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Abstract

Literature based discovery (LBD) identifies potentially related pairs of concepts that are not
mentioned together in the same documents. The concept pairs may be identified via linking
concepts that are mentioned in both sets of documents or via other statistical relatedness
measures like latent semantic indexing. Unfortunately, the nature of the relationships are not
identified so the importance and relevancy of the LBD pairs are not known.

The primary objectives of this thesis are to identify candidate LBD related concepts
and to determine if the natures of the relationship may be automatically explained using
supervised machine learning classification. For example, in the benchmark LBD example
of Raynaud’s phenomenon (A) being related to fish oil (C), candidate linking concepts are
blood viscosity, platelet function and vascular reactivity. The linking concepts are referred
to as Bs and, thus, create A-B-C LBD triples. The objectives of this work are to identify
a training set of data that includes linking B terms, to identify the relationships between
the A and B and the B and C pairs, and to apply supervised machine learning classification
techniques to suggest relationship between the A to C concepts. In the Raynaud’s example,
the suggestion would be that fish oil may treat Raynaud’s phenomenon.

This work explores data representations suitable for applying classification techniques
to explain the relationships. This work applies traditional classification evaluation methods on
both classifier outcomes and data designs. Classifiers applied to the training data ultimately
accurately predicted the A to C relationships over 70% of the time, while the chosen baselines
only achieved approximately 30% accurately predicted relationships. The classifiers were
then used on real LBD candidate pairs from an older set of MEDLINE abstracts found
using statistical LBD. The predicted LBD explanations were validated against more recent
literature which is a time-slice validation approach.

To the best of my knowledge and research, relationship prediction techniques have not
been applied to statistically related LBD candidate pairs to provide an explanation of how
the A and C pairs are related. Additionally, applying time-slicing for validation of explained
LBD candidates is also novel.
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Chapter 1

Introduction

Literature based discovery (LBD) is the discovery of hidden knowledge in large sets of
documents where the discovery is never explicitly mentioned in any single document. Don R.
Swanson was the first to define LBD as a means to discover previously unknown knowledge
by examining term occurrences across multiple documents (Swanson, 1986a). After finding
documents mentioning a concept of interest, referred to as A, Swanson would look for linking
terms, referred to as B, where A and B are mentioned in the same documents.1 He would
then look for documents that do not mention A, but mention the same B term and would
identify a new C concept. His hypothesis is that even though never mentioned in the same
documents, A and C may be related. Once the related concepts, A and C, are identified,
further experiments or investigations are usually performed to determine if there is a real and
useful relationship between the LBD pair.

Discoveries that find related A and C concepts using an LBD system may be from
an open or closed LBD system. The open approach assumes only a starting concept, A,
is known and then all possibly related C concepts are identified and explored. Open LBD
systems are like an open-ended search for discoveries. In a closed system, both A and C
concepts are identified at the start of exploring their relatedness using, for example, linking
B terms. A variation on a closed LBD system is one that limits the vocabulary or set of
concepts explored for LBD relatedness. While this work uses this variation of a closed LBD
system, the approaches used in this work to explain LBD relationships may be applied to any
LBD candidate pairs discovered in either closed or open systems. The focus of this work

1To describe the LBD process throughout this thesis, the concepts are referred to as A, B and C where A
and C are the LBD discovery, never mentioned together in the same document, and B is a candidate linking
term. Multiple linking B terms may exist. The linking B term or terms may show how A is related to B and
how B is related to C.
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is to find LBD related A and C concepts and then automatically explain the nature of their
relationship.

1.1 Motivation for Explaining Discoveries

Simply stating that A and C are related because of the linking B terms is not enough.
Understanding the nature of the relationship is also necessary. Computer-based systems are
able to quickly and automatically identify literature based discoveries. Unfortunately, they
produce incredibly large numbers of hidden knowledge candidates. Many of these prove
to be false positives that are not interesting for further study (Henry and McInnes, 2017;
Sebastian et al., 2017; Ganiz et al., 2005; Hristovski et al., 2006; Kostoff et al., 2007; Bruza
and Weeber, 2008; Seki and Uehara, 2013). Additionally, identifying which of the vast
numbers of discoveries are important is daunting and, as noted by Ronald Kostoff et al., is
like searching for a needle in a haystack (Kostoff et al., 2007).

In the past, discoveries identified using LBD required additional research to prove
or disprove the LBD hypothesis. For example, in Swanson’s benchmark discovery that
Raynaud’s disease may be treated using dietary fish oil, additional clinical trials were later
performed to validate the LBD relationship (DiGiacomo et al., 1989). The logic that fish
oil may be helpful in curing or treating Raynaud’s syndrome simply because these concepts
appear in documents mentioning common linking terms is not scientifically sound. Further
studies by medical experts are required to understand the relationship between fish oil and
Raynaud’s disease includes examining the relationships between this LBD candidate pair
and the linking B terms. Platelet aggregation is a candidate linking B term for this LBD
pair, because it appears in literature mentioning fish oil and in separate literature mentioning
Raynaud’s disease. As an example of the process required to validate LBD, an expert would
determine that blood problems, like platelet aggregation, may be treated with fish oil. They
would also determine that Raynaud’s disease may be caused by circulation problems such
as problems with platelet aggregation. Then, after identifying the natures of the A to B and
B to C relationships in the fish oil and Raynaud’s syndrome LBD candidate pair, they may
conclude that fish oil indeed could treat Raynaud’s disease. However, each discovery would
require further clinical trials to determine if there is scientific proof that the hypothesis the
discovery presents is true, or not.

Computer-aided LBD techniques present an arduously large number of candidate
LBD pairs that could contain a few important discoveries. Finding the most interesting and
promising candidates is important and useful. The research community would benefit greatly
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if there was a way to whittle these large lists of possible discoveries down to those that are
most interesting and most likely to represent real discoveries. The research presented here
seeks to find ways to assist analysts and scientists with their search for interesting candidate
discoveries by automatically suggesting explanations for the LBD candidate discovery –
the A to C relationships. Explaining LBD candidates will provide a necessary refinement
that will help to narrow the candidate discoveries to those that may be the most promising,
interesting and useful to explore further.

1.2 Research Questions

The purpose of this research is to automatically explain the nature of the relationships of
literature based discoveries. By doing this, researchers may focus on those explanations
that are of interest to them and not be bogged down by the mass quantities of discoveries
that are irrelevant to their goals. For example, they can focus on the causes of or possible
treatments for diseases rather than other less interesting LBD candidate discoveries. The
primary question of this thesis is:

Can the nature of the LBD relationships be automatically explained?

Additional questions are:

1. Can this problem be modeled as a classification problem?

In the medical domain used in this work, is there a representation of the text data that
can be modeled and sent to the classifiers in a way that the classifier can predict the
nature of the LBD relationship?

2. Is there a source of data for classifier training?

3. Once trained, do classifiers produce measurably better results than baselines?

4. Do classifiers produce results that can be validated against known facts?

Traditional training and evaluation techniques perform the basis of classification
solutions, however, in the field of LBD, additional validation of the produced results is
also important.

5. Are ensemble learners better than single classifiers in predicting explanations for LBD
relationships?
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The ultimate goal in explaining LBD relationships is to be as accurate as possible. This
will help researchers focus on the inferred LBD relationships that are most likely to be
real and true.

1.3 Objectives

Objectives of this thesis are:

• to design, evaluate and improve classifier solutions for explaining the A to C relation-
ships

• to identify and expand candidate LBD pairs from a corpus, including identification of
linking B terms and of A-B and B-C relationships

• to use classifiers and ensemble learners to suggest explanations for the actual LBD
relationships

• to validate the explanations of suggested relationships for older LBD pairs using newer
facts

1.4 Contributions

These are the contributions that this research provides:

• supervised machine learning classifiers that explain how LBD candidate pairs may be
related

• a corpus from SemMedDB that provides machine learning training data and data for
validating results

• ensemble learners that improve accuracy in predicting the relationship of LBD pairs

• a framework for using classification to explain LBD discoveries

• a novel validation approach inspired by time-slicing of data
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1.5 Thesis Structure

Below is an outline of the rest of this dissertation.

Chapter 2 – Literature Review

This chapter will present current information about LBD and other topics related to this
research including techniques used to perform LBD including co-occurrence and statistical
methods, background on the data used by the systems in this work (MEDLINE and
SemMedDB), LBD evaluation methodologies, limitations of current LBD systems,
relationship extraction techniques, an overview of classifiers and of an extension of
classification called ensemble learning.

Chapter 3 – Approach and Data for Relationship Prediction

This chapter will begin with the approach used in this work to explain LBD relationships.
Then this chapter will present details on the classifier data designs and variations. Training
data will be generated and refined in support of the relationship prediction using classification
presented in Chapter 4. Refinement of the classifier designs will explore removing instances
with the most frequently occurring feature values and regularizing the outcomes.

Chapter 4 – Relationship Prediction Experiments

This chapter will present details on the experiments including evaluation of the classifiers
in their ability to explain relationships in the medical domain. Training data described in
Chapter 3 will be used in Chapter 4 to apply cross-validation and confusion matrix evaluation
of the classifier models. Refined data designs will also be evaluated. Additional evaluation
will apply ablation of features to understand the interaction of and dependency between
features.

Chapter 5 – Identifying and Explaining Hidden Knowledge

This chapter will present the data used for LBD and for validation of the explained discoveries.
It will discuss the results of performing LBD on an older corpus and of LBD relationship
explanation using classification on these candidate LBD pairs. The results will be validated
against a newer corpus. Additional experiments will apply ensemble learning techniques in
an effort to improve accuracy of the predicted results.
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Chapter 6 – Conclusions

This chapter will summarize this dissertation. The research questions presented in this
chapter will be answered and discussed. This chapter will provide additional discussion of
limitations presented in Chapter 2 and will present ideas for future work.

1.6 Published Work

The following papers were published during this research period.
Preiss, J., Stevenson, M., and McClure, M. H. (2012). Towards Semantic Literature Based
Discovery AAAI Fall Symposium Poster Session.
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Literature Review

This chapter discusses relevant background. The first section provides an overview of
literature based discovery (Section 2.1), while the next two discuss how LBD is performed
(Section 2.2) and how LBD systems may be evaluated (Section 2.3). The next section presents
background information on a source of documents from the medical domain that is used
in this research (Section 2.4). The next section presents limitations of current approaches
to LBD (Section 2.5). The next section presents how relationship extraction may be done
(Section 2.6). The last two sections present information about the various classifiers used in
this work (Section 2.7) and information about an extension of classification called ensemble
learning (Section 2.8). The last section summarizes this chapter (Section 2.9).

2.1 Literature Based Discovery

As briefly discussed in the introduction, LBD is the discovery of inferred relationships
between two concepts that previously were never identified as being related. Literature in
LBD refers to articles or documents (usually scientific publications). Discovery in LBD is
the identification of possible relationships between two concepts found in a corpus where
the concepts never have been previously mentioned together (Henry and McInnes, 2017;
Sebastian et al., 2017; Ganiz et al., 2005; Kostoff et al., 2007; Bruza and Weeber, 2008).

Swanson (1986a,b) is considered to be the first to have mentioned the LBD form of
discovery (Smalheiser, 2017; Kostoff et al., 2007; Ganiz et al., 2005; Sehgal et al., 2008). He
initially referred to the topic as undiscovered public knowledge since the information that
formed the basis of the discoveries was available in publicly available literature and the link
between the related concepts had not been explicitly identified or discovered, yet (Swanson,
1986b).
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Swanson (1986a) presents one of the early LBD discoveries where Raynaud’s disease
or phenomenon may be related and possible cured by fish oil. Swanson searched databases
available at the time and identified over 2,000 articles on topics relating to Raynaud’s disease
and over 1,000 on topics relating to fish oil with all articles dated between 1975 and 1984.
After further study, he selected two much smaller sets of documents each consisting of 25
documents. The first set mentioned fish oil or related synonyms for fish oil. The second
mentioned Raynaud’s disease or phenomenon or related synonyms. The sets were also
isolated in that the first did not mention Raynaud’s and the second did not mention fish oil –
in this respect, they were disjoint. These documents were selected because of their extensive
discussion about various blood issues like problems with blood viscosity, platelet function
and vascular reactivity. The blood issues were the link between the two sets of documents
and likewise between the two concepts – fish oil and Raynaud’s. Swanson studied these sets
of documents and made the connection that, perhaps, Raynaud’s disease could be treated
with fish oil. Medical studies have since been able to validate this discovery (Bruckner et al.,
1987; DiGiacomo et al., 1989).

Throughout his career, Swanson continued to identify novel relationships using LBD
techniques including his discovery that there is a relationship between magnesium and
migraines (Swanson, 1988). The Raynaud’s phenomenon to fish oil relationship and the
magnesium to migraines relationship are often used as examples to describe the field of LBD.

In the Kostoff et al. (2007) report, literature related discovery (LRD) is considered to
be a super set of literature-based discovery (LBD) and literature assisted discovery (LAD).
This is a subtlety of whether or not the discovery simply presented as a possible discovery
(i.e., LBD) or if the discovery is further investigated for validity with experts in the topic area
(i.e., LAD). Henry and McInnes (2017), Ganiz et al. (2005) and Kostoff et al. (2007) further
refined the definition of LBD with the following four basic constraints:

1. Extraction of concepts is from published literature (usually scientific articles).

2. Connections or relationships of unknown nature are made between pairs of arguments
(for example, Raynaud’s disease and fish oil or magnesium and migraines.)

3. Links are identified between each of the related terms in order to support inference (for
example, various blood problems help to form the inferred relationship between fish
oil and Raynaud’s).

4. Novelty of the discovery – no current literature mentions the new related pairs in the
same publication thus making this a candidate discovery.
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LBD work is different from other basic search and concept linking techniques because
fundamental LBD requires that documents mentioning two candidate LBD related concepts
must contain some form of linking concept (Kostoff, 2008). That is, for example, magnesium
and migraines are never mentioned together prior to the LBD discovery by Swanson (1988).
LBD generates the hypothesis that the two may be related because of various concepts
linking them together: type A personality, vasospastic disorder, vascular tone and reactivity,
calcium channel blockers, etc. Once a discovery is made, further validating studies must be
performed. For example, clinical trials that show a drug helps to cure or reduce symptoms of
a disease.

2.1.1 The ABCs of Swanson’s Work

Swanson (1986b,a, 1988) introduces the use of A, B and C in describing LBD related
concepts and their linking terms. He suggests as an example that A stand for Raynaud’s
disease or phenomenon and that A is found in a set of documents not containing C. He
suggests that C stand for Fish Oil and that C is found in a separate set of documents not
containing mentions of A. He suggests that B stand for the various linking terms found in
both corpora. LBD continues to be explained by most researchers using this A, B and C
notation where A and C are the LBD candidate discoveries and B is the linking term.

Fig. 2.1 Classic diagram of Literature-Based Discovery using Swanson’s example of
Raynaud’s disease relating to fish oil

There may be and usually are more than one linking B term. Figure 2.1 shows a
visualization of two corpora – one containing A on the left, another containing C on the right
and the intersection are documents that contain linking B terms. The linking B terms may
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Fig. 2.2 Open LBD System: Uses a starting A term and a set of candidate C terms, C1 to Cm,
and discovers sets of LBD candidate ABC triples. Each blue line represents some relationship
between the two terms. This and the next diagram are adapted from various found in LBD
literatures including Weeber et al. (2001)

not appear in all of the documents in the intersection and the B linking terms may also appear
in documents that mention neither A nor C. This subtlety is not shown in the diagram.

2.1.2 Open and Closed LBD

There are two fundamental types of LBD: open and closed. Open discovery LBD systems
begin with a starting term or concept (referred to as A) and then search for intermediate terms
or concepts (connecting B terms or concepts) which will lead to target terms or concepts (C).
See Figure 2.2. If not previously mentioned together, the LBD system concludes that the
opening term, A, and the discovered target term, C, may be related. In a closed system, both
the starting (A) and the target (C) terms are known and a linking term or concept (B) is the
goal of the discovery. See Figure 2.3. Henry and McInnes (2017) and Ganiz et al. (2005)
describe this in more detail.

Examples of open systems or methodologies include BITOLA (Hristovski et al., 2006)
and LSI (Gordon and Dumais, 1998; Gordon et al., 2002). Arrowsmith is an example of a
closed system (Swanson and Smalheiser, 1997). When researchers try to validate Swanson’s



2.1 Literature Based Discovery 11

Fig. 2.3 Closed LBD System: Uses a starting A and C term and discovers candidate B terms.
As in diagram above, the blue lines between two terms represents a relationship.

fish oil to Raynaud’s disease discovery in an LBD system, this is an example of a closed
system – both the A and C concepts are known and the goal is to search for logical linking B
terms. The work presented in Gordon and Lindsay (1996) is an example of using a known A
and C pair (closed LBD). Additionally, Gordon et al. (2002) discuss starting with the middle
term – the "inspiration", and by reversing the approach to be C-B-A, they come up with an
"extension".

Swanson and Smalheiser (1997) also explored LBD relationships where both concepts
have been identified as being related, but where the nature of the relationship is not yet
known. For example, the suggested relationships between indomethacin and Alzheimer’s
disease, between estrogen and Alzheimer’s disease and between phospholipases and sleep.
These three pairs of concepts represent examples of closed LBD studies because because
a relationship had been identified between the concepts, but the linking cause was not
understood.

LBD researchers sometimes use lists of words (vocabularies) to restrict which words
they considered in each search – when lists are used for both A and C concepts, the LBD
system is called a closed system. An open system considers a list of words only for the
starting concept, A (Henry and McInnes, 2017; Ganiz et al., 2005). Weeber et al. (2001)
consider an open system one that generates hypotheses and a closed system is one that tests
hypotheses.
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2.1.3 Additional Terminology

This section presents terminology used throughout this thesis. While common in the field
of LBD to use A-B-C notation, using classification to explain the LBD A-C relationships
requires a few additional expressions (for example, fully and partially qualified triples) and
the experimentation presented in this thesis uses two slightly different forms of judging the
value of the results (evaluation and validation).

Figures 2.4 and 2.5 provide descriptions using the ABC notation introduced in Section
2.1.1 and they show previously known (solid lines) and candidate LBD relationships (dashed
lines). These diagrams are used in some of the definitions that follow.

Candidate LBD pair

Whether LBD is performed manually or using automated techniques, a candidate LBD pair
is a a pair of concepts that are found to be related but are never mentioned in the same
document. These are the A-C instances shown with dashed line in Figures 2.4 and 2.5.

Linking B Term

Automatically explaining the relationship between an LBD pair requires that one or more
linking B term is identified. The linking B terms are found in a set of documents that contain
the A concept and another disjoint set of documents that contain the C concept. The concepts
in the intersection of the diagram in Figure 2.1 are examples of linking B terms. In Figures 2.4
and 2.5, some A and C candidate LBD pairs are linked together by common mentions of
some linking B terms.

Triples and Relationships

Various full and partial triples are shown in Figures 2.4 and 2.5. Basic representations of the
ABCs are shown in the first diagram (Figure 2.4) – the solid blue lines represent instances
where the concepts are mentioned in the same document; the dashed red lines represent
concept pairs not mentioned together but that are considered to be related based on statistical
co-occurrence or other LBD methods. Triple A2-B1-C1 is an example of a full triple that
has no LBD pair – that is, A2 is mentioned with B1 and with C1 (not necessarily the same
documents) and C1 is also mentioned in documents with B1. This A2-B1-C1 triple, as shown
in Figure 2.4, is not fully qualified, because the nature of the relationships are not shown.
Triple A4-B2-C3 is an example of a partial triple where B2 is a linking term between candidate
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Fig. 2.4 What is and is not LBD

Fig. 2.5 Relationships LBD Triples
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LBD pair – A4 and C3 (this is not a complete partial triple because the nature of the A-B
and B-C relationships are not shown). The other two red dashed lines show instances of
candidate LBD pairs where there is no linking B term.

Figure 2.5 shows full and candidate partial triples, but also adds relationship explana-
tions to the solid blue lines. This is the information needed to create fully qualified triples
and complete partial triples. A2-B1-C1 along with RAB1, RBC1 and RCA1 is a fully qualified
triple. Each relationship includes not only the nature of the relation, e.g. "causes", but also
the direction of that relationship, e.g. A causes B or B causes A. Triple A4-B2-C3 along with
RAB2 and RBC2 is a complete partial triple for a candidate LBD pair with a linking B term. It
is a complete partial triple because RAB2 and RBC2 are defined.

Fully Qualified Triples Fully qualified triples contain A, B and C terms along with A-B,
B-C and C-A relationships and the direction of each relationship. As just noted, in Figure 2.5,
A2-B1-C1 along with RAB1, RBC1 and RCA1 represents a fully qualified triple.

Partially Qualified Triples Partial triples contain everything in a fully qualified triple
except the C-A relationship and direction. LBD candidate pairs where B linking terms are
identified and where the nature of the A-B and B-C relationships are also identified are
complete partial triples. In Figure 2.5, A4-B2-C3 along with RAB2, RBC2 and an unknown A
to C relationship form a partially qualified triple.

Evaluation versus Validation

As with any work that applies classification techniques to solve problems, evaluation may
be performed using N-fold cross-validation, studies of confusion matrices and hypothesis
testing. This work uses an additional form of evaluation that will be referred to as validation

in an effort to separate traditional classifier training evaluation from the evaluation of the
classifier models applied to the task of explaining the nature of the LBD relationships.
Validation presents information on the performance of the classifiers when used on sets of
LBD produced data using time-slicing (described in detail in Section 2.3). Briefly, validation
takes the results of classifiers trained and used on older data (e.g. data from 1980-1984) and
tries to see if the explained discovery is able to be verified in the newer data (e.g. data after
1984).
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2.2 Performing LBD

This section first provides a short overview to information retrieval (Section 2.2.1), which
is used by most LBD approaches. Then this section discusses how LBD may be performed
in automated systems using simple co-occurrence (Section 2.2.2), and using statistical
co-occurrence methods (Section 2.2.3).

2.2.1 Information Retrieval

In order to perform LBD, documents must be identified that contain the terms or concepts of
interest. Information retrieval (IR) is the process of returning structured or unstructured data
that match a specified search criteria (Manning et al., 2008). The data are usually documents
including web pages and the search criteria are usually keywords or phrases. Manning et al.
(2008) also state that IR is usually performed on a corpus using some form of indexing of
the documents to allow for faster and efficient retrieval of them. Indexes may be simple or
may be augmented in various ways to enhance speed or focus on specific functionality or
outcomes.

Inverted indexes are a basic building block of IR. The simplest form of an inverted
index keeps track of each word found in each document. When stored, each word will have
a link back to the document or documents from where it came. The words that are stored
may be normalized so that, for example, an occurrence of "stores" will be indexed as "store".
(Jurafsky and Martin, 2009; Manning et al., 2008).

More complex inverted indexes take into consideration the number of times the word
appears in the document and consider the proximity to words when multi-word searches
like "apple pie" are performed. When considering these types of improvements, weighting
schemes are introduced. An example of this is the term frequency, inverse document
frequency (or tf-idf) calculation. The inverse document frequency weight for some term t is
computed as follows:

id ft = log
(

N
d ft

)
(2.1)

where N is the number of total documents and d ft is the number of documents in which the
term t appears in the corpus (Jurafsky and Martin, 2009; Manning et al., 2008). The
importance of an idf weighting is that terms that are common across the corpus will have a
smaller idf and those that show up less often will have a larger idf. Then when the number of
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times the term shows up (i.e., the term frequency of term t or the t ft) is multiplied by the
id ft , less common terms will have higher tf-idf weighted score than common terms. For
example, in a corpus that contains documents about businesses and the products they sell,
the word "the" will have a smaller tf-idf score than the word "automobile".

Systems based on inverted indexes usually perform additional analysis of the query
phrase and of the indexed documents. Query phrases will be normalized and synonyms
considered so that the query will return the most accurate and useful set of results. The
documents that are indexed will also be normalized and will include information about
candidate synonyms so that the index is optimized to provide good search results (Jurafsky
and Martin, 2009; Manning et al., 2008).

Vector space models are an important source of algorithms for IR. A vector space
model is a vector representation of term information where weighted scores for each term
is effectively plotted and compared against other terms of interest. Each term may have a
weighted score (like tf-idf discussed above) included in vector model. Using the vector math,
a score showing the relatedness of the terms is calculated. In vector space models, cosine
similarity is often used to identify similar terms (Salton et al., 1975; Manning et al., 2008).

2.2.2 Co-occurrence

Since his initial study, Swanson and many other researchers have applied automation to the
task of LBD (Hristovski et al., 2006; Gordon and Dumais, 1998; Swanson and Smalheiser,
1997; Culotta et al., 2006; Downey et al., 2005). Initially systems would look for candidate B
linking terms simply by their co-occurrence in the documents that mention the A term then
use these B terms to search for a new set of documents where A is not mentioned. Then they
would try to find, again with co-occurrence, candidate C terms linked to B in the new set of
documents. The automation of these approaches usually entailed database queries to find
linked terms (Swanson and Smalheiser, 1996; Kostoff et al., 2007).

Wren (2008a) suggests that most LBD systems use co-occurrence and that systems
need to be improved from here. Although co-occurrence generates interesting results, there is
no guarantee that co-occurrence implies relationship. They may not be related. Kostoff et al.
(2008a, 2007) stress that just having concepts that co-occur is not enough to conclude that
they are related in any meaningful way especially since with LBD-related concepts, there are
often few real discoveries. Additionally, simply finding relationships using co-occurrence
with single words is not enough. Co-occurrence of multi-word phrases that consist of bigrams
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and trigrams.1 are also important in the identification of LBD concept pairs (Lindsay and
Gordon, 1999).

An example of how co-occurrence may not mean relatedness is negation (Wren, 2008a).
The sentence "watching the news does not cause measles" contains "news" and "measles", but
the relationship is a "not cause" relationship. The sentence "there is no convincing evidence
that watching the news causes chickenpox" contains "news" and "chickenpox", but further
analysis of the sentence is required to see that there is no evidence of the causes relationship
(Preiss et al., 2012).

2.2.3 Statistical Methods for LBD

Statistical techniques for performing LBD are technically co-occurrence approaches (Man-
ning and Schütze, 1999). This is because concepts are found to be related using statistics
on word occurrences. An interesting result of statistical relatedness is that concepts may or
may not reside in the same document. If not, the statistical approach has identified a can-
didate LBD pair. However, even though the concepts are not in the same document, their
co-occurrence with linking terms ultimately make this a co-occurrence LBD methodology
(Lindsay and Gordon, 1999).

In statistical approaches to LBD, there may not be a linking term identified when the
making the discovery. Instead, related concepts are discovered by the semantic relatedness of
the documents, first, and then linking B terms are identified (Gordon and Dumais, 1998). The
documents are treated as bags of words and the documents are found to be statistically related
based on the occurrences of the same or similar words in the same or similar documents.
Again, the distinction between LBD discoveries and non-LBD discoveries in statistically
based systems is simply whether or not the related concepts appear together. If the terms do
not appear together, a candidate LBD pair has been identified. If the terms appear together,
then these terms may end up providing candidate B linking terms.

The rest of this section discusses two general approaches to identify related concepts
in documents using statistics methods – latent semantic analysis and random indexing. Both
are improvements over simple co-occurrence methods because they reduce the complexity of
the m x n storage matrix that relates the m terms to the n documents. Methods that require
the full matrix representation, such as the co-occurrence approaches above, do not scale and
thus are not suited to large corpora and associated information retrieval tasks including LBD
(Deerwester et al., 1990; Cohen et al., 2010; Widdows and Cohen, 2010).

1bigrams and trigrams are 2 and 3 word phrases, respectively, and are also referred to as n-grams of length 2
or 3, respectively.
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Latent Semantic Analysis and Latent Semantic Indexing

Latent semantic indexing (LSI) is described in Gordon and Dumais (1998). LSI looks not
only at index results for words or phrases; it also takes into account the number of times the
term or phrase shows up in other documents in deciding if this term or phrase is relevant (i.e.,
important). LSI is also able to relate terms or phrases based on how many times they appear
together in documents.

LSI is an information retrieval technique that uses singular value decomposition (SVD)
to reduce the dimensions of extremely large matrices by getting rid of less interesting data.
SVD breaks down large problems using dimension reduction. Kalman (1996) gives credit to
Strang (1980) for introducing the concepts of SVD and both have explanations of the theory
as does Manning et al. (2008). The full mathematics behind SVD will not be presented here,
instead a high level conceptual description and overview of how SVD applies to information
retrieval is presented.

When applied to information retrieval, SVD involves breaking a complete term by
document matrix into the product of three simpler to manipulate matrices. The number of
terms may be called m and the number of documents, n, which would result in the complete
m x n matrix with non-zero or weighted entries in each location where a term (ti) is related
to the document (d j). Here i is the row and j is the column in the full matrix. The value
stored in the (i, j) location in the matrix would usually be a weighted representation of the
the relationship between that term (ti) and the document (d j) – for example, it could be the
term frequency, inverse document frequency weight that is discussed in Section 2.2.1.

The SVD is generally represented as

A =UΣV T (2.2)

where the resulting matrix, A, is a low rank approximation of the complete term by document
matrix. The matrices, U and V T are orthogonal. The Σ in this equation is a diagonal matrix
which means it has non-zero values along a diagonal and zeros elsewhere. If it is a square
matrix where m equals n, the diagonal goes from the (1, 1) location down the diagonal to the
(m, m) location. When SVD is applied to term by document matrices, m is usually not equal
to n so the Σ matrix is usually not square. In this rectangular case, matrix A is m x n, U is m

x m and V T is n x n. Matrix Σ would then be m x n but would only have non-zero entries in
the diagonal starting at (0, 0) and ending at (n, n) if n < m and at (m, m) if m < n (Manning
et al., 2008).
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The importance of the Σ matrix is that because it is mostly zeros, the computational
complexity of the product of the three matrices is greatly reduced, remembering that zero
multiplied by anything is zero. This allows much larger data sets of terms and documents to
be indexed using SVD techniques including LSI.

As noted earlier, much more thorough presentations of SVD and the supporting linear
algebra mathematics behind SVD are found in many publications including, Manning and
Schütze (1999), Kalman (1996), Manning et al. (2008), Strang (1980) and Albright (2004).

Related to LSI, latent semantic analysis (LSA) is the process of using the statistical
approaches to create indexes which will allow the retrieval of similar concepts (Deerwester
et al., 1990). LSA does not require, necessarily, a vocabulary, but, instead, finds similar
documents based on latent semantic indexing (LSI) or enhancements to LSI like Random
Indexing (Cohen et al., 2010) which is discussed in following sub-section. The LSA concept
assumes that if terms or concepts are found in similar sets of text (not always the same text,
but similar) then these terms or concepts may be related concepts, may represent similar
concepts, or may be the same concept. Although slightly different in meaning, LSA and
LSI are used interchangeably in this thesis. LSA is the concept, LSI is a mathematical
implementation.

Random Indexing and Reflective Random Indexing

LSI proved to be more efficient than previous methods for information retrieval involving
terms and documents and has been moderately successful. However, it is still slow and
has computationally complexity of O(mn2 +m2n+n3) for m rows of terms and n columns
of documents in the matrix (Widdows and Ferraro, 2008). More recently, Cohen et al.
(2010) have experimented with random indexing (RI) – a more scalable version of LSI –
and extended the RI concepts to support indirect inference. Indirect inferences are what
Cohen, et al., sometimes call LBD. RI uses a random approach to further reduce the size of
matrices being analyzed to discover similar terms in documents. Instead of a full term by
document matrix, documents are placed into small sets of columns. For example, if there
are 10,000 documents, a document may be assigned to one of 20 randomly chosen columns.
Each document’s term frequency information is tallied in each of its columns along with any
other document that was randomly assigned (Kanerva, 2009).

Cohen et al. (2010) also experimented with variations of RI – Sliding windows on
RI, Term based reflective random indexing (RRI) to find related terms, and document based
RRI to find related documents. RRI uses multiple passes of RI where the results of one
pass are fed into the next. Term and document based RRI vary how the random indexing is
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chosen – by term or by document in various passes through the RRI. Their claim is that these
techniques provide more related terms/concepts that may not co-occur in the same document
but are possibly related (i.e. LBD candidates). They state that their use of RRI techniques is
better suited for LBD than other LSA techniques primarily because the size of the matrices
are reduced by orders of 104 or more (Widdows and Cohen, 2010).

Widdows and Cohen (2010) along with Widdows and Ferraro (2008) have developed a
package called Semantic Vectors for performing LSI using RI and RRI. Semantic Vectors
expands on LSI appoaches and introduces random indexing and reflective random indexing.
Both are improvements to LSI and the computationally expensive problems of LSA.

2.3 Evaluation Methodologies for LBD Systems

Ultimately, LBD systems try to discover previously unknown knowledge. For example, an
LBD system may discover a drug that may cure a disease but in the corpus examined, the
drug and disease were never mentioned together. If the corpus includes the most recent
literature, then it may be impossible to determine if the discovery is valid without performing
additional time consuming tests. When studying MEDLINE or other medical domain
literature, performing medical trials is the best way to prove that a discovery is valid or not
(Kostoff, 2008). However, there is still a need to evaluate the performance of LBD systems
(Yetisgen-Yildiz and Pratt, 2009). Most current LBD systems are evaluated in one of four
general ways (Henry and McInnes, 2017; Yetisgen-Yildiz and Pratt, 2009, 2006; Bruza and
Weeber, 2008; Ganiz et al., 2005):

1. Replicating previous discoveries: For example, using Swanson’s discoveries as the
gold standards and proving that the system is able to find the same discoveries using
the same older set of documents.

2. Use of medical experts: When a drug is studied of which a medical doctor or researcher
has much knowledge, their expertise can help to validate or discount a discovery.
Henry and McInnes (2017) refers to this as taking a new proposal applying empirical
evaluation.

3. Time slicing the corpus: Here the LBD is performed on a corpus from an older time
range and then is validated against newer documents. This is similar to item 1 in
that the LBD system would perform LBD on the same corpus used for Swanson’s
discoveries. It is different because the discovery need not be previously identified like
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Raynaud’s and fish oil. Once the system identifies a candidate discovery, the system
searches newer documents to see if the discovery is mentioned there.

4. Publishing results in medical journals: Put discoveries in front of medical experts
and let them validate or discount the discoveries. Henry and McInnes (2017) include
evaluation of how users interact and engage with systems thus providing real-world
usefulness of discoveries. This is a variation on publishing in medical journals.

Ganiz et al. (2005) indicate that there has not been much research in the area of
evaluating LBD results. Evaluation using good scientific methodologies is lacking in many
prior works related to LBD – often researchers simply try to recreate the Swanson results
(fish oil to Raynaud’s). Ganiz, et al., point out that evaluation of LBD is difficult when one is
trying to discover previously undiscovered knowledge. In early LBD works, clinical trials
were used or studied to validate the LBD discovery. This was how Swanson’s fish oil helping
to cure Raynaud’s phenomenon was proven. More recently, Sebastian et al. (2017) also
report that evaluation of LBD results is difficult and that reproducing previous discoveries
may cause overfitting of solutions. They propose that more work needs to be done to develop
consensus in LBD evaluation metrics.

Yetisgen-Yildiz and Pratt (2009) proposed a way to evaluate LBD systems. In their
work they propose using a before and after model. They propose that if LBD is run against
data from a specific date and earlier, discoveries may be found which were never mentioned
in the same set of data. Then, to validate if the discovery is a real one, examine data after the
specific date and see if the discovery is mentioned in more recent documents. If the discovery
is not mentioned prior to the specific date but is mentioned in more recent documents, then
LBD successfully discovered something not previously known. In this thesis, this technique
is called time slicing.

Time slicing provides interesting advantages over other methods. It does not require
experts to validate or discount the discovery whether by immediate consultation (item 2,
above) or by publishing and waiting (item 4). Instead it uses newer publications which
provide the expertise to validate or discount discoveries.

2.4 Medical Domain Data

Although LBD was first applied to medical documents and abstracts, the format of the text
data analyzed is not limited to documents nor to the medical domain. An example of a
non-medical LBD study is the work applying LBD to water purification (Kostoff et al.,
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2008b) and to the intelligence domain (Bradford, 2006). The data may reside in databases,
blogs or other sentence or multi-sentence corpora. The basic concept behind LBD depends
on multiple mentions of A, B and C concepts – or at least enough mentions to make the
connections with more than just one-mention links. The medical domain is attractive for
research in the text analysis fields because it is freely available for research and provides a
large quantity of documents.

This section describes two datasets used in this research that are focused from the
medical domain – one is the MEDLINE corpus (MEDLINE, 2002), against which LBD is
performed (Section 2.4.1), and the other is the Semantic MEDLINE Database or SemMedDB
(Kilicoglu et al., 2012), which provides data for training, relationship explanation and result
validation (Section 2.4.2).

2.4.1 Medical Corpus and Concept Names

Citations and abstracts of medical journals are available from the US National Library of
Medicine (NLM) National Institutes of Health (NIH) and their systems called PubMed and
the Unified Medical Language System or UMLS (Bodenreider, 2004).2 In particular, the
MEDLINE corpus provides access to over 24 million abstracts and the Medical Subject
Headings (MeSH) provides vocabulary of concepts including synonyms and other linking of
medical concepts (MEDLINE, 2002).3 The actual repository of abstracts and associated lists
of concepts including chemical terms and MeSH may be found in the MEDLINE/PubMed
Baseline Repository.4

Biomedical text mining or BioNLP has been a large place of research and often
includes studies involving the MEDLINE corpus. BioNLP touches on a combination of
information extraction including natural language processing (NLP), information extraction
and bioinformatics (Cohen and Hersh, 2005).

Building on the MEDLINE corpus, Rindflesch and Fiszman (2003) have developed a
system called SemRep that extracts relationship information for concepts identified in the
Unified Medical Language System (UMLS). They used techniques that interpret MEDLINE
abstracts identifying relationships but generalizing the relationships into a small set of types
of relationships. For example, TREATS and CAUSES are the general relationships but

2https://uts.nlm.nih.gov/home.html
3http://www.ncbi.nlm.nih.gov/pubmed/ or http://www.PubMed.gov/
4https://mbr.nlm.nih.gov/
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Table 2.1 UMLS MRREL.RRF Sample Data with column headers added for readability

may be derived from more specific and technical phrases. They use the phrase hypernymic

propositions to describe this simplification of relationships types.5

The UMLS Metathesaurus is a source of medically related terms and relationships
between those terms (UMLS, 2012). UMLS provides a browsing system called
MetamorphoSys which allows some navigation of concepts and terms related to those
concepts. The actual underlying files like MRREL.RRF provide even more information
about relationships than is exposed by MetamorphSys. Some examples of the information
are in Table 2.1. The CUI1 and CUI2 columns are keys that map to concepts in the
MRCONSO.RRF file. There are also columns in this table that map concepts to other
concepts that are basically the same thing – for example, Raynaud’s disease (possessive) and
Raynaud disease (not possessive).

5Hypernyms are words that are the general class of another set of words. For example, color is a hypernym
of red.
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MetaMap is another system available with the UMLS which can identify concepts in
texts including handling the synonyms and word sense disambiguation. MetaMap provides a
Java API (MetaMapAPI) to assist in programmatically identifying the CUI associated with a
concept including confidence scores – higher scores mean closer match.

2.4.2 Medical Relationships Data

In addition to raw UMLS data, data derived from the Metathesaurus and SemRep, the
Semantic MEDLINE Database (SemMedDB) is also available for use from NLM.
SemMedDB is a MySQL database that contains information derived from the full
MEDLINE and UMLS data. The content of SemMedDB is information on the concepts and
relationships to other concepts along with the supporting sentence containing the
relationship. Information is also available that links back to the original MEDLINE citation
(Rindflesch et al., 2011). SemMedDB contains subject-predicate-object triple information
that allows easy display and processing of the data as a graph. There are currently over 58
million subject-predicate-object triples in the MySQL SemMedDB. A more recent
application of the SemRep and the data found in SemMedDB is that which is described in
Hristovski et al. (2015), where they present a question answering system built off the
semantic relationships between concepts stored in the SemMedDB.

The steps used to create SemMedDB are the following:

1. Issue a query to pubmed to retrieve MEDLINE citations
2. Use results from SemRep to provide relationships
3. Normalize the relationships so that they match relationships defined in UMLS
4. Remove sets that are too general like those referring to “individual” or “person”
5. Store data in SemMedDB
6. Present data in graphs (link charts)

There are eight tables in the MySQL SemMedDB.6 The predication_aggregate table
contains relationship triples including the subject, predicate, object and references to corre-
sponding sentences. Sentences are in another table and that table contains information link-
ing the sentence back to the actual PubMed MEDLINE document.

6https://skr3.nlm.nih.gov/SemMedDB/dbinfo.html
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2.5 Limitations of Current LBD Systems

This section discusses some specific limitations in current LBD systems. First, the nature
of the discovered relationship is left up to the researcher to determine after the candidate
LBD discovery has been made (Section 2.5.1). Second, they include lack of accuracy
in LBD discoveries and the fact that there can be very large numbers of candidate LBD
pairs discovered using co-occurrence approaches (Section 2.5.2). And last, using statistical
approaches like LSA do not identify candidate linking B terms (Section 2.5.3).

2.5.1 Explanation of LBD Candidate Relationships

Current LBD systems do not attempt to automatically identify why A and C are related, even
when candidate B terms are identified. Even when A and B or B and C are found to be in
close proximity of each other, no system tries to automatically identify what the relationship
is between A and B or between B and C. Likewise, the inferred relationships between A
and C are not automatically generated, either. That is, given a relationship between A and B
and a relationship between B and C, no system automatically suggests what the relationship
might be between A and C – even when not explicitly mentioned anywhere in the corpus.
For example, as noted before, if A is Raynaud’s disease, B is blood viscosity problems and C
is fish oil. If A and B co-occur with proof in the documents that A is caused by B, and B
and C co-occur with proof documenting that C treats B, but A and C are never mentioned
together, a conclusion may be that Raynaud’s may be treated by fish oil.

2.5.2 Lack of Accuracy and Excess Quantity Using Co-Occurrence

Some techniques used in LBD depend solely on co-occurrence of terms to decide that they
may be linked. Co-occurrence may not restrict where and how linking B terms appear in
documents. For example, in the Raynaud’s disease. Making conclusions based simply on
co-occurrence is not possible as it leaves out the reason or explanation of the relationships.
This leaves much more work for the researcher in validating the mass quantities of hypotheses
discovered in LBD (Preiss et al., 2015; Hristovski et al., 2006; Wren, 2008a; Ganiz et al.,
2005). Henry and McInnes (2017) and Kostoff (2008) discuss the difficulty in validating as
being accurate the vast quantities of discoveries that LBD systems generate as being common
problems preventing wider adoption of LBD systems.

There have been improvements to co-occurrence approaches to LBD like limiting
the vocabulary for the candidate A and C terms (a variation on closed LBD) and also in
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having a limited set of B terms rather than considering all of them. By using a vocabulary of
terms related to the subject matter being studied, B terms may be identified that are more
likely to have a relationship with the LBD A and C concepts (Hristovski et al., 2008). In
the medical domain which will be described more in Section 2.4, a common vocabulary of
medical terms is available in MEDLINE (2002) and is called the Medical Subject Headings
(MeSH). However, even with something like the MeSH vocabulary, more post processing
work is required to determine if the B terms makes sense and really point to a discovery of
a relationship between A to C. That is, depending on co-occurrence to find the linking B
terms may introduce too many false positives or noise. Other improvements to co-occurrence
involve examining the general proximity of the A, B and C terms. If A, B and C are relatively
closely located in the documents, they are given higher probability of being related. Again,
however, this does not explain the relationships.

2.5.3 Using LSA Does Not Identify Candidate B Terms

LSA, including RI and RRI, uses statistical mathematics and singular value decomposition
on term by term or term by document matrices to identify terms that may be related (See
Section 2.2.3). When found to be related, the terms may or may not appear together in the
same documents. When pairs of terms are found to be related, but are not mentioned in the
same documents, they are an LBD candidate pair. The candidate pair is identified without
any B linking terms. Additional processing outside of the LBD discovery is required to find
linking B terms.

2.6 Information and Relationship Extraction

In Section 2.5.1, lack of automatic explanation of LBD candidate relationships was iden-
tified as a limitation of current LBD systems. This section presents an overview of infor-
mation extraction (Section 2.6.1) and relationship extraction (Section 2.6.2) including two
related topics: conditional random fields (Section 2.6.3) and open information extraction
(Section 2.6.4).

2.6.1 Information Extraction

Information extraction (IE) aims to identify structured results describing things found inside
the documents. IR (Section 2.2.1) is usually at the document level and assists in retrieving
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documents that are related to or actually mention specified terms or concepts (Jurafsky and
Martin, 2009). To describe how IE returns structured information, consider the paragraph:

"Eastman Kodak Co. (EKDKQ), based in Rochester, New York, emerged
from bankruptcy today as a commercial-printing company that sells nothing
to consumers. The new, smaller Kodak has shed its cameras, film sales and
consumer photo developing that made it a household name. U.S. Bankruptcy
Judge John Doe last month approved Kodak’s exit plan. He cut about $4.1 billion
of its debt and left shareholders empty-handed." 7

One may wish to know more about entities described in this document. They may wish to find
out more about "John Doe" and "Kodak". What is John Doe’s title? Where is Kodak located?
They may also wish to find out the relationship between John Doe and the shareholders and
between Kodak and its product lines. IE performed on the paragraph determines that John
Doe left shareholders empty-handed and Kodak used to sell cameras and film.

Named Entity Recognition (NER) may be employed to identify things found in the
text being processed. For example, a person, location or organization. A named entity may
have multiple annotations describing it. For example, "John Doe" is a named entity that is a
person and is (most likely) a male. Person and male are annotations describing the actual
named entity instance, "John Doe". NER is the process of identifying named entities and
other meaningful concepts in text. (Jurafsky and Martin, 2009).

NER may be performed by systems that use grammatical or statistical processing
techniques. Grammar-based NER systems like GATE (Cunningham et al., 2002, 2011)8

and UIMA (Ferrucci and Lally, 2004)9 usually make multiple passes across the text being
analyzed with each pass providing more information about the text. Usually these steps
are performed: The text is first tokenized or broken down to words, spaces, punctuation,
etc. Next the text is compared to known lists of words that help identify them – this is
done using gazetteers. An example would be a list of male first names. Then sentences
are identified. Next the tokens are further analyzed to identify what parts of speech they
represent. For example, identifying nouns, verbs, adjectives, participles, etc. Then the NER
system will apply various sets of rules to further identify the semantics of the text. This may
include pronominal and orthographical co-referencing which clarifies what pronouns like
he, it, she or they are really referring to and joins repeated occurrences together as the same

7paraphrased from http://www.bloomberg.com/news/2013-09-03/kodak-exits-bankruptcy-as-printer-
without-photographs.html

8https://gate.ac.uk/
9http://uima.apache.org
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named entity. For example, in the Kodak example, Kodak is mentioned multiple times and is
sometimes referred to as "it". Pronomial co-reference will clarify that "it" refers to Kodak
and the orthographic co-reference will join together all instances of Kodak, including the
references by pronouns.

Using the Kodak example, a grammatically based NER system may look at the para-
graph and annotate it with the information that "John Doe" is a person and has a feature of
being a male and he works as a "U.S. Bankruptcy Judge". The NER system will also find
that "Rochester, NY" is a location, that "Eastman Kodak Co." is located there, that "Kodak"
is the same as the organization "Eastman Kodak Co.", and that "$4.1 billion" is a money ref-
erence.

2.6.2 Relationship Extraction

In the previous section, an example about Kodak was studied. NER identifies the nouns,
verbs and may even relate that Kodak is located in Rochester, New York. This located in

relationship touches on another area of IE that is called relationship extraction which adds
more semantics to the extracted entities. The relationship between Kodak and Rochester is
the phrase "based in". This is an example of a binary (or 2-ary) relationship.

Jurafsky and Martin (2009) state that a relationship is a set of ordered tuples of instances
of objects in a specific domain. For example, Kodak is "located in" Rochester, NY and John
Doe "has job" as a judge. Here the relationships are binary. Relationship analysis builds
off of named entity extraction where, for example, people, places, organizations, dates, etc,
are identified in the text being analyzed. Then the relationships between these entities are
identified.

Relationships may be more complicated (n-ary) where three or more entities are related
in some sort of way. Multiple drugs having an ability to cure a disease is an n-ary relationship
when each drug alone is not able to cure the disease. Another example may be that John
makes $50,000 salary as of 1 October 2012 – this is a 3-ary relationship and does not as
easily break up into two binary relationships because the salary is tied to the date and to John.

Li et al. (2008) group relationship extraction approaches into three types –
co-occurrence analysis, rule-based approaches and statistical learning. They state that their
work is specific to biomedical documents, but the same concepts should apply to other
domains. Co-occurrence and rule-based approaches are basically an extension of the NER
approaches to identifying concepts in text. Statistical learning is where relationship
extraction may be treated as a classification problem. Relationships may also be identified
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using supervised and semi-supervised techniques (Jurafsky and Martin, 2009). An example
is conditional random fields described in Section 2.6.3. Another type of relationship
extraction is from the Open Information Extraction research (Open IE) (Etzioni et al., 2011)
and is discussed more in Section 2.6.4. This form of relationship extraction is a
semi-supervised approach – models are trained on known relationship models and then
system tries to find hidden relationships.

SemMedDB (Section 2.4.2) is a compilation of relationship data that has been normal-
ized to match UMLS relationship types and also to remove relationships that were deemed to
be too general. In addition to providing binary relationships between concepts, SemMedDB
also preserves the pedigree of the relationship by tracking the source document and sentence
references.

2.6.3 Conditional Random Fields

Conditional Random Fields or CRFs are undirected graphical models that are trained to
maximize the conditional probability of outputs given a set of inputs (Lafferty et al., 2001;
Sutton and McCallum, 2007). Lafferty introduced the concept in 2001 and he and others have
done much in applying CRFs to problems of relationship learning and extraction (Lafferty
et al., 2001; Sutton and McCallum, 2007; Banko and Etzioni, 2008; Culotta et al., 2006;
Fader et al., 2011; Tsuruoka et al., 2011). Sutton and McCallum (2007) describe two classes
of models for analyzing graphical models. Generative models are those that are based on
joint distributions – you must know the probability of both sides of the relationship. So for
X and Y being random variables, the probability of X noted as P(X), and the probability
of Y noted as P(Y), must both be known. An example of generative models are naïve
Bayes models. Discriminative models are based on a model of conditional distributions and
one does not need to know the P(X). Logistic regression is an example and is part of CRF
methodologies (Lafferty et al., 2001; Sutton and McCallum, 2007). McCallum et al. (2000)
describe maximum entropy Markov models (MEMMs) and note that MEMMs and CRFs are
conditional probability finite state machines making them conditional and not generative.

In an interesting application of CRFs for identifying relationships, Culotta et al. (2006)
proposed a supervised machine learning method that would assist in identifying familial
relationships that may not be explicitly mentioned in the texts. The basic example they
present discovers the unmentioned relationship that George W. Bush is the cousin of John
Prescott Ellis. The facts found in the text include that George W. Bush is the son of George H.
W. Bush, that George H. W. Bush is the sibling of Nancy Ellis Bush and that Nancy Bush’s
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son is John Prescott Ellis. Using CRFs as implemented in their software system MALLET
and its GRMM package, they extracted relations from text. The CRFs are trained using
annotated corpus (70/30 split). They captured the models for 53 different relationship types
including, for example, father, son, sister, brother, cousin, superior, member of, religion,
job title, and friend. Once they captured the knowledge they used a closed-loop system that
alternates between bottom-up extraction and top-down pattern discovery. Bottom-up where
they learn everything from the data and then top-down to augment the data with discoveries
based on known patterns and they would identify, for example, that George W. Bush is the
cousin of John Prescott Ellis – a previously unmentioned relationship.

Relationship extraction using CRFs may not be needed in the MEDLINE domain
studied here since SemMedDB will provide relationship data. However, CRFs may provide a
possible solution for relationship explanation of LBD candidates in other domains.

2.6.4 Open Information Extraction

Banko and Etzioni (2008) define relationship extraction to be open relationship extraction
when the relationship types or names are not known in advance. The system will use a set
of relation-independent heuristics (or models). They classify CRF as an open extraction
methodology. Etzioni et al. (2011) present an improved OpenIE methodology that improves
precision and recall by two fold. In both papers, a system called ReVerb is presented that is
able to extract relationships between entities without starting nor ending terms. ReVerb finds
verb-based phrases and suggests them as the relationship between left and right sides of the
relationship (Fader et al., 2011).

Etzioni et al. (2011) also present R2A2 which adds a learning capability called
ArgLearner. ArgLearner uses classifiers to identify the left and right side arguments. The
R2A2 system can learn phrases that represent relationships where ReVerb tries to do this
automatically. the R2A2 system is trained using 20,000 sentences from the CoNLL 2005
Shared Task (Carreras and Màrquez, 2005) and generated 29,000 OpenIE tuples.

Both of these OpenIE systems are only able to extract simple relationships. However,
they cannot identify n-ary relationships nor can they break up phrases like "Seattle Symphony
Orchestra" and infer that there is a relationship tuple of (Orchestra, is the Symphony of,
Seattle).
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2.7 Classifiers

Classification is a supervised machine learning technique that discovers patterns in samples
of understood data with known outcomes which are then used to to predict outcomes in
new data (Witten et al., 2011; Cios et al., 2007; Marsland, 2015). Today, there are hundreds
and maybe thousands of different classifiers available. Fernández-Delgado et al. (2014)
studied 179 of them that spanned 17 families of classifier. In their work, they were trying
to determine if they could identify the best classifier by studying many classifiers across
many families of algorithms and across many data sets. They concluded that the family
of random forest classifiers perform best but they also noted that many classifiers perform
very similarly with only slight differences when compared with other classifiers. Demšar
(2006), Lotte et al. (2007) and Williams et al. (2006) also studied various classifiers and
conclude that many classifiers perform similarly. Demšar (2006), in particular, tried to find
the best classifier using various tests of significance including t-tests and Wilcoxon tests to do
side-by-side comparisons of classifier pairs. When considering classifier selection, attention
to how they perform with respect to compute time is important. Some classifiers are very
compute intensive and may not be practical for providing results in a timely fashion. The
focus of this work is to determine if classification can assist in explaining LBDs and was not
to seek out the perfect classifier for this problem set. The remainder of this section provides
overviews of the classifiers applied to the problem of explaining LBDs.

Naïve Bayes

Naïve Bayes classifiers are based on Bayes theorem with the naïve part being the simplifica-
tion that all features are independent. Bayes theorem states:

P(A|B) = P(B|A)P(A)
P(B)

(2.3)

where P(A) and P(B) are the probability of A and of B respectively and P(A|B) is the
conditional probability of A given that B has been observed and P(B|A) is the conditional
probability of B given that A has been observed. (Barber, 2012; Jurafsky and Martin, 2009;
Manning et al., 2008)

The general algorithm for a naïve Bayes classifier is to identify the probability of each
feature instance occurring for each outcome independent of any other feature. Then identify
the most likely outcome for a set of features using the simplified or naïve mathematics based
on Bayes theorem assuming independence:
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P(A|B) = P(b1|A)×P(b2|A)× . . .×P(A)
P(B)

(2.4)

where each possible feature data value of B is represented as b with subscripts (e.g. b2) and
P(b2|A) means the probability of b2 given that the outcome A has been observed.

Decision Tree Classifier (J48 - C4.5)

J48 is an implementation of the C4.5 algorithm that is a decision tree classifier that extends
the original work on the ID3 algorithm developed by Quinlan (1986). The ID3 algorithm is a
recursive algorithm that creates subsets of the data based on values of single attributes. For
example, break the training dataset into multiple subsets based on one of the features. Then
the algorithm tries to decide if further subsets are required based on other features. Another
subset is required if, after splitting based on one of the features, the remaining outcomes
are not all the same. The algorithm completes when all outcomes at each leaf node are
homogeneous. C4.5 algorithm is a refinement on the ID3 algorithm in that the choice of
feature at each level is picked based on an information gain calculation.

An often used example that helps to describe decision tree classification is that which
decides when to play outdoors (Quinlan, 1986; Witten et al., 2011). The variables are the
outlook (sunny, overcast, raining), the temperature (hot, mild), the humidity (high, normal)
and the wind (strong, weak). The logic for a decision tree will be to select an attribute, say,
the first one of outlook. Three branches are generated for each possible value of the outlook.
Then, the resulting outcomes are examined. If they are all the same, then stop expanding that
branch. If they are not the same on the current branch, select another feature and perform the
same branching steps and make the decision on whether or not to stop. This continues until
all leaf nodes have the same outcome.

Decision trees are fundamentally easy to understand and work well with categorical
data as is in the LBD problem space presented in this work. They also are tolerant to noisy
data – cases where data may contain some nonsensical training instances. A downfall of
decision trees is overfitting to the data.

Decision Tree Grafting

Work by Webb (1999) introduced additional nodes to a decision tree in an attempt to reduce
errors in predicting outcomes. The goal was to obtain some benefits realized in decision
committee methods but not be as slow to perform as those techniques. The additional nodes
contain additional information not normally presented to the leaf nodes. These are the grafts,
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and they are handled as a post processing step to normal decision tree analysis. The key is
that the basic computation is still tree based but accuracy of predictions may be improved.
The implementation of this algorithm used here is called J48Graft.

Decision Table

Kohavi (1995) describes decision tables as a supervised learning algorithm in domains with
discrete feature sets. Decision tables are similar to decision trees but present a different way
to view the possibilities. A tree studies each feature in succession seeking to find ultimate
leaf nodes where all outcomes are the same (this is when to stop computing on the tree
traversal). A table has, for example all possible feature types as rows including the outcome
(e.g. A semantic type, B semantic type, etc, and the A to C relationship) and the columns
represent possible values identified in the training data. Additional information about each
row-column intersection may exist like a percentage score of how many times that cell is
encountered in the training data. This classifier is one that bases its choices on majorities.

Decision Table and Naïve Bayes Hybrid

Hall and Frank (2008) present a combination of a decision tree and the naïve Bayes algorithms
as a classifier. This classifier uses the decision table as a source of conditional probabilities
and then applies naïve Bayes logic to produce ultimate outcomes. Effectively, a decision
table is first developed for the entire training set and then parallel decision tables and naïve
Bayes models are generated and results from each set are combined to produce predictions.
The implementation of this algorithm used is called DTNB.

Partial Decision List With Separate and Conquer on C4.5

Frank and Witten (1998) present a partial decision tree classifier that is based on both the
C4.5 algorithm and on pruning techniques that they call PART. In Cohen (1995), the RIPPER
algorithm is described which presents some of the pruning techniques used to create the
PART algorithm. RIPPER is more efficient and better for larger data sets than pure C4.5
algorithms. The PART algorithm focuses on developing partial trees and employs a divide
and conquer approach to pruning that doesn’t require global optimizations. Effectively, the
PART algorithm ends up pruning some leaves or even partial branches leaving simpler sets
of rules in the final decision tree.
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Random Forest

A random forest classifier builds on single decision tree classifiers by randomly select
different starting points for the trees and combine these results in, theoretically, a more
accurate classifier (Breiman, 2001; Liaw and Wiener, 2002; Rodriguez et al., 2006). By
combining multiple runs, random forest classifiers are an example of an ensemble classifier
(See Section 2.8) based on a single tree classifier algorithm. Random forest algorithms help
prevent overfitting to the data – a problem that a decision tree algorithm, by itself, may have.

Sequential Minimal Optimization

Sequential Minimal Optimization (SMO) is an implementation of an SVM that is optimized
by breaking the quadratic programming (QP) problem associated with SVMs into the smallest
QP problems (Platt, 1998). Support-Vector Machines (Cortes and Vapnik, 1995), which are
also known as SVMs, present a classification methodology that, in addition to providing a
solution to linearly separated data, provides solutions to classifying non-linear separations
of training data sets and provides maximum separation of the hyperplanes that separate the
classes of data.

The mathematics behind SVMs inherently become very computationally expensive
as each hyperplane represents, at a minimum, a quadratic equation and in a multi-feature
classification problem, many equations must be solved solve. Vapnik, Cortes, Platt and others
developed various optimizations to SVM classification including SMO.

K-nearest neighbors classifier

K-nearest neighbor (k-NN) classifiers are instance based learning algorithms (Witten et al.,
2011). IBk is an implementation of k-NN. The concept of this algorithm when applied to
numerical data is to classify a feature based on its closest neighbor for pairwise comparison
with one common method being the use of euclidean distance calculations to identify most
closely matching entities. When applied as a text classifiers, some form of matching to the
training data is necessary. The k refers to how many neighbors to consider in identifying a
match.

Instance based learning may be thought of as rote or memorization learning – patterns
are stored and indexed for lookup, later, during the task of classification. The outcome of
the closest match of features is returned as the prediction. When k is greater than one, some
form of voting decides which outcome to present.
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2.8 Ensemble Learning

Ensemble learning is a specialization of classification. Instead of using a single classifier
and its predictions, ensemble learning combines the results of multiple classifiers to identify
predictions. There have been many ensemble schemes identified by various researchers –
for example, Dietterich (2000); Witten et al. (2011); Hung and Chen (2009); Rodriguez
et al. (2006); Tan and Gilbert (2003); Wang et al. (2011). Three prominent ensemble
methods discussed here are bagging (Section 2.8.1), boosting (Section 2.8.2) and stacking
(Section 2.8.3).

2.8.1 Bagging

The term bagging is derived from bootstrap aggregation and consists of combining the
outcomes of multiple classifier models created using the same classifier algorithm by taking
some form of vote – for example, majority (most match) or consensus (all match) with each
contributor having equal weighting. Bagging is often used on decision tree or other classifier
algorithms that may have overfitting tendencies on some data sets (usually smaller data sets)
(Wang et al., 2011; Witten et al., 2011). Random forest classification algorithm is a bagging
algorithm applied to random trees (Liaw and Wiener, 2002; Breiman, 2001). These are a
summary of the steps in training a bagging algorithm classifier:

• Break the training data into multiple subsets

• Train a classifier multiple times using some of the training subsets (not all but overlap
is fine)

• Use all of the trained classifier models on the test data and choose the outcome that
shows up most often (voting majority)

Breiman (1996) concludes with the following quote:

"Bagging goes a ways toward making a silk purse out of a sow’s ear, espe-
cially if the sow’s ear is twitchy."

2.8.2 Boosting

Boosting combines results of classifiers in ways where some classifier results are weighted
more than others. Where bagging training may be run for each subset of training data in
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parallel, boosting requires that each model is trained serially – successful or unsuccessful
classifications from each model trained are fed to the next model allowing weighting to be
applied to the next model’s outcomes thus boosting its performance (Witten et al., 2011;
Bauer and Kohavi, 1999; Schapire, 2013). That is, boosting algorithms adjust their design on
each learning run where bagging algorithms do not (Bauer and Kohavi, 1999). These are a
summary of steps in training a boosting algorithm classifier:

• Start with all training instances having equal weight

• For n iterations

– Train the classifier

– Compare results with expected outcome

– For next iteration, weight higher the results misclassified

2.8.3 Stacking

Stacking, also known as stacked generalization, was identified by (Wolpert, 1992) and is a
method that effectively uses bagging but not necessarily on the same classification algorithm.
Stacking is not as commonly used as bagging and boosting schemes usually because it more
difficult to analyze theoretically (Wang et al., 2011). These are a summary of steps in a
stacking algorithm classifier:

• Train a number of base classifiers using normal cross-validation techniques and differ-
ent classifier algorithms

• Build a new training set that includes results from the base classifiers as additional
instance information (or use only the prediction data as instance data)

• Training a higher level classifier sometimes called a metalearner or metaclassifier using
the new training set

2.9 Chapter Summary

This chapter has presented a literature review including an overview of LBD – what it is,
how it is done and what limitations there are in current approaches to it. Then this chapter
continued into studies of relationship extraction, evaluation methodologies and ensemble
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learning techniques which are all important for subsequent experimentation. The rest of this
chapter discussed topics more tightly integrated in this thesis – one was an introduction to
the MEDLINE domain and the other was definition of terminology used throughout the rest
of this work.





Chapter 3

Approach and Data for Relationship
Prediction

This chapter first describes the overall approach used to explain the natures of the relationships
between candidate LBD pairs using classification and then this chapter describes the data
designs presented to classifiers. Chapter 4 uses these data designs to study performance with
various classifiers and ensemble learners and Chapter 5 applies the classifiers to the task of
explaining actual LBD relationships.

Explaining the relationships of candidate LBD pairs (the A to C relationship) will
require the identification of linking B terms and the natures of the relationships between A
and B and B and C (the A-B-C triples nomenclature is described in Sections 2.1.1 and 2.1.3).
Information from these partially defined LBD triples will be presented to the classifiers in an
effort to predict the natures of the relationships of candidate LBD pairs.

To develop a classification solution, a feature set must be designed that captures enough
distinguishing information about the A, B and C concepts and the A to B and B to C
relationships that the classifiers may be able to perform better than baselines but not be
too specific that the classifiers cannot predict nor compute. Then training data needs to be
identified and developed. This will include finding a source of gold standard facts from
which the classifiers may be trained and evaluated. Additionally, variations of the data will be
required to more thoroughly evaluate the designs and performance of the explored solutions.
These data-related items are discussed in the rest of this chapter.

After the feature designs and training data are established, Chapter 4 presents the
studies of the creation and evaluation of the classifier models using various standard methods
like cross-validation and hypothesis testing. Additionally, that chapter studies improvements
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to the data designs with the goal of identifying the feature sets and classifier models for use
in explaining LBD relationships.

Chapter 5 presents LBD on an older time-slice of documents using Semantic Vectors,
a co-occurrence approach. That chapter also presents the steps that prepare the discoveries
for the classification that will explain the nature of the LBD relationships. This is done by
completing the partial triples by identifying linking B terms and by finding the A to B and
B to C relationship types. The next and a very important step presented in Chapter 5 is to
validate any prediction suggested by the classifiers by studying newer literature to see if the
discoveries have ever been explained (either agreeing with prediction or contradicting the
prediction). The last topic presented in Chapter 5 is to study ensemble learners in an attempt
to improve the accuracy of LBD A to C relationship predictions.

To summarize, the approach presented in this work to explain LBD relationships
includes these steps:

1. Definition of classification feature sets (Chapter 3)

2. Identification and development of training data (Chapter 3)

3. Application and evaluation of classifiers (Chapter 4)

4. Improvements of feature designs (Chapter 4)

5. Identification and preparation of LBD candidates (Chapter 5)

6. Application of classifiers to the LBD candidate pairs (Chapter 5)

7. Validation of the results using time-slice approach (Chapter 5)

8. Study of ensemble learners including validation (Chapter 5)

The rest of this chapter discusses the data used for relationship prediction including
concept selection (Section 3.1), data used for training classifiers (Section 3.2), the feature
design for supervised learning or classification (Section 3.3), the data format presented to
the classifiers (Section 3.4), the refinement of data designs that involve removal of instances
containing commonly occurring feature values, and regularization of the predicted outcomes
(both discussed in Section 3.5). This chapter ends with a summary of all of the experimental
data that will be used throughout Chapter 4 for classifier experimentation (Section 3.6).
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3.1 Concept Selection

This section discusses concept selection. The approach in this work uses statistical methods
to perform LBD (see Sections 2.2.3 and 5.2). To do this, concepts are known ahead of
time and, after indexing the corpus, LBD candidates are identified by searching for concept
pairs and examining their relatedness scores. If the score is considered significant and the
concepts are not mentioned together in any document in the corpus, a candidate LBD pair
has been identified. This methodology requires a set of concepts for which look-ups are
performed. An exhaustive list could be used but there are two problems with that approach
– one is simply the computational complexity of identifying how all concepts relate to all
other concepts. Even with enhancements based on LSI and the implementations with RRI
like Semantic Vectors, these processes still take a great amount of time to compute. The
other problem is that the statistical methods will not identify concepts as being related if
the concept is only mentioned once or twice in the corpus. Therefore the set of concepts
needs to include those concepts that appear a significant number of times in order for the
statistical methods to present meaningful results. The approach to LBD in this work that uses
statistical co-occurrence methods in a closed LBD system uses a limited set of concepts as
also suggested by Weeber et al. (2001). The system is closed because the set of candidate
C terms that will be found to be related to some A terms is limited by the list of concepts
described in this section.

The concepts used in this work come from MEDLINE (Section 2.4) and in particular
from the 2002 version of the MEDLINE/PubMed Baseline Repository.1 The early year was
chosen to provide a smaller data set with which to work and to reduce the computational
expense that the newer, larger versions may have introduced. The MEDLINE repository
contains two files containing statistics on how many times certain terms appear in the corpus.
The files are Chemical_freq_alpha that lists chemical concepts, and MH_freq_count that
lists medical subject heading concepts (MeSH). The terms in the MeSH file are the primary
topics found in MEDLINE repository and the chemical list is a list primarily focused on
chemicals and drugs. In addition to those chosen from the MEDLINE files, some additional
concepts are identified in works by Swanson (1986a,b) and Kostoff et al. (2007). These
sources combine provide the set of concepts used in this work. The set is not meant to be
exhaustive, but instead, was meant to provide a list large enough to be interesting.

1https://mbr.nlm.nih.gov/Download
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The Chemical_freq_alpha file is a text file contains that frequency count information
on 123,550 chemicals. Figure 3.1 contains a few samples from this pipe (|) delimited file.
The three columns separated by the pipes represent:

1. The overall frequency count in the MEDLINE corpus
2. The MEDLINE registry number for the chemical
3. The chemical name

Fig. 3.1 Sample from Chemical_freq_alpha file

Chemicals appearing 100 or more times are selected and added to the concept list. This
number was selected after considering the full list of chemicals and realizing that infrequently
appearing concepts would not provide enough documents from which B linking terms could
be identified. If a concept only appears a few times in the corpus, there is less chance of
finding common linking terms and less chance that statistical co-occurrence techniques would
find any related concept pairs that include the infrequently occurring concept. After applying
this filter, a total of 9,317 chemicals were identified and added to the list of concepts.

The MH_freq_count text file contains the frequency count information on 19,781 main
subject headings. Figure 3.2 contains a few samples from this file which is also pipe delimited.
The three columns represent:

1. The overall frequency count in the MEDLINE corpus
2. The count when the heading is the main or starred item
3. The main heading name

Starred main headings appearing 100 or more times are selected and added to the
concept list. Again, this limit was chosen to help provide a large enough document set from
which statistically related concepts and B linking terms could be identified. After applying
this filter, a total of 8,103 starred main headings were identified and added to the list of
concepts.
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Fig. 3.2 Sample from MH_freq_count file

The list of concepts is further augmented by adding concepts from the Swanson (1986a,
1988) and Kostoff et al. (2007) papers. These additional 248 concepts were added so that
there may be more familiar literature based discoveries like those related to Raynaud’s
syndrome, migraines, Parkinson’s disease, multiple sclerosis and cataracts. The concepts
from others’ research include those found as candidate LBD pairs in addition to linking B
terms (i.e. they were from the set of A, B and C concepts).

A total of 17,668 total concepts are produced by these three selection steps. After
duplicates are removed along with those that are not found to be mapped in the UMLS
Metathesaurus (more on why this is important is discussed in Section 5.1.1), a master list
of 15,427 concepts remains. This is the set that will be used when performing relatedness
studies using Semantic Vectors package as described in Section 5.2. Additionally, this list is
used to initiate the queries that build the fully qualified triples in Section 3.2.

3.2 Generation of Training Data

In Sections 2.1.1 and 2.1.3, the A-B-C triples nomenclature was introduced and will continue
to be used extensively throughout the rest of this work. Classifiers will be trained using fully
qualified triples which are those where the A, B and C concepts are known along with the
nature of the relationships between A and B, B and C and C and A term pairs of the triple.

Supervised machine learning classifiers are trained using sets of training data that
contain a set of feature instances and their predicted outcomes. A discovery identified with
LBD consists of an A and a C concept and associated linking B terms. Since the primary
purpose of this thesis is to automatically explain LBD relationships, the nature of the A to
C relationship must be known in the training data. That is, the A to C relationship is the
outcome or the prediction of the classifier. Other features may be presented to the classifiers –
for example, the nature of the relationships between the A and B and between the B and C
concepts. Details of these features are discussed in Section 3.3.
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This section describes how a set of training data is generated using a set of facts
identified by other researchers. SemMedDB (Section 2.4.2) provides a set of data that, for
the purposes of this research, will be considered as a gold standard from which fully qualified
triples are identified and turned into training data for the classification tasks. These triples
consist of a set of A, B and C concepts along with A-B, B-C and C-A relationship types
including the direction of each relationship.

SemMedDB is a MySQL database and has tables containing the concepts, their
semantic types and relationships between concepts. A total of 1,339,227 concepts,
68,000,470 relationships between concepts and 139,957,647 sentences are stored in the
version of SemMedDB used in this work. Additional tables contain semantic type
information for the concepts and citation information for the stored sentences. The
relationships stored in SemMedDB are stored with references to the actual sentences, article
ids and dates from where the relationship was derived.

A sample query of SemMedDB to find sentences mentioning Multiple Sclerosis (CUI
of C0026769) and Morphine (C0026549) and mentioning Parkinson’s Disease (C0030567)
and Cerebral Cortex (C0007776) is as shown below.

SELECT distinct(pa.predicate), pa.s_cui, pa.o_cui, pa.s_name,

pa.s_type, pa.o_name, pa.o_type, pa.sid, pa.pmid,

s.SENTENCE, c.ISSN, c.DP, c.EDAT, c.PYEAR

FROM semmedver24.predication_aggregate pa,

semmedver24.sentence s, semmedver24.citations c

where (((pa.s_cui = "C0026769" and pa.o_cui = "C0026549")

or (pa.s_cui = "C0026549" and pa.o_cui = "C0026769")) or

((pa.s_cui = "C0030567" and pa.o_cui = "C0007776")

or (pa.s_cui = "C0007776" and pa.o_cui = "C0030567")))

and s.sentence_id = pa.sid and pa.pmid = c.pmid

This query produces results like the subset shown in Table 3.1. Note that the tables in this
query are the predication_aggregate table where the relationship between two concepts is
found and in the sentence and citation tables where the information supporting the relationship
is found.

The logic used to find fully qualified triples in SemMedDB to use as training data
is as shown in Figure 3.3. The initial A concepts are the only ones that come from the
list of concepts identified in Section 3.1. The B and C concepts need not be constrained
because including any related concepts is acceptable. Having a list of concepts becomes most
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Require: consider only articles from 1980 and newer
1: for each A concept do
2: query SemMedDB for relationships between A and any B
3: for each B concept with A to B relationship do
4: query SemMedDB for relationships between B and any C
5: for each C concept with B to C relationship do
6: query SemMedDB for relationship between C and current A
7:
8: if relationship found between A and C then
9: if none of A, B or C relationships include a disease of interest then

10: if all relationships are from 1980-1984 then
11: save in set of 1980-1984 training data set
12: else
13: save in set of post-1984 training data set
14: end if
15: end if
16: end if
17:
18: end for
19: end for
20: end for

Fig. 3.3 Finding fully qualified triples in SemMedDB

important when performing LBD (Section 5.2) so that there are known concepts to index
and compare to identify statistically related concepts. A selection of all distinct concepts in
the database would have been another way to initiate the queries for finding fully qualified
triples (e.g., a SQL statement like "select distinct concept from table").

To identify training data, first, using a starting set of A concepts, perform a query
for A and related B candidates, including the nature of the relationship between the A and
B concept. The articles must also be from 1980, and newer. Then, for each B identified
in the first query, another query is performed that identifies a set of C candidates and the
relationship between the B and C concept. Last, a query for C concepts back to the A concept
is performed and, if found, a possible training candidate has been identified. Additionally, if
A, B or C includes a disease of interest, it is ignored. This is important because the LBD
studies presented in this work focus on a set of diseases, and the trained classifiers would
be tainted if diseases of interest were included in the training data. If the date of all of the
articles supporting the A-B-C relationship triple is from 1980-1984, the training candidate is
stored in the 1980-1984 set. Otherwise, the candidate is stored in the post-1984 set.
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The results of the SemMedDB queries consist of two sets of data – one set of fully
qualified triples for the date range of 1980-1984 and another set for any date after 1984
(referred to as post-1984). These dates were chosen to coincide with the time-slice dates that
will be used in the LBD experiments in Chapter 5. A total of 4997 fully qualified triples were
identified in the 1980-1984 time slice and 203,323 in the post-1984 set. The post-1984 set of
data may be considered for training since it does not contain the diseases of interest and it
provides a much larger set of data than the 1980-1984 time slice.

As a note of further clarification, the results of work presented in this chapter include a
set of classifiers trained on older 1980-1984 data. This set of classifiers will be used on the
LBD candidates to explain the nature of their A to C relationships. The LBD candidates are
also identified in the older time slice of data, thus all the data used in the identification of
LBD candidates and the explanation of them comes from the same time slice of data.

3.3 Feature Design for Supervised Learning

The feature design for the inputs to classification, in this work, consists of information about
the nodes of the triples and the relationships between them. These nodes and relationships
are what provides enough detail that the supervised learning is able to produce plausible
predictions about the A and C terms’ relationships of the partial triples. When modeling
medical data and simulating the previous work in this area of Swanson (1986b) and of Kostoff
(2008) diseases are found to be related to other diseases, pharmaceuticals or other medical
semantic types. The nodes of the triples represent the literal concepts, but for machine
learning in the form of classification, only the semantic type of the concept is used. Marsland
(2015) points out that, when defining the knowledge representation in supervised machine
learning, the number of classes used must be small enough for the classifiers to be able
to compute. With this in mind, only the semantic type is used and not each of the tens of
thousands of concepts names when training the classifiers. The concept named Raynaud’s
disease, for example, is represented in the feature design as a disease or syndrome (which is
the dsyn semantic type in MEDLINE).

The nature and direction of the relationships are more literal but must use generalized
names (see Section 2.4.1). The direction could have been treated as a separate class from the
relationship type, but very early experimentation showed this refinement of classes did not
help and only complicated and confused the classifiers. Therefore, to keep the number of
classes as small as was reasonable, the direction and type of relationship are combined as
one class type. Additionally, Section 3.5.2 discusses some other class design ideas that were
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explored.

To summarize, these five features are used for LBD relationship prediction using
classification:

• The semantic type of A

• The semantic type of B

• The semantic type of C

• The relationship and direction between A and B

• The relationship and direction between B and C

The relationship and direction between C and A is the class being predicted by the classifiers
– it is the unknown or the outcome of the classifier.

This representation using the five classes is how fully and partially qualified triples are
presented to the classifier algorithms with partial triples being those where the the relationship
and direction between C and A nodes of the triple is omitted. Training is performed with
data that includes the additional facts about the outcome to be predicted by the classifier (that
is, C to A relationship types including the direction of the relationship).

For the various classification experiments presented in the rest of this work, a set of 98
unique semantic types was drawn from the training data – the set is not an exhaustive list
of all possible 134 semantic types because some semantic types never show up in the data
studied and, therefore, need not be included.2 69 of the semantic types appear in the training
data for 1980-1984 and all 98 appear in the Post-1984 training data. For the same reason of
not including data that never appears, the set of relationships differs for three relationship
and direction classes (A to B with direction, B to C with direction and C to A with direction).
The differences in the relationships are based on training data available. A to B has 88
unique relationship training instances with 46 of these appearing in the 1980-1984 data and
88 appearing in the Post-1984 data; B to C has 89 total with 57 in the 1980-1984 and 89 in
the post-1984 data; and C to A has 107 with 67 in the 1980-1984 and 107 in the Post-1984
data ("unknown" is not included in the C to A totals since it is a requirement of the software
used to perform classifier training). Tables 3.2, 3.3, 3.4 and 3.5 contain the complete lists of
semantic types and relationships considered in initial experiments.

2Full list of semantic types may be found here: https://mmtx.nlm.nih.gov/MMTx/semanticTypes.shtml
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Table 3.2 List of Feature Values for A, B and C Semantic Types (98 total)

Table 3.3 List of Feature Values for A to B and B to A Relationships (88 total)

Table 3.4 List of Feature Values for B to C and C to B Relationships (89 total)
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Table 3.5 List of Outcomes for C to A and A to C Relationship Outcomes (107 total)

3.4 Data Representation for Classifier Training

Weka (Hall et al., 2009) is used in this work to perform the classification and provides data
to generate statistics and other evaluation data. This implementation detail is presented
here, because the file format found in Weka is used in this work to capture the data used for
classification. Weka uses an ASCII text file data representation called Attribute-Relation File
Format or ARFF. The ARFF file contains in its header the definition of all classes including
valid feature values of each. The rest of an ARFF file contains either the fully qualified
training data or the data on which classification will be performed. In the latter, a question
mark (?) is used to represent the unknown outcome in the data section which, in this work, is
the A-C relationship and direction. An abbreviated example of ARFF data extracted from
experimental files is shown in Figure 3.4. Since, ultimately, the results from classification
need to include the disease names, a parallel reference map is maintained that relates each
line in training or LBD ARFF file representations back to a human readable form. That
is, for example, if the semantic types of tisu (abbreviation for Tissue), aapp (Amino Acid,
Peptide, or Protein) and orch (Organic Chemical) appear in the training data for the A, B
and C semantic types, respectively, the human readable information about that row are also
maintained and might be, for example, "Tissue membrane", "Bleomycin" and Mitoxantrone".
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Fig. 3.4 Example of ARFF file used to train classifiers (the @attribute lines have been
truncated for readability)

3.5 Data Variations for Experiments

The previous sections, in this chapter, described how the LBD and linking data can be
represented and presented to classifiers. The data described basic features and outcomes that
classifiers will be able to process with the goal of predicting the outcomes using classification.
In this research, various data representations were explored. They will be explained in this
section to document details of these data designs. The purpose of presenting the details of
these variations here, rather than with the experimentation, is to keep the details of these
variations separated from the discussion of the experiments and their results. These data
descriptions may be thought of as reference materials for the experiments to be discussed in
Section 4.3.

This section presents two variations of the data that will be used to try to improve
performance of classifiers in explaining the LBD relationship. The first variation removes
instances containing very commonly occurring feature values (experiment presented in
Section 4.3.2). The thought is that these instances may introduce noise. The second variation
reduces the number of outcomes to predict by only using the A to C direction and converting
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all of the C to A training data feature values into the A to C direction (experiment presented in
Section 4.3.3). This results in a re-ordering of some of the triples to regularize the outcomes.

3.5.1 Removal of Very Common Feature Values

After initial experiments were performed, the data used in those initial trials were examined
and it was noticed that one feature value occurred much more frequently in the data than
all others. An experiment was performed that studied the affect of removing commonly
occurring classes (see Section 4.3.2). This section describes the details of the data used in
that experiment. Tables 3.6 and 3.7 show the distribution, from most frequent to least, of the
top 30 A, B, and C semantic types and A to B, B to C and C to A relationships. In both the
1980-1984 and the post-1984 data, podg (which translates to "Patient or Disabled Group")
occurs much more than any of the other A semantic types – podg appears 2,776 times in
the 1980-1984 data set with the next highest occurring semantic type, aapp, appearing 413
times (less than one sixth of the podg occurrences), and, in the post-1984 data set, 84,210
occurrences of podg vs. 21,784 of aapp (approximately one quarter of the podg occurrences).

Examples of the podg semantic type include "Patients", "Outpatients" and "Inpatients".
Including the podg semantic type in the training data may be introducing noise, because
knowing that some type of patient, for example, is related to some other semantic type does
not provide useful information in discovering cures to diseases or other more compelling
discoveries. Removing podg makes sense from a pure theoretical point of view with respect
to classification training. However, others may argue that the podg semantic type is important
in the medical domain, so may not be wise to omit it in classification results. This will be
discussed more in the actual experiment presented in Section 4.3.2.

Tables showing the distributions of the remaining semantic types after removal training
sets with podg in them are shown in Tables 3.8 and 3.9. Removing podg references mean that
entire instances (fully qualified triples) are removed from the training data. After removal,
the 1980-1984 training set was reduced from 4,997 instances of training data down to 2,135
and for the post-1984 set, 203,323 down to 116,624 instances.

In the original training data, the relationships ba_AFFECTS shows up a
disproportionately large number of times in both the 1980-1984 and the post-1984 data. The
relationships ca_PROCESS_OF shows up a very large number of times in the post-1984
data. After removing the podg semantic type from the training data, neither of these
relationships remained at the top of the list. Therefore, remaining occurrences of these two
relationships were preserved and not removed.



3.5 Data Variations for Experiments 53

Ta
bl

e
3.

6
D

is
tri

bu
tio

ns
of

O
rig

in
al

19
80

-1
98

4
Se

m
an

tic
Ty

pe
s

an
d

R
el

at
io

ns
hi

ps
(n

ot
ic

e
A

Se
m

Ty
pe

w
ith

27
76

po
dg

oc
cu

rr
en

ce
s)



54 Approach and Data for Relationship Prediction

Ta
bl

e
3.

7
D

is
tri

bu
tio

ns
of

O
rig

in
al

Po
st

-1
98

4
Se

m
an

tic
Ty

pe
sa

nd
R

el
at

io
ns

hi
ps

(n
ot

ic
e

A
Se

m
Ty

pe
w

ith
84

21
0

po
dg

oc
cu

rr
en

ce
s)



3.5 Data Variations for Experiments 55

Ta
bl

e
3.

8
D

is
tr

ib
ut

io
ns

A
ft

er
PO

D
G

Se
m

an
tic

Ty
pe

R
em

ov
al

fr
om

19
80

-1
98

4
D

at
a



56 Approach and Data for Relationship Prediction

Ta
bl

e
3.

9
D

is
tr

ib
ut

io
ns

A
ft

er
PO

D
G

Se
m

an
tic

Ty
pe

R
em

ov
al

fr
om

Po
st

-1
98

4
D

at
a



3.5 Data Variations for Experiments 57

After podg was removed from the training data, some feature instances no longer
occurred in the data. Semantic types, that no longer occur after removing training data
instances that included the podg semantic type, are amph (amphibian), anst (anatomical
structure), clnd (clinical drug), edac (educational activity), ftcn (functional concept), inbe

(individual behavior), nusq (nucleotide sequence), ocac (occupational activity), and spco

(spatial concept). Clinical drugs and nucleotide sequence may be important when trying
to identify treatments or causes of diseases but the other semantic types are noise similar
to podg. The unique semantic types found in the training data dropped from 90 to 88 for
the A semantic type, 85 to 84 for B, and 88 to 87 for C. The relationships between A to B
dropped from 88 to 87, did not change for B to C and dropped from 107 to 106 for C to A
relationships.

3.5.2 Regularization of Outcomes - Convert to AC Direction only

Another of the classification experiments reduces the number of possible outcomes to reduce
the inherent redundancy by turning all triples into relationships with only the A to C direction
(the actual experiment is presented in Section 4.3.3). Some other explorations into other
representations are described in the net two paragraphs. These were performed before settling
on the data representation with the A to C direction only.

One of these explorations was to simplify outcomes split the training data into two sets
– one with only the A to C relationships, and the other with only C to A relationships. That is,
the original experiment design includes both A to C and C to A relationships in the training
data. This produced 110 unique A to C and C to A relationships. When only A to C are
considered in one training set and C to A in another separate training set, 55 outcomes for
each remained. After podg is removed, 54 and 53, respectively remain in the separated A to
C and the C to A relationship sets.

Additional exploration involved separation of the A to B relationships from the B to A
relationships and to separate B to C from C to B directed relationships. This created a total
of 7 features – the three A, B and C Semantic Types along with the A to B relationships, B to
A relationships, B to C relationships, C to B relationships.

Neither one of these explorations produced results worth considering further. They are
mentioned only as a reference of other data designs that were considered.

Outcome regularization used in this work involved converting the training data so that
only the A to C direction is being predicted. That is, the direction of the A to C relationship
was set to always be in the direction from A to C and the other supporting data was flipped
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(a) Triple with a C to A Rela-
tionship (b) Flip Triple Around B

(c) Adjust Identifiers

Fig. 3.5 Visualization of Triple Flipping

Fig. 3.6 Permutations of Triples and Indication of C to A Directions to Flip

Fig. 3.7 Example of Triple Rotation
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Table 3.10 List of Outcomes for Only A to C Direction of Relationships

accordingly. For an example, refer to Figure 3.5. In order to turn a C to A direction into a
A to C direction, the A and C nodes are flopped; the A to B relationship becomes a C to B
relationship; and the B to C relationship becomes a B to A relationship. There are four of the
possible triple permutations that need to be flipped as shown in Figure 3.6 by the triples with
axis and arrow rotation indication (second row of triples).

A concrete example using the notation used in ARFF representations (Section 3.4)
would be "dsyn, virs, bact, ab_COEXISTS_WITH, cb_INTERACTS_WITH, ca_CAUSES" for
A, B and C semantic types where dsyn is the semantic type abbreviation for for "Disease or
Syndrome", virs for "Virus" and bact for "Bacterium", and where the three relationship types
with indicated directions are "Coexists with" in the A to B direction, "Interacts with" in the C
to B direction and "Causes" in the C to A direction. See Figure 3.7. This triple is converted
so that the "Causes" in the C to A direction (ca_CAUSES) will become simply a CAUSES

relationship with the direction always being from A to C. To do this, the COEXISTS_WITH

in the direction from A to B becomes a COEXISTS_WITH in the C to B direction and
the INTERACTS_WITH in the direction from C to B becomes INTERACTS_WITH in the
A to B direction. The resulting training set is: "bact, virs, dsyn, ab_INTERACTS_WITH,

cb_COEXISTS_WITH, CAUSES" where the direction of the third relationship is always A to
C.

Table 3.10 shows the set of 55 possible outcomes after normalizing the data to have
only the A to C direction. The number of outcomes is now 42 in the 1980-1984 data, down
from 68, and 55 in the post-1984 data set, down from 107. The number of semantic types
for A and C nodes also changed after regularization – some increased, some decreased. The
results of the top thirty of each feature and predicted outcome after normalizing to using only
the A to C outcome direction are shown in Tables 3.11 and 3.12.
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Table 3.13 Summary of Features (Counts of unique values)

Table 3.14 Total Numbers of Training Records

3.6 Chapter Summary

To summarize, this chapter has presented the training data that will be used in classification
experimentation. A total of 15,427 concepts have been identified. These concepts are used to
identify the training data by using them in queries against SemMedDB. The fully qualified
triples are converted into training data by retrieving the semantic types of the A, B and C
concepts and by using the relationships found in SemMedDB. These are the relationships and
directions between the concept pairs: A to B, B to C, and C to A. Summaries of the semantic
types and relationships are shown in Table 3.13 and summaries of the training instances are
shown in Table 3.14.

Additional features were considered during experimentation including breaking up of
relationships as noted in the previous section (Section 3.5.2). Another idea was refinement
of features to possible combine and further normalize relationship features that are very
similar, for example, LOCATION_OF, PART_OF and COEXISTS_WITH. This would
require validation by experts that the combinations were acceptable in meaning. Beyond
changes to the actual features used, additional features related to language processing of LBD
could have been considered. For example, the distance between concepts in the documents
could have been added as a feature, where the distance could be an indication of how
many words separated the pairs of concepts. Ultimately, the class designs chosen with the
refinement of regularizing outputs produced very good results and no further experimentation
was explored.



Chapter 4

Relationship Prediction Experiments

This chapter explores the creation and evaluation of classifier models using the data repre-
sentations developed in the previous chapter. Evaluation methods will be discussed as will
comparisons of classifier performance using various data designs.

The general steps to train and evaluate classifiers that may be used to explain LBD
relationships are as follows:

1. Establish evaluation methodologies that will be used during classifier experimentation

2. Study performance of a range of classifiers

3. Perform more in-depth classification experiments including data refinements and
feature ablation

Section 4.1 discusses the evaluation methodologies used in the experiments. Section 4.2
presents classification results using various classifiers on the regularized outcomes design.
Section 4.3 discusses the various experiments performed including those that test against
variations of the class designs, those that try various ablation tests, and those that regularize
the outcomes. Section 4.4 has a summary of the performance of classification as a means to
explain A to C relationships using training data.

4.1 Evaluation Methodologies for Experiments

This section provides a brief overview of the various evaluation techniques used to evaluate
performance of the various experiments presented in Sections 4.2 and 4.3. Seven methods of
evaluation are presented: cross-validation, confusion matrices, learning curves, comparison
to most frequent class, deltas, hypothesis testing, and ablation.
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Using Cross-Validation Cross-validation is a common technique that evaluates a
classifier’s expected performance when that classifier is ultimately used to predict unknown
outcomes (for example, when the classifier is used to explain LBD relationships). This is
achieved by repeatedly training on most of the data while holding out a small portion of the
data which is then used to test the classifier’s ability to accurately classify those held out and
comparing with their known correct results. In this work, the accurately classified
percentages are the result of ten-fold cross-validation. First train on 90% of the data, hold
out 10% of the data for testing. Next select a different 90% on which to train and test on the
remaining 10%. Do this for ten iterations and average the results to estimate the classifier’s
performance on unseen data.

Studying Confusion Matrices and other Metrics Confusion matrices provide useful
information about how a classifier has performed during the training and evaluation of the
classifier. In this work, the confusion matrix is not simply a binary prediction matrix showing
true positives (often noted as TP), true negatives (TN), false positives (FP) and false negatives
(FN) (Dietterich, 1998; Sokolova and Lapalme, 2009). The problem modeled in this work
is a multi-class, multi-value problem that produces an m x m confusion matrix, where m is
the number of possible outcomes. This m x m confusion matrix helps to identify outcomes
that may be related if a specific outcome shows up as a false positive a significant number
of times when compared to the expected outcome. The performance of the classifier may
be degraded because of these false positives. In the medical domain, an A concept being
PART_OF a C concept and a C concept having LOCATION_OF an A concept are examples
of related relationships and they may both produce valid outcomes for a particular A to C
pair of concepts. For example, if A is a toe and C is a foot, then it is logical that a toe is a part
of a foot (ac_PART_OF) and the foot is the location of a toe (ca_LOCATION_OF). In the
data presented here, ac_PART_OF and ca_LOCATION_OF would be the outcomes of this
example where ac_PART_OF might be the correct classification and ca_LOCATION_OF

may show up as a false positive for that classification. However, the toe and foot example
shows that these two relationships, may be, equivalent inverse relationships for each other.

TP, FP along with precision and recall metrics provide additional information about the
classifier performance at predicting outcomes (Witten et al., 2011). Precision is calculated as:

precision =
T P

(T P+FP)
(4.1)

And recall is calculated as:
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recall =
T P

(T P+FN)
(4.2)

Learning Curves Learning curves break the data held out for training into smaller parts
and show the results on how well, or poorly, the classifiers are able to predict the outcomes
of the test data set. For example, the 90% of the data used in 10-fold cross-validation training
is further broken down into smaller sets and tested against the 10% held out for testing the
classifier results.

Comparison to Most Frequently Occurring Class Another common way to evaluate of
the performance of a classifier is by comparing results against a baseline classifier. In this
work, choosing the most frequently occurring outcome is the baseline classifier. Weka’s
ZeroR classifier implements this approach.

Looking at Deltas Simple differences or deltas between results are effective in comparing
the performance of one data design to another or one classifier to another. This is especially
true when the percent of accurately classified outcomes using 10-fold cross-validation present
very different results. As an example where simple deltas help in analyzing performance,
consider a baseline classifier that presents a result of 10% accurately classified using 10-fold
cross-validation and another classifier that presents a result of 50% accurately classified
also using 10-fold cross-validation. Here, the 40% difference shows that the classifier under
test performs much better than the baseline. Deltas do not replace the more scientifically
defensible methods like hypothesis testing presented in the next section. They just work
well when the differences between results under test are are very large. Deltas are used
when examining the average percent classified accurately using cross-validation (the mean
percentage correct across the n-folds).

Using Null Hypothesis Testing or Significance This paragraph presents basic
background information in how hypothesis testing provides statistical backing for the
importance or significance of discovered results. Conceptually, hypothesis testing first
identifies an experiment that is the null hypothesis. Then, another experiment is designed
and carried out with an assumption that it might perform significantly better than the null
hypothesis. If the new experiment does, then the null hypothesis of the original experiment
may be rejected. (Demšar, 2006; Hastie et al., 2009; Dietterich, 1998) This section also
discusses briefly how hypothesis testing may be accomplished in this work.
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A normal distribution bell curve expects samples to mostly fall within some standard
deviation multiple to the left or right of the mean of the distribution. For example, using a
two sigma interval, we expect 95.45% of instances will be within the two sigma to the left
or right of the average. In hypothesis testing, the goal is to identify the normal distribution
statistics (mean, standard deviation and degrees of freedom) of the null hypothesis and of the
other hypothesis or data set under test. Then, using these statistics, we are able to calculate a
t-score1 that will help to identify how significant the other hypothesis is in outperforming the
null hypothesis. If the statistics show a 5% chance or less (or much less in some cases) of
being the same as the null hypothesis, we may reject the null hypothesis.

In this work, the t value is calculated as follows:

(x̄1− x̄2)√
(σ1)

2

n1
+

(σ2)
2

n2

(4.3)

where x̄1 and x̄2 are the means from the two samples; σ1 and σ2 are the standard deviations;
and n1 and n2 are the total number in each sample.

When originally used by statisticians and other analysts, the t-value was turned into
a t score by performing table look-ups based on degrees of freedom (n1 + n2− 2) of the
data where n1 and n2 are the same total numbers in each sample being studied. The t score
represents how far to the left or right of the null hypothesis’ bell curve the other hypothesis
falls. If, for example, the t score is 0.01, this is in the 99% realm of non-likelihood, and
therefore would indicate acceptable rejection of the null hypothesis. Hypothesis testing
techniques are more informative than simple deltas, especially when the deltas between
results are small.

In this work, the t value is calculated by using the percentage classified accurately from
each of the classifier’s ten folds. Each fold presents a percentage classified accurately during
that fold’s training. The 10-fold scores are used to generate various statistics including a
t-score using Excel’s T.Test function.

Ablation of Features Ablation involves systematically removing features from the training
data and rerunning classifier training and evaluating the results. The purpose of ablation is to

1The t-score is based on the student’s t-test which was developed by an employee of the Guinness brewery,
William Gosset, while he tried to understand the quality of various grain crops grown by his employer. It is
called Student’s t-test because, as the story goes, in order to publish his research, his employer did not want
his name to be used and associated with the Guinness brewery. Therefore the paper describing the t-test was
authored, simply, by Student and his test is still called Student’s t-test (Livingston, 2004)
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identify features that may or may not contribute to the successful classification of data. For
example, if there are five features used to predict an outcome, then, five ablation runs are
used – each run removes one of the five features. After analysis of removing each feature,
additional experiments may remove sets of features, again, to see and study how the features
interact or how independent they are.

Ablation is able to help to identify feature dependencies. That is, if removing a
feature degrades performance, then that feature is contributing to successful classification. If
performance improves after removing a feature, then this may indicate noise being introduced
by that feature, and there may be interaction between this feature and one, or more, of the
others. Ablation is more of an experiment than an evaluation methodology. However, it does
provide an evaluation of the feature design.

4.2 Classifier Comparisons

The purpose of this section is to explore how various classifier algorithms perform using
self-test (10-fold cross-validation) on training data. Classification performance results are
based on the regularized outcomes data design. This data design is described in Section 3.5.2
and the performance of this design is studied more in-depth in Section 4.3.3. The classifiers
applied to the problem were introduced in Section 2.7. Section 4.3 will study a subset of
these classifiers in more detail.

The classifiers evaluated in this section represent a cross-section of classifier families
including support vector machines (SVM), rules, linear regression, tree algorithms and
hybrids of classifiers. Chapter 3 describes details of the data sets. Classifiers are trained and
tested on both the 1980-1984 and the post-1984 data sets. The results are shown in Table 4.1.
The yellow highlighted rows (Naïve Bayes, J48 and Random Forest) are the classifiers that
are the focus of more in-depth studies presented in Section 4.3.

All of the classifiers performed much better than the baselines. This is expected since
there are a large number of possible outcomes in the data which makes a baseline that selects
the most frequently occurring outcome to be less meaningful and less likely to be accurate.
This is also good that the baselines performed poorly compared to all of the other classifier
algorithms showing that the problem of explaining LBD relationships may be solved using
classification.

The J48 classifier has the highest percentage of accurately classified results on both
the 1980-1984 and the post-1984 data sets. Other non-baseline classifiers are able to predict
with reasonable success with no classifier predicting less than 63% against either data set.
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Table 4.1 Classifier Performance on the 1980-1984 and post-1984 Data Sets

The PART and J48Graft classifiers which are variations of the C4.5 algorithm that J48 also
implements, interestingly, did not perform as well as the J48. The PART variation was meant
to perform better on larger data sets than C4.5 by itself.

Some of the classifiers performed better on the smaller data set than the larger. This
could be because of some overfitting affects using the smaller data sets. This is quite
possibly the explanation of the J48graft results where the 1980-1984 data set performed
better. Overfitting is mentioned as a problem with grafting in Webb (1999) who developed
the J48graft algorithm.

The SMO classifier which is a support vector machine implementation performed
reasonably well on the larger data set but was very slow to compute its outcomes on the
hardware used in this work. This is the reason why SMO was not studied further in the next
sections.

4.3 Experiments and Evaluation of Data Designs

This section presents classification experiments performed using various data designs pre-
sented in Chapter 3. J48, Naïve Bayes and basic Random Forest algorithms, implemented in
Witten et al. (1999, 2011), are used for the deeper examination of data designs and related
performance. These provide a cross-section of decision trees, Bayesian and random forest
algorithmic approaches, respectively. They were described in more detail in Section 2.7.
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The set of experiments, presented in this section, study how changes in data designs
change the performance of the classifiers in their ability to predict the outcome of the A to C
relationship. These include studies of a basic design which is also referred to as initial or
original design (Section 4.3.1), a design that removes instances with the most commonly
occurring feature values (Section 4.3.2), a design that reduces the number of possible pre-
dicted outcomes (Section 4.3.3), and some ablation studies where features are systematically
removed and classification results are analyzed (Section 4.3.4). Evaluation techniques were
presented in Section 4.1, and the classifiers used were discussed in Section 2.7. The sections
that follow will each present the experiment performed, provide some form of evaluation and
discuss the experiment’s results.

As noted in Section 3.2, data from both the 1980-1984 time slice and post-1984 are
used in an effort to train with more significant numbers of data points. There are only 4997
in the original and the regularized 1980-1984 training set while the post-1984 data has many
more with 203,323 records. Removal of instances with the most commonly occurring feature
value, podg, resulted in fewer data points with 2135 in the 1980-1984 set, and, again, many
more with 116,624 records in the post-1984 set.

4.3.1 Initial Data Design

Classification models were initially built using all training data identified from the
SemMedDB (Section 3.2). This produced results that were consistently better than baselines
that simply chose the most frequently occurring outcome on the same data sets. This
section’s experiment uses cross-validation and confusion matrix analysis for evaluation (see
Section 4.1). This section also introduces the baseline for null hypothesis testing used in
later experiments. The initial data design is also referred to as the original data, original
feature design or original experiment design. The full data set was used in evaluating the
original experiment design.

Initial Data Design - Comparison to Most Frequently Occurring Class

Selecting the most frequently occurring outcome provides the baseline during evaluation of
classifier results. A baseline of 23.45% accurately predicted is found in the 4997 training
data set derived from articles with dates ranging between 1980 and 1984. Applied to the
203,323 training data set derived from post-1984 articles, the data shows a baseline of 29.88%
accurately classified outcomes. These results are shown in the row called baseline in the top
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Table 4.2 Primary Classifier Evaluation for All Experiments (Bold indicates best result for
that experiment and data set. J48 using Regularized Outcomes performs best.)

third section labeled as "Original Experiment Design" under the "All Data Used" columns in
Table 4.2.

Initial classifier training and evaluation was performed using the training data described
in Section 3.2 and the original feature design presented in Section 3.3. As was noted at
the end of Section 3.2, post-1984 data is included in training data for classifiers because
it provides a much larger data set. Careful consideration of this data set ensured that the
diseases of interest were not included in this set of training data. This is important because
classifiers trained in this chapter will be used in the next chapter to explain literature based
discoveries where some of the focus is on a set of diseases of interest. The post-1984 data
set is more than forty times larger than the 1980-1984 time slice. The reason for using the
1980-1984 time slice was introduced in Section 2.3 and is only to provide an older time slice
where LBD discoveries can then be validated using newer data.

Table 4.2 provides a summary of the results for the three primary classifiers on the
original feature design using the average of accurately classified results from cross validation
to evaluate performance. This table also contains results for the other experiments that will be
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explained later. The results for this experiment are listed in the rows for "Original Experiment
Design" and under the "All Data Used" columns. J48 and Random Forest algorithms, with
results ranging from 64.42 to 68.96% classified accurately, performed similarly which is
logical as both algorithms are based on decision trees. Significance by simple observation of
the large deltas between the baselines and the other classifiers show that these classifiers are
much more successful at predicting the outcomes than simply picking the most frequently
occurring outcome found in the training data. Hypothesis testing using the baseline classifier
as the null hypothesis produce t-scores very, very close to zero supporting this observation
(zero out to more than 10 decimal points). Significance statistics become more interesting as
experiments are refined throughout the rest of this chapter. Naïve Bayes classifier was also
much better than the baselines but had lower percents classified accurately when compared
with the tree based classifiers.

Initial Data Design - Evaluation Using Confusion Matrices and other Metrics

The confusion matrices from the experiments produced information indicating that the
relationships predicted included a number of false positives. Evaluation by studying confusion
matrices was discussed in Section 4.1. To study some of the results in the confusion matrices,
a threshold for the number of false positives was selected. The number of occurrences of
the false positive had to be greater than 50 in the 1980-1984 training data (which had 4997
total training records) and greater than 1000 in the post-1984 data (203,323 total training
records). The threshold numbers 50 and 1000 for the 1980-1984 and post-1984 training data,
respectively, were chosen to provide a sample of a few of the most commonly occurring
false positives. The entire confusion matrix for this work is an m x m matrix where m is the
number of outcomes which is 68 for the 1980-1984 data set and 107 for the post-1984 data
set using the original data design.

Confusion matrix of 1980-1984 trained classifiers: See confusion matrix summary re-
sults in Table 4.3. Actual relationship and direction of ca_PART_OF was found to be related
to ac_LOCATION_OF which logically makes sense. Take the example, introduced in Sec-
tion 4.1, of a toe which could represent an A concept. A toe is part of a foot (where foot
could be the C concept). Concluding that inverse that a foot is the location of a toe is also
true. A to C "part of" relationship may be described using the inverse of C to A "location of"
relationship. Treats and administered to (ca_TREATS and ca_ADMINISTERED_TO) and the
reverse (ca_ADMINISTERED_TO and ca_TREATS) were also found in this set of data to
show false positive results. Some pharmaceutical would need to be administered before it
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Actual False Positive J48 Random Forest Naïve Bayes

ca_TREATS ca_ADMINISTERED_TO x x

ca_TREATS ac_LOCATION_OF x

ca_PART_OF ac_LOCATION_OF x x x

ca_ADMINISTERED_TO ca_TREATS x x x

Table 4.3 Original feature design, 1980-1984, most commonly occurring false positives

was determined to treat – this is also a logically similar relationship. The relationship and
its inverse are presented as false positives in the training of the classifiers with this original
feature design.

Confusion matrix of post-1984 trained classifiers: See confusion summary matrix
results in Table 4.4. With more training data points came more false positives, especially
with the naïve Bayes algorithm. J48 and Random Forest classifiers presented two of the
same false positives. Naïve Bayes classifier produced many more false positives than with
the smaller data set. One false positive, ca_TREATS, that appeared with the actual
ca_ADMINISTERED_TO relationship in the old data set but did not show up in the large
data set.

Two new false positives showed up with all three classifiers. These are the last two rows
of the table. One is that INTERACTS_WITH in the ac direction is being confused with the
ca direction. This makes sense as interacts with can logically be considered a commutative
relationship where order does not matter. The other false positive that was new with the
newer data set is that of ac_USES being falsely predicted as ca_ADMINISTERED_TO. These
two relationships may also be equivalent relationships in some cases. For example, a drug
may be administered to a patient means a very similar thing as a patient using a drug.

Additional metrics: Table 4.5 summarizes additional metrics about the classifier training
performance. Because there are multiple outcomes to predict, these metrics do not show
much other than the fact that there were some inaccurately classified results (the false positive
rate) that led to some reduction in precision. Additionally, the post-1984 data set shows
improved precision by the fact that the false positive rate is smaller.
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Actual False Positive J48 Random Forest Naïve Bayes

ca_TREATS ca_PART_OF x

ca_TREATS ca_ADMINISTERED_TO x x x

ca_TREATS ac_LOCATION_OF x

ca_PROCESS_OF ac_LOCATION_OF x

ca_PART_OF ac_LOCATION_OF x x x

ca_INTERACTS_WITH ac_ISA x

ca_INTERACTS_WITH ac_INTERACTS_WITH x

ac_USES ca_ADMINISTERED_TO x x x

ac_INTERACTS_WITH ca_INTERACTS_WITH x x x

Table 4.4 Original feature design, post-1984, most commonly occurring false positives

Table 4.5 Metrics Evaluation for All Original and Regularized Outcomes Data Designs
(Accuracy is the same as recall)
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Initial Data Design - Evaluation Using Significance

Cross-validation provides an overall accurately classified percentage that may be used to
understand how well the classifier performs. Comparing one classifier’s results to another
requires more work. As noted in Section 4.1, comparing the accurately classified percentages
to baseline numbers and examining the gross deltas between these percentages is acceptable
when the differences are large.

The focus on significance or hypothesis testing is not for this experiment and data
design. Instead, this classifier design and results provide a null hypothesis that will be used
to do significance testing with the experiments presented in Sections 4.3.3 and 4.3.4.

Discussion of Initial Data Design

To summarize the results of this section, the initial data and feature design, and the classifier
algorithms chosen (J48, Naïve Bayes and Random Forest) performed reasonably well as
is indicated by comparing with baseline results on the same data and classifiers. The J48
and Random Forest classifiers produced a similar percentage of accurately classified results
and Naïve Bayes classifier produced slightly worse results using the 1980-1984 training set
(approximately 2.5% less) and 8% lower results when trained on the post-1984 data.

Random Forest performed reasonably well as was suggested by Fernández-Delgado
et al. (2014), but J48 also performed similarly. This is interesting because Random Forest
and J48 are similar but the expectation is that Random Forests should perform better than J48
because of Random Forest algorithm’s ability to not overfit to the data. Naïve Bayes performs
relatively better than the baseline just as J48 and Random Forest did, but the confusion
matrix showed that it presented more noise which may have contributed to its slightly lower
classification accuracy.

This experiment and its data design will be used as the null hypothesis which the
outcome regularization (Section 4.3.3) will attempt to reject. These two data sets, the 1980-
1984 and post-1984 from "All Data Used" set, will be used as the basis of the modified data
representations for the additional experiments that regularize outcomes and apply ablation
that are presented in Sections 4.3.3 and 4.3.4.

4.3.2 Removal of Commonly Occurring Feature Values

This experiment studied the training data to determine if any feature value appeared dispro-
portionately more then any other. The semantic type, podg, appeared much more than any
other feature value (see Section 3.5 for details on the data). Evaluation for this experiment
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will be done by comparing against a baseline classifier that chooses the most commonly oc-
curring outcome (in Weka, this is the ZeroR classifier) and against the initial design. Evalua-
tion will also include looking at cross validation results and examining confusion matrices.

Removal of "podg" - Comparison to Most Frequently Occurring Class

As with previous experiment described in Section 4.3.1, selecting the most frequently
occurring outcome also provides the baseline for this experiment. Table 4.2 shows the
original experiment design applied to all of the data and to the subset of data that removed
podg. These are the top third of the table’s left and right sides respectively. The results for
this experiment are under the "Most Common Feature Value Removed" columns on the right
side of Table 4.2.

The 1980-1984 data set now has only 2135 training instances after removal of podg

compared with 4997 in the previous "original experiment". The post-1984 data set contains
116,624 training instances, down from 203,323. After removal of podg, the performance of all
classifiers dropped notably when compared to the previous experiment. For example, on the
post-1984 dataset, the J48 classifier dropped from 68.96% to 56.70%. A possible explanation
is that the podg semantic type was skewing the classifier training since it appeared so
disproportionately more than any other data value – and it occurred across all three semantic
type feature (A, B and C semantic types). The podg semantic type was generating noise.

The 1980-1984 data dropped in percent classified accurately more drastically when
compared to the post-1984 data. For example J48 dropped from 65.44% to 47.45% – a drop
of almost 18% – in the 1980-1984 data set. J48 dropped from 68.96% to 56.70% in the
post-1984 data set – a drop of only 12.26%. This could be because the 1980-1984 data set
is relatively small (2135) as described in Chapter 3 in Table 3.14, and there are quite a few
outcomes to predict (67) out of this data set as shown in Table 3.13.

Despite the lower percent classified accurately with the new data design, a simple
comparison of the three classifiers with baselines show that the classifiers (J48, Naïve Bayes
and Random Forest) are performing better than the baseline results for this experiment, as
was also seen in the original data design experiment. The post-1984 data had only 6.16%
classified accurately using the baseline, and in the same data set, 56.70% classified accurately
using the J48 algorithm. That’s more than a 50% delta and is greater than the best of 39.08%
delta between the baseline and J48 in the original experiment results.
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Actual False Positive J48 Random Forest Naïve Bayes

ca_PART_OF ac_LOCATION_OF x x x

ca_LOCATION_OF ac_PART_OF x

Table 4.6 Removal of "podg" feature design, 1980-1984, most commonly occurring false
positives

Actual False Positive J48 Random Forest Naïve Bayes

ca_PART_OF ac_LOCATION_OF x x x

ca_LOCATION_OF ac_PART_OF x

ca_INTERACTS_WITH ac_ISA x

ca_INTERACTS_WITH ac_INTERACTS_WITH x

ac_INTERACTS_WITH ca_INTERACTS_WITH x x x

Table 4.7 Removal of "podg" feature design, post-1984, most commonly occurring false
positives

Removal of "podg" - Evaluation Using Confusion Matrices

The next two paragraphs are similar to the confusion matrix summaries presented in the
Section 4.3.1 – first the 1980-1984 data is studied and then the post-1984 data is studied.

Confusion matrix summary for 1980-1984 minus "podg" trained classifiers: See
confusion matrix summary results in Table 4.6. The actual relationship and direction of
ca_PART_OF was found to still be related to ac_LOCATION_OF, and ca_LOCATION_OF

was found to be related to ac_PART_OF as seen in the initial experiment that used the
original data design. However, these are the only significantly occurring false positive. The
TREATS being related to ADMINISTERED_TO found in previous experiment is not found
when podg is removed from the 1980-1984 training data and classifiers are retrained.

Confusion matrix summary for post-1984 minus "podg" trained classifiers: See con-
fusion matrix summary results in Table 4.7. As was seen in the original classifier design,
Naïve Bayes classifier produced more false positives than J48 and Random Forest. Addition-
ally, with this classifier design, INTERACTS_WITH produces false positives that might be
expected – finding that A interacts with B is very similar and may be the same as saying B
interacts with A.
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Removal of "podg" - Evaluation Using Significance

As with the previous experiment, this experiment provides a null hypothesis for other
experiments. That is, the results from this experiment will be used as the null hypothesis that
the regularized outcomes experiment (Section 4.3.3) and the multi-feature ablation study
(Section 4.3.4) may be compared against when the regularization is applied to the "Most
Common Feature Value Removed" data sets. These are shown on the far right two columns
in Table 4.2.

Discussion of Removal of "podg"

Removing the single most commonly occurring feature, podg, presented results that were
sometimes 50 percentage points better than the baselines (J48 and Random Forest using the
post 1984 training set). The removal of podg experiment leaves two data sets (1980-1984
and post 1984 sets minus podg) with good distributions of the other feature values. These
two data sets will be used as the basis of the modified data representations for the additional
experiments that regularize outcomes and apply ablation presented in Sections 4.3.3 and 4.3.4.
These are the right columns in Table 4.2. These results also are the null hypothesis that the
regularized outcomes and ablation experiments will try to reject.

Removing the commonly occurring podg semantic type produced a much smaller sets
of training data. The 1980-1984 contained only 2135 training data points – less than half the
original set. The outcomes being predicted still contain a relatively large number of unique
values – 67 for the 1980-1984 data and 106 for the post-1984 data as shown in Table 3.13.
The data that omitted podg was applied to the original data designs, and it was applied to
the regularized outcomes data design and the ablation studies whose results are discussed in
Sections 4.3.3 and 4.3.4.

Against the full data set using the original data design (top left side of Table 4.2), the
baseline algorithm applied to the podg-omitted data set presented much lower accurately
classified percentages which means that removing podg made it much more difficult for the
simple baseline classifier to accurately predict the outcomes. As just noted, there are 67 and
106 possible outcomes for the respective data sets which is quite large – the classifiers should
have a more difficult time predicting accurately, the outcomes which is exactly what was
seen in this section’s results (baseline numbers are first row of the top third, right side of
Table 4.2). Just below the baseline row, the results of the other classifiers show that they
performed worse than the original design against all of the data (left side of table) dropping
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from 60 to almost 70 percent range to the mid 40 to mid 50 percent range. J48 still performs
with the highest percentages for this experiment.

This experiment may not be a wise or logical one to keep when studying the medical
domain with the obvious goal of finding cures to or causes of diseases that afflict people.
Removing podg, which is the semantic type for "population or disabled group", may be
detrimental to work that seeks to find those cures to or causes of diseases. Its removal
from the data sets is purely an theoretical exercise in understanding how very commonly
occurring feature values may incorrectly influence results and make it harder for classifiers to
perform well. Including the results that removed this very commonly occurring podg value
helps to further prove that the classifiers using the feature designs presented here are able to
predict the outcome with much better success than baselines. A concern is that the better
performance of the original data design using all data (top left of table) could indicate that
including instances with the podg value is swaying the results in a positive direction and,
without podg, the classifiers perform much worse. Section 4.3.3 will continue this discussion.

4.3.3 Regularization of Outcomes

This section describes the results from using a redesigned set of data where the A to C
relationship and direction being predicted is normalized to always assume the direction of
A to C. Details of this data design are described in Section 3.5.2. The biggest difference
with this data set is that there are only 42 and 55 outcomes to predict in the 1980-1984 and
the post-1984 data sets, respectively. This is down from 68 and 107 possible outcomes in
the original data designs and down from 67 and 106 after removal of podg in the previous
experiment (see Table 3.13 for these summaries). The hypothesis is that having fewer
outcomes to predict should allow the classifiers to be able to better predict outcomes.

Evaluation of this experiment will be performed using three methodologies. First,
evaluation will be done by comparing baseline results to the other classifiers’ cross-validation
results. Second, evaluations will be done by comparing deltas and by examination of
statistical significance against the previous two experiments and their types of data – the
original experiment design using all of the data and the data that removed podg. Deltas will
be examined by comparing against the two previous experiments and against baselines of the
most frequent occurrence classifier. The last evaluation methodology will be a study learning
curves produced by three of the classifiers and the two primary data sets (1980-1984 and
post-1984).



4.3 Experiments and Evaluation of Data Designs 79

Outcome Regularization - Comparison to Most Frequently Occurring Class

The center rows of Table 4.2 show the results of 10-fold cross-validation using the baseline
classifier and the three other classifiers (J48, Naïve Bayes and Random Forest) for this
experiment. The left side of the table used all data for training and evaluation. The right
side used the data that removed occurrences of podg. The hypothesis of this experiment was
that better classifier performance should be able to be obtained if the number of outcomes
is reduced. This is, indeed, the result achieved with all of the classifiers. The baselines,
shown in the first row of the middle section of Table 4.2, improved compared with the
previous experiments’ baselines that used the all of the data or that removed podg (top
section, left and right side of Table 4.2). J48 still performs the best of the three classifiers. All
classifiers performed much better when compared against the regularized outcomes baseline
that selected the most frequently occurring outcome.

The older 1980-1984 data set did not perform quite as well as the post-1984 data with
J48 and random forest algorithms, but as noted previously, the older set is much smaller than
the post-1984 set. With all data sets and classifiers of this experiment, the delta between the
baselines and the other classifiers is still 40 to over 50% indicating good success in being
able to predict the outcomes using this data design with the three classifiers used.

The results for the data set that removed podg, shown in the center right side of
Table 4.2, produced successful predictions more in line with the original data design against
all data (top left of Table 4.2). The results using the regularized outcomes data design
compared against removing instances with the most commonly occurring feature value are
in 10 to 15% better than the original data design results. However, the performance still
lags behind the full data set using regularized outcomes by 10% or more. As noted in
the previous section, there is importance in understanding information about population
groups when trying to find cures to diseases. Therefore, removing instances containing
the most commonly occurring feature value of podg is probably not wise. The results of
removing instances with the commonly occurring feature value are of theoretical interest
for understanding classification and data design performance on solving the problem of
explaining LBD relationships but may remove important semantic information.

Outcome Regularization - Evaluation Using Significance

The results from this experiment were studied more closely for significance using hypothesis
testing. The basic hypothesis is that the previous experiment (Original Experiment Design)
is the null hypothesis and this alternative experiment seeks to reject that experiment’s results.
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Table 4.2 summarizes the results and provides comparisons for the original data set
where all data is used (left side of table results) and the data set that removed podg (right side
of table). In all cases of the non-baseline classifiers, the Regularized Outcome experiments,
shown in the center third of the table, performed significantly better than their Original
Experiment Design counterparts in the upper third of the table. The actual t-scores were all
less than 0.00001 and in reality were all less than 1×10−10.

Outcome Regularization - Evaluation Using Learning Curves

Learning curves were generated by holding out varying percentages of the training data,
training on the rest and plotting the classifier performance. The learning curves, shown in
Figures 4.1 and 4.2, show that the classifiers are able to improve their learning with more
data points used in training. The post-1984 training set produces better results for the J48
and Random Forest classifiers and, with both training sets, Naïve Bayes classifier begins
to lag behind with lower percentages classified accurately. The plots shown in Figure 4.2
focus in on the elbow of the learning curve chart. The somewhat more gradual bend in
the post-1984 data set, which is a much larger data set, may show that it takes more data
before the classifiers are more consistent at predicting the outcomes. Most likely cause is
that the larger data set has more instances of some of the more infrequently occurring feature
values. The 1980-1984 training set required at least 1000 training instances versus more than
2500 before the post-1984 training set results leveled off at approximately 70% classified
accurately. The much larger post-1984 data set continued to improve in its ability to predict
outcomes until at least 30 to 40% of the data were used to train (over 60,000 data points).

Discussion of Outcome Regularization

Reducing the number of outcomes has proven to produce significantly better results than the
previous experiments. The significance is based on hypothesis testing using Student’s t-test
calculations described in Section 4.1. The outcome simplification of 67 possible outcomes
down to 42 in the older 1980-1984 data set, and of 106 possible outcomes down to 55 in the
post-1984 data set, likely contributed to the improved performance of the classifiers. Another
interesting observation is that the 1980-1984 results with outcome regularization data design
did not seem to be quite as significantly better than the post-1984 set. This could have been
because 42 is 63% of 67 for the 1980-1984 data whereas 55 is 52% of 106 for the post-1984
data. That is, the reduction of outcomes was a higher percentage more for the post-1984 data
set when outcomes were simplified to have only the A to C direction.
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Fig. 4.1 Learning Curves Plotted by Percentages
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Fig. 4.2 Learning Curves Focused on First 4500 Points of Data
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The J48 classifier produces the best performance when all data is considered (left
columns of results in Table 4.2). The 1980-1984 set producing 73.10% classified accurately
and the post-1984 set producing 77.13%.

This experiment and its data design will be used as the null hypothesis which the
multi-feature ablation experiment (Section 4.3.4) will attempt to reject. The basic data
design resulting from the outcome regularization also forms the basis on which the ablation
experiments will be built. They will use both the "All Data Used" or the "Most Common
Feature Value Removal" sets of data.

4.3.4 Experiments with Ablation

This experiment looks at single and multi-feature ablation (described in Section 4.1).
Ablation results will be evaluated using simple deltas from the outcome regularization
results (Section 4.3.3), and then by using significance testing against the outcome
regularization experiment results for the corresponding data sets ("All Data Used" or "Most
Common Feature Value Removal"). Note that the single and multi-feature ablation
experiments were performed on the set of data that removed instances containing the most
commonly occurring feature value of podg. The results for these are summarized in
Table 4.2 in the right two columns. However these results are not discussed in this section,
other than to say that very similar results were seen as were seen for the "All Data Used"
ablation experiments.

Single Feature Ablation

This section will discuss the systematic removal of each feature and analysis of classifier
performance after this ablation is applied to the training data. The purpose is to identify those
features that contribute to or hurt the performance of the classifiers. Table 4.8 shows the
results of systematically removing each feature from the outcome regularization experiment
described in Section 4.3.3.

The regularization of outcomes experiment is the baseline to which each ablation
experiment compares. Simple deltas are being used to compare each ablation with the
baseline. A negative number in the delta columns indicates that the classifier was not able to
perform as well when this feature was removed. This also indicates a significant contribution
from that feature in the data designs – especially if the delta was "big" when compared to
other ablation results.
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The results in Table 4.8 show that A and C semantic types consistently produce bigger
negative deltas when compared to the other features. For example, in the post-1984 data
for the J48 classifier, the A and C semantic type ablation produced -2.472 and -2.673 deltas
when compared against the baseline. The other single feature ablations produced results
much closer to zero. This indicates that A and C have greater contributions to the success of
the classifiers’ ability to predict outcomes, accurately.

Naïve Bayes classifier shows the same trend where A and C semantic types seem to
be significant contributors to the success of the classifier in predicting the outcome. In the
post-1984 data, the numbers show less contribution from the other features based on the
positive deltas they show. This may indicate that there are feature dependencies in the data
designs which would cause the poorer performance using naïve Bayes classifiers compared
to the decision tree-based classifiers.

Multi-Feature Ablation

Based on the results of removing each feature, one at a time, the A and C semantic types
stood out as contributing most to the outcomes. Another logical experiment is to try to
train classifiers based on a feature design that only included the A and C semantic types
for training. The last row in each of the two sections of Table 4.8 show the results of this
multi-feature ablation test that was applied to the outcome regularization design.

The ablation that removed all but the A and C semantic type was able to classify with
reasonable success. The 1980-1984 data sets indicate that this would be all that is needed
to classify and predict the outcome, because all three classifiers performed better using
only the A and C semantic types for training. However, the post-1984 data sets show lesser
performance with the decision tree classifiers. Naïve Bayes classifier shows an interesting
result with the multi-feature ablation – it actually performs better with only considering the
A and C semantic types as features and ignoring all of the other features. This supports
the observation in the previous subsections on single feature ablation (first part of this
Section 4.3.4). The features may not be totally independent and, therefore, a prerequisite for
naïve Bayes classification is not met.

Multi-Feature Ablation - Evaluation Using Significance

This experiment was also studied using hypothesis testing just as the outcome regularization
experiment was. The purpose was to see how the multi-feature ablation results compare
against the outcome regularization results. Table 4.2 presents the high level results using *, o,
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and - to indicate significantly better, unable to reject null hypothesis, and significantly worse,
respectively. The experiments that used the original data designs and the data that removed
podg were summarized for the three primary classifiers. All trials performed worse except
the naïve Bayes results using the post-1984 data set. The naïve Bayes classifier performed
significantly better. As with the simple ablation experiment comparisons presented in the
previous parts of this section, there may be a lack of independence of the features. Naïve
Bayes classification assumes independence of the features being classified. The ablation
studies are able to indicate that there is some interaction between the features.

Summary of Ablation Experiments

The single feature ablation experiments shows that the A and C semantic types contribute
most to the successful classification results. These results led to the "Ablated Leaving only
A and C" experiment set that is presented in Table 4.2. Using tree-based classifiers like
the decision tree of J48 classifier and the random forest classifiers produces less interesting
results when applying multi-feature ablation to the training data. The naïve Bayes classifier,
however, produced better results using the multi-feature ablation of just the A and C semantic
types when applied to the much larger post-1984 data set. The other features in the current
data designs may not be independent of each other and, thus, may be causing the improved
performance of naïve Bayes classification.

4.4 Chapter Summary

To summarize, this chapter has presented feature designs based on training data, or gold
standard data, derived from SemMedDB. After a brief examination of multiple classifiers,
three primary classifiers were selected to provide a cross-section types (J48, Naïve Bayes and
Random Forest) and the baseline classifier which selects most commonly occurring outcome
was used to baseline classifier performance. Removal of the frequently occurring podg

semantic type improved the accuracy when compared with the baselines but produced lower
accurately classified results than regularizing the outcomes. The experiment to regularize the
outcomes turned all of the A to C and C to A relationships to be normalized to always be in
the A to C direction and appropriately rotated the triples. With the outcome regularization,
the number of outcomes to predict was reduced by almost half in the post-1984 data set
and by two thirds in the 1980-1984 set. The classifiers were able to perform significantly
better using the outcome regularization design when compared with the original data designs.



4.4 Chapter Summary 87

Ablation experiments helped to indicate that the A and C semantic types were different
and contributed the most to predicting outcomes. Ablation studies using the naïve Bayes
classifiers also indicate that the features in the data designs are not independent. Results from
other classifiers beyond the primary three indicate that the accuracy provided by them was
similar to that of the primary three classifiers.

The most important conclusion from this chapter is that explaining the A to C rela-
tionship using classification on training data as presented in this chapter produces predicted
results that are significantly better than the chosen baseline. Also, improvements to the clas-
sifier designs that reduced the number of outcomes by normalizing to only the A to C direc-
tion of that relationship also significantly improved the ability for the classifiers to predict
the nature of the relationships. The J48 classifier performed best on both the 1980-1984 and
the post-1984 data sets using the regularized outcomes experiment design. The hypothesis is
that any of the primary three classifiers studied with the regularized outcomes data design in-
cluding all data (not the data design that removed podg) should be able to accurately predict
the LBD relationships over 70% of the time.





Chapter 5

Identifying and Explaining Hidden
Knowledge

This chapter presents experiments that apply the classifiers developed in Chapter 4 to the task
of explaining LBD relationships. To do this, candidate LBD pairs must first be identified
along with linking B terms and the nature of the A-B and B-C relationships. That is, partially
qualified triples (Section 2.1.3) must be identified for candidate LBD pairs. It will be these
partial triples that will be presented to the classifiers in an attempt to explain the nature of the
hidden knowledge between the A and C related concepts identified with LBD techniques.
Once classifier predictions of the nature of the A to C relationships are available, further
validation is performed to determine if there is any supporting evidence that the predictions
are accurate (Section 2.3).

The classifiers, developed in Chapter 4, were based on the medical domain using
concepts identified from MEDLINE sources. The LBD will also be based on the medical
domain and will use MEDLINE abstracts as the corpus from which hidden knowledge will be
extracted. The approach uses Semantic Vectors for identifying the LBD candidate pairs and
uses SemMedDB for explaining the A-B and B-C relationships of the partial triple. Semantic
Vectors has been used by Cohen et al. (2012) to associate concepts indirectly. In their work,
they point to LBD as a result of indirect inference. Cameron et al. (2015) suggested using
MEDLINE and MeSH terms to provide links to candidate LBD pairs. However, based
on a survey of available literature, the combination presented here of using MEDLINE
abstracts, Semantic Vectors software and SemMedDB data to identify candidate LBD pairs
and ultimately form complete partial triples is novel. Additionally, using SemMedDB as a
source of expert knowledge to validate the predicted A to C relationships is also novel.
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The general steps presented in this chapter are as follows:

1. Identify a data for LBD, for submission to classifiers and for validation of predicted
LBD explanations.

2. Generate LBD candidate pairs using statistical methods on older time-slice of the
corpus

3. Prepare the candidate LBD pairs for classification by building them into partially
qualified triples

4. Predict the explanation of the LBD discoveries using classification

5. Validate the predicted explanations using explanations found in newer data

6. Refine and improve on the prediction accuracy by applying ensemble learning

Section 5.1 discusses the data used for LBD, classification and validation of results. The
corpus used for LBD is comprised of MEDLINE abstracts which are derived from medical
journal articles and other publications (Section 2.4.1), and the concepts used are derived from
lists found in MEDLINE/PubMed Baseline Repository (Section 3.1). Section 5.2 discusses
the process of LBD performed using the Semantic Vectors package. Section 5.3 disscusses
the preparation of the pairs for LBD by using SemMedDB (introduced in Section 2.4.2) to
provide the additional information needed for the completion of the partial triples. That
section also describes the use classifiers to provide possible explanations of the candidate
LBD pairs. Classifiers used are those trained on the regularized output design (design
presented in Section 3.5.2 and results in Section 4.3.3). Section 5.4 discusses applying
the time slice methodology (introduced in Section 2.3) as a way to validate the classifier
predictions. This is accomplished by comparing the classifier explanations for older candidate
LBD candidate to actual relationships found in newer publications. That is, explanations for
candidate LBD pairs from the 1980-1984 time slice are checked against newer references
found in SemMedDB and are either confirmed or contradicted. Section 5.5 discusses the
last experiments presented in this chapter that try to improve on the results by applying
ensemble learning techniques (introduced in Section 2.8) to more accurately predict the LBD
explanations.

Ultimately, this chapter focuses on 312,426 partial triples that were identified from an
initial set of 17,799,335 candidate LBD pairs and then 6,119,954 pairs that had linking B
terms. The partial triples are those that have linking B terms with identified relationships
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between A and B and B and C nodes. This set of 312,426 partial triples is passed to the
classifiers so they may suggest explanations of the nature of the LBD relationship in the
set. Then the predicted results are compared against data found in newer data to see if any
predictions may be validated or contradicted. Ensemble learning provides a way to possibly
increase classification accuracy at explaining LBD candidate pairs.

5.1 Data for LBD, Classification and Validation

This section presents the data used in the experiments presented in the rest of this chapter.
There are three parts to these data – data used to perform LBD (Section 5.1.1), data presented
to classifiers (Section 5.1.2), and data used to validate the explained LBD relationships
(Section 5.1.3). The data for LBD consists of a corpus built from MEDLINE abstracts
and a set of normalized concepts providing candidate A, B and C nodes of LBD. The data
presented to classifiers includes the LBD candidate pairs and linking B terms. The data used
for validation is derived from a source of facts (SemMedDB) and is focused on the candidate
LBD pairs. The next sections provide more details about these data.

5.1.1 Data for LBD

This section presents the data used to perform LBD – it includes the selection and preparation
of the corpus. LBD requires a set of concepts to initiate open or closed LBD (Section 2.1.2)
and requires a set of documents (the corpus). For this research, the MEDLINE corpus was
selected because it is freely available for research, and because it is has been used in other
LBD research (see Section 2.4). There are two primary steps to prepare the corpus for LBD
and for the experiments presented here: the time slice selections and the preparation of the
documents for LBD. Preparation of the corpus involves normalizing both the concepts and
the corpus so LBD may be performed using statistical methods.

Slicing the Corpus

Time slicing the corpus, as introduced in Section 2.3, allows for validation of automatically
suggested relationships without the need for judgments by experts (Yetisgen-Yildiz and Pratt,
2009). The corpus is split into two sets, an older set and a newer set. The newer set of
documents is set aside for use in validating the LBD discoveries and, more importantly, in
validating the actual relationship type suggested by the classifier models that are generated
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for this research. More on how suggested relationships may be validated using the time slice
approach is presented in Section 5.4.

Swanson’s initial studies on Raynaud’s phenomenon focused on a corpus from 1975
through mid 1985 (Swanson, 1986a), while Kostoff’s studies used various date ranges
depending on the disease being studied (Kostoff et al., 2007). Swanson focused on other
date ranges in subsequent works (Swanson, 1988; Swanson and Smalheiser, 1996; Swanson,
2011). To use the time slice method for validating results, the only constraint is that LBD is
performed on older data and that validation uses newer data. In this work, abstracts published
between 1980 and 1984, inclusive, are used as the older time slice which include some of the
dates used by Swanson’s original work on Raynaud’s disease.

Based on the concepts used in the studies presented in Kostoff et al. (2007), additional
concepts beyond those from the Swanson studies of Raynaud’s disease and migraines were
included. The additional concepts include Parkinson’s disease, multiple sclerosis and
cataracts. This makes the dates of 1980-1984 less significant for reproducing Swanson’s
discoveries, but still allows a time slice evaluation methodology to be used. A total of
692,399 abstracts from 1980-1984 are used and were retrieved from the MEDLINE 2002
baseline (introduced and the older 2002 baseline justified in Section 3.1). LBD will be
performed on the older date range and explanations of LBD pairs will be validated against
newer data.

Concept and Corpus Normalization

LBD requires knowledge of terms or concepts as described in Section 2.1.2 and the set of
concepts considered are introduced in Section 3.1. Concepts may present themselves in the
text in many different ways. For example, Raynaud’s phenomenon, Raynaud’s disease or
simply Raynaud’s may all refer to the same disease or syndrome – they are synonyms for
the same basic concept. In order to use statistical co-occurrence techniques, these synonyms
must be normalized so that a single common term is used throughout the corpus to refer to the
concept and all of its synonyms. This way, a document referring to Raynaud’s phenomenon

will be found to be referring to the same concept as a document referring to Raynaud’s
disease. This single common term may be a common word or phrase like Raynaud’s disease
or may be some unique identifier for each concept set like a GUID or a database key value.
This research uses the unique identifier approach. When using this approach, the system
maintains a mapping back to the concept to which the identifier relates, in order to allow for
humanly readable results.
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The UMLS Metathesaurus and the MetaMapAPI, introduced in Section 2.4.1, are used
to find matching MEDLINE unique identifiers (CUIs) in the MEDLINE data sets along
with synonyms for the concepts (MEDLINE, 2002). For example, "multiple sclerosis" has
CUI C0026769 but is listed in the Metathesaurus with the synonym of "MS gene" (with
corresponding CUI, C1417326). And, in another example, "Parkinson’s disease" has CUI
C0030567 with two synonyms of "Parkinson’s disease pathway" (C1521736) and "Parkinson
disease (allelic variant)" (C2681933). Since the statistical methods for performing LBD
use a bag of words approach when identifying relatedness, all synonym CUIs are used as
representations of the concepts. That is, when "multiple sclerosis" is found in the text, it is
replaced with both CUIs: "C0026769 and C1417326"; and "Parkinson’s disease" is replaced
with its CUI plus two synonyms: "C0030567, C1521736, C2681933". One approach could
have used only the preferred CUI presented in the Metathesaurus but this may have omitted
some possible discoveries. Having all synonyms in the document will allow links to be made
to documents mentioning, for example, either multiple sclerosis or MS gene. The corpus is
normalized by replacing all occurrences of the concepts in the corpus with the CUI or the
set of CUIs representing the concept. Including all synonyms of a concept also helps avoid
any inaccuracies that MetaMapAPI may introduce when it doesn’t link all synonyms to all
variations of a concept, for example, if MS gene doesn’t mention multiple sclerosis in its
Metathesaurus entry, links to multiple sclerosis related documents may be lost.

To summarize, the normalization of the corpus involves replacing the actual concept
name with the CUI or CUIs representing the concept. More than one CUI is used if synonyms
were identified via the Metathesaurus. In order to be able to reference human readable names
for concepts, a master list is maintained that maps the concept name to its related CUIs. This
is how the results ultimately presented, here, rarely reference the CUIs.

5.1.2 Data for Classification

This section presents the data used for preparing LBD candidate pairs for classification to
explain the A to C relationships. Recall that the classifiers developed in Chapter 4 required
the semantic types of the A, B and C concepts along with the nature and direction of the
A to B, the B to C and the C to A relationships. The C to A relationship is the outcome
of the classifiers – the predicted class. In this chapter, using classification to explain LBD
relationships requires partially complete triples for the candidate LBD pairs along with their
linking B terms. Therefore, the natures of the relationships of the A to B and B to C nodes of
the LBD triples must be identified (Section 2.1.3).
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Require: consider the candidate LBD pairs
1: for each A concept in a candidate LBD pair do
2: query SemMedDB for relationships between A and any B
3: for each B concept with A to B relationship do
4: query SemMedDB for relationships between B and any C
5:
6: if relationship found between B and C then
7: if all relationships are from 1980-1984 then
8: save as a partial triple
9: else

10: ignore
11: end if
12: end if
13:
14: end for
15: end for

Fig. 5.1 Completing LBD partial triples from SemMedDB

As was done in Section 3.2, SemMedDB is used to provide candidate B linking terms
and to provide the facts about the A to B and B to C relationships. Figure 5.1 shows the logic
used to query the SemMedDB and collect completed partial triples. The logic only queries
SemMedDB for the A to B relationships and the B to C relationships – not the C to A as was
done in the previous chapter. The queries also are constrained to ensure that explained A-B
and B-C relationships are from literature in the 1980-1984 date range.

The natures of the relationships of the candidate LBD pairs are predicted by the best
classifier design developed in Chapter 4. That design is the one that regularized outcomes
to always be in the A to C direction (Section 4.3.3). This also means that the predicted
relationship will always be in the direction from A to C.

5.1.3 Data for Validation

This section presents the data used for validation of the relationship explanations provided
by the classifiers for the LBD candidates pairs. Section 2.3 presented four ways in which
explanations to LBD discoveries may be evaluated and validated. One of those methodologies
is expert validation which is also what the time slicing approach simulates. To simulate
validation by experts, a set of gold standard data is generated using newer data than that
used in the identification of the candidate LBD pairs. The gold standard, being sought to
simulate the expert knowledge, is any documented explanation found in post-1984 data,
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and the explanation is for the literature based discoveries identified in the older 1980-1984
time slice. The newer time slice explained relationships are then used to determine if the
suggestions from classifiers can be validated. Yetisgen-Yildiz and Pratt (2009) presented a
technique (discussed in Section 5.1.1) that is similar to the approach used here. SemMedDB
is used as the source of newer facts. These facts provide explanations of the pairs that LBD
identified and are used to try to validate or disprove the predicted explanations suggested by
classifiers to explain the candidate LBD pairs.

Queries to SemMedDB are performed that search for relationships between the LBD
candidate pair – the A to C relationship. Identifying SemMedDB relationships from docu-
ments published after 1984 represent the experts’ explanations for the A to C relationships.
A total of 70,795 A to C relationships from the 312,426 partial LBD triples were found in
newer literature in SemMedDB.

5.1.4 Summary of Data

This section provides a summary of the data that will be used in work presented in this
chapter for performing LBD, for classification that will explain LBD relationships and for
validation of the explanation predictions. A total of 692,399 abstracts in the 1980-1984
date range will be studied for LBD. 15,427 concepts will be considered in performing LBD.
After normalization of the corpus and applying statistical relatedness (Section 5.2) a total
of 18,848,172 statistically related concepts will be identified from the corpus using the
concept list. After LBD candidates are separated from co-occurring pairs, 17,799,335 LBD
candidates were identified. Of these, 6,119,945 had candidate linking B terms (Section 5.3).
Queries to SemMedDB were used to prepare the candidate LBD pairs for classification by
providing a source for explaining the known relationships between the A-B and B-C node
pairs. This resulted in completion of partial triples for 312,426 of the LBD candidate pairs
(also in Section 5.3). This data source, SemMedDB, was also queried to provide 70,795
validation data points from the newer time slice of post 1984 documents (Section 5.4).

Here are the data summaries:

• Documents (Abstracts) - 692,399 from 1980-1984

• Concepts - 15,427 unique concepts

• Related concept pairs identified using Semantic Vectors - 18,848,172

• Same document mention pairs (not LBD) - 1,048,837



96 Identifying and Explaining Hidden Knowledge

• LBD candidate pairs - 17,799,335

• LBD pairs with linking B terms - 6,119,954

• Partial LBD triples with explained A-B and B-C relationships - 312,426

• Relationships found in newer literature used to validate LBD explanations - 70,795

5.2 LBD Using Statistical Methods

LBD is performed here using reflective random indexing, a variation of LSA, as a statistical
co-occurrence technique and the general relatedness of documents is based on words found
in them (see Section 2.2.3). Sometimes the related concepts are found to be mentioned in
the same document, sometimes not. Those never mentioned together in the same documents
provide candidate LBD pairs. Those found in the same document provide a source of possible
linking B terms. For example, in Swanson’s example of Raynaud’s disease and fish oil being
a literature based discovery, these two concepts would not be found in the same documents.
However, statistical co-occurrence would find them to be related. Statistical methods may
also identify a relatedness between Raynaud’s disease and platelet aggregation and between
fish oil and platelet aggregation. These two pairs would be found to be mentioned in the
same documents, so would not be candidate LBD pairs, but instead, would provide platelet
aggregation as a candidate B linking term. The rest of this section describes how Semantic
Vectors, a reflective random indexing implementation, is able to perform LBD (Section 5.2.1)
and then presents the LBD results identified by using Semantic Vectors (Section 5.2.2).

Note that there are other ways to perform LBD – for example, SemMedDB could
have been used, not only to provide training data (Section 3.2), but it also could have been
used to discover candidate A and C concepts related with B terms but never linked together
directly. Applying statistical methods using Semantic Vectors was simply a choice made for
an approach to identifying LBD pairs.

5.2.1 Semantic Vectors for LBD

The Semantic Vectors approach (see Section 2.2.3) provides a statistical method based
on LSA for finding related concepts and was used because it provided improvements in
performance over other implementations of LSA by including random projections (Widdows
and Cohen, 2010). Once a corpus is indexed using Semantic Vectors, concepts of interest are
studied to see which pairs are related more than other pairs based on their scores. Additionally,
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the pairs are examined to identify which are candidate LBD pairs by never being mentioned
together and which are possible B linking terms because they do co-occur in documents.
That is, Semantic Vectors or any statistical approach will relate concepts without regard to
their co-occurrence in a document, or not. Using Semantic Vectors as a means of performing
LBD, or indirect inference for discovery, is discussed in Cohen et al. (2012).

In general terms, Semantic Vectors requires a pointer to the documents (e.g., a reference
to the directory location of the MEDLINE abstracts) and some parametric data to guide the
process of LSA and random indexing. The two parameters explicitly set in this work were the
number of dimensions for the random indexing (Section 2.2.3) and the choice to have vectors
of real numbers as opposed to binary values. The Semantic Vectors software recommends
dimension numbers in the hundreds when vectors contain real values, not binary (Widdows
and Ferraro, 2008; Kanerva et al., 2000).1 The significance of using random indexing in LSA
is that instead of a complete term (m) by document (n) matrix, a matrix of only m x 200,
for example, is required. In this work, 692,399 documents (Section 5.1.1) were analyzed
by Semantic Vectors with real number vectors and the dimension of size 200. Increasing
the dimension causes degradation in performance because the matrix being computed gets
larger. Reducing the dimension used by random indexing reduces accuracy of results so some
caution is applied and the recommendation of staying in the hundreds for this parameter is
honored.

Semantic Vectors assigns a score between minus one and one to pairs of concepts
when identifying the relatedness of terms found during the indexing of the documents. The
higher the score, the more confident the algorithm is that the concepts are related. When
concept pairs have a score very close to or equal to one, the concept pairs are usually
very strong synonyms of each other and, in some cases, were the same concept with a
different presentation like "urinary incontinence" and "Incontinence, urinary". Other times
the concepts were, when presented together, actually separate concepts like "loss" and
"heterozygosity" – each separately is a concept unto itself, but "loss heterozygosity" is
also a concept, so it is logical that a statistical approach would find them to appear as
very highly related (1.0 score). In this work, concept pairs with a score greater than 0.001
were considered. This number was chosen to provide a rather large set of related concept
pairs and to provide significant numbers of pairs that included the concepts of interest
(Raynaud’s disease, Parkinson’s disease, multiple sclerosis, migraines and cataracts). A total
of 21,075,988 related pairs were identified with scores greater than the threshold of 0.001.

1https://github.com/semanticvectors/semanticvectors/wiki and the APIs referenced at this site discuss the
parameters that may be configured when using Semantic Vectors
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Results showed that interesting LBD candidates that were able to be validated were found in
the full range from 0.001 through 1.0.

5.2.2 Identifying LBD Candidate Pairs

From the set of related pairs identified with Semantic Vectors, candidate LBD pairs must
next be identified from those pairs whose score was above the threshold. LBD pairs will be
those where the concepts are never mentioned together in the same document. Part of the
Semantic Vectors processing includes the creation of indexes that allow efficient retrieval
of links to documents containing specified words or concepts. These are the same types
of indexes as introduced in Section 2.2.1 that allow efficient retrieval of text data based on
search criteria. Candidate LBD pairs are identified by performing a search in the term by
document index for each concept of the pair returning a set of documents for each concept.
Then the list of documents are compared looking for intersections. If no documents contain
both the A and the C concept, then an LBD pair has been identified.

Samples of same document mention pairs are shown in Table 5.1. Samples of LBD
Pairs are shown in Table 5.2. (Recall, from Section 5.1.1, that the CUIs were used in the
processing that identified related concepts, but for readability, only concept names are shown.)
The Semantic Vector score is in the first column followed by the names of the A and the
C concepts in the next two columns. The "A Docs" and "C Docs" columns indicate the
number of documents that mentioned the respective concept. The last column is the number
of documents that mentioned both the A and the C concept.

The data in Table 5.1 suggests, for example, that Raynaud’s disease may be related
to "rec a protein"2 because they are mentioned together in the same 9 documents in the
1980-1984 date range. However, this is simply co-occurrence of these two concepts – further
investigation is required to determine if there is any real relationship between these concepts
that appear in some of the same documents. This is just as would be required if this pair was
candidate LBD pair. The data in Table 5.2 suggests, for example, that Raynaud’s disease my
have a relationship with the hormone, relaxin, but these concepts never appear together in
the same document.

In summary, a total of 18,848,172 pairs of the 21 million related pairs identified in
Section 5.2.1 were found using searches into the indexes – this included both LBD and same
document mentions. Further study showed that only 1,048,837 of the related pairs contained
same document mentions. This left a total of 17,799,335 unique candidate LBD pairs.

2"rec a protein" is identified in MEDLINE as a synonym of "Rec A Recombinases", a family of recombinases.
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Table 5.1 Sample of same document mention pairs where one or more document was found
to be in common (identified because A-C docs column has numbers greater than zero)

Table 5.2 Sample of LBD Pairs with zero common document mentions (identified because
A-C docs column has numbers equal to zero)
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5.3 Explaining Candidate LBD Pairs

This section applies the classifiers designed and developed in Chapter 4 to the task of
explaining the LBD A to C relationships. To do this, additional information about the linking
B terms and corresponding relationships must be identified. Then the trained classifier
models may be applied to explain the LBD pairs.

The goal of identifying linking B terms is to generate partial triples for the candidate
LBD pairs so that this data may be passed to the classifiers and the A to C relationship
explanations may be predicted. Some B linking terms may be found in the set of same
document mentions documents described above (Section 5.2). SemMedDB (see Section 2.4.2
and Section 3.2) was found to be a good source for identifying candidate B linking terms. An
advantage to using SemMedDB is that, in addition to the nature of the relationship between
the A-B and B-C concepts, the actual sentence from which the relationship was identified
is also provided. SemMedDB provided a better approach than brute force searching in
documents for linking B terms and then determining the natures of the B term relationships
with As and Cs.

Queries to SemMedDB search for linking B terms between an A and a B and between
the same B and a C concept. This approach was presented in Section 5.1.2 and uses the
same basic process described in Section 3.2 to query SemMedDB. Once a linking B term is
identified, the relationships from the A to B and B to C are retrieved from SemMedDB. They
are also checked to make sure the dates of the relationship mentions are before 1985. This is
to make sure the relationships were not known during or before the 1980-1984 test range.
A list of partially qualified triples (defined in Section 2.1.3) is generated from data meeting
the criteria where the relationship between A-B and B-C are those identified from queries to
SemMedDB and the date range of the supporting sentence mentions is within 1980-1984.

A total of 6,119,954 LBD pairs with linking B terms were identified. At this point
these candidates are not complete partial triples, yet, because the natures of the A-B and B-C
relationships has not been identified. This information is retrieved from SemMedDB and
includes the semantic types of the concepts and the relationships of A-B and B-C node pairs
of the partial triples. A total of 312,426 partial triples were able to be generated. Examples
are shown in Table 5.3 where the concepts semantic type (SemType) is the type defined in
SemMedDB and MEDLINE and the direction is either to the right or to the left – for example,
A to B relationships are shown as an arrow to the right (→) and B to A relationships are
shown with an arrow to the left (←). Visualizations of the partial triples listed in Table 5.3
are shown in Figure 5.2. The dashed line represent the A-C LBD relationship that is not
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(a) Visualization of 1st row (b) Visualization of 4th row

(c) Visualization of 7th row (d) Visualization of 11th row

Fig. 5.2 Partial triple visualizations of four rows of data from Table 5.3

known in a partial triple. The arrows help to show the direction of the relationship – for
example, bacteria is the LOCATION_OF nitrofurans in Figure 5.2c.

The last step in explaining the candidate LBD pairs is to use the classifiers trained in
Chapter 4 to predict the LBD explanations. The classifiers are those based on the regularized
outcome data design presented in Sections 3.5.2 and 4.3.3 and the J48, naïve Bayes and
random forest classifiers are used in this chapter. This is the practical application of the
trained classifiers to automatically explain the literature based discoveries which is the
primary purpose of this thesis. The full set of 312,426 partial triples are presented to the
classifiers to predict the A to C relationship.

5.4 Validating Suggested Explanations

This section presents the methods applied to validate the predictions of the A to C relation-
ships from Section 5.3. As noted in Section 5.1.3, validation will be done by comparing the
prediction to relationships found in SemMedDB for the same concept pairs. Section 5.4.1
presents validation results and Section 5.4.2 explores some of the predictions that were not
able to be validated.

5.4.1 Validation of Classifier Predictions

Data for validation was introduced in Section 5.1.3. Recall that SemMedDB was queried for
the each of the 312,426 candidate LBD pairs to identify facts for validation. The query is
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Table 5.4 Validation of LBD Explanations from Single Classifiers

constrained to allow only 1985 and newer data and to include both A and C concepts. Then
the relationship between concepts is captured and used for validation. In total, 70,795 of the
312,426 candidate LBD pairs were found to be mentioned in newer literature. These 70,795
are the only candidates that may now be validated. That is, these are the only candidates
with explanations in newer literature. The remaining LBD candidates may still be valid
discoveries but cannot be confirmed using the time slice technique using SemMedDB. To
validate them would require traditional steps like seeking validation from experts or by
clinical trials as discussed in Section 2.3.

For an explained LBD relationship to be considered accurate, it must be mentioned
in the newer documents and must match one or more mentions. An LBD relationship may
appear in the newer literature five or ten times, for example. The criteria used here is that
one or more of the relationships identified must match the predicted LBD explanation to be
considered a validated match.

Table 5.4 shows the validation results for regularized outcomes classifiers trained in
Section 4.3.3. As noted in Section 4.3, classifiers trained on newer data were also included in
summarized results since they provide classifiers that were trained on much larger sets of
data with more possible semantic types and relationships. The data used to train classifiers in
the newer date range had no mentions of the diseases of interest. They were considered in
the results because they provide a larger data set and, thus, may provide more meaningful
results (See end of Section 3.2). The results in Table 5.4 show that the classifiers are able to
predict, with some success, the natures of the A to C LBD relationships. This was the goal of
this research.

The classifiers trained on the smaller set of data (4997 in the 1980-1984 data range as
noted in Table 4.2) produced validated results approximately 40% of the time (left side of
Table 5.4) while the classifiers trained on the larger data set (203,323 in the post 1984 data
range, also in Table 4.2) were able to perform a bit better at approximately 50% validated
accurately (right side of Table 5.4). The learning curves presented in Section 4.3.3 showed,
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also, that the post-1984 data set achieved higher percent classified accurately but took more
training data to get to those higher percentages. Another important note is that the larger post-
1984 training data set also contained many more possible semantic types and relationships
than the smaller 1980-1984 data set (see Table 3.13). The classifiers trained on the smaller
data set contained a subset of the feature values compared with the larger set. This is why the
number of mentions in SemMedDB is smaller in the classifiers trained on 1980-1984 data
range (61,488 instead of the full 70,795).

Chapter 4 presented classification performance results in Table 4.2. As noted in
Section 5.3, based on cross-validation, over 60% of the predictions using the trained classifiers
should be accurate with J48 possibly being able to predict in the mid 70% range. However,
this is not the case for single classifier validation using the 1980-1984 data set. The validation
of the 61,488 LBD candidates using the regularized outcomes experiment design was lower
for this training set (J48 was 39%, Naïve Bayes – 42% and Random Forests – 38%), but these
results are are still higher than the baselines from those initial classifier training sessions of
24% to 30% presented in Table 4.2. Using the post-1984 training sets produced higher results
(J48 was 51%, Naïve Bayes – 46% and Random Forests – 50%). Nevertheless, these results
are encouraging given that the baseline results were less than 30% for both the classifiers
trained with 1980-1984 and the post-1984 training sets. The results are still less than those
achieved using cross-validation in training the classifiers. Remember that this does not mean
that the explained discoveries are necessarily inaccurate – it only means that they cannot
be validated using the time slice approach with the data currently available. Also of note
is that Naïve Bayes still performs consistently worse than other classifiers when using the
larger training set (post-1984). The lower validation numbers and the mixed predicted results
shown in many of the samples like those shown in Table 5.5 (to be discussed in Section 5.4.2)
are what led to the idea of combining the classifier results into ensembles as will be presented
in Section 5.5.

5.4.2 Candidates for Expert Validation

Of the 312,426 LBD partially qualified triples, approximately 70,000 of them had data against
which validation could be performed. This section looks at a few of the discoveries that
presented but that were not able to be validated using the newer literature. These candidates
provide discoveries with predicted explanations that may be worth pursuing further with
either experts’ opinions or with clinical trials.
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A sample of results are shown in Table 5.5. These are predictions from classifiers
trained on 1980-1984 data using the regularized outcomes data design. A similar set of
results was generated by passing the same LBD partial triples to the classifiers trained
on post-1984 data. The data in Table 5.5 includes the possible discovery shown in the
second row that pyrilamine, an organic chemical (semantic type of orch), may treat migraine
disorders, a disease or syndrome (dsyn). Having a drug that treats a disease is logical. It is
also encouraging, that this TREATS explained discovery is predicted by all three classifiers.
The third row in Table 5.5 shows a relationship between two diseases or syndromes –
pyelonephritis and migraine disorders. Here each classifier came up with a different prediction
– COEXISTS WITH, CAUSES and IS A. Pyelonephritis is a bacterial infection of the kidneys
and is often accompanied with flu-like symptoms including headaches. Migraines are a kind
of headache, so logical that these two conditions are related with the COEXISTS WITH and
CAUSES relationships being plausible. The last row in the table indicates a relationship
between Raynaud’s disease and permeability. In the medical sense, permeability relates to the
ability of gases or liquids to pass through matter. Raynaud’s is where capillaries close down
preventing the flow of blood and causing fingers and toes to turn white. In a fundamental way,
this is a permeability problem. In the predictions by the classifiers, again, there is confusion
among the three classifiers – AUGMENTS, AFFECTS and PROCESS OF – for the explained
relationship between these two concepts. Here the relationships are similar – an augments
relationship is similar to one that affects.

The purpose of this section was to present some explained LBD relationships that are
not able, at this time, to be validated. The results show that sometimes there is consensus
between the three classifiers applied, but, also, that sometimes there is none. The idea to
look at ensembles to try to better predict LBD relationships comes from examination of these
non-validated results. Ensembles are presented in the next section.

5.5 Additional Experiments Using Ensemble Learning

The percentage of explanations, shown in Table 5.4, that were able to be validated as accurate
is lower than the best possible percentage of accurately classified results that cross-validation
tests showed in Chapter 4. This fact, along with observations from Section 5.4.2, are what
led to further investigation of applying some sort of ensemble classification to the task of
explaining LBD candidate pairs. This set of experiments applies a variation of ensemble
learning that combines results of heterogeneous classifiers in ways that may improve the
accuracy of LBD relationship predictions. The approach uses a stacking ensemble learning
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Table 5.6 Validation of LBD Explanations from Ensemble Classifiers

variation. Stacking usually takes the results from base learners and provides their outcomes
as the inputs to a different, higher level classifier called a metalearner (See Section 2.8). A
voting approach, which is normally used in bagging approaches to ensemble learning, is
used with stacking (See Sections 2.8.1 and 2.8.3). This approach takes results from different
classifiers and combines them with majority or consensus vote to determine final outcomes
of the stacked ensemble learner.

The results of ensemble learning applied to validating results are shown in Table 5.6.
The ensembles are created by combining primary classifiers’ results with either consensus and
majority tallying techniques. The next sections discuss the details of consensus ensembles
(Section 5.5.1), majority ensembles (Section 5.5.2) and further study of actual explained
discoveries (Section 5.5.3). This sections ends with a summary (Section 5.5.4).

5.5.1 Consensus Ensembles (All Match)

The predictions from all of the classifiers considered must match at least one sentence from
SemMedDB for the consensus ensemble to declare a match. Sometimes more than one
sentence with different relationships are found in SemMedDB. For there to be consensus in
this work, one or more sentence, from each classifier prediction, must agree. Two sets of
consensus ensembles were studied – those where the J48, Naive Bayes and Random Forest
classifiers agreed using the classifiers trained on 1980-1984 data (left side of Table 5.6)
and those where the three classifiers agreed using the classifiers trained on post-1984 data
(right side of Table 5.6). The ensembles were tallied using the classifiers that regularized
the outcomes to the A to C direction only (recall that regularized outcomes data design was
described in Section 3.5.2 and the classifier training results for regularized outcomes in 4.3.3).
Results for consensus are labeled "Ensemble Consensus" in Table 5.6.

The number of mentions of candidate pairs in newer SemMedDB that all agreed was
20,451 from the 1980-1984 data range and 32,383 from the post-1984 data range. Out
of these mentions, 13,316 (65%) and 21,379 (66%), respectively, matched the predictions
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provided by all three of the classifiers. The consensus ensembles produce more accurate
results than the individual classifiers (Table 5.4). Additionally, the consensus results of
approximately 65% are closer to the mid-70% range that the cross-fold evaluation predicted
should be able to be achieved.

5.5.2 Majority Ensembles (Most Match)

The predictions from most of the classifiers considered must match for at least one sentence
from SemMedDB for majority ensembles to declare a match. As noted with consensus
ensembles, sometimes more than one sentence with different relationships are found in
SemMedDB. For there to be majority agreement in this work, one or more sentence must
agree and there must be agreement in two or three out of the three classifier predictions.
Two sets of majority ensembles were studied – those where most of the J48, naive Bayes
and random forest classifiers agreed using the classifiers trained on 1980-1984 data (shown
on left side, last row of Table 5.6) and those where most of the classifiers agreed using the
classifiers trained on post-1984 data (shown on right side, last row of Table 5.6). The results
for majority are labeled "Ensemble Majority" in Table 5.6.

The number of mentions of candidate pairs in newer SemMedDB where a majority
agreed was 45,612 from the 1980-1984 data range and 61,726 from the post-1984 data range.
Out of these mentions, 23,276 (51%) and 34,657 (56%), respectively, matched the predictions
provided by most of the classifiers. The majority ensembles produce more results classified
and validated as being accurate than the individual classifiers (Table 5.4) but were lower
than the consensus results. A difference is that approximately double number of validated
candidates were identified with majorities than were identified with consensus and, likewise,
more of these candidates were validated as being accurate. The most interesting point
noted in these results is that the ensembles are necessary to increase the chance of accurate
predictions which is a primary goal of this research – assist researchers in focusing on the
most promising LBD candidates for future research and clinical trials. Ensembles reduce the
number of results that were able to be validated, but allowed more accurate predictions.

5.5.3 Examples of Explained Discoveries

Table 5.7 shows samples of the validated results from the ensemble studies from the regular-
ized outcomes design. The relationship from A to C is always in the A to C direction. All
of the discoveries that appear in the all match ensembles also appear (by definition) in the
most match ensembles. They are left off of the lower part of the table so that other majority
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matches may be shown. After the A and C concepts is the number of sentences that mention
the discovery. The last column is the Semantic Vectors scores for the original candidate LBD
pair. The set of examples shown provides examples that mention some of the diseases of
interest.

The actual sentences describing the discoveries is available because the SemMedDB
data contains the sentence references for every stored relationship between concepts. As an
example, the five sentences for cytokine being a associated with multiple sclerosis which
were identified and validated in the most match ensemble with an ASSOCIATED WITH
relationship as the explanation of the LBD candidate pair. They are:

• "Substances that down-regulate cytokines such as TNF-alpha or promote IL-10 or
TGF-beta can be anticipated to affect MS beneficially."

• "This result raised the possibility that these cytokines played an important role in the
demyelinating process in SCID-hu-MS."

• "The role of cytokines in multiple sclerosis."

• "Cytokines in multiple sclerosis: methodological aspects and pathogenic implications."

• "Cytokines have a central role in multiple sclerosis (MS) pathogenesis and may con-
tribute to the aetiology of MS."

These sentences found in newer literature support the explained LBD relationship that
cytokine is associated with multiple sclerosis which was never mentioned in the 1980-1984
abstracts used for LBD. Further research into cytokine and multiple sclerosis shows that
there were mentions in papers but either synonyms were used that were not indicated in the
UMLS Metathesaurus or the mention was not in the abstracts which were used for the LBD
in this work.

Another example are these sentences for naltrexone being identified by the consensus
ensemble as a treatment for multiple sclerosis:

• "There is overwhelming anecdotal evidence, that in low doses naltrexone not only
prevents relapses in MS but also reduces the progression of the disease."

• "Low-dose naltrexone for multiple sclerosis and autism: does its benefit reveal a
common cause?"

• "Low-dose naltrexone for treatment of multiple sclerosis: clinical trials are needed."
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• "Pilot trial of low-dose naltrexone and quality of life in multiple sclerosis."

• "Prevention and diminished expression of experimental autoimmune encephalomyelitis
by low dose naltrexone (LDN) or opioid growth factor (OGF) for an extended period:
Therapeutic implications for multiple sclerosis."

These sentences found in newer literature support the explained LBD relationship that
naltrexone may be beneficial to those with multiple sclerosis that was never mentioned in
the 1980-1984 literature. However, some caution is also indicated in these references – for
example, the third mention says "clinical trials are needed".

5.5.4 Summary of Ensemble Learning

This section has presented two approaches, consensus and majority, to ensemble learning
using various combinations of the trained classifiers previously presented. The results of
these ensemble experiment prove to be more significant and are novel for identifying the
most interesting and likely to be accurately explained LBD candidate relationships. The
most accurate predictions of LBD explanations were obtained using the consensus ensembles
using the classifiers trained on the post-1984 data using the regularized outcome design (66%
with 21,379 relationships accurately validated). The ensembles achieve higher percentages
validated as being accurate compared with individual classifiers.

However, the drawback of the consensus ensembles is that fewer discoveries are
available after this processing. Majority ensembles reduced the accuracy of the predictions
but provided many more explained discoveries that may provide real discoveries. Larger
training sets were also important in providing more accuracy in both the consensus and the
majority ensembles.

Additionally, all ensembles performed better than individual classifiers when trying
to validate the results. Ensemble learners are able to achieve higher precision with reduced
recall, but, when the goal is to focus researches to the discoveries most likely to prove fruitful,
this is a reasonable trade-off. The approach of using classifiers to explain the natures of LBD
relationships works best with some form of ensemble. Using classification to explain LBD
relationships should be viable in practice based on the results presented in this chapter of the
ability to use time slice approaches to validate the predictions presented for the 1980-1984
LBD candidate pairs.
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5.6 Chapter Summary

This chapter has presented the data and experiments performed to automatically identify
and explain the nature of the hidden knowledge relationships. This section summarizes the
experiments performed and presented in this chapter. First a corpus obtained from MEDLINE
of 692,399 abstracts was prepared for a statistically based approach to LBD. The preparation
included identifying a set of 15,427 medical terms on which to focus and normalizing these
terms to handle occurrences of their synonyms. With a normalized corpus, a statistical
approach to LBD is applied which is based on co-occurrence of the same or similar concepts
in documents to determine the relatedness of documents. In addition to being statistically
related in the corpus, term pairs must not appear in the same document to be retained as
candidate LBD pairs. This produced 17,799,335 candidate LBD pairs.

The next steps in explaining candidate LBD pairs is to complete the partial triples
required as inputs to the classifiers. This involves finding linking B terms and explaining the
A-B and B-C relationships. A gold standard is provided by a database (SemMedDB) that
was compiled by other researchers and organizations. This database assists in two ways –
it provides the data required to create partial triples out of the candidate LBD pairs, and it
provides a set of newer data of that is used to validate any results produced by the classifiers.

From SemMedDB, a total of 6,119,954 linking B terms were identified for the set of
17,799,335 candidate LBD pairs. Then this set was further studied using SemMedDB to
identify the natures of the A-B and the B-C triples. This step is to create the data required by
the classifiers – the partial triples. A total of 312,426 partial triples were completed and used
as inputs to the classifiers.

Explaining the candidate LBD pairs from 1980-1984 was performed by using the
classifiers trained in Chapter 4 that used the regularized outcomes design. The classifiers
predicted explanations of the A-C relationships identified by LBD techniques. Validation of
the predictions was performed using the time slice methodology using newer data to validate
or invalidate the explained relationships. SemMedDB was searched for each of the 312,426
LBD candidate pairs, and this provides the validation data. The validation data examined
were those based off of the regularized outcomes design and were the data mentioned in
SemMedDB articles dated after 1984 (a total of 70,795 records were found to mention the
candidate LBD pairs). In this chapter, the individual classifiers applied to the candidate LBD
pairs produced validated results that were accurate approximately 40 to 50% of the time.
While not as good as classifier training percentages presented in Chapter 4, these results are
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encouraging. Recall that results that cannot, yet, be validated may not be inaccurate – they
just cannot be validated with relationships found in newer literature.

Ensemble learning was the last set of experiments explored. The goal was to determine
if ensembles learners were able to be even more accurate in their predictions. Two types
of ensembles were created using combinations of the primary individual three classifiers
(J48, random forest and naïve Bayes). Consensus and majority are the two ensemble
types. The results were more accurate when validated against newer facts. The consensus
classifiers produced the highest percentage of validated predictions. While the majority
ensembles produced more accurately validated instances, they produced smaller percentages
of accurately classified predictions.

The trade-offs produced with ensemble learners is that the most accurate produced
smaller sets of results. For example, the consensus voting of the three primary classifiers on
the post-1984 data set, 66% accuracy was achieved, but only 13,316 discoveries resulted out
of 20,451 possible that could have been validated (Table 5.6) which is also much less than
the 70,795 possible discoveries examined with the single classifiers (Table 5.4) . However,
improvements using consensus ensembles allows accurate validation to achieve percentages
closer to the cross-validation accurately classified percentages found during training (66%,
here, versus 70%, or more, during classifier training as shown in Table 4.2).





Chapter 6

Conclusions

The primary objective of this thesis was to determine if the natures of the relationship could
be automatically explained using supervised machine learning classification. To satisfy this
objective, this work first explored data representations suitable for applying classification
techniques to explain the relationships. Then, this work applied traditional classification
evaluation methods on both classifier outcomes and data designs. Classifiers applied to the
training data successfully predicted the A to C relationships over 70% of the time, while
the chosen baselines only achieved approximately 30% accurately predicted relationships.
The classifiers were then used on real LBD candidate pairs from an older set of MEDLINE
abstracts found using statistical LBD. The predicted LBD explanations were validated
against more recent literature, which is the time-slice validation approach. The validations of
predicted relationship explanations using ensemble classifiers achieved 66% accuracy.

This thesis researched approaches to automatically explaining the nature of LBD
relationships. The results are exciting in that this work has proven that this problem can be
solved with classification and that the results can be validated. The design of the classifiers
did not focus on the exact concepts being considered, but, instead, used the semantic types
of the concepts. This combined with the direction and nature of the relationship provided
enough information to obtain promising results. Additionally, the time slice approach was
able to be applied for validation of the explained relationships. This allowed validation
without requiring experts from the medical domain to provide the validation. The time-slice
validation showed that many of predictions from ensemble learners from the 1980-1984 data
were corroborated by finding the same explanations cited in newer literature.

The rest of this chapter discusses how this thesis answers the questions proposed in the
introduction (Chapter 1) and how the limitations presented in the literature review (Chapter 2)
were addressed. This chapter also presents areas of future work that could be performed
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to further explore the problem of explaining literature based discoveries. The end of this
chapter provides some final words about this work.

6.1 How this Work Addresses the Research Questions

Section 1.2 presented a set of research questions that form the focus of this thesis. This
section summarizes the contributions this thesis has provided in addressing these questions.
The primary question of this thesis was:

Can the nature of the LBD relationships be automatically explained?

Yes, the nature of LBD relationships may be explained using text classification. There are
limitations in that the numbers of accurately explained results becomes small compared
with the number of discoveries offered by LBD. However, this is to be expected since there
is consensus that LBD produces many more unimportant and unrelated concepts than real
and truly important discoveries (Swanson et al., 2006; Kostoff et al., 2007; Preiss, 2014;
Cameron et al., 2015). An additional encouraging part of this research is that refinement
to the classification results using ensemble learning is able to further filter the explained
relationships to those that have better probability of being accurately explained (improved
accuracy of results). Accuracy of the suggested explanations is important since a goal of
this work is to assist researchers in narrowing in on the most likely and most promising
discoveries presented by LBD.

Additional research questions, and discussions of how this thesis addressed them, are:

1. Can this problem be modeled as a classification problem?

Yes, it can. Classifier design in this work was built around the semantic types of the A,
B or C terms and the natures of known relationships between A and B and between
B and C terms. The relationships also include an indication of the direction of the
relationship. For example, for one of the candidate LBD pairs of nitrofurans being
related to multiple sclerosis shown in Figure 5.2, nitrofurans (A) and multiple sclerosis
(C) are related with the B term, bacteria. The MEDLINE semantic types of nitrofurans,
multiple sclerosis and bacteria are orch, dsyn and bact, respectively. The identified
relationship between the A and B is LOCATION_OF with a direction of B to A and
the relationship between B and C is PART_OF with a direction of C to B. The five
classes are modeled as the A, B and C semantic types along with the A-B and B-C
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relationship and direction. The prediction or outcome of the classifier is the nature and
direction of the A to C relationship.

2. Is there a source of training data for classifier training?

The Semantic MEDLINE Database or SemMedDB is a source of training data. The
SemMedDB includes the semantic types and nature of relationships between concept
pairs and includes references to the sentences in MEDLINE supporting the noted rela-
tionships. This source allows generation of training data sets and may be constrained
to specific time slices.

3. Once trained, do classifiers produce measurably better results than baselines?

Yes, in all cases, the training data performance of the classifiers was better than a
baseline that chose the most frequently occurring outcome. The best classifier and
feature designs achieved over 70% accuracy while the baselines with those same
feature designs were approximately 30% accurate.

4. Do classifiers produce results that can be validated against known facts?

The time slice approach, described by Yetisgen-Yildiz and Pratt (2009), was successful
at validating explained LBD results. After the small set of validated results emerged
from the ensemble learners, the supporting sentences were able to be matched with
the same predictions 66% of the time while baselines from classifier training were
accurate approximately 30% of the time. SemMedDB provided a source of facts for
newer relationships that did not occur in the older time slice. From this source, the
correlated sentences allowed validation of the explanations predicted by the classifiers
and ensembles of this research.

5. Are ensemble learners better than single classifiers in predicting LBD explanations?

Yes, they are – ensemble learners reduce the number of explained results, but when
compared against known facts, they produce a more accurate set of predictions than
single classifiers. Ensemble learners were able to accurately predict the natures of the
LBD relationships 66% of the time while single classifiers were only accurate 40-50%
of the time. Recall that baseline classification performance using training data was
approximately 30%.
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6.2 Contributions

This section examines how this thesis has improved on known limitations initially discussed
in Section 2.5

6.2.1 Explanation of LBD Candidate Relationships

Section 2.5.1 discussed that a limitation of LBD systems is that the nature of the relationship
is not explained by LBD. Explaining LBD relationships is the primary contribution of this
research. Explaining the LBD relationships has been turned into a classification problem
(Chapter 4), and this supervised machine learning has successfully explained LBD relation-
ships automatically including using a time slice approach to validate the explanation predic-
tions (Sections 5.3 and 5.4). Additionally, ensemble learning used in this research provides a
more accurate set of explained LBD relationships (Section 5.5).

6.2.2 Lack of Accuracy and Excess Quantity Using Co-Occurrence

Section 2.5.2 introduced some of the problems raised by using co-occurrence techniques
for performing LBD. Wren (2008b) suggested that limits be placed on the vocabulary for
the A and C terms used in the closed LBD. This work used limited vocabularies (concepts)
as suggested (Section 3.1) and also normalized the corpus in a way that handles a problem
of synonyms (Section 5.1.1). When a concept has a synonym, it is important when using
co-occurrence techniques for LBD that all the synonym occurrences are presented as the
same concept. In this work, synonyms were identified using MetaMap and the CUIs for the
concept and the CUIs for all synonyms of that concept replaced the actual concept in the
corpus.

Additionally, the problem of too many false positives or noise was addressed in this
work by applying ensemble learning techniques. The ensemble learning (Section 5.5) assisted
greatly in refining the explained relationships down to those most likely to be correct. The
results of the ensemble classifiers were validated using time slice techniques and, although
the numbers of results from the ensembles were smaller, they were more accurate than single
classifier applications.

6.2.3 Using LSA Does Not Identify Candidate B Terms

Section 2.5.3 introduced the problem of using LSA for LBD that linking B terms are not
identified during LSA. The approach used in this work was to identify candidate B terms
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using another source of concepts and their relationships (SemMedDB) to identify candidate
linking B terms. SemMedDB represents the knowledge of experts. It was searched for
concepts related to A and concepts related to C and the intersection became the set of
candidate B terms.

6.3 Future Work

This section discusses some areas for future enhancement research that might be applied
to the task of explaining literature based discovery. While many questions and alternative
experiments were considered and explored in this research, many more questions and ideas
presented themselves during the course of this work than were able to be explored during
this research. This section discusses some of these ideas for future investigation.

Explaining LBD from a non-medical domain This work focused on the medical domain
with data provided by MEDLINE and SemMedDB. An exciting extension of this work would
be to develop the same classification solution on a totally different domain. For example,
networks of individuals, groups and events where the goal of the discoveries would be to link
previously unrelated entities (LBD) and suggest explanations of how they may be related.

Studying more concepts In this work, all available concepts were not included in classifier
training (Section 3.1) and in LBD (Section 5.1.1). Further studies could try to include more
concepts. Also, more sophisticated normalization of terms could have been employed
including more complete list of concepts and application of stemming to allow plural and
singular forms of concepts to be handled. This work depended on MetaThesauraus to provide
normalization of very closely related or actually the same concepts. There may be other ways
to identify the same concepts that could be explored further.

Applying relationship extraction ReVerb is an OpenIE tool (Section 2.6.4) that was
briefly tested as a means to explain the A-B and B-C relationships in the partial triples. While
it presented some relationship explanations, it did not line up with the relationships found
in SemMedDB. Ultimately, SemMedDB was used to identify gold standard results against
which explained candidate LBD pairs were validated. SemMedDB has specific relationship
generalizations like TREATS and CAUSES whereas a relationship extraction capability
would find the literal relationship and then a secondary normalization into the SemMedDB
relationship generalizations would need to be performed. For this reason ReVerb was not



120 Conclusions

used. Using other methods to explain the identified relationships found in same document
mentions (without actually reading all the journals) would be a good topic of future study.

Exploring SV configuration In this work, 0.001 was used as the threshold of the SV
related results to include in studied results and what to leave out. Table 5.7 presents samples
of validated LBD explanations and indicates that scores less than 0.01 may less likely to
produce good results. Additional experiments would include raising the threshold of which
results to include and which to leave out.

Another SV parameter is the vector dimension for the random indexing portion of SV –
this work used the default value of 200. Kanerva et al. (2000) suggests using 300. Additional
experiments would involve altering the threshold score of results considered and altering the
vector dimension.

Testing with larger corpus LBD was performed on documents collected from the 2002
MEDLINE abstracts corpus. This decision was made to provide a smaller set of data on
which to perform LBD. The time slice approach was used to validate results. Therefore, LBD
was performed on the 1980-1984 time and validation was performed on newer literature.
Future work could include performing experiments using more recent MEDLINE collections
and using larger time slices on which to perform LBD. Additionally, only the abstracts were
used in LBD. A corpus that included the full texts of the literature would possibly produce
even more interesting LBD candidates.

Applying different B term selection methodologies The SemMedDB provided a source
for identifying candidate B terms in this work. An alternative methodology for B term
selection would be to extract directly from the documents using NLP. This introduces the
problem of not knowing how the B term may be related to the A or C term. Additional
processing would consider word proximity, first, to provide only B terms that occur near the
A or C term. Then further NLP would be required to identify the nature of the A to B or the
B to C relationship.

Applying enhancements to ensemble learning Ensemble learning introduces many op-
tions and varieties of how to develop the ensemble. Boosting algorithms could be applied –
these include simply applying more weight or confidence to the results of some of the un-
derlying classifiers than others. More than three classifiers could also have been used and
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combined to produce the ensemble results. The Weka suite of tools also includes some en-
semble tools that could have been considered (page 372 of Witten et al. (2011)).

Modifying and adjusting the classifier data design The class designs did not consider
combining similar relationship types. For example, PART_OF from B to A is similar to
LOCATION_OF from A to B. This was identified by examining the confusion matrix results.
Additional pre-processing of the data input to the classifiers could have combined some
of the relationship synonyms in order to reduce the numbers of training instances and
possibly increase the performance of the classifiers and ultimately increase the confidence of
identifying valid results explaining the LBD relationships.
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