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Abstract

This thesis consists of two parts. In the first part, we define stochastic integrals w.r.t. the com-
pensated Poisson random measures in a martingale type p, 1 < p < 2 Banach space and establish a
certain continuity, in substitution of the It0 isometry property, for the stochastic integrals. A version
of 1t6 formula, as a generalization of the case studies in Ikeda and Watanabe [40], is derived. This
Itd formula enables us to treat certain Lévy processes without Gaussion components. Moreover,
using ideas in [63] a version of stochastic Fubini theorem for stochastic integrals w.r.t. compensated
Poisson random measures in martingale type spaces is established. In addition, if we assume that
E is a martingale type p Banach space with the g-th, ¢ > p, power of the norm in C?-class, then
we prove a maximal inequality for a cadlag modification i of the stochastic convolution w.r.t. the
compensated Poisson random measures of a contraction Cp-semigroups.

The second part of this thesis is concerned with the existence and uniqueness of global mild
solutions for stochastic beam equations w.r.t. the compensated Poisson random measures. In view
of Khas'minskii’s test for nonexplosions, the Lyapunov function technique is used via the Yosida
approximation approach. Moreover, the asymptotic stability of the zero solution is proved and the
Markov property of the solution is verified.
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Chapter 1

Introduction

The thesis is devoted to a systematic study of the construction of stochastic integrals with respect
to compensated Poisson random measures in martingale type p, 1 < p < 2, Banach spaces and
to their’s applications by proving the existence and uniqueness of stochastic beam equations with
respect to compensated Poisson random measures. The notions of point processes, Poisson random
measures and stochastic integrals w.r.t. compensated Poisson random measures can be traced back
to P. Lévy [55] and K. Ité [41] as a fundamental of the constructing a process with independent,
stationary increments and stochastic continuous paths, a Lévy process. K. It6 in [41] first formulated
and proved the Lévy-It6 decomposition theorem, namely that every Lévy process can be expressed
as a sum of two independent parts, a Brownian motion and a jump process which is an .integral
w.r.t. a compensated Poisson random measure, a random measure counting the jumps of the Lévy
process. The Lévy-Itdé decomposition theorem tells us that Brownian motions and Poisson random
measures are the fundamental prerequisites for construction of any Banach valued Lévy processes.
At this stage, it is worth pointing out here that the integral of a deterministic function r w.r.t. a
compensated Poisson random measure in the Lévy-Ité decomposition coincides with the stochastic
integral of the function z w.r.t. the compensated Poisson random measure associated to the Lévy
process introduced in this thesis, see Remark 3.1.27 and Theorem 3.4.9. The Lévy-It6 decomposition
formula has been intensively studied by many authors, see [73], [52], [7] [43] and also [44], [77], [78]
and the references therein. In 28] and [1] the Lévy-It6 decomposition theorem was investigated for
the case where the state space is a Banach space of type 2. Especially, for a detailed proof of the
Lévy-It6 decomposition theorem in a Banach space, [1] may be consulted.

The extension of stochastic integration to the infinite dimensional spaces was exploited first by



Kunita in [51], where he investigated the stochastic integration w.r.t. the Hilbert-valued martingales
and established the corresponding Ité formula. Later, Metivier and Pellaumail in [58] studied the
stochastic integrals of operator-valued predictable processes w.r.t. a certain process, n-process,
including the Hilbert-valued cadlag square integrable martingales and Banach-valued processes with
finite variation and by introducing the tensor quadratic variation, they derived a version of Ito
formula for these stochastic integrals. See, in particular, [57] and [29]. The obstruction to extend the
stochastic integrations to Banach spaces is that the Banach space-valued measurable functions may
fail to be stochastically integrable. A classical counterexample for this defect was given by Yor in [82].
Neidhardt in his thesis [60] considered a certain class of Banach spaces, 2-uniformly-smooth Banach
spaces, in which a stochastic integral with some certain continuity property, in substitution of the Ité6
isometry property, can be defined. Brzezniak in [12] investigated the stochastic integration theory
in a martingale type 2 Banach space, which is in fact equal to the class of 2-smooth Banach spaces,
see [65). With the help of martingale type p Banach spaces setting, we may define the stochastic
integral for a certain class of measurable Banach space-valued functions w.r.t. the compensated
Poisson random measures.

In [40] the stochastic integrals of real-valued §-predictable functions w.r.t. the compensated
Poisson random measure associated to a Poisson point process, in a terminology of simple p-integral
in [71], is defined as a limit in LP(Q, F,P) of Lebesgue integrals w.r.t. the compensated Poisson
random measure over the approximating sets of a o-finite Poisson point process. Here we call it
the Ikeda-Watanabe stochastic integrable w.r.t. the compensated Poisson random measure. Similar
definitions of stochastic integrals w.r.t. the compensated Poisson random measures using the Ikeda-
Watanabe scheme can also be found in [66], [47] and [70]. Another common technical tool used
to define the stochastic integral is approximation of general random functions by some random
functions of simple structures, see [58], [56], [71], [4]. and [63]. Compared to the Ikeda-Watanabe
stochastic integral, we will follow the approximation approach to define the stochastic integrals for
a more general class of random functions, the §-progressively measurable functions or even the J-
measurable and adapted functions, w.r.t. the compensated Poisson random measure in a martingale
type p, 1 < p < 2, Banach spaces.

Our study of stochastic integrals of martingale type p, 1 < p < 2, Banach space-valued random



functions w.r.t. the compensated Poisson random measure is related to the systematic study of
stochastic integrals of real-valued random functions w.r.t. Poisson point process started by Ikeda
and Watanabe in [40] in the sense that they are in fact equal when the integrand functions are §-
predictable and take values in R. Later in Theorem 3.3.4, we will show that all stochastic integrals of
functions in the space M. (E), the space of all measurable and ’adapted’ functions satisfying a cer-
tain integrability condition, are actually indistinguishable from the stochastic integrals of functions
in the space MP(P; E), the space of all §-predictable functions satisfying a certain integrability. We
do not create new stochastic integrals for measurable and 'adapted’ functions. In other words, the
class ME(E) of all equivalence classes of functions from ME.(E) is isometric to the space MP(P; E)
of all equivalence classes of functions from MP(P;E). This fact demonstrates that there is no
significant loss of generality in focusing on the class of §-predictable functions rather than on the
class of the F-measurable and adapted functions. In [71], Riidiger studied the stochastic integral
w.r.t. the compensated Poisson random measure associated with a Lévy process, by means of the
terminology of strong 2-integral, in a martingale type 2 Banach space. Moreover, it was shown
in [71] that the strong 2- integrals coincide with the simple 2-integrals, or in our terminology the
Tkeda-Watanabe stochastic integral, when the integrand function is left continuous. Analogically,
we will show in this thesis that the Ikeda-Watanabe stochastic integrals are equal to our stochas-
tic integrals w.r.t. the compensated Poisson random measure, when the integrand functions are
3-predictable. Especially, the Bochner integrals w.r.t. the compensated Poisson random measure
agree with the stochastic integrals w.r.t. the compensated Poisson random measure on sets of finite
intensity measure when the integrand function is §-predictable. Furthermore, we give an example
to illustrate that the two stochastic integrals may not be equal when the integrand function is only
J-progressively measurable even on a set with bounded intensity measure.

The It6 formula was first formulated and proved by K. 1t6 [41] for real-valued stochastic integrals

w.r.t. the Brownian motion. Subsequently, many other versions of It6 formulas for different types

of stochastic integrals have been studied, see [51], [52], [40], 58], [57], [4], [29], etc. Especially,
Riidiger in [72] established a versions of It6 formula in a martingale type 2 Banach spaces for
stochastic integrals w.r.t. a compensated Poisson random measure associated with a Lévy process.

An It6 formula in a martingale type p, 1 < p < 2, Banach spaces for stochastic integrals w.r.t. a



compensated Poisson random measure associated with a Lévy process was derived by Hausenbals
[36] by generalization a version of Ité formula introduced by Applebaum in [4]. In this thesis, we

will prove that for the martingale type p, 1 < p < 2, Banach space-valued processes of the form

X = Xo+/0ta(s)ds+ /ot/;f(s, 2)N(ds, dz) +/0t/Zg(3,z)N(ds,dz), (1.0.1)
the following It6 formula holds P-a.s.
t
8(x) = ¢(0) + [ (X, (a(s))ds + [ (6060 + 006,20 = 6(x0)] W(ds.do)

t -

+ [ [ [#0ten + flo2) - #(Xe)]| N, do) (102)
t

# [ (80X + £5,2)) = 00) = &/ (Xe)(F 0, 2)]wida)es,

Our contributions in this Ité formula include the following, firstly, in contrast to the Itd for-
mula developed in [72] where the space was in a martingale type 2 space and the function ¢ was
assumed to be twice Fréchet differentiable with uniformly bounded second Fréchet derivative, we
consider the Itd formula in a martingale type p Banach space, 1 < p < 2 and the function ¢ is
assumed to be of class C! such that the first Fréchet derivative ¢’ : E — L(E;G) is (p — 1)-Holder
continuous. Secondly, in comparison to [36], we expand the stochastic process X to include the
"big jumps" term fot J 9(s,2)N(ds, dz), which hence can be applied to all Lévy processes without
Gaussion components, and the function f is assumed to be F-predictable which is weaker than
the cagldg assumption in [36]. Thirdly, compared to both [72] and [36] the stochastic integral
fg Iz f (8,2)N(ds,dz) is defined w.r.t. the compensated Poisson random measure associated with
a Poisson point process which in general includes the case when the stochastic integrals is defined
w.r.t. the compensated Poisson random measure associated with a Lévy process, because the jump
process of a Lévy process in E \ {0} is actually a Poisson point process.

Some different versions of stochastic Fubini theorems have already been studied by many authors,
see Bichteler [8], Curtain and Pritchard [25], Jacob [46], Da Prato and Zabczyk [26] and Protter
[66], van Neerven and Veraar [79], ect. In this thesis a stochastic Fubini theorem for stochastic
integrations of an extremely broad class of functions w.r.t. a compensated Poisson random measure
will be established. Our approach was motivated by the proof of a version of stochastic Fubini

theorem for Hilbert valued square integrable martingales as integrators in [63].



The maximal inequality for stochastic convolutions of a contraction Cy-semigroup and right
continuous martingales in Hilbert spaces was studied by Ichikawa [39], see also [76] and [63], for
more details. A submartingale type inequality for the stochastic convolutions of a contraction Cg-
semigroup and square integrable martingales in Hilbert spaces were obtained by Kotelenez [50].
Kotelenez also proved the existence of a cadlag version of the stochastic convolution processes
for square integrable cadlag martingales. In the paper by Brzezniak and Peszat [17], the authors
established a maximal inequality in a certain class of Banach spaces for stochastic convolution
processes driven by a Wiener process. It is of interest to know whether the maximal inequality holds
also for pure jump processes. Here we extend the results from [17] to the case where the stochastic
convolution is driven by a compensated Poisson random measure. We work in the framework of
stochastic integrals and convolutions driven by a compensated Poisson random measures recently
introduced by the first two named authors in [16]. In this thesis, roughly speaking, we will show

that the stochastic convolution process u has an E-valued cadlag modification # which satisfies the

following maximal inequality, see Theorems 3.7.9 and 3.7.11,

'
Eosslzgt |ﬁ(s)]‘l’; <CE (/Ot/ZIE(s,z)l%N(ds,dz)) ’ , t€[0,T]. (1.0.3)

It is worth pointing out here that it is possible to derive inequality (1.0.3) by the same method as
it has been applied to get inequality (4) in [38] whose authors used Szekofalvi-Nagy’s Theorem on
unitary dilations. The latter result has recently been generalized to Banach space of finite cotype
by Frohlich and Weis [32]. However, this method works only for analytic semigroups of contraction
type. The results from the current paper are valid for all Cp semigroups of contraction type. To
be more precise, assuming the setting before and the additional assumption that A generates an

analytic semigroup, by nearly the same lines as in [38] it would follow

1

t %
. q P
B sup a0l <OE( [ [ eta Vs ds)” . (104)

Another main focus of this thesis is to establish the existence and uniqueness of solutions to
stochastic beam equation w.r.t. the compensated Poisson random measure. The Euler-Bernoulli

beam equation

diu
Elm =w



as a simplification of linear beam theory was first introduced in 1750 to describe the relationship
between the deflection and applied load. The transversal deflection u of a hinged extensible beam

of length / under an axial force H which satisfies the following form

P Bty (0 E4[(00),) 2
ot2 ' p Ozt 2pl oz oz?’

was studied by S. Woinowsky-Krieger [81]. See also Eisley [31] and Burgreen [19] for more details.

(1.0.5)

Chueshov [23] considered a problem of the following form
ut + yur + A% + m(|Abul?) Au + Lu = p(t)

which arises in the nonlinear theory of oscillations of a plate in a supersonic gas flow moving along

an z;-axis described by

u  Bu Ou
T 15+ 8%k (a- [ vuds) Aut o5 = plant), s (@a) D,

where u(z,t) measures the plate deflection at the point = and the moment ¢, ¥ > 0, p > 0 and
function p(z,t) describes the transverse load on the plate. In [61] Patcheu considered a model
of (1.0.5) with a nonlinear friction force. The existence and uniqueness of global solutions of a

nonlinear version of the Euler-Bernoulli with white noise arising from vibration of an aeroelastic

Su du Ou Bu du Bu
—(+b/< ) )62+'ya4+f(tw,ata)+a(tw,ata)W(t)—O
(1.0.6)

panels

has been investigated by Chow and Menaldi in [21]. Z. BrzeZniak, B, Maslowski, J. Seidler (2004)
considered and show the existence of global mild solutions of the following stochastic beam equations

including a white noise type and a nonlinear random damping term in a Hilbert space H
ug + A%u + g(u, ug) + m(||B%u|12)Bu = o(u, u)W, (1.0.7)

where the operators A and B are self-adjoint and D(A) C D(B).
It is of interest to know whether the theory can be extended to the problems with jump noise
which is in some sense more realistic. In our paper, we consider a stochastic beam equation in some

Hilbert space H with stochastic jump noise pefturbations of the form

ug = —A%u — f(t,u,u) — m(IIB%qu)Bu + / g(t, u, us, 2)N(t,dz), (1.0.8)
z



where m is a nonnegative function in C1([0, 00)), A, B are self-adjoint operators and N is a compen-
sated Poisson random measure. We will show that under some suitable locally Lipschitz continuity
and linear growth assumptions of the coefficients f and m, the stochastic beam equation (1.0.8) has

a unique maximal local mild solution u which satisfies

tATh
u(t Ay = ey + / et m=a)Ap(s w(s))ds + I, (G(w))(t A7) P-as., for every ¢ > 0,
0
(1.0.9)

where {7, }reN is a sequence of stopping times and I, (G(u)) is a process defined by
t -~
L. (G(u)(¢) = / / Lo e 94G (s, u(s—), 2) N (ds, dz).
0 Jz

We also show the nonexplosion of the local maximal solution. The basic method that we shall
use in showing the nonexplosion is the Khas'minskii’s test. For this aim, the essence is to be able
to construct an appropriate Lyapunov function. One can first derive some estimates when u is in
D(A), where D(A) is the domain of the generator A. In fact, one can always approximating u
by such functions in D(A) and pass the limit as in [76] to get the desired estimate of Lyapunov
function. Moreover, the asymptotic stability and uniform boundedness of the solution has also been
established in the same manner by a suitable choice of another Lyapunov function. We also show
that under some natural conditions all the results in this paper we’ve achieved for (1.0.8)' can be

applied to a wide class of models including the following problem

2
Ou _ m / |Vu|2dx> Au+v0%u+ G (t, x,u, Qu—,Vu) = / I(t, z,u, gE,Vu, 2)N(t,du)
D ot z ot

at?
(1.0.10)
with either the clamped boundary conditions
Ou
U= 5= 0 on 4D, (1.0.11)
or the hinged boundary conditions
u=Au=0ondD. (1.0.12)

In the above 3% denotes the outer normal derivative.
The rest of this thesis is arranged as follows. The second chapter is devoted to studying system-

atically various types of measurabilities of processes and examining the relationships among these

10



different types of measurabilities. The third chapter proceeds with the construction of the stochastic
integral w.r.t. the compensated Poisson random measure. From the application point of view, both
the Itd formula and the stochastic Fubini theorem for the stochastic integral w.r.t. the compen-
sated Poisson random measure are established. Moreover, some maximal inequalities for stochastic
convolutions w.r.t. a compensated Poisson random measure of a contraction Cp-semigroups are
investigated. In the last chapter, we study a type of stochastic nonlinear beam equation w.r.t. the
compensated Poisson random measure. By constructing a suitable Lyapunov function we can apply
Khas'inskii's test to show the nonexplosion of the mild solutions. In addition, if we strengthen the

linear growth hypothesis, the exponential stability of the solution can also be achieved.

11



Chapter 2

Preliminaries

2.1 Stochastic Processes
Let (2, F,P) be a probability space. A family of o-fields (F;);>¢ is called a filtration if

FsCFRCF, forall0<s<t<oo.

We shall denote the filtration (F;)¢>0 by an abbreviated symbol §. We say a probability space
(Q, F,P) is filtered if it comes equipped with a filtration §. For the future convenience, it is necessary
to add the o-field Foo := Vp<i<oo F¢ t0 the probability space (€2, F,P). To a given filtration §, we
always associate, for every t > 0, a o-field Fi— = \/,_, F, which is the o-field of events strictly
prior to time ¢t and a o-field Fi4 := [,5; Fs Which is the o-field of events after time ¢. For ¢t = 0,
we set Fo— = JFo as usual. Note that the intersection of a family of o-fields on the space Q is also
a o-field. Hence the above definition of the o-filed F;;, makes sense. However, a union of a family
of o-fields is not necessarily a o-field. By the notation \/,_, Fs we mean the o-field generated by
Us<tFs. The intersection (), Fs can also be characterized by sequences. Let t,, be a sequence such
that t, > t for all n € N and t, | t. Then we have Fiy. = [, en Fi,. A filtration § is called to
be right-continuous if F; = F;4 for each t > 0. A filtration § is called to be left-continuous if
Fi = F;— for each t > 0.

A probability space (2, F,F,P) is said to be complete if the o-field Fy contains all the P-null
sets in F . A filtered probability space (R, F,§, P) is said to satisfy the usual hypotheses if the

right-continuity and the completeness conditions are fulfilled.
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2.1.1 Stochastic Processes

Let (R, F,§,P) be a filtered probability space satisfying the usual hypotheses. Let (E,| - ||) be
a separable Banach space with its o-field B(E) of all Borel subsets. Let us fix t > 0. Let
L£9(Q), F;,P; E) be the set of all E-valued F;-measurable random variables. We say two random
variables in £%(, F;,P; E) are equivalent if they are equal a.s. Let L°(Q, F;,P; E) be the set of
all equivalence classes of elements of £L%(, §,P; E). Let us take £,7 € L(Q, F¢,P; E). Define

d(¢,n) =inf{le 2 0: P(|¢ —nl| > €) <€}

Then one can show, see Dudley [30] Theorem 9.2.2, that the function d is nonnegative, symmetric
and satisfies the triangle inequality. Furthermore, d(£,7n) = 0 if and only if £ = 7 a.s. This implies
that d can be lifted to the space LO(Q, ¢, P; E) and this lifting, still denoted by the letter d, is a
proper metric on the space L°(Q, F,P; E). The metric d is called the Ky Fan metric. It is known
that it metrizes the convergence in probability. That is a sequence £, converges in probability to
¢ in LO(Q, F;,P; E) if and only if d(én,€) — 0, as n — co. Moreover, the space L%(Q, 7, P, E) is
complete with respect to the Ky Fan metric d, see Dudley [30] Theorem 9.2.3. It is worth pointing
out that the almost sure convergence is not metrizable, in other words there is no topology on
L9, Fi,P; E) such that the almost sure convergence is equivalent to convergent with respect to
this topology.

We say that X := (X;)i>0 is an E-valued stochastic process if for each t > 0, X; is an
E-valued random variable on (2, F). One can also regard X as an E-valued mapping defined
on §) x Ry through the formula X(t,w) = X;(w). We say that X is a process defined up to
modification if X is a mapping from R to Lo(Q, F¢, P; E).

For a fixed point w € Q, the function Ry 3 t = X:(w) € F is called a path (trajectory) of the
process X associated with w. We shall introduce some regularity properties of the paths of processes.
An E-valued process X is said to be continuous (resp. right-continuous) if for every sample point
w € Q, the function R4 3 t = X;(w) € E is continuous (resp. right-continuous). Analogously, an
E-valued process X is said to be cAdlag (right continuous with left limits) if for every w € Q, the
path Ry 3 t = X;(w) € E is cadag, namely for every t € Ry, Xi(w) = limg\¢ Xs(w) and the left

limit X;-(w) = lim, » X,s(w) exists. Here the limits are with respect to the norm on E.

13



Consider two stochastic processes X = (X;)i>0 and Y = (¥})¢>0 defined on the same filtered
probability space (2, F,§,P) and taking values in the same space E. Since stochastic processes X
and Y are functions on Ry x Q, X and Y are equal if and only if X;(w) = Y;(w), for every t > 0
and every w € . One can see that the above requirements are quite strict, so we introduce the
following two common definitions that weaken the above notion. Two E-valued processes X and Y

are called indistinguishable (or P-equivalent) if and only if
P{w € Q: Xi(w) = Yi(w); Vte[0,00)} =1

Since we will regard indistinguishable processes as equal, we say that an E-valued process X is
continuous (resp. cadlag) if it is indistinguishable with a continuous (resp. cadlag) E-valued process.

An E-valued process Y is said to be a modification of X if, for each ¢t > 0,
P{w: Xi(w) = Yi(w)} = 1.

In the latter case, we say that the processes X and Y are stochastically equivalent.
It's easy to prove that if two processes X and Y are indistinguishable, then Y is a modification
of X. Indeed, we have 1 > P{X; =Y;} > P{X; =Y;,Vt € Ry} = 1, for each t > 0. Conversely, we

can easily find a stochastic process Y, see Example 2.1.1, that is a modification of X, but X and Y

are not indistinguishable.

Example 2.1.1. Let 7 be a positive random variable with a continuous distribution. Let X; = 0
andlet ; = 1ift =7,and ¥; = 0if t # 7. Since P{X; # Y;} = P{r = t} = limp04(P{r <
t}—P{r < t—h}) = 0, then P{X; = ¥;} = 1, for each ¢t > 0 which implies that ¥ is a modification of
X. However, P{X; = Y;,Vt > 0} = P{7 #t,Vt > o} = P{r < 0} = 0. Each path of X, is identically
zero, but every path of Y; has a jump at the point 7. This shows that these two stochastic processes
have completely different sample paths. See [80].

Lemma 2.1.2. Suppose that X = (X;)i>0 and Y = (Y)i>0 are two E-valued stochastic processes
both with right-continuous paths and'Y is a modification of X. Then X andY are indistinguishable.

Proof. First we claim that

Utxi#¥r= U (X #1} (211)
t>0 reQ,r>0
Indeed, it is clear that LHS D RHS. On the other hand, for any w belonging to the left side of
(21.1), ie. w € Uyno{ Xt # Y2}, there exists some fo € Ry such that Xy, (w) # Yig(w). Then we
can find a sequence of rational numbers {r,}nen such that r, > tp, for any n € N. Since both X
and Y have right-continuous sample paths, we infer that

Jm X, () = X (@), (212)
Jm %, () = Ya(w). (2.13)

14



However, since Xy, (w) # Y3, (w), it follows from (2.1.2) and (2.1.3) that there exists a natural number
n € N such that X,,(w) # Yr,(w). This implies that w € U, en{Xrn # Yra} C Ureqrmo{ Xt # ¥i}.
Therefore, the equality (2.1.1) holds.

It follows that

0sP(J{X:#Yh)=P( |J {X:#¥}h< > {X#Y}=0,

t>0 reQ,r>0 reQ,r>0

which implies that

P(J{X: #¥i}) =0.

>0
Therefore, we have

P{X:=Y;,Vt 20} =P((){X; =V} = 1

>0

O

In view of the above proof, one can derive the same conclusion for an E-valued process with

left-continuous paths.

2.1.2 Measurability, Progressive Measurability and Predictability

Let (©, F,%,P) be a filtered probability space satisfying the usual hypotheses.

Definition 2.1.3. An E-valued process X is said to be adapted with respect to § if and only if
for every t > 0, the random variable X;(-) : Q@ 3 w = Xy(w) € E is F;/B(E)-measurable, for each
t>0.

An E-valued process X = (X;)¢>0 is said to be measurable if and only if the mapping

Ry x 23 (t,w)— Xi(w)€EE
is B(R+) ® F/B(E)-measurable.

Remark 2.1.4. 1. Since E is a separable Banach space, we know, see [26], that the Borel o-fields
B(E) is generated by all subsets of E of the form

{zeE:p(zx)<a}, € E*, a€R.

2. Since the filtered probability space (2, F, §, P) is complete, if two E-valued processes X and Y
are modifications with each other, then X and Y cannot differ in adaptedness. In such a case,
we say that a process X defined up to a modification is adapted if and only if for every ¢ > 0,
the random variable X;(-) belongs to L%(Q, 73, P;E). In particular, two indistinguishable
processes have the same adaptedness and measurability properties.

Lemma 2.1.5. If an E-valued process X is adapted to a complete filtration § and an E-valued
process Y is a modification of X, then Y is adapted to .
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Proof. For any B € B(FE), observe that

{(vieB}={Yie B}n({X: =Y} U{Xs # ¥i})
=({Xee B}n{X: =Y: ) U({Y: € B}N{X; # V1}).

Since Y is a modification of X, we infer that {X; # Y:} is a P-null set. So the set {X; # Y;} belongs
to Fo which is a subset of F;. Hence the complement set {X; = Y;} of {X; # Y;} belongs to F; as
well. By the adaptedness of X, we have {X; € B} € F;. Hence, {Y; € B} € F,. |

Definition 2.1.6. An E-valued process X is said to be progressively measurable with respect to
the filtration § if and only if for every ¢, the restriction of X to [0,¢] x Q is B(|0, t]) ® Fi-measurable,
more precisely, if and only if for every ¢t > 0, the mapping

0,8 x 3 (s,w) = Xa(w) € E

is B([0,t]) ® F:/B(E)-measurable.
Lemma 2.1.7. Let BF be a family of sets which is defined by
BF :={ACR; xQ:Vt>0,AN([0,t] x Q) € B([0,t]) ® Fi}.

Then we have
(1) BF is a o-field;

(2) If X = (X¢)tp0 is an E-valued process, then X is progressively measurable if and only if
X : Ry x Q = E is BF-measurable.

Proof. 'To show that BF is a o-field, we need to verify the three conditions of a o-field.

(i) Since for every t > 0, the set (Ry x Q) N ([0,¢] x Q) = [0,¢] x @ € B([0,1]) ® ft, then
R, x Q € BF.

(ii) Take A € BF. Then we see that

AN ([0,¢] x Q) = (R4 x )\ A)N ([0, ¢] x Q)
= (0,8 x Q) \ A= ([0, ] x )\ (AN ([0, 4] x ).

Since A € BF, we have that AN ([0,¢] x ) € B([0,t]) ® F; and [0,¢] x Q € B([0,t]) ® F;.
Hence we infer that A°N ([0,¢] x ) € B([0,t]) x F.

(iii) If A, Ag,--- € BF, then we find out that
(U4) Nt x 2) = U4 N0,8 x D)} € B0, ) ® ..

ieN iEN

Since A; is BF-measurable providing A; N ([0,t] x Q) € B([0,t]) ® F:, we have

(Ua) N x o esoder

ieN

implying [J;cn Ai € BF.
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Therefore, BF is a o-field.
Note that the process X is progressively measurable if and only if for each ¢ > 0 and every

B € B(E), the set
{(s,w): 0 < s < t,we N, X (w) € B} € B([0, t]) ® Fi. (2.1.4)

Since we know that {(s,w) : 0 € s € t,w € Q, X,(w) € B} = {(s,w) : s > 0,w € Q, X,(w) €
B} N([0,t] x Q), the condition (2.1.4) is equivalent to

{(s,w) : Xs(w) € B} N ([0,] x Q) € B(0,¢]) ® F.

This is nothing else but {(t,w) : X;(w) € B} € BF. 0O

We usually call this o-field BF the progressive o-field on R4 x (2.

Theorem 2.1.8. Let X be an E-valued process adapted to the filtration §. If the process X is
right-continuous (or lefi-continuous), then X is progressively measurable.

Proof. Suppose that the process X is right-continuous. We define a sequence of functions from
[0,5] x Q to E by, for every n € N,

2"-1

X"(t,w) = 1igy(t) +Zl,ifr¢.fw51 )X @ (@), (tw) € [0,5] x 0.

By the adaptedness of the process X, we find out that X™ is B([0, s]) ® F,-measurable.
Now we proceed to show that by the right-continuity of the process X, the sequence (X™),en(t,w)
converges to X (¢,w) as n — oo, for all (t,w) € [0,8] x . Let us fix w e Q.

e If t =0, then X"(0,w) = Xo(w), for each n € N.

e If0 <t < s, we can find a natural number n; € N such that 5f- < ¢. By the right-continuity
of the process X, there exists a positive number & such that for every ¢’ € [t,t + §), we have

”th -_ Xt“ < E.

Choose next a natural number ng > n;. Hence sz < § and for each n > ng, we have

# < o8 < 4. Since the intervals {(£2, kL0012 1 form o pairwise disjoint sequence of
subsets of (0, s] the sequence of intervals covers (0, s] and for every n > ng, one can find k

such that ¢ € ( Q%EE] implying t < &I{—IL +§—- < t+4 . Hence, by the right-continuity
of the process X we have

1 X eene — Xl <e.
Since X' = X‘%%E, for t € (£2, Q’—ﬂ)ﬁ) we infer that
IXE — Xell <.
Therefore, we can conclude that X"(t,w) — X(¢,w) as n — oo for all (t,w) € [0,s] x Q. It

follows that X is B([0, s]) ® F,-measurable when it is restricted to [0, s] x Q. Thus, the process
X is progressively measurable.
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If X is left-continuous, for fixed 0 < s < 00, one can define a sequence of functions in the
following way

2n-1

X"t,w)= ) Lisg, ey (DX gy ().
k=0

In this case, it can be shown, by using a similar argument as before, that the left-continuous
process X is progressively measurable.

O

Corollary 2.1.9. If X is an E-valued right-continuous stochastic process, then X is measurable.
The same conclusion holds when X is a left-continuous process.

Proof. We only need to show that every right-continuous process can be approximated by a sequence
of measurable processes of the following form

X™(t,w) = Lo} (t) Xo(w) + Z 1(%,§k;1)a](t)X§k+l2a (w), (t,w) e Ry x Q.
keN

Similarly, one can show that every left-continuous process can be approximated by a sequence of
measurable processes of the form

X™Mt,w) = Z 1[%,5%9_:)“))(5*(“)-
keN

Lemma 2.1.10. Every E-valued progressively measurable process is measurable and adapted.

Proof. Every progressively measurable process is clearly measurable. Indeed, for any A € B(E), we
know that

{tw) eRyx A Xpw) €A} = |J {(s,w) C[0,7] x Q: X,(w) € A}.

reQ,r>0
Furthermore, by progressive measurability, we have for each r € Q and r > 0
{(s,w) € [0,7] x Q: X,(w) € A} € B([0,7]) ® F C B(R+) ® F.

Thus, we infer

{(t,w) € Ry x Q: Xy(w) € A} € B(R4) ® F,

which implies X is measurable.
Since by the definition of progressive measurability, for every t > 0, X : [0,t]xQ — E is B( 0, t))®F;-

measurable, it follows from the Fubini Theorem , see also Lemma 3.6.1, that for every 0 < s < t,
the function w —» X,(w) is F;-measurable. Hence we infer that for every t > 0, X; is F;-measurable

Wwhich shows that X is adapted. The proof is thus complete. 0

Typically, all the theorems above hold for R-valued processes. Let V denote the o-filed generated

by all measurable and adapted E-valued process on Ry x 2. One may ask whether every measurable
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and adapted process is progressively measurable. The answer is in a negative way. In fact, we can
always find a measurable and adapted process which is not progressively measurable, see Example
2.1.22 in this section. But, the following theorem due to Meyer [59] says that the question raised
above would be possible if we take a modification of this process.
Theorem 2.1.11. If an R-valued process X is measurable and adapted to the filtration (Fi)i>o,
then there exists a modification of X which is progressively measurable.

Cohn in [24] showed that the above theorem actually holds for all measurable and adapted
processes taking values in a compact metric space. If F is a separable Banach space, we have the
following theorem which is an immediate consequence of Proposition 2.1 in [79].

Theorem 2.1.12. Every measurable and adapted E-valued process has a progressively measurable
modification.

Definition 2.1.13. The predictable o-fleld P is the o-field generated by all adapted and left-
continuous R-valued processes. An E-valued process is called predictable if and only if it is
measurable with respect to P.

Definition 2.1.14. The optional o-fleld O is the o-field generated by all adapted and right-
continuous R-valued processes. An E-valued process is called optional if and only if it is measurable
with respect to O.

Now we are going to present a number of characterizations of the predictable o-fields.
Theorem 2.1.15. The predictable o-field P is equal to each of the following o-fields.

(i) the o-field Py generated by all adapted and continuous R-valued processes;

(i) the o-field P, generated by all adapted and caglad (left continuous with right limits) R-valued
processes;

(iti) the o-field generated by the following families of sets.
R:={(st] x F: 0<s<t<oo,FeF}U{{0} xFFeF),
Ri={(s,t] x F: 0<s<t<oo,FeF-}U{{0} xFF e F},
Ry:={[s,t)x F: 0<s<t<oo,FeF._}

Proof. Since both continuous and caglad processes are left-continuous, it is clear that P; C P and

P, CP.
Now we will show that P C o(R). In fact, we only need to show that every adapted left-

continuous process is o(R)-measurable. For this, we define a sequence {X"}22, of simple functions
by, for every n € N,

X"(t,w) = Loy (OX(©0w) + Y1, ﬁ’bﬁ#](t)X(—;;,w), (t,w) € Ry x Q.
k=0
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Let B be a Borel set in B(R). We observe that

{(t,w): X"(t,w) € B}
= (10} x fw: X(0,w) € BY) | ( D ((%,%—11 X {w: X(2—k;-,w) eB))).

k=0

Since X is adapted, we infer that, for every k € N, {X( §'%,w) € B}l e F & Thus the above set is a
countable union of sets from the family R, which implies that X" is ¢(R)-measurable.

By using a similar argument as in the proof of Theorem 2.1.8, one can show that the sequence
X™(t,w) converges to X (t,w) as n — oo, for all (t,w) € Ry x Q. Therefore, the process X is
o(R)-measurable. This proves P C o(R).

Now we are in a position to show that 0(R) C Py. Consider a set, from the family R, of the
form (s,t] x F, where F € F,. Clearly, the indicator function 1(,5xr of this set is an adapted
caglad process. Thus 1(s4xF is Pp-measurable which proves the claim o(R) C P,.

Next we will show that o(R) C P;. To prove this inclusion, it is enough to show that the
indicator functions loyxr» F € Fo and lgyxr, F € F, are pointwise limits of sequences of
continuous adapted processes.

First we deal with the function 1(g} #(¢,w), F € Fo. To do this, we find a sequence of continuous
functions {pn}5,, ¢ [0,00) = R, of the form

_f 1-nu, if0<u<i
Qon(u)"{ 0, ifuz;]{' n

It is easy to see that limp—o00 ¥n(t) = 1(g} pointwise on [0, 0o) and the processes
Ry x 23 (t,w) = 1p(w) - pn(t) €R, n €N

are adapted and continuous. Since F € Fy and 1r(w) - ¢n(t) = 1{gjxr(t,w), 88 7 — 00, for all
(t,w) € Rt x Q, we infer that 1(o)xF is P1-measurable, i.e. {0} x F € P;.

Next we consider the function 1(,sxr, F' € Fs. For this, we take another sequence {¢5}32,,
¢ : [0,00) — R, of continuous functions

0, if0<u<s
n(u — 8), ifs<u<s+i
on(u) = 1, ifs—t<uct
1-n(u—t), ift<u<t+l

0, ifu>t+i

Note that for every n € N, the function ¢, (u) is continuous on R4 and limp-y00 on = 1 s,t] Pointwise
on [0,00). Hence 1p(w) - ¢n(t) = l(ggxr(%,w), a8 n = oo, for all (t,w) € R* x Q. Since F € F,,
the processes 1p(w) - wn(u) are adapted. Thus the adaptedness together with the continuity shows

that
Ry x 23 (u,w) — 1p(w) - pn(u) €R

is P;-measurable. Therefore the limit 1(, s F of that sequence is also P;-measurable. This implies
that (s, t] x F € Py, which proves that o(R) C P1.

So far, we have shown that P; = 6(R) = P2 = P. Now it remains to show that o(R) = o¢(R;) =
o(Ra).

Since for each t > 0, Fi~ C Fi, we have 0(R1) C o(R). For the inverse inclusion, let us take
(s,t] x F € R, where F is Fy-measurable. Note that F is also F(,, 1)_-measurable. We consider a
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sequence of sets of the form (s + 1,¢+ 1] x F. Clearly, (s + 1, + 1] x F € 0(Ry). Also, observe
that pointwise on Ry x (2,

Lggxp = HM 1o a4y 1)5p

Hence we infer (s,t] X F € 0(R;). This shows that o(R) C 0(R,).

To prove 0(R1) = o(Rz2), let us take (s,t] x F € 0(R1), where F € F,_. We consider a sequence
of sets {g + %,t + -,1;) x F. 1t is clear that F € .7"(8_,_%)_. Then [s + %,t + ;11-) x F € o0(Ry), for all
n € N. Since we have, pointwise on R, x 2,

1(a,t]><F = nll)r%o 1[8+%,t+;11-)xF7

we infer (s,t] x F € o(Rz2). This proves 0(R1) C 0(Rz). Similarly, the inverse inclusion follows

immediately if we consider another sequence of sets of the form (s — 1,¢— 1] x F and observe that

1[8,t)XF = limn—)oo 1(“%,t—%]XF'
a

Remark 2.1.16. 1. The sets in R are usually called the predictable rectangles.

2. Remark 2.1.4 tells us that an E-valued process X is predictable if and only if for every ¢ € E*,
the R-valued process ¢(X) is predictable. Indeed, clearly, if X is predictable, then for every
¢ € E*, which is a continuous mapping from E to R, the composite mapping

(t,w) = X(t,w) = $(X(t,w))

is predictable. On the other hand, let us set H := {B € B(E) : X~!(B) € P}. It is easy to
show that the family H C B(E) is a o-field. Moreover, since B(E) is generated by all subsets
of E of the form

A={zcE:¢(z)<a}, € E* a€R, (2.1.5)
we can see that for every set A € B(E) given by (2.1.5)

X~ A) = {(tw) : 6(X(t,w) < @)} € P.
Hence we conclude that H = B(E) which implies that X is P/B(E)-measurable.

3. If X is left-continuous and adapted, then for every ¢ € E*, ¢(X) is an R-valued left-continuous
and adapted process. It follows from the definition of predictability that the R-valued process
#(X) is predictable. Therefore, every left-continuous and adapted E-valued process is pre-
dictable. However, predictable process need not to be left-continuous. For instance, suppose
that X is a deterministic process given by X(t,w) = f(t), (t,w) € Ry x Q. Clearly, it is
predictable, but it may not be left-continuous.
Let us recall the definitions of semiring and ring.
Definition 2.1.17. A semi-ring S on 2 is a collection of subsets of 2 such that
(i) 0es;

(ii) f A, Be S,then ANBES;
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(iii) if A, B € S, then there exists n € N, and 4; € §,i=1,.-- ,n, such that

A ring A is a collection of subsets of 2 satifying
(i) D e A
(ii) if A4, B € A, then AU B € A;
(iii) if A, B€ A, then A—B€ A

From the above definitions, one can easily conclude that a ring .A is stable under operations of
finite unions and finite differences. Note also that a ring is stable under operations of intersections

of sets, because ANB=A—(A— B).

Proposition 2.1.18. Let A be the smallest ring generated by all predictable rectangles in R. Then
R is a semiring and A consists of all finite unions of disjoint rectangles in R, i.e.

A={A=UL 4i: {4}, C R are disjoint,n € N}.

Proof. Denote
={A=UL4;i: {A}, C R are disjoint, n € N}.
If A€ A, then A =ul 1Au A; € R. Here we use the notation & to denote the union of pairwise
disjoint sets. Since the ring A is stable under unions of sets, then A € A. Thus Ac A
On the other hand, we will show that .A is a ring. To do this, we need to check the three
conditions of a ring. Clearly, € R,s00 € R. Before proving the condition (ii), we will verify the

condition (iii) first.
(iii): Take A, B € A. Then there exists two finite disjoint unions of sets {A;}; € R, {B_7 Y €

R such that A = &, A; and B = Wi, B;. We see that AN B = (W], 1A,) N (W] __lB_,) LW
(AiNB;), since A;NB; are pairwise disjoint foralli = 1,--- ,n,j =1, ,m. Clearly, if A,nBj € 'R,

then ANB € R. Thus ANB € A.
Next we will show that if My, M2 € R, then My — M, = Wi_,Dx, for some B, € R. Let

M, = (s1, 1] x Fy and Ms = (s2, to] X Fy, where F} € Fory F2 € Fy,. Ift; < 89, then My — My = M.
If 81 < 89 < t1, then we have

My — My = (s1,t1] X F1 — (s2,t2] X F
= ((81,82] X Fl) o) ((82,t1] X F2) (] ((52,t1] X (F1 - Fz))
— ((s2,t1] x Fa) W ((t1,t2] x F3)
= ((s1, 82] x F1) & ((s2, ta] x (F1 — F3)),

where Fy — Fy € Fq,. Thus My — Mz = D1 W Dy, for Dy, Dy € R. For the other cases, we can
consider in a similar way to conclude that My — Ma = Wi_, Dy, for some D;, € R. From this one

can also deduce that R is a semiring,
Let A, Be A, A=W} A and B=u].,B;. Then

A— B =UY A — UL B; = UL (4 — Ui B;) = ULy ML (Ai — 4))
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Observe that finite union of disjoint sets of A is still in A. Since we have shown that 4; — B; =
wh_, Dk, for some Dy € R, we can conclude that A — B € A

To prove condition (ii), let A, B€ A. Then AUB=(A-B)W(ANB)W(B-A)c A

In conclusion, we showed that A is a ring. Since we define A to be the smallest ring containing
R, we infer A C A. 0

Let us briefly summarize the relationships among the different types of measurability.

Theorem 2.1.19. P ¢ O ¢ BF GV ¢ BR,) ® F.

Proof. Recall from Theorem 2.1.15 that the o-field P is generated by adapted and continuous R-
valued processes. Note that every adapted and continuous R-valued process is also right-continuous
and adapted. Since, by definition, the optional o-field O is generated by all adapted right-continuous
R-valued processes, we infer that P ¢ O. By Theorem 2.1.8, every right-continuous adapted R-
valued process is progressively measurable. Thus, we have O C BF. The inclusion BF C V follows
from Lemma 2.1.10, that is every E-valued progressively measurable process is measurable and
adapted. We will give several examples to illustrate that all the inclusions are strict. a

Example 2.1.20 (Optional but not Predictiable). Let N = (N;):>0 be a Poisson process and
F be its associated filtration. Then N is optional but it is not predictable. See [58] for a detailed
proof or Example 3.4.11 for an alternative proof. In fact, a theorem due to [58] tells us that every
predictable right-continuous martingale is continuous.

Example 2.1.21 (Progressively Measurable but not Optional). This example is due to
Dellacherie and Meyer. Let (W}):>0 be the standard Brownian Motion with continuous paths and let
Fii=0(W;:0<8<t),for0<t<o0. SetD:={(t,w): Wy(w) = 0}. Then theset D is closed and
predictable. In fact, D is a.s. a set without interior points. In other words D' := {s: (s,w) € D¢}
is the disjoint union of open intervals. Take L := {(s,w) € D : s is not isolated from the right}.
The set L may also be characterized as all the points (s,w) of D such that s is the left-end point
of an excursion intervals of D'. It was show in Dellacherie and Meyer that the indicator X := 1, is
progressively measurable but not optional.

The following example from Chung and Willian [22] illustrates that there are processes that are

measurable and adapted but not progressively measurable.

Example 2.1.22 (Measurable but not Progressively Measurable). Let W = (W;);»0 be
a one-dimensional Brownian Motion and § = (F)i>0 be a filtration generated by the Brownian
Motion, i.e., Fi = o(W,; 0 < s < t) and augmented by P-null sets from F. Assume Fy contains all
P-null sets in F. We define

T(w) :=sup{t € [0,1] : Wi(w) =0}, w € .

Take [T] = {(T(w),w) : we Q} C[0,T]xQ,ie [T]is the graph of the random variable T, see
Subsection 2.2.1. Let X¢(w) = 1i7y(t,w) = 1{(T(w)w): wen)(t:w). Then X is measurable and adapted
but it is not progressively measurable.

Remark 2.1.23. By Lemma 2.1.10, every progressively measurable process is measurable and adapted.
From the above Example 2.1.22 we can see the converse may not true. But Theorem 2.1.11 states
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that any measurable and adapted process has a progressively measurable modification. In this ex-
ample, it is easily seen that process Y = 0 is a modification of X which is progressively measurable.
To see this, we note that for every ¢ > 0,

{w: Xt(w)=1}={w: T(w) =1t}
={W;=0}n{W, #0,Vs € (t, 1]} C {W; =0}

Thus, we obtain that
P({w: Xi(w)=1}) <P({{W;=0})=0. (2.1.6)

Hence, P({X; = Y;}) = 1, for all ¢ > 0. This implies that ¥ = 0 is a modification of X. Clearly,
the process Y = 0 is progressively measurable.

Example 2.1.24 (An adapted process which is not measurable). Let Q = [0, 1] and let the
F be the o-field generated by all finite subsets of [0,1]. Take the filtration § to be that F; = F for
every 0 < t < oo. Define a measure P by P(N) = 0 if N is a countable set on [0,1] and P(N) = 1,
otherwise. Then P is a probability measure on (2, F). Set A = {(t,w) € [0,1] x Q : t = w}. Define
a process Xi(w) = 14(t,w), for (t,w) € [0,1] x Q. Note that for a fixed time ¢t € [0, 1], {w: Xi(w) =
1} = {w:w =t} € F; by the definition of the filtration §. Assume that A € B([0,1]) ® F. In other
words, assume that X is measurable. Since the product set B = [0, 3] x € B((0,1]) ® F, we have
AN B e B([0,1]) ® F. So the function 1anp is B([0,1]) ® F-measurable. Since the measurability
with respect to a product o-field implies measurability with respect to all sections, the function
w + 14np(t,w) is F-measurable. Hence we have [0, -21-] € F which is impossible by the definition of
the o-field F. Therefore, the process X is not measurable.

2.2 Stopping Times

A random variable 7 :  — [0, 00] is called a stopping time w.r.t. the filtration § if and only if
for each 0 < t < oo, {w : T(w) < t} € F;. Clearly, 7 is a stopping time if and only if the process
ljo,r) is adapted. A random variable 7 : 2 — [0,00] is called an optional time of the filtration §
if and only if {T < t} € F; for every ¢t 2 0.

Proposition 2.2.1 ([48]). (i) Every stopping time is optional.

(i) A random variable T is optional w.r.t. the filtration (Ft)i>0 if and only if T is a stopping time
with respect to the filtration (Fi4)i>0.

(i) In particular, if the filtration (Fi)i>0 15 Tight continuous, then T is an optional time if and
only if it is a stopping time.

Proposition 2.2.2 ([48]). Let 7,0 be two stopping times on a filtered probability space (Q, F, (F,P).
(1) If T is a nonnegative constant, then T is a stopping time.
(1) Then random variables T + o, T Ao and TV 0, aT, where a > 1, are stopping limes.

(ii3) If {Tn}3%, is a sequence of stopping times, then the random variable sup,en 7 is a stopping

time.
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There are many ways to produce new stopping times. Given a set A € B(E) and an E-valued

process X = (X;)i>0 on (2, F). We define the first hitting time H4 by
Hy =inf{t_>_0:Xt € A},

where we adopt the convention that inf{#} = oo.

Proposition 2.2.3. Let X be an E-valued stochastic process with right-continuous paths which is
adapted to the filtration {F:}. If A is an open set, then H 4 is an optional time (or Hy4 is an stopping
time with respect to {Fi+}).

Proof. First we claim that for every ¢ > 0,

{weQ: Hyw) <t} = U {weN: X,(w) € A}

0<s<t

To proof this, let us suppose that w € (Jyc,c:{Xs € A}. Then there exists a number s € [0,1)
such that X,(w) € A which implies that the first hitting time Ha(w) of A should not be bigger
than s. That is H4(w) < 8 < t. Conversely, assuming that w € {Ha < t}, we get Hu(w) < t.
Let u = Hy(w). Since u = inf{t > 0, X;(w) € A}, we can find a number sp € (u,t) such that
Xo(w) € A, which shows that w € {H4 < t}.

Next we claim that
U {Xed= |J {X,eA}.
0<s<t qeQtn[o,t)
Indeed, it is easy to see that Uoc,<;{Xs € A} D Ujeq+npo{Xq € A}. For the other conclusion, let
us suppose that w € LHS. Then there exists at least one s’ € [0,t) such that X (w) € A. Obviously,
we can find a non-increasing sequence {g, }nen of rational numbers such that ¢, € [0,t) and ¢, | &'
Since the process X, by assumption, has right-continuous paths, we infer that lims e Xg, (W) =
Xy (w). Moreover, since the set A is open, we deduce that there exists at least one n € N satisfying
X (w) € A, where g, € [0,t). This shows that

we ([ J{Xpwedlc |J {Xge4a},
neN geQ+n[o,t)
what proves the equality. In conclusion, we proved that
{Ha<t}= |J {X.ed}= |J {X,eA4ler.

0<s<t geQ+no,t)
O
Remark 2.2.4. Note that even if we assume that all the paths of the stochastic process X are
continuous, one still can not deduce that when the set A is open, H4 is a stopping time with

respect to § := (Ft):>0 without the right-continuity assumption on the filtration §. For instance,
take an open interval A = (t, 00), for some ¢ > 0 and take a stochastic process X with Q = {w,ws},

Xa(wl) =8

_ s, if0<s<t
X’(“’Z)‘{ %—s, ifs>t




Let (FX)>0 be the filtration generated by the process X. Then we have Ha(w1) = inf{s : X (w1) €
(t,00)} = inf{s: s € (t,00)} =t and Ha(w2) = inf{s : Xs(we) € (t,00)} = inf@ = co. However,
for our ¢t > 0 the set {H4 <t} = {w1} ¢ FX. Hence the usual hypotheses on the filtration § are
somehow reasonable.

Lemma 2.2.5. Let p(z, A) = inf{||z —y|| : y € A}, where z € E and A is a closed set of E. Denote
by An = {z: p(z,A) < 1}, n € N the L. neighborhood of A. Then {An}nen is a sequence of open
sets and we have (e An = A.

Proposition 2.2.6 ([80]). Let X be a stochastic process with continuous paths which is adapted to
the filtration {F;}. If A is a closed set, then H,4 is a stopping time. ’

Proof. By Lemma 2.2.5, for every n € N, the 1-neighborhood 4, = {z : p(z, A) < 1} of the closed
set A are open and [)oe; An = A. Define a sequence of the random variables by Hy, = inf{t >
0; X; € A,}. From Proposition 2.2.3, it follows that H,4, are optional. Since {A,} is a decreasing
sequence of open sets, the optional times {H4,}32, is a nondecreasing sequence. Hence the limit
of {Hy,} exists, and we denote it by Ha,, € [0,00]. Let H4 = inf{t > 0: X; € A}. We will show
that Hy = Ha -

If Hy, = oo, then Hy = oo. This is because Hy, < H, implies that Ha,, < Ha.

If Ha,, < oo, we will justify the result as follows. Suppose first that H4 = 0, which means the
stochastic process X is contained in A at the beginning. Then Hy, = 0 for every n € N. If Hy4 > 0,
since the stochastic process X has continuous paths, we find out that X Ha, € OA,, where 0A,, is
the boundary of A,. Clearly, 04, & An but 0A, C Ay, for k < n. This gives that Xy, ¢ An
but Xg, € Agfork <n. It follows that Ha, < Hy,,, < Hy, for any n € N. Moreover, since
XH,, € 0An C {z: p(z,A) £ L} for any m < n and the sets {z : p(z,A) < 1} are closed, the
limit Xp,  of the sequence {XH,, }n>m is also contained in {z : p(z, A) < -,15}, for every m € N,
ie. Xn, € Nm={z: p(z, A) < 1}. Observe that

1

m}=A

N {z: ole, 4) <

m=1

It follows that Xy, € A. However Hy = inf{t > 0; X; € A}. Hence we infer that Hs, > Hy4.
This together with the observation Ha,, < Hy yields that limpo0 Ha, = Ha,, = Ha.

Since we have shown above that Hy, < Hy, for every n € N and limp,_oo Ha, = Hg4, we have
for every t > 0, {Ha <t} = ne1{Ha, < t}. Since the sets A, are open, by Proposition 2.2.3, we
know that {Hy, <t} € Fi. Thus {Ha <t} € F4, for every ¢t > 0. When ¢t = 0, since X is adapted

to {F;}, {Ha <0} ={Xo€ A} € Fo=Fi.
i

Let X = (Xi)i»0 be a measurable E-valued process defined on (2, F,§,P), and let 7 be a

random variable on  with values in [0, 00]. We define a function X, : Q@ — E by
Xr(w) = Xp(w) (W), we .

The function X, we defined above is a random variable. In fact, the mapping Q 3 w —
(t(w),w) € Rx Q is F/B(R,) ® F-measurable. Moreover, the mapping (¢,w) — X¢(w) of the space
(R4 x Q,B(R;) ® F) into (E, B(E)) is measurable. As the composition of the two measurable

26



mappings, the function X, is thus F/B(E)-measurable, i.e. X, is a random variable. The random
time 7 is also allowed to take the value +00 when Xo.(w) is well defined for all w € Q. In such a

case, we set X;(w) := X(w) on {T = o0}

Definition 2.2.7. Let T be a stopping time with respect to the filtration (Ft):>0. The family Fr
containing all the events A € F such that AN{T <t} € F; for each ¢t > 0, is called to be the o-field

of events prior to T'.
Proposition 2.2.8. Let T' be a stopping time of the filtration (Fi)t>0. Then we have
(i) Fr is a o-field.
(ii) T is Fr-measurable.
(1) If the stopping time T is equal to a constant t, then Fp = F;.
Proof. (i) If A€ Fr,ie. AN{T <t} € F, for every t > 0, then we have
AN{T2t}={T2>2t)\NAN{T>t}) e F, t 20,
which implies that A¢ € Fr. If Ay, Ag,--- € Fr, hence
(AiUA U ) N{T <t} =Unen(A1 N{T <L t}) € F,

foreach t > 0.
Therefore, Fr is a o-field.

(ii) Note that for each t > 0, the event {T' € (—o0, ]} {T < s} = {T < t}N{T < s} € F,, Vs > 0.
This shows that T is Fp-measurable.

(iii) We have to show that F; O Fr and F; C Fr. For the first claim F; O Fr, we observe that if
B € Fr, then

B=Bn{T=t}=Bn({T<t}n{T > t}°)
=(Bn{T <t})n{T <t}
=Bn{T§t}n(UneN{T5t——71;})e}'t.

On the other hand, if B € F, then BN {T < t} = B € F;. Hence B € Fr.
O

Theorem 2.2.9. Let S and T be two stopping times. For any element A € Fs, we have AN {S <
T} € Fr.

Proof. One only need to show that for any A € Fg, we have AN {S < T}N{T <t} € F, for each
t > 0. Observe that

AN{SSTIN{T <t} =An{S<t}N{T <t}N{S< T}
=(AN{S<tHN{T <t}N{SALt<TAt}.

Now we claim that for every stopping time T', T A t is JF;-measurable. Indeed, this claim follows
immediately from the fact that for every B € B(R),
_ _[{T<s}eF,CF, ift>s
{TAt< s} —({TSs}U{ts.s}—{ Jer gz
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Using the above claim, we obtain
AN{SLSTIn{T<t}eF.
O

Proposition 2.2.10 ([58]). Let X be an E-valued right-continuous and adapted process. Let T be
a stopping time and a be a positive number. Define for every w € §,

o(r)(w) ==inf{t 20:t > 7(w), |Xt(w) — Xp@)W)ll > a},

where inf @ = oo as usual. Then o is a stopping time with respect to the family (Fey)e>0-

2.2.1 Stochastic Intervals

Definition 2.2.11. Let S and T be two stopping times. We define the stochastic intervals ((S, T},
(1S, T, (S, T)), ((S,T)) and [[T]] by
(5, T)] :=={(s,w) € R4 x Q: S(w) < s < T(w)},
(1S, T]) :={(s,w) ERy X Q: S(w) < 58 < T(w)},
(S, 7)) :={(s,w) e Ry x Q: S(w) < s < T(w)},
(S, 7)) :={(s,w) ERy x Q: S(w) < s < T(w)},
([T)]) :={(t,w) € R4 x Q: t = T(w) < o0}.

In particular, [[T]] is called the graph of the stopping time T

Note that the stochastic intervals are subsets of R4 x Q and it is easy to see, by definition, that
they belong to B(R+) ® F. Let s,t € Ry be two constant stopping times. Then, according to the

Definition 2.2.11, the stochastic interval ((s,t]] is equal to the set (s, t] x Q.

Proposition 2.2.12. The predictable o-field P is generated by the family of stochastic intervals of
the form

S :={((S,T]]: S and T stopping times} U {{0} x F, F € Fo}.

Proof. Clearly, the processes 1((s) and lio}xr are left-continuous. Also, it is easy to see that
the process 1((s 77 18 adapted, since S and T are stopping times. Therefore, by the definition of
the predictable o-field P, we infer that the processes 1((s 1) and l{gyxr are predictable. Hence

((S,T)] € P and {0} x F € P. This proves that 5§ C P.
On the other hand, by Theorem 2.1.15, the predictable o-field P is also generated by the set R

of all predictable rectangles

R:={(s,t] x F, 0<s<t<oo,FeF}U{{0}x F,F € Fo}.

So it is enough to show that every set of the form {(s,t{] x F: 0 < s <t < oo, F€ F,}isa
stochastic interval. To see this, weset S =8 -1p+t:1pc and T = t. Since F € F;, the random
variable S is a stopping time. Hence ((S,t]] is a stochastic interval. This proves the Proposition. [

Corollary 2.2.13. The predictable o-field P defined in Definition 2.1.13 is generated by the family
of stochastic intervals of the form

T :={[[0,T]): T stopping time}.
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Proof. Let T be a stopping time. Since the process 1jjo 1) is left-continuous and adapted, it is
predictable, hence [[0,T]] € P. On the other hand, note that ((S,T]] = [[0,T]] - [[0, S]] and
{0} x F = [[1p¢,0]]. Thus ((S,T]] € T and {0} x F € T. In other words, S C 7. Therefore the
proof follows immediately from the above proposition. O

2.2.2 Stopped Processes and Localization

Let X be an E-valued process. Let 7 be a stopping time defined on (2, F). Define a process X™ by

Xe(w), ift<r(w)

X7 (W) := Xinr = { Xry (@), i t > T(w). (2.2.1)

We call X7 the process stopped at the random time 7. It can be easily seen that the stopped
process preserves all continuity and adaptedness properties of the process X. In other words, if X
is a right-continuous and adapted process, X7 is also right-continuous and adapted.

However, the stopped process X7 may have a jump exactly at time 7. In such cases, it is often
technically convenient to have the following definition by replacing 7 by 7— when the process X is

cadlag. Let X be an E-valued adapted and cadlag process. Define

Xi(w), if t < 7(w)

X‘r(w)—-(w)) if t2 T(w)’ (2.2.2)

Xtr—(w) = Xiar— = {

which is called the process X stopped strictly before the stopping time 7. Here (X;_ );>q is a
caglad process defined by for every w € Q, X;_(w) := lim, » X,(w) for every 0 < t < oo and
Xo-(w) = Xo(w). Note that the stopped process X7~ inherits the adaptedness and cadlag property
from the process X. The reason for introducing above definition of stopped process X7~ is that
there are always processes without boundedness assumption. In such cases, we can define a localizing

sequence of stopping times {7,}nen such that the associated processes X™~ is bounded.
Remark 2.2.14. If the process X is left-continuous, then both definitions agree.
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Chapter 3

Stochastic Integrals w.r.t. compensated
Poisson random measures

3.1 Poisson Random Measures

Let (Q,P,F,F) be a filtered probability space. Let (U,U) be a measurable space. Let N =
{0,1,2,---} and N = NU {oo}. Let My(U) denote the space of all N-valued measures on (U,U).
In other words, M(U) is the collection of all counting measures. Let B(Mg(U)) be the smallest
o-field on Mg(U) with respect to which the mappings ip : Mg(U) > u — u(B) € N, B € U are

measurable.
Remark 3.1.1. If u € Mg(U), then u is a measure and so it satisfies
1. u(@) =0;
2. (o-additivity) for any seqﬁence {An}nen of disjoint sets in U, p(Unen An) = X nen #(An).
Note that the o-field B(Mg(U)) is generated by sets of the form
iz}(4), AeP(N), Bel,

where i5*(A) = {1 € Mg(U); u(B) € A}.
Definition 3.1.2. A map N : Q x U — N is called an N-valued random measure if and only if for
each w € Q, N(w,-) € M§(U) and for each A € U, N(:, A) is an N-valued random variable on the
probability space (Q2,P, F). We will oftern write N(A) instead of N(:, A).
Remark 3.1.3. An N-valued random measure N can also be viewed as an (Mg(E), B(Mg(U)))-valued
random variable on the grobability space (,P,F). In such a case, for each A € U, N(-, A) :=
iaoN(): © = N is an N-valued random variable.
Definition 3.1.4. An N-valued random measure N, is called a Poisson random measure if and
only if
(1) for any B € U provided E[N(B)] < 00, N (B) is a random variable with Poisson distribution,
ie.
B)"

P(N(B) = n) = 7B L

—— n=012,

with n(B) = E(N(B)).
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(2) (independently scattered property) for any pairwise disjoint sets By, -+ , B, € U, the random

variables
N(By), -++, N(Bp)

are independent.

Remark 3.1.5. Note that for every w € ©, N(w,-) is an N-valued measure on (U,U) and for every
B € U, N(-,B) is a Poisson random variable. One can treat the Poisson random measure N as a
collection of Poisson random variables, {N(-, B); B € U}. It can also be viewed as a collection of
counting measures in Mgx(U), {N(w) : w € Q}.

The following theorem, due to [41], shows that there exists a Poisson random measure, as defined
above. See also Sato [73] p.122, Ikeda and Watanabe [40] and Kyprianow [53] for a detailed proof.

Theorem 3.1.6. Given a o-finite measure n on (U,U), there exists a Poisson random measure N
on (U,U) over (Q, F,P) such that

E(N(B)) =n(B), forallBeé.

Qutline of the Proof. 1f n(U) = 0, we can choose N(B) = 0, for all B € Y. Now suppose that 7 is a
finite measure, i.e. 0 < n(U) < 0o. We can always construct a probability space (€2, F,P) on which
we will construct some random variables as follows:

1. a Poisson-distributed random variable M with parameter n(U),

2. a sequence {X;}ien of independent random variables which is independent of N and each of
the random variable X; have the distribution

P(X1eA)_2((-g—; AelU.

For every B € U, define

M
N(B):= ) lix,en}-
i=1

Clearly, N(B) is a random variable with respect to F, since M, X1, X2, are all F-random
variable. Let Ay,---, As be disjoint sets in U and ny,--- ,n; € N. Then we find that

P(N(A1) = ny,- -+, N(Ag) = ny)
=Y P(N(A1) =ny, -+, N(Ag) =nk|M = n)P(M =n)

neN
n

= ZP(Z Lxied} =n1 0 ) Liaen) = nk)P(M =n)

neN  i=1 i=1
_ n(A:) ™ (n(U))"
- Z n1 nk’ H ( ) n!

k.

- He—n(An’_?ﬁﬁl_”,

=1 nk!
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which shows that the random variables N(A;),--- , N(Ax) are independent and Poisson distributed.
Hence N is a Poisson random measure on U.

Suppose now that 7 is o-finite. Let {Un} be a partition of U such that 0 < n(U,) < oo,
UnUp = U and U, N Uy, =B, n # m. Set 7,(:) = n(- N Uy,), for every n € N. Clearly, 0, is a finite
measure on . It follows from the first part of the argument that for every n € N, there exists
a probability space (Qy, Fn,Pn) and a Poisson random measure N, defined on (U,,U N Uy) over
(4, Fn, Pp). Define

N(A) = i N (ANU).
n=1

over the probability space (€, F,P) := [[;cn(Qn, Fn,Pn). Then one can show, see Kyprianow [53]
for a detailed proof, that N is a Poisson random measure with EN(-) = n(-). 0

Remark 3.1.7. Let us briefly review how we have constructed the Poisson random measure associated
to a o-finite measure. Given a o-finite measure 1 on (U, i), let {U,} be a partition of U such that
0 < n(Up) < 00, UpUn =U and Up NUp = 0, n # m. We constructed in the proof of the Theorem
3.1.6 a probability space (R, F,P) and the following random variables on the probability space,

1. {Mp}nen is a sequence of N-valued random variables and each of the random variables Mp,
have a Poisson distribution with parameter n(U,);

2. for each n, {XI'}ien is a sequence of Up-valued random variables and each of the random
variables X have distribution

P(X7 € 4) = nﬂ(%%, AeUnU,),

3. the random variables My, X!, i=1,---, n=1,... are mutually independent.

Then for each A € U, the random variable N(A) defined by
oo Mn

N(A) =Y 1anun (XP)1agaz1-

n=l =1

is a Poisson random measure with 9(-) = EN(-) on (U,U,) over the probability space (2, F,P).
Take A€ U. Let Ua ;= {FNA: F €U}. In fact, Uy is a o-field and we will call it the trace

o-field of 4 on A.

Proposition 3.1.8. Suppose that N is a Poisson random measure on (U,U) over the probability
space (9, F,P). Then for every A € U, the mapping

QxUs 3 (w,B)— Nw,BNA)eN

is a Poisson random measure on (A,Ua).

Proof. To show that N(-N A) is a Poisson random measure, we have to verify that N(-N A) satisfies
conditions (1) and (2) of Definition 3.1.4. Since A € U and N is a Poisson random measure, for
any Be€ U, BNA € U and N(-,BN A) is a Poisson random variable. Let Bi,By,-++, By be
pairwise disjoint sets from I/. Then the sets By N A,Ba N A, -+, Bp, N A are pairwise disjoint and
they are all in &. Therefore, by the independently scattered property of Poisson random measure
N, N(-,ByN A),++ ,N(-, B, N A) are pairwise independent. Hence N(- N A) is a Poisson random
measure. 0
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Let (Z, Z,v) be a measurable space, where v is a nonnegative o-finite measure. Let A be the
Lebesgue measure on (R, B(R4). Then the product measure A®v is o-finite on (R x Z, B(R+)®Z).

Definition 3.1.9. 1. An N-valued random measure M defined on (R4 x Z, B(R4+)® Z) is called
adapted to the filtration § if and only if for every ¢ € Ry, the random variable M (-, A) is
Fi-measurable, for every A € B([0,t])® 2.

2. An N-valued random measure M defined on (R4 x Z,B(R;) ® Z) is said to be o-finite
if and only if there exists an increasing sequence {Dp,}nen C Z such that Up,D, = Z and
EM((0,t] x A) < oo, forallt >0 and n € N.

3. An N-valued random measure M defined on (R4 x Z,B(R,) ® Z) is called a martingale
random measure if and only if for any A € Z satisfying E(M((0,t] x A)) < 00, t > 0, the
process M{(0,t] x A), t > 0 is a martingale.

Theorem 3.1.10. Let M be an N-valued adapted random measure defined on (R4 x Z, B(R4)® Z).
Then there erists an increasing sequence of stopping times {Ty,}nen and a Z-valued optional process
p such that

M(w, A) = 1p(s,w)1a(s,p(s,w)), for all A€ BR+)® Z, (3.1.1)
820

where D = Uy,|[Ty]) and [[T;]] is the graph of the stopping time Tp,, n € N.

See Proposition 1.14 in [45] or Theorem 3.4.3 in [47] for more details.

Remark 3.1.11. If M is a Poisson random measure associated to a Poisson point process =, see
Section 3.1.1, then equality (3.1.1) holds with p = 7 and

D = Upen Uken [[7]]
Here
Th = inf{t >0: M((0,t) x U,) >k}, keN, neN.

If M is a Poisson random measure associated to a Lévy process L, see Section 3.1.2, then equality
holds with 7 = AL and

D = {(s,w) : ||ALs(w)| > 0}.

In particular, D = Upen Uken [[75]], where 79 = 0, -+, 7% = inf{s > 7571 : AL, > 1.
Remark 3.1.12. Notice that since the product measure v ® \ is o-finite on (Z x Ry, Z® B(R,)), by
Theorem 3.1.6, there exists a Poisson random measure N with EN(B) = v® A(B), B € Z®B(R,.).
In particular, there exists a Poisson random measure N associated with a stationary Poisson point
process on (Z, Z) with an intensity measure v, see Theorem 3.1.21. For the future convenience, we
also impose the condition N({0} x B) =0, for every B€ Z,n € N.

For simplicity, we shall use the notation

N(t,B) := N((0,t}] x B), teR;, B€ Z.
Also, we employ the notation

N()=N()-E(N()) = N()=n()
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to denote the compensated Poisson random measure of N. Similarly, we write N(t, B) instead of
N((0,t] x B) for simplicity of the notations. Since for every w € Q, N(w,-) is a measure on (U,U),
and the sets (0, s] x B and (s, t] x B are disjoint, we infer that

N((0,t] x B) = N(((o, s] x B) U ((s,1] B)) = N((0,s] x B) + N((s,4] x B).

Thus we have

N(t, B) - N(s, B)) = N((s, ] x B).

Let § = (Fi)i>0 be a filtration on (£, F,P) satisfying the usual hypotheses such that N(t, B),

B € Z is F;-measurable, for each t > 0 and N((s,t] x B), B € Z is independent of Fy, for all s < t.

Lemma 3.1.13. For each A € Z, the process (1\7 (t, A))t>0 is a mean O martingale . Purthermore,
it has cadlag trajectories. In particular, for each A € Z with v(A) < oo, the process N(t, A),t > 0
is a Poisson process with intensity v(A).

Proof. Note that 5
EN(t,A) = EN((0,t] x A) —EN((0,t] x A) =0.

Let 0 < s<t<T. Let us fix A € Z. Observe that

E(N(t, A)|Fs) = E(N((0,£] x A) —E(N(0,1] x A)|F,)
= E(N((0,s] x A) + N((s,] x A)|F,) — E(N(0,¢] x A)
= N((0, 8] x A) + E(N((s,t] x A)) — E(N(0,#] x A)
= N((0,s] x A) — E(N(0, s] x A) = N(s, A),

where we used the og-additivity of the measure N in the second equality and measurability of
N((0,s] x A) and independence of N((s,t] x A) with respect to F,. Therefore, we showed that the
process (N (t, A))t>o is a martingale with mean 0.

For the right-continuity, let us fix ¢ € [0,T] and take a sequence (¢, )nen of times such that ¢, \, ¢.
Then the decreasing sequence (0,t;] X A, n € N of sets converges to the set (0,t] x A. That is
NjeN((0,tn] x A) = (0,2] x A. For each w € 2, note that N(w) is a measure. So by the continuity

of the measure N(:), we have

N(t, A) = N((0,t] x A) = Jim N((0,t,] x A), for all w € Q.

Note that for any sequence {t,} such that tn < t,n € N and t, 7t, Na((0,ts] x A) = (0,¢) x A,

hence
o T}Lnolo]V((O, ta) x A) = N((0,t) x A) # N((0,t] x A).

This shows that N(¢, A) has left limits but it may not be left-continuous, since N((0,t) x A) may
not equal to N((0,t] x A) in some cases.

To show that N(t,A), t > 0, is a Poisson process, we first observe that N(0,A) = N(@) = 0.
Since N is a Poisson random measure, N(t, A) = N((0,t] x A) is a Poisson random variable with
parameter E(N((0,¢] x A)) = A((0,t])v(A) = tv(A). Now it remains to show that N(t, A), t > 0 has
independent increments. Take to < t; < -+ < tn-1 < tn. Then the sets (to, t1]X 4, -+, (tn-1,ta] X 4
are pairwise disjoint. Hence by the independent scattered property of Poisson random measure, we
deduce that N({tg, t1] x A4), - -+, N((tn-1,tn] X A) are independent. This gives that the increments
N(t1, A) — N(to, A), +++, N(tn, A) — N(tn-1, A) are independent. Therefore, N(t, A),t > 0is a
Poisson process. =
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Remark 3.1.14. From the above Lemma, we infer that for each A € Z, the process N(¢,A), t > 0
is a nondecreasing submartingale with cadlag paths. Hence, by the Meyer-Doob decomposition, see
[59], there exists a unique predictable increasing process, denoted by <, such that

N(t!A) “V(th)v t> 0

is a martingale. Moreover, the decomposition is unique if v is predictable or natural. We call
the process v the Meyer process. By the uniqueness part of the Meyer-Doob decomposition, see
Theorem VII.21 in [59], we conclude that

Y=
Proposition 3.1.15. For each A € 2, N(t, A)? — n(t, A), t > 0 is a martingale.
Proof. Since N((s,t] x A) is a Poisson process, we have
E(N((s,t] x A))* = E(N((3,4] x 4) — n((s,8] x A))*
E(N((s,t] x A))* = 2n((s, 1] x AJEN((s,8] x 4)) +n((s,8] x A)*
E(N((s,1] x A))> = n((s,4] x A)?

S " n?P({N((s,1] x A) =n}) —n((s,t] x A)?

3
o

o0
ann s, t] X A)* e~n((st]x4) _ n((s,t] x A)?

il

S
o

2 n((s,8] x A)" t] x A
Z (sn —x) g=n((adxA) | Z o (sn ]_j). L) _ (s, 4 x 42
n=0 n=0 )

(8, x A) Z (s, x A"2 A 2 ~n((stixA)
n=0 (n -

+n((s,t] x A) Z ﬂgﬂ;]_j_f;_')':e—ﬂ((a,t]xm —n{(s, 1] X A)2
n=0 :

=n((s,t] x A)? + n((s, 1] x A) —n((s, 1] x A)?
= 7)((3, t] X A),
It follows that for 0 < s < t < o0,

BN (6,4 = 1t A7) = E (806, 4)+ 86, 4) ~ N(o, )

7)

=E (N(s, A)? +2N(s, A) (N(t, A) - N(s, A)) + (1‘7 (8, 4) - N (s, A))2 fa)
- n(t, A)
= (s, A)* ~ 2 (s, A)E (N5, 4) ~ (5, 4)) + E (N(t,4) — (s, 4))" - n(t, 4)

. . N 2
N(s, 4)® + E (N (t, 4) - N s, 4))" = n(t,4)
N(s, A)? +n((s,t] x A) —n(t, A)
= N(s, A)? - n(s, A).
which shows that N(t, A)? — n(t, A), t > 0 is a martingale. O
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Proposition 3.1.16. For each A € 2 and each 0 < s < t,

E ( (N(t, A) - N(s, A))2 |f.,) = n(t, A) — n(s, A).

Proof. Observe that

E ((N(t,A) _ N(s,A))2 |J-'s> N(t, A) m) — 2N(s, A)E (N(t A)pa) + N(s, A)?

N ) - 77(5, A) + Tl(t, A) - N(S, A)2

E (N(t,4) - n(t, A)VF,) +n(t, A) = 2N(s, A)® + N(s, 4)?
(s
n(t, 4) — n(s, A).

Proposition 3.1.17. For every A € Z with v(A) < 00 and every t > 0,
[N(’ A)s N(’ A)]t = N(t, A)

Remark 3.1.18. Here []V (-,A),N (-, Aty t 2> 0, is the quadratic variation of the process N (t, A),
t>0.

Proof of Proposition 8.1.17. We will use the definition of quadratic variation to show the assertion.
Let 7™ = {0 = g < ¢" < -+ < 5y = t}, m € N, be a sequence of partitions of [0,].
Let ||[7™]| = maxg<icn(m)-1 [tix1 — t | be the mesh of 7™. Suppose that {my,} is a sequence of
partitions satisfying limm—co ||Tm|| = 0. We observe that

m~1
VE(N)@) = Z (N(7, A) — N(t, 4))?
=0
-1
= (Nt 5] x A) = (6, — t;fn)'/(-‘l))2
=0

)

m—1
= Z N tm t,+1] X A -2 Z N((tl ’ 1+1] X A)( i+l T t:n)V(A)

=0 i=0

-+ Z(tﬂ-l tm)2 A)2

m—1 m-
< ST ON(E ] % AP 2™ D NP, 674] % AWw(A) + 7™ [tv(A)2.

1=0 =0

Clearly, the last term in the above inequality converges to 0 as m — o0o. Notice also that since the
sample path ¢t — N(t, A)(w) is piecewise constant and increases by jumps of size 1, when ||7™| — 0,
as m — oo, N((tf*,t7,] x A) < 1 as m — co. We note further that by the cadlag property of the
process N(s, A), s > 0, N(s, A) may only have finite jumps in the time interval [0,¢]. Thus we infer
that the second sum ||7™|| Z:’.‘.Bl N((t,t,] x A)v(A) converges to 0, P-a.s., as m — oo. Since
[0,t] > s — N(s, A) € N is a Poisson process what means every path of N is a piecewise constant
function of time and the jump size is of 1, we find out that N (¢}, A) — N(t?, A) takes only two
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values 0 and 1 for sufficient small ¢J3, — t/*. Hence for m big enouth, N(t7;;, A) — N(t7, A) =
(N(™,, A) — N(t7, A))2. Therefore, by above considerations, we infer that

m~—1
i (2 (N = I 2
Jim VE(N)() = lim ; N, t734] x A)
m—1
= lim 3 N((t7",17}1] x A) = N(t, 4), P-as.
i=0
which competes the proof. O

3.1.1 Poisson Point Processes

Let (Z,Z) be a measurable space. A point function a on (Z, Z) is a mapping a : D(a) - Z,
where the domain D(a) C (0, 00) of « is a countable subset. Let IIz be the set of all point functions

on Z. For each point function, we define a counting measure N by
No(U) :=#{s € (0,00)ND(a): (s,a(8) € U}, UeB((0,0)®Z, 0<t<o0.

Let Q be the o-field on Iz generated by all the subsets {a € Iz : No(U) =k}, U € Z,
k =0,1,2,---. A function 7 : Q — IIz is called a point process on Z if and only if it is

F/Q-measurable. Let m be a point process in (IIz, Q). Analogously, We define for every w € Q,
Nz(U,w) = #{s € D(r(w)) : (s,7(s,w)) € U}, U €B((0,00)®Z. (3.1.2)
In particular, we have
Nr((0,1] x A,w) = §{s € (0, N D(n(w)) : 7(s,w) € A}, A€Z, 0<t< oo (3.1.3)

Note that a difficulty related to this approach is that for each w € €, the domain with respect to the
time ¢ of the function 7 (¢,w) will be different. A point process = is called finite if EN,((0,t] x D) <
00, for every 0 < t < 0o. The point process 7 is called o-finite if there exists an increasing sequence
{Dn}nen C Z such that UpD, = Z and EN,((0,t] x Dp) < oo forall 0 <t <ocandn e N. A
point process 7 is said to be stationary if and only if for every ¢t > 0, 7 and 67 have the same

probability laws. Here 8,7 is the shifted point process defined by

(Oym)(8) = w(s+1), s> 0;

D(4,7) = {8 € (0,00) : 8+t € D(m)}.

37



Also, let us define the stopped point process a7 by

(oum)(s) = 7 (s), for s € D(ayn);

D(aym) = (0,t] N D(m).

It is easy to see that 6;m and a;m are still in Iz, for every ¢t > 0. A point process 7 is said to be
renewal if and only if it is stationary and for every 0 < ¢t < oo, the point processes oym and 6;7
are independent. A point process 7 is said to be adapted to the filtration § if for every ¢ > 0 and
A € Z, its counting measure Ny((0,?] x A) is Fi-measurable.

A point process 7 is called a Poisson point process if and only if Ny(-) defined by (3.1.2) is
a Poisson random measure on ((0,00) x Z, B((0,00)) ® Z), see Definition 3.1.4.

Theorem 3.1.19 (Theorem 3.1, [42]). If a point process © is o-finite and renewal, then for every
U € B(0,00) ® £ with ENz(U) < oo, the random variable Nx(U) is Poisson distributed and for
any pairwise disjoint sets U1, -+ ,Un € B(0,00) ® Z, the random variables Nx(U1)," -+ Nx(Un) are
independent. In other words, Ny is a Poisson random measure.

It can be shown that a Poisson point process is stationary if and only if there exists a nonneg-

ative measure v on (Z, Z) such that
EN-((0,¢] x A) =tv(4), t20, AcZ. (3.1.4)

In such a case, we say that the Poisson random measure N, is time homogenous.

Remark 3.1.20. At this point, it should be mentioned that, in literature, some authors may use the
above property (3.1.4) as the definition of stationary property of a Poisson point process. Actually,
this is consistent with our earlier definition of a stationary point process. To see this, let us assume
first that the Poisson point process is stationary, that is for every r > 0, 7 and 6,7 have the same
probability laws. It follows that, for each ¢ > 0, the random variable

N((0.t] x A) =t{s € (0,t] ND(7) : n(s) € A},
has the same distribution as
#{s € (0,t]NDB;7): (s +T) € A} =t{s € (rt+r]ND(n): n(s) € A}
= N((0,t+ 7] x A) — N((0,7} x A).

Hence we infer that EN((0,t]x A) = EN((0,t+r]x A)—EN((0,7]x A), t > 0. Set ¢(t) = EN((0, t] x
A), t > 0. It is easy to see that ¢ is an additive function, i.e. it satisfies ¢(t + s) = ¢(t) + ¢(s)
for t,s > 0. Note that, by the local boundedness of the point process , ¢ is bounded from above
on a subset I of (0,00) with the positive Lebesgue measure. Hence the function ¢ is of the form
é(t) = té(1), t > 0, for some constiant C, see Bingham [10] Theorem 1.1.7b. This gives that

EN((0,t] x A) =tEN((0,1] x A).
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Let us put »(A) := EN((0,1]x A), A € Z. Since Ny is a Poisson random measure, v is a nonnegative
measure on (Z, Z). To prove the other direction, suppose that EN,((0,t] x A) = tv(A) for t > 0 and
A € Z. Then we have EN,((t1,t2] x A) = (t2—t1)v(A) and EN,((t1, t2] X A) = ENg((t1+7, t2+7]x A)
for0 <t <ty <ooand0<r<oo. It follows that

EY LE6)=E Y L@GE)=E Y lr(s+n)

t1<8<ty t1+r<s<tg+r t1<s<ts

which shows that (-) and n(r + ) have the same law for every » > 0. This shows that the process
p is stationary.

Theorem 3.1.21. Let v be a o-finite measure on (Z, Z). Then there exists a Poisson point process
m on (Z, Z) with the intensity measure v.

Proof. Since v is a o-finite measure on (Z, Z), there exists a disjoint partition {Dp},en C 2
of Z such that v(D,) < oo for every n € N. Let X!, ¢ = 1,2,---, n = 1,2,--- be pairwise
independent Dp-valued random variables with distribution P(X! € A) = ﬁ%ﬂ%, Ae ZnD,
defined on a probability space (1, F1,P;). Note that A ® v is a o-finite measure on the product
space (R4 x Z, B(R4+)® Z). By the Theorem 3.1.6, there exists a Poisson random measure M with
EM(-) = A®v() defined on a probability space (Qg, F2,P;). Then Lemma 3.1.13 tells us that for
each n € N, M := M(t,D,), t > 0 is a Poisson process with intensity ¥(U,). Moreover, since Dy,
n € N are pairwise disjoint, the processes M(t, D,,), t > 0, n € N are mutually independent. Set

(2, F,P) = (4 x g, F1 x Fa,P1 x Pa).
For every w = (w1, w2) € £, set
XMw)=XMw)i=1,---, n=1,.-- and M}w) = M{*(w2), n=1,--- .
It follows that X', Mp,i=1,--, n=1,--. are mutually independent. Define for every n € N,
TP :=inf{t >0: M(t,Dp) >4}, i=1,2,".

Then for each n € N, {T*}ien is a sequence of stopping times and they are jump times of the
Poisson processes M (t,D,), n € N. Let

no_ n_ __on ..
=T, =T =T .

Then the random times 7, i = 1,2,-- -, are independent random variables with exponential distri-
bution, i.e. P(T} > t) = e~ tM(tDn) for all ¢ > 0. Now define

Dﬂ' = U%ozl U?’gl {T‘;ﬂ}
and
(T =X, i,n=12,.--.

Then the counting measure N, associated to 7 defined by for U € B(R,) x Z,

Ne@) =33 bpoxny V) = 3o 3 1o (TP, w(TP)

n=li=l n=11i=1
[« <IN o}
= Z Z Z Ly lu(s, m(s))
820 n=1 i=1
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is a Poisson random measure over the probability space (€2, F,P). Recall that for w € , D) =
U2, U2, {T7(w)}, hence we infer

Ne(@)w) = D)D" Yap(ywy (8:w)lu(s, m(s, w))

820 n=1i=1

= Z 1y (s, 7(s,w)).

SE(0,00)HD.".(“)
For the detialed proof, we refer readers to Theorem 54 [70]. In particular, for B € Z, we have
x o
Nr((s,8] x B) =Y Ligm1a(m(r)) (o (r)
n=1 i=1
=H{r € (5,t]NDy, : n(r) € B}.
O

We shall use the notation Nx(t, A) as an abbreviation for the counting measure Ny ((0,t] x
A). In such a case we call v(-) = ENg(1,-) the intensity measure (or characteristic measure)
of the stationary Poisson point process 7 and the Poisson random measure N, is called time
homogenous. If the Poisson point process m is o-finite, the intensity measure associated to = is
a o-finite measure. From now on, we suppose that 7 is a o-finite stationary and adapted Poisson
point process. For simplicity of notation, assuming that there will not be any confusion, a Poisson
random measure associated with a Poisson point process will be often denoted by N instead of N;.
We use the notation N(t, A) = N(t, A) — tv(A), t > 0, A € Z to denote the compensated Poisson

random measure associated with the Poisson point process .

3.1.2 Lévy Processes

Let (E; B(E)) be a separable Banach space with norm || - ||.

Definition 3.1.22 (E-valued Lévy process). A cadlag process L = (L;)s>o with values in E is
called a Lévy process if and only if

(1) Lo =0 a.s.

(2) L has independent increments, that is for every increasing sequence of times tg < t; < -+ < ty,

the random vairables
Lt()y Lt1 - Ltm vt )Ltn - Ltn_1

are independent.

(3) L has stationary increments, that is L;.p — Ly has the same distribution as L;, for every h > 0.
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(4) L is stochastically continuous, that is for all € > 0 and all s > 0,

%EI;P(|]L, — L)l >¢) = 0. (3.1.5)

Remark 3.1.23. (1) Even if we don’t impose the cadlag property in the definition of a Lévy process,
one can always show that every E-valued process L satisfying the above four conditions (1)-(4)
has a cadlag modification, see Theorem 16.1 in [29]. Moreover, it can be seen that the cadlag
modification of L is also a Lévy process, i.e. satisfies the conditions (1)-(4). So without loss
of generality, we can always assume the cadlag property in the definition of Lévy process.

(2) On the basis of conditions (1), (2) and (3), the condition (3.1.5) is equivalent to the following
two conditions
. _ —0,
Jim P (|| Le+n = Le|| > €)

HmP(||Le]| > ) = 0.

(3) Suppose that L is an E-valued cadlag Levy process. The stochastic continuity implies that
for every given time t, P(L; # L;-) = 0.

Lemma 3.1.24. Let f: [0,00) = E be a cadlag function. Then for everyt >0 and e > 0, the set
B, ={s€[0,t]: |f(s) = f(s=)Il > ¢}
is finite. Consequently, f has at most countable jumps on [0,t]. Moreover, f is bounded on [0,1).

Proof. Let € > 0. We will show it by contradiction. Suppose that the set Be has infinite number
of points. Since the interval [0,t] is compact, the set B, has a limit point in Be. Assume that p is
this limit point in Be. By the cidlag property of f, f(p—) and f(p+) both exist. Thus for § > 0,
there exists a number § so that s € (p — 6, p) implies || f(s) — f(p)ll < §, and s € (p,p + §) implies
lf(8) = f(»)]| < §. Then for every r € (p — 6,p), we can find two sequences {tn}nen, {vn}nen C
(p — 6, p) such that u, < r < vy, u, = r and v, — r as n —» co. We have for each n,

1) = F o)l < N1 £(um) — £@) + 17 0n) — SO < 5

Let n — 0o. It follows that for every r € (p — 4, p),

I7tr=) = Fr)l < 2.

Similarly, we can show that for every r € (p,p + 4),

2e
1) - £ < 5
Thus for every r € (p — 6,p) U (p,p + 4), we find that r ¢ B.. This contradicts the fact that p is a
limit point in B,.
Now we will show that f has at most countable jumps on [0,t]. As the sets B; are increasing as
n -+ 00, we find the set "

S

(s, fa-) # 0 = Ul € 0.8 176~ S0 > 2y = (U B
n=1

n=1
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Since each set B} is finite for every n € N, the set {s € [0,t] : f(s—) # f(s)} is countable.

For the boundedness of f on [0,t], we first suppose that f is not bounded on [0,¢]. Then we can
find a sequence of numbers {s,}ren C [0,t] such that f(s,) converges to infinite as n — oo. Since
the interval [0,¢] is compact, the infinite set {s,} has a limit point s in [0,¢]. This gives that
limp 00 Sp = 8. Thus we can find a subsequence {s,,}?2, of {s5} such that s,, > sforeach k € N
or sp, < s for each k € N. Thus the sequence {f(sn,)}ken converges to f(s) or f(s—) as k — oo,
where f(s) and f(s—) both exist by the cadlag property, so that the subsequence {f(sn,)} does not
converge to infinite. Hence f is bounded on [0, ¢]. O

Let L be an E-valued Lévy process. Since every path of L is cadlag, for every w € Q, by Lemma

3.1.24, Ls(w) has at most a countable number of jumps on [0, ¢]. Futhermore, since for every w € 2,
{s € (0,00) : Lg(w) # Le—(w)} = Um>1{8 € (0,m] : Ly(w) # Ls~(w)},

we find that Ls(w) has at most countable jumps over (0,00). Thus in view of Section 3.1.1, it is easy
to see that for every w € Q, AL.(w) is a point function in (E\ {0}, B(E \ {0})). Here B(E \ {0}) is
the trace o-field on E \ {0} of the Borel o-field of B(E), namely,

B(E\{0}):={(E\{0})NA: A€ B(E)}
which is a o-field on E \ {0}. Let us define
NU,w) = #{s € (0,00) : (s, ALs(w)) € U}, U € B((0,00)) @ B(E\ {0}), w € Q. (3.1.6)

Note that since processes (L;);»o and (L¢-)i>0 are both progressively measurable, the process
(ALy)¢>p is also progressively measurable, and hence it is measurable. From Lemma 3.6.1, it
follows that for every s > 0, the mapping w — ALg(w) is F-measurable. For every U € E \ {0},

take a set {a € Iz : No(U) = k} from Q. Then we have

{w:AL(w) € {a €llz: No(U) = k}} = {w: AL.(w) € Iz : Nap ()(U) = k}

= U {w: (s, ALs(w) € U}}
se{r{(r,ALr(w))eU}=k}

which is a finite union of sets in F. Hence we infer that {w: AL(w) € {a € Iz : No(U) =k}} € F
which shows that AL : Q — Iz is F/Q-measurable. Therefore, AL is a point process. Let us take
t > 0. Let {h,}nen be a decreasing sequence of positive numbers such that 0 < h, < t, n € N and
limp— 0 hn = 0. Since the Lévy process L has independent and stationary increments, for every

s > 0 and h,, n € N, the random variables Ly — Ls—p, and Lits — Lyys—p, are stationary and
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independent. Then the limits L, — L,— and L¢4s — L(s45)- inherit the stationary and independence
properties from the random variables Ly — Ly_p, and Liyg — Liys—p,, n € N. Hence we infer that
the point process AL is stationary and renewal. Furthermore, by taking D, = {z € E : |jz|| > 3},
we see from Lemma 3.1.24 that the point process AL is o-finite. On the basis of Theorem 3.1.19,
we know that N defined by (3.1.6) is a stationary Poisson random measure with a nonnegative

measure v(-) such that
EN((0,t] x A) = tv(A), t >0, A€ B(E\ {0}).

We say that a set A € B(E \ {0}) is bounded away from 0 if and only if 0 € (A4)¢, where as

usual A is the closure of the set A. Set
A:={AeB(E\{0}):0¢A}. (3.1.7)

Take A € A. Then there exists n € N such that A C {z € E : ||z]| > 1}. By the cadlag regularity,
see Lemma 3.1.24, for every w € 2, the function L.(w) has finite numbers of jumps in the set A on

(0,t], t > 0. Thus we have

N0, x A,w) =#{re (0,] : AL, € A} = > 1a(AL;) <00, w € Q. (3.1.8)

a<r<t
This random measure counts the number of jump times of the process L between times s and ¢

with their jump sizes belonging to A. For simplicity of notation, we use notation N(¢,U) instead

of N((0,t] x U).
Remark 3.1.25. In fact the family A is a ring, see Definition 2.1.17 and B(E \ {0}) is a o-field

generated by A.
To show that A is a ring, take A, B € A. Then A = (E \ {0}) N A*, for some A* € B(E) and
B = (E\ {0}) N B*, for some B* € B(E) with 0 ¢ A and 0 ¢ B. Observe that

AUB = ((E\{ohnA")u ((E\{o})n B")
=(E\{0})n(4" U B*) € B(E\ {0}),

since A* N B* € B(E). Meanwhile, since0¢ Aand 0¢ B,0¢ AUB=AUB. Hence AUB € A.
Further we find

A\B=((B\{0})n4")\ ((E\{0})n B")
= (B\ {0} n 4"\ (B\ {0) U ((B\ {0)) n 4")\ B*)
= (B\ {0))n4%)\ (B\ {0})n B*) € B(E\ {0)).

since (E \ {0}) N A1, (E\ {0}) N B, € B(E\ {0}). Since 0 ¢ 4,0¢ A\ B c A. This shows that
A\ B € A. In conclusion, the family A is a ring. To prove the other claim that B(E \ {0}) is the

43



o-field generated by A, first we note that A C B(E\ {0}). So take F' € B(E'\ {0}) and F ¢ A.
Then the set F is given by F = (E\ {0}) NG for some G € B(E) and 0 € F. Construct a sequence
of sets {Fp}nen in A by

FF=Gn{zeFE:|z| >1}
Fo,=Gn{zeE:1/(n+1)<|z| <1/n}.

It’s easy to see that F = U F,. This implies that A is the generator of the o-field B(E \ {0}).

Let us now define the compensated Poisson random measure of the Lévy process L by
00
= N(B) - / / 15(s, 2)w(dz)ds, B € B(Ry)® B(E\{0}).
0 Jz

Let F be a separable Banach space with the corresponding Borel o-field B(F). Let f : E = F
be a B(E)/B(F)-measurable function. Take A € A, where A is a ring defined by (3.1.7). Recall

that N(t, A) < oo a.s. Hence we may define the Poisson integral on A of this deterministic function
f by
( / F@N(t ) (@) = 3 F@NE W), e
A zeA
Since by the definition of N, N(t,{z}) # 0 if and only if there exists u € (0,t] such that AL, = z,
we infer that for every w € §2,

[ 1@N @ =Y f@) 3 1p(aL)w)

€A 0<s<t

= 3 3 f(@)1gl(AL) W) (3.1.9)

O0<s<tr€cA

= Y f(ALy(w))1a(ALs(w))-

0<s<t

Let L!(E,v; F) be the space of all B(E)/B(F)-measurable functions f : E — F such that

/ 1 (@) 1v(dz) < oo

It is natural to define the compensated Poisson integral for function f € L(E,v; F) by

/f (¢, dz) /f tda:)—-t/Af(z)u( quf (ALy)1 AL,,)—t/f:v)udx)

where the latter term is understood as a Bochner integral, see Section 3.2.3. For more detials, we

refer the reader to [73] where E = R? and see also [28], [1] where E is a separable Banach space.
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Theorem 3.1.26 (Lévy-It6 decomposition [28]). Let L := (L:)t>0 be a Lévy process on a
separable martingale type 2 Banach space E and v be its Lévy measure of the Poisson random
measure N defined by (3.1.8) satisfying

/ [Exi v(dz) < oo. (3.1.10)
B\(o} 1 + [|=]|?

Then there exist an E-valued Brownian Motion which is independent of N and vy € E such that for

allt >0,
t t _
Ly = vt + By +/ / zN(ds,dz) + lim/ / zN(ds,dz).
llil>1 €l0 <llzfl<t

Remark 3.1.27. (1) The integral [ Je<lzi<1 zN(ds, dz) is given by

// tN(ds,dz) = // zN(ds,dz) // zv(dz)ds
<llzli<1 <jlz)<t <|lzli<1

The limit lim.}o f3 Se<lzi<1 2N (ds, dz) is usually denoted by f; Jo<llzli<1 zN(ds, dz).

(2) The term J f; <Jzli<t zN(ds, dz) in the above decomposition is usually called the compensated

sum of small jumps and the last term fo f" 2|51 5N (ds, dz) is understood as the "big jumps"
part. There are some other ways to get an equivalent version of the Lévy-1té decomposition
by rewriting the "big jumps" term with jumps bigger than K. Let K > 0. Then we can get
a version of the Lévy-Itdé decomposition

t t
Ly =kt+ By + / / zN(ds,dz) + / / zN(ds,dr).
0 Jo<|zl|<K 0 JzlizK

Here yx = v + f1<”z”<K zv(dz)ds, if K > 1 and v = — fK<N$”<1 zv(dz)ds, if 0 < K < 1.

(3) If v satisfies the additional condition that f iz >0 l1z[lv(dz) < oo, then the compensated sum
of small jumps can be written as

t
// MWMh// m@mp// zv(dz)ds, t 2 0. (3.1.11)
0 Jo<z|lk1 0 Jo<lz|<1 0 Jo<|zlik1

This is because both two terms on the right side of above identity are finite as respectively
the Lebesgue-Bochner integral and the Bochner integral.
Hence one can write

t
Li=+t+ B + / / zN(ds,dz).
<[lzll<o0

v = —-/ zv(dz)ds.
o< izl <1

It has to be borne in mind that, if the condition [y <1 IZll¥(dz) < 0o is not satisfied, the

two terms
t t
// zN(ds,dz) and // zv(dz)ds
0 Jo<ljz)<1 0 Jo<|iz)<1

may diverge, but the compensated sum remains convergent. In such a case the identity (3.1.11)
doesn’t hold any more.

where
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(4) Later in the Section 3.4, see Theorem 3.4.9, we will show that the integral fot I <llzli<1 cN(ds,dz)
in the Lévy-Ité decomposition, which is defined to be the limit lim. fot f€<”z” < zN(ds, dz),
coincides with the stochastic integral fot fo <llzfi<1 xN(ds,dx) defined in this thesis.

(5) Recall from (3.1.8) that for every ¢t > 0,
EN((0,t] x {||z|| > 1}) < oo.

In other words, we have v({|lz|| > 1}) < oo. Hence in view of Proposition 3.4.5, if we impose
the additional assumption that f” e llz]|?v(dz) < oo, then the Lévy process L can be written
in the following form, ¢ > 0,

i
Li=+t+ B+ / / xN(ds, dz),
0 JE\{0}

where ¥ = v+ [ 5, 2v(dz) and Iy E\{(0} zN(ds, dz) is the stochastic integral defined in the
thesis.

3.2 Stochastic Integrals w.r.t. Compensated Poisson Random Mea-
sures

Let E be an martingale type p Banach space with its corresponding o-field B(E). Let (Q, F, §,P)

be a complete filtered probability space.

3.2.1 Predictability and Progressive Measurability

Definition 3.2.1 (Predictability). Let P denote the o-field on R4 x 2 x Z generated all R-valued
functions g : Ry x  x Z - R satisfying the following properties

(1) for every t > 0, the mapping Q2 x Z 2 (w, 2) = g(t,w, z) € R is Z ® F;/B(R)-measurable;
(2) for every (w,2) € Q x Z, the path R4 3 t — g(t,w, 2) € R is left-continuous.
We say that an E-valued function g : Ry x 2x Z — E is §-predictable if it is 7/B(E)-measurable.

Proposition 3.2.2. P = P® Z. Furthermore, they are both equal to the o-field generated by a
family R of the following form

R={{0})x FxB:Fe Fo,Be ZYU{(s,t} x FXB:F€ F,B€ Z,0< s <t < 00}.
In particular, R is a semi-ring.
Proof. Recall that the predictable o-field P, see Theorem 2.1.15, is generated by the following set
R={{0} x F,F € Fo}U{(s,t] x F,F € F5,0 < s < t < 00}.
That is P = 0(R). Therefore, we infer that

PRZ=(c(R)®Z.
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Also, we know that R x £ = R. Thus o(R x Z) = o(R). In order to prove that P ® Z = o(R), it
suffices to show that (0(R)) ® Z = (R x Z). The inclusion o(R x Z) C (¢(R)) ® Z is clear since
R C o(R). For the inclusion (¢(R)) ® Z C (R x Z), we consider the following family

A={A€o(R):AxBeco(Rx Z),Be Z}.
We claim that A is a o-field. Indeed, we find out that

(i) Since [0,n) x Q€ R, forall B€ Z,[0,n) x A x BE R x Z,50 Ry X @ X B = Upen([0,n) x
QxB)€o(Rx Z). Thus Ry x Q€ A

(ii) Let A€ A Then A x B € 0(R x Z), for every B € Z. Observe that A° x B = (R} x ) x
B)\(A x B). Hence A° x B € (R x Z). It follows that A° € A.

(iii) Take a sequence Aj, Ag,--- of sets in A. Then for every B € Z, Aj X B€ o(R x Z). It
follows that

(UjeN4;) x B = Ujen(4; x B) € (R x Z).
Therefore UjenA4; € A.

This shows that A is a o-field. Take D € R. Then D € o(R) and for all B€ Z, Dx B ¢
R x Z C o(R x Z). So by the definition of family A, we infer that D € A. Hence R C A C o(R).
Since A is a o-field, we conclude that A = o(R). Therefore, by the definition of the o-field A,
AxBeo(Rx2),forall A€ o(R)and B € Z. Hence 0(R) x Z C o(R x 2). This concludes the
proof of equality (0(R)) ® Z = o(R x 2).

Note that o(R) = o(R), where

R={{0}x F,\F e F,® Z}yU{(s,t] x F',F' € F, ® £,0 < 5 < t < 00}.

The inclusion o(R) C o(R) is clear as R C R. The other inclusion ¢(R) C R follows from a similar
argument as above by constructing a set F, = {F' € F, @ Z : (s,t] x F' € o(R),s < t}. We can
show that F! is a o-field for each s > 0. Moreover, we find that F, x £ C F, C F, ® Z. Since F,
is a o-filed, ; x Z C F,. This gives that for every Fle Ff,® Z and s < {, (s t] x F' € o(R). So
R c o(R). Hence we infer that o(R) = o(R).

Clearly, the indicator function 1(,y(u)1m(w,z), (u,w,z) € Ry x @ X Z is left-continuous for all
(w,z) € 2 x Z and it is F, ® Z-measurable. Thus it follows from the definition of §-predictability
that the process 1(, 4(u)1p(w, z) is §-predictable. This implies that o(R) € P. It remains to show
that P ¢ o(R). To prove this, it is enough to show that every R-valued function X satisfying
conditions (1) and (2) in the definition is o(R)-measurable. Let us construct the following sequence
of functions, n € N,

X(t,w,2) = 1oy (X (0,0, 2 +Zl(’;r s (X (7). (tw,2) €Ry X DX 2.

By the left-continuity of X, we infer that X"(t,w, 2) converges to X(t,w, 2) for every (t,w,z) €
Ry x Q x Z. Take B € B(R). We find out that

{(t,w, 2) :X"(t,w, 2) € B}

= ({0} x {(w,2) : X(0O,w, z)EB})U(U(Zli,k;1 ] x {(w,z):X(-z-k%,w,z) GB}).

47



Since for each t, (w, z) — X (t,w, 2) is F; ® Z-measurable, so X(zi,,,w, 2) is ‘F-g-'& ® Z-measurable for
k=0,1,2,---. Hence the sets {(w, z)'X(z'S‘,w z)GB}E}'k ® Z for k=0,1,2,---. Therefore,

the set {(¢,w, z) X"(t,w, 2) € B} as a countable union of sets from R is also in the o-field o(R)
of R. This implies that X™ is a(R)-measura.ble for each n € N, Therefore, the limit X is also
0(72) measurable. This shows that P C (). Recall that o(R) = ¢(R). In conclusion, we have
P = ¢(R) which completes our proof. The proof that R is a semi-ring goes the same as in the proof

of Proposition 2.1.18. |

Definition 3.2.3 (§-progressively measurability). An E-valued function g: R, xQ2x Z - E
is called §-progressively measurable if the mapping

(s,w,z) = g(s,w,2): [0,t] x Ax Z > FE
is B([0,t]) ® F; ® Z/B(E)-measurable for each ¢t > 0.
Remark 3.2.4. Set Z = E and take S a singleton, e.g. Z = {2}. Define two functions

g: Ry x Q3 (tw) = g(t,w) e E
G: Ry x Q% Z3 (tw,2) = §(t,w, z) = g(t,w) € E.

Then one can see that g is progressively measurable if and only if § is §-progressively measurable.

Now we state results analogous to Lemma, 2.1.7.
Proposition 3.2.5. Define two families of sets

BFZ={ACR:xQxZ:AN([0,t] x A x Z) € B(0,#]) ® F; ® 2}
BF = {ACR: xQ2: AN ([0,t] x Q) € B([0,1]) ® Fi}.
Then BFZ and BF are o-fields. A process X : Ry xQ = E is progressively measurable if and only

if X is BF-measurable. A function X : Ry x Q@ x Z — E is F-progressively measurable if and only
if X is BF Z-measurable. Furthermore, BF® ZcC BFZ.

Proof. The proof follows the lines of the proof of Lemma 2.1.7. So we omit the first part of the
proof here. To show the inclusion BF ® £ C BFZ, let us take A € BF and B € £. We will show
that A x B € BFZ. Indeed, since A € BF, AC Ry x Q and AN([0,t] x Q) € B([0,t]) ® F, for
every t > 0. Thus Ax BCRy x2x Z and

(Ax B)N([0,t] x 2 x Z) = (AN([0,t] x 2)) x (BN Z)
=(AN(0,t] x ) x BeB(0, ) @ F: ® 2, t=0.
Therefore, A x B € BFZ. O

Remark 3.2.6. In view of Theorem 2.1.19, Proposition 3.2.2 and Propostion 3.2.5, we have P =
PRZCBF®ZCBFZ.

Definition 3.2.7. Let K denote the class of all the functions g : Ry x 2 x Z — E satisfying the
following properties

(1) (measurability) the mapping Ry x 2x Z 3 (t,w, 2) = g(t,w, 2) € E is B(R+) ® F x Z/B(E)-
measurable;
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(2) (adaptedness) for every t > 0, the mapping 2 X Z 5 (w,2z) — g(t,w,2) € E is F; @ Z/B(E)-
measurable.

Proposition 3.2.8. Every §-progressively measurable function f : Ry x Q X Z — E belongs to K
Proof. The proof follows immediately from the Toneli theorem (or Lemma 3.6.1).

0
3.2.2 Martingale Type p Banach Spaces

An E-valued process M := (My);>0 is an E-valued F-martingale if and only if M is an adapted

process such that E(]|M;||) < oo or all t > 0 and for every 0 < s < t < 0o and every F € F,
E(1p- M) =E(1Fp - M,). (3.2.1)
Equivalently, (3.2.1) can also be expressed in the following
E(M;|F,;) = M,, forall0<s<t<oo.

For more details of conditional expectation of a Banach valued process, please see [58].

Deflnition 3.2.9 (Martingale type p Banach space). A Banach space E with norm || . | is of
martingale type p, for p € (0,00) if and only if there exists a constant Cp(E) > 0 such that for any
E-valued discrete martingale {M;}%_, the following inequality holds

n
E||Mnll® < Cy(E) Y E( My, — My_1|[P, (32.2)
k=0

with M_1 = 0 as usual.

Remark 3.2.10. Every Banach space has of martingale type 1. By using parallelogram law and prop-
erties of conditional expectation, it’s easy to show that any separable Hilbert space is of martingale

type 2 with

n
Ef|Ma® = Y E[| M, — My
k=0
If E and F are isomorphic Banach spaces, then E is of martingale type p if and only if F is of
martingale type p.
Neidhardt in [60] studied a theory of stochastic integration on a certain class of Banach spaces

which satisfies for all z,y € F,
Iz + gl + |z — l|? < 2]l® + Ka|lyll?, (3.2.3)

with some constant K3 > 2. We call Banach spaces satisfying (3.2.3) 2-uniformly-smooth (2-smooth)

. 2 —ull?_ 2
Banach spaces. Set K(E) = sup, yep y#0 { dllz+l +|%;I,T, yl izl } which is a constant measuring
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the smoothness of the norm of E. Then we see that if E is 2-uniformly-smooth, K(E) < co. The
following equivalent definition of 2-smooth Banach spaces in term of asymptoticity of the modulus
of smoothness of the norm can be found in [64], [65].

Definition 3.2.11 (p-smooth Banach space). A Banach space E is p-smooth if there exists an
equivalent norm defined by the modulus of smoothness of (E, || - ||)

pi(t) = sup{z Iz + tyll + llz — tyl)) = 1 fle] = lyl = 1}

satisfying pg(t) < KtP for all t > 0 and some K > 0.

Remark 3.2.12. A Banach space is of martingale type p if and only if it is p-smooth, see [65]. Hence
all spaces LI(u), for g € [p,00) and ¢ > 1 with an arbitrary positive measure p are of martingale
type p. Note that any closed subspaces of martingale type p spaces are of martingale type p. The
Sobolev spaces W¥4, for ¢ € [p,00) and k > 0 are of martingale type p.

3.2.3 Bochner Integrals

Throughout this section, let (F, F, 1) be a measure space, where 1 a nonnegative o-finite measure.
Let E be a separable Banach space. Let B(E) be the Borel o-field, i.e. the smallest o-field containing
all open subsets of E. Note that the Borel o-field B(E) is also generated by all sets of the form
{reE:¢(x) <a}, ¢€ E*anda€R.

Definition 3.2.13. We say a function f : F — E a simple function if f is /B(E)-measurable

and f is finite valued. In other words, there exist a finite number of disjoint sets F1,- -, Fy, in F
with u(F}) < 00,i=1,"--,7n and a finite number of elements z1,: - , z, in F such that
n
fl@) =) @ilr(z), z€F. (3.2.4)
i=1

Then we can define the Bochner integral of a function f of the form 3.2.4 with respect to u over a
measurable subset A of F' by

[ 1@uidz) = Yz 4).
i=1

Let f be a simple function of the form (3.2.4) and A be a measurable set in F. Then we have

| /A f(@u(dz)] < /A 1 (@) ()
Indeed, we know that

| [ s = | i}::lwm(ﬂ A A < 21 e 4) = [ 7@ )luca).
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Definition 3.2.14. An F/B(E)-measurable function f is said to be Bochner integrable if there
exists a sequence of simple functions {f,} such that

Jm [ (o) = f(&)lutda) =0

Let f be a Bochner integrable function. Suppose that {f,} be a sequence of simple functions

such that
Jim [ 152(2) - f@)luaz) =0
©JF

It follows that

u /F fm(@)u(dz) - /F fa(@p(da)] < / | im(@) ~ (@)l ()

< /F 1£(@) ~ Fm(@)lu(dz) + /F 1£(2) = Fula)|lu(da)

— 0, as n,m — oc.

This shows that { i fao(z)u(dz)} is a Cauchy sequence in E. So it is convergent in E. Hence we

may define the Bochner integral of f by
[ f@nids) = tim [ fu(ohutda)

In this case, we have limp oo || [p f(2)u(dz) — [ fr(x)u(dz)|| = 0.
If A € F and f is Bochner integrable, it is easy to find that the function 14f is again Bochner

integrable, and hence we define the Bochner integral of f on the set A by

[ 1@ = [ 14@)f@uide).
A F

Proposition 3.2.18. Let f : F — E be an F/B(E)-measurable function. Then there ezists a
sequence of simple functions {f,} of the form (3.2.4) such that

I fa(z) = f(2)l
monotonically decreases to 0.

Proof. Since E is a separable Banach space, suppose that Eo = {a1,a2,:-} be a countable dense
subset of E. We will construct a sequence of simple functions. Define, for each n, a function Kp(z)

by
Kn(z) =min {1 <k <n:|f(z) - ak| = min{]|f(z )= aif,i=1,---,n}}.

which is the least integer in {1, ,n} such that ag, () is the closest one to f among aj,-:- ,an.
Set

Ani={r € F: K,(z)=1i}, i=1,.
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Then A;,, are pairewise disjoint, Ul Ap; = F' and

-1
— (N7 -ali <t =am) V() 0F -l <17 - asll).
j=1

Jj=i+1

Observe that the set {a € E: |[a—ai|| > ||a —a;||} belongs to B(E), since the pre-image of any open
B(R)-set under a continuous mapping is an B(E)-open set and the mapping z — |la—a;|| — |la —a;,|
is continuous. Using this fact and the JF/B(E)-measurability of f, we infer the set {z € F :
|f(z) = aill < ||f(z) — a;]|} belongs to F, for each j. Thus A,; € F, for i =1,--- ,n. For each z,
we want to find an element from {a1, - ,a,} which is closest to f(z) and the subscript of which is
the smallest. For this, let us define a sequence of functions from F to E by the following

n
gn(z) =) ailay(z), z€F

i=1

We find by the definition of the sets Ap; that

llgn(z) = f(@)]| = ZwilA,,,(w) - f(x)
i=1
= min{||f(z) —agl| : k=1,--- ,n}.

Note that since Eg is the dense in E, for every x € F, f(x) can be approximated by an Ep-valued
sequence. Hence we infer that min{[|f(z)—ak|| : k = 1,-- ,n} is pointwise monotonically decreasing

to 0, as n — 00.
Since p is o-finite, there exists an increasing sequence of set Uy C Up C - -+ such that UpyUp = F

and u(Uy,) < oo for all n € N. Now define
fn(w) = gn(:l:)lun (2:)

Clearly, for every n € N, fp is a simple function. Moreover, ||fo(z) — f(z)| is also pointwise
monotonically decreasing to 0, as n goes to co . O

Proposition 3.2.16. An F/B(E)-measurable function f : F — E is Bochner integrable if and only
if [ |If(2)||lp(dz) < oo, in which case, we have

n /F f@)u(dz)] < /F 1 (@)l (). (3.25)

Proof. Suppose that f is Bochner integrable. Let {fn} be a sequence of simple functions such that
liMp o0 [ [|fa(z) = f (z)||p(dz) = 0. Hence we may choose n € N big enough such that

[ 1n(o) - @) lutez) <
It follows that

[15@lue=) < [[17@) - u@lntez) + [ 1nelutee) <

For the converse part, Let f be an F/B(E)-measurable function such that [p || f(z)||lu(dz) < oo.
By Proposition 3.2.15, there exists a sequence {fn} of simple functions such that for every z € F,

[lfa(z) = f(z)ll v 0, as n — oc.

52



Then the monotone convergence theorem tells us that
I [ 17a(o) - £(@)ltda) =0

To show the inequality (3.2.5), we know that the inequality (3.2.5) holds for simple functions {f,}.
Therefore,

I [ @) <l [ f@udo) - [ u@utae) + 1 [ @il
<)l [ @)~ [ s+ [ lfa(a@lnda)
<Il [ f@wien) - [ Fa(@hulda)] + JZERNCITC
+ [ 1r@)uce)

Letting n — oo in above inequality yields that the inequality (3.2.5). O

Let us state without proof some properties of the Bochner integrals.

Theorem 3.2.17. 1. Let T be a bounded linear operator from E to another separable Banach
space G. Let f : F — E be a Bochner integrable function. Then Tf : F — G is Bochner

integrable and
[ r@uan) =7 [ f@uis).
F F

2. Lebesgue dominated convergence theorem Let (F,F,u) be a o-finite measure space and
let fn : F > E, n € N be a sequence of Bochner integrable functions which converges y-
a.e. to a function f. Suppose that there exists an F-measurable function g : F — R with
J lg(z)|u(dz) < 0o such that || foll < |g| for alin € N p-a.e. Then f is Bochner integrable and
we have

(a) limnoo [p | fn(2) — f(@)l|(dz) = 0;
(b) limnsoo [ | fu(@)|u(dz) = [5 || f (z)]| u(dz).

3.2.4 Stochastic Integrals

Assume now that E is a martingale type p, 1 < p < 2 Banach space with the norm || - ||.

o Let ME(Ry x Q2 x Z,A\®v®@P; E) denote the linear space of all functions f : Ry x ZxQ - E

from K, such that

/ - / E|f(t, -, 2)|[Pv(dz)dt < oo.
0 V4

Let us recall here that K is the class of all B(R4)®F x Z-measurable and (F;® Z);>0-adapted

functions. Sometimes the notation is simplified by dropping the the set R.. x{) and the measure

53



A®P, if they have been specified, to M}.(E) in the sequel. We shall alternative freely between

these two different notations and use the one which seems more clear or convenient.

o Let MP(R, xQxZ, BFZ, \@v®P; E) denote the linear space of all §-progressively measurable

functions f : Ry x Z x §2 — E such that

/ > / E||f(t,, 2)|[Pr(dz)dt < oo.
0 VA

Likewise, for simplicity, we adopt the notation MP(BF Z; E) instead of MP(Ry xQx Z, BF ®

ZaAQ@UQ@P;E)

o Let MP(Ry xOx Z, P, A\@v®P; E) (or MP(P; E)) denote the linear space of all F-predictable

functions f : Ry X Z x Q — E such that
o0
/ / E[|£(t,, 2)|[Pv(dz)dt < oo.
0 Jz

Remark 3.2.18. So far, we have considered three classes M%.(E), MP(BFZ; E) and MP (P, E) of
functions on Ry x Q) x P. A quick observation about the relatlonshlps between these three classes

is that MP(P; E) ¢ MP(BFZ; E) C Mi(E)

Definition 3.2.19. We call f a step function if there is a finite sequence of numbers 0 = #p <
] < -+ < tp < 0o and a sequence of disjoint sets A;?__l, j=1-,n k=1,---,min Z with

V(A;-"_l) < oo such that

n m
flthw,2)=Y_ > €&k l(w)l(tJ Ll ()L (2), (3.2.6)
=1 k=1
where 6}_1’ j=1,---,nand k=1, .-, m are E-valued p-integrable and 73, ,-measurable random

vairables. The set of all such step functxons will be denoted by M5, (Z; E).

Definition 3.2.20. The stochastic integral of a step function f in M%,,(Z; E) of the form (3.2.6)
is defined by

ZZf W)N (tj- 17tJ]XA 1)

I=1lk=1

Proposition 3.2.21. Let f € M5, (2; E). Then the stochastic integral I(f) of f is well defined.
That is the value of I7(f) does not depend on the representation chosen for f. Furthermore, I(f)

is in LP(Q) and
(1) EUI(f)) =0

(2) ENI(f)IP < CE[5° [ IIf (¢ 2)[Pv(dz)dt.
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Before starting the proof of the proposition 3.2.21, we establish an auxiliary lemma.

Lemma 3.2.22 ([16] Lemma C.3). Let £ be a Poisson random variable with parameter . Then for
all 1 < p <2, we have

El¢ — AP < 2277\,
Proof. We state with the simple case p = 1,2. For p = 1, by the triangle property, we have
E|l§ — A < E£+ A =2A
Ifp=2,
El¢ — N| = var(§) =
For the general case 1 < p < 2, it follows from the Hoder’s inequality that
El¢ — AP = E (¢ - APC-Djg - A2)

1/(p-1)]1P~! 1/(2-p)] %~
< [IE(I& Vo) )] [IE(IS —ap) ]
= (Bl - M7 (Bl - AY*P
< AP-L(20)27P = 2277,
which completes the proof. O

Proof of Proposition 3.2.21. Let f be of the form (3.2.6). Then the stochastic integral I(f) of f is
given by

I(f) =D €k ()N ((t-1,t5) x Ab,

j=1k=1

Taking expectation of I(f), we have

I
NE

E(I(£) E (€51 N (41, 15] x A50))

1]
M- ¥
s IMs

E (1) E (M (-1, x 4-1))

Il

[~
It
-
=
1
-

1l

where we used the independence of E" 1 and N((tj-1,t;] x AJ ;) in the second equality and the
fact that E (N((t, 1, 5] x A 1)) = ( for each j and k in the last equality.

Note that the sequence ZJ 1 k=1 5_;‘ (-1, 5] x Ak ), i =1,---,m is a martingale with
respect to the filtration {4}, on (Q, F,P). Therefore, by using the martmgale type p property

of the space E, we find out that
P

EI(A)IP =E

ZZEj 1N ((t5-1,85] x Af-y)
j=1 k=1

p

ek ((1o1, 4] % AL) (3.2.7)

k=1

< Gy(E) z
j

=1
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For the case p = 1, we have

m

n
DN (-1, t5] x AF))
=1 k=1
n
=1

< Ci(B) Y Y BNl W ((t-1,t5] x 45-)|
k

EII() < CuB) Y E
J

o,

=1
D ElEr_ llv(Ar ) - tio1)
1 k=1

< 2C(E)

n

.

=7 " [ s

since
]ElN((tj_l, tj] X A‘,;—l)l < EN((tj—l: tj] X A_‘;—l) + U(A_?—l)(t]' —tj-1) = 2V(A_;'c—1)(tj = tj—l)'

For the general case p, 1 < p < 2, one way of doing this, due to [16], is that since for fixed
j, the random variables ff_l, k = 1,.---,m are F;_;-measurable and the compensated poisson
random variables N((¢j-1,%;] X Af_l, k =1,-.-,m are independent of F;.;, hence we may suppose
that the random variables Ef_l, k =1,--- ,m are defined on a probability space (£, F1,P1) and
N((tj—l, t;] x A;?_l), k =1,--+,m are defined on another probability space (Qg, F2,P2) such that
Q=10 xQy, F=F ®Fand P=P1 ®P,. Let E; (resp. E;) be the expectation on (Qy,F1)
(resp. (21, F2) with respect to P; (resp. P2). On the space (22, F2,P2) construct a filtration G; of

o-fields by
G i=o{N((tj-1,t5] x A¥_): 1<k <i}, i=1,--,m.

Therefore, by the measurability and independence of the random variables, it's easy to verify that
the class Yh_, 5}19_1]\7((tj_1,tj] X A;?_l), i = 1,--.,m of random variables is a martingale with
respect to the filtration {Gi}2, on (Q2,F2). Indeed,

i+1 i+1 .
E; (i € N ((tj-1,t5] X A;?_l)]g,) =3 (8B (N (-t x 450)|G:))

k=1 k=1
i
= fo—zN((tj—l»tj] x A§_1)
k=1
+ € (N (41, t5] x 43ED))

]

=) & N((tj-1.t5] x AE_)).
k=1

56



By applying the martingale type p property of the space E to this martingale to (3.2.7), we have

n m ¥4
EII(f)IP < Co(E) Y E |3 b 1 N((tj-1,85] x AS_y)
j=1 k=1
n m p
=C’,,(E)ZIE1]E2 Z 1V ((t-1, 5] X AJ 1)

<GP 3By [E et 40
j=1

k=

n m
- P
=GB Y Er ) ||e,k_,anz[N(<t,~_1, t] x A51)|
i=1 k=1

< PCH(E)? Y S EJIEE IPr(AS_ 1) (85 — tj-1),

j=1 k=1

where we used the property E(N((tj_l, t] x Ab_))P < 22-Py(Ak_,)(t;—tj-1) by Lemma 3.2.22. O

Theorem 3.2.23. M, (Z; E) is dense in MP(P;E).

Proof. We split the proof into two steps. In fact, the proof shows that E can be taken to be any

separable Banach space. .
We define a new class M of functions f € MP(P; E) such that

m
ft,w,2) = ZeilM‘(t,w,z), (t,w,z) € Ry x Q2 x Z, (3.2.8)
i=1
wheree; € E,i=1,--- ,mand M; CRy xQ x Z,i=1,.--m are pairwise disjoint F-predictable
sets. Our proof will be proceeded as follows. We first show that M&%;.,(Z; E) is dense in M and
then we show that M is dense in MP(P; E).

Step 1: M5, ,(Z;E) is dense in M.
Note that the family R of F-predictable rectangles
R={{0}x FxB:FeFy, BEZ}U{(s,t)] x FxB:0<s<t<oo, FEF, Be Z}

is a semi-ring, see Proposition 3.2.2 and Definition 2.1.17.

Let A be the smallest ring generated by R. Then the elements of A are finite unions of disjoint
rectangles from R, see [11]. Define 4 := A P®v. Take M € P. According to Section 13 Theorem D
in [34], for every £ > 0, there exists A € A such that u(MAA) < €, where A denotes the symmetric
difference ie. MAA = (M\A)U (A\M). Since A € A, there exists a finite sequence of pairwise
disjoint R-sets Rl, - R, such that A = U,_I& and

b (MAULRn) <e

Since |1y — 34y 14, = Lyra(up, k) We infer that

00 n 00
IE/ / [ar(t,w, 2) — Z 14, (8w, 2)[Pr(dz)dt = E/ / Lyawe 1)R¢(t’w’ 2)v(dz)dt
0o Jz P o Jz =

= W(MAUL)R) <ce.
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Take f € M which is given by the form (3.2.8). Let us fixe > 0. Put &’ = T—p‘ > (. Then

el

for each M; € ’P i=1,.---,m, we can find finitely many disjoint sets R RN Rn in R which
depend on € such that

E </O°°/Z|1M,-(t,-,z) _,glﬁk(t"’z)lzv(dz)dt) <e

Define a functién f€ by

m g
feltw,2) = Zeiz lfii (tw,2), (t,w,z) ERy x Q.

=1l k=1

Since Rk € R, for all k,i, it is of the form (s,u] x F x B, F is F,-measurable and B € Z. Note
that 1(s ujxrxB(t W, 2) = L(su) (t)1r(w)1p(z). Moreover,

e [ [ireapvae =g [ [ f;eifjlﬁ;(t,-,z)
< CE / / Z;(kZlR, b, 2))Pllesl|Pv(dz)dt
1= 1

<c§jneznpm I ZIR. (t,»2)u(d2)dt < oo.

Therefore, we infer that f¢ € M5,.,(Z; E). Also, observe that

P
v(dz)dt

E /O " /Z 15t 2) = (- 2)[Pu(dz)dt |
< C; [lesl|PE (/0 /Z|1M|. (t,w) — ; 1}-22(1;’ . Z)IPV(dz)dt)
< (f} ueinp) ¢=c,

i=1
So we have

E A * /Z 1f (s 2) = F(br 2)[Pu(dz)dt < e.

Step 2: M is dense in MP(P,E).

Since the Banach space E is separable, there exists a countable dense subset Ey = {z;,z3, -}
in E. Take f € MP(’P E). This means that f is an §-predictable function. By using the Propositon
3.2.15, we can construct a sequence of approximating functions in M of the following form

g (tw,2) = Zzile(t,w,z), (t,w,z) eRL x QA x Z,

i=1
where M,,; are pairwise disjoint sets in 15, i=1,--,n,n €N, such that

”gn(ta W, Z) - f(t’w: Z)“
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is pointwise monotonically decreasing to 0, as n goes to infinity for every (t,w,2) € Ry x Q x Z.
Therefore, we can apply the monotone convergence theorem to get

lim E /0 " /Z g™, -, 2) — f(t,-, 2)||Pv(dz)dt = 0.

—00

Step 2: M2, (Z; E) is dense in MP(P; E).
Takee >0 and f € Mp(ﬁ; E). Hence for n large enough, by the step 2 we can find g" € M such
that

E /0 ” /Z £(6,2) = (6, Puldz)dt < 5

It then follows from the assertion 1 that for each g" € M and € > 0 there is a corresponding
function f* € M%,,,(Z; E) such that

E /0 - /Z lg™(t, - 2) — (¢, - 2)|Pr(dz2)dt < 2

Consequently,
B[7 [ 1t0) - e ipuianas
< P-IE / / 1£(t, - 2) = g(2, - 2)[Pu(dz)dt + 2P~'E / / g™ (2, -+ 2) — F(t -, 2)Pu(dz)dt
< 2p-— 212— Z < E,

completing the proof of the theorem.

Theorem 3.2.24. M3, (2 E) is dense in My.(E).

Remark 3.2.25. In the proof of this theorem, we need the completion requirement of the family
(Fi ® )30 of o-fields. That is for every ¢t > 0, F; ® Z contains all the P ® v-null sets in F @ Z.

Proof. Let f € My(E). Without loss of generality, we may assume that f is almost everywhere
bounded on E. Indeed for every f € ME.(E), we can define a sequence {g;}jen of functions

gi(t,w, 2) = f(t,w,2)1(p1<i3 (B w, 2), (tw,2) ERy X QX Z.

Set u=A®@P®v and N = {||f|| = oo}. Then

W) = Jim (111> 39 < Jim (5 [ 151Pau) =0

Observe that lim;e0 g;(t, w, 2) = limj4e0 f(t, w, 2)1{) <} (£ W, z) = f(t,w, 2)Ine(t,w, 2) for (t,w, 2) €
Ry xQ2x Z. It follows that lim;j_,e gj(t,w, 2) = f(t,w, z) pu-a.s. Moreover we find that ||g;(t,w, 2) —
ftyw,2)|| € 2||f(t,w,2)| for all j € N and (t,w, 2) € Ry xQ2x Z. Hence by the Lebesgue dominated
convergence theorem, we have

lim E / ” / 197 (6w, 2) — £(t,w, 2)|Pu(dz)dt = O,
0 zZ

J=—ro0
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where ||g;]| < j for every j € N. Hence we can assume that ||f(t,w, z})|| < C, for every (t,w, 2) € Q,
where @ C Ry x 2 x Z and A@P® v(Q°) = 0.

We can also assume that f vanishes outside some finite interval [0, T] and some set U of finite
v-measure. For this, define another sequence {f,}nen of functions by

faltyw, 2) = f(t,w, 2)1on ()1, (2), (t,w,2) ERy x QA x Z,

where {Uy,} is an increasing sequence in Z such that U,U, = Z and v(Uy,) < oo, since the measure
v is o-finite. Note that ||fn(t,w,2) — f(t,w, 2)|| monotonically decreasing to 0 as n — oo, p-a.s..
Hence the monotone convergence theorem tells us that

hm ]E/ / | fa(8y -, 2) — f(s,-, 2)||Pv(d2)ds =

Case 1: Assume that f is left-continuous and for every t > 0, f(¢,:) is F;: ® Z-measurable.
Step 1 Let us fix to € (0,7]. Then the function f(to,") is Fi, ® Z-measurable. Since the Banach
space E is separable, by Proposition 3.2.15, there exists a sequence g™ of approximating functions

of the form

n
g*(to,w,2) = Zw,-lA:-o(w,z), (w,2) ERy X Z,

i=1
where A}, € F,, ® Z and P® ¥(4};) <00, i =1,-,n, such that
||gn(t0,W, Z) - f(t01 w, Z)“

is (w, 2)-pointwise monotonically decreasing to 0, as n — oo. Applying the monotone convergence
theorem yields that

i Ritn . o) — p _
Jim E /Z lig"(to, -, 2) — £ (to, w, 2)||Pv(dz) = 0
Take £ > 0. Then for some sufficient big ne, we have

E/ g™ (to,~ 2) — f(to,w, 2)[[Pr(dz) < €
z

Note that F;, x Z is a semi- mg By the Theorem D in Section 13 [34], for every set A there exists
a finite sequence {Fj, to X Bii}y,=1 of pairwise disjoint sets in Fio x 2 such that

P ® v(Al, AU (Fry, X Biy))) <

That is
B [ 114,09 = luge (5 0t ) (- I(dR)s <
Define
Ne M4
fr(to,w, 2) ZZ:E,IF. (wh BY, (z) (w,2) e QA x Z. (3.2.9)
i=1 k=1
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Then it is straightforward to see that
E [ 157 (t0.12) = flto,2)|Pu(ds)

s WE/Z 1£™ (0, 2) — g (to, - 2)|Pr(dz) + 2P~'E /Z g7 (b0, 2) — £(to, - 2)|P(dz)

Ne my
<D IaPE [ |3 1, Olag, (0~ L, (o2t + 27
i= =1

< Cpe

Step 2. Since f is left-continuous in the time variable ¢, we construct the following sequence of
functions
2n—1 iT
t Wi Z Z f( mn ’w Z %,T,,Lz'_;:,lfLT_](t), (t,w,z) € ]R+ XQxZ (3210)

We can show that lim, f"(t,w,z) = f(t,w, 2) for all (t,w,z) € Ry x 2 x Z. Indeed, let ¢ > 0.
For every t € Ry, By the left-continuity of f, there exists some & such that for every t' € (¢t - 6, ¢],

we have
(' w,2) = f(t,w,2)]l <e.
Choose N € N so that =% s < 8, then for each n > N, we have 5 < s < 6. Since the sequence

of intervals {( %—,7, Qﬂ)—]}?ial cover (0,T] and they are pairwise disjoint, for every n > N, one can

find k such that t € (’5?:, (et )T T] implying 0 < t — T < % < 6. By the left-continuity, we have

I£(tw,2) = 1,2l <
This gives that
It w, 2) = f(t,w, 2)|| <,
since f*(t,w, z) = f(g—{ 2), forte (2,. , Q‘—?L] From this we obtain
Tim £ (t,w,2) = £(t,w, P = 0,
for every (t,w,2) € Ry x Q2 x Z. By the boundedness assumption of f, we have for almost all (¢,w),
(8w, 2) — f(t,w,2)|IP < 4CP.

Since by assumption f vanishes outside the set U of finite v-measure, we may apply the Lebesgue
dominated convergence theorem to get

I E [ 1£(t,02) = /2 2)IPv(d) =

where the set U were assumed above. Note that for every j, by the Step 1, the function f (g,w, 2)
can be approximated by a sequence of functions of the form (3.2.9). This means that for every n,
the function f™ can be approximated by a sequence {f™™}men of functions of the following form

2"-1m my

ff™tw, 2) = Z EZw,lpf (w)le (z)l %vr +1 T ( ).

J=1 i=1 k=1
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Clearly, for every n,m € N, f™™ is a step function and we have

lim IE/Z |fM™(t,w, z) — f(t,w, 2)||Pr(dz) = 0.

7,M—00

Since by the assumption f is bounded and vanishes outside some bounded interval [0, T, again the
Lebesgue dominated convergence theorem tells us that

Jim E / / 1f (8, 2) — F™(2, -, 2)[Pu(dz)dt = 0.

Case 2: Assume now that f is F-progressively measurable. Then we define a function F by
t
Fltw2) = [ flow s, (t6,2) €Ry xR x Z
0
Note that the process F' is well defined for P®Qu-a.s., since by the assumption the process f is bounded
outside a A® P@v-null set. Also, we can see that F is continuous with respect to ¢, PQv-a.s. Since f
is §-progressively measurable, for every ¢ > 0, the function f : 0,t]x02xZ — Eis B([O RF®2-
measurable. Hence by the Tonelli theorem, we find that for every t > 0, F(t,-,2) = fo f(s,+,2)ds is

F; ® Z-measurable. Note that the F-progressively measurability assumption here is the main point
of achieving the (F; ® Z)-adaptedness of the process F. Define next a sequence of functions by

fnlt,w,2z) =m [F(t,w,z) -F ((t - l) V0,w, z)] , (t,w) € Ry x £ (3.2.11)

Then one can see that fm is continuous in the variable ¢ for almost all (w,z) €  x Z. Moreover,
since for every ¢, F is F; ® Z-measurable, the same conclusion holds for the function fm,meN.
Observe that for almost all t > 0, the following holds for almost all (w,2) € Q2 x Z

. 1
f(t)wNz) = "}l_ﬁnoom [F(taw$ Z) - F ((t - E) VO,w,z)]
= "}gnoo fm(t,w, 2).
By the Lebesgue dominated convergence theorem, we have
w ~
im E [ [ Wntti2) = ft 2)Pu(d)de = (32.12)

’ Let € > 0. For every f € MP(BFZ; E), the above convergence (3.2.12) allows us to find m € N big
enough such that

E/ / “fm y'h @ f(t, ’z)“pV(dZ)dt < §

Since f, is continuous in the time variable ¢ and for every t, fy, is F; ® Z-measurable, by case 1
we can associate f, with a function f € Mb,,,(Z; E) such that

w ~ -~
E / IF(t12) = b 2)Puldzda < &.
(4]
It follows that

E /0 /Z 1 (s 2) = F(t, - 2)Pu(dz)de < e,
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which completes the proof of this part.

Case 3: Let f € K. That is the function f is B(Ry) ® F ® Z-measurable and for every
t > 0, f(t,) is F; ® Z-measurable. Hence by Proposition 2.1 in [79], for every t > 0, there
exists an B([0,t]) ® F; ® Z-measurable modification g of f. That is for every t > 0, the function

1 [0,t]) x Q@ x Z — E is B([0,t]) ® F; ® Z-measurable and for all s € [0,], we have f(s w,2z) =
g(s w, z) for almost all (w,2) € Q x Z. Define two continuous functions G(t,w, 2) fo g(s,w, 2)ds
and F(t,w,2) = fo f(s,w, z)ds. By the Toneli Theorem, for every t > 0, the function G is F; ® Z-
measurable. We will show that for every ¢ > 0, the process F(t,-) is F; ® Z-measurable as well.
Indeed, consider a function 7:(w, 2) = 1{(u,2):f(tw,2)#g(tw,2)} (W) Note that P@v{(w, z) : f(t,w,2) #
9(t,w, 2)} = 0. Then we infer that for every t > 0, m,(, ) is F; ® Z-measurable. By using the Fubini
theorem, we have

E/ /m( dz dt = AWE(/(I{(wz ) f(t, w,z);ég(t,w,z)}(w»z)V(dz))dt
= [TPouw.2): ftw2) # gttt

Hence we infer that f0°° ne(w, 2)dt = 0 P ® v-a.e. We see that for every ¢ 2 0, the set {(w,2) :
Jo7 me(w, 2)dt > 0} is a P @ v-null set. We shall show that for every ¢ > 0,

(@ 2): Fltw,2) # Cltyw, 2)} € {(w, 2) : / " m(w), zdt > 0.
0

To see this, we take (@, %) € {(w,2) : F(t,w,2) # G(t,w,z)}. Then the Lebesgue measure of the
set Az = {8:0 <8 < t,f(s,0,%) # g(s,@,%)} is positive. This gives that [ n(@,z)dt >

fo 14,5 (8)ds > 0. Thus (@, 2) € {(w, 2) : f;° m(w, 2)dt > 0}.
It ‘follows that for every t > 0 the set {(w, 2) : F(t,w, 2) # G(t,w,2)} is a P ® v-null set. Since
we know that G(t,,-) is F; ® Z-measurable, by the completion assumptions of the o-fields F; ® 2
we can conclude that F(t,-,-) is also F; ® Z-measurable. This together with continuity of F allows
us to define an approximating sequence fp, of (F; ® Z)-adapted and left-continuous functions as in
3.2.11, and hence the results achieved in the case 2 can be applied. O
The following corollary is an immediate consequences of the above Theorem.
Corollary 3.2.26. M%,,(Z;E) is dense in MP(BF Z;E).
Theorem 3.2.27. Let f be in M}.(E) (or MP(BFZ;E), or MP(P;E)). Let {f} C Miep (2, E)
be any sequence of step functions satzafymg

E/owfz 1£(8,2) = £7(t,, 2)|Pu(dz)dt = 0, asn — oo,

Then there exists a random variable, say I(f), in LP(Y; E) such that
ENI(f) = I(f™|P = 0, asn — oo.

Moreover, such random variable is uniquely defined P-a.s., that is, it does not depend on the choice
of approrimating step function. We usually call I(f) the stochastic integral of f with respect to the
compensated Poisson random measure N.
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Proof. Let us first introduce the following notations

it = (£ ([ nf(t,-,z>||"u<dz>dt))1/p and  [[¥l|za(e) = (EIY )7,

Since the class M2,,,(Z; E) is dense in M}(E), we can find a sequence of step functions {f" }nen C
Mep(Z; E) such that
. n_ _
Jim ||~ fllme = 0.
Then for every € > 0, there exists some N > 0, N € N such that for every n,m > N, n,m € N we
have

€
If" = flfes < 50 and 1™ = fle < .

By Proposition 3.2.21, we observe that {I( ™ }nen is a sequence of random variables in LP(f2)
. We shall show that this sequence {I(f")} is a Cauchy sequence in LP(f2). Using linearity and
boundedness of mapping I we get

EllI(fa) = I(fm)IIP =EllL(fn — fm)IP
SCIf™ = ™
=|(f = ")+ (f = M)
<N = £ W+ 1F = S e

<E+E-—s
2 2 7

which shows that {I(f™)} is Cauchy sequence in LP(Q). Since the space LP(Q?) is complete, the
Cauchy sequence converges to some limit which we denote by I(f) in LP(Q), ie. I(f) := LP-

lim I(f™).
Now we proceed to show the uniqueness of the random variable I(f). Assume that there are

two sequence of random step functions {f"}nen € M2, (Z;E) and {g"}nen € MP,,,(Z;E) that
both converge to f in My (E). Consider the interlaced sequence f 1 g1, f2, g%, then we can see
the sequence is also a Cauchy sequence in M}-(E) and it converges to f.

Form above we have shown that I(fY),I(gY), I(f?),1(g?), -~ is a Cauchy sequence in L£2(f)
and by completeness of £2(Q), it has a limit in £2(Q). Since {I(f™)}nen and {I(g")}nen are two
subsequences of this interlaced sequence I(f 1, I(g%), I(f?),1(g?),- - -, then their limits must be the

same.

|
3.3 Properties of the Stochastic integrals

For0<a<b<T, B¢ Z and f € Mg (E), since 15515 is also in MPE.(E), so we can define the

stochastic integral from a to b of the function f € ME(E) by
b ~
2= [ [ 1628z, d) = Haenta), (33.1)
a
For simplicity, we denote

un= ‘ [ 16 a0 = I
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Remark 3.3.1. Notice that a function of the form 14)(t)é(t,w) with f € MR.(E) is equivalent to
the identically zero process with respect to the measure A ® P x v, so it has zero stochastic integral.
Therefore, the inclusion or exclusion of the the point a in above definition will not influence the
integral. In other words, the integral f(a,b] I f(2, z)N(ds, dz) is indistinguishable to the integral

oy Iz f(t,2)N(ds, dz).

Theorem 3.3.2. Let f,g be in MY(E). Then
(1) For every t 20, I(af + Bg) = ali(f) + BL(g), where o, B € R.
(2) For everyt >0, E(Li(f)) =0.
(8) For everyt >0,

t
E|IL(/)IP < CE /0 /Z 172, - 2)|[Po(dz)dt. (3.3.2)

(4) L(f), t > 0 is a cadlag p-integrable martingale. More precisely, I;(f) has a modification which
has cadlag trajectories.

Remark 3.3.3. When E is a Hilbert space, the inequality in (3.3.2) becomes an equality with C = 1,
namely

Bl =E [ [ 156,21t (333)

From now on, while considering the stochastic process I;(f), t > 0, it will be assumed that the
process Ii(f), t > 0 has cadlag trajectories.

Proof. (1) If f, g € ME(E), then 1gyf, 1049 € MR(E). So we can find two sequences of
simple function {f™} and {g"} in Mfte,,(z; E) such that

/™ = Lo fllme — 0 and [jg" — gl(o./lme — 0.

Hence
laf™ + Bg™ — (af + Bg)Lg4llme — 0.

By Proposition 3.2.21, we know that
Iaf™ + Bg"™) = oI (f*) + BI(g"),
for each n. Taking the £P-limit on both side as n — oo, it follows that
I(af + Bg) = aly(f) + BI:(9)-
(2) See (4)
(3) By Theorem 3.2.24 there exists a sequence of step functions f" in M’;te,,(z; E) such that
Jim £~ fllaw =0.
It follows that for each t € R,

l(O,t]f € M%(E), 1[0‘t}f" € Mgtep(z; E)

65



and
Jim |[1pgf — Log " llme =0.

By Propositon 3.2.21 we have
1 (f")lice < Clilof | me- (3.34)

By taking the limit of (3.3.4) as n — oo we get

I(F)llce < Clliogflive = E ( /0 ’ /Z £ (5, -, z)llpds) .

Since f € M%;.,(Z; E), it gives that

Bn(IP < CE ([ ’ [ iften2pvians) s ce ([ [ r6s, 2)IPuldz)ds) < o,

which implies I;(f) € LP(2). Moreover, we observe that
oo
swpEIL(NIP <O [ [ (s, 2)iPulda)ds < oo
£>0 0o Jz

This shows that I;(f) is p-integrable.

Now we are going to show that the stochastic integral process I;(f), t > 0 is a martingale.
Since by Theorem 3.2.27 there is a sequence of step function {f"} such that I;(f") converges
to I,(f) in LP(Q), we can find a subsequence of {I:(f™)} such that it converges to I;(f) P-as.
for every t > 0. If Fo contains all P-negligible sets in F, then by the adaptedness of I;(f"),

¢t > 0, the process I;(f), t > 0 is also adapted to §.
Let 0 < s < t < oo. First, we verify martingale property for step functions in Mgtep(z'; E).
Let g be a step function of the form (3.2.6). Then the stochastic integral I;(g) of f is given

by
Ii(9) = I(1p0,49) = 10,619 + L(s,419) = I(1(0,619) + 1 (1(s,59) = Ls(9) + Ls,t(9)-

It is easy to see that I;;(g) is independent from F; by the independence of N((s,t) x A) with
respect to Fs. But I;(g) is Fs-measurable. It follows that

E(L:(g)|Fs) = E(Is(g) + Is,(9)|Fs) = E(Ls(9)|Fs) + E(Ls,t(9)|Fs)
= Io(g) + E(1s(9)) = L(g),
which shows martingale property for step function. For each n, from above discussion we
know that

E(I(f")|Fo) = Is(f").
Therefore, it from the Jensen's inequality for conditional expectations that
E|[L(f) - EG(AIFI = E|L(F) - LU™) + E(L()IF) - EG(DIF)|P
< PE|L(f) ~ L(MIP + 2PE|E(L(f™)|Fs) - E(L()IF)|1°
= PE|Ls(f) — L(fM)IP + 27| E(T(f") - L(H)IFo)|?
< PE|L(f) = LI + PE B I(F") — L(f)P1F))
= 2PE||L,(f) — L(fM)IP + 2PE|Le(fn) — L(£)I.
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Since for every t > 0, limpy00 E||I:(f*) — I(f)||P = 0, we infer
lim E||Z,(f) - E(L(H)IF)|]” = 0.

Therefore,

E(L(f)|Fs) = L(f) a-s.

It remains to show the cadlag continuity of the paths of process I;(f), t > 0. For this, we
have to show that there is a sequence of step functions {f"}nen in M':te,,(z i E) such that the
stochastic integrals I;(f™) converges uniformly to a modification of I;(f) on R..

If f € ME(E), then by Theorem 3.2.26 we can ﬁnd a sequence of step functions {f"},cn in
M:p(25 E) such that

o0
[ n . — . p =
Ik [ [ - fs DlPu(dz)ds
Thus there exists a sequence of natural number {n;}$2, such that
o 1
B[ [ 15(512) = flovn 2)Puldadds < g k€N
0o Jz 10
We write k instead of ny for brevity,
o 1
E / / I£%(s,+,2) = £(3," 2)||Pr(d2)ds < —, k €N.
It follows that
(o9}
B[ [ 15444000 2) - 1o, 2)lPv(dz)ds
0o Jz
oo
< 2PIE/ / “fk+1(s’ " z) - f('sa K z)||p1/(dz)ds
o Js
00
* 2p]E./ / “fk(s, K Z) - f('sv K z)[|pu(dz)ds
z
keN.

10k’
By the Chebyshev inequality, we have that

P{w €EN: st;g” /ot/ fk+1(.9,z) ~ R, z)] N(ds,dz)||(w) > ik}

-supE [f"“(s z) = f*(s,2)|N(ds, dz)

(1/2'° >0

<t /Z.fm(s,z)_,k(s,z),,py(dz)ds

C 00
= W /0 /Zlif"“(s,a = *(s,2) Pu(dz)ds

80/10’c Cc
=Wy <

keN.

/\
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Since the series Y po; 5591—5 is convergent, we infer that

00
Z P{sup
k=1 20

Hence, in the view of the first Borel-Cantelli lemma. (see Theorem 4.3 in [9}), it follows that

( /0 t /Z [F¥+1(s,2) =~ F*(s, 2)]N (ds, dz)) (w)” > 2%}) _o.

This implies that there exists a set ) C O such that lP(Q) =1 and for every ¢t > 0, there exists
some j € N such that for all k > j we have “(fot Sl (s, 2) - F*(s, 2)| N (ds, dz))(w)ll < 515
w € . Hence

>

n=j

1
ZEE}<OO'

/Ot/z[fﬁl(s,z) - fk(s, Z)]N(ds, dz)

P (lim sup {w € §2: sup
k >0

([ [1r6.0 = 140 1 a9) @) < o0, foralost<oo wed

Consider the series
© ot
- k+lig ,\ _ gk g
6= /0 174 0,2) = 21, ),
where f0(s) = 0. Since for k=0,---,j — 1,
t
E “ /0 /Z [+ (s, 2) — f¥(s, 2)] NV (ds, d=)
t
<CE /0 /Z 17541 (s, 2) — £¥(s, 2)|Pu(dz)ds

< o0,

P

we have || 3 [l fE (s, 2) — Jfk(S,Z)]N(dS,dz))H < 00 on a set of probability measure 1,
which we shall also denote by § for simplicity of notation, for every n =0,--+,j — 1. Then
we can conclude that Zz‘;oﬁfot L2542 (s,2) - f¥(s, 2)|N(ds, dz)” < oo on §.. This shows
that the series 3 po fot [7(F¥ (s, 2) - f¥(s, 2))N(ds,dz) is uniformly convergent on Ry for
each w € . Now we define & = Y320 fy [7(F¥+1(s,2) = f*(s,2))N(ds,dz) when the sum
converges, i.e. .

& = lim /0 t /Z ¥(s,2)N(ds, d2),

k—o0

and if this limit diverges, we replaced it by zero. Thus I;(f¥) converges uniformly on (0, o)
to &. On the other hand, since by Theorem 3.2.26 we know that for each 0 < ¢ < o0,

/otL[fk(s,z)N(ds,dz)—Ath(s,z)N(ds,dz)

by taking a subsequence {f*7};en we have for every 0 <t < oo,

P
E —+0, asn — 00,

t - t .
lim /0 /Zf’“J‘(s,Z)N(ds,dz)=/0 /Zf(S,z)N(ds,dz) on {; with P(Q;) = 1.

j—roo
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By the uniqueness of the limits, we infer that I;(f) is a modification of &;.

Note that for each n, the process I(f™), ¢ > 0 is cadlag. Since the limit of a uniformly
convergent sequence of cadlag-continuous functions preserve the cadlag-continuity, we can

conclude that &, t > 0 is a modification of I;(f) with all paths cadlag paths.
(N

So far we have three classes of functions, Mk.(E), MP(BFZ; E) and MP(P; E), for which we
can define stochastic integrals. One may ask what is the relationship between these three classes.
Clearly, we have MP(P; E) ¢ MP(BFZ,E) Cc M2 P.(E). The precise relationship is the following

which shows that both classes are in fact the same.

Theorem 3.3.4. Assume that f € MY.(E). Then there exists a process f € MP(P; E) such that
00 A
B[ [ 152 ft2lPvids)at =

Furthermore, the stochastic integrals 152 [ £(s,2)N(ds, dz) and e fz f(s,2)N(ds,dz) are P-a.s.
equal and the processes fo [, £(8,2)N(ds,dz), t > 0 and fo fz s,2)N(ds,dz), t > 0 are modifica-
tion of each other Especially, if we take the cadliog modifications of the processes [0 [, f 7 f(8,2) N (ds,dz),
t >0 and fo fz 8,2)N(ds,dz), t > 0, then they are indistinguishable.

Proof. Let f € M}.(E). As we have shown in the proof of Theorem 3.2.24, one can find a sequence
of step functions { 7Y, which are 3-predictable by the special forms (3.2.6), such that

lim E / > / £t 2) — F7(t, 2)Pu(dz)dt =
0 zZ

n—o0

Hence by taking a subsequence {f™ }xen, we infer f™ — f, A® P x v-a.e as k — 00.

Define R
fltw,2) = limsupf""(t,w,z), (tyw,2) =Ry x QA x Z.

Note that limsup,_,, f™* inherits the measurability of the functions { f*}. Therefore, f is also
F-predictable and f = f, A® P x v-a.e.. In other words f — f =0, A ® P x v-a.e.. On the basis of

Theorem (3.3.2), we have

E /O-oo/zf(t,-,z)ﬁ(dt,dz)—/om'/zf(t,.,z)ﬁ(dt,dz) !

< CE /O ” /Z 1£(t, - 2) = f(t, -, 2)[Pu(dz)dt

=C If = fPdA QP x v) = 0.
Ry xIxZ

It follows that [5° [, f(t,~, 2)N(dt,dz) = [5° [, f(t,",2)N(dt,dz), P-a.e. In particular, we have
that for every ¢ 2 0, 1o qf = 104 f, A\® P® v-a.e.. Hence in view of inequality 3.3.2, we infer that

E|| /0 /Z (8, 2) N (ds, dz) — /0 /Z f(s,-,z)N(ds,dz)“

<CE [ [ 10q(@)ls12) = Flor- Putdz)ds =o.
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This implies that the processes fot Iz f(s,, z)N(ds,dz),t > 0 and fg Iz f(s,, 2)N(ds,dz), t > 0 are
mtodiﬁcations with each other. Theretfore,aby Lemma 2.1.2, the cadlag modifications of the processes
IS [z f(s,,2)N(ds,dz), t > 0 and [; [ f(s,",2)N(ds,dz), t > O are indistinguishable.

0

Remark 3.3.5. Let ME(E) be the set of equivalence classes of functions from M}.(E), let MP(BF Z; E)
be the set of equivalence classes of processes from MP(BFZ; E) and let MP(P; E) be the set of
equivalence classes of processes from MP(P; E).

The above Theorem 3.3.4 indicates that all stochastic integrals of processes in ME(E) are indis-
tinguishable from the stochastic integrals of processes in MP (P; E). We do not create new stochastic
integrals for adapted measurable processes. The class of all stochastic integrals of adapted measur-
able processes coincides with the set of all stochastic integrals of predictable processes.

Corollary 3.3.6. The spaces ME(E) and M”('Is;E) are isometric.

Proof. The proof follows immediately once we observe that [f] = A[ f], where [f] (resp. [ f] ) is the
equivalence class induced by the function f € Mfc( E) (resp. MP(P;E)). 0

3.4 Relationship between different types of stochastic integrals

Throughout this section let us fix 1 < p < 2 and E be a martingale type p Banach space. Let N
be a Poisson random measure associated to a Poisson point process m with intensity v. Now we

will introduce three classes of functions for which we can define stochastic integrals and Bochner

integrals.

* Let Mfoc('ﬁ, v; E), 1 < p <2, be the space of all §-predictable E-valued functions such that
for each T > 0,
T
B[ [ 156 2)lPvldz)ds < oo (3.4.1)

Remark 3.4.1. This assumption (3.4.1) is somehow weaker than the assumption that
oo
B [" [ 16 2lPuidadis < .
0 Jz
But this assumption (3.4.1) provides that for every T > 0, the functions floq), T > 0 afe all
in M(P; E), hence for every T, the stochastic integrals f(;‘r Iz £(s,+,2)N(ds,dz), T > 0 are well
defined, on the basis of Theorems 3.2.27 and 3.3.2, and possess the properties in Theorem 3.3.2.

* Let M}w(ﬁ, v; E) be the space of all §-predictable E-valued functions such that for each

T>0,

]E/OT/Z I (s, 2)llv(d2)ds < oo.
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Remark 3.4.2. In view of Section 3.2.3, the function f is Bochner integrable w.r.t. the measure
v ® A. Furthermore, in Proposition 3.4.7 we will show that the function f is Bochner integrable
w.r.t. the compensated Poisson random measure N, P-a.s.

* Let Mtoc(f’,N ; E) be the space of all F-predictable E-valued functions such that for each
T>0,

E /0 ’ /Z 1£(s, -, 2)| N (ds, dz) < oo. (3.4.2)

Here foT J7 1f(8,+,2)|[N(ds,dz)(w) is defined as Lebesgue integral with respect to the measure
N(w,-) for every w €  and is equal to the convergent sum, see [40],
T
| [ oiN@sd) = 3 s w@)l
0 Jz 9€(0,T)ND(r)

Remark 3.4.3. Theorem 4.6 in [42] tells us that the condition

Y. lfGsnm(e)ll < oo, as.

8€(0,TIND(n)

is equivalent to the following two conditions

T
/ / |f(s,, 2)[| A1 v(d2)ds < o0, a.s.
0 JZ
and
/UT/Z (1 — exp{~[|f (s, z)||}) v(dz)ds < 00, a.s.

In such a case, we may define the integral fot [ f(s,w, z)N(ds,dz) by the formula

[/t/Zf(s, z)N(ds,dz)] (W) := E f(s,w,m(s))
0 s€(0,6jND(n) (3.4.3)

= Yo fswn(sw),

8€(0,tjND(m(w))

since the series is absolutely convergent.

Remark 3.4.4. Since for every w € 0, N(-)(w) is a measure on (R4 x Z,B(R+) ® Z), one can also
define, for every w € , the integral fOT [z f(8,w, 2)N(ds,dz)(w) in terms of the Bochner integral
introduced in the Section 3.2.3. More precisely, if f is a simple function of the form

n mj

ftw2) =33 aily @iy g (@) (344

j=1i=1
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where Fij—l € 'Ft{_l’ i=1,--,mj j=1,---,n, and {Bg_.l}i,j C Z are pairwise disjoint and
V(BLl) <o00,i=1,---,mj, j=1,--,n. We may define

n mj

T . . :
/ / f(t,w,2)N(ds,dz) := Z Zale; (WIN((H_, AT, AT) x B]_,)
o Jz j=ri=1 !

=Y Daly W Y 1y (x(s)

j=11i=1 8€(t]_, AT, t] ATIND(x)

= Y fswm(s)

8€(0,T|ND(r)

It is easy to see that for simple function of the form (3.4.4), we have

T T
| /0 /Z ft,w, 2)N(ds, dz)|} < /0 /Z £t w, 2)|| N(ds, dz).

From Theorem 3.2.23, recall that for every E-valued and P function f, there exists a sequence {f,}
of simple functions of the form (3.4.4) such that the sequence

[fa(tsw, 2) — f(t,w, 2)||
converges to 0, for all (t,w,2) € M, where M CRy x O x Z and A®P® v(M°®) = 0. A similar
argument as in the proof of the Proposition 3.4.5 we have
”f'n(tvw’ ﬂ'(t’ (U)) - f(tawa W(t’w))”
converges to 0 P-a.s. as 1 — 00, for all t > 0. Then the series
S s m(8) = fis, ()
s€(0,T)ND()

converges to 0 P-a.s. provided the series ZaE(O,T]rTD(w) Itf(s,+,m(s)) is convergent P-a.s. We know
by assumption that foT I [|f(s,2)||N(ds,dz) < oo, P-a.s. Put it in other words, we have

Z 1F (8 7(8))]| < oo P-ass.

8€(0,TIND(w)

Hence we infer that the series 3 .o rjnp(m) f7(8) 1 7(8)) converges to 3.0 rjnp(m f(8: - 7(s))
P-a.s. and

n—o0

=lim Y () - S 7)) - oo, Pas. as

% se(©,TIND(r)

im, [ ' [ 1876.0.2) = £, DN s, a2

Now we may define the Bochner integral of f by

T T
/ /f(s,-,z)N(ds,dz) = lim/ /f"(8,~,z)N(ds,dz) P-as.
0 JZz n*Jo Jz
In this case,

/T/ f(s,-,2)N(ds,dz) = Z f(s,-,7(s)), P-as.
0 Jz s€(0

T)ND()
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Iffe M,loc(f’, v; E)YNMoo(P, N; E), we may define the integral w.r.t. the compensated Poisson

random measure N by

(B) /Ot/Zf(s,-,z)N(d.s,dz) = /Ot/zf(s,-,z)N(ds,dz)—/Ot/Df(s,-,z)V(dz)ds, P-a.s. (3.4.5)

Here the second integral is understood as Bochner integral w.r.t. the measure A @ v. We call

fot [z &(s,+, 2)N(ds,dz) the Bochner integral w.r.t. the Compensated Poisson random measure N.
Let us now investigate some relationships between the above three classes of §-predictable func-

tions. We first consider an important result connecting the stochastic integrals and the Bochner

integrals on finite v-measure sets.

Proposition 3.4.5. Assume that 1 < p < 2. Let D € Z with E(N(t,D)) < . Suppose that
(€ Mxlooc('Pv v; E). Then for every t > 0,

/0 t /D £(s, 2)N(ds, dz) = (B) /0 t /D £(s, - 2) N (ds, dz)
t
= ¥ o) - [ [ tamdds, Pas (340

8€(0,4)ND(r)
Before proceeding the proof of Proposition 3.4.5, let us give an auxiliary Lemma.

Lemma 3.4.6. Let M C (0,00) X Q@ x Z with M € P and A\@ P@v(M®) =0. Then
P{we Q: (s,w,n(s,w)) € M} =0.

Proof of Lemma 8.4.6. In particular, if M€ is of the form (¢1,t2] x F x B, F € F;;, B € Z, then we
infer
P{w : (s,w,m(s,w)) € (t1,t2) x F x B} = E(1(5, 4,)(8)18(m(s))1F(w))
=P{w: s € (t1,t2],7(s) € B}P(F)
< P(N((tl,tz] X B) > I)P(F)
= E(1{n((t1,ta)xB) 21 )P(F)
< E(N((t1,t2) x B)P(F)
=AQP®v((t1,t2] X F x B) =0,

which shows our assertion for M = (t1,t5] x F x B. Since M® € P, by Theorem D in (34] p.56,
there exists a decreasing sequence {Mp}nen C R such that N5 M, = M€ and

lim AQPQ v(M,) = A@P® v(M°).
n-+00
Moreover, each set M, is a finite union of disjoint sets D}, i = 1,--- , k, of the form
D} = (¢, 4] x F* x BY'.

This gives that
M® = (g2, Uk, DI,
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It follows that
P{w: (s,w,7(s,w)) € M} = lirn P{w: (s,w,m(s,w)) € M,}
= hm ]P’{w (s,w,m(s,w)) € U, D7}

= lim ZP{w (s,w,m(s,w)) € (7, t%,] x FI x BI'}

Jim EIP’{w s € (t7,1341],m(s) € BP}P(FT)

i

IN

i, ZP {N((& t341] x BY) 2 1}P(F])

l/\

Jim ZE(N (8, 841) < BIP(ET)

= hm Z/\@P@U( th,th] x B X F}*)

=A®P®mMﬂ=u

This completes the proof. O

Proof of Proposition 3.4.5. We first show that Equality (3.4.6) holds for step function of the form
(3.2.6)

£(t,w,2) = ZEEJ—I(“’ Mg ut,](t)lAk (2).
F=1 k=1
Then the stochastic integral of § is given by
t . n m .
/ / £(s, )N (ds,d2) = 3 5 €5 W ((t5-1, 5] x (DN A5_,)).
o JD ji=lk=1

By the definition of compensated Poisson random measure, we obtain

//EszN(dsdz)

- N((tj—l»tj] X (DﬂAf—l))

n m n m
N ZZE’"IN((tj'I’t’] (DNAE)) =D D & w(DNAY )~ i)
j=1k=1 jrrfroact
n m n m
=22 G-1lonay., )= 20 2 EG-w(DN ALt — t-).
j=1k=1 SG(tj.-l,tj]nD(ﬂ’) j=1k=1

On the other side, we have

Y &(sm(s)in(m )—//Esz v(dz)d

8€(0,t}ND(m)

= 5 ()Y Y e b9 tap, ((8) = 30D (DN ALt ~ ti)

8€(0,Y)ND(m) J=lk=1 J=1lk=1
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]

n n m

S0 Y (@)l ($)las, (1() = DD & (DN AR )t~ t5m1)

J=1 k=1 s€(0,t)ND(m) J=1 k=1

n m n m
=YY > (3 11pnas_, (7(8)) = SN ek (DAl ) - o).
J=1 k=1 8€(t;—1,t;]ND(r) Jj=1lk=1

Therefore, we infer

/ot/DS(s,z)N(ds,dz) = Z £(s,7(s))1p(m(s)) —/Othﬁ(s,z)u(dz)ds

8€(0,)\D(m)

which verifies (3.4.6) for step functions in M%,(Z; E).
Note that for every £ € Mfoc(ﬁ, v; E), since by assumption tv(D) = EN(t, D) < oo, we infer
that

/0 t /D Jé(s, 2)v(dz)ds < ( /0 t /Z 1€, z)npu(dz)ds)%(tu(p))‘"% <oo, P—as.

This implies that the integral fot Jp &(s,2)v(dz)ds is well defined as Bochner integral. Moreover,
since N(¢,D) < oo, P-a.s., we infer that the series E,e(o't m;(,,)€(8,7f (8))1p(w(s)) is convergent
P-a.s. Hence all the terms in the equality (3.4.6) are well defined.

Now we consider any function £ € MP('}S;E) for which there exists a sequence {{,}nen of step

functions in M%,,,(Z; E) such that

t
E /0 /Z 15(2)[€n(s, 2) — £(5, 2)/Bw(dz)ds — 0, s 1 = oo. (3.4.7)

As we have shown before, for each n € N, the Equality (3.4.6) holds, i.e.
¢ . t
[ [eeam@sa= ¥ arenoae) - [ [ s,
0JD 8€(0,£jnD(r) o JD

So in order to establish Equality (3.4.6), we first observe the following
P

E /Ot-/Df(s,Z)N(ds,dz)— Z £(s,m(s))1p(n(s)) + //6(3 2)v(dz)ds.

8€(0,2)ND(xr)

//53 z)N(ds,dz) — //gn(s,z)N(ds dz)

228 [ [ o a¥@ndn - ¥ oo+ [ [ o midas

8€(0,t)ND(m)

+ 4PE /Ot‘/Dén(s,z)u(dz)ds—/Ot/DS(s, z)u(dz)ds:;

+#E| Y 6o - Y &s,n(s)lo(n(s)

8€(0,t)ND(x) 8€(0,7jND(n)

E

< 4’E

p

E

p

E
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t
< #C,E /0 /D I€(5, 2) — En(s, 2) B (dz)ds

t - t p
+ 8| [ [ e N~ 3 o mo)inn(s) + [ [ ento.spwtazras

8€(0,t]|ND(m) E

i
+ #(W(D)T)FE /0 /D 1En(s, 2) — £(s, 2)|Bv(d2)ds

P

> &als,m(s)1n(n(s)) - > &(sm(e)ip(n(s))

s€(0,t)ND(r) 3€(0,t)ND(r)

+ 4’E

E

From above discussion, we see that the first three terms on the right side of above inequality are all
converges to 0, so we only need to estimate the last term. For this, by (3.4.7) we can always find a
subsequence, for simplicity of notation also denoted by {&,}nen, such that

1p(2)n(s,w, 2) = 1p(2)€(s,w, 2), asn — 0o, for every (s,w,2) € M,

where M C (0,t] x Q2 x Z with M € P and A@P®v(M°®) = 0. In view of Lemma 3.4.6, we find that
for every s € (0, t], the sequence 1p(m(s,w))én(s,w, (s, w)) converges to 1p(m(s,w))é(s,w,n(s,w))
as n — oo P-a.s.

Moreover, we may always assume th&t ”fn” < 2H£” Indeed, define ¢n = 1{"£n||<2||€"}£n. Then
én is also a step function in M¥%,.,(Z; E) and we have limp o ¢ = £ in M and llpnll < 2|1€]|.Since,

by the assumption, EN(t, D) < 00, we know that the two serieses 3°,¢(0 qrp(r) £(s,m(s))1p(m(s))
and ). 5€(0,4nD(x) £n(s,m(s))1p(7(s)) are convergent, hence in the view of the above discussions and
the Lebesgue Dominated Convergence theorem we infer that

EI 2, Gl m@)in(r(e) - > 5(8,7r(s))10(7r(8))l2—>0.

s€(0,t)ND(m) 8€(0,tjND(x)

In conclusion, we obtain

t ~
]E|/0 /Df(s,z)N(ds,dz)‘se(oz 6(3’7’(3))10(”(3))+/0t/D£(s,z)u(dz)dsl';;__0,

tJND(r)

which completes the proof. 0
Proposition 3.4.7. If f € M}, (P,v; E), then we have f € Myoo(P,N; E) and for each t > 0,

]E/Ot/Zf(s,-,z)N(ds,dz) =IE/Ot/Zf(s,-,z)u(dz)ds. (3.4.8)

In particular, if f € M}oc('ﬁ, v;E)N Mfoc(’ﬁ, v; E), then we have for each t > 0, P-a.s.

/0 t /Z f(s,-, z)N(ds,dz) = (B) /0 t /Z f(3,+, 2)N(ds,dz)
t
= Z f(sa"w(s))—A ‘/Zf(S,',Z)V(dZ)ds. (3.4.9)

s€(0,8)ND(7)

Here the integral fot [z (s ., 2)N(ds,dz) on the left side is understood as stochastic integral.
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Proof. The proof could be done exactly the same manner as earlier in the proof of Proposition
3.4.5. First the Equality (3.4.8) can be verified for a class of step functions with particularly simple
structure. Next, an approximating step allows us to extend the equality to a general F-predictable
process in M} (P,v; E). To do this, suppose that f € M,,tep(Z E) of the form (3.2.6)

n

f(t,w,z) = Z Zf 1(tJ 1,tJ](t)1A’° (Z)].D(z),

j=1k=1

where D € Z with EN(t, D) < oo, for every t € R,. It follows that

t
IE/O /Zf(t,z)N(ds,dz) =E Z f(s,7(3))

5€(0,t)ND(r)

i

E Z ZZff_11(t,_1,tj](3)1A;_lnon(7f(8))

8€(0,)ND(m) j=1 k=1
m

E Z fJ"c-ll(tj—uth(s)lAf_l(”(3))

8€(0,t)ND(x)

i
.Mﬁ

<
Il
HA
-l
[
—-

Eff N((tj-1 At,t; At] x (A5 N Dy))

|
NgE

R,
]
-
>
]
—-

Eff JEN((tj-1 At,t; At] x (A5 N Dy))

I
M=
NgE

LS

Il
—
x

Il
—-

Eff (A5 N D.)(tj At —ti1 At)

I
™
NE

W,

1]
-
>

|
A

I
=
c\“

/ f(s,2)v(dz)ds
z
A similar argument shows that

E /0 t /Z I£(t, 2)||N(ds,dz) = E /0 t /Z 1£(s, 2)[lv(dz)ds

By Theorem 3.2.23 there exists a sequence of functions {g"} C M%,,,(Z; E) such that

E/Ot/Z||f(s,~,z)_gn(s’.,z)“,/(dz)ds_)O’ a5 11— 00,

Since 7 is o-finite, there exists a sequence {Dy}nen C Z of sets such that EN(t, D)) < oo, for all
te Ry andn € N and D, A Z. Define

(8w, 2) = g"(8,w, 2)1p,(2), (t,w,2) ERy xQxZ. (3.4.10)

Clearly, we have

E/;L”f(s"’z)‘“f"(s,',z)llu(dz)d.g_->0, 45 11— 00,

[



Since EN(t, D,,) < oo, for all t € Ry and n € N, it follows from Proposition 3.4.5 that
t t
Bl [ [ 2insdn - [ [ 156 2N (s, dz)
0 JZ 0 JZ
t
<E /0 [ rms5) = e N s, de) (3.4.11)
t
~E /0 /Z 177(5,2) = F™(5, 2)l|(dz)ds,

which shows that fo [z 11f7(s,2)|N(ds,dz) is a Cauchy sequence in LY, F,P;R). Hence the
Cauchy sequence [ [, ||"(s, 2){|N(ds, dz) has a limit in LY, F,P;R). From (3.4.10) and (3.4.11),

it allows us to find a subsequence, still denoted by {f™}, such that [ [, [|f*(s, 2)||N(ds,dz) is
convergent P-a.s. and f"(t,w,z) converges to ft,w,2) , for all (t,w,z) € M, as n = 0o, where
McRy xQx Zwith M€ P and A ® P ® v(M¢) = 0. Therefore, by Lemma 3.4.6, we have

Fo(8,w, m(8,w)) = f(8,w,7(s,w)), for all s >0, as n — oo, P-as.

As we have noted before, the sequence Eae(o’t]np Il f*(8,w, n(s,w))|| is convergent P-a.s. Hence we
conclude that

3 (s, m(s,w))l| < 0o, P-as.

s€(0,t)ND

and

Z fn(8,w,m(s,w)) — Z f(s,w,m(s,w)), asn — oo, P-as.

s€(0,£)ND S€(0,t)ND

which shows Y ¢ 0,nD() | f(s,m(s))| < oo, P-a.s. Hence applying the Lebesgue Dominated Con-
vergence Theorem yields that

1im E| /0 fz (s, 2)N(ds, dz) — /0 t /Z £(s,2)N(ds, dz)|| = 0.

It follows that

B 5 S~ [ [ reaml

8€(0,t)ND(m)
=E f(s,m(s)) — (s, (3)) +E ™ dz)ds —
[ae(O%r;’D(w) 5T sG(Ot]zﬂD(ﬂ) s //f s, z)v(dz)ds //f(s z)u(dz)ds]

<E[ Y Iftsimis) — (s m(s))] +E| /0 fz 1£(s,2) = £(s,2) Iv(dz)ds].

3€(0,t)ND(m)
Letting n — oo gives that
t
B Y feme)- [ [ fsamdns) <o,
$€(0,t]ND(~) 0JZ

which proves the equality (3.4.8). The equalty (3.4.9) can be done the same as in the proof of
Proposition 3.4.5. Since we have already done the tedious work in the previous proofs, we shall not

repeat it here. |
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Remark 3.4.8. The integral fot [z f(8,2)N(ds,dz) on the left side of (3.4.9) is defined as the stochas-
tic integral, since by assumption f € Mfoc(’}s,v; E). However, in general, the stochastic integral
could not be divided as the difference of two integrals fot J7 f(s,2)N(ds,dz) and fot [z &(s, 2)v(dz)ds
as in (3.4.9) without the assumption f € ML (P, v; E). Because both integrals fot [ f(s,2)N(ds, dz)
and fo [z &(s, 2)v(dz)ds may have no meaning at all.

Theorem 3.4.9. Let f € MP(P;E). Let {D,} be a sequence of sets in Z such that D, > Z and
EN(t,Dy) < o, for alln € N and t > 0. Let fo(t,w,2) = 1yp<n(t,w, 2)1p,(2)f(t,w, 2). Then

lim IEH /0 t /Z (s, 2)N(ds, dz) — (B) /0 t /Z fn(s,z)N(ds,dz)“p=0.

n—->00

Proof. 1t is easy to see that
llfn(t,w, Z) - f(t7w’ z)”P

is monotonically decreasing to 0, as n — oo, for all (t,w, z) € Ry x Q x Z. Applying the monotone
convergence theorem yields that

i | t [ Ml 12) = 506 2Pl =

n—oo

Furthermore, on the basis of Proposition 3.4.5, for every n € N, we have

t i . )
E”/o /an(S,',z)N(ds,dZ)—-(B)/O /an(s,-,z)N(ds,dz)”pzo,

It follows from inequality (3.3.2) that

lim IE“ /o t /Z f(s,,2)N(ds,dz) — (B) [o t /Z fn(3,2)N <ds’dz)“p

n—rco

< 27 lim ]E”/ot/Zf(s,-,z)N(ds,dz) —/O.t/zfn(s,-,z)ﬁ(ds,dz)“p

n—-ro

+2”nli)ng°]E” At/zfn(s,.,z)ﬁ(ds,dz) - (B) /Ot/an(s,z)N(ds, dz)“p
<O B [ [ 15(612) = falor2IPaz)ds

+2Pnan°1°]E“ /Ot/an(s,~,z)]\7(ds,dz)—(B) /(;t/an(s,z)N(ds,dz)”p
= 0.

This completes the proof. a

Remark 3.4.10. Let M2 be the space of all real-valued square integrable martingales on [0, T] x Q.
Let X € M%. Set ||XHT (E[|X7||?)/2. Then (M2,|| - ||Ir) is a Banach space. See [70] for a
proof of this statement. Recall that in [40] and [70] the stochastic integral, which we shall call the
Ikeda-Watanabe stochastic integral w.r.t. the c.P.r.m., is defined as a limit of a sequence of Bochner

integrals
/ /fn(s, 2)N(ds,dz) = / /fn 8,+,2)N(ds,dz) — / /fn(s, y2)v(dz)d

of functions f,, defined by f, = 1j¢<nlp,(2)f in the space (M%, |- [I7).
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The above Theorem 3.4.9 tells us that the stochastic integrals we defined in this thesis, which
is approximating by a sequence of step functions with simple structures, is actually equal to the
Tkeda-Watanabe stochastic integrals defined in [40]. The following Example 3.4.11 illustrates that

the stochastic integrals agrees with the Bochner integrals if and only if the function f is predictable.

3.4.1 An Example

Example 3.4.11. Let N be a time homogenous Poisson random measure with intensity v defined
on (R4 x Z,B(R;) ® Z). Let us take A € Z with v(A4) < co. We know from Lemma, 3.1.13 that
N(t, A), t > 0 is a Poisson process with parameter v(A). Set N(t) := N(t, A), t > 0. Define the

compensated Poisson process N(t) by
N(t) = N(t) — v(A)t.

We are going to define two stochastic integrals
t
| [ vena@s,
0 Jz
and
t ~
/0 /ZN(S—)IA(z)N(ds, dz).

Remark 3.4.12. Recall that the Poisson process N(s), s > 0 is a cadlag process which is optional,
hence progressively measurable, but not predictable. However, the process N(s—) is caglad, so it is

predictable.
Note that
E(Ny) = v(A)t;
E(N¢|Fs) = N5 + v(A)(t — s);
E(N?) = v(A)%2 + v(A)t;
E(N?) = (W(A)1)° + 3(w(A))* + v(A)t;
E(N)* = (v(A))* + 6(v(A)t)® + T(v(A)t)? + v(A)t.
Let 0 =t} < tf < -+ <t =t be a partition of a finite interval [0, ], where ¢} = ¥£. Let us take
the following simple functions

@) = Z Nt ap,,1(O)14, t € [0,00).
i=0

Observe that
-1

t
B[ [ ING-)4@) - (o, dv(de)ds = B [ [ M6 - S M., 1avtazia

=0

= V(A)E / Zuvs -) = N(E)PLp n, 1(3)ds

=v(A) Z / E|N(s—) — N(t7)|%ds

i=0
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n—1

= v(A) Z/: (v(A)2(s — t7)2 + v(A)(s — t]"))ds

=0 V1]
1
v(A)? ¢ t3 V(A) t2
—u(A)Z_;( 5 P’)
_ (A (u(A)t)?

-0, as n — 00.

3n? 2n
Thus by the definition 3.2.20 we can compute the stochastic integral of f™ as follows

W™ = SN ) (Nt 4) - N7, 4))

t=0
= 3N (W1, 4) ~ N A) - (A — ) (34.12)
1=0
n-1
=§Z(N<t,+1 - N - 1) - NP - SN, -
i=0 1_0 1=0
n—~1 n—1
= SN = 5 S (V) — NI = S H AN e — 1)
i=0 1=0

For the second summand on the right side of (3.4.12) , we will show that SEHN (th,) — N(tM)?
converges to N(t) in £2(Q2). Indeed, we see that

n—1 n—1
E(Y (M) - NE) = NO) = E( 3 (V@) - NP - (V) - M)
= = (3.4.13)
Set
= (N(t1) = N(ED)* = (N(ty) = N(EP))-
Thus (3.4.13) becomes
n—1 n-1
E(Y_Yi)? =) EY?+2) EYY;
i=0 i=0 i<y
= ZIE(N(tm) N(P))* -2 ZE<N (t1) = N (D))
i=0 i=0
n-1
+Y_E(N(thy) - NG +2 ) EEY:Y|Ys)
i=0 i<j
_ M:Zﬂ“ + 6(v(;;l:‘))t)3 7 (A)t) + V(:)t _ 2(IJ(Tflls)t)" _ 6(1/(:2)02 - 2v(;1)t
A)t)? | v(A)
+ ("(nz)t) + "(n + 2§EKEYJ
= (V(:‘t)t)li + 4(u(:3)t)3 + 2(1/(:2)15)2 + Z(U(:‘t)t)‘i -0 asn-— .
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This shows that Y i (N(t%, ;) — N(t7))? converges to N(t) in L3(Q).
For the last summand of (3.4.12), by using the Cauchy-Schwartz inequality we have the following

t 2 ol 2
(Z NEM(E,, — ) -/ N(s)ds) =E <§-[;‘ (N — N(s))ds)
tﬂ 2
<n Z E ( / (N(EP) - N(s))ds)

<n Z(tz+1 17)E ( /ﬂ““(N(t?) - N(s>>'~’ds>

1=0

n-1 2
=n 3 (e ) (e - e - L, - )

1=0
v(A)2tt (A
=32 " Ton =0 asn—oo.

Consequently,

I(f™) ~ SN P ~ SN() - / / N(s)14(2)v(dz)ds,

in £2(2) as n — oo.
Therefore, we have

t . 1 1 t
/0 /Z N(s—)N(ds,dz) = 5N () - SN - /0 /Z N(s)14(2)v(dz)ds. (3.4.14)
Also, we observe that
E /0 /Z IN(s)1a(2) — N(s—)14(2)]*v(dz2)ds = v(A) /0 ” E|N(s) — N(s=)|%ds = 0.
In view of Lemma 3.3.4, we have

_ t
/ t [ Nt (ds ) = [ [ Ns-11a(2) (a8, 2
1
=N’ -—N(t / / N(s)14(2)v(dz)ds. (3.4.15)

Meanwhile, the Lebesgue integral of functions N(s)14 and N(s—)14(z) w.r.t. the Poisson random
measure can be derived as follows,

t
/0 /Z N(s)1aN(ds,dz)= Y. N(s)la(n(s)) = 3 N(s)(AN(s, 4)) =

s€(0,t])ND(w) <t

=142+ +N(@) = %N(t)2+.1.N(t);

t
/0 [ NG-NaeINGsdz) = 3 Ne)1alr(s) = 3 N(e-)(AN(s,A)

S€(0,t)ND(~) <t
Y0

=1+2+--~+(1\/(t)-1)=%1\/@)2_2
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Therefore, we get the Lebesgue integral w.r.t. the compensated Poisson random measure

L) /0 t /Z N(s)14N(ds, dz) = /0 t /z N(s)14N(ds, dz) - /0 t /Z N(s)Lav(dz)ds

= 3N+ gm- | t | NeLavtazas (3.4.16)
t
@ [ [ No-nais,da)= [ [ No-yans, = [ [ No-astazyas
i
_—_%N _-.Nt //ZN(S)IAu(dz)ds. (3.4.17)

Here we notice that since for each fixed w € Q, the function t — N(¢,w) is right continuous with
left limits, the set ({t N(tw)#N (t— w)}) = 0 is of Lebesgue measure zero, for each w € Q. It
follows that [y [, N(s—)1av(dz)ds = [} [, N(s)1a(z)v(dz)ds. It can be seen that

/0 LN(S—)IAN(ds,dz) = (L)/o /ZN(s—)lAN(ds,dz),

/0 t /Z N(s)1a(ds, dz) # (L) /0 t /Z N(s)LaN(ds, dz),

which, simultaneously, verifies the Proposition 3.4.5 and shows that the §-predictable assumption
is somehow essential.

but

Remark 3.4.13. 1. This example, on the other hand side, illustrates that the Poisson process
is not predictable. Indeed if the Poisson process is predictable, by Proposition 3.4.5, the
stochastic integral fo JzN(s) 4N(ds, d2) should equal to the the Bochner-Lebesgue integral

fo [z N(8)14N(ds,dz). However, this is in fact not true.

2. As we have pointed out before, not every measurable function, or even §-progressively mea-
surable function, is predictable. If a function f(-) has right continuous with left limits paths
and it is progressively measurable, e.g. the function N(¢)14(z) defined in above Example, we
usually take the function f(t—,-) to be the F-predictable version of the function f(¢,-). It is
seen that the function f(¢—,-) is caglad and adapted, and hence §-predictable. Furthermore,
the stochastic integral of the function f(¢,-) is indistinguishable with the stochastic integrable
of the function f(t—,), due to Theorem 3.3.4.

3.5 The Ité Formula

Let E be a martingale of type p, 1 < p < 2, Banach space. In this section, we will study a version

of the It6 formula for processes of the type

X = Xo+/ a(s)d.s+/ /f(sz (ds,dz) +// (s,2)N(ds,dz), t > 0. (3.5.1)

Here a is an E-valued progressively measurable process on the space (R4 x 2, B(R4)® F) such that

for all t >0, fot la(s,w)||ds < oo, P-a.8., N is a Poisson random measure associated with a Poisson
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point process 7, f € MY _(P,v;E) and g € Mioo(P, N; E). Assume that || f(t,w, 2)||[|g(t,w, 2)|| = 0
for all (t,w,z) € Ry x 2 x Z. Without, loss of generality, by Theorem 3.3.2, we may assume that
the process X is right-continuous with left-limits.

Remark 3.5.1. The assumption that || f|||lg]l = 0 on Ry x§2x Z is somehow reasonable. For instance,

if we set f to be the deterministic function 21«1 and g = z1j;>1. Then we see that | f|}||g]| =0
and the process X becomes

t t . t
X = Xo+ / a(s)ds + / / zN(ds,dz) -l-/ / zN(ds,dz),
0 0 Jllzli<1 0 Jlzli>1

which is a pure jump Lévy process. Hence the It6 formula for the process of the form 3.5.1 can be
applied to Lévy processes without Gaussian components.

Before formulating the Itd formula, we will establish an auxiliary lemma whose proof is based

on the ideas from [3] and [36].

Lemma 3.5.2. Let E and G be separable Banach spaces and ¢ : E — G be a Fréchet differentiable
function such that the first Fréchet derivative ¢ : E - L(E;G) is (p — 1)-Hélder continuous. In
other words, for all 7 > 0, there ezists H = H(r) < oo such that

¢'(z) — & W)Lz

lellpligrety  llE—yllP~ < H(r). (3.5.2)
Define, for every z,y € E,
1
R(z,y) = [) (1-a)(¢'(z+ aly - 2))(y — z) — ¢'(z)(y — 2))da. (3.5.3)
Then we have that
¢(y) — o(x) — ¢'(z)(y — ) = R(z,y), (3.5.4)

and for every r > 0, there ezsits C = C(r) > 0 such that | R(z, )| < Clly—z|[P, for all |||}, ||y|| < r.

Proof. Let us take w € E such that |lwll £ 1. Let ¢* € G*, where G* is the dual space of G. Define
a function

F:R36w (¢(z+6w),¢*) € R.
Notice that the real-valued function F' is (p — 1)-Holder continuous. To see this, we find out that
for |61, |62] < r and ||zl < 7, Iz + 61w, |z + G2w|| < 2r, so by assumption, there exists H(r) >0
such that
|F'(8;) — F'(82)] = [(¢/(z + Brw)w, ¢*) — (¢'(z + faw)w, ¢")]
< ¢/ (z + b1w) - ¢'(z + aw) | [wllll¢” |
< H(r)|61 — 62~ [w]Pl¢* .

Hence it follows that
/ o
sup |F'(61) — F _(fz)l
1616l <RO: 262 |01 — 02l

< H(r)ll¢* |l
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which shows the (p— 1)-Hélder continuity of F'. Now applying the Taylor formula and the Theorem
3 in [3] to the function F yields that for |¢| < 2r

F(t) — F(0) = F'(0)t + Rr(0,¢),
where Rp(0,t) = [, (1 — a)(F'(at) — F'(0))t de and

L, 141 < or

Re(0,0)] < ZEZ

Let z,y € E with ||z],]|ly]| < 7. Sett = |ly—z| and w = y_"_: . Then |t| < 2r and |w| < 1. It
follows that

F(t) - F(0) ~ F'(0)t = ($(z + tu), ¢*) — ($(2), ¢*) — ($('T)u, ¢")t
= (¢(v), ¢*) — (¢(2),¢") — (¢'(2)(y — 2), ¢")

and

il (27‘)||¢*

1
IRp(0, 1)) = /0 (1 - a)(¢'(z + aly — 2))(y — o) — (z)(y - 2), ¢")da| < ZEME Ny o

Hence, we infer

(6W), ¢") — (8(2),¢") — (¢ =)y — 2),¢") = /01(1 —a){#(z + ey — )y — ) — ¢'(2)(y ~ ), ¢*)da

which holds for all ¢* € G*.
In conclusion, we have that if R(z,y) is defined by

[ -6+ aly - 242 - # @y - 2o (355
for x,y € E, then
8) - (&) - #@)(y —) = R(z.1)
and IRz, p)l| < ZEULL Yy — ), for all o, ol < - .

Theorem 3.5.3. Assume that E is a martingale type p Banach space, p € (1,2]. Let X be a process
given by (3.5.1). Assume that || fllllgll =0 on Ry X 2 x Z. Let G be a separable Banach space. Let
¢ : E = G be a function of class C! such that the first derivative ¢’ : E = L(E; G) is (p—1)-Hélder
continuous, Then for every t > 0, we have P-a.s.

) = 80%0) + [ SO a6Nds + [ [ [o06en + 006, 2) = 90Xe0)] W(do, 2
# [ [ [86Kem+ $or20) = 80600 ] ¥, 2 (358
+f ’ [ [n + 5(6,20) = 60X, - ¢/ Kun )P0, 20
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Remark 3.54. (1) We may rewrite the It6 formula (3.5.6) in the following equivalent form. For
every t > 0, P-as.

t
80%) = 9x0) + [ 9 Xo)aleds + [ [ [o(Xe- +0(5,) = 9(X0) | Nds, a2
t ~
+ [ [ #) s (35.7)
b [ ] 80+ £05,2)) = 6X0) = & (Xa ) (S0, )| Vs, do)
0 Jz ’ ’ e
This is because the integral
/t/ [¢(X.s— + f(S, Z)) - ¢(Xg—) - ¢I(Xs_)(f(s, z))] U(dz)ds
0Jz
is well defined as the Bochner integral, see the proof of Theorem 3.5.3. Let us put this in other
words, the function ¢(X.— + f(-,+)) = ¢(X.~) — ¢'(X.)(f(-,+)) is in Mlloc(ﬁ’ v; E). Hence, on
the basis of Proposition 3.4.7, we infer that ¢(X.— + f(-,")) — ¢(X.-) — #(X._)(F(,-) is in
Mioc(P, N; E) and
/t/ [¢>(X,.. + £(8,2)) = $(Xs-) = ¢'(Xs-)(f (s, z))]u(dz)ds
0Jz t
= '/0 L [(b(Xa— + f(S, Z)) - ¢(Xa—) - ¢,(X3_)(f(8, z))] N(ds, dz)
t
-(B) /0 /Z [¢>(X.9- + £(5,2)) = $(Xo-) — ¢'(Xs-) (£ (s, z))] N(ds, dz)
t .
= /0 /Z [¢(Xs— + f(8,2)) — #(Xs-) — ¢'(Xs-) (£ (s, z))]N(ds,dz)

[ 180K+ £5120) = 0(Kn) = $(Xon) 1512 W, ).

(2) In view of the continuity of functions #(x) and ¢'(z) and the continuity property of the
integration w.r.t. the measure ds, the It6 formula (3.5.6) can also be written as follows. For

all t > 0, P-as.
t
o) = o0%0) + [ $x)aleNds+ [ [ [60Xur +gle,2)) = #06.-)] N, a2
t ~
n /0 /Z [6(Xo- + £(s,2)) = $(Xa-)| W (ds, d2) (3.5.8)

b [ ] [o0+ $0,20) = 60%0) = # X))z,

(3) It is to be emphasized that the function ¢ in the It6 formula (3.5.6) can also be time dependent,
even be random. In our current working paper, we are trying to extend the It6 formula (3.5.6)
to the generalized It6 formula, or It6-Wentzell formula, for a process F(t, X;), where F(t, z,w),
t > 0, z € E is a random variable with double parameters z and ¢, in other words F(-,¢),
¢t > 0 is a stochastic process with values in C?(E) and X; is an It6 process given by (3.5.1).
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Proof of Theorem 3.5.8. Without loss of generality, we may assume that the process X is bounded,
namely, there exists r > 0 such that

sup || Xs|| < (3.5.9)
0<a<t
Then we can relax the boundedness assumption (3.5.9) by the usual localization argument. Indeed,
we can define a sequence of stopping times by
on =inf{t >0:|X¢]| > n},

where inf® = oo as usual. Since the process X is cadlag, by Proposition 2.2.3 and right-continuity
assumption of the filtration §, the random time o, is indeed a stopping time. Then the stopped
process X{" ™ := Xi¢no,~ defined by the formula (2.2.2) is bounded by n, that is || Xiaq,-|| < n, for
all t > 0. Since cadlag functions are locally bounded, it follows that o, /* 00. Further, the process
X agrees with X°~ on [0,0,). If we can establish an It6 formula (3.5.6) for a bounded process
Xn=, the formula (3.5.6) would hold by letting n — oo.

Since the Poisson point process 7 is o-finite, see Subsection 3.1.1, there exists a sequence of sets
{Dn}nen such that UpenDy, = Z and EN(t, D) < oo for every 0 < ¢t < 00 and n € N. Define a
sequence {f"}nen of functions by

[M(s,w,2) := f(s,w,2)1p,(2), (s,w,2) ERy x A x Z, neN.

Since ||f™| < ||f]| and by the assumption, f € MP(P; E), we infer that f™ € MP(P; E). By the
definition of stochastic integrals, see Section 3.3, we have

/Ot /Z F™(s,2)N(ds,dz) = /0‘ /Z 1p, f(s, 2)N(ds, dz) = /0‘ /D ﬂ f(s,2)N(ds, dz)

Now applying Proposition 3.4.5 yields that
t ¢
/ / (s, 2)N (ds, dz) = (B) / / £(s, 2) N (ds, dz) (3.5.10)
0 Jz 0 JDy
t
= Z f(s,m(8))1p, (7(s)) —/(; /Dn f(s, 2)v(dz)ds.

8€(0,tjND(x)
Similarly, we define a sequence {g"}nen of functions by
9" (s,w,2) = g(8,w, 2)1p, (), (s,w,z) ERy xNx Z, n€N.
Since ||g"|| < ||gll and g € MP(P, N; E), g® € MP(P, N; E). Hence it follows from the definition of
Bochner integral that
t
/ / g"(s,2)N(ds,dz) = Z g(s,m(s))1p, (7(8)). (3.5.11)
0J2 8€(0,tjND(x)

Let us fix ¢ > 0. Since EN(¢,D,) < oo, t > 0, we see that for almost every w € §, the set
{s <t:n(s,w) € D,ND(m)} contains only finitely many points in each time interval (0, ¢], for
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¢t > 0. Hence we may denote these points according to their magnitude by 0 = 7(w) < T (w) <
Ta(w) < +++ < Tp(w) < ---. In other words, we put

70 = 0
Tm = inf{s € (0,t] N D(x) : n(8) € Dp;8 > -1}, m > 1.

The random times 71, 72, - - - form a random configuration of points in (0, t] with 7(;) € D,, and for
each m, the random time 7, is a stopping time. Indeed, for every u > 0, we find out that

{Tm L u} = {N(u,Dn) > m} € F,.

Let us define a sequence {X"}nen of process X™ := (X[")i>0 by

t t _ t
xp=xi+ [ads+ [ [ o+ [ [ s aN@san), 20, nen
0 0 JZ 0 JZ

It follows from (3.5.10) and (3.5.11) that for every n € N and all ¢ > 0, P-a.s.

xp=Xor [a@dst Y fanoo,o) - [ [ fis,wiasids

$€(0,tjND(m)

+ Y gls ()1, (n(s)

8€(0,8}ND(r)
t t
= Xo -f-/0 a(s)ds -/0 /D.. f(s, 2)v(dz)ds + ;f"(rm,w(rm), Vfrmst)

+ Zgn(TTnv 7r(7.1'71), ')I{Tmst}’
m

Note that
B(XD) — 8(Xo) = 3 [#(Xihr) = #(Xirr_,)]
= 3 [#Xn) = 6 Xrr )] + 3 [6(XEr0) = 6(XErr, )]
=: Iy + Ia.

Here X7\, = (X")i™, t 2 0 is the process X™ stopped at time 7, see formula (2.2.1), and
D, ¢/ (X ™)™, t > 0 is the process X™ stopped strictly before time 7., see formula (2.2.2).

Namely,

and
o X w) if t < Tm(w)
n = (X")Tm = t ’ ’ m
Xt/\rm-—(w) (X™)im(w) { X:-lm(w)-(w)’ if £ 2 Tm(W).
Step 1. We claim that for every t > 0, P-a.s.

t
3 [6Khrn) = #0KEre, )] = [ #xaaonas+ [ oexum, amanas. (3512
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To prove equality (3.5.12), it suffices to show that each term of the sum in the equality (3.5.12)
satisfies the following

tATm tATm
X = 0K ) = [ [ SO atNds+ [ [ o1 pmiaeras.

tATm -1 tATm -1
Define a sequence of partitions {v(k,i)}%,, k € N of the random time interval [t A Tp—1,t A7) by

v(k,0) =t A Tip—1

=1, k-1,
k H

v(k,i) =
v(k,k) =t ATy~

In other words we divide the random time interval [t A T,—1,t A Trn) into k equal parts. Hence, on
the basis of the Lemma 3.5.2, we have

k

S Xihr) = I Xirr_) = D [¢(X (kit1)) — B( X, z))]
z-—O
k
= Z &' (X)) Xitkie) = Xoiey) + Y RO iy Xikiany)s
1=0 =0

where R was defined by (3.5.5) i.e. R(z,y) = fol(l —a)(¢'(z+aly—z))y—2)) - ¢(z)(y — z))da,
for z,y € E. Recall that |R(z, y)|| < C(®)|ly — z||P for |iz||, ||y]l < r.
Claim 1.1

hmsmpZR(Xv(,c i Xo(ki+1))w) =0, P-as. (3.5.13)

k—o0 i=0

By assumption (3.5.9), we know that X is bounded on the interval [0, ¢], that is sup,e (g  [| X, < 7.
Since by assumption, the function ¢’ is (p — 1)-Hélder continuous on bounded subsets of E, by
Lemma 3.5.2 we infer that there exits a constant C depending on r such that

R(Xv(k i) Xv(k i+1) (W)' < C”Xu(k ,+1)(w) (k ,)(W)”

Notice that there is no jumps of X in the random time interval [t A Tm—1, A Tm), in other words X
contains only the continuous components. Hence we infer that

xn ) ) = v(k,i+1)(w) ( v(k,i+1)(w) 7 ) (d

w w as,wds+/ / 8,w, z)v(dz)ds
st~ Xl / (ki) ) B ki Sz )
By using the inequality ||a + b||P < 27||al|P + 27||b||” < 4||a]|P + 4/|b||P, we have

v(k,i+1)(w) p v(k,i+1)(w)
/ a(s,w)ds / /f" 8,w, 2)v(dz)ds
v(k,i)(w) (ki) (w

+4C

3

R(X 3 X)) @)] < 4C
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Since p € (1, 2|, we infer that

é HR(X:}(k,i)’ Xg(k,i-i—l))(w)“
-

p-1 k

v(k,i+1)(w) v(k,i+1)(w)
S4Csup/ a(s,w)ds XZ/ a(s,w)ds
i v(k,i)(w) i=0 ||/ (k) (W)
(k,i+1)() =l k|| ki)
racan | [T [ s awtanas) x0T [ s aidends
i v(k,i)(w) ¥4 i=0 ||V v(ki)w) z
(kyi+1)(w) Pl k) (w)
<aca| als,)ds| % [ a(s,w)]ds
i v(k,i)(w) v(k,0)(w
v(kyi+1)(w) Pl v(k,k) (W)
+acsu| [ [ e amanas) x [0 [ s, ).
i ||tk (w) z vk O)(w) JZ

Here we used the fact that by the definition of the function f” and the property EN(t, Dp) < oo,
the function f™ is P-a.e. Bochner integrable with respect v. Clearly, the two integrals Joa(s,w)ds
and [ [, f*v(dz)ds are continuous w.r.t. the time variable. Hence by letting k — 0o, we have
max;{v(k, i+ 1) — v(k, i)} — 0. Therefore, we obtain

k
lim sup}: IR(X,’}(,C,,-), Xotki+1)) W) =0, P-as.

This shows the claim (3.5.13).
Claim 1.2

k
Jim, S 4 (X ) i) = X ) | (3.5.14)
AT (W)

ATm (W)
-/ Y ) e s - [
i

ATm—1{w) AT -1(w)

/Z & (X)) (f™(s,w. 2))W(dz)ds, P-sce.

For this, we only need to show that the following two indentities

k v(k,i+1)(w) tATm (W) ,
i / n_. , d - Xn - -
Jim gqs(xu(k,,)(w))( / LT s) /Wm-l(w ¢ (Xp(w))(a(s,w))ds|| = 0, P-as.
(3.5.15)
and
k v(k,i+1)(w)
li (X, o (w / "(s,w, 2)v(dz)ds
fracry “Z.;d’( otk ))( v(ksi)(w) i Wids) )
tATm (W) ,
- / / & (X5, 2))v(d2)ds]| = 0 Peas. (3.5.16)
tATm-1(W)JZ
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By using the (p — 1)-Hélder continuity of ¢’, one can see that

ko v(k,i+1)(w) tAm(w)
lim (X%, 4 (w / a(s,w)ds —/ &' (X3 (w))(als,w))ds
fim S8 ( [, alewids) = |7 ST aew)
k v(k,i+1)(w)
< lim / X w XHw)) Ma(s,w))ds
30 o (¢ (X3 @) - #'(X7(w)) (a5, )
c k ulki+ @) ) o [P
< (W) — d
D Y BN MIORE ) aCEIZE
u(k,i+1)(w) p-1
<2C lim sup ( / a(r,w)dr“ ds
k=00 0<i<k—1 N Ju(k,i)(w) v(k,i)(w)
v(kyi+1)(w) p-1 kE o po(kit1)(w)
+ sup / f(r,w, z)u(dz)dr“ ds) X (Z/ H(a(s,w))“ds)
0<i<k—1 Juk,i)(w) v(k,i)(w) i=0 Y v(k.i)w)
=0,

This shows the assertion (3.5.15). The assertion (3.5.16) can be proved by a similar argument.
So far we have shown that

AT (W)

B(XPr ) — B(XPr ) = / 8 (X2(w))(a(s,w))ds

tATR -1 (W)

tATm (W)
_/ /¢’(X"(w))(f"(s w, z))v(dz)ds, P-ae.

tATm—1(w)

Hence adding these up, we obtain

L= $(Xihp-) — (XD 1)
-/ (X2 (als))ds - / S XNV (5, 2)w(dz)ds, P-as.
0 0

Note that the jumps of X™ occur only at times {Tm}. So X[, # X[, if and only if
FH(Tma m(Tm)s NMirmsty + 8" (7my 7(7m), )<t} # O-
Since by assumption | f||||g]| = O, we infer that X[, # X[\, _ if and only if
" (Tmy 1 (Tm)s ) rmgty # 0 and g™ (Tim, 7(Tm), ) {rmst) = 0
or
S (Tmy 1(Tm)s YMrmty = 0 and " (T, 7(Tim), ) Lrmgt) # 0
Hence

Xihtm = Xintm~ T+ " (Tm, "(Tm))l{rmSt) + gn(Tmyw(Tm))l{rmst}

={ Xt + I (Tms 7(tm)) Yr<tyy 8 F(Tmy 7 () # 0y 9™ (Timy (7))
{}\,.m_+g"(Tm,7r(Tm))1{.,m5t}, if fY(Tmy(Tm)) =0, §™(Tm, (™))

=0
#0,
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It follows that
h=3 [#(XEr,)) = #(Xhr-)]

> [t - = $(X sy )| Lm0t m (=0} Lt

+

ﬁﬁhﬁsm sM M 1M

[#(XE) = $(Xr i) | Lo =0l 10} i)

[¢(X?Mm_ £ 7 (m))) = Sy )| L1 o ntrmD£OI (=0} L <)

+

[‘“me + §"(Tms T(T))) = Xk ) | 11 e om D=0l (0 L <1

(602 + £7(s,2,)) = #(X2-)| N(ds, d2)

(X7 + g"(s,z,w)) — $(X;_)| N(ds, dz)

+

¢X_;‘_+g 8,2,w))

-+
N

)

[B(XE + f7(5,2,0)) = $(XL) )| ¥ (ds, dz)
X3V
]

/ / (602 + £7(s,2,) ~ $(XL) | w(dz)ds
Combining I; and I, together yields that
t t
o(x7) - 9x0) = [ #XNaleds ~ [0 XTI, )wldz)ds
t o
+ [ [ [oeer+ o s - o)) 9
+ /0 t /Z :¢(XZ'_ + 9" (s,2,w)) — (X7 ]N(ds,dz)
t oo
# [ [ + 1o nw) - 606 |wtdz)as
t t
= [sexaatanas+ [ [ [ooxe + (o, - 6(X3)] Hi(ds, )
o [ o0+ g7e 500 - e(X2) (a2
t
i /o /Z (X2 + £(5, ) = (XT-) = $/(X2)(F™(s,2)) | w(dz)ds
This shows that It6 formula (3.5.6) holds for the process X™. Now let us consider the general

case. Note that f™(s,w, z) converges to f(s,w, 2), a8 n = oo and || f*(s,w, 2)|| < ||f(s,w, 2)||, for
all (s,w,z) € Ry x @ x Z. On the basis of the inequality (3.3.2) and the Lebesgue Dominated

N(ds,dz)
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Convergence Theorem, we infer

At‘/zfn(S,Z)N(dS,dz)—At/Zf(s,z)N(ds,dz)
<C lim ]E/t_/z lf*(s, z) = f(s,2)||Pv(dz)ds = 0.
n—oo 0

By using a similar argument as in the proof of Theorem 3.3.2, this allows us to find a subsequence
such that fot Iz [™(s, 2)N(ds, dz) uniformly converges to fot [ f(8,2)N(ds, dz) on any finite interval
[0,T) P-a.s. 0 < T < oo. Similarly, we can prove that fot f 9"(s,w, 2)N(ds, dz) uniformly converges
to fot Jz9(s,w,2)N(ds,dz) on [0,T] P-a.s. as well. Hence we infer that X converges uniformly
to X, as n — oo, P-a.s. Also, X} converges uniformly to X,—, as n — 0o, P-a.s. Hence by the
continuity of ¢ and ¢, we infer

$(X5_ (W) + (s, 2,w)) — B(XZ () — ¢/ (X5_ (W) (f" (3w, 2))

p
lim E

n-—o00

converges uniformly for almost all w € Q on [0, ¢] to
(Xs— (W) + £(8,2,w)) = ¢(Xsm(W)) = ¢'(Xo= (W) (f(8,w,2)), 88 1 — 00.
Since by assumption sup,¢(oq | X'|| < R, on the basis of Lemma 3.5.2, we observe that
602 @) + £7(5, 20)) — (XE_ (@) ~ F (X2 (@)(F(5, 0, 2)|| < CIF" (5,0, )P
< Ol f(s,w,2)|P

and

|#(Xe- () + 75, 2,0)) = (X, (@) = 8 (Xo- (@) (F (5,0, 2) | < CllF (3w, )P
Since the function f € MP(P; E), it follows that || f||? € M!(P;R), so fot S 1 (s, 2)IPv(dz)ds < 00,

P-a.s.
Now applying the Lebesgue Dominate Convergence Theorem yields that

t
/o /z [ (@) + £7(5,2w)) = (X (W) — & (X2 (@) ("(3, 0, 2)) | v(d2)ds
converges to
fot /Z $(Xa~(w) + £(8,2,w)) = B(Xs-(W)) — ¢ (Xo—(w))(f(s,w, 2))v(d2)ds
as n — oo, P-a.s.

Similarly, in view of the (p — 1) Hélder continuity of ¢’ and the uniformly boundedness of X" on
[0,t], we have

> [lecxn + g7 (swme) - p(x2)

s€D(m)N(0,¢]
< T XD + 657w m )o@, (&)
s€D(MN(0,1]
<C Y lgtsw,n(s))|
8€D(m)N(0,t}
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<c T Jeswrs)

s€D(7)N(0,t]
t 3
= C’/ / g(s,w, 2)N(ds,dz)(w) < oco.
0JZ

Meanwhile, we also have

S [|ete + glswimis)) - o(Xa)|

s€D(m)N(0,t]
¢

< C’/ /g(s,w,z)N(ds,dz)(w) < o0.
0 Jz

Again, by the Lebesgue’s dominated convergence theorem, we infer that

/ t [ 60X+ 57(0,5) - SN s, )
0J2Z .
- / / H(Xs— + 9(8,2)) — ¢(X,-)N(ds,dz), asn — oo, P-as.
0 JZ

For the convergence of the stochastic integrals, we shall apply the Theorem 3.3.2 to get
B [ [80X3-+ 17(e02) = 6X" (6] Wds. )
- / / ¢(Xa—- +£(s,2)) - ¢(Xa_)] Nds, dz||P

<CE [ [ [0 + 1705, = 0X) = 9Xax + flo,2) + 00K ) i
(3.5.17)

Note that ¢(X? + (s, 2)) —¢(X}_) converges uniformly path by path to ¢(X,—+ f(8, 2)) +@(X,-)
as n — oo, P-a.s. and

60Xz + £7(5,2) = SXEL) = (Ko + f(5,2) + (X )|[” < il (orw 2P

Therefore, by the Lebesgue Dominated Convergence Theorem, we find out that the right side of
(3.5.17) converges to 0 as n — oo. This means that

JmEl | t [ [o0xz + 700,20 - (X2 W(ds, dz)
-/ t [ [66um + 10,20 = 0(x,)] N, aslp =0

This LP convergence allows us to have convergence a.s. by taking a subsequence. 0

3.6 The Stochastic Fubini Theorem

Lemma 3.6.1. Let (A1, A1) and (A2, A2) be two measurable space. Suppose that g: A; x Az - H
is an A; ® Az\B(H)-measurable function. Then g is measurable in each variable separately, that is
for each 1 € Ay, the function z3 — gz, x2) is Ax-measurable and for each xo € Ay, the function

z1 > g(zTy,%2) 18 A1 -measurable.
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Proof. First, we show that for each z; € A;, the function z3 — g(zi1,22) is Az-measurable. A
similar argument will yield that for each zo € Ao, the function z; — g(x1,z2) is A;-measurable.
Let 2; € A be fixed. Take B € B(H). We need to show that the set

{:Ez € Ay g(:L‘l,:L’g) S B} € A,
Define a set Q(z1) C A; ® A by
Q(z1) := {C € A1 ® A : C(z;) € A2},

where C(z;) = {22 € A : (z1,22) € C}. We will show that Q(z) is a o-field. To see this, we have
to verify the three conditions in the definition of a o-field.

(i) Observe that (A1 x Az)(z1) = {z2 € Az : (z1,22) € A X A2} = Az, Since A; € Ag,
(A1 X Az)(ml) € Az, 80 A1 X Ay € Q(:El)

(ii) Take C € Q(x1). Then we have C(x1) € A2. We need to show that C° € Q(z1). Observe
that

C(ml)c = {.’L’z € Ay ((L‘l,.’L‘z) € C}c = {:EQ € Ay (:I)l,.'ltz) € CC} = Cc(:l:l)
Hence C¢(z1) = C(z1)° € Az. By the definition of Q(z;), we infer that C¢ € Q(z;).
(iii) Let Cy,Cs, -+ € Q(z1). Then Ci(z1),Ca(z1),- - € Ag and

U (©Cnlz1)) = | {22 € A2, (21,22) € Cn} = {22 € Az : (21,22) € | Cn} = (J Cn)(an).
n=1 n=1 n=1 n=1

Since A is a o-filed, U2 ;(Cn(z1)) € Az. It follows that (Uney Cn)(z1) € Ay, Hence
U;o=1 Cn € Q(z1).

Therefore, Q(z1) is a o-field. On the other hand, if C € A; and D € Aj, then

ifz; € A
(BxF)ey) = {ea € da: @) e Ex Fy={ § €42 (7200

It follows that Ex F € Q(z;). Since A; ®.A; is the smallest o-field containing all Cartesian products
Ex Fof sets E € Ay and F € Ay, A; ® Ay C Q(x1). Therefore, we have Q(z1) = A1 ® A;. Recall
that Q(z;) = {C € A, ® A3 : C(z1) € Az}. Therefore, we infer that C(z1) € Aj, for any set
C € A1 ® A;. Finally, we have

{z2 € Az: g(z1,72) € B} = {22 € A2 : (z1,72) € g7}(B)} = (¢71(B))(1) € Ay,
which shows that the function z3 — g(z1,z2) is Az-measurable. O

Theorem 3.6.2. Let E be a martingale type p Banach space, 1 < p < 2. Let (0,0, i) be a o-finite
measure space. Suppose that f : O x [0,T] x Q@ x Z — E be a O @ BF ® Z-measurable process and

f € LY(0, 0, y; Mi(BF ® 2; E)) N LP(0, O, u; Mi(BF ® Z; E))
That is

L1 M) <00 and [ 150,10 Wi () < o0,
o} o

where | flvg = (B (AT 7 15t DlPw(d)at) ) ™. Then
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(1) for p-almost all y € O, f(y,,-,-) is stochastic integrable with respect to Poisson random
measure N.

(2) for all z € Z, the process [0,T] x 2 3 (t,w) — fE Fly, t,w.2)u(dy) is progressively measurable.
(8) P-a.s.

/E</0T/Zf(y,t,w,z)1§/(dt,dz)) N(dy)=/0T/Z(Lf(y,t,w,z)u(dy)) N(dt,dz). (3.6.1)

Proof. (1) Letusfixy € O. Since f(:,,,-) is O® BF®Z-measurable, by the basic Fubini theorem,
the function f(y,-,,") is BF ® Z-measurable. Also, we can show that || f(y,-,,")[lpmp, < 00
T

p-a.e.. To see this, set N :={y: [|f(y,",", -)||MpT = 00}. Then

N = n{”f(y’)’)”Mg, 2 k}

j=k

It follows from the Chebyshev inequality that

V) = Jim ({1 Va2 ) < i S0 Mgl

as [gllf (W, Mmzp(dy) < oo. This gives that |[f(y,,~,)llmp < 00 p-ae.. Hence the
stochastic integral [T [, f(u,t,w,2)N(dt,dz) is well defined for u-almost all y € E.

(2) Note that the spa.cesl (0,0, an;i ([0, T)xQ2x Z,BF® Z, \@ P®v) are both o-finite measure
spaces. Since f € L*(0, O, u; M(BF ® Z; E), applying Minkowski's inequality for integrals
(see Theorem 202 in [35]) yields that

(E/OT/Z (/O I, t"’z)“”(dy))pz/(dz)dt)‘%

< /O (IE /0 i /Z Ilf(y,t,-,z)ll”l/(dz)dt)%u(dy) < oo.

Hence ]Ef(;r Iz (o f(, t, 2)||u(dy))? v(dz)dt < co. Using a similar argument as (1) gives
that [, | (3, t,w, 2)[|u(dy) < oo, for A@ P@v-almost all (t,w, z) € [0,T] x 2 x Z. This means
that [, (¥ t,w, z)u(dy) is well defined for A ® P ® v-almost all (t,w,2) € [0,T] x Q x Z.
Since function f is O ® BF ® Z-measurable, again by Fubini theorem that the function
(t,w,2) = [ou t,w, 2)u(dy) is BF ® Z-measurable. Furthermore, we have

”/of(y,-,-,-)u(dy)”w = (E/OT/Z
< (E / ! /| ( /L nf(y,t,-,z)n.u(dy))pu(dz)dt)l” <.

This together with BF ® Z-measurability shows that the integral

/OT /Z ( /O Fytyw, Z)H(dy)) N(dt,dz)
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(3) In order to show equality (3.6.1), first we need to verify that the integral on the left side of

(3.6.1) i.e. ]
/o </0 /zf(y’ tw, 2)N(dt, dz)) p(dy)

is well defined. For this, we have to show that 2 x Z 3 (w, 2) — fOT [z fy t,w, 2)N(dt,dz) is
Fr ® O-measurable. Since by assumption

T
ELL Lllf"(y,t,-,z) —f(y,t',z)ll”u(dz)dtu(dy) < o0,

a similar argument as in the proof of Theorem 3.2.24 shows that there exists a sequence
{f™}5%; of step functions of the form

n ™my

m
f y,t,w, 2) =2;Zlk T; 1F,;j @)1 (D14 (g (W) (3.6.2)
j: i= =1

such that

i [ [ BI@t02) = 5 P u) = O

n—0 Jo

By passing to a subsequence, still denoted by {f™} for simplicity of notation, we may assume
that {f"(y,",,")} converges to f(y,",,) in ML.(BF @ Z; E) for y-almost all y € O. In the
proof of (1), we showed that the function (t,w, z) ~ fy, t,w, z) belongs to ML(BF ® Z; E)
for p-almost all y € O. Let O be the set such that for ally € O, f(¥,+, ") € ME (B}'® Z:E)
and {f*(y,",",*)} converges to f(y,,",") in ML(BF ® Z; E). Then 1(O\0) =

On the other hand, for each y € O we can find a sequence of natural number {nk},;";l such
that

T
1
”f"k(y’ 'y ) - f(y) 9y )“5,\4;‘ = ]E-/O L “fnk(yv L, Z) - f(y’ t, z)||”u(dz)dt < WC—
We write k instead of n,, for brevity, so we have
T . 1
E/ / 1£* @ty s 2) = f(u b, 2)[Pu(d2)dt < 755
o Jz
It follows that for y € 0,
B[ 12 - it Pt <
By the Chebyshev inequality, we have
fwea ([ [Pt - a] Manan)@)] 2 5)

< (1/2")PE_/0. L ”fk+l(yv t, z) - fk(y’ t, ',Z)””V(dz)dt

20/10’=< C
T (1/2F)p 2k
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Since the series Yo, EEC:'-; is convergent, we infer that

Splvens|([ [ #1000 - Funn] Manan)w] > ) <o

k=1
Hence, by the first Borel-Cantelli lemma, see Theorem 4.3 of (9], it follows that

T

P (imsup{wea: ([ [ w0 - Fut i@ ) @] 2 &1) =0
This implies that for each y € O there exists a set £ C  such that ]P(Q) = 1 and there exists
some j € N such that for all k£ > j we have ”fOT TZl 5 Y, t, 2) — fE(y,t, 2))N(dt, dz)“ < %
w € . Hence
>

n=j

(W) <00, we, y € 0.

| C 170 - Pt N G )
0 Z

Consider the series
00 T
k+1 _ tk Ny
:L::o(/o /Z[f (wt, 2) — f*(y,t, z)]N(dt,dz)) (W),

where fO(y,s,2) = 0. Since for k=0,-+-,j -1
P

e[ ' L1182) ~ £t )N a2

T
< CE /0 /Z 1P+ (1, 2) — Fo(u,t, 2)Pu(dz)dt

< 00,

we infer that || foT fz[f("“)(y,t, 2)—f*(y,t, 2)N(dt, dz))|| < oo on 2 for yeO,n=0,,j—
1. Therefore we conclude that 372, NfoT T fEE, 2) — fR(e, 2)|N(dt, dz)” < oo on §. This
gives that Y po, fOT [2(F¥ (i t, 2) — f*(y, ¢, 2))N(dt, dz) is convergent for each w € Q,ye

O. Now we define é7(y,w) = Y p2o foT L5y, t,2) — f¥(y,t, z))N(dt,dz) when the sum
converges, i.e.

T
erww) = Jim [ [ Pt )Nt an),

and if this limit diverges, we put {7(-) = 0. Note that for each k, the integral fOT [z FE(y,t, 2) N (dt, dz)

is of the form
m;

Z Z Z milFﬁ,rl(w)N((tj—l’ tj] x .A;"»J"l)lEi,j-l(y)

j=1i=1 k=1

which is 0 ® Fr-measurable. Therefore, the limit &7 is also O ® Fr-measurable. Since for
each y € O, {f*(y)}ken is dense in ML(BF ® Z; E), we have

]E“ /0 ! /Z [F*(y,t, 2) N (dt, dz) — /0 i /Z f(y,t, 2) N (dt, dz)

P
-0, asn - o0,
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Then for each y € O we can find a subsequence { fki }jen such that

lim /T/kaf(y,s,z)N(dt,dz) =/0T/Zf(y,s,z)1v(dt,dz) on §,

with P({)) = 1. Hence in view of the definition of &7 and the uniqueness of the limit, we
see that for each y € O, ép(y,w) = (fOT [z f(y,s, z)N(dt, dz)) (w) for w € QN . Hence we
constructed a @ ® Fr-measurable version of foT Iz f (8, 2)N(dt,dz). So the integral

/O (/O'T/Zf(y, t,w, z) N (dt, dz)) u(dy)

is well defined. Now we are going to show equality (3.6.1). First we verify (3.6.1) for step
function of the form
n m my

A twz)=Y 33" Zilps (W)t (lag (g, @)

j=1i=1 k=1

In this case the left side of (3.6.1) becomes

/ (/ /f" Yy, t,w, 2) N (dt, dz))u(dy)
z
(ZZ zilp  (WN((t-1,1] X Ai)lElie,j—l(y)) u(dy)

=EZ zilgy, (“’)N((ta 1] % Af 1) Efj-1)-

Consider next the right side of (3.6.1) with f™. We have

/OT /Z ( / My, tyw, Z)ﬂ(dy)) N(dt,dz)
/ /;zn:ilz:v,lp,gj . w)l(tj_l,tj](t)lAt'j_l(a;)u(E;‘;yj_l)N(dt’ dz)

_71 k=1
n
=1

%
zilpy,  (@N((tj-1,8] X A i )(Egjo1)-

5

j=li=1lk

Hence we infer that

/(/ /fﬂy,th (dt, dz)) u(dy) = / /(/fn(y’th dy)) N(dt, dz),

(3.6.3)
which means that equality (3.6.1) holds for every step function of the form (3.6.2). Now define
fn(y)t’wv 2.’) = fn(y, t,w, z)l{y:||f"||M¥§||f|]M;}’ (y’ t,w, 2’) €0 x [Oa T] XQx2Z.

Since f™(y,-,,-) converges to f(y,-,+,-) in M. forall y € O, it is clear that

nli)lgo “fn(y» KN ) - f(y, KR )”Mg' =0 and ”fn(y, KN )”MZI’. < ”f(ys ) ')“Mg,

99



for all y € O. Since f € L}(0, O, u; ME(BF ® Z; E)), the Lebesgue dominated convergence
theorem tells us that

nlg{olo_/; “fn(y, “y %y ) h f(ya 9y )”M!}ﬂ(dy) =0. (364)

Clearly, by (3.6.3) we have

/o (/OT/Zf"(y, t,w, 2)N(dt, dZ)) p(dy) = /oT./z (/; My t,w, z)/.t(dy)) N(dt, dz).

Observe that for every f € LY(O, 0, u; ML.(BF ® Z; E)),

E /0 ( /0 ' /Z f(y,t,-,z)N(dt,dz)> p(dy) — /0 ' /Z ( /O f(y,t,-,z)u(dy)) N(dt,dz)
0 (/()T/zf (ot )V, dz)) i) - | ( / ' IR t,-,z)N(dt,dz)) ,u(dy)‘
i ( / Myt Z)u(dy)) N(dt,dz) — / ' / ( / f(y,t,-,z)u(dy)) N(dt,dz)
(/ /[f(yt 2) — fMu,t, -, 2)|N(dt, dz)u(dy)”

( / 72 2) = £t sld)) (et d2)

<E

E / (£t 2) = Pt 21N (dt, d2) | (dy)
0 V4

+ (IE” [ L (Lt - st lute)) et a2

</ (]E | /OT [t 62) = Pt ) )

1
P)p

P\ #
) u(dy)

1

+C(]E OT L pu(dz)dt)"
< C/O (E/OT/Z (g t12) —f'"(y,t,-,Z)ll”V(dZ)dt)%u(dy)
+C“ / @) = F )]u(dy)“
<o [ Mreld) +C [ 151 = Pl g la)

~ 20 / £, Mz (),

where we used Cauchy-Schwarz inequality and the inequality (3.3.2). By letting n — oo, it
follows from (3.6.4) that

e[ ([ [ st e dn) ) - [ [ (] st mtan) deaean)] =

100




Therefore, we infer that

( /0 ' /Z f(y,t,w,z)N(dt,dz)) pdy) = /0 ’ /Z ( /0 f(y,t,w,z)u(dy)) N(dt,dz) P-as.

which completes our proof.

3.7 Maximal Inequlities

Let T > 0 be fixed. Let M’T’.(’ﬁ, v; E) be the space of all §-predictable E-valued functions such that

E /0 ’ /Z 1£(s, - 2)||Pr(dz)ds < oo. (3.7.1)

From now on, while considering the stochastic process fot Iz f (s, 2)N(ds,d2), 0 <t < T, f €
ME(P,v; E), it will be assumed that the process fot [ f(s,2)N(ds,dz), 0 < t < T, has cadlag

trajectories.
3.7.1 The Stochastic Convolution

Let (S(t)):>0 be a contraction Cg-semigroup on E. Suppose that A is the infinitesimal generator
of the Co-semigroup (S(t))i>0. If {Ax : A > 0} is the Yosida approximation of A, then for each A,
A, is a bounded operator in F and |Ayz — Az|g converges to 0 as A — oo for all 2 € D(A). Let
R(\ A) = (M — A)~'. By the use of Hille-Yosida Theorem (see [62]), it is easy to establish that
limy 0 AR(A, A)z = z and AR(\, A)z € D(A), for all z € X.

Let £ € ME P,v; E). We are going to consider the following stochastic convolution process
T g

u(t) = ./ot/zs(t — 8)£(s,2)N(ds,dz), 0 <t < T, (3.7.2)

where N is a compensated Poisson random measure associated with the Poisson point process .
We will first investigate the measurability of the process u.
Lemma 3.7.1. The process u(t), 0 <t < T given by (3.7.2) has a predictable version.

Proof. Let t € [0,T] be fixed. We first show that a process X defined by X(s) = 1(o4(s)S(t -
8)€(s,2), 0 < s < T is predictable. Define a function F' : [0,t] x E 3 (s,z) = S(t — s)z € E. Since
S(t), t = 0 is a Cp-semigroup, so for every z € E, F(-,z) is continuous on [0,¢]. Also, for every
8 >0, F(s,) is continuous. Indeed, let us fix 2o € E. Then forevery z € E, and 0< ¢t < T,

|F(t,2) — F(t,20)|e = |8(t - 8)(x — z0)|& < | — 20|,
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as ||S(t)l|(gy < 1. This part shows that the function F is separably continuous. Since by assumption
the process £ is F-predictable, one can see that the mapping

(S, W, z) — (sv 6(3’ w, Z))

of [0,T] x  x Z into [0,T] x E is §-predictable. Moreover, since the process 1(gy is §-predictable
and we showed that the function F is separably continuous, so the composition mapping

(sawy z) x4 (s’f(s’w) Z)) = F(sv 6(8,&),2)) = l(O,t](s)F(S,g(s)w’ z))

is §-predictable as well. Therefore, process X (s) = 1(o,1)(8)F'(s,€(s,2)), s € [0,T] is F-predictable.
On the other hand, since S(t), ¢t > 0 is a Cp-semigroup of contractions and £ is in MP([0,T] x Q x

Z,P,A®P x v; E), we have
T T
E/o 11(0,4(8)S(t — 8)&(s, z)[Ev(dz)ds < E/o €(s, 2)[xv(dz) ds < oo.

Therefore, the process 1(g,4(8)S(t - s)&(s, 2) is of class MP([0, T} x 2 x Z, PAGP X v; E). Hence,
when the number ¢ is fixed, the integrals

/ / 104 (8)S(t — )E(s, 2) N (ds, dz), r € [0, T]

are well defined and by Theorem 3.3.2, this process is a martingale. In particular, for each r € [0, T,
the integral [ [ 1(0,(s)S(t — s)&(s, 2)N(ds,dz) is Fr-measurable. Take r = t. This gives that

s J2 Lo (s)8(t — 8)é(s, z)N(ds, dz) is Fi-measurable.
Now we show that the process u is continuous in p-mean. On the basis of the inequality |a+b|P <
2P|a|P 4 2P|b|P, inequality (3.3.2) and the contraction property of the semigroup S(t), t > 0, we have,

for0<r<t<T,
Bjutt) —unly =E| [ [ s ets, ¥ @sae) - [ [ 50 o)t 1v(as, )]
E 0 tZ p0 Z ' 62 E

/ / S(t — 8)&(s, 2)N(ds, dz)
r JZ E
/0 /Z (S(t —8)—S(r - s)).f(s, 2)N(ds, dz) :

< 2°E

+ 2PE

<o [ [ Ist- e ) ds

+2PC,E / ' / (S0t~ 5) ~ S(r = 9)) (s, ) (dz) ds
<2vopm//|gsz v(dz)ds

+PC,E /0 /Z S(t ~ 5) — S(r — ))€(s, 2)/Gu(dz) ds

T
= 9C,E /0 /Z Lng)(5)1€(5, 2) ov(d2) ds
T
+PC,E /0 /Z [10r1(5) (S(¢ = 5) = S(r — ) &(s, 2)ov(d2) ds.
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Here we note that 1(,4(8)|£(s, 2)|% converges to 0 for all (s,w,2) € [0,T|xQx Z,ast{rorrtt.
So by the Lebesgue Dominated Converges Theorem, the first term on the right side of the above
inequality converges to 0 as t | r or r 1 ¢t. For the second term, by the continuity of Cp-semigroup

S(¢), t 2 0, the integrand 1 5| (S(t—s) - S(r— s))f(s, z) converges to 0 pointwise on [0, T) x Q2 x Z.
Moreover we see that

Lo (8)S(t = 8) = S(r = 8))&(s, 2)| < |26(s, 2)|e

So, again by the Lebesgue Dominated Convergence Theorem, the second term also converges to 0
as t | r or r 1 t. Therefore, the process u is continuous in the p-mean. Since by Proposition 3.6
in [26), every adapted and stochastically continuous process on an interval [0,T] has a predictable

version, we conclude that the process u(t), 0 <t < T has a predictable version.
O

Assume that A is the infinitesimal generator of a Cp-semigroup S(t), t > 0 of contractions on the
martingale type p, 1 < p < 2 Banach space E and that ¢ is a function belonging to M’}(’IS, v; E).

We will consider the problem
du(t) = Au(t)dt + / £(t, 2)N(dt, dz), ¢ > 0,
z (3.7.3)
u(0) = 0.

Definition 3.7.2. Suppose that E foT Iz 16(s, 2)xv(dz)dt < oo. A strong solution to Problem
(3.7.3) is a D(A)-valued predictable stochastic process (u(t))o<t<r such that

(1) u(0) =0 a.s.
(2) For any t € [0, T the equality

u(t) = /0 * Au(s)ds + /0 t /Z £(s, 2) N (ds, d2) (3.7.4)

holds P-a.s.
Lemma 3.7.3. Let§ € M%(’f’, v; D(A)). Then the process u defined by

t
u(t) = /0 /Z S(t ~ 8)é(s, )V (ds, dz), t € [0,T); (3.7.5)

is a unigue strong solution of equation (3.7.3).

Proof. Let us us fix t € [0,7). First we need to show that u(t) € D(A). For this, Let R(\, A) =
(M = A)71, A > 0, be the resolvent of A. Since AR(A, A) = AR(A, A) — Ig, AR(), A) is bounded.
Hence, since £ € ME(P, v; D(A)), we obtain
t t )
RO\ A) / / AS(t - )€ (s, 2)N (ds, dz) = / / R() A)YAS(t — 8)E(s, 2) ¥ (ds, dz)
0 Jz 0o Jz
t
= AR\, A) / / S(t ~ 8)€(s, 2) N (ds, dz)
0 Jz

_ / t / S(t — )¢ (s, 2) N (ds, dz).
0 JZ
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Thus, it follows that
/t/ S(t - s)é(s, 2)N(ds,dz)
0z t t
= R()\, A) [)\/ / S(t - 8)é(s, 2)N(ds, dz) —/ /AS(t - s)f(s,z)N(ds,dz)] .

Since Rng(R(A, A)) = D(A), we infer that fo I 8(t — 8)&(s, z)N(ds,dz) € D(A). On the other
hand, let us take h € (0,t) and observe that since ﬂt‘hL is bounded, we get the following equality

-‘Sﬁl-)———-/ /S(t—— 8)¢(s, 2)N(ds, dz)
=/ / Sh;l S(t - 8)&(s, z)N(ds, dz).
0Jz

So by applying the triangle inequality and inequality (3.3.2), we find out that
: ) t _ P
4 /0 /Z S(t—s)f(s,zt)N(ds,dz)— /0 /Z AS’(t—s){(s,z)N(ds,ilz) ,,

A / / S(t - 8)&(s, 2) N (ds, dz) — S(h)“I / / S(t—s){(s,z)N(ds,dz)
/ /AS (t —8)é(s, )N (ds, dz) — / / S(h) — — 8)¢(s, 2)N(ds, dz) ’
(A - S(h) ) / / S(t — s)&(s, 2)N(ds, dz)

p
roE [ /Z [Asie = )s,2) = (500 = 1) (e - ),
= 1(h) + 11(h). (3.7.6)

For the integrand of II(h), since (s, z) € D(A), we observe that

____S(hgl" Ls(t - s)é(s, ) = %/Oh S(r)AS(t — s)é(s, z)dr,

< 2’E

+ 2°E

< 2’E

v(dz)ds

so we have |ﬂth-_lg(t — 8)&(s, z)l:; < |A&(s, 2)|. Hence we infer that the integrand

|45(2 - 9)¢(s, ) - l(S(h) ~1)S(t - 8)¢(s, )]

of I(h) is bounded by a function C1|A¢(s, 2)|% which is in M2.(P,v; E) by assumption. Since A4 is
the infinitesimal generator of the Co-semigroup S(t), ¢ 2 0, the integrand

|4s(t - 9)e(s,2) - 7 = (s - 1)8¢ - )65, 2)]

converges to 0 pointwisely on [0,] x @ x Z. Therefore, by the Lebesgue Dominated convergence
theorem, the term II(h) of above 1nequa.11ty (3.7.6) converges to 0 as h | 0.

Since we have already shown that fo [ 8@t — 8)é(s, z)N(ds,dz) € D(A), it is easy to see that the
term I(h) of (3.7.6) converges to 0 as h | 0 as well. Hence by inequality (3.7.6) we conclude that

A/ /S (t — 8)&(s,2) N(ds,dz) = / /AS (t — 8)&(s, 2)N(ds, dz), P-as. (3.7.7)
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In order to verify equality (3.7.4), by the Fubini’s theorem 3.6.2 and equality (3.7.7) we find out
that

/otAu(s)ds=/ot/OO/ZAS(S—r)ﬁ(r,z)]\?(dr,dz)ds

=/0t/z/rtAS(s—-r)£(r, z) dsN(dr, dz)
=/0t/Z/rtﬁi;d-7%£-(£’—f—)-dsN(dr,dz)

- /‘/ (S(t = r)&(r, 2) — £(r, 2)) N(dr,dz)
0 Jz

= [ [ st-netr¥taran) - [ [ eraitan iz
= u(t) - / /£(r,z)N(dr,dz) P-a.s.

which shows equality (4.1.1).
For the uniqueness, suppose that u! and u? are two strong solutions of Problem (3.7.3). Let

w = u! — u?. Then we infer that
w(t) = ul(t) — u?(t / A(ul(s) — u¥( ds—-A/ w(s)d
Put v(t) = fot w(s)ds. Then v(t) is continuously differentiable on [0,T] and v(t) € D(A). Now

applying the integration by parts formula to the function f(s) = S(t — s)v(s) yields

éfdéi) = —AS(t - s)v(s) + S(t - s)é%s)

= —AS(t ~ s)v(s) + S(t — s)w(s) = —AS(t — s)v(s) + S(t — s)Av(s) =
So we infer v(t) = f(t) = £(0) = S(t)v(0) = 0 a.s. Therefore, w(s) = 0 a.s. That is ul() = u2(¢)
as. t € 0,7 O
3.7.2 Maximal Inequalities for Stochastic Convolutions

Assumption 3.7.4. Suppose that E is a real separable Banach space of martingale typep, 1 < p <
2. In addition we assume that the Banach space E satisfies the following condition:

(Cond. 1) There ezists an eguivalent norm |- |[g on E and q € [p,00) such that the function
¢:E >3z 2|} €R, is of class C? and there exists constant ky, kg such that for every z € E,

|¢'(2)] S kalelE and |8 (2)] < kalaiE?.

Remark 3.7.5. It can be proved that if E satisfies condition (Cond. 1) for some q and g2 > ¢, then
E satisfies condition (Cond. 1) for ¢o.

Remark 3.7.6. Notice that the Sobolev space H*" with r € [¢,00) and s € R satisfies above condition
Cond. 1 and L"-spaces with r > ¢ also satisfies condition Cond. 1.

Now we proceed with the study of the stochastic convolution

ult) / / S(t — )¢ (s, 2) N (ds, dz), t € [0,T]. (3.7.8)
Before proving the main theorem, we first need the following Lemmas.

105



Lemma 3.7.7. For all x € D(A), ¢'(z)(Az) < 0.
Proof. Take 0 <7 <t < oo. We have

ISz} — 1S(r)z|% = |S(t —7)S(r)z|f - [S(r)z|%
<|S(t- 7')qu(1~3)|5(7')$|% —|S(r)z|};
<8z —|1S(r)z|L =0, forallze E.

Thus the function t — ¢(z)(S(t)z) is decreasing. Also, observe that for z € D(A),

WEW)|  — g(5(0)2)(Ax) = ' (2)(Ae).
b le=o0
Hence ¢/(z)(Az) = M%EEZ 1m0 < 0 which shows the Lemma. 0O

Lemma 3.7.8. There exists a version @ of u such that the function supg<;<r |a(t)| is measurable.

Proof. Suppose that £ € M’}(ﬁ, v; D(A)). It then follows from Lemma 3.7.3 that u can also be
written in the following form

t t
ult) = /0 Au(s)ds + /0 /Z £(s, 2)N(ds,dz), t € [0,T). (3.7.9)

Set w(t) := fot [z &(s,2)N(ds, dz),0<t<T. Recall that we showed the stochastically continuity
of process u when £ € MP(0, T} x QX Z,P® Z,AQP x v; D(A)) in the proof of Lemma 3.7.1.
Applying Theorem 5.3 in [80], we can find a version 4 of u which is separable. That is there exists a
countable subset Tp which is everywhere dense in [0, T] such that @(t) belongs to the set of partial
limits limget,, s—t () with probability 1 for all ¢ € [0, T]\Tp. Hence ‘

sup |i(t)] = sup lim _ |u(sn)| = sup |é(sy)l,
t€[0,7) te[O,T]sn—)t.anETol (sn)] ,,ne%,' (8n)]

where sup,_eT, |ii(sn)| is measurable. Therefore, the function sup,e(o ry |%(t)| is measurable, i.e. it

is a random variable.
O

Henceforth, when we study the stochastic convolution process u, we refer to the version of u

such that it is predictable and its supremum over [0, T} is measurable.

Theorem 3.7.9. Suppose that E is an martingale type p, 1 < p < 2 Banach space satisfying
Assumption 3.7.4. Suppose q' > q, where q is the number from Assumption 3.7.4. If§ € MI;,(';S; E)

such that

E ( /0 t /Z 1€(s, 2)5 N (ds, dz))ﬂ"i < 00, (3.7.10)

then there erists a separable and cadldg modification of u and a constant C such that for every
0<t<T,

, t <
B awp 4L <CE([ [ e ENEaa) (37.11)

0<s<t
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Proof. Case 1. First suppose that £ € M% (’P D(A)). We will prove

t ’
]Eos;u‘:;s)tIu(.e;)|‘}a <CE (/0 /Zlﬁ(s,z)|%N(dS,dZ)) , (3.7.12)

We have shown in Lemma 3.7.3 that the process u is a unique strong solution to the following
problem

du(t) = Au(t)dt + / €(t, 2)N(dt, dz), t € [0,T),
V4
u(0) = 0.

(3.7.13)

Moreover, it can be written as

_ /0 * dus)ds + /0 t /Z £(s, 2) NV (ds, dz), t € [0,T}. (3.7.14)

We shall note here that in view of the cadlag property of the right side of (3.7.14), see Theorem
3.3.2, the cadlag property of the function u(t), 0 < t < T follows immediately. Notice that the
function ¢ : E 3 z ~ |z|}; is of C? class by assumption. Thus, one may apply the It6 formula, see
Theorem 3.5.3, to the process u and get for ¢t € [0, T,

/ #'(u(s))(Au(s)) ds + / | # o)) e(o, ) s, )
b [ [patem) + 8C6,0) — dlus-) — ¢ als-)(E(s, ] N ds, dz) P
0 JZ
(3.7.15)
Since by Lemma 3.7.7, ¢'(z)(Az) < 0, for all z € D(A), we infer that for t € [0, T,

suv) < | ' [ #als-))ets, NV as, d2)
t
+ [ [ [Blao-) + €6, 2) - pluts-)) = o (o)) (E(or 2] N(ds, o) Peas.
02 (3.7.16)

Taking the supremum over the set [0,¢] and then the expectation to both sides of above inequality
yields

E sup ¢(u(s)) < E sup /0 ) /Z & (u(r)) (E(r, 2)) N (dr, d)

0<La<t 0<L8<

+Egup [ [ [ou(r-) +€(r2) - d(ulr-)) = 6 ulr=-)(E(r, )] N(ar, 2

0<a<t Jo

=: I1(t) + I(t).
Applying the Davis inequality, see Corollary C.2 in [16], to I; we obtain for some constant C that

t ?
nosce([ [ 1 (u(s-)) (s )P s, )

: "
< hCE sup [ ([ [ leto PN, d2))
0<a<t 0 Jz
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First we will estimate the integral I5(t). Note that for every s € [0, ],

/03 /Z l¢(u(r) + £(r, 2)) — o(u(r)) — ¢/ (u(r=))(¢(r, 2)) EN(dT, dz)
= Z |¢(u(r-) + 6(7" TF(T))) - d’(u(’l‘—)) - ¢'(u(r—))(§(r, ﬂ(r)))lE, P-a.s.

r€(0,s)ND(m)

Let us recall that by the assumption the function ¢ is of C? class. Applying the mean value Theorem,
see [49], to the function ¢, for each r € [0, s] we can find 0 < 6 < 1 such that

[(utr=) + &(r,7(r) = B(u(r=)|, = lelr, m(r)) [ 6 (u(r-) + 0€(r, m(r)|

LB

By the assumptions |¢'(z)| < kllxlqE—l» z € E and the fact that |z + 0y|p < max{|z|g, |z + y|Eg} for
all z,y € E, we obtain

|¢/(u(r=) + 66(r,7(r))| < Falur-) + B m(a)| 5
< kymax {Ju(r=)|5, Ju(r=) + &(r, 7(r)| 5}
Observe that forall 0 <r < s <,

u(r-)ig™ < up Jup)IE” < sup fulpo)lE” < sup fu(o)E

Moreover, since u(r—) + £(r, @(r)) = u(r), we get
lu(r—) + £(r,7r(7"))|‘}3_1 < 02:1;,9 |u(7‘)l‘}3—1 < osgl?;t lu(s)i%,'l.
Therefore, we infer that for each r € [0, 5],
[6utr=) + €0 () = (=), < kaléCryw(r))l sup u(s)§
<8<t
It follows that
‘¢(u(r—) +£(r,m(r))) — ¢lu(r=)) — ¢'(u(r=))(&(r, W(T)))IE
< [$(u(r) + £y () = B(u(r))| , + | (ulr-)(Cr mr)|
< 2k J(r, W(T))lEoiugt u(s)| &

On the other side, we can also find some 0 < § < 1 such that

Bulr=) + (1, 7(r))) - (ulr)) = $ (ulr=NEr )] = Bl ()1 ulr—) + Be(r, ()
< %| € m(r) Blutr-) + 0, (r) 52

By a similar argument as above, we obtain

=5

[B(ur-) + €6 7)) = 6(utr-)) = 8 (ur-)(E(m N, < RIeCr 7O)IE sup P>
<s<t
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Summing up, we have
Bu(r=) + £(r, () ~9(u(r-)) - ¢ (w(r-))(E(r w(r))
= |#(u(r=) + &(r,7(r))) = Blu(r=)) ~ & (u(r-))(E(r, m(r)))|
2—p
< 2kt g ue)E ) (SRleCr ol sup )

< K|&(rym(r))I sup |u(s)lE?,
0<s<t

(2-p)+(p-1)

p—1

where K = (2k;)%7P(k;/2)P~1.
Hence,

> [tutr-) + €0 m(m)-d(utr-)) - & (a(r-DE )|

r&(0,8)ND(r)

SKoiligtlu(s)l(gp Z |£(r,7r(r))|’;;

re(0,t}nD(w)

8
=K sup lu(s)I‘,’{p/ /IE(r,z)l% N(dr,dz),
0<s<t 0 Jz

which also shows that the integral fo fz[ (u(s=)+£(s, 2))—d(u(s ))—¢’(u(3—))(£(s,z))] N(ds,dz)
is well defined since £ € MP([0,T] x Q x Z,P,A® P x v; D(A)). Therefore, we infer

/oa/Z'qS(u(r—)-Ff(r,z))’¢(U(7‘—))"‘qb’(u(r—))({(r,z))‘ N(dr, dz)
<K sup tu(e)§” [ [ 160 Near,da),

0<s<

Hence, we get the following estimate for I(t)
t
h(t) < KE suwp [u(@)(5” [ [ le(r o) Nidrdz), te 0.T)
0<s<t 0Jz

where the constant K only depends on k), k2, p and q. Now applying Holder's and Young’s
inequalities to I;(t) yields

le[(E(OSSl;P Iu(s)ﬂs—l);&) < (/ /]g(s,z)l N(ds, dz)) )1

g=-1

klc[(Eosggtlu )% ) ! (E(//,582|ENds dz) )}«7
- le[(E Sup, Iu(8)|E€ 1( //'“zl‘? (ds dz) G)"‘l)%

ki C [T € 1E08<1i;<>t lu(s)|% + e‘l‘lq (/ / |€(s, 2)5N (ds, dz)) }

eq-qu (/0 /Z|£(s,z)l‘,’,;N(ds,dz)>".

I(t)

IA

IN

IA

it

8CL=2 ¢ E sup Ju(s)|L + k:C
q 0<s<t
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In the same manner for the integral I2(t) we can see that

t
KE sup [u(s)|%" /0 /Z 1€(s, 2)[%N (ds, d2)

L(t) < up,
< K (Eoil:pt |u<s>|§;’ P )L;E (E ( /0 t /Z € (s, 2)|%N (ds, dz))gp)g
< K (E o |u(s>|z~) - (E ( / t [ e )N dz>) %)5

= K (Eossggt'u(S)l% 5)1;—2 <]E (/t/ lf(s,z”EN(ds’dz))q (%)?)5
e (/"t/zlg(s’ 2)|eN (ds, dz))q

where we used the Holder’s inequality in the first and fourth inequalities and the Young’s inequality

in the third inequality.
It then follows that

< K1Z2E sup ju(s)|% +K—-
q 0<s<t

E sup |u(s)|L < k1cq-1 ¢ E sup |u(s)|% +k'1C' (/ / €(s, 2)|%N (ds dz))

0<s<t 0<s<t
q
(/ / |&(s, 2)|EN(ds, dz))
& q

+KILeE sup fu(s)lf + K§
= (le——- +Kq p) ¢E sup u(s)l g
q
( / / 1€(s, 2)[BN (ds, dz))

0<
*(
Now we can choose a suitable number £ such that

(klc q qup)e=%’

Consequently, there exists C which is independent of A such that
t »
B sup [u(o)% < O ([ [ le(s, )N ds,a)”. a.7.17)
0<ast 0 Jz

Case II. Suppose ¢ € MP(P;E). Set R(n,A) = (nI — A)~!, n € N. Then we put £"(t,w) =
nR(n, A)¢(t,w) on [0,T] x §1. Since A is the infinitesimal generator of the Cp-semigroup S(t),
t > 0 of contractions, by the Hille-Yosida Theorem, ||R(n, A)|| < 1 and €"(t,w) € D(A), for every
(t,w) € [0,T] x 2. Moreover, £*(t,w) — £(t,w) pointwise on [0 T) x . Also, we observe that
€ — €] = [nR(n,A)¢ — §| < 2|¢|. Therefore, it follows by applying the Lebesgue Dominated

Convergence Theorem that

T
/ / €78, 2) — £(t, 2)Pu(dz)dt
0 Z
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converges to 0 as n — oo, P-a.s. Since the poisson random measure N is a P-a.s. positive measure
and we have

T T
E fo /Z €7t 2) — £(t, 2)PN(dt, dz) = E /0 /Z €70t 2) — £(t, 2)Po(dz)at.

By taking a subsequence, still denoted by {¢"},, we infer that
T
/ / IE°(2, 2) — £(t, 2)[PN(dt, dz) — 0, asn — oo P-ass..
0o Jz

One can also easily show that £" € MP([0,T] x © x Z,P, AP x v;D(A)).
Define, for each n € N, a process u™ by

= / " S(t - 8)€™(s, )N (ds, dz), t € [0, T].
0

As we have already noted in case I, the function u,(t) can also be formulated in a way of strong
solutions so that u,(t) is cadlag for each n € N. By the discussion in case 1, for each n € N, u®(t),
0 < t < T satisfies the following

IEO?:ETlu"(t)lq <CE (/ / |€™(s, 2)|EN (ds, dz))

On the other hand, since by Theorem 3.3.2, we have
E[u"(t) - u(t)[f = Ef"(t) - u(®)
t . P
| [ (8- 96,2 - 5(6 - )¢, ) s, d2)
0 Jz E

=E

T
< GE /0 [ 166,2) = e(s, 2)Puids) as,

we infer that u"(t) converges to u(t) in LP(Q) for every t € [0, T]. Moreover, from case 1, we know
that

2
t P
E sup [u"(s) —u™(s)|L < CE (/ / |€™(s, 2) — €™(s, 2)[E N (ds, dz))
0<s<t 0 Jz
From the above discussion, we know that the right hand-side of the above inequality converges to 0
as n,m — oo if (3.7.10) holds. In this case, it is possible to construct a sequence {n;}32, of {n}2,

for which the following is satisfied

E sup [u™+1(s) —u™(s)|? <
0<s<T

k2q+2

Hence, on the basis of the Chebyshev inequality, we obtain

P<¢ sup |u™+1(s) — ulk(s)| > i,‘, < k¥ME sup |Ju™+1(s) —u™(s)|? < 5
0<a<T k 0<s<T k
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Then the series 3 5 ; P {supo<s<r [u™*1(s) — u™(s)| > £} will converges. It follows from the
Borel-Cantelli Lemma that with probability 1 there exists an integer beyond which the inequal-

ity

sup [u™+i(s) — u™(5)] <
0<s<T k

holds. Consequently, the series of cadlag functions
oo
D [uki(s) — u(s)]
k=1

converges uniformly on [0,T] with probability 1 to a cadlag function which we shall define by
4 = (i(t))tejo,r)- In view of Lemma 3.7.8, it is possible to assume that the function % is separable.
In such a case, the function supg<;<r [@(t)]? is measurable. Moreover, we have

E sup |u™(t) —a(t)|]? =0, asn — oo.
0<t<T

Therefore, by the Minkowski Inequality we have
L 1

& sup ator | = [ gup 409 —uﬂ@)lqr [z o o]

0<s<t 0<s<t 0<s<t

CE (/Ot/z'gn(s’z)I%N(dS,dz))%

Note that the constant C on the right side of above inequality does not depend on operator A. So
the constant C' remains the same for every n. It follows by letting n — oo in above inequality that

1 1
q q
< [E sup [a(s) - u"(s>|q]" +

0<s<t

E sup |i(s)|? < CE ( /0 t /Z €(s, z)l’l’,:N(dé,dz))%

0<s<t

Also, we have for every t € [0, T], by Minkowski inequality that

(Bla(t) - u(t))? < (BIE() — ua()fZ)? + (Elu(t) - ua(t)f3)
< (E[a(t) — ua(®)|%)7 + (Blut) - un(t)[5)

1

1
P
1
4

o

< (IEO?:SPT |a(t) — un(t)l}’;) 4 (Elu(t) — un(t)IE)

Letting n — oo, it follows that u(t) = @(t) in LP(Q) for any t € [0, T]. This shows the inequailty
(3.7.11) for ¢’ = q. The case ¢’ > g follows from the fact that if the martingale type p Banach space
E satisfies Assumption 3.7.4 for some g, then Condition 1 is also satisfied with ¢’ > q.

]

Corollary 3.7.10. Let E be a martingale type p Banach space, 1 <p < 2. There ezists a separable
and cadlag modification @ of u such that for some constant C and every stopping time 7 > 0 and

t>0,

tAT %
E sup Iﬁ(s)l‘,’;sCE( /0 /Z IE(s,Z)I’;;N(ds,dz)) , (3.7.18)

0<s<SIAT

provided the right hand-side of (3.7.18) is finite.
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Proof. Let us first consider the case when £ € MP([0,T] x 2 x Z,P,A QP x v;D(A)). A similar
argument as in Theorem 3.7.9 gives the following

t —~
o) = [ FaNuNds+ [ [ lute)lete, s, az)
+/0‘/Z [¢(u(s-—) +€(s8,2)) — p(u(s—) - ¢’(u(s—))(§(s,z))]N(ds’ dz)
t ~
S /0 /Z¢’(U(s—))(£(s, z))N(ds, dz)
t
+ /0 /; [¢(u(s—) + £(s,2)) — p(u(s—) — ¢'(u(s—))(&(s, z))] N(ds,dz) P-as.

It follows that

E sup ¢(u(s))—IE sup |u(s/\1')|E
0<s<tAT

<E sup / /Z & (u(r—))(€(r, 2)) N (dr, dz)

0<a<inT Jo

+B sup [ [#(utr-) + 807, 2) - 8ulr-) = $ (- 2] Ve, )

0<sgAT

=& _swp [ [ 10408 ar-)(Ern )i e a2

0<s<iAT JO

+E sup /s/zl(o,,l(r)l(b(u(r—)+§(T,2))

o<a<tar Jo
— B(u(r=) - ¢'(u(r-))(€(r, 2))| N (ds, d2)
=1 + 1.
Now we consider integral I;. By the definition of the Lebesgue-Stieltges inegral, we have

/o, /Z |¢>(u(r—) +&(r, 2)) — p(u(r=) — ¢'(u(r-))(&(r, z))[El(o,,,(r)N(dr, dz)
- Z |¢(u(r—) + &(r,&(r))) — d(u(r-) — ¢ (u(r-))(€(r, £(r))) El(o.ﬂ(r),

0<r<s

Notice that the function ¢(:) = | - |9 is of class C%. Applying Taylor formula to function ¢ we get
for some 0 < 4,6 < 1,

|6(utr=) + £(r, () ~ Blu(r-))| Lo ()
< €0, 7(r)) | (u(r=) + 86(r, ()| Lo (),
|6u(r=) + £(r,n(r))) = $(ul(r-) = & (w(r=))(E(r, 7(r))| Lo (r)
< S1€0 TS (ulr-)) + (7)1 01
Moreover we know that |¢/(z)|¢() < kilz|% ", so we obtain
|6/ (u(r=) + 0€(r, 1(r)| Lo (r) < afulr=) + BE(r, m(r)) |5 Lo ()
< kymex {Ju(r=)|% Lo (r), [ulr=) + £(r, m(r))| & 10,1 (M)}
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Observe that
[u(r=)IE Lo () < sup WOIE o) < sup fu(e-)ET < sup fu(s)IE
and
lu(r=) + €(r, a(r)IE  Lom(r) < e lu(r)|% 10 (7) < B hu(s)i% ™,
where q > 2. Therefore, we infer ‘
Bulr—) + €(r,7(r))) = B(ulr=)| Lo () < I8 7))l sLi0, ()| (u(r=) + 86 (r, ()

S kifé(r, m(r)|BLlo(r) sup |u(s)|%
0<s<IAT

L(E)

Similarly, from the assumption |¢"(x)| < k2|x|"E_2 we obtain

l¢" (u(r=)) + 8€(r, (M) EL(0,7)(T) < k2 S lu(8)|% 21 0,m ().

It then follows that

> l¢<'u(f—> +€(r,&(r))) — #lulr-) - ¢’(u(r—>)(s(r,s(r»)iElm,ﬂ(r)

0<r<s
= Y [#tutr-) + €lrEr)) - our-) - ¢'(u<r—))<g<r,g(r»)]:‘”)*"’"”1(0,]<r)

o<r<s

2—-p —_
< ¥ (ulenrtle s, 1415 ko @) (ke reDE_sup_ 165 0000
=K sup |u@)g? D [Ernmr)Eleqn(r).
0<s<tAT 0<r<s

Therefore,

/Oa/Z ‘¢(u(r-—) +&(r, 2)) = d(u(r—)) — ¢ (u(r-))(&(r, 2)) L0 (")N (dr,d2)

<x s wO)E” [ [ I dan() Nidr,da)

0<s<tAT

Hence, for integral I, we can estimate as follows

<K swp (w5 [ [ 1€ 2Elan N ds)

0<s<tIAT

For integral I, applying the stopped Davis’ inequality, see Corollary C.2 in [16], yields the following

1
p

I < CE ( [ [ 18 t-emEonens dz))

AT %
< kiCE sup |u(s)% (/0 /Z|£(r,z)|’,’3N(ds,dz)) )

0<s<tAT

The rest argument goes without any difference with the proof of Theorem 3.7.9.
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Theorem 3.7.11. Let E be an martingale type p Banach space, 1 < p < 2, satisfying Assumption
8.7.4. Suppose 0 < q' < oo, where q is the number from Assumption 3.7.4. If £ € ME(P; E) such

that
E ( /0 t /Z 1€(s, 2)|B,N (ds, dz)) i 00, (3.7.19)

then there erists a separable and cadlag modification 4 of u such that for all0 <t < T,

'

t <
~ 0 \1g P
e s o <OE([ [ e apNsnan)” (3.7.20)

Proof. The inequality (3.7.20) has already been shown for ¢’ > ¢ in Theorem 3.7.9. Now we are
in a position to show it for 0 < ¢’ < ¢. Let us fix ¢’ such that 0 < ¢’ < ¢. Take A > 0. Define a

stopping time
. 1
r
7 := inf {t: (/ / |&(s, 2) 5N (ds, dz)) > )\}.
¢ Jz

Since the process f; J71€(8,2)|5N(ds,dz), 0 < t < T is right continuous, the random time 7 is

indeed a F;,-stopping time. Moreover, we find out that fo [71€(5,2)[zN(ds,dz) < X for0< t < 7,
and [J [, 1€(s, 2)[5N(ds,dz) > X when 7 < 00. Also, we observe that for every 0 <t < T,

~ t_ -~
E /0 /Z f(s, 2)N(ds, dz) = E /0 /Z (s, 2) N (ds, dz). (3.7.21)

This equality can be verified first for step functlons, then for every function f in § € M”(P E)
we can approximate it by step functions in M,tep(’P E), so the equality (3.7.21) holds for every
fe Mk (’P E). Therefore, by using Chebyshev’s inequaliy and Corollary 3.7.10 to Theorem 3.7.9,
we obtam

IP( sup |u(s)|>A)<—lE sup [u(s)[?

0<s<tAT 0<s<tAT

e ([ [ e, e, dz))
E (/(MT)—/ |€(s, 2)|PN(ds, dz))
< -,\—qIE [( / / IE(s, 2)[P N (ds, dz)) A,\qJ (3.7.22)

On the other hand, since {supg<,<; |u(8)| > A, 7 > t} C {supgc,<inr [4(8)] > A}, we have

=Q >’I

il

P( sup [u(s)| > A) =P( sup |u(s)| > A, 7 > t) + P sup [u(s)| >\, T <t) (3.7.23)
0<s<t 0<a<t 0<s<t
<P(sup |u(s)]>A\72>2t)+P(r<t)
0<a<t

<P( sup |u{s)| > A)+P(r <t).
0<s<tAT
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Substituting (3.7.22) into (3.7.23) results in

P(O?:;S)tlu(s)l >A) < FE [(/ / |€(s, 2)|PN(ds, dz)) /\)\"J

P [(At/zlf(s,z)l”N(ds,dz)); > /\} .

Integrating both sides of the last inequality with respect to measure ¢'A% ~!'d\ and applying the
equality E|X|9 = [° ¢'AY7IP(|X| > A)dA, see [39], we infer that

E sup Ju(s)|? = / P( sup [u(s)] > N)o'AT'dx

0<s<t
< /0 > %E[( /0 /Z lf(s,z)l”N(ds,dz))%/\/\q} ¢A7=14)
+ /0 “p [( /0 t /Z I£(s,z)I”N(ds,dz)>% > ,\} AT (37.94)
- /0 ® :\‘:;E [( /0 t /Z [f(s,z)l”N(ds,dz))%/\,\qJ g A"\

+E ( /0 t /Z 1€(s, 2)[PN (ds, dz))%

1
Let us denote ( fot [z 1€(s, 2)[PN (ds, dz)) " by X. The first term on the right side of (3.7.24) becomes

_f_q 0%[( /0 t /Z |£(s,z)|”N(ds,dz))%/\/\qJ g'A7 1A

o0
=C / E(X9 A N)g' A~
0
[e o]
_CE / (X AN AT—9-14)
0
X , 00
= CE / A¢AT~0"14) + CE / 1 X |9/ A7 ~9"1qx
0 X

o0
= CEXY + CEXY / gAT—"1g)
X
/

=C(1+ a—_—‘f——,)EXq’

Cq —_gx
q-¢

- %]E ( /0 t /Z 1€(s, 2)PN(ds, dz))gpi
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Therefore, we conclude that

E sup Iu(g)lq < qu (/ /]f(s 2)|PN(ds, dz)) +E (/ / |£(s, 2)|PN(ds, dz)) ;
(“’Z{%‘) ( / / I€(s, 2)PN(ds, dz)) :

which completes the proof.
O

Corollary 3.7.12. Let E be an martingale type p Banach space, 1 < p £ 2 satisfying Assumption
3.7.4. Suppose 0 < ¢ <p. If§ € ME ('P E), then there ezists a separable and cidlag modification
i of u such that for some constant C > 0, independent of u, all t € {0, T]

E sup |i(s) Iq <CE (/ / 1€(s, 2)Ev(dz) ds) (3.7.25)

0<s<t

Proof of Corollary 8.7.12. First, we consider the case ¢’ = p. Since £ € MP(P; E), so both inte-
grals [y [, |€(s, 2)[v(dz)ds and fot [71€(8, 2)|%N(ds, dz) are well defined as the Lebesgue-Stieltjes
integrals. We can obtain from Theorem 3.7.11 with ¢’ = p that there exists a separable and cadlag
modification @ of u (3.7.25) such that

E sup. lu(s)|z <CE (/ / |€(s, 2)| 5N (ds, dz))

0<s<
—C’]E(/ / 1€(s, 2)[Bw(d2) ds)

This shows (3.7.25) for ¢ = p. Now we are in a position to show Inequality (3.7.25) for 0 < ¢’ < p.
Let ¢’ be fixed. Take A > 0. Define stopping time

7 = int{t € [0,T] : ( /0 t /Z I€(s, 2)Pu(dz) ds)% > A},

The random variable 7 is a stopping time. Indeed the process fg [z 1€(s,2)[Pr(d2)ds, 0 <t < Tis
a continuous process and so the claim follows immediately. It follows from Chebyshev’s inequaliy
and Corollary 3.7.10 that

P (O Sup lu®)] > '\) = El{aupgg, <onr ()| >A} (3.7.26)

< ——IE sup |u(s)|?
A9 0<a<It)/\1'! (@)l

< ;\C;E ( / . / |€(3»Z)Ipu(dz)ds)§
< bYi [(//|E S,Z)I”V(dz)d.g> /\,\QJ

where we used the definition of stopping time 7 and the increasing property of process fot [ |€(s, 2)[Pu(d2) ds,
0 <t < T. The rest of the proof can be done exactly in the same manner as in the proof of Theorem
3.7.11. 0
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Corollary 3.7.13. Let E be an martingale type p Banach space, 1 < p < 2 satisfying Assumption
8.7.4. Then for any n € N there ezists a constant C = C(n) such that for every every & €

NP_, MP([0,T) x 2 x Z,P,A®P x v;E) and t € [0,T] we have

n—k

n n ¢ P
E ) < S E ( / / )P
S U ; AARECRIACOL) I (3.7.27)
where i is the cadlag modification of u as before.

The proof of Corollary 3.7.13 is similar to the proof Lemma 5.2 in Bass and Cranston [6] or
of Lemma 4.1 in Protter and Talay [67]. Essential ingredients of that proof are the following two

results. The second of them being about integration of real valued processes.

Lemma 3.7.14. Let E be an martingale type p Banach space, 1 < p < 2, satisfying Assumption
8.7.4. For any 0 < ¢ < o0, there ezists a constant C such that for all € € M"(75; E) we have

s . q t L'l
E sup / /ﬁ(r,z)N(dr,dz) <CE (/ / lé(s,z)l’,’sN(ds,dz)) "Lte[nT].  (3.7.28)
0<s<t|Jo JzZ E 0Jz
Proof of Lemma 3.7.14. This result is a special case of Theorem 3.7.11 when S(t) = I, 0 <t <
T 0
Lemma 3.7.15. For any n € N there ezists a constant Dy > 0 such for any process
n
f € (| M*"(P;R)
. k=1
and t € [0,T), the following inequality
) Nards)| i t " ot
Eu// T2z r,dz <D ]E(// ,2)|P z)
0zs2: o zf( : "o Vo Jz (s, )" v(dz)ds (3.7.29)
holds.

Proof of Lemma 8.7.15. We shall show this Lemma by induction. The case n = 1. This follows
from [16]. Now we assume that the assertion in the Claim is true for n — 1, where n € N and
n > 2. We will show that it is true for n. Since by assumption f € MP(P; R), so both integrals
f(f [z 1f(s,2)PN (ds, dz) and fg [z 1£(8,2)[Pv(dz)ds are well defined as Lebesgue-Stieltjes integrals.

Moreover, we have

¢ . t t
/ / |f(s,2)[PN(ds,dz) = / / |f(s,2)P N(ds,dz) — / / |7 (s, 2)Pv(dz)ds. (3.7.30)
0Jz 0JZ 0J2
Hence by applying first inequality (3.7.28) and next the equality (3.7.30) we infer that
6 i~
/ /f(r, z)N(dr,dz)
0 Jz
pn—l

<2'c{E ( /0 ‘ /Z 1£(s, 2P N(ds,dz))pn-l +]E( /0 t /Z 1£(s, 2)P V(dz)ds) ) @73y
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E sup
0<s<t

" <cE I [ 166, PN, 22




Next, by the inductive assumption applied to the real valued process |f|P € ﬂ""l M (P; R), we
have

]El/ot/Zf(s, 2)N(ds, dz) d

e (D“‘l % </ot e wia ds) . (/ot [ i#6.p va2) ds) p)
i=1

< angllE(/ot/Z|f(s,z.r)|’f”c v(dz) ds)p , (3.7.33)

pn—l—i

This proves the validity of the assertion in the Lemma for n what completes the whole proof. O

Proof of Corollary 3.7.13. Let us take n € N. By applying first Theorem 3.7.11 and next the
equality (3.7.30) when & € MP(P; E), we infer that for all ¢ € [0, T,

n—1

T ik ‘ P ds.d
E aup [i(s)f5 gcm:( /0 /Z 1€(s, )| N(ds, z)>

" O (/otleg(s,z)@ N(ds,dz))p

L OR ( / t / 1€(s, 2)|%, v(dz) ds)pﬂ’l

"l D, 121&(/ /|g(s A u(dz)ds)

n 1

+2" 7 CE (-/0 /Zlﬁ(s,z){% u(dz)ds)

pn—k

SC(n)kz::lE( /0 t /Z |g(s,z)|§u(dz)ds> ,

where we used in the third inequality Lemma 3.7.14 with f replaced by real-valued process |£[% €
n—1 Mr*(B;R). This completes the proof of Corollary 3.7.13. )

n-—-1

pn—l—k

It is possible to derive inequality (3.7.28) by the method used by Hausenblas and Seidler in [38],
see as inequality (4) therein. These authors used the Szekéfalvi-Nagy’s Theorem on unitary dilations
in Hilbert spaces. The latter result has recently been extended by Frshlich and Weis [32] to Banach
spaces of finite cotype. However, this method works only for analytic semigroups of contraction
type while the results from the current paper are valid for all Cp semigroups of contraction type.
Let us now formulate the following result whose proof is a clear combination of the proofs from
[38] and [32]. For the explanation of the terms used we refer the reader to the latter work. Similar

observation for processes driven by a Wiener process was made independently by Seidler |[74].
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Theorem 3.7.16. Let E be an martingale type p Banach space, 1 < p < 2. Let —A be a generator of
a bounded analytic semigroup in E such that for some 6 < é7r the operator A has a bounded H*®(Sy)

calculus. Then, for any 0 < ¢’ < oo, there exists a constant C' such that for all ¢ € M? (’P E) we
have

E sup ( /0 ’ ZS(s—-r)&(r,z)N(dr,dz))Z_<_C’lE ( / / E(r, 2)E u(dz)dr) te0,T).

0<s<t
The following result could be derived immediately from the proof of above theorem.

Corollary 3.7.17. Let E be a martingale type p Banach space, 1 < p < 2. Let —A be a generator of
a bounded analytic semigroup in E such that for some 6 < 3 the operator A has a bounded H*(Sp)
calculus. Then, the stochastic convolution process u defined by (3.7.8) has cdadlag modification.
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Chapter 4

Stochastic Nonlinear Beam Equations
w.r.t. Compensated Poisson Random

Measures

Throughout the whole chapter we assume that H is a real separable Hilbert space with inner product
(-,-) and corresponding norm || - ||g. By B(H) we denote the Borel o-field on H, i.e. the o-field
generated by the family of all open subsets of H. Let B : D(B) — H, D(B) C H, be a self-adjoint
operator. Suppose that A : D(A) — H, where D(A) C D(B), is a self-adjoint (unbounded) operator
and A > ul for some p > 0. Moreover, we assume that B € L(D(A), H). Here D(A) is the domain
of A endowed with the graph norm ||z|lp(4) := |[Az|. Let m be a nonnegative function of class C".
Let (Q, F,P) be a probability space with the filtration § = (F;)¢>0 satisfying the usual hypotheses

and (Z, Z,v) be a measure space, where v is a o-finite measure. Let
N((0,t] x B) = N((0,t] x B) —tv(B), t >0, B€ Z,

be a compensated Poisson random measure on [0, T} x Q x Z with its compensator v(-).
Let MZ (BF) be the space of all H-valued progressively measurable processes ¢ : Ry x O — H
such that for all T > 0,

T
2
E /0 6%t < oo.

Let M;"oc(’ﬁ) be the space of all H-valued F-predictable processes ¢ : Ry X 2 x Z — H such that
forall T >0,

E /0 ) /Z lo(t, 2)2v(dz)dt < oo.
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Our main aim is to consider the following stochastic evolution equation

g = —A%u — f(t,u,ug) — m(|| Biu||?) Bu + /Zg(t,u(t—-),ut(t_), 2)N(t,dz),

u(0) = up, us(0) = u1. (4.0.1)
Here f : Ry x D(A)x H 3 (t,€,n) — f(t,€,m) € H, is a B(R4+)®B(D(A))® B(H)/B(H)-measurable
function and g : Ry x D(A) x H x Z 3 (t,§,m,2) = g(t,§,m,2) € H, is a B(Ry) ® B(D(4)) ®
B(H) ® Z/B(H)-measurable function. One can transform Equation (4.0.1) into the following first
order system

du = wdt

duy = —APudt — f(u, ue)dt — m(| Bul?) Budt + /Z ot u(t=)r w(t=), )Nt de). 0D

Or equivalently, we can rewrite it in the form

(d)= (o ) () e ( — st R

0
+ ( [z 9@t u(t=), us(t-), 2) N(dt, dz) )

Now we introduce a new space H := D(A) x H with the product norm

()

It is easy to see that H is a Hilbert space with norm l| - ll%. We also define functions

2
W 1Az (1Z; + liyli%-

0
PR x B3 0602 (g eo gt ) €% 699

0
G:Ryx D(A) xHxZ2> (t»f,ﬂ, z) — ( g(t,{,n,z) ) €H. (404)

Put

A;-(__‘:P é) D(A) = D(A42) x H.

Set u = (u,u)T and up = (uo,u1)T. Then Equation (4.0.1) allows the following form

du = Audt + F(t,u(t))dt + -/Z G(t,u(t-), sz(dt, dz), t>0
(4.0.5)

u(0) = ug.

Remark 4.0.18. See also Chapter V in [54]. The operator A generates a Cop-unitary group on H.
To prove this one needs to prove that both A and —A generate contraction Cp-semigroups on H.
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For this it is sufficient to apply the Lumer-Phillips theorem. Hence we only need to show that A is
dissipative and R(I — A) = H and the same for —A.
The operator A is dissipative. To see this, we first observe that for every z = (z1,z3)7 € H,

o= (e ) (2)=(30):

(Az,z) = (Azg, Azy) + (—A2$1,$2)
= (A.TQ,A(El) — (Az;, Azs) =0,

which shows that 4 is dissipative. In order to apply Lummer-Phillips Theorem, we also need to
verify that R(I — A) = H. The inclusion "C" is clear. For the opposite part R(I — A) D H, we
take y = (y1,%2)T € H. We need to find z = (z1,22)7 € D(A) such that (I - A)z =y. So

I -I 1\ _ (W
A? T 2 ) \ 1
That is 1 — 22 = y1 and A%z; + 23 = y2. By some simple operation, this system is equivalent to

I+ A%z =91 + 12
Ty =T — Y.

So

This system has a unique solution if and only if (I + A2) is invertible. This is true by the following
reasons. Since A > ul, so A? > u2I. Then 0(A%—p2I) C Ry Here o(A%— pi*I) is the spectrum set
of A2 — 2], Set A= —p? —1 < 0. So A € p(A% — y2I). 1t follows that AT — (A% — p2I) = —J — A?
is invertible. Thus I + A? is invertible. Therefore, this system has a unique solution z = (zy,z;)7.

This means that y € R(I — A).

Now by applying the Lumer-Phillips Theorem [62], we find out that the operator A is the infinites-
imal generator of a contraction Co-semigroup, denoted by (T%(t)):>0, in H.

In the same way, one can show that the operator —.A is dissipative and R(J +.4) = H. On the basis
of the Lumer-Phillips Theorem mentioned above, we see that the operator —A is the infinitesimal
generator of a contraction Cp-semigroup, denoted by (T (t))¢>0, in H.

Then one can see that A is the infinitesimal generator of a contraction Cp-group eth, —c0 <t < oo

given by

[ T t>0
eM”{T_?—t) t<0

4.1 Existence of Mild Solutions to the Stochastic Nonlinear Beam
Equations

Definition 4.1.1. A strong solution to Equation (4.0.5) is a D(A)-valued adapted stochastic
process (X (t))i>0 with cadlag paths such that

(1) X(0) =uo as,,
(2) the processes ¢, @ defined by

¢(t,w) = F(t, X(t,w)) (t,w) € Ry x
o(tyw, 2) = Gt, X(t—,w),z) (t,w,2) ERL x N0 x Z

belong to the spaces M2, (BF) and M2, (P) respectively.
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(3) for any t > 0, the equality
t t ¢ i
xO=uo+ [ axis+ [ Fax@ds+ [ [ 6o X@-)9N@sds @1y

holds P-a.s.

Definition 4.1.2. A mild solution to Equation (4.0.5) is an H-valued predictable stochastic
process (X (t))¢>0 with cadlag paths defined on (2, F, ¥, P) such that the conditions (1) and (2) in
the definition of 4.1.1 are satisfied and for any ¢ > 0, the equality

t t
X(t) = g + / et=DAR(s, X (s))ds + / / et=4Gq(s, X (s-), ) N (ds, dz) (4.1.2)
0 0 JZ
holds a.s.

We say that a solution (X (t))t>0 to the Equation (4.0.5) is pathwise unique (or up to dis-

tinguishable) if and only if for any other solution (Y'(t)):>0, we have

P(X(t)=Y(t), forallt >0)=1.

Remark 4.1.3. (1) Note that the strong solution has to take values in D(A4) while the mild solution
takes values in the whole space H. Besides, not every mild solution is a strong solution. But
if a strong solution exists for Equation (4.0.5), then it should be of the form (4.1.2).

(2) Notice that since processes appearing on both sides of equality (2.1.7) are cadag, so from the
fact that if two processes are modifications of each other and they have a.s. right continuous
paths, then they are indistinguishable, we infer that the order of the quantifiers "for all t > 0
" and "P-a.s." can be interchanged.

Definition 4.1.4. We say that X is a mild solution on a closed stochastic interval [0, 0] if the
integral on the right of (4.1.2) is defined on [0,0] and it equals to X on [0, o], P-a.s., namely

t t
X(2) =eMuo+/ e(t—s)AF(s,X(s))ds—i-/o /Ze(t")AG(s,X(s—),z)N(ds, dz) on [0,0], P-as.
0
(4.1.3)

Remark 4.1.5. Alternatively, we may rewrite (4.1.3) in the following equivalent form
tAT
X(tAT)=ebuo+ / et T=AP(s, X (8))ds + I (G(X))(tAT) 20, P-as,,  (414)
0

where I,(G(X)) is a process defined by
t
L(GX))(t) = /0 /Z 1o7)(8)el" 4G (s, X (s-), 2) NV (ds, dz), t > 0.

Remark 4.1.6. According to Corollary 13.7 in the monograph [58] every predictable and right-
continuous martingale is continuous, so if we impose both properties on a process, it turns out that
we are assuming nothing but the continuity of the process. In our definition, the reason why we need
the predictability of the process X is to get the predictability of the integrand e(:=4G(t, X (s), z).
But since we assume that the process is cadlag, we can get around this difficulty by taking the

left-limit process.
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In this section we are going to consider the simple case where the function F is given by
0
F:Ry xQxHxH-H, (t,w,§,n)— . 4.1.
* ot (_gmen ) (4.15)

To order to show the existence and the uniqueness of our mild solution, we impose certain growth

conditions and the global Lipschitz conditions on f and g.

Assumption 4.1.7. There exist constants Ky and Kg such that for allt > 0 and allz = (z1,23)" €
H,

I£(t,z1,22) |3 < Kp(1+ lIzl13) (4.1.6)

[ lott 21,22, 2lfvde) < K1+ el (@17)

Assumption 4.1.8. There exist constant Ly such that for all t > 0 and all x = (z1,75)7 € H,
y=(y1,%2)" €H,

£t 21, 22) = F(t, vy, 92)llm < Lyllz = ylln (4.1.8)

Assumption 4.1.9. There ezist constant L, such that for allt > 0 and all z = (zy,29)7 € H,
y=®Lm) €M,

/Z lg(t, 21, %2, 2) — g(t, y1, y2, 2) || Hv(dz) < Lyllz — yll3 (4.1.9)

Now let’s start our main theorem of this section. The proof of existence of mild solution is based

on Banach fixed point theorem.

Theorem 4.1.10. Suppose that functions f,g satisfy Assumptions 4.1.7, 4.1.8 and 4.1.9. Then
there exists a unique (up to distinguishable) mild solution of Equation (4.0.5). In particular, if

to € D(A), F(-u(")) € ML (BF; D(A)) and G(-,u()) € Mi(P; D(A)),
then the mild solution coincides with probability 1 with a strong solution at all the points over R..
More precisely, the mild solution satisfying (4.1.2) is P-equivalent to
t t t -
u(t) = uo + / Au(s)ds + / F(s, u(s))ds + / / G(s, u(s—), 2)N(ds, dz) P-a.5. t > 0,
0 0 0 Jz

In order to prove Theorem 4.1.10, we willl first establish several auxiliary results.

Proposition 4.1.11. Suppose that Z : Ry — H is a progressively measurable process. Let X (t) =
eAZ(t), t > 0 and Y(t) = e"*4Z(t) Then X(t) and Y(t), t > O are progressively measurable
processes.

Proof of Proposition 4.1.11. Define a function o : Ry x H 3 (t,z) — etAx € H. Since etA, t > 0 is
a contraction Cg-semigroup, so ||et4|| c(#) < 1 and for every z € M, a(:, ) is continuous. Also, for
every t > 0, a(t,-) is continuous. Indeed, let us fix o € H. Then for every z € A

le(t, ) ~ at, zo) |l = lle*(z ~ zo)lu < llz — zolla.
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Thus af(t,-) is continuous. This shows that the function « is separably continuous. Since by the
assumption the process Z is progressively measurable, one can see that the mapping

Ry X Q3 (s,w)— (8, Z2(s,w)) ERy xH
is progressively measurable as well. So the composition mapping
Ry x 23 (s,w) — (5, 2Z(s,w)) = a(s, Z(s,w)) € H

is progressively measurable, and hence, the process X(t), t > 0 is progressively measurable. The
progressively measurability of process Y (t), t 2 0 follows from the above proof with A replaced by

—A. 0
Proof of Theorem 4.1.10. Given T > 0. First we denote by M2 the set of all H-valued progressively
measurable processes X : Ry x Q — H such that

MXM=3g%mmmmw%<w.

Then the space M2 endowed with the norm [[X||x := supggscr e_'\t(lEHX(t)H?H)%, A>0, isa
Banach space. Note that the norms I1llas A = 0, are equivalent. Let us define a map &7 : M2 — M2

by
t t
(B7X)(t) = euo + /0 et~ F (s, X (s))ds + /0 /Z et=94G(s, X (s), 2)N(ds, dz).

We shall show that the operator @ is a contraction operator on M2 for sufficiently large values of
. We first verify that if X € M3%, then 87X € M7.

Claim 1. The process fot et=9)4F(s,X(s))ds, t € [0,T), is progressively measurable.
Proof of Claim 1: Since F is B(Ry) ® B(#H)/ B(#)-measurable and the process X (t), t € [0,T] is
progressively measurable, so the mapping

0,T] x 25 (t,w) = (¢, X(t,w)) = F(t, X (t,w)) € H

is progressively measurable as well.
By Lemma 4.1.11 we find out that e(=AF (s, X(s)) is also progressively measurable. It then

follows from the Fubini Theorem that the integral Jy e=MAF(s, X(s)) ds is Fi-measurable.

Since the process [0,T] > ¢ Jye(=9AF(s,X(s))ds € H is continuous in ¢, this together
with the adaptedness assert the progressively measurability of the process fot e(~OAF (s, X (3)) ds
t € [0, 7). Again, by Proposition 4.1.11, we infer that the process ’

‘ t
/0 et=DAF (s, X(s)) ds = e‘A/o e *AF(s, X(s)) ds, t€[0,T),

is also progressively measturable. i
Claim 2. The process [ [,€~94G(s, X(s), 2)N(ds, dz), t € [0,T] has a progressively measurable

version.
Proof of Claim 2: First of all, we show that the process I3 [, e494G(s, X (s), 2)N(ds,dz), 0 < t <

T is 3-adapted. Let us fix ¢ € [0, T)]. Since by assumption the process X is progressively measurable,
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a similar argument as in the proof of claim 1 shows that the integrand function e*=94G(s, X(s), z)
is progressively measurable. Hence by assumption 4.1.7, the integral process

/ / Loge®4G(s, X(s), 2) N (ds,dz), € [0,T)
0 Z

is well defined. Moreover, we know from Theorem 3.3.2 that this process is none but a martingale. In
particular, for each r € [0, T, the integral fj [, 1o, t]e(t 9)AG(s, X (s), 2) N(ds, dz) is F,-measurable.
By taking r = t, we infer that fo Iz L, t]e(‘ 9AG(s, X (8), 2)N(ds, dz) is F;-measurable.

Also, In view of Theorem 3.7.9, the stochastic convolution process f; [, e=94G(s, X (s), 2) N(ds, dz),
t € [0,T) has a cadlag modification. Therefore, we infer that the process

/ t / ett=04G(s, X (8), 2)N(ds,dz), t € [0,T)
0 JZ

has a progressively measurable version.

In conclusion, the process (®7X)(t), t > 0 is progressively measurable. So it remains to show
that || &7 X |2 < oo.

First, we find out that

182X ]lx < lle ol + || /0 ot =I4R(s, X(s))ds|

e =D4G(s, X (s), 2)N (ds, dz)
Z A
=1+ I+ Is.
For the first term Iy, by the definition of the norm || - ||, we have

1
. - 2\2
= lle4uollr = sup e (E leuo[3,) " < fluollse
0<t<T

where we used the fact that e*4 is a contraction Cp-semigroup. Also, by using the Cauchy-Schwartz
inequality and the growth conditions (4.1.6) and (4.1.7), for the second term I3, we obtain

2\ 1
H

)
< a7 (& ‘ nF<s,x<s>)u%ds)

0<t<T

t
Iy = sup e~ (E “/ et=AF(s, X (s))ds
0

0<t<T

3 (g [t }
< p, TG ( / (1+|IX(s)II%)ds>

<TK}+ sup TiK} / e Pds sup E e~ X(5)
0<t<T

<TKf% TéKf% sup e~ (E|| X (s )“2)

; b aup e
< — 7
< TKf + 2)‘T Kf Oglange (E”X(s)nﬂ)
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In the same way, we have

t
Iy = sup e M (]E / et=94G(s, X (3), z) N(ds, d2)
0 Jz

2\ 3
0<t<T H

=y e (B [ [ 16400, X0, (ae)as)

ol

OstsT
t i
<K} sup M (E / (1+nx<s>u%>ds)
o<t<T 4]
, }
1 1
< KZT? + K} ( / ~27%ds sup E e 2A“’IIX(S)Hu>
0

0<s<

SK T’+ K IIX(S)IIA,

where the second equality follows from the isometry property of It6 integral w.r.t. compensated
Poisson random measures and the second inequality follows from the growth condition (4.1.7) of
the function g. Combining the above three estimates, we get

1 1 1
ler(X)|2 < I + T2+ Is < lluoli}, + TK;% + KT + ﬁ(T%K; + KDIX(8)x <00 (4.1.10)
which implies that ®7(X) € M2,

Now we shall show that ®r is a contraction provided A is chosen to be large enough. For this we
take X1, X2 € MT Then we obtain the following inequality

@r(X:) ~ Sr(XD)la = || [ 4 (Fs, Xa(6)) = Fla, Xo(e))) s
+/0'/Ze("")"‘(G(s, X1(8),2) - G(s,Xg(s),z))N(ds,dz)”j
< /0 el=D4(F(s, X1(5)) — F(s, Xa(s)) ) ds
A

+ [ /Z e=94(G(s, X1 (8),2) = Gl Xa(a), ) N(ds, da)||
= Iy + Is. (4.1.11)

Observe first that, similarly to the estimates on I; before, we have
2\ 3
H)

< T} sup e™ <]E /0 t “e“—’)"‘(F(s,Xl(s)) —F(s,xg(s)))“ids)%

0<t<T

/ t e(‘“’)A(F(s, X1(s)) — F{(s, Xz(s)))ds

0

I;= sup e ™ <IE
0<t<T

, ;
<7ty sy (& [ 16000 - Xa(olfyas)
0

o<t<T

T 3 3
<y ([ eeoas) (sup Ee-muxl(s)—xz(sn&)
0

0<s<T

THL
< —Ex—fnxl(s) — Xa(s)]Ix,
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where we used the Cauchy-Schwartz inequality and the globally Lipschitz assumption (4.1.6) on
f. Also on the basis of the It6 isometry property (see Theorem (3.3.2)) and the global Lipschitz
assumption (4.1.7) on g, we find out that

2\ %

H>

1

= sup e~ <E/ot/z “e(t"M(G(s,Xl(s),z) — G(s, Xz(s),z))”i v(dz)ds) :

0<t<T

<E /OT (e—,\t /Ot /Z 1G(s, Xl(s),Z)—G(S,Xg(s),z)||?ﬂy(dz)ds> dt

e(t—9)4 (G(s, X1(s),2) — G(s, Xa(s), z))N(ds, dz)
z

Is= sup e~ ™ (IE
0<t<T

i

t 2
<1y sup & (B [ 11(0) - Xalo)y )
0

0<t<T
1 1
T 5 2
<L, ( / e"z’\(t")ds) (sup Ee=2%| X (s) — Xg(s)n%>
0 0<s<T
< 2/\||X1(3) X2(8)[a-

By substituting above estimates into the right-side of inequality (4.1.11), we get that

1
TaL¢+ L
187(X1) — &r(Xa)I} < —L22)1 X1 - Xa3. (4.1.12)

- 2)

Therefore, if Th; +L <1 3» then @7 is a strict contraction in MT We then apply the Banach
Fixed Point Theorem to infer that ®r has a unique fixed point in M2. This implies that for
any 0 < T < oo, there exists a unique (up to modification) process (i(t))oct<T € M% such that
i = &7(#) in M2.. ‘
Notice that we can always find a cAdag version satisfying (4.1.2). Indeed, we know that the unique-
ness holds in the sense that if there exists another process v € M% satisfying v = ®pv, then for
every t € [0,T], ii(t) = v(t), P-a.s. Let N := {X € M% : X = &7X}. By the uniqueness, the
set A contains all stochastically equivalent processes of the process ii. Among those stochastically
equivalent processes in N, we are trying to find a version (u(t)) of (@(t)) such that (u(t)) is cadlag
and (u(t)) satisfies (4.1.2). For this, we define

u(t) = (2ri)(t)
t t .
=e‘Auo+/ e("’MF(s,ﬁ(s))ds+/ /e(“’)AG’(s, i(s), 2)N(ds,dz), t € [0,T),
0 0 Jz
Note that the process u is cadlag, see Theorem 3.7.9. Hence, we may define
b(t) = (ru)(t)
-etAuo-f-/ (=-a)ApR(s,u(s )ds+/ /e(t DAG(s,u(s—), 2)N(ds,dz), t € [0,T).

We observe by the definition of two processes u and ii that for all t € [0, T, Ellu(t) —#(t)||3, = 0. This
implies that u is a cAdlag version of ii. From this, we also find out that E fo llu(t)—u(t)||2,dt = 0. It
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follows form the continuity of functions F(t, z) and G(¢, z, 2) in the variable  that for all ¢ € [0, T

2

Efutt) - o, <2E| [ e (Flo, o) ~ Fls,u(s) s
H

+2IE”/Ot/ZG(s,ﬁ(s),z)—G(S,u(s—)’z)N(ds’dz)”:{
2

=2E “/Ote("’)"‘ (F(s,ﬁ(s)) — F(s, u(s)))ds N

t
= 2
+ 2]E/0 /Z ”G(S, i(s), z) — G(s, u(s)’z)“,HV(dZ)ds —0.
Hence, we infer that for all t € [0,T1,

t t
u(t) = o(t) = euo + /0 eI F(s,u(s))ds + /0 /Z elt=MG(s, u(s-), 2) N (ds, dz), P-ass.,
(4.1.13)

which shows that u satisfies (4.1.2). Since both sides of above equality are cadag, the stochastically
equivalence becomes P-equivalence. More precisely, we obtain a pathwise uniqueness cadlag process
in M2 such that for all ¢ € [0, T}, the equality (4.1.2) holds. However, if we release the cadlag
property, the pathwise uniqueness no longer holds and we could only have stochastically uniqueness

instead.
Now the uniqueness feature of a solution on any given priori time interval [0, T'] allows us to amal-

gamate them into a solution (u(t))s>0 to problem (4.0.5) on the positive real half-line. Moreover,
this solution (u())s>0 to problem (4.0.5) is unique up to distinguishable.
In other words, for t > 0,

t t
u(t) = etAug + /0 e(t—a)AF(s, u(s))ds +/0 /Ze(t_a)'AG(s,u(S—),z)N'(ds,dz) Pas. (41.14)
Note also that since u € M2, for every T >0,
T ) oo [T
E [ 7o) s < 3B [ @+ I Bds < BT+ i) < o
T T
5 [ [ 16t 100 2f(de)ds < LB [+ I < 2370+ i) < o0
which shows that F(-,u(")) € M{,(BF) and G(-,u(),2) € M3, (P). In conclusion, Problem (4.0.5)
has a unique mild solution.
Now let us suppose that up € D(A), F(- u(")) € M2 _(BF; D(A)) and G(-,u(")) € -Mzzoc(ﬁ'; D(A))
where D(A) is endowed with the graph norm. We observe that u(t) € D(A) for every t > 0. To,

see this, let us us fix t > 0. Let R(\A) = (Al - A)~1, A > 0, be the resolvent of .A. Since
AR(MA) = AR\ A) — I, AR(\, A) is bounded. Hence, since G(,u(-)) € M2 (P;D(A)), we
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obtain

RO\ A) /0 t /Z Aelt=DAG(s, u(s—), 2) N (ds, dz)
= / t / RO\, A)Aet=AG (s, u(s—), )N (ds, dz)
0 JZ .
= AR(\, 4) / / et=AG (s, u(s—), 2) N (ds, dz)
0 JZ

t ~
_ / / et=DAG(s u(s=), )N (ds, dz).
0 JZz

Thus, it follows that
t -~
/ / et=94Q (s, u(s—), 2)N(ds, dz)
0 JZ
t 3 ¢ .
= R(\, A) [A / / et=0AG (5 u(s=), ) N (ds, dz) — / / A=AG(s, u(s—), 2) N (ds, dz)] .
0 JZ 0 JZ

Since Rng(R(), A)) = D(A), we infer that fg [ e494G(s,u(s—), 2)N(ds,dz) € D(A). Here Rng
denotes the range. In a similar manner, we can show that fot et=9AF(s,u(s))ds € D(A). Hence,
u(t) € D(A).

Now we are in a position to show that

t t -
A/ /e(t")AG(s,u(s-),z)N(da, dz) =/ /Ae(t-a)Ag(s,u(s—),z)N(ds, dz), P-as. t>0;
0o Jz 0 Jz

t t
A / et-A p(s y(s))ds = / Act=DAP(s u(s))ds, P-a.s.t 3> 0.
0 0
(4.1.15)

For this, let us take h € (0,t). Since ﬂ'i"—’ is a bounded operator, we have the following

¢ t - 2
E“A / / et=DAG (s, u(s—), 2) N (ds, dz) — / / Aet-4G (s, u(s—), 2)N (ds, dz)
0JZ 0 JZ

2

ehA — 1 t )
<2E ( - A) / / e(t—a)AG(s,u(s—), z)N(ds, dz)
h 0 JZ .
¢ hA _ ]
+2E / / (e h I- ‘A) e(t‘a)AG(S,u(s—'),z)N(ds,dz)
0 JZ

2
=2E

(enAh_I _ A) /O* /Z et=AG (s, u(s—), 2) N (ds, dz)

, t hA 2
+2E / / ( e -1 A) et=94G (s, u(s), 2)
0 Jz

h
= I(h) + I1(h).

Since we showed that [; [, e~94G(s,u(s~), 2)N(ds,dz) € D(A), we infer that the term I(h)
converges to 0 a.8. as h | 0.
It is easy to see that the integrand

hA _
(e . ! —-A) et=04G (5, u(s), 2)

v(dz)ds

2
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is bounded by a function Cy|AG(s, u(s), 2)|? which satisfies E fot [z |AG(s,u(s), 2)[>v(dz)ds < oo for
every ¢ > 0 by the assumptions. Since A is the infinitesimal generator of the Co-semigroup (€t)t>0
the integrand converges to 0 pointwise on [0,t] x @ x Z. Therefore, the Lebesgue Domina,t:ad’
Convergence Theorem on interchanging a limit and an integral is applicable. So the second term

II(h) converges to 0 as h | 0 as well. Therefore, we have

2
=0,

t . t
E “.A/O /Ze(“")AG(s,u(s-—), 2)N(ds,dz) - / / Aelt=94G (s, u(s~), 2) N(ds, dz)
0 Jz
which gives that
t . t
.A-/O /Ze(t—s)AG(s,u(s—),z)N(ds,dz) = A LAe(t—S)AG(S,u(S—),Z)N(ds,dz), P-a.s. t> 0.
Similarly, one can show that
t t
.A/ e(t=AFR(s,u(s))ds =/ Aet=9)AF(s u(s))ds, P-as.t> 0.
0 0 =
On the other hand, we have, for every 0 < T < o0,
T ot .y ) T ,t
E/ /0 || Aelt= A F (s, u(s)) |3 dsdt < E/o / |, u(s)) |l 4)dsdt < oo
0 0
It follows that for every t € [0, T},
T gt
[ vt 4o e et < oo, P
Similarly, we also find out that for every 0<t<T< o0,
T st
g [ [ [ 1act460s,uts), atda)isa
o Jo Jz
T ot
o[ [ fousoon
0 0 Jz ” (3 u(s) z)“'D(A)V(dZ)det < 0.

Now one can apply the general Fubini’s Theorem and the stochastic Fubini’s theorem to obtain for
every 0 < s <t <00

/ot As AeE=AFR(r, u(r))drds
= /t /t Ae=AFR(r, u(r))dsdr
Ot r
= /0 (e(t")A - I) F(r,u(r))dr

1 t
=/0 e(t-T)AF(r,u(r))dr—/o F(r,u(r))dr, P-as., (4.1.16)
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and

t 1o
/ / / Ae®="AG(r, u(r—), 2) N(dr, dz)ds
0 Jo Jz

= /ot-/z (/rt AelMAG(r, u(r—),z)ds> N(dr,dz)
= ./ot/z (/rt Ae(“’)Ad.g) G(r,u(r-), 2)N(dr,dz)

= /ot/z (e("'M - I)‘ G(r,u(r-), z)N(dr,dz)

= /Ot /Z et=NAG(r, u(r—), z)N(dr, dz) - /Ot /Z G(r,u(r=), z)N(dr, dz), p.(a,s,, |
4.1.17

where we used the fact that since the semigroup e*4, t > 0 is strongly continuous, ¢ — ¢4z is
differentiable for every z € D(A). From what we have proved in the preceding part, we know that
Problem (4.0.5) has a unique mild solution which satisfies

t t -
u(t) = etug + / et=DAR (s, u(s))ds + / / et=4G (s, u(s—), 2)N(ds, dz) P-as. ¢ 0.
0 0JZ

Hence first by (4.1.15) we conclude that Au is integrable P-a.s. and then by using (4.1.16) and
(4.1.17) we obtain

/0  Au(s)ds = /0 “AetAyg 4 /0: /o " A= ARy, u(r))d:-&- /0 t /0 ) /Z e#=DAG(r, u(r—), 2) N (dr, dz)
= ety — :10-&- /0 e=IAP(r, u(r))dr — /0 F(r,tu(r))dr
+ /0 /Z e(:")AG(r,u(r),z)I\.tJ(dr,dz)— /0 /Z G(r, u(r=), 2) N (dr, dz)
= u(t) — uo — /0 F(r,u(r))dr — /0 /Z G(r,u(r-), 2) N (dr, d2)

which shows that the mild solution is also a strong solution.

Conversely, let u be a strong solution. By making use of the It6 formula (3.5.6) to the function
¥(s,y) = et=94y and process us(s) = R(), A)u(s), where R(), A) is the resolvent of A, we infer
for every t > 0 '

et=9AR(A, Au(s) — R(N, Aug = — /0 D AR(, Ayu(s)ds + /0 -4 R(, A) Au(s)ds
+ /0, et=AR(\, A)F(s,u(s))ds
+ /ot /Z et=AR(\, A)G(s,u(s-), z)N(ds,dz), P-as.
It follows that for every ¢t > 0

R()\, A)eli=94y(3) = R(), A) (uo + /0 t et=AF (s, u(s))ds

+/Ot/Ze(t—ﬂ)AG(s,u(s—),z)N(ds,dz)) P-a.s.
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Hence we have for every ¢t > 0,
t t
u(t) = e?ug + /0 et*AF (s, u(s))ds +/ / e =3AG(s,u(s—), 2) N(ds,dz), P-as..
0o Jz

Thus, we infer that u is of the form (4.1.1). Furthermore, the stochastic equivalence becomes P-
equivalence in view of the cadlag property of the strong solution and the mild solution. Therefore,
mild solution and strong solution are P-equivalent or in other word, uniqueness of strong solution

holds.
a

Remark 4.1.12. The following equation is a special form of Equation (4.0.5),

du = Audt + F(2)dt + / G(t, )N (dt, dz)
z (4.1.18)
u(0) = uo,

and hence in view of Theorem 4.1.10 it has a unique mild solution. Therefore, u satisfies

t t
u(t) = eug + / e(=AF(s)ds +/0 /Ze(t“’)G(s, z)N(ds,dz) P-a.s. t>0.
0

In such a case, if ug € D(A), F(s) € D(A) and G(s, 2) € D(A), for every s > 0 and 2 € Z, Equation
(4.1.18) has a unique strong solution which is stochastically equivalent to a mild solution. Hence

by Definition 4.1.1 u satisfies satisfies

t t
u(t) =u0+/0 Au(s)ds-i-/o F(s)ds+/()tLG(s,z)N(ds,dz) P-as. t2>0.

4.2 Local Mild Solutions

Now we turn to consider the case where f is locally Lipschitz continuous, g is globally Lipschitz

continuous and f, g satisfy the Assumption 4.1.7.

Assumption 4.2.1. Assume that for every R > 0, there exists Lr > 0 such that for allt > 0 and
for every T = (21,22) ", ¥ = (y1,¥2)" € H satisfying ||zlln, |¥lln < R,

I f(t 21, 22) — f(t, v, 92)llr < Lellz — ylln. (4.2.1)

Now we shall examine stochastic equation (4.0.5) of a more general type than the equation
with F defined by (4.1.5) in the preceding Theorem. Note that the function % 3 z = (z1,2) =
m(HB%ml”?) Bz, € H, is locally Lipschitz continuous. Hence if we suppose that f satisfies As-

sumption (4.2.1), then the function F given by (4.0.3) satisfies the locally Lipschitz condition as

well.
Remark 4.2.2. Note tha.ilz since m € C}(R,4), the function z — m(||B%m1||2) is locally Lipschitz
continuous, hence m(|| B 312, ||?) Bz, is also locally Lipschitz continuous.
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For future reference we specifically state the following important observations.
Remark 4.2.3. (1) Because of the continuity of the function F(¢,z) in z and the integration of F
is defined with respect to dt, the equation (4.0.5) can be rewritten in the following equivalent
form

du = Audt + F(t, u(t-))dt + /Z G(t, ult=), 2)N(dt, dz), > 0.

(2) Suppose that X and Y are two cadlag processes and 7 is a stopping time. If X and Y coincide
on the open interval [0, 7), i.e.

X(8,w)lgry(8) = Y(s,w)ljor)(s), (s;w) €Ry x Q,
then we have
G(S, X(S'—), z)l[O,'r] = G(S, Y(S—)» 2)1[0,1']'

This is because, the function G(s, X(s-), z) depends only on the values of X on [0,7). How-
ever, if G(t,w, z, z) itself is a stochastic process rather than a deterministic function, the above
fact may no longer hold.

Definition 4.2.4. A stopping time 7 is called accessible if there exists an increasing sequence
{7 }nen of stopping times such that 7, < 7 and limp—e0 7, = 7 a.8. We call such sequence {7,}nen
the approximating sequence for 7. A local mild solution to (4.0.5) is an H-valued, predictable,
cadlag local process X = (X(t))o<t<r, where 7 is an accessible stopping time with an approximating
sequence {7, }nen such that for any n € N and ¢ > 0, the stopped process X" := X(t A1), t > 0
satisfies,

tATh
X(t A1) =eAup + / ethm=AR (s X (5))ds + I, (G(X))tATs) t 20, P-as.,, (4.2.2)
0
where I, (G(X)) is a process defined by
t ~
L, (G(X))(&) = / / 10,71 (8)€04G (5, X (s-), 2) N (ds, d2), ¢ 2 0.
0 JZ

Here we call 7 a life span of the local mild solution X. A local mild solution X = (X(t))o<<, to
equation (4.0.5) is pathwise unique if for any other local mild solution X = {Xo<¢<#} to equation
(4.0.5),

X(t,w) =X(t,w), (tw)e[0,7AF)xQ

A local mild solution X = (X(t))oct<r is called a maximal mild solution if for any other local
mild solution X = (X (t))o<t<# satisfying ¥ > 7 a.8. and X loryxa ~ X, then X = X. Furthermore,
if P(r < 00) > 0, the stopping time 7 is called an explosion time and if P(7 = +00) = 1, the local
mild solution X have no explosion and it is called a global mild solution to Equation (4.0.5).

Remark 4.2.5. (1) There is an alternative way to define a local mild solution. We say that an
‘H-valued cadlag process X defined on an open interval [0,7) is a local mild solution if there
exists an increasing sequence {7,} of stopping times such that 7, /' 7, or in other words
[0,7) = Un[0, 5], and X is a mild solution to problem (4.0.5) on every closed interval [0, 7],
n € N (see Remark 4.1.5).
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(2) If Equation (4.0.5) has the property of uniqueness for local solutions, then the uniqueness of
local maximal solution holds as well.

Lemma 4.2.6. If a function h:H — H is locally Lipschitz on a closed ball B(0, R) C H, then the
function h : H — H defined by

T h(w) if lzlln < R,
h(z) = { h( ) othe:fwz'se.

is globally Lipschitz.
Proof. Since h is locally Lipschitz, we assume that there is a constant K such that for all {|z||3;, [|y{l% <
R, h

Ih(z) — K@)}, < Kllz - yl3.

Let's consider the function h in three cases.
If ||z, Iyl < R, then by the definition of b and local Lipschitz property of h we find out that

IA(z) - Al = Ih(z) - h)I% < Kllz - yli3,

If ||z||x £ R and lyllx > R, then

. Ry
inf |z - = || —Z_
e llz - yllw ol Y "
so we we deduce that
- . 2 2
i)~ Bl = ) — | < ko - L
|y' H lylla [l
2
<mwymwd By
Tl |l

< 2K||z — yli}, + 2K||z — g}, = 4Kllﬂv - yll%.
Similarly, for all |jz]l% > R and [ly|lx < R, we have
I1h(z) - h(@)lI% < 4Kl - yli3,.

If ||lz||, llylla > R, then
2

i . Rz Ry Rz R
hm—h@H2=”M )= h = Tl
@) = Bl = M) = ML, < % Tl ™ Tolll,
kR - L < KRy
Tol ™ Tolle| < 58— vl

Take K' = max{4K, KR?}. Therefore,
I1A(z) — h@)lln < K'lle -yl Yo,y € A,

as required.
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Theorem 4.2.7. Suppose that Assumptions 4.1.7, 4.1.9 and 4.2.1 are satisfied. Then there ezists
a unique mazimal local mild solution to Equation (4.0.5).

Proof of Theorem 4.2.7. Set f(z) = —f(t,w, T1,Z2) —m(HB%mllz)Bml. Since f is locally Lipschitz
continuous, for every n € N we may define the following mapping

. flz) ifflz|u<n
fnlw) = { Figme) it el >

. - T
where z € H. Then f, is globally Lipschitz continuous by Lemma 4.2.6. Set F,(z) = (0, fn(z))
for every x € H. Therefore, by Theorem 4.1.10 for every n € N there exists a unique mild solution
(Xn(t))e>0 to Problem (4.0.5) with F substituted for F;, which is given by

¢ t -
Xn(t) = eug + / el DA F, (s, Xn(s))ds + / / et=AG(s, X, (s), 2) N (ds, dz), t > 0. (4.2.3)
0 0 Jz
Define a sequence of stopping times {7,}52, by

Toi=inf{t 2 0: || Xn(t)|ln > n}

By the cadlag property of the solution X,, we know, in view of the Propersition 2.2.3, that 7, is
indeed a stopping time. First let us note that for every n < m, we have Fy(z) = Fi,(z) = F(z) for
all ||z|l» < n. Since || Xn(t)|l% < n for all t < 7, so by (4.2.3) we obtain

t t -
Xn(t) = ey +/ et=AE (s, X, (s))ds +/ / e(t=AQ(s, Xn(s—), 2)N(ds,dz)
0 0Jz

= etug + /t e(t-OAF(s, Xp(s))ds + /t/ elt=D4G (s, Xn(s-), 2)N(ds,dz), t € [0, 7).
° o (4.2.4)
Set
B(X,) := etPug + /ote(“"’)AF(s,X,.(s))ds + /OtLe(t"’)AG(s, Xn(s—),2)N(ds,dz).
Note that
BOXn)(w) = [ Gt Xn(ra=), )V ({7}, ).

which means that the value of ®(X,) at 7, depends only on the values of X, on [0,7,). Hence we
may extend the solution X, on [0,7,) to X, on [0, 7] by setting (see Appendix)

Xn(m) = &(X5)(75) = e™Aup + /o " e™m=AP(s, X, (8))ds + I'r,(G(Xn))(Ts) (4.2.5)

where
t -~
I, (G(Xn))(2) =/ / 1[o,rn]e(t”)AG(s, Xn(s—), 2)N(ds,dz), t > 0.
0Jz

In such a case, combining (4.2.4) together with (4.2.5), we deduce that the stopped process X (-At,)
satisfies

tATh
Xn(t A1) = eltAm)Ay, 4 / etAm=ApR (s X, (5))ds + I, (G(X,))tATy), tER;  (4.2.6)
0
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In a similar way, we have
tATn
Xon(t A ) = el Ay + /0 N F (5, Xin(s))ds + I, (G(Xm))(t A Ta), t € Ry

Set Tnm = Tn A Tm. It follows that IXn(t)]] £ n < m and | Xn(t)|| < m for t € [0,7nm). So
Fu(3, Xn(s)) = F(s, Xn(s)) and F(s, Xm(s)) = F(8, Xm(s)). Therefore, X, and X, both satisfy
the same Equation

t t
X(t) = euo + /0 et=}AF (s, X (s))ds + /0 /Z et=4G(s, X (s-), 2)N(ds, dz), on [0, T,m)-

Hence by the uniqueness of mild solution proved in the theorem 4.1.10, we have

Xa(t) = Xm(t), on [0, Thm) a.s.

Since
AXn(Tn,m) = LG(Tn,m’Xn(Tﬂ.m_)aZ)N({Tn}vd‘z),

and the Remark 4.2.3 tells us that G(8, Xn, 2) and G(s, Xm, z) coincide on [0, 7nm], we infer
Xn = Xm on [0, Tn'm]_
It follows that
™n < Tm ifn<m,.

We will show this assertion by contradiction. Let us fix n < m. Suppose that P(7n > ™m) > 0. Set
A = {r, > Tn}. By the definition of the stopping time 7,, we have || X,(t)|lx < n for t € [0,7,)
and || Xm(tm)n = m > n. Since X, coincides with Xy, on [0, 7nm], we find || Xn(mm)|ln =
| Xm (Tm) |l > n on A which would contradict the fact that || Xy, (t)||s < nfor ¢t € [0,7,). Therefore,
we conclude that 7 < T a.s. for n <m. This means that {7,}32, is an increasing sequence. So

the limit limyp—y00 7Tn €Xists a.s. Let us denote this limit by 7. Let Qp = {w : limpyoo Tn = Too}.

Note that P(Q) = 1.
Now define a local process (Xt)ogt<ro, 88 follows. If w ¢ Qo, set X (t,w) =0 for all 0 < ¢ < 7.

If w € o, then there exists a number n € N such that ¢ < 7 (w) and we set X(t,w) = Xn(t,w).
The process is well defined since Xn(t) exists uniquely on {t < 7,}. Indeed, for every t € R4 by

(4.2.6) we have
tATH
Xn(tATa) = e(t/\rn).AuO +‘/(; C(MT"-S)AF(B,Xn(S))dS+I—,-"(G(Xn))(t/\Tn)

Since X(t) = Xn(t) for t < ™, we infer that
XA ) = €0 ug + [ A (s, X () + I GO AT
where we used the fact that for allt >0,
I (G(Xn)(t) = /0 t /Z 110,7,,](s)e<‘—8>f‘c(s,xn(sf), z)N(ds, dz)
= /0“ /; 1[0,Tn](s)e(t—a)AG(s A Toy Xn(8 A Tn=), 2) N (ds, dz)
= /0‘ /Z 1[0,Tn](8)e(t—s)AG(s A Tny X (8 A Tn=), 2)N (ds, d2)

= I,(G(X))(?)-
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Furthermore, by the definition of the sequence {7,}5%; we obtain

t/‘l'ri':l(w) | Xt w)ln = li}ln |1 X (Tn(w),w)|ln 2 lirrlnn = 00 a.8.. (4.2.7)

To show that the process X(t), 0 < t < T is a maximal local mild solution to Problem (4.0.5).
Let us suppose that X = (X(t))ogt<# is another local mild solution to Problem (4.0.5) such that
F 2 Too 8.8, and Xljgryxn ~ X. It follows from (4.2.7) and the P-equivalence of X and X on

[0,75) that

li ¢ = |l X t, = . 2.
Wlﬁw)nxa,w)llu , /,Tlgl(w)ll (t,w)lln = o0 (4.2.8)

In order to get the maximality of X, we need to show that P(¥ > 7o) = 0. To prove this, assume
the contrary, namely P(¥ > 7o) > 0. Since X is a local mild solution, there exists a sequence {Fn}
of increasing stopping times such that X is a mild solution on the interval [0, %], i.e. the equation
(4.2.2) is satisfied. Define a new family of stopping times by

Ok = Tn Ainf{t: |1 X ()| > k}; 0 := sup on k-

Since op k < T, 0k < 7n. Also, observe that limy o = 7. This is because

limoy, = limsupo, x = suplimoy, ; = sup 7 = 7.

k k n ! n k ’ n

Therefore, since o /* ¥ and P(f > Too) > 0, there exists a number k such that P(o, > 7,0) > 0.
Hence, we have || X (t,w)||% < k for t € [Too(w), ok(w)) contradicting the earlier observation (4.2.8).
Now we continue to show the uniqueness of the solution. Actually, the uniqueness of the solution
has already shown in above construction of solution X. Alternatively, we may prove it in another
way. Let X and Y be two mild solution to Problem (4.0.5) on the stochastic intervals [0, 7] and

[0, 0]. respectively. We shall show that X =Y, P-a.s. on [0,7 A o).
For each n € N, define

op=inf{t 2 0: [|[Ya(t)lly >nor | X({)|ly >n}ATACARN.

Then [|Y(t)|l3 < nand || X(t)|[ < non[0,0,). Further, we find out that limp—0 P(on < 0AT) =0,
Hence we only need to verify that X =Y on [0, 0,), P-a.s. Since X(t), t € [0,7] and Y (t), ¢ € [0, 0]
are both mild solutions to Problem (4.0.5), we infer for that

t t -
X(t) = e4ug +/ et=AFR (s, X(s))ds +/ / et=94G (s, X (s~), 2)N(ds,dz) P-as., on [0,0,)
0 0o Jz
t ¢ _
Y (t) = et4ug +/ e("’)AF(s,Y(s))ds +/ / et=94QG(s,Y (s—), 2) N(ds,dz) P-a.s. on [0,00).
0 0Jz

Therefore, by using the Cauchy-Schwarz and Burkholder-Davis inequalities (see Corollary 3.7.12)
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that

E (ossllfan X(s) — Y(s)”i)
<2E (053;2 i /O T ele-ma (F(X(r)) - F(Y(r)))dr i)
+ 2E (ossyfa,. /08 /z elo—mA (G(T,X(T—),Z) - G(r,Y(r—),z))N(dr, dz) :t)

<2ni3e [ 1X(0) - Y ()las
) o
+2CL,E /0 1X (s) = Y(s)|13,ds

< C(n)E / T sup [ X(w) - Y(w)|Zds,

0 0Lu<on

where C(n) = 2(nLn + CLg). By applying the Gronwall Lemma, we obtain for every ¢t > 0,

E ( sup || X(s) - Y(s)”i) =0.

0<s<on

This implies that for every Xljo,0n) and Yl[o,," are indistinguishable. By Remark 4.2.3, we infer
that X =Y on [0, 0p] P-a.s. 0

4.3 Existence of Global Solutions

Suppose that Assumptions 4.1.7 and 4.2.1 are satisfied. By Theorem 4.2.7, there exists a unique

maximal local mild solution to Equation (4.0.5) given by
tATn . A
u(t ATn) = €euo + /0 el AF (s, u(s))ds + I, (G(X))(t ATa) ass., (4.3.1)
where 7, = inf{t > 0 : [[u(?)ll» > n}, liMpoeo Th = Too and
t+
TGN = [ [ 4G us-), )V s )

We call 7o the explosion time of (4.3.1). Now we shall apply Khas'minski’s test to show that
Teo = +00 a.8. That is uis a unique global mild solution.

Lemma 4.3.1. (Khas'minskii’s test for nonezplosions) Let u(t), 0 < t < 7o, be a mazimal local
mild solution to Equation (4.0.5) with an approrimating sequence {m}nen. Suppose that there exists

a function V:H =R such that
1. V>0o0nH,

2. qp = inf”x”uzg V(z) = +00
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3. EV(u(t Ama)) < EV(uo) + C [ (1 +E(V(u(s A Tn))))ds for eachn €N,

4. EV(up) < o0.
Then Teo = +0c P-a.s. We call V a Lyapunov function for (4.0.5).

Proof. Since by the assumptions
EV(u(t Ary)) < EV(ug) + C /0 t (1 +E(V(u(s Ama))))ds, £ 20,
we infer that
1+EV(u(tAmm)) <1+ EV(u+ C/ot (1 + E(V(u(sA Tn))))ds,t >0.

Hence, by applying the Gronwall Lemma, we obtain
1+ EV(u(t Amy)) < (1 + EV(uo))eCt.

Thus we have for each n € N that

EV(u(tAr) < (1+EV(u))e® ~ 1, ¢ 20,
It follows that for each n € N,
P({rm < t) =Elircy = [ lmcadP= [ L1, g < - [ Vil Am)1 <P
< '«517. /ﬂ V(u(t A 7))dP = qlnEV(u(t Ar)) < 51; [(1+EV(0))e® ~1].

Since EV(up) < 00 and g, — 00 a8 n — 00, 80 limp00 P({7 < t}) = 0. Since the sequence 7, is
increasing, the sets {{7, < t}}n are decreasing. Thus we infer that for every ¢t > 0,

P({rew < t}) = P({ lim m < th) =P (ﬂ {m < t}) = JLII;OP({Tn <t})=0.
neN
Hence 7o = +00, P-a.s. O

Theorem 4.3.2. Suppose that Assumptions 4.1.7 and 4.2.1 are satisfied and ug is Fo-measurable.
Let u be the unique mazimal local mild solution to Equation (4.0.5) with life span To,. Then 1o, =
+00 P-a.s,

Proof of Theorem 4.8.2. Let u(t), 0 < t < T be a maximal local mild solution to problem (4.0.5).
Define a sequence of stopping times by

Tn =inf{t > 0: |lu(t)||ly 2 n}, neN.

Then in the proof of Theorem 4.2.7, we showed that {r,;}nen is an approximating sequence of the
accessible stopping time 7o,. In order to apply Khas’minskii's test, we need to find a Lyapunov
function. Define a function V : # = Rt by

1 1 1
V(@) = Szl + s M(IBEzIE)
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where z = (z1,22)' € H and M(s fg m(r)dr, s > 0. It is clear that for every ¢ € H,

V(z)20.
Observe that
qr=_inf V@ =7 inf [alf+s inf M(|Bni|?)
i|2||H>R 2= u >R 2 Jelin>R 1
= §R2+%“ it M(|Bhz )
Slppglo /“E%m”2 m(r)dr
2 2 lzlln2R Jo '

Taking the limit in this equality as R — o0, we obtain that gg = +00. Meanwhile, we have

1 1
E(V (uo)) = 3Ellwollf; + SEM (I BAuol|ar) < co.

Thus conditions 1,2,4 in the definition of Lyapunov function are satisfied. It remains to verify
condition 3 from Lemma 4.3.1, namely,

EV(u(t A7n)) < EV(u) + C/ot (1 + E(V(u(s A Tn))))ds, t > 0. (4.3.2)

The idea is to prove (4.3.2) first for global strong solution and then extend to the case when u is a

local mild solution.
Step 1: Inequality (4.3.2) holds for global strong solutions. Suppose that u is a global

strong solution to Problem (4.0.5) satisfying
£
u(t) = uo +/0 [Au(s) + F(s, u(s),Ut(S))] ds+/0 /ZG(s, u(s—), z)N(ds,dz), P-a.s. t > 0.

Applying the Itd formula, see Theorem 3.5.3, to the process u(- A7) and function V(z) = §||z|3, +
%M(”B%J«j“%{), we obtain "

tATn
V(u(t A Ta)) ~ V(t0) = /0 (DV (u(s), Au(s) + F(s,u(s))))nds
tATn
+ /0 /z [V(u(s) + G5, u(s), 2)) = V(u(s)) (43.3)
— (DV(u(s)), G(s, u(s), z))] v(dz)ds

/ / u(s=) + G(s,u(s-), 2)) - V(u(s-))| N (ds, dz), t > 0.
(4.3.4)
Note that for any z = (a:l,mz)T and h = (hy, k)T,
DV(2)h = (@, hyu + m(| B ||?)(Bizy, Biny)
= (@, Byn + m(|| Bz} (Bz1, ha)
= (z, B3 + m(||BIz1 ||} ) (AA™2 Bz, Ahy)
= (

R L Gl B (A
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Hence for any z = (1, z2)" € H,

DV(@) =2+ m(Bhaifiy) (477 ).

It follows that for all z € D(A),

(DV @), Az = (o, dayu + m( B i 470 ) A

—(2).( o, P mamtmit( AP (i, I

= (Az1, Azo) gy + (To, —A™%21) gy + m(||Biz|%)(AA~2Ba;, Azy) +0
= m(||Biz:||}){Bz1, 22)nr-

Moreover,

(DV(@), P = (o, P + m{I Bl 477 ) P

=) (Csbentyybe - ez )

%IL' 2 A_zBml L 0
+m(||B 1||H)(( 0 ) '( —m(||Biz1||%)Bz1 — f(z1,22) ))H

= (3, —m(|| B3 z1||}) Bz — f(21,22))1 + 0
= —m(||Biz1||%)(z2, Bz1) i — (22, f(21,22)) k1, T € H.

Combining the above equalities, we infer that
(DV(z), Az + F(2))y = —(x3, f(z1,22))pr for all z € D(A).
On the other hand, we find

(DV(@).6(@. ) = (2, e, + mAI Bzl (47 P ) 6t )

- <( 3 )’( 9(m1,(:v2,Z) ))u +m(”B%m1”%)<( A_ZGB271 )’( 9(w1,0x2,z) )>H

= (x2, g(%1, %2, 2))H.

and

1
V(z +G(z,2)) - V(z) = -||w+G(w 2 ||u+ =M(| Bz |}) - "||37|h¢ - -M (1B2z1]%)

N

= zllzli% + (2, G(=, 2))n + —IIG(I 2)|I% - §Ilwilu

]

= (z9,9(21, %2, 2)) 1 + §Ilg(m1,m2,Z)Iln-
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From these relations we obtain
Vit A )~ Viso) = | " (DV(u(s), Au(s) + F(s, u(s)))nds
b [ [0+ Glorate), ) - Viwts)
—(DV(u(s)), G(s, u(s), z))] v(dz)ds
+ [ [ [V (utsm) + 6o, 4(5), ) = Viu(s-))] Fis, )

-~ T ue(s), £(s,u(s), we(s))) ds

0
tATn
+/0 /Z[(ut(s),g(s,u(s),ut(s),z))u + %”g(s,u(s),ut(s),z)”?{
— (ue(8), g(u(s), ue(s), Z))H] v(dz)ds
+/(; " /Z [(ut(s—),y(s,u(s—),z))u + %Ilg(a,u(s—),z)”%] N(ds, dz)
tATn tATh
= "/0 (ue(s), f(8,u(s), us(s))) rds + %/0 /leg(s, u(s), 2)||3,v(dz)ds

tAT
n 1 .
# [ [ [t oo u(sm), o + 3lote, uts-), )] Wide o)
Taking the expectation to both sides of the above equalities we infer that
tATn 1 t/\Tn
BV(u(t A7) = EV(10) —E [ (), Sou(s) (o + 58 [ [ s, uts), )lev(dz)as
0 z
t
=EV(ug) — ]E/o (ut(s),f(s’u(s))ut(s)))Hl(O,tAr,.](s)ds
1 t
+ 38 [ [ 1 u(6) Mictounn (Iv(d2)ds
1 t 2 1 tATh
< V(o) + 51+ KE [ (1+ e Amo)lods+ 3KE [ (14 uts Ao} B)ds
0
1 t
= EV (w0o) + 5(1 + K; + Ky) /0 (1 +Elu(s A )l )ds, t 2 0.
Above we used the growth conditions (4.1.6)-(4.1.7) of functions f and g. Therefore, inequality
(4.3.2) holds if we set C = 3(1 + K + Kg).
Step 2: Inequality (4.3.2) holds for a local mild solution.

In this case, one of the main obstacles is that the solution u to the Problem (4.0.5) under Assumptions
4.1.7 and 4.2.1 is a local mild solution, so the lifespan of solution 7o, may be finite, For this, we fix

n € N and introduce the following functions

F(&) = Loy ()t u(t ATa)), £ 20,
3(t, 2) = 17 (gt u(t ATn=),2), t 20 and 2z € Z.

Here u(t), 0 < t < Too, With oo = limp—y00 Tn, is the unique local mild solution of the Problem
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(4.0.5) under the Assumptions 4.1.7 and 4.2.1. Denote

_ 0 . 0
F) = ( —F(t) = m{| BYu(t A )12 Bult A Ta) 1o (2 ) and Glt2) = ( i(t,2) ) '

One can see that the process £ and G are bounded. So Consider the following linear non-
homogeneous stochastic equation

du(t) = Av(t)dt + F(t)dt + / G(t, 2)N(dt, dz), t > 0, (4.3.5)
z
v(0) = u(0). (4.3.6)
By Theorem 4.1.10, there exists a unique global mild solution of this equation which is given by
t t _ .
u(t) = eMu(0) + / et~ (s)ds + / / et=AG(s, 2)N(ds, dz), t > 0. (4.3.7)
0 0 Jz

Hence the stopped process v(- A 7,,) satisfies

tATh - .
vt A1) = eAAY(0) + / etA =) AR (g)ds + I, (G)(t ATa), t >0,
0
where as usual
t
I (G)() = / / 1jo,r,] (8)el 4G (s, 2) N (ds, d2)-
0Jz

One can observe that

1 (@® = [ [ 1ami0e-4C(60, ) o, d2)
= [ [ 104G s,u(s A7), )N (ds )
0 JZ

= /t L 1[0,-rn](8)e(t—a)AG(s, u(s—), Z)N(ds, dz)
o
= ITﬂ (G(U))(t), t=>0.

Therefore, on the basis of Lemma 4.7.1, we find out that for each n € N

tATh N _
vt Ary) = etAMAy(0) + f e = AR(g)ds + I, (G)(t A Tn)
0
tATh .
= eltATn)Ay(0) + /0 10, €\~ AE(8)ds + I, (G(w))(E A Tn)

tATn
= e(tAm)Ay(0) + / elthm=a) Ay, 1(8)F(s,u(s An))ds + I, (G(w))(t A 7y)
0

=u(tAm) P-ast>0.

The second difficulty here is that the It6 formula is only applicable to the strong solution. So our
next step is to find a sequence of global strong solutions which converges to the global mild solution
v uniformly. To do this, let us set, with R(m;.A) = (mI — A)~},
um (0) = mR(m; A)u(0);
Fin(t,w) = mR(m; A)F(t,w) for (t,w) € Ry x Q;
Cm(t,w, 2) = mR(m; A)G(t,w,z) for (t,w,z) € Ry x N x Z.
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Since A is the infinitesimal generator of a contraction Co-semigroup (€4)y>0, by the Hille-Yosida
Theorem, [ R(m; A)[| < %, Fn(t,w) € D(A), for every (5,w) € Ry x Q and Gin(t,w,2) € D(A) for
every (t,w,2) € Ry XxQx Z. Moreover, Fp(t,w) = F(t,w) pointwise on R X Q and Gm(t,w, 2) =
G(t,w, z) pointwise on R} x Q x Z. Next, we note that ||Fy,|l» and ||F, - ﬁ*”,H is bounded from
above by a function 2||F|| belonging to M2 (BF;R), so the Lebesgue Dominated Convergence

Theorem tells us that for every T' > 0,
T
v g - — 2 -
Jim E [ (0 - POl = 0 (438)

Analogously, we know that Gl and ||Gm —Aéllu are bounded by functions ||G||3 and 2||Gl}#, re-
spectively, which are both belonging to M2 (P;R). So again we can apply the Lebesgue Dominated
Convergence Theorem to find out that for all T' > 0,

T -~ -~
lim E/o /Zle(t,z)—G(t, 2)[3,v(dz)dt = 0. (4.3.9)

m-—00

Clearly, by the definition, F(t,w) € D(A), for all (t,w) € Ry x Q and Gm(t, w, 2) € D(A), for all
(t,w,2) € Ry x2x Z. Hence by the boundedness discussed before, we infer Fy, € M2, (BF; D(A))

and Gy, € Mfoc(’f?;D(.A)), méeN.
From Theorem 4.1.10, it follows that the following Equation

dvm(t) = Avm(t)dt + Fn(t)dt + /Zém(t, 2)N(dt,dz), t >0
vm(0) = ¥m(0)

has a unique global strong solution which satisfies that P-a.s. for all £ > 0,

t . t - .
om(t) = €A™ (0) + /0 e(t=a)Am B (s)ds + /0 /Ze(t"’MGm(s, z)N(ds,dz), (4.3.10)
Note that we can rewrite this global strong solution in the following form
t - t . -
o (t) = tm(0) +/0 [.Avm(s) + Fm(s)] ds +/0 /ZGm(s,z)N(ds,dz), t>0. (4.3.11)

Let o be a stopping time. Now we can apply Ité formula, see Theorem 3.5.3, to the process vy, of
the form (4.3.11) and the function V' to get

V(om(@) =V r0) = | (DV(tm(5) Avm(5) + (5
+ /0 /z [V(vm(s) + Gm(3,2)) = V(vm(s)) = (DV (vm(5)), Gm(s, z))] v(dz)ds
+A /Z[V(vm(s—) +Gm(s, 2)) —V(vm(s—))] N(ds, dz). (4.3.12)
We next observe that for every T >0,

lim E sup_[[om(®) ~o(8)[} = 0. (4.3.13)

m~»o0 0<t<

Indeed, from (4.3.7) and (4.3.10) we find out that
t . . t ) i
um(t) —v(t) = /0 ((t-)4 (F(S) - Fm(s)) ds +/0 /Ze(t—a)A (G(s, 2) — Gm(s, z)) N(ds,dz), t > 0.
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Using the Cauchy-Swartz inequality, we obtain

/ot e(t—)4 (F(s) - ﬁ‘m(s)) ds

j{ <TE sup /Ot ”e(""’)"‘ (ﬁ‘(s) - F‘m(s)) Hids

E sup
0<t<T

0Lt<T

<78 [ |[F6) -~ it .

The right side of above inequality converges to 0, as m — 0o, as we have already shown before in
(4.3.8). Therefore, we obtain

2
= 0.
H

/Ot elt—8)A (F(s) - Fm(ﬂ)) ds

lim E sup
m-—r0o0 0<t<T

Meanwhile, we can use the Davis inequality for stochastic convolution processes, see Section 3.7.2,
to deduce that

2
E sup
0<t<T H

/ot /Z o(t-2)A (é(s, 2) — G (s, z)) N(ds,dz)

T
< CE /0 /Z G2, 2) — Gm(t, 2)||}v(d2)dt. (4.3.14)

Note that the right side of (4.3.14) converges to 0 as m — oc by (4.3.9). Hence we have

lim E sup =0,

2
m—»o0 0<t<T H

t
/ / e(t—8)4 (G(S, z) — C:'m(s, z)) ]\-[(ds’ dz)
0JZ

which proves equality (4.3.13).
Therefore, we conclude that vy, (t) converges to v(t) uniformly on any closed interval [0,7),0 < T <
o0, P-a.s. Hence, by taking a subsequence if necessary we may assume that v, (t) — v(t), uniformly
and F,(s) — F(s) and Gp(s,z) = G(s,2) on [0,0(w)], as m — oo, for almost all w in Q.

We introduce the following canonical linear projection mappings

w1:H9(§>HmeD(A)
T
Wz:?{S(y)HyE%.

Calculations similar to those performed in Step 1 yield

(DV (vm(8), Avm(s) + ﬁm(s)»ﬂ
= (um(s), Avm(s) + Fm(-’)))ﬂ

+mllBmum@ ) (47PN ), dum(e) + P

= (Um(8), Avm)n + (Um(8), Fn(8))4 + (|| BEm10m(8) %) (BT 10m (8), M1 A () + 71 Fim(8)) 1
< (Um(8), Fm(8))n + m{l| BYT10m(8)1%) (B 19m(8), mg0m(3) + T Fm(8)) a1, 8 20,

where we used the fact that m1.Avm(t) = moum(t) on [0,T] and (v(s), Av)y < 0, since the operator
A is dissipative. Moreover, since G (s, 2) = m(m?I + A%)1§(s, z) and mGn (s, 2) = m2(m2I +
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A%)~15(s, 2), we infer
<DV(Um(5))v ém(sa 2))9{ (4315)

= (Um(8), Gm(8, 2))m + m(||B%7r1vm(8)”%1)<( A—zBT)wm(s) ) , Gn(8,2))n

— (o (8) G M+ I BEmam () 47T ) (TGl ),

= (Um(8), G5, 2 + M| BIT10m(8)|[}) (A2 Br10m(8), mGin(s, 2)) b, 8 > 0.
Furthermore, we have
V(m(s) + Gm(3,2)) = V(vm(s))
= Lom(s) + Ginls, )+ 5M(1BE T (um(5) + (s, D)

— 2 em(s) I - %zlmnB%mm(s)n%) (43,16
— (o ($),Grn(52 25+ 51Gm (5, 2 + FMUBA T (0n(s) + Gl DI
~ SM(BEmom(s)h).

Hence Equality (4.3.12) becomes
V (0m(@)) = V (om(0) - @31
< /0 [(vm(s), Frn(8)) 3 + M BEm1um(8)|4)(B10m(s), m2vm(8) + m1 pm(s))H] ds
+/O /z [V(vm(s) + Gm(3,2)) = V(m(8)) = (DV (um(3)), Gm(s, z))]y(dz)ds
+ /0 /Z [V(vm(s—)+@m(s,z)) —V(vm(s-))]N(ds,dz).
Note that m1£(s,w) = 0 on Ry x £ and mG(s,w,2) = 0 on R g _
m(-) znii ]\/;1 (-)W;re zo‘:tinuous and+the operatgxl' Bsewﬁ(%l))(A), IOII;, v;':: ;a%exﬂ’-za.s.smce the functions

mUm(8) = mu(s),

m(|| Bimivm(s)|%) = m(|Bimv(s)|%),
moUm(8) = mau(s),
Bmum(s) = Brivm(s),

uniformly on [0, o(w)], as m — 00 and
m1Gm(s,2) = 0,
M(| B3 m1(um(s) + Gm(s, 2DIIEr) = M(|1BEmv(s)|h)

on [O,U(w)] for all most all w € §2, as m — oo. We also notice that for every m € N, the set
{vm(t,w):0<t<T}is relatively compact for almost all w. We will formulate this in the following
lemma.

Lemma 4.3.3. Let f: [0,T] = H be a cadlag function. Then the set {f(t) : t € [0,T]} is a
relatively compact subset of H. )
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Proof. We argue by contradiction. We assume that the closure of the set in question is not compact.
Then there exists a sequence {t; }men C [0, T such that the sequence { f(¢m)}men has no convergent
subsequence in H. Since the interval [0,T] is compact, the sequence {tm}men C [0,T] has a
convergent subsequence in [0,7]. For simplicity, we again use {t;}men to denote this convergent
subsequence. So we can assume that {tm}nen converges to some point t* € [0, T]. Since v is cadlag
and f(T-) exists, we infer that 0 < t* < T. We have two possibilities. The sequence t,, has
a subsequence {tm, ,}xeN convergent to t* from the right side or it has a subsequence {tmg i }ken
convergent to t* from the left side.

If tm,, v t* a3 k — oo, then by the right continuity of f, fmy,) = F(t*) as k — oo, If
tmg, /' t* 88 k — 00, then by the existence of left limits, f(tm,,) — f(t*~) as k — co. In both
cases, the subsequence of {f(tm)}men is convergent. This leads to a contradiction with the assertion

that {f(tm)}men has no convergent subsequence. Therefore, the set {f(t) : 0 <t < T} is compact.
A

Note that since for every m € N, the set {vy,(s), s € [0, T]} is relatively compact P-a.s. and the
sequence {vUm}men converges uniformly to v, P-a.s., the set {vm(s),s € [0,T],m € N} is bounded
in H, P-a.s. It follows that

(vm(8), Frn(8)) < [om ()l Fn() 1 < I Fm() e sup Nom(8)lse < CIE(S)l3e
<s<
Therefore, on the basis of the Lebesgue Dominated convergence theorem, we conclude that
o . o .
[ (s Fnds > [ (s, Emuds P

Analogously, by the continuity of the function m and the fact that B € L{(D(A), H), we infer for
some constants Cy, Cs,

m(||BAm10m(8)%)(Bm1vm(s), Tavm(s) + M Fn(s) 1 < C1 + Call F(8)le.
Moreover, we know that for almost all w €
m(|| B m1om(s)|[}) (Br1vm(s), mavm(s) + 1 Fin(8)) 1
converges on {0, 0(w)] as m = oo to
m(|| BEmo(s)|[}) (Brav(s), m2v(s)) -

Again, it follows from the Lebesgue Dominated convergence theorem that P-a.s.
[ 183 w0 (6) ) (Brsvm(6),mavm() + ma P} )5 s
converges ag8 m — 0o to
[ m1B o) Bmio(6), mav ) s
In conclusion, P-a.s. the first term on the right side of inequality (4.3.17) converges as m — oo to

[ (w06, vhn + (06), Fle + mll BYran(s) ) Brao(s),man(s)h s,
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Also, we know from (4.3.15) and (4.3.16) that as m — oo for all t € [0,T], z € Z, P-a.s.
V (m(s) + Gon(5,2)) = V (om(s) = {DV (wn(5)), Gl e = 211G, 2

V (um(s) + Gm(s,2)) — V(om(s)) = (v(s), G(s, 2))n + %Hé(s, 2)|12,.

Set X (w) = {vm(t,w) : 0 < t < T,m € N}, forw € . As we have noticed before, X (w) is a bounded
subset of H for almost all w € Q. Since the functions DV and D2V are uniformly continuous on
bounded subsets of H, 50 supzex |DV(z)| < oo and sup,cx |D?V(z)| < oo, P-a.s. Hence by the
Taylor formula, one have

V(m(s) + Gm(5,2)) = V(om(s) = (DV (vn(5)), Grm(s, 2D
< Z 1DV n(@)NIGim(s, 2) I

1 .
< = sup ||D*V 2
sup D2V @66, 2l

We also observe that since G € M2 _(P;H), for every 0 < T < oo, we have

T
/ / 1G(s, 2)|2(d2)ds < oo, P-as.
0 VA

By using the above result, along with the Lebesgue Dominated Convergence Theorem, we obtain
that

/0 ’ /Z V(wm(s) + Gm(s,2)) = V(vm(s)) = (DV (vm(s)), Gm(s, 2))nv(d2)ds

converges to

/0/ _;_é(s, z)v(dz)ds, P-a.s. as m — 00.
0o Jz
On the other hand, by the identity (3.3.3), we have
IE”/O"/Z [V(vm(s—) + Gm(s,2)) —V(vm(s—))]N(ds,dZ)
_ /0 /Z [(w(s-), G, 2D + 3166, 2] W(ds, d2)|

2
v(dz)ds.

= IE/O /z lV(vm(s) + Gm(s,2)) = V(vm(s)) = (v(s), G(s, 2))n + %“é(s, 2)|3,
Moreover, we note that the integrand
|V(vm(s) + G(5,2)) — V(om(s)) — (v(s), G(s, 2))n + _;_”é(s’ z)”,%lz

is bounded by 22}11)3:6)(__ IDV@)21G(s, 213, < ClG(s,2)|%. Since G € M2(P;H), for every
0<T<ooEfy [7lIG(s z)||3,v(dz)ds < oo. So again, we can apply the Lebesgue Dominated
Converges Theorem to get

i B[ [ [ [V (um(a-) + Gim(5,2)) = V (omo=)]| N (ds, )

_ /0 ’ /Z [(w(s-), G(s, 2o + G (s, 23] W (ds, dz)“i =0,
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Hence by taking a subsequence, we infer that
/0 /Z [V(vm(s—) + Gm(s,2)) — V(vm(s—))] N(ds,dz)

converges P-a.s. to

o
3 1 . .
I [ 6=, G, 20 + 316, 2IB) W(ds ).
0o Jz
Also, it is not hard to see that
nli’ngoV(vm(a)) = hm ||Um(‘7)||H+ Jim M(“B“Tlvm(U)HH)

= 5””( )+ §M(||Bz7flv(0)|lﬁ)
= V(v(o)). (4.3.18)

From the above observation, by letting m — oo in (4.3.17), one easily deduces that
V(o(o)) = Vi) = [ [(0(s) Ao + (0(s), F(@loe + mIBAmso(s) ) (Brso(s), maAv(s)m
/6/16*3 2)v(dz)ds
+ [ [ [t0(6-), Glo, 2o + 516 )13 W, )
< [ [0, Few + milBimo(a) ) (Brav(s), mAv(sa]ds  (43.19)
+ /0 /Z 5Gls, 2)u(dz)ds
# [ [ {62,662 + 51G(0, 2B ¥(ds, da), Poas
Therefore, P-a.8.

V(o) - V(o) < [ [(rau(s), f(o)hm+ m{IB (o)) (Brao(s), mo(s) ] ds

w5 [ [ s s

+ /O"/Z [(mv(s—),ﬁ(s,z))ﬁ + %llg(s, Z)II%]N(ds,dz),
Taking the expectation to both sides, we have
EV(v(0)) < EV(u) + ]E/o” [(wzv(S), F(8)) + m(|| BEmo(s)|%) (Bmiv(s), 7r1Av(s))]ds
- %E /0 ’ /Z (s, 2)||%v(d2)ds.

Now let us recall that v(tAT,;) = u(tAr,), F(t) = Li,r,) () F (t, u(tATs)) and G@t) = Lio,r) ()G (2, u(tA
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Tn—), 2) for t > 0. Thus by setting o = ¢ A7, and using the results achieved in step 1, we infer that

tATh

EV(u(t A ) SEVG0) +E [ [(rau(s), maB (o) -+ m{L B meu(s) ) Braa), mAu(e))ds
38 [ [ late, ) dz)ds
BV +E [ [ = mIBbu(s A B (wu(6), Buls A 7)) Lo (8)
— (ue(9), £l A )L 07 (5) + (| BHu(s) B (Bu(s), we(s)) ] ds
pe [ / lg(s, (s A a=), DB g (O0(d2)ds
)& [ (o) s Ams + 38 [ [ atorutso), lfv(danes
— EV/(u0) —E / (ue(s), £(u(5))) L0 0nre) (8

+3E / | oo, u(5), )L o enra)¥(d2)es

tATn

< EV(uw)+ 2(1 + Ky E/ (1 + llu(s Ama)lI3)ds + = KgIE/ (1 + |lu(s A 70)|I3,)ds
—EV(u0) + 5L+ K/ + K) /0 (1 + Eflu(s A7) B)ds.

This finally proves inequality (4.3.2). In conclusion, we proved that V is indeed a Lyapunov function
and hence we can apply Lemma 4.3.1 to deduce that 7 = co. )

4.4 The Stability of the Solution

In this section we shall consider the stability of the solution to Equation (4.0.5). To simplify our
problem, we will impose the following additional assumptions.

Assumption 4.4.1. 1). Suppose that function f is given by f(x) = Bz; for some 8 > 0, where
T = ($1,$2) € H

2). Assumptions (4.1.7) and (4.2.1) hold;

3). There exist nonnegative constants Rq and K such that
| N, 2)fv(az) < Rifelf + K.
4). There ezists & > 0 such that for all nonnegative real number y
ym(y) > aM(y).

Lemma 4.4.2. Define an operator P:H - H by

po [ BA?+2 pA7?
o BI oI )
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Then P is self-adjoint isomorphism of H and satisfies the following
(1) 1IPIzhy(Pa,ayu < 2l < (Po,ahu, @€ Hs

(2) (( —gmg ) y P2y = —B(z1,2) = —2B||22|> = (z1,22)7 € H;

(3) (Az, Pz)y = —B|Azi|} + B (z1,z2) + Bllz2||*.
Proof. First note that P € £(H). Indeed, we find out that for every z € H
|Pz||% = |[BA™2Azy + 2Ax) + BA™%Axo|% + || Bz1 + 22 + 2%
= 3(1BA™2| %yl Az1 )% + 6l Az (I + 382A™ N2 a2l + 268721 13, + Allz2lly
< BIBA™ 2y + )l Az1l} + 2821 A 2y I Azl + BB AT oy + 4)ll2l13,
< C (I Az % + llz2lI)
= Clizll},

where C = max{5[|6A~2|% y, + 6,3(|BA~2||2,, + 4} Further observe that
A BPA%zy + 221 + BA?x, Y )
= (B2A7 2y + 231 + BA Mg, Ayr ) i + By + 22,12 (n
= B4z, y2) + 2(Axy, Ay1) g + B(xa, 1) B + BT, y2) i + 2(z2, 12) 1

and

e B2A~2g, + 2y + BA %22 )
Gopu= (), (P R AT ),

= (B2A 1z + 2421 + BA xg, Ayr)m + (Bxr + 222, 411
= B%z1,y1) 1 + 2(Axy, Apn) i + B{za, Y1) i + B{x1, y2) i + 2(x2, 1),

- Thus (Pz,y) = (z, Py) for any z,y € H, which shows that P is self-adjoint. Replacing y by  in
above derived formula, we get for x € #,

(Pz,z)3 = B*z1,21) 1 + 2(Az1, Az1) 1 + B(Z2, T1) 1 + BT, T2) 1 + 220, 20}
= (Bz1 + 22, Bz + x2) + 2| A1 || % + |22l
=2 Az1 ||} + llwallyy + |81 + 2l
> || Azl + lle2l%
= ||},

which shows the second inequality of part (1). To see the other inequality of part (2), we use
Cauchy-swartz inequality to obtain

(Pz,x)n < || Pzllnlln < 1Pl caollell3,.
Therefore, we infer

IPIIZ () (P, 2} < ll2l3, < (P, @)
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The second assertion can be achieved as follows

0 _ 0 BA %z + 21 + BA 21,
(< ~fxs ) Palu = <( —Bz3 ) ’ ( Bz +12932 ))%

= (—fx2, fz1 + 2z2)
= —B%(xe, z1) 1 — 2B||z2||%
= —62(z1,x2)H - 25””“%’

where z = (z1,22)" € H. Further, for the third assertion we have

-2 -2
(Az, Pz) = (( _Axfle ), ( BA xlﬁ‘;?:lz:zﬂfi ) >)H

= (Azg, B2A™ 21 + 2Az1 + BA o) + (—Alzy, By + 270)H
= B*(za, 21) i + 2(Axg, Az1) gy + Blz2, 1)1 — BYAz1, Az1) i — 2(Azy, ATo) g
= Bllma|l3 + B%(z2, 1) b — B Az1|[%,

which completes the lemma. a
We define for z = (z1,z2)" € H

&(x) = E[||zl|3, + M(|Biz:|3)].

Theorem 4.4.3. Suppose that Assumption (4.4.1) is satisfied and € (ug) < co. Let u be the unique
mild global solution to Equation (4.0.5). Let K be the constant given in Part (3) of Assumption
(44.1). If K = 0, then the solution is exponentially mean-square stable, that is for there exist
constant 0 < C < o0 and A > 0 such that for allt > 0,

Elu(t)|?, < Ce & (up).

If K > Q, then
sup Elfu(t) % < oo.
>0

Proof of Theorem 4.4.3. Define a new Lyapunov function in terms of operator P by
1
®(z) = 5(Pa,a)u + M(|Biz|}), = € H.
Since m € C! and P € L(H), ® € C?(H). Under the Assumptions (4.1.7) and (4.2.1), Theorems
4.2.7 and 4.3.2 imply that the Equation (4.0.5) has a unique global mild solution u(t), t > 0 given
by

tATh
u(t A ) = ePug + / WA =)AR (5, u(s))ds + I, (G(w))(t A ) a.8., t > 0. (4.4.1)
0

where :
I (G(w)(t) =/ / I(O,Tn]e(t")AG(s,u(s—),z)N(ds,dz), t>0
0 Jz

and {7, }nen is an accessible sequence and limp_;00 Th = Too = 00. We have already seen in the proof
of Theorem 4.3.2 that the idea of getting an estimate of our Lyapunov function with mild solution

154



is to approximate the mild solution by a sequence of strong solutions, to which we can apply Ité
formula. We shall examine the new Lyapunov function ® in the same way as for V. Let n be fixed.

We first define functions F and G by,

~ 0
PO =Tom@Futnm) = ( ~ (&)~ m(I|BYule A7) [3) Bt A ) 10711 ) te o)

é(t) = 1(0,Tn](t)G(ta Ut A=), 2) = ( g(t(?z) ) , t€[0,T].

Here f(t) = —1(0,r,}(£)Bu(t A o), t 2 0 and §(t, 2) = 1(0,5,,)(t)9(t, u(t A Tn—), 2), t > 0. Then the
following Equation

du(t) = Av()dt + F(t)dt + /Z G(t, 2) N (dt, dz)
v(0) = u(0)

(4.4.2)

has a unique global mild solution which satisfies

¢ t . N
u(t) = e4u(0) + / et F(5)ds + / / et=)4G(s, 2)N(ds, dz), P-a.s.,t > 0. (4.4.3)
0 0 Jz

Since u is the local mild solution, so u satisfies (4.2.2), a similar argument used in the proof of
Theorem 4.3.2 yields that for eachn € N

V(itAT) =u(tAT,) Pas t20
Set

um(0) = mR(m; A)u(0)
Fiu(t,w) = mR(m; A)F(t,w) for (t,w) € Ry x
Cm(t,w, 2) = mR(m; A)G(t,w, 2) for (t,w,2z) ERL x N x Z.

In exactly the same manner as in the proof of Theorem 4.3.2 we infer that P-a.s.

T ~ -~
Jim [T 1) - )t = 0 (4.4.4)
T
. - =, 2 _
Jim /0 /Z \Gm(t, 2) — G(t, 2)3(d=)dt = 0. (4.4.5)

Also, we find out that G, € M2([0,T) x @ x Z,P, A® P x v; D(A)). By using the Theorem 4.1.10,
one can see that the equation

dum(t) = Aum(8)dt + En(t)dt + /Z Gmlt, 2) N (dt, d2)
Um(o) = U(O)

has a unique strong solution given by

Um(2) = tum(0) + /0 t [Aum(s) + Fin(s)]ds + /0 t /Z (s, 2)N (ds, dz) P-ag,t >0,  (4.4.6)

155



Equivalently, we can also write the solution in the mild form
t t _ . '
vm(t) = eu(0) +/ et=AL (s)ds +/ / et=9AG, (s, 2)N(ds, dz), P-as.,t > 0. (4.4.7)
0 0 Jz

Now applying the Ité6 Formula, see Theorem 3.5.3, to function &(z)e* and the strong solution vy,
yields

B(um(t))eM = B (vm(s))e™ + /t e [A@(vm(r)) + (D®(vm(r)), Avpn(r) + F‘m(r))u] dr

L

+ /: A e [q)(vm(r) + ém(’f', Z)) - q)('Um(T)) - (D@(’Um(s), ém(r, z)))H] V(dz)dr

t
+ [ [ & [8om(r-) + Gnlr,2) ~ Blom(r—)]| Var,da). (4.48)
s JZ
We first find the following facts
D®(z)h = (Ph, ) + 2m(|| Bizy||})(Bizy, Bihy)

= ehayc+ (BRai (4757 ) (2 )

where 2 = (21,22)7, h = (h1,h2)T and k = (k1,k2)" are all in H. One can also rewrite the
derivative D® as follows

-2
D®(z) = Pz + 2m(|BYz1|%) ( A7 P ) zeH

We adopt the projections 7; and 73 which are defined in the proof of Theorem 4.3.2. Therefore, by
using above derivative formula we get

(D®(vm(r))s Avm(r) + Fn(r))n (4.4.9)
= (D®(vm(r)), Avm(r))n + (D@(vra (7)), Fn (7))

= (Pun) + 2| Bimauml) (4725 ) Aun(rn

+ (Pup(r) + 2m([| Bimom(r)||%) ( A"2B7(r)1'vm(r) ) yFn(r))u

= (Pum(r), Avm(r))a + 2m(l| B3 mom(r) [} (Bm1vm(r), mavm(r))
+ (Pum(r), Fn(r) ()3 + 2m(| BET10m (1) [3)(BT10m(r), T (), 7 € [0, T,
From Lemma 4.4.2 and the fact that A > ul for some p > 0, we have
(Pum(r), Avm(r))u = =Bl Amyvm(r) I} + B2 (m1vm(r), m2vm (7)) + Bllmavm(r) %
< Bl Am (M) + Blmvm(r)ll ol movm (M)l + Bllmavm(r) %

2
< —BllAmyvm (r) |l + %—(Ilmvm(r)llff + llmavm ()i + Bllmavm (r)li

2 2
< Bl Amsom(O)fy + Loz Amsom(r)y + 5 Imavm() By + Blmavm Iy

2 2
= (43 - 8) Mm@y + (5 + 8) Imaom(ly, 72 0
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Recall that in the proof of Theorem 4.3.2 we have shown that for every 0 < T < oo,
lim E sup |lum(t) — v(2)||3, =0, 4.4.10
Jim B sup_flom(®) - o(0)]f (4.4.10)
So there exists a subsequence, denoted also by {vUm(t)}men for simplicity, such that vy, (t) — v(t)
uniformly on [s,t] as k — oo a.s.

Therefore,

2 2
lim:;lop(Pvm(T),Avm(T»H < lim_f;ip (5%—2 - ﬂ) | Amyvm (r) % + (% + ﬂ) (| movm (P14

2
- (55 _ ﬂ) | Am(r)1% + (%- + /3) mav(r)llZ, T € 5,4,

Now by applying the Fatou Lemma we infer

t t
limsup/ e'\’(Pvm(r),.Avm(r))Hdrs/ " lim sup (Avm (1), Pum(r))3
8 m—oo

m—00 8
ﬁ2

< / t [({—’:—2 = B)lamv(llf + (5 + 8) Imav(r) ] dr.

Further, by the above derivative formula of D® and definition of Lyapunov function of ® we get
(D®(vm(7)), Gm(r, 2))
= (Pum(r), Gm(r, 2))3 + 2m(|| B3m10m (1)]|%) (Br10m(r), m1Com(r, 2)), 72 0. (4.4.11)
and
®(um(r)+Gm(r, 2)) — B(Um(r)) |
= 5{P(m(r) + Gm(r,2)), vm(r) + Gom(r, Dt + M(IBET1 (vm(r) + Gin(r,2) )
~ 5(Pum(r), v (e — M| BEmiom(r) )
= 3(PUn(r), Gom(r, ) + 5(PCim(r,2), v ()
+ 5(PCin(r, ), Gon(r, D + M{IBET (0m(r) + Gim(r, 2
— M(| Bimyvm(r)|3)
= (Pop(r), Gmlr, 2))n + %(Pém(r, 2), Gm(r, 2))n
+ M(|BE 11 (v (r) + G (r, 2))I3) = M(IBImom(r)|13), 7 > 0. (4.4.12)
Combining the above two equalities, we find that
& (U (r) + Gm(r, 2)) — B(vm(r)) ~ (DB(vm(r)), Gin(r, 2))
= S{PGin(r, 2), Gonlr, i+ MIBAT: (0m(r) + G, )
— M(|BEmyum(r)|}) — 2m(| BEmy0m(r) [3)(Bryvm(r), 11Gon(r, 2)) s

which converges P-a.s. to

(PG(r,2),G(r,2))n, 8sm — 00, 7> 0.

N =

B(v(r) + G(r,2)) - @(v(r)) = (DB(v(r)), G(r, 2))}n =

157



Also, we find
®(Um(r) + Gm(r, 2)) — (v (r))
. 1 .« ~
= (Pup(r), Gm(r, 2))3 + —2-(PGm(r, 2),Gm(r, 2))n

+ M(|Bm1(m(r) + Gon(r, 2))1}r) = M(| BEmyom() %), 72 0.

This converges P-a.s. to
®(v(r) + G(r, 2)) — ®(v(r)) = (Pu(r), G(r, 2))n + %(Pé(r, 2),G(r,2))y as m — 00, T > 0,

On the other hand, since the function @ is in C2(), by the Taylor formula we infer that

B(um(r) + Gm(r, 2)) = ®(vm(r)) < sup ID&(@) || Gm(r, 2)l30, 7 € [s, 8]

and
O(vm(r) + Gm(r, 2)) — B(vm (7)) — (DB (v (7)), G(r, 2))n
< 51D%@(n(r)) | Gm(r,2) I

1 ~
< 5 sup | D*@(@)]|[|Gm(r, 2) 3,
zeX

where we used the uniformly boundedness of {vm}men on [s, ¢]. Hence it follows from the Lebesgue
Dominated Convergence Theorem that for 0 < s <t < o0,

/a /zw [@(vm(r) + Gu(r, 2)) = ®(vm(r)) — (DQ(Um(s),@m(r,z)))ﬂ],,(dz)d,.
converges P-a.s. to
/t/ %(Pé(r’ z), G(r, 2))nv(dz)dr.
s JZ

On the basis of the It6 isometry for stochastic integral w.r.t. the compensated Poisson random
measure (see Theorem 3.3.2), we obtain

B

/8 t /Z & [@(um(r=) + Gm(r, 2)) — @(vm(r=))| N(dr, dz)
-/ t || X[(Potr-), 62w+ 5 (PG5, ), G, 2] e )|
o
< E_/s /Zea,\”q,(vm(r) + Gp(r, 2) - @(vm(r)) — (Pu(r), G(r, 2))n
- %(P@(r, 2), G(r, z))H”iu(dz)dr.

Note that the integrand on the right side of above equality is dominated by

2 sup || D&(z) /|G (s, 2)1%,
T€X
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where X is a compact set on H. Again, by passing to the limit as m — o0, the Lebesgue Dominated
Convergence Theorem tells us that the right-side of above equality converges to 0. Hence, by taking
a subsequence we infer that

/t /Ze’\t [@(vm(r—) + Gm(r—,2)) — @(vm(r—))]N(dr, dz)
converges P-a.s. to )
/ t /Z & [(Po(r-), Glr—, ) + %(P@(r—, ), G(r~, 2))| W (dr,dz) a3 m - oc.
Combininag all the observations together and letting m — oo yields that for 0 < s <t < o0

2
B(u(R)eN < 0(u(e)e® + [ "o [r8(u(r) + (-2%—2 - B)ldmol + (% + 8) maolr) I
+ 2m(||BEro(r)||3) (Bmyv(r), mav(r)) n — (Bryv(r) + 2mpu(r), wzﬁ‘(r))y] dr

+/t/ZeAT|I!7(T, z)“?{udzdr
+/t+/ze,\r [(ﬁvr1v(r—)+27rzv(r——),§(r, 2))n + 1(r, Z)II%]N(dr, dz), P-a.s.

Recall that for every n € N, v(t A 1) = u(t A m,) P-a.s., by replacing t by t A 7, in the above
inequality we have, for every 0 < s <t < 00,

B(u(t A 7)) A™)
2
<o+ [ o) + (g - 8)lAur)ih + (G + 8) I

+ 2m(| BAu(r) ) (Bu(r), us(r))a — (Bu(r) + 2u(r), Bur(r))a
— m{|| Bhu(r)[})Bu(r) + 2ui(r), Bu(r))x | dr

+ [ [ lgtrute), mazrar
tATR+ -
# [ [ & [tsmutr-) + 2mantr=). ot ), 2D+ N, utr), 2] W, )

2o+ [ et + (25 - 8) 4wl + (£ -8) Ity

—ﬁz(U(r),Uz(r)m m(|BYu(r) %) (Bu(r), Bu(r)) s |dr

tATh

# [ [ ot ute), 2)yp(da)ar
at/\-rn+z

# [ [ e [(mautr=) + 2mautr-), ot u(r) )+ 3, 2] W )

tATy
<o) + [ ™" & [x6(u(r) + (208* - B)u(r)I, ~ Bm (BRI B ar

t/\‘rna

+ [ [ gt utr), ) Byvdadr

+ ./,MrmL ./z e [(ﬁmu(r*) + 2mau(r—), g(r,u(r), 2))n + [lg(r, u(r), z)”%] N(dr,dz),
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where C' = ma.x{ﬁg, %} Now applying part (3) of the Assumption (4.4.1) and the definition of the
function @ yields that for 0 < s <t < 00,

O(u(t A Ty))ertA™)
tATh 1 1
< O(u(s)) + / & [A2(u(r)) + (208% = B)|[u(r)|} — B BHu(r) 3| BHu(r) |y
+ Bllu(r)lf, + K | dr

+ [ [ & [(Bmaur=) + 2mau(r—), glr,utr), 2o+ lg(r,u(r), 2)1Bs| ¥, d2)
8 V4

= ®(u(s)) + / e [%(Pu(r), u(r)) -+ AM (| Bu(r) ) + (R} + 206 - B)lu(r),
— pm(|BAu(r) 3| B u(r)|} + K | dr
# [ [ o [(Brante) + 2mane=), o), + ot (), 2 ¥ )
<o)+ [ [ (F1Plcun + B+ 208° - 8)lutrl
+ (3 = B)ym(|BEu(r) B BBy + K ar
b [ [ o [(8mute-) + 2mantr=), o), + gt (), 2 ¥ ),

where we used the inequality (Pz,z)n < ||P||cm)llz||? in the last inequality.
Now let n — 00. Since in Theorem 4.3.2, Too = 00, we have for 0 < s <t < 00,

t
B0 < 8(u(s) + [ " [(F1Pllean + RS+ 208 - 8) Iu(r)If
A 1 1
+ (- Bym(IBAu(r) I3 | Bru(r |} + K] dr
t+ .
+ [ [ & [t8mutr-) + 2man(r=),atr, o+ e, 2| ¥, de)
Choose A such that 0 < A < 2||P|{Z(1H)(ﬂ -2Cp% - Rg) Aaf. It follows that

A A
SIPllceeny + B +2C8 — B <0and 5 - B <0.

Therefore, we infer that for 0 < s < t < o0,
t
B(u(t))e™ < 2(u(s)) + / e Kdr (4.4.13)

// Al (Bryv(r=) + 2mau(r=), §(r, 2))n + || §(r, )”H] (dr, dz).

First consider the case when K = 0. Then equality (4.4.13) becomes, 0 < s <t < 00,

B(u(t))eM < B(u / / o [(Briv(r=) + 2mav(r=), glr, )3 + [1(r,2) 1| W (dr, de).
(4.4.14)
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Taking the conditional expectation with respect to F, to both sides yields
E(®(u(t))eM|F,) < E(D(u(s))|Fs)
t
+B( [ [ & [tmotr=) + 2mav(r-), 500 20w + o )] W, )
8

= ®(u(s)), 0< s <t < o0,

7,)

where the equality follows from the measurability of ®(u(s)) with respect to F, and independence
of the integrals with respect to F,. This means that the process ®(u(t))e* is a supermartingale.
Take A* € (0,A). We observe that for every k = 0,1,2---,

sup e*td(u(t)) = sup P NtAP(u(r)) < PN VE sup M (u(t)).

tefk,k+1] te[k,kb+1] telk,k+1]
Therefore,
P{ sup e*‘tq>(u(t))zm(u(0))}gn»{ sup e*fcp(u(t))ze“—*‘)kmw(o»}
telk,k+1] telk,k+1]
-« _E(*2(u(k))
= eO-XFES (u(0))
EO(u(0))  _ --ak

~ eA=A)FED(u(0))
By the ratio test, we know that the series 3 72, e~(A=A*)k ig convergent. Thus
o0 o0 .
ZIP{ sup e td(u(t)) > E@(u(O))} < Z e~ Pk < o,
k=1 telk,k-+1) k=1

Now by applying Borel-Cantelli Theorem, we have

~ A%t =0.
P(,Q kLZJJ {zeﬁfﬁ . 3(u(t) > E(u(0))}) =0

It follows that

¥ A%t =1
p( ,-L.Jl Q, {teﬁe‘,‘;ﬂ . B(u(t) 2 EB(u(0))}) =1

Therefore, there exists j € N such that for every &k > j,

sup e ®(u(t)) < E®(u(0)) P-a.s.
tefk,k+1]

Then we can infer that for every ¢ > j
Mt d(u(t)) < Ed(u(0)) P-as..
It then follows that
Ellu(t)I} < E(Pu(t), u())u
< 2E[S(Put), u(®)w + M (1BRu()]})]
= E(u(r))
< 2e"ME®(u(0)),
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where the first inequality follows from part (1) of Lemma 4.4.2, the last inequality follows from
above result. Also, note that

E8(u(0)) = & | 3(Pu(0), w0 + M(IBHO)])|

= E[3 1Pl IuO) 1 + M(IBHu(0)])]

< (31Plccr + 1)E [Ju(@I3, + M(|BE(O)])]

= (31Pliccy + 1) £((0)). (44.15)
Therefore, we conclude that

Elu(t)l} < 2(51Pllcon +1)e ™S w0), ¢ > 0.

Set C = [|P||z(3) + 2. In conclusion, we find out that

Elu(®)l} < Ce™" (), ¢ 2

which shows the exponentially mean-square stable of our mild solution.
For the case K # 0, first taking expectation to both side of (4.4.13) and setting s = 0 gives

E (2(u(t)e™) < Bo(u(s)) + %(e’\t ~1), 0<s<t<oo.

Thus
At K -t

Ed®(u(t)) < e ME®(u(s)) + -;\—(1 —e™™), 0<s<t< 0.

By the definition of function ®, we obtain
1 o=t K —At
E(5(Pu(t) u(r))a) + E(M(| BRu(r)})) = ES(u(t) < e ™E@(u(0)) + 3 (1 - ™).

Thus applying the inequality ||z||% < (z, Pz)y from Lemma 4.4.2 gives that
-

< 2~ ME®(u(0)) + %If £>0.

Ellu(®)]l% < Eu(t), Pu(t))n < 26 NE(u(0)) + 2

It then follows from (4.4.15) that

Bl < 26 (3 11Plegy +1)8WO) + 55, £2 0

A
Therefore,
2K
sup Blu(t)lly < (1Pl +2) 6((0) + 5 < o0
which completes our proof. O
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4.5 Stochastic nonlinear beam equations

In this section we will examine that all the results achieved in the preceding section can be applied

to the following problem

d%u 9 9 ou du -

ot it = ¢ =

e m(/D|Vu| dz> JANTRE S 7AN u+T(t,a:,u, 6t,Vu) /ZII(,:B,u, at,Vu,z)N(t,dz)
(4.5.1)

with the hinged boundary condition

u=Au=0o0naD. (4.5.2)

Here T,I1: [0,7) x D x R x R® x R — R are Borel functions, m € C*(R,.) is a nonnegative function,
v >0 and D C R" is a bounded domain with a C*®- boundary 8D.

We shall also make the following standing assumptions on the functions T and II under consid-

erations.

1. For every n € N, there exist constants Ly and L such that forallt € [0,T], z € D, ¢j,c2 € R

and for all aj,ay € R, b1, by € R™ satisfying |ay|, [ag| < N and |b1], [b2| < N,

[T (¢, z,a1,b1,c1) — T(t, z,a2,b2,2)| < Lnlay — ag| + Ln|by — bo| + Liey — co|.  (4.5.3)

2. There exist constant Ly such that for all t € [0,7],z € D,a € R, b€ R" and c € R,

1T(t, 2,a,b,0)* < Ly(1 + |cf?), (4.5.4)

3. There exist constant L’ such that for allt € [0,T),z € D, c1,¢2 € Ray, a3 € R and by, by € R?,

/ ln(t’ z,a, bla Cy, Z) - H(tv z,ay, b2’ Ca, z)lzl/(dz)
zZ

< L'lay — ag|? + L'|by = ba|® + L'le; — ey (4.5.5)

4. There exist constant Ly such that for allt € [0,T), 2 € D,a € R, b€ R" and ¢ € R,

/Zlﬂ(t, z,a,b,¢,2)?v(dz) < Lu(l + |¢|?). (4.5.6)
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Let H = L%(D). Let A and B be both the Laplacian with Dirichlet boundary conditions. That
is
AY = -Ay, ¢ € D(4),

D(A) = HX(D) N H}(D).

Then A > ul, for some p > 0. To see this, since D(A) C H(Q), on the basis of Poincaré inequality,

we have

(A, %) 1a(0) = ~ /D A - ydo = /D |Vi*de 2 Clliap), for ¥ € D(4).

Note that our results are thus valid also for unbounded domains satisfying Poincaré inequality. Let

us set
10,7 x D(4) x L*(D) 3 (t,9,¢) = T(t,, %(-), V¥(-), ¢()) € L*(D) (4.5.7)
and
9:[0,T] x D(A) x L*(D) > (t,%,9) = I(t, -, %(), V¥(-), (-)) € L*(D). (4.5.8)

In such case, one can easily see that equation (4.5.1) is a particular case of equation (4.0.1). In
order to make use of the results presented in the preceding section, one also need to verify that all
the assumptions 4.1.6, 4.1.7, 4.1.9 and 4.2.1 given in the preceding section on the functions f and
g are fulfilled. To prove the local lipschitz continuity of the function f, we first notice first that
D(A) ¢ H?(D). Hence by the Sobolev embedding theorem, when n = 1, we have H?(D) < C}(D),
so there exists a constant M such that |¢|zo(p) + |V¥|Loy £ M|Y|yap). Take ¢; € H and
¥ € D(A) ¢ H¥D), i = 1,2 such that [¥ilapy £ N. It follows that |¢|zep) £ MN and
|V4|peo(py £ MN which gives that [1(z)] < MN and |Vi(z)] < MN for almost all z € D. We

obtain on the basis of the first assumption 4.5.3 and the boundedness assumption of the domain D
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that

'f(ta %1, ¢1)_f(t’ (2Y ¢2)|L2(D)
= /D 1Y (t, 91 (2), Vi (), 91(2)) — T(t, ¥2(z), Vipa(2), 62(2))|*dz

< /D Lun|tr(z) — o(2)]2 + Lun| Vi (z) — Vipa(z) 2 + Lid1(z) — do(z)|?dz
(4.5.9)
S LMNlDHl[H - Tl)zlim(p) + LMNID”le - vw2'%°°(D) + L|¢1 - ¢2I%2(D)

< M*|D|Lyn ¥ — $alla(py + Lid1 = ¢2l72(p)s
In particular, if the function T doesn’t depend on the third variable, that is f(t, ¢, ¢) = Y(t,-,¥(-), ¢(-)).
The Sobolev embedding theorem tells us that H2(D) — C(D), for n < 3, which implies that there

exists K such that |1|1e0(py < K|9|p2(p). Take ¢; € H and 9; € D(A) C H*(D), i = 1,2 such that

[¥i|g2(py < N. Again, in view of the assumption 4.5.3, we infer that

Lf(t, %1, 01)— f(t, 2, 62)|L2(D)
= [ 1Tt 42(0), 01(@)) = Tt val0), do(a)) e
< [ L&) = val@) + Litr (@) - 92(@) s (45.10)
< K*|D|Lnl1 — ¥alda(py + L1 — d2lla(p)-

From (4.5.9) and (4.5.10), we see that the function f defined by 4.5.7 is locally Lipschitz con-

tinuous which verifies Assumption 4.2.1.

For the growth condition 4.1.6 of f, by making use of Assumption 4.5.4, it can be easily achieved
as follows
£65.8)Eay = [ [T(t2,9(0), V6(@),9(2) e
< [ Lr(1+jote))ia
< Ly|D|(1 + |l23(p))
< Lr|D(1 + [Wlhapy + 8172y

Let us now show that the global Lipschitz condition (4.1.8) are satisfied for the function g defined

by (4.5.8). Take ¢; € L*(D) and 9; € D(A). By using Assumption 4.5.5, an analogous calculation
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as verifying the Lipschitz continuity of f before, shows that if n = 1, then

/Zlg(tﬂ/)h ¢1) = g(t, Y2, 62) |72 py¥(d2)
= [ [ M.z, 1(e), Vs ), 1(0) ~ (e 2, 2(2), V(o). ¢(0)) Pdav(d)
= [ [ 1m2,91@), 91(0), 61(@)) ~ Tt 2, (o), V(). &) Po(de)is
< [ Zr(a) ~ (@)l + L1Vo1(2) = V(@) + L'1(2) - dalo) P
= L'{p1 — o[22 py + L'| Vo1 — Veal2a ) + L'|61 — $2l32(p)
< L'|D|ly1 = $2ffeo(py + L'|DIIVY1 = V2leo(py + L1 — ¢2l2a(p)

< L'\ DIM?ihy — 2l Bz py + L'ld1 — ¢2l2a( ),

and if n < 3 and II does depends on the third variable, then

[ lot1,61) = gt .80y (d2)
= [ [ I\t 1(0), 61(0)) = 10,2, 0a(s), $(0)) Ptav(d)
< [ K@) - va@)l* + Lior(@) - da(o)fds
= L'l — Yal3a(p) + L'| Vo1 = VealFa(py + L'|61 — d2l3a(p)

< L'|DIK |1 — ¥alfa(py + L'|61 = 2lT2(py):

which verifies the global Lipschitz condition (4.1.8) of the function g. In exactly the same manner,

we have

/Zlgu,w,wiia(mu(dz) = /Z /D (¢, z, ¥(z), Vob(x), $(2))|2dzv(d2)
- /D /Z (¢, 2, %(z), Vib(2), $(2))|w(d2)dz
< Ln /D (1+|¢(z)2)de

< Ln|D|(1 + ¥}y + 16172(py)-
To deal with the Equation (4.5.1) with the clamped boundary condition

ou
u—%—OOnBD,
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we define an operator C by

D(C) = {o € HY(D): <p=g—g=00n8D}

Cyp = N?%p, for p € D(C).

It is easy to observe that the operator C is positive. To see this, take ¢ € D(C). Then the Green

formula tells us that
Copln= [ Ap-pdo= [ (g, tp)n= 10l >0
Further, by Lemma 9.17 in [33] , since D(C) C H(D) N HE(D), we have
(Coro)n = 00l > wlulh, ¢ €DO)

where the constant K is independent of ¢. This part also shows that the operator C is uniformly

positive with C > -,13 In this case, we set
A=Ch.

Then by the uniqueness of positive square root operator, we find out that A = —A and D(A4) =
{pe H¥D): ¢ = %‘g =0 on &D}. Since D(A) C H}(D), by the Poincaré inequality, we infer that

A > upl, for some u > 0. Analogously, we define

By = -4y, ¢ € D(A),

D(B) = H*(D) N H}(D).

By adapting the definitions (4.5.7), (4.5.8) of the functions f and g and assumptions (4.5.3)-(4.5.6)
of the functions T and II, all the requirements on the functions f and g are fulfilled in the same

way as above.

4.6 The Markov Property

Suppose Assumption 4.2.1 and 4.1.7 hold. From Theorems 4.2.7 and 4.3.2, we know that Problem

(4.0.5) has a unique global mild solution satisfying

t t
u(t,z) = etz + / et=NAR(r, u(r, z))dr + / et"AG(r, u(r—, ), 2) N(dr, dz). (4.6.1)
0 0
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Here we assume that the functions F and G both don’t depend on the first variable. Suppose that
u(t, s, z) denotes the value of the solution to Equation (4.0.5) at time ¢ which starts at time s from

value z and P, instead of Py;. Define
(Pspp) () :=E[p(u(t,5,2))] 0<s<t<T, ¢eCy(H)

where B,(H) is the set of all real-valued bounded Borel function on . For simplicity, we denote
u(t, z) instead of u(t,0, z).

Proposition 4.6.1. The transition semigroup P, is Feller. That is for every ¢ € Cy(H), Pip €
Cb('H) ,t20.

Proof. Let us first take z;,2z; € H. Define 7% :=inf{0 < ¢t < T : |Ju(t, z;)|lx > n}, i = 1,2. Let
Tn = T* A T2, Then ||u(t, z1)||, |Ju(t, z2)|| < n on [0,7). Let € > 0 be fixed. Then we obtain

|1Pap(z1) — Pup() || = IIE(p(u(t, 21))) — E(p(u(t, z2)))]
= [[Eetutt, 21)) - plu(t, 22)) 1 ecr)) + E(p(u(ts 21)) - 0((t, 22))Liruza)|

< [E(p(utt,20)) — wutt 22 Lscrn) | + Bttt 20)) = 0t 2L cosprinn)|
< [[Eetutt o)) - et 22D ge<r) | + 2ol BT < 1) + P72 < 11)),

where |l¢|| = sup,ey [@()]] < oo by the boundedness of . By Lemma 4.3.1 and Theorem 4.2.7
we have

: Ty — H T2 —
Jim P({r3* <#}) =0 and lim P({r;* <t}) =

Then there exists NV € N such that for all n > N we have
P({rn < t}) < o

P({m <t}) <

8|| I
8|| 8llell

Thus above estimate becomes

1Pip(er) — Piplea)] < [E(out, 20)) - 0wt 22)Liverny) || + 2ol (g

w11 + 5157
— [t 1)) = (A 22| +

Now we observe that
lu(t A Ta=, 21)) — u(t A Tn—, 22))||? < 8||e" ™ (21 — T2) Le<r, ||
tATy
licr, /0 e(thm—8)A [F(u(s, z1)) — F(u(s, wz))] ds

+ 3”1t<7'v|ITn (G)(t A Tm)”27

2
+3
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where
I.(G)(t) = /0 t 1j0,7,](8)e A [G(u(s—, 21), 2) — G(u(s—, z2), z)] N(ds, d2).
Observe that if s <t and t < 7, then s < 7,,. Hence by Lemma. 4.7.1, we find that
E||LicraFr (G)(¢ A )|

t 2
licr, / llo,rﬂ}(s)e(t")“‘ [G(u(s ATn—yT1),2) — G(u(s A Tp—, x2), z)] N(ds,dz)
0

=E

2
<E “/Ot 1[0,7,,)(3)6(“‘3)-‘4 [G’(u(s ATp—,T1),2) — G(u(s A Th—, z2), z)]N(ds, dz)

t 2
= ]E/ ”]-[O,Tn)(s)e(t-—O)A [G(u(s ATp—,Z1),2) — Gu(s A Tp—, 22), z)] ” v(dz)ds
0
t
< C%C%LQIE/ lu(s A Tn—y 1) — u(s A Tp—, x2)||* ds.
0

Here Cr = supgc,<r ||l€*4]| and Cr = supgc,<r |le~*4|l. It follows from Cauchy-Swartz inequality
that
E lu(t A T, 1)) — u(t A Ta—, z2))|?

t 2
< 3C%||zy — zo) + StE/ I'l(o,,.n)(s)e("’“ [F(u(s ATp—,21)) — F(u(s A 1pp—, 1'2))] ” ds
0
t
+ BC%C%LQIE/O ||u(s A Tn—, 1) — u(s A 70—, 2‘2)“2 ds
~ t 2 M
< 30%”3:1 —z)? + 3TC%C’3L$,]E/ lu(s A Tp—, z1) — u(8 A Tn—, 22)||" ds
0
t
+ SCfC’ng]E/O [u(s A mn—,21) — u(s A 7n—, :1:2)||2 ds
t
= 30%”:1:1 - m2]|2 + c(T)E/ lu(s A Tp—, 1) — W(8 A T —, .’Ez)“z ds,
0

where ¢(T) = 3tC%C’%L% + SC%C'%Lg. Applying Gronwall’s Lemma yields
Elu(t A Ta—, 1) — u(t A Ta—, 22)]|* < 3CE||z1 — 22]2e®T" < K||z1 — 25)|2, (4.6.2)

where K = 3C%e4D7T,

Now, let us take an element z € H. Let {zp,}men be any sequence in H convergent to z. We
need to show that (Pp)(zpm) = (Pwp)(z), a8 m — 0o. Given € > 0, by the continuity of the function
¢, there exists > 0 such that if ||u(t A Tn—, Zm) — u(t A Tn—, 2)|| < 7, then we have

£
lp(u(t A o=, Zm)) — p(u(t A Ta=,2))] < 7.
Meanwhile, by Chebyshev inequality and inequality (4.6.2) we obtain

E ||u(t A Tp—, mm) - u(t A Tn—, Z')“2
772

P{ 4(t A Ta—, Zm) = u(EA Ta—, z)|| > 17} <

— |2
< Klzm =2l
n
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Take 62 = gﬂ—%—ka Then there exists N € N depending on ¢ such that for all m > N, we have
||zm — z|| < 6. Hence we infer that

€

]P’{ lu(t A Tp—, 1) = u(t A Tp—, 22)|| 2 n} < 8_”;”

Combining all the above estimates, we find that for all m > N,

|Pep(m) = Pep(@)] < [|E(o(u(t A 1=, 2m)) = p(u(t ATam, ) | + 5
< “E P(u(t A Ta—, Tm)) — @(ut A Ta—, 7))) 1{Hu(tATn—,zm)-—u(tArn—,x)||2n}”
+ “IE u(t A=, z)) — (ut Atn—, w)))l(uu(w,,—,x,,.)—u(wn—,z)||<n}“ + '62'
< 2ljpl[B{lluct A i) e AT 2 2 m+s+s
< 2”9’)”8” T + + >
=
This completes the proof. O
Theorem 4.6.2, For every 0 < s <t < T, we have
]E[cp(u(t + s,a:))lf_g] = K, a+t,0(4(s, 7)), (4.6.3)
where Ko s+1,0(y) = E[p(u(t + s,8,9))], y € H. In particular, Py = P,Ps.

Proof. Since Problem (4.0.5) has a unique mild solution satisfying
t t .
u(t, z) = etz + / AR (u(r, 2))dr + / G u(r—, 7), 2) N (dr, d2),
0 0
byy shifting time ¢ by ¢t + s, we have

t+s i+8 ..
u(t+ s,z) = elttdAg o / eltts—NAR(y(r, z))dr + / etts-NAGQ(u(r—, z), 2) N(dr, dz)
0 0

8 §+ -
= ethe*Ag + / etH=NAR (u(r, z))dr + / etrs-DAQ(u(r—, ), 2) N (ds, dz)
0 0

t+s t+s _
+/ e(‘+"")AF(u(r,m))dr+/ ette=NAG(u(r—, ), 2) N(dr, dz)
8

8

= et [e%+ / " eDA B(u(r, ) + / ¢=14G(u(r-, 2), 2)N (dr dz)
0

t+s t+ o
+/ e(‘“‘”AF(u(r,x))dr-’r/ etta-"AQ(u(r—, ), 2) N (ds, dz)
’ t-+8 ) t+8 -
= etu(s, z) +/ elts—mARy(r, m))dr+/ et+te-NAG(u(r—, z), 2)N(dr, dz).
8 8

Changing variable and denoting N*(r,z) = N(s +1,2) — N(s,2) for 0 < r < T and 2 € Z yields

t ¢ .
u(t + s, z) = e"u(s, z) + / eC~MAF(u(r + s,z))dr + / etAQu((r + 8)—, ), 2) N*(dr, dz).
0 0
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Meanwhile by shifting the start time by s we get

t+s
u(t + s, 8,u(s, 7)) =e"u(s, z) + / ett=IAE (u(r, s, z))dr

8
t+s .
+ / e -NAG(u(r—, 5, 3), 2) N (dr, dz)
a8
i
=etAu(s, z) + / etAR(u(r + 8,5, z))dr
0
t+ .
+ [ e AG(r + 8)=8,2), )W (dr, da).
0
Note that u(s, z) is an F,-measurable process and the new Poisson random measure N* is indepen-
dent with respect to F, and by the definition and stationarity of N we find out that it has the same
distribution with N. Let F* be the completion of the o-field generated by u(s,z) and N°®. Let F}
be the o-filed generated by u(s,z) and {N*(r,2),0 < r < T} which satisfies the usual hypotheses.
Then u(t + s,z) and u(t + s, s,u(s,z)) are both solutions to the following stochastic differential

equation on the probability space (9, P, F{, F?)

dut(t) = (Au(t) + F(u*(8)))dt + / G (t-), 2)N°(dt, d2)
z
u?(0) = u(s, ).

By the uniqueness of the solution, we infer that u(¢+s,z) = u(t+3, 8, u(s, z)) P-a.s. In the proof of
Theorem (4.2.7), we construct functions F,,,n € N which are globally Lipschitz continuous such that
for each n € N Equation (4.0.5) with drift F replaced by F;, has a unique mild solution satisfying

t ¢ :

um(t,z) = e‘Ax+/ etNAE (um(r, m))dr+/ etAG (um (r—, 2), 2) N (dr, d2).
0 0

Moreover, we have for all 0 <t < T, limy, (¢, ) = u(t, z) P-a.s. Define a map

B*(X) = eAu(s, z) + /0 CE(X(m)dr + /0 t /Z G(X(r=), 2)N*(dr, dz)

Now define ug m(t + 8,8,u(s,z)) = u(s, z) and define recursively for n > 1
Unm(t + 8,8,u(s, ) = @*(un1,m(t + 8,8, u(s, 7))
t
= eMu(s, x) + / Frn(unt1,m(r + 8,8,u(s, )))dr
0

+/Ot/ZG(un+1,m((r+s)—,s, u(s, z)), 2) N*(dr, dz).
Note that the law of ugm(t + 8, 8,u(s, z)) is uniquely determined by the law of u(s, z) and
uLm(t + 8, 8,u(s, z)) = eu(s,z) + /Ot Fn(uom(r + 8, 8,u(s, z)))dr
+ /0 t /Z Gtiom((r + 8)~ 5,u(s, 7)), 2)N*(dr, dz).

So the law of uym(t + s, s,u(s,z)) is uniquely determined by the law of u(s,z) and the law of Ne,
where u(s,z) and N? are independent. By induction, we infer that the law of u, ,(t + s, 3, u(s, z))
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is uniquely determined by the law of u(s,z) and the law of N*, for each n € N. Note that N? is
independent of Fs. Since the map ®* is a contradiction, it follows from Banach fixed point theorem,
we infer that

7}5{.10 Unm(t + 8, 8,u(s, 7)) = up(t +s,s,u(s,z)) P—a.s.

We first consider the case where u(s, z) is a simple function of the form

k
u(s,z) = ijlAj,
j=1

where A; is Fs-measurable. It then follows that

E[p(u(t + 5,2))|Fs] = E[p(u(t + s, 5, u(s, )))|Fe]
= lim lim ]E[cp(un m(t+ s,8,u(s, z)))| Fs]

m—o0 Nn—00

= lim lim E[ m(t + 8,8,2;))14,Fs)

m
= lim lingoZE[w(un,m(t +8,8,7;))| Fs] 1a
e~

= lim Z 11m IE un,m(t-}-s,s,mj))]lAj

m—r00

=3 lim E[p(un(t +5,5,2;))] 14,
j=1

= [U(t"“s 8, )] (u(s,x))

k

where we used the F,-measurability of 1 4; and independence of Un,m(t + 8, 8,;) with respect to
Fs. Now for arbitrary u(s, z) € L%(Q, F;), we can find a sequence of simple functions {u™(s, ) }nen
in L?(Q, F;) such that

3 n - 2 _ : n — _
nl_lﬁn&]EHu (s,z) —u(s,z)||*=0 and Jl’ngou (s,z) = u(s, z) P-a.s.

In the proof of Proposition 4.6.1 we show that the map z — u(t, ) is continous. Then we conclude
that u(t + s, s, u™(s, x)) converges to u(t + s, s, u(s, z)) P-a.s. Thus for ¢ € Cy(H), we infer

%g o(u(t + s,8,u™(s,z))) = p(ut + s, s,u(s, z)))
It then follows from the Lebesgue dominated convergence theorem that
lim E[p(u(t + 5, 5,u"(s,2)))|Fs] = E[p(u(t + 5,,u(s, 2)))|Fs]
Also by Feller property of P, in Proposition 4.6.1, we have

JLIEOIE[u(t +8,8,)](u"(s,2)) = E[u(t + 3, 3,-)] (u(s, z)).

172



Moreover, for each n, the simple function u™(s, ) satisfies

E[p(u(t + s,5,u™(s,z)))|Fs] = E[u(t + s,8,-)] (u"(s, ))
Letting n — oo in both sides of above equality, we conclude that

E[p(u(t + s,5,u(s,2)))|Fs] =E[u(t + s,s,")](u(s, z)),
which shows equality (4.6.3).

Since N* and N have the same law, by above discussion the law of u(t + s,s,u(s, z)) is uniquely
determined by the law of u(s,z) and the law of N. Consider the following equation

du(t) = (Au(t) + F(u(t)))dt +/ G(u(t-), 2)N(dt,dz)
z
u(0) = u(s, ).
Then this equation has a unique mild solution which satisfies

t t
u(t,u(s,m))=etAu(s,z)+/ e(“'MF(u(r,u(s,:z:)))dr+/0 /;G(u(r——,u(s,a:)),z)N(dr,dz).
0

By a similar argument as above, we see that the law of u(t, u(s, z)) is uniquely determined by the
law of u(s,z) and the law of N. Thus we infer that

E[u(t + s, 8,u(s,7))] = E[u(t, u(s, ))].
Finally, we obtain for every ¢ € Cy(H),

Pirap(z) = E[p(u(t + s,7))]

E [E(p(u(t + s,2))|Fs)]

= E [E(p(u(t + 3, 8,u(s, 2)))]
= E [E(p(u(t, u(s,2))))]
=E[(P; 0 p)(u(s, ))]

= Py(P, 0 p(x)),

which completes our proof. O

Remark 4.6.3. The Feller property proved in this section makes it possible to define an invariant
probability measure for the process (4.6.1). At this stage, let us recall the definition of an invariant
measure. We say that a probability measure y is an invariant measure for (4.6.1) if and only if for
any function ¢ € By(H), we have

(Pep ) = (pyp), t 2 0.

Here (Pyp, p) = [, Pup(x)u(dz) and (@, ) = [, p(x)pu(dz). The existence of invariant measure for
(4.6.1), in contrary to the finite dimensional case e.g. in [2], i8 still an open problem.
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4.7 Appendix

Let X = (X(t))i>0 be an H-valued process. Let (e*4)icr be a contraction Co-group.Let ¢ be an

H-valued process belonging to M2 _(P;H). Set

t
I(t) = / / et A5, 2N (ds, dz), ¢ > 0,
0 JZ

t
L(t) = / / 1,7 ()= (s, 2) N (ds, dz), t > 0.
0JZ

By the choice of process ¢, Proposition 4.1.11 and the assumption about (eM)tem, the stochastic
convolution process I(t), t > 0, is well defined. Also for any stopping time 7, the process 1ig (¢, w)
is predictable. In fact, the predictable o-field is generated by the family of closed stochastic intervals
{[0,T] : T is a stopping time}, see Corollary 2.2.13. This together with the predictability of ¢ and
Proposition 4.1.11 implies that integrand of I(t) is predictable. Thus the stochastic convolution
I.(t) is well defined as well. Moreover, Theorem 3.7.9 allows us to assume that the stochastic
convolution process I(t), t > 0 is cadlag. The following lemma, which was first explicitly stated by
Carroll in his Ph.D thesis [20], verifies the definition (4.2.2) of a local mild solution. The proof is
mainly based on [15] and [14].
Lemma 4.7.1. For any stopping time T,

et=DAT(E A T) = I(t) (4.7.1)
holds for all t > 0, P-a.s.

Proof. We first verify it for deterministic time. Let 7 = a. ff t < a, then
T
Ut A g) = e(-DAL(t) = I(t) = / / l[o,t]e(t_'g)““cp(s, z)N(ds,dz)
0o Jz
T ~
= _/ / 1o, 0,01e " 4p(s, 2) N (ds, dz)
0 Jz

t ~
= / / l{ola]e(t's)‘Acp(s A a,z)N(ds,dz) = I,(t),
0Jz
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where we used in the equality the fact that 1jg0)(s)¢(s, 2) = 1jo,q)(s)@(s Aa,2). If t > a, then
et=tDAL( A g) = =4 (a) = elt~DA /0 ’ /Z ela=94, (s, 2) N (ds, dz)

= e(t-a)A /OT/Zl[o‘a](s)e(““")"‘cp(s,z)N(ds, dz)

+ elt-a)4 /0 ' /Z 1a1(5)10.a)(8)l@= (s, 2) N (ds, dz)
= e(t-9)4 /Oa /Z l[o,a](s)e(““’)Acp(s, z)N(ds, dz)

+ glt-a)A /t/Zl[O,a](s)e(“'“")Acp(s, z)N(ds,dz)

a

= glt-a)4 ./ot/z llo,a)(s)e(“"’)"‘cp(s Aa,z)N(ds, dz)

t ~
_-:/0 /Z1[0’“](8)e(t")A<P(3’Z)N(ds’dz)=Ia(t).

Thus equality (4.7.1) holds for any deterministic time. Now let 7 be an arbitrary stopping time.
Define 7, := 27"([2"7] + 1), for each n € N. That is 7, = %El if 2—",; <7< 5,},:‘-1- Then 7, converges
down to 7 as n — oo pointwisely. Note that the equality (4.7.1) proved above holds for each
deterministic time k27", It follows that

00
e(t—-t/\r,.).AI(t ATn) = Z 1{k2—nsr<(k+1)2-ﬂ}C(t_M(kH)Z*")AI(t A (k+1)277)
k=0

o
=¥ Lpg-neregrnz-mpls 2 (8) = In, (2). (4.7.2)
k=0

Since 75, converges down to 7, so by the P-a.s. right-continuity of I(t), I(t A7n) converges pointwise
on Qto I(t A1) as n — oo for every t > 0 P-a.s. Also, observe that

lle("t’\’")AI(t ATp) — eHADAL (L A T)”
< ”e(t-t/\‘ru)A(I(t Ara) = I(EAT))| + ” (e(t—t/\m)A _ e(t-—t/\‘r)A) I(t A 'r)“

<A = I(EAT)] + “ (e“‘t’"")“‘ - e<t-W)A) It A T)” .

converges to 0 as n — 0o, Thus we conclude that et—tA™)AI(t A 1,,) converges to et—tADAT(t A T),
for each t > 0, P-a.s. For the term Iy, (t), by the isometry we find out that

2

t a~
Elll7,(t) - L(t)I* = E'l /0 /z (Lio,ra)(8) = Lpo,r)(9)) e~ (s, 2) N (ds, d2)

= [ [ ]| tara®) = o)t Mp(5,2)| ()t

Recall that that 7, | 7 as n = 0o. So 1 -, converges to 1 ) 88 n — 0o. Obviously, the integrand
is bounded by |[¢(s, 2)||? for all n. It then follows from dominated convergence theorem that

; _ 2
Jim E|| I, () - I ()] — 0.
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Hence we can always find a subsequence which is convergent a.s. Finally, Letting n — oc in both
sides of (4.7.2) yields

et=IIAL(EAT) = I (t)

which completes our proof.

Remark 4.7.2. Note in particular that if we replace t by t A 7 in (4.7.1), we obtain

IGAT)y=I(tAT).
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