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iii. Abbreviations 

 

(NH4)2SO4 – Ammonium sulphate  

ACTB –  β-actin gene 

AGE – Advanced glycation end product 

AGER – Advanced glycation end product receptor gene 

AMP – Adenosine monophosphate  

ANOVA – Analysis of variance 

APC – Allophycocyanin 

ATP – Adenosine triphosphate  

BHI – Brain heart infusion  

bp – Base pair  

BP1 – Bactericidal/permeability-increasing protein 1 

BSA – Bovine serum albumin  

BspA – Bacteroides surface protein A  

CBA – Columbia blood agar  

cDNA – Complementary DNA  

CFAT - Cadmium sulphate fluoride acridine trypticase agar 

CFU – Colony forming unit  

CML – N-carboxymethyl lysine  

CO2 – Carbon dioxide  

CRP – C-reactive protein  

DC – Dendritic cells 

DCF – 2’,7’-dichlorofluorescein  

Del-1 – developmental endothelial locus-1 

DHR 123 – Dihydrochodamine 

DIAMOND – Double index alignment of next-generation sequencing data  
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DNA – Deoxyribonucleic acid  

ds DNA – Double stranded DNA  

ECM – Extracellular matrix  

EDTA – Ethylenediaminetetraacetic acid  

EggNOG – Evolutionary genealogy of genes: non-supervised orthologous groups 

ELISA – Enzyme linked immunosorbent assay  

EMBL – European molecular biology laboratory 

ERK – Extracellular signal-regulated kinase 

FACs - Fluorescence-activated cell sorting 

FBS – Foetal bovine serum  

FFAs – Free-fatty acids  

FITC - Fluorescein isothiocyanate 

fMLP - N-formyl-methionyl-leucyl-phenylalanine 

FSC – Forward scatter  

GATA3 – GATA-binding protein 3 

GCF – Gingival crevicular fluid  

Gcp – Glycopeptidase 

GM-CSF – Granulocyte monocyte-colony stimulating factor 

H2DCFDA – 2’,7’-dichlorodihydrofluorescein diacetate  

H2SO4 – Sulphuric acid  

HA – Hydroxyapatite  

HbA1c – Haemoglobin A1c 

HMGB1 – High mobility gggg box 1 

HMP – Human microbiome project  

HOCl – Hypochlorous acid  

HOMD – Human oral microbiome database 

HPC – High performance computing  
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HPLC – High performance liquid chromatography  

HPRT1 –  Hypoxyanthine phosphoribosyltransferase gene 

HRP – Horseradish peroxidase  

HSA – Human serum albumin  

ICAM-1 – Intracellular adhesion molecule  

IFN – Interferon 

Ig – Immunoglobulin  

IL – Interleukin  

iNOS - Inducible nitric oxide synthase 

JAK2 - Janus kinase 2 

JE – Junctional epithelium  

K2HPO4 – Dipotassium phosphate  

KCl – Potassium chloride  

KH2PO4 – Monopotassium phosphate  

LAP – Localised aggressive periodontitis  

LDH – Lactate dehydrogenase  

LPS – Lipopolysaccharide  

LRP – Leukocyte-rich-plasma  

LRR – Leucine rich repeat 

MAMPs – Microbial-associated molecular patterns  

MAPK – Mitogen-activated protein kinase  

MCP – Monocyte chemoattractant protein  

MEGAN – METaGenome ANalyzer  

MFI – Mean fluorescence intensity  

MG – Methylglyoxal  

MgSO4 – Magnesium sulphate  

MIP – Macrophage inflammatory protein 
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MMP – Matrix metalloproteases  

MPO – Myeloperoxidase  

mRNA – Messenger RNA  

Na2CO3 – Sodium carbonate 

Na2HPO4 – Disodium hydrogen phosphate  

NaCl – Sodium chloride 

NADPH – Nicotinamide adenine dinucleotide phosphate  

NaHCO3 – Sodium bicarbonate  

NALP3 - Nacht domain-, LRR-, and PYD-containing protein 3 

NCBI – National center for biotechnology information  

NET – Neutrophil extracellular trap  

NF-κB – Nucleotide factor κB 

NGAL – Neutrophil gelatinase-associated lipocalin  

NGS – Next generation sequencing 

NK – Natural killer cells 

NLRP2 – NACT, LRR and PYD domains-containing protein 2 

NO – Nitric oxide  

NOD – Nucleotide oligomerization domain receptor  

OBL – Osteoblast  

OCL – Osteoclast  

OD – Optical density  

OPG – Osteoprotegerin  

OTU – Operational taxonomic unit 

PAGE – Polyacrylamide gel electrophoresis  

PBS – Phosphate buffered saline  

PCoA - Principle coordinate analysis 

PCR – Polymerase chain reaction 
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PE – Phycoerythrin  

PGE2 – Prostaglandin E2 

PMA – Phorbol 12-myristate 13-acetate  

PMT – Photomultiplier tube 

PRR – Pattern recognition receptor 

PYD – Pyrin domain  

PYR – Pyrraline  

QIIME – Quantitative insights into microbial ecology   

qRT-PCR – Quantitative real time – polymerase chain reaction  

R 123 – Rhodamine 123  

RAGE – Receptor for advance glycation end product 

RANK - Receptor activator of NF-κB 

RANKL – Receptor activator of NF-κB ligand 

rDNA – Ribosomal DNA  

RhoA – Ras homolog gene family, member A 

RIPA – Radioimmunoprecipitation assay buffer  

RNA – Ribonucleic acid 

ROR-γ – Retinoic acid receptor related orphan receptor γ 

ROS – Reactive oxygen species  

rpm – Rotation per minute   

rRNA – Ribosomal RNA  

RTF – Reduced transport fluid  

SD – Standard deviation 

SDS – Sodium dodecyl sulphate  

SSC – Side scatter  

STAT - Signal transduction and activation of transcription 

Strep HRP – Streptavidin horseradish peroxidase  



 

17 
 

TBS-T – Tris-buffered saline-tween  

TGF – Transforming growth factor  

TGS – Tri-Glycine SDS 

Th – T-helper cells 

TIGK – Telomerase immortalised gingival keratinocytes  

TIMP – Tissue inhibitor of metalloproteinase  

TLR – Toll-like receptor  

TMB – 3,3’,5,5’-Tetramethylbenzidine  

TNF – Tumour necrosis factor 

TYK2 - Tyrosine kinase 2 

WCL – Whole cell lysate  
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iv. Abstract 

 

Introduction: A complex two-way link between periodontitis and diabetes is widely 

accepted.  Although the mechanisms underlying this link have not been fully elucidated, 

disruption of host immunity (neutrophil function, cytokine release), tissue biochemistry, 

accumulation of advanced glycation end products (AGEs), matrix metalloproteases 

(MMPs) levels and the oral microbiota have been implicated.  

Aims and objectives: This project aims to investigate potential mechanisms through 

analysis of the impact of AGEs (a consequence of hyperglycaemia), on biofilm 

composition and telomerase immortalised gingival keratinocytes (TIGK). In addition, 

presented here is a preliminary feasibility study for comparison of oral biofilm 

composition and functionality, neutrophil function, and saliva and gingival crevicular fluid 

(GCF) cytokine and MMP profiles from healthy and periodontitis individuals.  

Methods: The study characterised receptor for AGE (RAGE) expression in TIGK cells 

and the consequent immune response initiated by AGE/RAGE interactions in these cells.  

Model oral biofilms (comprising five periodontal species) grown in the presence and 

absence of AGE were characterised using culture dependent methods. Complex 

biofilms, derived from combined saliva/tongue/plaque inocula, grown with AGE 

concentrations representative of hyperglycaemia or health were analysed using next 

generation sequencing.  In a preliminary study, biofilms were also co-cultured with TIGK 

cells in media supplemented with high AGE concentrations to determine changes in 

inflammatory responses.  

Individuals with periodontitis and healthy controls were recruited through DenTCRU for 

the preliminary clinical study.  Neutrophil migration, phagocytosis and respiratory burst 

in these individuals were analysed. Plaque, GCF and saliva were collected for analysis 

of cytokine and MMP expression and oral microbiome profiles.  

Results: The expression of RAGE by TIGK cells, at either the mRNA or protein level, 

did not change with varying concentrations of AGE. The addition of AGE to model five 

species biofilms encouraged the growth of A. naeslundii while reducing the proportion of 

P. gingivalis in the biofilms.  Analysis of complex biofilms indicated enrichment of genera 

including Prevotella, Streptococcus and Veillonella and decreases in Fusobacterium, 

Campylobacter and Bacteroides amongst others.   

The preliminary clinical study indicated feasibility of analysing neutrophil function and 

cytokine and MMP profiles from saliva and GCF. While impairment of neutrophil 

functions, increase in MMP8 and MMP9, changes in biofilm compositions and increases 

in cytokines in saliva (IL-8, IL-1β and MCP-1), plasma (IL-8 and IL-1β) and GCF (IL-8, 
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IL-1β and MCP-1) were observed in periodontitis, further analysis using a larger cohort 

of individual’s ± periodontitis is required for these to reach significance. 

Conclusion: Together the results suggest AGEs can alter the composition of biofilms, 

appearing to encourage the growth of health associated genera. Preliminary co-culture 

experiments demonstrate co-culture of TIGK cells with complex biofilms decreases IL-8 

and IL-6 release.  
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1. Introduction

The oral cavity is in a delicate balance between the microorganisms that colonise it and 

the host immune response. The following, reviews the current understanding of 

microbiology and immunological processes involved in the maintenance of oral health 

and how dysregulations can lead to oral diseases. A particular interest is paid to 

periodontitis; understanding the aetiology of periodontitis can help our understanding of 

the mechanisms that link periodontitis to systemic diseases. This review and the 

research presented in this thesis examines the relationship between periodontitis and 

diabetes. The two diseases have long been considered interlinked, but the processes 

involved are relatively unknown.  

The research presented here focusses on the immune responses of periodontitis and 

how hyperglycaemic conditions in diabetes can influence both the bacterial composition 

of the oral cavity microbiota and the inflammatory responses of oral cells.  

1.1. The oral microbiome  

The multitude of microorganisms colonising the human body are commonly reported to 

outnumber human cells 10:1, providing functions which are essential for survival (Bryan 

et al., 2017). Although still quoted in the literature, this ratio was recently challenged in a 

study which re-evaluated both the number of bacterial cells and human cells in an 

average 70 kg body and concluded a 1:1 ratio was more accurate (Sender et al., 2016). 

The microorganisms of the body and microbial communities of various sites are referred 

to as the ‘microbiota’ (Lederberg and McCray, 2001). Colonisation of the body begins at 

birth through the exposure to microorganisms from the environment and other people. 

Factors, including tissue type, temperature, pH and nutrient availability as well as host 

age, sex and diet, influence microbial colonisation so that distinct sites within the human 

body have diverse and characteristic microbial communities. This colonisation leads to 

the generation of the ‘microbiome’ which is defined as the collective genomes of all the 

microbial species at a given site as well as the genomes of the environment they reside 

in (Marchesi and Ravel, 2015, Abdul-Aziz et al., 2016). The microbiota impact, both 

directly and indirectly, aspects of the body’s normal physiology, nutrition and defence. In 

health, the microbiota has a harmonious relationship with the host but a disturbance or 

imbalance in the normal composition of the microbiota which causes changes to the host 

responses (dysbiosis) can lead to a variety of diseases (Morgan et al., 2013, Petersen 

and Round, 2014, Abdul-Aziz et al., 2016).  

As early as the 1680s, studies into the diversity of the human microbiota have been 

carried out. Antonie van Leeuwenhoek in 1683 began the comparison of the species 

present in his oral cavity and faecal matter and comparisons between health and 



Chapter 1 – Introduction 

21 
 

disease, noting the difference between them (Porter, 1976, Ursell et al., 2012). 

Advancements in both culture dependent and culture-independent molecular techniques 

have vastly increased our understanding of the human microbiota. With the initial DNA 

sequencing methods of Sanger sequencing to the now commonly applied high-

throughput NGS, a vast amount of data have been collected and analysed, providing 

insight into the composition and functionality of the human microbiota (Curtis et al., 2011, 

Human Microbiome Project, 2012, Morgan et al., 2013, Abdul-Aziz et al., 2016).  

Although the majority of the 10-100 trillion symbiotic microbes that make up the human 

microbiota are found as bacteria in the gut, the oral cavity harbours the second largest 

microbiota within the human body (Lazarevic et al., 2010, Ursell et al., 2012, Wade, 

2013). The oral microbiota is considered to include microbes and biofilms (surface 

associated, structured microbial community enclosed in an extracellular polymeric 

substance matrix) originating from various sites within the mouth such as the mucosal 

surfaces of the tongue, cheeks, gingiva (gums) and tonsils and the harder supragingival 

or subgingival surfaces of the teeth (Curtis et al., 2011, Ursell et al., 2012, Proctor and 

Relman, 2017). The diversity in biofilm structure and composition across these various 

sites exists partially due to heterogeneity in the topographical anatomy which leads to 

variations in local chemistry, temperature, moisture, host physiology and immunity 

(Proctor and Relman, 2017). In line with this, a recent study using human microbiome 

data showed microbial communities on the exposed tooth surfaces are influenced by 

both tooth aspect and class of tooth as well as the physical distance separating the sites 

(Callahan et al., 2016).  

Furthermore, variations in tissue types and their associated structure also influence 

microbial communities. The oral cavity consists of both shedding (oral mucosa) and non-

shedding (dental enamel) tissue, as well as non-keratinized and keratinized cells (which 

can further be divided into parakeratinized or orthokeratinized cells), all of which 

contributes to the differences in microbial colonisation seen across sites in the oral cavity 

(Proctor and Relman, 2017).  

In addition to anatomical and structural differences in the oral cavity, proximity to salivary 

glands also impacts microbial communities (Proctor and Relman, 2017). For example, 

microbial differences seen between cheek facing surfaces of teeth and tongue facing 

surfaces of teeth is partially associated with the dense network of the minor salivary 

glands. They bathe the glands and surrounding tissues (labial, palatal and buccal 

mucosa) in viscous, highly proteinaceous secretions with low buffering capacity so that 

these tissues have distinct microbial communities (Sato et al., 2015, Simon-Soro et al., 

2013, Proctor and Relman, 2017). The major salivary glands have differing salivary 
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secretory rates and salivary composition, creating gradients in salivary film velocity, oral 

clearance and pH across teeth surfaces (Proctor and Relman, 2017).  

Bacterial communities of the mouth encompass over 1000 different species with 

individuals harbouring approximately 400 species at any given time (Dewhirst et al., 

2010, Wade, 2013, Samaranayake and Matsubara, 2017). The advancements in 

technologies and the completion of the Human Microbiome Project (HMP) have enabled 

the identification of the dominant phyla of the oral microbiome; Firmicutes, Bacteroidetes, 

Proteobacteria, Actinobacteria, Spirochaetes and Fusobacteria account for 96% of 

species present (Human Microbiome Project, 2012, Zhu and Kreth, 2012, Wade, 2013, 

Zaura et al., 2014). In addition to the bacterial population, the oral microbiome also 

includes viruses, archaea, fungi and protozoa (Wade, 2013). Given the high oral bacterial 

density, viral presence in the mouth is mostly associated with bacteriophages (Pride et 

al., 2012, Wade, 2013). A range of disease-associated viruses (such as upper respiratory 

infection causing viruses) can also be found in the mouth during acute phases of infection 

(Wade, 2013). A much smaller number of protozoa are associated with the oral 

microbiome, mainly Entamoeba gingivalis and Trichomonas tenax, with an increase in 

both seen in oral diseases and poor oral hygiene. Although initially this increase 

implicated the microorganisms as potential pathogens, it is now believed that the lack of 

oral hygiene causes an increase in food debris and bacteria providing a rich nutritional 

environment for the protozoa (Wade, 2013). The predominant fungal genera are 

Candida, Cladosporium, Aureobasidium, Saccharomycetales, Aspergillus, Fusarium 

and Cryptococcus. Candida species, although causing acute and chronic infections, are 

carried asymptomatically by many individuals (Arendorf and Walker, 1979, Wade, 2013). 

Archaea in the oral microbiota is limited to select species able to colonise/survive in the 

environment; Methanobrevibacter oralis and two Methanobrevibacter phylotypes 

(Methanobacterium curvum/congolense and Methanosarcina mazeii). These 

methanogens are detected in a healthy mouth in small proportions, but an increase is 

observed in oral diseases (Lepp et al., 2004, Matarazzo et al., 2011, Wade, 2013). 

1.1.1. Establishment of a healthy oral microbiota 

The oral cavity, being nutrient-rich and humid with a resting pH of between 6.75 and 

7.25, is an ideal environment for microbial colonisation (Rosier et al., 2014). The biofilms 

found in the oral cavity, particularly on the surface of the teeth, are referred to as dental 

plaque and although found in health, they are also associated with the most common 

oral diseases (Rosier et al., 2014, Samaranayake and Matsubara, 2017, Marsh et al., 

2015). Data from the HMP have indicated that the oral microbiome has the largest 

number of commonly shared microbes amongst unrelated individuals, more so than 

habitats such as the gut or the skin (Human Microbiome Project, 2012, Li et al., 2013). 
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Despite daily physical and chemical challenges the oral microbiome encounters through 

processes such as food intake and oral hygiene, a long-term stable microbiome is 

present in healthy mouths. The ability of the oral microbiota to adapt to changes in 

oxygen availability, temperature, pH, antimicrobials and dietary components and survive 

mechanical sheer forces (through mastication and brushing), helps establish and 

maintain health (Wright et al., 2013, Zaura et al., 2014). Although the processes that 

contribute to the development of diseases (particularly caries and periodontal diseases) 

are well documented, the mechanisms that maintain health are relatively poorly 

understood.  

1.1.1.1. Early colonisation 

Although the process of oral bacterial colonisation begins immediately following birth, 

tooth eruption creates novel microhabitats. These new potential colonisation sites can 

increase the diversity of the microbiota. In addition, complement, phagocytes and other 

components from the bloodstream begin to enter the oral cavity in minute amounts, 

providing novel growth substances and immune control of commensal and pathogenic 

bacteria (Proctor and Relman, 2017). This subsequently changes microbiota 

composition and is reflected in infants where species such as Streptococcus salivarius 

and Streptococcus mitis colonise within days of birth but species such as Streptococcus 

sanguinis are not seen until tooth eruption, due to the ability of S. sanguinis to colonise 

dental enamel but not mucosa (Carlsson et al., 1975, Proctor and Relman, 2017). 

Dental plaque formation is a continuous process which begins following the selective 

absorption of salivary glycoproteins to the surface enamel of teeth, forming a protein film 

called a pellicle (Figure 1.1). The pellicle contains both saliva and gingival crevicular fluid 

(CGF) proteins including glycoproteins, lysozymes, proline rich peptides, 

lactoperoxidases, lipids and phosphoproteins (Marsh et al., 2016). The acidic proline rich 

proteins contain binding sites for both hydroxyapatite and bacteria and may provide 

highly specific attachment sites for early colonising bacteria (Carlen et al., 1998, Dodds 

et al., 2005). If the supragingival plaque matures and extends down the tooth to develop 

into subgingival plaque, an inflammatory response may be initiated leading to the 

development of gingivitis (Figure 1.1). 

Streptococcus and Actinomyces species are the predominant early colonisers of tooth 

surfaces with evidence showing early colonisation by Actinomyces following tooth 

cleaning with relative proportions shifting to favour streptococci (particularly S. mitis and 

Streptococcus oralis) between 2 and 6 hours after tooth cleaning (Li et al., 2004). Early 

colonisers recognise molecules which allow adherence to tooth surfaces. For 

streptococci and Actinomyces species these include host derived receptors such as 
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statherin and proline rich proteins which have absorbed into the pellicle from saliva. Later 

colonisers are attracted to these via bacterial signals and metabolites and are able to 

adhere to the early colonisers (co-aggregate) leading to the generation of a more 

complex biofilm (Kolenbrander et al., 2010, Curtis et al., 2011). Certain species, such as 

Streptococcus gordonii, can interact with both salivary proteins (which would include 

those in the pellicle) and other bacteria, and as such make effective early colonisers 

(Nobbs et al., 2009). Other species, such as Fusobacterium nucleatum, are particularly 

strong co-aggregators, with the ability to interact with early and late colonisers and are 

considered important bridging bacteria in the processes of biofilm formation 

(Kolenbrander et al., 2010).  

 

 

Figure 1.1: Colonisation of oral biofilm leading to the establishment of gingivitis. 

During the formation of biofilms there is a selection of early, intermediate, and late-

colonizing species (Kolenbrander et al., 2010, Curtis et al., 2011). Gram-positive aerobic 

and facultative anaerobic early colonisers are able to adhere to the pellicle proteins, and 

then form binding sites themselves for the addition of more bacteria allowing the 

development of the biofilm (Murray et al., 1992, Ahn et al., 2002, Kolenbrander et al., 

2010, Curtis et al., 2011, Wade, 2013). Biofilm maturation can increase the presence of 

Gram-negative anaerobes which then activate host inflammatory responses. 
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1.1.1.2. Microbial community interaction and microbial regulation involved 

in maintaining oral health  

Microbial community interactions also play a role in preservation of healthy microbiota. 

Once formed, dental plaque is structurally highly organised with complex mature biofilms 

having more resilience than immature biofilms or planktonic bacteria to mechanical 

removal (through oral hygiene processes) and to host immunity (Wright et al., 2013, Xu 

and Gunsolley, 2014).   

In established biofilms, specific bacteria are often found near each other or as a mixed 

population to create specific structures which encourage growth or adherence 

(Kuramitsu et al., 2007, Xu and Gunsolley, 2014). For example, Actinomyces naeslundii 

and S. oralis cannot effectively colonise saliva coated surfaces alone but together can 

produce biofilms on these surfaces due to the combined utilisation of salivary metabolites 

(Palmer et al., 2001, Kuramitsu et al., 2007). Bacterial co-operation also exists in biofilms 

where multiple species are involved in the metabolism of complex host molecules (such 

as glycoproteins) which cannot be metabolised by one species alone (Marsh et al., 

2015). Indeed, as early as 1992 it was documented that Streptococcus mutans and 

Streptococcus sobrinus independently metabolise bovine serum albumin (BSA) with low 

efficiency but combined with S. oralis or F. nucleatum, higher BSA degradation was 

observed (Homer and Beighton, 1992).  

Commensal bacterial communities have established mechanisms to prevent pathogenic 

colonisation which include competition for nutrients, neutralization of virulence factors, 

production of antagonists to inhibit growth and interference in growth impacting signalling 

mechanisms (Kuramitsu et al., 2007, Zaura et al., 2014). An example of direct control of 

colonisation by pathogens is seen in S. salivarius K12, which has been shown to inhibit 

the growth of periodontitis- and halitosis- associated Gram-negative bacteria through the 

production of the bacteriocins; salivaricin A2 and salivaricin B (Burton et al., 2006, 

Masdea et al., 2012, Wade, 2013). S. gordonii, exemplifies the ability of some bacterial 

species to interfere with growth mechanisms of other bacteria. In biofilms and to a lesser 

effect in broth, S. gordonii has been demonstrated to antagonize several quorum 

sensing-dependent mechanisms (particularly the production of bacteriocins) of S. 

mutans. This process is reliant on the inactivation of the S. mutans competence-

stimulating peptide (a quorum sensing mediator) by S. gordonii (Wang and Kuramitsu, 

2005). 

Conversely, some bacteria aid colonisation and growth of other bacterial species (often 

commensals). For instance, A. naeslundii is able to cleave sialic acid residues found in 

oligosaccharide side chains on epithelial cells and in the enamel pellicle through the 
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action of a neuraminidase. This then exposes galactosyl sugar residues that can be 

utilised by bacteria expressing galactosyl-binding lectins for attachment (Gibbons et al., 

1990, Marsh et al., 2016).  

Community members of a commensal oral biofilm not only hinder pathogen colonisation 

but also influence other members of the community via synergistic mechanisms that 

stimulate the growth/survival of other members. Furthermore, inter-species bacterial 

communication is important to the integrity of the biofilm with inter-microbial adhesion, 

cell signalling through cell-cell contact, metabolic interactions and quorum sensing all 

playing crucial roles (Kuramitsu et al., 2007, Wright et al., 2013, Zaura et al., 2014).  

Commensal bacteria aid in preventing a heavily colonised site from entering a damaging 

state of inflammation by regulating host responses. Commensal bacteria from 

subgingival plaque can influence neutrophil deployment by regulating expression levels 

of intracellular adhesion molecule I (ICAM-1), E-selectin and cytokines (Dixon et al., 

2004, Devine et al., 2015). Cytokines such as interleukin-8 (IL-8, also known as CXCL8), 

CXCL1 and CXCL2 secreted from gingival cells and found in gingival tissues, saliva and 

gingival crevicular fluid (GCF) establish gradients for neutrophil recruitment (Devine et 

al., 2015). Neutrophils (as discussed in detail in section 1.1.1.3) are important in the 

maintenance of healthy microbiota. Neutrophil recruitment is regulated by 

cytokines/chemokines, expression of neutrophil cytokine/chemokine receptors and via 

their effects on expression of the adhesion molecules (detailed in section 1.1.1.3). Thus, 

altering neutrophil recruitment through cytokine release of gingival cells may be a method 

by which commensal bacteria establish a health-associated inflammatory status (Devine 

et al., 2015). In fact, a study has demonstrated that mouse colonisation by commensal 

bacteria increased CXCL2 expression and consequently increased neutrophil 

recruitment (Zenobia et al., 2013). While both CXCL1 and CXCL2 were expressed in 

periodontal tissues of germ-free mice, the CXCL2 up-regulation was only observed in 

mice with commensal colonisation.  

Control of cytokine levels by commensal bacteria is of much interest considering the role 

cytokines play in both innate and adaptive immunity in the oral cavity (discussed in more 

detail in section 1.2.4). In cases where changes in cytokines have been explored, 

commensal bacteria often demonstrate inhibition or down-regulation of cytokine release. 

Illustrating this is a study showing S. salivarius K12 inhibition of epithelial cell IL-8 

secretion. S. salivarius has also been shown to prevent normal IL-8 responses from 

epithelial cells stimulated by LL37, flagellin and Pseudomonas aeruginosa (Cosseau et 

al., 2008). In addition, K12 has been implicated in regulating immune responses through 

cytokine independent mechanisms, these include production of antimicrobial peptides 

(salivarin A2 and B), up-regulation of hepcidin (antimicrobial and iron regulating peptide) 
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and activation of type I and type II interferon responses (Hyink et al., 2007, Cosseau et 

al., 2008, Devine et al., 2015). Furthermore, a study using oral administration of the 

probiotic lactobacillus, Lactobacillus reuteri, to individuals with mild gingival inflammation 

was associated with a decrease in GCF IL-8 and tumour necrosis factor-α (TNF-α) 

concentrations (Twetman et al., 2009). This provides more evidence for the role of 

commensal bacteria in the regulation of immune responses in the oral cavity.  

There is also evidence suggesting that bacteria found in oral health can up-regulate 

cytokine production. A transcriptomic analysis of S. gordonii and F. nucleatum co-

cultured with gingival epithelial cells, demonstrated that while both bacteria altered the 

epithelial transcriptome to a lesser extent than pathogens, they did alter MAPK (mitogen-

activated protein kinase) and TLR (toll-like receptor) expression (Hasegawa et al., 2007); 

both MAPK and TLR can impact cytokine production, suggesting bacterial 

immunomodulatory roles. Indeed, S. gordonii was shown to inhibit IL-8 and IL-6 secretion 

while F. nucleatum caused an increase (Hasegawa et al., 2007). This suggested that a 

delicate balance in immune regulation is achieved by oral commensals to ensure the 

gingival tissues do not enter a detrimental inflammatory state. 

1.1.1.3. Microbial recognition and immune regulation by the oral mucosa  

Following colonisation and the establishment of the stable microbiota, a complex, bi-

directional interaction between host and microbiota maintains health. Site-specific and 

continual interactions between microbes and the host immune system mean microbiota 

of mucosal surfaces (including those in the oral cavity and gut) are influenced by both 

innate and adaptive immune responses (Zaura et al., 2014).  

The oral mucosa plays an important role in health through immune activation in response 

to the constant exposure to microbes, environmental antigens (diet derived and airborne) 

and damage through mastication and oral hygiene. In health, the oral cavity must 

maintain effective immune surveillance and clearance of pathogenic or excessive 

bacteria without mounting uncontrolled or disproportionate immune responses 

(Moutsopoulos and Konkel, 2017). To aid in this, the oral mucosa is composed of both 

oral epithelial cells and immune cells (including cells such as macrophages, dendritic 

cells (DCs), natural killer (NK) cells and polymorphonuclear neutrophils), which 

contribute to the plethora of immunomodulatory cytokines found in the oral cavity. Oral 

keratinocytes further contribute to immune regulation through the production of biological 

mediators such as antimicrobial peptides (Feller et al., 2013). 

The specifics involved in health and immune homeostasis maintenance, however, are 

not well understood. While immune tolerance to commensal bacteria at other barrier 

surfaces (such as skin) in the human body are relatively well explored, immune control 
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in oral health is not (Moutsopoulos and Konkel, 2017). Although specific local immunity 

in oral health initiated by commensal microbes is not fully understood, Dutzan et al (2016) 

has shown lymphocytes in healthy oral tissue have a high proportion of T-cells and a 

network of antigen presenting cells, suggesting priming of the immune cells to local 

antigens.  There is also evidence, however, to suggest that homeostasis is not only 

dependent on host-microbial interactions but also microbe independent regulation. For 

example, a study in germ-free mice showed no changes in gingival Th17 (T-helper 17) 

cell number compared with controls, indicating gingival Th17 cell accumulation was not 

dependent on commensal colonisation (Dutzan et al., 2017). The role of Th17 cells in 

the oral cavity is discussed in more detail in section 1.2.2.3. Contrastingly, a different 

study in germ-free mice demonstrated microbial colonisation may have distinct effect of 

innate immune cells by showing an increase in neutrophil recruitment in commensal 

colonised mice compared with the germ-free mice (Zenobia et al., 2013).  

Much like other barriers in the human body (skin/gut), the oral mucosa’s first line of 

defence is a physical barrier in the form of keratinized epithelia. The oral mucosa consists 

of a variety of epithelial cells of varying keratinization. The gingival crevice epithelium is 

a non-keratinized squamous epithelium lining the inside of the gingivae (gingival sulcus) 

and towards the base of the sulcus (where the gingiva meets the tooth) becomes 

incompletely differentiated epithelium, the junctional epithelium (JE). The JE and lack of 

keratinization makes the gingival crevice epithelium particularly vulnerable to bacterial 

and mechanical damage. These JE are attached to the tooth by hemi-desmosomes to 

provide a permeable connection for the movement of GCF. Furthermore, JE cells are 

important to the transmigration of neutrophils (Groeger and Meyle, 2015, Moutsopoulos 

and Konkel, 2017). Indeed, histological investigation showed an accumulation of 

inflammatory cells at a steady state in the gingival crevice (Moskow and Polson, 1991).  

In addition to the physical properties, gingival epithelial cells are also important in the 

recognition of bacterial products. Microorganism recognition by cells is mainly 

accomplished through members of the pattern recognition receptor (PRR) family and 

opsonins. While a variety of receptors are associated with PRRs to enable recognition 

of viral, fungal, protozoal and bacterial MAMPs (microbial-associated molecular 

patterns), TLRs and nucleotide oligomerization domain receptors (NODs) are the most 

prevalent and well-studied in oral cells (Ross and Herzberg, 2016, Feller et al., 2013). 

Oral and gingival epithelial cells have been shown to express TLRs 1 – 9 with variable 

and inducible expression and localisation (Sugawara et al., 2006, Beklen et al., 2007, 

McClure and Massari, 2014). 

Upon activation, TLRs initiate inflammatory responses via signalling cascades (NF-κB, 

MAPK and interferon regulatory factors) that lead to the transcription of cytokines. 
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Although many of the cytokines produced are pro-inflammatory and, as such, are 

involved in the recruitment of immune cells, immune cell-independent responses are also 

induced in oral keratinocytes. This includes production of antimicrobial peptides (LL-37 

and β-defensins) which are immunomodulatory molecules and can directly kill 

microorganisms (Ross and Herzberg, 2016). Epithelial release of IL-1α in response to 

microbial stimulation leading to the transcription of the antimicrobial protein calprotectin 

is an example of immune cell-independent responses (Sorenson et al., 2012). The study 

suggested this was achieved through IL-1 receptor interactions on adjacent or the same 

epithelial cell. Furthermore, increased resistance to bacterial invasion was also observed 

(Sorenson et al., 2012). The activation of anti-microbial mechanisms such as these, 

highlight potential roles of gingival epithelial cells in maintaining health and immune 

homeostasis.  

TLR activation in the gingival epithelium initiates the release of proinflammatory 

cytokines including IL-1α, IL-1β, IL-6, IL-8 and TNF-α, which are discussed in detail in 

section 1.2.4 (Meyle and Chapple, 2015, Groeger and Meyle, 2015). The release of 

these cytokines initiates inflammatory responses that are aimed at clearance of 

microorganisms. Regulation by negative feedback loops ensures resolution is achieved 

upon clearance of the stimulus, helping maintain the balance between effective microbial 

control and host damage (Figure 1.2). TLR specificity controls the magnitude and 

duration as well as type of adaptive immune response. For example, TLR2 recognises 

MAMPs associated with Gram-negative and Gram-positive bacteria (including 

lipoproteins and peptidoglycan) while TLR4 recognises bacterial components such as 

Gram-negative bacterial lipopolysaccharide: LPS. The clearance of pathogens is 

achieved through activation of phagocytosis by immune cells, release of antimicrobial 

peptides/inflammatory mediators and activation of inflammasomes (Feller et al., 2013, 

Kramer and Genco, 2017).  

In addition to release of cytokines, epithelial detection of microbes has also been linked 

to activation of the autophagosome and inflammasome as well as release of reactive 

oxygen species (ROS) and components of the complement system (Feller et al., 2013, 

Ross and Herzberg, 2016). The complement system is comprised of a cascade of 

interacting soluble and cell surface bound molecules including pattern recognition 

molecules, proteases, regulators and signalling receptors. Together these work to initiate 

and regulate the inflammatory response and are involved in direct microbe killing (Ricklin 

et al., 2010). For example, C3a and C5a recruit inflammatory cells while C3b functions 

as a microbial opsonin and C5b-C9 attacks membranes of susceptible microbes 

(Hajishengallis et al., 2013). Both complement and TLRs are involved in early defence 

mechanisms and responses against microbes, acting rapidly once activated to mediate 
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the link between innate and adaptive immunity (Hajishengallis and Lambris, 2016). 

Interestingly, microbial products typically associated with TLR activation (such as LPS, 

zymosan and CpG DNA) have also been demonstrated to initiate complement cascades 

(Zhang et al., 2007, Mangsbo et al., 2009). Recently, Hajishengallis and Lambris (2016) 

reviewed in depth, the studies linking TLR and complement activation and highlighted 

the importance of the interactions between the two systems, which can act synergistically 

(to enhance immune responses) or antagonistically (to regulate immune responses and 

maintain homeostasis).  

DCs are antigen presenting cells and are resident members of the oral mucosa. They 

act as regulators of immune tolerance and protection and play an important role in health. 

Antigen capture and presentation by DCs leads to the expression of cytokines and 

molecules required for presentation of antigens to B- and T-cells and the subsequent 

activation of adaptive immunity. In addition to mounting defences against pathogenic 

bacteria, DCs can also inhibit immune responses against commensal bacteria via 

complex mechanisms that involve deletions of T-cells through apoptosis and functional 

inactivation of T-cells (Santoro et al., 2005). Furthermore, they play a role in the 

development of antigen specific T-regulatory cells (T-regs). These multifactorial roles 

highlight their importance in homeostasis maintenance. In the gut, DCs can suppress 

inflammation and promote immunological tolerance of commensal bacteria (Iliev et al., 

2007). However, when pathogen load is high, non-immunosuppressive DCs are 

recruited to promote protective immune responses. This mechanism may also take place 

in the oral cavity (Santoro et al., 2005, Zaura et al., 2014). 

Polymorphonuclear neutrophils perhaps play the biggest role in maintaining oral health 

and immune homeostasis especially when considering they account for approximately 

95% of leukocytes in the oral mucosa and have been shown to be increased during 

inflammation (Dutzan et al., 2016). They are constantly extravasated from the circulation 

into the gingival tissue via the JE following chemokine gradients established by oral 

epithelial cells and other immune cells. Their exact role in oral health maintenance is not 

fully understood (Kinane et al., 2017). However, recently a cross-sectional clinical study 

looking at both oral and systemic polymorphonuclear neutrophils did demonstrate higher 

neutrophil activation in oral samples compared with systemic neutrophils even in the 

absence of periodontal disease indicating a role in oral health maintenance (Rijkschroeff 

et al., 2016). A more in-depth discussion of polymorphonuclear neutrophils and in 

particular their role in periodontitis progression is discussed in section 1.2.1. 
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1.1.1.4. Role of saliva and gingival crevicular fluid in establishing healthy 

microbiota 

Saliva, being protein rich and continuously bathing the surfaces of the oral cavity, is 

important in oral health. Components from both saliva and GCF contribute to health 

associated immunity. The GCF is a serum transudate which flows continuously into the 

gingival sulcus. It is composed of a variety of variable substances including 

immunoglobulins, albumin, immune modulators, antimicrobial peptides, tissue 

breakdown products and microbes from surrounding plaque. It resembles serum and in 

health is found in small quantities (Khurshid et al., 2017, Sonnenschein and Meyle, 

2015). Saliva, much like GCF, contains a variety of complex molecules including 

glycoproteins, inorganic ions, proline-rich peptides, host-defence peptides, mucins and 

amylase (Marsh et al., 2016).  

As described previously (section 1.1.1.1) salivary and GCF components play an 

important role in the generation of the pellicle and subsequent bacterial adherence. In 

addition, certain salivary proteins act only when in fluid saliva. For example, salivary 

agglutinin (also known as gp340) and the salivary mucin MUC7 are involved in 

aggregating planktonic bacteria, leading to their removal through swallowing and 

preventing their attachment to the surfaces of the oral cavity (Marsh et al., 2016, Madsen 

et al., 2010). While this is beneficial in situations where the bacteria could be detrimental 

to health, it could potentially hinder the establishment of a commensal microbiota. To 

overcome this, certain proteins found in saliva are equipped to select for particular 

bacteria. For example, proline rich peptides found in saliva contain bacterial attachment 

protein segments which are only exposed when the protein is absorbed into the pellicle 

and bound to the hydroxyapatite on the surface of teeth. This then allows commensal 

bacteria to avoid aggregation and removal but still bind to the pellicle (Marsh et al., 2015). 

Salivary agglutinins also have the additional function of activating the complement 

system via the classical pathway (Leito et al., 2011). An early study demonstrated 

interaction of salivary agglutinin with the C1q receptor of complement (the first 

component of the classical pathway) in freshly isolated human serum (Boackle et al., 

1993). Under normal conditions, these two proteins would not interact, but under 

inflammatory conditions where blood or GCF may leak into the saliva their potential for 

interaction increases (Madsen et al., 2010). More recent studies have demonstrated finer 

control of complement activation by salivary agglutinin, whereby activation of 

complement is achieved only when agglutinin is surface bound and inhibition is observed 

when it is in solution (Leito et al., 2011, Reichhardt et al., 2012). Together these findings 

suggest that agglutinins may be important in regulating immune responses as well as 

impacting the microbiota.  
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Other immunomodulatory molecules in saliva and GCF are the antibodies, secretory 

immunoglobulin A (sIgA) and to a lesser extent immunoglobulin G (IgG). The exact role 

of these in health, beyond antimicrobial immune response activities (such as 

neutralisation and aggregation), are not fully understood (Dawes et al., 2015). However, 

IgA proteases are well known virulence factors of pathogens such as Neisseria 

meningitidis and Streptococcus pneumoniae but are also produced by commensal 

bacteria such as S. mitis, S. oralis and S. sanguinis, all of which are primary colonisers 

of the oral cavity and are found as the major colonisers of oral mucosal sites of adults 

(Marsh et al., 2009, Zaura et al., 2014). This suggests a role in both prevention of 

colonisation and survival of particular species.  

Although the exact role of all the proteins in health are not fully understood, Table 1.1 

highlights important health maintenance roles of some of the many proteins found in 

saliva.  

1.1.2. Periodontal diseases  

The periodontal diseases gingivitis and periodontitis are two of the most common human 

diseases (Preshaw et al., 2012, Xu and Gunsolley, 2014). Periodontitis is a common 

condition that affects approximately 10-15% of adults in its severe form and 40-60% in 

the moderate form (Petersen and Ogawa, 2012, Preshaw et al., 2012, Kinane et al., 

2017). Although not fatal periodontal diseases can have a substantial impact on health 

services and a patient’s quality of life.  

Periodontitis predominantly falls into two categories – chronic and aggressive (American 

Academy of Periodontology, 2015). Chronic periodontitis progresses from untreated 

gingivitis and is associated with chronic inflammation leading to irreversible tissue 

damage (Kinane et al., 2017). Aggressive periodontitis is often more severe, has an 

earlier onset and faster progression rate (Armitage, 1999, Wade, 2013). More rare 

categories of periodontitis include necrotizing ulcerative periodontitis and syndromic 

chronic periodontitis. While necrotizing ulcerative periodontitis is an acute form of the 

disease with rapid progression, syndromic chronic periodontitis is associated with 

systemic diseases (such as Chediak-Higashi syndrome and Papillon-Lefѐvre syndrome) 

which impact host immune responses (Kinane et al., 2017).  The inflammatory responses 

associated with periodontitis can lead to the formation of the characteristic periodontal 

pocket and eventual loss of attachment between teeth and gingivae (Figure 1.2 and 

Figure 1.3). Periodontal tissue destruction, although slow to progress, is in the main 

irreversible (Darveau, 2010, Preshaw et al., 2012, Scannapieco, 2013, Wade, 2013). 
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Table 1.1: The role of some salivary components in oral health maintenance  

Component  Function in oral health maintenance 

α-amylase Inhibits growth of pathogenic bacteria Porphyromonas gingivalis 

(Ochiai et al., 2014). 

Histatins Inhibits growth of opportunistic oral fungus Candida albicans 

(Oppenheim et al., 1988). 

Statherin Inhibits growth on anaerobic bacteria (Gorr, 2009).  

Acts in a buffering capacity and limits damage associated with pH 

changes caused by bacterial metabolism (Zaura et al., 2014) 

Provides attachment sites in the pellicle for oral colonisers (Dodds 

et al., 2005). 

Glycans Acts as decoys to prevent adherence of C. albicans (Everest-Dass 

et al., 2012).  

Involved in toxin interaction and neutralization (Dawes et al., 2015). 

Lactoperoxidase Catalyses the conversion of the bacterial metabolite hydrogen 

peroxidase and saliva-secreted thiocynate into hypothiocyanite. 

Hypothiocyanite acts as an antimicrobial and inhibits bacterial 

glycolysis (Kilian et al., 2016).   

Lysozyme Cationic protein that causes bacterial cell wall damage (Dawes et 

al., 2015). 

Lactoferrin Acts as iron chelator. Removal of iron can interfere with metabolism 

of some pathogens (Dawes et al., 2015). 
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Figure 1.2: Host immune responses and the impact on periodontitis progression. 

Bacterial products are recognised by cells in the periodontal environment via toll like receptors 

(TLRs) and nucleotide oligomerization domain receptors (NODs) (1) causing intracellular 

signalling cascades which result in the release of inflammatory cytokines and chemokines by 

residential cells (epithelial cells/fibroblasts/dendritic cell) (2). These act on blood-vessels and 

circulating leukocytes to selectively recruit leukocytes to the periodontal space causing a 

further release of pro-inflammatory cytokines and chemokines (3). Recruited leukocytes, upon 

recognition of bacterial products (via TLRs and NODs) become activated to release 

antimicrobial compounds including myeloperoxidase (MPO) and nitric oxide (NO) and 

neutrophil extracellular traps (NETS) (4). Maintenance of periodontal health is also aided by 

the release of cytokines and antibodies that initiate phagocytosis (5). In periodontitis 

leukocytes also produce or induce production, by resident cells, of RANKL (receptor activator 

of nuclear factor-κB ligand) (6). An increase in RANKL and a disruption in levels of its inhibitor, 

OPG (osteoprotegerin) (7) increases bone resorption through activation of osteoclasts 

(OCLs). This causes a disruption in the bone formation (8) and bone resorption balance. 

Inflammatory mediators produced by the leukocytes also inhibit coupled bone formation (9) in 

an attempt to counteract the increased OCL activity. The local chronic inflammatory state 

results in an imbalance of MMP (matrix metalloproteases) and TIMP (tissue inhibitors of 

metalloproteinase) ratio leading to increase in extracellular matrix (ECM) destruction of 

periodontal tissues (10). Periodontal pathogens also activate antimicrobial compounds such 

as lactoferrin, - and - defensins and LL-37. Adapted from Garlet (2010). 
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Figure 1.3: Progression of gingivitis and periodontitis (adapted from 

Hajishengallis, 2015). The accumulation of bacteria at the gingival crevice leads to the 

initiation of gingivitis. A subsequent shift in bacterial composition from Gram-positive 

aerobes and facultative anaerobes to predominantly Gram-negative anaerobes disrupts 

inflammatory responses and activates the progression to periodontitis and the formation 

of a periodontal pocket. This leads to eventual destruction of the collagen fibres of the 

periodontal ligament, bone resorption and attachment loss (Preshaw et al., 2012, 

Scannapieco, 2013).  
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Our understanding of oral diseases has progressed substantially over the years. It is now 

understood that gingivitis and periodontitis are characterised by a combination of 

pathogenic bacterial accumulation and subsequent detrimental host inflammatory 

responses, but the exact cause of periodontal disease onset is continually under review 

(Preshaw et al., 2012, Ramamurthy et al., 2014, Xu and Gunsolley, 2014). Initially 

periodontitis was considered to be caused by an accumulation of microorganisms within 

the dental plaque and the subsequent host response (Schultz-Haudt et al., 1954, 

Macdonald et al., 1956). This hypothesis was followed, in 1986, by a theory based on 

studies utilising culture dependent methods to identify a complex biofilm of over 200 

species in the absence of brushing, with an increase in bacterial load and shifts in 

proportions in periodontitis but no identification of a single causative species. Thus, the 

theory of multiple responsible species was put forward (Theilade, 1986). In 1994 the 

ecological plaque hypothesis was put forward by Marsh, who postulated that shifts in 

microbial composition as a consequence of changes in the environment led to flourishing 

of bacterial species and development of  pathogenic bacterial consortia which could 

cause host infection (Marsh, 1994). A more recent theory based on the ecological plaque 

hypothesis is the polymicrobial synergy and dysbiosis hypothesis, which proposes that 

oral diseases are initiated and maintained by synergistic and dysbiotic microbial 

communities (rather than specific oral pathogens) so that they represent a specific 

genetic fingerprint to work together to stabilise and grow the disease provoking biofilm 

(Hajishengallis and Lamont, 2012, Hajishengallis et al., 2012).  

Dental plaque maturation contributes to the progression of gingivitis and periodontitis. If 

kept in check through regular tooth cleaning, the dental plaque remains present only in 

small amounts and the activation of detrimental inflammatory processes can be avoided 

(Socransky, 1977, Wade, 2013). When plaque matures however, there is an 

accumulation of bacteria and an increase in the presence of bacteria with pathogenic 

potential (including opportunistic pathogens which are damaging to the host under 

certain conditions). This accumulation of bacteria triggers the onset of gingivitis where 

the gingivae become inflamed through the activation of a defensive inflammatory 

response. It is now widely accepted that this accumulation of bacteria alone is not 

sufficient to trigger the advancement to periodontitis, but rather a series of complex 

interactions between the gingivitis associated biofilm and the host immune response is 

required for progression (Figure 1.1 and Figure 1.2) (Kilian et al., 2016, Zijnge et al., 

2010, Wade, 2013).  

In gingivitis, the GCF changes from a transudate to a microbial and host-derived 

substance rich exudate. The host derived components include pro-inflammatory 

cytokines, immune cells and enzymes such as proteases (Kilian et al., 2016, 
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Sonnenschein and Meyle, 2015, Lamster, 1997). This change in composition added to 

an increased flow of GCF and accompanied local gingival bleeding leads to disruption in 

the microenvironment. This then causes the main bacterial load in the gingival crevice to 

shift from predominantly Gram-positive aerobes and facultative anaerobes towards 

Gram-negative anaerobes (Figure 1.1). Increase in bacterial load and subsequent 

oxygen utilisation in addition to deepening of the periodontal pocket creates an 

increasingly anaerobic and reduced environment (Figure 1.2 and Figure 1.3), which 

further enhances the shift from health to dysbiosis by encouraging the growth of an 

obligate anaerobic community in the subgingival plaque (Hajishengallis, 2015).   

In addition to the formation of the periodontal pocket, inflammation can cause bleeding 

in the gingival crevice which increases the haemoglobin and transferrin content of the 

environment. This produces conditions ideal for the growth of the periodontitis associated 

pathogens such as Porphyromonas gingivalis (Kuramitsu et al., 2007, Meyle and 

Chapple, 2015, Kilian et al., 2016).The metabolic processes of the now favoured 

bacteria, increases pH but also contributes to making the environment more anaerobic 

further encouraging growth of the bacteria adapted to these environments such as P. 

gingivalis and Tannerella forsythia. These proteolytic bacteria not only directly damage 

host tissue, but also impact host immunity through degradation of immunoregulatory 

proteins (Marsh et al., 2015).  

The progression of gingivitis to periodontitis occurs in individuals when gingivitis-

associated inflammation is no longer proportionate or self-resolving but rather becomes 

exaggerated and ineffective, particularly in the connective tissue supporting the teeth. 

This can be perpetuated by external factors which increase susceptibility such as 

tobacco consumption and poorly-controlled diabetes (Kilian et al., 2016). The shift in the 

biofilm composition causes the destruction of periodontal tissue through exacerbated 

and dysregulated inflammation (Abdul-Sater et al., 2009, Garlet, 2010, Scannapieco, 

2013). 

The destruction of periodontal ligaments through the breakdown of collagen fibres can 

cause the deepening of the periodontal pocket (Figure 1.2 and Figure 1.3). Tissue 

breakdown also provides further nutrients for pathogenic bacterial growth, promoting 

further inflammation, tissue destruction and dysbiosis (Kilian et al., 2016). Colonisation 

of the periodontal pocket, a prime location for anaerobic bacteria, also triggers 

downstream alveolar bone resorption leading to attachment loss (Figure 1.2 and Figure 

1.3) (Preshaw et al., 2012).  

Unlike in gingivitis, there are several species of bacteria which are associated with 

periodontitis. Socransky et al in 1998 proposed a model which distinguished bacteria into 
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coloured complexes based on their involvement in periodontitis (Figure 1.4) (Socransky 

et al., 1998). Based on data from over 13,000 subgingival plaque samples, analysed for 

the presence of 40 culturable species (using DNA-DNA hybridization) it was concluded 

that the bacteria associated with the blue, green, purple and yellow complexes were 

involved in initial colonisation of tooth surfaces. The Orange complex bacteria showed 

increased prevalence in moderate disease and were described as being associated in 

the progression of periodontitis. Red complex bacteria  had increased prevalence in 

diseased sites and are associated with established and severe periodontitis (Figure 1.4) 

(Socransky and Haffajee, 2002). Although this nomenclature is still used today, the 

advancement in culture independent bacterial identification has improved microbial 

profiling so that bacteria associated with each of these colour complexes now includes 

non-culturable species not described in the original model (Hiranmayi et al., 2017).  
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Figure 1.4: Representation of the colour complexes defined using the checkerboard 

technique of culturable bacteria associated with periodontal health and disease. The 

base of the pyramid represents health associated bacteria which are early colonisers of tooth 

surfaces. Upon plaque maturation the orange complex bacteria increase in predominance and 

bridge the colonisation of red complex bacteria which are found to be more prevalent in 

periodontitis (adapted from Socransky and Haffajee, 2002).  
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Disease associated bacterial communities persist in the periodontal pocket without 

invading the periodontal tissue. The immune system is unable to effectively eliminate the 

microorganisms causing a chronic inflammatory state such that the prolonged host 

responses lead to tissue destruction (Okada and Murakami, 1998). Despite the 

association of these bacteria with periodontitis, it remains unclear if any particular 

species is involved in disease onset or if it is the shift in biofilm composition leading to 

the formation of the pocket and subsequent chronic inflammation which produces optimal 

conditions for these bacteria to flourish (Curtis et al., 2011, Wade, 2013).  

The role of viruses in periodontitis has also recently been investigated. In particular 

herpesviruses have been implicated in gingival infections, periodontal diseases and 

mucosal ulceration (Silva et al., 2015). Herpesviruses often have latent persistence in a 

variety of cells including immune cells and can modulate immune responses. Although 

little is known about the exact mechanisms linking viral load to progression of 

periodontitis, these viruses have been shown to have a higher prevalence in periodontal 

tissues in patients with periodontitis (Slots and Contreras, 2000, Silva et al., 2015). It is 

proposed that local immunomodulatory effects caused by herpesvirus infection could 

enable the increase in bacterial load and virulence in periodontitis. In addition, 

herpesvirus infection could induce the release of cytokines/chemokines contributing to 

the excessive immune response associated with periodontitis (Silva et al., 2015, Meyle 

and Chapple, 2015, Slots and Contreras, 2000, Wright et al., 2008). 

1.2. Molecular mechanisms involved in the progression of periodontitis  

With the advancement of technology, our understanding of the immune response 

associated with periodontitis has evolved. Since it was first suggested in 1976 by Page 

and Schroeder, the idea that bacterial presence is essential but not sufficient for the 

progression of periodontitis is still valid. Active periodontitis could be characterised by 

the changes in inflammatory cells (including polymorphonuclear neutrophils, DCs, T-

cells and macrophages) as well alterations in immunomodulatory molecules (including 

cytokines and complement) with alveolar bone resorption and gingival tissue damage as 

a consequence of prolonged immune responses. Below is a brief description of some 

aspects of both the innate and adaptive immune responses that have been shown to be 

involved in periodontitis. 

1.2.1. Polymorphonuclear neutrophils 

Polymorphonuclear neutrophils (referred to as neutrophils from this point) as previously 

alluded to (section 1.1.1.3) are significant players in the establishment and maintenance 

of a healthy periodontium. In the absence of inflammation, the number of leukocytes 

migrating through the JE amount to 3000 leukocytes/min into the periodontal pocket 
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(Schiott and Loe, 1970). These are predominantly neutrophils and an increase in 

numbers has been observed in periodontitis. Interestingly an increase in systemic 

numbers of neutrophils is also observed in both localised and generalised periodontitis 

(Loos et al., 2000), suggesting an exacerbated systemic innate immune response 

stemming from the increased inflammation in the oral cavity associated with periodontitis. 

Furthermore, treatment of patients with generalised periodontitis led to a decrease in 

systemic neutrophil numbers (Christan et al., 2002). These studies suggest a mechanism 

by which local infection controls neutrophil generation.  

Once in the periodontal pocket, neutrophils form a barrier between microorganisms and 

the host cells, providing early lines of immune defence (Nicu and Loos, 2016). 

Neutrophils function following a two-step processes. The first step, priming, results from 

the initial exposure to activating factors (cytokines and bacterial products) (Summers et 

al., 2010). Priming ensures maximal neutrophil degranulation and oxidative burst by 

making neutrophils more responsive to activating agents and able to survive longer 

through delayed apoptosis (Guthrie et al., 1984, Colotta et al., 1992, Nicu and Loos, 

2016). Priming is followed by activation and subsequent removal of activating agent 

(Summers et al., 2010). Following is a brief overview of neutrophil activation, the 

mechanisms employed by neutrophils for bacterial control and the roles played by 

neutrophils in periodontitis progression and associated tissue damage.  

Prior to activation, neutrophils act in a searching capacity, circulating in blood to find 

potential targets or areas of inflammation to which they may be recruited. These targets 

include the cytokines produced by epithelial cells in response to microorganisms or 

tissue damage (section 1.2.4), which signal the presence of pathogens (Nicu and Loos, 

2016). In addition to release of chemokines (such as IL-8, C5a and prostaglandin E2: 

PGE2) by DCs, macrophages, mast cells, endothelial and epithelial cells, response to 

local infection also includes an up-regulation of adhesion molecules on local blood vessel 

endothelium. Together these changes direct and aid the migration of neutrophils from 

the blood into the infected tissue (Delima and Van Dyke, 2003, Phillipson and Kubes, 

2011, Amulic et al., 2012, Hajishengallis and Chavakis, 2013). In the JE, IL-8 production 

is paramount to the generation of a chemotactic gradient for recruitment of neutrophils 

into the periodontal pocket (Curtis et al., 2011, Uriarte et al., 2016). The role of IL-8 in 

periodontitis is discussed in more detail in section 1.2.4.1.  

Upon reaching a site of infection, neutrophils undergo a series of processes to 

transmigrate through the blood vessels into the tissue. Chemokines produced by host 

cells and microbial components (LPS, lipoteichoic acid or N-formyl-methionyl-leucyl-

phenylalanine: fMLP) initiate this process (Nicu and Loos, 2016). The release of 

histamine and complement components (C3a and C5a) cause vasodilation, slowing of 
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blood flow and increased vascular permeability thus allowing the neutrophils to 

successfully undergo the tethering process (Meyle and Chapple, 2015). The increase in 

vascular permeability also increases serum release into the periodontal pocket. In health, 

serum, being rich in inflammatory mediators (such as antibodies and complement 

components), aids the clearance of pathogenic bacteria (Meyle and Chapple, 2015). In 

periodontitis, however, the increase in the GCF serum content can provide nutrients to 

enhance the growth of pathogenic communities. Indeed, P. gingivalis has been shown 

to activate C5a through cysteine protease (gingipain) associated conversion of C5. This 

potentially causes an increase in migration and retention of neutrophils into tissues and 

activates macrophages to prolong inflammation, leading to an increase in potential 

growth substances (Wingrove et al., 1992, Meyle and Chapple, 2015). The increase in 

local C5a levels induced by P. gingivalis also interferes with the interactions between 

TLR2 and C5a such that IL-12p70 is inhibited and pro-inflammatory cytokines (IL-1β, IL-

6 and TNF-α) are increased. In an in vivo mouse model, this mechanism presents as 

evasion of immune clearance and inflammatory bone loss which is not found in either 

C5a receptor or TLR2 deficient mice (Liang et al., 2011). Furthermore, C5a receptor-

TLR cross talk has also been shown to be exploited by P. gingivalis to evade 

macrophage associated killing which could be recovered by addition of a C5a receptor 

antagonist (Wang et al., 2010). Complement associated manipulations by P. gingivalis 

are associated with a host of other mechanisms including impairment of iNOS (inducible 

nitric oxide synthase) dependent killing of pathogens, gingipain proteolytic cleavage of 

C3 thus prevention of complement activation, activation of TLR2 and subsequent IL-12 

down-regulation and cleavage of complement regulatory protein (CD46) from host cell 

surfaces (Hajishengallis, 2010, Olsen et al., 2017). 

The up-regulation of adhesion molecules on local blood vessels further aid the initial 

tethering of neutrophils to endothelial cells and slows their movement to allow rolling. 

Rolling is dependent on interactions between neutrophil cell surface molecules such as 

L-selectin (neutrophil cell surface), P-selectin (endothelium), E-selectin (endothelium) 

and endothelial cell receptor P-selectin glycoprotein ligand-1 (endothelium and 

neutrophils) (Ley et al., 2007). Platelets also express a high level of P-selectin and, given 

decreases observed in neutrophil rolling and adhesion in response to anti-platelet 

antibodies, it has been proposed platelets act as bridges between neutrophils and 

endothelial cells to aid adherence of neutrophils (Carvalho-Tavares et al., 2000). 

Interestingly, untreated periodontitis has been associated with increased platelet P-

selectin expression and adhesion of platelets to neutrophils in response to bacterial 

challenge and increased systemic platelet activation (Nicu et al., 2009, Papapanagiotou 

et al., 2009). Furthermore, greater phagocytosis responses have been observed with 
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neutrophil-platelet complexes compared with neutrophils alone in both periodontitis and 

periodontally healthy patients (Nicu et al., 2009).   

The process of rolling allows binding between integrins on neutrophil cell surfaces (such 

as lymphocyte function-associated antigen and macrophage-1 antigen) to their receptors 

on activated endothelium (including intercellular adhesion molecule 1 and 2) for firm 

adhesion. Adhesion requires the binding of chemokines to their neutrophil receptors 

(achieved during neutrophil rolling) to activate neutrophils and lead to the integrin 

confirmation changes needed for receptor binding (Nicu and Loos, 2016). In addition, 

binding of chemokines to neutrophils initiates cytosolic actin reorganisation and 

development of cellular polarity, both of which aid in contact between neutrophils and 

the endothelial cells (Meyle and Chapple, 2015). Once adhered to the endothelial 

surface, neutrophils begin the process of transmigration after crawling along the 

endothelial lining to find an appropriate place. Transmigration is a complicated process 

reliant on a host of molecules including; junctional adhesion molecules, platelet 

endothelial cell adhesion molecule-1, integrins and vascular endothelial cadherin 

(reviewed in detail in Schmidt et al., 2011 and Muller, 2013).  

Neutrophils are characterised by both their lobed nuclei and the high granulation of their 

cytoplasm. These granules contain a large variety of antimicrobial peptides and enzymes 

and are divided into four categories; azurophilic, specific, gelatinase and secretory 

vesicles (Uriarte et al., 2016). A brief description of some of the contents of the 

azurophilic, specific and gelatinases is outlined in Table 1.2 (Faurschou and Borregaard, 

2003) with the addition of lysozyme which is found in all three types of granules and 

functions by cleaving peptidoglycan polymers of bacterial cell walls and bind LPS to 

reduce associated cytokine release (Faurschou and Borregaard, 2003, Wiesner and 

Vilcinskas, 2010). 
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Table 1.2: Neutrophil granular content and function. Predominant antimicrobial 

protein functions within each granule (Faurschou and Borregaard, 2003). 

 

Granule  Antimicrobial protein Main function 

Azurophilic 

(primary) 

 

Myeloperoxidase Lead to the formation of microbicidal 

molecules (hydrochlorous acid, N-

chloramines, tyrosine radicals and 

reactive nitrogen intermediates) 

which attack the surface membrane 

of microorganisms. Formed via 

interactions with hydrogen peroxide.  

Serine proteases  Involved in hydrolysis of extracellular 

matrix. Includes elastases, cathepsin 

G, azurocidin and proteinase 3. 

Defensins  Forms multimeric transmembrane 

pores. Small cationic antimicrobial 

and cytotoxic peptides. 

Bactericidal/permeability-

increasing protein (BP1) 

Cationic protein which binds to 

lipopolysaccharide of Gram-negative 

bacteria leading to the rearrangement 

of outer membrane lipids, growth 

inhibition and inner membrane 

damage.  

Promotes bacterial attachment to 

neutrophils and monocytes. 

Specific 

(secondary) 

Lactoferrin  Sequesters iron to inhibit bacterial 

growth.  

Binds to bacteria cell membranes 

causing irreversible damage and cell 

lysis 

Human cathelicidin  Antimicrobial protein whose C-

terminal (LL-37) has antimicrobial 

activity against Gram-negative and 

Gram-positive bacteria and acts as a 

chemoattractant for neutrophils, T 

cells and monocytes.  

Lipocalin neutrophil gelatinase-

associated lipocalin (NGAL) 

Bacteriostatic through sequestering 

of ferric-siderophore complexes.  

Matrix metalloproteinase 8 

(MMP-8) 

Collagenase 

Gelatinase 

(tertiary)  

Matrix metalloproteinase 9 

(MMP-9) 

Gelatinases 

Macrophage-1 antigen  Firm adhesion of neutrophils to 

endothelial cells  

Nicotinamide adenine 

dinucleotide phosphate oxidase 

component (cytochrome b558) 

Involved in the generation of ROS.  

Natural resistance-associated 

macrophage protein 1 

Deprives microorganism in the 

phagosome of essential metals such 

as iron, magnesium and zinc.  
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Mobilisation and degranulation in neutrophils is hierarchical, such that neutrophil 

activation favours mobilisation and degranulation of gelatinase granules over specific 

granules which are favoured over azurophilic granules (Nauseef and Borregaard, 2014). 

This process allows the neutrophil to transform from a sentinel cell into a potent active 

innate immune cell (Faurschou and Borregaard, 2003). Secretory vesicles are mobilised 

during the initial activation of neutrophils (during rolling) and function via their 

membranes to provide neutrophils with additional receptors (including integrins, 

macrophage-1 antigen, LPS/lipoteichoic acid-receptor, CD14, immunoglobulin 

receptors, formylated bacteria peptide receptors and matrix metalloproteinase (MMP)/ 

/leukolysin receptors). This mobilisation aids in priming neutrophils for transmigration, 

making them integrin presenting cells which are highly responsive (Nicu and Loos, 2016).  

Once neutrophils transmigrate through the endothelial cells, they move through the 

vascular basement membrane to exit the vessel and enter the infected tissue. This 

process requires the release of proteases such as MMPs, elastases and proteinase-3 

(Nussbaum and Shapira, 2011, Kuckleburg et al., 2012). Neutrophils contain three main 

MMPs types: collagenases, gelatinases and leukolysin. Prior to degranulation these are 

stored as inactive pro-forms mainly in gelatinase and specific granules (Faurschou and 

Borregaard, 2003). 

Neutrophil activation occurs through binding of TLRs of which neutrophils express most, 

excluding TLR3 and TLR7. Once these bind their ligands, neutrophils are activated and 

phagocytosis, superoxide generation and production of cytokines/chemokines is initiated 

(Prince et al., 2011). Phagocytosis is the most characteristic mechanism by which 

neutrophils clear activating agents. The process is facilitated by opsonization through 

which activating agents are coated in host derived molecules such as complement 

factors, antibodies and mannose-binding lectin. These opsonins have receptors on the 

surface of neutrophils (including C3b receptors and antibody/immunoglobulin receptors) 

which, once bound, lead to the invagination of the neutrophil membrane and 

internalisation of the activating agent into a phagosome (Nicu and Loos, 2016). Killing 

within the phagosome is achieved through two main mechanisms: ROS generation and 

release of granular proteases (Roos et al., 2003). Furthermore, hydrogen peroxide (one 

of the ROS generated) is also a substrate for myeloperoxidase (MPO) for the formation 

of a chlorinated derivative which is toxic to many microbes (Table 1.2, Faurschou and 

Borregaard, 2003). 

In addition to phagocytosis, neutrophil extracellular traps (NETs) have more recently 

been indicated as important in neutrophil killing (Brinkmann et al., 2004). These 

structures are assembled intracellularly following the loss of nuclear integrity and the 

combining of double stranded DNA, histones, cathelicidin (LL-37), elastases and MPO. 
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Release of NETs is achieved following plasma membrane perforation or cell lysis in a 

ROS release-dependent process known as NETosis (Fuchs et al., 2007). In chronic 

periodontitis NETs have been observed in periodontal pockets and GCF (Vitkov et al., 

2009). Interestingly, P. gingivalis, T. forsythia, F. nucleatum and Prevotella intermedia, 

have been shown to have DNAse activity and can degrade NETs under certain growth 

conditions, thus, avoiding NET-associated killing (Palmer et al., 2012).  

Following removal of the neutrophil activating agent, resolution is achieved through 

apoptosis of neutrophils (Nussbaum and Shapira, 2011). Achieving this requires 

suppression of pro-inflammatory cytokine production and induction of anti-inflammatory 

cytokine (such as IL-10 and TGF-β) production by phagocytic macrophages (Kennedy 

and DeLeo, 2009). Disposal of unused neutrophil granules is carried out following anti-

inflammatory cytokine-associated recruitment of anti-inflammatory macrophages. This 

minimises the risk of excessive tissue damage (Savill et al., 1989). A distortion in the 

apoptosis and clearance of neutrophil products can prolong tissue damage and 

inflammation. Apoptosis resistant neutrophils have been found in the GCF of patients 

with periodontitis. These patients showed a decrease in granulocyte monocyte-colony 

stimulating factor (GM-CSF) which can increase mitochondrial stability and reduce 

caspase 3 activity to reduce neutrophil apoptosis (Gamonal et al., 2003). Furthermore, 

there is evidence for inhibition of apoptosis in periodontal neutrophils by LPS and a 

consequent increase in necrosis (Turina et al., 2005). This in turn may cause the release 

of neutrophil enzymes and ROS into the periodontium thus exacerbating the tissue 

damage associated with periodontitis.   

Although neutrophils are generally effective at clearing bacteria that pass through the 

oral epithelial barrier, some periodontal pathogens (Aggregatibacter 

actinomycetemcomitans and P. gingivalis being two of the most well studied) have 

developed methods to diminish or avoid neutrophil clearance. A. 

actinomycetemcomitans has been shown to produce a leukotoxin which can lead to loss 

of effectiveness in neutrophils (Berthold et al., 1992, Kolodrubetz, 1996, Lally et al., 1996, 

Dennison and Van Dyke, 1997, Delima and Van Dyke, 2003). P. gingivalis, on the other 

hand, secretes a serine protease which has been shown to inhibit the synthesis of IL-8 

by epithelial cells and thus interferes with recruitment of neutrophils (Darveau et al., 

1998, Bainbridge et al., 2010). As well as IL-8 secretion inhibition, the decrease of 

intracellular adhesion molecule-1 has also been demonstrated, further suggesting P. 

gingivalis interferes with neutrophil recruitment (Madianos et al., 1997). In addition, P. 

gingivalis has a dense capsule which can hinder phagocytosis (Delima and Van Dyke, 

2003).   
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While neutrophils are imperative to control of microbial growth in the oral cavity, their 

function may also contribute to the pathogenesis of periodontitis. The release of ROS 

and MMPs required for neutrophil transmigration and killing can diffuse through the JE 

into supporting tissues (such as the periodontal ligament) causing damage and potential 

attachment loss (Nicu and Loos, 2016).    

1.2.2. Adaptive immune cells  

Alongside the innate immune system, a profile of adaptive immune cells and cytokines 

has also been described in association with periodontitis pathogenesis.  This aspect of 

the immune response in periodontitis is controlled by T-cells and B-cells. T-cells mediate 

the activation of polyclonal B-cells and subsequent production of specific antibodies 

(Gonzales, 2015). In periodontitis, B-cells are associated with pathogenesis due to their 

RANKL (receptor activator for nuclear factor κB ligand) positive status (Kawai et al., 

2006). As discussed in detail below (section 1.2.4.4), RANKL plays an important role in 

periodontitis associated bone resorption.  

Of the adaptive immune cells, T-cells predominate over others in gingival tissues with 

the majority being accounted for by CD4+ T-cells (Dutzan et al., 2016). They are 

subdivided based on their cytokine production, specific functions and gene-expression 

patterns.  Of these subsets T-helper 1 (Th1), T-helper 2 (Th2), Th17 and T-regs are 

those mostly associated with the progression of periodontitis (Silva et al., 2015). The 

process of naïve T-cell differentiation is initiated by T-cell receptor-mediated activation 

followed by the activation of specific transcription factors for each lineage. The presence 

of specific patterns of cytokines polarises cell differentiation towards that of a particular 

subset, where upon cells will express a specific set of chemokine receptors to aid in the 

leukocyte migration towards infection sites (Gonzales et al., 2012, Gonzales, 2015, 

Meyle and Chapple, 2015). 

In the 1990s, Baker et al carried out multiple studies which implicated the adaptive 

immune response in the destructive pathogenesis of periodontitis. Using a P. gingivalis 

induced periodontitis mouse model these studies demonstrated that mice lacking both 

T- and B-cells had decreased periodontitis-associate bone loss compared with control 

mice (Baker et al., 1999, Baker et al., 2002). The group also demonstrated a specific role 

for CD4+ cells, showing a decrease in periodontitis bone loss in CD4+ cell deficient mice 

compared with CD8+ deficient mice and controls (Baker et al., 1994). A more recent study 

also demonstrated that in transplant patients receiving cyclosporin A treatment (prevents 

T-cell activation) and in animal studies using cyclosporin A treatment, there was no 

periodontal disease progression or periodontitis associated bone loss despite loss of T-

cells (Pejcic et al., 2014, da Silva Peralta et al., 2015). A brief description of the most 
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studied subsets of CD4+ cells, their activation profile and subsequent impact on 

periodontitis follows below. 

1.2.2.1. T-helper 1 cells 

Th1 cell differentiation is predominantly activated through the action of IL-12 sourced 

from innate immune cells such as antigen presenting DCs (Hajishengallis and Korostoff, 

2017). Binding of IL-12 to its CD4+ cell receptor initiates signalling through janus kinase 

2 (JAK2) and tyrosine kinase 2 (TYK2). This leads to the subsequent phosphorylation of 

signal transduce and activation of transcription (STAT) 4 which promotes the expression 

of the T-bet transcription factor. These IL-12 activated signalling cascades initiate the 

transcription of cytokines characteristic of Th1 cells (Oestreich and Weinmann, 2012). 

Interferon γ (IFN-γ) also activates T-bet and has been shown to increase IL-12 receptor 

activation, further encouraging Th1 differentiation (Murphy and Reiner, 2002, Appay et 

al., 2008). Combined STAT4 and T-bet activity have been shown to be crucial to the 

regulation of IFN-γ in Th1 cells where T-bet alone was unable to activate transcription 

required for the Th1 linage (Thieu et al., 2008). Th1 cells are characterised by expression 

of IFN-γ, IL-2 and TNF-α (Campbell et al., 2016). In addition, they are involved in 

production of IgG2 opsonising and complement-fixing antibodies, activation of 

macrophages and antibody-dependent cell cytotoxicity (Gonzales, 2015). As such their 

role can be considered as one which aids phagocytic host responses.  

The role for Th1 in periodontitis progression is not entirely clear. While in some cases T-

cells in periodontitis were associated with the Th1 subsets based on their chemokine 

receptor profiles and associated increases in Th1 chemokines (such as IL-5), other 

studies indicated a predominance of Th2 cells in patients with early onset or advance 

periodontitis (Manhart et al., 1994, Gamonal et al., 2001, Lappin et al., 2001, Taubman 

and Kawai, 2001). More recently, an increased expression of T-bet has been shown in 

active lesions of periodontitis compared with inactive lesions, with the increase 

correlating with increases in IL-1β and IFN-γ (Dutzan et al., 2009a). This suggests that 

CD4+ differentiation in periodontitis is shifted towards Th1, correlating with early studies 

where Th2 was found less frequently than Th1 in periodontitis gingival tissues (Seymour 

et al., 1993). 

The cytokine release profiles of Th1 cells have been associated with infectious 

inflammatory bone destruction, indicating a role in alveolar bone resorption in 

periodontitis (Silva et al., 2015). In addition, studies have demonstrated upregulations in 

RANKL expression through the action of IFN-γ and subsequent increase in TNF-α and 

IL-1β, as well as chemoattraction of RANKL positive cells to increase osteoclast (OCL) 
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activation and bone resorption initiation (Figure 1.3) (Honda et al., 2006, Gao et al., 2007, 

Garlet et al., 2008, Repeke et al., 2010).  

1.2.2.2. T-helper 2 cells 

Opposing the bone destruction associated with Th1, Th2 cell cytokine release is 

associated with decreasing bone loss. Th2 differentiation is dependent on IL-4 (from B-

cells and naïve CD4+ T-cells) which leads to the downstream phosphorylation and 

activation of STAT3 and subsequent induction of the GATA3 transcription factor (Gilmour 

and Lavender, 2008, Hosoya et al., 2010). Activation of GATA3 promotes increased 

transcription of IL-4 and additional anti-inflammatory cytokines (including IL-5 and IL-13) 

(Mjosberg et al., 2012). Th2 differentiation also inhibits the expression of the IL-12 

receptor β2 subunit, thus, further preventing Th1 differentiation (Ouyang et al., 1998). 

Th2 cells have also been shown to undergo histone modifications which inhibit the 

transcription IFN-γ and encourage commitment to the Th2 linage (Chang and Aune, 

2007). In addition to the production of IL-4, IL-5 and IL-13, Th2 cells have been 

demonstrated to produce IL-10. Knockout mice studies have shown that the production 

of IL-10 by Th2 was enhanced by an additional transcription factor – Etv5 (Koh et al., 

2017). Evidence suggests that both IL-4 and IL-10 impair macrophage killing activity 

through inhibition of NO synthesis (Cenci et al., 1993). In addition, Th2 cells have been 

associated with IgE and IgG1 switching, mucosal immunity through mast cell production, 

growth and differentiation induction of eosinophils (Hajishengallis and Korostoff, 2017). 

Together these functions suggest Th2 aid in phagocytosis-independent host responses.   

IL-4 could potentially inhibit the function of MMPs and an upregulation of TIMP2 (tissue 

inhibitor of metalloproteinase 2) has been demonstrated as a response to IL-4 (Ihn et al., 

2002). In periodontitis this could provide protection from MMP-associated tissue 

destruction. Indeed, increased concentrations of IL-4 have been observed in GCF in 

periodontal health compared with periodontitis (Pradeep et al., 2008). Furthermore, Th2 

cells have been implicated in inhibition of osteoclastogenesis by acting on precursor cells 

through the action of secreted IL-4. This is highlighted in mouse P. gingivalis periodontitis 

models where Th1 predominant mice showed higher infiltrations of OCLs compared with 

Th2 predominant and control mice which showed almost none (Stashenko et al., 2007).  

1.2.2.3. T-helper 17 cells 

Although originally T-cells were divided into the Th1 and Th2 subsets, it is now 

understood additional subsets also exist with an amount of plasticity between them 

(Cosmi et al., 2014). In periodontal health and disease, Th17 have been implicated in 

addition to Th1 and Th2 cells. Th17 cells are characterised, as the name suggests, by 

their production of IL-17 and undergo differentiation in a manner distinct from that of Th1 
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and Th2 cells (Harrington et al., 2005, Park et al., 2005, Wilson et al., 2007). Their 

polarisation down this cell lineage is initiated by a complex cytokine profile involving IL-

6, IL-1β, IL-23 and TGF-β which, upon receptor binding, initiate phosphorylation of 

STAT3 leading to the activation of the transcription factor ROR-γ (Ivanov et al., 2006, 

Annunziato et al., 2012). The importance of STAT3 was highlighted in a mouse study 

where deletion of the STAT3 inhibited Th17 differentiation, which could be recovered 

following retroviral introduction of STAT3 (Yang et al., 2007). 

Th-17 cells mediate a variety of immune response through secretion of IL-17A, IL-17F 

and IL-23. Interesting, Th17 cells have also been shown to secrete IL-8, thereby showing 

neutrophil chemo-attractive properties, as well as production of TNF-α and GM-CSF 

which could contribute to activation and survival of neutrophils (Pelletier et al., 2010). 

Furthermore, Th17 cells have also been demonstrated to produce IL-10 in an antigen-

dependent matter, such that Th17 cells produced IL-10 and IL-17 when stimulated with 

S. aureus but produced IL-17 and IFN-γ in response to Candida albicans (Zielinski et al., 

2012).  

Activation of ROR-γ leads to induction of pro-inflammatory cytokines (TNFα, IL-6 and IL-

1β) so that increased Th17 and the subsequent release of cytokines could be part of the 

non-resolving inflammatory response seen in periodontitis. Exemplifying this, an 

increase in pro-inflammatory cytokines such as IL-17, TGF-β, IL-1β, IL-6 and IL-23 was 

observed in gingival tissues of periodontitis patients (Takahashi et al., 2005, Cardoso et 

al., 2009, Ohyama et al., 2009).  

Furthermore, IL-17, IL-1β and TNF-α were observed in periodontitis with an increased 

production of MMP1 and MMP3. The same study showed that while IL-17 did not induce 

MMPs to the same extent as IL-1β and TNF-α, it induced further IL-1β and TNF-α 

production by macrophages as well as IL-6 and IL-8 from gingival fibroblasts (Beklen et 

al., 2007). There is also evidence suggesting that the Th17 associated cytokine release 

is important in neutrophil recruitment; mice lacking the IL-17 receptor (IL-17RA-dificient 

mice) showed increased periodontal bone resorption in response to P. gingivalis, 

reduced chemokine levels and reduced neutrophil migration (Yu et al., 2007). Like Th1 

cells, Th17 cells have also been associated with bone resorption. Using primary OCLs, 

it has been demonstrated that IL-17 induced the expression of OCL differentiation factor, 

encouraging the formation of OCLs (Kotake et al., 1999). Together these studies indicate 

Th17 cells play a role in the progression of periodontitis and the associated alveolar bone 

reabsorption.  

The role of Th cells in periodontitis is evident but controversy still exists regarding the 

responses associated with progression. Adding to this controversy is the difficulty in 
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determining which of the T-cell subsets are found in periodontal lesions as well as 

distinguishing roles of their cytokine profiles in destructive and protective processes. The 

presence of T-regulatory cells, the associated release of anti-inflammatory cytokines (IL-

10 and TGF-β) and their potential role in RANKL regulation and subsequent periodontitis 

protection further complicates the role of T-cells in periodontitis pathogenesis (Steinsvoll 

et al., 1999, Dutzan et al., 2009b). 

1.2.3. Matrix metalloproteinases  

Another important aspect of periodontitis progression, is the extracellular matrix (ECM) 

and collagen breakdown associated with MMPs, which leads to destruction of 

periodontal tissues leading to eventual permanent attachment loss (Silva et al., 2015).To 

date 23 human MMPs have been identified and are zinc-dependent endopeptidases 

(Franco et al., 2017). Given the destructive potential of MMPs, regulation of activity is 

tightly controlled. This is achieved through gene activation, proenzyme activation, and 

inhibition. In humans, MMPs are inhibited by four TIMPs with differing specificity (Arpino 

et al., 2015).  

Periodontal inflammation and the persistence of pathogens, as described in previous 

sections, is associated with pro-inflammatory mediators (such as pro-inflammatory 

cytokines), generation of ROS, increased numbers of neutrophils and an increase in 

bacterial proteases; many of which can lead to the increase in prevalence and activity of 

MMPs. Classically, MMPs are linked to the degradation of ECM components and 

basement membranes, characteristics that are associated with periodontal tissue 

destruction in periodontitis (Silva et al., 2015). They, however, are also involved in 

regulatory functions which include: chemokine processing and the subsequent neutrophil 

regulation, proteolysis of receptors and their ligands, enzyme modulation and release of 

bioactive molecules from the ECM (Franco et al., 2017).   

Due to the high levels of collagen I in the ECM of soft and hard periodontal tissues, 

studies to date have predominately concentrated on the functions of collagenases 

(MMP8 and MMP13) and gelatinases (MMP2 and MMP9) in periodontitis (Sorsa et al., 

2010). Of the MMPs with collagenase activities found in the GCF and gingival tissues, 

MMP8 is the most predominant. In the case of gelatinases, two are detected in the oral 

cavity and of these MMP9 is the most prevalent (Sorsa et al., 2016). When considering 

the high prevalence of neutrophils in periodontal tissues in both health and disease, and 

the presence of MMP8 and MMP9 in neutrophil granules (section 1.2.1) it is unsurprising 

that these MMPs predominate in gingival tissues and GCF. Given this, a brief description 

of the association of MMP8 and MMP9 with periodontitis follows. Smaller amounts of 
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other MMPs (including 1, 2, 3, 7, 12, 13, 14, 25 and 26), TIMP1 and TIMP2 have also 

been demonstrated to be present in GCF and saliva (Buduneli and Kinane, 2011). 

Production of MMP8 takes place in a range of cells (resident and inflammatory) but it is 

found mainly to be produced by neutrophils in periodontal tissues. On the other hand, 

MMP9 is produced by a limited number of cells types and is found mainly to be produced 

by immune cells (Silva et al., 2015). 

As discussed in previous sections, MPO release as a result of neutrophil activation can 

lead to the production of oxidant hypochlorous acid (section 1.2.1) which has 

antimicrobial activity and is also involved in the oxidative, non-proteolytic activation of 

MMPs (Alfakry et al., 2016). ROS are key mediators of tissue degradation of MMPs 

through their ability to directly oxidise the enzymes and hypochlorous acid has been 

shown to activate both MMP8 and MMP9 (Weiss et al., 1985, Peppin and Weiss, 1986, 

Saari et al., 1990). This suggests that the increase in neutrophils in periodontitis can also 

lead to an increase in MMP activation and, thereby, an exacerbation of periodontitis 

pathogenesis. Indeed, a longitudinal study of GCF samples from periodontitis patients 

showed high levels of both MMP8 and MPO prior to periodontal treatment in both active 

and inactive sites, with decreases in MPO levels in active sites following treatment 

(Hernandez et al., 2010). An increase in glutathione peroxidase, lactoferrin, MPO and 

IL-1β in periodontitis has also been observed, which could contribute to the activation of 

MMPs (Wei et al., 2004). Furthermore, concentrations/levels of MMP8, TIMP2, MPO and 

MMP9 were found to be higher in GCF of patients with periodontitis compared with 

controls but no differences were observed in TIMP1. A decrease in MMP8, TIMP2, MPO 

and MMP9 was observed following periodontal treatment (Marcaccini et al., 2010). There 

is also evidence for ROS-dependent MMP9 activation in periodontal fibroblast cells 

(Osorio et al., 2015). 

Many cytokines/chemokines are targets for MMP cleavage, including periodontitis 

upregulated Th1 pro-inflammatory cytokines (such as TNF-α, IL-1β and IL-6), anti-

inflammatory cytokines (such as TGF-β1 and IL-10) and chemokines (such as IL-8) 

(Franco et al., 2017). This suggests that MMPs may regulate cytokine/chemokine 

expression and consequently impact periodontal health. For example, upregulation of IL-

6 and MMP9 (levels and activity) in periodontal ligament fibroblasts stimulated with ROS 

was observed, while inhibition of MMP activity led to higher IL-6 levels suggesting MMP 

degradation of IL-6 (Cavalla et al., 2015).  

Emerging evidence also suggests that MMP13 plays a role in the tissue damage 

associated with periodontitis. In addition to MMP8 and MPO, MMP13 was also higher in 

the GCF of patients with periodontitis compared with those with gingivitis and controls 
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(Leppilahti et al., 2014). MMP13 has also been implicated in activation of MMPs through 

a proteolytic cascade in which MMP13 has been shown to induce MMP9 in gingival cells 

from periodontitis patients (Hernandez Rios et al., 2009, Franco et al., 2017). MMP13 

dependent regulation of OCL activation has also been reported whereby MMP13 

activated MMP9 cleaves the osteoclastogenesis inhibitor galectin-3 (Pivetta et al., 2011). 

Furthermore, MMP13 can regulate the RANKL/OPG (osteoprotegerin) (discussed in 

section 1.2.4.4) axis to favour RANKL and as such encourage bone reabsorption 

(Nannuru et al., 2010). 

In addition to changes in MMP levels, there have also been studies indicating changes 

in TIMP levels suggesting, perhaps, periodontitis progression is dependent on shifts in 

the ratios of MMPs and their inhibitors, particularly when considering MMPs are present 

even in the healthy oral cavity (Makela et al., 1994, Hernandez et al., 2007, Meschiari et 

al., 2013, Reddy et al., 2014, Sapna et al., 2014, Noack et al., 2017). In GCF of 

periodontitis patients, periodontitis progression correlated with an increase in MMP1 

concentration and a decrease in TIMP1 concentration which was reversed following 

treatment (Ghodpage et al., 2014, Popat et al., 2014). 

1.2.4. Cytokine/chemokines  

As indicated above, cytokines play a crucial role in the modulation of the immune system 

in the oral cavity and are involved in the progression of periodontitis. Many cytokine 

concentrations and activities have been shown to be dysregulated in periodontitis. There 

is evidence for cross-regulation of cytokine/chemokine release by gingival cells. For 

example, gingival fibroblasts (which are highly responsive to LPS that can induce the 

production of pro-inflammatory cytokines) have an exacerbated IL-8 response to LPS 

following prior exposure to IFN-γ (Tamai, 2002). IL-1β is not only able to induce IL-6, IL-

8 and TNF-α expression in gingival fibroblasts but can also encourage the expression of 

more IL-1β in an autocrine manner (Agarwal et al., 1995, Chae et al., 2005). A synergistic 

activation of IL-8 and IL-6 secretion by IL-1β and TNF-α was also observed in gingival 

fibroblasts which was supressed by IFN-γ (Takigawa et al., 1994, Kida et al., 2005).  

Below is a brief description of selected cytokines and their involvement in periodontitis. 

Particular interest is paid to IL-8 (due to its potent neutrophil chemotactic ability and the 

high numbers of neutrophils in gingival tissue and GCF), IL-1β (due to its pivotal role in 

cytokine/chemokine regulation and initiation of inflammatory response) and IL-6 (due to 

its impact on T-cells and central role in immune regulation). The importance of IL-1β and 

IL-6 is highlighted by Kinane and Preshaw, who described these cytokines as being 

involved in first responses in both innate and adaptive immune responses (Kinane et al., 

2011).  
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1.2.4.1. IL-8  

IL-8, a chemotactic factor for leukocytes and neutrophils, has been demonstrated to be 

vital in oral health (section 1.1.1.3 and 1.2.1) and has been implicated in the progression 

of periodontitis. IL-8 was the first chemokine of the CXC chemokine family to be 

described. In 1987 Yoshimura identified a protein called monocyte-derived neutrophil 

chemotactic factor or neutrophil activating peptide as a chemoattractant for neutrophils 

but not monocytes. Shortly after, this protein was also shown to attract T-cells and was 

renamed IL-8 (Larsen et al., 1989). Since then our understanding of IL-8 has vastly 

increased and its importance in immune responses has been highlighted.  

IL-8 is a member of the CXC chemokine family and in humans is initially produced as a 

99-amino acid peptide (Palomino and Marti, 2015). Secretion of IL-8 is induced in many 

cell types including monocytes, fibroblasts, lymphocytes, mesenchymal cells and 

endothelial cells following stimulation by inflammatory mediators such as IL-1β and  

TNF-α (Okada and Murakami, 1998, Sonnenschein and Meyle, 2015). As discussed 

previously (section 1.2.1), in the periodontium, IL-8 acts as a chemoattractant for 

neutrophils. Neutrophils express receptors (CXCR1 and CXCR2) which are able to bind 

IL-8 (Holmes et al., 1991, Murphy and Tiffany, 1991, Zeilhofer and Schorr, 2000). 

Activation of these G-coupled receptors can initiate an increase in free intracellular Ca2+ 

which leads to the subsequent activation of β2 integrins, cytoskeletal rearrangement, 

phagosome-lysosome fusion and exocytosis of granule proteins (Jaconi et al., 1990, 

Kernen et al., 1991, Lawson and Maxfield, 1995, Van Kooyk et al., 2009, Palomino and 

Marti, 2015). In addition, IL-8 may regulate ROS generation by neutrophils through the 

upregulation of complement receptor 1 and, consequently, an upregulation of 

complement-dependent responses (Paccaud et al., 1990).  In addition to having 

chemotactic functions, IL-8 has also been shown to initiate monocyte differentiation into 

OCLs, indicating IL-8 may regulate osteoclastgenosis (Bendre et al., 2003). 

Furthermore, osteoblasts (OBLs) have been shown to express CXCR1, suggesting a 

role for IL-8 in modulation of OBL activity and subsequently a role in bone resorption 

(Silva et al., 2007). 

Given these chemoattractive and regulatory roles, it is unsurprising that IL-8 is found in 

healthy periodontal tissues and is associated with periodontitis progression. Indeed, an 

increase in neutrophils associated with an increase in IL-8, ICAM-1, IL-1β and TNF-α 

has been observed in the gingival tissues of periodontitis patients (Liu et al., 2001). 

Evidence suggests that the periodontal pathogen P. gingivalis increases IL-8 (in addition 

to IL-1α, IL-1β, IL-6 and IL-12) secretion by oral epithelial cells via TLR2 activation 

(Sandros et al., 2000, Kusumoto et al., 2004). In contrast, there is also evidence to 

suggest that while the bacteria, F. nucleatum, Neisseria flavescens and Haemophilus 
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parainfluenzae initiated IL-8 secretion by oral epithelial cells, their co-inoculation with P. 

gingivalis prevented this. Furthermore, P. gingivalis was also shown to degrade IL-8 

accumulated in gingival epithelial cells in response to the other bacteria (Darveau et al., 

1998, Huang et al., 2001). This proteolytic activity of P. gingivalis on IL-8 is associated 

with gingipains. Interestingly, gingipains have been shown to stimulate IL-8 and IL-6 

secretion in monocytes through protease-activated receptor signalling (Uehara et al., 

2008). Although gingipains can penetrate gingival epithelial and fibroblast cells and 

stimulate IL-8 secretion, higher concentrations have been shown to cause a decrease in 

IL-8 (O'Brien-Simpson et al., 2009). 

It appears different bacteria initiate different IL-8 responses in gingival cells. T. denticola 

(a periodontal pathogen), for example, did not induce IL-8 or IL-6 secretion by gingival 

epithelial cells (Brissette et al., 2008). A. actinomycetemocomitans and F. nucleatum, on 

the other hand, increased IL-8 (and IL-1β with A. actinomycetemocomitans) in gingival 

epithelial cells while a commensal bacterium (S. gordonii) produced no significant 

differences in cytokine production (Uchida et al., 2001, Stathopoulou et al., 2010). 

Furthermore, BspA (Bacteroides surface protein A) from T. forsythia stimulated IL-8 

secretion from gingival epithelial cells (Onishi et al., 2008). Decreases in IL-8 secretion 

could perhaps aid in increasing periodontal colonisation by decreasing neutrophil 

recruitment while increases in IL-8 could initiate exacerbated neutrophil recruitment, 

which could in-turn initiate the periodontal tissue damage observed in periodontitis.   

In addition to chemotactic roles of IL-8 in periodontitis there is also evidence for its 

potential role as an immunomodulator. For instance, IL-8 has been demonstrated to 

prevent apoptosis of CXCR1 and CXCR2 expressing endothelial cells, enhancing their 

survival, in addition to enhancing the production of MMP2 and MMP9 (Li et al., 2003). 

These roles in the periodontium could enhance periodontal tissue damage and prolong 

inflammation.  

While studies investigating the responses of cells to individual bacteria or simple mixed 

cultures are informative, they do not take into account the complexities of a biofilm and 

its interaction with the host. To get a better understanding of changes in IL-8 associated 

with periodontitis clinical studies are required. To date, such studies looking at IL-8 levels 

in gingival tissues, GCF and saliva are contradictory. In GCF, IL-8 analysis was 

predominantly carried out by ELISAs with results indicating both an increase in IL-8 

(Gamonal et al., 2001, Giannopoulou et al., 2003, Holzhausen et al., 2010, Konopka et 

al., 2012, Ertugrul et al., 2013, Khalaf et al., 2014, Lutfioglu et al., 2016) and a decrease 

(Jin et al., 2000, Luo et al., 2011) in periodontitis. In addition, checkerboard 

immunoblotting and Luminex immunoassays have also been applied to measure IL-8 in 

GCF and in both cases increased IL-8 was observed in periodontitis (Teles et al., 2009, 
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Tymkiw et al., 2011). In gingival tissues and saliva, results were more consistent and IL-

8 was observed at higher concentrations in periodontitis conditions (Cesar-Neto et al., 

2007, Michiels et al., 2009, Venza et al., 2010, Lisa Cheng et al., 2014, Khalaf et al., 

2014, Souto et al., 2014). 

1.2.4.2. IL-1 

IL-1 was first described in 1972 and has been widely researched in variety of 

inflammatory disorders (Horton et al., 1972). Although originally classified as an OCL 

activating factor, it is understood to exist in two isoforms (Dewhirst et al., 1985, March et 

al., 1985). These isoforms, IL-1α and IL-1β, only share 27% homology at the amino acid 

level but have similar biological activities. IL-1α remains cell bound whereas IL-1β is 

secreted, but both bind to the same receptors (IL-1 receptor 1 and IL-1 receptor 2) found 

on nearly all cell types (Weber et al., 2010). While both play a role in the periodontium, 

IL-1β has been shown to be consistently detected at higher levels in GCF of patients 

with periodontal diseases with decreases observed following treatment and as such has 

been the target of many studies (Preshaw and Taylor, 2011). As described in previous 

sections, IL-1β impacts periodontal colonisation, host immunity in the periodontium, 

neutrophils, Th cells, tissue breakdown and tissue homeostasis and is thought to play an 

important role in the pathogenesis of periodontitis. Indeed, some studies discussed in 

the previous section observed not only increases in IL-8 in gingival tissues in response 

to periodontal bacteria but also increases in IL-1α and/or IL-1β (section 1.2.4.1).  

Once stimulated, many cell types in the periodontium produce IL-1 including 

macrophages, monocytes, lymphocytes, epithelial cells, endothelial cells and fibroblasts 

(Preshaw and Taylor, 2011, Garlanda et al., 2013). In periodontitis, IL-1 is mainly 

produced by macrophages but production can be induced in monocytes by LPS, 

lipoteichoic acid and fimbriae, potentially accounting for the increase seen in periodontitis 

(Okada and Murakami, 1998, Sonnenschein and Meyle, 2015). 

Cellular secretion of IL-1β requires the activation of TLR-4 to initiate the transcription of 

the pro-IL-1β. Further processing of pro-IL-1β is dependent on an additional signal to the 

activated cell (such as extracellular ATP, extracellular DNA or ROS) and the activation 

of the inflammasome. This leads to caspase-1 mediated activation of IL-1β (Latz, 2010, 

Yilmaz and Lee, 2015). IL-1β processing is associated with the NALP3 (nacht domain-, 

leucine-rich repeat-, and pyrin domain (PYD)-containing protein 3) inflammasome 

complex. NALP3 is regulated by an effector molecule (apoptosis associated speck-like 

protein) and antagonised by NLRP2, both of which have been shown to be down-

regulated in monocytes in response to P. gingivalis with an associated increase in 

NALP3 (Bostanci et al., 2009). The same study also demonstrated an increase in NALP3 



Chapter 1 – Introduction 

57 
 

in chronic and aggressive periodontitis patients, with an associated increase in IL-1β and 

IL-18. Activation of the TLR4 in gingival cells is often shown to induce release of IL-1β, 

as well as IL-6 and TNF-α (Jotwani and Cutler, 2004, Diya et al., 2008, Hajishengallis et 

al., 2009, Sahingur et al., 2010). In addition, there is evidence suggesting gingival 

fibroblasts from patients with periodontitis not only produce more IL-1 but are more 

responsive to P. gingivalis and as such produce more IL-1 compared with healthy tissues 

stimulated with P. gingivalis (Kent et al., 1999). 

Although P. gingivalis and A. actinomycetemcomitans growth was not impacted when 

cultured with IL-1β and IL-6, P. gingivalis does appear to degrade IL-1β, IL-6 and IL-1Ra 

(the IL-1 receptor antagonists). When considering the role IL-1β has on modulating 

immune responses, this suggests P. gingivalis can alter IL-1β and potentially dampen 

immune responses (Fletcher et al., 1997). Despite this, there is evidence that IL-1β is 

found at higher concentration in gingival tissues and GCF of patients with periodontitis 

compared with healthy controls (Giannopoulou et al., 2003, Holzhausen et al., 2010, Luo 

et al., 2011, Tymkiw et al., 2011, Konopka et al., 2012, Ertugrul et al., 2013). Similarly, 

salivary levels of IL-1β are also increased in patients with periodontitis (Miller et al., 2006, 

Tobon-Arroyave et al., 2008, Gursoy et al., 2009, Mirrielees et al., 2010, Kaushik et al., 

2011, Ebersole et al., 2013, Rathnayake et al., 2013). These levels of IL-1β in saliva 

correlated with disease severity and decreased with treatment (Ng et al., 2007, 

Scannapieco et al., 2007, Kaushik et al., 2011, Kinney et al., 2011, Sexton et al., 2011, 

Rathnayake et al., 2013). 

IL-1 promotes increases in type 1 procollagen, collagenase, hylauronate, PGE2 and 

fibronectin, and is therefore important for periodontal tissue homeostasis (Okada and 

Murakami, 1998, Sonnenschein and Meyle, 2015). Studies have shown an increase in 

levels in GCF and gingival tissue from periodontitis diseased sites compared with healthy 

sites, with a decrease in levels following periodontitis treatment (Masada et al., 1990, 

Irwin and Myrillas, 1998, Sonnenschein and Meyle, 2015). Furthermore, IL-1β has been 

linked to OCL activity, with activation of OCLs achieved through the IL-1R1 and 

subsequent NF-κB activation, thus, suggesting a role for IL-1β in periodontitis-associated 

bone resorption (Kim et al., 2009). Indeed, local and systemic inhibition of IL-1β in animal 

models of periodontitis have led to decreases in alveolar bone loss (Assuma et al., 1998, 

Graves et al., 1998, Delima et al., 2001).  

In human gingival fibroblasts, IL-1β with TNF-α has been shown to increase PGE2 which 

resulted in an increase in IL-6 (Czuszak et al., 1996, Palmqvist et al., 2008). The IL-1β-

associated increase in IL-6 was associated with the activation of p38, MAPK and NF-κB 

signalling pathways (Chae et al., 2005). In addition, IL-1 is a potent inducer of bone 

resorption and an inhibitor of bone formation. Although both isoforms mediate effects on 
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bone, studies have shown that IL-1β is more potent than IL-1α (and TNF-α) with higher 

levels of IL-1β in GCF from periodontitis sites (Gowen and Mundy, 1986, Irwin and 

Myrillas, 1998, Okada and Murakami, 1998). The diverse roles of IL-1β have been 

highlighted by Steinberg et al (2006), who showed an upregulation in genes in human 

gingival fibrocytes related to inflammatory cytokines (such as IL-6 and TNF-α), the NF-

κB pathway, chemokines (such as IL-8, CXCL1, CXCL2 and CCL2), MMPs (such MMP3 

and MMP12) and adhesion molecules (such as ICAM-1, CD44 and vascular cell 

adhesion moleculre-1) in response to IL-1β treatment (Steinberg et al., 2006b, Vardar-

Sengul et al., 2009). 

1.2.4.3. IL-6 

IL-6 is a multifunctional cytokine produced by many different cell types (including  

B-cells, T-cells, monocytes, macrophages, keratinocytes, endothelial cells and 

fibroblasts) with secretion dependent on stimulation by bacterial LPS or other cytokines 

such as IL-1 and TNF-α (Tanaka et al., 2014, Sonnenschein and Meyle, 2015). 

Many of the immunomodulatory roles of IL-6 have been discussed in previous sections. 

In a protective capacity, IL-6 can play an important role on the maintenance of oral health. 

For instance, IL-6 (in combination with TGF-β) is required for differentiation of Th17 cells 

and can also inhibit T-reg differentiation (Bettelli et al., 2006, Korn et al., 2009). As 

discussed previously, differentiation of Th cells down the Th17 lineage, while playing a 

role in health, can also be damaging to the periodontium so that an increase in IL-6 could 

cause an exacerbation of periodontitis through dysregulation of the Th cell differentiation.  

In addition to T-cell differentiation modulation, IL-6 has also been implicated in B-cell 

differentiation into antibody-producing plasma cells which in the oral cavity can play a 

regulatory role in controlling bacterial colonisation but when found in excess can lead to 

destructive hypergammaglobulinemia and autoantibody production (Tanaka et al., 

2014). 

In health, IL-6 acts as a pro-inflammatory mediator in an attempt to control infection and 

therefore can act in a protective capacity. In disease this role becomes dysregulated and 

there is evidence to suggest oral pathogens can initiate this dysregulation and potentially 

prolong the inflammatory response. For example, P. gingivalis gingipains have been 

shown to stimulate IL-6 secretion in epithelial cells, monocytes and fibroblast cells 

(Lourbakos et al., 2001, Uehara et al., 2008, O'Brien-Simpson et al., 2009). Furthermore, 

gingival fibroblasts increased IL-8 and IL-6 secretion in response to A. 

actinomycetemcomitans and Campylobacter rectus (Dongari-Bagtzoglou and Ebersole, 

1996). Periodontal ligaments displayed a similar trend, with increases in IL-6, IL-1β, IL-

8 and TNF-α in response to P. gingivalis and P. intermedia (Yamamoto et al., 2006). 
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Furthering the destructive capability of IL-6 is the ability to impact MMP levels. Co-culture 

of fibroblasts with macrophages led to an increase in MMP1 and was enhanced by 

fibroblast released IL-6 (Sundararaj et al., 2009). In gingival fibroblasts, an IL-6 dose 

dependent increase was observed in MMP1 (Irwin et al, 2002). Contrastingly, IL-6 has a 

protective role, highlighted by the ability of L-6 to induce antagonistic effects against IL-

1 receptors and TNF-α soluble receptors. Given that both IL-1 and TNF-α induce 

production of IL-6, these antagonistic effects suggest a role in balancing pro-

inflammatory effects (Irwin and Myrillas, 1998).  

Furthermore, in response to bone resorbing agents such as IL-1 and TNF-α, OBLs 

secrete IL-6, further enhancing cell differentiation into OCLs and indicating the potential 

role of IL-6 in promoting bone resorption (Teng, 2006, Preshaw and Taylor, 2011). IL-6 

has also been demonstrated to initiate bone resorption in mouse models in response to 

pro-inflammatory cytokines which initiate an increase in RANKL and decrease in OPG 

(Nakashima et al., 2000). IL-6 concentrations and resulting bone remodelling activities 

in periodontal tissues differ across studies; some studies have shown no resorptive 

activity induced by IL-6 while others suggest high concentrations of IL-6 (>100 ng ml-1) 

act against IL-1- and TNF-α-induced OCL bone resorption (Poli et al., 1994, Flanagan et 

al., 1995, Irwin and Myrillas, 1998, Okada and Murakami, 1998, Sonnenschein and 

Meyle, 2015). 

Although there is a significant amount of IL-6 detected in healthy GCF and saliva, studies 

regarding expression levels in periodontitis have been contradictory. The majority of 

studies indicate an increase in the concentration of IL-6 from periodontitis patients 

compared with healthy controls, with increased levels correlating with the severity of the 

disease (Cesar-Neto et al., 2007, Costa et al., 2010, Holzhausen et al., 2010, Venza et 

al., 2010, Tymkiw et al., 2011, Prakasam and Srinivasan, 2014). In other cases, no 

significant differences were observed (Rathnayake et al., 2013, Gursoy et al., 2009). In 

some clinical studies no correlation between IL-6 and alveolar bone reabsorption in 

periodontitis was observed (Ng et al., 2007, Scannapieco et al., 2007). Gingival 

mononuclear cells from periodontitis patients have also been shown to have in increase 

in expression of IL-6 (mRNA and protein) which was not seen in peripheral blood 

mononuclear cells, suggesting local IL-6 production (Fujihashi et al., 1993, Irwin and 

Myrillas, 1998). Other studies, however, have shown an increase in serum levels of IL-6 

in people with periodontitis indicating a more systemic response (Loos, 2005, 

Paraskevas et al., 2008).  

1.2.4.4. RANKL 
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As indicated above, RANKL plays an important role in the bone resorption associated 

with periodontitis. RANKL belongs to the tumour necrosis factor and ligand superfamily 

along-side its receptor (receptor activator for nuclear factor κ, RANK) and its inhibitor, 

the soluble decoy receptor, OPG. RANK binding of RANKL is able to induce 

osteoclastogenesis, while OPG binding of RANKL prevents this activation (Simonet et 

al., 1997, Lacey et al., 1998, Nakagawa et al., 1998). RANKL/RANK interactions initiate 

NF-κB and MAPK signalling cascades to trigger cellular cytoskeletal reorganisation and 

cellular polarization (Yavropoulou and Yovos, 2008). Maintaining a balance between 

bone forming OBLs and bone-resorbing OCLs is important in ensuring excessive bone 

resorption (osteoporosis) or excessive gain in bone mass (osteopetrosis) is avoided 

(Nagy and Penninger, 2015). The balance of OBLs and OCLs is in a tightly regulated 

homeostatic state, and with the observation of T-cells expressing RANKL, connections 

between chronic inflammation, dysregulation of the RANKL/OPG axis and bone loss 

were established (Anderson et al., 1997, Wong et al., 1997, Kong et al., 1999a, Kong et 

al., 1999b). 

As described above, activation of Th cells and their subsequent cytokine release profiles 

are important in maintaining homeostatic levels of RANKL and modulating their action. 

The release of Th1 and Th17 associated cytokines (including IL-1β, IL-17 and TNF-α) 

can stimulate the expression of RANKL on the surfaces of periodontal OBLs as well as 

Th17 cells (Chabaud et al., 1999, Dong, 2008). Furthermore, patients with active 

periodontitis had higher levels of GCF RANKL compared with patients without 

periodontitis. This was associated with an increase in IL-17 production by gingival Th17 

cells alongside a down regulation of IL-10 and TGF-β (Vernal et al., 2004, Takahashi et 

al., 2005, Vernal et al., 2005, Silva et al., 2008, Dutzan et al., 2009a). Although exact 

concentrations of RANKL in GCF appear to vary between studies, a general trend is 

seen with higher concentrations of RANKL observed in periodontitis patients compared 

with healthy controls (Silva et al., 2015).  

1.3. The oral microbiome and its impact on general health  

The relationship between the oral microbiome and systemic health is complex but 

evidence suggests both positive impacts of a healthy microbiota and negative impacts 

of dysbiotic microbiota to systemic health. Changes associated with periodontitis have 

been linked to systemic diseases such as diabetes, rheumatoid arthritis and 

cardiovascular disease (Bartold and Mariotti, 2017). Altered oral microbiomes are 

observed not only during systemic disease but also when body homeostasis is altered, 

such as during pregnancy and lactation (Scannapieco, 2005, Scannapieco, 2013). Our 

understanding of the potential impact of the oral microbiome on systemic diseases is 
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expanding. Its role in systemic health, however, is still not fully defined beyond the role 

of pathogen colonisation prevention (section 1.1.1.2).  

An example of health associated consequences of the oral microbiome is the impact on 

nitrate metabolism. Although the majority of ingested nitrate is excreted in urine, a portion 

is actively taken up by salivary glands, where it is concentrated (20-fold) and reduced 

(Lundberg and Govoni, 2004, Bryan et al., 2017). Mammals lack an effective method for 

reduction of nitrate and so a complex bacterial community interaction is relied upon for 

the reduction to nitrite, with commensal facultative anaerobic bacteria undertaking this 

task via nitrate reductases (Bryan et al., 2017). The nitrite can then be taken up by the 

blood stream via gastric absorption and converted to NO. NO is essential for vascular 

health (impacting suppleness and pliancy) as well as providing anti-hypertensive effects 

via vasodilation (Wade, 2013, Bryan et al., 2017). This is illustrated in a study which 

demonstrated a decrease in salivary nitrite when antibacterial mouthwash was used prior 

to sodium nitrate consumption. Furthermore, there was no difference in nitrate 

accumulation in saliva, suggesting reduction in commensal bacteria impacted the 

conversion of nitrate to nitrite (Govoni et al., 2008).   

Periodontitis progression can lead to an increase in the gingival wound surface 

(deepening of periodontal pocket) which increases the likelihood of bacterial 

translocation from the wound area into the bloodstream resulting in bacteraemia. Dental 

treatments such as tooth extractions and subgingival scaling in periodontitis patients also 

has the potential to lead to bacteraemia (Larsen and Fiehn, 2017). Bacteria translocation 

from the periodontal pocket often results in an infected root canal, from where the 

bacteria can enter the blood stream and spread into surrounding tissues. Once in blood, 

oral bacteria can spread and infect a variety of organs and have been associated with 

infectious endocarditis as well as brain and liver abscesses (Mylonakis and Calderwood, 

2001, Marques da Silva et al., 2004, Wade, 2013). Oral bacteria have also been shown 

in atherosclerotic plaques. P. gingivalis and S. sanguinis have both been shown to 

aggregate platelets causing the formation of atherosclerotic plaques (Herzberg and 

Meyer, 1996, Herzberg and Weyer, 1998). Evidence also suggests a link between P. 

gingivalis translocation and rheumatoid arthritis, with higher prevalence of P. gingivalis 

DNA in synovial tissues and synovial fluid of patients with rheumatoid arthritis 

(Farquharson et al., 2012, Totaro et al., 2013). 

Since the establishment of the HMP, studies have shown a decrease in species diversity 

at particular sites (alpha diversity) in diseased states when compared with health 

(Kramer and Genco, 2017). Such changes have been observed in oral squamous cell 

carcinoma where Streptococcus species dominate in tumour site microbiota compared 

with non-tumour sites in the same individuals (Pushalkar et al., 2012). In other cancers, 
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a dysbiosis of the oral microbiota is observed; for example, in saliva samples of patients 

with squamous cell carcinoma and adenocarcinoma, a higher abundance of 

Capnocytophaga, Selenomonas and Veillonella and a lower abundance of the 

commensal Neisseria was observed (Yan et al., 2015).  

In addition to bacterial changes, the increased inflammatory burden associated with 

periodontitis and the potential increase in systemic inflammation is thought to play a 

central role in linking periodontitis to chronic inflammatory diseases such as rheumatoid 

arthritis, osteoporosis and diabetes (Bartold and Mariotti, 2017). Inflammatory mediators 

associated with periodontitis, including IL-6, endotoxins, LPS and neutrophils are 

increased systemically in patients with periodontitis (Loos, 2005, Pussinen et al., 2007, 

Shaddox et al., 2011). In addition, an increase in C-reactive protein (CRP), an indicator 

of acute phase response, has also been observed at increased systemic levels in 

periodontitis (Slade et al., 2000, Noack et al., 2001). While periodontitis was initially 

considered a consequence of risk factors such as diabetes and smoking, in 1998 Page 

suggested a bidirectional relationship between oral health and systemic health, whereby 

periodontitis could exacerbate systemic disease in addition to systemic disease 

impacting on periodontal health (Page, 1998, Mark Bartold and Mariotti, 2017). One of 

the diseases believed to have a two-way relationship with periodontitis is diabetes which 

is explored in detail below.  

1.4. Periodontitis and diabetes   

Diabetes mellitus (a group of metabolic disorders) are common chronic diseases which 

according to the World Health Organization are increasing in prevalence worldwide. Two 

main types of diabetes exist: type 1 and type 2. Although both are associated with 

hyperglycaemia (elevated blood sugar) the mechanisms leading to the hyperglycaemic 

state differ. Type 1 diabetes is considered an autoimmune disease accounting for 5 – 

10% of diabetics. This form of diabetes is caused by the immune destruction of 

pancreatic β cells (Kharroubi and Darwish, 2015). Type 2 diabetes, on the other hand, is 

caused by insulin resistance in peripheral tissues as well as eventual defects in β cell 

functions, leading to their inability to meet increased insulin demand (Kharroubi and 

Darwish, 2015). The characteristic hyperglycaemia of diabetics has been implicated in 

activation of pathways that lead to an increase in inflammation, oxidative stress and 

apoptosis (Preshaw et al., 2012).   

Initially periodontitis was thought to be a commonly occurring consequence of diabetes 

(Loe, 1993, Wilson, 1989). Epidemiological studies demonstrated susceptibility to 

periodontitis increases in diabetics and a positive correlation between the degree of 

hyperglycaemia and severity of periodontitis (increased bone loss and attachment loss) 
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has been observed (Emrich et al., 1991, Shlossman et al., 1990, Taylor et al., 1998).  

Furthermore, there is evidence to suggest hyperglycaemia plays a significant role in 

increased susceptibility to periodontitis, as patients with poorly controlled diabetes had 

a higher prevalence of periodontitis compared with healthy people but those with well 

controlled diabetes showed no significant differences in periodontitis prevalence (Tsai et 

al., 2002). Now it is understood that a more complex and two-way relationship exists 

between the two diseases, so that not only is diabetes a risk factor for periodontitis but 

that periodontitis has negative impacts on glycaemic control (Preshaw et al., 2012, 

Scannapieco, 2013, Casanova et al., 2014). Although the majority of studies regarding 

diabetes and periodontitis have concentrated on type 2 diabetes, it is important to note 

that type 1 diabetes also has an increased risk of periodontitis due to the hyperglycaemia 

associated with both forms of diabetes (Cianciola et al., 1982, Lalla et al., 2007). 

The systemic pro-inflammatory cytokine increase in diabetes can influence local host 

responses in periodontal tissues (Lalla and Papapanou, 2011, Sonnenschein and Meyle, 

2015). This leads to the hypothesis that diabetes effects the host responses to bacteria 

so that immune and tissue biochemistry modulators (for example cytokines and MMPs) 

in diabetic GCF, saliva and gingival tissues are different to those in systemically healthy 

individuals (Lalla and Papapanou, 2011, Sonnenschein and Meyle, 2015). Thus, 

hyperglycaemia-induced exacerbation of periodontal immune response and tissue 

degradation could contribute to periodontal disease and attachment loss (Iwamoto and 

Hioki, 2001, Kiran et al., 2005, Scannapieco, 2013). This increased immune response to 

bacterial stimulation was indicated in a study that identified an up-regulation of adhesion 

molecules, cytokines and chemokines in cardiovascular tissue of mice following 

subcutaneous inoculation of LPS. The up-regulation was seen to be more rapid and 

pronounced in the diabetic mouse compared with the non-diabetic mouse (Graves et al., 

2006). Furthermore, diabetes can increase immune responses in periodontal tissues, 

thus, exacerbating periodontitis. This is highlighted by the observation of higher levels of 

IL-1β in the GCF of diabetic patients with periodontitis compared with patients with the 

same extent of periodontitis but no diabetes (Salvi et al., 1997b). In addition, poor 

glycaemic control appears to be the driving force behind this increase, with the increase 

being observed in diabetics with poor glycaemic control but not those with good 

glycaemic control (Engebretson et al., 2004). 

On the other hand, an increase in systemic pro-inflammatory cytokines as a 

consequence of periodontitis could impair intracellular insulin signalling leading to an 

exacerbation of diabetes and potentially linking the two diseases (Iwamoto and Hioki, 

2001, Rotter et al., 2003, Paraskevas et al., 2008, Lalla and Papapanou, 2011, Preshaw 

et al., 2012, Sonnenschein and Meyle, 2015). The potential for periodontitis-associated 
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increases in systemic inflammation is supported by studies which show that therapeutic 

approaches against periodontitis reduce systemic inflammation (as seen by a reduction 

in mediators such as TNF-α, CRP and IL-6) and potentially improve glycaemic control 

(as indicated by a reduced haemoglobin A1c: HbA1c) (Iwamoto et al., 2001, D'Aiuto et 

al., 2004, Kiran et al., 2005, Marcaccini et al., 2009). Epidemiological studies suggest 

periodontitis is associated with poor glycaemic control (regardless of diabetic state) 

(Taylor et al., 1996, Saito et al., 2004, Demmer et al., 2010, Morita et al., 2010). This 

indicates the increase in insulin resistance associated with periodontitis can exacerbate 

diabetes and suggests a higher risk of developing diabetes-associated complications 

(Borgnakke et al., 2013, Scannapieco, 2013). This is exemplified by increases in 

incidence of neuropathy and end-stage renal disease in diabetics with positive 

correlations to severity of periodontitis (Shultis et al., 2007).  

The triggering of an acute phase response by the liver, thought to be a consequence of 

bacteraemia caused by periodontitis, can cause a release in acute-phase proteins (the 

majority of which are CRP, serum amyloid P component and serum amyloid A protein) 

(Steel and Whitehead, 1994). Pro-inflammatory cytokines (including IL-1, IL-6 and TNF-

α) have been implicated in stimulation of hepatocytes to initiate the release of CRP 

(Gruys et al., 2005, Polepalle et al., 2015). As described previously, pro-inflammatory 

cytokines are key in the progression of periodontitis and have also been observed at 

increased systemic levels in periodontitis (sections 1.2 and 1.4). Given this, it is 

unsurprising that increased systemic and GCF levels of CRP have been observed in 

periodontitis with periodontitis therapy leading to a decrease (Slade et al., 2000, 

Fitzsimmons et al., 2010, Megson et al., 2010, Leite et al., 2014). Increased CRP has 

also been associated with increased insulin resistance (Nesto, 2004). Although the exact 

mechanism by which CRP impacts insulin resistance is unclear, a study in Fcγ receptor 

IIB knockout mice demonstrated a protection to CRP associated insulin resistance. The 

Fcγ receptor IIB is involved in glucose delivery and, thus, the study proposes a role for 

CRP in inhibiting Fcγ receptor IIB associated glucose delivery (Tanigaki et al., 2013). 

Another study, indicated a role for ERK1/2 by demonstrating that inhibition of the 

MAPK/ERK1/2 pathway reversed CRP induced insulin resistance in rat hepatocytes (Xi 

et al., 2011). The increased potential for bacteraemia in periodontitis patients and the 

subsequent increases in pro-inflammatory cytokines and acute-phase proteins could be 

a potential linking mechanism between diabetes and periodontitis (Hasturk and Kantarci, 

2015, Meyle and Chapple, 2015). 

As technology advances, our understanding of microbial involvement in linking diabetes 

and periodontitis has increased. Culture dependent methods for periodontal bacterial 

recovery in an early study indicated that the levels of periodontal pathogens (including 
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A. actinomycetemcomitans, F. nucleatum and P. intermedia) were similar in diabetics 

and non-diabetics but P. gingivalis was higher in diabetics (Thorstensson et al., 1995). 

Later culture dependent studies demonstrated changes in oral microbial composition in 

the supragingival plaque of diabetics with increased prevalence of periodontitis 

associated pathogens (Figure 1.4) such as T. denticola, and P. nigrescens (Hintao et al., 

2007). An increase in the periodontitis associated bacteria Eubacterium nodatum in the 

subgingival plaque of diabetics was also demonstrated (Lalla et al., 2006). Studies 

utilising DNA checkerboard hybridization demonstrated increased abundances of P. 

gingivalis, A. actinomycetemcomitans and Campylobacter spp. in periodontitis sites of 

diabetics compared with periodontitis sites of those without diabetes (Ebersole et al., 

2008). A recent study utilising culture independent methods (16s rRNA sequencing)  

contradicts these previous studies and demonstrated periodontitis subgingival plaque of 

diabetic patients with poor glycaemic control had higher abundances of some genera 

(such as Neisseria, Actinomyces, Capnocytophaga, Fusobacterium, Veillonella, 

Aggregatibacter, Selenomonas and Streptococcus) and lower abundances of others 

(including Synergistetes, Tannerella, Porphorymonas and Eubacterium) (Casarin et al., 

2013). Furthermore, Xiao et al (2017) used a diabetic mouse model to demonstrate a 

shift in bacterial composition as a consequence of diabetes, with an increase in 

Enterobacteriaceae, Aerococcus, Enterococcus and Staphylococcus as well as a 

decrease microbial alpha diversity in diabetic mice but did not describe any differences 

in bacteria typically associated with periodontitis. The study, did however, demonstrate 

pathogen- and periodontitis- associated bone loss could be initiated following microbial 

transfer of microbiota from diabetic mice to germ free mice. Transfer from diabetic mice 

showed a significantly higher level of bone loss compared with transfer from non-diabetic 

mice. These inconclusive results highlight the necessity for further study in relationships 

between the oral microbiota and diabetes, particularly considering the changes in gut 

microbiota associated with diabetes (as reviewed in Tilg and Moschen , 2017).  

Diabetes mellitus and periodontitis are both associated with increased levels of 

inflammation. The most promising immune response-associated linking mechanisms are 

discussed in more detail below and outlined in Figure 1.5.  



 

 
 

Figure 1.5: Potential mechanistic links between diabetes and periodontitis. Schematic highlighting some of the immune responses implicated in 

the complex relationships between periodontitis and diabetes. Red indicates aspects of the immune response which impact periodontitis and/or 

diabetes. Yellow indicates host responses which trigger downstream cascades that can exacerbate periodontitis and/or diabetes. Purple boxes indicate 

consequences of diabetes. AGE: advanced glycation end product, RAGE: receptor for advanced glycation end products, LPS: lipopolysaccharide, IL-

6: interleukin-6, TNF-α; tumour necrosis factor-α.
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1.4.1. Cytokine/chemokine networks linking diabetes and periodontitis  

As eluded to in the above section (1.4), changes in local (saliva, GFC and gingival 

tissues) cytokine profiles play a crucial role in periodontitis progression and can lead to 

changes in systemic cytokine/chemokine levels. As such, these changes have been 

implicated in linking diabetes to periodontitis. A few of these potential 

cytokines/chemokines and their roles in both diseases are briefly described below.  

Diabetes is characterised by an abnormal metabolism and impaired transport of glucose, 

which is associated with defects in insulin production and increases in tissue insulin 

resistance. As a consequence hyperglycaemia is observed which can lead to increases 

in free fatty-acids (FFAs) and pro-inflammatory cytokines (Boni-Schnetzler et al., 2009). 

Pro-inflammatory cytokines have been reported to negatively affect pancreatic β-cells. 

For example, IL-1β has been demonstrated to cause β-cell decreases in docking and 

fusion of insulin granules to β-cell membrane which cause a decrease in β-cell response 

to glucose (Ohara-Imaizumi et al., 2004). Prolonged exposure to IL-1β and IL-1β in 

combination with IFN-γ, and the associated β-cell functional impairment, have been 

reported to initiate apoptosis of β-cells via NF-κB or STAT1 activation (Giannoukakis et 

al., 2000, Eizirik and Mandrup-Poulsen, 2001, Heimberg et al., 2001). IL-1β has also 

been demonstrated to induce NO production dependent on iNOS as demonstrated by a 

lack of NO in iNOS negative β-cells (Andersson et al., 2001). In the same study IL1-β 

and IL-1β/IFN-γ were also reported to impair glucose-stimulated insulin release, 

decrease the overall insulin in the β-cell, decrease IL-1β/IFN-γ oxidation rates and 

increase cell death. Contrastingly, while IL1-β impaired insulin release in iNOS negative 

cells, IL-1β/IFN-γ in combination did not impact cell viability or oxidation rates. Together 

these findings suggest a role for IL1-β and IL-1β/IFN-γ in impairment of insulin release 

independent of NO and cell death. Moreover, the results suggest that combined IL-

1β/IFN-γ-associated cell death was dependent on NO (Andersson et al., 2001). 

Furthermore, FFAs release associated with hyperglycaemia can also induce release of 

IL-1β, IL-6 and IL-8, thus, exacerbating the diabetic condition (Boni-Schnetzler et al., 

2009). TNF-α has also been detected at higher concentrations in diabetics (Pickup et al., 

2000, Chen et al., 2007). TNF-α is associated with an increase in insulin resistance via 

activation of protein phosphatase 2C which leads to inhibition of 5’AMP-activated protein 

kinase and subsequently causes a decrease in glucose uptake and an increase in insulin 

resistance (Steinberg et al., 2006a). As discussed previously (section 1.2.4), systemic 

pro-inflammatory cytokines are increased in periodontitis and it is possible these 

increases can exacerbate the immune disruption of function and destruction of β-cells 

via these mechanisms. On the other side of the two-way relationship, it is possible that 
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these systemic increases associated with diabetes can increase cytokine-mediated 

pathogenesis of periodontitis.  

Elevation in systemic IL-6 has also been observed in patients with diabetes (Kado et al., 

1999, Pickup et al., 2000, Mirza et al., 2012, Ryba-Stanislawowska et al., 2013). As 

described previously (section 1.2.4.3) IL-6 plays an important role in T-cell differentiation 

and in diabetes the increase in IL-6 has been associated with an increase in peripheral 

Th17 cells and a decrease in T-reg cells compared with healthy individuals (Ryba-

Stanislawowska et al., 2013). The increase in Th17 is associated with an increase in pro-

inflammatory cytokines (section 1.2.2.3) which in turn can cause the progression of 

diabetes. Given the Th17 role in periodontitis, a diabetes-associated systemic increase 

could potentially exacerbate periodontitis.  

When determining impact of diabetes on cytokine/chemokine associated periodontitis 

progression, the GCF has been the main focus of investigations. While some studies 

have demonstrated an increase in IL-1β concentrations in GCF of patients with 

periodontitis and diabetes compared with those without diabetes or healthy controls 

(Bulut et al., 2001, Duarte et al., 2007b, Duarte et al., 2007a, Salvi et al., 2010, Bastos 

et al., 2012), others have indicated no differences in GCF IL-1β levels associated with 

diabetes (Navarro-Sanchez et al., 2007, Correa et al., 2008, Kardesler et al., 2008). 

Although some studies showed no differences in IL-1β concentrations between diabetics 

with periodontitis and systemically healthy participants with periodontitis, Navarro-

Sanchez et al (2007) demonstrated lower HbA1C in diabetics following non-surgical 

periodontitis treatment, thus, suggesting improvement of periodontitis (and the 

subsequent decrease in inflammatory mediators such as IL-1β and TNF-α) impacts 

metabolic control.  

An increased concentration of TNF-α in the GCF of diabetic individuals with periodontitis 

has been shown compared with systemically healthy individuals but no significant 

differences were observed in periodontal/gingival tissue (Duarte et al., 2014). In a similar 

manner to IL-1β, other studies have shown no significant differences in TNF-α 

concentrations between periodontitis patients with and without diabetes (Takeda et al., 

2006, Navarro-Sanchez et al., 2007, Cole et al., 2008, Santos et al., 2010). Interestingly, 

one study demonstrated a difference in IL-1β and TNF-α GCF levels between type 1 and 

type 2 diabetics with periodontitis, with higher concentrations observed in type 1. This 

suggests type 1 diabetes is more detrimental to periodontal health than type 2 diabetes 

(Aspriello et al., 2011). 

Differences in IL-6 concentrations between patients with periodontitis and diabetes and 

those with periodontitis alone are also contradictory. Some studies have shown an 
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increase in IL-6 CGF levels (Duarte et al., 2007b, Cole et al., 2008, Ross et al., 2010, 

Kardesler et al., 2011, Bastos et al., 2012, Duarte et al., 2014) and others demonstrated 

no significant differences (Cutler et al., 1999, Camargo et al., 2013). IL-6 was also 

reported to be decreased in GCF of diabetic patients with periodontitis following 

treatment (Kardesler et al., 2011).  

Studies into the changes in IL-8 concentration are comparably sparse. While some 

studies indicated no differences in IL-8 concentrations between periodontitis patients 

with and without diabetes (Engebretson et al., 2004, Duarte et al., 2007a) others 

demonstrated a decrease in IL-8 in gingival tissues and GCF (Duarte et al., 2007b, 

Engebretson et al., 2006). 

In addition to cytokine analysis in patients, mice models have also provided an insight 

into the relationship between diabetes and periodontitis. For example, Pacios et al (2012) 

demonstrated prolonged inflammation in a diabetic mouse model with ligature-induced 

periodontitis, which was inhibited by the treatment of mice with a TNF-α inhibitor. 

Furthermore, inhibition of TNF-α in the model also reduced mRNA levels of cytokines, 

including IL-1β and IFN-γ (Pacios et al., 2012). Takano et al (2010) also demonstrated 

reversal of P. gingivalis induced increases in serum cytokines (IL-6 and TNF-α) in 

diabetic mice treated with a TNF-α inhibitor. Nishihara et al (2009) demonstrated 

increased serum levels of TNF-α and IL-6 in diabetic mice in response to P. gingivalis 

with a corresponding increase in mRNA of these cytokines in liver and visceral adipose 

tissue.   

1.4.2. Polymorphonuclear neutrophils in diabetes and periodontitis  

Neutrophils are also an important factor influencing the relationship between diabetes 

and periodontitis. Diabetic patients have been shown to have impaired neutrophil 

phagocytosis, apoptosis, chemotaxis and anti-microbial functions due to the metabolic 

changes associated with diabetes (Manouchehr-Pour et al., 1981, Salvi et al., 1997b, 

Alba-Loureiro et al., 2006, Graves et al., 2006, Alba-Loureiro et al., 2007, Preshaw et al., 

2012). 

A study investigating peripheral blood neutrophil apoptosis demonstrated a delayed 

apoptosis response in diabetics. A significant decrease in apoptosis, caspase-3 and 

caspase-8 was observed in neutrophils from patients with diabetes and diabetes with 

periodontitis (Manosudprasit et al., 2017). In addition to changes in apoptosis, 

neutrophils in diabetes have also been reported to have altered metabolism. In a diabetic 

rat model, phagocytosis, measured as phorbol myristate acetate (PMA)-stimulated H2O2 

production, was decreased in diabetic rats compared with healthy controls. A decrease 

in glucose-6-phosphate dehydrogenase and glutaminase (enzymes involved in 
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glucose/glutamine metabolism) and increases in phosphofructokinase were observed in 

neutrophils from diabetic rats. Following treatment with insulin, neutrophil changes were 

abolished. These results indicate an alteration in neutrophil metabolism in diabetics may 

lead to changing in functions such as phagocytosis and oxidative burst (Alba-Loureiro et 

al., 2006). In addition to changes in apoptosis and metabolism, studies have also 

demonstrated impaired chemotaxis, phagocytosis and bactericidal activity in diabetes 

(Cutler et al., 1991, Lecube et al., 2011). Despite these decreases, other aspects of 

neutrophils in diabetes appear to be exacerbated. This is highlighted in a recent study 

which reported a higher basal level of ROS in diabetic neutrophils which, following 

neutrophil stimulation with PMA, remained consistently high,  in contrast with healthy 

neutrophils in which ROS levels decreased over time (Ridzuan et al., 2016). 

Furthermore, increased pro-inflammatory cytokines/chemokines (IL-1β, IL-8 and TNF-α) 

were released from neutrophils of diabetics both under unstimulated and LPS-stimulated 

conditions (Hatanaka et al., 2006). In contrast, Gupta et al (2017) saw no differences in 

cytokine levels (including IL-6, IL-8, IL-1β and TNF-α) in neutrophils from diabetics with 

both poor and good glycaemic control and with and without complications. They did, 

however, report increase mRNA of IL-6, IFN-γ and TNF-α in neutrophils of patients with 

good and poor glycaemic control but with no complications compared with systemically 

healthy participants (Gupta et al., 2017). As described previously (section 1.2.1) NETs 

are important aspects of neutrophil associated protection and are involved in neutrophil-

associated periodontal destruction. Recently, a study reported basal levels of NETs in 

diabetics were higher compared with healthy controls both in vitro and in vivo (using 

blood nucleosomes and HNE-DNA complexes as an indirect measurement of NET 

formation) (Carestia et al., 2016). Together these alterations in neutrophils as a 

consequence of diabetes have the potential to exacerbate periodontitis. Impaired 

apoptosis in diabetics could increase neutrophil retention in the periodontium thus 

prolonging their destructive properties (for example MMP release), with increases in 

ROS and pro-inflammatory cytokines in response to stimuli (hyper-responsive 

neutrophils) adding to tissue destruction.  

The study of neutrophils in diabetics has predominantly concentrated on peripheral cells 

and ex vivo assay with limited studies examining the GCF neutrophils in patients with 

periodontitis and diabetes (Sonnenschein and Meyle, 2015). Peripheral neutrophil 

studies have demonstrated changes in neutrophils as a consequence of diabetes. For 

example, Gursoy et al. (2008) indicated a decrease in neutrophil chemotaxis in diabetics 

with an increase in periodontal pocket depth. However, they observed no difference in 

phagocytosis or intracellular killing between periodontitis patients with and without 

diabetes. Shetty et al. (2008), on the other hand, did detect significant decreases in 
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phagocytosis and P. gingivalis killing by neutrophils from diabetics with periodontitis in 

addition to decrease in chemotaxis. Furthermore, peripheral neutrophils from patients 

with periodontitis were more reactive to periodontal pathogen extracts (P. gingivalis and 

A. actinomycetemcomitans) compared with healthy individuals. This hyper-reactivity 

could indicate the role of periodontitis in the tissue destruction associated with diabetes 

complications such as neuropathy (Restaino et al., 2007, Silva et al., 2015). 

While studies in human GCF neutrophils are limited, animal model studies have provided 

an insight into local changes associated with diabetes in periodontitis. For example, 

diabetic mice were shown to have increased gingival vessel permeability, increased 

numbers of rolling leukocytes and increased leukocyte expression of P-selectin 

glycoprotein ligand-1. These results indicate a higher potential for neutrophil migration 

and translocation into gingival tissues in diabetes compared with health (Sima et al., 

2010). A similar observation was made by Gyurko et al. (2006) who also showed 

enhanced leukocyte rolling and attachment to gingival vessels in diabetic mice in addition 

to decreased chemotaxis and increased ROS release by neutrophils from diabetic mice.  

The role of MMPs in periodontitis has been discussed previously and as mentioned their 

regulation is dependent on neutrophils. Given the dysregulation of neutrophils in both 

diabetes and periodontitis, a consequential dysregulation in MMP levels can also be 

suggested which could contribute to the attachment loss. Indeed, evidence suggests 

increased MMP8 and MMP9 levels in periodontal tissues, GCF and saliva from 

periodontitis patients with diabetes (Kumar et al., 2006, Correa et al., 2008, Costa et al., 

2010, Hardy et al., 2012). Furthermore, increases in TIMP2 and TIMP4 have also been 

observed in gingival tissues of diabetics with periodontitis compared with systemically 

healthy participants (Shin et al., 2010, Kim et al., 2011, Jung et al., 2013). This perhaps 

suggests a role for both MMPs and their inhibitors in the progression of periodontitis in 

diabetics.  

1.4.3. Advanced glycation end products  

Another major inflammation-associated element playing a role in increased periodontal 

inflammation in diabetic individuals is the increased prevalence of advanced glycation 

end product (AGEs) and their 35 kDA transmembrane receptor RAGE (receptor for 

advanced glycation end products).   

The formation of AGEs is a non-enzymatic protein modification which results in protein 

structure change. The post-translational modification occurs when amino groups on 

proteins (particularly lysine, arginine and histidine) condense with the carbonyl group of 

reducing sugars. Generation of AGEs occurs mainly through the Maillard reaction which 

transitions from reversible Schiff base adducts to protein bound Amadori products that 
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undergo a series of irreversible oxidation and dehydration reactions to form a broad 

range of heterogeneous products (Figure 1.6) (Ahmad et al., 2017). The resulting AGEs 

are mostly fluorescent nitrogen- and oxygen- containing heterocyclic compounds 

(Younessi and Yoonessi, 2011, Tsutsui et al., 2016, Ott et al., 2014). During the 

conversion of the Schiff base into Amadori products, superoxides are formed while 

during later stages (conversion of Amadori products to AGEs) hydroxyls are formed 

(Ahmad et al., 2017). This generation of ROS during the production of AGEs could 

contribute to complications associated with diabetes (microvascular complications) and 

potentially exacerbate local tissue damage in periodontitis (Brownlee, 2005, Chilelli et 

al., 2013). Structural protein changes associated with the glycation process have been 

implicated in diseases such as Alzheimer’s, atherosclerosis, nephropathy, retinopathy 

and diabetes (Zheng et al., 2002, Lin et al., 2003, Semba et al., 2010, Wang et al., 2012). 

In particular, proteins with longer half-lives that are directly exposed to high extracellular 

glucose levels for prolonged periods of time (such as albumin, haemoglobin, collagen 

and alkaline phosphatases) are susceptible to glycation (Singh et al., 2001). 

Although the full extent of AGE involvement in diabetes is not known, studies have 

implicated AGEs in cellular insensitivities to insulin in diabetes as a consequence of AGE 

associated overproduction of ROS, impairment in proteasomal activities and 

dysregulation of inflammatory responses (Berbaum et al., 2008, Younessi and Yoonessi, 

2011). Glycated proteins often form aggregates and so are more resistant to degradation 

and proteasomal activity. This causes a retention of cross-linked and AGE modified 

proteins in cells and body tissues impacting their normal function. For example, AGE 

modified collagen aggregates are responsible for ECM stiffening which can lead to organ 

and vessel dysfunction, both of which can exacerbate diabetic complications 

(Badenhorst et al., 2003). Furthermore, a recent study showed that although AGE 

modified albumins were rapidly captured by scavenger cells, the proteins and protein 

fragments accumulated in the liver and showed hindered excretion. This increase in AGE 

proteins in the liver can affect normal liver excretion pathways and may play an important 

role in liver complications associated with diabetes (Tsutsui et al., 2016).   

In addition to structural changes caused by the formation of AGEs, interaction of AGEs 

with RAGE have been shown to cause inflammation and oxidative stress both of which 

are important in the progression of periodontitis and diabetes. RAGE is constitutively or 

inducibly expressed in a variety of cell types, including neurones, immune cells 

(neutrophils, monocytes, macrophages, lymphocytes and dendritic cells), smooth 

muscle cells and vascular endothelial cells (Younessi and Yoonessi, 2011, Chuah et al., 

2013). It contains a short cytoplasmic domain, a single transmembrane domain and an 

extracellular domain, composed of a variable domain and two constant domains. The 
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protein belongs to the immunoglobulin super family and has the rare characteristic of 

having the potential to bind multiple ligands from different families. RAGE is thus 

considered a PRR (Younessi and Yoonessi, 2011, Ott et al., 2014). 

Given the high prevalence of neutrophils in periodontitis and indeed the dysregulation of 

neutrophil recruitment and function associated with both diabetes and periodontitis (as 

discussed previously; 1.2.1 and 1.4), AGE/RAGE interactions on these cells have the 

potential to cause increased local inflammatory responses. Upon AGE binding to RAGE, 

expression of inflammatory mediators (such as IL-1β, TNF-α and IL-6) are upregulated 

(Lalla et al., 2000, Graves et al., 2006). Furthermore, AGE is associated with increased 

levels of ROS and oxidative stress (causing endothelial cell changes and vascular injury), 

impairment of bone formation and repair (potentially impacting bone resorption in 

periodontitis), a decrease in ECM production and decrease in collagen strength and 

turnover, all of which may impact periodontal health and the progression of diabetic 

complications (Lalla et al., 2001, Vlassara, 2001, Cortizo et al., 2003, Santana et al., 

2003, Wong et al., 2003, Preshaw et al., 2012). 

Linking diabetes to periodontitis, increased serum AGE in diabetics with a positive 

correlation to increased periodontitis-associated attachment loss has been 

demonstrated (Takeda et al., 2006). Furthermore, immunohistochemical analysis of 

gingival tissues from diabetics indicated a higher percentage of AGE on cells (epithelium, 

blood vessels and fibroblasts) in diabetes with periodontitis compared with healthy 

tissues (Zizzi et al., 2013). On the other hand, studies have also demonstrated increased 

RAGE expression in gingival tissues of diabetics with periodontitis in both human (Katz 

et al., 2005) and animal studies (Chang et al., 2013). Ren et al. (2009) showed gingival 

fibroblasts exposed to AGE modified human serum albumin had decreased cell viability 

and impairment of intracellular collagen I and collagen III synthesis and expression. This 

suggests AGE dysregulates collagen turnover which may exacerbate periodontitis tissue 

destruction.  
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Figure 1.6: Formation of advanced glycation end products through various 

pathways. In addition to the Maillard reaction (red), various other pathways lead to the 

formation of AGEs. These include lipid and amino acid degradation and cleavage of 

dicarbonyl compounds from glycolytic intermediates as well as the formation of carbonyl 

compounds following auto-oxidation of monosaccharides such as glucose, ribose, 

fructose and glyceraldehyde. AGE: advanced glycation end product, HOCl: 

hypochlorous acid, NADPH: nicotinamide adenine dinucleotide phosphate.  
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1.4.4. Other potential linking mechanisms  

As discussed previously (section 1.1.1.4), saliva is important in the maintenance of a 

healthy oral microbiome. In diabetes, salivary flow rate and composition have been 

shown to be altered (Harrison and Bowen, 1987, Thorstensson et al., 1989, Dodds et al., 

2005). Dodds et al. (2005) showed a reduction in stimulated and unstimulated 

submandibular/sublingual saliva outputs. Diabetic salivary proteins were also 

demonstrated to have increases in lactoferrin, MPO and salivary peroxidase in 

stimulated parotid and increased levels of secretory IgA, albumin and lactoferrin in 

stimulated submandibular/sublingual saliva. Although the significance of these changes 

is yet to be fully understood, upregulated salivary proteins in diabetes could encourage 

dysbiosis of the oral microbiota. For instance, changes in IgA levels could potential 

effecting colonisation. Furthermore, increases in salivary albumin could cause an 

increase in AGE modified albumin in diabetics with hyperglycaemia, thus an increase in 

AGE associated immune responses which could contribute to the progression of 

periodontitis (Dodds et al., 2005).  

Impairment of apoptosis has also been suggested as a potential link between diabetes 

and destruction of tissue in periodontitis. In diabetic mice, a higher incidence of fibroblast 

apoptosis was observed when compared with non-diabetic mice upon induction of tissue 

injury through P. gingivalis inoculation (Liu et al., 2004). An increase in apoptosis of these 

matrix-producing cells could indicate an impairment in inflamed tissue repair which in 

periodontitis could contribute to attachment loss (Dodds et al., 2005). 

1.5. Conclusions  

Periodontitis is a complex disease involving both the oral microbiome and the host 

responses. Periodontitis is considered an inflammatory disease, with the innate immune 

response playing crucial roles in periodontal tissue destruction. Diabetes is similarly 

associated with dysregulated immune responses. While the two diseases have been 

shown through epidemiological studies to be linked in a two-way relationship the exact 

mechanisms are unclear. Some potential links have been discussed above but others 

(such as OPG/RANKL levels, TLR expression, T-cells and B-cells) have also been 

suggested as potential links and have been reviewed in detail elsewhere (Sonnenschein 

and Meyle, 2015).  

In addition to host responses, the microbiome of the oral cavity has also been implicated 

in the progression of periodontitis. While studies regarding the differences in the oral 

microbiome between systemically healthy and diabetic individuals with periodontitis are 

contradictory and sparse, it is well established that changes are observed in microbiota 

composition in periodontitis so that periodontitis bacteria (for example P. gingivalis and 
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T. forsythia) are favoured. With advances in technology, the role of the microbiota in 

linking diabetes and periodontitis can be better understood.  

Although many potential linking mechanisms have been postulated for the two-way 

relationship between periodontitis and diabetes, current evidence is unclear and often 

contradictory indicating a need for further investigations. 

1.6. Aims and objectives 

It is now widely accepted that a two-way relationship exists between periodontitis and 

diabetes. To date, studies comparing the changes associated with the two diseases have 

produced contradictory results. The aim of this study is to provide evidence for potential 

linking mechanisms between diabetes and periodontitis.  

 It is the objectives of this project to determine if increased AGEs (a consequence of 

hyperglycaemia) increase AGE-RAGE interactions to change inflammatory responses 

(measured as changes in IL-8, IL-1β and IL-6) in gingival keratinocytes. Furthermore, 

this study utilises an in-house developed biofilm model to ascertain if AGEs influence 

biofilm bacterial composition (using both culturing methods and NGS) as well as how 

biofilms grown with concentration of AGEs that are commensurate with diabetes and 

health impact inflammatory responses (IL-1β, IL-8, IL-6 and ROS changes) when co-

cultured with gingival keratinocytes.  

In addition to in vitro studies, a preliminary clinical study was undertaken to uncover 

differences in biofilm composition and functionality in systemically healthy individuals 

with and without periodontitis. This was achieved through next generation sequencing 

(NGS). In addition to this it is important to determine the local and systemic levels of pro-

inflammatory mediators (cytokines/chemokines and MMPs) in these individuals to 

establish molecular mechanisms involved in periodontitis. The study also looked at 

systemic neutrophil functions (migration, phagocytosis and respiratory burst) as 

defective neutrophils have been associated with periodontitis progression. By 

understanding the systemic changes involved in periodontitis, one could understand the 

potential effect multiple diseases with distinct pathogenesis, indeed this preliminary 

clinical study will set the basis for a more complex study involving diabetics with and 

without periodontitis. 
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2. Material and Methods 

2.1. Solutions and Buffers 

Table 2.1: Table of buffers and solutions used 

Artificial Saliva 2.5 g/L mucin, 6.52 mM NaCl, 14.94 mM KCl, 

5.42 mM KH2PO4, 11.35 µM ascorbic acid. Added 

post sterilisation: 9 mM Urea and 5 mM arginine 

Basal medium 10 g/L Proteose-peptone, 5 g/L Trypticase-

peptone, 5 g/L yeast extract, 33.53 mM KCl, 4.13 

mM cysteine. pH 7.4 

Blocking Buffer 5% semi skimmed milk powder dissolved Tris 

Buffered Saline (Bio-Rad Laboratories Ltd) with 1% 

(v/v) Tween-20 (TBS-T) 

ELISA coating buffer 51.1 mM NaHCO3, 50 mM Na2CO3, pH 9.4 

ELISA stop buffer 1.8N H2SO4 

ELISA wash buffer 1.46mM KH2PO4, 9.9 mM KH2PO4 – 3H2O, 1.36 

mM EDTA, 5%(v/v) Tween 20, pH 7.4 

Reduced transport fluid (RTF) 

(Rundell et al., 1973) 

68.11 mM (NH4)2SO4, 154 mM NaCl, 28.70 mM 

K2HPO4, 33.07 mM KH2PO4, 37.74 mM Na2CO3, 

13 mM EDTA, 12.97 mM Dithiothreitol, 7.30 mM 

MgSO4, 0.1% (v/v) Resazurin 

RIPA buffer 

(Radioimmunoprecipitation 

assay buffer) 

150 mM NaCl, 1% (v/v) Triton X, 0.5% (v/v) sodium 

deoxycholate, 0.1% (v/v) SDS, 50 mM Tris 

Serum medium Basal medium supplemented with 20% (v/v) heat 

inactivated foetal bovine serum (FBS), 1.45 mM 

haemin and 1.1 µM menadione 

TGS buffer 

(Bio-Rad Laboratories Ltd) 

Tris/Glycine/SDS buffer 

Diluted to 1x working solution in dH2O prior to use 

Tris EDTA (ethylene diamine 

tetra acetic acid buffer) 

(TE Buffer) 

10 mM Tris, 1 mM EDTA, pH 8.0 

ELISA assay buffer 136.89 mM NaCl, 7.96 mM Na2HPO4, 1.47 mM 

KH2PO4, 2.68 mM KCl, 0.5% (w/v) Bovine Serum 

Albumin (BSA), 0.1% (v/v) Tween 20, pH 7.4 
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2.2. Tissue culture  

Cells were cultured using standard aseptic techniques. Human telomerase immortalized 

gingival keratinocytes (TIGK: Moffatt-Jauregui et al., 2003) were kindly gifted from Dr 

Richard Lamont (School of Dentistry, University of Louisville). The TIGK cells were grown 

in Basal Medium Dermalike K complete kit with supplements (LifeLine® cell technology, 

USA) and incubated at 37°C, in 5% CO2. Medium was changed every 2-3 days and cells 

were passaged when confluency reached 70-80% and used between passages 5 and 

15. To passage, the monolayer of cells was washed with phosphate buffered saline 

(PBS) prior to incubation with 0.25% (v/v) Trypsin-EDTA solution (Sigma-Aldrich, UK), 

for 5 min or until cells detached at 37°C, 5% CO2. Upon cell detachment, trypsin was 

neutralised by the addition of fresh medium at a 1:1 ratio and the suspension centrifuged 

at 300 g for 5 min. The supernatant was discarded, and the resulting cell pellet was re-

suspended in an appropriate volume of medium to enable counting using a 

haemocytometer and seeding of tissue culture flasks or plates at the desired density. All 

tissue culture was carried out in sterile tissue-culture-treated flat bottom plates or tissue 

culture flasks (Corning® Costar®). 

2.3. Western blot analysis 

Cell lysates were generated using standard RIPA (Radioimmunoprecipitation assay 

buffer) lysis buffer protocols. Briefly, monolayer cells were washed with ice-cold PBS and 

the cells detached, using a cell scraper, directly into ice-cold RIPA buffer with added 

protease inhibitor cocktail (1 tablet/10 mL, cOmplete™, Mini protease inhibitor cocktail 

tablets, Roche, UK). The cell suspension was then incubated on ice for 15 min with 

agitation and centrifuged at 17000 g, 4°C for 20 min. Cell medium supernatant was also 

harvested and centrifuged at 17000 g, 4ºC for 20 min. Resulting supernatants were 

freeze dried and stored at -20°C for later analysis. 

Protein concentrations were quantified prior to Western blot analysis using the Bradford 

assay (Pierce™ Coomassie (Bradford) Protein Assay Kit, ThermoFisher Scientific, UK) 

as per manufacturer’s instructions for microplate procedures. Briefly, 5 µL of BSA 

standards (100-1500 µg/mL) or 5 µL sample was mixed with 250 µL Coomassie in a 96 

well plate. Following a 10 min incubation at room temperature (RT), the absorbance was 

read at 595 nm in a microplate reader (Varioskan Flash, Thermo scientific) and a four-

parameter standard curve generated to extrapolate sample protein concentrations.  

Mini-PROTEAN TGX Stain Free Gels (4-15%, Bio-Rad Laboratories Ltd, UK) were used 

for western blotting. 10 µg total protein, with a 1:1 ratio of 2x Laemmli sample buffer (Bio-

Rad Laboratories Ltd, UK) and supplemented with 100 mM β-mercaptoethanol was 

boiled for 5 min at 95°C prior to gel loading and the gel run for approximately 75 min at 
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120 V in TGS buffer. In addition to samples, Precision Plus Protein WesternC standards 

(Bio-Rad Laboratories Ltd, UK) were also loaded onto gels (10 – 250 kDa). Gels were 

then transferred to a PVDF (polyvinylidene difluoride) membrane (Trans-Blot Turbo 

transfer pack, 7 x8.5 cm, Bio-Rad Laboratories Ltd, UK) using a Trans-Blot ® Turbo™ 

transfer system (Bio-Rad Laboratories Ltd). Following transfer, membranes were rocked 

at RT in blocking buffer for a minimum of 1 h to reduce background binding of primary 

antibodies. Blocking buffer was discarded and membranes incubated with primary 

antibody diluted in 0.25% (w/v) milk in TBS-T, overnight at 4°C on a rocking platform 

(Table 2.2). This was followed by 3x 5 min washes in TBS-T with rocking at RT. 

Membranes were then blocked again to reduce non-specific secondary antibody binding 

followed by 3x 5 min washes in TBS-T with rocking at RT and incubation for 1 h at RT 

with the secondary antibody and a Precision Protein ™ StrepTactin-horseradish 

peroxidase (HRP) conjugate (Bio-Rad Laboratories Ltd) in 0.25% (w/v) milk in TBS-T 

(Table 2.2). The StrepTactin-HRP was added to enhance visualisation of standards. 

Unbound antibody was removed with 3x 5 min washes and the antibody staining 

revealed by 5 min incubation of membranes in SuperSignal™ WestFemto Maximum 

Sensitivity Substrate (Fisher Scientific Ltd, UK) for chemiluminescence exposure and 

visualised using the ChemiDoc™ MP imaging system (Bio-Rad).   

For multiple antibody probing, membranes were rocked in Restore PLUS Western Blot 

Stripping buffer (Thermo Fisher Scientific, Life Technologies, UK) for 30 min at RT 

followed by 3x 5 min washes in TBS-T with rocking at RT and the process above 

repeated from the first blocking step. 
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Primary Antibody Secondary Antibody  

Antibody: Mouse monoclonal to human 

RAGE 

Dilution: 1:1000 dilution  

Final concentration: 0.5 µg/mL  

Abcam (MM0520-8D11) 

Antibody: Rabbit polyclonal antibody to 

mouse IgG (HRP) 

Dilution: 1:10000 dilution 

Final concentration: 2 µg/mL 

Abcam  

Antibody: Rabbit polyclonal to human β-

Actin 

Dilution: 1:1000 dilution 

Final concentration: 0.5 µg/mL 

Abcam  

Antibody: Goat polyclonal antibody to 

rabbit IgG (HRP) 

Dilution: 1:20000 dilution 

Final concentration: 1 µg/mL 

Abcam  

Table 2.2: Antibody details for Western Blotting. HRP; Horseradish peroxidase, 

RAGE; receptor for advanced glycation end products, IgG; Immunoglobulin G. 
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2.4. Enzyme-linked immunoassay  

Enzyme linked immunoassays (ELISAs) were carried out with the antibodies 

reconstituted according to manufacturer’s instructions. Briefly a 96 well flat bottomed 

plate (Greiner bio-one) was coated with monoclonal capture antibody (Table 2.3) and 

incubated at RT overnight. The plate was then washed (x3) in wash buffer and dried prior 

to blocking with assay buffer at RT for 1 to 2 h. The wash step was repeated before 

samples and standards were added to the plate and incubated at RT for 2 h. Standards 

were added to each assay plate (with ranges as indicated Table 2.3) in addition to a 

negative control of assay buffer alone. The wash step was repeated and assay buffer 

containing biotinylated detection antibody (Table 2.3) was added to each well and the 

plate incubated at RT for 2 h. Plates were washed again prior to the addition of 

Streptavidin horseradish peroxidase (Strep-HRP) (Table 2.3) and then incubated at RT 

for 20 min. Following a final wash, 200 µL of 3,3’,5,5’ - tetramethylbenzidine (stabilized 

chromogen TMB, Invitrogen, UK) was added as a substrate. Plates with TMB added 

were incubated at RT with protection from light for approximately 20 min. Once the 

appropriate amount of colour development was achieved a stop solution was added 

producing a yellow colour which was detectable at 450 nm. The absorbance of the wells 

were read and recorded, within 15 min of adding the stop solution, using a plate reader 

(Varioskan Flash, Thermo scientific) set to measure photometric absorbance at a 

wavelength of 450 nm. 

Sample absorbance readings were converted to analyte concentrations (pg/mL) using 

the curve of the line equation generated from the standard curve produced for each plate. 

Analyte concentrations were calculated with correction for background levels of 

absorbance.   
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 Table 2.3: Antibody details used for ELISAs. IgG: Immunoglobulin G, IL: Interleukin. 

 

  

Analyte 
Antibody 

Manufacturer 

Capture 

antibody 

concentration 

(Host/Clone/ 

Diluent) 

Detection 

antibody 

concentration 

(Host/ 

Clone) 

Standards 

range 

(pg/mL) 

Strep HRP 

concentration 

IL-8 R&D systems 

1 µg/mL 

(Mouse IgG/ 

6217/ 

Coating buffer) 

1 µg/mL 

(Goat IgG/ 

polyclonal) 

15.625 – 

1000 

1:5000 

dilution,  

R&D systems 

IL-6 
BD 

Pharmingen 

1 µg/ml 

(Rat IgG/ 

MQ2-13A5/ 

Coating buffer) 

2 µg/ml 

(Rat IgG2a/ 

MQ2-39C3) 

15.625 – 

1000 

1:5000 

dilution,  

R&D systems 

IL-1β 
R&D systems 

– Duoset 

4 µg/ml  

(-/-/PBS) 

12 µg/mL  

(n/a) 
3.91 – 250 

1:40 dilution, 

R&D Duoset 

RAGE 
R&D systems 

– Duoset 

1 µg/ml  

(-/-/PBS) 

100 ng/mL 

(n/a) 
62.5 – 4000 

1:200 dilution, 

R&D Duoset 
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2.5. Next generation sequencing  

2.5.1. Bacterial DNA extraction and quantification  

DNA was extracted from samples using a DNA extraction kit (UltraClean® Microbial DNA 

Isolation kit, MoBio Laboratories, Inc., UK) following the manufacturer’s instructions. 

Briefly, microbial cell pellets were re-suspended in MicroBead solution, gently vortexed 

and transferred to a MicroBead tube followed by heating at 65°C for 10 min and the 

addition of lysis solution. The MicroBead tubes were then vortexed for 10 min on a 

horizontal vortex. The specialised beads and bead beating tube in combination with the 

heating and addition of lysing solution uses chemical and mechanical mechanisms for 

microbial lysis. Following microbial lysis, released DNA was bound to spin filters, washed 

and eluted in DNA-free Tris buffer. Extracted DNA was stored at -20°C for further 

analysis.  

DNA concentration was determined using a Quant-iT™ PicoGreen™ double stranded 

(ds) DNA assay (ThermoFisher Scientific, UK) according to manufacturer’s instruction. 

Briefly, 1 µL of extracted DNA was added to wells of a 96 well plate containing 99 µL of 

TE (Tris EDTA) buffer. DNA standards were run in conjunction with samples with a range 

of 1000 ng/mL to 10 ng/mL (high range quantitation) or 50 ng/mL to 1 ng/mL (low range 

quantitation). PicoGreen (Quant-iT™ PicoGreen™ ds DNA assay, ThermoFisher 

Scientific, UK) was added to each well (100 µL) and the plate incubated, protected from 

light, for 2 to 5 min at RT. Fluorescence was read at 480 nm excitation, 520 nm emission 

and DNA concentration of samples calculated using the curve of the line equation 

generated from the standards.   

2.5.2. DNA shearing and size distribution electrophoresis  

Extracted bacterial DNA was sheared using Covaris microTUBEs (Covaris, Inc.) to 200 

base pairs (bp) fragments using the pre-set ‘Microtubes 200 bp’ program on the sonicator 

(Covaris s220 high performance ultrasonicator, Covaris, Inc.). The fragment size of the 

sheared DNA was immediately checked using the Agilent 2200 TapeStation system 

(Agilent). Briefly, 2 µL of DNA sample was added to the well of a V-bottom 96 well plate 

(Agilent, UK) with an equal volume of loading buffer (High sensitivity D1000 sample 

buffer, Agilent, UK). Samples were run along-side a High sensitivity D1000 ladder 

(Agilent, UK) and loaded onto High sensitivity D1000 ScreenTapes (Agilent, UK). 

Following size verification (Figure 2.1) sheared DNA was immediately used for library 

preparation or stored at -20ºC for later processing.  
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Figure 2.1: Example of tape station results post DNA shearing. (A) Example of 

electrophoresis tape image. Lane 1 shows ladder while lane 2 & 3 show sheared DNA 

extracted from saliva. (B) Example of size distribution of sheared samples. Sheared 

samples show a bell curve with a peak at approximately 200 bp indicating successful 

shearing.  
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2.5.3. Next generation sequencing library preps  

Libraries for Next Generation Sequencing (NGS) were prepared using the NEBNext Ultra 

(for samples with extracted DNA 5 ng – 1 µg) or NEBNext Ultra II (for DNA <5ng) library 

preparation kit for Illumina (New England BioLabs, USA). Libraries were prepared 

following the manufacturer’s instructions as outlined in Figure 2.2 . NEBNext Multiplex 

adaptors (set 1 (E7335) and set 2 (E7500), New England Biolabs, USA) were used for 

multiplexing library preparations.     

Resulting libraries were then checked for quality using an Agilent TapeStation as 

described above. In cases where starting DNA concentrations were low, adaptor 

contamination could occur (Figure 2.3A). To remove adapter contamination a clean-up 

step using 0.8x beads was carried out. DNA concentrations of resulting libraries was 

established using Quant-iT™ PicoGreen™ ds DNA assay (section 2.5.1) and an 

equimolar concentration of each sample was added to a pool (24 samples with different 

index primers per pool maximum) and the samples sequenced on one lane of  the 

Illumina HiSeq3000 available at the NGS facility at the University of Leeds 

(http://dna.leeds.ac.uk/genomics/). 

2.6. Next generation sequencing data analysis 

Sequencing data was received de-multiplexed from the NGS facility and analysed using 

the high performance computing (HPC) system. These data were processed as outlined 

in Figure 2.4 utilising QIIME (Caporaso et al., 2010b), SortMeRNA (Kopylova et al., 

2012), DIAMOND (Buchfink et al., 2015) and MEGAN (Huson et al., 2007) for filtering, 

mapping, operational taxonomic unit (OTU) picking and functional analysis. SortMeRNA 

allows the sorting of reads into rDNA reads and non-rDNA reads using a reference 

database. During this analysis the HOMD was utilised for rDNA sorting 

(http://www.homd.org/index.php?name=seqDownload&file&type=R). The rDNA and 

DNA sorted reads were mapped to reference databases using QIIME and 

DIAMOND/MEGAN, respectively.  

OTU count tables were loaded in R (https://www.R-project.org/) through the phyloseq 

package (McMurdie and Holmes, 2013). For clinical sample analysis, the OTU count 

table, metadata mapping file and phylogenetic tree were loaded into phyloseq to 

generate a phyloseq object for analysis of sample bacterial composition. Graphs were 

generated using the ggplot package in R (Wickham, 2009). For analysis of complex 

biofilm NGS data, phyloseq objects of OTU counts and functional counts were used in 

DESeq2 for statistical analysis of bacterial composition. Differential abundance was 

determined using the Wald test to determine significance (p < 0.1).  

http://dna.leeds.ac.uk/genomics/
http://www.homd.org/index.php?name=seqDownload&file&type=R
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Figure 2.2: Schematic outlining the process for next generation sequencing library preparation using NEBNex library prep kits 

for Illumina.  
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Figure 2.3: TapeStation analysis of next generation sequencing library 

preparations. (A) Example of library preparation with adapter contamination. Adapters 

at 120 bp (top) were removed using 0.8x bead clean-up so that the library peak (at 

approximately 319 bp) was larger than any remaining adapter contamination (bottom). 

(B) Example of library preparation without any adaptor contamination 
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Table 2.4: Example of a metadata file used in analysis pipeline. 

#SampleID BarcodeSequence linkerPrimerSequence InputFileName SampleType SampleSite Description 

p001p ATCACG p001plaque p001pinterleaved.fna Periodontitis Plaque p001pperio 

p002p CGATGT p002plaque p002pinterleaved.fna Periodontitis Plaque p002pperio 

p003p TTAGGC p003plaque p003pinterleaved.fna Healthy Plaque p003phealth 

p004p TGACCA p004plaque p004pinterleaved.fna Periodontitis Plaque p004pperio 

p005p ACAGTG p005plaque p005pinterleaved.fna Periodontitis Plaque p005pperio 

p006p GCCAAT p006plaque p006pinterleaved.fna Periodontitis Plaque p006pperio 

p007p CAGATC p007plaque p007pinterleaved.fna Healthy Plaque p007phealth 

p008p ACTTGA p008plaque p008pinterleaved.fna Healthy Plaque p008phealth 

p009p GATCAG p009plaque p009pinterleaved.fna Healthy Plaque p009phealth 

p010p TAGCTT p010plaque p010pinterleaved.fna Healthy Plaque p010phealth 

p011p GGCTAC p011plaque p011pinterleaved.fna Healthy Plaque p011phealth 
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2.6.1. Taxonomic analysis based on rDNA reads 

As outlined in Figure 2.4 raw read files (as .fastq files) were first processed for the 

removal of adaptors using Cutadapt (Martin, 2011) and trimmed for removal of low quality 

reads using Sickle (Joshi and Fass, 2011). The paired end reads were then interleaved 

using SortMeRNA so that forward and reverse reads for each sample were in one file. 

Interleaved read files were converted to fasta for use with QIIME. The interleaved files 

for each sample were combined into a single file containing all sample reads with labels 

corresponding to sample identity using a metadata mapping file which provides 

information on each file (see Figure 2.4 for example). These reads were then sorted into 

rDNA and non-rDNA following comparison to the HOMD database (reads provided as 

.fastq file).  

Representative sequences for each OTU were then picked from rDNA reads for 

taxonomic assignment. Although achieved through QIIME scripts, taxonomic assignment 

used an uclust algorithm to cluster nucleotides based on sequence similarities, via the 

RDP Classifier 2.2. (Wang et al., 2007, Edgar, 2010).   

Taxonomic classification was followed by generation of OTU count tables for 

downstream analysis. In addition to OTU count table generation, representative OTU 

sequences were used for phylogenetic tree building using QIIME, PyNast (Caporaso et 

al., 2010a) and FastTree 2.1.3. (Price et al., 2010) to align representative sequences to 

existing alignments, Greengenes core reference alignment, (DeSantis et al., 2006) and 

tree generation. 

Principle coordinate analysis (PCoA) with Bray Curtis dissimilarity plots were generated 

using MEGAN to visualise sample relationships based on taxonomy. OTU tables were 

loaded into MEGAN (as .biom files) with NCBI taxonomy assignments and PCoA 

analysis carried out based on absolute counts.  

2.6.2. Taxonomic and functional analysis based on DNA contigs 

Raw reads were processed as outline in Figure 2.5. Following sorting of quality trimmed 

reads using SortMeRNA (Figure 2.5 – steps 1-4), non-rDNA short reads in each sample 

were assembled de novo using MEGAHIT (Li et al., 2015). The resulting contigs were 

aligned to the non-redundant (nr) NCBI protein database using DIAMOND. DIAMOND 

generated files, containing DNA contig based counts for each alignment labelled 

according to NCBI accession numbers, were imported into MEGAN.  
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MEGAN allows interactive visualisation of metagenomics data. DIAMOND files were 

collectively loaded into MEGAN for assignment of accession numbers to taxonomy and 

function (as described in Figure 2.5). Taxonomical assignment was based on the NCBI 

protein database. Functional assignment was based on EggNOG (evolutionary 

genealogy of genes: non-supervised orthologous groups, Huerta-cepas  et al, 2015) and 

SEED (Overbeek et al., 2005). Both databases are used to assign protein functions to 

genes. EggNOG is EMBL (European molecular biology laboratory) hosted database 

which provides information about orthologous groups of proteins at various taxonomical 

levels. SEED, contrastingly, assigns gene functions using homologous genes from 

complete genomes and presents them in functional categories.  

Taxonomy OTU counts and functional counts were exported from MEGAN and important 

into the phyloseq package of R with corresponding mapping files for further analysis 

(section 2.6). 

2.7. Preliminary study of clinical samples 

2.7.1. Sample Collection  

Saliva, blood, plaque and GCF was collected from participants with periodontitis 

(diseased) and healthy controls. Participants were recruited and samples collected at the 

Leeds Dental Translational and Clinical Research Unit, following ethical approval (Leeds 

East Research Ethics Committee) and informed consent (14/YH/0010). For all 

participants, samples from periodontally diseased sites were taken from participants with 

periodontitis, and samples from periodontally healthy sites only were taken from healthy 

participants. The periodontitis group were identified by research dental practitioners as 

having periodontal pockets with a probing depth of 5 mm or greater with bleeding on 

probing. For the periodontally healthy groups, sites were identified as having sulcus 

depths of 3 mm or less with no bleeding on probing and no clinical signs of inflammation. 

2.7.1.1. Saliva collection  

Participants were asked to provide a minimum of 2 mL of stimulated saliva (by chewing 

on sterile wax). Samples were kept on ice and centrifuged at 1500 g and 4°C for 15 min. 

The supernatant and resulting pellet were frozen at -80°C for future analysis.  

2.7.1.2. Blood collection and plasma separation 

Blood was collected from participants by venepuncture into both EDTA and lithium 

heparin coated anti-coagulant tubes. Whole blood (with lithium heparin anti-coagulant) 

was used immediately for neutrophil analysis (2.7.2, 0 and 2.7.4 for methodology). To 
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separate cell free plasma, samples were centrifuged at 1500 g at RT for 10 min with the 

brake disabled. Resulting plasma was stored at -80°C for future analysis.  

2.7.1.3. GCF collection and processing 

GCF was collected from 5 sites from each participant using Perio Paper strips (Oraflow 

Inc, New York). In all cases accessible sites were selected where moisture contamination 

could be controlled, with sites where bleeding on probing was extensive being rejected. 

Prior to collection, supragingival plaque was removed using a sterile cotton wool pledget. 

A strip was then inserted into the gingival crevice for 10 sec, with two strips being used 

per site. The strips from each site were placed into a single polypropylene tube before 

freezing at -80°C for later analysis.  

For analysis, immediately prior to assay, GCF was processed as previously described 

(Awang et al., 2014). Briefly each strip was thawed on ice before the addition of 200 µl 

ice cold phosphate buffered saline (PBS) supplemented with 1% (w/v) BSA and rotated 

for 60 min at 4°C. Following removal of the strips, the eluted GCF was centrifuged at 350 

g for 60 min at 4°C and then at 13,000 g for 3 min at 4°C and the resultant supernatant 

from the 10 strips from each patient pooled and used immediately for analysis.  

2.7.1.4. Plaque collection and processing  

Subgingival plaque was collected using sterile paper points (Maillefer Pro Taper Paper 

Points F3, BF Mullholland Ltd., UK). Prior to insertion of paper points into the gingival 

sulcus, collection sites were isolated and dried using sterile gauze and supragingival 

plaque removed with a sterile cotton pledget. A total of 5 sites were sampled with 3 paper 

points used for each site. Following collection paper points were stored at -80°C for 

further analysis.  

For plaque extraction a sterile glass bead was added to each tube containing 3 paper 

points from a single site. The tubes were vortexed vigorously for a minimum of 5 mins. 

Bacterial DNA was extracted (section 2.5.1) with the following adaptation: 300 µL of the 

microbead solution was added directly to a tube containing paper points from one site 

and a sterile glass bead. The tube was then vortexed and the solution transferred to a 

tube containing paper points from a different site from the same participant and a sterile 

glass bead. The process was repeated and in this manner plaque from the 5 sites from 

each participant was pooled prior to DNA extraction.  
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Figure 2.4: Pipeline for analysis of rDNA reads from metagenomics data. Blue text 

represents code.  
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Figure 2.5: Pipeline for analysis of rDNA reads from metagenomics data. Blue text 

represents code. 
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2.7.2. Quantifying migration of leukocytes  

The Migratest assay (Glycotope Biotechnology) allows the quantitative analysis of 

leukocyte chemotaxis. The numbers of cells migrating through cell culture inserts (3 µm 

pore size) towards a concentration gradient of the chemo-attractant N-formylmethionine-

leucyl-phenylalanine (fMLP) were quantitated against counting beads whilst changes in 

cell shape and the down regulation of the cell adhesion molecule L-selectin, were 

determined to monitor cell activation. The Migratest assay was performed as per 

manufacturer’s instructions with blood samples assayed within the recommended 24 h 

of collection, typically within 6 to 14 h. 

Leukocyte-rich-plasma (LRP) was generated by overlaying 1 mL of whole blood on top 

of the supplied leukocyte separation medium for 40 min at RT. The upper phase was 

collected and placed in cell culture inserts pre-positioned in wells (24 well plate) 

containing 350 µL fMLP (0.05 µM) in the supplied incubation buffer (Reagent B) or buffer 

alone for negative controls (Figure 2.6). Each sample was carried out in triplicate 

(referred to hereafter as technical repeats). Plates with inserts within wells were 

incubated in a 37 °C water bath for 30 mins.  Cell suspensions were then removed from 

the wells and transferred to polystyrene FACS (fluorescence-activated cell sorting) tubes 

(BD Biosciences) and placed on ice. Cell suspensions remaining within the control 

inserts (20 µL) were also removed to provide comparison with un-migrated cells. 20 µL 

of Reagent D (containing counting bead suspension and monoclonal anti-L-selectin-

FITC (fluorescein isothiocyanate)) was added to each sample, vortexed and incubated 

on ice for 10 min protected from light. Finally, 20 µL of 1x Reagent E (DNA stain) was 

added to each tube, the samples mixed and incubated on ice in the dark for 5 min.  

The data were acquired using a LSRII flow cytometer equipped with a 488 nm argon-ion 

laser (BD Bioscience) and BD Diva software within 120 min of protocol completion. The 

fluorescence from the counting beads and DNA stain were detected at 488 nm (within 

PerCP-Cy5-5-A labelled channel) and used to set an initial gate which identified 

leukocytes and counting beads (Figure 2.7A). A second gate was then set around the 

counting beads using a SSC (side scatter) vs FSC (forward scatter) contour plot to 

distinguish between the counting beads and leukocytes (Figure 2.7B). Data were 

acquired until 2000 events were recorded in the counting bead gate. This method 

standardised the volume analysed per data file and therefore ensured the amount of 

leukocytes within each sample was comparable. Leukocytes were quantitated and also 

analysed for surface L-selectin expression (FITC mean fluorescence intensity; MFI), a 

reduction in which indicates cellular activation by fMLP (Figure 2.7C).  In addition, the 

median FSC was used as an indication of changes in cell size.  The sample of cells taken 
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from the remainder within the insert were used as a comparison for these indicators of 

activation.   
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Figure 2.6: Schematic of sample stimulation for analysis of leukocyte chemotaxis. Sample leukocyte-rich-plasma was loaded onto cell culture inserts and 

placed in 24 well plates above wells containing either incubation buffer or fMLP (N-formylmethionine-leucyl-phenylalanine) as a chemoattractant. Following 30 

min incubation, inserts were removed and samples taken from each well for fluorescence-activated cell sorting. 
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Figure 2.7: Gating strategy for FACs acquisition and downstream analysis of 

neutrophil migration. (A) Initial acquisition gate was used to identify counting bead and 

leukocyte population. (B) Gates were drawn to distinguish between counting beads and 

leukocytes and 2000 events were collected within the counting bead region. (C) Gates 

set on FITC histogram were used to distinguish between low and high L-selectin 

expression. The unstimulated histogram shows samples with high-L-selectin-FITC 

indicating non-migrated cells. The stimulated histogram show samples with low-L-

selectin-FITC indicating migrated cells. (D) Population hierarchy and colour key for 

contour plots. 
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2.7.3. Quantifying phagocytosis by neutrophils  

The Phagotest (Glycotope Biotechnology) assay allows the quantitative analysis of 

phagocytosis. The assay detects and quantitates the ingestion of opsonised fluorescent 

(FITC-labelled) E. coli, allowing for the calculation of both the percentage of 

phagocytically active neutrophils and the extent of that activity (amount of bacteria per 

cell).  

The Phagotest protocol was carried out with adaptations to the manufacturer’s 

instructions. Briefly, 100 µL of heparinized whole blood (per test) was cooled on ice for 

10 min prior to the addition of either 20 µL (2 x 107 – 4 x 107 ), 5 µL (5 x 106 –1 x 107 ) or 

2 µL (2 x 106 – 4 x 106 ) of the supplied and pre-cooled E. coli preparation (Reagent B). 

The control samples remained on ice to prevent phagocytosis, while test samples were 

incubated in a 37°C water bath for 10 min. Samples were immediately placed on ice to 

prevent further phagocytosis. 100 µL of quenching solution (Reagent C) was added to 

each sample to eliminate fluorescence from E. coli adhering to external cell surfaces 

(fluorescence from internalised E. coli remains unaltered). Each sample was washed 

twice with 3 mL of the wash solution (Reagent A) and centrifuged at 250 g at 4°C for 5 

min. The resulting cell pellet was resuspended in 200 µL of pre-warmed (RT) lysing 

solution (1 x Reagent D) and incubated for 20 min in the dark at RT. Following lysis, the 

samples were centrifuged for 5 min at 250 g and 4°C and the wash process repeated 

prior to resuspension of the pellet in 200 µL DNA stain (Reagent E). 

Samples remained on ice until data acquisition (minimum of 10 min). Data were acquired 

using a LSRII flow cytometer equipped with 488 nm argon-ion laser (BD Bioscience, UK) 

and BD Diva software within 120 min of protocol completion. The fluorescence from the 

DNA stain (detected at 488 nm - within PE labelled channel) was used to set an initial 

gate to distinguish between bacterial aggregates and leukocytes (Figure 2.8A). 10000 

events per data file were collected within this gate.  

Analysis was carried out using the Diva software (BD Bioscience). An initial analysis gate 

was set on the population representing neutrophils (Figure 2.8B) as defined by FSC vs 

SSC. The FITC fluorescence of this gated population was analysed to calculate the 

percentage of cells that had performed phagocytosis (percentage of cells within the FITC 

positive gate in Figure 2.8C) and the amount of ingested bacteria (where mean 

fluorescence correlated to bacteria per leukocyte). For this purpose the negative controls 

were used to set the background level of FITC fluorescence shown as ‘FITC negative’ in 

Figure 2.8C. Any fluorescence above this marker was considered ‘FITC positive’ and 

indicated phagocytically active cells. 
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Figure 2.8: Gating strategy for FACs acquisition and downstream analysis of 

neutrophil phagocytosis. (A) DNA staining was used to distinguish between bacterial 

cells and Leukocytes. 10000 events were collected within the leukocyte gate. (B) The 

neutrophil gate was set to distinguish neutrophil populations of interest during analysis. 

(C) FITC histograms were gated to identify FITC positive and FITC negative cells within 

in the neutrophil population. Unstimulated cells remained within the FITC negative region 

while stimulated cells shifted into the FITC positive region. The FITC shift can also been 

seen in FITC vs SSC contour plots. (D) Population hierarchy and colour key for contour 

plots.  
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2.7.4. Quantifying respiratory burst of neutrophils 

Phagoburst (Glycotope Biotechnology) allows the quantitative analysis of neutrophil 

oxidative burst. The assay utilizes opsonised E. coli, phorbol 12-myristate 13-acetate 

(PMA) and fMLP as phagocytosis stimulants with dihydrochodamine (DHR) 123 as the 

fluorogenic substrate. The production of reactive oxidants following phagocytosis, 

oxidises DHR 123 to R 123 (rhodamine 123), the fluorescence of the latter can be 

measured to determine the percentage of cells which have produced ROS and their 

enzymatic activity (mean fluorescence intensity correlates to amount of converted DHR 

123).  

The Phagoburst assay was carried out with adaptations to the manufacturer’s 

instructions. Heparinised whole blood (100 µL per test) was cooled on ice for 10 mins 

prior to the addition of either the wash solution (negative control), fMLP (weak stimulant), 

PMA (strong stimulant) or the supplied pre-cooled E. coli (Table 2.5). The samples were 

then mixed and incubated for 10 min in a 37°C water bath. Following incubation, 20 µL 

of the DHR 123 substrate (Reagent E) was added to each sample, the sample vortexed 

and incubated for a further 10 min in a 37°C water bath. Red blood cells were then lysed 

through the addition of 2 mL pre-warmed (RT) lysing solution (1 x Reagent F), vortexing 

and incubation at RT for 20 min with protection from light. Lysed blood was centrifuged 

for 5 min at 250 g and 4°C and the supernatant discarded. Resulting pellets were washed 

with 3 mL of the wash solution (1 x Reagent A) and centrifuged again for 5 min at 250 g 

and 4°C. The final pellet was re-suspended in 200 µL of DNA staining solution (Reagent 

G), the tubes mixed and incubated for a minimum of 10 min on ice prior to acquisition.  

Data were acquired using an LSRII flow cytometer (equipped with 488 nm argon-ion 

laser) (BD Bioscience) and BD Diva software within 30 mins of final incubation. The 

fluorescence from the DNA stain (detected at 488 nm - within the PE fluorescence 

channel) was used to set an initial gate to distinguish between bacterial aggregates and 

leukocytes (Figure 2.9A). 10000 events per data file were collected within this gate.  

Analysis was carried out using BD Diva software. An initial analysis gate was set around 

the population of cells representing neutrophils (Figure 2.9B) using a FSC vs SSC 

contour plot. FITC histograms of this gated population were then used to calculate the 

percentage of cells which had undergone respiratory burst and their amount of ROS 

generated (where mean fluorescence correlated to the amount of R 123 product 

generated). For this purpose the negative controls were utilised to identify and gate the 

population considered ‘FITC negative’ (Figure 2.9C). Anything above this marker was 

considered ‘FITC positive’ and indicated cells which had undergone respiratory burst.  
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Table 2.5: Concentration of stimulants used in Phagoburst assay to initiate 

respiratory burst in neutrophils. PMA; Phorbol 12-myristate 13-acetate, fMLP; N-

formylmethionine-leucyl-phenylalanine. 

 

 

 

 

 

 

 

 

 

Test Reagent Volume 
Final 

concentration 

Control 
Wash buffer 

Reagent A 
20 µL N/A 

Test 1 
E. coli 

Reagent B 
20 µL 2 x 107 – 4 x 107 

Test 2 
E. coli 

Reagent B 
5 µL 5 x 106 –1 x 107 

Test 3 
E. coli 

Reagent B 
2 µL 2 x 106 – 4 x 106 

Weak stimulant 
fMLP 

Reagent C 
20 µL 0.834 µM 

Strong stimulant 
PMA 

Reagent D 
20 µL 1.35 µM 
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Figure 2.9: Gating strategy for FACs acquisition and downstream analysis of 

neutrophil respiratory burst. (A) DNA staining was used to distinguish between 

bacterial cells and leukocytes. 10000 events were collected within the leukocyte gate. 

(B) A gate was set to identify neutrophil populations of interest during analysis. (C) FITC 

histograms were gated to identify FITC positive and FITC negative cells within the 

neutrophil population. Unstimulated cells show cells within the FITC negative region 

while stimulated cells shift into the FITC positive region. (D) Population hierarchy and 

colour key for contour plots.  
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2.7.5. Analysis of inflammatory mediators  

The inflammatory profile of clinical samples (saliva, GCF and plasma) was investigated 

using the multiplex LEGENDplex™ Multi-Analyte Flow Assay kit (Biolegend). The 

custom panel of human inflammatory mediators and markers included IL-8, IL-1β, IL-6, 

MCP-1, MIP-1α, TNF-α, IL-17A, IL-17F and IL-23. The LEGENplex™ system allows 

detection and quantitation of multiple analytes in a single sample through use of beads 

conjugated with antibodies raised to analytes of interest. Sample exposure to capture 

beads is followed by the addition of biotinylated detection antibodies which can then be 

detected using the fluorescence generated by the addition and binding of Streptavidin-

phycoerythrin (Strep-PE), where the fluorescent signal intensity is proportional to the 

amount of bound analyte. The assay utilises two sets of beads with unique sizes and 

analyte specific APC (allophycocyanin) fluorescence to allow the distinction between 

different analytes.  

Prior to data acquisition, parameters were set using the provided set-up beads. FSC and 

SSC parameters were adjusted to distinguish between the two bead populations which 

were of different sizes (Figure 2.10) and the setting for APC and FITC adjusted until the 

bead signals were visible within the expected range (Figure 2.10B). In addition, PMT 

(photomultiplier tube) voltage of the classification channel APC reporter channel PE and 

the FITC channel were adjusted for ideal separation of bead populations. The APC 

channel enables distinguishing between beads associated with different analytes.  These 

settings were then applied for data acquisition.  

Plasma, saliva and eluted GFC samples were all diluted 2-fold in assay buffer prior to 

analysis and the assay carried out according to the manufacturer’s assay instructions for 

analysis of plasma samples in a V-bottom 96 well plate (provided, Biolegend). Briefly, 25 

µL of standards were mixed with 25 µL of matrix buffer while diluted samples were mixed 

with assay buffer. Solutions were then mixed with an equal volume of capture beads 

prior to incubation for 2 h at RT, protected from light with shaking at 800 rotations per 

min (rpm) (plate shaker). Following incubation, the plate was centrifuged at 250 g, RT 

for 5 min in a swing out rotor equipped with plate adaptor. The supernatant was 

discarded, and wash step carried out with 200 µL wash buffer, followed by shaking at 

800 rpm, RT for 1 min and centrifugation at 250 g, RT for 5 min. After removal of 

supernatant 25 µL of the detection antibody was added and the samples incubated for 1 

h at RT, protected from light with shaking at 800 rpm. Immediately after incubation 25 µL 

Strep-PE was added and samples incubated for a further 30 min at RT, protected from 

light with shaking at 800 rpm. Following a final wash, resulting bead pellets were re-
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suspended in 150 µL wash buffer for analysis. All standards and samples were run in 

duplicate. 

Data were acquired using a LSRII flow cytometer equipped with 488 nm argon-ion laser 

(BD Bioscience) and BD Diva software. 3000 events were collected per well using a high 

throughput 96 well plate autosampler (Figure 2.10). Analysis was carried out using the 

LEGENDplex™ Data Analysis Software. Initial gates were set to differentiate between 

the two bead populations, followed by assignment of the multiple APC intensities to their 

appropriate analyte (Figure 2.10C and D). The APC fluorescence of the standards were 

then used to generate a standard curve for each analyte, which was used to calculate 

analyte concentrations in the samples.  

2.7.6. Quantification of MMP8, MMP9 and TIMP1 in saliva, plasma and GCF 

Saliva, plasma and GCF samples were analysed for MMP8, MMP9 and TIMP1 

concentrations using Quantikine® ELISA kits (R&D systems). Saliva and plasma assays 

were performed following the recommended manufacturer’s instructions and dilutions, 

while GCF was analysed undiluted. Briefly, assay diluent (100 µL for MMP9 and TIMP1, 

150 µL for MMP8) was added to the wells of the supplied capture antibody pre-coated 

plate. Samples and standards (100 µL for MMP9 and TIMP1, 50 µL for MMP8) were 

added to the appropriate wells prior to 2 h incubation at RT on a horizontal orbital 

microplate shaker at 500 ± 50 rpm. Wells were aspirated, and washed by addition of 400 

µL wash buffer followed by complete removal of wash buffer. The wash was repeated a 

total of 4 times and the plate blotted to ensure complete removal of liquid. 200 µL of 

conjugate was then added to each well, the plates incubated for 1 h (MMP9, TIMP1) or 

2 h (MMP8) at RT with shaking followed by a wash step.  TMB substrate solution (200 

µL) was then added to each well and the plates incubated protected from light, at RT, for 

30 min. A stop solution was added (50 µL) to prevent further colour development and the 

optical density read within 30 min using a plate reader (Varioskan Flash, Thermo 

scientific) set to measure photometric absorbance at a wavelength of 450 nm. Sample 

absorbance readings were converted to analyte concentrations (pg/mL) using the curve 

of the line equation generated from the standard curve produced for each plate.  
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Figure 2.10: Gating strategy for LEGENDplex™ bead array. (A) Gates around the 

two bead populations were generated using set-up beads. (B) Dot plot indicating ranges 

of FITC and APC for set-up beads. (C) Assignment of APC intensities to analytes for 

generation of standard curves during experiments. (D) Example dotplot (top) of FITC 

intensities in test samples and example histograms of samples for the two bead 

populations (middle and bottom). 
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2.8. Generation of Advanced Glycation End product modified Human Serum 

Albumin (HSA-AGE) 

Human serum albumin (HSA) was modified as previously described (Liu et al., 2009). 

Briefly, a sterile solution of 1.75 g/L HSA (A5843, Sigma-Aldrich, UK) and 0.1M D-

glucose (G8769, Sigma-Aldrich, UK) in PBS was made and incubated at 37 ºC for 8 

weeks. Every 2 weeks, the pH of the solution was checked and adjusted to 7.4 and 

aliquots of solution removed to track progress of AGE generation. Generation of a control 

HSA solution (HSA-C) followed the procedure as above but without the addition of D-

glucose. 

Following 8 weeks incubation, samples were dialysed for removal of excess glucose 

(Slide-A-Lyzer dialysis cassettes, molecular weight cut off 2 kDa, ThermoFisher 

Scientific). Solutions were dialysed against sterile PBS for 5 days at RT with stirring. PBS 

was changed daily under sterile conditions. Resulting solutions were aliquoted and 

stored at -80ºC for later use.  

Presence of AGE was confirmed through fluorescence reading (Munch et al, 1997). 

Protein concentrations were determined using the Pierce™ Coomassie (Bradford) 

Protein Assay Kit as described previously (2.3) and fluorescence of 1 mg/mL total protein 

at Excitation/Emission 360/430 nm was determined (Varioskan Flash, Thermo scientific).  

Solution endotoxin levels were also tested using the Limulus Amebocyte Lysate (LAL) 

chromogenic Endotoxin quantitation kit (Pierce™, ThermoFisher Scientific, UK) as per 

manufacturer’s instructions. Briefly, a sterile endotoxin free 96 well plate (Corning® 

Costar®) was heated to 37ºC for 10 min, following which 50 µL of samples or standards 

were added to wells while the plate remained at 37ºC. The plate was covered and 

incubated for a further 5 min, prior to addition of 50 µL LAL reagent. Following further 

covered incubation for 10 min, 100 µL of substrate solution was added to each well, the 

plate vortexed and incubated at 37ºC for 6 min. The reaction was stopped by addition of 

50 µL of 25% acetic acid to each well and the photometric absorbance at 405 nm 

measured (Varioskan Flash, Thermo scientific). Endotoxin levels were calculated from 

the standard curve and samples were considered endotoxin free as defined by the 

manufacturer (< 0.1 EU/mL).  

2.9. TIGK viability in the presence of HSA-AGE 

TIGK cell viability was determined in the presence of HSA-AGE using the cell 

proliferation reagent WST-1 (Roche) as per manufacturer’s instructions. The WST-1 

tetrazolium salt is cleaved to soluble formazan through the glycolytic production of 

NADPH (nicotinamide adenine dinucleotide phosphate) in viable cells. The conversion 
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initiates a colour change which can be measured photometrically. Briefly, TIGK cells 

were seeded in 96 well plates to a density of 1 x 104 as previously described (section 

2.2). Following a 48 h incubation at 37°C, 5% CO2 medium was removed and fresh 

medium supplemented with HSA-AGE or HSA-C was added to the wells. Cells were then 

incubated for a further 8, 24 or 36 h. At each time point WST-1 was added to the wells 

at a 1:10 dilution, the plates incubated at 37°C, 5% CO2 for 1 h and the photometric 

absorbance at 420 nm read using a microplate reader (Varioskan Flash, Thermo 

scientific). For the 0 h time point, analysis was carried out immediately following the 

medium change.  

2.10. Characterisation of RAGE expression on TIGK cells 

2.10.1.  Cell culture and exposure to AGE  

TIGK cells were seeded in 6 well plates at a density of 3 x 105 or in 24 well plates at a 

density of 1 x 105 and cell growth was maintained for 48 h until cells reached 

approximately 80% confluency (section 2.2). Medium was replaced supplemented with 

HSA-AGE or HSA-C. Cells were incubated at 37°C, in 5% CO2 and harvested at 0 

(immediately) 8, 24 and 36 h.  

For Western blot and ELISA analysis, cell lysates and supernatants were generated and 

immediately analysed as previously described (section 2.3) or frozen at -80ºC prior to 

analysis.  For RNA extraction or for assessment of gene expression using quantitative 

real time polymerase chain reaction (qRT-PCR), cells were detached using trypsin 

(section 2.2) and RNA extracted as described below (section 2.11).  

2.11. Real time PCR 

2.11.1. RNA Extraction and cDNA synthesis  

Total RNA was isolated from detached cells using the RNeasy kit (Qiagen, UK) as per 

manufacturer’s instructions. Briefly, 600 µL buffer RLT was added to the harvested cell 

pellets in addition to 600 µL of 70% (v/v) ethanol. Samples were mixed and transferred 

to an RNeasy Mini spin column prior to centrifuging for 15 sec at 10,000 g. The flow-

through was discarded and buffer RW1 (700 µL) was added to the column, the column 

centrifuged again for 15 sec at 10,000 g and the flow-through discarded. Columns were 

then washed by addition of 500 µL of buffer RPE to the columns. The column was 

centrifuged for 15 sec at 10,000 g and the flow-through discarded. Columns were 

washed again and a drying step was carried out (columns centrifuged for 2 min at 10,000 

g). RNA was eluted by addition of 30 µL RNase-free water to the membrane followed by 

centrifuging for 1 min at 10,000 g.  
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Prior to cDNA synthesis, 1 µg RNA was treated with Amplification Grade DNAse I 

(Invitrogen) as per manufacturer’s instructions. Briefly, 1 µg RNA was incubated for 15 

min at RT with 1 µL 10X DNAse I reaction buffer and 1 U/µL DNase I. Following 

incubation, DNase was inactivated through addition of 1 µL of 25 mM EDTA and heating 

for 10 min at 65ºC. The resulting RNA was used immediately for cDNA synthesis or 

stored at -20ºC for downstream analysis.  

Reversed transcribed cDNA was synthesised using the High Capacity RNA-to-cDNA 

Master Mix (Applied Biosystems) as per manufacturer’s instructions. Briefly, 1 µg of 

DNase treated RNA was mixed with 2 x RT buffer, 20 x RT enzyme mix and a sufficient 

volume of RNase free water for a final reaction volume of 20 µl. Samples were then 

loaded into a thermocycler with conditions outlined in Table 2.6. Resulting cDNA was 

stored at -20ºC for downstream analysis. 

2.11.2.  Analysis of RNA expression in cells  

Following cDNA synthesis, gene expression was analysed using TaqMan Gene 

Expression assays (Applied Bioscience, UK) as per manufacturer’s instructions. Briefly, 

1 µL synthesised cDNA was mixed with 2x TaqMan Gene Expression Master Mix, 20 x 

TaqMan Gene expression Assay (Table 2.7) and RNase-free water to a final volume of 

20 µL in a 96 well plate (V-bottom LightCycler® 96 well plates, Roche). Plates were 

processed in a LightCycler (LightCycler 480, Roche) using a software pre-loaded 

protocol (Mono Color Hydrolysis Probe – UPL probe 96-II). The LightCycler 480 software 

was also used to automatically set thresholds for each plate and calculate CT values for 

each sample. 

Gene expression was determined as described by Schmittgen and Livak (2008). 

Technical replicates of 3 for each cDNA sample were averaged for use with the 

equations below. Final results were obtained by averaging biological replicate results 

obtained from four individual experiments.  

Absolute expression: 2-C
T  

Expression relative to internal control: 2-ΔC
T  

Where ΔCT = CT gene of interest – CT internal control  

Expression relative to control samples and normalised to internal control: 2-ΔΔC
T 

Where ΔΔCT = (CT gene of interest - CT internal control) test sample – (CT gene of interest 

- CT internal control) control sample 
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Table 2.6: High capacity RNA to cDNA thermocycler conditions. 

 Step 1 Step 2 Step 3 

Temperature (ºC) 37 95 4 

Time 60 min 5 min Final hold 
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Table 2.7: Assay identifications for genes analysed using TaqMan based 

quantitative real time polymerase chain reaction. AGER: advanced glycation end 

product receptor gene, HPRT1: hypoxyanthine phosphoribosyltransferase gene, ACTB:  

β-actin.  

 

 

  

Gene Assay ID 

AGER Hs00542584_g1 

HPRT1 Hs02800695_m1 

ACTB Hs01060665_g1 
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2.12. Generation of five species biofilm model   

2.12.1. Solutions, growth media and buffers  

All solutions, media and buffers were made using Milli-Q water, under sterile conditions, 

using aseptic techniques. Sterilisation was accomplished through standard autoclaving 

procedures (121 °C for 15 min) unless otherwise stated and resulting solutions stored at 

4°C until required.  

All solid growth media were made as described in Table 2.8. Solutions were sterilised 

through autoclaving (unless otherwise stated), allowed to cool to approximately 50°C, 

blood/antibodies added (if required) and distributed into 5 mL petri dishes/plates. 

Antibiotics were sterilised by filtering using 0.2 µm-pore-size syringe filters (Sigma-

Aldrich, UK) prior to addition to media. Once set, plates were stored at 4°C and used 

within 2 weeks.  

Sterilized saliva was generated as previously described (Palmer et al, 2001; Sanchez et 

al, 2011). Briefly, stimulated saliva (stimulated by chewing on sterile parafilm) was 

collected 1.5 hours after drinking, eating, or brushing teeth. Saliva was collected over 

several days, held on ice during collection and processing and stored at -20°C. Pooled 

saliva was treated with 2.5 mM DL-Dithiothreitol, stirred for 10 min and clarified by 

centrifuging at 27, 000 g for 20 min, 4°C. The resulting supernatant was diluted 1:1 in 

sterile PBS, filtered through 0.22 µm-pore-size low-protein binding filter (Corning Inc., 

UK), aliquoted and stored at -20°C for later use. Sterility was ensured though plating onto 

CBA plates and incubation both anaerobically and in 10 % CO2 at 37°C (Table 2.8). 
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Table 2.8: Composition, selectivity and incubation conditions for growth on 

various solid growth media 

 

   

Media Composition Selective for 
Incubation 

conditions 

Columbia Blood 

agar (CBA) 

39 g/L CBA base (Oxoid), 5% (v/v) 

horse blood (Oxoid). Standard 

autoclaving sterilisation. 

Facultative 

anaerobes 

and aerobes 

10 % CO2, 37 °C 

2-5 days 

Facultative 

anaerobes 

10 % H2, 10% CO2, 

80% N2, 37 °C 

5-7 days 

Columbia Blood 

agar (CBA) + 

Vancomycin 

39 g/L CBA base (Oxoid), 5% (v/v) 

horse blood (Oxoid), 7.5 mg/L 

vancomycin.  

Standard autoclaving sterilisation. 

Gram 

negative 

anaerobes 

10 % H2, 10% CO2, 

80% N2, 37 °C 

5-7 days 

Cadmium 

sulphate 

fluoride acridine 

trypticase agar 

(CFAT) 

30 g/L trypticase soy broth 

(Sigma-Aldrich), 5 g/L glucose, 15 

g/L agar, 13 mg/L cadmium 

sulphate, 80 mg/L sodium fluoride, 

1.2 mg/L neutral acriflavin, 2.5 

mg/L potassium tellurite, 0.25 

mg/L basic fuchsine, 5% (v/v) 

horse blood, pH 7.3.  

Standard autoclaving sterilisation. 

Actinomyces 

10 % H2, 10% CO2, 

80% N2, 37 °C 

5-7 days 

Rogosa agar 

82 g/L Rogosa agar (Oxoid), 

dissolve by boiling before addition 

of 1.32 ml/L glacial acetic acid. 

Sterilised by heating to 90-100 °C 

with stirring until fully dissolved. 

Lactobacilli 
10 % CO2, 37 °C 

2-5 days 

Mitis Salivarius 

agar 

90 g/L Mitis Salivarius Agar 

(Sigma-Aldrich, Uk), 1% (v/v) 

potassium tellurite solution 

(Sigma-Aldrich, UK) added post 

sterilisation. Standard autoclaving 

sterilisation. 

Streptococci 
10 % CO2, 37 °C 

2-5 days 
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2.12.2. Growth of five species periodontitis biofilm model for determination of 

HSA-AGE impact on biofilm composition  

5 species biofilms, modelling the composition of biofilms associated with periodontitis 

(Figure 2.11), were grown on hydroxyapatite (HA) coated pegs in a Calgary device 

(MBEC Assays, Innovotech) following a sequential inoculation method of S. salivarius 

(clinical isolate ULCP97), A. naeslundii (clinical isolate), P. intermedia (OMZ 248), F. 

nucleatum (ATCC 10953) and P. gingivalis (W83) as established in-house by Naginyté 

(2017, unpublished). All biofilm growth was carried out in an anaerobic cabinet at 37°C 

(Don Whitley Scientific) with all growth media, solutions and buffers being pre-reduced 

by introduction to the anaerobic cabinet a minimum of 24 hours prior to use. All facultative 

aerobic bacteria were grown at 37°C, in air with 10% CO2.  

Prior to initial inoculation of HA-pegs, bacteria for biofilm growth were revived from 

glycerol stocks (stored at -80 °C) onto solid growth media (Table 2.9 and Figure 2.11). 

All five species were then subcultured into brain heart infusion (BHI) broth and grown 

under anaerobic conditions. Biofilms were grown as outlined in Figure 2.11. HA-pegs 

were pre-conditioned with 200 µL/peg of sterilised saliva by incubation for a minimum of 

5 h at 37 °C with shaking at 65 rmp.  

Early coloniser inoculation was accomplished by addition of 1.58 µL/mL (OD600 0.2) S. 

salivarius (ULCP97) and 4.375 µL/mL (OD600 0.2) A. naeslundii (clinical isolate) to serum 

medium. This inoculated serum medium was added to a 96 well plate (175 µL/well); the 

plastic lid containing the HA coated pegs was replaced and the plate incubated for a 

minimum of 12 h under anaerobic conditions. Following the 12 h incubation, the HA-peg 

lid was transferred to a 96 well plate containing pre-reduced, uninoculated serum 

medium and incubated overnight under anaerobic conditions.  

HA-pegs were then inoculated with late colonisers by the addition of 12.5 µL/mL (OD600 

0.2) F. nucleatum (ATCC 10953), 25 µL/mL (OD600 0.2) P. intermedia (OMZ 248) and 25 

µL/mL (OD600 0.2) P. gingivalis (W83) to pre-reduced serum medium, the inoculated 

serum medium added to a 96 well plate (175 µL/well) and the lid transferred to the fully 

inoculated plate. The plates were incubated under anaerobic conditions overnight, 

following which the late coloniser inoculation was repeated as described above. 

Subsequent to the second late coloniser inoculation, the lid was transferred to a 96 well 

plate containing fresh, sterile pre-reduced serum medium every day for the duration of 

the experiment. The impact of HSA-AGE or HSA-C on biofilms was tested by the 

introduction of serum medium supplemented with HSA-AGE or HSA-C at day 7 until day 

10 after which the medium was replaced daily (without HSA-AGE or HSA-C) for a 

recovery period of 3 days (Figure 2.11).  
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A total of 4-6 biofilms for each condition were harvested at day 10 and again at day 14. 

Each HA-peg was removed from the plastic lid using sterile pliers to snap the peg at the 

base, washed to remove loosely bound bacteria by dipping the entire peg 3 times 

consecutively into PBS. Biofilms were harvested in the anaerobic cabinet, by scraping 

the biofilm into 500 µL PBS, followed by vortex mixing for 1 min. 100 µL of the resulting 

suspension was serially diluted in PBS to a final dilution of 1:106 with various dilutions 

plated on CBA vancomycin plates for anaerobic growth and CBA plates for aerobic 

growth. Anaerobic plates were incubated for a minimum of 7 days, while aerobic plates 

were incubated for a minimum of 3 days. Following incubation, colonies on plates from 

each biofilm were counted. 
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Table 2.9: Species, strains and growth conditions of the five species used in the 

generation of a biofilm modelling periodontitis. CBA; Columbia blood agar. 

Bacteria Strain details 
Growth 

conditions 

Solid growth 

medium 

Streptococcus 

salivarius 

ULCP97 

Clinical isolate 

Aerobic (10 % CO2) 

and anaerobic 

37°C 

CBA 

Actinomyces 

naeslundii 
Clinical isolate 

Aerobic (10 % CO2) 

and anaerobic 

37°C 

CBA 

Fusobacterium 

nucleatum 
ATCC 10953 

Anaerobic 

37°C 
CBA + Vancomycin 

Prevotella 

intermedia 
OMZ 248 

Anaerobic 

37°C 
CBA + Vancomycin 

Porphyromonas 

gingivalis 
W83 

Anaerobic 

37°C 
CBA + Vancomycin 
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Figure 2.11: Timeline for growth and harvesting of the five species periodontitis 

model. Ss; S. salivarius, An; A. naeslundii¸ Fn; F. nucleatum, Pi; P. intermedia,  

Pg; P. gingivalis, HSA-AGE; human serum albumin-advanced glycation end product, 

HSA-C; human serum albumin-control. Dotted red lines represent biofilm harvests. 
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2.13. Generation of complex inoculum biofilms for determining the 

consequences of HSA-AGE addition to colonisation and composition 

2.13.1.  Sample collection and preparation of inocula  

Saliva, tongue scraping and supragingival plaque samples were collected from eight 

volunteers following ethical approval by University of Leeds Dental Research Ethics 

Committee (DREC: 020915/MN/175). Volunteers were asked to refrain from brushing 

their teeth eating or drinking on the day of collection until collection was complete. For 

saliva collection, volunteers were asked to produce a minimum of 5 mL parafilm wax 

stimulated saliva. Sterile tongue depressors were used to collect tongue scrapings, with 

volunteers asked to scrape all aspects of the tongue and place the tongue depressor 

directly into 6 mL ice-cold serum medium. Volunteers were also asked to use sterile 

toothpicks to scrape plaque from as close to the gum as possible from all tooth surfaces 

and place the toothpicks directly into 6 ml serum medium. All samples were held on ice 

until processing.  

Salivary bacteria were pelleted by centrifuging pooled saliva samples at 27, 000 g for 20 

min at 4°C. The resulting supernatant was discarded, and the bacterial pellet 

resuspended in serum medium. Tongue scrapings and supragingival plaque were 

harvested into serum medium by vigorous vortexing and the toothpicks/tongue 

depressors discarded. The resulting tongue scrapings, supragingival plaque and saliva 

were used as the inoculum for the production of biofilms for co-culture experiments 

(section 2.14) under conditions outlined in Table 2.10. For bacterial composition analysis, 

these pooled samples were separated into 3 and used as 3 individual inocula. 

For analysis of inoculum composition, each suspension used as the inoculum was 

serially diluted (final dilution 1x106) and several dilutions plated on solid selective media 

and incubated as indicated in Table 2.8. Following HA-peg inoculation, the remaining 

inoculum was propidium monoazide treated to select for DNA only from viable organisms 

prior to DNA extraction as described previously (section 2.5.1). Briefly, suspensions of 

bacteria were treated with 50 µM of propidium monoazide, incubated in the dark for 5 

min with mixing followed by light exposure for 2 min. Following photo-induced cross 

linking, samples were centrifuged at 5000 g for 5 min. The resulting supernatants were 

used for DNA extraction (section 2.5.1). 

2.13.2.  Complex biofilm growth 

Complex biofilms were grown on HA coated pegs on a Calgary device in the anaerobic 

cabinet at 37 °C. HA-pegs were first pre-conditioned as described previously (section 

2.13) with sterile saliva supplemented with various concentrations of HSA-AGE/HSA-C 

to represent health and disease (Table 2.10). Following pre-conditioning HA-peg lids 
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were transferred to 96 well plates containing 175 µL/well complex inoculum and 

incubated for 24 h under anaerobic conditions. After 24 h lids were transferred to fresh 

serum medium supplemented as described in Table 2.10. HA-pegs were transferred to 

fresh medium every 2-3 days. At day 2, day 7 and day 14, 4-6 biofilms for each condition 

were harvested. Biofilms were harvested in the anaerobic cabinet, by scraping the HA-

peg into 500 µL reduced transport fluid (RTF), followed by vortex mixing. Harvested 

biofilms from HA-pegs for each condition were pooled, and 100 µL of the resulting 

bacterial suspension was serially diluted in RTF to a final dilution of 1x106. Various 

dilutions were plated on selective media and incubated as described in Table 2.8. The 

remainder of the harvested biofilm was propidium monoazide treated (section 2.13.2) 

and DNA harvested (section 2.5.1). DNA from biofilms harvested at day 2 and day 14 as 

well as inoculum DNA were used to generate NGS libraries and sequenced as described 

previously (section 2.5). Individual plates were set up for different harvest time points to 

minimise biofilm disturbance and minimise contamination during harvests.  

2.14. Immune responses of TIGK cells in response to co-culture with complex 

biofilms with HSA-AGE co-stimulation 

2.14.1. Cytokine profiles of TIGK cells following co-culture with complex biofilms 

and HSA-AGE 

TIGK cells were seeded in 96 well plates, as described previously (section 2.2) to a 

density of 1x104 cells/well. Cells were grown for 48 hours to approximately 80% 

confluency and culture medium replaced immediately prior to co-culture. Following 

complex inoculum biofilm growth, mature biofilms (at day 15) grown under various 

conditions (Table 2.10) were co-cultured with TIGK cells and co-stimulated with 100 

µg/mL HSA-AGE or 100 µg/mL HSA-C. Biofilms were first washed in PBS (3 times) and 

introduced to the cells either by transferring the HA-peg containing lids directly into the 

96 well plate, or by detaching the HA-pegs from the lid and placing them into the wells 

on top of the cells. Co-cultures were incubated for 8 hours in 10% CO2 at 37 °C. 

After 8 hours, culture medium was harvested. Media from the same conditions (8 

biofilm/cell co-culture wells) were pooled and stored at -20°C until analysed for levels of 

cytokines IL-6, IL-8 and IL-1β via ELISA (section 2.4).  
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Figure 2.12: Timeline for growth and harvesting of the complex inoculum biofilms. 

HSA-AGE; human serum albumin-advanced glycation end product, HSA-C; human 

serum albumin-control. 
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Table 2.10: Hydroxyapatite peg pre-conditioning and complex inocula biofilm 

growth conditions for next generation sequencing and analysis of cytokine 

release following co-culture with TIGK cells. HSA-AGE; Human serum albumin-

advanced glycation end product. HSA-C; human serum albumin-control. HA; 

hydroxyapatite. 

HA peg pre-conditioning Growth medium 
Modelling systemic health 

or disease 

Sterile saliva + 1 µg/mL 

HSA-AGE and 99 µg/mL 

HSA-C 

Serum medium 
Health pre-conditioning – 

medium control growth 

Serum medium + 1 µg/mL 

HSA-AGE and 99 µg/mL 

HSA-C 

Health 

Serum medium + 100 

µg/mL HSA-C 

Health pre-conditioning –  

HSA control growth 

Sterile saliva + 100 µg/ml 

HSA-AGE 

Serum medium 
Disease pre-conditioning – 

medium control growth 

Serum medium + 100 

µg/mL HSA-AGE 
Disease 

Serum medium + 100 

µg/mL HSA-C 

Disease pre-conditioning –  

HSA control growth 

Sterile saliva + 100 µg/ml 

HSA-C 

Serum medium HSA control 

Serum medium + 1 µg/mL 

HSA-AGE and 99 µg/mL 

HSA-C 

HSA control 

Serum medium + 100 

µg/mL HSA-AGE 
HSA control 

Serum medium + 100 

µg/mL HSA-C 
HSA control 
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2.14.2. Reactive oxygen species generation by TIGK cells following co-culture with 

complex biofilms and HSA-AGE 

Saliva, tongue scrapings and supragingival plaque were collected from three volunteers 

(DREC: 020915/MN/175) and processed to generate a single complex inoculum for 

growth of complex biofilms modelling systemic health, systemic disease or a HSA-C 

control (Table 2.10) (section 2.13.1) and subsequently co-cultured with TIGK cells 

(section 2.14.1.).  

The impact of co-culture on cellular generation of ROS was determined using the cell-

permeant 2’,7’-dichlorodihydrofluorescein diacetate (H2DCFDA, Life technologies, 

ThermoFisher Scientific, UK). Upon entering the cells, intercellular esterase cleaves the 

acetate group to form an intermediate, which is converted to the fluorescent compound 

2’,7’-dichlorofluorescein (DCF) on exposure to ROS and can be detected at Ex/Em 

485/535 nm.  

Immediately prior to use, the H2DCFDA was reconstituted in 100% (v/v) ethanol as per 

manufacturer’s instructions. Prior to introduction of biofilms to cells, cells were washed 

with PBS, 10 µM of H2DCFDA in culture media added to each well and the cells 

incubated at 37°C in 5% CO2 for 30 min. Following the 30 min incubation, medium was 

aspirated and replaced by fresh medium or medium supplemented with 100 µg/mL HSA-

AGE or HSA-C. Complex biofilms were then introduced to the cells and the co-cultures 

incubated for 7 hours at 37°C (section 2.14.1, Figure 2.13). ROS release was measured 

directly in the cell culture plates using a microplate reader (Varioskan Flash, Thermo 

scientific) set to measure fluorescence at Ex/Em 485/535. Prior to fluorescence readings, 

pegs that had been in direct contact with TIGK cells were removed and discarded.  

In parallel to cellular ROS generation, cellular death was also measured by determining 

LDH release using CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega, UK). 

After the 7 h initial incubation, 10x lysis solution (CytoTox 96 assay kit) was added to the 

control wells to generate 100% LDH release (positive control) and the co-cultures 

incubated for a further 1 h. Following this, 100 µL medium was removed from each well, 

clarified by centrifuging at 17,000 g for 5 min at 4°C (to remove bacteria and cell debris) 

and the resulting supernatant immediately analysed for LDH release, as per 

manufacturer’s instructions. Briefly, 50 µL sample was mixed with 50 µL of CytoTox 96 

reagent in a 96 well plate (Corning® Costar®) and incubated at RT for 30 min before 50 

µL stop solution was added. LDH release was measured using a microplate reader 

(Varioskan Flash, Thermo scientific) at photometric absorbance 490 nm. LDH release 

from each sample was calculated as a percentage of maximum LDH release.  
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Figure 2.13: Schematic for biofilm-TIGK cell co-culture. TIGK cells were co-cultured 

with complex inoculum biofilms in the presence of HSA-AGE or HSA-C. Biofilms (3 

biofilms for each condition) were either placed into wells while still attached to the lid to 

prevent direct contact (left) or removed from lid and placed directly on top of TIGK 

monolayer (right) for direct biofilm-cell contact. 
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Table 2.11: Hydroxyapatite peg pre-conditioning and complex inocula biofilm 

growth conditions for analysis of reactive oxygen species release and cell viability 

following co-cultures with TIGK cells. HSA-AGE; Human serum albumin-advanced 

glycation end product. HSA-C; human serum albumin-control. HA; hydroxyapatite. 

HA peg pre-conditioning Growth medium 
Modelling systemic 

health or disease 

Sterile saliva + 1 µg/mL 

HSA-AGE and 99 µg/mL 

HSA-C 

Serum medium + 1 µg/mL 

HSA-AGE and 99 µg/mL 

HSA-C 

Health 

Sterile saliva + 100 µg/ml 

HSA-AGE 

Serum medium + 100 

µg/mL HSA-AGE 
Disease 

Sterile saliva + 100 µg/ml 

HSA-C 

Serum medium + 100 

µg/mL HSA-AGE 
HSA control 
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3. Evaluation of telomerase immortalised gingival keratinocyte expression of 

RAGE for use as a model system to examine the potential of AGE-RAGE 

interactions in linking diabetes to periodontitis 

3.1. Introduction  

The presence of AGEs has been linked to the progression of diabetes and its 

complications. Indeed, measurement of blood haemoglobin A1c or glycated 

haemoglobin is used as an indication of diabetic control and glucose regulation (Wautier 

et al., 2017). As described previously (section 1.4.3), diabetes-associated 

hyperglycaemia can lead to the accumulation of AGEs and subsequent chronic 

inflammatory responses, which have been suggested to play an important role in the 

progression of diabetic complications (Hiroshima et al., 2018). Of these complications, 

increased periodontitis severity has been correlated to hyperglycaemia (Shlossman et 

al., 1990, Emrich et al., 1991, Taylor et al., 1998, Tsai et al., 2002). As described in more 

detail in section 1.4.3, this suggests the hyperglycaemic accumulation of AGE in diabetes 

could impact the progression of periodontitis.  

Previous studies have shown that the increase in serum levels of AGEs from diabetic 

patients correlated with an increase in periodontitis-linked attachment loss as well as 

increased immunoreactivity of AGEs in gingival tissues (Takeda et al., 2006, Zizzi et al., 

2013, Hiroshima et al., 2018). Furthermore, the receptor for AGE, RAGE, has been 

shown to be highly expressed in gingival tissue of patients with periodontitis and diabetic 

periodontitis patients. In particular, high expression was shown in gingival epithelial cells 

and circulating leukocytes. This contrasted with healthy gingiva, where RAGE 

expression was limited (Abbass et al., 2012).  

RAGE, a 45-50 kDa molecule, is encoded by a gene found on locus 6p21.3, next to the 

major histocompatibility complex (MHC) class III protein family (Wautier et al., 2017, Ott 

et al., 2014). Although it is now understood that AGE associated downstream signalling 

cascades are mediated by a variety of cell surface receptors (including AGE-R1/OST-

48, AGE-R2/80K-H, AGE-R3/galectin-3), RAGE is the most well studied (Araki et al., 

1995, Vlassara et al., 1995, Li et al., 1996, Ohgami et al., 2001a, Ohgami et al., 2001b, 

Ohgami et al., 2001c, Jono et al., 2002, Tamura et al., 2003). The multiple ligand receptor 

(pattern recognition receptor) belongs to the immunoglobulin superfamily and consists 

of a large extracellular domain (variable or V domain and two constant, C1 and C2, 

domains), a single transmembrane domain-spanning helix and a short cytoplasmic 

domain in its full length form (Ott et al., 2014, Wautier et al., 2017). To date 20 major 

splicing variants have been identified including full-length RAGE, N-truncated RAGE 

(lacking the ligand binding V-domain) and soluble RAGE (lacking the C-terminal domain). 
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In addition to the mRNA encoded soluble RAGE, which is secreted, proteolytic cleavage 

of full-length RAGE (by metalloproteinases ADAM10 and MMP9) also forms soluble 

RAGE (Yonekura et al., 2003, Hudson et al., 2008, Kalea et al., 2009). Soluble RAGE is 

considered a decoy receptor to prevent excessive RAGE activated immune responses 

(Ott et al., 2014, Wautier et al., 2017, Leung et al., 2016) .  

As discussed in detail previously (section 1.4.3), interactions between AGE and RAGE 

are linked to generation of ROS and initiation of pro-inflammatory responses (Younessi 

and Yoonessi, 2011). The binding of AGE to RAGE is thought to induce the activation of 

downstream NFκB, MAPK and other signalling pathways (Figure 3.1) (Schmidt et al., 

2000, Ishihara et al., 2003, Kokkola et al., 2005, Mallidis et al., 2007).  

This study aimed to determine if TIGK cells were appropriate for use as a model system 

to examine the impact of AGE/RAGE interactions of oral epithelial cells. The objectives 

of the following experiments were to determine if TIGK cells expressed RAGE and 

whether expression was inducible or increased following addition of AGE to the cell 

culture media. Following characterisation of TIGK cell RAGE expression, we investigated 

cytokine release (IL-1β, IL-6 and IL-8) as a consequence of AGE/RAGE interactions.  
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Figure 3.1: AGE related signalling and processing. The non-enzymatic modification 

of proteins following condensation of carbonyl groups of reducing sugars (such as 

glucose) and amino groups on proteins leads to the generation of an advance glycation 

end product (AGE). AGEs impact protein structure through cross linking or interact with 

a variety of receptors such as RAGE (receptor for advanced glycation end product). 

AGE/RAGE interactions initiate downstream signalling cascades leading to transcription 

of various inflammatory genes and growth factors. AGEs are processed and cleared 

following CD36 receptor mediated endocytosis (adapted from Ott et al. (2014)). 
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3.2. Results 

3.2.1. Generation of AGE modified human serum albumin for characterisation of 

TIGK cell RAGE expression and AGE/RAGE interactions  

Considering the increase in GCF volume in periodontitis patients compared with healthy 

and the associated increase in GCF albumin concentrations, human serum albumin 

(HSA) was deemed an appropriate choice for the generation of AGE modified HSA 

(HSA-AGE) for use in a periodontitis-diabetes model (Carneiro et al., 2014). HSA was 

incubated with or without glucose as previously described (section 2.8) to generate HSA-

AGE and HSA-C (HSA-control) respectively.  

As described previously (section 1.4.3) AGEs are fluorescent proteins and so 

fluorescence was measured (section 2.8) over the incubation period to track 

accumulation of AGE modified HSA (Figure 3.2). After an 8 week incubation period, HSA 

and glucose solutions had a higher fluorescence (Ex/Em 360/430 nm) in comparison 

with HSA solutions (11.44 nm ± 0.75 and 0.94 nm ± 0.43 respectively).  

After 8 weeks incubations, dialysis was carried out for removal of excess glucose and 

samples stored at -80°C for later use (section 2.8). Prior to use, protein concentrations 

of dialysed samples were quantified (as described in section 2.3) and fluorescence 

measured to ensure preservation of AGE modified proteins following dialyses and 

thawing of frozen samples.  

3.2.2. Viability of TIGK cells grown with HSA-AGE or HSA-C 

TIGK cells were treated with varying concentrations of the HSA-AGE preparation in cell 

culture and any impact on cell viability was assessed using a WST-1 assay as described 

previously (section 2.9). Conversion of the WST-1 tetrazolium salt to formazan and the 

resulting colour change is measured photometrically, so that absorbance correlates 

directly with the number of metabolically active cells. 

As indicated in Figure 3.3, the viability of TIGK cells appeared to be enhanced following 

incubation with all three concentrations of HSA-C compared with untreated cells and 

cells incubated with HSA-AGE. However, these differences were not significant (n=3, 

Two-way ANOVA, Tukey post-hoc, p > 0.05) and could be a consequence of cell 

proliferation. This indicates no markedly detrimental effects on cell viability over the time 

frame needed for further experiments with TIGK cells.  

  



 Chapter 3 – TIGK characterisation  
 

128 
 

 

0
1
2

2
4

3
6

4
8

6
0

0

5

1 0

1 5

F lu o re s c e n c e  o f H S A  s o lu tio n  d u r in g  A G E

m o d ific a tio n  p ro to c o l

T im e  (D a y s )

F
lu

o
r
e

s
c

e
n

c
e

E
x

3
6

0
n

m
/E

m
 4

3
0

n
m

H S A  +  G lu c o se

H S A  on ly

 

Figure 3.2: Fluorescence of HSA solutions during the incubation period for AGE 

modification. HSA was incubated with glucose for 8 weeks at 37ºC for the non-

enzymatic modification of HSA with AGE. In parallel HSA was incubated under the same 

conditions without glucose for use as a control. Fluorescence (± standard deviation, SD) 

was measured as an indication of AGE modification throughout the 8 week incubation 

period. AGE; advanced glycation end products, HSA; human serum albumin. 
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Figure 3.3: TIGK cell viability following exposure to HSA-AGE or HSA-C for 36 

hours. TIGK cells were grown with varying concentrations of HSA-AGE or HSA-C for 0, 

8, 24 and 36 hours prior to analysis of cell viability using a WST-1 assay. Conversion of 

WST-1 and the resulting colour change was measured as absorbance to indicate cell 

viability. Results are presented as means ± SD, n=3. HSA-AGE; Human serum albumin-

advanced glycation end products, HSA-C; Human serum albumin-control. 
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3.2.3. Characterisation of RAGE expression of TIGK cells  

3.2.3.1. RAGE protein expression  

Prior to analysis of RAGE expression by TIGK cells, anti-RAGE antibody (Abcam, 

MM0520-8D11) was tested against recombinant RAGE (rRAGE) (Abcam, ab63271). In 

addition, rRAGE was incubated at 37°C with 100 µg/mL HSA-AGE or HSA-C for 8 hours 

to determine if interactions between AGE and RAGE interfere with anti-RAGE antibody 

binding (Figure 3.4). Western blot protein analysis showed the detection of a band at 

approximately 45 kDa following probing of the membrane with an anti-RAGE antibody, 

and intensity increased with increasing amounts of loaded rRAGE. This correlates with 

the expected size of rRAGE which is stated to be 45 kDa. Additionally, no difference in 

size was observed in samples incubated with either HSA-AGE or HSA-C, indicating 

addition of receptor ligands does not impact size of band correlating to RAGE during 

protein detection using western blotting methods.  

Following confirmation that HSA-AGE and HSA-C are non-toxic to TIGK cells and 

detection of rRAGE through western blotting, RAGE expression on TIGK cells was 

characterised. TIGK cells were grown with various concentrations of HSA-AGE for 8, 24 

and 36 hours to determine if RAGE was constitutively expressed and if presence of AGE 

induced RAGE expression (as described previously in section 2.10). TIGK cells were 

treated with 200 µg/mL, 100 µg/mL or 50 µg/mL HSA-AGE or HSA-C prior to western 

blot protein analysis of both cell surface bound RAGE and secreted RAGE. Experiments 

were repeated 3 times and representative blots presented (Figure 3.5). 

Western blot analysis of RAGE resulted in bands of approximately 52 - 55 kDa (Figure 

3.5). While this was higher than the predicted molecular weight of RAGE (48 kDa), the 

previous detection of rRAGE with the anti-RAGE antibody suggests bands visualised 

were RAGE. The differences in size could be a consequence of post-translational 

modification of RAGE. Equal amounts of whole cell lysate (WCL) protein were loaded 

into each well with visualisation of β-actin as confirmation. Although no appropriate 

protein loading control is available for cell culture supernatant and analyses of secreted 

proteins, RAGE protein levels were normalised through loading of equal amounts of total 

protein.  

In WCL generated from untreated cells, RAGE was detected with maximum protein 

expression following 8 hours of cell culture (Figure 3.5A). Cell culture supernatant was 

freeze dried and reconstituted and loaded onto SDS-PAGE gels (10 µg total protein per 

well) for analyses of secreted RAGE (section 2.3). In culture supernatant of untreated 

cells, secreted RAGE levels were consistent over the 36 hours. Together the results 
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suggest RAGE secretion was unaltered over time while WCL RAGE levels were at their 

highest following 8 hours of cell culture with decreased levels after 24 and 36 hours.  

When cells were treated with 50 µg/mL of HSA-AGE the expression of RAGE in WCL 

and culture supernatant appeared to remain consistent over 36 hours (Figure 3.5B). A 

similar pattern was observed when cells were treated with 50 µg/mL HSA-C, thus, 

indicating 50 µg/mL HSA-AGE does not impact TIGK RAGE protein expression (Figure 

3.5C).  

Upon TIGK cell treatment with 100 µg/mL HSA-AGE there appeared to be maximum 

WCL protein expression of RAGE following 8 hour of cell culture, with a decrease after 

24 and 36 hours (Figure 3.5D). In addition, a lower expression of secreted RAGE in 

culture supernatant following 8 hours of culture with an increase after 24 and 36 hours 

was observed (Figure 3.5E). There appeared to be an increase in secreted RAGE 

expression at the later time points with 100 µg/mL HSA-AGE (Figure 3.5D) compared 

with 50 µg/mL HSA-AGE (Figure 3.5B) or untreated cells (Figure 3.5A) . When TIGK 

cells were treated with 100 µg/mL HSA-C, levels of secreted RAGE and WCL RAGE 

appeared to remain relatively consistent over time (Figure 3.5E).  

Finally, when cells were treated with 200 µg/ml HSA-AGE RAGE, protein levels remained 

relatively consistent over time in WCL (Figure 3.5F). Following cell treatment with 200 

µg/mL HSA-AGE, levels of secreted RAGE were similar to the those observed with 100 

µg/mL HSA-AGE (Figure 3.5G). Treatment of TIGK cells with 200 µg/mL HSA-C resulted 

in no discernible differences in WCL RAGE or secreted RAGE levels.  
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Figure 3.4: Representative western blot analysis of recombinant RAGE in the 

presence of absence of HSA-AGE or HSA-C. Recombinant RAGE (rRAGE) was 

detected via western blot using an anti-RAGE antibody. Recombinant RAGE was also 

incubated with advanced glycation end product modified human serum albumin (HSA-

AGE) or control HSA (HSA-C) to determine if AGE-RAGE interactions interfered with 

detection of RAGE (n=3). HSA-AGE; Human serum albumin-advanced glycation end 

products, HSA-C; Human serum albumin-control, RAGE; receptor for advanced 

glycation end products.  
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Figure 3.5: Representative western blot analysis of RAGE expression in TIGK 

cells. Cells were treated with various concentrations of HSA-AGE or HSA-C, whole cell 

lysate (WCL) and cell culture supernatant were harvested, and 10 µg total protein loaded 

onto each well. WCL RAGE was used as an indication of cell surface bound RAGE and 

supernatant RAGE was an indication of secreted RAGE (n=3). HSA-AGE; Human serum 

albumin-advanced glycation end products, HSA-C; Human serum albumin-control, 

RAGE; receptor for advanced glycation end products. 
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3.2.3.2. RAGE mRNA expression  

The impact of AGE on the expression of the advanced glycation end product receptor 

(AGER) gene in TIGK cells was analysed using qRT-PCR (section 2.10 and section 

2.11). Prior to qRT-PCR analysis for AGER, housekeeping genes were screened to 

ensure no changes in mRNA expression occurred over the duration of the experiment in 

all conditions tested. Both β-actin (ACTB) and hypoxanthine phosphoribosyltransferase 

1 (HPRT1) mRNA expression were analysed in TIGK cells over 36 hours under treatment 

with 100 µg/mL HSA-AGE or HSA-C as described previously (section 2.10 and section 

2.11). There was a significant difference (n=4, two-way ANOVA, Tukey, p < 0.05) in 

ACTB mRNA expression following treatment of cells for 36 hours with both HSA-AGE 

and HSA-C (Figure 3.6A) whereas no significant difference (n=4, two-way-way ANOVA, 

Tukey, p > 0.05) was observed in mRNA expression of HPRT1 over 36 hours. 

Furthermore, qRT-PCR analysis indicated no significant difference in HPRT1 mRNA 

expression in untreated cells compared with cells treated with 100 µg/mL HSA-AGE or 

HSA-C (Figure 3.6B). HPRT1 was confirmed as an appropriate choice for use as a 

housekeeping gene for analysis of AGER expression.  

The impact of AGE on expression of the AGER in TIGK cells was analysed by the 

quantification of AGER mRNA following exposure to 100 µg/mL HSA-AGE and 100 

µg/mL HSA-C over 36 hours (section 2.10 and 2.11).  There was no significant difference 

in the fold change of AGER mRNA expression (Figure 3.7) relative to untreated cells 

over time regardless of treatment with HSA-AGE or HSA-C (n=4, two-way ANOVA, 

Tukey, p > 0.05).  

Considering AGER expression did not increase beyond the 8 hour timepoint, dose 

dependent AGE induced changes in HPRT1 and AGER expression were analysed 

following culture of TIGK cells with 50, 100 or 200 µg/mL HSA-AGE or HSA-C for 8 hours 

(Figure 3.8). In a similar manner to AGER fold changes in TIGK cells treated with 100 

µg/ml HSA-AGE or HSA-C, no significant differences were observed in fold changes of 

AGER expression relative to untreated cells regardless of treatment (Figure 3.8B – n=4, 

one-way ANOVA, Tukey, p > 0.05).  
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Figure 3.6: Housekeeping gene screening for downstream qRT-PCR analysis. (A) 

screening of ACTB and HPRT1 housekeeping genes for qRT-PCR in TIGK cells cultured 

with 100 µg/mL HSA-AGE or HSA-C for 8, 24 or 36 hours. (B) Expression of HPRT1 in 

TIGK cells cultured untreated or treated with 100 µg/mL HSA-AGE or HSA-C. Results 

are presented as means ± SD, n=4. Symbol (*) indicates significant differences in gene 

expression (two-way ANOVA, Tukey, p < 0.05). HSA-AGE; Human serum albumin-

advanced glycation end products, HSA-C; Human serum albumin-control.  
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Figure 3.7: AGER gene expression of TIGK cells in response to HSA-AGE/HSA-C 

treatment. Expression of AGER in TIGK cells in response to treatment with 100 µg/mL 

HSA-AGE or HSA-C, analysed using qRT-PCR with expression normalised to HPRT1 

and relative to untreated cells. Results are presented as means ± SD, n=4. HSA-AGE; 

Human serum albumin-advanced glycation end products, HSA-C; Human serum 

albumin-control, AGER; advanced glycation end products receptor gene. 
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Figure 3.8: HPRT1 and AGER gene expression of TIGK cells following treatment with 

various concentrations of HSA-AGE/HSA-C. (A) Expression of the housekeeping gene 

HPRT1 following treatment with 50, 100 or 200 µg/mL HSA-AGE or HSA-C for 8 hours 

(n=4). (B) Fold change of AGER in TIGK cells in response to treatment with 50, 100 or 200 

µg/mL HSA-AGE or HSA-C, analysed using qRT-PCR with expression normalised to 

HPRT1 and relative to untreated cells. Results are presented as means ± SD, n=4. HSA-

AGE; Human serum albumin-advanced glycation end products, HSA-C; Human serum 

albumin-control, AGER; advanced glycation end products receptor gene. 
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3.2.4. Inflammatory response of TIGK cells to HSA-AGE and HSA-C 

Following confirmation of the expression of AGER by TIGK cells, inflammatory 

responses of cells were analysed after treatment with varying concentrations of HSA-

AGE or HSA-C. TIGK cells were cultured and treated with 50, 100 or 200 µg/mL  

HSA-AGE or HSA-C for 8 hours, the supernatant harvested and analysed for cytokine 

release using ELISAs as previously described (section 2.4).  

Of the three cytokines analysed, IL-8 was expressed at the highest concentrations. 

Despite an apparent trend whereby concentrations appeared to be lower in untreated 

cells (105.7 ± 85 pg/mL), compared with cells treated with either HSA-AGE or HSA-C 

(maximum mean of 359 ± 273.5 pg/mL) no significant differences were observed when 

comparing untreated with treated. This is possibly due to the variations observed 

between biological replicates across all treatment groups. Furthermore, no significant 

differences were seen between TIGK treatment with HSA-AGE or HSA-C (Figure 3.9A 

– n=3, one-way ANOVA, Tukey, p > 0.05).  

In a similar manner, IL-6 concentrations on average stayed consistent across the 

different treatment groups. In addition, IL-6 concentrations in untreated TIGK cells (2.43 

± 1.75 pg/ml) were lower than average concentrations of the different treatment groups 

(maximum mean of 16.6 ± 8.62 pg/mL) but still no significant difference was observed 

(Figure 3.9B – n=3, one-way ANOVA, Tukey, p > 0.05). IL-6 concentrations, in contrast 

to IL-8 concentrations, were generally lower and had less variation in concentrations 

comparing different biological replicates across the different treatment groups (0.62 – 

24.73 pg/mL).  

Out of the three cytokines analysed, IL-1β had the lowest detectable concentrations 

ranging from 0.04 to 7.6 pg/mL. Similar to IL-8 and IL-6, IL-1β concentrations were not 

significantly different across the different treatment groups, although this is possibly due 

to the concentrations observed being below or at the lower end of the detectable range 

of the assay and as such are less reliable (Figure 3.9C – n=3, one-way ANOVA, Tukey, 

p > 0.05). 
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Figure 3.9: Immune responses initiated by TIGK cells in response to treatment with HSA-AGE or HSA-C. (A) IL-8 cytokine, (B) IL-6 cytokine 

and (C) IL-1β cytokine release measured in cell culture supernatant following 8 hour treatment of TIGK cells with 50, 100 or 200 µg/mL HSA-

AGE or HSA-C. Concentrations were measured using ELISAs. Significance was calculated using a one-way ANOVA followed by a Tukey post-

hoc (*, p < 0.05, n=3). HSA-AGE; human serum albumin-advanced glycation end products, HSA-C; Human serum albumin-control,  
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3.3. Discussion  

Periodontitis has long been associated with diabetes, but the underlying mechanism 

linking the two diseases is still uncertain. The interactions between AGE and RAGE and 

the subsequent immune responses have been marked as a potential linking mechanism 

(Preshaw et al., 2012). Studies have previously shown an increased prevalence of RAGE 

in gingival tissues of individuals with periodontitis and more so in individuals with both 

periodontitis and diabetes (Abbass et al., 2012).  

Previous studies have shown an upregulation of RAGE in response to AGE in a variety 

of different cell types including immune cells, endothelial cells and epithelial cells, 

although the majority of studies concentrated on bronchial epithelial cells and immune 

cells (such as macrophages) (Schmidt et al., 2000, Ott et al., 2014, Wautier et al., 2017, 

Xu et al., 2016). However, recently, Hiroshima et al. (2018) characterised RAGE 

expression of OBA-9 (Simian virus-40 antigen immortalized human gingival epithelial 

cells) and showed an increase in AGER (mRNA) and RAGE protein in response to AGE 

(500 µg/mL AGE). Interestingly, our results did not correlate with this, and although they 

showed the expression of AGER and RAGE by TIGKs, mRNA expression of AGER was 

unaffected by AGE regardless of concentration or exposure time. These observed 

differences in AGE response are potentially due to differences in cell types. Hiroshima 

et al. (2018) also demonstrated a significant increase in RAGE expression following co-

stimulation with AGE and P. gingivalis LPS compared with unstimulated and stimulation 

with AGE alone. This perhaps suggests that co-stimulation is required for alterations in 

RAGE expression.  

It is possible that the lack of significant differences in AGER mRNA expression observed 

here was a consequence of the choice of AGER primer. The qRT-PCR carried out would 

most likely amplify all variants of AGER. To elucidate whether the lack of significant 

differences in AGER mRNA expression is indeed accurate or if it is rather a shift in the 

ratio of isoforms expressed, mRNA analysis for specific isoforms is required, especially 

considering our results do suggest a difference in protein expression of secreted AGER 

in response to AGE. A study demonstrating a positive correlation between secreted 

RAGE and MCP-1 and TNF-α in type 2 diabetics, further highlights the necessity to 

analyse isoforms independently (Nakamura et al., 2008).  

Recent studies have shown that different in vivo AGE products (of which methylglyoxal 

HSA (HSA-MG) and N-carboxymethyl lysine HSA (HSA-CML) are the most predominant) 

differentially regulate AGER isoform expression despite binding to the same receptor. 

While HSA-MG stimulates the expression of full-length, N-truncated and secreted 

isoforms in endothelial cells, HSA-CML upregulates only full-length and N-truncated 
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(Grossin et al., 2009, Wautier et al., 2017). In addition, due to the various methods for 

protein modification with AGE, and the heterogeneous nature of AGEs produced, it is 

difficult to ascertain what proportion (if any) of the generated HSA-AGE is HSA-MG and 

what proportion is HSA-CML, and indeed how that compares to previous studies. To fully 

understand the impact of the various HSA-AGEs on AGER expression in TIGK cells, the 

HSA-AGE composition generated needs to be established through methods such as 

mass-spectrometry. Alternatively, more defined and commercially available ligands 

(such as CML, S100 proteins and HMGB1) could be utilised for clarification of RAGE 

expression and activation in TIGK cells.  

However, our results also indicate high levels of secreted RAGE as a response to 200 

µg/mL HSA-C. This perhaps indicates that RAGE secretion is a consequence of the 

addition of exogenous proteins as opposed to a direct consequence of HSA-AGE, 

particularly when considering under normal conditions TIGK cells are cultured using 

serum free media.  Presence of AGE in the HSA-C preparation was determined through 

analysis of fluorescence. Although fluorescence in HSA-C preparations were lower than 

that seen in HSA-AGE preparations there is potential that the HSA used (indicated as ≥ 

96% pure by manufacturers) contained low amounts of AGE modified protein prior to 

HSA-C generation. This could explain why higher levels of secreted RAGE were 

observed with higher concentrations of HSA-C.  

The western blot analysis, however, is semi quantitative and to more accurately 

understand changes at a protein level quantitation of RAGE is required. To do this 

ELISAs were carried out (as described previously in section 2.4 and according to 

manufacturer’s instructions) but concentrations were below  the detectable range by this 

method, despite attempts to concentrate samples (data not shown). Due to time 

limitations, however, this analysis could not be optimised. 

Interaction of AGE with RAGE is known to lead to the activation of signalling cascades 

and downstream activation of inflammatory responses (Ott et al., 2014, Wautier et al., 

2017). In gingival epithelial cells specifically, an increase in IL-6 mRNA expression was 

observed in response to AGE (Hiroshima et al., 2018). Our results, however, showed no 

induction in IL-6, IL-8 or IL-1β expression by AGE. This is potentially due to the lack of 

increase in RAGE expression (as described above) such that no associated increase in 

cytokines is observed. There is also the possibility that the consistent level of cytokine 

expression is a consequence of sequestering of AGE by secreted RAGE, thus, 

preventing activation of membrane bound RAGE and downstream signalling cascades. 

This can be associated with the potential increase in secreted RAGE observed.  
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Although RAGE is the most studied receptor for AGE, various others have also been 

identified; AGE clearance receptor complex (AGE-R1/OST-48, AGE-R2/80K-H, AGE-

R3/galectin-3) and members of the scavenger receptor family (SR-A, SR-B, CD36, SR-

B1, SR-E, LOX-1, FEEL-1, FEEL-2). Prior to the elimination of AGE modified proteins, 

an intracellular processing of AGE proteins into AGE modified peptides must occur. 

These alternative receptors are thought to be involved in this first step of the removal 

process by binding extracellular AGEs to allow the uptake via receptor mediated 

endocytosis. Given their high affinity for AGEs, it is possible that these receptors 

compete against RAGE, inhibiting AGE-RAGE interactions and, thus, preventing 

downstream signalling (Sourris et al., 2009, Ott et al., 2014). However, to determine if 

these cells express these receptors and if AGE interacts with these receptors in TIGK 

cells requires further analysis.  

Finally, due to the complex immunoregulatory mechanisms employed by cells in an 

attempt to prevent excessive immune responses (particularly in the densely colonised 

oral cavity) it is possible that TIGK cellular responses to AGE require co-stimulation of 

other receptors with pathogens. Indeed, a recent study has shown increased RAGE and 

IL-6 expression in gingival epithelial cells in response to AGEs and P. gingivalis LPS 

compared with AGE alone (Hiroshima et al., 2018). The study also demonstrated AGE 

alone did not change IL-8 mRNA expression but co-stimulation of RAGE with AGE and 

P. gingivallis LPS decreased IL-8 mRNA and protein levels (Hiroshima et al., 2018). In 

addition, as mentioned previously, studies in patients with periodontitis alone and 

periodontitis as well as diabetes, showed higher RAGE expression in tissues of the latter 

(Abbass et al., 2012).   

To fully understand RAGE expression and immune responses in TIGK cells further 

analysis is required. Studies including higher concentrations of AGEs to overcome 

competition by other receptors, use of alternative, better defined AGE products, co-

stimulation of cells and analysis of RAGE isoforms in TIGK cells would increase our 

understanding of AGE-RAGE interactions in oral epithelial cells.  
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4. Changes in a five species biofilm model for periodontitis in response to HSA-

AGE  

4.1. Introduction  

In mammalian cells and tissues, AGEs are relatively well studied, with investigations into 

aspects of AGE generation, metabolism and impact during disease. We now understand 

AGEs accumulate, both intracellularly and extracellularly, over time and more so in 

certain diseases (such as diabetes and Alzheimer’s) (Cohen-Or et al., 2013). Given this 

accumulation it is possible AGEs could affect bacterial cells, particularly in densely 

colonised areas of the host such as the gut and oral cavity.  

To date, few studies have investigated the role of AGEs or AGE associated cross-linked 

proteins in bacterial adherence. Furthermore, studies examining the bacterial 

metabolism of AGEs and consequences of AGE breakdown products in terms of effects 

on the microbiota are sparse and generally limited to single species experiments. A 

series of studies have demonstrated AGEs produced by E. coli K12 are metabolised 

intracellularly by metalloproteases and secreted as low-molecular weight AGE peptides 

into the growth media (Katz et al., 2010, Cohen-Or et al., 2011, Cohen-Or et al., 2013). 

While this group demonstrated the potential for bacterial metabolism of AGEs, their 

studies are limited to intracellular bacterial AGEs and did not investigate bacterial uptake 

of extracellular/mammalian AGEs and subsequent metabolism.  

Studies examining the relationship between AGEs and bacteria are, to date, limited to 

the gut, with evidence suggesting potential AGE metabolism and utilisation: human and 

rat studies have indicated only partial recovery of AGEs in faecal matter or urine following 

oral administration (Delgado-Andrade et al., 2012, Alamir et al., 2013, Hellwig et al., 

2015). Hellwig et al. (2015), showed the ability of human colonic microbiota to metabolise 

three different AGE proteins (the early Amadori product N-ε-fructodyllysine and the 

irreversible final AGE products Nε-carboxymethyl lysine (CML) and Pyrraline (PYR). The 

different AGE proteins were incubated with faecal suspensions and the resulting 

metabolites measured using high performance liquid chromatography (HPLC) (Hellwig 

et al., 2015).  

In addition to studies examining bacterial AGE metabolism, there is evidence of AGE 

modified proteins passing through the colon in individuals with ulcerative colitis changing 

the composition of the gut microbiota (Mills et al., 2008). Using faecal inoculations from 

ulcerative colitis patients in a continuous flow culture model, bacterial composition in 

medium containing AGE-modified BSA as a growth substrate was shown to have higher 

abundances of Clostridium, Bacteroides and sulphate-reducing bacteria and decreases 

in the prevalence of Eubacterium and Bifidobacterium, when compared with bacterial 
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compositions of cultures in un-modified BSA. However, these changes as a response to 

AGE modified BSA were not observed when using faecal samples from healthy 

individuals (Mills et al., 2008). Other studies have shown consumption of diets high in 

AGEs inhibit the growth of lactobacilli in the colonic microbiota (Hernandez-Hernandez 

et al., 2011, Corzo-Martínez et al., 2013, Seiquer et al., 2014, Hellwig et al., 2015). These 

studies suggest that AGE associated changes in the microbiota are a consequence of 

both presence of AGE and host disease state, highlighting the complex relationship 

between AGEs and the microbiota.  

While the above described studies have demonstrated changes in gut microbiota as a 

consequence of AGEs, to date no studies have linked AGEs to changes in the oral 

microbiota. Investigating the role of AGEs on the oral microbiota is important when 

considering the present organisms are likely the first to encounter ingested dietary AGEs. 

Furthermore, there is evidence of an increased prevalence of HSA-AGE in the GCF of 

individuals with diabetes and periodontitis compared with those with periodontitis or 

diabetes alone (Kajiura et al., 2014). The evidence from studies of the gut microbiota 

and the increased prevalence of HSA-AGE in the GCF of individuals with both diabetes 

and periodontitis could suggest that the association between periodontitis and diabetes 

may be, in part, the result of changes induced in the oral microbiota by the increased 

abundance of AGEs in the subgingival environment. 

Given the evidence of AGE associated changes in gut microbiota, the following study 

utilises a five species biofilm (to model periodontitis) which was developed in our 

laboratory by Naginyté (2017, unpublished) to investigate the effect of HSA-AGE on 

biofilm composition. The model was developed to use HA coated pegs, pre-conditioned 

with salivary proteins, to represent tooth surfaces. The pegs are inoculated sequentially 

with early (A. naeslundii and S. salivarius) and late (F. nucleatum, P. intermedia and P. 

gingivalis) colonisers to generate a stable biofilm. In the study presented here, the 

bacterial growth protein rich medium is supplemented with 20% (v/v) FBS (serum 

medium; SM) to select for pathogenic/late colonisers and produce a biofilm 

representative of periodontitis. The effect of HSA-AGE addition to the SM of a 6 day old 

biofilm was investigated to determine if AGEs (as a representative of diabetic 

hyperglycaemia) alter biofilm composition. I hypothesise that the addition of HSA-AGE 

selects for the growth of periodontitis associated pathogens and could provide evidence 

for linking diabetes and periodontitis.   
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4.2. Results 

4.2.1. HSA-AGE associated changes in species composition of five species 

biofilms  

4.2.1.1. Composition of day 6 biofilms grown in serum medium to select for 

periodontitis associated pathogens 

Five species model biofilms were grown on HA coated pegs to model periodontitis (as 

described previously in section 2.12). Biofilms harvested at day 6 were analysed for 

relative abundance of each species based on selective media CFU counts (section 

2.12.2) (Figure 4.1). Six to eight pegs each from three individual experiments (minimum 

18 pegs) were harvested, CFUs counted and used to calculate the percentage 

abundance of each species in individual biofilms relative to total biofilm CFU. 

Both A. naeslundi and S. salivarius accounted for the majority of the biofilm mass and 

were significantly more prevalent than F.nucleatum, P. intermedia, P. gingivalis (black 

lines, Figure 4.1). However, significantly less A. naeslundi was observed compared with 

S. salivarius (*,Figure 4.1).  This difference is unsurprising given the later HA peg 

inoculation with F. nucleatum, P. intermedia and P. gingivalis (section 2.12) and the 

slower growth rate of these species. Importantly, the results indicated that all five species 

were present in the day 6 biofilm, such that any changes in biofilm composition upon 

addition of HSA-AGE or HSA-C reflect the impact of the addition as opposed to absence 

of particular species in the day 6 biofilm. 

4.2.1.2. Impact on day 6 biofilms following HSA-AGE addition to growth medium 

After 6 days, varying concentrations of HSA-AGE or HSA-C were added to the biofilm 

growth SM which was changed daily until day 10 (section 2.12). Day 10 biofilms were 

harvested and subsequent biofilm compositions analysed (Figure 4.2 and Table 4.1). In 

biofilms grown in SM without the addition of any HSA-AGE or HSA-C (baseline biofilms), 

P. gingivalis accounted for the bulk of the biofilm (mean abundance of 49.00 ± 21.19% 

of total viable counts) followed by S. salivarius (mean abundance of 22.55 ± 11.32%) 

and P. intermedia (mean abundance of 12.97 ± 9.94%) (Table 4.1). A. naeslundii and F. 

nucleatum accounted for similar percentages of the bacteria in the biofilm (mean 

abundance of 8.29 ± 8.93% and 7.00 ± 4.54% respectively), although more variability 

was observed in the percentage of A. naeslundii compared with F. nucleatum. Given the 

predominance of P. gingivalis and P. intermedia (periodontitis associated bacteria) in 

biofilms grown with SM for 10 days, the results confirm the periodontitis associated 

pathogens behave in the model biofilm in a manner that reflect their increased 

prevalence in periodontitis (Figure 4.1 and Table 4.1).  
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Figure 4.1: Bacterial composition of day 6 biofilms. Biofilms were grown following 

sequential inoculation of hydroxyapatite pegs with S. salivarius, A. naeslundii, F. 

nucleatum, P. intermedia and P. gingivalis. Following growth for 6 days under anaerobic 

conditions at 37°C in protein rich medium supplemented with 20% FBS (serum medium), 

6-8 biofilms were harvested for determining CFU (colony forming unit) counts on 

selective media and calculation of percentage abundances of total viable counts. Lines 

and * indicate significant differences (One-way ANOVA, Tukey, p < 0.05, n=3).  
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Significant decreases in mean relative abundance of A. naeslundii and S. salivarius were 

observed when comparing HSA-AGE biofilms with their corresponding HSA-C biofilms 

(Table 4.1). Although no significant differences (two way ANOVA, Tukey,  

p > 0.05) in the early coloniser abundances were observed between the different HSA-

C biofilms, a significantly higher average percentages of A. naeslundii were observed in 

all HSA-C biofilms compared with baseline biofilms. This potentially indicates HSA is 

partially responsible for the increase in A. naeslundii growth in HSA-AGE biofilms. This 

increase in A. naeslundii corresponded with a decrease in mean P. gingivalis abundance 

(such that mean percentages were significantly lower in all HSA-C biofilms compared 

with baseline biofilms but not completely abolished as seen in HSA-AGE biofilms). In 

addition, no significant difference (two-way ANOVA, Tukey, p > 0.05) in mean 

abundances were observed in the different concentrations of HSA-C (Table 4.1). 

Growth media supplemented with HSA-AGE appeared to inhibit all three late colonisers. 

While these decreases are significant in P. gingivalis and P. intermedia, changes in mean 

abundance of F. nucleatum were not significant (two-way ANOVA, Tukey, p > 0.05), 

potentially due to the low percentages observed in baseline and HSA-C biofilms. P. 

intermedia abundances did not appear to be significantly different when comparing HSA-

AGE biofilms to their matched HSA-C biofilms (two-way ANOVA, Tukey, p > 0.05) but 

the decrease in HSA-AGE biofilms was significant compared with baseline biofilms 

(Table 4.1).  
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 Figure 4.2: Bacterial composition of day 10 biofilms.  Biofilms were cultivated 

for 6 days in SM prior to the introduction of HSA-AGE/HSA-C to the SM until day 

10. On day 10 biofilms were harvested and the relative abundances of each species 

in individual biofilms were calculated and presented as medians with maximum and 

minimum percentages. Results represent 3 experiments with 6-8 biofilms harvested 

per experiment. HSA-AGE: human serum albumin-advanced glycation end product, 

HSA-C: human serum albumin-control, SM: serum medium. 
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 Percentage of total viable counts of biofilms grown in: 

 
Basal  

(SM only) 

SM + 50 µg/mL 

HSA-AGE 

SM + 50 µg/mL 

HSA-C 

SM + 100 µg/mL 

HSA-AGE 

SM + 100 µg/mL 

HSA-C 

SM + 200 µg/mL 

HSA-AGE 

SM + 200 µg/mL 

HSA-C 

  Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

S. salivarius 22.55 11.32 1.44 2.55 32.87 23.66 0.29 0.68 21.64 12.65 1.11 3.03 33.64 25.00 

A. naeslundii 8.29 8.93 98.56 2.55 39.69 25.44 99.67 0.67 31.14 24.15 98.89 3.03 39.09 15.13 

F. nucleatum 7.00 4.54 0.00 0.00 4.81 1.83 0.01 0.03 10.43 7.26 0.00 0.00 5.75 3.06 

P. intermedia  12.97 9.94 0.00 0.00 6.66 4.94 0.00 0.00 7.92 6.33 0.00 0.00 4.37 2.93 

P. gingivalis 49.18 21.19 0.00 0.00 15.96 7.01 0.02 0.08 28.86 16.39 0.00 0.00 17.15 13.51 

Table 4.1: Bacterial composition of day 10 biofilms. Biofilms were cultivated for 6 days in SM prior to the introduction of HSA-AGE/HSA-C to the 

SM until day 10. On day 10 biofilms were harvested and the relative abundances of each species in individual biofilms were calculated and presented 

as mean % ± SD. Results represent 3 experiments with 6-8 biofilms harvested per experiment. Bold indicates significant differences compared with 

basal biofilms. Underlined indicates significant differences when comparing different concentrations of HSA-AGE or HSA-C. Colours indicate significant 

differences between HSA-AGE and HSA-C. All significance was calculated using a two-way ANOVA followed by a Tukey post-hoc (p < 0.05). HSA-

AGE: human serum albumin-advanced glycation end product, HSA-C: human serum albumin-control, SM: serum medium 
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4.2.1.3. Analysis of biofilms following change of medium from HSA-AGE/HSA-

C supplemented to non-supplemented serum medium   

Following growth of biofilms in HSA-AGE or HSA-C supplemented medium (from day 6 

to 10), growth medium was replaced with unsupplemented SM until day 14. At day 14, 

biofilms were harvested and subsequent percentage abundances calculated. The results 

indicated that at day 14, baseline biofilms maintained the higher prevalence of 

periodontitis associated bacteria (Figure 4.3 and Table 4.2). These biofilms favoured the 

growth of P. gingivalis and P. intermedia with abundances of S. salivarius, A. naeslundii 

and F. nucleatum only accounting for a small percentage of the total biofilm. 

Furthermore, the relatively high percentage abundance of S. salivarius observed at day 

10 (Table 4.1) decreased significantly at day 14 (Table 4.2), in addition to significant 

decreases in A. naeslundii and F. nucleatum (two-way ANOVA, Tukey, p  < 0.05). 

Together this suggests the maturation and preservation, over 14 days, of a biofilm that 

represents the increased prevalence of bacteria generally associated with periodontitis, 

which in this model is seen as higher percentage abundances of P. gingivalis and P. 

intermedia.   

Biofilms exposed to HSA-AGE supplemented growth medium prior to changing to SM 

showed significant recovery in the abundance of S. salivarius but no significant recovery 

in any of the late colonisers (two-way ANOVA, Tukey, P > 0.05), regardless of the HSA-

AGE concentration. Interestingly, the inability to recover late coloniser growth allowed 

the S. salivarius to grow to significantly higher abundances on average than in baseline 

and HSA-C biofilms. The recovery of S. salivarius was not significantly different across 

the different HSA-AGE concentrations (two-way ANOVA, Tukey, p > 0.05). In HSA-C 

exposed biofilms, no significant differences were observed in abundance of S. salivarius 

at day 14 in comparison with day 14 baseline biofilms (two-way ANOVA, Tukey, p > 0.05, 

Table 4.1).  

In HSA-AGE recovery biofilms, S. salivarius abundance increases correlate with a 

significant decrease in A. naeslundii. Despite the A. naeslundii decrease, the abundance 

in HSA-AGE biofilms was significantly higher when compared with baseline biofilms and 

correlating HSA-C biofilms. The higher abundance of A. naeslundii was consistent 

across all concentrations of HSA-AGE that biofilms were exposed to prior to the recovery 

period. In addition, A. naeslundii abundances in HSA-C recovery biofilms showed no 

significant difference compared with baseline biofilms (two-way ANOVA, Tukey, p > 

0.05), indicating changes observed in A. naeslundii in recovery HSA-AGE biofilms were 

a direct consequence of the AGE supplemented growth medium as opposed to changes 

associated with the addition of HSA (Figure 4.3 and Table 4.1) 
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Figure 4.3: Bacterial composition of day 14 biofilms.  Biofilms were cultured for 6 

days in SM prior to introduction of HSA-AGE or HSA-C to growth media until day 10 

after which media were changed to SM (day 10 to day 14). Relative abundances of 

each species in individual biofilms were calculated and presented as medians with 

maximum and minimum percentages. Results represent 3 experiments with 6-8 

biofilms harvested per experiment. HSA-AGE: human serum albumin-advanced 

glycation end product, HSA-C: human serum albumin-control, SM: serum medium. 
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 Percentage of total viable counts of biofilms grown in: 

 
Basal  

(SM only) 

SM + 50 µg/mL 

HSA-AGE 

SM + 50 µg/mL 

HSA-C 

SM + 100 µg/mL 

HSA-AGE 

SM + 100 µg/mL 

HSA-C 

SM + 200 µg/mL 

HSA-AGE 

SM + 200 µg/mL 

HSA-C 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

S. salivarius 10.00 8.16 34.38 19.00 15.67 9.90 32.03 17.54 12.61 4.92 40.78 14.61 24.64 12.60 

A. naeslundii 2.27 1.72 65.62 19.00 10.56 6.46 67.87 17.62 7.45 4.17 59.18 14.60 8.35 2.84 

F. nucleatum 1.92 1.16 0.03 0.03 15.70 4.72 0.08 0.21 20.65 26.28 0.01 0.02 35.40 16.15 

P. intermedia  13.28 16.68 0.04 0.05 3.36 2.22 0.02 0.10 11.96 15.32 0.03 0.08 19.89 14.25 

P. gingivalis 72.52 19.14 0.06 0.09 54.70 19.08 0.01 0.02 47.33 20.74 0.00 0.01 11.72 4.25 

Table 4.2: Bacterial composition of day 14 biofilms. Biofilms were cultured for 6 days in SM prior to introduction of HSA-AGE or HSA-C to growth media until 

day 10 after which media were changed to SM (day 10 to day 14). On day 14 biofilms were harvested and the relative abundances of each species in individual 

biofilms were calculated and presented as mean ± SD. Results represent 3 experiments with 6-8 biofilms harvested per experiment. Bold indicates significant 

differences compared with basal biofilms Bold indicates significant differences compared with basal biofilms. Underlined indicates significant differences when 

comparing different concentrations of HSA-AGE or HSA-C. In the case of P. gingivalis, double underlined specifies 50 µg/mL and 100 µg/mL HSA-C are 

significantly different to 200 µg/mL. Colours indicate significant differences between HSA-AGE and HSA-C. All significance was calculated using a two-way 

ANOVA followed by a Tukey post-hoc (p < 0.05). HSA-AGE: human serum albumin-advanced glycation end product, HSA-C: human serum albumin-control, SM: 

serum medium. 
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In contrast to day 10, day 14 HSA-C biofilm A. naeslundii abundances were not 

significantly different to baseline biofilms (two-way ANOVA, Tukey, p > 0.05). The 

decrease in A. naeslundii abundance at day 14 in HSA-C recovery biofilms correlated 

with a significant increase in F. nucleatum (Figure 4.3 and Table 4.2). Thus it appeared 

that the presence of HSA-C encouraged the growth of A. naeslundii, which is outgrown 

by F. nucleatum following withdrawal of HSA-C. The significant decrease in F. nucleatum 

of baseline biofilms over time and the significant, dose dependent increase in F. 

nucleatum abundance in HSA-C recovery biofilms could suggest that the addition of 

HSA-C and subsequent increase in A. naeslundii abundances produces metabolic by-

products, which upon withdrawal of HSA-C encourages F. nucleatum growth to a point 

where its growth surpasses A. naeslundii.   

In addition, a significant dose dependent decrease in P. gingivalis mean abundance in 

all HSA-C recovery biofilms compared with baseline biofilms was observed. Similarly, 

average P. intermedia prevalence in recovery biofilms was lower than in baseline 

biofilms, however this was not significant (two-way ANOVA, Tukey, p > 0.05). P. 

intermedia average abundances in HSA-C biofilms also demonstrate a dose dependent 

increase, reaching significance between 100 and 200 µg/mL HSA-C (Table 4.2).  

4.2.1.4. Analysis of pH changes in biofilm growth media 

To evaluate changes in pH as a consequence of bacterial metabolism, pH of the biofilm 

growth medium was recorded every 24 hours for 14 days. This was achieved through 

use of a pH probe capable of measuring pH directly in wells of 96 well plates. I 

hypothesised changes in pH as a result of the metabolism of AGEs by A, naeslundii 

could be indicative of changes in pH causing late coloniser death.  

There was a daily drop in pH to approximately 6 over the first 6 days, prior to addition of 

HSA-AGE/HSA-C. In baseline and HSA-C biofilms pH changes remained relatively 

consistent over the course of the experiment, with pH not decreasing below 6 (Figure 

4.4). However, upon addition of various concentrations of HSA-AGE to growth media, a 

pH of approximately 4.5 was observed. Despite correction of pH by media replacement 

every 24 hours, the acidic environment created following the addition of HSA-AGE could 

account for the complete inhibition of late colonisers and the inability to revive them 

following a recovery period. Following removal of HSA-AGE, the pH of the environment 

reverted to pH 6 – 7 within 24 hours. The changes in pH were consistent across all HSA-

AGE concentrations which reflects the limited differences observed in biofilm 

composition between HSA-AGE biofilms (Figure 4.4). 
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 Figure 4.4: pH measurements of culture media following 24 hour incubation of biofilms with 

daily media changes accounting for pH correction to 7. Changes in pH measurements in 

biofilm growth with 50 (A), 100 (B) and 200 (C) µg/ml HSA-AGE or HSA-C. Solid arrow indicates 

introduction of medium supplemented with HSA-AGE or HSA-C, with daily changes until day 10. 

Dotted arrow indicates start of recovery period where medium was reverted to SM until day 14. 

Results represent 3 experiments with pH measured for 6-8 biofilms per experiment (mean ± SD). 

HSA-AGE: human serum albumin-advanced glycation end product, HSA-C: human serum albumin-

control, SM: serum medium. 
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4.2.2. Single species growth analysis to determine species responsible for 

changes observed in biofilms 

In addition to analysis of pH changes during the course of the five species biofilm growth, 

the bacteria were grown individually in SM and SM supplemented with 100 µg/mL HSA-

AGE or 100 µg/mL HSA-C. Media were inoculated with each species at the same 

proportion as used for HA peg inoculation and incubated anaerobically for 24 hours. The 

resulting bacterial suspension was diluted and plated as previously described for 

calculation of CFU. The pH of each suspension was also measured.   

In unsupplemented SM, CFU counts of P. gingivalis and P. intermedia were significantly 

lower than those of S. salivarius, A. naeslundii and F. nucleatum (Figure 4.5A). This 

suggests a slower growth rate of P. gingivalis and P. intermedia in SM compared with 

the other species. Contrastingly, in medium supplemented with HSA-AGE, P. intermedia 

and A. naeslundii both had significantly higher CFU counts compared with SM and HSA-

C. The increase in A. naeslundii grown with medium supplemented with HSA-AGE 

reflects the increase in growth observed in the five species HSA-AGE biofilms (Figure 

4.5A). 

F. nucleatum CFU counts in HSA-AGE media were significantly lower compared with 

SM but higher compared with HSA-C. P. gingivalis growth, on the other hand, was 

significantly higher in HSA-C media compared with both HSA-AGE and SM. 

Furthermore, no significant difference in P. gingivalis CFUs following growth in HSA-AGE 

medium and SM was observed (one-way ANOVA, Tukey, p > 0.05), perhaps suggesting 

HSA encourages P. gingivalis growth but modified HSA does not.   

After a 24 hour incubation, S. salivarius CFUs were significantly lower in HSA-AGE 

supplemented growth medium compared with SM but significantly higher in  

HSA-C supplemented medium. This is partially reflected in the biofilm model where 

growth of S. salivarius is decreased in the presence of HSA-AGE.  

Comparison of different bacterial suspensions under different growth conditions 

indicated a significantly lower pH following A. naeslundii growth in SM compared with 

both S. salivarius and P. gingivalis but no significant differences when comparing to F. 

nucleatum and P. intermedia (one-way ANOVA, Tukey, p > 0.05). This indicates that in 

SM, A. naeslundii and to a lesser extent F. nucleatum and P. intermedia reduced the pH 

of the media while S. salivarius and P. gingivalis maintain a neutral pH (Figure 4.5B). 

In contrast, growth of S. salivarius and A. naeslundii in HSA-AGE supplemented SM 

caused a decrease in the pH of the culture. For S. salivarius this decrease was significant 

compared with growth in HSA-C and SM. In general the pH profiles of  bacteria grown in 
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HSA-C and SM are the same and only S. salivarius growth in HSA-AGE caused a 

significant decrease in the pH compared with the two control groups. 
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Figure 4.5: Growth and pH changes associated with S. salivarius¸ A. naeslundii, F. nucleatum, P. intermedia and P. gingivalis 

grown as single species cultures in SM supplemented with HSA-AGE or HSA-C. (A) CFU counts and (B) pH changes of bacteria 

cultured for 24 hours in SM or SM supplemented with 100 µg/mL HSA-AGE or 100 µg/mL HSA-C. Matching symbols indicate significant 

differences in CFU counts (*, **) or pH (•, ••) of each species when grown in different media (One-way ANOVA, Tukey, p < 0.05 n=3). 

HSA-AGE: human serum albumin-advanced glycation end product, HSA-C: human serum albumin-control, SM: serum medium. 
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4.3. Discussion  

The roles of AGEs in mammalian cells and tissues are relatively well studied, with 

particular attention paid to the effects of AGEs on inflammation and diseases such as 

diabetes and Alzheimer’s. The presence of AGEs has been shown to initiate 

inflammatory responses and alter protein structures and functions. However, to date, 

little is known about the influence of AGEs in determining the composition of the human 

microbiome.  

The aim of this study was to determine if HSA-AGE can cause changes in biofilm 

composition when using a five species model. The results demonstrated that in the 

presence of HSA-AGE, within the concentration range tested, the composition of the 

biofilm altered so that A. naeslundii outgrew S. salivarius, F. nucleatum, P. intermedia 

and P. gingivalis. This increased abundance of A. naeslundii was accompanied by the 

inhibition of P. gingivalis, P. intermedia and F nucleatum growth which could not be 

revived following withdrawal of HSA-AGE. Analysis of the growth medium every 24 hours 

prior to medium change and resulting pH correction, demonstrated the development of 

an acidic environment when a 6 day biofilm was incubated in HSA-AGE supplemented 

medium. This drop in pH over the HSA-AGE growth period could account for the lack of 

P. gingivalis, P. intermedia and F. nucleatum growth. The prolonged exposure to the 

acidic environment may have caused bacterial death of these species and could explain 

the inability to revive them following withdrawal of HSA-AGE. The detrimental effects of 

acid environments on P. gingivalis, P. intermedia and F. nucleatum has been 

demonstrated in previous studies which indicate intolerance of these species to low pH. 

P. gingivalis has the lowest tolerance and cannot survive below a pH of 6, while P. 

intermedia and F. nucleatum can tolerate pH 5 and pH 5.5, respectively (Takahashi et 

al., 1997).  

Results from the single species experiments further supports the effect of pH on bacterial 

growth. When cultured in SM or SM supplemented with HSA-AGE/HSA-C, A. naeslundii 

lowered the pH of the environment. S. salivarius, on the other hand, only caused a 

significant decrease in pH when cultured with HSA-AGE. This suggests that the pH 

lowering ability of S. salivarius is based on its ability to metabolise AGEs resulting in 

acidic by-products. Given that the pH decrease associated with A. naeslundii was seen 

across all single species growth conditions but a S. salivarius associated decrease was 

only observed in HSA-AGE growth conditions, it is possible that in the five species model 

the decrease in pH which shifts the composition is a consequence of S. salivarius 

metabolism of HSA-AGE. To confirm this hypothesis further analysis is required. This 

can be achieved through NGS of S. salivarius cultures and investigation of metabolic 
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pathways, validated using culture dependent methods which utilise gene knockouts of 

identified proteins potentially involved in HSA-AGE metabolism. Furthermore, protein 

analysis (western blot, HPLC etc) of culture medium could help elucidate extent of HSA-

AGE metabolism. 

Interestingly, in the presence of HSA-C, an increase in P. gingivalis growth was 

observed. This could be indicative of the ability of P. gingivalis to utilise HSA as a carbon 

and nitrogen source through gingipain activity (Grenier et al., 2001). This was however 

not reflected in the model biofilm and could indicate that S. salivarius outcompete P. 

gingivalis for utilisation of HSA. The increase in S. salivarius growth in HSA-C cultures 

further validates this possibility. However, given the decrease in growth of A. naeslundii 

in HSA-C growth conditions compared with SM in single species experiments but an 

increase in abundance in the five species model it is evident that a more complex 

relationship exists. S. salivarius potentially metabolises HSA, producing products that A. 

naeslundii can utilise for growth when part of a biofilm.  

It is clear that analysis of AGE metabolism  by these bacterial species is required to fully 

understand their growth under the conditions of these experiments and elucidate the 

complex relationships in biofilms. This is particularly important when considering the 

potential changes in biofilm composition are a consequence of HSA-AGE metabolism. 

To date, few studies have investigated bacterial AGE metabolism and of these none 

have examined bacterial response to external AGE. Katz et al. (2010), identified a 

glycopeptidase (Gcp) involved in the prevention of AGE accumulation in E. coli. Using a 

Gcp depleted E. coli phenotype, they demonstrated a 60% increase in AGE 

accumulation through fluorescence analysis of the bacterial lysate. Although Gcp was 

demonstrated to be involved in AGE metabolism, the group also detected an increase in 

Amadori products (an intermediate of the Maillard reaction) and therefore suggested Gcp 

is involved directly in the metabolism of Amadori products. They proposed that the 

accumulation of Amadori products following Gcp depletion increases the potential for 

AGE development (Katz et al., 2010). A search of E. coli homologues and potential Gcp 

proteins (using the NCBI database) did identify the presence of Gcp in S. salivarius, 

however in silico protein analysis (using SignalP) showed lack of a signal peptide 

indicating the inability of Gcp to metabolise extracellular proteins. Further analysis is 

required in the organisms used in this study to determine if AGEs are transported into 

the cells and if the intracellular Gcp is involved in AGE metabolism. It is also possible 

that proteins with similar functions to Gcp which are secreted into the environment are 

present in the five species investigated in this study.    
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There is also the potential for AGEs to interact with specific receptors on the surface of 

bacteria to initiate endocytosis (such as CD36) or toxic responses (RAGE), similar to 

those seen in mammalian cells (Ott et al., 2014, section 3.1). However, an in silico protein 

search (using the NCBI database) for bacterial equivalents of RAGE and CD36 yielded 

no results. This suggests that if AGE metabolism is initiated following receptor activation, 

the bacterial receptors are distinct from those found on mammalian cells.   

I propose that in the five species biofilm model, when HSA-AGE is introduced to the 

growth medium, both early colonisers (A. naeslundii and S. salivarius) metabolise the 

AGE lowering the pH to such an extent that the environment becomes too acidic for the 

growth of P. ginigivalis, P. intermedia and F. nucleatum (which have a pH tolerance of 6, 

5.5 and 5, respectively). In SM and HSA-C conditions, the pH changes associated with 

A. naeslundii alone can potentially be negated by the action of P. gingivalis, P. intermedia 

and F. nucleatum (as all three have previously been shown to neutralise acids during 

growth) (Takahashi et al., 1997). However, in the presence of HSA-AGE the pH is 

lowered (through the combined action of A. naeslundii and S. salivarius) at a rate or to a 

pH where acid neutralisation is no longer effective and the late colonisers are killed. The 

acidic environment allows the A. naeslundii to flourish and outgrow but not entirely kill S. 

salivarius. Or perhaps the acidic pH as a direct consequence of AGE metabolism inhibits 

S. salivarius growth as indicated by a decrease or inhibition of growth in the single 

species experiments.   

This simple model highlights the potential of HSA-AGE in influencing bacterial growth 

and provides an insight into how HSA-AGE metabolism may change pH and, as a 

consequence, biofilm composition. Further work is required to elucidate the pathways 

through which HSA-AGE is metabolised (perhaps through NGS) and the by-products of 

this metabolism (through methods such as mass spectrometry analysis). To fully 

understand the role of HSA-AGE in influencing the composition of the oral microbiota a 

more complex model is required, as not only does this model not entirely represent the 

complex dense microbiota of the mouth but also lacks representation of host-microbiota 

interactions and complex biochemical and immune changes associated with diabetes 

and periodontitis.  
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5. Complex biofilm 

5.1. Introduction  

Periodontitis and diabetes have long been understood to have a two-way relationship 

but the mechanisms linking these two diseases are complex and not fully understood. 

Of the many potential links (Figure 1.5 and section 1.4), the increased presence of AGEs 

in diabetes have been postulated to be involved in increased periodontal inflammation 

leading to increased infection susceptibility and the periodontitis immune associated 

tissue destruction (section 1.4.3). Although the effect of AGEs on mammalian cells is 

reasonably well studied (section 1.4.3 and 3.1), their influence on the colonisation and 

maturation of biofilms in the oral cavity is unknown. There are, however, studies 

demonstrating changes in the gut microbiota as a consequence of excessive AGEs and 

microbial metabolism of AGEs in the gut (Mills et al., 2008, Seiquer et al., 2014, Hellwig 

et al., 2015) or metabolism of AGEs in single species cultures (Chalova et al., 2012).  

Considering the increased prevalence of HSA-AGE in the GCF of diabetics with 

periodontitis (Kajiura et al., 2014) and the results from the five species biofilm model 

(described in section 4) indicating a change in biofilm composition as a consequence of 

HSA-AGE addition to growth medium, it was hypothesised that HSA-AGE will also 

change the composition of a complex oral biofilm generated on a Calgary device using 

a physiological inoculum. This was tested in experiments described in this chapter. A 

proof of principle study was carried out to determine the use of this model as a method 

to investigate the role of HSA-AGE on the colonisation of HA coated pegs by pre-

conditioning the pegs with various concentrations of HSA-AGE. This was based on the 

possibility of AGE adsorption onto the HA peg alongside other salivary proteins (section 

1.1.1) thus potentially altering bacterial adherence and colonisation of the pegs. In 

addition, these preliminary experiments also aimed to establish the validity of the model 

to examine the changes in biofilm composition in response to HSA-AGE.  

In addition to analysis of bacterial composition, inflammatory responses of TIGK cells 

initiated by the complex biofilms were also assessed. Previous studies have implicated 

excessive AGE concentrations in increased inflammatory responses of a variety of cell 

types (including oral epithelial and immune cells). In the oral cavity, the high AGE 

concentration conditions can potentially lead to uncontrolled inflammatory responses 

(including cytokine/chemokine release and ROS generation) which are implicated in  

exacerbation of periodontitis (Lalla et al., 2001, Vlassara, 2001, Wong et al., 2003, 

Santana et al., 2003, Cortizo et al., 2003, Preshaw and Taylor, 2011, Preshaw et al., 

2012). 
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Although TIGK cells were shown to express RAGE (section 3), the previous experiments 

demonstrated no change in RAGE expression as a consequence of AGE and no 

changes in concentration of cytokines released following TIGK culture with varying 

concentrations of AGE (section 3.2.3). The presence of AGE has been correlated with 

increased cytokine release (section 1.4.3 and 3.1). These increases in cytokine 

concentrations have also recently been demonstrated to be further increased when 

coupled with bacterial co-stimulation (Hiroshima et al., 2018).Considering this, the 

generated biofilms were also assessed as a model to test the hypothesis that co-

stimulation of TIGK cells with HSA-AGE and complex oral biofilms could lead to a rise in 

cytokine release and an increase in cellular ROS generation. As a preliminary measure 

in this study the biofilm-TIGK co-cultures were carried out in HSA-AGE supplemented 

cell culture media, at concentrations representing those found in the GCF of diabetics by 

Kajiura et al (2014).   
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5.2. Results  

5.2.1. HSA-AGE associated changes on colonisation and mature biofilm 

composition using a complex biofilm model, analysed using selective 

media  

5.2.1.1. Bacterial composition of inocula and colonisation (day 2) biofilms 

Complex biofilms were grown on HA coated pegs using pooled saliva, plaque and tongue 

scraping inocula as described previously (section 2.13). Prior to inoculation of HA pegs, 

pooled inoculum was analysed on various selective media to determine its bacterial 

composition. The results indicated the physiological inoculum contained Actinomyces, 

Streptococcus, facultative anaerobes, anaerobes and Gram-negative anaerobes at 

approximately same abundances while counts of lactobacilli were observed to be 104 

fold lower (Figure 5.1).  

Prior to inoculation, HA pegs were pre-conditioned with artificial saliva containing 

concentrations of HSA-AGE to represent the consequence of diabetes-associated 

hyperglycaemia and health. Artificial saliva was supplemented with 100 µg/mL HSA-AGE 

to model the higher concentrations associated with diabetes and shown to be present in 

the GCF of diabetics (Kajiura et al., 2014). To simulate health, 1 µg/mL HSA-AGE (and 

99 µl/mL HSA-C to account for protein differences) was added to the artificial saliva, as 

low levels of HSA-AGE are observed in the GCF of patients without hyperglycaemia 

(Kajiura et al., 2014). Pre-conditioned HA pegs were inoculated with the complex 

inoculum and incubated to determine the effects of HSA-AGE on colonisation (pegs 

harvested after 2 days) and mature biofilm composition (pegs harvested after 7 and 14 

days).  

Following incubation of the inoculum with HA pegs under anaerobic conditions for 2 days, 

growth of bacteria on selective media decreased from approximate CFUs of 109 – 1010 

in the inocula to 107 – 108 in the biofilms, with the exception of Lactobacilli where growth 

decreased to below detectable levels (Figure 5.2). This suggests not all the bacteria (in 

the groups investigated) colonised and survived the two-day incubation. This loss of 

diversity is perhaps due to the limitations associated with the available binding sites (for 

colonisation) and changes in environmental conditions (such as nutrient availability and 

pH changes). Comparisons of HA pegs pre-conditioned with different HSA-AGE 

concentrations, indicated no significant differences in the viable counts of early biofilms 

(Figure 5.2). This suggests that pre-conditioning using HSA-AGE has limited effect of the 

colonisation of bacteria to HA pegs as assessed by culture on selective media.    
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Figure 5.1: Proportion of selected genera and groups of bacteria in inoculum used 

for growth of complex biofilm. Colony forming units (CFUs) were determined based 

on viable counts using selective media. The Inoculum was generated using pooled 

saliva, plaque and tongue scrapings from 7 volunteers. Results are presented as 

average counts ± standard deviation and represent the inocula used for 3 experiments. 
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Figure 5.2: Proportion of selected genera and groups of bacteria in early (day 2) biofilms. Colony forming units (CFUs) on selective 

media for biofilms grown anaerobically following incubation of HA pegs with complex inoculum for 2 days. Results are presented as average 

counts ± SD and represent 3 experiments with 6-8 biofilms harvested per experiment. HSA-AGE: human serum albumin-advanced glycation 

end product, HSA-C: human serum albumin-control.
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5.2.1.2. Bacterial composition of mature (day 7 and day 14) biofilms  

Medium for biofilm growth was supplemented with 100 µg/mL HSA-AGE and 1 µg/mL 

HSA-AGE with 99 µg/mL HSA-C. Serum medium (SM), as described previously (section 

2.1), was growth medium supplemented with serum to reflect increased serum conditions 

associated with periodontitis. This allowed for the representation of periodontitis 

conditions in the absence of diabetes related HSA-AGE concentrations (low HSA-AGE 

pre-conditioning and low HSA-AGE supplemented growth medium –  and Figure 5.4 , 

P). In addition, biofilms were grown to represent periodontitis conditions with the 

hyperglycaemic associated AGE increases observed in diabetes (high HSA-AGE pre-

conditioning and high HSA-AGE supplemented growth media) as well as HSA-C control 

biofilms ( and  Figure 5.4 –HP and C respectively).  

Biofilms were maintained as described previously and pegs harvested at days 7 and 14 

(section 2.13). Following day 7 harvests, biofilms contained Actinomyces, 

Streptococcus, anaerobes, facultative anaerobes and Gram-negative anaerobes under 

all conditions. Lactobacilli were only within detectable ranges under some conditions, 

particularly in biofilms grown following peg pre-conditioning with low HSA-AGE 

concentrations ().  

When comparing the prevalence of each bacterial group in the biofilms as a 

consequence of pre-conditioning, a significant decrease in facultative anaerobe counts 

was observed in pegs pre-conditioned with high HSA-AGE concentrations and grown in 

medium supplemented with 100 µg/mL HSA-AGE or HSA-C compared with 

unsupplemented SM (, row 2). This suggest that the combination of pre-conditioning with 

high HSA-AGE and the presence of HSA-AGE in the growth media decreases facultative 

aerobe growth. When pegs were pre-conditioned with low HSA-AGE concentrations a 

significant decrease in facultative aerobes was observed in biofilms grown with medium 

supplemented with HSA-C compared with low HSA-AGE and SM (, row 1). This suggests 

that when HA pegs are pre-conditioned with health associated HSA-AGE concentrations, 

the addition of HSA-C to the growth media hinders facultative anaerobe growth. 

Contrastingly, pegs pre-conditioned with HSA-C control, showed no difference in biofilm 

bacterial profiles regardless of growth medium conditions (, row 3). This suggests that at 

day 7, the pre-conditioning of HA pegs with HSA-AGE (both at health and 

hyperglycaemia mimicking concentrations) may impact long term biofilm composition 

and in particular alter the abundance of facultative anaerobes and perhaps Lactobacilli.  

To determine the impact growth medium had on day 7 biofilm composition, changes in 

viable counts as a consequence of growth media were compared over different pre-

conditioning (, columns). The only differences observed were in abundances of 
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facultative anaerobes. A dose dependent increase was observed in facultative 

anaerobes of biofilms grown on HA pegs pre-conditioned with HSA-AGE and grown in 

SM (*, , column 1). This suggests pre-conditioning of pegs with HSA-AGE selects for 

facultative anaerobes in day 7 biofilms. However, a significant decrease was observed 

in facultative anaerobe viable counts in biofilms grown on HSA-AGE pre-conditioned 

pegs compared with HSA-C control pre-conditioned pegs grown in media supplemented 

with high concentrations of HSA-AGE (*, , column 3).  

Biofilms harvested at day 14 (Figure 5.4) showed a general increase, across all 

conditions, in viable counts of Actinomyces, anaerobes and facultative anaerobes 

compared with biofilms harvested at day 7 (). In addition, Lactobacilli were observed in 

biofilms grown under more conditions at day 14 compared with day 7 (Figure 5.4 and ). 

When comparing abundances of the different bacterial groups across different 

conditions, significant changes were only observed in facultative anaerobes. Different 

growth media only affected facultative anaerobe growth in biofilms cultivated on low 

HSA-AGE pre-conditioned pegs (Figure 5.4, row 1). Comparisons of day 14 biofilms from 

HA pegs with different pre-conditionings resulted in differences only in facultative 

anaerobes; significantly higher in biofilms grown on pegs pre-conditioned with high HSA-

AGE and grown under high HSA-AGE conditions (*, Figure 5.4). 

Although pre-conditioning of pegs with HSA-AGE (both high HSA-AGE and low HSA-

AGE at day 7, and low HSA-AGE at day 14) appears to impact facultative anaerobe 

growth in biofilms it is difficult to ascertain the role the growth medium has on these 

changes. Particularly when considering comparisons of biofilms representing 

consequences of hyperglycaemia and increased serum levels associated with 

periodontitis (HP) to those representing periodontitis serum levels alone (P) and controls 

(C) at day 7 and day 14 showed no significant differences in any bacterial group. This is 

possibly due to the limited nature of using selective media counts to determine biofilm 

composition.  
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    Figure 5.3: Proportion of selected genera and groups of bacteria in day 7 biofilms. Colony forming units (CFUs) on selective media for biofilms grown 

anaerobically following incubation of HA pegs with pooled saliva, plaque and tongue scrapings inoculum for 7 days. Results are presented as average 

counts ± standard deviation and represent 3 experiments with 6-8 biofilms harvested per experiment. Symbols represent significance in changes associated 

with pre-conditioning, lines represent significance associated with growth media (two-way ANOVA, Tukey, p < 0.05). HSA-AGE: human serum albumin-

advanced glycation end product, HSA-C: human serum albumin-control, C: HSA-C control biofilm, P: biofilm representing increased serum observed in 

periodontitis with health associated HSA-AGE concentrations, HP: biofilm representing periodontitis and diabetes associated HSA-AGE concentrations. 
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Figure 5.4: Proportion of selected genera and groups of bacteria in day 14 biofilms. Colony forming units (CFUs) on selective media for biofilms 

grown anaerobically following incubation of HA pegs with pooled saliva, plaque and tongue scrapings inoculum for 14 days. Results are presented as 

average counts ± SD and represent 3 experiments with 6-8 biofilms harvested per experiment. Symbols represent significance in changes associated 

with pre-conditioning, lines represent significance associated with growth media (two-way ANOVA, Tukey, p < 0.05). HSA-AGE: human serum albumin-

advanced glycation end product, HSA-C: human serum albumin-control, C: HSA-C control biofilm, P: biofilm representing periodontitis, HP: biofilm 

representing periodontitis and hyperglycaemia.    
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5.2.2. Next generation sequencing analysis of complex biofilms  

5.2.2.1. Taxonomical analysis of complex biofilms 

5.2.2.1.1. Sample richness, sample relatedness and biofilm composition at a 

phylum level 

In addition to analysis of biofilm composition using culture methods, a more 

comprehensive analysis of inocula, early (day 2) and mature (day 14) biofilms, was 

carried out using NGS (section 2.5). Results were pre-processed (section 2.6) prior to 

separation of reads into rDNA and DNA. rDNA reads were analysed following the QIIME 

pipeline (section 2.6.1) while short DNA reads were de novo-assembled to form DNA 

contigs and analysed used MEGAN (section 2.6.2). All analysis was limited to bacterial 

reads only. Taxonomic composition of the biofilms was analysed using the operational 

taxonomic unit (OTU) counts based on alignments against the human oral microbiome 

database (HOMD) for rDNA reads and NCBI non-redundant protein databases for DNA 

contigs (section 2.6.1 and 2.6.2).  

As an initial analysis step, alpha diversity of samples was carried out to determine if 

differences in richness (or the number of taxa in each sample) changed over time and 

under different growth conditions (Figure 5.5). Inoculum and early (day 2) biofilms were 

richer in taxa compared with mature biofilms (day 14). This is particularly evident when 

rDNA reads were used for alpha diversity measures (Figure 5.5A). When using DNA 

contigs for calculations, the results indicate a similar trend but with more variation in the 

diversity of mature biofilms (Figure 5.5B). The higher richness in early (day 2) biofilms 

compared with mature (day 14) biofilms is likely to be due to inocula including samples 

from many aspects of the mouth (including hard and soft oral tissues) and as such 

containing a plethora of bacteria, that although initially may colonise the HA pegs or have 

the potential to colonise, do not survive the growth conditions (pH, nutrient availability, 

oxygen levels etc) imposed in this system.  

Alpha diversity measures based on DNA contigs from (day 2) biofilm samples are higher 

using some calculation methods (Shannon, Simpson and Inverse Simpson) for HSA-C 

control biofilms but this did not reach significance (two-way ANOVA, Tukey, p > 0.05) 

(Figure 5.5B). This suggests pre-conditioning of HA pegs did not alter the early 

colonisation. Similar results were observed when using rDNA reads for alpha diversity 

measures (Figure 5.5A). In mature biofilms (day 14) no pre-conditioning/growth medium 

dependent patterns were evident in richness of biofilms.   
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Figure 5.5: Alpha diversity of inoculum for complex biofilms, early biofilms (day 

2) and mature biofilms (day 14). (A) Alpha diversity measures calculated based on 

rDNA alignments. (B) Alpha diversity measures calculated based on DNA contig 

alignments. Results represent 3 experiments with 6-8 biofilms harvested per 

experiment. HSA-AGE: human serum albumin-advanced glycation end product, HSA-

C: human serum albumin-control, C: HSA-C control biofilm, SM: serum medium. 
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Principle coordinate analysis (PCoA) with Bray-Curtis dissimilarity plots were generated 

for comparison of sample relatedness. These results indicate that bacteria colonising 

pegs pre-conditioned with low HSA-AGE concentrations clustered loosely together and 

independently of bacteria colonising pegs pre-conditioned with high HSA-AGE 

concentrations and HSA-C (Figure 5.6). In addition, inoculum, early (day 2) biofilms and 

mature (day 14) biofilms all clustered independently of each other. This clustering was 

observed for both rDNA and DNA contig based analysis. Together these data suggest 

that communities from the inoculum, those able to colonise and those able to survive in 

a mature biofilm are all relatively different to each other.  

Following analysis of sample relatedness, taxonomic composition at a phylum level using 

OTU counts from both rDNA and DNA contigs were analysed. Results are presented as 

percentage relative abundances (abundance of each OTU relative to all OTUs in each 

sample) to allow for a more accurate comparison between samples (Figure 5.7).  

Relative percentage abundances based on rDNA reads indicate inocula consisted 

predominantly of Firmicutes, Bacteroidetes and Proteobacteria with a smaller 

percentage of Actinobacteria and Fusobacteria accounting for a large portion of the 

remainder of the biofilm (Figure 5.7A). Following the two-day incubation of inoculum with 

HA pegs the predominance of Proteobacteria increased with a parallel decrease in 

Bacteroidetes when pegs were pre-conditioned with low HSA-AGE. However, pegs pre-

conditioned with high HSA-AGE or HSA-C resulted in phylum profiles similar to inoculum 

profiles. In mature biofilms (day 14) percentage of Proteobacteria and Fusobacteria 

decreased while percentage of Synergistetes increased. This was regardless of pre-

conditioning and growth media. 

Analysis of OTUs based on DNA contigs had similar trends to that described for rDNA 

(Figure 5.7B). Although similar in patterns of relative abundances, a higher prevalence 

of Actinobacteria and Fusobacteria was observed. Spirochaetes, which were almost 

undetectable when using rDNA were observed at higher percentages when using DNA 

contigs, but only in mature biofilms (day 14). In addition, lower abundances of 

Proteobacteria were observed in analyses of inoculum and early biofilms (day 2) using 

DNA contigs, but higher percentages were seen in mature biofilms (day 14) compared 

with analysis based on rDNA reads. As well as the changes in the most abundant phyla, 

DNA contig based analysis also allowed the detection of less prevalent phyla such as 

Chlamydiae, Cynobacteria, Tenericutes and others.   
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Figure 5.6: Principal component of analysis inoculum for complex biofilms, 

colonisation biofilms (day 2) and mature biofilms (day 14). (A) Plot for taxonomic 

clustering of inoculum/biofilms at a species level based on rDNA reads. (B) Plot for 

taxonomic clustering of inoculum/biofilms at a species level based on DNA contigs. 

Results represent 3 experiments with 6-8 biofilms harvested per experiment. HSA-

AGE: human serum albumin-advanced glycation end product, HSA-C: human serum 

albumin-control, C: HSA-C control biofilm, SM: serum medium. 

 



Chapter 5 – Complex biofilm model  
 

174 
 

 

5.2.2.1.2.  

5.2.2.1.3. Taxonomic composition of early (day 2) biofilms at a genera level 

Figure 5.7: Relative percentage abundance of OTUs in inoculum, colonisation 

and mature biofilms. (A) Taxonomic percentage abundances based on rDNA reads. 

(B) Taxonomic percentage abundances based on DNA contigs. Results represent 3 

experiments with 6-8 biofilms harvested per experiment. HSA-AGE: human serum 

albumin-advanced glycation end product, HSA-C: human serum albumin-control, C: 

HSA-C control biofilm. 
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Considering comparisons between the various biofilms remained relatively unchanged 

between rDNA and DNA contig based taxonomical analysis, the detection of more phyla 

using the DNA contig method, and increased accuracy in using DNA based alignment 

methods (rather than rDNA/16S alignment methods) for metagenomics, DNA contigs 

were used for a more in-depth analysis of the taxonomy.   

To get a clearer understanding of the changes in biofilm composition associated with 

pre-conditioning, OTU counts for both the inoculum and early (day 2) biofilms were 

analysed at a genera level, limited to the top 50 most abundant and excluding any 

unclassified taxa (Figure 5.8). The results indicated that Streptococcus accounted for the 

majority of the inoculum, followed by Prevotella, Veillonella and Actinomyces (Figure 

5.8A).  

Although Streptococcus was the most prevalent genus found in the inoculum accounting 

for approximately 17% of the genera present, following colonisation and growth on 

control pegs (pre-conditioned with HSA-C) and low HSA-AGE pegs, only between 9.5 

and 11% of the early (day 2) biofilm were composed of Streptococcus (Figure 5.8A and 

Figure 5.8B). While prevalence of Streptococcus decreased in early (day 2) biofilms 

grown on high HSA-AGE pegs compared with the inoculum (decreasing to approximately 

15%), the decrease was less than that seen under low HSA-AGE and control conditions. 

This perhaps suggests that in biofilms cultivated on high HSA-AGE pre-conditioned 

pegs, Streptococcus was able to colonise and grow more efficiently than under low HSA-

AGE and control conditions. Prevotella appeared to follow a similar trend, but with lower 

abundances in all conditions compared with Streptococcus.  

Prevalence of Veillonella decreased from approximately 8% in the inoculum to 

approximately 6% of control and high HSA-AGE early (day 2) biofilms (Figure 5.8A and 

Figure 5.8B). Interestingly, under low HSA-AGE conditions, early (day 2) biofilms had a 

decrease in Veillonella to approximately 3%. This perhaps suggests that while high 

concentrations of HSA-AGE do not impact colonisation compared with the control, low 

concentrations of HSA-AGE hinder Veillonella adherence to pegs pre-conditioned with 

health associated concentration of HSA-AGE (Figure 5.8B). In addition to the potential 

direct effects of HSA-AGE, it is possible that low HSA-AGE concentrations encourage 

the adherence or growth of other bacterial species which in turn hinder the growth of 

Veillonella.  In contrast, Actinomyces appeared to be unaffected by pre-conditioning and 

decreased to approximately the same relative abundance in all three pre-conditioning 

groups compared with the inoculum. Similarly, Fusobacterium was observed at 

comparable percentages in low HSA-AGE early (day 2) biofilms and control early (day 
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2) biofilms to those seen in the inoculum, but growth appeared to be hindered by higher 

concentrations of HSA-AGE.  

While the abundances of some genera decreased in early (day 2) biofilms compared 

with inocula, an increase in abundances was observed with other genera (Figure 5.8B). 

For example, relative percentage abundance of Neisseria increased from approximately 

2.5% seen in the inoculum to approximately 5% in biofilms grown on pegs pre-

conditioned with HSA-AGE and 3.5% in control pegs. This perhaps suggests HSA-AGE 

encourages colonisation of Neisseria in both HSA-AGE concentrations.  

In some cases, genera not observed at all in the top 50 genera of the inoculum were 

detected in early (day 2) biofilms (Figure 5.8B). These include Selenomonas¸ 

Campylobacter, Catonella and Oribacterium. In all four cases, abundances were higher 

in low HSA-AGE early (day 2) biofilms with few differences observed between HSA-C 

and high HSA-AGE early (day 2) biofilms perhaps suggesting low HSA-AGE 

concentrations produced conditions to encourage early colonisers either directly 

(producing binding sites or nutrients) or indirectly (encouraging binding/growth of 

bacteria which in turn produce conditions for binding or growth).  

To determine if changes observed reached significance, differential abundances of 

genera and species were plotted as log2 fold change between groups, with significance 

determined using a Wald test (p < 0.1) and Benjamini-Hochberg adjusted p-value 

(section 2.6). The plots show genera in low HSA-AGE early (day 2) biofilms (Figure 5.9) 

and high HSA-AGE early (day 2) biofilms (Figure 5.9B) which are found at higher or lower 

abundances compared with HSA-C. Differential abundances of genera in high HSA-AGE 

early biofilms compared with low HSA-AGE early (day 2) biofilms were also plotted 

(Figure 5.9C). As described previously, a lower abundance of Streptococcus, Veillonella 

and Prevotella was observed in low HSA-AGE early (day 2) biofilms compared with 

control (Figure 5.8B and Figure 5.9A). Interestingly, despite a lack of obvious difference 

in overall Actinomyces genera percentages (Figure 5.8A), certain species were found to 

have significantly lower abundance in low HSA-AGE early (day 2) biofilms compared 

with HSA-C control biofilms. In addition, a series of lower abundant genera (not in the 

top 50) were shown to be significantly decreased in low HSA-AGE early (day 2) biofilms 

compared with control early (day 2) biofilms. The results also indicated a significant 

increase in species from Neisseria, Catonella, Campylobacter and Fusobacterium 

(Figure 5.9A).  

When looking at genera in high HSA-AGE early (day2) biofilms compared with control 

biofilms fewer significant differences were observed (Figure 5.9B). Interestingly, species 
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from the Treponema genus were shown to be significantly decreased in high HSA-AGE 

early biofilms in comparison to control early biofilms. This decrease was also seen with 

T. denticola; a species generally associated with periodontitis. Contrastingly, P. 

intermedia (also associated with periodontitis) appeared to be increased in prevalence.     

The differences in biofilm composition of low HSA-AGE early (day 2) biofilms to high 

HSA-AGE early (day 2) biofilms were also analysed (Figure 5.9C). There was a 

significant decrease in the abundance of Treponema, Campylobacter, Fusobacterium, 

Haemophilus and Neisseria in biofilms cultivated on pegs pre-conditioned with high HSA-

AGE compared with biofilms grown on pegs pre-conditioned with low HSA-AGE, but a 

significant increase in the abundances of Veillonella, Streptococcus, Prevotella and 

Actinomyces. This was of particular interest given the association of the observed 

decreased species with periodontitis progression (section 1.1.2) and suggests that high 

HSA-AGE concentrations select for genera associated with periodontal health (such as 

Streptococcus and Actinomyces).  
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Figure 5.8: Relative percentage abundance of top 50 genera in inoculum (A) for 

complex biofilms and early (day 2) biofilms (B). Results represent 3 experiments with 

6-8 biofilms harvested per experiment. HSA-AGE: human serum albumin-advanced 

glycation end product, HSA-C: human serum albumin-control, C: HSA-C control biofilm. 
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Figure 5.9: Differential abundance of genera in early (day 2) biofilms. Results 

represent 3 experiments with 6-8 biofilms harvested per experiment. HSA-AGE: human 

serum albumin-advanced glycation end product, HSA-C: human serum albumin-control, 

C: HSA-C control biofilm, P: biofilm representing increased serum observed in 

periodontitis with health associated HSA-AGE concentrations, HP: biofilm representing 

periodontitis and diabetes associated HSA-AGE concentrations.    
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Figure 5.9A: Differential abundance of genera in low HSA-AGE early (day 2) biofilms compared with control HSA-C early (day 2) biofilms. 

Results represent 3 experiments with 6-8 biofilms harvested per experiment. HSA-AGE: human serum albumin-advanced glycation end product, 

HSA-C: human serum albumin-control, C: HSA-C control biofilm. 
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Figure 5.9B: Differential abundance of genera in high HSA-AGE early (day 2) biofilms compared with control HSA-C early (day 2) biofilms. 

Results represent 3 experiments with 6-8 biofilms harvested per experiment. HSA-AGE: human serum albumin-advanced glycation end product, 

HSA-C: human serum albumin-control, C: HSA-C control biofilm. 
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Figure 5.9C: Differential abundance of genera in high HSA-AGE early (day 2) biofilms compared with low HSA-AGE early (day 2) biofilms. 

Results represent 3 experiments with 6-8 biofilms harvested per experiment. HSA-AGE: human serum albumin-advanced glycation end product, 

HSA-C: human serum albumin-control, C: HSA-C control biofilm. 
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5.2.2.1.4. Taxonomic composition of mature (day 14) biofilms 

Other biofilms were allowed to reach maturity prior to harvesting at day 14 (mature 

biofilms) and analysis using NGS. As with early (day 2) biofilms, for clarity, analysis was 

limited to the top 50 most abundant genera (Figure 5.10). The results appear to show 

limited differences in mature (day 14) biofilm composition. Differences observed were 

minor with the most obvious being those seen in abundances of Porphyromonadaceae, 

Synergistaceae and Peptostreptococcaceae families.  

Differential abundances were plotted as described previously to determine significant 

differences in mature biofilms (section 2.6). Biofilms representing consequences of 

hyperglycaemia and increased serum levels associated with periodontitis (HP) and 

biofilms representing periodontitis serum levels alone (P) were compared with control 

biofilms (C) (Figure 5.10A and Figure 5.10B). In addition, HP biofilms were compared 

with P mature (day 14) biofilms (Figure 5.10C). Lower concentrations of HSA-AGE 

encouraged the growth of some periodontitis associated genera (including 

Campylobacteria, Treponema, Porphyromonas and Fusobacterium) when compared 

with HSA-C control mature (day 14) biofilms and hindered the growth of Streptococcus 

(Figure 5.10A). On the other hand, HP mature (day 14) biofilms showed significantly 

higher prevalence of Prevotella salivae while other members of the Prevotella genera (P. 

oralis, P. intermedia) were observed at a lower abundance compared with C mature (day 

14) biofilms (Figure 5.10B). In addition, HP biofilms compared with C biofilms indicated 

that a higher concentration of HSA-AGE significantly hindered the growth of T. denticola, 

Porphyromonas catoniae, Porphorymonas endodontalis and Fusobacterium equinum 

while encouraging the growth of various Veillonella species (genera generally associated 

with a healthy periodontium), Campylobacter concisus, Porphyromonas sp oral taxon 

279, F. nucleatum and Haemophilus parainfluenzae (Figure 5.10B).  

29 species (including Fusobacterium periodonticum, Haemophilus influenza, T. 

denticola¸T. forsythia and various Porphyromonas species) were lower in abundance in 

HP biofilms and 24 species (including Veillonella, Prevotella and Streptoccocus species) 

had increased prevalence. As with early (day 2) biofilms, the presence of higher HSA-

AGE concentration in the pre-conditioning of pegs and during biofilms growth selected 

for genera associated with periodontal health (such as Streptococcus and Veillonella), 

while hindering growth of species typically associated with severe periodontitis (T. 

forsythia and T. denticola). 
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Figure 5.10: Relative percentage abundance of top 50 genera in mature (day 14) biofilms. 

Results represent 3 experiments with 6-8 biofilms harvested per experiment. HSA-AGE: 

human serum albumin-advanced glycation end product, HSA-C: human serum albumin-

control, C: HSA-C control biofilm, P: biofilm representing increased serum observed in 

periodontitis with health associated HSA-AGE concentrations, HP: biofilm representing 

periodontitis and diabetes associated HSA-AGE concentrations.    
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Figure 5.11: Differential abundance of genera in mature biofilms (day 14). 

Results represent 3 experiments with 6-8 biofilms harvested per experiment. HSA-

AGE: human serum albumin-advanced glycation end product, HSA-C: human serum 

albumin-control, C: HSA-C control biofilm, P: biofilm representing increased serum 

observed in periodontitis with health associated HSA-AGE concentrations, HP: 

biofilm representing periodontitis and diabetes associated HSA-AGE concentrations.    
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Figure 5.11A: Differential abundance of genera in low HSA-AGE mature (day 14) biofilms compared to control HSA-C mature (day 14) 

biofilms. Results represent 3 experiments with 6-8 biofilms harvested per experiment. HSA-AGE: human serum albumin-advanced glycation end 

product, HSA-C: human serum albumin-control, C: HSA-C control biofilm. 
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Figure 5.11B: Differential abundance of genera in high HSA-AGE mature (day 14) biofilms compared to control HSA-C mature (day 14) 

biofilms. Results represent 3 experiments with 6-8 biofilms harvested per experiment. HSA-AGE: human serum albumin-advanced glycation end 

product, HSA-C: human serum albumin-control, C: HSA-C control biofilm. 
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Figure 5.11B: Differential abundance of genera in high HSA-AGE mature (day 14) biofilms compared to low HSA-AGE mature (day 14) 

biofilms. Results represent 3 experiments with 6-8 biofilms harvested per experiment. HSA-AGE: human serum albumin-advanced glycation end 

product, HSA-C: human serum albumin-control, C: HSA-C control biofilm. 
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5.2.2.2. Metagenomics functional analysis of complex biofilms 

In addition to the above described taxonomic analysis, determination of overall functional 

profile of the microbiota in these environments was also established. Short DNA reads 

were assembled into contigs prior to being aligned against the NCBI non-redundant 

protein database. The resulting protein assignments were then annotated using SEED 

and EggNOG (section 2.6).  

As with taxonomical analysis, a PCoA using the Bray-Curtis distribution was carried out 

for counts based on both SEED and EGGNOG functions. PCoA using both databases 

indicate distinct clustering of inocula, early (day 2) biofilms and mature (day 14) biofilms 

with no discernible patterns between different pre-conditionings and growth media 

(Figure 5.12). Furthermore, no significant differences in functional profiles (Wald test, p 

< 0.1) were observed between the various early (day 2) biofilms and the mature (day 14) 

biofilms (Figure 5.14 and Figure 5.13).  
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Figure 5.12: Principal component of analysis inoculum for complex biofilms, early 

biofilms (day 2) and mature biofilms (day 14) based on functional profiles. (A) Plot 

for functional clustering of inoculum/biofilms based on SEED profiles. (B) Plot for 

functional clustering of inoculum/biofilms based on EggNOG profiles. HSA-AGE: human 

serum albumin-advanced glycation end product, HSA-C: human serum albumin-control, 

HA: hydroxyapatite. 
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Figure 5.13: Functional analysis of inoculum, colonisation (day 2) and mature (day 

14) biofilms using SEED database for annotations. Results represent 3 experiments 

with 6-8 biofilms harvested per experiment. HSA-AGE: human serum albumin-advanced 

glycation end product, HSA-C: human serum albumin-control, C: HSA-C control biofilm. 
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Figure 5.14: Functional analysis of inoculum, colonisation (day 2) and mature (day 

14) biofilms using EggNOG database for annotations. Results represent 3 experiments 

with 6-8 biofilms harvested per experiment. HSA-AGE: human serum albumin-advanced 

glycation end product, HSA-C: human serum albumin-control, C: HSA-C control biofilm. 
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5.2.3. Co-culture experiments  

In addition to investigating the impact of HSA-AGE on complex biofilm models, the 

inflammatory response of TIGK cells to complex mature (day 14) biofilms was also 

tested. As a proof of principle study, co-cultures of biofilms with TIGK cells were carried 

out as described previously (section 2.14.1) and TIGK cell ROS and cytokine/chemokine 

release measured. The cytotoxic effect of biofilms on TIGK cells was also analysed 

(section 2.14.2). Biofilms were either suspended above a monolayer of TIGK cells with 

no direct contact between intact biofilms on the HA peg and TIGK cells (no direct contact) 

or placed directly on top of TIGK monolayer cells (direct contact) (Figure 2.13).   

It is important to note that the proof of principle co-cultures described below, utilise 

biofilms cultured using a single inoculum and as such only represent one biological 

replicate. While differences are observed, repeats are required for significance 

calculations.  

5.2.3.1. Analysis of cytokine/chemokine release from TIGK cells in response to 

co-cultures with biofilms  

5.2.3.1.1. Cytokine/chemokine release following uncolonised HA peg-TIGK cell 

co-cultures 

Inocula used to grow biofilms for NGS analysis were used to grow biofilms in parallel to 

determine use of the complex biofilms in co-culture experiments for the analysis of 

cytokine/chemokine release from TIGK cells. Biofilms were cultured with TIGK cells, with 

the addition of either 100 µg/mL HSA-AGE (as a representation of the consequence of 

hyperglycaemia) or 100 µg/mL HSA-C to TIGK culture media. The subsequent release 

of IL-8, IL-6 and IL-1β were analysed (section 2.4).  

To determine TIGK levels of cytokine/chemokine release in response to HA pegs, 

uncolonised pegs were co-cultured with TIGK cells with and without direct contact, in the 

presence of HSA-AGE, HSA-C or unsupplemented culture media (Figure 5.15). IL-8 

concentrations were generally increased when cells were cultured with direct HA peg 

contact compared with cell cultured with no contact (Figure 5.15, row 1). However, no 

obvious differences were observed in concentrations as a consequence of HSA-AGE or 

HSA-C addition to the culture media. Interestingly, concentrations of IL-8 following peg-

TIGK co-culture with HA-peg contact were more comparable to results from previous 

experiments examining TIGK IL-8 release in response to varying concentrations of HSA-

AGE or HSA-C (section 3.2.4). Similarly, IL-6 was also observed at increased 

concentrations with direct TIGK-peg contact compared with no contact (Figure 5.15, row 

2), however, the differences were less evident and no obvious differences were observed 

upon supplementation of the culture medium. Concentrations of IL-6 from TIGK cells in 
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the presence of HA pegs (with or without direct contact) were higher compared with those 

observed previously in TIGK cultures with HSA-AGE or HSA-C alone (section 3.2.4). 

Contrastingly, IL-1β appeared decreased in cells with direct peg contact compared with 

pegs without direct contact (Figure 5.15, row 3). It is important to note that concentrations 

of IL-1β were below 1 pg/mL and therefore below the accurate detection limit of the 

ELISA assay. These low IL-1β concentrations were observed previously following 

exposure of TIGK cells to varying concentrations of HSA-AGE and HSA-C (section 

3.2.4).  

The concentrations of cytokine/chemokines with HA pegs were considered as blank 

controls and show the basal level of cellular cytokine/chemokine releases in response to 

the presence of the pegs (in non-contact conditions) while pegs with direct contact also 

account for the cellular responses associated with cellular damage caused by the 

pressure of the peg.  
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Figure 5.15: Inflammatory response of TIGK cells in response to hydroxyapatite 

coated pegs. Cytokine/chemokine release from TIGK cells cultured with hydroxyapatite 

(HA) pegs either suspended above cell monolayer (no direct contact) or placed directly 

on TIGK monolayer (direct contact). Results are presented as means ± SD and represent 

1 experiment and 3-4 harvested biofilms.  
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5.2.3.1.2. IL-6 release following biofilm-TIGK cell co-cultures 

Biofilms were generated as described previously (section 2.13) under different 

conditions. After 14 days the mature biofilms were co-cultured with TIGK cells in culture 

media supplemented with 100 µg/mL HSA-AGE or HSA-C (section 2.14) and the 

resulting cytokine/chemokine release analysed (section 2.14.1).  

Biofilms suspended above a monolayer of cells (no direct biofilm-TIGK contact) could 

potentially decrease IL-6 production, as indicated by a decrease from 225.65 ± 87.19 – 

298.86 ± 117.65 pg/mL in HA peg controls (Figure 5.15A, row 2) to below 10 pg/mL 

(Figure 5.16A) regardless of peg pre-conditioning and biofilm growth conditions. In all 

biofilm-TIGK co-cultures, concentrations of IL-6 were very low with some co-cultures 

resulting in undetectable levels of IL-6. While IL-6 was detected following co-culture of 

TIGK cells with biofilms cultured on pegs pre-conditioned with HSA-C and low HSA-AGE, 

concentrations were low with large variations (as indicated by SD error bars of technical 

replicates). As such, IL-6 release following no direct biofilm-TIGK contact appeared to 

have little differences between the different biofilm types or upon supplementation of 

culture media with HSA-AGE or HSA-C.  

In contrast, co-cultures with direct biofilm-TIGK contact (Figure 5.16B) resulted in higher 

concentrations of IL-6 than co-cultures without direct biofilm-TIGK contact (Figure 

5.16A). However, the decreases observed following both co-culture methods were 

proportional, owing to the higher basal IL-6 concentrations in co-cultures with direct 

biofilm-TIGK contact (Figure 5.15, row 2). This suggests that a proportion of IL-6 release 

following biofilm-TIGK direct contact co-cultures could be due to the pressure and 

potential cellular damage/stress associated with the contact. Similar to results obtained 

from co-cultures without any direct biofilm-TIGK contact, IL-6 concentrations did not 

appear to be altered in the presence of HSA-AGE or HSA-C supplemented TIGK culture 

media, regardless of the type of biofilm used for biofilm-TIGK co-culture.  

Upon comparison of direct contact biofilm-TIGK co-cultures with biofilms representing 

the consequence of hyperglycaemia and serum condition of periodontitis (HP) to HSA-

C control biofilms (C), lower concentrations of IL-6 were observed (Figure 5.16B). 

Moreover, IL-6 concentration following direct contact biofilm-TIGK co-cultures with 

biofilms representing serum conditions of periodontitis alone (P) appear lower than those 

observed in C co-cultures regardless of culture medium supplementation (Figure 5.16B). 

Comparisons of co-cultures with HP and P biofilms, potentially show higher IL-6 

concentrations in HP. These data suggested that P and HP biofilms are able to supress 

IL-6 release by TIGK cells independently of HSA-AGE or HSA-C in TIGK culture media, 
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when compared with C biofilm co-cultures and HA peg controls. Furthermore, HP 

biofilms seem unable to decrease IL-6 concentrations to the same extent as P biofilms. 

5.2.3.1.3. IL-8 release following biofilm-TIGK cell co-cultures 

Following biofilm-TIGK co-culture without any direct biofilm-TIGK contact, IL-8 release 

was observed at lower concentrations, with ranges from 0 to 42.93 ± 8.73 pg/mL (Figure 

5.17A), in comparison to matched uncolonised HA peg controls (ranging from 100 ± 

67.21 – 125.81 ± 10.74 pg/mL, Figure 5.15). The results suggested biofilm-TIGK no 

contact co-cultures with culture media supplementation have a more pronounced 

reduction in IL-8 concentrations, although no obvious differences are observed between 

HSA-AGE and HSA-C. Furthermore, IL-8 concentrations did not appear to be influenced 

by the different biofilms generated in this system (Figure 5.17A). This suggests that 

although composition of these biofilms did not alter IL-8 concentrations, co-culturing of 

TIGK cells with biofilms did decrease concentrations.  

In contrast, IL-8 concentrations following biofilm-TIGK co-cultures with direct contact 

(Figure 5.17B) resulted in a general decrease in IL-8 concentrations in comparison to 

matched uncolonised HA peg-TIGK co-cultures (Figure 5.15). In addition, no obvious 

trends were observed between different biofilm types or upon addition of HSA-AGE/HSA-

C to the culture media.  

5.2.3.1.4. IL-1β release following biofilm-TIGK cell co-cultures 

Cellular release of IL-1β following no contact biofilm-TIGK co-cultures generally 

appeared to increase, with concentrations ranging from 0 to 15.68 ± 1.76 (Figure 5.18), 

compared with uncolonised HA peg controls (where concentrations ranged from 0 to 

0.50 ± 0.45, Figure 5.15). In addition, IL-1β concentrations also differed when comparing 

concentrations across different culture media supplementation. However, this was also 

only observed in response to biofilm-TIGK co-culture with certain biofilms and there was 

no obvious indication as to the cause of the changes (Figure 5.18A).  
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Figure 5.16: IL-6 concentration following biofilm-TIGK cell co-culture. IL-6 

release following co-culture with complex biofilms without (A) and with (B) direct 

biofilm-TIGK contact and supplementation of culture media with 100 µg/mL HSA-AGE 

or HSA-C. Results are presented as averages ± standard deviation and represent 1 

experiment and 3-4 harvested biofilms. HSA-AGE: human serum albumin-advanced 

glycation end product, HSA-C: human serum albumin-control. C: HSA-C control 

biofilm, P: biofilm representing increased serum observed in periodontitis with health 

associated HSA-AGE concentrations, HP: biofilm representing periodontitis and 

diabetes associated HSA-AGE concentrations.    
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The results also suggested higher concentration of IL-1β in HP biofilms co-cultured with 

TIGK cells in the presence of HSA-AGE compared with matched C biofilms following no 

contact co-cultures (Figure 5.18A), but no obvious differences with HSA-C or 

unsupplemented culture media. Furthermore, no evident differences were observed 

between P and HP biofilms. Despite some of the differences, no discernible pattern could 

be identified. This is perhaps due to the observed concentrations of IL-1β falling at the 

lower end of the detection limit and thus resulting in more variability and less reliability.  

No obvious differences were observed in IL-1β concentrations following biofilm-TIGK co-

cultures with direct biofilm-TIGK contact. This was observed when comparing to 

uncolonised HA peg-TIGK co-cultures, as well as between concentration associated with 

different biofilm types and the addition of HSA-AGE/HSA-C to the culture media (Figure 

5.15 and Figure 5.18B). 
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Figure 5.17: IL-8 concentration following biofilm-TIGK cell co-culture. IL-8 

release following co-culture with complex biofilms without (A) and with (B) direct 

biofilm-TIGK contact and supplementation of culture media with 100 µg/mL HSA-AGE 

or HSA-C. Results are presented as means ± standard deviation and represent 1 

experiment and 3-4 harvested biofilms. HSA-AGE: human serum albumin-advanced 

glycation end product, HSA-C: human serum albumin-control. C: HSA-C control 

biofilm, P: biofilm representing increased serum observed in periodontitis with health 

associated HSA-AGE concentrations, HP: biofilm representing periodontitis and 

diabetes associated HSA-AGE concentrations.    
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Figure 5.18: IL-1β concentration following biofilm-TIGK cell co-culture. IL-β release 

following co-culture with complex biofilms without (A) and with (B) direct biofilm-TIGK 

contact and supplementation of culture media with 100 µg/mL HSA-AGE or HSA-C. Results 

are presented as means ± standard deviation and represent 1 experiment and 3-4 

harvested biofilms. HSA-AGE: human serum albumin-advanced glycation end product, 

HSA-C: human serum albumin-control. C: HSA-C control biofilm, P: biofilm representing 

increased serum observed in periodontitis with health associated HSA-AGE concentrations, 

HP: biofilm representing periodontitis and diabetes associated HSA-AGE concentrations.    
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5.2.3.2. Analysis of cell cytotoxicity and ROS release from TIGK cells in 

response to co-cultures with biofilms  

In addition to changes in cytokine/chemokine profiles in response to TIGK co-culture with 

complex biofilms cultivated under different conditions, ROS release and cytotoxicity were 

also analysed. Biofilms were generated using pooled saliva, tongue scrapings and 

supragingival plaque from three volunteers and grown under conditions representing 

hyperglycaemia associated accumulation of HSA-AGE and the increased GCF serum 

associated periodontitis (100 µg/mL HSA-AGE, high HSA-AGE biofilms), high serum 

levels associated with periodontitis only (1 µg/mL HSA-AGE and 99 µg/mL HSA-C, low 

HSA-AGE biofilms), and HSA-C control biofilms (100 µg/mL HSA-C (section 2.14.2).  

To determine ROS release following introduction of HA pegs to TIGK cells, co-cultures 

were carried out with and without direct contact (Figure 2.13). As with previous co-

cultures, these were grown in culture media supplemented with HSA-AGE or HSA-C. 

Fluorescence readings were taken as a direct measurement of ROS release (section 

2.14.2), with readings corrected using matched unstained cells to eliminate background 

fluorescence associated with TIGK cells or culture media (Figure 5.19). The results 

showed that regardless of HSA-AGE presence, basal levels of ROS released from TIGK 

cells was low, with fluorescence (Ex485/Em535) readings below 5.  

In general, higher levels of ROS were observed in co-cultures with direct uncolonised 

HA peg-TIGK contact. This trend was observed across the different culture media (Figure 

5.19). This increase in ROS in direct contact HA peg-TIGK co-cultures could potentially 

be as a consequence of cell stress associated with the pressure of the peg resting on 

the TIGK monolayer. Given that results indicate differences in ROS levels of TIGK cells 

in response to uncolonised HA pegs under different co-culture condition, fluorescence 

readings following biofilm-TIGK co-cultures were corrected to matched unstained cells 

and fold change in ROS calculated relative to fluorescence readings induced by matched 

uncolonised HA pegs 

No direct biofilm-TIGK contact co-cultures indicated an overall increase in TIGK ROS 

release, with ROS levels of between 4.27 ± 0.70 and 15.81 ± 4.76 fold higher (Figure 

5.20A) than those observed in uncolonised HA peg-TIGK co-cultures (Figure 5.19). This 

is perhaps due to the increased stress the TIGK cells are under when in the presence of 

the biofilm, despite the lack of direct contact between the biofilms and the cells. It is also 

possible that the biofilms shed bacteria during the duration of the co-culture, so that 

although the biofilm is suspended over the TIGK monolayer, there is still bacteria-TIGK 

contact. Indeed, viable bacterial cells were collected from the supernatant following co-

culture (data not shown).  
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The results also suggest high HSA-AGE biofilms had the maximum ROS release when 

culture media was supplemented with HSA-AGE (Figure 5.20A). There also appears to 

be increased ROS release in high HSA-AGE biofilm-TIGK co-cultures in HSA-AGE 

supplemented culture media when compared with all co-cultures in unsupplemented 

culture media. Together the data suggested that the combination of HSA-AGE 

supplemented culture media with biofilms grown under high HSA-AGE and serum 

conditions could increase ROS release.  
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Figure 5.19: ROS release of TIGK cells following incubation with hydroxyapatite 

pegs and co-stimulated with HSA-AGE and HSA-C. Results are presented as means 

± SD and represent 1 experiment and 3-4 harvested biofilms. HSA-AGE: human serum 

albumin-advanced glycation end product, HSA-C: human serum albumin-control, HA: 

hydroxyapatite.  
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Figure 5.20: ROS levels and % cytotoxicity following no direct biofilm-TIGK 

contact co-cultures and % LDH release of biofilms. TIGK cells were co-cultured with 

complex biofilms without any biofilm-TIGK contact in HSA-AGE or HSA-C supplemented 

culture media.  Results are presented as means ± SD and represent 1 experiment and 

3-4 harvested biofilms. HSA-AGE: human serum albumin-advanced glycation end 

product, HSA-C: human serum albumin-control, HA: hydroxyapatite. 
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In parallel to measuring ROS release, the cytotoxic effect of biofilms on TIGK cells was 

also quantified following no contact co-cultures (section 2.14.1). Absorbance readings 

correlating to LDH release were taken as a measurement of cell death, which were 

subsequently corrected to matched culture media control readings. Percentage 

cytotoxicity was calculated relative to matched chemically lysed cell preparations 

representing 100% cell death. In addition to determining percentage cytotoxicity, LDH 

release of biofilms in the absence of TIGK cells were also calculated to determine if 

changes in LDH measurements were associated with biofilms (Figure 5.20B). In general 

there appears to be no differences in % cytotoxicity/LDH release between biofilms 

cultured with cells and biofilms cultured without. This suggests that low levels of LDH are 

potentially released from biofilms. Given the overall low % cytotoxicity/LDH release and 

the lack of obvious differences between different biofilms and different co-culture media, 

it can be concluded that these biofilms did not produce a detectable cytotoxic effect in 

TIGK cells when there was no direct biofilm-TIGK contact during co-culture.  

Similarly, both TIGK ROS release and cytotoxicity were analysed following direct contact 

of biofilm-TIGK co-cultures (Figure 5.21). The results indicated an increase in ROS levels 

of TIGK cells in response to biofilms, with between 2.06 ± 0.45 and 5.48 ± 2.00 fold 

increases (Figure 5.21A) relative to uncolonised HA peg-TIGK control co-cultures 

(Figure 5.19). Interestingly, the increases in ROS levels were lower in TIGK cells co-

cultured with direct biofilm-TIGK contact (Figure 5.21A) compared with those without 

(Figure 5.20A).    

Under the direct contact co-culture conditions, ROS levels were more variable with 

higher ROS observed between co-cultures in HSA-C supplemented culture media 

compared with unsupplemented culture media (Figure 5.21A).  Furthermore, in direct 

biofilm-cell co-cultures, addition of HSA-C to the culture medium increased ROS in a 

manner that appeared to be independent of biofilm type.  

Cytotoxicity analysis of biofilm-TIGK co-cultures with direct contact resulted in increased 

cytotoxicity in HSA-C supplemented culture medium (Figure 5.21B). In particular, HSA-

C control biofilms appeared to be more cytotoxic to TIGK cells compared with low and 

high HSA-AGE biofilm co-cultured in HSA-C supplemented culture media (Figure 5.21B). 

Interestingly, when in HSA-C supplemented culture medium, uncolonised HA pegs 

appeared to be more cytotoxic to TIGK cells than co-cultures with low or high HSA-AGE 

biofilms with HSA-C supplemented culture medium (Figure 5.21B), perhaps suggesting 

in the presence of HSA-C, low and high HSA-AGE biofilms are able to decrease 

cytotoxicity.  



Chapter 5 – Complex biofilm model 

206 
 

 

Figure 5.21: ROS levels and % cytotoxicity following no direct biofilm-TIGK 

contact co-cultures and % LDH release of biofilms. TIGK cells were co-cultured with 

complex biofilms with direct biofilm-TIGK contact in HSA-AGE or HSA-C supplemented 

culture media.  Results are presented as means ± SD and represent 1 experiment and 

3-4 harvested biofilms. HSA-AGE: human serum albumin-advanced glycation end 

product, HSA-C: human serum albumin-control, HA: hydroxyapatite. 
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5.3. Discussion  

The role of AGEs in inflammatory responses of mammalian cells is reasonably well 

established but the impact the presence of AGEs has on bacterial growth is still an area 

of research in its infancy (Ljahdali and Carbonero, 2017). Given that AGEs are found to 

be increased in the GCF of diabetic patients with further increases observed in 

participants with diabetes and periodontitis, it is possible AGEs play a role in the 

progression of periodontitis associated with diabetes (Kajiura et al., 2014). The study 

described in this chapter aimed to determine if the presence of HSA-AGE altered biofilm 

composition and if these cultured biofilms can be used to analyse changes in 

inflammatory responses (cytokine/chemokine release and ROS release) when co-

cultured with oral epithelial cells (TIGK) in the presence of HSA-AGE concentrations 

representative of diabetes.  

5.3.1. Microbial analysis of complex biofilms 

This preliminary study aimed to give an insight into the role of HSA-AGE on the 

composition of the oral microbiota. The compositional analysis of the inoculum indicated 

that the collected and combined oral samples, provided a good representation of the oral 

microbiome. It is well established that Streptococcus accounts for the majority of bacteria 

in most oral habitats (Moon and Lee, 2016). This correlates with the inoculum used for 

the complex biofilm study described here. Furthermore, HMP data analysis of seven oral 

sites (buccal mucosa, hard palate, gingiva, saliva, sub- and supra-gingival plaque and 

tongue scrapings), the predominant phyla in 182-206 healthy individuals were shown to 

be Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria and Actinobacteria (Human 

Microbiome Project, 2012, Zhou et al., 2013b, Moon and Lee, 2016). The inoculum 

isolated for this study was demonstrated to be dominated by these 5 phyla thus indicating 

their appropriateness as a starting point for the growth of model oral biofilms.  

One of the aims of this modelling study was to determine if pre-conditioning of HA pegs 

with HSA-AGE altered the colonisation of bacteria on to the surface of the pegs. We 

showed differences in biofilms harvested after 2 days prior to any media changes. 

Primarily, we demonstrated significant differences in biofilm composition of pegs pre-

conditioned with high HSA-AGE compared with those with low HSA-AGE. Interestingly 

the NGS data for this comparison showed a shift in composition where genera typically 

associated with periodontitis, such as Fusobacterium, Campylobacter, Treponema and 

Haemophilus, were less prevalent while genera generally associated with periodontal 

health (including Actinomyces, Streptococcus and Veillonella) were more prevalent. This 

suggests that diabetes associated GCF HSA-AGE concentrations actually encourage 

heath associated bacteria to colonise HA pegs.  
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Differential abundances comparing high HSA-AGE and high serum (HP) early (day 2) 

and high serum only early (P) (day 2) biofilms with HSA-C control (C) early biofilms 

indicated higher concentrations of HSA-AGE select for Streptococcus and Prevotella. In 

addition, they reduce colonisation of HA pegs by genera such as Capnocytophaga and 

Campylobacter. Contrastingly, low HSA-AGE concentrations appear to selected for 

Campylobacter and Capnocytophaga and hindered the colonisation by Streptococcus 

and Prevotella. Other bacterial genera (such as Actinomyces and Rothia) appear to be 

less prevalent in early biofilms with both health and diabetes associated HSA-AGE 

concentrations compared with colonisation of pegs with only HSA-C. It is possible this is 

a consequence of HSA-C (in health and control conditions). To determine if HSA-C 

affected biofilm composition, colonisation would need to be tested without any HSA-C 

addition to the sterile saliva during the pre-conditioning step.  

In a similar manner, mature P biofilms, appeared to reflect the colonisation patterns, such 

that a combination of low HSA-AGE (1 µg/mL) with HSA-C (99 µg/mL) in both the pre-

conditioning and the growth media resulted in higher abundances of periodontitis 

associated genera (Fusobacterium and Campylobacter) when compared with HSA-C 

control alone. HP biofilms, on the other hand, appeared to significantly encourage the 

growth of health associated genera and also showed a decrease in the abundance of 

periodontitis associated genera. Again, this suggests a role for HSA-C in the changes 

seen in biofilm composition, particularly when combined with low concentrations of HSA-

AGE. This is perhaps unsurprising when considering serum, which contains high levels 

of HSA, that is, as described previously, beneficial to the growth of bacteria such as P. 

gingivalis during periodontitis.  

Due to the differences in the initial colonisation of pre-conditioned pegs which would 

impact the composition of the mature biofilm, there is the potential that the different 

concentrations of HSA-AGE are adsorbed differently onto the surface of the peg or 

interact differently with proteins originating from the sterile saliva. This in turn could affect 

the ability of bacteria to adhere and grow on the surface of the HA pegs. In addition, the 

protein rich, serum supplemented medium could have selected for species that favour 

the conditions imposed by the model.  

A previous study utilising 16S rRNA sequencing of subgingival plaque from systemically 

healthy and diabetic patients, indicated an increase in prevalence of 

Propionibacteriaceae, Tannerella and Capnocytophaga in diabetes. The study also 

reported a decrease in Prevotella (Zhou et al., 2013a). Our model, using HSA-AGE as a 

representation of hyperglycaemia consequences in diabetes, demonstrated 

contradictory abundances with increases in Prevotella and decreases in Tannerella in 

mature (14 day) biofilms with high HSA-AGE but did show an increase in 
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Propionibacterium. Casarin et al. (2013) demonstrated periodontitis subgingival plaque 

of diabetic patients with poor glycaemic control had higher abundances of some genera 

(such as Neisseria, Actinomyces, Capnocytophaga, Fusobacterium, Veillonella, 

Aggregatibacter, Selenomonas and Streptococcus) and lower abundances of others 

(including Synergistetes, Tannerella, Porphorymonas and Eubacterium). The 

hyperglycaemia consequence models presented here, however, indicates a decrease in 

Fusobacterium and no differences in other genera such as Actinomyces and Neisseria. 

The results do, however, reflect the decrease in Porphyromonas, Tanerella and the 

increase in Veillonella.  

It is difficult to directly compare the results from this model to clinical samples, due to the 

limited nature of the model which does not take into account all the biochemical 

mechanisms involved in both diabetes and periodontitis. The differences in sequencing 

methods utilised by different groups (16S rRNA VS shotgun metagenomics) adds to the 

difficulty in accurately comparing studies. It is also important to note that analysis of 

biofilms grown in a laboratory also risk the loss of bacteria which cannot be cultured 

under these conditions, causing shifts in bacterial composition so that clinical samples 

cannot be accurately compared with model biofilms. The contrasting results, do however 

highlight the limitations of a model which does not take into account the complex 

interactions between bacterial and host cells and varying growth conditions found in the 

oral cavity.  

As well as NGS analysis of biofilms, viable counts were carried out. Although differences 

in facultative anaerobes were observed under different conditions, this method not only 

groups bacteria so that establishing finer changes is difficult (particularly in facultative 

aerobes, anaerobes and gram negative anaerobes) but also causes bias when 

accounting for the broad range of bacteria that cannot be cultured in a laboratory setting 

or indeed grown independently of a biofilm. Despite this, viable counts do provide some 

information. For example, Lactobacilli which were observed in the inoculum, were unable 

to colonise the pegs and only grew in mature biofilms with limited success and in general 

were not observed under high HSA-AGE concentrations. This correlates with previous 

studies which have shown inhibition of colonic Lactobacilli growth when diets were high 

in AGEs (Hernandez et al., 2011, Seiquer et al., 2014, Hellwig et al., 2015).   

5.3.2. Inflammatory responses by TIGK cells in response to complex biofilms 

The results indicated that, despite the general decrease in TIGK IL-8 and IL-6 

concentrations in response to biofilms, limited differences were observed between P and 

HP co-cultures or in response to the addition of HSA-AGE in the culture media. In both 

cases, however, it can be concluded that concentrations of cytokines released were 
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higher when biofilms were in direct contact with the cells compared with biofilms 

suspended over a TIGK monolayer. Given the correction of results for pressure 

associated cytokine/chemokine release (uncolonised HA peg-TIGK co-cultures), this 

suggests direct contact between the biofilm initiates a heightened immune response in 

TIGK cells. The difference in concentrations following with and without contact co-

cultures also suggests bacteria shed from the biofilm cannot initiate the same 

inflammatory response as bacteria of the intact biofilm.  

Although IL-6 concentrations were decreased to the same extent in both co-culture 

methods relative to their respective uncolonised HA peg controls, the extent by which IL-

8 concentrations decreased compared with uncolonised HA peg controls was lower in 

co-cultures with direct contact compared with those without. This suggests when biofilms 

are in direct contact with TIGK cells, they decrease IL-6 concentration but do not 

markedly change IL-8 concentrations compared with uncolonised HA peg controls.  

The study hypothesised that co-culturing of biofilms with TIGK cells in HSA-AGE 

supplemented culture media would lead to altered cytokine concentrations. The results 

for both IL-8 and IL-6, however, showed minimal differences when co-culturing TIGK 

cells with biofilms. A trend was observed in direct biofilm-TIGK contact co-cultures, 

where concentrations of IL-6 were generally higher when HSA-AGE was added to the 

culture media. In addition, concentrations were higher with diabetes and periodontitis 

biofilms compared with periodontitis biofilms alone. Together this indicates a potential 

for higher IL-6 concentrations when the co-culture models high HSA-AGE concentrations 

throughout (HP biofilm-TIGK co-cultures in HSA-AGE supplemented culture media) 

compared with the low HSA-AGE model (P biofilm-TIGK co-culture in unsupplemented 

culture media) with direct biofilm-cell contact. The same trend and observations can be 

made in concentrations of IL-8 in direct biofilm-TIGK contact co-cultures.  

It is important to note, the cytokine analysis was carried out following biofilm growth with 

a single inoculum and without any replicates on separate Calgary devices and although 

biofilms were replicated on multiple pegs no true biological replicates were generated. It 

is possible with more biological replicates differences in cytokine concentrations will be 

more evident. However, the study does indicate the potential use of the model to analyse 

changes in cytokines as a consequence of co-cultures using biofilms cultured on HA 

pegs. In addition, the trends observed highlight the requirement for further analysis.   

Furthermore, the cytokine concentrations observed following HSA-C addition to the 

culture medium and their differences compared with unsupplemented culture media 

implies HSA-C impacts cytokine release by TIGK cells. It is possible that the lack of 

serum in TIGK culture media means TIGK cells are sensitive to the presence of the 
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unmodified HSA. To fully understand if this is the case, cells need to be cultured in serum 

supplemented medium and perhaps conditioned for long term culturing in serum 

supplemented media.  

Interestingly our studies demonstrated higher ROS levels in no contact HP biofilm-TIGK 

co-cultures in HSA-AGE supplemented culture media. This suggested under high HSA-

AGE conditions (for both biofilm growth and cell culture) cells released more ROS 

compared with co-cultures in unsupplemented culture media and indeed compared with 

co-culturing in HSA-AGE culture media but with P or C biofilms. There are, however, no 

differences between HSA-AGE and HSA-C media supplementation, again suggesting 

TIGK cells do respond to the presence of HSA-C. This is further confirmed in direct 

biofilm-TIGK contact co-cultures where cells cultured in the presence of HSA-C release 

higher levels of ROS compared with both HSA-AGE supplementation and no 

supplementation of the culture media.  

Cytotoxicity analysis indicated, in no contact biofilm-TIGK co-cultures, the changes 

observed in cytokine release (over-all decreases in IL-8 and IL-6 in response to biofilm 

presence) and in ROS levels were not due to cell death. In all no contact biofilm-TIGK 

co-cultures, cytotoxicity was below 5%, thus, biofilms co-cultured suspended above the 

TIGK monolayer were not toxic to the cells over the time frame tested. When co-cultured 

with direct biofilm-cell contact there appeared to be higher cellular cytotoxicity suggesting 

that these co-culture conditions caused more damage to the cells. The increase in 

cytotoxicity could go towards explaining the overall decrease in ROS release observed 

in contact co-cultures compared with no contact co-cultures as the ROS assay requires 

intracellular processing for detection. It could also potentially explain the higher IL-8 and 

IL-6 concentrations observed in contact co-cultures.  

5.3.3. Conclusion 

Although differences were observed in biofilm composition in response to HSA-AGE, the 

lack of differences in functional profiles suggests the need for a transcriptomic approach 

to fully comprehend the role of HSA-AGE in shaping the biofilm. Transcriptomics could 

help establish if changes occurring at a protein level in response to HSA-AGE altered 

the way the biofilm as a whole is functioning at the time of sampling.  

In addition, due to cellular inflammatory responses appearing to show limited differences 

between biofilm types and culture media during co-culturing, biological repeats are 

required with multiple inocula. It would also be beneficial to test inflammatory responses 

of immune cells (neutrophils) in biofilm-cell co-cultures particularly when considering 

their crucial role and high prevalence in the oral cavity (as described in detail previously).  
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The model presented here uses increase HSA-AGE to reflect long term effects of 

hyperglycaemia and as such does not fully model diabetes. Despite caveats, the model 

could give an insight into the contribution of hyperglycaemia/HSA-AGE on oral 

microbiota and help in establishing the role of AGEs in linking diabetes to periodontitis. 
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6. Preliminary feasibility study of neutrophils, chemokines/cytokines, MMPs and 

bacterial profiles in clinical samples from healthy and periodontitis 

participants  

6.1. Introduction  

Interactions between the oral microbiota and the host immune responses are in a 

delicate balance and involve complex mechanisms involving interactions between a 

variety of cells and molecules including cytokines/chemokines and adhesion molecules 

(Hajishengallis and Korostoff, 2017). The immune responses central to the maintenance 

of oral health, the dysregulation of these responses involved in the progression of 

periodontitis and the potential roles in linking diabetes to periodontitis have been 

discussed in detail in section 1.1.2.  

Of the cells involved in oral health, neutrophils play a crucial role. As described previously 

(section 1.2.1), neutrophils (a form of terminally differentiated white blood cells) are 

highly prevalent in the gingival crevice, accounting for more than 95% of leukocytes 

present and providing the first line of defence against microbial invasion of gingival tissue 

(Delima and Van Dyke, 2003, Hajishengallis and Hajishengallis, 2014, Dutzan et al., 

2016, Hajishengallis and Korostoff, 2017). Deficiencies decreasing the number of 

neutrophils (chronic or cyclic neutropenia), disorders impacting the movement of 

neutrophils (leukocyte adhesion deficiencies) or disorders compromising antimicrobial 

properties of neutrophils (such as Papillon Lefevre and morbus Kostman) exemplify the 

necessity of neutrophil homeostasis and the critical inflammatory regulation they provide 

as individuals with these conditions are more susceptible to periodontitis (Hajishengallis 

and Hajishengallis, 2014, Moutsopoulos et al., 2014, Hajishengallis and Korostoff, 2017). 

Although decreases in neutrophils in gingival tissues and the consequent impairment of 

immune regulation are associated with increased prevalence of periodontitis, neutrophils 

also play a vital role in periodontal tissue destruction when recruitment to the periodontal 

tissues is increased through improper regulation or inability to clear/control periodontitis 

associated microbial challenge (Hajishengallis and Moutsopoulos, 2014, Hajishengallis 

et al., 2015, Hajishengallis and Korostoff, 2017). Some of the central mechanisms 

involved in neutrophil associated tissue destruction in periodontitis and their potential 

roles in the diabetes-periodontitis relationship have been discussed in detail previously 

(section 1.2).  

It was, therefore, the aim of this preliminary clinical study to determine the feasibility and 

validate the methodology for the determination of systemic neutrophil migration, 

phagocytosis and respiratory burst in systemically healthy participants with and without 

periodontitis. Following this preliminary study, the long-term aim is to evaluate these 
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neutrophil functions in diabetics with and without periodontitis to determine their role in 

diabetes associated periodontitis. 

In addition, this study aimed to create a cytokine/chemokine profile based on a panel of 

nine cytokines/chemokines at both local and systemic levels in these participants. A 

bespoke panel including IL-8, IL-6, IL-1β, macrophage inflammatory protein 1α (MIP-1α), 

TNF-α, monocyte chemoattractant protein 1 (MCP-1), IL-17A, IL-17F and IL-23 was 

designed for this analysis. Some of these chemokines/cytokines (IL-8, IL-6, IL-1β and 

TNF-α) are central to immune regulation in the oral cavity and their roles in health 

maintenance, periodontitis progression and the periodontitis-diabetes relationship have 

been discussed in detail previously (section 1.2.4).   

Others (IL-17A, IL-17F and IL-23) are crucial in Th17 mediated immune responses 

(section 1.2.2) and have been demonstrated to initiate periodontitis associated bone 

resorption (Kotake et al., 1999). A particular interest was paid to IL-17A due to evidence 

demonstrating higher concentrations of IL-17A in serum, saliva and plaque of 

periodontitis patients (Awang et al., 2014). Furthermore, IL-17A+ and IL-17F+ Th17 cells 

were both observed at a higher prevalence in chronic periodontitis participants thus, IL-

17F was also included in the panel (Luo et al., 2014). However, evidence of the role of 

IL-17F in periodontitis progression is not conclusive, with a study demonstrating an IL-

17F-associated protection from periodontitis in both humans and experimental models 

(Moretti et al., 2015). In addition, given the role of these cytokines in the regulation of 

neutrophils and the potential role of neutrophils in the periodontitis-diabetes relationship, 

their inclusion in the panel was crucial for the long-term aim of analysing the 

cytokine/chemokine profiles in diabetics with and without periodontitis.  

The addition of MCP-1 to the cytokine/chemokine panel was based on the production of 

MCP-1 by a variety of cells in response to signals such as TNF-α, IL-1β and IFN-γ. 

Considering the increase in these cytokines associated with periodontitis and diabetes, 

there is a possibility that MCP-1 concentrations also increase in periodontal tissues 

during periodontitis. Indeed, MCP-1 has previously been shown to be increased at a 

gene and protein level in periodontitis (Hanazawa et al., 1993, Yu et al., 1993, Gupta et 

al., 2013). Furthermore, an animal study examining the concentration of MCP-1 in 

diabetic and periodontitis rat models showed a correlation between increased MCP-1 in 

both diabetic and periodontitis rats and increased gingival alveolar bone loss and 

inflammatory cell infiltration (Sakallioglu et al., 2008).  

Similarly, the addition of MIP-1α was based on evidence demonstrating an increase in 

salivary levels in periodontitis with higher levels associated with bone loss (Fine et al., 

2014). Furthermore, MIP1-α concentrations were shown to be higher in the GCF of 
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periodontitis patients with diabetes compared with those without diabetes regardless of 

site disease state (Duarte et al., 2014).    

Neutrophil activation, in addition to release of cytokines/chemokines also involves the 

release of MMPs which aid in neutrophil migration and microbial clearance. However, if 

MMP release is dysregulated, an increase in MMP associated tissue destruction is 

observed (Silva et al., 2015). The role of MMPs in periodontitis, their impact on tissue 

destruction and their role in linking diabetes to periodontitis has been described in detail 

previously (section 1.2.3). As well as the above-mentioned analysis, this preliminary 

study aims to quantify the concentrations of MMP8 and MMP9 as well as their inhibitor 

(TIMP1) in GCF and saliva collected from the participants.  

Finally, the intention of this preliminary study was  to establish a microbial profile based 

on genetic information recovered directly from the saliva and GCF (metagenomics) 

(Thomas et al., 2012). The metagenomic NGS data were analysed for both taxonomy 

and microbial function. This could potentially provide invaluable information on the role 

of the microbiome in the pathogenesis of periodontitis. This is of particular interest when 

considering established differences in microbial profiles in periodontitis (including 

increases in red complex bacteria) and the advancement of culture independent methods 

for bacterial identification increasing our knowledge of the bacteria involved in 

periodontitis (Hiranmayi et al., 2017). As discussed in detail previously (section 1.4) 

information regarding microbiota profiles in diabetics with and without periodontitis are 

contradictory and more study is required.  

6.2. Results 

6.2.1. Neutrophil analysis 

6.2.1.1. Migration 

Leukocyte rich plasma was isolated from whole blood of five systemically healthy 

participants with periodontitis and five without and neutrophil migration was assessed 

using the Migratest assay (section 2.7.2). Although analysis was carried out on whole 

blood, and neutrophils were not isolated, an attempt was made to gate around 

neutrophils only (cell population with higher SSC due to greater intracellular 

complexity/higher granularity) during acquisition and analysis.  

Data from all samples were acquired and analysed to quantify the number of migrated 

neutrophils, by counting the number of cells which had undergone migration as well as 

the changes in cell shape. The total number of cells that had migrated into the chamber 

was quantified, in addition their expression of L-selectin and cell size was analysed as 

indicators of activation by fMLP.  
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Neutrophils were identified and gated, followed by generation of FITC/L-selectin 

fluorescence histograms for this cell population (section 2.7.2). Thresholds were set on 

FITC histogram/L-selectin expression using non-migrated samples (samples remaining 

within the unstimulated cells inset). As show in Figure 6.1C, cells that failed to migrate 

and remained in the upper insert compartment had a higher FITC fluorescence as a 

consequence of higher L-selectin expression and, thus, more binding of the anti-L-

selectin-FITC antibody. Activated cells (Figure 6.1B), on the other hand, have shed L-

selectin and as such have a lower FITC fluorescence (Hafezi-Moghadam et al., 2001, 

Venturi et al., 2003). Unstimulated neutrophils had a proportion of cells with low L-

selectin and a proportion of cells with higher L-selectin (Figure 6.1A). Furthermore, the 

total number of neutrophils migrating in unstimulated samples was lower than those 

migrating following stimulation (Figure 6.1). 

A total count of migrated neutrophils was carried out (with counts normalised to counting 

beads as described previously) in addition to calculation of percentage of neutrophils 

with low L-selection (Figure 6.3). Changes in neutrophil size were also quantified. A 

decrease in FSC of stimulated neutrophils (Figure 6.2A and Figure 6.3C) compared with 

unstimulated neutrophils (Figure 6.2B and Figure 6.3C) was observed. This correlates 

to a decrease in cell size, a process neutrophils engage to allow more efficient movement 

through blood vessels and into tissues during infection.  

Samples from all donors were analysed for total number of migrated neutrophils, 

percentage of activated cells (as indicated by reduction in L-selectin) and neutrophil size 

(Figure 6.3). Analysis of the data in this manner allowed determination of replicability of 

the methods. When analysing the number of cells that migrated through the membrane, 

there appeared to be varying degrees of replicability in technical repeats. Samples from 

certain participants (for example, participant 2 and participant 10) show large variations 

between technical repeats in both stimulated and unstimulated samples, while samples 

from other participants (e.g. participant 1 and participant 4) show limited differences 

within their technical repeats (Figure 6.3A). When analysing the percentage of cells with 

decreased L-selectin and changes in cell shape these variations were no longer apparent 

and little difference was observed between technical replicates (Figure 6.3B and Figure 

6.3C). 

Samples were also analysed in healthy and periodontitis groups using averages of 

technical repeats. Changes within participant groups were compared for significant 

differences (two-way ANOVA, Tukey, p < 0.05) followed by comparisons of healthy and 

periodontitis participant groups (two-way ANOVA, Bonferroni, p < 0.05). 
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Figure 6.1: Representative flow cytometry data for neutrophil migration analysis. (A) Histogram showing L-selectin associated FITC against the 

number of neutrophils from unstimulated whole blood. (B) FITC histogram shows population shift to the lower L-selectin-FITC region upon neutrophil 

stimulation with fMLP. (C) Histogram for non-migrated cells remaining in the unstimulated insets (negative control).   
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Figure 6.2: Representative flow cytometry data for neutrophil size changes following migration. (A) Contour plot showing FSC/SSC from 

unstimulated whole blood. (B) Contour plot following stimulation with fMLP shows a decrease in neutrophil cell size as indicated by a decrease in FSC 

(C) Population hierarchy.  
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In healthy participants there was no significant difference in the number of cells that had 

migrated from unstimulated samples compared with stimulated samples (Figure 6.4A), 

whereas significantly more neutrophils appeared to have migrated through the insert 

upon stimulation in samples from participants with periodontitis. Interestingly there was 

no significant difference in the number of migrated neutrophils when comparing healthy 

and periodontitis participants regardless of neutrophil stimulation (Figure 6.4A). 

Although not significantly different, there appeared to be a lower number of migrated and 

non-migrated neutrophils in the unstimulated samples of periodontitis participants, 

perhaps indicating a lower total peripheral neutrophil number in periodontitis participants. 

Furthermore, the results suggest potentially more variation in the number of migrated 

neutrophils in patients with periodontitis compared with the healthy participants, 

particularly upon neutrophil stimulation. However, these observations could be a 

consequence of the small sample size and are therefore not conclusive.  

When analysing the percentage of migrated neutrophils with decreased L-selectin, there 

was a significant difference between unstimulated, stimulated and non-migrated 

neutrophils in both periodontitis and healthy participants (Figure 6.4B). As expected, a 

higher percentage of migrated neutrophils had decreased L-selectin when stimulated 

compared with unstimulated and those that remained in the insert for both groups. Upon 

stimulation, 99.54% ± 0.14 (periodontitis) and 99.79% ± 0.083 (healthy) of neutrophils 

that passed through the membrane had decreased L-selectin, thus indicating stimulation 

encouraged migration which was not impacted by periodontitis. Although no difference 

was observed in stimulated migrated neutrophil L-selectin expression between health 

and periodontitis, fewer migrated neutrophils had low L-selectin (indicative of activation) 

in unstimulated samples. This suggests a higher proportion of neutrophils in healthy 

individuals were active despite a lack of stimulation.  

During migration, in samples from healthy participants there was a significant decrease 

in cell size when neutrophils were stimulated (Figure 6.4C). Although no significant 

changes were observed in cell size of stimulated migrated neutrophils in participants with 

periodontitis compared with unstimulated neutrophils, stimulated neutrophils showed a 

decreased size compared with non-migrated neutrophils. In both healthy and 

periodontitis participants, both unstimulated and non-migrated neutrophils showed no 

significant differences in cell size.  
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Figure 6.3: Analysis of neutrophils migration by participant. (A) Total number of neutrophils that migrated through the membrane, normalised to 

the counting beads. (B) Percentage of total migrated cells with low L-selectin-FITC (C) Changes in neutrophil FSC as an indication of changes in cell 

size. 
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Figure 6.4: Migration of leukocyte in samples from healthy and periodontitis participants. (A) Total number of leukocytes that 

migrated through the insert membrane when unstimulated and stimulated with fMLP. All samples were normalised to a set of 2000 counting 

beads. (B) Percentage of migrated cells with decreased L-selectin expression. Symbols (*, **) indicate significant differences between 

groups with matching symbols. (C) Changes in leukocyte cell size as detected by change in FSC. Statistical significance was determined 

by comparing samples within groups and between groups using two-way ANOVA followed by a Tukey/Bonferroni, with significance  

p < 0.05.  
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In addition to no differences being observed in neutrophil L-selectin expression and 

number of migrated cells between healthy and periodontitis patients, there also appeared 

to be no significant differences in cell size changes when comparing the two groups, 

regardless of neutrophil stimulation. Taking both of these indicators of neutrophil 

migration/activation together, we can conclude that in this cohort, the assay provided no 

evidence of changes in neutrophil migration in periodontitis.  

6.2.1.2. Analysis of neutrophil phagocytosis 

Phagocytosis by the peripheral neutrophils from the periodontitis and healthy participants 

was also analysed. Whole blood was processed to generate LRP, and data acquired as 

previously described (section 2.7.3). As with migration analysis, neutrophils were not 

isolated specifically prior to assay but were gated and specified during analysis. 

Determination of neutrophil phagocytosis followed stimulation of neutrophils with various 

FITC labelled E. coli concentrations, so that measurement of FITC correlated with the 

amount of labelled E. coli phagocytosed by neutrophils (described in section 2.7.3). 

Thresholds for FITC were set using unstimulated samples (Figure 6.5A), such that any 

FITC fluorescence seen above the fluorescence of the unstimulated samples 

(background fluorescence), was an indication of neutrophil phagocytosis. Upon 

stimulation, a dose dependent uptake of E. coli was observed (Figure 6.5). 

As with the analysis of neutrophil migration, technical repeats of neutrophil phagocytosis 

were analysed for validation of methodology (Figure 6.6). There was limited variation 

between technical repeats when analysing the percentage of neutrophils phagocytosing 

(Figure 6.6A). This was particularly evident when cells were stimulated with 2 x 107 E. 

coli, perhaps due to the stimulation of maximum phagocytosis. Similarly, when 

measuring the mean fluorescent intensity (MFI) of phagocytosed E. coli (Figure 6.6B) as 

an indication of phagocytic activity, limited variation was observed between technical 

repeats, thus, indicating the replicability of this method.  

Participant data were then analysed according to periodontal health. The results 

indicated a significant increase in the percentage of neutrophils phagocytically active 

upon stimulation, regardless of stimulant concentration (Figure 6.7A), in both healthy and 

periodontitis participant groups. Stimulation with 2 x 107 E. coli induced maximum 

proportions of neutrophils to be phagocytically active; 97.4% ± 1.1 (healthy) and 97.71% 

± 0.83 (periodontitis), with a significant dose dependent decrease in the percentage of 

neutrophils performing phagocytosis (Figure 6.7B).
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Figure 6.5: Representative flow cytometry data for phagocytosis analysis. (A) Histogram of E. coli FITC fluorescence of unstimulated neutrophils. 

Fluorescence observed within the FITC negative region is considered background fluorescence due to lack of E. coli in samples. (B) – (D) histograms 

demonstrating FITC fluorescence associated with stimulation with 2 x 106 E. coli (B), 5 x 106 E. coli (C) and 2 x 107 E. coli  
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Figure 6.6: Analysis of neutrophil phagocytosis by participants. (A) Percentage of 

neutrophils phagocytically active as determined by the percentage of neutrophils which 

have phagocytosed FITC labelled E. coli. (B) Mean fluorescence intensity (MFI) of 

ingested FITC labelled E. coli as an indication of neutrophil phagocytic activity. 
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Figure 6.7: Phagocytosis by neutrophils in samples from healthy and periodontitis 

patients. (A) Percentage of neutrophils which had engulfed FITC labelled E. coli as an 

indication of phagocytically active neutrophils. (B) MFI of FITC labelled E. coli engulfed 

by neutrophils as an indication of neutrophil phagocytic activity. Statistical significance 

was determined by comparing samples within groups (two-way ANOVA, Tukey) and 

between healthy and periodontitis (two-way ANOVA, Bonferroni) with significance  

p < 0.05. Symbols (*, **) indicate significant differences between stimulation groups with 

matching symbols (black * indicate differences in healthy participants, grey * indicate 

differences in periodontitis participants). 
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In healthy participants, stimulation with at least 5 x 106 E. coli was required to induce 

phagocytosis sufficient to significantly increase the fluorescence of the neutrophils. In 

periodontitis participants, stimulation with 2 x 106 E. coli was sufficient to induce 

phagocytosis to significantly increase the fluorescence of the neutrophils. In addition, a 

significant dose dependent decrease in phagocytic activity was observed between the 

stimulated neutrophils.  

Along with analysis within groups, percentage of neutrophils undergoing phagocytosis 

and the phagocytic activity of these neutrophils was compared between healthy and 

periodontitis groups (two-way ANOVA, Bonferroni, p < 0.05) and in both cases no 

significant differences were observed. Similar to migration analysis, we can conclude 

that in this cohort, the assay provided no evidence of changes in neutrophil phagocytosis 

in periodontitis.  

6.2.1.3. Analysis of neutrophil respiratory burst     

Finally, neutrophil respiratory burst from whole blood of these participants was analysed. 

In a similar manner to phagocytosis analysis; LRP was generated, respiratory burst was 

activated using various concentrations of E. coli and fluorescence correlating to ROS 

dependent oxidation of DHR 123 to the fluorogenic R123 was detected at wavelength 

488 nm (section 2.7.4). As with previous assays, neutrophils were identified during 

analysis.  

An initial analysis gate was set using unstimulated samples to distinguish between R123 

negative (background fluorescence – Figure 6.8A) and R123 positive (neutrophils 

undergoing respiratory burst). An E. coli stimulation dose dependent increase was 

observed in R 123 fluorescence (Figure 6.8B-D).  

Methodology for respiratory burst was validated by ensuring replicability between 

technical repeats. Limited variation between samples from the same participant was 

observed for analysis of both the percentage of neutrophils undergoing respiratory burst 

(Figure 6.9A) and the amount of ROS generated by these neutrophils (Figure 6.9B). In 

addition to stimulation of respiratory burst by E. coli, neutrophils were also stimulated by 

PMA (which directly activates protein kinase C for downstream ROS release) and fMLP 

(which binds to its cell surface receptors to activate signalling cascades that result in 

ROS release) (Hu et al., 2011) to activate the respiratory burst independently of 

phagocytosis.  

A significant increase (two-way ANOVA, Tukey, p < 0.05) was observed in the 

percentage of neutrophils undergoing respiratory burst upon stimulation with E. coli 

(regardless of E. coli concentration) and PMA compared with unstimulated samples in 
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both healthy and periodontitis participant groups (Figure 6.10). Furthermore, a significant 

dose dependent increase in the percentage of neutrophils undergoing respiratory burst 

was observed (Figure 6.10A) but no differences were detected in the amount of ROS 

released by these neutrophils, except upon stimulation with PMA (Figure 6.10B). In both 

cases no significant differences between healthy and periodontitis groups was seen. 

In addition, a dose dependent decrease was observed in the percentage of neutrophils 

undergoing respiratory burst upon stimulation with E. coli in both groups. This was 

significant comparing stimulation with 2 x 107 E. coli and 2 x 106 E. coli, but not when 

comparing  stimulation with 2 x 107 E. coli and 5 x 106 E. coli or 5 x 106 E. coli and 2 x 106 

E. coli. This perhaps indicates that the percentage of neutrophils undergoing respiratory 

burst was at its maximum when stimulated by both   2 x 107 E. coli and 2 x 106 E. coli but 

a 10 fold reduction in the stimulant was required to significantly decrease the percentage 

of neutrophils undergoing respiratory burst. Although stimulation by PMA led to 

93.98%±3.5 (healthy) and 96.8%±1.76 (periodontitis) of neutrophils undergoing 

respiratory burst, stimulation by fMLP showed no significant difference compared with 

unstimulated samples. Furthermore, there appeared to be no significant difference when 

comparing responses from healthy participants with those with periodontitis.  

As with previous neutrophil analysis, we can conclude that in this cohort, the assay 

provided no evidence of changes in neutrophil respiratory burst in periodontitis. 
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Figure 6.8: Representative flow cytometry analysis of neutrophil respiratory burst. (A) Histogram of background neutrophil R123 

fluorescence in unstimulated samples. (B) – (D) Histograms of R123 fluorescence in samples stimulated with 2 x 106 E. coli (B), 5 x 106 E. coli 

(C) or 2 x 107 E. coli (E).  
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Figure 6.9: Participant neutrophil respiratory burst analysis. (A) Percentage of 

neutrophils undergoing respiratory burst as determined by the percentage of R123 

positive neutrophils. (B) MFI R123 fluorescence in the R123 positive neutrophils as an 

indication of the amount of ROS released.  
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Figure 6.10: Neutrophil respiratory burst in PMNs of healthy participants and those 

with periodontitis. (A) Percentage of neutrophils undergoing respiratory burst as 

determined by the percentage of PMNs falling into the FITC positive region (Figure 6.8B 

– histogram, boxed region). (B) MFI of FITC fluorescence in the FITC positive region as 

an indication of the amount of PMN respiratory burst. Statistical significance was 

determined by comparing samples within groups (two-way ANOVA, Tukey) and between 

healthy and periodontitis (two-way ANOVA, Bonferroni) with significance p < 0.05. 

Symbols (*, **, ***, •) indicate significant differences between stimulation groups with 

matching symbols and colours (black symbols indicate differences in healthy 

participants, grey symbols indicate differences in periodontitis participants).  
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6.2.2. Cytokine/chemokine profiles of saliva, plasma and GCF 

Saliva, plasma and GCF were collected and processed from five systemically healthy 

participants with periodontitis and five without as described previously (section 2.7.1). 

The samples were analysed to determine the presence and concentration of a panel of 

cytokines/chemokines using a multiplex bead array method (section 2.7.5).  

The multitude of proteins contributing to the complex matrix of saliva has the potential to 

interfere with the detection of the cytokine/chemokines. Taking this into account 

cytokines/chemokines in saliva were quantitated both undiluted and diluted to determine 

the efficiency of the multiplex bead array method with saliva. Dilution methods outlined 

by the manufacturer for plasma analysis was utilised for saliva for a 1:1 dilution with the 

provided diluent (section 2.7.5). Once data were collected, standard curves were 

generated, and cytokine/chemokine concentrations determined using the multiplex bead 

array manufacturer’s analysis software (LegendPlex), with corrections for background 

fluorescence (Figure 6.11).  

There were limited differences between undiluted and diluted samples. However, IL-1β 

and IL-23 were detected in more samples following dilution while detection of IL-17A and 

IL-17F appeared to be lost in some samples following dilution (Figure 6.11). In all cases, 

differences in cytokine/chemokine detection were observed when concentrations were 

low and potentially below the reliable detection limit of the assay. Considering this and 

the potential for interference from salivary proteins, saliva analysis was carried out on 

diluted samples.  

Concentrations of cytokine/chemokines from participant samples were determined using 

the LegendPlex, the results from healthy and periodontitis participants grouped and 

compared for statistically significant differences using two-way ANOVA followed by a 

post-hoc Bonferroni (p < 0.05). The results indicated the presence of eight out of nine 

analysed cytokines/chemokines in saliva to varying degrees in both healthy and 

periodontitis participants (Figure 6.12 and Table 6.1). Of the cytokines/chemokines, IL-

8, IL-1β and MCP-1 were the most prevalent in saliva of both healthy and periodontitis 

groups. In periodontitis IL-1β had the highest concentrations, averaging 12311.63 ± 

1318.28 pg/mL followed by IL-8 (8940.2 ± 7550.71 pg/mL) and MCP-1 (792.02 ± 978.84 

pg/mL), while IL-17 was not detected and IL-17A had the lowest average concentration 

(1.62 ± 3.62 pg/mL). Contrastingly, in healthy participants IL-8 was detected at the 

highest concentrations (1606.75 ± 1331.43 pg/mL) followed by MCP-1 (188.604 ± 80.33 

pg/mL) and IL-1β (122.07 ± 184.94 pg/mL). Both groups, however, exhibited large 

variations in cytokine/chemokine concentrations between participants (Figure 6.12). This 

was particularly evident within the periodontitis group for IL-8, IL-1β and MCP-1 
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concentrations (Figure 6.12 and Table 6.1). It is perhaps for this reason that comparisons 

between healthy and periodontitis groups resulted in no significant differences in any of 

the analysed cytokines/chemokines in saliva.  

In plasma, all nine of the analysed cytokines/chemokines were detected at varying 

concentrations (Figure 6.12 and Table 6.1). In healthy participants MCP-1 had the 

highest average concentration (287.604 ± 27.56 pg/mL) followed by MIP-1α (84.948 ± 

59.37 pg/mL) and IL-23 (72.264 ± 46.4 pg/mL). In plasma of the periodontitis group, 

MCP-1 also had the highest concentration (212.1 ± 53.93 pg/mL) followed by IL-8 

(104.688 ± 139.71 pg/mL) and MIP-1α (74.502 ± 44.71 pg/mL). 

In contrast to saliva, lower concentrations of IL-8, IL-1β and MCP-1 were observed in 

plasma whereas higher concentrations of IL-6, MIP-1α, TNF-α, IL-17A, IL-17F and IL-23 

were seen. However, as with saliva, a large amount of variation was observed in the IL-

8 concentration in periodontitis participants (Figure 6.12A, Figure 6.12B and Table 6.1). 

Although cytokine/chemokine expression appeared to differ comparing the plasma of 

healthy and periodontitis participants these differences were not significant.  

For cytokine/chemokine profiling of GCF, samples from four participants with 

periodontitis and five healthy participants were analysed. GCF strips from one participant 

were contaminated with blood and so data from this sample were not included in the final 

analysis of cytokines/chemokines. Results are presented as concentrations of cytokines 

absorbed at a site onto Perio Paper strips in 30 seconds with samples from five sites 

pooled (section 2.7.1.3 and 2.7.5).  

In GCF, only IL-8 and IL-1β were detectable in both healthy and periodontitis participant 

groups (Figure 6.12C and Table 6.1). This contrasted to saliva and plasma, where 8 out 

of 9 cytokines/chemokines or all cytokines/chemokines respectively were found to be 

present to some degree.  In addition, MCP-1 was also seen in CGF of participants with 

periodontitis. In a similar manner to the trend observed in saliva and plasma, a larger 

variation in concentrations of IL-8 was observed in periodontitis participants compared 

with healthy participants. In the case of GCF, significantly higher concentrations of IL-8 

were observed in periodontitis participants compared with healthy participants. However, 

no difference between health and disease was observed in concentrations of IL-1β and 

MCP-1. Despite the lack of significant difference, on average the concentration of IL-1β 

was higher in periodontitis (10941.52 ± 17932.9 pg/mL) compared with health (687.840 

± 1416.37 pg/mL).  
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Figure 6.11: Cytokine/chemokine profiles of saliva from healthy and periodontitis 

participants. (A) Cytokine/chemokine concentrations in undiluted saliva of participants 

detected using a multiplex bead array. (B) Cytokine/chemokine concentrations (with 

dilution factors accounted for) in saliva diluted 1:1 prior to detection using a multiplex 

bead array. 
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Table 6.1: cytokine/chemokine concentrations in saliva, plasma and GCF of 

healthy and periodontitis participants. Results are mean ± SD. 

 Concentration (pg/mL) in samples from: 

Sample matrix Cytokine/chemokine Periodontitis participants Healthy participants 

Saliva 

Interleukin-8 8940.20 ± 7550.71 1606.75 ± 1331.43 

Interleukin-1β 12311.63 ± 1318.28 122.07 ± 184.94 

Interleukin-6 8.55 ± 2.06 9.02 ± 5.90 

Monocyte chemoattractant protein 1 792.02 ± 978.84 188.60 ± 80.33 

Macrophage inflammatory protein 1α 30.42 ± 2.79 33.26 ± 36.27 

Tumour necrosis factor-α 2.60 ± 1.25 9.54 ± 11.96 

Interleukin-17A 1.62 ± 3.62 5.48 ± 7.54 

Interleukin-17F 0 0 

Interleukin-23 7.26 ± 2.76 17.31 ± 19.06 

Plasma 

Interleukin-8 104.69 ± 139.71 28.84 ± 18.06 

Interleukin-1β 30.81 ± 20.76 18.97 ± 13.80 

Interleukin-6 30.54 ± 20.07 30.88 ± 13.60 

Monocyte chemoattractant protein 1 212.10 ± 53.93 287.60 ± 27.56 

Macrophage inflammatory protein 1α 74.50 ± 44.71 84.95 ± 59.37 

Tumour necrosis factor-α 39.82 ± 23.57 19.51 ± 10.90 

Interleukin-17A 35.84 ± 27.46 23.08 ± 9.96 

Interleukin-17F 6.81 ± 9.61 11.25 ± 14.61 

Interleukin-23 65.77 ± 45.09 72.26 ± 46.40 

Gingival 

crevicular fluid 

(GCF) 

Interleukin-8 75997.68 ± 115189.00 151767.08 ± 15613.00 

Interleukin-1β 10941.52 ± 17932.90 687.84 ± 1416.37 

Interleukin-6 0 0 

Monocyte chemoattractant protein 1 75.12 ± 167.97 0 

Macrophage inflammatory protein 1α 0 0 

Tumour necrosis factor-α 0 0 

Interleukin-17A 0 0 

Interleukin-17F 0 0 

Interleukin-23 0 0 
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Figure 6.12: Cytokine/chemokine profiles in samples from healthy and 

periodontitis participants. Saliva (A), plasma (B) and gingival crevicular fluid (C) 

samples were assayed using a multiplex bead array. Significant differences were 

calculated using two-way ANOVA followed by a post-hoc Bonferroni (p < 0.05). 
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6.2.3. MMP8, MMP9 and TIMP1 protein concentrations in saliva and GCF 

Saliva and GCF from healthy and periodontitis participants were processed and analysed 

using ELISAs to determine concentrations of MMP8, MMP9 and TIMP1 as described 

previously (section 2.7.6).  

An increase in the concentration of MMP8 and MMP9 in both saliva and GCF from 

periodontitis participants was observed, however statistical analysis showed no 

significant difference when comparing periodontitis and healthy participants (T-test, 

Mann-Whitney, p > 0.05).  

In both saliva and GCF the MMP8 concentrations in periodontitis participants appeared 

to have a larger range; 445.1 – 1420.3 ng/mL in GCF and 121.53 – 603.42 ng/mL in 

saliva, compared with healthy participants; 118.03 – 1006.46 ng/mL in GCF and 13.382 

– 181.1 ng/mL in saliva (Figure 6.13A and Figure 6.13D). Although not significantly 

different, on average the MMP8 concentration in periodontitis participant saliva (326 ± 

237.9 ng/mL) and GCF (923.6 ± 438.5 ng/mL) appeared to be higher compared with 

health (55.93 ± 70.48 ng/mL in saliva and 519.6 ± 325.8 ng/mL in GCF).  

Results for MMP9, indicated a similar pattern to MMP8 in saliva and GCF. In saliva 

samples from participants with periodontitis, the data indicated a larger variation in 

MMP9 concentration (192 – 1381 ng/mL) compared with healthy (0 – 586.7 ng/mL) 

(Figure 6.13B). This pattern was reflected in GCF but with lower overall concentrations 

compared with saliva (211.9 – 550.2 ng/mL in periodontitis and 41.96 – 404.3 ng/mL) 

(Figure 6.13D). Although, no significant differences were observed in MMP9 

concentrations in saliva and GCF of participants with and without periodontitis, a higher 

average concentration in periodontitis (544.9 ± 480.2 ng/mL in saliva and 433 ± 159 

ng/mL in GCF) was observed compared with health (184.3 ± 237.5 ng/mL in saliva and 

270 ± 152 ng/mL in GCF) (Figure 6.13B and Figure 6.13D) 

In both healthy and periodontitis saliva samples, MMP inhibitor TIMP1, had similar mean 

concentrations (30.02 ± 14.18 ng/mL and 26.02 ± 16 ng/mL respectively) and similar 

concentration ranges (11.84 – 53.21 ng/mL in periodontitis and 14.48 – 41.71 ng/mL in 

health) (Figure 6.13C) with no significant differences between the two groups. In GCF, a 

higher average concentration of TIMP1 was observed in periodontitis (19.1 ± 16.96 

ng/mL) compared with health (2.02 ± 4.52 ng/mL) although the difference did not reach 

significance (Figure 6.13F).   
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Figure 6.13: Matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase 1 (TIMP1) concentrations in healthy and 

periodontitis participants. (A) – (C) Concentrations of MMP8 (A), MMP9 (B) and TIMP1 (C) in saliva determined via ELISAs. (D) – (F) 

Concentrations of MMP8 (D), MMP9 (E) and TIMP1 (F) in gingival crevicular fluid (GCF) determined via ELISAs. 
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6.2.4. Next generation sequencing analysis of clinical samples 

6.2.4.1. Taxonomical analysis of plaque and saliva samples from healthy and 

periodontitis participants  

A Shotgun metagenomic approach was used to process plaque and saliva samples from 

healthy and periodontitis participants. Results were pre-processed (section 2.6) prior to 

separation of reads into rDNA and DNA. rDNA reads were analysed following the QIIME 

pipeline (section 2.6.1) while short DNA reads were de novo-assembled to form DNA 

contigs and analysed used MEGAN (section 2.6.2). All analysis was limited to bacterial 

reads only.  

Taxonomic composition of the microbiota in saliva and plaque was analysed using the 

operational taxonomic unit (OTU) counts based on alignments against the human oral 

microbiome database (HOMD) for rDNA reads and NCBI non-redundant protein 

databases for DNA contigs (section 2.6).  

Alpha diversity plots were used to determine species richness (number of taxa/OTUs) 

within each sample. Multiple calculations of alpha diversity were carried out and analysis 

based on rDNA OTU counts in this cohort demonstrated saliva samples were richer in 

species compared with plaque samples, regardless of calculation method (Figure 

6.14A). Contrastingly, using DNA contig OTU counts for alpha diversity calculations in 

these samples resulted in limited differences in plaque and saliva when using the Chao1, 

ACE and Fisher methods and higher alpha diversity in saliva using the Simpson, inverse 

Simpson and Shannon methods (Figure 6.14B). In both rDNA and DNA contig analysis 

methods and regardless of calculation method, no significant difference was observed 

(unpaired T-test, Mann-Whitney, p > 0.05). 

In alpha diversity measurements of both rDNA and DNA contig counts, the plaque 

samples appeared to have more variation in the alpha diversity measure, indicating more 

variation in richness compared with the saliva samples. Interestingly, in rDNA samples 

no differences were apparent when comparing healthy to periodontitis regardless of 

calculation method. However, when using DNA counts Shannon, Simpson and 

InvSimpson alpha diversity measures were significantly lower in periodontitis than in 

health (unpaired T-test, Mann-Whitney, p > 0.05) (Figure 6.14B). 

Principle coordinate analysis (PCoA) with Bray-Curtis dissimilarity plots indicated saliva 

samples clustered separately from plaque samples in counts from both rDNA and DNA 

contig, with less sample relatedness in plaque samples (Figure 6.15). Additionally, saliva 

and plaque samples from periodontitis and healthy clustered together. There was, 

however, more crossover between health and periodontitis in both saliva and plaque 

when using rDNA counts (Figure 6.15A). Together these data suggest that communities 
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from plaque are relatively different from those found in saliva and communities found in 

health are different compared with those found in periodontitis.  

Following analysis of sample relatedness, taxonomic composition at a phylum level using 

OTU counts from both rDNA and DNA contigs were analysed. Results are presented as 

percentage relative abundances (abundance of each OTU relative to all OTUs in each 

sample) to allow for a more accurate comparison between sample types and sample 

sites (Figure 6.16).  

When looking at the percentage abundance of OTUs based on rDNA data in these oral 

samples it is clear that a difference exists not only between the healthy and periodontitis 

samples, but also between sample sites (Figure 6.16A). In plaque, healthy samples had 

a higher abundance of Proteobacteria compared with periodontitis samples, where 

abundances of Proteobacteria were very low, while abundances of Spirochaetes had the 

opposite trend. In saliva, however, the percentage of Proteobacteria remained 

unchanged and Spirochaetes were undetectable. Furthermore, in both saliva and plaque 

more Firmicutes were observed in health, with abundances higher in saliva compared 

with plaque. Less Bacteroidetes were present in healthy plaque and a similar trend was 

found in saliva. Synergistetes, interestingly, were only detectable in plaque from 

periodontitis participants. Finally, Actinobateria appeared to be more prevalent in health 

and this difference was more evident in plaque than in saliva. 

Analysis of OTUs based on DNA contigs demonstrated similar patterns of prevalence in 

Bacteroidetes, Firmicutes, Fusobacteria and Synergistetes to that of rDNA (Figure 

6.16B). Compared with rDNA based analysis, Fusobacteria appeared to be more 

abundant in plaque and saliva DNA contig OTUs but in both cases little difference was 

observed between health and periodontitis. Proteobacteria percentages based on DNA 

contigs also differed with higher abundances in periodontitis plaque and lower 

abundance in saliva and healthy plaque compared with rDNA based OTU percentages. 

Despite this, Proteobacteria appeared to follow the same trend as described for rDNA 

based abundances. Furthermore, Actinobacteria percentages in DNA contig based OTU 

counts were increased in saliva, unchanged in periodontitis plaque and decreased in 

healthy plaque compared with rDNA but with a similar trend in regard to differences 

between health and periodontitis.  
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Figure 6.14: Alpha diversity measurements of clinical samples. (A) Alpha diversity 

measures calculated using a variety of methods for OTU counts based on rDNA 

alignments. (B)  Alpha diversity measures calculated using a variety of methods for OTU 

counts based on DNA contig alignments. Significant differences between health and 

periodontitis at each site was calculated using an unpaired t-test (*, p < 0.05).    

* * * 



 Chapter 6 – Clinical study 
 

241 
 

 

Figure 6.15: Principal coordinate analysis (PCoA) with Bray-Curtis dissimilarity 

based on taxonomic profiles of samples. (A) Plot for taxonomic clustering of plaque 

and saliva samples at a species level based on rDNA reads. (B) Plot for taxonomic 

clustering of plaque and saliva samples at a species level based on DNA contigs. 
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When using DNA contigs for taxonomy analysis, Spirochaetes abundances were higher 

in plaque than those seen when using rDNA with the increase in periodontitis compared 

with health more prominent (Figure 6.16B). Interestingly, in DNA contig analysis 

Spirochaetes were also detected in periodontitis saliva while in rDNA analysis 

Spirochaetes were not detected. In addition to these changes in the most abundant 

phyla, DNA contig based analysis also allowed the detection of less prevalent phyla such 

as Acidobacteria, Chloroflexi, Chlamydiae, Cynobacteria, Tenericutes and others.   

DNA contigs were then used for a more in-depth analysis of the taxonomy because 

comparisons between health and periodontitis remained unchanged between rDNA and 

DNA contig based taxonomical analysis, more phyla were detected using the DNA contig 

method, and there was increased accuracy using DNA based alignment methods (rather 

than rDNA/16S alignment methods) for metagenomics.   

Analysis of taxonomy at a genus level was limited to the 50 most abundant genera with 

removal of unclassified bacteria to increase clarity (Figure 6.17). Salivary bacterial 

profiles at this genus level were similar in both healthy and periodontitis participants. 

However, of the 50 most abundant genera, higher percentages were observed in 

Porphyromonas, Tannerella, Treponema and Prevotella in saliva samples of 

periodontitis participants. On the other hand, in periodontitis saliva lower abundances of 

Veillonella, Streptococcus, Haemophilus and Actinomyces were seen.  

In plaque, there were higher percentages of Fretibacterium, Treponema, Prevotella, 

Tannerella, Porphyromonas, Fusobacterium, Bacteroides and Anaerolineaceae 

bacterium oral taxon 439 in periodontitis compared with healthy. Contrastingly, lower 

abundances of Streptococcus, Paenibacillus, Mycobacterium, Haemophilus, Rothia, 

Escherichia, Salmonella, Corynebacterium, Chlamydia, Lautropia, Bacillus and 

Actinomyces were observed in periodontitis compared with health. Although the results 

showed changes in the bacterial profiles of both saliva and plaque from periodontitis, 

given the lack of technical replicates and small cohort size it could not be determined 

whether these differences were significant. 

As described above, differences in bacterial composition appeared to be more evident 

in plaque than saliva when comparing health and periodontitis. There were also clear 

differences in the prevalence of certain bacteria between the two sample types. For 

example, Bradyrhizobium was undetectable in saliva but was found at an approximately 

5% abundance in healthy and periodontitis plaque. Similarly, Fretibacterium¸ 

Bacteroides and Anaerolineaceae bacterium oral taxon 439 were observed 

predominantly in periodontitis plaque although detected in small amounts in saliva and 

healthy plaque. On the other hand, Rothia and Bacillus were observed predominantly in 
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healthy plaque with smaller abundances in periodontitis plaque and saliva (periodontitis 

and healthy). There was also an increase in the percentage of Actinomyces, 

Porphyromonas and Treponema in plaque compared with saliva for both healthy and 

periodontitis samples. Conversely, Campylobacter were almost undetectable in plaque 

but was seen in both healthy and periodontitis saliva at similar levels. Similarly, 

Streptococcus, Veillonella, and Haemophilus were found at higher percentages in saliva 

compared with plaque.  
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Figure 6.16: Relative percentage abundances of phyla in clinical samples. (A) 

Taxonomic percentage abundances based on rDNA reads. (B) Taxonomic percentage 

abundances based on DNA contigs.  
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Figure 6.17: Relative percentage abundance of genera in clinical samples. Analyses at a genera level were limited to the top 50 most 

abundant genera.
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6.2.4.2. Metagenomics functional analysis of healthy and periodontitis 

participants’ saliva and plaque samples 

In addition to the above described taxonomic analysis of plaque and saliva samples from 

participants with and without periodontitis, analysis was also carried out to determine 

overall functional profiles of the microbiota in these environments. Short DNA reads were 

assembled into contigs prior to being aligned against the NCBI non-redundant protein 

database. The resulting protein assignments were then aligned using SEED and 

EggNOG for annotation (section 2.6).  

As with taxonomical analysis, a PCoA using the Bray-Curtis distribution was carried out 

for counts based on both SEED and EGGNOG functions. The analysis showed a cluster 

of the majority of the samples with outliers of six or seven samples. No obvious patterns 

were seen in the clustering of samples in both analyses (Figure 6.18).  

The resulting data demonstrated little variation in the SEED functional profiles of saliva 

samples regardless of periodontal health status (Figure 6.19). Indeed, these profiles 

appeared similar to healthy plaque. Differences were observed in periodontitis plaque 

samples, however, with evidently higher counts in genes related to virulence, stress 

response, RNA metabolism, protein metabolism, DNA metabolism, carbohydrates and 

cell wall and capsule proteins.   Interestingly, periodontitis plaque also had higher counts 

for unclassified proteins.  

Using EGGNOG databases for annotations resulted in a similar trend with healthy 

plaque, healthy saliva and periodontitis saliva having no discernible differences in counts 

(Figure 6.20). As with the SEED profiles, periodontitis plaque appeared to have more 

counts for certain protein groups. These included carbohydrate transport and 

metabolism, amino acid transport and metabolism, energy production and conversion, 

defence mechanisms, post translational modification, protein turnover and chaperones, 

cell wall/membrane/envelope biogenesis, cell motility and replication, recombination and 

repair.  On the other hand, lower counts for defence mechanisms, cell cycle control, cell 

division, chromosome partitioning and translation, ribosomal structure and biogenesis 

were observed in healthy plaque compared not only to periodontitis plaque but also 

healthy and periodontitis saliva.  

Although some differences were observed, as with taxonomical analysis, significance 

could not be determined due to lack of technical replicates and limited cohort size in this 

pilot study.  
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Figure 6.18: Principal co-ordinate analysis (PCoA) with Bray-Curtis dissimilarity 

based on functional profiles of samples. (A) Plot for functional clustering of plaque 

and saliva samples based on SEED assignments. (B) Plot for functional clustering of 

plaque and saliva samples at based on EGGNOG assignments. 
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Figure 6.19: Functional analysis of clinical sample microbiota using SEED 

database for annotations   
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Figure 6.20: Functional analysis of clinical sample microbiota using EGGNOG 

database for annotations



 Chapter 6 – Clinical study 
 

250 
 

6.3. Discussion 

A disruption in the balance of immune responses and ineffective clearance of pathogenic 

or excessive bacteria in the oral cavity can be detrimental to the periodontal tissues but 

the exact mechanisms involved in maintaining health are not fully understood 

(Moutsopoulos and Konkel, 2017). In this preliminary study we aimed to establish a 

methodology to examine immune responses in periodontitis participants by determining 

changes in systemic neutrophils, systemic and local cytokines/chemokines and local 

MMPs with the aim to implement these methods in a study including diabetics with and 

without periodontitis. In addition, this preliminary study also analysed the microbiota 

profiles of these participants with the long term aim to correlate microbiota changes to 

changes in immune responses.   

6.3.1. Peripheral blood neutrophils in periodontitis and health  

Although neutrophil analysis (migration, phagocytosis and respiratory burst) in 

systemically healthy participants with and without periodontitis showed that there was no 

significant difference between the two groups, the feasibility of analysing the blood 

samples from participants for all three assays within the appropriate time was confirmed. 

In addition, for both test groups, responses to stimulus in all neutrophil assays were as 

expected, i.e. an increase in neutrophil migration towards the chemoattractant fMLP, a 

dose dependent increase in phagocytosis of increasing E. coli concentrations and a dose 

dependent increase in ROS release when stimulated with increasing concentrations of 

E. coli.  

The study indicated limited variation between participant technical replicates for analysis 

of phagocytosis and respiratory burst regardless of treatment group, indicating that in 

future samples can be analysed without the need for replicates as these flow cytometry 

bases methods analyse the response of 10000 neutrophils per sample. This could 

decrease analysis time and volume of clinical sample used.  

However, during analysis of migration, it was evident that variation in migrated cell counts 

existed between technical replicates, perhaps leading to skewing of final results. This 

indicates that the migration assay requires optimising. Perhaps, calculating migrated 

neutrophils as a percentage of total neutrophils could compensate for any differences 

caused by the number of total cells loaded onto the insert membrane. To accomplish 

this, unmigrated cells would need to be quantified in addition to migrated cells and the 

number of migrated cells calculated as a percentage of the total. Despite this variation, 

it was evident that the neutrophils were migrating in response to the chemoattractant 

fMLP.   



 Chapter 6 – Clinical study 
 

251 
 

Although no significant differences in responses were observed between periodontitis 

and healthy participants, previous studies have shown that neutrophil dysfunction plays 

an imperative role in periodontitis. Studies examining the impact of conditions affecting 

neutrophil homeostasis and functions in periodontal health exemplify this. Chediak-

Higashi syndrome, for example, is a condition which is characterised by the fusion of 

cytoplasmic granules leading to a decrease in the number of myeloid precursors. Any 

surviving neutrophils contain giant granules which impacts the process of diapedesis and 

so neutrophil chemotaxis. This links the rapid development of periodontitis and the 

associated bone loss in patients with Chediak-Higashi syndrome to defective chemotaxis 

of neutrophils (Clawson et al., 1978, Kaplan et al., 2008, Hajishengallis and 

Hajishengallis, 2014, Cortes-Vieyra et al., 2016). Furthermore, patients with Chediak-

Higashi syndrome have also been shown to have delayed intracellular killing of 

phagocytosed bacteria due to a reduced content of hydrolytic enzymes in their granules. 

In cases of Chediak-Higashi syndrome, patients often present with periodontitis, thus, 

suggesting the progression of periodontitis is linked to neutrophil function (Delcourt-

Debruyne et al., 2000, Nualart Grollmus et al., 2007). Another example is Papillon-

Lefevre syndrome, which is characterised by defective neutrophil chemotaxis and 

reduced bacterial killing and also show increased susceptibility to periodontitis 

(Hajishengallis and Hajishengallis, 2014, Cortes-Vieyra et al., 2016). 

The disorders discussed above highlight some functions important in oral health 

maintenance, but there is also evidence highlighting changes in neutrophils in 

systemically healthy patients with periodontitis. As discussed in detail previously (section 

1.2.1) neutrophils are the most prevalent leukocytes recruited to the oral cavity and are 

the first line of defence against microorganisms (Dutzan et al., 2016, Nicu and Loos, 

2016). A study examining neutrophils isolated from peripheral blood demonstrated 

decreased speed, velocity and chemotactic accuracy of neutrophils from periodontitis 

patients compared with healthy following stimulation by fMLP and IL-8. Non-surgical 

periodontitis treatment only recovered velocity and chemotactic activity in response to 

IL-8 while no changes were observed in response to fMLP (Roberts et al., 2015). 

Furthermore, comparison of peripheral neutrophils isolated from both chronic and 

aggressive periodontitis indicated a significant decrease in chemotactic activity in both 

forms of periodontitis but no difference between the two (Kumar and Prakash, 2012).   

Despite evidence of decreased chemotaxis of neutrophils in periodontitis patients, an 

increase in neutrophil number has also been demonstrated in periodontitis at both a local 

and systemic level (Loos et al., 2000, Landzberg et al., 2015). Increases in oral neutrophil 

counts have also been shown to be reduced following periodontal treatment (Bender et 

al., 2006). Furthermore, Del-1 (developmental endothelial locus-1) deficient mice have 
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also been shown to spontaneously recruit excessive neutrophils to the gingiva, causing 

a destructive inflammatory response as well as alveolar bone loss. Del-1 has been 

shown to be antagonistic to β2 integrin dependent neutrophil adhesion and, as such, 

loss of Del-1 could disrupt neutrophil homeostasis (Eskan et al., 2012, Hajishengallis 

and Hajishengallis, 2014). Localised aggressive periodontitis (LAP) further exemplifies 

the potential of hyperactive neutrophil migration. Although LAP was previously thought 

to be a consequence of hypofunctional neutrophils, evidence now suggests that in 

combination with dysregulated chemotaxis and phagocytosis, LAP patients also have 

increased secretion of inflammatory mediators and increased oxidative stress (Kantarci 

et al., 2003, Ryder, 2010).   

Similarly, hyper-activity or hyper-reactivity is also observed in isolated peripheral 

neutrophils from patients with periodontitis. For example, a study examining the release 

of ROS in peripheral neutrophils from both chronic and aggressive periodontitis indicated 

higher ROS release in unstimulated neutrophils in periodontitis compared with health 

and showed elevated ROS release in unstimulated neutrophils isolated from periodontitis 

patients (Guentsch et al., 2009). Recruitment of these hyper-active neutrophils to the 

periodontal tissue at the site could contribute to the oxidative tissue damage associated 

with periodontitis in the absence of excessive activation. However, following stimulation 

of these neutrophils with opsonised P. gingivalis and A. actinomycetemcomitans, ROS 

release was increased in chronic periodontitis but decreased in aggressive periodontitis 

compared with health. The same study demonstrated increased phagocytosis of P. 

gingivalis in periodontitis compared with health (Guentsch et al., 2009). Ling et al. (2016), 

also showed increased ROS release in both stimulated (by non-opsonised P. gingivalis 

and F. nucleatum) and unstimulated peripheral neutrophils in periodontitis compared 

with health, with a reduction following periodontitis treatment. Mariano et al. (2012) 

demonstrated elevated LL-37 in neutrophils from periodontitis patients following 

stimulation with P. gingivalis, A. actinomycetemcomitans and E. coli LPS compare with 

health. However, the same study also showed a decrease in NO in neutrophils from 

periodontitis compared with health (Mariano et al., 2012). Although not examined here, 

NET degradation has also been shown to be decreased in periodontitis patients with 

correlating decreased DNase-1 but with no changes in NET production (White et al., 

2016a, White et al., 2016b). Given the importance of NETs as a mechanism employed 

by neutrophils for bacterial trapping and killing and the ability of certain periodontal 

pathogens to degrade NETs, this perhaps indicates a need to examine NETs in addition 

to other functions of neutrophils (Palmer et al., 2012). Together previous studies suggest 

that some neutrophil antimicrobial responses are elevated while others are depressed in 

periodontitis with differences between chronic and aggressive periodontitis in some 
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functions and these patterns of hyper- and hypo- reactivity could contribute to 

periodontitis progression.  

While the results presented above show no significant differences in chemotaxis, 

phagocytosis and ROS release in peripheral neutrophils isolated from periodontitis 

compared with health, previous studies (as described above and previously in section 

1.2.1) generally demonstrate decreased chemotaxis and either increased or decreased 

phagocytosis and increased ROS release. The sample size of the clinical study 

described here could potentially be the reason behind the contradictory results compared 

with previous studies. This small sample size indicates that, although the feasibility of 

the study was confirmed, no concrete conclusions can be made with regards to 

differences observed, or their lack of, comparing healthy participants and those with 

periodontitis.  

Given that both insufficient and excessive numbers of neutrophils, in addition to changes 

in functionality, can contribute to the progression of periodontitis, an assay to analyse 

the total number of neutrophils within the local environment of the oral cavity should also 

be included. This change in total number of cells could potentially go towards explaining, 

at least partially, the progression of periodontitis associated with neutrophils without any 

obvious dysregulation of chemotaxis, phagocytosis or respiratory burst. Moreover, 

considering that the majority of cells recruited to the gingival crevice are neutrophils, 

analysis of local and systemic neutrophils (as studied here) could be beneficial in 

examining their role in periodontitis (Schiott and Loe, 1970, Loos et al., 2000). Indeed, 

apoptosis resistant neutrophils in GCF of periodontitis patients have previously been 

demonstrated (Gamonal et al., 2003). These neutrophils could contribute to increased 

numbers of neutrophils in the oral cavity in periodontitis as well as contribute to the tissue 

degradation associated with excessive neutrophil activation and/or presence.  

A recent study has shown the role of P. gingivalis in altering neutrophil anti-microbial 

responses, whereby P. gingivalis co-activates C5a receptor-1 and TLR2 in human 

neutrophils causing a decrease in myeloid differentiation primary response protein-88 

(MyD88), via ubiquitylation dependent proteasomal destruction, which leads to 

suppression of antimicrobial responses. In addition, this pathway activates 

phosphoinositide 3-kinase leading to the inhibition of RhoA GTPase and actin 

polymerisation, thus, blocking phagocytosis (Hajishengallis and Korostoff, 2017). Not 

only does this highlight the necessity for analysis of local neutrophils, it also suggests a 

potential need to alter the stimulus used for the study carried out above as exposure to 

periodontitis associated bacteria may alter neutrophil responses in a manner not seen 

with E. coli. It is also important to note that local tissues have regulatory roles with regard 
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to neutrophils (as described previously) through the release of cytokine/chemokines, 

thus providing more reason to analyse local neutrophils in addition to systemic 

neutrophils.  

6.3.2. Local and systemic cytokine/chemokine profiles  

In addition to observing no significant differences in the analysed neutrophil functions 

between healthy and periodontitis participant groups, the results indicated no significant 

difference in the concentrations of the panel of cytokines/chemokines at both a local and 

systemic level with the exception of increased IL-8 in GCF of periodontitis participants 

(Figure 6.12). Previous studies are often contradictory with regards to GCF 

concentrations of IL-8, with most studies indicating an increase (Gamonal et al., 2001, 

Giannopoulou et al., 2003, Holzhausen et al., 2010, Konopka et al., 2012, Ertugrul et al., 

2013, Khalaf et al., 2014, Lutfioglu et al., 2016) and a few showing decreases (Jin et al., 

2000, Luo et al., 2011) in periodontitis compared with health.  

In general, there also appeared to be increased salivary and plasma IL-8 in periodontitis 

compared with healthy participants, although this did not reach significance in saliva and 

plasma (Figure 6.12). In contrast to GCF, this correlates with previously described 

salivary concentrations of IL-8 in periodontitis (Cesar-Neto et al., 2007, Michiels et al., 

2009, Venza et al., 2010, Lisa Cheng et al., 2014, Khalaf et al., 2014, Souto et al., 2014). 

The lack of significance in the differences, much like with the neutrophil study, could be 

due to the small cohort of participants used during the study and the participant to 

participant variation observed. It is unsurprising that IL-8 concentrations appeared to be 

higher in participants with periodontitis at a local level considering its role as a 

chemoattractant and consequently its role in recruiting neutrophils (as discussed 

previously).  

In addition to IL-8, the only other cytokine detected in both healthy and periodontitis 

participant GCF was IL-1β which was observed at higher concentrations in periodontitis, 

in agreement with previous studies (Giannopoulou et al., 2003, Holzhausen et al., 2010, 

Tymkiw et al., 2011, Konopka et al., 2012, Ertugrul et al., 2013, Luo et al., 2014). 

Similarly, salivary IL-1β concentrations were higher in periodontitis, correlating with 

previous studies, but did not reach significance (Tobon-Arroyave et al., 2008, Gursoy et 

al., 2009, Mirrielees et al., 2010, Kaushik et al., 2011, Ebersole et al., 2013, Rathnayake 

et al., 2013). 

In GCF, MCP-1 was detected in periodontitis but not in health. An increase in GCF 

concentration of MCP-1 in periodontitis patients has been shown in previous studies (Anil 

et al., 2013, Gupta et al., 2013). Similarly, MCP-1 has also demonstrated to be increased 
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in saliva reflecting the trend observed during this study and highlighting the need for an 

increased sample size for results to reach significance (Gupta et al., 2013).   

Although IL-6, TNF-α, IL-17A, IL-23 and MIP-1α were all detected in saliva, there was 

no significant difference between healthy and periodontitis and average concentrations 

were similar in both groups. As with other cytokines, previous experiments have had 

conflicting results with regards to IL-6 concentrations in saliva and GCF with some 

indicating an increase in periodontitis (Cesar-Neto et al., 2007, Costa et al., 2010, 

Holzhausen et al., 2010, Venza et al., 2010, Tymkiw et al., 2011, Prakasam and 

Srinivasan, 2014) and others demonstrating no significant differences (Gursoy et al., 

2009, Rathnayake et al., 2013). Similarly, local TNF-α concentrations have been 

reported to be signficantly higher (Frodge et al., 2008, Singh et al., 2014) in periodontitis 

as well as having no significant difference (Gumus et al., 2014). On the other hand, 

salivary concentrations of IL-17, IL-23 and MIP-1α, are generally demonstrated to be 

elevated in periodontitis (Fu et al., 2013, Awang et al., 2014, Fine et al., 2014, Luo et al., 

2014, Ebersole et al., 2015, Mitani et al., 2015, Liukkonen et al., 2016). Interestingly, all 

nine cytokines/chemokines were detected in plasma although the profiles of periodontitis 

participants and healthy participants showed no significant difference and similar 

averages. Considering the detection of all cytokines/chemokines in plasma and the 

detection of these in other studies in GCF and saliva but the lack of their detection in the 

samples analysed in this study, there is a possibility that the method utilised (i.e. bead 

array) is inappropriate for analysis of GCF and saliva. Both saliva and GCF are protein 

rich samples, and so there is a potential of masking of cytokines/chemokines especially 

when taking into account the assay was designed for analysis of tissue culture and 

plasma samples. Alternative methods (e.g. ELISAs) are required to ensure results are 

not false negatives. In addition, the general low concentrations of many of the 

cytokines/chemokines in saliva and undetected cytokines/chemokines in GCF could be 

due to the complex nature of the sample matrix.  

The analysis of MMP8, MMP9 and TIMP1 in saliva and GCF, again showed no significant 

differences. As with the analysis of cytokines/chemokines and neutrophils, there did 

appear to be higher concentrations of both MMPs in saliva and GCF of periodontitis 

participants which if significant would draw parallels with previous reports (Marcaccini et 

al., 2010, Leppilahti et al., 2014, Salminen et al., 2014, Ebersole et al., 2015, Gupta et 

al., 2015). For TIMP1, however, there appeared to be no difference in saliva but a higher 

concentration (although not significant) in GCF in periodontitis participants. This could 

perhaps reflect an attempt to control the excessive MMP-associated tissue breakdown 

characteristic of periodontitis. As discussed previously, this increase correlates with 

studies that demonstrate elevated TIMP1 concentrations in GCF of periodontitis patients 
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(Popat et al., 2014, Ghodpage et al., 2014). Interestingly, a previous study has 

demonstrated decreased TIMP-1 concentrations in saliva of periodontits patients 

compared with healthy (Nizam et al., 2014).   

In the analysis of all the immune responses discussed above, it is apparent that variation 

between participants in this study occurs more in participants with periodontitis compared 

with those without. This could perhaps explain the lack of consensus in previous studies 

with regards to changes seen in periodontitis associated immune responses. In addition, 

it is now accepted that periodontitis is a disease with stages of immune activity followed 

by inactivity which could further explain the variations observed. This emphasises the 

necessity to increase the cohort size and potentially include samples taken over a period 

of time in all participants. 

6.3.3. Shotgun metagenomics of saliva and plaque from healthy and periodontitis 

participants 

The analysis of NGS data from periodontitis and healthy plaque and saliva samples 

provides a taxonomic and functional profile of bacteria present. A general decrease in 

microbial alpha diversity in plaque from participants with periodontitis was observed with 

significant differences following analysis of DNA contig counts. Recent studies using 

metagenomic or metatranscriptomic data correlates with these results (Jorth et al., 2014, 

Ai et al., 2017). On the other hand, there is also evidence suggesting a higher alpha 

diversity in periodontitis compared with health (Griffen et al., 2012, Abusleme et al., 2013, 

Dabdoub et al., 2016). As seen previously, no significant differences were seen in saliva 

between health and periodontitis and no trends observed regardless of read counts used 

for the calculations (Belstrom et al., 2017).  

At a phylum level, the decrease in Actinobacteria and Proteobacteria and increases in 

Bacteroides, Synergistetes and Spirocheates in plaque from periodontitis  patients 

described in this study has previously been reported (Griffen et al., 2012, Wang et al., 

2013). Enrichment of the genera Prevotella, Fretibacterium, Porphyromonas, 

Treponema and lower abundances of Streptococcus, Corynebacterium and 

Actinomyces in periodontitis plaque have also been reported previously which is 

reflected in the results presented here (Liu et al., 2012, Wang et al., 2013, Dabdoub et 

al., 2016). 

Metagenomics analysis of saliva from periodontitis subjects is limited, with fewer studies 

reported compared with analysis of plaque. Belstrom et al. (2017) compared healthy and 

periodontitis saliva using both metagenomics and metatranscriptomics and 

demonstrated an increased prevalence of pathogens traditionally associated with 

periodontitis such as P. gingivalis, T. forsythia and Parvimonas. This is reflected in the 
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present study where Porphyromonas and Tannerella were both enriched in saliva from 

periodontitis participants. Furthermore, a previous study also demonstrated distinct 

taxonomic clustering of samples suggesting the plaque microbiota is different to that 

seen in saliva (Yamanaka et al., 2012).  

As with analysis of saliva taxonomy, limited studies have evaluated differences in healthy 

and periodontitis salivary microbiota at a functional level using metagenomics. Evidence 

suggests a downregulation of carbohydrate metabolism in periodontitis compared with 

health using metatranscriptomic data (Belstrom et al., 2017). The metagenomic data 

from this study, however showed similar functional profiles for saliva regardless of health 

status. This could be a consequence of using metagenomic analysis, which evaluates 

the functional capability of the microbiota from each environment but does not indicate 

gene pathways in operation. The metatranscriptomic data, however, allowed the 

evaluation of active gene pathways for growth and survival on microbiota from healthy 

and periodontitis participants.   

A slight downregulation in carbohydrate and amino acid related genes was observed but 

whether these changes are significant requires further analysis. In contrast, evident 

differences were seen in periodontitis plaque compared with healthy plaque with similar 

changes seen in previous NGS studies (Liu et al., 2012, Wang et al., 2013, Jorth et al., 

2014, Dabdoub et al., 2016). Of interest was the upregulation of 

virulence/disease/defence mechanisms, stress, cell motility and chemotaxis, cell 

wall/membrane/envelope biogenesis, transcription and DNA/RNA/carbohydrate/protein 

metabolism. Together this suggests that the microbiota of periodontitis plaque samples 

were more virulent but also suggests a higher bacterial load as indicated by increases in 

various metabolism and transport systems. 

While the data presented above validates the methods and indicates differences in 

composition and function of the microbiota when comparing health to periodontitis, the 

lack of technical sequencing replicates hinders the ability to analyse significance and as 

such limits understanding. It is also important to acknowledge the differences in 

sequencing methods (such as 454/Roche and Illumina/Solexa) and analysis pipelines 

currently used for metagenomic studies and the limitations this imposes on comparing 

between studies. These variations in sequencing and analysis methods, in addition to 

experimental factors (such as sampling sites and participant exclusion criteria) could 

explain conflicting results in previous studies. However, with constantly improving 

bioinformatics tools and increasing genomic data in databases, analysis of NGS data is 

becoming faster, easier and more accurate. Metagenomics provides valuable 

information with regards to functional potential of a microbiome but addition of 
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metatranscriptomic analysis could enhance this and provide a deeper understanding of 

active microbiota gene expression and function.  

6.3.4. Implications for the diabetes-periodontitis link 

Due to time limitations, the scope of this study could not include participants with 

diabetes. The inclusion of this group is imperative to elucidating mechanistic links 

between periodontitis and diabetes as patients with diabetes have previously been 

shown to have impairment in neutrophils, changes in concentrations of 

chemokines/cytokines and increased levels of MMPs (Preshaw et al., 2012). To date, 

studies investigating the relationship between diabetes and neutrophil function have 

been contradictory, with some studies showing up-regulation in total neutrophil counts, 

respiratory burst, migration and apoptosis while other studies have shown a decrease in 

neutrophil counts, adhesion, microbial activities, respiratory burst, migration and 

phagocytosis as discussed in detail in section 1.4.2 (Manouchehr-Pour et al., 1981, Salvi 

et al., 1997a, Salvi et al., 1997b, Alba-Loureiro et al., 2006, Graves et al., 2006, Alba-

Loureiro et al., 2007, Preshaw et al., 2012). In a similar manner, studies on the local and 

systemic cytokine concentrations in diabetic patients with and without periodontitis have 

shown contradictory results (section 1.4.1). With regards to MMPs, studies have mainly 

shown increases in MMP concentrations associated with increased neutrophil activity 

(hyperactivity or increased number) (Kumar et al., 2006, Correa et al., 2008, Costa et al., 

2010, Hardy et al., 2012). Differences in microbial composition in the oral cavity of 

diabetics have also been implicated in the increased prevalence of periodontitis. Indeed, 

previous studies have shown shifts in bacterial composition although reports are 

somewhat contradictory with regards to specific genera/species involved (Thorstensson 

et al., 1995, Lalla et al., 2006, Hintao et al., 2007, Ebersole et al., 2008, Casarin et al., 

2013, Xiao et al., 2017). It is proposed that the methodologies validated in this feasibility 

study for the evaluation of the discussed immune responses alongside bacterial profiles, 

could reasonably be implemented in diabetics with and without periodontitis.  
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7. Conclusions and future directions 

The studies presented in this thesis examine potential links between diabetes and 

periodontitis. The two diseases have complex aetiologies, and while it has long been 

demonstrated that the two are linked (Preshaw et al, 2012), the exact mechanisms are 

unclear. The most promising of these mechanisms has been discussed in detail 

previously (section 1.4). This thesis aimed to evaluate if increased AGEs (associated 

with hyperglycaemia) effected inflammatory responses of gingival keratinocytes, 

bacterial composition of a five species periodontitis biofilm model, and composition and 

functional potential of a complex inoculum biofilm model. In addition, the thesis outlines 

a methodology to evaluate how biofilms grown with concentration of AGEs that are 

commensurate with diabetes and health impact inflammatory responses when co-

cultured with gingival keratinocytes. 

As described previously (section 1.4.3), hyperglycaemia has been linked to the 

accumulation of AGEs and subsequent chronic inflammatory responses. Given the 

central role of inflammatory responses to both diabetes and periodontitis, increased 

periodontitis severity has been correlated to hyperglycaemia (Shlossman et al., 1990, 

Emrich et al., 1991, Taylor et al., 1998, Tsai et al., 2002, Hiroshima et al., 2018).  

Although previous studies have shown that the increase in serum levels of AGEs from 

diabetic patients correlated with an increase in periodontitis-linked attachment loss and 

increased immunoreactivity of AGEs in gingival tissues (Takeda et al., 2006, Zizzi et al., 

2013, Hiroshima et al., 2018), no studies to date have linked increased AGEs to changes 

in oral microbiota. The experiments presented above, demonstrate the potential use of 

a five species biofilm model, cultured to represent a simplistic periodontitis associated 

biofilm, as a way to analyse the effect of increased AGEs on biofilm composition. The 

results from this study demonstrated a change in the composition of the biofilm whereby 

A. naeslundii was the predominant species following introduction of AGE to the growth 

media (Figure 4.2). This was surprising when considering Actinomyces species 

(alongside Streptococcus) are the predominant early colonisers of tooth surfaces (Li et 

al., 2004) and have been long associated with health (Socransky and Haffajee, 2002). 

This was associated with a decrease in pH, potentially as a consequence of AGE 

metabolism. Given the inability of P. gingivalis¸ P. intermedia and F. nucleatum to survive 

in acidic environments, this could go towards explaining the biofilm composition following 

AGE addition (Takahashi et al., 1997).  

While a series of studies have demonstrated AGEs produced by E. coli K12 are 

metabolised intracellularly by metalloproteases and secreted as low-molecular weight 

AGE peptides into the growth media (Katz et al., 2010, Cohen-Or et al., 2011, Cohen-Or 
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et al., 2013), these studies are limited to intracellular bacterial AGEs and did not 

investigate bacterial uptake of extracellular AGEs and subsequent metabolism. 

However, Hellwig et al. (2015), showed the ability of human colonic microbiota to 

metabolise AGEs which were incubated with faecal suspensions, through analysis of the 

resulting metabolites by HPLC. A similar approach could be taken to determine the 

metabolism of AGEs in the five species biofilm model. To fully determine AGE 

metabolism by the five species biofilms future work should also include quantifying the 

AGE levels in the growth media following the incubation period and analysing the 

metabolic pathways activated through transcriptomics.  

The changes observed in the five species biofilm model confirmed the possibility of AGEs 

altering biofilm composition. However, given the complex nature of the oral microbiota, 

the implications of this are limited. As such, the effect of AGEs on a biofilm generated 

with a physiological inoculum to create a more complex biofilm, was evaluated. Using 

NGS, it was concluded that results from the complex biofilm model reflected those 

observed in the five species model. In both models, the addition of AGE encouraged the 

growth of health associated bacteria (section 5.2). In the complex biofilm model, it is 

likely the pre-conditioning of the HA pegs with high HSA-AGE concentrations selects for 

the bacteria that are present in the mature biofilms, as early (day 2) biofilms also favour 

health associated bacteria. Further analysis is required to elucidate the reason the health 

associated bacteria are selected for growth under high HSA-AGE concentrations. It is 

possible the complex biofilm reflect the results seen in the five species model so that 

metabolism of the HSA-AGE alters pH of the media causing the periodontitis associated 

bacteria growth to be halted and as such future studies should include pH monitoring. 

There is also the possibility that changes associated with the biofilms grown with low 

HSA-AGE concentrations are a consequence of the addition of HSA-C (which was added 

to account for protein differences) so that comparisons between low and high HSA-AGE 

are taking into account changes associated with the combination of HSA-AGE and HSA-

C. To account for this biofilms without any supplementation of the media and 

supplementation of the media with low HSA-AGE concentrations alone are needed.   

While these experiments highlight the potential of using HA pegs to generate complex 

biofilms, the study presented above has its limitations. In particular, the cultured biofilms 

were used to model the periodontitis microbiota and the effect of hyperglycaemia on 

these but the inocula used was from healthy volunteers. This is reflected in the 

composition of the inocula which is consistent with HMP data from seven healthy oral 

sites, where the predominant phyla were shown to be Firmicutes, Bacteroidetes, 

Proteobacteria, Fusobacteria and Actinobacteria (Human Microbiome Project, 2012, 

Zhou et al., 2013b, Moon and Lee, 2016). Although the media used for culturing the 
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biofilms was designed to encourage the growth of periodontitis associated bacteria 

(Naginyté, 2017, unpublished), in future studies it would be beneficial to produce inocula 

from periodontitis patients, in an attempt to model periodontitis more closely. This is of 

particular importance when considering the observed shift in composition where genera 

typically associated with periodontitis, such as Fusobacterium, Campylobacter, 

Treponema and Haemophilus, were less prevalent while genera generally associated 

with periodontal health (including Actinomyces, Streptococcus and Veillonella) were 

more prevalent in early (day 2) biofilms compared to the inocula (section 5.2). This could 

perhaps suggest that health associated bacteria are outcompeting the less abundant 

pathogens or opportunistic pathogens found in healthy participants, for colonisation of 

the HA pegs.    

It is also possible that expansion of the AGE concentrations is required. The modelling 

was based on previous evidence from a single study which demonstrated increased 

HSA-AGE concentrations in the GCF of periodontitis patients with diabetes (Kajiura et 

al., 2014). While this study provided a range of HSA-AGE concentrations to use, it is 

likely that analysis of a larger cross section of GCF (and perhaps saliva) of periodontitis 

patients, periodontitis patients with diabetes and healthy volunteers is required for better 

representation of AGE GCF concentrations. In addition, to truly evaluate the validity of 

this method to model the bacterial composition of biofilms in the periodontal pockets of 

diabetics with periodontitis, a direct comparison (using NGS/transcriptomics) of model 

biofilms and patient biofilms is required. As discussed in section 6.3.3 a comparison of 

clinical samples with model biofilms using the same analysis methods is imperative to 

eliminate any method bias.  

The interactions between oral microbiota and the host cells also plays a crucial role in 

the progression of periodontitis and may be exacerbated by the immune dysregulation 

associated with diabetes (Preshaw et al¸ 2012). The methods presented here, attempt 

to model the microbiota-host cell interactions using a co-culture method. Close attention 

was paid to the inflammatory responses of the TIGK cells in response to the biofilms with 

or without AGE in the co-culture media. Biofilms were cultured under varying conditions 

(to reflect health and hyperglycaemia associated AGE concentrations) and introduced to 

TIGK cells, cultured for 8 hours and inflammatory responses analysed.  

Prior to analysis of AGE associated changes in host inflammatory responses in TIGK 

cells, the expression of RAGE was first confirmed in the gingival keratinocytes cell line 

utilised in this study (section 3.2). The results demonstrated RAGE was expressed as 

both the cell surface bound and secreted versions. However, the overall expression of 

RAGE on these cells was not altered as a consequence of increased AGE 
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concentrations. To ensure the lack of difference is not a consequence of the 

methodologies utilised, further analysis is required. In particular, analysing the ratio of 

cell surface bound RAGE receptor and secreted RAGE receptor at both a protein and 

mRNA level is required. To accomplish this at a protein level an ELISA can be optimised 

to quantitate RAGE concentrations in both WCL and culture supernatant. For the 

analysis of RAGE mRNA, primers specific to the various isoforms of RAGE can be 

designed for use with qRT-PCR methods. Establishing these ratios is important when 

considering the sequestering of AGE by secreted RAGE prevents the activation of 

signalling cascades associated with AGE-RAGE interactions and could prevent the 

feedback required for the upregulation of RAGE expression (Yonekura et al., 2003, 

Hudson et al., 2008, Kalea et al., 2009, Ott et al., 2014, Wautier et al., 2017, Leung et 

al., 2016). In addition to RAGE ratio analysis, quantifying the levels of ADAM10 and 

MMP9 (which have been associated with RAGE cleavage to generate secreted RAGE) 

may prove prudent to determine if changes in these proteolytic proteins are responsible 

for the changes in secreted RAGE (Yonekura et al., 2003, Hudson et al., 2008, Kalea et 

al., 2009).  

While the data presented in this thesis, demonstrated a lack of difference in 

cytokine/chemokine release following AGE addition to culture media (section 3.2), it is 

possible this was due to a lack of interactions between AGE and RAGE. It is possible 

that AGE interacts with various other receptors (including AGE-R1/OST-48, AGE-

R2/80K-H, AGE-R3/galectin-3) which may not result in tested cytokine/chemokine 

changes (Araki et al., 1995, Vlassara et al., 1995, Li et al., 1996, Ohgami et al., 2001a, 

Ohgami et al., 2001b, Ohgami et al., 2001c, Jono et al., 2002, Tamura et al., 2003). To 

ensure AGE interaction with RAGE, investigation into the NFκB, MAPK and other 

signalling pathways would be beneficial, particularly when considering these have been 

linked to downstream signalling cascades for AGE-RAGE interaction (Figure 3.1) 

(Schmidt et al., 2000, Ishihara et al., 2003, Kokkola et al., 2005, Mallidis et al., 2007).  

Although the presence of RAGE on TIGK cells was confirmed, the addition of AGE 

appeared not to alter cytokine/chemokine levels. However, co-stimulation of the TIGK 

cells with biofilms generated under various conditions appeared to dampen IL-6 and IL-

8 responses (section 5.2.3). This could potentially be a consequence of bacterial 

degradation of cytokines/chemokines. This would correlate with other studies which have 

demonstrated P. gingivalis modulation of IL-8 (Darveau et al., 1998, Huang et al., 2001, 

Bainbridge et al., 2010) and IL-6 (Lourbakos et al., 2001, Uehara et al., 2008, O'Brien-

Simpson et al., 2009). Interestingly, concentrations were higher with diabetes and 

periodontitis biofilms compared with periodontitis biofilms alone with changes more 

evident with direct biofilm-cell contact. This suggests the biofilm composition or biofilm 
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functionality is altered to modulate cellular inflammatory responses and perhaps 

highlights the possibility that hyperglycaemia of diabetics activates pathways that lead to 

an increase in inflammation (Preshaw et al., 2012).   

However, as this was a feasibility study and thus limited to one replicate, the results are 

inconclusive and repeats are required for validation. The data do however, indicate a 

potential change in the cytokine/chemokine profile of TIGK cells following co-culture with 

biofilms and as such highlights the necessity for further analysis. Furthermore, this thesis 

demonstrated the feasibility of co-culture and may be applied in the future to analyse the 

effect of oral biofilms on immune cells. This would be of interest, given the high 

predominance of immune cells in the oral cavity and their crucial role in the progression 

of periodontitis and their increase in number during periodontitis (Dutzan et al., 2016). 

Furthermore, high expression of RAGE was shown in gingival epithelial cells and 

circulating leukocytes which contrasted with healthy gingiva, where RAGE expression 

was limited (Abbass et al., 2012). Co-culture of leukocytes under hyperglycaemic AGE 

conditions with complex biofilm, may therefore result in a more exacerbated inflammatory 

response.  

In both TIGK responses to AGE and co-culture experiments, the analysis of MMPs would 

aid in understanding the cytokines/chemokines response. Particularly when considering 

they are targets for MMP cleavage (Franco et al., 2017). Indeed, in previous studies, 

MMP13 has been implicated in activation of other MMPs through a proteolytic cascade 

in gingival cells from periodontitis patients (Hernandez Rios et al., 2009, Franco et al., 

2017). An increase in MMPs in co-culture experiments could account for the decreases 

in cytokines/chemokines observed.  

In addition to the in vitro studies discussed above, the thesis presents a preliminary 

clinical study analysing the immune and inflammatory response of periodontitis and 

healthy participants at both a local and systemic level (section 6.2). Given the limited 

cohort size, no differences in neutrophil phagocytosis, respiratory burst and migration 

were detected and as such an increase in participant number is required. In addition to 

the functions of neutrophils described in this thesis, neutrophil extracellular traps (NETs) 

have recently been indicated as important in neutrophil killing (Brinkmann et al., 2004). 

In chronic periodontitis NETs have been observed in periodontal pockets and GCF 

(Vitkov et al., 2009). Furthermore, P. gingivalis, T. forsythia, F. nucleatum and Prevotella 

intermedia, have been shown to have DNAse activity and can degrade NETs under 

certain growth conditions, thus, avoiding NET-associated killing (Palmer et al., 2012). 

Together these studies suggest the addition of NET analysis would be beneficial to 

elucidating the links between diabetes and periodontitis. As described previously, an 



Chapter 7 – Conclusions and future directions 
 

264 
 

increase in local and systemic neutrophil number has been observed in periodontitis and 

P. gingivalis has been shown to increase migration and retention of neutrophils into 

tissues (Wingrove et al., 1992, Meyle and Chapple, 2015, Dutzan et al., 2016), perhaps 

suggesting a need to evaluate the number of systemic and local neutrophils in 

periodontitis patients with and without diabetes.  

Similar to neutrophil data, the panel of cytokines/chemokines analysed indicated limited 

significant differences between healthy and periodontitis patients at both a systemic and 

local level. However, IL-8 (GCF, saliva and plasma), IL-1β (GCF, saliva), MCP-1 (GCF, 

saliva) all appeared to have increased concentrations in periodontitis. Likewise, the 

MMPs analysed appeared to be present at increased concentrations in the GCF and 

saliva of periodontitis participants. Although the differences didn’t always reach 

significance, the data suggest that periodontitis participants had an increased 

inflammatory response. To confirm these results an increase in cohort size is required. 

The clinical study also indicates differences in composition and function of the microbiota 

when comparing health to periodontitis. It is proposed that the methodologies validated 

in this clinical feasibility study for the evaluation of cytokine/chemokine concentrations, 

neutrophil functions and bacteral profiles, can be implemented in diabetics with and 

without periodontitis.  

The data described in this thesis presents a framework for future investigation. Alongside 

expanding the clinical study to include diabetic patients and increasing the cohort size, 

future work includes optimizing the complex biofilm model to better represent long term 

consequence of hyperglycaemia on periodontitis biofilms and co-culture experiments to 

analyse the effects of biofilms on oral cells.  

 

 

 

 

 

 



 

265 
 

v. References 

  

ABBASS, M. M., KORANY, N. S., SALAMA, A. H., DMYTRYK, J. J. & SAFIEJKO-

MROCZKA, B. 2012. The relationship between receptor for advanced glycation 

end products expression and the severity of periodontal disease in the gingiva of 

diabetic and non diabetic periodontitis patients. Arch Oral Biol, 57, 1342-54. 

ABDUL-AZIZ, M. A., COOPER, A. & WEYRICH, L. S. 2016. Exploring Relationships 

between Host Genome and Microbiome: New Insights from Genome-Wide 

Association Studies. Front Microbiol, 7, 1611. 

ABDUL-SATER, A. A., SAID-SADIER, N., OJCIUS, D. M., YILMAZ, O. & KELLY, K. A. 

2009. Inflammasomes bridge signaling between pathogen identification and the 

immune response. Drugs Today (Barc), 45 Suppl B, 105-12. 

ABUSLEME, L., DUPUY, A. K., DUTZAN, N., SILVA, N., BURLESON, J. A., 

STRAUSBAUGH, L. D., GAMONAL, J. & DIAZ, P. I. 2013. The subgingival 

microbiome in health and periodontitis and its relationship with community 

biomass and inflammation. ISME J, 7, 1016-25. 

AGARWAL, S., BARAN, C., PIESCO, N. P., QUINTERO, J. C., LANGKAMP, H. H., 

JOHNS, L. P. & CHANDRA, C. S. 1995. Synthesis of proinflammatory cytokines 

by human gingival fibroblasts in response to lipopolysaccharides and interleukin-

1 beta. J Periodontal Res, 30, 382-9. 

AHMAD, S., AKHTER, F., SHAHAB, U., RAFI, Z., KHAN, M. S., NABI, R., KHAN, M. S., 

AHMAD, K., ASHRAF, J. M. & MOINUDDIN 2017. Do all roads lead to the Rome? 

The glycation perspective! Semin Cancer Biol. 

AHN, S. J., KHO, H. S., LEE, S. W. & NAHM, D. S. 2002. Roles of salivary proteins in 

the adherence of oral streptococci to various orthodontic brackets. J Dent Res, 

81, 411-5. 

AI, D., HUANG, R., WEN, J., LI, C., ZHU, J. & XIA, L. C. 2017. Integrated metagenomic 

data analysis demonstrates that a loss of diversity in oral microbiota is associated 

with periodontitis. BMC Genomics, 18, 1041. 

ALAMIR, I., NIQUET-LERIDON, C., JACOLOT, P., RODRIGUEZ, C., OROSCO, M., 

ANTON, P. M. & TESSIER, F. J. 2013. Digestibility of extruded proteins and 

metabolic transit of N epsilon -carboxymethyllysine in rats. Amino Acids, 44, 

1441-9. 

ALBA-LOUREIRO, T. C., HIRABARA, S. M., MENDONCA, J. R., CURI, R. & PITHON-

CURI, T. C. 2006. Diabetes causes marked changes in function and metabolism 

of rat neutrophils. J Endocrinol, 188, 295-303. 

ALBA-LOUREIRO, T. C., MUNHOZ, C. D., MARTINS, J. O., CERCHIARO, G. A., 

SCAVONE, C., CURI, R. & SANNOMIYA, P. 2007. Neutrophil function and 



 

266 
 

metabolism in individuals with diabetes mellitus. Braz J Med Biol Res, 40, 1037-

44. 

ALFAKRY, H., MALLE, E., KOYANI, C. N., PUSSINEN, P. J. & SORSA, T. 2016. 

Neutrophil proteolytic activation cascades: a possible mechanistic link between 

chronic periodontitis and coronary heart disease. Innate Immun, 22, 85-99. 

AMULIC, B., CAZALET, C., HAYES, G. L., METZLER, K. D. & ZYCHLINSKY, A. 2012. 

Neutrophil function: from mechanisms to disease. Annu Rev Immunol, 30, 459-

89. 

ANDERSON, D. M., MARASKOVSKY, E., BILLINGSLEY, W. L., DOUGALL, W. C., 

TOMETSKO, M. E., ROUX, E. R., TEEPE, M. C., DUBOSE, R. F., COSMAN, D. 

& GALIBERT, L. 1997. A homologue of the TNF receptor and its ligand enhance 

T-cell growth and dendritic-cell function. Nature, 390, 175-9. 

ANDERSSON, A. K., FLODSTROM, M. & SANDLER, S. 2001. Cytokine-induced 

inhibition of insulin release from mouse pancreatic beta-cells deficient in inducible 

nitric oxide synthase. Biochem Biophys Res Commun, 281, 396-403. 

ANIL, S., PREETHANATH, R. S., ALASQAH, M., MOKEEM, S. A. & ANAND, P. S. 2013. 

Increased levels of serum and gingival crevicular fluid monocyte chemoattractant 

protein-1 in smokers with periodontitis. J Periodontol, 84, e23-8. 

ANNUNZIATO, F., COSMI, L., LIOTTA, F., MAGGI, E. & ROMAGNANI, S. 2012. 

Defining the human T helper 17 cell phenotype. Trends Immunol, 33, 505-12. 

APPAY, V., VAN LIER, R. A., SALLUSTO, F. & ROEDERER, M. 2008. Phenotype and 

function of human T lymphocyte subsets: consensus and issues. Cytometry A, 

73, 975-83. 

ARAKI, N., HIGASHI, T., MORI, T., SHIBAYAMA, R., KAWABE, Y., KODAMA, T., 

TAKAHASHI, K., SHICHIRI, M. & HORIUCHI, S. 1995. Macrophage scavenger 

receptor mediates the endocytic uptake and degradation of advanced glycation 

end products of the Maillard reaction. Eur J Biochem, 230, 408-15. 

ARENDORF, T. M. & WALKER, D. M. 1979. Oral candidal populations in health and 

disease. Br Dent J, 147, 267-72. 

ARMITAGE, G. C. 1999. Development of a classification system for periodontal diseases 

and conditions. Ann Periodontol, 4, 1-6. 

ARPINO, V., BROCK, M. & GILL, S. E. 2015. The role of TIMPs in regulation of 

extracellular matrix proteolysis. Matrix Biol, 44-46, 247-54. 

ASPRIELLO, S. D., ZIZZI, A., TIRABASSI, G., BULDREGHINI, E., BISCOTTI, T., 

FALOIA, E., STRAMAZZOTTI, D., BOSCARO, M. & PIEMONTESE, M. 2011. 

Diabetes mellitus-associated periodontitis: differences between type 1 and type 

2 diabetes mellitus. J Periodontal Res, 46, 164-9. 



 

267 
 

ASSUMA, R., OATES, T., COCHRAN, D., AMAR, S. & GRAVES, D. T. 1998. IL-1 and 

TNF antagonists inhibit the inflammatory response and bone loss in experimental 

periodontitis. J Immunol, 160, 403-9. 

AWANG, R. A., LAPPIN, D. F., MACPHERSON, A., RIGGIO, M., ROBERTSON, D., 

HODGE, P., RAMAGE, G., CULSHAW, S., PRESHAW, P. M., TAYLOR, J. & 

NILE, C. 2014. Clinical associations between IL-17 family cytokines and 

periodontitis and potential differential roles for IL-17A and IL-17E in periodontal 

immunity. Inflamm Res, 63, 1001-12. 

BADENHORST, D., MASEKO, M., TSOTETSI, O. J., NAIDOO, A., BROOKSBANK, R., 

NORTON, G. R. & WOODIWISS, A. J. 2003. Cross-linking influences the impact 

of quantitative changes in myocardial collagen on cardiac stiffness and 

remodelling in hypertension in rats. Cardiovasc Res, 57, 632-41. 

BAINBRIDGE, B., VERMA, R. K., EASTMAN, C., YEHIA, B., RIVERA, M., MOFFATT, 

C., BHATTACHARYYA, I., LAMONT, R. J. & KESAVALU, L. 2010. Role of 

Porphyromonas gingivalis phosphoserine phosphatase enzyme SerB in 

inflammation, immune response, and induction of alveolar bone resorption in rats. 

Infect Immun, 78, 4560-9. 

BAKER, P. J., DIXON, M., EVANS, R. T., DUFOUR, L., JOHNSON, E. & ROOPENIAN, 

D. C. 1999. CD4(+) T cells and the proinflammatory cytokines gamma interferon 

and interleukin-6 contribute to alveolar bone loss in mice. Infect Immun, 67, 2804-

9. 

BAKER, P. J., EVANS, R. T. & ROOPENIAN, D. C. 1994. Oral infection with 

Porphyromonas gingivalis and induced alveolar bone loss in immunocompetent 

and severe combined immunodeficient mice. Arch Oral Biol, 39, 1035-40. 

BAKER, P. J., HOWE, L., GARNEAU, J. & ROOPENIAN, D. C. 2002. T cell knockout 

mice have diminished alveolar bone loss after oral infection with Porphyromonas 

gingivalis. FEMS Immunol Med Microbiol, 34, 45-50. 

BASTOS, A. S., GRAVES, D. T., LOUREIRO, A. P., ROSSA JUNIOR, C., ABDALLA, D. 

S., FAULIN TDO, E., OLSEN CAMARA, N., ANDRIANKAJA, O. M. & ORRICO, 

S. R. 2012. Lipid peroxidation is associated with the severity of periodontal 

disease and local inflammatory markers in patients with type 2 diabetes. J Clin 

Endocrinol Metab, 97, E1353-62. 

BEKLEN, A., AINOLA, M., HUKKANEN, M., GURGAN, C., SORSA, T. & KONTTINEN, 

Y. T. 2007. MMPs, IL-1, and TNF are regulated by IL-17 in periodontitis. J Dent 

Res, 86, 347-51. 

BELSTROM, D., CONSTANCIAS, F., LIU, Y., YANG, L., DRAUTZ-MOSES, D. I., 

SCHUSTER, S. C., KOHLI, G. S., JAKOBSEN, T. H., HOLMSTRUP, P. & 

GIVSKOV, M. 2017. Metagenomic and metatranscriptomic analysis of saliva 



 

268 
 

reveals disease-associated microbiota in patients with periodontitis and dental 

caries. NPJ Biofilms Microbiomes, 3, 23. 

BENDER, J. S., THANG, H. & GLOGAUER, M. 2006. Novel rinse assay for the 

quantification of oral neutrophils and the monitoring of chronic periodontal 

disease. J Periodontal Res, 41, 214-20. 

BENDRE, M. S., MONTAGUE, D. C., PEERY, T., AKEL, N. S., GADDY, D. & SUVA, L. 

J. 2003. Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a 

mechanism for the increased osteolysis of metastatic bone disease. Bone, 33, 

28-37. 

BERBAUM, K., SHANMUGAM, K., STUCHBURY, G., WIEDE, F., KORNER, H. & 

MUNCH, G. 2008. Induction of novel cytokines and chemokines by advanced 

glycation endproducts determined with a cytometric bead array. Cytokine, 41, 

198-203. 

BERTHOLD, P., FORTI, D., KIEBA, I. R., ROSENBLOOM, J., TAICHMAN, N. S. & 

LALLY, E. T. 1992. Electron immunocytochemical localization of Actinobacillus 

actinomycetemcomitans leukotoxin. Oral Microbiol Immunol, 7, 24-7. 

BETTELLI, E., CARRIER, Y., GAO, W., KORN, T., STROM, T. B., OUKKA, M., WEINER, 

H. L. & KUCHROO, V. K. 2006. Reciprocal developmental pathways for the 

generation of pathogenic effector TH17 and regulatory T cells. Nature, 441, 235-

8. 

BOACKLE, R. J., CONNOR, M. H. & VESELY, J. 1993. High molecular weight non-

immunoglobulin salivary agglutinins (NIA) bind C1Q globular heads and have the 

potential to activate the first complement component. Mol Immunol, 30, 309-19. 

BONI-SCHNETZLER, M., BOLLER, S., DEBRAY, S., BOUZAKRI, K., MEIER, D. T., 

PRAZAK, R., KERR-CONTE, J., PATTOU, F., EHSES, J. A., SCHUIT, F. C. & 

DONATH, M. Y. 2009. Free fatty acids induce a proinflammatory response in 

islets via the abundantly expressed interleukin-1 receptor I. Endocrinology, 150, 

5218-29. 

BORGNAKKE, W. S., YLOSTALO, P. V., TAYLOR, G. W. & GENCO, R. J. 2013. Effect 

of periodontal disease on diabetes: systematic review of epidemiologic 

observational evidence. J Periodontol, 84, S135-52. 

BOSTANCI, N., EMINGIL, G., SAYGAN, B., TURKOGLU, O., ATILLA, G., CURTIS, M. 

A. & BELIBASAKIS, G. N. 2009. Expression and regulation of the NALP3 

inflammasome complex in periodontal diseases. Clin Exp Immunol, 157, 415-22. 

BRINKMANN, V., REICHARD, U., GOOSMANN, C., FAULER, B., UHLEMANN, Y., 

WEISS, D. S., WEINRAUCH, Y. & ZYCHLINSKY, A. 2004. Neutrophil 

extracellular traps kill bacteria. Science, 303, 1532-5. 



 

269 
 

BRISSETTE, C. A., PHAM, T. T., COATS, S. R., DARVEAU, R. P. & LUKEHART, S. A. 

2008. Treponema denticola does not induce production of common innate 

immune mediators from primary gingival epithelial cells. Oral Microbiol Immunol, 

23, 474-81. 

BROWNLEE, M. 2005. The pathobiology of diabetic complications: a unifying 

mechanism. Diabetes. United States. 

BRYAN, N. S., TRIBBLE, G. & ANGELOV, N. 2017. Oral Microbiome and Nitric Oxide: 

the Missing Link in the Management of Blood Pressure. Curr Hypertens Rep, 19, 

33. 

BUCHFINK, B., XIE, C. & HUSON, D. H. 2015. Fast and sensitive protein alignment 

using DIAMOND. Nat Methods, 12, 59-60. 

BUDUNELI, N. & KINANE, D. F. 2011. Host-derived diagnostic markers related to soft 

tissue destruction and bone degradation in periodontitis. J Clin Periodontol, 38 

Suppl 11, 85-105. 

BULUT, U., DEVELIOGLU, H., TANER, I. L. & BERKER, E. 2001. Interleukin-1 beta 

levels in gingival crevicular fluid in type 2 diabetes mellitus and adult periodontitis. 

J Oral Sci, 43, 171-7. 

BURTON, J. P., CHILCOTT, C. N., MOORE, C. J., SPEISER, G. & TAGG, J. R. 2006. 

A preliminary study of the effect of probiotic Streptococcus salivarius K12 on oral 

malodour parameters. J Appl Microbiol, 100, 754-64. 

CALLAHAN, B., PROCTOR, D., RELMAN, D., FUKUYAMA, J. & HOLMES, S. 2016. 

Reproducible Research Workflow in R for the Analysis of Personalized Human 

Microbiome Data. Pac Symp Biocomput, 21, 183-94. 

CAMARGO, G. A., LIMA MDE, A., FORTES, T. V., DE SOUZA, C. S., DE JESUS, A. M. 

& DE ALMEIDA, R. P. 2013. Effect of periodontal therapy on metabolic control 

and levels of IL-6 in the gingival crevicular fluid in type 2 diabetes mellitus. Indian 

J Dent Res, 24, 110-6. 

CAMPBELL, L., MILLHOUSE, E., MALCOLM, J. & CULSHAW, S. 2016. T cells, teeth 

and tissue destruction - what do T cells do in periodontal disease? Mol Oral 

Microbiol, 31, 445-456. 

CAPORASO, J. G., BITTINGER, K., BUSHMAN, F. D., DESANTIS, T. Z., ANDERSEN, 

G. L. & KNIGHT, R. 2010a. PyNAST: a flexible tool for aligning sequences to a 

template alignment. Bioinformatics, 26, 266-7. 

CAPORASO, J. G., KUCZYNSKI, J., STOMBAUGH, J., BITTINGER, K., BUSHMAN, F. 

D., COSTELLO, E. K., FIERER, N., PENA, A. G., GOODRICH, J. K., GORDON, 

J. I., HUTTLEY, G. A., KELLEY, S. T., KNIGHTS, D., KOENIG, J. E., LEY, R. E., 

LOZUPONE, C. A., MCDONALD, D., MUEGGE, B. D., PIRRUNG, M., REEDER, 

J., SEVINSKY, J. R., TURNBAUGH, P. J., WALTERS, W. A., WIDMANN, J., 



 

270 
 

YATSUNENKO, T., ZANEVELD, J. & KNIGHT, R. 2010b. QIIME allows analysis 

of high-throughput community sequencing data. Nat Methods, 7, 335-6. 

CARDOSO, C. R., GARLET, G. P., CRIPPA, G. E., ROSA, A. L., JUNIOR, W. M., 

ROSSI, M. A. & SILVA, J. S. 2009. Evidence of the presence of T helper type 17 

cells in chronic lesions of human periodontal disease. Oral Microbiol Immunol, 

24, 1-6. 

CARESTIA, A., FRECHTEL, G., CERRONE, G., LINARI, M. A., GONZALEZ, C. D., 

CASAIS, P. & SCHATTNER, M. 2016. NETosis before and after Hyperglycemic 

Control in Type 2 Diabetes Mellitus Patients. PLoS One, 11, e0168647. 

CARLEN, A., BRATT, P., STENUDD, C., OLSSON, J. & STROMBERG, N. 1998. 

Agglutinin and acidic proline-rich protein receptor patterns may modulate 

bacterial adherence and colonization on tooth surfaces. J Dent Res, 77, 81-90. 

CARLSSON, J., GRAHNEN, H. & JONSSON, G. 1975. Lactobacilli and streptococci in 

the mouth of children. Caries Res, 9, 333-9. 

CARNEIRO, L. G., NOUH, H. & SALIH, E. 2014. Quantitative gingival crevicular fluid 

proteome in health and periodontal disease using stable isotope chemistries and 

mass spectrometry. J Clin Periodontol, 41, 733-47. 

CARVALHO-TAVARES, J., HICKEY, M. J., HUTCHISON, J., MICHAUD, J., 

SUTCLIFFE, I. T. & KUBES, P. 2000. A role for platelets and endothelial selectins 

in tumor necrosis factor-alpha-induced leukocyte recruitment in the brain 

microvasculature. Circ Res, 87, 1141-8. 

CASANOVA, L., HUGHES, F. J. & PRESHAW, P. M. 2014. Diabetes and periodontal 

disease: a two-way relationship. Br Dent J, 217, 433-7. 

CASARIN, R. C., BARBAGALLO, A., MEULMAN, T., SANTOS, V. R., SALLUM, E. A., 

NOCITI, F. H., DUARTE, P. M., CASATI, M. Z. & GONCALVES, R. B. 2013. 

Subgingival biodiversity in subjects with uncontrolled type-2 diabetes and chronic 

periodontitis. J Periodontal Res, 48, 30-6. 

CAVALLA, F., OSORIO, C., PAREDES, R., VALENZUELA, M. A., GARCIA-SESNICH, 

J., SORSA, T., TERVAHARTIALA, T. & HERNANDEZ, M. 2015. Matrix 

metalloproteinases regulate extracellular levels of SDF-1/CXCL12, IL-6 and 

VEGF in hydrogen peroxide-stimulated human periodontal ligament fibroblasts. 

Cytokine, 73, 114-21. 

CENCI, E., ROMANI, L., MENCACCI, A., SPACCAPELO, R., SCHIAFFELLA, E., 

PUCCETTI, P. & BISTONI, F. 1993. Interleukin-4 and interleukin-10 inhibit nitric 

oxide-dependent macrophage killing of Candida albicans. Eur J Immunol, 23, 

1034-8. 

CESAR-NETO, J. B., DUARTE, P. M., DE OLIVEIRA, M. C., TAMBELI, C. H., SALLUM, 

E. A. & NOCITI, F. H., JR. 2007. Smoking modulates interleukin-6:interleukin-10 



 

271 
 

and RANKL:osteoprotegerin ratios in the periodontal tissues. J Periodontal Res, 

42, 184-91. 

CHABAUD, M., DURAND, J. M., BUCHS, N., FOSSIEZ, F., PAGE, G., FRAPPART, L. 

& MIOSSEC, P. 1999. Human interleukin-17: A T cell-derived proinflammatory 

cytokine produced by the rheumatoid synovium. Arthritis Rheum, 42, 963-70. 

CHAE, H. J., BYUN, J. O., CHAE, S. W., KIM, H. M., CHOI, H. I., PAE, H. O., CHUNG, 

H. T. & KIM, H. R. 2005. p38 MAPK and NF-kappaB on IL-6 release in human 

gingival fibroblasts. Immunopharmacol Immunotoxicol, 27, 631-46. 

CHALOVA, V. I., HERNÁNDEZ-HERNÁNDEZ, O., MUTHAIYAN, A., SIRSAT, S. A., 

NATESAN, S., SANZ, M. L., MORENO, F. J., O'BRYAN, C. A., CRANDALL, P. 

G. & RICKE, S. C. 2012. Growth and transcriptional response of Salmonella 

Typhimurium LT2 to glucose–lysine-based Maillard reaction products generated 

under low water activity conditions. Food Research International, 45, 1044-1053. 

CHANG, P. C., CHIEN, L. Y., YEO, J. F., WANG, Y. P., CHUNG, M. C., CHONG, L. Y., 

KUO, M. Y., CHEN, C. H., CHIANG, H. C., NG, B. N., LEE, Q. Q., PHAY, Y. K., 

NG, J. R. & ERK, K. Y. 2013. Progression of periodontal destruction and the roles 

of advanced glycation end products in experimental diabetes. J Periodontol, 84, 

379-88. 

CHANG, S. & AUNE, T. M. 2007. Dynamic changes in histone-methylation 'marks' 

across the locus encoding interferon-gamma during the differentiation of T helper 

type 2 cells. Nat Immunol, 8, 723-31. 

CHEN, H., REN, A., HU, S., MO, W., XIN, X. & JIA, W. 2007. The significance of tumor 

necrosis factor-alpha in newly diagnosed type 2 diabetic patients by transient 

intensive insulin treatment. Diabetes Res Clin Pract, 75, 327-32. 

CHILELLI, N. C., BURLINA, S. & LAPOLLA, A. 2013. AGEs, rather than hyperglycemia, 

are responsible for microvascular complications in diabetes: a "glycoxidation-

centric" point of view. Nutr Metab Cardiovasc Dis, 23, 913-9. 

CHRISTAN, C., DIETRICH, T., HAGEWALD, S., KAGE, A. & BERNIMOULIN, J. P. 

2002. White blood cell count in generalized aggressive periodontitis after non-

surgical therapy. J Clin Periodontol, 29, 201-6. 

CHUAH, Y. K., BASIR, R., TALIB, H., TIE, T. H. & NORDIN, N. 2013. Receptor for 

advanced glycation end products and its involvement in inflammatory diseases. 

Int J Inflam, 2013, 403460. 

CIANCIOLA, L. J., PARK, B. H., BRUCK, E., MOSOVICH, L. & GENCO, R. J. 1982. 

Prevalence of periodontal disease in insulin-dependent diabetes mellitus 

(juvenile diabetes). J Am Dent Assoc, 104, 653-60. 



 

272 
 

CLAWSON, C. C., WHITE, J. G. & REPINE, J. E. 1978. The Chediak-Higashi syndrome. 

Evidence that defective leukotaxis is primarily due to an impediment by giant 

granules. Am J Pathol, 92, 745-53. 

COHEN-OR, I., KATZ, C. & RON, E. Z. 2011. AGEs secreted by bacteria are involved in 

the inflammatory response. PLoS One, 6, e17974. 

COHEN-OR, I., KATZ, C. & RON, E. Z. 2013. Metabolism of AGEs--bacterial AGEs are 

degraded by metallo-proteases. PLoS One, 8, e74970. 

COLE, C. M., SUNDARARAJ, K. P., LEITE, R. S., NAREIKA, A., SLATE, E. H., 

SANDERS, J. J., LOPES-VIRELLA, M. F. & HUANG, Y. 2008. A trend of increase 

in periodontal interleukin-6 expression across patients with neither diabetes nor 

periodontal disease, patients with periodontal disease alone, and patients with 

both diseases. J Periodontal Res, 43, 717-22. 

COLOTTA, F., RE, F., POLENTARUTTI, N., SOZZANI, S. & MANTOVANI, A. 1992. 

Modulation of granulocyte survival and programmed cell death by cytokines and 

bacterial products. Blood, 80, 2012-20. 

CORREA, F. O., GONCALVES, D., FIGUEREDO, C. M., GUSTAFSSON, A. & ORRICO, 

S. R. 2008. The short-term effectiveness of non-surgical treatment in reducing 

levels of interleukin-1beta and proteases in gingival crevicular fluid from patients 

with type 2 diabetes mellitus and chronic periodontitis. J Periodontol, 79, 2143-

50. 

CORTES-VIEYRA, R., ROSALES, C. & URIBE-QUEROL, E. 2016. Neutrophil Functions 

in Periodontal Homeostasis. J Immunol Res, 2016, 1396106. 

CORTIZO, A. M., LETTIERI, M. G., BARRIO, D. A., MERCER, N., ETCHEVERRY, S. B. 

& MCCARTHY, A. D. 2003. Advanced glycation end-products (AGEs) induce 

concerted changes in the osteoblastic expression of their receptor RAGE and in 

the activation of extracellular signal-regulated kinases (ERK). Mol Cell Biochem, 

250, 1-10. 

CORZO-MARTÍNEZ, M., HERNANDEZ-HERNANDEZ, O., VILLAMIEL, M., RASTALL, 

R. A. & MORENO, F. J. 2013. In vitro bifidogenic effect of Maillard-type milk 

protein–galactose conjugates on the human intestinal microbiota. International 

Dairy Journal, 31, 127-131. 

COSMI, L., MAGGI, L., SANTARLASCI, V., LIOTTA, F. & ANNUNZIATO, F. 2014. T 

helper cells plasticity in inflammation. Cytometry A, 85, 36-42. 

COSSEAU, C., DEVINE, D. A., DULLAGHAN, E., GARDY, J. L., CHIKATAMARLA, A., 

GELLATLY, S., YU, L. L., PISTOLIC, J., FALSAFI, R., TAGG, J. & HANCOCK, 

R. E. 2008. The commensal Streptococcus salivarius K12 downregulates the 

innate immune responses of human epithelial cells and promotes host-microbe 

homeostasis. Infect Immun, 76, 4163-75. 



 

273 
 

COSTA, P. P., TREVISAN, G. L., MACEDO, G. O., PALIOTO, D. B., SOUZA, S. L., 

GRISI, M. F., NOVAES, A. B., JR. & TABA, M., JR. 2010. Salivary interleukin-6, 

matrix metalloproteinase-8, and osteoprotegerin in patients with periodontitis and 

diabetes. J Periodontol, 81, 384-91. 

CURTIS, M. A., ZENOBIA, C. & DARVEAU, R. P. 2011. The relationship of the oral 

microbiotia to periodontal health and disease. Cell Host Microbe, 10, 302-6. 

CUTLER, C. W., EKE, P., ARNOLD, R. R. & VAN DYKE, T. E. 1991. Defective neutrophil 

function in an insulin-dependent diabetes mellitus patients. A case report. J 

Periodontol, 62, 394-401. 

CUTLER, C. W., MACHEN, R. L., JOTWANI, R. & IACOPINO, A. M. 1999. Heightened 

gingival inflammation and attachment loss in type 2 diabetics with hyperlipidemia. 

J Periodontol, 70, 1313-21. 

CZUSZAK, C. A., SUTHERLAND, D. E., BILLMAN, M. A. & STEIN, S. H. 1996. 

Prostaglandin E2 potentiates interleukin-1 beta induced interleukin-6 production 

by human gingival fibroblasts. J Clin Periodontol, 23, 635-40. 

D'AIUTO, F., PARKAR, M., ANDREOU, G., SUVAN, J., BRETT, P. M., READY, D. & 

TONETTI, M. S. 2004. Periodontitis and systemic inflammation: control of the 

local infection is associated with a reduction in serum inflammatory markers. J 

Dent Res, 83, 156-60. 

DA SILVA PERALTA, F., PALLOS, D., SILVA QUEIROZ, C. & RICARDO, L. H. 2015. 

Previous exposure to Cyclosporine A and periodontal breakdown in rats. Arch 

Oral Biol, 60, 566-73. 

DABDOUB, S. M., GANESAN, S. M. & KUMAR, P. S. 2016. Comparative metagenomics 

reveals taxonomically idiosyncratic yet functionally congruent communities in 

periodontitis. Sci Rep, 6, 38993. 

DARVEAU, R. P. 2010. Periodontitis: a polymicrobial disruption of host homeostasis. Nat 

Rev Microbiol, 8, 481-90. 

DARVEAU, R. P., BELTON, C. M., REIFE, R. A. & LAMONT, R. J. 1998. Local 

chemokine paralysis, a novel pathogenic mechanism for Porphyromonas 

gingivalis. Infect Immun, 66, 1660-5. 

DAWES, C., PEDERSEN, A. M., VILLA, A., EKSTROM, J., PROCTOR, G. B., VISSINK, 

A., AFRAMIAN, D., MCGOWAN, R., ALIKO, A., NARAYANA, N., SIA, Y. W., 

JOSHI, R. K., JENSEN, S. B., KERR, A. R. & WOLFF, A. 2015. The functions of 

human saliva: A review sponsored by the World Workshop on Oral Medicine VI. 

Arch Oral Biol, 60, 863-74. 

DELCOURT-DEBRUYNE, E. M., BOUTIGNY, H. R. & HILDEBRAND, H. F. 2000. 

Features of severe periodontal disease in a teenager with Chediak-Higashi 

syndrome. J Periodontol, 71, 816-24. 



 

274 
 

DELGADO-ANDRADE, C., TESSIER, F. J., NIQUET-LERIDON, C., SEIQUER, I. & 

PILAR NAVARRO, M. 2012. Study of the urinary and faecal excretion of 

Nepsilon-carboxymethyllysine in young human volunteers. Amino Acids, 43, 595-

602. 

DELIMA, A. J., OATES, T., ASSUMA, R., SCHWARTZ, Z., COCHRAN, D., AMAR, S. & 

GRAVES, D. T. 2001. Soluble antagonists to interleukin-1 (IL-1) and tumor 

necrosis factor (TNF) inhibits loss of tissue attachment in experimental 

periodontitis. J Clin Periodontol, 28, 233-40. 

DELIMA, A. J. & VAN DYKE, T. E. 2003. Origin and function of the cellular components 

in gingival crevice fluid. Periodontol 2000, 31, 55-76. 

DEMMER, R. T., DESVARIEUX, M., HOLTFRETER, B., JACOBS, D. R., JR., 

WALLASCHOFSKI, H., NAUCK, M., VOLZKE, H. & KOCHER, T. 2010. 

Periodontal status and A1C change: longitudinal results from the study of health 

in Pomerania (SHIP). Diabetes Care, 33, 1037-43. 

DENNISON, D. K. & VAN DYKE, T. E. 1997. The acute inflammatory response and the 

role of phagocytic cells in periodontal health and disease. Periodontol 2000, 14, 

54-78. 

DESANTIS, T. Z., HUGENHOLTZ, P., LARSEN, N., ROJAS, M., BRODIE, E. L., 

KELLER, K., HUBER, T., DALEVI, D., HU, P. & ANDERSEN, G. L. 2006. 

Greengenes, a chimera-checked 16S rRNA gene database and workbench 

compatible with ARB. Appl Environ Microbiol, 72, 5069-72. 

DEVINE, D. A., MARSH, P. D. & MEADE, J. 2015. Modulation of host responses by oral 

commensal bacteria. J Oral Microbiol, 7, 26941. 

DEWHIRST, F. E., CHEN, T., IZARD, J., PASTER, B. J., TANNER, A. C., YU, W. H., 

LAKSHMANAN, A. & WADE, W. G. 2010. The human oral microbiome. J 

Bacteriol, 192, 5002-17. 

DEWHIRST, F. E., STASHENKO, P. P., MOLE, J. E. & TSURUMACHI, T. 1985. 

Purification and partial sequence of human osteoclast-activating factor: identity 

with interleukin 1 beta. J Immunol, 135, 2562-8. 

DIXON, D. R., BAINBRIDGE, B. W. & DARVEAU, R. P. 2004. Modulation of the innate 

immune response within the periodontium. Periodontol 2000, 35, 53-74. 

DIYA, Z., LILI, C., SHENGLAI, L., ZHIYUAN, G. & JIE, Y. 2008. Lipopolysaccharide 

(LPS) of Porphyromonas gingivalis induces IL-1beta, TNF-alpha and IL-6 

production by THP-1 cells in a way different from that of Escherichia coli LPS. 

Innate Immun, 14, 99-107. 

DODDS, M. W., JOHNSON, D. A. & YEH, C. K. 2005. Health benefits of saliva: a review. 

J Dent, 33, 223-33. 



 

275 
 

DONG, C. 2008. TH17 cells in development: an updated view of their molecular identity 

and genetic programming. Nat Rev Immunol, 8, 337-48. 

DONGARI-BAGTZOGLOU, A. I. & EBERSOLE, J. L. 1996. Production of inflammatory 

mediators and cytokines by human gingival fibroblasts following bacterial 

challenge. J Periodontal Res, 31, 90-8. 

DUARTE, P. M., BEZERRA, J. P., MIRANDA, T. S., FERES, M., CHAMBRONE, L. & 

SHADDOX, L. M. 2014. Local levels of inflammatory mediators in uncontrolled 

type 2 diabetic subjects with chronic periodontitis. J Clin Periodontol, 41, 11-8. 

DUARTE, P. M., DE OLIVEIRA, M. C., TAMBELI, C. H., PARADA, C. A., CASATI, M. Z. 

& NOCITI, F. H., JR. 2007a. Overexpression of interleukin-1beta and interleukin-

6 may play an important role in periodontal breakdown in type 2 diabetic patients. 

J Periodontal Res, 42, 377-81. 

DUARTE, P. M., NETO, J. B., CASATI, M. Z., SALLUM, E. A. & NOCITI, F. H., JR. 

2007b. Diabetes modulates gene expression in the gingival tissues of patients 

with chronic periodontitis. Oral Dis, 13, 594-9. 

DUTZAN, N., ABUSLEME, L., BRIDGEMAN, H., GREENWELL-WILD, T., ZANGERLE-

MURRAY, T., FIFE, M. E., BOULADOUX, N., LINLEY, H., BRENCHLEY, L., 

WEMYSS, K., CALDERON, G., HONG, B. Y., BREAK, T. J., BOWDISH, D. M. 

E., LIONAKIS, M. S., JONES, S. A., TRINCHIERI, G., DIAZ, P. I., BELKAID, Y., 

KONKEL, J. E. & MOUTSOPOULOS, N. M. 2017. On-going Mechanical Damage 

from Mastication Drives Homeostatic Th17 Cell Responses at the Oral Barrier. 

Immunity, 46, 133-147. 

DUTZAN, N., GAMONAL, J., SILVA, A., SANZ, M. & VERNAL, R. 2009a. Over-

expression of forkhead box P3 and its association with receptor activator of 

nuclear factor-kappa B ligand, interleukin (IL) -17, IL-10 and transforming growth 

factor-beta during the progression of chronic periodontitis. J Clin Periodontol, 36, 

396-403. 

DUTZAN, N., KONKEL, J. E., GREENWELL-WILD, T. & MOUTSOPOULOS, N. M. 2016. 

Characterization of the human immune cell network at the gingival barrier. 

Mucosal Immunol, 9, 1163-1172. 

DUTZAN, N., VERNAL, R., HERNANDEZ, M., DEZEREGA, A., RIVERA, O., SILVA, N., 

AGUILLON, J. C., PUENTE, J., POZO, P. & GAMONAL, J. 2009b. Levels of 

interferon-gamma and transcription factor T-bet in progressive periodontal 

lesions in patients with chronic periodontitis. J Periodontol, 80, 290-6. 

EBERSOLE, J. L., HOLT, S. C., HANSARD, R. & NOVAK, M. J. 2008. Microbiologic and 

immunologic characteristics of periodontal disease in Hispanic americans with 

type 2 diabetes. J Periodontol, 79, 637-46. 



 

276 
 

EBERSOLE, J. L., NAGARAJAN, R., AKERS, D. & MILLER, C. S. 2015. Targeted 

salivary biomarkers for discrimination of periodontal health and disease(s). Front 

Cell Infect Microbiol, 5, 62. 

EBERSOLE, J. L., SCHUSTER, J. L., STEVENS, J., DAWSON, D., 3RD, KRYSCIO, R. 

J., LIN, Y., THOMAS, M. V. & MILLER, C. S. 2013. Patterns of salivary analytes 

provide diagnostic capacity for distinguishing chronic adult periodontitis from 

health. J Clin Immunol, 33, 271-9. 

EDGAR, R. C. 2010. Search and clustering orders of magnitude faster than BLAST. 

Bioinformatics, 26, 2460-1. 

EIZIRIK, D. L. & MANDRUP-POULSEN, T. 2001. A choice of death--the signal-

transduction of immune-mediated beta-cell apoptosis. Diabetologia, 44, 2115-33. 

EMRICH, L. J., SHLOSSMAN, M. & GENCO, R. J. 1991. Periodontal disease in non-

insulin-dependent diabetes mellitus. J Periodontol, 62, 123-31. 

ENGEBRETSON, S. P., HEY-HADAVI, J., EHRHARDT, F. J., HSU, D., CELENTI, R. S., 

GRBIC, J. T. & LAMSTER, I. B. 2004. Gingival crevicular fluid levels of 

interleukin-1beta and glycemic control in patients with chronic periodontitis and 

type 2 diabetes. J Periodontol, 75, 1203-8. 

ENGEBRETSON, S. P., VOSSUGHI, F., HEY-HADAVI, J., EMINGIL, G. & GRBIC, J. T. 

2006. The influence of diabetes on gingival crevicular fluid beta-glucuronidase 

and interleukin-8. J Clin Periodontol, 33, 784-90. 

ERTUGRUL, A. S., SAHIN, H., DIKILITAS, A., ALPASLAN, N. & BOZOGLAN, A. 2013. 

Comparison of CCL28, interleukin-8, interleukin-1beta and tumor necrosis factor-

alpha in subjects with gingivitis, chronic periodontitis and generalized aggressive 

periodontitis. J Periodontal Res, 48, 44-51. 

ESKAN, M. A., JOTWANI, R., ABE, T., CHMELAR, J., LIM, J. H., LIANG, S., CIERO, P. 

A., KRAUSS, J. L., LI, F., RAUNER, M., HOFBAUER, L. C., CHOI, E. Y., 

CHUNG, K. J., HASHIM, A., CURTIS, M. A., CHAVAKIS, T. & 

HAJISHENGALLIS, G. 2012. The leukocyte integrin antagonist Del-1 inhibits IL-

17-mediated inflammatory bone loss. Nat Immunol, 13, 465-73. 

EVEREST-DASS, A. V., JIN, D., THAYSEN-ANDERSEN, M., NEVALAINEN, H., 

KOLARICH, D. & PACKER, N. H. 2012. Comparative structural analysis of the 

glycosylation of salivary and buccal cell proteins: innate protection against 

infection by Candida albicans. Glycobiology, 22, 1465-79. 

FARQUHARSON, D., BUTCHER, J. P. & CULSHAW, S. 2012. Periodontitis, 

Porphyromonas, and the pathogenesis of rheumatoid arthritis. Mucosal Immunol, 

5, 112-20. 

FAURSCHOU, M. & BORREGAARD, N. 2003. Neutrophil granules and secretory 

vesicles in inflammation. Microbes Infect, 5, 1317-27. 



 

277 
 

FELLER, L., ALTINI, M., KHAMMISSA, R. A., CHANDRAN, R., BOUCKAERT, M. & 

LEMMER, J. 2013. Oral mucosal immunity. Oral Surg Oral Med Oral Pathol Oral 

Radiol, 116, 576-83. 

FINE, D. H., MARKOWITZ, K., FAIRLIE, K., TISCHIO-BERESKI, D., FERRANDIZ, J., 

GODBOLEY, D., FURGANG, D., GUNSOLLEY, J. & BEST, A. 2014. 

Macrophage inflammatory protein-1alpha shows predictive value as a risk marker 

for subjects and sites vulnerable to bone loss in a longitudinal model of 

aggressive periodontitis. PLoS One, 9, e98541. 

FITZSIMMONS, T. R., SANDERS, A. E., BARTOLD, P. M. & SLADE, G. D. 2010. Local 

and systemic biomarkers in gingival crevicular fluid increase odds of periodontitis. 

J Clin Periodontol, 37, 30-6. 

FLANAGAN, A. M., STOW, M. D. & WILLIAMS, R. 1995. The effect of interleukin-6 and 

soluble interleukin-6 receptor protein on the bone resorptive activity of human 

osteoclasts generated in vitro. J Pathol, 176, 289-97. 

FLETCHER, J., REDDI, K., POOLE, S., NAIR, S., HENDERSON, B., TABONA, P. & 

WILSON, M. 1997. Interactions between periodontopathogenic bacteria and 

cytokines. J Periodontal Res, 32, 200-5. 

FRANCO, C., PATRICIA, H. R., TIMO, S., CLAUDIA, B. & MARCELA, H. 2017. Matrix 

Metalloproteinases as Regulators of Periodontal Inflammation. Int J Mol Sci, 18. 

FRODGE, B. D., EBERSOLE, J. L., KRYSCIO, R. J., THOMAS, M. V. & MILLER, C. S. 

2008. Bone remodeling biomarkers of periodontal disease in saliva. J 

Periodontol, 79, 1913-9. 

FU, Q. Y., ZHANG, L., DUAN, L., QIAN, S. Y. & PANG, H. X. 2013. Correlation of chronic 

periodontitis in tropical area and IFN-gamma, IL-10, IL-17 levels. Asian Pac J 

Trop Med, 6, 489-92. 

FUCHS, T. A., ABED, U., GOOSMANN, C., HURWITZ, R., SCHULZE, I., WAHN, V., 

WEINRAUCH, Y., BRINKMANN, V. & ZYCHLINSKY, A. 2007. Novel cell death 

program leads to neutrophil extracellular traps. J Cell Biol, 176, 231-41. 

FUJIHASHI, K., KONO, Y., BEAGLEY, K. W., YAMAMOTO, M., MCGHEE, J. R., 

MESTECKY, J. & KIYONO, H. 1993. Cytokines and periodontal disease: 

immunopathological role of interleukins for B cell responses in chronic inflamed 

gingival tissues. J Periodontol, 64, 400-6. 

GAMONAL, J., ACEVEDO, A., BASCONES, A., JORGE, O. & SILVA, A. 2001. 

Characterization of cellular infiltrate, detection of chemokine receptor CCR5 and 

interleukin-8 and RANTES chemokines in adult periodontitis. J Periodontal Res, 

36, 194-203. 



 

278 
 

GAMONAL, J., SANZ, M., O'CONNOR, A., ACEVEDO, A., SUAREZ, I., SANZ, A., 

MARTINEZ, B. & SILVA, A. 2003. Delayed neutrophil apoptosis in chronic 

periodontitis patients. J Clin Periodontol, 30, 616-23. 

GAO, Y., GRASSI, F., RYAN, M. R., TERAUCHI, M., PAGE, K., YANG, X., 

WEITZMANN, M. N. & PACIFICI, R. 2007. IFN-gamma stimulates osteoclast 

formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest, 

117, 122-32. 

GARLANDA, C., DINARELLO, C. A. & MANTOVANI, A. 2013. The interleukin-1 family: 

back to the future. Immunity, 39, 1003-18. 

GARLET, G. P. 2010. Destructive and protective roles of cytokines in periodontitis: a re-

appraisal from host defense and tissue destruction viewpoints. J Dent Res, 89, 

1349-63. 

GARLET, G. P., CARDOSO, C. R., CAMPANELLI, A. P., GARLET, T. P., AVILA-

CAMPOS, M. J., CUNHA, F. Q. & SILVA, J. S. 2008. The essential role of IFN-

gamma in the control of lethal Aggregatibacter actinomycetemcomitans infection 

in mice. Microbes Infect, 10, 489-96. 

GHODPAGE, P. S., KOLTE, R. A., KOLTE, A. P. & GUPTA, M. 2014. Influence of phase 

I periodontal therapy on levels of matrix metalloproteinase 1 and tissue inhibitor 

of metalloproteinase 1. Saudi Dent J, 26, 171-5. 

GIANNOPOULOU, C., KAMMA, J. J. & MOMBELLI, A. 2003. Effect of inflammation, 

smoking and stress on gingival crevicular fluid cytokine level. J Clin Periodontol, 

30, 145-53. 

GIANNOUKAKIS, N., RUDERT, W. A., TRUCCO, M. & ROBBINS, P. D. 2000. Protection 

of human islets from the effects of interleukin-1beta by adenoviral gene transfer 

of an Ikappa B repressor. J Biol Chem, 275, 36509-13. 

GIBBONS, R. J., HAY, D. I., CHILDS, W. C., 3RD & DAVIS, G. 1990. Role of cryptic 

receptors (cryptitopes) in bacterial adhesion to oral surfaces. Arch Oral Biol, 35 

Suppl, 107S-114S. 

GILMOUR, J. & LAVENDER, P. 2008. Control of IL-4 expression in T helper 1 and 2 

cells. Immunology, 124, 437-44. 

GONZALES, J. R. 2015. T- and B-cell subsets in periodontitis. Periodontol 2000, 69, 

181-200. 

GONZALES, J. R., GROGER, S., BOEDEKER, R. H. & MEYLE, J. 2012. Expression 

and secretion levels of Th1 and Th2 cytokines in patients with aggressive 

periodontitis. Clin Oral Investig, 16, 1463-73. 

GORR, S. U. 2009. Antimicrobial peptides of the oral cavity. Periodontol 2000, 51, 152-

80. 



 

279 
 

GOVONI, M., JANSSON, E. A., WEITZBERG, E. & LUNDBERG, J. O. 2008. The 

increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an 

antibacterial mouthwash. Nitric Oxide, 19, 333-7. 

GOWEN, M. & MUNDY, G. R. 1986. Actions of recombinant interleukin 1, interleukin 2, 

and interferon-gamma on bone resorption in vitro. J Immunol, 136, 2478-82. 

GRAVES, D. T., DELIMA, A. J., ASSUMA, R., AMAR, S., OATES, T. & COCHRAN, D. 

1998. Interleukin-1 and tumor necrosis factor antagonists inhibit the progression 

of inflammatory cell infiltration toward alveolar bone in experimental periodontitis. 

J Periodontol, 69, 1419-25. 

GRAVES, D. T., LIU, R., ALIKHANI, M., AL-MASHAT, H. & TRACKMAN, P. C. 2006. 

Diabetes-enhanced inflammation and apoptosis--impact on periodontal 

pathology. J Dent Res, 85, 15-21. 

GRENIER, D., IMBEAULT, S., PLAMONDON, P., GRENIER, G., NAKAYAMA, K. & 

MAYRAND, D. 2001. Role of gingipains in growth of Porphyromonas gingivalis 

in the presence of human serum albumin. Infect Immun, 69, 5166-72. 

GRIFFEN, A. L., BEALL, C. J., CAMPBELL, J. H., FIRESTONE, N. D., KUMAR, P. S., 

YANG, Z. K., PODAR, M. & LEYS, E. J. 2012. Distinct and complex bacterial 

profiles in human periodontitis and health revealed by 16S pyrosequencing. 

ISME J, 6, 1176-85. 

GROEGER, S. E. & MEYLE, J. 2015. Epithelial barrier and oral bacterial infection. 

Periodontol 2000, 69, 46-67. 

GROSSIN, N., WAUTIER, M. P., PICOT, J., STERN, D. M. & WAUTIER, J. L. 2009. 

Differential effect of plasma or erythrocyte AGE-ligands of RAGE on expression 

of transcripts for receptor isoforms. Diabetes Metab, 35, 410-7. 

GRUYS, E., TOUSSAINT, M. J., NIEWOLD, T. A. & KOOPMANS, S. J. 2005. Acute 

phase reaction and acute phase proteins. J Zhejiang Univ Sci B, 6, 1045-56. 

GUENTSCH, A., PUKLO, M., PRESHAW, P. M., GLOCKMANN, E., PFISTER, W., 

POTEMPA, J. & EICK, S. 2009. Neutrophils in chronic and aggressive 

periodontitis in interaction with Porphyromonas gingivalis and Aggregatibacter 

actinomycetemcomitans. J Periodontal Res, 44, 368-77. 

GUMUS, P., NIZAM, N., LAPPIN, D. F. & BUDUNELI, N. 2014. Saliva and serum levels 

of B-cell activating factors and tumor necrosis factor-alpha in patients with 

periodontitis. J Periodontol, 85, 270-80. 

GUPTA, M., CHATURVEDI, R. & JAIN, A. 2013. Role of monocyte chemoattractant 

protein-1 (MCP-1) as an immune-diagnostic biomarker in the pathogenesis of 

chronic periodontal disease. Cytokine, 61, 892-7. 



 

280 
 

GUPTA, N., GUPTA, N. D., GUPTA, A., KHAN, S. & BANSAL, N. 2015. Role of salivary 

matrix metalloproteinase-8 (MMP-8) in chronic periodontitis diagnosis. Front 

Med, 9, 72-6. 

GUPTA, S., MARATHA, A., SIEDNIENKO, J., NATARAJAN, A., GAJANAYAKE, T., 

HOASHI, S. & MIGGIN, S. 2017. Analysis of inflammatory cytokine and TLR 

expression levels in Type 2 Diabetes with complications. Sci Rep, 7, 7633. 

GURSOY, U. K., KONONEN, E., UITTO, V. J., PUSSINEN, P. J., HYVARINEN, K., 

SUOMINEN-TAIPALE, L. & KNUUTTILA, M. 2009. Salivary interleukin-1beta 

concentration and the presence of multiple pathogens in periodontitis. J Clin 

Periodontol, 36, 922-7. 

GURSOY, U. K., MARAKOGLU, I. & OZTOP, A. Y. 2008. Relationship between 

neutrophil functions and severity of periodontitis in obese and/or type 2 diabetic 

chronic periodontitis patients. Quintessence Int, 39, 485-9. 

GUTHRIE, L. A., MCPHAIL, L. C., HENSON, P. M. & JOHNSTON, R. B., JR. 1984. 

Priming of neutrophils for enhanced release of oxygen metabolites by bacterial 

lipopolysaccharide. Evidence for increased activity of the superoxide-producing 

enzyme. J Exp Med, 160, 1656-71. 

GYURKO, R., SIQUEIRA, C. C., CALDON, N., GAO, L., KANTARCI, A. & VAN DYKE, 

T. E. 2006. Chronic hyperglycemia predisposes to exaggerated inflammatory 

response and leukocyte dysfunction in Akita mice. J Immunol, 177, 7250-6. 

HAFEZI-MOGHADAM, A., THOMAS, K. L., PROROCK, A. J., HUO, Y. & LEY, K. 2001. 

L-selectin shedding regulates leukocyte recruitment. J Exp Med, 193, 863-72. 

HAJISHENGALLIS, E. & HAJISHENGALLIS, G. 2014. Neutrophil homeostasis and 

periodontal health in children and adults. J Dent Res, 93, 231-7. 

HAJISHENGALLIS, G. 2010. Complement and periodontitis. Biochem Pharmacol, 80, 

1992-2001. 

HAJISHENGALLIS, G. 2015. Periodontitis: from microbial immune subversion to 

systemic inflammation. Nat Rev Immunol, 15, 30-44. 

HAJISHENGALLIS, G., ABE, T., MAEKAWA, T., HAJISHENGALLIS, E. & LAMBRIS, J. 

D. 2013. Role of complement in host-microbe homeostasis of the periodontium. 

Semin Immunol, 25, 65-72. 

HAJISHENGALLIS, G. & CHAVAKIS, T. 2013. Endogenous modulators of inflammatory 

cell recruitment. Trends Immunol, 34, 1-6. 

HAJISHENGALLIS, G., CHAVAKIS, T., HAJISHENGALLIS, E. & LAMBRIS, J. D. 2015. 

Neutrophil homeostasis and inflammation: novel paradigms from studying 

periodontitis. J Leukoc Biol, 98, 539-48. 

HAJISHENGALLIS, G., DARVEAU, R. P. & CURTIS, M. A. 2012. The keystone-

pathogen hypothesis. Nat Rev Microbiol, 10, 717-25. 



 

281 
 

HAJISHENGALLIS, G. & KOROSTOFF, J. M. 2017. Revisiting the Page & Schroeder 

model: the good, the bad and the unknowns in the periodontal host response 40 

years later. Periodontol 2000, 75, 116-151. 

HAJISHENGALLIS, G. & LAMBRIS, J. D. 2016. More than complementing Tolls: 

complement-Toll-like receptor synergy and crosstalk in innate immunity and 

inflammation. Immunol Rev, 274, 233-244. 

HAJISHENGALLIS, G. & LAMONT, R. J. 2012. Beyond the red complex and into more 

complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal 

disease etiology. Mol Oral Microbiol, 27, 409-19. 

HAJISHENGALLIS, G. & MOUTSOPOULOS, N. M. 2014. Etiology of leukocyte adhesion 

deficiency-associated periodontitis revisited: not a raging infection but a raging 

inflammatory response. Expert Rev Clin Immunol, 10, 973-5. 

HAJISHENGALLIS, G., SOJAR, H., GENCO, R. J. & DENARDIN, E. 2009. Intracellular 

Signaling and Cytokine Induction upon Interactions ofPorphyromonas 

gingivalisFimbriae with Pattern‐Recognition Receptors. Immunological 

Investigations, 33, 157-172. 

HANAZAWA, S., KAWATA, Y., TAKESHITA, A., KUMADA, H., OKITHU, M., TANAKA, 

S., YAMAMOTO, Y., MASUDA, T., UMEMOTO, T. & KITANO, S. 1993. 

Expression of monocyte chemoattractant protein 1 (MCP-1) in adult periodontal 

disease: increased monocyte chemotactic activity in crevicular fluids and 

induction of MCP-1 expression in gingival tissues. Infect Immun, 61, 5219-24. 

HARDY, D. C., ROSS, J. H., SCHUYLER, C. A., LEITE, R. S., SLATE, E. H. & HUANG, 

Y. 2012. Matrix metalloproteinase-8 expression in periodontal tissues surgically 

removed from diabetic and non-diabetic patients with periodontal disease. J Clin 

Periodontol, 39, 249-55. 

HARRINGTON, L. E., HATTON, R. D., MANGAN, P. R., TURNER, H., MURPHY, T. L., 

MURPHY, K. M. & WEAVER, C. T. 2005. Interleukin 17-producing CD4+ effector 

T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat 

Immunol, 6, 1123-32. 

HARRISON, R. & BOWEN, W. H. 1987. Flow rate and organic constituents of whole 

saliva in insulin-dependent diabetic children and adolescents. Pediatr Dent, 9, 

287-91. 

HASEGAWA, Y., MANS, J. J., MAO, S., LOPEZ, M. C., BAKER, H. V., HANDFIELD, M. 

& LAMONT, R. J. 2007. Gingival epithelial cell transcriptional responses to 

commensal and opportunistic oral microbial species. Infect Immun, 75, 2540-7. 

HASTURK, H. & KANTARCI, A. 2015. Activation and resolution of periodontal 

inflammation and its systemic impact. Periodontol 2000, 69, 255-73. 



 

282 
 

HATANAKA, E., MONTEAGUDO, P. T., MARROCOS, M. S. & CAMPA, A. 2006. 

Neutrophils and monocytes as potentially important sources of proinflammatory 

cytokines in diabetes. Clin Exp Immunol, 146, 443-7. 

HEIMBERG, H., HEREMANS, Y., JOBIN, C., LEEMANS, R., CARDOZO, A. K., 

DARVILLE, M. & EIZIRIK, D. L. 2001. Inhibition of cytokine-induced NF-kappaB 

activation by adenovirus-mediated expression of a NF-kappaB super-repressor 

prevents beta-cell apoptosis. Diabetes, 50, 2219-24. 

HELLWIG, M., BUNZEL, D., HUCH, M., FRANZ, C. M., KULLING, S. E. & HENLE, T. 

2015. Stability of Individual Maillard Reaction Products in the Presence of the 

Human Colonic Microbiota. J Agric Food Chem, 63, 6723-30. 

HERNANDEZ-HERNANDEZ, O., SANZ, M. L., KOLIDA, S., RASTALL, R. A. & 

MORENO, F. J. 2011. In vitro fermentation by human gut bacteria of 

proteolytically digested caseinomacropeptide nonenzymatically glycosylated with 

prebiotic carbohydrates. J Agric Food Chem, 59, 11949-55. 

HERNANDEZ, M., DUTZAN, N., GARCIA-SESNICH, J., ABUSLEME, L., DEZEREGA, 

A., SILVA, N., GONZALEZ, F. E., VERNAL, R., SORSA, T. & GAMONAL, J. 

2011. Host-pathogen interactions in progressive chronic periodontitis. J Dent 

Res, 90, 1164-70. 

HERNANDEZ, M., GAMONAL, J., TERVAHARTIALA, T., MANTYLA, P., RIVERA, O., 

DEZEREGA, A., DUTZAN, N. & SORSA, T. 2010. Associations between matrix 

metalloproteinase-8 and -14 and myeloperoxidase in gingival crevicular fluid from 

subjects with progressive chronic periodontitis: a longitudinal study. J 

Periodontol, 81, 1644-52. 

HERNANDEZ, M., MARTINEZ, B., TEJERINA, J. M., VALENZUELA, M. A. & 

GAMONAL, J. 2007. MMP-13 and TIMP-1 determinations in progressive chronic 

periodontitis. J Clin Periodontol, 34, 729-35. 

HERNANDEZ RIOS, M., SORSA, T., OBREGON, F., TERVAHARTIALA, T., 

VALENZUELA, M. A., POZO, P., DUTZAN, N., LESAFFRE, E., MOLAS, M. & 

GAMONAL, J. 2009. Proteolytic roles of matrix metalloproteinase (MMP)-13 

during progression of chronic periodontitis: initial evidence for MMP-13/MMP-9 

activation cascade. J Clin Periodontol, 36, 1011-7. 

HERZBERG, M. C. & MEYER, M. W. 1996. Effects of oral flora on platelets: possible 

consequences in cardiovascular disease. J Periodontol, 67, 1138-42. 

HERZBERG, M. C. & WEYER, M. W. 1998. Dental plaque, platelets, and cardiovascular 

diseases. Ann Periodontol, 3, 151-60. 

HINTAO, J., TEANPAISAN, R., CHONGSUVIVATWONG, V., RATARASAN, C. & 

DAHLEN, G. 2007. The microbiological profiles of saliva, supragingival and 



 

283 
 

subgingival plaque and dental caries in adults with and without type 2 diabetes 

mellitus. Oral Microbiol Immunol, 22, 175-81. 

HIRANMAYI, K. V., SIRISHA, K., RAMOJI RAO, M. V. & SUDHAKAR, P. 2017. Novel 

Pathogens in Periodontal Microbiology. J Pharm Bioallied Sci, 9, 155-163. 

HIROSHIMA, Y., SAKAMOTO, E., YOSHIDA, K., ABE, K., NARUISHI, K., YAMAMOTO, 

T., SHINOHARA, Y., KIDO, J. I. & GECZY, C. L. 2018. Advanced glycation end-

products and Porphyromonas gingivalis lipopolysaccharide increase calprotectin 

expression in human gingival epithelial cells. J Cell Biochem, 119, 1591-1603. 

HOLMES, W. E., LEE, J., KUANG, W. J., RICE, G. C. & WOOD, W. I. 1991. Structure 

and functional expression of a human interleukin-8 receptor. Science, 253, 1278-

80. 

HOLZHAUSEN, M., CORTELLI, J. R., DA SILVA, V. A., FRANCO, G. C., CORTELLI, S. 

C. & VERGNOLLE, N. 2010. Protease-activated receptor-2 (PAR(2)) in human 

periodontitis. J Dent Res, 89, 948-53. 

HOMER, K. A. & BEIGHTON, D. 1992. Synergistic degradation of bovine serum albumin 

by mutans streptococci and other dental plaque bacteria. FEMS Microbiol Lett, 

69, 259-62. 

HONDA, T., DOMON, H., OKUI, T., KAJITA, K., AMANUMA, R. & YAMAZAKI, K. 2006. 

Balance of inflammatory response in stable gingivitis and progressive 

periodontitis lesions. Clin Exp Immunol, 144, 35-40. 

HORTON, J. E., RAISZ, L. G., SIMMONS, H. A., OPPENHEIM, J. J. & 

MERGENHAGEN, S. E. 1972. Bone resorbing activity in supernatant fluid from 

cultured human peripheral blood leukocytes. Science, 177, 793-5. 

HOSOYA, T., MAILLARD, I. & ENGEL, J. D. 2010. From the cradle to the grave: activities 

of GATA-3 throughout T-cell development and differentiation. Immunol Rev, 238, 

110-25. 

HU, T., LIU, Z. & SHEN, X. 2011. Roles of phospholipase D in phorbol myristate acetate-

stimulated neutrophil respiratory burst. J Cell Mol Med, 15, 647-53. 

HUANG, G. T., KIM, D., LEE, J. K., KURAMITSU, H. K. & HAAKE, S. K. 2001. 

Interleukin-8 and intercellular adhesion molecule 1 regulation in oral epithelial 

cells by selected periodontal bacteria: multiple effects of Porphyromonas 

gingivalis via antagonistic mechanisms. Infect Immun, 69, 1364-72. 

HUDSON, B. I., CARTER, A. M., HARJA, E., KALEA, A. Z., ARRIERO, M., YANG, H., 

GRANT, P. J. & SCHMIDT, A. M. 2008. Identification, classification, and 

expression of RAGE gene splice variants. FASEB J, 22, 1572-80. 

HUERTA-CEPAS, J., SZKLARCZYK, D., FORSLUND, K., COOK, H., HELLER, D., 

WALTER, M. C., RATTEI, T., MENDE, D. R., SUNAGAWA, S., KUHN, M., 

JENSEN, L. J., VON MERING, C. & BORK, P. 2016. eggNOG 4.5: a hierarchical 



 

284 
 

orthology framework with improved functional annotations for eukaryotic, 

prokaryotic and viral sequences. Nucleic Acids Res, 44, D286-93. 

HUMAN MICROBIOME PROJECT, C. 2012. Structure, function and diversity of the 

healthy human microbiome. Nature, 486, 207-14. 

HUSON, D. H., AUCH, A. F., QI, J. & SCHUSTER, S. C. 2007. MEGAN analysis of 

metagenomic data. Genome Res, 17, 377-86. 

HYINK, O., WESCOMBE, P. A., UPTON, M., RAGLAND, N., BURTON, J. P. & TAGG, 

J. R. 2007. Salivaricin A2 and the novel lantibiotic salivaricin B are encoded at 

adjacent loci on a 190-kilobase transmissible megaplasmid in the oral probiotic 

strain Streptococcus salivarius K12. Appl Environ Microbiol, 73, 1107-13. 

IHN, H., YAMANE, K., ASANO, Y., KUBO, M. & TAMAKI, K. 2002. IL-4 up-regulates the 

expression of tissue inhibitor of metalloproteinase-2 in dermal fibroblasts via the 

p38 mitogen-activated protein kinase dependent pathway. J Immunol, 168, 1895-

902. 

ILIEV, I. D., MATTEOLI, G. & RESCIGNO, M. 2007. The yin and yang of intestinal 

epithelial cells in controlling dendritic cell function. J Exp Med, 204, 2253-7. 

IRWIN, C. R. & MYRILLAS, T. T. 1998. The role of IL-6 in the pathogenesis of periodontal 

disease. Oral Dis, 4, 43-7. 

ISHIHARA, K., TSUTSUMI, K., KAWANE, S., NAKAJIMA, M. & KASAOKA, T. 2003. The 

receptor for advanced glycation end-products (RAGE) directly binds to ERK by a 

D-domain-like docking site. FEBS Lett, 550, 107-13. 

IVANOV, II, MCKENZIE, B. S., ZHOU, L., TADOKORO, C. E., LEPELLEY, A., 

LAFAILLE, J. J., CUA, D. J. & LITTMAN, D. R. 2006. The orphan nuclear receptor 

RORgammat directs the differentiation program of proinflammatory IL-17+ T 

helper cells. Cell, 126, 1121-33. 

IWAMOTO, S. & HIOKI, K. 2001. [Preoperative and postoperative nutritional 

management for diabetic patients]. Nihon Rinsho, 59 Suppl 5, 671-3. 

IWAMOTO, Y., NISHIMURA, F., NAKAGAWA, M., SUGIMOTO, H., SHIKATA, K., 

MAKINO, H., FUKUDA, T., TSUJI, T., IWAMOTO, M. & MURAYAMA, Y. 2001. 

The effect of antimicrobial periodontal treatment on circulating tumor necrosis 

factor-alpha and glycated hemoglobin level in patients with type 2 diabetes. J 

Periodontol, 72, 774-8. 

JACONI, M. E., LEW, D. P., CARPENTIER, J. L., MAGNUSSON, K. E., SJOGREN, M. 

& STENDAHL, O. 1990. Cytosolic free calcium elevation mediates the 

phagosome-lysosome fusion during phagocytosis in human neutrophils. J Cell 

Biol, 110, 1555-64. 



 

285 
 

JIN, L., SODER, B. & CORBET, E. F. 2000. Interleukin-8 and granulocyte elastase in 

gingival crevicular fluid in relation to periodontopathogens in untreated adult 

periodontitis. J Periodontol, 71, 929-39. 

JONO, T., MIYAZAKI, A., NAGAI, R., SAWAMURA, T., KITAMURA, T. & HORIUCHI, S. 

2002. Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) serves as 

an endothelial receptor for advanced glycation end products (AGE). FEBS Lett, 

511, 170-4. 

JORTH, P., TURNER, K. H., GUMUS, P., NIZAM, N., BUDUNELI, N. & WHITELEY, M. 

2014. Metatranscriptomics of the human oral microbiome during health and 

disease. MBio, 5, e01012-14. 

JOSHI, N. A. & FASS, J. N. 2011. Sickle: A sliding-window, adaptive, quality-based 

trimming tool for FastQ files. 

JOTWANI, R. & CUTLER, C. W. 2004. Fimbriated Porphyromonas gingivalis Is More 

Efficient than Fimbria-Deficient P. gingivalis in Entering Human Dendritic Cells In 

Vitro and Induces an Inflammatory Th1 Effector Response. Infection and 

Immunity, 72, 1725-1732. 

JUNG, H. Y., KIM, Y. G., PARK, J. W., SUH, J. Y. & LEE, J. M. 2013. The expression of 

a nitric oxide derivative, tissue inhibitors of metalloproteinase-3, and tissue 

inhibitors of metalloproteinase-4 in chronic periodontitis with type 2 diabetes 

mellitus. J Periodontal Implant Sci, 43, 87-95. 

KADO, S., NAGASE, T. & NAGATA, N. 1999. Circulating levels of interleukin-6, its 

soluble receptor and interleukin-6/interleukin-6 receptor complexes in patients 

with type 2 diabetes mellitus. Acta Diabetol, 36, 67-72. 

KAJIURA, Y., BANDO, M., INAGAKI, Y., NAGATA, T. & KIDO, J. 2014. Glycated albumin 

and calprotectin levels in gingival crevicular fluid from patients with periodontitis 

and type 2 diabetes. J Periodontol, 85, 1667-75. 

KALEA, A. Z., REINIGER, N., YANG, H., ARRIERO, M., SCHMIDT, A. M. & HUDSON, 

B. I. 2009. Alternative splicing of the murine receptor for advanced glycation end-

products (RAGE) gene. FASEB J, 23, 1766-74. 

KANTARCI, A., OYAIZU, K. & VAN DYKE, T. E. 2003. Neutrophil-mediated tissue injury 

in periodontal disease pathogenesis: findings from localized aggressive 

periodontitis. J Periodontol, 74, 66-75. 

KAPLAN, J., DE DOMENICO, I. & WARD, D. M. 2008. Chediak-Higashi syndrome. Curr 

Opin Hematol, 15, 22-9. 

KARDESLER, L., BUDUNELI, N., BIYIKOGLU, B., CETINKALP, S. & KUTUKCULER, 

N. 2008. Gingival crevicular fluid PGE2, IL-1beta, t-PA, PAI-2 levels in type 2 

diabetes and relationship with periodontal disease. Clin Biochem, 41, 863-8. 



 

286 
 

KARDESLER, L., BUDUNELI, N., CETINKALP, S., LAPPIN, D. & KINANE, D. F. 2011. 

Gingival crevicular fluid IL-6, tPA, PAI-2, albumin levels following initial 

periodontal treatment in chronic periodontitis patients with or without type 2 

diabetes. Inflamm Res, 60, 143-51. 

KATZ, C., COHEN-OR, I., GOPHNA, U. & RON, E. Z. 2010. The ubiquitous conserved 

glycopeptidase Gcp prevents accumulation of toxic glycated proteins. MBio, 1. 

KATZ, J., BHATTACHARYYA, I., FARKHONDEH-KISH, F., PEREZ, F. M., CAUDLE, R. 

M. & HEFT, M. W. 2005. Expression of the receptor of advanced glycation end 

products in gingival tissues of type 2 diabetes patients with chronic periodontal 

disease: a study utilizing immunohistochemistry and RT-PCR. J Clin Periodontol, 

32, 40-4. 

KAUSHIK, R., YELTIWAR, R. K. & PUSHPANSHU, K. 2011. Salivary interleukin-1beta 

levels in patients with chronic periodontitis before and after periodontal phase I 

therapy and healthy controls: a case-control study. J Periodontol, 82, 1353-9. 

KAWAI, T., MATSUYAMA, T., HOSOKAWA, Y., MAKIHIRA, S., SEKI, M., KARIMBUX, 

N. Y., GONCALVES, R. B., VALVERDE, P., DIBART, S., LI, Y. P., MIRANDA, L. 

A., ERNST, C. W., IZUMI, Y. & TAUBMAN, M. A. 2006. B and T lymphocytes are 

the primary sources of RANKL in the bone resorptive lesion of periodontal 

disease. Am J Pathol, 169, 987-98. 

KENNEDY, A. D. & DELEO, F. R. 2009. Neutrophil apoptosis and the resolution of 

infection. Immunol Res, 43, 25-61. 

KENT, L. W., RAHEMTULLA, F. & MICHALEK, S. M. 1999. Interleukin (IL)-1 and 

Porphyromonas gingivalis lipopolysaccharide stimulation of IL-6 production by 

fibroblasts derived from healthy or periodontally diseased human gingival tissue. 

J Periodontol, 70, 274-82. 

KERNEN, P., WYMANN, M. P., VON TSCHARNER, V., DERANLEAU, D. A., TAI, P. C., 

SPRY, C. J., DAHINDEN, C. A. & BAGGIOLINI, M. 1991. Shape changes, 

exocytosis, and cytosolic free calcium changes in stimulated human eosinophils. 

J Clin Invest, 87, 2012-7. 

KHALAF, H., LONN, J. & BENGTSSON, T. 2014. Cytokines and chemokines are 

differentially expressed in patients with periodontitis: possible role for TGF-beta1 

as a marker for disease progression. Cytokine, 67, 29-35. 

KHARROUBI, A. T. & DARWISH, H. M. 2015. Diabetes mellitus: The epidemic of the 

century. World J Diabetes, 6, 850-67. 

KHURSHID, Z., MALI, M., NASEEM, M., NAJEEB, S. & ZAFAR, M. 2017. Human 

Gingival Crevicular Fluids (GCF) Proteomics: An Overview. Dentistry Journal, 5, 

12. 



 

287 
 

KIDA, Y., KOBAYASHI, M., SUZUKI, T., TAKESHITA, A., OKAMATSU, Y., HANAZAWA, 

S., YASUI, T. & HASEGAWA, K. 2005. Interleukin-1 stimulates cytokines, 

prostaglandin E2 and matrix metalloproteinase-1 production via activation of 

MAPK/AP-1 and NF-kappaB in human gingival fibroblasts. Cytokine, 29, 159-68. 

KILIAN, M., CHAPPLE, I. L., HANNIG, M., MARSH, P. D., MEURIC, V., PEDERSEN, A. 

M., TONETTI, M. S., WADE, W. G. & ZAURA, E. 2016. The oral microbiome - an 

update for oral healthcare professionals. Br Dent J, 221, 657-666. 

KIM, J. B., JUNG, M. H., CHO, J. Y., PARK, J. W., SUH, J. Y. & LEE, J. M. 2011. The 

influence of type 2 diabetes mellitus on the expression of inflammatory mediators 

and tissue inhibitor of metalloproteinases-2 in human chronic periodontitis. J 

Periodontal Implant Sci, 41, 109-16. 

KIM, J. H., JIN, H. M., KIM, K., SONG, I., YOUN, B. U., MATSUO, K. & KIM, N. 2009. 

The mechanism of osteoclast differentiation induced by IL-1. J Immunol, 183, 

1862-70. 

KINANE, D. F., PRESHAW, P. M., LOOS, B. G. & WORKING GROUP 2 OF SEVENTH 

EUROPEAN WORKSHOP ON, P. 2011. Host-response: understanding the 

cellular and molecular mechanisms of host-microbial interactions--consensus of 

the Seventh European Workshop on Periodontology. J Clin Periodontol, 38 Suppl 

11, 44-8. 

KINANE, D. F., STATHOPOULOU, P. G. & PAPAPANOU, P. N. 2017. Periodontal 

diseases. Nat Rev Dis Primers, 3, 17038. 

KINNEY, J. S., MORELLI, T., BRAUN, T., RAMSEIER, C. A., HERR, A. E., SUGAI, J. 

V., SHELBURNE, C. E., RAYBURN, L. A., SINGH, A. K. & GIANNOBILE, W. V. 

2011. Saliva/pathogen biomarker signatures and periodontal disease 

progression. J Dent Res, 90, 752-8. 

KIRAN, M., ARPAK, N., UNSAL, E. & ERDOGAN, M. F. 2005. The effect of improved 

periodontal health on metabolic control in type 2 diabetes mellitus. J Clin 

Periodontol, 32, 266-72. 

KOH, B., HUFFORD, M. M., SUN, X. & KAPLAN, M. H. 2017. Etv5 Regulates IL-10 

Production in Th Cells. J Immunol, 198, 2165-2171. 

KOKKOLA, R., ANDERSSON, A., MULLINS, G., OSTBERG, T., TREUTIGER, C. J., 

ARNOLD, B., NAWROTH, P., ANDERSSON, U., HARRIS, R. A. & HARRIS, H. 

E. 2005. RAGE is the major receptor for the proinflammatory activity of HMGB1 

in rodent macrophages. Scand J Immunol, 61, 1-9. 

KOLENBRANDER, P. E., PALMER, R. J., JR., PERIASAMY, S. & JAKUBOVICS, N. S. 

2010. Oral multispecies biofilm development and the key role of cell-cell distance. 

Nat Rev Microbiol, 8, 471-80. 



 

288 
 

KOLODRUBETZ, D. 1996. Molecular genetics and the analysis of leukotoxin in A. 

actinomycetemcomitans. J Periodontol, 67, 309-316. 

KONG, Y. Y., FEIGE, U., SAROSI, I., BOLON, B., TAFURI, A., MORONY, S., 

CAPPARELLI, C., LI, J., ELLIOTT, R., MCCABE, S., WONG, T., 

CAMPAGNUOLO, G., MORAN, E., BOGOCH, E. R., VAN, G., NGUYEN, L. T., 

OHASHI, P. S., LACEY, D. L., FISH, E., BOYLE, W. J. & PENNINGER, J. M. 

1999a. Activated T cells regulate bone loss and joint destruction in adjuvant 

arthritis through osteoprotegerin ligand. Nature, 402, 304-9. 

KONG, Y. Y., YOSHIDA, H., SAROSI, I., TAN, H. L., TIMMS, E., CAPPARELLI, C., 

MORONY, S., OLIVEIRA-DOS-SANTOS, A. J., VAN, G., ITIE, A., KHOO, W., 

WAKEHAM, A., DUNSTAN, C. R., LACEY, D. L., MAK, T. W., BOYLE, W. J. & 

PENNINGER, J. M. 1999b. OPGL is a key regulator of osteoclastogenesis, 

lymphocyte development and lymph-node organogenesis. Nature, 397, 315-23. 

KONOPKA, L., PIETRZAK, A. & BRZEZINSKA-BLASZCZYK, E. 2012. Effect of scaling 

and root planing on interleukin-1beta, interleukin-8 and MMP-8 levels in gingival 

crevicular fluid from chronic periodontitis patients. J Periodontal Res, 47, 681-8. 

KOPYLOVA, E., NOE, L. & TOUZET, H. 2012. SortMeRNA: fast and accurate filtering 

of ribosomal RNAs in metatranscriptomic data. Bioinformatics, 28, 3211-7. 

KORN, T., BETTELLI, E., OUKKA, M. & KUCHROO, V. K. 2009. IL-17 and Th17 Cells. 

Annu Rev Immunol, 27, 485-517. 

KOTAKE, S., UDAGAWA, N., TAKAHASHI, N., MATSUZAKI, K., ITOH, K., ISHIYAMA, 

S., SAITO, S., INOUE, K., KAMATANI, N., GILLESPIE, M. T., MARTIN, T. J. & 

SUDA, T. 1999. IL-17 in synovial fluids from patients with rheumatoid arthritis is 

a potent stimulator of osteoclastogenesis. J Clin Invest, 103, 1345-52. 

KRAMER, C. D. & GENCO, C. A. 2017. Microbiota, Immune Subversion, and Chronic 

Inflammation. Front Immunol, 8, 255. 

KUCKLEBURG, C. J., TILKENS, S. B., SANTOSO, S. & NEWMAN, P. J. 2012. 

Proteinase 3 contributes to transendothelial migration of NB1-positive 

neutrophils. J Immunol, 188, 2419-26. 

KUMAR, M. S., VAMSI, G., SRIPRIYA, R. & SEHGAL, P. K. 2006. Expression of matrix 

metalloproteinases (MMP-8 and -9) in chronic periodontitis patients with and 

without diabetes mellitus. J Periodontol, 77, 1803-8. 

KUMAR, R. S. & PRAKASH, S. 2012. Impaired neutrophil and monocyte chemotaxis in 

chronic and aggressive periodontitis and effects of periodontal therapy. Indian J 

Dent Res, 23, 69-74. 

KURAMITSU, H. K., HE, X., LUX, R., ANDERSON, M. H. & SHI, W. 2007. Interspecies 

interactions within oral microbial communities. Microbiol Mol Biol Rev, 71, 653-

70. 



 

289 
 

KUSUMOTO, Y., HIRANO, H., SAITOH, K., YAMADA, S., TAKEDACHI, M., NOZAKI, 

T., OZAWA, Y., NAKAHIRA, Y., SAHO, T., OGO, H., SHIMABUKURO, Y., 

OKADA, H. & MURAKAMI, S. 2004. Human gingival epithelial cells produce 

chemotactic factors interleukin-8 and monocyte chemoattractant protein-1 after 

stimulation with Porphyromonas gingivalis via toll-like receptor 2. J Periodontol, 

75, 370-9. 

LACEY, D. L., TIMMS, E., TAN, H. L., KELLEY, M. J., DUNSTAN, C. R., BURGESS, T., 

ELLIOTT, R., COLOMBERO, A., ELLIOTT, G., SCULLY, S., HSU, H., 

SULLIVAN, J., HAWKINS, N., DAVY, E., CAPPARELLI, C., ELI, A., QIAN, Y. X., 

KAUFMAN, S., SAROSI, I., SHALHOUB, V., SENALDI, G., GUO, J., DELANEY, 

J. & BOYLE, W. J. 1998. Osteoprotegerin ligand is a cytokine that regulates 

osteoclast differentiation and activation. Cell, 93, 165-76. 

LALLA, E., CHENG, B., LAL, S., KAPLAN, S., SOFTNESS, B., GREENBERG, E., 

GOLAND, R. S. & LAMSTER, I. B. 2007. Diabetes mellitus promotes periodontal 

destruction in children. J Clin Periodontol, 34, 294-8. 

LALLA, E., KAPLAN, S., CHANG, S. M., ROTH, G. A., CELENTI, R., HINCKLEY, K., 

GREENBERG, E. & PAPAPANOU, P. N. 2006. Periodontal infection profiles in 

type 1 diabetes. J Clin Periodontol, 33, 855-62. 

LALLA, E., LAMSTER, I. B., FEIT, M., HUANG, L., SPESSOT, A., QU, W., KISLINGER, 

T., LU, Y., STERN, D. M. & SCHMIDT, A. M. 2000. Blockade of RAGE 

suppresses periodontitis-associated bone loss in diabetic mice. J Clin Invest, 

105, 1117-24. 

LALLA, E., LAMSTER, I. B., STERN, D. M. & SCHMIDT, A. M. 2001. Receptor for 

advanced glycation end products, inflammation, and accelerated periodontal 

disease in diabetes: mechanisms and insights into therapeutic modalities. Ann 

Periodontol, 6, 113-8. 

LALLA, E. & PAPAPANOU, P. N. 2011. Diabetes mellitus and periodontitis: a tale of two 

common interrelated diseases. Nat Rev Endocrinol, 7, 738-48. 

LALLY, E., KIEBA, I., GOLUB, E., LEAR, J. & TANAKA, J. 1996. Structure/function 

aspects of Actinobacillus actinomycetemcomitans leukotoxin. J Periodontol, 67, 

298-308. 

LAMSTER, I. B. 1997. Evaluation of components of gingival crevicular fluid as diagnostic 

tests. Ann Periodontol, 2, 123-37. 

LANDZBERG, M., DOERING, H., ABOODI, G. M., TENENBAUM, H. C. & GLOGAUER, 

M. 2015. Quantifying oral inflammatory load: oral neutrophil counts in periodontal 

health and disease. J Periodontal Res, 50, 330-6. 



 

290 
 

LAPPIN, D. F., MACLEOD, C. P., KERR, A., MITCHELL, T. & KINANE, D. F. 2001. Anti-

inflammatory cytokine IL-10 and T cell cytokine profile in periodontitis granulation 

tissue. Clin Exp Immunol, 123, 294-300. 

LARSEN, C. G., ANDERSON, A. O., APPELLA, E., OPPENHEIM, J. J. & 

MATSUSHIMA, K. 1989. The neutrophil-activating protein (NAP-1) is also 

chemotactic for T lymphocytes. Science, 243, 1464-6. 

LARSEN, T. & FIEHN, N. E. 2017. Dental biofilm infections - an update. APMIS, 125, 

376-384. 

LATZ, E. 2010. The inflammasomes: mechanisms of activation and function. Curr Opin 

Immunol, 22, 28-33. 

LAWSON, M. A. & MAXFIELD, F. R. 1995. Ca(2+)- and calcineurin-dependent recycling 

of an integrin to the front of migrating neutrophils. Nature, 377, 75-9. 

LAZAREVIC, V., WHITESON, K., HERNANDEZ, D., FRANCOIS, P. & SCHRENZEL, J. 

2010. Study of inter- and intra-individual variations in the salivary microbiota. 

BMC Genomics, 11, 523. 

LECUBE, A., PACHON, G., PETRIZ, J., HERNANDEZ, C. & SIMO, R. 2011. Phagocytic 

activity is impaired in type 2 diabetes mellitus and increases after metabolic 

improvement. PLoS One, 6, e23366. 

LEDERBERG, J. & MCCRAY, A. 2001. 'Ome Sweet 'Omics-- A Genealogical Treasury 

of Words. The Scientist, 15. 

LEITE, A. C., CARNEIRO, V. M. & GUIMARAES MDO, C. 2014. Effects of periodontal 

therapy on C-reactive protein and HDL in serum of subjects with periodontitis. 

Rev Bras Cir Cardiovasc, 29, 69-77. 

LEITO, J. T., LIGTENBERG, A. J., VAN HOUDT, M., VAN DEN BERG, T. K. & 

WOUTERS, D. 2011. The bacteria binding glycoprotein salivary agglutinin 

(SAG/gp340) activates complement via the lectin pathway. Mol Immunol, 49, 

185-90. 

LEPP, P. W., BRINIG, M. M., OUVERNEY, C. C., PALM, K., ARMITAGE, G. C. & 

RELMAN, D. A. 2004. Methanogenic Archaea and human periodontal disease. 

Proc Natl Acad Sci U S A, 101, 6176-81. 

LEPPILAHTI, J. M., HERNANDEZ-RIOS, P. A., GAMONAL, J. A., TERVAHARTIALA, 

T., BRIGNARDELLO-PETERSEN, R., MANTYLA, P., SORSA, T. & 

HERNANDEZ, M. 2014. Matrix metalloproteinases and myeloperoxidase in 

gingival crevicular fluid provide site-specific diagnostic value for chronic 

periodontitis. J Clin Periodontol, 41, 348-56. 

LEUNG, S. S., FORBES, J. M. & BORG, D. J. 2016. Receptor for Advanced Glycation 

End Products (RAGE) in Type 1 Diabetes Pathogenesis. Curr Diab Rep, 16, 100. 



 

291 
 

LEY, K., LAUDANNA, C., CYBULSKY, M. I. & NOURSHARGH, S. 2007. Getting to the 

site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol, 

7, 678-89. 

LI, A., DUBEY, S., VARNEY, M. L., DAVE, B. J. & SINGH, R. K. 2003. IL-8 directly 

enhanced endothelial cell survival, proliferation, and matrix metalloproteinases 

production and regulated angiogenesis. J Immunol, 170, 3369-76. 

LI, D., LIU, C. M., LUO, R., SADAKANE, K. & LAM, T. W. 2015. MEGAHIT: an ultra-fast 

single-node solution for large and complex metagenomics assembly via succinct 

de Bruijn graph. Bioinformatics, 31, 1674-6. 

LI, J., HELMERHORST, E. J., LEONE, C. W., TROXLER, R. F., YASKELL, T., 

HAFFAJEE, A. D., SOCRANSKY, S. S. & OPPENHEIM, F. G. 2004. Identification 

of early microbial colonizers in human dental biofilm. J Appl Microbiol, 97, 1311-

8. 

LI, K., BIHAN, M. & METHE, B. A. 2013. Analyses of the stability and core taxonomic 

memberships of the human microbiome. PLoS One, 8, e63139. 

LI, Y. M., MITSUHASHI, T., WOJCIECHOWICZ, D., SHIMIZU, N., LI, J., STITT, A., HE, 

C., BANERJEE, D. & VLASSARA, H. 1996. Molecular identity and cellular 

distribution of advanced glycation endproduct receptors: relationship of p60 to 

OST-48 and p90 to 80K-H membrane proteins. Proc Natl Acad Sci U S A, 93, 

11047-52. 

LIANG, S., KRAUSS, J. L., DOMON, H., MCINTOSH, M. L., HOSUR, K. B., QU, H., LI, 

F., TZEKOU, A., LAMBRIS, J. D. & HAJISHENGALLIS, G. 2011. The C5a 

receptor impairs IL-12-dependent clearance of Porphyromonas gingivalis and is 

required for induction of periodontal bone loss. J Immunol, 186, 869-77. 

LIN, R. Y., CHOUDHURY, R. P., CAI, W., LU, M., FALLON, J. T., FISHER, E. A. & 

VLASSARA, H. 2003. Dietary glycotoxins promote diabetic atherosclerosis in 

apolipoprotein E-deficient mice. Atherosclerosis, 168, 213-20. 

LING, M. R., CHAPPLE, I. L. & MATTHEWS, J. B. 2016. Neutrophil superoxide release 

and plasma C-reactive protein levels pre- and post-periodontal therapy. J Clin 

Periodontol, 43, 652-8. 

LISA CHENG, Y. S., JORDAN, L., GORUGANTULA, L. M., SCHNEIDERMAN, E., 

CHEN, H. S. & REES, T. 2014. Salivary interleukin-6 and -8 in patients with oral 

cancer and patients with chronic oral inflammatory diseases. J Periodontol, 85, 

956-65. 

LIU, B., FALLER, L. L., KLITGORD, N., MAZUMDAR, V., GHODSI, M., SOMMER, D. 

D., GIBBONS, T. R., TREANGEN, T. J., CHANG, Y. C., LI, S., STINE, O. C., 

HASTURK, H., KASIF, S., SEGRE, D., POP, M. & AMAR, S. 2012. Deep 



 

292 
 

sequencing of the oral microbiome reveals signatures of periodontal disease. 

PLoS One, 7, e37919. 

LIU, J., ZHAO, S., TANG, J., LI, Z., ZHONG, T., LIU, Y., CHEN, D., ZHAO, M., LI, Y., 

GONG, X., DENG, P., WANG, J. H. & JIANG, Y. 2009. Advanced glycation end 

products and lipopolysaccharide synergistically stimulate proinflammatory 

cytokine/chemokine production in endothelial cells via activation of both mitogen-

activated protein kinases and nuclear factor-kappaB. FEBS J, 276, 4598-606. 

LIU, R., DESTA, T., HE, H. & GRAVES, D. T. 2004. Diabetes alters the response to 

bacteria by enhancing fibroblast apoptosis. Endocrinology, 145, 2997-3003. 

LIU, R. K., CAO, C. F., MENG, H. X. & GAO, Y. 2001. Polymorphonuclear neutrophils 

and their mediators in gingival tissues from generalized aggressive periodontitis. 

J Periodontol, 72, 1545-53. 

LIUKKONEN, J., GURSOY, U. K., PUSSINEN, P. J., SUOMINEN, A. L. & KONONEN, 

E. 2016. Salivary Concentrations of Interleukin (IL)-1beta, IL-17A, and IL-23 Vary 

in Relation to Periodontal Status. J Periodontol, 87, 1484-1491. 

LJAHDALI, N. A. & CARBONERO, F. 2017. Impact of Maillard reaction products on 

nutrition and health: Current knowledge and need to understand their fate in the 

human digestive system. Crit Rev Food Sci Nutr, 1-14. 

LOE, H. 1993. Periodontal disease. The sixth complication of diabetes mellitus. Diabetes 

Care, 16, 329-34. 

LOOS, B. G. 2005. Systemic markers of inflammation in periodontitis. J Periodontol, 76, 

2106-15. 

LOOS, B. G., CRAANDIJK, J., HOEK, F. J., WERTHEIM-VAN DILLEN, P. M. & VAN 

DER VELDEN, U. 2000. Elevation of systemic markers related to cardiovascular 

diseases in the peripheral blood of periodontitis patients. J Periodontol, 71, 1528-

34. 

LOURBAKOS, A., POTEMPA, J., TRAVIS, J., D'ANDREA, M. R., ANDRADE-GORDON, 

P., SANTULLI, R., MACKIE, E. J. & PIKE, R. N. 2001. Arginine-specific protease 

from Porphyromonas gingivalis activates protease-activated receptors on human 

oral epithelial cells and induces interleukin-6 secretion. Infect Immun, 69, 5121-

30. 

LUNDBERG, J. O. & GOVONI, M. 2004. Inorganic nitrate is a possible source for 

systemic generation of nitric oxide. Free Radic Biol Med, 37, 395-400. 

LUO, L., XIE, P., GONG, P., TANG, X. H., DING, Y. & DENG, L. X. 2011. Expression of 

HMGB1 and HMGN2 in gingival tissues, GCF and PICF of periodontitis patients 

and peri-implantitis. Arch Oral Biol, 56, 1106-11. 



 

293 
 

LUO, Z., WANG, H., WU, Y., SUN, Z. & WU, Y. 2014. Clinical significance of IL-23 

regulating IL-17A and/or IL-17F positive Th17 cells in chronic periodontitis. 

Mediators Inflamm, 2014, 627959. 

LUTFIOGLU, M., AYDOGDU, A., SAKALLIOGLU, E. E., ALACAM, H. & PAMUK, F. 

2016. Gingival crevicular fluid interleukin-8 and lipoxin A4 levels of smokers and 

nonsmokers with different periodontal status: a cross-sectional study. J 

Periodontal Res, 51, 471-80. 

MACDONALD, J. B., SUTTON, R. M., KNOLL, M. L., MADLENER, E. M. & GRAINGER, 

R. M. 1956. The pathogenic components of an experimental fusospirochetal 

infection. J Infect Dis, 98, 15-20. 

MADIANOS, P. N., PAPAPANOU, P. N. & SANDROS, J. 1997. Porphyromonas 

gingivalis infection of oral epithelium inhibits neutrophil transepithelial migration. 

Infect Immun, 65, 3983-90. 

MADSEN, J., MOLLENHAUER, J. & HOLMSKOV, U. 2010. Review: Gp-340/DMBT1 in 

mucosal innate immunity. Innate Immun, 16, 160-7. 

MAKELA, M., SALO, T., UITTO, V. J. & LARJAVA, H. 1994. Matrix metalloproteinases 

(MMP-2 and MMP-9) of the oral cavity: cellular origin and relationship to 

periodontal status. J Dent Res, 73, 1397-406. 

MALLIDIS, C., AGBAJE, I., ROGERS, D., GLENN, J., MCCULLOUGH, S., ATKINSON, 

A. B., STEGER, K., STITT, A. & MCCLURE, N. 2007. Distribution of the receptor 

for advanced glycation end products in the human male reproductive tract: 

prevalence in men with diabetes mellitus. Hum Reprod, 22, 2169-77. 

MANGSBO, S. M., SANCHEZ, J., ANGER, K., LAMBRIS, J. D., EKDAHL, K. N., 

LOSKOG, A. S., NILSSON, B. & TOTTERMAN, T. H. 2009. Complement 

activation by CpG in a human whole blood loop system: mechanisms and 

immunomodulatory effects. J Immunol, 183, 6724-32. 

MANHART, S. S., REINHARDT, R. A., PAYNE, J. B., SEYMOUR, G. J., GEMMELL, E., 

DYER, J. K. & PETRO, T. M. 1994. Gingival cell IL-2 and IL-4 in early-onset 

periodontitis. J Periodontol, 65, 807-13. 

MANOSUDPRASIT, A., KANTARCI, A., HASTURK, H., STEPHENS, D. & VAN DYKE, 

T. E. 2017. Spontaneous PMN apoptosis in type 2 diabetes and the impact of 

periodontitis. J Leukoc Biol, 102, 1431-1440. 

MANOUCHEHR-POUR, M., SPAGNUOLO, P. J., RODMAN, H. M. & BISSADA, N. F. 

1981. Impaired neutrophil chemotaxis in diabetic patients with severe 

periodontitis. J Dent Res, 60, 729-30. 

MARCACCINI, A. M., MESCHIARI, C. A., SORGI, C. A., SARAIVA, M. C., DE SOUZA, 

A. M., FACCIOLI, L. H., TANUS-SANTOS, J. E., NOVAES, A. B. & GERLACH, 

R. F. 2009. Circulating interleukin-6 and high-sensitivity C-reactive protein 



 

294 
 

decrease after periodontal therapy in otherwise healthy subjects. J Periodontol, 

80, 594-602. 

MARCACCINI, A. M., MESCHIARI, C. A., ZUARDI, L. R., DE SOUSA, T. S., TABA, M., 

JR., TEOFILO, J. M., JACOB-FERREIRA, A. L., TANUS-SANTOS, J. E., 

NOVAES, A. B., JR. & GERLACH, R. F. 2010. Gingival crevicular fluid levels of 

MMP-8, MMP-9, TIMP-2, and MPO decrease after periodontal therapy. J Clin 

Periodontol, 37, 180-90. 

MARCH, C. J., MOSLEY, B., LARSEN, A., CERRETTI, D. P., BRAEDT, G., PRICE, V., 

GILLIS, S., HENNEY, C. S., KRONHEIM, S. R., GRABSTEIN, K. & ET AL. 1985. 

Cloning, sequence and expression of two distinct human interleukin-1 

complementary DNAs. Nature, 315, 641-7. 

MARCHESI, J. R. & RAVEL, J. 2015. The vocabulary of microbiome research: a 

proposal. Microbiome, 3, 31. 

MARIANO, F. S., CAMPANELLI, A. P., NOCITI JR, F. H., MATTOS-GRANER, R. O. & 

GONCALVES, R. B. 2012. Antimicrobial peptides and nitric oxide production by 

neutrophils from periodontitis subjects. Braz J Med Biol Res, 45, 1017-24. 

MARK BARTOLD, P. & MARIOTTI, A. 2017. The Future of Periodontal-Systemic 

Associations: Raising the Standards. Curr Oral Health Rep, 4, 258-262. 

MARQUES DA SILVA, R., CAUGANT, D. A., JOSEFSEN, R., TRONSTAD, L. & OLSEN, 

I. 2004. Characterization of Streptococcus constellatus strains recovered from a 

brain abscess and periodontal pockets in an immunocompromised patient. J 

Periodontol, 75, 1720-3. 

MARSH, P. D. 1994. Microbial ecology of dental plaque and its significance in health and 

disease. Adv Dent Res, 8, 263-71. 

MARSH, P. D., A., HEAD, D. A., DEVINE, D. A. 2015. Dental Plaque as a Biofilm and a 

Microbial Community - Implications for Treatment Journal of Oral Biosciences, 

57, 185-191. 

MARSH, P. D., DO, T., BEIGHTON, D. & DEVINE, D. A. 2016. Influence of saliva on the 

oral microbiota. Periodontol 2000, 70, 80-92. 

MARSH, P. D., MARTIN, M. V., LEWIS, A. O. M. & WILLIAMS, D. 2009. Oral 

Microbiology, Edinburgh, Churchill Livinngstone. 

MARTIN, M. 2011. Cutadapt removes adapter sequences from high-throughput 

sequencing reads. EMBnet.journal, 17, 10 -12. 

MASADA, M. P., PERSSON, R., KENNEY, J. S., LEE, S. W., PAGE, R. C. & ALLISON, 

A. C. 1990. Measurement of interleukin-1 alpha and -1 beta in gingival crevicular 

fluid: implications for the pathogenesis of periodontal disease. J Periodontal Res, 

25, 156-63. 



 

295 
 

MASDEA, L., KULIK, E. M., HAUSER-GERSPACH, I., RAMSEIER, A. M., FILIPPI, A. & 

WALTIMO, T. 2012. Antimicrobial activity of Streptococcus salivarius K12 on 

bacteria involved in oral malodour. Arch Oral Biol, 57, 1041-7. 

MATARAZZO, F., RIBEIRO, A. C., FERES, M., FAVERI, M. & MAYER, M. P. 2011. 

Diversity and quantitative analysis of Archaea in aggressive periodontitis and 

periodontally healthy subjects. J Clin Periodontol, 38, 621-7. 

MCCLURE, R. & MASSARI, P. 2014. TLR-Dependent Human Mucosal Epithelial Cell 

Responses to Microbial Pathogens. Front Immunol, 5, 386. 

MCMURDIE, P. J. & HOLMES, S. 2013. phyloseq: an R package for reproducible 

interactive analysis and graphics of microbiome census data. PLoS One, 8, 

e61217. 

MEGSON, E., FITZSIMMONS, T., DHARMAPATNI, K. & BARTOLD, P. M. 2010. C-

reactive protein in gingival crevicular fluid may be indicative of systemic 

inflammation. J Clin Periodontol, 37, 797-804. 

MESCHIARI, C. A., MARCACCINI, A. M., SANTOS MOURA, B. C., ZUARDI, L. R., 

TANUS-SANTOS, J. E. & GERLACH, R. F. 2013. Salivary MMPs, TIMPs, and 

MPO levels in periodontal disease patients and controls. Clin Chim Acta, 421, 

140-6. 

MEYLE, J. & CHAPPLE, I. 2015. Molecular aspects of the pathogenesis of periodontitis. 

Periodontol 2000, 69, 7-17. 

MICHIELS, K., SCHUTYSER, E., CONINGS, R., LENAERTS, J. P., PUT, W., NUYTS, 

S., DELAERE, P., JACOBS, R., STRUYF, S., PROOST, P. & VAN DAMME, J. 

2009. Carcinoma cell-derived chemokines and their presence in oral fluid. Eur J 

Oral Sci, 117, 362-8. 

MILLER, C. S., KING, C. P., JR., LANGUB, M. C., KRYSCIO, R. J. & THOMAS, M. V. 

2006. Salivary biomarkers of existing periodontal disease: a cross-sectional 

study. J Am Dent Assoc, 137, 322-9. 

MILLS, D. J., TUOHY, K. M., BOOTH, J., BUCK, M., CRABBE, M. J., GIBSON, G. R. & 

AMES, J. M. 2008. Dietary glycated protein modulates the colonic microbiota 

towards a more detrimental composition in ulcerative colitis patients and non-

ulcerative colitis subjects. J Appl Microbiol, 105, 706-14. 

MIRRIELEES, J., CROFFORD, L. J., LIN, Y., KRYSCIO, R. J., DAWSON, D. R., 3RD, 

EBERSOLE, J. L. & MILLER, C. S. 2010. Rheumatoid arthritis and salivary 

biomarkers of periodontal disease. J Clin Periodontol, 37, 1068-74. 

MIRZA, S., HOSSAIN, M., MATHEWS, C., MARTINEZ, P., PINO, P., GAY, J. L., 

RENTFRO, A., MCCORMICK, J. B. & FISHER-HOCH, S. P. 2012. Type 2-

diabetes is associated with elevated levels of TNF-alpha, IL-6 and adiponectin 



 

296 
 

and low levels of leptin in a population of Mexican Americans: a cross-sectional 

study. Cytokine, 57, 136-42. 

MITANI, A., NIEDBALA, W., FUJIMURA, T., MOGI, M., MIYAMAE, S., HIGUCHI, N., 

ABE, A., HISHIKAWA, T., MIZUTANI, M., ISHIHARA, Y., NAKAMURA, H., 

KURITA, K., OHNO, N., TANAKA, Y., HATTORI, M. & NOGUCHI, T. 2015. 

Increased expression of interleukin (IL)-35 and IL-17, but not IL-27, in gingival 

tissues with chronic periodontitis. J Periodontol, 86, 301-9. 

MJOSBERG, J., BERNINK, J., GOLEBSKI, K., KARRICH, J. J., PETERS, C. P., BLOM, 

B., TE VELDE, A. A., FOKKENS, W. J., VAN DRUNEN, C. M. & SPITS, H. 2012. 

The transcription factor GATA3 is essential for the function of human type 2 

innate lymphoid cells. Immunity, 37, 649-59. 

MOFFATT-JAUREGUI, C. E., ROBINSON, B., DE MOYA, A. V., BROCKMAN, R. D., 

ROMAN, A. V., CASH, M. N., CULP, D. J. & LAMONT, R. J. 2013. Establishment 

and characterization of a telomerase immortalized human gingival epithelial cell 

line. J Periodontal Res, 48, 713-21. 

MOON, J. H. & LEE, J. H. 2016. Probing the diversity of healthy oral microbiome with 

bioinformatics approaches. BMB Rep, 49, 662-670. 

MORETTI, S., BARTOLOMMEI, L., GALOSI, C., RENGA, G., OIKONOMOU, V., 

ZAMPARINI, F., RICCI, G., BORGHI, M., PUCCETTI, M., PIOBBICO, D., 

ERAMO, S., CONTI, C., LOMURNO, G., BARTOLI, A., NAPOLIONI, V. & 

ROMANI, L. 2015. Fine-tuning of Th17 Cytokines in Periodontal Disease by IL-

10. J Dent Res, 94, 1267-75. 

MORGAN, X. C., SEGATA, N. & HUTTENHOWER, C. 2013. Biodiversity and functional 

genomics in the human microbiome. Trends Genet, 29, 51-8. 

MORITA, T., YAMAZAKI, Y., MITA, A., TAKADA, K., SETO, M., NISHINOUE, N., 

SASAKI, Y., MOTOHASHI, M. & MAENO, M. 2010. A cohort study on the 

association between periodontal disease and the development of metabolic 

syndrome. J Periodontol, 81, 512-9. 

MOSKOW, B. S. & POLSON, A. M. 1991. Histologic studies on the extension of the 

inflammatory infiltrate in human periodontitis. J Clin Periodontol, 18, 534-42. 

MOUTSOPOULOS, N. M., KONKEL, J., SARMADI, M., ESKAN, M. A., WILD, T., 

DUTZAN, N., ABUSLEME, L., ZENOBIA, C., HOSUR, K. B., ABE, T., UZEL, G., 

CHEN, W., CHAVAKIS, T., HOLLAND, S. M. & HAJISHENGALLIS, G. 2014. 

Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease 

causes local IL-17-driven inflammatory bone loss. Sci Transl Med, 6, 229-40. 

MOUTSOPOULOS, N. M. & KONKEL, J. E. 2017. Tissue-Specific Immunity at the Oral 

Mucosal Barrier. Trends Immunol, 39, 276-87 



 

297 
 

MULLER, W. A. 2013. Getting leukocytes to the site of inflammation. Vet Pathol, 50, 7-

22. 

MURPHY, K. M. & REINER, S. L. 2002. The lineage decisions of helper T cells. Nat Rev 

Immunol, 2, 933-44. 

MURPHY, P. M. & TIFFANY, H. L. 1991. Cloning of complementary DNA encoding a 

functional human interleukin-8 receptor. Science, 253, 1280-3. 

MURRAY, P. A., PRAKOBPHOL, A., LEE, T., HOOVER, C. I. & FISHER, S. J. 1992. 

Adherence of oral streptococci to salivary glycoproteins. Infect Immun, 60, 31-8. 

MYLONAKIS, E. & CALDERWOOD, S. B. 2001. Infective endocarditis in adults. N Engl 

J Med, 345, 1318-30. 

NAGY, V. & PENNINGER, J. M. 2015. The RANKL-RANK Story. Gerontology, 61, 534-

42. 

NAKAGAWA, N., KINOSAKI, M., YAMAGUCHI, K., SHIMA, N., YASUDA, H., YANO, K., 

MORINAGA, T. & HIGASHIO, K. 1998. RANK is the essential signaling receptor 

for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res 

Commun, 253, 395-400. 

NAKAMURA, K., YAMAGISHI, S., ADACHI, H., MATSUI, T., KURITA-NAKAMURA, Y., 

TAKEUCHI, M., INOUE, H. & IMAIZUMI, T. 2008. Circulating advanced glycation 

end products (AGEs) and soluble form of receptor for AGEs (sRAGE) are 

independent determinants of serum monocyte chemoattractant protein-1 (MCP-

1) levels in patients with type 2 diabetes. Diabetes Metab Res Rev, 24, 109-14. 

NAKASHIMA, T., KOBAYASHI, Y., YAMASAKI, S., KAWAKAMI, A., EGUCHI, K., 

SASAKI, H. & SAKAI, H. 2000. Protein expression and functional difference of 

membrane-bound and soluble receptor activator of NF-kappaB ligand: 

modulation of the expression by osteotropic factors and cytokines. Biochem 

Biophys Res Commun, 275, 768-75. 

NANNURU, K. C., FUTAKUCHI, M., VARNEY, M. L., VINCENT, T. M., MARCUSSON, 

E. G. & SINGH, R. K. 2010. Matrix metalloproteinase (MMP)-13 regulates 

mammary tumor-induced osteolysis by activating MMP9 and transforming growth 

factor-beta signaling at the tumor-bone interface. Cancer Res, 70, 3494-504. 

NAUSEEF, W. M. & BORREGAARD, N. 2014. Neutrophils at work. Nat Immunol, 15, 

602-11. 

NAVARRO-SANCHEZ, A. B., FARIA-ALMEIDA, R. & BASCONES-MARTINEZ, A. 2007. 

Effect of non-surgical periodontal therapy on clinical and immunological response 

and glycaemic control in type 2 diabetic patients with moderate periodontitis. J 

Clin Periodontol, 34, 835-43. 



 

298 
 

NESTO, R. 2004. C-reactive protein, its role in inflammation, Type 2 diabetes and 

cardiovascular disease, and the effects of insulin-sensitizing treatment with 

thiazolidinediones. Diabet Med, 21, 810-7. 

NG, P. Y., DONLEY, M., HAUSMANN, E., HUTSON, A. D., ROSSOMANDO, E. F. & 

SCANNAPIECO, F. A. 2007. Candidate salivary biomarkers associated with 

alveolar bone loss: cross-sectional and in vitro studies. FEMS Immunol Med 

Microbiol, 49, 252-60. 

NICU, E. A. & LOOS, B. G. 2016. Polymorphonuclear neutrophils in periodontitis and 

their possible modulation as a therapeutic approach. Periodontol 2000, 71, 140-

63. 

NICU, E. A., VAN DER VELDEN, U., NIEUWLAND, R., EVERTS, V. & LOOS, B. G. 

2009. Elevated platelet and leukocyte response to oral bacteria in periodontitis. 

J Thromb Haemost, 7, 162-70. 

NISHIHARA, R., SUGANO, N., TAKANO, M., SHIMADA, T., TANAKA, H., OKA, S. & 

ITO, K. 2009. The effect of Porphyromonas gingivalis infection on cytokine levels 

in type 2 diabetic mice. J Periodontal Res, 44, 305-10. 

NIZAM, N., GUMUS, P., PITKANEN, J., TERVAHARTIALA, T., SORSA, T. & 

BUDUNELI, N. 2014. Serum and salivary matrix metalloproteinases, neutrophil 

elastase, myeloperoxidase in patients with chronic or aggressive periodontitis. 

Inflammation, 37, 1771-8. 

NOACK, B., GENCO, R. J., TREVISAN, M., GROSSI, S., ZAMBON, J. J. & DE NARDIN, 

E. 2001. Periodontal infections contribute to elevated systemic C-reactive protein 

level. J Periodontol, 72, 1221-7. 

NOACK, B., KIPPING, T., TERVAHARTIALA, T., SORSA, T., HOFFMANN, T. & 

LORENZ, K. 2017. Association between serum and oral matrix 

metalloproteinase-8 levels and periodontal health status. J Periodontal Res, 52, 

824-831. 

NOBBS, A. H., LAMONT, R. J. & JENKINSON, H. F. 2009. Streptococcus adherence 

and colonization. Microbiol Mol Biol Rev, 73, 407-50. 

NUALART GROLLMUS, Z. C., MORALES CHAVEZ, M. C. & SILVESTRE DONAT, F. J. 

2007. Periodontal disease associated to systemic genetic disorders. Med Oral 

Patol Oral Cir Bucal, 12, E211-5. 

NUSSBAUM, G. & SHAPIRA, L. 2011. How has neutrophil research improved our 

understanding of periodontal pathogenesis? J Clin Periodontol, 38 Suppl 11, 49-

59. 

O'BRIEN-SIMPSON, N. M., PATHIRANA, R. D., WALKER, G. D. & REYNOLDS, E. C. 

2009. Porphyromonas gingivalis RgpA-Kgp proteinase-adhesin complexes 



 

299 
 

penetrate gingival tissue and induce proinflammatory cytokines or apoptosis in a 

concentration-dependent manner. Infect Immun, 77, 1246-61. 

OCHIAI, A., HARADA, K., HASHIMOTO, K., SHIBATA, K., ISHIYAMA, Y., MITSUI, T., 

TANAKA, T. & TANIGUCHI, M. 2014. alpha-Amylase is a potential growth 

inhibitor of Porphyromonas gingivalis, a periodontal pathogenic bacterium. J 

Periodontal Res, 49, 62-8. 

OESTREICH, K. J. & WEINMANN, A. S. 2012. Master regulators or lineage-specifying? 

Changing views on CD4+ T cell transcription factors. Nat Rev Immunol, 12, 799-

804. 

OHARA-IMAIZUMI, M., CARDOZO, A. K., KIKUTA, T., EIZIRIK, D. L. & NAGAMATSU, 

S. 2004. The cytokine interleukin-1beta reduces the docking and fusion of insulin 

granules in pancreatic beta-cells, preferentially decreasing the first phase of 

exocytosis. J Biol Chem, 279, 41271-4. 

OHGAMI, N., NAGAI, R., IKEMOTO, M., ARAI, H., KUNIYASU, A., HORIUCHI, S. & 

NAKAYAMA, H. 2001a. CD36, a member of class B scavenger receptor family, 

is a receptor for advanced glycation end products. Ann N Y Acad Sci, 947, 350-

5. 

OHGAMI, N., NAGAI, R., IKEMOTO, M., ARAI, H., KUNIYASU, A., HORIUCHI, S. & 

NAKAYAMA, H. 2001b. Cd36, a member of the class b scavenger receptor 

family, as a receptor for advanced glycation end products. J Biol Chem, 276, 

3195-202. 

OHGAMI, N., NAGAI, R., MIYAZAKI, A., IKEMOTO, M., ARAI, H., HORIUCHI, S. & 

NAKAYAMA, H. 2001c. Scavenger receptor class B type I-mediated reverse 

cholesterol transport is inhibited by advanced glycation end products. J Biol 

Chem, 276, 13348-55. 

OHYAMA, H., KATO-KOGOE, N., KUHARA, A., NISHIMURA, F., NAKASHO, K., 

YAMANEGI, K., YAMADA, N., HATA, M., YAMANE, J. & TERADA, N. 2009. The 

involvement of IL-23 and the Th17 pathway in periodontitis. J Dent Res, 88, 633-

8. 

OKADA, H. & MURAKAMI, S. 1998. Cytokine expression in periodontal health and 

disease. Crit Rev Oral Biol Med, 9, 248-66. 

OLSEN, I., LAMBRIS, J. D. & HAJISHENGALLIS, G. 2017. Porphyromonas gingivalis 

disturbs host-commensal homeostasis by changing complement function. J Oral 

Microbiol, 9, 1340085. 

ONISHI, S., HONMA, K., LIANG, S., STATHOPOULOU, P., KINANE, D., 

HAJISHENGALLIS, G. & SHARMA, A. 2008. Toll-like receptor 2-mediated 

interleukin-8 expression in gingival epithelial cells by the Tannerella forsythia 

leucine-rich repeat protein BspA. Infect Immun, 76, 198-205. 



 

300 
 

OPPENHEIM, F. G., XU, T., MCMILLIAN, F. M., LEVITZ, S. M., DIAMOND, R. D., 

OFFNER, G. D. & TROXLER, R. F. 1988. Histatins, a novel family of histidine-

rich proteins in human parotid secretion. Isolation, characterization, primary 

structure, and fungistatic effects on Candida albicans. J Biol Chem, 263, 7472-7. 

OSORIO, C., CAVALLA, F., PAULA-LIMA, A., DIAZ-ARAYA, G., VERNAL, R., 

AHUMADA, P., GAMONAL, J. & HERNANDEZ, M. 2015. H2 O2 activates matrix 

metalloproteinases through the nuclear factor kappa B pathway and Ca(2+) 

signals in human periodontal fibroblasts. J Periodontal Res, 50, 798-806. 

OTT, C., JACOBS, K., HAUCKE, E., NAVARRETE SANTOS, A., GRUNE, T. & SIMM, 

A. 2014. Role of advanced glycation end products in cellular signaling. Redox 

Biol, 2, 411-29. 

OUYANG, W., RANGANATH, S. H., WEINDEL, K., BHATTACHARYA, D., MURPHY, T. 

L., SHA, W. C. & MURPHY, K. M. 1998. Inhibition of Th1 development mediated 

by GATA-3 through an IL-4-independent mechanism. Immunity, 9, 745-55. 

OVERBEEK, R., BEGLEY, T., BUTLER, R. M., CHOUDHURI, J. V., CHUANG, H. Y., 

COHOON, M., DE CRECY-LAGARD, V., DIAZ, N., DISZ, T., EDWARDS, R., 

FONSTEIN, M., FRANK, E. D., GERDES, S., GLASS, E. M., GOESMANN, A., 

HANSON, A., IWATA-REUYL, D., JENSEN, R., JAMSHIDI, N., KRAUSE, L., 

KUBAL, M., LARSEN, N., LINKE, B., MCHARDY, A. C., MEYER, F., 

NEUWEGER, H., OLSEN, G., OLSON, R., OSTERMAN, A., PORTNOY, V., 

PUSCH, G. D., RODIONOV, D. A., RUCKERT, C., STEINER, J., STEVENS, R., 

THIELE, I., VASSIEVA, O., YE, Y., ZAGNITKO, O. & VONSTEIN, V. 2005. The 

subsystems approach to genome annotation and its use in the project to annotate 

1000 genomes. Nucleic Acids Res, 33, 5691-702. 

PACCAUD, J. P., SCHIFFERLI, J. A. & BAGGIOLINI, M. 1990. NAP-1/IL-8 induces up-

regulation of CR1 receptors in human neutrophil leukocytes. Biochem Biophys 

Res Commun, 166, 187-92. 

PACIOS, S., KANG, J., GALICIA, J., GLUCK, K., PATEL, H., OVAYDI-MANDEL, A., 

PETROV, S., ALAWI, F. & GRAVES, D. T. 2012. Diabetes aggravates 

periodontitis by limiting repair through enhanced inflammation. FASEB J, 26, 

1423-30. 

PAGE, R. C. 1998. The pathobiology of periodontal diseases may affect systemic 

diseases: inversion of a paradigm. Ann Periodontol, 3, 108-20. 

PAGE, R. C. & SCHROEDER, H. E. 1976. Pathogenesis of inflammatory periodontal 

disease. A summary of current work. Lab Invest, 34, 235-49. 

PALMER, L. J., CHAPPLE, I. L., WRIGHT, H. J., ROBERTS, A. & COOPER, P. R. 2012. 

Extracellular deoxyribonuclease production by periodontal bacteria. J Periodontal 

Res, 47, 439-45. 



 

301 
 

PALMER, R. J., KAZMERZAK, K., HANSEN, M. C. & KOLENBRANDER, P. E. 2001. 

Mutualism versus Independence: Strategies of Mixed-Species Oral Biofilms In 

Vitro Using Saliva as the Sole Nutrient Source. Infection and Immunity, 69, 5794-

5804. 

PALMQVIST, P., LUNDBERG, P., LUNDGREN, I., HANSTROM, L. & LERNER, U. H. 

2008. IL-1beta and TNF-alpha regulate IL-6-type cytokines in gingival fibroblasts. 

J Dent Res, 87, 558-63. 

PALOMINO, D. C. & MARTI, L. C. 2015. Chemokines and immunity. Einstein (Sao 

Paulo), 13, 469-73. 

PAPAPANAGIOTOU, D., NICU, E. A., BIZZARRO, S., GERDES, V. E., MEIJERS, J. C., 

NIEUWLAND, R., VAN DER VELDEN, U. & LOOS, B. G. 2009. Periodontitis is 

associated with platelet activation. Atherosclerosis, 202, 605-11. 

PARASKEVAS, S., HUIZINGA, J. D. & LOOS, B. G. 2008. A systematic review and 

meta-analyses on C-reactive protein in relation to periodontitis. J Clin 

Periodontol, 35, 277-90. 

PARK, H., LI, Z., YANG, X. O., CHANG, S. H., NURIEVA, R., WANG, Y. H., WANG, Y., 

HOOD, L., ZHU, Z., TIAN, Q. & DONG, C. 2005. A distinct lineage of CD4 T cells 

regulates tissue inflammation by producing interleukin 17. Nat Immunol, 6, 1133-

41. 

PEJCIC, A., DJORDJEVIC, V., KOJOVIC, D., ZIVKOVIC, V., MINIC, I., MIRKOVIC, D. 

& STOJANOVIC, M. 2014. Effect of periodontal treatment in renal transplant 

recipients. Med Princ Pract, 23, 149-53. 

PELLETIER, M., MAGGI, L., MICHELETTI, A., LAZZERI, E., TAMASSIA, N., 

COSTANTINI, C., COSMI, L., LUNARDI, C., ANNUNZIATO, F., ROMAGNANI, 

S. & CASSATELLA, M. A. 2010. Evidence for a cross-talk between human 

neutrophils and Th17 cells. Blood, 115, 335-43. 

PEPPIN, G. J. & WEISS, S. J. 1986. Activation of the endogenous metalloproteinase, 

gelatinase, by triggered human neutrophils. Proc Natl Acad Sci U S A, 83, 4322-

6. 

PERIODONTOLOGY, T. A. A. O. 2015. American Academy of Periodontology Task 

Force Report on the Update to the 1999 Classification of Periodontal Diseases 

and Conditions. J Periodontol, 86, 835-8. 

PETERSEN, C. & ROUND, J. L. 2014. Defining dysbiosis and its influence on host 

immunity and disease. Cell Microbiol, 16, 1024-33. 

PETERSEN, P. E. & OGAWA, H. 2012. The global burden of periodontal disease: 

towards integration with chronic disease prevention and control. Periodontol 

2000, 60, 15-39. 



 

302 
 

PHILLIPSON, M. & KUBES, P. 2011. The neutrophil in vascular inflammation. Nat Med, 

17, 1381-90. 

PICKUP, J. C., CHUSNEY, G. D., THOMAS, S. M. & BURT, D. 2000. Plasma interleukin-

6, tumour necrosis factor alpha and blood cytokine production in type 2 diabetes. 

Life Sci, 67, 291-300. 

PIVETTA, E., SCAPOLAN, M., PECOLO, M., WASSERMANN, B., ABU-RUMEILEH, I., 

BALESTRERI, L., BORSATTI, E., TRIPODO, C., COLOMBATTI, A. & 

SPESSOTTO, P. 2011. MMP-13 stimulates osteoclast differentiation and 

activation in tumour breast bone metastases. Breast Cancer Res, 13, R105. 

POLEPALLE, T., MOOGALA, S., BOGGARAPU, S., PESALA, D. S. & PALAGI, F. B. 

2015. Acute Phase Proteins and Their Role in Periodontitis: A Review. J Clin 

Diagn Res, 9, ZE01-5. 

POLI, V., BALENA, R., FATTORI, E., MARKATOS, A., YAMAMOTO, M., TANAKA, H., 

CILIBERTO, G., RODAN, G. A. & COSTANTINI, F. 1994. Interleukin-6 deficient 

mice are protected from bone loss caused by estrogen depletion. EMBO J, 13, 

1189-96. 

PORTER, J. R. 1976. Antony van Leeuwenhoek: tercentenary of his discovery of 

bacteria. Bacteriol Rev, 40, 260-9. 

PRADEEP, A. R., ROOPA, Y. & SWATI, P. P. 2008. Interleukin-4, a T-helper 2 cell 

cytokine, is associated with the remission of periodontal disease. J Periodontal 

Res, 43, 712-6. 

PRAKASAM, S. & SRINIVASAN, M. 2014. Evaluation of salivary biomarker profiles 

following non-surgical management of chronic periodontitis. Oral Dis, 20, 171-7. 

PRESHAW, P. M., ALBA, A. L., HERRERA, D., JEPSEN, S., KONSTANTINIDIS, A., 

MAKRILAKIS, K. & TAYLOR, R. 2012. Periodontitis and diabetes: a two-way 

relationship. Diabetologia, 55, 21-31. 

PRESHAW, P. M. & TAYLOR, J. J. 2011. How has research into cytokine interactions 

and their role in driving immune responses impacted our understanding of 

periodontitis? J Clin Periodontol, 38 Suppl 11, 60-84. 

PRICE, M. N., DEHAL, P. S. & ARKIN, A. P. 2010. FastTree 2--approximately maximum-

likelihood trees for large alignments. PLoS One, 5, e9490. 

PRIDE, D. T., SALZMAN, J., HAYNES, M., ROHWER, F., DAVIS-LONG, C., WHITE, R. 

A., 3RD, LOOMER, P., ARMITAGE, G. C. & RELMAN, D. A. 2012. Evidence of 

a robust resident bacteriophage population revealed through analysis of the 

human salivary virome. ISME J, 6, 915-26. 

PRINCE, L. R., WHYTE, M. K., SABROE, I. & PARKER, L. C. 2011. The role of TLRs in 

neutrophil activation. Curr Opin Pharmacol, 11, 397-403. 



 

303 
 

PROCTOR, D. M. & RELMAN, D. A. 2017. The Landscape Ecology and Microbiota of 

the Human Nose, Mouth, and Throat. Cell Host Microbe, 21, 421-432. 

PUSHALKAR, S., JI, X., LI, Y., ESTILO, C., YEGNANARAYANA, R., SINGH, B., LI, X. 

& SAXENA, D. 2012. Comparison of oral microbiota in tumor and non-tumor 

tissues of patients with oral squamous cell carcinoma. BMC Microbiol, 12, 144. 

PUSSINEN, P. J., PAJU, S., MANTYLA, P. & SORSA, T. 2007. Serum microbial- and 

host-derived markers of periodontal diseases: a review. Curr Med Chem, 14, 

2402-12. 

POPAT, R. P., BHAVSAR, N. V. & POPAT, P. R. 2014. Gingival crevicular fluid levels of 

Matrix Metalloproteinase-1 (MMP-1) and Tissue Inhibitor of Metalloproteinase-1 

(TIMP-1) in periodontal health and disease. Singapore Dent J, 35, 59-64. 

RAMAMURTHY, J., ND, J. & VARGHESE, S. 2014. Comparison of Salivary Beta 

Glucuronidase Activity in Chronic Periodontitis Patients with and without 

Diabetes Mellitus. J Clin Diagn Res, 8, ZC19-21. 

RATHNAYAKE, N., AKERMAN, S., KLINGE, B., LUNDEGREN, N., JANSSON, H., 

TRYSELIUS, Y., SORSA, T. & GUSTAFSSON, A. 2013. Salivary biomarkers of 

oral health: a cross-sectional study. J Clin Periodontol, 40, 140-7. 

REDDY, N. R., DEEPA, A., MADHU BABU, D. S., CHANDRA, N. S., SUBBA REDDY, 

C. V. & KUMAR, A. K. 2014. Estimation of tissue inhibitor of matrix 

metalloproteinase-1 levels in gingival crevicular fluid in periodontal health, 

disease and after treatment. J Indian Soc Periodontol, 18, 301-5. 

REICHHARDT, M. P., LOIMARANTA, V., THIEL, S., FINNE, J., MERI, S. & JARVA, H. 

2012. The salivary scavenger and agglutinin binds MBL and regulates the lectin 

pathway of complement in solution and on surfaces. Front Immunol, 3, 205. 

REN, L., FU, Y., DENG, Y., QI, L. & JIN, L. 2009. Advanced glycation end products inhibit 

the expression of collagens type I and III by human gingival fibroblasts. J 

Periodontol, 80, 1166-73. 

REPEKE, C. E., FERREIRA, S. B., JR., CLAUDINO, M., SILVEIRA, E. M., DE ASSIS, 

G. F., AVILA-CAMPOS, M. J., SILVA, J. S. & GARLET, G. P. 2010. Evidences 

of the cooperative role of the chemokines CCL3, CCL4 and CCL5 and its 

receptors CCR1+ and CCR5+ in RANKL+ cell migration throughout experimental 

periodontitis in mice. Bone, 46, 1122-30. 

RESTAINO, C. G., CHAPARRO, A., VALENZUELA, M. A., KETTLUN, A. M., VERNAL, 

R., SILVA, A., PUENTE, J., JAQUE, M. P., LEON, R. & GAMONAL, J. 2007. 

Stimulatory response of neutrophils from periodontitis patients with periodontal 

pathogens. Oral Dis, 13, 474-81. 



 

304 
 

RICKLIN, D., HAJISHENGALLIS, G., YANG, K. & LAMBRIS, J. D. 2010. Complement: 

a key system for immune surveillance and homeostasis. Nat Immunol, 11, 785-

97. 

RIDZUAN, N., JOHN, C. M., SANDRASAIGARAN, P., MAQBOOL, M., LIEW, L. C., LIM, 

J. & RAMASAMY, R. 2016. Preliminary study on overproduction of reactive 

oxygen species by neutrophils in diabetes mellitus. World J Diabetes, 7, 271-8. 

RIJKSCHROEFF, P., JANSEN, I. D., VAN DER WEIJDEN, F. A., KEIJSER, B. J., LOOS, 

B. G. & NICU, E. A. 2016. Oral polymorphonuclear neutrophil characteristics in 

relation to oral health: a cross-sectional, observational clinical study. Int J Oral 

Sci, 8, 191-8. 

ROBERTS, H. M., LING, M. R., INSALL, R., KALNA, G., SPENGLER, J., GRANT, M. M. 

& CHAPPLE, I. L. 2015. Impaired neutrophil directional chemotactic accuracy in 

chronic periodontitis patients. J Clin Periodontol, 42, 1-11. 

ROOS, D., VAN BRUGGEN, R. & MEISCHL, C. 2003. Oxidative killing of microbes by 

neutrophils. Microbes Infect, 5, 1307-15. 

ROSIER, B., DE JAGER, M., ZAURA, E. & KROM, B. P. 2014. Historical and 

contemporary hypotheses on the development of oral diseases: are we there yet? 

. Frontiers in Cellular and Infection Microbiology, 4. 

ROSS, J. H., HARDY, D. C., SCHUYLER, C. A., SLATE, E. H., MIZE, T. W. & HUANG, 

Y. 2010. Expression of periodontal interleukin-6 protein is increased across 

patients with neither periodontal disease nor diabetes, patients with periodontal 

disease alone and patients with both diseases. J Periodontal Res, 45, 688-94. 

ROSS, K. F. & HERZBERG, M. C. 2016. Autonomous immunity in mucosal epithelial 

cells: fortifying the barrier against infection. Microbes Infect, 18, 387-398. 

ROTTER, V., NAGAEV, I. & SMITH, U. 2003. Interleukin-6 (IL-6) induces insulin 

resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, 

overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem, 

278, 45777-84. 

RUNDELL, B. B., THOMSON, L. A., LOESCHE, W. J. & STILES, H. M. 1973. Evaluation 

of a new transport medium for the preservation of oral streptococci. Arch Oral 

Biol, 18, 871-8. 

RYBA-STANISLAWOWSKA, M., SKRZYPKOWSKA, M., MYSLIWSKA, J. & 

MYSLIWIEC, M. 2013. The serum IL-6 profile and Treg/Th17 peripheral cell 

populations in patients with type 1 diabetes. Mediators Inflamm, 2013, 205284. 

RYDER, M. I. 2010. Comparison of neutrophil functions in aggressive and chronic 

periodontitis. Periodontol 2000, 53, 124-37. 



 

305 
 

SAARI, H., SUOMALAINEN, K., LINDY, O., KONTTINEN, Y. T. & SORSA, T. 1990. 

Activation of latent human neutrophil collagenase by reactive oxygen species and 

serine proteases. Biochem Biophys Res Commun, 171, 979-87. 

SAHINGUR, S. E., XIA, X. J., ALAMGIR, S., HONMA, K., SHARMA, A. & SCHENKEIN, 

H. A. 2010. DNA from Porphyromonas gingivalis and Tannerella forsythia induce 

cytokine production in human monocytic cell lines. Mol Oral Microbiol, 25, 123-

35. 

SAITO, T., SHIMAZAKI, Y., KIYOHARA, Y., KATO, I., KUBO, M., IIDA, M. & KOGA, T. 

2004. The severity of periodontal disease is associated with the development of 

glucose intolerance in non-diabetics: the Hisayama study. J Dent Res, 83, 485-

90. 

SAKALLIOGLU, E. E., AYAS, B., LUTFIOGLU, M., KELES, G. C., ACIKGOZ, G. & 

FIRATLI, E. 2008. Gingival levels of monocyte chemoattractant protein-1 (MCP-

1) in diabetes mellitus and periodontitis: an experimental study in rats. Clin Oral 

Investig, 12, 83-9. 

SALMINEN, A., GURSOY, U. K., PAJU, S., HYVARINEN, K., MANTYLA, P., BUHLIN, 

K., KONONEN, E., NIEMINEN, M. S., SORSA, T., SINISALO, J. & PUSSINEN, 

P. J. 2014. Salivary biomarkers of bacterial burden, inflammatory response, and 

tissue destruction in periodontitis. J Clin Periodontol, 41, 442-50. 

SALVI, G. E., COLLINS, J. G., YALDA, B., ARNOLD, R. R., LANG, N. P. & 

OFFENBACHER, S. 1997a. Monocytic TNF alpha secretion patterns in IDDM 

patients with periodontal diseases. J Clin Periodontol, 24, 8-16. 

SALVI, G. E., FRANCO, L. M., BRAUN, T. M., LEE, A., RUTGER PERSSON, G., LANG, 

N. P. & GIANNOBILE, W. V. 2010. Pro-inflammatory biomarkers during 

experimental gingivitis in patients with type 1 diabetes mellitus: a proof-of-

concept study. J Clin Periodontol, 37, 9-16. 

SALVI, G. E., YALDA, B., COLLINS, J. G., JONES, B. H., SMITH, F. W., ARNOLD, R. 

R. & OFFENBACHER, S. 1997b. Inflammatory mediator response as a potential 

risk marker for periodontal diseases in insulin-dependent diabetes mellitus 

patients. J Periodontol, 68, 127-35. 

SAMARANAYAKE, L. & MATSUBARA, V. H. 2017. Normal Oral Flora and the Oral 

Ecosystem. Dent Clin North Am, 61, 199-215. 

SANDROS, J., KARLSSON, C., LAPPIN, D. F., MADIANOS, P. N., KINANE, D. F. & 

PAPAPANOU, P. N. 2000. Cytokine responses of oral epithelial cells to 

Porphyromonas gingivalis infection. J Dent Res, 79, 1808-14. 

SANTANA, R. B., XU, L., CHASE, H. B., AMAR, S., GRAVES, D. T. & TRACKMAN, P. 

C. 2003. A role for advanced glycation end products in diminished bone healing 

in type 1 diabetes. Diabetes, 52, 1502-10. 



 

306 
 

SANTORO, A., MAJORANA, A., ROVERSI, L., GENTILI, F., MARRELLI, S., VERMI, W., 

BARDELLINI, E., SAPELLI, P. & FACCHETTI, F. 2005. Recruitment of dendritic 

cells in oral lichen planus. J Pathol, 205, 426-34. 

SANTOS, V. R., RIBEIRO, F. V., LIMA, J. A., NAPIMOGA, M. H., BASTOS, M. F. & 

DUARTE, P. M. 2010. Cytokine levels in sites of chronic periodontitis of poorly 

controlled and well-controlled type 2 diabetic subjects. J Clin Periodontol, 37, 

1049-58. 

SAPNA, G., GOKUL, S. & BAGRI-MANJREKAR, K. 2014. Matrix metalloproteinases and 

periodontal diseases. Oral Dis, 20, 538-50. 

SATO, Y., YAMAGISHI, J., YAMASHITA, R., SHINOZAKI, N., YE, B., YAMADA, T., 

YAMAMOTO, M., NAGASAKI, M. & TSUBOI, A. 2015. Inter-Individual 

Differences in the Oral Bacteriome Are Greater than Intra-Day Fluctuations in 

Individuals. PLoS One, 10, e0131607. 

SAVILL, J. S., WYLLIE, A. H., HENSON, J. E., WALPORT, M. J., HENSON, P. M. & 

HASLETT, C. 1989. Macrophage phagocytosis of aging neutrophils in 

inflammation. Programmed cell death in the neutrophil leads to its recognition by 

macrophages. J Clin Invest, 83, 865-75. 

SCANNAPIECO, F. A. 2005. Systemic effects of periodontal diseases. Dent Clin North 

Am, 49, 533-50, vi. 

SCANNAPIECO, F. A. 2013. The oral microbiome: Its role in health and in oral and 

systemic infections. Clinical Microbiology Newsletter, 35, 163-169. 

SCANNAPIECO, F. A., NG, P., HOVEY, K., HAUSMANN, E., HUTSON, A. & 

WACTAWSKI-WENDE, J. 2007. Salivary biomarkers associated with alveolar 

bone loss. Ann N Y Acad Sci, 1098, 496-7. 

SCHIOTT, C. R. & LOE, H. 1970. The origin and variation in number of leukocytes in the 

human saliva. J Periodontal Res, 5, 36-41. 

SCHMIDT, A. M., YAN, S. D., YAN, S. F. & STERN, D. M. 2000. The biology of the 

receptor for advanced glycation end products and its ligands. Biochim Biophys 

Acta, 1498, 99-111. 

SCHMIDT, E. P., LEE, W. L., ZEMANS, R. L., YAMASHITA, C. & DOWNEY, G. P. 2011. 

On, around, and through: neutrophil-endothelial interactions in innate immunity. 

Physiology (Bethesda), 26, 334-47. 

SCHMITTGEN, T. D. & LIVAK, K. J. 2008. Analyzing real-time PCR data by the 

comparative CT method. Nature Protocols, 3, 1101-1108. 

SCHULTZ-HAUDT, S., BRUCE, M. A. & BIBBY, B. G. 1954. Bacterial factors in 

nonspecific gingivitis. J Dent Res, 33, 454-8. 



 

307 
 

SEIQUER, I., RUBIO, L. A., PEINADO, M. J., DELGADO-ANDRADE, C. & NAVARRO, 

M. P. 2014. Maillard reaction products modulate gut microbiota composition in 

adolescents. Mol Nutr Food Res, 58, 1552-60. 

SEMBA, R. D., FINK, J. C., SUN, K., WINDHAM, B. G. & FERRUCCI, L. 2010. Serum 

carboxymethyl-lysine, a dominant advanced glycation end product, is associated 

with chronic kidney disease: the Baltimore longitudinal study of aging. J Ren Nutr, 

20, 74-81. 

SENDER, R., FUCHS, S. & MILO, R. 2016. Revised Estimates for the Number of Human 

and Bacteria Cells in the Body. PLoS Biol, 14, e1002533. 

SEXTON, W. M., LIN, Y., KRYSCIO, R. J., DAWSON, D. R., 3RD, EBERSOLE, J. L. & 

MILLER, C. S. 2011. Salivary biomarkers of periodontal disease in response to 

treatment. J Clin Periodontol, 38, 434-41. 

SEYMOUR, G. J., GEMMELL, E., REINHARDT, R. A., EASTCOTT, J. & TAUBMAN, M. 

A. 1993. Immunopathogenesis of chronic inflammatory periodontal disease: 

cellular and molecular mechanisms. J Periodontal Res, 28, 478-86. 

SHADDOX, L. M., WIEDEY, J., CALDERON, N. L., MAGNUSSON, I., BIMSTEIN, E., 

BIDWELL, J. A., ZAPERT, E. F., AUKHIL, I. & WALLET, S. M. 2011. Local 

inflammatory markers and systemic endotoxin in aggressive periodontitis. J Dent 

Res, 90, 1140-4. 

SHETTY, N., THOMAS, B. & RAMESH, A. 2008. Comparison of neutrophil functions in 

diabetic and healthy subjects with chronic generalized periodontitis. J Indian Soc 

Periodontol, 12, 41-4. 

SHIN, D. S., PARK, J. W., SUH, J. Y. & LEE, J. M. 2010. The expressions of 

inflammatory factors and tissue inhibitor of matrix metalloproteinase-2 in human 

chronic periodontitis with type 2 diabetes mellitus. J Periodontal Implant Sci, 40, 

33-8. 

SHLOSSMAN, M., KNOWLER, W. C., PETTITT, D. J. & GENCO, R. J. 1990. Type 2 

diabetes mellitus and periodontal disease. J Am Dent Assoc, 121, 532-6. 

SHULTIS, W. A., WEIL, E. J., LOOKER, H. C., CURTIS, J. M., SHLOSSMAN, M., 

GENCO, R. J., KNOWLER, W. C. & NELSON, R. G. 2007. Effect of periodontitis 

on overt nephropathy and end-stage renal disease in type 2 diabetes. Diabetes 

Care, 30, 306-11. 

SILVA, N., ABUSLEME, L., BRAVO, D., DUTZAN, N., GARCIA-SESNICH, J., VERNAL, 

R., HERNANDEZ, M. & GAMONAL, J. 2015. Host response mechanisms in 

periodontal diseases. J Appl Oral Sci, 23, 329-55. 

SILVA, N., DUTZAN, N., HERNANDEZ, M., DEZEREGA, A., RIVERA, O., AGUILLON, 

J. C., ARAVENA, O., LASTRES, P., POZO, P., VERNAL, R. & GAMONAL, J. 

2008. Characterization of progressive periodontal lesions in chronic periodontitis 



 

308 
 

patients: levels of chemokines, cytokines, matrix metalloproteinase-13, 

periodontal pathogens and inflammatory cells. J Clin Periodontol, 35, 206-14. 

SILVA, T. A., GARLET, G. P., FUKADA, S. Y., SILVA, J. S. & CUNHA, F. Q. 2007. 

Chemokines in oral inflammatory diseases: apical periodontitis and periodontal 

disease. J Dent Res, 86, 306-19. 

SIMA, C., RHOURIDA, K., VAN DYKE, T. E. & GYURKO, R. 2010. Type 1 diabetes 

predisposes to enhanced gingival leukocyte margination and macromolecule 

extravasation in vivo. J Periodontal Res, 45, 748-56. 

SIMON-SORO, A., TOMAS, I., CABRERA-RUBIO, R., CATALAN, M. D., NYVAD, B. & 

MIRA, A. 2013. Microbial geography of the oral cavity. J Dent Res, 92, 616-21. 

SIMONET, W. S., LACEY, D. L., DUNSTAN, C. R., KELLEY, M., CHANG, M. S., LUTHY, 

R., NGUYEN, H. Q., WOODEN, S., BENNETT, L., BOONE, T., SHIMAMOTO, 

G., DEROSE, M., ELLIOTT, R., COLOMBERO, A., TAN, H. L., TRAIL, G., 

SULLIVAN, J., DAVY, E., BUCAY, N., RENSHAW-GEGG, L., HUGHES, T. M., 

HILL, D., PATTISON, W., CAMPBELL, P., SANDER, S., VAN, G., TARPLEY, J., 

DERBY, P., LEE, R. & BOYLE, W. J. 1997. Osteoprotegerin: a novel secreted 

protein involved in the regulation of bone density. Cell, 89, 309-19. 

SINGH, R., BARDEN, A., MORI, T. & BEILIN, L. 2001. Advanced glycation end-products: 

a review. Diabetologia, 44, 129-46. 

SINGH, V. P., BALI, A., SINGH, N. & JAGGI, A. S. 2014. Advanced glycation end 

products and diabetic complications. Korean J Physiol Pharmacol, 18, 1-14. 

SLADE, G. D., OFFENBACHER, S., BECK, J. D., HEISS, G. & PANKOW, J. S. 2000. 

Acute-phase inflammatory response to periodontal disease in the US population. 

J Dent Res, 79, 49-57. 

SLOTS, J. & CONTRERAS, A. 2000. Herpesviruses: a unifying causative factor in 

periodontitis? Oral Microbiol Immunol, 15, 277-80. 

SOCRANSKY, S. S. 1977. Microbiology of periodontal disease -- present status and 

future considerations. J Periodontol, 48, 497-504. 

SOCRANSKY, S. S. & HAFFAJEE, A. D. 2002. Dental biofilms: difficult therapeutic 

targets. Periodontol 2000, 28, 12-55. 

SOCRANSKY, S. S., HAFFAJEE, A. D., CUGINI, M. A., SMITH, C. & KENT, R. L., JR. 

1998. Microbial complexes in subgingival plaque. J Clin Periodontol, 25, 134-44. 

SONNENSCHEIN, S. K. & MEYLE, J. 2015. Local inflammatory reactions in patients 

with diabetes and periodontitis. Periodontol 2000, 69, 221-54. 

SORENSON, B. S., KHAMMANIVONG, A., GUENTHER, B. D., ROSS, K. F. & 

HERZBERG, M. C. 2012. IL-1 receptor regulates S100A8/A9-dependent 

keratinocyte resistance to bacterial invasion. Mucosal Immunol, 5, 66-75. 



 

309 
 

SORSA, T., GURSOY, U. K., NWHATOR, S., HERNANDEZ, M., TERVAHARTIALA, T., 

LEPPILAHTI, J., GURSOY, M., KONONEN, E., EMINGIL, G., PUSSINEN, P. J. 

& MANTYLA, P. 2016. Analysis of matrix metalloproteinases, especially MMP-8, 

in gingival creviclular fluid, mouthrinse and saliva for monitoring periodontal 

diseases. Periodontol 2000, 70, 142-63. 

SORSA, T., HERNANDEZ, M., LEPPILAHTI, J., MUNJAL, S., NETUSCHIL, L. & 

MANTYLA, P. 2010. Detection of gingival crevicular fluid MMP-8 levels with 

different laboratory and chair-side methods. Oral Dis, 16, 39-45. 

SOURRIS, K. C., HARCOURT, B. E. & FORBES, J. M. 2009. A new perspective on 

therapeutic inhibition of advanced glycation in diabetic microvascular 

complications: common downstream endpoints achieved through disparate 

therapeutic approaches? Am J Nephrol, 30, 323-35. 

SOUTO, G. R., QUEIROZ, C. M., JR., COSTA, F. O. & MESQUITA, R. A. 2014. 

Relationship between chemokines and dendritic cells in human chronic 

periodontitis. J Periodontol, 85, 1416-23. 

STASHENKO, P., GONCALVES, R. B., LIPKIN, B., FICARELLI, A., SASAKI, H. & 

CAMPOS-NETO, A. 2007. Th1 immune response promotes severe bone 

resorption caused by Porphyromonas gingivalis. Am J Pathol, 170, 203-13. 

STATHOPOULOU, P. G., BENAKANAKERE, M. R., GALICIA, J. C. & KINANE, D. F. 

2010. Epithelial cell pro-inflammatory cytokine response differs across dental 

plaque bacterial species. J Clin Periodontol, 37, 24-9. 

STEEL, D. M. & WHITEHEAD, A. S. 1994. The major acute phase reactants: C-reactive 

protein, serum amyloid P component and serum amyloid A protein. Immunol 

Today, 15, 81-8. 

STEINBERG, G. R., MICHELL, B. J., VAN DENDEREN, B. J., WATT, M. J., CAREY, A. 

L., FAM, B. C., ANDRIKOPOULOS, S., PROIETTO, J., GORGUN, C. Z., 

CARLING, D., HOTAMISLIGIL, G. S., FEBBRAIO, M. A., KAY, T. W. & KEMP, 

B. E. 2006a. Tumor necrosis factor alpha-induced skeletal muscle insulin 

resistance involves suppression of AMP-kinase signaling. Cell Metab, 4, 465-74. 

STEINBERG, T., DANNEWITZ, B., TOMAKIDI, P., HOHEISEL, J. D., MUSSIG, E., 

KOHL, A. & NEES, M. 2006b. Analysis of interleukin-1beta-modulated mRNA 

gene transcription in human gingival keratinocytes by epithelia-specific cDNA 

microarrays. J Periodontal Res, 41, 426-46. 

STEINSVOLL, S., HALSTENSEN, T. S. & SCHENCK, K. 1999. Extensive expression of 

TGF-beta1 in chronically-inflamed periodontal tissue. J Clin Periodontol, 26, 366-

73. 



 

310 
 

SUGAWARA, Y., UEHARA, A., FUJIMOTO, Y., KUSUMOTO, S., FUKASE, K., 

SHIBATA, K., SUGAWARA, S., SASANO, T. & TAKADA, H. 2006. Toll-like 

receptors, NOD1, and NOD2 in oral epithelial cells. J Dent Res, 85, 524-9. 

SUMMERS, C., RANKIN, S. M., CONDLIFFE, A. M., SINGH, N., PETERS, A. M. & 

CHILVERS, E. R. 2010. Neutrophil kinetics in health and disease. Trends 

Immunol, 31, 318-24. 

SUNDARARAJ, K. P., SAMUVEL, D. J., LI, Y., SANDERS, J. J., LOPES-VIRELLA, M. 

F. & HUANG, Y. 2009. Interleukin-6 released from fibroblasts is essential for up-

regulation of matrix metalloproteinase-1 expression by U937 macrophages in 

coculture: cross-talking between fibroblasts and U937 macrophages exposed to 

high glucose. J Biol Chem, 284, 13714-24. 

TAKAHASHI, K., AZUMA, T., MOTOHIRA, H., KINANE, D. F. & KITETSU, S. 2005. The 

potential role of interleukin-17 in the immunopathology of periodontal disease. J 

Clin Periodontol, 32, 369-74. 

TAKAHASHI, N., SAITO, K., SCHACHTELE, C. F. & YAMADA, T. 1997. Acid tolerance 

and acid-neutralizing activity of Porphyromonas gingivalis, Prevotella intermedia 

and Fusobacterium nucleatum. Oral Microbiol Immunol, 12, 323-8. 

TAKANO, M., NISHIHARA, R., SUGANO, N., MATSUMOTO, K., YAMADA, Y., 

TAKANE, M., FUJISAKI, Y. & ITO, K. 2010. The effect of systemic anti-tumor 

necrosis factor-alpha treatment on Porphyromonas gingivalis infection in type 2 

diabetic mice. Arch Oral Biol, 55, 379-84. 

TAKEDA, M., OJIMA, M., YOSHIOKA, H., INABA, H., KOGO, M., SHIZUKUISHI, S., 

NOMURA, M. & AMANO, A. 2006. Relationship of serum advanced glycation end 

products with deterioration of periodontitis in type 2 diabetes patients. J 

Periodontol, 77, 15-20. 

TAKIGAWA, M., TAKASHIBA, S., MYOKAI, F., TAKAHASHI, K., ARAI, H., KURIHARA, 

H. & MURAYAMA, Y. 1994. Cytokine-dependent synergistic regulation of 

interleukin-8 production from human gingival fibroblasts. J Periodontol, 65, 1002-

7. 

TAMAI, R. 2002. Human Gingival CD14+ Fibroblasts Primed with Gamma Interferon 

Increase Production of Interleukin-8 in Response to Lipopolysaccharide through 

Up-Regulation of Membrane CD14 and MyD88 mRNA Expression. Infection and 

Immunity, 70, 1272-1278. 

TAMURA, Y., ADACHI, H., OSUGA, J., OHASHI, K., YAHAGI, N., SEKIYA, M., 

OKAZAKI, H., TOMITA, S., IIZUKA, Y., SHIMANO, H., NAGAI, R., KIMURA, S., 

TSUJIMOTO, M. & ISHIBASHI, S. 2003. FEEL-1 and FEEL-2 are endocytic 

receptors for advanced glycation end products. J Biol Chem, 278, 12613-7. 



 

311 
 

TANAKA, T., NARAZAKI, M. & KISHIMOTO, T. 2014. IL-6 in inflammation, immunity, 

and disease. Cold Spring Harb Perspect Biol, 6, a016295. 

TANIGAKI, K., VONGPATANASIN, W., BARRERA, J. A., ATOCHIN, D. N., HUANG, P. 

L., BONVINI, E., SHAUL, P. W. & MINEO, C. 2013. C-reactive protein causes 

insulin resistance in mice through Fcgamma receptor IIB-mediated inhibition of 

skeletal muscle glucose delivery. Diabetes, 62, 721-31. 

TAUBMAN, M. A. & KAWAI, T. 2001. Involvement of T-lymphocytes in periodontal 

disease and in direct and indirect induction of bone resorption. Crit Rev Oral Biol 

Med, 12, 125-35. 

TAYLOR, G. W., BURT, B. A., BECKER, M. P., GENCO, R. J., SHLOSSMAN, M., 

KNOWLER, W. C. & PETTITT, D. J. 1996. Severe periodontitis and risk for poor 

glycemic control in patients with non-insulin-dependent diabetes mellitus. J 

Periodontol, 67, 1085-93. 

TAYLOR, G. W., BURT, B. A., BECKER, M. P., GENCO, R. J., SHLOSSMAN, M., 

KNOWLER, W. C. & PETTITT, D. J. 1998. Non-insulin dependent diabetes 

mellitus and alveolar bone loss progression over 2 years. J Periodontol, 69, 76-

83. 

TELES, R. P., LIKHARI, V., SOCRANSKY, S. S. & HAFFAJEE, A. D. 2009. Salivary 

cytokine levels in subjects with chronic periodontitis and in periodontally healthy 

individuals: a cross-sectional study. J Periodontal Res, 44, 411-7. 

TENG, Y. T. 2006. Protective and destructive immunity in the periodontium: Part 2--T-

cell-mediated immunity in the periodontium. J Dent Res, 85, 209-19. 

THEILADE, E. 1986. The non-specific theory in microbial etiology of inflammatory 

periodontal diseases. J Clin Periodontol, 13, 905-11. 

THIEU, V. T., YU, Q., CHANG, H. C., YEH, N., NGUYEN, E. T., SEHRA, S. & KAPLAN, 

M. H. 2008. Signal transducer and activator of transcription 4 is required for the 

transcription factor T-bet to promote T helper 1 cell-fate determination. Immunity, 

29, 679-90. 

THOMAS, T., GILBERT, J. & MEYER, F. 2012. Metagenomics - a guide from sampling 

to data analysis. Microb Inform Exp, 2, 3. 

THORSTENSSON, H., DAHLEN, G. & HUGOSON, A. 1995. Some suspected 

periodontopathogens and serum antibody response in adult long-duration insulin-

dependent diabetics. J Clin Periodontol, 22, 449-58. 

THORSTENSSON, H., FALK, H., HUGOSON, A. & OLSSON, J. 1989. Some salivary 

factors in insulin-dependent diabetics. Acta Odontol Scand, 47, 175-83. 

TILG, H. & MOSCHEN, A. R. 2014. Microbiota and diabetes: an evolving relationship. 

Gut, 63, 1513-21. 



 

312 
 

TOBON-ARROYAVE, S. I., JARAMILLO-GONZALEZ, P. E. & ISAZA-GUZMAN, D. M. 

2008. Correlation between salivary IL-1beta levels and periodontal clinical status. 

Arch Oral Biol, 53, 346-52. 

TOTARO, M. C., CATTANI, P., RIA, F., TOLUSSO, B., GREMESE, E., FEDELE, A. L., 

D'ONGHIA, S., MARCHETTI, S., DI SANTE, G., CANESTRI, S. & 

FERRACCIOLI, G. 2013. Porphyromonas gingivalis and the pathogenesis of 

rheumatoid arthritis: analysis of various compartments including the synovial 

tissue. Arthritis Res Ther, 15, R66. 

TSAI, C., HAYES, C. & TAYLOR, G. W. 2002. Glycemic control of type 2 diabetes and 

severe periodontal disease in the US adult population. Community Dent Oral 

Epidemiol, 30, 182-92. 

TSUTSUI, A., OGURA, A., TAHARA, T., NOZAKI, S., URANO, S., HARA, M., KOJIMA, 

S., KURBANGALIEVA, A., ONOE, H., WATANABE, Y., TANIGUCHI, N. & 

TANAKA, K. 2016. In vivo imaging of advanced glycation end products (AGEs) 

of albumin: first observations of significantly reduced clearance and liver 

deposition properties in mice. Org Biomol Chem, 14, 5755-60. 

TURINA, M., MILLER, F. N., MCHUGH, P. P., CHEADLE, W. G. & POLK, H. C., JR. 

2005. Endotoxin inhibits apoptosis but induces primary necrosis in neutrophils. 

Inflammation, 29, 55-63. 

TWETMAN, S., DERAWI, B., KELLER, M., EKSTRAND, K., YUCEL-LINDBERG, T. & 

STECKSEN-BLICKS, C. 2009. Short-term effect of chewing gums containing 

probiotic Lactobacillus reuteri on the levels of inflammatory mediators in gingival 

crevicular fluid. Acta Odontol Scand, 67, 19-24. 

TYMKIW, K. D., THUNELL, D. H., JOHNSON, G. K., JOLY, S., BURNELL, K. K., 

CAVANAUGH, J. E., BROGDEN, K. A. & GUTHMILLER, J. M. 2011. Influence 

of smoking on gingival crevicular fluid cytokines in severe chronic periodontitis. J 

Clin Periodontol, 38, 219-28. 

UCHIDA, Y., SHIBA, H., KOMATSUZAWA, H., TAKEMOTO, T., SAKATA, M., FUJITA, 

T., KAWAGUCHI, H., SUGAI, M. & KURIHARA, H. 2001. Expression of IL-1 beta 

and IL-8 by human gingival epithelial cells in response to Actinobacillus 

actinomycetemcomitans. Cytokine, 14, 152-61. 

UEHARA, A., IMAMURA, T., POTEMPA, J., TRAVIS, J. & TAKADA, H. 2008. Gingipains 

from Porphyromonas gingivalis synergistically induce the production of 

proinflammatory cytokines through protease-activated receptors with Toll-like 

receptor and NOD1/2 ligands in human monocytic cells. Cell Microbiol, 10, 1181-

9. 



 

313 
 

URIARTE, S. M., EDMISSON, J. S. & JIMENEZ-FLORES, E. 2016. Human neutrophils 

and oral microbiota: a constant tug-of-war between a harmonious and a 

discordant coexistence. Immunol Rev, 273, 282-98. 

URSELL, L. K., METCALF, J. L., PARFREY, L. W. & KNIGHT, R. 2012. Defining the 

human microbiome. Nutr Rev, 70 Suppl 1, S38-44. 

VAN KOOYK, Y., WEDER, P., HEIJE, K., DE WAAL MALEFIJT, R. & FIGDOR, C. G. 

2009. Role of Intracellular Ca2+ Levels in the Regulation of CD11a/CD18 

Mediated Cell Adhesion. Cell Adhesion and Communication, 1, 21-32. 

VARDAR-SENGUL, S., ARORA, S., BAYLAS, H. & MERCOLA, D. 2009. Expression 

profile of human gingival fibroblasts induced by interleukin-1beta reveals central 

role of nuclear factor-kappa B in stabilizing human gingival fibroblasts during 

inflammation. J Periodontol, 80, 833-49. 

VENTURI, G. M., TU, L., KADONO, T., KHAN, A. I., FUJIMOTO, Y., OSHEL, P., BOCK, 

C. B., MILLER, A. S., ALBRECHT, R. M., KUBES, P., STEEBER, D. A. & 

TEDDER, T. F. 2003. Leukocyte migration is regulated by L-selectin 

endoproteolytic release. Immunity, 19, 713-24. 

VENZA, I., VISALLI, M., CUCINOTTA, M., DE GRAZIA, G., TETI, D. & VENZA, M. 2010. 

Proinflammatory gene expression at chronic periodontitis and peri-implantitis 

sites in patients with or without type 2 diabetes. J Periodontol, 81, 99-108. 

VERNAL, R., CHAPARRO, A., GRAUMANN, R., PUENTE, J., VALENZUELA, M. A. & 

GAMONAL, J. 2004. Levels of cytokine receptor activator of nuclear factor 

kappaB ligand in gingival crevicular fluid in untreated chronic periodontitis 

patients. J Periodontol, 75, 1586-91. 

VERNAL, R., DUTZAN, N., CHAPARRO, A., PUENTE, J., ANTONIETA VALENZUELA, 

M. & GAMONAL, J. 2005. Levels of interleukin-17 in gingival crevicular fluid and 

in supernatants of cellular cultures of gingival tissue from patients with chronic 

periodontitis. J Clin Periodontol, 32, 383-9. 

VITKOV, L., KLAPPACHER, M., HANNIG, M. & KRAUTGARTNER, W. D. 2009. 

Extracellular neutrophil traps in periodontitis. J Periodontal Res, 44, 664-72. 

VLASSARA, H. 2001. The AGE-receptor in the pathogenesis of diabetic complications. 

Diabetes Metab Res Rev, 17, 436-43. 

VLASSARA, H., LI, Y. M., IMANI, F., WOJCIECHOWICZ, D., YANG, Z., LIU, F. T. & 

CERAMI, A. 1995. Identification of galectin-3 as a high-affinity binding protein for 

advanced glycation end products (AGE): a new member of the AGE-receptor 

complex. Mol Med, 1, 634-46. 

WADE, W. G. 2013. The oral microbiome in health and disease. Pharmacol Res, 69, 

137-43. 



 

314 
 

WANG, B. Y. & KURAMITSU, H. K. 2005. Interactions between oral bacteria: inhibition 

of Streptococcus mutans bacteriocin production by Streptococcus gordonii. Appl 

Environ Microbiol, 71, 354-62. 

WANG, J., QI, J., ZHAO, H., HE, S., ZHANG, Y., WEI, S. & ZHAO, F. 2013. Metagenomic 

sequencing reveals microbiota and its functional potential associated with 

periodontal disease. Sci Rep, 3, 1843. 

WANG, M., KRAUSS, J. L., DOMON, H., HOSUR, K. B., LIANG, S., MAGOTTI, P., 

TRIANTAFILOU, M., TRIANTAFILOU, K., LAMBRIS, J. D. & HAJISHENGALLIS, 

G. 2010. Microbial hijacking of complement-toll-like receptor crosstalk. Sci 

Signal, 3, ra11. 

WANG, Q., GARRITY, G. M., TIEDJE, J. M. & COLE, J. R. 2007. Naive Bayesian 

classifier for rapid assignment of rRNA sequences into the new bacterial 

taxonomy. Appl Environ Microbiol, 73, 5261-7. 

WANG, Z., JIANG, Y., LIU, N., REN, L., ZHU, Y., AN, Y. & CHEN, D. 2012. Advanced 

glycation end-product Nepsilon-carboxymethyl-Lysine accelerates progression 

of atherosclerotic calcification in diabetes. Atherosclerosis, 221, 387-96. 

WAUTIER, M. P., GUILLAUSSEAU, P. J. & WAUTIER, J. L. 2017. Activation of the 

receptor for advanced glycation end products and consequences on health. 

Diabetes Metab Syndr, 11, 305-309. 

WEBER, A., WASILIEW, P. & KRACHT, M. 2010. Interleukin-1 (IL-1) pathway. Sci 

Signal, 3, cm1. 

WEI, P. F., HO, K. Y., HO, Y. P., WU, Y. M., YANG, Y. H. & TSAI, C. C. 2004. The 

investigation of glutathione peroxidase, lactoferrin, myeloperoxidase and 

interleukin-1beta in gingival crevicular fluid: implications for oxidative stress in 

human periodontal diseases. J Periodontal Res, 39, 287-93. 

WEISS, S. J., PEPPIN, G., ORTIZ, X., RAGSDALE, C. & TEST, S. T. 1985. Oxidative 

autoactivation of latent collagenase by human neutrophils. Science, 227, 747-9. 

WHITE, P., SAKELLARI, D., ROBERTS, H., RISAFI, I., LING, M., COOPER, P., 

MILWARD, M. & CHAPPLE, I. 2016a. Peripheral blood neutrophil extracellular 

trap production and degradation in chronic periodontitis. J Clin Periodontol, 43, 

1041-1049. 

WHITE, P. C., CHICCA, I. J., COOPER, P. R., MILWARD, M. R. & CHAPPLE, I. L. 

2016b. Neutrophil Extracellular Traps in Periodontitis: A Web of Intrigue. J Dent 

Res, 95, 26-34. 

WICKHAM, H. 2009. ggplot2: Elegant Graphics for Data Analysis, New York, Springer-

Verlag. 

WIESNER, J. & VILCINSKAS, A. 2010. Antimicrobial peptides: the ancient arm of the 

human immune system. Virulence, 1, 440-64. 



 

315 
 

WILSON, N. J., BONIFACE, K., CHAN, J. R., MCKENZIE, B. S., BLUMENSCHEIN, W. 

M., MATTSON, J. D., BASHAM, B., SMITH, K., CHEN, T., MOREL, F., LECRON, 

J. C., KASTELEIN, R. A., CUA, D. J., MCCLANAHAN, T. K., BOWMAN, E. P. & 

DE WAAL MALEFYT, R. 2007. Development, cytokine profile and function of 

human interleukin 17-producing helper T cells. Nat Immunol, 8, 950-7. 

WILSON, T. G., JR. 1989. Periodontal diseases and diabetes. Diabetes Educ, 15, 342-

5. 

WINGROVE, J. A., DISCIPIO, R. G., CHEN, Z., POTEMPA, J., TRAVIS, J. & HUGLI, T. 

E. 1992. Activation of complement components C3 and C5 by a cysteine 

proteinase (gingipain-1) from Porphyromonas (Bacteroides) gingivalis. J Biol 

Chem, 267, 18902-7. 

WONG, B. R., RHO, J., ARRON, J., ROBINSON, E., ORLINICK, J., CHAO, M., 

KALACHIKOV, S., CAYANI, E., BARTLETT, F. S., 3RD, FRANKEL, W. N., LEE, 

S. Y. & CHOI, Y. 1997. TRANCE is a novel ligand of the tumor necrosis factor 

receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem, 

272, 25190-4. 

WONG, R. K., PETTIT, A. I., QUINN, P. A., JENNINGS, S. C., DAVIES, J. E. & NG, L. 

L. 2003. Advanced glycation end products stimulate an enhanced neutrophil 

respiratory burst mediated through the activation of cytosolic phospholipase A2 

and generation of arachidonic Acid. Circulation, 108, 1858-64. 

WRIGHT, C. J., BURNS, L. H., JACK, A. A., BACK, C. R., DUTTON, L. C., NOBBS, A. 

H., LAMONT, R. J. & JENKINSON, H. F. 2013. Microbial interactions in building 

of communities. Mol Oral Microbiol, 28, 83-101. 

WRIGHT, H. J., MATTHEWS, J. B., CHAPPLE, I. L., LING-MOUNTFORD, N. & 

COOPER, P. R. 2008. Periodontitis associates with a type 1 IFN signature in 

peripheral blood neutrophils. J Immunol, 181, 5775-84. 

XI, L., XIAO, C., BANDSMA, R. H., NAPLES, M., ADELI, K. & LEWIS, G. F. 2011. C-

reactive protein impairs hepatic insulin sensitivity and insulin signaling in rats: 

role of mitogen-activated protein kinases. Hepatology, 53, 127-35. 

XIAO, E., MATTOS, M., VIEIRA, G. H. A., CHEN, S., CORREA, J. D., WU, Y., ALBIERO, 

M. L., BITTINGER, K. & GRAVES, D. T. 2017. Diabetes Enhances IL-17 

Expression and Alters the Oral Microbiome to Increase Its Pathogenicity. Cell 

Host Microbe, 22, 120-128 e4. 

XU, L., WANG, Y. R., LI, P. C. & FENG, B. 2016. Advanced glycation end products 

increase lipids accumulation in macrophages through upregulation of receptor of 

advanced glycation end products: increasing uptake, esterification and 

decreasing efflux of cholesterol. Lipids Health Dis, 15, 161. 



 

316 
 

XU, P. & GUNSOLLEY, J. 2014. Application of metagenomics in understanding oral 

health and disease. Virulence, 5, 424-32. 

YAMAMOTO, T., KITA, M., OSEKO, F., NAKAMURA, T., IMANISHI, J. & KANAMURA, 

N. 2006. Cytokine production in human periodontal ligament cells stimulated with 

Porphyromonas gingivalis. J Periodontal Res, 41, 554-9. 

YAMANAKA, W., TAKESHITA, T., SHIBATA, Y., MATSUO, K., ESHIMA, N., 

YOKOYAMA, T. & YAMASHITA, Y. 2012. Compositional stability of a salivary 

bacterial population against supragingival microbiota shift following periodontal 

therapy. PLoS One, 7, e42806. 

YAN, X., YANG, M., LIU, J., GAO, R., HU, J., LI, J., ZHANG, L., SHI, Y., GUO, H., 

CHENG, J., RAZI, M., PANG, S., YU, X. & HU, S. 2015. Discovery and validation 

of potential bacterial biomarkers for lung cancer. Am J Cancer Res, 5, 3111-22. 

YANG, X. O., PANOPOULOS, A. D., NURIEVA, R., CHANG, S. H., WANG, D., 

WATOWICH, S. S. & DONG, C. 2007. STAT3 regulates cytokine-mediated 

generation of inflammatory helper T cells. J Biol Chem, 282, 9358-63. 

YAVROPOULOU, M. P. & YOVOS, J. G. 2008. Osteoclastogenesis--current knowledge 

and future perspectives. J Musculoskelet Neuronal Interact, 8, 204-16. 

YILMAZ, O. & LEE, K. L. 2015. The inflammasome and danger molecule signaling: at 

the crossroads of inflammation and pathogen persistence in the oral cavity. 

Periodontol 2000, 69, 83-95. 

YONEKURA, H., YAMAMOTO, Y., SAKURAI, S., PETROVA, R. G., ABEDIN, M. J., LI, 

H., YASUI, K., TAKEUCHI, M., MAKITA, Z., TAKASAWA, S., OKAMOTO, H., 

WATANABE, T. & YAMAMOTO, H. 2003. Novel splice variants of the receptor 

for advanced glycation end-products expressed in human vascular endothelial 

cells and pericytes, and their putative roles in diabetes-induced vascular injury. 

Biochem J, 370, 1097-109. 

YOSHIMURA, T., MATSUSHIMA, K., TANAKA, S., ROBINSON, E. A., APPELLA, E., 

OPPENHEIM, J. J. & LEONARD, E. J. 1987. Purification of a human monocyte-

derived neutrophil chemotactic factor that has peptide sequence similarity to 

other host defense cytokines. Proc Natl Acad Sci U S A, 84, 9233-7. 

YOUNESSI, P. & YOONESSI, A. 2011. Advanced glycation end-products and their 

receptor-mediated roles: inflammation and oxidative stress. Iran J Med Sci, 36, 

154-66. 

YU, J. J., RUDDY, M. J., WONG, G. C., SFINTESCU, C., BAKER, P. J., SMITH, J. B., 

EVANS, R. T. & GAFFEN, S. L. 2007. An essential role for IL-17 in preventing 

pathogen-initiated bone destruction: recruitment of neutrophils to inflamed bone 

requires IL-17 receptor-dependent signals. Blood, 109, 3794-802. 



 

317 
 

YU, X., ANTONIADES, H. N. & GRAVES, D. T. 1993. Expression of monocyte 

chemoattractant protein 1 in human inflamed gingival tissues. Infect Immun, 61, 

4622-8. 

ZAURA, E., NICU, E. A., KROM, B. P. & KEIJSER, B. J. 2014. Acquiring and maintaining 

a normal oral microbiome: current perspective. Front Cell Infect Microbiol, 4, 85. 

ZEILHOFER, H. U. & SCHORR, W. 2000. Role of interleukin-8 in neutrophil signaling. 

Curr Opin Hematol, 7, 178-82. 

ZENOBIA, C., LUO, X. L., HASHIM, A., ABE, T., JIN, L., CHANG, Y., JIN, Z. C., SUN, J. 

X., HAJISHENGALLIS, G., CURTIS, M. A. & DARVEAU, R. P. 2013. Commensal 

bacteria-dependent select expression of CXCL2 contributes to periodontal tissue 

homeostasis. Cell Microbiol, 15, 1419-26. 

ZHANG, X., KIMURA, Y., FANG, C., ZHOU, L., SFYROERA, G., LAMBRIS, J. D., 

WETSEL, R. A., MIWA, T. & SONG, W. C. 2007. Regulation of Toll-like receptor-

mediated inflammatory response by complement in vivo. Blood, 110, 228-36. 

ZHENG, F., HE, C., CAI, W., HATTORI, M., STEFFES, M. & VLASSARA, H. 2002. 

Prevention of diabetic nephropathy in mice by a diet low in glycoxidation 

products. Diabetes Metab Res Rev, 18, 224-37. 

ZHOU, M., RONG, R., MUNRO, D., ZHU, C., GAO, X., ZHANG, Q. & DONG, Q. 2013a. 

Investigation of the effect of type 2 diabetes mellitus on subgingival plaque 

microbiota by high-throughput 16S rDNA pyrosequencing. PLoS One, 8, e61516. 

ZHOU, Y., GAO, H., MIHINDUKULASURIYA, K. A., LA ROSA, P. S., WYLIE, K. M., 

VISHNIVETSKAYA, T., PODAR, M., WARNER, B., TARR, P. I., NELSON, D. E., 

FORTENBERRY, J. D., HOLLAND, M. J., BURR, S. E., SHANNON, W. D., 

SODERGREN, E. & WEINSTOCK, G. M. 2013b. Biogeography of the 

ecosystems of the healthy human body. Genome Biol, 14, R1. 

ZHU, L. & KRETH, J. 2012. The role of hydrogen peroxide in environmental adaptation 

of oral microbial communities. Oxid Med Cell Longev, 2012, 717843. 

ZIELINSKI, C. E., MELE, F., ASCHENBRENNER, D., JARROSSAY, D., RONCHI, F., 

GATTORNO, M., MONTICELLI, S., LANZAVECCHIA, A. & SALLUSTO, F. 2012. 

Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are 

regulated by IL-1beta. Nature, 484, 514-8. 

ZIJNGE, V., VAN LEEUWEN, M. B., DEGENER, J. E., ABBAS, F., THURNHEER, T., 

GMUR, R. & HARMSEN, H. J. 2010. Oral biofilm architecture on natural teeth. 

PLoS One, 5, e9321. 

ZIZZI, A., TIRABASSI, G., ASPRIELLO, S. D., PIEMONTESE, M., RUBINI, C. & 

LUCARINI, G. 2013. Gingival advanced glycation end-products in diabetes 

mellitus-associated chronic periodontitis: an immunohistochemical study. J 

Periodontal Res, 48, 293-301. 



 

318 
 

 


