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Abstract 

Traditional approaches to helicopter control law design involve the iterative application of 

single-input, single-output loop-at-a-time classical methods. Helicopters are typically highly 

cross-coupled systems, and such approaches become very laborious under these conditions. 

Modern multi variable techniques, despite their ability to solve control design problems very 

efficiently, have not been embraced by practitioners. One possible reason for this is the 

lack of design visibility provided by such techniques, in terms of performance and controller 

structure. 

This thesis presents new observations and algorithms which address this problem. Eigen­

structure assignment is introduced in the context of classical control in order to illustrate 

the extent to which the two methodologies share a common language of expression. The 

sources of the primary dynamics of a helicopter are identified, and a new ideal eigenstructure 

is derived which fulfills the UK Def.Stan.OO-970 handling qualities specification. 

Dynamic compensators are investigated in detail, to identify the distribution of the design 

freedom added by these structures and its possible uses in the context of eigenstructure 

assignment. It is found that the manner in which the freedom is expressed does not lend 

itself to eigenstructure assignrrient, and so other sources of design freedom are sought. This 

leads to the development of two novel algorithms, and several extensions, for the assignment 

of eigenstructure to systems with a direct transmission term and consequently to helicopters 

with acceleration feedback or proportional-plus-derivative control structures. 

The use of design freedom remaining after eigenstructure assignment is considered, and an 

algorithm for using it to impose structure on the controller without affecting the assigned 

eigenstructure is developed. Finally all of the algorithms developed in the thesis, along with 

the ideal eigenstructure, are demonstrated by application to a linearised helicopter model. 
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The study of control engineering can be traced back to the ancient Greeks, and examples of 

mechanical control systems from the time of the Industrial Revolution are numerous (Astrom, 

1999). Modern control systems usually consist of electronic sensors, controllers and actuators, 

and increasingly the controllers themselves are implemented digitally. As the demands on 

physical systems increase, and the systems themselves become more and more complex, 

control systems become increasingly important. 

Helicopters, being inherently complex systems, required the development of control system 

technology before they could become useful- despite having existed as a technology for almost 

as long as their fixed-wing counterparts. All high-performance aircraft, both rotary-wing and 

fixed-wing, employ control systems to achieve their desired levels of performance (Blight 

et al., 1994). Without feedback control, helicopters tend to be highly unstable and difficult 

to fly. 

This thesis is the latest in a long line of D.Phil. and Ph.D theses covering aspects of Eigen­

structure Assignment (EA) and rotorcraft control at the University of York (Young, 1989; 

Burrows, 1990; Lawes, 1994; Davies, 1994; Griffin, 1997; Ensor, 2000; Gee, 2000). 

19 



1.1. Control and Visibility 20 

1.1 Control and Visibility 

Traditionally, 'classical' control techniques have been used to approach helicopter control 

design problems (McLean, 1990), and these techniques are still the 'most commonly used 

today (Taylor, 2006). These involve forming single-input, single-output control loops, one at 

a time, and iteratively adjusting their parameters until the desired performance is achieved. 

Since the helicopter is a large system with many inputs and outputs, this process can be 

extremely time-consuming. 

Multivariable control design methodologies, such as Hoc (Kwakernaak, 1993), Linear Quad­

ratic Gaussian with Loop Transfer Recovery (LQG/LTR) (Stein and Athens, 1987) and EA 

(Moore, 1976) use mathematical analysis of the problem to arrive at a solution for all vari- ' 

abIes quickly. However, classical approaches possess the quality that changes to the design 

parameters produce.a predictable change in system response, placing the control engineer in 

direct contact with the system and allowing the design of a control system to become an art. 

This quality is known as visibility, and is not generally shared by multivariable approaches, 

wherein the design parameters are often abstracted quite considerably from the system re­

sponse. It is reasonable to suggest that the lack of uptake of multivariable methods among 

practitioners (Blight et al., 1994; Griffin, 1997) is partly attributable to this lack of visibility. 

The gap between current theory and practice is regrettable, since the application of mod­

ern multivariable control techniques could doubtless improve on the performance of current 

controller designs, while simultaneously increasing the speed of arrival at a control solution 

by several orders of magnitude. (Griffin, 1997) notes that EA has the potential to address 

t~is problem, since the manner in which the control problem is expressed has close links 

to classical control, but more work is still needed to produce algorithms which display the 

visibility and flexibility required. The aim of this thesis is to attack the practice-theory gap 

by promoting an understanding of EA in a classical context, and by developing algorithms 

which extend the capabilities of EA towards current practice. 

1.2 Controller Structure 

EA, in common with other multivariable design methodologies, is inclined to use all of the 

available design freedom to generate a control solution. When this design freedom is expressed 

as a matrix of gains linking every plant output to every plant input, as it typically is, this is 

likely to result in a fully interconnected controller. This does not fit well with classical control 
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design practice, where the structure is designed a loop at a time and is hence generally sparse. 

While the visibility of the EA process is high during the design stage, it can be difficult to 

determine the roles ofthe individual gains in the final controller. 

Two approaches to addressing these issues present themselves. The first is to attempt to use 

EA to generate (or optimise) a set of control laws within a given structure. For example, 

an existing set of helicopter controller gains and compensators could be subjected to an 

EA process. This presents a challenge, since the set of available gains would have to be 

represented in an unconventional form. Additionally it is restrictive in that it is possible that 

EA might, if unconstrained, lead to the discovery of anew, better controller structure. The 

second option therefore is that EA is used to generate a fully interconnected controller, but 

a portion of the design freedom is reserved and used to impose a structure on the controller. 

This imposition of structure could be guided so that the links that are removed are those 

which have the least effect on the remaining controller gains; in this way the EA process 

would have had an influence on the final chosen structure. 

It is also important that dynamic compensators are investigated, since these could provide 

a source of the design freedom needed for structuring a controller. Accordingly dynamic 

compensators, other freedom-increasing methods, and structural imposition will form core 

themes in this thesis. 

1.3 Robustness 

Robustness is a term which takes on many meanings, but it generally refers to the ability of 

a closed-loop system to respond to changes in the open-loop plant in a way which conforms 

to a specification - often in a way which minimises the deviation of the closed-loop system 

from its nominal performance according to some measure. These changes could be the result 

of nonlinearities, perturbations or uncertainties. EA has no robustness guarantees, unlike for 

example Hoo; but it provides access to all the available degrees of freedom and hence ' ... may 

assign a robust solution as easily as a non-robust solution' (Griffin, 1997, p176). The necessary 

level of robustness must be introduced either by careful selection of the desired eigenstructure, 

or through an iterative design process where the robustness of an EA design is checked 

post-assignment and the design revised if necessary. Since robustness and performance are 

inherently different sets of requirements, improvement of the robustness of a controller must 

inevitably result in some performance degradation. However this trade-off can be performed 
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by manipulating the assigned eigenstructure, so the effects on performance can be seen and 

controlled. 'Robustification' algorithms for achieving this are well-developed (Griffin, 1997; 

Ensor, 2000; Ensor and Davies, 2000), and can work with any EA algorithm. Therefore 

this thesis will not be concerned with issues of robustness, and will instead focus on EA for 

performance on the understanding that these techniques can be applied to improve robustness 

if required. 

1.4 Thesis Overview 

It is the author's thesis that. EA can be used as part of a visible process, sharing much of the 

language of classical control, to design structured controllers for helicopter applications. 

To produce an accessible, readable document, the organisation of this thesis is such that the 

chapters form self-contained units. In each case a summary of the contents of the chapter 

will be found at the start, and a summary and list of references at the end. A number of 

appendices follow the main body of the thesis, and contain supporting material which would 

otherwise break the flow of the main text. 

Chapter 2 introduces EA from the perspective of traditional 'classical' control approaches. 

The fundamental concepts of classical control are introduced and discussed, and the diffi­

culties introduced by cross-coupled multi variable systems demonstrated. A review of the 

development and types of EA algorithms demonstrates that these difficulties may be ad­

dressed by EA in a way which retains as much as possible of the terminology and approach 

of classical control, and that highly visible access to the available design freedom can be 

obtained. 

In Chapter 3, the helicopter is intro~uced from a theoretical standpoint. The understanding 

of a plant is important to the generation of an effective control strategy, and several of the 

characteristic helicopter dynamics are derived. The specific issues related to the application 

of EA to the helicopter control problem are then considered, and a new ideal eigenstructure 

for a helicopter in forward flight is developed and shown to be kinematically correct. 

The application of standard state- or output-feedback EA generates a set of fixed gains link­

ing the outputs of a plant to its inputs. Chapter 4 introduces the dynamic compensator, 

an alternative controller structure in which the controller itself possesses dynamics. A sim­

ple representation for these compensators is shown which allows the use of standard EA 

techniques, by manipulating the representation of the compensator until all of its degrees of 
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freedom are represented by one large matrix of fixed gains. A new analysis of the effect of this 

freedom on the eigenvectors is presented, and an alternative compensator structure is also 

presented which carries the potential for deciding on the eventual structure of a compensator 

after EA has taken place. However it is postulated that the distribution of design freedom in 

a compensated system does not lend itself readily to EA, and if additional design freedom is 

required, there are more suitable ways of obtaining it. 

Chapter 5 contains two, separate, novel algorithms for EA. These algorithms are capable 

of acting upon semi-proper (proper but not strictly proper) systems. It is shown that the 

formation of semi-proper systems, by the addition of certain types of sensors or the imple­

mentation of Proportional-plus-Derivative (PD) control, is a valid approach to the generation 

of additional design freedom. A number of extensions are considered to the basic algorithms, 

to allow the assignment of ,modal coupling vectors in the face of changes to the input and 

output matrices, and to recover unused design freedom from both algorithms for use in a 

retro-assignment stage or for any other purpose. 

Several EA algorithms, including those developed for Chapter 5, have the potential to leave 

a portion of the design freedom unused. Chapter 6 considers a new use for this freedom: 

the imposition of structure on the controller through selective elimination of gains or the 

establishment of known links between gain matrix entries. A novel algorithm for the achieve­

ment of this aim is developed, along with tools for assessing the impact of these structural 

constraints on the overall magnitude of entries in the gain matrix. 

Chapter 7 puts the tools developed in the preceding chapters into context by using EA to 

control two linearised helicopter models. The ideal eigenstructure from Chapter 3 is verified 

by applying it to a helicopter in forward flight, which is shown to exhibit Level 1 handling 

qualities. The two EA algorithms of Chapter 5 and the structural algorithm from Chapter 6 

are also used and shown to work well, as expected. 

Finally, overall conclusions and a summary of suggested further work can be found in Chap­

ter 8. 
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2.1 Introduction 

In this chapter, Eigenstructure Assignment (EA) will be introduced from the perspective of 

traditional 'classical' control approaches. 

Firstly, the fundamental concepts of classical control will be introduced and discussed, before 

the difficulties introduced by cross-coupled multivariable systems are demonstrated. These 

difficulties, it will be shown, are addressed by good EA algorithms in a way which retains as 

much as possible of the terminology and approach of classical control, while providing access 

to all available design freedom in a visible way. 

The review of EA algorithms bears some superficial similarity to those presented by White 

(1995), Griffin (1997) and Ensor (2000). However, the analysis of the algorithms presented 

here is new, and has been performed in the context of the aims of this thesis. Several 

assertions are made here about the nature of various existing algorithms and the manner in 

which they allow a control system designer to specify the performance of the system. 

In summary, this chapter is intended both to demonstrate the clear links that exist between 

classical control and EA, and to provide the reader with an understanding of the language 

of control and the importance of a variety of control concepts. 

2.2 Classical Control 

Classical control generally involves the formation of a control law to affect the behaviour of a 

Single-Input, Single-Output (SISO) system whose dynamics can be described by an ordinary 

differential equation. This control law is specified in terms of the dynamic response of the 

system, not directly in terms of the coefficients of the differential equation. The characteristics 

of such a system will be considered first, along with the way in which the system is treated 

mathematically for the purposes of applying control. This will be followed by an overview of 

classical techniques for calculating the parameters of a feedback controller, which typically 

involve graphical tools and rules of thumb. 

2.2.1 Problem Formulation 

Before the approaches to control can be considered, it is important to understand the form 

of the systems to which control is to be applied. 

Firstly, a mathematical model of a system is formed. This model is then cast into a useful 
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form (the 'transfer function') for the purposes of applying control, and finally some function 

of the output is fed back to the input in order to affect the behaviour of the system. 

2.2.1.1 Modelling 

For the purposes of mathematical analysis, continuous-time linear systems with one input 

and one output are described by continuous-time linear differential equations (Jacobs, 1974; 

Nise, 1995) of the form 

If'/'y(t) an-1y(t) ~u(t) ~-lu(t) 
dtrl + an-l dtn-1 + ... + aoy(t) = dtm + bm-l dtm- 1 + ... + bou(t) (2.1) 

where u(t) is the system input, y(t) is the system output and the system parameters ai and 

bj serve to describe the relationship between input and output. 

No real system is completely linear (Schwarzenbach and Gill, 1984), and so in order to arrive at 

the form of Equation 2.1, simplifying assumptions are often made when describing the system 

(Nise, 1995; Jacobs, 1974). Furthermore, even complex nonlinear systems may be described 

using equations such as Equation 2.1, where such equations are approximations and are valid 

only for a small region of operation or for a short period of time (Schwarzenbach and Gill, 

1984; Banks, 1986; Schoukens and Pintelon, 1991; Griffin, 1997; Ogata, 1997). 

The complete solution to a linear differential equation is the sum of two parts: the particular 

integral (or 'forced response') and the complementary function (or 'natural response'). The 

forced response is due to the input u(t), while the natural response follows only from the 

initial conditions of the equation. A system is described as stable if its response to any 

input decays to zero after the input is removed, and so the complementary function is of 

great importance. The complementary function is found by setting the right':hand side of 

Equation 2.1 to zero and solving the resulting homogeneous equation. The solution (Jacobs, 

1974) will have the general form 
n 

Ye! = L Ck
eBkt 

k=l 

(2.2) 

where Ck E lR are constants determined by the initial conditions and Sk E C are the roots of 

the characteristic equation 

n + n-l + 0 San-IS + ... + als aO = (2.3) 

The roots Sk of the characteristic equation are known as the system poles, and play a large 
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part in shaping the response of the system. Since the natural response is composed of the 

sum of exponential terms with Sk as the exponents, it is clear that the system is stable if and 

only if all system poles have negative real parts. Such poles are described as lying in the left 

half plane, referring to the fact that if plotted on an Argand diagram they would lie to the 

left of the imaginary axis. Also, if a pair of complex conjugate poles a + jWd and a - jWd 

form part of the set, their contribution to the response can be written as 

e(a+jwd)t + e(a-jwd)t = eat (eiWdt + e-jWdt ) (2.4) 

= eat (cos Wdt + j sin Wdt + cos( -Wdt) + j sine -Wdt)) (2.5) 

= 2eat cos Wdt (2.6) 

If the system is stable, giving a < 0, the contribution of a complex pole pair is therefore 

a cosinusoid that decays in magnitude exponentially. The frequency of the cosinusoid Wd is 

termed the damped natural frequency. 

It is worth noting also that if a subset of the poles of a system have significantly smaller 

negative real parts then the rest, then the portions of the response associated with these 

poles will decay much more slowly. As a result, the overall shape of the response will be 

dominated by these poles. Such poles are therefore referred to as dominant; as will be seen, 

the characterisation of the dominant poles affords certain simplifications when designing a 

control system. 

2.2.1.2 Transfer Functions 

The Laplace transform' (or unilateral Laplace transform) is an integral transform capable of 

converting differential equations into algebraic equations. It is defined as 

.c [J(t)] = pes) = l~ J(t)e-stdt (2.7) 

Applying this to both sides of Equation 2.1, and assuming that all initial conditions are zero, 

yields 

Rearranging, 

(2.9) 
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Hence if the Laplace transform of the input signal is known, or can be found, Equation 2.9 

can be used to find the Laplace transform of the output signal. The inverse Laplace transform 

(also known as the Bromwich integral or the Fourier-Mellin integral), given as 

1 l C

+
iOO 

£-1 [F(s)] = -2 . F(s)eBtds 
7r C-}OO 

(2.10) 

where c is chosen such that all discontinuities in F( s) lie to the left of it in the complex plane, 

can then be used to recover the time-domain version of the output signal. 

Comparing Equations 2.9 and 2.3 shows that the transfer function denominator is the same 

as the characteristic polynomial, and therefore that the system poles are the roots of the 

denominator of the transfer function. It is also clear that the system poles are those values 

{.X} where G(A) = 00. 

The numerator of the transfer function is also important. From Equation 2.8, it is clear that 

the numerator and denominator of the transfer function share a kind of duality of function; 

were one to drive the output of the system and observe the effect on its input, the transfer 

function of the observed response would be the reciprocal of that in Equation 2.9. 

The numerator has no effect on the natural response however, as shown by Equation 2.3, and 

its influence must therefore be over the forced response. The roots of the numerator of the 

transfer function are known as zeros, and are naturally those values {z} where G(z) = O. 

The location of the system zeros has no effect on stability. The effect of zeros on the system 

response can be understood by considering the following example (from Nise, 1995). 

Let Y (s) be the Laplace transform of the output response of a certain system, whose transfer 

function G(s) has a simple constant term in the numerator. If a single zero at s = a is added 

to the transfer function, it will become (s - a)G(s); the corresponding output response will 

become 

(s - a)Y(s) = sY(s) - aY(s) (2.11) 

The output response now consists of two terms: a scaled version of the original response, and 

the derivative of the original response. If a is large and negative, the derivative term will be 

largely swamped and the response shape will be almost unchanged. Smaller values of a will 

have larger effects. If a = 0, the zero is in fact a pure differentiator, and the response shape 

will change completely. 

Interestingly, if a > 0, placing the zero in the right half plane, the scaled response and the 
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derivative will have opposite signs. In response to a step input, the derivative of the output is 

typically positive initially; if a is small enough, this will lead to the output response starting 

off in the negative direction even though the final response will be positive. A system that 

exhibits this behaviour is known as a nonminimum-phase system. 

Clearly then, the poles and zeros of the transfer function of a system define its dynamic 

response to any given input. Manipulation of the location of these poles and zeros is therefore 

the aim of classical feedback control system design. 

2.2.1.3 Closing the Loop 

Feedback can take many forms. In each case the system output is taken, modified and used 

to augment the input, leading to a modified system response. Figure 2.1 shows a simple 

form of feedback control known as unity negative feedback. The output is subtracted from 

the input, leaving an error signal which is fed to the system input. The overall input to the 

dosed-loop system is now a demand for a particular output, and while the system output 

does not match the demand, the error signal will be nonzero. 

Controller System 
................. n ••••••••••••••••• 1-··_····_··_·········_-

U(s)( E(s) 
H(s) 

Y(s) 
+ : G(s) 

Figure 2.1: Unity Negative Feedback 

Unity negative feedback, on its own, is not of much use since the effect of dosing the loop is 

not adjustable. Instead, a controller term is introduced; this is shown as H(s) in Figure 2.1. 

In the simplest case, H(s) would be a simple gain .. 

The effect on the system transfer function is simple to deduce. Given a transfer function 

G(s), external input U(s), and output Y(s), the error signal is given by 

E(s) = U(s) - Y(s) (2.12) 

and the output is therefore given by 

Y(s) = H(s)G(s)E(s) = H(s)G(s)U(s) - H(s)G(s)Y(s) (2.13) 

The transfer'function T(s) of the equivalent unity negative feedback closed-loop system can 
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now be found: 

(1 + G(s)H(s)) Yes) = G(s)H(s)U(s) 

T(s) _ Yes) _ . G(s)H(s) 
- U(s) - 1 + G(s)H(s) 
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(2.14) 

(2.15) 

The poles and zeros of this closed-loop system are interesting to investigate. If the open loop 

transfer function G(s) is defined as 

and the controller H (s) as 

then by substitution, 

G( ) = Z(s) 
s pes) 

H(s} = Ze(s) 
Pe(s) 

~~ 
T(s} = PJ8)P[S) 

1 + ~18) Z(~ 
PJ8)P[S) 

Z(s)Ze(s) 
-~~--~~~--~ 

P(s}Pc(s) + Z(s}Ze(s) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

Examination of Equation 2.19 shows that any' root of Z(s) is a root of the numerator of 

the closed-loop transfer function T(s). This shows that the zeros of G(s) are invariant 

under feedback, though any zeros present in the controller H (s) will manifest themselves 

as additional zeros in T( s). 

As described, the simplest type of unity negative feedback control uses a simple gain, so that 

H(s) = K. Then from Equations 2.15 and 2.19, the closed loop transfer function reduces to 

T s = KG(s) _ KZ(s) 
() 1 + KG(s) - pes) + KZ(s) 

(2.20) 

showing once more that the system zeros remain unchanged under feedback. 

An alternative feedback structure is shown in Figure 2.2. Now the controller H(s) is placed 

not in series with the plant, but in the feedback path. Note that in the absence of an external 

input U(s), the structure is identical to that of the system in Figure 2.1. Consequently it 

would be expected that the natural response would be the same, and hence that the closed­

loop system poles would also be the same. 

The role of the external input U(s) has changed, however. In the system of Figure 2.1, it 
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System 
U(s) E(s) 

G(s) 

tt 
I 

+ ,/ 
..: 

H(s) 
I .... _. 

Controller 

Figure 2.2: Alternative Negative Feedback 

acted to demand a particular output response; this is no longer the case, since the summing 

junction appears after the feedback signal has been modified by the.controller H(s). For the 

same reason, it is no longer strictly accurate to refer to the signal E(s) as the error signal, 

though the notation will be retained for convenience. 

Analysis of Figure 2.2 allows the construction of the closed loop transfer function: 

E(s) = U(s) - H(s)Y(s) 

yes) = G(s)E(s) 

= G(s)U(s) - G(s)H(s)Y(s) 

(1 + G(s)H(s)) Yes) = G(s)U(s) 

T(s) _ Yes) _ G(s) 
- U(s) - 1 + G(s)H(s) 

Substitution of Equations 2.16 and 2.17 now gives 

~ 
T(s) = P(8j 

1+~~ PTs'iPcTsJ 
Z(s)Pc(s) 

-~~~~~~--~ P(s)Pc(s) + Z(s)Zc(s) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

Comparison with Equation 2.19 shows that the poles are indeed identical as predicted. The 

zeros of this alternative closed loop system, however, are composed not of the zeros of the 

plant and controller, but of the plant zeros and the controller poles. 

Once again, a simple gain H (s) = K is employed in the simplest case; the closed loop transfer 

function now reduces to 

Ci(s) Z(s) 
T(s) = 1 + KCi(s) = pes) + KZ(s) (2.28) 
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The manipulation of the poles of the closed loop system, by adjustment of H(s) or K, is the 

aim of the classical approach to the feedback control of a linear, single-input single-output 

system. 

2.2.2 Gain Determination 

Determining the gain, or controller transfer function, necessary to place the system poles at 

the required locations is not a trivial task. Even before this, however, comes the problem of 

determining suitable pole locations to satisfy a given set of design criteria. 

The subject of dominance has been introduced, and this provides a mechanism for simplifying 

the problem of pole placement. If a system can be considered to be dominantly first or second 

order, or by the assignment of poles it can be forced to be so, then optimal locations for the 

dominant poles can be found relatively easily. The response of simple first-order poles and 

complex conjugate second order pole pairs was derived above, and these derivations are ex­

tended to allow the determination of ideal pole locations with respect to pseudo-quantitative 

time-domain measures such as settling time, rise time, time to peak overshoot, and percentage 

overshoot (for details of these measures, see Nise, 1995). 

Once suitable locations have been found for the dominant poles, the problem of finding the 

appropriate controller transfer function can be addressed. For simplicity, this process will first 

be described in the context of finding a simple gain; more complex controllers are introduced 

in Section 2.2.3. 

2.2.2.1 Root Locus Plots 

One of the most commonly used tools for analysing the effect of changing the loop gain in a 

classical feedback control system is the root locus plot. Consider the simplified unity negative 

feedback system of Figure 2.3. 

Gain System 

~ E(s) r-~-"-H-~~:~"l Y(s) 

I · 

Figure 2.3: Simple Unity Negative Feedback 

As the gain K is changed, the denominator of the closed-loop transfer function will change 

(via Equation 2.19) and hence so will the location of the poles. The root locus plot is a 
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graphical method of showing the migration of the poles with respect to the changing gain. 

For example, consider the open-loop system 

G(s) _ 8+4 
- 83 + 782 + 168 + 10 

(2.29) 

Substitution into Equation 2.20 shows that the closed loop transfer function is given by 

T s _ K(s+4) 
( ) - 83 + 782 + (16 + K)8 + 10 + 4K 

8 ................... ,. ................... : .............. ······,···················'\"················ .. ·1········ ......... ·,···················,····················l 
; 
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Figure 2.4: Root Locus Plot for the system of Equation 2.30 

(2.30) 

Figure 2.4 is the root locus plot for T(8), showing the migration of the poles of T(s) as the 

gain K is changed. The starting points of the loci, represented by crosses on the figure, are 

at 8 = -1, 8 = -3 + j and 8 = -3 - j, corresponding to the poles of the open-loop sys~em. 

The reason. for this is obvious if one considers Equation 2.30; as K is reduced to zero, the 

denominators of the open- and closed-loop systems become identical. Similarly, two of the 

loci are asymptotic but the third ends at 8 = -4, corresponding to the position of the open 

loop zero. Again this may be deduced from Equation 2.30, by noting that if K is made very 

large, the denominator of T(s) becomes a scalar multiple of the numerator of G(s). 

The shapes of the root loci are non-analytical in nature. Sketching the root locus plot by 

hand is a practical proposition in most cases, since the behaviour of the loci is summarised 

by a small set of rules (Nise, 1995); accurate drawing, for example by a computer program, 

requires a set of gains to be chosen and the loci to be plotted stepwise (The Mathworks, Inc., 
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2005). It is relatively easy, given a point on a root locus, to find the value of K necessary to 

place a pole there. 

By definition, the root locus describes those points on the complex plane at which poles can 

lie; placing poles at any other point is impossible. Hence, if the system requirements can 

be expressed as graphical constraints, the intersection of the root locus with the constraints 

gives the solution. 

For example, if it is desired that the closed-loop system should exhibit a 10% overshoot in its 

response to a unit step input, it can be shown (Nise, 1995; Jacobs, 1974) that the damping 

ratio (the ratio of real part to magnitude) of the dominant second order pole pair must 

be approximately 0.5912. Figure 2.5 shows the root locus again with these constraint lines 

added. By finding the necessary gain (around 5.3 in this case), then substituting into T(s) 

. and factorising the denominator, the locations of all three closed-loop poles may be found. 

In this case these are 8 = -1.78 ± 2.43j and 8 = -3.45, as indicated by the vertical crosses 

on the figure. 
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Figure 2.5: Root Locus Plot With Lines of 10% Overshoot 

Figure 2.6 shows the (normalised) step responses of the open and closed loop systems. It may 

be seen that the closed loop system displays approximately the correct overshoot. It is not 

exact however, and this is due to the action of the third pole - this system is only marginally 

dominantly second order. 

Clearly, for a 10% overshoot, there is only one solution for the gain K in this case. Thus if one 

constraint is imposed, the controller is fully specified and no further imposition of constraints 
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Figure 2.6: Normalised Step Response of Open and Closed Loop Systems 
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is possible. It can be seen from Figure 2.6 that the closed loop system in this example rises 

to its final value in approximately 0.8 seconds; this is the only rise time corresponding to a 

10% overshoot for this system using a simple gain as a controller. 

2.2.3 Dynamic Compensation 

The lack of design freedom offered by the simple gain controllers introduced in Section 2.2.2 

can be overcome by choosing a more complex transfer function for the controller. However, 

tools such as Bode, Nyquist and root locus plots are suitable only for designs involving a 

single variable parameter. 

The solution is to assign all but one parameters of the controller a priori, and then to use 

the root locus to optimise the remaining parameter, usually a gain. Thus, designing more 

complex controllers requires a knowledge of how certain controller designs can be used to 

affect the shape of the root locus. As a result, small 'building blocks' are employed, each of 

which has a relatively predictable effect on the shape of the root locus. These blocks come 

in many forms, and are known as compensators. 

An example of the use of a simple compensator is as follows. Let us assume that the response 

obtained in Figure 2.6 via the root locus of Figure 2.5 is unsatisfactory, and it is necessary 

to reduce even further the rise time of the system. By adding a compensator such that H(s) 

takes the form 
8+3.5 

H(s) = K 45 s+ . 
(2.31) 
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then the new root locus plot with respect to K is shown in Figure 2.7. 
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Figure 2.7: Root Locus Plot for Compensated System 
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As can be seen, the point at which the root loci for the dominant pole pair crosses the line 

of 10% overshoot has moved as a result of the addition of the compensator. The closed loop 

poles shown, achieved with a gain K = 8.2849, are at s = -2.0563 ± 2.8076j, s = -4.2862 

and s = -3.1012. 

The effect of these modified pole locations on the normalised step response of the closed loop 

system is shown in Figure 2.8. 
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Figure 2.8: Normalised Step Response showing Compensated Closed Loop System 
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The compensator of Equation 2.31 is known as a phase lead compensator, but many different 

configurations exist. Their application and design is the choice of the control engineer, and 

although tools exist for assessing the likely impact of the use of a compensator, such design 

decisions must ultimately come from experience. 

2.2.4 Multiple Loops 

If a system has more than one output, but retains a single input, standard classical approaches 

can often be used to good effect. For example, Figure 2.9 shows a system wherein one output 

is a function of the other. 

u i1cr K2 11 Kl G1{s) 
Yl(S) G2(s) 

Y2(S) 
~ 

-

Figure 2.9: Concentric Two-Loop Control System 

This is a common occurrence - typically one output might be the integral of another, such as 

in an actuator system whose outputs are velocity and position. The design procedure in this 

case is usually to close the 'innermost' loop first, and work outwards - so in this case, to find 

Kl first and then K2· Clearly the selection of Kl will change the dynamics of the system 

from U{s) to Yl(S), and consequently will change the shape of the root locus with respect to 

Y2(S), The design process is therefore usually iterative. An initial value of Kl is selected, and 

the shape of the resulting outer root locus found. Kl is then adjusted to change the shape 

of the outer root locus until it passes through the site of the desired closed-loop poles, and 

K2 is then selected. 

If the system to be controlled has multiple outputs and multiple inputs, the process becomes 

significantly more involved. Figure 2.10 shows just one possible configuration of such a 

system. The figure shows only the open-loop plant, with the controller gains and feedback 

loops omitted for clarity. 

Clearly now there are four possible feedback paths, from Y1{s) or Y2(s) to U1(s) or U2(s). 

There is no longer a logical sequence to follow when constructing a controller. Choosing, 

for example, the gain K22 linking U2 to Y2 will affect not only the transfer function b~t:~ 

but also all the others. Hence every gain chosen has an effect on the others which must 

all be recalculated to take account of the change. The process is iterative, non-intuitive 

1 
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and incredibly slow - but is still used for the control of rotorcraft today (Griffin, 1997). 

There is a need for such techniques to be replaced. The replacement must allow for the 

simultaneous selection of all gains in a Multi-Input, Multi-Output (MIMO) system, but must 

give the control engineer access to the design parameters of the system in such a way that the 

criteria applied to current designs (for example pole locations) may still be applied, without 

modification. 

Many multivariable control techniques exist. Most do not concern themselves directly with 

the placement of poles. Attempts have been made to extend classical approaches to MIMO 

systems (Brockett and Byrnes, 1981), and to evaluate multivariable control techniques in 

terms of classical performance criteria (Doyle and Stein, 1981). However, neither approach is 

truly satisfactory for this purpose; it is necessary to find a true multivariable design method­

ology with clear links to classical control, rather than either a complex extension of existing 

classical techniques . 

. 2.3 Eigenstructure Assignment 

This section aims to introduce EA in the context of classical control, and then to outline its 

historical development. Since this thesis depends in part on showing that EA represents a 

suitable replacement for classical control methods in the design of rotor craft control systems, 

the links between the two will be drawn out in some detail. 

Sections 2.3.2 to 2.3.4 form, for the most part, a review of the literature. Inevitably, similar­

ities exist between this review and those of others (White, 1995; Griffin, 1997; Ensor, 2000); 

the aim here however is specifically to develop a context within which the later chapters of 

this thesis may be set. 



2.3. Eigenstructure Assignment 40 

2.3.1 Background 

This section will introduce the eigenstructure of a matrix, and a matrix representation for 

a multivariable linear system, before showing how the eigenstructure of one matrix in this 

representation can provide information about the system dynamics. 

2.3.1.1 The Eigenstructure of a Matrix 

Given a square matrix A E JRnxn, a vector Vi E Cnx1 is an eigenvector (strictly a right 

eigenvector) of A if and only if 

(2.32) 

where the constant Ai is the corresponding eigenvalue (Wilkinson, 1965). (Note that eigen­

vectors must always be nonzero, so an eigenvector of A which corresponds to a zero eigenvalue 

is a vector from the right nullspace of A.) 

Any n-square matrix will always have n eigenvalues, but may have any number from 0 to 

n linearly independent eigenvectors (Weisstein, 2005). For the purposes of this section, we 

will assume that the matrix A has n linearly independent eigenvectors. The analysis below 

is more complex if this is not the case, but the definitions derived are still essentially valid. 

Therefore, if the matrix A has n eigenvalue-eigenvector pairs, we may write 

o 
(2.33) 

o 

AV=VA .(2.34) 

Since the set of right eigenvectors is linearly independent, it follows that V is full rank, and 

so we may also define 

and write 

w=V-1 = 

A=VAW 

WA=AW 

(2.35) 

(2.36) 

(2.37) 
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From Equation 2.37 it can be seen that for a given eigenvalue Ai, the eigenvalue-eigenvector 

relationship of Equation 2.32 has a dual: 

(2.38) 

The vector Wi E C1xn is therefore known as a left eigenvector of A. 

Note that for a real-valued matrix A E jRnxn, the eigenvalues {Ai} of A form a self-conjugate 

set and that Ai = Xi implies Vi = Vi and Wi = Vii' 

2.3.1.2 The State Variable Representation 

The state variable representation of linear systems enables a large number of interconnected 

simultaneous differential equations to be formed into a single matrix equation. If, for a given 

system, enough information is known to permit the calculation of the unforced system output 

for all future time, then the system's state is known. The state variable approach assigns a 

set of independent variables to represent the system state, and considers the variation of the 

state with time as the system response. 

Single input, single output systems such as those discussed above may be represented in state 

variable form. For example, a system in the general form of Equation 2.1 such as 

(2.39) 

may be written using the process of Section 2.2.1 in transfer function form as 

y (s) _ 82 + bI 8 + bo 
U(8) - 8 3 + a2s2 + aI8 + ao 

(2.40) 

For clarity it will be assumed henceforth that all variables are in the Laplace domain and are 

functions of 8. 

The denominator of the transfer function is third order, and there are therefore three initial 

conditions (state variables) that must be known in order t~ develop a time response. Denoting 
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these variables as Xo, Xl and X2, we may set 

and hence we may write 

Rearranging, 

Substituting from Equations 2.42 and 2.43 gives 
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(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

Equations 2.42, 2.43 and 2.52 may now be concatenated into a single matrix equation: 

sXo 

SXI - 1 

o 
o 
1 

o 
o 

1 

Xl + 0 U 

o 

(2.53) 
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It remains only to represent Equation 2.41 by writing 

Xo 

y = [1 bl bo] . Xl 

X2 
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(2.54) 

Taking the inverse Laplace transform of Equations 2.53 and 2.54 is trivial, and yields the 

following (where now all variables are functions of time): 

Xo -a2 -al -aD 

Xl - 1 0 0 

X2 0 1 0 

Xo 

y= [1 bl bo] Xl 

X2 

or ·equivalently 

x=Ax+Du 

y=Cx. 

Xo 1 

Xl + 0 

X2 0 

u (2.55) 

(2.56) 

(2.57) 

(2.58) 

Equations 2.57 and 2.58 are the general form of the state variable representation of a single 

input, single output system providing that the denominator of the transfer function is of 

higher order than the numerator (if this is the case, the system is termed strictly proper). If 

the numerator and denominator are of equal order, there is a direct coupling from the input 

to the output, and this is represented by a separate term in the representation as will be seen 

below. 

So far we have considered only single-input, single-output systems. The power of the state 

variable representation, however, lies in its ability to represent systems with multiple inputs 

and outputs. To do this it is simply necessary to represent the inputs and outputs as vectors, 

and to expand the matrices Band C in Equations 2.57 and 2.58 as necessary. Thus the 

general state variable form of a multi-input multi-output system is 

x=Ax+Bu 

y = Cx+Du 

(2.59) 

(2.60) 
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where A E lR(nxn) is the system matrix, B E lR(nxr) is the input matrix, C E lR(mxn) is the 

output matrix and D E jR(mxr) is the direct transmission matrix. 

Throughout this thesis, and in the wider literature, a system might be referred to for example 

as 'a state-space system (A, B)' meaning a state variable system whose direct transmission 

matrix is null and whose output matrix is the identity matrix (ie. all states are measurable). 

Clearly, for a MIMO system, there can no longer be a single gain in a simple controller. 

Instead, typically, all system outputs are joined to all system inputs via a matrix of gains. 

For the remainder of this thesis, unless otherwise specified, the design of multi variable feed­

back systems will search for controllers that fit the design of Figure 2.11. The alternative 

arrangement, placing the gain matrix K in line with the system in a direct analogue of the 

arrangement of Figure 2.1, is usually more restrictive. This is because the gain matrix of 

Figure 2.11 has (m xr) entries for a system with r inputs and m outputs; the alternative, with 

the gain matrix in series with the system, has r2 entries. Since in general m > r (systems 

usually have more outputs than inputs), this latter situation is more restrictive. 

System 

! 
Controller 

Figure 2.11: Multivariable Negative Feedback 

Assuming the feedback structure of Figure 2.11, and further assuming that the direct trans­

mission matrix is null, the closed-loop form of a state space system may now be found. 

Consider a state-space system under the influence of feedback such that 

x=Ax+Bu 

y=Cx 

u=Ky 

(2.61) 

(2.62) 

(2.63) 
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By substitution, 

u=KCx 

X= Ax+BKCx 

= (A + BKC)x 

45 

(2.64) 

(2.65) 

(2.66) 

Therefore Equations 2.62 and 2.66 together define the closed-loop system dynamics, and by 

comparison with Equation 2.61 we may define the closed loop system matrix Ad as 

Ad =A+BKC (2.67) 

2.3.1.3 Multivariable Transfer Functions 

Given a system in the state variable form, it is possible to recover a transfer function repre­

sentation even if the system has multiple inputs and outputs. In the Laplace domain, from 

Equation 2.59, 

sx(s) = Ax(s) + Bu(s) 

(sI - A) x(s) = Bu(s) 

x(s) = (sI - A)-l Bu(s) 

Substituting into Equation 2.58, 

y(s) = C (sI - A)-l Bu(s) + Du(s) 

= (c (sI - A)-l B + D) u(s) 

A G(s)u(s) 

(2.68) 

(2.69) 

(2.70) 

(2.71) 

(2.72) 

(2.73) 

where G(s) is the tmnsfer function matrix, containing a polynomial transfer function for each 

input-output pair. 

Since the inverse of a matrix X may be written in terms of its adjoint matrix and its deter­

minant as 

X-l _ adj(X) 
- det(X) 

(2.74) 
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it is possible to write Equation 2.73 as 

G(s) = Cadj(sI-A)B+D 
det (sI - A) 
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(2.75) 

Equation 2.75 reveals that the denominator of each entry in the transfer function matrix is 

the same, while the numerators differ. 

Interestingly, the transfer function matrix demonstrates that state variable systems are non­

unique; it is possible to transform the state vector, and the system matrices, in such a way 

that the transfer function matrix remains unchanged. 

Consider forming a transformed state vector x such that 

x=Ex (2.76) 

where E is a square, nonsingular matrix. Now Equations 2.59 and 2.60 may be written as 

Ex=AEx+Bu 

y=CEx+Du 

and premultiplying Equation 2.77 by the inverse of E gives 

i. = (E-1 AE) x + (E-IB) u 

y = (CE)x+Du 

If we now defin~ the tr~nsformed system matrices as 

At.E-1AE 

B A E-1B 

CACE 

D~D 

then the transformed system may be written as 

i=A.x+Bu 

y=Cx+Du 

(2.77) 

(2.78) 

(2.79) 

(2.80) 

(2.81) 

(2.82) 

(2.83) 

(2.84) 

(2.85) 

(2.86) 
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The transfer function of the transformed system, from Equation 2.73, can now be seen to be 

as expected. 

6(s) =-C (sI - A) -1 13 + D 

= (CE) (sI - E-1 AEr1 (E-1B) + D 

= C (E (sI - E-1 AE) E-1)-1 B 

=C(sI-A)-1 B + D 

= G(s) 

2.3.1.4 Eigenstructure and the State Space 

(2.87) 

(2.88) 

(2.89) 

(2.90) 

(2.91) 

. There exists a simple form of time-domain solution for a state-variable system in the unforced 

case, a multivariable analogue of the response of Equation 2.2. 

It may be shown (see Nise, 1995) that the unforced time response of a state variable system 

is given by 

(2.92) 

where the term eAt, often denoted ~, is known as the state transition matrix. If the state 

vector is considered as describing a direction in a space (or a hyperspace), then the state 

transition matrix describes the trajectory of the state vector through the state space. The 

term 'state space' has come to be employed to describe state variable systems, just as the 

word 'state' is used to mean 'state variable'. These terms will be used interchangeably for 

the remainder of this thesis . . 
The state transition matrix, although useful for determining a time response, is n~t partic­

ularly informative. It is not clear how changing the system matrix A will affect the time 

response of the resulting system. If instead a transformed system is constructed via Equa­

tions 2.81 to 2.84 using a transformation matrix E = V (the matrix of right eigenvectors), 

then evaluating the time response of the transformed system is instructive. From Equa­

tion 2.81, the transformed system matrix is 

(2.93) 

via Equation 2.36, where A is the diagonal matrix of eigenvalues of A. Using Equation 2.92, 
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the unforced time response of the transposed system can be seen to be 

Applying Equation 2.76 yields 

y-Ix(t) = eAty-Ix(O) 

x(t) = YeAtWx(O) 

since y-I = W (from Equation 2.35). 
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(2.94) 

(2.95) 

(2.96) 

Equation 2.96 is very informative, given that the transfer functions (and hence the poles) 

of the original and transposed systems are identical. Firstly it may be seen that the only 

time-variant portion of the unforced response is 

o 
(2.97) 

o 

This is a diagonal matrix containing all of the exponential modes of the system (cf. Equa­

tion 2.2). Hence the eigenvalues of A correspond directly to the system poles. Secondly, the 

matrices Y and W of the right and left eigenvectors respectively have a physical interpre­

tation as well. The initial state vector x(O) acts to excite the system modes via W, and 

the modal response manifests itself in the time-varying state vector x(t) via y. Hence, for 

a given mode, the associated left eigenvector describes the way in which state disturbances 

excite the system modes, and the associated right eigenvector describes the coupling of the 

system modes into the state vector. These facts underpin the idea of EA: If a control system 

can be designed that affects the eigenstructure of A in a predictable manner, then the sys­

tem poles may be placed and the coupling between the system modes and the states may be 

influenced. 

2.3.1.5 Controllability and Observability 

Controllability and observability, as properties of a state variable system, are important 

concepts in the context of control system design. 

A system is s,aid to be controllable if it is possible to generate a system input that will transfer 
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the system from its initial state x{O) to any other state in a finite period of time. If this is 

not the case it implies that there are uncontrollable system modes which can not be affected 

by manipulation of the system input. It can be shown (Ogata, 1997) that the controllability 
. . 

of a state space system (A, B) is equivalent to the condition that 

rank ([B : AB : ... : An-1B]) = n (2.98) 

Similarly, a system is said to be observable if it is possible, by observation of the system 

output y(t) over a finite time, to determine the system state. If this is not the case, it implies 

that there are unobservable system modes which do not manifest themselves in the system 

output. It can again be shown (Ogata, 1997) that the observability of a state space system 

(A, C) is equivalent to the condition that 

rank 

C 

CA 

CAn - 1 

=n (2.99) 

Controllability and observability are often given as preconditions for forming multi variable 

control systems, as will be seen. This is not as restrictive a condition as it would at first appear 

to be, however. If a system has uncontrollable modes, either these modes are important to 

the system response or they are not; if they are not, a reduced model may be formed that 

does not include these dynamics. Similarly, if unobservable modes are present then further 

sensors should be added to the system to allow detection of these modes, lest they become 

unstable under feedback. 

Interestingly, it is possible for the controllability or observability test matrices to be full rank 

but ill-conditioned; this implies either a nearly-uncontrollable mode, requiring large control 

efforts to affect it, or a nearly-unobservable mode, whose effect is hard to detect in the 

output vector. For this reason Mehrmann and Xu (2000) define the concept of 'distance to 

controllability' and use it as a system analysis tool. 
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2.3.1.6 Modal Coupling Matrices 

Taking the multivariable transfer function matrix from Equation 2.73 

G(s) = C (sI - A)-l B + D (2.100) 

it may be seen that the eigenvalue-eigenvector decomposition of A from Equation 2.36 may 

be used to yield 

G(s) = C(sl- VAW)-lB+D 

= C (V (sl- A)W)-lB + D 

= CV(sl- A)-lWB +D 

(2.101) 

(2.102) 

(2.103) 

The term (sI - A)-.l is a diagonal matrix of terms which, in the Laplace domain, describe 

the exponential response of each mode. It is known that the matrices Wand V describe the 

coupling from the states to the modes and the modes to the states respectively. 

Hence, the terms CV and WB in Equation 2.103 describe the c~upling from the modes 

to the outputs, and from the inputs to the modes. They are known respectively as the 

output coupling matrix and the input coupling matrix, and collectively as the modal coupling 

matrices. 

Often, entries of the modal coupling matrices (particularly of the output coupling matrix) will 

be of more importance to the satisfaction of design criteria than the eigenvectors themselves. 

Indeed, for systems which have been obtained using system identification techniques rather 

than direct modelling, the states have no physical meaning and assignment of the modal 

c~upling matrices is the only satisfactory solution (Griffin, 1997). 

2.3.1.7 Multivariable Zeros 

It has been seen that the po~es and zeros of a SISO system are those values of s which cause 

the transfer function G(s) to equal 00 or 0, respectively. It is instructive to draw a parallel 

between this behaviour and that of their MIMO counterparts. 

From Equation 2.73, it is clear that any eigenvalue s = A of A will cause the matrix (sI - A) 

to have a zero determinant. Hence the system poles are those values {A} for which G(A) = 00. 

Such a definition is possible because all the entries in the transfer function matrix share a 

common denominator (from Equation 2.75). 
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Since the entries of the transfer function matrix do not share a common numerator, such a 

simple definition will not suffice for multivariable zeros. Instead, we may define any constant 

z such that G(z) = 0 as a blocking zero. The response of a system with a blocking zero z to 

an input u(t)ezt is zer~ for any u(t) (Tsui, 1996). 

However, this definition tells us only when a value of s causes every element in G(s) to become 

zero. It is also useful to characterise those values of s which cause any element in G(s) to 

become zero, and hence represent a null in the response of a subset of the input-output paths. 

Such values are known as transmission zeros, and they may be identified as those values of z 

for which rank{G{s)) < min(m,r) for a system with r inputs and m outputs. 

Tsui (1996) states that the response of a system with a transmission zero z to an input u(t)ezt 

is zero for any vector u(t) such that G(z)u(t) = 0, provided the system has more outputs 

than inputs. Clearly then, transmission zeros have direction as well as value; also, blocking 

zeros can be seen to be a special case of transmission zeros. 

Finally, it is readily shown that the transmission zeros of a system are those values of z for 

which the test matrix 

(2.104) 

loses rank. The following derivation is taken, modified, from Tsui (1996). 

0] [Zl-A -B] = [SI-A -B] 
leD . 0 G(s) 

(2.105) 

rank(S) = rank ([SI -A -B]) 
o G(s) . 

(2.106) 

= rank (sI - A) + rank (G(s)) (2.107) 

Hence provided z is not an eigenvalue of A, if the test matrix S as defined by Equation 2.104 

loses rank then z must be a transmission zero of the system. 

2.3.2 Multivariable Pole Placement 

White (1995) traces the origins of EA to early 'eigenvalue shifting' (pole placement) algo­

rithms of the 1960s, but Griffin (1997) identifies the work of Wonham (1967) as providing 

the impetus for the development of early algorithms by demonstrating that the controllabil­

ity of the target system is necessary and sufficient for the arbitrary assignment of its poles 
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assuming that all states were measurable and employed for control (a situation known as 

state feedback, where effectively C = I). State feedback is not a realistic representation of 

most systems however, and attention turned to addressing the problem of output feedback. 

Output feedback may be considered to be a constrained form of state feedback, wherein the 

outputs and not the states are available for measurement; however almost invariably the D 

matrix is still assumed to be null. Early results (Davison and Chatterjee, 1971) showed that' 

incomplete pole placement was feasible, with at least max( m, r) poles being assignable. 

In 1975 however, two papers (Kimura, 1975; Davison and Wang, 1975) were published on the 

subject of output-feedback pole placement. The result presented in these, and in a follow-up 

paper by Kimura (1977), i~ that for a system with m outputs and r inputs, it is possible 

to assign arbitrarily (m + r - 1) eigenvalues, providing the system is both controllable and 

observable. Hence for a system with n states, if 

m+r>n (2.108) 

a gain matrix K may be found such that all the closed-loop system poles may be assigned. 

More recently, several authors (Wang, 1992; Rosenthal et al., 1995; Griffin, 1997) have demon­

strated that for arbitrary placement of n poles, the condition 

mr~n (2.109) 

is sufficient. However, the use of linear algebra to solve the pole placement or EA problem 

generally results in the need for the condition of Equation 2.108. Recently, a family of EA 

algorithms has been published (Tsui, 2005), several of which achieve pole assignment along 

with restricted eigenvector assignment under the less restrictive conditions of Equation 2.~09. 

These algorithms will be considered in more detail later on. 

There exists in the literature a fair amount of confusion between the terms 'eigenstructure 

assignment' and 'pole placement'. The opinion of the author is that if eigcn vector assignment 

is not considered, or if the eigenvectors are implicitly assigned to meet a goal that does not 

form part of the design specification, such an algorithm constitutes pole placement and not 

EA. Attention will be drawn to such algorithms in the following discussion. 
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2.3.3 State Feedback EA 

Eigenstructure assignment proper has its origins in a paper by Moore (1976). In this paper, it 

is shown that given a controllable state-feedback system (A,B) with r inputs and n states, it 

is possible to assign all n eigenvalues and all n right eigenvectors, where each eigenvector may 

be selected from a subspace of dimension r. A summary of his result follows for reference. 

Given a state space system (A,B) under state feedback, the closed loop system matrix Ad 

can be seen (from Equation 2.67) to be 

Ad = A+BK 

Now for any given closed-loop eigenvalue-eigenvector pair P'i, Vi), by definition 

(A + BK)Vi = Ai vi 

0= (A - AiI)Vi + BKvi 

Hence, for some fi E Crx1 , 

[;~J -[::] ~ 
where 

and Pi E Cnxr is the allowable subspace for the selection of the eigenvector Vi. 

(2.110) 

(2.111) 

(2.112) 

(2.113) 

(2.114) 

(2.115) 

(2.116) 

Moore (1976) shows that for assignment to succeed, the selected eigenvectors {Vi} must be 

linearly independent and that Ai = Xi must imply Vi = Vi. The condition that the selected 

eigenvalues should be distinct was also included, but this was later removed by Porter and 

D'Azzo (1978). 

Once the design vectors {fi } have been selected, the gain matrix K may be recovered trivially 
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by finding 

y= [VI ... Vn] = [Plfl ... Pnfn] 

KY = [KVI ... KVn] = [Qlfl ... Qnfn] 

K=Ky.y-1 
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(2.117) 

(2.118) 

(2.119) 

The choice of EA as a design methodology in any given context implies that the control over 

modal coupling provided by the assignment of eigenvectors is of use in satisfying the design 

goals. Consequently, Equation 2.115 is most likely to be satisfied by the projection of a 

desired eigenvector into the allowable eigenvector subspace, and this projection will generally 

introduce a discrepancy between the desired and achieved eigenvectors. It may be seen from 

Equation 2.116 that the only variable upon which the right eigenvector subspace depends is 

the corresponding chosen eigenvalue, and for this reason Griffin (1997) describes a tradeoff 

algorithm wherein desired eigenvalues can be moved to align the eigenvector subs paces more 

closely to the desired eigenvectors, minimising the projection error. 

2.3.4 Output Feedback EA 

It has been mentioned that output fe~dback may be seen as a restricted case of state feedback. 

The restriction, via the matrix C, does not at first seem to pose a significant problem. 

Following the method of Section 2.3.3 with a non-identity C matrix produces the following 

result (Andryet al., 1983): 

Acl= A+BKC 

(A + BKC)Vi = .AiVi 

o = (A - .AiI)Vi + BKCVi 

Hence for some £. E tr"rxl , ~ "-' , 

(2.120) 

(2.121) 

(2.122) 

(2.123) 

(2.124) 

(2.125) 
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where Pi and Qi have meanings as before. The gain matrix may be recovered by finding . 

v = [VI ... vp] = [P1f1 ... Ppfp] 

KCV = [KCVI ... KCvp] ~ [Qlfl Qpfp] 

K = KCV . (CV)t 

(2.126) 

(2.127) 

(2.128) 

where xt is the Moore-Penrose pseudo-inverse (Ben-Israel and Greville, 1974) of X. However, 

Equation 2.128 holds only if p ::; rn, and consequently a maximum of rn poles may be 

assigned using this method. The remainder are left unassigned and may become unstable. 

The conditions under which a state:.feedback solution may be transformed directly into an 

output-feedback one in this manner are extremely restrictive (Porter, 1977). 

The output feedback problem is essentially a symmetrical one, with the matrices B and C 

being duals of one another in a functional sense. Hence, assigning left eigenvectors along with 

their associated eigenvalues by using subspaces generated as a function of the output matrix 

C is feasible, and no more restrictive than the right eigenvector assignment described above. 

Given the definition of a left eigenvector Wj, 

Ad = A+B,KC 

WjAd = AjWj 

wj(A + BKC) = AjWj 

0= wj(A - Ail) + wjBKC 

0= [wJ : wjBK] [A~jI] 

Hence, for some gj E C1xm, 

where 

and Lj E cmxn is the allowable subspace for ~he selection of the eigenvector Wj. 

(2.129) 

(2.130) 

(2.131) 

(2.132) 

(2.133) 

(2.134) 

(2.135) 

Once again, following the selection of q design vectors {gj}, the gain matrix may be recovered 



2.3. Eigenstructure Assignment 56 

by finding 

W= (2.136) 

(2.137) 

K = (WB)t . WBK (2.138) 

where this time K may be recovered if q ~ r. 

It is therefore possible, by considering either the right or left eigenvector subspaces, to specify 

max(m, r) eigenvalues and min(m, r) elements of each corresponding eigenvector, a result 

found by Srinathkumar (1978). However, by imposing more stringent constraints on the 

eigenvector subspaces, it is possible to assign both p ~ m eigenvalues and right eigenvectors, 

and q ~ r eigenvalues and left eigcnvectors (though usually not if p"= m and q = r); hence, 

if m + r > n, it is possible to assign all n eigenvalues. The algorithms which follow attempt 

to do just this. 

White (1995) identifies four distinct EA methods: Protection methods, parametric methods, 

projection methods and orthogonal eigenvector methods. However, the latter two may be 

considered to be special cases of the others, and so for clarity the only classification that will 

be made here is to divide parametric methods from protection methods. 

2.3.4.1 Protection Methods 

Protection methods (Davison and Wang, 1975; Srinathkumar, 1978; Fletcher, 1981a, b; Fletcher 

and Magni, 1987; Fahmy and O'Reilly, 1988) work by assigning a subset of the eigenvalues, 

then constructing a system. with a reduced input or output vector such that the assigned 

modes become uncontrollable or unobservable. If right eigenvectors have been assigned, 

the reduced system has a shorter output vector than the original; if left eigenvectors were 

assigned, it is the input vector that is shortened. These modes are protected since uncon­

trollable or unobservable modes are invariant under output feedback. The remainder of the 

eigenvalues can then be assigned to the reduced system, and the gain matrix reconstituted 

by superposition at the end. 
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The algorithm of Fletcher (1981a, b) is interesting as it includes provision for a nonzero direct 

transmission matrix, something that very few EA algorithms do. His algorithm assigned 

eigenvalue-eigenvector pairs one at a time, each time constructing a reduced system before 

continuing. 

Protection methods illustrate the requirement of most EA algorithms for the condition m+r > 

n to be satisfied. Consider assigning m - 1 eigenvalues to a system, together with m - 1 right 

eigenvectors selected from subspaces of dimension r. The reduced system will have a single 

output, and so in the second stage one may assign r eigenvalues and r left eigenvectors, each 

chosen with no freedom from a subspace of dimension 1. Hence, for complete assignment, 

(m - 1) + r ;::: n, or equivalently 

m+r>n (2.139) 

Although protection methods constitute a mathematically sound approach to the problem 

of output feedback EA they are not ideal replacements for classical approaches. The main 

problem is one of visibility, as described in Chapter 1. During the assignment process it is 

impossible to see the effect that assigning one eigenvector will have on the allowable sub­

space for the remainder, and this effectively precludes the iterative tradeoff of some design 

parameters for others during the assignment process. Such iterative processes are at the core 

of classical control techniques, and their use helps to reinforce an understanding of the role 

that the various design parameters have in the performance of the closed loop system. 

Additionally, protection methods rely heavily on the numerical accuracy of the protection 

process. If the protection is not exact, assigned eigenvalues and eigenvectors can move during 

the later stages of assignment, or very large gains may be generated as the a~gorithm attempts 

to reassign almost-uncontrollable eigenvalues to unsuitable locations (Fahmy and Q'Reilly, 

1988; White, 1991). 

Finally it should be noted that Fletcher's algorithms mention eigenvectors, but do not con­

sider their importance to the design solution or how they should be chosen. Consequently 

these algorithms border on pole placement rather than EA. 

2.3.4.2 Parametric Methods 

Parametric methods constitute extensions to the original state feedback EA algorithm pre­

sented by Moore (1976), which parameterised the allowable subspace for the right eigenvectors 

as a means of generating a gain matrix. At the beginning of the Section it was shown that 
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merely parameterising the right or left eigenvector subspaces alone was insufficient in the 

output feedback case, but the protection methods detailed above show that sufficient design 

freedom does exist for the placement of n poles and the selection of n eigenvectors given 

m+r > n. Hence, restrictions on the eigenvectors beyond the allowable subspace constraints 

must exist in the output feedback case. Many researchers (Fahmy and O'Reilly, 1983; White, 

1991; Duan, 1993; Griffin, 1997; Clarke et al., 2003; Tsui, 2005) have continued the search for 

parametric EA methods on the basis that the design freedom is available in a more visible 

way than is the case with protection methods. 

As an aside, White (1995) describes 'projection methods' as being those which project desired 

eigenvectors into their allowable subspaces. However, they can be viewed simply as parametric 

methods wherein the parameters are employed for the projection of desired eigenvectors, 

and consideration of these as distinct from parametric methods as a whole is not helpful. 

Similarly, 'orthogonal eigenvector methods' are those which seek to assign a near-orthogonal 

set of eigenvectors since analysis shows that the sensitivity of the closed-loop eigenvalues to 

perturbations in the set {A, B, C, K} is at a minimum when the eigenvectors are orthogonal 

(Wilkinson, 1965; Kautsky et al., 1982; Fletcher et al., 1985). These are not assignment 

methods as such, but employ complex methods to determine a set of assignable eigenvectors 

which are as near as possible to being mutually orthogonal prior to assignment. In general 

parametric methods are used for the actual assignment, often in an iterative process in which 

the eigenvector directions are adjusted gradually until the desired trade-off between nominal 

performance and eigenvalue sensitivity is achieved. 

For simplicity of notation let us now define the left and right allowable eigenvector subspaces 

for a given eigenvalue 8 as 

£( s) = ker ( [A ~ sf) (2.140) 

Vt(s) = ker ([A - sI BD (2.141) 

Kimura (1977) identified the restriction incumbent upon the eigenvector subspaces as a result 

of the output feedback restrictions. His theorem is duplicated here for reference. 

Theorem 2.3.1. (Kimura, 1977, Theorem 1) A self-conjugate set {Ai} is pole assignable if 

and only if there exists Vi E Vt(Ai) and Wj E 'c(Aj) such that 

Cl (Vi, i = 1 ... n) are linearly independent and"Ai = Xj implies Vi = Vj; 
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C2 (Wi' i = 1 ... n) are linearly independent and Ai = Xj implies Wi = Vlj; 

C3 WjVi = 0 for all it- j; 

00 

Conditions Cl and C2 of Theorem 2.3.1 have already been identified in the context of state 

feedback EA and the simple output feedback extensions described at the start of this Sec­

tion. Condition C3 is known as the 'orthogonality condition' and encapsulates the additional 

constraints on the eigenvector subspaces due to output feedback. 

Once a set of eigenvectors satisfying Conditions Cl to C3 of Theorem 2.3.1 have been found, 

the gain matrix may be recovered by finding 

K = KCV(CV)t = (WB)tWBK (2.142) 

or 

(2.143) 

where Ad = VAW (Fletcher et al., 1985; White, 1995; Griffin, 1997). 

Finding a set of eigenvectors such that the conditions of Theorem 2.3.1 are satisfied is not 

trivial. A reduced orthogonality condition, introduc~d by Griffin (1997) and published by 

Clarke et al. (2003), assists greatly in this process. It is summarised in Theorem 2.3.2: 

Theorem 2.3.2. (Clarke et al., 2003, Theorem 2) A self-conjugate set {Ai} is pole assignable 

if and only if there exists Vi E Vl(Ai) and Wj E '£(Aj) such that 

C3 WjVi = 0 for all i = 1. .. v, j = (v + 1) ... n. 

00 

The reduced orthogonality condition clearly shows that only n eigenvectors need be specified 

for the placement of n poles, a fact made obvious by the protection methods described above. 

In addition, the proof of Theorem 2.3.2 gives rise to a formula for the recovery of the gain 

matrix. If the right and left subspaces are defined by Equations 2.116 and 2.135 respectively 
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and parameterised by design vectors {fi } and {gj} as in Equations 2.115 and 2.134, the 

following matrices may be found: 

v' = [VI ... vv] = [PIfl ... Pvfv] 

S' = [KCVI KCVv] = [Qlfl Qvfv] 

W'= 
[ W(~+1) 1 = [g(v+ l)~(V+1) 

Wn gnLn 

T'= 

Finally, the gain matrix may be constructed as 

K = (W'B)tT' + S'(CV')t - (W'B)tT'CV'(CV')t' 

+ (I - (W'B)tW'B) Z (I - CV'(CV')t) 

(2.144) 

(2.145) 

(2.146) 

(2.147) 

(2.148) 

(2.149) 

where Z is a matrix of free parameters characterising all possible'solutions, which may be set 

to zero if not required. Clarke et al. (2003) show that the mapping of Z onto K is non-null if 

(m-p)(r-n+v) > 0 (2.150) 

and go on to develop an algorithm to use any remaining design freedom in a retro-assignment 

phase which assigns, from a very restricted subspace, eigenvectors in the opposite sets to 

those assigned in the first instance (Clarke and Griffin, 2004). 

Some recent work has concentrated on the problem of pole placement and EA under the 

condition that mr ;::: n. Alexandridis and Paraskevopoulos (1996), for example, demonstrate 

that pole placement is feasible under these conditions, but do not consider any available 

freedom over the eigenvectors. Most recently, Tsui (2005) has generated a set of algorithms 

with the aim of exploiting the available design freedom to the greatest possible extent. These 

algorithms are EA, since eigenvectors are considered and explicitly assigned. The approach 

is essentially a two-stage one, where the eigenvectors in the first stage are chosen specifically 

to allow the assignment of the desired eigenvalues, together with eigenvectors which meet the 
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orthogonality condition, in the second stage. While interesting, these algorithms concentrate 

on the exploitation of design freedom to a greater extent than will usually be necessary for 

the helicopter control problem, since such systems are generally well instrumented and have 

no problem meeting the more stringent condition that m + r > n. 

2.3.5 Descriptor Systems 

Descriptor systems (or singular systems) are those in which the state equation may be written 

Ex=Ax+Bu (2.151) 

where the matrix E is square but need not be nonsingular. Indeed, if E is nonsingular, it may 

be seen that premultiplica~ion of Equation 2.151 by the inverse of E will result in the expres­

sion of the system in standard form. The assignment of eigenstructure to descriptor systems 

has received considerable attention in recent years (Duan, 1998, and references therein). 

Inasmuch as models of helicopters can readily be generated in standard form (Griffin, 1997; 

Gee, 2000), the assignment of eigenstructure to descriptor systems - and, indeed, to linear 

'systems of higher order (Duan and Liu, 2002; Duan, 2005) - is outside the scope of this the­

sis. However, algorithms for Proportional-plus-Derivative (PD) control of descriptor systems 

using EA exist (Jing, 1994; Duan and Patton, 1997, 1999; Owens and Askarpour, 2000) and 

these potentially solve a class of problems addressed by the algorithms developed by the 

author in Chapter 5. Hence it is fitting to mention such systems briefly here. 

2.4 Conclusions 

The link between EA and classical control is clear, and this fact makes EA appropriate for 

helicopter control since so much control law design is still conducted using classical techniques 

(Griffin, 1997). Additionally, as will be seen in Chapter 3, the specifications for the response 

of a helicopter are readily converted into restrictions on pole locations. 

The difference between pole placement and EA has been discussed. In a plant so highly 

cross-coupled as a helicopter, direct access to the eigenvectors is very useful during the design 

process. Of the EA algorithms considered, the state feedback algorithm presented by Moore 

(1976) and the output feedback algorithm from Clarke et al. (2003) provide the most visibility 

- that is, they provide the control engineer with an obvious link between the choice of design 
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parameters and the closed-loop system performance. 
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3.1 Introduction 

In order to effect control of a system as complex as a helicopter, it must first be understood 

from a theoretical standpoint. Once the general characteristics have been identified by exam­

ining the physics of the system, a controller can be developed which will specifically address 

the problems found. 

This chapter will introduce the helicopter as a mechanical system, and derive a sufficiently 

detailed description of its operation as is required in understanding the problems faced by the 

designer of a helicopter control system. Following that, the specific issues concerned with the 

application of Eigenstructure Assignment (EA) to helicopters will be considered, including 

the specification of closed-loop performance, and a new ideal eigenstructure for forward flight 

will be developed. 

It should be noted that the vast majority of helicopters currently in service are in the same 

configuration - a main rotor on top of the aircraft and a tail rotor mounted vertically at the . . 
rear - and hence this is the configuration that will be considered here. 

3.2 Helicopter Dynamics 

As can be determined from observing its operation, the helicopter is supported while in flight 

by a set of rotor blades, which revolve about a central hub. These blades are essentially the 

same as aircraft wings, but instead of generating lift through linear motion of the aircraft 

through the air, they generate lift by means of their rotational speed relative to the air. 

The analysis of how these blades act to lift and propel the helicopter, and of the dynamics 

of the resulting system, is complex but of enormous value. The development of a control 

system for any purpose cannot be undertaken without a reasonable knowledge of the plant 

to be controlled. 
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3.2.1 Modelling Helicopter Flight 

Helicopters are inherently extremely complex m~chines, and detailed analysis of their op­

eration is consequently very involved. However, various simplifications can be made to the 

flight model, allowing a variety of compromises between complexity and accuracy. There are 

many texts providing full descriptions of helicopter dynamics (Bramwell, 1976; Layton, 1984; 

Johnson, 1994; Padfield, 1996; Prouty, 1990; Stepniewski and Keys, 1984). In particular the 

work of Layton (1984) has been consulted extensively in preparing this section. 

3.2.1.1 Momentum Theory 

Momentum theory is the simplest of all helicopter analysis techniques. The spinning rotor 

blades are regarded as a s?lid disc, and the effect of this lifting disc on the helicopter is 

considered simply in terms of Newton's laws of motion and the conservation of energy, mass 

and momentum. Momentum theory is simplified by the following assumptions (Layton, 1984): 

.• Air is incompressible and frictionless. 

• The rotor, being a solid disc, imparts no rotation or oscillation to the wake; flow through 

the disc is uniform and steady. 

• Energy is added to the air by the rotor disc in the form of an instantaneous pressure 

increase. The pressure both above and below the disc is constant. 

• The density of air does not change with altitude. 

The above assumptions will introduce errors, but the simplifications afforded are enormous 

in comparison. In addition, most of the errors may be rendered negligible by the application 

of a suitable correction factor to the results. The derivations below rely on the following 

nomenclature: 

V: Air velocity 

Vs: Velocity of free stream (far above rotor) 

Vi: Increase in stream velocity to rotor disc (induced velocity) 

Voo: Final increase in stream velocity,· 

Ptl, Pt2: Total pressure far above and far below rotor 



3.2. Helicopter Dynamics 68 

Ps: Normal atmospheric pressure 

Pt: Total stream pressure 

al: Mass flow through rotor 

p: Density of air 

A: Area of rotor disc 

T: Thrust generated by rotor disc 

The aim of momentum theory is to determine simple equations for the thrust generated by 

the rotor and its efficiency, the velocity of air through the disc, and other aspects of the action 

of the disc that are important in understanding the basics of helicopter flight. Starting with 

Bernoulli's Equation, as the velocity of fluid in a stream tube increases, its static pressure 

falls: 
1 2 

Pt = Ps + 2PV 

Invoking this far above the rotor gives 

1 2 
Pt! = Ps + 2P~ 

(3.1) 

(3.2) 

Far below the rotor, when the static pressure has returned to ambient levels and the stream 

has ceased to accelerate, 
1 2 

Pt2 = Ps + 2P (Vs + voo ) (3.3) 

Subtracting Equation 3.2 from Equation 3.3 gives the difference in pressure induced by the 

rotor disc: 

(3.4) 

Newton's second law states that F = ma, or equivalently in terms of thrust and mass flow, 

T= m dV 
dt 

Mass flow is defined as the mass of air passing through the disc per unit time: 

(3.5) 

,. 

(3.6) 
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The pressure change ~p acts on the area of the disc A, giving 

T=A~p 

Hence, by equating Equation 3.5 and Equation 3.7, and substituting Equation 3.6: 

A~p = pA (Vs + Vi) dV 

~p = p (Vs + Vi) dV 

Over the complete stream tube, dV = voo , and equating with Equation 3.4: 

~p = p (Vs + Vi) Voo = pvoo (Vs + ~Voo ) 
1 

Vi = 2Voo 
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(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

The acceleration of air in the stream tube, then, occurs half above and half below the rotor, 

with the final added velocity being double that at the disc. Developing an expression for the 

thrust developed by the rotor is trivial: 

T=A~p 

= pA (Vs + ~Voo ) Voo 

= 2pA (Vs + Vi) Vi 

In the hover, this simplifies to 

T= 2pAv; 

or equivalently 

v.= V2~A 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Clearly, thrust is required (and therefore power is consumed) to support the helicopter in the 

hover. To measure efficiency, a figure of merit FM has been defined for helicopters. This 

differs from the standard definition of efficiency as the ratio of power input to power output, 

because for a general propeller the power output is taken to be the product of the thrust 

and the velocity, and therefore the efficiency for a stationary helicopter is undefined. Instead, 

F AI describes the ratio of the hover power of an ideal rotor to a real rotor. The power output 

is taken as the product of the thrust and the inflow velocity, known as the induced power, 
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and is compared to the power used to turn the rotor (Pin)' So for the figure of merit: 

(3.17) 

1 

_ T($)2 
- Pin 

(3.18) 

T~ 
= 1 

Pin (2pA) 2 

(3.19) 

3.2.1.2 Blade Element .Theory 

The calculations of power above did not deduce the torque required to turn the rotor, and this 

was because torque effects are to do with the drag on each rotor blade as it passes through 

the air. Clearly, a slightly more detailed model is called for, and this need is fulfilled by blade 

element theory. 

Consider a small element of a single rotor blade, as viewed from the hub. The element is 

located at a distance r from the hub; its width is dr and its chord c. The rotor is spinning at 

a rate of 0 radians per second, and so the linear speed of the element through the air is Or. 

Now as this element travels through the air it will generate a force dR which may be resolved 

into the thrust dT and torque dQ of the element. The torque vector lies parallel to the path 

of the element, while the thrust is generated perpendicular to it. However, these directions· 

are not consistent with the lift and drag forces generated by a moving aerofoil, which are 

referenced not to the direction of travel, but to the direction of the inflow air, Vi. Figure 3.1 

shows the geometry and also defines the lift and drag forces dL and dD in terms of the angle 

of attack ao and angle of incidence Ui. 

From Figure 3.1, it can be seen that: 

dT = dL cos ai - dD sinai 

dQ = dL sin ai - dDcosai 

(3.20) 

(3.21) 

It is standard to refer to the lift and drag of an aerofoil in terms of non-dimensional lift and 
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Figure 3.1: Blade Element Force Vectors (from Lay ton, 1984) 

drag coefficients Cz and Cd: 

where 

dL = CzqrdS 

dD = CdqrdS 

dS = c·dr 

1 2 1 2 
qr = "2 pVr = "2p(Orcosoi ) 
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(3.22) 

(3.23) 

(3.24) 

(3.25) 

Hence, concentrating on thrust, if C, » Cd, Cz cos 0i » Cd sin 0i and Or » Vi and the small 

angle approximations sin 0i ~ 0i and cos 0i ~ 1 are used: 

Thus integrating over a blade of length R: 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31 ) 
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Hence for a complete rotor with b blades, 

For the torque, an equation similar Equation 3.27 may be formed: 

dQ = ~p (Or)2 cos2 QiC' dr (Cl SinQi - Cd cos Qi) 

1 2 
= 2P (Or) C· dr (Cdi + Cdp) 
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(3.32) 

(3.33) 

(3.34) 

where C di is the induced drag, due to the lift and thrust vectors not being parallel, and Cdp 

is the parasitic or profile drag. 

The power required to move a blade element is the product of the torque required, the radius 

to the element, and the rotational velocity: 

dP=OdQ·r (3.35) 

Integrating for all blades: 

(3.36) 

One further simplification which may be made is to define solidity, u, as the ratio of the disc . . 
area which is occupied by blades. Now: 

(3.37) 

When calculating the total power required to hover, it is easiest to calculate the induced 

power using momentum theory and the profile P?wer using blade element analysis. From 

Equations 3.37 and 3.15, and knowing that induced power Pi = TVi and that the angle of 

incidence Qi = 0 in the hover, the total power Ptotal can be found: 

3 
T~ 1 3 

Ptotal = J + -8UCdPpA (OR) 
27l"pR2 

. (3.38) 

It has been seen therefore, through a combination of analysis techniques, that the rotor of 

a helicopter acts by accelerating a stream of air downwards in order to produce a thrust 

upwards. This results, even in the hover, in an induced air velocity through the rotor and in 

a power requirement that is dependant on the geometry of the rotor and its blades as well as 

on the thrust required. 
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3.2.1.3 Forward Flight and Blade Hinges 

Up to this point, it has been assumed that the b~ades are rigidly attached to the central hub 

and that they therefore proceed with a fixed angular velocity and do not move vertically. 

This is not the case, however. Figure 3.2 shows the basis of the reason for this. 

Direction 1 
of travel 

Reverse 
flow 

Figure 3.2: Reverse Flow Region 

Some of the features of Figure 3.2 require further explanation. Firstly, as a blade sweeps 

out a circle, it is assigned an azimuth angle, 'IjJ,' This is the angle of the blade with respect 

to its downstream position. In the Western world, this angle is measured anticlockwise as 

viewed from above to be consistent with the direction of blade rotation. Secondly, for a given 

forward velocity V, we can define an advance ratio, /L: 

(3.39) 

The advance ratio can be seen to be the ratio of the velocity of the aircraft to the maximum 

tip velocity. The velocity of air over any part of any blade may be calculated with respect to 

the direction of blade travel: 

u = nr+ Vsin'IjJ 

= n (r + /LRsin 'IjJ) 

(3.40) 

(3.41) 

It can be seen that the airflow drops to zero when r = -/LRsin 'IjJ, which at 'IjJ = 2700 is when 

r = Il, as shown on the diagram. Any point where r < - /LR sin 'IjJ lies in the reverse flow 

region. Clearly, this region of reduced or reversed airflow, existent only on the retreating 
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side of the rotor, will produce a large rolling moment on the airframe. In practice, this effect 

prevented early helicopters from flying at anything but the slowest of speeds. The gyrocopter 

pioneer Juan de la Cierva invented the solution to this problem, and his technique is still used 

today. He introduced flapping hinges to the blade roots to allow them freedom of movement 

vertically. This vertical freedom means that as a blade retreats, it generates less lift and 

hence flaps downwards instead of imparting a moment on the hub. This in turn increases 

the effective angle of attack of the blade and so damps the flapping movement, removing the 

need for extra mechanical damping. 

The vertical flapping of the blades was found to introduce great stresses at the rotor hub. 

The reason for this was that the path taken by the blades caused them to be subject to 

a Coriolis force that acted laterally on the blades. In addition, the cyclic variations in lift 

caused by the flapping hinges induced cyclic variations in drag. Another hinge was therefore 

added, the lead-Iag'hinge, to allow the blades some freedom in this axis. Unlike flapping, 

however, the lead-Iag motion is not aerodynamically damped and needs mechanical dampers 

and end stops. 

It can be seen then that the motion of the blades through the air is a complex one. It may 

be modelled reasonably accurately if enough is known about the blades and hinges, and this 

modelling is important for the designer of a control system. It is useful to note that in general, 

the flapping and lead-Iag modes are considerably faster than the body dynamics. For this 

reason, they are often omitted from helicopter models for the purposes of control system 

design. For example the helicopter model used in Chapter 7 of this thesis, and described in 

Appendix A, contains flapping modes; but these are removed using a modal approximation 

technique before control is attempted. 

However, while this has obvious advantages for proving the design process, when a controller 

designed in this way is fitted to an aircraft it may display significantly degraded handling 

qualities (Ingle and Celi, 1994). 

3.2.1.4 Rotor Flow Effects and Wake Analysis 

Simply to state that the rotor imparts vertical movement to the air against which it works 

is clearly to oversimplify reality. The interaction between the rotor and the air is extremely 

complex, and an understanding of the exact nature of this interaction is not necessary for 

the understanding of the control problem. It is, however, important for producing reliable 

mathematical models of helicopters, such as that produced by Gee (2000). A simple summary 
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of the most important of these complex effects will be given here for reference. 

Through the torque imposed on the air by the drag forces, the rotor imparts a rotation to 

the air as well as a downward velocity, and this affects the angle of the airflow over each 

successive blade. In addition, the existence of a high-pressure region below each blade and 

a low-pressure region above causes an upwash of air behind the blade as it travels. This 

upwash, strongest at the tips due to their higher speed and consequently greater lift, affects 

the next blade by increasing the angle of attack. This increases the tip loading of each blade. 

The upwash is not the only effect produced by the pressure differential across the surfaces 

of the blade. At the tips, air tends to flow from the lower surface to the upper round the 

end of the blade. As the blade moves this produces a strong vortex behind the tip, reducing 

efficiency. Figure 3.3 shows this vortex action. 

Standard (vertical) 
stream flow 

.. -... ~ 
( \ 
L , 
, ) 
\ .' "---- .' ................. 

Tip vortices 

Figure 3.3: Tip Vortices 

The wake from the main rotor also has an effect on the motion of the helicopter. The analysis 

of the progress of the wake is highly computationally intensive, though simplifications can 

be made (Gee, 2000). The most obvious wake effects are that the wake acts on the fuselage 

and tail; on the fuselage, the effect is mainly a loss of lift whereas in forward flight the effect 

of the wake on the tail changes the effective angle of attack of the tail rotor blades and also 

acts on the fin and tail plane. 

3.2.2 Control and Stability 

The main rotor is not the only component of a helicopter with control over its movement, 

and this section introduces the role of the tail. It also shows how the movable parts of a 

helicopter are used to fulfil the demands of the pilot. 
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3.2.2.1 The Tail 

The tail typically consists of three principal components. Two of them, the horizontal and 

vertical stabilisers (tail plane and the tail fin), are static fixtures, much like the tail of an 

aeroplane. Unlike an aeroplane, however, they rarely have any movable control surfaces. The 

horizontal stabiliser gives pitch stability at speed, and the vertical stabiliser performs the, 

same function for yaw. Without them the rotor and fuselage together would be very unstable 

in these axes. 

The third component of the tail assembly is the tail rotor. With a few exceptions, the vast 

majority of single-rotor helicopter designs incorporate a tail rotor consisting of a vertically 

mounted rotor driven through a gearbox from the main rotor such that their speeds are 

related. The tail rotor produces a lateral thrust at the end of the tail, and this is arranged to 

counteract the torque supplied to the main rotor by the engine. Of course, this introduces a 

small lateral drift component as well as an anti-torque moment, and the main rotor is often 

mounted at a slight angle to counteract this. 

3.2.2.2 Pilot Controls 

The pilot must be given a large amount of control over the helicopter. 8/he must be able to 

control its height, its velocity in both horizontal axes, and its yaw rate at the very least. The 

necessary degrees of mechanical freedom are built into the hubs of the two rotors. In both 

cases, they apply feathering to the blades. 

The feathering hinge on a main rotor blade is supplied in addition to the flapping and lead­

lag hinges already described, and it allows the blade t~ twist along its axis. This twis~ing is 

not in response to aerodynamic forces, but in direct response to the pilot's commands. ,The 

feathering angle of the blades is determined by the position of a swash plate. The swash plate 

is in fact two plates, coupled so as to lie parallel to each other. The upper plate revolves 

with the blades, while the lower one does not. The pilot, through the controls, has the ability 

to move the lower plate in various ways; the upper plate, coupled to the blades, causes the 

feathering angle of the blades to change. 

The pilot must have control over the total amount of lift that is generated by the main rotor 

so that the rate of climb or descent may be controlled. A simple solution would be to control 

the engine throttle; however, due to the inherently high rotational inertia possessed by such 

large blades, the response would be too slow. The I?ilot's collective pitch control, normally 



3.2. Helicopter Dynamics 77 

a lever like a car handbrake to the left of the seat, moves the swash plate up and down and 

hence changes the pitch of all the blades simultaneously. This gives an increase or decrease in 

the thrust generated by the main rotor. Of course, it also affects the torque required to turn 

the rotor; this torque demand may be satisfied by a throttle control built into the collective 

lever as a twist grip, or it may be satisfied automatically by an engine speed governor. 

The cyclic pitch control changes the angle of the swash plate with respect to the horizontal, 

in both directions. The pilot alters the cyclic pitch by means of a long joystick, extending 

from either the ceiling or the floor, capable of moving both laterally and longitudinally. If 

the joystick is pushed forwards, this raises the back of the swash plate and consequently gives 

the blades a greater feathering angle as they sweep round the back. This has the effect of 

tilting the rotor disc forwards and causing the thrust vector to deviate from vertical, thus 

propelling the helicopter forwards. 

The tail rotor pitch is also variable. An arrangement similar to a'swash plate exists at its hub, 

but it is not capable of imparting a cyclic pitch change to the blades. The collective pitch of 

the tail rotor is variable though, and this is controlled by a pair of pedals, linked so as to act 

against each other. The variable pitch gives rise to variable thrust and hence, because of the 

length of the tail, to a variable torque applied to the fuselage. In the hover, this effect gives 

the pilot control over yaw. In forward flight, the effect of the tail rotor is limited due to the 

presence of the tail fin; the yaw moment provided by the tail rotor is counteracted quickly by 

an opposing moment from the vertical stabiliser due to the resulting sideslip. Turns at speed 

are accomplished instead using the cyclic pitch control to roll the aircraft and then pitch its 

nose up into the turn, much in the same manner as a fixed-wing aircraft. 

It can be Reen, then, that the combination of collective and cyclic pitch controls, together 

with the tail rotor pitch, are sufficient to allow the pilot control over the helicopter in the 

four principal directions. 

3.2.2.3 Stability Definitions 

Helicopters are not generally inherently stable. There are two different forms of instability, 

which due to the difference in the required response of the pilot to each, need naming so that 

they may be referred to when defining performance limits for the aircraft. 

Static instability is the result of the aircraft responding to an imbalance in such a way as to 

increase that imbalance. For example, if a helicopter is slipping sideways, the effect of the 
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crosswind on the fuselage is to tilt the aircraft into the direction of travel, thereby increasing 

its speed. 

Dynamic instability affects only modes that are statically stable, and is the result of an im­

balance leading to an overcompensation that produces a larger imbalance in the opposite 

direction - with inevitable, increasingly oscillatory consequences. Often a dynamic instability 

is the result of the interaction between the pilot and the aircraft, with the pilot overcompen­

sating for an error because the helicopter is too slow in reacting. In this case, it is referred 

to as Pilot-Induced Oscillation (PlO), and is a major problem when implementing control 

systems - a delay in the response of the controller due (for example) to the computational 

speed of the platform on which it is implemented would be likely to induce or strengthen a 

tendency towards PlO. 

3.2.2.4 Auto-Stabilisation Equipment 

Auto-Stabilisation Equipment (ASE) is the name given to the equipment which performs the 

most basic function of the Automatic Flight Control System (AFCS) on board a helicopter. 

It consists of an electronic controller, which, by using an array of sensors, modifies the pilot's 

inputs such that the helicopter's response is better matched to the pilot's expectations. The 

main application of the mathematical techniques described and developed in later chapters . . 

is in the development of ASE. 

3.2.3 Control Problems 

From a control perspective, the complex interaction between the various components of a 
. . ' . 

helicopter while in flight provides some unique and difficult problems. Take as an example a 

helicopter with blades rotating anticlockwise as viewed from above. The tail rotor, designed 

to prevent the fuselage from yawing under the effects of the rotor torque, also introduces a 

lateral force and will tend to push the helicopter to the right. To counteract this effect, once 

the helicopter has left the ground it must be inclined slightly to the left, necessitating the 

application of lateral cyclic pitch. 

As a result of the increased drag of the blades as they travel forwards with increased pitch, 

the helicopter will be pushed backwards and turned to the right. It will also fall as the added 

load due to the cyclic pitch slows the engine. An increase in engine power to counteract the 

dip will cause a greater torque reaction, and so on. 
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This is merely an example, but it serves to show that even in the hover, the dynamics of a 

helicopter are far from simple. From a pilot's point of view, and that of the control engineer, 

the biggest problem is the cross-coupling - it is not possible to al~er anything without affecting 

everything else. 

Additionally, helicopters are highly non-linear, and the case in the hover is vastly different 

from the case at even a low forward speed. It can be shown (Bramwell, 1976; Layton, 1984; 

Padfield, 1996; Stepniewski and Keys, 1984) that the efficiency of the rotor disc increases with 

the flow of air through it, so as soon as the helicopter starts to move it will gain translational 

lift. 

The added oscillatory mode introduced by the motion of the blades around the flapping 

hinges is not in phase with the blade pitch change and tends to introduce a phase shift to 

the lift. Therefore the pilot must apply a coupled input to the swash plate in order to effect 

a simple shift in the lift vector. This phase shift changes with forward speed. 

The effect of delays in control response has already been mentioned; a helicopter is heavy 

and the effect of its controls not immediate, so the potential for PlO is great even before any 

additional delays due to the controller are considered. In a digital controller, the sample rate 

must be high enough to avoid compounding these problems. 

In summary, severe nonlinearities, time constraints and cross-~ouplings· make for a plant 

which presents a unique and complex set of challenges to the designer of a control system. 

3.3 Handling Qualities Specification 

When designing any controller for any plant it is vitally important to have a detailed speci­

fication of the desired final performance of the syst~m. In the case of a helicopter, however, 

these specifications are hard to characterise. The final performance of the helicopter in a 

mission role is dependent on both the machine and its pilot, and consequently the pilot's 

feel for the aircraft is vital. Defining this is very subjective, however, and so over the years 

a number of documents have emerged which have attempted to describe these qualitative 

characteristics in a quantitative way. The intended role of the helicopter will define which 

one of these applies. These documents are considered in addition to and in support of the 

aircraft-specific definitions of performance laid down when a new design is proposed. 

This section draws on the work of Clarke and Taylor (1999) for details of the various handling 

qualities documents. 
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3.3.1 Rotorcraft Specification 

The aircraft-specific handling qualities are laid out in the Rotorcraft Specification for the 

helicopter in question. Defined here are the operational conditions under which the aircraft 

must operate, along with the levels of performance, handling and failure-tolerance that must 

be met. Also defined are the roles and missions of the helicopter. 

The Rotorcraft Specification is the most important document describing the desired perfor­

mance of the aircraft. It is also the most detailed, as the other documents provide a much 

more general set of requirements. In the case that a conflict between documents does arise, 

however, the Rotorcraft Specification takes precedence. 

3.3.2 ADS-33D 

The ADS-33D is the'document describing the handling qualities requirements for the military 

procurement of helicopters in the US (Padfield, 1996). It was introduced during the design 

process of the RAH-66 Comanche, where advancing technology was meeting outdated design 

documents at an impasse. The ADS-33D recognises the need for different handling qualities 

during different phases of the flight mission. Handling qualities are defined as Level 1, 2 or 

3 where a Level 1 response is the best, in a similar way to the Def.Stan.970 (see below). 

Handling quality levels are also defined under degraded environmental conditions or failure 

states. 

Unusually, the handling qualities requirements in the ADS-33D are largely specified in terms 

of frequency domain characteristics, principally bandwidth and phase delay. Since the fre­

quency domain is a concept associated with linear systems, whereas the helicopter is highly 

nonlinear, this approach has precluded the universal and c~mplete acceptance of the ADS-33D 

to date. 

3.3.3 Defence Standard 00-970 

The UK Ministry of Defence Defence Standard 00-970 (Def.Stan.00-970)(Pitkin, 1989) is the 

UK equivalent of the ADS-33D. Because it is the document most likely to be applicable to 

aircraft using control systems designed using techniques in this thesis, it will be covered in 

slightly more detail than the ADS-33D. 

The Def.Stan.00-970 handling qualities specifications are organised according to the appro­

priate operational phase. One of the four phases refers to the operations of the helicopter on 
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the ground, which is of little use in this context. The other three are summarised below. 

Active Flight Phase: In the Active Flight Phase, pilot involvement is intensive. This 

phase may be further classified according to whether the manoeuvre is Aggressive or 

Moderate. 

Attentive Flight Phase: The Attentive Flight Phase demands less of the pilot, and gen­

erally involves changes to the flight condition or flight under Instrument Flight Rules 

(IFR). 

Passive Flight Phase: Pilot involvement during the Passive Flight Phase is low. Occa­

sional re-trimming of the flight condition and monitoring of the AFCS is all that is 

generally required. 

The Def.Stan.00-970 document also defines terms for the maximum operating envelopes in 

the various flight phases, as well as tolerance of environmental conditions. Handling qualities 

are rated according to a structure of Levels, which define the level of ease with which the 

mission may be carried out. 

Level 1: Handling qualities are clearly sufficient to allow the mission to be completed with 

ease. 

Level 2: The mission may be accomplished, but will require an increase in pilot workload 

and this may also lead to a decrease in mission effectiveness. 

Level 3: The helicopter can be controlled, but the pilot workload will be excessive and 

mission effectiveness unsatisfactory. 

It is the objective of the control system to ensure that the handling qualities do not fall below 

Level 1 while inside the operational envelope (the flight envelope required while carrying out 

a particular role) or Level 2 at other points within the service envelope (the normal operating 

range of the helicopter). 

The short- and long-term modes that form the responses of the helicopter to the pilot inputs 

are also well defined by the Def.Stan.00-970. They are defined in terms of time-domain crite­

ria, which are more intuitive than the frequency-domain criteria of the ADS-33Dj qualitative 

descriptions of handling qualities tend to be described in the time domain, using words such 

as speed, overshoot and sensitivity~ The derivation of an ideal eigenstructure in Section 3.4 

uses these criteria directly. 
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The short term stability criteria defined by the Def.Stan.00-970 are summarised in template 

form in Figure 3.4. They are specified in terms of the helicopter's response to a one-second 

pulse at 10% maximum control deflection. 
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Figure 3.4: Def.Stan.00-970 transient response (from Griffin (1997)) 

The parameter~ Tt an~ Yl confine the initial response delay, while TF and XF do the same 

for the final settling time. T30 and Tu help define the shape of the response decay after the 

initial peak, and TOl, T02, Xl and X2 put bounds on the damping of the response. For' full 

details of the parameters included in the figure, see Griffin (1997). This template will be 

used in Chapter 7 to' evaluate the success of various control strategies by comparing their 

responses directly to the Def.Stan.00-970 time-domain criteria. 

The Def.Stan.00-970 is a comprehensive document for the specification of all aspects of the 

pilot's iJ;lteraction with the helicopter. As a result it covers a vast range of specifications 

beyond those listed above. 
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3.4 An Existing Ideal Eigenstructure 

The handling problems inherent to helicopters (primarily instability and cross-coupling), 

combined with the close links explored in Chapter 2 between EA and the classical techniques 

still so often used for the control of helicopters, render EA an ideal methodology for the 

generation of controllers. However, before EA can be applied to any control problem, it is 

necessary that the problem be formulated in terms of the desired closed-loop pole locations 

and eigenvectors: the eigenstructure. 

The formulation of an ideal eigenstructure was considered in detail by Griffin (1997) and 

Clarke et al. (2003), and considered the Def.Stan.00-970 as the basis for the eigenstructure. 

Eigenvalues and eigenvectors were treated separately and the eigenvectors were formulated 

for the case where the cyc~ic pitch inputs control the attitude of the helicopter. Leve~ 1 

handling qualities are achievable only in the hover using this type of control response. 

It is at this point appropriate to introduce the naming convention for the states and inputs of 

a standard helicopter model, since these will be needed to understand the ideal eigenstructure. 

u: Forward speed 

v: Lateral speed 

w: Vertical speed (heave velocity) 

p: Roll rate 

q: Pitch rate 

r: Yaw rate 

c/>: Roll angle 

(): Pitch angle 

'ljJ: Yawangle 

Als, B1s: Blade flapping angles 

()o: Collective pitch input 

Ot: Tail rotor pitch input 
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3.4.1 Eigenvalue Locations 

Clarke et al. (2003) perform a detailed analysis of the Def.Stan.00-970 and the ADS-33 in 

order to determine a set of eigenvalue locations for the modes associated with longitudinal 

and lateral velocity (Au and Av), pitch and roll rates (Aq and Ap), heave velocity (Aw) and 

yaw rate (Ar). Their analysis holds for both the attitude command and rate command cases. 

Oscillatory modes are assumed'to be 2nd order in nature, since second-order modes are the 

simplest that can fulfil the short-term requirements of the Def.Stan.00-970. 

The reader is referred to Clarke et al. (2003) for a full description of the methods used to 

derive a region in the s-plane within which the poles of a second-order system must lie if this 

system is to meet the Def.Stan.00-970 criteria. However, the important constraints, along 

with the allowed region generated by their intersection, are shown in Figure 3.5. 

3 

2.8 

2.6 

2.4 

rn 
'>< 2.2 
< 
» 
~ 2 
I=l 

'So 
~ 

S 1.8 
~ 

1.6 

1.4 

1.2 

1 
-4 

', ... 
~ •.....•.. 
.~ .............. . 
~ ...•...........•••.. " .•••....••••.....••.•... 

'\~ ...•......••.•....•••••.... " ............................. . 
~ .....••........•.........•....... 
'~ ...... ' ............................ . " .••...•••...•..•••••.•...••......• 
~ ................................ . 
~ ..........•..••.....••.......•.• 

''.t • •••••••••••••••••••••••••••••• 
~ .............................. . " •....•..•.....•....••...•..•.. 
~ ..•..••......•.••.....••..... 
~ ........................... . 
~ •.•...•..........•.•....•.. " ............•••....•....•.. 
~ .••.•.•.•••.........•..•. 

~ 
....••.•••.•....•.....•• 

• ••• ••••• ••••••••••• !It ..... . ~ ...... -_ .... ............. ~.~ .......... ~ ............................ .......... ,,,..... ' .... 
................... """ 

-3.5 -3 -2.5 -2 
Real Axis 

-1.5 -1 -0.5 o 

Figure 3.5: An s-plane interpretation of the Def.Stan.00-970 short-term stability criteria (after 
Clarke et al. (2003)) 

As can be seen, the region is well-defined and has its centroid at approximately -1.8±j1.75. 

Clarke et al. also demonstrate that the requirements of the ADS-33 are also satisfied by this 

region for simple systems. 
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This allowable region is the same for all channels except heave, although Clarke et al. go on 

to develop a suitable location (-2.2 < AT ::; -1.2) for a single pole in the yaw channel. This 

is because if static gain feedback is used, this channel is likely to be associated with only 

one pole and hence will display first-order characteristics. In addition, a single pole location 

(Aw < -0.2) is derived from the ADS-33 for the heave response, for which little guidance is 

available in the Def.Stan.00-970. 

3.4.2 Attitude Command Eigenvectors 

The desired eigenvector sets may be considered in small decoupled subsystems since a require­

ment of the Def.Stan.00-970 is that coupling between the responses in different axes should 

be minimal. Clarke et al. (2003) derive the ideal eigenvector set by using a transfer function 

approach. In this way kinematic constraints are introduced early on, ensuring the correct 

integral relationship between q and (), for example. Combining these kinematic constraints 

with the mathematical constraint of orthogonality of the left and right eigenvector sets leads 

to·the following result: 

X= [u q () v p </> w ·r]T 
1 1 1 0 0 0 0 0 (Au -Aq) (Au -Aq) 

1 1 0 0 0 0 0 0 Aq Aq 

1 1 0 0 0 0 0 0 

0 0 0 1 1 1 0 0 
Vd= (A,,-Ap) (A,,-Ap) 

0 0 0 1 1 0 0 0 
Ap Ap 

0 0 0 1 1 0 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 1 

3.5 .Rate Command Eigenvectors 

If it is desired to use EA to cause a helicopter to display Levell handling qualities, as defined 

by the Def.Stan.00-970, this can only be achieved in the 'Attentive' flight phase using the 

ideal eigenstructure described by Clarke et al. (2003). For the 'Active' flight phase, both 
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Aggressive and Moderate manoeuvres, an alternative eigenstructure designed to couple the 

2nd order lateral and longitudinal modes into the body rates instead of the body angles is 

required. Such an eigenstructure has been developed by the author, and is presented here. 

3.5.1 Problem Definition 

The derivation of this eigenstructure is very much more complex than in the attitude com­

mand case, since the kinematic coupling from the cyclic pitch inputs to the body angular 

rates is first-order. The ideal pole locations for the roll, pitch and yaw rate responses are the 

same as those for the attitude response derived by Clarke et al. (2003) (see Griffin, 1997). 

However, in the lateral and longitudinal subsystems, the pole assoCiated with pure angular. 

rate must form a complex conjugate pair in combination with another pole, in order that 

the rate response be second order as required by the Def.Stan.00-970 for Level 1 handling 

qualities in the Active Moderate flight phase or for Level 1 or Level 2 handling qualities in 

the Active Aggressive flight phase (Pitkin, 1989). 

This element of the specification introduces the requirement that a compensator state be 

added to provide the extra pole. This fits well with current practice, since it is common to 

feed 'washed out' (high-pass filtered) versions of the body attitudes into the controller along 

with the original signals. The washout filters introduce new poles, the locations of which can 

be chosen by manipulation of the cutoff frequency of the filters. This arrangement is shown, 

simplified, in Figure 3.6. (The notation used in the Figure is defined by Griffin (1997).) 

Pitch Gyro Washout Gain 

() 
sT 

1 +sT 

"Ils --411 ... 

K· 8 

Gain 
To Actuator 

Figure 3.6: Simplified pitch channel control structure (after Griffin (1997)) 

The assignment of an eigenstructure to a system requires that all of the system modes be 

controllable, however, and so it is necessary to implement these extra poles as states in a 

feedback compensator. If the compensator is sufficiently decoupled from the outputs, either 

by the decoupled nature of the eigenvectors, or following the application of a gain suppression 

technique such as that described in Chapter 6, the feedback compensator may be expressed 
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as a feedforward compensator post-assignment (see Chapter 4). 

The preceding description leads to the following ideal transfer functions, which illustrate the 

longitudinal case (u, q, 8): 

U(8) 8+Z 
B1(8) = 8(8 + A1)(8 + A1)(8 + A2) 

(3.42) 

Q(8) 8+Z 
- ------=--

B1(8) (8 + A1)(8 + AI) 
(3.43) 

8(8) 8+Z 
B1(8) = 8(8+A1)(8+A1) 

(3.44) 

where B1 is longitudinal cyclic input. 

The zero will exist because of the presence of the the compensator in the feedback path. It 

corresponds to the open loop pole of the compensator, which is of the form 

S 
Gcomp (8) =-­

S+Z 
(3.45) 

In order to recover the desired closed loop response, it will be necessary to apply first order 

pole pre-compensation to the input signal to cancel out the zero. This is acceptable practice, 

since the zero is predetermined by the wash-out filter and is not prone to migration, unlike 

open loop system poles and zeros. 

3.5.2 Modal Coupling Matrices 

For the longitudinal case, the subsystem states are [q comPq 8 u] T. The output matrix 

may be defined as 

0 0 0 1 

c= 1 0 0 0 (3.46) 

0 0 1 0 

and the input matrix as 

1 

0 
B= (3.47) 

0 

0 

The left and right eigenvectors are denoted Wand V and eigenvalue matrix denoted A. 
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The subsystem transfer function matrix (G(s)) may be expressed as: 

G(s) = CV (sI - A)-l WB (3.48) 

For the longitudinal case, the above is expanded as follows: 

1 0 0 0 t1 
U [' 1'1 T4 

r~l 
(8-'>'1) 

0 1 0 0 t1 
q - T2 1'2 0 (s-'>'d B1 (3.49) 

0 0 ! 0 t2 8 
() T3 1'3 T5 

0 0 0 1 t3 (8-).2) 

where Tm and tn are free parameters. 

The zeros in CV exist because the mode associated with velocity is not seen in the attitude 

and rate states; similarly, the attitude mode is not seen in the rate state. Equation 3.49 can 

be evaluated to give: 

G(s) = 
..!l!L + T1t1 + W.2. + ~ 
8+'>'1 8+'>'1 8 8+'>'2 

.n!L + T2t1 
8+'>'1 8+'>'1 

.!3..h... + T3t1 + ~ 
8+).1 8+'>'1 8 

(3.50) 

Simplifying Equation 3.50 and equa~ing numerator term leading coefficients yields the fol­

lowing constraints: 

For J:N8): 

(3.51) 

+ T1t1A2 + T1t1).1 + T6t3A1 + r1l1A1) (3.52) 

1 - - - -- -
s : -1 = (T4t2A1A2 + T4t2A1A1 + T1t1A1A2 + T6t3A1Al + qt1AIA2 + T4t2AIA2) (3.53) 

sO : Z = (T4t2Al).lA2) (3.54) 

T:' Q~L ror BiTsJ. 

SI : 1 = (T2tl + r2l1) 

o --
s : Z = (T2hAl' + T2tlAl) 

(3.55) 

(3.56) 
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And, finally, for :NJ): 

1 - - - -
s : -1 = (T3tlAl + T5t2Al + T5t2Al + T3tlAt) 

o -
s : -z = (T5t2AIAt) 

A further important identity is 

CVWB=CB 

which translates to further constraints: 

- 1 

89 

(3.57) 

(3.58) 

(3.59) 

(3.60) 

(3.61) 

Eigenvectors are unique up to scaling; therefore, for convenience, let us as~ume that T2, T4 

and T6 are equal to unity. 

The above constraints, after considerable algebraic manipulation, yield the following results: 

- 1 1 1 1 (AI-A2)Al (A1-A2)A1 

CV= 1 1 0 0 (3.62) 

1 1 A2 0 A1 A1 

and 
%-Al 

A1-Al 
Z-~1 

WB= AI-AI (3.63) 
Z 

- A1AIA2 
%-A2 

A2( -A1A2+A~+A1AI-AIA2) 

The correctness of this result may easily be verified by substitution of Equations 3.62 and 3.63 

into Equations 3.42, 3.43, 3.44 and 3.60. 

3.5.3 Eigenvectors 

It is now necessary to extend the algebraic manipulations to calculate the full left and right 

eigenvector matrices (W & V respectively) from the input and output coupling matrices 

(WB & CV respectively). 
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Defining the full matrices as follows: 

1 1 0 0 

V= 
VI VI V3 V4 

I I 
A2 0 >'1 >'1 

(3.64) 

- I I 1 1 (>'1->'2)>'1 (A1->'2)A1 

and 
Z->'l 

WI,2 WI,3 WI,4 >'1 ->'1 
Z-'xl 

WI,2 WI,3 WI, 
w= >'1 ->'1 (3.65) 

Z 
W3,2 W3,3 W3,4 - >'1>'1>'2 

z->'2 
>'2 ( -AI >'2+>'1>'1 +>.~ ->'lA2) W4,2 W4,3 W4,4 

From the matrix identity 

VW=I (3.66) 

some fundamental scalar identities ensue. These lead to some important properties of the 

unknowns defined in W and V. 

Starting with 

WI,2 + WI,2 = 0 

WI,3 + WI,3 = 0 

WI,4 + Wl,4 = 0 

(3.67) 

(3.68) 

(3.69) 

These lead to the implication that the above unknowns are all purely imaginary values. 

Also, the structure of the compensator' and the manner of' its c~nnection dictates that' 

(3.70) 

Substituting these constraints leads, after considerable algebraic manipulation, to the prop­

erty 

(3.71) 
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where vte denotes the real part of a complex scalar. It follows that 

1 
1 . -3 0 0 "2 -~ 
x 

1 
1 • -3 0 0 "2 "~ 

W= x (3.72) 
~t(~I) Jm(oXl) 1 0 -loXll oX2 Xl oX ll 2oX2 oX2 

oX2-~t{oXl} Jm{oXl} 1 1 (-AI +A2)(Al-A2)oX2 x( -oXl +oX2)(oXl -oX2)A2 - oX2 

where Jm denotes the imaginary part of a complex scalar, and finally that 

1 1 0 0 

xj -xj 0 0 
(3.73) V= 

1 1 A2 0 Al oXl 

- 1 1 1 1 (oXl-oX2)Al (oXl -oX2)oXl 

The real scalar value x does not affect the transfer functions resulting from V (sI - A)-l W 

and may be arbitrarily set. 'It may be interpreted as a gain block applied just prior to the 

waSh out filter. A second inverse gain block occurs just after the filter. A good choice for 

x would be such that the modal matrix V is as well-conditioned as possible for inversion; 

alternatively x could be chosen such that the projection of the set of desired eigenvectors 

{Vi} into their allowable subspaces results in the least possible projection error. 

Note that the eigenvector elements associated with the compensator state reflect its intended 

role as a washout filter, and its consequent links only to q and not () or u. In fact, if these 

structural constraints are not important, these elements may be chosen arbitrary and the 

denominators of the resulting transfer functions for the states of interest will not change. 

The numerators on the other hand may change, leading to migration of the zero. In practice 

this is a likely outcome of the projection of the desired eigenvectors into their allowable 

subspaces - see Chapter 4 for more details. 

3.5.3.1 A Numerical Example 

Once again an algebraic check of the correctness of Equations 3.72 and 3.73 can be made by 

substitution into the original constraints. 

However, in order to check that the derived eigenstructure represents an appropriate response 

for a rate-commanded helicopter, a quick example will now be derived and presented. 

Assume, arbitrarily, that Al = -3 + 4j, A2 = -5 and x = 1. Then using the above eigen-
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structure yields 

Q(8) 8+3 
(3.74) 

Bl(8) - 82 + 68 + 25 
Comp(s) 4 

(3.75) 
Bl(8) 

-
s2 + 5s + 25 

8(s) s+3 (3.76) 
Bl(s) - 8(82 + 68 + 25) 
U(8) 8+3 (3.77) Bl(s) =- 8(82 + 68 + 25)(8 + 5) 

The zero at 8 = -3 may be safely cancelled by applying an appropriate first order input 

pre-filter to the closed loop system. 

Applying the same arbitrary eigenvalues leads to the following state space system: 

-3 4 0 0 1 

-4 -3 0 0 0 
A= B= 

1 0 0 0 0 

0 0 -1 -5 0 

1 0 0 0 0 

0 1 0 0 0 
c= D= 

0 0 1 0 0 

0 0 0 1 0 

On adding the pre-filter, the response to a unit step input at B1(t) is shown in Figure 3.7. 

The Figure demonstrates the suitability of the ideal eigenstructure in several ways: 

• The second-order nature of the rate response q(t)/Bl(t) can be seen to match that 

required by Equation 3.43; 

• The integral action between q(t) and (J(t), required for kinematic consistency and for 

the satisfaction of Equation 3.44, can be seen; 

• The observed relationship between (J(t) and u(t) is not inconsistent with a first-order 

lag, as specified by Equation 3.42; 

• In response to a backward step applied to the collective pitch lever, the 'helicopt~r' 

in this simple example can be seen to attain a steady nose-up pitch rate, and to lose 

forward velocity, as would be expected. 
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Step response 
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Figure 3.7: Example step response of ideal rate-command eigenstructure block 
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3.5.3.2 Second Order Tail Rotor Response 

The Def.Stan.00-970 requirements for the yaw channel are specified using the same criteria 

as for the cyclic channels, and with the exception of the peak response (a scaling parameter), 

the requirements themselves are identical. Clarke et al. (2003) developed a first-order yaw 

rate response because only static feedback controller designs were to be considered. If this. 

restriction is dropped, a compensator state can instead be added in order to generate the 

required second-order response in yaw. 

Such a response carries no requirements on the elements of the eigenvectors associated with 

the compensator state. The eigenvector subset may therefore be described using 

where z is an arbitrary complex constant. The mechanics of assigning an eigenstructure 

wherein a subset of the states have no specific requirements on their eigenvector elements is 

investigated in Chapter 4. 

Note that this yaw response, which is a rate response, is valid for achieving Level 1 handling 

qualities in both the' Active' and 'Attentive' flight phases. 



3.6. Conclusions 95 

3.5.4 Complete Eigenvector Set 

The complete set of ideal eigenvectors, constructed using four decoupled blocks and including 

the first-order tail rotor subsystem, is shown below: 

x = [v P comPp cp u q compq () w r]T 

1 
- (>.p->'v )>.p 

1 

j 

1 
>'p 

o 

o 

o 
o 
o 
o 

1 
(>.p->.., )>'p 

1 

-j 
1 

Ap 

o 
o 

o 
o 
o 
o 

1 1 

o 0 

o 0 

Av 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 

o 
o 
o 

1 
(>.q->. .. )>.q 

1 

j 

1 
Aq 

o 
o 

o 
o 
o 
o 

1 
(>.q-A .. ) >.q 

1 

-j 

1 
Aq 

o 
o 

o 0 0 0 

o 0 0 0 

o 0 0 0 

o 0 0 0 

1 1 0 0 

o 0 0 0 

o 0 0 0 

Au 0 0 0 

o . 0 1 0 

o 0 0 1 

This assumes that the arbitrary constants x for each of the cyclic pitch subsystems have been 

chosen to be unity. Chapter 7 contains design examples wherein this new eigenstructure is 

used to develop sets of control laws for a helicopter in forward flight, and these examples will 

serve as further evidence that the eigenstructure presented here is consistent both with the 

kinematics of a helicopter and with the requirements of the Def.Stan.00-970. 

3.6 Conclusions 

In this chapter, the complex workings of the helicopter and their effect on the manner of 

its flight have been outlined, along with the means by which the pilot may exert control 

over the movement of the aircraft. The sources of cross-coupling, nonlinearity and instability 

which render the control of a helicopter difficult have been identified. The documents that 

specify the handling qualities requirements for a helicopter have been introduced, and an ideal 

eigenstructure (both eigenvalues and eigenvectors) for a helicopter in the 'Attentive' flight 

phase, derived directly from the Def.Stan.00-970 by Clarke et al. (2003), has been described. 

Following this review, an ideal set of eigenvectors for the achievement of Level 1 handling 

qualities in the Active flight phase has been developed. This new eigenstructure requires 
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the use of a feedback compensator for its implementation. The eigenvector set has been 

demonstrated to be kinematically consistent with the expected motion of the airframe. 

Chapter 7 contains design examples which use this new eigenstructure to achieve Level 1 

Def.Stan.00-970 handling qualities for a helicopter in forward flight. 
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4.1 Introduction 

Standard state- or output-feedback generates a matrix of fixed gains as a controller. On 

occasion, a more complex controller may be required; this could be to increase the order of 

97 



4.1. Introduction 98 

the system response, or to increase the number of Degrees of Freedom (DoF) available to the 

designer. 

A basic Multi-Input, Multi-Output (MIMO) system with a feedback dynamic compensator 

is shown in Figure 4.1. 

y(t) 

Compensator 

Figure 4.1: Dynamic Compensator 

It may be thought that the massively increased complexity of the controller would introduce 

a similar increase in the complexity of the design process, but - superficially at least - this is 

not so. A well-known representation for dynamically compensated systems will be described 

that allows a control system to be designed as if the controller was merely a set of static 

gains. 

This representation offers some insights into the way in which the added design freedom is 

distributed and into the effects of adding a compensator to a system. It will be shown that the 

addition of a dynamic compensator increases the effective system order, thereby increasing 

the number of poles that must be placed; it will also be shown that dynamic compensators 

add transmission zeros to the closed-loop system and that this has an impact on performance. 

An alternative compensator structure is also considered, whereby an entire class of com­

pensators yielding the same closed-loop eigenstructure can be generated, with the actual 

implementation chosen post-assignment. 
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4.2 Expression of Dynamic Compensators 

4.2.1 Augmented System Description 

The 'Augmented System' description for MIMO systems with dynamic compensation per­

mits their representation as larger systems with static feedback. The compound system so 

generated may be controlled using any standard MIMO technique. 

The Augmented System Method has 'proved an expedient and popular method of achieving 

dynamic compensation' (Griffin, 1997). Many researchers (Sobel and Shapiro, 1986a; Hippe 

and O'Reilly, 1987; Han, 1989; Pyburn and Owens, 1990; Magni, 1999; Tsui, 1999) have 

employed or developed the method, and others (Kimura, 1975; Askarpour and Owens, 1997) 

have cited its use as a way to circumvent the general condition that m + r > n discussed in 

Chapter 2. 

The derivation of the augmented system description is straightforward. Consider a plant 

under the influence of feedback via a dynamic compensator, as in Figure 4.1. The usual state 

equations apply: 

X= Ax+Bt 

y=Cx 

(4.1) 

(4.2) 

(4.3) 

where now t is the plant input. An equivalent set of state equations apply to the compensator: 

Xc = Acxc + BcY 

t = Ccxc + DcY + u 

(4.4) 

(4.5) 

where u is the external input to the system. The subscripts indicate an association with the 

compensator; specifically Xc E ]RC is the compensator state vector, so the compensator is of 

order c. 

By substitution, we may obtain 

X = Ax + BCcxc + BDcY + Bu 

= (A + BDcC) x + BCcxc + Bu 

(4.6) 

(4.7) 
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and 

(4.8) 

Combining Equations 4.7 and 4.8 gives 

[ ~] = [A + BDeC BCe] [x] + [B] u 
Xc BeC Ac Xc 0 (4.9} 

y= [e 0] [:] (4.10) 

Equation 4.9 may now be r.earranged as 

. [:J = ([~ :] + [: ~] [~: ~] [~ ~]) [:] + [:] U (4.11) 

Comparing Equations 4.10 and 4.11 with Equations 2.62 and 2.66 from Section 2.3.1.2, it may 

be seen that the closed-loop compensated system can be regarded as an equivalent augmented 

system 

subjected to static gain feedback 

such that 

where 

i~ (A + BKC) x+Bu 

y=Cx 

c = [c 0] 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

Equations 4.14 and 4.15 form the augmented system description of the plant and compensator. 

All of the available design freedom is encompassed by K E R(m+c)x(r+c) in a form which ren-
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ders standard MIMO control techniques, including Eigenstructure Assignment (EA), directly 

applicable. 

A corollary of the augmented system description is that a closed-loop augmented system 

matrix Ad may be readily derived from Equation 4.9: 

(4.17) 

(4.18) 

The augmented system description has been expanded a little here to include the matrices 

Band C, known hereinafter as the external input matrix and external output matrix respec­

tively. In general, only the dynamic response is of interest when controlling a system, since 

the coupling of inputs and outputs to states is invariant under feedback, and such definitions 

are consequently superfluous. However when considering the effects of the inclusion of dy­

namic compensation upon the overall system response in Section 4.3.2, these reduced input 

and output matrices will prove important. 

4.2.2 Sub-Eigenvectors 

Let us subject the augmented system matrix to eigenvalue-eigenvector decomposition such 

that 

(4.19) 

If each eigenvector of the augmented system is now partitioned into sub-eigenvectors so that 

[
VPi] Vi= 

Vd 

(4.20) 

(4.21) 
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where {V pi} and {W pj} are of length n and {v ei} and {w cj} are of length c, then we may 

write 

v = [vp] = [V P1 Vp2 ••• VP(n+c)] 

Vc Vc1 Vc2 ••• Vc(n+c) 

(4.22) 

Wc2 
(4.23) 

Wp(n+c) wc(n+c) 

(4.24) 

and hence 

(4.25) 

The transfer function matrix of a state-space system, linking the inputs to the outputs, is 

given by Equation 2.73 as 

G(s) = C (sI - A)-l B + D 

Substituting the matrices associated with an augmented system yields 

G(S)=c(sl-A)-ln 
=C(sI-vAW)-l iJ 

= CV (sl- A)-lWB 

= [e 0] [~:] (SI -At' [~p W,] [:] 

= CVp (SI - A) -1 WpB 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

It is clear from Equation 4.31 that only the partial eigenvectors {Vpi} and {wpj} have a role 

in determining the transfer function of the closed-loop system. These will be designated the 

plant sub-eigenvectors, and 'by definition they describe the coupling of each mode into the 

portion of the augmented state vector that is associated with the plant. The other sets of 

sub-eigenvectors, {veil and {wcj}, have no role in the formation of the closed-loop transfer 

function; they describe the coupling of each mode into the portion of the augmented state 

vector that is associated with the compensator, and will consequently be designated the 
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compensator sub-eigenvectors. 

The process of assigning eigenstructure to an augmented system is the same as that described 

in Section 2.3.4. However, it is instructive to investigate the structure of the augmented 

allowable subspaces for the eigenvectors. From Equations 2.116,2.124 and 2.125, the following 

restriction applies to selected right eigenvectors: 

(4.32) 

where 

(4.33) 

In the augmented system case, Equation 4.33 may be written as 

[A - M : B 1 [~:] = 0 (4.34) 

Expansion and examination of the leftmost term in Equation 4.34 reveals that 

Pi 0 

[A~M 0 B ~] 0 I 
(4.35) =0 

-Ail 0 Qi 0 

0 Ail 

Consequently, the allowable subspace for the right plant sub-eigenvectors is the same as in 

the un-augmented case, while the compensator suh:-eigenvectors may be selected arbitrarily 

(Griffin, 1997; Ensor, 2000). 

It is interesting now to note that if EA is to be employed for the purposes of affecting the 

performance (modal response) of the system, it is only necessary to assign the eigenvalues and 

the plant sub-eigenvectors. Indeed, Magni (1999) suggests that since the compensator sub­

eigenvector directions do not affect the modal response of the system, they must be ignored, 

and redefines the concept of eigenvector assignment to reflect this. Ensor (2000) states that 

this 'appears a little extreme', but does not provide a justification for this view. 

A sensible approach would be to develop an assignment process such that the compensator 

sUb-eigenvectors remain unassigned until the primary performance design goals have been 
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satisfied, whereupon the design freedom they represent could be employed for other purposes 

(such as gain suppression or robustness improvement). 

4.3 Dynamic Compensation in Practice 

Having seen how dynamic compensators may be expressed, and how the eigenstructure of an 

augmented system relates to its closed-loop response, it is important to consider the impact 

that these facts have on the development of dynamic control systems using EA. 

If a system with n states, m outputs and r inputs is augmented with a compensator of order 

c, the augmented system has m + c outputs, r + c inputs and n + c states. Consequently the 

condition for pole-assignability using standard linear techniques (see Chapter 2) is 

m+c+r+c>n+c 

(m+r+c»ri 

(4.36) 

(4.37) 

Hence any system which is not pole-assignable due to its dimension81ity may be rendered so 

by adding a feedback compensator. Since it was first proposed (Kimura, 1975), this result 

has been widely cited as justification for considering the restriction m + r > n to be a weak 

one (Askarpour and Dwens, 1997, for example). 

However, to assert simply that a dynamic compensator can be used to render a system pole­

assignable is to evade the considerable impact that such a compensator will have upon the 

form of the system's specification. The nature of EA is that the system specification is in 

terms of its modal response, and the increased order of the closed-loop system must be taken 

into account when specifying the required modal response. 

4.3.1 Added Poles 

Equation 4.31 shows that t~e closed-loop transfer function is dependent on the plant sub­

eigenvectors and the entire augmented eigenvalue set La~bda. The eigenvalue set cannot 

be split into plant and compensator eigenvalues, and all of the n + c closed-loop system poles 

contribute to the response. 

This fact has serious implications for the development of a specification for the eigenstructure 

of an augmented system. If, for example, both the original system and its ideal response are 

second-order, but the augmented system has three states, then three poles must be placed 
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and the final response will be third-order. 

Placing only a subset of the poles is unlikely to yield good results, since there is no guarantee 

that the unconstrained poles will be stable; even if they are, they may have a significant effect 

on performance. For example, Sobel and Shapiro (1986a) assign four poles to a sixth-order 

augmented system, and the unassigned poles take up a slower (and hence more dominant) 

position than the assigned poles. This has the effect of causing the response of the compen­

sated system to be more sluggish than its uncompensated counterpart. This effect was noted 

in more detail by (Sobel and Shapiro, 1986b). 

Assigning a subset of the poles such that they are an order of magnitude faster than the 

natural plant modes is not a sensible approach, since attempting to force a system to respond 

more quickly than its natural dynamics will allow will generally lead to large controller gains 

and a solution that lacks robustness. 

One possibility for placing 'extra' poles is to place multiple poles in coincident or near­

coincident locations, to ensure that all modes of the closed-loop system are close in frequency 

and damping to modes present in the specification. However, near-coincident eigenvalues will 

have nearly co-linear eigenvector subspaces, and this is likely to result in a poorly conditioned 

eigenvector set (Tsui, 1996). Systems with ill-conditioned sets of eigenvectors are sensitive 

to the variation of parameters in the open-loop plant (Ensor, 2000), and are also likely to 

generate large gains since the calculation of a gain matrix relies on calculating the inverse, 

or pseudo-inverse, of the assigned sets of eigenvectors. 

Another possibility would be to attempt to ensure that a subset of the poles of the closed-loop 

system are assigned such that their associated right plant sub-eigenvectors are zero. The 

mechanism for this would be that the added transmission zeros of the closed-loop system 

would be assigned to the same locations as a subset of the poles. Were this possible, it is 

likely that the robustness of such a system would be poor; the closed-loop poles are subject to 

migration in respect of changes to the open-loop system, while the added transmission zeros 

(being the poles of the compensator) are not. However, this type of assignment is not possible, 

since the restrictions that are placed on the eigenvector directions make it impossible to meet 

both the orthogonality condition and the rank constraints on the modal coupling matrices. 

The reasons for this will be discussed more fully in Section 4.4.3.1. 

In summary, attempts to hide or mask the additional system poles introduced by a dynamic 

compensator are unlikely to succeed. The locations of such poles must instead be included 

into the specification for the system. 
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4.3.2 Added Transmission Zeros 

It was shown in Chapter 2, for Single-Input, Single-Output (SISO) systems, that the effect of 

placing a controller with a dynamic transfer function in the feedback path of a system is to 

add both poles and zeros to the resulting system. The new zeros are due entirely to the poles 

of the controller. A similar phenomenon is exhibited by MIMO systems, and the following. 

theorem is presented as a proof. 

Patel (1978) presents a similar theorem, but considers a compensator with no direct trans­

mission term. The following theorem involves a full compensator as described above. 

Theorem 4.3.1. Poles of a feedback dynamic compensator manifest themselves as additional 

transmission zeros in the closed loop system. 

Proof. Given an augmented system under feedback, the closed-loop system matrix Ad is given 

by Equation 4.18, and the external input and output matrices Band C by Equation 4.16. 

Recalling Equation 2.104, transmission zero locations for the closed-loop system are given as 

those values of A which cause test matrix 

[

AI - Ad 
~= 

. C -:] (4.38) 

to lose rank. 

If, as is usually the case, the number of plant outputs is at least equal to the number of inputs 

(m ~ r), then ~ is injective and it is sufficient to demonstrate the rank deficiency of a subset 

of its columns. If m < 1', then ~ is surjective and it is sufficient instead to demonstrate the 

rank deficiency of a subset of its rows. The resulting proofs are substantively identic~, so 

without loss of generality it will hereafter be assumed that m ~ r. 

Substituting the closed-loop matrix definitions, 

AI - A - BDeC -BCe -B 

~= AI - Ae 0 (4.39) 

o o 

It is thus sufficient to show that setting A equal to an eigenvalue of Ae causes ~ to lose rank. 
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Since it is assumed that m ~ r, tl. is injective and hence is rank deficient if 

is rank deficient, or equivalently if 

-BCe -B 
>'1 - Ae 0 

o 0 

rank C ([ -BC 
-:]) < r+c 

>'1 - Ae 

If >. is an eigenvalue of Ae E jRexe, then >'1 - Ae may be factorised as 

>'1 - Ae = XY 

where X E jRexz, Y E jRzxe and z < c. Equation 4.41 may then be written 

([-BC -B]) rank XY e 0 < r + c 

rank ( [ -: :] [~ ~]) < r + c 
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( 4.40) 

(4.41) 

( 4.42) 

( 4.43) 

( 4.44) 

which is guaranteed to be satisfied due to the dimensionality of the matrices involved. 00 

Clearly the added transmission zeros introduced by the poles of the compensator will have 

an effect on the response of the closed-loop system. This effect will depend upon the placing . 
of the zeros, but could include 'pole masking', where the effect of a mode is diminished by 

its proximity to a zero, or the creation of nonminimum-phase output responses. 

Unfortunately, assignment techniques employing the augmented system method do not permit 

direct manipulation of the poles of the compensator. Indeed, Tsui (1999) claims that this 

fact is sufficient grounds for discarding the technique, since '[the compensator] is not even 

guaranteed to be stable'. However, the stability of the compensator is not a prerequisite for 

the stability (or even the performance) of the closed-loop system. If the performance and 

robustness of the closed-loop system is deemed adequate, then the stability of the compensator 

is of no consequence - just as the stability of the open-loop system is not a prerequisite for 

successful control. 
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It is interesting to note, however, that if the compensator is stable it is possible to mask the 

transmission zeros through the addition of an input pre-filter. The poles of the pre-filter and 

the transmission zeros they mask are all products of the controller and are therefore not prone 

to migration with changes in operating condition. If the compensator is not stable, however, 

attempting masking in this way would be unwise since it would involve an unstable pre-filter. 

If the poles of this pre-filter are not precisely coincident with those of the compensator, this 

will lead to unstable modes being present in the output. Moreover, even if the matching is 

precise, the condition wherein an unstable mode of the pre-filter is cancelled by a controller 

zero could lead to unbounded signals within the controller, and subsequent problems with 

implementation. 

4.3.2.1 Transmission Zero Locations 

The locations of the added transmission zeros are, as shown, given by the poles of the com­

pensator. These are, in turn, given by the eigenvalues of the compensator matrix Ac which 

is a partition of the static gain matrix K. Attempting to control the locations of the added 

transmission zeros during assignment is, then, a problem of controlling the eigenvalues of a 

square partition of the gain matrix. This is not trivial. 

Alternatively, Equation 4.18 may be used to show that the matrix Ac is also a partition of the . . 

closed-loop augmented system matrix Ad. Hence the zero-locations problem could be cast 

as one of assigning the eigenvalues of a partition of the system matrix. This approach was 

taken by Tsui (1999), who presented an algorithm for the assignment of both the transmission 

zeros and the system poles in a two-stage process. However, this algorithm was not EA but 

pole-placement, since the eigenvectors were not explicitly considered. 

Magni (1999) chooses a priori the denominators of the compensator transfer function, hence 

fixing the locations of the transmission zeros. This is done by considering the desired physical 

structure of the controller. However the technique presented by Magni is not pure EA and 

the design process, though powerful, is somewhat convoluted. 

Yet another approach is possible. The transfer function matrix (from Equation 2.73) can be 

written as 

G(s) = C(sI-Ar1B+D 

= CV(sI-Ar1WB + D 

(4.45) 

(4.46) 
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and hence the zero locations, which may be found from the numerators of the entries in 

the transfer function matrix, must be calculable given the eigenstructure of the closed-loop 

system. This was demonstrated in Chapter 3 where the ideal rate-command eigenstructure 

was derived. This eigenstructure, derived by considering the required mode-state couplings, 

introduced a zero in a known location. 

It may be thought, then, that the locations of the added transmission zeros may be fixed 

by choosing the desired eigenstructure carefully. Unfortunately this is not the case. It is 

extremely unlikely that all of the desired eigenvectors will lie in their associated allowable 

subspaces, and hence the assigned eigenstructure will not match the desired eigenstructure 

precisely. It is likely therefore that the zeros will move also. This situation is, if anything, 

compounded if output-feedback EA is employed, since it is not possible to assign a complete 

set of either right or left eigenvectors. 

The algorithm presented by Hippe and O'Reilly (1987) effectively allows the assignment of 

the compensator poles after 'assignment has taken place, but the assignment of eigenvectors 

is not explicitly considered, and the approach taken relies heavily on symbolic algebra and 

consequently does not lend itself to high-order systems such as helicopters. 

Useful further work would be to develop a set of constraints on the assigned eigenstructure 

such that the added transmission zeros are assigned, or at least constrained to a region (for 

example, the left half s-plane). If these constraints were linear, they could be incorporated 

as additional constraints on the eigenvector subspaces. 

4.4 Freedom over Eigenvectors 

It has been seen that the distribution of the additional design freedom in an augmented 

system is such that the subspace from which the plant sub-eigenvectors may be selected 

is the same as in the un-augmented case, while the compensator sub-eigenvectors may be 

chosen arbitrarily. However, if the reduced orthogonality condition of Clarke et al. (2003) 

(Theorem 2.3.2) and its associated EA algorithm are being employed, the restrictions on the 

rank of the input and output coupling matrices (Conditions Cl and C2 of Theorem 2.3.2) 

and on the orthogonality of the selected eigenvectors (Condition C3 of Theorem 2.3.2) are 

expressed in terms of complete eigenvectors. Since the system specification is likely to be in 

terms only of the plant sub-eigenvectors, it is'interesting to re-evaluate these conditions in 

this context. 
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4.4.1 Orthogonality Conditions 

Condition C3 of Theorem 2.3.2, known as the orthogonality condition, requires that the sets 

of assigned left and right eigenvectors must be orthogonal to one another. Thus if 

(4.47) 

and 
Wv+l 

~ , 
W= (4.48) 

Vn+c 

then the orthogonality condition may be expressed as 

w'v' = 0 (4.49) 

If the sets of assigned eigenvectors are now partitioned into plant and compensator sub­

eigenvectors, such that 

and 

w' = [W~ W~] 

then Equation 4.49 may be written 

w'v' +w'v' = 0 p p c c 

w'v' = -W'V' p p c c 

(4.50) 

(4.51) 

(4.52) 

(4.53) 

(4.54) 

Since the compensator sub-eigenvectors may be selected arbitrarily, Equation 4.54 may be 

expressed as a rank condition: 

(4.55) 

Hence, in the augmented system case, the orthogonality condition is equivalent to a rank 

condition upon the product of the selected left and right plant sub-eigenvector sets; the 

greater the compensator order, the greater t~e extent to which the orthogonality condition 
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may be 'broken' by the selected plant sub-eigenvector sets. Indeed, if the compensator is 

of very high order (c ~ max( v, n, n + c - v)), the orthogonality condition may be dismissed 

entirely when constructing sets of plant sub-eigenvectors for assignment. 

Assuming that plant sub-eigenvectors have been chosen according to Equation 4.55, with 

rank (W~ V~) = d (4.56) 

it remains necessary to find compensator sub-eigenvectors which fulfill Equation 4.54. 

The following method for so doing assumes that the closed-loop system eigenvalues, and 

hence the partial eigenvector subsets, are real. A simple extension to the complex case exists, 

but is given in Appendix B to avoid obscuring this description. 

If two matrices W x E jR(n+c-v)xd and V x E lRdxv can be found such that 

(4.57) 

then Equation 4.55 may be satisfied by choosing two arbitrary full-rank matrices RI E lRdxc 

and R2 E lRcxd and setting 

W~ = -WxRI 

V~ = R2 (RIR 2)-1 V x 

(4.58) 

(4.59) 

The inverse is guaranteed to exist due to the constraint that d ~ c, and the matrices W x 

and V x, defined by Equation 4.57, may be obtained by subjecting the product W~ V~ to a 

singular-value decomposition (Golub and van Loan, 1996). 

If the orthogonality of W~ and V~ is pushed to its limit, such that c = d, the matrices RI 

and R2 will be square, and Equation 4.59 will simplify to 

V~ = R2R2 I R1I Vx 

= R1IVx 

(4.60) 

(4.61) 

and so the matrix R2 no longer carries any design freedom. It is interesting to note that 

the matrix RI now has c2 DoF. In Chapter 2 it was shown that the state vector may be 

transformed without affecting the transfer function matrix. Such a transformation, applied 

to the compensator only, would require c2 DoF. Thus if the product W~ V~ has rank c, the 
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freedom present in the matrix Rl acts only to transform the compensator and hence has no 

effect on the locations of the transmission zeros. Indeed in general, c2 DoF have no effect on 

the final transfer function for this reason (Hippe and O'Reilly, 1987); the algorithm described 

by Hippe and Q'Reilly explicitly isolates the design freedom which exists only to characterise 

a class of compensators. 

4.4.2 Rank Conditions 

Conditions Cl and C2 of Theorem 2.3.2 can also be interpreted in the context of an aug­

mented system. The requirement is that the selected sets of eigenvectors must be linearly 

independent, ie. that 

rank CV =v 
(

AA ') 

rank (W/13) = n + c - v 

Most obviously, these conditions imply that 

v:S;m+c 

and 

n+c-v:S;r+c 

n-r$v 

and therefore 

.n-r:S;v$m+c 

(4.62) 

(4.63) 

(4.64) 

(4.65) . 

(4.66) 

(4.67) 

which places lower and upper bounds upon the number of right eigenvectors that may be 

selected during the assignment process. 

However, the rank conditions can also be expressed as a constraint only on the selected plant 

sub-eigenvectors, by re-writing Equation 4.62 as 

(4.68) 

If the selection of the compensator sub-eigenvectors i~ considered arbitrary, it will always be 
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possible to obtain a set of right plant sub-eigenvectors such that 

rank (V~) = min( c, v) (4.69) 

Hence if v ~ c, there need be no rank conditions imposed upon the set of chosen plant 

sub-eigenvectors, and Equation 4.62 can be satisfied by careful choice of the compensator 

sub-eigenvectors. 

If v> c however, then in order to satisfy Equation 4.62, it is necessary that 

rank (CV~) ~ v - c (4.70) 

The set of compensator sub-eigenvectors needs still to be full rank, but this alone is not 

sufficient to ensure that Equation 4.62 is satisfied. The rows of V~ must also be linearly 

independent from the rows of CV~. 

Similar constraints can be derived for the left eigenvectors, by writing 

rank ([ W~B W~]) = n + c - v (4.71) 

The left compensator sub-eigenvector set may be chosen such that 

rank (W~) = min( c, n + c -:- v) (4.72) 

If n + c - v ~ c (ie. if v> n), the selected left plant sub-eigenvectors need not be subject to 

a rank condition, and W~ may be chosen to ensure that the set of complete left eigenvectors 

is full ranK. If v ~ n, the condition is that 

rank (W~B) ~ n - v (4.73) 

and the columns of W~ must be chosen to be linearly independent from those of W~B. 

It is unlikely that the assignment of reduced-rank plant sub-eigenvector sets will form an 

important part of the realisation of a design specification. However, a certain amount of 

freedom over rank is necessary for assignment in many cases. 

Consider the case where a compensator is employed to overcome the fact that m + r < n. 

In this case, it is necessary either to set v > m or n + c - v > r in order to allow complete 

assignment. Either the left or the right plant sub-eigenvector sets must therefore be of reduced 
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rank with respect to m or r respectively. 

4.4.3 Orthogonality vs. Rank 

Equations 4.55, 4.70 and 4.73 re-express conditions Cl, C2 and C3 of Theorem 2.3.2 as 

conditions on the selected plant sub-eigenvector sets. The derivation of each of these equa­

tions, however, contained the assumption that the compensator sub-eigenvector sets could 

be selected arbitrarily. It is unlikely that the restrictions imposed upon the compensator 

sub-eigenvectors by these equations are compatible, and a compromise will have to be sought 

between the rank of the selected plant sub-eigenvector sets and the rank of their product. 

The interplay between these sets of constraints is extremely complex, and has thus far defied 

attempts to reduce them to a linear set of simultaneous constraints or generate a logical 

design procedure. Further work must be undertaken in this area to make the best use of 

the insights provided here into the distribution and potential use of the design freedom in a 

compensated system. 

4.4.3.1 Masking Poles 

In Section 4.3.1 it was claimed that placing system poles to be coincident with added trans­

mission zeros by assigning zero entries into right plant sub-eigenvectors was not feasible. The 

reason for this is the conflict between the rank conditions and the orthogonality condition. 

Consider a subset of the assigned right eigenvectors, V H, wherein the plant sub-eigenvectors 

have been assigned zero entries. The orthogonality condition requires that every assigned left 

eigenvector must be orthogonal to these right eigenvectors, and hence that 

(4.74) 

(4.75) 

W~VHc = 0 (4.76) 

The rank conditions upon V' effectively force V He to be full rank. Hence if the number of 

right eigenvectors in V H is given by h, a solution to Equation 4.76 for V He exists if and only 
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if W~ has a right null-space of dimension h, so 

c - rank(W~) ~ h 

rank(W~) ~ .. c - h 
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(4.77) 

(4.78) 

If W~ has zero rank (has all zero entries), then the rank conditions on W' can be satisfied 

only if W~B has full rank, which is only possible for w ~ r where w is the number of assigned 

left eigenvectors. As the rank of W~ increases, so the constraint on the size of W~ is relaxed, 

and more left eigenvectors may be assigned. 

This revised constraint on the left eigenvectors may be written as 

w~r+c-h 

and substituting into the constraint for pole-assignability, 

m+c+r+c-h>n+c 

m+r+c-h>n 

(4.79) 

(4.80) 

(4.81 ) 

Hence adding compensator states will not render a system pole-assignable if the added modes 

are 'hidden' in this way. 

4.5 Dynamic Compensation for Performance 

Using a dynamic compensator instead of a static feedback network increases the number of 

DoF available for the design of a control system. It has been seen that the distribution of 

this additional freedom is not simple, and its exploitation fraught with difficulties; the system 

order is increased, transmission zeros are added, and no additional freedom over the coupling 

of modes into the original system states is gained. Although the additional DoF can be 

exploited for other means (Hippe and O'Reilly, 1987), their use for EA is very limited. 

One major exception to this situation exists, and that is when the specification on a system 

is already of higher order than the system itself. This is the case for a helicopter in forward 

flight; its lateral and longitudinal angular rates are required to be second-order functions of 

the cyclic stick position, while the open-loop dynamics are first-order. As seen in Chapter 3, 

the ideal eigenstructure for this flight condition requires the introduction of two compensator 
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states. The eigenstructure includes specifications on the compensator sub-eigenvectors, and 

predicts the addition of the added zeros. Clearly, in terms of EA, this represents a far simpler 

situation than that discussed above. 

4.6 Adding a Feedforward Path 

The compensators considered thus far take information only from the plant outputs. If a 

compensator were given extra information, in the form of the plant inputs, the number of 

DoF available to the control system designer would be increased. 

u(t) yet) 
I--+r;'" 

'-----I Dc 1-------1 

Compensator 

Figure 4.2: Dynamic Compensator with Feedforward Path 

The structure thus created is illustrated in Figure 4.2. The effect of the new feed forward 

path is to add a term BF E jRcxr into the augmented input matrix, B, to form 

B = [B 0] 
BF I 

(4.82) 

4.6.1 Implications of the Feedforward Term 

Griffin (1997) states that since this modified compensator takes information from both the 

inputs and the outputs of the system, it may be expressed as a feedback compensator and 

input pre-compensator. This is partially true. Factorisation of B yields 

A A A 

=BBF (4.83) 
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Substitution into Equation 4.14 shows that the modified closed-loop system matrix is given 

by 

A=A+BKC 

= A+BBFKC 

6 A+irKC 

(4.84) 

(4.85) 

(4.86) 

In other words the dynamic response of the system (A,B,C), which includes a feedforward 

term, under the influence of feedback K is the same as the dynamic response of the system 

(A,B,C) under the influence of feedback K, where 

(4.87) 

Since the matrix :B F is full rank, the mapping between K and K is bijectivej every compen­

sator in the form of Figure 4.2 has an equival~nt in the form of Figure 4.1 with the same 

dynamIC response, and vice-versa. 

If it is required to generate a compensator with a feedforward term from an existing feedback 

compensator, this can be done simply by noting that 

(4.88) 

Hence, to retain the same closed-loop eigenstructure, the augmented system gain matrix can 

simply be pre-multiplied by Bp! once BF has been (arbitrarily) chosen. 

The input coupling is changed also. The external input matrix becomes 

(4.89) 

and consequently the input coupling matrix becomes 

(4.90) 



4.6. Adding a Feedforward Path 118 

so the system response, from Equation 4.31, becomes 

(4.91) 

This shows that the feedforward term has pre-filtering effect upon the closed-loop system 

by introducing a dependence on the compensator sub-eigenvectors that did not previously 

exist. However, it is not valid to state that this effect is the same as that of an input pre­

compensator. In order to achieve this effect, a pre-compensation matrix E would have to 

satisfy 

(4.92) 

A solution for E exists (Ben-Israel and Greville, 1974) only if 

(4.93) 

For general W p , Wc, Band BF, this requires 

(4.94) 

which cannot be satisfied due to the dimensionality of the term WpB. Similarly a solution 

for B F from Equation 4.92 for general W p, Wc, Band E would require 

(4.95) 

which again cannot g~nerally be satisfied. Hence the design freedom offered by a pre­

compensator is not equivalent (but is potentially complementary) to that offered by the 

feedforward term. 

4.6.2 Feedforward Terms and Observers 

The observer is a well-known form of dynamic compensator which, in its usual form, seeks to 

estimate and synthesise the state vector through observation of the system input and output 

vectors. The observer has historically been used in attempts to solve the output-feedback 

problem by reconstituting the state vector and applying state-feedback control methodologies. 

Observers are usually designed before a solution to the control problem is sought, due to the 

separation theorem (Brogan, 1991) which guarantee$ that the characteristics of an observer 



4.6. Adding a Feedforward Path 119 

will not change when its outputs are used for feedback control. An observer can be designed 

such that the synthesised states are guaranteed to converge to their physical counterparts, 

and such that the convergence time is minimal and robust to changes in the open-loop plant 

characteristics. 

Unfortunately, when used for control, the robustness properties of an observer are not inher­

ited by the closed-loop system (Doyle and Stein, 1979). Ideally, the controller and observer 

would be designed simultaneously, such that the robust performance of the complete closed­

loop system could be optimised at once. 

The techniques described by Tsui (1996) provide an improvement upon this situation. The 

state-feedback controller is designed taking into account the performance of the observer, 

which is still designed first. For most systems[l] the robustness of the closed-loop system is 

. guaranteed to be the same as that of the implementing observer. Tsui considers the use both 

of optimal quadratic techniques and of EA for the design of the" controller stage. 

The design process is cumbersome, however, and is a long way from exhibiting 'visibility' as 

described in Chapter 1. The design of the observer uses a mixture of techniques in order to 

achieve good results from an observer of minimal order, leading to a complex, decision-based 

design process. Despite being state-feedback techniques, the EA algorithms presented also 

suffer from a lack of visibility. They concentrate upon the assignment of eigenvectors with 

specific characteristics (maximal decoupling or maximal eigenvector orthogonality) and con­

sequently border on pole placement; also, for partial-state observers, they employ 'generalised 

state feedback' rather than output feedback methodologies. 

However, observers can be seen as compensators with feedforward terms in the form of 

Figure 4.2: From Griffin (1997), a controller with a full-state observer may be written in 

augmented system form as 

(4.96) 

It is easily verified that the closed-loop system matrix Ad = A + BKe of this arrangement 

[llMost systems, in this context, means 'all open-loop systems with more outputs than inputs ~r with at 
least one stable transmission zero' (Tsui, 1996, p.vi) 
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is the same as that of the augmented system 

A = [A 0] 
.. 0 0 

A [0 KC] 
K= Ko A-KoC 

(4.97) 

which has the form of (a simplified) Figure 4.2. 

Therefore, the observer and controller can be considered together, along with the open­

loop plant, and the overall closed-loop system response considered. If techniques are used 

to improve the robustness of the closed-loop system while retaining dynamic performance 

(Griffin, 1997; Ensor, 2000), then this can be achieved without having ensured specifically 

that the observer itself is robust. This approach is similar to that of Tsui (1996) above, 

except that: 

1. The design process is considered in a single stage, with EA being employed throughout. 

2. The robustness (and performance) of the observer, on its own, is never considered. 

3. All n + c closed-loop eigenvalues are explicitly assigned, and the coupling of all modes 

into the states is considered. 

Item 1 on the list above ensures that the design process is visible. Item 2 simplifies the 

process, although the fact that the controller performance is not explicitly· considered also 

means that the added transmission zeros of the closed-loop system are not predictable. Item 

3 ensures that the closed-loop response is known accurately and in full, but requires that a 

larger number of pole locations are determined from the specification than may be desirable. 

4.6.3 Design Considerations 

The design of a compensator with a feed forward term is not simple, and this complexity 

comes on top of the problems already identified with dynamic compensators in general. No 

algorithms for the use of these compensator structures have been generated. However, some 

general principles may be identified. 

Since a compensator with a feedforward term always has an equivalent pure feedback coun­

terpart with the same dynamic response, the compensator may be designed as a feedback 

type and the feed forward term decided later. It is not clear exactly what effect the choice of 

the feedforward term will have upon the resulting controller. However, the assigned eigen­

structure will not change if the feedback portion of the compensator is modified appropriately 
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through Equation 4.87. Some potential areas for research into the use of the feed forward term 

could be: 

• The input coupling will be affected by the addition of a feedforward term, and this 

could be used to advantage to manipulate the input coupling. This could be especially 

useful in situations where direct manipulation of the system input signals, as required 

for a standard input pre-filter, is difficult. 

• Since the lower right-hand partition of the augmented gain matrix (the compensator 

A matrix) is modified when compensating for the addition of a feedforward term, it is 

likely that the added transmission zeros will migrate. Hence these could be placed or 

constrained, post-assignment, by a suitable algorithm. 

• The introduction of a feedforward term changes entries in the B and A matrices of the 

feedback compensator. This fact could potentially be exploited to reduce certain ele­

ments in these matrices to zero, thereby imposing structure upon the feedback portion 

of the compensator. 

• The robustness of the closed-loop system to variations in the open-loop plant charac­

teristics has not been studied, but it COUld,. be found that r()bustnessimprovements can 

be made post-assignment by careful choice of a feedforward term. 

4.7 Conclusions and Further Work 

In this chapter, dynamic compensators and the augmented system description have been 

introduced, and an analysis of the distribution of the design freedom added by a compensator 

has been performed in the context of EA. Although no new algorithms have been presented, 

it is hoped that this new exposition of the problem of applying EA to compensated systems 

will form a useful contribution to the existing literature on the subject. 

The idea of adding feedforward terms to feedback compensators has been introduced, and it 

has been shown that it is always possible to add a feedforward term to a compensator without 

changing the closed-loop eigenstructure, by means of a corresponding manipulation of the 

feedback portion of the compensator. Section 4.6.3 contains several ideas for the potential 

exploitation of the design freedom offered post-:assignment by this technique, and these would 

form an ideal starting point for a programme of further work on this topic. 
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Unless the addition of compensator states is required by the closed-loop specification, as in 

Chapter 3, such an addition does not usefully increase the freedom available for EA beyond 

rendering a system pole-assignable if it previously was not. The system order is increased; 

transmission zeros are added and, at present, there is no method for controlling their locations 

while retaining freedom over the eigenvectors; and the additional design freedom does nothing 

to increase the allowable eigenvector subspaces. A method for constraining the final locations 

of the added transmission zeros during assignment would be very useful further work however. 

It is clear that dynamic compensation, without considerable further work, does not represent 

a viable solution to the problem of increasing the available DoF when using EA to generate 

a control system for a helicopter. An alternative must therefore be sought if an improvement 

in performance over the static output feedback case is required. 

4.7.1 Alternatives to Dynamic Compensation 

If the control designer has any influence over the configuration of the plant, it is always 

beneficial t·o increase the number of states that can be directly or indirectly measured. In a 

linear system model this equates to an increase in rank of the C matrix. This adds design 

freedom by increasing the size of the gain matrix, and could be seen as preferable to dynamic 

compensation in this respect since the added freedom allows more right eigenvectors to be 

assigned without increasing the system order. This benefit comes at a price - that of the 

expense of the sensors themselves, including their maintenance - but the simplicity of the 

resulting controller, free of dynamic compensation, may well compensate for this. It may 

even be possible to convert an output-feedback problem to a state-feedback problem by 

adding sensors. Unfortunately, many sensors - including. accelerometers, commonly used on 

aircraft - introduce nonzero terms in the system D matrix, rendering standard approaches to 

EA inapplicable. 

Similarly, Proportional-plus-Derivative (PD) control also has the potential to increase the 

rank of the C matrix and hence the number of available DoF. The implementation of PD con­

trollers requires some care, because differentiators have a gain which increases with frequency 

and hence can reduce the signal-to-noisc ratio of the signals in the controller. Bandwidth­

limited differentiators (bandpass filters) may be employed instead, provided that their break 

frequencies are significantly higher than the fastest system modes and can be ignored for the 

purposes of modelling the controller. But again, PD control will introduce nonzero terms in 

the D matrix. 
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Chapter 5 will introduce extensions to some standard EA techniques which are capable of 

assigning eigenstructure to these types of systems, and demonstrate that the design freedom 

represented by these structures is more suitable for use with visible EA algorithms than that 

which is provided by dynamic compensation. 
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5.1 Introduction 

As discussed in Chapter 2, standard Eigenstructure Assignment (EA) algorithms can be 

divided roughly into two groups: state-feedback, where the output (C) matrix is assumed to 

be an identity, and output-feedback, where assumptions are made only about the number of 

inputs and outputs (White, 1995). However, both groups of algorithms generally rely on the 

direct transmission (D) matrix being null. This is valid only if the system is strictly proper. 

9iven the multivariable transfer function matrix G(s), a system is said to be: 

• Strictly proper if G(s) --+ 0 as S --+ 00; 

• Semi-proper if G(s) --+ D =I 0 as s --+ 00; 

• Proper if either strictly proper or semi-proper; 

• Improper if G(s) --+ 00 as s --+ 00. 

Improper systems are not physically realisable Skogestad and Postlethwaite (1996). 

Very few EA algorithms are compatible with semi-proper systems. A pair of papers by 

Fletcher (19S1a, b), published during the formative years of EA, are concerned with output­

feedback pole placement rather then EA specifically. Eigenvectors are selected but no mention 

is made of their importance to the design or solution, or how they should be chosen. Moreover, 

Fletcher's technique is essentially a protection method (White, 1995) and consequently suffers 

from the lack of design visibility offered by these approaches. The development of the method 

does not include a formulation of the complete closed-loop system, and therefore fails to 

show that the input and output matrices change when the loop is closed, a fact which can 

be important in the design process. 

White (1997) does not assume a zero D matrix. The algorithm described by White was 

developed specifically for robust EA (more accurately for robust pole placement), and used 

graphical techniques with multivariable pole and zero loci to select gains in highly structured 

controllers. These techniques are effective but lack any kind of design visibility. 

A number of EA algorithms for descriptor systems (Le, 1992, for example) also do not make 

the assumption that the open-loop system is strictly proper. Clearly any algorithm for a 

descriptor system may be applied to a system in standard form, but the operation of these 

algorithms in this context is in general obfuscated by their nature as algorithms for descriptor 

systems. 
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This chapter will introduce and develop several novel algorithms for the assignment of eigen­

structure to semi-proper systems in standard form, firstly for systems with at least as many 

outputs as states, and then for those with fewer outputs than states. The first algorithm rep­

resents the generalisation of a standard state-feedback EA algorithm such as that of Moore 

(1976), and the second a generalisation of the output-feedback algorithm presented by Clarke 

et al. (2003). 

5.2 Sources of Semi-Proper Systems 

Although semi-proper systems are mathematically feasible, all physical systems are strictly 

proper (Skogestad and Postlethwaite, 1996). However, semi-proper systems are often useful 

approximations. 

For example, an aircraft mathematical model will often contain several velocity states. Ve­

locities are almost impossible to measure in the absence of a fixed reference frame and, 

therefore, accelerometers are used to obtain state information. Incorporating the measured 

accelerations into the model results in the addition of non zero entries in the D matrix. Addi­

. tionally, many control structures familiar to designers of classical control systems, including 

Proportional-plus-Derivative (PD) controllers a~d phase-advance networks, involve the effec­

tive differentiation of states and will have the same effect. These are all approximations since 

no accelerometer or controller has an infinite bandwidth. However, the realisation of these 

differentiations in the form of a semi-proper system formulation is convenient and, provided 

that the bandwidths of the approximated components is sufficiently high, fit for practical 

purposes. A further advantage of such a semi-proper approximation is that the system order 

is reduced when compared to an equivalent system with modelled sensor dynamics, meaning 

that fewer Degrees of Freedom (DoF) are required for pole-assignability. 

Other sources of semi-proper system descriptions exist. The reduction of a linear system 

of high order to one of lower order (a process discussed in Appendix A) will often generate 

a reduced-order system that is semi-proper, due the approximation of fast system modes as 

direct input-output couplings. Conversion of a continuous-time model to a discrete-time form 

(or vice-versa) using the bilinear (Tustin) transform (Banks, 1986) will lead to nonzero terms 

in the D matrix. 
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5.2.1 Semi-Proper Systems for State Derivative Control 

It should be noted that although the feedback of state derivatives is a common source of semi­

proper systems, other methods exist for the assignment of eig~nstructure to systems with state 

derivative feedback. In particular, given a strictly proper system under proportional-plus­

derivative control, the closed-loop system equation may be written 

(I - BKdC)X = (A + BKC)x + Bu (5.1) 

where Kd is the derivative feedback gain matrix and K the state feedback gain matrix. 

Equation 5.1 is in the form of a descriptor system, and as mentioned in Chapter 2, EA 

algorithms for PD control of descriptor systems exist (Duan and Patton, 1997; Duan and 

Wang, 2004; Duan and Patton, 1999; Owens and Askarpour, 2000). 

However, if PD or state derivative control of a system in standard form is the aim, the 

algorithms to be presented here have several potential advantages over forming and controlling 

a descriptor system. The feedback gains from both states and state ~erivatives are contained 

in a single gain matrix, and found simultaneously; the available design freedom is presented 

in the same form as in standard state feedback (or output feedback) EA. Consequently the 

distribution of the design freedom is the same and this ensures that: 

• The conditions for pole-assignability are simple to derive, and reflect those of a strictly 

proper system; 

• The formation of a semi-proper system whose outputs are composed of an arbitrary 

combination of states and state derivatives is trivial, and this provides a highly flexible 

mechanism for controller design; 

• The controller design process is substantially identical to that of standard state-feedback 

EA or of output feedback EA as proposed by Clarke et al. (2003), .and consequently 

offers unprecedented levels of design visibility; 

• Access to unused design freedom is available post-assignment, and may be used for 

retrcrassignment (Clarke and Griffin, 2004) or gain suppression (Chapter 6). The best 

(simplest and most visible) of the current algorithms (Owens and Askarpour, 2000) 

considers only the minimisation of the Frobenius norm of the gain matrix. 
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5.2.1.1 Robustness Considerations 

It is not the aim of this thesis to consider the robustness of control systems designed using 

EA. However, it is important to note that if partial or complete state derivative feedback is 

employed, the resulting open-loop C matrix will contain rows taken directly from the open­

loop A matrix. Hence, if perturbations in the open-loop A matrix are to be considered for 

the purposes of calculating robustness measures, their effect on the open-loop C matrix must 

be borne in mind. 

5.3 Problem Formulation 

Consider a controllable, observable, minimal, semi-proper state-space system under the in­

fluence of feedback such that 

where 

x=Ax+Bt 

y = Cx+Dt 

t=Ky+u 

(5.2) 

(5.3) 

(5.4) 

u is an exogenous input, t is the plant input, A E jRnxn, B E jRnxr, C E jRmxn, D E jRmxr 

and K E Rrxm. 

By substitution we may readily obtain 

t = (I - KD)-l u + (I - KD)-l KCx (5.5) 

under the assumption that the term 1 - KD is nonsingular (the implications of this restriction 

are discussed in Section 5.3.2). 

To simplify subsequent analysis, we define 

N ~ (I - KD) -1 K (5.6) 

giving, after substitution: 
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We may therefore define 

x = (A + BNC) X + B (I - KD) -1 u 

y = (C + DNC)x+ D(I- KD)-1 u 

Ael A A+BNC 

Bel ~ B (I - KD)-1 

Cel A C+DNC 

Del ~ D (I - KD)-1 
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(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

The system structure derived above is accurate, but is not symmetrical in that the formula­

tions of Bel and Cel appear quite different. The asymmetric nature of the structure does not 

appear to originate from any inherent asymmetry in the open-loop system or the feedback 

network. This observation forms the motivation for the following alternative formulation. 

Consider again the system of Equations 5.2 to 5.4. By substitution once more, we may 

determine that 

y = (I - DK)-1 Cx + (I - DK)-1 Du 

where, this time, it is assumed that the term 1- DK is nonsingular. 

Substitution of Equation 5.13 into Equation 5.2 now gives: 

Using the identity (Miller, 1987, 10), 

Equation 5.14 becomes: 

x = (A+BNC)x+ (B +BND)u 

(5.13) 

. (5.14) 

(5.15) 

(5.16) 

The differences between Equations 5.13 and 5.16 and Equations 5.7 and 5.8 are due simply 
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to a difference in the order of substitution. The following is a proof of their equivalence. 

From the formulation of Equation 5.16, 

B + BND = B + B (I - KD)-l KD 

= B (I + (I - KD) -1 KD) 

= B( (I - KD)-1 (I - KD) + 

(I - KD)-1 KD) 

= B (I - KD)-l ((I - KD) + KD) 

= B(I- KD)-1 (5.17) 

which demonstrates the equivalence of Equations 5.7 and 5.16. This result could also be 

obtained using Woodbury's Formula (Miller, 1987, 11). The same logic may be applied to 

prove the equivalence of the Equations 5.8 and 5.13. 

Consequently, we may define: 

where 

Ad~A+BNC 

Bd ~B+BND=B(I-KD)-1 

Cd ~ C + DNC = (I - DK)-1 C 

Dd ~D+DND=D(I-KD)-1 

= (1- DK)-1 D 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

It may be seen that the closed-loop matrices Ad, Bc/' C(:l, Dd all differ from the open-loop 

matrices A, B, C, D if D =f O. Hence if the open-loop system is semi-proper, it is not 

only the system dynamics which change when the loop is closed but also the input-state, 

state-output and input-output couplings. 
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5.3.1 Closed Loop System Structure 

In Fletcher's paper (Fletcher, 1981a), Equation 5.9 is stated (in expanded form) but it is not 

derived. The other three closed-loop matrices are not presented. However, the effect of loop 

closure on B, C and D is important. 

Consider the case of right eigenvector assignment in order to control the coupling of modes 

into system outputs. The closed-loop output matrix Cel (Equation 5.11) depends upon an 

inverse involving the gain matrix which, at the time of assignment, is unknown. Consequently 

the change from C to Cel, when the loop is closed, cannot be predicted. Therefore, the 

assignment of eigenvectors to determine mode-output coupling is not appropriate. 

Whether or not the change in coupling between the states and outputs is of concern depends 

upon the nature of the assignment taking place. If it is necessary to ensure a specific coupling 

of modes into states, then assignment of eigenvectors is appropriate. If, instead, it is desired 

to control the appearance of the modes in the outputs, then techniques leading to the direct 

assignment of the output-coupling vectors are required. 

A secondary benefit of assigning output coupling vectors directly is that the algorithm is 

immediately suitable for those systems in which the states themselves have no direct physical 

interpretation. Models derived using identification techniques are likely to fall into this 

category if the identification process can only approximate input-output relationships (Griffin, 

1997). 

5.3.2 Singularities in the Closed Loop System 

Section 5.3 introduced the pre-conditions on the gain matrix that 1- KD and 1- DK must 

be nonsingular.Here, we consider the reasons for this, and its implications for control system 

design. 

The constraint is not a curiosity of the exposition presented here. Rather, it represents 

a system singularity. The feedforward Del matrix and the feedback K matrix form direct 

forward and backward transmission paths, coupling the input and output through a pair of 

simultaneous equations. When the constraint is not satisfied, no instantaneous solution exists 

to these equations for y given u and x. Thus the constraint is somewhat pathological; it is 

reasonable to assume that a control system design approach based on meeting performance 

goals would never give rise to such a situation. Nevertheless, ensuring that this is the case is 

a simple matter in most cases. 
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Theorem 5.3.1. If m = n, assigning a linearly independent set of output coupling vectors 

is a necessary and sufficient condition for ensuring the causality of the closed loop system. 

The following lemma assists with the proof. 

Lemma 5.3.2. The non-singularity of anyone of the terms 1- KD, 1- DK, 1+ ND 

and I + DN (where N is defined by Equation 5.6) is necessary and sufficient to ensure the 

non-singularity of the remaining terms. 

Proof. Consider rearranging the defined structure of N, given in Equation 5.6: 

N= (I-KD)-IK 

N-KDN=K 

N=K+KDN 

N(I+DN)-I=K 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

The transformation between N and K is bijective, and hence I - KD is nonsingular if and 

only if I + DN is nonsingular. 

Finally, 1+ DN is nonsingular if and only if I + ND is nonsingular (see Miller, 1987, Corol­

lary 3, p9); it is trivial to show that the same is true for 1- KD and I - DK. 00 

Proof of Theorem 5.3.1. From Equations 5.5 and 5.13, the causality of the closed-loop system 

is dependent upon the terms 1- KD and 1- DK being nonsingular. Lemma 5.3.2 gives a 

set of alternative necessary and sufficient conditions for this. 

The term 1+ DN, implied in Equation 5.11 and listed in Lemma 5.3.2, is a factor that links 

the open-loop C and closed-loop Cel matrices. 

Therefore, given a set of mode-output coupling vectors 

it is clear that 

fl = [01 D2 On] 

= Cel [VI V2 ... vn ] 

= CelV 

= (I + DN)CV 

rank(fl) = rank ((I + DN)CV) 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 
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and since by requirement rank( C) = n and rank(V) = n, 

rank(O) = min(n, rank(I + DN)) (5.33) 

Since the term 1+ DN is of size m x m, if m = n Equation 5.33 reduces to 

rank(O) = rank(I + DN) (5.34) 

Consequently the linear independence of the set of closed-loop output coupling vectors is 

necessary for term I - KD to be full rank; if the number of system outputs is the same as 

the number of states, it is also sufficient. 00 

5.4 Pseudo-State Feedback 

There follows an algorithm, developed by the author: that forms a simple extension to stan­

dard state-feedback EA. It appears in a simplified, less generic form in Pomfret and Clarke 

(2003), and in this form in Pomfret et al. (2005). The term 'pseudo-state feedback' is coined 

here to describe the application of output feedback to a controllable, observable system with 

the same number of independent outputs as states. State feedback implies that the states 

are measurable directly (ie. that C = I and D = 0), while pseudo-state feedback simply 

requires that rank (C) = m = n and otherwise carries no constraints beyond those of output 

feedback. Nevertheless it is not a misnomer, since the condition rank(C) = m = n allows 

for the placement of all the system poles by assigning only right-eigenvectors. This is the 

common characteristic of all state-feedback EA algorithms. 

By definition, for any closed-loop eigenvalue-eigenvector pair P'il Vi}, 

and consequently 

(A + BNC) Vi = ViAi 

(A - Ail) Vi = BNCVi 

[A-Ail Bl [N~VJ =0 

(5.35) 

(5.36) 

(5.37) 

(5.38) 
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Equation 5.38 may be parameterised by setting 

(5.39) 

where 

(5.40) 

The output-coupling vector 0i describes the distribution of a given mode into the outputs: 

= (C+DNC)vi 

= [c D] [ Vi ] 
NCVi 

~= [e : ~l [~:].~ 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

Consequently, the design vector, fi, for a given mode may used to select either an output­

coupling vector Oi, or an eigenvector Vi using, for example, a least-squares projection of a 

desired vector into the allowable subspace. Note that, since Cel is square and also guaranteed 

to be full-rank (see Section 5.3.2), the condition that the closed-loop eigenvectors must be 

linearly independent can be satisfied by ensuring instead that the selected output-coupling 

vectors are linearly independent. 

Having selected the design vectors {fi }, the matrix N may be recovered: 

v = [Vl V2 ... V n] (5.45) 

= [Plfl P2f2 Pnfn] (5.46) 

S=NCV (5.47) 

= [Qlfl Q2f2 ... Qnfn] (5.48) 

N = 8V-1C-1 (5.49) 

It only remains to rearrange N (defined at Equation 5.6) to find K (using Equation 5.27). 
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In Theorem 5.3.1 it was shown that a solution is guaranteed given a linearly independent 

set of output-coupling vectors. Consequently, assigning a linearly independent set of output 

vectors guarantees both a solution to Equation 5.49 and a solution to Equation 5.6. 

5.4.1 Excess Freedom 

If accelerometers, or other forms of derivative feedback, are used in order to increase the 

number of system outputs to the point where pseudo-state feedback is practical, it is also 

feasible that the number of linearly independent outputs may be made to exceed the number 

of states, ie. m> n. In this case, the gain matrix solution is not unique. 

If the condition that rank( C) = m = n is replaced by the new condition rank( C) = n ::; m, 

the procedure of Section 5.4 may be followed until Equation 5.48. At this point, the algorithm 

relies on the inversion of C and must therefore be modified. 

From Equations 5.47 and 5.6, it is clear that 

Simplifying, 

S=NCV 

= (I - KD)-l KCV 

(I - KD) S = KCV 

S-KDS=KCV 

S=KCV+KDS 

S=K(CV-tDS) 

(5.50) 

(5.51) 

(5.52) 

(5.53) 

(5.54) 

. (5.55) 

where C, D, S and V are known. A direct solution for K by inversion from Equation 5.55 is 

not possible since by hypothesis the term CV + DS is non-square. However, a solution for 

K can still be found (Ben-Israel and Greville, 1974, p39): 

K = S (CV + DS)t + Z (I - (CV + DS) (CV + DS)t) (5.56) 

where At is the Moore-Penrose pseudo-inverse of A (see Appendix C) and Z is a matrix of 

free parameters. This parameter matrix is expressed in a similar way to the matrix of free 

parameters existing at the end of the output-feedback EA algorithm of Clarke et al. (2003). 
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Hence, for a system with m > n, it is possible, not only to assign n eigenvalues and right­

eigenvectors, but also to recover the unused design freedom and employ it for another purpose, 

for example the imposition of controller structure (see Chapter 6). 

Note that Theorem 5.3.1 no longer ensures that the resulting system is causal since m f=. nj 

however, there now exists the free parameter matrix Z which may be employed to avoid the 

pathological condition that the term I - KD is not full-rank. 

5.4.2 Design Procedure 

A design procedure formalising the pseudo-state feedback EA process will now be described. 

It is assumed that the system (A, B, C, D) is controllable and observable, and that rank(C) = 
n. 

5.4.2.1 Choosing Eigenvectors 

For each desired eigenvalue Ai, i = 1 ... n, form the allowable subspace 

Choose a design vector fi E Crx 1 to select either the corresponding right eigenvector 

or output coupling vector 
# 

Having selected {fi}, form the matrices 

v = [Vl,'''' vn] = [P1fI, ... , Pnfn] 

S = [Q1f1, ... , Qnfn] 

and check that n is full rank, as required by Theorem 5.3.1. 

(5.57) 

(5.58) 

(5.59) 

(5.60) 

(5.61) 

(5.62) 
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5.4.2.2 Gain Matrix Recovery 

The gain matrix formula of Equation 5.56 can be employed if there is an excess of outputs 

over states: 

K = S (CV + DS)t + Z (I - (CV + DS) (CV + DS)t) (5.63) 

If not, Equations 5.49 and 5.27 can be employed to recover first N and then K. Alternatively, 

Equation 5.56 can be modified to return K directly; if m = n, then the term (CV + DS) is 

square and full rank, so 

(CV + DS)t = (CV + DS)-l (5.64) 

Under these conditions, Equation 5.56 reduces to 

K = S(CV +DS)-l (5.65) 

This concludes the design procedure. 

5.5 Output Feedback 

Due to the symmetrical form of the closed-loop system derived in Section 5.3, an output­

feedback EA algorithm for systems 'with direct transmission te~ms is easily derived. The 

multi-stage EA algorithms of Clarke et al. (2003) aim to assign eigenvalues and eigenvectors 

to a closed-loop system matrix of the form 

Ad = A+BKC (5.66) 

where the gain matrix, K, is free and the other matrices are fixed. From Equation 5.9, the 

closed-loop system matrix to which it is now desired to assign an eigenstructure is given by 

Ad = A+BNC (5.67) 

Consequently it may be seen that the multi-stage EA algorithms may be used without mod­

ification to determine N, with Equation 5.27 used to recover K. 

However, as shown by Equations 5.10 and 5.11, the coupling between the inputs and the 

states, and that between the states and the outputs, is subject to change when the loop is 

closed. The nature of the change is not known a priori, and if the system specification is in 
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terms of, for example, output modal coupling, assignment of eigenvectors will not suffice. A 

technique for specifying modal coupling vectors is desirable. 

In addition, applying the multi-stage algorithms directly would yield N, not K directly; 

although recovery of K via Equation 5.27 is trivial, the gain matrix equation is not returned 

in a form compatible with the imposition of controller structure (see Chapter 6). 

5.5.1 Generalising Multi-Stage Eigenstructure Assignment 

By definition, for any closed-loop eigenvalue-right eigenvector pair P'i, Vi} or eigenvalue-Ieft 

eigenvector pair {Aj, Wj}, 

and consequently 

(A + BNC) Vi = ViAi 

(A - Ail) vi = BNCVi 

BJ[Vi]=O 
NCVi 

and 

Wj (A + BNC) = WjAj 

Wj (A - Ajl) = wjBNC 

WjBN] [A~>'jI] =0 

Equations 5.72 and 5.75 may be pararneterised by setting 

(5.68) 

(5.69) 

(5.70) 

(5.71) 

(5.72) 

(5.73) 

(5.74) 

(5.75) 

(5.76) 

(5.77) 
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where 

range ([ ~:]) ~ ker ([A - Ail : BD 

range([L; : M;n ~ker ([A~A;In 
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(5.78) 

(5.79) 

The right design vector, ri, or left design vector, gj, for a given mode may used to select an 

eigenvector Vi or Wj using, for example, a least-squares projection of a desired vector. 

5.5.1.1 Modal Coupling Vector Assignment 

The output-coupling vector 0i, which describes the distribution of a given mode into the 

outputs, is given by 'Equation 5.44; consequently the right design vector, ri, for a given mode 

may used to select either an output-coupling vector'oi or an eigenvector Vi, Similarly the 

input-coupling vector ij describing the coupling of the inputs into a given mode is given by 

=Wj(B+BND) 

~ [w; : wjBN] [:] 

I; ~ g;- [Lj : M;] [:] 

(5.80) 

(5.81) 

(5.82) 

(5.83) 

arid the left design vectors {gj} may similarly be used for the selection of either eigenvectors 

or input-coupling vectors. 
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5.5.1.2 Gain Matrix Recovery 

Once the right design vectors {fi } and left design vectors {gj} have been selected, where 

i = 1 ... v and j = v + 1 ... n, the following matrices may be computed: 

v' = [VI V2 ... Vv] = [PIfl P2f2 ... Pvfv] 

S' = NCV' = [Qlfl Q2f2 Qvfv] 

W'= 
w v+2 

gv+1M v+1 

T' = W'BN = gv+2
M

v+2 

Hence it remains to solve the equations 

to find K. 

From Equation 5.89, 

s' = NCV' 

T' =W'BN 

T' =W'BN 

= W'B (I - KD)-l K 

Invoking the identity of Equation 5.15, 

T' = W'BK (I - KD)-l 

T' - T'DK = W'BK 

T' = (W'B + T/D) K 

(5.84) 

(5.85) 

(5.86) 

(5.87) 

(5.88) 

(5.89) 

(5.90) 

(5.91) 

(5.92) 

(5.93) 

(5.94) 
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From Equations 5.50 to 5.55, 

S' = K (CV' + DS') (5.95) 

A consistent solution to Equations 5.94 and 5.95 is now required. 

The gain matrix may be obtained using the following lemma: 

Lemma 5.5.1. (Clarke et al., 2003, Lemma 1) Let K E crxm , X E Cmxx
, SI E Crxx

, 

YE Cyxr and Tl E Cyxm, where m ~ x and r ~ y. Then the matrix equations 

KX=Sl 

YK=T2 

have a consistent solution for K if all the following condit'ions hold: 

Cl rank(X) = x 

C2 rank(Y) = y 

The general solution for K is then 

(5.96) 

(5.97) 

K = ytT2 + SIXt - ytYS1xt + (I - yty) Z (I - xxt) (5.98) 

or equivalently 

(5.99) 

Proof. See Clarke et al. (2003). 00 

The implications of the conditions in Lemma 5.5.1 are not immediately clear. They are 

discussed in detail by Clarke et al. (2003, Theorem 2) in the context of the strictly-proper 

EA algorithm presented therein, and the following theorem (and its proof) follow the above 

closely. 

Theorem 5.5.2. Given the controllable, observable state-space system (A, D, C, D), the self­

conjugate set {>'di} is pole assignable if there exists fi and gj such that 
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Cl rank ([C D] (::1) = v 

C2 rank ([w, ~] (:1) = (n - v) 

C3 WjVi = 0 for all i = 1 ... Vi j = (v + 1) ... n 

where 

v' = [Vi, ••• , Vv] = [Plf}, ... , Pvfv] 

S' = [Si, ... , sv] = [Qlfl,"" Qvfv] 

W'= 

T'= 

ker ([A- A~I BD = range ((~:1) 

ker ([A-:d,Ir) = range ([L; Mr) 
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(5.100) 

(5.101) 

(5.1()2) 

(5.103) 

(5.104) 

(5.105) 

Proof. Let fi be chosen such that Condition Cl of Theorem 5.5.2 is satisfied. From Equa­

tion 5.104, 

V'AD" - AV' = as' 

(5.106) 

(5.107) 

where ADv = diag(>'dl' ... ,>'dv) is a diagonal matrix and the values along the main'diagonal 

form a self-conjugate subset of the desired eigenvaluesj Vi is an assigned right eigenvector, 

and V' is the concatenation of these eigenvectors. 

Also let gj be chosen such that Condition C2 of Theorem 5.5.2 is satisfied. From Equa-
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tion 5.105, 

(5.108) 

A W' - W' A = T'C . Dw (5.109) 

where Avw = diag(Ad"+l' ... ' Adn ) is a diagonal matrix and the values along the main diagonal 

are the remaining unassigned desired eigenvalues; Wi is an assigned left eigenvector, and W' 

is the concatenation of these eigenvectors. 

A solution for K now requires a consistent solution to the following two equations: 

K (CV' + nS') = S' 

(W'B + T'n) K = T' 

Applying conditions Cl and C2 of Lemma 5.5.1 to the above equations implies that 

rank (CV' + ns') = v 

rank(W'B + T'n) = (n - v) 

(5.110) 

(5.111) 

(5.112) 

(5.113) 

which is a restatement of conditions Cl and C2 of Theorem 5.5.2 and therefore guaranteed 

to be satisfied. 

Finally, condition C3 of Lemma 5.5.1 requires that 

T' (CV' + DS') = (W'n + T'n) S' 

T'CV' + T'nS' = w'ns' + T'nS' 

T' CV' = w'ns' 

Substituting Equations 5.107 and 5.109, 

ADw W'V' - W' AV' = W'V' Av" - W' AV' 

ADw W'V' == W'V' Av" 

(5.114) 

(5.115) 

(5.116) 

(5.117) 

(5.118) 

For general ~DIJ and ADwl the only solution to Equation 5.118 is the trivial case W'V' = 0, 
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or equivalently 

WjVi=O for all i=1. .. v, j=(v+1) ... n 

as given by condition C3 of Theorem 5.5.2. 
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(5.119) 

00 

Condition C3 of Theorem 5.5.2 is the same reduced orthogonality condition given by Clarke 

et al. (2003), and is easily satisfied by ensuring that any selected eigenvector is orthogonal to 

the set of complimentary eigenvectors already chosen. 

Conditions Cl and C2, however, are somewhat different. In the strictly proper case, they serve 

to restrict the selected sets of eigenvectors to be linearly independent. A similar restriction 

is imposed by these revised, generalised conditions. Comparison of conditions Cl and C2 of 

Theorem 5.5.2 with Equations 5.44 and 5.83 reveals that they may be written as 

rank ([01, ... ,0vD = v (5.120) 

rank = (n - v) (5.121) 

Hence the linear independence of the selected sets of modal coupling vectors is a necessary 

and sufficient condition for the satisfaction of conditions Cl and C2 of Theorem 5.5.2. 

Theorem 5.3.1 showed that recovery of the gain matrix is possible only if the selected output 

coupling vectors are linearly independent. However this is a sufficient condition for the 

recovery of K only in the case where m = n. This theorem will therefore not suffice in 

the output feedback case. The following theorem is a generalisation of Theorem 5.3.1 which 

renders it applicable to the output feedback case. .. 

Theorem 5.5.3. If m = v or r = n - v, the closed-loop system is guaranteed to be causal. 

Proof. Lemma 5.3.2 showed that the causality of the closed loop system and the recovery of 

a gain matrix is guaranteed if either 1+ DN or 1+ ND can be shown to be nonsingular. 

Let us assume that all n eigenvalues have been assigned, together with v right eigenvectors and 

(n - v) left eigenvectors. Consider a matrix formed from the set of assigned output-coupling 

vectors: 

0' = [01 02 • •• Ov] (5.122) 
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It may be expressed in terms of the set of implicitly assigned right eigenvectors 

as 

0' = CclV' 

= (I+DN)CV' 
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(5.123) 

(5.124) 

(5.125) 

If 0' is full-rank, this implies not only that V' is full-rank but that rank (I + DN) ~ v. Note 

that this does not, in itself, guarantee that (I + DN) is non-singular. 

A dual argument can be used to show that if the selected input-coupling vectors are linearly 

independent, the implication is that W' is full rank and that rank (I + ND) ~ n - v. 

If now either m = v or r = n - v, it is clear that the system is causal. 00 

A sufficient condition for the existence of a gain matrix in ALL circumstances has not yet been 

found. However, as stated, the situation that K cannot be recovered from N is a pathological 

one and very unlikely to arise given a well-posed problem and a kinematic ally consistent set 

of requirements. Additionally, if m > v and r > n - v, there will exist a nonzero mapping 

of the free parameter matrix Z onto K through Equation 5.98 and hence there is yet more 

opportunity to avoid the pathological case that I - KD is singular. 

5.5.2 Design Procedure 

The design procedure is very similar to that suggested by Clarke et al. (2003). First, a set 

of 81 left or right eigenvectors or modal coupling vectors are selected from their allowable 

subspaces, and are chosen to meet condition Cl or C2 of Theorem 5.5.2. Next, a set of 82 

dual eigenvectors or modal coupling vectors are selected; these must also be selected from 

their allowable subspaces and chosen to meet condition Cl or C2 of Theorem 5.5.2, and are 

subject to further restrictions via condition C3. Finally the gain matrix is calculated using 

Lemma 5.5.1. In order to assign all n system poles, it is necessary that 81 + 82 = n. 

The decision on whether to assign right or left eigenvectors in stage one depends upon the 

design requirements, since those eigenvectors assigned in stage two are subject to more strin­

gent restrictions than those assigned in stage one. On occasion there may only be one suitable 
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choice for stage one (Clarke et al., 2003). 

The design procedure will now be described in detail, assuming that the condition m + r > n 

is satisfied for the system under consideration.-

5.5.2.1 Stage One 

If right eigenvectors or output coupling vectors are to be assigned in stage one, first calculate 

the allowable eigenvector subspace 

for all i = 1 ... 8 1. Using design vectors fi E er XI, select eigenvectors 

or output coupling vectors 

Form the matrices 

v' = [P1fl, ... , P 81 f81 ] 

S' = [Ql fl,.:., QS1 f81 ] 

0' = CV' +DS' 

(5.126) 

(5.127) 

(5.128) 

(5.129) 

(5.130) 

(5.131) 

Check that the matrix of assigned output coupling vectors 0' is full rank as required by 

condition Cl of Theorem 5.5.2. 

If instead left eigenvectors or input coupling vectors are to be assigned in stage one, calculate 

the allowable eigenvector subspace 

[ ] [
A - .xjI] 

0= Lj Mj C (5.132) 

for all j = 1 ... 81. Using design vectors gj E C1xm, select eigenvectors 

(5.133) 
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or input coupling vectors 

(5.134) 

Form the matrices 

W'= (5.135) 

T'= (5.136) 

i' = W'B +T'D (5.137) 

Check that the matrix of assigned input coupling vectors i' is full rank as required by 

condition C2 of Theorem 5.5.2. 

5.5.2.2 Stage Two 

In order to meet the orthogonality condition (03 of Theorem 5.5.2), the allowable subspace 

equations in stage two must be augmented as 

(5.138) 

if right eigenvectors were assigned in stage one, or as 

(5.139) 

if left eigenvectors were assigned in stage one. 

Now use design vectors to select eigenvectors or modal coupling vectors and form the matrices 

given in Equations 5.129 to 5.131 or Equations 5.135 to 5.137, as appropriate. Check once 

again that the matrix of modal coupling vectors assigned in stage two, 0' or i', is full rank 

as required by condition Cl or C2 of Theorem 5.5.2. 
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5.5.2.3 Gain Matrix Calculation 

Finally, calculate the gain matrix using the formula 

K = (T') tT' + S' (0') t - (T') tT'S' (0') t + (I - (T') t T') Z (I - 0' (0') t) (5.140) 

where Z is a matrix of free parameters, which may be set to zero if not required. 

This completes the assignment process. 

5.5.2.4 A Note on Unused Freedom 

The gain matrix solution offered by Equation 5.140 yields any unused design freedom in a 

form that is directly compatible with the gain suppression algorithm to be given in Chapter 6. . . 
However, this form is not suitable for every application. 

Clarke and Griffin (2004) present an algorithm for 'Retro-Assignment' in which unused design 

freedom may be employed for assigning complimentary eigenvectors to those assigned initially. 

If this is desirable, the following approach should be taken. 

By using Lemma 5.5.1, a solution for N to Equations 5.88 and 5.89 may be found as 

N = (W'B)tT' + S'(CV')t - (W'B)t(W'B)S'(CV')t 

+ (I - (W'B)t(W'B)) Z (I - (CV')(CV,)t) 
(5.141) 

Following the method of Clarke and Griffin (2004), if now two full-rank matrices Hev and 

H WB are found such that 

range (lIevT) = ker ((CV')T) 

range (HWB) = ker (W'B) 

then Equation 5.141 may be written as 

N = No + HWBZHev 

where 

No = (W'B)tT' + S'(CV')t - (W'B)t(W'B)S'(CV')t 

(5.142) 

(5.143) 

(5.144) 

(5.145) 
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It is now possible to write the closed-loop system matrix, from Equation 5.18, as 

Acl = A+BNC 

= (A + BNoC) + (BHwB) Z (HcvC) 

Retro-assignment may now be performed on the reduced, strictly proper system 

.A=A+BNoC 

B=BHwB 

C=HcvC 
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(5.146) 

(5.147) 

(5.148) 

(5.149) 

(5.150) 

using the algorithms presented by Clarke and Griffin (2004). It is interesting to note that the 

reduced system is strictly proper, and so the original algorithms may be used without mod­

ification. The allowable right eigenvector subspace in the retro stage can be parameterised 

as 

(5.151) 

and the allowable left eigenvector subspace as 

(5.152) 

where 

(5.153) 

range ([LNj (5.154) 

The final gain matrix K must, of course, be recovered from N post-assignment t~rough 

Equation 5.27. 

Although the reduced system is strictly proper, it must be remembered that the system to 

which eigenstructure is being assigned for the purpose of control is not. This is important if 

modal coupling vectors have been assigned during the main EA process, since it is likely that 

the assignment of further modal coupling vectors will be the aim of any retro-assignment. 

Assignment of modal coupling vectors to the reduced system may be achieved as follows. 
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Recall from Equations 5.19 and 5.20 that the closed-loop modal coupling matrices may be 

written 

and 

Bel =B+BND 

= B + BNoD + BHwBZHcvD 

=B+BNoD+BHcvD 

Cel = C+DNC 

= C + DNoC + DHwBZHCVC 

= C + DNoC + DHwBC 

(5.155) 

(5.156) 

(5.157) 

(5.158) 

(5.159) 

(5.160) 

Hence the output coupling vector 0i for a given eigenvalue Ai is given in terms of its associated 

eigenvector Vi by 

= [C+DNoC 

and the input coupling vector ij in terms of its associated eigenvector Wj as 

_ [ . _] [B + BNOD] 
- W· : w·B 

J J HcvD 

[ ] [
B+BNOD] 

= gNj LNj : MNj 
HcvD 

(5.161) 

(5.162) 

(5.163) 

(5.164) 

(5.165) 

(5.166) 

(5.167) 

(5.168) 

Hence once again the design vectors may be 'chosen to select either eigenvectors or modal 

coupling vectors of the closed-loop system. 
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5.6 Conclusions 

Following a detailed analysis of the problem, two novel EA algorithms have been presented 

which are capable of operating upon semi-proper systems. Due attention has been paid to 

the changes in input-output coupling that occur when the loop is closed around a semi-proper 

system, and simple modal coupling vector assignment techniques have been developed which 

require no a priori knowledge of these changes. The output feedback assignment technique 

presented here forms a natural extension to the multi-stage algorithms of Clarke et al. (2003), 

and is consequently more visible and allows for faster design iterations than the techniques 

available thus far. 

Straightforward necessary and sufficient conditions have been developed for the construction 

of a gain matrix in both cases. 

Finally, the pseudo-:state feedback algorithm has been modified to allow for the situation 

where there are more outputs than states and to encapsulate the excess design freedom in a 

usable form. 
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6.1 Introduction 

The recent work of Clarke et al. (2003) detailed new algorithms for output-feedback eigen­

structure assignment control for linear systems. The algorithms employ a multi-stage ap­

proach, in which the available design freedom is reduced stepwise by the assignment of eigen­

vectors and associated eigenvalues. Depending on the number of Degrees of Freedom (DoF) 

available and the manner in which they are distributed between the design stages, it is possi­

ble that some may remain unused after the assignment is complete. In other published work, 
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Clarke and Griffin (2004) introduce an algorithm (the 'retro-assignment stage') that makes 

use of this post-assignment freedom to assign complementary eigenvectors to those assigned 

using the original algorithm. 

It is likely, however, that further eigenvector assignment is not the most appropriate use for 

this design freedom. Typically, only a few right eigenvectors (corresponding to dominant 

modes) are crucial to the system specification, but the formation of the general nonlinear 

eigenstructure assignment problem into a problem with a linear solution requires that one 

eigenvector is assigned for every eigenvalue. The control of modal coupling is therefore likely 

to have been satisfied by the primary assignment algorithm and the design freedom could, 

instead, be employed to achieve some other objective. 

One such objective is a defined controller structure. Eigenstructure Assignment (EA), in com­

mon with most multi-input multi-output control system design techniques, will in general gen­

erate a fully-populated matrix of feedback gains. The resulting ~omplex, fully-interconnected 

controller bears little resemblance to the sparse, modular control systems achieved using clas­

sical approaches. In order to impose structure upon a controller, it is necessary to reduce a 

subset of the gains to zero, thereby reducing the complexity of the connections from plant 

outputs to plant inputs. This chapter presents a novel method by which, after eigenstructure 

assignment is completed, any remaining design freedom may be used for this purpose. It has 

previously appeared in published work (Pomfret and Clarke, 2005). 

To the author's knowledge, no similar method has been'developed before, although Sobel 

and Shapiro (1986) use a similar mathematical approach to the problem of assigning eigen­

structure to a system with structured gains. However, their method constitutes part of the 

assignment process itself, and also potentially changes the assigned locations of poles. 

Griffin (1997) develops a method whereby, using an iterative approach, gain matrix entries 

may be suppressed without affecting the closed-loop eigenvalues. The eigenvectors are subject 

to change, however, since his technique does not employ any design freedom in its operation. 

Ensor (2000) presents an algorithm which does not attempt to constrain either the eigenvalues 

or eigenvectors, but rather allows the effects of gain suppression on the eigenstructure to be 

seen clearly. 
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6.2 Problem Definition 

The algorithms described by Clarke et al. (2003), and the output-feedback algorithms de­

scribed in Chapter 5, yield a gain matrix K which is dependant upon a matrix of free pa­

rameters Z. The matrix Z may be chosen arbitrarily, and any changes exhibited by the gain 

matrix K as a result will not affect the eigenvalues or assigned eigenvectors of the closed loop 

system. The gain matrix equation takes the following form (see Equations 2.149 and 5.140): 

K = Ko + (I - XtX)Z(I - yyt) (6.1) 

where X E cwxr , YE Cmxv , and K, Ko, Z E ]Rrxm. At is the Moore-Penrose pseudo-inverse 

of A (see Appendix C). 

The mapping of Z to K through Equation 6.1 is not bijective, so a multiplicity of values for 

Z can yield the same K. Clarke and Griffin (2004) show that the number of DoF available 

at this stage is given by 

f=(m-v)(r-w) (6.2) 

and that, if f = 0, the term involving Z in Equation 6.1 will evaluate to zero. 

In order to reduce an arbitrary set of gain matrix entries to zero, it is necessary to find a 

simple mathematical representation of the desired constraints. This can be achieved by using 

a permutation matrix U5xmn which possesses exactly one unity element per row and is zero 

elsewhere, to select individual entries from a vector version of K: 

UvecK = 0 (6.3) 

The parameter 8, given in the definition of the permutation matrix U, is equal to the number 

of gain matrix entries that are to be suppressed. 

6.2.1 Extension to Pseudo-State Feedback 

Section 5.4.1 in Chapter 5 introduced an algorithm for EA control of a semi-proper sys­

tem with more independent outputs than states. It was shown that unused design freedom 

exists post-assignment, and this freedom was characterised by a gain matrix equation (Equa­

tion 5.56) of the form 

(6.4) 
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which is identical in form to Equation 6.1 but with X = Or. Hence Equations 6.1 and 6.3 

define the problem fully for the pseudo-state feedback case just as they do for the output 

feedback case. 

6.3 Solution for Z and K 

Theorem 6.3.1. There exists a consistent solution to Equations 6.1 and 6.3 if and only if 

U vec Ko E range (US) 

The general solution for K is then 

vecK = (I - (US)t U) (vecKo + Svecz) 

where Z is a matrix of remaining free parameters and in each case 

3 = (I - yyt) ® (I - xtX) 

Proof. Substituting Equation 6.1 into Equation 6.3, 

Uvec (Ko + (I - XtX)Z(1 - yyt)) = 0 

Uvec ((I - XtX)Z(1 - yyt)) = -UvecKo 

The identity (Graham,1981, p25) 

vec (ABC) = (CT ® A) vecB 

can now be applied, yielding 

U ( (I - yyt) ® (I - xtX) ) vec Z = - U vec Ko 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

Note the lack of a transpose operator since the matrices forming the Kronecker product are 

symmetric. We may now define 

(6.12) 
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so that 

USvecZ = -UvecKo (6.13) 

The remainder of this proof will now concentrate upon finding a solution to Equation 6.13, 

which is of the form 

Ax=b (6.14) 

and therefore (Ben-Israel and Greville, 1974, p40) has a solution if and only if 

(6.15) 

with the solution being given by 

(6.16) 

where y is a vector of free parameters. 

Consequently, a solution to Equation 6.13 exists if and only if 

US(US)tUvecKo = UvecKo (6.17) 

A matrix E is idempotent if E2 = Ej the term US (US)t is idempotent (via Equations C.4 

and C.5 in Appendix C), and it holds for an idempotent matrix E (Ben-Israel and Greville, 

1974, p49) that 

Ex=x 

if and only if 

x E range (E) 

Therefore a solution exists for Equation 6.13 if and only if 

U vec Ko E range (US (US) t ) 

E range (US) 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

Assuming, then, that U has been selected to meet Equation 6.21, the solution to Equa­

tion 6.13 is given by substitution into Equation 6.16: 

vec Z = - (US)t Uvec~o + (I - (US)t US) vec Z (6.22) 
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where Z is a matrix characterising any remaining free parameters. A solution for K may now 

be found. From Equation 6.1, 

K = Ko + (I - XtX)Z(1 - yyt) 

vecK = vecKo + SvecZ 

Substituting Equation 6.22, we may obtain 

(6.23) 

(6.24) 

vecK = vecKo - S (US)t UvecKo + S (I - (US)t US) vec Z (6.25) 

= vecKo - S (US)t U vec Ko + SvecZ - S (US)t USvecZ (6.26) 

Much of the manipulation in the remainder of this proof relies on the following lemma. 

Lemma 6.3.2. The term S, defined in Equation 6.12, is idempotent and symmetric. 

Proof. The idempotence of the component terms of S is easily shown, and the product of 

two Kronecker products (Graham, 1981, p24) is given by 

(A®B)(C0D) =AC®BD (6.27) 

provided that the dimensions are such that the various matrices exist. Consequently, if both 

E and F below are idempotent, then 

and, therefore, S is idem potent. 

(E 0 F)2 = E2 0 F2 

=E0F (6.28) 

From Equations C.6 and C.7 in Appendix C, the expressions xtx and yyt can be seen 

to be symmetric and consequently so are (I - xtX) and (I - yyt). The transpose of a 

Kronecker product is given by Graham (1981, p24) as 

(A ® B)* = A * 0 B* (6.29) 

and so it is clear that the term S is symmetric. 00 

Now equation 6.26 may be simplified by noting (from Equations C.5 and C.7 in Appendix C) 
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that 

and therefore that 

It may therefore be seen that 

and therefore that 

since S is idempotent. 

At = AtAAt 

= (AtAr At 

= A* (Atr At 

At E range (A*) 

(US) t E range (S*U*) 

E range (S) 

3 (U3)t = (U3)t 

So, using Equation 6.36, Equation 6.26 becomes 

as expected. 

vec K = vec Ko - (US) t U vec Ko + S vec Z - (US) t US vec Z 

= (I - (US) tU) (vec Ko + S vec z) 
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(6.30) 

(6.31) 

(6.32), 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

(6.37) 

(6.38) 

00 

It should be noted that it is not possible to recover a matrix formulation for K since the vec 

operator has no effective inverse. The gain matrix must instead be derived in vector form as 

above, and reconstituted numerically into a matrix afterwards. 

The following corollary extracts a simple condition on the number of gain matrix entries that 

may be nulled. 

Corollary 6.3.3. In general, the number of gain matrix entries reduced to zero may not 

exceed the number of available DoF. 

Proof. Remembering that 8 is the number of gain matrix entries reduced to zero, a simple 
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sufficient condition for the satisfaction of Equation 6.21 is easily seen to be 

rank (U3) = 8 (6.39) 

This condition, although not strictly necessary, is necessary for general Ko and S since 

otherwise there is nO guarantee of the existence of a U which satisfies Equation 6.21. 

A necessary (but not sufficient) condition for the fulfillment of Equation 6.39 is that 

8:5 rank (3) 

:5 rank ( (I - yyt) ® (I - XtX) ) 

:5 rank (I - yyt) . rank (I - XtX) 

~ (m - rank (yyt)) (r - rank (xtX)) 

:5 (m-v)(r-w) 

Comparison with Equation 6.2 shows that Equation 6.44 may be written as 

8:5/ 

(6.40) 

(6.41) 

(6.42) 

(6.43) 

(6.44) 

(6.45) 

00 

Corollary 6.3.3 demonstrates that, for general Ko and 3, the number of gain matrix entries to 

be reduced to zero may not exceed the number of available degrees of freedom. Note that the 

satisfaction of Equation 6.45 is not sufficient for the existence of a solution to Equation 6.13, 

and that the satisfaction of Equation 6.21 is still required. 

6.4 Sensitivity of the Gain Matrix 

The Frobenius norm IKIF of K is the square root of the sum of squared gain matrix entries. 

There exists a value of Z for which IKIF is minimal. It is safe to assume that the value of Z 

found via Equation 6.6 will not equal this 'optimal' value. Therefore, nulling individual gain 

matrix entries will, in general, raise IKIF' 

This is important because large gain matrix entries will re.sult in proportionally greater inputs 

being applied to the system by the controller. These could be in response to deviations of the 

system from a required datum, leading to greater control effort; or they could be in response 
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to noise on the system outputs, resulting in poor noise rejection. 

The extent to which IKIF is affected will depend upon the elements of the gain matrix selected 

by the permutation matrix U. A mechanism for determining the increase in IKIF would be 

a useful tool when attempting to determine which elements should be set to zero. 

Since the formulation for K in Equation 6.6 contains a free parameter matrix, it is useful to 

find the value of the free parameter matrix that minimises the Frobenius norm of the final 

gain matrix. 

6.4.1 Minimum Frobenius Norm 

From the examination of the properties of B in Lemma 6.3.2, we may now determine the 

value of Z that leads to the minimum IKIF. This is a complex procedure; and details may 

therefore be found in Appendix B. It is shown there that the appropriate value of Z is 

z=o (6.46) 

Therefore, following the suppression of a subset of the allowable gains, the gain matrix with 

the minimum Frobenius norm is found by setting the matrix of remaining free parameters to 

zero. 

6.4.2 Increase in Minimum Norm 

The minimum IKIF may now be simply calculated by substituting into Equation 6.6: 

min IKIF = min IIvecKII ~ 11 (I - (V~)t v) (vecKo + BvecZ) 11 

= 11 (I - (VB)t v) vecKol1 

(6.47) 

(6.48) 

The minimum IKIF achievable prior to nulling any gain matrix entries may be found by 

setting V = 0: 

min \K\F = min IIvecKII = IIvecKol\ = \KO\F (6.49) 

Comparison of Equations 6.48 and 6.49 shows the effect of nulling a subset of the gains. This 

information can be used to determine which gains may most easily be reduced to zero whilst 

maintaining the lowest possible gains elsewhere. 



6.5. Alternative Structural Constraints 163 

6.5 Alternative Structural Constraints 

It is interesting to note that the above derivation makes no demands upon the form of the 
. . 

matrix V. It was defined in Section 6.2 as a permutation matrix, with the specific aim of 

gain suppression, but this need not be its structure. 

Consider a gain matrix 

(6.50) 

and assume, for the sake of example, that two DoF remain for the imposition of structure. 

It is now possible to construct the matrix V to achieve a variety of effects. 

For simple gain suppression, a matrix V of the form 

V=[1 0000001 
o 0 0 1 0 Ij 

(6.51) 

will reduce two elements to zero through the constraint of Equation 6.3 (in this case elements 

kll and k22 ). However, by setting 

V = [1 -1 0 0 0 0] 
o 0 0 1 0 0 

(6.52) 

element k22 will be reduced to zero by the second row of V, but elements kll and k21 will be 

forced to be equal by the first. This can be seen by expanding Equation 6.3 to give 

kn 

k21 

[~ -1 0 0 0 ~] k12 
=0 

0 0 1 0 k22 

k13 

k23 

[kl1 - k21] 
k22 [~] 
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This type of constraint could be taken further, using selection matrices such as 

u = [-1 1 0 0 0 0] 
-1 0 0 1 0 0 , 

which by similar expansion gives 

[
- kll + k21] = [0] 
-kll + k22 0 

causing kll' k21 and k22 all to have the same value, or 

[-1 1 0 0 0 

:] u= 
1 0 0 2 0 

which gives 

[ -kn H2t ] 

[:] -
-kll + 2k22 

forcing kll = k12 = -!k22. 
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(6.53) 

(6.54) 

(6.55) 

(6.56) 

Such constraints are not frivolous use of the remaining design freedom. For example if two 

gains are forced to be equal, the summation of two signals may be implemented before a gain 

is applied to the result. This represents a simplification to the controller, and hence may be 

considered to have introduced structure. The techniques described above therefore provide a 

flexible interface onto the remaining design freedom for the purposes of imposing structure. 

6.6 Design Example 

The following design example is taken directly from Clarke et al. (2003), where it was used 

to demonstrate the multi-stage EA process. The example was contrived to leave one degree 

of freedom remaining after assignment, and consequently the same example was re-used by 

Clarke and Griffin (2004) to demonstrate their retr~assignment stage. 

It will now be demonstrated that the same remaining degree of freedom may be employed to 

suppress one entry in the gain matrix while leaving the assigned eigenstructure unchanged. 



6.6. Design Example 

6.6.1 Example Assignment 

The example system was as follows: 

1 2 -3 5 1 0 

0 3 -1 7 2 3 
X= x+ 

5 8 1 -9 9 -2 

2 6 3 8 5 

7 3 0 2 

Y = 1 -1 0 1 x 

2 3 1 2 

The desired eigenvalues were {-1, -2, -3, -4}. 

2 
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2 

7 
u 

1 

4 

In the original example, two right eigenvectors were assigned first, along with eigenvalues of 

-1 and -2. Simple design vectors were chosen arbitrarily, yielding eigenvectors of 

V'= 

-0.7869 -0.0000 

0.2676 -0.1259 

-0.2613 -0.2746 

0.0850 -0.0483 

In the second stage, there was no design freedom available for the selection of left eigenvectors, 

so these emerged as 

, [0.0060 W= 
-0.0080 

0.0782 

-0.0762 

-0.0015 -0.1952] 

0.0037 0.1773 

corresponding to the remaining two eigenvalues, -3 and -4. 

The gain matrix was found, setting the free parameter matrix to zero, as 

0.4221 -1.4721 -0.9173 

Ko = -0.0290 1.2579 -0.9231 

-0.4864 1.6742 0.9507 

and decomposition of the resulting closed-loop matrix as 

Ao = A+BKoC = VoAoWo 
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gave 

-0.7869 -0.0000 421.7856 295.0726 

0.2676 -0.1259 -114.4962 -143.5913 
Vo= 

-0.2613 -0.2746 590.3538 430.0421 

0.0850 -0.0483 -42.5685 -51.7729 

-1.0368 13.3750 0.5831 -38.1610 

1.4294 
Wo= 

36.2016 -1.6271 -105.7731 

0.0060 0.0782 -0.0015 -0.1952 

-0.0080 -0.0762 0.0037 0.1773 

-1 0 0 0 

0 -2 0 0 
Ao= 

0 0 -3 0 

0 0 0 -4 

showing clearly that the required eigenvalues had been assigned along with all the expected 

eigenvectors. 

6.6.2 Choosing Gains 

Having obtained Ko, it is now possible to suppress a single gain matrix entry. However, as 

discussed, reducing any entry to zero will have the effect of increasing the overall magnitude 

of the gains. This must be taken into consideration when choosing which entries are most 

suitable for this treatment. 

If K is defined as Equation 6.1, we may further define 

Kxy ~ K = [kij ] , kxy = 0 

8f A IKxylF 
xy - IKolF 

~IKIF A [8/ij] 

(6.57) 

(6.58) 

(6.59) 

so that ~IKIF is a matrix giving the rise in IKIF that will arise from suppressing any indi­

vidual gain matrix entry. By applying Equation 6.48 repeatedly, this matrix was found to 
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be: 
14.8573 13.7576 31.4842 

~\K\F = 1.0009 1.1148 1.6646 

1.6843 1.5915 2.7743 

161 

(6.60) 

It is clear that suppressing a gain from the top row of the gain matrix would have the largest 

effect on the overall magnitude of the gains, while choosing element (2,1) would have a 

negligible effect. This is valuable information. 

6.6.3 Gain Suppression 

It is now informative to suppress two different gains, both to demonstrate the operation of 

the algorithm and to show the difference in the magnitudes of the gain matrices obtained. 

6.6.3.1 Element (2,1) 

Equation 6.60 shows that suppressing this element will have the smallest effect on \K\F' From 

Equation 6.6, the new gain matrix is found to be: 

0.4209 -1.4675 -0.9160 

o 
-0.5018 

1.1488. -0.9528 

1.7319 0.9664 

Its Frobenius norm is \K21\F = 3.0956 compared to \KO\F = 3.0928, demonstrating the very 

small expected increase in overall gain matrix entry magnitude. Furthermore, forming and 
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factorising A21 = A + BK21 C = V 21A21 W 21 gives 

-0.7869 -0.0000 415.9577 290.5659 

0.2676 
V21 = 

-0.1259 -124.8504 -149.2139 

-0.2613 -0.2746 561.5162 412.9417 

0.0850 -0.0483 -46.6739 -54.0324 

-1.0357 13.2318 0.5730 -37.7307 

1.2930 
W21 = 

32.8639 -1.6901 -96.7189 

0.0060 0.0782 -0.0015 -0.1952 

-0.0080 -0.0762 0.0037 0.1773 

-1 0 0 0 

0 -2 0 0 
A21 = 

0 0 -3 0 

0 0 0 -4 

showing that the eigenvalues and explicitly assigned eigenvectors remain unchanged. 

6.6.3.2 Element (1,3) 

Suppressing this element will have a much larger effect on IKIF according to Equation 6.60. 

From Equation 6.6, the new gain matrix is found to be: 

-0.4740 1.9040 o 
K 13 = 21.2960 -79.0894 -22.7529 

-11.7801 44.2260 12.5118 

Its Frobenius norm is IK131F = 97.3728 compared to IKolF = 3.0928, showing a very sig­

nificant increase in overall gain matrix entry magnitude. However, once again, forming and 
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-0.7869 -0.0000 ..,..3869.4581 -3023.3241 

0.2676 -0.1259 
V13 = 

-7738.6648 -4283.7425 

-0.2613 -0.2746 -20643.7118 -12161.4692 

0.0850 -0.0483 -3065.4598 -1715.5575 

-0.2030 -92.0349 -6.8437 278.6835 

-98.9955 -2421.4217 -48.0097 6561.0803 
W13= 

0.0060 0.0782 -0.0015 -0.1952 

-0.0080 -0.0762 0.0037 0.1773 

-1 0 0 0 

0 -2 0 0 
A13 = 

0 0 -3 0 

O· 0 0 -4 

demonstrating once again that the eigenvalues and explicitly assigned eigenvectors remain 

unchanged during the gain suppression process. 

6.7 Conclusions and Further Work 

The design freedom remaining at the end of multi-stage EA algorithms (Clarke et al., 2003) 

has use beyond the retro-assignment stage offered by Clarke and Griffin (2004). Specifically, 

this freedom may be used to reduce individual entries in the gain matrix to zero, thereby 

imposing a structure upon the resulting controller. 

An algorithm for nulling a subset of gain matrix entries has been presented, and it has been 

demonstrated that the maximum number of entries that may be nulled is, in general, equal 

to the number of available DoF. In addition, the effect upon the remaining entries of the gain 

matrix has been considered, and an expression generated for the minimum Frobenius norm 

of the gain matrix both before and after the nulling of entries. 

At present the algorithm utilises only the design freedom remaining after EA. A possible 

extension would be to attempt to use similar techniques to restrict the available set of gains 

during assignment, while still allowing freedom over eigenvector selection. 

An example of the algorithm presented here at work can be found in Chapter 7. 
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7.1 Introduction 

In this chapter, the Eigenstructure Assignment (EA) algorithms developed in this thesis will 

be demonstrated in the context of helicopter control. In particular, the ideal eigenstructure 

for forward flight introduced in Chapter 3 will be verified against the UK Ministry of Defence 

Defence Standard 00-970 (Def.Stan.00-970) requirements; the EA algorithms for semi-proper 

systems from Chapter 5 will be employed and their efficacy demonstrated; and the gain 

suppression methods of Chapter 6 will be used to introduce structure to a controller without 

affecting its performance. 

Inertial Navigation Systems (INSs) effect control of an aircraft by measuring inertial forces. 

Linear accelerations can be measured, along with rotational velocities, by using accelerometers 

171 
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and gyroscopes. Inertial navigation technology is mature (Lawrence, 1998; Siouris, 1993; 

Titterton and Weston, 1997) having been employed as early as 1944 in the German V-2 

guided rocket programme. 

An INS has at its heart an Inertial Measurement Unit (IMU), responsible for the measurement 

of acceleration and angular rate. Modern IMUs are of the 'strapdown' variety, wherein th~ 

accelerometers and gyroscopes are rigidly attached to the airframe. The resolution of the 

body-relative measurements into fixed-frame readings, and the integration of the resulting 

acceleration readings to generate velocity and position estimates, is performed electronically. 

Using highly accurate laser-ring gyroscopes, even following the double-integration required 

to estimate position, the accuracy of modern INSs can be better than 0.6 nautical miles per 

hour (Titterton and Weston, 1997). 

In this chapter, depending upon the aim of each design example, various of the quantities 

available from the IMU will be deemed measurable. In some of the examples, it will also be 

assumed that earth-relative vertical velocity can also be measured. Typically this would be 

achieved using a radar altimeter (Cundy and Brown, 1997). 

This chapter begins by replicating the state-feedback results of Griffin (1997) for a Lynx 

helicopter in the hover. It will then be demonstrated that the same performance is achievable 

using a controller which does not have access directly to state information, but instead has 

access to a combination of states and state derivatives, by using the methods derived in 

Chapter 5. 

Forward flight is considered next, with a state-feedback example again employed to provide 

a benchmark against ~hich other controllers can be compared, and to demonstrate the ideal 

eigenstructure of Chapter 3. A pseudo-state feedback 'example is considered and its perfor­

mance verified. A controller using' all available IMU signals and a radar altimeter is then 

derived and it is shown that the excess design freedom remaining after assignment may be 

employed to build a structured controller with the same performance again. 

Finally, as a pedagogical exercise, control of the helicopter in hover using only the direct 

inertial measurements (accelerations and angular rates) is performed. This is to demonstrate 

the operation of the output-feedback algorithms from Chapter 5 and to highlight the perfor­

mance problems suffered by output-feedback systems compared to their state-feedback (or 

pseudo-state feedback) counterparts. 
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7.2 Hover: A Pseudo-State Feedback Control Law 

Griffin (1997) developed a state-feedback control law for an 8th-order model of a Lynx heli­

copter in hover. Since aircraft velocities are not measurable directly to the required precision, 

the example was intended to represent a benchmark against which more realistic output­

feedback control laws could be compared. However, measurement of acceleration is relatively 

simple, and the design techniques of Chapter 5 can be employed to synthesise an equivalent 

pseudo-state feedback controller by feeding back state derivatives. 

The eigenvalues assigned to the system are listed in Table 7.2. 

Ap Av Aq Au Aw Ar 
-1.5 ± j1.6 -0.004 -1.5 ± j1.6 -0.002 -0.33 -1.75 

Table 7.1: Desired Eigenvalue Locations 

The desired eigenvectors (rounded to 2dp. for compactness) are: 

x= [v p rjJ u q () w r]T 

Ad = diag ([Ap ),p Av Aq ),q Au Aw Ar]) 

-0.31 + 0.33j -0.31 - 0.33j -1 0 0 0 0 0 

-0.31 - 0.33j -0.31 + 0.33j 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 

0 0 0 0.31- 0.33j 0.31 + 0.33j 1 0 0 
Vd= 

0 0 0 -0.31- 0.33j -0.31 + 0.33j 0 0 0 

0 0 0 1 1 0 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 1 

(7.1) 

7.2.1 Existing State-Feedback Control Law 

For reference, and for comparison with the pseudo-state feedback technique, the results ob­

tained are reproduced as Figures 7.1 to 7.3. 

Figure 7.1 shows the response of the helicopter's roll attitude rjJ to a one-second lateral pulse 

input on the cyclic pitch stick, and of its pitch attitude 0 to a one-second longitudinal pulse 

input on the cyclic pitch stick. In each case the response is superimposed upon a template 
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7.2. Hover: A Pseudo-State Feedback Control Law 175 

Roll and pitch attitude responses to 1 sec pulse in lateral stick 
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representing the Def.Stan.00-970 requirements for Level 1 handling qualities in the attentive 

flight phase (derived from Figure 3.4). 

Figure 7.2 shows the cross-coupling between the roll and pitch attitudes when performing the 

same manoeuvre. The level of cross-coupling is negligible, due to the assignment of all right­

eigenvectors and the close alignment of the allowable subspaces with the desired eigenvectors 

(indicating that the design requirements match the kinematics of the plant). 

Finally, Figure 7.3 shows the yaw rate response (r) to the application of a one-second pulse 

applied to the tail rotor pitch, and the heave velocity response (w) to a step in the main rotor 

collective pitch. 

The gain matrix employed to generate these results was 

x= [u v w p q r ifJ O]T 

Al -0.0013 0.0004 -0.0001 0.0525 -0.0361 -0.0002 -0.0383 -0.0034 

Bl 0.0008 0 -0.0001 -0.0398 0.0743 0.0058 -0.0015 0.2450 
- x 

OD 0.0001 0 0 0 0.0007 -0.0002 0.0062 -0.0052 

Ot 0.0001 0.0011 0.0004 -0.0576 0.0154 0.1911 -0.0807 0.0103 

It can be seen that all the gains in this controller are small, with the largest (the yaw-damping 

gain linking yaw rate r to tail rotor pitch Ot) less than 0.2. 

The achieved eigenvectors are given below, and. have the same state and mode order as the 

ideal eigenvectors in Equation 7.1 for ease of comparison. Again the entries have been rounded 

to 2dp. for compactness. 

-1.09 + 0.98j -1.09 - 0.98j -1 -0.14 + O.Olj -0.14 - 0.01j 0'0 -0.06 

-1.50 - 1.60j -1.50 + 1.60j 0 0.00 + 0.05j 0.00 - 0.05j 0 0 0.04 

1 1 0 -0.02 - 0.02j -0.02 + 0.02j 0 0 -0.06 

Va= 
-0.15 + O.OOj -0.15 - O.OOj 0 1.29 - 0.76j 1.29 + 0.76j 1 0 -0.02 

-0.01 - 0.07 j -0.01 + 0.07 j 0 -1.50 - 1.60j -1.50 + 1.60j 0 0 -0.03 

0.03 + 0.02j 0.03 - 0.02j 0 1 1 0 0 -0.02 

-0.01 + O.OOj -0.01 - O.OOj 0 0.01 +O.01j 0.01- O.01j 0 1 0 

-0.06 - 0.04j -0.06 + 0.04j 0 -0.06 - 0.03j -0.06 + 0.03j 0 0 1 
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7.2.2 A Pseudo-State Feedback Equivalent 

The states available in the original model (Griffin, 1997) are the longitudinal, lateral and 

vertical velocities u, v and Wj the roll, pitch and yaw angular rates p, q and rj and the pitch 

and roll angles 4> and O. For the output-feedback control laws presented later, Griffin assumed 

that the velocity states were unmeasurable, but that vertical speed in the inertial frame (h) 

could be measured. He also showed that h was equivalent in the hover to 

u 

h ~ [0.057 0.057 -1] v 

W 

(7.2) 

Although there is no need to do so, for the purposes of demonstrating the flexibility of the 

pseudo-state feedback technique it will be assumed that h is measured as above, and also 

that the longitudinal and lateral accelerations u and v are measured. 

Since it and v are state derivatives, it is necessary to re-form the output matrix and the direct 

transmission matrix such that if 

then 

Y= [it v h p q r 4> O]T 

x = [u v W p q r 4> O]T 

U = [AI BI 00 Ot]T 

y=Cx+Du 

which is achieved by setting 

al,l al,2 al ,3 al,4 al,5 al,6 

a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 

0.057 0.057 -1 0 .0 0 

0 
C= 

0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 O· 0 1 

0 0 0 0 0 0 

0 0 0 0 0 0 

(7.3) 

al,7 aI,S 

a2,7 a2,8 

0 0 

0 0 
(7.4) 

0 0 

0 0 

1 0 

0 1 
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bll , b12 , b1,3 b1,4 

b2 1 , b22 , b23 , b2,4 

0 0 0 0 

0 0 0 0 
(7.5) D= 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

where ai,j and bi,j are the corresponding elements of the system matrix A and input matrix 

B, respectively. 

The gain matrix produced using the techniques from Chapter 5, and the same desired eigen-

. structure as the state-feedback case above, is 

-0.0027 0.0048 0.0089 -0.0856 0.0591 0.0587 -0.2486 0.1595 

-0.0013 0.0001 0.0052 -0.0502 0.0797 0.0052 -0.0689 0.3333 
K= 

-0.0002 0 0.0008 -0.0021 0.0020 0 -0.0043 0.0080 

-0.0144 0.0132 0.0475 -0.4669 0.2889 0.3416 -0.9449 0.8488 

and it can be seen that the gains, although slightly larger, are still acceptably small, with 

none exceeding 1.0. The increase in the magnitudes of the gains reflects the fact that the 

new entries in the C matrix due to the feedback of state derivatives are rather smaller 

than those retained from the original matrix, and since the closed-loop A matrix is given as 

Ac = A + BNC it is natural that this is accompanied by correspondingly larger entries in 

N, and hence in K. It is interesting to note that the largest gain is now that which links roll 

angle to the tail rotor - it is not clear why this is the case. 

Figures 7.4 to 7.6 show the responses of the helicopter and pseudo-state feedback controller, 

and mirror directly Figures 7.1 to 7.3. 

The achieved eigenvector set is shown below, and can be seen to be identical to that obtained 
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Figure 7.4: Longitudinal and lateral responses of the pseudo-state feedback controller 
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Roll and pitch attitude responses to 1 sec pulse in lateral stick 
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Figure 7.6: Yaw and heave responses for the pseudo-state feedback controller 
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using the state-feedback approach above. 

-1.09 + 0.98j -1.09 - 0.98j -1 -:0.14 + O.01j -0.14 - O.01j 0 0 -0.06 

-1.50 - 1.60j -1.50 + 1.60j 0 0.00 + 0.05j 0.00 - 0.05j 0 0 0.04 

1 1 0 -0.02 - 0.02j -0.02 + 0.02j 0 0 -0.06 

-0.15 + O.OOj -0.15 - O.OOj 0 1.29 - 0.76j 1.29 + 0.76j 1 0 -0.02 
Va= 

-0.01 - 0.07 j -0.01 + 0.07 j 0 -1.50 - 1.60j -1.50 + 1.60j 0 0 -0.03 

0.03 + 0.02j 0.03 - 0.02j 0 1 1 0 0 -0.02 

-0.01 + O.OOj -0.01 - O.OOj 0 0.01 + O.Olj 0.01- O.Olj 0 1 0 

-0.06 - 0.04j -0.06 + 0.04j 0 -0.06 - 0.03j -0.06 + 0.03j 0 0 1 

The power of the pseudo-state feedback technique is clearly demonstrated. It may be seen 

that the performance of the state-feedback controller is retained by a controller which is 

practical and uses only measurable quantities. 

7.3 .Forward Flight 

As discussed in Chapter 3, a standard-configuration helicopter will behave very differently 

in forward flight from in the hover. Higher airflow through the rotor, the effects of the main 

rotor wake on the fuselage and tail rotor, and the forces generated by the flow of air over the 

horizontal and vertical tail stabilisers all contribute to a significant change in performance. 

Additionally, the Def.Stan.00-970 requirements for Level 1 handling qualities are significantly 

different from the hover case, and the ideal eigenstructure of Chapter 3 requires a second-order 

dynamic compensator for its implementation. The following control laws are consequently 

quite different from those derived for the helicopter in hover. 
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The augmented desired eigenvectors (again rounded for compactness) are: 

x= [v P comp</> </> u q comp9 () w r]T 

Ad = diag ( [ Ap Xp 0 Av Aq Xq 0 Au Aw Ar]) 
0.014 + 0.208; 0.014 - 0.208; 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

j -j 0 0 0 0 0 0 0 0 

-0.312 + 0.333; -0.312 - 0.333; -0.004 0 0 0 0 0 0 0 

Vd= 
0 0 0 0 0.014 + 0.208; 0.014 - 0.208; 1 0 0 (7.6) 
0 0 0 0 1 0 0 0 0 

0 0 0 0 ; -; 0 0 0 0 

0 0 0 0 -0.312 + 0.333; -0.312 - 0.333; -0.002 0 0 0 

0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 1 

7.3.1 A State Feedback Control Law 

In order to establish a benchmark against which other control laws can be compared, a 

controller using full state feedback will now be described. 

Since the desired eigenstructure includes two compensator states, the open-loop helicopter 

model (given in Appendix A) can be augmented with integrators as in Chapter 4, and the 

state-feedback controller developed as a static gain matrix using standard EA. 

The resulting 2nd order controller has the state vector 

(7.7) 

and is described by the state-variable equations 
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The values of the controller matrices are shown below. 

Once again the controller gains can be seen to be small, with those in the system matrix being 

the largest in magnitude. The remainder do not exceed 0.4. The eigenvalues of the controller 

system matrix are -1.5175 and -1.4543, so the compensator is stable but the closed-loop 

system will possess transmission zeros at these locations. The locations of the transmission 

zeros also control the magnitude of the leading-diagonal entries in the system matrix, since 

the trace of a matrix is equal to the sum of its eigenvalucs (Miller, 1987). 

After applying a suitable pre-filter with poles coincident with these added zeros, the system 

response is shown in Figures 7.7 to 7.9 . 
.. 

Figure 7.7 shows that the closed-loop system response comfortably meets the Def.Stan.OO-970 

specifications for Level 1 handling qualities in the Active Aggressive flight phase. Figure 7.8 

shows that the expected integration between the angular rates and the body angles is indeed 

taking place, and that the cross-coupling between the longitudinal and lateral channels is 

minimal. 

Figure 7.9 shows the cross-coupling in angular rates. A large degree of cross-coupling may 

be observed between the lateral cyclic stick and yaw rate. This is to be expected, and is 

kinematic in nature. The desired steady-state offset in sideslip velocity following the lateral 

cyclic pulse, evident in Figure 7.8, causes a reaction from the vertical tail fin that leads to 

a yaw in the direction of the sideslip; as noted in Chapter 3, the tail rotor can not supply a 
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Roll and pitch attitude responses to 1 sec pulse in lateral stick 
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sufficiently great yaw moment to prevent this coupling from occurring. 

The achieved eigenvectors are given below, in a format suitable for comparison with Equa-

tion 7.6. 

0.01 + 0.21; 0.01 - 0.21; 1 1 -0.01 + 0.00; -0.01 - 0.00; 0 0 0 3.65 

1 1 0 0 0.02 - 0.01; 0.02 + 0.01; 0 0 0 0.26 

-; 0.004 0 0 0 0 0 0 0 

-0.31 + 0.33; -0.31 - 0.33; 0 0 -0.01 + 0.01; -0.01 - 0.Ql; 0 0 0 -0.17 

Va= 
0.04 - 0.05; 0.04 + 0.05; 0 0 -0.10 + 0.54; -0.10 - 0.54; 1 0 0 

0.03 + 0.01; 0.03 - 0.01; 0 0 0.80 - 0.02; 0.80+0.02; 0 0 0 -0.01 

0 0 0 0 ; -j 0 0 0 0 

-0.02 + 0.00; -0.02 - o.ooj 0 0 -0.24 + 0.27; -0.24 - 0.27; 0.003 0 0.01 -0.02 

0 0 0 0 -0.01 + 0.02; -0.01 - 0.02j 0 0 0 

-0.21 + 0.22j -0.21 - 0.22; -0.01 -0.01 0.01 + 0.01; 0.01 - 0.01; 0 0 0 

The cross-coupling from Av to T, and the inverse coupling from Ar to v, can clearly be seen. 

This state-feedback example serves to support the validity of the ideal eigenstructure pre­

sented in Chapter 3, and forms a basis for comparison with the following pseudo-state feed­

back law. 

7.3.2 A Pseudo-State Feedback Control Law 

To demonstrate the pseudo-state feedback design procedure, it will once again be assumed 

that vertical speed in the inertial frame Ch) can be measured, along with u, v, p, q, T, 4>, 0 and 

the two compensator states Cl and C2. Since the helicopter is no longer in the hover, h must 

be re-approximated. The vertical inertial velocity can be found to be 

h = sin(O)u - cos(O) sin(4))v - cos(O) cos(4))w (7.8) 

In forward flight at 60 knots, the helicopter model trims to a point such that 

u 

h ~ [0.048 0.039 -1] v (7.9) 

w 

Once again it is necessary to re-form the output matrix and the direct transmission matrix 

to feed back the state derivatives u and v. This is achieved just as in Section 7.2.2. 

Again the desired eigenstructure includes two compensator states, but using the augmented 

system description, the controller can be developed as a static gain matrix using pseudo-state 

feedback EA. 
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The resulting 2nd order controller has the state vector 

and is described by the state-variable equations 

u= Ccxc + DcY 

The values of the controller matrices are shown below. 

[

-1.5564 -0.0043] 
Ac= 

-0.0467 -1.4502 

D, = [O.~ -O.~ ~ 0.1903 

-0.0038 

-0.0081 -0.0746 0.0553 

0.2011 0.0018 0.0039 
0.

00031 
-0.0013 
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(7.10) 

There are now gains approaching a magnitude of 2. The largest gain is that linking yaw rate 

r to tail rotor pitch Bt , which is performing a yaw-damping role. Figures 7.10 to 7.12 show 

the response of the pseudo-state feedback system. Once again, it is possible to attribute the 

increase in gain magnitudes to the fact that terms added to the C matrix for the feedback 

of the two state derivatives are small compared to the remainder of the entries. 

Since the eigenvector assignment freedom is the same as in the state-feedback case, it would 

be expected that the two controllers would exhibit the same performance. This can be seen 
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to be the case, and can be confirmed by inspection of the closed-loop eigenvectors: 

0.01 + 0.21j 0.01 - 0.21j 1 -0.01 + O.OOj -0.01 - O.OOj 0 0 0 3.65 

1 1 0 0 0.02 - O.Olj 0.02 + O.Olj 0 0 0 0.26 

i -j 0.004 0 0 0 0 0 0 0 

-0.31 + 0.33j -0.31 - 0.33j 0 0 -0.01 + 0.01; -0.01 - O.Olj 0 0 0 -0.17 

Va= 
0.04 - 0.05; 0.04 + 0.05; 0 0 -0.10 + 0.54j -0.10 - 0.54j 1 1 0 0 

0.03 + O.Olj 0.03 - O.Olj 0 0 0.80 - 0.02j 0.80 + 0.02j 0 0 0 -0.01 

0 0 0 0 j -j 0 0 0 0 

-0.02 + O.OOj -0.02 - O.OOj 0 0 -0.24 + 0.27j -0.24 - 0.27j 0.003 0 0.01 -0.02 

0 0 0 0 -0.01 + 0.02j -0.01 - 0.02j 0 0 1 0 

-0.21 + 0.22j -0.21 - 0.22; -0.01 -0.01 0.01 + O.Olj 0.01 - O.Olj 0 0 0 
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Figure 1.10: Longitudinal and lateral responses of the pseudo-state feedback controller 

As an aside, although no attempt has been made to render the pseudo-state feedback con­

troller robust to changes in the open-loop plant, it is reasonably robust to such changes. 

Figure 7.13 shows the effect on performance of using the pseudo-state feedback controller 

above to control the 10th order un-reduced model with flapping modes as described in Ap­

pendix A. Although the lateral response is somewhat muted, the Level 1 handling qualities 

specifications are still met. This acts to confirm Griffin's (1997) assertion that despite having 

no explicit means of guaranteeing that a robust controller will be generated, EA ' ... [provides] 
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Roll and pitch attitude responses to 1 sec pulse in lateral stick 
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Figure 7.11: On- and off-axis attitude responses to lateral and longitudinal stick 
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access to all the available design freedom and may assign a robust solution as easily as a 

non-robust solution' (Griffin, 1997, pI76). 
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Figure 7.13: Longitudinal and lateral responses of the pseudo-state feedback controlller with main 
rotor dynamics 
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7.3.3 Pseudo-State Feedback and Gain Suppression 

If it is assumed that a full, accurate INS is prese~t, then the angular rates (p, q, r), body angles 

(<p, 0), accelerations (u, v, w), and inertial velocities (u, v, w) can all be used for control. In 

this case, in forward flight, the complete augmented open-loop system will have six inputs, ten 

states and thirteen outputs. Enough design freedom exists to perform pseudo-state feedback 

EA and to leave 18 Degrees of Freedom (DoF) remaining post-assignment. 

The output vector of such a system, without the compensator augmentation, is 

y = [it. v w u v w p q r <p O]T (7.11) 

and the 2nd order controller has the state vector 

(7.12) 

and is described by the state-variable equations 

Having assigned the same desired eigenstructure as in the state-feedback case, the values of 

the initial controller matrices are shown below. 

[

-1.0368 0.0180 ] 
AcO = 

-0.0176 -0.0189 

[
-0.0008 0.0083 0.0008 :--0.0004 -0.0013 0.0065 -0.2214 -0.0320 0.5369 -0.3164 -0.0185] 

BcO = 0.0044 -0.00030.0006 0.0014 0.0018 0.0017 -0.0703 -0.0079 -0.0178 0.0161 0.1433 

o 0.0004 -0.0007 0.0236 -0.0031 0.0606 -0.0367 00071 ] 

o -0.0001 0 -0.0009 0.0039 -0.0024 0.0016 -~.0742 
o 0 0.0002 -0.0008 0.0014 -0.0026 0.0017 -0.0254 

-0.0006 0.0014 -0.0002 -0.1140 -0.0090 0.1551 -0.1550 -0.0413 

Note that although the assigned eigenstructure is the same as in the state-feedback case, the 

added transmission zeros are not in the same place; the eigenvalues of Aeo are -1.0365 and 
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-0.0192. This demonstrates the difficulty of predicting the locations of added zeros. 

The sum of squares of all the entries in the compensator matrices is 1.1711. This will be 

compared to the equivalent figure for the structured controller once the process has been 

completed. 

It was decided to use the available DoF to effect a partial decoupling between the dynamic" 

section of the compensator and the plant. This aim was chosen partly due for its illustra­

tive effect, and partly because it would significantly simplify the structure of the resulting 

controller, leading to simpler implementation. To this end it was decided to suppress the 

gains linking the velocities and accelerations (u, v, w, it, V, tU) to the compensator states, and 

also those gains coupling the compensator states to the lateral and longitudinal cyclic pitch 

controls (AI) Bd· 

In practice it was discovered that forcing the suppression of the gains linking the acceleration 

outputs to the compensator states also suppressed the gains linking the velocity outputs to 

the compensator states. Hence only 10 DoF were used in the suppression process. The result 

of suppressing these gains is that the revised controller matrices are as follows: 

[-1.5227 0.0078 ] 
Ac= 

-0.0449 -1.4492 

[: 
0 0 0 0 0 0.1631 -0.0043 -0.0350 0.0314 0.0005 ] 

Bc= 
0 0 0 0 0 -0.0052 0.2008 0.0039 0.0026 -0.0013 

0 0 

o 0 
Cc= 

-0.1513 0.0069 

-0.4285 0.0080 

[

. 0.0001 0.0022 0 -0.0001 0.0002 0.0004 -0.0387 -0.0091 0.1536 -0.0932 0.0035 ] 

-0.0023 0 0 0 -0.0001 0 -0.0003 0.0040 -0.0027 0.0018 -0.0750 

-0.0005 -0.00270.0002 0.0001 0.0004 -0.0019 0.1208 0.0132 -0.1839 0.1120 -0.0185 

-0.0012 -0.00120.0005 -0.0005 0.0015 -0.0007 -0.0804 -0.0057 0.1052 -0.1246 -0.0396 

The sum of squares of all of the entries in the compensator matrices has risen to 4.8323, but 

the individual gains are still very small, with the exception of those in the compensator system 

matrix Ac (which serve only to generate the required dynamic response in the compensator). 

The required decoupling is evident from the structure of the compensator input and output 

matrices Bc and Cc. 

Decoupling the compensator from the velocity states imposes the same structure on the 
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compensator input matrix as was seen in the state-feedback case. Interestingly however, 

this generates compensator system and input matrices containing identical values to those 

generated in the state-feedback procedure. The reason for this is not clear, but it implies 

an interesting (if obscure) link between structure, individual gains and transmission zero 

locations. This is worthy of further investigation in the future. 

Figures 7.14 to 7.16 show the performance of this structured controller. In each case the 

response can be seen to be identical to that of the original state-feedback controller for 

forward flight. 
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Figure 7.14: Longitudinal and lateral responses of the structured controller 
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7.3. Forward Flight 

r/l -..... 
bO 
Cl) 

"'C ... 
a 
0.. 

r/l -..... 
bO 
Cl) 

"'C ... 
a 
0: 

Roll, pitch and yaw rate responses to 1 sec pulse in lateral stick 

15 

/ ...... .' . ....................................... 10 / '\ .. 
/ , -pitch 

5 / , roll 
/ ...... .... yaw 

/ ...... 
0 .' . 

' ...... _._._.-._._. 

-5 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

Time sec 
Roll, pitch and yaw rate responses to 1 sec pulse in longitudinal stick 

15 

10 

5 

0 

-5 
0 0.5 1 1.5 2 2.5 3 3.5 4 

Time sec 

Figure 7.16: Rate responses to lateral and longitudinal stick 

-- pitch 
roll 

. ... yaw 

4.5 

199 

5 

5 



1.4. Semi-Proper Output Feedback: Control by IMU 200 

The achieved eigenvector set, shown below, can also be seen to be identical to that of the 

state-feedback and pseud~state feedback designs above. 

0.01 + 0.21j 0.01 - 0.21j 1 1 -0.01 -0.01 0 0 0 3.65 

0 0 0.02 - O.Olj 0.02 + O.Olj 0 0 0 0.26 

j -j 0.004 0 0 0 0 0 0 0 

-0.31 + 0.33j -0.31 - 0.33j 0 0 -0.01 + O.Olj -0.01 - 0.01; 0 0 0 -0.17 

Va= 
0.04 - 0.05j 0.04 + 0.05; 0 0 -0.10 + O.54j -0.10 - 0.54j 0 0 

0.03 + O.Olj 0.03 - 0.01; 0 0 0.80 - 0.02; 0.80 + 0.02j 0 0 0 -0.01 

0 0 0 0 ; -; 0 0 0 0 

-0.02 + O.OOj -0.02 - 0.00; 0 0 -0.24 + 0.27j -0.24 - 0.27j 0.003 0 0.01 -0.02 

0 0 0 0 -0.01 + 0.02; -0.01 - 0.02j 0 0 1 0 

-0.21 + 0.22; -0.21 - 0.22; -0.01 -0.01 0.01 + 0.01; 0.01 - 0.01; 0 0 0 1 

7.4 Semi-Proper Output Feedback: Control by IMU 

For the purposes of demonstrating the output-feedback EA algorithms for semi-proper sys­

tems described in Chapter 5, the following design example for a helicopter in the hover will 

show how raw data from the IMU (body-relative accelerations and angular rates) may be 

employed for control. The aim of achieving performance through inertial measurement is 

a practical one, and since the Def.Stan.00-970 handing qualities specifications have already 

been analysed to obtain desired eigenstructures (Chapter 3 and Clarke and Taylor (1999)), 

these form a natural source for a specification. 

It must be noted that using IMU signals alone to attempt to achieve Level 1 Def.Stan.OO-

970 handling qualities is of pedagogical interest only. The proliferation of integrators in the 

closed-loop system, and the lack of measurement or estimation of the integrated quantities 

(u, v, w, 4>, e), ensures that the steady-state error performance of the helicopter will be highly 

reliant on the lack of cross-coupling between these quantities. In turn this implies that the 

closed-loop system will be highly sensitive to eigenvector directions, and hence will not display 

good robustness characteristics. Nevertheless, this application of output feedback control to 

a semi-proper system serves to demonstrate the effectiveness of the algorithms presented in 

Chapter 5. 

The longitudinal, lateral and vertical accelerations (it, V, w) are derivatives of the velocity 

states and may be obtained in the output vector by adding rows from the A matrix into the 

C matrix and rows from the B matrix into the D matrix, as described in Section 7.2.2. Th.e 

roll, pitch and yaw rates (p, q, r) are states and may be fed directly into the output vector. 
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This yields 

y = [v p u q w r]T 
x = [v p </> u q () w r]T 
U = [AI BI ()O ()t]T 

201 

Again employing the same desired eigenstructure as in Section 7.2 (given by Equation 7.1), 

it is possible to assign eigenvectors in a variety of combinations. Following experimentation, 

a suitable order was found to be: 

• Assign the right eigenvector associated with the yaw mode Ar, with 4 DoFj 

• Assign the left eigenvector associated with the heave mode Aw , with 5 DoFj 

• Assign right eigenvectors associated with the longitudinal and lateral rate modes Ap 

and Aq, with 3 DoF each; 

• A~sign the left eigenvectors associated with the longitudinal and lateral velocity modes 

Av and Aw, with one DoF each. 

The gain matrix, generated via Equation 5.140, is: 

0.00018 0.00237 -0.00653 0.04604 0.00204 0.03325 

-0.00304 -0.00015 -0.00003 -0.01492 0.03599 0.00032 
K= 

-0.00004 -0.00002 0.00052 0.00033 0.00001 -0.00076 

-0.00025 0.00196 -0.01012 -0.01612 0.04032 0.21922 

As can be observed, the gains are extremely small. The largest gain, less than 0.25, connects 

r to ()t and provides yaw damping. The response of the resulting closed loop system is shown 

in Figures 7.17 to 7.19. 

Figure 7.17 shows that the response does not meet the Def.Stan.00-970 Level 1 handling 

qualities specification, but does not fail by much. The response to the lateral stick results 

in insufficient undershoot, while the response to the longitudinal stick undershoots too far. 

Both of these problems appear to be caused by a cross-coupling into yaw, as shown in Fig­

ure 7.19. There is also a small coupling from longitudinal stick into roll attitude, as shown 

in Figure 7.18. The gradient discontinuities evident in Figure 7.19 are symptomatic of direct 

coupling of the input (a rectangular pulse) to the differential of the output. 
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Figure 7.17: Longitudinal and lateral responses with Def.Stan.00-970 templates 
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Roll and pitch attitude responses to 1 sec pulse in lateral stick 
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It is likely that all of these problems could be mitigated by the use of alternative projection 

schemes such as iterative projection (Griffin, 1997) or projection with eigenvalue tradeoff 

(Clarke et al., 2003); retro-assignment could even be employed (see Section 5.5.2.4), though 

with only one available degree of freedom, it is unlikely to offer a tangible benefit. 

7.5 Conclusions 

It has been seen that the algorithms presented in this thesis provide a suitable mechanism 

for the design of controllers for helicopters. In particular, by feeding back state derivatives 

via accelerometers, a helicopter has been controlled in the hover using pseudo-state feedback 

techniques; without this acceleration feedback, Griffin (1997) resorted to output feedback, 

with inevitably inferior results. The output-feedback techniques of Chapter 5 have also been 

verified, through the design of a control system to stabilise a hovering helicopter using only 

inertial measurements. 

EA for forward flight has also been performed, utilising and verifying the ideal eigenstructure 

derived in Chapter 3. A state feedback solution, provided for reference, has been matched 

'in performance by a pseudo-state feedback solution; a further pseudo-state feedback design, 

having more DoFthan required for complete pole placement, has been subjected to the struc­

tural imposition techniques of Chapter 6. These techniques have been found to perform 

well. 
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In Chapter 1 it was stated that the aim of this thesis was to attack the practice-theory gap 

by promoting an understanding of Eigenstructure Assignment (EA) in a classical context, 

and by developing algorithms which extend the capabilities of EA towards current practice. 

The author asserts that this aim has been met, although further work must be undertaken 

to close the gap completely. 

8.1 Eigenstructure Assignment and Helicopters 

The link between EA and classical control is clear and was drawn to the reader's attention in 

Chapter 2. This link is important because the techniques generally used by control engineers 

working on helicopters are still Single-Input, Single-Output (SI80) loop-at-a-time techniques 

(Taylor, 2006). 

The difference between pole placement and EA was discussed, and is highly relevant. The 

helicopter is a highly cross-coupled plant, and the ability explicitly to control the coupling 

of modes into states by manipulation of the eigenvectors is of great importance. It was seen 

207 
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that true EA, along with sufficient design visibility, is provided only by a small number of 

the algorithms currently available. 

In Chapter 3, the physical characteristics of the helicopter were investigated in sufficient 

detail to gain an understanding of the problems facing the designer of a control system. In 

particular, cross-coupling and instability were identified as important issues; the helicopter, 

is also highly non-linear, but when working with linear models this is only of significance 

inasmuch as it indicates the degree to which the controller gains will need to be 'scheduled' 

across the operating envelope - a practice which, although problematic, is commonplace (and 

necessary, when the performance specification demands a change in the nature of the pilot 

control between hover and forward flight). 

The specifications for the response of a helicopter, as given in the UK Ministry of Defence 

Defence Standard 00-970 (Def.Stan.00-970) (Pitkin, 1989) are readily converted into restric­

tions on pole locations, as demonstrated by Clarke et al. (2003a). This work also involved 

the creation of a set of ideal eigenvectors for a helicopter in the hover. 

This thesis has introduced a new set of ideal eigenvectors for the case where the movement of 

the cyclic pitch stick is expected to generate a response in angular rate rather than attitude. 

This is not a trivial problem, and requires the use of a feedback compensator to raise the 

order of the open-loop system such· that the coupling from the cyclic pitch inputs to the 

body rates is second-order. It has been shown that this process naturally introduces zeros 

into the transfer function matrix of the closed-loop system. The eigenvector set has been 

demonstrated to be kinematically consistent with the expected motion of the airframe. 

8.2 Dynamic Compensators: The Problems 

The original aim of this thesis was to investigate the practicability of using dynamic com­

pensators to increase the design freedom available for the use of EA. It rapidly became 

obvious that the practical problems involved in the successful implementation of dynamic 

compensators, and the efficient exploitation of the design freedom they carry, are not trivial. 

In Chapter 4, an analysis of the distribution of the design freedom added by a compensator 

was performed in the context of EA. It was shown that the introduction of a compensator 

increases the order of the system, adds transmission zeros in potentially unpredictable loca­

tions, and provides no additional freedom over eigenvector directions. The additional freedom 

is available for pole placement, if the system was not pole-assignable before the addition of the 
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compensator. The remainder of the freedom is tied up in the compensator sub-eigenvectors, 

the directions of which have no effect on the plant outputs. 

No available algorithms currently address the issues of dynamic compensation and EA effi­

ciently and holistically. Algorithms which place the added transmission zeros (Magni, 1999; 

Tsui, 1999) exist, but while these ensure that the zero locations are known, the effective 

need for the determination of the poles of the open-loop compensator a priori seems overly 

restrictive. Hippe and O'Reilly's (1987) design methodology allows placement of these poles 

post-assignment, but does not consider eigenvector assignment explicitly and relies heavily 

on symbolic algebra. 

In summary, unless the dynamic compensator is required and explicitly defined by the closed­

loop system specification, such structures do not currently represent a flexible way of increas-

.. ing the design freedom available for EA. 

8.3 Alternatives to Dynamic Compensation 

At the end of Chapter 4 it was argued that any technique which increases the rank of the 

open-loop output (C) matrix would increase the number of available degrees of freedom, 

and do so in a manner that was preferable to the way in which dynamic compensators 

do the same. This is because an increase in rank of the C matrix increases the number 

of explicitly assignable right eigenvectors without increaSing the system order. This could 

render a system pole-assignable, or even allow state-feedback techniques to be used instead of 

output feedback techniques. Even if none of these advantages apply, the ability to assign more 

right eigenvectors is useful since the mode-input coupling can be influenced by the addition 

of a pre-filter if required, while the mode-output coupling cannot be similarly influenced and 

is controlled solely by the right eigenvectors; the allowable subspace for any assigned left 

eigenvectors is also inflated by an increased rank C matrix. 

Increasing the rank of the C matrix can be achieved by adding more sensors to the plant. 

There is no reason to suppose the plant will not be well-instrumented already, but any sensor 

which measures a state derivative - accelerometers, for example - were heretofore generally 

not suited to EA because the appearance of state derivatives in the output vector introduces 

nonzero terms into the direct transmission (D) matrix. For example, the helicopter model 

considered by Griffin (1997) is controlled using output-feedback techniques because the linear 

velocity states were considered to be unmeasurable. If the derivatives of these states could 
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be fed back, the problem would revert to one in which the numbers of outputs and states 

were the same. 

Chapter 5 was therefore dedicated to the development and description of two novel algorithms 

for EA in semi-proper systems. Changes occur to both the input (B) and output (C) matrices 

in addition to the system (A) matrix when the loop is closed, and these have been dealt with in 

an elegant way. Techniques for assigning the eigenvectors or the modal coupling vectors have 

been developed, and the modal coupling vector assignment requires no a priori knowledge of 

the inevitable changes to the Band C matrices. 

The first of the assignment techniques bears large similarities to the classic state-feedback 

EA algorithm of Moore (1976), but cannot be described as state-feedback because the output 

and state vectors are different and the D matrix. is nonzero. Hence the term 'pseudo-state 

feedback' has been coined to describe this new algorithm. In common with state-feedback 

algorithms, it is possible using this technique to assign all the eigenvalues and all of the right 

eigenvectors of a system. 

The second technique forms a natural extension to the output-feedback EA algorithms of 

Clarke et aI. (2003b), and provides access to the eigenvalues and a subset of each of the left 

and right eigenvectors in a highly visible parametric form. 

Each algorithm has the potential to leave design freedom unused post-assignment. In the case 

of the pseudo-state feedback algorithm, this is because the number of outputs may potentially 

exceed the number of states. The manner in which this unused freedom is expressed is 

essentially consistent between the two systems. In the case of the output-feedback algorithm, 

an extension has been presented to allow retro-assignment (Clarke and Griffin, 2004) to take 

place. However, in the opinion of the author, it is likely 'that the main performance 'goals 

will have been satisfied by the primary assignment of important right eigenvectors, and it 

is unlikely that any further manipulation of complimentary eigenvectors will improve the 

situation. 

8.4 Imposing Structure 

The freedom left by the two algorithms described in Chapter 5 has use beyond EA, and 

Chapter 6 presented a novel algorithm which used the freedom remaining after the application 

of either algorithm, or indeed that of Clarke et aI. (2003b), for imposing structure upon the 

gain matrix.. This could be by reducing gain matrix entries to zero, thus severing paths 
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between the system outputs and inputs, or by forcing certain sets of entries to be equal or to 

be 'geared' in a given ratio. 

The effect of the imposition of structure upon the ov:erall magnitude of the entries in the gain 

matrix has been considered, and expressions for the minimum Frobenius norm of the gain 

matrix both before and after the process have been generated. These should assist in the 

choice of structural constraints. It is interesting to note that some structural constraints will 

have more effect on the overall gains than others, and so to some extent the final structure 

of the controller is governed (or at least influenced) by the initial EA process. 

8.5 Applications 

Chapter 7 provided design examples to support the algorithmic development described above. 

The hover case was considered first, and it was shown that by using feedback from accelerom­

eters, the pseudo-state feedback algorithm of Chapter 5 was able to retain the performance 

of a state-feedback solution while using only measurable information. In the same context, 

Griffin (1997) had resorted to output feedback, and the results were inevitably inferior. 

Forward flight required the use of the ideal eigenstructure derived in Chapter 3. Using this 

eigenstructure, Level 1 handling qualities were obtained at 60 knots using both state-feedback 

and pseudo-state feedback algorithms, demonstrating that the eigenstructure is correct both 

kinematic ally and in terms of the Def.Stan.00-970 specification. 

A pseudo-state feedback controller was also designed for forward flight that had excessive 

Degrees of Freedom (DoF), and the remaining DoF after EA were used to impose structure 

on the controller. This demonstrated well the operation of the algorithm of Chapter 6. 

In addition, a pedagogical case was presented wherein it was attempted to control a helicopter 

in forward flight using only the signals from an Inertial Measurement Unit (IMU) - that is, 

the roll, pitch and yaw rates and the body accelerations. The output feedback algorithm 

from Chapter 5 was used and the responses generated were not far from meeting Level 1 

Def.Stan.00-970 specifications despite the lack of feedback from the body angle states and a 

consequent inability to control steady-state errors. 
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8.6 Contributions 

To the best of the author's knowledge, the list below describes the novel contributions of this 

work: 

• Derivation of a new ideal eigenstructure that meets the Def.Stan.00-970 response criteria 

for Level 1 handling qualities in forward flight, and demonstration that it is appropriate. 

• Derivation of all ideal second-order yaw response eigenstructure. 

• Characterisation of the design freedom offered by dynamic compensators in terms of the 

effect solely on the plant sub-eigenvectors, namely the rank and mutual orthogonality 

of the assigned eigenvector subsets. 

• Analysis of the design freedom offered by a feedforward compensator term, and how 

this freedom may be exploited. 

• Analysis of the effects on the modal coupling matrices of the change to the input and 

output matrices of a semi-proper system under feedback. 

• Development of a novel algorithm to effect 'pseudo-state feedback' control for semi­

proper systems, offering a substantially identical design procedure to that of standard 

state-feedback EA. 

• Characterisation of the design freedom remaining after the assignment of eigenstructure 

to a system with more outputs than states. 

• Development of a novel algorithm to allow output-feedback EA to be conducted on 

semi-proper systems. 

• Characterisation of any remaining design freedom from the semi-proper output-feedback 

EA process in a form which allows a retro-assignment stage to be performed, and the 

development of this technique to reflect the change to the system input and output 

matrices in the closed loop. 

• Implementation of Proportional-plus-Derivative (PD) controllers using semi-proper sys­

tem descriptions, allowing EA to be conducted in a single, visible stage. 

• A new analysis of the design freedom remaining after EA, and the resulting discovery 

of a method by which it may be used to impose structure upon the controller. 
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• Design of an algorithm to allow the freedom remaining after output-feedback EA, semi­

proper output-feedback EA or pseudo-state feedback EA to be used for this purpose. 

• Development of tools for the analysis of the effect of the imposition of structure on the 

overall magnitude of the gain matrix elements. 

8.7 Further Work 

Several areas have been identified in this thesis which warrant further work. 

Chapter 4 revealed some problems with the available algorithms for performing EA on com­

pensated systems. The ideal algorithm for the purposes of EA would constrain the trans­

mission zeros, allow full control of eigenvalue locations and plant sub-eigenvector directions, 

and present the unused design freedom in a usable form. This would allow the EA process 

to inform the design of a controller structure, rather than vice-versa. 

The idea of adding feedforward terms to feedback compensators was introduced. Section 4.6.3 

contains several ideas for the potential exploitation of the design freedom offered post­

assignment by this technique, and these would form an ideal starting point for a programme 

of further work on this topic. Structural constraints, transmission zero placement and ro­

bustness improvement are just a few of the potential applications for this extra freedom. 

The algorithm for introducing structural constraints in Chapter 6, at present, utilises only the 

design freedom remaining after EA. If similar techniques could be used to restrict the available 

set of gains during assignment, while still allowing freedom over eigenvector selection, this 

could potentially provide an algorithm for using EA to optimise the gains of existing control 

structures. This would be an interesting new application area for EA. 
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For the design examples presented in Chapter 7, simplified linear approximations to a non­

linear 11 tit.. order model of a Lynx helicopter were employed. This Appendix provides an 

overview of the algorithms used to obtain the linear models, together with the state-variable 

descriptions of the models so obtained. For the sake of allowing direct comparison, the pr~ 

cedure used for generating the linear models was the same as that used by Griffin (1997), 

and is simply summarised here for reference. 

A.I Algorithm Descriptions 

In order to extract a linear model from a non-linear one, it is first necessary to obtain an 

operating point about which a linear approximation can be formed. This process is known 

as trimming. In the case of the design examples of Chapter 7, two trim points {hover and 
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forward flight at 60 knots) were chosen. Secondly, a linear approximation to the system at 

these points must be found; and thirdly, the model must be reduced in complexity to remove 

the near-uncontrollable blade flapping modes. 

A.1.1 Trim 

Before the model can be linearised, an operating point must be found where the system is in 

equilibrium. 

In the case of the hover, this point is with zero body velocities and accelerations, zero angular 

rates and angular rate derivatives, and zero blade flapping angle derivatives. The body angles 

are not constrained. At 60 knots, the trim point is with zero angular rates and angular rate 

derivatives, zero body accelerations and heave velocity, and a zero roll angle with the pilot 

tolerating (and expecting) a small sideslip angle (Griffin, 1997). Once again the flapping 

angle derivatives are required to be zero, but the pitch angle is unconstrained, as is lateral 

velocity. 

For the purposes of the design examples in this thesis, trimming was .conducted using a 

Newton-Raphson nonlinear equation solver, after Griffin (1997) who achieved success with 

the same method on the same model. 

A.1.2 Linearisation and Normalisation 

The linearisation of a nonlinear function around a given point is a first-order Taylor approx­

imation about that point. Such an approximation is easily calculated by perturbing each 

state and input in turn an observing its effect on the state derivatives to form entries in the 

A and B matriCes. For the work in this thesis, an algorithm to adjust the perturbation sizes 

automatically (Clarke and Griffin, 2003) was employed in order to generate a model that was 

valid over as wide a range of operating conditions as possible. 

Griffin (1997) also developed a set of normalisations for the model such that two eigenvector 

elements of equal magnitude would result in a perceived equal coupling of the mode into the 

two states. The normalisation values are given in Table A.1.2. 

These normalisations have not been applied to the linear models as given below, but were 

instead applied (in inverse form) to the desired eigenstructure before assignment. 
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I State I Value I State I Value I Input I Value 
u 5 ft/s () 0.1 rad ()o 0.02 rad 
v 5 ft/s </> 0.1 rad (h 0.035 rad 
w 5 ft/s 'IjJ 0.1 rad A1 0.02 rad 
p 0.1 rad/s als 0.025 rad B1 0.035 rad 
q 0.1 rad/s b1s 0.025 rad 
r 0.1 rad/s 

Table A.l: Normalisation values (from Griffin, 1997) 

A.1.3 Model Reduction 

The dynamics of the helicopter are unaffected by heading, and so the heading state 'I/J affects 

no others and can be truncated from the model. 

The flapping modes may also be removed if it is assumed that they are significantly faster 

than the body dynamics. This is achieved by assuming that the flapping modes are unexcited, 

and hence that the blade flapping state derivatives a1s and b1s are zero. These states may 

then be approximated as a combination of other states and inputs. 

For the purposes of generating these example systems, model reduction was performed using 

MATLAB's modred function from the Control System Toolbox (The Mathworks, Inc., 2005); 

for an explanation of the mathematics involved; see Griffin (1997). 

A.2 Linearisation at Hover 

This is the model, produced using the techniques in Section A.l from the nonlinear Lynx 

model in hover, that was used in Chapter 7. 

A.2.1 State Space Description 

The state and input vectors are defined as 

xT 
= [u v w p q r </> () 'I/J als bls] 

UT = [AI BI eo et] 

The linear velocities (u,v,w) are given in feet per second, and the angular rates (p,q,r) in 
.. 

radians per second. The body angles (</>, e, 'I/J), the blade flapping angles (aI s, bls) and the 

input angles (Ab BI, 00 , ()t) are given in radians. 
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The system and input matrices are: 

-0.0043 0 0.0177 0 0.0089 0 0 -32.1169 0 -32.8194 0 

0.0007 -0.0169 -0.0034 -0.0697 -0.0626 0.3541 32.0644 0.1096 0 0 32.8194 

0.0314 0 -0.3226 0 -0.0537 0 1.8355 -1.9141 0 -2.2912 0 

0.0001 -0.0005 -0.0001 -0.0028 6.6266 -0.0260 0 0 0 0 112.9618 

0.0005 0 -0.0021 -1.0094 -0.0153 0 0 0 0 17.2069 0 

A= -0.0004 0.0085 0.0027 0.0355 1.2457 -0.2207 0 0 0 0 20.3546 

0 0 0 1.0000 -0.0034 0.0596 0 0 0 0 0 

0 0 0 0 0.9984 0.0572 0 0 0 0 0 

0 0 0 0 -0.0573 1.0001 0 0 0 0 0 

0.0158 -0.0012 0.0011 -0.0131 -1.2725 0 0 0 0 -14.0578 -2.2016 

0.0189 -0.0070 0.0013 -1.2357 -0.0706 0 0 0 0 2.2016 -14.0578 

0 0 17.9002 0 

0 0 -1.4148 12.8888 

0 0 -299.3701 0 

0 0 6.7227 -0.9453 

0 0 -1.5234 0 

B= 0 0 14:2787 -8.0313 

0 0 0 0 

0 0 0 0 

0 0 0 0 

2.7396 -16.0247 0 0 

15.9324 2.7555 0 0 

A.2.2 Reduced-Order Model 
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-0.5570 37.4993 17.9002 0 

37.2832 0.5602 -1.4148 12.8888 

-0.0389 2.6179 -299.3701 0 

B= 
128.3257 1.9283 6.7227 -0.9453 

0.2920 -19.6605 -1.5234 0 

23.1231 0.3475 14.2787 -8.0313 

0 0 0 0 

0 0 0 0 

1.0000 0 0 0 0 0 0 0 

0 1.0000 0 0 0 0 0 0 

0 0 1.0000 0 0 0 0 0 

0 0 0 1.0000 0 0 0 0 

0 0 0 0 1.0000 0 0 0 

c= 0 0 0 0 0 1.0000 0 0 

0 0 0 0 0 0 1.0000 0 

0 0 0 0 0 0 0 1.0000 

0 0 0 0 0 0 0 0 

0.0009 0 0.0001 0.0125 -0.0876 0 0 0 

0.0015 -0.0005 0.0001 -0.0859 -0.0187 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

D= 0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0.0170 -1.1426 0 0 

1.1360 0.0171 0 0 
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A.3 Linearisation at 60 Knots 

This is the model, produced using the techniques in Section A.l from the nonlinear Lynx 

model in forward flight at 60 Knots, that was used in Chapter 7. 

A.3.1 State Space Description 

The state and input vectors are again defined as 

xT 
= [u v w p q r 4> () 'I/J aIs bIs] 

uT ,,; [AI RI 00 (}t] 

where the state variables have the' same meanings and units as before. The system and input 

matrices are: 

-0.0040 0.0010 0.0322 0.0429 -2.9081 0 0 -32.1373 0 -32.1525 0 

0.0047 -0.0806 -0.0042 2.7750 -0.0879 -59.4753 32.1123 0.0607 0 0 32.1525 

-0.1435 -0.0159 -0.5577 -0.6917 60.7602 0 1.2664 -1.5379 0 -2.2447 0 

-0.0007 0.0034 -0.0032 0.0096 6.6152 -0.0385 0 0 0 -0.7849 112.5741 

-0.0001 -0.0001 -0.0013 -1.0153 -0.0383 0 0 0 0 17.1473 0 

A= -0.0042 0.0098 -0.0020 0.0764 1.2644 -0.3269 0 0 0 -1.4968 20.2886 

0 0 0 1.0000 -0.0019 0.0479 0 0 0 0 0 

0 0 0 0 0.9992 0.0394 0 0 0 0 0 

0 0 0 0 -0.0395 1.0004 0 0 0 0 0 

0.0055 0.0105 0.0105 0.0399 -1.2329 0 0 0 0 -14.0402 -2.2306 

-0.0032 -0.0107 0.0170 -1.2404 0.0160 0 0 0 0 2.1939 -14.1237 

-0.5892 -2.3630 18.6706 0 

-0.0043 -0.0172 0.1363 11.4212 

9.5059 38.1262 -301.2394 0 
/ -0.1676 -0.6721 5.3107 -0.8376 

0.0398 0.1596 -1.2612 0 

B= -0.3166 -1.2699 10.0334 -7.1168 

0 0 0 0 

0 0 0 0 

0 0 0 0 

2.7003 -16.5120 5.2055 0 

16.0264 2.1585 3.9017 0 
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A.3.2 Reduced-Order Model 

-0.0175 -0.0262 0.0147 -0.4842 -0.1471 0 ·0 -32.1373 

-0.0004 -0.1007 0.0373 0.0330 -0.4803 -59.4753 32.1123 0.0607 

-0.1444 -0.0178 -0.5589 -0.7285 60.9529 0 1.2664 -1.5379 

-0.0189 -0.0675 
A= 

0.1416 -9.6035 5.3085 -0.0385 0 0 

0.0071 0.0144 0.0081 -0.7342 -1.5108 0 0 0 

-0.0081 -0.0041 0.0233 -1.6783 1.1452 -0.3269 0 0 

0 0 0 1.0000 -0.0019 0.0479 0 0 

0 0 0 0 0.9992 0.0394 0 0 

7"0.9672 35.3011 8.4142 0 

36.5384 -0.9540 10.6117 11.4212 

9.4795 40.7556 -301.9554 0 

B= 127.7683 -3.0326 41.7375 -0.8376 

0.2414 -19.9271 4.2087 0 

22.7247 -0.1076 16.1660 -7.1168 

0 0 0 0 

0 0 0 0 

1.0000 0 0 0 0 0 0 0 

0 1.0000 0 0 0 0 0 0 

0 0 1.0000 0 0 0 0 0 

0 0 0 1.0000 0 0 0 0 

0 0 0 0 1.0000 0 0 0 

c= 0 0 0 0 0 1.0000 0 0 

0 0 0 0 0 0 1.0000 0 

0 0 0 0 0 0 0 1.0000 

0 0 0 0 O· 0 0 0 

0.0004 0.0008 0.0005 0.0164 -0.0859 0 0 0 

-0.0002 -0.0006 0.0013 -0.0853 -0.0122 0 0 0 
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0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

D= 0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0.0118 -1.1714 0.3190 0 

1.1365 -0.0291 0.3258 0 
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B.1 Introduction 

This Appendix contains mathematical derivations which support the derivations in the main 

body of this thesis, but which would act as a distraction if placed therein. 

B.2 . Complex Eigenvector Extension to Section 4.4 

The assigned eigenvector subsets in Equation 4.57 must form self-conjugate sets. Assuming 

that the rows of W~ and the columns of V~ are arranged such that conjugate pairs are next 

to each other, two matrices r wE c(n+c-v)x(n+c-v) and r v E CVXV may be formed with block 

diagonal structures. The blocks on the leading diagonal of r ware: 

• A '1' corresponding to any real row in W~; 

• A block [1 j.] corresponding to any conjugate pair of rows in W~. 
1 -J 

Similarly the blocks on the leading diagonal of r v are: 
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• A '1' corresponding to any real column in V~j 

. A block [~ 1.] corresponding to any conjugate pair of columns in V~. 
J -J . 

It is easily verified that it is therefore possible to write 

where W~ and V~r are real-valued. 

w~=rwW~r 

V~ = V~rrv 
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(B.l) 

(B.2) 

The nature and order of the conjugate rows and columns in W~ and V~ must be the same 

as those of W~ and V~. Hence the terms W x and V x can be formed by setting 

WxVx = W~rV~r (B.3) 

in place of Equation 4.57. The compensator sub-eigenvector sets may then be chosen using 

where RI and R2 are still real-valued. 

B.3 Minimum Frobenius norm for Section 6.4.1 

Because vec K is simply a rearrangement of entries, 

IKIF = IIvecKII 

and therefore 

IKIF= 11(1-(US)t U) (vecKo + SvecZ) 11 

= 11 (I - (US)t U) vecKo + (I - (US)t U) BvecZl1 

(BA) 

(B.5) 

(B.6) 

(B.7) 

(B.S) 
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The problem is now one of solving an equation of the form 

d 
dx IIAx+yll = 0 (B.9) 

to find a minimum. It may be shown (see Section B.4 of this Appendix) that 

d AT (Ax+y) 
dx IIAx + yll = IIAx + yll (B.lO) 

and therefore we must solve 

d~ 11 (I - (US)t U) vecKo + (I - (US)t U) Svec Zll = 0 (B.11) 

i.e. 

(S - (US)t US) T ((I - (US)t U) vecKo + (I - (US)t U)3 vec Z) = 0 (B.12) 

so, 

(s-(US)tus) ((I-(US)tU)vecKo+ (1-(US)tU)SvecZ) =0 (B.13) 

since At A and 8 are both symmetric. 

Equation B.l3 may be simplified further: 

(8 - (UB)tUB) (vecKo - (UB)tUvecKo+ 8vecZ - (US)tusvecZ) = 0 (B.14) 

8 vec Ko - 8 (US) t U vec Ko + S2 vec Z - B (UB) t UB vec Z 

- (US) t US vec Ko + (US) t UB (US) t U vec Ko . 

+ (UB)tUB2vecZ - (US)tUBvecZ ~ 0 (B.15) 

B vec Ko - (US) t U vec Ko + S vec Z - (US) t UB vec Z 

- (US) t US vec Ko + (US) t U vec Ko 

+ (US) t US vec Z - (US) t US vec Z = 0 (B.16) 

S vec Ko - (US) t US vec Ko + B vec Z - (US) t US vec Z = 0 (B.17) 

since S is idempotent (the identity of Equation 6.36 is employed). Hence 

(I - (US)t U) S vec Ko + (I - (UB)t U) Bvec Z = 0 (B.18) 
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The term BvecKo can be expressed (through Equations 6.10 and 6.12) as 

B vec Ko = (I - yty ) ® (I - xxt) vecKo 

= vec ( (I - yty ) Ko (I - XXt) ) 

= vec (Ko - KoXXt - ytYKo + ytYKoxxt) 

and substituting Ko = ytT + SXt + ytYSyt (Clarke et al., 2003), 
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(B.19) 

(B.20) 

(B.21), 

B vec Ko = vec (ytT + SXt + ytYSyt - ytTXXt - SXtxxt - ytYSytxxt 

- ytyytT _ ytYSxt _ ytyytYSyt 

+ ytyytTXXt + ytYSxtxxt + ytyytYSytxxt) (D.22) 

= vec (ytT + SXt + ytYSyt - ytTXXt - SXt - ytYSytxxt 

- ytT - ytYSxt - ytYSyt 

+ ytTXXt + ytYSxt + ytYSytXXt) 

= vec (0) 

Therefore Equation B.18 reduces to 

(I - (UB) tu) B vec Z = 0 

which has the simple solution 

z=o 

B.4 Differentiation for Section B.3 

(D.23) 

(B.24) 

(B.25) 

(B.26) 

The progress of the analysis in Section B.3 relies on the differentiation of a scalar with respect 

to a vector. The procedure for performing this differentiation is presented here for reference. 

The problem is of the form 
d ' 
-I\Ax+yl\ = 0 
dx 

(D.27) 

From Miller (1987), ifxT = {Xl, •.• ! Xn} is a vector and s(x) = S(XI! •.. ! xn) is a differentiable 
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scalar function of x, 

So: 

For each element: 

Evaluating the square gives 

as 
8x1 

d t:. 
dxS(X) = 

as 
&n 
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(B.28) 

(0.29) 

(0.30) 

(0.31) 

(0.32) 

(D.33) 

The terms in parentheses have no dependency on Xk. This is demonstrated by expanding the 

summations over j to give 

n 

L (aijXj) - aikXk + Yi = ai1 Xl + ai2X2 + ... + ainXn - aikxk + Yi 

j=1 

(B.35) 

(B.36) 
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Hence the expression in Equation B.34 can be written 

Expanding the remaining summation gives 

a~k IIAx + y\\ = 1\ Ax1+ yll . (alkA1. + a2k A 2. + ... ) x + [a1k a2k 

(A.kf (Ax + y) 
-

IIAx + yll 

Therefore 
d A AT(Ax+y) 
dx 11 x+yl\ = IIAx+yll 

B.5 Appendix Bibliography 
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(B.37) 

(DAO) 

(llA1) 

(llA2) 

(DA3) 

00 

Clarke, T., Griffin, S. J. and Ensor, J. (2003), 'Output feedback eigenstructure assignment 
using a new reduced orthogonality condition', International Journal of Control 76(4), 390-
402. 

Miller, K. S. (1987), Some Eclectic Matrix Theory, R. E. Krieger Publishing. 
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Matrix Notation 

Contents 
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 

C.2 Column, Row and Element Notation. • • • • • • • • • • • • • • •• 229 

C.3 Definitions of Operators •••••••••••••••••••••••• 230 

C.4 Appendix Bibliography • • • • • • • • • • • • • • • • • • • • • • • •• 231 

C.l Introduction 

The nature of this thesis dictates that much of the content is presented in mathematical form. 

This Appendix contains details, for reference, of some of the more important (and obscure) 

aspects of the matrix notation used. 

C.2 . Column, Row and Element Notation 

Matrix subscripts identify individual elements, rows or columns. 

229 



C.3. Definitions of Operators 

Apq = apq 

Ap. = rap! ap2 ••• apn ] 

C.3 Definitions of Operators 

230 

(c.1) 

(C.2) 

(C.3) 

Moore-Penrose Pseudo-Inverse: The Moore-Penrose Pseudo-Inverse At of A (see llen­

Israel and Greville, 1974) is a unique matrix, guaranteed to exist, that satisfies the 

following properties: 

AAtA=A 

AtAAt = At 

(AAt)* = AAt 

(AtAr = AtA 

where A * is the complex conjugate transpose of A. 

(C.4) 

(C.5) 

(C.6) 

(C.7) 

Kronecker Product: The Kronecker product (direct product, tensor product) of Amxn = 
[aij] and BrxB = [bij ] is defined as the partitioned matrix 

(C.8) 

which can be seen to be of order (mr x ns). 
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Vec Operator: The vec operator converts a matrix of order (m x n) into a vector of length 

mn and is defined as 

(C.9) 

C.4 Appendix Bibliography 

Ben-Israel, A. and Greville, T. N. E. (1974), Generalised Inverses: Theory and Applications, 
John WHey and Sons Ltd. 
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