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Abstract

In this thesis, we develop and investigate novel signal processing techniques for under-

water acoustic communication networks. Underwater acoustic channels differ from radio

communication channels in the lower speed of signal propagation, richer and often sparse

multipath arrivals, and more severe Doppler effect. Therefore, many signal processing

techniques developed for radio communications may not work equivalently well for un-

derwater acoustic channels.

To investigate signal processing techniques in underwater acoustics, efficient simu-

lation of signal transmission is required. Specifically, there is requirement for accu-

rate simulation of doubly-selective underwater channels for different acoustic environ-

ments. In this thesis, a low-complexity channel simulator has been developed for sce-

narios with moving transmitter/receiver. The simulator is based on efficient generation

of time-varying channel impulse response obtained using interpolation over a set of way-

mark impulse responses for a relatively small number of sampling points on the transmit-

ter/receiver trajectory. The waymark impulse responses are generated using an acoustic

field computation method, which is the most computationally expensive part of the sim-

ulator. To reduce the trajectory sampling rate, and thus, to reduce the complexity of the

field computation, an approach for adjusting the time-varying multipath delays has been

developed. For setting the trajectory sampling interval, a simple rule has been proposed,

based on the waveguide invariant theory. To further reduce the simulator complexity, local

spline interpolation is exploited. The developed simulator has been verified by comparing

the simulated data with data from real ocean experiments. In particular, applying simu-

lated data to an OFDM modem shows similar performance with that obtained from the

data of a deep water experiment.
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In communication networks, knowledge of positions of communication nodes is im-

portant for improving the system performance. A multi-source localization technique has

been proposed based on the matched field (MF) processing. The technique locates the

nodes by solving a set of basis pursuit de-noising (BPDN) problems corresponding to a

set of source frequencies. An efficient technique combining the homotopy approach and

coordinate descent search has been developed to solve the BPDN problem. Further reduc-

tion in the complexity has been achieved by applying a position grid refinement method.

Verified using simulated data generated by the proposed simulator and data from real ex-

periment, the proposed technique outperforms other MF techniques in resolving sources

positioned closely to each other, tolerance to noise and capability of locating multiple

sources.

To provide reliable localization based on MF techniques, accurate knowledge of the

underwater acoustic environment is essential. However, such a knowledge is not always

available. Estimating uncertain environmental parameters can be achieved using MF in-

version techniques. This requires solving a global optimization problem. Several global

optimization algorithms have been investigated and an algorithm combining the simulated

annealing and downhill simplex method has been applied for estimating the sound speed

profile in a deep water scenario. Accurate MF localization results have been demonstrated

when using the estimated sound speed profile.

A very important task of communication receivers is accurate channel estimation. The

knowledge of node positions and the environment can be exploited for enhancing the

channel estimation accuracy and reducing the estimation complexity. This knowledge

can be used to define the structure of the channel impulse response, such as the multipath

spread and the sparsity. A channel estimator exploiting the channel sparsity estimated

from the node positions has been proposed and investigated. The sparse taps of the chan-

nel impulse response are identified by solving a BPDN problem. The estimator employs

an iterative tap-by-tap processing and uses local splines to interpolate the time-varying tap

coefficients. This allows reduction in the complexity and memory requirement, whereas

providing a high estimation accuracy.
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Chapter 1

Introduction

Contents
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Publication List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Overview

Underwater communication networks have recently received much attention due to the

applications in oceanographic data collection, pollution monitoring, offshore exploration,

disaster prevention, mine reconnaissance, tactical surveillance, etc [2] [3]. In underwater

environments, high frequency radio waves, widely used in wireless communications in

the air, are highly attenuated and absorbed by the conductive salty water. The propagation

range of radio waves is highly restricted, depending on the frequencies. Only extra low-

frequency waves (30− 300 Hz) propagate long distance in underwater [2], which require

large antennas. Optical waves do not suffer from high attenuation, however, the high

scattering effect in the water and the difficulty in designing narrow laser beams restrict the

application [2]. Therefore, transmitting signals using acoustic waves is the most popular

C. Liu, Ph.D. Thesis, Department of Electronics, University of York
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CHAPTER 1. INTRODUCTION 2

physical layer technology for underwater networks.

The Underwater acoustic channel is considered as one of the most difficult channels

for communications [4]. Underwater sound speed (typically 1500 m/s) is five orders lower

than the speed of light (3 × 108 m/s). Comparing to radio communication systems, the

propagation delays between sources and receivers are relatively large in underwater com-

munication systems. This increases the difficulty in time synchronization and designing

network protocols [5]. The sound speed is a function of environmental parameters such

as water density, temperature and salinity, which vary in time and space [6]. Therefore,

different ocean areas have different channels at different time. Generally, underwater

acoustic channels have relatively large delay spread, on an order from ten to hundred of

symbol durations, depending on the environment and the distance between the source

and the receiver [7] [8]. This requires a large number of taps to represent the channel im-

pulse response and results in high inter symbol interference. Besides, underwater acoustic

channels may be sparse [7] [8] [9] [10], e.g., among the relatively large number of channel

taps, only a small number of taps have non-zero coefficients. Most of the tap coefficients

are close to zero.

Underwater acoustic signals may suffer from significant Doppler effects. Movements

of underwater transmitters/receivers are almost unavoidable and are time-varying due to

the motion of the ocean. The relatively low speed of sound and possible wide-band mod-

ulation makes the Doppler shifts several orders higher than those of radio signals [11].

Different multipath arrivals have different Doppler shifts due to their different propagat-

ing directions, resulting in Doppler spread. This Doppler spread may be significant when

the differences in the angles of directions are large.

Signal processing techniques developed for radio channels may not perform equiva-

lently well in underwater acoustic systems, due to the features of underwater acoustics

described above. In this thesis, we develop signal processing techniques that can be used

in underwater acoustic networks.

The performance of underwater acoustic communication systems is heavily dependent

on the propagation environment. For assessing the communications performance, sea

experiments are required. Although sea experiments are ultimate means to assess the per-

C. Liu, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 1. INTRODUCTION 3

formance, they are difficult to conduct and very expensive. In some situations, instead,

simulation of the propagation channel can be used. The simulation also has other advan-

tages compared to experiments. E.g., due to highly dynamic time and space variability

of the underwater environment, it is difficult to guarantee similar experimental conditions

when comparing different systems. It is also difficult to provide reliable monitoring of the

environment, and thus give valuable interpretation of experimental results. Furthermore,

ocean experiments with multiple users (such as in underwater communications networks)

are even more complicated. On the other hand, computer simulation can provide exactly

the same propagation conditions when investigating different systems, precise monitoring

of the environment, and modeling communication networks with multiple users. How-

ever, this is only possible if the simulator is capable of providing results similar to that

observed in sea experiments. Thus, an efficient approach to simulate underwater acoustic

signal transmission is highly desirable [2,12,13]. In this thesis, a low-complexity simula-

tor is developed for generating signals in the scenarios with moving transmitter/receiver.

For underwater networks, knowledge of positions of communication nodes is impor-

tant. For instance, the propagation delay of signals among the nodes can be estimated

according to the positions, which is helpful for synchronization. In a sensor network,

the data collected by the nodes may be useless without the knowledge of node posi-

tions. Due to the invalidity of plane wave model for underwater acoustic waves, matched

filed (MF) processing, a beamforming technique using full propagation model of acoustic

waves [14], has been developed and can provide accurate localization results [6, 15–19].

Since there are possible multiple nodes in a network, in this thesis, we develop and inves-

tigate a multi-source localization technique based on MF processing. As the knowledge of

environmental parameters, such as the sound speed profile (SSP), are required for MF lo-

calization techniques, we also investigate an MF inversion (MFI) problem for estimating

the uncertain SSP.

Channel estimation is a very important task for communication receivers. Accurate

estimation of underwater acoustic channels is a challenging task since the channels vary

in time, have a large number of coefficients to be estimated, and can be sparse [10].

To address these problems we adopt the basis expansion model (BEM) [20–23] to track

the time variations of the impulse response; we develop a low-complexity technique for

dealing with channels with a large number of taps. The channel sparsity is taken into
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account by determining the delay spread and number of non-zero taps according to the

source/receiver positions.

1.2 Contributions

Major contributions of this thesis are summarized as follows.

• A low-complexity simulator for modeling underwater acoustic transmission with

moving transmitter/receiver has been developed. The motion induced channel time

variations are modeled by computing the time-varying impulse response according

to the transmitter/receiver moving trajectories and using an acoustic field compu-

tation method. Different acoustic field computation methods can be used in the

simulator. The complexity of the simulator is kept low by adopting local-spline

interpolation and using a delay adjustment method for reducing the rate of field

computation. The simulator can be implemented in a recursive manner and, thus,

can be used for modeling signal transmission for arbitrary long trajectories. The

developed simulator has been verified by comparing the simulated data with data

from real ocean experiments. In particular, applying simulated data to an OFDM

modem shows similar performance with that obtained from the data of a deep water

experiment.

• An MF multi-source localization technique has been developed. The proposed tech-

nique locates sources by solving a set of basis pursuit de-noising (BPDN) problems

corresponding to a set of source frequencies. A grid refinement method has been

applied to reduce the complexity in solving the BPDN problems. The proposed

technique outperforms other MF localization techniques in resolving sources posi-

tioned closely to each other, tolerance to noise and capability of locating multiple

sources. The performance of the technique has been verified using simulated and

real experimental data.

• An efficient technique combining the homotopy approach and coordinate de-

scent (CD) search has been developed for solving complex-valued BPDN problems.

This technique has been used to solve BPDN problems for source localizations and
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identify non-zero taps when estimating time-varying sparse channels.

• Several global optimization algorithm based on simulated annealing (SA) are com-

pared. An algorithm combining fast simulated annealing (FSA) method and down-

hill simplex (DHS) method has been applied for solving an MFI problem to esti-

mate uncertain sound speed profile (SSP) in a deep water scenario. Accurate MF

localization results have been demonstrated using the estimated SSP.

• A low-complexity BEM based channel estimator using local splines had been devel-

oped for estimating channels with large delay spread. In dealing with time-varying

multipath Rayleigh fading channels, the proposed estimator has been shown to have

better estimation accuracy than the maximum likelihood (ML) estimator and have

close estimation performance to the minimum mean square error (MMSE) estima-

tor.

• The proposed channel estimator has been applied to estimate time-varying sparse

underwater acoustic channels. The sparsity of the channel has been taken into ac-

count for improving the estimation accuracy and reducing the complexity.

1.3 Thesis outlines

The rest of this report is separated into the following chapters.

• Chapter 2: Fundamental Techniques: Computation of Underwater Acoustic Field

In this chapter, fundamental techniques used throughout this thesis are introduced.

Firstly, the propagation model of underwater acoustic waves as well as three dif-

ferent acoustic field computation methods, the normal mode method, fast field pro-

gram, and Gaussian beam tracing method are described. The programs correspond-

ing to the three methods, KRAKEN, SCOOTER and BELLHOP, as well as their

environmental parameter settings are also presented with examples.

• Chapter 3: Modeling of time-varying underwater acoustic channels

This chapter presents a simulator developed for modeling transmission of underwa-

ter acoustic signals with moving transmitter/receiver. The motion induced channel
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time variations are modeled by sampling the trajectory at the signal sampling rate

and calculating for each position the channel impulse response from acoustic field

computation. To reduce the complexity, the time-varying impulse response is gen-

erated by interpolating over a set of field-computed channel impulse responses of

a relatively small number of sampling points on the trajectory. The computation

of impulse response for a given bandwidth based on different acoustic field com-

putation methods is described. An approach for adjusting time-varying delays of

multipath arrivals is presented for reducing the sampling rate of the trajectory. A

simple criteria for setting the sampling interval of the trajectory is also presented.

We finally compare data generated by the simulator to that obtained from two ocean

experiments.

• Chapter 4: Underwater localization of multiple sources using BPDN

This chapter presents an MF multi-source localization technique. The proposed

technique exploits formulation of the localization problem in terms of sparse rep-

resentation of a small number of source positions among a much larger number of

potential positions. The sparse representation is formulated as the BPDN problem

for complex-valued variables. An efficient algorithm combining the homotopy ap-

proach and CD search is derived for solving the BPDN problem. The homotopy

algorithm is modified for multi-frequency signals to provide more reliable localiza-

tion results. Numerical results obtained from the proposed localization technique,

using simulated data and real experimental data, are compared with the results ob-

tained from other MF techniques.

• Chapter 5: Estimation of SSP using MFI

In this chapter, we investigate the estimation of uncertain SSP by solving an MFI

problem. Several global optimization methods are compared and an efficient adap-

tive global optimization method, combining the local optimization method DHS

and the global optimization method FSA, is used to solve the inversion problem for

estimating SSP in a deep water scenario.

• Chapter 6: Estimation of Time-varying Sparse Underwater Acoustic Channels

This chapter investigates low complexity channel estimation for sparse underwater

acoustic channels. An iterative channel estimator using cubic B-splines for ap-

proximating the time-varying impulse response is developed for reducing the high
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complexity caused by large delay spread. The complexity of the proposed estimator

is analyzed, comparing with that of the ML BEM channel estimator. A method for

identifying non-zero channel taps by solving a BPDN problem using the homotopy

algorithm developed in Chapter 4 is described. The iterative estimator is firstly

applied for estimating short time-varying multipath Rayleigh fading channels to

justify its performance. Then the iterative estimator is applied for estimating time-

varying sparse underwater acoustic channels, generated by the simulator developed

in Chapter 3, and combined with the non-zero tap identification method.

1.4 Notations

In this thesis, we will use the following notations unless otherwise specified. The symbol

j is an imaginary unit j =
√
−1. ℜ{·} denotes the real part of a complex number.

Matrices and vectors are denoted by capital and small bold fonts, respectively, e.g. A is a

matrix and b a vector. Elements of the matrix and vector are denoted as [A]m,n and [b]n,

respectively; A(n) denotes the nth column of matrix A. (·)T , (·)H , (·)∗ denote the matrix

transpose, complex conjugate transpose, and complex conjugate, respectively. || · ||p is

the lp norm. ⊗ denotes the Kronecker product. E{·} denotes the statistical expectation

operator.
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Chapter 2

Fundamental Techniques: Computation

of Underwater Acoustic Fields

Contents
2.1 Underwater acoustic field computation methods . . . . . . . . . . . 9

2.2 Field computation programs . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

In this chapter, fundamental techniques used in this thesis for computing underwater

acoustic field are briefly introduced.

2.1 Underwater acoustic field computation methods

Underwater acoustic waves suffer from refraction due to the change of sound speed in

water. The plane wave model, which is usually used for modeling the propagation of

radio waves, does not hold for underwater acoustic waves. In this section, the underwa-

ter acoustic wave equation and three methods for computing acoustic fields are briefly

introduced.
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For range independent environment (the environmental parameters such as the sound

speed and the density are only functions of depth) and an isotropic source s(t), the acous-

tic field pressure p at the measured depth z and horizontal distance r from the source can

be calculated by solving the acoustic wave equation given by [24]:

▽·
(

1

ρ
▽p

)
− 1

ρc2(z)

∂2p

∂t2
= −s(t)

r
δ(z − zs, r), (2.1)

where ρ is the density of water, c(z) the sound speed at depth z, zs the source depth, and

δ(z − zs, r) is the Dirac delta function.

With known environmental parameters such as SSP, water density and the

source/receiver positions, the acoustic field can be calculated by solving the wave equa-

tion in (2.1). There are various methods for solving the equation. The method of solving

the wave equation is not the subject of interest in this thesis. However, the basic con-

cept behind each method is worth to know since it is useful to understand how to use the

program for computing the acoustic field and how to set the parameters. In the follow-

ing, three popular methods, namely, the normal mode method, the Gaussian beam tracing

method and the Fast field program (FFP) method, are briefly introduced.

2.1.1 Normal mode method

The underwater environment can be considered as a waveguide, where the sea surface and

bottom are treated as boundaries. Therefore, the normal mode method, which is widely

used for solving waveguide problems, can be used to calculate the acoustic field. For

simplicity, a single-frequency source is considered, with a signal s(t) represented as

s(t) = e−jωt, (2.2)

where the amplitude of the source signal is assumed to be 1, ω is the circular frequency

and t is the time. The resulting acoustic field can be represented as a similar harmonic:

p = p(r, z)e−jωt, (2.3)

where p(r, z) is the complex amplitude of the field pressure. To start with, we can rewrite

the wave equation in (2.1) in cylindrical coordinates and factor out the harmonic [1]:

1

r

∂

∂r

(
r
∂p(r, z)

∂r

)
+ ρ(z)

∂

∂z

(
1

ρ(z)

∂p(r, z)

∂z

)
+

ω2

c2(z)
p(r, z) = −δ(z − zs)δ(r)

2πr
. (2.4)
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Using the technique of separation of variables, letting p(r, z) = Z(z)R(r), and assum-

ing a perfectly rigid bottom condition, we obtain the following mode equations [1]:

ρ(z)
d

dz

(
1

ρ(z)

dZ(z)

dz

)
+

(
ω2

c2(z)
− k2

)
Z(z) = 0, (2.5)

Z(0) = 0, (2.6)
dZ(D)

z
= 0, (2.7)

where D is the bottom depth. The solution of these equations are a set of Green func-

tions (modes). The acoustic field can be expressed by:

p(r, z) =
∞∑

m=1

Rm(r)Zm(z), (2.8)

where Zm(z) is the mth mode function and Rm(r) are the corresponding coefficients.

Equations in (2.5) and (2.8) indicate a basic procedure for computing the acoustic field.

The mode functions Zm(z) are firstly computed according to the sound speed profile c(z)

and the density ρ(z). The acoustic field is then calculated according to the mode functions

Zm(z) and the positions of the source and receiver.

2.1.2 Fast Field Program (FFP) method

FFP treats the wave equation in a different way from that of the normal mode method. In

FFP, the Fourier-Bessel transform is applied to the wave equation in (2.1), which is given

by [24]:

p̂(k, z, t) =

∫ ∞

0

p(r, z, t)J0(kr)rdr, (2.9)

where J0(kr) is the zero-order Bessel function and k is a parameter related to the wave-

length. We then obtain from (2.1) [24]:

∂

∂z

(
1

ρ

∂p̂(k, z, t)

∂z

)
− k2

ρ
p̂(k, z, t)− 1

ρc2(z)

∂2p̂(k, z, t)

∂t2
= −s(t)δ(z − zs). (2.10)

For a sequence of k values, (2.10) is solved. The acoustic field is then calculated by the

inverse Fourier-Bessel transform:

p(r, z, t) =

∫ ∞

0

p̂(k, z, t)J0(kr)kdk. (2.11)

Similar to the normal mode method, FFP has two steps to compute the acoustic field.

A series of functions p̂(k, z, t) are computed according to the environmental parameters
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as well as the depths of the source and the measured point. At the next step, the horizontal

distance from the source to the measured point should be defined to compute the acoustic

field.

2.1.3 Gaussian beam tracing method

Beam tracing algorithm is originated from and based on ray tracing method [25]. Tracing

the evolution of a beam starts with solving the ray equation to obtain the central ray of

each beam. The beam is then constructed around the central ray. For computing the

acoustic field, a series of rays with different casting angles are generated. The acoustic

field around each ray is computed by solving the wave equation, where the wave equation

is usually converted to its equivalent form, a parabolic equation [25] [26]. It is known that

high frequencies wave field propagates mostly along the rays [26], e.g., the acoustic field

decays as the distance from a ray increases. Solutions of the parabolic equation show that

the field pressure in a beam falls off in a Gaussian fashion as a function of the distance

from the central ray [26].

For computing the acoustic field of a point source, a series of beams are generated

from the source and traced in the water. The beam pattern can be defined by the casting

angle interval of the rays from the source and the number of beams. The acoustic field at

the receiver is then calculated by summing the contributions of each individual beam that

cross the vicinity of the receiver.

2.2 Field computation programs

In Section 2.1, we have briefly introduced three different propagation models developed

for computing the underwater acoustic field. In this section, the corresponding programs,

which can be found in the acoustic toolbox [1], will be introduced. All the three programs

are developed in FORTRAN. However, they have been compiled into executable files so

that they can be easily used in MATLAB.
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2.2.1 Normal mode program: KRAKEN

KRAKEN is a normal mode method based program for computing underwater acoustic

field. It includes two core programs: the KRAKEN program and the FIELD program.

The KRAKEN program computes the mode functions according to the environmental

parameters. The FIELD program calculates the acoustic field using the mode functions

computed by the KRAKEN. As mentioned in Section 2.1, to calculate the mode func-

tions, the parameters describing the underwater environment should be defined. These

parameters include the SSP (the sound speed at different depths), density of the water,

characteristics of the bottom, etc. Besides, the source frequency should also be provided

at this stage. For the KRAKEN program, a specific environment file ’ENVFIL’ describ-

ing these parameters are required as an input. The outputs of KRAKEN are the mode

functions, included in a ’MODES’ file.

According to the mode functions, by defining the positions of the source and receiver,

the acoustic field is computed by another core program FIELD. Additional parameters

describing the number of modes involved in computing the acoustic field as well as the

positions are included in a separate file ’FLDFIL’. The computed acoustic field is saved

in an output file ’SHDIF’. A block diagram of the KRAKEN is provided in Fig.2.1.

Figure 2.1: The structure of KRAKEN [1].

2.2.2 FFP: SCOOTER

SCOOTER is an FFP based program for computing the underwater acoustic field. Simi-

larly to KRAKEN, there are two core programs, SCOOTER and FIELD, for computing
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the functions p̂(k, z, t) and the acoustic field, respectively. Therefore, SCOOTER has

a similar structure as that of KRAKEN. However, it should be noticed that additional

information, including the depths of the source and receiver, should be provided in the

’ENVFIL’. In the acoustic toolbox, the positions of the source and receiver are defined

in ’ENVFIL’ so that the environmental file is compatible for SCOOTER and KRAKEN.

The block diagram of SCOOTER is illustrated in Fig.2.2.

Figure 2.2: The structure of SCOOTER [1].

2.2.3 Beam tracing program: BELLHOP

BELLHOP is a Gaussian beam tracing based program for underwater acoustic field com-

putation. It is convenient to show the evolution of the rays for a given environment. The

evolution of the rays is included in a file ’RAYFIL’. Besides, the BELLHOP is also ca-

pable of providing the multipath arrivals at the receiver (included in ’A-DFIL’), with the

propagation time of each arrival and the corresponding complex-valued amplitude, which

are useful for computing the channel impulse response for a given bandwidth. Fig.2.3

gives a block diagram of BELLHOP.

When running the BELLHOP program, one of the three output files shown in Fig.2.3 is

generated. There is a parameter in ’ENVFIL’ describing the type of output. As mentioned

in Section 2.1, the beam pattern should also be defined. This includes the interval of the

emission angles, number of beams, the stepsize of tracing the rays, and the maximum

range and depth of the tracing. All the parameters are included in additional lines in the

’ENVFIL’ file, compared to that of KRAKEN and SCOOTER.
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Figure 2.3: The structure of BELLHOP [1].

The three programs described above are all capable of providing accurate field compu-

tation when the environment parameters are properly set. However, for different scenar-

ios, the accuracy and efficiency of the three programs are different. Generally, SCOOTER

is suitable for computing the field of a short range from the source. The computation time

increases when the distance between the source and receiver increases. KRAKEN is also

able to calculate the field of short ranges, however, extra attention should be paid for set-

ting the parameters to avoid the possible inaccuracy in computing the mode functions [1].

Therefore, as a rule of thumb, computing the field for distances within 10 water depth is

carried out by SCOOTER. For larger distances, KRAKEN is used [1].

The beam tracing program BELLHOP has lower accuracy than KRAKEN. However,

for KRAKEN, since the number of mode functions increases as the frequency increases,

the computational complexity for high frequencies is high. Therefore, to save the compu-

tation time, BELLHOP is often chosen for dealing with high frequencies.

2.3 Simulation results

So far, we have introduced and described three different field computation programs. In

this section, we will give examples of the parameter setting for the programs, which will

be used in Chapter 5 for the inversion of SSP. Numerical results for field computation are

also provided.
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2.3.1 Parameter setting

A typical deep water SSP, the Munk profile [27], is used in this section. It has a sound

speed c(z) as a function of the depth z given by:

c(z) = 1500

[
1.0 + ϵ

(
2(z − 1300)

1300
− 1 + e−

2(z−1300)
1300

)]
, (2.12)

where the quantity ϵ is taken to be ϵ = 0.00737. The resulting SSP is plotted in Fig.2.4,

where the bottom depth is 5000m.
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Figure 2.4: Munk Sound Speed Profile.

The ’ENVFIL’ for the KRAKEN and the SCOOTER is listed in Table 2.1. The text

after sybmol ’!’ on each line is the comment. As shown in the table, the first line is

the title of the SSP. The second line is the source frequency in Hz, which is fixed when

the computation is performed. The third line is the number of layers from the surface

to the bottom boundary. For instance, in some underwater scenarios, the upper layer of

the bottom is sand, while the deeper layer is rock. Then we can treat the rock layer as a

perfect rigid boundary. For the upper layer, the SSP should be provided in the same way

with that for the water column as an additional layer.

The forth line comes with some options about interpolation of the SSP, surface bound-

ary condition and attenuation unit. In Table 2.1, the letters ’CVW’ specify linear inter-
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Table 2.1: Munk Environment File for KRAKEN and SCOOTER
Line

1 ’Munk Profile ! Title

2 50.0 ! Frequency (Hz)

3 1 ! Number of Layers

4 ’CVW’ ! Options: Interpolation, Surface boundary,

Attenuation

5 0 0.0 5000 ! NMESH, SIGMA(m), Z(NSSP)

6 0 1548.2 0.0 1.0 ! z (m), c(z) (m/s), cs(z) (m/s), ρ(z) (mg/cm3)

7 200.0 1530.29 /

8 250.0 1526.69 /

9 400.0 1517.78 /

10 ... ...

11 5000.0 1551.91 /

12 ’A’ 0.0 ! Bottom options

13 5000.0 1600.0 0.0 1.0 /

14 1400.0 1600.0 ! Minimum and Maximum sound speed (m/s)

15 200.0 ! Maximum range (km)

16 1 ! Number of source depth

17 200.0 ! Source depth (m)

18 10 ! Number of receiver depth

19 100.0 1000.0 ! Receiver depth (m)
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Table 2.2: Field File for KRAKEN
Line

1 / ! Title

2 ’RA’ ! Options for source type and mode theory

3 9999 ! Number of modes to include

4 1 ! Number of SSPs

5 0.0 ! The range for each SSP (zero for range independent SSP)

6 101 ! Number of receiver range

7 0.0 100.0 / ! Receiver range (km)

8 1 ! Number of source depth

9 200.0 / ! Source depth (m)

10 10 ! Number of receiver depth

11 100.0 1000.0 / ! Receiver depth (m)

12 10 ! Number of receiver depth

13 0.0 / ! Receiver displacement: Zeros for perfect vertical array

polation for the SSP, free space above the surface, and the attenuation unit dB per wave-

length. Line five defines the number of mesh points (NMESH) used for representing the

SSP, the surface roughness and the bottom depth of the last point of the SSP Z(NSSP).

Setting NMESH = 0 means the program itself will decide the number of mesh points.

More details for the options can be found in [1].

Line six starts to define the SSP c(z). The speed of shear wave cs(z) [1] can also be

defined. Line twelve defines the bottom options including the bottom type and the bottom

roughness. The letter ’A’ means the bottom is treated as an acousto-elastic half space [1].

The depth, sound speed, density of the bottom are defined in line thirteen. The upper

and lower limit of the sound speed in the program, and information of source/receiver

positions are defined from the fourteenth line to the nineteenth line.

As described in Section 2.1, a field file is required for both KRAKEN and SCOOTER

to compute the acoustic field. Table 2.2 and Table 2.3 give examples of the field file

’FIDFIL’ for KRAKEN and SCOOTER, respectively. For the field file of KRAKEN, the

source and receiver positions are provided. For the SCOOTER’s field file, there is only

the information of the receiver range from the source. More detail about the options can

be found in [1].
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Table 2.3: Field File for SCOOTER
Line

1 ’RP’ ! Options for coordinates and the integration of p̂(k, z, t)

2 0.0 100.0 101 ! Maximum range (km), Minimum range (km),

Number of ranges

Table 2.4: Additional Lines for BELLHOP
Line

14 1 ! Number of source depth

15 200.0 / ! Source depth (m)

16 10 !Number of receiver depth

17 100.0 / 1000.0 ! Receiver depth (m)

18 101 ! Number of receiver range

19 0.0 100.0 / ! Receiver range (km)

20 ’A’ ! Output option

21 1000 ! Number of beams

22 -25.0 25.0 / ! Angle interval (degrees)

23 125.0 5500.0 102.0 ! Stepsize in range (m), Maximum depth (m),

Maximum range (km)

For the BELLHOP, the beam pattern is defined in the ’ENVFIL’. The settings of the

source frequency, SSP, and etc are the same to those for KRAKEN and SCOOTER. Ad-

ditional lines for BELLHOP, replacing from the fourteenth line in Table 2.1, are listed

in Table 2.4. In the 20th line, the letter ’A’ means the output is the delay arrival file ’A-

DFIL’. There are other options for controlling the output file. Further details can be found

in [1].

2.3.2 Field computation results

With proper environment settings, the above three programs can provide similar field

computation results. In this section, we use the Munk SSP to compare these three pro-

grams. A uniform sampling of c(z) in depth with a step of 200 m is used to represent the

SSP. An additional point at a depth of 250 m is used to provide better interpolation accu-

racy for the SSP. The source is fixed at the depth of 200 m. The range interval considered
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Figure 2.5: Field (transmission loss) computed by SCOOTER: the vertical bar shows the

mapping of quantities (in dB) to corresponding colors.

here is [0, 100] km. Fig.2.5 shows the field computation results generated by SCOOTER

at a frequency of 50 Hz. The acoustic field is represented as the transmission loss of the

filed pressure at the measured point with respect to the field pressure at the source.

Fig.2.6 shows the field computation results generated by SCOOTER and KRAKEN

for a receiver depth at 500 m. It is seen that for two different source frequencies (50 Hz

and 1000 Hz), the acoustic field generated by the two programs are similar to each other.

The most significant difference exists in range interval [10, 30] km, where the receiver

position falls into a shadow zone, as can be found in Fig.2.5.

For BELLHOP, to get accurate results, the beam tracing parameters should be set

carefully. Fig.2.7 and Fig.2.8 give the results of several attempts for setting the beam

patterns. The angle step of generating the beams is fixed at 0.1◦, e.g., for an angle interval

[−25◦, 25◦], the number of beams is 500. It is seen that, with increased tracing angles,

the difference between the field computed by BELLHOP and that by SCOOTER is re-

duced. Compared with Fig.2.7(c) and Fig.2.7(d) for a frequency of 50 Hz (or Fig.2.8(c)

and Fig.2.8(d) for a frequency of 1000 Hz), when the angle interval is large enough,
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Figure 2.6: Field (transmission loss) computed by SCOOTER and KRAKEN.
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this difference does not change. This (systematic) difference between BELLHOP and

SCOOTER is more significant than that between KRAKEN and SCOOTER.

From the results in Fig.2.7 and Fig.2.8, it is seen that to get accurate field computation

from BELLHOP, the angle interval should be set large enough. This is due to the fact

that the source is assumed to be isotropic, i.e., the signals are transmitted with the same

power to different directions. In practice, the source always transmits signal in a smaller

angle interval. An example of considering the limited angles for the source can be found

in Chapter 3.
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Figure 2.7: Field (transmission loss) computed by BELLHOP (red line) and

SCOOTER (blue line) at a frequency of 50 Hz with angle intervals: (a) [−25◦, 25◦]; (b)

[−35◦, 35◦]; (c) [−55◦, 55◦]; (d) [−65◦, 65◦].
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Figure 2.8: Field (Transmission loss) computed by BELLHOP (red line) and

SCOOTER (blue line) at a frequency of 1000 Hz with angle intervals: (a) [−25◦, 25◦];

(b) [−35◦, 35◦]; (c) [−55◦, 55◦]; (d) [−65◦, 65◦].

2.4 Summary

In this chapter, we have briefly introduced and described three different field computation

methods for underwater acoustic waves, which are the normal mode method, the fast field

program method, and the Gaussian beam tracing method. The corresponding programs

for computing the acoustic field, KRAKEN, SCOOTER, and BELLHOP, are introduced

and compared. Environmental parameter settings for each program have also been de-

scribed using examples taken from the Munk sound speed profile. The three programs

will be used for computing the acoustic field in the subsequent Chapters. Specifically,

the normal mode program KRAKEN will be used for low frequency field computation
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while the Gaussian beam tracing program BELLHOP will be used for high frequency

computation. The fast field program SCOOTER will be used only for short ranges.
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Chapter 3

Modeling of Time-varying Underwater

Acoustic Channels
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3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Introduction

Two important phenomena that affect the performance of underwater acoustic communi-

cations are the multipath propagation and the Doppler effect [2,12,28,29]. The multipath

propagation makes the channel to be frequency-selective and the Doppler effect makes the

channel to be time-selective. Thus, the underwater acoustic channel is doubly-selective.

Although, time-varying multipath channel models are widely used to analyze radio com-

munication systems (see [30–32] and the references therein), they are not directly appli-

cable to underwater acoustic communications [12, 33]. For radio communications, the

Jakes’ model combined with a set of standard power delay profiles with fixed multipath

C. Liu, Ph.D. Thesis, Department of Electronics, University of York
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delays is often considered to be useful for studying the system performance [34]. The

important feature of the underwater acoustic channel is the fast variation of multipath de-

lays due to a low speed of sound. As a result, the signal distortion caused by the Doppler

effect in underwater channels includes the time compression/dilation that is different for

different multipath components (see [11, 12, 29, 35–37] and references therein). Another

important consideration is that a particular sea area can provide specific propagation con-

ditions that should be taken into account when studying underwater acoustic systems.

To account for the phenomena in the channel model, the time-varying channel impulse

response needs to be computed for a specific sea area.

Time variations of the underwater acoustic channel are caused by many factors such

as the transmitter/receiver motion [12], internal waves [38], surface waves [39, 40], and

others. In this chapter, we focus on time variations caused by the transmitter/receiver

motion. However, other phenomena can also be incorporated in the proposed model.

Extensive effort has been devoted in the literature to modeling underwater acoustic

signal transmission. A channel simulator in [41] is based on a static channel impulse

response computed by solving the underwater acoustic wave propagation equation using

the normal mode method [1] or ray tracing method [25]. This, however, does not account

for transmitter/receiver movement; thus, the Doppler effect is not considered. A simulator

in [42] models fluctuations of the amplitude and phase of eigenpaths (with fixed delays) as

random processes. However, it is unclear how statistics of the random processes should

be defined depending on a particular sea area. Also, this model does not consider the

delay variations, and therefore cannot accurately model the Doppler effect. The simulator

proposed in [33] does incorporate the Doppler effect by introducing different frequency

shifts in different eigenpaths; it then uses some statistical model for varying the multipath

amplitudes. However, it does not model the time-varying multipath delays and it is unclear

how to define statistics of the amplitude variations.

A general approach for simulation of signal transmission is to compute the channel im-

pulse response for transmitter/receiver positions corresponding to all sampling instants of

the signal. In [40], a method was developed for generating the channel impulse response

by interpolating eigenpaths pre-computed at a regular space grid in the area surrounding

the transmitter/receiver trajectory. However, for complicated and/or long-time movement,
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where the number of grid points and the number of signal samples is large, the complexity

of this approach is high.

In this chapter, we propose a different approach for modeling the underwater signal

transmission that has a relatively low complexity and can be used together with different

field computation methods. In this approach, the trajectory is sampled at a low rate (much

lower than the signal sampling rate). At every trajectory sampling instant, a waymark

impulse response is computed using a field computation method, e.g. the normal mode

or ray tracing method. Using the waymark impulse responses and adjusting the multipath

delays, the time-varying impulse response is recovered using local splines. The signals

are then modeled by compensating for the adjusted delays and convolving the transmitted

signal with the time-varying impulse response. The proposed approach employs recursive

(in time) computations, thus allowing modeling the signal transmission for arbitrary long

trajectories.

The rest of this chapter is organized as follows. In Section 3.2, the proposed approach

is described. In Section 3.3, it is applied to model signals in a shallow water experi-

ment. In Section 3.4, the proposed approach is used for modeling signals in a deep water

experiment. Finally, Section 3.5 draws conclusions.

3.2 Underwater acoustic channel simulator

In a time-varying channel, the noise-free signal at a receiver is described as a convolution

y(t) =

∫ ∞

−∞
h(t, τ)s(t− τ)dτ, t ∈ [0, Ts], (3.1)

of the channel impulse response h(t, τ) and the source signal s(t), where Ts is the signal

duration. This is the most general description of linear time-variant systems. In under-

water acoustic communications, different variants of the description are used. E.g., for a

channel with discrete multipath components, one can use the model [34, 35, 43]

h(t, τ) =
L∑

p=1

Ap(t)δ(τ − τp(t)) (3.2)

where Ap(t) and τp(t) are time-varying amplitudes and delays of L multipath compo-

nents, and δ(t) is the Dirac delta function. If τp(t) = τp−at, we arrive at a channel model
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that introduces compression/dilation with a compression factor a to the received signal;

this model was adopted in [35] to describe non-uniform Doppler shifts of subcarriers in

an OFDM system. If τp(t) = τp − apt, we obtain a model with different compression

factors ap for different multipath components as used in [43] to describe channel distor-

tions introduced in OFDM signals. More complicated dependencies of delays τp(t) on

time t allow representing time-varying Doppler shifts of signals. To describe macro- and

micro-paths as well as the individual Doppler compression for different macro-paths, the

following underwater acoustic channel model is used [44–46]

y(t) =
L∑

p=1

∫ ∞

−∞
s(ηpt− τ)hp(τ − τp)dτ (3.3)

where ηp = 1+ap and hp(τ) are impulse responses describing different micro-path struc-

tures for different discrete multipaths (macro-paths). This model is equivalent to (3.1)

with

h(t, τ) =
L∑

p=1

hp(τ − τp(t)) (3.4)

and τp(t) = τp − apt. It is worth to notice that the model (3.4) can easily incorporate the

frequency dependent absorption, as opposed to the model (3.2).

In discrete-time form, the received signal is given by

y(nT ) =
I−1∑
i=0

h(nT, iT )s(nT − iT ), n = 0, . . . , N − 1, (3.5)

where T is the signal sampling interval, I the number of channel taps, and N = Ts/T .

For modeling the time-varying channel, the impulse response h(t, τ) should be known for

every sampling instant t = nT .

Generating the impulse response for a particular point at the trajectory is based on the

acoustic field computation, which is typically of high complexity. Therefore, generating

h(nT, τ) for all n would make the simulation of long-time transmission (i.e. for high N )

complicated. In this section, a method of modeling underwater acoustic signal transmis-

sion is proposed that allows reduction in the complexity. For the sake of clarity, we will

concentrate on scenarios where the receiver is static and the transmitter is moving.
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3.2.1 Generating the channel frequency response from acoustic field

computation

Different source/receiver positions will result in different propagation channels. The mo-

tion induced channel time variations can be modeled by generating the channel impulse

response for the trajectory points corresponding to signal samples. This can be done by

defining the trajectory by the pair [r(t), z(t)], where r(t) is the horizontal distance be-

tween the transmitter and receiver and z(t) is the transmitter depth at instant t, mapping

the sampling instants t = nT to positions [r(nT ), z(nT )], and finding the channel fre-

quency response from acoustic field computation for a set of frequencies of interest. The

channel impulse response can then be obtained from the channel frequency response by

the inverse Fourier transform.

At a frequency ωk, the channel frequency response p(nT, ωk) can be computed by

solving the wave equation that governs the propagation of underwater acoustic waves.

The acoustic wave equation is defined by a set of environmental parameters, such as the

water density ρ, the sound speed c(z) at depth z, the source depth zs, the receiver depth

z, the horizontal distance to the source r, and some others [1]. With the knowledge of the

environmental parameters, different methods can be adopted for computing the acoustic

field; the most popular are the normal mode method [1] and the ray tracing method [25].

In the normal mode method, assuming that the environment is range independent, the

frequency response at a frequency ωk is calculated as [1]

p(nT, ωk) =

Q(ωk)∑
q=1

Rq(ωk, r(nT ))Zq(ωk, z(nT )), (3.6)

where Zq(ωk, z) are the normal modes andRq(ωk, r) are expansion coefficients. The main

drawback of this method is that the normal modes should be repeated for each frequency

required; this is computationally expensive. Besides, the number of normal modes Q(ωk)

to be taken into account increases at higher frequencies [1].

The ray tracing method [25] is based on computing L eigenpaths starting from the

source and hitting the receiver. The propagation delays τnl(ωk) and attenuations anl(ωk)

computed for the lth eigenpath at the position [r(nT ), z(nT )] are then used to compute
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the channel frequency response:

p(nT, ωk) =
L∑

l=1

anl(ωk)e
−jωkτnl(ωk). (3.7)

Compared with the normal mode method, the ray tracing method is more efficient for

dealing with high frequencies [1].

As the channel frequency response should be calculated for N points of the trajectory,

assumingK frequencies of interest ωk, the field computation (e.g. the normal mode or ray

tracing method) should be repeated KN times. E.g., for modeling the deep water signal

transmission for the experiment in Section 3.4 with N ≈ 107 and K ≈ 103, about 1010

field computations would then be required. This will result in high complexity. The com-

plexity can be reduced assuming that the multipath arrivals can be approximately treated

as frequency independent [?]. However, this still requires N ≈ 107 field computations.

In the following steps, we are aiming to reduce this complexity.

3.2.2 Generating the channel impulse response

The (real-valued) channel impulse response for the position [r(nT ), z(nT )] can be com-

puted as

h(nT, iT ) = ℜ

{
2

K

K−1∑
k=0

p(nT, ωk)e
jωkiT

}
, (3.8)

where ωk = (ω− + kδω) ∈ [ω−, ω+], ω− > 0 and ω+ > 0, ω+ = ω− + (K − 1)δω,

j =
√
−1, K = (ω+ − ω−)/(δω) + 1, and i = 0, . . . , I − 1. In general, the frequency

sampling interval δω is determined from the maximum propagation delay τmax:

δω ≤ π

τmax
. (3.9)

In underwater acoustic channels, if the distance between the transmitter and receiver is

high, due to the low speed of sound, τmax will be high, and with the small δω the number

K of frequencies at which the acoustic field should be computed will also be high; this

will result in high complexity of computing the frequency response.

As the impulse response h(nT, τ) is only non-zero for a relatively short delay interval
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τ ∈ [τmin, τmax], and τmin is usually close to τmax, i.e. (τmax − τmin)/τmax ≪ 1, we can write

h̃(nT, iT ) = ℜ

{
2

K

K−1∑
k=0

p(nT, ωk)e
jωk(iT+τmin)

}
, (3.10)

where h̃(nT, iT ) = h(nT, iT + τmin). Thus we can replace the filtering of a signal with

the impulse response h(nT, iT ) by a filtering with the impulse response h̃(nT, iT ) and

an extra signal delay τmin. Thus, the number of the channel taps I can be reduced from

I ∼ τmax/T to I ∼ (τmax − τmin)/T . Moreover, the frequency step δω is then calculated

as

δω ≤ π

τmax − τmin
. (3.11)

Compared with (3.9), (3.11) allows higher δω and smaller K, thus resulting in lower

complexity of computing the frequency response, especially when the distance is long so

that τmin is close to τmax, i.e. (τmax − τmin)/τmax ≪ 1.

3.2.3 Waymarks and local spline interpolation

For low-frequency signals, the variation of the channel impulse response from one sig-

nal sample in time to another can often be considered slow. Therefore, the computation

of the impulse response for every signal sample will be redundant, and the trajectory

sampling interval Tw can be made much higher than the signal sampling interval T , i.e.

Tw ≫ T . Then, an interpolation procedure can be used for recovering the time-varying

impulse response for all signal sampling instants. Specifically, we obtain (M + 1) way-

mark impulse responses hm(iT ) = h(mTw, iT ), where i = 0, . . . , I − 1, 0 ≤ mTw ≤ Ts,

m = 0, . . . ,M , and Tw = Ts/M .

In order to approximate time-variant channels, basis expansion models (BEMs) are

widely used. The most often used BEMs are the Karhunen-Loeve (KL) functions [21,47],

discrete prolate spheroidal (DPS) functions [20, 22], complex exponentials (CE) [22, 48,

49], and B-splines [23,50]. To describe channel time variations h(t, iT ) at a specific delay

(tap) iT using a BEM we have the following approximation of h(t, iT ):

ĥ(t, iT ) =

Nb−1∑
m=0

ci,mbm(t), (3.12)
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where bm(t) are the Nb basis functions and ci,m are expansion coefficients for the ith

channel tap. The use of the KL functions requires statistics of the path amplitude fluctu-

ations to be known; however, we use a deterministic channel model. The KL, DPS, CE,

as well as many other basis functions should be defined over the entire interval [0, Ts].

However, this would require: (a) computing and keeping in memory all waymark impulse

responses over [0, Ts] before expansion coefficients can be computed; (b) computing all

expansion coefficients at once; and (c) keeping in memory and using all the expansion

coefficients for computing the channel impulse response at any particular signal sampling

instant. With high Ts, this results in high complexity and high memory consumption.

We use local splines that allow significant reduction in the complexity and memory

requirement compared to the above basis functions. With the same number of basis

functions we can achieve similar performance as that with an orthogonal basis [51, 52].

When using cubic B-splines, only four expansion coefficients and four basis functions

are needed to compute the impulse response at any sampling instant. Furthermore, for

computing an expansion coefficient, only a finite number (three in our case) of waymark

impulse responses are needed. Thus, for computation of the signal at the output of the

channel at any instant, we only need a few waymark impulse responses. E.g., for the cu-

bic spline approximation that we are using, for any time instant only six waymark impulse

responses are required. Besides, all basis functions are time shifted versions of a single

B-spline that have a finite support (4Tw for the cubic B-spline) which is usually much

smaller than Ts. Firstly, this significantly reduces the modeling complexity. Secondly,

this allows a recursive computation of the output signal with a reduced and fixed memory

consumption independent of the signal duration.

Cubic splines provide good trade-off between the complexity and accuracy of approx-

imation compared to other spline orders [53]. We use local cubic splines for our model,

however other local splines can also be used [50, 54, 55]. The expansion (3.12) is then

converted into [53]:

ĥ(t, iT ) =
M+1∑
m=−1

ci,mb(t−mTw), (3.13)
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where we use Nb = M + 3 and b(t) is the cubic B-spline given by

b(t) =



1

6

(
2− |t|

Tw

)3

− 2

3

(
1− |t|

Tw

)3

, 0 ≤ |t| < Tw

1

6

(
2− |t|

Tw

)3

, Tw ≤ |t| < 2Tw

0, otherwise

(3.14)

The expansion coefficients ci,m for the local splines are found as [50, 54]:

ci,m = a−1hm−1(iT ) + a0hm(iT ) + a1hm+1(iT ), (3.15)

where a1 = a−1 = −1/6 and a0 = 4/3.

The spline interpolation can be represented in the matrix form. Let hm =

[hm(0) hm(T ) . . . hm(IT − T )]T and cm = a−1hm−1 + a0hm + a1hm+1, then

ĥ(t) =
M+1∑
m=−1

cmb(t−mTw).

Since the support of the cubic B-spline (3.14) is 4Tw, for each time instant t only four

spline coefficients cm are required. Therefore, for t = nT ∈ [mTw,mTw + Tw], we have

ĥ(nT ) = Cb(nT ), (3.16)

where C = [cm−1 cm cm+1 cm+2], b(nT ) = [b(ξ+ Tw) b(ξ) b(ξ− Tw) b(ξ− 2Tw)]T , and

ξ = nT −mTw.

Note that if Tw is chosen to be a multiple of T , then the vectors b(nT ) can be pre-

computed for all possible ξ within one interval Tw and stored. Thus, recomputing this

vector for each signal sample is not required. It is also seen that for each time instant nT ,

the spline interpolation has a recursive form with only 6 waymark impulse responses in

the vicinity of the trajectory point [r(nT ), z(nT )] involved and no other information is

required. This is beneficial when modeling long-time signal transmission.

3.2.4 Delay adjustment

Due to the low speed of sound, a small deviation of the transmitter/receiver position may

result in significant deviation of the multipath propagation delays. With a high Tw, this
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Figure 3.1: Example of interpolation of the channel impulse response: (a) without delay

adjustment; (b) with delay adjustment.

can result in significant interpolation errors [13]. Fig.3.1(a) shows two adjacent waymark

impulse responses obtained for a single path environment. We assume that the source is

moving at a constant horizontal speed of 6 m/s and the channel delay varies in time as a

linear function. Using Tw = 125 ms, i.e. the horizontal distance between two waymarks

on the trajectory is 0.75 m, leads to increase in the delay between two waymarks by about

0.5 ms. When modeling signal transmission at a sampling rate of 10 kHz, this delay

difference is as large as 5 signal samples. If we apply (for simplicity) linear interpolation

for obtaining an impulse response at a time instant between the two waymarks, the result

is a two-path impulse response ĥ(nT, τ) (instead of a true single path response) as shown

in Fig.3.1(a). Thus, the multipath structure of the channel is destroyed.

To overcome this problem, we will try to compensate for the delay shifts between

consecutive waymark impulse responses. Note that different multipath delays have dif-

ferent variations; therefore, in general, the precise compensation is infeasible. We can

only achieve an approximate delay adjustment. This can be done in different ways. As

an example, all the waymark impulse responses can be aligned with respect to the first

multipath arrival. This however can encounter problems for some scenarios due to a pos-

sibility that the first arrival can disappear at some point of the trajectory. Another problem

is that the first arrival can have the Doppler effect (i.e. the delay variation rate) quite dif-

ferent from that of other multipaths. We have found the following approach to aligning

the time-varying impulse response efficient in many scenarios.

A delay shift ∆ between two consecutive waymarks m − 1 and m can be found by
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Table 3.1: Delay adjustment
Input:

q−, q+, δinit, Q, pm−1(ωk), pm(ωk), k = 0, . . . ,K − 1

Initialization:

δ = δinit

qmax = arg maxq=qlower,...,qupper{J(qδ)}

where J(∆) =
∣∣∣∑K−1

k=0 pm(ωk)p∗m−1(ωk)ejωk∆
∣∣∣2

∆ = qmaxδ

J1 = J(∆− δ), J2 = J(∆), J3 = J(∆ + δ)

Repeat Q times:

δ ← δ/2

if J3 < J1 then J3 = J2 and ∆← ∆− δ
else J1 = J2 and ∆← ∆ + δ

J2 = J(∆)

solving the following problem:

∆ = arg max
Θ

J(Θ) (3.17)

where J(Θ) =
∣∣∣∑K−1

k=0 pm(ωk)p
∗
m−1(ωk)e

jωkΘ
∣∣∣2. This problem is equivalent to the fre-

quency estimation problem and it can be solved by many techniques. We have found that

the dichotomous search similar to the technique in [56] is useful for this purpose. The

corresponding algorithm is presented in Table 3.1.

The algorithm searches for the best match ∆ for the two waymark frequency responses

pm(ωk) and pm−1(ωk) in an interval [q−δinit, q
+δinit], where δinit is an initial step size and q+

and q− are integers. The initialization δinit = T/2 is found to be a good choice. Assuming

that the minimum (maximum) speed of the transmitter is vmin (vmax), the values q− and q+

can be found from the inequalities:

q+δinit >
vmaxTw

c0
, q−δinit <

vminTw

c0
,

where c0 = 1500 m/s.

The algorithm runs Q iterations in which the step-size δ is halved δ ← δ/2 and the

solution ∆ is rectified so that the final resolution is δinit/2
Q. A waymark composite delay

is then found as

τm = τm−1 + ∆, τ0 = τmin.
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The delay-adjusted waymark impulse response taking the composite delay into account is

then generated as

h̃m(iT ) = ℜ

{
2

K

K−1∑
k=0

pm(ωk)e
jωk(iT+τm)

}
i.e. h̃m(iT ) = hm(iT + τm).

The delay-adjusted impulse response h̃m = [h̃m(0) . . . h̃m(IT − T )]T will now re-

place hm in the local interpolation described in Subsection 3.2.3. Fig.3.1(b) illustrates the

benefit of the delay adjustment for the interpolation of the channel impulse response.

3.2.5 Waymark sampling period

We now discuss how the trajectory space sampling interval ∆r and consequently the

waymark sampling period Tw can be chosen. Firstly, one can use the trial and error

approach. Several values of Tw can be tried and an interval providing a small enough

error, e.g. the mean square error (MSE) between the interpolated and original (from the

acoustic field computation) impulse responses as explained in Sections 3.3 and 3.4, can

be used for the simulation.

Alternatively, the choice of ∆r and Tw can be done based on the waveguide invariant

theory [57, 58]. Specifically, we can write∣∣∣∣∆ω∆r

∣∣∣∣ = β
∣∣∣ωmax

r

∣∣∣ ,
where ∆ω is a frequency shift of a maximum ωmax in the channel frequency response

magnitude due to horizontal movement of a transmitter from distance r to r + ∆r, and

β ≈ 1 is the waveguide invariant [57]. Due to the horizontal movement, the multipath

delays are varying. We want to choose the range increment ∆r so that a delay variation

∆τ satisfies the condition: ∆τ ≪ T . With such a choice fluctuations of the impulse

response at fixed delays due to delay variations will be negligible.

Consider the following simplified scenario. Let at a distance r the channel have two

equally strong multipath components of a unit amplitude separated by a delay τ . The

magnitude of the channel frequency response is then given by H(ω) = 2 + 2 cos(ωτ).
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The maximum of H(ω) is observed at frequencies ωmax = 2πk/τ , where k ≥ 1 is an

integer. Due to the horizontal movement from r to r + ∆r, the multipath delays change

so that the magnitude of the frequency response is now H∆(ω) = 2 + 2 cos(ω(τ + ∆τ)).

The maximum of H(ω) is now shifted to the frequency ωmax + ∆ω = 2πk
τ+∆τ

. From this

equation, we find that ∆ω
ωmax

= − ∆τ
τ+∆τ

, and obtain

∆r =
1

β

∣∣∣∣ ∆ω

ωmax
r

∣∣∣∣ ≈ ∆τ

τ + ∆τ
r.

We are interested in obtaining delay variations ∆τ much smaller than the signal sampling

interval T , i.e. ∆r should be small enough to guarantee that ∆τ ≪ T ; thus

∆r ≪ T

τ + ∆τ
r ≈ T

τ
r.

For a fixed horizontal speed v0 of the transmitter, we then arrive at the waymark sampling

interval Tw = ∆r/v0. Although this is a simple scenario, we found that the relationship

derived above is useful for choosing the waymark sampling interval for experimental

scenarios. To apply this relationship in other scenarios, we note that τ is the multipath

delay spread of the channel. Note that this choice is based on the assumption that the

impulse responses at waymark points are aligned as explained in Subsection 3.2.4. In

Sections 3.3 and 3.4, we show how this choice relates to the MSE.

3.2.6 Generating the channel output signal

For generating the channel output signal, we need for every signal sample instant nT :

a) compute the channel impulse response (this is done by local spline interpolation of the

waymark impulse responses h̃m(iT ) as described above);

b) compute and compensate for a composite delay τ̂(nT );

c) convolve the input signal with the impulse response ĥ(nT ).

For computing the composite delay we can again use the local spline interpolation

similarly to (3.16):

τ̂(nT ) = θTb(nT ),

where θ = [θm−1 θm θm+1 θm+2]
T and θm = a−1τm−1 + a0τm + a1τm+1.

Compensation for the composite delay can be done as follows. A signal vector s̃(nT )

of length I is computed with elements obtained by interpolation of the signal s(t) at
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instants t = nT − iT − τ̂(nT ), i = 0, . . . , I − 1. The interpolation can be done by using

the local splines or any other method. The convolution then takes the form

y(nT ) = s̃T (nT )ĥ(nT ).

The channel model is now summarized in Table 3.2.

The proposed simulator significantly reduces time for computing the acoustic field

compared to the direct computation at the signal sampling rate fs. For instance, com-

puting the impulse response for one space point of the deep-water experiment, described

in Section 3.4, using the ray tracing program BELLHOP [59] on a PC (4 GB memory,

Intel CPU E8500, clocked at 3 GHz) takes approximately 3 s. Thus, generating a 100-s

signal at the sampling rate fs = 12288 Hz would take about 3.6 · 106 s or 42 days. In the

proposed simulator using Tw = 0.2 s, for a 100-s signal, approximately 500 waymarks

are required. Thus, computing the waymark impulse responses takes about 25 min. Note

that the other computations for generating the signal, implemented in MATLAB, take

also about 25 min. Thus, the whole computation of the 100-s signal takes about 50 min.

Fig.3.2 shows the structure of the proposed simulator. The part of the simulator dealing

with computations at the waymark rate 1/Tw (acoustic field, waymark impulse response,

and composite delay computations) is separated from the part performing the signal pro-

cessing at the signal sampling rate fs. The latter can be implemented in real-time provided

the waymark impulse responses and composite delays have been precomputed. The FIR

filtering requires I MAC (multiply-accumulate) operations per sample. The delay com-

pensation using the cubic local splines requires 3 MAC operations per sample. The local

spline interpolation of the waymark impulse response requires 3I MAC operations per

waymark interval Tw for computing the spline coefficients according to (3.15) and 4I

MAC operations per sample for interpolating the impulse response at the rate fs accord-

ing to (3.13). Note that the B-spline (3.14) does not need to be computed in real time as

it can be precomputed on a uniform grid within the signal sampling interval T ; e.g., the

precomputation with a grid step of T/1000 would only require 4·103 memory, while intro-

ducing a negligible error in the recovered signal [50]. Similarly, local spline interpolation

of the signal according to the composite delay requires 4 MAC operations per sample. In

total, as Tw ≫ T , the part indicated as ‘Software/Hardware Implementation’ in Fig.3.2

requires approximately 5I + 4 MAC operations per sample, or about 5Ifs MACs/s. As
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Table 3.2: Channel simulator
Input:

c(z), ρ, [r(t), z(t)], [ω−, ω+], T , τmin, τmax, δω, Tw, I , N

Initialization:

Repeat for m = −2, . . . , 3:

Compute the frequency response pm(ωk), k = 0, . . . ,K − 1,

for position [r(mTw), z(mTw)] using acoustic field computation

Find the composite delay τm using a delay adjustment algorithm

Compute p̃m(ωk) = pm(ωk) exp (jωkτm)

Compute the waymark impulse response h̃m with elements:

h̃m(iT ) = ℜ
{

2
K

∑K−1
k=0 p̃m(ωk) exp (jωkiT )

}
, i = 0, . . . , I − 1

Repeat for m = −1, . . . , 2:

Compute spline coefficients for the impulse response:

cm = a−1h̃m−1 + a0h̃m + a1h̃m+1

Compute a spline coefficient for the composite delay:

θm = a−1τm−1 + a0τm + a1τm+1

Form an I × 4 matrix: C = [c−1 c0 c1 c2 ]

Form an 4× 1 vector: θ = [θ−1 θ0 θ1 θ2]T

Set Th = Tw

Repeat for n = 0 : N − 1:

if nT > Th

m = m+ 1, Th = Th + Tw

Compute the frequency response pm(ωk), k = 0, . . . ,K − 1, for position [r(mTw), z(mTw)]

Find the composite delay τm

Compute p̃m(ωk) = pm(ωk) exp (jωkτm)

Compute the waymark impulse response h̃m

Compute spline coefficients for the impulse response:

c = a−1h̃m−2 + a0h̃m−1 + a1h̃m

Update C: C(u) = C(u+1), u = 1, 2, 3, and C(4) = c

Compute spline coefficient for the composite delay:

θm = a−1τm−2 + a0τm−1 + a1τm

Update θ: θ = [θm−3 θm−2 θm−1 θm]T

end if

ξ = nT − Th + Tw

b(nT ) = [b(ξ + Tw) b(ξ) b(ξ − Tw) b(ξ − 2Tw)]T

Spline interpolation of the impulse response: ĥ = Cb

Spline interpolation of the composite delay: τ̂(nT ) = θT b

Interpolation of the signal: s̃(iT )← s(nT − iT − τ̂(nT ))

Convolution: y(nT ) =
∑I−1

i=0 ĥ(nT, iT )s̃(iT )
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the number of taps I ≈ τfs, where τ is the multipath delay spread, the number of op-

erations has a quadratic dependence on the sampling frequency fs. E.g., for the Pacific

ocean experiment described in Section 3.4 with the sampling frequency fs = 12288 Hz

and the number of filter taps I = 7000, the complexity is 5 × 12288× 7000 ≈ 430 · 106

MACs/s. This can be implemented in real time using modern DSP or/and FPGA design

platforms. Note that the complexity of this part of the simulator is almost independent of

the waymark interval Tw, i.e. the speed of the source. However, complexity of the part

dealing with computations at the waymark rate Tw will be proportionally increased.

Figure 3.2: Underwater acoustic channel simulator.

3.3 Shallow water experiment

In this section, we apply the proposed approach to model signal transmission in an envi-

ronment that corresponds to the shallow water experiment SWellEx-96 (Event S5) [60].

We show that the numerical simulation results match well to the experimental results.

During the experiment, a ship towing a deep source at a supposed depth of 54 m moved

from a distance of 9 km towards and beyond a vertical line array (VLA) at a speed of 2.5

m/s. Our analysis is based on data collected on the VLA consisting of 21 hydrophones at
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depths between 94.125 m and 212.25 m. The signal sampling rate is fs = 1/T = 1500

Hz. The source transmitted simultaneously a set of 13 tones at frequencies from 49 Hz to

388 Hz. The SSP c(z) from [60] shown in Fig. 3.3 is used in our simulation. In [61] [62],
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Figure 3.3: SSP for the experiment SWellEx-96 (Event S5).

we estimated the source range trajectory for this experiment. The estimate well matches to

GPS measurements as shown in Fig.3.4(a). An estimate of the depth trajectory is shown

in Fig.3.4(b). The estimated trajectory is used in our simulation to model the signals

received at the 21 hydrophones.

To determine the waymark sampling period, we use the approach described in Subsec-

tion 3.2.5 as follows. E.g., for the distance r = 4.5 km, the multipath delay spread found

from the field computation is approximately τ = 0.3 s. We need to choose the range

sampling interval ∆r so that ∆r ≪ (T/τ)r. As T = 1/1500 s, we have ∆r ≪ 10 m.

With the speed of the transmitter 2.5 m/s, we obtain that the waymark sampling interval

should satisfy Tw ≪ 4 s; in our simulation, we use Tw = 0.5 s.

According to Fig.3.4(a), the maximum distance between the transmitter and VLA is

about 9 km, which results in a 6 s propagation time. Without the delay adjustment, the

frequency step δω in computing the acoustic field should be set to a value δω/(2π) <
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Figure 3.4: Trajectory of the source in the experiment SWellEx-96 (Event S5): (a) esti-

mated range and range from GPS measurements; (b) estimated depth.

0.08 Hz. With the delay adjustment, since the maximum multipath delay spread is 0.3

s, the frequency step can be increased so that δω/(2π) < 1.5 Hz. In our simulation,

the channel frequency response is computed with a frequency step δω/(2π) = 1 Hz in a

frequency interval [40, 410] Hz. The normal mode program KRAKEN [1] is used for the

field computation.

Firstly, the effectiveness of the delay adjustment is examined. We compute the cross

correlation between impulse responses found from the field computation at different po-

sitions. The correlation as a function of delay α between two positions is calculated as

ν(α) =
hT (t0)h(t0 + α)√

hT (t0)h(t0)
√

hT (t0 + α)h(t0 + α)
, (3.18)

where h(t0) is the channel impulse response at a distance r(t0) ∈ [4, 5] km. Fig.3.5

shows the correlation averaged over the range interval [4, 5] km versus the distance corre-

sponding to α with and without the delay adjustment. Without the delay adjustment, the

correlation rapidly decays as the distance increases; for Tw = 0.5 s (i.e. for a distance of
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Figure 3.5: Correlation of impulse response versus distance for the experiment SWellEx-

96: (a) without delay adjustment; (b) with delay adjustment.

1.25 m), the correlation is as low as ν = 0.45. After the delay adjustment, the correla-

tion is increased to ν = 0.9997. Fig.3.6 shows the MSE between the impulse response

obtained by spline approximation and the original (from the field computation) channel

impulse response in the range interval [4, 5] km. The MSE is averaged over each waymark

sampling period, where the MSE is calculated as:

MSE =
||ĥ(t)− h(t)||22
||h(t)||22

. (3.19)

It is seen that the MSE is below −68 dB, which shows that here the spline interpolation

is very accurate.

Fig.3.7 compares the Doppler spread of the tones obtained from the experimental and

simulated received signals. The Doppler spectra are obtained by averaging periodograms

of the received tones over 100s-long snapshots and over the 21 receiver hydrophones. The

frequency shifts of the tones due to the constant speed of the ship and geometry of the

experiment are removed as described in [61] [62]. It is seen that the Doppler spread of the

modeled signals match well to that obtained from the experimental data. The mismatch
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Figure 3.6: MSE between the approximated and original channel impulse response for

the experiment SWellEx-96.

in the floor level is due to the noise present in the experimental data and not added into

the simulated signals.

3.4 Deep water experiment

In this section, we verify the proposed channel model on data obtained in a deep water ex-

periment in the Pacific Ocean [44]. During the experiment, an acoustic source was towed

by a ship moving towards the receiver at a supposed speed of 6 m/s and depth of 200

m. An omnidirectional hydrophone, positioned at a nominal depth of 400 m, was used

to record the received signal. The distance between the transmitter and receiver varied

from 42 km to 40 km. In the vertical plane, the transducer beampattern is approximated

as having a 0dB-gain for grazing angles |α| ≤ 15◦ and -10dB for 15◦ < |α| < 25◦.

SSPs measured in the experiment are shown in Fig.3.8. The SSP averaged over the mea-

sured SSPs is used in the simulation. The ray tracing program BELLHOP [59] is used to

generate eigenpaths.
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Figure 3.7: Doppler spread of two tones (of frequencies fc) obtained from the experimen-

tal and simulated signals.

In the experiment, 340 coded OFDM symbols were transmitted. One OFDM symbol

is given by [44, 63]

s(t) =
Nsc−1∑
k=0

cos[2πfk + ϕ(k)], (3.20)

where the number of subcarriers Nsc = 1024, fk = fc − F/2 + k/Ts, fc = 3072 Hz, the

frequency bandwidth of the signal is F = Nsc/TOFDM = 1024 Hz, and TOFDM = 1 s is the

OFDM symbol duration. The phase modulation ϕ(k) of the subcarriers is given by

√
2ejϕ(k) = M2(k) + jM1(k), (3.21)

where M2(k) is a coded bit transmitted at the kth subcarrier, and M1(k) is a pilot bit; the

sequences M1(k) and M2(k) are binary with values ±1. The sequence M2(k) is a rate

1/2 convolutional code generated by polynomials [247, 371] in octal [64]. The OFDM

symbols are transmitted one-by-one without any guard interval. Thus, the information

data rate in the experiment is about 500 bit/s, or equivalently ≈ 0.5 bit/s/Hz. The absence

of the guard interval and the periodical transmitted pilot allows a simple procedure of time
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Figure 3.8: SSPs c(z) for the Pacific Ocean experiment.

synchronization. Moreover, since the channel is doubly-selective, there is no significant

benefit in using a guard interval, which can also reduce the transmission efficiency.

The receiver is briefly described as follows.

Firstly, a time-varying Doppler compression factor is estimated with a time step

Test ≤ TOFDM. This is done by computing the cross-ambiguity function between the

received and pilot signals on a 2D-grid of delay and compression factor and finding the

maximum on the 2D-grid [29, 44]. The compression factor estimate is further rectified

by using parabolic interpolation as described in [65]. The compression factor estimates

are linearly interpolated to the signal sampling rate and used to compensate for the time-

varying Doppler effect by resampling the signal with the time-varying compression factor.

The signal is then transformed into a complex-envelope signal within the frequency range

[−512,+512] Hz.

Secondly, linear time-domain FIR equalization with equalizer coefficients derived

from channel estimates is applied to the complex-envelope signal. The main purpose
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of the equalizer is to reduce the multipath delay spread. The channel estimation is based

on computing cross-correlation between the pilot and complex-envelope signals and is

performed with the same time step Test as the estimation of the Doppler compression fac-

tor. The equalized signal is then transformed into the frequency domain using the Fast

Fourier Transform.

Finally, Nturbo turbo iterations (Nturbo = 3 in our case) are repeated, each perform-

ing frequency-domain channel estimation, equalization and soft-decision Viterbi decod-

ing [64]. The channel estimation is based on the BEM with complex exponentials. For

the channel estimation, the pilot and tentative estimates of information symbols (zeros at

the first turbo iteration) produced by the Viterbi decoder are used.

Fig.3.9(a) shows the impulse response estimates obtained from the experimental data.

There can be seen periodic fluctuations of multipath delays. Analysis of the fluctuations

shows that they are synchronous, i.e. all delays are increased or decreased simultaneously.

This is an indication of range fluctuations as opposed to depth fluctuations of the source,

in which case, if delays of multipaths arriving at the receiver at positive grating angles

increased, delays of multipaths arriving at negative angles would decrease and vice versa.

In the case of depth fluctuations, we would see in Fig.3.9(a) opposite delay fluctuations

for some multipath components. The range fluctuations are caused by the towing of the

transducer by the surface ship. This can be explained by the drawing in Fig.3.10. When

towing the transducer, due to impact of the surface waves on the ship, the tether was

randomly sweeping in angle, which resulted in the range fluctuations with an average

amplitude of 1 m. The spectrum of the fluctuations matches well to the surface waves

with an average period of about 10 s.

In the simulation, to match the experimental data, the source is modeled as moving at

a constant depth with a time-varying speed (with range fluctuations)

r(t) = ro − vot+ rfluct(t), (3.22)

where r0 = 42.16 km and v0 = 6 m/s. In the first part of the simulation, we use a

simplified ’sinusoidal movement’: rfluct(t) = µ sin(2πt/T ) with µ = 1 m. In the second

part of the simulation, we use rfluct(t) derived from the experimental data.

To choose the waymark sampling interval, we apply the approach described in Sub-
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Figure 3.9: Estimates of the channel impulse response.
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Figure 3.10: Tether angle sweeping when towing the transducer.

section 3.2.5. The range step ∆r should be chosen to satisfy ∆r ≪ (T/τ)r. In the exper-

iment, we have r ≈ 40 km, T = 6.9 10−5 s (the signal sampling rate is 4 · 3072 = 12288

Hz), and the multipath delay spread τ < 0.5 s (in addition to multipaths shown in

Fig.3.9(a) there are weak multipaths with delays close to 0.5 s). Thus, we obtain that

∆r ≪ 5.5 m. With the speed of the transmitter 6 m/s, we obtain that the waymark

sampling interval should satisfy Tw ≪ 0.9 s. We consider two cases: Tw = 0.2 s and

Tw = 0.1 s. The frequency step for computing the channel frequency response is set to

δω/(2π) = 1 Hz.

Fig.3.11 shows the MSE between the impulse response obtained from the acoustic field

computation and the result of the spline interpolation for the first 450 m of the trajectory.

For Tw = 0.2 s, the MSE is close to −30 dB; however, at the distance 280 m, the MSE

increases to a level of−16 dB. The MSE peak is caused by change in the multipath struc-

ture; specifically, at this position some multipath components disappear. When reducing

the waymark sampling interval to Tw = 0.1 s, the MSE peak is reduced to the level −24

dB.

We now model the signal transmission for the sinusoidal movement and estimate the

time-varying impulse response from the simulated signal; the impulse response is shown

in Fig.3.9(b). Comparing Fig.3.9(a) and (b), it is seen that the proposed simulator accu-

rately describes the effect caused by fluctuations of the source movement.

We now model the source movement with rfluct(t) derived from the experimental data.

Specifically, the time varying speed is computed using the time-varying Doppler com-

pression factor estimated from the experimental data. Fig.3.12(a) shows the compression

factor variations for the strongest multipath component estimated from the experimen-
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Figure 3.11: MSE between the impulse response obtained from the acoustic field compu-

tation and the impulse response obtained by the local spline interpolation.

C. Liu, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 3. MODELING OF TIME-VARYING UNDERWATER ACOUSTIC CHANNELS 51

0 50 100 150 200 250 300
0.9994

0.9996

0.9998

1

1.0002

1.0004

1.0006

Time (s)

D
op

pl
er

 c
om

pr
es

si
on

 fa
ct

or

 

 

Experiment
Simulation

(a) Fluctuations of the compression factor in time

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

M
ag

ni
tu

de

 

 

Experiment
Simulation

(b) Spectrum of compression factor fluctuations

Figure 3.12: Fluctuations of the compression factor in the experimental and simulated

signals.
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tal and simulated signals. A constant compression factor due to the constant speed v0 is

removed to emphasize the fluctuations. Fig.3.12(b) shows the spectrum of the fluctua-

tions. It is seen that the results obtained in simulation match very well to that from the

experiment.

Next, the Bit Error Rate (BER) and MSE performance of the receiver is investigated. In

Fig.3.13, the BER is shown as a function of the estimation interval Test. The average signal

to noise ratio (SNR) in the simulated signals is set to 25 dB by adding white noise; this

is the same SNR as measured in the experimental data. In addition to the two scenarios

where the trajectory has range fluctuations (rfluct(t) ̸= 0), we have also simulated data

for the scenario with no range fluctuations (rfluct(t) = 0), i.e. when the source is moving

with a constant speed of 6 m/s. By comparing the BER performance of the receiver in

the three simulation scenarios and in the experiment, we can conclude the following. The

simulation results for the sinusoidal and real movements that take into account the range

fluctuations both match well to the experimental data. However, the simulation results for

the scenario with no range fluctuations show a lower BER. This is well supported by the

Doppler spectrum for this scenario in Fig.3.15, which shows slower channel variations

compared to the variations in the case of range fluctuations (see Fig.3.12). It is seen that

the threshold interval Test beyond which the BER significantly increases is now higher

and the floor BER level is lower than in the other cases. Fig.3.14 shows the MSE of the

soft demodulation output in the receiver. Comparing it with results in Fig.3.13, it is seen

that the MSE exhibits a behavior similar to that of the BER performance. Thus, taking

into account the range fluctuations in the trajectory is useful for accurate prediction of

the receiver performance. Simulation of the real movement is possible if the data like

those shown in Fig.3.12(a) are available. If not, the sinusoidal movement provides a good

approximation to the scenario with the real movement.

3.5 Summary

In this chapter, we have developed a method for modeling underwater acoustic signal

transmission for moving transmitter and/or receiver, particularly for underwater acoustic

communications. The proposed method is based on approximation of the time-varying
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Figure 3.13: BER versus the Doppler and channel estimation interval Test.

channel impulse response along the transmitter/receiver trajectory. This is implemented

by sampling the trajectory and using local splines for the approximation. The proposed

method has a low complexity and low memory consumption. Besides, it can be imple-

mented in a recursive form and, thus, can be used for developing real-time simulators

for long-duration communication sessions. The proposed method has been verified by

comparing the simulated data with data from real ocean experiments in shallow and deep

water. For the shallow water experiment, we have shown that the Doppler spectrum of

the tones transmitted by a moving source is similar in the simulation and experiment. For

the deep water experiment, we have investigated the influence of the channel estimation

interval on the detection performance of an OFDM receiver. It has been shown that the

receiver performance is similar in the simulation and experiment.

However, it is worth noting that the two experiments used to verify the channel model

exploited low-frequency signals: 49−388 Hz in the shallow water and 2560−3584 Hz in

the deep water. Therefore, the verification using experiments with signal transmission at

higher frequencies is highly desirable. Also, in the experiments used for the verification,

scattering from the see surface was not essential for the acoustic propagation. However,
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Figure 3.14: MSE versus the Doppler and channel estimation interval Test.
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ulation: the scenario with no range fluctuation.
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in many practical situations, the surface has significant impact on the propagated sig-

nal [39, 40, 66–68]. Thus, the proposed method can be used for modeling transmission of

low-frequency acoustic signals for underwater communications and other systems, where

the source and/or receiver are moving, and in channels, where the surface scattering is not

significant. Verifying the channel model using higher frequency sea experiments and in-

corporating in the model effects of acoustic scattering from the sea surface are the subjects

of our future research.
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Chapter 4

Underwater Localization of Multiple

Sources using Basis Pursuit De-Noising
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4.1 Introduction

Antenna array beamforming based on the MF processing is an effective method for es-

timating positions of underwater acoustic sources [14, 15]. In the MF beamforming, for

each hypothesized position, the acoustic propagation is modeled using known positions

of the antenna elements and environmental parameters such as the SSP and bottom com-

position. As a result, a steering vector is assigned to each potential position. A corre-

lation between the steering vectors for all the potential positions and the real signal is

evaluated to form an ambiguity surface [69]. Estimates of the source positions are then

obtained according to highest peaks of the ambiguity surface, e.g, in case of locating two
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sources, the source positions are determined by the highest and the second highest peak

of the ambiguity surface. Previously, many MF techniques have been proposed that show

good performance for single source localization in simulated scenarios and real ocean

experiments (e.g. see [14, 61, 62, 70] and references therein). However, few MF tech-

niques [14, 15, 62, 71] can provide good performance in detecting positions of multiple

sources simultaneously transmitting signals at the same frequencies, especially when the

sources are close to each other.

In the underwater localization, the number of potential positions is often significantly

larger than the number of sources. This allows formulation of the localization problem in

terms of sparse representation of source positions. The problem can then be reformulated

as finding the sparsest representation of the source positions, and for solving it greedy

methods [72] or l1 norm minimization basis pursuit de-noising (BPDN) [73] can be used.

In this chapter, we consider the l1 norm minimization problem which yields accurate

solutions in certain scenarios where greedy methods fail [73] [74]. Specifically, we deal

with the BPDN problem [75] [76].

Classical methods for solving the BPDN problem adopt convex optimization to obtain

a sparse solution (see [77], [78], [79] and references therein). The complexity of these

methods can be high when the size of the BPDN problem, i.e. the number of potential

source positions, is large. An alternative method with lower complexity is the Homotopy

method [73] [80].

In this chapter, we explore the idea of the Homotopy method and propose a technique

that is well suited to the MF localization. The main contribution of this chapter is as

follows. We formulate the underwater acoustic source localization as the complex-valued

BPDN problem and show high efficiency of such an approach. The BPDN problem is

solved for multi-frequency scenarios to benefit from the frequency diversity. The Ho-

motopy approach combined with the CD search [81, 82] is used for solving this multi-

frequency BPDN problem. Grid refinement is further used to reduce the complexity of

solving the BPDN problem. Comprehensive simulation is carried out to evaluate the per-

formance of the proposed method in resolving sources close to each other, locating mul-

tiple sources and robustness to noise and interference. The effectiveness of the proposed

method is verified using real ocean experimental data.
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The rest of this chapter is organized as follows. In Section 4.2, the signal model is

described and the source localization problem is formulated; the conventional MF and

Iterative Adaptive Algorithm (IAA) [71] MF processing techniques are presented. Section

4.3 describes the proposed technique; the CD search and grid refinement method are

also presented here. In Section 4.4, the proposed method is evaluated by applying it to

simulated and real experimental data. Finally, Section 4.5 gives conclusions.

4.2 Signal model for source localization and matched

field processing

In a scenario with K potential source positions, the signal at frequency fm, m =

1, . . . ,M , received by an N -element antenna array can be modeled as

y(fm) =
K∑

k=1

sk(fm)pk(fm) + e(fm) (4.1)

where pk(fm) is a N × 1 steering vector corresponding to the kth potential position, and

e(fm) is the noise at the receiver. With the MF processing, the steering vector pk(fm)

is computed using an acoustic propagation model with known environmental parameters

such as the SSP and bottom composition and known positions of the antenna elements.

For further derivation, it is convenient to rewrite the signal model by introducing the

following notations:

ak(fm) = pk(fm)/||pk(fm)||2

xk(fm) = sk(fm)||pk(fm)||2.

Then (4.1) can be rewritten as

y(fm) = A(fm)x(fm) + e(fm), (4.2)

where A(fm) = [a1(fm), a2(fm), . . . , aK(fm)] is the N × K steering matrix defining

all the potential positions, aH
k ak = 1, and x(fm) = [x1(fm), x2(fm), . . . , xK(fm)]T is

a signal vector. The kth element of x(fm) is considered to be a complex-valued signal

generated by a source at the kth position at frequency fm. The number of sources is
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assumed to be much smaller than K, i.e. the vector x(fm) is sparse. Based on this

signal model, the localization can be formulated as finding non-zero elements in x(fm),

i.e. solving a sparse representation problem. For instance, searching sources in the range

interval [0, 5] km with a resolution of 10 m and in the depth interval [0, 100] m with a

resolution of 5 m, results in K ≈ 104. If there are a few acoustic sources, we clearly deal

with a sparse representation problem.

Many MF processors provide good performance in locating a single source, e.g. the

coherent matched phase processor [16] or the minimum variance distortionless filter MF

processor [19]. However, they are not efficient in multiple source scenarios. This is

especially true when the number of snapshots is limited. An MF processor, which can deal

with the multi-source localization problem, is the conventional (Bartlett) MF processor

using the ambiguity function [14] [15]:

Bconv(ψk, fm) = |aH
k (fm)y(fm)|2, (4.3)

where ψk = (rk, dk) is the kth potential source position, rk is the horizontal distance

between the source and receiver and dk is the source depth. For multi-frequency scenar-

ios, the ambiguity function can be computed by incoherently combining the M single

frequency ambiguity functions [18]

Bconv(ψk) =
1

M

M∑
m=1

Bconv(ψk, fm)

=
1

M

M∑
m=1

|aH
k (fm)y(fm)|2. (4.4)

Another MF processor, exploiting the Iterative Adaptive Algorithm (IAA) [71], is

based on sparse representation and can provide better localization than the conventional

MF processor [62]. The ambiguity surface in the IAA MF processor is given by

BIAA(ψk, fm) = |x̂k(fm)|2 . (4.5)

The estimate x̂k(fm) of the source signal xk(fm) at position ψk in an iteration is given

by [71]

x̂k(fm) =
aH

k (fm)R−1(fm)y(fm)

aH
k (fm)R−1(fm)ak(fm)

(4.6)

where R(fm) = A(fm)P(fm)AH(fm) and P(fm) is a K×K diagonal matrix with di-

agonal entries |x̂k(fm)|2 obtained at the previous iteration. The ambiguity function for
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multi-frequency signals can be obtained by incoherently combining the M single fre-

quency ambiguity functions

BIAA(ψk) =
1

M

M∑
m=1

BIAA(ψk, fm)

=
1

M

M∑
m=1

|x̂k(fm)|2 . (4.7)

The conventional and IAA processors will be used in Section 4.4 for comparison with

the proposed method.

4.3 Basis Pursuit De-noising

Underwater acoustic sources can be localized by finding non-zero elements in the vector

x(fm). In a noise free case, this is equivalent to finding the sparsest representation of

x(fm) under the constraint

y(fm) = A(fm)x(fm).

This problem can then be reformulated as the l0 norm minimization problem [83]:

min
x̂(fm)

||x̂(fm)||0 s.t. y(fm) = A(fm)x̂(fm), (4.8)

where x̂(fm) is the solution at a frequency fm. However, this is a non-convex combinato-

rial problem which is NP hard [84]. The sparse solution can be found approximately by

minimizing the l1 norm [83] [84] [74]:

min
x̂(fm)

||x̂(fm)||1 s.t. y(fm) = A(fm)x̂(fm). (4.9)

This is a convex problem that can be solved using known techniques, e.g. the linear

programming [77].

For noisy data, it is unrealistic to find a solution with exact fit so that y(fm) =

A(fm)x(fm). To account for the noise, the linear fit constraint is relaxed, which yields

the BPDN problem [75] [76]:

min
x̂(fm)

||x̂(fm)||1 s.t. ||y(fm)−A(fm)x̂(fm)||22 ≤ σ
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where σ is a positive constant. For the convenience of adopting convex optimization

methods, the BPDN problem is represented in the unconstrained formulation [73]:

min
x̂(fm)

J [x̂(fm)] (4.10)

where

J [x̂(fm)] =
1

2
||y(fm)−A(fm)x̂(fm)||22 + τ ||x̂(fm)||1 (4.11)

and τ is a positive parameter that determines a balance between the l1 and l2 norms.

The accuracy and sparsity of the solution x̂(fm) is sensitive to the parameter τ . Accu-

rate choice of τ would require knowledge of the noise level and sparsity of x(fm) [80],

which maybe difficult to obtain. In the literature, there is analysis of methods in choosing

proper values of τ (see [85] and the references therein). An alternative method for dealing

with little knowledge of noise and sparsity is to obtain solutions for different values of τ

and choose the best one. The Homotopy approach [73,80] allows finding a sparse solution

to the BPDN problem for a set of τ with a low complexity which is comparable to that of

greedy algorithms [73]. With this approach, the BPDN problem is first solved for a large

τ . Then τ is discretely reduced and, for each τ , the BPDN problem is solved using the

previous solution as an initialization, until a stopping criterion is satisfied. The solution is

updated by adding or removing non-zero elements to/from the vector x̂(fm). Reducing τ

transfers the l1 minimization problem for large τ to a l2 minimization problem for small

τ .

Here, we adopt this idea and propose a technique that differs from the Homotopy

approach in [73] in that the parameter τ is reduced gradually with a predefined rate and

that elements are not removed from the solution vector; the latter however insignificantly

affects the accuracy [73]. For each τ , a solution is found using a CD line search.

4.3.1 Solving the complex-valued BPDN for a single-frequency case

We consider an iterative process where at each iteration a new non-zero element is added

to the current solution x̂(fm) to the problem (4.11). Suppose that we have already n non-

zero elements in the current solution vector x̂(fm) and denote the support (the index set

of non-zero elements) as Im(n) = [Im(1), . . . , Im(n)]; the complementary set is Īm(n).
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For the current solution x̂(fm), we define a vector r(fm) = y(fm) −A(fm)x̂(fm) and a

residual vector

b(fm) = AH(fm)r(fm).

The new non-zero element is only added if it reduces the cost function. Below, we show

that for t ∈ Īm(n):

1) if |[b(fm)]t| < τ then any update of the tth element increases the cost function; the

corresponding element of the solution vector should not be updated;

2) if |[b(fm)]t| > τ then there exists a non-zero value of the tth element that decreases

the cost function and the largest decrement is achieved for the element having the highest

value of |[b(fm)]t|.
These two statements define the rule for adding a new non-zero element in the solution

vector: this is an element having the maximum |[b(fm)]t| subject to |[b(fm)]t| > τ ;

otherwise, no new non-zero element is added to the solution vector.

We now prove the first statement.

Proof : Let the tth element [x̂(fm)]t = 0 be activated as follows: [x̂′(fm)]t = α =

|α|ej arg(α); the updated solution vector is denoted as x̂′(fm). The update of the cost

function (4.11) is then given by

δ = J [x̂′(fm)]− J [x̂(fm)]

=
1

2
|α|2 −ℜ{α∗aH

t (fm)r(fm)}+ τ |α|. (4.12)

For |α| > 0, we have

δ > −ℜ{α∗aH
t (fm)r(fm)}+ τ |α|

> |α|(τ − |aH
t (fm)r(fm)|)

= |α|(τ − |[b(fm)]t|). (4.13)

Therefore, if |α| > 0 then for |[b(fm)]t| < τ , we have δ > 0, i.e. the cost function (4.11)

increases. �

We now prove the second statement.

Proof : The cost function is reduced if δ < 0. From (4.12) we can rewrite the update
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of the cost function as

δ = |α|
[
1

2
|α| − ℜ

{
e−j arg{α}[b(fm)]t

}
+ τ

]
. (4.14)

For a fixed |α|, δ achieves a minimum if arg{α} = arg{[b(fm)]t}; in this case,

δ =
1

2
|α|2 − |α||[b(fm)]t|+ τ |α|. (4.15)

Minimizing δ in (4.15) over |α| and taking into account that now we only consider indexes

t for which |[b(fm)]t| > τ , we obtain that the optimal value of |α| is given by

|α| = |[b(fm)]t| − τ

which together with arg{α} = arg{[b(fm)]t} results in

δ = −1

2
[|[b(fm)]t| − τ ]2 .

Thus, we obtain that there is a value of α that results in δ < 0, i.e. in reducing the

cost function. It is seen from the last expression that if we want to add a new element

to the solution vector, the index t of the element should correspond to the maximum of

|[b(fm)]t| over t ∈ Īm(n). In this case, we will obtain the largest decrement of the cost

function. �

Thus, the value of α that for a fixed t such that |[b(fm)]t| > τ results in the largest

decrement of the cost function is given by

α = (|[b(fm)]t| − τ) ej arg{[b(fm)]t}.

However, this value does not guarantee that the cost function is minimized over the sup-

port Im(n+1). Therefore, from the above analysis we only use the index t of the element

to be added into the support, i.e. we only update the support. The optimization within

this support is implemented using the CD search starting from the solution found at the

previous iteration.

According to the above statements, the (n + 1)th non-zero element to be activated in

x̂(fm) should satisfy

k = arg max
t∈Īm(n)

{|[b(fm)]t|} s.t. |[b(fm)]k| > τ. (4.16)
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After adding the new non-zero element to the solution vector, the CD search, which will

be discussed in Section 4.3.3, is used to adjust all elements in Im(n+ 1) to minimize the

cost function.

If the problem (4.16) has no solution, the parameter τ is reduced according to the

schedule τ ← λτ , where λ is a parameter in (0, 1). Choosing λ close to one (λ . 1)

allows a fine sampling of the solutions within τ ∈ [τmin, τmax]. The upper limit of τ is set to

τmax = maxt |[c(fm)]t|, where c(fm) = AH(fm)y(fm), and τmin is a predefined constant.

The iterative process stops when the parameter τ is lower than τmin or the number of non-

zero elements achieves a preset limit S: ||Im(n + 1)||0 = S. The ambiguity surface for

localization is then generated from the solution vector x̂(fm) as

B(ψk, fm) = |[x̂(fm)]k|. (4.17)

Throughout this chapter, we use the parameter S to control the process of solving the

BPDN problem. Without prior knowledge of the number of true sources, S should be

set large enough so that all the sources are located. In the cases that S is larger than the

number of true sources, activating an element corresponding to a wrong source position

will happen. However, this will not necessarily result in significant performance loss. We

can expect that when minimizing the cost function, the signal amplitudes corresponding

to the wrong positions will tend to remain small compared to signal amplitudes of the true

positions (see numerical results in Section 4.4 that demonstrate this). However, the price

paid for choosing S larger than Ns will be a reduced number of true sources that can be

detected with N array elements.

4.3.2 Extension to multi-frequency signals

The single frequency ambiguity function can be disturbed by noise and interference.

Therefore, the localization obtained by solving the BPDN problem may fail to provide

correct source positions. To achieve better localization performance, a frequency diver-

sity can be used. A straightforward method of modifying the above approach to multi-

frequency signals is to solve the BPDN problem for each frequency and average the am-

biguity surfaces B(ψk, fm), m = 1, . . . ,M , over all the frequencies fm. However, this
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combining method may not work properly. This is due to the fact that in the presence of

noise, environmental mismatch and interference, different frequencies may give different

localizations, resulting in a combined ambiguity surface with many peaks. This may give

wrong localization results.

To achieve a greater frequency diversity and avoid the possible strong wrong peaks,

we require that, at (n+1)th iteration, a non-zero element is added to x̂(fm) with the same

support for all the frequencies: I1(n + 1) = . . . = IM(n + 1) = I(n + 1). This is done

by choosing an element to be added to the support by comparing τ with the peak value of

a vector with elements

[b]t =
1

M

M∑
m=1

|[b(fm)]t|, t ∈ Ī(n). (4.18)

The index k of the new element is decided according to the rule:

k = arg max
t∈Ī(n)

{[b]t} s.t. [b]k > τ. (4.19)

The final ambiguity surface is given by

B(ψk) =
1

M

M∑
m=1

|[x̂(fm)]k|. (4.20)

The proposed technique for solving the multi-frequency BPDN problem is summarized

in Table 6.3.

As the number of potential source positions K is large, the proposed technique may

still result in high complexity. In Section 4.3.4, we describe how to reduce the complexity.

4.3.3 Coordinate descent search

The CD search algorithm is based on the approach in [82] and is summarized in Table 4.2.

In order to minimize the cost function for a fixed τ , we apply CD search for each element

in I(n) as shown in Table 6.3. The CD search is performed independently for each of the

M frequencies. For an element, four possible updates are considered, corresponding to

four Euclidian directions on the complex plane: e = [+1,−1,+j,−j]. For each possible

solution update, the cost function update δ is evaluated and if negative, the solution ele-

ment is updated together with the vector r(fm). Specifically, possible updates of element

C. Liu, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 4. UNDERWATER LOCALIZATION OF MULTIPLE SOURCES USING BASIS

PURSUIT DE-NOISING 66

Table 4.1: Proposed algorithm for solving the complex-valued multi-frequency BPDN

problem
Input:

λ, S, A(fm), y(fm), m = 1, . . . ,M

Initialization:

x̂(fm) = 0, r(fm) = y(fm)

Compute the residual vectors:

b(fm) = AH(fm)r(fm), m = 1, . . . ,M

[b]t = 1
M

∑M
m=1 |[b(fm)]t|, t = 1, . . . ,K

k = arg maxt{[b]t}
Activate the first non-zero element:

I(1) = k, τ = [b]k, n = 1

While n ≤ S and τ > τmin

for t = I(1), . . . , I(n)

CD search for all frequencies

end for

Update the residual vectors:

b(fm) = AH(fm)r(fm), m = 1, . . . ,M

[b]t = 1
M

∑M
m=1 |[b(fm)]t|

k = arg maxt∈Ī(n){[b]t}
if [b]k > τ

Update the support:

I(i) = I(i− 1), i = 2, . . . , n+ 1

I(1) = k

n = n+ 1

else

τ = λτ

end if

Final ambiguity surface:

B(ψt) = 1
M

∑M
m=1 |[x̂(fm)]t| for t ∈ I(n) and

B(ψt) = 0 for t ∈ Ī(n)
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Table 4.2: Coordinate Descent Search
Input:

t, τ , at(fm), x̂(fm), r(fm), m = 1, . . . ,M

Initialization:

h = τ

e = [+1,−1,+j,−j]

Repeat Q times:

for m = 1 : M

p = 1

While (p ≤ 4)

α = hep

δ = 1
2 |α|

2 −ℜ{α∗aH
t (fm)r(fm)}

+ τ(|[x̂(fm)]t + α| − |[x̂(fm)]t|)
if δ < 0

[x̂(fm)]t = [x̂(fm)]t + α

r(fm) = r(fm)− αat(fm)

else

p = p+ 1

end if

end While

h← h/2

end for

Output:

x̂(fm), r(fm), m = 1, . . . ,M
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[x̂(fm)]t are given by

[x̂′(fm)]t = [x̂(fm)]t + α (4.21)

where α = hep, p = 1, . . . , 4. The step size parameter h starts with h = τ and it is

reduced if no update is possible. The reduction schedule h← h/2 defines the final value

of the step size h = τ/2Q and, thus, the final accuracy of the solution. In our simulation

scenarios, we set Q = 16.

4.3.4 Grid Refinement

The proposed technique is based on a predefined grid of potential source positions. For

sources distributed in a large area, the number of grid points will be large. This results in

high complexity of computing the residual vectors b(fm). To reduce the complexity, we

explore the idea of grid refinement [79] to reduce the number of potential source positions.

This is done as follows.

1) Create grids for the potential source positions at a coarse resolution (δri, δdi), i = 0,

where δri and δdi are the range and depth step size, respectively.

2) Apply the technique in Table 6.3 to obtain coarse localization results (rn, dn), n =

1, . . . , S, and set i = i+ 1.

3) Build a denser grid around the estimated source positions (rn, dn) with a finer reso-

lution (δri, δdi).

4) Repeat for q times from step 2) until the desired resolution is achieved.

There are different ways of grid refinement. Here, we assume that the fine grid

points are equispaced in the local areas around the coarse source positions (rn, dn),

n = 1, . . . , S. The shape of each local area is defined as a rectangular: rk ∈ [rn± 2δri−1]

and dk ∈ [dn ± 2δdi−1], where the index k indicates the fine grid points. The resolution

at each iteration is enhanced as δri ← δri−1/γr and δdi ← δdi−1/γd, where γr > 1 and

γd > 1. In our simulation, a two-step grid refinement process is used by defining the

initial resolution at δr0 = 50 m and δd0 = 5 m and the refinement parameters γr = 10
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Figure 4.1: Map of the source movement and the location of the receiver hydrophone

array.

and γd = 5 to achieve a final resolution of δrq = 5 m and δdq = 1 m. However, more

refinement steps can be used [79].

4.4 Numerical results

In this section, we evaluate the performance of the proposed and known techniques

in the environment corresponding to the shallow water underwater acoustic experiment

SWellEx-96 (Event S5) [60]. Numerical results obtained from simulated and real experi-

mental data are presented.

The source movement is illustrated in Fig. 4.1. The SSP and the bottom compo-

sition parameters from [60] shown in Fig. 3.3 are used to generate the steering vec-

tors ak(fm), k = 1, . . . , K. For generation of the steering vectors, the program

KRAKEN [86] implementing the normal mode method for computation of the acoustic

field is used.

Before applying the proposed method to real experimental data, the performance is

evaluated using simulated data.
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4.4.1 Simulated data

In the simulation, a set of 13 tones (the same as in the experiment) are transmitted. Below,

we use one snapshot for localization, and the duration of the snapshot is 1 s.

In the first simulation scenario, the performance in resolving close sources is evaluated.

Signals from two close sources separated by a fixed horizontal distance and both moving

at the same speed are generated. The distance from the sources to the receiver antenna is

set to 2 km. It has been observed that there is a limit for the horizontal distance between

the sources, below which all the MF methods cannot resolve the sources. This can be

explained by the waveguide invariant theory [57, 58] stating that

∆f

f
≈ β

∆r

r
(4.22)

where ∆f is a shift of frequency f in the channel frequency response magnitude due

to horizontal movement of the transmitter from distance r to r + ∆r, and β ≈ 1 is the

waveguide invariant. In this simulation scenario, the delay spread of the channel impulse

response is approximately 0.2 s, resulting in a coherence bandwidth of the channel fcoh =

5 Hz. To distinguish two different sources at a distance ∆r, the frequency shift ∆f should

be higher than the coherence bandwidth: ∆f ≫ fcoh. From (4.22), we obtain ∆r ≫ 25

m for a tone of 388 Hz and ∆r ≫ 200 m for a tone of 49 Hz. By increasing the distance

∆r between the two sources, more and more frequencies start to resolve the sources. In

the simulation, it has been found that for a fixed horizontal distance of ∆r = 80 m, the

BPDN method with and without grid refinement can provide reliable results in resolving

the sources (with 100% successful rate). In the same scenario, the conventional MF and

IAA techniques resolve the two sources at as low rates as 19% and 24%, respectively.

The second simulation scenario is aimed to test the ability of the proposed method in

detecting multiple sources. To avoid the error caused by sources with very small distance,

the sources are assumed to have horizontal distance of at least 75 m or a depth difference

of at least 5 m from each other. The source positions are drawn randomly with a uniform

distribution from a range interval of [7.3, 8.7] km and depth interval of [20, 180] m. Fig.4.2

shows the localization results in terms of probability of localization, which is calculated

as the ratio between successfully detected positions (with range and depth errors smaller

than some thresholds) and the total number of sources Ns. The detected positions are
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Figure 4.2: Probability of successful localization vs the number of sources.

positions of Ns greatest maximums of the ambiguity surface. A position is considered

successfully detected if its range and depth differ from the true range and depth less than

25 m and 2 m, respectively. The results shown in Fig.4.2 are obtained by averaging over

20 simulation trials.

It is seen that the IAA MF processor has a slightly better performance than the conven-

tional MF processor. However, both these methods have significantly worse performance

than the proposed method (the proposed method can locate more sources simultaneously).

Introducing the grid refinement for solving the BPDN problem results in an inferior per-

formance compared to the BPDN solution on the originally fine grid, if the parameter S

is set to equal to the true number of sources S = Ns. This is due to the fact that with

the coarse grid, the steering vector mismatch is large. When solving the BPDN problem

using the coarse grid, some true positions may be missed out, whereas, some wrong posi-

tions are picked up into the support. Increasing S at the coarse grid allows resolving this

problem. As seen in Fig.4.2, setting S = Ns + 2 at the coarse grid results in almost the

same performance as that of the BPDN on the fine grid.

The third simulation scenario tests the robustness of the proposed method to strong
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Figure 4.3: Localization results for the source of interest at a depth of 50 m with a strong

interfering source at a depth of 4 m. Signal to interference ratio is−10 dB. The solid lines

are the trajectories of the two sources and ’*’ denotes the estimated positions.

interference from the sea surface and noise. This is a scenario where a source of interest

is towed at a depth of 50 m by a moving ship. The interference is modeled as a source at

a depth of 4 m transmitting the same 13 tones at a power 10 times as that of the source of

interest. White noise is added to the received signal, resulting in an SNR of 10 dB. Fig.4.3

shows localization results obtained by the four methods. The true moving trajectory is

indicated as a solid line. It is seen that the proposed method provides reliable detection of

the source of interest, whereas the conventional MF and IAA MF techniques fail to locate

the weak source of interest due to the strong interference. For both the BPDNs, we have

here S = 2.

The fourth simulation scenario combines the effects of noise, interference, multiple

and close sources. In the simulation, four acoustic sources are involved. All the sources

C. Liu, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 4. UNDERWATER LOCALIZATION OF MULTIPLE SOURCES USING BASIS

PURSUIT DE-NOISING 73

0 5 10 15 20 25
−2

−1

0

1

2

3

4

5

6

Time (min)

S
N

R
 (

dB
)

 

 

Source 1
Source 2
Source 3
Source 4

Figure 4.4: SNR for each of the four sources corresponding to the results shown in Fig.4.5

and Fig.4.6: the sources are moving in the range interval [7.3, 8.7] km and the depth

interval [20, 180] m.

are transmitting signals simultaneously at the same power. The sources are moving in

a range interval within [2, 7] km and depth interval [0, 200] m with different speeds and

directions. The first source moves horizontally away from the receiver at a speed of 3.5

m/s. The second source moves vertically towards the sea bottom at a speed of 0.125 m/s.

The third source moves with a horizontal speed of 1.5 m/s away from the receiver and

also has a vertical speed of 0.125 m/s towards the sea surface. The forth source moves

away from the receiver and towards the surface with horizontal and vertical speeds of 1.0

m/s and 0.025 m/s, respectively. White noise is added to the simulated signal resulting

in SNRs as shown in Fig.4.4, where the SNR of each source is calculated as the ratio

between the received signal power of the specific source and the noise power.

Fig.4.5 and Fig.4.6 show localization results obtained by the four methods. The col-

ored solid lines are the trajectories of the four sources; points marked by ’*’ are the lo-

calization results. The measurements are obtained every 1 min using a 1-s snapshot. It is

seen in Fig.4.5(a) that the localization results obtained by the MF processor are partially

scattered. For most of the measurements, the conventional MF processor can provide

accurate source locations for two or three of the sources. However, it fails to provide
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Figure 4.5: Localization results in simulation for four moving sources: the solid lines

are the trajectories and ’*’ denotes the estimated source positions. The SNR for each

individual source is shown in Fig.4.4.

accurate localization for all four sources simultaneously. The localization performance of

the IAA MF processor, in this scenario, is worse than that of the MF processor. This is

due to a small number of snapshots (one snapshot) resulting in inaccurate estimation of

the matrices R(fm). The probability of localization for the conventional MF and IAA MF

processors are 71% and 56%, respectively.

Compared with the conventional MF and IAA MF processors, the proposed method

performs significantly better. It is seen in Fig.4.6(a) and Fig.4.6(b) that the localized

positions are confined to the trajectories well, providing probability of localization of

96% and 91%, respectively. A performance loss is observed due to introducing the grid

refinement when solving the BPDN problem. By increasing S beyond the number of true

sources (S = 6), the performance is improved; the probability of localization is now 96%

(see Fig.4.6(c)), i.e. the same as in the original BPDN.

So far, we considered the localization with perfectly known environmental parame-

ters. In practice, a mismatch between true and known environment always exists that can

downgrade the performance of MF localization [87]. Next, we investigate the sensitivity

of the proposed technique to the mismatch using an example. Fig. 4.7 shows the true and

mismatched sound speed profiles. The source positions are the same as shown in Fig. 4.6.

The BPDN technique without the grid refinement provides a probability of localization at
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85%. For the BPDN with grid refinement, the probabilities of localization are 81% and

85% for S = 4 and S = 6, respectively. A performance loss is observed compared with

the case of perfectly known environment. However, the probability of localization is still

higher than that provided by the conventional MF and IAA MF processors with perfectly

known environment.

4.4.2 Experimental data

We now apply the four localization methods to real experimental data. To imitate the

multi-source signals (i.e. a snapshot generated by several sources), we combine snapshots

from the same source recorded at different positions. The snapshot used to generate results

in Fig.4.8 is a combination of two snapshots, one of which is taken at a distance of 3.11

km (see Fig.4.1) and the other is taken from a distance of 3.18 km. Note that the noise

level of the resulting multi-source signal is higher than that in the original snapshot, i.e.

the SNR is reduced with increasing the number of sources.

Due to the source movement, the received signals suffer from a Doppler shift. There-

fore, frequency estimation is required to capture the information on the shifted frequen-

cies to provide accurate extraction of the signals. We adopt the frequency estimation

method [56] as explained in [61] to estimate the received tone frequencies and the signals

are extracted using the discrete Fourier transform. The snapshot length is set to 2 sec.

Fig.4.8 shows ambiguity surfaces of the four methods for two close sources. The

two sources are about 60 − 75 m away from each other. The ambiguity surfaces are

normalized with respect to the maximum values; values below a threshold of 0.1 of the

maximum are all set to value of the threshold so that the dynamic range of the ambiguity

surface is from −10 dB to 0 dB. In Fig.4.8(a)(b), the conventional MF and IAA MF

processors fail to separate the sources, although the IAA MF processor provides lower

sidelobes. The ambiguity surfaces generated by the proposed method provide clear and

accurate indication of the source positions. The results provided by the BPDN with the

grid refinement are exactly the same as that of the original BPDN.

Fig.4.9 shows the ambiguity surfaces obtained for a scenario with three sources. In this
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Figure 4.6: Localization results in simulation for four moving sources: the solid lines

are the trajectories and ’*’ denotes the estimated source positions. The SNR for each

individual source is shown in Fig.4.4.
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Figure 4.7: Mismatched ans true sound speed profile.

case, the noise level is further increased due to combining three noisy snapshots. Both the

conventional MF processor and the IAA MF processor fail to locate the sources; there are

many high peaks which inaccurately indicate the source positions. However, as seen in

Fig.4.9(c)(d), the three source positions found by the proposed method are shown clearly

and accurately. The result obtained with the grid refinement is very close to that obtained

by the BPDN on the fine grid.

4.5 Summary

In this chapter, we have formulated the underwater acoustic source localization in the

framework of the MF processing as a sparse representation problem and demonstrated

that its solution based on the complex-valued multi-frequency BPDN shows high local-

ization performance. For solving the BPDN problem, we have used the Homotopy ap-

proach combined with the coordinate descent search. Grid refinement has further been

used to reduce the complexity of solving the BPDN problem. Comprehensive simulation

has been carried out to evaluate the performance of the proposed method in resolving

sources close to each other, locating multiple sources and robustness to noise and inter-

ference. The effectiveness of the proposed method has also been verified using real ocean
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Figure 4.8: Ambiguity surfaces for localizing two close sources at [3.11 km, 70 m] and

[3.18 km, 68 m] (Source locations for BPDN methods are indicated by arrows).

experimental data. It has been shown that the proposed technique outperforms other MF

techniques, such as the conventional MF processor and IAA MF processor, in resolv-

ing sources positioned closely to each other, tolerance to noise and capability of locating

multiple sources.

MF source localization techniques require accurate knowledge of underwater envi-

ronment. In the next chapter, we will introduce an MF inversion technique for estimat-

ing unknown environmental parameters. As mentioned at the beginning of this chapter,

knowledge of source positions is useful for improving system performance. In Chapter 6,

we will investigate the use of channel sparsity, which can be estimated from the transmit-

ters and receivers positions, to improve the channel estimation accuracy and reduce the

complexity.

C. Liu, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 4. UNDERWATER LOCALIZATION OF MULTIPLE SOURCES USING BASIS

PURSUIT DE-NOISING 79

(a) Conventional MF

Range (km)

D
ep

th
 (

m
)

2 2.5 3 3.5 4 4.5

40

60

80

100

120

(b) IAA MF

Range (km)

D
ep

th
 (

m
)

2 2.5 3 3.5 4 4.5

40

60

80

100

120

(c) BPDN (S=3)

Range (km)

D
ep

th
 (

m
)

2 2.5 3 3.5 4 4.5

40

60

80

100

120

(d) BPDN refinement (S=3)

Range (km)

D
ep

th
 (

m
)

2 2.5 3 3.5 4 4.5

40

60

80

100

120

Source 1 Source 1
Source 2 Source 2Source 3 Source 3

Figure 4.9: Ambiguity surfaces for localizing three sources at [2.73 km, 63 m], [3.3 km,

65 m] and [3.74 km, 68 m] (Source locations for BPDN methods are indicated by arrows).
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As described in Chapter 4, underwater sources can be localized using MF techniques

provided that the underwater acoustic environment is known. However, due to environ-

ment mismatch caused by variations of sound speed profile (SSP) in the water column

and inaccurate knowledge of geoacoustics parameters, the accuracy of the localization

degrades. MFI can be used for estimating the environmental parameters.

5.1 Introduction

In underwater acoustic signal processing, matched field processing is an important ap-

proach which is widely used for source localization [14] and MFI problems [88–95].
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In this approach, acoustic field replicas generated by a numerical underwater acoustic

propagation model with candidates of unknown parameters are matched to the measured

acoustic field at the receiver hydrophones by a proper cost function. The two problems

are similar in that by searching within a parameter range, the parameters with the highest

match (lowest mismatch) are selected as estimates of the unknown parameters. For the

localization problem, the parameters are the range and depth of an acoustic source. For

the MFI problem, the parameters are bottom parameters and uncertain sound speed values

at different depths. The localization problem can usually be solved by exhaustive search.

However, for MFI the exhaustive search is infeasible and, due to the nonconvex cost func-

tion, a global optimization method must be used for searching the unknown parameters.

SA [88, 91, 92, 94] and genetic algorithms [93, 95] are the most popular global search

methods for such problems. Extensive work on the inversion of bottom parameters in

shallow water have been done and positive results have been achieved [88, 91, 92, 94, 95].

In deep water scenarios, representation of the SSP tends to need more parameters than

that in shallow water. Thus, more computation is required for the inversion of whole SSP

in deep water. However, the variations of the sound speed mostly concentrated at shal-

low depth, therefore the inversion is applicable by spending less computation for deeper

depth.

In this chapter, we apply a global search method to solve an MFI problem for esti-

mating the SSP in a deep water scenario. We assume that the SSP is a range independent

Munk profile [27]. An adaptive hybrid global optimization method [88] that combines the

downhill simplex (local optimization) method and simulated annealing (global optimiza-

tion) method is used to search the parameters.

5.2 Simulated annealing

SA is a global optimization method arisen from the condensed matter physics [96]. In

condensed matter physics, the behavior of the matter at low limit temperature is a funda-

mental question. The behavior is mostly determined by the lowest energy state (ground

state), as described in [96]. Therefore, finding the ground state of the atom is essential,

which is termed as annealing. An example in [96] is very useful for understanding the
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idea behind the SA algorithm: in physics experiments, to grow a crystal from a melt,

the solid should be melt (heated) first and then slowly cooling down. Without this, the

resulting matter may be with no crystalline order, which are locally optimal structures.

The SA algorithm is similar to the process of this experiment, which also has a grad-

ually and carefully reduced temperature to control the searching process. It is developed

to make the iterations escape from local optimum and finally reach the global optimum.

To apply the SA algorithm to an MFI problem, a cost function should be defined at the

beginning. As mentioned, MFI is based on MF processing which uses global search algo-

rithms to explore the unknown parameter space. Estimation of the unknown parameters is

obtained when the mismatch between measured field and the field replica is generated ac-

cording to tentative parameters. The cost function used to calculate the mismatch should

be sensitive to the mismatch of the parameters and easily to compute. Due to the heavy

computation caused by the random search, we choose the Bartlett linear processor [14] to

construct the cost function:

E = 1−wHRw (5.1)

where w is the field replica vector at the receiver array and R is the cross-spectral matrix

of the measured field:

R = E{vvH} (5.2)

where v is the measured field vector at the receiver array. All the field vectors are nor-

malized so that they have a unit length.

Based on the cost function (5.1), the global optimum is the global minimum. The core

idea of SA is: Perturb the initial parameters, which are random values within the search

range, and compute the difference △E between the new value of the cost function and

the initial one. The perturbation of the ith parameter mi, in general, can be expressed by:

mi = mi′ + ζi (5.3)

where mi′ is the ith parameter of previous state and ζi is a random parameter making the

perturbed parameter mi fall in the interval [m−
i ,m

+
i ]. Parameters m−

i and m+
i are the

lower and upper bound of the ith parameter.

If △E≤0 , the new state is accepted unconditionally. For the case △E > 0, the
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probability of accepting the state is given by [96]:

P (△E) = e
− △E

kBT (5.4)

where kB is the Boltzmann’s constant and T is the critical temperature.

In the case that the new state has smaller mismatch, the process is moving downhill (to-

wards either the global or one local minimum). While in the other case, the process has

some probability to move uphill so that the state can escape from local minimum. At the

beginning of the searching, the critical temperature is set to a large value and the search

is mostly random. As T is reduced, the probability of accepting a perturbation with an

increased mismatch △E > 0 is reduced. However, at nonzero temperature, it is always

possible to escape from local minimum. For conventional SA, to guarantee convergence

to the global minimum,the cooling schedule should satisfy [97]:

Tn = T0/log(n) (5.5)

where T0 is the initial temperature and n is the time order (the order of steps reducing the

temperature).

The SA algorithm is an effective method to solve global optimization problems, how-

ever, it still needs quite significant computation. To reduce the cost of computation and

make a faster annealing schedule, significant amount of research has been done. Two

methods can be used to control the SA: one is to control the perturbing algorithms and the

other one is to control the cooling schedule of the critical temperature.

In [98], Harold Szu and Ralph Hartley proposed the FSA algorithm, where the Cauchy

distribution is used to control the random parameter search. The perturbation of the ith

parameters mi is given by [91]:

ζi = ξ△i (5.6)

where △i is a random variable uniformly distributed in the same range as ζi in (5.3) and

ξ is a Cauchy-distributed random variable defined by:

ξ =

(
Tn

T0

)1/2

tan

[
π

(
η − 1

2

)]
(5.7)

where η is uniformly distributed in [0,1]. For the FSA, the perturbed parameters can be

expressed by:

mi = mi′ +

(
Tn

T0

)1/2

tan

[
π

(
η − 1

2

)]
△i (5.8)
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According to (5.8), the perturbed parameter mi follows a Cauchy-distribution centered at

parameters of the previous state mi′ . With a high temperature, the probability of a large

perturbation (large ξ) is high, which is important to escape from local minimum. For

lower temperatures, the perturbations tend to be small, e.g., the random search is mostly

carried out around the current value. However, a large perturbation is still possible.

In FSA, the cooling of the temperature is given by [98]:

Tn = βnT0 (5.9)

where β is a positive constant less than one.

Another SA algorithm of interest was proposed by Lindsay and Chapman and exam-

ined in the bottom inversion problem of shallow water in [92]. They used an adaptive

algorithm to cool down the critical temperature. The perturbation is different from that of

the FSA in that it only perturbs one of the parameters which has the highest sensitivity to

the perturbation according to the previous iterations. In this adaptive SA, some iterations

should be done initially to provide the estimation of the sensitivity of each parameter.

The accepting probability is fixed and the critical temperature is dependent on the sensi-

tivity. As the sensitivity decreases, the temperature decreases too. To enable convergence,

the search ranges of the parameters are reduced slowly according to the previous pertur-

bations. Also, the random search is based on the previous iterations: parameters with

smaller mismatch tend to have a larger probability to be searched. The convergence is

accelerated by adopting the experience in the iterations.

5.3 Hybrid simulated annealing algorithms

The main problem of SA algorithms is the high computation cost. This high cost is due to

the random search of the parameters with little gradient information. Compared to local

optimization methods, the global optimization tends to converge much slower. Therefore,

faster algorithms that combine both the local optimization and global optimization meth-

ods are proposed. In this section, two hybrid algorithms combining the DHS method and

SA are introduced against the inversion problem, which will be used in our simulation.

To start with, we will firstly introduce the DHS.
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5.3.1 Downhill simplex

The DHS method [99] is a local optimization method for minimizing a multiple parameter

function. It is useful in the hybrid algorithms in that it is simple and efficient and there is

no need to compute the gradient [91].

In a scenario where the M unknown parameters to be estimated are represented by a

vector (model) m, M + 1 models are needed to construct a simplex for DHS. Each of

the models mk is weighted by a mismatch Ek, k = 1, . . . ,M + 1. The algorithm can be

divided into the following steps [99]:

1. Randomly choose M + 1 models and calculate the corresponding mismatch Ek,

k = 1, . . . ,M + 1. The model with the highest (lowest mismatch) is mh (ml), the

corresponding mismatch is denoted as Eh (El).

2. Compute the centroid of the models except the model mh, which is given by:

mc =

∑
k ̸=h mk

M
,k = 1, . . . ,M + 1. (5.10)

3. Compute the reflection of mh from the centroid mc, and calculate the corresponding

mismatch Er. The reflection can be expressed, as described in [91], by:

mr = mc − (mh −mc) . (5.11)

4. Compare the reflection mismatch Er with the mismatches of the initial simplex:

• If Er < Eh and Er > El, the model mh with the highest mismatch is replaced by

the reflection model mr.
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• If Er < El, an extension, mrr to the reflection model is performed, which is given

by:

mrr = mc − 2 (mh −mc) . (5.12)

If the expansion mismatch Err is still smaller than the lowest mismatch, then the highest

model is replaced by the expansion model. Otherwise, the expansion is failed and the

highest model is replaced by the reflection model.

• If Er > Eh, a contraction of mh towards ml is carried out and will be accepted if

lower than the highest mismatch. The contraction is given by:

m′
h = mh −

mh −ml

2
. (5.13)

Otherwise, a multiple contraction is made on all the models of the current simplex models

towards the model ml, given by the following equation:

m′
k = mk −

mk −ml

2
, k ̸=l. (5.14)

At each DHS step, one new model is generated for reflection, extension to reflection and

single contraction while M new models are generated for multiple contraction. After

these steps, the new models will be used as the initial of the next iteration. Any resulting

parameter values outside the search range will be replaced by the nearest bound. As the

steps are repeated, the difference between the highest mismatch and lowest mismatch will

become smaller and smaller and finally converge to a local minima. Usually, the DHS

will stop when the difference between the lowest and the highest mismatch is reasonably

small, depending on different problems. The criteria can be expressed in the following

function [91]:
Eh − El

(Eh + El)/2
< ϵ, (5.15)

where ϵ is the tolerance.

5.3.2 Simplex simulated annealing (SSA)

The simplex simulated annealing(SSA) [91] is a hybrid version of the DHS and FSA,

which incorporates perturbation into DHS steps by performing all DHS steps on per-

turbed models. FSA provides possibility of escaping from local minimum to DHS, while
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DHS provides additional gradient information to accelerate the searching process to FSA.

Another benefit of the hybrid algorithm is that best models with lowest mismatch are al-

ways retained since, at each iteration, only the models with higher mismatches will be

updated. Figure 5.1 is a block diagram of the SSA.

Figure 5.1: Block diagram of SSA

DHS steps are carried out after random perturbations to the models of simplex. The

perturbation of the models is different from that of the FSA in that both the parameters to

be estimated and the mismatches are perturbed. The procedure of SSA is divided into the

following steps:

1. Initialize the models of simplex by random selection within the search range to form

the current simplex.

2. Perturb each of the models of the simplex, including the parameters and the mis-

matches, to construct the secondary simplex of models. The perturbation of the param-

eters is given by (5.8) and the perturbation of the mismatch is similar, which is given

by:

E = E ′ + ξE (5.16)
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where E ′ is the current mismatch and E is the average mismatch of current models of

simplex. E is the resulted mismatch of the perturbed simplex (secondary simplex).

3. Perform the DHS steps on the secondary simplex and use (5.4) to check whether to

accept the new models. The difference of the mismatch is calculated between that of the

new model generated by each DHS step and the model in the current simplex. Usually

within one iteration, there are several DHS steps to be performed before reducing the

temperature and starting the next iteration.

Processing at high temperature is dominated by random search since large perturbation

happens and the steps of uphill are accepted with high probability. At low temperature,

the acceptance of uphill steps is low, therefore the processing is more of DHS. This algo-

rithm will highly increase the efficiency of the processing in that at low temperature, since

considerable amount of iterations have been done, it is more reliable that the global opti-

mization is within or close to the range of the models of simplex. Therefore, the problem

is more likely to behave as a local optimization problem.

4. Quench [88] the iterations by stopping the random perturbation and using DHS steps

only. When the designed number of temperature steps have been done, the random search

is stopped and the model with lowest mismatch is selected out and saved. All other models

are replaced by random models within the search range. The criteria in (5.15) is used to

control the quenching. This quench method is a double check for the best result and is

possible to produce better results.

5.3.3 Adaptive simplex simulated annealing (ASSA)

The adaptive simplex simulated annealing (ASSA) algorithm is also a hybrid version

of DHS and FSA, which incorporates the random perturbation in FSA into each DHS

step. The algorithm firstly performs one DHS step on the current simplex of models.

Each of the new models generated by DHS steps is perturbed and checked to update the

current simplex of models. The scaling of the perturbation distribution is based on the
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average size of the previous accepted steps, which will provide a rough estimation of the

perturbation range with a reasonable acceptance rate.

The procedure of ASSA is somewhat similar to that of SSA, which is described in

what follows [91]:

1. Initialize the models by using the same method described in SSA.

2. DHS steps are performed on the current simplex models, which are the initial models

at the very beginning of the process and are updated after perturbations. At this stage, new

models are generated which will be perturbed and checked later. The current simplex of

models is not updated.

3. Random components are introduced to DHS steps by perturbing the new generated

models. For ASSA, all parameters of the new models are perturbed at one perturbation

step and the mismatch of perturbed model is calculated and compared with the current

models for acceptance. The perturbation of each parameter is based on Cauchy distribu-

tion centered at current parameter values, which is given by:

m′
k(i) = mk(i) + ζ△k(i), i = 1, . . . ,M, (5.17)

where△k(i) is the distribution width of the ith parameter and ζ is a random variable that

follows Cauchy distribution, given by:

ζ = η1 tan [πη2/2] , (5.18)

where η1 and η2 are uniform random variables on [−1, 1].

The distribution described in (5.18) generates variables mostly within [−1, 1], thus the

random perturbations are mostly smaller than the distribution width. Therefore, the initial

distribution width should be large enough so that the perturbations are not limited and the

parameter space is well sampled and characterized by accepted perturbations. The initial

distribution width of each unknown parameter is set to the difference between the upper

limit and the lower limit of this parameter initially. Then it is adaptively scaled according
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to the average size of recently accepted perturbations, which provides indication of the

ranges of random perturbations with a reasonable acceptance rate. To more precisely

define the adaptively scaling algorithm, the distribution width is set to a factor s times

the average absolute value of the recent S accepted perturbations. S is set to 30 in our

tests and s to 2 to provide a reasonably fast speed of convergence but still quite accurate

results.

After the perturbations on the new models, the resulting models are checked for accep-

tance. The criteria for acceptance is the same as that of SSA. The accepted models will

always replace the model with highest mismatch in the current simplex and then another

iteration continues. There are usually several iterations at one temperature step to provide

good performance on guiding the search to the global minimum and escaping from a local

minimum.

4. When the desired number of temperature steps are finished, a quenching, as described

for SSA, is carried out.

For both SSA and ASSA algorithm, the initial critical temperature T0 should be set

carefully so that most perturbations are accepted at the beginning. The parameter β should

also be chosen carefully so that the annealing schedule provides a balance between fast

convergence and accurate global optimum. Through our simulations, the initial critical

temperature is set to T0 = 0.3 and the reduction factor is varied in different cases.

5.4 Simulation results

In the previous section, we have introduced two hybrid versions of simulated annealing

algorithms. In this section, we firstly compare these two methods by optimizing a multi-

modal function. Then the results of applications on SSP inversion are shown.
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5.4.1 Comparison of ASSA and SSA

ASSA perturb parameters based on previous accepted perturbation which will give an

indication of the range of random search within which a perturbation is accepted with a

reasonable probability. In this sense, ASSA will be more efficient than SSA. In this part,

we will examine the two methods by using a known multimodal function, which is given

by [91]:

E(x1, x2, x3, x4, x5, x6) = 4.8 + x2
1 + 5x2

2 + 0.1x2
3 + 0.05x2

4 + x2
5 + x2

6

−0.03 cos 4π(x1 − x2) + 1.4 cos 4π(x1 + x2)

−0.5 cos 10π(0.05x4 − 0.1x3)

−1.0 cos 10π(0.05x4 + 0.1x3)− 0.25 cos 5π(x5 − x6)

−1.35 cos 5π(x5 + x6)

(5.19)

The function has a global minimum 0 when every variable is 0. We adopt two criterions

to define a successful inversion for the function, which are given by:

xi≤ϵ1, i = 1, . . ., 6, (5.20)

E≤ϵ2, (5.21)

where ϵ1 and ϵ1 are small values close to zero. In the simulation, the parameters used to

control the searching and cooling algorithm are set to the same values for the two methods:

β is set to 0.995, and 2000 temperature steps are used before quenching. The maximum

number of random steps at each temperature is set to 60 and the number of accepted

iterations at each temperature is set to 5. For each method, 10 independent simulations are

performed. Results of mismatches and the total number of objective function evaluations

are shown in Table 5.1. We find that with this relatively slow cooling schedule, ASSA can

find the global minimum much more accurately than SSA despite that the convergence

to the global minimum is not guaranteed (with one unsuccessful inversion out of ten in

total). However, for most of the test cases, ASSA has much better performance than SSA,

with a function value at the level of ϵ1 = 10−7 compared to ϵ1 = 10−4 and variable values

at the level of ϵ2 = 10−3 to ϵ2 = 10−2.

Furthermore, even with much better results than SSA, ASSA tends to need a much

smaller number of the objective function evaluation, which is 5.08× 104 averaged in our

C. Liu, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 5. ESTIMATION OF SOUND SPEED PROFILE USING MATCHED FIELD

INVERSION 92

Table 5.1: Comparison between ASSA and SSA

Function value Function value Evaluation Number Evaluation Number

Index ASSA SSA ASSA SSA

1 3.0× 10−7 3.2× 10−4 5.5× 104 6.9× 105

2 9.3× 10−7 1.3× 10−3 5.2× 104 7.0× 105

3 5.0× 10−7 7.3× 10−4 5.0× 104 6.9× 105

4 8.1× 10−7 6.1× 10−4 5.0× 104 7.0× 105

5 4.9× 10−7 1.0× 10−3 4.9× 104 7.0× 105

6 4.2× 10−7 1.2× 10−3 5.4× 104 6.9× 105

7 7.9× 10−2 7.8× 10−4 5.0× 104 7.2× 105

8 3.7× 10−7 8.0× 10−4 5.0× 104 7.1× 105

9 6.9× 10−7 6.8× 10−4 5.0× 104 7.0× 105

10 4.8× 10−7 1.4× 10−3 4.8× 104 6.9× 105

simulations compared to 6.99 × 105 in SSA. Hence, ASSA is more efficient than SSA.

Therefore, ASSA will be used for solving the SSP inversion problems.

5.4.2 SSP inversion

The SSP is assumed to be range independent and the effective SSP for the test case is the

idealized Munk profile [27]. The bottom depth is assumed to be 5000m. We only consider

inversion of the SSP, hence, we fixed the bottom parameters, such as the thickness of

sediment and the sound speed in sediment. A uniform sampling of c(z) in depth at a step

of 200m and an additional point at the depth of 250m is used for this modeling to give

a smooth interpolation of the SSP for the field computation. As the significance of the

sound speed variation is positively related to the depth and in deep water, the sound speed

tends to be constant in time, we only consider the sound speed of the depths above 800m

as the parameters to be estimated. Therefore, there are 6 unknown parameters in this

inversion problem. The upper bound and lower bound of the search space are indicated in

Fig. 5.2, which is wide at the surface and narrower at deeper depth, represented by dotted

lines.
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For the acoustic field computation at distances less than 30km, we use the fast

field method SCOOTER [24] and for longer distances, we use a normal mode method

KRAKEN [100].

In our MFI simulation, the source is set to 50Hz and is fixed at a depth of 200m. The

receiver array for both the inversion and the localization is made up of 21 elements which

are uniformly placed at a depth range from 10m to 510m.
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Figure 5.2: Estimated SSP without noise for different distances between source and re-

ceiver: 10km and 100km.

The test case has assumed that the position of the acoustic source is known. The

quenching is stopped when the tolerance parameter ϵ < 10−4. The search bound for the

ith parameter is indicated in Fig 5.2.

Firstly, we consider the case without noise at the measured field so that we can examine

the reliability of the global search method. By setting the cooling factor β = 0.99 and 5

accepted perturbations at each temperature, after 1000 temperature steps, accurate results

are achieved in the simulation with mismatch E < 10−5. The results for two horizontal

distances, which are 10km and 100km are shown in Fig. 5.2, where plots of errors between

the true SSP and the estimated SSP as a function of depth are shown. The errors are fairly
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Figure 5.3: Estimated SSP in different noise levels: the distance between source and

receiver is 10km.

small with most of the SSP points within ±0.5m/s interval around the true SSP.

Now we apply this method to a more practical case, in which the noise is added to the

measured field. Two SNR levels are tested, 20dB and 10dB. The inversion results are not

expected to be as accurate as those without noise, therefore, a faster annealing schedule is

used: β = 0.98 and 500 temperature steps with 3 accepted perturbations. A comparison

between the estimation and the true values are shown in Figure 5.3. Compared to the

results in noise free cases, the errors between estimated SSP and true SSP are larger. The

mismatches are 0.086 for 10dB and 0.004 for 20dB.

To further verify the inversion results, we apply the estimated SSP to source localiza-

tion problems. Here, we assume a stationary acoustic source and use the estimated SSP

from distance of 10km. The ambiguity surface of the the minimum variance distortionless

response (MVDR) MF processor [14] is given by:

BMV =
1

wHR−1w
, (5.22)

where R is the covariance matrix of the received signal and w is the steering vec-

tor (modeled acoustic field generated using known environmental parameters). Locating
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Figure 5.4: Ambiguity surface for source localization: source at the depth of 250m and

the range of 25km.

an acoustic source in different scenarios (i.e., different source frequencies and different

source/receiver positions) have been carried out and accurate localization results have

been denmenstrated. Here we only present results of a 100Hz source at a depth of 250m

and range of 25km, in which the SSP estimated in the case of SNR = 10dB is used. Fig.

5.4 shows the ambiguity surface from the depth of 0m to 500m and the range from 0km

to 50km. The stepsize on the range is 1.0km and on depth is 10m. From the results in Fig.

5.4, we can see that the source is located correctly.

5.5 Summary

In this chapter, the MF inversion problems are investigated by using global optimization

methods. Global searching algorithms based on simulated annealing are reviewed and

compared using simulation results for a multimodal function. The relatively fast global

optimization method, adaptive simplex simulated annealing (ASSA) algorithm, is applied

to an MF inversion problem for estimating uncertain SSP in a deep water scenario. The

inversion results are accurate in the sense that the estimated SSP is close to the true value
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and can correctly predict the position of underwater acoustic sources. Positive results in

the case of noisy measured field are achieved with a relatively fast convergence speed.
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Channel estimation is an important task for communication receivers to provide high

performance. Many techniques in existing modems rely on the accuracy of channel es-

timation [9] [101] [102], e.g., such as the channel estimation based linear equalizer and

decision feedback equalizer [101]. In this chapter, we investigate estimation of time-

varying underwater acoustic channels. One of the main purposes of this chapter is to

provide a low-complexity technique for estimating channels with a large number of co-

efficients. The other one is to exploit the sparsity of underwater acoustic channels to

improve the estimation performance, where the sparsity can be estimated according to the

source/receiver positions and the acoustic environment.
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6.1 Introduction

The underwater acoustic channel is considered as one of the most difficult channels for

high speed reliable communications [103]. Due to the low speed of sound, the delay

spread of the channel impulse response can be large, on the order from ten to a hundred

of symbol durations depending on the specific underwater environment and distance be-

tween the transmitter and receiver [7] [8]. For such channels, the number of taps required

to represent the impulse response is large. Besides, the channel tap coefficients vary in

time. In these cases, an estimator of the channel impulse response would need to track

the time variations of a large number of parameters, which is a difficult and computa-

tionally expensive task. In many underwater scenarios, the channel impulse response can

be sparse [7] [8] [9] [10], e.g., only a small number of taps are non-zeros (with strong

tap coefficients). This characteristic makes the estimation of underwater acoustic chan-

nels a highly challenging task. Failure in accounting for the sparsity will result in high

estimation errors and high computational complexity caused by overparameterization as

most of the parameters to be estimated are of little energy. It is beneficial to take into

account the channel sparsity by identifying the non-zero channel taps and only estimating

the corresponding coefficients for improving the estimation accuracy and reducing the

complexity [9]. In this chapter, we investigate low-complexity estimation of time-varying

underwater acoustic channels by exploiting the channel sparsity.

BEM based channel estimation methods can be adopted for dealing with time-varying

channels [9] [10]. The time variation of each tap coefficient is represented as a linear

combination of basis functions. Instead of estimating the time-varying tap coefficients

directly, the time-invariant expansion coefficients are estimated. This allows significant

reduction in the number of parameters to be estimated [20], thus, resulting in reduced

complexity. Among the widely used basis functions are the KL functions [47] [21], DPS

functions [20] [22], CE [48] [9] [10], and B-splines [23] [104]. In this work, B-splines are

chosen for the high approximation accuracy and low complexity [50] [105]. Specifically,

the cubic B-splines [53] are adopted.

Extensive effort has been paid to BEM channel estimation for time-varying channels

such as time-varying Rayleigh fading channels [20–23]. The maximum likelihood (ML)
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estimation of the expansion coefficients can be obtained directly without adopting the

channel statistics [106] [107]. With the statistics of channel time variations, the optimal

solution in the sense of minimum mean square error (MMSE) can be achieved [106] [107].

However, for underwater acoustic channels, the statistic information is difficult to obtain,

thus, the MMSE solution is hard to achieve. Besides, the large number of taps result

in high computational complexity in implementing the ML and the MMSE BEM channel

estimator. In order to address these problems in this chapter, we develop an iterative BEM

estimator for underwater acoustic channels with a particular concern on the accuracy and

the complexity of implementation. Unlike the ML and MMSE BEM methods jointly

estimating the expansion coefficients for all the channel taps, the iterative algorithm treats

each channel tap separately, thus, allowing a lower complexity.

The rest of this chapter is organized as follows. In Section 6.2, signal model for BEM

based channel estimation as well as ML and MMSE BEM estimators are described. The

proposed iterative BEM channel estimation method is also presented. In Section 6.3, com-

plexity of the iterative estimator is analyzed. In Section 6.4, a method used for identifying

non-zero taps of the channel is described. Numerical results that show the performance of

the proposed method and existing ones are provided in Section 6.5. Finally, Section 6.6

gives conclusions.

6.2 Channel estimation based on the basis expansion

model (BEM)

6.2.1 Signal model

In a time-varying channel, the discrete-time samples y(n) = y(nT ) of the received signal

y(t) with a sampling rate 1/T can be represented as

y(n) =
K∑

k=1

s(nT − kT )h(nT, kT ) + v(nT ), n = 0, . . . , N − 1, (6.1)

where h(nT, kT ), k = 1, . . . , K, and s(n) = s(nT ) are the channel impulse response and

transmitted signal at time nT , respectively; v(nT ) is the noise and K is the number of

C. Liu, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 6. ESTIMATION OF TIME-VARYING SPARSE UNDERWATER ACOUSTIC

CHANNELS 100

channel taps. In terms of data-aided channel estimation, the (pilot) signal s(n) is assumed

to be known at the receiver.

Stacking N successive received signal samples, (6.1) can be written in the following

form

y =
K∑

k=1

Skhk + v, (6.2)

where y = [y(0), . . . , y(n), . . . , y(N − 1)]T is an N×1 vector of the received signal

samples, Sk is an N×N diagonal matrix with the nth diagonal element s(nT − kT ), and

hk = [h(0, kT ), . . . , h(nT, kT ), . . . , h((N − 1)T, kT )]T is an N×1 vector representing

the variation process of the tap coefficient at delay kT .

Classical adaptive filtering methods such as the least squares method can track slow

variations of the channel since the channel is considered as time-invariant for a specific

period [10] . However, this assumption may not hold when the channel variations are fast.

An alternative method of tracking the channel variations is to use BEM, in which the vari-

ations of each tap coefficient are represented as an expansion using basis functions. The

corresponding expansion coefficients are time-invariant. Note that this assumption is less

restrictive than assuming the channel is constant over an equivalent period of time [10].

In this work, cubic B-spline basis functions [53] are adopted for the channel estima-

tion. Denoting bm = [b(0−mTs), . . . , b(nT −mTs), . . . , b((N − 1)T −mTs)]
T where

b(nT ) is the cubic B-spline and Ts the sampling interval separating two adjacent B-spline

functions, the fading process of each channel tap can be represented as follows:

hk =
M∑

m=1

ckmbm (6.3)

= Bck (6.4)

where B = [b1, . . . ,bm, . . . ,bM ] is an N×M basis function matrix and ck =

[ck1, . . . , ckm, . . . , ckM ]T . The cubic B-spline basis functions (with order υ = 3) can

be built according to [53]:

b(t) =
1

υ!

υ+1∑
i=0

(−1)i

 υ + 1

i

(
t

Ts

+
υ + 1

2
− i

)υ

, (6.5)

where Ts = (N − 1)T/(M − υ).
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The received signal in (6.2) can then be represented using the basis functions as [108]:

y =
K∑

k=1

SkBck + v. (6.6)

Estimating NK channel coefficients is then converted into a problem of estimating MK

expansion coefficients where M ≪ N .

6.2.2 ML and MMSE BEM channel estimation

An estimate of the expansion coefficients can be obtained by solving the system of equa-

tions (6.6) directly. For convenience, (6.6) is rewritten as:

y = Sh + v,

= SBc + v, (6.7)

where S = [S1, . . . ,Sk, . . . ,SK ] is the N×NK pilot signal matrix, h =

[hT
1 , . . . ,h

T
k , . . . ,h

T
K ]T is the NK×1 channel vector, c = [cT

1 , . . . , c
T
k , . . . , c

T
K ]T is the

KM×1 vector containing all the basis expansion coefficients and B = ΛK⊗B, where

ΛK is an K ×K identity matrix.

By assuming that the noise v(t) is additive Gaussian, the ML estimate of c is given

by [107]:

ĉML = (B
H
SHSB)−1B

H
SHy. (6.8)

A more accurate BEM channel estimator, the MMSE BEM estimator, requires the

knowledge of the channel statistics and the noise power σ2
v . For Rayleigh fading channels

following Jakes’ model [31] [32], the MMSE estimate of c is given by:

ĉMMSE =
[
B

H
SHSB + σ2

vR
−1
c

]−1

B
H
SHy, (6.9)

where Rc = E{ccH} is the covariance matrix of the expansion coefficients, given

by [109]:

Rc = (B
H
B)−1B

H
ΥB(B

H
B)−1. (6.10)

The N × N matrix Υ has elements [Υ]t1,t2 = σ2
hJ0[2πfD(t1 − t2)], t1, t2 = 1, . . . , N .

The quantity fD is the Doppler frequency [109], J0(·) is the zero-order Bessel function of

the first kind and σ2
h is the variance of channel coefficients.
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In underwater acoustics, different environments may have different channel statistics,

depending on the ocean geography, seasons and movements of source/receiver. For in-

stance, considering that underwater acoustic channels with Rayleigh fading are supported

by some experimental results [110], while challenged by others [111]. It is usually diffi-

cult or expensive to obtain the statistics for underwater acoustic channels, therefore, the

MMSE estimate of the channel is hardly achievable. For underwater acoustic channels,

there tends to be a large number (K) of taps for representing the impulse response. In the

cases that K is large, jointly estimating the expansion coefficients c for all channel taps,

as in (6.8) for the ML estimator, will result in high complexity and require large memory.

6.2.3 Iterative BEM channel estimation

To reduce the complexity of a joint estimation of the expansion coefficients c, we propose

an iterative algorithm dealing with each channel tap separately. The idea of the tap-by-

tap processing is originated from the ML BEM channel estimator. In (6.8), the matrix

(B
H
SHSB) can be constructed using sub-matrices (BHSH

k1
Sk2B), k1, k2 = 1, . . . , K as:

B
H
SHSB =



BHSH
1 S1B · · · BHSH

1 SKB
. . .

... BHSH
k1

Sk2B
...

. . .

BHSH
KS1B · · · BHSH

KSKB


. (6.11)

Compared with the sub-matrices (BHSH
k SkB), since the pseudo-random pilot sequences

s(nT − k1T ) and s(nT − k2T ), k1 ̸= k2, n = 0, . . . , N − 1, are uncorrelated, the

off-diagonal sub-matrices (BHSH
k1

Sk2B) are small. By ignoring these off-diagonal sub-

matrices, a coarse approximation to the ML estimate in (6.8) can be obtained as:

ĉk = (BHSH
k SkB)−1BHSH

k y, k = 1, . . . , K. (6.12)

Instead of using (6.12) directly, we follow the idea of matching pursuit [112] and

adopt an iterative process to build up estimates of the expansion coefficients ck gradually.

At each iteration, a residual r is calculated by subtracting a recovered signal from the
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received signal y

r(q) = y −
K∑

k=1

SkBĉ
(q−1)
k = r(q−1) −

K−1∑
k=0

SkB△ ĉ
(q)
k , (6.13)

where q is an index of iterations, (·)(q) denotes the quantity at the qth iteration and△ĉ
(q)
k ,

k = 1, . . . , K, are updates of the expansion coefficients, computed as:

△ĉ
(q)
k = η(BHSH

k SkB)−1BHSH
k r(q), k = 1, . . . , K, (6.14)

where η is a coefficients (step size) in [0, 1]. At the initialization stage (q = 0), c(0)
k = 0,

hence, r(0) = y. In the following stages (q ≥ 1), the estimated expansion coefficients ĉk

are updated according to:

ĉ
(q)
k = ĉ

(q−1)
k +△ĉ

(q)
k , k = 1, . . . , K. (6.15)

At the start of the iterations, the residual is high. By extracting estimates of the expansion

coefficients and subtracting recovered signal from the residual, the residual is gradually

reduced. During this process, the estimates ĉk are improved and finally converge to a

steady state.

For each iteration, (6.14) is repeated for all the K channel taps. For the potentially

largeK and total number of iterationsQ, computing the matrix (BHSH
k SkB)−1 can result

in high complexity. To reduce the complexity, the following simplified formulation is

found useful:

△ĉ
(q)
k = η(BHB)−1BHSH

k r(q), k = 1, . . . , K. (6.16)

In this case, the matrix (BHB)−1 can be pre-computed and kept in memory to reduce the

complexity. For modulations such as the phase-shift keying where the modulated symbols

have a unit magnitude |s(n)| = 1, (6.16) is equivalent to (6.14). For other modulations

that have a mean symbol power E{|s(n)|2} = 1, (6.16) is an approximation to (6.14).

It is found that the diagonal elements of BHB are much larger than the off-diagonal

elements, therefore, (6.16) can be further simplified as:

△ĉ
(q)
k = ξBHSH

k r(q), (6.17)

where ξ = η/max{BHB} is a normalization factor. The choice of η will influence the

final estimation accuracy and convergence speed in terms of number of iterations. We

will show how to choose η according to numerical results in Section 6.5.
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The iterations stop when the desired number of iterations Q is reached. The final

estimate of the channel impulse response is then calculated as:

ĥ = Bĉ(Q). (6.18)

The whole iterative algorithm is summarized in Table 6.1.

6.3 Complexity analysis

So far, we have described the iterative BEM channel estimator. We now compare its com-

putational complexity with that of the ML BEM estimator (the MMSE BEM estimator

has similar complexity with the ML BEM estimator). To start with, we compute the com-

plexity of the ML BEM estimator. The key steps and the corresponding complexity, in

terms of number of multiplications and additions, are shown in Table 6.2. At step 1, ma-

trices SkB, k = 1, . . . , K, are computed. As Sk is a diagonal matrix, the computation of

SkB only involves KMN multiplications. By noticing that the cubic B-spline function

has a finite support, i.e., each row of matrix B has maximum 4 non-zero elements, the

computation of SkB requires 4KN multiplications. The results of step 1 are used for

computing BHSH
k y at step 2 and constructing B

H
SHSB at step 3. Different methods

can be applied for computing the matrix inversion at step 4. Generally, the inversion of

the KM ×KM matrix B
H
SHSB requires O(K3M3) multiplications and additions. By

summing the number of operations at each step and ignoring the terms with low order, the

total complexity of the ML BEM estimator is O (8K2N) +O(K3M3).

For the iterative BEM channel estimator, there are four key steps at each iteration,

as shown in Table 6.1. The matrices SkB, k = 1, . . . , K, are pre-computed and kept

in memory to reduce the complexity at step 1 and step 3. The total complexity of the

iterative BEM estimator is O (8QKN).

From Table 6.1 and Table 6.2, it can be seen that the relationship between the com-

plexity of the ML estimator and that of the iterative estimator depends on values of K

and Q. Generally, when the number of channel taps K is large, the iterative estimator

has lower complexity. As an example, for the simulation scenarios used in Section 6.5.2,

the underwater acoustic channel has the number of taps K ∼ 102. The block size N is
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Table 6.1: Iterative BEM channel estimator using cubic B-splines
Input: M , N , y, B, η, Q, Sk, k = 1, . . . ,K × +

Step Initialization:

ξ = η/max{BHB}
repeat forK times

ĉ(0)
k = ξBHSH

k y

end for

r(0) = y −
∑K

k=1 SkBĉ(0)
k

Compute residual power: Pr = ||r(0)||22/N
q = 1

Iteration:

While q ≤ Q

repeat forK times

1 △c(q)
k = ξBHSH

k r(q−1) (4K + 1)N K(4N −M)

2 ĉ(q)
k = ĉ(q−1)

k +△c(q)
k − KM

end for

q = q + 1

3 r(q) = y −
∑K

k=1 SkBĉ(q−1)
k 4KN K(4N −M) +N

4 Compute: Pr = ||r(q)||22/N N + 1 N − 1

end While

Final channel estimate: ĥ = Bĉ(Q) Total: O (8QKN) multiplications and additions

on the order of 102, the number of basis function is about 10, and the maximum number

of iterations Q is about 20. The iterative estimator requires O(106) operations, while the

ML estimator requires O(109) operations.

6.4 Non-zero taps identification

Underwater acoustic channels may be sparse [7] [8] [9] [10], e.g., only a small number

of tap coefficients are non-zeros. The channel impulse response can be represented by

only the non-zero taps. Estimating the coefficients of the zero-taps (with very small tap

coefficients) results in overparameterization, which in turn results in low accuracy and

high estimation complexity. Therefore, it is beneficial to identify the non-zero taps before

applying the proposed iterative BEM channel estimator. Since the iterative estimator

involves a tap-by-tap processing, it can be straightly applied by only processing the non-
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Table 6.2: Complexity of ML BEM channel estimator using cubic B-splines
Step Operation × +

1 Compute: SkB, k = 1, . . . ,K 4KN −

2 Compute: BHSH
k y, k = 1, . . . ,K 4KN K(4N −M)

3 Construct: B
H
SHSB 16K(K−1)N

2
16K(K−1)(N−1)

2

4 Compute: (B
H
SHSB)−1 O(K3M3) O(K3M3)

5 Compute: ĉML = (B
H
SHSB)−1B

H
SHy K2M2 KM(KM − 1)

Total: O
(
8K2N

)
+O(K3M3) multiplications and additions

zero taps. Consequently, the estimation complexity is reduced since the total number of

taps K is reduced. In this section, a method for identifying the non-zero taps is described.

Various methods can be used for identifying the non-zero taps. A straightforward

method is the threshold algorithm [101] [113], where the dominant taps can be identified

using an energy criteria: the non-zero taps should have coefficients stronger than a specific

threshold. Another type of methods solving this problem is to find a reduced number of

taps that can represent the whole channel impulse response with small error [10]. Among

these methods are the Lp-norm regularization method [74] and greedy algorithms such as

the matching pursuit [112].

In this work, we identify the non-zero channel taps by solving a BPDN problem, which

is a l1 norm regularized optimization problem:

min
ĉ
J [ĉ], (6.19)

where

J [ĉ] =
1

2

∣∣∣∣∣
∣∣∣∣∣y −

K∑
k=1

SkBĉk

∣∣∣∣∣
∣∣∣∣∣
2

2

+ τ ||ĉ||1 . (6.20)

The parameter τ controls the balance between the square error (l2 term) and the sparsity (l1

term). The purpose is to find the indexes of the non-zero taps. We denote the non-

zero indexes as a vector I = [I1, I2, . . . , INn ], where Nn is the number of non-zero taps.

To solve this BPDN problem, the Homotopy approach [114] developed in Chapter 4 is

adopted. The key idea of the Homotopy approach is that for a large value of τ , all the taps

ĉk, k = 1, . . . , K should be zeros. When τ is reduced gradually, e.g., τ ← λτ , 0 < λ < 1,

non-zero taps are activated to minimize the cost function in (6.20).

It has been proved in Chapter 4 that activating the nth non-zero tap (with index t) to
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minimize the cost function for a specific τ , the following criteria should be satisfied:

[g]t = max{gt} > τ, (6.21)

where gt =
∣∣BHSH

k r
∣∣. The vector r = y−

∑n−1
i=1 SIi

ĉi is the current residual, and g is an

auxiliary vector with elements [g]k = max{gk}, k = 1, . . . , K.

At the initialization (ĉ = 0), the parameter τ is set to τ = max{g} so that the first non-

zero tap has an index t = arg maxk{g}. The CD search is used to adjust the coefficients

for this non-zero tap to minimize the cost function. When τ is reduced, more non-zero taps

can be activated. We choose each new non-zero tap that has the index t = arg maxk∈Ī{g},
where Ī is the complementary set of the indexes in vector I. The Homotopy process is

terminated when the desired number of non-zeros taps (Nn) is reached. The algorithm is

summarized in Table 6.3.

6.5 Numerical results

In this section, the proposed iterative channel estimation method is firstly evaluated using

non-sparse channels with short delay spread, comparing with the ML and MMSE BEM

channel estimation methods. The proposed method is then applied to estimate a time-

varying sparse underwater acoustic channel with relatively large delay spread.

6.5.1 Numerical results for non-sparse short channels

We consider a time-varying multipath channel that has K = 5 taps. The tap coefficients

are assumed independent from each other. A uniform power delay profile is used, e.g.,

each tap of the channel has the same energy. The complex-valued time-varying tap co-

efficients are generated according to a modified Jakes’ model [31] [32]. Throughout the

simulations in this subsection, the number of received symbols is fixed at N = 200. A bi-

nary pseudo-random pilot signal sequence is used for the channel estimation. The MSE of

the channel estimate is averaged over 100 simulation trials, where the MSE is calculated
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Table 6.3: Algorithm for identifying non-zero channel taps
Input:

Nn, λ, B, y, Sk, k = 1, . . . ,K

Initialization:

ĉ = 0, r = y

Compute for K channel taps:

gk =
∣∣BHSH

k r
∣∣, k = 1, . . . ,K

Formulate vector g, [g]k = max{gk}
t = arg maxk{g}
Activate the first non-zero tap:

I1 = t, τ = [g]t, m = 1

While m ≤ Nn

for i = I1, . . . , In

Adjust ĉi to minimize the cost function J [ĉ] using CD search

Update the residual signal: r = r− Siĉi

end for

Update the vectors:

gk =
∣∣BHSH

k r
∣∣, k = 0, . . . ,K − 1

Formulate vector g, [g]k = max{gk}
t = arg maxk∈Ī{g}
if [g]t > τ

Update the index of non-zero taps:

Ii = Ii−1, i = 2, . . . , n+ 1

I1 = t

m = m+ 1

else

τ = λτ

end if

Output:

Non-zero index I = [I1, I2, . . . , INn ]
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Figure 6.1: MSE performance of the iterative BEM channel estimator with respect to the

number of iterations (q): η is constant over the iterations, Non-sparse fading channels

with fdT = 0.01, M = 10.

as:

MSE =

∑K
k=1 ||ĥk − hk||22∑K

k=1 ||hk||22
. (6.22)

The MSE of channel estimates should decrease when the number of iterations in-

creases. Fig.6.1 shows the convergence of the iterative estimator for different values of

η. In the simulation, each tap of the channel is assumed to have a normalized Doppler

frequency fdT = 0.01. The number of basis functions is fixed at M = 10. It can be

seen that for different values of η, the convergence speeds are different. For high SNR

scenarios corresponding to Fig.6.1(a)(b), setting η to a higher value requires less itera-

tions for the MSE converging to a steady state. For lower SNR scenarios corresponding

to Fig.6.1(c)(d), there is an optimal number of iterations providing the lowest MSE. Be-

yond this optimal number, the MSE increases, resulting in degradation in the estimation
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Figure 6.2: MSE performance of the iterative BEM channel estimator with respect to the

number of iterations (q) for: a constant η and a varying η (η(q) = η(q−1)

1+1/SNR , 1 < q ≤ Q),

Non-sparse fading channels with fdT = 0.01, M = 10.

performance.

From the results shown in Fig.6.1(c)(d), reducing the value of η can avoid or alleviate

the degradation in low SNR scenarios. Therefore, instead of setting a constant η for all

the iterations, we can set η varying for different iterations. The parameter η should decay

as more iterations are carried out. This is because the SNR of the residual decreases as the

number of iterations increases. The higher the noise level, the faster this decaying should

be. In this work, the following decaying process for the parameter η is found to be useful

to alleviate the degradation in low SNR scenarios:

η(q) =
η(q−1)

1 + 1/SNR
, 1 < q ≤ Q. (6.23)

Fig.6.2 shows the MSE performance of the iterative estimator using a decaying η with

η(0) = 0.67. With the variable step-size, a better MSE performance is achieved than that

when using a constant η. The simulation scenarios in Fig.6.2 are the same as those for

Fig.6.1.

Fig.6.3 shows the MSE performance against SNR in the same simulation scenario

as that for Fig.6.1 and Fig.6.2. The MSE performance obtained by applying a constant

η = 0.67 and a varying η with η(0) = 0.67 are compared with the performance of the ML

and MMSE BEM channel estimators. It can be seen that the varying step-size η provides
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Figure 6.3: MSE of channel estimates at different SNRs: Non-sparse fading channels

with fdT = 0.01, M = 10, Q = 50, N = 200.

a better estimation accuracy for low SNRs than the constant η. The iterative estimator,

with either a constant or varying η, can provide more accurate channel estimation than the

ML BEM estimator for SNR < 30 dB. Since in real communication systems, very high

SNR (> 25 dB) is difficult and sometimes unnecessary to achieve, we can conclude that

the proposed estimator has a better performance than the ML BEM estimator.

We also investigate the influence of the number of basis functions (M ) on the channel

estimation accuracy for the proposed iterative algorithm. Two different fading rates are

considered: fdT = 0.01 and fdT = 0.02. Fig.6.4 shows the MSE performance with

respect to the number of basis functions. To justify the proposed method, the performance

of the ML and MMSE BEM methods are also shown. It can be seen that for the MMSE

BEM estimator, there exists an optimal number of basis functions above which a lower

bound of the MSE performance is achieved. The behavior of the MSE performance of

the ML BEM estimator is different from that of the MMSE estimator. There is an optimal

number of basis functions providing the best MSE performance. Fewer or higher number

of basis functions will produce less accurate estimates. Similar to the ML estimator, the

proposed estimator also has an optimal number of basis functions. However, beyond this
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number, the performance is less sensitive to the increase of the number of basis functions.

6.5.2 Numerical results for modeled underwater acoustic channels

The time-varying underwater acoustic channel is generated according to the environment

of a deep water experiment conducted in the Pacific Ocean [44]. More details about the

environment parameters such as the SSP can be found in Chapter 3. In the simulation,

we follow the settings of source/receiver movements in the experiment. The transmitter,

at a depth of 200 m, is moving towards the receiver from a horizontal distance of about

r0 = 42 km. The receiver depth is fixed at 400 m. The moving speed is time-varying,

with a mean speed of v0 = 6 m/s plus sinusoidal fluctuations. The distance between the

transmitter and receiver is defined by:

r(t) = ro − v0t+ µ sin(2πt/Tsur), (6.24)

where µ = 1 m and Tsur = 10 s is the average period of the surface waves. The time-

varying acoustic channel is generated using the channel model presented in Chapter 3.

At the transmitter end, the transmitted QPSK symbols s(n) are firstly up-sampled to

match the sampling frequency at fs = 12288 Hz and then passed through a root-raised

cosine filter with a roll-off factor of 0.5. The symbol duration is T = 1/1024 s. The

output of the filter is modulated to a carrier frequency of fc = 3072 Hz to produce the

real-valued transmitted signal. The channel impulse response is generated in a frequency

bandwidth [1500, 4600] Hz to cover the signal bandwidth. For a movement of duration 80

s, the variations of the magnitude of the time-varying impulse response in the bandwidth

[1500, 4600] Hz are shown in Fig.6.5, where the time-varying delays of the multipath

arrivals caused by the movement are compensated using the delay adjustment method as

described in Chapter 3.

We carry out two simulations to examine the proposed iterative BEM estimator with

the non-zero tap identification method. In the first simulation, the transmitted symbols

s(n) are treated as a pilot known to the receiver. To exclude the Doppler effect caused

by the time-varying delays, the time-varying impulse response (after delay adjusement)

shown in Fig.6.5 is used for generating the simulated signal. At the receiver end, the
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Figure 6.4: MSE of channel estimates for three different BEM methods with respect to

the number of basis functions.
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Figure 6.5: Magnitude of the channel impulse response variations in a deep water scenario

caused by a horizontal movement.

received signal is firstly converted to its equivalent baseband by removing the carrier fre-

quency and passing through a low-pass filter matched to the transmit filter. The complex-

valued received symbols y(n) are used for channel estimation. The signal is processed

block by block. The block has a duration of 5 s, with N = 5120 symbols. The number of

basis functions in a block is fixed at M = 13.

It can be seen from Fig.6.5 that the channel is sparse, e.g., there are only several groups

of strong channel taps. The channel impulse response can be approximately represented

by a small number of non-zero taps. The channel sparsity, defined as the ratio between

the number of non-zero taps Nn and the total number of taps K (i.e., Nn/K), can be

estimated according to the source/receiver positions and the environment. For instance,

with approximate environmental parameters and positions, it can be calculated that there

are five groups of multipath arrivals, with a delay spread of about 0.25 s (K ≈ 256 chan-

nel taps). For signals with a limited bandwidth, a distinct path will have some sidelobes.

The wider the bandwidth, the narrower these sidelobes will be. If we ignore all the side-

lobes and represent each group of the multipath arrivals by one tap, the sparsity is about

5/256 ≈ 0.02. To achieve a better approximation, we can increase the number of samples
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for representing each group of the multipath arrivals. For instance, with 3 taps per group,

the sparsity is about 5× 3/256 ≈ 0.06.

For estimating a sparse channel, two parts of the estimation error should be considered.

The first part is the modeling error caused by the sparse approximation for bandlimited

signal. Generally, establishing the sparse model with more taps results in less modeling

error. The second part of the estimation error is due to the noise in the received signal.

For a strong channel tap, this error is small as the SNR for this tap is high. However, for

weak taps, this error can be high, especially when the noise level is high. Fig.6.6 shows

the MSE performance with respect to the sparsity for different SNRs. For SNR = 0 dB,

the estimation error caused by noise dominants in the overall estimation error when the

sparsity is larger than 0.04. With higher SNR (SNR = 10 dB), more taps are required to

achieve the optimal estimation accuracy. The performance loss by introducing more than

the optimal number of taps is smaller than that at low SNR (SNR = 0 dB).
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Figure 6.6: MSE of channel estimates obtained by the iterative algorithm for underwater

acoustic channel with respect to the sparsity.

Fig.6.7 shows sparse and non-sparse channel estimates for two different SNRs. It is

clear that for SNR = 30 dB, there are non-zero taps that are not taken into account by
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setting the sparsity to 0.04. In contrast, for SNR = 0 dB, since the noise level is high,

these taps are hardly visible in the non-sparse estimate.

Fig.6.8 compares the MSE performance of the iterative BEM estimator at different

SNRs with and without accounting for the channel sparsity. It is seen that for high SNR,

the non-sparse estimator provides better performance. However, for lower SNRs (< 15

dB), properly choosing the sparsity results in significant improvement in the channel es-

timation accuracy.

So far, we have examined the proposed methods for estimating time-varying sparse

channels with pilot-only signal in a scenario where the time-varying delays are compen-

sated. Next, we carry out a more realistic simulation to evaluate the performance of the

channel estimator. In this simulation, the time-varying delays of the multipath arrivals

are included when generating the signal. The time-varying impulse response is generated

according to the movement in (6.24). It is worth to note that simulated signals generated

from these simulation settings are similar to the experimental signals, i.e., they provide

close system performance in an OFDM modem, as verified in Chapter 3. The real part of

the QPSK symbols is treated as the pilot signal while the imaginary part contains the data

unknown to the receiver. The SNR is defined as the ratio between the power of the signal,

including the pilot and the data, and the power of the noise.

A block diagram of the receiver is shown in Fig.6.9. At the beginning of processing

the received signal, the time-varying Doppler effect caused by the movement is compen-

sated by re-sampling the signal according to an estimated Doppler shift. To simplify the

compensation, it is assumed that the Doppler shift is constant within a specific interval

Td. Different intervals of data can have different Doppler shifts. The ambiguity function

method [11] is used to estimate the Doppler shift for each interval. The Doppler esti-

mation interval is set to Td = 1 s. The signal after re-sampling is then converted into

its equivalent baseband y(n) by removing the carrier frequency, passing through a low-

pass filter and down-sampling to the symbol rate. The channel estimates ĥ are used to

compute the coefficients of symbol-spaced decision feedback equalizer, with feedforward

length Lf = 2K and feedback length Lb = K.

For channel estimation, the data are treated as noise. Therefore, the effective SNR for
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Figure 6.7: Sparse and non-sparse channel estimates obtained by the iterative algorithm

at different SNRs: the sparse taps are marked with ’*’.
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Figure 6.8: MSE of channel estimates obtained by the iterative algorithm for underwater

acoustic channel at different SNRs: sparse and non-sparse iterative BEM solutions.

Figure 6.9: Block diagram of the receiver.

channel estimation is always lower than 0 dB. According to the results in Fig.6.8, the non-

sparse estimation will result in large error. This is verified again by the results shown in

Fig.6.10 and Fig.6.11, where the BER and MSE performance of the non-sparse estimation

are poor. In comparison, the sparse channel estimates provide much better BER and MSE

performance.

6.6 Summary

In this chapter, we have proposed an iterative BEM based channel estimator using local

splines for estimating channels with large number of taps. The iterative estimator involves
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Figure 6.10: BER versus SNR for signals with pilot and data transmitted through the

underwater acoustic channel.
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Figure 6.11: MSE versus SNR for signals with pilot and data transmitted through the

underwater acoustic channel.
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a tap-by-tap processing, dealing with each channel tap separately. It has been shown that

for estimating channels with a large number of taps, the proposed iterative estimator has

a lower complexity than the ML and MMSE BEM channel estimators. We have shown

using Rayleigh fading channels following Jakes’ model that the proposed estimator has

a better estimation accuracy than the ML BEM estimator. We have also investigated the

influence of sparsity of underwater acoustic channels on the performance of channel esti-

mation. The non-zero channel taps are identified by solving the BPDN problem using a

Homotopy approach. The proposed iterative channel estimation method and the non-zero

tap identification algorithm are examined by simulations with a modeled time-varying

underwater acoustic channel. It has been verified that by properly taking the channel

sparsity into account, more accurate channel estimate and better system performance can

be achieved.
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Summary and Future Work

Contents
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.1 Summary

In this thesis, several signal processing techniques for underwater acoustic communica-

tion networks have been developed and investigated.

In Chapter 3, an efficient channel simulator for modeling signal transmission with

moving transmitter/receiver has been developed to provide a simulation tool for research

in underwater acoustics. The key idea is to generate a time-varying channel impulse

response according to the time-varying transmitter/receiver position. The complexity is

kept low by approximating the time-varying impulse response at signal sampling rate

using local splines over a set of impulse responses for a relatively small number of sam-

pling points (waymarks) on the transmitter/receiver trajectory. The waymark impulse

responses are computed using an acoustic field computation method, which are usually

of high complexity. Further reduction in the complexity has been achieved by developing

a delay adjustment method to reduce the sampling rate of the trajectory. The simulator
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can be implemented in a recursive form and, thus, can be used for developing real-time

simulators for long-duration communication sessions. The simulator has been verified by

comparing the simulated data with data from real ocean experiments in shallow and deep

water. For the shallow water experiment, we have shown that the Doppler spectrum of the

tones transmitted by a moving source is similar in the simulation and experiment. For the

deep water experiment, it has been shown that the performance of an OFDM receiver is

similar in the simulation and experiment.

Considering the importance of the knowledge of node positions in a communication

network, we then have investigated multi-source localization techniques for underwater

acoustics based on matched field (MF) processing (Chapter 4). We have developed a

robust MF localization technique by solving a series of basis pursuit de-noising (BPDN)

problems for multi-frequency signals. An efficient algorithm combining the homotopy

approach and coordinate descent search has been developed for solving complex-valued

BPDN problems. A position refinement method has been applied for further reduction of

the complexity. We also have compared the proposed technique with other MF techniques

using simulated data and real experimental data. The proposed technique outperforms

other MF techniques in resolving sources positioned closely to each other, tolerance to

the noise and capability of locating multiple sources.

Accurate knowledge of underwater environment is essential for MF localization tech-

niques. In Chapter 5, we have investigated an MF inversion problem for estimating uncer-

tain sound speed profile (SSP) in a deep water scenario, which requires solving a global

optimization problem. Several global optimization algorithms based on simulated anneal-

ing have been compared and an adaptive hybrid algorithm combining a local optimization

method (downhill simplex) with fast simulated annealing has been successfully applied

for estimating the SSP.

Using the simulator developed in Chapter 3 to model underwater acoustic signal trans-

mission, estimation of time-varying underwater acoustic channels has been investigated

in Chapter 6. An iterative basis expansion model (BEM) based channel estimator using

cubic B-splines has been developed. For dealing with channels of long delay spread,

the complexity of the proposed estimator is relatively low, compared with the maximum

likelihood and the minimum mean square error BEM based channel estimators. We have
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shown that the proposed estimator has better estimation accuracy than the ML BEM es-

timator in dealing with time-varying multipath Rayleigh fading channels. We also have

investigated the use of sparsity of underwater acoustic channels to improve the estimation

accuracy. The non-zero channel taps are identified by solving a BPDN problem using

the homotopy approach. It has been shown that by taking the sparsity into account, the

channel estimation accuracy can be improved, especially in scenarios with low signal to

noise ratios.

7.2 Future Work

Some suggestions for further work based on this thesis are given below:

1. We have verified the channel simulator using data from two real experiments. How-

ever, as mentioned in Chapter 3, these two experiments are of low frequency. It is useful

to justify the simulator using higher frequency signals. Besides, channel time variations

caused by the scattering from time-varying sea surface are not taken into account. It is

useful to include the effect of surface variations into the simulator.

2. The developed MF localization technique has been proved to have better perfor-

mance than several other MF techniques. It is useful to compare the proposed technique

with other MF localization techniques. It is also useful to investigate the accuracy of

localization with respect to the signal frequencies, size and number of elements of the

receiver array as well as the number of sources. Data from other experiments with higher

frequencies and larger number of sources is desirable.

3. In Chapter 6, sparse channel estimation of underwater acoustic channels is in-

vestigated using modeled signals. The communication system used in the simulation is

relatively simple, compared with many other practical systems which have already been

implemented in experiments. It is valuable to justify the proposed sparse channel estima-

tion technique with more practical systems, involving such techniques as the error control

coding and multi-carrier modulation.
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Glossary

ASSA Adaptive Simplex Simulated Annealing

BEM Basis Eexpansion Model

BER Bit Error Rate

BP Basis Pursuit

BPDN Basis Pursuit De-Noising

CD Coordinate Descent

CE Complex Exponentials

DHS Down Hill Simplex

DPS Discrete Prolate Spheroidal

FFP Fast Field Program

FSA Fast Simulated Annealing

KL Karhunen-Loeve

MF Matched Field

MFI Matched Field Iversion

ML Maximum Likelihood

MMSE Minimum Mean Square Error

MSE Mean Square Error

MVDR Minimum Variance Distortionless Response

OFDM Orthogonal Frequency-Division Multiplexing

IAA Iterative Adaptive Algorithm

MF Matched Field

QPSK Quadrature Phase Shift Keying

SA Simulated Annealing

SNR Signal to Noise Ratio

SSA Simplex Simulated Annealing

SSP Sound Speed Profile
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