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Summary 

World agreements have stipulated that global temperature should be kept below 2 degrees 

Celsius above pre-industrial levels to reduce the risks of climate change. However, there 

is no one path, technology or solution to achieve this. One potential solution is a range of 

processes known as carbon dioxide utilisation. With this process, CO2 from waste streams 

can be captured and used to produce other chemicals.  

This research focuses on measuring the potential of these conversion processes to avoid 

enviromental impacts and be part of the carbon mitigation agenda. Currently, there is no 

consensus on how to evaluate these impacts and interpret them in a way that allows for 

comparison. Therefore, a multi-disciplinary environmental impact assessment 

framework with specific guidelines for carbon dioxide utilisation processes was 

developed. To test this new framework, two case studies were chosen: methanol and urea 

synthesis.  

Results for the methanol case study showed at best a carbon neutral scenario when 

methanol is produced through catalytic hydrogenation of CO2 with renewable H2 

compared to methanol from natural gas (0.1 kg of CO2 avoided/kg methanol). For urea, 

the best scenario sees up to 1.3 kg of CO2 avoided/kg of urea produced in a scenario 

where an electrolyser connected to wind power supplies H2 for ammonia synthesis is 

compared to ammonia produced from fossil fuels. System expansion was used to allocate 

emissions in all case studies. 

Twenty indicators were used for scenario analysis and ranking of each process. Six 

different rankings were used to analyse impacts. For both case studies, the highest 

utilisation potential was calculated with a combination of CO2 capture and an utilisation 

process based on renewable energy. This framework is a decision making tool that can 

help guide CO2 chemical transformation processes towards reaching environmental 

targets and contribute to lessening the effects of climate change.      
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1 Introduction 
 

As living species in this planet, everything that we do has a consequence to our home. 

This consequence can be good or bad, like this we have survived for millions of years. 

Nature has a way of finding a balance, whether it is through the carbon cycle, the nitrogen, 

the water cycle, etc. However, as humans we have been pushing the barrier of these cycles 

with our anthropogenic activities (Olah, Prakash and Goeppert, 2011). How do we know 

when is it too much or too little? How can we measure our impact in this world, the bad 

and the good? Moreover, particularly, how can we have a sustainable life that will not 

compromise the future of next generations? 

There are many efforts to reduce the negative aspects caused by our standard of living. 

Accepting that we will always have an impact is a first step towards managing these. 

From finding less carbon intensive energy sources, optimising resources, recycling 

materials, tightening environmental regulations etc., as a society there is much more 

awareness than ever before in what a sustainable life means (Moldan, Janouskova and 

Hak, 2012). Still, there is much work to do in this area.   

Climate Change is without a doubt one of the most discussed environmental changes in 

the 21st Century. It is an issue set at global scale that will affect natural and human 

systems. Some of the observed impacts by the Intergovernmental Panel on Climate 

Change (IPCC) include (IPCC, 2014): 

 Change in precipitation or melting snow that modify hydrological systems. This 

also includes permafrost warming and thawing and shrinking of glaciers. 

 Changes in the way animal species react in response to climate change. Including 

migration patterns, seasonal activities, abundances and geographical ranges. 

 Uneven development that will affect marginalised societies the most.  

 Climate related extremes such as, droughts, floods, cyclones, wildfires, 

heatwaves, etc. 

 Violent conflict that leads to increased climate vulnerability.  

To prevent further impacts, the Intergovernmental Panel on Climate Change (IPCC) set 

a carbon budget to limit global temperature rise to 2 degrees C above pre-industrial levels. 

The world responded in 1992 by joining an international treaty, creating the United 
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Framework Convention on Climate Change. By 1995, the Kyoto Protocol was signed 

legally binding countries to comply with emission reduction targets. Since then, the 

convention includes 197 parties and 192 of these have signed the Kyoto Protocol.  

More recently, in September 2015 world leaders adopted the 17 Sustainable Development 

Goals (SDGs) of the 2030 Agenda for Sustainable Development. These goals address 

several social needs including health, social protection, education, addressing climate 

change and environmental protection amongst others. While these goals are not legally 

binding, countries are expected to implement their own national frameworks, monitor, 

review and report progress. Goal number 13 is set to take urgent action to combat climate 

change and its impacts. It emphasises in acknowledging that the United Nations 

Framework Convention on Climate Change is the primary international, 

intergovernmental forum for negotiating the global response to climate change. The 

targets of this goal include (United Nations, 2015): 

 Strengthen resilience and adaptive capacity to climate-related hazards and 

natural disasters in all countries. 

 Integrate climate change measures into national policies, strategies and 

planning. 

 Improve education, awareness-raising and human and institutional capacity on 

climate change mitigation, adaptation, impact reduction and early warning. 

 Promote mechanism for raising capacity for effective climate change-related 

planning and management in least developed countries and small island 

developing States, including focusing on women, youth and local and 

marginalised communities. 

 Implement the commitment undertaken by developed-country parties to the 

United Nations Framework Convention on Climate Change to a goal of 

mobilising jointly $100 billion annually by 2020 from all sources to address 

the needs of developing countries in the context of meaningful mitigation 

actions and transparency on implementation and fully operationalise the Green 

Climate Fund through its capitalisation as soon as possible. 

While these commitments to tackle climate change are set at a large scale, small ideas, 

local improvements and new technologies can make an overall difference. Through this 
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work, we focus on the potential of a technology to reduce anthropogenic CO2 emissions: 

CO2 utilisation, also known as carbon capture and utilisation (CCU). 

 There is a focus on carbon dioxide chemical transformation processes because if 

successful, it can be part of the carbon mitigation agenda. With this technology, carbon 

dioxide can be captured from various sources and used to produce other chemicals. 

Ideally, these chemicals would have lower environmental impacts if CO2 was supplied 

from waste rather than using virgin materials as feedstock. While this is a promising 

technology, the potential for avoiding environmental impacts is still unknown. Without 

further knowledge of this potential, it is difficult to predict the success of CO2 utilisation 

as a carbon mitigation technology. Finding this research gap gave purpose to this work; 

there is a need to assess the environmental benefit (in particular CO2 avoidance) of CO2 

based products.     

There are many ways to assess the impact of an anthropogenic activity, whether it is a 

product or a process. While these methods have been available for decades (Moldan, 

Janouskova and Hak, 2012), newer processes sometimes need tailored methods. Through 

this work, we explore the possibilities of an environmental impact assessment framework 

that can address the challenges of a product that does not use a raw feedstock. These 

challenges include allocating emissions between capture, CO2 transformation and use, 

dealing with lack of data and processes not easily modelled, separating the carbon benefit 

and other environmental impacts, amongst others.  

With these in mind, the research questions, aim and objectives were the following: 

 Do CO2 utilisation processes have less environmental impacts than non-CO2 

utilisation processes? In particular, climate change and fossil depletion? 

 How can available sustainability assessment methods be adapted to include CO2 

utilisation processes? 

 What are the main challenges of these adaptations and how can they be 

overcome? 

 Can these adapted assessments be standardised for better comparison between 

CO2 utilisation routes? 

 Are there specific products that can be assessed that would give an overview of 

CO2 utilisation processes and can be used as baseline cases? 
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 What should be the structure of an environmental impact assessment for CO2 

utilisation? What is the scope? 

The aim of this work is to develop an environmental impact assessment framework for 

CO2 utilisation processes. To achieve this, a series of objectives were proposed: 

1. Create a framework that englobes the design of the CO2 utilisation process, 

locational availability of renewable energy, the impact assessment and other 

aspects of CO2 utilisation into one study. 

2. Present the framework in a practical way, where results can easily be compared 

with other studies. 

3. Explain the differences between assessing a process that uses waste streams 

instead of raw materials and a conventional product/process. 

4. Deliver study cases that support the applicability of the framework. 

5. Determine the limitations of assessing carbon dioxide utilisation routes. 

The framework follows the life cycle assessment (LCA) technique. The definition of the 

term life cycle assessment from the International Organization for Standardization (ISO) 

in 1997 is (Sadhukhan, Ng and Hernandez, 2014): 

“Compilation and evaluation of the inputs, outputs and the potential environmental 

impacts of a product system throughout its life cycle.” 

This methodology is based on four main phases: Goal and scope definition, inventory 

analysis, impact assessment and interpretation. The International Organization for 

Standardization has then published several documents on how these life cycle 

assessments principles and phases are to be applied. These documents are (Sadhukhan, 

Ng and Hernandez, 2014): 

 ISO 14040 Life cycle assessment-principles and framework (June 1997, now 

confirmed from 2006) 

 ISO 14041 Life cycle assessment-goal and scope definition and inventory 

analysis (October 1998) 

 ISO 14042 Life cycle assessment-life cycle impact assessment (March 2000) 

 ISO 14043 Life cycle assessment-life cycle interpretation (March 2000) 

 ISO/TS 14048 Life cycle assessment-data documentation format (2002) 
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Using this life cycle assessment (LCA) technique, the aims and objectives are achieved 

throughout the next eight chapters. In each one, a specific part of the developed 

framework is discussed. 

To begin, there is an overview of what does it mean to transform CO2 chemically. 

Chapter 2 discusses the basic theory behind these processes from a supply chain 

perspective. This leads to a cradle to gate approach that is seen for most of the work. The 

main phases include CO2 capture and CO2 utilisation. Other aspects include CO2 

treatment, transportation, energy source, product, etc. This chapter lays the groundwork 

for the case scenarios selected for this work: methanol and urea production. Methanol has 

been studied extensively by the CO2 utilisation community and as a result there is more 

data available than for most of the other CO2 utilisation processes. Because of this, it was 

feasible to develop an environmental impact assessment framework around this process 

and use it worked example. The framework could then be tested on a urea production 

method researched internally.  

The focus then moves to reviewing the assessment work available for CO2 utilisation. 

There was a specific interest in searching for life cycle assessment (LCA) work, as this 

was the methodology considered as basis. In this review, it was found that a large amount 

of information exists, but it is often scattered or presented inconsistently.  Some of the 

studies did present life cycle assessment (LCA) results or guidelines, but no work was 

found that took a general approach to sustainability issues and CO2 utilisation. This 

opened the possibility of creating such framework, in a way that could address the 

problems associated with a CO2 based product 

A final section in Chapter 3 analyses policies related to utilisation technologies. 

Currently it is unclear what role it will have in the mitigation agenda and what regulations 

are attached to it. An assessment is made on the options available for the technologies 

under study, particularly in the UK. The framework was developed in Chapter 4 and 

divided into four main sections: 

1. Design of the CO2 utilisation process: Addresses the problems with obtaining a 

life cycle inventory (LCI) when processes are not at commercial scale or with 

undefined outputs/inputs. This includes ways to use process simulations as 

alternatives to traditional life cycle inventory databases. 
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2. Environmental impact assessment: Assesses the technical data using life cycle 

assessment (LCA) methodology. Adaptations are made to allocate carbon dioxide 

emissions by using the system expansion method. It uses global warming and 

fossil depletion, carbon avoided, and carbon utilised as the main indicators. 

However, all other impacts categories under the CML-IA method are also 

assessed. 

3. Locational availability of renewable energy: This is an aspect that needs to be 

revised constantly throughout the framework. The potential of any CO2 utilisation 

project will depend on the CO2 sources available within a region as well as the 

renewable energy mix also available. These two variables are not time-fixed thus 

creating alternative scenarios gives a wider overview of the impacts. The 

geographical section includes mapping of CO2 sources and energy outlooks up to 

2050 as examples. 

4. Other aspects: This includes a glimpse of other characteristics that affect CO2 

utilisation. While there is less information available, there is also more ground to 

improve and create useful guidelines. In this work, there is an introduction to: 

 Utilities costs 

  Energy projections 

  Human health issues 

  Aspects that will affect future generations  

 CO2 utilisation potential markets 

This section outlines the initial requirements so in the future a life cycle costing model 

for can be created. The results from this section are shown as 20 indicators for the 

assessment of carbon dioxide and utilisation.  

The direct interpretation of un-aggregated results can be challenging when there are many 

process alternatives to consider. To simplify the interpretation of CO2 based products at 

an initial screening level, a multi criteria decision analysis method (MCDA) was 

proposed to rank the indicators. This allowed better comparisons between processes 

under the same CO2 chemical transformation conditions. The simple multi attribute 

ranking technique (SMART) method was also used to determine the indicator weights 

and analyse how different weights will affect the final interpretation. 
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After the framework was outlined, Chapter 5 to 8 tested its application. Chapter 5 uses 

methanol production through catalytic hydrogenation of CO2 as the utilisation process. 

This worked example is created with collected data and available models. The results are 

compared to other similar studies for sensitivity analysis and to check the accuracy of the 

assessment method. The same steps are then implemented to another product in Chapter 

6. The process is urea production from ammonia using ‘green hydrogen’ and captured 

CO2. In collaboration with another research group by the University of Sheffield, the life 

cycle inventory (LCI) is provided for a pilot plant that will produce urea at a rate of 250 

kg/day. Both case studies use five baseline scenarios for comparison. 

In Chapter 7, the results from both case studies are used to create energy scenarios to 

2050 in the UK. National Grid projections and UK renewable data are used to calculate 

these scenarios. Other aspects such as cost of utilities and market potential are also 

assessed with current background data. This chapter concludes with the summary of all 

indicator results for each case and for each scenario.  

The decision analysis method is applied in Chapter 8. This includes an equal weights 

approach and a specific CO2 utilisation weighting scheme for sensitivity analysis. For the 

latter, global warming and fossil fuel depletion are the impact categories considered with 

the most weight at an initial screening level. Ten fundamental questions for utilisation 

processes were created to determine the weights of each impact. With these results, final 

recommendations on the potential of each route were made. This also includes policy 

recommendations and suggestions for process improvement for utilisation routes. 

Through this work, the benefits, opportunities and challenges of evaluating CO2 

utilisation processes such as methanol and urea are assessed.  

This framework presents other opportunities to continue finding paths to show 

environmental results in simpler and practical ways. The search to finding less carbon 

intensive and more environmentally friendly processes will not stop; therefore, finding 

ways to prove the success of these processes will also be as relevant and as important as 

the processes itself.  
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2 Overview of Chemical Transformations of CO2 

for Utilisation 
 

This chapter reviews the pathways of capturing CO2 from anthropogenic sources and 

direct air capture to transform it chemically into a product. This review covers potential 

CO2 sources; the capture options currently available and the routes to utilising captured 

CO2. While these are the main aspects of carbon dioxide utilisation, they are not the only 

ones. Additional processes such as: the removal of impurities, compression and 

transportation of CO2, the use of the final product, and the use of renewable energy for 

CO2 utilisation are also discussed. This is a brief overview of some of the processes that 

can be used to chemically transform CO2; understanding what drives these processes is 

fundamental for developing an environmental impact assessment framework for them. 

 

2.1 Carbon sequestration for greenhouse gases (GHG) mitigation 

 

While fossil fuels continue to be available as a source of energy, it is necessary to 

optimize extraction, production and consumption. This is a fundamental step to exploit 

this resource with in its natural limits. This also includes finding new ways to lessen the 

impacts to the carbon cycle by maintaining a balance between carbon uptakes and 

releases. The aim is to stay within its natural rates as possible.  CO2 utilisation is amongst 

the developing technologies that push towards an efficient fossil fuel economy. It is an 

option that can contribute to CO2 emission reductions by utilising carbon dioxide through 

chemical transformations. While the carbon dioxide would eventually be emitted again, 

it can displace new raw fossil fuels and their associated impacts (IPCC, 2005). CO2 

utilisation (also referred to as carbon dioxide and utilisation) and abbreviated as CDU is 

frequently linked to carbon capture and storage (CCS). However, the similarities between 

CDU and CCS end after the capture of carbon dioxide from emission sources. With 

carbon utilisation, a useful product can be introduced to the market, while carbon capture 

and storage will only demand economical investment with no revenues. Carbon capture 

and storage is considered a storage solution for CO2 and not a mitigation technology  

(IPCC, 2005). As for carbon utilisation, its role as a mitigation process is still unclear. 
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Utilising carbon dioxide at industrial scale would require high investments but so would 

carbon capture and storage. 

 Carbon capture and storage has a large upstream supply chain, but an almost inexistent 

downstream chain. For CO2 utilisation its supply chain map would include a capture 

phase as seen in Figure 2.1, plus the utilisation unit and a downstream supply chain. 

Because of these extra processes, it is more complex to form a life cycle inventory for 

CO2 utilisation than for carbon capture and storage. Sections 2.1.1 to 2.4 further discuss 

the life cycle of carbon capture and CO2 utilisation supply chains.  

 

2.1.1 CO2 capture routes 

The first step towards chemically transforming CO2 is securing a carbon dioxide supply 

(von der Assen et al., 2016). In terms of sustainability, the first step is ensuring that this 

CO2 stream does not deplete fossil reserves any further by using an energy intensive 

capture process. In efforts to achieve better environmental performances, many capture 

Figure 2.1 Supply chain of carbon capture and storage and CO2 utilisation, based on IPCC (2005) 
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routes have been studied through CCS (carbon capture and storage) technologies. 

Although initially popular, low public acceptance, high costs and other problems lead 

carbon capture and storage (CCS) development to stall in the UK (House of Commons 

and Committee, 2016).  

Although currently there are no large-scale carbon capture and storage projects in the 

UK, capture technologies are still investigated with the aim of finding ways to lower 

carbon emissions. These capture routes are fundamental for a successful utilisation of 

CO2. Carbon dioxide use is not necessarily limited by the capture step; it can also be used 

directly from a mixture of gases. This is known as direct flue gas utilisation (Zhang et al., 

2013; Connect, 2014). While using direct gases is still a new research area, there are 

processes such as mineralisation that are much more advance. The main carbon capture 

routes are discussed below.  

Carbon dioxide can be captured from several industrial sources, such as: 

 Coal and gas fired power plants  

 Cement manufacturing  

 Ammonia and fertiliser production  

 Steel industry 

 Oil and gas refineries 

Overall, in EU countries, the energy generation sector is the highest emitter of greenhouse 

gases and the largest carbon dioxide source, followed by transportation (Eurostat, 2017). 

Although transportation comes in second contributing to 23% of greenhouse gases 

(GHG) emissions in a year, the capture of these emissions is not yet feasible as most 

developments have focussed on fixed point emission sources.  

This leaves energy generation, industrial processes, agriculture and waste management 

as industrial sectors were carbon capture could be deployed (Eurostat, 2017). Each sector 

emits CO2 at different rates, concentrations and conditions. These differing parameters 

determine which utilisation options are applicable as well as the optimum carbon capture 

method.  

A typical CO2 composition from a coal-fired power generation after SO2 scrubbing can 

range from 7 to 15% (Wattanaphan et al., 2013). Capture technologies are commonly 
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divided into three categories depending on the carbon capture point: Pre-combustion, 

post-combustion and oxy-fuel capture (Figure 2.2).  

 

 

 

Pre-combustion and oxy-fuel capture can be integrated into new plants; post-combustion 

capture can be retrofitted to existing technologies. Currently, post-combustion is the most 

accessible carbon capture process but generally remains prohibitively expensive. (IEA 

Greenhouse Gas R&D Programme, 2008; Kolding, Fehrmann and Riisager, 2012; 

Srisang et al., 2017). Post-combustion capture processes use solvents to strip carbon 

dioxide from flue gases from power plants. They are designed to treat high volumes of 

gas due to low carbon dioxide concentrations at low pressures (NETL, 2013). This project 

focuses on post-combustion as the capture method, based on data availability and scope 

of the project.  

In general, separation processes can be either physical or chemical. These methods 

include the following processes for CO2 capture: absorption, adsorption, chemical 

looping combustion, gas separation membranes and low temperature separation. Each 

process has different characteristics, potential and use (Pires et al., 2011; Sadhukhan, Ng 

and Hernandez, 2014). Over the next 10-20 years, solvent scrubbing, (including ionic 

liquids), oxy-fuel combustion, chemical looping and calcium looping are processes that 

are expected to grow within CCS (Boot-Handford et al., 2014). The separation processes 

for carbon capture are described below. 

 

Figure 2.2 Carbon dioxide capture routes, based on diagram by IPCC (2005) 
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Absorption processes 

Absorption works by stripping the CO2 from the flue gas by using solutions that bind 

CO2 (Troy, Schreiber and Zapp, 2016). The process operates in an absorption column at 

low temperatures with water used for scrubbing (Petrescu et al., 2017). Figure 2.3 shows 

the basic configuration of an absorption column. Amine-based is the most common 

absorption solution and is mentioned often in CSS studies (Ho, Allinson and Wiley, 2011; 

Zoannou, Sapsford and Griffiths, 2013; Basavaraja and Jayanti, 2015; Petrescu et al., 

2017; Srisang et al., 2017; Van der Giesen et al., 2017). Part of the success with amines 

is its applicability at industrial scale for gas treating. Other advantages of using amines 

include: low reboiler regeneration energy, low power for CO2 compression, low cost for 

ammonia and a high capacity to carry CO2 (Versteeg and Rubin, 2011). To this date, 

amines such as monoethanolamine (MEA), diethanolamine (DEA) and methyl 

diethanolamine (MDEA) have had the most success. Out of the above amines, 

monoethanolamine (MEA) currently has the highest potential for industrial applications, 

with MEA being known for having a good affinity for CO2 resulting in good capture 

properties (Pirngruber and Leinekugel-le-cocq, 2013; Xu et al., 2013; Sadhukhan, Ng 

and Hernandez, 2014). 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Block diagram of absorber used for CO2 capture, based on Abu-Zahra, Schneiders, et al. ( 2007) 
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Much of the ongoing research in this area is dedicated to the use of amines beyond pilot 

scale. Finding better solvents that regenerate at lower cost, energy and at a less frequent 

rate is priority. If research succeeds in reducing energy penalties and costs of solvent 

regeneration, then amines will continue to be the most feasible of carbon capture 

technologies. Alternatively, there are also other, less-explored absorption processes that 

can be considered. Chilled ammonia, carbonation/calcination cycles and amino-acid salt 

solutions are all alternatives technologies for absorptive carbon capture. However, these 

are still less developed than amines with less performance data/information available 

(Pires et al., 2011).   

Even though solvents are a widely studied and popular option for carbon capture, they 

still have disadvantages. Solvents have limited CO2 recycling loading capacity. For 

monoethanolamine (MEA) there is net consumption of  approximately > 1.4 kg per tonne 

of CO2 captured (Pirngruber and Leinekugel-le-cocq, 2013).  After the saturation point is 

reached, the solvent must be replaced requiring extra energy. Overall, energy 

requirements increase from 70-80% in a coal fired power plant with capture while total 

energy penalties range from 25% to 40%. (Zhai and Rubin, 2013; Hopkinson et al., 2014). 

Solvent is also lost by evaporation, leading to increased negative environmental impacts 

(increased pollution, toxicology). There are also issues with equipment corrosion and a 

large increase in water consumption for the plant. For example, in a coal fired power 

plant with a post-combustion capture system with amines, water consumption rates 

double (Zhai and Rubin, 2013). Table 2.1 shows examples of baseline power plant 

parameters with and without CO2 capture from literature.  
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Table 2.1 Examples of baseline power plant parameters with and without CO2 capture process 

Plant parameters 

Reference studies 

(Troy, 

Schreiber and 

Zapp, 2016) 

(Xu et al., 

2013) 
(NETL, 2015) (NETL, 2015) 

Supercritical 

coal power 

plant w/o 

capture 

Supercritical 

coal power 

plant with 

capture 

Supercritical 

coal power 

plant with 

capture 

NGCC power 

plant 

with capture1 

Plant net output 

(MW) 
555 570 550 550 

Net plant efficiency 

(%) 
46 40 32 46 

Live steam pressure 

(bar) 
300 242 241 165 

Live steam 

temperature (°C) 
600 566 593 566 

Output CO2 

(g/kWh) 
N/A 781 873 360 

Auxiliary power 

(MW) 
N/A 30 91 42 

Capture rate (%) N/A 90 90 90 

1Natural gas combined cycle power plants 

The highest energy penalties and operating cost are associated with the regeneration 

column (Alie et al., 2005; Versteeg and Rubin, 2011; Hopkinson et al., 2014). The rest 

of the auxiliary power is mainly divided between various pumps and heat exchangers. 

Absorption costs are high due to elevated energy requirements; however alternative 

processes are being studied to reduce these (Karimi, Hillestad and Svendsen, 2011; 

Versteeg and Rubin, 2011). An example of this is chilled ammonia. Ammonia has lower 

heating absorption and lower compression needs for a liquid CO2 stream than for a CO2  

gas stream, which could make it less energy intensive (Pires et al., 2011). Water 

requirements are still high but several companies are currently testing this process at pilot 

scale (IEA Greenhouse Gas R&D Programme, 2008). 



16 
 

Currently, the most common physical absorption processes are Selexol TM and Rectisol 

TM (Sadhukhan, Ng and Hernandez, 2014). The Rectisol TM technology uses refrigerated 

methanol as the solvent to remove the contaminants and produce ultra-clean syngas 

(Sadhukhan, Ng and Hernandez, 2014). It is typically used to remove sulphur for the 

production of chemicals such as methanol and ammonia (Olajire, 2010; Sharma et al., 

2016). Its use in CO2 capture is favoured because of its commercial availability and its 

performance at high partial pressures when compared to other solvents (Sharma et al., 

2016). The main drawback of this process is the high energy penalties associated for the 

capture of CO2, according to Sharma et al. (2016) and Yang et al. (2016), the higher the 

capture rate, the higher the energy penalty. The high energy penalty limits CO2 capture 

rate to 60-70 % (Yang, Qian and Yang, 2016). 

The SelexolTM  process is used when fuel gas specifications are not as rigorous and is less 

energy intensive than the Rectisol TM  technology (Sadhukhan, Ng and Hernandez, 2014). 

The benefits of this process is its technological maturity with over 110 commercial 

SelexolTM processes operating around the world (Im et al., 2015). It is also the 

conventional process used to recover CO2 and H2S simultaneously operating at high 

pressures > 20 atm (Sadhukhan, Ng and Hernandez, 2014; Im et al., 2015; Kapetaki et 

al., 2015). As it is the case with Rectisol TM, the economics of the SelexolTM process need 

to improve for its large scale use in CO2 capture (Im et al., 2015). 

Adsorption processes 

Adsorption process is based on the use of a solid adsorbent to capture one or more 

components from a gaseous mixture (Sadhukhan, Ng and Hernandez, 2014). There are 

some benefits of using adsorption over absorption processes. Regeneration of adsorbents 

is less energy intensive and there is also less pollution since chemicals are not released to 

the environment (Pires et al., 2011). The main two processes are pressure swing 

adsorption (PSA) and vacuum swing adsorption (VSA) (Haghpanah et al., 2013). The 

first one is a process that relies on solid sorbents thus avoiding liquid handling issues. 

Costs are also similar to adsorption with monoethanolamine (MEA). Vacuum swing 

adsorption processes work at ambient temperature and pressures, desorbing at lower 

pressures (Liu et al., 2012). This leads to lower power consumption and increased ease 

of operation compared to other methods (Liu and Green, 2013). Both technologies have 
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potential if suitable adsorbents are selected such as zeolites (Labus and Machnikowski, 

2014).  

There are however, several disadvantages to adsorption processes. Pressure swing 

absorption requires positive and strong partial pressure difference between adsorption 

and desorption. To achieve high CO2 recovery a pressure feed of at least 7 bar is 

necessary, increasing energy consumption and costs for the capture process (Pirngruber 

and Leinekugel-le-cocq, 2013). With vacuum swing adsorption, extra compression stages 

and vacuum blower trains are needed due to low pressure. Compression will also increase 

costs (Pirngruber and Leinekugel-le-cocq, 2013). There are other associated costs with 

flue gas drying and cooling for both pressure swing adsorption/pressure vacuum 

adsorption (PSA/VSA) (Pires et al., 2011) . Finally, one of the major problems with 

absorption is scale up.  According to Pirngruber & Leinekugel-le-cocq (2013) the largest  

vacuum swing adsorption  plants for  are six times smaller than the minimum required 

for a large scale, industrial project. Pirngruber & Leinekugel-le-cocq (2013), Labus & 

Machnikowski (2014) and Liu et al. (2011) amongst others, are working towards feasible 

solutions to overcome these barriers. 

Gas separation membranes 

Membranes are not as widely in industry as processes such as amine or PSA separation 

(Labus & Machnikowski, 2014). But, they offer advantages such as requiring easy 

installation and low energy consumption for a low purity stream (Pires et al., 2011; Pera-

Titus, 2014). Membrane systems can also be fitted to a compact space by using high 

packing density. As is the case with adsorption processes, selecting the correct adsorbent 

or membrane can determine the separation (and therefore capture) rate. Thus, reaching a 

balance between membrane properties (selectivity and permeability) is fundamental for 

post-combustion capture (Zhai & Rubin, 2013).  As the search to find more advanced and 

better carbon capture and storage methods, investment in technologies like gas separation 

membranes is increasing. These include optimizing installations of carbon capture and 

storage  plants with membranes in supercritical plants and comparing chemical 

absorption models to membranes (Kotowicz, 2012; Skorek-Osikowska, Janusz-

Szymańska and Kotowicz, 2012).  

There are several disadvantages to existing membrane separation systems. Compared to 

absorption with amines, carbon dioxide capture rates are not as high in post-combustion 
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capture. The purity of CO2 is also lower than that produced by amine separation with 

single or two stage membrane systems. Although this technology is successful in other 

areas such as industrial gas purification, there is still a lack of technological advancement 

in carbon capture. There are also questions regarding costs – both capital costs and costs 

associated with its operation beyond pilot scale and auxiliary equipment (Favre, 2011; 

Troy, Schreiber and Zapp, 2016). Ultimately there is a necessity for further techno-

economic studies as well as studies that combine materials and engineering aspects to 

evaluate membrane feasibility (Favre, 2011; Zhai and Rubin, 2013).  

Chemical looping combustion 

This process uses calcium oxide as a high temperature sorbent and carrier of CO2 between 

a steam gasifier and an oxygen-fired generator as shown in Figure 2.4 (Sadhukhan, Ng 

and Hernandez, 2014). It mainly consists of two reactors, an air reactor and a fuel reactor 

with the oxygen carrier supplying oxygen from the air to the fuel while avoiding contact 

between the materials during the transfer (Tian et al., 2013; Li et al., 2017). According 

to Nandy et al. (2016) the primary fuel can be either liquid, solid or gas and the type of 

reactor design can be, alternating packed or fluidized-bed reactors, two or more 

interconnected fluidized-bed or moving bed reactors and rotating reactors.  

 

 

 

 

 

 

 

 

Figure 2.4 Chemical looping combustion schematic, based on Sadhukhan et al. (2014) 

 

One of the benefits of this process is that carbon capture can be achieved without having 

to add on technologies that will lead to new process steps. These new steps can create 
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additional costs and increase energy penalties (Sadhukhan, Ng and Hernandez, 2014). By 

being an integrated system, both CO2 and H2 can be separated from the N2 gas stream 

whilst sustaining high efficiencies of heat and power generation with an electrical 

efficiency up to 52 – 60% based on process simulations  (Li et al., 2017).  

Amongst the drawbacks, a main challenge for commercialisation is ensuring an adequate 

oxygen carrier that can have a long-term performance over the system cycles and can 

deal with the harsh conditions of chemical looping combustion (Bhavsar and Veser, 2013; 

Tian et al., 2013; Sadhukhan, Ng and Hernandez, 2014; Mukherjee et al., 2015; Li et al., 

2017). The oxygen carriers often investigated are copper (Cu), nickel (Ni), manganese 

(Mn), iron (Fe) and CO based carriers (Li et al. 2017; Bhavsar & Veser 2013; Tian et al. 

2013).  

Other hurdles to overcome include the extra costs to reach the optimum process 

performance, competing with more established CO2 capture routes, CO2 capture 

efficiency and technical barriers to provide reliable operation at large scale (Nandy et al., 

2016; Li et al., 2017). Despite these challenges, according to Nandy et al. (2016), in the 

last 10 to 15 years there have been enough important technological advancements that 

guarantee that chemical looping combustion will be relevant in the future. 

The lime enhanced gasification sorption process is another capture process that is 

integrated and consists of two main reactors. In this process CaO is used as the carrier 

between the two reactors as a high temperature sorbent (Sadhukhan, Ng and Hernandez, 

2014). The two reactors are a steam gasifier and an oxygen-fired regenerator (Figure 

2.5), where H2 is produced in the gasifier and the sorbent is calcined in the sorbent 

regenerator generating a rich CO2 stream ready for storage (Weimer et al., 2008; 

Sadhukhan, Ng and Hernandez, 2014). According to Abanades et al. (2015) this process 

is less developed and has more challenges to overcome than other variants that use coal 

as a fuel.  
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Figure 2.5 Lime enhanced gasification sorption schematic, based on Sadhukhan et al. (2014) 

 

Low temperature capture technologies 

Low temperature capture processes refer to the separation of CO2 by direct cooling and 

physical separation (Berstad, Anantharaman and Nekså, 2013). With this process the 

temperature of a H2 and CO2 mixture is lowered enough that the CO2 can be condensed 

and easily removed from the mixture with phase separation (Sadhukhan, Ng and 

Hernandez, 2014; Xu et al., 2014). In a review by Berstad et al. (2013) it is mentioned 

that low temperature processes have not been researched as intensively for being too 

energy intensive, too expensive or having limited application compared to other capture 

technologies.  

Cryogenic distillation  

The term “cryogenic” capture or separation is often used to refer to CO2 capture by 

cooling and phase separation in the literature (Berstad, Anantharaman and Nekså, 2013).  

This process is also fit for post-combustion capture, with the process using packed beds 

that separate CO2 and H2O directly without using solvents and high pressures (Pires et 

al., 2011; Xu et al., 2014; Yuan, Pfotenhauer and Qiu, 2014). Cryogenic distillation 

occurs at ambient pressures, thus after CO2 is separated it will require compression before 

it can be transported. There are disadvantages to using packed beds in post-combustion 

capture. Plugging by ice and refrigerant costs are issues to consider. According to Xu et 

al. (2014) one of the major challenges to overcome is the lower levels of CO2 purity 
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obtained with cryogenic distillation. The impurities can range from 2 % to 5 % which 

prevent the use of CO2 in most industrial processes (Xu et al., 2014). In general, there is 

lack of information of this process applied directly to carbon capture compared to other 

separation methods. Most research dedicated to cryogenic distillation discusses 

alternative uses such as separation of acid gases from natural gas (Pires et al., 2011) and 

isotope separation (Dumitrache, Inoan and De Schutter, 2014).  

Direct air capture 

Direct air capture (DAC) is a technology that removes CO2 directly from air. Ambient air 

flows through a chemical sorbent that separates the CO2. The sorbent is regenerated and 

the CO2 depleted air is returned to the atmosphere (Socolow, R. H.; Desmond, 2011).  If 

successful, it could be a mitigation process that removes emissions instead of only 

avoiding them (Zeman, 2014). Because of its potential as a carbon negative process, it is 

often mentioned and discussed in the field of CO2 utilisation research. While it is a 

promising technique, there is still little research published. Most information available is 

at bench scale, focusing on specific process units and metrics (kJ energy per mol CO2) 

(Baciocchi, Storti and Mazzotti, 2006; Keith, Ha-Duong and Stolaroff, 2006; Zeman, 

2007). There are also many concerns about the elevated costs of a capturing CO2. 

According to American Physical Society (APS), capturing 1 tonne of CO2 has a cost of  

USD 518, value higher than post combustion capture (Socolow, R. H.; Desmond, 2011). 

However, there are environmental benefits of capturing carbon from air that might offset 

costs if energy penalties can be minimised. A direct air capture plant can operate where 

necessary, this can eliminate the need for CO2 transportation. It also means that it can 

capture the emissions of a fixed point source without having to be near it (Van der Giesen 

et al., 2017). According to the American Physical Society (APS), the scale of a direct air 

capture plant is small when compared to other capture plants available. For a general air 

contactor, 20 tons of CO2 are captured per year for one square meter of area in which air 

flows. While this technology is not yet suitable for large-scale capture, it is an option to 

consider for small scale processes.  

The main process found in literature for direct air capture is thermal regeneration. This 

process can be utilise sorbents such as lime, titanium and solid amines (Zeman, 2014). 

However, most of the research found focuses on using sodium hydroxide as a sorbent 

(Baciocchi, Storti and Mazzotti, 2006; Keith, Ha-Duong and Stolaroff, 2006; Zeman, 
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2007, 2014; Socolow, R. H.; Desmond, 2011). Using sodium hydroxide and calcium 

hydroxide cycles for CO2 capture is a well-known technology, thus favouring its use for 

direct air capture simulations over other studies. In this process, NaOH is used as a 

sorbent to capture CO2 and then it is converted to a solution of sodium carbonate 

(Na2CO3). Evaporating the water from the solution is highly energetic, therefore; the 

solution is first converted to calcium carbonate (CaCO3) by adding calcium hydroxide 

(Ca(OH)2). In this step, NaOH is regenerated and sent back to the absorber. The CaCO3 

is then decomposed in the calciner into CO2 and CaO. The decomposition reaction is 

endothermic and requires high-temperature heat to release the CO2 (Socolow, R. H.; 

Desmond, 2011). Figure 2.6 shows the process flow diagram of a basic direct air capture 

plant that uses NaOH as the absorber. 

 

While using NaOH as a sorbent is a proven technology, its regeneration has a high-energy 

penalty. The American Physical Society (APS) presents an ideal scenario where the CO2 

emitted in the kiln would be captured by the plant. By eliminating emissions associated 

with thermal energy, only electricity emissions are accounted for. Most recently, other 

capture technologies have tried to reduce energy penalties by trying regeneration 

alternatives. Humidity-swing direct air capture consists in drying the sorbent by 

evaporating at ambient temperatures, driving air through filters. But its performance is 

linked to weather conditions (Lackner, 2013). A similar technology, temperature-swing 

Figure 2.6 Diagram of CO2 capture using sodium hydroxide as sorbent based on Socolow, R. H. & Desmond (2011) 
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direct air capture uses low-grade heat to cycle the sorbent. Both processes theoretically 

require less electrical and thermal power (Van der Giesen et al., 2017). Although the 

technology readiness level of direct air capture is still low, understanding its 

environmental impacts and improving its energy requirement is fundamental for the 

future of this capture technology.   

 

2.2 CO2 utilisation for greenhouse gases (GHG) mitigation 

 

Carbon dioxide utilisation processes extend the supply chain further than CO2 storage. 

This is done by using the carbon stream instead of sequestering it. This has the potential 

to not only reduce carbon emissions but also convert a waste into a chemical feedstock. 

While carbon capture and storage would only bring environmental benefits, utilising 

could also present new economic opportunities. 

There are many ways to utilise carbon dioxide and transform it to useful products, these 

technologies are typically at different R&D phases (with a small number of commercial 

technologies). For example, processes like Enhanced Oil Recovery (EOR) are already 

used at industrial scale in the US (Godec, Kuuskraa and Dipietro, 2013; Ng, Zhang and 

Sadhukhan, 2013; Compernolle et al., 2017). The main processes and products according 

to Styring & Jansen (2011) are shown in Table 2.2. 
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Table 2.2 Examples of CO2 utilisation options and CO2 based products 

 

As research continues in this area, less energy intensive CO2 capture routes are being 

studied. One of these alternatives is utilisation of CO2 direct from flue gas without using 

a capture step. It is expected that by eliminating the capture step, the environmental 

burden of a CO2 utilisation process can be reduced. However, published literature 

suggests that this goal has not been achieved yet ( Zhang et al. 2013). Understanding the 

environmental burden of a CO2 utilisation process is important to ensure that developing 

CO2 utilisation options Example of products 

Chemical feedstock and synthetic fuels 

 

Carbon dioxide can be used in the production of a range of 

chemicals (from simple alcohols & acids to complex 

polymers), including various hydrocarbons typically used 

as traditional fuels (light and heavy fuel oils). The carbon 

dioxide reaction mechanism varies depending on the 

product and the synthesis process utilised, for some 

products direct reaction of carbon dioxide is possible with 

the correct catalyst and reaction conditions (e.g. urea, 

methanol, formic acid), but for other products the carbon 

dioxide must be converted to carbon monoxide through the 

reverse water gas shift reaction to produce a syngas.  

 

Inorganic carbonates 

Cyclic carbonates 

Polycarbonate monomers 

Formic acid 

Carboxylic acids 

Hydrocarbons 

Methanol 

Methane 

Cyclic carbamates 

Organic carbamates 

Poly-carbamate monomers 

Mineral carbonisation 

A process in which carbon dioxide is reacted with materials 

containing group II metal oxides (typically that of calcium 

and to a lesser extent magnesium) to form a stable carbon 

dioxide containing product - a metal carbonate. Example 

materials include fly ash, cement kiln dust & quarry fine and 

paper ash. Mineralisation not only utilises carbon dioxide 

but allows for it to be trapped in a product for a longer 

timescale than most chemical CO2 based products. 

Silica 

Metals 

Chemicals 

Cements 

Construction materials 

Remediation of waste materials 

Enhanced recovery 

CO2 is injected into deep oil/gas reservoirs and is used as the 

working fluid to benefit further energy production. Once 

CO2 is injected it goes through trapping mechanisms to 

ensure storage within the reservoir (Safi, Agarwal and 

Banerjee, 2016). 

Enhanced oil recovery 

Enhanced gas recovery 

Enhanced geothermal recovery 

Biofuels and algae 

A biochemical approach to the conversion of CO2 that 

attempts to mimic the CO2 reduction in nature (Aresta, 

Dibenedetto and Angelini, 2014). Conversion of biofuels 

implies a two-step procedure: formation of biomass and a 

processing step for conversion to products.  

Ethanol 

Microalgae 

Fertilisers 

Fuels  

Chemicals and bio oils 
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processes are indeed better for the environment. Thus, life cycle assessment (LCA) 

studies are fundamental to determine benefits or drawbacks of any potential utilisation 

route. Carbon dioxide utilisation embrace many areas and therefore require a 

multidisciplinary approach. To obtain a life cycle inventory (LCI), stages and boundaries 

must be well defined. The following diagram shows the life cycle of a supply chain for a 

CO2 based product (Figure 2.7).  

 

Figure 2.7 Life cycle of a product from CO2 utilisation 

The CO2 based products that fall under the scope of this study are methanol (as part of 

synthetic fuels) and urea production. A brief description of both products and their role 

in CO2 utilisation is given in the sections below. 

 

2.2.1 Synthetic fuels production from CO2 capture 

Synthetic fuels can be produced through the chemical transformation of CO2. These fuels 

can be blended at different concentrations with traditional fossil fuel-based products if 

necessary. Through this process, CO2 is obtained from flue gases and used as a raw 

material to produce fuels like methanol (Olah, Goeppert and Prakash, 2009; Tang et al., 

2017). From a life cycle assessment approach, using carbon dioxide for synthetic fuel 

production could lower net emissions if associated energy penalties could be reduced. An 

example of these barriers is the large supply of hydrogen needed to produce methanol 

from CO2 (Boretti, 2013). For it to be environmentally feasible, hydrogen must come 
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from renewables such as geothermal, solar, nuclear, wind, tidal, etc. (Sayah and Sayah, 

2011; Styring and Jansen, 2011; Suleman, Dincer and Agelin-Chaab, 2015) however this 

is currently not economically viable (in most instances).  

Companies like Carbon Recycling International (CRI) have taken research and 

development of synthetic fuels to industrial scale. CRI produces methanol through 

hydrogenation of CO2 using geothermal power. The first pilot plant was introduced in 

2007 producing up to 0.5 million litres of methanol per year. The first commercial plant 

started running in at Svartsengi, Iceland with a capacity of 5 million litres per year. 

However, the success of this plant is linked directly to its access to geothermal energy 

(CRI, 2017). This model cannot be replicated in most of the world. Therefore, the 

problems with CO2 utilisation processes are far from solved.   

Methanol 

Methanol is typically produced by natural gas steam reforming which relies on four basic 

steps: syngas generation, compression, methanol synthesis and distillation (Bermúdez et 

al., 2013). BASF Company use a ZnO/Cr2O3 based catalyst in the production process 

developed in the 1920’s. Since then, finding better catalysts has been an objective of 

many studies and improving catalysts is still a major factor in improving methanol 

production (C.-J. Yoo et al., 2013). Methanol is a chemical widely used as an industrial 

feedstock to produce formaldehyde, acetic acid, methyl-tertiary-butyl ether (MTBE), 

dimethyl ether (DME), esters, olefins, and other chemical that are used for varied 

purposes (Methanol Institute, 2011a). Methanol can also be used as an alternative fuel 

and as a chemical energy carrier. According to Yang & Jackson (2012) China’s 

increasing methanol consumption rates are directly related to gasoline-methanol blends 

and DME-Liquefied petroleum gas (LPG) making it the number one producer and 

consumer in the world, with a share of global methanol production that is greater than 

20%. It is also considered as an alternative option to hydrogen as a fuel due to advantages 

in operational and infrastructural costs. Methanol can be used in internal combustion 

engines with minor changes and dimethyl ether (DME) can be used for water heaters and 

household stoves (Olah, Goeppert and Prakash, 2009). Yang & Jackson (2012) also 

support “methanol economy” as an easier transition when compared to a hydrogen one, 

partly due to it being a more feasible option for use in existing available infrastructure.  
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A green methanol economy is a concept pursued since the 1990s (Olah, 2005). The aim 

is to reduce carbon emissions from fossil fuels while introducing a carbon dioxide stream 

to the markets which can be used for methanol production.  

Catalytic hydrogenation of CO2 is considered as a ‘green route’ to produce methanol (Kar 

et al., 2018). This route utilises recycled CO2, a low carbon source of H2 and a catalyst; 

where ideally the only other co-product is water vapour (Li et al. 2014). Equation 2.1 

and Equation 2.2 show the reactions for methanol synthesis from CO2: 

 

𝐶𝑂2 + 3𝐻2 = 𝐶𝐻3𝑂𝐻 + 𝐻2𝑂 

Equation 2.1  

𝐻2𝑂 →  1
2⁄ 𝑂2 +  𝐻2 

Equation 1.2 

Equation 2.1 rearranged in mass terms: 

1.4 𝑘𝑔 𝐶𝑂2 +  0. 2 𝑘𝑔 𝐻2  → 1.0 𝑘𝑔 𝐶𝐻3𝑂𝐻 +  0.6 𝑘𝑔 𝐻2𝑂 

Equation 2.3  

 

Where to produce 1 kg of methanol, 0.2 of kg H2 and 1.4 kg of CO2 are required. 

The main limitations with this process are energy penalties from hydrogen production 

and catalyst performance efficiency (percentage of feed converted to desired product) 

(Esmaili, Dincer and Naterer, 2015).  

A significant research effort is invested towards finding better and more stable catalysts 

that can overcome water vapour interference. Some of the best performing catalysts under 

study include Zr-doped Cu-Zn-Zr-Al (CZZA) and CuO-ZnO-Al2O3 (Zhang, Zhang and 

Chen, 2012; Bansode and Urakawa, 2014; Li, Yuan and Fujimoto, 2014). One alternative 

to existing systems found is to use high-pressure conditions with co-precipitated 

catalysts. However, these conditions still result in  high energy penalties, thus further 

research is still required (Bansode and Urakawa, 2014).  

For methanol production, the supply of economically viable renewable hydrogen is the 

biggest challenge. The enthalpy change for catalytic hydrogenation of CO2 equals -11.9 
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kcal/mol (at 298 K); while for water electrolysis is 68.3 kcal/mol (at 298 K) (Boretti, 

2013). Wind or solar energy have been suggested as the only renewable sources capable 

of generating enough energies; 53 kWh are needed to produce 1 kg of hydrogen (Boretti, 

2013). This equals to 190.8 MJ of electric energy per 120.1 MJ of fuel energy produced. 

Table 2.3 shows general energy requirements to produce 1 kg of methanol. 

Table 2.3 Main energy requirements for 1 kg of methanol produced through catalytic hydrogenation of CO2,  

based on Boretti (2013)  

Processes/units 
Energy requirements 

(MJ/kg methanol) 

H2 production  46.5  

Compressor  10.0  

Distillation  1.7  

Reaction Heat  -1.5  

Total  56.7  

 

2.2.2 Production of urea as a CO2 based product 

Studies such as Bose et al. (2015) have proposed producing urea (carbamide) from a CO2 

recovery process. This includes coupling CO2 from a capture process and a supply of 

‘green hydrogen’ to produce NH3 through the Haber-Bosch process. The configurations 

to obtain these two feedstocks can vary, but the process is the same. Commercial urea is 

produced by the reaction of CO2 with NH3. These react to form ammonium carbamate 

which is then dehydrated to urea (Xiang et al., 2012). 

 

The reactions to produce urea are as follows (Equation 2.4 to 2.6): 

Ammonia synthesis                                   𝑁2 + 3𝐻2  ↔ 2𝑁𝐻3 

Equation 2.4  

Ammonium carbamate formation             2𝑁𝐻3 + 𝐶𝑂2  ↔ 𝑁𝐻2𝐶𝑂𝑂𝑁𝐻4 

Equation 2.5  
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Urea formation                                       𝑁𝐻2𝐶𝑂𝑂𝑁𝐻4  ↔ 𝐻2𝑂 + 𝑁𝐻2𝐶𝑂𝑁𝐻2 

Equation 2.6  

 

Where producing 1 kg of  NH2COONH4 requires 0.73 kg of CO2, 1.23 kg of NH3 and 

23.4 MJ of natural gas for a fossil fuel-based process (Althaus et al., 2007). Figure 2.8 

shows a basic diagram of what urea production from ammonia powered by wind and 

CO2 capture would look like. 

Few studies were found that consider carbon dioxide utilisation routes for urea and 

ammonia synthesis. In a conventional process, ammonia synthesis supplies the CO2 

required for carbamide production (Xiang et al., 2012). Therefore, there is already a case 

for CO2 utilisation. However, there is also potential for a case that involves eliminating 

carbon emissions from ammonia synthesis by sourcing hydrogen from non-fossil sources 

and using other available CO2 emissions.  

Table 2.4 summarises the studies found that use carbon utilisation routes to produce N- 

based fertiliser. Of these studies, Reese et al. (2016) has the most similar set-up and 

simulation process to the one assessed in this work. The process consists of a small-scale 

Haber-Bosch set-up where wind power (1.65 MW turbine) is used for hydrogen 

production in ammonia synthesis. There is no discussion of CO2 supply, but it is assumed 

that it would have to be provided from a carbon capture route. Their results showed the 

Figure 2.8 Block diagram of urea and ammonia synthesis coupled with CO2 capture and hydrogen production 
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feasibility of this process at small scale, although there has been no demonstration on a 

larger scale.  

Table 2.4 Technical studies related to coupling CO2 utilisation and urea synthesis 

Reference 

studies 
CO2 supply H2/NH3 supply 

Final 

products 
Stage 

(Kempka, 

Plotz, et al., 

2011) 

Underground 

coal gasification 

Underground coal 

gasification 

Urea, carbon 

sequestration 
Design 

(Bose et al., 

2015) 
Coal gasification Coal gasification 

Urea, 

electricity 
Design 

(Reese et 

al., 2016) 
N/A* Water electrolysis Ammonia Pilot plant 

*Non-applicable 

Some of the collaborations between industry and academia working on green ammonia 

and/or green urea include: 

 SIEMENS electric ammonia synthesis and energy storage system. A pilot scale 

plant is to run until December 2017. SIEMENS are working in collaboration with 

the University of Oxford, Cardiff University and Science & Technology 

Facilities Council.  

 The University of Minnesota created a renewable hydrogen and ammonia pilot 

plant in 2013. At that time, it was set to be the first of its kind in the world. The 

pilot plant uses wind energy to power ammonia synthesis using Haber-Bosch 

technology. Future work is set to focus on reducing costs and energy 

consumption. 

 Power to – Ammonia project in the Netherlands by Nuon Heat and Delft 

University of Technology. This ten-year program started in 2016 with the goal 

of converting surplus wind energy into liquid ammonia and using gas-fired power 

plants as storage facilities for renewable energy. 
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2.3 Other projects at pilot/commercial scale 

 

Although still a ‘young’ technology, there are efforts to push it to a commercial scale. 

The Smart CO2 transformation project (SCOT, 2017) recorded 212 projects worldwide 

by companies/academia that are working on processes at pilot, commercial scale or 

research phase. From these projects, the following product applications were found: 

 CO2 to fuels: methanol, biofuels, DME, methane, syngas, diesel 

 CO2 to chemicals: hydrogels, acrylic acid, polyols, plastic chlorinated 

polypropylene, cyclic carbonates, formic acid, oxalic acid, acetic acids, carbon 

monoxide, succinic acid and butadiene 

 CO2 mineralisation: sodium bicarbonate, calcium carbonates, graphene, enriched 

precast concert products 

Most of these projects are based on Europe, with 138 of the 212 identified worldwide. 

North America comes in second with 59 projects. Many of these projects are not yet 

economically feasible; however, some processes are more commercially successful than 

others. Companies such as Covestro and Sunfire have taken CO2 transformation to the 

next level, promoting their success story beyond the more traditional known 

mineralisation route. An example of companies and their CO2 product by sector is shown 

in Table 2.5.  

Table 2.5 Example of industries by the CO2 utilisation sector 

Company Covestro 

Carbon 

Clean 

Solutions 

Carbonfree 

Chemicals 
Sunfire Calera Calera 

Sector Chemicals Mineralisation Mineralisation Fuels Mineralisation Mineralisation 

Product 
Polyurethane 

foam 
Soda ash 

Sodium 

bicarbonate 

Synthetic 

fuels 

Calcium 

carbonate 

Calcium 

carbonate 

CO2 

source 

Chemical 

facility 
Power plant 

Chemical and 

power plant 

facilities 

Direct Air 

Capture 
Power plant Power plant 

Scale Commercial Commercial Commercial 
Pilot 

Commercial 

Pilot 

Commercial 

Pilot 

Commercial 
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2.4 Additional processes down and up the CO2 utilisation chain 

 

2.4.1 CO2 purification 

After CO2 is captured, several treatments to reduce impurities are needed before 

transportation and utilisation occurs. Impurities in the carbon dioxide stream will differ 

depending on the capture process. This work emphasises on CO2 purification from post-

combustion capture. The main impurities found in literature that interfere with the carbon 

dioxide stream are water and oxygen (Pipitone and Bolland, 2009; Abbas, Mezher and 

Abu-Zahra, 2013a) and are summarised in Table 2.6. To achieve permissible water and 

oxygen levels there are several deep removal technologies that can be applicable (Table 

2.7).  

Table 2.6 Stream composition vs permissible levels, adapted from Abbas et al. (2013a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Component 
Range of product stream 

composition (mol %) 

Range of stream 

composition levels required 

(mol %) 

CO2 79.0-92.0 > 95.0 

H2O 2.8-7.3 < 0.005 

Ar 1.0 x 10 -3 - 2.0 x 10 -3 < 4.00 

N2 2.0 x 10 -2- 0.1 < 4.00 

O2 1.0 x 10 -3 - 3.0 x 10 -2 < 0.001 

SO2 1.0 x 10 -3 < 0.005 
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Table 2.7 Deep removal technologies for flue gas impurities based on Abbas et al. (2013) 

Oxygen removal treatments Water removal treatments 

Cryogenic distillation 

Catalytic oxidation of carbon 

monoxide/propane/methanol/hydrogen 

Oxidation of coal 

Chemisorption of oxygen 

Absorption using EG/TEG1 

Adsorption on silica 

gel/molecular/sieves/ activated 

Alumina 

Refrigeration 

Condensation 

1 EG = Ethylene glycol, TEG = Triethylene glycol 

According to Abbas et al. (2013a), the most promising oxygen removal technology 

is catalytic oxidation of H2. For water removal, refrigeration and condensation are 

considered the best process due to low costs. Catalytic oxidation of CO for oxygen 

removal and ethylene glycol absorption for water are considered the least promising 

technologies.  

The CO2 purification method will depend on the capture process and final usage of the 

carbon dioxide stream. A starting point is to consider acceptable transportation 

impacts/costs regardless of transformation or storage. Currently, processes that use 

ethylene or triethylene glycol (EG/TEG) are readily available and could contribute to 

CO2 capture.  If these technologies can get cleaner and cheaper, they could be an option 

for CO2 transformation technologies.   

After purification and before transportation, carbon dioxide is compressed to supercritical 

form (80-150 bar) lowering its density (Pires et al., 2011). Compression makes 

transportation more efficient. However, according to Aspelund & Jordal (2007), costs 

and energy penalties are high ranging from 90 to 120 kWh/ton of CO2. 

 

2.4.2 CO2 transport 

Transportation of carbon dioxide is also part of the upstream chain in CO2 utilisation. 

There are pipeline infrastructure similarities between carbon dioxide and other gases. 

New pipelines require large investments, thus re-using infrastructure is the best option to 

lower costs.  This can avoid additional investment (Pires et al., 2011). The main 
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drawbacks to using existing pipelines is the level of uncertainty associated with 

transporting carbon dioxide. There are also no set conclusions on how different these 

pipelines would be from natural gas. Aspects to assess include  (Koornneef et al., 2010):  

 Higher failure rates in smaller pipelines versus larger diameters 

 Crater formation on the release of CO2 

 Effects of release of supercritical CO2 from a pipeline 

 Environmental impacts of impurities on release, mainly CO and H2S 

 Cooling of CO2 and thermal stress in pipeline and adjacent materials 

 Overpressure from sudden expansion 

 Even with uncertainties, CO2 transportation by pipeline is the safest and most cost-

effective option compared to ship or tanker trucks for short distances (Pires et al., 2011; 

Global CCS institute, 2014). It is also a transportation method already used successfully 

for Enhanced Oil Recovery. A way to addressing transportation issues within a ‘carbon 

management platform’ could ensure that all aspects are considered throughout the supply 

chain. This includes capturing, transporting, storing and/or utilising (Middleton, Keating, 

et al., 2012). Specific infrastructure models such as SimCCS (Middleton, Kuby, et al., 

2012) and general chemical engineering programs such as Aspen Hysis® and Aspen 

Plus® are fundamental to carbon management.  If transportation is required for more than 

1,000 km then the IPCC (2005) recommends shipping as the cheapest option. There are 

also suggestions to ship after 500 km with a break-even point at 200-300 km (B.-Y. Yoo 

et al., 2013). Carbon dioxide shipment is still at pilot scale. Total shipping cost of carbon 

dioxide would need to reduce to reach commercial scale. Shipping costs include 

liquefaction plant, temporary storage and carbon dioxide carriers (B.-Y. Yoo et al., 2013). 

There is a limited amount of pipeline infrastructure information available to the public, 

complicating life cycle inventories. In general, costs are rarely reported. One of the 

available reports shows capital costs of carbon dioxide pipelines according to terrain type. 

These costs can be used for general assessments. Table 2.8 replicates the values founds.  

Other guidelines by the Department of Energy (2012) estimate fixed operational and 

maintenance costs of USD 8,454 per mile/year. 
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Table 2.8 Capital costs of CO2 pipelines according to type of terrain, adapted from Global CCS institute (2014) 

Terrain 

Capital cost 

(USD/inch-

diameter/mile) 

Flat, dry 50,000 

Mountainous 85,000 

Marsh, wetland 100,000 

River 300,000 

High population 100,000 

Offshore (150-200 feet, 45-60 meters depth) 700,000 

 

In the UK, four projects related to CO2 transportation are described below. Two of these 

projects were stated as in ‘planning stage’ and two others have been cancelled (Table 

2.9), with the Longannet and Kingsnorth proposals shelved due to the closure of the 

associated coal fired power plants. 

Table 2.9 CO2 pipeline projects in the UK, adapted from Global CCS institute (2014) 

Project 

name 
Status 

Length 

(km) 

Capacity 

(Mt/y) 
Onshore/offshore Sink 

Peterhead Proposed 116 10 Both 
Depleted oil/gas 

field 

Longannet Cancelled 380 2 Both 
Depleted oil/gas 

field 

White 

Rose 
Proposed 165 20 Both Saline aquifer 

Kingsnorth Cancelled 270 10 Both 
Depleted oil/gas 

field 

 

2.4.3 Hydrogen supply for carbon dioxide utilisation processes  

Hydrogen can be produced from many different sources including: water, methane, 

ammonia, methanol, biomass, coal and H2S (López Ortiz, Meléndez Zaragoza and 

Collins-Martínez, 2016; Dincer and Acar, 2017). Any fossil-fuel based feedstock is 

generally considered unsustainable for any CO2 transformation route and other options 

must be explored. For non-fossil routes the associated “energy penalty” is a key part in 

the assessment/selection of a hydrogen generation process. 
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Reducing energy penalties in hydrogen production is fundamental for the success of CO2 

utilisation. According to Nikolic et al. (2010), the economics of hydrogen production via 

electrolysis are dictated by the cost of electrical power. Where with an electricity 

efficiency of 30 to 40% (primary energy sources) the overall efficiency of an electrolyser 

is below 40%. However, driving towards a hydrogen economy is part of the transition to 

lessen dependency on fossil fuels and there are many alternatives to achieve this. 

 There are over 90 hydrogen production routes that can be divided in biological, chemical, 

electrochemical and thermal (Stojić et al., 2003). Of these, five subcategories are studied 

as alternative sustainable production routes that could reduce high energy penalties 

according to Dincer & Zamfirescu (2012). The objective is to find an alternative to 

hydrogen supply from natural gas (via steam methane reforming) which to date comprises 

90% of the global market (Bičáková and Straka, 2012).  These alternative routes are based 

on five methods to extract hydrogen: electric, thermal, photonic, nuclear and biochemical. 

The following methods lead to potentially sustainable pathways for hydrogen production: 

Water splitting, fossil hydrocarbons decarbonisation, hydrogen sulphide decomposition, 

biomass conversion, extraction from waste materials. These options can all be supported 

by a renewable energy source.  The sources can then be divided by their generation 

potential: Low, medium and high. Dincer & Zamfirescu (2012) present 24 sustainable 

ways to produce hydrogen, of which water splitting was the most promising. Bičáková & 

Straka (2012) also studied hydrogen production from sustainable routes. This study 

presented an overview of available technologies considering environmental, economic 

and resource impacts. Water cracking (electrolysis, thermolysis and photo-electrolysis) 

is mentioned as the best alternative process. Once again, electrolysis has the highest 

potential. 

Of the literature reviewed, water splitting is also mentioned the most. Water electrolysis 

only represents 4% of the world hydrogen production (Zeng and Zhang, 2010), but it is 

fundamental for many utilisation processes if CO2 emissions are to be avoided. Some of 

the advantages of producing hydrogen from water electrolysis include its simple process, 

high H2 purity, low CO2 emissions and compatibility with different power sources. The 

main drawback is its energy consumption of 4.5 to 5 kWh/m3H2 (Stojić et al., 2003; Wang 

et al., 2014).  
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Other studies use process simulations or background data to analyse hydrogen production 

methods and their environmental impacts (Smitkova, Janíček and Riccardi, 2011; Dufour 

et al., 2012; Bhandari, Trudewind and Zapp, 2013; Suleman, Dincer and Agelin-Chaab, 

2015; Bicer and Dincer, 2016). The data obtained was then used to complete a life cycle 

assessment (LCA) comparing environmental impacts between hydrogen production 

routes. The results from these studies are very useful to CO2 utilisation. By assessing the 

impacts of hydrogen production, the assessment of the supply chain for several CO2 

utilisation processes can be completed. In this work, both methanol and urea synthesis 

depend on the provision of sustainably produced hydrogen. The impacts of H2 production 

are further discussed in Chapter 3. 

 

2.4.4 Final use for utilisation product 

Methanol as synthetic fuel 

After utilisation, methanol can either be transported to a refinery to blend with gasoline 

or transported directly to gasoline distribution terminals. For the second process, 

methanol is blended when tanks are loading. For this, gasoline must be treated previously 

for optimum performance. Blending concentrations will be regulated differently 

throughout regions in the world (Methanol Institute, 2011b).  

Blended gasoline with methanol will have a lower distillation point. This property can 

influence cold engine drivability performance by either improving it or by maintaining 

the same levels as unblended gasoline. Storing conditions would also have to be 

considered. To prevent excessive water in the fuel, fixed roof tanks would be used for 

storing methanol and blended gasoline, as well as using alternative methods to clean pipes 

without using water. Fuel filters would be replaced more frequently at gasoline dispenser 

pumps and filter openings for smaller microns. Routine checks would also be necessary 

to ensure that water bottoms do not occur at underground tanks, water detection paste 

would also have to change to detect alcohol-gasoline blends (Methanol Institute, 2011b). 

To understand fully the supply chain for methanol as a synthetic fuel, environmental 

aspects should also be considered. In terms of carbon reductions, emissions from 

methanol produced from natural gas are 6 % lower than gasoline and 10 % lower than 

bio-ethanol.  Utilising CO2 as raw material instead of natural gas could potentially lower 
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further carbon emissions. Research throughout the supply chain is still necessary to 

determine total emission reductions (Commission, 2014).  

Urea as fertiliser 

The case of urea use is simpler than with methanol. The final product is the same whether 

it is from ammonia synthesis from natural gas or from renewable hydrogen. Urea will 

have the same purity and same use from a conventional route as from a route that uses 

recovered CO2. This also means that environmental impacts at use point are the same. 

This includes ammonia volatilisation losses. Ammonia that stays in the atmosphere is 

oxidised by hydroxyl radicals to different nitrogen gases (Byrnes, 1990). The rate of 

ammonia volatilisation will depend on the type of crop that fertiliser is applied to. Further 

studies are required to determine whether there is an overall positive benefit from 

applying urea from CO2 utilisation routes. However, in terms of demand and supply, the 

outlook is positive. Over 80% of synthetic urea produced is for fertiliser use 

(Stamicarbon, 2017). 

Nitrogen has a direct impact on yield, growth and quality of a crop. Most agricultural 

soils do not contain enough nitrogen to meet the crop requirements in a season (DEFRA, 

2015). According to the FAO (2015) projections, nitrogen based fertiliser demand is 

expected to continue growing worldwide up to 2018. The total demand is projected to be 

around 119,400,000 tonnes for 2018. With South Asia, East Asia and Latin America & 

Caribbean being the regions with highest fertiliser increased consumption from 2014-

2018.   
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2.5 Chapter two summary 

 

This chapter gives an initial overview of the carbon dioxide utilisation supply chain. This 

includes a CO2 source, transportation of CO2 source, chemical transformation of CO2 into 

a useful product and final use of this product. The CO2 can either be captured or used 

directly depending on the process. The most widely commercially utilised capture route 

until now is absorption with solvents like monoethanolamine (MEA) used most 

frequently (Vasudevan et al., 2016). Although the technology is well understood, solvent 

regeneration costs remain high. After the CO2 is captured, the stream will go through an 

impurity removal process, primarily water and oxygen (Abbas, Mezher and Abu-Zahra, 

2013b). The CO2 is compressed and transported to its utilisation site. Once it reaches the 

chemical factory, it is ready to be transformed. Common final products include synthetic 

fuels, chemicals, mineralisation or fertilisers (SCOT, 2017). Throughout this work, there 

is a focus on methanol and urea production from recovered CO2. Methanol is produced 

through a catalytic hydrogenation of CO2 process that relies on hydrogen and captured 

CO2 (Boretti, 2013). The hydrogen must be sourced from decarbonised sources to avoid 

extra carbon emissions. A similar situation is seen with urea production, where ammonia 

is synthesised with green hydrogen (Reese et al., 2016). Finally, both products have 

commercial applications which make them attractive CO2 utilisation options. Methanol 

can be blended with gasoline and diesel; urea can be used directly as fertiliser. These are 

the basic components of a CO2 utilisation supply chain; however, each final product has 

a specific set-up and requirements for productions. The following chapters discuss further 

the implications of producing a product from a waste stream with CO2.  
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3 Overview of Life Cycle Assessment and 

Relevant Regulation for Carbon Dioxide 

Utilisation 
 

The interest in assessing the environmental performance of a system is not a new concept; 

however, in Rio de Janeiro in 1992 this interest reached a new level. The United Nations 

Framework Convention on Climate Change was held for the first time (also known as 

‘Earth Summit’). From this point onwards, efforts have been made towards reaching a 

sustainable model while questioning what this sustainable model should be. Although the 

term ‘sustainability’ is nowadays used in many areas, the term is still often used lightly 

delivering unmeasurable results (Milicevic 2008; Agol et al. 2014; Moldan et al. 2012; 

Heijungs 2013). It is defined by the World Commission on Environment and 

Development as “development that meets the needs of the present without compromising 

the ability of future generations to meet their own needs” (Butlin, 1989). One of the 

problems with defining this term is that although a process might reach what is deemed 

to be a ‘sustainable level’; this level can always be surpassed by increasing quantities and 

qualities. This leads to a loop where sustainability is always chased. Using such a term 

can be misleading and thus, is often used for marketing purposes more than for its 

environmental significance (Heijungs 2013). More recently, there have been efforts to 

expand the term towards linking society, economy and ecology under one dependant 

system. Known as the triple bottom line (society-environment-economy), it has gained 

popularity within the corporate sector thanks to the inclusion of economic prosperity 

(Glavas & Mish 2014).   

This lack of consensus on an assessment method is no different in the area of chemical 

transformation of CO2. It should not be seen only as direct result of the complexity of the 

chemical processes, but as a joint problem from a technological and a sustainability point 

of view. In the last five years there has been an increased interest in assessing carbon 

dioxide utilisation from a life cycle assessment perspective (Pérez-Fortes et al. 2014; 

Morales Mora et al. 2016; Von der Assen et al. 2013a; Cuéllar-Franca & Azapagic 2014). 

This interest is driven by the necessity to allocate carbon dioxide emissions properly and 

determine potential environmental benefits of any given CO2 utilisation process. As it is 

with other assessment methods, there is no direct methodology or framework to follow, 
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only guidelines. Much of the research is now focused on establishing these guidelines 

and moving towards a triple bottom line model/outcome. The next sections give an 

overview of life cycle thinking tools and environmental frameworks applied to carbon 

dioxide utilisation.  

 

3.1 Life cycle assessment and CO2 utilisation 

 

Life cycle assessment (LCA) is a method that is regulated by the ISO standards 14040, 

14041 and 14044 (ISO, 1998, 2006a, 2006b). These standards define life cycle 

assessment as a study that describes environmental aspects and potential impacts 

throughout a product´s life cycle, i.e raw materials, acquisition, production, use and 

disposal.  To perform a life cycle assessment study, an end-product must always be 

defined. The impacts are divided into categories and assessed based on a set of potentials 

that are already established. This method has gained attention partly because of its all-

round approach to environmental impacts in a supply chain format. It is now used in the 

private and public sector as a decision-making tool in sustainability packages. Although 

it is still a relatively new method (in terms of widespread use), the first records of this 

type of studies date from 1960 (Suh and Huppes, 2005). 

Because CO2 utilisation processes use a flow that was once a waste, there is an appeal in 

using life cycle assessments to evaluate potential environmental impacts. The first study 

in literature that connects both areas was published in Von der Assen et al. (2013a). It is 

in this study that the challenges and opportunities of assessing carbon dioxide utilisation 

using life cycle thinking became apparent. After this study, research in the area has grown 

largely. In the last three years, the main studies published from this work include: Von 

der Assen & Bardow (2014); Sternberg & Bardow (2015); Von der Assen et al. (2013a); 

Von der Assen et al. (2014); Azapagic & Cue (2015). Two studies discuss methodology, 

one is a critical review and two apply the methods described in von der Assen & Bardow 

(2014) and von der Assen et al. (2013b).  

Overall, there is still a lack of full studies available; however, this does not necessarily 

mean that applicable research does not exist. There is a lot of information related to 

carbon utilisation that can be used in life cycle assessments or sustainability studies; the 



54 
 

main problem found was the lack of a standard format to present this information. This 

is often the norm with these studies, especially at the earlier stages of process 

development. Having information in different formats complicates inventory collection 

and assessment. An example of this is literature found for methanol and urea from carbon 

utilisation and related fields. Nine different research areas provided useful data but were 

not part of an integrated study (Table 3.1). 

Table 3.1 Summary of research related to life cycle assessments for CO2 utilisation, years 1999-2017 

Type of study 

Number 

of related 

studies 

Year 

Published 

Performance studies for CCS1 (LCA, emissions, 

techno- economics) 
21 2008-2015 

Performance studies for CDU2 (LCA, emissions, techno 

economics 
35 1999-2017 

Technical (CCS1) 30 2006-2014 

Technical (CDU2) 30 2009-2017 

CO2 pipelines and transport 4 2010-2013 

Auxiliary units (Compression, dehydration, power plant 

theory) 
7 2009-2015 

LCA methods 13 2001-2016 

Industrial information 3 2009-2014 

3 in 1: technical, environmental and economic studies 2 2002-2006 

1Carbon capture and storage 2Carbon dioxide utilisation    

As an example, methanol production through catalytic hydrogenation using CO2 captured 

from post-combustion capture processes are frequently mentioned (Sternberg & Bardow 

2015; von der Assen et al. 2013a; von der Assen et al. 2014). However, there is no full 

life cycle assessment report to the author´s knowledge that includes both capture and 

utilisation in one study.  

The next following sections will give an overview of found literature that is relevant to 

life cycle assessment and CO2 utilisation. There is an emphasis on production of methanol 

through catalytic hydrogenation of CO2 and urea production through hydrogen and CO2 

as these are the case studies for this research. 
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3.2 Overview of life cycle assessment work for methanol and urea 

production using CO2 as feedstock 

 

Overall, few studies bridge sustainability and CO2 utilisation from a life cycle assessment 

perspective. Currently one review paper (to our knowledge) compiles life cycle 

assessment work on carbon utilisation (Cuéllar-Franca & Azapagic 2014). The review 

studies sixteen papers dedicated to CO2 transformation processes. Nine out of the sixteen 

studies are dedicated to diesel production from microalgae while the rest are divided into 

enhanced oil recovery, production of chemicals, and mineral carbonation. None of these 

discusses methanol or urea production from CO2. It is however, a first attempt to collect 

information under one ‘carbon dioxide utilisation’ sector.  

Most recently, a study by Zhang et al. (2017) used the guidelines available to present a 

power to gas life cycle assessment. This is the first full study that considers carbon 

utilisation specifics and considers them in their assessment. It follows the line of work 

started by von der Assen et al. (2013a) and it applies it to the production of synthetic 

natural gas (SNG). This study makes emphasis on the impact of allocation rules and is a 

good example on how carbon utilisation processes could be assessed. While it has a full 

life cycle assessment, it does not consider either the economic or social aspects of the 

process. These aspects should be furthered explored in parallel for decision-making to 

validate the sustainability of the process. However, the inclusion of the term “poly-

generation” is a useful concept for carbon utilisation since it analyses multiple processes 

interconnected as one large process  (Ng, Zhang and Sadhukhan, 2012a, 2012b, 2013; Ng 

et al., 2015). The following section reviews independent studies that link together to 

create a carbon utilisation scenario for methanol and urea production from CO2 capture 

and renewable energy. 

Methanol 

There is one study conducted that thoroughly assesses the supply chain of photocatalytic 

methanol and methane using CO2 captured from coal-fired power plants (Trudewind et 

al. 2014). This study used a system expansion method to compare three systems: A 

conventional power plant and traditional methanol/methane production, a carbon capture 

system with six capture options and a carbon utilisation process. Results in this study 

showed that primary demand and global warming scores were lower for carbon utilisation 
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coupled with an oxy-fuel plant. The benefit of this system was the high CO2 capture rate 

of 95 %. However, other impacts were not analysed for this capture method thus further 

work is still needed to compare the capture processes equally.  

There is also a comparison between methanol and methane, where methane production 

has lower environmental impacts due to the lower energy requirements than for methanol 

production. However, according to the life cycle assessment methodology for carbon 

utilisation by Von der Assen et al. (2014), two different products can only be compared 

based on the same end function, regardless of their production route or pathway. Product 

or process comparison challenges are often encountered, one way to overcome this is by 

using allocation methods as mentioned in Sadhukhan et al. (2014). Allocation is further 

discussed in Section 3.3.3. 

 Methanol from carbon dioxide is used as an example in several methodological studies 

of life cycle assessment (LCA) applied to carbon utilisation (Von der Assen et al. 2013a; 

Von der Assen et al. 2014; Von der Assen & Bardow 2014). There is also a tutorial review 

(von der Assen et al. 2014) where a system that uses recovered CO2 is compared to a 

conventional reference system. The functional units (measurable units of the performance 

of the product systems) are 1,273 kWh and 1,000 kg of methanol. Electricity is produced 

from a coal-fired power plant and the CO2 is captured without specifying the capture 

process. Production of methanol is through catalytic hydrogenation of CO2 using 

electrolysis with wind power as the H2 source. The study follows a simple comparison of 

the global warming score of methanol from natural gas and methanol from CO2.  

An energy storage analysis (Sternberg & Bardow 2015) briefly mentions methanol from 

CO2 from a different approach; hydrogen storage with hydrocarbon conversion using 

CO2. Similar work is done by Von der Assen et al. (2014, 2013a), who define carbon 

sources as: non biogenic point sources, biogenic point sources, and air capture.  

Apart from the mentioned studies, most life cycle assessment work that can be applied to 

carbon utilisation is split into the following categories: capture stage, utilisation and 

renewable energy. Specifically, no assessment was found in literature that evaluates in 

detail the complete methanol production route from catalytic hydrogenation of CO2 

process and post-combustion capture with amine-based scrubbing. However, as 

mentioned previously, there are several studies that bring together process modelling with 
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techno-economic assessments (Pérez-Fortes, Bocin-Dumitriu and Tzimas, 2014; 

Sadhukhan, Ng and Hernandez, 2014; Pérez-Fortes et al., 2016). 

Urea 

As it is the case with methanol, there are studies available that focus on certain aspects 

of urea production through different routes. However, there are few urea life cycle 

assessment studies that bring all information into one study (Table 3.2). Part of the 

challenge is finding these studies and their relationship with the area of carbon dioxide 

recovery and transformation, since it is still questionable whether urea can count as a CO2 

utilisation process.  

 Chapter 6 discusses the potential role of urea production from recovered CO2 further 

while the next section focuses on current available information. To the best of the author’s 

knowledge, no full life cycle assessment study assesses the supply chain of urea 

production as a CO2 utilisation technology. The best approach seen in literature is finding 

assessment studies for ammonia production, CO2 capture and urea production 

individually and bringing them under one poly-generation study. Table 3.2 shows a 

compilation of these studies.   
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 Table 3.2 Compilation of studies related to urea production and CO2 utilisation  

Title of research paper Reference 

LCA/carbon accounting studies 

Greenhouse gas emissions from nitrogen fertilizer use in China (Kahrl et al., 2010) 

Life cycle assessment (LCA of different fertilizer product types (Hasler et al., 2015) 

Impact assessment and environmental evaluation of various 

ammonia production processes 

(Bicer et al., 2017) 

Life cycle assessment of nuclear-based hydrogen and ammonia 

production options: a comparative study 

(Bicer and Dincer, 

2016) 

Life cycle impact assessment of ammonia production in Algeria: a 

comparison with previous studies 

(Makhlouf, Serradj 

and Cheniti, 2015) 

Technical studies 

Carbon dioxide utilisation for carbamide production by application 

of the coupled UCG-urea process 

(Kempka, Plötz, et 

al., 2011) 

Urea formation from carbon dioxide and ammonia at atmospheric 

pressure 

(Xiang et al., 2012) 

Co- production of power and urea from coal with CO2 capture: 

performance assessment 

(Bose et al., 2015) 

Performance of a small-scale Haber process (Reese et al., 2016) 

Techno-economic studies 

CO2 utilisation pathways: techno-economic assessment and market 

opportunities 

(Pérez-Fortes, 

Bocin-Dumitriu and 

Tzimas, 2014) 

Urea synthesis using chemical looping process techno-economic 

evaluation of a novel plant configuration for a green production 

(Edrisi, Mansoori 

and Dabir, 2016) 

 

From the author’s point of view, there is greater focus on life cycle assessment in 

ammonia synthesis than in urea production. This is perhaps a reflection on the versatility 

of ammonia production versus a more traditional urea production route. One of the most 

recent studies by Bicer et al. (2017) focuses on the impact assessment of ammonia 

production through fifteen routes, of which five are electrolysis routes. Results show that 
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the least carbon intensive process is nuclear electrolysis with 0.48 kg CO2 eq/kg NH3 and 

the highest is coal electrolysis with 13.6 kg CO2 eq/kg NH3. The same research group 

published an earlier study (Bicer and Dincer, 2016) where nuclear based hydrogen and 

ammonia production routes were assessed. The results are comparable to their latest study 

where nuclear electrolysis-based ammonia production has lower global warming score 

than thermochemical based options.  

Other researchers around the world are also interested in creating life cycle assessments 

for ammonia production routes. In Algeria, a ‘cradle to gate’ analysis was done for 1 

tonne of ammonia produced by the Haber-Bosch process. Results showed a final global 

warming score of 1.44 (kg CO2 eq)/kg NH3 (Makhlouf, Serradj and Cheniti, 2015). 

Overall, one full life cycle assessment study was found on urea production (and as part 

of fertilizer). Hasler et al. (2015) reported 1.3 (kg CO2 eq)/kg of fertilizer with ammonia 

produced through the Haber-Bosch process. 

Life cycle assessment and CO2 capture 

The National Energy Technology Laboratory (NETL) is an American institution that is 

known for developing detailed life cycle assessments. Amongst its list of published 

reports, there is a cradle to gate life cycle assessment analysis for alternative sources of 

carbon dioxide. All processes are US based. The analysis accounts for burdens from 

Natural CO2 domes, natural gas processing plants and ammonia production plants 

(NETL, 2013).  

Newer studies are moving away from only post-combustion capture with amines analysis. 

A study by Troy et al. (2016) compares membrane systems for oxy-fuel, pre and post-

combustion plant. The functional unit is set at 1 kWh, which is in line with most of carbon 

capture analyses. Like other studies, only general inputs and inputs are presented, thus 

complicating replicability. This is more evident in studies where units are not well 

defined or even specified. There was one study found that compares a direct air capture 

process to post-combustion capture; the study, by Van der Giesen et al. (2017), was the 

only full life cycle assessment study that addresses direct air capture (DAC). Since most 

research in the area is either purely theoretical in nature or at pilot scale, the assessment 

mainly focuses on predicted energy demands. The last study  (Van der Giesen et al., 

2017) combines technical information found in previous literature and simulation work 

with the life cycle assessment (LCA) methodology presented in Corsten et al. (2013) and 
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von der Assen et al. (2013b). It is an example of how technologies with a low technology 

readiness level (TRL) can be assessed from a life cycle thinking perspective.   

There are also several techno-economic studies that address energy penalties of using 

post-combustion CO2 capture methods (Schach et al., 2010; Kuramochi et al., 2012; 

Huang, Rebennack and Zheng, 2013; Zhai and Rubin, 2013; Pérez-Fortes, Bocin-

Dumitriu and Tzimas, 2014).  

In environmental impact terms, studies such as Veltman et al. (2010) focus on specific 

flows and impacts. Results from this study found that absorption process with 

monoethanolamine (MEA) increase 10 times the toxic impact on freshwater ecosystems 

compared to a natural gas combined cycle (NGCC) and a conventional coal fired plant 

without CO2 capture (420 MW capacity for all cases). The increase in impacts was 

attributed to volatilization of monoethanolamine (MEA). The Average solvent loss was 

reported at 2.8 x 106 kg/year for a CO2 capture efficiency of 90% for the same study. This 

study does not give an overall assessment of the CO2 capture method but it does assess 

the impact of monoethanolamine (MEA) for certain environmental categories. In another 

study, Zhou et al. (2014) describe an increase of 187 % environmental impacts from the 

use of monoethanolamine for water eco-toxicity compared to a baseline scenario and are 

associated with trace elements from electricity generation and CO2 capture unit. 

CO2 capture with monoethanolamine (MEA) also increases eutrophication and 

acidification impacts, while global warming impacts may be reduced, other air pollutants 

such as NOx and SOx are emitted in greater quantities (Odeh & Cockerill 2008). The 

benefit of reducing global warming impacts should be weighed against the other 

pollutants. According to Zhou et al. (2014), global warming can decrease by 80 % if 

direct CO2 emissions captured are accounted for and eutrophication increases by 66.5 % 

due to amine use. Unlike the study by Odeh & Cockerill (2008), acidification reduced by 

50 % in a post-combustion capture system according to Zhou et al., (2014). Variation in 

results can be attributed to different system boundaries and baseline scenarios; further 

analysis is needed to unify studies or produce comparable outcomes.  

Life cycle assessment on methanol/urea/hydrogen production 

There are life cycle assessment studies that focus on hydrogen production from water 

electrolysis using wind power (Ozbilen, Dincer and Rosen, 2011; Smitkova, Janíček and 
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Riccardi, 2011; Bhandari, Trudewind and Zapp, 2013). Overall results showed that the 

global warming impact of the electrolyser is small. However, the electrolysers are 

considered as single unit, therefore lacking detailed information on individual 

components. Global warming and acidification are the impacts that are often analysed in 

most hydrogen life cycle assessment studies on electrolysis processes according to 

Bhandari et al. (2013). 

 Another study that compared five methods of hydrogen production concluded that 

thermochemical water splitting has the lowest kg CO2 eq. out of steam reforming of 

natural gas, coal gasification, water electrolysis through wind and solar electrolysis 

(Cetinkaya et al. 2012). However, the study did not analyse any other impact categories, 

complicating comparability with other studies. Table 3.3 shows current research on life 

cycle assessment studies for hydrogen production. 
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Table 3.3 Comparative life cycle assessment studies found in literature for hydrogen production with 1 kg H2 as 
functional unit 

  

Source Hydrogen production route Impacts analysed 

(Cetinkaya et al. 2012) 

Natural gas steam reforming 

Coal gasification 

Wind electrolysis 

PV electrolysis 

Nuclear Cu-Ci cycle 

Global warming 

(Smitkova et al. 2011) 

Thermo-chemical cycles 

Westinghouse cycle 

Westinghouse cycle 

Sulphur iodine cycle 

Coal gasification 

Coal pyrolysis 

Human health, 

ecosystem quality and 

resources 

(Ozbilen et al. 2011) 

Nuclear based Cu-Cl cycle 

Nuclear based S-I cycle 

Nuclear based high temp 

electrolysis 

Natural gas steam reforming 

Biomass based electrolysis 

Wind based electrolysis 

Solar based electrolysis 

Natural gas steam reforming 

Global warming, 

acidification 

(Suleman et al. 2015) 

Electrolysis 

Mercury cell electrolysis 

Diaphragm cell electrolysis 

Membrane cell electrolysis 

Sodium chlorine cycle 

Human health, 

ecosystem quality and 

resources 



63 
 

3.3 Resources for life cycle assessment construction and its 

applicability to novel chemical transformation routes  

 

There is no shortage of life cycle assessment (LCA) construction tools. Although all 

methods have important differences, they all follow the ISO standards 14040, 14041 and 

14044 (ISO, 1998, 2006a, 2006b). This requires that all studies have four obligatory 

sections: Goal and scope, life cycle inventory (LCI), life cycle impact assessment (LCIA) 

and interpretation (see Figure 3.1). The following subsections will describe each part and 

its relation to CO2 utilisation. 

 

 

  

 

 

 

 

 

 

 

These assessments handle large databases that require precise order and characterisation. 

To aid in this, software tools are commonly used specially for assessing impacts. As 

mentioned previously, one of the main challenges is data collection; after this, any 

software with the right characterisation tools can be used.  

 

3.3.1 Goal and scope in CO2 utilisation 

Much like with any other product it is the stakeholders, researchers, etc. that set the goal 

and scope. Perhaps the main difference between a conventional process route and a CO2 

recovery and transformation route is the definition of the functional unit. While in a 

Figure 3.1 Life cycle assessment (LCA) framework based on ISO 14040, 14041 and 14044 (ISO, 1998, 2006a, 2006b) 
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conventional process the end-product is the functional unit, in CO2 utilisation is it the 

CO2 or the final product? Carbon capture and storage (CCS) research usually uses energy 

as the end-product (Singh, Strømman and Hertwich, 2011; Kuramochi et al., 2012; Troy, 

Schreiber and Zapp, 2016), thus CO2 becomes secondary. When a carbon dioxide 

utilisation (CDU) process is analysed, the CO2 is used as feedstock for a product, thus 

two final products are obtained: utilisation product, and the product before capture. Out 

of the life cycle assessment (LCA) studies available for utilisation, the functional unit 

chosen has been both kWh and kg of final product (Von der Assen & Bardow 2014; 

Assen et al. 2016; Von der Assen et al. 2013b). Therefore, choosing CO2 as a functional 

unit would have little benefit since it is only an intermediate.  

Where to set the boundaries? 

According to ISO 14040 (ISO, 2006a), a process can either be cradle to grave, cradle to 

gate, gate to gate, gate to grave or whatever part of the supply chain is to be analysed. 

The difference is the end-product. Only the same products can be compared but all 

processes can be studied within certain boundaries. Von der Assen & Bardow (2014) 

support cradle to gate for carbon dioxide utilisation, if the end-product has the same 

quality at the gate. There is also the question of what is the sequestration period for carbon 

dioxide until it is released again? The answer is that for most sequestration (with 

exceptions such as mineralisation) there is no long-term sequestration at all. Once the 

product reaches its end of life, the CO2 will return to the atmosphere. Nevertheless, the 

benefit comes from utilising CO2 that would otherwise be emitted without displacing 

other emissions from a raw material. 

 

3.3.2 Life cycle inventory and its role in CO2 utilisation technologies 

This is one of the most stable parts of the assessment (Suh and Huppes, 2005) as its main 

aim is data collection. There are several techniques and forms available for life cycle 

inventories, but the number one priority is to have data to collect. Data availability is the 

main challenge for CO2 utilisation/ life cycle assessments and it is studied throughout this 

work. Life cycle inventory compilation methods include matrix representation of product 

systems, input-output (IO) and hybrid methods (Suh, 2002). 
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Two main data collection challenges have been identified for CO2 utilisation processes: 

Low technology readiness levels and adapting life cycle assessment methodology to 

processes. The first challenge is a closed loop. Many processes are at research or even 

theoretical level; thus, supply chain information is not available. To obtain specific 

information, processes would need to be operational at large scale, defeating the initial 

screening purpose. To overcome this, a compromise between available and 

supplementary information needs to be reached. The research community have 

approached this challenge by using stoichiometric and simulation data to create life cycle 

inventories (Cetinkaya, Dincer and Naterer, 2012; Heijungs and Lenzen, 2014; 

Trudewind, Schreiber and Haumann, 2014; Morales Mora et al., 2016; von der Assen et 

al., 2016; Zhang et al., 2017). The second challenge has also been mentioned in literature 

(Burgess and Brennan, 2001; Baumann and Tillman, 2004; Heijungs, Huppes and 

Guin??e, 2010). Life cycle assessments were initially created to study products and not 

processes. After its success with product-specific studies, the scope of life cycle thinking 

has expanded to other areas. Therefore, the data that needs to be collected will be 

different. Chapter 4 discusses the proposed methodology to overcome these obstacles 

when creating and inventory for CO2 utilisation processes. Information available as well 

as gaps specific to the study in question are discussed below. 

 

3.3.3 Multifunctionality challenges  

Many industrial processes will have more than one final product and are known as 

multifunctional. Deciding how to assign impacts/burdens/emissions to each product is 

essential for complying with goals set in life cycle assessments (LCAs). Solving 

multifunctionality can be a complicated task, especially when there are many by-products 

and co-products. It is recommended to avoid assessing multifunctional processes 

whenever possible (ISO, 2006b). However, in carbon utilisation processes 

multifunctionality issues are often raised. For example, carbon allowances need to be 

distributed between capture and utilisation industries if these are independent of each 

other. If, on the other hand, both capture and utilisation are seen as one process, concepts 

such as CO2 pinch analysis can be used. The concept of carbon dioxide as an intermediate 

or utility stream is seen in the novel CO2 pinch analysis approach.  This type of analysis 

can help with the integration of the CO2 source and sink (Martinez-Hernandez, 

Sadhukhan and Campbell, 2013; Ng et al., 2015). Both examples require a different 
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approach to solving multifunctionality. Whilst in the first case a physical or economical 

partitioning might be applicable, the second one could use a system wide method.    

 

Different processes will have unique characteristics that require a specific solution 

(Wardenaar et al., 2012). An example of this is when co-products are expressed in 

different physical quantities (mass, energy, etc.). While the mass allocation method 

would not be applicable, an economic method would. Although there is no one general 

solution, finding an approach for carbon utilisation to unify life cycle assessment (LCA) 

studies is still required. There are three main approaches on how to solve 

multifunctionality problems according to ISO 14040 (ISO, 2006a): 

 

1. Subdivision of multifunctional processes 

This method requires splitting a black-box process into individual processes that can be 

analysed individually. While this is a practical solution, when supply chains are very 

large (as they often are), this becomes a time-consuming task. When possible, subdivision 

should be the first step in allocation procedures according to Wardenaar et al. (2012). 

Allocation is avoided all together with this method. According to the ILCD handbook 

(European Commission, 2010), for this method to be applicable each individual process 

should be mono-functional.  

 

2. System expansion (including substitution) 

System expansion is based on expanding the product systems to include all co-products. 

It accounts for all flows or by-products that will enter an additional system. Instead of 

discarding these flows, they are used to displace economic flows in another system. Thus, 

the reduction of final impacts is considered for the new process (Von der Assen et al. 

2013). Figure 3.2 is an example of system expansion where surplus heat will be used in 

district heating system. It is also an illustration of foreground/background processes 

(Baumann and Tillman, 2004). This process is recommended by Von der Assen et al. 

(2013b) for carbon utilisation processes since at least one product will be part of a 

recycling loop. 

 

The substitution (avoided burden) accounts for the process avoided when producing a co-

product. While this method is not directly addressed in ISO 14044 (ISO, 2006b), it has 
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been found in life cycle assessments (Santoyo-Castelazo and Azapagic, 2014). System 

expansion and avoided burden can often appear like similar methods. One of them adds 

processes and another one subtracts; but they are still substitution methods (Wardenaar 

et al., 2012). The main setback for this method are the many assumptions made to 

determine what process should be avoided. 

 

 

 

 

 

 

 

 

 

 

3. Allocation 

While the definition or the role of allocation under ISO is not very well defined or clear; 

allocation is a common way to a addresses multifunctionality problems (Pelletier et al., 

2015).  

Allocation gives a value in mass, monetary and/or energetic to by-products that otherwise 

would be fully assigned to the product. With this method, allocated values are subtracted 

from a final indicator result; which will only give a result for the product (Baumann and 

Tillman, 2004).  

 

ISO 14040 (ISO, 2006a) favours physical partitioning as an allocation method. This is 

one the easiest and most straightforward methods. It only requires identifying a common 

characteristic between the product and the co-products to allocate. The difficulties arise 

when products and co-products have different functions (Wardenaar et al., 2012). As an 

example: in carbon capture, electricity would be the product and CO2 a waste turned into 

a non-waste thus functioning as a co-product with its own independent function. 

Raw 

material 

acquisition 
Production Use Water 

treatment 

District heating 

Production of 

alternative 

fuel 

Combustion 

Surplus heat 

Product A Foreground 

Background 

Figure 3.2 System expansion example for a district heating system, adapted from (Baumann and Tillman, 2004) 

Heat 
Product B 
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Economical partitioning functions in the same way as physical. It takes the economic 

value of the product and by-product to allocate instead of taking a physical one. The main 

disadvantages of this method are the variability of prices in time and economic 

fluctuations by region (Baumann and Tillman, 2004). Basic guidelines on how to simplify 

or avoid allocation are shown in Figure 3.3. 

 

 

 

 

 

 

 

 

 

 

Solving multifunctionality issues goes beyond assigning burdens to flows; it also plays 

an important part in determining the type of assessment. In general, a life cycle 

assessment (LCA) is consequential or attributional. A consequential study is change-

oriented. It quantifies the total impacts associated with changing a process and its effect 

down and up a supply chain. To study these changes, system expansion is said to maybe 

be the only method for consequential life cycle assessments (Pelletier et al., 2015). On 

the other hand, attributional studies are descriptive. They attempt to describe all burdens 

associated to the life cycle of a product. It aims to work in absolute values in any given 

time. According to  Pelletier et al. (2015) substitution is the most recommend method to 

allocate attributional studies. 

There is a notable interest in the rules to solving multifunctionality problems for carbon 

utilisation life cycle assessments. Product specific results are often required for studies, 

thus applying a single evaluation such as system expansion is not always applicable. (Von 

der Assen et al. 2013b; von der Assen et al. 2014). In a system where capture is separated 

from utilisation, other allocation methods should be considered; this is applicable when 

Using cradle to gate databases 

Treating open loop recycling as closed 

loop recycling 

Using waste management models 

Dividing unit processes into two or more 

sub-processes 

Expanding the product system to include 

the additional functions related to the co-

products 

Economic allocation where feasible 

Using pre-allocated cradle to gate database data 

Based on indicators: economic value, mass, 

energy or volume 

Last resorts methods: based on rough 

estimations  

How to avoid allocation? 

How to allocate? 

Figure 3.3 Guidelines from Baumann & Tillman (2004) on how to avoid allocation in a system and how to allocate if  
necessary  
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CO2 is captured by one company and utilised by another. Following the ILCD handbook 

guidelines (European Commission, 2010), more than one method can be applied through 

one set of analysis if required as long as it is justified in the goal.  

As an example, three different methods to solve multifunctionality were tested in Von 

der Assen et al. (2014): system expansion, avoided burden and economic allocation. 

These methods present an overview on how CO2 captured can be accounted for within a 

supply chain and are used in Chapter 4 for the environmental impact assessment 

framework. In this case, results showed that economic allocation is best but only in 

instances when a product specific analysis is required. Avoided burden was the least 

favourable method since all the environmental credits are assigned to only one product. 

In a multifunctional process only one product will obtain environmental benefits and the 

other product will be charged with the rest of impacts (Von der Assen et al. 2013b; Von 

der Assen et al. 2014).  

Finally, there is also the consideration that allocating itself brings a level of uncertainty. 

As mentioned above, there is no “one size fits all” solution for all the products, leading 

to different interpretations. This has a direct effect on its ability to act as a decision-

making tool. Allocation uncertainties have been discussed within the life cycle 

assessment community (Van der Voet et al. 2010; Mendoza Beltrán et al. 2014; 

Wardenaar et al. 2012). There are several statistical approaches often used to reduce 

uncertainties levels. These include standardization, sensitivity analysis, peer reviews and 

scenario modelling. While all options have their applications, scenario modelling is of 

particular interest in this research. Scenario analyses can be seen as ambiguous as they 

deal with many processes, allocation methods and designs (Mendoza Beltrán, Guinée and 

Heijungs, 2014). However, it can also be a tool to describe possible future conditions. By 

creating a range of scenarios, the influence of inputs and outputs in a system can be 

analysed (Björklund, 2002). There are still many variables and data gaps to fill in CO2 

utilisation processes, increasing its uncertainty. Creating scenarios can be a way to push 

a ‘hotspot’ assessment, this approach is discussed further in Chapters 7 and 8.  
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3.3.4 Life cycle impact assessments and its role in CO2 utilisation 

systems 

Life cycle impact assessment (LCIA) gives a value to the environmental burdens within 

a system. It is seen as the transformation between the quantities from the inventory to 

their actual impact. There can be as many impact categories as necessary and is dependent 

on the study. Many of these categories have been thoroughly studied and have accessible 

characterisation factors. For this work, the method CML-IA and the ReCiPe (H) model 

present the categories necessary for evaluation. All eleven of the main impact categories 

are discussed further below, as well as fossil fuel depletion from ReCiPe (H). Figure 3.4 

explains methodology for life cycle impact assessment according to Guinée et al. (2001), 

while Figure 3.5 shows mandatory elements according to ISO 14041 (ISO, 1998).  

It has been mentioned in literature (von der Assen et al., 2016; Zhang et al., 2017) that 

global warming and fossil fuel depletion are the impacts to analyse for CO2 utilisation. A 

complete life cycle assessment is time consuming, expensive and multidisciplinary. 

Although this is true, the author believes that all main impacts should at least be addressed 

with at least a hotspot screening. Neglecting to do this could lead to potential 

environmental impacts in new areas that would counterbalance the benefit of reusing CO2 

as also mentioned by Azapagic & Cue (2015).   

 

 

 

 

 

 

Figure 3.5 Life cycle impact assessment mandatory steps by ISO 14040 (ISO, 2006a) 

Figure 3.4 Life cycle impact assessment steps based on Guinee et al. (2001) 
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Global warming  

As one of the most studied impacts, climate change is often assessed with the 

characterisation model global warming potential (GWP) developed by the 

Intergovernmental Panel on Climate Change (IPCC) in 2001. It is defined as a “simplified 

index based upon radiative properties that can be used to estimate the potential future 

impacts of emissions of different gases upon the climate system in a relative sense” 

(Houghton JT et al., 2001). The baseline characterisation model is set at a 100-year time 

horizon per kg carbon dioxide equivalent. This time horizon is the most commonly used 

in regulations. The indicator result is (kg CO2 eq). In terms of CO2 utilisation, all life 

cycle assessment studies and carbon accounting analyses should include this impact. The 

current aim of a CO2 utilisation process is to convert CO2 emissions into a useful chemical 

feedstock thus potentially averting emission. This conversion is measured by kg of CO2 

captured. Hence, when life cycle assessment is used as a carbon accounting tool, global 

warming must be measured. Since this is an impact category present in all life cycle 

assessment studies dedicated to CO2 utilisation, the results from these studies are 

discussed throughout this work.   

Abiotic depletion 

This is an impact that is also discussed as it considers all non-living natural resources 

including energy (Guinée et al. 2001). Its scope is large enough to allow many differences 

in characterisation methods. Considering CML-IA method, the category indicator uses 

the ultimate reserves (all geological reserves) and extraction rates as baseline (Schneider 

et al. 2015). It is expressed in kg of minerals and fossil fuel extraction. The 

characterisation model is the abiotic depletion potential (ADP) per 1 kg Sb equivalent/kg 

extraction. The unit of indicator result is in (kg Sb eq). Particularly, availability of energy 

resources and its link with fossil fuels is of great importance in CO2 utilisation studies. 

Because of this importance, the fossil fuel depletion factor from ReCiPe (H) model is 

also frequently used in this area as it excludes mineral extraction from depletion rates. 

This midpoint fossil depletion indicator result is expressed in (kg oil eq). Both abiotic 

depletion and fossil fuel depletion impact categories are used in CO2 utilisation studies. 

Fossil depletion factors can be used in CO2 utilisation to determine the least fossil 

intensive energy source. In Von der Assen et al. (2015), fossil depletion scores range 

from 0 to 5 kg oil eq./kg H2 depending on the H2 source, directly link this value to the 
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minimum fossil depletion of flexible polyurethane in a case study. While for CO2 sources 

across Europe, in a study by Assen et al. (2016) values range from 0 to 0.46 (kg oil eq)/(kg 

CO2 eq avoided) for point sources and 0.16 to 1.08 (kg oil eq) /(kg CO2 eq avoided) for 

direct air capture (DAC).  

Acidification  

Acidification occurs when mainly ammonia (NH3), sulphur dioxide (SO2) and nitrogen 

oxides (NOx) are emitted to the atmosphere as pollutants and are then deposited to the 

soil causing changes in its PH (Roy et al. 2014).  A decrease in pH can harm ecosystems, 

plant and animal species, as well as contributing to crumbling of building materials 

(Guinée et al. 2001; Roy et al. 2014). The characterisation factor most used is 

acidification potential (AP), which is defined as per each acidifying emission to the air in 

(kg SO2 eq) as mentioned in the CML-IA method. There are some disadvantages when 

using this factor as it assumes that H+ depositions are all within one same geographical 

zone, not considering the effects on a global scale (Roy et al. 2014). Studies by Azevedo 

et al. (2013) and Roy et al. (2014) present different methodologies to account for 

variability and uncertainty in the acidification potential (AP); however, the RAINS10 

characterisation model mentioned in Guinée et al. (2001) is still used in most studies. 

Although there is still uncertainty in this factor, there are measurable benefits from 

monitoring acidification levels. Acid pollution measured in arctic regions has fallen since 

its industrial peak in the 1960’s and 1970’s (Kjær et al. 2016) driven by legislation and 

advancements in NOx and SOx removal technologies. 

To the best of the author’s knowledge there are no specific studies focused on 

acidification effects of CO2 utilisation processes and few on carbon capture and storage. 

The scenarios for carbon and capture storage consider leakage from pipelines and storage 

sites having the potential to change the PH affecting marine ecosystems and zooplankton 

in particular (Halsband & Kurihara 2013; Queiros et al. 2015). For CO2 utilisation there 

are studies that consider acidification as part of life cycle assessment indicators, examples 

of these are: Aresta & Galatola (1999) where dymethylcarbonate (DMC) production 

routes are compared, Jaramillo et al. (2009) where an enhanced oil recovery process is 

assessed and Bernard (2009) which consists of a study on the production of microalgae 

utilising CO2. There is not as much focus in this impact category as there is in others such 

as global warming, leaving room for improvement in the assessments for CO2 utilisation. 
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Eutrophication  

Eutrophication occurs when there is an imbalance in macronutrients in the environment. 

An increase mainly in nitrogen (N) and phosphorus (P) levels can cause biomass levels 

to rise in ecosystems and can lead to depressed oxygen levels in water ecosystems 

(Guinée et al. 2001). To measure this impact from a midpoint level, life cycle assessment 

(LCA) practitioners including environmental product declarations (EPDs) use the 

characterisation baseline factor presented in CML-IA. This factor measures each 

eutrophying emission to air, water or soil in Kg PO4 equivalents/kg emission. Other 

methods such as ReCiPe (H) can distinguish between marine aquatic and freshwater 

eutrophication by applying limiting nutrient factors N and P to specific regions. 

Nonetheless, midpoint impacts are still often calculated using the CML-IA method.  

Eutrophication potential is often assessed in carbon capture and storage as part of a full 

life cycle assessment study. In a power plant with one of either post-combustion, pre-

combustion and oxy-fuel carbon capture and storage, levels of NO2 can reduce with 

capture; however, an increase in emissions throughout the rest of the carbon capture 

storage supply chain may not be sufficient to equal net emissions from a plant with no 

carbon capture (Singh, Strømman & E. Hertwich 2011; Singh, Strømman & E. G. 

Hertwich 2011; Zapp et al. 2012). No study was found that addresses whether CO2 

utilisation routes could lower eutrophication levels compared to a carbon capture and 

storage process or a conventional production route.  

Stratospheric ozone depletion and photochemical oxidation  

Stratospheric ozone depletion measures the thinning of the stratospheric ozone layer that 

allows harmful solar ultraviolet UV-B radiation to penetrate and reach the Earth’s 

troposphere and surface in larger quantities. The impacts range from human and animal 

health to damage to ecosystems, materials and biochemical cycles (Guinée et al. 2001). 

Chemicals that contain chlorine and bromine atoms are the main ozone depleting 

substances since they can slowly destroy ozone molecules by acting as free radical 

catalysts (Montzka et al. 2011). The unit of indicator result is defined as (kg CFC-11 eq) 

CML-IA. The baseline characterisation factor is ozone depletion potential in the steady 

state (ODP steady state). Photochemical oxidation measures the increase of precursors of 

tropospheric ozone: NOx, volatile organic compounds (VOCs) and CO when using a 

midpoint approach. Tropospheric ozone is hazardous to human health in high 
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concentrations (also known as ‘summer smog’) and can damage vegetation at lower 

concentrations (Stranddorf, Hoffmann and Schmidt, 2005). The characterisation factor is 

photochemical ozone creation potential (POCP) with a unit of indicator result of kg 

ethylene eq, using CML-IA and ReCiPe (H) method. Ethylene is the reference gas as it 

is one of the strongest ozone precursors of all volatile organic compounds (VOC´s) 

(Stranddorf, Hoffmann and Schmidt, 2005). 

As is the case with other factors, excluding global warming and fossil depletion, there is 

little to no focus on carbon capture and storage or CO2 utilisation. Stratospheric ozone 

depletion and photochemical oxidation impacts are only mentioned as part of integral life 

cycle assessment studies when referring to carbon capture (Singh, Strømman & E. G. 

Hertwich 2011; Veltman et al. 2010; Koornneef et al. 2012). These factors are barely 

mentioned in other CO2 utilisation studies (von der Assen et al. 2015; Sternberg & 

Bardow 2015; Assen et al. 2016).  

Human toxicity  

This indicator measures the impact that toxic substances in the environment could have 

on human health. The characterisation factor by CML-IA for each emission of a toxic 

substance to water, air, and soil is (kg 1,4-DCB eq). There are other methods such as 

ReCiPe (H) that have an endpoint and midpoint approaches. Fine particulate matter is 

another important environmental factor that contributes to human burdens. Exposure to 

fine particulate matter is linked to lung cancer, reduced life expectancy, chronic 

respiratory and cardiovascular problems as well as complications during birth (Fantke et 

al., 2015). The ReCiPe (H) model uses Disability Adjusted Life Years (Dalys) to measure 

human health damage due to fine particulate matter (diameter less than 10 µm) and non-

methane organic compounds (NMVOC) equivalent for midpoint impacts (Goedkoop et 

al. 2009).  However, it has been noticed that published studies related to electricity, 

carbon capture and CO2 are rarely use an end-point since the method was still at early 

stages when the studies were published. The human toxicity indicator in life cycle 

assessments is not a replacement for complete health and safety studies, although it can 

be used as a pre-screening method for potential high toxicity contributors in the same 

way that global warming scores are used for detecting carbon hotspots.    
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Marine aquatic, Freshwater and Terrestrial Ecotoxicity  

Ecotoxicity potential covers the effects of toxic substances on different aquatic and 

terrestrial ecosystems. Its area of protection includes the natural environmental 

(Stranddorf, Hoffmann and Schmidt, 2005). The characterisation factor used by CML-IA 

is (kg 1,4-DCB eq) and uses global ecotoxicity as baseline. According to (Stranddorf, 

Hoffmann and Schmidt, 2005) the number of toxic substances is that large that it cannot 

fit into defined groups. Overall, the normalisation includes impacts from organotin 

compounds, metals, organic substances/persistent organic pollutants (POP), and 

pesticides.  

From the literature reviewed, ecotoxicity potentials are only mentioned as part of an 

integrated life cycle assessment studies. Carbon capture and storage studies include: 

Singh, Strømman & E. G. Hertwich (2011), Veltman et al. (2010), Koornneef et al. 

(2012). For CO2 utilisation, they are mentioned even less: (Heijungs and Lenzen, 2014; 

Morales Mora et al., 2016; von der Assen et al., 2016; Zhang et al., 2017). This is no 

different from the rest of impact categories, where mainly global warming and fossil 

depletion is assessed in utilisation scenarios. 

Table 3.4 lists the characterisation factors and the units of the indicators for CML IA and 

the ReCiPe method. A full list of factors and units for all available life cycle impact 

assessment methodologies can be found in Sadhukhan et al. (2014). 
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Table 3.4 Characterisation factors and unit of indicators for CML IA and ReCiPe methods, adapted from 
Sadhukhan (et al. 2014) 

Characterisation factors Unit of indicator 

Under CML IA 

Global warming potential kg CO2 equivalent 

Acidification depletion potential kg SO2 equivalent 

Eutrophication potential kg phosphate equivalent 

Ozone layer depletion potential kg CFC-11 equivalent 

Abiotic depletion potential, elements kg Sb equivalent 

Abiotic depletion potential, fossil MJ 

Freshwater aquatic ecotoxicity potential kg DCB equivalent 

Human toxicity potential kg DCB equivalent 

Marine aquatic ecotoxicity potential kg DCB equivalent 

Photochemical ozone creation potential kg ethylene equivalent 

Terrestric ecotoxicity potential kg DCB equivalent 

Under ReCiPe 

Climate change kg CO2 equivalent 

Terrestrial acidification kg SO2 equivalent 

Freshwater eutrophication potential kg P equivalent 

Ozone depletion potential kg CFC-11 equivalent 

Fossil depletion kg oil equivalent 

Freshwater ecotoxicity kg DCB equivalent 

Ionizing radiation kg U235 equivalent 

Marine ecotoxicity kg DCB equivalent 

Marine eutrophication kg N equivalent 

Metal depletion kg Fe equivalent 

Natural land transformation m2 

Particulate matter formation kg PM10 equivalent 

Photochemical oxidant formation kg NMVOC equivalent 

Terrestrial ecotoxicity Kg DCB equivalent 

Water depletion m3 

 

3.3.5 Interpretation and presentation: CO2 utilisation 

The last section of a life cycle assessment is intended to present life cycle inventory (LCI) 

or life cycle impact assessment (LCIA) results in a meaningful way. There is an on-going 

discussion whether results should not be limited to comply with only the goals of study 

as mentioned in ISO 14040 (ISO, 2006a). By doing this, important information might be 

missed. A better approach could be to open results to general findings, that can then be 

up for interpretation (Baumann & Tillman 2004). Some of the tools that are often used to 
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analyse results include: dominance, contribution, Monte Carlo simulations, break-even 

and decision-making analysis (Simonen, 2014).  

As mentioned previously, uncertainties along with data quality are problems to address 

in life cycle assessments. Table 3.5 shows the most common uncertainties associated 

with the introduction stages of the life cycle assessment process that will lead to uncertain 

results. It is noted that inventory and characterisation phases are the most uncertain. ISO 

14040 (ISO, 2006a) recommends to only use data quality assessment tools, but does not 

standardize the tools. As explained in the allocation section, scenario planning is an 

option for dealing with CO2 utilisation process uncertainties.  

Table 3.5 Types of uncertainty associated with the introduction phases in LCA. Based on Björklund (2002) 

 

3.4 Regulatory outlook for CO2 utilisation and renewables in the UK 

 

Any regulations that include/affect CO2 utilisation technologies should be considered in 

any future scenarios. This is also closely linked to renewable energy targets for the UK. 

These renewable energy targets can allow for the inclusion of CO2 utilisation 

technologies as part of the renewable energy agenda in the future. Having a decarbonised 

grid mix can also lower energy penalties for utilisation scenarios and change the CO2 

Uncertainty type 

LCA phases 

Goal 

and 

scope 

Inventory 

Choice of 

impact 

category 

Classification Characterisation 

Data inaccuracy  X   X 

Data gaps  X   X 

Unrepresentative 

data 
 X   X 

Model uncertainty  X   X 

Uncertainty due to 

choices 
X X X  X 

Spatial variability  X   X 

Temporal variability  X   X 

Variability between 

objects/sources 
 X   X 

Epistemological 

uncertainty 
X X   X 

Mistakes X X X X X 

Estimation of 

uncertainty 
 X   X 
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sources map. This section explores this further, diving into the current legislation and 

future challenges of these type of processes in the UK that could affect large-scale 

deployment. 

 

3.4.1 Carbon capture and storage regulations in the UK 

For a while, carbon capture and storage was an important part of the UK’s carbon 

reduction agenda. It was included in the Energy Act created in 2008 and followed the EU 

CSS Directive Framework. This act introduced guidelines for the safe offshore 

sequestration of carbon. The UK Electricity Act of 1987 was also amended to include 

that all new combustion plants over 300MW should include capture facilities. To push 

carbon capture and storage (CCS) further, the government launched a carbon capture and 

storage (CCS) commercialisation programme along with the Electricity Market Reform 

from 2011-2012. In total it allocated £1bn of funding for four commercial scale carbon 

capture and storage projects (Carbon Capture & Storage Association, 2017). However, 

in November 2015, an unexpected statement was announced where funding for these 

projects had been withdrawn (House of Commons and Committee, 2016). Without any 

future government commitments imminent, the public industry of CCS is on hold for 

now. This does not mean that there will not be interest from the private sector; however, 

it is unlikely to see complete funding for large-scale deployment for carbon capture and 

storage (CCS) in the near future, at least in the UK.  

 

3.4.2 CO2 utilisation regulations in the UK 

Currently, there is no legislation set in place for carbon capture and utilisation, recycling 

or similar terms. While the government’s attention has been drawn to carbon capture and 

storage (CCS), carbon recycling has presented an opportunity to introduce a new concept 

to the market. This ‘new concept’ brings with it new challenges that lack specific 

regulations. There are research council projects like CO2 chem and the Centre for Low 

Carbon Futures that focus on the opportunities of using carbon feedstocks by 2050. These 

centres push towards including carbon recycling in government policies as well as 

creating networks through research, private and public sector.  
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The question is, if there is an open space for new regulations for carbon recycling, what 

should these be? One of the highly contested issues is the definition of the carbon stream 

to be used. Is this considered a waste stream, a recycled stream, a feedstock or a utility? 

How this carbon dioxide is defined will determine allocation rules that will have an 

impact on environmental burdens and costs of the stream. The Waste Framework 

Directive (WFD) defines the concept of waste as any substance or object set out in Annex 

1 of Directive 91/156/EEC, which the holder discards, intends, or is required to discard 

(discard includes disposal, recycling and or recovery). Although this concept has been 

discussed greatly, the basic definition has not changed throughout the years. However, it 

has been necessary to clarify and explain when a waste is no longer a waste and becomes 

either a new or a secondary raw material (Environment Agency, 2012).  

To turn a carbon dioxide stream from a waste to a non-waste product, it must meet certain 

criteria for “end of waste” certification (Environment Agency, 2012): 

 Waste should be fully recovered or recycled 

 Unwanted substances should have been removed from the waste 

 Recovered/recycled material should be fully suitable as a replacement for a non-

waste material 

 The waste should have a certain use after being fully recovered/recycled 

 The recovered/recycled material should be used without posing greater risk to the 

environment and to human health than the non-waste material it replaces 

 The waste is converted or transformed into a distinct product 

If a carbon dioxide stream was to be considered a by-product, then it would also have to 

comply with Waste Framework Directive (WFD) regulations. In this case, it would have 

the same legal status as a product. The Directive also states that if a substance or object 

was not intentionally produced (residue) it can be considered a non-waste only if: 

 Further use of the substance or object is certain 

 The substance or object can be used directly without any further processing (other 

than normal industrial practice) 

 The substance or object is produced as an integral part of the production process 

 Further use is lawful (complies with all environmental and health protection 

requirements) 
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How these regulations would apply to carbon utilisation systems is discussed in Chapter 

8 as part of the general outlook for CO2 utilisation sustainability.  

Overall, including utilisation schemes as a low carbon energy source into the 

government’s agenda could incentivise public and private research of this topic. It would 

also have the potential to be another technology on the renewable list if it is proven to 

comply with environmental and health regulations stipulated by Waste Framework 

Directive (WFD) and other applicable departments.   

 

3.4.3 EU Emissions trading scheme (EU ETS) and its potential role on 

CO2 utilisation 

The first and biggest carbon-trading scheme was created by the European Commission 

in 2005. It includes 31 countries and covers 45% of the EU’s greenhouse gas emissions 

(European Commission, 2017b). This scheme works with a ‘cap and trade’ concept in 

which there is cap for emissions from a system. This cap is in the form of ‘emission 

allowances’ that lower each year to ensure emission reduction targets are met. The trade 

part allows trading this emission allowances. Each company must have enough 

allowances each year to pay for their emissions or pay a tax. There is the option to buy 

more allowances from companies that have extras or from international credits. The 

allowances are traded through auctioning. To make this system work emission 

allowances are set every year in a single EU cap. The 2013 cap was set at 2,084,301,854 

allowances and decreases each year by a linear factor of 1.74 %. Each allowance is equal 

to 1 tonne of CO2 or the equivalent of two more powerful greenhouse gases, 

perfluorocarbon (PFCs) and nitrous oxide (N2O). According to the European 

Commission (2017), having a robust carbon price has proven beneficial. By 2020, 

emissions will be 21 % lower than in 2005 and with the aim of lowering to 43% by 2030. 

Participation in the EU emission trading scheme (EU ETS) is mandatory for companies 

in specific sectors (Table 3.6). 
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Table 3.6 Sector, and gases covered by EU emission trading scheme (EU ETS), adapted from European 
Commission (2017b) 

Industrial Sector Gases covered 

Power and heat generation Carbon dioxide 

Energy intensive industries: 

Oil refineries, steel works, production of iron, 

aluminium, metals, cement, lime, glass 

ceramics, pulp, paper, cardboard, acids and bulk 

organic chemicals 

Carbon dioxide 

Commercial aviation Carbon dioxide 

Aluminium production Nitrous oxide 

Nitric, adipic and glyoxylic acid and glyoxal 

production 
Perflourocarbons (PFCs) 

 

Part of the European Commission’s efforts to tackling climate change is to support low 

carbon technologies that can fit into EU emission trading scheme (EU ETS). Programs 

like NER 300 are designed to fund projects by allocating emission allowances to low 

carbon initiatives. The name of this project comes from the sale of 300 million allowances 

to be distributed to new projects. Other initiatives include the European Economic 

Recovery Programme, Strategic Energy Technology Set and the Global Energy 

Efficiency and Renewable Energy Fund. These programs support carbon capture and 

storage and are pushing for recognising it as a legitimate emission reduction technology 

(European Commission, 2017a). Achieving this would allow carbon capture and storage 

to be part of the EU emission trading scheme (EU ETS) program. Whilst carbon capture 

and storage still has support in the EU (excluding the UK that stopped its funding for 

planned projects), carbon dioxide utilisation is not yet on the political agenda. For it to 

be considered as part of the trading scheme program it would have to be accepted first as 

an emission reduction technology. The interest in carbon capture and storage could start 

to pave the way for technologies with similar characteristics, such as utilisation.   
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3.4.4 Government and renewables 

The UK government has been committed to increasing renewable energy deployment. It 

is seen as an opportunity to increase energy security whilst meeting carbon reduction 

targets. By 2020, 20% of the energy demand should be met with renewables. By 2030, it 

could reach 30-45% as targeted by the Climate Change Committee (CCC). However, this 

committee does acknowledge that cost reductions and sustainable economic growth are 

necessary to reach this target (BIS, 2015). As fossil fuel prices become more unstable, 

the need for alternative energy becomes greater to compensate this instability. So far, the 

most cost effective plan designed by the government to reach these targets is the 

Electricity Market Reform (EMR) (BIS, 2015). The EMR is a policy aimed at 

incentivising low carbon electricity investment through the Energy Act presented in 2013 

(ofgem, 2017).  

 The Department for Business, Innovation & Skills (BIS) set out its own potential 

roadmap to deliver 234 TWh (eq. of 15%) of renewable energy in 2020 where eight 

technologies could meet 90% of the necessary generation (Table 3.7).  

Table 3.7 Renewable energy roadmap for 2020 to deliver 234 TWh (DECC, 2011) 

 

 

Renewable energy sources 

Electricity 

generation 

(TWh) 

Onshore wind 24 to 32 

Offshore wind 33 to 58 

Biomass electricity 32 to 50 

Marine 1 

Biomass heat (non-domestic) 36 to 50 

Air source and ground source heat pumps (non-domestic) 16 to 22 

Renewable transport up to 48 

Others (including hydro, geothermal, solar and domestic heat) 14 

Total 234 
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Offshore wind 

The UK has great offshore wind deployment capacity. It is abundant enough that it could 

be exported to trading partners, creating new jobs and increasing energy security (BIS, 

2015). The UK is part of the ‘All Island Approach’ agreeing to co-operate on exploiting 

marine aquatic and wind resources. 

There are also uncertainties on whether these targets can be met. Future energy demands, 

cost of technologies and level of renewable energy deployment contribute to these 

uncertainties.  

Beyond 2020, there is a 2050 goal for carbon budgets but not for renewable energy 

deployment. However, both are directly linked since carbon emissions cuts cannot be 

achieved without integrating renewables. The climate change act signed in 2008 commits 

to a carbon reduction (Including greenhouses gases (GHG)) of at least 80% from 1990 

levels in the UK. According to the Climate Change Committee (CCC), up to the third 

carbon budget, reductions are on target. In 2015 there was a reported 38% carbon 

emission reduction from 1990 levels. To keep up with the goal, domestic emissions would 

need to reduce by at least 3% per year. By 2050 no scenario should have unabated coal 

fired generation (Committe on Climate Change, 2016). According to the optimistic 

scenario created by BIS (2015), decarbonisation of the grid could reduce up to 16 million 

tonnes of CO2 in 2050. This scenario relies on the government’s reform of the electricity 

market, reinforcing the need for low carbon energy policies in the United Kingdom.  

 

3.4.5 Renewable and low carbon energy policy and Brexit 

For the last four decades, the UK has collaborated with the EU and operated under EU 

regulations. By the end of March 2017, the United Kingdom is set to begin negotiations 

to leave the European Union. After Brexit is complete, the UK will no longer have to 

comply with the energy targets set under the EU Renewable Energy Directive, which 

currently are set at 15% from renewable sources by 2020. There is also the uncertainty of 

what will happen with other schemes, such as EU Emissions Trading Scheme (EU ETS), 

single market for energy and the EU Industrial Emissions Directive (EU ED). With 

schemes like EU ED, there was the possibility of ‘trading’ opportunities if cost of 
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domestic deployment of renewables were to rise for the UK public. (Climate Change 

Committee (2016) and DECC (2011)).  

Other issues such as labour legislations for multi-nationals working in the North Sea will 

have to be revised. Contracts and restrictions for long-term supply of UK source gas 

might also be an issue for Brexit. It is also expected that at least initially; EU laws will 

have to be converted or adapted into UK laws in a complex process (Norton Rose 

Fulbright 2016).   

There are also other issues such as a new independent role in the United Nations 

Framework Convention on Climate Change (UNFCCC) with new emission targets to set.  

However, even if EU rules were to apply no longer, the UK is still bound by national and 

international legislations, including the Climate Change Act from 2008 and the World 

Trade Organization (WTO) rules. According to the Committe on Climate Change (2016), 

the UK´s climate goals have not changed and the 2050 target for reducing greenhouse 

gas emissions is still in place. In order to comply with these commitments, the Committee 

acknowledges the need to keep EU schemes or replicate them at a national level. These 

schemes include product and efficiency standards, vehicle and energy efficient product 

standards, labelling, and the F-gas regulation. Regulations will need to be matched to EU 

equivalents if carbon targets are to be met. 

After Brexit, the UK will have more flexibility to design its own plans for the energy 

sector since it would no longer be attached to the EU. It also presents an opportunity to 

strengthen policies if the carbon budgets are to be met. The Committee on Climate 

Change (2016) agrees that following EU reduction targets would only deliver half of the 

emission reduction required. This does leave a space for government to close the target 

gap with internal policies and plans.  However, there are also big challenges to overcome 

if the gap is to be closed. A large portion of the funding for new energy infrastructure 

came from the EU; the lack of this funding will have an impact on future energy projects 

if no other funding bodies are found (Norton Rose Fulbright 2016). In only 2015, the 

European Investment Bank (2017) invested 7.8 billion EUR, where energy projects 

accounted for 24% of this funding.  From 2011 to 2015, the IEB invested over 29 billion 

EUR in the UK economy, with 28% assigned to the energy sector. To comply with the 

fifth carbon budget (2015-2030), the power sector will need to contribute with 67% CO2 

reduction (Climate Change Committee 2016). 
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3.5 Chapter three summary 

 

This Chapter reviews the information available that links sustainability and carbon 

dioxide utilisation. An overview was made of available literature for methanol and urea 

production from CO2. In total, 145 related studies were found. Out of this total, 35 studies 

are performance specific, whether it is life cycle assessment (LCA), techno-economical 

or carbon accounting. This highlighted the large range of studies that aim to measure the 

potential of a CO2 utilisation process through different indicators. There were few studies 

found that focused on the methodological aspects of assessing utilisation processes. The 

most complete assessment was found in Von der Assen et al. (2013b), however it focuses 

only on global warming as an environmental impact indicator. This framework has been 

the base for more recent studies in the area (Sternberg and Bardow, 2015; Morales Mora 

et al., 2016; von der Assen et al., 2016; Zhang et al., 2017). This lead to the search on 

how an environmental or sustainability study with a life cycle thinking approach would 

vary for if it came from a recovered CO2 stream. 

The standards ISO 14040, 14041 and 14044 (ISO, 1998, 2006a, 2006b) are followed in 

all studies. From this, four main sections create a life cycle assessment (LCA): Goal and 

scope, life cycle inventory (LCI), life cycle impact assessment (LCIA) and interpretation. 

The main difference in goal and scope for a CO2 utilisation process is the functional unit 

of choice. The two final products are used as functional units. For the life cycle inventory, 

the main challenge is data availability. There is a higher reliance on secondary data than 

for a conventional route that does not rely on recovered carbon dioxide. Specific 

allocation rules also apply to most CO2 utilisation scenarios, Assen et al. (2016) 

recommend system expansion. The life cycle impact assessment phase is the most 

standard, the same impact categories as for conventional processes that do not use 

recovered carbon dioxide can be applicable. These can include (but are not limited to) 

climate change, eutrophication, acidification, human toxicity, fossil fuel depletion, 

stratospheric ozone depletion, abiotic depletion, photochemical oxidation and eco-

toxicity. Of these impact categories, climate change and fossil fuel depletion are the most 

relevant according to Sternberg & Bardow (2015). Lastly, regulations for CO2 utilisation 

and renewables in the UK are reviewed. Currently, there is no legislation set in place in 

the UK. In 2015, the funding for £1bn funding for carbon capture and storage projects in 

the UK was withdrawn. However, there is still an opportunity to include CO2 utilisation 
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as part of carbon mitigation agenda incentivising public and private research. There is 

still a target to meet in 2050, where emissions must reduce by 80% from 1990 levels. At 

European level, utilisation is not part of the EU Emissions Trading System (ETS) 

program, as it has not been accepted as an emission reduction technology. There is also 

the uncertainty of political changes such as Brexit, however it can also present an 

opportunity to strengthen policies if the carbon budgets are to be met; this could be an 

opportunity for newer technologies if there is funding for the energy sector.  
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4 Environmental Impact Assessment Framework 

for CO2 Utilisation Scenarios 
 

The objective of this work is to present an environmental impact assessment framework 

that can be applicable specifically to CO2 utilisation processes. To the best of the author’s 

knowledge, no other study brings all the multidisciplinary aspects related to this subject 

into one general framework. As mentioned in Section 3.1 there is a need for guidelines 

that can unify CO2 utilisation assessments. To create this framework, the environmental 

impact assessment was divided into four areas: the design of the CO2 utilisation process, 

locational availability of renewable energy, the impact assessment and, lastly, other 

aspects of CO2 utilisation. Results from the assessment were used for scenario planning 

and multi criteria decision analysis (MCDA). The diagram of the general framework is 

shown in Figure 4.1. Sections 4.2 to 4.7 describe the steps towards creating the 

guidelines that address the specific issues for carbon dioxide utilisation processes. In 

Chapters 5 to 8, this framework is applied to two CO2 based chemicals.  

 

4.1 Reasons for developing an environmental impact assessment 

framework for CO2 utilisation 

 

The assessment of carbon capture technologies has been of increased interest to 

researchers since the Intergovernmental Panel on Climate Change (IPCC) presented a 

special report in 2005 (IPCC, 2005). This report was specific to carbon capture and 

storage, but it provided capture information that would later be useful for utilisation 

processes. One of the knowledge gaps described in this report was the lack of guidelines 

for estimating emissions from CO2 utilisation processes. From the data reviewed since 

1999, at least fifty-four studies have used a form of life cycle assessment both for carbon 

capture and storage and CO2 utilisation. Thirteen studies presented different 

methodologies for carbon accounting and, in total, 203 related studies were found. This 

highlighted the demand for assessment tools, but also the lack of general guidelines to 

follow (refer to Section 3.1 for more detailed information). 
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The demand for assessment tools in carbon dioxide utilisation stems from two main 

reasons: carbon emissions management and advancements in carbon recycling, 

utilisation, and/or sequestration processes. As an example of carbon management, a 52% 

reduction in coal use caused UK carbon emissions to drop by 5.8%, in 2016. This was 

the largest drop on record for the UK. Only 37 Mt of CO2 was emitted from coal 

compared to 137 Mt CO2 emitted in 2006 (BEIS, 2017). Drivers for the drop in coal use 

included carbon taxes, cheaper gas and an increase in renewables (Evans, 2017). Overall 

carbon management will continue to be required for carbon budgets to be met (refer to 

Section 3.3). There is also an increased interest in areas related to carbon optimisation. 

Whether it is utilising, minimising or capturing, newer technologies are constantly 

emerging. Stakeholders increasingly want to see sustainability studies that can help 

determine the potential of these processes. In general, the aim is to find optimal processes 

with the least negative impacts.   

Previous studies (Trudewind, Schreiber and Haumann, 2014; Sternberg and Bardow, 

2015; Troy, Schreiber and Zapp, 2016; Zhang et al., 2017) have used life cycle 

assessments as assessment tools, following international standards set in place for their 

development. These standards are ISO 14040, 14041 and 14044 (ISO, 1998, 2006a, 

2006b). They detail the principles and guidelines for creating a life cycle assessment and 

a life cycle inventory for environmental aspects. The standards are open to adapting 

methodologies within individual phases. However, they do not describe in detail the 

techniques used to create an assessment, most notably allocation methods. As mentioned 

in Section 3.2.3, carbon allowances need to be separated between capture and utilisation 

processes. Carbon dioxide is not a final product; thus, multi-functionality issues need to 

be considered. For these reasons, in this chapter, a specific environmental impact 

assessment framework is created for carbon utilisation processes, with study cases based 

in the UK as a reference. 
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4.2 Overview of the environmental impact assessment framework  

 

The development of this framework is the result of a compilation of methods, extensive 

research and data. To create this framework, the main aspects that differ in CO2 utilisation 

to conventional methods were identified and used as a baseline. These aspects are:  

● Allocation of emissions: Who gets the credit for using the CO2 available? 

● CO2 market: What is the availability of CO2 sources within a region and how does 

this affect the production of a CO2-based product? 

● Renewable energy: Availability, security, grid mix and future projections 

 

Whilst these aspects have also been identified by other authors as key factors  (von der 

Assen, Jung and Bardow, 2013), there is no consensus on how these should be weighted 

in sustainability reports.  

The information generated and collected for this work is brought together under one 

general study to answer issues related to CO2 utilisation. The core sections include 

scenario analysis and decision-making analysis. In scenario analysis, the design of the 

CO2 utilisation process, locational availability of renewable energy and the impact 

assessment, along with other aspects of CO2 utilisation are analysed to create the life 

cycle assessment. The second core section includes analysing the results from the first 

section by using multi criteria decision analysis (MCDA). This last section is aggregation 

work. By obtaining aggregated scores, a comparison between utilisation routes is 

possible.  

This is a fixed framework that gives guidance for the optimiser of a process. The 

outcomes can be used to indicate where optimisation would result in the greatest benefits 

if possible – this is done by assessing the process and determining the biggest contributing 

factors to the outcomes, allowing for the suggestion to attempt to mitigate these. This 

could be a suggestion to attempt to reduce the quantity of certain chemicals, or to switch 

to an alternative option that results in a drop in global warming impacts. The benefits of 

this approach are a quicker and simpler primary screening designed to be fast. It allows 

for process optimisation to be considered independently and can be ran through the same 

fixed system as many times as required. The drawbacks of using a fixed system is that it 
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lacks the flexibility of an integrated process which allows for dynamic results compared 

to a fixed assessment. A flexible system can also allow for the optimisation of 

interconnections between CO2 source and CO2 utilisation such as CO2 pinch analysis (Ng 

et al., 2015), with this being an extra advantage over fixed analysis systems where the 

responsibility for such an analysis may fall on the process optimiser. In this framework 

we allow for the technology developer, researcher, owner, or engineer who does optimise 

independently of the screening analysis. Such an approach allows for input from process 

specialists when considering optimisation and also ensures that the optimised results 

reflect an achievable reality – whether this be based on empirical, experimental or 

theoretical model data. The complete framework steps can be seen in Figure 4.1 and are 

discussed in detail in the following sections.  
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Figure 4.1 Environmental impact assessment framework designed for the chemical transformation of CO2 for utilisation 
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4.2.1 Define utilisation system 

The systems follow a life cycle assessment (LCA) approach where environmental and 

interventions are accounted for. Figure 4.2 shows the boundaries, based on ISO 14040, 

14041 and 14044 (ISO, 1998, 2006a, 2006b), that were adapted for a carbon utilisation 

system. A cradle to gate boundary is set in all cases with a focus on the production 

process. The supply chain includes raw materials, infrastructure, production, storage and 

end of life. The use phase is outside of the scope of the study as it is a comparative 

process-based study. If the product use is the same in both systems, regardless of whether 

it is from captured CO2 or is fossil fuel based, the comparison will make no overall 

difference to the result since it will generate the same impacts. To select the utilisation 

systems, several questions formed the basis of the initial assessment: What CO2 chemical 

transformation processes were more advanced? Is there a market for the product? What 

is the current research interest in the UK?  

Detailed answers to the above questions can be found in Chapters 5 and 6 where the 

utilisation systems are selected and assessed. Methanol serves as benchmark for the 

framework, based on the data availability for this chemical, and urea is assessed because 

of its production potential and demand in the UK. Alone in 2015, 1 Mt of nitrogen 

fertilisers were consumed in the UK (Agricultural Industries Confederations, 2016). The 

search for a less carbon-intensive process for urea production coupled with renewable 

energy justifies applying sustainability assessment tools.  
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Natural System 

Carbon capture 

system 

Carbon utilisation 
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Product storage 
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Figure 4.2 Diagram of boundaries for CO2 utilisation systems based on the ISO standard 14040 (ISO, 2006a) 
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4.2.2 Scenario analysis 

Scenarios have been used in organizations since the 1950’s. The Department of Defence 

of the United States used scenario planning to raise awareness of the difficulties of a 

nuclear war (Coates, 2016). Since then they have become increasingly popular for 

forming coherent ‘stories’ when it is difficult to interpret information. As mentioned by 

Stewart et al. (2013) and Coates (2016), there are two main types of scenarios: i) mapping 

possible outcomes/solutions for situations that could arise within an organization, and ii) 

discussing the implications of a certain action, such as the inclusion of a new policy. 

Carbon utilisation processes are currently directly linked to renewable energy availability 

within a region. This leads to an uncertain future where grid mixes are susceptible to 

changes. From technological advances to political decisions, this can reflect in the 

demand and supply of electricity. Thus, the first type of scenario was used in this work 

to analyse future outcomes. The uncertainty includes grid mix variability until 2050 for 

carbon dioxide capture methods and utilisation processes. The four sections: design of 

the CO2 utilisation process, locational availability of renewable energy, impact 

assessment and other aspects of CO2 utilisation sections are explained in the following 

sections for the scenarios investigated. 

 

4.3 Design of CO2 utilisation process 

 

Successful sustainability assessments rely on good data. Primary sources of information 

will always be favourable to secondary sources. However, a data compromise must be 

reached for CO2 utilisation, as there is not much primary data available at present. As 

research develops so will data availability; in the meantime, alternatives must be created 

to show preliminary results. The solution presented in this work combines simulations 

and available inventories as secondary sources, providing the information necessary to 

fill a life cycle inventory and assess it. Since there are no established standards known to 

date on how to apply simulations to create a life cycle inventory (LCI), it was necessary 

to create a general guideline to follow, as shown in Figure 4.3. This guideline bridges 

the gap between process-based modelling and life cycle assessments. This section also 

ensures that all the necessary information to assess CO2 utilisation is obtained. Three 

main parts were identified for this subdivision: the source of CO2, capture and utilisation. 
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Figure 4.3 Diagram with general guidelines to creating life cycle assessments (LCAs) with simulations for CO2 
utilisation processes 

 

4.3.1 CO2 source, capture and utilisation 

Through extensive research in the area, the following questions were proposed: how 

would CO2 be supplied? Would it be biogenic, a point source or from direct air capture? 

Would the CO2 concentration be adequate for utilisation, and if it were, does it need extra 

dehydration steps? This information was obtained from available research and adapted to 



107 
 

the proposed scenarios. Refer to Appendix I for a summary of initial questions used to 

describe all four sections of the life cycle assessment. 

Capture routes were researched based on information availability, relevance to the 

utilisation method and place of study. Then, secondary data was collected to simulate in 

Aspen Plus® version 8.4 to obtain utilities useful for the life cycle inventory. Using 

simulations was not possible for some capture methods, for example direct air capture 

(DAC), and instead a black box approach was the best way to estimate a future scenario. 

All extra units such as compression and removal of impurities are also considered and 

modelled when possible.  

Utilisation routes were also modelled with Aspen Plus® version 8.4 when information 

was available. Alternatively, utilities were obtained from research available and adapted 

to fit the scenarios. Secondary data was backed with life cycle inventory databases such 

as ecoinvent version 3.3 and GaBi ts version  8.7.0.18. Finally, the last step for utilisation 

was to consider a variety of electricity sources and mixes in different regions. This 

information was also sourced directly from purchasable life cycle inventory databases.     

 

4.4 Impact assessment 

 

There are sustainability issues with chemical transformation processes. High energy 

penalties, water consumption and emissions are all environmental aspects associated with 

the chemical industry and the energy sector (Aresta and Galatola, 1999; Styring and 

Jansen, 2011; Pérez-Fortes, Bocin-Dumitriu and Tzimas, 2014; Santoyo-Castelazo and 

Azapagic, 2014; Morales Mora et al., 2016). This is no different for utilisation processes. 

While the initial aim is to reduce carbon emissions, this benefit could be offset by other 

environmental impacts (Azapagic and Cue, 2015). the capture stage in particular involves 

high energy penalties  (Abu-Zahra et al., 2007; Ramirez and Uu, 2013). There are several 

suggestions made throughout this work to counterbalance these penalties; these 

recommendations are presented in the following chapters. 

Studies in this area agree that the major environmental impacts associated with CO2 

utilisation are fossil fuel depletion and climate change (Von der Assen & Bardow 2014; 

Assen et al. 2016; Sternberg & Bardow 2015). The expectation is that by utilising 
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captured carbon dioxide these impacts could be lowered when compared to non-CO2 

based production routes. However, these two are not the only environmental impacts that 

can be assessed. Efforts should be made to identify and assess other environmental 

impacts at least at an initial screening level. 

Table 4.1 shows potential aspects and impacts of the CO2 based products used as case 

studies. The environmental aspects are stated in the international standard 14001 (ISO, 

2015), which suggests considering environmental aspects from:  

 emissions to air 

 releases to water 

 releases to land 

 use of raw materials and natural resources 

 energy 

 generation of waste 

 use of space 

A qualitative assessment of each environmental aspect along the supply was made, 

considering known impacts from other studies and life cycle inventories (LCI) for both 

conventional and CO2 utilisation routes for methanol and urea as well as the initial 

process design specifications of the urea production facilities.  

Raw material (Extraction, transportation): The life cycle inventories of the materials and 

chemicals needed for capture and CO2 utilisation were used to determine potential 

environmental aspects from extraction and transportation. The list of inventories is shown 

in Table 4.2. From this, the main environmental aspects are: air and water emissions, use 

of materials, resources and energy, generation of waste and land use. 

Infrastructure: Both case studies follow the infrastructure module (chemical plants, 

organics) from ecoinvent 3.3. This module considers land use, buildings and facilities 

including dismantling. The three main environmental aspects available are land use, use 

of materials/energy and generation of waste.  

Production and end of life: The report “cost and performance baseline for fossil energy 

plants” by NETL (2015) was used for the capture stage of both case studies. The 



109 
 

environmental aspects found based on this report were: air and water emissions, use of 

materials, resources and energy, generation of waste, and hazardous waste.  

For urea synthesis, the life cycle inventory profile urea, as N, at regional storehouse for 

Europe from ecoinvent 3.3 was used. The environmental aspects sourced from this 

inventory are: air emissions, emissions to water, use of materials, resources and energy 

and generation of waste. For methanol synthesis, including hydrogen production, the 

design and simulation work of Van-Dal & Bouallou (2013) and Pérez-Fortes et al. (2014) 

was used as a reference for methanol, and communications by ITM Power Limited (2016) 

for hydrogen production. The environmental aspects sourced are: use of materials, 

resources and energy, emissions to air and water and generation of waste. 

Storage: For both case studies, the cut-off boundaries were set at gate with no further 

information available for storage. Although there are storage plans for urea these were 

still not defined at the time of this assessment. 

The associated impacts and evaluation factors are obtained from the CML-IA and ReCiPe 

(H) methods for life cycle assessments. This work follows the life cycle assessment 

framework established in the international standard 14040 (ISO, 2006a). Life cycle 

assessment is a sustainability tool used to assess inputs and outputs and to identify 

potential environmental impacts in a supply chain throughout its life cycle (ISO, 2006a). 

It is often used to compare products within cradle-grave, cradle-gate and gate-gate 

boundaries (Baumann & Tillman 2004). The international standard establishes the 

guidelines for performing life cycle assessment studies. The norm specifies the 

framework and its four main sections: goal and scope, inventory analysis, impact 

assessment and interpretation (Section 3.2). This norm was taken only as a base and was 

modified as required. It is not the aim of this study to repeat a methodology that is 

established, but to adapt it to new conditions while still following the general standardised 

guidelines. One of these changes is the use of a subtraction method for allocation, which 

is not mentioned in the norm. By using this method, CO2 emissions avoided or generated 

can be assigned to different parts of the supply chain as required. 
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Table 4.1 Potential environmental aspects and impacts of case study CO2 based products 

Environmental aspects and impacts Supply chain stages 

Environmental 

aspects Associated impacts Evaluation factors 

Raw material (extraction, 

transportation) Infrastructure Production 

Product 

Storage 

 

End of life 

Emissions to air 

Climate change, ozone 

depletion, Photo-oxidant 

formation 

Global warming, particulate 

matter, photochemical 

oxidation 

x  x  x 

Emissions to water Water pollution 
Eutrophication, nitrification, 

ecotoxicity  
x  x  x 

Emissions to land, 

land use 

Land pollution, change of 

use 
Abiotic depletion, ecotoxicity x x    

Use of 

materials/natural 

resources/energy 

Water and energy 

consumption, fossil and 

materials depletion 

Fossil depletion, abiotic 

depletion  
x x x  x 

Generation of waste 
Land pollution, odours, 

recycling 
Human and ecotoxicity  x x x  x 

Hazardous waste 
Human health implication, 

ecotoxicity 

Human toxicity and 

ecotoxicity  
 x x  x 
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Using this methodology as a basis, the goal and scope describes the intended 

application, reasons for study, system boundaries, functional unit and allocation. In 

this work, the functional unit is set at: 

 1 kg of product from the CO2 utilisation production route 

 1.43 kWh of electricity / kg of methanol produced (when coal fired power 

stations are used as CO2 supply) 

 0.8 kWh of electricity / kg of urea produced (when coal fired power stations are 

used as CO2 supply) 

Since the aim of the study was to evaluate chemical transformation routes with the 

same end-product, a cradle to gate approach was used for all scenarios in this chapter. 

Other goal and scope variables are defined accordingly to each scenario in Chapter 

5 and 6. 

The inventory analysis included all input and output flows that intervene within the 

system, including utilities, natural resources and emissions. The data for these 

interventions was obtained from the design of the CO2 utilisation process mentioned 

previously as the direct source for the life cycle inventory. Indirect emissions (or 

‘background data’) were obtained from purchasable databases. Table 4.2 lists the 

database names selected for each flow in both cases studies. The approach used 

considers all processes to be linear, using a matrix inversion method for process-based 

modelling. This technique has been documented by authors such as Suh & Huppes 

2005; Heijungs 1994; Islam et al. 2016. Other methods, such as Input-Output (IO) 

analysis and integrated hybrid, have also gained popularity in environmental studies; 

however, there is still a lack of economic data available in this research area to apply 

these methods. The first method estimates the indirect inputs in the LCA process 

system by using the economic input-output analysis; the second combines two base 

processes such as input analysis with process-based modelling to develop a more 

robust methodology (Koh et al., 2013).  

 Following the n x n matrix inversion method mentioned in Heijungs et al. (2013), 

the life cycle inventory per commodity output can be calculated by the system: 

Ã�̃� =  �̃�  

Equation 4.1 
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Where:  

Ã= |𝑎𝑖𝑗| inputs or outputs of a commodity 𝑖 of process 𝑗 for a certain process 

duration 

�̃�  = Vector for process operation time (also known as ‘occurrence’ or ‘scaling 

factor’) 

�̃�  = Commodity net output of the system 

 

This is equal to: 

Total commodity delivered = amount produced – amount used 

Once the commodities were calculated, they were used to assess environmental impacts 

in the next life cycle assessment phase. Certain inputs, such as infrastructure, required a 

general method and were calculated separately with individual formulas.  

Table 4.2 Names of the inventory database used for methanol and urea cases studies 

Inventory database 

CO2 capture: alternative inventories 

Country Name of input Database 

EU-27 Process water thinkstep 8.7.0.18 

EU-27 Triethylene glycol PlasticsEurope 

EU-27 Municipal waste treatment (mix) thinkstep 8.7.0.18 

EU-27 Municipal solid waste on landfill thinkstep 8.7.0.18 

Germany Calcium hydroxide (dry, slaked lime) thinkstep 8.7.0.18 

Germany Activated carbon thinkstep 8.7.0.18 

Germany Limestone flour (CaCO3) thinkstep 8.7.0.18 

Great Britain Electricity from hard coal thinkstep 8.7.0.18 

Great Britain Ammonia (NH3) thinkstep 8.7.0.18 

Great Britain Process steam from natural gas 85% thinkstep 8.7.0.18 

Great Britain Electricity grid mix thinkstep 8.7.0.18 

Great Britain Ethylene oxide (EO) via air thinkstep 8.7.0.18 

Utilisation systems including hydrogen production: alternative inventories 

Country Name of input Database 

EU-27 Process water thinkstep 8.7.0.18 

Europe Chemical factory construction, organics ecoinvent 3.3 

Europe Market for natural gas, high pressure ecoinvent 3.3 

Europe Carbon tetrachloride production ecoinvent 3.3 
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Country Name of input Database 

Europe Aluminium oxide, at plant ecoinvent 3.3 

Europe Copper oxide, at plant ecoinvent 3.3 

Europe Molybdenum, at regional storage ecoinvent 3.3 

Europe Zinc, primary, at regional storage ecoinvent 3.3 

Europe Market for waste graphical paper ecoinvent 3.3 

Europe without 

Switzerland 
Market for waste graphical paper ecoinvent 3.3 

 

 

Global Market for barite ecoinvent 3.3 

Global Market for calcium chloride ecoinvent 3.3 

Global Market for carbon tetrachloride ecoinvent 3.3 

Global Market for sludge, NaCl electrolysis ecoinvent 3.3 

Global 
Soda ash, light, crystaline, heptahydrate to generic 

market for neutralising agent 
ecoinvent 3.3 

Global Market for sodium chloride, powder ecoinvent 3.3 

Global Market for sulfuric acid ecoinvent 3.3 

Global 
Market for hazardous waste, for undeground 

deposit 
ecoinvent 3.3 

Global Market for asbestos, crysolite type ecoinvent 3.3 

Global Market for mercury ecoinvent 3.3 

Global Market for spent activated carbon with mercury ecoinvent 3.3 

Global Nickel, 99.5 %, at plant ecoinvent 3.3 

Global Synthetic gas, production mix, at plant ecoinvent 3.3 

Global Natural gas, production onshore ecoinvent 3.3 

Global 
Market for sodium hydroxide, without water, in 

50% solution state 
ecoinvent 3.3 

Great Britain Market for electricity, medium voltage ecoinvent 3.3 

Great Britain 
Market for hydrochloric acid, without water, in 

30% solution state 
ecoinvent 3.3 

Global Market, for solvent, organic ecoinvent 3.3 

Europe Market group for heavy fuel oil ecoinvent 3.3 

Great Britain Treatment of municipal solid waste, incineration ecoinvent 3.3 

Europe Market for urea, as N ecoinvent 3.3 

Europe 
Market group for heat, district or industrial, 

natural gas 
ecoinvent 3.3 

Great Britain Electricity from hard coal thinkstep 8.7.0.18 

Great Britain Electricity grid mix thinkstep 8.7.0.18 

Great Britain Electricity from wind power thinkstep 8.7.0.18 

Great Britain Isopropanol thinkstep 8.7.0.18 

Global Compressed air 7 bar (low power consumption) thinkstep 8.7.0.18 

EU-27 Tap water thinkstep 8.7.0.18 
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4.4.1 Infrastructure 

For all scenarios, infrastructure inputs were calculated based on the ecoinvent unit: 

chemicals, organics, at plant. All comparison scenarios use ecoinvent version 3.3 values, 

as there was a need to continue using this standardised unit when no primary data was 

available. New models were scaled by adapting the infrastructure from Heijungs et al. 

(2010). 

The calculation for one chemical plant unit is as follows: 

50,000 𝑡

year
 × 50 years = 1 chemical plant (𝑢𝑛𝑖𝑡)  

One chemical plant unit is hence equivalent to a plant with an output of 50,000 tonnes of 

product annually, with a life span of 50 years. Thus, one chemical plant unit is the 

equivalent amount of infrastructure needed to produce 2.5 million tonnes of product. For 

1 kg of product, the following relationship is established: 

1 𝑘𝑔 of product requires 4 𝑥 10−10  units of chemical plant 

To calculate the total amount of infrastructure, the following equation can be used: 

  (
Annual plant production (

𝑡

𝑦𝑟
) × lifespan(𝑦𝑟)

2.5 million (
𝑡

𝑢𝑛𝑖𝑡
)

) = units of chemical plant 

 

 4.4.2 Life cycle impact assessment (LCIA) 

The next step was to assess the environmental impacts obtained from the life cycle 

inventory. Several methods can be used for life cycle impact assessment (LCIA) (see 

Section 3.2.4). The method selected for this work was the one presented by Guinee et al. 

(2002), referred to as CML-IA. This method is often used in published work and is thus 

useful for comparing results. The exception is the fossil fuel depletion factor, which is 

not part of CML-IA impact categories. The ReCiPe (H) method was used instead to 

calculate this midpoint impact. This factor is assessed along with the CML-IA guidelines 

as a primary indicator. 

CML-IA has a midpoint approach and evaluates eleven impacts: climate change, 

stratospheric ozone depletion, photochemical oxidation, acidification, nitrification, 

human-toxicity, ecotoxicity, abiotic depletion, particulate matter and sequestration of 
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CO2. For more information on these indicators and impacts, refer to Section 3.2.4. The 

GaBi ts version 8.7.0.18 platform was used to calculate these impacts, with the inventory 

previously obtained. 

The matrix representation of a product system was also used to calculate environmental 

interventions. Following results from Equation. 4.1 by Heijungs et al. (2013): 

𝑴 ̃ =  �̃� �̃�−𝟏�̃�  

Equation 4.2 

Where: 

�̃� = Direct and indirect environmental intervention matrix 

�̃� =  |𝑏𝑖𝑗| , 𝑖 are natural resources or emissions consumed or emitted by process 𝑗 in a 

given time 

�̃�  = |𝑎𝑖𝑗|, inputs or outputs of a commodity 𝑖 of process 𝑗 for a certain process duration 

�̃� = Vector for functional unit of the system 

The results are generated with these tools and are not aggregated in any form, as this 

complicates interpretation. To avoid this, net impacts for a carbon utilisation supply chain 

were calculated considering the following stages: 

 Power supply  

 Water supply 

 Material extraction and transportation 

 CO2 source impacts 

 Transportation of CO2 stream 

 Waste management 

 Process emissions 

The net impacts were equal to the sum of all the stages. All stages fell within scope 1, 2 

and 3 for greenhouse gases (GHG) (see Figure 4.4). Scope 1 includes all direct 

greenhouse gas emissions, scope 2 considers all purchased electricity and scope 3 refers 

to other emissions produced from operations of an organization and outsourced processes 
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(Koh et al., 2013). Table 4.3 shows environmental aspects/impacts for carbon utilisation 

according to their scope.   

 

 

   

 

 

 

 

 

 

 

Table 4.3 Greenhouse gas emissions sources, scope 1, 2 and 3 areas for CO2 utilisation processes 

Sources of greenhouse gas emissions by scope for CO2 utilisation processes 

Scope 1 Scope 2 Scope 3 

Combustion of fossil 

fuels for capture stage, 

dehydration of CO2 and 

utilisation process 

Purchased electricity for 

utilisation process if plant is 

not on a power generating 

site or has individual 

renewable power input 

 

Waste disposal from capture and 

utilisation, including solvents 

and refrigerants 

Process emissions from 

chemical transformation 

of CO2 

Purchased electricity for 

additional transportation of 

CO2 streams 

Production and/or extraction of 

raw materials for capture and 

utilisation process 

Fugitive emissions from 

chemical transformation 

of CO2 

 

Transportation and distribution 

up and down the supply chain 

Mobile combustion from 

the operation of vehicles 

on site for capture, 

utilisation and emissions 

from storing the final 

product 

Labour activities: Commuting, 

business travel, logistics, etc. 

 

The results obtained from the assessment were used for the interpretation phase. This 

section is included in scenario planning for the final analysis (Chapter 8). Scenario 

planning and decision-making allowed all sections to come under one general framework 

Figure 4.4 Visual aid of scope 1, 2 and 3 emissions (Koh et al., 2013) 
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with a measurable outcome. Within interpretation, it was also necessary to measure the 

robustness of the study. Quality analysis is traditionally done by a third independent party 

or by the same life cycle analyst. In this work, uncertainty and sensitivity analysis were 

both considered by the author.  

 

4.4.3 Uncertainty in the assessment of CO2 utilisation processes  

All life cycle assessment-based studies suffer from uncertainty problems. Although the 

international standards 14040 and 14044 (ISO, 2006a, 2006b) acknowledge this, they do 

not favour any type of data quality analysis. Methods can either be statistical or expert 

based (Guo and Murphy, 2012). There are sampling methods such as Monte Carlo that 

have been used for more than 10 years to address these issues (Heijungs and Lenzen, 

2014). This type of method works best with smaller inventories, as they require less 

iterations. The Intergovernmental Panel on Climate Change (IPCC) 2006 guidelines also 

recommend using Monte Carlo to estimate life cycle inventory uncertainties. According 

to Sadhukhan et al. (2014), other methods include dominance analysis, contribution 

analysis and testing the robustness of the results. 

Dominance analysis shows the activities with the highest values of a specific 

environmental impact. It is a hot spot analysis that allows easy interpretation of the 

results. Contribution analysis identifies the chemicals that cause higher environmental 

impacts within the life cycle of a product or process. Like dominance analysis, it is also 

a hot spot method. This analysis can help to replace pollutants with less intensive 

chemicals and help to reduce emissions from its source. To test the robustness of results, 

scenario analysis, sensitivity analysis and monte carlo simulations can be used. 

Dominance analysis has been added to this work in the form of a bar graph for each 

environmental characterisation. It has been applied to both methanol and urea case 

studies.  A comparative analysis between impacts is also included as part of the 

interpretation. This last study compares the relative contributions of each environmental 

impact for each case scenario for both methanol and urea synthesis. 

To test the robustness of the results, all three options mentioned by Sadhukhan et al. 

(2014) are considered in this work. Sensitivity analysis is described in the section below 

(4.4.4) and scenario analysis is described in Section 4.6. 
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 Lastly, because of the small size of the input and output matrix created for CO2 

utilisation, all studies were run through a Monte Carlo simulation with a ± 10 variance in 

all inputs/outputs with 2,000 random points calculated to test the feasibility of using this 

method when stoichiometric inputs are used. Since the results cannot go below 

stoichiometric values, to show the sensitivity of the impact categories an indexed value 

graph was used instead. This method measures the inefficiencies from 100% to 200% 

above stoichiometric when the main inputs are varied. 

4.4.4 Sensitivity measured with solving multifunctionality 

Sensitivity studies are required, in order to analyse the influence of variable factors, such 

as allocation or multifunctionality of a process. The importance of allocation rules is 

stressed in Section 3.2.3, where using a different method to solve multifunctionality leads 

to a different interpretation. In this work, sensitivity analyses were run for all global 

warming scenarios using most applicable allocation types.   

The system expansion method was used as benchmark for all calculations. (More 

information on this method and allocation for carbon dioxide utilisation is given in 

Chapter 3). Both avoided burden and economic allocation were used to compare results. 

The formulas were adapted from Von der Assen et al. (2014) and are as follows: 

 

System expansion 

 

1. 𝐺𝑊𝑢𝑡𝑖𝑙𝑠𝑎𝑡𝑖𝑜𝑛 = ∑ 𝑃𝑃𝑈𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 
+ ∑ 𝑈𝑃𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 

+  ∑ 𝑅𝑃𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 
     

 

2. 𝐺𝑊𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 = ∑ 𝑃𝑃𝐶𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 
+ ∑ 𝐶𝑃𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 

   

Equations 4.3 

Avoided burden 

3. 𝐺𝑊𝑢𝑡𝑖𝑙𝑠𝑎𝑡𝑖𝑜𝑛,   𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 

= (∑ 𝑃𝑃𝑈𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 
+ ∑ 𝑈𝑃𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 

+  ∑ 𝑅𝑃𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 
      )

−  ∑ 𝑃𝑃𝐶𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 
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4. 𝐺𝑊𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦,   𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = ∑ 𝑃𝑃𝐶𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 
  

 

5. 𝐺𝑊𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦,   𝑝𝑟𝑖𝑚𝑎𝑟𝑦  𝑝𝑟𝑜𝑑𝑢𝑐𝑡 

=  (∑ 𝑃𝑃𝑈𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 
+ ∑ 𝑈𝑃𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 

+  ∑ 𝑅𝑃𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 
   ) - ∑ 𝐶𝑃𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 

  

6. 𝐺𝑊𝑢𝑡𝑖𝑙𝑠𝑎𝑡𝑖𝑜𝑛,   𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡  = ∑ 𝐶𝑃𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 
  

Equations 4.4 

 

Economic allocation 

7. 𝐺𝑊𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 = ∑ 𝑃𝑃𝑈𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 
∗ 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑠  

8. 𝐺𝑊𝐶𝑂2𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 = 𝑃𝑃𝑈 𝐶𝑂2 𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 
∗  𝐶𝑂2 𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑠 

9. 𝐺𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝑃𝑃𝑈 𝐶𝑂2 𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 
+  ∑ 𝑈𝑃𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 

+ ∑ 𝑅𝑃𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 
   

Where: 

𝐺𝑊 = 𝐺𝑙𝑜𝑏𝑎𝑙 𝑤𝑎𝑟𝑚𝑖𝑛𝑔 

𝑃𝑃𝑈𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 
= 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑝𝑜𝑤𝑒𝑟 𝑝𝑙𝑎𝑛𝑡 𝑤𝑖𝑡ℎ  𝑐𝑎𝑟𝑏𝑜𝑛 𝑐𝑎𝑝𝑡𝑢𝑟𝑒  

𝑈𝑃𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 
= 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑐𝑎𝑟𝑏𝑜𝑛 𝑑𝑖𝑜𝑥𝑖𝑑𝑒 𝑢𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑝𝑙𝑎𝑛𝑡 

𝑅𝑃𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 
= 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

𝑃𝑃𝐶𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 
= 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑝𝑜𝑤𝑒𝑟 𝑝𝑙𝑎𝑛𝑡 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑎𝑟𝑏𝑜𝑛 𝑐𝑎𝑝𝑡𝑢𝑟𝑒 

𝐶𝑃𝐶𝑂2 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 
= 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑜𝑢𝑡𝑒 

𝐶𝑃𝐶𝑂2 𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 
= 𝑇𝑜𝑡𝑎𝑙  𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑐𝑎𝑝𝑡𝑢𝑟𝑒 

Equations 4.5 
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4.5 Locational availability of renewable energy and other aspects of 

CO2 utilisation 

 

4.5.1 Locational availability of renewable energy 

Carbon dioxide utilisation and renewable energy issues are deeply intertwined (Sayah 

and Sayah, 2011; Styring and Jansen, 2011; Boretti, 2013; Matzen, 2016). Where will the 

energy to power the production of CO2-based products come from? This leads to supply 

and demand issues that needs to be addressed. A way to assess this is by investigating the 

potential of different energy mixes. To determine this, a compilation of electricity 

resource data was collected for EU countries. This information was used to create 

scenarios based on baseline cases for methanol and urea synthesis. This also included the 

mapping of CO2 related sources:  

 CO2 availability by source in Europe   

 Industry and electricity generation sites by CO2 emission rates in Europe 

 Industry and electricity generation sites with < 0.2 Mt emissions in Europe 

 Industry and electricity generation sites with < 0.2 Mt emissions in the UK by 

commercial sector 

Data was obtained from European Commission reports (Database, 2014) and mapped 

using Microsoft Office software. Specific information for the UK was also collected. This 

included power stations by region, fuel source, emissions and installed capacity. The data 

was sourced from the newest Digest of UK Energy Statistics (BEIS, 2016a) and 

considered all renewable energy in the United Kingdom.  

Auxiliary information such as CO2 pipelines and land availability in a specified region 

were only assessed for the scenarios selected. To date, there is little public data available 

for CO2 pipelines. The most reliable sources are studies by the IEA Greenhouse Gas R&D 

Programme and the National Energy Technology Laboratory (based in the U.S). 

However, due to its high uncertainty and undisclosed information, this data was only used 

for general assumptions.  
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4.5.2 Electricity outlook 

The need for an adequate energy source for CO2 use in the synthesis of chemicals and 

fuels has been mentioned in the literature (Styring and Jansen, 2011; von der Assen et 

al., 2015; Schakel et al., 2016; Aresta, Dibenedetto and Dutta, 2017). In particular when 

reforming CO2 to fuels without a renewable energy source, these utilisation systems are 

limited (Olah, Goeppert and Prakash, 2009; Aresta, Dibenedetto and Dutta, 2017). 

Therefore, it is suggested that a framework aimed at carbon dioxide utilisation should 

also consider energy outlooks in its assessment. In this work, that energy source is 

electricity. 

The grid mix of a region is constantly changing. In the UK, during the 1920’s, 99 % of 

the fuel input for electricity generation came from coal. By 2015, coal supplied 27 % of 

the total fuel input (BEIS, 2016a). This change can be tracked from the 50’s, when hydro 

power was introduced to the grid, followed by natural gas and renewables. Nuclear has 

also had a contribution to the mix; in the late 1990s, nuclear power plants produced 25% 

of the annual electricity generated in the UK (Singh and Ashcroft, 2017). Currently, the 

grid is a lot more mixed than it has ever been. All forecasts up to 2050 (BEIS, 2017) point 

towards higher mixes and less dependency on fossil fuels. However, these forecasts are 

very sensitive not only to scientific development but also political development. As an 

example, during 2016, a wave of political instability arrived in the UK and to an extent, 

worldwide. This lead to higher levels of uncertainty in the energy sector as it was unclear 

what environmental policies would be supported (see Section 3.3.5). 

To analyse the potential of a carbon utilisation product, it is necessary to include 

electricity scenarios that could reflect the probable grid mixes of a region under certain 

conditions and timeframes. These have been included in the interpretation phase of this 

study; an example can be seen in Chapter 7. 

The scenarios are created using future mixes provided by the National Grid (2017) and 

BEIS (2017). These include grid mixes for the years 2015, 2025 and 2050. The projected 

electricity impacts are used instead of the baseline scenario to calculate overall impacts 

for each case study in a specific year. All calculations are run for both methanol and urea 

case studies.  

 



122 
 

122 
 

4.5.3 Utilities  

Costing rates of electricity and gas were calculated either by using simulation software 

or manually, depending on the process. The quarterly energy prices presented by the 

Department for Business, Energy & Industrial Strategy (BEIS) were used when 

electricity was required from the UK grid (BEIS, 2016b). All similar scenarios used the 

values found in prices of fuels purchased by non-domestic consumers in the UK 

(including the Climate Change Levy). For purpose of this study, a medium consumer 

(2000-19,999 MWh) was used with an average electricity price of all 4th quarters of 2016. 

Process and cooling water costs were obtained from EU databases (European Comission, 

2017).  

The steps to calculate overall utility costs are as follows: 

 Summation of individual utilities for each stage under each scenario 

 Substitution of energy values for energy costs 

 Total sum of costs per scenario in £/kg of product 

The levelised cost of electricity (LCOE), based on the discounted cash flow method, was 

used for wind power energy costs. Levelised cost of electricity (LCOE) is used as a life 

cycle thinking technique for electricity costs. Levelised costs follow the general equation  

(Cartelle Barros et al., 2016): 

 

𝐿𝐶𝑂𝐸 =  
𝑇𝐿𝐶𝐶

𝑇𝐿𝐸𝑃
 

Equation 4.6 

where: 

𝐿𝐶𝑂𝐸 = 𝑙𝑒𝑣𝑒𝑙𝑖𝑠𝑒𝑑 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 

𝑇𝐿𝐶𝐶 = 𝑡𝑜𝑡𝑎𝑙 𝑙𝑖𝑓𝑒 𝑐𝑦𝑐𝑙𝑒 𝑐𝑙𝑜𝑠𝑡  

𝑇𝐿𝐸𝑃 = 𝑡𝑜𝑡𝑎𝑙 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛  
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4.5.4 Market for CO2 utilisation product 

Recycling carbon dioxide and providing a useful product are the pillars that sustain 

carbon dioxide utilisation. While most research efforts are towards determining 

environmental impacts, it is also important to address the opportunities of such a product 

in the current market. To qualitatively assess this, the following aspects were considered: 

 Current supply of product from conventional production route in the UK and in 

the EU  

 Current demand of product from conventional production route in the UK and in 

the EU 

 Imports and exports of product in the UK 

 Retail price of product in the UK 

 Industry outlook for supply and demand in the UK 

These aspects are also considered for the interpretation phase as seen in Section 7.4. 

 

4.5.5 Human health 

 The human toxicity impact category by CML-IA was selected to measure human health 

toxicity. There are many frameworks available from a health & safety perspective that 

deal with human health management, OHSA1800 being a common standard in America 

for occupational health and safety, with its British Standard equivalent in the UK. 

However, from a life cycle assessment (LCA) point of view, human toxicity potential 

(midpoint) or DALY (Disability Adjusted Life Years, endpoint), where one Daly equals 

one year of life lost, are the characterisation factors to use. The units used to assess 

whether a carbon utilisation process will have more or less human toxicity scores than 

the conventional chemical process was kg 1,4-DCB eq. To calculate net human health 

impacts, the following formulas were used (Equation 4.7 and Equation 4.8): 

 

HT Carbon utilisation process

=  HT Power supply + HTWater supply + HT Materials + HTCO2 source

+ HTtransportation + HTwaste management 

Equation 4.7 
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HT avoided for carbon utilisation was then calculated by: 

 

HT avoided(carbon utilisation) =  HT Conventional process −  HTcarbon utilisation process 

Equation 4.8 

Where HT represents human toxicology 

The ReCiPe (H) model was also used to measure human health damage due to fine 

particulate matter (diameter less than 10 µm). Although there are some limitations to 

assessing this impact as mentioned in Section 3.3.4, the health concerns related to this 

impact are high and thus it is important to at least report the results with available models 

such as ReCiPe (H).   

 

4.5.6 Main impact categories of CO2 utilisation  

The main impacts considered in this section are those that will affect current and future 

generations. A similar approach has been seen in Perdan & Azapagic (2011) and Santoyo-

Castelazo & Azapagic (2014).   

In this work, climate change and depletion of fossil fuel reserves are both considered to 

be main impacts. Climate change is an issue for multiple generations, where climate 

predictions are very uncertain. The characterisation factor used is the global warming 

potential (GWP100), as specified in Section 3.2.4. Depletion of fossil fuel reserves are 

calculated by using the characterisation factor from ReCiPe (H). The use of these 

characterisation factors has been applied to similar work done by von der Assen & 

Bardow (2014) and Sternberg & Bardow (2015) and Santoyo-Castelazo & Azapagic 

(2014). Net impacts were calculated by applying the same formula used for human 

toxicity scores. This is illustrated in Equation 4.9 and Equation 4.10 for the example of 

fossil depletion. More information on these factors is available in Section 3.2.4. 

FD Carbon utilisation process

=  FDPower supply + FDWater supply + FD Materials + FDCO2 source

+ FDtransportation + FDwaste management 

Equation 4.9 
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FD avoided(carbon utilisation) = FD Conventional process − FDcarbon utilisation process 

Equation 4.10 

Where: 

Where FD represents fossil depletion  

 

4.6 Scenario analysis and Multi criteria decision analysis 

 

As mentioned in Chapter 3, multi-functionality problems are part of carbon dioxide 

utilisation processes. While allocation aims to address these issues, there is still a high 

level of uncertainty. Overall, environmental based decisions are uncertain by nature. 

These require information from many areas, from natural to social, physical, political, 

economic, etc. There are many environmental tools available to address these areas; 

however, its implementation is still limited. According to Huang et al. (2011), these 

limitations can be divided into three main issues: emerging risks, different assessment 

approaches and information available to stakeholders with a high level of uncertainty. 

These limitations can either be caused by internal or external factors. External uncertainty 

comes from not knowing the consequences from a present or future environmental 

change. Internal uncertainty arises from imprecise information and internal decision 

making issues (Durbach and Stewart, 2012). Because of the many methods available to 

assess this variance, authors often do not differentiate between internal or external 

uncertainty. This can be a problem, as finding a suitable method to carry out the study is 

challenging.  

There is also the task of finding a sustainability development tool that can deal with its 

multidisciplinary nature as well as its uncertainty. Amongst the tools available, multi 

criteria decision analysis (MCDA) is a popular choice (Ribeiro, Ferreira and Araújo, 

2013). This tool has been used for integrated sustainability studies and is widely accepted 

within the area (Wang et al., 2009; Huang, Keisler and Linkov, 2011; Niekamp et al., 

2015; Vo et al., 2016).  

Multi criteria decision analysis (MCDA) is a tool for evaluating several possible routes, 

decision or alternatives. It is a flexible method that allows information to be judged, 
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ranked or sorted in a chosen order (Durbach and Stewart, 2012). An example can be 

ranking from ‘bad’ to ‘good’, ‘high’ to ‘low’, or through a number scale. It can also be 

used when information and data is multidisciplinary, with conflictive objectives, socio-

economic systems or with high levels of uncertainty. This type of analysis will generally 

consist of an m x n matrix,  where m is the alternatives to be evaluated and n is the criteria 

(Wang et al., 2009). 

To the author’s knowledge, there are not yet any carbon dioxide utilisation studies 

coupled with MCDA. However, it is not uncommon to see this type of analysis in the 

energy sector (Maxim, 2014; Santoyo-Castelazo and Azapagic, 2014; Klein and Whalley, 

2015; Vo et al., 2016).  These types of sustainability assessments often focus on 

electricity technologies. In these studies, electricity-generating technologies can be 

ranked by using aggregated indicators. Studies of renewable technologies are of 

particular interest, as the uncertainties of the optimal mix can compare to uncertainties in 

carbon dioxide utilisation. In a review study by Wang et al. (2009) the decision making 

process is divided into four sections: 

1. Criteria selection: select the criteria and normalize the original data. 

2. Criteria weighting: determine the weights that will show the importance of the 

criteria in the decision-making process. 

3. Evaluation: rank the alternatives with criteria weights using a multi criteria 

decision analysis (MCDA) method. 

4. Final treatment and aggregation: order the ranking of alternatives and compare 

against other multi criteria decision analysis methods (MCDA).  

Weighting methods are generally classified into equal weighting and rank-order weights. 

As mentioned by Wang et al. (2009), equal weights is the most common method used in 

sustainability-based decision making. It is the simplest method since it requires the least 

input without assigning priorities to criteria. M. Dawes & Corrigan (1974) argued that 

this method produces almost as good results as the other weighting methods. When the 

rank-order method is applied, this either can be through subjective or objective weighting. 

With subjective weighting, the decision-makers can assign priorities to the criteria 

(Niekamp et al., 2015). With the objective method, the weights are obtained through 

mathematical methods using the initial data (Wang et al., 2009).    
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There are many potential ways to conduct multi criteria decision analysis (MCDA). There 

are even several ways of classifying these, depending on the author. Wang et al. (2009) 

classify them into elementary, unique synthesizing criteria and outranking categories. 

Durbach & Stewart (2012) classify them into probabilities, decision weights, explicit risk 

measures, fuzzy numbers and scenarios. A more recent study by (Niekamp et al., 2015) 

classify them into multi-attribute value theory (MAVT), analytical hierarchy process 

(AHP) and outranking models. 

With multi attribute value theory (MAVT) the units are converted to a same scale or 

value, to allow for comparison between results. Each criterion is compared and scored 

against the others, on a scale from 0 to 1 for performance (Niekamp et al., 2015). 

According to Wang et al. (2009) and Niekamp et al. (2015) the weighted sum method 

(WSM), which is a MAVT method, is the most commonly used in energy studies and is 

also the simplest. Next, analytical hierarchy process (AHP) is a method where relative 

judgements of the scoring are made by the decision maker. These are non-numerical 

scores such as better than” “less important than” that are translated into numerical values 

between 0 and 1 (Niekamp et al., 2015). Lastly, outranking models are used to determine 

which options outperform others without needing all options to be comparable (Wang et 

al., 2009).  

As mentioned in Niekamp et al. (2015), all methods can also include fuzzy set 

approaches. These approaches are useful when the weights and scores are better described 

quantitatively than qualitatively. The values can be represented through fuzzy numbers 

and transformed to quantitative values. Examples of fuzzy set theory being used to 

evaluate sustainability indicators include work by Pask et al. (2017), Cornelissen et al. 

(2001) and Chhipi-Shrestha et al. (2017)  

Based on the classification by Durbach & Stewart (2012) and Niekamp et al. (2015), the 

decision making applied in this work was based on a scenario approach and multi attribute 

value theory (MAVT). 

Decision analysis based on scenarios     

While for CO2 utilisation processes there is internal and external uncertainty, the 

interpretation of the life cycle assessment results is limited by external factors. Aspects 

such as renewable energy availability play a key role in its sustainability performance; 
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this aspect is classified as an external factor. To deal with this type of uncertainty, 

Durbach & Stewart (2012) recommend decision analysis based on scenarios. With this 

method, possible future outcomes can be constructed if they are consistent and coherent. 

This method is traditionally more quantitative than qualitative; however, efforts have 

been made to add decision making steps to it (Wang et al., 2009). Evaluating these 

scenarios and presenting alternatives can add a multi-decision aspect, thus combining 

scenario planning and multi criteria decision analysis (MCDA) (Durbach and Stewart, 

2012; Stewart, French and Rios, 2013). 

The reasoning behind selecting this approach to create a conceptual framework for 

decision analysis can be summarised as: 

1. It is practical to comprehend for decision makers, compared to other measures 

that are operationally difficult. 

2. It is particularly useful when dealing with external uncertainties, since possible 

outcomes can be described.  

3. With scenario modelling, a formal quantitative modelling can be avoided and is 

favoured by an informal but informed judgement. This is particularly useful for 

this work since it operates at screening level. The goal is to generate initial 

discussions on process alternatives for further analysis when the processes are at 

higher technological readiness levels (TRLs).   

4. The weighted sum method (WSM) was selected to present a general score, as it 

is the method most used across energy systems (Wang et al., 2009). This will 

facilitate the comparison of results when life cycle assessment studies in CO2 

utilisation are more commonplace. 

As future work, and as the interest to assess the performance of CO2 based processes 

increases, the expectation is to expand the environmental impact assessment to a 

sustainability framework where fuzzy numbers can be applied to the greater range of 

impacts (both qualitative and quantitative).  

Building from the study by Stewart et al. (2013), scenarios and multi criteria decision 

analysis (MCDA) are represented in this work, as shown in the example in Table 4.4.  
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Table 4.4 Example of scenarios for decision analysis based on Stewart et al. (2013) 

Alternatives 

Scenarios for decision analysis 

Scenario S1 Scenario S2 

 Criteria C1 Criteria C2 Criteria C1 Criteria C2 

a1 X X Y Y 

a2 Y X X X 

a3 X Y Y Y 

 

Here, for every scenario (S) there are certain criteria (c), and for every criterion there is 

an alternative (a). This method follows a similar approach presented by Goodwin and 

Wright, later replicated by Stewart et al. (2013).  

By using this method, it is easier to spot the relationships between each scenario. As an 

example, for alternative a1, the outcome will not change from criteria to criteria but will 

from scenario to scenario, whereas in a2 and a3, scenario 1 and 2 have opposing 

outcomes. For this work, alternatives refer to the capture method and utilisation process, 

while scenarios include potential grid mixes for the UK until 2050. Criteria refers to 

impacts assessed. Table 4.5 shows the scenario matrix for urea production as an example.     

The conceptual framework created for scenario analysis (interpretation phase) follows 

these basic steps: 

1. Define matrix for scenario: here alternatives are evaluated against certain criteria 

under certain scenarios. 

2. Define criteria: these include all quantitative indicators selected for this 

framework. A summary of these is presented in Table 4.6 where 20 indicators are 

selected to form an environmental impact assessment framework, 15 of which are 

quantitative. 

3. Weighting of results: an equal weighting multi attribute value theory (MVAT) 

approach is used for ranking all indicators as the primary decision-making tool. 

A second weighting is arranged for comparison, based on the indicators selected 

for CO2 utilisation, using the simple multi attribute ranking technique known also 

referred to as SMART.  
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The simple multi attribute rating technique (SMART) method is a linear model that adds 

the performance scores of each criterion and, in this work, scenarios with a weighted 

value (DTU Transport Compendium Series part 2, 2014). Ten specific questions and 

values for each criterion were developed for the ranking criteria through private 

communications and informal meetings with the decision-makers. In this instance these 

decision-makers consisted of the research group involved in the case studies. While this 

approach has limitations, since stakeholder participation is not feasible at this stage, it is 

a way to demonstrate the applicability of this framework to future studies, with increased 

data availability and increased stakeholder engagement. The main steps taken to use the 

simple multi attribute rating technique (SMART) in this framework, to provide decision 

support, are: 

 Identification of criteria: ten questions tailored to CO2 utilisation are used to rank 

each indicator from 0-100. 

 Give values for each criterion: the criterion is ranked from 0-100 in intervals of 

25. The highest value is assigned to the impacts with highest relevance to CO2 

utilisation. 0 = no relevance, 25 = little relevance, 50 = relevant, 100 = very 

relevant. 

 Calculation of weighted average: the weights are normalised to sum 1.  

 Final ranking: The scenarios are ranked based on the weighted results. 
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Table 4.5 Matrix for scenario planning and decision-making: urea example 

 

 

 

 

 

 

 

 

 

Ammonia production 

 

CO2 supply for urea production  
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Water 

electrolysis  

Hydrogen 

production 
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production 
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production 

connected to grid 

 

Hydrogen 

production 

connected to wind 
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Steam 

reforming 

 

 

Natural gas 
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Table 4.6 Summary of indicators for environmental impact assessment of CO2 utilisation processes  

Indicators for environmental impact assessment 

Aspect Characterisation factor Unit of indicator 

Energy requirements 

1. Extra energy for capture kWh/kg CO2 captured 

2. Energy penalties for utilisation 
kWh/kg utilisation 

product 

3. Renewable energy consumption 
kWh renewables/kg 

utilisation product 

4. Total energy consumption kWh/kg final product 

Potential for CO2 savings 5. Net CO2 avoided (kg CO2)/kg product 

CO2 use in utilisation 

process 
6. Net CO2 utilised (kg CO2)/kg product 

CO2 capture 7. Capture efficiency Percentage % 

Global warming 
8. Global warming potential 

(GWP100) 
(kg CO2 eq)/kg product 

Eutrophication 9. Eutrophication potential (EP) (kg PO4 eq)/kg product 

Acidification 10. Acidification potential (AP) (kg SO2 eq)/kg product 

Ozone layer depletion 
11. Ozone depletion potential 

(ODPsteady state) 

(kg CFC-11 eq)/kg 

product 

Photochemical oxidation 
12. Photochemical ozone creation 

potential (POCP) 

(kg ethylene eq)/kg 

product 

Land aspects 
13-15. Ecotoxicity potential 

(MAETP, TAETP, FAETPinf.) 

(kg 1,4-DCB eq)/kg 

product 

Human health aspects 

16. Human toxicity potential 

(HTP) 

(kg 1,4-DCB eq)/kg 

product 

17. Particulate matter formation 

(PMF) 
(kg PM10 eq)/kg product 

Intergenerational aspects 

18. Fossil depletion potential 

(FDP) 
(kg oil eq)/kg product 

19. Abiotic depletion potential 

(ADP) 
(kg Sb eq)/kg product 

Energy costs 20. Cost of utilities £/ /kg product 
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4.7 Chapter four summary 

 

This chapter discusses the environmental impact assessment framework created for the 

CO2 utilisation processes under review as worked examples. The application of this 

framework is seen in Chapters 5 to 8. The main guidelines created to perform a life cycle 

assessment for a CO2 utilisation process are divided into four main sections: the design 

of the CO2 utilisation process, locational availability of renewable energy, the impact 

assessment and other aspects of CO2 utilisation. 

Design of the CO2 utilisation process: this focuses on determining CO2 sources and 

capture and utilisation methods. This section collects data from process simulations, 

literature and the private sector to create a life cycle inventory. 

Impact Assessment: indicators are determined, based on specific aspects in CO2 

utilisation, and assessed using life cycle assessment methodology. Specific allocation 

rules are applied. All scenarios work under system expansion assumptions. Sensitivity 

and uncertainty analysis are carried out for study cases. 

Locational availability of renewable energy and other impacts: CO2 availability is 

mapped for optimising CO2 potential. To assess the energy outlook until 2050, all results 

are calculated for all impacts in each year, with the specific electricity grid mix. Other 

areas assessed include utility prices, human health, market for utilisation products and 

main impacts.  

As a last step, the framework considers a decision step, using multi criteria decision 

analysis (MCDA) and scenarios. With this approach, scenarios are ranked in line with 

issues of CO2-based processes and through an equal ranks method, for comparison. The 

issues are determined through the simple multi attribute rating technique (SMART) 

method. The outcome is a conceptual framework that can be replicated for other carbon 

dioxide utilisation assessments.   
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5 Environmental Assessment of Methanol 

Production Coupling CO2 Utilisation and 

Hydrogen Production from Renewable Energy 
 

This chapter applies the framework presented in Chapter 4 to a theoretical carbon 

dioxide utilisation process. This assessment allowed for testing of the feasibility of the 

framework, its benefits, challenges and applicability. This chapter is a pre-evaluation of 

the environmental impact assessment framework to use in Chapter 6 for a utilisation 

process that is under development by the University of Sheffield. The process under 

assessment includes the capture of CO2 to synthesise methanol powered by renewable 

wind energy. The functional unit is set at 1 kg CH3OH of final product and 1.43 kWh of 

electricity generated for the grid. This chapter addresses the technical and environmental 

aspects of the framework.  

 

5.1 CO2 utilisation system 

 

The demand for methanol is high, with close to 200,000 tons/day  used as a chemical 

feedstock and as a transport fuel (Methanol Institute, 2017). It is an industry that generates 

$55 billion per year and spans throughout the world. Its ability to be produced from 

different feedstocks including CO2, make it a process that can be adapted to utilise CO2 

emissions as a feedstock. As discussed in Section 2.2.1, methanol in the CO2 utilisation 

industry is one of the most well documented processes. The level of information available 

for CH3OH synthesis with CO2 makes it a suitable process for determining an 

environmental impact assessment framework that can be then expanded to other 

utilisation processes.  

This works presents the environmental impacts of scenarios for methanol production 

using carbon capture. Figure 5.1 depicts the carbon flows for the main scenario under 

study. A comparative assessment is made between a non-carbon dioxide utilisation (non-

CO2 utilisation) process and CO2 utilisation routes. Results are used to identify hotspots 

throughout the production stage and suggest improvement opportunities. Through a set 

of indicators, the potential of CO2 utilisation processes as a carbon neutral or carbon 
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avoidance process can be determined. Three main scenarios are evaluated and 

summarised below, each with independent variables: CO2 chemical transformation with 

non-biogenic point source capture, CO2 chemical transformation with direct air capture 

and methanol synthesis from conventional methods.  

 

 

 

Non-biogenic point source capture 

CO2 is supplied from a subcritical 550 MW PC (pulverised coal) plant with post-

combustion capture. The capture method is through absorption using amines. After 

capture, the wet CO2 is dehydrated using glycol and then compressed for transport. The 

power station absorbs energy requirements by providing the necessary power for the 

capture process. Methanol is then produced through catalytic hydrogenation of CO2 

where the main inputs are H2 and captured CO2. Hydrogen can be obtained through steam 

reforming of natural gas or water electrolysis, for this case study, water electrolysis is 

used as the chosen production process. Both renewable energy and fossil fuels were 

assessed for powering the utilisation process.  

 

Cradle to Gate 

Cradle to Grave 

Figure 5.1 Diagram of carbon dioxide flow in methanol production process (baseline case) 
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Direct air capture 

 CO2 is directly captured from air. To capture CO2, an absorption column with sodium 

hydroxide solution is considered as detailed in Section 2.1.1. CO2 is then compressed 

and used as a feedstock for methanol production using the same utilisation processes as 

mentioned previously for non-biogenic point source capture. 

Conventional methods 

To compare a CO2 utilisation process with a conventional process, methanol is produced 

through the steam reforming process of natural gas and syngas (generated from biomass). 

Energy is supplied with fossil fuels and a UK based electricity grid mix. Figure 5.2 shows 

the comparison system of both production routes, the process units all fall within the same 

boundary. 

 

 

5.1.1 Process description and boundaries 

The functional unit is defined as ´the production of 1 kg of methanol and 1.43 kWh of 

electricity generated for the grid’. Authors within carbon capture research typically opt 

for a functional unit of 1 kWh (Singh, Strømman and Hertwich, 2011; Corsten et al., 

2013; Volkart, Bauer and Boulet, 2013). However, an important difference between 

carbon capture and storage (CCS) and CO2 utilisation is the conversion of CO2 to different 

products instead of storage. It has been suggested by Von der Assen et al. (2013) and 

Figure 5.2 a) System product, CH3OH from SMR (steam methane reforming), b) CH3OH from catalytic 
hydrogenation of CO2 using renewable H2 

a) b) 
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Sternberg & Bardow (2015) that using energy production and final product as functional 

unit is a fairer comparison. The assumptions in Table 5.1 were made for all cases: 

Table 5.1 General methanol plant specifications 

Plant specifications Unit 

Methanol total production 1,000 kg/day (no losses) 

Functional unit 1 kg of product 

Operational hours 8,000 hours/year 

There are three main supply chain stages throughout the process: electricity generation, 

CO2 capture and methanol synthesis. Figure 5.3 shows the mass balance calculations for 

the utilisation assuming 100% efficiency; production is set for up to 1,000 kg of CH3OH 

and scaled to 1 kg for life cycle assessment (LCA) comparison. It is assumed that 

methanol production using CO2 would have similar infrastructure requirements as 

conventional routes, therefore only a general comparative analysis is made. Materials and 

chemicals production include extraction, manufacture and all related transportation. The 

operational phase includes utilities use (energy and water) for every stage of the 

manufacturing process and fuel for transportation. The last stage considers waste 

collection and waste management processes. Demolition is outside the study boundaries. 

The overall assessment has a ‘cradle to gate’ approach. Distribution, use and end of life 

of methanol is beyond the scope of this study (refer to Section 3.2.1 for more 

information). Figure 5.4 shows the boundaries for each main production stage; stage 

three shows the process variables chosen for methanol synthesis.  

 Figure 5.3 Mass balance diagram for minimum inputs required for methanol production from captured CO2, 
total CH3OH production of 1000 kg, 100% conversion 
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Figure 5.4 Cradle to gate boundaries for the environmental impact assesment of methanol production from CO2 capture and 
hydrogen from renewable energy 
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5.2 Life cycle inventory (LCI) 

 

The life cycle (LCI) inventory includes economic and environmental interventions scaled 

down to produce 1 kg of methanol. Overall, the process was divided into three main 

categories: CO2 source, CH3OH synthesis and H2 production. The following sections 

describe the process and create the inventory for these three categories. 

 

CO2 supply 

For fixed-point scenarios, CO2 was obtained from a post-combustion capture process. 

Three different power plants ranging from a net power output of 550 MW to 630 MW 

were considered as the flue gas source. While CO2 can be sourced from many other 

industrial processes, foreground data was most available for post-combustion capture. 

The performance for the power plants with/without capture is shown in Table 5.2. The 

inventory was taken from  DOE/NETL–2015/1723 (NETL, 2015). The flue gas is used 

as feedstock for the capture stage; therefore, all background information is based on kWh 

production rate. The auxiliary power is covered by increasing the boiler size and 

generator/turbine in the pulverised coal (PC) plants. Background information was taken 

from ecoinvent 3.3 and adapted to represent UK conditions where possible. As an 

example, the process selected to model electricity from hard coal has a database from 

Great Britain. 
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Table 5.2 Summary of power plant performance indicators for a subcritical and supercritical pulverised coal plant 
and a natural gas combined cycle plant. (Data obtained from DOE/NETL-2015/1723) 

Performance Indicators 

Results by type of power plant 

Subcritical, 

PC1 

Supercritical, 

PC1 
NGCC2 

Net power output (MWe)       

without capture 550 550 630 

with capture 550 550 550 

Net plant HHV Efficiency (%)       

without capture 39 40.7 51.5 

without capture 31 32.5 45.7 

Capture efficiency for power plant with 

carbon capture (%) 
90 90 90 

CO2 separation Amines Amines Selexol 

Auxiliary power (MWe)       

without capture 31 30 11 

with capture 94 91 42 

Process water discharge (lpm)       

without capture 4,304 4,009 2,252 

with capture 7,268 6,863 3782 

Raw water withdrawal (lpm)       

without capture 20,960 19,320 10,020 

with capture 31,960 29,840 15,230 

CO2 emissions (kg/MWhnet)       

without capture 807 733 356 

with capture 101 97 40 
1 Pulverised coal power plant 2 Natural gas combined cycle power plant 

The capture process includes an absorption and regeneration unit, dehydration and CO2 

compression. A diagram of a conventional capture unit with absorption and regeneration 

columns is shown in Figure 5.5. In this process flue gases go through the absorption 

column filled with monoethanolamine (MEA); off gases exit through the top of the 

column and the CO2 rich solvent stream passes to the regeneration column. Through 

thermal regeneration, a wet CO2 stream exits through the top of the column and the CO2 

depleted solvent is returned to the column with monoethanolamine (MEA) top up to 

account for losses. This process is currently the most used CO2 capture method (refer to 

Section 2.1.2 for more information).   
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The compressor used in the inventory by DOE/NETL –2015/1723 (NETL, 2015) is 

centrifugal with 8 stages of discharge pressure. Between stage 4 and 5, there is a 

dehydration unit that uses triethylene glycol (TEG) as the absorbent. This dehydration 

unit reduces moisture in the CO2 stream to 300 ppmv. Figure 5.6 shows a conventional 

dehydration unit with triethylene glycol as the solvent. As with capture, the process is 

divided into absorption and regeneration; where dry CO2 is obtained at the top of the 

absorption column and H2O loaded triethylene glycol (TEG) is regenerated into lean 

triethylene glycol (TEG) for recycling. The basics of this process are described in Abbas 

et al. (2013).  

Figure 5.5 Schematic diagram of CO2 capture unit for post-combustion capture using absorption with 
monoethanolamine (MEA), based on Abu-Zahra et al. (2007) 
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Water for CO2 capture  

The parameters from Table 5.2 were used to calculate water use in the capture stage. 

Taking the values for the subcritical PC (pulverised coal) plant, the raw water withdrawal 

was set at 31 m3/min. This value equates to 0.004 m 3/kWh. This rate considers an internal 

recycle of 4.9 m3/min (NETL, 2015). For process water, 0.0009 m3 are discharged for 

every kWh generated. Datasets from the life cycle assessment (LCA) software GaBi ts 

version 8.7.0.18 were used for background emission (EU-27, process water, underground 

and municipal wastewater treatment).  

 

Consumables 

The main consumables for the CO2 capture process under study are shown in Table 5.3. 

These values are taken from the inventory DOE/NETL –2015/1723 (NETL, 2015), and 

represent the inputs needed to capture 1,000 kg of CO2. Since the solvent used in the 

Figure 5.6 Schematic of dehydration unit using triethylene glycol (TEG) for wet CO2 from post-
combustion capture plant, based on Abbas et al. (2013) 
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database was undisclosed, monoethanolamine (MEA) from the NETL (2013) report was 

used as a replacement.  

Table 5.3 Consumables for post-combustion capture unit with 90% capture based on NETL (2015) & NETL (2013) 

Consumables 
Value 

(considering 1,000 kg of CO2 

captured per 1,100 kWh generated) 

Limestone (kg) 54.0 

Hydrated lime (kg) 11.0 

Activated carbon (kg) 0.4.0 

Triethylene glycol (kg) 36.0 

SCR catalyst (m3) 4 x 10-5 

Ammonia (kg) 1.6 

Monoethanolamine (kg) 1.4 

Thermal reclaimer unit waste (kg) 0.2 

 

Direct air capture 

Direct air capture (DAC) was another CO2 supply alternative considered in this study. 

This industry has been growing in recent years; companies such as Carbon Engineering 

and Skytree (Carbon Engineering, 2017; Skytree, 2017) are working on commercializing 

small to medium CO2 capture units. Carbon Engineering is planning to deploy full scale, 

commercialising air to fuels facilities after 2019. Skytree is expected to implement their 

re-capture process at the International Space Station in 2017. While this technology 

expands, there are questions on how it will affect overall life cycle emissions in a scenario 

that relies on carbon dioxide utilisation processes. Although direct emissions will reduce, 

indirect might not. Currently, there are no public inventories available for this type of 

capture units; nevertheless, there is research available that provides energy performance 

data. This information can be used to determine potential carbon savings. Thus, for this 

work it was decided to only use energy use as a first assessment to compare between CO2 

capture from fixed point and CO2 capture from air and analyse carbon flows in CO2 

utilisation scenarios. The relevant sensitivity analysis was made to account for uneven 

inventories between alternatives. A summary of the power required to capture 1 tonne of 

CO2 according to different sources using direct air capture (DAC) from older to newer 

research and is shown in Table 5.4. 
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Table 5.4 Summary of energy penalties for a direct air capture system using thermal reformation and humidity 
swing processes found in literature. Scaled to 1 tonne of CO2 capture  

Energy 

consumption 

(GJ/tCO2) 

Direct air capture processes found in literature 

DAC1 thermal reformation using NaOH HS-DAC2 

(Zeman, 2014) 

(Baciocchi, 

Storti and 

Mazzotti, 

2006) 

(Socolow, R. 

H.; 

Desmond, 

2011) 

(Zeman, 

2014) 

(Van der 

Giesen et al., 

2017) 

Electricity  2.8 1.8 1.8 1.7 1.4 

Thermal  7.2 8.8 8.1 6.7 0.0 
1 Direct air capture 2 Humidity-swing direct air capture 

 

The processes selected are thermal reformation with sodium hydroxide as solvent and 

HS-DAC (standard climate 20°C, 30% relative humidity) as a newer process. Section 

2.1.1 has more information on these methods.  

The baseline scenario considers direct air capture (DAC) with thermal regeneration using 

sodium hydroxide as sorbent and is based on the work by Zeman (2014) which is based 

on a report published  by the American Physical Society (Socolow et al., 2011). In a best-

case scenario, the thermal energy carbon emissions are negligible, as the system would 

re-capture any CO2 emitted. However, the upstream impacts do not disappear, and should 

be accounted for. 

H2 supply 

In the case study (baseline scenario), hydrogen is supplied through water 

electrolysis. To produce 1,000 kg of CH3OH requires a minimum of 187.5 kg of H2 from 

1,687.5 kg of H2O (as seen in Equation 5.1). 

 

1,687.5 𝑘𝑔 𝐻2𝑂 → 187.5 𝑘𝑔 𝐻2  +  1,500 𝑘𝑔 𝑂2 

  

Equation 5.1 

As an alternative and for the sensitivity analysis included later in this chapter, the chlor-

alkali databases by ecoinvent version 3.3 are also used.  For the latter, three different cells 

designs are used as shown in Figure 5.7. All data for hydrogen production from chlor-

alkali production was obtained from ecoinvent version 3.3 databases (Althaus et al., 

2007). Energy consumption values were adapted for renewable energy and fossil fuel-
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based scenarios in the UK. Hydrogen and methanol production are within one industrial 

site to simplify the model (by eliminating transportation between sites). Waste 

management includes the recycling of surplus heat and water as utilities for the process.  

 

 

 

 

 

 

 

 

 

To obtain background data and environmental impacts a commercially available software 

is used (GaBi ts version 8.7.0.18) for all stages of the model. Great Britain (GB) databases 

are used when possible to obtain local scenarios. If Great Britain (GB) values are not 

available, then EU or global data is used. As a last resource and if the energy mix cannot 

be adapted a value from Germany (DE) is taken as it has there is often more data available 

than other for other European countries (see Appendix II for full models). This 

information is used to identify carbon hotspots in Section 5.3. 

Figure 5.7 schematic diagram of chlor alkali electrolyser with three different membranes. a) Membrane cell, b) 
Diaphragm cell, c) Mercury cell, based on ecoinvent 3.3 chemicals database (Althaus et al., 2007) 

a) 
b) 

c) 
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Methanol synthesis 

The last production stage in a cradle to gate scenario is the production phase and, 

in this case, the synthesis of methanol. For this stage, a catalytic hydrogenation of 

captured CO2 process has been selected to produce methanol. CH3OH synthesis follows 

the next Equation 5.2 with a ΔH = -11.9 kcal/mol (Boretti, 2013): 

 

1.357 𝑘𝑔𝐶𝑂2 + 0.1875 𝐾𝑔𝐻2 = 1 𝑘𝑔𝐶𝐻3𝑂𝐻 + 0.5625 𝑘𝑔𝐻2𝑂 

Equation 5.2 

 

1 tonne of methanol will require 1.4 tonnes of CO2 and 0.18 tonnes of H2. Methanol 

synthesis consists of a reactor and a distillation column; H2 and CO2 are mixed and then 

compressed before entering the reactor as seen in the diagram from Figure 5.8. The main 

process parameters are shown in Table 5.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Schematic diagram of methanol production through catalytic hydrogenation of CO2 using H2 from 
renewables and captured CO2 as feedstock material, based on  Abu-Zahra et al. (2007) 
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Table 5.5 Process parameters per tonne of CH3OH from catalytic hydrogenation of CO2 using water electrolysis 
for hydrogen production, based on Boretti (2013) 

Parameter Value 

Reaction temperature (°C) 260.0 

Pressure (bar) 83.0 

Water (m3) 1.5 

Energy (GJ)   

H2 production                                                             45.6 

Compression     10.0 

Distillation     1.7 

Reaction heat -1.5 

Total 56.7 

 

Refer to Section 2.2.1 for more information on this process. Since a basic stoichiometric 

analysis was considered in this stage, the only chemical feedstocks included are hydrogen 

and CO2. The impact of catalyst use has not been assessed due to the lack of specific 

databases. However, in Chapter 2 there is general information on catalyst use. 

Uncertainty and sensitivity analyses have been run to account for cut-off data in each 

production stage. The full boundaries of the main commodities for methanol production 

are shown in Figure 5.9. The cradle to gate assessment finishes after methanol is distilled 

and is ready for storage and then distribution. 
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Figure 5.9 Boundaries for methanol production 
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Infrastructure and transport 

It is assumed that CO2 is transported through a pipeline to the chemical production site. 

The transportation of all other materials is included as background data. The formula 

provided by ecoinvent version 3.3 for infrastructure was used to calculate the impact of 

the installation of the utilisation plant. This is only a theoretical value and can only serve 

for general comparison purposes with other literature-based datasets. Following the 

method described in Section 4.4.1, for 20 years and 333 t/year of CH3OH produced, the 

chemical plant unit is 1.5 x 10 -7 per kg of product.  

 

5.2.1 General inventory 

In this section, all the inputs and outputs for methanol production are brought together 

under one study. For this, a general commodity matrix (Table 5.6) scaled to 1,000 kg of 

CH3OH was created following the method established in Heijungs et al. (2013). This 

method allows identifying how a commodity intervenes throughout the supply chain, thus 

simplifying the creation of a life cycle inventory (LCI). All negative values indicate the 

use of a commodity, while positive values indicate the generation of a commodity. 

Scaling to a final production of 1 kg of CH3OH, the main commodities are 0.2 kg of H2 

and 1.4 kg of CO2. 

Table 5.6 Commodities matrix for methanol production (1,000 kg/day), baseline scenario 

  Commodities 

Inputs 

Hydrogen  Water CO2 Electricity Methanol 

(kg) (kg) (kg) (MJ) (kg) 
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Methanol 

unit 

(pieces) 

0 0 0 0 0 0 0 0 0 1 

Energy (GJ) 46 0 0 0 5 0 0 62 10 0 

Hydrogen 

(kg) 
0 187 0 0 0 0 0 0 187 0 

Water (kg) 1,687 0 0 4,817 1,630 0 0 0 1,500 0 

Carbon 

dioxide (kg) 
0 0 0 0 0 1,375 0 0 1,375 0 
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The data presented in the commodity matrix is used as the baseline study (or case study); 

this is the main process and route of interest. With this inventory, hotspots can be detected 

and addressed. However, other alternatives needed to be presented to compare its 

performance indicators (presented in Section 4.7). A conventional methanol route was 

used for a comparative study. Alternative databases are also used for each main input for 

sensitivity and uncertainty analyses (Figure 5.10). The variables data is shown in the 

following sections.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Database variables for sensitivity analysis for the life cycle impact assessment (LCIA). H2 and CO2 
supply for methanol production 
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CO2 capture: alternative inventories 

For this work, CO2 is either supplied from a post-combustion capture process, or a direct 

air capture scenario. For the first case, three different power plants are used as the CO2 

source (process parameters shown in Table 5.2). The capture process is the same for all 

post-combustion capture cases. For the second process, the utilisation process uses a 

theoretical direct air capture (DAC) with only energy considered as a commodity (based 

on the work by Zeman (2014)). Table 5.7 shows inputs for each CO2 supply alternative. 

 

H2 production: alternative inventories 

Water electrolysis, chlor-alkali electrolysis and H2 from natural gas were the three 

alternatives with inventories. The baseline scenario uses theoretical values based on 

Boretti (2013). Chlor-alkali electrolysis used ecoinvent version 3.3 and PlasticsEurope 

databases. Chlor-alkali databases include sodium chloride with membrane, diaphragm 

and mercury cell. The last alternative is H2 from natural gas as the conventional route. 

There is an extra H2 production process (ITM power limited electrolyser) added for 

comparison and it is used as the main variable in Chapter 6. The inputs for each H2 

supply alternative are shown in Table 5.8. Renewable energy (wind, solar and hydro) 

and fossil fuels are also evaluated for the supply stage and are discussed in Section 2.4.3.  

 

Inputs 
Process alternatives (scaled to 1.4 kg CO2) 

CO2
1 CO2

2 CO2
3 CO2

4 

Energy (MJ) 0.6 0.6 0.2 3.8 

Ammonia (kg) 1.9 x 10-3 1.9 x 10-3 1.8 x 10-3 0.0 

Activated carbon (kg) 0.4 x 10-3 0.3 x 10-3 0.0 0.0 

Calcium carbonate (kg) 0.1 0.1 0.0 0.0 

Monoethanolamine, (kg) 1.9 x 10-3 1.9 x 10-3 1.9 x 10-3 0.0 

Water (kg) 3.3 3.2 4.3 0.0 

Triethylene glycol (kg) 4.4 x 10-3 4.5 x 10-2 2.0 x 10-7 0.0 

Hydrated lime (kg) 1.4 x 10-2 1.4 x 10-2 0.0 0.0 

Makeup water and waste 

treatment (kg) 
1.6 x 10-3 1.6 x 10-3 0.2 x 10-2 0.0 

Waste in reclaimer (kg) 0.2 x 10-3 0.2 x 10-3 0.1 x 10-3 0.0 

Table 5.7 Inputs for CO2 supply. 1) Post-combustion carbon capture, from a subcritical PC (pulverised coal) power 
plant 2) Post-combustion carbon capture plant, from a supercritical PC (pulverised coal) power plant 3) Post-
combustion for a carbon capture plant, natural gas combined cycle (NGCC) power plant 4) Theoretical direct air 
capture (DAC) from Zeman (2014)  
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Table 5.8 H2 supply inputs. 1) case scenario, theoretical values based on Boretti (2013) 2) ITM electrolyser 3), 4), 5) diaphragm, membrane and mercury cell, chlor-alkali electrolysis by 
ecoinvent 3.3 6) chlor-alkali electrolysis PlasticsEurope 7) steam methane reforming (SMR) by PlasticsEurope 

Inputs 

Process alternatives (scaled to 0.2 kg of H2) 

H2 (kg)1 H2 (kg)2 H2 (kg)3 H2 (kg)4 H2 (kg)5 H2 (kg)6 H2 (kg)7 

Energy (MJ) 46 44 24 20 24 2 x 10-2 1 

Water (kg) 2 5 539 187 187 1 x 10-2 1 

Sodium chloride, powder (kg) 0 0 3 3 3 0 0 

Soda ash, powder (kg) 0 0 2 x 10-2 2 x 10-2 2 x 10-2 0 0 

Barite (kg) 0 0 7 x 10-3 7 x 10 -3 7 x 10 -3 0 0 

Calcium chloride (kg) 0 0 4 x 10-2 3 x 10-2 3 x 10-2 0 0 

Hydrochloric acid, 30% in water (kg) 0 0 4 x 10-2 4 x 10-2 4 x 10-2 0 0 

Sulphite (kg) 0 0 2 x 10-4 2 x 10-4 2 x 10-4 0 0 

Sodium hydroxide, 50% solution state (kg) 0 0 4 x 10-3 7 x 10-2 1 x 10-2 0 0 

Asbestos, crysotile type, (kg) 0 0 4 x 10-4 0 0 0 0 

chemical plant, organics (unit) 0 0 7 x 10-10 7 x 10-10 7 x 10-10 0 0 

Sludge, NaCl electrolysis (kg) 0 0 3 x 10-2 3 x 10-2 3 x 10-2 3 x 10 -3 0 

Spent activated carbon with mercury [waste] 0 0 0 0 5 x 10-5 0 0 

disposal, hazardous waste, 0% water, to underground deposit 

(kg) 
0 0 2 x 10-4 0 0 10 x 10-5 0 

Mercury, liquid (kg) 0 0 0 0 1 x 10-5 0 0 

Sulfuric acid (kg) 0 0 2 x 10-2 2 x 10-2 2 x 10-2 0 0 
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CH3OH synthesis: alternative inventories 

The assessment includes two main methanol production routes: the conventional process 

using CH4 and a CO2 utilisation process. The conventional routes are taken from 

ecoinvent version 3.3 and adapted to UK conditions (energy and water), these include 

CH3OH from fossil fuel based H2 and CH3OH from syngas. For the CO2 utilisation route, 

a stoichiometric balance is used for the main commodities (Table 5.6) and is used as the 

main case study. Table 5.9 shows the input values for each database. 

 Table 5.9 Inputs for CH3OH production according to process alternatives 

1 Case scenario based on stoichiometric calculations, catalytic hydrogenation of CO2 
2 H2 from steam methane reforming (SMR) by 

ecoinvent 3.3 3 CH3OH with syngas, ecoinvent 3.3 

 

 

 

 

 

Inputs 

Process alternatives (scaled to 1 kg 

of CH3OH) 

CH3OH1 CH3OH 2 CH3OH 3 

Electricity (MJ) 10 26 x 10-2 96 x 10-2 

Water (kg) 15 x 10-2 85 x 10-2 85 x 10-2 

Hydrogen (kg) 19 x 10-2 0 0 

Carbon dioxide (kg) 14 x 10-2 0 0 

Natural gas, production onshore (Nm3) 0 43 x 10-2 0 

Natural gas, high pressure at consumer (kg) 0 9 0 

Syngas (kg) 0 0 8 

Nickel, 99.5% (MJ) 0 2 x 10-5 2 x 10-5 

Aluminium oxide (kg) 0 24 x 10-5 24 x 10-5 

Copper oxide (kg) 0 9 x 10-5 9 x 10-5 

Molybdenum (kg) 0 1 x 10-5 1 x 10-5 

Zinc (kg) 0 3 x 10-5 3 x 10-5 

Chemical plants, organics (unit) 1 x 10 -7 4 x 10 -11 4 x 10 -11 

Wastewater treatment (m3) 0 53 x 10-4 53 x 10-4 
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The commercial database flows used for the inventories in this chapter are summarised 

in Table 5.10.  

Table 5.10 Flows from commercial database used for the methanol case study inventory  

Inventory database 

CO2 capture 

Country Name of input Database 

EU-27 Process water thinkstep 8.7.0.18 

EU-27 Triethylene glycol PlasticsEurope 

EU-27 Municipal waste treatment (mix) thinkstep 8.7.0.18 

EU-27 Municipal solid waste on landfill  thinkstep 8.7.0.18 

Germany Calcium hydroxide (dry, slaked lime) thinkstep 8.7.0.18 

Germany Activated carbon thinkstep 8.7.0.18 

Germany Limestone flour (CaCO3) 
thinkstep 8.7.0.18 

Great Britain Electricity from hard coal thinkstep 8.7.0.18 

Great Britain Ammonia (NH3) 
thinkstep 8.7.0.18 

Great Britain Process steam from natural gas 85% thinkstep 8.7.0.18 

Great Britain Electricity grid mix thinkstep 8.7.0.18 

Great Britain Ethylene oxide (EO) via air thinkstep 8.7.0.18 

Utilisation systems including hydrogen production 

Country Name of input Database 

EU-27 Process water thinkstep 8.7.0.18 

Europe Chemical factory construction, organics ecoinvent 3.3 

Europe Market for natural gas, high pressure ecoinvent 3.3 

Europe Sulfite production  ecoinvent 3.3 

Europe Carbon tetrachloride production ecoinvent 3.3 

Europe Aluminium oxide, at plant ecoinvent 3.3 

Europe Copper oxide, at plant ecoinvent 3.3 

Europe Molybdenum, at regional storage ecoinvent 3.3 

Europe Zinc, primary, at regional storage ecoinvent 3.3 

Europe Market for waste graphical paper ecoinvent 3.3 

Europe without 

Switzerland 
Market for waste graphical paper ecoinvent 3.3 

Global Market for barite ecoinvent 3.3 

Global Market for calcium chloride ecoinvent 3.3 

Global Market for carbon tetrachloride ecoinvent 3.3 

Global Market for sludge, NaCl electrolysis  ecoinvent 3.3 

Global 
Soda ash, light, crystaline, heptahydrate to 

generic market for neutralising agent 
ecoinvent 3.3 

Global Market for sodium chloride, powder ecoinvent 3.3 

Global Market for sulfuric acid ecoinvent 3.3 
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Data quality matrix 

All the inventories were assessed according to the data quality matrix shown in Appendix 

III. Results show that almost all scenarios have a medium quality score (Table 5.11). By 

using secondary sources, there is a compromise between geographical correlation, 

databases within date and available data to assess. Data availability is a challenge for 

processes such as carbon dioxide utilisation. There must be a trade-off between using 

commercial and public databases to fill life cycle inventories. As can be seen in the table, 

the process that has the highest quality index is the ITM power limited electrolyser; all 

information from this process is primary, thus the index is higher. However, a high-

quality index does not equal a complete inventory; it only guarantees that the 

inputs/outputs are reliable for assessing.  

 

 

 

 

 

 

Country Name of input Database 

Global Market for hazardous waste, for undeground 

deposit 

ecoinvent 3.3 

Global Market for asbestos, crysolite type ecoinvent 3.3 

Global Market for mercury ecoinvent 3.3 

Global Market for spent activated carbon with 

mercury 

ecoinvent 3.3 

Global Nickel, 99.5 %, at plant ecoinvent 3.3 

Global Synthetic gas, production mix, at plant ecoinvent 3.3 

Global Natural gas, production onshore ecoinvent 3.3 

Global Market for sodium hydroxide, without water, 

in 50% solution state 

ecoinvent 3.3 

Great Britain Electricity from hard coal thinkstep 8.7.0.18 

Great Britain Electricity grid mix thinkstep 8.7.0.18 

Great Britain Electricity from wind power thinkstep 8.7.0.18 

Great Britain Market for electricity, medium voltage ecoinvent 3.3 

Great Britain Market for hydrochloric acid, without water, 

in 30% solution state 

ecoinvent 3.3 
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Table 5.11 Quality indicators for the inventories for methanol synthesis, 1 kg product 

 

 1Steam methane reforming

Process 

Scores for each quality indicator (scale 1 to 5) 

Source 

reliability 

Database 

within date 

Geographical 

correlation 

Technical 

similarities 

Overall 

score 

Case study: methanol 

synthesis 
2 3 1 1 3 

Case study: CO2 

capture 
2 1 3 1 3 

Case study: hydrogen 

production 
2 3 1 1 3 

Methanol: H2 from 

SMR1 (ecoinvent 3.3) 
2 3 3 1 3 

Methanol: Syngas 

(ecoinvent 3.3) 
2 3 3 1 3 

H2: Electrolyser, 

membrane cell 

(ecoinvent 3.3) 

2 3 3 3 3 

H2: Electrolyser, 

mercury cell 

(ecoinvent 3.3) 

2 3 3 3 3 

H2: Electrolyser, 

diaphragm (ecoinvent 

3.3) 

2 3 3 3 3 

H2: Electrolyser, 

average technology 

(PlasticsEurope) 

2 3 3 3 3 

H2: Electrolyser, (ITM 

power limited 

proposal) 

1 1 1 1 1 
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5.3 Impact assessment 

 

In this section, the inventory is assessed using a life cycle assessment (LCA) approach to 

determine the environmental burdens of producing methanol with captured CO2. The life 

cycle impact assessment (LCIA) phases includes carbon accounting and other 

environmental impacts (such as acidification, eutrophication, fossil fuel depletion, etc.). 

The results were analysed, and various conditions were considered to investigate 

sensitivity and uncertainty (i.e. the robustness of the results). More information on the 

environmental assessment method in Section 4.4.  

 

5.3.1 Carbon accounting  

Overall, there is an assessment for five main scenarios; each scenario has alternative 

processes as seen in Section 5.2.1. The first assessment step was to calculate direct and 

indirect carbon emissions for each case. An initial screening of the utilisation potential is 

made by determining direct carbon emissions; however, the addition of indirect emissions 

determines the overall life cycle carbon dioxide utilisation potential.  

Since allocation from electricity generation is a necessary step, carbon capture emissions 

must be accounted first. Figure 5.11 shows the results from calculating direct and indirect 

emissions of 1,000 kg of CO2 captured from a subcritical PC (pulverised coal) power 

plant (process specifications on Table 5.2 and Table 5.3). In this scenario, the extra 

energy required for capture is calculated from converting auxiliary power MWe (Table 

5.2) to additional kWh needed/ kWh generated. A total of 1,111 kg CO2 are required to 

capture 90% 1,000 kg of CO2 and deliver at the same time 1,100 kWh to the grid. Further 

calculations are shown in Appendix IV. 

Background data is then used to calculate indirect emissions from electricity generated. 

The GaBi ts database version 8.7.0.18 used was GB: electricity from hard coal where 

0.882 kg CO2 life cycle emissions are generated per kWh of electricity delivered to the 

grid. Indirect emissions for kWh generated are calculated as: 

 𝑘𝑔 𝐶𝑂2𝑒𝑚𝑖𝑠𝑠𝑜𝑛𝑠 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑑𝑎𝑡𝑎 − 𝑘𝑔 𝐶𝑂2 𝑑𝑖𝑟𝑒𝑐𝑡 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

− 𝑘𝑔 𝐶𝑂2 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 = 𝑘𝑔 𝐶𝑂2𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠   



161 
 

161 
 

As a last step, the indirect emissions of carbon capture are also accounted for. For every 

1,000 kg of CO2 captured, 95 kg of CO2 are emitted as indirect carbon capture emissions. 

This includes all non-energy extra inputs required for only the capture stage (refer to 

Table 5.3 column 1 for input values).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While the main scenario studied used the pulverised coal (PC) subcritical power plant a 

comparison was made to other technologies. Figure 5.12 compares emission results from 

two other power plants with the main scenario, these plants are a supercritical pulverised 

coal plant (PC) and natural gas combined cycle plant (NGCC). Results show that as the 

efficiency of the plant increases, more electricity needs to be generated to capture the 

same amount of CO2. The higher the efficiency, the higher the surplus in electricity. 

Selecting the pulverised coal (PC) subcritical power plant allowed to calculate the lowest 

Capture plant 
Subcritical PC 

power plant 

 Direct: 111 kg CO
2 

Indirect: 95 kg CO2
 

1,100 kWh (+ 113 kWh for capture) 

1,000 kg CO
2
 

1,111 kg 

 CO
2
 

Subcritical PC 

power plant 

1,100 kWh to grid 

Direct: 887.7 kg CO
2 

Indirect: 82.5 kg CO2
 

1,100 kWh to grid 

            a) 

            b) 

Figure 5.11 Direct and indirect CO2 emission balance for a) Subcritical PC (pulverised coal) power plant with capture 
b) Subcritical PC (pulverised coal) plant without capture (baseline scenario) 
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carbon dioxide utilisation potential; from this, a range from worst to best case can be 

achieved. There is also the issue of comparability, other important life cycle assessments 

on this topic use this type of power plant as basis (von der Assen et al., 2014). As 

mentioned previously, Appendix IV includes all the information for carbon accounting 

of all three post-combustion capture options.  
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            1a) 

Capture 

plant 

Subcritical 

PC power 

plant 

 Direct: 111 kg CO
2
 

Indirect: 95 kg CO
2
 

1,100 kWh (+ 113 kWh for 

capture) 

1,000 kg 

CO
2
 

1,111 kg 

 CO
2
 

1,100 

kWh to 

grid 

            2a) 

Capture 

plant 

Supercritical 

PC power 

plant 

 Direct: 111 kg CO
2
 

Indirect: 87 kg CO
2
  

1,145 kWh (+ 127 kWh for capture) 

1,000 kg 

CO
2
 

1,111 kg 

 CO
2
 

1,145 

kWh to 

grid 

            3a) 

Capture 

plant NGCC 

 Direct: 111 kg CO
2
 

Indirect: 23 kg CO
2
 

2,778 kWh (+ 154 kWh for 

capture) 

1,000 kg 

CO
2
 1,111 kg 

 CO
2
 

2,778 kWh 

to grid 

  

            1b) 

Subcritical PC 

power plant 1,100 kWh to grid 

Direct: 888 kg CO
2
 

Supercritical PC 

power plant 
1,145 kWh to grid 

Direct: 839 kg CO
2
 

            2b) 

NGCC 2,778 kWh 

to grid 

Direct: 988 kg CO
2
 

            3b) 

Figure 5.12 Carbon dioxide emissions from post-combustion plants and electricity generation. Capture rate set at 1000 kg CO2 1a) subcritical power plant 550 MW with capture 1b) subcritical PC 
(pulverised coal) power plant no carbon capture 2a) supercritical PC (pulverised coal) power plant 550 MW with capture 2b) supercritical PC (pulverised coal) power plant 550MW no capture 3a) 
natural gas combined cycle (NGCC) power plant 559 MW with capture 3b) natural gas combined cycle (NGCC) power plant 559 MW no capture 
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Case 1a) in Figure 5.12 is scaled to capture 1.375 kg of CO2 necessary to produce 1 kg 

of CH3OH. The parameters for these capture conditions are summarised in Table 5.12. 

The parameters shown were adjusted to fit the capture requirements of this case study. 

Table 5.12 Parameters for capturing 1.375 kg of CO2 from a subcritical PC (pulverised coal) power plant with a 
post-combustion capture unit, data based on NETL (2015) 

Parameters Value 

Power plant performance  

                                             Net power output (MWe) 

 

550.0 

Capacity factor (%) 85.0 

Net electricity output for power plant (kWh) 11,220,000.0 

Capture conditions 

                                                           Capture rate (%) 

 

90.0 

Electricity output from the coal fired power plant 

scaled to fit the capture rate (kWh) 
1.5 

CO2 capture (kg) 1.4 

Total CO2 emitted (kg) 0.1 

Energy for capture 

                            Auxiliary power for capture (MWe) 

 

63.0 

Net auxiliary electricity for capture (kWh) 0.2 

 

With the value of the parameters adjusted and the carbon balance calculated, the five 

scenarios were defined as follow: 

 

Scenario 1: Case study for 1 kg of CH3OH, CO2 utilisation process connected to the grid, 

CO2 capture from post-combustion capture 

This scenario considers H2 produced from water electrolysis (Table 5.8 column 1) and 

connected to the UK grid. As mentioned above, CO2 supply is from a subcritical 

pulverised coal (PC) power plant with post-combustion capture (Table 5.7 column 1). 

Transportation for the final product is out of the scope; however, transportation of CO2 

through a pipeline for 500 km is within the process boundary. The comparison for system 

expansion is power generation plus methanol production with natural gas (Scenario 3). 

Figure 5.12 shows the carbon balance results for this system. 
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Scenario 2: Case study for 1 kg of CH3OH, CO2 utilisation process connected to wind 

power, CO2 capture from post-combustion capture 

This scenario considers H2 produced from water electrolysis (Table 5.8 column 1) and 

connected to wind power (using GaBi ts: GB, electricity from wind power ts, technology 

mix). All other conditions are identical to Scenario 1. The comparison for system 

expansion is power generation plus methanol production with natural gas (scenario 3). 

Figure 5.13 shows the carbon balance results for this case study. 

 

Scenario 3: Baseline scenario for 1 kg of CH3OH from natural gas  

This scenario considers methanol produced through the conventional route of using 

natural gas to produce syngas for conversion to methanol. There is no renewable energy 

used in this case study. No transport of intermediate products or final product is included. 

The comparison for system expansion is electricity generated from a subcritical PC 

(pulverised coal) power plant plus methanol synthesis. Figure 5.13 to Figure 5.16 use 

Scenario 3 as the comparison model. 

 

Scenario 4: Case study for 1 kg of CH3OH, CO2 utilisation process connected to the 

electricity grid, CO2 capture from direct air capture (DAC) 

This scenario considers H2 produced from water electrolysis (Table 5.8 column 1) and 

powered by the UK electricity grid. CO2 is supplied from a theoretical direct air capture 

system (Table 5.7 column 4). Transportation for the final product is out of the scope; 

however, transportation of CO2 through a pipeline for 500 km is within the process 

boundary. The comparison for system expansion is power generation plus methanol 

production with natural gas (Scenario 3). Figure 5.8 shows the carbon balance results for 

this case. 

 

Scenario5: Case study for 1 kg of CH3OH, CO2 utilisation process connected to wind 

power, CO2 capture from direct air capture (DAC) 

This scenario considers H2 produced from water electrolysis (Table 5.8 column 1) 

powered by wind power (using GaBi ts: GB, electricity from wind power TS, technology 
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mix). All other conditions are identical to Scenario 4. The comparison for system 

expansion is power generation plus methanol production with natural gas (Scenario 3). 

Figure 5.9 shows the carbon balance results for this case. 

For the next step, all net life cycle CO2 emissions for each scenario are calculated using 

the method established in Section 4.4.3. Where: 

CO2 power supply = all carbon emissions and fossil associated with the production, 

distribution and use of electricity and thermal energy throughout the system 

CO2 water supply = all emissions associated with the extraction, distribution and use of 

water throughout the system  

CO2 materials supply = all emissions associated with the extraction/production, 

distribution and use of materials and chemicals throughout the system 

CO2 source = all emissions associated with the supply of carbon dioxide as feedstock for 

utilisation processes 

CO2 transportation = all emissions associated with the use of transportation throughout 

the system 

CO2 waste = all emissions associated with reuse, recycling and disposal activities  

The emissions results are shown in Table 5.13 and Table 5.14, where for a second 

analysis, only energy values are calculated as inputs. The comparison between both 

results is used as a sensitivity analysis. Results show that only the CO2 utilisation 

scenarios that use renewable energy have the potential to be carbon neutral or at least 

avoid some carbon emissions. Whether there is any carbon avoidance or not, it relies on 

the energy penalties from the synthesis process and the hydrogen requirements. The 

highest carbon avoidance was found to be 0.1 kg CO2 avoided per kg CH3OH produced 

(Scenario 2). However, this gain disappears when only energy emissions are accounted 

for, where a conservative scenario would be neutral emissions at best. Although the 

carbon avoidance is low, there is potential for improving the system by decarbonising the 

entire methanol synthesis process (i.e. including H2 compression) and optimising the 

process. Table 5.15 and Table 5.16 show carbon avoided results for both analysis: all 

inputs assessed and only energy inputs analysed respectively.  
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Table 5.13 Sum of net life cycle CO2 emissions for all cases studies, per 1 kg of methanol, following method from section 4.4.3 

Process 

kg of CO2 emitted per process  

Total 

sum 

Power 

supply 

Water 

supply 
Material Source Transportation Waste 

1) Methanol synthesis, electricity from grid mix 8.5 8.2 6.0 x 10-3 0.0 0.2 1.8 x 10-3 0.0 

2) Methanol synthesis, electricity from wind power 1.8 1.6 6.0 x 10-3 0.0 0.2 1.8 x 10-3 0.0 

3) Methanol synthesis from natural gas 1.9 1.3 0.0 0.6 0 0.0 0.0 

4) Methanol synthesis, electricity from grid mix, CO2 from DAC1 8.8 8.2 6.0 x 10-3 0.0 0.5 0.0 0.0 

5) Methanol synthesis, electricity from wind power, CO2 from 

DAC1 
2.1 1.6 6.0 x 10-3 0.0 0.5 0.0 0.0 

1Direct Air Capture 

 

Table 5.14 Sum of net life cycle CO2 emissions for all case studies per 1 kg methanol, sensitivity analysis with only power emissions analysed, following method from Section 4.4.3 

Process 

kg of CO2 emitted (from power emissions)  

Total 

sum 

Power 

supply 

Water 

supply 
Material Source Transportation Waste 

1) Methanol synthesis, electricity from grid mix 8.3 8.2 0.0 0.0 0.1 0.0 0.0 

2) Methanol synthesis, electricity from wind power 1.7 1.6 0.0 0.0 0.1 0.0 0.0 

3) Methanol synthesis from natural gas 1.6 1.3 0.0 0.3 0.0 0.0 0.0 

4) Methanol synthesis, electricity from grid mix, CO2 from DAC1 8.7 8.2 0.0 0.0 0.5 0.0 0.0 

5) Methanol synthesis, electricity from wind power, CO2 from DAC1 2.0 1.6 0.0 0.0 0.5 0.0 0.0 
1Direct Air Capture 
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Figure 5.13 a) Total life cycle CO2 emissions for scenario 1, compared to b) Total life cycle CO2 emissions for scenario 3, system expansion 

Figure 5.14 c) Total life cycle CO2 emissions for scenario 2, compared to d) Total life cycle CO2 emissions for scenario 3, system expansion 
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Figure 5.15 a) Total life cycle CO2 emissions for scenario 4, compared to b) total life cycle CO2 emissions for scenario 3, system expansion 

Figure 5.16 c) Total life cycle CO2 emissions for scenario 5, compared to d) Total life cycle CO2 emissions for scenario 3, system expansion 
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The results can also be displayed according to production phases; this is a useful tool to 

determine carbon hotspots throughout the process. Figure 5.17 shows the net life cycle 

CO2 emissions from CO2 capture, hydrogen production, electricity generation and 

methanol synthesis. From this, it is seen that producing hydrogen from water electrolysis 

whilst using electricity from the current grid mix to power it is unsustainable. This is in 

line with observations from other studies such as Styring & Jansen (2011), Wang et al. 

(2014) and Pérez-Fortes et al. (2014).  

The application of the framework leads to the expected outcomes in this worked example. 

This fits with the intention of completing a “proof of concept” case study while generating 

information that can be discussed, analysed and weighed. The guidelines on how to apply 

system expansion and carbon accounting can be used for other CO2 utilisation systems 

Scenarios 

 Avoided and emitted emissions (kg) 

 kg net CO2 

avoided cdu 

kg net CO2 

generated cdu 

kg CO2 emitted 

non-cdu 

kg CO2 

emitted cdu 

1 0.0 7.1 1.9 9.0 

2 0.1 0.0 1.9 2.0 

3 0.0 0.0 1.9 N/A 

4 0.0 7.3 1.9 9.0 

5 0.1 0.0 1.9 2.0 

Scenarios 

 Avoided and emitted emissions (kg) 

 kg net CO2 

avoided 

kg net CO2 

generated cdu 

kg CO2emitted 

non-cdu 

kg CO2 emitted 

cdu 

1 0.0 6.7 1.7 8.0 

2 0.0 3.0 x 10-2 1.7 2.0 

3 0.0 0.0 1.7 N/A 

4 0.0 7.0 1.7 9.0 

5 0.0 0.4 1.7 2.0 

Table 5.16 Net avoided CO2 with sensitivity analysis, only energy emissions analysed, per 1 kg of CH3OH 

produced 

Table 5.15 Net avoided CO2 per 1 kg of CH3OH produced 
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that will have different environmental impacts as results, as shown in the urea working 

example in Chapter 6.   

In this analysis, not using a renewable source of energy for a process that uses recovered 

CO2 and transforms it will quadruple CO2 emissions when compared to the reference case 

of CH3OH from natural gas. H2 must be generated from a renewable source if, at the very 

least, neutral carbon avoidance is to be achieved. There is also no major improvement 

from using post-combustion for capture and using direct air capture. Although 

theoretically -1 kg of CO2 captured from air equals 1 kg CO2 avoided, it is the indirect 

emissions that reduce net carbon avoidance.  

As of now, indirect emissions from energy supply are five times greater for a direct air 

capture (DAC) (theoretical and conservative values) process than for the post-combustion 

capture process evaluated in this work. Overall, methanol production from natural gas is 

not as carbon intensive as the CO2 utilisation route, however; the added electricity 

generated with CO2 utilisation favours the overall carbon balance as this offset further 

emissions by producing power. This presents a potential case for utilisation if electricity 

would still have to be generated regardless of capturing carbon or not. 

The carbon balance for all four CO2 utilisation scenarios also shows that the difference 

between CO2 emitted from a CO2 utilisation and a conventional process is very low in 

some scenarios, i.e. Scenario 2. This is in part due to the allocation method where by 

using system expansion a power plant (without capture) with the same generating power 

as the power plant with capture is added to the conventional process. System expansion 

makes the processes comparable and easier to assess. The drawback is that by having low 

differences between total outputs using system expansion, there is a potential for 

overstating the CO2 emissions benefits. The results may “overlap” (thus suggesting no 

reduction or an increase of CO2 emissions for the CO2 utilisation plant) if any significant 

deviation from the mean may be found.  

To determine the sensitivity of all CO2 outputs, a normalised distribution curve was 

created using 2,000 iterations with a standard deviation from the mean of ± 100% for all 

four system expansion comparisons. The results in Table 5.17 show that for most cases 

there is no significative difference up to the 1st standard deviation (68 % chance that it 

falls within that range) and in some cases up the 2nd (95 % chance that it falls within that 

range). However, methanol synthesis in the CO2 utilisation scenarios is the most variable 
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due to the electricity required to compress H2 before conversion to methanol. This output 

can be made less variable by using a decarbonised energy source.    

To determine the standard error of the mean, the following Equation 5.3 was used:  

𝜎�̅�  =  
𝜎

√𝑛
 

Equation 5.3 

Where  

𝜎 is the standard deviation of the population 

𝑛 is the size of the sample 

This standard error was then used to calculate confidence limits in the mean value, 95% 

confidence limits were calculated as shown in the Equations 5.4 and 5.5: 

𝑈𝑝𝑝𝑒𝑟 95 % 𝑙𝑖𝑚𝑖𝑡 = �̅� + (𝑆𝐸 × 1.96) 

Equation 5.4 

𝐿𝑜𝑤𝑒𝑟 95 % 𝑙𝑖𝑚𝑖𝑡 = �̅�  + (𝑆𝐸 × 1.96) 

Equation 5.5 

Where 

�̅� is equal to the sample mean 

𝑆𝐸 is equal to the standard error for the sample mean 

1.96 is the 0.975 quantile of the normal distribution 

The results for each scenario are shown in Table 5.18. The upper confidence limit of the 

CO2 utilisation processes was compared to the lower confidence limit of the conventional 

process to determine whether the difference in the two reported values is statistically 

different. Table 5.19 shows that the standard error of the mean suggests that you can be 

reasonable confident in the results reported, for most CO2 outputs the upper and lower 

don’t overlap or deviate significantly from the reported results. Out of all scenarios, 

Scenario 2 has the least clear result where a second decimal place is needed to see the 
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difference (therefore the process is no worse than the conventional and could be improved 

by using renewable electricity for the methanol process).  
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Table 5.17 Showing standard deviations for methanol scenarios applying system expansion 

Scenario Input 

kg CO2 emitted 

Mean 
Standard 

deviation 
68% min 68% max 95% min 95% max 99.7% max 

1 

Power plant with CO2 capture 0.3 0.2 0.1 0.4 0.0 0.6 0.7 

CO2 transport 4.0 x 10-3 2.0 x 10-3 2.0 x 10-3 6.0 x 10-3 0.000 9.0 x 10-3 1.1 x 10-2 

H2 generation 6.5 3.8 2.8 10.3 0.0 14.1 17.9 

Methanol synthesis, CO2 utilisation 1.5 0.9 0.6 2.4 0.0 3.3 4.1 

Power plant without CO2 capture 1.3 0.8 0.6 2.1 0.0 2.9 3.7 

Methanol synthesis, conventional  0.6 0.4 0.3 1.0 0.0 0.7 1.7 

2 

Power plant with CO2 capture 0.3 0.2 0.1 0.4 0.0 0.6 0.7 

CO2 transport 4.0 x 10-3 2.0 x 10-3 2.0 x 10-3 6.0 x 10-3 0.000 9.0 x 10-3 1.1 x 10-2 

H2 generation 0.1 0.0 0.0 0.1 0.0 0.1 0.2 

Methanol synthesis, CO2 utilisation 1.5 0.9 0.6 2.4 0.0 3.3 4.1 

Power plant without CO2 capture 1.3 0.8 0.6 2.1 0.0 2.9 3.7 

Methanol synthesis, conventional  0.6 0.4 0.3 1.0 0.0 0.7 1.7 

4 

Power plant with CO2 capture 0.5 0.3 0.2 0.8 0.0 1.1 1.4 

CO2 transport 4.0 x 10-3 2.0 x 10-3 2.0 x 10-3 6.0 x 10-3 0.000 9.0 x 10-3 1.1 x 10-2 

H2 generation 6.5 3.8 2.8 10.3 0.0 14.1 17.9 

Methanol synthesis, CO2 utilisation 1.5 0.9 0.6 2.4 0.0 3.3 4.1 

Power plant without CO2 capture 1.3 0.8 0.6 2.1 0.0 2.9 3.7 

Methanol synthesis, conventional  0.6 0.4 0.3 1.0 0.0 0.7 1.7 

5 

Power plant with CO2 capture 0.5 0.3 0.2 0.8 0.0 1.0 1.3 

CO2 transport 4.0 x 10-3 2.0 x 10-3 2.0 x 10-3 6.0 x 10-3 0.000 9.0 x 10-3 1.1 x 10-2 

H2 generation 0.1 0.0 0.0 0.1 0.0 0.1 0.2 

Methanol synthesis, CO2 utilisation 1.5 0.9 0.6 2.4 0.0 3.3 4.1 

Power plant without CO2 capture 1.3 0.8 0.6 2.1 0.0 2.9 3.7 

Methanol synthesis, conventional  0.6 0.4 0.3 1.0 0.0 0.7 1.7 
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Table 5.18 Showing standard error from the mean for methanol scenarios applying system expansion 

 

Table 5.19 Scenario comparison for upper and lower kg CO2 emissions for methanol scenarios applying system 

expansion 

Process description  
Scenario 

1 2 4 5 

Upper value, CO2 utilisation process (kg CO2) 8.5 1.9 8.8 2.1 

Lower value, Conventional process (kg CO2) 1.9 1.9 1.9 1.9 

 

Scenario Input 

kg CO2 emitted 

Standard 

error 

95% 

confidence 

interval 

Upper 

limit 

Lower 

limit 

1 

Power plant with CO2 capture 3.0 x 10-3 7.0 x10-3 0.3 0.3 

CO2 transport 5.0 x 10-5 5.0 x 10-5 4.0 x10-3 4.0 x10-3 

H2 generation 8.4 x 10-2 0.2 6.7 6.4 

Methanol synthesis, CO2 utilisation 1.9 x 10-2 3.8 x 10-2 1.6 1.5 

Power plant without CO2 capture 1.7 x 10-2 3.3 x 10-2 1.4 1.3 

Methanol synthesis, conventional  1.4 x 10-2 3.7 x 10-2 0.6 0.6 

2 

Power plant with CO2 capture 3.4 x10-3 7.0 x10-3 0.3 0.3 

CO2 transport 5.2 x 10-5 1.0 x 10-4 4.0 x10-3 4.0 x10-3 

H2 generation 1.0 x 10-3 2.0 x10-3 7.1 x 10-2 6.8 x 10-2 

Methanol synthesis, CO2 utilisation 1.9 x 10-2 3.8 x10-3 1.6 1.5 

Power plant without CO2 capture 1.7 x 10-2 3.4 x10-3 1.3 1.3 

Methanol synthesis, conventional  1.4 x 10-2 2.7 x 10-2 0.6 0.6 

4 

Power plant with CO2 capture 6.0 x 10-3 1.3 x 10-2 0.5 0.5 

CO2 transport 5.2 x 10-5 1.0 x 10-4 4.0 x10-3 4.0 x10-3 

H2 generation 8.4 x 10-2 0.2 6.7 6.4 

Methanol synthesis, CO2 utilisation 1.9 x 10-2 3.8 x10-2 1.6 1.5 

Power plant without CO2 capture 1.7 x 10-2 3.4 x10-2 1.4 1.3 

Methanol synthesis, conventional  1.4 x 10-2 2.7 x10-2 0.6 0.6 

5 

Power plant with CO2 capture 6.0 x 10-3 1.2 x10-2 0.5 0.5 

CO2 transport 5.2 x 10-5 1.0 x 10-4 4.0 x10-3 4.0 x10-3 

H2 generation 1.0 x 10-3 2.0 x10-3 0.1 0.1 

Methanol synthesis, CO2 utilisation 1.9 x 10-2 3.8 x10-2 1.6 1.5 

Power plant without CO2 capture 1.7 x 10-2 3.4 x10-2 1.4 1.3 

Methanol synthesis, conventional  1.4 x 10-2 2.7 x10-2 0.6 0.6 
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The final step in carbon accounting is to calculate the overall contributions of emissions 

from greenhouse gases to global warming. For this, the method chosen was CML-IA that 

uses the characterisation factor of global warming potential over 100 years (GWP100). 

The same allocation rules also apply to global warming scores as with direct CO2 

emissions, thus the use of system expansion approach. Table 5.20 shows the contribution 

percentage of the major greenhouses gases (excluding water vapour) to the total CO2 

equivalent (eq) result of each CO2 utilisation scenarios. 

Table 5.20 Showing contribution of greenhouse gases to the global warming score for CO2 based methanol 

 

Overall, carbon dioxide emissions contribute 88 to 93% of total emissions to the global 

warming potential. It is followed by methane (CH4) emissions and nitrous oxide (N2O) 

in third place.  

80 % of methane and nitrous oxide emissions in Scenario 1 and 4 are caused by the use 

of electricity from a grid mix that consists of 40% electricity from natural gas. The rest 

of the emissions for these scenarios are linked to the capture stage and its power 

requirements. Of other stressors that contribute to greenhouse emissions is the use of 

triethylene glycol for post-combustion capture (linked to sulphur hexafluoride 

emissions).  

For Scenario 2 and 5, over 98 % of the methane and nitrous oxide emissions are linked 

to the use of electricity supplied by the grid mix. The higher emissions compared to 

Scenario 2 and 5 can be accounted for the extra energy requirements for the direct air 

capture process. Sulphur hexafluoride is also emitted in the capture stage because of 

triethylene glycol and monoethanolamine in smaller quantities.    

Figure 5.18 shows the global warming results comparison between all scenarios 

(including the conventional Scenario, number 3) with a final product of 1 kg of CH3OH. 

Results show the same trends as with kg of carbon dioxide emitted and no major emission 

Greenhouse gases 

Contribution to CO2 eq in scenarios (%) 

1 2 4 5 

Carbon dioxide (CO2) 93 88 93 89 

Methane (CH4) 7 11 7 10 

Nitrous oxide (N2O) 1 1 1 1 

Sulphur hexaflouride (SF6) 5 x 10-5 0 10 x 10-9 4 x 10-8 
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shifts. The high percentage of carbon dioxide emissions in the CO2 utilisation scenarios 

highlight the need for carbon avoidance/mitigation for the CO2 based products to be 

environmentally feasible.  For the full life cycle impact assessment (LCIA) results refer 

to Appendix V. 
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Figure 5.17 Net life cycle CO2 emissions generated per functional unit (1 kg of methanol ready for storage and use). Scenarios 1 to 5 with up to 3 main stages each: CO2 capture, H2 production, 
methanol production. 1) Case scenario of 1 kg methanol, electricity grid mix, with post-combustion carbon capture 2) Case scenario 1 kg methanol, wind power, with post-combustion carbon 
capture 3) Baseline scenario methanol from natural gas 4) 1 kg of methanol-DAC (direct air capture), H2-electricity grid mix 5) 1 kg of methanol DAC (direct air capture), H2-wind power 
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Figure 5.18 Global warming (GW) scores per functional unit (1 kg of methanol ready for storage and use). Scenarios 1 to 5 with up to 3 main stages each: CO2 capture, H2 production, methanol 
production. 1) Case scenario of 1 kg methanol, electricity grid mix, with post-combustion carbon capture 2) Case scenario 1 kg methanol, wind power, with post-combustion carbon capture 3) 
Baseline scenario methanol from natural gas 4) 1 kg of methanol-DAC (direct air capture), H2- electricity grid mix 5) 1 kg of methanol-DAC (direct air capture), H2-wind power 
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5.3.2 Other environmental impacts 

Nine other environmental impacts were also assessed as part of the life cycle impact 

assessment (LCIA). While CO2 emissions and related impacts are priority in utilisation 

scenarios, not analysing the rest of the impacts can lead to overestimating the utilisation 

potential. Some of these impacts are acidification, stratospheric ozone depletion, 

eutrophication and fossil fuel depletion. CML-IA characterisation factors were used for 

all impacts except fossil fuel depletion. This last one uses the characterisation factor used 

in the ReCIPe (H) method with the indicator result in kg oil eq. Results are scaled to fit 

the functional units of 1 kg of methanol per 1.5 kWh of electricity produced. Figure 5.18 

to Figure 5.27 show the results for each impact category and for each scenario. There is 

also a final graph shown in Figure 5.28 where a comparative analysis between all 

scenarios for each impact category is made. Results show that methanol synthesis from 

natural gas has a higher impact values for five categories when compared to the utilisation 

Scenario 2 (renewable energy dependant). Overall, Scenario 2 has favourable results in 

most categories except for acidification, photochemical oxidation and terrestrial 

ecotoxicity. The following sections give a brief description of the results for each impact 

category. 

 

Fossil fuel depletion 

This impact category is one of the most important to study in utilisation scenarios. 

Ultimately, the aim of the processes under study is to displace primary fossil resources 

for usable CO2 emissions. It might also be that although global warming scores might not 

reduce, the fossil depletion rate would, thus creating a positive impact on fossil reserves. 

In these scenarios, results show the same trends between global warming and fossil 

depletion. To lessen the fossil fuel depletion impacts in methanol production from 

captured CO2, the synthesis stage needs to achieve lower energy penalties or be sourced 

from decarbonised electricity. With the current process (Scenario 1), methanol synthesis 

has 2.4 times higher fossil depletion rates than methanol from natural gas (Figure 5.19). 

However, by obtaining H2 from water electrolysis and wind power, the fossil depletion 

rates lower by 44 times compared to methanol from natural gas. In general, the main 

hotspot that should be controlled in this utilisation route is methanol synthesis. 

 



181 
 

181 
 

 

Eutrophication 

Eutrophication potential results show lower impacts when renewables are used in 

utilisation scenarios (Figure 5.24). Higher values, as seen in Scenario 3, are associated 

with greater nitrogen dioxide emissions from using natural gas for methanol production. 

High nitrogen oxide emissions are also linked to higher electricity demand (such as 

Scenario 1 and 4).  

 

Acidification 

In all CO2 utilisation scenarios, there is a higher acidification potential than with 

methanol from natural gas (Figure 5.26). This is attributed to the capture process higher 

energy consumption. Scenario 1 and 4 have the highest acidification scores at 0.00162 

and 0.00167 (kg SO2 eq) respectively; where the electricity from the grid required to 

produce H2 emits the most SO2. Other high SO2 emissions are linked to the capture by 

post-combustion, specifically the use of triethylene glycol as CO2 dehydrator. Finding 

alternatives to this solvent and lowering the energy penalty is an option to equal the 

results of methanol from natural gas. 

 

Stratospheric ozone depletion and abiotic depletion 

Methanol from natural gas has the highest stratospheric ozone depletion scores in all five 

scenarios (Figure 5.27). This is attributed to the reliance on natural gas for methanol 

synthesis, methane being the largest contributor to a higher impact potential of l. For 

resource depletion, the results do not follow the same impact trends. The scenarios that 

use wind power quadruplicate the abiotic depletion scores compared to using electricity 

from the grid. According to (Greening and Azapagic, 2013), the manufacturing stage of 

wind power turbines (life cycle assessment for micro wind turbines) with the use of 

molybdenum, accounts for 99% of the depletion potential impacts. Other renewable 

energy sources should be analysed and consider as alternatives to wind power.  
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Photochemical oxidation 

Results (Figure 5.21) show higher non-methane organic volatile compounds (NMOVC) 

emissions for the CO2 utilisation scenarios connected to the grid (1 and 4). As is the case 

with most of the other impact categories, using fossil-based energy is not only directly 

linked to carbon emissions but also to most of the compounds that contribute to 

environmental impacts. Overall, Scenario 3 shows a decrease of 13% when compared to 

Scenario 2. Although the environmental performance improves when H2 is obtained from 

a renewable source; the energy penalty to synthesise CH3OH is still elevated enough to 

increase photochemical oxidation scores compared to the conventional process. 

 

Marine aquatic, freshwater and terrestrial ecotoxicity 

The indicator result used for all ecotoxicity impacts is (kg 1,4-DCB eq). Results show a 

variation in each impact category. For marine aquatic and terrestrial ecotoxicity (refer to 

Figure 5.23) the high-energy penalties from methanol through catalytic hydrogenation 

of CO2 have the highest potential impact results; while carbon dioxide utilisation 

scenarios with renewables are closer to the values from the conventional process. As 

mentioned in the other categories, the utilisation process would need to lower its energy 

footprint in all process stages to compete with conventional methanol production routes. 

Whilst marine aquatic and terrestrial ecotoxicity do not favour utilisation routes, 

freshwater ecotoxicity has a positive result. Because of methane requirements for 

methanol production, freshwater ecotoxicity score increases from 0.005 (kg 1,4-DCB eq) 

in Scenario 2 to 0.083 (kg 1,4-DCB eq) in Scenario 3.  

Figure 5.24 shows the results for these impacts.
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Figure 5.19 Fossil depletion (FD) per functional unit (1 kg of urea ready for use phase). Scenarios 1 to 5 with up to 3 main stages each: CO2 capture, H2 production, methanol 
production. 1) Case scenario of 1 kg methanol, electricity grid mix, with post-combustion carbon capture 2) Case scenario 1 kg methanol, wind power, with post-combustion 
carbon capture 3) Baseline scenario methanol from natural gas 4) 1 kg of methanol-DAC (direct air capture), H2- electricity grid mix 5) 1 kg of methanol-DAC (direct air capture), 
H2-wind power 

 



184 
 

184 
 

 

 

 

 

 

 

 

 

 

 

 

 

0.00000

0.00050

0.00100

0.00150

0.00200

0.00250

1 2 3 4 5

K
G

 E
TH

YL
EN

E 
EQ

SCENARIOS

Photochemical oxidation

Figure 5.21 Photochemical oxidation scores for all scenarios with system 
expansion, 1 kg of methanol and 1.5 kWh as end products 
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Figure 5.20 Marine aquatic ecotoxicity scores for all scenarios with 
system expansion, 1 kg of methanol and 1.5 kWh as end products 
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Figure 5.22 Terrestrial ecotoxicity scores for all scenarios with system 
expansion, 1 kg of methanol and 1.5 kWh as end products. 

Figure 5.23 Abiotic depletion scores for all scenarios with system 
expansion, 1 kg of methanol and 1.5 kWh as end products 

Figure 5.25 Freshwater aquatic ecotoxicity scores for all scenarios with 
system expansion, 1 kg of methanol and 1.5 kWh as end products 

Figure 5.24 Eutrophication scores for all scenarios with system expansion, 1 
kg of methanol and 1.5 kWh as end products 
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Figure 5.26 Acidification scores for all scenarios with system expansion, 1 kg of 
methanol and 1.5 kWh as end-product 

Figure 5.27 Stratospheric ozone depletion scores for all scenarios with system 
expansion, 1 kg of methanol and 1.5 kWh as end-products 
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Figure 5.28 Comparative analysis of each scenario per impact category, based on results shown in Figure 17-26 

 

5.4 Sensitivity and uncertainty analysis 

 

This section analyses the outcome reliability with chosen databases for these case studies. The 

methanol study case is a model based on a collection of sources, thus its uncertainty will be 

greater than a study with primary data. However, the results from this study are very useful for 

determining the best ways to analyse said processes. Chapter 6 uses the knowledge obtained 

from this chapter and applies it to another utilisation product using primary data. Hence, 

sensitivity and uncertainty techniques are explained directly in the application chapter (Section 

6.4) and only a summary of the results is shown in this section. 

The first sensitivity test compared between allocation scenarios and results for CO2 emissions. 

Table 5.21 and Figure 5.29 show the total emissions per functional unit for each scenario and 

each main allocation rule. In line with other studies (von der Assen et al., 2014, 2016), the 

avoided burden method shifts all burdens to one part of the process instead of distributing them. 

There is a case for economic allocation, where results are the most similar to system expansion. 

However, this requires that captured CO2 should have an economic value, which is subject to 

the purity of the CO2 stream and the market for it. This leaves system expansion as the most 

feasible option for allocation of CO2 utilisation emissions. By using this method, both 

conventional and CO2 utilisation processes have the same functional units and are assessed 

evenly. 
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Table 5.21 Net kg CO2 emissions for each main scenario with allocation by different methods. Scaled to 1 kg of methanol 
as final product, with 1.5 kWh generated from a coal-fired power plant. 

Allocation method 
Net kg CO2 emissions per scenario 

1 2 4 5 

System 

expansion 

Utilisation 8.5 1.8 8.7 2.1 

Conventional 1.9 1.9 1.9 1.9 

Avoided burden 

Utilisation, primary 

product 
7.1 0.5 7.4 0.8 

Electricity, 

secondary product 
1.3 1.3 1.3 1.3 

Electricity, primary 

product 
7.1 0.5 7.4 0.8 

Utilisation, 

secondary product 
0.6 0.6 0.6 0.6 

Economic 

allocation 

Electricity 0.1 0.1 0.2 0.2 

CO2 feedstock 0.7 0.7 0.7 0.7 

Methanol 8.9 2.3 8.9 2.3 

 

 

 

 

Figure 5.29 Net kg CO2 emissions for each main scenario with allocation by different methods. Scaled to 1 kg of 
methanol as final product, with 1.5 kWh generated from a subcritical PC (pulverised coal) fired power plant. 
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As mentioned in Section 5.1.1, for every 1.3 kg of CO2 captured needed to produce 1 kg of 

CH3OH, 1.5 kWh are also delivered to the grid. These values assume that the power plant is a 

supercritical PC (pulverised coal) and has been taken as base case for this work. However, PC 

(pulverised coal) plants have been shutting down in recent years (National Grid, 2016); thus a 

comparison from three different types of power plant was made to measure the impacts of 

changing the type of power plant (Table 5.22). Results in Figure 5.30 show similar emissions 

for all three cases: subcritical PC (pulverised coal), supercritical PC (pulverised coal) and 

natural gas combined cycle (NGCC). Although carbon emissions rise by 8% from a natural gas 

combined cycle (NGCC) plant compared to a subcritical PC (pulverised coal), electricity to the 

grid more than doubles (2.5x increase) from natural gas combined cycle (NGCC) plants. This 

means that as we move towards a more efficient and less carbon intensive electricity generation 

process, more electricity needs to be generated to obtain the same amount of CO2 capture rate. 

The role of CO2 sources is discussed further in Chapter 2. 

 

Table 5.22 Sensitivity analysis for capture variables in each scenario. Results include system expansion method and are 
set to the production of 1 kg of CH3OH. 

Scenarios 

kg CO2 emitted with CO2 capture from different sources 

Subcritical PC1 post - 

combustion capture 

(1.5 kWh to grid) 

Supercritical PC1 

post - combustion 

capture (1.6 kWh 

to grid) 

NGCC2 post -

combustion 

capture (3.8 

kWh to grid) 

DAC3 

1 8.5 8.5 8.7 N/A 

2 1.8 1.9 2.0 N/A 

3 1.9 1.9 2.2 N/A 

4 N/A N/A N/A 8.9 

5 N/A N/A N/A 2.1 
1 Pulverised coal   2Natural gas combined cycle   3Direct air capture 

 

Several databases were collected from these sources to complete the life cycle inventory (LCI). 

While not all of them were used in the case study, this information was useful to compare 

results between similar scenarios. Seven different hydrogen sources were compared against 

three methanol production routes and two carbon sources. Figure 5.30 shows the global 

warming scores of all scenarios with each alternative as a sensitivity test. Results showed that 

all chlor-alkali databases have lower global warming scores than the case scenario and the 

scenario with data from an external company (ITM Power Limited electrolyser) when 

connected to grid. However, the processes from commercial databases are not adapted to run 
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on renewables; hence, Scenario 2 and 4 still have overall lower global warming scores than 

any other scenario assessed using system expansion. The graph also shows closer results 

between a theoretical case study and one with information from the stakeholder. This reinforces 

the usefulness of carrying out a first life cycle assessment (LCA) pre-screen for a CO2 

utilisation process with theoretical data.  

 

Figure 5.30 Global warming (GW) scores for all scenarios with different hydrogen database sources compared to two 
methanol production routes. The database used for methanol from natural gas and methanol from synthetic gas was 
obtained from ecoinvent 3.3. Functional unit of kg CO2 equivalent per 1 kg of CH3OH produced and 1.5 kWh to grid. 

 

Lastly, the uncertainty of net kg CO2 emitted by the production of 1 kg of methanol was 

calculated with a graphical distribution (Figure 5.31). The variance is set at ± 10% standard 

deviation scale considering all inputs for Scenario 1 and 2000 random data points. Results show 

a symmetrical distribution where the probability of occurrence is 8% for 8.5 kg of CO2 

emissions (net Scenario 1). Overall, 68 % of the outputs fall within the range of 8.2 kg to 8.7 

kg CO2 emitted per 1 kg of methanol produced (Figure 5.32). 
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Figure 5.31 Uncertainty analysis of kg CO2 emissions to produce 1 kg of methanol and 1.5 kWh to the grid, using system 
expansion. Scenario 1 conditions. ± 10% standard deviation scale, 2,000 points calculated. 

 

 

 

 

Figure 5.32 Probability distribution against the kg CO2 emissions necessary to produce 1 kg of methanol and deliver 1.5 
kWh to the grid, using system expansion. Scenario 1 conditions. ± 10% standard deviation scale, 2000 points calculated.  
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values for interpretation. By considering standard deviation half of the results will be below 

the stoichiometric minimum (as this was used as the mean value) resulting in nonsensical inputs 

for the production of methanol. Whilst such a sensitivity analysis may still be mathematically 

valid (i.e. the varying of the inputs to impossibly low levels will still provide values for each 

impact factor giving an idea on impact category sensitivity to the varied parameter) it was 

decided to take an approach in which only feasible results were attained. An example of using 

the normalised distribution curve for varying the capture stage has been included to 

demonstrate how this method would be utilised (Figure 5.33).  

Figure 5.33 Environmental impacts probability distributions with respect to standard deviations from their mean value 

 

Instead it was decided to investigate sensitivity by simulating effective inefficiencies in relation 

to the stoichiometric values of chosen parameters. 10% of the stoichiometric value was added 

leading from 100 % (stoichiometric) to 200% (stoichiometric + 100 % additional value).  

The simulations were ran using GaBi ts version 8.7.0.18 where the main independent input 

parameters were varied (CO2, H2 and electricity for H2 production) ten times to cover the 100% 

- 200% stoichiometric range for all four CO2 utilisation scenarios. This gave 11 data points 

which were used to analyse sensitivity. To compare the sensitivity of the impact categories, the 

following formula (Equation 5.6) was used: 
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𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑖𝑚𝑝𝑎𝑐𝑡 𝑎𝑡 100 %
 = 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 

Equation 5.6 
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Thus, creating a relative scale that allows to compare the sensitivity of each impact. The greater 

the variance of the index value from the initial indexed value of 1 (the stoichiometric baseline), 

the more sensitive the impact category. The indexed sensitivity graph for each main output 

under each CO2 of the utilisation scenarios is shown from Figures 5.34 to 5.36. By plotting 

each of the index trends for each impact category in a scenario, conclusions can be drawn on 

the sensitivity of each category. 

When the CO2 parameter is varied, global warming is one of the least sensitive categories to 

change, this is expected since it relies on a 90% CO2 capture process. This is the opposite when 

H2 and electricity for H2 is varied in Scenario 1 and 4. Global warming is more sensitive in 

scenarios that rely on a carbonised electricity grid mix than those that rely on wind power.    

Abiotic depletion is a sensitive category for those scenarios where wind power is used, this is 

expected and is in line with the results shown in Section 5.3.2, where it is stated that the 

manufacturing stage of wind turbines has high abiotic depletion impacts. Ozone depletion is 

the most sensitive impact category for the scenarios that rely on post-combustion capture when 

the CO2 is varied. However, this impact is still very small compared to the other impact 

categories even with a 200 % increase on the CO2 required for MeOH synthesis. In general, it 

is the use of triethylene glycol that contributes the most to ozone depletion impacts in the 

capture stage.  

Comparing the distribution graph shown in Figure 5.33 to the indexed value graph for Scenario 

1 (CO2) varied (Figure 5.34), a similar sensitivity is obtained. While both approaches can be 

used, the indexed value graph can be used for clearer interpretation as it eliminates results that 

require inputs below stoichiometric quantities.  
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Figure 5.34 Sensitivity indexed graphs for the variation of the CO2 parameter for CO2 based methanol scenarios using system expansion
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Figure 5.35 Sensitivity indexed graphs for the variation of the NH3 parameter for CO2 based methanol scenarios using system expansion
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Figure 5.36 Sensitivity indexed graphs for the variation of the electricity required for H2 production parameter for CO2 based urea scenarios using system expansion
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5.5 Chapter five summary 

 

This chapter tested the first two steps of the framework presented in Chapter 4. The 

framework can be assessed by using datasets commercially available and a range of 

published sources. For this, a life cycle inventory (LCI) was created to produce 1 kg of 

CH3OH from catalytic hydrogenation of CO2 and the generation of 1.5 kWh from a 

subcritical PC (pulverised coal) power plant (550MWe) with a post-combustion capture 

unit. Methanol synthesis included CO2 supplied from the capture plant and from a 

theoretical direct air capture unit (DAC). H2 was produced from water electrolysis. H2 

production emissions were calculated for both renewables and fossil fuels based. The 

main inputs for a final production of 1 kg of CH3OH were 0.2 kg H2, 1.4 kg of CO2, and 

10.2 MJ of energy for methanol synthesis; 46 MJ of electricity and 1.7 kg H2O for water 

electrolysis. 

After the inventory was completed, ten impact categories were assessed. Results showed 

a carbon avoidance potential of 0.1 kg CO2/kg CH3OH when methanol is produced 

through catalytic hydrogenation of CO2 with renewable H2 compared to methanol from 

natural gas. However, this value decreases to 0 if a sensitivity test is done only considering 

electricity. This emphasises the need to lower overall energy penalties through the CO2 

utilisation supply chain if carbon emissions are to be avoided. Unsurprisingly, results 

show that the worst scenarios occur when the electricity grid only powers the CO2 

utilisation process. In Scenario 1, 7.1 kg CO2/kg CH3OH are added compared to methanol 

from natural gas (1.9 kg CO2/kg CH3OH). For the two last Scenarios (4 and 5) results did 

not show advantages from capturing CO2 from direct air capture (DAC) or capturing it 

from post-combustion capture process. While there is a direct CO2 reduction when using 

a direct air capture system, this reduction is not enough to balance indirect emissions 

from energy consumption (0.5 kg CO2 emitted/1.4 kg CO2 captured). Other category 

impacts show similar trends as with carbon avoidance. Fossil fuel depletion, 

eutrophication and ecotoxicity have lower impacts in utilisation scenarios when 

renewables are used. Acidification, photochemical oxidation and abiotic depletion 

impacts are higher in utilisation cases because of SO2 emissions and manufacturing of 

wind turbines. Sensitivity and uncertainty analysis corroborated the results from the 

assessment. Increasing power plant efficiency, reducing capture energy penalties and 
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using renewables for utilisation can have better environmental performance as a 

utilisation scenario than methanol from natural gas. 
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6 Environmental Assessment of Urea Production 

Coupling CO2 Utilisation and Hydrogen 

Production from Renewable Energy 
 

This chapter follows the framework presented in Chapter 4, with the aim of assessing a 

carbon dioxide utilisation process. The case study analysed in this chapter is the minimum 

production of 250 kg/day of urea to use as fertilizer as required by the stakeholder. The 

process included the potential use of captured CO2 as feedstock as well as the alternative 

use of energy sources. To compare between processes, the functional unit was set as 1 kg 

of urea and 0.8 kWh of electricity generated as stated in Section 4.4. These CO2 

utilisation specifications made it a suitable case study to assess the feasibility of the 

framework presented in this work. The author is responsible for all assessment work and 

to its knowledge, there is no other similar work done on this case.  

6.1 CO2 utilisation system 

 

Urea synthesis is a well-known process that relies on the synthesis of NH3 and the 

utilisation of CO2. It is also the production process that uses the most carbon dioxide 

commercially (Xiang et al., 2012).  With 190 million tons of urea produced each year 

worldwide, it is the most produced chemical in the world. Its high demand is directly link 

to fertilizer use; with over 80% of urea being used as nitrogen based fertilizer 

(Stamicarbon, 2017). Although this process is efficient and well understood, there are 

also significant environmental impacts associated to its production. These include 

emissions to air, into water and fugitive emissions (data set from ecoinvent version 3.3). 

Overall, the process is energy intensive with a high fossil-fuel depletion rate (Table 6.14 

for input-output data for conventional urea production). From a carbon dioxide utilisation 

point of view, there is a possibility of producing carbon neutral urea with captured carbon 

dioxide. As seen in Figure 6.1, ammonia can be produced using renewable energy 

(theoretically reducing fossil depletion rates) and carbon dioxide can be supplied from 

several capture sources. The urea is used as fertiliser and the CO2 utilised is released to 

the atmosphere after the transformation process in the soil. Per kg of urea applied, 1.57 

kilograms of CO2 are returned to the atmosphere (Althaus et al., 2007). However, an 
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environmental assessment is still required to determine the benefits and/or drawbacks of 

this process.  

This work presents the assessment of a urea production process through a set of indicators 

to determine its potential as a CO2 utilisation. The design of the urea plant began in 2014 

and remains an ongoing project. Currently the process is at lab scale, with a pilot plant 

projected to be installed by 2018. This study ran in parallel with the initial design stages 

to determine carbon hotspots and environmental burdens throughout its supply chain.  

 

6.1.1 Process description and boundaries 

The UK based chemical production facility is designed to produce a minimum of 250 

kg/day of urea. All operations are on site with only CO2 transportation required as raw 

material but considered outside the boundary of this study. The final product is stored in 

a tank and then distributed directly to the land for application. Ammonia is produced 

using H2 from a PEM electrolyser and N2 from a pressure swing absorption unit (PSA). 

The electrolyser designed by an external company (ITM Power Limited), delivers 33 kg 

H2/day and whilst using 55 kWh electricity/day. Electrolyser information was obtained 

from private communications from ITM Power Limited (2016). Ammonia is then fed into 

a reactor along with CO2 to produce urea. A specific capture process to supply CO2 was 

Figure 6.1 Diagram of carbon dioxide flow in urea production process (baseline case) 
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not specified, thus several scenarios for different potential sources were analysed. 

Boundaries for the life cycle assessment study include urea production, ammonia 

synthesis and CO2 sourcing (Figure 6.2). A plant lifetime of 20 years is considered with 

a replacement of the PEM electrolyser every 4 years. Urea is only required for seeding 

season, approximately 4 months; as a result, storage is necessary for the remaining part 

of the year (Styring, 2016). Storage conditions for ‘off-season’ months are beyond the 

scope of this project and are part of the proposed future work. Operational hours are set 

at 24/7 year-round with this being defined by the research team responsible for the 

process design (Styring, 2016). Without an indication on maintenance schedules for the 

small-scale plant it is difficult to assess the viability of this, and so this assumption is 

upheld to give an indication of a maximum annual output, this falls in line with other 

studies that have considered a 24/7 operation schedule such as Soltanieh et al. (2012) and 

Galindo Cifre & Badr (2007). It is assumed that should the technology reach a higher 

TRL a suitable amount of redundancy will be included in the design to allow for 

continuous operation at the desired annual output. Figure 6.7 shows the mass balance 

calculations for the minimum amount of inputs required to produce 250 kg/day urea 

(assuming 100% conversion).  

To be able to compare between scenarios, a functional unit of 1 kg of urea is used. The 

minimum urea production rate set by the stakeholder was 250 kg/day (Table 6.1 shows 

summarised general specifications). However, the initial simulated process is set at the 

maximum production rate of 325 kg/day. Thus, maximum value is taken for all 

calculations to allow for unknown losses throughout the process. Process information 

was obtained from Owen (2016).  
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Figure 6.2 Mass balance diagram for minimum inputs required for ammonia and urea synthesis, total urea 
production of 250 kg/day, 100% conversion 

 

Table 6.1 General urea pilot plant specifications 

Specifications for urea pilot plant Value 

Urea total production (kg/day no 

losses) 
325 

Functional unit (kg of product) 1 

Plant lifetime (years) 20 

Electrolyser replacement (years) 4 

 

  

Ammonia 

Synthesis 

Urea 

Synthesis 

NH3 

CO2 

Urea 

H2O 

N2 

H2 

250 kg/day 

75 kg/day 

183.2 kg/day 

141.8 

kg/day 

116.6 kg/day 

25.2 kg/day 
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Figure 6.3 Cradle to gate boundaries for the environmental impact assessment of urea production from CO2 capture and 
ammonia from renewable energy 
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One of the objectives of this assessment was to determine the optimal process conditions 

that correspond with the lowest environmental burdens. Thus, analysing several scenarios 

to produce urea from CO2 provided a clearer picture of CO2 contributions. The variables 

considered for the scenarios were hydrogen production, CO2 source and/or urea 

production (refer to Table 6.2). These variables are crucial to CO2 utilisation, thus 

considered in this assessment.   

 

 Table 6.2 Scenario variables for analysing urea production from carbon utilisation and conventional processes 

 

 

6.1.2 Data collection  

Stakeholders and process modelling provided foreground information. The urea plant 

design was created using Aspen Plus® simulations version 8.4. The supporting research 

team created all designs and plans as part of a four-year project (Owen, 2016). This 

includes ammonia and urea production units. ITM Power Limited provided the 

electrolyser; their performance data was taken as inputs for this inventory. A blueprint of 

the electrolyser was provided as a personal communication (ITM Power Limited, 2016). 

The company provided electricity and water consumption rates for this electrolyser.  

During the timeline of this study, on site construction and end of life data were not 

available: therefore, ecoinvent version 3.3 databases were used to predict potential 

impacts. For fair comparison, all scenarios for urea production use ecoinvent version 3.3 

for construction. Dismantling was considered outside the boundaries and not included in 

this study. The urea plant scenarios used the same inventories used for CO2 capture in 

Chapter 5. GaBi ts version 8.7.0.18, ecoinvent version 3.3 and PlasticsEurope databases 

provided background information for all scenarios.  

Product 
Production route alternatives 

Alternative 1 Alternative 2 Alternative 3 

Hydrogen 

Water electrolysis 

(by ITM Power 

limited) 

NaCl electrolysis 

Steam reforming 

from natural 

gas/heavy fuel 

Carbon dioxide 
Post-combustion 

capture plant 
Direct air capture 

Ammonia through 

Haber-Bosch 

Ammonia 

Hydrogen 

production 

connected to grid 

Hydrogen 

production 

connected to wind 

power 

Steam reforming of 

natural gas 
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Cut-off data 

As it is often the case with technologies with low technology readiness levels (TRLs), 

there is little foreground information for carbon dioxide utilisation processes. This 

complicates comparability between both types of processes assessed. To account for 

these differences, a sensitivity analysis was run for the main commodity under study: 

energy. Inputs were also assessed qualitatively if direct comparison was not possible. 

This sensitivity analysis was not necessary when comparing the same process route since 

data availability was similar for all processes. 

 

6.2 Life cycle inventory (LCI) 

 

The life cycle inventory (LCI) included all input-output interventions to produce 1 kg of 

urea. Four main processes form the inventory: hydrogen production, ammonia synthesis, 

carbon dioxide supply and urea production. The following sections describe these main 

processes with a general commodities matrix shown in Table 6.10. 

Hydrogen 

The electrolyser designed by ITM Power Limited (PEM electrolysis) can produce the 

25.2 kg/day of hydrogen required for ammonia synthesis. The electrolyser has a 

production range from 25-37 kg/day of hydrogen. An average production of 33 kg H2/day 

with a conversion rate of 76.4% was considered to meet the target production of 250 kg 

urea/day. The total power supply for the electrolysis plant was set at 90 kW per 33 kg 

H2/day, 24 hours of operation. 60 kW were specifically required for water electrolysis. 

The plant included a water purifier system with a 2/3 rejection rate. To produce 13 L/h 

of required deionised water, 40 L/h of tap water were theoretically necessary. The water 

supplied based on 24-hour operations, totals 960 kg/day. Other processes within the plant 

would use the water rejected from the purifier system to reduce utilities (ITM Power 

Limited, 2016). The water purifying system also includes small quantities of glycol that 

fall within the cut off data; ITM Power Limited did not report these values. The 

electrolyser by ITM Power Limited was adapted to either use renewable energy or 

electricity from the grid. Table 6.3 shows a summary of electrolyser specifications. 



208 
 

208 
 

 

Table 6.3 Summary of electrolyser specifications to supply H2 for ammonia production 

Electrolyser specifications (per day) Value 

Hydrogen production (kg) 33 

Total electricity consumption (kW) 90 

Electrolysis (kW) 60 

Water purifying system (kW) 30 

Total water consumption (kg) 960 

Recycle stream (kg) 640 

Operational hours (hr) 24 

Glycol Trace 

 

Ammonia  

The synthesis of ammonia from nitrogen and hydrogen has the following reversible 

reaction (Equation 6.1)  

𝑁2 + 3𝐻2  ↔ 2𝑁𝐻3 

Equation 6.1 

∆𝐻298𝑘= -45.7 kJ mol 

Whilst hydrogen production was part of the integrated plant, nitrogen supply was 

outsourced to other equipment. Until the end of this study, plans for N2 supply were not 

decided. The most likely source discussed was N2 from a rented pressure swing 

absorption (PSA) unit. Table 6.4 shows possible pressure swing absorption (PSA) 

systems that are compatible for this project. Overall, the daily production of NH3 with a 

conversion rate of 100% was set at 185.3 kg. This equates to 152.3 kg/day of N2 and 33 

kg/day of H2 based on a 3:1 molar ratio.  
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Table 6.4 Pressure swing absorption (PSA) unit options for nitrogen supply in ammonia synthesis 

Unit Capacity 
Nitrogen 

purity 

PRISM nitrogen PSA 

generators 
2,600 Nm3/hr 95-99.99% 

IATT onsite nitrogen 

generators 
0.5-10,000 Nm3/hr Up to 99.99% 

NGP PSA nitrogen generator Not specified 95-99.99% 

Nitrogen generators UK: PSA 

Nitrogen generators 
1-1,000 Nm3/hr 99% - 99.99% 

 

The catalyst considered for this process is the commonly used promoted magnetite. 

KATALCO JM 35 series catalyst (Owen, 2016). Reaction pressure was set at 200 bar and 

feed temperature at 360 C. Figure 6.4 shows a process flow diagram for the synthesis of 

ammonia. The simulation results for ammonia synthesis are shown in Owen (2016).  

Table 6.5 presents the utilities calculated for this process. Electricity from the grid for 

compression was the only other input required. To the author´s knowledge, at this design 

stage, there are no direct emissions reported from this process.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Block diagram of ammonia synthesis for baseline case 
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Urea 

Urea is synthesised by the reaction of ammonia and carbon dioxide at high temperatures 

and pressures. The first reversible reaction is the production of ammonium carbamate 

(Equation 6.1). The ammonium carbamate then decomposes to urea (Equation 6.2). The 

overall process is shown in Equation 6.3. The process is exothermic.  

2𝑁𝐻3 + 𝐶𝑂2 ↔  𝐻2𝑁𝐶𝑂𝑂𝑁𝐻4 

Equation 6.2 

Forward reaction ∆𝐻 =  −117 𝑘𝑗𝑚𝑜𝑙−1 

𝐻2𝑁𝐶𝑂𝑂𝑁𝐻4 ↔  𝑁𝐻2𝑁𝐶𝑂𝑁𝐻2 + 𝐻2𝑂 

Equation 6.3 

Forward reaction ∆𝐻 =  +15.5 𝑘𝑗𝑚𝑜𝑙−1 

2𝑁𝐻3 +  𝐶𝑂2  ↔  𝐻2𝑁𝐶𝑂𝑁𝐻2 +  𝐻2𝑂 

Equation 6.4 

 

The highest ammonia production output was used to simulate urea production. 185.3 

kilograms of gaseous ammonia at a high pressure (200 bar) were bubbled to a reactor 

along with 238 kilograms of carbon dioxide. In this simulated scenario, there are no losses 

throughout the process. This equalled to a total urea production of 325 kg per day. 

However, the final product requirement is still set at 250 kg of urea per day as specified 

by the stakeholders.  

Operating parameters for NH3 synthesis Value 

NH3 production (kg/day)  185.3 

NH3 production (kg/hr) 7.7 

Total heating duty (kW) 11.7 

Total cooling duty (kW) 12.0 

Total duty (kWh/Kg NH3) 3.0 

Electricity (kW) 11.8 

Electricity (kWh/kg NH3) 2.0 

Table 6.5 Operating conditions and utilities for NH3 synthesis (scaled to a production of 185.3 kg/day, 100% 

conversion 
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Heat integration and heat recovery are not included at this initial design stage. It is 

assumed that all energy needs will be provided by the electricity grid mix. Future 

iterations of the design are expected to include heat integration. One example as discussed 

in the personal communication (Owen, 2016) is given as “the cooling effect of the 

depressurisation of ammonia from 200 bar to atmospheric pressure may be utilised for 

the cooling of the carbamate formation reaction”. Figure 6.5 shows a revised mass 

balance of the overall process.  

 

 

 

 

 

 

 

The urea synthesis process has three main sections: carbamate formation, filtration, and 

urea production (as shown in Figure 6.6).   

 

 

 

 

 

 

 

 

 

Ammonia 

Synthesis 

Urea 

Synthesis 

NH3 

CO2 

Urea 

H2O 

     N2 

H2 

325 kg/day 

98 kg/day 

238 kg/day 

185 kg/day 

152 kg/day 

33 kg/day 

Figure 6.5 Revised mass balance for a maximum urea production of 325 kg/day 
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The carbamate formation reactor required 786 kg/hr (or 1,000 L/hr) of isopropyl alcohol 

(IPA) as solvent to produce ammonium carbamate. According to the initial pilot tests 

performed by the researchers leading this project, no more than 1% of solvent was lost 

per hour. At this stage, it was not possible to quantify the exact top up value; therefore, a 

sensitivity analysis up to 2% top up was run. In terms of CO2 emissions, from 0 to 1% 

top up there is an increase of 1.21 kg CO2 per kg of urea produced. From 0 to 2% there is 

an increase of 2.43 kg CO2 per 1 kg of urea. The scenarios considered work with no 

solvent losses for baseline calculations. Refer to Table 6.6 for a summary of top up values 

for 0%, 1% and 2% solvent losses. The reactor was set at 0°C with a conversion of 97%.  

The suspension then went through a filtration unit where filtered isopropyl alcohol (IPA) 

and all unconverted compounds return to the carbamate reactor. Ammonium carbamate 

passed to a reactor heated at 170°C to produce urea through decomposition. A high mass 

to volume ratio (0.98g/cm3) was required to obtain high urea yields with a conversion of 

38%. After the reaction, the remaining ammonium carbamate decomposes in the same 

reactor at 80 °C, with 100% conversion after an hour. There is then urea separation from 

water and gaseous ammonium carbamate that was recycled through a heated pipeline. To 

simplify the continuous urea formation process, there are three separate reactors for 

filtration and reaction units. One reactor for filtration and two for urea 

formation/decomposition that will alternate in operation. General process specifications 

Carbamate 

formation 

reactor 

Reactor unit 

1 

NH3 

Filtration unit 

Pump 

CO2 

Reactor unit 

2 

Unreacted ammonium carbamate 

Urea (aq) 

Urea (aq) 

Pump Filtered 

isopropyl 

alcohol (IPA) 

Unreacted ammonium carbamate 

Figure 6.6 Process flow diagram for urea production unit 
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are summarised in Table 6.7. The flow rate ratio selected was 2:1 of NH3:CO2 as this 

matched recycle gas ratios due to the stoichiometric breakdown of ammonium carbamate. 

Table 6.7 also specifies heating duties. 

Table 6.6 Summary of Isopropyl alcohol (IPA) top up values for urea synthesis (from 0 top up, to 2%) 

Isopropyl alcohol (IPA) top up conditions 
Top up fraction (%) 

0 1 2 

Top up (L/hr) 0 10 20 

Top up IPA per FU1 (L/325 kg urea/day) 0 240 480 

IPA top up per year (L IPA/year) 0 87,600 175,200 

IPA total consumption (L IPA/20 years) 24,000 1,776,000 3,528,000 

IPA consumption/kg urea (L IPA/kg urea) 1 x 10-2 1 2 

IPA consumption/FU1 (L IPA/325 kg urea) 3 243 483 
               1Functional unit 

 

Table 6.7 Process specifications for urea production section 

Streams/Scenarios/Duty 
Process specifications for urea production 

Value Notes 

Urea (kg/day) 325 Assuming 100% conversion 

Urea (kg/hr) 14   

Urea (kg/s) 4 x 10-3   

IPA1 (kg/hr) 786 Assuming no losses as baseline 

Water (kg/day) 97  

Scenario 1 (kWh/kg) 1.5  

Reactor Heating (kW) 7   

Decomposer Heating (kW) 14   

Total (kW) 21   
                1Isopropyl alcohol 

 

Additional utilities included electricity from the grid to power the heating jacket. Table 

6.10 presents all urea interventions in matrix based form as established in Heijungs et al. 

(2013). Negative values refer to inputs and positive values to outputs. For CO2 supply, 

there was no specific source considered in the initial stages of the project. Therefore, the 

process allowed assessment flexibility from different CO2 supply sources. The post-

combustion capture plant used in Chapter 5 is also used here as the main scenario. The 

direct air capture model is also from Chapter 5. Inputs were adapted to a production rate 

of 238 kg CO2/day.  
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Infrastructure and transport 

All processes were within one site; thus, there were no major transport requirements 

besides CO2. The transportation of CO2 is assumed to be through pipelines, with this 

being outside of the study boundaries. For the direct air capture unit, there is an 

assumption that the facilities are on the same industrial site as the utilisation plant. Since 

urea generates next to the point of use, there was also no need for extra transportation. 

The total urea production for an operational lifetime of 20 years is 1,825,000 kg, 

equivalent to 250 kg/day. Following the method stated in Section 4.4.1, this was equal to 

5.47 x 10 -7 chemical plant units per kg of product.  

 

6.2.1 General inventory 

In this stage, all the information obtained for urea production is collected under one 

inventory. Table 6.8 shows the intervention matrix for the basic commodities needed to 

produce urea. Following the method by Heijungs et al. (2013) withdrawals from other 

systems show as negative values. Positive values represent outputs from the system. As 

an example, in column one; 960 kg of water and 2160 kW are needed to produce 33 kg 

of hydrogen. This table also shows the dependency of one commodity on another, thus 

serving as a tool to avoid counting double interventions. Scaling to the functional unit of 

1 kg of final product, the main commodity inputs are 0.570 kg NH3, 1.47 kWh electricity, 

2.95 kg H2O and 0.73 kg of CO2. 
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Table 6.8 Commodities matrix table for urea production (325 kg/day) 

Inputs 

Commodities 

Hydrogen  Nitrogen Water CO2 Electricity Ammonia Urea 

(kg) (kg) (kg) (kg) (MJ) (kg) (kg) 
C
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Ammonia 

(pieces) 
0 0 0 0 0 0 0 0 0 0 0 185 185 0 

Urea unit 

(pieces) 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Energy 

(MW) 
8 0 0 0 0 0 0 0 0 0 9 x 10-1 0 0 5 x 10-1 

Hydrogen 

(kg) 
0 33 0 0 0 0 0 0 0 0 33 0 0 0 

Nitrogen 

(kg) 
0 0 0 153 0 0 0 0 0 0 0 153 0 0 

Water (kg) 0 960 0 0 0 960 0 0 0 0 0 0 0 960 

Carbon 

dioxide 

(kg) 

0 0 0 0 0 0 0 232 0 0 0 0 238 0 

 

The main comparison of scenarios was between a conventional urea process and the CO2 

utilisation case scenario. However, for sensitivity tests, other process alternatives were 

also run in the life cycle impact assessment (LCIA). The process alternatives to compare 

each commodity were split into three main areas: hydrogen production, ammonia 

synthesis and urea synthesis.  

 

Hydrogen production alternatives 

There was a comparison between two hydrogen production routes and the CO2 utilisation 

case study. The first was brine electrolysis with four alternative configurations and the 

second was steam reforming of natural gas.  

Two different data sets were used for both production routes to improve the data quality 

index. The ecoinvent version 3.3 database and the Eco-profile from PlasticsEurope was 

used for three-chlorine electrolysis process. The GaBi ts database version 8.7.0.18 and 

the Eco-profile from PlasticsEurope for was used for the steam-reforming process that 
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uses either natural gas or heavy fuel oil to produce H2. The summary of inputs for all 

hydrogen production options is shown in Table 6.9. The scale is set to 0.102 kg of H2 per 

1 kg of urea produced. 

 

Ammonia production alternatives 

Three methods of ammonia synthesis are analysed in this work. These are:  

 NH3 from Haber-Bosch using hydrogen produced by water electrolysis (study 

case) 

 NH3 from Haber-Bosch using hydrogen from steam methane reforming (SMR)  

 Ammonia from partial oxidation of heavy fuel oil 

 

The comparison of production routes was undertaken using ecoinvent version 3.3 and 

PlasticsEurope. The scale was set at 0.570 kg of NH3 per 1 kg of urea produced. Table 

6.10 summarises the inputs for ammonia scenarios.  

 

Carbon dioxide process alternatives 

 Three scenarios for carbon dioxide supply for urea generation are included. A 

conventional steam reforming process, a hypothetical direct air capture system and a post-

combustion capture plant. In a steam reforming process, 733 kg of CO2 are required to 

produce 1 tonne of urea. Ammonia synthesis produces carbon dioxide; this process-

derived carbon dioxide is then available for utilisation in urea synthesis. Thus, the 

emissions associated were allocated to ammonia production in this scenario. For direct 

air capture and post-combustion capture, the processes used in Chapter 5 were also 

considered for this section. The ecoinvent version 3.3 database was used for the steam 

methane reforming (SMR) process. Table 6.13 shows all major inputs for each variable.    

 

Urea production: process variables 

Urea is synthesised through a carbon dioxide utilisation route or through a conventional 

process. The first process is the proposed ammonia production method. The second 
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process is the conventional urea production process using ecoinvent version 3.3 database 

for the inventory. Refer to Table 6.14 for the inventory of both options. 

 

Electricity supply variables  

Two main electricity inventories were used to represent the effect of different supply 

mixes for hydrogen production. Information obtained from the GaBi ts version 8.7.0.18 

database version 8.7.0.18 was adapted to the UK conditions when possible. The variables 

included an electricity standard grid mix and electricity from wind power. The scale was 

set at 1 kg of hydrogen produced from the ITM Power Limited electrolyser.  

The assessment focuses on two processes: a CO2 utilisation option and conventional route 

for urea production. Table 6.9 to Table 6.12 show the final inventory for each alternative.  
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Table 6.9 1) ITM Power Limited electrolyser, 2), 3) and 4) Diaphragm, membrane and mercury cell, chlor-alkali 

electrolysis by ecoinvent 3.3, 5) Chlor-alkali electrolysis by PlasticsEurope, 6) Steam methane reforming (SMR) by 

PlasticsEurope 

 

 

 

 

 

 

 

 

 

 

 

Inputs 

Process alternatives (scaled to 0.1 kg of H2) 

H2 

(kg)1 

 

H2 (kg)2 

 

H2 (kg)3 

 

H2 (kg)4 

 

H2 (kg)5 

 

H2 

(kg)6 

 

Energy (MJ) -24 13 11 13 0.01 -0.5 

Water (kg) 3 293 102 102 6 x 10-3 0.5 

Sodium chloride, powder (kg) 0 2 2 2 0 0 

Soda ash, powder (kg) 0 1 x 10-2 1 x 10-2 1 x 10-2 0 0 

Barite (kg) 0 4 x 10-3 4 x 10-3 4 x 10-3 0 0 

Calcium chloride (kg) 0 2 x 10-2 2 x 10-2 2 x 10-2 0 0 

Hydrochloric acid, 30% in 

water (kg) 
0 2 x 10-2 2 x 10-2 2 x 10-2 0 0 

Sulphite (kg) 0 1 x 10-4 1 x 10-4 1 x 10-4 0 0 

Sodium hydroxide, 50% 

solution state (kg) 
0 2 x 10-3 4 x 10-2 6 x 10-3 0 0 

Asbestos, crysotile type, (kg) 0 2 x 10-4 0 0 0 0 

chemical plant, organics (unit) 0 4 x 10-10 4 x 10-10 4 x 10-10 0 0 

Sludge, NaCl electrolysis (kg) 

 
0 1 x 10-2 1 x 10-2 1 x 10-2 1 x 10-3 0 

Spent activated carbon with 

mercury [waste] (kg) 
0 0 0 3 x 10-4 0 0 

disposal, hazardous waste, 0% 

water, to underground deposit 

(kg) 

0 1 x 10-4 0 0 5 x 10-5 0 

Mercury, liquid (kg) 0 0 0 7 x 10-6 0 0 

Sulfuric acid (kg) 0 9 x 10-3 9 x 10-3 9 x 10-3 0 0 
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Table 6.10 inputs for ammonia production. 1) Process under study 2) Ammonia with hydrogen from steam methane 

reforming (SMR) 3) Ammonia from partial oxidation of heavy fuel oil 

 

 

 

Table 6.11 Inputs for CO2 supply. 1) CO2 from ammonia production/conventional urea process 2) Theoretical direct 

air capture (DAC) 3) Carbon capture from post-combustion capture unit 

 

 

 

 

 

 

 

 

Inputs 
Process alternatives (scaled to 0.6 kg of NH3) 

NH3
1 NH3

2 NH3
3 

Energy (MJ) 18.0 0.1 0.4 

Hydrogen (kg) 0.1 0.0 0.0 

Nitrogen (kg) 0.5 0.0 0.0 

Nickel, 99.5 % (kg) 0.0 2.0 x 10-4 0.0 

Solvents, organic, unspecified (kg) 0.0 1.7 x 10-5 1.7 x 10-5 

Heavy fuel oil (2.5% wt) (kg) 0.0 0.1 0.5 

Natural gas, high pressure (m3) 0.0 0.3 0.0 

Water (kg) 0.0 80.3 80.3 

Chemical plants, organics (unit) 0.0 2.3 x 10-10 2.3 x 10-10 

Municipal solid waste (kg) 0.0 1.0 x 10-4 1.0 x 10-4 

Inputs 
Process alternatives (scaled to 0.7 kg of CO2) 

CO2
1 CO2

2 CO2
3 

Electricity (MJ) 0.0 2.0 0.1 

Ammonia (kg) 0.5 0.0 1.0 x 10-3 

Activated carbon (kg) 0.0 0.0 2.3 x 10-4 

Calcium carbonate (kg) 0.0 0.0 4.0 x 10-2 

Monoethanolamine MEA (kg) 0.0 0.0 1.0 x 10-3 

Water (kg) 0.0 0.0 2.9 

Triethylene glycol (kg) 0.0 0.0 2.9 x 10-2 

Hydrated lime (kg) 0.0 0.0 7.3 x 10-3 

Process water discharge (kg) 0.0 0.0 0.7 

Waste in reclaimer (kg) 0.0 0.0 8.6 x 10-4 
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 Table 6.12 Inputs for urea production.  1) Urea from process under study 2) Urea from conventional 

method/ammonia  

 

 

 

 

 

 

 

 

The commercial database flows used for the inventories in this chapter are summarised 

in Table 6.13.  

Table 6.13 Flows from commercial database used for the urea case study inventory  

Inventory database 

CO2 capture: alternative inventories 

Country Name of input Database 

EU-27 Process water thinkstep 8.7.0.18 

EU-27 Triethylene glycol PlasticsEurope 

EU-27 Municipal waste treatment (mix) thinkstep 8.7.0.18 

EU-27 Municipal solid waste on landfill  thinkstep 8.7.0.18 

Germany Calcium hydroxide (dry, slaked lime) thinkstep 8.7.0.18 

Germany Activated carbon thinkstep 8.7.0.18 

Germany Limestone flour (CaCO3) thinkstep 8.7.0.18 

Great Britain Electricity from hard coal thinkstep 8.7.0.18 

Great Britain Ammonia (NH3) thinkstep 8.7.0.18 

Great Britain Process steam from natural gas 85% thinkstep 8.7.0.18 

Great Britain Electricity grid mix thinkstep 8.7.0.18 

Great Britain Ethylene oxide (EO) via air thinkstep 8.7.0.18 

Utilisation systems including hydrogen production: alternative inventories 

Country Name of input Database 

EU-27 Process water thinkstep 8.7.0.18 

Europe Chemical factory construction, organics ecoinvent 3.3 

Europe Market for natural gas, high pressure ecoinvent 3.3 

Europe Sulfite production  ecoinvent 3.3 

Europe Carbon tetrachloride production ecoinvent 3.3 

Europe Market for waste graphical paper ecoinvent 3.3 

Inputs 

Process alternatives  

(scaled to 1 kg/day of urea production) 

CH3N2O
1 CH3N2O

 2 

Electricity (MJ) 5.3 1.1 

Water (kg) 10.6 285.5 

Carbon dioxide (kg) 0.7 0.0 

Ammonia (kg) 0.6 1.2 

Thermal energy, 

natural gas (MJ) 
0.0 8.0 

Isopropanol (kg) 1.0 x 10-2 0.0 

Chemical plants, 

organics (unit) 
0.0 8.70 x 10-10 
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Country Name of input Database 

Europe 

without 

Switzerland 

Market for waste graphical paper ecoinvent 3.3 

Global Market for barite ecoinvent 3.3 

Global Market for calcium chloride ecoinvent 3.3 

Global Market for carbon tetrachloride ecoinvent 3.3 

Global Market for sludge, NaCl electrolysis  ecoinvent 3.3 

Global Soda ash, light, crystaline, heptahydrate to 

generic market for neutralising agent 

ecoinvent 3.3 

Global Market for sodium chloride, powder ecoinvent 3.3 

Global Market for sulfuric acid ecoinvent 3.3 

Global Market for hazardous waste, for underground 

deposit 

ecoinvent 3.3 

Global Market for asbestos, crysolite type ecoinvent 3.3 

Global Market for mercury ecoinvent 3.3 

Global Market for spent activated carbon with mercury ecoinvent 3.3 

Global Natural gas, production onshore ecoinvent 3.3 

Global Market for sodium hydroxide, without water, in 

50% solution state 

ecoinvent 3.3 

Great Britain Market for electricity, medium voltage ecoinvent 3.3 

Great Britain Market for hydrochloric acid, without water, in 

30% solution state 

ecoinvent 3.3 

Global Nickel, 99.5 %, at plant ecoinvent 3.3 

Global Market, for solvent, organic ecoinvent 3.3 

Europe Market group for heavy fuel oil ecoinvent 3.3 

Great Britain Treatment of municipal solid waste, incineration ecoinvent 3.3 

Europe Market for urea, as N  ecoinvent 3.3 

Europe Market group for heat, district or industrial, 

natural gas 

ecoinvent 3.3 

Great Britain Electricity from hard coal thinkstep 8.7.0.18 

Great Britain Electricity grid mix thinkstep 8.7.0.18 

Great Britain Electricity from wind power thinkstep 8.7.0.18 

Great Britain Isopropanol thinkstep 8.7.0.18 

Global Compressed air 7 bar (low power consumption) thinkstep 8.7.0.18 

EU-27 Tap water thinkstep 8.7.0.18 

 

Data quality matrix 

The inventories are assessed according to the quality matrix also used in Section 5.2.1. 

Any set of information that did not have a minimum score of three was not considered 

for this study. As seen in Table 6.14, geographical correlation trended towards lower 

scores. Life cycle assessment (LCA) databases are not always up to date; the processes 
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that are not as well understood or established are more likely to change resulting in 

inaccuracies in the database. In this study, ammonia is a process that has not changed 

much throughout the years, thus an older inventory is acceptably accurate. Updated 

values were added where possible (such as updating to reflect the current electricity grid 

mix) to bring the life cycle inventory (LCI) up to date. 

Table 6.14 Quality indicators for the inventory of the case study: urea synthesis, 1 kg produced 

1Steam methane reforming 2Partial oxidation 

 

 

 

 

Process 

Scores for each quality indicator (scale 1 to 5) 

Source 

reliability 

Database 

within 

date 

Geographical 

correlation 

Technical 

similarities 

Overall 

score 

Case study: ammonia 

synthesis 
1 1 1 1 1 

Case study: urea 

synthesis 
1 1 1 1 1 

Case study: 

hydrogen production 
1 1 1 1 1 

Ammonia: SMR1 

(ecoinvent 3.3) 
2 1 3 1 3 

Ammonia: PO2  

(ecoinvent 3.3) 
2 1 3 1 3 

H2: Electrolyser, 

membrane cell 

(ecoinvent 3.3) 

2 1 3 3 3 

H2: Electrolyser, 

mercury cell 

(ecoinvent 3.3) 

2 1 3 3 3 

H2: Electrolyser, 

diaphragm 

(ecoinvent 3.3) 

2 1 3 3 3 

H2: Electrolyser, 

average technology 

(PlasticsEurope) 

2 1 3 3 3 

Urea: Hydrogen 

SMR1 (ecoinvent 

3.3) 

2 1 3 1 3 
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6.3 Impact assessment 

 

The design of the CO2 utilisation process concludes with the life cycle inventory (LCI) 

required to complete the environmental assessment. The following section now focuses 

on analysing the data from said inventory. This assessment includes carbon accounting 

for CO2 utilisation, fossil fuel depletion, other environmental impacts and allocation 

sensitivity analysis. Refer to Section 4.4 for more information on the methods used. 

 

6.3.1 Carbon accounting for carbon dioxide utilisation processes 

This case study assessed five main scenarios; Section 6.2.1 previously discussed the 

alternatives for each case. A general carbon balance for each scenario to account for direct 

and indirect carbon emissions of each process using system expansion to allocate was 

created (refer to Section 4.4.4 for more information on the method). Figure 6.8 to Figure 

6.11 show the carbon balance results for each case study.  

To account for the capture stage emissions, the results from Section 5.3.1 were used in 

Scenarios 1, 2, 4 and 5. These results are summarised in Table 6.15, where kg of carbon 

dioxide emitted per tonne of CO2 captured for three power plant alternatives was 

calculated. While direct emissions from capture are the same for all plants (90% capture 

rate for CO2), the electricity generated varies from plant to plant. The subcritical plant 

has the lowest efficiency with 1,100 kWh generated for the grid with 1,000 kg of urea 

produced. The same CO2 capture rate for a natural gas combined cycle (NGCC) power 

plant lead to higher efficiencies, electricity generation doubles from a subcritical PC 

(pulverised coal), with the same kg of CO2 emissions. For this study, subcritical 

pulverised coal (550 MWe) was used as the baseline scenario. Thus, results include a 

worst post-combustion capture scenario, with the knowledge that extra electricity can be 

generated with other types of power plants. Values were calculated to produce 1 tonne of 

CO2 and scaled down to the 0.73 kg CO2 required for 1 kg of urea produced.  
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Table 6.15 Direct carbon emissions for the capture of 1 tonne of CO2 compared to carbon emissions in a power 
plant without CO2 capture 

Plant process 

Power output and CO2 emissions 

Electricity generated 

(kWh) 

With capture 

(kg CO2) 

Without capture 

(kg CO2) 

Subcritical PC1 1,100 111 887 

Supercritical PC1 1,145 111 839 

NGCC2 2,777  111 988 
1 Pulverised coal 2Natural gas combined cycle 

Figure 6.7 shows the carbon balance for direct and indirect carbon emissions comparing 

the power plant with and without a capture stage for 1 tonne of CO2. The additional power 

required for a post-combustion capture plant is added to the electricity for final 

consumption, thus ensuring equal functional units in all cases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Capture plant 
Subcritical PC 

power plant 

 Direct: 111 kg CO
2 

Indirect: 95 kg CO2
 

1,100 kWh (+113 kWh for capture) 

1,000 kg CO
2
 

1,111 kg 

 CO
2
 

Subcritical PC 

power plant 

1,100 kWh to grid 

Direct: 887.2 kg CO
2 

Indirect: 83 kg CO2
 

1,100 kWh to grid 

            a) 

            b) 

Figure 6.7 Direct and Indirect CO2 emission balance for a) subcritical PC (pulverised coal) power plant with capture 
b) subcritical PC (pulverised coal) plant without capture (baseline scenarios) 
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Scaling down to 0.73 kg of CO2 and using the baseline scenario of a subcritical PC 

(pulverised coal) plant: 0.081 kg of direct CO2 are emitted per 0.73 kg captured CO2; 

compared to 0.64 kg direct CO2 emitted from a plant without capture (0.803 kWh output 

for both + 0.09 kWh extra for capture). With this carbon balance for capture, the urea 

scenarios were analysed as follows:  

 

Scenario 1: Case study for 1 kg of urea-grid mix  

Where H2 is produced from water electrolysis (provided by ITM Power Limited) and 

connected to the UK electricity grid (Table 6.9 column 1). CO2 is captured from a fixed-

point source; no transportation is required for the final product and there are no direct 

emissions from urea production. The comparison for system expansion is power 

generation, plus urea production through steam methane reforming (SMR). Figure 6.8 

shows the results for the carbon balance. 

 

Scenario 2: Case study for 1 kg of urea-wind power  

The conditions are identical to Scenario 1, except for hydrogen production. Where H2 is 

produced from water electrolysis (provided by ITM Power Limited), but the electricity 

required is now provided by wind power. See Figure 6.9 for carbon balance results.  

 

Scenario 3: Baseline scenario for 1 kg of urea-ammonia  

Urea production from ammonia, generated with H2 from steam methane reforming 

(SMR) (Table 6.9 column 2). No transport of intermediate products or final product is 

included. CO2 is a by-product of ammonia production used for urea synthesis. (0.73 kg 

CO2 from direct ammonia emissions required to feed into urea production, per 1 kg of 

final product). Electricity generation from a subcritical PC (pulverised coal) power plant 

is included in the system expansion model. The carbon balance of this baseline scenario 

compares emissions between utilisation and conventional processes. Figure 6.8b uses 

this model for carbon accounting.  
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Scenario 4: Case study for 1 kg of urea-grid mix, CO2 from direct air capture (DAC) 

This scenario covers an example where CO2 is supplied from a hypothetical direct air 

capture (DAC) process (Table 6.11 column 2). Hydrogen is produced from water 

electrolysis (provided by ITM Power Limited) and is connected to the UK grid for 

electricity provision. No transportation is required and there are no direct emissions from 

urea production. Scenario 3 is used a comparative process. See Figure 6.10 for the carbon 

balance. 

 

Scenario 5: Case study for 1 kg of urea-wind power, CO2 from direct air capture (DAC) 

The conditions are identical to those described in scenario 4, except for hydrogen 

production. In this scenario, hydrogen is produced from water electrolysis (provided by 

ITM Power Limited) connected to an electricity supply powered by wind turbines, instead 

of the grid. Refer to Figure 6.11 for the carbon balance. 

The requirements described in Section 4.4.2 to calculate the net life cycle CO2 emissions 

for all utilisation scenarios are used in this case study. Table 6.16 shows the results for 

all available inputs and outputs. As a sensitivity test, a second calculation was run with 

only energy inputs, disregarding other flows. In this second run, total energy related CO2 

emissions and direct emissions were added from hydrogen, nitrogen and ammonia 

production. As seen in Table 6.17, the difference is minimal and does not represent any 

major overall changes. The maximum swing in total carbon avoided is seen in Scenario 

2. Total carbon avoided is calculated by subtracting kg of CO2 emitted by a utilisation 

process from the kg of CO2 emitted by the non-utilisation option (as discussed in Section 

4.6.5).  

Figure 6.12 shows net life cycle kg of CO2 emitted for each scenario, where results are 

broken down by main production phases. Results show that to avoid carbon emissions, 

renewable energy for hydrogen production is necessary. There is the potential to avoid 

up to 37% of CO2 emissions with the utilisation route (Scenario 2), compared to urea 

with hydrogen from steam methane reforming (SMR). This relies on producing ammonia 

from a decarbonised source. If the current UK electricity grid mix were to be used to 

produce hydrogen with the suggested technology in this study (Scenario 1), overall CO2 

emissions would rise by 57% while 61% of net kg CO2 emissions are generated from 
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hydrogen production, making it the most carbon intensive process. These extra burdens 

are associated with scope 2 emissions from purchased electricity for water electrolysis.  

Results also show that life cycle carbon emissions do not change significantly between 

scenarios with different CO2 sources. Case studies with direct air capture have no direct 

emissions, but high indirect emissions. Indirect emissions are attributed to high energy 

penalties associated with direct air capture processes. Eliminating 0.3 kg of indirect 

energy emissions per 1 kg of urea could create a zero-emission scenario for CO2 capture. 

Otherwise, there is no net carbon avoided benefit from using direct air capture over post-

combustion capture in this case study. Finally, there is the potential to avoid 1.3 kg of 

CO2 emissions with the proposed process compared to urea synthesis with hydrogen from 

steam methane reforming (SMR).  
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Figure 6.8 a) total life cycle CO2 emissions for scenario 1, compared to b) total life cycle CO2 emissions for scenario 3, system expansion 
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c) d) 

Figure 6.9 c) total life cycle CO2 emissions for scenario 2, compared to d) total life cycle CO2 emissions for scenario 3, system expansion 
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Figure 6.10 a) total life cycle CO2 emissions for scenario 4, compared to b) total life cycle CO2 emissions for scenario 3, system expansion 

Figure 6.11 c) total life cycle CO2 emissions for scenario 5, compared to d) total life cycle CO2 emissions for scenario 3, system expansion 
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Table 6.16 Sum of net life cycle CO2 emissions for all case studies, per 1 kg of urea produced, following the method stated in Section 4.4.2 

Process 

kg of CO2 emitted per process  

Total 

sum 

Power 

supply 

Water 

supply 
Material Source Transportation Waste 

1) Urea synthesis, electricity from grid mix 5.5 5.3 5.5 x 10-4 1.7 x 10-2 0.1 0.0 0.0 

2) Urea synthesis, electricity from wind power 2.2 2.0 5.5 x 10-4 1.7 x 10-2 0.1 0.0 0.0 

3) Urea synthesis from ammonia from steam 

methane reforming 
2.8 0.8 0.0 1.9 0.0 0.0 1.1 x 10-4 

4) Urea synthesis, electricity from grid mix, 

CO2 from DAC1 5.6 5.3 5.5 x 10-4 1.7 x 10-2 0.3 0.0 0.0 

5) Urea synthesis, electricity from wind power, 

CO2 from DAC1 2.3 2.0 5.5 x 10-4 1.7 x 10-2 0.3 0.0 0.0 

1Direct air capture 
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Table 6.17 Sum of net life cycle CO2 emissions for all case studies per 1 kg of urea produced, sensitivity analysis with only power emissions considered, following the method stated in 
Section 4.4.2 

Process 

kg of CO2 emitted (from power emissions) 

Total 

sum 

Power 

supply 

Water 

supply 
Material Source Transportation Waste 

1) Urea synthesis, electricity from grid mix 5.4 5.3 5.0 x 10-4 2.0 x 10-2 5.0 x 10-2 0.0 0.0 

2) Urea synthesis, electricity from wind power 2.1 2.0 5.0 x 10-4 2.0 x 10-2 5.0 x 10-2 0.0 0.0 

3) Urea synthesis from ammonia from steam 

methane reforming 
2.8 0.8 0.0 2.0 0.0 0.0 1.0 x 10-4 

4) Urea synthesis, electricity from grid mix, 

CO2 from DAC1 5.6 5.3 5.0 x 10-4 2.0 x 10-2 0.3 0.0 0.0 

5) Urea synthesis, electricity from wind power, 

CO2 from DAC1 2.3 2.0 5.0 x 10-4 2.0 x 10-2 0.3 0.0 0.0 

1Direct air capture
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Table 6.18 Net avoided CO2 per 1 kg of urea produced 

 

 

 

Table 6.19 Net avoided CO2 with sensitivity analysis, only energy emissions considered per 1 kg of urea produced 

 

A normalised distribution curve was created for all CO2 utilisation scenarios that use 

system expansion as the allocation method. 2,000 random iterations were run with a 

standard deviation from the mean of ± 100 %. The standard deviation of each process 

output was then used to calculate the standard error of the mean to obtain confidence 

levels of 95 %. The method has been described in Section 5.3.1.   

Results (Table 6.20) show that outputs of Scenario 2 can all be varied for up to the 2nd 

standard deviation (95 % chance that it falls within that range) and the outcome is still 

the same. It is only in the 3rd standard deviation (99 % chance that it falls within that 

range) that the CO2 emissions from H2 production and urea synthesis contribute to higher 

total CO2 emissions than the conventional process. For Scenario 4, the CO2 emissions are 

lower than the conventional process until the 2nd deviation standard. This reflects a 

reasonable certainty that the CO2 utilisation processes that use renewable energy have 

lower net CO2 emissions than conventional processes.      

Scenarios 

Avoided and emitted CO2 emissions (kg) 

 kg net CO2 

avoided 

kg net CO2 

generated cdu 

kg CO2 emitted 

non-cdu 

kg CO2 emitted 

cdu 

1 0.0 1.9 3.5 5.0 

2 1.3 0.0 3.5 2.0 

3 0.0 0.0 3.5 N/A 

4 0.0 2.1 3.5 6.0 

5 0.0 1.2 3.5 2.0 

Scenarios 

Avoided and emitted CO2 emissions (kg) 

 kg net CO2 

avoided 

kg net CO2 

generated cdu 
kg CO2 emitted 

non-cdu 

kg CO2 

emitted cdu 

1 0.0 1.9 3.5 5.0 

2 1.4 0.0 3.5 2.0 

3 0.0 0.0 3.5 N/A 

4 0.0 2.1 3.5 6.0 

5 1.2 0.0 3.5 2.0 
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Table 6.21 shows the results for the calculation of the standard error from the mean. The 

upper confidence interval from the CO2 utilisation processes and the lower confidence 

interval from the conventional process are compared in Table 6.22. There is no “overlap” 

in the results, CO2 utilisation processes connected to the electricity grid mix have higher 

emissions than the conventional process and CO2 utilisation processes connected to wind 

power have lower emissions than the conventional process as expected. 
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Table 6.20 Showing standard deviations for urea scenarios applying system expansion 

Scenario Input 

kg CO2 emitted 

Mean 
Standard 

deviation 
68% min 68% max 95% min 95% max 99.7% max 

1 

Power plant with CO2 capture 0.1 0.1 0.1 0.2 0.0 0.3 0.4 

NH3 synthesis 1.2 0.7 0.5 1.9 0.0 2.6 3.3 

H2 generation 3.2 1.9 1.3 5.0 0.0 6.9 8.8 

Urea synthesis, CO2 utilisation 0.9 0.5 0.4 1.4 0.0 1.9 2.4 

Power plant without CO2 capture 0.7 0.4 0.3 1.1 0.0 1.5 1.9 

Urea synthesis, conventional  2.8 1.6 1.2 4.4 0.0 4.8 7.7 

2 

Power plant with CO2 capture 0.1 0.1 0.1 0.2 0.0 0.3 0.4 

NH3 synthesis 1.2 0.7 0.5 1.9 0.0 2.6 3.4 

H2 generation 3.9 x 10-2 2.3 x 10-2 1.6 x 10-2 6.2 x 10-2 0.0 8.5 x 10-2 0.1 

Urea synthesis, CO2 utilisation 0.9 0.5 0.4 1.5 0.0 2.0 2.6 

Power plant without CO2 capture 0.7 0.4 0.3 1.1 0.0 1.5 1.9 

Urea synthesis, conventional  2.8 1.6 1.2 4.5 0.0 4.7 7.7 

4 

Power plant with CO2 capture 0.3 0.2 0.1 0.4 0.0 0.6 0.7 

NH3 synthesis 1.2 0.7 0.5 1.9 0.0 2.6 3.3 

H2 generation 3.2 1.9 1.3 5.0 0.0 6.9 8.8 

Urea synthesis, CO2 utilisation 0.9 0.5 0.4 1.4 0.0 1.9 2.4 

Power plant without CO2 capture 0.7 0.4 0.3 1.1 0.0 1.5 1.9 

Urea synthesis, conventional  2.8 1.6 1.2 4.5 0.0 4.8 7.7 

5 

Power plant with CO2 capture 0.3 0.2 0.1 0.4 0.0 0.6 0.7 

NH3 synthesis 1.2 0.7 0.5 1.9 0.0 2.6 3.3 

H2 generation 3.9 x 10-2 2.3 x 10-2 1.6 x 10-2 1.6 x 10-2 0.000 8.5 x 10-2 0.1 

Urea synthesis, CO2 utilisation 0.9 0.5 0.4 1.5 0.0 2.0 2.6 

Power plant without CO2 capture 0.7 0.4 0.3 1.1 0.0 1.5 1.9 

Urea synthesis, conventional  2.8 1.6 1.2 4.5 0.0 4.7 7.7 
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Table 6.21 Showing standard error from the mean for urea scenarios applying system expansion 

 

Table 6.22 Scenario comparison for upper and lower kg CO2 emissions for urea scenarios applying system 

expansion 

 

Scenario Input 

kg CO2 emitted 

Standard 

error 

95% 

confidence 

interval 

Upper 

limit 

Lower 

limit 

1 

Power plant with CO2 capture 2.0 x 10-3 3.0 x 10-3 0.1 0.1 

NH3 synthesis 1.6 x 10-2 3.1 x 10-2 1.2 1.2 

H2 generation 4.2 x 10-2 8.2 x 10-2 3.3 3.1 

Urea synthesis, CO2 utilisation 1.1 x 10-2 2.2 x 10-2 0.9 0.9 

Power plant without CO2 capture 9.0 x 10-3 1.8 x 10-2 0.7 0.7 

Urea synthesis, conventional  6.3 x 10-2 0.123 2.9 2.7 

2 

Power plant with CO2 capture 2.0 x 10-3 3.0 x 10-3 0.1 0.1 

NH3 synthesis 1.6 x 10-2 3.0 x 10-2 1.2 1.1 

H2 generation 1.0 x 10-3 1.0 x 10-3 3.9 x 10-2 3.8 x 10-2 

Urea synthesis, CO2 utilisation 1.2 x 10-2 2.4 x 10-2 0.9 0.9 

Power plant without CO2 capture 9.0 x 10-3 1.8 x 10-2 0.7 0.7 

Urea synthesis, conventional  6.3 x 10-2 0.1 2.9 2.7 

4 

Power plant with CO2 capture 3.0 x 10-3 7.0 x 10-3 0.3 0.3 

NH3 synthesis 1.6 x 10-2 3.1 x 10-2 1.2 1.2 

H2 generation 4.2 x 10-2 8.2 x 10-2 3.3 3.1 

Urea synthesis, CO2 utilisation 1.1 x 10-2 2.2 x 10-2 0.9 0.9 

Power plant without CO2 capture 9.0 x 10-3 1.8 x 10-2 0.7 0.7 

Urea synthesis, conventional  6.3 x 10-2 0.1 2.9 2.7 

5 

Power plant with CO2 capture 3.0 x 10-3 7.0 x 10-3 0.3 0.2 

NH3 synthesis 1.5 x 10-2 3.0 x 10-2 1.2 1.2 

H2 generation 1.0 x 10-3 1.0 x 10-3 3.9 x 10-2 3.8 x 10-2 

Urea synthesis, CO2 utilisation 1.2 x 10-2 2.4 x 10-2 0.9 0.9 

Power plant without CO2 capture 9.0 x 10-3 1.8 x 10-2 0.7 0.7 

Urea synthesis, conventional  6.3 x 10-2 0.1 2.9 2.7 

Process description  
Scenario 

1 2 4 5 

Upper value, CO2 utilisation process (kg CO2) 5.5 2.3 5.6 2.5 

Lower value, Conventional process (kg CO2) 3.3 3.4 3.4 3.4 



236 
 

236 
 

The next step in the carbon accounting process was to calculate the overall greenhouse 

gas emissions that contribute to global warming. For this, the method chosen was CML-

IA that uses the characterisation factor of global warming potential over 100 years 

(GWP100). The same allocation rules also apply to global warming results as with direct  

CO2 emissions. The contribution of the main greenhouse gases to the CO2 equivalent 

emitted in the CO2 utilisation scenarios is summarised below in Table 6.23. 

Table 6.23 Showing contribution of greenhouse gases to the global warming score for CO2 based urea 

 

The table shows that methane is the second largest greenhouse gas contributor after 

carbon dioxide in all cases, with nitrous oxide as the third. Methane, nitrous oxide and 

sulphur hexafluoride are all emitted the most in the capture stage, with electricity from 

the grid as the second stressor for emissions (with 40% share from natural gas). The 

capture stage for Scenarios 1 and 2 also use chemicals such as triethylene glycol and 

monoethanolamine which are responsible for small amounts of sulphur hexafluoride 

emissions. Scenarios 2 and 5 have a higher methane percentage contribution than 

Scenario 1 and 4 (which are connected to the electricity grid mix); however, the total CO2 

equivalent emissions are less than half for scenarios powered by renewable energy.   

Greenhouse gases besides CO2 and water vapour account for 6 to 8 % of the total kg of 

CO2 equivalent (eq). Figure 6.13 shows the global warming scores comparison between 

all five scenarios with a final product of 1 kg of urea. For the full life cycle impact 

assessment (LCIA) results refer to Appendix VI. The results follow the same trend as 

the kg of CO2 emitted for each scenario. The most promising scenarios are connected to 

decarbonised power sources (2 and 5) and the worst are connected to the electricity grid 

mix (1 and 4).  

 

Greenhouse gases 

Contribution to CO2 eq in scenarios (%) 

1 2 4 5 

Carbon dioxide (CO2) 93 91 93 91 

Methane (CH4) 7 8 6 8 

Nitrous oxide (N2O) 1 1 1 1 

Sulphur hexaflouride (SF6) 4 x 10-5 1 x 10-4 9 x 10-9 2 x 10-8 
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Figure 6.12 Net life cycle CO2 emissions generated per functional unit (1 kg of urea ready for use phase). Scenarios 1 to 5 with up to 4 main stages in each: H2 production, NH3 production, CH3N20 

and power plant electricity generation. 1) Case scenario 1 kg of urea-electricity grid mix, 2) Case scenario 1 kg of urea-wind power 3) Baseline scenario urea steam methane reforming (SMR) 4) 

Cases scenario 1 kg of urea-DAC (direct air capture) and H2 using electricity grid mix 5) Case scenario 1 kg of urea-DAC (direct air capture) and H2 from wind power. 
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Figure 6.13 Global warming (GW) scores per functional unit (1 kg of urea ready for use phase). Scenarios 1 to 5 with up to 4 main stages in each: H2 production, NH3 production, CH3N20 and power 

plant electricity generation. 1) Case scenario 1 kg of urea-grid mix, 2) Case scenario 1 kg of urea-wind power 3) Baseline scenario urea steam methane reforming (SMR) 4) 1 kg of urea-DAC (direct 

air capture) and H2 using electricity grid mix 5) Case scenario 1 kg of urea-DAC (direct air capture) and H2 from wind power. 
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6.3.2 Other environmental impacts 

For CO2 utilisation processes, determining the net CO2 uptakes and releases is 

fundamental for its success. However, it is not the only environmental flow to consider. 

Not analysing other environmental aspects aspect at least at initial screening level can 

lead to undetected higher impacts. To ensure a broad coverage as possible of the most 

common impact categories considered in life cycle assessments nine extra impact 

categories were assessed for this case study. Acidification, stratospheric ozone depletion, 

photochemical oxidation, freshwater and marine aquatic ecotoxicity potential, abiotic 

depletion, eutrophication and fossil fuel depletion. The ReCiPe (H) method was used for 

fossil depletion, while the other categories used CML-IA for characterisation factors.  

Results were scaled to functional units of 1 kg of urea produced and 0.8 kWh electricity 

generated for the grid. Through Figure 6.14 to Figure 6.22, the results for all impacts 

and scenarios are shown. There are impact categories where one scenario has a much 

larger impact than the rest, complicating the plotting of the collated results. In this case, 

a bubble graph (Figure 6.20 to Figure 6.22) shows the overall difference between 

scenarios. While the range of impact units does not allow for direct comparison, a 

comparative analysis can simplify interpretation. Figure 6.23 shows the impact 

percentage of each scenario for each impact category in this study. Overall, urea 

production from steam methane reforming to produce H2 has higher environmental 

impacts in several categories. Abiotic depletion, stratospheric ozone depletion, marine 

aquatic, terrestrial and freshwater ecotoxicity have all higher scores for the conventional 

route than for CO2 utilisation. However, the impact difference between global warming 

and fossil fuel depletion is not as clear between conventional process and utilisation.   

 

Fossil fuel depletion  

Fossil fuel depletion is another relevant impact category for assessing utilisation 

scenarios. This impact is highly linked to energy emissions from fossil-based sources. 

While global warming might not be as elevated for some scenarios, the fossil depletion 

rates could still be elevated under the same conditions. In this study, results show 

consistency with carbon emissions. Fossil depletion rates are in line with global warming 

scores. While utilisation processes come with higher energy penalties, conventional 

routes often use a wider range of hydrocarbons. The Haber-Bosch process relies on 
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methane. A production of 1.23 kg NH3 has a fossil depletion rate of 1.25 (kg oil eq). 

Where 0.8 (kg oil eq) of the fossil fuel depletion impact is from natural gas. Utilisation 

processes in this study rely on electricity, thus generally have lower fossil depletion 

values. As it is the case with almost every other impact in this study, only by lowering 

the impacts of the extra electricity required for CO2 utilisation, can these processes be 

environmentally competitive. If no renewable energy source is available, then the 

conventional urea synthesis will deplete less hydrocarbons in the form of methane than 

CO2 utilisation processes with electricity from the grid (Figure 6.14). 

 

Acidification 

The main known contributors of acidification impacts include SO2, NOx and reduced 

nitrogen compounds (NHx) (Heij and Schneider, 1991). In all utilisation scenarios, SO2 

emissions were the highest of those species just listed. For Scenario 3 (conventional 

process), NH3 converted to nitric acid was the largest emitter. As with the other impact 

categories, using a utilisation process with a decarbonised energy source (Scenario 2 and 

5) generates the lowest impact. However, these processes still produce an ammonia-based 

fertilizer, hence there is still potential for related acidification emissions down the supply 

chain. 

 

Eutrophication 

As is the case for acidification, Scenario 3 showed the highest levels of PO4
-2 equivalent. 

This is a result from direct ammonia emissions to air by urea production (ecoinvent 

version 3.3 value). Nitrogen oxides come in second place in terms of contribution to the 

total, and its emission is highest in scenarios where electricity from the grid is used. 

(Scenario 1 and 4). Emissions from ammonia reduced by 99 % in all four utilisation 

scenarios. The initial assumption is that there are no direct ammonia emissions for 

Scenarios 1, 2, 4 and 5. However, this assumption should be revised once again when the 

design phase is completed.  
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Stratospheric ozone depletion 

Although not all the compounds that contribute to stratospheric ozone depletion were 

traced in GaBi ts version 8.7.0.18, the highest value for this impact category is allocated 

to Scenario 3: Urea synthesis with hydrogen from steam methane reforming (SMR). 

Scenario 3 has the highest gas emissions due to its reliance on natural gas and heavy fuel 

oils. However, when ecoinvent version 3.3 is used, then the halogenated organic 

emissions lead to a much higher value. This can be explained by the lack of stratospheric 

ozone depletion potential factors found in GaBi ts version 8.7.0.18 and should only be 

considered as a rough estimate.  

 

Resource depletion 

According to the critical list of elements by the European Comission (2017), the three 

main scenarios (1, 2 and 3) use the following critical elements in larger quantities: 

 Scenario 1: silicon (Si) 

 Scenario 2: magnesium and manganese (Mg, Mn) 

 Scenario 3 lead (Pb) 

Overall (including non-critical elements), copper has the highest characterisation factor 

for abiotic depletion and it is the element with second highest concentration in scenarios 

with wind power (2 and 5).  Although the use of several elements is associated with the 

production of turbines to utilise wind power, the impacts are minimum compared to 

hydrogen from steam methane reforming (SMR). In Scenario 3, ammonia synthesis is the 

largest contributor to resource depletion.  

 

Photochemical oxidation 

The main photochemical oxidant that has an impact on the environment is ozone (O3) at 

ground level (Preiss, 2015). Tropospheric ozone has an effect on human health and plants, 

it is also highly linked with summer smog (World Health Organisation Europe, 2004; 

Royal Society, 2008).  The main precursors to photochemical oxidants are NOx and non-

methane volatile organic compounds (NMVOC) emissions. Results show higher non-

methane volatile organic compounds (NMVOC) emissions for the CO2 utilisation 

scenarios connected to the grid. This is associated to the higher energy penalties for water 
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electrolysis if a renewable energy source is not used. As it is the case with several other 

impact categories, the use of wind power for water electrolysis has a lower photochemical 

oxidation score than the other alternatives. Urea synthesis with hydrogen from steam 

methane reforming (SMR) is the medium impact scenario compared to the other four CO2 

utilisation processes. If emissions from the CO2 utilisation process are not managed, then 

the conventional routes have lower photochemical oxidation scores. 

 

Marine aquatic, freshwater and terrestrial ecotoxicity  

These impacts measure the effect of toxic emissions on aquatic and land ecosystems. Its 

effects are all on natural systems and resources. As mentioned in the CML-IA method, 

the characterisation of these impacts is still far from settled. The characterisation factor 

most used (since CML-IA is the most used method) is kg 1,4-DCB eq. The results in this 

study show that urea synthesis from steam methane reforming (SMR) generated hydrogen 

has the highest toxicity potential for all related impact categories. Direct ammonia 

emission and use of natural gas increase ecotoxicity impacts on this process. 
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6.4 Sensitivity and uncertainty analysis 

 

The three most used allocation methods according to Von der Assen & Bardow (2014) are 

system expansion, avoided burden and economic allocation. Throughout the years, system 

expansion has been the method recommended for wider practice and for carbon dioxide 

utilisation technologies (von der Assen et al., 2016). By comparing each method in Table 6.24 

and Figure 6.24, different interpretations are generated for the same set of results. This is a 

known problem with allocation where different methods result in different results with the same 

data. In this scenario, system expansion and economic allocation for urea are the most similar. 

Avoided burden has the greatest disparity; all emissions shift to either electricity generation or 

urea production.  Both cases for avoided burden do not reflect the outcome; it is unlikely that 

one industry would be willing to take all of the burdens. For this sensitivity analysis, only net 

kg of CO2 emitted for Scenario 1, 2, 4 and 5 were considered. Scenario 3 was used as an input 

to compare between conventional and CO2 utilisation processes. The differences shown in this 

analysis are applicable to the other environmental categories, thus it was not necessary to 

Figure 6.23 Comparative analysis of each scenario per impact category, based on results shown 
in Figures 6.13-6.22 
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replicate the analysis for other impacts. All impact assessments used system expansion 

throughout this work, unless stated.  

 

Table 6.24 Net kg CO2 emissions for each main scenario with allocation by different methods. Scaled to 1 kg of urea as 
final product, with 0.8 kWh generated from a coal fired power plant.  

 

 

 

Figure 6.24 Net CO2 emissions for each main scenario with allocation by different methods. Scaled to 1 kg of urea as final 
product, with 0.8 kWh generated from a coal fired power plant.  

 

This study case used five alternative databases for global warming as sensitivity analysis. As 

can be seen in Figure 6.25, values change greatly when other databases are used. Hydrogen 
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System expansion 2 Conventional
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Avoided burden 5 Electricity,
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Avoided burden 6 Utilisation,
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Allocation method 
Net kg CO2 emissions per scenario 

1 2 4 5 

System 

expansion 

Utilisation 5.48 2.19 5.62 2.33 

Conventional 3.50 3.50 3.50 3.50 

Avoided 

burden 

Utilisation, primary 

product 4.78 1.48 4.92 1.62 

Electricity, 

secondary product 0.71 0.71 0.71 0.71 

Electricity, primary 

product 4.78 1.48 4.92 1.62 

Utilisation, 

secondary product 2.80 2.80 2.80 2.80 

Economic 

allocation 

Electricity 0.08 0.08 0.13 0.08 

CO2 feedstock 0.36 0.36 0.36 0.36 

Urea 5.71 2.42 5.73 2.56 
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production has four different sources and ammonia production has two. In the ammonia case, 

steam methane reforming (SMR) to produce hydrogen was chosen as the baseline scenario 

since is the process most used worldwide (Methanol Institute, 2011). Partial oxidation does 

have a higher carbon footprint than steam methane reforming (SMR) but its lower production 

levels did not make it the most suitable case for comparison. The hydrogen databases 

considered include three ecoinvent version 3.3 processes and one by PlasticsEurope. However, 

all these processes use a chlor-alkali process that is not equivalent to the ITM Power Limited 

electrolyser as it not a process set for renewable energy. This same issue is also raised for H2 

from reforming by PlasticsEurope. Hence, Scenario 2 and 5 can still have similar carbon 

footprints to alternative databases by using renewable energy for hydrogen production.   

 

Figure 6.25 Global warming (GW) scores for all scenarios with different hydrogen database sources compared to a 
conventional urea production process with two ammonia production routes. The database used for ammonia from steam 
methane reforming (NH3 SMR) and from partial oxidation (NH3 PO) was obtained from ecoinvent version 3.3.  

 

The uncertainty of net kg CO2 emitted by the production of 1 kg of urea was calculated with a 

graphical distribution (Figure 6.26). The variance was set at ± 10% standard deviation scale, 

with 2,000 random data points plotted and considers all inputs in Scenario 1. The results show 

that the highest frequency can be found at 5.48 kg of CO2 emissions per kg of NH2CONH2 with 

a probability of occurrence of 9.6% (Figure 6.27). Overall, 68% of the distributions stay within 

the range of 5.3 to 5.7 kg CO2 emitted per kg of NH2CONH2. 
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Figure 6.26 Uncertainty analysis of kg CO2 emissions to produce 1 kg of urea and 0.8 kWh to the grid, using system 
expansion. Scenario 1 conditions. ± 10% standard deviation scale, 2,000 points calculated.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.27 Probability distribution against the kg CO2 emissions necessary to produce 1 kg of urea and deliver 0.8 kWh to 
the grid, using system expansion. Scenario 1 conditions. ± 10 standard deviation scale, 2000 points calculated.  
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Lastly, Indexed value graphs were created to determine the sensitivity of the impact categories 

for the CO2 utilisation scenarios.  The method is stated in Section 5.4 and the same approach 

has been taken for consistency.  

The results in Figure 6.28 to 6.30 show that when the capture stage is varied, the global 

warming scores are one of the least sensitive categories while ozone depletion impacts are one 

of the highest. These trends were also seen in the methanol case study as they rely mostly on 

the outputs of the capture stage. When NH3 and the electricity for H2 is varied from 100 % 

(stoichiometric) to 200 % (stoichiometric + 100 % additional value) most of the impact 

categories have a similar sensitivity, abiotic depletion impacts are only relatively higher due to 

an increase in the use of renewable energy, while global warming impact results are more 

sensitive when electricity from the grid is used. This sensitivity analysis shows a reasonable 

level of confidence in the results and recommendations proposed in this cases study as there 

are no unexpected changes with any of the variations made. 
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Figure 6.28 Sensitivity indexed graphs for the variation of the CO2 parameter for CO2 based urea scenarios using system expansion
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Figure 6.29 Sensitivity indexed graphs for the variation of the NH3 parameter for CO2 based urea scenarios using system expansion
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Figure 6.30 Sensitivity indexed graphs for the variation of the electricity required for H2 production parameter for CO2 based urea scenarios using system expansion
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6.5 Chapter six summary 

 

This chapter generated the life cycle inventory (LCI) and assessment for a carbon 

utilisation route with a production of 1 kg of urea (NH2CONH2). Urea synthesis included 

CO2 from a capture process and NH3 synthesised with H2 from water electrolysis. The 

main inputs for a final production of 1 kg of urea were 0.102 kg H2, 0.73 kg CO2 and 0.57 

kg NH3. The main utilisation scenario considered CO2 from a post-combustion capture 

process from a PC (pulverised coal) fired power plant with a 90% capture rate. H2 supply 

was provided by an electrolyser (ITM Power Limited) powered by renewable energy; 

wind power in this scenario.  

For the environmental assessment, results showed a net carbon avoidance of 1.3 kg of 

CO2 per kg of urea for the utilisation scenario compared to urea produced in the 

conventional route (3.5 kg of CO2 per kg of urea produced). This was the best-case 

scenario, where an electrolyser connected to wind power supplied H2 for ammonia. 

Results also showed that the worst case is the same utilisation scenario connected directly 

to the grid. An extra 0.2 kg of CO2 per 1 kg of urea was emitted, compared to the 

conventional baseline scenario (3.5 kg of CO2 per kg of urea produced). A fourth and 

fifth scenario included direct air capture for supplying CO2. However, results did not 

show an environmental benefit due to scope 2 emissions from purchasable electricity.  

Results for other environmental impacts have higher difference between CO2 utilisation 

and conventional processes. Ammonia by Haber-Bosch using hydrogen produced from 

steam methane reforming (SMR) contributes to larger toxicity impacts, eutrophication 

and stratospheric ozone depletion. In all categories, using renewable energy for water 

electrolysis, to produce hydrogen, for ammonia and then urea, has overall lowest 

environmental impacts. All scenarios used system expansion for 1 kg of urea and 0.8 

kWh of electricity delivered to the grid. Sensitivity and uncertainty analysis repeated the 

results found in the assessment, where only by using renewable energy can the 

environmental impacts lower for this utilisation process.   
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7 Other Aspects of CO2 Utilisation: Urea and  

Methanol Production Case Studies 
 

The focus of this chapter is how other factors have an impact on a product from recovered 

CO2. The methanol and urea study cases from Chapters 5 and 6 are used as baseline. 

These factors include CO2 availability in the UK and Europe, the UK electricity outlook 

until 2050, the prices of utilities and the role of hydrogen production in the UK, the global 

and UK market for CO2 utilisation, associated human health impacts, and global warming 

and fossil depletion impacts. Together, they provide a qualitative assessment of the 

effects to both people and profit. This assessment provides the last set of indicators for 

calculating the utilisation potential of a process, shown in Chapter 8. 

 

7.1 CO2 availability by source in Europe  

 

 In Chapters 5 and 6, it is assumed that CO2 is supplied from a subcritical PC (pulverised 

coal) power plant. While most utilisation studies currently use this CO2 source, soon this 

might not be so suitable. Coal fired power plants are scheduled to be shut down by 2050, 

in an effort to meet carbon reduction targets (BIS, 2015). These power plants also have 

large-scale CO2 emissions, while the utilisation products in this study use smaller 

quantities. For the total annual urea production, a minimum of only 30.4 t/year of CO2 

would be required (assuming four months in a season). In Europe, the processes with 

least CO2 emissions still emit 100 t/year and large-scale processes can emit up to 36.6 

Mt/year (Database, 2014). Thus, if a single utilisation process was to make a difference 

to the emissions of a company, only smaller emitters are applicable. To determine these 

emitters, all industrial and electricity generation sources with ≤ 0.2 Mt CO2 

emissions/year in Europe were mapped. Results are shown in Figure 7.1. The mapping 

included all industrial emitters that report to the European Union. The results showed 

better opportunities for small-scale CO2 capture in Western Europe; Germany, France, 

Spain, the United Kingdom and Italy have the largest number of industries with lower 

CO2 emissions. Specifically, in the UK, there are thirty-five registered small-scale 

industries that could supply CO2 to a CO2 utilisation process, based on the above 

criterion. Depending on the concentration of the CO2 in the flue gas, the sources could be 
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used for different CO2 transformations. All sources were mapped by postcode to 

determine areas in the UK with the highest potential for carbon dioxide capture and 

possible future utilisation processes. These results are shown in Figure 7.2 and showed 

a higher concentration of industrial activity in the Midlands, the East and in Yorkshire. 

Production of electricity dominates even at small-scale generation.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Mapping of number of industry and electricity generation sites that emit ≤ 0.2 Mt CO2 

emissions/year in Europe. Data adapted from European Commission report (database, 2014). 

 

 

Figure 7.2 Mapping of industry and electricity generation sites that emit ≤ 0.2 Mt CO2 emissions/year in the United 
Kingdom by commercial sector. Data adapted from European Commission report (database, 2014). 
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There is also the possibility that CO2 utilisation could be used as a complimentary 

abatement technology for large-scale emitters. This would largely depend on a carbon 

capture and storage (CCS) application to take the excess CO2. In the short-term, this could 

also include coal-fired power generation plants. Figure 7.3 ranks European countries 

based on their net CO2 emissions/year. This includes all industrial and energy sectors 

regardless of its size or its potential for carbon capture and storage. Results again show 

that western countries have the highest emissions. Overall, Germany leads by more than 

double of Poland’s emissions (the next higher emitter). Unlike small-scale emissions, net 

emissions by country largely depend on the type of emitter. Therefore, countries such as 

France can have more small-scale processes than the UK, but less CO2 emissions/year 

overall. France has a higher reliance on nuclear power for electricity generation than the 

UK, thus changing the net CO2 emission map. All maps were created using map charts 

from Excel, powered by Bing ®.   

 

 

 

Figure 7.3 Mapping of the number of net industrial and power sector Mt CO2 emissions/year in Europe 
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7.2 Electricity outlook for CO2 utilisation 

 

After securing a CO2 stream for utilisation, the next step is to determine an adequate 

energy source to power this process. The CO2 utilisation scenarios presented in Chapters 

5 and 6 depended on renewable energy, to avoid carbon emissions.  

At the initial design stage of the urea plant and the worked example for methanol, heat 

integration is not considered. For urea production, the next iterations of the process will 

include energy recovery and heat integration, as discussed by Owen (2016). For methanol 

production, the results are used as benchmark in a worked example, which can be 

optimised in future assessments as required. With these results, the current electricity grid 

mix use was not decarbonised enough to reduce the impacts from energy consumed. 

However, this could change in the future, if the UK has a greener electricity grid mix. If 

this does not happen, then extra renewable energy specific for CO2 conversion will be 

required. 

In this section, scenarios are created to determine how renewable availability will affect 

the impact results of CO2 utilisation processes in the near future. The results from 

Chapters 5 and 6 for all five scenarios are used as baseline. The method CML-IA is used 

in all impacts except fossil fuel depletion, where ReCiPe (H) is used. Energy scenarios 

include the projected energy supply for years 2015, 2025 and 2035 according to BEIS 

(2017). A fourth scenario for 2050 is created by extrapolation. 

Table 7.1 shows the percentage contribution of each electricity source for final 

consumption, for each year studied. According to the Renewable Energy Strategy, a 30% 

contribution of electricity from renewables by 2020 would help comply with the 15% 

overall renewable energy target set by the EU (National Grid, 2016).  
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Table 7.1 Scenarios 2015-2050 of the contribution of electricity sources for the grid mix in the UK (based on 
Annex J, BEIS (2017)). 

Electricity source 

% of electricity contribution to 

the grid mix in the UK by year 

2015 2025 2035 2050 

Coal 22.3 0.0 0.0 0.0 

Coal and natural gas CCS1 0.0 0.0 1.9 0.0 

Oil 0.6 1.1 0.7 0.5 

Natural gas 30.4 42.2 13.4 4.9 

Nuclear 19.8 14.0 35.6 31.0 

Other Thermal 1.3 0.8 0.6 0.3 

Renewables 24.7 40.4 46.4 61.3 

Storage 1 1.5 1.3 1.5 

% Total electricity supplied 100 100 100 100 
                                         1Carbon capture and storage 

 

The renewable mix is not specified in Annex J (BEIS, 2017), thus an estimation was used 

based on Dukes 2016 Chapter 6: Renewable sources of energy (BEIS, 2016a) for 2015 

and the National Grid scenarios road 2050 (National Grid, 2017a) for years 2025-2050. 

The percentage of total electricity generated from renewable sources (GWh) is used as 

reference for the year 2015. For these last years, the analysis uses the scenarios for 

renewable electricity supply based on the total output (TWh) created by the national grid. 

It specifically uses two scenarios, Two Degrees (TD) and Steady State (SS). Overall, 

there are four scenarios presented by the national grid:  

 Consumer power (CP): Higher economic prosperity but less environmental focus. 

This scenario assumes that the target of limiting global temperature rise to two 

degrees Celsius above pre-industrial levels for 2050 will not be met. There is little 

inclination towards environmentally friendly options. 

 Two degrees (TD): Higher focus on environmental sustainability and high 

economic prosperity. As the name suggests, the aim of this scenario is to portray 

the necessary conditions to restrict the global temperature rise to two degrees 

Celsius above pre-industrial levels for 2050.  

 Steady state (SS): Less focus on the environment and low economic prosperity. 

This is a business as usual model where there is no inclination towards moving to 

a low carbon world. The targets of restricting the global temperature rise to two 

degrees Celsius above pre-industrial levels for 2050 are also not met.  
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 Slow progression (SP): High green ambitions for the long-term with lower 

economic prosperity. This scenario also does not meet all the UK carbon 

reductions targets since the slow economic growth reduces the pace of 

environmental progress. 

For more information on these scenarios refer to National Grid (2017). The results from 

this report were used as estimates for renewable source contributions to complete Table 

7.1 and specify the renewable mix (see Table 7.2). Results for urea production are shown 

in Figures 7.4 to 7.12 and show the impacts of connecting the carbon capture and 

utilisation system to the electricity grid in a specific year (Scenarios 1, 3 and 4). Scenarios 

2 and 5 stay constant with time, assuming they are powered by the same wind power 

facilities. There are two graphs per impact; one considers a two-degree (TD) renewable 

scenario and the second a steady state case (SS). The first was chosen as the greenest case 

(a) and the second as the least environmental friendly (b) based on the projections by the 

national grid. This gave a range of results that facilitated analysis. Not all-renewable 

energy was mapped; if there was no specific database applicable then its contribution to 

the mix was not considered. This was standard for all scenarios and only included the 

following smaller processes: storage, other thermal processes, anaerobic digestion and 

co-firing with fossil fuels. For carbon capture and storage (CCS), the baseline model, 

created in Chapter 5, was also used for these calculations. 

Results show that 39.9 MJ of electricity are required to produce 1 kg of urea (refer to 

Chapter 6). This electricity use has different impacts, depending on the electricity grid 

mix use. While initial results (Chapter 6) showed that using a baseline grid mix 

generated higher impacts than conventional routes, future projections show that a de-

carbonised grid can be used to power CO2 utilisation processes. The global warming 

impact of CO2 utilisation scenarios drops below the conventional route by 2025 in both 

cases (a) and (b). By 2030, the global warming impact is below conventional values, 

when only wind power is used (scenarios 1,2,4 and 5). The same trend can be seen for 

fossil fuel depletion and photochemical oxidation impacts.  

Other impacts show a greater difference between the baseline scenario and the values for 

the year 2015. The variations in the standard grid mix used for the baseline (GaBi ts 

version 8.7.0.18 datasets) and the adaptations from the national grid account for these 

differences. However, the overall trendline is still downward for eutrophication, 



263 
 

263 
 

acidification, marine-aquatic and freshwater ecotoxicity impacts. Other impacts from 

using recovered CO2 increase with the addition of renewables to the mix, although they 

are still significantly lower than for the conventional process (stratospheric ozone 

depletion, abiotic depletion, terrestrial ecotoxicity and human toxicity). There were also 

no major differences comparing between ‘greener’ and ‘least sustainable’ scenarios. The 

median is a swing of 3% in the electricity grid composition for all years. The highest 

changes are seen in biomass and carbon capture and storage (CCS), with up to 9% 

electricity increase projected in the mix. However, as biomass and carbon capture and 

storage (CCS) have a low influence in the general electricity mix, the increase is not 

perceptible in the impact results.    
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Table 7.2 Scenarios 2015-2050 of the contribution of electricity generation by renewable sources in the UK (based on projections from Chapter 6 BEIS (2016) for 2015 and National Grid 
(2017) scenarios for 2025-2050). 

Renewable mix 

Contribution % of electricity generation by renewable sources in the UK by year 

2015 2025 2035 2050 

 TD2 SP3 SS4 CP5 TD2 SP3 SS4 CP5 TD2 SP3 SS4 CP5 

Onshore wind 27.4 22.5 23.6 23.4 22.5 17.9 19.2 20.3 19.5 17.7 18.4 12.7 18.2 

Offshore wind 20.9 34.2 33.8 31.0 30.3 40.7 40.6 46.0 39.4 41.4 38.4 50.6 35.4 

Marine energy 

(wave and tidal 

stream) 

2.0 x10-3 2.5 1.1 0.2 1.1 6.0 3.5 0.2 2.1 10.7 8.9 0.2 9.5 

Solar 

photovoltaics 
9 8.4 8.6 8.7 11.6 10.0 9.6 8.8 14.5 10.7 10.4 8.1 14.9 

Hydro total 7.5 3.7 4.2 5.5 4.5 2.7 3.1 5.2 3.5 2.5 2.9 5.7 3.1 

Biomass 22 16.5 13.8 15.4 14.3 10.7 8.4 2.6 3.3 5.1 4.9 3.1 2.4 

Other 

renewables1 
12.9 12.2 14.9 15.8 15.7 12.1 15.6 16.9 17.8 12.0 16.0 19.6 16.5 

Total generation 

% 
100 100 100 100 100 100 100 100 100 100 100 100 100 

 

1Taken from Energy Trends in Chapter 6 (BEIS, 2016a) as: landfill gas (16.6%), sewage sludge digestion (3%), biodegradable energy from waste (9.5%), co-firing with fossil fuels (0.6%), animal biomass (2.2%), 

anaerobic digestion (4.9%) and plant biomass (63.2%). Mix averages were used for all years as the general assumption.  2Two degree 3Consumer power 4Slow progression 5Consumer power (2-5 From national grid 

scenarios) 

 



265 
 

265 
 

 

 

-0.001

0.001

0.003

0.005

0.007

2015 2025 2035 2050

(k
g 

P
O

4
eq

)

Scenario 1u Scenario 2u

Scenario 3u Scenario 4u

Scenario 5u

-0.001

0.001

0.003

0.005

0.007

2015 2025 2035 2050

(k
g 

P
O

4
eq

)

Scenario 1u Scenario 2u

Scenario 3u Scenario 4u

Scenario 5u

Figure 7.4 Fossil depletion scores for urea scenarios using (2015-2050) projected grid mixes by the national grid 
and BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady state (SS) electricity scenario. 

 

Figure 7.6 Global warming (GW) scores for urea scenarios using (2015-2050) projected grid mixes by the national 
grid and BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady state (SS) electricity 
scenario. 

Figure 7.5 Eutrophication scores for urea scenarios using (2015-2050) projected grid mixes by the national 

grid and BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady state (SS) electricity 

scenario. 
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Figure 7.7 Acidification scores for urea scenarios using (2015-2050) projected grid mixes by the national grid and 
BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady state (SS) electricity scenario. 
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Figure 7.8 Stratospheric ozone depletion scores for urea scenarios using (2015-2050) projected grid mixes by the 
national grid and BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady state (SS) 
electricity scenario. 
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Figure 7.9 Abiotic depletion scores for urea scenarios using (2015-2050) projected grid mixes by the national grid 
and BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady state (SS) electricity scenario. 
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Figure 7.10 Freshwater ecotoxicity (FAET) scores for urea scenarios using (2015-2050) projected grid mixes by the 
national grid and BEIS. a) Renewables two degrees (TD) electricity scenario a) renewables steady state (SS) 
electricity scenario. 

Figure 7.12 Marine aquatic ecotoxicity (MAET) scores for urea scenarios using (2015-2050) projected grid mixes by 
the national grid and BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady state (SS) 
electricity scenario. 

Figure 7.11 Photochemical oxidation scores for urea scenarios using (2015-2050) projected grid mixes by the 
national grid and BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady state (SS) 
electricity scenario. 
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The same analysis was applied to the methanol production scenarios from Chapter 5. 

This includes the same grid mixes and the same renewable contribution as in the urea 

case study. The electricity input is higher than for urea: 56.2 MJ is required per kg of 

CH3OH produced with recovered CO2. 

The analysis showed less favourable results than for urea production. With the suggested 

grid mix, the utilisation process is not competitive in terms of carbon avoidance until the 

year 2050. Overall, nine out of eleven categories have lower impacts for methanol 

production from natural gas (Scenario 3). These results are dependent on the electricity 

grid mix. As seen in Figure 7.15 to Figure 7.25, only scenarios with renewables come 

close to being competitive to the conventional route.  
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Figure 7.14 Human toxicity scores for urea scenarios using (2015-2050) projected grid mixes by the national grid and 
BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady state (SS) electricity scenario. 

Figure 7.13 Terrestrial ecotoxicity (TAET) scores for urea scenarios using (2015-2050) projected grid mixes by the 
national grid and BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady state (SS) electricity 
scenario. 
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Figure 7.16 Fossil depletion scores for methanol scenarios using (2015-2050) projected grid mixes by the national 
grid and BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady state (SS) electricity 
scenario. 
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Figure 7.17 Acidification scores for methanol scenarios using (2015-2050) projected grid mixes by the national grid 
and BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady state (SS) electricity scenario. 
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Figure 7.15 Global warming (GW) scores for methanol scenarios using (2015-2050) projected grid mixes by the 
national grid and BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady state (SS) 
electricity scenario. 
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Figure 7.20 Freshwater ecotoxicity scores for methanol scenarios using (2015-2050) projected grid mixes by the 
national grid and BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady state (SS) 
electricity scenario. 

Figure 7.19 Human toxicity scores for methanol scenarios using (2015-2050) projected grid mixes by the national 
grid and BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady state (SS) electricity 
scenario. 

 

Figure 7.18 Marine aquatic eco-toxicity (MAET) scores for methanol scenarios using (2015-2050) projected grid 
mixes by the national grid and BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady 
state (SS) electricity scenario. 
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Figure 7.22 Photochemical oxidation scores for methanol scenarios using (2015-2050) projected grid mixes by the 
national grid and BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady state (SS) electricity 
scenario. 

Figure 7.21 Terrestrial ecotoxicity (TAET) scores for methanol scenarios using (2015-2050) projected grid mixes by the 
national grid and BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady state (SS) electricity 
scenario. 

 

Figure 7.23 Stratospheric ozone depletion scores for urea scenarios using (2015-2050) projected grid mixes by the 
national grid and BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady state (SS) 
electricity scenario. 
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Figure 7.25 Eutrophication scores for urea scenarios using (2015-2050) projected grid mixes by the national grid 
and BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady state (SS) electricity scenario. 

 

Figure 7.24 Abiotic depletion scores for urea scenarios using (2015-2050) projected grid mixes by the national grid 
and BEIS. a) Renewables two degrees (TD) electricity scenario b) renewables steady state (SS) electricity scenario. 
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7.3 Main utilities and costs for urea and methanol synthesis 

 

Results in Chapters 5 and 6 showed that utilisation systems are dependent on the 

environmental impacts of the utilities. This also has a direct impact on the overall 

operational costs. Table 7.3 shows the costs considered in this work for each utility for 

all baseline scenarios. Gas and electricity costs are taken from UK statistics for the 4th 

quarter of 2016 (Department of Energy & Climate Change, 2016). Process and cooling 

water rates are the EU average for the year 2013 (European Commission, 2016). Water 

costs are set every three years in the UK (Ofwat, 2016), thus it is assumed that 2013 costs 

will cover up to 2016. Obtaining the price of electricity from wind power is more 

complicated than when the electricity is supplied from the grid; it depends on how it is 

traded in a region and there is no single price for wind-generated electricity (Krohn et al., 

2009). Therefore, for this analysis, the levelised cost of electricity (LCOE) was used to 

estimate CO2 utilisation scenarios, as discussed in Section 4.5.3. The value in £/kWh was 

obtained from BEIS (2016b) for the year 2016, with medium capital costs for onshore 

wind <5 MW in the UK, and an average load factor of 32%.   

 

Table 7.3 Process utilities costs for non-domestic consumers   

 

 

 

 

 

 

1 Values from 4th quarter 2016 from (Department of Energy & Climate Change, 2016), including climate change levy 2 Values from 

BEIS (2016b), year 2016 with medium capital costs 3 Values from year 2013, EU average (European Commission, 2016) 

 

Results for urea scenarios (Table 7.4) show a positive outlook for utilisation. Although 

electricity costs are much higher in all carbon dioxide utilisation (CDU) scenarios, fuel 

costs are lower or non-existent. In comparison, traditional ammonia and urea synthesis 

require large quantities of natural gas, thus off-setting the benefit of low electricity and 

Utilities 

Size of consumer 

(MWh) 
Cost 

Gas (£/kWh)1 2,778-27,777 0.10 

Electricity grid mix (£/kWh)1 2,000-19,999 0.02 

Electricity wind power (£/kWh)2 N/A 0.07 

Process water (£/ton)3 N/A 0.02 

Cooling water (£/ton)3 N/A 0.03 
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water consumption. For utilisation, there is a cost-benefit from using the current 

electricity grid mix, but not an environmental one. The environmental- and cost-benefit 

could come from a scenario where the regulatory-price driven mechanisms are strong. 

(Refer to Section 3.4 for more information). In all CO2 utilisation scenarios, water 

electrolysis has the highest energy penalty; 63% to 66% of the electricity costs are linked 

to the electrolyser. 

Table 7.4 Cost of main utilities for urea production in £/kg of product for all five baseline case scenarios (refer to 
Chapter 6 for a description). 

Utilities Urea production case scenarios (£/kg of product) 

1 2 3 4 5 

Electricity   

Compression 3.2 x 10-2 3.2 x 10-2 0.0 3.2 x 10-2 3.2 x 10-2 

Electrolysis 0.1 0.4 0.0 0.1 0.4 

CO2 capture1 1.0 x 10-3 1.0 x 10-3 0.0 1.2 x 10-2 1.2 x 10-2 

Ammonia synthesis 1.8 x 10-2 1.8 x 10-2 1.0 x 10-3 1.8 x 10-2 1.8 x 10-2 

Urea synthesis 1.7 x 10-2 1.7 x 10-2 6.0 x 10-3 1.7 x 10-2 1.7 x 10-2 

Sub-total 0.2 0.5 7.0 x 10-3 0.2 0.5 

Process and cooling water   

CO2 capture 5.0 x 10-5 8.0 x 10-5 0.0 8.0 x 10-5 8.0  x 10-5 

Electrolysis 5.0 x 10-5 5.0 x 10-5 0.0 5.0 x 10-5 5.0 x 10-5 

Ammonia synthesis 0.0 0.0 3.0 x 10-5 0.0 0.0 

Sub-total 1.3 x 10-4 1.3 x 10-4 3.0 x 10-5 1.3 x 10-4 1.3 x 10-4 

Gas   

Urea synthesis 0.0 0.0 0.3 0.0 0.0 

Ammonia synthesis 0.0 0.0 0.8 0.0 0.0 

Sub-total 0.0 0.0 1.1 0.0 0.0 

Total (£/kg NH2CONH2) 0.2 0.5 1.1 0.2 0.5 

 

The results for methanol production (Table 7.5) show a less positive outlook than for 

urea, which is mainly due to: 

 Increased hydrogen consumption required per kg of methanol produced using 

recovered CO2 

 Lower natural gas rates per kg of methanol produced through conventional 

production 

Elevated hydrogen requirements have a strain on scenarios that depend on renewables 

(see Section 7.3.2). As this is the case with urea, only by using renewables can the process 

have less environmental impact than a conventional process. This becomes challenging 
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when renewables (wind power in this case study) have higher costs than other fuels. 

While results are not directly comparable between levelised cost of electricity (LCOE) of 

wind and direct prices of electricity grid mix, it is useful for identifying these cost 

hotspots. For the direct air capture (DAC) process, there was no major overall cost 

increase associated with higher electricity consumption rates than with post-combustion 

capture. The use of renewable in utilisation processes is discussed further in Sections 

2.4.3 and 3.4.   

Table 7.5 Cost of main utilities for methanol production in £/kg of product for all five baseline case scenarios 
(refer to Chapter 6 for a description). 

Utilities Methanol production case scenarios (£/kg of product) 

1 2 3 4 5 

Electricity   

Compression 0.0 0.0 0.0 0.0 0.0 

Electrolysis 0.3 0.8 0.0 0.3 0.8 

CO2 capture1 4.0 x 10-3 4.0 x 10-3 0.0 2.2 x 10-2 2.2 x 10-2 

Other 3.0 x 10-5 3.0 x 10-5 0.0 3.0 x 10-5 3.0 x 10-5 

Methanol synthesis 6.0 x 10-2 6.0 x 10-2 2.2 x 10-2 5.9 x 10-2 5.9 x 10-2 

Sub-total 0.3 0.9 2.0 x 10-3 0.3 0.9 

Process and cooling water   

CO2 capture 1.7 x 10-4 1.7 x 10-4 0.0 1.7 x 10-4 1.7 x 10-4 

Electrolysis 3.0 x 10-5 3.0 x 10-5 0.0 3.0 x 10-5 3.0 x 10-5 

Methanol synthesis 0.0 0.0 2.0 x 10-5 0.0 0.0 

Sub-total 1.0 x 10-2 1.0 x 10-2 2.0 x 10-5 1.0 x 10-2 2.0 x 10-4 

Gas   

Methanol synthesis 0.0 0.0 0.5 0.0 0.0 

Sub-total 0.0 0.0 0.5 0.0 0.0 

Total (£/kg NH2CONH2) 0.3 0.9 0.5 0.3 0.9 

 

 

7.3.2 Hydrogen production, renewables and associated costs 

Hydrogen production through water electrolysis is energy intensive and can therefore 

lead to elevated costs (Sayah and Sayah, 2011; Boretti, 2013; Dincer and Acar, 2017). 

However, there are also several advantages to using an electrolyser: it has a flexible 

operation that can be controlled, it can eliminate direct emissions from grid-connected 

electrolysis and it eliminates extra requirements for stand-alone hydrogen facilities 

(Owen, 2016; Bazzanella, Ausfelder and DECHEMA, 2017). Table 7.6 shows general 

system costs for average low-hydrogen production routes. These are the current costs 
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according to Bazzanella & Ausfelder (2017); future predictions expect costs to lower for 

all technologies.  

Table 7.6 Average system costs for low-hydrogen production routes 

Hydrogen production routes 

Costs 

Current system 

costs 

2030 costs 

projections 

PEM-Electrolysis (€/kW)1 1,800-2,300 700 

Alkaline Electrolysis (€/kW)1 1,000-1,200 600 

High-temperature solid-oxide electrolysis (€/kW)2 2,000 1,000 

1(Bertuccioli et al., 2014) 2 (Bazzanella, Ausfelder and DECHEMA, 2017)  

 

A positive environmental impact of electrolytic production of hydrogen will depend on 

the energy source. While this is a challenge, there are steps towards connecting it to low 

carbon electricity sources. One of the main benefits of certain electrolysers is the 

availability to switch between the electricity grid and renewables on-site (Owen, 2016). 

This is a potential solution to managing production costs according to renewable energy 

availability.  

Taking wind power as the baseline renewable energy source, hydrogen production can 

also serve as energy storage. One of the main limitations with wind power is that it is 

intermittent. There are days where there is no wind power available during peak hours 

but extra generation at night. There could also be a surplus of electricity during summer 

and a lack of it during winter (National Grid, 2017b). This leads to an imbalance in the 

grid that incurs extra costs. According to the National Grid, the cost of balancing the UK 

network in the years 2012 to 2013 amounted to £803 million pounds. Three main 

scenarios are discussed in which utilisation technologies and wind power could play 

different roles: 

1.- The capacity of the National Grid did not support the intermittent renewable energy 

projection thus constraints costs continued. CO2 utilisation processes will need to be 

balanced between the grid and renewable energy.  

2.- All electricity is fed into the grid and there are no further constraints. Utilisation 

processes could be linked directly to the grid if the renewable energy mix is high. 
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3.- There is a range of intermittent electricity allowing CO2 utilisation to operate with 

extra electricity. 

The first scenario considers a case where wind power continues to be a strain to the 

National Grid, elevating the costs of electricity delivery. In this case, there is an 

opportunity for utilisation processes to take the renewable energy loads off the grid when 

there is a surplus. A mix of renewable and grid mix would suit this scenario. 

 The second possibility allows utilisation processes to connect only to the electricity grid, 

assuming a balance in supply and demand. This scenario would fit with the projections 

shown at the beginning of this section. 

The third option considers a case where the utilisation process is supplied only by wind 

energy and assumes that there will be enough wind energy to supply the production rate 

regardless of intermittency. This seems the least likely scenario unless the main product 

was wind and utilisation is a by-product. If a product is not required all year long, as in 

the urea case study, there could be a case of matching renewable energy peaks to 

production seasons. This would require wind power (as an example) to peak during 

seeding season.    

Finally, wind power costs in the UK are expected to decrease by 0.5 % over the next 20 

years (BEIS, 2016b). Projections for the levelised cost of wind power in the UK from 

2015-2030 are shown in Table 7.7. If this outlook is accurate, then it would continue to 

benefit urea production but not methanol, as seen in utilities costs results (Table 7.4 and 

Table 7.5).   

 

Table 7.7 Projections for the levelised cost of electricity (LCOE) of electricity year 2015-2030 for onshore wind 
> 5 MW UK (BEIS, 2016b) 

Capital cost 

£/MWh 

Levelised cost of electricity for onshore wind  

> 5 MW per year 

2015 2020 2025 2030 

High 81 79 74 72 

Medium 67 65 61 60 

Low 50 49 46 45 

 

 



278 
 

278 
 

7.4 Market for CO2 utilisation product 

 

Beyond the environmental and technical performance of a utilisation product, there must 

be a market to introduce this product. This section qualitatively assesses current and 

future trends for the supply and demand of methanol and urea. While there is no specific 

information available for a utilisation product, comparing it to the conventional product 

is a way to envision future scenarios. 

Methanol 

The global market for methanol was estimated at USD 31.02 billion in 2016, and is 

expected to grow within the next five years (BusinessWire, 2017). However, the market 

for methanol in the UK is small; according to BusinessWire (2017) it only takes up 4% 

of the overall demand in Europe. Petrochemical-based industries have been struggling in 

the UK; however, there is an increase in other applications that could revive the market. 

Alternative fuels, fuel cells and dimethyl ether (DME) are all options for the methanol 

market.  

Methanol prices are currently lower than road fuels (see Table 7.8); this presents an 

opportunity for cheaper and cleaner fuels. According to Methanex (2017), the retail price 

for summer 2017 in Europe is set at € 0.2 per litre of methanol. Although costs have 

increased from last year, methanol prices tend to be stable.  

Table 7.8 Comparison between the cost of methanol and road fuel in the UK for summer 2017 

 

 

 

 

 

 

 

1Cost valid for Europe from July 1, 2017 to September 30,2017 (Methanex, 2017) 2July 2017 average from Department for 
Environment Food and Rural Affairs (DEFRA) (2017b), excluding VAT 

 

Even though retail costs for methanol are lower, there is still blending to consider. After 

purchase, methanol can either be transported to a refinery, to blend with gasoline, or 

transported directly to gasoline distribution terminals and blended when tanks are 

Cost 

 

Fuels in the UK 

Methanol1 Petrol2 Diesel2 

 

Ultra-low sulphur unleaded 

petrol 

Ultra-low sulphur 

diesel 

£/L 0.18 0.94 0.95 
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loading. For this second process, gasoline must be previously treated to ensure optimum 

performance (Methanol Institute, 2011). This would increase the final fuel price, but it is 

still expected to be lower than an only fossil-based fuel.  

There is a push to move away from petrol and diesel vehicles to improve air quality. 

Alone in the UK, there is an intention to end conventional car sales by 2040 and reach 

zero emission vehicle levels by 2050 (Department for Environment Food and Rural 

Affairs (DEFRA), 2017a). Therefore, there are some constraints to using blended 

methanol and petrol. 

While the utilisation market in the fuel transportation sector for pure methanol could 

reduce, there are other uses for methanol and overall worldwide demand is still growing. 

Worldwide demand reached 70 million tonnes by 2015, with 40% for use in emerging 

energy applications. According to the Methanol Institute (2017), approximately 200,000 

tons of methanol per year are used as chemical feedstock or as transportation fuel. 

According to Statista (2017), imports reached a value of 201,506 million GBP in 2015 

and exports reached 4,605 million GBP. Products like dimethyl ether (DME), alternative 

marine fuel, fuel cells and power generation are all new contributors to the worldwide 

energy sector (Methanol Institute, 2017). 

Urea 

Urea is one of the most produced chemicals in the world and is the most important 

nitrogen-based fertiliser. According to Stamicarbon (2017), more than 190 million tons 

of urea are produced each year and the demand is growing at over 3%. Out of the total 

amount produced, 80% of urea is used as fertiliser. Overall, urea prices have been on the 

rise since 2016. In the UK, urea supply relies mainly on imports from the European Union 

(EU). Import rates reached 21,037 million GBP in 2015; 99.9% of these were from the 

EU. Exports for the same year added up to 2,531 million GBP, mostly to the EU (Statista, 

2017). With trade uncertainty due to Brexit, there is an opportunity to increase national 

fertiliser production; this includes alternative options such as CO2 utilisation. Nitrogen-

based fertiliser will continue to play an important role in agriculture, thus the market for 

urea will remain high. 

For the specific process under study, the project is set to work at a small scale. According 

to the British Survey of Fertiliser practice (DEFRA, 2015), the general application rate 
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of N-fertiliser in 2016 was 141 kg/ha (all tillage). For crops and grass, the application 

rate was 94 kg/ha. Over the last 30 years of the survey, the use rates have been within 

140 to 150 kg/ha of total nitrogen use. The production rate for the utilisation scenarios in 

this work is set at 250 kg/day of urea. This provides enough fertiliser to supply the seeding 

season of a small farm. This would close a cradle to gate cycle for urea production, thus 

reducing intermediates, transportation, delivery and so on, which come with additional 

costs. 

  

7.5 Human health impacts 

 

The scope of a life cycle assessment (LCA) does not include a risk assessment, hence a 

hazards metric is used to calculate human toxicity potential (McKone and Hertwich, 

2001). This work analyses initial indicators for detecting hotspots in CO2 utilisation 

processes, thus the life cycle assessment (LCA) approach is applicable. The human 

toxicity impact category expresses the potential for health impacts by exposure of 

harmful agents by using an exposure ratio (Guinée et al., 2001). General results for both 

urea and methanol scenarios are shown in Figure 7.26 and Figure 7.27. The method 

stated in Section 4.5.5 was used to generate these results. 
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Figure 7.26 CML-IA general results for human toxicity scores using urea scenarios 
from Chapter 6. 
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For urea synthesis, there is a direct benefit from using any of the utilisation scenarios, 

which is linked to ammonia synthesis. In the UK, ammonia from the Haber-Bosh process 

has an impact of 1.25 (kg 1,4-DCB eq)/kg urea, compared to an average impact of 0.62 

(kg 1,4-DCB eq)/kg urea for ammonia for utilisation. The use of natural gas in ammonia 

from the Haber-Bosch process is responsible for higher human toxicity scores. 

Activities such as drilling, extracting and transporting natural gas lead to methane 

emissions through leakage. Methane emissions can cause health and air quality problems 

by being an O3 precursor (Anenberg et al., 2012). Tropospheric O3 is a harmful pollutant 

that is linked to respiratory-related hospitalisations, asthma-related emergency room 

visits and premature human mortality (Melvin, Sarofim and Crimmins, 2016; Saari, 

Thompson and Selin, 2017). According to the Department for Environment Food and 

Rural Affairs (2017), in the UK, there has been a long-term increase in urban background 

ozone pollution between 2003 and 2016, but remains fairly stable.  

Overall, by decreasing natural gas in urea production, there is an opportunity to reduce 

potential health impacts associated with methane emissions in the UK. 

  

 

 

 

 

 

 

 

 

 

 

 

The result for methanol production is the opposite of those for urea scenarios; utilisation 

cases contribute to higher health impacts than for methanol from natural gas. This is the 
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Figure 7.27 CML-IA general results for human toxicity scores using methanol 
scenarios from Chapter 5. 
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result of higher health impacts in post-combustion capture than in natural gas extraction 

and processing. For Scenarios 1 and 4, where the electricity grid mix is used, 50% of the 

human toxicity results are from the capture stage and 50% from electricity grid mix use. 

For the capture stage, 80% of the impacts are generated from CO2 dehydration. 

Ethylene glycol is a solvent used for CO2 dehydration, and is produced by reacting 

ethylene oxide (EO) with water (Database from GaBi ts version 8.7.0.18). The effects on 

human health, according to the World Health Organization, include: intoxication for 

ingestion (which can lead to mortality), nasal and throat irritation following inhalation, 

and ocular and dermal irritation (WHO, 2004). However, some of these health effects 

have only been documented in small-scale trials. Ethylene glycol is not classified as a 

carcinogen.  

To reduce the health impacts of methanol from CO2 capture, a different dehydration 

process in combination with a decarbonised grid mix should be considered, as it is only 

the combination of the two that could lower the human toxicity scores for utilisation 

processes towards the result for the conventional process. Other dehydration alternatives 

that could be explored include: compression and cooling, adsorption using solid 

desiccants and cooling below the initial dew point (Abbas, Mezher and Abu-Zahra, 

2013).  

 

7.6 Main impacts for carbon utilisation 

 

The assessment of CO2 utilisation processes mainly focuses on their potential to 

transform CO2, lower CO2 emissions and displace raw materials. The aim is to design a 

process with less environmental impact than a fossil fuel-based process, which can also 

compete in the market. Ultimately, this aim is linked to the well-being of our society. 

 Providing a ‘more sustainable product’ is a way to ensure that not only future generations 

can have access to this product, but that they also suffer less from the impacts of its 

production. Therefore, selecting climate change and fossil fuel depletion as the main 

impacts also fit within a social perspective. Comparisons between gases and their global 

warming impact can be made, through the global warming score, and the security of 
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hydrocarbons through conventional production routes can be measured using the fossil 

depletion score.   

The effects of climate change in the UK according to the Met Office Hadley Center 

(2011) include the following projections:  

 A strong food security for the next 40 years; however, this depends mainly on 

imports. 

 A vulnerability to water stress in the south and south east of the UK, while the 

remaining of the UK is not predicted to be affected. 

 Rainfall is expected to increase, especially in the winter months. 

 A greater tendency towards increased flood risk, although international and 

national studies report different projections. 

 A potential for major impacts on coastal flooding from sea level rise (LSR) by 

2080, if no climate change mitigation is set in place.  

This reiterates the benefits of a successful utilisation process that can contribute to 

mitigating the effects of climate change on either a small or larger scale. This will depend 

mostly on finding suitable decarbonised energy sources. Global warming and fossil 

depletion scores for each scenario under study were calculated in Chapters 5 and 6. A 

summary of the final score is shown again in Table 7.9 and Table 7.10. 

 

 

 

Scenarios 

Urea 

production 

Methanol 

production 

(kg CO2 eq) (kg CO2 eq) 

1 6.0 9.2 

2 2.5 2.1 

3 3.8 2.2 

4 6.10 9.6 

5 2.6 2.4 

Scenarios 

Urea 

production 

Methanol 

production 

(kg Oil eq) (kg Oil eq) 

1 1.9 3.0 

2 0.8 0.9 

3 1.4 1.4 

4 1.9 3.0 

5 0.9 1.0 

Table 7.9 Global warming scores for urea and 

methanol production, based on five case scenarios 

Table 7.10 Fossil depletion scores for urea and 

methanol production, based on five case 

scenarios 
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7.7 Results for indicators for CO2 utilisation with no 

aggregation/weighting   

 

Through Chapters 5 to 7, quantitative and qualitative aspects of CO2 utilisation processes 

have been assessed. To this point, the results are not weighted, normalised or aggregated 

in any form.  

In this study the major environmental impacts assessed were fossil fuel depletion and 

global warming following the work done by Von der Assen & Bardow (2014), Assen et 

al. (2016) and Sternberg & Bardow (2015). The aforementioned studies agree that these 

two categories should form the basis of any primary screening for CO2 based products. 

This work considers this as a reasonable basis for screening as unless the net outcome of 

the two categories is positive (i.e. fossil fuel depletion is reduced, and global warming 

impact is reduced) then the likelihood of the CO2 based product having a more sustainable 

production is low. 

The CML-IA and ReCiPe methods were chosen to assess these impacts. As discussed 

previously in Chapter 4, these methods were selected as they have been used in other 

published work such as Troy et al. (2016), von der Assen & Bardow (2014), Morales 

Mora et al. 2016, Sternberg & Bardow (2015) and Corsten et al. (2013) and are thus 

useful for comparing results. Other main environmental impacts from the CML-IA 

method were also assessed considering at “an initial screening level”, with this being 

open to further research if the focus shifts to determining specific characterisation factors 

for CO2 utilisation. As of now, as part of the recommendations we suggest to utilise an 

established method such as CML-IA or ReCiPe, to screen potential environmental 

impacts at midpoint level as a starting point in the impact assessment.   

In a second stage we suggest that once the environmental impact categories from 

established tools have been assessed at an initial screening level, the research should be 

dedicated to selecting environmental impacts using statistical analysis such as Monte 

Carlo simulations and fuzzy set theory, to determine the most sensitive impacts to change.  

 Table 7.11 and Table 7.12 show a summary of the results for each scenario and each 

indicator under study. The first table only considers the results for baseline scenarios. The 

second table shows the changes between grid mix possibilities and year of consumption. 
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Only global warming and fossil fuel depletion impact categories are considered for the 

summary; however, all results are shown in Section 7.2.  

The matrix created to assess the environmental impacts of the case studies follows the 

methodology stated in Section 4.4 and 4.6. The matrix considers the different process 

configurations in form of scenarios and the indicators for the environmental impact 

assessment.  

With these results, scenarios can be compared in this graph, without further aggregation. 

Carbon hotspots can be detected as well as environmental benefits/drawbacks. The next 

chapter explores weighting methods and the benefits of analysing weighting results 

against un-aggregated values.  
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Table 7.11 Results of each indicator for methanol and urea synthesis baseline scenarios from Chapter 5 and 6. 

Indicators 
Methanol synthesis scenarios Urea synthesis scenarios 

1 2 3 4 5 1 2 3 4 5 

Extra energy for capture 

(kWh/kg CO2 captured) 
0.1 0.1 N/A 0.8 0.8 0.1 0.1 N/A 0.8 0.8 

Energy penalty for utilisation 

(kWh/kg utilisation product) 
15.6 15.6 N/A 15.6 15.6 10.5 10.5 N/A 10.5 10.5 

Renewable energy consumption 

(kWh renewables/kg utilisation 

product) 

N/A 12.7 N/A N/A 12.7 N/A 6.6 N/A N/A 6.6 

Total energy consumption 

(kWh/kg final product) 
15.7 15.7 4.6 16.4 16.4 10.6 10.6 11.1 11.3 11.3 

Net CO2 avoided (Kg CO2/kg 

product) 
-7.1 0.1 0 -7.3 0.5 -2.0 1.3 0 -2.1 1.2 

Net CO2 utilised (Kg CO2/kg 

product) 
1.4 1.4 0 1.4 1.4 0.7 0.7 0.7 0.7 0.7 

CO2 capture efficiency (%) 90 90 N/A 90 90 90 90 N/A 90 90 

Global warming (kg CO2 eq/kg 

product) 
9.2 2 2.1 9.5 2.3 6 2.5 3.8 6.1 2.6 

Eutrophication (kg PO4 eq/kg 

product) 
2.0 x 10-3 1.0 x 10-3 3.0 x 10-3 3.0 x 10-3 1.0 x 10-3 1.7 x 10-3 9.0 x 10-4 6.8 x 10-3 1.8 x 10-3 9.0 x 10-4 

Acidification (kg SO2 eq/kg 

product) 
3.3 x 10-2 1.1 x 10-2 6.0 x 10-3 3.5 x 10-2 1.1 x 10-2 2.1 x 10-2 5.0 x 10-3 1.5 x 10-2 1.5 x 10-2 2.2 x 10-6 

Stratospheric ozone depletion 

(kg CFC-11 eq/kg product) 
1.3 x 10-9 9.1 x 10-10 1.6 x 10-7 6.0 x 10-10 1.4 x 10-10 7.9 x 10-10 5.6 x 10-10 5.3 x 10-7 3.8 x 10-10 

1.6 x 10-

10 

Photochemical oxidation (kg 

ethylene eq/kg product) 
2.0 x 10-3 1.0 x 10-3 1.0 x 10-3 2.0 x 10-3 1.0 x 10-3 2.0 x 10-3 6.0 x 10-4 1.0 x 10-3 2.0 x 10-3 6.0 x 10-4 

Marine aquatic ecotoxicity (kg 

1,4-DCB eq/kg product) 
706.0 233.0 270.0 722.0 248.0 435.0 206.0 2,420.0 448.0 219.0 
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Indicators 
Methanol synthesis scenarios Urea synthesis scenarios 

1 2 3 4 5 1 2 3 4 5 

Freshwater aquatic ecotoxicity  

(kg 1,4-DCB eq/kg product) 
1.5 x 10-2 5.0 x 10-3 8.3 x 10-2 1.4 x 10-2 4.0 x 10-3 9.0 x 10-3 9.0 x 10-3 0.3 9.0 x 10-3 4.0 x 10-3 

Terrestrial ecotoxicity (kg 1,4-

DCB eq/kg product) 
8.0 x 10-3 3.0 x 10-3 2.0 x 10-3 9.0 x 10-3 3.0 x 10-3 9.0 x 10-3 4.0 x 10-3 3.2 x 10-2 8.0 x 10-3 4.0 x 10-3 

Human toxicity (kg 1,4-DCB 

eq/kg product) 
0.8 0.5 0.2 0.5 0.2 0.5 0.3 2.2 0.3 0.2 

Particulate matter (kg PM10 

eq/kg product)  
8.0 x 10-3 3.0 x 10-3 4.0 x 10-3 8.0 x 10-4 3.0 x 10-3 5.0 x 10-3 2.0 x 10-3 5.0 x 10-3 6.0 x 10-3 3.0 x 10-3 

Fossil depletion (kg oil eq/kg 

product) 
3.0 0.9 1.4 3.1 1.03 1.9 0.9 1.4 1.2 0.9 

Abiotic depletion (kg Sb eq)/kg 

product) 
1.1 x 10-6 4.2 x 10-06 6.5 x 10-7 9 x 10-7 4 x 10-6 6.4 x 10-7 2.3 x 10-06 1.6 x 10-5 5.4 x 10-7 2.2 x 10-6 

Cost of utilities (£/kg of product) 0.3 0.9 0.5 0.3 0.9 0.2 0.5 1.1 0.2 0.5 

Product demand worldwide 

(million tonnes/year) 
NA NA 70 NA NA NA 190 NA NA NA 

CO2 source availability < 0.2 Mt 

CO2 (% in UK/total EU)  
7.8 7.8 7.8 NA 7.8 7.8 7.8 7.8 7.8 7.8 

*Check glossary list for full details 
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Table 2 Global warming (GW) and fossil depletion (FD) results for future CO2 utilisation scenarios for methanol and urea synthesis, for baseline scenarios from Chapter 5 and 6, projections 
2025 and 2050. 

Indicators 
Methanol synthesis scenarios Urea synthesis scenarios 

1 2 3 4 5 1 2 3 4 5 

TD1 SS2 TD1 SS2 TD1 SS2 TD1 SS2 TD1 SS2 TD1 SS2 TD1 SS2 TD1 SS2 TD1 SS2 TD1 SS2 

GW3
100 year 2025 ((kg 

CO2 eq)/kg product) 
4.2 4.3 2.1 2.1 0.7 0.7 4.5 4.6 2.3 2.3 2.9 3 2.5 2.5 3.7 3.7 2.3 3 2.5 2.5 

GW3
100 year 2050 ((kg 

CO2 eq)/kg product) 
1.3 1.6 2.1 2.1 0.7 0.7 1.6 1.8 2.4 2.4 1.0 1.1 2.5 2.5 3.6 3.6 1.0 1.2 2.6 2.6 

FD3 year 2025 ((kg oil 

eq)/kg product) 
1.9 2.0 1.0 1.0 0.9 0.9 1.1 1.1 1.0 1.0 1.2 1.3 0.9 0.9 1.4 1.4 1.3 1.3 0.9 0.9 

FD3 year 2050 ((kg oil 

eq) /kg product) 
0.8 0.9 1.0 1.0 0.9 0.9 0.8 0.9 1.0 1.0 0.5 0.5 0.9 0.9 1.4 1.4 0.5 0.6 0.9 0.9 

1Two degrees 2Steady state 3Global warming 4Fossil depletion 
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7.8 Chapter seven summary 

 

In this chapter other aspects that affect the production of CO2 based products are assessed, 

focusing on renewable energy availability as well as other impacts. The aim of CO2 

utilisation is to design a process with a smaller environmental impact than a fossil fuel-

based process that can also compete in the market. This is linked to the well-being of our 

society, by providing a ‘more sustainable product’. This aim includes understanding how 

CO2 availability will affect CO2 utilisation. For this, industrial and electricity generation 

sources with ≤ 0.2 Mt CO2 emissions/year in Europe were mapped. The results showed 

better opportunities for small-scale CO2 capture in Western Europe. Specifically, in the 

UK, thirty-five registered small-scale industries were found that could supply CO2 for a 

transformation process. After securing a CO2 stream for utilisation, the next step was to 

assess the security of the energy source to power these processes. Scenarios were created 

to determine how renewable availability would affect impact results in the near future. 

While initial results in Chapter 6 showed that using a baseline electricity grid mix 

generated higher impacts than conventional routes, future projections show that a de-

carbonised grid can be used to power utilisation processes. The global warming score of 

urea scenarios drops below that of the conventional route by 2025, and by 2030 there is 

a further drop, with only wind power as an energy source. For methanol production, the 

analysis showed less favourable results. With the suggested electricity grid mix, the 

utilisation process is not competitive in terms of carbon avoidance at least until the year 

2050.  

Utilisation systems are dependent on the environmental impacts of utilities. This has a 

direct impact on the overall operational costs. For urea production, there is a cost-benefit 

from using the current electricity grid mix, but not an environmental benefit. In all CO2 

utilisation scenarios, water electrolysis has the highest energy penalty; between 63% and 

66% of operational electricity costs are associated with the electrolyser. For methanol, 

there is currently no cost-benefit from using a CO2 utilisation process. High levels of 

hydrogen required per kg of methanol and lower natural gas rates per kg of methanol 

from the conventional route makes current costs non-competitive. Other aspects that were 

assessed included the current market for methanol and urea. With a yearly demand of 70 

and 190 million tonnes respectively, the market for the product is secure regardless of the 

feedstock. Human health impacts showed a benefit in switching to urea from recovered 
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CO2 and a drawback when methanol is obtained from recovered CO2. Higher health 

impacts are associated with post-combustion capture and related processes. Lastly, a 

summary of all indicator results is shown in Table 7.11.  

  



291 
 

291 
 

7.9 Chapter seven reference list 

 

Abbas, Z., Mezher, T. and Abu-Zahra, M. R. M. (2013) ‘CO2 purification. Part I: Purification 

requirement review and the selection of impurities deep removal technologies’, International 

Journal of Greenhouse Gas Control. Elsevier Ltd, 16, pp. 324–334. doi: 

10.1016/j.ijggc.2013.01.053. 

Anenberg, S. C., Schwartz, J., Shindell, D., Amann, M., Faluvegi, G., Klimont, Z., Janssens-

maenhout, G., Pozzoli, L., Dingenen, R. Van, Vignati, E., Emberson, L., Muller, N. Z., West, J. 

J., Williams, M., Demkine, V., Hicks, W. K., Kuylenstierna, J., Raes, F. and Ramanathan, V. 

(2012) ‘Global Air Quality and Health Co-benefits of Mitigation Near-Term Climate Change 

through Methane and Black Carbon Emissions Controls’, Environmental and Health 

Perspectives, 120(6), pp. 831–839. doi: 10.1289/ehp.1104301. 

von der Assen, N. and Bardow, A. (2014) ‘Life cycle assessment of polyols for polyurethane 

production using CO2 as feedstock: insights from an industrial case study’, Green Chemistry, 

16(6), p. 3272. doi: 10.1039/c4gc00513a. 

von der Assen, N., Müller, L. J., Steingrube, A., Voll, P. and Bardow, A. (2016) ‘Selecting CO2 

Sources for CO2 Utilization by Environmental-Merit-Order Curves’, Environmental Science 

and Technology, 50(3), pp. 1093–1101. doi: 10.1021/acs.est.5b03474. 

Bazzanella, A. M., Ausfelder, F. and DECHEMA (2017) Technology study: Low carbon energy 

and feedstock for the European Chemical Industry. Frankfurt. 

BEIS (2016a) Digest of United Kingdom Energy Statistics (DUKES) 2016. 

BEIS (2016b) Electricity generation costs. 

BEIS (2017) UPDATED ENERGY AND EMISSIONS PROJECTIONS 2016. 

Bertuccioli, L., Chan, A., Hart, D., Lehner, F., Madden, B. and Standen, E. (2014) ‘Study on 

development of water electrolysis in the EU’, Fuel Cells and hydrogen Joint Undertaking, 

(February), pp. 1–160. Available at: http://www.fch-ju.eu/sites/default/files/study 

electrolyser_0-Logos_0_0.pdf. 

BIS (2015) ‘Industrial Decarbonisation & Energy Efficiency Roadmaps to 2050: Cross Sector 

Summary’, (March), p. 31. 

Boretti, A. (2013) ‘Renewable hydrogen to recycle CO2 to methanol’, International Journal of 

Hydrogen Energy. Elsevier Ltd, 38(4), pp. 1806–1812. doi: 10.1016/j.ijhydene.2012.11.097. 

BusinessWire (2017) Global Methanol Market 2016-2021: Growing Petrochemicals Demand 

& Development of New Industrial Sectors is Driving Growth - Research and Markets. 

Corsten, M., Ramírez, A., Shen, L., Koornneef, J. and Faaij, A. (2013) ‘Environmental impact 

assessment of CCS chains – Lessons learned and limitations from LCA literature’, International 

Journal of Greenhouse Gas Control. Elsevier Ltd, 13, pp. 59–71. doi: 

10.1016/j.ijggc.2012.12.003. 

Database, E.-P. (2014) CO2 emission data. 

DEFRA (2015) ‘The British Survey of Fertiliser Practice - Fertiliser use on farm for the 2014 

crop year’, (April), p. 6. 

Department for Environment Food and Rural Affairs (DEFRA) (2017) ‘Department for 

Environment, Food and Rural Affairs : Air Quality Statistics in the UK’, Defra National 

Statistics Release: Air Quality Statistics in the UK 1987 to 2016, (April), pp. 1–17. 



292 
 

292 
 

Department for Environment Food and Rural Affairs (DEFRA) (2017) ‘UK plan for tackling 

roadside nitrogen dioxide concentrations’, (July). 

Department for Environment Food and Rural Affairs (DEFRA) (2017) Weekly Road Fuel 

Prices. 

Department of Energy & Climate Change (2016) ‘Quarterly energy prices tables. Annex, June 

2016’, (MARCH). 

Dincer, I. and Acar, C. (2017) ‘Innovation in hydrogen production’, International Journal of 

Hydrogen Energy. Elsevier Ltd, 42(22), pp. 14843–14864. doi: 10.1016/j.ijhydene.2017.04.107. 

European Commission (2016) Production costs from energy-intensive industries in the EU and 

third countries. doi: 10.2790/79502. 

Guinée, J. B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., De Koning, A., Van Oers, L., 

Sleeswijk, A. W., Suh, S. and Udo de Haes, H. A. (2001) Life Cycle Assessment-An operational 

guide to the ISO standards Part 2A. 

Krohn, S., Morthorst, P.-E., Awerbuch, S. and The European Wind Energy Association (2009) 

‘The Economics of Wind Energy’, International Journal of Energy Technology and Policy, 

3(1/2), p. 158. doi: 10.1504/IJETP.2005.006769. 

McKone, T. E. and Hertwich, E. G. (2001) ‘The Human Toxicity Potential and a strategy for 

evaluating model performance in Life Cycle Impact Assessment’, International Journal of Life 

Cycle Assessment, 6(2), pp. 106–109. doi: 10.1007/BF02977846. 

Melvin, A. M., Sarofim, M. C. and Crimmins, A. R. (2016) ‘Climate Benefits of U.S. EPA 

Programs and Policies That Reduced Methane Emissions 1993-2013’, Environmental Science 

and Technology, 50(13), pp. 6873–6881. doi: 10.1021/acs.est.6b00367. 

Met Office Hadley Center (2011) Climate: Observations, projections and impacts. 

Methanex (2017) Methanex posts regional contract methanol prices for North America, Europe 

and Asia. 

Methanol Institute (2011) Methanol gasoline blends: Alternative Fuel for Today’s Automobiles 

and Cleaner Burning Octane for Today’s Oil Refinery. 

Methanol Institute (2017) The Methanol Industry. 

Morales Mora, M. a., Vergara, C. P., Leiva, M. a., Martínez Delgadillo, S. a. and Rosa-

Domínguez, E. R. (2016) ‘Life cycle assessment of carbon capture and utilization from 

ammonia process in Mexico’, Journal of Environmental Management. Elsevier Ltd, 183, pp. 

998–1008. doi: 10.1016/j.jenvman.2016.09.048. 

National Grid (2016) ‘Future Energy Scenarios 2016’, (July), pp. 1–194. 

National Grid (2017a) ‘Future Energy Scenarios ( FES)’, (July). 

National Grid (2017b) National Grid. 

Ofwat (2016) Business retail price review 2016 : final determinations. 

Owen, R. (2016) ‘Personal communication’. 

Saari, R. K., Thompson, T. M. and Selin, N. E. (2017) ‘Human Health and Economic Impacts 

of Ozone Reductions by Income Group’, Environmental Science & Technology, p. 

acs.est.6b04708. doi: 10.1021/acs.est.6b04708. 

Sayah, A. K. and Sayah, A. K. (2011) ‘Wind-hydrogen utilization for methanol production: An 

economy assessment in Iran’, Renewable and Sustainable Energy Reviews. Elsevier Ltd, 15(8), 



293 
 

293 
 

pp. 3570–3574. doi: 10.1016/j.rser.2011.05.013. 

Stamicarbon (2017) Urea facts. 

Statista (2017) Statista The portal for statistics. 

Sternberg, A. and Bardow, A. (2015) ‘Power-to-What? – Environmental assessment of energy 

storage systems’, Energy Environ. Sci., pp. 389–400. doi: 10.1039/C4EE03051F. 

Troy, S., Schreiber, A. and Zapp, P. (2016) ‘Life cycle assessment of membrane-based carbon 

capture and storage’, Clean Technologies and Environmental Policy. Springer Berlin 

Heidelberg, 18(6), pp. 1641–1654. doi: 10.1007/s10098-016-1208-x. 

WHO (2004) ‘Concise International Chemical Assessment Document Ethylene glycol: Human 

Health Aspects’, 61. 

 

  



294 
 

294 
 

8 Multi Criteria Decision Analysis (MCDA) and 

General Discussion 
 

This chapter interprets the environmental impacts by analysing and presenting them in a 

format that will guide the decision maker. With this, the decision maker can compare 

between scenarios and alternatives for better understanding of a process. The conceptual 

framework includes a multi criteria decision analysis (MCDA) method to rank all 

scenarios, based on the methodology from Section 4.6. An equal weights approach and 

a specific rank using simple attribute tanking technique (SMART) was used to compare 

results and show the applicability of the framework. This chapter also provides a final 

and general discussion of the work done by the author.  

 

8.1 Equal weighting of results using Multi Value Attribute Theory 

(MVAT) 

 

A matrix for scenario analysis with un-aggregated results was created. This matrix can 

be found in Appendix VII. It includes all baseline and future electricity grid mix 

scenarios. The results were ranked using equal weights for all quantitatively measurable 

indicators. The values showed repeated ranks, this was due to the similarities of the future 

electricity grid mixes.  

For this section and for clarity of results, only the baseline scenarios were considered. By 

using the baseline cases, an indication on how a decision-making step can be applied to 

a CO2 utilisation process is shown. Fifteen out of twenty indicators were ranked. The 

other five indicators are descriptive of the process and are considered within other 

impacts. The weight of each indicator was set at 6.6%.  

The scenarios for each production route are: 

 Methanol and Urea 

1a* Post-combustion capture unit from subcritical PC (pulverised coal) power plant + 

utilisation product synthesis + hydrogen from water electrolyses powered by the 

electricity grid 
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2a* Post-combustion capture unit from subcritical PC (pulverised coal) power plant + 

utilisation product synthesis + hydrogen from water electrolyses powered by wind power 

3a* Non-utilisation route for product synthesis 

 4a* Direct air capture unit for CO2 supply + utilisation product synthesis + hydrogen 

from water electrolyses powered by the electricity grid 

5a* Direct air capture unit for CO2 supply + utilisation product synthesis + hydrogen 

from water electrolyses powered by wind power 

Table 8.1 shows the weighted results for methanol scenarios. A rank repetition occurs in 

scenarios where the energy mixes are the same (Scenario 1a and 4a, 2a and 5a).  

 

Table 8.1 Multi criteria decision analysis (MCDA) results with equal weighting for methanol scenarios 

Indicators 
Scenarios 

1a 2a 3a 4a 5a Weight (%) 

Net CO2 avoided 5 1 4 2 2 6.6 

Net CO2 utilised 1 1 5 1 1 6.6 

Global warming  5 1 2 3 3 6.6 

Eutrophication 4 1 5 1 1 6.6 

Acidification 5 2 1 2 2 6.6 

Stratospheric ozone 

depletion 
4 3 5 1 1 6.6 

Photochemical 

oxidation 
5 1 3 3 1 6.6 

Marine aquatic eco-

toxicity 
5 1 4 2 2 6.6 

Freshwater aquatic eco-

toxicity   
4 3 5 1 1 6.6 

Terrestrial eco-toxicity 5 2 1 2 2 6.6 

Human toxicity 5 4 1 1 1 6.6 

Particulate matter 5 2 1 2 2 6.6 

Fossil depletion  5 1 4 2 2 6.6 

Abiotic depletion 2 4 1 5 3 6.6 
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Indicators 
Scenarios 

1a 2a 3a 4a 5a Weight (%) 

Utilities costs 2 4 1 3 5 6.6 

Total 4 2 3 3 2 
N/A 

Rank 5 2 3 4 1 
N/A 

 

Figure 8.1 shows the graph with the final rankings, where the lower the value, the better 

the scenario (with lower impacts). The graph shows Scenario 5 and 2 as the best options. 

These results show a better overall score for this CO2 based product than when the results 

are un-aggregated (as seen at the end of Chapter 7). 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8.2 shows the weighted results for urea scenarios. As is the case with methanol, 

there is also rank repetition on some indicators due to the use of the same electricity 

mixes. The rank repetition is seen in Scenarios 1a and 4a, 2a and 5a.  

Figure 8.2 shows the graph with the final ranks; the overall results are consistent with 

the individual indicators. The scenarios with the most CO2 utilisation potential are the 

ones connected to renewable sources. There was no major difference between changing 

the CO2 capture route. The conventional route overall has the least favourable score 
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despite having lower global warming and fossil depletion scores than scenarios 1 and 4. 

The same was found with methanol, these results show a better general score for this CO2 

based product than when calculated un-aggregated (Shown in Chapter 7).    

 

Table 8.2 Multi criteria decision analysis (MCDA) results with equal weighting for urea scenarios 

Indicators 
Scenarios 

1a 2a 3a 4a 5a Weight (%) 

Net CO2 avoided 4 1 3 5 2 6.6 

Net CO2 utilised 1 1 5 1 1 6.6 

Global warming  4 1 3 5 2 6.6 

Eutrophication 3 1 5 4 1 6.6 

Acidification 5 2 3 3 1 6.6 

Stratospheric ozone 

depletion 
4 3 5 2 1 6.6 

Photochemical 

oxidation 
4 1 3 4 1 6.6 

Marine aquatic eco-

toxicity 
3 1 5 4 2 6.6 

Freshwater aquatic eco-

toxicity   
2 2 5 2 1 6.6 

Terrestrial eco-toxicity 4 1 5 3 1 6.6 

Human toxicity 4 3 5 2 1 6.6 

Particulate matter 3 1 3 5 2 6.6 

Fossil depletion  5 1 4 3 2 6.6 

Abiotic depletion 2 4 5 1 3 6.6 

Utilities costs 1 3 5 1 4 6.6 

Total 3.2 1.7 4.3 3 1.7 
N/A 

Rank 4 2 5 3 1 
N/A 
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8.2 Specific weighting of the environmental impact results  

 

As  stated in the ILCD handbook (European Commission 2010), specific weighting can 

support the interpretation of a study. However, it can only serve as a sensitivity analysis 

and not as a comparative study intended for public viewing.  

In the case of CO2 utilisation, global warming and fossil fuel depletion are the main 

impacts assessed (as discussed previously in Chapter 3 and seen in studies such as 

Sternberg & Bardow (2015)). It is therefore suggested in this work, that all environmental 

assessments of CO2 utilisation should include a weighting factor for a minimum of global 

warming and fossil fuel depletion impacts. These results can be used for sensitivity 

analysis and are of interest for the CO2 utilisation area as life cycle assessment studies 

are increasingly used as decision support tools. A similar approach was found for ranking 

electricity scenarios in Santoyo-Castelazo & Azapagic (2014) and the fundamentals are 

taken as basis for the approach taken in this work. A simple multi attribute rating 

technique (SMART) was used to assign and apply the weight of the impacts. The 

assessment with the assigned weights is shown in Appendix VII. The decision makers 

in this worked example are the author and the research group involved. This streamlined 

group was used for the completion of a “proof a concept” study. This shows the 

applicability and validity of the decision step in the conceptual framework for impact 
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assessment. For future work, it is envisioned that the involvement of a larger group of 

stakeholders in the decision-making process would be beneficial in ensuring a more 

robust outcome. A smaller group was used to meet the time constraints of this study as a 

more extensive stakeholder engagement stage fell outside of the scope of this project 

(with proof of concept being the major aim). This does show a limitation in the 

stakeholder approach as it requires increased engagement from a larger, targeted working 

group.   

 

Weighted rank  

This ranking included the general weighted score of each case study after applying the 

simple multi attribute rating technique and is shown in Figure 8.3. For both methanol 

and urea the scenarios were ranked in similar order where the best cases were the 

alternatives connected to renewable energy. The worst scenarios for methanol were the 

CO2 based processes coupled to the electricity grid. The worst case for urea production 

was the conventional route option. 

 

Figure 8.3 Overall weighted results for methanol and urea case studies 
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Weights assigned to global warming  

Two weights were assigned to global warming scores. In the first, global warming is 

given 100% relevance and the rest of the impacts are given 25% (little relevance). Results 

for methanol and urea alternatives (Figure 8.4) do not change from the weighted rank 

case shown previously (Figure 8.3).  

 

 

 

 

 

 

 

 

 

The second weight considers a case where global warming has 100% relevance and the 

rest of the impacts have 0% (no relevance). Results in Figure 8.5 show closer results 

between CO2 utilisation processes and conventional production routes. However, the 

number one ranked scenario is still a CO2 utilisation process coupled with renewables for 

both products. Any other weight combination will give the same result as with a 100:25 

ratio. 
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Fossil fuel depletion weights 

The same weights were assigned to both global warming and fossil depletion scores. 

Figure 8.6 shows the results for the 100:25 ratio weight Methanol and urea ranks do not 

change with this weight ratio and remain the same as the initial weighted ranks case 

(Figure 8.3).   
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Figure 8.5 Global warming (GW) weighted scores for methanol and urea case studies, 100:0 weight 
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Results in Figure 8.7 show for the second weight ratio considered; fossil depletion with 

100% relevance and the rest with 0% (no relevance). For methanol and urea production, 

CO2 utilisation coupled with renewables are the best cases. The worst case for methanol 

is CO2 utilisation coupled with the electricity grid mix. For urea, the worst case is a 

conventional production process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.2.1 Comparison of all weights 

Methanol 

Six different weights were used to analyse the sensitivity of the results. These results are 

summarised in Table 8.3. Overall, the scenario with direct air capture (DAC) and 

renewables for hydrogen production has the lowest impacts in 66% of the cases. The case 

with the highest impacts is a combination of post-combustion capture and hydrogen 

production connected to the electricity grid mix. The conventional process is mostly 

stable with comparably average impacts. Changes in the ranking order can also be seen 

in scenarios with 100% relevance compared to 0% no relevance.   
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Table 8.3 Summary of methanol production weighting results for each case study and each weight variable 

Weight 
Scenario 

1a* 2a* 3a* 4a* 5a* 

Equal weights 5 2 3 4 1 

Weighted ranks 5 2 3 4 1 

GW1 weight 100:25 5 2 3 4 1 

GW1 weight 100:0 4 1 2 5 3 

FD2 weight 100:25 5 2 3 4 1 

FD2 weight 100:0 4 1 3 5 2 
1Global warming 2Fossil depletion 

 

 

Urea 

The summary of weighted results for the urea case studies is shown in Table 8.4. The 

sensitivity levels are lower than for methanol production. 83% of the weight variables 

have post-combustion capture and hydrogen production from renewables as the case 

study with the lowest impacts. 66% of the weighting options have the conventional route 

as the case study with the highest impacts.  

Table 8.4 Summary of urea production weighting results for each case study and each weight variable 

Weight 
Scenario 

1a* 2a* 3a* 4a* 5a* 

Equal weights 4 2 5 3 1 

Weighted ranks 4 1 5 3 2 

GW1 weight 100:25 4 1 5 3 2 

GW1 weight 100:0 4 1 3 5 2 

FD2 weight 100:25 4 1 5 3 2 

FD2 weight 100:0 5 1 4 3 2 
1Global warming 2Fossil depletion 

 

8.3 General uncertainties and discussion points 

 

Multi criteria decision analysis (MCDA)  

The major uncertainty in the ranking system is the weight of the ranks. These are decided 

by a set of questions proposed by the author and discussed with the research group 

involved. Although the research group has experience in CO2 utilisation, the study would 

benefit from a larger group of stakeholders and stakeholder engagement such as industrial 
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experts, policy makers and other academics/consultants. The results are as expected; the 

best CO2 utilisation scenarios are the ones connected to renewable energy.  While this 

ranking system is practical and easy to implement, currently it can only be applied to 

measurable results. This left five indicators out that although discussed, were not in the 

final ranking system and did not contribute to calculating the CO2 utilisation potential. In 

future work, fuzzy set theory will be applied to translate the linguistic values to numerical.  

Although final scenario rankings were similar for both products, the net impacts were 

not. Urea production has lower environmental impacts than methanol through CO2 

utilisation. Since the ranking systems compare similar traits (renewable, vs non-

renewable, post-combustion capture vs direct air capture), the rank results are still similar. 

This method is not applicable to comparing utilisation products versus CO2 utilisation 

products if the final product is not the same. Hence, this framework can be applied to 

CO2 utilisation versus non-CO2 utilisation or CO2 utilisation versus CO2 utilisation if the 

end-product is the same.   

 

Study boundaries 

Although this point has been discussed in Chapter 3 and 4, it is important to state it once 

more: the boundaries of a study will depend on the final product and what is it being 

compared to. This is no different for CO2 utilisation technologies. There are efforts to 

unify the outcome of the studies to make them more comparable. However, this will only 

work within the same boundary: cradle to gate, gate to gate, etc. This will depend on the 

final use of the CO2 based product, whether it is a chemical, fuel or material. As of now, 

in this work it is suggested to use cradle to gate since the end-product is the same for 

methanol and urea when produced by both CO2 utilisation and conventional routes. This 

does not negate the temporary storage CO2 issue as it is acknowledged that from gate to 

grave the impacts will be the same for both CO2 based and conventional products. The 

focus of this boundary is to detect any environmental benefit/drawback of producing a 

CO2 based chemical compared to ca conventional chemical.   
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Data limitations 

The uncertainty of results (Section 5.4 and 6.4) increases when data availability is 

limited. This difference in uncertainty can be seen between methanol and urea case 

studies. Methanol is based on literature available, while urea is a mix of simulations, data 

provided by the stakeholder and literature. Although there are final results for both cases, 

the methanol results are much more conservative. It is useful to see how both case studies 

can be analysed within their own limitations and how the assessment method is flexible 

enough to tailor for each case. They are both worked examples that show the applicability 

of the framework developed. 

For a final interpretation, only the baseline scenarios were fully assessed. These scenarios 

included two main capture routes. While these are not the only ones, they do represent 

two of the biggest capture concepts: CO2 from fixed point sources and from direct air 

capture, hence the decision to assess these. Within these areas, many processes can be 

assessed, and some are use to investigate sensitivity in this work too analysed in this 

work. By using the two capture routes, a general picture of CO2 utilisation was created, 

allowing for general comparisons and the development of an environmental impact 

assessment framework. The main limitation encountered was that the capture routes are 

not at the same research stage/ TRL and data was not evenly available for both processes. 

Sensitivity analyses were used to determine how this would change final impacts, but the 

results were negligible at a broader scope. 

Other data differences include transportation. The methanol case studies include CO2 

transportation for 500 km through a pipeline. Urea cases do not include any form of 

transport. This showed the CO2 transport contributions to the CO2 utilisation potential. 

The impacts were too small to have a significant impact on the overall environmental 

impact values. In practice, if the information is available, it should be included. Other 

data limitations can include the optimisation of the processes such as heat integration. If 

they are not considered in this environmental impact assessment, then it is assumed that 

the results are operating from a non-optimised scenario. This leaves optimisation to the 

process engineer/optimiser to make the changes necessary and the LCA practitioner to 

assess the process as many times as required. For future work, the framework will include 

guidelines for assessing the CO2 utilisation process according to the development stage 

of the process. 
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Electricity outlook 

There are two main uncertainties with the electricity scenarios created. The first is 

extrapolating grid mix to the year 2050. A more accurate approach collects data for this 

year, but this data would have been an approximation in itself. Nevertheless, this 

uncertainty was accepted as one of the many future possibilities. This also led to an 

inclusion of several databases and projections to create the scenarios. As the number of 

projections used increased, the outcome had higher variance. This is seen in the disparity 

of the results between the baseline scenario and the projections from literature. This is 

attributed to using different electricity mixes. Baseline cases use commercial life cycle 

assessment datasets and the projections use information from the National Grid and BEIS. 

The timeframes of both datasets are not equal. To overcome this, the scenario planning 

approach was used, where there is no one solution, but a series of potential options. 

Therefore, it is the general trends that are useful for interpretation.   

 

Utilities  

This work considers utility costs for all case studies. These results are comparable except 

for renewable energy cost (wind power). Because of the way renewable energy is 

charged, there is no average cost that can be used for a general assessment. Therefore, 

the levelised cost of electricity (LCOE) was used instead. While this gives an initial 

insight of the costs of CO2 utilisation, the uncertainty level is high and still needs to be 

addressed at macro-economic scale. This is an initial attempt to develop a life cycle 

costing method and is an important part of the proposed future work. 

 

CO2 captured as waste, non-waste or by product 

Is captured carbon dioxide a waste, a non-waste or by-product? After revising the waste 

regulations set in place by the Waste Framework Directive (see Section 3.4), the 

objective is to ensure that carbon dioxide can be a non-waste flow after capturing. This 

means that the CO2 stream should have a marketable value, be of certain use and comply 

with health and environmental regulations. Before capturing, the source of carbon dioxide 
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(i.e. flue gases) will be considered a waste as it is a substance or object that is discarded. 

It is what happens after capturing that will determine its legal state. Whilst considering 

CO2 as a by-product would be ideal, this is not possible unless it can be used directly 

without further processing prior to its use. If there is a capture stage, CO2 will not be a 

product. This leaves the possibility to explore processes that use direct flue gas utilisation, 

in which the flue gas could potentially act as a by-product.  

There is also the question whether utilising carbon dioxide is a recovery, recycling or 

reuse process. Again, the Waste Framework Directive (WFD) has clear definitions on 

each of these terms and when to apply them. A recovery definition seems to be aligned 

with carbon capture; waste that can serve a useful purpose by replacing other materials 

to fulfil a function. In this instance, the CO2 capture method would be considered a 

recovering process. While it is tempting to also use the term CO2 recycling, the original 

substance (i.e. flue gas) or object did not have an original purpose; hence, recycling is 

not a correct term. The last term is re-use, which is any product or component that is used 

again. Since the CO2 was not used before in any form, this is also would be an incorrect 

term.  To clarify the situation, the following statement was made: 

 

 “CO2 captured for carbon dioxide utilisation processes is considered a non-waste 

substance obtained through a recovery process that aims to replace conventional 

materials to conserve natural resources and help create a marketable end-product.” 

 

CO2 utilisation and EU Emissions Trading Scheme (EU ETS) 

To qualify in the trading scheme, carbon dioxide utilisation would need to be a legitimate 

low carbon technology. This reiterates the importance of having environmental 

assessments that can help prove its contribution towards meeting emission reduction 

targets. This also means that utilisation technologies would need to be operational at large 

scale if they are to play a role in carbon trades. There is also an interest in whether only 

the recovered carbon dioxide could contribute in the emissions trading scheme. At this 

moment and at a basic level, CO2 would only contribute to the EU emission trading 

scheme (EU ETS) if it can reduce its carbon allowance needs. This means that the 
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capturing and/or utilisation process would have a contribution to the program only if it is 

at least carbon neutral.  

 

Comparability with other studies 

The most important research gap found in this area is the lack of comparability of life 

cycle assessment results for CO2 utilisation processes. It is difficult to express the benefits 

and drawbacks of utilisation system when there are no basic guidelines to follow. 

Through this work, a set of indicators and a ranking system are presented that will 

facilitate the interpretation of results. While un-aggregated results should be presented to 

avoid misinterpretation by the LCA practitioner, a final interpretation with the same 

boundaries for all studies can help to convey the message of the results. This is 

particularly useful for policy makers and non-governmental organizations (NGOs) that 

need to form a decision based on scientific data. As the demand for sustainability 

assessments increases, the ways to present these assessments should also improve without 

compromising scientific knowledge.         

 

 

 

8.4 Chapter eight summary 

 

This chapter discusses weighting of indicators, uncertainties and general discussion 

points. First, results from Chapter 5 and 6 are calculated by applying weighting factors 

to the CO2 utilisation indicators. The calculated results are similar for all weighting 

scenarios in both urea and methanol cases. The major differences are seen when either 

global warming or fossil depletion scores are assigned a weight of 100% (relevance). 

When this happens, the ranking results favour conventional routes over utilisation 

processes using electricity grid mixes. In general, case studies that use 100% renewable 

energy for hydrogen production are better ranked than those that do not, since the total 

kg of CO2 emitted is lower than when using a carbonised electricity grid. This is 

consistent with all the weighting factors used.  The weight of the ranks was calculated by 

using a simple multi-attribute rating technique (SMART). The results found give an 
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overview of how the environmental impact assessment framework can be applied and 

what is the outcome. As with any study, there are uncertainties and limitations to 

consider. Some of these uncertainties include: 

 

 Data gaps that limit the parts of the process that can be analysed (i.e. catalyst use 

that has been omitted for all processes). This leads to cutting back on other 

processes that might have more information to ensure comparability. 

 It is difficult to obtain electricity costs at consumption point for renewable energy 

therefore in this work levelised cost of electricity (LCOE) values are used 

instead. 

 Extrapolating future electricity scenarios leads to inaccuracies.  However, since 

future calculations will always be estimations, the results can be used for loose 

interpretations provided the future extrapolations reflect an expected reality. 

 The study boundaries make the CO2 based products only comparable with other 

products that have identical chemical composition (in this case cradle to gate).  
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9 Conclusions, Recommendations and Future 

Work 
 

Through this work, the possibilities of assessing a CO2 utilisation process from an 

environmental point of view are reviewed, analysed and discussed. For this, a framework 

was created tailored to the needs of a process that uses a waste flow of carbon dioxide 

and chemically transforms it into a new commodity. To prove the validity of the 

framework, two main products were used as case studies: methanol and urea. Methanol 

was selected for its ability to be produced from various feedstocks, including CO2. It is 

also one of the most studied CO2 utilisation processes, making it a suitable case for “proof 

of concept”. Urea was chosen as the specific case to test the robustness of the framework. 

Urea can be produced with captured CO2 and H2 from renewable energy to produce NH3 

through Haber-Bosch.   

 

9.1 Framework recommendations 

 

Finding the data for the life cycle inventory can be challenging. There is much 

information available that is aggregated and un-aggregated. However, most of this 

information is not tailored for CO2 utilisation processes or chemical processes in general. 

This can complicate performing the life cycle assessment. After trying several modelling 

approaches, the following recommendations are suggested: 

 Find a life cycle assessment platform that is user friendly and supports at least the 

commonly used characterisation methods, i.e. CML-IA and ReCiPe (H) methods.  

 The platform should be able to integrate databases such as ecoinvent or other 

commercially available. It should be able to load supply chains for chemical 

processes and not only products. 

 If simulation data is available, the inputs/outputs and utilities can be useful. From 

the experience obtained in this work, it is better to start from a black box model 

approach than replicating the simulation systematically. By doing this broken 

flows are avoided without changing the outcome as anything in between with no 

environmental connection will appear as an empty flow. Examples of successful 
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and failed life cycle assessment models for CO2 utilisation are shown in 

Appendix VIII. 

 

 Add allocation steps within the life cycle assessment (LCA) model, this facilitates 

the interpretation phase. This can be done by adding negative CO2 values where 

required.  

 At least two types of allocations should be applied and compared between each 

other. In this work, we suggest system expansion as the first option and a 

economic allocation as the second. 

 Use commonly applied environmental impact categories in LCA when the 

assessment is at screening level, but as a minimum global warming, fossil 

depletion, CO2 avoided and used must be analysed first. If the results for these 

categories are negative, it is difficult to see a scenario where CO2 utilisation would 

be feasible. As the depth of the assessment increases, analytical tools such as 

Monte Carlo can be used to screen sensitive impact categories.  

 It is suggested to at least use a midpoint approach such as CML-IA for the 

characterisation factors when the assessment is at screening level. This makes it 

easier to compare to other LCA studies on CO2 utilisation studies. Extra methods 

and approaches can be included to check sensitivity. 

 Future scenarios should be planned according to the information available and the 

hotspots detected. i.e in this work, the scenarios were based around electricity as 

this was the most sensitive input.  

 

9.2 Future work 

 

 Mapping CO2 availability in a country is useful at present time and was relevant 

in this work. However, this is not a fixed value, as industrial priorities change 

with time so will CO2 sources. Future work will consider CO2 source projections 

and how this will by mapping high to low probability of a CO2 source availability 

in the next 20 to 30 years. 

 There is an opportunity to improve the ranking method by increasing stakeholder 

engagement and including a panel of experts to determine the weight of each 
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indicator. There is also the option of using a ranking system that can also include 

qualitative indicators such as the inclusion of fuzzy numbers.  

 Future work considers expanding the environmental impact assessment 

framework to include social and economic categories to create a sustainability life 

cycle assessment. 

     

 Finally, the framework can be presented in a template format (technical summary) 

with easy guidelines for life cycle assessment/carbon dioxide utilisation 

practitioners. There is still much discussion in this area, since it is unclear until 

which point it is useful to aggregate results. However, a preliminary format can 

be created towards unifying the indicators of relevance and the acceptable ways 

to assess them. This format would have variations to accommodate different type 

of products from CO2 utilisation processes.   

 

 

9.3 Framework conclusions 

 

A guideline was specified on how to use process simulations as database sources for life 

cycle inventories as well as the minimum data required to build the inventory. To assess 

the environmental aspects, analyse and quantify their impacts, a life cycle assessment 

approach was used. The ISO standard 14040:2006 was used as baseline and adapted to 

CO2 utilisation processes; this included using a subtraction method to allocate. A cradle 

to gate approach was used for all scenarios. This assessment also considered all processes 

to be linear using a matrix method for process based modelling following the work of 

Heijungs et al. (2013). CML-IA method was used to assess the 11 impact categories.  

Since electricity plays a large role in CO2 utilisation, it is suggested to include electricity 

outlooks. These scenarios reflect the probable electricity grid mixes of a region under 

certain conditions and timeframes. All impacts are assessed for the year 2015, 2025, 2050 

and a baseline case with the current available datasets. Other aspects included in the 

framework include utilities cost and the market for CO2 based products. 

As a last step in the framework, it is suggested to include scenario analysis to interpret 

results. The recommendations of this study include using a multi criteria decision analysis 
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(MCDA) approach to evaluate possible routes, alternatives or decisions. While un-

aggregated results should always be available, there is also a requirement to unify results 

in CO2 utilisation assessments, make them more comparable and reduce uncertainty of 

interpretations.  

The framework was tested by assessing two CO2 based products. The main conclusions 

for each case are drawn out in the following sections. 

 

9.4 Case study conclusions 

 

9.4.1 Methanol case study 

A comparative assessment is made between methanol production from CO2 and 

renewable hydrogen and methanol from natural gas and from syngas. The functional unit 

is defined as the production of 1 kg of CH3OH per 1.43 kWh of electricity generated for 

the grid.  

 

 Two capture routes were considered: CO2 is captured from a subcritical 550 MW 

Pulverised Coal power plant with post-combustion capture. The capture method 

used is absorption with amines at a 90% capture. In the second option, CO2 is 

captured from a direct air capture (DAC) plant using a sodium hydroxide solution 

in an absorption process. 

 Hydrogen is supplied through water electrolysis. The system is powered using 

both renewables and the current electricity grid (depending on the scenario). As 

an alternative process, data from chlor-alkali databases were also used to compare 

processes. Sixteen different databases and variations of methanol synthesis were 

tested.  

 Five main scenarios were assessed. Scenario 1 and 4 do not use renewables for 

CO2 utilisation, Scenario 1 uses post-combustion capture process, Scenario 4 uses 

direct air capture theoretic principles. Scenarios 2 and 5 use renewable energy to 

power water electrolysis to produce hydrogen. Scenario 2 uses post-combustion 

capture and Scenario 5 uses direct air capture. Scenario 3 is the conventional 

production route of methanol from natural gas. 



315 
 

315 
 

 Results show that only the CO2 utilisation scenarios coupled with renewable 

energy can at least be carbon neutral. No major improvement was found between 

using post-combustion capture and direct air capture (DAC). This was due to the 

high indirect emissions associated currently with capturing CO2 from air. Overall, 

CO2 emissions contribute from 88 to 91% of the global warming score to CO2 

utilisation scenarios. 

 Other impacts such as fossil fuel depletion show similar trends as with carbon 

avoidance. Methanol synthesis needs to lower its energy penalties or be sourced 

from decarbonised energy to reduce its fossil fuel depletion impact to at least 2.4 

times its current value. Eutrophication scores have the lowest levels when using 

renewables in CO2 utilisation cases. Acidification scores are negative in all 

utilisation cases due to high SO2 emissions linked to the electricity grid and 

dehydration of CO2. For stratospheric ozone depletion, methanol from natural gas 

has the worst results due to its reliance on fossil fuels. Resource depletion is worse 

in scenarios that use renewable energy from wind power; the impacts are 

attributed to the manufacturing stage, specifically the use of molybdenum. 

Photochemical oxidation score is its lowest in Scenario 3 (methanol from natural 

gas). Finally, ecotoxicity scores showed varied results. Marine aquatic and 

terrestrial ecotoxicity results do not favour CO2 utilisation routes due to the high-

energy penalties. Freshwater ecotoxicity has lower impact in utilisation cases due 

to the lack of methane requirements for methanol production.  

 Sensitivity tests showed that by allocating with the avoided burden method, 

environmental burdens shift to only one part of the process instead of distributing 

them according to the impact of each product and co-product. System expansion 

was chosen as the preferable allocation method.  

 Seven different hydrogen sources were compared against three methanol 

synthesis routes and two carbon sources. This showed close results between 

theoretical case studies and a case with stakeholder information. This reinforces 

the usefulness of carrying a pre-assessment study of this sort for life cycle 

assessment processes.  

 The electricity outlook with the suggested grid mixes did not favour methanol 

production through CO2 utilisation processes until the year 2050 when the grid is 

decarbonised unless renewable energy is used. This also has an impact on 
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operational costs, where utilities costs are high due to increased hydrogen 

requirements per kg of CH3OH produced.  

 If environmental and cost hurdles can be overcome, there is a strong market for 

CH3OH. While the demand for it in the UK is small (4% total in Europe), there is 

an increase in other applications such as: alternative fuels, fuel cells, DME, etc.  

 The highest utilisation potential is seen with CO2 captured from air and hydrogen 

produced from renewable energy. 66% of the ranking methods selected this 

combination as the process with lowest environmental impacts. 

 

9.4.2 Urea case study  

A comparative assessment is made between urea production from CO2 with NH3 (from 

renewable hydrogen) and urea from fossil fuel based NH3. The functional unit is defined 

as the production of 1 kg of NH2CONH2 per 0.8 kWh of electricity generated for the grid.  

 NH3 is produced by using H2 from a PEM electrolyser that delivers 33 kg H2/day 

and uses 55 kWh. Urea is synthesised by the reaction of ammonia and carbon 

dioxide at high temperatures and pressures.  

 The principles used in the methanol case study for selecting five scenarios were 

also applied in this case. Scenarios 1, 2, 4 and 5 are CO2 utilisation cases, while 

Scenario 3 is the conventional route. Scenarios 1 and 4 use electricity from the 

grid to produce green hydrogen and are coupled to CO2 from post-combustion 

capture. Scenario 2 and 5 use renewable energy to produce hydrogen and is 

coupled with CO2 from direct air capture (DAC).  

 Results show that up to 37% of carbon emissions can be avoided compared to the 

conventional route if H2 is produced from renewable energy (wind power) in CO2 

utilisation scenarios. If 100% renewables are not used, then CO2 emissions can 

rise up to 57% compared to the conventional route. 61% of the carbon emissions 

are associated with H2 production. The greenhouse contribution to global 

warming without CO2 ranges from 8 % to 11%.  

 All CO2 utilisation scenarios have less potential for environmental impacts than 

the conventional urea route in the following categories: marine aquatic eco-

toxicity, terrestrial eco-toxicity, freshwater eco-toxicity, abiotic depletion, 

acidification, eutrophication, and stratospheric ozone depletion. For 

photochemical oxidation and fossil depletion, only CO2 utilisation scenarios that 
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use renewable energy for hydrogen production can have favourable results 

compared to the conventional route. System expansion was applied to all impact 

calculations. 

 The electricity outlook with the grid mix projections, suggests that by 2025 the 

global warming and fossil depletion scores of urea from CO2 utilisation processes 

can be lower than urea from a conventional route. Other environmental impacts 

also trend towards lower values in CO2 utilisation scenarios compared to the 

conventional route.  

 There is also a positive outlook for urea production utilities costs from recovered 

CO2 at small scale. This is due to the high fuel costs of traditional urea synthesis 

compared to CO2 utilisation processes where fuel is low or non-existent. In the 

utilisation scenarios, water electrolysis accounts for most of the operational costs. 

63% to 66% of total operational electricity costs come from the electrolyser.   

 The highest utilisation potential is seen with CO2 capture from post-combustion 

capture and hydrogen production from renewable energy. 83% of the ranking 

methods calculated this process as the one with lowest environmental impacts. 

 

 

9.5 General conclusion 

 

The relevance of this research is the contribution to lessen the impacts of man-made 

processes through an environmental impact assessment. Finding efficient methods to 

analyse carbon mitigation technologies can help guide these processes towards reaching 

sustainability targets. For carbon dioxide utilisation, specifically, it can help to determine 

if there is a contribution to climate change mitigation and/or lessening of other impacts 

and whether this technology can be scalable. 

An environmental impact assessment framework that is applicable to carbon dioxide 

utilisation processes that chemically transform CO2 has been developed. This is a novel 

multidisciplinary assessment approach to determine and interpret the carbon utilisation 

potential of a process. The results showed the benefits of using specific indicators and 

scenarios to overcome the challenges of measuring processes that use a captured CO2 

source. It also provides the initial guidelines to create a template for carbon dioxide 
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utilisation assessments in the future. This work has been tested on two main products 

with a supply chain based in the UK and can be adapted to other regions.  
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Appendices 
 

Appendix I 

 

Initial scenario analysis for the environmental impact assessment framework design, 

divided into four stages: 

 

Locational availability of renewable energy 

Region/country 

 Energy mix and associated impacts 

.-Are there unlimited/limited/no renewable energy sources? 

.-Do the associated impacts compare low/equal/high to other potential countries? 

 

 Energy production 

Is there a surplus/sufficient/insufficient rate of energy production? 

 

Environmental 

CO2 emissions and fossil depletion 

 Allocation of emissions and fossil depletion rates for CO2 source, capture stage, 

utilisation transport and extra processes 

.- Are levels low/moderate/high compared to other production routes? 

.- Yes/most likely/no there are process alternatives to reducing emissions and 

fossil depletion scores? 

Environmental impacts 

 Allocation of main impacts according to study boundaries 

.- Are impacts low/moderate/high compared to other production routes? 
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.- Yes/most likely/no there are process alternatives to reducing environmental 

impacts? 

carbon dioxide utilisation (CDU)/conventional 

 Analysis on net emissions/impacts between carbon dioxide utilisation and 

conventional production methods 

 

Other aspects of CO2 utilisation 

Capture cost 

 Cost of CO2 avoided 

.- Is the net CO2 avoided cost lower/equal/higher than other carbon dioxide 

utilisation  (CDU) and conventional processes 

 

Utilisation cost 

 Cost of CO2 avoided 

.- Is the net CO2 avoided cost lower/equal/higher than other carbon dioxide 

utilisation (CDU) and conventional processes 

 

Market for product 

 Demand for carbon dioxide utilisation (CDU) product 

.- Is there a low/medium/high demand for utilisation product? 

 

 20 year outlook for product 

.- Is the demand for the product trending towards down/stable/up? 

 

Energy outlook 

 Renewable energy costs 

.- Will renewable energy costs be low/feasible/non feasible? 
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 20 year outlook for renewable energy 

.- Are the projections for renewable energy cost positive/neutral/negative 

in the next 20 years? 

 

Design of the CO2 utilisation process 

CO2 source 

.- Will the CO2 be supplied via air capture/biogenic point source/non 

biogenic point source? 

.-Will the CO2 concentration in the stream be low/medium/high? 

.-No/most likely/yes dehydration method will be required? 

 

Capture 

.-Will the CO2 capture method be via direct air capture (DAC)/direct flue gas 

utilisation/flue gas? 

.-It will not/most likely/will require extra processes such as compression and 

impurities removal?   

 

Utilisation 

.- Will the utilisation route require no extra energy/renewable energy/fossil 

based energy? 

.-Will the energy/requirements be low/medium/high compared to conventional 

routes? 
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Appendix II 

Mapping of carbon capture processes for fixed point sources: 

 

Mapping of Direct Air Capture processes: 

 Inputs/outputs for capture stage with post-combustion capture, subcritical pulverised coal (PC), based on NETL (2015). 
GaBi ts version 8.7.0.18 software used for mapping. 

Inputs/outputs for a direct air capture unit (DAC) based on Zeman (2014). GaBi ts version 8.7.0.18 software used for 
mapping. 
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Mapping of hydrogen production through chlor-alkali electrolysis (adapted to UK values):  

 

 Inputs/outputs for chlor-alkali electrolysis for hydrogen production, based on Althaus et al. (2007). GaBi ts version 8.7.0.18 software used for mapping. 
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Mapping of ammonia and urea process for Scenario 3 (adapted to UK values) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Inputs/outputs for ammonia and urea production using GaBi TS version 8.7.0.18 software for modelling and ecoinvent version 3.3 
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Appendix III 

Quality indicators selected and adapted to carbon dioxide processes. Based on inventories 

by NETL (2013). 

 Source reliability: Describes where the life cycle inventory (LCI) data is obtained 

from. There is a higher tolerance for secondary sources do to the general lack of 

primary information for carbon dioxide utilisation (CDU). However, data cross 

checks are still required with secondary data. 

 Database within date: This quality indicator determines whether the data for the 

life cycle inventory (LCI) is still relevant in the assessment. Since CO2 utilisation 

processes are relatively new, there are not many timeframe problems associated 

with it. 

 Geographical correlation: Determines whether the impacts of a database are 

aligned with the region of study. For carbon dioxide utilisation (CDU), the index 

is flexible. As information advances in this area, the quality index can tighten.  

 Technical similarities: This last indicator determines whether the database to use 

is representative of the process under study. Again, the general limitations in 

carbon dioxide utilisation (CDU) data limit how close this indicator can be. It is 

assumed that if the process is the same or very similar, it can be used for general 

assessments.    

Quality indicators for carbon dioxide utilisation processes 

Score Source reliability 
Database 

within date 

Geographical 

correlation 

Technical 

similarities 

1 

Data based on 

measurements, calculations 

and some assumptions, 

data cross checks 

Within 3 

years of 

study 

Database from area 

of study 

Data from 

process under 

study 

2 
Data based on secondary 

sources, data cross checks 

Within 6 

years of 

study 

Database from the 

larger area of study 

Data from 

similar process 

3 

Data based on many 

assumptions no secondary 

databases used, data cross 

checks 

Within 10 

years of 

study 

Database from 

similar area/region 

Data from 

similar process 

using different 

materials 

4 Informed estimate 

Within 15 

years of 

study 

Known location of 

database from other 

area with similar 

process 

Data on related 

process 

5 Non-informed estimate 
> 15 years 

of study 

Unknown location 

of database with 

similar process 

Data for different 

technology 



326 
 

326 
 

Appendix IV 
Process parameters for carbon capture processes from a fixed-point sources, based on the report by NETL (2015) and adapted to the conditions of the study cases 

 Subcritical PC Supercritical PC NGCC 

Total kg CO2 captured 0.73 1.37 1000 0.73 1.37 1000 0.73 1.37 1000 

Power Output                
Net power output (MWe) 550 550 550 550 550 550 559 559 559 

Capacity factor (%) 85 85 85 85 85 85 85 85 85 

Net electricity output (kWh) 11220000 11220000 11220000 11220000 11220000 11220000 11403600 11403600 11403600 

kWh needed for case study 0.803 1.513 1100 0.84 1.575 1146 2 3.8 1000 

TOTAL CO2 Emissions (kg) 1133220 1133220 1133220 1088340 1088340 1088340 456144 456144 456144 

CO2/Day          

kg CO2 emitted/MWh 101 101 101 97 97 97 40 40 40 

total kg CO2 emitted 0.081 0.153 111 0.08 0.15 111 0.082 0.15 40 

kg CO2 needed for capture/total MWh 0.811 1.528 1111 0.81 1.5 1111 0.82 1.5 400 

CO2 capture rate (%) 90 90 90 90 90 90 90 90 90 

CO2 captured (kg) 0.73 1.375 1000 0.73 1.4 1000 0.73 1.38 360 

Emission factor (kg CO2/kWh) 1.01 1.01 1.01 0.97 0.97 0.97 0.4 0.4 0.4 

Auxiliary electricity for capture          

Auxiliary power for capture (MWe) 63 63 63 61 61 61 31 31 31 

Auxiliary electricity for capture (kWh) 1285200 1285200 1285200 1244400 1244400 1244400 632400 632400 632400 

Auxiliary electricity for capture 

(additional kWh/kWh generated) 
0.1145 0.1145 0.1145 0.11 0.11 0.11 0.06 0.06 0.06 

Net auxiliary electricity for capture 

(kWh) 
0.09 0.17 126 0.09 0.17 127 0.11 0.21 55 

Consumables          

Limestone (kg/ total kg CO2 

captured) 
0.0397 0.0749 54.4 0.04 0.075 54.5 0 0 0 

Hydrated lime (kg/ total kg CO2 

captured) 
0.0081 0.0153 11.1 0.008 0.015 11.1 0 0 0 
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  Subcritical PC Supercritical PC NGCC 

Total kg CO2 captured 0.73 1.37 1000 0.73 1.37 1000 0.73 1.37 1000 

Activated carbon (kg/ total kg CO2 

captured) 
0.0003 0.0005 0.4 2.04E-04 3.82E-04 0.28 0 0 0 

Triethylene glycol (kg/ total kg CO2 

captured) 
0.0264 0.0498 36.2 0.03 0.05 36.5 1.44E-07 2.69E-07 7.04E-05 

SCR Catalyst (kg/ total kg CO2 

captured) 
2.93E-08 5.53E-08 4.02E-05 2.65E-05 4.97E-05 0.04 1.43E-08 2.68E-08 7.02E-06 

Ammonia (kg/ total kg CO2 captured) 0.0011 0.0021 1.55 0.0011 0.002 1.53 9.4E-05 0.0002 0.05 

Thermal reclaimer unit waste (kg/ total 

kg CO2 captured) 
0.0001 0.0002 0.18 0.0001 0.0003 0.19 6E-05 0.0001 0.03 

Makeup and wastewater treatment 

chemicals (kg/ total kg CO2 captured) 
0.0010 0.0018 1.3 0.0009 0.0017 1.3 1 1 1 

Water (kg/ total kg CO2 captured) 1.98 3.7 2708.5 1.9 3.6 2635 2.4 4.41172 1155 

Gypsum (kg/ total kg CO2 captured) NA NA NA 0.007 0.013 9.36 NA NA NA 

Water balance          

Process water discharge (lpm) 7268 7268 7268 6863 6863 6863 3782 3782 3782 

Process water discharge (m3/day) 10466 10466 10466 9883 9883 9883 5446 5446 5446 

Process water discharge (m3/kWh required 

for case study) 
0.00075 0.0014 1.03 0.0007 0.0014 1.01 0.0010 0.0018 0.5 

Process water withdrawal (lpm) 31960 31960 31960 29840 29840 29840 15230 15230 15230 

Process water withdrawal (m3/day) 46022 46022 46022 42970 42970 42970 21931 21931 21931 

Process water withdrawal (m3/kWh 

required for case study) 
0.003 0.006 4.5 0.003 0.006 4.4 0.004 0.007 1.9 
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Appendix V 

Mapping of methanol case studies, Scenarios 1, 2,4 and 5: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inputs/outputs for Scenario 1, methanol production using GaBi ts version 8.7.0.18 software 

Inputs/outputs for Scenario 2, methanol production using GaBi ts version 8.7.0.18 software 
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Inputs/outputs for Scenario 4, methanol production using GaBi ts version 8.7.0.18 software   

Inputs/outputs for Scenario 5, methanol production using GaBi ts version 8.7.0.18 software 
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Life cycle impact assessment (LCIA) results for methanol case studies: Scenarios 1 to 5 using GaBi ts version 8.7.0.18 software 

Impact categories CO 2  capture H 2 CH 3 OH CO 2 H 2 CH 3 OH Power plant CH 3 OH CO 2  capture H 2 CH 3 OH CO 2  capture H 2 CH 3 OH

kg CO2 Direct emissions 0.15 0 0 0.15 0 0 1.2105 0 0 0 0 0 0 0

kg CO2 Indirect emissions 0.1 6.7 1.5 0.1 0.1 1.5 0.1 0.6 0.5 6.7 1.5 0.5 0.1 1.5

kg CO2 Total emissions 0.3 6.7 1.5 0.3 0.1 1.5 1.3 0.6 0.5 6.7 1.5 0.5 0.1 1.5

ADP elements [kg Sb-eq] 0.0000003 0.0000007 0.0000001 0.0000003 0.0000039 0.0000001 0.0000000 0.0000007 0.0000001 0.0000007 0.0000001 0.0000001 0.0000039 0.0000001

AP [kg SO2-eq.] 0.0056 0.0228 0.0051 0.0056 0.0002 0.0051 0.0048 0.0012 0.0067 0.0228 0.0051 0.0067 0.0002 0.0051

EP [kg PO4 eq] 0.0006 0.0019 0.0004 0.0006 0.0000 0.0004 0.0004 0.0005 0.0006 0.0019 0.0004 0.0006 0.00003 0.0004

FAETP inf. [kg 1,4-DCB eq] 0.0028 0.0098 0.0022 0.0028 0.0006 0.0022 0.0009 0.0823 0.0017 0.0098 0.0022 0.0017 0.0006 0.0022

GWP 100 years [kg CO2 eq] 0.4 7.2 1.6 0.4 0.1 1.6 1.4 0.7 0.7 7.2 1.6 0.7 0.1 1.6

HTP inf. [kg 1,4-DCB eq] 0.4 0.3 0.1 0.4 0.03 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.03 0.1

MAETP inf. [kg 1,4-DCB eq] 109.1 489.7 108.0 109.1 15.6 108.0 82.8 145.7 124.1 489.7 108.0 124.1 15.6 108.0

ODP, steady state [kg CFC-11 eq] 8.04E-10 4.65E-10 1.03E-10 8.04E-10 2.86E-12 1.03E-10 7.61E-13 1.64E-07 3.93E-11 4.65E-10 1.03E-10 3.93E-11 2.86E-12 1.03E-10

POCP [kg ethylene eq] 0.0004 0.0013 0.0003 0.0004 0.0000 0.0003 0.0003 0.0003 0.0004 0.0013 0.0003 0.0004 0.00001 0.0003

TETP inf. [kg DCB-Equiv.] 0.0013 0.0061 0.0013 0.0013 0.0006 0.0013 0.0010 0.0013 0.0016 0.0061 0.0013 0.0016 0.0006 0.0013

 FD [kg oil eq] 0.5 2.1 0.5 0.5 0.02 0.5 0.4 0.9 0.5 2.1 0.5 0.5 0.02 0.5

1 2 3 4 5
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Appendix VI 

Mapping of urea case studies, Scenarios 1, 2,4 and 5 

 

 

Inputs/outputs for Scenario 1, urea production using GaBi ts version 8.7.0.18 software 
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 Inputs/outputs for Scenario 2, urea production using GaBi ts version 8.7.0.18 software 
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Inputs/outputs for Scenario 4, urea production using GaBi ts version 8.7.0.18 software 

 

 

 Inputs/outputs for Scenario 5, urea production using GaBi ts version 8.7.0.18 software 
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 Life cycle impact assessment (LCIA) results for urea case studies: Scenarios 1 to 5 using GaBi ts version 8.7.0.18 software 
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Appendix VII 

Mapping of electricity projections and matrices with scenario results 
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 Inputs/outputs for electricity scenarios based on projections by BEIS (2017) and the National Grid (2017a) using GaBi ts version 8.7.0.18 software  
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Net kg 

CO 2 

avoided

Net kg 

CO 2 

utilised

GWP EP AP ODP POCP MAETP FAETP TETP HTP PM FD ADP

1a* -6.1 1.38 9.2 0.002 0.03 1.3 x 10
-9 0.002 706.0 0.02 0.01 0.8 0.008 3.0 1.1 x 10

-6

1b* -5.8 1.38 4.2 0.002 0.01 4.4 x 10
-7 0.001 991.0 0.3 0.01 1.2 0.003 1.9 3.5 x 10

-6

1c* -5.8 1.38 1.3 0.002 0.01 5.8 x 10
-7 0.001 1220.0 0.4 0.02 1.5 0.003 0.8 5.5 x 10

-6

2a* 0.1 1.38 2.0 0.001 0.01 9.1 x 10
-10 0.001 233.0 0.01 0.003 0.5 0.003 1.0 4.2 x 10

-06

2b* 0.1 1.38 2.1 0.001 0.01 9.1 x 10
-10 0.001 233.0 0.01 0.003 0.5 0.003 1.0 4.2 x 10

-06

2c* 0.1 1.38 2.1 0.001 0.01 9.1 x 10
-10 0.001 233.0 0.01 0.003 0.5 0.003 1.0 4.2 x 10

-06

3a* 0.0 0.0 2.1 0.003 0.01 1.6 x 10
-7 0.001 270.0 0.1 0.002 0.2 0.0002 1.4 6.5 x 10

-7

3b* 0.0 0.0 0.7 0.004 0.001 1.6 x 10
-7

3.2 x 10
-4 147.0 0.1 0.001 0.1 0.003 0.9 33.2

3c* 0.0 0.0 0.7 0.004 0.001 1.6 x 10
-7

3.1 x 10
-4 148.0 0.1 0.001 0.1 0.003 0.9 33.2

4a* -6.3 1.38 9.5 0.003 0.04 1.4 x 10
-10 0.001 248.0 0.004 0.003 0.2 0.004 1.0 94 x 10

-7

4b* -6.3 1.38 4.5 0.002 0.01 4.4 x 10
-7 0.001 1006.0 0.3 0.01 0.9 0.003 1.1 0.01

4c* -6.3 1.38 1.6 0.002 0.01 5.8 x 10
-7 0.0007 1235.0 0.4 0.02 1.2 0.003 0.8 0.01

5a* 0.1 1.38 2.3 0.001 0.01 1.4 x 10
-10 0.0007 248.0 0.004 0.003 0.2 0.003 1.0 4 x 10

-6

5b* 0.1 1.38 2.3 0.001 0.01 1.4 x 10
-10 0.0007 248.0 0.004 0.003 0.2 0.003 1.0 4 x 10

-6

5c* 0.1 1.38 2.4 0.001 0.01 1.4 x 10
-10 0.0007 248.0 0.004 0.003 0.2 0.003 1.0 4 x 10

-6

Indicators

C
a
se

 s
tu

d
y
 f

o
r 

ea
ch

 e
le

ct
ri

ci
ty

 p
ro

d
u

ct
io

n
 

 Matrix for scenario analysis, methanol production results. Where criteria = indicators, variables = grid mix/year, scenarios = capture and utilisation routes. No weighting. 1 to 5 = number 
of case study a*) baseline scenario year b*) 2025 based on BEIS (2017) and National Grid (2017a) reports for two degrees (TD) scenario c*) 2050 based on BEIS (2017) and National Grid 
(2017a) reports for two degrees (TD) scenario 
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Net CO 2 

avoided

Net CO 2 

utilised
GWP EP AP ODP POCP MAETP FAETP TETP HTP PM FD ADP

1a* -2 0.73 6 0.0017 0.011 7.8 x 10
-10 0.002 435 0.009 0.006 0.5 0.005 1.9 6.4 x 10

-7

1b* -2 0.73 2.9 0.0014 0.008 3 x 10
-7 0.0006 648 0.21 0.01 0.8 0.002 1.2 2.3 x 10

-6

1c* -2 0.73 1 0.0011 0.006 4.7 x 10
-7 0.0004 805 0.3 0.01 0.9 0.002 0.5 3.6 x 10

-6

2a* 1.3 0.73 2.5 0.0009 0.005 5.6 x 10
-10 0.0006 206 0.009 0.004 0.08 0.002 0.88 2.3 x 10

-06

2b* 1.3 0.73 2.5 0.001 0.005 5.6 x 10
-10 0.0006 206 0.009 0.004 0.08 0.002 0.9 2.3 x 10

-06

2c* 1.3 0.73 2.5 0.001 0.005 5.6 x 10
-10 0.0006 206 0.009 0.004 0.08 0.002 0.9 2.3 x 10

-06

3a* 0 0 3.8 0.0068 0.015 5.3 x 10
-7 0.001 2420 0.325 0.038 2.17 0.005 1.45 1.6 x 10

-5

3b* 0 0 3.7 0.004 0.016 5.3 x 10
-7 0.001 2154 0.57 0.038 2.11 0.005 1.4 1.6 x 10

-5

3c* 0 0 3.6 0.004 0.016 5.3 x 10
-7 0.001 2164 0.57 0.038 2.12 0.005 1.4 1.6 x 10

-5

4a* -2.1 0.73 6.1 0.0018 0.015 3.8 x 10
-10 0.002 448 0.009 0.008 0.3 0.006 1.2 5.4 x 10

-7

4b* -2.1 0.73 2.3 0.0122 0.008 3 x 10
-7 0.0006 661 0.21 0.009 0.6 0.003 1.3 2.2 x 10

-6

4c* -2.1 0.73 1 0.0011 0.007 4 x 10
-7 0.0005 818 0.3 0.011 0.8 0.003 0.5 2.8 x 10

-6

5a* 1.2 0.73 2.6 0.0009 2.2 x 10
-6

1.6 x 10
-10 0.0006 219 0.004 0.004 0.18 0.003 0.93 1.6 x 10

-10

5b* 1.2 0.73 2.5 0.001 2.2 x 10
-6

1.6 x 10
-10 0.0006 220 0.004 0.004 0.18 0.003 0.9 1.6 x 10

-10

5c* 1.2 0.73 2.6 0.001 2.2 x 10
-6

1.6 x 10
-10 0.0006 220 0.004 0.004 0.18 0.003 0.9 1.6 x 10

-10

Indicators

C
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r
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o
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 Matrix for scenario analysis, urea production results. Where criteria = indicators, variables = grid mix/year, scenarios = capture and utilisation routes. No weighting. 1 to 5 = number of study a*) 
baseline scenario b*) 2025 based on BEIS (2017) and National Grid (2017a) reports for two degrees (TD) scenario c*) 2050 based on BEIS (2017) and National Grid (2017a) reports for two degrees 
(TD) scenario 
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General weighting scores for carbon utilisation processes and simple multi attribute ranking technique (SMART) ranking 

 

 

 

Value Rank

0 No relevance

25 Little relevance

50 Relevant

100 Very relevant

Questions for ranking (SMART)
Net CO2 

avoided

Net CO2 

utilised
GWP EP AP ODP POCP MAETP FAETP TETP HTP PM FD ADP

Utilities 

costs

1. Does the indicator have an Importance in the overall 

carbon balance of the process?
100 100 100 0 0 0 0 0 0 0 0 0 50 0 0

2. Does the impact determines/describes the utilisation of 

CO2?

75 100 50 0 0 0 0 0 0 0 0 0 50 0 50

3. Does the impact affects/describes de displacement of 

fossil-based fuel due to CO2 utilisation?
50 25 50 0 0 0 0 0 0 0 0 0 100 0 0

4. Does the impact indicate additional costs for CO2 

utilisation?
0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

5. Are there any categories that show the impact of energy 

penalties for utilisation?
0 0 100 75 75 75 75 75 75 75 75 75 100 50 100

6. Do the indicators show how much CO2 can be utilised in a 

CDU process?
50 100 50 0 0 0 0 0 0 0 0 0 0 0 0

7. Do the indicators show additional impacts due to 

renewable energy use?
0 0 75 50 50 50 50 50 50 50 50 50 50 75 100

8. Do the indicators affect utilisation scenarios more than 

conventional?
100 100 100 25 25 25 25 25 25 25 25 25 100 25 25

9. Are there indicators that assess the health risks of CO2 

utilisation processes?
0 0 0 0 0 0 0 0 0 0 100 100 0 0 0

10. Overall, according to their importance in CO2 utilisation, 

what order of relevance should the indicators have?

75 50 100 25 25 25 25 25 25 25 25 25 100 50 50

Total 450 475 625 175 175 175 175 175 175 175 275 275 550 200 425

Weighted average 0.100 0.106 0.139 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.061 0.061 0.122 0.044 0.094

Rank 4 3 1 9 9 9 9 9 9 9 6 6 2 8 5
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1a 2a 3a 4a 5a

Net CO2 avoided 0.58 -0.08 0 -0.05 -0.05 10.0

Net CO2 utilised -0.145666667 -0.145666667 0 -0.145666667 -0.145666667 10.6

GWP 1.277777778 0.277777778 0.291666667 1.319444444 0.319444444 13.9

EP 7.77778E-05 3.88889E-05 0.000132222 3.88889E-05 3.88889E-05 3.9

AP 0.001283333 0.000427778 0.000233333 0.001166667 0.000427778 3.9

ODP 5.05556E-11 3.53889E-11 6.22222E-09 2.33333E-11 5.44444E-12 3.9

POCP 7.77778E-05 2.72222E-05 3.88889E-05 3.88889E-05 2.72222E-05 3.9

MAETP 27.45555556 9.061111111 10.5 28.06844444 9.644444444 3.9

FAETP 0.000583333 0.000194444 0.003227778 0.000528889 0.000155556 3.9

TETP 0.000311111 0.000116667 7.77778E-05 0.00035 0.000116667 3.9

HTP 0.051333333 0.033 0.012222222 0.031777778 0.012222222 6.1

PM 0.000488889 0.000183333 2.44444E-05 0.000183333 0.000183333 6.1

FD 0.366666667 0.118555556 0.174777778 0.377666667 0.125888889 12.2

ADP 4.88889E-08 1.86667E-07 2.88889E-08 4.00E-08 1.77778E-07 4.4

Utilities costs 0.062333333 0.17 0.044388889 0.066111111 0.179444444 9.4

Sum 29.7 9.4 11.0 29.7 10.1 100

Indicators

Scenarios for Methanol 

Weight (%)
1a 2a 3a 4a 5a

Net CO2 avoided 0.200000 -0.130000 0.000000 0.210000 -0.120000 10.0

Net CO2 utilised -0.077056 -0.077056 0.000000 -0.077056 -0.077056 10.6

GWP 0.833333 0.347222 0.527778 0.847222 0.361111 13.9

EP 0.000066 0.000035 0.000264 0.000070 0.000035 3.9

AP 0.000817 0.000194 0.000583 0.000583 0.000000 3.9

ODP 3.03E-11 2.18E-11 2.06E-08 1.48E-11 6.22E-12 3.9

POCP 0.000078 0.000023 0.000039 0.000078 0.000023 3.9

MAETP 16.916667 8.011111 94.111111 17.422222 8.516667 3.9

FAETP 0.000350 0.000350 0.012639 0.000350 0.000156 3.9

TETP 0.000350 0.000156 0.001478 0.000311 0.000156 3.9

HTP 0.030556 0.004889 0.132611 0.018333 0.011000 6.1

PM 0.000306 0.000122 0.000306 0.000367 0.000183 6.1

FD 0.232222 0.107556 0.177222 0.146667 0.113667 12.2

ADP 2.84E-08 1.02E-07 7.11E-07 2.40E-08 9.78E-08 4.4

Utilities costs 0.043444 0.100111 0.107667 0.043444 0.101056 9.4

Sum 18.181133 8.364714 95.071699 18.612592 8.906997 100

Indicators

Scenarios for Urea

Weight (%)

1a* 2a* 3a* 4a* 5a* Weight (%)

Net CO2 avoided 5 1 4 2 2 10.0

Net CO2 utilised 1 1 5 1 1 10.6

GWP 4 1 2 5 3 13.9

EP 4 1 5 1 1 3.9

AP 5 2 1 4 2 3.9

ODP 4 3 5 2 1 3.9

POCP 5 1 3 3 1 3.9

MAETP 4 1 3 5 2 3.9

FAETP 4 2 5 3 1 3.9

TETP 4 2 1 5 2 3.9

HTP 5 4 1 3 1 6.1

PM 5 2 1 2 2 6.1

FD 4 1 3 5 2 12.2

ADP 3 5 1 2 4 4.4

Utilities costs 2 4 1 3 5 9.4

Total 3.9 2.1 2.7 3.1 2.0

Rank 5 2 3 4 1

Methanol ranks

1a* 2a* 3a* 4a* 5a* Weight (%)

Net CO2 avoided 4 1 3 5 2 10.0

Net CO2 utilised 1 1 5 1 1 10.6

GWP 4 1 3 5 2 13.9

EP 3 1 5 4 1 3.9

AP 5 2 3 3 1 3.9

ODP 4 3 5 2 1 3.9

POCP 4 1 3 4 1 3.9

MAETP 4 2 6 5 3 3.9

FAETP 2 2 5 2 1 3.9

TETP 4 1 5 3 1 3.9

HTP 4 1 5 3 2 6.1

PM 3 1 3 5 2 6.1

FD 5 1 4 3 2 12.2

ADP 2 4 5 1 3 4.4

Utilities costs 1 3 5 1 4 9.4

Total 3.3 1.7 4.3 3.1 1.8

Rank 4 1 5 3 2

Urea ranks

 Rank results for general weighted scores for both methanol and urea products 
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1a 2a 3a 4a 5a

Net CO2 avoided 0 0 0 0 0 0.0

Net CO2 utilised 0 0 0 0 0 0.0

GWP 0 0 0 0 0 0.0

EP 0 0 0 0 0 0.0

AP 0 0 0 0 0 0.0

ODP 0 0 0 0 0 0.0

POCP 0 0 0 0 0 0.0

MAETP 0 0 0 0 0 0.0

FAETP 0 0 0 0 0 0.0

TETP 0 0 0 0 0 0.0

HTP 0 0 0 0 0 0.0

PM 0 0 0 0 0 0.0

FD 3 0.97 1.43 3.09 1.03 100.0

ADP 0 0 0 0.00E+00 0 0.0

Utilities costs 0 0 0 0 0 0.0

Sum 3.0 1.0 1.4 3.1 1.0 100

Indicators

Methanol Scenarios (FD weight 100)
Weight 

(%) 1a 2a 3a 4a 5a

Net CO2 avoided 0.00 0.00 0.00 0.00 0.00 0.0

Net CO2 utilised 0.00 0.00 0.00 0.00 0.00 0.0

GWP 0.00 0.00 0.00 0.00 0.00 0.0

EP 0.00 0.00 0.00 0.00 0.00 0.0

AP 0.00 0.00 0.00 0.00 0.00 0.0

ODP 0.00 0.00 0.00 0.00 0.00 0.0

POCP 0.00 0.00 0.00 0.00 0.00 0.0

MAETP 0.00 0.00 0.00 0.00 0.00 0.0

FAETP 0.00 0.00 0.00 0.00 0.00 0.0

TETP 0.00 0.00 0.00 0.00 0.00 0.0

HTP 0.00 0.00 0.00 0.00 0.00 0.0

PM 0.00 0.00 0.00 0.00 0.00 0.0

FD 1.90 0.88 1.45 1.20 0.93 100.0

ADP 0.00 0.00 0.00 0.00 0.00 0.0

Utilities costs 0.00 0.00 0.00 0.00 0.00 0.0

Sum 1.90 0.88 1.45 1.20 0.93 100

Indicators

Urea Scenarios (FD weight 100)

Weight (%)

1a* 2a* 3a* 4a* 5a* Weight (%)

Net CO2 avoided 1 1 1 1 1 0.0

Net CO2 utilised 1 1 1 1 1 0.0

GWP 1 1 1 1 1 0.0

EP 1 1 1 1 1 0.0

AP 1 1 1 1 1 0.0

ODP 1 1 1 1 1 0.0

POCP 1 1 1 1 1 0.0

MAETP 1 1 1 1 1 0.0

FAETP 1 1 1 1 1 0.0

TETP 1 1 1 1 1 0.0

HTP 1 1 1 1 1 0.0

PM 1 1 1 1 1 0.0

FD 4 1 3 5 2 100.0

ADP 1 1 1 1 1 0.0

Utilities costs 1 1 1 1 1 0.0

Total 1.2 1.0 1.1 1.3 1.1

Rank 4 1 3 5 2

Methanol ranks (FD weight 100)

1a* 2a* 3a* 4a* 5a* Weight (%)

Net CO2 avoided 1 1 1 1 1 0.0

Net CO2 utilised 1 1 1 1 1 0.0

GWP 1 1 1 1 1 0.0

EP 1 1 1 1 1 0.0

AP 1 1 1 1 1 0.0

ODP 1 1 1 1 1 0.0

POCP 1 1 1 1 1 0.0

MAETP 1 1 1 1 1 0.0

FAETP 1 1 1 1 1 0.0

TETP 1 1 1 1 1 0.0

HTP 1 1 1 1 1 0.0

PM 1 1 1 1 1 0.0

FD 5 1 4 3 2 100.0

ADP 1 1 1 1 1 0.0

Utilities costs 1 1 1 1 1 0.0

Total 1.3 1.0 1.2 1.1 1.1

Rank 5 1 4 3 2

Urea ranks (FD weight 100)
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1a 2a 3a 4a 5a

Net CO2 avoided 0.322222 -0.04444 0 -0.02778 -0.0278 5.6

Net CO2 utilised -0.07667 -0.07667 0 -0.07667 -0.0767 5.6

GWP 0.511111 0.111111 0.116667 0.527778 0.12778 5.6

EP 0.000111 5.56E-05 0.000189 5.56E-05 5.6E-05 5.6

AP 0.001833 0.000611 0.000333 0.001667 0.00061 5.6

ODP 7.22E-11 5.06E-11 8.89E-09 3.33E-11 7.8E-12 5.6

POCP 0.000111 3.89E-05 5.56E-05 5.56E-05 3.9E-05 5.6

MAETP 39.22222 12.94444 15 40.09778 13.7778 5.6

FAETP 0.000833 0.000278 0.004611 0.000756 0.00022 5.6

TETP 0.000444 0.000167 0.000111 0.0005 0.00017 5.6

HTP 0.046667 0.03 0.011111 0.028889 0.01111 5.6

PM 0.000444 0.000167 2.22E-05 0.000167 0.00017 5.6

FD 0.666667 0.215556 0.317778 0.686667 0.22889 22.2

ADP 6.11E-08 2.33E-07 3.61E-08 5.00E-08 2.2E-07 5.6

Utilities costs 0.036667 0.1 0.026111 0.038889 0.10556 5.6

Sum 40.7 13.3 15.5 41.3 14.1 100

Indicators

Methanol Scenarios (FD weight 100:25)
Weight 

(%) 1a 2a 3a 4a 5a

Net CO2 avoided 0.11111 -0.0722 0 0.11667 -0.0667 5.6

Net CO2 utilised -0.04 -0.04 0.00 -0.04 -0.04 5.6

GWP 0.33 0.14 0.21 0.34 0.14 5.6

EP 0.0001 0.0001 0.0004 0.0001 0.0001 5.6

AP 0.0012 0.0003 0.0008 0.0008 0.0000 5.6

ODP 4.33E-11 3.11E-11 2.94E-08 2.11E-11 8.89E-12 5.6

POCP 0.0001 0.0000 0.0001 0.0001 0.0000 5.6

MAETP 24.17 11.44 134.44 24.89 12.17 5.6

FAETP 0.0005 0.0005 0.0181 0.0005 0.0002 5.6

TETP 0.0005 0.0002 0.0021 0.0004 0.0002 5.6

HTP 0.03 0.00 0.12 0.02 0.01 5.6

PM 0.0003 0.0001 0.0003 0.0003 0.0002 5.6

FD 0.42 0.20 0.32 0.27 0.21 22.2

ADP 1.28E-07 3.56E-08 8.89E-07 3.00E-08 1.22E-07 5.6

Utilities costs 0.03 0.06 0.06 0.03 0.06 5.6

Sum 25.0 11.7 135.2 25.6 12.5 100

Indicators

Urea Scenarios (FD weight 100:25)

Weight (%)

1a* 2a* 3a* 4a* 5a* Weight (%)

Net CO2 avoided 5 1 4 2 2 5.6

Net CO2 utilised 1 1 5 1 1 5.6

GWP 4 1 2 5 3 5.6

EP 4 1 5 1 1 5.6

AP 5 2 1 4 2 5.6

ODP 4 3 5 2 1 5.6

POCP 5 1 3 3 1 5.6

MAETP 4 1 3 5 2 5.6

FAETP 4 2 5 3 1 5.6

TETP 4 2 1 5 2 5.6

HTP 5 4 1 3 1 5.6

PM 5 2 1 2 2 5.6

FD 4 1 3 5 2 22.2

ADP 3 5 1 2 4 5.6

Utilities costs 2 4 1 3 5 5.6

Total 3.9 2.1 2.7 3.1 2.0

Rank 5 2 3 4 1

Methanol ranks (FD weight 100:25)

1a* 2a* 3a* 4a* 5a* Weight (%)

Net CO2 avoided 4 1 3 5 2 5.6

Net CO2 utilised 1 1 5 1 1 5.6

GWP 4 1 3 5 2 5.6

EP 3 1 5 4 1 5.6

AP 5 2 3 3 1 5.6

ODP 4 3 5 2 1 5.6

POCP 4 1 3 4 1 5.6

MAETP 3 1 5 4 2 5.6

FAETP 2 2 5 2 1 5.6

TETP 4 1 5 3 1 5.6

HTP 4 1 5 3 2 5.6

PM 3 1 3 5 2 5.6

FD 5 1 4 3 2 22.2

ADP 4 2 5 1 3 5.6

Utilities costs 1 3 5 1 4 5.6

Total 3.4 1.5 4.3 3.1 1.7

Rank 4 1 5 3 2

Urea ranks (FD weight 100:25)



344 
 

344 
 

 

 

 

 

 

 

 

 

 

 

1a 2a 3a 4a 5a

Net CO2 avoided 0.11 -0.07 0.00 0.12 -0.07 5.6

Net CO2 utilised -0.04 -0.04 0.00 -0.04 -0.04 5.6

GWP 1.33 0.56 0.84 1.36 0.58 22.2

EP 0.0001 0.0001 0.0004 0.0001 0.0001 5.6

AP 0.0012 0.0003 0.0008 0.0008 0.0000 5.6

ODP 4.33E-11 3.11E-11 2.94E-08 2.11E-11 8.89E-12 5.6

POCP 0.0001 0.0000 0.0001 0.0001 0.0000 5.6

MAETP 24.17 11.44 134.44 24.89 12.17 5.6

FAETP 0.001 0.001 0.018 0.001 0.000 5.6

TETP 0.001 0.000 0.002 0.0004 0.0002 5.6

HTP 0.028 0.004 0.121 0.017 0.010 5.6

PM 0.0003 0.0001 0.0003 0.0003 0.0002 5.6

FD 0.11 0.05 0.08 0.07 0.05 5.6

ADP 1.28E-07 3.56E-08 8.89E-07 3.00E-08 1.22E-07 5.6

Utilities costs 0.03 0.06 0.06 0.03 0.06 5.6

Sum 25.73 12.00 135.58 26.43 12.76 100

Indicators

Urea Scenarios (GWP weight 100:25)

Weight (%)
1a 2a 3a 4a 5a

Net CO2 avoided 0.322222 -0.04444 0 -0.02778 -0.0278 5.6

Net CO2 utilised -0.07667 -0.07667 0 -0.07667 -0.0767 5.6

GWP 2.044444 0.444444 0.466667 2.111111 0.51111 22.2

EP 0.000111 5.56E-05 0.000189 5.56E-05 5.6E-05 5.6

AP 0.001833 0.000611 0.000333 0.001667 0.00061 5.6

ODP 7.22E-11 5.06E-11 8.89E-09 3.33E-11 7.8E-12 5.6

POCP 0.000111 3.89E-05 5.56E-05 5.56E-05 3.9E-05 5.6

MAETP 39.22222 12.94444 15 40.09778 13.7778 5.6

FAETP 0.000833 0.000278 0.004611 0.000756 0.00022 5.6

TETP 0.000444 0.000167 0.000111 0.0005 0.00017 5.6

HTP 0.046667 0.03 0.011111 0.028889 0.01111 5.6

PM 0.000444 0.000167 2.22E-05 0.000167 0.00017 5.6

FD 0.166667 0.053889 0.079444 0.171667 0.05722 5.6

ADP 6.11E-08 2.33E-07 3.61E-08 5.00E-08 2.2E-07 5.6

Utilities costs 0.036667 0.1 0.026111 0.038889 0.10556 5.6

Sum 41.8 13.5 15.6 42.3 14.4 100

Indicators

Methanol Scenarios (GWP weight 100:25)
Weight 

(%)

1a* 2a* 3a* 4a* 5a* Weight (%)

Net CO2 avoided 5 1 4 2 2 5.6

Net CO2 utilised 1 1 5 1 1 5.6

GWP 4 1 2 5 3 22.2

EP 4 1 5 1 1 5.6

AP 5 2 1 4 2 5.6

ODP 4 3 5 2 1 5.6

POCP 5 1 3 3 1 5.6

MAETP 4 1 3 5 2 5.6

FAETP 4 2 5 3 1 5.6

TETP 4 2 1 5 2 5.6

HTP 5 4 1 3 1 5.6

PM 5 2 1 2 2 5.6

FD 4 1 3 5 2 5.6

ADP 3 5 1 2 4 5.6

Utilities costs 2 4 1 3 5 5.6

Total 3.9 2.1 2.7 3.1 2.0

Rank 5 2 3 4 1

Methanol ranks (GWP weight 100:25)

1a* 2a* 3a* 4a* 5a* Weight (%)

Net CO2 avoided 4 1 3 5 2 5.6

Net CO2 utilised 1 1 5 1 1 5.6

GWP 4 1 3 5 2 22.2

EP 3 1 5 4 1 5.6

AP 5 2 3 3 1 5.6

ODP 4 3 5 2 1 5.6

POCP 4 1 3 4 1 5.6

MAETP 3 1 5 4 2 5.6

FAETP 2 2 5 2 1 5.6

TETP 4 1 5 3 1 5.6

HTP 4 1 5 3 2 5.6

PM 3 1 3 5 2 5.6

FD 5 1 4 3 2 5.6

ADP 4 2 5 1 3 5.6

Utilities costs 1 3 5 1 4 5.6

Total 3.4 1.5 4.3 3.1 1.7

Rank 4 1 5 3 2

Urea ranks (GWP weight 100:25)
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1a 2a 3a 4a 5a

Net CO2 avoided 0 0 0 0 0 0.0

Net CO2 utilised 0 0 0 0 0 0.0

GWP 9.2 2 2.1 9.5 2.3 100.0

EP 0 0 0 0 0 0.0

AP 0 0 0 0 0 0.0

ODP 0 0 0 0 0 0.0

POCP 0 0 0 0 0 0.0

MAETP 0 0 0 0 0 0.0

FAETP 0 0 0 0 0 0.0

TETP 0 0 0 0 0 0.0

HTP 0 0 0 0 0 0.0

PM 0 0 0 0 0 0.0

FD 0 0 0 0 0 0.0

ADP 0 0 0 0.00E+00 0 0.0

Utilities costs 0 0 0 0 0 0.0

Sum 9.2 2.0 2.1 9.5 2.3 100

Indicators

Methanol Scenarios (GWP weight 100)
Weight 

(%) 1a 2a 3a 4a 5a

Net CO2 avoided 0.00 0.00 0.00 0.00 0.00 0.0

Net CO2 utilised 0.00 0.00 0.00 0.00 0.00 0.0

GWP 6.00 2.50 3.80 6.10 2.60 100.0

EP 0.00 0.00 0.00 0.00 0.00 0.0

AP 0.00 0.00 0.00 0.00 0.00 0.0

ODP 0.00 0.00 0.00 0.00 0.00 0.0

POCP 0.00 0.00 0.00 0.00 0.00 0.0

MAETP 0.00 0.00 0.00 0.00 0.00 0.0

FAETP 0.00 0.00 0.00 0.00 0.00 0.0

TETP 0.00 0.00 0.00 0.00 0.00 0.0

HTP 0.00 0.00 0.00 0.00 0.00 0.0

PM 0.00 0.00 0.00 0.00 0.00 0.0

FD 0.00 0.00 0.00 0.00 0.00 0.0

ADP 0.00 0.00 0.00 0.00 0.00 0.0

Utilities costs 0.00 0.00 0.00 0.00 0.00 0.0

Sum 6.00 2.50 3.80 6.10 2.60 100

Indicators

Urea Scenarios (GWP weight 100)

Weight (%)

1a* 2a* 3a* 4a* 5a* Weight (%)

Net CO2 avoided 1 1 1 1 1 0.0

Net CO2 utilised 1 1 1 1 1 0.0

GWP 4 1 2 5 3 100.0

EP 1 1 1 1 1 0.0

AP 1 1 1 1 1 0.0

ODP 1 1 1 1 1 0.0

POCP 1 1 1 1 1 0.0

MAETP 1 1 1 1 1 0.0

FAETP 1 1 1 1 1 0.0

TETP 1 1 1 1 1 0.0

HTP 1 1 1 1 1 0.0

PM 1 1 1 1 1 0.0

FD 1 1 1 1 1 0.0

ADP 1 1 1 1 1 0.0

Utilities costs 1 1 1 1 1 0.0

Total 1.2 1.0 1.1 1.3 1.1

Rank 4 1 2 5 3

Methanol ranks (GWP weight 100)

1a* 2a* 3a* 4a* 5a* Weight (%)

Net CO2 avoided 1 1 1 1 1 0.0

Net CO2 utilised 1 1 1 1 1 0.0

GWP 4 1 3 5 2 100.0

EP 1 1 1 1 1 0.0

AP 1 1 1 1 1 0.0

ODP 1 1 1 1 1 0.0

POCP 1 1 1 1 1 0.0

MAETP 1 1 1 1 1 0.0

FAETP 1 1 1 1 1 0.0

TETP 1 1 1 1 1 0.0

HTP 1 1 1 1 1 0.0

PM 1 1 1 1 1 0.0

FD 1 1 1 1 1 0.0

ADP 1 1 1 1 1 0.0

Utilities costs 1 1 1 1 1 0.0

Total 1.2 1.0 1.1 1.3 1.1

Rank 4 1 3 5 2

Urea ranks (GWP weight 100)
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Appendix VIII 

Examples of models adapted directly from Aspen Plus© version 8.4 simulations to test 

how information can be used for the inventory (these cases were not used for results).  

 

 

 

 

 

 

 

 

 

 

Direct flue gas utilisation process example based on the work by Zhang (2013) and using Aspen Plus© 
version 8.4 and GaBi ts version 8.7.0.18 software for modelling 

Inputs/outputs for a seven-stage compressor for CO2 intercooling based on Abbas et al. (2013) and Pei (2013) 
using GaBi ts version 8.7.0.18 software 
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An example on how by connecting every stream from a simulation model to a life cycle 

assessment (LCA) software by following every input and out will lead to unnecessary 

loops and broken flows is shown below.  

 

 

Absorption column for CO2 capture model ENRTL-RK-Rate based monoethanolamine (MEA) by Aspen Plus® 
version 8.4. Inputs/outputs using GaBi version 8.7.0.18 ts for modelling. 

Inputs/outputs using GaBi ts version 8.7.0.18  for modelling. Based on a urea pilot plant from by Aspen Plus® version 
8.4. 
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An example of using other carbon footprint tools to model CO2 utilisation processes is 

shown below. In this case, the Supply Chain Environmental Analysis tool (scenat) was used 

to calculate methanol production with a similar process used in Chapter 5. The results 

gave basic information: direct vs indirect emissions, emission intensity and input/output 

hotspot. However, using a tool such as this one proved of limited use for carbon dioxide 

utilisation (CDU). These commercial tools are suited for complete supply chains that 

have a place in the economic sector, unlike utilisation processes. Mapping full processes 

is difficult since there is no flexibility with the database (fixed hybrid input/output 

method), complicates allocation and does not have access to other environmental impact 

categories. It can be used for a quick reference for some established processes, but it is 

not a tool to create new CO2 utilisation processes and assess them.  

 

 

Inputs/outputs example for methanol production using the modelling tool scenat (Supply Chain Environmental 
Analysis tool)  


