
Structural and Magnetic Characterisation of Heusler 

Alloy Thin Films under Optimised Growth 

Condition for Spintronic Devices 

 

 

 

 

Wu Haokaifeng 

 

 

 

 

 

 

 

 

 

DOCTOR OF PHILOSOPHY 

UNIVERSITY OF YORK 

PHYSICS 

APRIL 2018 

  



2 
 

Abstract 

Spintronic devices have been playing an important role in magnetic storage and 

memory applications for the last 20 years. For such a trend to continue, it is critical to 

develop new magnetic materials, in particular, in the context of antiferromagnetic 

spintronics, materials with high Curie temperatures, large spin polarisations, and low 

saturation magnetisations. In this study, three Heusler alloys, Mn2VSi, Mn3Ga and 

Mn3Ge have been investigated and experimental results have been carried out. 

80 nm thick polycrystalline Mn2VSi films have been deposited on silicon substrates 

with an 18 nm silver seed layer and a 3 nm aluminium capping layer using a sputtering 

system. The best quality film is obtained for 723 K growth. The Mn2VSi thin film is 

verified to be antiferromagnetic, where an exchange bias is found when a 3 nm 

ferromagnetic CoFe layer has been deposited on the top of the Mn2VSi layer. The 

exchange bias is measured to be 34 Oe at 100 K. The blocking and thermal activation 

temperature of Mn2VSi is estimated to be below 100 K and within a range between 

100 K and 448 K, respectively.  

Polycrystalline Mn3Ga layers with thickness in the range from 3-20 nm were deposited 

at room temperature. To investigate the onset of exchange-bias, a ferromagnetic 

Co0.6Fe0.4 layer (3.3-9 nm thick) capped with 5 nm Ta, were subsequently deposited. 

X-ray diffraction measurements confirm the presence of Mn3Ga (0002) and (0004) 

peaks characteristic of the D019 antiferromagnetic structure. The 6 nm thick Mn3Ga 

film shows the largest exchange bias of 430 Oe at 120 K with a blocking temperature 

of 225 K. The blocking temperature is found to decrease with increasing Mn3Ga 

thickness. These results in combination with X-ray reflectivity measurements confirm 

that the quality of the Mn3Ga/Co0.6Fe0.4 interface controls the exchange bias, with the 

sharp interface with the 6-nm-thick Mn3Ga inducing the largest exchange bias. The 

magneto-crystalline anisotropy for 6 nm thick Mn3Ga thin film sample is calculated 

to be 9 × 104𝐽/𝑚3.   

Polycrystalline Mn3Ge samples with same stack layer structure as Mn3Ga films were 

also studied. A growth temperature of 773 K promotes the crystallisation of the 100 

nm thick Mn3Ge layer showing a D019 antiferromagnetic structure. The exchange bias 

cannot be observed due to the potential interlayer diffusion during high temperature 

sputtering.  
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Chapter 1  

Introduction 

The purpose of this research is to design a replacement for IrMn, an exchange-biasing 

material characterised by elevated thermal stability and high resistance to corrosion. 

At present, IrMn is a widely-used antiferromagnetic alloy applied in a variety of 

electronic devices (e.g., hard disk drives [HDDs] and magnetic random access 

memory [MRAM]). The desired material that will replace IrMn is an 

antiferromagnetic (AF) Heusler alloy (HA) thin film. 

Since iridium (Ir), which constitutes the densest element after osmium (Os), is 

characterised by stability and a high melting point (higher than 3,000°C), it is 

commonly found in meteorites and asteroids. However, it is among the rarest elements 

in the Earth’s crust, and it is retrieved much less commonly than many materials often 

regarded as rarer. Approximately 5.8 tonnes of Ir are retrieved from the Earth’s crust 

annually, the majority of which (87%) derives from South Africa [1]. As a member of 

the platinum-group of metals, Ir can be produced as a side product of platinum and 

palladium ores, the standard concentration being between 1% and 2% [1]. It is also 

noteworthy that Ir constitutes a side product of the electro-refining process of nickel 

and copper. At present, estimates suggest that Ir prevalence within the Earth’s crust is 

4x10-4 ppm, which is a conspicuously lower value when compared to other important 

metals, including asneodymium (33 ppm), lithium (17 ppm), dysprosium (6.2 ppm), 

platinum (3.7x10-3 ppm), gold (3.1x10-3 ppm), ruthenium (1x10-3 ppm), and palladium 

(6.3x10-4 ppm). This demonstrates that Ir prevalence in the Earth’s crust is the lowest 

of all metals [2]. This fact was not concerning until relatively recently, and more 

specifically, until the discovery of GMR and TMR, since no commercial applications 

of the metal were extant. However, given these discoveries, and the utilisation of Ir in 

HDDs, demand for the metal rose four times in the period from 2009 to 2011 (to reach 

approximately 9.5 tonnes) [2]. 

In view of the least abundant status of Ir, IrMn, although a suitable material for a 

variety of electronic applications, is costly, with its price having risen by a factor of 4 

over the recent half-decade (and for the recent decade, by a factor of 10), as shown in 

Fig 1.1.  
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Given the fact that an even greater number of modern technologies are now anticipated 

to draw on IrMn, this price increase is set to become even more pronounced. In view 

of this, Heusler alloys (HAs), which are alloys of the transition metals (e.g., iron [Fe], 

cobalt [Co], or manganese [Mn]) with materials like silicon (Si) or aluminium (Al), 

are now being focused on by many researchers. If HAs could be utilised for similar 

applications to those that IrMn is currently used in, costing and availability problems 

would be alleviated significantly. At present, the literature indicates that spintronic 

technologies will constitute the foundation of the future’s electronic devices rather 

than contemporary society’s volatile semiconductors, and it is notable that the read 

heads within HDDs are already constituted in this novel way. As such, it is clear that 

procurement issues surrounding IrMn have prompted scientists and researchers to 

explore new possibilities. 

Given the criticality of Ir in the HDD industry for the recent ten years, a 

comprehensive analysis of the binary alloys that could be used instead has been 

conducted. Although PtMn was identified as a viable candidate in a variety of respects, 

the prohibitive nature of its elevated temperature anneal (temperatures of around 

1,000°C are necessary to facilitate the conversion from the face centered cubic (fcc) 

Figure 1.1 Recent iridium price in USD/g [139]. 
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phase to the face centered tetragonal (fct) phase in bulk form) presents difficulties in 

the context of thin film form. As such, ternary alloys must be addressed to identify 

antiferromagnetic (AF) or compensated ferrimagnetic (CF) materials characterised by 

appropriate thermal stability values. 

This study’s objective is to identify a new material that can substitute for Ir, thereby 

lowering the expense associated with AF films by 10 times when comparatively 

examined against IrMn. In the research, the films were characterised in structural and 

magnetic ways by employing transmission electron microscopy (TEM), X-ray 

diffraction, and magnetic measurements. It is necessary for the device to exhibit an 

exchange bias, namely, the impact of a hysteresis loop shift facilitated by AF-

ferromagnet coupling greater than 1 kOe in thin film form, with a blocking 

temperature exceeding 300K. If so, then it will be compatible with industry standards 

for HDD read heads. The following HAs are examined: Mn2VSi, Mn3Ga and Mn3Ge. 

1.1 Units and Errors 

The application of c.g.s unit system has been utilised in this study as it is the standard 

system used in the magnetic recording industry. The c.g.s system is commonly used 

by the major magnetism community.  

The errors on results presented in this study were calculated using the standard 

Gaussian error method.  
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Chapter 2  

Spintronic Devices and Magnetoresistance 

In recent years, primarily owing to the discovery of giant magnetoresistance (GMR), 

researchers and commercial stakeholders have been paying increasingly close 

attention to spin electronics. All commercially available hard disk drives (HDDs) 

contain magnetoresistive sensors within their read heads, and such sensors are also 

employed for all applications which require the accurate determination of a magnetic 

state. Further advances have resulted in the incorporation of spintronics into other 

applications, including magnetic random access memory (MRAM), the purpose of 

which is to substitute for the technology related to the current transistor. When a device 

is not powered on, a stable logic state can be achieved from strides forward in the 

manipulation of spin as opposed to electron charge, but novel properties are required 

for those materials which would implement these processes. Owing to their inferior 

spin polarisation capacities, which lead to impaired spin injection efficiency (typically 

less than 50%), conventional transition metal ferromagnets are unsuitable for spin 

manipulation. Contrastingly, existing materials could be replaced by half-metallic 

Heusler compounds and alloys, since these are associated with significantly higher 

spin polarisation (estimates suggest this can reach 100%). Noteworthy, Heusler alloys 

provide a wide range of materials with tuneable transport and magnetic properties, 

many of which are precisely what new data storage technologies require. 

 

2.1 Magnetoresistance 

Thomson [3], after documenting the relationship between electrical current and 

conductor magnetisation, was responsible for discovering the concept of 

magnetoresistance in 1856. Owing to the Hall Effect, ordinary magnetoresistance 

occurs in magnetic and non-magnetic materials. With respect to ferromagnetic 

materials, magnetoresistance is impacted by the material’s intrinsic anisotropy, which 

gives rise to anisotropic magnetoresistance (AMR). Here, the process relies on the 

applied magnetic field direction, and it can be accounted for by spin-orbit coupling 

inside the ferromagnetic material [4]. In the context of AMR, if the charge current is 

parallel or normal to the atomic magnetic moments (which themselves are oriented via 

an applied magnetic field), the electron spin-orbit coupling promotes variability in the 
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scattering cross section. The effect is significant, but the scale of the change in 

resistance is negligible, which impairs the precision with which potential 

magnetisation states can be distinguished. 

 

2.1.1 Giant Magnetoresistance 

Grünberg and Fert received the Nobel Prize for documenting the giant 

magnetoresistance (GMR) effect in 2007. The GMR effect is reliant upon spin 

dependent scattering (SDS) of the current carrying electrons in the host materials. SDS 

occurs in transition metals due to the number of unoccupied states in the d bands. It 

was first examined for bulk ferromagnetic materials towards the end of the 1980s [5]. 

By employing the two current model, which holds that it is possible to separate the 

current moving through a transition metal into a pair of channels, Mott [6] initially 

documented the phenomenon in 1936. As a consequence of this early research, Fert 

and Campbell could conduct their investigation into SDS in the latter part of the 

twentieth century, the results of which conformed to the existing experimental findings 

[7][8]. 

A GMR structure is intentionally engineered so as to facilitate the exploitation of the 

SDS, and it can be accounted for by drawing the resistor diagram below. 

     

 

Figure 2.1 Schematic diagram of a GMR stack and 

resistor network [9]. 
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Regarding the two current model or independent spin up and spin down electron 

transport channels, it is possible for the ferromagnetic layers to serve as resistors in a 

parallel configuration for the paths of the spin channels. As it shown in Fig 2.1, when 

the magnetisation direction of F layers are parallel (pointing upwards), the spin-down 

electrons are scattered back leaving for a low resistance in the path of spin-up electrons. 

Contrastingly when F layers are antiparallel, both spin-up and spin-down electrons 

exhibiting high resistance through the structure. In view of this, the evidence indicates 

that the sole mechanism that can be utilised to distinguish between the low and high 

resistance states of the GMR stack is to switch the magnetisation of the two magnetic 

layers from the parallel state (RP, low resistance) to the antiparallel state (RAP, high 

resistance). As documented by M. T. Sarah et al [9], this is reflected in the following 

equation: 

∆𝑅

𝑅
=

𝑅𝐴𝑃 − 𝑅𝑃

𝑅𝑃
=

(𝑅 ↓ −𝑅 ↑)2

4𝑅 ↓ 𝑅 ↑
 

 

(2-1) 

Although the GMR mechanism does not seem to be complex, a comprehensive 

investigation of electron scattering dynamics draws attention to several limiting 

aspects of the magnetoresistance effect. In statistical terms, the electron scattering 

process can be characterised as either elastic or inelastic, and it can potentially give 

rise to spin flipping [10]. At the same time, within the materials’ bulk or the interfaces, 

scattering processes take place. The implication of this is that it is necessary for the 

orientation of the electrons to remain consistent prior to the emergence of SDS. Given 

a spin polarised electron’s potential travel path, this distance cannot be longer than the 

electron’s mean free path (typically tens of nanometres) [9]. Figure 2.2 provides an 

overview of the different electron path lengths by referencing the fundamental 

geometries of GMR sensors. 
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While the sole prerequisite for efficient GMR sensor operation is the transition from 

parallel to antiparallel magnetisation for the pair of ferromagnetic layers, the 

application of a sufficiently large magnetic field can result in a transition to the parallel 

configuration. This is because the magnetic field overcomes the exchange interaction 

that exists between two magnetic layers. The best way in which to solve this issue was 

to draw on a pinning mechanism, thereby maintaining the constancy of the 

magnetisation direction of one of the layers, all the while permitting the transition of 

the second layer with an external magnetic field. 

Within the IBM laboratories, the above considerations gave rise to the spin valve 

[11][12]. These valves include a typical GMR configuration combined with an 

antiferromagnetic thin film, the purpose of which is to pin an adjacent ferromagnetic 

layer via exchange bias, simultaneously permitting the rotation of the free magnetic 

layer after exposure to an external magnetic field. In this case, the free layer is 

fabricated using a soft ferromagnetic material, which permits the potential for 

straightforward switching within a small detected field. The free layer’s easy axis of 

the magnetisation can be parallel or at a right-angle to the magnetisation of the 

reference layer. Furthermore, a proportional relationship exists between the change in 

resistance and the dot product of the pair of magnetisation vectors. Consequently, the 

change in resistance is 
∆𝑅

𝑅
 , which is proportional to the cosine of the angle between 

Figure 2.2 Schematic diagram of current in the plane (CIP) and 

current perpendicular to the plane (CPP) GMR stack [110]. 
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the pair of magnetisation vectors. To facilitate a linear response to the magnetic sensor, 

a 90° offset regarding the magnetisation vector directions is established. Figure 2.3 

gives a contemporary illustration of a spin valve structure, constituted from a 

ferromagnetic Heusler alloy. It is also possible to pin a magnetic layer by creating a 

sequence of soft and hard magnetic layers, which are spatially arranged so as to ensure 

that all pairs of layers have antiparallel coupling. As a consequence, a synthetic 

antiferromagnet (SAF) can be established. 

Strong pinning of the fixed ferromagnetic layer is the foundation of the spin valve 

structure, and this relies on exchange bias. As a consequence, researchers focused on 

antiferromagnetic materials. It was possible for the first GMR structures to draw on 

antiferromagnets with low anisotropy and low thermal stability, including NiO and 

CoO. Advancements relating to higher anisotropy (approximately 107 erg/cm3) were 

identified when using antiferromagnetic alloys, including IrMn and PtMn [13], which 

heightened the degree to which the alloys were thermally stable. As a result of the 

need for magnetic pinning characterised by strength, stability, and reliability, research 

initiatives focusing on exchange bias emerged [14]. 

A sequence of spin scattering events, which subsequently lower the degree to which 

the sensing structure is efficient, can occur when the complexity of GMR spin valve 

structures increases, and this is also the case when more magnetic and spacing layers 

are introduced. Limiting the electron mean free path minimises the spin diffusion 

length. Furthermore, nanocrystalline defects, including vacancies, roughness, grain 

boundaries, and interlayer combination at interfaces, can give rise to spin independent 

scattering. It is also noteworthy that the multilayer structures’ quality can be enhanced 

when recent deposition techniques and annealing are applied, since this underpins the 

crystallisation quality of the thin film components. 

At present, researchers are seeking to identify optimal ferromagnetic compounds with 

high SDS. Initiatives have highlighted that half-metallic Heusler compounds, 

characterised by the majority spin band shifted below the Fermi level (giving rise to a 

theoretical 100% spin polarisation, as noted in Chapter 3), are promising in this respect.  
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2.1.2 Applications of GMR 

Advancements in data storage technology were promoted significantly by the 

documentation and commercial application of GMR, since it provided a new way in 

which to approach electronic devices, namely, as devices transporting spin as opposed 

to electron charge. The degree to which magnetic field detection has become more 

efficient in recent years was the determining factor that contributed to the utilisation 

of GMR-based read heads in hard disk drives (HDDs) within a decade of the discovery 

of the GMR effect. Owing to the higher efficiency of the magnetoresistance sensor, it 

was possible to decrease the data bit size, thereby permitting exponential increases in 

the areal density of storage. HDDs store data on a magnetic medium applied to a disk, 

and one (or a collection of) rotating disks comprise the device. The coating of each 

disk is a sequence of thin films, and one of these films serves as the recording medium.  

The deposition of a granular Co-based alloy (specifically, CoCrPt) takes place so as 

to ensure the separation of individual grains by a non-magnetic compound (e.g., Cr or 

SiO2). In addition to this, the grains are exchange decoupled, thereby maintaining the 

variable orientations of the magnetisation of the adjacent regions or bits of information. 

The binary data is read as 1 or 0 depending on the nature of the magnetic transition at 

certain intervals, and after the information has been written by the write head, it is 

possible for it to be rewritten once the information bits’ magnetisation is switched. A. 

Moser et al., [15] provides an in-depth examination of magnetic recording technology, 

while Fig 2.3 gives an illustration of the read-write head in a perpendicular recording 

media configuration. 

Figure 2.3 A schematic diagram of perpendicular recording 

media [140]. 
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Owing to the need to downsize the lateral size of storage bits, a comparably sized 

sensor dimension was required, which in turn promoted the development of the current 

perpendicular to plane (CPP) configuration of GMR sensors. The limitations of the 

current in plane (CIP) GMR heads was approached as a consequence of the edge 

degradation impacts brought about by the device manufacturing process, paired with 

a higher likelihood of shunting (the result of abbreviated sensor length). 

 

2.2 Current Induced Magnetisation Switching 

Based on the studies published by Berger [16] and Slonczewski [17], it was 

demonstrated that a spin polarised current can induce spin transfer torque. This 

reverses the magnetisation direction in a ferromagnetic layer in the absence of an 

external magnetic field. Katine [18] published experimental findings attesting to this. 

With respect to metallic ferromagnetic materials, the 4s conduction electrons are 

exchange coupled to the 3d magnetism inducing electrons, which subsequently 

undergo excitation as spin waves or magnons. Noteworthily, similarities exist between 

quantised crystal lattice vibrations (referred to as phonons and the photon light quanta) 

and this phenomenon. In the forward looking research conducted by Berger, a 

prediction was made regarding scattering at the material interface. Slonczewski 

associated the current induced torque to the spin component’s spin polarisation and 

absorption, which is normal to the magnetisation. 

One of the key findings published from experiments conducted relating to CPP 

magnetoresistive devices indicated that the current flowing through the device as a 

probe of the GMR structure’s resistance has the potential to switch the layers’ 

magnetisation direction. In the process of electrons flowing through a ferromagnetic 

layer, they are spin polarised in the direction of the magnetisation of the ferromagnetic 

layer. The scattering of electrons with an antiparallel spin orientation are not involved 

in the conduction mechanism. When the current flows through the pinned 

ferromagnetic layer, the spins of the electrons align parallel to the magnetisation 

direction, and while sustaining their polarisation, they are conveyed through the non-

magnetic spacer layer. In the process of their interaction with the free magnetic layer, 

it is possible to classify the transfer of angular momentum as an effective torque 
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associated with the magnetisation. When the current density is sufficient, it is possible 

to reverse the magnetisation of the free layer. 

According to Katine [18], current driven magnetisation reversal occurs in Co/Cu/Co 

nanopillars. It is necessary to have a current density amounting to 108 Å/cm2 to switch 

the magnetisation in a low magnetic field. When a high magnetic field is applied, 

magnetisation precession occurs. The switching relies on the direction of the current, 

which demonstrates that the reversal mechanism is caused by spin transfer torque and 

not by the magnetic field.  

 

2.3 Tunnelling Magnetoresistance 

Despite the fact that GMR was responsible for drawing research attention towards the 

domain of spintronics, magnetic tunnel junctions (MTJ) are now found in place of 

GMR devices within HDD read heads and MRAM applications affording greater 

magnetoresistance. Such devices permit greater resistance, thereby ensuring that 

tunnel junctions are aligned with complementary metal–oxide–semiconductor (CMOS) 

technology, straightforward scalability, and thermal stability. In view of these 

considerations, the purpose of this section is to examine tunnelling magnetoresistance 

(TMR)-based devices. 

In a variety of ways, tunnelling magnetoresistive (TMR) junctions are comparable to 

GMR structures. However, rather than a conductive non-magnetic interlayers, 

magnetic tunnel junctions (MTJ) draw on an insulating oxide layer, the purpose of 

which is to separate the two ferromagnetic films. Hence, the CPP configuration is 

utilised to bypass the metallic conduction through the multilayer structure. As 

indicated by the name, the conduction mechanism that lies at the centre of TMR 

structures is dependent on the quantum tunnelling of electrons, which percolate 

through the non-conductive barrier. It is important to recognise that TMR is not simply 

dependent on the SDS within the electrodes; rather, it also relies on the conduction 
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states that are present to tunnel from one side of the insulating oxide barrier to the 

other (see Figures 2.4 and 2.5). 

 

 

 

 

Figure 2.4 A schematic diagram of quantum tunnelling. 

Figure 2.5 A schematic of spin split band structure and the TMR 

effect related to the Fermi Energy (EF) [141]. 
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With respect to the parallel orientation, numerous majority conduction states and 

majority valence states lead to a considerable electron flow, and as such, a low 

resistance. Regarding the antiparallel orientation, less majority and minority states can 

lead to a significant resistance. The implication of this is that for every spin direction 

at the Fermi energy or the spin polarisation, the TMR relies on the number of the 

available states. This is represented in the following equation: 

 

∆𝑅

𝑅
=

𝑅𝐴𝑃 − 𝑅𝑃

𝑅𝑃
=

2𝑃F1𝑃F2

1 − 𝑃F1𝑃F2
 

 

(7-2) 

where PF1 and PF2 denote the spin polarisations of the two ferromagnetic layers in the 

junction. Now, it should be noted that the 𝑃F1 can be defined in the following way: 

 
𝑃F =

𝑁𝑚𝑎𝑗 − 𝑁𝑚𝑖𝑛

𝑁𝑚𝑎𝑗 + 𝑁𝑚𝑖𝑛
 

 

(7-3) 

where Nmaj and Nmin denote the number of electrons in the majority and minority spin 

channels at the Fermi level, as accounted for by the density of states (DOS) of the 

ferromagnetic layers. In view of the fact that spin polarised materials, including 

Heusler compounds, should theoretically display 100% spin polarisation (see Chapter 

3), it is clear that the TMR values are anticipated to be significant. 

By employing a Fe/Ge/Co in plane magnetic tunnel junction (iMTJ) utilising low 

temperature electrical assessments, it was possible for Julliere to discover the TMR 

effect in 1975 [19]. In the final years of the twentieth century, studies such as Miyazaki 

et al [20] and Moodera et al [21] found that TMR ratios of greater than 10% could be 

attributed to iMTJs when an AlOx barrier was used and measurements took place at 

room temperature. In 2000, advancements took place for the AlOx-based MTJs, but 

the theoretical bound for the magnetoresistance ratio 70%, had already been achieved 

[22]. Noteworthily, Julliere’s formula [19] estimated this magnetoresistance ratio 

value, where the TMR ratio is determined by the ferromagnetic layers’ spin 

polarisation.  

Following the turn of the new millennium, the studies conducted by Butler et al [23] 

and Mathon et al [24] predicated that a TMR ratio of greater than 1000% could be 

obtained. In each case, the calculations were relevant for structures such as Fe 
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(001)/MgO (001)/Fe (001), where (001) crystalline orientation of the bcc Fe layer was 

required for heightened conveyance of spin polarised electrons. In the following years, 

studies such as Parkin et al  [25] made ongoing strides in the domain of Fe-based iMTJ, 

thereby establishing TMR ratios of 88% at room temperature for epitaxial structures, 

the deposition of which took place by molecular beam epitaxy (MBE). In the studies 

of Djayaprawira et al.,[26] and Hayakawa et al.,[27] TMR ratios amounting to over 

200% were identified at room temperature for systems utilising CoFe and CoFeB 

magnetic layers, with the iMTJs deposited by the conventional sputtering technology 

on Si substrates.  

In a recent study, Ikeda et al.,[28] indicated a TMR ratio of greater than 600% (room 

temperature), which exceeded 1000% at low temperatures. This was conducted 

utilising pseudo-spin-valves in the absence of the pinning antiferromagnetic layer, and 

post annealing took place at 525%. Noteworthily, these findings are consistent with 

the early theoretical models formulated in response to the effect. 

  

One of the main obstacles that researchers had to overcome when attempting to 

develop perpendicular MTJs (pMTJ) related to the deposition of highly crystalline bcc 

CoFeB (001)/MgO (001)/ CoFeB (001) with perpendicular anisotropy. It is not 

possible to use perpendicular anisotropic materials, including CoCrPt and Co/Pt 

multilayers, since these are associated with varying crystal structures, thus impairing 

epitaxial growth across the MTJ. TMR ratios of greater than 90% were identified for 

pMTJs in the context of L10 ordered FePt [29], as well as Co/Pt superlattice 

arrangements [30]. The first initiatives relating to pMTJ development relied on the 

utilisation of materials with in plane and perpendicular anisotropy, and sophisticated 

deposition processes had to be conducted. According to the study conducted by Ikeda 

et al., [31], the researchers identified a TMR ratio of greater than 100% for standard 

CoFeB/MgO/CoFeB MTJs, and the result was demonstrated that a slim layer of 

CoFeB is characterised by perpendicular anisotropy after deposition onto MgO (001). 

As a consequence of this finding, pMTJ production took place on a huge scale for 

MRAM applications. 

As the results indicate, it is possible to draw on either GMR or TMR sensors in HDD 

read heads, as well as MRAM applications, but both are associated with unique 
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strengths and weaknesses. The resistance area product of the two is different, in 

particular, greater for TMR sensors, and this stems from the tunnelling effect. 

Furthermore, the greater resistance of MTJs has the effect of causing noise problems, 

paired with an elevated resistor capacitor time constant, thereby limiting operation 

bandwidth. However, it should be recognised that the better TMR ratio results in 

higher output voltage signal, thereby resulting in the limitation of errors that occur 

when the data reading process is underway. In addition to this, GMR sensors are 

energy-efficient when compared to TMR sensors, but as a result of the lower MR ratio 

(approximately 20%), considerable current densities are required to facilitate usable 

signal voltage. While this can have an impact on the degree to which a device is 

thermally stable, it is more pertinent to note that large currents, especially in the 

context of spin transfer torque applications, can impair the degree to which devices 

are magnetically stable. 

 

2.4 Magnetic Random Access Memory 

Non-volatile RAM is characterised by its ability to retain memory content even in the 

absence of a power source, and the innovation of magnetic random access memory 

(MRAM) utilises this as its foundation. At present, researchers are seeking to modify 

MRAM technology so as to facilitate energy-efficiency as well as standard low voltage 

technology. The key objective of most research projects is to design computing 

technology that can quickly alternate between powered and unpowered states (when 

not needed and needed, respectively), thereby promoting energy sustainability into the 

future. 

A Conventional MRAM cell is illustrated in Figure 2.6, drawing on magnetic field 

writing stimulated by current flowing through a world line, which is employed as a 

gate operation device for the isolation transistor, and a bit line. When the device is 

engineered in this way, it is necessary to use a relatively large current, since this 

minimises the dimensions of the tunnel junction (because the field needed for 

switching grows when the MTJ is scaled down). Evidently, since power consumption 
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is proportional to the chip capacity, this is not a viable approach. Alternatively, the 

device layout can be based on the spin torque mechanism. 

 

With respect to MTJs, the spin polarised current induces spin transfer torque on the 

free layer’s magnetisation, and in the event that the current threshold limit is surpassed, 

the free layer’s magnetisation orientation is reversed. Regarding the inverse 

mechanism, when electrons are transmitted through the free layer and subsequently 

arrive at the pinned (fixed) layer, the spin current can move through when the spin 

polarisation is parallel. In the context of the antiparallel configuration, the inversely 

polarised electrons reflected back at the pinned layer interface with the tunnel barrier. 

When a certain threshold value is exceeded, the strength of the spin current that has 

been reflected increases to the required level, thereby switching the free layer’s 

magnetisation. 

The initial MTJ was employed for MRAM demonstration in 1996 [32]. Just two years 

ago, in 2016, Toshiba Corp reported that a prototype 4 Gbit STT-RAM had been 

developed, which is constituted of eight 512-Mbit banks. The smallness of the cell 

area can amount to 9F2, where F is the fabrication rule [33]. Future iterations of 

MRAM and STT-RAM technology must satisfy the current considerations, including 

the lowering of the switching field of critical current density, as well as a lowering of 

the fabrication rule. In the study conducted by Yakata [34], a synthetic ferromagnet 

Figure 2.6 A schematic diagram of conventional MRAM cell and spin 

transfer torque (STT) RAM cell. 
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(specifically, CoFeB/Ru/CoFeB) was employed, and this was applied as a free layer 

by AIST. The results of the study demonstrated an increase of 500% with respect to 

thermal stability, accompanied by an 80% increase in the critical current density. 

Noteworthily, it is possible for this configuration to establish a 10 Gbit STT-RAM 

device. The consideration that has yet to be addressed to create a high-density STT-

RAM is to ensure that the fabrication rule is reduced. According to A. Hirohata et al., 

substituting the supplementary transistor with a different design may solve this 

problem. 

In addition to the need for higher thermal stability, researchers are continually 

engaging in initiatives to heighten the TMR ratio. A value of greater than 150% is 

optimal for the achievement of a sub 10 ns read-out. The write current density (Jc) is 

less than 106 A/cm2, while it is necessary for the MTJ breakdown voltage to exceed 

the write voltage (approximately 0.5V at 10 ns) by three times. In the context of STT 

applications, for which large perpendicular anisotropy is a necessity, the Gilbert 

damping constant must be minimised to the greatest possible extent.   
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Chapter 3  

Heusler Alloy 

In 1903, Fritz Heusler made an intriguing discovery. He found that an alloy, Cu2MnAl, 

exhibited ferromagnetic qualities. What is remarkable about this compound is that 

neither copper, manganese nor aluminium are in themselves, ferromagnetic 

[35][36].The discovery of ferromagnetic alloys presented a novel category of 

materials that has since grown to include more than 1000 compounds, which are 

classified as Heusler compounds. As Figure 3.1 indicates, all Heusler compounds are 

comprised of three metallic or semiconductors elements, in a 1:1:1 (half-Heusler 

alloys) or 2:1:1 (full-Heusler alloys) ratio.  

 

Figure 3.1 Periodic table of the elements. The large number of Heusler materials can 

be formed by combining different elements according to the colour scheme [37]. 

By counting the number of valence electrons, it is possible to predict the properties of 

many Heusler compounds; for example, those with 27 valence electrons are 

superconducting non-magnets for full-Heusler alloys. Semiconductors with tuneable 

band gaps between 0 and 4 eV are an important group of Heusler compounds that have 

particular relevance to photovoltaic cells and thermoelectric technologies [37]. The 

band gap changes in response to alterations to the elements in the compound. These 

compounds are also expected to behave as topological insulators through various spin-
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polarised edge, conduct electricity on the surface but not within the body of the 

material.  

 

3.1 Heusler Alloy Structure 

In both the theoretical and experimental literature addressing Heusler alloys, 

researchers have found that the structural order of each compound has a significant 

effect on its characteristics. In view of this close connection between the structural and 

functional aspects of the compounds, when examining their physical characteristics, it 

is necessary to engage in comprehensive structural examination. The purpose of this 

section is to examine the various ways in which Heusler compounds can be structurally 

characterised. 

Broadly speaking, Heusler compounds can be categorised into one of two groups: 

firstly, if they have a composition 1:1:1, then they are referred to as half-Heusler 

compounds; and secondly, if they have a composition 2:1:1, then they are denoted 

stoichiometric full-Heusler compounds. Regarding the first category, half-Heusler 

compounds (C1b structure) are distinguished by the following physical characteristics: 

firstly, half-metallic ferromagnetism; secondly, shape memory properties; thirdly, 

semiconducting; fourthly, thermoelectric properties; and finally, behaviour as a 

topological insulator [38], [39]. 

For ordered X2YZ Heusler compounds, along with the space group Fm3̅m, they 

undergo crystallisation within the L21 structure. Based on the inorganic crystal 

structure database (ICSD) notation, this is denoted Cu2MnAl. With respect to the Y 

atoms, these are found at the 4b (1/2, 1/2, 1/2) position, while the X atoms and the Z 

atoms are found at the Wykhoff position, 8c (1/4, 1/4, 1/4), and 4a (0, 0, 0), 

respectively. For the purpose of the present study, two Heusler alloys have been 

studied, Mn2VSi and Mn3Ga, which are full-Heusler compounds. It is possible to 

create a series of L21 structure variants in the event that the X, Y, and Z atoms undergo 

intermixing with respect to the relevant crystallographic positions. Noteworthy, this 

results in a range of symmetries and structural features [40]. The purpose of the 

following paragraphs is to provide a brief outline of frequently observed structures, 

the schematic diagram is shown in Fig 3.2 : 
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 D03-type structure 

Space group Fm3̅m is conserved but the D03 structure arises when the X and 

Y (or X and Z) atoms are intermixed with respect to their crystallographic 

positions. In ISCD notation, this is written as BiF3. 

 B2-type structure 

When the Y and Z atoms undergo random intermixing with respect to their 

crystallographic positions, the Y and Z sites can emerge as equivalent, which 

gives rise to the B2 structure (often described in reference to the CsCl lattice). 

It is also noteworthy that because of the intermixing, a CsCl lattice 

characterised by the X atom at the centre of the cube, surrounded in a random 

way by the Y and Z atoms, is generated. The reduction of symmetry takes place, 

and the space group given rise to is Pm3̅m, denoted in ICSD notation the CsCl 

structure. In addition, every X atom is located in the Wykhoff position (1b), 

while the Y and Z atoms are distributed in a random way on the 1a position. 

 A2-type structure 

For X2YZ Heusler compounds, randomness to the greatest possible extent with 

regard to intermixing on the Wykhoff position (2a) gives rise to the A2 

structure. One of this structure’s features is limited symmetry Im 3̅ m. In 

addition, the X, Y, and Z sites emerge over time as the same, thereby creating 

a body-centred cubic lattice, referred to in ICSD notation as the tungsten (W) 

structure. 
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Given the cubic symmetry that characterises the structural features of Heusler 

compounds, this has a limiting impact on the degree to which the materials have 

functional utility when high magnetocrystalline anisotropy is required. To be more 

specific, this arises in the context of exchange bias configurations which require 

thermal stability of the antiferromagnetic (AF) configuration. Regarding the Mn2YZ 

Heusler compound structure, tetragonal distortion was identified in the study 

conducted by Graf et al. [37], which stems from the augmentation of the c axis, thereby 

allowing a pair of Mn atoms to exist in different local symmetries (for Mn2NiSn, cubic 

and tetragonal symmetries). Inverse structures are commonly associated with 

tetragonal distortion, here one Mn for 2b, where the second Mn and the Y atom both 

have the 4d position. It is also notable that the Z atom lies at the 2a position, 

comparable to the regular structures with tetragonal distortion. The key element in this 

set of Heusler compounds is Mn3Ga [41][42]. 

Regarding the most straightforward and accessible macroscopic approach to 

identifying the level of disorder in a Heusler structure, X-ray diffraction (XRD) is 

Figure 3.2 Overview of the most common types of structure in 

the Heusler compounds [37]. 
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frequently applied. Typical (220), (200), and (111) superlattice reflections are 

anticipated from the ordered L21 and inverse Heusler structures, whereas the semi-

disordered B2 structure is predicated to have no superlattice reflection (111). The 

prediction also states that A2 will only be associated with (220) reflections. 

 

3.2 Slater-Pauling Behaviour of the Heusler alloys 

In half-Heusler compounds, the total moment in 𝜇𝐵 /f.u. (formula unit) follows a 

simple rule: 

 

 𝑀𝑡 = 𝑍𝑡 − 18 (3-1) 

 

Where 𝑀𝑡 is the total spin magnetic moment and 𝑍𝑡 is the total number of valence 

electrons. 𝑍𝑡 is given by the sum of the number of spin-up and spin down electrons, 

while 𝑀𝑡 is given by the difference: 

 𝑍𝑡 = 𝑁↑ + 𝑁↓ (3-2) 

 𝑀𝑡 = 𝑁↑ − 𝑁↓ (3-3) 

 𝑀𝑡 = 𝑍𝑡 − 2𝑁↓ (3-4) 

 

This is a direct analogue to the well-known Slater-Pauling behaviour of the binary 

transition metal alloys [43][44][45]. The difference between half-Heusler alloys and 

transition metal alloys is that in half-Heusler alloys, the 9 minority bands are fully 

occupied. This means that the screening is achieved by filling the majority band, while 

in transition metal alloys, the majority bands are fully filled with 5 d-states, and charge 

neutrality is achieved by filling the minority bands. Hence, the total spin magnetic 

moment in transition metal alloys is given by: 

 

 𝑀𝑡 = 10 − 𝑍𝑡 (3-5) 

 

Figure 3.3 shows the calculated total spin magnetic moments for half-Heusler alloys 

plotted against the total number of valence electrons [46]. 
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In full-Heusler alloys, the total spin magnetic moments (𝑀𝑡) can be derived using a 

similar approach. Figure 3.4 shows the total spin magnetic moments for all the 

compounds under study as a function of the total number of valence electrons. The 

dashed line indicates the half metallicity rule of the full-Heusler alloys: 

 

 𝑀𝑡 = 𝑍𝑡 − 24 (3-6) 

 

Figure 3.3 Calculated total spin-moment per unit cell as a function of 

the total number Zt of valence electrons per unit cell for all the studied 

half-Heusler alloys. The dashed line represents the Slater-Pauling 

behaviour [46].  
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The minority band is occupied by 12 electrons. 

 

3.3 Antiferromagnetic Heusler Alloys 

A noteworthy case in the context of applications are those Heusler compounds referred 

to as half-metallic antiferromagnetic (AF) materials. More specifically, these are 

constituted from magnetic elements with precisely 18 half-Heusler (or 24 full-Heusler) 

valence electrons, each characterised by total zero spin magnetic moment under half-

metallicity. In applied contexts, half-metallic AF materials play a particularly 

important role because they do not produce external stray fields. According to X. Hu 

et al. [47], this means that they create no external stray field and thus minimise energy 

losses. 

In these half-metallic materials, the two spin bands display divergent behaviours. The 

majority-spin band, usually known as the spin-up band, exhibits a metallic behaviour 

in which the density of states (DOS) at the Fermi level (EF) is non-zero. The minority-

Figure 3.4 Calculated total spin-moment per unit cell as a function of 

the total number (Zt) of valence electrons per unit cell for all the studied 

full-Heusler alloys. The dashed line represents the Slater-Pauling 

behaviour [142]. 
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spin band (spin-down) shows a typical semiconducting behaviour with a band gap at 

EF. Half-metals are the hybridisation between metals and semiconductors. A 

conventional metal’s DOS is illustrated below, along with that of a semiconductor and 

a half-metal (Figure 3.5). In an ideal situation, half-metallic ferromagnets display 100% 

spin polarisation at EF, which contributes to their fully spin-polarised current. As a 

result of this, they can serve as the optimal spin injectors into a semiconductor or non-

magnet, thereby optimising the degree to which spintronic applications are efficient 

[48]. 

 

Figure 3.5 Schematic representation of the DOS for a half-metal with 

respect to normal metals and semiconductors [46]. 
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In 1988, following the observation of giant magnetoresistance (GMR), 

antiferromagnetic materials began to be applied in spin valve structures, and they have 

since garnered extensive scholarly attention [49]. In recent years, ground-breaking 

research in the field of AF spintronics has identified several benefits associated with 

the use of AF materials for data storage, including external magnetic field insensitivity, 

the absence of short range magnetic interactions, and intrinsic high frequency AF 

dynamics. Furthermore, in the field of data storage, the expectation in the research 

community is that magnetically compensated AF materials will entirely substitute for 

the frequently applied ferromagnetic materials [50]. Before antiferromagnets (AFs) 

were applied in numerous industrial areas, the intrinsically antiparallel aligned non-

magnetic materials were identified as fascinating but lacking in utility, as argued by 

Louis Néel in 1970 [50][51]. As a consequence of this, most researchers were not 

interested in examining the fundamental mechanisms and potential use cases of AFs, 

and this was even the case after the observation of exchange bias in 1956 [52]. 

Resultantly, AF materials were regarded as subjects of interest rather than research 

topics with enormous potential for industrial applications. In view of these 

considerations, investigations into AF Heusler alloys at this time received little 

attention among researchers. 

Oxley et al. [53] conducted a significant experiment addressing the crystallisation of 

the AF bulk compound Cu2MnSb, which outlined its chemical and crystallographic 

aspects. The AF transition was proven as a result of magnetic susceptibility, and the 

Néel temperature was identified at 38 K. Then, their research presented the standard 

experimental process that can identify AF phases in Heusler alloys, and this notably 

occurred before the identification of the exchange bias phenomenon. Other studies 

conducted around this time, including Kübler et al. [54], investigated the magnetic 

properties as a function of temperature for various X2MnZ full-Heusler alloys, where 

a positive AF configuration for Pd2MnIn was discovered at lower than 60 K for the 

determination of the energy disparity between the ferromagnetic (F) and AF ground 

states. In addition to this, the research conducted by Kübler et al. indicated a related 

band gap at EF. 

Neumann et al. [55], were the first to examine the phenomenon of itinerant 

antiferromagnetism in the context of Heusler alloys, and this took place within a 

project investigating magnetic transitions pertaining to bulk Pd2TiIn. Based on 
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susceptibility measurements, the Néel temperature amounted to 110 K, but it is critical 

to note that the overall magnetic moment amounted to 4.9 𝜇𝐵/formula unit when no 

constituent elements were associated with a large spontaneous moment. The high 

induced magnetic moment value was comparable to Pd2MnIn at the point where the 

moment was restricted to the Mn atom in a collinear AF type-2 structure, and the 

moments were arranged in parallel with respect to the (111) plane, where the 

arrangement across planes was antiparallel. Noteworthy, the account given for the 

large induced moment for the Ti-based Heusler alloy was formulated in response to 

the observation of spin fluctuations, which signalled weak itinerant ferromagnets [56]. 

Despite the way in which preliminary research in this field reported the presence of 

AF stable phases in the context of full-Heusler alloys, and then outlined the 

relationship between structural and magnetic properties (so as to underline the source 

of AF coupling), these experimental studies neglected to examine applications. In 

addition, they overlooked various exchange bias parameters (e.g., film thickness and 

temperature dependence). Furthermore, it is important to recognise that the 

preliminary research studies focused in bulk form. It was not until the turn of the new 

millennium that experimentation on AF Heusler alloy thin films emerged as a 

widespread practice. 

A particularly notable area of investigation relates to full-Heusler compounds in which 

the X and Y are characterised by identical chemical elements. This could contribute 

to the more straightforward growth of such materials, thereby improving the various 

features of the applications that use them as their foundation. Furthermore, in the 

present context, it is possible to bypass the degradation of the magnetic properties that 

results from impurities and atomic swaps, since the X and Y are the same chemical 

elements. 

In this research, Mn2VSi and Mn3Ga Heusler alloys have been investigated. In the 

following section, more information with regards to these two materials will be 

provided. 
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3.4 Mn2VSi 

Mn2VSi Heusler alloys are believed to be half-metallic ferrimagnets which can be 

stabilised in face centred cubic (fcc) structure with lattice parameter  𝑎 = 𝑏 = 𝑐 =

0.567 nm [57]. For Mn2VSi compounds, the Mn spin moment reaches a value of 

−0.87 𝜇𝐵 and the V moment of 0.35 𝜇𝐵, with the total spin moment amounting to 

−0.62 𝜇𝐵 [57]. According to Galanakis et al. [58], Co substitution for Mn stabilizes 

the half-metallic character of the parent compounds. When the total number of valence 

electrons reaches 24, the total spin moment vanishes as predicted by the generalised 

Slater-Pauling rule. Thus an alternative way to create half-metallic antiferromagnets 

for realistic spintronic applications is to simply introduce Co atoms in the Mn2VAl 

and Mn2VSi half-metallic ferrimagnets. But the magnetic properties of the Mn2VSi 

compounds are strongly dependent on the substrate and the growth conditions and the 

latter compounds will very easily switch between the magnetic (ferrimagentic) and 

non-magnetic (antiferromagnetic) configurations [57]. Relatively little experimental 

or theoretical data exists regarding Mn2VSi alloys, but due to the similarities between 

Mn2VSi, Mn2VAl, and Ni2MnAl, we are able to better understand Mn2VSi alloys 

when examining them comparatively against Mn2VAl and Ni2MnAl alloys. 

 

Figure 3.6 Schematic images for Heusler alloys with bcc structure[60].  
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Mn2VAl has three types of ordered phases, as shown in Figure 3.6. L21 Mn2VAl is 

known as a ferrimagnetic full-Heusler alloy [59]. Magnetisation and neutron 

diffraction measurements of a bulk sample have demonstrated that A2- type Mn2VAl 

is an antiferromagnet with a Néel temperature above 600K (R. Y. Umetsu et al in 

preparation). 

In general, the Heusler-type AF alloys have a similar lattice, which aligns with 

ferromagnetic materials for spintronics, such as Co-Fe alloys. According to Tsuchiya 

et al. epitaxial A2-type antiferromagnetic Mn2VAl thin film with Fe ferromagnetic 

layer on top was found to have an exchange bias amounting to approximately 120 Oe 

at 10 K [60]. 

In the notable publication issued by Dong et al. [61] addressing Ni2MnAl thin films, 

the highly-ordered Heusler alloy was deposited by molecular beam epitaxy (MBE) on 

GaAs(001) single-crystal substrates. This was achieved by employing a thin seed layer 

of Sc0.3Er0.7, since this facilitated the enhancement of lattice-matched growth for the 

Heusler alloys. This publication is particularly noteworthy in the context of the present 

research, since its findings served as one of the motivating factors for conducting this 

study. To be more specific, Dong et al. demonstrated that it is possible to modify the 

degree of ordering in the Heusler structure when the deposition temperature is changed 

from 180 ºC (for the partially disordered B2-type structure) and 400 ºC (for the 

completely ordered L21 phase). Regarding the stable AF phase of partially disordered 

Ni2MnAl, this was confirmed by employing an exchange bias measurement, which 

took place in response to the addition of a ferromagnetic Heusler layer, brought into 

contact with the AF. The study further demonstrated that the fundamental parameter 

is the growth temperature (Tg), which alters the degree in which the Heusler alloy 

structure is ordered. 

The hysteresis loops in Fig. 3.7 show the Ni2MnAl phase transformation as a function 

of growth temperature. Ni2MnAl (64 nm)/Ni2MnGe (12 nm) bilayer sample shows a 

loop shift of 35 Oe when the sample is field cooled to 10 K. 



44 
 

 

  

Figure 3.7 (a) Hysteresis loop of Ni2MnAl film deposited at different temperatures. (b) 

Hysteresis loops of Ni2MnAl/Ni2MnGe bilayer sample and Ni2MnGe thin film measured 

at 10 K [61]. 
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3.5 Mn3Ga 

Mn-rich Heusler alloys have attracted much attention in spin transfer torque, spin-Hall 

effect and rare earth free hard magnets. Mn2-based Heusler compounds quite often 

crystallise in the inverse structure with antiparallel coupled magnetic moments on Mn 

atoms; the ferri- or antiferromagnetic order and the lack of inversion symmetry leads 

to the emergence of new properties that are absent in ferromagnetism. Elemental Mn 

is not ferromagnetic, despite having a d band that is more than half full. Of all the 

elements, the unit cell of the stable cubic α-Mn phase is the largest and most intricate. 

The unit cell of α -Mn is made up of 48 atoms distributed over four inequivalent sites, 

each site resulting in different  magnetic moments ranging between 0.5 μ𝐵  and 2.8μ𝐵. 

Below 90 K, Mn orders in various antiferromagnetic and ferromagnetic structures 

[62][63]. However, when combined in binary or ternary compounds, it leads to the 

emergence of a vast range of magnetic properties, including room temperature 

magnetism, such as the ferromagnetic Cu2MnAl Heusler alloy with the Curie 

temperature Tc = 603 K, discovered by Friedrich Heusler in 1903 [35][36], long before 

the development of quantum mechanics. 

As a binary Heusler alloy, many studies have been carried out experimentally and 

theoretically to reveal the magnetic properties of Mn3Ga alloys. The Mn-Ga alloys 

show a manifold of stable phases and Mn3Ga was reported to exist in a face-centred 

cubic (fcc) structure. Wurmehl et al. [64] predicted that Mn3Ga becomes a half-

metallic fully compensated ferrimagnet in the cubic D03-type phases. However, the 

experiments showed that the cubic phase of Mn3Ga is not stable. It is possible to 

stabilise the bulk [65][66] and thin films of Mn3Ga (in an experimental context) as ε-

Mn3Ga. This phase is antiferromagnetic with a hexagonal D019 crystal structure which 

has a non-collinear triangular magnetic structure with antiferromagnetic behaviour 

[65][67] as shown in Fig 2.6 (a). This is comparable to the triangular magnetic state 

of a conventional IrMn3 antiferromagnet [68]. In the triangular antiferromagnetic 

structure three magnetic moments point in three different directions which causes the 

net magnetisation to be zero [69]. ε-Mn3Ga has been reported to have a high Néel 

temperature (TN) of 470 K [65]. Mn3Ga also forms a tetragonal phase of τ-Mn3Ga with 

the D022 structure [70]. This ferrimagnetic Mn3Ga is reported to possess a large 

uniaxial anisotropy of 1×106 J/m3[71] and high Curie temperature (TC) of around 770 

K [70]. Bulk- and thin-film forms of the hexagonal material can be annealed to realise 



46 
 

the τ-Mn3Ga phase [72]. The Mn3Ga tetragonal phase has been grown epitaxially on 

different substrates [73][74][75]. Both magnetisation and anisotropy are reported to 

be dependent upon the Mn3-xGa1+x alloy stoichiometry and the surrounding conditions 

of the Mn3Ga films [73][75]. In this work, antiferromagnetic ε-Mn3Ga has been 

successfully produced which will be discussed in Chapter 7. 

 

 

Mn-Ga films are known to have high resistivity and high spin polarisation at the Fermi 

level, which makes them competitive candidates for perpendicular spin torque 

memory. According to Winterlik et al., the stoichiometric D022 Mn3Ga shows 88% 

spin polarisation at the Fermi level [41]. The spin polarisation measurements of Mn-

Ga compounds with different seed layers have been performed by Stamenov et al. 

using point Andreev reflection spectroscopy [76][77], the results are shown in Table 

3.1. When attempting to develop novel alloys with significant spin polarisation, spin 

polarisation measurements are critical. Although tunnelling magnetoresistance (TMR) 

measurements can be employed for the purpose of estimating the spin polarisation of 

ferromagnetic electrodes of magnetic tunnelling junctions (MTJs), the preparation of 

TMR pillars depends on the presence of a thin film stack and, moreover, time-intensive 

microfabrication processes. Contrastingly, point contact Andreev reflection has the 

capability to estimate existing spin polarisations of bulk alloys in a comparatively 

straightforward manner. However the most significant disadvantage of using point 

(b) (a) 

Figure 3.8 (a) Schematic crystal structure D019 hexagonal antiferromagnetic Mn3Ga 

[67], and (b) D022 tetragonal ferrimagnetic Mn3Ga [76]. 
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contact Andreev reflection comes from the surface modification due to the possible 

surface oxidation or chemical contamination on the surface of the sample [78].  

 

Table 3.1 Fermi-level spin polarisation and resistivity of Mn-Ga films measured by 

point contact Andreev reflection [76][77]. 

Film stack Spin polarisation 

(%) 

Resistivity 

(𝜇Ωcm) 

Magnetisation 

(kAm-1) 

Pt/Mn3Ga [77] 58 160 110 

MgO/Mn2Ga [76] 40 120 470 

 

As shown in Table 3.1, D022 Mn3Ga epitaxial films grown on a Pt(001) seed layer 

exhibit 58% spin polarisation at the Fermi level (EF). It may be possible for thin films 

with higher order parameters to exhibit a higher value of spin polarisation that is closer 

to the predicted value. In addition, various magnetic and electronic properties, 

including net magnetisation and density of states, can be different depending on the 

position of Mn vacancies in non-stoichiometric alloys. The spin polarisation measured 

in D022 Mn2Ga thin film is significantly lower than that of Mn3Ga, at only 40% [77]. 

Furthermore, the electrical resistivity of D022 Mn3Ga and Mn2Ga are measured to be 

160 and 120 𝜇Ωcm, respectively, both of which are close to the minimum metallic 

conductivity [77]. 

Tetragonal Heusler alloys of the Mn-Ga compounds have been identified as very 

promising in the context of high density spin torque memory and future integrated 

logic circuits [72]. In addition, another area of potential application of Mn-Ga thin 

films relates to the phenomenon of exchange bias. It has been found that hexagonal 

D019 Mn3Ga thin films exhibit a large exchange bias [67], which is a potential 

candidate used to pin the fixed layer in MTJs and spin valve stacks. Our own result 

shown in Chapter 7 also support this finding.  Hence AF Mn3Ga thin films have 

potential in spin electronic devices. In this work, hexagonal D019 Mn3Ga thin films 

have been successfully fabricated. Their magnetic and structural properties 

characterisation will be discussed in the Chapter 7. 
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3.6 Mn3Ge 

The magnetic and structural properties of Mn3Ge is very similar to Mn3Ga. The 

Mn3Ge Heusler compound was first synthesised in a D019 hexagonal crystal structure. 

It shows AF ordering with a very weak ferromagnetic (F) component, the small 

magnitude of F component was attributed to the free rotation of the spin triangle in the 

basal plane caused by a small distortion of the hexagonal structure [79]. According to 

Qian et al. [79], the neutron diffraction of Mn3.1Ge0.9 indicated a triangular 

antiferromagnetic structure with magnetic moments lying in the hexagonal basal plane. 

It has been reported that hexagonal Mn3Ge compound has a high Néel temperature of 

390 K. Figure 3.9 shows XRD scan of hexagonal Mn3Ge powder at room temperature. 

The inset is the crystal structure as a projection of the basal plane and 3D of the unit 

cell, Mn atoms is indicated in blue spheres, Ge atoms in green spheres. 

 

 

The D022 tetragonal Mn3Ge thin films have been reported to have a large perpendicular 

magnetic anisotropy and tunnelling magnetoresistance [80]. It is believed that AF 

ordered hexagonal Mn3Ge is a potential material for spintronics applications due to its 

exchange bias behaviour up to room temperature [79]. 

 

  

Figure 3.9 XRD scan of the hexagonal Mn3Ge powder at room 

temperature [79]. 



49 
 

Chapter 4  

Magnetic Properties in Thin Films 

4.1 Magnetic Anisotropy 

Magnetic anisotropy has a strong impact on the shape of the hysteresis loop; that is, 

the way in which the magnetisation changes from zero to saturation magnetisation 

value Ms. By understanding the several factors that might influence the shape of the 

M-H curve, we will be able to understand the reason why the materials are 

magnetically soft or hard. Magnetic anisotropy can be understood as magnetic 

asymmetry in a system; the magnetic properties depend on the direction in which they 

are measured. There are three major types of anisotropy relevant to this work: 

1. Shape anisotropy  

2. Magnetocrystalline anisotropy 

3. Exchange anisotropy 

Magnetocrystalline anisotropy (also known as crystal anisotropy) is the only 

anisotropy intrinsic to the material; i.e. it depends on the atomic arrangement of the 

material. Shape anisotropy is extrinsic and originates from the geometry of the sample. 

The demagnetising field (𝐻𝑑)  of a single domain particle is proportional to the 

magnetisation 𝑀 and is given by: 

 𝐻𝑑 = −𝑁𝑑𝑀 (4-1) 

 

where 𝑁𝑑 is the demagnetising factor of the sample. 

Consider a specimen in the shape of a prolate spheroid as an example as shown in 

Figure 4.1.  

 

a 

c 

M 

Figure 4.1 Prolate ellipsoid with semi-major axis c and semi-minor axis a. 
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If the sample is spherical, the same applied field will magnetise it to the same degree 

in all directions, i.e. shape anisotropy is zero. However, if the shape is not spherical, 

it will be easier to magnetise the sample along a long axis (c) because the short axis 

(a) has a larger demagnetising field. The shape anisotropy constant Ks is given by: 

 𝐾𝑠 =
1

2
(𝑁𝑎 − 𝑁𝑐)𝑀2 (4-2) 

 

where 𝑁𝑎 and 𝑁𝑐 are the demagnetising factor along the a and c axes. 

In this study, the samples were thin films which have no free poles at the surface of 

the grain. Therefore the shape anisotropy has only a small effect on the films. Hence 

in this study we only consider magnetocrystalline anisotropy and exchange anisotropy. 

4.1.1 Magnetocrystalline Anisotropy 

The origin of magnetocrystalline anisotropy is the spin orbit (L-S) coupling in the 

crystal lattice. The magnetocrystalline anisotropy acts like a magnetic field which 

holds the magnetisation of a domain in an easy direction. Let us assume in a single 

crystal with a cubic structure, a disk is cut parallel to the {110} plane as shown in 

figure 3.2 has direction along <110>, <111> and <100>. The magnetic measurements 

along these three directions are shown in figure 4.3 for iron and nickel. 

Figure 4.2 Three principle crystallographic directions in the (11̅0) plane of a cubic 

crystal [135]. 
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Iron can be easily magnetised in the <100> direction which can be indicated as its 

“easy direction”. Whereas the <111> direction needs a much larger applied field to 

reach saturation. Hence this direction can be indicated as its “hard direction”. In nickel, 

the easy direction of magnetisation is <111>. In this study, antiferromagnetic Mn2VSi 

has a face centred cubic structure with easy axis along the <110> direction. When 

atoms are bonded together the orbital angular moment of the electron is fixed. The 

spin angular moment of the electrons is coupled by spin orbit interaction and large 

applied fields are required to rotate the spin. The energy used to bias the magnetisation 

away from an easy direction is equivalent to the energy required to overcome spin-

orbit coupling. This is called magnetocrystalline anisotropy energy  𝐸𝐾 . In cubic 

crystals, 𝐸𝐾  can be expressed in terms of a series expansion of the direction 

cosines 𝛼1, 𝛼2 and 𝛼3 of 𝑀𝑠 relative to the crystal axes. 

 

(a) 

(b) 

Figure 4.3 M-H curve for single crystals of iron (a) and nickel (b) [135] 
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𝐸𝐾

𝑉
= 𝐾0 + 𝐾1(𝛼1

2𝛼2
2 + 𝛼2

2𝛼3
2 + 𝛼3

2𝛼1
2) + 𝐾2(𝛼1

2𝛼2
2𝛼3

2) + ⋯ (4-3) 

 

where V is the volume, 𝐾0,1,2,…are anisotropy constants for a particular material at a 

given temperature and measured in the unit of erg/cm3 (cgs). The strength of the 

anisotropy is measured by the magnitude of the anisotropy constants 𝐾1, 𝐾2, etc. Due 

to the fact that 𝐾0 is independent of angle and 𝐾2 is too small, both first and third terms 

in this expression can be neglected. This leaves 𝐾1 as a dominated term which gives 

the energy per unit volume in order to flip the saturation magnetisation. 

In hexagonal crystal structures such as cobalt shown in Figure 4.4, the easy axis of 

magnetisation is along the c axis. All other basal directions are found to be hard axes. 

In this study, antiferromagnetic Mn3Ga has a hexagonal crystal structure with easy 

axis along the [0001] direction. Hence, the anisotropy energy is only dependent on a 

single angle 𝜃𝑠 between 𝑀𝑠 and the c-axis, i.e. uniaxial. The expression for 𝐸𝐾  is  

 
𝐸𝐾

V
= 𝐾0 + 𝐾1𝑠𝑖𝑛2𝜃𝑠 + 𝐾2𝑠𝑖𝑛4𝜃𝑠 + ⋯ (4-4) 

 

When 𝐾1 and 𝐾2 are positive the uniaxial crystal can be easily magnetised along the 

c-axis. When 𝐾1 and 𝐾2 are negative, the minimum value of 𝐸𝐾  occurs at 𝜃𝑠 = 90°. 

Figure 4.4 M-H curve for single crystals of cobalt. 
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Hence the easy direction lies in the direction of the basal plane perpendicular to the c-

axis. When 𝐾1 and 𝐾2 are of opposite sign, this creates an easy cone of magnetisation. 

 

4.1.2 Exchange Anisotropy 

Exchange anisotropy was discovered by Meiklejohn and Bean [52] in 1956. Single-

domain particles of cobalt were partially oxidised and as the result, each ferromagnetic 

(F) cobalt particle was coated with a layer of antiferromagnetic (AF) cobalt oxide. A 

hysteresis loop was then measured when the sample was field-cooled using liquid 

nitrogen at 77 K as shown in Figure 4.5. When the sample was field-cooled the 

magnetisation curve was shifted towards the negative field. If the sample was cooled 

in the zero field, the loop was symmetrical as shown in the dashed line of Figure 4.5 

because the moments of the particles are randomly arranged, there is no net bias.  

Figure 4.5 M-H curve of Co/CoO segregated particles measured at 77 K. Loop (1) 

field-cooled measurement. Loop (2) cooled in the zero field [52]. 
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This phenomenon is due to the exchange coupling between the spins of ferromagnetic 

Co and antiferromagnetic CoO at the interface between two layers. Above the Néel 

temperature 𝑇𝑁 of CoO, the CoO spins were paramagnetic and the spins in the single 

domain Co particles were aligned parallel to each other. When a positive field is 

applied and the sample cooled to 𝑇 < 𝑇N, the spins of CoO aligned antiparallel to each 

other and become antiferromagnetic. The spin of Co near the interface are strongly 

exchange coupled to the CoO which leads to the spins in Co lying parallel to the spins 

in CoO, i.e. a unidirectional anisotropy. It is relatively easy to align the spins in a 

positive field, i.e. a smaller field is required, however in order to overcome the 

coupling, a larger opposite field is required as shown in Figure 4.6. 

 

There are three important conditions for exchange anisotropy to appear in a system: 

1. Thermal activation below 𝑇𝑁, where the AF layer can be aligned in antiparallel. 

2. A sharp interface between the F/AF layers in order to allow for exchange 

coupling.  Exchange bias has been observed in a nanoparticles [52]. 

3. Strong magnetocrystalline anisotropy in the AF to overcome the rotation of 

spins in the AF. 

 

 

 

 

Figure 4.6 Classic model of exchange bias [52]. 

 



55 
 

4.1.3 Texture in Polycrystalline Antiferromagnetic Films 

There will be no net crystal anisotropy in a polycrystalline material if each grain is 

randomly oriented in space. However, in this study the texture of the thin film samples 

produced are highly dependent on the seed layer. For example (Chapter 7, page 121), 

D019 antiferromagnetic Mn3Ga were deposited on a platinum seed layer under 

optimised conditions so that Mn3Ga can be crystallised more easily in a preferred 

orientation, i.e. crystallographic texture. Hence the polycrystalline antiferromagnetic 

film will have an anisotropy dictated by each individual crystal. Texture of a film is 

induced depending on the shape and the formation of the crystallites. Thin film texture 

is strongly affected by the seed layer used. It has been found that the crystallisation 

direction of Mn3Ga is along the (0001) plane which is parallel to the Pt(111) plane. 

The use of X-ray diffraction provides detailed information on the film texture which 

will be discussed in Chapter 6.  

4.2 Domain Structures in Thin Films 

Magnetic domains are regions in a magnetic material within which the magnetisation 

direction is uniform. The boundaries between two regions where the spontaneous 

magnetisation has different directions are known as domain walls. Domains form in a 

magnetic material to minimise the magnetostatic energy of a single domain 

configuration. The magnetostatic energy is induced by the demagnetising field which 

is in the opposite direction to the magnetisation. In a single domain state, the 

magnetostatic energy per unit volume is defined as: 

 𝐸𝑚𝑠 =
1

2
𝑁𝑑𝑀𝑠

2 (4-5) 

 

where 𝑁𝑑 =
4

3
𝜋 (cgs), hence the magnetostatic energy per unit area on the top surface 

of the crystal,   

 𝐸𝑚𝑠 =
2

3
𝜋𝑀𝑠

2𝐿 (4-6) 

 

where 𝐿 is the thickness of the domain. The magnetostatic energy is large in a single 

domain particle. By introducing a 180° domain walls 𝐸𝑚𝑠  is reduced but also leads to 

an increase in the domain wall energy. A 180° domain wall refers to the space between 
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two domains with opposite spins where the spins gradually rotate from one direction 

to the opposite direction over a certain distance. For example, to rotate the domain in 

a nickel crystal to its neighbouring domains with opposite magnetisations occurs over 

290 atoms as shown in Figure 4.7, giving an angle between spins of 0.62°/ atom.  

 

If the material has a weak uniaxial anisotropy, the structure may form closure domains. 

𝐸𝑚𝑠  is completely eliminated when the domains form a 90° closure as shown in Figure 

4.8(c) however this increases the anisotropy energy.  

 

Figure 4.8 (a) Domain formation in a saturated magnetic field of the single domain 

state. (b) 180° domain wall formed to split single domain into two with opposite 

direction.  (c) 90° closure domain wall formation leads to eliminate the 𝐸𝑚𝑠 . 

 

Therefore by splitting the domains into smaller domains will reduce 𝐸𝑚𝑠 and more 

domain walls are formed. Further division of the domain is limited by the exchange 

Figure 4.7 A schematic diagram of 180° domain wall. 
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energy required to create the domain wall. Exchange energy is minimised by 

broadening the domain walls so that the spins rotate in small angles over a series of 

atoms. This is given by: 

 𝐸𝑒𝑥 = 2𝐴𝑒𝑠 cos (
𝑑∅

𝑑𝑥
) (4-7) 

 

where 𝐴𝑒𝑠 = 𝑛𝐴𝐽𝑒𝑥𝑆𝑖𝑆𝑗/𝐿𝑝 is the exchange stiffness, 𝑛𝐴 is the number of atoms per 

unit cell, 𝐿𝑝 is the lattice parameter. 
𝑑∅

𝑑𝑥
 is the rate of change of spins rotation over a 

series of atoms. 

On the other hand, anisotropy energy tends to make the spins flip abruptly in order to 

maintain the spins along the direction of an easy axis. The size of the domain and the 

domain wall thickness are dictated by the magnetostatic energy, exchange energy and 

anisotropy energy. Bloch was the first to theoretically examine the structure of a 

domain wall in 1932 [81]. The thickness of domain walls is given by  

 δ = π√
𝐴𝑒𝑠

𝐾𝑢
 (4-8) 

 

where 𝐾𝑢 is the anisotropy constant of material. The complexity of domain walls rises 

as a result of the competition of the multiple energies. This is also true in 

polycrystalline thin films because of the direct exchange interaction between grains 

with varying easy axis orientations. 
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4.3 Stoner-Wohlfarth Theory 

When we are considering the domain rotation process in a single domain particle based 

on the assumptions that there is no thermal activation (T=0) the moments are fixed 

along an easy axis direction and the Stoner-Wohlfarth theory is the simplest model to 

explain the behaviour. This model was introduced by Stoner and Wohlfarth in a classic 

paper in 1948 [82]. When the moment of a single domain particle is moved away from 

an easy direction by an applied field, it will rotate against the restoring force of the 

anisotropy. 

Consider a single domain particle with an ellipsoidal shape as shown in Figure 4.9. 

The applied field is at an angle 𝛼  biased from the easy axis and the saturation 

magnetisation Ms is at an angle 𝜃𝑠 from the easy axis. 

Figure 4.9 Ellipsoid single domain particle with the c axis as the easy direction. 

 

The total energy 𝐸𝑇  of the system consists two components i.e., the anisotropy energy 

and the field potential energy. The anisotropy energy 𝐸𝐾  is given by: 

 𝐸𝐾 = 𝐾1𝑠𝑖𝑛2𝜃𝑠 (4-9) 

 

The field potential energy is given by: 

 𝐸𝑃 = −𝐻𝑀𝑠cos (α − 𝜃𝑠) (4-10) 

 

The total energy 𝐸𝑇 is the sum of two terms: 

 𝐸𝑇 = 𝐾1𝑠𝑖𝑛2𝜃𝑠 − 𝐻𝑀𝑠cos (α − 𝜃𝑠) (4-11) 
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The equilibrium position of the moment direction is obtained when the differentiation 

of 𝐸𝑇 with respect to 𝜃𝑠 is equal to zero: 

 
𝑑𝐸𝑇

𝑑𝜃𝑠
= 2𝐾1𝑠𝑖𝑛𝜃𝑠𝑐𝑜𝑠𝜃𝑠 − 𝐻𝑀𝑠 sin(α − 𝜃𝑠) = 0 (4-12) 

 

Since the component of the magnetisation in the field direction is given by: 

 𝑀 = 𝑀𝑠 cos(α − 𝜃𝑠) (4-13) 

 

and assume that the field H is perpendicular to the easy axis, 𝛼 = 90°. Then, 

 𝑚 =
𝐻𝑀𝑠

2𝐾1
 (4-14) 

 

where 𝑚 =
𝑀

𝑀𝑠
is the normalised magnetisation. Equation (4-14) indicates a linear 

relationship between the magnetisation and the field when the applied field H is 

normal to the easy axis. 

The direction of the applied field H has a significant impact on the switching field. If 

the field is perfectly aligned along the easy axis, i.e. 𝛼 = 0°, the magnetisation will 

only flip over to the opposite direction when H reaches a threshold value in the 

opposite direction. A small deviation of the applied field from the easy axis induces a 

torque on 𝑀𝑠 which leads to a rotation. In the case of a deviation of 10° this leads to a 

30% reduction in the switching field as shown in Figure 4.10. 
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In the antiferromagnetic polycrystalline films studied in this work, the AF grain sizes 

are relatively small < 20 nm and are believed to contain a single AF domain. In 

addition they are known to be non-interacting and, hence, the Stoner-Wohlfarth model 

explains the process of coherent reversal of the grains in the film. 

 

4.4 Exchange Interaction in Thin Films 

The exchange interaction is essential for understanding the ordering of magnetic states 

in materials.  In diamagnets and paramagnets there is no exchange interaction between 

the individual moments and each moment acts independently. In ferromagnets, 

antiferromagnets and ferrimagnets the exchange interaction between neighbouring 

atoms will force the individual moments into parallel or antiparallel alignment with 

each other. Pierre Weiss’ postulated a molecular field model to explain the alignment 

between magnetic moments in solids, which should be responsible for the spontaneous 

magnetic order. 

 𝐻𝑚𝑜𝑙 = 𝑁𝑚𝑜𝑙𝑀 (4-15) 

 

where 𝐻𝑚𝑜𝑙 is the molecular field, M is the magnetisation and 𝑁𝑚𝑜𝑙 is the molecular 

field constant. However, the strength of the alignment was estimated to be of order 

Figure 4.10 Hysteresis loop for single domain particles with uniaxial anisotropy. ℎ is 

the normalised field 𝐻/𝐻𝑘[135]. 
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107Oe which is much larger than any manufactured field [83]. Hence the mechanism 

of the strong exchange interaction lies not only in magnetic interaction but also 

electronic interaction. 

In this section three major types of exchange interaction will be discussed: 

1. direct exchange  

2. indirect exchange 

3. superexchange  

 

4.4.1 Direct Exchange  

In order to understand direct exchange interaction, there are two key principles that 

must be known; Coulomb repulsion between electrons and the constraints imposed by 

the Pauli Exclusion Principle.  

Coulomb repulsion describes the force between interacting charged particles. The 

force of interaction is attractive if two particles have opposite signs and repulsive if 

both have the same signs. The Pauli Exclusion Principle states that two identical 

particles cannot occupy the same quantum state in a system simultaneously.  

The direct exchange interaction can be described by the quantum mechanical exchange 

force introduced by Heisenberg in 1928 [84]. The interaction takes place between 

moments, which are close enough to have sufficient overlap of their wave functions. 

The wave functions of these two atoms will overlap and minimise the total energy. In 

the case of two atoms with spin angular moment Sj and Si, the exchange energy 

between them is derived from effective spin Hamiltonian 

 𝐸𝑒𝑥 = −2𝐽𝑒𝑥𝑆𝑖𝑆𝑗 (4-16) 

 

where 𝐽𝑒𝑥 is the exchange integral. The Bethe-Slater curve shows that the sign of 𝐽𝑒𝑥 

for transition metals is controlled by the ra/r3d ratio where ra is the radius of an atom 

and r3d is the radius of the 3d shell of electrons as shown in Figure 4.13. The ordering 

in antiferromagnetic materials is dictated by direct exchange. According to Pauli’s 

exclusion principle, the spin states are forced to be in the opposite direction when the 

value of 𝐽𝑒𝑥  is negative. This gives rise to antiparallel alignment (antiferromagnetic) 

as shown in Figure 4.11. 
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If the atoms are separated by a large distance the electrons tend to move away from 

each other in order to minimise the repulsion between two electrons. This increases 

the ra/r3d ratio and hence increase the value of 𝐽𝑒𝑥 (positive). Therefore the parallel 

alignment (ferromagnetic) is formed when electrons share the same wave function but 

are confined to separate regions of space as shown in Figure 4.12.  

 

 

Finally, when the atomic separation becomes larger, electrostatic interactions become 

negligible and the energy difference between parallel and antiparallel spin 

arrangement disappears and hence there is almost no direct exchange interaction.  

 

 

Figure 4.11 Antiparallel alignment of spins 

 

Figure 4.12 Parallel alignment of spins 

 

Figure 4.13 Bethe-Slater curve[135] 
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4.4.2 Indirect Exchange 

When the interatomic distance is large the exchange coupling constant 𝐽𝑒𝑥 decreases 

dramatically as shown in Figure 4.14. In the case of rare-earth metals and alloys, the 

magnetic moment is determined by the partial filling of highly localised 4f transition 

states. The probability for an electron to hop from a 4f state at one site to another site 

is small. In consequence the direct exchange interaction is too weak for 

ferromagnetism to occur in rare earth materials with large interatomic distances. The 

origin of indirect exchange comes from the local magnetic moment spin-polarising the 

conduction electrons which align nearby moments. The indirect exchange coupling 

‘constant’ j oscillates with a damped amplitude between the positive and negative 

value as the separation between atoms increases. This concept was introduced by 

Ruderman and Kittel (1954) [85], Kasuya (1956) [86] and Yoshida (1957)[87] and is 

known as the RKKY interaction. This coupling is weaker than direct exchange and 

superexchange in 3d metals and magnetic oxides. 

 

 

 

 

 

 

 

Figure 4.14 Variation of the indirect exchange coupling constant j of a free electron gas in the 

neighbourhood of a point magnetic moment at the origin r=0 [143]. 
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4.4.3 Superexchange  

Superexchange is a special type of the RKKY interaction which describes the 

interaction between moments on ions too far apart to be connected by the direct 

exchange, but coupled over a relatively long distance through a non-magnetic material. 

It occurs in oxides and nitrides of transition metals due to the bonding between the 

transition metal 3d orbits and 2p orbits in O or N. The doubly occupied p orbital has 

two electrons with opposite spins. The p state has spin-up and spin-down electrons 

concentrated in lobes of 180° apart while d state has opposite spins concentrated in 

lobes every 90° rotation about the ion. The p orbital on O can exchange an electron 

with each 3d orbital on the transition metals. As shown in Figure 4.15, this produces 

antiparallel alignment between the two transition metals atoms.  It is a mechanism 

which leads to antiferromagnetism. It also leads to sheet AF structure. Superexchange 

also occurs in ferrites such as Fe3O4 but these are uncompensated materials and so 

have a net magnetic moment. In this work, the superexchange interaction does not 

occur in our samples as there is no oxygen or nitrogen present in the antiferromagnetic 

Heusler alloy. 

 

 

 

 

  

Figure 4.15 Superexchange interaction between transition metals 

and oxides or nitrides. 
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Chapter 5  

Exchange Bias 

The successful design of magnetic structures for spintronic applications is predicated 

upon the capability to manipulate and control magnetic properties. In heterostructures, 

the exchange coupling of a ferromagnet (F) and antiferromagnet (AF) produces a 

ferromagnetic behaviour characterised by stable order and high anisotropy, and the 

loop shift occurs when the antiferromagnetic order is established in the presence of 

the ferromagnet. Since AF is only weakly coupled to the external field, it keeps a 

history of the F direction at the time when the AF order was set. Noteworthily, this 

holds even when the magnetisation of the F is reversed in terms of its direction. In 

such a structure, the anisotropy may behave in a unidirectional manner, and this loop 

shift behaviour is commonly referred to as exchange bias. In the last decade, due to 

the importance of the phenomena of loop shift, which serves as a useful feature for 

controlling the magnetic properties in devices, a basic and quantitative understanding 

of exchange bias has started to emerge. 

In this work, the interface between Mn2VSi/CoFe and Mn3Ga/CoFe has been studied. 

Using the York Model of exchange bias [14], both revealed exchange bias under 100 

K. In this chapter, the earlier models of exchange bias are explained, and detailed 

information about the York Model is then discussed.    

 

5.1 Theories and Models of Exchange Bias  

The advancement of knowledge with respect to the phenomenon of exchange bias has 

been relatively slow for the following reasons. Firstly, since exchange bias is the 

consequence of a complex interfacial exchange interaction between the AF and F 

materials, the interface embedded between the F and AF layers is characterised by low 

volume. This means that it is difficult to separate its contribution from that of the F 

layer [88]. Secondly, the experimental apparatus for dealing with the interfacial 

interaction at the atomic scale has only become available in recent years.  

Over the past four decades, various attempts have been made to explain the 

phenomenon of exchange bias by constructing theoretical models. However, even with 

the aid of these models, knowledge about the particulars of the phenomenon is far 
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from thorough, but it is still the case that exchange basis has been regularly applied in 

the context of spin valve structures. In addition, after the 1998 identification and 

application of giant magnetoresistance (GMR) in several devices, including hard disk 

drive (HDD) read heads [9], researchers were afforded with a valuable chance to 

illuminate and enhance the magnetic pinning mechanism, particularly with respect to 

thin film structures characterised by flat interfaces. 

 

5.1.1 Meiklejohn-Bean Model 

As briefly discussed in Section 4.1.2, Meiklejohn and Bean proposed the earliest 

model of exchange bias in 1956 [52]. These researchers suggested that the origin of 

the loop shift can be attributed to a large anisotropy in the AF and the phenomenon of 

a weak exchange energy coupling between F and AF. As shown in Figure 5.1 (a), the 

magnetic moments of F and AF align along the saturating magnetic field direction (at 

a temperature above TN). When the temperature falls below TN and a small negative 

field is applied, the magnetisation of F is still pinned along the original direction, as 

shown in Figure 5.1 (b). When a negative field is increased in such a way as to 

overcome the interlayer exchange energy, the magnetisation of F flips to the opposite 

direction, as shown in Figure 5.1 (c). The ideal model is valid under the following 

assumptions: 

 The F layer rotates rigidly; 

 F and AF are both considered to be single domain entities; 

 The interface is smooth at the atomic scale; 

 The AF layer is magnetically rigid to the external field; 

 Spins of AF interface are fully uncompensated; 

 The AF layer has an in-plane uniaxial anisotropy. 

Hence, the interfacial energy is given by the following equation: 

 

 𝐸int = −𝐻𝑀s𝑡Fcos𝜃s − 𝐽intcos𝜃s + 𝐾Fsin2𝜃s (5-1) 
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where H is the applied field, 𝑡𝐹 is the thickness of the F layer, 𝑀s is the saturation 

magnetisation of F, 𝐾F  is uniaxial anisotropy of F,  𝐽int  is the interfacial coupling 

constant, and 𝜃s is the angle between the easy axis and magnetisation direction. 

During the reversal process, the F magnetisation flips back to the original direction 

while the field is still in negative direction.  

The exchange bias of the field is given as follows: 

 𝐻ex =
𝐽int

𝑀s𝑡F
 (5-2) 

 

The value obtained from equation (5-2) is two orders of magnitude higher than the 

value obtained experimentally in small-grain polycrystalline films. Therefore, this 

model fails to predict a reasonable value for 𝐻ex . 

 

5.1.2 Néel’s Antiferromagnetic Domain Wall 

In order to explain the loss in exchange bias compared to the predicted value, one can 

assume that a partial domain wall in the AF layer during magnetisation reversal 

process will form. This idea was proposed by Néel in 1967 [89]. In the general concept, 

there is no demagnetising field in AF, thus meaning that the domains cannot be formed 

(as mentioned in Section 4.2). However, in exchange biased materials, the F layer 

provides sufficient magnetostatic energy to AF to form domains. The AF domain wall 

stores an important fraction of the exchange coupling energy, thereby lowering the 

Figure 5.1 Meiklejohn-Bean model for exchange bias [144]. 
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shift of magnetisation curve. In addition, Néel  also took interface roughness into 

account, which indicated that AF sub-lattices would be present at the interface. This 

resulted in the partial compensation of AF moments, and as a result of the spins at the 

interface of each grain in polycrystalline, AFs were statistically distributed. 

Consequently, fluctuations in the moment of AF grains were produced. Importantly, 

Néel’s model failed to predict the value of Hex. 

 

5.1.3 Fulcomer-Charap Model 

A fundamental step forward took place regarding the incomplete understanding of 

exchange bias with the publication of the Fulcomer-Charap model [90]. After 

conducting theoretical and experimental investigations into exchange bias within 

permalloy films, the researchers found that exposure to acid vapour resulted in the 

progressive oxidisation of nickel in the alloy, thus giving rise to AF grains on the film 

surfaces. Significantly, Fulcomer and Charap noticed that incremental changes in the 

exchange bias of these systems occurred regarding, firstly, the grain size, and secondly, 

the number of grains within the AF material. Following the application of a granular 

reversal model (comparable to a Stoner-Wohlfarth system), numerical modelling 

yielded results consistent with the experimental outcomes. Most notably, the two 

researchers estimated that the exchange field resulting from the F/AF bilayer would 

yield thermally-activated alterations in orientation of the AF sub-lattices, thus bringing 

about a change in Hex. 

A foundational attribute of the Fulcomer-Charap model is the fact that numerous 

particle dimensions within the AF material are taken into consideration, thus enabling 

a broad range of anisotropy and coupling energies. The assumption made within the 

model regarding the particle size distribution is that up to a given maximum (after 

which no more particles exist), every value is as likely to arise as every other value. 

In view of this, the researchers discovered the importance of taking into consideration 

a distribution of particle size, but the precise form of the distribution was not 

consequential. 

In view of these features, as noted in the study conducted by Grimsditch et al.[91], it 

was possible for the Fulcomer-Charap model to yield an accurate prediction of the 

temperature dependence of Hex and Hc over a broad spectrum of temperatures (even 
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greater than TN). For this reason, the Fulcomer-Charap model constitutes the 

foundation of numerous granular models which centre around thermal fluctuation 

effects. As a case in point, by drawing on the temperature dependence of the coupling 

outlined in the Fulcomer-Charap model, Nishioka et al. were able to examine the 

temperature dependence of exchange bias in NiFe/FeMn and Co/CrMnPt [92]. As 

another more recent example, Xi [93] sought to investigate the dependence of the 

blocking temperature (TB) in exchange bias bilayers, and the thermal fluctuation model 

the researcher developed in view of this was based on the Fulcomer-Charap model. 

Some of Xi’s noteworthy findings are as follows: firstly, that for large-grain systems, 

a monotonic rise in Hex in conjunction with AF layer thickness (tAF) can be observed; 

secondly, that with measurement time, TB decreases linearly; and thirdly, that with the 

TN of AF grains, TB increases linearly. Xi’s model is particularly noteworthy since it 

represents a broad extension of the Fulcomer-Charap model, in such a way as to 

illuminate a comprehensive account of thermal effects. Nevertheless, its limitation is 

that the calculations pertain to single-grain volume, thus meaning they cannot offer an 

account of real systems.      

 

5.2 The York Model of Exchange Bias 

5.2.1 Energy Barriers 

According to Brown [94], thermal energy causes the magnetic moment of a single 

domain particle to vibrate about the equilibrium position. The magnetic moment 

reverses its orientation when the thermal energy is larger than the anisotropy energy 

barrier. The reversal of the moment of a grain has a relaxation time given by the Néel-

Archenius law: 

 𝜏−1 = 𝑓0exp (−
∆𝐸

𝑘𝐵𝑇
) (5-3) 

 

where 𝜏 is the relaxation time in which the magnetisation decays to 1/e of its initial 

value; 𝑓0 is the attempt frequency of the magnetic moment, 𝑓0~109 − 1012𝑠−1; and 

∆𝐸 is the energy barrier. For a relaxation time of 100 s, ∆𝐸 = 25𝑘𝐵𝑇. In addition, for 

a magnetic recording device, the capability must exist to store the information for 10 

years, which results in a higher energy barrier of 40𝑘𝐵𝑇. 
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For the purpose of determining the energy barrier required to reverse the magnetisation, 

it is necessary to consider a simpler case of perfectly aligned single domain 

nanoparticles, under the assumption that the easy axis and the magnetic field are in a 

state of alignment. In this context, the system exhibits a perfectly square hysteresis 

loop, and as outlined in the previous chapter, the anisotropy energy and field potential 

energy are included in the total energy related to the reversal process. In addition the 

system has two stable states when the magnetisation is in a state of alignment or, 

alternatively, when it rests in the opposite direction to that of the magnetic field. 

Furthermore, it is necessary for the switching field to be greater than the energy barrier 

(∆𝐸), which refers to the disparity between the system’s minimum and maximum 

energy state. Here, ∆𝐸 can be expressed in the following way: 

 ∆𝐸 = 𝐾𝑉(1 −
𝐻

𝐻𝐾
)2 (5-4) 

 

where 𝐻𝐾  represents the anisotropy field, which in turn determines the system’s 

maximum coercivity of the system; V is the particle grain; and K is the anisotropy 

constant. It should be noted that while the above equation (5-3) is used to describe a 

single particle, real systems involve a distribution of particle volumes and anisotropies. 

Therefore, the energy barrier turns into a distribution, f (∆𝐸). More information about 

the particle size distribution is given in Section 5.3.4. 

With respect to the York Model of exchange bias, this is based on the single domain 

behaviour of the AF grains within a sputtered thin film. In view of this, by 

implementing identical structures as those given previously, it is possible to express 

the energy barrier for a single domain AF grain in the following way:  

 ∆𝐸 = K𝐴𝐹𝑉(1 −
𝐻∗

𝐻𝐾
∗ )2 (5-5) 

 

where 𝐻∗ is the exchange field from the F layer acting on the AF layer, and 𝐻𝐾
∗  is the 

pseudo-anisotropy field in AF. Here, it is important to recognise that the value of 
𝐻∗

𝐻𝐾
∗  

is assumed to be small. This is valid for low F thickness < 5 nm in a CoFe system 

[95].  
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5.2.2 Time Dependence 

The time dependence of magnetisation is known as the magnetic viscosity, which 

refers to a postponement in the magnetisation response to an applied field attempting 

to switch it. The logarithmic relationship between magnetisation (M) and time (t) was 

first expressed in the study conducted by Street and Woolley [96]. 

 𝑀(𝑡) = constant + Sln (
𝑡

𝑡0
) (5-6) 

 

where S is the magnetic viscosity coefficient. Here the magnetic viscosity coefficient 

is defined as the rate of change of magnetisation with ln(t). In addition, in the event 

that the magnetic field is increasing, S is positive when the magnetic field is increasing. 

Furthermore, S can be expressed by Gaunt’s [97] formula. 

 S =
𝑑M

𝑑(ln𝑡)
= 2Ms𝑘BT𝑓(∆EC) (5-7) 

 

where T is the temperature, Ms is the saturation magnetisation of the ferromagnet, and 

(∆𝐸C) is the critical value of the energy barrier. In an AF material, there is no net 

magnetisation, thereby meaning that the order of the AF is chosen as an analogous for 

the magnetisation in the F. In this context, S can be expressed in the following way: 

 S =
𝑑MAF

𝑑(ln𝑡)
= 2Ps𝑘BT𝑓(∆EC) (5-8) 

 

where Ps is the saturation value of the order of the antiferromagnetic. For an AF grain 

in a polycrystalline thin film, the critical value of the energy barrier is determined by 

the grain volume distribution, the temperature dependence of KAF, and the setting 

temperature. In the study conducted by Gaunt et al. [97], the findings indicated that 

the linear dependency on ln(t) constitutes a unique instance in which 𝑓(∆𝐸(𝑡)) is 

constant over the measurement period. Hence, it is true in those cases where the energy 

barrier distribution is broad.  

 

 



72 
 

5.2.3 The Setting Process 

In a disordered AF, grains are randomly orientated. Thus, the setting process is 

pertinent, since it refers to the mechanism by which order is induced in the AF layer. 

The setting process derives its name from the fact that an ordered AF is designated as 

“set”. The setting process was applied to the AF grains by heating below the Néel 

temperature (TN), thereby ensuring that the structural features of the sample remained 

intact. As a consequence of this process, the AF grains – in the process of becoming 

thermally active – were aligned by the exchange field from the closest F layer. The 

time dependency of the exchange bias for the IrMn/CoFe systems (utilised as this 

research’s reference) was observed, as indicated in Figure 5.2 [98]. The step increase 

in the exchange bias in reference to the temperature increase can be accounted for by 

the switching of additional ‘free’spins in the population. 

 

 

 

The magnetic viscosity (S) is determined by the gradient of the linear fits in Figure 5.2: 

 

 𝑆 = 2𝑃s𝑘B𝑇𝑓(Vact) (5-9) 

 

Figure 5.2 Time dependence of the exchange field with ln(t) [98].  
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where 𝑉act is the volume of a grain which overcomes the energy barrier at a given 

temperature. Ps is the saturation value of the order of the antiferromagnetic. 

 

Figure 5.3 illustrates the magnetic viscosity as a function of setting temperature. The 

initial expectation was that variance should arise with respect to both ends of the 

temperature spectrum. This prediction was made in response to the fact that more 

significant ambiguities in the value of S would result from the negligible number of 

grains at either side of the grain size distribution. 

 

5.2.4 Grain Volume Distribution 

The setting process time dependence, as well as the degree to which the small AF 

grains were thermally unstable, indicated that a pair of critical volumes existed inside 

an AF grain volume distribution. As indicated in Figure 5.4, Vc represents the lower 

grain volume limit (where values below this mean that thermal instability does not 

produce exchange bias), while Vset represents the upper grain volume limit (where 

values higher than this mean that the thermal energy is insufficient to induce setting 

in the AF grains).  

Figure 5.3 Experimental and calculated magnetic viscosity as a function of Tset [98].  
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Based on the Néel-Arhenius law, presented in equation (5-3), along with an awareness 

of the AF grains’ relaxation time, it is possible to calculate the critical volumes through 

algebraic manipulation of the equation. Vset refers to the upper grain volume limit, 

which it is possible to set in the time tset at the temperature Tset. Thermal instability is 

a characteristic of those grains which are overly small, and it is the case that the 

behaviour of grains of this kind will imitate superparamagnetic particles of an F 

material. In addition, exchange bias is not impacted by these grains, and they are 

orientated at random.  

 𝑉𝑠𝑒𝑡 =
𝑘𝐵𝑇𝑠𝑒𝑡ln (𝑓0𝑡𝑠𝑒𝑡)

𝐾𝐴𝐹(𝑇𝑠𝑒𝑡)
 (5-10) 

 

 𝑉𝑐 =
𝑘𝐵𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒ln (𝑓0𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒)

𝐾𝐴𝐹(𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒)
 (5-11) 

 

where the measurement temperature and measurement time are represented by Tmeasure 

and tmeasure, respectively. 

Figure 5.4 Schematic diagram of the AF grain volume distribution with critical 

volume Vc and Vset [98]. 
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In view of the above, it is possible to regard the exchange bias as proportional to the 

fraction of the grains which lie between the specified limits: 

 𝐻ex = 𝐶 ∫ 𝑓(𝑉)
𝑉𝑠𝑒𝑡

𝑉𝑐

𝑑𝑉 (5-12) 

 

where C denotes the stiffness of the interfacial coupling between the AF and F layers. 

It is important to note that although the determinants of C are not defined 

comprehensively, the evidence suggests that these relationships operate in an 

independent way from the degree of alignment in the AF grain they are derived from. 

In sputtered polycrystalline films, the grain diameter distribution is log-normal, which 

stems from the way in which growth takes place (see Figure 5.5). With respect to the 

York Model of exchange bias, it is possible to derive the grain size distribution from 

the grain size measurements, which can be undertaken by taking TEM images of the 

sputtered films. The samples measured using TEM in this work are grown using 

HiTUS plasma sputtering system. 

5.2.5 The Blocking Temperature 

In the research conducted by Fulcomer and Charap [5], it was demonstrated that the 

switching of AF grains, comparable to the superparamagnetism that occurs in small F 

particles, can occur as a result of thermal fluctuations. As an extension of the points 
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Figure 5. 5 Grain size distribution for a 6-nm thick Mn3Ga thin film sample. 
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made previously in Section 4.2.4, the behaviour of AF grains can fall into one of the 

following categories: firstly, unstable grains; secondly, blocked grains; or thirdly, 

unset grains. With respect to the process by which grains are classified, this is 

undertaken in a way that relates to the measurement timescale, thereby ensuring that 

the small grains, with minimal energy barriers and thermal energy, can undergo 

reversal in the course of measurement. As for grains which are larger, these are 

blocked, and it is possible for them to maintain their orientation in the course of the 

measurement process. Regarding unset grains, these are characterised by the greatest 

energy barriers, and the likelihood of these grains undergoing switching far surpasses 

the length of the measurement process. In the context of polycrystalline films, all three 

grain behaviours can be observed owing to the nature of the grain distribution. Prior 

to the York Protocol (see the next paragraph), scientists took measurements of 

blocking curves at increasingly high temperatures, thus facilitating an exchange bias 

amounting to zero. In addition to this, based on the data derived from the York Model, 

the temperature at which observations of zero exchange bias were recorded was the 

blocking temperature of the grain characterised by the greatest energy barrier. 

Therefore, the logarithmic time dependence of the AF changes were the determining 

factor for these measurements. Furthermore, it should be noted that measurements 

conducted in reference to the York Protocol are performed at TNA (namely, the 

temperature of no activation). The justification for this is because for systems in which 

thermal activation is absent, the TNA is a standard temperature. Chapter 6 presents a 

full discussion of the process by which TNA can be measured. 

 

The previously mentioned York Protocol, applied by Fernandez-Outon et al. [13], 

refers to the measurement process by which outcomes can be replicated which are not 

dependent on the experimental timescale. At the outset of the process described in the 

York Protocol, it is first necessary to set the antiferromagnet (see Section 6.3.2). This 

further necessitates the selection of a temperature, which should be based on an 

empirical consideration of the temperature which will ensure that the greatest possible 

number of grains are characterised by instability. Here, it should be noted that the 

setting process cannot set all grains, since a certain number of grains will remain 

unstable. Researchers should avoid excessive increases in temperature, since overly-

high temperatures can cause layer inter-diffusion [14], thus damaging the films (or, 
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alternatively, surpassing the boundary conditions of the cryostat in the magnetometer). 

Hence, a 90-minute setting time has been chosen for setting the grains. Following this, 

the change of exchange field Hex with tset is less than 1%, which ensures the 

reproducibility of the Hex value. 

As shown in Figure 5.6, the York Model measures the median blocking temperature 

of the Mn3Ga AF material. 

 

The exchange bias is zero at the median blocking temperature. As the activation 

temperature increases, the magnetisation curves shift towards the positive field. When 

past the zero point, the exchange bias will increase until all the grains are set in the 

opposite direction to their initial position. When exchange bias is zero, the volume of 

AF grains oriented in one direction is equal to those initially oriented in the opposing 

direction.  
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Figure 5.6 Temperature dependence of exchange bias measured for the Mn3Ga 

(6 nm)/Co0.6Fe0.4 (3.3 nm) films  
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5.2.6 The Anisotropy Constant 

The anisotropy constant can be calculated from the blocking temperature distribution 

[99]. A fraction of the total number of grains is aligned in one direction after setting 

the field at Tset. Following this, the F layer is saturated in the opposite direction, and 

under the applied field Tact is maintained for the sample. This ensures that a component 

of the antiferromagnet is reversed to bring about the opposite direction. Consequently, 

the largest grains switch, thereby facilitating the derivation of the exchange bias value. 

The value of Hex measured after the activation step is given by: 

 𝐻𝑒𝑥(𝑇𝑎𝑐𝑡) ∝ ∫ 𝑓(𝑉)𝑑𝑉
𝑉𝑠𝑒𝑡

𝑉𝑎𝑐𝑡

− ∫ 𝑓(𝑉)𝑑𝑉
𝑉𝑎𝑐𝑡

0

 (5-13) 

 

 𝑉𝑎𝑐𝑡 =
𝑘𝐵𝑇𝑎𝑐𝑡𝑙𝑛 (𝑓0𝑡𝑎𝑐𝑡)

𝐾𝐴𝐹(𝑇𝑎𝑐𝑡)
 (5-14) 

 

where Vact is the volume of the largest grain to be thermally activated.  

When Tact equals the median blocking temperature, <TB>, the exchange bias becomes 

zero. This occurs at the median volume, <V>, of the grain size distribution. By 

rearranging equation (5-14), the anisotropy constant is obtained: 

 

 𝐾𝐴𝐹(< 𝑇𝐵 >) =
𝑘𝐵 < 𝑇𝐵 > 𝑙𝑛 (𝑓0𝑡𝑠𝑒𝑡)

< 𝑉 >
 (5-15) 

 

 

5.2.7 Grain Volume and Film Thickness Dependence 

Many reports have stated that the magnitude of the exchange bias changes in response 

to the thickness of the AF layer [100][101][102]. This was also found to be the case 

for Mn3Ga Heusler alloys in the present study. The exchange bias, Hex, is reported to 

increase as the thickness of the AF layer increases, and when the thickness of the AF 

layer reaches a certain value, the exchange bias starts to show an inverse relationship 

with the increasing AF thickness, where parameter n is in a range from 0.3 for FeMn 

[103] and 1 for CoO [104].  
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 𝐻𝑒𝑥 ∝ (
1

𝑡𝐴𝐹
)

𝑛

 (5-16) 

 

Vallejo-Fernandez et al. [105] calculated the exchange bias as a function of the AF 

grain diameter, as shown in Figure 5.7. The solid red curve is a theoretical fit of the 

experimental data calculated using equation (5-12). When the AF layer thickness is 

less than 6 nm, a large proportion of small grains are thermally unstable, thereby 

meaning that they do not contribute to the exchange bias. As the thickness increases, 

the exchange bias rises correspondingly, until the largest fraction of the grains is 

within the interval set by the two critical volumes. The way in which the AF grain 

volume distribution corresponds to different layer thicknesses is shown in Figure 5.9. 

This was achieved by applying an empirical and accurate statistical method.  

 

Figure. 5.8 indicates that it is possible for the exchange bias to rise or fall in relation 

to grain size, and this is based on the AF layer thickness. Specifically, the value of the 

measured exchange bias rises with grain diameter in the event that AF thicknesses 

range from 4-6 nm, while the exchange bias goes through a maximum in the event that 

the AF layer thickness is 12 nm. As for AF layer thicknesses which exceed 12 nm, 

numerous grains satisfy the need for stable volume, but if they are overly-large, it is 

not possible for them to be aligned by the setting process. Consequently, Hex falls. 

This phenomenon has also been proved by our work in Mn3Ga heusler alloys. 

Figure 5.7 Variation of exchange bias with AF thickness [105]. 
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Figure 5.9 Variation of the exchange bias with antiferromagnetic grain 

diameter [105]. 

Figure 5.8 Grain volume distribution for varying thicknesses of IrMn [105]. 
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Chapter 6  

Experimental Techniques 

In this chapter, detailed information of experimental equipment and techniques which 

have been used during the study is given. There are three major categories introduced 

in this chapter; thin film fabrication, sample structure characterisation and magnetic 

characterisation. All the polycrystalline Heusler alloy thin film samples were produced 

using High Target Utilisation Sputtering (HiTUS). A Rigaku SmartLab X-ray 

diffractometer and a JEOL 2011 Transmission electron microscopy (TEM) were used 

for structral analysis of the samples. A JEOL JSM-5910LV scanning electron 

microscope (SEM) was used to measure the composition of the antiferromagnetic 

material. A Microsense Model 10 vibrating sample magnetometer (VSM) and 

Surfaces/Interfaces: microscopy (SIM) beamline were used for magnetic properties 

characterisation.  

 

6.1 Thin Film Deposition 

A wide range of deposition techniques can be used to deposit metallic thin films 

resulting in single-crystal and polycrystalline films. There are two main technologies 

used in thin film deposition: evaporative methods and glow-discharge processes. 

Evaporative technology is one of the oldest techniques used for depositing thin films. 

Its mechanism depends on thermal evaporation or vacuum evaporation. A typical 

example of such is molecular beam epitaxy (MBE), which is designed for producing 

single-crystal epitaxial films in a high vacuum below  1.3 × 10−11  mbar. The thin 

films are slowly deposited by evaporating the target source onto a single-crystal 

substrate at an appropriate temperature. The film thickness, uniformity, lattice match 

and composition etc. are finely controlled by the fast shutter which intercepted the 

molecular beam between the target sources and the substrates. The major advantage 

of MBE is the low temperature requirement for film expitaxy. However its complex 

operation and low product throughput are the major limitations of MBE for production 

applications.  

Another technology is glow-discharge processes. One well known example is plasma 

sputtering where the surface atoms are ejected from the target source by a high density 
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plasma beam. In this work, plasma sputtering technique was used for polycrystalline 

Heusler alloy thin film growth which is described in the following section 6.1.1. 

6.1.1 High Target Utilisation Sputtering (HiTUS) 

The thin film samples studied in this work were grown using the process of High 

Target Utilisation Sputtering (HiTUS), manufactured by PlasmaQuest Ltd. HiTUS is 

a technique that requires the use of an independent plasma source to generate a high-

density plasma on the target surface. High purity Ar gas is injected into the chamber 

via an Argon gas feed. With approximately 95% of the target surface being exposed 

to the plasma, the result is increased material flux that results in enhanced durability, 

hence extending the target’s lifespan. The speed at which HiTUS films can grow is 

dependent on the proximity of the substrate to the target; typically, the distance 

between them is 300 mm and the rate of growth Mn2VSi, Mn3Ga and Mn3Ge are 

approximately 0.7Å/s, 0.9 Å/s and 0.8 Å/s respectively. The material sputters in a 

conical profile, which contributes to the growth rate. The relatively large separation 

between substrate and target causes the isolation of the substrate from the plasma 

beam, preventing re-sputtering and complications such as silicon becoming implanted 

in the Heusler alloy. Films produced by this method are uniform, polycrystalline 

structures that can be compared in terms of their properties to films used in data storage 

industries.  

There are numerous advantages offered by the HiTUS system that can facilitate the 

creation of numerous film structures. Alloys are especially suitable for HiTUS 

sputtering because the whole surface of the target is eroded, which allows for a near 

matched stoichiometry between the thin film and the powder metallurgy target. 

Complex multilayer structures can be formed because the target carousel can be loaded 

with up to 8 individual targets meaning the vacuum does not have to be broken 

between the changes of targets. A further advantage is provided by the substrate 

carousel that can be loaded with up to 6 substrates, each of which can hold a single 20 

mm x 20 mm substrate or four 5 mm x 5 mm substrates, both with TEM grids. In order 

to produce high quality thin films, a high vacuum environment is needed. It takes 

approximately three hours for the turbo molecular, rotary and cryo-pumps to reach a 

pressure of 5 × 10−7 mbar; combining this factor with the rate of sputtering means a 

full growth session can be completed in 8 hours. These pumps are controlled by a 

Programmable Logic Controller (PLC). 
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As shown in Figure 6.1, a Faraday cage surrounds a quartz tube in which a 2.5 kW, 3-

turn copper radio frequency antenna is situated. This forms the HiTUS side arm that 

generates the plasma from argon gas, coupled inductively to the 13.56 MHz radio 

frequency field. Through a process of ambipolar diffusion [106], plasma ion beams 

are propelled into the main chamber by a launch magnet and are directed to the target 

surface by a steering electromagnet. The applied field of the launch and steering 

electromagnets are approximately 50 Oe and 500 Oe. Although the plasma’s ion 

density of 1012 – 1013 ions/cm3 is high, the ion energy at the target surface of < 10 eV 

which is too low to be adequate for sputtering [107]. Therefore, the plasma is coupled 

to a DC bias voltage to increase the ion energy. 

 

 

 

Control of sputtering parameters is necessary for the comparison of the properties of 

thin films. There are three ways to control the sputtering rate: Gas flow rate, DC bias 

voltage and RF power. By modifying the argon gas flow rate, which in turn alters the 

plasma pressure and deposition energy, the mean free path of ions and film density are 

changed. Hence sputtering rate is varied directly. Initial control of the ion energy can 

be achieved by setting the launch radio frequency power between 1 and 100% of 2.25 

Figure 6. 1 Schematic diagram of the HiTUS system [108]. 
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kW capacity. The ion energy can also be controlled in the chamber at the target surface 

by applying a DC bias voltage. A range of negative DC voltages from 0 to 1000 V can 

be applied to the target. These parameters are also able to adjust the mean grain 

diameter of the film, which is valuable in interpreting magnetic measurements[108]. 

Before film deposition, surface contaminants can be removed from the substrates by 

disabling the steering electromagnets, engulfing the main chamber with ions of < 30 

eV [108]. 

At present, the University of York is the only institution that uses the HiTUS process 

to grow Heusler alloys, the results of which have been published in several papers 

[3,4]. In contrast to magnetron sputtered and MBE grown films that exhibit 

crystallisation in the as-deposited state, there is little or a total absence of 

crystallisation present in the samples of Heusler alloy films (such as Mn2VSi in this 

studies) grown using the HiTUS system. Studies by Sagar and Fleet et al. [110] 

indicated that ex situ annealing of the films enabled large crystals (grains) to form 

from the as-deposited amorphous-like matrix. Grains measuring between 30 nm and 

250 nm were discovered in Co2FeSi films that had been annealed for up to 6 hours. 

Sagar et al. [109] propose that this phenomenon arises from nano-crystal nucleation 

in the as-deposited matrix seeding a layer-by-layer crystallisation.  

The Heusler alloys grown in HiTUS required extreme annealing conditions. To 

promote grain size growth, an in situ annealing method has been used during 

deposition. In order to achieve high-temperature growth, a heater was installed inside 

the chamber directly above the substrates with a separation of approximately 7 mm. A 

stainless steel thermal couple (Labfacility, MI S/S Type K) was placed on the heater 

case, which was connected to the temperature reader as shown in Figure 6.2. 
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The heater was operated by illuminating a lamp (Philips, Halogen, 100 W) to increase 

the temperature of the back of the substrate. The power supply (ALDA, Model 

00160141) controls the temperature, which can be heated up to approximately 730 

℃ (1003K). The heater was calibrated using an external thermocouple attached to the 

substrate to record the spontaneous temperature reading while the heater is operating. 

The heater temperature calibration is shown in Table 6.1. The overall performance of 

the heater was found to be stable, maintaining a temperature fluctuation range of 

approximately±12℃.  

 

Table 6.1 Heater temperature fluctuation measurements. 

Set-up temperature (℃) Heater temperature (℃) 

150 187±17 

200 235±15 

250 277.5±10.5 

300 328.5±13.5 

350 374.5±11.5 

400 420±11 

Figure 6.2 Schematic diagram of heater inside the 

chamber. 
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450 466±10 

500 514±8 

 

 
 

6.1.2 Sample Preparation  

The substrate holder was made of machinable ceramic to prevent melting during high 

temperature in situ deposition. The substrates were 16 × 16 mm2 square as shown in 

Figure 6.3. The sample can be then cut into the required sizes for later measurements 

using a diamond scriber.  

Before the deposition, the Si substrates and substrate holders were cleaned in acetone 

and isopropanol using an ultra-sonic bath for 15 minutes to remove grease from the 

surface. They are then dried using nitrogen gas.  

The loaded targets and substrates were further cleaned using the plasma before 

deposition. The targets are cleaned using 1000 V bias voltage plasma sputtering for 

approximately 2 minutes depending on the degree of contamination and oxidation. 

The substrates are then cleaned by Ar plasma for one minute with zero bias voltage 

and with the steering magnets turned off. 

Before deposition, a 30 second conditioning and pre-sputtering was used to stabilize 

the Ar gas pressure and further clean the targets. The shutter is then opened and 

deposition started. 

Figure 6.3 Ceramic substrate holder used in HiTUS for deposition. 

 

8mm 
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6.1.3 HiTUS Thin Film Thickness Calibration 

The HiTUS system uses an INFICON XTM/2 deposition monitor to measure the 

thickness of the film during deposition. The device works by oscillating a piezoelectric 

quartz crystal at its electromechanical resonance. The resonance frequency is reduced 

when a small amount of material from the target is deposited onto the top of the crystal. 

The reduced resonance frequency is given by : 

 

 
𝑀𝑓

𝑀𝑞
=

∆𝑓

𝑓𝑞
 (6-1) 

 

where 𝑀𝑓 is the change in mass due to the deposition, 𝑀𝑞 is the original mass of the 

quartz crystal, ∆𝑓 is the change in resonance frequency and 𝑓𝑞  is the uncoated resonant 

frequency of the crystal [111]. 

The thickness of the material deposited onto the film can be calculated using the Z-

match equation (4-2)[112]: 

 𝑡𝑓𝑖𝑙𝑚 = (
𝑁𝑞𝜌𝑞

𝜋𝜌𝑓𝑅𝑧𝑓
) arctan (𝑅𝑧tan [

𝜋(𝑓𝑞 − 𝑓)

𝑓
]) (6-2) 

 

where 𝑡𝑓𝑖𝑙𝑚  is the thickness of the film, 𝑁𝑞  is the frequency constant of the quartz 

crystal, ρq is the density of the quartz, ρf  is the density of material, f is the resonant 

frequency of the loaded crystal and 𝑅𝑧 is the Z-Factor of the film material. 

 

6.2 Sample Structural Characterisation  

Structural characterisation of a sample includes the grain size, crystal structure, layer 

sharpness and crystal orientation of the material. Two major apparatus were used for 

these measurements, an X-ray Diffractometer (XRD) and a Transmission Electron 

Microscope (TEM). XRD is an ideal equipment for scanning over a wide area and 

provide the average crystalline structural information across the sample. TEM allows 

one to accurately measure the grain size and orientation at the atomic scale. Both 

apparatus are discussed in the following sections. 
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6.2.1 X-ray Diffractometer 

X-ray diffraction allow the identification of crystalline structure of the thin films, the 

principle of which can be explained by Bragg’s law: 

 

 𝜆x−ray = 2𝑑sinθ (6-3) 

 

where 𝜆x−ray is the X-ray wavelength. θ is the angle between the angle of incident and 

the scattering angle from the sample surface and d is the lattice spacing of the sample. 

There is variation between the types of lattice formation in a hexagonal or cubic 

structure. In this particular study, both cubic and hexagonal structures were 

investigated, where for the cubic case the lattice spacing can be described by the 

formula:  

 𝑑 = √
𝑎2

ℎ2 + 𝑙2 + 𝑘2
 (6-4) 

 

where a and c are the lattice constant of the material and h,k and l are the Miller indices 

for a specific plane. 

The lattice spacing for a hexagonal structure is given by: 

  

 

1

𝑑2
 = 

4

3
 
ℎ2+ℎ𝑘+𝑘2

𝑎2
 + 

𝑙2

𝑐2
 

 

(6-5) 

 

Figure 6.4 shows a schematic diagram of the Bragg diffraction. 

Figure 6.4 Schematic diagram of X-ray Bragg diffraction.  
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A Rigaku SmartLab X-ray diffractometer shown schematically in Figure 6.5 was used 

in this study. This apparatus employs a high intensity 9 kW rotating anode X-ray 

generator. It operates with a voltage of 45 kV and a current of 200 mA. Fluctuations 

in these two parameters were measured to only vary by ± 0.005%, with a 10% variation 

in power input. 

 

 

A Cu target was used as the X-ray source which generates a beam with Kα1 and Kα2 

X-rays whose wavelengths are 1.541Å and 1.544 Å, respectively [113]. Germanium 

is used in the incident monochromater crystal system, which allows for the diffraction 

of X-rays. Ge(220)×2 crystals were fitted to produce monochromatic X-rays by 

diffracting them twice by the Ge(220) lattice planes. Passing X-rays through this 

crystal makes it possible to use only Kα1 X-rays with approximately 0.003 degree 

divergence. As a consequence, the optimal measurement can be achieved using Kα1 

component. Soller slits and a PSA adapter were used to focus the electron beam. 

The NaI scintillation counter collects all the reflected X-ray signals. When a charged 

particle strikes the scintillator, photons are emitted as its atoms are excited. The 

particles carrying charge are aimed at the photocathode of a photomultiplier tube. As 

a result, electrons are released by the photoelectric effect. These electrons are 

electrostatically focused so that they strike the first dynode of the tube. As a result of 

electrons hitting the dynode, a number of secondary electrons are released. These 

electrons also undergo acceleration and are directed to strike the next dynode. As 

shown in Figure 6.6, each subsequent dynode impact releases further electrons, and so 

there is a current amplifying effect at each dynode stage. Each stage is at a higher 

Figure 6.5 The Rigaku SmartLab X-ray diffractometer [128]. 
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potential than the previous to provide an accelerating field. The resultant output signal 

at the anode is in the form of a measurable pulse for each photon detected at the 

photocathode, and is passed to the processing electronics. The pulse carries 

information about the energy of the original incident radiation on the scintillator. Thus 

both the intensity and the energy of the radiation can be measured. 

 

 

 

The Rigaku SmartLab XRD system utilises a goniometer, which includes a high 

resolution θ- θ closed loop which allows the X-ray source and detector to be positioned 

with a 0.001˚ step size. This loop is the element that provides the high level of accuracy 

and resolution θ-2θ scans. These θ-2θ scans rely on the detector being placed at an 

angle that is twice that of the incident angle of the X-ray. This measurement provides 

all the out of plane crystallographic information [113]. 

 

6.2.2 Pole Figure Measurement 

Pole figure measurements have been used to analyse the distribution of the crystal 

orientations in the films. In materials science, texture is the distribution of 

crystallographic orientations in a sample. Where the crystallographic orientations are 

not random, the sample may be referred to as having a weak, moderate, or strong 

texture. This depends greatly on the proportion of crystals within a sample which 

display a preferred direction.  

X-ray pole figures are the most widely known source of texture information due to its 

low cost and easiness to perform. It provides an average texture over a reasonably 

large surface area, in this study the typical sample surface is 25 mm2. The average 

grain size in our films is smaller than 20 nm this means that hundreds of thousands of 

grains are contained in the measurement which ensures statistical viability. 

Figure 6.6 Schematic diagram of scintillating counter detector [145]. 
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The θ-2θ scan cannot describe the crystal texture accurately if a sample has a preferred 

orientation because the scan only measures planes perpendicular to the surface. 

Therefore we can describe the texture of a material by using pole figure scans. Pole 

figure measured with 4-axis goniometer in which 2 axes used to choose a specific 

crystallographic plane with 𝜃 − 2𝜃 a specified, hence to determine the Miller indices 

associated with the pole figure. The third axis tilts sample surface with respect to the 

focusing plane. The fourth axis rotates the sample about its normal.  

A "rocking curve" is a short pole figure cut in one crystallographic direction where the 

profile width is a figure of merit for the degree of texture. 

 

6.2.3 Reflectivity Measurement 

X-ray reflectivity (XRR) measurement have been used to measure the density, 

interface roughness and thickness of Heusler alloy thin films. The principle can be 

explained using the total reflection phenomenon. When the incident angle is smaller 

than a critical angle total reflection occurs. Therefore, the intensity of the reflected X-

ray is equal to that of the incident X-ray. When the incident angle is larger than the 

critical angle, both refraction and reflection occurred. This will lead to the intensity of 

the reflected X-rays to decrease. Hence an oscillation is observed in the intensity of 

the X-rays reflected from multilayered samples due to the interference between two 

reflected X-rays. The density, thickness and roughness of the thin film samples can 

then be determined from the incident angle and reflected X-ray intensity.  
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From the reflectivity profile in Figure 6.7, the period of oscillation indicates the 

thickness of the layers. In general the amplitude of the oscillation indicates the 

difference in density and the degree of roughness between the substrate and each 

layers. By altering the parameters, the calculated fitting can match the measurement 

data giving the correct value for thickness, roughness and density of a multilayer 

sample. In this work GenX is used for reflectivity fitting. GenX is a multipurpose 

refinement program using a differential evolution algorithm. It was developed mainly 

for refining X-ray reflectivity and neutron reflectivity data [114]. 

 

6.2.4 Scherrer Analysis 

Samples studied in this work were all polycrystalline where the diffraction patterns 

usually contain combination of amorphous, highly textured polycrystalline layers and 

single crystal substrate. Scherrer grain size analysis is a simple method to estimate the 

average grain size in a material from the width of a peak. In general, a sharp peaks 

(small full width half maximum) indicate large grains, whereas broader peaks indicate 

small grains. This is described by the Scherrer equation: 

Figure 6.7 An example of a reflectivity scan of Mn3Ga/CoFe multi-layer 

thin film. 
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 𝐷 =
𝐶𝜆𝑅

FWHM cos𝜃
 (6-6) 

 

where D is the grain diameter, C is a constant close to unity, 𝜆𝑅 is the wavelength of 

the radiation, 𝜃 is the Bragg reflection angle. 

The broadening effect will ocuur when the Bragg reflection angle is large due to the 

inverse proportionality between the grain size and the diffraction angle. 

 

6.2.5 Transmission Electron Microscopy  

Transmission electron microscopy has been used to image the physical structure of the 

Heusler alloys thin film on an atomic scale. TEM employs electrons in order to ‘see’ 

a sample but since the electron have a much smaller wavelength than light means that 

an electron microscope can provide a much higher resolution than a light microscope. 

The human eye has a resolution of 0.1 to 0.2 mm and the Rayleigh principle explains 

the ability of a TEM to possess a resolution of 0.8 Ȧ: 

 

 δ =
0.61𝜆𝑅

𝑅∗sin𝛽
 (6-7) 

 

where δ is the minimum distance can be resolved per radian, 𝜆𝑅 is the wavelength of 

the radiation, 𝑅∗ is the refractive index of the view medium and 𝛽 is the semi-angle of 

collection of the magnifying lens [115]. The refractive index is ~1 and the semi-angle 

is small, thus the resolution of light microscope is mainly determined by the 

wavelength of the radiation source. Taking green light as an example, its 550 nm 

wavelength gives 300 nm resolution. The wavelength of a 200 keV electron is about 

4 pm, which provides 10,000 times better resolution than a visible light microscope 

[115]. 
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The transmission electron microscope which has been used for grain sizes analysis 

was JEOL JEM-2011. A Lanthanum hexaboride (LaB6) filament is fitted at the top of 

the column which is operated under a high vacuum of 10-10 mbar. A series of roughing, 

diffusion, turbo-molecular, ion and cryogenic pumps are required. When the filament 

is heated to a temperature greater than the work-function, the electrons are emitted. 

The electron are then accelerated via an accelerating voltage from 80 – 200 kV. As 

Figure 6.8 shows the electrons pass through a condenser lens which consists of many 

electromagnetic coils. The current through these coil deflects the path of the electrons. 

The condenser lens is used to control the electron density travelling through the system. 

The electrons then interact with the sample located above the objective lens. This is 

used to focus the diffracted electrons after interaction with the sample. An intermediate 

image is then produced. A set of intermediate lenses and projector lenses then magnify 

the image by 50 to 1,500,000 times and project it onto the fluorescent screen. A digital 

image can be recorded with a Gatan Multiscan charge-couple device (CCD) camera 

fitted below the column. Apertures are used to form different images by selecting 

Figure 6.8 Schematic diagram of transmission electron microscope. 
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electron beams and control the image contrast. By using the objective aperture the 

electrons that are imaged can be chosen to be either those are transmitted (Bright field) 

or diffracted (Dark field) only as shown in Figure 6.9.  

 

In this studies, bright field images were used for grain size analysis which will be 

discussed in the next section. TEM samples were prepared using the same procedure 

explained in previous section 5.1 with carbon-coated copper TEM grids used as 

substrates. Figure 6.10 shows a bright field image for polycrystalline Mn3Ga thin film, 

the dark grains shown in the figure satisfy the Bragg condition which are valid for the 

grain size analysis. 

 

 

 

 

 

Figure 6.9 Schematic ray diagram of Bright field and dark 

field operation. 

Figure 6.10 Bright field image of Mn3Ga thin film. 
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6.2.6 Grain Size Analysis  

Grain size analysis was undertaken using bright field TEM images. A Zeiss particle 

size analyser was used for grain size distribution measurements as shown in Figure 

6.11.  

 

The original TEM images were printed with a scale bar indicating the magnification. 

The Zeiss particle analyser projects a light spot with tuneable radius. The light spot is 

used to match individual grains on the printed sheet. When the area of the light spot is 

equivalent to that of the grain, a pedal is depressed and a hole is punched through the 

image and registered as a voltage using a Lab View program. More than 500 particles 

were recorded in order to ensure good statistics and the data were then converted to an 

actual size according to the scale bar. The size distribution of a polycrystalline film 

follows a log-normal distribution. It is defined as a function so that the natural log of 

a random variable follows a Gaussian distribution [116], 

 

 

 

Figure 6. 11 Zeiss particle analyser. 
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 𝑓(D)𝑑D =
1

√2𝜋𝜎ln𝐷𝐷
exp {−

[ln𝐷 − 𝜇2]2

2𝜎ln𝐷
2 } 𝑑D (6-8) 

 

 𝜎ln𝐷 = √
∑ 𝑁 (ln𝐷)2

∑ 𝑁
− (

∑ 𝑁 (ln𝐷)

∑ 𝑁
)

2

 (6-10) 

 

where D is the diameter of the grain, 𝜇  is the mean value of ln𝐷  and 𝜎ln𝐷  is the 

standard deviation of ln𝐷. The median grain diameter 𝐷𝑚 and the standard deviation 

𝜎ln𝐷  of the distribution is used to determine the grain size [116], 

In this work the grain size of the sample was used in conjunction with the York model 

of exchange bias (see Chapter 5) to obtain the magneto-crystalline anisotropy constant 

of the antiferromagnetic Mn3Ga. The anisotropy constant can be determined using 

Equation (6-10) when the sample is thermally stable at the temperature of 

measurement and has been fully set [117], 

 𝐾𝐴𝐹(< 𝑇𝐵 >) =
𝑙𝑛(1800𝑓0)𝑘𝑇𝐵

< 𝑉 >
 (6-11) 

 

where 𝐾𝐴𝐹 is the anisotropy constant, 𝑇𝐵 is the temperature at which exchange field is 

zero, 𝑓0 is an attempt frequency generally taken to be 109 s-1 and <V> is the median 

grain volume, the thermal activation time is set to 1800 s. In reality, not all the sample 

is thermally stable at the measurement temperature hence those unstable grains will 

not be taken into account during the calculation. 

 

 

 

 

 

 𝐷𝑚 = 𝑒𝜇  (6-9) 
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6.2.7 Scanning Electron Microscopy 

In this study, the composition of the Heusler alloy thin films were carefully analysed 

because the atomic ratio between constituent elements strongly affects the magnetic 

properties and crystallographic structure of the sample. A JEOL JSM-5910LV 

scanning electron microscope (SEM) with an Oxford Instruments INCA energy 

dispersive X-ray (EDX) Si detector was used to measure the composition of the AF 

material.  

 

Figure 6.12 indicates the schematic diagram of the A JEOL JSM-5910LV scanning 

electron microscope (SEM). This microscope consists three important components 

which are the electron gun, magnification lenses and the detectors. Electrons are 

generated from a Tungsten hairpin filament with a current of 2.4 A. Condenser and 

projector lenses were used to focus the electron beam onto the sample and swept over 

the sample. There are several different processes that occur when the electrons beam 

enters the sample. Some incident electrons experience elastic or inelastic scattering 

and may end up in a direction back out of the sample surface. These electrons are 

called backscattered electrons and their number is dependent on the scattering cross 

section of the atoms in the sample involved in the scattering. There is another group 

of low energy electrons emitted from the sample surface which are called secondary 

Figure 6.12 Schematic diagram of the A JEOL JSM-5910LV scanning electron 

microscope (SEM). 
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electrons. These electrons are excited out of the ground state of the atoms in the sample 

via interaction with high energy incident beams. The number of secondary electrons 

is dependent on the atomic number of the target sample, surface topography and 

energy of the incident electrons. A secondary electron detector receives the signal from 

secondary electrons generated by the primary beam which is then amplified and 

converted into an electrical voltage. Another inelastic process occurs when excited 

electron is de-excited into ground state and X-ray photons are generated. These 

photons determine the energy between two states and the composition of the material.  

For imaging the sample surface, the incident electron beam scans over the surface and 

secondary electrons are collected by the detector and then display the changes in the 

number of secondary electrons as changes in the contrast on the monitor screen. The 

X-ray can be used when the electron beam is stationary, where the resulting spectra 

shows the average composition in the sampling volume of the scanned surface. 

Depending on the electron-atom interaction mechanism, electrons or photons may be 

emitted which means that the detectors positioned above the sample are able to detect 

these escaping from sample surface. The interaction volume is a pear-shaped 

penetrated area in which detectable interaction take place. The size of the interaction 

volume is determined by the electron beam energy and the atomic number of the 

specimen. The spread of the electron beam increases with the depth of penetration. 

For a sufficiently thin film, the beam spread is much less hence better spatial resolution 

is obtained. In Chapter 7.1, the chemical composition for Mn2Vsi, Mn3Ga and Mn3Ge 

thin films are illustrated. 

The precision of the EDX composition analysis is limited due to the large interaction 

volume and inhomogeneous sample. The microscope operates to a micron precision 

and the spectroscopy data have an expecting accuracy of 10% of the weight for the 

targeting samples. 
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6.3 Magnetic Characterisation Methods 

Magnetic measurements in open circuits are usually made with a vibrating sample 

magnetometer (VSM) or alternating gradient force magnetometer (AGFM). The 

experimental data is a plot of a magnetic moment m vs the applied field H. AGFM 

provides higher sensitivities than VSM, however it is not suitable for low temperature 

measurement. In this study, VSM was used due to its capability for low temperature 

measurements. X-ray magnetic circular dichroism (XMCD) and x-ray photoemission 

electron microscopy (XPEEM) measurement was also performed at the SIM beamline 

at Paul Scherrer Institute (PSI) with the help from Dr. Carlos. A. F. Vaz.  

 

6.3.1 Vibrating Sample Magnetometer (VSM) 

To measure the magnetic properties of nanoparticles and thin films, a vibrating sample 

magnetometer (VSM) is the instrument of choice. Invented in 1955 by Foner [118], 

the VSM was an improvement on Smith’s vibrating coil magnetometer [17,18].  

VSM is based on the principle of Faraday’s law. The equation for electromagnetic 

induction is: 

 𝜀 = −𝑁𝑐

𝑑𝜑

𝑑𝑡
 (6-12) 

 

where 𝜀 is the induced electromagnetic force (emf), 𝑁𝑐 is the number of turns in the 

coils and 
𝑑𝜑

𝑑𝑡
 is the rate of change of flux. The change of flux is induced by a 

mechanical vibration of the sample under an external magnetic field from the 

electromagnet. The total magnetic flux penetrating the sample is. 

 𝜑 = 𝐵𝑀

→

⋅ 𝐴
→

 (6-13) 

 

where 𝐵𝑀

→

 is the magnetic flux density in the material and 𝐴
→

 is the area of the sample. 

When the sample is vibrating it induces an emf that is calculated using Faraday’s law, 

which is: 

 ∫ 𝜀𝑑𝑡 = −𝑁𝐴
→

⋅ 𝑀
→

 (6-14) 
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where 𝑀
→

 is the magnetisation of the sample. 

VSM operation depends upon a set of pickup coils between which, the sample is 

vibrated, whilst a field is applied, creating an AC signal within the coils. A speaker 

driver adjusted to ~ 81 Hz provides the vibration to the sample and prevents 

interference from mains driven noise. The oscillating magnetic field of the moving 

sample induces an alternating electromagnetic force (emf) in the detection coils, whose 

magnitude is proportional to the magnetic moment of the sample. A reference signal 

is created at the top of the sample rod that converts the induced AC voltage to a DC 

output voltage, usually with a lock-in amplifier which is sensitive only to signals at 

the vibration frequency. 

  

 

The design of the coils used in VSM is key to achieving low-level noise measurements. 

This specific version of the Microsense VSM, the Model 10, has a high sensitivity of 

10−6 emu. Rotation of the magnet is possible within the range of -540 to + 540 degrees 

(resolution <0.1 degree). The vector coils are a standard option. At the most optimal 

gap of pole pieces, the system can reach a maximum field of 20 kOe. Temperature 

variation from 773 to 100 K is available via a gas-flow system. This controls the 

nitrogen flow over a heater to stabilise the temperature with 0.01 K temperature 

Figure 6.13 Schematic of a Vibrating Sample Magnetometer. 
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resolution. The design of the VSM isolates the system from external magnetic and 

acoustic noise and permits measurements to be made rapidly under a variety of 

conditions. 

VSM provides experimental results in magnetic moment (m) vs the applied field (H) 

where calibration of both H and m is required on weekly bases to keep the accuracy.  

The applied field H is calibrated by first calibrating the hall probe at zero field shield 

to check the zero pint. Then the probe is placed in an applied field which is measured 

by the Hall probe and calibrated against a Lakeshore 425 gauss meter which is a 

secondary standard. The calibration of m was carried out using a Palladium foil whose 

geometry and dimension is similar to that of the sample to be measured. Palladium is 

a Pauli paramagnet with high corrosion resistance whose susceptibility is not 

temperature dependent, therefore has a fixed value of moment at any applied field.  

Magnetisation curves are generated from the VSM and provide the general magnetic 

properties of the Heusler alloy thin film, such as coercivity (Hc), saturation 

magnetisation (Ms), remnant magnetisation (Mr), squareness (M/Ms) and nucleation 

field (Hn). 

 

Figure 6. 14 Hysteresis loop measurement [121] 
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6.3.2 Thermal Activation Measurements 

In this work, the magnetic properties of antiferromagnetic (AF) materials have been 

studied using the Microsense Model 10 VSM. This was achieved by attaching a 

ferromagnetic (F) layer using thermal activation measurements [14]. 

The thermal activation measurement is a unique way of measuring the blocking 

temperature (TB), i.e., the point at which the exchange bias induced at the AF/F 

interface is zero. Normally TB is determined by increasing the activation temperature 

until the loop shift becomes zero. In polycrystalline systems, individual grains have 

their own TB and hence the average TB, < TB >, is measured using the York Protocol. 

The theory of the York Protocol was discussed in the previous chapter. Blocking 

temperature for granular AFs can be measured by the steps as shown in Figure 6.15. 

 

1. In order to ensure there is no magnetic history affecting the measurements, the 

samples were set under a saturating applied field of 20 kOe at a maximum 

Figure 6.15 Schematic diagram of measurements procedures of the 

York Protocol [14]. 
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temperature Tset (500 K) at which interfacial duffusion between layer does not 

occur for 90 minutes.  

2. The samples were field cooled to non-thermal activation temperature TNA (100 

K). 

3. The samples were heated to a thermal activation temperature Tact for 30 

minutes with a reversed magnetic field applied. 

4. The samples were cooled down to TNA. 

5. Hysteresis loops were taken at TNA where all AF grains are thermally stable. 

In all polycrystalline thin films, the volume of the AF grains follows a log-normal 

distribution. Vc is the minimum AF grain volume that is stable at the temperature of 

measurement and contributes to the exchange bias. For those grain volumes below Vc, 

the orientation of the AF alignment of a grain fluctuates under the influence of thermal 

energy as they are too small to be thermally stable at the temperature of use. Hence 

these grains do not contribute to the exchange bias. Essentially these small grains 

behave as a superparamagnetic particles of a ferromagnetic material. Vset is the 

maximum AF grain volume that can be aligned in order to contribute to the exchange 

bias at Tset. Grain volumes beyond Vset cannot be set because the AF grain upon which 

they have grown is itself not aligned at the temperature which can be applied. These 

two limits Vc and Vset are shown on the grain size distribution in Figure 6.16. 

 

 

Figure 6.16 Schematic diagram of AF grain size distribution [14]. 
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6.3.3 Training Effect 

The earliest studies to describe the training effect was conducted by D. Piccard et al. 

[122] in 1966. The authors describe a drop in coercivity caused by movement of both 

legs of the hysteresis loop during field cycling. The unbalanced movement of the legs 

results in an overall reduction in exchange field (Hex). They note both the temperature 

and time dependence of the rate of change. They established the pre-training state 

which can be recovered by two methods: Field cooling from above TN or exposing the 

sample to a saturating field at Tmeasure. These observations can be explained with the 

York Model if the assumption is made that Tmeasure > TN, which can be justified given 

that TN is around room temperature for all samples. Because of this, the AF layer is 

thermally active and is set by thermal activation, effecting recovery of Hex and HC.  

In order to remove the training effect during the measurement, applied field is set in 

the opposite direction to the external field. 

6.3.4 XMCD Introduction 

Since I was not directly involved in the detailed measurement process, the detailed 

instrument operational information will not be discussed in this section. This section 

will mainly focus on the brief theory of XMCD and methods of XMCD analysis.  

XMCD is a unique technique that uses X-ray to study magnetism. The technique 

provides element specificity, and it also enables the operator to determine where the 

magnetic signal originates from within a certain material. The materials that the 

technique can be applied to range from elemental films to more sophisticated alloys 

and compounds. 

For the 3d transition metals, on which this work focuses on Mn and Co elements, it is 

important to gain insight into the dichroic effect for the L3 and L2 edges. Noteworthy, 

these two edges correspond to the 2p1/2 and 2p3/2 levels, respectively, both of which 

are discernible in the context of a p to d transition.  It is possible to view the situation 

in terms of energy level diagrams, as seen in Fig 6.17.  
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Figure 6.17 (a) shows a non-magnetic material without magnetic field. The number of 

spin up and spin down electrons are at an equal levels in its population. On the other 

hand, Figure 6.17 (b) shows how the application of an external magnetic field (H) to 

a magnetic field facilitates disequilibrium between the spin up and spin down bands. 

As a consequence of this, a configuration arises in which certain unoccupied 3d spin 

up states exist that can only be filled with spin up 2p electrons. Hence, it is possible 

for the unoccupied 3d states to serve as spin-dependent detectors. Noteworthy, this 

case becomes even more complex when considering the spin-orbit interaction, the 

result of which is to split the 2p core state into a pair of components: firstly, the 2p1/2 

level; and secondly, the 2p3/2 level. In addition to the energy separation of these 

components, which amounts to few eV, the effect is important because these spin sub-

states are now coupled to the orbital moment. The complexity increases owing to the 

orbital moment in view of the way in which it couples to the spin moment in a parallel 

way to the L3 edge, and in an antiparallel way to the L2 edge [123]. 

The right incident circularly polarised photons have a negative angular momentum, 

and for the left circular polarisation, it is positive.  Hence, when attempting to 

illuminate the sample using circularly polarised light, the excitation likelihood 

increases when the X-ray photons’ angular momentum is consistent with that of the 

orbital momentum. The probability is that a spin up 2p1/2 will be excited by left 

circularly polarised light, and the disparity in detected absorption between left and 

right circularly polarised light is evident when examining the XMCD signal. 

 

Figure 6.17 Band illustrations of (a) a non-magnetic material and (b) a magnetic 

material with an external field. 
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6.3.5 Method of XMCD Analysis 

The Sum Rules analysis was devised in the 1990s  [124][125], and in the ground 

breaking research of Chen et al [126], a concrete way in which to apply the Sum Rules 

was established. Now, the approach is prominently applied in the literature as a key 

way to conduct XMCD analysis. As a popular quantitative method, derived from 

knowledge in the field of electromagnetism and quantum phenomena, the spin and 

orbital moments of 3d transition materials can be accurately measured using SR 

analysis. According to the Sum Rules, the orbital and spin magnetic moments can be 

determined from x ray absorption spectra (XAS) and XMCD spectra using the 

following equations [127]: 

 𝑚𝑜𝑟𝑏𝑖𝑡𝑎𝑙 = −
4 ∫ (𝜇+ − 𝜇−)𝑑𝜔

𝐿3+𝐿2

3 ∫ (𝜇+ + 𝜇−)𝑑𝜔
𝐿3+𝐿2

(10 − 𝑛3d) (6-15) 

 

 𝑚𝑠𝑝𝑖𝑛 = −
6 ∫ (𝜇+ − 𝜇−)𝑑𝜔

𝐿3
− 4 ∫ (𝜇+ − 𝜇−)𝑑𝜔

𝐿3+𝐿2

∫ (𝜇+ + 𝜇−)𝑑𝜔
𝐿3+𝐿2

(10 − 𝑛3d)(1 +
7 < 𝑇𝑧 >

2 < 𝑆𝑧 >
)−1 (6-16) 

 

 𝑚𝑡𝑜𝑡𝑎𝑙 = 𝑚𝑜𝑟𝑏𝑖𝑡𝑎𝑙 + 𝑚𝑠𝑝𝑖𝑛 (6-17) 

 

Where 𝑚𝑡𝑜𝑡𝑎𝑙  , 𝑚𝑜𝑟𝑏𝑖𝑡𝑎𝑙   and 𝑚𝑠𝑝𝑖𝑛  are the total magnetic moment, orbital magnetic 

moment and spin magnetic moment in the unit of 𝜇𝐵 /atom respectively. 𝑛3d  is the 

electron occupation of the respective transition metal atom in 3d states. The L3 and L2 

represents the integration range. < 𝑇𝑧 > is the expectation value of the magnetic dipole 

operator and < 𝑆𝑧 > is equal to half of 𝑚𝑠𝑝𝑖𝑛 in Hartree atomic unit.  

In order to simplify the equations, three new terms p, q, r are used to replace the 

integrations, where: 

 𝑝 = ∫ (𝜇+ − 𝜇−)𝑑𝜔
𝐿3

 (6-18) 

 



108 
 

 𝑞 = ∫ (𝜇+ − 𝜇−)𝑑𝜔
𝐿3+𝐿2

 (6-19) 

 

 𝑟 = ∫ (𝜇+ + 𝜇−)𝑑𝜔
𝐿3+𝐿2

 (6-20) 

 

Figure 6.18 gives an example that contains three new terms p, q, r as the replacement 

of the integration in the above equations. The integration area of XMCD and XAS 

spectra is indicated by the dash line in Figure 6.18. 

(a) 

(b) 

(c) 

Figure 6.18 The sum rule constant, p, q, and r which correspond to the integral of the 

dichroism spectra for the L3 edge, the integral of the dichroism spectra over both the L3 

and L2 edges and the area of the summed XAS signal after removal of a stepped 

background respectively [126]. 
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Chapter 7 

Antiferromagnetic and Ferrimagnetic Heusler Alloys Films 

for Spintronic Devices 

 

In this study, based on the previous study on Ni2MnAl conducted by Teodor Huminiuc 

and Oliver Whear, a new set of Heusler alloys of Mn2VSi, Mn3Ga and Mn3Ge was 

investigated during the last three years. The growth conditions of these films were first 

optimised using the HiTUS sputtering system. Their chemical components were 

characterised using scanning electron microscope (SEM) and energy dispersive X-ray 

spectroscopy (EDX). The structural study of the films was conducted using X-ray 

diffraction (XRD) and Transmission electron microscopy (TEM). The magnetic 

characterisation was performed using Vibrating sample magnetometer (VSM) and 

surfaces/interfaces: Microscopy (SIM) Beamline at Paul Scherrer Institute. In this 

chapter, these measurement results for three Heusler alloy films are discussed.  

 

7.1 Chemical Analysis of Polycrystalline Heusler Alloys 

The composition of the Heusler alloy thin films was carefully analysed because the 

atomic ratio between constituent elements strongly affects the magnetic properties and 

crystallographic structure of the sample. A SEM, JEOL JSM-5910LV, (10 keV 

acceleration voltage beam as discussed in Chapter 6.2.7) with an EDX, Oxford 

Instruments INCA, using a Si detector was used to measure the composition of the AF 

Heusler alloy films. For the composition analysis Mn2VSi, Mn3Ga and Mn3Ge 

samples were grown at a thickness of 100 nm on Si substrates at a bias voltage of 900 

V. 10 data points were measured using 10 keV electron beam energy for averaging, 

the results are listed in Table 7.1. A lower electron beam energy such as 5 keV cannot 

penetrate the thin film. A higher electron beam energy may destroy the sample surface 

and change the composition because Gallium has much lower melting point (302 K) 

than Manganese (1517 K). Therefore Gallium is easily evaporated during the 

deposition leading to a Mn-rich film. It is worth to note that the sample was assume to 

be a homogeneous solid so that the absolute quantification of the chemical 

composition of the film may contain a systematic error.  
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Table 7.1 Results of the chemical analysis performed by JEOL JSM-5910LV 

scanning electron microscope. 

Heusler Alloy 

X2YZ/X3Z 
Bias Voltage (V) 

Composition (±𝟏𝟎 %) 

X Y Z 

Mn2VSi 900 55.16 17.87 26.97 

Mn3Ga 900 70.03 - 29.97 

Mn3Ge 900 73.04 - 26.96 

 

7.2 Structural Characterisation of Polycrystalline Mn2VSi 

Polycrystalline Mn2VSi films (80 nm thick) were deposited on Si (001) substrates and 

capped by a 3 nm Al layer using a PlasmaQuest high target utilisation sputtering system 

(HiTUS) at room temperature (RT). The deposition rate of the Mn2VSi films was 

typically 0.07 nm/s. However, there is no crystallisation observed in the as deposited 

Mn2VSi alloy. Hence, it is necessary to introduce a seed layer and a high growth 

temperature in order to promote the crystallisation of Mn2VSi.  As we will show later 

(page 113), 80nm thick film supports A2-type phase. 

Previous work conducted by Sagar et al. [110] showed that using a lattice matched seed 

layer improves the crystallisation of ferromagnetic Heusler alloys at low post-annealing 

temperatures. For Mn2VSi, chromium and silver were used as a buffer and seed layer 

respectively as shown in Figure 7.1. A 3 nm thick Cr buffer layer is used to smooth out 

the surface of the substrate and to promote adhesion and to prevent island growth of 

Ag. Silver was chosen as a suitable seed layer because the lattice mismatch was 

calculated to be 2% when the crystals were oriented at 45o to the Mn2VSi. According 

to Whear et al., the optimum thickness of the Ag seed layer is 15 nm as reported for 

Ni2MnAl [128]. Due to the similarity between two materials, the same seed layer 

thickness is assumed to be optimal for MnVSi. 
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During the Mn2VSi deposition the substrates were heated to temperatures between 473 

K and 730 K. It is important to note that during deposition at high temperature, the 

samples are easily oxidised. As a consequence, the pressure inside the sputtering 

chamber is required to be below 4 × 10−7 mbar to avoid any oxidation. As shown in 

Figure 7.2 (a), the peaks from θ-2θ XRD scans show the integrated area and width 

which indicate crystallisation orientation as a function of the deposition temperature. 

The roughness of the curves was due to the noise during the measurement. Samples 

which were sputtered at the highest temperature (723 K) were found to show a 

significantly stronger Mn2VSi(220) peak at about 46.1o than those grown at lower 

temperatures (<723 K) [see Figure 7.2(a)]. This at least confirms the formation of the 

A2 phase. In particular, the films grown at 723 K provided the strongest Mn2VSi(220) 

Heusler peak, whose full width half maximum (FWHM) is measured to be 0.396o for 

the 80 nm thick case. This is almost a factor two reduction in the FWHM compared 

with the other samples, such as those grown at 523 K (FWHM= 1.27o). Post-annealing 

was also used to compare with the heated growth method as described above. Here, the 

samples were grown at room temperature using HiTUS. The sputtered films were then 

placed into an annealing furnace (Carbolite, MTF 10/25/130, maximum temperature: 

1273 K) for post-annealing at elevated temperatures between 573 and 923 K for 3 hours 

under 8×10-5 mbar. The XRD results for the post-annealed samples are shown in Figure 

7.2(b). The Mn2VSi(220) peak at about 45.1o is much less significant (FWHM=0.52o 

Cr 3 nm 

Si Sub 

Ag 15 nm 

Mn2VSi 25-80 nm 

(T=RT-730 K) 

CoFe0 or 3 nm 

Al 3 nm 

Figure 7. 1 Schematic diagram of Mn2VSi films deposited 
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for 873 K, for example, as listed in Table 7.2) than those for the films grown at high 

temperature. In Figure 7.2(c), a structural comparison is shown between 25 and 80 nm 

thick Mn2VSi films. Here, the 80 nm-thick Mn2VSi film show the Mn2VSi(220) peak, 

confirming the formation of the A2 phase at least. 
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Figure 7.2 XRD scans for (a) 80 nm Mn2VSi samples grown at elevating 

temperatures, (b) 80 nm Mn2VSi samples post-annealed at elevating 

temperatures and (c) different thickness of Mn2VSi samples grown at 723 K. 
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Table 7.2 List of Mn2VSi(220) peak with different post-annealed temperature. 

 

 

The corresponding X-ray reflectivity (XRR) results are shown in Figure 7.3. For the 

post-annealed films, weak oscillations indicate that interface between layers are rough. 

This is because during the post-annealing process the whole sample is heated, causing 

the diffusion at the interface between each layer. The 25 nm thick Mn2VSi film grown 

at 723 K shows the smoothest interfaces. By fitting the result using GenX [114], the 

estimated thicknesses are Cr (2.8 ± 1.8) nm/Ag (17.2 ± 1.2) nm/Mn2VSi (24.0 ± 0.3) 

nm/CoFe (3.7 ± 0.2) nm/Al (2.3 ± 0.2) nm. On the other hand, the 80 nm thick Mn2VSi 

film grown at 723 K shows rougher interface. These results indicate that the thinner 

films minimises the interfacial diffusion during the deposition. However the thinner 

samples show smaller average grain size (no Mn2VSI (220) peak shown at 46.1o for 

25 nm) as compared with the thicker layer (FWHM= 0.396 o for 80 nm), as shown in 

Figure 7.2(c). This is because the thickness of Mn2VSi is too thin for the XRD signal 

to be detected. Therefore, the films are optimised to grow at 723 K with 80-nm-thick 

Mn2VSi layer to obtain a preferred crystallisation orientation. 

Post anneal 

temperature 
723 K 773K 823 K 873 K 923 K 

FWHM of Mn2VSi 

(220) peak 
0.93° 1.80° 0.53° 0.52° 0.46° 

Figure 7.3 X-ray reflectivity scans for Mn2VSi/CoFe films grown at 723 K and post-

annealed at 723 K. 
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Samples studied in this work were all polycrystalline where the diffraction patterns 

usually containing a combination of amorphous, highly-textured polycrystalline layers 

and single crystal substrate. Scherrer’s grain size analysis is a simple method to 

estimate the average grain size in a material from the width of an XRD peak. In 

general, a sharp peaks (small FWHM) indicate large grains, whereas broader peaks 

(large FWHM) indicate small grains. This is described by the Scherrer equation: 

 

 𝐷 =
𝐶𝜆𝑅

FWHM cos𝜃
 (7-1) 

 

where D is the average grain diameter, C is a constant close to unity which has a value 

of 0.94 [129], 𝜆𝑅 is the wavelength of the radiation, 𝜃 is the Bragg reflection angle. 

Noteworthy, the unit of FWHM needs to be in radian when operating the calculation 

using equation (7-1). The broadening effect will occur when the Bragg reflection angle 

is large due to the inverse proportionality between the grain size and the diffraction 

angle. 

The grain size of Mn2VSi grown at 723 K and 523 K was estimated using the Scherrer 

analysis as discussed in Chapter 6. The average grain diameter of 80 nm thick Mn2VSi 

grown at 723 K is (22.6±0.3) nm, whereas the film grown at 523 K shows a much 

smaller grain diameter of (7.0±0.2) nm. This result indicates samples deposited at 

higher temperature have larger grain size, and hence it’s easier to be detected using 

XRD. 

 

7.3 Magnetic Characterisation of Polycrystalline Mn2VSi 

The magnetic characteristics of the Mn2VSi samples were measured using a 

Microsense VSM. The 80-nm-thick Mn2VSi films were deposited on a 16 × 16 mm2 

single crystal Si substrate with 3-nm-thick Cr and 15-nm-thick Ag as buffer and seed 

layers at elevated temperatures. The substrate was cut into 5 × 5 mm2 pieces using a 

diamond pen in order to fit into the VSM probe. Similar to Mn3Ga films to be 

discussed later, the samples were measured by VSM at room temperature showing 

paramagnetic behaviour as shown in Figure 7.4. There is no hysteresis loop found 

which indicates that the paramagnetic behaviour may be contributed by the seed layer 
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and hence Mn2VSi shows no net magnetic moment at elevated temperature due to its 

antiferromagnetic nature. 

 

In order to verify if the Mn2VSi thin films are antiferromagnetic, a 3 nm ferromagnetic 

layer was deposited on the top of the Mn2VSi layer. When materials with 

ferromagnetic (F) ordering and antiferromagnetic (AF) ordering are in close contact 

and are field-cooled below the Néel temperature (TN) of the AF, an exchange bias is 

induced in the F layer (as discussed in Chapter 5). The exchange bias introduces a shift 

in the hysteresis loop along the field axis, which is in the opposite direction of the 

setting field. Two F materials are compared for the exchange bias measurements; 

Co0.6Fe0.4 and Co2FeSi. The CoFe alloy is a commonly used high magnetisation 

ferromagnet which allows for reduced thicknesses of the thin film while keeping the 

values of the magnetisation detectable. Co2FeSi is a well-known ferromagnetic 

Heusler alloy that was reported to couple well to AF materials such as IrMn [130]. 

Moreover, the ferromagnetic Heusler alloy allows in theory for lattice matched 

coupling between the AF and F thin films as they both have similar size unit cells. As 

shown in Figure 7.5, two samples were measured using the VSM at 100 K. The 

Figure 7.4 Magnetisation curve for polycrystalline Cr (3 nm)/Ag (15 nm)/Mn2VSi (80 

nm)/Al (3 nm) films measured at room temperature. 
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coercivity for Mn2VSi/CoFe film is 200 Oe whereas for the Mn2VSi/CoFeSi film, it 

is only 23 Oe. In the rest of this study, Co0.6Fe0.4 was chosen as the F layer. 

In Figure 7.6 the loops also show an increase in their coercivities, HC, from 114 Oe to 

200 Oe with the increase in the thickness of the AF layer from 25 nm to 80 nm. It 

should also be noted that a significant decrease in the remanence is observed as the AF 

layer thickness increases as shown in Figure 7.6, indicating that the thicker AF layer 

may form a rough surface inducing the formation of a magnetically dead layer at the 

Mn2VSi/CoFe interface. If the measurement is performed at a temperature close to TN 

of the AF, the changes in the hysteresis loop become smaller. In Mn2VSi, we use the 

setting temperature of 498 K for 90 minutes to ensure the AF layer paramagnetic. Under 

an external field of 20 kOe, the spin moments in the CoFe layer are aligned along the 

direction of the field. The samples with different thicknesses of the Mn2VSi layer are 

measured at 100 K. The samples with the 80 nm Mn2VSi layer are found to induce the 

largest exchange bias of about 30 Oe, whereas the rest of the samples show their 

exchange biases of less than 10 Oe (see Figure 7.6). This indicates that the Mn2VSi 

cannot align their spin moments antiferromagnetically and hence cannot induce a large 

exchange bias.  

 

Figure 7. 5 Magnetisation loops for Mn2VSi/CoFe (in black) and Mn2VSi/CoFeSi 

(in red) measured at 100 K. 
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The activation temperature (TACT) is also measured to determine the blocking 

temperature (TB), where the exchange bias becomes zero. In polycrystalline systems, 

individual grains have their own TB and hence the average TB is measured using the 

York Protocol [14]. The samples are uniformly set by thermal activation to the same 

setting state as described above (498 K for 90 minutes) before being cooled to TNA (a 

temperature at which no thermal activation occurs), thereby removing any magnetic 

history. By using a saturating magnetic field (20 kOe) at a setting temperature (TSET) 

that is above TN of the AF Mn2VSi film (estimated to be below 498 K) [131] but below 

the Curie temperature (TC) of the F CoFe film (1273 K). A period of 90 minutes would 

reverse any activated grains to their original ‘set’ state. This period also negate any 

thermal activation that may occur during the temperature rise and fall [14]. The sample 

is then cooled down to TNA. TNA is set to 100 K because this is the lowest temperature 

the VSM can achieve. The magnetisation orientation of the F layer is then reversed. 

The sample is then heated for 30 minutes to an activation temperature TACT, followed 

by cooling back to TNA. A revered field is applied so that can remove the first loop 

training effect (as discussed in Chapter 6) and measuring at TNA ensures that slow 

thermal training does not occur. The average exchange bias is measured to be 34 Oe 

at 100 K as shown in Figure 7.7. Here, the exchange bias does not go to zero as 

Figure 7.6 Magnetisation loops of Mn2VSi/CoFe (3 nm) layers with 

different Mn2VSi layer thicknesses grown at 723 K. 
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temperature changes. This result indicates that the blocking temperature is below 100 

K. These characteristic temperatures can be engineered by substituting some 

constituent atoms in Mn2VSi with other atoms as similarly demonstrated in 

ferromagnetic Heusler alloy [132] which may increase the anisotropy of AF layer. 

 

Mn2VSi is confirmed to be antiferromagnetic, where the corresponding exchange bias 

of 34 Oe at 100 K is measured when a 3 nm ferromagnetic CoFe layer is deposited on 

the top of the Mn2VSi layer. The film with an 80 nm thick AF layer is found to be 

optimised for the growth at 723 K. Post-annealed samples provided large surface 

roughness and causing the diffusion at the interface between each layers, resulting in 

no exchange bias induced at the Mn2VSi/CoFe interfaces. The blocking temperature 

of Mn2VSi grown at 723 K is estimated to be below 100 K. These magnetic properties 

can also be improved by substituting the constituent atoms with the other elements, 

suggesting a potential of Mn2VSi to be used as an antiferromagnet in a spintronic 

device. 

Figure 7.7 Magnetisation curves for the 80-nm-thick Mn2VSi/Co0.6Fe0.4 film for 

different activation temperatures between 103 K and 448 K. 
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The experimental results for polycrystalline Mn2VSi were compared with epitaxial 

Mn2VAl film reported by T. Tsuchiya et al. [60] Similar to Mn2VSi film, the A2-type 

Mn2VAl films deposited at 673 K also showed no spontaneous magnetisation 

indicating antiferromagnetic behaviour. The exchange bias of both antiferromagnetic 

Heusler alloys is small (34 Oe at 100 K for polycrystalline Mn2VSi film and 120 Oe 

at 10 K for epitaxial Mn2Val film). The estimation of low blocking temperature for 

Mn2VSi also agrees with that of Mn2VAl (approximately 200 K [133]).  

  



120 
 

7.4 Structural Characterisation of Polycrystalline Mn3Ga 

20 nm Mn3Ga films were initially grown directly on Si(001) single crystal substrates 

with a 5 nm of Pt capping layer under various bias voltages ranging from 300 V to 900 

V at room temperature. As shown in Figure 7.8(a), there is a large possibility that 

Mn3Ga(0002) peak is overlapped with Pt(111) and no change in crystallisation can be 

observed by changing the bias voltage during the growth. When the growth 

temperature increases from room temperature to 673 K, the crystallisation still remains 

unchanged as shown in Figure 7.8(b). Therefore, the crystallisation of Mn3Ga has a 

relatively weak relationship to temperature and bias voltage as compared with the 

other Heusler alloys. 

Figure 7.8 (a) XRD scans for the 20 nm Mn3Ga samples deposited under different 

bias voltage. (b) XRD scans for the 20 nm Mn3Ga samples deposited under elevating 

growth temperature. 
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The samples for detailed study were grown on 16 × 16 mm2 Si(001) substrates at 

room temperature with a Ta (5 nm) and Pt (35 nm) as a seed layer and were capped 

with a Ta layer (5 nm) to prevent oxidation using a HiTUS system with a base pressure 

of 5×10-7 mbar. The plasma was generated by a radio frequency (RF) field of 13.56 

MHz in an Ar atmosphere of 3×10-3 mbar [109]. As mentioned in Chapter 3, the 

crystallisation of Heusler antiferromagnetic films are strongly dependent on the seed 

layer and substrate. Platinum was used as a seed layer due to its good lattice match to 

Mn3Ga [77]. The (0001) plane of Mn3Ga aligns the (111) plane of Pt with a small 

lattice mismatch of 2%, as shown in Figure 7.9 (a) and (c).  

 

(d) 

(a) (b) 

(c) 

Ta 5 nm 

Si Sub 

Pt 35 nm 

Mn3Ga 3-20 nm 

CoFe0 or 3.3 nm 

Ta 5 nm 

[001] 

[100] [010] 

[010] 

[100] 

[001] 

[100] [010] 

Figure 7.9 (a) projection of D019 hexagonal Mn3Ga along the (0001) plane, (b) schematic 

diagram of Mn3Ga unit cell, (c) schematic diagram of cubic Pt along the (111) plane and (d) 

schematic diagram of the Mn3Ga film deposited. 
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The 16 × 16 mm2samples were first characterised by XRD in order to confirm the 

crystal structure of the Mn3Ga layers. A Rigaku SmartLab X-ray diffractometer was 

used in this study. This apparatus employs the use of a high intensity 9 kW rotating 

anode X-ray generator. It operates with a voltage of 45 kV and a current of 200 mA. 

A Cu target was used as the X-ray source which generates a beam with Kα1 and Kα2 

X-rays whose wavelengths are 1.541Å and 1.544 Å, respectively. Germanium is used 

in the incident monochromater crystal system, which allows for the diffraction of X-

rays. Ge(220)×2 crystals were fitted to produce monochromatic X-rays by diffracting 

them twice by the Ge(220) lattice planes. Passing X-rays through this crystal makes it 

possible to use only Kα1 X-rays with approximately 0.003° divergence.  Large sample 

size is used in order for the X-ray diffractometer to increase the signal to noise ratio. 

A comparison between two sets of samples with different substrate size measured 

using different conditions is shown in Figure 7.10.  
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The multi peaks around Si(400) in Figure 7.10(b) are the reflection peak of Si(400) 

from the X-ray sources with different wavelength. When the Ge(220)×2 crystals 

monochromater is used as shown in Figure 7.10(a), the multi reflection peaks are 

filtered leaving a clean Si(004) single peak. The red line from Figure 7.10(b) is shifted 

slightly to the left due to misalignment during the measurement. 

The samples grown at room temperature at a 900 V bias voltage are measured in air. 

𝜃-2𝜃 XRD scans indicate the variation in the degree of the crystallisation with respect 

to different thicknesses of the Mn3Ga layers from 6 nm to 20 nm as shown in Figure 

7.11.The XRD spectra show that, as the thickness of Mn3Ga layer increases, the (0002) 

and (0004) peaks become more intense and sharper. This is because thicker Mn3Ga 

layers provide stronger signals. The 20 nm thick Mn3Ga film shows a clear (0002) 

peak at 41.3° as shown in Figure 7.11. By splitting Pt(111) and Mn3Ga(0002) peak, it 

is clear that as the AF thickness decrease from 20 nm to 6 nm the FWHM of the peaks 

linearly increase from 0.62° to 0.943°as shown in Figure 7.11 (b). Hence the average 

grain size decrease from 15.2 nm to 10.0 nm using Scherrer analysis. When the Mn3Ga 

layer thickness is reduced to 6 nm the signal is too weak to distinguish the (0002) peak 

from the Pt(111) peak. A pole figure scan is required for to confirm the crystallinity 

Figure 7.10 (a) 16 × 16 mm2samples measured using Ge(220)×2 crystals 

monochromater. (b) 5 × 5 mm2samples measured without Ge(220)×2 crystals 

monochromater. 
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as shown in Figure 7.11(c) for the 6 nm Mn3Ga film. From the pole figure scan for the 

6-nm-thick Mn3Ga film, the central peak confirms the presence of Mn3Ga(0002) peak 

at 41.3o, corresponding to the hexagonal D019 phase. According to the distance from 

the outer ring to the centre spot, the in-plane rotation angle alpha is found to be 19.0o 

which indicates the outer ring represents the Pt(111) with polycrystalline nature. It 

should be noted that the central Mn3Ga(0002) peak is well separated from that of the 

Pt(111).  

 

20 40 60 80

0

2

4

6

8
(a)

M
n

3
G

a
 (

0
0
0

2
)

P
t 

(2
2
2

)

S
i 
(0

0
4
)

S
i 
(0

0
2
)

C
o
F

e
 (

0
1
1

)

M
n

3
G

a
 (

0
0
0

4
)

P
t 

(1
1
1

)

In
te

n
s
it
y
 [
a
rb

.u
n
it
]

 (
o
)

 Mn3Ga-6nm

 Mn3Ga-10nm

 Mn3Ga-20nm

34 36 38 40 42

0

2

4

6

6 8 10 12 14 16 18 20

40.75

40.80

40.85

40.90

40.95

P
e

a
k
 p

o
s
it
io

n
 (

o
)

AF layer thickness (nm)

0.5

0.6

0.7

0.8

0.9

1.0

 F
W

H
M

 (
o
)

(b)

M
n

3
G

a
 (

0
0

0
2

)

P
t 

(1
1

1
)

In
te

n
s
it
y
 [
a
rb

.u
n
it
]

2(
o
)

 Mn
3
Ga-6nm

 Mn
3
Ga-10nm

 Mn
3
Ga-20nm



125 
 

 

 

The Mn3Ga layer has been reported to be stabilised in a hexagonal D019 crystal 

structure ε-Mn3Ga with antiferromagnetic behaviour [41]. The lattice parameters of 

the Mn3Ga films in the D019 and D022 phases are listed in Table 7.3. From the XRD 

scan, it is proved that the sample has purely D019 antiferromagnetic phase. For 

comparison with Mike Coey’s paper on epitaxial Mn3Ga films grown at high 

temperature [77], the polycrystalline Mn3Ga film grown at room temperature in our 

work shows similar degree of crystallinity. The lattice parameter c calculated using 

XRD scan in this work is 0.441 nm which agrees with the value calculated by Kurt et 

al, [77]. 

 

Table 7.3 Comparison between the D019 and D022 phases of Mn3Ga. 

Structure Hexagonal D019 Tetragonal D022 

Magnetic phase Antiferromagnetic Ferrimagnetic 

Lattice parameter a = 0.540, c = 0.436 nm [77] a = 0.391, c = 0.712 nm [72] 

2θ observed 41.30o (0002) 

89.9o (0004) 

N/A 

(c) 

Figure 7.11 (a) XRD scans for the Mn3Ga samples with different thicknesses 

(CoFe thickness of 3.3 nm). (b) Separated Mn3Ga (0002) peak intensities. (c) 

Pole figure scan at 41.45o for the 6-nm-thick Mn3Ga film. 
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According to Meiklejohn and Bean [52] (see Chapter 4.1.2) exchange coupling is 

induced at the sharp interface between AF/F layers. X-ray reflectivity (XRR) 

measurements are carried out for the 6-nm-thick-Mn3Ga film confirming the presence 

of a sharp interface between the Mn3Ga and FeCo layers as shown in Figure 7.12. 

Using the GenX software [114] to fit the data, the estimated thicknesses are: Ta 

(6.0±0.4) nm/Pt (34±2) nm/Mn3Ga (5.8±0.9) nm/CoFe (4±1) nm/Ta (4±1) nm.  

 

To ascertain the role of the grain size, we carried out grain size analyses using TEM 

(JEOL JEM-2011 TEM). A Lanthanum hexaboride (LaB6) filament is fitted at the top 

of the apparatus which is operated under high vacuum of 10-8 Pa. The 6 nm thick 

Mn3Ga was deposited on a carbon coated copper TEM grids using a HiTUS sputtering 

system. More than 500 individual grains were measured which followed a lognormal 

distribution as shown in Figure 7.13. The mean grain size was measured to be 13.2 nm 

with a standard deviation of 0.4.  
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Figure 7.12 XRR scan for the 6-nm-thick Mn3Ga/3.3-nm-thick CoFe film. 
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7.5 Magnetic Characterisation of Polycrystalline Mn3Ga 

The magnetic characteristics of the Mn3Ga samples were measured using a Model 10 

Microsense VSM, and X-ray photoemission electron microscopy (XPEEM). The 20-
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Figure 7.13 (a) Plan-view TEM image for grain size analysis for the 6 nm 

thick Mn3Ga thin film. (b) Grain size distribution for the 6 nm thick Mn3Ga 

thin film sample. 

Figure 7.14 Magnetisation curve for polycrystalline Mn3Ga (20 nm)/Pt (5 nm) 

films measured at room temperature. 
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nm-thick Mn3Ga film with a 5-nm-thick Pt capping layer grown at elevated 

temperatures showed weak paramagnetic behaviour at room temperature.  

As shown in Figure 7.14, no hysteresis loop is found which indicates that the 

paramagnetic behaviour observed is likely produced by the Pt layer and hence Mn3Ga 

layer is confirmed to be antiferromagnetic. 

As mentioned in Chapter 5, exchange bias is the consequence of an interfacial 

exchange interaction between the AF and F materials. Hence a ferromagnetic layer 

was deposited above the Mn3Ga. Two ferromagnetic Co and Co0.6Fe0.4 alloys are used 

and compared. The magnetisation curves are shown in Figure 7.15. It is very clear that 

the sample with CoFe layer exhibits larger coercivity and exchange bias compared to 

that with the Co layer. 

 

 

 

 

Figure 7.15 Magnetisation curves for the polycrystalline Mn3Ga (6 nm)/Co0.6Fe0.4 (3.3 

nm) (red line) and Mn3Ga (6 nm)/Co (3.3 nm) (black line) films measured at 120 K.  
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The magnetisation curves for the Mn3Ga/Co0.6Fe0.4 samples measured at 120 K after 

setting at 500 K under an applied magnetic field of 20 kOe are shown in Figure 7.16. 

As can be seen, all M-H curves are shifted horizontally, which demonstrates the 

presence of exchange bias in the system. In order to achieve the largest exchange bias, 

the AF/F layer thicknesses have been optimised. 
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Figure 7.16  (a) Magnetisation curves for the polycrystalline Mn3Ga/Co0.6Fe0.4(3.3 

nm) films with different Mn3Ga thicknesses of 6 (blue line), 10 (red line) and 20 

nm (black line) measured at 120 K. (b) Magnetisation curves for the polycrystalline 

Mn3Ga (6 nm)/Co0.6Fe0.4 films with different CoFe thicknesses of 3.3 (black line), 

6 (red line) and 9 nm (blue line) measured at 120 K. 
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The 6-nm-thick Mn3Ga film shows the largest exchange bias of 430 Oe at 120 K. The 

saturation magnetisation of the Mn3Ga/Co0.6Fe0.4 sample, (1300 ± 100) emu/cm3, 

arises from the 3.3-nm-thick ferromagnetic Co0.6Fe0.4 layer, since the individual 

Mn3Ga layer shows no magnetisation between 100 and 300 K. Hence the observed 

magnetisation can be attributed to that of the Co0.6Fe0.4 layer only, which is very close 

to the bulk value for Co0.6Fe0.4 (1450 emu/cm3) [21]. For the 10- and 20-nm-thick 

films, the exchange bias is measured to be 299 and 270 Oe, respectively. By increasing 

the Mn3Ga thickness, the exchange bias is found to decrease.  Such effect can be due 

to a combinations of factors: on the one hand, at small thicknesses, one may expect a 

larger seed-layer-induced strain, which may lead to an increased magnetocrystalline 

anisotropy in Mn3Ga. At larger thicknesses, strain relaxation sets in, leading to rougher 

interfaces and possible reduction in the anisotropy, hence to a smaller exchange bias. 

In addition, the grain volume also has strong impact. As the results shown from XRD 

measurement, thicker AF films have larger grain volume which cannot be set by the 

setting, hence the exchange bias goes down [14]. For a fixed Mn3Ga thickness (6 nm), 

it is found that, as the thickness of Co0.6Fe0.4 increase from 3.3 nm to 9 nm, the 

exchange bias decreases significantly from (430±5) Oe to (130±5) Oe, as seen in 

Figure 7.16(b). This is in agreement with other studies, where a thin ferromagnetic 

layer attached to an AF layer with good crystalline ordering maximises the interfacial 

exchange coupling Hex ∝ 

1

𝑡𝐹
 [134]. Table 7.4 summarises the values of the exchange 

bias for all samples studied. The error of the results in Table 7.4 comes from the 

measurement step size, 10 Oe, was used during the measurement hence the error was 

considered to be half of the step size, i.e., 5 Oe. 
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Table 7.4 Values of exchange bias with different layer thicknesses. 

 

 

 

 

 

 

 

 

 

 

 

 

In order to determine the blocking temperature (TB), i.e., the point at which the 

exchange bias vanishes, the activation temperature must be considered. This is usually 

carried out by raising the activation temperature until the loop shift becomes zero. In 

polycrystalline systems a single grain has a unique TB. Figure 7.17 illustrates TB 

measured using the York Protocol [17]. In order to ensure that no magnetic history 

affects the measurements, the sample temperature is set to TSET = 500 K (lower than 

TN) for 90 minutes under an external field of 20 kOe, and then cooled to TNA = 100 K. 

The external field is then reversed to -20 kOe, and the samples are then thermally 

activated at a temperature between 100 K and 350 K for 30 minutes. The sample is 

then cooled down to 100 K and the hysteresis loop is measured. The result of a 

sequence of such measurements for the 6-nm-thick Mn3Ga sample is shown in Figure 

7.17. The data clearly shows the evolution of the loop shift from a negative magnetic 

field shift of -430 Oe to a positive field value of 500 Oe by increasing the activation 

temperature from 100 K to 350 K. The loop shift is caused by the reorientation of the 

magnetisation of the Mn3Ga/CoFe bilayer with the individual Mn3Ga grains due to the 

thermal activation in a negative field. By increasing the activation temperature, the 

magnetisation in smaller grains can be reversed [19]. Therefore, the temperature where 

Mn3Ga/Co0.6Fe0.4 Exchange bias (± 5 Oe) 

3 nm/3.3 nm 47 

6 nm/3.3 nm 430 

10 nm/3.3 nm 299 

20 nm/3.3 nm 270 

6 nm/2 nm 385 

6 nm/3.3 nm 430 

6 nm/ 6 nm 223 

6 nm/ 9 nm 130 
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the exchange bias becomes zero represents the equilibrium state between the total 

volume of the grains aligned along the initial magnetic field and that of the grains 

reversed by the thermal energy induced by the increase in temperature. This is the 

definition of the median blocking temperature of an antiferromagnetic material. <TB> 

for the 6-nm-thick Mn3Ga sample is estimated to be (225 ± 5) K. 

The blocking temperature for the other thickness films are also measured as shown in 

Figure 7.18. Noteworthy, there is an artefact at zero field for the 10 nm sample in 

Figure 7.18(a). This is because of the sample surface contamination during the 

measurement. The artefact is disappeared after placing the sample in acetone acid 

clean for 30 minutes and then washing the acetone residual using isopropanol 

efficiently removed the contamination from the sample. The sample was re-measured 

at activation temperature 125 K, the results are shown in Figure 7.18(c). It is worth to 

note that, the artefact near zero field does not affect the magnitude of exchange bias 

and saturation magnetisation, hence the results are still reliable.   
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Figure 7.17 Magnetisation curves for the 6-nm-thick Mn3Ga/Co0.6Fe0.4 film for 

different activation temperatures between 100 K and 350 K. 



133 
 

 

 

Figure 7.19 shows that the exchange bias varied monotonically as a function of the 

thermally activating temperature. Interestingly, the blocking temperature is found to 

decrease when the Mn3Ga thickness is increased, from (235±5) K for the 10-nm-thick 

film to (175±5) K for the 20-nm-thick film. A possible explanation is that this may be 

attributed to the larger textured strain by the Pt buffer layer (as shown in the embedded 
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Figure 7.18 Magnetisation curves for the (a) 10-nm-thick and (b) 20-nm-thick 

Mn3Ga/Co0.6Fe0.4 films for different activation temperatures between 100 K and 

300 K. (c) Magnetisation curve for the 10-nm thick Mn3Ga/Co0.6Fe0.4 film after 

cleaning in acetone for 30 minutes and measured with activation temperature set 

to be 125 K. 
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graph within Figure 7.11 (b), the peak position shifts as the AF thickness decreases) 

and a smoother interface at smaller Mn3Ga thicknesses. These results indicate that the 

quality of the Mn3Ga/Co0.6Fe0.4 interface controls the exchange bias. For the 6-nm-

thick Mn3Ga, a reduction in the blocking temperature is found, which is attributed to 

reduction in the total magnetic anisotropy of the Mn3Ga due to the reduced thickness 

[14]. Nevertheless, the 6-nm-thick Mn3Ga induces the largest exchange bias of 430 

Oe at 120 K.  

 

It is worth noting that there is a large difference between the Néel temperature (470 K) 

[65] and measured blocking temperature <TB> of Mn3Ga, which may be related to the 

weak anisotropy and a small grain size. Combining the grain size analysis showed in 

the previous section 7.1 and the blocking temperature value, the magneto-crystalline 

anisotropy 𝐾𝐴𝐹 can be estimated. 

As mentioned in Chapter 6, for the case when the sample is thermally stable at the 

temperature of measurement and has been fully set, the magneto-crystalline anisotropy 

can estimated using the expression [90]: 

 𝐾𝐴𝐹(< 𝑇𝐵 >) =
𝑙𝑛(1800𝑓0)𝑘𝑇𝐵

< 𝑉 >
 (7-2) 
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Figure 7.19 Temperature dependence of exchange bias determined for the 

Mn3Ga/Co0.6Fe0.4 films with the Mn3Ga thickness of 6, 10 and 20 nm. 
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where 𝐾𝐴𝐹  indicates the magneto-crystalline anisotropy, < 𝑇𝐵 >  is the median 

blocking temperature, 𝑓0 is an attempt frequency generally taken to be 109 s-1 and V is 

the median grain volume. In reality, not all the sample is thermally stable at the 

measurement temperature (100 K) hence those grains will not be taken into account 

during the calculation. The anisotropy value was calculated to be 9 × 104𝐽/𝑚3. For 

comparison, the value for IrMn is almost two orders of magnitude higher. This leads 

to lower the blocking temperature for the Mn3Ga samples.  

For comparison with the paper on epitaxial hexagonal Mn3Ga films grown at high 

temperature by Kurt et al. [77], the 20-nm-thick Mn3Ga film shows an exchange bias 

of 240 Oe at 300 K; whereas in our work an exchange bias of 430 Oe was observed at 

100 K with much thinner AF layer thickness (6 nm). Similar coercive field about 500 

Oe is also observed in both works. 

In addition, X-ray photoemission electron microscopy (XPEEM) measurements were 

carried out at the SIM beamline at the Paul Scherrer Institute (PSI). In this technique, 

fully polarised X-ray light illuminates the sample homogeneously, and high resolution 

images of the local photo-emitted electron intensity of the sample, which is 

proportional to the X-ray absorption, are recorded. Using circularly-polarised light and 

the X-ray circular magnetic dichroic effect and the elemental sensitivity of X-rays, 

separate magnetic contrast images of different layers can be obtained sequentially on 

the very same region of the sample. Magnetic contrast images of a Mn3Ga (6 

nm)/CoFe (2nm) sample were obtained at the Co and Mn L3 edges at 150 K to probe 

the CoFe and Mn3Ga layers simultaneously. As shown in the Figure 7.20, strong 

magnetic contrast in the CoFe layer is found, as expected for such a ferromagnetic 

material. The different black and white regions correspond to areas with opposite 

magnetisation, showing the presence of a multi-domain state. When probing the Mn 

L3 edge, the presence of a clear magnetic contrast is found which correlates exactly to 

that of the CoFe layer, showing the presence of a spin-polarised Mn3Ga layer at the 

interface. This suggests the formation of an uncompensated Mn3Ga interface spin 

layer in these films which agrees with the large exchange-bias effects observed in this 

system. 
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We also acquired detailed X-ray absorption spectroscopy (XAS) spectra at room 

temperature using both right and left circularly-polarised light, from which we can 

obtain local XMCD spectra can be obtained at a single domain region on the Mn3Ga 

(6 nm)/CoFe (2 nm)/Al (2nm) sample. The capping layer was replace with Al because 

Ta has high atomic number which absorbs electrons quite strongly. Figures 7.21(a) 

and (b) show the XAS spectra taken at the Mn and Co edge with right (C+) and left 

(C-) circular polarisations. Figure 7.21(a) indicates the L3 photon energy of Co is 

around 782.2 eV. Figure 7.21(b) indicates the L3 photon energy of Mn is around 642.6 

eV. The subtraction of these two signals provide XMCD spectra as shown in Figure 

7.21(c) and (d). For the Co spectrum, one can clearly see the domain structure using 

right-circularly-polarised light at L3 and L2 edges as shown in Figure 7.21(e). An 

example of spectra at C+ and C- for the region marked with a blue circle is given in 

Figure 7.21(c). For the Mn spectrum, the domain structure is also available at the L3 

edge and the corresponding XMCD spectrum can also be observed.  

Mn 
edge 

Co 
edge 

XMCD XMCD 

Figure 7.20 Magnetic contrast images of the Mn3Ga (6 nm)/CoFe (2 nm)/Al (2nm) 

sample taken at the Co edge and Mn edge at 150 K (The image field of view is 25μm). 

5 μm 5 μm 
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In the Mn3Ga (6 nm)/CoFe (2 nm)/Al (2 nm) orbital (morb) and spin (mspin) magnetic 

moments of Mn and Co can be estimated from XMCD spectra using the Sum Rules 

[127].  

 𝑚𝑜𝑟𝑏𝑖𝑡𝑎𝑙 = −
4𝑞

3𝑟
(10 − 𝑛3d) (7-3) 

 

Co L3 e Mn L3 
f 

Figure 7.21 (a) and (b) XAS, and (c) and (d) XMCD spectra of the Co and Mn 

edges in the Mn3Ga (6 nm)/CoFe (2 nm) sample, respectively. The corresponding 

XMCD images of (e) Co L3 and (f) Mn L3 edges (The image field of view is 25μm). 

5 μm 5 μm 
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 𝑚𝑠𝑝𝑖𝑛 = −
6𝑝 − 4𝑞

𝑟
(10 − 𝑛3d)(1 +

7 < 𝑇𝑧 >

2 < 𝑆𝑧 >
)−1 (7-4) 

 

 𝑚𝑡𝑜𝑡𝑎𝑙 = 𝑚𝑜𝑟𝑏𝑖𝑡𝑎𝑙 + 𝑚𝑠𝑝𝑖𝑛 (7-5) 

 

As it has been discussed in Chapter 6, 𝑚𝑡𝑜𝑡𝑎𝑙  , 𝑚𝑜𝑟𝑏𝑖𝑡𝑎𝑙   and 𝑚𝑠𝑝𝑖𝑛  are the total 

magnetic moment, orbital magnetic moment and spin magnetic moment respectively. 

< 𝑇𝑧 > is the expectation value of the magnetic dipole operator and < 𝑆𝑧 > is equal 

to a half of 𝑚𝑠𝑝𝑖𝑛  in Hartree atomic unit. The sum rule constant, p, q, and r are 

determined from Figure 7.22 which correspond to the integral of the dichroism spectra 

for the L3 edge, the integral of the dichroism spectra over both the L3 and L2 edges and 

the area of the summed XAS signal after removal of a stepped background respectively. 

In this work, we have used the n3d values from C. T. Chen et al. [126], 5.0 for Mn and 

7.51 for Co, are used to calculate the spin and orbital moment. The results are shown 

in Table 7.5. The orbital and spin moments of Co are estimated to be (0.299±0.005) 

𝜇𝐵 /atom and (1.268 ± 0.005) 𝜇𝐵 /atom respectively. The total moment of Co is 

calculated to be (1.57±0.01) 𝜇𝐵/atom which agrees with the theoretical value of 1.60 

𝜇𝐵 /atom [135]. The orbital and spin moments of Mn are also estimated to be 

(0.270±0.005) 𝜇𝐵/atom and (0.320±0.005) 𝜇𝐵/atom respectively. The total moment 

of Mn is calculated to be (0.59±0.01) 𝜇𝐵/atom which is within the literature value of 

(0.5-2.8) 𝜇𝐵 /atom [63]. These estimated values represent those in the vicinity of 

Mn3Ga/CoFe interface, confirming that the magnetic properties of these layers are not 

affected by their neighbouring layers. 
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Table 7.5 Orbital moments, spin moments and total moment of the Co and Mn from 

Mn3Ga/Co0.6Fe0.4 bilayer samples in units of 𝜇𝐵/atom. 

 

 

 

 

Element 
Orbital moment 

(𝝁𝑩/atom) 

Spin moment 

(𝝁𝑩/atom) 

Total moment 

(𝝁𝑩/atom) 

Co 
0.299±0.005 1.268±0.005 1.57±0.01 

Mn 
0.27±0.005 0.32±0.005 0.59±0.01 
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Figure 7.22 XMCD spectra of the (a) Co and (b) Mn edges in the 

Mn3Ga (6 nm)/CoFe (2 nm) sample.  
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7.6 Structural Characterisation of Polycrystalline Mn3Ge 

Mn3Ge has very similar physical properties compared with Mn3Ga as shown in Table 

7.6. The XRD scan estimated the lattice constant for D019 Mn3Ge which resulted 

a=0.541 nm and c=0.433 nm which agrees with the results reported in Felser’s paper 

[79]. Due to the similarity, the Mn3Ge samples were grown using the same seed layer 

and optimised condition as those for the Mn3Ga samples. Samples with Ta (5 nm)/Pt 

(35 nm)/Mn3Ge (3-25 nm)/Ta (5 nm) layer stacks were deposited using HiTUS system 

at room temperature. As shown in Figure 7.23, as the thickness of AF layer increase 

from 3 to 25 nm there is no crystallisation in Mn3Ge observed. Hence, in order to 

improve the crystallisation samples were deposited under high temperature.  

Table 7.6 Comparison between the D019 and D022 phases of Mn3Ga and Mn3Ge. 

 

It was found that during deposition process, the way samples were annealed strongly 

effect the crystallisation of the film. The results are compared in Figure 7.24, in sample 

A consisting of Ta (5 nm)/Pt (35 nm)/Mn3Ge (100 nm)/Ta (5 nm) all the layers were 

grown under 500 ℃; whereas in sample B consisting of Ta (5 nm)/Pt (35 nm)/Mn3Ge 

(100 nm)/Ta (5 nm) all layers were grown at room temperature except the AF layer 

was grown at 500 ℃.  𝜃-2𝜃 XRD scans indicate both 100-nm-thick Mn3Ge samples 

show a strong D019 hexagonal Mn3Ge(201) peak around 44°. More interestingly, 

sample B indicates hexagonal phases with much sharper full width half maximum 

Structure 
Hexagonal D019 Tetragonal D022 

Material 
Mn3Ga Mn3Ge Mn3Ga Mn3Ge 

Magnetism 
Antiferromagnetic Ferrimagnetic Antiferromagnetic Ferrimagnetic 

Lattice 

parameter 

a = 0.540 nm,  

c = 0.436 nm [72] 

a = 0.534 nm,  

c = 0.433 nm [79] 

a = 0.391 nm,  

c = 0.712 nm [72] 

a = 0.382 nm,  

c = 0.726 nm [80] 

2θ  41.30 o (0002) 

89.9 o (0004) 

41.7 o (0002) 

44.3 o (201) 
- - 

Néel 

temperature 470 K 390 K - - 

Currie 

temperature - - 770 K 895 K 
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(FWHM) than sample A. Single AF layer annealing provides better crystallisation 

because it effectively avoid the interlayer diffusion due to high temperature annealing. 

It is shown in Figure 7.24, the left hand side of the D019 (201) peak for sample A is 

slightly stretched as compared to the theoretical value due to the lattice stretching 

during high temperature annealing. The theoretical 2θ value can be calculated using 

the following equations: 

For hexagonal structure:  

 
𝑑 =

1

√ 4
3𝑎2 × (ℎ2 + 𝑘2 + ℎ𝑘) +

𝑙2

𝑐2

 
(7-6) 

 

 𝜆 = 2𝑑sin𝜃 (7-7) 

 

where d is the lattice spacing, a and c are the lattice constants in the plane and 

perpendicular to the plane, h,k and l are the Miller indices and 𝜆 is the wavelength of 

the X-ray source. Using equation (7-6) and (7-7), the bulk 2𝜃 value for D019 Mn3Ge 

(0002) peak is calculated to be 41.7°. 

For tetragonal structure: 

 𝑑 =
𝑎2

√ℎ2 + 𝑘2 + 𝑙2
 (7-8) 

 

Table 7.7 summarises the observed angle and the corresponding FWHM. In addition, 

by using the Scherrer grain size analysis, the grain size for Mn3Ge is estimated (see 

Table 7.7). Noteworthy, the average grain size for the Mn3Ge increases significantly 

from 14 nm to 33 nm, when a single AF layer is heated during deposition. This result 

indicates that the crystallinity of Mn3Ge is strongly controlled by the growth 

temperature and growth method. 
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Figure 7.24 XRD scans for the Mn3Ge samples with different AF 

thicknesses. 

Figure 7.23 XRD scans for sample A consisting of Ta (5 nm)/Pt (35 nm)/Mn3Ge 

(100 nm)/Ta (5 nm) grown at 500℃. Sample B consisting of the same structure but 

only the 100-nm-thick Mn3Ge layer grown at 500℃ . 
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Table 7.7 List of FWHM for Mn3Ge peaks. 

 Sample A Sample B 

2θ observed 40.93° (0002) 44.36° (222) 41.2° (0002) 43.81° (222) 

FWHM 0.93° 0.49° 0.24° 0.29° 

Grain size 9.5±0.2 nm 18.3±2 nm 36.2±0.2 nm 30.5±0.2 nm 

 

7.7 Magnetic Characterisation of Polycrystalline Mn3Ge 

The magnetic characteristics of the Mn3Ge samples are measured using a Microsense 

VSM. To begin with, a sample with a single layer of 100-nm-thick Mn3Ge and 5-nm-

thick Ta capping layer is measured at room temperature.  

 

 

-3000 -2000 -1000 0 1000 2000 3000

-60

-40

-20

0

20

40

60

M
a
g

n
e

ti
s
a
ti
o

n
 (

e
m

u
/c

m
3
)

Applied field (Oe)

Figure 7.25 Magnetisation curve for the polycrystalline Mn3Ge (100 nm)/Ta (5 

nm) film measured at room temperature. 
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Figure 7.25 shows that the film exhibits partial ferrimagnetic behaviour with a 

saturation magnetisation value of 54 emu/cm3. Noteworthy, the saturation 

magnetisation value for a single layer Mn3Ge film from literature is about 100 

emu/cm3 [136]. Although there is approximately 54% of the film is in the 

ferrimagnetic phase, such a large proportion of the ferrimagnetic phase is not been 

detected by XRD. One possible explanation may be that the antiferromagnetic phase 

is affected by the neighbouring ferrimagnetic and exhibit a small magnetic moment, 

hence effectively increased the ferrimagnetic volume. 

Figure 7.26 indicates the magnetisation curves of Ta (5 nm)/Pt (35 nm)/Mn3Ge (6-40 

nm)/CoFe (3.3 nm)/Ta (5 nm) multilayer system grown at room temperature. Samples 

were field set at 500 K using the same procedure as Mn3Ga for 90 minutes in a field 

of 20 kOe in order to saturate the ferromagnetic phase according to the York Protocol 

discussed in Chapter 5. The samples were then field cooled to 100 K in order to reduce 

thermal fluctuation. As shown in Figure 7.26, the change in AF thickness does not 

make much impact on its magnetic properties and there is no loop shift can be found. 

It may be due to the poor crystallisation of AF layer during the deposition. From the 

data extracted from Figure 7.26 the saturation magnetisation of the Mn3Ge (6 

nm)/Co0.6Fe0.4 (3.3 nm) sample was calculated to be (1020±10) emu/cm3 which is 

dominated by the 3.3 nm Co0.6Fe0.4 layer, as the individual Mn3Ge layer shows a small 

magnetisation of (54±5) emu/cm3. By increasing the Mn3Ge thickness, the saturation 

magnetisation of Co0.6Fe0.4 was found to decrease. For the 25- and 40-nm thick films, 

the saturation magnetisation from Co0.6Fe0.4 component dropped from (746±10) to 

(610±10) emu/cm3. This decrease suggests that the Mn3Ge/Co0.6Fe0.4 interface may 

suffer from intermixing by annealing introducing magnetically dead layers [137]. 
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In addition, the results for heated growth samples show a significant difference in 

coercivity compared with films grown at room temperature. As shown in Figure 7.27, 

the AF layer in the sample was heated to 500℃ during the deposition, the coercivity 
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Figure 7.27 Magnetisation curves for the polycrystalline Mn3Ge/Co0.6Fe0.4 

(3.3 nm) with various AF thickness from 6 nm to 40 nm grown at room 

temperature and measured at 100 K. 

Figure 7.26 Magnetisation curves for the polycrystalline Mn3Ge (100 

nm)/Co0.6Fe0.4 (3.3 nm) film measured at 100 K. 
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of the film was increased to 466 Oe however the exchange bias cannot still be observed. 

The unobserved exchange bias from the film is due to pool interfacial exchange 

coupling between the F/AF layers. By improving the growth condition, it is possible 

to observe the exchange bias. 

However, in the study conducted by C. Felser et al, [79] exchange bias is observed in 

the bulk hexagonal Mn3Ge material. The exchange bias arised from the exchange 

interaction between the antiferromagnetic host and ferromagnetic clusters of Mn3Ge 

materials. The maximum exchange bias observed is 620 Oe measured at 2 K and can 

still be seen at room temperature.  

Due to the limited time to make further investigation on Mn3Ge Heusler alloys, a 

systematic study of this material cannot be accomplished. It would be interesting to 

see samples with different Mn3Ge layer thickness grown at elevating temperature. A 

list of samples growth plan is shown in Table 7.8.  

Table 7.8 List of samples growth plan for future work. 

Sample structure 
Growth 

Temperature (℃) 

Ta (5nm)/Pt (35 nm)/Mn3Ge (10 nm)/CoFe (3.3 nm)/Ta (5 nm) 100-500 

Ta (5nm)/Pt (35 nm)/Mn3Ge (20 nm)/CoFe (3.3 nm)/Ta (5 nm) 100-500 

Ta (5nm)/Pt (35 nm)/Mn3Ge (30 nm)/CoFe (3.3 nm)/Ta (5 nm) 100-500 

Ta (5nm)/Pt (35 nm)/Mn3Ge (40 nm)/CoFe (3.3 nm)/Ta (5 nm) 100-500 

Ta (5nm)/Pt (35 nm)/Mn3Ge (50 nm)/CoFe (3.3 nm)/Ta (5 nm) 100-500 

Ta (5nm)/Pt (35 nm)/Mn3Ge (60 nm)/CoFe (3.3 nm)/Ta (5 nm) 100-500 

Ta (5nm)/Pt (35 nm)/Mn3Ge (70 nm)/CoFe (3.3 nm)/Ta (5 nm) 100-500 
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Chapter 8 

8.1 Conclusion 

The main objective of this work is to develop a new antiferromagnetic (AF) Heusler 

alloy (HA) which could replace IrMn applied in a variety of electronic and magnetic 

random-access memory. After comparing three Heusler alloys Mn2VSi, Mn3Ga and 

Mn3Ge, the conclusion is drawn below. 

Mn2VSi sample used in this study is confirmed to be antiferromagnetic, where the 

corresponding exchange bias of (34±5) Oe at 100 K is measured when a 3 nm 

ferromagnetic CoFe layer is deposited on top of Mn2VSi layer. The film with 80 nm 

thick AF layer is found to be optimised for the growth at 723 K. Post-annealed samples 

provided large surface roughness and causing the diffusion at the interface between 

these layers, resulting in no exchange bias induced at the Mn2VSi/CoFe interfaces. 

The blocking temperature of Mn2VSi grown at 723 K is estimated to be below 100 K. 

These magnetic properties can be improved by substituting the constituent atoms with 

the other elements, suggesting a potential of Mn2VSi to be used as an antiferromagnet 

in a spintronic device. 

Mn3Ge sample grown at 773 K shows a hexagonal D019 crystal structure Mn3Ge with 

antiferromagnetic behaviour from 𝜃 -2 𝜃  XRD scans. However, the magnetic 

measurement indicates that there is approximately 54% of the film is in the 

ferrimagnetic phase, such a large amount of the ferrimagnetic phase have not been 

detected by XRD. One possible explanation may be that the antiferromagnetic phase 

is affected by the neighbouring ferrimagnetic and exhibit a small magnetic moment, 

hence effectively increased the ferrimagnetic volume. Unfortunately no exchange bias 

is observed at the Mn3Ge/CoFe interfaces due to the potential interfacial diffusion at 

high temperature. 

Polycrystalline Mn3Ga films grown by high target utilisation sputtering system are 

confirmed to crystallise in the D019 antiferromagnetic hexagonal structure. By 

coupling to a CoFe layer, it shows a large exchange-bias fields, of up to 430±5 Oe at 

120 K for a 3.3 nm ferromagnetic CoFe layer is deposited on the top of a 6 nm Mn3Ga 

layer. The blocking temperature for 6-nm-thick Mn3Ga is found to be 225±5 K. The 

blocking temperature of Mn3Ga decreases as the thickness of Mn3Ga layer increases. 

The magnetocrystalline anisotropy of Mn3Ga films was calculated to be 9 × 104𝐽/𝑚3. 

XPEEM measurement was also carried out, when probing the Mn L3 edge, a clear 
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magnetic contrast which correlates exactly to that of the CoFe layer is observed, 

showing the presence of a spin-polarised Mn3Ga layer at the interface. This indicates 

an uncompensated Mn3Ga interface spin layer in these films which agrees with the 

large exchange-bias effects observed in this system. Furthermore the XAS spectra was 

taken at the Paul Scherrer Institut (PSI), the Mn3Ga (6 nm)/CoFe (2 nm)/Al (2 nm) 

orbital and spin magnetic moments of Mn and Co was therefore estimated from 

XMCD spectra using the Sum Rules. The orbital and spin moments of Co are 

estimated to be (0.299±0.005) 𝜇𝐵  and (1.268±0.005) 𝜇𝐵  respectively. The total 

moment of Co is calculated to be (1.57±0.01) 𝜇𝐵 which agrees with the theoretical 

value of 1.60 𝜇𝐵[135]. The orbital and spin moments of Mn are also estimated to be 

(0.270±0.005) 𝜇𝐵  and (0.320±0.005) 𝜇𝐵  respectively. The total moment of Mn is 

calculated to be (0.59±0.01) 𝜇𝐵 which is within the literature magnetic moment of Mn 

(0.5-2.8) 𝜇𝐵 [63]. These estimated values represent those in the vicinity of 

Mn3Ga/CoFe interface, confirming that the quality of these layers is not affected by 

their neighbouring layers.  

Overall, from the experimental results observed in my study polycrystalline Mn3Ga 

(due to its low cost for production and large exchange bias) is a more promising 

potential candidate to replace IrMn for application in spintronic devices. The value of 

the exchange bias and the blocking temperature can be further increased by 

substituting some of the Mn and/or Ga atoms with the other elements as reported by 

Nayak et al.[138], which warrants the possibility of Mn3Ga being used in a future 

antiferromagnetic spintronic devices. 

8.2 Future Work 

There is a potential application for Mn-Ga thin films, exchange bias. Since the D019 

hexagonal Mn3Ga demonstrated a large exchange bias, it is becoming a promising 

candidate in spintronic devices. Exchange-bias is applied in giant magnetoresistance 

(GMR) and magnetic tunnel junction (MTJ) spin valve sensors and magnetic random 

access memories (MRAMs) to pin the magnetisation direction of the ferromagnetic 

layer. The strength of the exchange bias is significantly affected by the magnetic 

structure, anisotropy, crystalline order, and layer thickness of the antiferromagnet for 

a given system. In this work, large exchange bias for triangular antiferromagnetic 

hexagonal Mn3Ga sample was observed at 100 K. The next step is to optimise the 
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growth condition and stack layer structure so that room temperature exchange bias can 

be observed. According to Nayak et al.[138], by doping Fe into Mn-Ga compounds 

the temperature dependence of the exchange bias for Mn-Fe-Ga compounds show a 

large exchange bias (more than 1 T) at 2 K which is still observable up to room 

temperature. 

In addition, it is also possible to observe exchange bias up to room temperature in 

antiferromagnetic hexagonal Mn3Ge Heulser alloys [79]. In this work, due to the 

limited research time no exchange bias was found in Mn3Ge samples. However, 

according to Qian et al. [79], by high temperature annealing the bulk Mn3.04Ge0.96 

material, it can be stabilised and shows a antiferromagnetic hexagonal crystal structure 

with  a small fraction of ferromagnetic component with less than 0.1 𝜇𝐵 . In this 

ordered phase exchange bias is observed up to room temperature. 
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Acronyms 
 

Alternating gradient force magnetometer (AGFM) 

Anisotropic magnetoresistance (AMR) 

Charge-couple device (CCD) 

Compensated ferrimagnetic (CF) 

Complementary metal–oxide–semiconductor (CMOS) 

Current in the plane (CIP) 

Current perpendicular to the plane (CPP) 

Density of states (DOS) 

Direct current (DC) 

Energy dispersive X-ray (EDX) 

Face centred cubic (fcc) 

Face centred tetragonal (fct) 

Full width half maximum (FWHM) 

Giant magnetoresistance (GMR) 

Hard disk drives (HDDs) 

Heusler alloy (HA) 

High Target Utilisation Sputtering (HiTUS) 

In plane magnetic tunnel junction (iMTJ) 

Inorganic crystal structure database (ICSD) 

Left circular polarisations (C-) 

Magnetic random access memory (MRAM) 

Magnetic tunnel junctions (MTJ) 

Molecular beam epitaxy (MBE) 
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Paul Scherrer Institute (PSI) 

Perpendicular magnetic tunnel junction (pMTJ) 

Programmable Logic Controller (PLC) 

Right circular polarisations (C+) 

Ruderman-Kittel-Kasuya-Yoshida (RKKY) 

Scanning electron microscope (SEM) 

Spin dependent scattering (SDS) 

Spin transfer torque (STT) 

Surfaces/Interfaces: microscopy (SIM) 

Synthetic antiferromagnet (SAF) 

Transmission electron microscopy (TEM) 

Tunnelling magnetoresistance (TMR) 

Vibrating sample magnetometer (VSM) 

X-ray absorption spectra (XAS) 

X-ray diffraction (XRD) 

X-ray magnetic circular dichroism (XMCD) 

X-ray photoemission electron microscopy (XPEEM) 

X-ray reflectivity (XRR) 
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List of Symbol  
 

𝐴                                                                                                                             Area 

AF                                                                                                     Antiferromagnetic 

A2                                                                             Fully disordered Heusler structure 

𝐵𝑀                                                                                                Magnetic flux density 

B2                                                                        Partially disordered Heusler structure  

C                              Stiffness of the interfacial coupling between the AF and F layers 

D                                                                                                             Grain diameter 

𝐷𝑚                                                                                              Median grain diameter 

d                                                                                                              Lattice spacing 

𝐸C                                                                                  Critical value of energy barrier 

𝐸int                                                                                                      Interfacial energy 

𝐸𝑃                                                                                                 Field potential energy 

𝐸𝑘                                                                                                       Anisotropy energy 

𝐸𝐹                                                                                                               Fermi energy 

F                                                                                                               Ferromagnetic 

𝑓0                                                                                                       Attempt frequency 

𝑓𝑞                                                                                       Uncoated resonant frequency 

𝐻                                                                                                                Applied field 

𝐻ex                                                                                                          Exchange field 

𝐻𝑐                                                                                                                   Coericivity 

𝐻𝑛                                                                                                          Nucleation field 

𝐻𝑘                                                                                                          Anisotropy field 

𝐽int                                                                                     Interfacial coupling constant 

𝐽c                                                                                                   Write current density  

K                                                                                                     Anisotropy constant 

𝐾𝐴𝐹                                                                   Anisotropy constant of antiferromagnet 

𝐾F                                                                           Anisotropy constant of ferromagnet 

Ku                                                                                                     Material anisotropy 



153 
 

L21                                                                          Fully ordered full Heusler structure 

𝑀                                                                                                              Magnetisation 

𝑀𝑓                                                                       Change in mass due to the deposition 

𝑀𝑞                                                                            Original mass of the quartz crystal 

𝑀𝑟                                                                                             Remnant magnetisation  

𝑀𝑠                                                                                           Saturation magnetisation 

𝑀𝑡                                                                                      Total spin magnetic moment 

m                                                                                                        Magnetic moment 

𝑚𝑠𝑝𝑖𝑛                                                                                         Spin magnetic moment 

𝑚𝑜𝑟𝑏𝑖𝑡𝑎𝑙                                                                                  Orbital magnetic moment 

𝑚𝑡𝑜𝑡𝑎𝑙                                                                                        Total magnetic moment 

𝑁𝑐                                                                                             Number of turns in Coil 

𝑁𝑞                                                                   Frequency constant of the quartz crystal 

𝑛3d            The electron occupation of the respective transition metal atom in 3d states 

Ps                                               Saturation value of the order of the antiferromagnetic 

𝑅𝐴𝑃                                                                           Resistance when spins antiparallel 

𝑅𝑃                                                                                   Resistance when spins parallel 

𝑅∗                                                                        Refractive index of the view medium 

𝑅𝑧                                                                                      Z-Factor of the film material 

S                                                                                     Magnetic viscosity coefficient 

𝑆𝑧                                                                          Half of 𝑚𝑠𝑝𝑖𝑛 in Hartree atomic unit 

T                                                                                                                 Temperature 

𝑇C                                                                                                       Curie temperature 

𝑇g                                                                                                     Growth temperature 

𝑇N                                                                                                       Neel Temperature 

𝑇𝐵                                                                                                 Blocking temperature 

𝑇𝑁𝐴                                                                         Non-thermal activation temperature 

𝑇𝑎𝑐𝑡                                                                               Thermal activation temperature  

𝑇𝑠𝑒𝑡                                                                                                  Setting temperature 

Tmeasure                                                                                   Measurement temperature 
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𝑇𝑧                                                     Expectation value of the magnetic dipole operator 

𝑡                                                                                                                              Time 

tmeasure                                                                                                Measurement time 

𝑡𝑓𝑖𝑙𝑚                                                                                               Thickness of the film 

𝑡𝐴𝐹                                                                                        Antiferromagnet thickness 

𝑡𝐹                                                                                                Ferromagnet thickness 

V                                                                                                            Particle volume 

𝑉𝑐                                                                                                Minimum grain volume 

𝑉𝑠𝑒𝑡                                                                                            Maximum grain volume 

𝑉𝑎𝑐𝑡                                                                                                    Activation volume 

𝑍𝑡                                                                                      Number of valence electrons 

𝜃𝑠                                                               Angle between magnetisation and easy axis  

𝜆𝑅                                                                                       Wavelength of the radiation 

𝜆𝑥−𝑟𝑎𝑦                                                                                               X-ray wavelength. 

𝜌𝑓                                                                                                      Density of material 

𝜌𝑞                                                                                                   Density of the quartz 

𝜎𝑙𝑛𝐷                                                                                        Standard deviation of 𝑙𝑛𝐷 

<V>                                                                                               Median gran volume 

∆𝑓                                                                                 Change in resonance frequency 

a                                                                                                             Lattice constant 

c                                                                                                             Lattice constant 

emf                                                                                                        Electromagnetic 

force 

h                                                                                                                Miller indices 

k                                                                                                                Miller indices 

l Miller indices 

𝑓                                                                                           Coated resonant frequency 

𝛽                                                         Semi-angle of collection of the magnifying lens 

𝛿                                                                                    Minimum resolution per radian 

𝜀                                                                                      Induced electromagnetic force 
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𝜃                     Angle between the incident and the scattering from the sample surface 

𝜇                                                                                                                 Mean of 𝑙𝑛𝐷 

𝜑                                                                                                               Magnetic flux 

𝜏                                                                                                             Relaxation time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



156 
 

Reference 
 

[1] “We’re Johnson Matthey | Johnson Matthey.” [Online]. Available: 

https://matthey.com/. [Accessed: 10-Apr-2018]. 

[2] “PGM MARKET REPORT MAY 2016 Summary of Platinum SUPPLY 

&amp; DEMAND IN 2015.” 

[3] W. Thomson, “On the Electro-Dynamic Qualities of Metals:--Effects of 

Magnetization on the Electric Conductivity of Nickel and of Iron,” Proc. R. 

Soc. London, vol. 8, no. 0, pp. 546–550, Jan. 1856. 

[4] T. McGuire and R. Potter, “Anisotropic magnetoresistance in ferromagnetic 

3d alloys,” IEEE Trans. Magn., vol. 11, no. 4, pp. 1018–1038, Jul. 1975. 

[5] H. H. Potter, “On the Change of Resistance of Nickel in a Magnetic Field,” 

Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 132, no. 820, pp. 560–569, Aug. 

1931. 

[6] N. F. Mott, “The Electrical Conductivity of Transition Metals,” Proc. R. Soc. 

A Math. Phys. Eng. Sci., vol. 153, no. 880, pp. 699–717, Feb. 1936. 

[7] A. Fert and I. A. Campbell, “Two-Current Conduction in Nickel,” Phys. Rev. 

Lett., vol. 21, no. 16, pp. 1190–1192, Oct. 1968. 

[8] A. Fert and I. A. Campbell, “Electrical resistivity of ferromagnetic nickel and 

iron based alloys,” J Phys. F Met. Phys, vol. 6, no. 5, 1976. 

[9] S. M. Thompson, “The discovery, development and future of GMR: The 

Nobel Prize 2007,” J. Phys. D. Appl. Phys., vol. 41, no. 9, p. 93001, May 

2008. 

[10] J. F. Gregg, I. Petej, E. Jouguelet, and C. Dennis, “Spin electronics a review,” 

J. Phys. D. Appl. Phys., vol. 35, no. 18, pp. R121–R155, Sep. 2002. 

[11] B. Dieny, “Giant magnetoresistance in spin-valve multilayers,” J. Magn. 

Magn. Mater., vol. 136, no. 3, pp. 335–359, Sep. 1994. 

[12] B. Dieny et al., “Magnetotransport properties of magnetically soft spin‐valve 

structures (invited),” J. Appl. Phys., vol. 69, no. 8, pp. 4774–4779, Apr. 1991. 

[13] H. N. Fuke, K. Saito, Y. Kamiguchi, H. Iwasaki, and M. Sahashi, “Spin-valve 

giant magnetoresistive films with antiferromagnetic Ir-Mn layers,” J. Appl. 

Phys., vol. 81, no. 8, p. 4004, Jun. 1998. 

[14] K. O’Grady, L. E. Fernandez-Outon, and G. Vallejo-Fernandez, “A new 

paradigm for exchange bias in polycrystalline thin films,” J. Magn. Magn. 

Mater., vol. 322, no. 8, pp. 883–899, Apr. 2010. 

[15] A. Moser et al., “Magnetic recording: advancing into the future,” J. Phys. D. 

Appl. Phys., vol. 35, no. 19, pp. R157–R167, Oct. 2002. 

[16] L. Berger, “Emission of spin waves by a magnetic multilayer traversed by a 

current,” Phys. Rev. B, vol. 54, no. 13, pp. 9353–9358, Oct. 1996. 

[17] J. C. Slonczewski, “Current-driven excitation of magnetic multilayers,” J. 



157 
 

Magn. Magn. Mater., vol. 159, no. 1–2, pp. L1–L7, Jun. 1996. 

[18] J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, 

“Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co  /  

Cu  /  Co Pillars,” Phys. Rev. Lett., vol. 84, no. 14, pp. 3149–3152, Apr. 2000. 

[19] M. Julliere, “Tunneling between ferromagnetic films,” Phys. Lett. A, vol. 54, 

no. 3, pp. 225–226, Sep. 1975. 

[20] T. Miyazaki and N. Tezuka, “Giant magnetic tunneling effect in Fe/Al2O3/Fe 

junction,” J. Magn. Magn. Mater., vol. 139, no. 3, pp. L231–L234, Jan. 1995. 

[21] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, “Large 

Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel 

Junctions,” Phys. Rev. Lett., vol. 74, no. 16, pp. 3273–3276, Apr. 1995. 

[22] D. J. Monsma and S. S. P. Parkin, “Spin polarization of tunneling current 

from ferromagnet/Al2O3 interfaces using copper-doped aluminum 

superconducting films,” Appl. Phys. Lett., vol. 77, no. 5, p. 720, Jul. 2000. 

[23] W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren, “Spin-

dependent tunneling conductance of  Fe | MgO | Fe  sandwiches,” Phys. Rev. 

B, vol. 63, no. 5, p. 54416, Jan. 2001. 

[24] J. Mathon and A. Umerski, “Theory of tunneling magnetoresistance of an 

epitaxial Fe/MgO/Fe(001) junction,” Phys. Rev. B, vol. 63, no. 22, p. 220403, 

May 2001. 

[25] S. S. P. Parkin et al., “Giant tunnelling magnetoresistance at room 

temperature with MgO (100) tunnel barriers,” Nat. Mater., vol. 3, no. 12, pp. 

862–867, Dec. 2004. 

[26] D. D. Djayaprawira et al., “230% room-temperature magnetoresistance in 

CoFeB∕MgO∕CoFeB magnetic tunnel junctions,” Appl. Phys. Lett., vol. 86, no. 

9, p. 92502, Feb. 2005. 

[27] J. Hayakawa, S. Ikeda, F. Matsukura, H. Takahashi, and H. Ohno, 

“Dependence of Giant Tunnel Magnetoresistance of Sputtered 

CoFeB/MgO/CoFeB Magnetic Tunnel Junctions on MgO Barrier Thickness 

and Annealing Temperature,” Jpn. J. Appl. Phys., vol. 44, no. No. 19, pp. 

L587–L589, Apr. 2005. 

[28] S. Ikeda et al., “Tunnel magnetoresistance of 604% at 300K by suppression of 

Ta diffusion in CoFeB∕MgO∕CoFeB pseudo-spin-valves annealed at high 

temperature,” Appl. Phys. Lett., vol. 93, no. 8, p. 82508, Aug. 2008. 

[29] M. Yoshikawa et al., “Tunnel Magnetoresistance Over 100% in MgO-Based 

Magnetic Tunnel Junction Films With Perpendicular Magnetic L10-FePt 

Electrodes,” IEEE Trans. Magn., vol. 44, no. 11, pp. 2573–2576, Nov. 2008. 

[30] K. Yakushiji et al., “High Magnetoresistance Ratio and Low Resistance–Area 

Product in Magnetic Tunnel Junctions with Perpendicularly Magnetized 

Electrodes,” Appl. Phys. Express, vol. 3, no. 5, p. 53003, May 2010. 

[31] S. Ikeda et al., “A perpendicular-anisotropy CoFeB--MgO magnetic tunnel 

junction,” Nat. Mater., vol. 9, 2010. 



158 
 

[32] Z. G. Zhi Gang Wang and Y. Nakamura, “Spin tunneling random access 

memory (STram),” IEEE Trans. Magn., vol. 32, no. 5, pp. 4022–4024, 1996. 

[33] S.-W. Chung et al., “4Gbit density STT-MRAM using perpendicular MTJ 

realized with compact cell structure,” in 2016 IEEE International Electron 

Devices Meeting (IEDM), 2016, p. 27.1.1-27.1.4. 

[34] S. Yakata et al., “Enhancement of Thermal Stability Using Ferromagnetically 

Coupled Synthetic Free Layers in MgO-Based Magnetic Tunnel Junctions,” 

IEEE Trans. Magn., vol. 46, no. 6, pp. 2232–2235, Jun. 2010. 

[35] F. Heusler, W. Starck, and E. Haupt, “Verhandlungen der Deutschen 

Physikalischen Gesellschaft.,” Verh. DPG, vol. 5, p. 220, 1903. 

[36] F. Heusler and F. Richarz, “Studien über magnetisierbare 

Manganlegierungen,” Zeitschrift für Anorg. Chemie, vol. 61, no. 1, pp. 265–

279, Feb. 1909. 

[37] T. Graf, C. Felser, and S. S. P. Parkin, “Simple rules for the understanding of 

Heusler compounds,” Prog. Solid State Chem., vol. 39, no. 1, pp. 1–50, May 

2011. 

[38] S. Chadov, X. Qi, J. Kübler, G. H. Fecher, C. Felser, and S. C. Zhang, 

“Tunable multifunctional topological insulators in ternary Heusler 

compounds,” Nat. Mater., vol. 9, no. 7, pp. 541–545, Jul. 2010. 

[39] F. Casper, T. Graf, S. Chadov, B. Balke, and C. Felser, “Half-Heusler 

compounds: novel materials for energy and spintronic applications,” 

Semicond. Sci. Technol., vol. 27, no. 6, p. 63001, Jun. 2012. 

[40] G. E. Bacon and J. S. Plant, “Chemical ordering in Heusler alloys with the 

general formula A2BC or ABC,” J. Phys. F Met. Phys., vol. 1, no. 4, p. 325, 

Jul. 1971. 

[41] B. Balke, G. H. Fecher, J. Winterlik, and C. Felser, “Mn3Ga, a compensated 

ferrimagnet with high Curie temperature and low magnetic moment for spin 

torque transfer applications,” Appl. Phys. Lett., vol. 90, no. 15, p. 152504, 

Apr. 2007. 

[42] J. Winterlik et al., “Structural, electronic, and magnetic properties of 

tetragonal    Mn  3 − x   Ga   : Experiments and first-principles calculations,” 

Phys. Rev. B, vol. 77, no. 5, p. 54406, Feb. 2008. 

[43] J. C. Slater, “The Ferromagnetism of Nickel. II. Temperature Effects,” Phys. 

Rev., vol. 49, no. 12, pp. 931–937, Jun. 1936. 

[44] L. Pauling, “The Nature of the Interatomic Forces in Metals,” Phys. Rev., vol. 

54, no. 11, pp. 899–904, Dec. 1938. 

[45] J. Kübler and J., “First principle theory of metallic magnetism,” Phys. B+C, 

vol. 127, no. 1–3, pp. 257–263, Dec. 1984. 

[46] I. Galanakis, P. Mavropoulos, and P. H. Dederichs, “Electronic structure and 

Slater–Pauling behaviour in half-metallic Heusler alloys calculated from first 

principles,” J. Phys. D. Appl. Phys., vol. 39, no. 5, pp. 765–775, Mar. 2006. 



159 
 

[47] X. Hu, “Half-Metallic Antiferromagnet as a Prospective Material for 

Spintronics,” Adv. Mater., vol. 24, no. 2, pp. 294–298, Jan. 2012. 

[48] I. Galanakis and P. Mavropoulos, “Spin-polarization and electronic properties 

of half-metallic Heusler alloys calculated from first principles,” J. Phys. 

Condens. Matter, vol. 19, no. 31, p. 315213, Aug. 2007. 

[49] M. N. Baibich et al., “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic 

Superlattices,” Phys. Rev. Lett., vol. 61, no. 21, pp. 2472–2475, Nov. 1988. 

[50] T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, “Antiferromagnetic 

spintronics,” Nat. Nanotechnol., vol. 11, no. 3, pp. 231–241, Mar. 2016. 

[51] L. Néel, “Magnetism and the local molecular field,” Nobel Lecture, 1970. . 

[52] W. H. Meiklejohn and C. P. Bean, “New Magnetic Anisotropy,” Phys. Rev., 

vol. 102, no. 5, pp. 1413–1414, Jun. 1956. 

[53] D. P. Oxley, R. S. Tebble, C. T. Slack, and K. C. Williams, “An Anti-

ferromagnetic Heusler Alloy, Cu2MnSb,” Nature, vol. 194, no. 4827, pp. 

465–465, May 1962. 

[54] J. Kübler, A. R. William, and C. B. Sommers, “Formation and coupling of 

magnetic moments in Heusler alloys,” Phys. Rev. B, vol. 28, no. 4, pp. 1745–

1755, Aug. 1983. 

[55] K. U. Neumann, J. Crangle, R. K. Kremer, N. K. Zayer, and K. R. A. Ziebeck, 

“Magnetic order in Pd2TiIn: A new itinerant antiferromagnet?,” J. Magn. 

Magn. Mater., vol. 127, no. 1–2, pp. 47–51, Oct. 1993. 

[56] T. Moriya, “Physical Properties of Weakly and Nearly Ferro- and 

Antiferromagnetic Metals,” 1985, pp. 82–108. 

[57] K. Ozdogan, I. Galanakis, E. Sasioglu, and B. Aktas, “Search for half-metallic 

ferrimagnetism in V-based Heusler alloys Mn2VZ (Z=Al, Ga, In, Si, Ge, 

Sn),” Dec. 2005. 

[58] I. Galanakis, K. Ozdogan, E. Sasioglu, and B. Aktas, “Doping of Mn2VAl 

and Mn2VSi Heusler alloys as a route to half-metallic antiferromagnetism,” 

Jan. 2007. 

[59] B. Deka, A. Srinivasan, R. K. Singh, B. S. D. C. S. Varaprasad, Y. K. 

Takahashi, and K. Hono, “Effect of Co substitution for Mn on spin 

polarization and magnetic properties of ferrimagnetic Mn2VAl,” J. Alloys 

Compd., vol. 662, pp. 510–515, Mar. 2016. 

[60] Tomoki, “Mn 2 VAl Heusler alloy thin films: appearance of 

antiferromagnetism and exchange bias in a layered structure with Fe,” J. Phys. 

D Appl. Phys, vol. 51, 2018. 

[61] X. Y. Dong et al., “Growth temperature controlled magnetism in molecular 

beam epitaxially grown Ni2MnAl Heusler alloy,” J. Cryst. Growth, vol. 254, 

no. 3–4, pp. 384–389, Jul. 2003. 

[62] V. Sliwko, P. Mohn, and K. Schwarz, “The electronic and magnetic structures 

of alpha - and beta -manganese,” J. Phys. Condens. Matter, vol. 6, no. 32, pp. 



160 
 

6557–6564, Aug. 1994. 

[63] J. M. D. Coey, Magnetism and magnetic materials. Cambridge University 

Press, 2009. 

[64] S. Wurmehl, H. C. Kandpal, G. H. Fecher, and C. Felser, “Valence electron 

rules for prediction of half-metallic compensated-ferrimagnetic behaviour of 

Heusler compounds with complete spin polarization,” J. Phys. Condens. 

Matter, vol. 18, no. 27, pp. 6171–6181, Jul. 2006. 

[65] E. Krén and G. Kádár, “Neutron diffraction study of Mn3Ga,” Solid State 

Commun., vol. 8, no. 20, pp. 1653–1655, Oct. 1970. 

[66] H. Niida, T. Hori, Y. Yamaguchi, and Y. Nakagawa, “Crystal distortion and 

weak ferromagnetism of Mn 3+δ Ga  1− x  Ge  x  alloys,” J. Appl. Phys., vol. 73, 

no. 10, pp. 5692–5694, May 1993. 

[67] H. Kurt, K. Rode, H. Tokuc, P. Stamenov, M. Venkatesan, and J. M. D. Coey, 

“Exchange-biased magnetic tunnel junctions with antiferromagnetic ε-Mn 3 

Ga,” Appl. Phys. Lett., vol. 101, no. 23, p. 232402, Dec. 2012. 

[68] L. Szunyogh, B. Lazarovits, L. Udvardi, J. Jackson, and U. Nowak, “Giant 

magnetic anisotropy of the bulk antiferromagnets IrMn and     IrMn  3    from 

first principles,” Phys. Rev. B, vol. 79, no. 2, p. 20403, Jan. 2009. 

[69] D. Zhang et al., “First-principles study of the structural stability of cubic, 

tetragonal and hexagonal phases in Mn 3 Z (Z=Ga, Sn and Ge) Heusler 

compounds,” J. Phys. Condens. Matter, vol. 25, no. 20, p. 206006, May 2013. 

[70] J. Winterlik et al., “Structural, electronic, and magnetic properties of 

tetragonal    Mn  3 − x   Ga   : Experiments and first-principles calculations,” 

Phys. Rev. B, vol. 77, no. 5, p. 54406, Feb. 2008. 

[71] H.-W. Bang et al., “Perpendicular magnetic anisotropy properties of 

tetragonal Mn3Ga films under various deposition conditions,” Curr. Appl. 

Phys., vol. 16, no. 1, pp. 63–67, 2016. 

[72] S. Khmelevskyi, A. V Ruban, and P. Mohn, “Magnetic ordering and exchange 

interactions in structural modifications of Mn 3 Ga alloys: Interplay of 

frustration, atomic order, and off-stoichiometry,” Phys. Rev. B, vol. 93, no. 

184404, 2016. 

[73] S. Mizukami et al., “Long-Lived Ultrafast Spin Precession in Manganese 

Alloys Films with a Large Perpendicular Magnetic Anisotropy,” Phys. Rev. 

Lett., vol. 106, no. 11, p. 117201, Mar. 2011. 

[74] L. Zhu and J. Zhao, “Perpendicularly magnetized Mn x Ga films: promising 

materials for future spintronic devices, magnetic recording and permanent 

magnets,” Appl. Phys. A, vol. 111, no. 2, pp. 379–387, May 2013. 

[75] S. Mizukami et al., “Composition dependence of magnetic properties in 

perpendicularly magnetized epitaxial thin films of Mn-Ga alloys,” Phys. Rev. 

B, vol. 85, no. 1, p. 14416, Jan. 2012. 

[76] H. Kurt, K. Rode, M. Venkatesan, P. Stamenov, and J. M. D. Coey, “High 

spin polarization in epitaxial films of ferrimagnetic Mn      3     Ga,” Phys. 



161 
 

Rev. B, vol. 83, no. 2, p. 20405, Jan. 2011. 

[77] H. Kurt, K. Rode, M. Venkatesan, P. Stamenov, and J. M. D. Coey, 

“Mn3−xGa (0 ≤ x ≤ 1): Multifunctional thin film materials for spintronics and 

magnetic recording,” Phys. status solidi, vol. 248, no. 10, pp. 2338–2344, Oct. 

2011. 

[78] G. T. Woods et al., “Analysis of point-contact Andreev reflection spectra in 

spin polarization measurements,” Phys. Rev. B, vol. 70, no. 5, p. 54416, Aug. 

2004. 

[79] J. F. Qian, A. K. Nayak, G. Kreiner, W. Schnelle, and C. Felser, “Exchange 

bias up to room temperature in antiferromagnetic hexagonal Mn 3 Ge,” J. 

Phys. D. Appl. Phys., vol. 47, no. 30, p. 305001, Jul. 2014. 

[80] H. Kurt et al., “Magnetic and electronic properties of D022-Mn3Ge (001) 

films Magnetic and electronic properties of D0 22 -Mn 3 Ge (001) films,” Cit. 

Appl. Phys. Lett., vol. 101, 2012. 

[81] F. Bloch, “Zur Theorie des Austauschproblems und der Remanenzerscheinung 

der Ferromagnetika,” Zeitschrift fr Phys., vol. 74, no. 5–6, pp. 295–335, May 

1932. 

[82] E. C. Stoner and E. P. Wohlfarth, “A Mechanism of Magnetic Hysteresis in 

Heterogeneous Alloys,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 

240, no. 826, pp. 599–642, May 1948. 

[83] R. C. O’Handley, Modern magnetic materials : principles and applications. 

Wiley, 2000. 

[84] W. Heisenberg, “Zur Theorie des Ferromagnetismus,” Zeitschrift fr Phys., vol. 

49, no. 9–10, pp. 619–636, Sep. 1928. 

[85] M. A. Ruderman and C. Kittel, “Indirect Exchange Coupling of Nuclear 

Magnetic Moments by Conduction Electrons,” Phys. Rev., vol. 96, no. 1, pp. 

99–102, Oct. 1954. 

[86] T. Kasuya, “A Theory of Metallic Ferro- and Antiferromagnetism on Zener’s 

Model,” Prog. Theor. Phys., vol. 16, no. 1, pp. 45–57, Jul. 1956. 

[87] K. Yosida, “Magnetic Properties of Cu-Mn Alloys,” Phys. Rev., vol. 106, no. 

5, pp. 893–898, Jun. 1957. 

[88] F. Radu and H. Zabel, “Exchange Bias Effect of Ferro-/Antiferromagnetic 

Heterostructures,” in Magnetic Heterostructures, Berlin, Heidelberg: Springer 

Berlin Heidelberg, 2008, pp. 97–184. 

[89] L. Néel, “Étude théorique du couplage ferro-antiferromagnétique dans les 

couches minces,” Ann. Phys. (Paris)., vol. 14, no. 2, pp. 61–80, Apr. 1967. 

[90] E. Fulcomer and S. H. Charap, “Thermal fluctuation aftereffect model for 

some systems with ferromagnetic‐antiferromagnetic coupling,” J. Appl. Phys., 

vol. 43, no. 10, pp. 4190–4199, Oct. 1972. 

[91] M. Grimsditch, A. Hoffmann, P. Vavassori, H. Shi, and D. Lederman, 

“Exchange-Induced Anisotropies at Ferromagnetic-Antiferromagnetic 



162 
 

Interfaces above and below the Néel Temperature,” Phys. Rev. Lett., vol. 90, 

no. 25, p. 257201, Jun. 2003. 

[92] K. Nishioka, C. Hou, H. Fujiwara, and R. D. Metzger, “Grain size effect on 

ferro‐antiferromagnetic coupling of NiFe/FeMn systems,” 

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org

/pt/adcenter/pdfcover_test/L-37/386502181/x01/AIP-

PT/JAP_ArticleDL_092017/scilight717-

1640x440.gif/434f71374e315a556e61414141774c75?x, Jun. 1998. 

[93] H. Xi, “Theoretical study of the blocking temperature in polycrystalline 

exchange biased bilayers,” J. Magn. Magn. Mater., vol. 288, pp. 66–73, Mar. 

2005. 

[94] W. F. Brown, “Thermal Fluctuations of a Single-Domain Particle,” Phys. 

Rev., vol. 130, no. 5, pp. 1677–1686, Jun. 1963. 

[95] G. Vallejo-Fernandez, B. Kaeswurm, L. E. Fernandez-Outon, and K. 

O’Grady, “Effect of the Ferromagnetic Layer Thickness on the Blocking 

Temperature in IrMn/CoFe Exchange Couples,” IEEE Trans. Magn., vol. 44, 

no. 11, pp. 2835–2838, Nov. 2008. 

[96] R. Street and J. C. Woolley, “A Comparison of Magnetic Viscosity in 

Isotropic and Anisotropic High Coercivity Alloys,” Proc. Phys. Soc. Sect. B, 

vol. 69, no. 12, pp. 1189–1199, Dec. 1956. 

[97] P. Gaunt, “Magnetic viscosity and thermal activation energy,” J. Appl. Phys., 

vol. 59, no. 12, pp. 4129–4132, Jun. 1986. 

[98] G. Vallejo-Fernandez, N. P. Aley, L. E. Fernandez-Outon, and K. O ’grady, 

“Control of the setting process in CoFe/IrMn exchange bias systems,” J. Appl. 

Phys. Appl. Phys. Lett. J. Appl. Phys. Appl. Phys. Lett. J. Appl. Phys. J. Appl. 

Phys., vol. 104, no. 3097, pp. 152405–72409, 2008. 

[99] G. Vallejo-Fernandez, L. E. Fernandez-Outon, and K. O’Grady, 

“Measurement of the anisotropy constant of antiferromagnets in metallic 

polycrystalline exchange biased systems,” Appl. Phys. Lett., vol. 91, no. 21, p. 

212503, Nov. 2007. 

[100] W. J. Gong, W. Liu, J. N. Feng, D. S. Kim, C. J. Choi, and Z. D. Zhang, 

“Effect of antiferromagnetic layer thickness on exchange bias, training effect, 

and magnetotransport properties in ferromagnetic/antiferromagnetic antidot 

arrays,” J. Appl. Phys., vol. 115, no. 13, p. 133909, Apr. 2014. 

[101] Q.-F. Zhan, W. Zhang, and K. M. Krishnan, “Antiferromagnetic layer 

thickness dependence of the magnetization reversal in the epitaxial MnPd/Fe 

exchange bias system,” Phys. Rev. BJk, vol. 8360, no. 94404, 2011. 

[102] C. Gritsenko, I. Dzhun, N. Chechenin, G. Babaytsev, and V. Rodionova, 

“Dependence of the Exchange Bias on the Thickness of Antiferromagnetic 

Layer in the Trilayered NiFe/IrMn/NiFe Thin-films,” Phys. Procedia, vol. 75, 

pp. 1066–1071, Jan. 2015. 

[103] H. Sang, Y. W. Du, and C. L. Chien, “Exchange coupling in bilayer: 

Dependence on antiferromagnetic layer thickness Exchange coupling in Fe 50 



163 
 

Mn 50 /Ni 81 Fe 19 bilayer: Dependence on antiferromagnetic layer 

thickness,” J. Appl. Phys. J. Appl. Phys. J. Appl. Phys. J. Appl. Phys. J. Appl. 

Phys. Appl. Phys. Lett. J. Appl. Phys., vol. 851, no. 10, 1999. 

[104] T. Ambrose and C. L. Chien, “Dependence of exchange coupling on 

antiferromagnetic layer thickness in NiFe/CoO bilayers,” J. Appl. Phys., vol. 

83, no. 6822, 1998. 

[105] G. Vallejo-Fernandez, L. E. Fernandez-Outon, and K. O’Grady, 

“Antiferromagnetic grain volume effects in metallic polycrystalline exchange 

bias systems,” J. Phys. D. Appl. Phys., vol. 41, no. 11, p. 112001, Jun. 2008. 

[106] M. Kizilyalli, J. Corish, and A. R. Metselaar, “INTERNATIONAL UNION 

OF PURE AND APPLIED CHEMISTRY INORGANIC CHEMISTRY 

DIVISION DEFINITIONS OF TERMS FOR DIFFUSION IN THE SOLID 

STATE,” Pure Appl. Chem. Prof. A. V. Chadwick N. E. Walso Reca Prof. J.H. 

Choy (Korea Dr L. Tichy (Czech Repub. Dr P. Echequt (France Prof. O. L. 

Alves (Brazil Prof. F. M. Costa (Portugal Prof. B.G. Hyde (Australia, vol. 71, 

no. 7, pp. 1307–1325, 1999. 

[107] M. Vopsaroiu, G. V. Fernandez, M. J. Thwaites, J. Anguita, P. J. Grundy, and 

K. O’Grady, “Deposition of polycrystalline thin films with controlled grain 

size,” J. Phys. D. Appl. Phys., vol. 38, no. 3, pp. 490–496, Feb. 2005. 

[108] M. Vopsaroiu, M. J. Thwaites, S. Rand, P. J. Grundy, and K. O ’grady, 

“Novel Sputtering Technology for Grain-Size Control,” IEEE Trans. Magn., 

vol. 40, no. 4, 2004. 

[109] J. Sagar et al., “Over 50% reduction in the formation energy of Co-based 

Heusler alloy films by two-dimensional crystallisation,” Appl. Phys. Lett., vol. 

105, no. 3, p. 32401, Jul. 2014. 

[110] J. Sagar, “Optimisation of Heusler Alloy Thin Films for Spintronic Devices,” 

2013. 

[111] G. Sauerbrey, “Wagung dunner Schichten mit Schwingquarzen,” Angewandte 

Chemie : International Edition in English., 1957. [Online]. Available: 

http://openurl.york.ac.uk/primo_library/libweb/action/openurl?date=1957&aul

ast=Sauerbrey&issue=23&isSerivcesPage=true&spage=761&title=Angewand

te+Chemie+international+edition&dscnt=2&auinit=G&atitle=Wagung+dunne

r+Schichten+mit+Schwingquarzen&url_ctx_fmt=nu. [Accessed: 31-Oct-

2017]. 

[112] C. Lu and O. Lewis, “Investigation of film‐thickness determination by 

oscillating quartz resonators with large mass load,” J. Appl. Phys., vol. 43, no. 

11, pp. 4385–4390, Nov. 1972. 

[113] “Automated Multipurpose X-ray Diffractometer Instruction Manual.” 

[114] “GenX - Home.” [Online]. Available: http://genx.sourceforge.net/. [Accessed: 

07-Nov-2017]. 

[115] D. B. (David B. Williams and C. B. Carter, Transmission electron 

microscopy : a textbook for materials science. Springer, 2009. 

[116] K. O’Grady and A. Bradbury, “Particle size analysis in ferrofluids,” J. Magn. 



164 
 

Magn. Mater., vol. 39, no. 1–2, pp. 91–94, Nov. 1983. 

[117] G. Vallejo-Fernandez, N. P. Aley, J. N. Chapman, and K. O’Grady, 

“Measurement of the attempt frequency in antiferromagnets,” Appl. Phys. 

Lett., vol. 97, no. 22, p. 222505, Nov. 2010. 

[118] S. Foner, “Versatile and Sensitive Vibrating-Sample Magnetometer*,” Rev. 

Sci. Instrum., vol. 30, no. 7, 1959. 

[119] D. O. Smith, “Development of a Vibrating‐Coil Magnetometer,” Rev. Sci. 

Instrum., vol. 27, no. 5, pp. 261–268, May 1956. 

[120] K. Dwight, N. Menyuk, and D. Smith, “Further Development of the 

Vibrating‐Coil Magnetometer,” J. Appl. Phys., vol. 29, no. 3, pp. 491–492, 

Mar. 1958. 

[121] V. Koval, G. Viola, and Y. Tan, “Biasing Effects in Ferroic Materials,” in 

Ferroelectric Materials - Synthesis and Characterization, InTech, 2015. 

[122] B. D. Paccard, C. Schlenker, R. Montmory, and A. Yelon, “A New Property 

of Ferromagnetic-Antiferromagnetic Coupling’),” phys. stat. sol, vol. 16, 

1966. 

[123] J. Stöhr, “Symmetry and Molecular Orbitals,” in NEXAFS Spectroscopy, 

Springer Berlin Heidelberg, 1992, pp. 48–78. 

[124] B. T. Thole, P. Carra, F. Sette, and G. van der Laan, “X-ray circular dichroism 

as a probe of orbital magnetization,” Phys. Rev. Lett., vol. 68, no. 12, pp. 

1943–1946, Mar. 1992. 

[125] P. Carra, B. T. Thole, M. Altarelli, and X. Wang, “X-ray circular dichroism 

and local magnetic fields,” Phys. Rev. Lett., vol. 70, no. 5, pp. 694–697, Feb. 

1993. 

[126] C. T. Chen et al., “Experimental Confirmation of the X-Ray Magnetic 

Circular Dichroism Sum Rules for Iron and Cobalt,” Phys. Rev. Lett., vol. 75, 

no. 1, pp. 152–155, Jul. 1995. 

[127] B. Cui, C. Song, Y. Y. Wang, W. S. Yan, F. Zeng, and F. Pan, “Tuning of 

uniaxial magnetic anisotropy in amorphous CoFeB films,” J. Phys. Condens. 

Matter, vol. 25, no. 10, p. 106003, Mar. 2013. 

[128] O. S. Whear, “The Growth and Crystallisation of Polycrystalline Heusler 

Alloy Thin Films,” 2014. 

[129] F. T. L. Muniz, M. A. R. Miranda, C. Morilla dos Santos, and J. M. Sasaki, 

“The Scherrer equation and the dynamical theory of X-ray diffraction,” Acta 

Crystallogr. Sect. A Found. Adv., vol. 72, no. 3, pp. 385–390, May 2016. 

[130] H. Endo, A. Hirohata, J. Sagar, L. R. Fleet, T. Nakayama, and K. O’Grady, 

“Effect of grain size on exchange-biased Heusler alloys,” J. Phys. D. Appl. 

Phys., vol. 44, no. 34, p. 345003, Aug. 2011. 

[131] C. Paduani et al., “Ferromagnetism and antiferromagnetism in 

Ni2+x+yMn1−xAl1−y alloys,” Solid State Commun., vol. 141, no. 3, pp. 145–

149, Jan. 2007. 



165 
 

[132] A. Hirohata et al., “Structural and magnetic properties of epitaxial L21-

structured Co2(Cr,Fe)Al films grown on GaAs(001) substrates,” J. Appl. 

Phys., vol. 97, no. 10, p. 103714, May 2005. 

[133] A. Hirohata et al., “Development of antiferromagnetic Heusler alloys for the 

replacement of iridium as a critically raw material Topical Review,” J. Phys. 

D. Appl. Phys., vol. 50, no. 50, p. aa88f4, 2017. 

[134] C. N. T. Yu, A. J. Vick, N. Inami, K. Ono, W. Frost, and A. Hirohata, 

“Exchange bias induced at a Co 2 FeAl 0.5 Si 0.5 /Cr interface,” J. Phys. D. 

Appl. Phys., vol. 50, no. 12, p. 125004, Mar. 2017. 

[135] B. D. Cullity and C. D. Graham, Introduction to magnetic materials. 

IEEE/Wiley, 2009. 

[136] A. Sugihara, K. Suzuki, S. Mizukami, and T. Miyazaki, “Structure and 

magnetic properties of tetragonal Heusler D 0 22 -Mn 3 Ge compound epitaxial 

films with high perpendicular magnetic anisotropy,” J. Phys. D. Appl. Phys., 

vol. 48, no. 16, p. 164009, Apr. 2015. 

[137] K. Oguz, P. Jivrajka, M. Venkatesan, G. Feng, and J. M. D. Coey, “Magnetic 

dead layers in sputtered Co40Fe40B20 films,” J. Appl. Phys., vol. 103, no. 7, 

p. 07B526, Apr. 2008. 

[138] A. K. Nayak et al., “Design of compensated ferrimagnetic Heusler alloys for 

giant tunable exchange bias,” Nat. Mater., vol. 14, no. 7, pp. 679–684, Mar. 

2015. 

[139] “Historical Iridium Prices and Price Chart - InvestmentMine.” [Online]. 

Available: http://www.infomine.com/investment/metal-prices/iridium/all/. 

[Accessed: 10-Apr-2018]. 

[140] “Perpendicular Magnetic Recording Technology,” 2007. 

[141] H. Gu, X. Zhang, H. Wei, Y. Huang, S. Wei, and Z. Guo, “An overview of the 

magnetoresistance phenomenon in molecular systems,” Chem. Soc. Rev., vol. 

42, no. 13, p. 5907, Jun. 2013. 

[142] I. Galanakis, P. H. Dederichs, and N. Papanikolaou, “Slater-Pauling behavior 

and origin of the half-metallicity of the full-Heusler alloys,” Phys. Rev. B, vol. 

66, no. 17, p. 174429, Nov. 2002. 

[143] “The RKKY Interaction.” [Online]. Available: 

http://www.cmp.liv.ac.uk/frink/thesis/thesis/node71.html. [Accessed: 23-Nov-

2017]. 

[144] S. P. Pati, D. Das-, and R. L. Stamps, “Mechanisms for exchange bias,” J. 

Phys. D Appl. Phys. Top. Rev. J. Phys. D Appl. Phys. J. Phys. D Appl. Phys, 

vol. 33, no. 3300, pp. 247–268, 2000. 

[145] “NIDetector.png (2941×735).” [Online]. Available: 

https://upload.wikimedia.org/wikipedia/commons/2/2d/NIDetector.png. 

[Accessed: 31-Oct-2017]. 

 


