains a saddle node, not becoming a saddle focus, and 

since V2 < V1 and IV21 < A1 hold, the inequality IV11 < A1 is satisfied, and so any 

homoclinic orbits that occur must be unstable. Furthermore, in the narrow region 

between the neutral-saddle curve and the left-hand fold curve, where IV21 > All we 

find that IV11 < A1 still holds. 

Thus, we conclude that no stable homo clinic orbits exist. This, together with 

Figures 3.6( c )-( e), suggests that the curves of fold bifurcations of limit cycles, FC1 

and FC2, join up at a cusp point, as drawn in Figure 3.8, and do not terminate on one 

of the curves of homo clinic orbits. See page 285 of Kuznetsov (1995) for an example 

of this latter case in a simple predator-prey system. Figures 3.6(b) and (c), plus the 

analysis just performed, suggest that the two homoclinic curves also terminate at a 

cusp point. The resultant Figure 3.8 is consistent with the one-parameter diagrams 

in Figure 3.6 and the contour diagram of Figure 3.7(g). 

3.9 Discussion 

We have systematically built up a comprehensive picture of the bifurcation behaviour 

of the three-component model, revealing an array of both local and global bifurcations. 

The analysis of Section 3.2 showed how the steady state (N*, P*, Z*), with nu­

trient, phytoplankton and zooplankton concentrations N*, P*, Z* > 0, originates in 

the positive octant of phase space at a three-way transcritical bifurcation with two 

other steady states, (No, 0, 0) and (N1 *, H *,0), which remain unstable throughout 

the subsequent numerical analysis. 
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We started with the parameters set at their default values, and showed that qual­

itatively different behaviour of the trajectories occurred at two distinct values of d, 

measuring the higher predation on zooplankton. This difference was illustrated in 

Figure 3.3, which showed how the steady-state values and limit cycle amplitudes of 

the nutrient, phytoplankton and zooplankton concentrations changed as d was var­

ied; somewhat surprisingly the zooplankton concentrations showed the least variation, 

even though it was the higher predation on them which was being altered. The period 

of the oscillations was 35 days, in agreement with the oscillatory behaviour discussed 

by Ryabchenko et al. (1997). 

Figure 3.4 then demonstrated how this picture can qualitatively change as a second 

parameter is varied, and showed that changing some of the parameters caused the 

oscillatory region to disappear. The parameters which, when varied, demonstrated 

persistence of the oscillatory behaviour across a similar range of d as in Figure 3.3, 

were r, sand /. As discussed, the model may have been expected to show greater 

sensitivity to such parameters. We then showed how the original one-parameter 

bifurcation diagrams change significantly as the sub-mixed-layer nutrient level, No, is 

increased, displaying a rich array of bifurcation behaviour, including destruction of 

unstable cycles at homo clinic connections. 

The insensitivity of the period to the value of d, Figure 3.3( d), implies that the 

fundamental frequency of the oscillations is controlled by some other specification of 

the system. This motivated calculation of the contour diagrams of Figure 3.7, showing 

how the period changes as each of the parameters is independently varied. Finally, 

we sketched the full bifurcation diagram about a Bogdanov-Takens bifurcation, to 

illustrate how the local and global bifurcations fit together. 

The broad picture which emerges is that parameter space is divided into large 

regions where either a single stable equilibrium or a single attracting limit cycle 

exists. There are also small regions where the dynamics are more complex. These 

contain multiple attractors, such that, for example, two stable equilibria or a stable 

equilibrium plus a stable limit cycle can coexist. 

Although, as is usual in bifurcational analysis, we have dwelt on the character 
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of the asymptotic at tractors (for large time) of the system, it is important to note 

that transient behaviour of trajectories is much affected, even for far shorter times, 

by that character. However, the trajectories which we have shown, in common with 

further simulations using other initial conditions and parameter values, indicate that 

the attractors are actually reached after a relatively short transient time. 

The fact that we get oscillations at all with the quadratic zooplankton mortality 

term is important, and contrasts with the results of Steele and Henderson (1992), 

who found oscillations only with the linear mortality function. We re-iterate that we 

have not had to 'search around' parameter space in order to find oscillations, but that 

they occur when d is well within the range used by Steele and Henderson (1981), and 

the remaining parameters are set to their default parameters. An obvious question 

to ask is how does the bifurcation picture we have built up in this chapter change if 

the quadratic mortality function is replaced by the linear form. This is the focus of 

Chapter 4. 



Chapter 4 

Behaviour of model" with linear 

zooplankton mortality 

4.1 Introduction 

We now investigate the N P Z system formulated in Chapter 2, but with linear, rather 

than quadratic, zooplankton mortality. The quadratic form dZ2 in the equations is 

replaced by the linear form qZ. The two forms represent different ecological as­

sumptions - for dZ 2 , the specific (per capita) rate is dZ, which assumes that higher 

predators have a biomass proportional to their prey, whereas the linear qZ function 

assumes a constant specific higher-predation rate. The linear form is often used due 

to it being the most simple form, and due to the lack of data that would strongly 

support an alternative form. Steele and Henderson (1992), when discussing the use 

of the linear form, said that "There can be a strong empirical basis for this approach 

if nothing is known (or can be known) about the actual ecological context". 

To investigate the new model, we follow the methodology of Chapter 3, in order to 

facilitate easy comparison between the results for the quadratic and linear zooplank­

ton mortality cases. In Section 4.2 we explain the formulation of the new model, 

and obtain, from models in the literature, a default parameter value and range for 

q, the linear rate of zooplankton mortality. In Section 4.3 we perform an analysis 

of the system, and find that we can derive far more information about the location 

72 
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and stability of the steady states without having to invoke any specific values of the 

parameters, than we could for the quadratic case. We show that the three-way tran­

scritical bifurcation calculated in Section 3.2, does not occur, but seems to have split 

into two separate transcritical bifurcations. We obtain conditions for stability of the 

steady state (N*, P*, Z*) which is in the strictly positive octant, and in particular 

show that this is the unique steady state with N*, P*, Z* > 0; thus the hysteresis 

behaviour which we found for the quadratic case cannot occur, due to the absence 

of coexisting positive steady states. We also calculate an invariant set, from which 

no trajectory can leave, and compare the nullsurfaces of the linear and quadratic 

systems, which illustrate clearly why the linear model cannot have coexisting positive 

steady states, whilst the quadratic model can. 

We perform a numerical investigation into the dynamical behaviour of the system 

using q, the linear zooplankton mortality rate, as the primary bifurcation parameter. 

As discussed earlier, this parameter is a particularly difficult parameter to measure 

and was varied by Steele and Henderson (1981); the equivalent quadratic rate, d, was 

consequently used in Chapter 3 as a bifurcation parameter. Firstly, in Section 4.4, 

we plot the trajectories of the system when all the parameters are set at their default 

values, and then show that at an increased value of q the asymptotic behaviour of 

the system is qualitatively different, exhibiting oscillations rather than settling down 

to a steady state. This difference is then explained by the one-parameter bifurcation 

diagrams constructed in Section 4.5, where only q is varied, and the system is seen 

to undergo a Hopf bifurcation as q is increased. Each of the other parameters in the 

model is then varied in turn in Section 4.6, to produce two-parameter bifurcation 

diagrams which demonstrate how the default one-parameter diagrams change as the 

other parameters are varied. In Section 4.7 we show the explicit pictures for No 

varying, as for the quadratic case, and in Section 4.8 we construct period-contour 

diagrams, illustrating how the period of the oscillations changes as each parameter is 

varied. 
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4.2 Model formulation 

The three ordinary differential equations used to model the temporal changes of the 

concentrations of the three variables are: 

dN 

dt 
dP 
dt 
dZ 
dt 

N a (3>.p2 
- - -Nb pP+rP+ 2 p2Z+')'qZ+k(No-N), e+ +C J1, + 

N a >.p2 

N b P P - r P - 2 p2 Z - (s + k )P, e+ +C J1, + 
a>.p2 
2 P2 Z - qZ. 

J1. + 

( 4.1) 

(4.2) 

( 4.3) 

The dZ2 function used in the quadratic case is replaced by qZ, where q is the 

new predation rate, and has units of days-I. This function appears in (4.3) as a 

zooplankton loss term due to predation by higher organisms, and as a regeneration 

term ')'qZ in (4.1), where,), is the proportion of the higher predation which is assumed 

to be recycled into utili sable nutrient. The food web diagram for this model is obvi­

ously the same as Figure 2.1 for the quadratic case, with dZ2 replaced by qZ on the 

appropriate arrows. 

Returning to the models reviewed in Chapter 2 to abstract realistic ranges for 

parameters, we find the following values of the daily zooplankton loss rate, q, to have 

been used when the linear zooplankton mortality term was considered: 0.04 day-l 

by Wroblewski (1989), 0.05 by Fasham et al. (1990) and 0.07 by Evans and Parslow 

(1985). However, subtle differences in the equations used mean that these values 

cannot be simply taken at face value, as is now discussed. 

Fasham et al. (1990) also included a linear zooplankton excretion rate of 0.1 

day-I, making a total loss rate of 0.15. However, our zooplankton excretion is an as­

sumed proportion, /3, of zooplankton grazing rather than a proportion of zooplankton 

biomass, and consequently our growth efficiency, a, has a value of 0.25, whereas the 

equivalent parameter in Fasham et al. (1990) was an assimilation efficiency with a 

value of 0.75. Wroblewski (1989) had an 'unassimilated fraction' of zooplankton graz­

ing of 0.3 recycled to nutrient, with the remaining 0.7 fuelling zooplankton growth, 

but no zooplankton excretion. Evans and Parslow (1985) had a 'grazing efficiency' 

of 0.5, twice as high as our growth efficiency, and no specific excretion term. In 
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Fasham (1993) the Fasham et al. (1990) assimilation efficiency of 0.75 was retained, 

but the zooplankton loss term was changed from a linear form to a Michaelis-Menten 

(or Holling type II) function, with a maximum loss rate of 0.3 day-l. This maxi­

mum was only attained in the simulations during summer at OWS "India" j for the 

Bermuda simulations, the loss rate peaked above 0.15 day-l (the constant Fasham 

et al. (1990) total loss rate) only during April and May. 

We wish to investigate the effects of substituting a linear zooplankton mortality 

term for the quadratic form used in Chapter 3. This substitution is a qualitative 

difference, and it is desirable to minimise quantitative differences. Thus, to obtain 

the default value and range for q, we note that Figure 3.3( c) showed a fairly constant 

steady state value of Z of roughly 0.075 9 C m-3
, when all other parameters were 

set to their default values. Therefore, so that qZ ~ dZ2 (where dZ 2 is the quadratic 

mortality term used in Chapter 3), we take q ~ 0.075d. Since d had the default value 

1.0 and a range 0.25-2.0, we take the default value of q to be 0.075, with the range 

0.015-0.150. This is a reasonable range to consider given the aforementioned values 

used by other authors and the practical difficulties in obtaining measurements for q. 

4.3 Analysis 

The following analysis is based on the analysis of a general class of models by Truscott 

and Brindley (1994). However, the incorporation of the self-shading term bj(b + 
cP) in our model, means that their analysis cannot be explicitly used, despite what 

they claim. Their approach aids us in defining an invariant set for the system in 

Section 4.3.1. We then investigate analytically the steady states of the system and 

their stability, and find that the analysis can proceed further than was possible for 

the quadratic mortality model in Chapter 3. In Figure 4.3 we demonstrate how 

the transcritical bifurcations, which we have found analytically, actually occur, and 

this diagram allows easy comparison with the equivalent colour picture, Figure 3.1, 

for the quadratic case. We then plot the nullsurfaces for the default parameters. 

These illustrate graphically a major difference between the linear and quadratic cases, 



Linear zooplankton mortality 76 

namely that the quadratic case can have more than one steady state in the strictly 

positive octant, whereas the linear case cannot. 

4.3.1 An invariant set 

We can define an invariant set for the system, from which no trajectory can leave. 

On the boundaries of the positive octant we have: 

on N - 0, 
dN {3Ap2 
dt = rP + ,.,,2 + P2 Z + 'YqZ + kNo > 0, 

on P 0, dP =0 
dt ' 

on Z 0, dZ =0. 
dt 

Thus, no trajectory starting within the positive octant {N, P, Z ~ O} can leave 

it. Now consider the plane 

where 

which has outward normal vector n = (1,1,1). Note that e is undefined for the 

special case of'Y = 1 (full recycling of higher predation on zooplankton) which occurs, 

theoretically, for fully conservative systems; we do not consider such an extreme 

special case. 

On the plane N + P + Z = e we have 

d 
dt 

N 

P 

Z 

·n 
d 
dt 

N 

P 

1 

1 

Z 1 

d 
dt (N + P + Z) 

Ap2 
(a + (3 - 1) ,.,,2 + p2 Z + C'Y - 1) qZ 

+ k (No - N) - (s + k) P 

< - (1 - 'Y) qZ + kNo - kN - kP 

< 0, 
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where the last step comes from substituting N = e - P - Z if e = No, or Z = e - N - P 

if e = kNo/q(l - "1). 

Thus no trajectories can pass through the plane in the outward direction; the 

plane intersects each of the N, P and Z axes at e, producing a tetrahedron which 

forms the boundary of the invariant set. The invariant set is hence given by 

{(N,P,Z): N,P,Z ~ 0, N + P + Z ~ 0. 

Putting in the default numerical values of the parameters gives 

e = max{0.6,0.8} = 0.8, 

and so the plane N + P + Z = 0.8 together with the three planes N, P, Z = 0 define 

the tetrahedron enclosing the invariant set. 

4.3.2 Steady states 

We now calculate the steady states of the system, together with their stability. The 

Jacobian matrix is given by 

A= a.eP 

o 

a.bN + r + 2 In /J:~ P Z 
(e+N)(HcP)2 (~~+P~ )2 

a.bN _ r _ s _ k _ 2). /J:~ P Z 
(e+N)(Hcp)2 (~~+p~)2 

2a )./J:~ pz 
(~2+p~)2 

a).P~ 
~2+p2 - q 

evaluated at the steady state values of N, P and Z. The steady states are solutions 

(N,P,Z) to dN/dt = dP/dt = dZ/dt = 0, i.e. solutions to the three simultaneous 

equations 

( 4.4) 

(4.5) 

(4.6) 

It is clear that solutions with Z = 0 will be unchanged from the quadratic zoo­

plankton mortality case. However, their stability may change, since the third column 
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of the Jacobian has changedj in the quadratic case this column included a term dZ, 

which became zero when Z = 0, but in the linear case this term has become q which 

will clearly not disappear when Z = O. 

Firstly, we note that adding (4.4) and (4.5), and using (4.6) to replace ).p2 Zj(J1.2 + 

p 2 ) with qZja, yields 

qZ 
. 0 = -(1- 0.1' - ,8)- - (8 + k)P + k(No - N), 

a 
(4.7) 

which shows that all steady states with P, Z ~ 0 must have N ~ No (since (1 - 0.1'­

,8) ~ 0). Also, it is clear that no steady state with N = 0 and P, Z ~ 0 can exist, 

since setting N = 0 in (4.5) implies that P = Z = 0, but such a solution does not 

satisfy (4.4). 

The steady state (N,P,Z) = (No,O,O) exists for all parameter values, and the 

Jacobian at (No, 0, 0) is 

-k 

A= o 

o 

_ a.Na +r 
b(e+No} 1'q 

a.Na k 0 
b(e+No} - r - 8 -

o -q 

Since this matrix is upper triangular, the eigenvalues are clearly -k, <P and -q, where 

<P has the same definition as for the quadratic case in Chapter 3, namely 

aNo <P = - r - 8 - k. 
b(e+No) 

Thus the stability depends on the sign of <Pj for <P < 0 (No, 0, 0) is a stable node 

and for <P > 0 it is a saddle point, and therefore unstable. As mentioned for the 

quadratic case, <P is positive for the default parameter values, and remains positive 

as anyone parameter is varied over its range. 

We now show that for <P < 0 there are no other steady states in the positive 

octant {N, P, Z ~ O}. It is clear that any steady state with P = 0 requires, from 

(4.6), that Z = 0, and so (No, 0, 0) is the only such steady state. A steady state with 

p> 0 must, by definition, satisfy (4.5). Now, for <P < 0, knowing that N ~ No, (4.5) 
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becomes 

o 
N a ).p2 

N b P 
P - r P - 2 p2 Z - (s + k)P 

e+ +e J.L + 
< ( Noa _ r _ s _ k) P _ ).p2 Z 

(e + No)b J.L2 + p2 
>.p2 

~P - 2 P2 Z 
J.L + 

< 0, 
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which is contradictory, and so no such steady state with P > 0 can exist. Thus, for 

~ < 0, (No, 0, 0) is the only steady state in the positive octant, and furthermore we 

know that it is stable. 

Setting Z = 0 and eliminating P from (4.4) and (4.5), results in the quadratic 

equation given by (3.4), namely 

ekN2 + [a(s + ki - b(s + k) + ek(e - No)] N - (b(s + k) + ekNo) e = 0, (4.8) 
r+s+ 

the solutions of which we denote by NI * and N2 *j they correspond to the two steady 

states (NI*,PI*'O) and (N2*' P2*' 0), where PI* and P2* are given by 

R* _ keNo - N/) 
$ - s + k (4.9) 

for i = 1,2. The constant term of (4.8) is negative, and so the quadratic equation has 

two real roots, one negative and one positive. Defining Nt· to be the positive root of 

(4.8) and N2* to be the negative root, then the steady state (N2*'P2*, 0) can never 

enter the positive octant. Since N I • > 0 > N2·, from (4.9) we know that P2• > 0, 

and that Pt * < P2 *, since 

p * _ keNo - Nt *) keNo - N2*) _ * 
I - S + k < s + k - P2 • ( 4.10) 

Now, rearranging (4.9) we have 

N/ = No _ (s ~ k) P/, ( 4.11) 

which gives, upon substitution into (4.8) and use of the definition of ~, the following 

quadratic for Pi * , 

c(s: k) P/ 2 
_ [e(e + No) + k(~(: ~!) k) (~- r - s - k)] P/ + ~(:: :o~ ~ = O. (4.12) 
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Since P2 * is always real and positive, and the product of two roots of a quadratic 

(with positive coefficient of the squared term) equals the constant term of the quadratic, 

the second root, namely PI *, will have the same sign as the constant term of (4.12). 

The sign of PI * is thus simply the sign of CPo As cP -+ 0, we have PI* -+ 0, and 

Nl* -+ No, i.e. (NI*,Pl*,O) -+ (No,O,O). 

A further point, that we shall need later, is that, for <P > 0, the coefficient of the 

linear term of (4.12) is negative, since 

a aNo 
- - r - s - k > - r - s - k = <P > 0. 
b b(e + No) 

(4.13) 

For cP > 0, (4.12) is thus a U-shaped quadratic, with both roots being positive. 

So, in common with the quadratic case, we find that Pl * > ° for <P > ° and 

Pl * < ° for <P < 0, and at <P = ° we have (NI*,PI*,O) = (No,O,O), which is the 

previously calculated steady state. 

The Jacobian at (NI *, PI *, 0) is given by 

(e+N)~~cP)2 + r 

A= a.bN r s k 
(e+N)(b+cP)2 - - -

o ° 
One eigenvalue is 

a A Pl *2 

J.£2 + P
l

*2 - q, 

).p2 

- ~2+p2 

Ct ).p2 
~2+P2 - q 

( 4.14) 

(4.15) 

and the other two eigenvalues are the eigenvalues of the principal 2 X 2 submatrix A', 

the components of which we denote by R, S, T and U, using (4.5) to simplify the U 

term: 

( 4.16) 
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It can be seen from (4.16) that, for Pl· > 0, i.e. ~ > 0, we have R, U < 0, T> 0 and 

R + T < O. The sign of S is undetermined, but from (4.14) we have S + U < O. The 

trace of A' is clearly negative, and the determinant is positive: 

detA' - RU - ST 

RU + TU - TU - ST 

- U(R+T)-T(S+U) 

> O. 

Since A' is a 2 x 2 matrix with negative trace and positive determinant, both eigen­

values have negative real part, and hence the stability of (NI *, PI *, 0) is determined 

solely by the sign of the third eigenvalue, given by (4.15). (Nl ·, Pl·, 0) is thus stable 

for PI * > 0 if and only if 

( 4.17) 

So at small enough values of Pl *, (Nl *, Pl *, 0) is stable. As q, -+ 0+, (Nl *, Pl *,0) -+ 

(No, 0+,0), and for ~ < 0, PI * < 0 and the steady state (NI *, Pt *,0) is outside the 

positive octant. (No, 0, 0) is unstable for q, > 0 and stable for ~ < O. Thus, at 

~ = 0 we have a transcritical bifurcation, whereby (NI *, PI *,0) exchanges stability 

with (No, 0, 0). The local picture around this bifurcation can be summarised as 

• ~ < 0 (No,O,O) stable, (NI*,PI*,O) ecologically unrealistic (PI * < 0); 

• ~ > 0 - (No, 0, 0) unstable, (NI *, PI *, 0) realistic and stable. 

In the numerical investigation we are going to use the higher predation on zoo­

plankton parameter q as the primary bifurcation parameter (analogous to the quadratic 

case). Setting all parameters except for q to their default values, solving (4.8) and 

(4.9) gives the steady state 

(NI *, PI *, 0) = (0.0196,0.322,0), ( 4.18) 

which is independent of q. However the stability does depend on q, and we can state 

from (4.17) that (Nl *, Pl *, 0) is stable if and only if q > 0.148. Furthermore, setting 
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only q,a and>' to their default values, we obtain the result that (N1*,P1*,0) is stable 

if and only if PI * < j.L, i.e. PI * is less than the half-saturation constant for zooplankton 

grazing. 

For the quadratic mortality case analysed in Chapter 3, we showed that the steady 

state (Nl *, PI *, 0), which had the same definition as in the current linear case, could 

not become stable. This difference can be seen by looking at the dZ / dt equation for 

each case. For quadratic mortality, we can write dZ / dt as 

dZ = (a>,p2 
_ dZ) Z. 

dt 1£2 + p2 

If P > ° and the bracketed function is negative, so that Z is decreasing, then the 

bracketed function will become positive at some small Z value, and it is clear that Z 

cannot reach zero whilst P remains non-zero. Thus the zooplankton cannot die out if 

the phytoplankton do not, and so (Nl *, PI *, 0) can never be stable. The zooplankton 

can only become extinct if the phytoplankton do, and hence (No, 0, 0) can be stable. 

For the linear case we have 

dZ (a>,p2 
) 

dt = 1£2 + p2 - q Z, 

and if the bracketed term is negative then the zooplankton will die out exponentially. 

This can occur with persistence of P, and so (N1*,g*,0) can be stable. 

Furthermore, we note that the steady state (Nl *, PI *, 0) cannot undergo a Hopf 

bifurcation since two of its eigenvalues always have negative real parts. This is unlike 

the simple three-species food chain of Hastings and Powell (1991), for which McCann 

and Yodzis (1995) showed that the steady state with zero top predator undergoes a 

Hopf bifurcation. The resulting limit cycle, which lies in the plane Z = 0, can then, 

via a transcritical bifurcation of cycles, allow a cycle that previously existed in the 

octant {N, P > 0, Z < O} to enter the strictly positive octant {N, P, Z > O}, (note 

that we use N, P, Z for ease of comparison with our model, although the Hastings 

and Powell model is not specifically a plankton model). This cycle then coexists with 

a second cycle in the positive octant, which arises from a Hopf bifurcation of a steady 

state of the form (N*, P*, Z*). The interaction of two different oscillatory frequencies 

leads to the chaotic 'tea-cup' attractor. 
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Such a route to chaos is thus not possible in our system, since we cannot have 

a planar limit cycle arising from a Hopf bifurcation of (Nl *, Pl *,0). It would be 

instructive to be able to show that no limit cycles at all can exist in the Z = 0 plane. 

Bendixson's criteria (Perko, 1993) gives conditions which prove that no limit cycle 

can lie entirely within a planar region, but these conditions cannot quite be met, and 

so limit cycles may occur. We do know that Pl * > 0 if and only if ~ > 0, and so 

for ~ < 0 no planar cycles can occur, since any such cycle must contain at least one 

steady state, by virtue of Poincare index calculation (Glendinning, 1994). 

For steady-state solutions of the form (N*, P*, Z*) with Z* i- 0, (4.6) gives 

P* = r+- 11-, Va>.---=q ( 4.19) 

where the positive root is taken. The steady state obtained from the negative root 

will have a negative P value for all parameter values, and so can never enter the 

positive octant. P* clearly exists if and only if 

q < a).. ( 4.20) 

The value of P* depends only on parameters which are associated with zooplankton, 

and not on the phytoplankton growth term or the other phytoplankton losses. 

For the default values of a = 0.25 and ,\ = 0.6, such a steady state with non-zero 

Z does not exist for q ~ 0.15, and (No,O,O), (Nl*,Pl*'O) and (N2*,P2*'0) are the 

only steady states (and since N2* < 0 only the first two are biologically plausible), 

with solely (Nl *, Pl *,0) being stable since ~ > O. 

There is a significant qualitative difference here from the quadratic mortality case, 

for which we had 

( 4.21) 

preventing P* from being found analytically; further substitution into the other equa­

tions led to an analytically intractable tenth order polynomial. 

However for the linear case, discounting the extreme case of 1-a"l - f3 = 0 (which 

only occurs for the complete recycling situation a + f3 = "I = 1), we can rearrange 
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Figure 4.1: The straight line and curve defined by (4.22) and (4.24) intersect once 

when all of the parameters are set to their default values, and so there is exactly one 

steady state in {N, P, Z > o}. 

(4.7) to give 

Z = (1 0 ,8) [keNo - N) - (s + k)P*], 
q -0,- ( 4.22) 

which expresses Z as a function of N, with the value of P* already known. For this 

equation, Z is always defined, and Z > 0 if and only if 

P
* keNo - N) 

< k' s+ 
( 4.23) 

From (4.5) and (4.6) we can obtain a second equation for Z in terms of N, namely 

o [N aP* *] Z=- -- -(r+s+k)P. 
q e + N b+ cP* 

( 4.24) 

Now, for N > 0, (4.22) is a decreasing linear function of N, and (4.24) is a mono­

tonically increasing function of Nj thus the two curves have at most one intersection 

with N > O. There is hence at most one steady state with N, P, Z > O. In Figure 4.1 

we plot the two curves given by (4.22) and (4.24), when all of the parameters are set 

at their default values. The curves intersect, and this point thus defines the N* and 

Z* values of the steady state (N*,P*, Z*), with P* defined by (4.19). 
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Rearranging (4.22) to make N the subject, and substituting this into (4.24), results 

in the following quadratic for Z*: 

0= [L (1 - a1 - ,8)] Z*2 
ka2 

+ [_ .!L (1 - a1 - ,8)[ a - (r + s + k)] P*-(No - (s + k) P*\~ - ~e]z* 
ka b+cP* ~ k)a a 

+ [(NO- (stk1r) [b+:P' -(r+s+k1l-(r+S+k1e] r (4.251 

The constant term of this quadratic can be written as 

canst = 
{

C(S+k)P*2_[c(e+.M)+ b(s+k) (~_ - -k)]P* 
k 0 k(r + s + k) b r s 

+ b(e + No) <I>} (r + s + k)P* 
r + s + k b+ cP* 

= {r} (r + s + k)P* 
- b+ cP* ' ( 4.26) 

defining r as the term within the curly brackets. 

Now, since P* > 0, the term multiplying r is positive. We see that r is a quadratic 

in P*j this quadratic is the same as the quadratic (4.12) for P;,*. We only need to 

consider <I> > 0, since we know that for <P < 0, (No, 0, 0) is the only steady state in 

the positive octant. For <I> > 0 we already know that (4.12) is a U-shaped quadratic 

with two positive real roots, and thus r is also a U-shaped quadratic, and has the 

same roots as (4.12). Therefore the roots of rare Pt * and P2 *, and so the zeroes 

of canst are PI * and P2 * (plus zero, but we know that P* > 0). In Figure 4.2 we 

plot canst as a function of P*, with all of the parameters set to their default values, 

but without calculating the value of P*, which is specified by (4.19); (in fact the 

parameters q, a,'\ and J.L which define P* in (4.19) do not appear elsewhere in the 

definition of canst). The two positive roots of canst are PI * and P2 *, where we know 

from (4.10) that Pt * < P2 *. Figure 4.2 shows that canst > 0 if P* < Pt *, and 

canst < ° if Pt * < P* < P2 *. We do not need to consider the region P* > P2 *, since 

P2* > kNo/(s + k), and so for P* > P2*, (4.23) is violated, and Z* would not be 

positive. 
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Figure 4.2: The value of const, defined by (4.26), is plotted as a function of P*, with 

all of the parameters set to their default parameters. We know from the analysis 

that the positive solutions to const = 0 are PI * and P2 *, and see that const > 0 for 

P* < Pl *, and const < 0 for Pl * < P* < P2*, (p* > P2* need not be considered). 

When const > 0, we show that (N*, P*, Z*) is in the positive octant. 

If const > 0, then, from the way that const is expressed in (4.25), the signs of the 

two expressions 

( 4.27) 

must be the same, since their product must be positive. Suppose that the second of 

these is negative, then (4.5) is 

N* a • P* >..p*2 * ( 
o - e + N* b + cp. P - r - p,2 + p.2 Z - S + k )p. 

a >..p. 
< b P - (r + s + k) - 2 P 2 Z* +c * P, + • 
< 0, 

which is a contradiction, and so both expressions of (4.27) must be positive, which in 

turn implies that the linear coefficient of Z* in (4.25) is negative. This means that the 

two roots of (4.25) have positive real parts, and are either a complex and conjugate 

pair or are both real. The fact that the first term of (4.27) is positive implies that the 
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straight line given by (4.22) satisfies Z > 0 at N = 0, and since the curve defined by 

(4.24) satisfies Z < 0 at N = 0, the line and the curve definitely cross at some point 

with N > 0, due to their monotonicities, and so (4.25) has a real solution. Thus, 

(4.25) must have two positive real solutions, one of which corresponds to the positive 

steady state (N*, P*, Z*), with P* < Pl *. 

If parameters are varied such that P* -+ Pl *, then const -+ 0, as illustrated by 

Figure 4.2. Equivalently, we can talk of (alternative) parameters varying such that 

const -+ 0, which in turn will imply that PI * -+ P*. Either way, we arrive at the case 

P* = Pl*' const = 0, for which Z* = 0 solves (4.25), and (N*,P*, Z*) = (Nl*' Pl*'O). 

If, P* > PI- we see that const < 0 (ignoring the unrequired case of P- > P2 *). 

For const < 0, (4.25) has one positive real root and one negative real root. One 

root corresponds to a steady state with N < 0, and the corresponding Z value cannot 

equal zero at const = 0 since the linear coefficient of (4.25) is non-zero at const = 0 

(we have shown that it is negative), and so the Z value for the steady state with 

N < 0 must remain positive. The second root of (4.25) is Z-, which satisfies Z* > 0 

for const > 0, and Z* = 0 when const = 0, and by continuity must satisfy Z* < 0 for 

const < O. Since const remains negative for PI- < P* < P2 -, Z* remains negative in 

this region. 

So, when P* < H *, where P* is defined by (4.19), and PI- is the smallest root 

of (4.12), (N*,P*,Z*) is in the strictly positive octant {N,P,Z > O}, and then 

as parameters are varied continuously such that P* = Pl * and then P- > H * , 

(N*, P*, Z*) leaves the strictly positive octant, by passing through the steady state 

(Nl-, Pl *,0). The surface in parameter space described by P- = Pl- is equivalent to 

const = 0, and is even more concisely expressed by n = 0, where n is defined using 

the form of the constant term in (4.25), taking out a factor of P-: 

( 
(s + k) *) [ a ] n = No - k P b + cP* - (r + s + k) - (r + s + k)e. ( 4.28) 

The steady state (Nl*'H*,O) is stable if and only if condition (4.17) is satisfied. 



Linear zooplankton mortality 88 

For a>. $ q it is always satisfied, otherwise we can rearrange (4.17) as 

Pl * < F+- /.L = P*. 
V~ 

( 4.29) 

Hence, the condition for stability of (Nl *, Pl *,0) is the same as the condition for 

(N*,P*,Z*) to be outside the strictly positive octant; (Nl*,Pl*,O) is stable if and 

only if Pl * < P*, or equivalently n < O. This suggests that a transcritical bifurcation 

of (Nl*,Pl*'O) and (N*,P*,Z*) takes place at 11 = 0, and we now prove this to be 

the case. 

The Jacobian at the positive steady state (N*, P*, Z*) can be simplified and is 

given by 

a.eP k 
- (e+N)2(HcP) -

a.bN 2,!3~2IJ:2Z 
- (e+N)(Hcp)2 + r + ot>.P3 (~+ 1') q 

A= a.eP a.bN k 2q2IJ:2Z _.2. 
(e+N)2(HcP) (e+N)(HcP)2 - r - s - - a2>..p3 a 

0 2q2 P.2 Z 0 a>..p3 

This is slightly simpler than the equivalent matrix for the quadratic zooplankton 

mortality case, for which the (3,3) term was non-zero, and no further analysis could 

be performed. For this case, however, we can partly follow the analysis of Truscott 

and Brindley (1994). Writing A as 

NN Np Nz 

A = PN Pp Pz 

o Zp 0 

where each coefficient represents the terms given above, all except two of the signs of 

the coefficients are known, as follows: 

? + 
A= + ? 

0+0 

We can also see that NN + PN < 0 and Np + Pp < o. The characteristic polynomial 

of A, calculated by 0 = det(A - wI), where w represents the eigenvalues and I is the 

3 x 3 identity matrix, is 
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The Routh-Hurwitz conditions (Murray 1989) state that for a characteristic poly­

nomial of the form 

then Re(w) < 0 for all w, if and only if 

Now, 

and 

ala2 - a3 - (NN + PP)(-NNPP + NpPN + PzZp) - (NNPZ - NZPN)Zp 

- (NN + Pp)( -NNPp + NpPN) + (NzPN + PpPz )Zp 

(NN + Pp) [ - (NN + PN)Pp + (Np + Pp)PN] + (NZPN + PpPz)Zp. 

Only the signs of Np and Pp are undetermined. If we consider Pp < 0, then using 

the facts that NN + PN < 0 and Np + Pp < 0, we have ala2 - a3 > O. Furthermore, 

Pp < 0 also ensures that al > 0, and the Routh-Hurwitz conditions are satisfied, and 

so (N*, P*, Z*) is stable. Considering Pp ~ 0 leads nowhere, and so we now seek 

conditions for Pp < O. 

Using (4.5) we can write 

abN b ( k >'P Z ) 
(e + N)( b + CP)2 = b + cP r + s + + J.L2 + p2 ' 

which, together with 

(which simply comes from (4.19», enables Pp to be written as 

cP ( k) >'P Z (2 2 2) 
Pp = - b + cP r + s + + (b + cP)(J.L2 + P2)2 bP - 2cJ.L P - bJ.L , ( 4.30) 
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where P = P*. If 

* { 2Cp.2} P < max P.'-b- , ( 4.31) 

then the final bracketed term of (4.30) is negative, so that Pp < 0 and the Routh­

Hurwitz conditions are satisfied. So if P* satisfies (4.31) then (N*, P*, Z*) is stable. 

This inequality is by no means a necessary condition for stability, and even if it 

is violated by a significant amount the steady state can remain stable. But we note 

that, in particular, if the steady state value P* is below the zooplankton half grazing 

coefficient p. (condition (4.31)), then the steady state will be stable. Since the steady 

state is the unique steady state in the strictly positive octant {N, P, Z > O}, then it 

can only lose stability (whilst remaining strictly positive) via a Hopf bifurcation. 

For the default parameter values, p. = 0.035 and 2p.2C/b = 0.0049, and if anyone 

parameter is varied over its range given in Table 2.1 we still have p. < 2p.2c/b (but if 

more than one parameter is varied then we can have p. > 2p.2cjb). In the numerical 

investigation we shall vary at most just one of b, c and p. at a time, and so (4.31) 

becomes P* < p.. Substituting for P* from (4.19), we obtain 

aA 
q<T' ( 4.32) 

So when at least two of b, c and p. are set to their default values, (and the third 

one is within its realistic range), then if q < aA/2 the steady state (N*, P*, Z*) is 

stable. For the default values of a and A this gives q < 0.075, where 0.075 coincidently 

happens to be the default value of q. 

We can also see that for small enough positive values of Z*, from (4.30) we have 

Pp < 0, and hence (N*, P*, Z*) will be stable. When Z* < 0, Zp < 0 and the 

term a3 of the characteristic polynomial is negative, so the Routh-Hurwitz conditions 

are not satisfied, and so (N*, P*, Z*) is unstable when Z* < O. Thus, the stability 

of (N*, P*, Z*) changes as it passes through (NI *, PI *, 0), and we have a transcrit­

ical bifurcation, since we have already shown that the stability of (NI*' H *, 0) also 

changes. (N*,P*,Z*) passes through (NI*'H*,0) as n passes through zero, and the 

local behaviour around this transcritical bifurcation is summarised as 
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• n < 0 (NI *, PI *, 0) stable, (N*, P*, Z*) ecologically unrealistic (Z* < 0); 

• n > 0 - (NI *, PI * , 0) unstable, (N*, P*, Z*) realistic and stable. 

We shall discuss the regions of parameter space for which n < 0 and n > 0 in 

connection with the bifurcation diagrams of Sections 4.5 and 4.6, and we graphically 

demonstrate the nature of the two transcritical bifurcations occurring at ~ = 0 and 

n = 0 in Figure 4.3, which is to be discussed shortly. 

Recall that P* is defined only if aA -q > O. If we start from a location in parameter 

space where (N*, P*, Z*) is in the strictly positive octant (and hence aA - q > 0 and 

P* < PI*), and vary a, A and/or q continuously such that aA-q -+ 0+, then P* -+ 00. 

Thus at some point with aA - q > 0 we reach P* = PI*' This is the transcritical 

bifurcation, and so (N*, P*, Z*) leaves the positive octant before P* asymptotes to 

infinity. So we know that aA - q can only reach zero if Z* < 0, and thus if we 

start from a point in parameter space for which Z* > 0, and continuously vary the 

parameters, we will reach the transcritical bifurcation, and (N*, P*, Z*) will leave the 

positive octant, before we reach a point with aA - q = O. Thus we will not need to 

worry about the situation aA - q = 0 arising in the numerical investigation when we 

trace the location of steady states as parameters vary, since this will only occur when 

Z* < O. 

In Figure 4.3 we show the bifurcational behaviour of the three steady states as the 

phytoplankton respiration rate, r, is varied, with all of the other parameters set to 

their default values. These numerical computations graphically illustrate the analyt­

ical results. Figure 4.3 is constructed in the same way as Figure 3.1 for the quadratic 

case, and has the same colour coding and axes scales. The stability of (No, 0, 0) is 

exactly the same as for the quadratic case. At low values of r, (N*, P* , Z*) is in the 

positive octant and is stable, as shown by the solid red line, and we have ~ > 0 and 

n > o. As r increases, N* increases, P* remains constant and Z* decreases, passing 

through zero when n = 0, which occurs at r = 0.80. Looking at Figure 4.2, as r 

is increased from its default value of 0.15 the value of P* remains fixed (at 0.035), 

but the curve const moves such that PI- -+ P* as r -+ 0.80. At r = 0.80 stability 
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Figure 4.3: Location and st ability of (No,O ,O), (Nl\Pl*'O) and (N*,P*, Z*) as r IS 

varied. The key indicates signs of the real parts of the eigenvalues and corresponding 

stabilities. Transcritical bifurcations occur at r = 0.80 (0 = 0) and r = 0.86 (q, = 0). 
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is transferred, via the transcritical bifurcation, to (Nl *, P1 *,0). (Nl *, P1 *,0) remains 

stable (solid blue line) until r = 0.86, which corresponds to ~ = O. At this point the 

second transcritical bifurcation occurs, and stability is transferred to (No, 0, 0), which 

remains stable for r > 0.86. 

Comparing the above analysis with that for the quadratic case, plus the cor­

responding Figures 3.1 and 4.3, it appears that the three-way transcritical bifur­

cation for the quadratic case has split into two transcritical bifurcations, allowing 

(Nl *, Pt *,0) to have a region of stability. In both cases (N*, P*, Z*) loses stability as 

it leaves the positive octant {N, P, Z > O}, but this occurs in different ways. For the 

quadratic case (N*, P*, Z*) passes through the N-axis (which has P = 0 and Z = 0), 

whereas for the linear case it passes through the Z = 0 plane with P =f 0, as is most 

clearly seen in the three-dimensional Figures 3.1( d) and 4.3( d). 

Figure 4.3(b) shows how the phytoplankton steady-state value P* remains con­

stant as r varies, even though r is a direct phytoplankton loss rate. This is known 

from (4.19), which shows that P* is independent of all of the parameters which do 

not appear in the dZ / dt equation, including r and the other loss terms, as well as the 

growth terms. This is a consequence of the linear zooplankton mortality term, and 

does not occur for the quadratic case. 

It is seen that, at r = 0.94, the eigenvalues of (Nl*' Pl *, 0) change from hav­

ing real parts with signs -, -, + to -, +, + (which implies that they must all be 

real), as indicated by the blue line changing from dotted to dashed. This is due to 

(Nl*' Pt *,0) undergoing a third transcritical bifurcation, this time with the steady 

state (N_ *, P_ *, Z_ *) which arises from using the negative root, P_ *, of (4.19). Since 

this steady state can never enter the positive octant its nature was not considered 

further in the analysis, and for clarity it is not drawn in Figure 4.3. 

Comparing the red lines in Figure 4.3 and Figure 3.1, it can be seen that, whilst 

(N*, P*, Z*) remains in the positive octant, the quantitative nature of Z* differs less 

than that of N* and P* between the two cases, despite it being solely the zooplankton 

mortality that differs between the two models. 
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4.3.3 Nullsurfaces 

In Figure 4.4 we show how the (non-trivial) nullsurfaces for the linear zooplankton 

mortality case differ from those for the quadratic case. An N nullsurface is defined as 

a surface in N - P - Z space on which dN / dt = OJ P and Z nullsurfaces are defined 

similarly. If the N, P and Z nullsurfaces all intersect at a particular point, then this 

point is a steady state of the system (since dN/dt = dP/dt = dZ/dt = 0). Clearly, 

from (4.5) and (4.6), P = 0 is a P nullsurface and Z = 0 is a Z nullsurface for all 

parameter values; we refer to these as the trivial nullsurfaces and do not plot them. 

For a two-dimensional system modelling, say, P and Z, one can draw the P 

null clines and the Z nullclines, which are, respectively, the lines in the two dimensional 

P _ Z space for which dP/dt = 0 and dZ/dt = o. At intersections of the nullclines 

exist steady states, and drawing all of the null clines on one (two-dimensional) graph 

is instructive in elucidating the behaviour of the system. However, drawing all of the 

nullsurfaces of a three-dimensional system on one (three-dimensional) graph results 

in an unsightly mess, and so we plot the (non-trivial) nullsurfaces on separate graphs. 

The nullsurfaces are most useful in comparing the two cases of linear and quadratic 

zooplankton mortality. The lines indicated on the surfaces in Figure 4.4 are at in­

tervals of 0.05 in Z. All of the parameters are set at their default values. The N 

nullsurfaces for each case are qualitatively similar. The P nullsurfaces are the same, 

since the dP / dt equations do not depend on the form of zooplankton mortality and 

so are the same for each model. At a P value larger than that shown, the P null­

surface curves down again (i.e. Z decreases), in a similar fashion to the nullclines of 

P Z systems (for example, see Steele and Henderson (1992)). The Z nullsurfaces do, 

however, show a qualitative difference, as is seen by solving dZ / dt = 0 in each case, 

giving the surfaces defined, for the linear and quadratic cases respectively, by 

P = J a.\ q_ q J.t, ( 4.33) 

and 

a.\p2 
Z= 

d(J.t2 + P2)' ( 4.34) 
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Figure 4.4: Nullsurfaces for linear Z mortality (left column) and quadratic Z mortality 

(right column), for the default parameter values. The P null surface is the same for 

both cases, and the qualitative difference between the Z nullsurfaces illustrates how 

multiple steady states cannot occur for linear Z mortality. 
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This graphically shows how multiple coexisting steady states can occur for quadratic 

mortality (as was demonstrated in Sections 3.5 and 3.6), but cannot occur for the 

linear case, as we have proved analytically. 

4.4 Time series and phase portraits 

In Figure 4.5(a) we plot the time series and the trajectory in N - P - Z space of the 

system from the initial condition (N, P, Z) = (004,0.1,0.05), as used for the quadratic 

case, with all of the parameters fixed at their default values. After a transient time 

N, P and Z settle down to steady-state values of (N, P, Z) = (0.30,0.035,0.071). 

These are almost exactly the default steady state values obtained in the quadratic 

case, but this is not surprising given that the default value of q is such that qZ ~ dZ2 , 

where dZ2 is the quadratic zooplankton mortality term. The transient time is longer 

than that for the quadratic case, which is due to differences in the eigenvalues at the 

steady states. For the quadratic case the eigenvalues are -0.055 and -0.077 ± 0.22i, 

whereas for the linear case they are -0.050 and -0.032 ± 0.22i, hence the quadratic 

case steady state is more strongly attracting than the linear one. 

The initial large increase in P is due to the excitable nature of the system; starting 

from the alternative initial condition (N, P, Z) = (004,0.1,0.1), i.e. at a higher value 

of Z, this increase in P does not occur, and the steady state is reached much quicker. 

This can be explained in terms of the P nullsurface shown in Figure 4A(b)j the 

initial point (N, P, Z) = (0.4,0.1,0.05) is 'below' (in the Z sense) the P nullsurface, 

but changing the Z value to 0.1 puts the initial point 'above' the P nullsurface. 

From the preceding analysis, we know that there are two other steady states 

with non-negative values of N,P and Z, namely (No,O,O) and (N1*,P1*,0), but 

that these are both unstable at the default parameter values. We also know that 

(N, P, Z) = (0.30,0.035,0.071) is the unique steady state in the strictly positive 

octant {N, P, Z > O}. The analysis showed that if q is then decreased from its 

default value of 0.075, then (N*, P*, Z*) will stay in the strictly positive octant and 

remain stable (although the actual values of N, P and Z will obviously change). 
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Figure 4.5: The time series and phase-space trajectory at (a) q = 0.075 and (b) 

q = 0.11 (next page), with all of the other parameters fixed at their default values. 
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In Figure 4.5(b) the value of q is increased to 0.11, and the system integrated 

from the same initial conditions. The value q = 0.11 was chosen since it is (to 

two significant figures) one and a half times the default value of 0.075, and for the 

quadratic case we showed the trajectories for d = 1.0 and d = 1.5. As for the 

quadratic case, at the higher level of predation on zooplankton the system exhibits 

oscillatory behaviour. The trajectory is attracted onto a limit cycle, with a period 

of roughly 35 days. Again the cycles undergo large amplitude fluctuations in N, at 

values lower than the default steady-state value, and small oscillations in Z about 

the default steady-state value. The oscillations in P, however, have a much larger 

amplitude than those for d = 1.5 in the quadratic case. Figure 3.3(b) showed that, for 

any value of d (with the other parameters kept at their default values), the maximum 

value of P attained during a limit cycle was 0.125, significantly less than the 0.18 

value attained in Figure 4.5(b) for linear zooplankton mortality. We shall pursue this 

point further in the following section. 

4.5 One-parameter bifurcation behaviour 

Figure 4.6 shows how the N*, P* and Z· steady-state values vary as q varies, with solid 

lines indicating when the steady state is stable, and dashed lines indicating when it is 

unstable, as in Figure 3.3 for the quadratic case. The qualitative difference between 

the trajectories at q = 0.075 and q = 0.11 is due to a Hopf bifurcation (the solid square 

labelled A) of the steady state occurring at q = 0.0841. The solid circles represent 

minimum and maximum values of the variables attained along stable limit cycles, 

and it is seen that a branch of stable limit cycles join up the two Hopf bifurcations A 

and B. The steady-state curve in Figure 4.5(a) ends at q = 0.148 since at this point 

Z* passes through zero, because 0, as defined by (4.28), reaches zero. This point is 

the transcritical bifurcation calculated in Section 4.3.2, and stability is transferred to 

(N1*,P1*,0), which remains stable for q > 0.148. 

The bifurcational behaviour is very similar to the quadratic case; the Hopf bifur­

cations, and consequent limit cycles, still occur. Comparing Figures 3.3 and 4.6, the 
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Figure 4.6: Variations in the steady-state values of (a) nutrient, (b) phytoplankton 

and (c) zooplankton as q, the higher predation on the zooplankton, is changed. A 

solid line is a stable steady state, a dashed line is an unstable steady state, a solid 

square is a Hopf bifurcation and solid circles indicate the maximum and minimum 

values of the stable limit cycles. The Hopf bifurcations are labelled A and B. 
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(c) The zooplankton bifurcation diagram. (d) The period of the limit cycles (solid 

circles) remains virtually constant throughout the region of oscillatory behaviour; the 

corresponding stability of the steady state is indicated by the horizontal line. 
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oscillations occur across a wider range of q than the corresponding relative range of 

d. The amplitudes of the cycles are greater for the linear case than the quadratic 

case, with all three variables reaching higher maximum and lower minimum values 

than for the linear case (note the increased scale of Figure 4.6(b), where P goes up to 

0.2 to show the full amplitude of the cycles; the other scales remain the same as for 

the quadratic case). The amplitude of fluctuations in Z for the quadratic case were 

relatively small, but for the linear case they are much more pronounced. Apart from 

at high q values, the Z* steady-state pictures for the two cases are similar. Since the 

default value and range of q are taken such that qZ ~ dZ2, this similarity may not 

seem too surprising, but on the other hand there is a qualitative difference in the 

way in which Z* is calculated from the equations, and so such similarity between the 

linear and quadratic cases may be slightly unexpected. 

The period of the oscillations, Figure 4.6( d), shows slightly more variance than for 

the quadratic case, but again remains close to 35 days. The sensitivity of the period 

to each of the parameters shall be shown by period-contour diagrams in Section 4.8. 

4.6 Two-parameter bifurcation behaviour 

In Figure 4.7 we show how the location of the two Hopf bifurcations changes as each of 

the parameters is independently varied. The axes have the same scales as in Figure 

3.4 for the quadratic case, whereby the nature of (N*, P*, Z*), as demonstrated in 

Figure 4.6, is represented as a horizontal line at the default value of each parameter, a 

solid line indicates that the steady state is stable, and a dashed line that it is unstable. 

The non-horizontal lines show the locations of the Hopf bifurcations, with solid lines 

indicating supercritical Hopf bifurcations, and dashed lines indicating subcritical. 

Unlike the quadratic case, there are no fold bifurcations of the steady state, a fact 

which was proved in the analysis of Section 4.3. 

In the analysis we have shown that, unlike in the quadratic case, (Nl *, P1 *, 0) can 

become stable; a transcritical bifurcation transfers stability from (N*, P*, Z*) to 

(Nl*,H*,O) as (N*,P*,Z*) leaves the positive octant, as illustrated in Figure 4.3. 
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Figure 4.7: Two-parameter bifurcation diagrams showing how the positions of the 

Hopf bifurcations in Figure 4.6 change as each other parameter, together with q, is 

independently varied from its default value. The steady-state stabilities from Figure 

4.6 are shown as a horizontal line at each default parameter value. Hopf A and (ctd.) 
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Hopf B are indicated in (a). Non-horizontal solid curves starting from the original 

Hopf bifurcations (the squares) indicate supercritical Hopf bifurcations, and non­

horizontal curves of short dashes show where Hopf bifurcations are subcritical. No 

fold bifurcations of the steady state occur. 
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This transcritical bifurcation occurs when n reaches zero, and in the locality of the 

bifurcation we have shown that (N*, P*, Z*) is stable for n > 0, and (Nt*, Pt *, 0) is 

stable for n < O. Figure 4.6(c) indicates that n = 0 when q = 0.148 (and all other 

parameters are set to their default values), and (Nt*, Pt *, 0) is stable for q > 0.148. 

Thus in the two-parameter diagrams it will not be the case, as it was for the quadratic 

model, that (N*, P* , Z*) is the only steady state that can be stable across the realistic 

parameter ranges. The transcritical bifurcation at q = 0.148 will vary in location as 

other parameters are varied; such variation depends on how significant each of the 

parameters is in the definition of n. We will show how the transcritical bifurcation 

varies in Figure 4.8, but for clarity and ease of comparison with Figure 3.4 we do not 

show it in Figure 4.7. The horizontal line in each diagram of Figure 4.7, representing 

the stability of (N* , P*, Z*) at the default parameter values, terminates at q = 0.148, 

although this can only be clearly seen in Figure 4.7(i) for {3, due to the location of 

tick marks on the right-hand axis in the other diagrams. 

In the analysis we have shown that when at least two of b, c and JL are set to their 

default values, which is always true in the two-parameter diagrams of Figure 4.7, 

then, if q < 0.),,/2 (inequality (4.32)), (N*,P*,Z*) is stable. The default values of a 

and)" give ex)"/2 = 0.075, and so in all except the ex and)" diagrams of Figure 4.7, we 

know that (N*, P*, Z*) will not undergo a Hopf bifurcation in the region q < 0.075, 

which is the left half of each picture. For the ex and)" diagrams we know this to be 

true for the region q < 0.),,/2, which shall be indicated in Figure 4.8. 

We now compare the linear and quadratic two-parameter diagrams, firstly look­

ing at the whole picture, and secondly comparing the individual diagrams for each 

parameter in turn. 

The most striking difference between Figure 4.7, for the linear case, and Figure 

3.4, for the quadratic case, is that the steady steady state is unstable, and hence 

oscillations occur, across a larger range of parameters for the linear case. Oscillations 

occur across the full ranges of six of the parameters, namely c, e, r, s,{3 and '1, in the 

linear case, but this occurred for only r, sand '1 in the quadratic case. In the linear 

case, a Hopf bifurcation becomes sub critical only when JL is varied, Figure 4.7(1), and 
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the Hopf bifurcations remain supercritical as each other parameter is varied, whereas 

sub critical Hopf bifurcations were common in the quadratic case, occurring for six of 

the parameters. This, together with the absence of fold bifurcations of steady states, 

makes the linear diagrams appear altogether simpler than the quadratic diagrams. 

However, expecting this to imply that the limit-cycle behaviour will be simpler turns 

out to be foolhardy, as will be demonstrated by the contours of constant period to 

be discussed in Section 4.8. 

The Hopf curves are, on the whole, fairly 'vertical', and so the Hopf bifurcations 

will, when they occur, tend to be at the same values of q as for the default values, 

i.e. at the values of q = 0.084 and q = 0.130 shown in Figure 4.6. There do exist broad 

similarities between the linear and quadratic diagrams, in that the linear diagrams 

can, in some sense, be seen to be stretched versions of the quadratic ones. The absence 

of fold bifurcations in the linear case means that the Hopf bifurcation curves cannot 

cross over each other, since there are never co-existing steady states in the strictly 

positive octant. We now compare and discuss the diagrams for each parameter in 

turn. 

Figure 4.6(a) shows that oscillatory behaviour occurs for a larger range of alb 

values than in Figure 3.5(a) for the quadratic case. In a topological sense both 

pictures are the same, with the Hopf bifurcations remaining supercritical, and the 

curves of the bifurcations forming a closed loop, although part of the loop is outside 

of the plotted range in each case. 

Figure 4.6(b) shows that the oscillations persist across the full range of c, unlike 

the quadratic case where the Hopf bifurcations came together at c = 0.68, above 

which (N*, P*, Z*) was stable. 

As e varies, Figure 4. 7( c) shows that the q values of the Hopf bifurcations remain 

fairly constant, with the curves of bifurcations practically vertical. For the quadratic 

case, however, as e increases the Hopf bifurcations occur at higher values of predation 

on zooplankton, d, since the Hopf curves move to the right, out of the plotted range 

of d. 

For k, Figure 4. 7( d) is much simpler than the corresponding figure for the quadratic 
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case, due to the absence of the fold bifurcations of the steady state. This absence pre­

vents the Hopf curves from crossing over, since co-existing steady states cannot occur. 

The Hopf bifurcations remain supercritical, and oscillations occur for all except low 

k values. 

Figures 4.7(e), (f) and 0), the respective diagrams for r, sand 'Y, show the Hopf 

bifurcations to be very insensitive to the values of each of these parameters. This is 

similar to the quadratic situation, although for the linear case the Hopf curves are 

almost vertical, and so the q values of the Hopf bifurcations are virtually independent 

of r, sand 'Y. We note that 'Y multiplies the qZ or dZ2 functions, the only terms to 

differ between the linear and quadratic cases, but that the 'Y bifurcation diagrams are 

practically identical. 

Similarly to the k situation, Figure 4.7(g) for No shows a much simpler picture than 

in the quadratic case, due to the absence of the fold bifurcations. The consequent 

homoclinicity and detailed bifurcation structure shown in Figure 3.8 will thus not 

occur. This is because there can be no Bogdanov-Takens bifurcation, as there are no 

fold bifurcations of steady states. The Bogdanov-Takens bifurcation is where a curve 

of homo clinic orbits originates, and so the absence of such a bifurcation precludes 

homoclinic orbits from arising in this way. 

The a and >. pictures, Figures 4. 7(h) and (k), are similar, as for the quadratic 

case, and show a larger region of oscillations than in the quadratic case. The Hopf 

bifurcations persist across the full range of (3, Figure 4.7(i), whereas for the quadratic 

case the picture was similar to the k and No pictures. 

The J.L picture, Figure 4.7(1), differs from the quadratic case in that the oscillations 

persist as J.L decreases, but is similar in that an increase causes the Hopf bifurcations to 

combine and disappear. The quadratic picture looks as though it may be qualitatively 

the same as the linear picture, and just be shifted along, but in actual fact, for the 

quadratic case fold bifurcations of the steady state occur at d values above the range 

shown; two curves of fold bifurcations exist with a minimum d value of 2.29 (with 

J.L = 0.0219), where they terminate at a cusp point. The Hopf bifurcations then cross 

over at a slightly higher d value, giving a rotated version of the quadratic No picture, 
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Figure 3.4(g), although neither Hopf curve terminates at a Bogdanov-Takens point 

on a fold curve, as discussed for No in Section 3.8. One Hopf curve passes through 

J.£ = 0, whilst the other asymptotes to J.£ = 0 as d gets large. For the linear case, 

the asymptotic behaviour does not occur. As mentioned previously, J.£ is the only 

parameter for which a Hopf bifurcation becomes sub critical in the linear case. 

In Figure 4.S we indicate where (N·, p., Z·) and (Nl ·, Pl·, 0) exchange stability at 

the transcritical bifurcation. The location of the transcritical bifurcation in parameter 

space is defined by n = 0, which is shown as a curve of long dashes in each diagram. 

A second transcritical bifurcation occurs at <P = 0, where (Nl *, Pl *, 0) exchanges 

stability with (No, 0, 0); in the locality of the bifurcation we have shown that (No, 0, 0) 

is stable for <P < 0, and (Nl *, Pl *, 0) is stable for <P > O. As mentioned in Chapter 

3, <P > 0 when all of the parameters are set to their default values, and <P remains 

positive as anyone of the parameters in its definition is varied within its realistic range 

given in Table 2.1. For alb and No, the solutions to <P = 0 (with all other parameters 

set to their default values) are alb = 0.25 and No = 0.0095, which lie within the 

ranges plotted in the two-parameter diagrams (but are below the realistic ranges 

given in Table 2.1). So, for completeness, we plot the horizontal lines corresponding 

to <P = 0, shown as a line of long and short dashes, for the alb and No diagrams, 

Figures 4.S( a) and (g), although the No line is barely noticeable as it is as such a 

low value. For the other parameters in the definition of <P, namely e, r, sand k, the 

lines <P = 0 occur at much higher values than the realistic ranges (the solutions to 

<P = 0 are e = 1.9, r = 0.86 (as illustrated in Figure 4.3), s = 0.75 and k = 0.76). For 

the quadratic case, (Nl *, Pl *, 0) can never be stable, and (N·, P*, Z·) loses stability 

to (Nl *, Pl *, 0) at a three-way transcritical bifurcation at <P = 0, and since <P = 0 

always occurs outside of the realistic ranges of the two-parameter diagrams, we did 

not indicate it. 

Inequality (4.32) of Section 4.3.2 gives a sufficient condition for (N·, P*, Z·) to 

be stable, namely that (N·, p., Z·) is stable if q < 0.)../2. When 0. and)" are fixed at 

their default values, we have 0.)../2 = 0.075. Thus, in all of the diagrams of Figure 4.8, 

except for (h) and (k) for 0. and ).., we know that (N·, p., Z·) is stable for q < 0.075. 
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Figure 4.8: The curve n = 0, on which the transcritical bifurcation of (N*, P*, Z*) 

and (NI *, PI *, 0) occurs, is plotted as a curve of long dashes onto the bifurcation 

diagrams from Figure 4.7. To the right of n = 0, (N*, P*, Z * ) has Z * < 0, and 

(NI*,PI*'O) is stable. (ctd.) 
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For alb and No, (a) and (g), ~ = 0 IS shown as a horizontal line of long 

and short dashes; this line is the location of the transcritical bifurcation between 

(Nl *, PI *, 0) and (No, 0, 0). On (h) and (k) we also show the line q = 0:)../2, to the 

left of which (N*, P*, Z*) must be stable. 
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The region q < 0.075 is the left half of each diagram, and hence the Hopf curves 

cannot pass into this region. For the a and ..\ diagrams we plot the straight line given 

by q = a)"/2, to indicate the region q < a)"/2 where we know that the Hopf curves 

cannot enter. Thus, Hopf bifurcations can only occur in the area between the curves 

q = a)"/2 and .It. = 0, and for a and ..\ we see that the region of oscillatory behaviour, 

i.e. the region between the Hopf bifurcations, is a large proportion of this area. 

In half of the diagrams we see that the curve n = 0 is practically a vertical line, 

at q = 0.148, implying that n is relatively insensitive to the value of the parameter 

in question, at least while that parameter remains within its realistic range. Thus, 

(Nl *, P1 *,0) is stable within a very small region of these diagrams, namely at high 

values of q. Since n is independent of {3 and 'Y, the curve is indeed a vertical line in 

Figures 4.8(i) and (j). 

In Figure 4.8(a) we indicate which steady state is stable in which region; of course, 

in the region between the Hopf bifurcations all of the steady states are unstable, 

and oscillations occur. We see that, except at high q values, the two transcritical 

bifurcations, defined by n = 0 and <P = 0 occur close together, yielding only a small 

region of parameter space in which (Nl *, Pt *,0) is stable. The region below <P = 0, 

where (No, 0, 0) is stable, is at values of alb below the realistic range. 

The k and No diagrams, Figures 4.8(d) and (g), are similar, with the trans critical 

bifurcation occurring at low levels of q when k or No are low. The <P = 0 curve, 

the horizontal line of long and short dashes, occurs at an extremely low value of No. 

Finally, Figure 4.8(1) shows that at high values of 1-', (N1"',P1"',0) is stable across a 

slightly larger range of q than at the default value. 

Recalling that we know that the Hopf curves cannot cross the line q = 0.075 

(except when a and)" are varied), it is interesting to note that at high values of k, No 

and {3, Hopf A occurs at a q value just above q = 0.075, and Hopf B occurs at a q 

value just below the transcritical bifurcation at.ll = O. Thus, oscillatory behaviour 

occurs across practically the largest permissible range of q, since we know that the 

Hopf bifurcations must occur above q = 0.075 and below Jl. = O. This is also true at 

low values of 1-'. 
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For regions in which q < a>. does not hold (inequality (4.20)), (N*, P*, Z*) does 

not exist since a solution P* is undefined. In the analysis we showed that, when 

we start from (N*, P*, Z*) with Z* > 0, and vary parameters, we must reach the 

trans critical bifurcation at J1,. = 0 before we reach q = a>.. For the a and>' diagrams, 

the straight line q = a>. (which is not shown) lies very close, and just to the right of, 

theA = 0 curve. For the other diagrams, q = a>. is the vertical line q = 0.15. 

4.7 Bifurcation behaviour at different levels of No 

For the quadratic case we showed, in Figures 3.6(a)-(g), how the one-parameter bi­

furcation diagram of N against zooplankton predation rate, d, changes as No is set 

to progressively higher values. The values of No shown were 0.75, 1.0, 1.1, 1.25, 1.35, 

1.5 and 2.0, since the bifurcation diagrams are qualitatively different at each of these 

values (except for 1.35 and 1.5). For the linear case, we know, from Figure 4.7(g), 

that both Hopf bifurcations persist and remain supercritical as No is increased up to 

2.0, and so no Bautin bifurcations occur whereby a Hopf bifurcation becomes sub­

critical (as illustrated in Figure 3.8 for the quadratic case). This means that, locally 

at least, the branch of limit cycles emanating from each Hopf bifurcation is stable. 

The absence of coexisting positive steady states suggests that we will not find the 

homoclinic behaviour seen in the quadratic case, and with no fold bifurcations occur­

ring there can be no Bogdanov-Takens bifurcation providing a source for homoclinic 

orbits. Thus, we might expect that, at increasing values of No, the bifurcation picture 

remains qualitatively the same as that for No = 0.6. 

For No = 0.75, we find that a simple continuous branch of stable limit cycles 

connects the two Hopf bifurcations. Since this behaviour is the same as that for the 

default value of No = 0.6, i.e. the bifurcation diagram is qualitatively the same as 

4.6(a), we do not show it here. 

However, for No = 1.0, the behaviour does change, as shown in Figure 4.9(a). 

We see that the branch of stable limit cycles becomes unstable at the point labelled 

PD1, and then restabilises at PD2. These points are period-doubling bifurcations, a 
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Figure 4.9: (a) At No = 1.0 the stable limit cycle branch loses stability at two period­

doubling bifurcations, labelled PDl and PD2; such bifurcations are not present in 

Figure 4.6(a) for No = 0.6, and were not found at all for the quadratic mortality 

model. (b) A magnification of the region containing the period-doubling bifurcations. 

The period-doubled branch of limit cycles arising from PDl is shown. This branch 

loses and then regains stability at period-doubling bifurcations PD3 and PD4, and 

then collapses onto the original branch at PD2. The branch which then arises from 

PD3 is not shown, but also undergoes period-doubling bifurcations. 
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phenomenon which was not found in any region of parameter space for the quadratic 

case. In Figure 4.9(b) we show a magnification of the region containing the two 

period-doubling bifurcations. For clarity we only label bifurcations along the circles 

corresponding to the maximum N values of the cycles. Traversing the diagram from 

left to right, we start with a branch of stable limit cycles, which then undergoes 

a period-doubling bifurcation, PD1, at q = 0.14108 (to five decimal places). The 

original branch thus becomes unstable, and continues until it regains stability at a 

second period-doubling bifurcation, labelled PD2, at q = 0.14222, and then collapses 

onto the Hopf bifurcation at q = 0.14274. Returning to PD1, a secondary branch of 

stable cycles arises, with, by definition, periods which are (locally) double those of the 

original branch. The maximum and minimum N values along the cycles are shown. 

At q = 0.14184 this branch then loses stability at a period-doubling bifurcation, 

labelled PD3. Stability is then regained at a second period-doubling bifurcation, 

PD4, at q = 0.14210. The branch then collapses back onto the original branch at 

PD2. We have computed, but for clarity have not shown, the branch of cycles which 

emanates from PD3, and this too undergoes a pair of period-doubling bifurcations, 

and then terminates when it collapses onto PD4. 

An obvious question to ask is whether this period-doubling sequence continues, 

culminating in chaos. In Figure 4.10 we show the time series and phase-space trajec­

tory for q = 0.14200, a value for which, in Figure 4.9(b), we have not found any stable 

attractors. After a transient time, the trajectory remains on an attractor which ap­

pears to be chaotic; for clarity the transient behaviour is not shown. For the quadratic 

model, recall that no chaotic orbits were found in any region of parameter space. 

The period-doubling bifurcations persist as No is increased further, and the bi­

furcational behaviour is similar at No =1.1, 1.25, 1.35, 1.5 and 2.0, which were the 

values shown for the quadratic case. To verify this we show only the diagram for 

No = 2.0, in Figure 4.1l. 

The stable limit cycle branch is unstable between period-doubling bifurcations at 

q = 0.14824 and q = 0.14834, and so the region of instability is much smaller than 

that for No = 1.0. Nevertheless, by computing trajectories at intermediate values 
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Figure 4.10: The time series and phase-space trajectory for No = 1.0 and q = 0.14200. 

The transient behaviour is not shown, and the trajectory is attracted onto an attractor 

which appears to be chaotic. No chaotic behaviour was found at all in the quadratic 

model. 



Linear zooplankton mortality 

Nutrient 
2.0'~ __________________________________________ ~ 

1.2 

.... --. . .-; ~---------------. .... ---------. ...... ------· ..... ------· ....... ~ 
• ~·~· ••••••• e 
• "" 0 
• , 0 
• "'\", 0 
• " 0 

• " 0 • \ 0 • \ 0 

• " 0 • \0 . ~ 
•• 0 

•• ••• ••••••••• 0 
•••••••••••• ••••••••• 0 

0.080 0.090 0.100 0.110 0.120 0.130 0.140 0.150 
Predation on Z, q 

116 

Figure 4.11: At No = 2.0, the behaviour is qualitatively the same as in Figure 4.9 

for No = 1.0; the stable limit cycle branch loses stability at two period-doubling 

bifurcations (close to the right-hand Hopf bifurcation the limit cycle branch is stable, 

but this does not show up on the diagram). 

of q, we still find a period-doubling sequence culminating in chaos. The right-hand 

Hopf bifurcation occurs at q = 0.14838, and due to the closeness of this to the second 

period-doubling bifurcation, no solid circles actually show up on the diagram close 

to this Hopf bifurcation. They do show up when a smaller scale is plotted, verifying 

what we know from Figure 4.7(g), which is that this Hopf bifurcation is supercritical 

and so the branch of limit cycles which emanates from it is stable. Continuation of 

the branch in the narrow region where cycles are unstable becomes unreliable, due to 

differences in the value of q as small as 10-7 showing qualitative changes in behaviour, 

which we have discovered by computing trajectories. 
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4.8 Dependence of the period of oscillations on the 

parameter values 

In Figure 4.12 we plot contours of constant period, within the regions of oscillatory 

behaviour shown in Figure 4.7. The contours are computed using the same technique 

as that described for the quadratic case, and the range of q shown is 0.075-0.15, which 

is from the default value to the maximum value, as plotted for the quadratic case. 

As a contour is traced out, if a period-doubling bifurcation is reached (i.e. a 

Floquet multiplier leaves the unit circle through -1), then we continue computation 

of the contour, but do not plot it when the cycles in question are unstable (i.e. whilst 

the Floquet multiplier remains outside of the unit circle). In most cases we find that 

the cycles then restabilise at a second period-doubling bifurcation (i.e. the Floquet 

multiplier re-enters the unit circle through -1, as occurs at PD2 in Figure 4.9(b)), 

and the remainder of the contour corresponds to stable cycles, and is thus plotted. We 

find that period-doubling bifurcations only occur for k, No, (3 and /-L, Figures 4.12( d), 

(g), (i) and (1) respectively. So in these diagrams we see small regions of gaps in some 

of the contours, the edges of these regions indicating the locations of the period­

doubling bifurcations. These occur at high q values in each picture, and are most 

clearly seen in Figure 4.12(i) for {3. In all diagrams, we plot contours at increments 

of five days, up to and including the 100-day contour (where applicable), and then 

show the 125,150 and 175 contours, except for Figure 4.12(a) for alb where we show 

the 105, 110, 115 and 120 contours. 

Comparing each corresponding diagram in Figures 3.7 and 4.12 for the quadratic 

and linear models, we find that, for each parameter, the general tendency of an 

increase in that parameter to either increase or decrease the period, is the same for 

the two models. For example, Figure 3.7(e) and Figure 4.12(e) show that an increase 

in r will increase the period of the oscillations in both of the models. 

In Figure 4.12(a) we see that at low values of alb the period can reach as high as 

120 days, much higher than the maximum of 45 days reached for alb in the quadratic 

case. Such high periods for the quadratic case only occurred within the presence 
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Figure 4.12: Within the regions of oscillations given by Figure 4.7, the variations in 

period of stable limit cycles are indicated by contours of constant period. The numbers 

indicate the period, in days, along contours, which are plotted at increments of five 

days up to 100 days, and then the 125, 150 and 175 contours are (ctd.) 
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shown (except for alb where we continue at five-day intervals). For k, No,/3 and j.£, 

diagrams (d), (g), (i) and (1) respectively, period-doubling bifurcations occur; these 

are indicated by gaps in the contours (see text). Overall we find more variation in 

the period than occurred for the quadratic case. 
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of homo clinic orbits, which only happened for k, No and /3. The period reaches 20 

days at very high a/b values, a period lower than was found for any parameter in the 

quadratic case. This seems to be the general picture for all of the parameters - the 

period reaches more extreme values for the linear case than for the quadratic case, 

although the actual regions of oscillations for the linear case are larger, which may 

give more scope for larger ranges of periods to be reached. We note that a/b is the 

only parameter for which the period reaches as low as 20 days, and that such rapid 

oscillations only occur near the maximum value of a/b. 

For c, Figure 4.12(b), the period can reach 45 days at high values of c. This is only 

slightly larger than the 40 days reached for the quadratic case, despite oscillations 

occurring for roughly twice the range of values of c in the linear case, and so perhaps 

we would have expected more extremes for the period. We do find this to be true 

for e, Figure 4.12(c); the large region of oscillations allows the period to reach larger 

values than for the quadratic case. A decrease in e tends to decrease the period, 

although we can see that as e is decreased to small values, the period can actually 

increase. 

The picture for k, Figure 4.12( d), is similar to the No and /3 diagrams, Figures 

4.12(g) and (i), with contours of 175 days reached (we do not compute any higher 

values), and period-doubling bifurcations occurring, as shown by the gaps in some 

of the contours. For the quadratic case, the diagrams for these parameters were also 

similar, all showing high periods, but this was due to homoclinicity, which does not 

occur in the linear case. So the tendency to produce long periods carries over from 

the quadratic case, despite the qualitative differences in bifurcational behaviour. The 

lowest contour for which a period-doubling bifurcation occurs for each of k, No and /3 

is the 55 contour. A period-doubled cycle resulting from such a bifurcation will then, 

by definition, have a period of 110 days, and will take the form of a double-loop, with 

each 'loop' having a period of roughly 55 days. In a similar way, it takes about 60 

days to get round each 'loop' of the chaotic attractor shown in Figure 4.10, where a 

loop can be defined as, say, from one maximum value of N to the next. So the actual 

time between the local maxima of each variable for a period-doubled cycle, will be, 
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at least close to a period-doubling bifurcation, similar to the period of the original 

un-doubled cycle, but there will be two local maxima. 

For the No diagram, we additionally find fold bifurcations of cycles, but only 

on the 150 and 175 contours. We now explain this, by tracing along the 150-day 

contour, the second-highest contour plotted, starting from the point at q = 0.138, 

No = 2.0, and moving down the contour, decreasing No. We reach a minimum value 

of No, as for most of the other contours, and then No increases as q increases. When 

we reach No = 1.311 a fold bifurcation of cycles occurs (i.e. a Floquet multiplier 

leaves the unit circle through +1). As we continue (since the cycles are unstable 

they are not plotted in this intermediate region), the multiplier then re-enters the 

unit circle through +1 at No = 1.555, and hence the cycles become stable again. We 

then plot this stable section of the contour, but the aforementioned multiplier carries 

on decreasing along the real axis, and shoots through -1; this is a period-doubling 

bifurcation, and occurs at No = 1.566. Therefore the 150-day cycles have only become 

stable for the small interval No E (1.555,1.566), as shown by the very short line in 

Figure 4.12(g). The multiplier does then re-enter the unit circle through -1, but 

this occurs at a value of No higher than the range plotted. Throughout these wild 

excursions of the Floquet multiplier, the second multiplier is quite content to remain 

very close to zero, apparently untempted to venture around the complex plane (or at 

least along the real line ) like its associate. The third multiplier, by definition, remains 

equal to +1. The multipliers behave in a similar fashion along the 175-day contour, 

although the stable portion between fold and period-doubling bifurcations is so short 

that it does not show up on the diagram (the multiplier rapidly decreases through 

+1 and then -1 as the parameters increase slightly). 

The r, sand 'Y diagrams, Figures 4.12(e), (f) and 0), are fairly similar to the ones 

for the quadratic case, with an increase in r again having the opposite effect on the 

period to an increase in s, despite them both being linear phytoplankton losses. The 

sand'Y diagrams both have a 30 contour running close to Hopf A across their whole 

parameter ranges. 

The a and .A diagrams, Figures 4.12(h) and (k), both show similar behaviour to 
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the quadratic case, but exhibit a larger range of periods. 

Finally, the J.L diagram, Figure 4.12(1), is very different to the quadratic case, 

although given that the actual region of oscillations looks very different, it is hard to 

make a comparison of the nature of the period contours. The diagram exhibits very 

high periods at low values of J.L, plus period-doubling bifurcations on the contours 

from 50 upwards. Hopf A becomes subcritical at low values of J.L, the only parameter 

for which we have found subcritica1 Hopf bifurcations in the linear case, although the 

narrow region of coexistence of a stable steady state with a stable limit cycle cannot 

clearly be seen in Figure 4.12(1). The behaviour of the contours near to the region of 

period-doubling bifurcations is not quite as simple as for k, No and {3. 

For example, following the 85 contour as q increases, we find that a Floquet 

multiplier leaves the unit circle through -1, producing a period-doubling bifurcation. 

But then instead of it re-entering the unit circle and re-stabilising the cycles, the 

second multiplier, which in the No diagram had been content to sit near to the origin, 

becomes restless and inquisitive, and heads off along the real line. It leaves the unit 

circle through -1, yielding a period-doubling bifurcation of the saddle cycles; these 

cycles had lost stability at the first period-doubling bifurcation. As we continue along 

the contour, the two multipliers then coalesce and become a complex and conjugate 

pair, and venture away from the real line, undertaking the following journey. The 

magnitude of the imaginary part of the multipliers increases to a value greater than 

one, then the real part increases, and the pair move to the right in the complex plane, 

remaining outside of the unit circle. The real part is then greater than one, and the 

pair come together again on the positive real axis to become a pair of real multipliers, 

and one of them then re-enters the unit circle through +1, when fL reaches zero. Such 

an elaborate excursion by the multipliers does not occur for k, No and {3, or for any 

other parameters, or indeed at all in the quadratic case. 
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4.9 Discussion 

We have investigated the behaviour of the three-component model formulated in 

Chapter 2, but with linear, rather than quadratic, zooplankton mortality to represent 

different ecological assumptions. More results can be deduced analytically, without 

using any explicit parameter values, than could be obtained for the quadratic case 

in Chapter 3. In particular, the expression for the steady-state (N*, P*, Z*), with 

positive values of all three variables, requires the solving of a quadratic equation, 

rather than the infeasible tenth-order polynomial obtained for the quadratic case. 

The three-way transcritical bifurcation of the steady-states (No, 0, 0), (Nl*' Pl *, 0) and 

(N*, P*, Z*) no longer occurs, but has split into two transcritical bifurcations between 

(No, 0, 0) and (Nl *, Pl*, 0), and between (Nl*, PI*, 0) and (N*, P*, Z*), as graphically 

illustrated in Figure 4.3. (N*, P*, Z*) was analytically shown to be the unique steady 

state in the strictly positive octant, a fact which precludes fold bifurcations and 

hysteresis from occurringj such bifurcations were found for the quadratic case. 

The numerical investigation followed the same approach as for the quadratic case. 

Again we found the system to settle down to a stable steady state for the default 

parameter values, and then to undergo oscillations when the zooplankton mortality 

is increased. The one-parameter bifurcation diagrams show the same qualitative be­

haviour as for the quadratic case, but with the oscillations occurring over a relatively 

larger range of zooplankton mortality, and having larger amplitudes. The period 

again is around 35 days. The two-parameter diagrams show that oscillations occur 

across a wider range of the parameter space investigated than for the quadratic case, 

and the absence of fold bifurcations makes the diagrams simpler. Unlike the quadratic 

case, the zooplankton can die out for some small realistic regions of parameter space, 

namely the regions where (N1*, PI*, 0) is stable. 

The existence of a homoclinic connection would be sufficient to produce cycles with 

periods taking values up to infinity. So in the absence of any homoclinic connections, it 

may have been expected that the high periods of limit cycles reached for the quadratic 

mortality case would not occur here. However, the period-contour diagrams show that 
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high periods do indeed occur. Furthermore we find period-doubling bifurcations, and 

subsequent cascades to chaos, whereas no such bifurcations or chaotic behaviour were 

found for the quadratic case. 

A question worth asking is whether the fact that we have found chaotic behaviour 

for the linear model, but not for the quadratic model, is due to the differences in 

the model structures. In other words, is there something fundamental that keeps the 

model with quadratic zooplankton mortality from exhibiting chaos, or have we just 

not examined a region of parameter space which could give chaos for the quadratic 

model? 

Recent work by Caswell and Neubert (1997) shows that this is not true for the 

simple three-species food chain model of Hastings and Powell (1991). The Hastings 

and Powell model consists of a top predator, species Z, which feeds on intermedi­

ate species Y, which in turn feeds on basal species X. Species X undergoes logistic 

growth, the two feeding relationships are Holling type II functions, and the mortal­

ities of species Y and Z are modelled with linear functions. Hastings and Powell 

(1991) demonstrated the existence of a chaotic 'tea-cup' attractor. Caswell and Neu­

bert (1997) have shown that if a quadratic function replaces the linear function for 

mortality of the top predator, Z, then a chaotic tea-cup attractor still occurs. Thus 

quadratic mortality of the top predator does not exclude the possibility of chaos in 

three-species models in general. 

Perhaps there does exist chaotic behaviour for our quadratic mortality model 

investigated in Chapter 3, but we have just not been in the right region of parameter 

space to observe it. However, we did not find any period-doubling bifurcations of 

limit cycles (these would have been detected during the construction of the period­

contour diagrams), and in Section 3.8 we found that along the relevant branch, the 

saddle point remains a saddle node and does not become a saddle focus. This latter 

fact eliminates the possibility of multiple homoclinic orbits exhibiting period-doubling 

cascades to chaos, and the former finding means that we do not find a bifurcation to 

initiate a conventional period-doubling cascade of limit cycles. So, we do not even 

find the starting points for two routes to chaos, suggesting that if a region of chaos 
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does occur, we are not close to it in parameter space. 

In these last two chapters we have investigated our N P Z model with quadratic 

and linear functions for zooplankton mortality, finding limit cycles to occur widely for 

both forms. This contrast with the results of Steele and Henderson (1992) prompts 

us to now re-examine their work in Chapter 5. 



Chapt~r 5 

Comparison with Steele and 

Henderson (1992) 

5.1 Introduction 

The results of Steele and Henderson (1992), in their paper entitled 'The role of preda­

tion in plankton models', are often considered by modellers when formulating plank­

ton models, e.g. Fasham (1993, 1995). Indeed, this influential paper has inspired the 

work in this thesis, and has been cited over 40 times in the five years since its publi­

cation. By performing a limited number of numerical integrations of an N P Z model, 

Steele and Henderson (1992) found oscillations to occur when zooplankton mortality 

is modelled using a linear form, but not with a quadratic form. This contrasts with 

our findings of Chapter 3, where limit cycles were shown to occur across wide ranges 

of parameter space in our N P Z model with the quadratic mortality term. We now 

investigate the reasons for these differences. (Steele and Henderson actually forced 

their model with an annual cycle, but the oscillations we refer to are short-term 

oscillations that are not due to the forcing, as we demonstrate in Section 5.5). 

Steele and Henderson (1992), hereafter SH92, firstly took a two-compartment P Z 

model, without nutrient limitation, and 'normalised' the two ordinary differential 

equations to concentrate on the effects of changes in the rate of zooplankton mortality. 

They then introduced nutrient limitation, adding a third variable, N, and a third 

126 
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ordinary differential equation to the model. The N P Z model is very similar to that 

of Steele and Henderson (1981), and hence to our N P Z models, which are based 

on the Steele and Henderson (1981) model. SH92 then normalised the new three­

component model in the same way as for the two-component model. However, in 

Section 5.4 we show that this is not valid. The normalisation, which is essentially 

a nondimensionalisation of a dimensional system, results in a nondimensional three­

component model which is inconsistent with the original dimensional model. 

In Section 5.2 we describe the dimensional P Z model of SH92, and then in Section 

5.3 show how their 'normalisation' is equivalent to a unique nondimensionalisation 

of the equations. In Section 5.4 we show that, contrary to what SH92 assumed, the 

N P Z model cannot be normalised, or nondimensionalised, in the same way as for 

the P Z model. We show that an extra parameter is needed in the nondimensional 

N P Z model, and then in Section 5.5 recompute the simulations of SH92, with the 

corrected form of the equations. We find that, in general, the results of SH92 are not 

greatly affected by the anomaly in their equations, and where differences do occur, 

we explain these by constructing bifurcation diagrams. In the numerical simulations 

we do not find limit cycles to occur for quadratic zooplankton mortality, in agreement 

with the findings of SH92. In Section 5.6 we therefore investigate how the differences 

in our N P Z model and that of SH92 leads to the apparent contradiction. We find 

that oscillations do occur in the N P Z model of SH92 with quadratic zooplankton 

mortality when parameters are changed. SH92 did not witness them since they only 

varied the zooplankton mortality parameter, and none of the other parameters. This 

is not a criticism of SH92, since they were not specifically looking for such oscillations. 

Rather, by changing the zooplankton mortality, the system, when seasonally forced, 

was shown to simulate the qualitative differences in N, P and Z between the general 

situation in the North Pacific and the North Atlantic Oceans. 

SH92 also found that the nutrient steady-state value was less than the nutrient 

uptake half-saturation constant, N* < e in our notation, for linear zooplankton mor­

tality, but that N* > e for quadratic zooplankton mortality. In Section 5.7 we discuss 

how our results from Chapters 3 and 4 contradict this finding. Finally, in Section 
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5.8 we discuss the results of this chapter in relation to Chapters 3 and 4, and specify 

exactly the differences between the formulations of our N P Z model and that of SH92. 

5.2 The dimensional SH92 PZ system 

In Steele and Henderson (1992), P Z and N P Z models with and without forcing were 

studied. The dimensional two-component unforced P Z system has the form 

dP {3P (1 _ P) _ J..pn Z 
dt ""( J.Ln + pn ' 

(5.1) 

dZ J..pn 
= a Z - a8Zm 

J.Ln + pn ' dt 
(5.2) 

where P and Z represent the phytoplankton and zooplankton concentrations, t is 

time, and all parameters are positive. The value of m equals one to represent linear 

zooplankton mortality, and two to represent quadratic zooplankton mortality, and 

n takes the values one or two to represent Holling type II or III grazing functions. 

Parameters {3 and ""( are the intrinsic growth rate and carrying capacity of the logistic 

phytoplankton growth term. Parameters a, J.. and J.L have the same definitions as 

for our models (see Chapter 2), and 0:8 equals our q or d parameters, depending on 

whether m = 1 or 2. Note that SH92 actually have J.£ + pn, but this must be a 

misprint and it should be J.Ln + pn (the form used in Steele and Henderson (1981)), 

so that J.L has the same definition and dimensions for both n=l and n=2. 

These equations were then 'normalised' by taking (3 = >. = J.L = 1, so that at 

equilibrium, the new rescaled P and Z, which we shall call p and z for clarity, satisfy 

p (1-~) -
pn 

Z 1 +pn ' 
(5.3) 

azm - 1 
pn 

-
1 + pn' 

(5.4) 

where c = ""( / J1-, and a depends on 8. This is equivalent to rescaling the equations by 

a unique nondimensionalisation, which we derive below. SH92 implicitly calculated 

the new time units, and stated that, assuming an average doubling time for P of 2 

days, the new time units are 0(3) days, giving 100 time units ~ 1 year. They then 

added a nutrient equation to the P Z system, and stated that the new system can 
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be rescaled in the same way as for the N P Z system. However, we show here that 

this cannot be done, and that an extra parameter needs to be introduced into the 

nondimensional equations. 

5.3 Nondimensionalising the PZ system 

The setting of {3 = ). = J.t = 1 by SH92 in order to normalise (5.1) and (5.2) is a 

rescaling of P, Z and t, such that the new equations have the form 

dp ( P) pn (5.5) 
d1' 

- p 1-- - z 
c 1 + pn ' 

dz ,.. p'TL A m 
(5.6) 

dr 
- a z - aaz , 

1 + pn 

where l' is non-dimensional time and c, ex and a are non-dimensional parameters. 

Setting {3 = ). = J.t = 1 in (5.1) and (5.2) thus gives equations of the form of (5.5) and 

(5.6). 

This transformation can be made explicit by defining the new nondimensional 

variables p and z, plus nondimensional time, r, as 

t 
r = T' 

P 
p = -,;", 

P 

and finding expressions for T, P and Z. This gives 

d dr d 1 d 
dt = dt d1' = T d1' ' 

and substitution into (5.1) leads to 

Z 
z=~, 

Z 

dp = {3Tp (1 _ Pp) _ )'~T im~n z. 
d1' , P J.tn + pnp"" 

To make this into the form of (5.5) uniquely requires 

1 
T=-, 

{3 
- {3J.t Z=-

).' 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

Defining c = ,/J.t gives the required equation (5.5). The transformations (5.7) there-

fore become 

T = {3t, 
P 

p=-, 
J.t 

(5.11) 
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Using these substitutions, (5.2) becomes 

dz = aA P1I. z _ a8 . ({3p,)m-l zm 
d'T' {3 1 + P1I. {3 A ' 

(5.12) 

and so to obtain the form (5.6) requires 0: and a to be defined as 

A Aa 
a= /3' (5.13) 

The rescalings, or nondimensionalisations, (5.11) and (5.13) are unique in that they 

are the only transformations that will turn equations (5.1) and (5.2) into the required 

forms (5.5) and (5.6). 

In the non dimensional system one unit of time, 'T', is equivalent to 1/ {3 days (the 

old time scale was days). SH92 took an average doubling time for the phytoplankton 

of 2 days, which means that {3 = In2/2. Thus one new unit of time = 2/1n2 = 2.88 

days, and so 100 new time units is approximately equal to 1 year. 

5.4 Nondimensionalising the NPZ system 

The full three-component system considered by SH92 has the original dimensional 

form 

dN 
dt - (5.14) 

dP 
dt 

(5.15) 

dZ 
dt 

(5.16) 

where S is the cross-thermocline exchange rate, No is the nutrient concentration 

below the mixed layer and k is the half-saturation coefficient for nutrient uptake. In 

the numerical simulations to be discussed shortly, SH92 only considered the Holling 

Type III grazing function, and so we have set n = 2 in the grazing expressions 

AP1I. /(p,1I. + pn.). SH92 then expressed the three equations in the following form, 

and stated that (5.18) and (5.19) had been normalised in the same way as for the 

two-component system: 

dn n (P) . p2 
d'T' = - k + n p 1 - ~ + (1 - a) 1 + p2 Z + s (no - n) , (5.17) 
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dp 

dr 

dz 2 
A PAm - a--z-aaz 

dr 1 + p2 
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(5.18) 

(5.19) 

where s, no and k are new nondimensional parameters, and n is the nondimension-

alised nutrient variable. 

Since (5.18) and (5.19) have been normalised, (5.17) must clearly have been 

rescaled in the same way, so that the units of time, p and z are consistent in all 

three equations. However, we now show that equations (5.14), (5.15) and (5.16) can­

not be rescaled into exactly the form of (5.17), (5.18) and (5.19) using the same 

nondimensionalisations as those used for the two-component system. 

Using the substitutions for t, P and Z given by (5.11), and defining n as 

N n = ___ , 
N 

(5.20) 

the three dimensional equations, (5.14), (5.15) and (5.16) become 

dn n (P) I'- p2 S (No ) (5.21) 
dr 

- -I'- - p 1 - - + (1 - a) --- z + - -- - n 
k+Nn c N1+p2 {3 N ' 

dp Nn (1 _ e) _ p2 z (5.22) 
dr 

-
k + Nn

P c 1 + p2 ' 
dz 2 

A PAm (5.23) 
d7' 

a 2z - aaz . 
l+p 

The zooplankton equation (5.23) is the same as (5.19). We also require that (5.21) 

and (5.22) are in the same form as (5.17) and (5.18). In order for the phytoplankton 

uptake terms to be the same in the nutrient and phytoplankton equations (the first 

terms in (5.21) and (5.22)) requires N = 1'-. Note that Nand P must be scaled by the 

same factor, namely 1'-, since the uptake terms have the same form in the dimensional 

dN/dt and dPdt equations, plus have the same form in the nondimensional dn/d7' 

and dp/d7' equations. The definitions s = S/{3, no = No/I'- and k = k/I'- are clearly 

required. 

This only leaves the regeneration term, the penultimate term in (5.21), not in the 

required form given in (5.17). In (5.21) there is a (1- a) term (N = 1'-, so I'-/N = 1) 

but in (5.23) we have 0:, which is given by 0: = Aa/ {3. This shows that equations 
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(5.17), (5.18) and (5.19) are inconsistent, since they have (1- a) for the regeneration 

in (5.17), and a in (5.19), but we have just shown that it cannot be the same 'alpha' 

in both equations. The value of f3 used by SH92 was In 2/2 = 0.35, and they did not 

actually give a value for A (because it became 'normalised'), but in an earlier paper 

(Steele and Henderson, 1981) they used 0.6, and so A/ f3 i= 1 and a =J. a. 

The full consistent non dimensional equations are therefore 

dn n (P) p2 (5.24) 
dT 

- - -. -p 1 - - + (1 - a) z + s (no - n) , 
k+n c 1+p2 

dp n ( P) p2 (5.25) 
dT 

- k + n p 1 - ~ - 1 + p2 Z, 

dz 2 
A PAm (5.26) - a--z - aaz 

dT 1 + p2 ' 

and contain both a and a. Since a is a dimensionless constant, the equations are 

nondimensional and consistent. 

For their numerical simulations, SH92 used a = 0.5 in the (incorrect) equations 

(5.17), (5.18) and (5.19), which is equivalent to setting a = a = 0.5 in the corrected 

system given by (5.24), (5.25) and (5.26). Setting a = 0.5 in (5.24) is equivalent to 

setting a = 0.5 in (5.14), the original dimensional dN/dt equation. Setting a = 0.5 

in (5.26), means that the corresponding a in (5.16), the dimensional dZ/dt equation, 

is given by f3a/ A. With f3 = 0.35 and A = 0.6 this gives a = 0.29. So the SH92 

value of a = 0.5 in their normalised equations (5.17), (5.18) and (5.19), corresponds 

to setting a = 0.5 in (5.14), but a = 0.29 in (5.16). This means that a proportion 

0.29 of zooplankton grazing fuels zooplankton growth, a proportion 0.5 (= 1 - 0.5) is 

recycled as nutrient, and the remaining 0.21 is lost from the system. This is similar to 

our N P Z model, formulated in Chapter 2, where the respective proportions are 0.25, 

0.33 and 0.42. But the way that SH92 wrote their original dimensional equations 

(5.14), (5.15) and (5.16), with the same 'alpha' in (5.14) and (5.16), implies that they 

intended a proportion a of zooplankton grazing to fuel zooplankton growth, with the 

remaining proportion 1 - a to be recycled into nutrient, with no external loss from 

the system. But the values of the nondimensional parameters that they used does 

give a loss, due to the inconsistencies in the nondimensionalisation, giving a slight 
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structural difference to their original dimensional model. 

5.5 Simulations 

We now ask whether or not the anomaly in the model of SH92 affects their results. 

The three-component model used in the numerical simulations presented by SH92 

in their Figures 5 and 6, is the model given by equations (5.17), (5.18) and (5.19). 

This model is equivalent to equations (5.24), (5.25) and (5.26), with a = a, and from 

now on we shall refer to these equations. In the simulations SH92 actually forced the 

phytoplankton growth rate, which had been normalised to one, to represent seasonal 

changes through the year. They used a sinusoidal forcing function with a period of 

100 time units (~ 1 year). The precise function used was 

£. 1 1. 2~T 
orcmg = + 2' sm 100 . 

The parameter values used by SH92 for their Figure 5B, which we consider as the 

default case, were: 

.s = 0.1, 

no = 4, 

k = 0.5, 

c = 10. 

a = a = 0.5, 

m = 1, 

a = 0.7, 

Figure 5A of SH92 is a simulation of the pz system, equations (5.5) and (5.6), which 

contains a but not a, and so the anomaly is irrelevant. For Figure 5B the full npz 

model was used, and so we now need to calculate a correct value of a to be used 

in equation (5.24). The value 0: = 0.5 was used by SH92 for both the pz and npz 

models, and so we take this to be the 'correct' value, and then work out what the 

correct value of a should be. From our nondimensionalisation, we know that this 

will be given by a = {3&/)... SH92 did not explicitly state values for the dimensional 

parameters, but as mentioned earlier, we know that (3 = 0.35, and we take).. = 0.6, 

as this value was used by the same authors in an earlier paper {Steele and Henderson, 
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Figure 5.1: (a) Figure 5B of SH92 shows that n,p and z vary slowly when the system 

is forced. (b) Without forcing the system settles down to a steady state. (c) The 

sinusoidal forcing function (100 time units = 1 year). 

1981). These values give a = 0.29 (to two decimal places). So we now recompute the 

simulations given by SH92, for the following two situations: 

i) 6: = a = 0.5 - the (incorrect) SH92 values, 

ii) 6: = 0.5 and a = 0.29, 

to see whether the difference in the value of a is important. 

5.5.1 Linear zooplankton mortality 

Firstly, SH92 had m = 1, representing linear mortality, for their Figures 5B and 50. In 

Figure 5.1(a) we recompute Figure 5B of SH92, and in (b) show what happens when 

the forcing is switched off. The initial conditions, as used by SH92, are (n, p, z ) = 
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Figure 5.2: (a) With the corrected value of 0: = 0.29, the system undergoes extra 

short-term oscillations. (b) The unforced system eventually reaches a steady state. 

(4,1,1). Without forcing the system settles down to a steady state, and with forcing 

of the normalised phytoplankton growth rate, as given in (c), the steady-state values 

of n,p and z vary slowly, with a frequency (or period) the same as that of the forcing. 

In Figure 5.2(a) we set 0: = 0.29, and see that the variables undergo larger varia­

tions than they did for 0: = 0.5. Furthermore, there are extra small oscillations with 

frequencies incommensurate with the forcing frequency. These occur just after 100 

and 200 time steps. These short-term oscillations suggest that the unforced system 

may exhibit oscillations, in contrast to Figure 5.1(b). In Figure 5.2(b) we see that 

the unforced system does, however, settle down to a steady state again, but after a 

much longer transient time than in Figure 5.1(b). Note that we have extended the 

time axis, but the steady state is still not quite reached in this time. Thus there is a 

difference between the 0: = 0.5 and 0: = 0.29 cases. The gradual spiralling in of the 

trajectory to the steady state in Figure 5.1(b) suggests that we are close to a Hopf 

bifurcation. 

Indeed, if we reduce 0: only by a small amount, to 0: = 0.27, we see in Figure 

5.3 that the trajectory of the forced system is very similar to that for 0: = 0.29, but 
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Figure 5.3: (a) With a = 0.27, the forced system is similar to a = 0.29. (b) However, 

the unforced system now settles onto a limit cycle. 

that the trajectory of the unforced system settles down to a limit cycle, rather than 

a steady state. This suggests that a Hopf bifurcation has occurred, and indeed there 

is one at a = 0.274, which we have computed using LOCBIF. The values of p, which 

SH92 commented on, remain at relatively low values (~ 2) throughout the oscillations 

for each of the a values used. 

SH92 then increased the mixing rate s from 0.1 to 0.3, producing their Figure 50 

which is shown in Figure 5.4(a). With this higher mixing rate, the system exhibits 

large oscillations, at a frequency of roughly five cycles per year. The unforced system 

shown in Figure 5.4(b) demonstrates larger amplitude oscillations than when we had 

s = 0.1 and a = 0.27 in Figure 5.3(b). When we use the corrected value of a = 0.29, 

with s = 0.3, there is little difference to Figure 5.4 for a = 0.5. The limit cycles have 

a slightly larger amplitude, but we do not show them here. 

So, with linear zooplankton mortality the a anomaly does give a qualitative differ­

ence in trajectories at the original low mixing rate of s = 0.1, as shown by comparing 

Figures 5.1 , 5.2 and 5.3. But the small-amplitude short-term oscillations seen in the 

latter two figures are by no means as dramatic as what happens when the mixing rate 
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Figure 5.4: (a) With a higher mixing rate of 5 = 0.3, (previously 5 = 0.1), the forced 

system undergoes large-amplitude oscillations. (b) The unforced system settles onto 

a large-amplitude limit cycle. 

is increased and large-amplitude oscillations occur, as shown in Figure 5.4. Thus we 

have found that decreasing a causes the unforced system to undergo oscillations, by 

taking the steady state through a Hopf bifurcation. This is equivalent to increasing 

the zooplankton excretion recycling parameter f3 in our N P Z models of Chapters 

3 and 4. From Figures 3.4(i) and 4.7(i), we see that an increase in our f3 from low 

values can, for both the quadratic and linear zooplankton mortality models, take the 

system through a Hopf bifurcation, into a region of oscillations. This does, however, 

depend on the value of zooplankton mortality, d or q, and for the linear mortality 

case we find that the oscillations can occur at low values of recycling. 

More pronounced oscillations were found by SH92 when they increased the mixing 

rate 5, as demonstrated in Figure 5.4. For both of our previous models, Figures 3.4( d) 

and 4.7(d) show that an increase in the mixing rate, k, can also take our systems into 

a region of oscillations. 
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Figure 5.5: (a) Figure 6A of SH92 shows that with quadratic zooplankton mortality 

(m == 2) at a rate of a == 0.1, the forced system has fairly constant low p values, and 

slowly oscillating YI and z, which is the general situation for the Pacific Ocean. (b) 

The unforced system settles down to a steady state. 

5.5.2 Quadratic zooplankton mortality 

In their Figure 6, SH92 set m = 2, to investigate the effects of using quadratic 

zooplankton mortality. They retained the higher mixing rate of s = 0.3. In Figure 

5.5( a) we reproduce Figure 6A of SH92, for which they set a = 0.1, where a is 

the zooplankton mortality parameter. The forced system shows fairly constant low 

phytoplankton values, higher zooplankton values which oscillate with the forcing, and 

high nutrient values. This corresponds to the general situation in the Pacific Ocean, 

shown in Figure 2 of SH92. If we omit the forcing, the system quickly reaches a 

steady state, with low p and high nand z, as shown in Figure 5.5(b). When forced, 

the system thus simply tracks the steady state, which is moved around due to the 

forcing. If we then use the corrected value of a = 0.29, the forced and unforced 

pictures change very little to those in Figure 5.5 (for which a = 0.5), and so we do 

not plot them here. 

SH92 then increased the value of a to 0.5, to give their Figure 6B, which we 
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Figure 5.6: (a) Figure 6B of SH92 shows that with an increase in the rate of zoo­

plankton mortality, a = 0.5, p undergoes large-amplitude fluctuations, and n gets 

close to the value of the half-saturation constant k, corresponding to the situation in 

the Atlantic Ocean. (b) The unforced system settles down to a steady state. 

reproduce in Figure 5.6( a). We see that p undergoes large-amplitude fluctuations, 

and the minima of n are close to the value of the half-saturation constant k = 0.5. 

This situation corresponds to the Atlantic Ocean. For the unforced system we see 

that the system settles down to a steady state, with n, p and z all taking similar 

values. The steady-state value of p is much less than the average of the p values 

throughout the cycles of the forced system. This is unlike Figure 5.5 for a = 0.1, 

where the average of p in the forced system equals the unforced steady-state value. 

We elaborate on this shortly. 

When we use the corrected value of a = 0.29, we obtain the picture for the forced 

system given in Figure 5.7(a). We see that p reaches much higher values than for 

a == 0.5, Figure 5.6( a), and that n only gets as low as 1.0, twice the value of the half­

saturation constant. The behaviour of z is practically identical to that for a = 0.5. 

Also we note that the maxima and minima of n are not as 'smooth' as for a == 0.5. For 

the unforced system, Figure 5. 7(b), we find a three-fold increase in the steady-state 
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Figure 5.7: (a) With the corrected a = 0.29, and a = 0.5, p reaches higher values 

than for a = 0.5. (b) The steady-state value of p is three times that for a = 0.5, 

explaining why the forced system shows higher p values. 

value of p, compared to Figure 5.6(b) for a = 0.5. The n value increases marginally, 

and the z value actually increases by a third, despite showing no change for the forced 

equations. So the a anomaly does, in this case, make a difference. 

In Figure 5.8 we show how the steady-state value of p for the unforced system, 

changes in magnitude as we vary a, the predation on the zooplankton. We plot the 

curves for both a = 0.5 and a = 0.29. The situations that we have just discussed are 

for a = 0.1, Figure 5.5, and then a = 0.5, Figures 5.6 and 5.7. On Figure 5.8 we see 

that at a = 0.1, the steady-state value of p is the same for both a = 0.5 and a = 0.29, 

at the value shown in Figure 5.5. In Figure 5.8 we see that at a = 0.5, the steady-state 

value of p is just below two for a = 0.5 and just above six for a = 0.29. This explains 

the large difference in p values that we found in Figures 5.6 and 5.7. The reason for 

the difference is that the a = 0.29 curve in Figure 5.8 shows a hysteresis effect, which 

is due to two fold bifurcations of the steady state occurring. The dashed line indicates 

where the steady state is unstable, and so the two fold bifurcations occur where the 

dashed line becomes solid. For a = 0.5 the hysteresis does not occur, although high 
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Figure 5.8: The phytoplankton steady-state value changes as the predation on zoo­

plankton, a, is increased. The solid line indicates where the steady state is stable, 

and the dashed line where it is unstable. Hysteresis occurs for 0: = 0.29, but not for 

0: = 0.5. At a = 0.1 the p values are the same for both values of 0:, but at a = 0.5, 

the 0: = 0.29 value is much higher than for 0: = 0.5, explaining the difference between 

Figures 5.6 and 5.7. 

p values are reached at higher a values. For example, if a = 0.7) then 0: = 0.5 and 

a = 0.29 again have similar p steady-state values. 

In Figure 5.9 we show how the steady-state value of p for the unforced system 

changes as the maximum growth rate of p is varied, with a set to 0.5. The maximum 

growth rate, which has been 'normalised' to one and is not specified explicitly as a 

parameter, is what is forced in the preceding diagrams. In the unforced diagrams, it 

equals 1.0, and when forced it ranges from 0.5 to 1.5, because the forcing function is 

given by 

f · 1 1. 27rT orcmg = + -sm--. 
2 100 

When the maximum growth rate equals 1.0, we have the same steady-state values for 
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Figure 5.9: In the unforced system, the maximum phytoplankton growth rate is set to 

1.0, but in the forced system it varies sinusoidally between 0.5 and 1.5. This diagram 

(for which a = 0.5) shows that for a = 0.5, the forcing pushes the system into a region 

where the steady-state value of p is much higher than in the unforced system, thus 

explaining the large peaks of p, relative to the unforced steady-state value, reached 

in Figure 5.6( a). For a = 0.29, the unforced steady-state is already at a high value 

of p. 

p as we have at a = 0.5 in Figure 5.8. Again we find hysteresis for a = 0.29 but not 

for a = 0.5. As the forcing increases the growth rate, we see that, for a = 0.5, this 

pushes up the steady-state value of p to values much greater than when the growth 

rate equals 1.0. This explains why, in Figure 5.6, for a = 0.5, the average value of p 

during the forced cycles, Figure 5.6( a), is much greater than the unforced steady-state 

value shown in Figure 5.6(b). The forcing pushes the system through a region where 

p increases sharply, namely the near vertical part of the a = 0.5 curve in Figure 5.9. 

For their final numerical simulation, SH92 set a to the high value of 1.0, to produce 

their Figure 60, which we reproduce in Figure 5.10(a). Throughout the cycles, p 
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Figure 5.10: (a) Figure 6C of SH92 shows that with a very high rate of zooplankton 

mortality, a = 0.5, p remains large and fairly close to the carrying capacity (c = 10), 

and z remains low and constant. (b) The unforced system settles down to a steady 

state with a high p value, as predicted by the bifurcation diagram of Figure 5.S. 

remains fairly high. In Figure 5.10(b) we see that the unforced system settles down 

to a steady state with a high p value. We actually already know this - it is given by 

the point with a = 1.0 on the bifurcation diagram of Figure 5.S. If we set 0: = 0.29, 

then the forced and unforced diagrams are very similar to Figures 5.10(a) and 5.10(b) 

for 0: = 0.5, and so we do not plot them here. 

Thus we have recomputed the numerical simulations of SH92 with the corrected 

value of 0: = 0.29. For linear zooplankton mortality we find that with the low mixing 

rate of s = 0.1, the system does exhibit unforced oscillations, as shown in Figures 5.2 

and 5.3, whereas SH92 thought that the higher mixing rate was required to produce 

oscillations. But the oscillations with the higher mixing rate, Figure 5.4, are much 

larger in amplitude than those shown for the low mixing rate, although the small 

oscillations are due to being close to the Hopf bifurcation which occurs at 0: = 0.274. 

For quadratic zooplankton mortality, when a = 0.5 the 'alpha' anomaly does make a 

difference, as shown by Figures 5.6 and 5.7 which show different p values for 0: = 0.5 
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and a = 0.29. In Figure 5.8 we show that this difference can be explained, and that 

if an alternative value of a is used, such as a = 0.4 or a = 0.6, then the steady-state 

values of p would be similar. It just happens to be that a = 0.5, the value chosen by 

SH92, gives a large difference. This is a good example of how a dynamical systems 

approach, namely the construction of the bifurcation diagram in Figure 5.8, is more 

powerful than simple computation of trajectories. The time series of Figures 5.6 and 

5.7 show a large difference when a is changed, but Figure 5.8 shows that this only 

occurs within a narrow range of values of a, and this range just happens to contain 

the value a = 0.5. Figure 5.9 explains how the forcing of the phytoplankton growth 

rate can lead to values of p far greater than the steady-state value for the unforced 

system. Overall it appears that the results of SH92 are not drastically altered when 

the 'alpha' anomaly is corrected. 

5.6 Do oscillations occur for the SH92 model with 

quadratic zooplankton mortality? 

We have not found any unforced oscillations when quadratic zooplankton mortality 

is used, which agrees with the findings of SH92. But in Chapter 3 we showed that 

oscillations occur across wide ranges of parameter values in our N P Z model, which 

has the quadratic zooplankton mortality. So, is this difference due to slight differences 

in the structure of the SH92 model and our model? Or is it the case that the SH92 

model can exhibit oscillations, but we have just been in an area of parameter space 

that does not give them? 

To investigate these questions, we continue using the corrected nondimensionalised 

SH92 model, as given by equations (5.24), (5.25) and (5.26), but use our default 

parameter values from Chapter 2. These parameter values are equivalent to the 

following values for the dimensional parameters of the dimensional SH92 model, given 
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by equations (5.14), (5.15) and (5.16): 

S = 0.05, 

No = 0.6, 

k = 0.03, 

(3 = 1, 

'Y=1. 

a = 0.25, 

>. = 0.6, 

j.£ = 0.035, 

0=4, 
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These parameters therefore have the same units as those for our model in Chapter 2. 

Most of the parameters have equivalent definitions to parameters in our model. But 

in our model we have the phytoplankton growth rate, excluding nutrient limitation, 

as the function aP/(b+cP), whereas in the SH92 model it is the logistic form (3P(l­

P/'Y)' We thus equate (3 to our maximum specific phytoplankton growth rate, alb = 1. 

The half-saturation constant in aP/(b + eP) is b/e, and for f3P(l - P/'Y) half of the 

maximum specific growth rate is reached when P = 'Y /2, and so we set 'Y = 2b/ e. 

These values result in the following parameters (to two significant figures) for the 

nondimensionalised model, as given by equations (5.24), (5.25) and (5.26): 

s = 0.05, 

no = 17, 

k = 0.86, 

e= 29. 

a = 0.25, 

a. = 0.15, 

a = 0.39, 

As we have just shown, SH92 considered different levels of zooplankton mortality, 

a, in their numerical simulations. We thus treat a as a bifurcation parameter. This 

was the case in Chapter 3, where the equivalent dimensional parameter, d, had a 

default value of 1.0 and a maximum of 2.0. We therefore use a default value of 

a = 0.39 (which corresponds to d = 1.0), and take a maximum of double this value, 

namely 0.78. 

In Figure 5.11 we show the bifurcation diagram of nutrient values against a. For 

the default value of a = 0.39 there is a stable steady state with n = 4.22. As a is 

decreased, the steady state loses stability at a fold bifurcation at a = 0.30. A second 

fold bifurcation occurs at a = 0.38, but the steady state does not regain stability until 
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Figure 5.11: Bifurcation diagram of nutrient against a, for the SH92 model with the 

default parameter values from our N P Z model of Chapter 3. The solid and dashed 

lines represent stable and unstable steady states respectively, and the solid square 

is a Hopf bifurcation. The resulting branch of cycles is unstable; the maximum and 

minimum nutrient values along cycles are given by the circles, which are open to 

indicate instability. This picture is similar to Figure 3.6(g) for our N P Z model. 

a Hopf bifurcation. The Hopf bifurcation is subcritical, and so the limit cycles close 

to it are unstable. The branch of limit cycles does not become stable, but terminates 

at a homo clinic connection with the saddle point near to the fold bifurcation. Now, 

apart from at high values of a, this picture is similar to Figure 3.6(g) for our N P Z 

model with quadratic zooplankton mortality. Figure 3.6(g) has a blown-up horizontal 

scale, whereas Figure 5.11 gives the full range of a. Both Figures show a subcritical 

Hopf bifurcation with a branch of unstable cycles which terminates at a homo clinic 

connection, plus two fold bifurcations of the steady state. Figure 3.6(g) was for high 

values of the sub-mixed-Iayer nutrient concentration, No, and so this suggests that if 

we reduce the value of no, we may find a similar scenario to lower values of No for 
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Figure 5.12: Two-parameter bifurcation diagram of no against a, showing a quali­

tatively similar picture to Figure 3.4(g) for our N P Z model. Solid lines represent 

supercritical Hopf bifurcations, dotted lines are subcritical Hopf bifurcations and 

dashed lines are fold bifurcations. 

our N P Z model. Despite the current value of no being based on the default value 

of No, the differences in model structure may have caused the bifurcation picture to 

have been shifted. 

In Figure 5.12 we therefore compute how the bifurcations of steady states in Figure 

5.11 change as no is varied. The resulting picture is qualitatively similar to Figure 

3.4(g) for the N P Z model, implying that the bifurcation structure found for the 

N P Z model also occurs for the SH92 model. Since the Hopf bifurcations in Figure 

5.12 become supercritical, at the points where the dotted lines become dashed, we 
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Figure 5.13: For no = 10, we have stable limit cycles, as shown by the solid circles. 

Thus oscillations do occur in the SH92 model. This picture is qualitatively similar 

to Figure 3.6(a), which, for our NPZ model, has No = 0.75 and all of the other 

parameters set to their default values. 

know that there are stable limit cycles in the SH92 model. The detailed structure 

of Figure 3.4(g) was investigated more thoroughly in Figure 3.8, which also indicates 

bifurcations of limit cycles. On Figure 3.8 the Bogdanov-Takens bifurcation is clearly 

marked, which is the point at which a Hopf bifurcation curve terminates on the curve 

of fold bifurcations of the steady state. This also occurs in Figure 5.12, at the point 

a = 0.409, no = 12.3, which is at a relatively lower value of no than the high No of 

Figure 3.8. 

Figure 5.12 therefore proves the existence of oscillations in the SH92 model. To 

illustrate this, in Figure 5.13 we plot the bifurcation diagram of nutrient against a, 

with no = 10. From Figure 5.12 we see that at this level of no, the fold bifurcations 

of the steady state no longer occur, and two Hopf bifurcations occur, one of which 

is supercritical, and therefore yields stable limit cycles. The stable limit cycles are 
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indicated by the solid circles. Figure 5.12 is similar to Figure 3.6{ a) for the N P Z 

model, for which No = 0.75. Plotting the equivalent bifurcation diagram for a slightly 

lower value of no where both Hopf bifurcations are supercritical, say 0.8 or 0.7, results 

in a diagram which is qualitatively the same as Figure 3.3{a), the original nutrient 

against d diagram for the N P Z model, when No (and all other parameters except d) 

are fixed at their default values. 

5.7 Nutrient steady-state values compared to the 

half-saturation constant 

SH92 looked at the nutrient steady-state values, N*, and nutrient uptake half-saturation 

constant, e, in five models from the literature, and concluded that 

N* < e for linear Z mortality, 

N* > e for quadratic Z mortality. 

However, comparing our Figures 3.3{a) and 4.6(a), which show N* against zooplank­

ton mortality for the quadratic zooplankton case and linear case respectively, we see 

that the values of N* are similar for both models. In both cases, N* > e, where e is 

at the default value of 0.03, is satisfied (except that N* < 0.03 in the tiny interval 

q E (0.144,0.148) for the linear case). 

Furthermore, all of our other one-parameter bifurcation diagrams which have 

shown values of N*, namely Figures 3.5{a) and (b), 3.6(a)-(g), 4.9 and 4.11, show 

N* to be larger, usually much larger, than 0.03, the value of e, for both linear and 

quadratic mortality. Even during limit cycles, the nutrient concentration seems to 

remain above the half-saturation value of 0.03. 

Figures 3.6{ a)-(g), for progressively higher values of No, with quadratic zooplank­

ton mortality, suggest that at high values of the quadratic zooplankton mortality 

rate, d, N* may reach 0.03. We have computed the value of N* with d fixed at its 

maximum value of d = 2.0 and No set to to its maximum value of No = 2.0, and 

found N* > e still holds. Then, allowing No to decrease, keeping d = 2.0, we find 
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N* > e holds right down until No = 0.15, which is close to its minimum realistic 

value of 0.1 given in Table 2.1. For No < 0.15 we then have N* < e, in contrast to 

SH92 who found N* < e only for linear zooplankton mortality. 

Thus we find N* > e to hold for almost all of the parameter values we have 

investigated, for both forms of mortality. And we have found that N* < e can 

occur for quadratic zooplankton mortality. This has been achieved by only changing 

the zooplankton mortality funetion between our two models. The SH92 conclusions 

may be due to other differences between the five models that they considered, which 

ranged from their 1981 N P Z model to the ten-equation model of Hofmann and 

Ambler (1988). 

5.8 Discussion 

In this chapter we have examined the results of SH92, since our results of Chapters 

3 and 4 have shown oscillations to occur when either the quadratic or the linear 

zooplankton mortality funet.ions are used, in contrast to the findings of SH92. Firstly, 

we have found an anomaly in the 'normalisation' of the N P Z model by SH92. We 

have recomputed the simulations of SH92 with the corrected equations, and found 

the results to generally not be affected. By constructing bifurcation diagrams, we 

have shown that where major quantitative differences do occur, these are confined to 

small parameter ranges. The SH92 model does exhibit oscillations when quadratic 

zooplankton mortality is used, which we have shown by using our default parameter 

values. Finally, we have discussed how our results from Chapters 3 and 4 contradict 

the hypothesis of SH92 that the nutrient steady-state values, N*, tends to be larger 

than nutrient uptake half-saturation constant, e, when the quadratic zooplankton 

mortality function is used, but smaller when the linear form is used. 

Comparing the two-parameter bifurcation diagrams of Figures 3.4 and 4.7 we see 

that oscillations occur across larger ranges of parameters for our linear mortality 

model than for our quadratic model. Therefore, if we pick arbitrary parameter values 

for our models, we would be more likely to find oscillations for the linear model than 
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for the quadratic one. This is consistent with the situation that Steele and Henderson 

found, and it would be surprising if they had found the converse to be true. 

In addition to the difference in the growth-rate formulations used in the SH92 

model and our model, as formulated in Chapter 2, there are other differences between 

the two models. Comparing our NPZ model, as given by (2.1), (2.2) and (2.3), and 

the original dimensional N P Z model of SH92, equations (5.14), (5.15) and (5.16), 

the differences are as follows, where parameter definitions are those for our model. 

For the SH92 model: 

• there is no phytoplankton respiration or natural mortality, r P; 

• there is no phytoplankton sinking term, sP; 

• the phytoplankton are not lost from the mixed layer due to diffusive mixing -

the kP term in our dP/dt equation (2.2); 

• regeneration of excretion from the higher predators on zooplankton, 'Y, is omit­

ted; 

• the recycling of zooplankton excretion is a proportion 1 - a of zooplankton 

grazing, but a proportion f3 ::; 1 - a in our model. 

The first two differences correspond to setting r = 0 and s = 0 in our model. 

The two-parameter diagrams of Figures 3.4(e) and (f) show that setting r = 0 and 

(independently) s = 0 retains the oscillatory behaviour in our model, shifting the 

region of oscillations to a lower range of d values. Omitting the kP mixing term 

from our dP/dt equation (2.2) would no doubt give the same result; this is not 

simply equivalent to setting k = 0, since k also appears in the dN/dt equation (2.1). 

The default values of s = 0.04 and k = 0.05 suggest that setting s = 0 is practically 

equivalent to omitting kP from (2.2), since s only appears once in all of the equations, 

namely as a linear phytoplankton loss. 

Omitting the regeneration of excretion of the higher predators means setting 'Y = 0 

in our model. Figure 3.4(j) shows that setting 'Y = 0 retains the oscillations. So none 
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of the terms in our model that are omitted in the SH92 model affect whether or not 

the oscillations exist in our model (at least when they are omitted independently). 

Furthermore, r, sand "y show the least effect on the oscillations of all the parameters 

shown in the two-parameter diagrams of Figure 3.4. Thus, Steele and Henderson 

seemingly omitted the least important terms of their 1981 model when they con­

structed their 1992 model. 

The final difference between the models is in the recycling of zooplankton excre­

tion. This is a. proportion f3 of zooplankton grazing in our model, but is set to 1 - a 

in the SH92 model. We used our value of a = 0.25 in Section 5.6, and so this is 

equivalent to setting f3 = 0.75 in our NPZ model of Chapter 3. Now, Figure 3.4(i) 

shows that setting f3 = 0.75 in our model gives fold bifurcations and subcritical Hopf 

bifurcations, in a similar fashion to setting No high. This is almost precisely what 

we have found in Figure 5.12. At no = 17, which corresponds to our default value 

of No = 0.6, we have fold bifurcations of the steady state, but this difference from 

the No = 0.6 situation in our model can be explained because of the higher recycling 

rate of 0.75 - setting f3 = 0.75 in our model produces the same situation, as shown 

by Figure 3.4(i). Reducing no in the SH92 model, thus compensating for the high 

regeneration, then gives the situation that we found for the default parameters in our 

model. This demonstrates the value of our two-parameter bifurcation diagrams of 

Figure 3.4 in predicting the consequences of omitting or changing certain features of 

a. model. 



Chapter 6 

Modelling detritus: dynamics of a 

four-component model 

6.1 Introduction 

We now add a fourth variable, representing detritus, to our N P Z model, and assess 

whether or not the dynamical behaviour of the N P Z model is preserved in the four­

component model. Detritus consists of faecal pellets of zooplankton, plus dead phy­

toplankton and zooplankton, as defined by Fasham et al. (1990). Attached bacteria 

can break the detritus down into utilisable nutrient, a process known as reminerali­

sation (Totterdell et al., 1993), giving a simple representation of the microbial loop. 

Detrital particles can aggregate together and sink out of the mixed layer, a process 

which plays an important part in exporting carbon to the deep ocean. Detritus is also 

lost from the mixed layer due to diffusive mixing processes with the sub-mixed-layer 

water, as occurs for the non-motile nutrient and phytoplankton. The final possible 

fate of detritus is that it can be consumed by zooplankton. This depends upon the 

species composition of the zooplankton, and is included in some models where zoo­

plankton and detritus are explicitly modelled (Fasham et al., 1990j Fasham, 1993), 

but excluded from others (Hood and Olson model in Davis and Steele, 1994; Fasham, 

1995). 

Since the addition of the detrital component presents a major difference to the 
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structure of the model, compared to the original N P Z model, we do not allow zoo­

plankton to graze on detritus in the model for this chapter, but do consider such 

grazing in Chapter 7. This is so that we add complexity to the models one step 

at a time, making it clear which particular amendment brings about any change in 

dynamical behaviour. 

In Section 6.2 we formulate the N P Z D model. We consider only quadratic zoo­

plankton mortality, and so all results shall be compared directly to the results in 

Chapter 3 (and it is to this chapter that we are referring to when we talk about the 

NPZ model). We then investigate this new model in the same way as for the NPZ 

model. Firstly, in Section 6.3, we proceed as far as possible analytically. This analy­

sis suggests that a three-way transcritical bifurcation between steady states occurs at 

the same parameter values as for the N P Z model, and by numerically constructing 

the colour bifurcation diagram of Figure 6.2 we illustrate this to be so. In Section 

6.4 two time series are shown, the first demonstrates the system settling down to 

a steady state, and the second demonstrates oscillations of the variables. This be­

haviour, which is the same as that of the N P Z model, prompts investigation of the 

bifurcations of the system in Sections 6.5 and 6.6. We find the bifurcational behaviour 

of the N P Z system to be remarkably preserved in the N P Z D system. In Section 

6.7 we discuss how the period of the oscillations changes with each of the parameters, 

and finally all of the results are discussed in Section 6.8. 

6.2 Model formulation 

In Figure 6.1 we show the structure of the four component NPZD model, where D 

represents the concentration of detritus in the mixed layer. We measure D in gem -3, 

the same units as used for N, P and Z. The term (1- a - (3)G1 , where G1 is just the 

grazing term >..p2 Zj(J.L2 + P2), represents faecal pellets from zooplankton grazing on 

phytoplankton, and thus enters the detritus compartment. In the N P Z model such 

pellets were assumed to immediately sink out of the mixed layer; now they are treated 

explicitly as detritus. The sinking term is --,pD, where the sinking rate -,p has units of 
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(1-y)dZ 2 
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('l'+k)D 

k(No-N) 

Figure 6.1: The addition of the detritus compartment, D, represents remineralisation 

more realistically than in the N P Z model. Detritus comes from zooplankton faecal 

pellets, (1 - a - f3)G1, and the phytoplankton loss rP. Detritus is converted into 

nutrient at a rate </>, and is lost due to sinking at a rate 1/J and diffusive mixing at a 

rate k. 
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day-I. The other input to the detritus compartment is from phytoplankton natural 

mortality, which is included in the r P term. Previously, this was recycled directly 

into utilisable nutrient; now this process occurs via remineralisation of detritus by 

(unmodelled) bacteria. This remineralisation is modelled as a flow of 4>D converting 

detritus into nutrient, where the remineralisation rate 4> has units of day-I. Detritus 

will also leave the mixed layer due to diffusive mixing with sub-mixed-layer water; as 

we had for nutrient and phytoplankton, this linear loss rate is parameterised by k. 

The resulting equations are: 

dN = -uptake + Z excretion + Z predation excretion + D remineralisation + mixing, 
dt 
dP k ., . b Z . k' .. _ = upta e - respIratIon - grazmg y - sm mg - mIxmg, 
dt 
dZ = growth _ higher predation, 
dt 

dD .. Z fIll t . l' t' . k' .. _ = P respIratIOn + aeca pe e s - remmera Isa Ion - sm mg - mlxmg. 
dt 

The specific functional forms used are: 

dN 
dt 
dP 

N a . (3).p2 2 

--N b pP + 2 P2 Z +-ydZ + 4>D + keNo - N), e+ +c I-' + 
N a ).p2 

- -N b P P - r P - 2 p2 Z - (s + k )P, 
dt e + + c I-' + 
dZ _ a).p

2 Z _ dz 2 

1-'2 + p2 ' dt 
dD 
dt 

).p2 

r P + (1 - a - (3) 2 p2 Z - (4) + 1/J + k )D. 
I-' + 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

Fasham et al. (1990) quoted the review of breakdown rates of dead organic matter 

by Jones and Henderson (1986), who found a range of 0.004-0.18 day-I. Fasham 

et al. (1990) used the value of 0.05 day-I for breakdown of detritus into dissolved 

organic nitrogen, which can then be utilised by phytoplankton via uptake by bacteria. 

Mike Fasham (personal communication) suggested a range for 4> in our model of 0.01-

0.1 day-I. The Hood and Olson closed NPZD model in Davis and Steele (1994) 

has a value of 0.2 day-I. To include all these values, we thus take a range for 4> of 

0.004-0.2, with a default at the average value of 4> = 0.1 day-I. 

Fasham et al. (1990) used two detritus sinking velocities, of 1 and 10 m day-I. 

Since we have a relatively shallow mixed-layer depth of 12.5m, we use the lower value 



Four-component model 157 

for our default sinking velocity. Dividing the sinking velocity by the mixed-layer 

depth gives a default value of "p = 0.08 day-l, and a range of 0.08 - 0.8. 

6.3 Analysis 

We now calculate the steady states of the system, plus, where possible, their stability. 

The stability of a steady state is given by the eigenvalues of the Jacobian matrix 

evaluated at that steady state; the Jacobian for a general steady state is given by 

A= 

o 

o 

2Ot)./J:2pZ 
(j.l.2+P2)2 

+ 2(1-Ot-,B».j.l2 PZ 
r (j.l.2+p2)2 

(HP2 
~ + 2"'(dZ 

(l-Ot-,B). p2 
j.l.2+p2 

o 

o 

-rfJ -"p - k 

evaluated at the steady-state values of N, P, Z and D. The 3 x 3 submatrix obtained 

by deleting the fourth column and the fourth row from A, is identical to the Jacobian 

for the N P Z system, except that the second entry in the first row does not have the 

term +r. This is because the rP term, representing phytoplankton respiration and 

natural mortality, now enters the detritus compartment before being recycled into 

nutrient. Note that D does not appear explicitly in A, since it only appears linearly 

in the model equations (6.1), (6.2), (6.3) and (6.4). 

The steady states of the system are obtained by solving the four simultaneous 

equations 

N a (3>.p2 
2 

(6.5) 0 -~b pP + 2 P2 Z + "'(dZ + rfJD + k(No - N), 
e+ +c p. + 
N a >.p2 

0 - e + N b + cP P - r P - p.2 + p2 z - (s + k )P, (6.6) 

0 - a>.p2 Z _ dZ2 
p.2 + p2 ' (6.7) 

>.p2 
0 - rP+(l-a-{3) 2 p2 Z -(rfJ+"p+k)D. (6.8) 

p. + 
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Considering only the biologically realistic solutions, for which the steady-state 

values satisfy N, P, Z, D 2:: 0, we Can see from (6.8) that a solution with D = 0 must 

also have P = Z = 0. This leads to the steady state (No, 0, 0, 0), which is analogous 

to the (No, 0, 0) steady state for the N P Z model. The Jacobian at (No, 0, 0, 0) is 

-k a.Na 

° <jJ b(e+No) 

0 a.Na k 

° ° A= 
b(e+No) - r - s -

° ° ° ° 
° r ° -<jJ -1/J - k 

One eigenvalue is -k (since it is the first term in the first column, and the remaining 

terms of the first column are zero). The 3 x 3 submatrix obtained by deleting the first 

row and the first column is lower triangular, and so the remaining three eigenvalues 

are the three diagonal terms. Thus, the four eigenvalues are - k, <T?, 0 and - <jJ -1/J - k, 

where, as for the N P Z model, 

aNo 
<T? = - r - s - k. 

b(e + No) 

The occurrence of a zero eigenvalue means that centre manifold analysis would be 

required to deduce the stability of (No, 0, 0, 0), but numerical simulations suggest 

that (No, 0, 0, 0) is unstable for <T? > 0, and stable for <T? < 0, in agreement with the 

stability of (No,O,O) for the NPZ model. 

Looking for solutions with Z = 0, we have, from (6.8), 

r 
D = <jJ + 1/J + k P, (6.9) 

which is then substituted into (6.5) to give, from the sum of (6.5) and (6.6), 

P = k(No - N) 
~+s+k' 

(1/J + k)r 
where ~ = <jJ + 1/J + k' 

Substituting the expression for Pinto (6.6), results in the following quadratic equation 

in N: 

ckN' + [a~ ::++kk) - b(l: + s + k) + ck(e - No)] N - (b(l: + s + k)+ ckNo) e 

= 0. (6.10) 
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Denoting the solutions of (6.10) by Nl • and N 2·, results in the two steady states 

(Nl·,H·,O,Dl·) and (N2·,P2·,0,D2·), where 

p. _ keNo - Ni ·) 

, - E+s+k ' 

D • r p.. 
i = 4>+1/J+k i, 

(6.11) 

(6.12) 

for i = 1,2. The constant term of the quadratic (6.10) is negative, and so it has 

two real roots, one negative and one positive. Defining Nl • to be the positive root 

and N 2• to be the negative root, it is clear that (N2·, P2·, 0, D2·) can never enter the 

region {N, P, Z, D 2:: O}, and thus is not considered any further. For the N P Z model, 

the region {N, P, Z 2:: O} of phase space is called the positive octant; for the N P ZD 

model we hereby define the equivalent ecologically realistic region {N, P, Z, D 2:: O} 

to be the 'positive hexadectant', since it is a sixteenth of the entire phase space. 

Rearranging (6.11) and substituting for Ni• into (6.6), results in a quadratic in Pi·. 

The constant term of this quadratic is a positive multiple of q" and since Pl· and 

P2 • are real and P2• > 0 (this comes from (6.11) because N2• < 0), Pl· must have 

the same sign as q,. As q, ~ 0, we have Pl· ~ 0, D1• ~ 0 and N l • ~ No, 

i.e. (Nl·,H·,O,Dl·) ~ (No,O,O,O). 

This behaviour is clearly analogous to that for both of the three-component models 

analysed in Chapters 3 and 4, for which we equivalently had (Nl ·, Pl·, 0) ~ (No, 0, 0) 

as q, ~ O. In fact the only differences between the quadratic equations for Ni·, namely 

(3.4) for the three-component model with quadratic zooplankton mortality (the linear 

mortality case in Chapter 4 is the same) and (6.10) here, is the appearance of E in 

(6.10) and (6.11). Setting E = 0 results in the same values of N/ and P/ as for the 

three-component models. This is because the only difference in the dN/dt and dP/dt 

equations between the N P Z and N P Z D models, is that the term +4>D replaces 

+r P in the dN / dt equation. In the expression for ~., r does not appear in the 

denominator for the NPZ models, equation (3.5), because the rP terms cancel when 

dN/dt = 0 and dP/dt = 0 are added. For the NPZD model, the addition of 

dN / dt = 0 and dP / dt = 0 has a component 

4>D - rP = 4>r P - rP 
4>+1/J+k 
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_ (1/J+k) rP 
</J+1/J+k 

- -EP, 
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which is how the definition of E originally arises. Now, if </JD - rP = 0, then E = O. 

Having </JD - rP = 0 means replacing </JD by rP in (6.5), resulting in exactly the 

same dN / dt = 0 and dP / dt = 0 equations as for the N P Z model. Looking at the 

food-web diagrams of Figures 2.1 and 6.1 makes it clear to see that if Z = 0, and the 

input to D, namely rP, equals the output </JD, then the other loss, (1/J + k)D must 

equal zero, and we could just draw the r P arrow from P straight into N, forgetting 

about D, which is what we had for the N P Z model. If 1/J + k = 0 then E = 0, 

confirming the notion of E = 0 being equivalent to the N P Z model for Z = 0 steady 

states. Note that 1/J + k cannot actually equal zero in our model, since all parameters 

are positive, but having a 'negative sinking rate' of 1/J = -k, would mean that the 

remineralisation </JD is the only loss from the D compartment. 

The third row of the Jacobian at (Nl*' Pl*' 0, Dl*) is 

(0 0 0) . 
The third term is thus an eigenvalue, and since it is always positive, for Pl * =F 0, 

the steady state (Nl *, Pl *, 0, Dl*) can never be stable. In Chapter 3, we showed in a 

similar fashion that the steady state (Nl*' Pl *, 0) for the N P Z model with quadratic 

zooplankton mortality could also never become stable. 

We have thus found steady states by setting D = 0, and setting Z = O. Setting 

N = 0 results in no steady states with P, Z, D ~ 0, as can be seen from (6's), and 

setting P = 0 gives Z = D = 0 from (6.7) and (6.8), and gives us the steady state 

(No, 0, 0, 0). Thus, we now look for solutions (N*, P*, Z*, D*) with non-zero values of 

all the variables. 

From (6.7) and (6.8) we can express Z and D in terms of P, as 

a>.p2 
(6.13) 

(6.14) 
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Adding (6.5) to (6.6) and using (6.7) results in the following expression for N, which 

is in terms of P when (6.13) and (6.14) are substituted: 

N 
= N.o _ (1- a"( - (3)dZ 2 + ¢n _ (r + s + k)P 

ka k k' 
(6.15) 

Putting all these into (6.6) results, upon rearrangement, in a tenth-order polynomial 

for P. Writing the polynomial such that the coefficient of plo is one, the constant 

term of the polynomial is given by 'l1, where 

'l1 _ bkf.L8(e + No)(¢ + tP + k)~ 
- c [( s + k)( ¢ + tP + k) + r( tP + k)]( r + s + k)' 

As for Chapter 3, we see that 'l1 is a positive multiple of <P, and so 'l1 ~ ° as 

~ ~ 0, and at ~ = 0, P = ° becomes a solution of the tenth-order polynomial. 

An (N*,p*,Z*,n*) solution thus degenerates to (No,O,O,O) at ~ = 0, suggesting 

that, as for the N P Z model, we have a three-way transcritical bifurcation. Setting 

all of the parameters to their default values, we find only one solution of the form 

(N*, P*, Z*, n*) with strictly positive values of all of the variables. 

The Jacobian at (N*, P*, Z*, n*) can be simplified slightly from the general form 

of A given earlier, but has too many non-zero terms to make investigation of the 

eigenvalues feasible. 

In Figure 6.2 we show how the three-way transcritical bifurcation occurs. The 

axes scales are the same as for Figure 3.1 for the N P Z model, and we have an extra 

figure which shows the value of detritus at the steady states. The extra eigenvalue 

in the N P Z D model remains negative, and so the solid, dotted and dashed lines 

indicate equivalent stability of the steady states as in Figure 3.1. 

The stability of (No,O,O,O) is the same as for the NPZ model, as expected from 

the analysis, with (No, 0, 0, 0) unstable for r < 0.86, and stable for r > 0.86. Recall 

that r = 0.86 is the location of the three-way transcritical bifurcation, given by ~ = 0, 

but is at a value of r which is much higher than is ecologically realistic. 

The behaviour of (Nl *, Pl *, 0, Dt*) is similar to that of (Nt*, Pl *, 0) for the N P Z 

model, with (Nl*' Pl *, 0, Dl*) leaving the positive hexadecta~t at the three-way tran­

scritical bifurcation. As r increases, the value of Pl * falls faster for the N P Z D model 
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Stability of steady slates: 

(No, 0 , 0, 0) 
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saddle; eigenvalues O. - . -. + 

(N, ', P,', 0, D, ') and (N', P', Z', D') 

stable; eigenvalues - ,- ,-,-

saddle; eigenvalues -,- ,- ,+ 

- - - - - - saddle; eigenvalues -,-,+,+ 

~ 0.20 

'" c: 

i 
f 
Q. 

N 

..... 
0. 10 

0.00 

.......... 
.... 

..... :,: ..................... . 

-0.10 1:.......--'-~-'-~ ......... ...J...~~ ......... ~~..o....J ....... ~~"'---.......::.......:J 

0.0 0.2 0.4 0.6 0 .8 1.0 1.2 
Respiration rate, r 

0 .40 
(e) 

0 .30 

(d) 

0.30 

~ 0.20 o 0.20 
.; 

~ 
o 
Q. 

~ 

0.00 

............. ...... 
"""""""""" ,'''''''''''' .' ''' ''' ' ''' .... " ... ,.''' .. ''''.,~" ---;':';"'-~---3 

-0. 10 1:.......~~-'--~--'-...J...~~--'-~~..o....J--'"~~ ................. ~ 
0 .0 0.2 0 .4 0 .6 0.8 1.0 1.2 

Respiration rate, r 

.~ 

" o 0.10 , ..... . 
.... 

............ ..... ... .... ..... . ... 

0.00 b-.................................................................... \-____ -3 

\~ .......... . 

0.2 0.4 0 .6 0 .8 1.0 1.2 
Respiration rote, r 

Figure 6.2: Location and stability of the steady states (No,O,O,O), (N1",P]*,0,D1*) 

and (N*, P* , Z*, D*) as r is varied, The key indicates the signs of the real parts of 

the four eigenvalues, plus the corresponding stabilities. The three-way transcritical 

bifurcation occurs at r = 0.86. 
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than for the N P Z model. The value of Dl * increases with r, and then falls to zero 

as the bifurcation is reached. This differing behaviour of Pl * is to be expected. Al­

though the steady states (Nl*, Pl*,O, D l ·) and (Nl*,Pl*, 0) are never stable in their 

full systems, analysing their nature is still insightful. If we restrict ourselves to consid­

ering Z = 0, then we can just think of the N P Z and N P Z D systems as respectively 

being an N P system and an N P D system. The corresponding steady state given 

by (Nl *, H oO) is stable in the N P system, (since the two-dimensional stable manifold 

of (Nl*,Pl*,O) for the NPZ system lies in the Z = 0 plane), at least when the two 

eigenvalues have negative real parts; this is true for r < 0.86, as indicated by the fact 

that the blue line is dotted, rather than dashed, in this region in Figure 3.1. Since 

(Nl *, Pl *, 0) and (Nl *, Pl *, 0, Dl oO) are stable in the respective plane and hyperplane 

given by Z = 0, it is worth commenting on their quantitative nature. The introduc­

tion of the detritus compartment delays the regeneration of natural mortality and 

respiration of phytoplankton, rP, as can be seen by ignoring the Z compartment and 

corresponding arrows in Figure 6.1. The equivalent steady state (Nl *, Pl *, Dl oO) in 

the N P D system is also stable for r < 0.86, and, as expected, the value of Pl * is 

higher for the N P model than for the N P D model. 

The steady state (NoO, PoO, ZoO, DoO) behaves in the same qualitative way as (N·, PoO, ZoO) 

for the N P Z model, being stable for r < 0.86, and leaving the positive hexadectant 

at the three-way transcritical bifurcation. Figure 6.2 shows that PoO and DoO become 

negative at the bifurcation. Quantitatively, PoO and ZoO are very similar to PoO and 

ZoO for the N P Z model, and NoO approaches the bifurcation in a slightly different 

way than for the N P Z model. DoO remains fairly constant as r is increased, until 

the bifurcation is approached. DoO is expressed, in (6.14), as an increasing function of 

PoO. However, r also appears in (6.14), which explains why D* may remain constant 

despite the fact that P* is decreasing. The decrease in PoO is offset by the increase in 

r until we are close to the bifurcation. , 
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6.4 Time series and phase portraits 

In Figure 6.3( a) we show the time series of the system from the initial condition 

(N, P, Z, D) = (0.4,0.1,0.05,0.08), with all of the parameters fixed at their default 

values. The three-dimensional picture shows the N, P and Z values of the trajectory, 

for comparison with the N P Z model. This picture is the projection onto N - P - Z 

space of the full trajectory, which exists in four-dimensional N - P - Z - D space; 

plotting the fourth dimension on the same picture is obviously unfeasible. The N, P 

and Z initial condition values are the same as for the N P Z model, and the D value is 

chosen arbitrarily. The system settles down to steady-state values of (N, P, Z, D) = 
(0.33, 0.034, 0.072, 0.060); starting from a variety of other initial conditions it does 

likewise. This steady state is the unique steady state with N, P, Z, D > 0, which we 

know by setting the parameters to their default values and solving the tenth-order 

polynomial for P*, plus (6.13), (6.14) and (6.15), as derived in the preceding analysis. 

The default steady-state of the N P Z model is (N, P, Z) = (0.31,0.034,0.072), and 

so, to two significant figures, the P and Z values for the N P Z D model are the same, 

and the N value is marginally higher. 

Figure 6.3(b) shows that when d, the higher predation on zooplankton, is increased 

to 1.5, the system is attracted onto a limit cycle. This is what happened for the N P Z 

model, and the period of the oscillations is 34 days, virtually the same as the 35-day 

period of the N P Z model. It is seen that the peaks and troughs of D lag slightly 

behind those of P. The amplitudes of the cycles for the two models are more easily 

compared by using the one-parameter bifurcation diagrams which we now construct 

in Section 6.5. 

6.5 One-parameter bifurcation behaviour 

Figure 6.4 shows that the behaviour of the system as d is varied is very similar to 

that for the N P Z model. Supercritical Hopf bifurcations A and B occur at d = 1.43 

and d = 1.84 respectively, compared with d = 1.42 and d = 1.91 for the N P Z model. 



Four-component model 

0.50 

0.40 

0.30 

0.20 ).. . . \ \ 

N , .. , ..... Z 
- - - . P -,--- . D 

0.10 .. ) . '\" ::':' " '':- ','-'..'::,,: : :,,: ::,,: .,'.:... ... .:,:::..:::..:: :..:., . ...:.' ... : .. :::..:::..:: '''':'',',:.:::'':: . .;..., . ...:. ... ~::..: ::..: '," 
----------- ---------------O.OO~ ________ ~ __________ ~ __________ ~ __________ ~ 

o 

0.50 

0. 10 

50 100 
Time (doys ) 

150 

(a) d = 1.0 - N, P, Z and D settle down to steady-state values. 

200 

165 

Figure 6.3: The time series and trajectory at (a) d = 1.0 and (b) d = 1.5 (next 

page), with all of the other parameters fixed at their default values. The trajectory 

is shown as the NPZ projection of the full NPZD phase space for comparison with 

the three-component model. 
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Figure 6.4: Variations in the steady-state values of (a) nutrient, (b) phytoplankton, 

(c) zooplankton and (d) detritus as d, the higher predation on the zooplankton, is 

changed. A solid line is a stable steady state, a dashed line is an unstable steady 

state, a solid square is a Hopf bifurcation and solid circles indicate the maximum and 

minimum values of the stable limit cycles. The Hopf bifurcations are labelled A and 

B. 
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(c) The zooplankton bifurcation diagram. (d) The detritus steady-state and limit 

cycle values correlate to the phytoplankton values. 
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(e) The period of the limit cycles (solid circles) remains virtually constant throughout 

the region of oscillatory behaviour; the corresponding stability of the steady state is 

indicated by the horizontal line. 

Figure 6.4(a) shows that the steady-state values of N, and the maximum and 

minimum values of N along the cycles, are marginally higher than the corresponding 

values for the NPZ model shown in Figure 3.3(a). The only notable difference is 

that the oscillatory behaviour occurs across a slightly smaller range of d. Comparing 

Figures 6.4(b) and 3.3(b), we see that the P steady-state values are virtually identical, 

but that the oscillations in the N P Z D model do not reach as high or as low P values 

as the oscillations in the N P Z model. The Z bifurcation diagrams, Figures 6.4( c) 

and 3.3( c), are practically identical, with the amplitude of Z in the N PZD model 

being slightly smaller than that in the N P Z model. 

For the N P Z D model we have an extra diagram, that of D against d, Figure 

6.4( d). This shows that values of D are correlated with the P values. This would be 

expected, since as d increases, P steady-state values increase, whilst Z steady-state 

values remain fairly constant, and so both inputs to the D compartment increase as 

d increases. The amplitudes of the D cycles are comparable to those of the P cycles. 
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The period of the oscillations remains fairly insensitive to the value of d, as shown in 

Figure 6.4(e), taking slightly lower values than for the NPZ model. 

6.6 Two-parameter bifurcation behaviour 

In Figure 6.5 we plot the two-parameter bifurcation diagrams, which show how the 

Hopf bifurcations move as each of the parameters is independently varied. The 

axes have the same scales as in Figure 3.4 for the N P Z model, and there are two 

extra diagrams, namely Figures 6.5(m) and (n), for the two extra parameters 4> and 

"" which appear in the N P Z D model. The key is the same as for the N P Z model 

_ the nature of (N*, P*, Z*, D*), as demonstrated in Figure 6.4, is represented as a 

horizontal line at the default value of each parameter, a solid line indicates that the 

steady state is stable, and a dashed line that it is unstable. The non-horizontal lines 

show the locations of the Hopf bifurcations, with solid lines indicating supercritical 

Hopf bifurcations, and dashed lines indicating subcritical. The curves of long dashes 

indicate fold bifurcations of the steady state. 

The striking conclusion of Figure 6.5 is that the overall bifurcational picture pre­

sented by Figure 3.4 for the N P Z model, is remarkably preserved in the N P Z D 

model. The addition of the detritus equation to the N P Z system appears to make 

very little difference to the location in parameter space of the Hopf and fold bifur­

cations. Certainly, the differences we found in Chapter 4 were far more significant, 

implying that changing the zooplankton mortality term from quadratic to linear has 

more of an effect on the dynamical behaviour of the system than adding the detritus 

equation to the N P Z model. The addition of the detritus equation introduces an 

extra eigenvalue to the story, but, despite its potential to alter the behaviour of the 

system, this eigenvalue apparently does not cause any extra bifurcations - it seems 

to remain negative and not pass through zero. For each diagram in turn, we have 

searched for further bifurcations of the steady state. This was done for each param­

eter by setting d = 1.0 and increasing and decreasing the parameter across its full 

range, and then repeating this at a low and a high value of d. Then the parameter 
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Figure 6.5: Two-parameter bifurcation diagrams showing how the positions of the 

Hopf bifurcations in Figure 6.4 change as each other parameter, together with d, is 

independently varied from its default value. The steady-state stabilities from Figure 

6.4 are shown as a horizontal line at each default parameter value. Hopf A and (ctd.) 
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Hopf B are indicated in (a). Non-horizontal solid curves starting from the original 

Hopf bifurcations (the squares) indicate supercritical Hopf bifurcations, and non­

horizontal curves of short dashes show where Hopf bifurcations are sub critical. In (d) 

and (g), curves of long dashes indicate fold bifurcations of the steady state. (ctd.) 
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Diagrams (m) and (n) correspond to the two parameters 4> and 1/J which do not occur 

in the N P Z model. 

was fixed at a high then a low value, and d varied across its range. No other bifurca­

tions were found, implying that the Hopf and fold bifurcations plotted are the only 

bifurcations occurring in the realistic region of parameter space. 

For the two extra parameters, Figure 6.5(m) shows that oscillations occur across 

most of the range of the detritus remineralisation rate 4>, and Figure 6.5(n) shows 

that oscillations occur only at the lower values of the detritus sinking rate 1/J. 

Figure 6.5(i), for {3, does not show any fold bifurcations of the steady state, unlike 

for the N P Z model. The fold bifurcations do actually still exist, but they terminate 

at a cusp point at {3 = 0.86, outside the range plotted. Note that such a high value 

of {3 is ecologically unrealistic, since it gives a + {3 > 1, violating conditions on the 

definitions of a and {3 (they must sum to less than one). 

For No the Bogdanov-Takens bifurcation which occurs for the N P Z model and 

was discussed in Section 3.8 still occurs, but at the value of No = 2.54, which is above 

the plotted range of No in Figure 6.5(g). For the N P Z model a Bogdanov-Takens 

bifurcation occurs as k is varied, at the value k = 0.11. For the NPZD model the 

bifurcation occurs at the higher value of k = 0.13, where the dotted curve representing 
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Figure 6.6: The two period-contour diagrams for the two parameters ¢ and .,p which 

do not occur in the N P Z model. The period is not greatly affected by changes in ¢ 

and .,p. 

subcritical Hopf bifurcation B terminates on the curve of fold bifurcations in Figure 

6.5(d). 

6.7 Dependence of the period of oscillations on the 

parameter values 

In Figure 6.6 we plot the contour diagrams of constant period, for the two parameters 

that appear in the N P Z D model but not in the N P Z model. We see that the period 

can range from just below 30 days to values which are less than 40 days, as ¢ or .,p 

are varied (the 40-day contour lies above the realistic range of ¢). Thus, the values 

of ¢ and .,p do not greatly affect the period of the oscillations. Simulations of a 

different N P Z D model formulated by Ken Denman (Institute of Ocean Sciences, 

British Columbia, personal communication), also exhibit oscillations which show a 

decrease in period as .,p increases, in agreement with Figure 6.6(b). 

No bifurcations of the limit cycles were found along the contours, despite the 
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presence of an extra Floquet multiplier, compared to the N P Z model. 

We have investigated whether or not the effect on the period of varying each of 

the other 12 parameters is the same as for the N P Z model. To do this we used, as a 

starting point, the limit cycle that occurs for d = 1.6 with all of the other parameters 

set to their default values - this cycle has a period of 33.1 days. For parameter c, 

as an example, we kept d fixed at 1.6 and tracked the branch of limit cycles as c 

increases, until the edge of the oscillatory region, defined by the Hopf bifurcations in 

Figure 6.5(b), was reached. We found that as c increases, the period of the oscillations 

increases. This agrees with Figure 3. 7(b) which showed that for the N P Z model the 

period increases as c increases. Similarly, decreasing c leads to a decrease in the 

period for the N P Z D model, also in agreement with the N P Z model. 

This process was repeated for each parameter in turn. For e, and most of the other 

parameters, we had to criss-cross the oscillatory region, given by Figure 6.5( c), to fully 

investigate the behaviour of the period. At the top-right corner of the oscillatory 

region for e (high values of d) the period is 35 days - a 35-day contour was actually 

computed, and it just cuts across the corner in question. A 33-day contour starts 

at e ~ 0.04 on the Hopf curve close to the default value of Hopf B, and runs down 

towards d ~ 1.3 at e = O. So it appears that the period tends to be slightly higher 

at high values of e. This agrees with Figure 3. 7( c) for the N P Z model, but the 

changes in period are much smaller in magnitude. The situation for s was slightly 

inconclusive, with the period remaining roughly between 32 and 34 days throughout 

the oscillatory region - for the N P Z model the 40-day contour only just crept in at 

low values of d, also indicating little variation in the period as s varies. 

However, for the remaining parameters the period does change fairly conclusively 

in the same manner as for the N P Z model, as given by the contour diagrams in 

Figure 3.7. Even when the actual region of oscillations is fairly narrow, as in Figures 

6.5(h) and (k) for a and A, by criss-crossing the region we have found the period 

variations to agree with those for the N P Z model. In general the period remains 

within a narrower range for the N P Z D model than for the N P Z model, as explained 

for s. 
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Finally, we mention that for f3 = 0.75, the maximum allowed value of f3 (so that 

a + f3 = 1), the period remains below 50 days across the range of d, whereas Figure 

3. 7(i) shows that the period reaches much higher values for the N P Z model at this 

value. However, these high values are explained in terms of homo clinic behaviour 

which, as for k and No, arises from a Bogdanov-Takens bifurcation. For the N P Z 

model such a bifurcation occurs at the ecologically unrealistic value of f3 = 0.96. But 

the cusp of fold bifurcations in the N P Z D model occurs at f3 = 0.86, much higher 

than for the N P Z model, and the Bogdanov-Takens bifurcation has been shifted all 

the way up to f3 = 1.85 (this value is even more unrealistic, since f3 by definition 

must be a fraction no greater than one). Thus, for the N P Z D model, the homo clinic 

behaviour associated with the Bogdanov-Takens bifurcation has been shifted to a 

high value of f3, and consequently so has the region of high periods. This explains 

why the period has not yet attained 50 days when we reach f3 = 0.75 in the N P Z D 

model. 

During this process of tracing limit cycles, no bifurcations of limit cycles were 

found, except for the fold bifurcations which must occur when a Hopf bifurcation is 

sub critical. So, as for the N P Z model, no period-doubling bifurcations or N aimark­

Sacker bifurcations were found anywhere within the oscillatory regions. 

6.8 Discussion 

The clear conclusion from this chapter is that the explicit addition of detritus to the 

N P Z model investigated in Chapter 3 does not significantly affect the nature of the 

bifurcations. The analysis of the steady states in Section 6.3 shows that the three­

way transcritical bifurcation is preserved. The subsequent numerical investigation 

involving computation of time series, one- and two-parameter bifurcation diagrams 

and period-contour diagrams, demonstrates that the general bifurcational structure 

of the N P Z model is retained. 

This implies that if an ecosystem is considered to be expressed by the food web 

shown in Figure 6.1, and knowledge of the actual level of detritus is not explicitly 
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required, then the dynamics of the food web may be modelled by considering just the 

NPZ system. 

With hindsight it may be unsurprising that the addition of the detritus com­

partment to the N P Z model does not greatly affect the dynamics, because D only 

appears linearly in the equations for the model. However, it would not be possible to 

have predicted, a priori, that this should be the case. Rather, once the investigation 

has been performed, the fact that D only appears linearly in the equations offers a 

plausible explanation for the unaltered dynamics. 



Chapter 7 

Consequences of zooplankton 

grazing on both detritus and 

phytoplankton 

7 .1 Introduction 

We now modify the N P Z D model investigated in Chapter 6 to allow zooplankton 

to graze on detritus in addition to phytoplankton. This is a feature of the seven­

component models of Fasham et al. (1990) and Fasham (1993), but is not considered 

in the six-component model of Fasham (1995) or the Hood and Olson NPZD model 

in Davis and Steele (1994). 

In Section 7.2 we formulate the multiple-grazing model. This adds extra interac­

tions to the food web, and requires modifying the zooplankton grazing function of 

the previous N P Z D model to incorporate consumption of the two al ternati ve food 

sources, phytoplankton and detritus. In Section 7.3 we proceed analytically, but find 

that explicitly calculating a positive steady state of the form (N*, P*, Z*, D*) is even 

more difficult than in Chapter 6, for which an intractable tenth-order polynomial for 

P* was obtained. However, the numerically-computed colour bifurcation diagrams 

of Figure 7.2 show that the three-way transcritical bifurcation still occurs. The time 

series of Section 7.4, together with the one-parameter diagrams of Section 7.5, show 

178 
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oscillations to occur, but not at exactly the same values of d as for the previous 

N P Z D model, and with longer periods. In Section 7.6 we show how the oscillations 

persist as each parameter is independently varied, and in Section 7.7 we investigate 

the changes in the periods of the oscillations. 

7.2 Model formulation 

Allowing zooplankton to graze on detritus adds some extra pathways to the food-web 

picture, and requires a new formulation of zooplankton grazing. Fasham et al. (1990), 

and consequently Fasham (1993), modelled zooplankton grazing on three food types, 

namely phytoplankton, detritus and bacteria. The grazing formulation used by 

Fasham et al. (1990) was derived from a Holling type II grazing term which depended 

on a measure of the total available food. The formulation included feeding preferences 

of the zooplankton for the alternative foods. Fasham et al. (1990), hereafter denoted 

FDM, firstly ran their model with constant values for the feeding preferences, as used 

by Evans (1988) who called them 'palatabilities' of the zooplankton, but found the 

model results to be very sensitive to the choice of values. Very little data is avail­

able on such preferences, and so FDM adapted the preferences to vary dynamically 

depending on the total available food. The preferences vary so that zooplankton ac­

tively select the most abundant food (Hutson, 1984). Upon rearrangement the final 

form for zooplankton grazing on phytoplankton is 

(7.1) 

where A is the maximum specific grazing rate, K is a half-saturation constant, and PI 

and P2 are assumed nominal preferences (palatabilities) for phytoplankton and detri­

tus when the concentrations of these foods are equal. (We have omitted the reference 

to bacteria that appears in the FDM function for Gp , since we do not explicitly model 

bacteria, and to include it here would unnecessarily complicate matters). Note that 

PI and P2 are constant parameters - the aforementioned dynamically-varying prefer­

ences are defined in terms of PI,P2, P and D, and have been substituted for. A similar 
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expression is obtained for zooplankton grazing on detritus, with P2D2 replacing PlP2 

in the numerator of (7.1). 

Although (7.1) looks similar to a Holling type III function, which is what our 

previous N P Z D model has, it has been derived from a type II function. Setting 

P2 = 0 so that zooplankton have no appetite for detritus whatsoever, or D = 0 so 

that there is no detritus available for consumption, it is seen that G p reduces to a 

Holling type II function. For our model, it would be desirable for a formulation of G p 

to reduce to a Holling type III function under such circumstances, since our previous 

N P Z D model uses the type III function. 

Rather than use the above formulation of Gp , Mike Fasham (personal communi­

cation) suggested the simpler form 

Gp = >'Pl P
2 
Z , 

K2 + Pl P2 + P2 D2 

where K is a constant. It is clear that 

G 
>'PlP2Z 

p-+---­
K2 + Pl P2 

as P2 -+ 0 or D -+ 0, 

(7.2) 

and we can make this limit of G p equal to the function Gl of the previous N P Z D 

model, namely 

(7.3) 

by defining K2 = Plj.L2. This then results in the following grazing functions on 

phytoplankton, GlI and on detritus, G2 : 

G _ >'Pl P 2z 
1 - Plj.L2 + Pl P2 + P2D2 ' 

G
2 

= >'P2D2 Z • 
Plj.L2 + Pl P2 + P2D2 

By dividing through by Pl and defining 

P2 
W=-

Pl 

as the relative zooplankton palatability for detritus compared to phytoplankton, we 

obtain the final grazing functions 

G _ >.p2Z 
1 - -j.L~2 -+-P-2-+-w-D-2 ' 
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Setting w = 0 corresponds to P2 = 0, meaning that zooplankton do not find detritus 

palatable at all, which corresponds to the previous N P Z D model studied in Chapter 

6, whereby Gl is given by (7.3) and G2 = O. 

The multiple-grazing by zooplankton results in the new food web shown in Figure 

7.1. Allowing zooplankton to graze on detritus creates the extra pathway from D 

to Z, plus the resulting recyclings of excretion into N, given by f3G2 , and of faecal 

pellets back into D, (1- 0 - (3)G2• The remainder of the food web is the same as for 

the N P Z D model in Chapter 6, except for the dependence of Gl on D. 

The resulting equations for the model are: 

dN = -uptake + Z excretion + Z predation excretion + D remineralisation + mixing, 
dt 
dP k . t' . b Z . k' . . - = upta e - respIra IOn - grazmg y - sm mg - mIxmg, 
dt 

dZ = growth - higher predation, 
dt 

dD = P respiration + Z faecal pellets - grazing by Z - remineralisation 
dt 

- sinking - mixing. 

The specific functional forms used are: 

dN N a f3>..(P 2 + WD2)Z 2 

dt 
- -e+Nb+cP P + J.L2+p2+ wD2 +"YdZ +4>D+k(No -N), 

dP N a ).P2Z 

dt 
- N b P P - r P - 2 p2 D2 - (s + k )P, 

e+ +c J.L + +w 
dZ 0>..(P2 + WD2)Z _ dZ2 
dt 

- J.L2 + p2 + WD2 ' 

dD [(1 - 0 - (3) p2 - (0 + (3)wD2] ).Z 

dt rP + J.L2 + p2 + WD2 - (¢> +.,p + k)D. 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

The (1 - 0 - (3)P2 term in the numerator of the second term of (7.7) represents 

zooplankton faecal pellets which are the result of feeding on phytoplankton, as for 

the N P Z D model. The -(0+ (3)wD2 term represents the net loss of detritus due to 

zooplankton feeding on detritus - detritus is lost due to zooplankton grazing by an 

amount G2, where G2 = >..wD2Z/(J.L2+p2+wD2), but an amount (1-0-f3)G2 is then 
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(1-y)dZ 2 

z 

D rP p 

u 

k(No-N) 

Figure 7.1: Zooplankton now graze on detritus in addition to phytoplankton, repre­

sented by G2 • As with grazing on phytoplankton, a proportion 0: fuels zooplankton 

growth, {3 is excreted and (1 - 0: - (3) is returned to detritus as faecal pellets. The 

grazing-on-phytoplankton function, Gl, now depends on D as well as P and Z. 
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returned to detritus as faecal pellets, giving the net result of -G2 + (1- a - f3)G2 = 

-( a + f3)G2. Setting w = 0 means that the preference of zooplankton for detritus is 

zero, which gives us the previous N P Z D model. 

The incorporation of multiple zooplankton grazing into the model only adds one 

extra parameter, w, to the system. Fasham (1993) had zooplankton grazing on phy­

toplankton, detritus and bacteria, for which the respective nominal preference values 

used were PI = 0.5,P2 = 0.25 and P3 = 0.25, (FDM did not state any values). Since 

w = P2/PI, we use Fasham's values to give a default value of w = 0.5. The zooplank­

ton palatability for phytoplankton is therefore assumed to be twice that for detritus. 

We take a range of w E [0,2], so that the maximum value gives the converse situation 

to the default, in that the palatability for detritus is twice that for phytoplankton. 

7.3 Analysis 

The Jacobian of a steady state is given by 

A= 
_ dN + 2/lAe2p J/ 

(o+N)(b+cP):I ( .. 2+P 2+W D 2):I 

.bN -r-.-Ic- 2A(e
2

+ wD2 )PJI 
(O+N)(b+cP):I (,,2+P2+WD2)' 

o 201)',,2 PH 

( .. 2+P2+W D2) , 

o 
2 [(1_ .. _,,) .. 2+wD2] A PJI 

.. + ( .. 2+P2+W D2)' 

[(1_ .. _,,)p2_< .. +,,).,D2] ~ 
,,'+P'+.,D' 

301),,,'wDS 

( .. 2+P2+W D2) , 

_ 2 [p2+( .. +,,) .. 2)] AwD. _ .. 

( .. 2+P2+W D2) , 

evaluated at the steady-state values of N, P, Z and D, where K = </> + 'IjJ + k. The first 

column is the same as for the previous NPZD model studied in Chapter 6. But the 

new multiple-grazing functions mean that D now appears in each of the other terms 

of the Jacobian. The steady states are obtained by solving the four simultaneous 

equations 

0 
N a f3)..(P2 + WD2)Z 2 

(7.8) - -e+Nb+cP P + J.L2+p2+ wD2 +,),dZ +</>D+k(No-N), 

N a )..p2Z 
0 - P-rP- -(s+k)P (7.9) 

e + N b + cP J.L2 + p2 + wD2 ' 

0 -
a)..(p2 + WD2)Z _ dZ2 

J.L2 + p2 + WD2 ' (7.10) 
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(7.11) 

Clearly, solutions which have Z = 0 will be the same as the solutions of the 

previous N P Z D model, since the new grazing functions (the only difference between 

the models) always appear as a multiple of Z. Thus there is a steady state (No, 0, 0, 0), 

for which the Jacobian is the same as that for (No, 0, 0, 0) for the previous model. 

The four eigenvalues are therefore -k, ~, 0 and -4> - .,p - k, where 

aNo <P= -r-s-k 
b(e+No) , 

and numerical simulations again suggest that (No, 0,0,0) is unstable for ~ > 0, and 

stable for ~ < o. 
The steady states (Nl*' Pl*' 0, Dl*) and (N2 *, P2 *,0, D2 *) have the same definitions 

as in Chapter 6; (N2 *, P2 *,0, D2 *) is not considered further since it can never enter 

the positive hexadectant, the region of phase space given by {N, P, Z, D ~ o}. As for 

Chapter 6, we have (Nl *, Pl *, 0, Dl*) --+ (No, 0, 0, 0) as <P --+ O. 

The Jacobian at (Nl *, Pl *,0, Dl*) is 

A= 

aeP abN k 
(e+N)2(HcP) (e+N)(HcP)2 - r - s -

o 0 

o r 

(3 A (P2+wD2) 
~2+P2+wD2 

aA(p2+wD2) 
~2+P2+wD2 

o 

o 

Only the third column is different to the equivalent Jacobian for the previous model, 

but, by looking at the third row, we see that 

a,x(pl *2 +wDl*2) 

1-£2 + H *2 + wD l *2 

is an eigenvalue, and since it is always positive, for Pl*, Dl * i=- 0, the steady state 

(Nl * , Pl *, 0, Dl *) can never become stable. This is the case for the previous N P Z D 

model, plus for the equivalent steady state (Nl*' Pl *, 0) of the original N P Z model 

studied in Chapter 3. By following the same arguments as for the previous N P Z D 
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model, it can be shown that there are no other steady states with at least one of 

N, P, Z or D zero, and the remaining variables non-negative, and so we now look for 

steady-states (N*, P*, Z*, D*), with all the variables taking strictly positive values. 

In the N P Z D model in Chapter 6, the dZ / dt equation only contains P and Z, 

and is independent of Nand D. This means that dZ / dt = 0 can be rearranged to 

express Z in terms of P in order to calculate the steady states, as given by (6.13). 

However, in the multiple-grazing model we are considering now, D appears explicitly 

in the dZ/dt equation. So, from (7.10), we cannot express Z in terms of P alone, but 

as a function of P and D, viz 

Z = O:A(P2 + WD2) . 
d(J.L2 + p2 + WD2) 

(7.12) 

Adding (7.8), (7.9), (7.10) and (7.11) gives, upon rearrangement, the following ex-

pression for N: 

N = No _ (1-'Y)dZ
2 

k 
(s + k)P 

k 
("p+k)D 

k 
(7.13) 

Thus we can express Nand Z in terms of P and D. When we substitute for Nand Z 

into (7.8) and (7.11), we obtain a pair of multivariate polynomials in P and D. One 

polynomial is sixth order, and the other is eleventh order. This makes any further 

analysis impossible. This is unlike the previous N P Z D model, for which, although 

we could only reduce the solutions to a single tenth-order polynomial in P, we could 

show that the constant term of the polynomial tends to zero as <I> -+ 0, and so the 

(N*,P*,Z*,D*) solution degenerates to (No,O,O,O) at <I> = 0, which is the three-way 

transcritical bifurcation. But the nature of solutions of the form (N* , P*, Z*, D*) for 

the multiple-grazing model must be determined by numerical means. 

In Figure 7.2 we show how (No, 0, 0,0), (Nl *, Pl*, 0, Dl *) and (N*, P*, Z* ,D*) vary 

with the value of T. The axes scales and the key are the same as for Figure 6.2 for 

the previous NPZD model. At the default value of T = 0.15 we find a steady 

state (N*, P*, Z*, D*) in the strictly positive hexadectantj this cannot be calculated 

analytically, but by integrating the system in time from an initial condition a stable 

steady state is reached (this will be shown explicitly in Figure 7.3(a)). By starting 
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Figure 7.2: Location and stability of the steady states (No, 0,0,0), (Nl *, PI *,0, Dl *) 

and (N*, P* , Z*, D*) as r is varied. The key indicates the signs of the real parts of 

the four eigenvalues, plus the corresponding stabilities, The three-way transcritical 

bifurcation again occurs at r = 0.86. (N*, P*, Z*, D*) undergoes a Hopf bifurcation 

at r = 0.073 (solid square), and further bifurcations when D* < o. 

1.2 
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from a host of initial conditions, it appears that the steady state found is the unique 

steady state in the strictly positive hexadectant. 

Figure 7.2 shows that the three-way transcritical bifurcation between (No, 0, 0, 0), 

(Nl *, PI *, 0, Dl*) and (N*, P*, Z*, D*), that exists for the N P Z model in Chapter 3 

and the previous N P Z D model, does occur for the multiple-grazing model. Again 

it occurs when ~ = 0, which is the point r = 0.86, outside of the realistic range of 

values for r. The locations and stabilities of (No, 0, 0, 0) and (NI *, Pl *, 0, Dl *) are the 

same as for the previous NPZD model, as deduced in the analysis. 

(N*, P*, Z*, D*) leaves the positive hexadectant through the three-way transcrit­

ical bifurcation at r = 0.86, and near to the bifurcation its behaviour is the same 

as for the previous N P Z D model. But (N*, P* , Z* , D*) is not stable for all values 

of r < 0.86. At r = 0.073 it undergoes a Hopf bifurcation and loses stability, as 

indicated by the solid red square. This does not occur for the previous models, al­

though a Hopf bifurcation does occur at negative (and hence unrealistic) values of r 

in those models, but there was no need to mention this before. This fact is suggested 

by Figures 3.4( e) and 6.5( e), since the curves tracing the location of Hopf bifurcation 

A look as though they will reach the default value of d = 1.0 at a negative value of r, 

and indeed we have verified that they do. Thus it appears that the Hopf bifurcation 

has simply entered the realistic positive range of r values, and this is not actually a 

major qualitative difference between the models. 

Comparing the ecologically realistic values of the steady state (N*, P*, Z*, D*) to 

those for the previous N P Z D model, we find that the values of P* are practically 

the same. For the multiple-grazing model N* takes higher values, Z* is higher (as 

would be expected since it has more available food) and D* is lower, since it is now 

consumed by the zooplankton. 

We now explain the extra bifurcations of (N*, P*, Z*, D*) that are shown in Fig­

ure 7.2, once it has passed through the three-way transcritical bifurcation ('passed 

through' in the sense of r increasing through 0.86). Although N* and Z* remain pos­

itive, and P* becomes positive again, Figure 7.2(d) shows that D* remains negative, 

and so we are assured that (N*, P*, Z*, D*) does not re-enter the positive hexadectant, 
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but that it remains outside, taking ecologically unrealistic values. We nevertheless 

explain the bifurcations that it undergoes, since for completeness they are shown in 

Figure 7.2. The value of r does not increase by much from the three-way transcritical 

bifurcation value of 0.86 before (N*, P*, Z*, D*), which has P*, D* < 0, undergoes a 

fold bifurcation at r = 0.92. (N*, P*, Z*, D*) does not become stable, but has two 

eigenvalues with negative real parts, and two with positive real parts, as indicated 

by the dashed red line. P* then increases to zero as r decreases, and an eigenvalue 

passes through zero at a transcritical bifurcation with a steady state of the form 

(N,O,Z,D), with N,Z > 0 and D < O. (N*, P*, Z*,D*) then has only one eigen­

value with positive real part, as indicated by the dotted red line (the behaviour of P* 

shown in Figure 7.2(b) does not show up too clearly, but the stability is clearly shown 

in the other diagrams). (N*, P*, Z*, D*) then undergoes a second fold bifurcation, 

this time becoming stable (the positive real eigenvalue becomes negative). Although 

(N* , P*, Z*, D*) does become stable, trajectories starting within the ecologically real­

istic positive hexadectant cannot reach it, since dDjdt > 0 on the hyperplane D = 0 

and so D cannot become negative. (N*, P*, Z*, D*) then loses stability at another 

transcritical bifurcation with a steady state of the form (N, 0, Z, D), with N, Z > 0 

and D < 0, and as r continues to increase it persists with one positive real eigenvalue. 

7.4 Time series and phase portraits 

Figure 7.3(a) shows the time series and trajectory (as an NPZ projection) of the 

system from the initial condition (N, P, Z, D) = (0.4,0.1,0.05,0.08), with all of 

the parameters fixed at their default values. The system settles down to a steady 

state with values (N, P, Z, D) = (0.36,0.035,0.091,0.036); this has already been in­

dicated by Figure 6.2 at the default value of r = 0.15. Comparing these values to 

the equivalent steady state for the previous N PZD model, given by (N, P, Z, D) = 
(0.33,0.034,0.072,0.060), we see that the steady state for the multiple-grazing model 

has slightly higher values of Nand P, an increase in the Z steady-state value of 

26%, and a reduction in the D steady-state value of 41 %. The changes in Z and D 
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200 

Figure 7.3: The time series and trajectory at (a) d = 1.0, (b) d = 1.5 and (c) d = 1.25, 

with all of the other parameters fixed at their default values. The trajectory is shown 

as the N P Z projection of the full N P Z D phase space. 
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(b) d = 1.5 - the system settles down to a steady state, in contrast to the 

previous models, for which oscillations occur at this value of d. 
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(c) d = 1.25 - the system settles down to a stable limit cycle at this intermediate 

value of d. The period is 59 days, much longer than that of the limit cycle 

at d = 1.5 for the previous N P Z D model. 
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values are what would be expected as a result of allowing the zooplankton to graze 

on the detritus. The minor increase in the P value from that of the previous model 

may be expected, since the zooplankton now have an alternative source of food to 

phytoplankton. However, when the system is at the steady state, the actual loss of P 

due to Z grazing, given by the different definitions of G1 in each model, is higher for 

the multiple-grazing model than for the previous NPZD model. So Z are grazing 

more P per day than in the previous model, but the actual P steady-state value is 

higher. This can be explained by the small increase in N, which is due to increased 

regeneration from excretion. It is interesting to note that nutrient limitation to phy­

toplankton growth is given by N / (e + N), and although the N steady-state value of 

0.36 is well above the half-saturation constant value of e = 0.03, the difference in N 

values between the models does seem to influence the P steady-state value. 

The transient time taken to reach the steady state is longer than for the previous 

model. This is because the eigenvalues with real parts closest to zero, which for 

both models are a complex and conjugate pair, have real part equal to -0.078 for the 

original N P Z D model, whereas for the multiple-grazing model the real part is -0.022. 

Thus, the steady state in the multiple-grazing model is less strongly attracting, and 

hence the transient time is longer. Starting from a host of other initial conditions 

in the strictly positive hexadectant, all trajectories converge onto the same steady 

state, implying that (N, P, Z, D) = (0.36,0.035,0.091,0.036) is the unique steady 

state in the hexadectant. Unlike the previous models, we could not verify this from 

the analytical calculations. 

In Figure 7.3(b) we show what happens when d is set to 1.5. A steady state is 

reached, which is unlike the previous NPZD model and the original NPZ model, for 

which a stable limit cycle occurs for d = 1.5. All four variables take roughly the same 

values at the steady states; the values of N, P, Z and D are more easily compared to 

those for d = 1.0 by examining the one-parameter bifurcation diagrams to be shown 

in Section 7.5. 

In Figure 7.3(c) we show that when d = 1.25, halfway between the previous two 

values, the system settles onto a limit cycle. The cycle has a period of 59 days, much 
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larger than the period of 34 days attained by the limit cycle at d = 1.5 for the previous 

N P Z D model. Figure 6.4( e) showed, for the previous model, that the period remains 

close to 34 days as d is varied (and the other parameters kept constant). 

So the oscillations have not disappeared, rather the range of d values for which they 

occur appears to have been shifted along, compared to the previous N P Z D model, 

and the period has lengthened. We now demonstrate this shifting by constructing 

one-parameter bifurcation diagrams, using d as the bifurcation parameter. 

7.5 One-parameter bifurcation behaviour 

Figure 7.4 shows that oscillations occur at lower d values, and across a much narrower 

range of d values, than for the previous N P Z D model. The Hopf bifurcations A and 

B occur at d = 1.11 and d = 1.31, compared to d = 1.43 and d = 1.84 for the previous 

model. Hopf bifurcation A is subcritical, rather than supercritical, but we see that 

the branch of unstable limit cycles emanating from it undergoes a fold bifurcation 

close by, resulting in a branch of stable limit cycles which then collapses onto Hopf 

B. Thus the fact that Hopf A is sub critical is not too important, and simply leads to 

a very narrow region of d values (between the fold bifurcation of the cycles and Hop£ 

A) for which a stable limit cycle and a stable steady state coexist. 

Comparing Figures 7.4(a) and 6.4(a), we see that at values of d above Hopf B, N* 

is lower for the multiple-grazing model than for the previous N P Z D model, whereas 

at values of d below Hopf A, N* is higher for the multiple-grazing model. The lowest 

minimum values of N reached along a cycle are similar for both models, but higher 

maximum values are attained for the multiple-grazing model. 

From Figures 7 .4(b) and 6.4(b) we see that at values of d below Hopf A, P* is 

fairly similar for both models. But for values above Hopf B in the multiple-grazing 

model, P* is much higher than for the previous N P Z D model. It even reaches higher 

values than the maximum values of P along the limit cycles in the previous model. 

In both the N P Z model and the previous N P Z D model, the maximum P values 

along the cycles exceeded the highest P* value reached, whereas such high values are 
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Figure 7.4: Variations in the steady-state values of (a) nutrient, (b) phytoplankton, 

(c) zooplankton and (d) detritus as d is varied. A solid line is a stable steady state, a 

dashed line is an unstable steady state, a solid square is a Hopf bifurcation, and solid 

(open) circles indicate the maximum and minimum values of the stable (unstable) 

limit cycles. Hopf bifurcation A is sub critical, whilst B is supercritical. 
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(c) The zooplankton steady-state values are higher than for the previous N P Z D 

model, and the amplitude of the oscillations is greater, despite the oscillations occur­

ring across a narrower range of d. (d) The detritus steady-state and limit cycle values 

correlate to the phytoplankton values. 
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(e) The period of the stable limit cycles varies between 48 and 61 days. These are 

higher periods than shown in the equivalent Figure 6.4( e) for the previous N P Z D 

model, and the range of periods attained is greater, despite the actual range of d 

values exhibiting oscillations being smaller. The open circle indicates the period of 

the unstable cycle, close to subcritical Hopf bifurcation A. 

reached by the steady state in the multiple-grazing model. 

As expected, we see, from Figures 7.4(c) and 6.4(c) that the values of Z· are 

greater for the multiple-grazing model. Also the values of Z during the oscillations 

are higher than the values attained in the previous model, both during the cycles and 

for steady states. 

From Figures 7.4( d) and 6.4( d) we see that D· is usually lower for the multiple­

grazing model than for the previous N P Z D model. This would be expected, due to 

the consumption of detritus by zooplankton in the multiple-grazing model. However, 

for d E (1.32,1.43), the steady state is stable for both models, and D· is actually 

greater in the multiple-grazing model. This curious effect demonstrates that the 

nonlinearities and feedback loops in these models mean that the expected outcome of 

an alteration does not always occur, i.e. letting zooplankton eat the detritus will not 



Multiple zooplankton grazing 197 

always reduce the detritus concentration. Similar 'unexpected effects' are investigated 

by Yodzis (1981, 1988, 1989) and Edwards et al. (1997) in the context of perturbation 

experiments on ecological communities which lie in equilibrium. The region of d for 

which D* is greater in the multiple-grazing model than in the previous N P ZD model 

lies to the right of the oscillatory region for the multiple-grazing model, but to the 

left of the oscillatory region for the previous N P Z D model. So the fact that the 

oscillations have shifted along, as indicated by the d values of the Hopf bifurcations 

moving, may be seen as a warning that the quantitative nature of the steady states 

may change significantly. 

Finally, Figure 7 o4( e) shows that the period of the oscillations ranges between 48 

and 61 days as d varies. This is greater variation than for the previous N P Z D model, 

despite the range of d values being smaller. The period remains at higher values 

than those shown in the equivalent Figure 604( e) for the previous model, indicating 

that allowing the zooplankton to graze on the detritus causes a slowing down of the 

oscillations. 

7.6 Two-parameter diagrams 

In Figure 7.5 we present the two-parameter bifurcation diagrams which indicate how 

the Hopf bifurcations persist as each of the parameters is independently varied. The 

most striking difference between these diagrams and the corresponding ones in .Fig­

ure 6.5 for the previous N P Z D model, is that the regions of oscillations are much 

narrower for the multiple-grazing model. This is not unexpected, since in Figure 704 

we showed that the oscillations occur over a much narrower range of d than for the 

previous NPZD model. However, despite this narrower range of d, the pictures for 

each parameter are still remarkably similar for the two models - the oscillations tend 

to persist or not persist, as each parameter is varied, in the same way for both models. 

The most informative diagram is Figure 7.5(0) for w, the zooplankton feeding 

preference, a parameter which does not appear in the previous N P Z D model. Recall 

that w = 0 means that zooplankton do not graze on detritus at all, and so w = 0 
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Figure 7.5: Two-parameter bifurcation diagrams showing how the positions of the 

Hopf bifurcations in Figure 7.4 change as each other parameter, together with d, is 

independently varied from its default value. The steady-state stabilities from Figure 

7.4 are shown as a horizontal line at each default parameter value. Hopf A and (ctd.) 
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Hopf B are indicated in (a). Non-horizontal solid curves starting from Hopf B indicate 

supercritical Hopf bifurcations, and non-horizontal curves of short dashes from Hopf 

A represent sub critical Hopf bifurcations. In (c), (d), (g), (i), (j), (1), (n) and (0), 

curves of long dashes indicate fold bifurcations of the steady state. (ctd.) 
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In (0), W = 0 corresponds to the previous N P Z D model; at small values of w the 

Hopf bifurcations are shifted to the left and get closer together, but then the d values 

do not change greatly as w increases. 
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corresponds to the previous model. Thus on Figure 7.5, the d-values of the Hopf 

bifurcations at w = 0 are the default d-values of the Hopf bifurcations in the previous 

model. We see that a very small increase in w from zero causes Hopf B to move to 

the left (its d value decreases) by a significant amount. Hopf A initially moves to the 

right as w increases from zero, and then it moves to the left. At w = 0.05 Hopf A is 

again at d = 1.43, the same value as for w = o. But at w = 0.05 Hopf B has moved to 

d = 1.62, compared to the value of d = 1.84 at w = o. The value of w = 0.05 means 

that the zooplankton preference for phytoplankton is twenty times their preference for 

detritus, but even this small predilection for detritus has an impact on the dynamics, 

compared to the w = 0 situation of complete distaste for detritus. 

Hopf A is supercritical at w = 0, and remains so as w increases, until w = 0.39 

where it becomes subcritical at, by definition, a Bautin bifurcation. This explains 

why in Figure 7.4, for which w = 0.5, Hopf A is subcritical. As w increases further, the 

Hopf bifurcations remain practically the same distance apart, and move only slightly 

to the left. Thus, at such values the qualitative behaviour is fairly insensitive to the 

value of w, whereas at the low values small changes in w can have large consequences. 

Fold bifurcations of the steady state occur at high values of w. There are actually 

two curves of fold bifurcations which terminate at a cusp point at w = 1.56, although 

the curves are very close together and look like just one curve in Figure 7 .5( 0). The 

nature of the curve of fold bifurcations of limit cycles, which originates from the 

Bautin bifurcation of Hopf A at w = 0.39, will be deduced in Section 7.7. 

The diagrams for each of the parameters are remarkably similar to those for the 

previous N P ZD model, despite the narrower regions of oscillations and the fact 

that Hopf A is subcritical at the default values in the multiple-grazing model. For 

example, Figures 7 .5(b) and 6.5(b) show that for both N P Z D models, oscillations 

do not occur for c greater than about 0.6, and can occur at all values below 0.6. 

Oscillations can occur across the full ranges of r, sand '1 for both models. The fact 

that at the default parameters the oscillations occur across only a small range of d 

in the multiple-grazing model, makes it surprising that the oscillations should still 

persist across the full ranges of these parameters, and that the bifurcation diagrams 
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in general remain so similar between the two models. Bogdanov-Takens bifurcations 

occur at k = 0.091 and No = 1.85, lower values than for the previous NPZD model 

and the original N P Z model. 

In Figure 7.50), for 1, fold bifurcations of the steady state occur, but these are not 

present for the original N P Z D model. This can be explained because fold bifurcations 

occur at high levels of w, and so if we had instead computed the bifurcation diagrams 

with w set to a high default value, fold bifurcations would appear in each of the 

diagrams. The chosen value of w = 0.5 can be considered an intermediate value, for 

which the fold bifurcations start 'creeping in' to some of the diagrams. 

The diagrams which show the most difference between the two N P Z D models 

are Figure 7.5(1) and Figure 6.5(1) for p., the half-saturation constant for zooplankton 

grazing. This is not too surprising, since the zooplankton grazing phytoplankton 

function, Gb has changed definition from the previous model, effectively replacing p.2 

with p.2 + WD2, and the introduction of the zooplankton grazing detritus function, 

G2 , means that I-' appears elsewhere in the equations. In Figure 7.5(1) we see that 

the two curves of Hopf bifurcations cross over, and fold bifurcations of the steady 

state occur. The two fold curves terminate at a cusp point. This looks quite different 

to the equivalent picture, Figure 6.5(1), for the previous N P Z D model. But in 

actual fact, the two pictures are qualitatively the same. For the previous model 

the picture is qualitatively the same as that for the multiple-grazing model, but is 

shifted to the right, outside of the plotted range. The cusp point of the curves of 

fold bifurcations occurs at d = 2.26. The original N P Z model also exhibits this 

bifurcational behaviour, with the cusp point occurring at d = 2.29, as discussed in 

Section 4.6. So Figure 7.5(1) and Figure 6.5(1) are not as qualitatively different as 

first appears. 

The other parameters involved in the zooplankton grazing functions are Q, f3 and 

A. The corresponding bifurcation diagrams for these parameters show the same qual­

itative nature between the two models (except that the fold bifurcations for f3 in the 

first NPZD model occur out of the range plotted). 

Figure 7.5(m) shows that oscillations can occur across the whole range of </>, the 
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remineralisation rate of detritus, whereas Figure 6.5(m) showed that the oscillations 

do not occur at low values of <P for the previous N P Z D model. It may appear as 

though the curve of Hopf bifurcations in Figure 6.5(m) has simply been stretched 

out, so that in Figure 7.5(m) a minimum still occurs, but at a negative value of <p. 

However, this is not the case. The curve from Hopf B in Figure 7.5(m) actually 

reaches a minimum d value and then a minimum <p value at <p = -0.44, and then <p 

increases together with d, and the curve appears to asymptote to <p = 0 as d increases. 

So it does not join up to the curve from Hopf A, as occurs in Figure 6.5(m). 

Thus, the general qualitative nature of the bifurcational structure of the previous 

N P Z D model, and of the original N P Z model, is retained upon the introduction of 

multiple grazing by zooplankton, but there are significant quantitative changes. 

7.7 Dependence of the period of oscillations on the 

parameter values 

In Figure 7.6 we show the period-contour diagrams for <p, "" and w, the three param­

eters that appear in the multiple-grazing model but not in the original N P Z model. 

Figure 7.4( e) in Section 7.5 shows that as d changes, and the other parameters are 

set to their default values, the period of the oscillations varies between 48 and 61 

days. Thus we know a priori that there must be 50-, 55- and 60-day contours passing 

through the default values of each of the parameters in the three diagrams of Figure 

7.6. 

We firstly discuss Figure 7.6( c) for the zooplankton feeding preference, Wj note 

that we have plotted d from 0.8 to 1.8 rather than the usual range of 1.0 to 2.0 in 

order to show the full behaviour. Since W = 0 corresponds to the previous N P Z D 

model, there is, as expected, a 35-day contour close to W = O. Figure 7.6(c) shows 

that as W increases from zero, the period of the oscillations increases quite sharply at 

first, attaining over 50 days when W has only reached w = 0.2. As w increases further, 

the period is roughly 60 days for most values of d. But at values of d close to Hopf B 



Multiple zooplankton grazing 

0.20 
(0) ;; / 

"'~ 

-e: 0 .15 ~ 
.2 
e 
c 
0 

~ 0.10 
~ 
0 
\.. 

~ Ql 
c 
'E 
Ql 

0.05 \.. 

I 
0 

0.00 f 
1.0 1.2 1.4 1.6 

Predation on Z, d 

2.0 
(c) 

:3 1.5 
a> 
u 
c 
~ 
Q) 

~ 1.0 
0. 

0' 
c 
"0 
Q) 

~ 
0.5 

N 

0.0 
0.8 1.0 1.2 1.4 

Predation on Z, d 

1.8 2.0 

1.6 1.8 

0.8 (b) 

~ 0.6 

eli o 
\.. 

(/) 

.Q 0.4 
()1 
c 

:.;< 
c 

. iii 

o 0.2 

204 

0.0 ........ -=:.......-L-'-.......... ....L-.......... ____ .l.-.i.-'oo..........L ___ -'--'-1 

1.0 1.2 1.4 1.6 1.8 2.0 
Preda tion on Z, d 

Figure 7.6: The period-contour diagrams for each of the parameters ¢>, 'IjJ and w which 

do not appear in the N P Z model. As w decreases to zero, the period reduces to 35 

days, corresponding to the previous N P Z D model. 
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higher periods are reached, as indicated by the closely-compacted contours, with the 

highest contour reached being that for a period of 100 days. 

The left-hand endpoints of the 50 and 55 contours are fold bifurcations of the limit 

cycles. This must be so since at the corresponding values of w Hopf A is subcritical 

(and therefore the branch of cycles emanating from it is unstable, but the contours 

only represent the period of stable cycles). The closeness of the two endpoints to 

the curve of sub critical Hopf bifurcations shows that the region of coexistence of a 

stable limit cycle with a stable fixed point, defined as the region lying between the 

Hopf bifurcations and the fold bifurcations of the limit cycles, is very small. Thus 

the region of oscillations is bounded, more or less, by the curves of Hopf bifurcations. 

This is important in interpreting the two-parameter bifurcation diagrams discussed 

in Section 7.6, and means that we can talk of the oscillatory region as being, as near 

as makes no real difference, the region bounded by the curves of Hopf bifurcations. 

Figure 7.6(a) shows that as the detritus remineralisation rate, 4;, increases, the 

period tends to increase. This was also the case for the previous N P Z D model. 

Since, as already mentioned, there must be 50-, 55- and 60-day contours passing 

through the default value of 4;, the fact that no other contours appear in the diagram 

(the 45 and 65 contours lie outside of the plotted range) implies that the variation of 

period with 4; is as small as possible. And furthermore, the 50 and 55 contours are 

practically vertical and remain very close to Hopf A, and so away from Hopf A the 

period remains close to 60 days. 

Figure 7.6(b) for the detritus sinking loss rate, 'I/J, shows much more variation in 

the period than Figure 7.6(a) for 4;. For the previous NPZD model the variation 

for 'I/J is the same as that for 4;, although the actual range of'I/J exhibiting oscillations 

is smaller for the previous model than for the current multiple-grazing model. At 

high values of'I/J the period gets as low as 35 days, and at values approaching zero it 

reaches 150 days. 

U sing the same approach discussed in Section 6.7 for the previous N P Z D model, 

we have verified whether or not the period changes in the same direction as for 

the N P Z model when each of the other parameters is increased and decreased. The 
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starting point we used for each parameter was the limit cycle that occurs for d = 1.21, 

which is the midpoint of the region of oscillations, with all of the other parameters 

set to their default values. This cycle has a period of 56.6 days. 

As for the previous N P Z D model, we find that the period tends to vary with 

each parameter in the same direction as that shown in Figure 3.7 for the N P Z 

model. The situation for {3 is not as clear cut as for the other parameters, with 

the 60-day contour running almost the full length (in a vertical direction) of the 

oscillatory region, whereas for the N P Z model the contours tend to be horizontal. 

At the maximum value of {3 = 0.75 the period reaches 89 days, much higher than 

the period attained at low levels of {3. Thus, in agreement with the behaviour of the 

N P Z model, the greatest periods are reached at the high values of {3. For e there 

is also a 60-day contour running from low to high values of e, and there is no clear 

trend in the period as e varies. For the remaining parameters the period does behave 

in the same qualitative way as for the N P Z model and the previous N P Z D model. 

7.8 Discussion 

We have incorporated the consumption of detritus by zooplankton into the model 

studied in Chapter 6. This has involved adding extra structure to the food web and 

making the equations of the model more complex, but only adds one extra parameter 

to the system. This parameter, w, represents the zooplankton's preference for detritus 

compared to their preference for phytoplankton, and so w = 0 corresponds to the 

previous N P Z D model. 

In Chapter 6 the bifurcational structure of the N P Z D model was found to be 

remarkably similar to that of the original N P Z model investigated in Chapter 3. 

In the current chapter we have found that allowing zooplankton to have an alter­

native source of food, namely detritus, does change the bifurcational structure, al­

though the qualitative characteristics of the previous structure are still there. The 

three-way transcritical bifurcation, at which the positive steady state of the form 

(N*, P*, Z*, D*) enters the ecologically realistic positive hexadectant, still occurs, 



Multiple zooplankton grazing 207 

and takes place at the same parameter values as before. 

The Hopf bifurcations, whose behaviour was investigated in Chapters 3 and 6, have 

also survived the inclusion of zooplankton grazing on detritus. The one-parameter 

diagrams of Section 7.5 show that the Hopf bifurcations occur at lower and closer 

together d values (with all other parameters set to their default values) than for the 

previous N P ZD model, and so the oscillations occur across a narrower range of d. 

However, the two-parameter diagrams of Section 7.6 illustrate that, as each of the 

other parameters is independently varied, the behaviour of the Hopf bifurcations is 

generally qualitatively the same as that for the previous N P Z D model. The fold 

bifurcations and Bogdanov-Takens bifurcations also behave similarly. 

Figure 7.5(0) shows that when the zooplankton have only a small predilection for 

detritus the dynamical behaviour is quite sensitive to the precise value of w, whereas 

when the zooplankton have similar likings for detritus and phytoplankton (w ~ 1), 

the behaviour is relatively independent of the precise value of w. So the qualitative 

change in the structure of the model introduced by allowing zooplankton to have a 

very slight taste for detritus, compared to having no taste at all (Chapter 6), does 

alter the dynamical behaviour of the system. 

The period~contour diagram of Figure 7.6(c) shows that as w is increased from 

zero, so that the previous N P Z D model is transformed continuously into the multiple­

grazing model, the period increases. This explains why the periods of the oscillations 

in the time series and one-parameter bifurcation diagrams are longer than for the 

previous N P Z D model. 

The results from this chapter plus Chapters 3 and 6 show that the N P Z model 

and the previous NPZD model exhibit similar dynamical behaviour, which becomes 

shifted if zooplankton are allowed to graze on detritus. Thus we conclude that, at 

least for our models, if knowledge of the detritus concentration is not required then 

it only needs to be explicitly modelled if zooplankton consume it as an alternative 

food source to phytoplankton. 



Chapter 8 

Seasonal forcing of the mixed-layer 

depth 

8.1 Introduction 

We now add seasonal forcing to each of the models investigated in Chapters 3, 4, 6 

and 7. The forcing is introduced by explicitly including the mixed-layer depth in the 

models, and then varying its value throughout the year. Time series are plotted, and 

the differences in behaviour between the models are explained using the analytical 

and numerical results derived in the aforementioned chapters. Parameter values are 

then altered, and the consequences are also explained using the previous results. This 

chapter exemplifies the usefulness of the many one- and two-parameter bifurcation 

diagrams and the period-contour diagrams computed in this thesis in explaining the 

output of models when parameter values are changed. 

8.2 Explicit representation of the mixed-layer depth 

The mixed-layer depth, subsequently denoted M, appears implicitly in the definitions 

of the parameters a, k and s in the N P Z model formulated in Chapter 2, and also in 

the detritus sinking loss rate 'I/J in the two N P Z D models of Chapters 6 and 7. Since 

M is no longer going to be held constant, we introduce new parameters a', k', s' and 

208 
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.,p', such that 

a' 
a= M' 

k' 
k= M' 

s' 
s= M' 

'I/J' 
.,p = M' 

209 

(8.1) 

and use these substitutions to replace a, k, sand .,p in the equations for the models. 

The parameters s' and .,p' thus represent the sinking velocities of phytoplankton and 

detritus respectively (and are divided by M to give the proportions of P and D that 

are lost from the mixed layer each day, i.e. sand .,p). The default values of the new 

parameters are a' = 2.5, k' = 0.625, s' = 0.5 and 'I/J' = 1.0, so that M = 12.5, as used 

in the previous chapters, gives the default values of a, k, sand 'I/J. 

We consider the effects of a deepening and shallowing of the mixed layer in the fol­

lowing manner, originally introduced by Evans and Parslow (1985), and subsequently 

adopted by Fasham et al. (1990) and Fasham (1993). 

The time-dependent function h describes the rate of change of the mixed-layer 

depth, and is defined as 
dM 

h(t) =-. 
dt 

The water below the mixed layer is assumed to contain nutrients, at a concentration 

No, but no phytoplankton or zooplankton, as has already been assumed in all of our 

models. This water becomes entrained into the mixed-layer water when the mixed 

layer deepens. The total biomass of plankton is thus diluted into a greater volume of 

water, and so the mixed-layer concentrations of phytoplankton, P, and zooplankton, 

Z, which are measured as biomass per cubic metre of water, are decreased. The 

concentration of nutrients, N, will increase in proportion to the value of (No - N). 

When the mixed layer shallows, nutrients and phytoplankton are left behind in 

the deep water, or detrained, but the volumetric concentrations (as biomass per cubic 

metre) within the mixed layer remain the same. The zooplankton are assumed to be 

motile and able to actively maintain themselves within the mixed layer, and so when 

shallowing occurs the zooplankton become more concentrated in the mixed layer, and 

Z increases. Evans and Parslow (1985) modelled this asymmetry by defining 

h+(t) = max{h(t), O}, 
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and using h+(t) in the equations representing nonmotile entities, namely Nand P. 

The equations for the original N P Z model formulated in Chapter 2 thence be­

come, upon inclusion of a varying mixed-layer depth: 

dN N a' f3>.p 2 
2 (k' + h+) 

(8.2) - -e+N(b+cP)M P + rP + jL2 + p2 Z +-ydZ + M (No-N), 
dt 
dP N a' >.p2 (s' + k' + h+) 

(8.3) - P-rP- Z- P 
dt e+N(b+cP)M p,2+p2 M ' 

dZ a>.p
2 

Z _ dZ2 - .!!:..-Z. (8.4) -
dt p.2 + p2 M 

When the mixed-layer depth is constant, h = 0 and the equations are the same 

as those given in Chapter 2. During a deepening of the mixed layer, h > 0 and 

nutrients are entrained into the mixed layer from the nutrient-rich deeper water, 

and the phytoplankton and zooplankton become diluted. The precise expression for 

dilution of, say, zooplankton, comes from noting that the amount of zooplankton 

within the mixed layer beneath one square metre of surface water remains constant 

during deepening. This amount is given by MZ, and so we have. (ignoring grazing 

and predation) 

d dZ dM dZ 
0= d/ MZ ) = Mdt + ZTt = Mdt + hZ 

..... dZ = _.!!:..-Z 
-r dt M' 

During a shallowing of the mixed layer, h < 0 and the zooplankton concentration 

increases; h+ = 0 and so the concentrations of nutrients and phytoplankton remain 

the same. Phytoplankton detrained from the mixed layer are assumed to be lost 

forever and cannot re-enter the mixed layer, and detrained nutrients are similarly 

lost, and have no effect on the constant concentration of nutrient in the sub-mixed­

layer water, No. The equations for the N P Z model with linear zooplankton mortality, 

originally studied in Chapter 4, change in a similar fashion to the quadratic mortality 

case, with the zooplankton mortality term qZ replacing dZ2 in (8.2) and (8.4). 

The N P Z D model of Chapter 6 becomes, upon inclusion of a varying mixed-layer 

depth: 

dN N a' f3>.p 2 
2 (k' + h+) 

dt - - e + N (b+ cP)M P + p,2 + P2 Z + -ydZ + ¢D + M (No - N), (8.5) 
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Figure 8.1: Variation in the mixed-layer depth (in metres) through one year, as us d 

to force the models. 

dP 

dt 
dZ 
dt 

dD 
dt 

(8.6) 

(8.7) 

(8.8) 

The detritus is nonmotile, and is thus diluted during deepening and detrain d during 

shallowing in the same manner as the phytoplankton. A varying mixed-layer d pth is 

incorporated into the multiple-grazing N P ZD model of Chapter 7 in a similar way. 

We consider the mixed-layer depth to vary through the year as shown in Figur 

8.1, where time t = 0 represents midnight at the start of 1st January, and th d pth 

is measured in metres. The piecewise-linear function gives a simple r presentation of 

the three major features of the annual cycle (e.g. Fasham, 1993) - a rapid shallowing 

in the spring, a constant shallow layer throughout the summer, and a de p ning 

during the autumn and winter. Evans and Parslow (1985) also used a piec wis -lin ar 

approximation. For simplicity we do not consider seasonal changes in irradian ,as 

we want to demonstrate how the results of the previous chapters can be used to h lp 

understanding of a forced system. 

The precise function used to represent the mixed-layer depth, where t is measured 
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in days and M in metres, is 

93.575 + 0.705t, 0 ~ t < SO, 

M= 
150 - 2.75(t - SO), SO ~ t < 130, 

12.5, 130 ~ t < 250, 

12.5 + 0.705(t - 250), 250 ~ t < 365. 

The mixed-layer depth varies continuously through the year, except at t = SO where 

there is a small jump of 0.025 m. The value of h, defined as dM / dt, simply takes 

the values of 0.705, -2.75, 0 and 0.705 in the four time intervals given in the above 

definition of M. During the summer, from days 130 to 250, the physical conditions 

correspond to the fixed conditions used for the preceding chapters, i.e. M = 12.5 and 

h= O. 

8.3 A gallery of time series 

We now present numerical simulations for each of the models, with the mixed-layer 

depth forced as given in Figure S.l. For brevity, we shall abbreviate the four models 

as follows: N P Z model - the original three-component N P Z model formulated in 

Chapter 2 and investigated in Chapter 3; N P Z 1 model - the three-component model 

with linear zooplankton mortality investigated in Chapter 4; N P ZD model- the orig­

inal four-component N P Z D model investigated in Chapter 6, for which zooplankton 

do not graze on detritus; and N P Z Dm model- the multiple-grazing four-component 

model investigated in Chapter 7, for which zooplankton graze on both phytoplankton 

and detritus. 

Figure S.2 shows the simulations when all parameters are set to their default 

values. Each model is run until it settles down to a repeating annual cycle, which 

usually occurs after three or four years from an arbitrary initial condition. The final 

year is then plotted. The most notable observation from comparing the time series 

is verification of one of the general conclusions from the preceding chapters. that 

compared to the original N P Z model, Figure S.2( a), the consequences of replacing 

the quadratic zooplankton mortality term with the linear term, Figure S.2(b), are 
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Figure 8.2: The time series for the four models when the mixed-lay r depth is fore d 

as given in Figure 8.1, and all parameters are set to their default values. All four tim 

series repeat themselves each year. The analytical results of the previous hapt rs 

are used to explain the lack of zooplankton in the summer in (b) . 
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much greater than explicitly adding the detritus component to the model, Figure 

8.2(c). 

The analytical and numerical investigations of the preceding chapters are now 

brought together to explain the details of the annual cycles. Firstly consider Figure 

8.2(a) for the NPZ model. The model produces low values of P and Z through 

the winter, and during this time the nutrient concentration approaches that of the 

sub-mixed-Iayer water, namely No = 0.6. This behaviour can be explained from the 

analysis presented in Section 3.2. Recall that the steady state (No, 0, 0) is stable when 

4? < 0, where <P is defined, in terms of the new parameters, by 

a'No s' k' 
<P = bM(e+No) -r- M - M' 

As the mixed layer deepens, CP may become zero due to r remaining independent 

of M, and the other terms in the definition of cP all decreasing. cP > 0 during the 

summer (which we already know from Chapter 3), and cP remains positive until day 

335, when it passes through zero to become negative. <P < 0 then holds until day 

109 the following year; the two dates correspond to when M passes through 71.9 

m. Thus, during the winter (No, 0, 0) is stable, so P and Z approach zero, and 

(N* , P*, Z*) is outside the positive octant (and equivalently for the four-component 

models, (No, 0, 0, 0) is stable and (N*, P*, Z·, D*) is outside the positive hexadectant). 

Note that when we talk about a steady state being stable on a certain day, we are 

thinking in terms of what would happen if the mixed-layer depth was held constant 

at the prescribed depth for that day. For such a scenario, h is then zero, and if the 

system was then run using the fixed depth, the trajectory would approach the steady 

state, or quasi-equilibrium in the terminology of Evans and Parslow (1985). 

The term h+ 1M in the dP/dt equation effectively increases the value of s, and 

would therefore affect the value of 4?, but due to the relatively small values of h+ 1M 
through the year, the effect on <P is minor, simply shifting the time at which cP 

becomes zero in the autumn to seven days earlier (the other cP = 0 occasion, day 109, 

is unaffected since h+ = 0 at this time). 

In Figure 8.2(a) a pronounced bloom of phytoplankton occurs just after the mixed 
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layer stabilises at the summer-time level. The nutrients are almost totally used up, 

and the zooplankton population increases due to the plentiful supply of food. The 

system then settles down to a steady state, the values of which are the same as those 

reached by the trajectory of Figure 3.2(a), since all parameters, plus the mixed-layer 

depth, are at their default values. The steady state (N*, P*, Z*) arises from the 

steady state (No, 0, 0) as cP increases through zero, because at cP = 0 the three-way 

transcritical bifurcation occurs. The behaviour of (N*, P., Z*) will be qualitatively 

the same as that shown in the colour bifurcation diagram of Figure 3.1, although cP is 

changing in a quantitatively different manner (a, sand k are decreasing, rather than 

r increasing). 

Despite the continuous change of the location of the steady state, the bloom 

level of phytoplankton is much higher than the steady-state level. This is due to the 

forcing moving the steady state too fast for the trajectory to track it, together with the 

excitable nature of the system, as discussed by Truscott (1995). Excitability is usually 

thought of as a perturbation from equilibrium leading to a trajectory undergoing a 

large excursion before returning to equilibrium, and is characterised by the s-shape of 

one of the nullclines for a two-dimensional system. In this situation the nullsurfaces, 

as shown in Figure 4.4, are being shifted around by the forcing, and the shape of the 

P nullsurface, Figure 4.4(e), shows how a large increase in P can occur before the 

trajectory reaches the equilibrium (which has a low P-value) 

The small increase in zooplankton prior to the spring bloom is due to the shal­

lowing of the mixed layer concentrating the total zooplankton into a smaller volume 

of water, as modelled by the hZjM term in (8.4). 

At the end of the summer, the deepening of the mixed layer dilutes the phyto­

plankton and zooplankton populations, and decreases the phytoplankton growth rate. 

The abrupt non-smooth nature of the trajectory is due to the non-smooth change in 

the mixed-layer depth on day 250, and the consequent discontinuity in h, and could 

be smoothed out by using a smooth function to represent the mixed-layer depth. By 

the end of the year, cP < 0 and so (No, 0, 0) is stable, and the annual cycle is repeated 

(exactly). 
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Figure 8.2( c), for the N P Z D model, displays very similar behaviour to that of 

the N P Z model, as expected from the results of Chapter 6, although the peak of the 

phytoplankton bloom is lower for the NPZD model. The NPZDm model exhibits 

similar behaviour, although the populations do not quite settle down to the steady 

state in the summer, they just appear to be approaching it. We can explain this from 

the one-parameter bifurcation diagrams of Figure 7.4 - at d = 1.0 the system is much 

closer to a Hopf bifurcation than for the previous two models, and so the steady state 

is less strongly attracting. This was also discussed in Section 7.4 (with reference to 

eigenvalues being closer to zero) in explaining the long transient time of the default 

trajectory of Figure 7.3( a). 

Figure 8.2(b) for the N P Z 1 model presents a different picture to those for the 

other models. A phytoplankton bloom still occurs in the spring, but this is not fol­

lowed by an increase in zooplankton. Rather, the zooplankton population remains 

very low, and does not recover until the autumn, by which time it is too late, since the 

mixed layer is deepening and the phytoplankton population is consequently decreas­

ing. The analysis of Section 4.3.2 showed that the three-way transcritical bifurcation 

does not occur, but that two transcritical bifurcations occur, and the steady state 

(Nl *, Pl *, 0) can become stable, as illustrated in the colour bifurcation diagrams of 

Figure 4.3 and the two-parameter bifurcation diagrams of Figure 4.8. When ~ in­

creases through zero, (Nl*,Pl*,O), rather than (N*,P*,Z*), becomes stable, and 

remains stable whilst the eigenvalue given by (4.15) is negative. This condition is 

also given by n < 0, where n is defined by (4.28). The curves defining n = 0 

are shown in Figure 4.8, for each parameter being independently varied, and Figure 

4.8(a) shows qualitatively how n will become negative when a becomes small due 

to the mixed-layer deepening (we say qualitatively since k and s will also vary, and 

slightly shift the picture). 

n = 0 occurs when M = 66.3m, which happens on days 111 and 327. When the 

mixed layer is shallowing h = -2.75, which essentially just reduces the value of q, 

and taking this into account in the definition of n, n = 0 occurs on day 110, which 

is only one day after q, = o. So (Nl *, Pl *, 0) is stable for only one day - in terms of 
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Figure 4.8(80) a increases across the curve q; = 0 and then n = 0 in one day. 

But when n becomes positive, why does the Z value remain small and the tra­

jectory stay close to (Nt*,Pt*,O) (which was only stable for a day) throughout the 

summer? 

The eigenvalues of (No, 0, 0) are -k, q; and -q, and since the Jacobian at (No, 0, 0) is 
tOlAl ",MJ,II Air t\4bfVAII4I i ,'$ 

upper-triangular, as given in Section 4.3.2, the G9rr@Sp9ifdlag'!9GS1 ma.nif9lds a.re in. 
(_ ~+I)/lfS+i, ',0), 4/1d 50 

the N, P and Z directions respectively. Thl:ls when q; becomes positive, P will be 

repelled from zero but Z will remain small. For the day that q; > 0 and n < 0, 

(Nl *, Pt *,0) is stable and attracts the trajectory. Then, when n > 0, the eigenvalue 

given by (4.15), namely 
a'\ Pt .2 

2 + P .2 - q, 
P, 1 h,s a (,I~lItlft 

is the only positive eigenvalue, and the corresponding local unstable manifold;... In the 

Z-direction. The Z = 0 plane is a stable two-dimensional manifold for (Nl *, PI *, 0), 

and so, because Z is still small, Nand P are attracted towards N l • and Pl· rather 

than to N* and p •. 

When the mixed layer reaches its constant summer-time level, (Nl·, Pl·' 0) -

(0.0196,0.322,0), as given by (4.18), and the trajectory in Figure 8.2(b) is close to 

this steady state, with Z still small. The eigenvalue given above takes the value 

0.073, and so the trajectory is repelled from (Nl *, Pl·, 0) very slowly. Another way of 

seeing this is that, from the dZ / dt equation, with P ~ Pl *, we have dZ / dt = 0.073Z, 

meaning that Z takes 9.5 days to double in size. Z manages to just reach a. level 

high enough to show up on Figure 8.2(b) at the end of the summer, but then the 

mixed layer starts deepening. So although (N·, p., Z·) is stable during the summer, 

the trajectory remains close to (Nl *, PI*, 0). This is an example of why care has to 

be taken when using bifurcation diagrams corresponding to an unforced system to 

elucidate the behaviour of a forced system, and how a forced trajectory may sta.y close 

to an unstable steady state, as discussed in the 'Word of Caution' given by Wiggins 

(1990, page 384). 

In Figure 8.3, r is set to 0.07, which is the value used by Evans and Parslow 

(1985). For r = 0.07, q; remains positive throughout the year, and so (No, 0, 0) does 
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Figure 8.3: With r = 0.07 (the Evans and Parslow (1985) valu ), <I> do s not quit 

become negative, and for the NPZl model in (b), Z can increase in th summ r. h 

N P Z Dm model in (d) undergoes oscillations in the summer, as xp ct d from th 

bifurcation diagram of Figure 7.5(e). 
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not become stable (actually when h+ is included in the definition of 4?, 4? does just 

dip below zero for the last seven days of deepening of the mixed layer). n = 0 (not 

considering hand h+) occurs when M = 142.0, which happens on days 69 and 83, 

and so between these two dates (NI * , PI * , 0) is stable for the N P Z I model. When the 

mixed layer shallows, Z is able to increase substantially, unlike in Figure 8.2(b), since 

it has not reached too Iowa level during the winter, which is because (No, 0, 0) did 

not become stable. 

So for the N P Zl model, the trajectory approaches the steady state (N*, P*, Z*) 

during the summer. It still appears to be in a transient phase in Figure 8.3(b), 

whereas for the NPZ and NPZD models in Figure 8.3(a) and (c) the steady state 

is (virtually) reached by the end of the summer. On the two-parameter bifurcation 

diagram of Figure 4.7(e) for the NPZI model, it is seen that when r = 0.07 and q is 

at the default value of 0.075, (N*, p., Z*) is stable, but close (in parameter space) to 

a Hopf bifurcation. Thus it has eigenvalues with real parts close to zero, and hence 

is not too 'strongly attracting', explaining the long transient time. 

For the N P Z Dm model, Figure 8.3( d) clearly shows pronounced oscillations of 

the variables in the summer, rather than attraction to a steady state. This is to be 

expected given Figure 7.5(e), which shows that at the parameter values r = 0.07 and 

d = 1.0, the system is in the region of oscillations bounded by the Hopf bifurcations. 

In all the models the spring bloom occurs earlier than for Figure 8.2; this is because 

the trajectory does not have to escape from being close to a stable steady state with 

P = 0, as the (N*, P*, Z*) steady state has remained stable throughout the winter. 

The maximumP value reached is actually lower for the NPZ,NPZD and NPZDm 

models than in Figure 8.2, despite r, a phytoplankton loss rate, being lower. Before 

the bloom there is not quite as much nutrient present as for Figure 8.2, and so less 

phytoplankton growth is possible before the nutrients are used up, resulting in the 

lower peak of phytoplankton. 

In Figure 8.4 we set r = 0.05, the value used by Henderson and Steele (1995). The 

minimum value of 4> now reached is 0.02, and so (N*, P*, Z*) (or (N*,P*,Z*,D*» 

remains stable and in the positive octant (hexadectant), and does not get as close to 
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Figure 8.4: With r = 0.05 (the Henderson and Steele (1995) valu ), Z do s not 

become too small in the winter, and so for (a) and (c), Z can ke p up wi th th 

increase in P, preventing a bloom (note that N is not used up). For (d), 19ur 

7.5(e) explains why oscillations occur during the summer, rather than a st ady stat. 



Seasonal forcing 221 

the three-way transcritical bifurcation as for r = 0.07, and so Z does not get as near 

to zero during the winter. For the NPZ and NPZD models, Figures 8.4{a) and (c), 

when the phytoplankton start to increase, the zooplankton can increase significantly 

(since they do not start from a very low level) and graze down the phytoplankton, 

preventing a bloom from occurring. The nutrients are not fully used up, and the 

system settles down to the summer-time steady state. 

Figure 8.4( d) shows that oscillations occur in the summer for the N P Z Dm model, 

as to be expected from Figure 7.5(e), and that a phytoplankton bloom occurs during 

the transient approach to these oscillations. A pertinent question to ask is whether 

the presence of the bloom is due to the trajectory approaching a limit cycle, rather 

than approaching a steady state, seeing as a steady state is approached for the N P Z D 

model, which does not result in a bloom. Computing a trajectory with r = 0.05 and 

d = 0.8, so that for the summer a steady state will be reached rather than a limit 

cycle (see Figure 7.5(e», we indeed find that no bloom occurs. 

In Figure 8.5, we set d = 1.5 for the three models which have quadratic zooplank­

ton mortality, and q = 0.11 for the N P Zl model, with all other parameters set to 

their default values. These are the values used for the unforced trajectories shown in 

Figures 3.2(b), 4.5(b), 6.3(b) and 7 .3(b), and so we would expect the forced systems 

to behave as for these figures during the summer. However, for the N P Zl model the 

high Z mortality reduces Z to (practically) zero during the winter, from which it can 

never recover. Figures 8.5( a) and (c) display oscillations in the summer, as expected 

from Figures 3.2(b) and 6.3(b), and also from the one-parameter bifurcation diagrams 

of Figures 3.3 and 6.4, whereas in Figure 8.5( d) a steady state is reached, as expected 

from Figures 7.3(b) and 7.4. 

For the NPZl model, if we keep q = 0.11 and set r = 0.07, we would expect Z to 

not approach zero, as for Figure 8.3(b), since ~ remains positive and (N"', P", Z"') re­

mains stable. The two-parameter bifurcation diagram of Figure 4. 7( e) shows that os­

cillations are to be expected during the summer, with the period-contour diagram of 

Figure 4.12( e) implying that these oscillations will have a period of 30 days. However, 

unlike the time series in the previous figures, the computed trajectory for q = 0.11 
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Figure 8.5: Zooplankton mortality is set to d = 1.5 for (a), (c) and (d), and q = 0,11 

for (b). For the NPZI model, Z reaches (virtually) zero in the wint r from which 

it cannot recover, whereas the other models exhibit spring blooms, and th n in th 

summertime are attracted to the attractors shown in Figures 3.2(b), 6.3(b) and 7.3(b). 
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Figure 8.6: For the NPZl model with q = 0.11 and r = 0.07 the syst m do s not 

settle onto a repeating annual cycle, as illustrated by the three y ars plott d (which 

occur after a transient time of 12 years). 

and r = 0.07 does not settle down to a repeating annual cycle, as shown in Figur 

8.6. Three years are shown (after the system has already been run for 12 y ars), and 

in the first and third years plotted, oscillations occur in the summ r. But for th 

second year, P remains high, with N low and constant, and Z very low, wi th Z only 

emerging towards the end of the summer. So in the second year th system b hav s 

like in Figure 8.2(b), whereby Z reached too low a level in the winter to incr as 

significantly in the summer. 

So why should these parameters not produce a repeating annual cy I , wh n for 

the other parameter values and models investigated so far the syst m s t t l s down to 

such a cycle after only a few years? The bifurcation diagrams of Chapt r 4 ar now 

invoked to postulate an explanation for this. 

The two-parameter bifurcation diagram of Figure 4.7(a) shows that as a deer as s, 

due to the mixed layer deepening, the system will not leave the oscillatory r gion for 

some time. We have recomputed the corresponding diagram of Figur 4. 7( a) for 

r = 0.07 (the value used in the trajectory in Figure 8.6), and the oscillatory r gion is 

just marginally larger than that shown in Figure 4.7(a) for which r = 0. 15 - w would 

expect such similarity given the nature of Figure 4. 7( e), which shows the ins nsit ivity 

of the Hopf bifurcations to the value of r. Thus we feel justified in referring to Figur 
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4. 7( a) when discussing the trajectory of Figure 8.6. Although Figure 4. 7( d) suggests 

that as k decreases the system will leave the oscillatory region, the effect of reducing 

a actually causes the Hopf curve in Figure 4.7(d) to move lower, so that oscillations 

occur at low values of k. The effect of s decreasing when the mixed layer deepens has 

little effect on the oscillations, as shown by Figure 4.7(f). 

Now, the period-contour diagram of Figure 4.12(a) shows that as a decreases 

from the summer-time value of alb = 1.0 (with q fixed at 0.11), the period of the 

oscillations increases dramatically. It only takes 18 days for the mixed layer to deepen 

to double its summer-time depth, and thus it takes 18 days for alb to halve in value 

from 1.0 to 0.5. In this short time, the period of the unforced oscillations doubles 

to almost 70 days (Figure 4.12(a)). It is therefore not unreasonable to expect the 

forced trajectory to have difficulty in remaining close to a stable limit cycle during 

this forcing, and consequently the trajectory will be sensitive to the values of N, P 

and Z at the onset of the forcing. For the first and third years plot ted in Figure 

8.6, the system appears to have settled onto a limit cycle by the late summer. The 

mixed layer starts deepening on day 250 of each year (which is at 0.68 and 2.68 years 

in the figure). At this point, the trajectories may well be on the 'same' stable limit 

cycle, but are at different positions along it - for the first year N is decreasing (at 

time 0.68), but for the third year N is increasing (at time 2.68). This leads to the 

different trajectories in the final months of these years (most clearly seen for N), and 

so the conditions at the start of the proceeding years are slightly different. The year 

following the three years shown exhibits oscillations in the summer with a healthy 

Z population, and so the summer-time behaviours do not simply alternate between 

the two regimes pictured. Hence the long periods shown in Figure 4.12(a) serve as a 

plausible explanation of why the system does not 'reset itself' at the end of each year 

to exhibit repeating annual cycles. 

In Figure 8.7, the zooplankton excretion parameter {3 is set to the increased level 

of 0.6, with d = 1.5. For the NPZl model in (b), q = 0.11, r = 0.07 (so that the 

zooplankton do not die out) and {3 = 0.6; there is not an annually-repeating cycle 

(most likely for the same reasons as for Figure 8.6), and we plot three years as an 
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Figure 8.7: With f3 = 0.6 and d = 1.5 the NPZ and NPZD models exhibit summer-

time oscillations, whereas the NPZDm does not, as to be expected from th corr ­

sponding two-parameter bifurcation diagrams. For the N P Zl model f3 = 0.6, q = 0.11 

and r = 0.07; three years are plotted to show that no a.nnua.l cycle is reach d. 
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example (after a transient of six years) in Figure 8.7(b). 

The two-parameter bifurcation diagrams of Figures 3.4(i) and 6.5(i) show that 

for f3 = 0.6 and d = 1.5, summer-time oscillations are to be expected for the N P Z 

and NPZD models, whereas Figure 7.5(i) shows that for the NPZDm model, these 

parameter values lie just outside the oscillatory region, and the system should settle 

down to a steady state. This is confirmed by the time series of Figures 8.7(a), (c) 

and (d), in which repeating annual cycles are shown. 

Note that the NPZ and NPZD models are not as similar during the summer as 

they have been for previous simulations. Figure 3.4(i) for the N P Z model shows the 

point with f3 = 0.6 and d = 1.5 to be close to edge of the oscillatory region and near to 

the cusp point offold bifurcations, whereas Figure 6.5(i) for the N P Z D model shows 

this point to be more in the middle o~ the oscillatory region, and not near to any fold 

bifurcations. Furthermore, the period-contour diagram of Figure 3.7(i) shows that 

at f3 = 0.6 the precise value of the period is very sensitive to the parameter values. 

These facts make it unsurprising that, at the precise values of f3 = 0.6 and d = 1.5, 

there is some qualitative difference between the N P Z and N P Z D models. 

Finally, in Figure 8.8 we set ~ = 1.0, with zooplankton mortality at d = 1.5 and 

q = 0.11, and for the N P Zl model r = 0.07 to prevent the zooplankton from dying 

out in the winter. The value of ~ = 1.0 is chosen since it is a value common to 

the models by Fasham et al. (1990), Steele and Henderson (1993) and Henderson 

and Steele (1995). The two-parameter diagrams of Figures 3.4(k), 4.7(k), 6.5(k) 

and 7.5(k) show that with ~ = 1.0 the systems are outside the oscillatory regions, 

and hence in the summer all the models converge to steady states. The bifurcation 

diagrams show locations of Hopf and fold bifurcations, and suggest that the N P Z 

and N P Z D models are similar in behaviour; this example shows that even away 

from any bifurcations this is still true. The N P Z Dm model is fairly similar to the 

N P Z and N P Z D models, with the N P Z I model exhibiting a much larger and earlier 

phytoplankton bloom, but this is to be expected since a lower value of r is used (as 

discussed with reference to Figure 8.3). 
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Figure 8.8: With). = 1.0 and d = 1.5, (q = 0.11 and r = 0.07 for the N P Zl mod 1), 

all models are attracted to a steady state in the summer. 
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8.4 Discussion 

The time series presented in this chapter show how the results of the preceding chap­

ters can be used to explain the behaviour of seasonally-forced models, even though 

the results did not explicitly refer to forced models. Both the analytical and the nu­

merical work have proved useful in explaining similarities and differences between the 

models, even relating to aspects which were not discussed during the analyses. The 

analytical calculations of the function ~, together with the notion of excitability, ex­

plains the appearance of a spring phytoplankton bloom. The counter-intuitive result 

that decreasing the phytoplankton natural mortality and respiration rate, r, actually 

prevents a phytoplankton bloom from occurring is also explained with the help of 

~. The period-contour diagrams provide an explanation for why the N P Z 1 model 

should not always converge onto an annually repeating cycle. And the two-parameter 

bifurcation diagrams which illustrate the locations of Hopf bifurcations explain the 

absence or presence of summer-time oscillations of the forced systems. But although 

these bifurcation diagrams concentrated on Hopf bifurcations of the systems, they 

have also proved valuable in describing the behaviours of the models away from the 

bifurcations. 



Chapter 9 

Conclusions 

In this thesis we have systematically investigated the dynamical behaviour of four 

plankton models, and re-examined the work of Steele and Henderson (1992). Chapter 

8 has served to illustrate the usefulness of our analytical results and numerically­

computed bifurcation diagrams in explaining and comparing the output of the models. 

The main conclusions of our research can be summarised as follows: 

• in agreement with Steele and Henderson (1992), we have found our N P Z model 

to be sensitive to the form of the zooplankton mortality function (linear or 

quadratic) and the subsequent parameter values used, but, in contrast to their 

results, we have shown that unforced oscillations can occur when the quadratic 

function is used; 

• our two-parameter bifurcation diagrams indicate the effects of varying each of 

the parameters in the models, demonstrating which parameters are most crucial 

in influencing model behaviour - this is of importance given the difficulties 

involved in parameter estimation; 

• in general, the sensitivity to a particular parameter tends to be the same across 

all four of the models investigated - for example, Figures 3.4(j), 4.7(j), 6.5(j) and 

7.50) all show that the oscillations occur across the full range of the excretion 

regeneration parameter 1'; 

229 
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• oscillations appear to occur over a greater range of parameter values for the 

linear zooplankton mortality function than for the quadratic function, and 80 

are more likely to be observed for the linear function, in accord with the findings 

of Steele and Henderson (1992); 

• the array of bifurcations - 'three-way transcritical', Hopf, fold (of steady states 

and limit cycles), Bogdanov-Takens and homoclinic connections - exhibited by 

our N P Z model with quadratic zooplankton mortality is preserved when a 

fourth equation, explicitly modelling detritus, is added to the system; 

• if an ecosystem can be modelled by the NPZD model of Chapter 6, but knowl­

edge of the level of detritus is not explicitly required and zooplankton do not 

consume detritus, then the N P Z model of Chapter 3 will adequately describe 

the dynamics; 

• if zooplankton do graze on detritus, even only slightly, then the full N P Z D 

model of Chapter 7 is required to determine the behaviour; 

• for the N P Z model with linear zooplankton mortality, the Hopf bifurcations 

are the only ones from the aforementioned list that occur, with the three-way 

transcritical bifurcation splitting into two transcritical bifurcations, meaning 

that zooplankton can die out even if their phytoplankton prey do not; 

• the N P Z model with linear zooplankton mortality is the only model that ap­

pears to exhibit period-doubling bifurcations of limit cycles, with a subsequent 

cascade to chaos, although such behaviour only occurs across a very limited 

range of parameter values; 

• we have corrected the anomalous normalisation of the N P Z model of Steele and 

Henderson (1992), and then by using the bifurcation diagrams of Chapter 3, we 

have shown that their N P Z model can exhibit oscillations when the quadratic 

mortality function is used. 
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We would hope that our results, particularly the two-parameter bifurcation dia­

grams, prove useful to modellers in interpreting the output of models. It is of interest 

to ascertain if the results apply to other models. Fasham et al. (1993) coupled the 

seven-component model of Fasham et al. (1990) to a general circulation model of the 

North Atlantic, and did not find any large-amplitude limit cycles. However, they 

noted that Toggweiler (1990) used the same ecosystem model and did observe such 

cycles for high nitrate input conditions corresponding to the Peruvian upwelling re­

gion of the Pacific. High nitrate input in our models is given by high values of the 

cross-thermocline exchange rate, k, or the sub-mixed-Iayer nutrient concentration No. 

For all of our models, the corresponding two-parameter bifurcation diagrams indicate 

that limit cycles do not occur at low values of these parameters but can at higher 

values, in accord with the comments of Fasham et al. (1993). 

Ryabchenko et al. (1997) have found, using a model based on that of Fasham 

(1993), that short-term oscillations can occur when there is a combination of high 

photosynthetically active radiation, a high nitrogen concentration below the mixed 

layer, small thickness of the upper mixed layer and significant mean annual entrain­

ment velocity. For our models, the first two conditions correspond to high values of 

a and No respectively. A shallow mixed layer is given by high values of a, k and Sj 

we only consider entrainment in Chapter 8, and so none of the bifurcation diagrams 

are relevant. Our two-parameter bifurcation diagrams throughout the thesis all show 

that high values of a, k, s and No give oscillations, whilst low values of a, k and No 

do not. The results of Ryabchenko et al. (1997) are thus also consistent with ours. 

Furthermore, Yool (1997) has found oscillations in the seven-component Fasham 

(1993) model (with the forcing switched off), and his results are in broad agreement 

with our two-parameter bifurcation diagrams. For example, limit cycles can occur at 

high values of sub-mixed-Iayer nutrient concentration, phytoplankton growth rate and 

detritus breakdown rate, although the latter requires an unrealistically high value. 

These correspond in our models to the parameters No, a and C/>, and again the two­

parameter bifurcation diagrams show that oscillations do not occur at low values of 

these parameters (except for c/> in our multiple-grazing NPZD model). 
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We have found chaotic dynamics only when the linear zooplankton mortality func­

tion is used, whereas Caswell and Neubert (1997) have found that chaos can occur 

for both mortality functions in a simple three-species food chain model. Therefore we 

do not extrapolate our results to propose a hypothesis that the choice of mortality 

function is the sole determinant of chaos in general three-species models. 

By investigating the sensitivities of our models to all of the parameters, and not 

just concentrating on one or two, we have shown which parameters are most crucial 

in determining the dynamics of our models. If these results do indeed hold across 

a broader class of models than those investigated here, as is suggested above, then 

by indicating which parameter values need to be obtained most accurately, such 

information could help direct measurement efforts in the most efficient manner. 

The work presented in this thesis could be extended in a number of directions. 

The only functional form that we have changed in the models has been that represent. 

ing zooplankton mortality. It would be insightful to repeat our investigations using 

alternative functions for some of the other processes, the principal candidate would 

be to use a Holling Type II form for zooplankton grazing. Another extension would 

involve adding a fifth component, such as bacteria, to the N P Z D models to bring 

the structure a step closer to that of the seven-component model of Fasham (1993). 

Subsequently the sixth and seventh components of Fasham's model could be added, 

to see how the bifurcations persist. The resulting seven-component model would have 

the same ecosystem structure as Fasham's model, but with some differing functional 

forms. Alternatively, since the dynamics of our three- and four-component models 

are now well understood, the models could be extended by adding spatial dimensions 

and incorporating effects such as diffusion or vertical migration by zooplankton. 

Fasham (1993) discussed whether one generic plankton model can be constructed 

that would be sufficient to model all the areas of the world's oceans. At present this 

question remains unanswered. The results in this thesis improve the understanding of 

the dynamics of plankton models, and we hope that they will playa small part towards 

future development of models, possibly culminating with such a generic model. 



Appendix A 

Formulation of phytoplankton 

growth rate 

The following analysis shows how the phytoplankton growth (or primary production) 

term aP/(b + cP) used by Steele and Henderson (1981), and therefore in our models, 

can be obtained from the canonical form derived by Platt et al. (1990) and Platt and 

Sathyendranath (1993). Nutrient limitation is represented by the independent term 

N/(e + N) in the original equation (2.2) in Chapter 2, and plays no further part in 

this analysis. We are essentially just redefining the parameter a, since the original 

definition by Steele and Frost (1977) was based on the unsatisfactory photosynthesis­

light curve given by Steele (1962). We take summertime data and parameter values at 

two geographical locations as used by Fasham (1993), plus further parameter values 

used by Evans and Parslow (1985) and Wroblewski (1989), to obtain a range of values 

for a. This range for a is 0.11-0.16, which actually falls well within the range of 0.07-

0.28 obtained from using the alb values of Steele and Henderson (1992), Armstrong 

(1994) and Henderson and Steele (1995) in Chapter 2. Hence the following analysis 

simply results in values which have already been included in our range for a. It shows 

how our aP/(b + cP) is consistent with the canonical form of Platt et al. (1990) 

and Platt and Sathyendranath (1993), and demonstrates how seasonal variation in 

sunlight can be incorporated into our model. 

We now derive the function aP/(b + cP) from the primary production canonical 
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form of Platt and Sathyendranath (1993) (hereafter referred to as PS93), retaining 

their notation. The canonical form gives an analytical expression which can be ap­

proximated by a fifth order polynomial (whose coefficients are known), resulting in a 

simpler expression than the analytical function derived by Evans and Parslow (1985), 

which Fasham (1993) subsequently used. All new parameter definitions and units are 

summarised in Table A.!, 

The function aP/(b + cP) is the (non-nutrient limited) primary production rate 

per unit volume per day, which has units of 9 0 m-3 d-1 , where P (measured in 

9 0 m-3 ) is the phytoplankton concentration, b (rn-1) represents light attenuation 

by water, c (rn2(g ott) parameterises the attenuation due to the phytoplankton 

population and a (m-1 d-1
) is a parameter whose magnitude shall be re-evaluated 

here. 

The daily primary production for a mixed layer of depth Zm (units m) is denoted 

by PZm,T (rng 0 rn-2) and given by equation (39) of PS93, viz: 

PZm,T = B;D [J (I;") - f (l;"e- KZm )] , (A.l) 

where B is the biomass concentration (mg Chi m-3
), P;:' is the specific production 

at saturating light (rng 0 (rng OhIt1 h-l), D is the number of hours of sunlight 

in a day (h) and is dependent on both time of year and latitude, K is the vertical 

attenuation coefficient for irradiance (rn-1
), r: is the dimensionless noon irradiance 

(explained later) and f is a dimensionless function of I:", which can be approximated 

(as good as error free) by a fifth order polynomial. 

Irradiance is attenuated through the water column due to both turbidity of the 

water and shading effects of the phytoplankton, and so the coefficient K equals our 

(b + cP) term. PZm,T is the daily primary production for the mixed layer under one 

square metre, and since we require the primary production per unit volume per day 

we define < PZm,T > (rng 0 rn-3 d-1
) to be PZm,T divided by Zm and divided by one 

day. < PZ,.,.,T > now has the same definition as aP/(b + cP), although the units are 

not yet the same (but the dimensions are equivalent). 
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Parameter Symbol Units 

Platt and Sathyendranath (1993): 

Initial slope of photosynthesis-irradiance (P-I) a mg C h-1 

curve (W m-2)-lm-3 

Initial slope of normalised photosynthesis- aB mg C (mg Chl)-l 

irradiance curve h-1 (W m-2)-1 

Phytoplankton biomass, as concentration of B mg Chi m-3 

chlorophyll a 

Daylength, number of hours of sunlight in a day D h 

Function of I: f dimensionless 

Dimensionless irradiance at local noon, I: := 1'3''/ lie 1m 
• dimensionless 

Surface irradiance at local noon 1m 
0 Wm- 2 

Photoadaption parameter of the poI curve, h Wm- 2 

lle:= Pm/a 

Vertical attenuation coefficient for irradiance K m-1 

Primary production (maximum) at saturating light Pm mg C m- 3 h-1 

Specific production at saturating light, pB 
m mg C (mg Chl)-1 

p! = Pm/B h-1 

Daily primary production for the mixed layer PZm,T mg C m-2 

Mixed layer depth Zm m 

Fasham (1993): 

Phytoplankton maximum growth rate v" d-1 

Initial slope of normalised photosynthesis- aF (W m-2)-1 d-1 

irradiance curve 

Table A.l: Parameter definitions and units, grouped according to source. Abbrevi­

ations of units are: C - carbon, ChI - chlorophyll, d - days, h - hours, m - metres, 

mg - milligrammes, mM 01 N - millimoles of nitrogen, W - watts. The superscript B 

indicates normalisation to biomass (continued overleaf). 
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Parameter Symbol Units 

From Chapter 2: 

Redefined in equation (A.9) a m-1 day-1 

Light attenuation by water b m-1 

Phytoplankton self-shading coefficient c m 2(g ot1 

Phytoplankton concentration P gO m-3 

Defined here: 

Carbon to chlorophyll ratio, assumed constant X mg 0 (mg Ohl)-1 

Daylength as a fraction, D' := D /24 D' dimensionless 

Primary production rate in the mixed layer < PZm,T > mg 0 m-3 d-1 

averaged over depth and over the entire day 

Table A.1 (ctd.). 

Thus we have 

BP!D [l(Im) 1 ( m -KZ )] < PZm,T >= (b+ CP)Zm * - 1* em, (A.2) 

which we wish equate to aP/(b + CP)i < PZm,T > is measured in mg 0 m-3 whilst 

aP/(b+cP) has units of 9 C m-3 • We are assuming a constant carbon-to-chlorophyll 

ratio of 50:1, and define this conversion as X = 50 mg C (mg Ohlt1
, Thus B = 

P/(1000 X) since P is measured in 9 C m-3 in Chapter 2. Substituting for B in (A.2) 

gives < PZm,T > as 

- PP!!.D [1 (1m) _ 1 (1m -KZm)] < PZm,T >- (b + CP)Zm 1000X * * e . (A.3) 

Now, we have 

aP 
1000 < PZm,T >= b+ cp' (A.4) 

(the 1000 converts the mg C to 9 C) and see that the definition for a is thus 

a = :~~ [1(1:) - 1 (I:e- KZm )]. (A.S) 

Fasham (1993), hereafter Fa93, gave a maximum phytoplankton growth rate of 

v" (d-1 ), assumed constant throughout the year, from which P;:' is obtained by 

pB _ v" X 
m -'241 (A.6) 
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where the scalings are needed to convert to the appropriate units (the 24 represents 

the number of hours in a day). 

The number of hours of sunlight in one day, D (h), is given by D = 24 D' where 

D' (dimensionless) is the fraction of the day for which there is sunlight, calculated 

from the following formula given by Brock (1981): 

D' = .!:. arccos( - tan 8 tan <p), 
71' 

(A.7) 

where (all angles being measured in radians) <p is the latitude, and the declination 8 

(the angle between the equatorial plane of the earth and the axis joining the centres 

of the sun and the earth) is given by 

8 = 0.409 sin (::s (284 + T)) , (A.8) 

where T is the Julian Day, such that 1st January is Julian Day 1. 

Substituting from (A.6) and D = 24 D' we obtain the following final form for a: 

(A.9) 

There is a problem here that K actually depends on P, but we will investigate how 

important this dependence is when the parameter values are inserted. The normalised 

dimensionless noon irradiance T: is defined as I":" = 1'0/ lie where 10' (W m-l ) is the 

surface irradiance at local noon (dependent on latitude, time of year and cloudiness), 

and lie (W m-2 ) is the photoadaption parameter of the photosynthesis-irradiance 

curve, defined as h := Pm/a. It can be expressed in terms of the Fa93 parameters 

due to the following formula (which accounts for the differences in units): 

(A.10) 

where aF ((W m-2t 1 d-1 ) is the initial slope ofthe Fa93 (normalised) photosynthesis-

irradiance curve. 

Firstly, we are going to consider the daylength and irradiance conditions fixed at 

the values for 22nd June (T = 173) at Bermuda Station "S" (320 10'N, 640 30'W), in 

the North Atlantic Ocean. This is the day which has the most hours of sunlight, and 
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the noon surface irradiance is practically at its maximum value. Bermuda is one of 

the two locations modelled by Fa93, the other being Ocean Weather Station "India" 

(59°N, 19°W), also in the North Atlantic Ocean. 

We retain the SH81 default values of b = 0.2, c = 0.4 and Zm = 12.5. The 

value used by Fa93 for Vp was 2.9d-1
, and CXF = 0.025 {W m-l t 1 d- 1 , giving lie = 

116 W m-2 • Using, as Fa93 did, the Smith and Dobson (1984) atmospheric transmit­

tance algorithm with a cloud cover of 4 oktas yields a value of 1'0 = 416 W m- l (using 

a program written by Andrew Yool, University of Warwick). This gives I:, = 3.586, 

for which 1(1:") = 1.359 using the polynomial approximation for 1(1:") given by 

PS93, which is valid for the range 0.2 ~ I:' ~ 20. [The polynomial approximation is 

1(1:') = 0.610351:" - 8.9251 x 10-2(1:,)2 + 8.1477 x 1O-3(1:"? - 3.7427 x 10-4(1:,)4 + 
6.6103 x 10-6(1:" )5]. The Bermuda latitude of <p = 0.561 C(= 32° 10') gives, from (A.7) 

and (A.8), D' = 0.5879, equivalent to 14.1 hours. Substituting these values gives 

a = 0.1364 [1.359 - I (3.586e- 12.5(O.2+0.4P»)] • (A.ll) 

Looking at the data for both Bermuda and India given by Fa93, concentrations of 

P are in the range 0.0025 - 0.16 9 C m-3 (equivalent to 0.05 - 3.2 mg Chl m-3 ). In 

Figure A.1 we plot the values of a for a slightly larger range of P (the curve labelled 

'summer'). It is seen that a does not vary much with P, and so for our model we can 

take the value calculated for P = 0, namely a = 0.162. This is equivalent to ignoring 

the self-shading component, cP, in the definition of a. This can be done since the 

value of the first term, I (1:'), within the square brackets in (A.9) is much larger than 

the value of the second term, I (1:"e-(b+ cP)Z",), which reduces the value of a due to 

the light attenuation through the water column. The values are f (1:') = 1.359, and 

I (1:,e-(b+cP)Z",) = 0.172 for P = 0 and I (1:'e-(b+cP)Z",) = 0.0792 for P = 0.16, 

and thus the P-dependence is not significant. 

Therefore, for these parameter values at least, we can define a as 

(A.12) 

which is independent of P. But note that self-shading is not completely disregarded, 

as it is still considered in the final function a/{b + cP) in the model. Although the 
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Figure A.I: The value of a, as defined by (A.9), does not vary significantly with P 

for either summertime or wintertime irradiance conditions at Bermuda; thus we can 

ignore the P-dependence of a. 

value of a increases with P in Figure A.I, the specific growth term aj(b + cP) does 

decrease with P, as would be expected due to the self-shading effect. The full growth 

term aPj(b + cP) does then increase with P, as expected. 

The second curve in Figure A.1, labelled 'winter', is the plot of a versus P for 

Julian Day 356 (22nd December), which is the shortest day of the year and has the 

minimum noon irradiance. Thus we have T = 356, which gives D' = 0.4121 (9.9 

hours), and, from the program by Andrew Yool, 1'0 = 124. We retain Zm = 12.5 for 

now, since this value of Zm is also implicit in some of the other parameters in our 

model. Again we see that the value of a does not depend significantly on the level of 

P, and so using (A.12) to define a would again be a valid approximation. Setting Zm 

to a winter mixed-layer depth would give yet a lower value of a. 

We now consider the conditions for Ocean Weather Station 'India', for which Fa93 

used v;, = 1.25. The latitude of 59° gives, for Julian Day 173, the longest daylength 

of 18.2 hours (D' = 0.7565), and noon irradiance of 1'0 = 269. This results in a value 

of a = 0.108 for P = 0, only rising to a = 0.119 for P = 0.16. 
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EP85 and Wr89 used a value of Vp = 2.0, which is between the two values used 

by Fa93. For the Bermuda conditions this gives a summer value of a = 0.133 for 

p = 0, and a = 0.145 for P = 0.16, which both fall, as expected, within the range of 

previously calculated values. 

Pooling all of the summertime values together gives a range for a of 0.11-0.16, 

which falls well within the range given in Chapter 2. The insignificant P-dependence, 

as shown in Figure A.1, of the full a definition (equation (A.9)) allows the approxima­

tion in (A.12) to be used. The inaccuracies which arise due to using this approxima­

tion are clearly far outweighed by the overall changes in the value of a due to (i) time 

of year, as shown by Figure A.1; (ii) location, as seen by comparing Bermuda and 

'India' values; or (iii) changes in parameter values (alternative Vp values or equivalent 

alb values). Furthermore, other significant uncertainties arise, not only in values of 

the parameters, but even in the type of cloud cover algorithm used (for example, see 

Figure 4 of Fa93). 
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