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Abstract  

The causes of the ongoing metabolic disease pandemic are complex. Changes in human 

population genetics proceed slowly, so the recent increase in metabolic disease 

prevalence likely reflects environmental and behavioural changes. Our circadian (~ 24-

hour) systems optimise our biology according to time of day. Artificial stimuli like electric 

lighting and around-the-clock food access enable waking behaviours, such as eating, at 

times at which our circadian systems prime us to sleep. Such mistimed behaviours may 

contribute to metabolic disease, as exemplified by increased risk of diabetes in shift 

workers. However, few researchers have concurrently explored associations between 

sleep, diet composition and timing, and metabolic health. Furthermore, many dietary 

analysis methods used have not been validated, precluding accurate inferences about 

diet-disease relationships. And few studies have assessed the metabolic effects of 

interventions to resynchronise the circadian system each day.  

I first helped validate myfood24, an online dietary recall tool, by completing all of the lab 

work for dietary protein and sugar biomarkers. myfood24 has comparable validity to the 

gold-standard recall method. Subsequent analysis of the myfood24 data showed that 

consuming calories later relative to sleep is associated with overweight and obesity. 

Next, analysis of a public database indicated that longer sleepers had lower body mass 

indices, smaller waists, and favourable blood lipid profiles. Finally, we assessed whether 

long-term supplementation of melatonin (a hormone that synchronises the circadian 

system) influences metabolic health, sleep, and diet in adults predisposed to diabetes. 

Contrary to our hypotheses, melatonin had few effects.  

This project helped validate myfood24, a tool that could unveil diet-disease relationships 

in future studies. These studies might have key public health implications. Our findings 

also strengthen the notions that mistimed eating and insufficient sleep contribute to 

obesity. Finally, this project shows that melatonin may not substantially influence 

metabolic health in relatively healthy adults. 
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Chapter 1: Introduction 

 

1.1 Obesity and diabetes are increasingly common and burdensome 

Ongoing trends in non-communicable diseases are troubling. Perhaps for the first time 

in human history, the majority of people now live in countries where more people die 

prematurely from overweight and obesity than from being underweight (1). At present, 

efforts to curb changing disease trends are not working: The Lancet recently reported 

that obesity had not declined in a single nation in the previous 33 years (2). And if post-

2000 trends continue, 18% of men and 21% of women will be obese worldwide by 2025 

(3).  

A recent systematic review of data from 195 countries found that obesity prevalence has 

at least doubled in 73 countries since 1980. In 2015, 5% of children and 12% of adults 

were obese, and high body mass index (BMI) contributed to 7.1% of deaths from any 

cause and 4.9% of disability-adjusted life years from any cause. More than two-thirds of 

these deaths and over half of these disability-adjusted life years resulted from 

cardiovascular disease. Diabetes, chronic kidney disease, musculoskeletal disorders, 

and several cancers were other causes of BMI-related deaths and disability-adjusted life 

years (4). Obesity is also a risk factor for other non-communicable diseases, increasing 

premature mortality from liver and respiratory diseases (5), for example.  

Obesity-related disease is fuelled by widespread metabolic dysregulation. This is 

exemplified by metabolic syndrome, a cluster of metabolic risk factors comprising central 

obesity plus two or more of the following: elevated blood pressure, raised fasting glucose, 

elevated triglycerides, and low high-density lipoprotein (HDL) cholesterol. Metabolic 

syndrome is thought to currently affect about a quarter of adults worldwide (6) and is 

associated with diseases such as cancer, cardiovascular disease, and type two diabetes 

(7, 8).  

It is therefore no surprise that diabetes is increasing at an alarming rate. From 1980 to 

2014, the number of people with diabetes worldwide increased nearly four-fold, from 108 

million to 422 million. Even with population growth, this is a rise in prevalence from 4.7% 

to 8.5%. Like obesity, diabetes is a major cause of numerous pathologies, from 

cardiovascular disease to kidney failure. Indeed, it was estimated that diabetes directly 

resulted in ~ 1.5 million premature deaths in 2012 alone, with raised blood glucose 

contributing to the premature mortality of an additional 2.2 million people (9).  

It is clear that many metabolic diseases are inextricably related. With contemporary 

trends in obesity, metabolic syndrome, and diabetes prevalence in mind, identifying the 
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factors that influence risk of these disorders is a public health priority. We now live in a 

24/7 society, and one of these factors appears to be discordance between the timing of 

our behaviours and that of our biology. The detrimental metabolic consequences of such 

discordance are increasingly evident. 

 

1.2 Circadian system and sleep disruption are associated with metabolic diseases 

Life evolved on Earth in the presence of environmental cycles that predictably emanate 

from the rotation of the planet around its axis, the rotation of the moon about Earth, and 

Earth’s orbit around the sun. To thrive in ecosystems exposed to environmental cycles, 

organisms evolved internal timing systems to anticipate and adapt to reliable ecological 

changes, the most conspicuous of which is arguably the daily light/dark (LD) cycle. LD 

cycles result in ~ 24-hour changes in light and temperature, and these cycles tuned the 

development of organisms’ circadian (~ 24-hour) systems (10) – endogenous ‘clocks’ 

that produce circadian rhythms in biology and behaviour (Table 1.1 is a glossary of 

relevant terms).  

 

Table 1.1. Glossary. 

Circadian rhythm An endogenous rhythm with a period of ~ 24 hours that is 

entrainable, persists in the absence of external time cues (11), and 

is temperature compensated. Temperature compensation means 

that the rhythm is relatively unaffected by temperature changes, 

allowing stable circadian rhythms in different thermal environments 

(12). Like other biological rhythms, circadian rhythms have three 

important parameters: amplitude (the difference between a 

rhythm’s acrophase (peak) or bathyphase (trough) and its mean), 

period (the time elapsed until the same phase of the rhythm 

oscillation recurs), and phase (the momentary state of an 

oscillation within its period). Circadian time is synonymous with 

internal time and spans one full circadian period. Circadian time 

zero is typically subjective dawn.  

Circadian system 

disruption 

Disruption of the endogenous timing system that regulates 

circadian patterns of behaviour and biology. This can occur from 

the level of the molecular clock that temporally regulates cellular 

activities, to misalignment between behavioural and environmental 

cycles. Circadian system disruption disturbs phase relationships in 
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oscillatory subsystems, resulting in circadian system 

misalignment. For example, the timing of metabolic processes in 

the liver may be shifted by changes in meal timing, but the timing 

of activity in neural networks in the brain may be relatively 

unaffected. Our understanding of the range of healthy phase 

relationships between subsystems is currently limited (13). 

Constant routine An experimental protocol that attempts to enforce unchanging 

behavioural and environmental conditions to unmask true 

circadian rhythms from diurnal rhythms arising from exogenous 

factors such as eating. Constant routine typically entails 

unchanging dim lighting, evenly-spaced isocaloric snack 

consumption, semi-recumbent posture, and wakefulness, although 

modified constant routine protocols permit sleep. 

Entrainment Coupling of an endogenous rhythm to a zeitgeber, such that the 

oscillations have the same frequency (synchronisation) or 

frequencies that are whole multiples (frequency demultiplication) 

(14). When entrained, circadian system period (τ) matches the 

period of the zeitgeber (T), typically the light/dark (LD) cycle. The 

mean free-running human τ is ~ 24.2 hours (15), so circadian 

rhythms must be entrained to the 24-hour LD cycle daily. A short 

or long free-running τ typically entrains earlier or later, respectively. 

The result is variation in activity/rest cycle timing (chronotype) 

between members of a species.  

Forced 

desynchrony 

An experimental protocol that enforces LD cycles outside the 

range of entrainment. When repeated for a sufficient number of 

cycles, these protocols distribute sleep and wakefulness across 

the circadian cycle and hence uncouple effects of behavioural 

cycles from effects of the circadian system. An example protocol 

might involve 28-hour sleep/wake cycles with sleep permitted for a 

third of each ‘day’ (so for 9.33 hours). Three of these cycles would 

produce ~ 180° misalignment between the circadian clock and LD 

cycle, such that the person would now be engaging in waking 

behaviours like eating during his/her biological night-time.  

Peripheral clocks All endogenous oscillator systems outside the master clock in the 

suprachiasmatic nuclei. Peripheral clocks therefore include other 

clocks in the brain as well as those in organs such as the liver, and 
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all serve to produce circadian rhythms to optimise the timing of 

local tissue processes. 

Sleep disruption Disruption to sleep continuity, timing, or duration. Sleep restriction 

entails reduced sleep duration, whereas sleep deprivation is the 

absence of sleep.  

Zeitgeber The stimulus that entrains a biological rhythm (14). The 24-hour 

LD cycle is the primary zeitgeber for the human circadian system. 

High amplitude, relatively consistently timed zeitgebers help 

ensure stable entrainment (for example, regularly timed high 

intensity light exposure during the day and minimal light exposure 

at night). Zeitgeber time is the duration of one zeitgeber cycle (one 

LD cycle, for example). Zeitgeber time zero is commonly dawn (the 

beginning of the warm phase).  

 

It is likely that the circadian systems of our preindustrial ancestors were closely aligned 

with LD cycles. As humans are diurnal, our forebears’ daytime activities would likely have 

included foraging, hunting, and eating. Night-time would perhaps mostly have entailed 

resting and fasting. This hypothesis is supported by studies in which people living in 

industrialised areas are exposed to only natural light sources (sunlight, moonlight, 

starlight, and firelight) while camping. While camping, people’s circadian systems swiftly 

synchronise tightly with the LD cycle, and pre-camping inter-individual variation in 

circadian system and sleep timing decreases markedly (16, 17).  

Industrialisation resulted in rapid modifications to the environment, a seminal example of 

which was Thomas Edison’s invention of the incandescent lightbulb in 1879. This pivotal 

creation enabled workers to complete important jobs during the night, fuelling economic 

globalisation by extending working hours around the clock. Novel transportation modes 

such as trains, cars, and planes perhaps also contributed to the distortion of natural 

human activity/rest cycles. Furthermore, developments in indoor heating may have 

altered exposure to ambient temperature cycles, and the thermal environment is known 

to influence sleep and wakefulness (18). Last, the confluence of changing food 

production and distribution with innovative refrigeration methods may have altered food 

availability. So, with industrialisation humans now had more means to distort the daily 

LD, activity/rest, thermal, and eating/fasting cycles that shaped the lives of previous 

generations. It is plausible that these disruptions to human lifestyle patterns has 

contributed to the burgeoning prevalence of diseases of modernity (19), and an 

accumulating mass of evidence from cross-sectional studies supports this notion.  
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Some shift workers often work at times at which they would otherwise sleep, and these 

people are therefore at particular risk of circadian rhythm and sleep disruption (20, 21). 

Shift workers are predisposed to various health disorders, including certain cancers, 

myocardial infarction, stroke, and type two diabetes (22). As shift work exposure is 

related to risk of metabolic syndrome in a dose-response fashion (23), it seems that 

some deleterious health consequences of shift work may be cumulative. It is likely that 

disruption to both the circadian system and sleep influence disease risk in shift work (22). 

Compared to day shift workers matched for BMI, for example, some of the adverse 

metabolic consequences experienced by night shift workers are associated with sleep 

disturbances (24). As ~ 19% of the European workforce work nights at least once a 

month (25), the societal implications of harm resulting from shift work are substantial.  

Flying across time-zones produces rapid changes in zeitgebers. The circadian system 

must synchronise to the new environment, and the result is jetlag, a syndrome that 

includes general malaise and sleep disturbances. A phenomenon similar to mild jetlag 

affects many individuals on a weekly basis. This is particularly prevalent among people 

with later sleep timing who must use alarms on work days to produce wakefulness when 

sleep would otherwise occur. Bed times therefore differ between work days and non-

work days, and a discrepancy of at least one hour between mid-sleep time on work days 

and non-work days affects ~ 69% of Northern Europeans. These transitions have been 

termed ‘social jetlag’ and are associated with metabolic diseases like obesity and 

unhealthy behaviours such as high alcohol and cigarette consumption (26, 27). Similarly, 

greater social jetlag is related to cardiometabolic disease risk factors like insulin 

resistance (28, 29), and more variable intra-individual sleep timing is associated with 

higher fat mass and lower lean mass (30).  

Alarm use contributes to insufficient sleep among adults, and ~ 80% of adults rely on 

alarms to get up on time for workdays (26). The significance of this is that sleep duration 

is associated with numerous chronic diseases. As an example, sleep duration generally 

has a U-shaped association with type two diabetes risk. The mechanisms underlying the 

association between short sleep and increased type two diabetes risk are discussed at 

length in section 1.5. Why long sleep is associated with increased type two diabetes risk 

is more contentious, but low socioeconomic status, depression, and other comorbidities 

are thought to underlie this relationship (31).  

Short sleep has often been associated with obesity and increased waist circumference 

in cross-sectional studies (32, 33). The association between sleep duration and waist 

circumference is particularly noteworthy. Waist circumference is generally reflective of 

visceral adiposity, and visceral obesity is associated with many metabolic pathologies, 
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including cardiovascular diseases (34). The relationship between sleep duration and 

adiposity is not limited to adults. As sleep timing delays during growth and is latest on 

reaching physical maturity, enforcing early school starts disrupts sleep timing and 

duration during adolescence (35). Short sleep during this period is prospectively 

associated with obesity development (36). Relationships between sleep and adiposity 

may relate to eating behaviours. An extreme example is night eating syndrome, a 

disorder characterised by circadian system and sleep disruption, less healthy dietary 

habits, and overweight and obesity (37). 

Finally, some individuals are at increased risk of circadian system and sleep disruption 

regardless of industrialisation. Sometimes this is related to the photoperiod. All 24 time 

zones converge at the Poles, where long summer days and protracted winter nights may 

increase the probability of disruption to the circadian system and sleep (38). In other 

instances, underlying pathologies are at fault. This is true in instances of circadian 

system misalignment in blind individuals without light perception (39), most of whom 

experience non-24-hour sleep-wake rhythm disorder in which sleep quality is highly 

variable. Sleep quality also deteriorates with advancing age, as do many circadian 

rhythms (40). It is therefore no surprise that many diseases associated with senescence, 

such as Alzheimer’s, are also characterised by circadian system disorganisation (41). 

So, as life expectancy continues to rise in many parts of the world, more people are likely 

to experience sleep problems and circadian system dysfunction. 

 

1.3 Regulation of the circadian system and sleep 

 

1.3.1 The suprachiasmatic nuclei  

The circadian system coordinates daily cycles of biology and behaviour. It does so using 

networks of molecular clocks throughout the body’s cells that control the timing of local 

cellular processes. Only some cells are directly exposed to key zeitgebers such as the 

LD cycle, and the circadian system must therefore be regulated in a way that both senses 

environmental time cues and relays time of day information throughout the body to 

coordinate the timing of activities in a vast number of cells. To fulfil this complicated task, 

a hierarchical circadian system has evolved in mammals, at the helm of which are two 

suprachiasmatic nuclei (SCN) in the anterior hypothalamus. 

The preeminent roles of the SCN in locomotor, hormonal and feeding circadian rhythms 

were demonstrated by early studies of rats in which SCN ablation abrogated circadian 

rhythms in physiology and behaviour (42-44). Having established the importance of the 
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SCN, researchers’ attention turned to the mechanisms by which the SCN time biological 

processes. The primary zeitgeber that synchronises the SCN with the 24-hour day is the 

LD cycle. Together with rod and cone photoreceptor cells, entrainment occurs by way of 

melanopsin-containing intrinsically photosensitive retinal ganglion cells in the inner 

retinae that relay photic information to the SCN via a monosynaptic pathway (45). A 

multisynaptic pathway then links the SCN with the pineal gland. On light exposure, 

norepinephrine release from the fibres that make up the multisynaptic pathway inhibits 

pineal gland melatonin synthesis (46, 47). It should be noted that although multiple 

tissues synthesise melatonin, including the retinae (48), the pineal gland is the most 

important in circadian biology, and pinealectomy results in almost undetectable 

circulating melatonin levels (49). 

The duration of pineal melatonin synthesis is therefore the primary endogenous signal 

of scotoperiod (darkness), as supported by experiments of timed melatonin infusion in 

various pinealectomised animals. These experiments have shown that melatonin 

synthesis duration is likely the key parameter of the melatonin rhythm in instigating 

photoperiodic changes in biology in seasonal animals (50). As the human melatonin 

rhythm is also sensitive to photoperiod changes, artificial lighting perhaps suppresses 

seasonal changes in human biology that might otherwise be evident (51). Indeed, 

melatonin rhythms are similar during summer and winter when people are exposed to 

modern electrical lighting, but when people go camping seasonal differences become 

apparent such that the duration of melatonin synthesis is markedly longer in the winter 

(17).  

Mammals have two melatonin receptors, MT1 and MT2 (52, 53). (hMT1 and hMT2 in 

humans, encoded by MTNR1A and MTNR1B, respectively.) Melatonin receptors are G-

protein-coupled receptors and have been found in many mammalian tissues, including 

the adrenals, kidneys, T and B lymphocytes (all MT1), the small intestine (MT2), and 

arteries, heart, lungs, and skin (all both MT1 and MT2) (54). MT1 and MT2 are also found 

in multiple brain regions, including the cerebellum, hippocampus, and thalamus (55). As 

the SCN have both MT1 and MT2 (56, 57), pineal gland melatonin synthesis feeds back 

to the SCN to help entrain the SCN to the LD cycle (58), ensuring that sleep occurs at 

appropriate times. 

The circadian system has key roles in sleep/wake cycle regulation, as shown by the 

gating of sleep at specific circadian phases. Moreover, the circadian phase at which 

sleep occurs influences sleep duration and architecture (59). Perhaps the best-

supported model of sleep regulation is Borbély’s (60). This model comprises the 

interaction of a circadian process that changes the drive to stay awake and a sleep 
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homeostasis process that accumulates with increasing wakefulness duration, promoting 

sleep. The circadian wakefulness drive is at its strongest shortly before habitual sleep 

onset to counteract the increased sleep homeostasis that has accumulated during the 

day. Around sleep onset, a sudden drop in the circadian wakefulness drive no longer 

opposes the sleep pressure that has built up, the result of which is sleep initiation. 

Borbély’s model has proven effective in simulating sleep in numerous experimental 

conditions (61), yet many mechanisms by which the circadian and homeostatic 

processes interact remain elusive. 

 

1.3.2 Molecular clocks  

Light exposure rapidly and transiently influences transcription of many genes in the SCN. 

Among these genes are ‘clock’ genes (62). Clock genes exist in almost all cells in 

humans. Simplistically, clock genes form delayed, interlocking gene 

transcription/translation negative feedback loops that result in ~ 24-hour changes in 

levels of clock gene proteins. These proteins are transcription factors that bind to 

promoter regions of ‘clock-controlled genes’ (CCGs) to activate their expression. In this 

way, clock genes regulate the timing of cellular processes. A logical question to ask is 

what makes a gene a clock gene as opposed to a CCG. In contrast to clock genes, 

mutations in CCGs do not markedly affect circadian rhythms in biology and behaviour.  

The positive arm of the core molecular clock loop comprises the basic helix-loop-helix 

transcription factors circadian locomotor output cycles kaput (CLOCK) and brain and 

muscle aryl hydrocarbon receptor nuclear translocator-like 1 (BMAL1). (In tissues such 

as the vasculature, CLOCK’s functions are replaced by its paralogue neuronal period-

aryl hydrocarbon receptor nuclear translocator single-minded protein 2 (NPAS2)). 

CLOCK and BMAL1 heterodimerise to activate transcription of CCGs. CCGs include the 

genes of the negative limb of the clock, cryptochrome (CRY) 1-2 and period (PER) 1-3. 

CRY and PER proteins then accumulate in the cytosol, multimerise, translocate into the 

nucleus, repress CLOCK-BMAL1 transactivating function, and therefore ultimately end 

their own transcription. PER-CRY complexes are then degraded by casein kinase 1 

(CK1) ε, CK1δ, and F-box/LRR-repeat protein 3 (FBXL3). CLOCK-BMAL1 inhibition 

ends, thus closing the negative feedback loop. At least five auxiliary feedback loops add 

robustness and couple the molecular clock to metabolic status (63).  

Within a species, findings that similar proportions of the components of the 

transcriptome, proteome, and metabolome have oscillating 24-hour profiles is suggestive 

of their integration and pivotal roles in metabolic regulation (64-66). Nevertheless, there 

is not perfect concordance in these oscillations. Delays between gene transcription and 
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translation vary across the day (82,83), and although there are mostly minimal delays 

between gene transcription and translation, some constitutively expressed genes 

produce rhythmic products via 24-hour changes in translation (67). Similarly, 24-hour 

changes in gene transcript levels can result in unchanging levels of their protein 

products. Such discordance partly results from widespread post-translational clock 

protein modifications (68). Interestingly, compared to protein-coding gene transcripts, a 

similar proportion of non-coding RNAs have 24-hour changes in abundance, conferring 

another level of post-transcriptional regulation and likely influencing molecular clock 

regulation (64). Collectively, post-transcriptional processes contribute to appropriate, 

tissue-specific responses of peripheral clocks.  

Finally, there exist non-transcriptional clocks in cells such as erythrocytes. These clocks 

regulate redox cycles in peroxiredoxins, antioxidant proteins involved in electron transfer 

(69). Interestingly, a recent study also showed antiphasic mitochondrial redox cycles of 

inactivated peroxiredoxin and sulfiredoxin, likely resulting in oscillating release of 

hydrogen peroxide, a key regulator of several cell signalling pathways (70). 

Peroxiredoxin cycles are sustained in the absence of clock gene expression feedback 

loops and are the most highly conserved clocks known (71). Their integration with the 

circadian system, sleep homeostasis, and metabolic networks is little understood, 

however. 

 

1.3.3 Molecular clocks and metabolism 

The many metabolic roles of the molecular clock are made evident in studies of clock 

gene disruption in non-human animals. Whole-body and tissue-specific mutations and 

knockouts of clock genes produce various metabolic aberrations in rodents (72, 73). 

Perhaps the most severe example of this is premature mortality and the abolition of all 

measured molecular and behavioural circadian rhythms in Bmal1 double knockout mice 

(74). In humans, genome-wide association (GWA) studies also provide strong evidence 

for roles of clock gene variants in metabolism. GWA studies have associated PER3 

variants with type two diabetes (75), as well as CRY2 variants with fasting glycaemia 

and insulin concentrations (76), for example.  

Candidate gene studies provide less robust evidence roles of clock gene variation in 

metabolic phenotypes. In adults, two BMAL1 haplotypes have been associated with 

hypertension and type two diabetes (77, 78). CLOCK single-nucleotide polymorphisms 

(SNPs) may be associated with non-alcoholic steatohepatitis, metabolic syndrome, small 

dense low-density lipoprotein levels, obesity, and type two diabetes (79-83). Perhaps the 

most studied of these outcomes is obesity: At least eight common CLOCK SNPs have 
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been associated with obesity, and three may be related to energy intakes (84). However, 

these candidate gene studies are limited by their sample sizes, their exclusion of all 

causative genes and gene variants, and their limited replicability.  

The molecular clock helps temporally separate incompatible metabolic processes, such 

as anabolism and catabolism of glucose and lipids. By partitioning metabolic pathways, 

the molecular clock may offset accumulation of toxic intermediates. Furthermore, as the 

synthesis of proteins is energetically expensive, the molecular clock perhaps improves 

energy economy by optimising the timing of protein production. To fulfil these roles, the 

molecular clock must exert tissue-specific control. Hundreds of CCGs control the timing 

of tissue-specific functions (85), and while some genes may have 24-hour expression 

profiles in multiple tissues, their phases often differ between and even within tissues (86, 

87). CCGs are enriched for metabolic pathways, and some metabolic genes that are 

direct targets of CLOCK-BMAL1 heterodimer also feedback to molecular clock 

components (63).  

As metabolic state and the molecular clock are inextricably coupled, rhythmic cellular 

activities are modified by factors such as diet. The circadian system is reciprocally linked 

with eating/fasting cycles via interactions between the molecular clock and metabolic 

regulators. In the post-absorptive state, decreased energy availability increases 5' AMP-

activated protein kinase (AMPK) phosphorylation, stimulating ATP formation by 

increasing processes such as fatty acid oxidation. AMPK impinges on the molecular 

clock by interacting with the NAD(+)-dependent protein deacetylase SIRTUIN (SIRT)1, 

which subsequently deacetylates PER2, leading to PER2 degradation and facilitating 

high amplitude daily transcription profiles of several clock genes (88). As deacetylases, 

SIRT1 and SIRT6 have particularly pivotal roles in the temporal control of metabolism by 

regulating chromatin modifications. Deacetylation physically modifies chromatin 

structure and thus alters access to promoter regions of genes. Deacetylases thereby 

alter gene transcription. In this way SIRT1 and SIRT6 modify the transcription timing of 

distinct sets of genes in the liver, with SIRT1 primarily acting on genes involved in peptide 

and cofactor metabolism, and SIRT6 targeting genes integral to carbohydrate and lipid 

metabolism (89).  

In contrast to the pathways activated in the post-absorptive state, increased energy 

availability in the postprandial state stimulates anabolic processes such as protein 

synthesis via target of rapamycin (TOR) signalling. The TOR pathway is coupled to the 

molecular clock by influencing phosphorylation of glycogen synthase kinase 3β, which 

in turn regulates PER stability and hence period length (90). Thus, whereas fasting-

induced AMPK activation may be important to high amplitude clock gene transcription 
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rhythms, feeding-induced TOR activation can modify period length. Such interactions 

between energy sensors and molecular clock components highlight the close coupling 

between diet and the circadian system.  

During time-restricted feeding (TRF), food availability is typically restricted to a period of 

8 to 12 hours. Whereas the SCN are primarily entrained by LD cycles, TRF studies have 

shown that peripheral clock phase is predominantly responsive to feeding. Indeed, when 

TRF occurs during an organism’s rest phase, gene expression profiles are inverted in 

many peripheral tissues, including the heart, kidney, liver, pancreas, adipose tissue, and 

the gastrointestinal tract (91-94). The time course of this feeding entrainment is organ-

specific in mice, with the liver clock responding to feeding particularly rapidly. As a result, 

peripheral tissue rhythm phases can be uncoupled from SCN phase (91). It is 

increasingly clear that endocrine responses to feeding contribute to feeding entrainment 

of many tissues, with important contributions made by hormones such as insulin and 

oxyntomodulin (95, 96).   

Perhaps the first study to show that diet timing influences phases of peripheral clocks in 

humans was published very recently. Ten healthy young men self-selected their sleep 

patterns for 10 days before continuing these in the laboratory (97). Participants ate three 

standardised meals each day for five days, with five hours between meals and LD cycles. 

In the first part of the study, participants began the first meal 30 minutes after waking. In 

the second part, participants began the first meal 5.5 hours after waking. A constant 

routine protocol was used after each pattern. Meal timing did not alter hunger, 

triglycerides, sleepiness, or blood clock gene expression profiles. As cortisol and 

melatonin rhythms were unchanged, it seems that the phase of the SCN was also 

unaffected. Interestingly, however, PER2 mRNA rhythms in gluteal adipocytes were 

delayed by about an hour after the later meal pattern, indicating that meal timing may 

shift some peripheral clocks without markedly affecting the SCN. Furthermore, the later 

pattern delayed plasma glucose rhythms by ~ 5.7 hours relative to melatonin phase, 

shifting the acrophase (peak) to ~ 4.4 hours after dim-light melatonin onset. Although not 

significant after correction for multiple testing (p = 0.029), the mean insulin acrophase 

was ~ 3.4 hours later after the later eating pattern too. It is plausible that changes in 

peripheral clocks contributed to altered glucose rhythms, and it is noteworthy that 

glucose but not triglyceride profiles were shifted, suggesting that meal timing can 

somewhat uncouple rhythms in glucose and lipid metabolism. As melatonin acutely 

worsens glucose tolerance (98), it is perhaps contrary to expectations that mean glucose 

levels were lower in the later pattern, as were both peak and trough levels. Interestingly, 

there were no changes in sleep between the patterns, so differences between groups 

were not confounded by altered sleep (97). So, meal timing indeed alters the timing of 
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some human circadian clocks, but the health consequences of the resulting changes in 

phase relationships between clocks are unclear. 

In some mammals, effects of feeding/fasting cycles on the circadian system are so great 

that they can even entrain behavioural cycles with the 24-hour day. TRF in animals such 

as rats produces food-seeking behaviour coordinated with when food procurement is 

most likely. This food anticipatory activity (FAA) is directed towards places where food is 

available and may therefore be an adaptive strategy to enhance foraging success (99), 

as supported by findings that FAA is accentuated during energy restriction. As FAA is 

entrainable and persists during several days of food deprivation, FAA appears to be a 

true circadian rhythm. Interestingly, FAA persists following SCN ablation (100) as well 

as after genetic disruption of the molecular clock (101). The location of the food-

entrainable oscillators thought to underlie FAA remains obscure.  

 

1.3.4 The suprachiasmatic nuclei coordinate the timing of biology and behaviour 

As we are diurnal organisms, our circadian systems optimise our bodies for physical 

activity and energy harvesting during the day, and inactivity and energy mobilisation 

during the night. The SCN principally coordinate these daily cycles. In isolation, individual 

cells have divergent periods of clock gene expression (102), and if all cells had functional 

clocks with different periods then the net result would be systemic arrhythmia. The timing 

of cellular clocks must therefore be coordinated. Functional SCN are integral to 

coordinating peripheral clock timing, as disruption of the SCN dampens and 

desynchronises peripheral tissue circadian rhythms (103). The SCN synchronise 

circadian rhythms by autonomic, temperature, and humoral mechanisms. The ensuing 

biological changes alter behaviours (such as eating/fasting and activity/rest cycles) that 

then also influence the circadian system. 

Regarding autonomic pathways, the SCN relay temporal information via efferents to 

other brain regions (104), and the paraventricular nucleus is particularly important in the 

regulation of circadian rhythms in activity, autonomic processes, and the endocrine 

system (105). Furthermore, multisynaptic efferents from the SCN to the periphery help 

regulate the availability of nutrients like glucose in the blood (106), as well as hormone 

secretion rhythms by organs including the adrenal glands, adipose tissues, pancreas, 

and thyroid gland (107-110). In turn, humoral factors from the periphery relay information 

back to the hypothalamus through its median eminence (111).  

With respect to temperature, humans are homeotherms and are hence resistant to 

temperature entrainment by the environment. The SCN confer this resistance. Although 
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thermoregulation is enacted by the interaction of structures located primarily in the 

hypothalamus, brainstem and spinal cord, the SCN are important to the core body 

temperature rhythm, a rhythm helps synchronise oscillators throughout the body (112). 

Interestingly, deletion of reverse-erythroblastosis α in mice abolishes the core body 

temperature rhythm by changing brown adipose tissue activity, implicating a specific 

component of the molecular clock in thermoregulation (113).  

Finally, the SCN produce their own secretions to synchronise peripheral clocks (114-

117), which they also achieve by controlling circadian rhythms in the endocrine system. 

As is true of melatonin, cortisol is a particularly pivotal hormone in the circadian system. 

Some clock genes are directly regulated by glucocorticoids via glucocorticoid response 

elements, so cortisol helps coordinate activities in diffuse networks of molecular clocks 

(118). To exemplify this, glucocorticoid receptor activation restores ~ 60% of liver gene 

transcription rhythms after SCN ablation, demonstrating important synchronising roles of 

cortisol in some peripheral clocks (119). How much glucocorticoids influence peripheral 

clock rhythms differs between tissues: The kidneys and lungs are more responsive to 

glucocorticoids than the liver, for example, which is mostly entrained by feeding signals 

(120). Figure 1.1 overviews how the circadian system and sleep are regulated, and also 

how each is often disrupted.  
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Figure 1.1 Temporal control of physiology.  

Retinal light exposure is the primary zeitgeber for the central clock in the suprachiasmatic 

nuclei (SCN). Melatonin signals darkness, light suppresses melatonin synthesis by the 

pineal gland, and night-time light exposure can therefore disrupt SCN and melatonin 

rhythm timing. As a diurnal species, exogenous melatonin increases sleep propensity in 

humans. However, a prospective study of adults undergoing pinealectomy demonstrated 

that endogenous melatonin may not have a strong regulatory role in human sleep (121). 

The sleep/wake cycle can be effectively simulated by a two-process model in which a 

circadian process (C) influences wakefulness and interacts with a sleep-promoting 

process (S) that accumulates during wakefulness. Process C is highest late in the waking 

day to counter the soporific effects of process S at this time. A pronounced drop in 

process C around sleep onset no longer opposes process C, and so sleep begins. 

(Continued on next page.) 
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Within the hypothalamus the SCN influence the circadian rhythm of body temperature, a 

key synchroniser of the peripheral clocks that coordinate timing of local cellular 

processes outside the SCN. The use of thermostats can obviate daily oscillations in 

temperature, which may influence sleep propensity (18). The SCN also relay time of day 

information to peripheral clocks through neural pathways of the autonomic nervous 

system (ANS), as well as by their own secretion of signalling factors such as prokineticin 

2. Hypothalamic-pituitary-peripheral organ axes are critical to endocrine regulation of the 

circadian system. For example, corticotropin-releasing hormone (CRH) enters the portal 

system through the median eminence (ME) of the hypothalamus and stimulates the 

secretion of adrenocorticotropic hormone (ACTH) by the anterior pituitary gland. ACTH 

then increases adrenal cortex production of cortisol, a hormone with a high-amplitude 

circadian oscillation and synchronising effects in many peripheral clocks. The timing of 

metabolic processes in peripheral clocks is also influenced by nutritional status, and 

peripheral clocks convey metabolic signals back to the hypothalamus through the ME. 

Nowadays, around-the-clock access to food often distorts the clear eating/fasting cycles 

that probably typified much of human history, plausibly dampening peripheral clock 

oscillations. 

 

1.3.5 Active phase biology and behaviour 

The circadian system primes the human body for waking activities during daylight, 

beginning just before awakening. The cortisol awakening response increases alertness 

and blood pressure and mobilises energy reserves at the end of the sleep period in 

expectation of upcoming wakefulness. In this way the cortisol rhythm exemplifies 

anticipatory physiology. During the active phase, the circadian system modifies blood 

pressure, heart rate, and skeletal and heart muscle contractile efficiency and substrate 

oxidation to ready the body for physical activity by improving physical capacities (122-

124). As both the organ that propels locomotion and as the body’s largest glucose depot, 

skeletal muscle is a key determinant of substrate oxidation. Comprehensive lipidomics 

of human skeletal muscle has shown diurnal oscillations in levels of numerous lipids, and 

the timing of changing lipid levels coheres with the timing of clock gene expression in 

this tissue (125). The skeletal muscle clock therefore times fuel partitioning to meet the 

demands of physical activity. Mitochondria are also key determinants of substrate 

oxidation. Molecular clock-dependent daily oscillations in mitochondrial proteins include 

rate-limiting enzymes in carbohydrate and lipid metabolism, thereby also helping 

coordinate nutrient supply with demand according to time of day (126). 
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Over the course of evolution, physical activity has been necessary to procure food, and 

timely changes in the gastrointestinal system support efficient daytime digestion and 

energy storage. Gastric emptying, colonic motility and the speed of the migrating motor 

complex are all faster during the day (127-129). Early-phase postprandial insulin 

secretion is higher earlier in the biological day to promote efficient energy storage (130), 

and an acrophase in adiponectin in the middle of the active phase supports this change 

in insulin sensitivity (131). With respect to lipids, bile acid production is regulated by the 

circadian system to ensure timely cholesterol metabolism and absorption of nutrients 

including fat-soluble vitamins (132). Time of day changes in the activity of key intestinal 

nutrient transport proteins and enzymes is also important in optimising responses to 

feeding (133). Reduced postprandial lipoprotein lipase activity apparently contributes to 

impaired lipid tolerance in the evening, for example (134).  

The composition of the gut microbiota and their bacterial fermentative end-products 

change with feeding and time of day in humans (135), although the significance of these 

dynamics is currently unclear. Microbiota rhythms in mice partly result from feeding but 

are also dependent on a functional circadian system, as genetic disruption of the 

molecular clock results in dysbiosis (136). One reason that the circadian system 

coordinates time-of-day appropriate changes in the gut microbiota may be to defend 

against various microorganisms present in foods and drinks. Immune system resilience 

differs according to circadian phase, and studies of mice have shown greater pathogen 

colonisation and lower survival when exposure to foodborne and airborne pathogens 

occurs at the beginning of the rest phase versus the active phase. Interestingly, many 

components of the inflammatory response differ in their acrophase timing, and this 

perhaps reduces the likelihood of damage incited by an inappropriately strong immune 

response (137). It is also noteworthy that immune responses are energetically costly, so 

circadian system regulation of immunity perhaps also enhances energy economy (138). 

Although the extent to which some of these rhythmic changes are regulated by the 

circadian system is unclear, collectively these findings indicate that organisms are best 

prepared for physical activity and food consumption during the biological day.  

 

1.3.6 Rest phase biology and behaviour 

Of all hormones, melatonin has the most robust circadian rhythm and is therefore 

commonly used as a marker of circadian phase. Melatonin circulates a time of day signal 

throughout many body tissues by interacting with its receptors. In most (non-Polar) 

natural LD cycles, pineal gland melatonin synthesis increases substantially around dusk. 
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At this time melatonin may increase sleep propensity somewhat, perhaps in part via its 

hypothermic effects (139).  

Nocturnal hunger would not be conducive to sleep in humans. Once sleep is underway, 

peak leptin secretion typically occurs shortly after midnight and may contribute to 

reduced appetite for most foodstuffs in the biological morning, allowing efficient sleep 

during declining energy availability (140). As energy availability falls during sleep, growth 

hormone stimulates lipolysis and ketogenesis in the liver, inducing insulin resistance and 

thereby sparing glucose and protein oxidation (141).  Although a minor influence of the 

circadian system on growth hormone secretion profiles has sometimes been detected, 

clear pulses of growth hormone secretion are mostly attributable to sleep (142). Growth 

hormone has an acrophase near the onset of slow wave sleep, and growth hormone 

profiles are also characterised by episodic surges a few hours after meals (143, 144). 

Together, the interplay of nocturnal endocrine activity apparently prevents undue arousal 

from sleep and facilitates the retention of lean body mass overnight. 

Our understanding of the circadian regulation of biology and behaviour has progressed 

remarkably in recent decades. A well-functioning circadian system confers many 

metabolic benefits, as shown by the adverse consequences instigated by disruption of 

the circadian system. 

 

1.4 Circadian system disruption 

 

1.4.1. Shift work 

 

1.4.1.1 Field studies 

Shift workers make up a large proportion of people regularly subject to circadian system 

disruption, and field studies have documented impaired metabolic health of night shift 

workers, even when diet is controlled. Night shift workers have higher plasma 

triglycerides (145), and as postprandial glucose and lipid tolerance to standard test meals 

are worsened on switching to night shifts, some metabolic impairments are perhaps 

direct consequences of shift work-associated circadian system misalignment (146).  

An important question is whether it is possible for the circadian system to permanently 

adapt to night shift work. Isolated environments such as oil rigs can be more conducive 

to adaptation to shift work adaptation than more common shift working scenarios, and 

most workers can synchronise their circadian systems to night shifts within a week in 
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such circumstances (147). Even in isolated conditions, however, it can then take weeks 

for workers to re-entrain to day shifts (148-150).  

Less isolated working environments are not so facilitative to entrainment to night shifts. 

Still, people who work night shifts exclusively might be expected to completely entrain 

their circadian systems to their work schedules. Yet < 3% of workers are reported to 

show complete entrainment in such circumstances (20). Indeed, abnormal circadian 

endocrine rhythms persist even among adults who have worked night shifts for over two 

years. Disrupted circadian rhythms in these workers include thyroid-stimulating hormone 

profiles, and the combination of reduced cortisol and increased prolactin during waking 

hours in such people may be detrimental to efficient work by impairing vigilance (151).  

A recent review collated the findings of systematic reviews and meta-analyses of the 

health consequences of shift work and insufficient sleep. The analyses showed that night 

shift work is associated with weight gain as well as increased risk of breast, colorectal, 

and prostate cancers, as well as myocardial infarction, ischaemic stroke, and type two 

diabetes. The results generally indicated that shift schedules involving night shifts confer 

the largest increase in disease risk (22).  

Interestingly, the magnitude of the increased risk of cardiometabolic diseases (not 

cancers) due to shift work was comparable to that of insufficient sleep alone, raising the 

question of whether associations between shift work and cardiometabolic diseases are 

simply the result of sleep disturbances (22). Indeed, a meta-analysis showed that self-

reported sleep duration is shortest after night shifts (mean 5 hours 51 minutes) and 

longest after evening shifts (mean 8 hours 2 minutes) (152). Conversely, a narrative 

review concluded that mean sleep duration over the course of a shift cycle is very similar 

(14 minutes shorter) to permanent day workers (153).  

It seems unlikely that insufficient sleep is the sole contributor to increased 

cardiometabolic disease risk in shift workers, and it would be facile to overlook the 

complexity of exposures that shift work entails. To mention but a few, shift workers may 

experience more psychosocial stress, be less physically active, consume more food at 

night, and be more likely to smoke (22). Laboratory experiments of simulated shift work 

are particularly suited to removing confounding exposures and thereby unveiling the 

relative importance of individual exposures.  

 

1.4.1.2 Simulated shift work 

Circadian misalignment protocols have provided important insights into the short-term 

health consequences likely to be experienced by shift workers. Within three days, 
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circadian misalignment was found to increase blood pressure (particularly during sleep) 

and inflammatory markers, reverse cortisol rhythms, and reduce heart rate variability and 

insulin sensitivity in healthy adults (154, 155). The magnitude of the effect on glucose 

metabolism was particularly remarkable: After just 72 hours of circadian misalignment 

nearly half of the previously healthy participants had pre-diabetic postprandial glucose 

responses. During circadian misalignment sleep efficiency and leptin levels were lower. 

Disturbed sleep may reduce circulating leptin, but the analysis showed a likely greater 

contribution of circadian misalignment (154). Furthermore, subsequent work from the 

same researchers showed that circadian misalignment that contributes more to 

increased postprandial glycaemia and insulin resistance than the behavioural cycle 

(130). Whereas these studies focused on circadian misalignment alone, shift workers 

often experience sleep loss too. It is therefore concerning that when compared to sleep 

restriction alone, the combination of circadian misalignment and sleep loss nearly 

doubles impairments in insulin sensitivity in men (156).  

Although difficult to study under controlled conditions in humans, a key question is 

whether the effects of circadian system disruption are cumulative. Whereas acute sleep 

deprivation increases cortisol secretion, long term circadian misalignment reduces 

cortisol secretion (157). Similarly, while acute circadian misalignment increases insulin 

secretion (154), three weeks of combined sleep restriction and circadian misalignment 

decreases insulin secretion (158). These findings imply that chronic circadian system 

disruption results in dysfunction of organs such as the adrenals and pancreas. A related 

question is whether chronic circadian system disruption eventually produces adaptations 

that mitigate the adverse effects of subsequent disruptions. It appears that this is not the 

case, however. Healthy long-term shift workers still experience the deleterious effects of 

circadian system misalignment on postprandial glucose tolerance and insulin action 

(159). 

It should be noted that some studies have documented metabolic effects of acute 

circadian system misalignment that differ from those reported in other studies. During six 

days of simulated night shift work in healthy adults, there was an initial increase in fat 

oxidation, and carbohydrate and protein oxidation declined. Energy expenditure fell on 

the second and third days, particularly during sleep. Paradoxically, appetite fell despite 

reduced levels of the anorexigenic hormones leptin and peptide tyrosine (160). In 

contrast to these findings, another study reported that neither three consecutive three-

hour LD cycle advances nor three consecutive three-hour LD cycle delays influenced 

appetite or energy expenditure in adults, and both shifts increased carbohydrate 

oxidation and reduced protein oxidation. This study also documented metabolic effects 

specific to the LD cycle shifts: LD cycle advances acutely reduced cortisol rhythm 
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amplitudes and increased insulinaemia, whereas LD cycle delays increased glycaemia, 

and decreased glucagon-like peptide-1 concentration and sleeping energy expenditure 

(161). Discrepancies between findings of different studies likely reflect differences in 

experimental design and participants, emphasising the need to compare a variety of 

circadian misalignment protocols in multiple populations to better understand the 

nuances of different shift work schedules. 

Together, these studies indicate possible mechanisms linking shift work to increased 

metabolic disease risk. Note that as both shift work and jetlag initially entail abrupt 

changes in several zeitgebers, many reported metabolic aberrations seen in these 

studies may also occur in people experiencing jetlag.  

 

1.4.2 Electric lighting 

Shift work was facilitated by the invention of electric lighting, and many of the health 

ramifications of exposure to this evolutionarily novel stimulus are now being illuminated. 

Compared to life without artificial lighting, we tend to experience less daylight exposure 

and more night-time light exposure (16, 17), each of which may have detrimental effects 

on the circadian system and sleep. 

 

1.4.2.1 Shelter from daylight 

People in industrialised societies reportedly spend ~ 88% of their time in enclosed 

buildings (162). Differences in light exposure between enclosed environments and 

unsheltered environments are stark. Whereas light intensity in many rooms is 400 lux or 

less, midday outdoor light intensities generally range from 10,000 lux to well over 

100,000 lux on a sunny, cloudless day at around midday. While living their normal lives 

(with access to electric lighting) in North America, people are exposed to ~ 4 to 13 times 

less light during the day compared to exposure to only natural light when they go camping 

(16, 17). Consequently, many individuals are sheltered from the multitude of beneficial 

effects of natural daytime light on biology and behaviour (163).  

Some of the beneficial effects of daytime natural light exposure may result from vitamin 

D synthesis. Vitamin D is synthesised in response to ultraviolet-B irradiation, and being 

indoors during daylight contributes to low vitamin D status. Positive associations between 

vitamin D status and sleep duration (164-166) and sleep efficiency (164, 166) may relate 

to direct influences of vitamin D on clock gene transcription in vitro (167). Alternatively, 

associations might simply reflect beneficial effects of greater daytime light exposure on 

sleep. It is clearly advantageous to be exposed to outdoor light during daylight, but at 
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times this is not feasible. In such circumstances, greater daytime indoor light exposure 

from windows is still preferable and has been associated with better sleep in office 

workers (168).  

 

1.4.2.2 Light at night 

Light at night is particularly problematic for two reasons. First, it directly affects circadian 

biology. Second, light at night enables other activities that can contribute to circadian 

system disruption, such as night-time eating and physical activity.  

About 80% of the world’s population is exposed to artificial light at night (169), and 

nocturnal light pollution continues to sprawl and intensify (170). As a result, it has been 

estimated that people in environments with access to artificial light commonly experience 

light intensity levels over twice as high between sunset and sleep compared to when 

they are only exposed to natural light while camping (16). The introduction of electric 

lighting appears to have significantly influenced sleep. Among individuals of the same 

sociocultural background, electric lighting has been associated with increased light 

exposure shortly after dusk, delayed sleep onset, and shortened sleep duration. These 

effects may be particularly prominent on workdays (171, 172). Similarly, adults living in 

areas with the greatest exposure to light at night report delayed sleep times, shorter 

sleep, poorer sleep quality, and increased daytime sleepiness (173). Ecological studies 

of light at night such as this are susceptible to confounding from co-exposures such as 

late-night food and drink consumption, do not necessarily reflect retinal light exposure 

for individuals, and often use data from satellites that better detect light wavelengths 

responsible for visual acuity rather than wavelengths most important to circadian system 

entrainment. Nevertheless, such studies are still informative. 

Laboratory studies have clarified how electric lighting affects the circadian system. 

Timing of light exposure can influence circadian phase. In contrast to the swift circadian 

phase delay evident in response to light exposure late in the biological day, phase 

advancing (early morning) light exposure causes only some components of the circadian 

system to advance rapidly while other elements remain in transition (174). This has 

implications for shift work schedules and helps explain why most people find it easier to 

adapt to forward shift work rotations (days then afternoons then nights, for example) than 

backwards schedules.  

Intensity of light exposure is another important determinant of how the circadian system 

responds to light. Light intensity at full moon is typically barely one lux and twilight is 

around 10 lux. But nowadays it is common to exceed these levels by at least an order of 
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magnitude. Night-time light exposure suppresses pineal gland melatonin synthesis, and 

this is the predominant  mechanism by which artificial light disrupts the circadian system. 

Several parameters of light determine melatonin rhythm amplitude, period, and phase, 

including light exposure duration, intensity, spectrum, and timing (175). By how much 

night-time melatonin synthesis is suppressed is influenced by factors including prior light 

exposure (176).  

The built environment is a relatively ubiquitous source of nocturnal light pollution, but 

many electronic devices now increase night-time light exposure too. Some of these 

devices emit monochromatic blue light (λmax 460-480 nm), to which intrinsically 

photosensitive retinal ganglion cells are especially sensitive (177, 178). As a result, 

exposure to even low levels of light at night from e-Book devices reduces melatonin 

synthesis, delays sleep, and impairs next-morning alertness. As ~ 90% of Americans 

use electronic devices within an hour of bed time on multiple nights each week, these 

devices are likely contributing to circadian phase delays and sleep disruption (179). It 

should also be noted that use of electronic devices is generally higher in young people, 

and this is concerning as adolescents appear to be the group most sensitive to the 

circadian phase delaying effects of night-time light exposure (180).   

As a result of widespread concerns about detrimental effects of artificial light at night on 

health, light at night was recently selected by the National Toxicology Program as the 

subject of a health hazard assessment regarding cancer and non-cancer (including 

metabolic) outcomes (175). The metabolic consequences of light at night in humans are 

not yet well understood and are a worthy topic for future research. Nevertheless, cross-

sectional studies provide tentative support for adverse metabolic effects of light at night. 

There are positive associations between nocturnal light pollution and obesity prevalence 

in > 80 countries (181), as well as associations between late light exposure above 500 

lux and BMI in free-living adults (182). Given the aforementioned discussion of the sleep-

disrupting effects of light exposure, it seems likely that increased light exposure at night 

is obesogenic, especially in the light of the multitude of factors that conspire to increase 

energy balance after sleep disruption.  

 

1.5 Sleep disruption 

 

1.5.1 Metabolic consequences 
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1.5.1.1 Disrupted glucose and lipid metabolism 

Sleep restriction is widespread and its metabolic consequences are many. One of the 

most consistently reported effects of sleep restriction is disrupted glucose metabolism 

(183). This was first shown in 1999 in a study in which five nights of sleep restriction to 

four hours per night caused many otherwise healthy adults to temporarily become pre-

diabetic. Altered 24-hour endocrine rhythms including increased nocturnal cortisol 

secretion were evident, perhaps contributing to impaired insulin action (184). Recent 

studies have added to this preliminary research by better simulating how much sleep 

restriction people often experience.   

Many individuals use alarms to curtail sleep before work days, and simulating this 

behaviour by enforcing early waking during five nights of five hours of sleep reduced 

intravenous and oral insulin sensitivity by ~ 20% in healthy adults (185). Importantly, 

intravenous insulin sensitivity was not restored by three days of recovery sleep - longer 

than most working adults have to catch up on sleep each weekend. A limitation of most 

experimental sleep restriction studies is that they enforce unrealistic changes in sleep 

duration, but restriction by 90 minutes nightly - an amount similar to that experienced by 

many (26) - has also been shown to reduce insulin sensitivity after a week in young men 

(186). In this otherwise healthy population, impaired insulin sensitivity subsided with 

continued exposure to sleep restriction, however, implying that certain metabolic 

processes in some people may at least temporarily adapt to sleep restriction.  

Much progress has been made in understanding the mechanisms by which sleep 

disruption predisposes to obesity, hyperglycaemia, and insulin resistance (Figure 1.2). 

One mechanism involves brain energetics. After eating, the brain accounts for roughly 

half of whole body glucose disposal, and sleep deprivation reduces this disposal (187). 

Reduced glucose disposal contributes to increased plasma glucose. This 

hyperglycaemia also reflects systemic insulin resistance following sleep restriction, 

which appears to result primarily from insulin resistance outside the liver (188). Changes 

in adipose tissue insulin signalling may contribute strongly to this insulin resistance (189). 

In accordance with the glucose fatty-acid cycle (190), increased release of non-esterified 

fatty acids from adipocytes after sleep restriction perhaps also contributes to insulin 

resistance (191), as does gluconeogenesis stimulation by heightened sympathetic 

activity of the autonomic nervous system (192). 
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Figure 1.2. Mechanisms linking circadian system and sleep disruption to 

hyperglycaemia, insulin resistance, and obesity.  

With further research, mechanisms that are currently listed as distinct may prove to be 

common. 

 

As the molecular clock has roles in glucose metabolism, metabolic dysregulation after 

sleep disruption may also be related to epigenetic and transcriptional changes in the 

molecular clock in peripheral tissues important to glucose disposal, such as adipose 

tissue and skeletal muscle. Indeed, there is increased DNA methylation of the promoter 

region of CRY1 and 2 regions near PER1 in adipocytes, as well as reduced BMAL1 and 

CRY1 transcription in myocytes after sleep deprivation (193). 

Another factor contributing to reduced insulin sensitivity after sleep disruption may be a 

shift in cytokine balance towards a more inflammatory state (194). Sleep curtailment 

affects numerous aspects of immune function. One week of sleep restriction in men 

increased circulating white blood cells and changed their daily rhythm. Notably, altered 

cell counts had not returned to baseline after nine days of recovery sleep (195). Such 

changes in immune function could conceivably influence the development of metabolic 

diseases associated with immune system changes, such as type two diabetes (196).  

It is also known that different sleep stages have unique roles in metabolism. Restricting 

sleep to the first half of the night produces different endocrine effects to restriction to the 

second half (197), and each sleep stage is associated with distinct physiological 

changes. Changes in sleep architecture during sleep disruption may contribute to altered 

glucose metabolism. For example, independent of sleep duration, selective slow wave 
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sleep restriction dose-dependently reduces insulin sensitivity in adults, although 

adolescents may be more resistant to this effect (198, 199).  

A detailed review of sleep disorders such as obstructive sleep apnoea is beyond the 

scope of this chapter. However, as studies have consistently shown that obstructive 

sleep apnoea is associated with impaired insulin and glucose metabolism, I will briefly 

outline its features. Individuals with obstructive sleep apnoea experience episodic upper 

airway closure and hence intermittent hypoxia during sleep. Obstructive sleep apnoea 

also entails reduced sleep duration, sleep fragmentation, reduced slow wave sleep, and 

increased oxidative stress and sympathetic nervous system activity, all of which 

summate to induce insulin resistance (183).  

Obese individuals are at increased risk of obstructive sleep apnoea, and obstructive 

sleep apnoea prevalence has risen in recent years in some countries (200). However, 

although obesity increases the risk of obstructive sleep apnoea and is itself associated 

with insulin resistance, insulin resistance in obstructive sleep apnoea can occur 

independently of adiposity (201). Moreover, obstructive sleep apnoea is highly prevalent 

in people with type two diabetes (202), and a meta-analysis found that obstructive sleep 

apnoea is a strong risk factor for type two diabetes development (203). Pregnancy also 

predisposes women to obstructive sleep apnoea (204), which may thereby contribute to 

gestational diabetes (205).  

 

1.5.1.2 Energy balance 

Obesity is an important risk factor for type two diabetes. Therefore, if sleep disruption 

has obesogenic effects then these could compound direct effects of sleep disruption on 

glucose and insulin metabolism. A meta-analysis of sleep restriction studies found that 

sleep restriction increases energy intake, which may increase fat mass over time (206). 

One reason that people eat more after sleep loss is the extended period in which food 

can be consumed to compensate for the additional energetic cost of wakefulness. 

However, sleep restriction also increases the appeal and consumption of desserts 

among adolescents (207). As sleep deprivation has even been shown to increase the 

energy content of food purchased per unit of money in a mock supermarket (208), it 

seems that people not only eat more but actively seek energy-dense, rewarding foods.  

Given the effects of sleep loss on appetite, it might be expected that sleep restriction 

influences satiety hormones. The best studied of these are the satiety hormones ghrelin 

and leptin. During ad libitum food availability, however, reported effects of sleep 

restriction on ghrelin and leptin have been contradictory (184, 209, 210). It is important 
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to understand that a multitude of hormones influence feeding behaviour, however, and 

sleep restriction has recently been found to increase plasma concentrations of the 

orexigenic endocannabinoids 2-arachidonoylglycerol and 2-oleoylglycerol (211).  

Changes in weight fundamentally result from changes in energy balance, and some 

studies have found that the energy expenditure component of energy balance may be 

affected by sleep restriction. A working week simulation study found that sleep restriction 

reduced resting metabolic rate. This was particularly true of African Americans, a 

population that appears to be highly prone to the obesogenic effects of sleep restriction. 

Interestingly, this effect was seen despite participants being in positive energy balances, 

which might be expected to instead have raised participants’ resting metabolic rates 

(212).  

A recent meta-analysis did not find that sleep restriction influenced energy expenditure, 

however. It did corroborate previous findings that sleep restriction increases energy 

intake, and the net effect of these changes is, of course, a positive energy balance (213). 

Prospective field studies have also documented the importance of sleep in weight 

regulation, as longer sleep was recently found to predict greater reductions in BMI in 

overweight and obese adults consuming hypoenergetic diets (214). Furthermore, 

considering energy balance and weight alone may be misleading. Specifically, sleep 

restriction may affect body composition when diet is controlled for, as sleep restriction 

during hypoenergetic diet consumption accelerates lean body mass loss and impedes 

reductions in adiposity (215). 

Interestingly, people may have trait-like responses to sleep disruption, as within-

participant effects of one night of sleep restriction on energy intake and weight changes 

were stable when repeated exposures were separated by long periods, particularly 

among men. As there was large variation between individuals in changes in weight (- 2.3 

to + 6.5 kg) and energy intakes (− 501 to + 1178 calories)  after one night of sleep 

restriction,  there is a need to identify biomarkers that highlight those vulnerable to 

obesogenic effects of sleep disruption (216).  

Finally, it remains unclear whether men and women differ in their energy balance 

responses to sleep disruption. A relatively large study of five nights of sleep restriction to 

four hours of time in bed reported that men are predisposed to positive energy balances 

after sleep restriction (217), but a smaller, crossover study of five nights of sleep 

restriction to five hours of time in bed in a more homogeneous group of younger adults 

reported that women are more susceptible (218). Sex certainly influences some 

responses to sleep restriction. There are menstrual cycle phase-dependent endocrine 

responses to sleep restriction (219), indicating the need to carefully consider cycle phase 
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in future studies. Clearly additional research is required to clarify sex differences in 

effects of sleep loss, however. 

 

1.5.2 Effects on diet quality 

It has been estimated that US adults make ~ 230 food-related decisions daily (220), and 

if sleep disruption predisposes people to making less nutritious food choices then 

deleterious metabolic effects of sleep disruption could be compounded. Sleep restriction 

has sometimes been found to influence dietary macronutrient proportions, but conflicting 

evidence exists (217). Macronutrient intakes depend on available foods, and snack 

options are limited in experimental settings. Instead of altering macronutrient 

preferences, recent brain imaging studies support the hypothesis that sleep disruption 

increases non-homeostatic eating propensity.  

Regional changes in brain activity suggest that sleep restriction increases sensitivity to 

rewarding properties of food (221). Brain activity changes after sleep deprivation are 

commensurate with increased appetite (222). In response to images of food perceived 

as ‘unhealthy’, sleep restriction strongly influences insula activation, a region involved in 

pleasure-seeking, even following a day in which sleep-restricted participants consumed 

more food than control participants (223). Sleep deprivation has also been shown to 

reduce activity in appetitive evaluation regions in the frontal and insular cortices as 

participants rated the desirability of foods. Activity in the amygdala was increased, 

however, and the combination of these brain activity changes was associated with 

cravings for energy-dense foods (224). 

Collectively, these preliminary experiments demonstrate that sleep loss induces changes 

in brain circuits that predispose people to selection of energy-dense, rewarding foods, 

compounding the adverse effects of sleep loss on metabolic regulation that are 

independent of diet. Recent cross-sectional studies have highlighted that sleep timing is 

a key determinant of people’s susceptibility to circadian system and sleep loss. It is 

therefore no surprise that sleep timing has also been associated with both metabolic 

health and dietary choices.  

 

1.6 Sleep timing, diet, and metabolism 
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1.6.1 Chronotype 

It has long been known that there are marked differences between organisms of a given 

species in chronotype. Chronotype is arguably best defined as an organism’s phase 

angle of entrainment (for example, the timing of core body temperature nadir relative to 

dawn) and is related to an individual’s circadian period such that a shorter period typically 

results in an earlier chronotype (225). The overt manifestation of chronotype is 

preferences in timing of activity and sleep (whether somebody is more of a ‘morning lark’ 

or ‘night owl’).  

It is not always possible to objectively measure markers of circadian phase, so various 

methods to assess chronotype in cross-sectional studies have been proposed. An early 

method was Horne and Östberg’s Morningness-Eveningness Questionnaire (MEQ) 

(226). Mostly comprising questions on when people subjectively feel best, the MEQ is 

still popular. Nevertheless, the MEQ is clearly limited by its lack of quantitative estimates 

of actual sleep timing. Researchers have since developed questionnaires to address 

limitations of the MEQ. Perhaps the most popular of the new alternatives is the Munich 

ChronoType Questionnaire (MCTQ) (227). After correction for sleep debt accumulated 

on work days, the MCTQ uses mid-sleep time on non-work days as an approximation of 

chronotype. The MCTQ has been validated against actimetry and markers of circadian 

phase (228), although it should be noted that the MCTQ may not produce significantly 

more accurate estimates of circadian phase than the MEQ (229). To avoid confusion in 

this section, I will refer to chronotype in discussing studies that have estimated sleep 

timing and morningness/eveningness to discuss other studies. 

There exists such a range in chronotypes that some people in a given time-zone awake 

as others go to bed. The evolutionary basis of variation in chronotype is consistent with 

the sentinel hypothesis (230). This posits that in environments with inevitable dangers 

(such as predation), it is only safe to sleep if there are sentinels that remain vigilant to 

threats. A recent study of 33 adult Hadza hunter-gatherers supports this hypothesis. 

Sleep was monitored using actimetry for 20 days. Of all night-time actimetry epochs 

during this period, all participants were scored as being asleep only 0.002% of the time 

(less than one minute a night), and this was related to variation in chronotype. 

Interestingly, however, only age was associated with chronotype in this group: sex, 

nursing status, and co-sleeping did not predict chronotype. The authors therefore 

proposed that variability in age in bands of people in traditional societies leads to a range 

of chronotypes, resulting in adaptive sentinel-like behaviour (231). 

Although sleep timing varies across one’s lifespan, a person’s sleep timing relative to 

others of the same age appears to be quite stable, and twin studies have shown that 



43 
 

 

morningness/eveningness is quite heritable (232). A striking example of this is a rare 

genetic mutation that results in familial advanced sleep phase syndrome (233). Recent 

GWA studies have sought specific gene variants involved in sleep timing, finding that 

genetic loci near established components of the molecular clock (PER2, PER3, and 

FBXL3) are associated with morningness/eveningness (234, 235).  

Genetic variation influences sleep timing, but it is also clear that lifestyle is an important 

influence on chronotype, as shown by findings that the chronotypes of people in German 

cities are later and less closely aligned with the LD cycle than chronotypes of people in 

smaller settlements (236). Experiments in which young adults with a range of 

chronotypes went camping showed that exposure to only natural light for a week during 

both the winter and the summer advanced sleep times and dramatically reduced 

differences in sleep timing and melatonin phase between participants, such that the 

adults’ circadian systems were more tightly synchronised with the LD cycle (16, 17).  

With respect to public health, arguably the most important findings to emerge from 

chronotype research is that late chronotype/eveningness has been repeatedly 

associated with less healthy behaviours and a greater risk of some diseases. It is 

therefore particularly worrisome that chronotype in the general population has 

progressively delayed in recent years, perhaps because of less time spent outdoors. This 

may explain findings that ongoing declines in sleep duration worldwide appear to be from 

sleep loss on work days only (26), although changes in work schedules may have 

contributed to this in some instances. 

Later chronotype is associated with unhealthy behaviours such as smoking (27). 

Consumption of more alcohol and processed foods (237-239) may result from less 

dietary restraint in evening types (240). Late chronotype is also associated with a range 

of metabolic health impairments, such as diabetes and sarcopaenia in men, metabolic 

syndrome in women (241), and development of gestational diabetes during pregnancy 

(242). As might be expected, it appears that evening types are more likely to skip 

breakfast and consume less food in the morning and more in the evening (243-245). 

Consuming more food in the evening may be associated with higher BMI, independent 

of chronotype (246), and higher energy intake at dinner may somewhat contribute to 

worse glycaemic control among late chronotypes with type two diabetes (247).  

As shift workers make up nearly a fifth of the workforce in Europe (25), an important 

question is whether chronotype modifies susceptibility to the deleterious health effects 

of shift work. In research on 65,000 women, morning types working day shifts had 19% 

lower odds of developing type two diabetes over a 20 year period than intermediate 

types, whereas evening types had 51% increased odds. Interestingly, however, risk of 
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type two diabetes was not different among evening types who also worked night shifts. 

As this study adjusted for a range of confounders including diet and physical activity, it 

appears that work schedule is an independent determinant of associations between 

morningness/eveningness and metabolic disease risk (248). This work supports prior 

research on other non-communicable diseases, such as a nested case-control study that 

showed that breast cancer risk is far higher among morning types working night shifts 

(249).  

Promisingly, personalising shift schedules may improve shift work tolerance. By 

removing the most taxing shifts (night shifts for early chronotypes, morning shifts for late 

chronotypes), self-reported sleep duration, sleep quality, and wellbeing improved, and 

sleep timing variability also decreased during the five-month intervention (250). The 

study sample size was small, however, and the intervention also changed other variables 

that could have influenced the results, such as shift rotation speed. It remains to be seen 

whether customising work schedules can abate the deleterious effects of shift work on 

metabolic health. 

Why late chronotype is associated with poorer health is not yet clear, but multiple factors 

probably contribute. Whereas unhealthy behaviours such as excessive stimulant use 

(251) little time spent outdoors (227) and high screen-time (179, 252) may delay the 

phase of the circadian system, an important factor could be differences in sleep between 

chronotypes. Some researchers have found worse sleep quality and more insomnia 

symptoms in late chronotypes (241), as well as more prevalent sleep apnoea in evening 

types (244). During Daylight Savings Time (the one-hour advance in clock time from late 

March until late October), late chronotypes may also experience curtailed sleep (253). 

For shift workers, associations between chronotype and sleep are dependent on work 

schedules. Whereas early chronotypes sleep less, have more variable sleep timing, and 

have more disturbed sleep during night shifts, late chronotypes experience similar 

problems while working early shifts (254).  

Chronotype is interconnected with social jetlag, and late chronotypes generally 

experience more social jetlag. Whereas chronotype is a proxy of phase angle of 

entrainment, social jetlag is thought to reflect circadian system misalignment. It is 

therefore possible that circadian system misalignment is another contributor to 

associations between chronotype and metabolic health. 
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1.6.2 Social Jetlag 

Around 80% of people with regular work schedules use alarms on work days (26), and 

late chronotypes may be more likely to use alarms. It was recently reported that whereas 

89% of people begin work before or at 09:00 and 83% awake on these days at 07:00 or 

earlier, 77% of people would naturally sleep until 08:00 or later (255). Indeed, late 

chronotypes typically fall asleep about two hours later than early chronotypes before 

work days but only wake up half an hour later (227). One result of this is sleep debt, 

which late chronotypes then try to pay off on non-work days. It seems that how well 

people accomplish this may be location-dependent. On work days, young adults in 

Singapore have later bed times but similar wake times to young adults in the UK, 

resulting in shorter sleep. On non-work days, however, their sleep duration is similar, 

and people in Singapore may therefore experience more sleep debt (256).  

Later chronotypes may not only have larger sleep debts to rectify on non-work days, they 

may also have more discrepant sleep timing as sleep shifts later these days, partly to 

pay off the sleep debt (227). These people are therefore in a situation analogous to flying 

at least one time-zone further east as they shift their sleep timing an hour or more earlier 

on work days, and it is as if about a third of people fly across multiple time-zones (26). 

Unlike jetlag, however, social jetlag is chronic, and it is plausible that adverse effects of 

repeated minor circadian misalignment and sleep disturbances resulting from social 

jetlag could summate to substantial health consequences. This is consistent with 

previously discussed findings that shift workers do not seem to develop tolerance to 

repeated circadian misalignment (159).  

Like chronotype, social jetlag has been associated with many ailments. In an analysis of 

> 65,000 people, social jetlag was positively associated with BMI among overweight and 

obese people, with an effect size more than half that of sleep duration (26). Social jetlag 

has been associated with other metabolic abnormalities, including dysglycaemia, 

dyslipidaemia, excessive inflammation, hypercortisolaemia, insulin resistance, and 

metabolic syndrome (28, 257). Social jetlag may also be associated with diminished 

amplitudes of some circadian rhythms, such as body temperature (258). As is true of 

evening types (244, 259), higher social jetlag is associated with lower physical activity 

and higher resting heart rate (260). And because late chronotypes tend to have more 

variable sleep times, they may also have more variable meal timing. Although few 

researchers have tested this idea, there is evidence that adolescents with late 

chronotypes shift their breakfast later on weekends (261).  

It is plausible that associations between social jetlag and metabolic problems reflect 

reverse causality: poor health might influence occupation, which may in turn affect social 
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jetlag. However, as social jetlag has been associated with various health impairments 

after adjustment for many demographic variables, it seems more likely that circadian 

system and sleep loss are at fault. Although the preponderance of evidence associates 

late chronotype and social jetlag with worse metabolic health, associations with some 

outcomes have not always been consistent. This likely reflects many factors, including 

differences in participant demographics, methods used to assess chronotype, choices of 

statistical adjustments used, and statistical power.  

As late chronotype and social jetlag have been associated with many deleterious health 

consequences, there is a need for studies exploring the effects of interventions to 

advance chronotype and sleep timing variability. A recent experiment compared the 

effects of spending the weekend in typical electric lighting environments to camping in 

Colorado for a weekend in July. Whereas melatonin onset delayed in the artificial lighting 

environment, melatonin onset advanced while camping. Weekend camping also 

prevented shifts in sleep timing (17). These findings suggest that large changes in the 

LD cycle can rapidly advance circadian phase and offset social jetlag. 

A limitation of previous chronotype and social jetlag studies is that objective measures 

of sleep such as actimetry have rarely been used. Prior studies have not assessed diet 

with validated tools that also document dietary timing. Furthermore, there has been little 

research on the importance of diet timing relative to circadian phase, despite evidence 

from preliminary chrononutrition research showing that diet timing is an important 

determinant of postprandial metabolic responses.  

 

1.7 Chrononutrition 

Studies of chrononutrition explore the reciprocal relationship between the circadian 

system and nutritional status. Chrononutrition research has focused particularly on how 

both diet composition and diet timing influence the circadian system. For the purpose of 

this thesis I therefore use the term ‘dietary patterns’ to include both diet composition and 

timing, but I acknowledge that ‘dietary patterns’ has mostly been used in reference to the 

interaction of bioactive compounds and nutrients within the whole diet, and that various 

diet quality indices have been developed to assess how adherence to a given dietary 

pattern influences health (262). Much nutrition research has explored how diet 

composition influences health, and changes in diet quality are strongly related to 

mortality (263). Only recently have people begun studying roles of diet timing in health, 

however.  
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There are benefits and drawbacks to different ways of studying meal patterns (264). 

Components of meal patterns can include context (environment), format (composition, 

item combinations, item sequencing), and patterning (consistency, frequency, spacing, 

timing). In this thesis I focus on what seems most germane to studying chrononutrition: 

a ‘time-of-day’, patterning approach. A traditional time-of-day approach categorises 

events into arbitrary time bins (breakfast, for example, might be the event with the most 

calories between 06:00 and 10:00), but defining meals and snacks in this way is based 

on cultural preconceptions and may misclassify people with unusual sleep/wake 

patterns. I therefore do not define events into meals or snacks but am instead interested 

in the timing of caloric events, particularly in relation to the sleep/wake cycle. However, 

I recognise that a limitation of excluding non-caloric items is that some non-nutritive 

compounds such as caffeine (251) may influence the circadian system and health. Figure 

1.3 outlines different time structures particularly relevant to chrononutrition. 

 

 

Figure 1.3. Diet timing variables.  

This figure details an example dietary pattern in which the first caloric event (vertical bar) 

is on waking at 06:00 (the start of the biological day). On this day, the individual has five 

caloric events, the last of which begins shortly after dusk. The time elapsed from the 

beginning to the end of an individual event is the event period, the time between events 

is the inter-event period, and the time from the beginning of the first caloric event to the 

end of the last caloric event is the caloric period. The time from the end of the last caloric 

event until the first caloric event of the next day is the overnight fasting period. Most 
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studies to date have only considered dietary event timing relative to clock time, but it is 

noteworthy that each of these time structures can also be considered relative biological 

time. 

 

Chrononutrition studies to date have mostly addressed how to modify diet timing to 

encourage consistent, high-amplitude circadian rhythms in metabolic processes. To this 

end, many researchers have focused on the duration of the caloric period. In discussing 

studies of humans in which it is unclear if consumption of all calorie-containing items 

(including drinks) was documented, I will refer to eating period, however. 

 

1.7.1 Caloric period duration  

 

1.7.1.1 Cross-sectional studies of humans 

Cross-sectional research methods are arguably the best way of understanding human 

eating patterns in daily life. Epidemiological findings can be used to identify population 

trends and hence groups of people that may benefit most from dietary interventions. 

Such studies often also highlight valuable research questions to pursue in more 

controlled settings. The limitation of cross-sectional studies is that causal relationships 

cannot be inferred, and the use of a range of assessment tools and analytic methods in 

different populations often results in conflicting results between nutritional epidemiology 

studies. Cross-sectional studies have therefore produced insights into the timing of 

dietary patterns in many locations worldwide, but there have sometimes been 

contradictory findings regarding how eating period relates to metabolic health. 

Most observational research of eating period duration has focused on associations with 

bodyweight. In a longitudinal study of > 50,000 ≥ 30-year-old adult members of Seventh-

day Adventists churches in the US and Canada, eating period and number of meals 

consumed were associated with changes in BMI relative to their peers such that people 

with eating periods of less than seven hours lost weight and people with eating periods 

of > 12 hours gained weight over about seven years. Associations between eating 

patterns and BMI were similar when participants were stratified by age (265). The study 

had clear limitations, however, as diet was assessed only at baseline using food 

frequency questionnaires (FFQs), participants were not alcohol drinkers or smokers and 

so perhaps aren’t representative of less healthy people, and results may have been 

confounded by response bias (~ 55% of the baseline cohort responded to the eight-year 

follow-up forms). 
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Seventh-day Adventists are in many ways unusual in their eating patterns. Whereas 

participants in the Seventh-day Adventist study only consumed four meals/snacks on 

average and had a mean eating period of only ~ 10 hours, studies of other US adults 

have found very different patterns. North American adults were found to eat in erratic 

patterns, with a median caloric period of nearly 15 hours, for example (266). Interestingly, 

these adults also consumed breakfast on weekend days over an hour later than 

weekdays, a phenomenon the researchers named ‘metabolic jetlag’. Caloric period was 

not correlated with BMI in these adults (27).  

This work was followed by a pilot study of eight obese adults from the sample who had 

habitual eating periods > 14 hours. Participants lost > 3 kg during a 16-week period in 

which they were told to restrict their consumption of everything but water to an 11-hour 

period each day, and participants reduced their energy intakes ~ 20% during the 

intervention. All participants expressed desire to continue beyond 16 weeks, so the 

researchers followed them up a year later, at which time participants had generally 

sustained their weight loss (266). The pilot study was clearly limited by its sample size 

as well as the lack of objective measures of sleep and body composition. Furthermore, 

the participants probably expected the restricted caloric period to benefit them, and they 

were not crossed over to a non-restricted condition. 

Similar smartphone diet recording methods have been used to assess temporal profiles 

of adults’ diets in India. Indian adults have similar caloric periods to the American adults 

and also eat in an erratic way. In contrast to the American adults, metabolic jetlag was 

largely absent among Indian participants. Similar to American adults, however, eating 

period was unrelated to BMI (267). A shortcoming of both studies was the use of a diet 

recording method that has not been validated, and this resulted in substantial under-

reporting in Indian men. A more recent study that examined whether caloric period is 

related to BMI in free-living adults in America also did not find any associations (268), as 

was true of a large study of middle-aged adults from Belgium, the Czech Republic, 

France, the Netherlands, and Norway (269).  

Breakfast-skipping is a way to shorten eating period and might therefore be expected to 

be associated with lower BMI if eating period is positively associated with bodyweight. 

But in the previously mentioned study of Seventh-day Adventist church members, 

breakfast eaters lost weight relative to breakfast-skippers, supporting findings of many 

prior cross-sectional studies (265). Indeed, breakfast-skipping has generally been 

associated with worse health, perhaps reflecting poorer dietary quality and lower 

micronutrient intakes (264).  
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Although studies of eating frequency have not always documented eating periods, daily 

eating period is generally related to the frequency of dietary events. Many cross-sectional 

studies have reported an inverse association between eating frequency and bodyweight. 

It appears, however, that this may reflect concurrent under-reporting of eating frequency 

and energy intake. Associations are often no longer evident when under-reporting is 

accounted for (270). 

Finally, few cross-sectional studies have assessed associations between eating period 

and metabolic outcomes other than bodyweight. Some preliminary findings have 

associated shorter eating periods with superior glucose metabolism. In a large-scale 

study of US women, shorter self-reported eating periods were associated with lower 

postprandial glucose responses and lower odds of having elevated glycated 

haemoglobin (271). Additional studies are needed that explore relationships between 

caloric period and other metabolic health outcomes. 

Inconsistencies between these cross-sectional studies highlights the fact that selecting 

appropriate dietary assessment methods to study eating behaviours in large numbers of 

people outside the laboratory is difficult. To accurately estimate nutrient intakes, the diet 

analysis method should have comprehensive and current food lists that contain the items 

commonly consumed by the participants, a criterion not met by some studies (265, 267). 

Furthermore, the validity of the method should have been proven against biomarkers of 

nutrient intakes, a criterion not met by several studies (265-267). Of particular interest to 

the study of temporal aspects of eating and drinking, the method should also document 

the time of day of all food and drink consumption. And to attempt to record every food 

and drink consumed, the method must also prompt participants regarding whether they 

forgot to record commonly forgotten foods.  

Of available methods, interviewer-administered 24-hour dietary recalls as used by Park 

and colleagues (269) gather particularly accurate data but are time- and resource-

expensive, requiring trained personnel to collect and code the data. More convenient 

methods such as FFQs have limited selections of foods included in their lists. Current 

usage of digital devices is unprecedented, so some researchers have begun using online 

recall methods to make data collection more efficient. Few such methods have been 

validated, however. For these reasons, validated, online dietary recall methods that 

document the time of food and drink consumption and have comprehensive food 

databases tailored to the relevant population may provide valuable, accurate insights 

into how diet timing and composition influence health. 
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1.7.1.2 Manipulation of caloric period in rodents 

Associations between eating period and metabolic outcomes reported in cross-sectional 

studies of humans have been inconsistent. I have generally refrained from reviewing 

studies of non-human animals, but TRF experiments using rodents have 

comprehensively detailed how manipulation of feeding timing alters metabolism. I will 

now focus first on studies of rodents because 1) findings of these studies are consistent 

and encouraging, and 2) there have been few studies of humans.  

Rodents are widely studied in pre-clinical research, and such studies have provided 

many insights into metabolic diseases like obesity. Perhaps the most common way of 

rapidly inducing obesity in mice is giving them ad libitum access to ‘high-fat’ diets (HFDs). 

HFD is really a misnomer since HFD chow is typically high in sugar too. Nevertheless, 

researchers soon realised that whereas mice normally consume 70 to 80% of daily 

energy intake during the scotoperiod (their active phase), feeding mice HFDs caused the 

animals to change their behavioural rhythms such that mice now consumed about twice 

as high a proportion of their energy intakes during the photoperiod (their rest phase). 

Researchers subsequently found that these flattened feeding/fasting rhythms were 

associated with altered 24-hour profiles of clock gene transcription (272, 273). Whether 

obesity precedes dampened circadian rhythms or vice-versa has since been 

contentious, but recent evidence indicates that HFDs induce rapid reorganisation of 

activity of the molecular clock and its targets before overt increases in adiposity in mice 

(274).  

To offset the blunted feeding rhythms of mice with ad libitum HFD access, researchers 

have studied what happens when access to HFDs is restricted to the active phase. The 

results have included superior metabolic health - including reduced adiposity - despite 

similar energy intakes (273). Even without marked differences in energy intakes and 

locomotor activity, several TRF schedules have been found to be beneficial during 

various nutritional ‘challenges’, such as HFDs and high-fructose diets, and favourable 

metabolic effects of TRF are reportedly proportional to fasting duration in rodents (275). 

A recent review of the effects of TRF in rodents concluded that despite significant 

heterogeneity between studies in fasting duration, fasting timing relative to the LD cycle, 

and chow composition, TRF has consistently been shown to benefit bodyweight, blood 

lipids, glucose metabolism, insulin action, and inflammation (276). 

The mechanisms underlying the beneficial effects of TRF are many. TRF mitigates the 

effects of HFD consumption such that nutrient sensor profiles (including AMPK and 

mechanistic TOR) are more similar to mice fed normal chow (273). TRF also counters 

reductions in cyclical changes in the gut microbiota that occur during HFD feeding, and 
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stool metabolite analyses have shown that TRF results in lower sugar uptake, perhaps 

contributing to protective effects of TRF against obesity (277).  

Interestingly, many of the nutrient-sensing pathways by which energy restriction 

improves health and increases lifespan in model organisms are also affected by TRF 

(278). Such energy restriction studies may have been confounded by the fact that some 

animals eat all of their food as soon as it becomes available, raising the possibility that 

time restriction may also contribute to the beneficial metabolic effects of energy 

restriction (279). It is therefore essential that careful measures are made of the timing 

and duration of food consumption in such studies, and a recent study used a new feeding 

system to provide higher resolution timing measures of chow consumption in mice fed in 

different schedules (280).  

After a week of ad libitum chow access, mice were fed in one of the following ways: 1) 

ad libitum for 24 hours each day, 2) 30% energy restriction, with 24-hour chow access 

beginning either at the start of the scotoperiod or the start of the photoperiod, 3) 12 hours 

of TRF during the scotoperiod, or 4) 12 hours of TRF during the photoperiod. 

Interestingly, both TRF groups consumed all of their food within 10 hours. Furthermore, 

the energy-restricted mice compressed their feeding period such that they consumed all 

chow within two hours of it becoming available. The mice had free access to running 

wheels, and the mice in these groups temporarily advanced their locomotor activity into 

the photoperiod in both groups, the period when these animals would normally be 

sleeping (280). This concurs with previous reports that a negative energy balance can 

shift previously nocturnal mice into a diurnal temporal niche (281). Whereas scotoperiod 

TRF mice consumed a similar amount of food to the ad libitum group, the photoperiod 

TRF mice ate ~ 15% fewer calories, so different TRF timing may also inadvertently affect 

energy intakes. A further experiment found that mice that only had chow access every 

other day ate twice their normal daily intakes, fully compensating for the fasting periods 

(280).  

This comprehensive series of experiments showed that energy restriction affected 

feeding timing more than time restriction. The findings highlight the importance of 

meticulous data collection and indicate a need to re-evaluate many rodent energy 

restriction studies to determine if it is actually time restriction that underlies the many 

reported health benefits of energy restriction. Notably, these studies all used male 

C57/BL6 mice, animals highly susceptible to diet-induced obesity. As such, it may be 

premature to extrapolate these findings to humans.  
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1.7.1.3 Manipulation of caloric period in humans 

Whereas TRF of HFDs in mice has marked beneficial effects on metabolism, TRF may 

not confer such striking metabolic advantages when mice are fed normal chow (273). 

Similarly, preliminary studies of humans fed standardised diets have not shown many 

benefits of a restricted caloric period on metabolic outcomes. A crossover trial of 15 

healthy young adults found that consuming all food at a single evening meal increased 

fasting glycaemia and impaired glucose tolerance versus an isocaloric diet comprising 

three meals throughout the day (282), and a similar study reported that single meal 

consumption produced increased hunger, blood pressure, and blood cholesterol (283). 

Consumption of one daily meal is an extreme intervention that is unlikely to be 

sustainable, however, and findings may have been confounded by diurnal variations in 

these parameters, as outcomes were measured at different times of day.  

Another way to shorten caloric period is to skip breakfast. In a study of overweight and 

obese adults, breakfast-skipping did not influence responses to weight loss diets (284). 

A comprehensive study of lean young adults found that one of the only metabolic effects 

of six weeks of breakfast omission was increased afternoon glycaemic variability (285). 

Interestingly, the breakfast-skippers consumed fewer calories than the breakfast eaters, 

but this was negated by lower physical activity thermogenesis. Subsequent research 

using the same protocol in obese adults also reported few differences between groups, 

other than higher insulin sensitivity in breakfast eaters (286). Most recently, a 

randomised crossover study assessed the acute effects of breakfast-skipping in adults 

with and without type two diabetes, none of whom was using insulin. Blood glucose 

responses to lunch were again higher when participants skipped breakfast. Interestingly, 

postprandial expression of several clock genes in white blood cells differed between the 

meal conditions, perhaps indicating an acute effect of nutritional status on peripheral 

clocks. Whether changes in the circadian system contributed to altered postprandial 

responses is unclear, however (287).  

It is worth considering that skipping breakfast not only shortens caloric period but also 

delays it. Most recently, a crossover trial compared the acute effects of skipping 

breakfast to skipping dinner. In one condition three meals were consumed, in another 

breakfast was skipped, and in another dinner was skipped. Diet composition was the 

same in the three conditions (288). Contrary to findings of the longer-term Bath Breakfast 

Project studies (285, 286), energy expenditure was marginally higher in both of the meal-

skipping conditions, although activity was constrained as participants had to remain in 

the laboratory. On breakfast-skipping days fat oxidation was slightly higher and 

carbohydrate oxidation slightly lower than when consuming three daily meals. Consistent 

with findings of the Bath Breakfast Project, however, blood glucose and insulin 
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responses were impaired after lunch in the breakfast-skipping condition when compared 

to the dinner-skipping condition, perhaps as a result of greater inflammatory responses 

to eating after skipping breakfast (288).  

Together, findings from these studies do not support the hypothesis that a restricted 

caloric period improves metabolic health in humans. Similarly, experimentally 

manipulating meal frequency does not appear to markedly influence many metabolic 

outcomes. A recent systematic review included experiments in which higher meal 

frequencies were compared to more regular frequencies in adults without health 

conditions other than overweight or obesity. The authors did not search for restricted 

eating period studies. Most studies reported no effects of meal frequency on energy 

intake, adiposity measures, or diet-induced thermogenesis. Effects on blood lipids, blood 

glucose, and insulin were also inconsistent (289).  

A limitation common to the majority of short- and longer-term restricted caloric period 

studies is that samples have typically comprised fewer than 50 participants (276). There 

is a glaring need for large-scale prospective studies assessing a restricted caloric period. 

Notably, meal-skipping not only alters the duration of the eating period but also its timing. 

And the timing of the eating period relative to the biological day may matter.  

 

1.7.2 Timing of the eating period 

Diet timing may be a key determinant of postprandial metabolic responses. Mice fed 

HFDs during the photoperiod (rest phase) tend to gain more fat mass than mice fed 

HFDs during the scotoperiod (290), and the same is true for mice fed normal chow. A 

recent study showed that although there were no differences in weight between mice 

with access to food only during the scotoperiod or photoperiod, the mice with chow 

access during the photoperiod consumed 15% fewer calories. Similarly, when 

researchers imposed 30% energy restriction beginning during either the scotoperiod or 

photoperiod, energy intakes were similar but only mice in the scotoperiod group lost 

weight, indicating that feeding timing was a key determinant of weight (280).  

Within just nine days, TRF during the photoperiod in mice has been found to alter 24-

hour clock and metabolic gene expression profiles in peripheral tissues, blunt 

corticosterone rhythm amplitudes, reduce energy expenditure despite comparable 

locomotor activity, and reduce lipid oxidation (291). It is possible that such deleterious 

metabolic effects of TRF during the photoperiod reflects misalignment between energy 

intake and energy expenditure, as a transgenic hPER1 mutation in mice increases 

obesity risk by advancing peak feeding time relative to peak daily energy expenditure. 
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Subsequently restricting chow access to synchronise feeding with peak energy 

expenditure offsets obesity development in these animals (292).  

Regarding humans, each year Ramadan provides a natural experiment to determine 

what happens when people eat during the scotoperiod, the rest phase for us diurnal 

beings. In contrast to the obesogenic effects of rest phase TRF reported in rodent 

studies, however, a meta-analysis of 35 studies found a mean reduction in weight of 1.24 

kg during Ramadan, with differences between ethnicities and greater reductions in men. 

No effects on dietary macronutrient proportions were apparent, and fasting duration was 

not associated with weight changes. Of the 16 studies that followed participants after 

Ramadan, mean weight regain was 0.72 kg (293).  

A more recent meta-analysis of 30 Ramadan studies also considered whether Ramadan 

fasting influenced other markers of metabolic health. The analysis showed that both 

fasting blood glucose and low-density lipoprotein cholesterol declined in both sexes 

during Ramadan. Bodyweight, total cholesterol, and triglycerides also decreased in men, 

and HDL cholesterol increased in women (294). Most Ramadan studies have not 

measured changes in body composition, and changes in a variety of other health 

behaviours during Ramadan make it difficult to identify the effects of dietary changes. 

Nevertheless, these meta-analyses provide unambiguous evidence that consuming all 

calories during darkness can be healthy in humans, at least in the short-term. As 

Ramadan has been shown to delay the circadian phase of cortisol and melatonin 

rhythms (295), it would be interesting to better understand when Ramadan adherents 

are eating and drinking relative to circadian phase, for it appears that diet timing relative 

to circadian phase may have salient metabolic consequences.  

 

1.7.3 Energy intake distribution within the eating period 

Before considering effects on metabolic health, it is useful to first consider findings of 

cross-sectional studies that have recorded how people commonly distribute energy 

intake. In previously discussed studies (266, 267), US adults had consumed ~ 23% of 

daily energy intakes by 12:00 and Indian adults ~ 29%. By 18:00, US adults had only 

consumed ~ 63% of daily energy intakes and Indian adults had consumed ~ 60%. Energy 

intakes were therefore distributed relatively late in the day. In a study of 24-hour dietary 

recalls from 10 European countries, distinct regional patterns were evident. Adults in 

Mediterranean countries ate larger lunches than adults in central and northern Europe 

(38 to 45% versus 16 to 27% of daily energy intakes, respectively) and consumed less 

energy from snacks (10 to 20% versus 23 to 35%, respectively). However, data were 

collected between 1995 and 2000 and may therefore not be representative of patterns 
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nowadays (296). This said, more recent work from these researchers showed that meal 

patterns of adults from the three countries included in both of their studies (France, the 

Netherlands, and Norway) have not changed markedly since. In their more recent study 

of middle-aged adults from Belgium, the Czech Republic, France, the Netherlands, and 

Norway, breakfast and lunch were consumed most often by Czech adults, dinner by 

French adults, and after-dinner snacks by Belgian and Dutch adults (269).  

A recent review summarised the distributions of daily energy intake across meals and 

snacks reported in cross-sectional studies conducted in Europe and North and South 

America. Four patterns of energy distribution were reported. Again, patterns varied by 

geographical location (297). In a pattern common to North America and Northern Europe, 

later meals comprised a greater proportion of daily energy intake. This was true of the 

UK, where dinner contributed substantially more of daily energy intake than other 

countries. Furthermore, the distribution of energy intake in the UK appears to have 

shifted later in the day in recent years (298). In Eastern Europe, breakfast and lunch 

contributed the most energy. In South America, lunch contributed slightly more energy 

than breakfast and dinner. And a small breakfast, large lunch, and moderate-sized dinner 

were typical in Southern and Western Europe (297). 

The significance of these findings is that energy intake distribution may also affect 

metabolism, even when variables such as nutrients consumed are unchanged. Studies 

of mice show this plainly. Mice fed a high-fat meal at the end of the scotoperiod develop 

higher adiposity, insulin, leptin, and triglyceridaemia versus mice that consume a high-

fat meal at the beginning of the scotoperiod (299). Similarly, restricting fructose access 

to the photoperiod increases adiposity and insulin resistance in mice in comparison to 

restricting access to the scotoperiod (300).  

Human studies generally give tentatively support for roles of energy intake distribution in 

metabolic health. In the aforementioned review of cross-sectional studies, the authors 

concluded that the research provided some evidence that greater evening energy intake 

may be associated with obesity. The authors decided that heterogeneity in the studies 

precluded a meta-analysis, however, and there is difficulty in interpreting many of the 

studies that collated all snacks and hence masked the timing of snack energy intake 

(297). Other researchers have since completed a meta-analysis of cross-sectional 

studies of dinner energy intake and adiposity, reporting a trend to higher BMIs in 

participants consuming larger dinners. In a separate analysis of intervention trials, no 

association between dinner energy intake and change in weight was found, however 

(301). A limitation of all of these studies is that they did not assess meal timing relative 

to circadian phase. 



57 
 

 

The first cross-sectional study to consider caloric timing relative to circadian phase was 

published only very recently. In this study, young adults used a time-stamped mobile 

phone application to record all dietary events for a week in the middle of a period of 30 

days of wrist actimetry to monitor sleep. Body composition was assessed using 

bioelectrical impedance analysis, and the results were used to separate participants into 

lean (n = 70) and non-lean (n = 40) groups. Salivary melatonin profiles were measured 

hourly in constant dim lighting during an overnight laboratory visit from 16:00 to 07:00. 

Non-lean participants consumed most of their calories ~ 1.1 hours closer to dim-light 

melatonin onset, but there were no differences between groups in the clock time of 

caloric events. Non-lean participants also consumed their latest calories 0.9 hours later 

relative to dim-light melatonin onset. Furthermore, participants who consumed their last 

calories later relative to circadian phase also slept less. Interestingly, only caloric timing 

relative to melatonin phase was predictive of adiposity in a multiple regression analysis 

that included clock time of caloric events, diet composition, and sleep duration as 

predictor variables (268). 

Prospective studies have also found that the timing of an individual meal may be 

important, as earlier lunch consumption has been associated with greater weight loss 

after a 20-week weight loss programme (302). Most recently, the Seventh-day Adventist 

church member researchers reported that participants who had their largest meal at 

breakfast (between 05:00 and 11:00) lost weight relative to participants who had their 

largest meal at dinner (between 17:00 and 23:00). Similarly, participants who had their 

largest meals at lunch lost weight relative to those who had their largest meals at dinner 

(265).  

Findings from human studies of meal timing interventions give additional support for 

these observations. Among overweight and obese women matched for energy intakes, 

those who consumed a larger proportion of daily energy intake at breakfast lost more 

weight than those consuming a larger proportion at dinner (303), and like findings have 

since been reported in severely obese adults following bariatric surgery (304). As diet-

induced thermogenesis is higher in the morning, and breakfast consumption is 

associated with more subsequent non-exercise activity thermogenesis and hence 

energy expenditure (285), perhaps assigning more of daily energy intake to earlier meals 

may encourage a negative energy balance during hypoenergetic diets.  

 

1.7.4 Consistency of the eating period 

Finally, the timing of dietary events from one day to the next is very inconsistent in some 

adults (266, 267), which may be pertinent to metabolic health. In mice, fixing feeding to 
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the same 12-hour period during twice weekly six-hour LD cycle advances might be 

expected to uncouple LD cycle-entrained SCN phase from feeding-entrained peripheral 

clock phase and thereby produce corresponding metabolic disorder. In these conditions, 

however, TRF actually offset the obesogenic effects of LD cycle shifts observed in ad 

libitum-fed mice, despite similar energy intakes. Meal regularity and not just its timing 

relative to activity may therefore also be important to benefits of TRF (305).  

Studies of humans also indicate the importance of consistent meal patterns. A recent 

review summarised the results of the few studies that have considered the relationship 

between dietary regularity and metabolic health. Several cross-sectional and prospective 

cohort studies have associated irregularity with increased with blood pressure, BMI, and 

metabolic syndrome (306), including a study of UK adults (307). Furthermore, 

intervention studies to date have found adverse effects of irregular meal patterns. In a 

crossover study in which healthy young women consumed a variable number (three to 

nine) of ‘meals’ daily for 14 days and a fixed number (six) for 14 days with a 14 day 

washout period in the interim, diet-induced thermogenesis was higher and blood glucose 

regulation was better after the regular meal condition (308). This study built on previous 

work from the same group that used similar methods to show that irregular meal patterns 

may contribute to insulin resistance and raise low-density lipoprotein and total cholesterol 

(309, 310).   

Together, it appears that consistent meal patterns and consuming meals in close 

proximity to physical activity may help optimise metabolic health. Furthermore, allocating 

a higher proportion of energy intake to earlier meals may promote a lower energy 

balance when diets are matched for energy intake. Preliminary research has also shown 

that diet timing relative to circadian phase may influence adiposity, but more research is 

needed to support this hypothesis. 

 

1.7.5 Dietary compounds influence the circadian system and sleep 

In addition to diet timing, diet composition may influence the circadian system and sleep, 

and an array of chronobiotic compounds in foods has been found. Chronobiotics are 

agents capable of modifying a biological rhythm’s amplitude, period, or phase. Recent 

evidence has shown that macronutrient composition can modify numerous aspects of 

the circadian system.  

Switching adults from higher carbohydrate (55%), lower fat (30%) diets to isocaloric 

lower carbohydrate (40%) and higher fat (45%) diets delayed and increased the 

amplitude of cortisol rhythms, altered inflammatory and metabolic gene expression 
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profiles, and modified PER gene expression profiles in monocytes (311). So, while 

macronutrient composition clearly appears to alter peripheral clocks, it does so in a 

tissue-specific way with long-term health consequences that are not yet clear.  

Of all commonly consumed dietary compounds, alcohol appears to be particularly 

disruptive to molecular, endocrine, and behavioural circadian rhythms in humans and 

other animals (312-316). Caffeine, the most-used psychoactive compound worldwide, is 

present in many foods and drinks, and evening caffeine consumption delays the human 

circadian system in vivo and lengthens clock gene expression periods in vitro (251). 

Because of these chronobiotic effects, caffeine has been studied for whether it can aid 

entrainment in blind individuals with non-24-hour sleep/wake rhythm disorder, a disorder 

in which the LD cycle fails to synchronise the circadian system with the 24-hour day. In 

one study, 150 mg of morning caffeine was insufficient to entrain circadian rhythms in 

people with this disorder (317). Nevertheless, careful use of caffeine may expedite 

circadian rhythm entrainment in some circumstances, such as after jetlag (318). 

However, even if subjective sleepiness is unaffected by its ingestion, caffeine may impair 

sleep following jetlag (319). Of all oral chronobiotics commonly used to facilitate 

entrainment, melatonin has perhaps most consistently been proven efficacious.  

 

1.8 Melatonin as a countermeasure against metabolic disease 

Melatonin (5-methoxy-N-acetyltryptamine) is a particularly potent chronobiotic. 

Melatonin is a relatively ubiquitous compound in nature that is therefore also present in 

many foods and drinks, albeit perhaps in insufficient quantities to significantly influence 

the circadian system and sleep after ingestion. Melatonin was discovered in 1958 as a 

factor that inhibits the darkening effects of melanocyte-stimulating hormone on frog skin 

(320), and the structure (C13H16N2O2) of this indoleamine hormone was reported the 

following year (321). Now, however, melatonin is best known as an endogenous signal 

of scotoperiod, with critical roles in circadian system regulation. It has also been well 

documented that pharmacological doses of melatonin and its agonists improve sleep in 

various populations (54), and melatonin can scavenge free radicals within cells, 

independent of its receptors (322). This is particularly noteworthy as it is increasingly 

clear that oxidative stress is a key contributor to metabolic dysregulation in pathologies 

such as metabolic syndrome (323). Given the many roles of circadian system function 

and sleep in metabolic regulation, as well as the presence of melatonin receptors in many 

key metabolic tissues, it is intuitive that melatonin has roles in metabolism. Only recently, 

however, have researchers begun exploring some of these roles.  
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Lower circulating melatonin levels have been found in people with some metabolic 

diseases. This is true of women with hypertension (324), myocardial infarction patients 

(325), and type two diabetes (326), particularly among individuals with autonomic 

neuropathy (327, 328) and proliferative retinopathy (329). Not all studies have reported 

such results, however. Indeed, one study reported that adults with obesity and metabolic 

syndrome had comparable melatonin levels to healthy controls (330). Cross-sectional 

studies like these preclude inferences about causality, but their findings are supported 

by some prospective studies. Lower excretion of 6-sulphatoxymelatonin (the primary 

melatonin metabolite) has been associated with increased subsequent type two diabetes 

risk in a prospective study, for example (331). These studies generally suggest that there 

may be a connection between lower melatonin synthesis and some cardiometabolic 

diseases, and studies have therefore explored whether exogenous melatonin 

supplementation may benefit various metabolic processes. 

 

1.8.1 Melatonin supplementation in rodents 

Preclinical studies using rodent models of metabolic diseases have consistently shown 

that long-term melatonin supplementation has widespread benefits on physiology. In rat 

models of diabetes, for example, melatonin has been found to reduce hyperglycaemia, 

hyperinsulinaemia, hyperleptinaemia, and hypertriglyceridaemia (332, 333), also 

offsetting hepatic steatosis and improving liver mitochondrial function (334). Similar 

findings have been reported in studies of rat models of obesity (335, 336), and melatonin 

improved insulin sensitivity, glucose tolerance, and vascular function in diet-induced 

obese mice (337). It appears that exogenous melatonin may also help counter many of 

the adverse metabolic consequences associated with senescence in mice and rats, such 

as insulin resistance, increased weight, and reduced locomotor activity (338, 339). 

Finally, as an antioxidant, melatonin reduces increased oxidative stress in response to 

injuries in rats (340).  

Studies of rodents have demonstrated numerous promising effects of long-term 

melatonin administration, but many of these studies used doses > 5 mg/kg. Relative to 

bodyweight, this is well above the 0.3 to 5 mg commonly taken by humans. Furthermore, 

there are considerable differences in melatonin receptor ligand pharmacology between 

species (55), and most of these studies used nocturnal rodents: In nocturnal animals, 

melatonin in many ways has opposite functions to those in humans, readying the animals 

for activity and feeding. Last, most mouse studies have used C57BL6/J mice. This 

congenic strain has melatonin receptors but synthesises little melatonin because of a 
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genetic deficit that results in no activity of N-acetyltransferase or hydroxyindole-O-

methyltransferase, enzymes involved in melatonin synthesis (341). 

 

1.8.2 Melatonin supplementation in humans 

Like rodent studies, human studies of long-term melatonin supplementation have 

documented a variety of beneficial effects. Long-term, open-label use of a slow-release 

melatonin formulation reduced glycated haemoglobin in type two diabetes patients with 

insomnia (342). In metabolic syndrome patients whose health had not responded 

favourably to lifestyle modifications, melatonin use reduced blood pressure and weight 

after one month. After two months differences in weight were no longer evident, but 

patients retained blood pressure improvements and also had lower low-density 

lipoprotein cholesterol levels and measures of oxidative stress (343). Similarly, a 

crossover trial of metabolic syndrome patients reported that long-term melatonin 

supplementation tended to reduce weight, decreased blood pressure, and led to higher 

metabolic syndrome remission than placebo (344). Changes in weight are not always 

indicative of changes in fat mass, but a study of post-menopausal women demonstrated 

that one year of melatonin supplementation increased lean body mass without affecting 

weight (345). Other reports indicate that melatonin may increase HDL cholesterol levels 

in peri- and post-menopausal women (346).  

Not all studies have reported beneficial effects of long-term melatonin supplementation, 

however. Using blood lipids to exemplify this, some have reported deleterious effects, 

such as raised triglycerides in normolipidaemic post-menopausal women (347) and 

increased low-density lipoprotein and very low-density lipoprotein cholesterol in post-

menopausal women (348). Others found no effects on lipids or glucose in elderly women 

(349) or lipids in hypercholesterolaemic patients (350). There are likely many for reasons 

for discrepancies in findings between studies, including participant characteristics, 

differences in melatonin dosing, timing, pharmacokinetics, and concurrent medication 

use. Another reason may be differences in melatonin receptor genetics.  

 

1.8.3 Melatonin receptor variants 

A series of GWA studies published concurrently showed that a MTNR1B variant 

(rs10830963) present in ~ 30% of the population is associated with higher plasma 

glucose, lower early insulin responses, faster deterioration of insulin secretion, and 

increased type two diabetes risk (351-353). The mechanisms underlying these findings 

are unclear. A recent study of RNA sequencing of pancreatic islets from 204 donors 
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reported that the risk variant is an expression quantitative trait locus: more copies of the 

risk (G) allele result in greater MTNR1B transcription in human islets (354). The same 

researchers found that melatonin signalling inhibits insulin release in INS-1 832/13 β 

cells. They also reported insulin resistance in MT2 knockout (MT2-/-) mice (354). 

Conversely, others have shown that melatonin receptor activation restored insulin 

secretion in human islets exposed to glucotoxicity and enhanced survival of rodent INS-

1 832/13 β cells (355). Additional studies that compare MTNR1B mRNA expression 

between people with and without type two diabetes, quantify MTNR1B protein levels, 

and consider multiple signalling pathways in various human tissues will help clarify these 

contradictions (356).  

Regardless of mechanisms, MTNR1B variants may influence how much melatonin 

ingestion acutely worsens oral glucose tolerance. Morning melatonin administration to 

healthy lean young women increased glucose AUC responses to a subsequent oral 

glucose tolerance test about six times more in carriers of the risk allele (CG) than in 

women with no copies (CC) (357). In a study of 23 adults with two copies of the risk allele 

(GG) and 22 with two of the non-risk allele (CC), three months of melatonin 

supplementation reduced oral glucose tolerance test first-phase insulin responses in all, 

but melatonin inhibited insulin secretion more in those with the risk allele, particularly in 

the first 30 minutes (354). Interestingly, this MTNR1B type two diabetes risk variant has 

been associated with prolonged melatonin synthesis duration and delayed melatonin 

offset phase in humans, without affecting objectively measured sleep. If melatonin 

indeed inhibits glucose-stimulated insulin secretion, it is plausible that extended 

melatonin synthesis into waking could contribute to type two diabetes risk, particularly 

among carriers with early sleep times (358).  

Collectively, studies on the metabolic roles of melatonin suggest that 1) melatonin may 

be lower in type two diabetes; 2) melatonin has myriad beneficial effects on rodent 

physiology, but a shortcoming of studies is the use of nocturnal mammals and the large 

doses used; 3) long-term melatonin may benefit some metabolic processes and sleep in 

humans, but studies have had design issues including small sample sizes; and 4) effects 

of melatonin treatment may be MTNR1B genotype-dependent. Many questions remain 

unanswered, however. Thus far, longer-term studies have mostly tested use of melatonin 

in small groups of people with metabolic diseases, but no well-powered, controlled trial 

has determined whether melatonin is an effective countermeasure against metabolic 

disease development. Diet is an important determinant of disease risk, yet no study of 

humans has assessed whether melatonin supplementation affects food intake, despite 

clear indications of its interrelationships with key appetite-regulating hormones such as 

leptin (359). Last, there is little evidence regarding how different participant 
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characteristics (including basal melatonin levels, MTNR1B genotype, and sex) influence 

responses to melatonin use. 

 

1.9 Aims 

The literature review showed that the circadian system, sleep, and diet have pivotal and 

interrelated influences on metabolic health. But the review also underscored numerous 

research questions that have not been well answered. This project is designed to 

address some of these questions, within the resource and time constraints imposed. 

Specifically:  

1) A limitation of many chrononutrition studies has been the use of dietary 

assessment methods that have not been validated. Some methods used have 

additional shortcomings, such as inability to record the timing of all dietary events 

and use of restricted food and drink databases. It is therefore my initial aim to 

help validate a tool that overcomes these limitations. 

2) Only one small study of a homogeneous group of young US adults has assessed 

whether diet timing relative to circadian phase (dietary phase angle) is associated 

with adiposity. Furthermore, relatively little is known about diet and sleep timing 

in UK adults. I intend to use the validated dietary assessment tool to 1) explore if 

dietary phase angle is associated with adiposity in a relatively representative 

group of UK adults, and 2) more accurately describe the timing of dietary events 

in relation to sleep in these people. 

3) No studies have concurrently reported on associations between sleep duration 

and nutrient intakes, as well as sleep duration and objective measures of 

metabolic health in UK adults. This knowledge gap will be addressed using a 

large, publicly available dataset. 

4) If the circadian system and sleep influence diet and metabolic health, what will 

be the effects of an intervention to align the circadian system and improve sleep 

in people at above average risk of type two diabetes? As yet, no well-powered, 

controlled trial has determined whether 1) melatonin supplementation is an 

effective countermeasure against metabolic disease development, or 2) 

melatonin affects food intake.  
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Chapter 2: Validation of myfood24, an online dietary recall tool suited to 

chrononutrition studies 

 

2.1 Chapter overview 

Changes in eating behaviours contribute to the development of many non-communicable 

chronic diseases. Numerous studies have reported that sleep patterns influence dietary 

choices. However, many of these studies have used dietary assessment methods that 

have not been validated against biomarkers of dietary intakes, and accurate dietary 

measurement is essential to understanding how diet influences health. Monitoring trends 

in diet is rife with issues, such as use of onerous diet recording methods, inaccurate 

participant diet recollections, and staying current with the wealth of food and drink 

choices available nowadays. Several commonly used dietary recall methods have not 

kept pace with the digital revolution we are experiencing, so novel methods using widely 

available technologies may improve usability and hence compliance. Furthermore, as it 

is increasingly clear that when we eat influences metabolic responses to consumption of 

a given food, another limitation of numerous dietary recall methods is their failure to 

document diet timing. As the primary aim of this project is to better understand 

interactions between sleep, diet, and metabolic health in UK adults, a user-friendly diet 

recall method designed specifically for this population that also documents diet timing 

would be very useful. Especially if the method is known to provide valid estimates of 

dietary intakes.  

The purpose of the work in this chapter was therefore to test the validity of measure your 

food on one day 24-hour recall (myfood24), an online dietary recall tool developed 

specifically for use with UK adults. myfood24 was compared with the interviewer-

administered 24-hour recall method, the gold standard but burdensome approach often 

used in nutritional epidemiology. To this end, 212 UK adults completed up to three series 

of one myfood24 recall and one interviewer-administered recall (recalls took place within 

four days of each other). There was approximately two weeks between each series. 

Biomarkers of nutrient intakes were compared with estimated dietary intakes: urinary 

nitrogen with dietary protein, urinary sugar with total dietary sugar, urinary potassium 

with dietary potassium, urinary sodium with dietary sodium, and energy expenditure 

(estimated by combining indirect calorimetry with accelerometry) with energy intake 

(assuming energy balance). I was responsible for the laboratory analyses of urinary 

nitrogen and sugars. Results of the two dietary recall methods were largely similar and 

better than findings reported for frequently used food frequency questionnaires. This 

chapter therefore supports the rationale to use myfood24 to explore interactions between 

sleep, diet, and metabolic health in subsequent chapters of this project.  



65 
 

 

 

2.2 Background 

Longstanding interest in dietary measurement is evidenced by dietary assessment 

reports published as far back as the 1930s (360). Even then, people understood that 

accurate dietary assessment is essential to understanding how diet influences disease 

risk (361). Much progress has since been made, but certain limitations of dietary recall 

methods may be inevitable. Some participants, for example, are self-conscious about 

their diets and hence misreport. In other instances, people forget to record some foods 

and drinks they consumed, and not all study participants can always record their intakes, 

even if they intend to.  

To this day, however, many widely used dietary assessment methods share important 

limitations, one of which is use of methods that are particularly burdensome for 

participants, hence reducing compliance with dietary recording. Many frequently used 

recall methods are also time-consuming for researchers and are therefore expensive. 

Another issue with some methods is limited food and drink databases that often do not 

have items commonly consumed by a study’s participants. Indeed, the Food Marketing 

Institute estimated that there were on average 42,000 items stocked in UK supermarkets 

in 2014. Yet the most widely used food composition tables in the UK (McCance and 

Widdowson’s) contain less than a tenth of this number of items (362). Moreover, few 

dietary assessment methods are updated frequently to include new items.  

Arguably a primary problem with popular dietary assessment methods is their validity. 

Food frequency questionnaires (FFQs) have become widely used as a convenient 

dietary assessment method in nutritional epidemiology since first appearing in the 1960s 

(363). Despite their popularity, however, FFQs are based on many assumptions, such 

as the types and consumption frequencies of food choices. As a result, comparison with 

biomarkers of energy expenditure (doubly-labelled water) and dietary protein (urinary 

nitrogen) has shown that FFQs lack precision and often result in under-reporting (364). 

Numerous cross-sectional studies that have explored associations between sleep and 

diet have assessed diet using FFQs and rudimentary lifestyle questionnaires that have 

not been validated against biomarkers of dietary intakes (365). It is perhaps unsurprising 

that these studies have produced some conflicting findings in recent decades. 

A primary use of dietary biomarkers is as reference measures in validation studies of 

dietary assessment methods. There are currently four classes of dietary biomarkers: 

recovery, predictive, concentration, and replacement. (I will not discuss the latter as they 

were not used in this study.) Recovery biomarkers are the gold-standard and include 

urinary nitrogen (for dietary protein), urinary potassium (for dietary potassium), and 
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urinary sodium (for dietary sodium). Assuming metabolic balance between intake and 

excretion over a given period, recovery biomarkers can be used to estimate true dietary 

intakes with impressive accuracy, as exemplified by an early study of eight adults that 

reported a correlation coefficient between urinary nitrogen and dietary protein of 0.99 

over a 28 day period (366). Shorter urine collection periods of course result in lower 

correlations, but accuracy remains high, especially when the completeness of the urine 

sample is verified (367). Para-amino benzoic acid (PABA) is commonly used to verify 

urine sample completeness, as PABA is actively absorbed, > 85% of PABA is typically 

excreted in urine within 24 hours, and urinary PABA is proportional to the dose ingested  

(368). Like nitrogen, urinary potassium and sodium biomarkers continue to be widely 

used to validate various dietary assessment methods (369, 370). 

Dietary sugars include monosaccharides like fructose and disaccharides like sucrose, 

the sum of which is total sugars. Extrinsic sugars (those added during the processing or 

preparation of foods) are common ingredients in less healthy foods and drinks, and 

excessive sugar intake has sometimes been associated with various metabolic diseases 

(371). Importantly, however, sugar intakes are often misreported (372). Biomarkers of 

sugar intakes are therefore useful both as proxies of sugar intakes and in validating 

dietary assessment methods, and urinary fructose and sucrose are predictive 

biomarkers of total sugar intake.  

Predictive biomarkers are sensitive to changes in intake over time, but unlike recovery 

biomarkers predictive biomarkers also have some intake-related, person-specific bias 

that is accounted for using calibration equations from controlled feeding studies (372). 

Furthermore, only a very small proportion of intake is present in urine (urinary fructose 

and sucrose comprise ~ 0.05% of total sugar intake) (373), which may particularly 

strongly reflect extrinsic sugar intake (374). The small amount of urinary fructose 

includes dietary fructose and fructose from cleavage of sucrose by the liver. A small 

proportion of sucrose that is not hydrolysed in the small intestine enters the circulation 

and is then excreted in urine. Urinary glucose, however, is mostly reabsorbed in the 

kidneys and is not reflective of dietary intakes. For this reason, urinary sugar 

concentration is the sum of urinary fructose and urinary sucrose alone, and when I refer 

to urinary sugars henceforth I am specifically referring only to total fructose and sucrose.  

It should be noted that people with particular characteristics may be less likely to 

accurately report their dietary intakes. This is true of people with higher body mass 

indices (BMIs), for example (375). Importantly, a controlled feeding study found that BMI 

does not influence the accuracy of urinary fructose and sucrose as predictors of total 
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sugar intake, showing that these biomarkers appear to be quite robust and are hence 

useful for various applications (376). 

The concentrations of nitrogen and sugars in urine reflect short-term intakes of protein 

and sugars, respectively. Other dietary nutrients are turned over more slowly, however, 

so biomarkers of these nutrients reflect intakes over longer timeframes. This is true of 

concentration biomarkers of vitamin intakes, such as β-carotene, vitamin C, and α-

tocopherol in plasma. Concentration biomarkers cannot be used to estimate true intakes, 

but biomarker concentrations do correlate with dietary intakes (377). (Note that I refer to 

reference measure estimates of intakes as ‘true’ intakes for brevity, but I recognise that 

the reference measure estimates do not perfectly reflect true intakes.) At present, few 

dietary biomarkers are available, so combining different classes of dietary biomarkers is 

a useful way to comprehensively assess the validity of a dietary assessment method in 

measuring several nutrients. Few studies have used this approach yet, however (378), 

in part because of the costs and practicalities of doing so. 

Countries such as the UK are undergoing a digital revolution in which technology is 

advancing at an unprecedented rate. In 2016, 86% of UK adults had home internet 

access (379). To attempt to stay current with societal trends, various digital dietary recall 

methods have become available recently. Many novel methods are internet-based 

(DietDay (380), for instance), downloadable app-based (such as e-DIA (381)), camera-

based (The Remote Food Photography Method (382), for example), wearable (383), or 

some combination thereof (384). Most online 24-hour recall methods are based on the 

multiple-pass method of Moshfegh and colleagues (385), including the Automated Self-

Administered 24-hour recall (ASA24®) (386). As of March 2017, the ASA24® had been 

used in over 3,000 studies and has been adapted for use in the US, Canada, and 

Australia (387). INTAKE24 is a similar tool recently developed for use in the UK (388). 

Other online recall methods designed for use in the UK are FFQs, such as the Oxford 

WebQ questionnaire that has been used by more than 200,000 participants in the UK 

Biobank project.  

Online recall methods are either self-administered or interviewer-administered, with a 

participant recalling items to an interviewer who then uses the tool to collect and analyse 

the data. Although dependent on technology readiness, the majority of participants 

appear to prefer new digital recall methods to more traditional interviewer- and paper-

based methods (389, 390). And new methods may not only be preferred by participants, 

as online methods make it far easier to collect dietary data from many geographic 

locations and may be less administratively burdensome for researchers. Before new 

digital recall methods become widely used, however, it is first necessary to compare their 
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validity with more established recall tools. One way to ensure that the new tool accurately 

represents true dietary intakes is by concurrently testing the validity of both the 

established and novel methods against biomarkers of dietary intakes. 

measure your food on one day 24-hour recall (myfood24) is an online recall tool that was 

designed in response to the many difficulties that complicate accurate dietary 

assessment. myfood24 development has been described in detail (391). myfood24 is 

well suited to large-scale epidemiological studies. As it is self-administered, myfood24 

removes the need for interviews, which are time-consuming and hence costly for 

researchers. Some recall methods still require manual food coding, but this is automated 

in myfood24. With a similar structure to the US Automated Multiple-Pass Method, 

myfood24 reduces the likelihood of omitting commonly forgotten items by allowing users 

to make initial lists of items consumed and by prompting for commonly forgotten foods. 

myfood24 users are both guided by portion size photographs in ~ 6,000 instances but 

also free to select atypical portion sizes if they wish. Notably, digital portion size images 

may improve portion size estimation accuracy (392).  

Most digital dietary recall methods currently used were not developed specifically for UK 

participants (INTAKE24 is an exception). To address this, myfood24 development was 

an iterative process that was refined by feedback from focus groups comprising UK 

citizens of a broad age range (391). And not only is the myfood24 user interface designed 

to be intuitive for its target users, the myfood24 database also has back of pack nutrient 

information for > 50,000 branded UK food products, far more than any other online tool 

to date (378). Detailed search and recipe builder functions let myfood24 users 

seamlessly combine items into meals they consume. As participants enter times of 

consumption for each item, myfood24 is particularly useful in temporal profiling of dietary 

patterns. myfood24 provides detailed nutrient profiles for items consumed, including up 

to 120 nutrients. Finally, myfood24 was designed to have as few separate web pages, 

pop-ups, and prompts as possible to enhance simplicity and recall speed. 

Given the numerous advantages of myfood24, we sought to validate the tool against 

biomarkers of dietary intakes and compare its performance with the gold-standard 

dietary assessment method, the interviewer-administered multiple-pass 24-hour recall 

method (MPR) (385). 

 

2.3 Methods  
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2.3.1 Participants 

The study was approved by the West London Research Ethics Committee (number 

14/SC/1267) and was conducted in accordance with the Declaration of Helsinki. 

Participants gave written informed consent. Participants were intended to be 

representative of the UK adult population, and inclusion criteria were English speaking, 

non-pregnant, weight-stable, literate 18 to 68-year-old adults with internet and telephone 

access.  

Participants were recruited through the North-West London Primary Care Research 

Network, a group of primary care professionals and practices that previously showed 

interest in participating in research projects. In addition, posters advertising the study 

were put up in the National Institute of Health Research/Wellcome Trust Clinical 

Research Facility at Hammersmith Hospital (Imperial College Healthcare NHS Trust, 

London, UK), and the Clinical Research Facility contact list was used to contact potential 

participants. A list of local addresses was also obtained from the post office, with 

prospective participants receiving postal invitations to take part. Participants received a 

financial reward on completion of the study (£100) as compensation for their time.  

 

2.3.2 Study Design 

Participants first completed a health screening visit at the Clinical Research Facility. On 

arrival at the facility participants were weighed using scales after voiding. Height was 

measured using a stadiometer (Seca, Hamburg, Germany), adiposity was estimated 

using bioelectrical impedance analysis (Tanita Corporation, Tokyo, Japan). Waist (level 

with the naval) and hip (at the largest diameter of the hips) circumferences were 

measured using tape measures, and cardiac function was assessed by 

electrocardiography. Participants rested supine for ~ 30 minutes, during which blood 

pressure was measured using a digital monitor. At this visit participants filled in a general 

health and lifestyle questionnaire, the SCOFF questionnaire (to exclude individuals with 

eating disorders) and a technology readiness questionnaire. A 22 ml blood sample was 

taken for analysis of immune function, kidney function, liver function, and blood lipids. 

After screening, participants completed a series of dietary recalls using both myfood24 

and the MPR three times, each of which occurred shortly after collecting reference 

measures (including energy expenditure estimates and biomarkers of nutrient intakes). 

Recalls were completed in a randomly allocated order, as determined by an orthogonal 

Latin square design. There were at least two weeks between series of recalls. In each 

series, biomarker measures were first made, one of the dietary recall methods followed 

the day after, and the other dietary recall method came about two to four days thereafter. 
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In this way, roughly half of dietary recalls were for biomarker measurement days. To 

avoid learning effects that often happen when the test and reference method are used 

for the same day, recalls were separated by two to four days, and the three cycles of 

recalls were separated by roughly two weeks (Figure 2.1).  

 

 

Figure 2.1. Study design overview.  

After screening for eligibility, reference measures (energy expenditure estimates and 

dietary biomarkers) were collected for each participant up to three times. The day after 

each set of reference measures, participants completed a dietary recall using either the 

interviewer-administered multiple-pass 24-hour recall method or myfood24 (‘A’ recall 

days). Participants were randomised to determine whether they completed an 

interviewer-administered multiple-pass 24-hour recall or a myfood24 recall at ‘A’ recall 

days. Participants then completed another recall two to four days later (‘B’ recall days) 

using the method not used at the previous (‘A’) recall. 

 

2.3.3 Urinary biomarkers 

Urinary biomarkers were measured the day before study centre visits. Participants 

collected urine in 4-L containers for 24 hours (after the first void of the day up to and 

including the first void of the following day).  Participants were asked to take 3 x 80 mg 

PABA tablets with meals (at ~ 08:00, 13:00 and 18:00) on urine collection days, and to 

record missing voids, spillages, and supplement and medication use. Participants were 
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instructed to store the urine containers in a cool place. Participants returned samples on 

the same day, volume was measured, and ~ 500 ml of each urine sample was stored at 

–20 °C as 50-ml aliquots.  

Samples were then transported to the Molecular Epidemiology Unit at the University of 

Leeds. Here samples were verified for completeness by a coinvestigator who measured 

PABA by high performance liquid chromatography (HPLC) (368). An ADVIA 2400 

Clinical Chemistry System (Siemens AG, Munich, Germany) with ion-selective electrode 

detection was used to measure urinary potassium and sodium concentrations. This was 

completed at the Clinical Biochemistry Department in the Leeds Teaching Hospitals NHS 

Trust.  

 

2.3.3.1 Urinary nitrogen 

To assess the accuracy of reported dietary protein intakes, I analysed urine samples for 

nitrogen using the Kjeldahl method. The method comprises three primary steps: 

digestion, distillation, and titration (Figure 2.2).  

 

 

Figure 2.2. The Kjeldahl method.  

QC (quality control). 
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First, polypeptides in the sample were digested into more simple chemicals (including 

ammonia), using heat, acid, and a catalyst. Specifically, 1 ml urine was digested using a 

digestion block (FOSS TecatorTM, DK-3400 Hilleroed, Denmark) with 12 ml of 95 to 97% 

sulphuric acid at 420 °C for 70 minutes, using 7 g K2SO4 and 0.8 g CuSO4  x 5H20 as a 

catalyst to oxidise urea to ammonium sulphate. Next, the ammonia was separated from 

the digestion mixture by distillation. In this step, raising the pH by adding an alkali solution 

(40% NaOH) changes ammonium ions from a liquid to a gas that is captured in a boric 

acid receiving solution, forming ammonium borate. Ammonia was then distilled with a 

2% boric acid indicator solution (Reagecon Tecator Mixed Indicator TECMXI01) using a 

KjeltechTM 8400 Analyzer Unit (FOSS, DK-3400 Hilleroed, Denmark). Finally, ammonium 

borate was titrated with an acid (0.1 M HCl) until a colour change.  

Sample nitrogen concentration was then quantified: Approximately 81% of nitrogen is 

excreted through urine, and nitrogen comprises ~ 16% of protein (366). So, after 

adjusting for the volumes of the participants’ 24-hour urine samples, results were divided 

by 0.81 and then multiplied by 6.25 to estimate 24-hour dietary protein intakes.  

Before beginning sample analysis, I determined the sensitivity of the method using 4-fold 

serial dilutions of a stock urea solution containing 80 mg nitrogen/ml water, such that the 

most dilute solution contained 0.0048 mg/ml water. I aliquoted a urine quality control 

sample, 1 ml of which was also included with every run to confirm consistent nitrogen 

recoveries within the urine matrix. I also aliquoted three other urine quality controls: 1 ml 

of each of these other quality controls was included every 10 runs to ensure consistent 

nitrogen recoveries in a range of urine matrices. I reanalysed samples in instances where 

controls fell outside 2 SDs from the mean. During analysis of myfood24 samples, I also 

used 2 x 100 mg ammonium sulphate samples to check nitrogen recoveries each day 

before analysing participant samples, as well as a 100 mg urea sample alongside each 

run of participant samples. Again, I reanalysed samples in instances where these fell 

outside 2 SDs from the mean. 

 

2.3.3.2 Urinary sugars 

To assess the accuracy of reported dietary sugar intakes, I quantified urinary fructose, 

glucose, and sucrose using a colourimetric enzymatic assay (R-Biopharm sucrose/D-

glucose/D-Fructose, An der neuen Bergstraße 17 64297 Darmstadt, Germany). To 

increase assay throughput and reduce costs, I modified this method from using cuvettes 

to a 96-well plates and a microplate reader. To accommodate the smaller wells in 

comparison to cuvettes, I simply used 10-fold smaller volumes of solutions used in the 
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cuvette assay (final volume reduced from 3.02 ml per cuvette to 302 µl per well). The 

method was otherwise as per the manufacturer’s instructions.  

In this method, I first made a series of dilutions to produce standards from 1 to 150 mg/L 

for each sugar. Dilutions were made at the start of each day to avoid potential issues 

with deterioration of standards. Standards (Sigma-Aldrich, St. Louis, Missouri, US) for 

each sugar were included in duplicate on each plate. Standards comprised 2-fold serial 

dilutions of fructose, glucose and sucrose stock solutions (each containing 0.8 mg 

sugar/L water), such that the most dilute solution contained 1 mg sugar/L water. I 

included these standards in duplicate with each run. Changes in optical densities for 

standards were plotted against their known concentrations, and the resultant linear 

regression equations were used to estimate urine sample sugar concentrations. 

Regarding urine, each sample required two wells per measurement. In one of these wells 

(sucrose wells), sucrose was hydrolysed and D-glucose concentration was then 

determined. In the other (glucose and fructose wells), D-glucose was first measured 

before D-fructose concentration was determined. The concentrations of D-glucose and 

sucrose were then determined by comparing D-glucose concentrations in the sucrose 

wells to D-glucose concentrations in the glucose and fructose wells. All solutions and 

incubations were stored at 20 to 22 °C, unless otherwise indicated. In more detail: 

1) In the sucrose wells only, sucrose was first hydrolysed by a solution (raised to 37 

°C) containing β-fructosidase in a citrate buffer (pH 4.6): 

Sucrose + H2O ─ β-fructosidase→ D-glucose + D-fructose 

2) Next, D-glucose concentration was measured in both the sucrose wells as well 

as the glucose and fructose wells. Optical density was measured using a 

microplate reader (wavelength 340 nm) before addition of the catalysts. In the 

first part of this step, hexokinase (pH 7.6) catalysed the phosphorylation of D-

glucose to D–glucose-6-phosphate (G-6-P): 

D-Glucose + ATP ─hexokinase→ G-6-P + ADP 

Next, glucose-6-phosphate dehydrogenase (G6P-DH) catalysed the oxidation of 

G-6-P by nicotinamide adenine dinucleotide phosphate (NADP, in a 

triethanolamine buffer (pH 7.6)), forming D-gluconate-6-phosphate: 

G-6-P + NADP+ ─G6P-DH→ D-gluconate-6-phosphate + NADPH + H+ 

The NADPH formed in this reaction is stoichiometric to the concentration of D–

glucose, producing a colour change that was measured using a microplate reader 

(wavelength 340 nm). 
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3) Finally, D-fructose concentration was determined in the glucose and fructose 

wells only. In this step, D-fructose-6-phosphate was converted to G-6-P by 

phosphoglucose isomerase: 

F-6-P ─phosphoglucose isomerase→ G-6-P 

The G-6-P now reacted with NADP once more, as before: 

G-6-P + NADP+ ─G6P-DH→ D-gluconate-6-phosphate + NADPH + H+ 

And this time the NADPH formed was stoichiometric to the concentration of D–

fructose, producing a colour change that was measured using a microplate 

reader (wavelength 340 nm). 

Dilutions were made if a sample's concentrations exceeded the range of the standard 

curve. Urinary sugars (the sum of fructose and sucrose) were then used to estimate total 

dietary sugar intakes by multiplying concentrations by sample volumes and then using 

the calibration equation from a controlled feeding study that accounts for age and sex of 

each participant (393). I aliquoted a urine quality control sample that was included with 

each run to assess the consistency of sugar recoveries within the urine matrix. I 

reanalysed samples in instances where controls were beyond 2 SDs from the mean. 

Before sample analysis, I contacted other scientists who had used the assay in 96-well 

plates. Dr Johanna Lampe did the urinary sugars laboratory analyses for Dr Natasha 

Tasevska and kindly sent me the protocol they used. The protocol was the same as the 

manufacturer’s methods, other than the following modifications: 1) samples were 

vortexed and adjusted to pH 8, 2) samples were mixed for five minutes (not three) before 

measuring optical density the first time, and 3) 4.5 µl (not 2 µl) of Suspension 3 (contains 

hexokinase and G6P-DH, used in the final step of D-glucose determination) and 

Suspension 4 (contains phosphoglucose isomerase, used in the final step of D-fructose 

determination) was used. I compared results for a series of standards (from 1 to 80 mg/L) 

using this method to the manufacturer’s method. Once I had chosen which method to 

use, I spiked quality control urine samples, replacing half the normal quality control 

volume with a 0.4 g/L solution of each sugar to ensure that the assay detected known 

quantities of each sugar within urine matrices.  

 

2.3.3.3 Urinary potassium and sodium 

An ADVIA 2400 Clinical Chemistry System (Siemens AG, Munich, Germany) with ion-

selective electrode detection was used to measure urinary potassium and sodium 

concentrations. This was completed at the Clinical Biochemistry Department in the Leeds 

Teaching Hospitals NHS Trust. To estimate dietary potassium and sodium intakes, it was 

assumed that 80% of potassium and 86% of sodium is excreted. Therefore, urinary 
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potassium was divided by 0.8 and urinary sodium by 0.86, as per previous studies (394, 

395). 

 

2.3.4 Energy expenditure 

Energy expenditure data were collected and processed by colleagues at Imperial College 

London. On urinary biomarker collection days each participant also wore an 

accelerometer (SenseWear; BodyMedia Inc., Pittsburgh, US) for ~ 24 hours on the 

midline of the left triceps brachii to measure physical activity. Participants were instructed 

to only remove the armbands when bathing. The accelerometers measure triaxial 

acceleration, galvanic skin response and skin temperature to estimate physical activity 

level and metabolic equivalents using the manufacturer’s proprietary algorithms.  

The day after physical activity measurement, participants rested semi-supine for ~ 30 

minutes, during which open-loop indirect calorimetry (GEM Nutrition Ltd., Daresbury, 

Cheshire, England) was used to measure resting energy expenditure (REE). After 

calorimeter calibration, VO2 and VCO2 were recorded every minute for 15 minutes. The 

first five minutes of data were discarded to allow stabilisation of measures, and the mean 

values of the last 10 minutes were used to calculate REE using a previously described 

equation (396). Ambient temperature was maintained at ~ 21 °C during all 

measurements. Activity energy expenditure (estimated from the accelerometry data) was 

multiplied by REE. An assumed diet-induced thermogenesis of 10% of total energy 

expenditure (TEE) (397) was added to estimate TEE. This method of estimating TEE 

has close agreement with TEE measurement by doubly-labelled water (398), the gold-

standard TEE biomarker. Participants whose bodyweights changed by > 5% during the 

study were excluded, and it was otherwise assumed that participants were in energy 

balance. TEE was therefore used as a proxy of energy intake. 

 

2.3.5 Plasma biomarkers 

On REE measurement days coinvestigators also collected a 40 ml blood sample into 

lithium heparin tubes from each participant for biomarker analysis. Samples were 

centrifuged at 2,000 x g for 10 minutes, and plasma aliquots were collected and stored 

at -80 °C. Aliquots were then transported to the University of Leeds on dry ice, where 

HPLC was used to measure plasma concentrations of β-carotene, total vitamin C 

(ascorbic acid and dehydroascorbic acid), and vitamin E (α-tocopherol) in the Molecular 

Epidemiology Unit. Detection wavelengths were 452nm for β-carotene, 270nm for 
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ascorbic acid, and 292nm for α-tocopherol. A detailed description of these methods has 

been published previously (399).  

 

2.3.6 Dietary recalls 

Participants were instructed to recall all foods and drinks consumed the previous day for 

both recall methods. Participants completed up to three MPRs. These recalls were by 

telephone and were led by trained personnel. The interviewer used a standardised script 

with a prompt sheet based on the 5-step multiple-pass method of the US Automated 

Multiple-Pass Method (385). Dietary intakes were then estimated using Dietplan 6.7 

software (Forestfield Software, Horsham, UK) in conjunction with McCance and 

Widdowson’s Composition of Foods tables (sixth edition) (400). Trained coders mapped 

the foods and drinks recorded to McCance and Widdowson's The Composition of Foods 

integrated dataset using a standardised protocol described previously (401). 

Participants were sent e-mail invitations with links to complete myfood24 recalls on three 

occasions. Participants had access to frequently asked questions and online videos 

while using myfood24 (https://www.youtube.com/channel/UCpbMxRnEK0lK8AcSJbg-

bPA).  

 

2.3.7 Statistical analyses 

For this chapter I tested whether urinary nitrogen and total sugars and their 

corresponding myfood24 dietary measures (protein and sugar intakes, respectively) 

differed by participant characteristics. I used independent t-tests to determine if 

outcomes differed by sex and one-way ANOVAs to test if outcomes differed by age and 

BMI. For independent t-tests and one-way ANOVAs I used dot plots to identify any 

unfeasible values, QQ plots to assess normality of distribution in each category, and SDs 

to check homogeneity of variances. (Variances were considered homogeneous if SDs 

differed by a factor of < 2.) Bonferroni correction was used for post-hoc testing of one-

way ANOVAs. Data that remained positively skewed after log-transformation were tested 

using the non-parametric Mann-Whitney and Kruskal-Wallis tests, as appropriate. p 

values ≤ 0.05 were considered significant. My statistical analyses were completed in 

Stata version 13 (Texas, US). 

Given the complexity of the study, all of the main statistical analyses for the validation 

study were completed by a specialist biostatistician. I did not partake at all in the following 

analyses. Assuming similar parameters to the EPIC Norfolk and OPEN studies (402, 

403), power calculations indicated that a sample size of 200 would allow the attenuation 

https://www.youtube.com/channel/UCpbMxRnEK0lK8AcSJbg-bPA
https://www.youtube.com/channel/UCpbMxRnEK0lK8AcSJbg-bPA
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factor for protein intake to be estimated to about ± 0.08. (The attenuation factor is usually 

a value between zero and one that indicates how well each dietary recall method detects 

diet–disease relationships. Lower attenuation factors indicate greater attenuation of diet-

disease associations, biasing estimates of disease closer to one and therefore requiring 

larger sample sizes to compensate for lower statistical power.) Furthermore, a sample 

size of 200 would allow the correlation between myfood24 and estimates of true long-

term intakes to be estimated to about ± 0.1. (Correlation is a measure of the loss of 

statistical power to identify diet-disease associations when using reported rather than 

true intakes.) This would also allow the mean difference between the MPR and myfood24 

to be estimated to about ± 0.4 g nitrogen.  

Other than participants with two or more missing urine voids during a 24-hour collection 

period (404), all participants were included in analyses. The main analysis was of long-

term intakes. Attenuation factors and partial correlation coefficients between each dietary 

assessment tool and estimated long-term intakes (measuring the loss of power and 

attenuation of log relative risks between intake categories) were estimated from 

structural equation models. The models used the method of maximum likelihood and 

assumed that 1) multivariate data distributions were normal after log-transformation, and 

2) any missing observations were missing at random. The models estimate the bias in 

each dietary assessment tool compared to reference measures based on mean self-

reported intakes over the replicates for each participant minus the means over the 

replicates for the biomarkers. Another assumption the project statistician made was that 

of two systematic components of dietary measurement error: 1) positive correlation 

between true intake and error and 2) person-specific bias that is independent of intake 

(405). The data were back-transformed and are expressed as a percentages. This is the 

equivalent to the mean difference in the Bland-Altman approach (406). 

Intraclass correlation coefficients (ICCs) for absolute agreement between estimated 

intakes and the concentration biomarkers (β-carotene, total vitamin C, and vitamin E) 

were derived from two-way mixed effects models (dietary assessment method as the 

fixed effect). To allow for different responses for the two dietary assessment tools, a 

subject-by-method interaction test was included. The variance of random coefficients 

was allowed to vary. This was also true of measurement error variances between 

methods. The analysis focussed on individual 24-hour periods rather than averages of 

the three time periods (407-409). 

The mean differences in estimates between the dietary assessment methods (an 

estimate of relative bias) are also presented for nutrients without biomarkers, as well as 

estimated limits of agreement (a proxy of precision) (406).  
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Sensitivity analyses were completed including only participants with complete PABA 

recovery (85-110%) and also adjusting urinary nitrogen, potassium, and sodium to 93% 

PABA recovery if recovery was 50-85% (410). To determine whether participant 

characteristics influenced how robust results were, analyses were also repeated after 

stratification by age, BMI, and sex. Finally, to determine if repeated recalls improve 

estimates of long-term intakes, attenuation factors and correlations were estimated for a 

series of two, four, or seven administrations of myfood24, using a previously published 

approach (411). 

Data were log-transformed for analyses to normalise their distribution. The main 

statistical analyses were completed in Stata version 14.2 (Texas, US). 

 

2.4 Results  

In total, 19% of people contacted through Clinical Research Facility lists responded and 

4% of people contacted by post responded. Of the 289 respondents invited, 243 attended 

and were deemed eligible during the screening visit. During the study, 31 participants 

then withdrew. At least one dietary recall for each of the recall methods was completed 

by 212 participants (Table 2.1 shows participant characteristics).  

 

Table 2.1. Participant characteristics. 

Characteristic Men (n = 85) Women (n = 127) 

Age 43 ± 15 44 ± 16 

Body mass index (kg/m2) 26 ± 4 25 ± 5 

Race (% white) 74% 72% 

Smoking (% current smoker) 14% 10% 

Data are means ± SDs. 

 

There were 12 x 24-hour collection periods (accounted for by 11 of the participants) at 

which more than one urine sample was missed. Urine biomarker results from these 

collection periods were excluded from the main analysis, but no participants were 

excluded entirely from the main analysis because samples were collected up to three 

times. Weight changed substantially (> 5% weight change from first clinic appointment) 

in six participants, and energy expenditure results for these participants were excluded 

from the main analysis. 
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2.4.1 My laboratory analyses and the corresponding dietary outcomes 

 

2.4.1.1 Urinary nitrogen and dietary protein 

The most important preliminary check I made was of the sensitivity of the urinary nitrogen 

method. This confirmed consistently accurate detection in concentrations ≥ 0.0195 

mg/ml (Figure 2.3), well below the lowest concentration of any sample analysed (0.91 

mg/ml).  

 

 

Figure 2.3. Kjeldahl nitrogen detection sensitivity analysis.  

Nitrogen was accurately detected in concentrations ≥ 0.0195 mg/ml. Data are means of 

four runs, error bars are SDs. 

 

During analysis of myfood24 samples, the inter-assay CV of the pre-run nitrogen 

recovery check using ammonium sulphate was 0.6%, and the inter-assay CV of the urea 

sample included alongside samples each run was 1.0%. Urea sample nitrogen recovery 

was slightly below 100% (Figure 2.4).  
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Figure 2.4. Kjeldahl Levey-Jennings chart displaying inter-assay nitrogen 

recovery from a urea control.  

Light grey lines 1 SD from mean, dark grey lines 2 SDs from mean, dashed black line 

theoretical 100% recovery. 

 

The inter-assay CV of the primary urinary nitrogen quality control sample was 1.4% 

(Figure 2.5), and the inter-assay CVs of the three other urinary nitrogen quality controls 

that were included every 10 runs were 1.0% for the least concentrated, 2.7% for the 

intermediate concentration, and 0.6% for the most concentrated.  
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Figure 2.5. Kjeldahl Levey-Jennings chart displaying inter-assay reproducibility 

of nitrogen measurement in a control urine sample.  

Light grey lines 1 SD from mean, dark grey lines 2 SDs from mean, dashed black line 

mean recovery. 

 

Excluding samples that were reanalysed, I analysed 575 samples for nitrogen. Urinary 

nitrogen concentration data were positively skewed and so were log-transformed (Figure 

2.6). An independent t-test showed that urinary nitrogen concentration was lower in 

women than men (t(572) = -6.44, p < 0.001, urinary nitrogen and dietary protein intake 

descriptive data are summarised in Table 2.2). One-way ANOVA testing showed that 

urinary nitrogen concentrations differed between age groups (F(4,569) = 10.76, p < 

0.001). Post-hoc pairwise tests with Bonferroni correction showed that 18- to 27-year-

olds had higher urine nitrogen concentrations than 48- to 57-year-olds (p < 0.001) and 

58- to 68-year-olds (p < 0.001). Twenty-eight- to 37-year-olds tended to have higher 

urinary nitrogen concentrations than 58- to 68-year-olds (p = 0.02). And 38- to 47-year-

olds tended to have higher urine nitrogen concentrations than 58- to 68-year-olds (p = 

0.04). One-way ANOVA testing also showed that urinary nitrogen concentrations differed 

between BMI categories (F(2,552) = 4.65, p = 0.001). Post-hoc pairwise tests with 

Bonferroni correction showed that participants with BMIs ≥ 30 kg/m2  tended to have 

higher urinary nitrogen concentrations than both those with BMIs of 25 to 29.99 kg/m2 (p 

= 0.014) and those with BMIs < 25 kg/m2 (p = 0.013). 

 

 

Figure 2.6. Urinary nitrogen concentration data distribution in men (A) and 

women (B).  
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Table 2.2. Urinary nitrogen and dietary protein data according to participant characteristics. 

Characteristic Group Urinary 

nitrogen 

concentration 

(mg/L)a 

nb p value myfood24 

protein 

intake (g)a 

nb p value myfood24 

protein intake (% 

total energy)a 

nb p value 

Sex Females 4.83 (3.33, 6.85) 336 < 0.001 65 (50, 84) 320 < 0.001 15.7 (12.6, 19.8) 320 0.24 

Males 6.16 (4.45, 9.54) 238 87 (62, 113) 218 16.2 (13.5, 19.2) 218 

Age category  18 to 27 

years 

6.72 (4.60, 9.55) 127 < 0.001 73 (50, 107) 121 0.64 16.6 (13.5, 21.1) 121 0.41 

28 to 37 

years 

5.91 (3.87, 8.70) 97 63 (54, 97) 94 14.8 (12.4, 18.4) 94 

38 to 47 

years 

5.46 (4.09, 8.54) 76 78 (57, 102) 73 16.3 (12.2, 19.4) 73 

48 to 57 

years 

4.65 (3.22, 6.75) 139 73 (53, 92) 125 15.9 (12.9, 19.6) 125 

58 to 68 

years 

4.64 (3.31, 6.35) 135 71 (57, 92) 125 15.7 (12.9, 19.4) 125 

BMI category 18 to 24.99 

kg/m2 

5.26 (3.57, 7.66) 281 0.001 67 (51, 89) 261 0.002 15.4 (12.4, 18.5) 261 0.001 

25 to 29.99 

kg/m2 

5.07 (3.75, 7.46) 195 79 (60, 106) 189 17.1 (13.3, 20.6) 189 

≥ 30 kg/m2 6.21 (4.54, 

10.03) 

79 77 (59, 98) 70 14.7 (12.6, 19.2) 70 
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Legend: BMI (body mass index). 

aValues are medians (quartile 1, quartile 3) because data were positively skewed. 

bNumbers differ because not all participants with nitrogen data also had all dietary and descriptive data recorded by coinvestigators.
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Protein intake data (g per day) were positively skewed and so were log-transformed 

(Figure 2.7). An independent t-test showed that protein intake was higher in men than 

women (t(536) = -6.75, p < 0.001, data are summarised in Table 2.2). A one-way ANOVA 

test showed that dietary protein intake did not differ between age groups (F(4,533) = 

0.64, p = 0.64). Another one-way ANOVA test showed that dietary protein intake differed 

between BMI categories (F(2,517) = 6.48, p = 0.002). Post-hoc pairwise tests with 

Bonferroni correction showed that participants with BMIs of 25 to 29.99 kg/m2 had higher 

dietary protein intake than those with BMIs < 25 kg/m2 (p = 0.001). 

 

 

Figure 2.7. Dietary protein intake data distribution in men (A) and women (B).  

 

Protein intake data (% daily energy intake) were positively skewed and so were log-

transformed (Figure 2.8). An independent t-test showed that protein intakes (% daily 

energy intake) did not differ between sexes (t(536) = -1.17, p = 0.24, data are 

summarised in Table 2.2). A one-way ANOVA test showed that dietary protein intake (% 

daily energy intake) did not differ between age groups (F(4,533) = 0.99, p = 0.41). 

Another one-way ANOVA test showed that dietary protein intake (% daily energy intake) 

differed between BMI categories (F(2,517) = 4.66, p = 0.001). Post-hoc pairwise tests 

with Bonferroni correction showed that participants with BMIs of 25 to 29.99 kg/m2 had 

higher dietary protein intake (% daily energy intake) than those with BMIs < 25 kg/m2 (p 

= 0.01). 
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Figure 2.8. Dietary protein intake (% daily energy intake) data distribution in men 

(A) and women (B).  

 

Analysis of the contributions of each of the myfood24 food and drink categories to protein 

intake of all participants showed that, together, three categories (1) ready meals, 2) meat 

and poultry, 3) dairy and eggs) comprised more than half of dietary protein intake (Figure 

2.9). 
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Figure 2.9. Contributions of food and drink categories to protein intake (n = 550 

recalls, men and women combined).  

 

2.4.1.2 Urinary and dietary sugars 

For the sugars analysis, I first compared the methods of Dr Lampe to those of the 

manufacturer. The results were similar for fructose and glucose, but results for sucrose 

were superior using the manufacturer’s method (Figure 2.10). I therefore used the 

manufacturer’s method for sample analysis.  

  



87 
 

 

    

 

 

 

Figure 2.10. Urinary sugars method comparison.  

Results for standards of each sugar were compared using the manufacturer’s method (A 

to C) and a modified method (D to F). The modified method did not produce the expected 

curve for sucrose. 

 

The urine spiking experiments showed that known sugar quantities added to urine could 

be detected: spike recovery was 103 ± 10%. The fructose inter-assay CV was 31.6%, 

the glucose inter-assay CV 13.2%, and the sucrose inter-assay CV 66.1%.   
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Excluding samples that were reanalysed, I analysed 574 samples for urinary sugars. The 

limit of detection was 1 mg/L for fructose and 25 mg/L for sucrose. Samples below these 

limits were assigned values of half of the limits of detection. Fifteen samples exceeded 

a concentration of 200 mg/L. Of these, six samples were above 1,000 mg/L, and such 

large outliers meant that urinary sugar concentration data remained positively skewed 

after log-transformation (Figure 2.11). A Mann-Whitney test showed that urinary sugar 

concentration did not differ between the sexes (z = -1.11, p = 0.27, urinary and dietary 

sugar descriptive data are summarised in Table 2.3). A Kruskal-Wallis test showed that 

urinary sugar concentrations differed between the five age groups (χ2(4) = 46.18, p < 

0.001), with a mean rank of 346 in the 18- to 27-year-olds, 307 in the 28- to 37-year-olds, 

331 in the 38- to 47-year-olds, 252 in the 48- to 57-year-olds, and 228 in the 58- to 68-

year-olds. (Mean ranks are detailed because variances were heterogeneous between 

groups: higher ranks indicate higher urinary sugar concentrations.) Another Kruskal-

Wallis test showed that urinary sugar concentrations differed between the three BMI 

categories (χ2(2) = 13.66, p = 0.001), with a mean rank of 294 in the 18 to 24.99 kg/m2 

group, 244 in the 25 to 29.99 kg/m2 group, and 304 in the ≥ 30 kg/m2 group.  

 

 

Figure 2.11. Total (fructose and sucrose) urinary sugar concentration data 

distribution in men (A) and women (B). 
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Table 2.3. Total urinary and dietary sugar data according to participant characteristics.  

(Note that total urinary sugar comprises urinary fructose and urinary sucrose alone.) 

Characteristic Group Urinary sugar 

concentration 

(mg/L)a 

nb p value myfood24 

total sugar 

intake (g)a 

nb p value myfood24 total 

sugar intake (% 

total energy)a 

nb p value 

Sex Females 24 (17, 45) 336 0.27 71 (46, 99) 320 0.03 17.4 (12.5, 23.2) 320 0.03 

Males 25 (17, 51) 237 79 (51, 122) 217 15.3 (10.9, 21.5) 217 

Age category  18 to 27 

years 

33 (20, 64) 127 < 0.001 69 (49, 98) 121 0.28 15.0 (10.8, 22.9) 121 0.52 

28 to 37 

years 

27 (17, 51) 97 75 (46, 108) 94 16.8 (10.8, 21.4) 94 

38 to 47 

years 

29 (20, 56) 76 88 (53, 136) 73 17.1 (12.1, 23.9) 73 

48 to 57 

years 

21 (16, 36) 137 71 (47, 96) 123 16.1 (12.6, 21.3) 123 

58 to 68 

years 

20 (15, 34) 136 81 (53, 110) 126 18.3 (12.7, 23.2) 126 

BMI category 18 to 24.99 

kg/m2 

27 (18, 50) 281 0.001 77 (53, 112) 261 0.47 17.8 (13.0, 23.3) 261 0.03 

 25 to 29.99 

kg/m2 

21 (16, 38) 196 75 (46 to 

103) 

190 15.3 (10.8, 22.1) 190 

 ≥ 30 kg/m2 27 (17, 73) 77 70 (46, 106) 68 14.7 (11.6, 20.5) 68 

Legend: BMI (body mass index). 
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aValues are medians (quartile 1, quartile 3) because data were positively skewed. 

bNumbers differ because not all participants with biomarker data also had all dietary and descriptive data recorded by coinvestigators. 
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myfood24 dietary sugar intake data were positively skewed and so were log-transformed 

(Figure 2.12). An independent t-test showed that myfood24 dietary sugar intake tended 

to be lower in women than men (t(535) = -2.15, p = 0.03, data are summarised in Table 

2.3). One-way ANOVA testing showed that myfood24 dietary sugar intake did not differ 

between age groups (F(4,532) = 1.28, p = 0.28) or BMI categories (F(2,516) = 0.76, p = 

0.47). 

 

 

Figure 2.12. Total dietary sugar intake data distribution in men (A) and women 

(B).  

 

myfood24 dietary sugar intake (% daily energy intake) data were normally distributed 

(Figure 2.13). An independent t-test showed that myfood24 dietary sugar intake (% daily 

energy intake) tended to be higher in women than men (t(535) = 2.21, p = 0.03, data are 

summarised in Table 2.3). One-way ANOVA testing showed that myfood24 dietary sugar 

intakes (% daily energy intake) were not different between age groups (F(4,532) = 0.80, 

p = 0.52) but tended to differ between BMI categories (F(2,516) = 3.62, p = 0.03). 

However, post-hoc pairwise tests with Bonferroni correction showed that the difference 

between the most dissimilar groups (the lowest and highest BMI categories) was not 

quite significant (p > 0.06), perhaps because the Bonferroni correction is conservative. 
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Figure 2.13. Total dietary sugar intake (% daily energy intake) data distribution in 

men (A) and women (B).  

 

Analysis of the contributions of each of the myfood24 food and drink categories to sugar 

intake of all participants showed that, together, two categories (1) fruits and vegetables, 

2) cakes, biscuits, chocolates, and other snacks) comprised nearly half of dietary sugar 

intake (Figure 2.14). 

 

 

Figure 2.14. Contributions of food and drink categories to sugar intake (n = 550 

recalls, men and women combined).  
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2.4.2 Main analyses 

Table 2.4 shows the geometric means and 95% confidence intervals for protein, 

potassium, sodium, and total sugar intakes at the first clinic visit as assessed by the 

MPR, myfood24, and the reference measures. myfood24 estimates at the first clinic visit 

were similar to reference measures for protein, higher for potassium and sodium, and 

lower for total sugars and energy intake (compared to estimated TEE). Whereas the 

MPR overestimated protein intake, myfood24 protein intake was similar to estimated true 

protein intake, however. The MPR and myfood24 resulted in largely similar results. 

myfood24 resulted in slightly lower estimates of nutrient intakes, as well as lower 

estimates of nutrient densities (the ratio (%) of energy from each nutrient relative to total 

energy), with the exception of sodium. Differences between the recall methods and the 

reference measures indicated that the recall methods overestimated potassium and 

sodium intakes and underestimated total sugar and energy intakes. Recall method 

results for nutrient intakes were slightly better than those for energy intake and nutrient 

densities. Other than sugars, myfood24 nutrient densities were higher than the reference 

measures because myfood24 energy intakes were lower than reference measure 

estimates. 
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Table 2.4. Estimated intakes (geometric means) for protein, potassium, sodium, and total sugar intakes and densities as assessed by 

myfood24, the interviewer-administered multiple-pass 24-hour recall method, and reference measures for the first clinic visit. 

Characteristic  myfood24  MPR  Reference measures 

 n Geometric mean 

(95% CI) 

n Geometric mean 

(95% CI) 

n Geometric mean 

(95% CI) 

Nutrient intakes 

Protein (g) 208 70.5 (66.1 to 75.2) 197 81.7 (77.3 to 86.4) 192 68.4 (64.1 to 72.8) 

Total sugar (g)a 208 72.8 (66.4 to 79.8) 197 91.0 (85.0 to 97.5) 191 128.3 (115.9 to 142.0) 

Potassium (g) 208 2.7 (2.5 to 2.9) 197 3.1 (3.0 to 3.3) 192 2.1 (1.9 to 2.3) 

Sodium (g) 208 2.3 (2.1 to 2.5) 197 2.4 (2.2 to 2.6) 192 1.8 (1.7 to 2.0) 

Protein intake density (g/MJ energy 

intake) 

208 9.5 (9.0 to 9.9) 197 9.6 (9.2 to 10.0) 180 6.2 (5.8 to 6.7) 

Total sugar intake density (g/MJ 

energy intake)a 

208 9.8 (9.1 to 10.5) 197 10.7 (10.1 to 11.4) 179 11.6 (10.4 to 12.9) 

Potassium intake density (g/MJ 

energy intake) 

208 0.36 (0.35 to 0.38) 197 0.37 (0.35 to 0.39) 180 0.19 (0.18 to 0.21) 

Sodium intake density (g/MJ energy 

intake) 

208 0.31 (0.29 to 0.33) 197 0.28 (0.27 to 0.30) 186 0.16 (0.15 to 0.18) 

Energy expenditure 

Total energy expenditure (MJ) 208 7.5 (7.1 to 7.9) 197 8.5 (8.1 to 8.9) 185 11.0 (10.5 to 11.6) 

Legend: CI (confidence interval), MPR (interviewer-administered multiple-pass 24-hour recall method).  

aBased on recall intakes and predicted intakes for the reference measure, according to feeding studies (393).
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The attenuation factors (the degree to which diet–disease relationships are attenuated) 

used to estimate long-term nutrient intakes and densities were relatively poor for both 

dietary recall methods, and myfood24 attenuation factors were slightly lower than the 

MPR (Table 2.6). Partial correlation coefficients comparing recall method values with 

estimated true long-term intakes were similar for myfood24 and the MPR. Analysis of 

how repeated use of myfood24 influences estimates of true long-term intakes showed 

that estimates improved with more recalls (protein and sugar results are in Table 2.5). 

 

Table 2.5. Attenuation factors and correlations between myfood24 and estimated 

true protein and total sugar intakes for different numbers of administrations of 

myfood24. 

Dietary variable Number of 

administrations 

Attenuation factor 

(95% CI) 

Correlation with 

estimated  true intake 

(95% CI) 

Protein intake (g) 1 0.30 (0.21 to 0.38) 0.43 (0.32 to 0.53) 

2 0.42 (0.30 to 0.53) 0.51 (0.39 to 0.63) 

4 0.52 (0.38 to 0.67) 0.57 (0.44 to 0.70) 

7 0.59 (0.42 to 0.75) 0.60 (0.46 to 0.74) 

Total sugar intake 

(g) 

1 0.15 (0.06 to 0.24) 0.24 (0.09 to 0.38) 

2 0.20 (0.08 to 0.33) 0.28 (0.11 to 0.45) 

4 0.25 (0.09 to 0.40) 0.31 (0.12 to 0.49) 

7 0.27 (0.10 to 0.44) 0.32 (0.13 to 0.52) 

Legend: CI (confidence interval). 

All data were positively skewed and so were log-transformed. 

 

After excluding urine collections in which PABA recovery was below 50% or above 110%, 

and after adjusting urinary nitrogen, potassium, and sodium to 93% PABA recovery if 

sample PABA recovery was 50 to 85%, derived protein (77g versus 68g), potassium 

(2.4g versus 2.1g), and sodium (2.1g versus 1.8g) intakes all increased, and the results 

were closer to self-reported intakes. Exclusion and adjustment did not markedly influence 

attenuation factor estimates, however (protein 0.27 versus 0.30, potassium 0.29 versus 

0.31, sodium 0.19 versus 0.21). Furthermore, correlations between self-reported and 

estimated true intakes were not substantially different (protein 0.50 versus 0.43, 

potassium 0.48 versus 0.40, sodium 0.37 versus 0.30). After stratification by age, BMI, 

and sex, attenuation factors were generally similar, but with less attenuation for energy 

and nutrient intakes among younger participants (protein and sugar results are in 
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Appendix A, Table 1), leaner participants (protein and sugar results are in Appendix A, 

Table 2), and male participants (protein and sugar results are in Appendix A, Table 3). 

Intraclass correlations between plasma antioxidant concentrations and estimated intakes 

from myfood24 and the MPR were similar, although myfood24 estimates were lower than 

MPR estimates (Table 2.7).  

Finally, myfood24 estimates of dietary intakes were compared to MPR estimates for 

nutrients, including those without reference measures. myfood24 estimates were 

generally 10 to 20% lower than MPR estimates. Limits of agreement were wide, reflecting 

substantial day-to-day variation in diets. Intraclass correlation coefficients comparing 

myfood24 and MPR estimates were generally 0.4 to 0.5, indicating moderate agreement. 

Table 2.8 includes results for energy, macronutrient, and fibre intakes. 
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Table 2.6. Attenuation factors, correlations between dietary recall methods and estimated true intakes, and mean differences between dietary 

recall methods and reference measures for protein, potassium, sodium, and total sugar intakes and densities for myfood24 and the 

interviewer-administered multiple-pass 24-hour recall method. 

 Dietary recall method Attenuation factor (95% CI) Correlation with estimated 

true intake (95% CI) 

Mean % difference 

compared to reference 

measures (95% CI) 

Nutrient intakes 

Protein (g) myfood24 0.30 (0.21 to 0.38) 0.43 (0.32 to 0.53) 1% (-4% to 7%) 

MPR 0.38 (0.29 to 0.47) 0.48 (0.39 to 0.58) 11% (6% to 17%) 

Total sugars (g)b myfood24 0.15 (0.06 to 0.24) 0.24 (0.09 to 0.38) -45% (-39% to -50%) 

MPR 0.25 (0.14 to 0.36) 0.31 (0.18 to 0.44) -30% (-24% to -35%) 

Potassium (g) myfood24 0.31 (0.21 to 0.41) 0.40 (0.28 to 0.52) 26% (19% to 35%) 

MPR 0.35 (0.23 to 0.46) 0.38 (0.27 to 0.49) 48% (39% to 57%) 

Sodium (g) myfood24 0.21 (0.12 to 0.30) 0.30 (0.18 to 0.41) 22% (13% to 32%) 

MPR 0.22 (0.11 to 0.32) 0.28 (0.15 to 0.40) 28% (18% to 38%) 

Protein intake density (g/MJ 

energy intake) 

myfood24 0.16 (0.03 to 0.29) 0.17 (0.03 to 0.32) 48% (39% to 58%) 

MPR 0.26 (0.11 to 0.40) 0.24 (0.11 to 0.37) 46% (38% to 55%) 

Total sugar intake density 

(g/MJ energy intake)a 

myfood24 0.16 (0.04 to 0.28) 0.21 (0.06 to 0.36) -19% (-11% to -26%) 

MPR 0.23 (0.09 to 0.37) 0.25 (0.10 to 0.39) -8% (-15% to 0%) 

Potassium intake density (g/MJ 

energy intake) 

myfood24 0.25 (0.09 to 0.41) 0.23 (0.09 to 0.37) 85% (72% to 99%) 

MPR 0.38 (0.23 to 0.53) 0.34 (0.22 to 0.47) 93% (81% to 107%) 

Sodium intake density (g/MJ 

energy intake) 

myfood24 0.08 (-0.03 to 0.19) 0.09 (-0.04 to 0.21) 78% (63% to 94%) 

MPR 0.11 (-0.02 to 0.24) 0.11 (-0.02 to 0.24) 66% (52% to 80%) 
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Energy expenditure 

Total energy expenditure (MJ) myfood24 0.19 (0.10 to 0.29) 0.29 (0.15 to 0.42) -31% (-27% to -35%) 

MPR 0.32 (0.21 to 0.43) 0.37 (0.25 to 0.49) -23% (-19% to -27%) 

Legend: CI (confidence interval), MPR (interviewer-administered multiple-pass 24-hour recall method).  

All data were positively skewed and so were log-transformed. 

bBased on recall intakes and predicted intakes for the reference measure, according to feeding studies (393). 

 

Table 2.7. Estimated intakes at first dietary recalls (geometric means) and intraclass correlation coefficients between plasma antioxidant 

biomarkers and myfood24 and interviewer-administered multiple-pass 24-hour recall method across the three clinic visits. 

Antioxidant Biomarker myfood24 MPR 

 Geometric mean (95% 

CI) 

Geometric mean (95% 

CI) 

Intraclass correlation 

coefficient with 

biomarker 

Geometric mean (95% 

CI) 

Intraclass correlation 

coefficient with 

biomarker 

β-carotene 0.59 (0.52 to 0.67) μM 0.65 (0.51 to 0.83) mg 0.56 (0.52 to 0.60) 1.53 (1.20 to 1.95) mg 0.52 (0.48 to 0.56) 

Vitamin C 60 (57 to 64) μM 59 (51 to 69) mg 0.53 (0.50 to 0.57) 75 (66 to 85) mg 0.53 (0.49 to 0.56) 

Vitamin E 37 (35, 40) μM 1.6 (1.3 to 1.9) mg 0.55 (0.50 to 0.59) 2.3 (2.0 to 2.8) mg 0.53 (0.49 to 0.57) 

Legend: CI (confidence interval), MPR (interviewer-administered multiple-pass 24-hour recall method).  

aData for differences in means and limits of agreement were log-transformed. They are presented as % differences. 
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Table 2.8. Geometric mean intakes at first dietary recalls only, percent differences in means for all recalls, limits of agreement, and intraclass 

correlation coefficients for nutrient intakes estimated using myfood24 and interviewer-administered multiple-pass 24-hour recall method 

across the three clinic visits. 

Diet variable myfood24 MPR  

 Geometric mean (95% 

CI) 

Geometric mean (95% 

CI) 

Difference in means 

(%, MPR as 

reference)a 

Limits of agreement 

(%, MPR as 

reference)a 

Intraclass correlation 

coefficient 

Energy (MJ) 7.5 (7.1 to 7.9) 8.5 (8.1 to 8.9) -10% (-14% to -6%) -63% to 118% 0.51 (0.48 to 0.54) 

Carbohydrate (g) 198 (186 to 211) 224 (211 to 236) -12% (-17% to -7%) -70% to 162% 0.54 (0.51 to 0.56) 

Fat (g) 68 (64 to 73) 82 (77 to 88) -14% (-18% to -9%) -74% to 182% 0.42 (0.40 to 0.45) 

Protein (g) 72 (68 to 78) 78 (73 to 82) -9% (-14% to -5%) -68% to 158% 0.45 (0.42 to 0.48) 

Englyst fibre (g) 14 (13 to 15) 15 (14 to 16) -14% (-19% to -9%) -75% to 199% 0.43 (0.41 to 0.46) 

Legend: CI (confidence interval), MPR (interviewer-administered multiple-pass 24-hour recall method).  

aData for differences in means and limits of agreement were log-transformed. They are presented as % differences.
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2.5 Discussion 

Comparison between myfood24 and the MPR shows that the methods produce relatively 

similar results, although myfood24 systematically resulted in slightly lower estimates of 

dietary intakes. Our findings are mostly consistent with results of similar studies of online 

dietary assessment methods, which have generally found good agreement between 

online methods and reference measures (378). Comparison between multiple 24-hour 

recall methods and multiple FFQs suggests that 24-hour recall methods have stronger 

agreement with reference measures of dietary intakes (369, 370). When myfood24 was 

used to estimate nutrient intakes, attenuation values were generally ~ 0.2 to 0.3. 

Attenuation factors are useful for de-attenuating observed relative risks during data 

analysis. Attenuation and correlation values below ~ 0.4 are generally considered poor. 

For example, an attenuation factor of 0.4 would mean a true relative risk of 2.0 would be 

attenuated to 1.32 (2.00.4) (369). Although less than 0.4, the attenuation factors for 

myfood24 are comparable to values for other 24-hour dietary recall methods and are 

mostly superior to attenuation factors for FFQs reported in previous studies, although 

there is substantial heterogeneity between study findings using both recalls and FFQs 

(369, 370). myfood24 is therefore better able to detect diet-disease relationships than 

FFQs and is comparable to the MPR, the gold-standard dietary recall method. myfood24 

will be a valuable tool for large-scale studies exploring diet-health associations in the UK.  

Comparing the geometric means for myfood24 and the reference measures, it appears 

that myfood24 underestimated energy intakes, and this is commensurate with previous 

results using 24-hour recall methods (369). Few contemporary dietary assessment 

methods seem to estimate energy intake well as yet. Both myfood24 and the MPR 

produced slightly higher protein, potassium, and sodium intake estimates, and 

substantially lower sugar intake estimates than the reference measures. These 

differences between reported intakes and estimated true intakes (reporting bias) are a 

crucial consideration when estimating and comparing mean intakes in different groups 

of people. Direct comparison between myfood24 and the MPR showed moderate 

agreement, with intraclass correlation coefficients of ~ 0.4 to 0.5. Why myfood24 typically 

resulted in estimates that were 10 to 20% lower than the MPR is unclear, however. As 

only a few reference measures were used, for many nutrients it is unknown if myfood24 

underestimated intakes, the MPR overestimated intakes, or if neither method was 

accurate. This is also true for the plasma antioxidant biomarkers, as their quantitative 

relationships to dietary intakes are currently unknown (412).  
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It is important to note that participants were assessed in free-living conditions, which 

compromises the precision of measures but enhances external validity. It is therefore 

expected that measures of agreement are lower in such circumstances. Furthermore, 

using a study design in which different tools were used to estimate intakes for a single 

day would likely have produced closer estimates of agreement. This would have been 

appropriate for assessment of short-term intakes, but we sought to validate myfood24 

for use in studies of longer-term dietary intakes and therefore distributed dietary recalls 

over several weeks. Collection of reference measures sometimes coincided with dietary 

recalls. If more recalls using either myfood24 or the MPR coincided with reference 

measures, measures of agreement might have been biased. We addressed this by 

randomising the order of which recall method was used first. 

Online dietary recall methods similar to myfood24 have been developed and used 

elsewhere in the world. Although not yet validated against biomarkers of dietary intakes, 

the ASA24® has been compared to standard interviewer-administered recalls and been 

found to produce similar estimates (390). Importantly, participant attrition was lower 

when using the ASA24®, suggesting that online methods such as the ASA24® and 

myfood24 might improve participant response rates in larger studies involving multiple 

recalls. We did not explore attrition in this study, but previous assessment of usability 

has shown that myfood24 appears to be appropriate for use among UK participants. It 

should be noted, however, that even if online methods are less costly and time-

consuming for researchers, familiarisation with digital methods is arguably more 

burdensome for participants than simply answering a series of questions by telephone.  

All dietary recall methods have limitations. All are of course prone to correlated person-

specific biases and measurement error (413), and a limitation of 24-hour recall methods 

like myfood24 is that FFQs are perhaps better at documenting intakes of rarely 

consumed foods (414). This said, an advantage of online methods like myfood24 is that 

collection of multiple recalls across time is scarcely more expensive than collection of 

single recalls, allowing for better monitoring of trends across time (and therefore 

seasons), as well as new insights into intra-individual dietary variability. And myfood24 

is unique in having a database comprehensive enough to include items consumed by 

only a small minority of people (there are > 50,000 items in the myfood24 database).  

Doubly-labelled water is the gold-standard measure of energy expenditure and was not 

used in this study because of its cost. We did, however, use the gold-standard measure 

of protein intake, urinary nitrogen. The method was highly consistent, as shown by the 

consistency of the quality control CV values. Interestingly, urinary nitrogen values were 

lower among overweight participants than among people with healthy BMI values or 
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obese BMI values. The same was true of urinary sugars. Yet overweight participants had 

the highest protein intakes. The reasons for these observations are not clear, but the 

findings highlight the need to better determine the participant characteristics associated 

with dietary misreporting.  

The urinary sugars quality controls were more variable than the nitrogen controls, and 

this may be related to the method used. The method was designed for use with cuvettes, 

but we modified it for use with 96-well plates. The volumes of reagents used were too 

small for use with multi-channel pipettes, however, so I pipetted all wells individually 

rather than using a multi-channel pipette. A potential limitation of urinary fructose and 

sucrose as biomarkers is that the calibration equations used to estimate dietary intakes 

are from only a few, small feeding studies, perhaps limiting their applicability to people 

elsewhere with very dissimilar dietary intakes (372). It is noteworthy, however, that the 

feeding studies were done using UK participants, as was the study of this chapter.   

Although not the purpose of this study, the question of how accurately online dietary 

recall methods document the timing of items consumed is not well understood and will 

be a valuable point of inquiry to address in future studies that profile the timing of dietary 

intakes in large-scale studies. Prospective digital dietary records may be particularly 

advantageous in chrononutrition studies by providing time stamps of each dietary event, 

and preliminary studies using smartphone cameras show the promise of such methods 

(266-268). 

It is important to note that validation results are dependent on the reference measures 

used: Validation studies that have reported greater tool accuracy have often used direct 

observation as the reference, for example (378). An advantage of direct observation is 

the ability to document the incidence of matches, intrusions, and omissions, and this was 

not possible in this study. Nevertheless, perhaps this study’s greatest strength is 

validation of myfood24 against objective biomarkers of dietary intakes. Biomarkers are 

not prone to person-specific bias that might be seen in comparisons between the recall 

method and another recall method only. Such studies are comparison studies and may 

overestimate the performance of the tool (403). In doing so, researchers may then 

underestimate sample sizes needed for studies using the new tool to assess diet-disease 

relationships. True validation studies (like this one) compare the new method with 

objective measures of intakes such as biomarkers or direct observations of intakes.  

About half of the other online 24-hour recall methods have been validated, about half 

have only been compared to other recall methods (378). Most of these studies showed 

strong correspondence between nutrient intake estimates using the online tool and the 

comparison recall method. Studies comparing online tools to urinary nitrogen, 
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potassium, and sodium generally reported that the tools provide relatively accurate 

estimates of intakes of the corresponding nutrients. Online tool estimates of energy 

intakes have generally been weaker, however.  Although my own lab work was on urinary 

biomarkers, this is the first validation study of an online 24-hour recall method that has 

included blood biomarkers of nutrient intakes, to my knowledge (378).  

Another strength of our work is the use of measures of agreement to estimate how much 

the diet-disease association in a large-scale study would be attenuated if myfood24 was 

being used. Correlation analysis has been the most common analysis method in other 

validation studies (378) but is not a true measure of agreement (406). Using measures 

of agreement both shows the utility of myfood24 and allows comparison with other 

dietary assessment methods that have been assessed similarly.  

Last, it is noteworthy that response rates were low during recruitment, so selection bias 

is a possibility. It is also possible that participants were not representative of the UK 

population. Furthermore, the study included participants with a wide range of ages. 

Participants differ in how technology-savvy they are, raising the possibility that online 

methods may be unsuited to populations such as the elderly. It has already been shown 

that myfood24 has acceptable usability in a range of populations, however, including 

young people (415) and older people (391). Furthermore, stratification by age, BMI, and 

sex did not markedly affect results in this study, although there was less attenuation 

among younger, leaner participants. 

In conclusion, myfood24 produced largely similar results to the MPR, the gold-standard 

dietary recall method. Furthermore, attenuation using myfood24 was generally lower 

than previously reported in studies of FFQs. Coupled with the many advantages afforded 

by being digital and designed for use in UK adults, myfood24 will be a useful method in 

future research exploring diet-disease associations in the UK, including studies of sleep. 

This is in part because myfood24 is well-suited to recording diet timing data. 

Development, validation, and refinement of similar methods elsewhere will be valuable. 

Direct comparison of similar tools (such as INTAKE24) will also be important to ensure 

that the most accurate methods are being used in important large-scale studies. This 

chapter justifies the subsequent use of myfood24 in this project.  
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Chapter 3: Sleep timing and diet timing in UK adults: Late eating relative to sleep 

is associated with overweight and obesity 

 

3.1 Chapter overview 

The global prevalence of obesity is rising. Recent findings show that it is not only what 

we eat but also when we eat relative to circadian phase that influences bodyweight. Only 

a single study has shown this in humans, however. I therefore used the measure your 

food on one day 24-hour recall (myfood24) dataset of the previous chapter to explore 

whether diet timing relative to sleep timing is associated with overweight and obesity.  

Sleep was measured one night at a time, up to three times, with at least two weeks 

between measurements in 176 UK adults (age 18 to 68 years, 59% female) using 

SenseWear® armbands. I scored all sleep records. To check agreement with the 

armband sleep measures, a subset of participants completed the Munich ChronoType 

Questionnaire, of whom 68 provided usable data. I distributed these questionnaires 

online and then scored participants’ responses. Height and weight were measured the 

day following each sleep bout, and participants completed an online diet recall using 

myfood24 one to five days after each bout to assess diet timing and composition. I scored 

the timing variables for all diet recalls. Dietary phase angle was defined as the time 

elapsed between the time at which a participant consumed 50% of daily calorie intake 

and their subsequent mid-sleep time. Participants were divided into two groups: those 

with larger and those with smaller dietary phase angles. I then used regression models 

to test whether dietary phase angle was associated with overweight and obesity, and if 

timing of the final caloric event of the day before sleep was associated with sleep 

duration. I also used linear regression to determine relationships between sleep timing 

and diet timing, as well as paired t-tests to assess whether diet differed between 

weekdays and weekends.  

The group with smaller dietary phase angles were more likely to be overweight or obese, 

and later consumption of the last caloric event of the day relative to sleep onset was 

associated with longer sleep. Sleep timing was generally related to diet timing, but sleep 

timing variability was not associated with diet timing variability. Finally, several diet timing 

measures differed between weekdays and weekends, with participants generally eating 

later on weekends. Our findings build on evidence implicating late eating in the 

pathogenesis of obesity and provide novel insights into the temporal profiles of sleep and 

diet in UK adults. 
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3.2 Background 

The number of people with obesity worldwide has more than doubled in > 70 countries 

since 1980. Overweight and obesity now account for about four million premature deaths 

each year, primarily as a result of cardiovascular comorbidities (4). Many interacting 

factors contribute to overweight and obesity, including both sleep disruption and 

misalignment of the circadian (~ 24-hour) system that regulates the daily phase (timing) 

of biology and behaviour (416).  

The primary time cue that entrains (synchronises) the circadian system with the 24-hour 

day is the light/dark cycle. Our environments now enable waking behaviours like eating 

at times at which our biology would otherwise programme us to sleep, and shift workers 

exemplify the increased risk of metabolic sequelae that results from misalignment 

between behaviour and biology (22). Weight gain is among these consequences (417, 

418). Night shift work overtly disrupts the circadian system and sleep, but more insidious 

disturbances may be common. An example of this is the positive association between 

‘social jetlag’ (the discrepancy between weekday and weekend sleep timing that results 

largely from social factors such as enforced work schedules) and body mass index (BMI) 

among overweight adults (26). In addition to these social factors, aspects of the built 

environment may also contribute to circadian system and sleep disruption, including the 

ongoing sprawl and intensification of nocturnal light pollution (170).  

The light/dark cycle is the primary time cue for the suprachiasmatic nuclei (SCN), the 

central clock in relaying time of day information to peripheral clocks elsewhere in the 

circadian system (419). Peripheral clocks coordinate the timing of local cellular 

processes to meet tissue-specific needs. Whereas the phase of the SCN is relatively 

impervious to nutritional status, peripheral clock timing is strongly influenced by diet 

timing. Altered diet timing can therefore uncouple peripheral clock timing from SCN 

phase (420), and loss of optimal phase relationships between central and peripheral 

clocks is thought to influence risk of various diseases (13).  

Mice allowed ad libitum access to ‘high-fat’ diets have attenuated circadian rhythms and 

hence consume more chow at times when mice fed regular chow would sleep. Mice fed 

high-fat diets also rapidly become obese (273). Time-restricted feeding limits an animal’s 

access to food to 8 to 12 hours each day, and time-restricted feeding offsets the 

obesogenic effects of high-fat diets in mice (421). Interestingly, however, restricting food 

availability to times at which mice would normally rest and fast predisposes these rodents 

to weight gain (290, 291).  
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Studies of humans have also shown that diet timing may influence body composition. 

Among overweight and obese women consuming isocaloric weight loss diets for 12 

weeks, women who ingested half of daily caloric intake at breakfast lost more weight 

than those who ingested half of daily caloric intake at dinner (303). The latter study only 

assessed diet timing relative to clock time, but a more recent study measured diet timing 

relative to circadian phase (268). Specifically, participants recorded their diets for seven 

days, and researchers assessed circadian phase using a constant routine protocol. 

Adiposity was estimated using bioelectrical impedance analysis, and researchers divided 

participants into a lean group or a non-lean group according to sex-specific cut-offs. 

Participants in the non-lean group consumed most of their calories 1.1 hours closer to 

dim-light melatonin onset. Consistent with these findings that eating at a late circadian 

phase is obesogenic, people with Night Eating Syndrome have nocturnal hyperphagia 

and are generally predisposed to weight gain (422). Why later caloric intake is 

obesogenic is not well understood, but substantially lower diet-induced thermogenesis 

in the biological evening compared to the biological morning may contribute (423).  

Interestingly, more variable eating patterns are also associated with lower diet-induced 

thermogenesis (308), but little is known about what leads to more variable eating patterns 

in free-living individuals. Given that people only eat when they are awake (except in rare 

sleep disorders, perhaps), it follows that more variable sleep patterns may lead to more 

variable eating patterns. I am not aware of any studies that have explored this, however. 

No study has yet tested whether when people consume calories relative to sleep is 

associated with adiposity in a relatively representative group of UK adults (primary 

analysis). There has also been little research on whether timing of the final caloric event 

before sleep is related to the duration of the subsequent sleep bout (secondary analysis). 

Finally, it is unclear whether mid-sleep time is associated with the timing of the caloric 

period, whether sleep period is inversely related to caloric period, and whether diet timing 

variability tracks sleep timing variability (tertiary analyses).  

 

3.3 Methods  

The data analysed in this chapter are from a study designed to assess the validity of the 

online dietary recall tool used, as described in the previous chapter. In this study I used 

data from the validation study for a different purpose. 
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3.3.1 Participants 

The study was approved by the West London Research Ethics Committee (number 

14/SC/1267) and was conducted in accordance with the Declaration of Helsinki. 

Participants provided written informed consent. Participants were intended to be 

representative of the UK adult population and were English speaking, non-pregnant, 

weight-stable, literate 18- to 68-year-old adults with internet and telephone access. 

Participants were recruited through the North-West London Primary Care Research 

Network, a group of primary care professionals and practices that previously showed 

interest in participating in research projects. In addition, posters advertising the study 

were put up in the National Institute of Health Research / Wellcome Trust Clinical 

Research Facility at Hammersmith hospital (Imperial College Healthcare NHS Trust, 

London, UK), and the Clinical Research Facility contact list was used to contact potential 

participants. A list of local addresses was also obtained from the post office, with 

prospective participants receiving postal invitations to take part. Participants received a 

financial reward on completion of the study (£100). 

 

3.3.2 Study design 

Participants first completed a health screening visit at the Clinical Research Facility. 

Participants were instructed to not eat for at least four hours before each visit. On arrival, 

participants were weighed using scales (Tanita Corporation, Tokyo, Japan) after voiding, 

and height was measured using a stadiometer (Seca, Hamburg, Germany). BMI was 

then calculated. Cardiac function was assessed by electrocardiography, and blood 

pressure was measured using a digital monitor (Omron, Kyoto, Japan) after participants 

had rested supine for ~ 30 minutes. A 22 ml blood sample was taken for analysis of 

immune function, kidney function, liver function, and blood lipids. Participants filled in a 

general health and lifestyle questionnaire, the SCOFF questionnaire (to exclude 

individuals with eating disorders), and a technology readiness questionnaire, as 

participants would be completing dietary recalls online.  

After the screening visit, participants returned to the Clinical Research Facility for study 

visits up to three times, separated by at least two weeks. Study visits took place between 

12/06/2014 and 07/08/2015. The day before each study visit, each participant was 

instructed to wear a SenseWear® armband (BodyMedia Inc., Pittsburgh, Pennsylvania, 

US) for ~ 24 hours to monitor sleep. To check agreement with the armband data, a 

subset of participants completed the Munich ChronoType Questionnaire (MCTQ (227)) 

at one visit. Up to five days after each study visit, participants completed an online 24-

hour dietary recall. Figure 3.1 outlines the study design. 
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Figure 3.1. Study design overview.  

CRF (Clinical Research Facility), MCTQ (Munich ChronoType Questionnaire), WeLReN 

(North West London Primary Care Research Network). 

 

3.3.3 Sleep 

The day before each study visit, participants wore SenseWear® armbands on the midline 

of the left triceps brachii. To avoid feedback effects, the accelerometers did not give 

participants information regarding activity and sleep. Participants were instructed to only 

remove the armbands when bathing. The armbands have triaxial accelerometers and 

also measure galvanic skin response and skin temperature to estimate sleep using the 

manufacturer’s proprietary algorithms. SenseWear® armband sleep estimates have 

been shown to generally agree well with polysomnographic sleep measures in several 

populations (424-426). Unlike polysomnography, however, the armbands are well suited 

to use in studies of free-living participants. As is true of widely used actimetric watches, 

these armbands are sensitive in detecting sleep but have lower wake detection rates.  
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I scored all of the sleep records (n = 564 before exclusions). Only nocturnal weekday 

sleep was scored because 1) all participant sleep bouts other than one were during 

weekday nights, and 2)  sleep tends to differ between weekdays and weekends, as 

during the weekend people typically attempt to catch up on sleep lost during the working 

week (27). What appeared to be daytime naps were not scored. I used the mean values 

for our analysis if participants had multiple nights of sleep recorded. I defined sleep onset 

as the first minute of registered sleep in a 20-minute period in which there were ≥ 19 

minutes of sleep recorded, because doing so has been shown to improve agreement 

between actimetric estimates of sleep and polysomnographic measures (427). I defined 

sleep offset as the first minute of registered wakefulness in a 20-minute period in which 

there were ≥ 19 minutes of wakefulness recorded. Sleep period was calculated as sleep 

offset minus sleep onset. Given its strong correlation with dim-light melatonin onset 

(428), mid-sleep time was used as a proxy of circadian phase. I calculated mid-sleep 

time as the halfway time in the sleep period, sleep duration as the sum of sleeping 

minutes recorded during the sleep period, and sleep efficiency as the percentage of the 

sleep period spent asleep. To assess sleep variability, I used the SDs of sleep period 

and mid-sleep time for participants with multiple nights of sleep recorded. 

To check agreement with the armband data, a subset of participants completed the 

MCTQ to estimate mid-sleep time on weekdays at one visit. After initiation of recruitment 

in the myfood24 study, I persuaded the myfood24 consortium to include the MCTQ. 

Coinvestigators from Imperial College London gave paper MCTQs to participants still 

coming to the clinic for study visits (Appendix B), and I sent an online MCTQ survey (via 

Bristol Online Survey (now called Online Surveys)) to participants who had already 

completed their study visits. I transcribed paper questionnaires and scored all 

questionnaires. I calculated weekday mid-sleep time from the questionnaires as 

described for the armband data.  

 

3.3.4 Diet 

One to five days after each study visit participants used an online dietary recall tool 

named measure your food on one day 24-hour recall (myfood24) to record the quantities 

and times of ingestion of all foods and drinks consumed the previous day. myfood24 has 

comprehensive and current UK food lists and proven usability in adults (391). As 

described in the previous chapter, myfood24 was recently validated against biomarkers 

of dietary intakes and was found to give largely similar results to the gold-standard 

dietary recall method.  
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I scored all of the diet timing records (n = 550 before exclusions). As I exclusively used 

weekday sleep measures, only weekday diet recalls were included in the main analysis. 

I used the mean values for our analysis where participants had multiple days of diet 

recalls. Caloric onset was defined as the first caloric event (> 0 calories from either food 

or drink) after mean mid-sleep time, caloric offset as the last caloric event before mean 

mid-sleep time, and caloric period as caloric offset minus caloric onset. Caloric period 

midpoint was calculated as the halfway time between caloric onset and caloric offset. I 

also calculated the time at which each participant had accumulated 50% of daily caloric 

intake as a dietary phase marker (268). I therefore used the difference between time at 

50% of daily caloric intake and mid-sleep time as an approximation of dietary phase 

angle. (Note that sleep and diet records were generally not for the same days.) Figure 

3.2 depicts key diet and sleep timing measures. To assess diet timing variability, I used 

the SDs of caloric period and caloric period midpoint for participants with multiple 

weekday diet recalls.  

 

  

Figure 3.2. Diet and sleep timing measures.  

Caloric period is the time elapsed from ingestion of the first calorie (caloric onset) to the 

last (caloric offset). Caloric period midpoint occurs halfway through the caloric period. 

For simplicity, this hypothetical daily dietary pattern includes four isocaloric meals (each 

containing 25% of daily caloric intake) that are evenly spaced. The time at 50% of daily 

caloric intake is therefore the end of the second meal. Sleep period is the time elapsed 

from sleep onset to sleep offset. Mid-sleep time is halfway through the sleep period. 
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Dietary phase angle is the difference between time at 50% of daily caloric intake and 

mid-sleep time. 

 

Many participants (n = 71) completed weekend diet recalls as well as weekday recalls. 

For descriptive purposes, I calculated the above timing measures for weekdays and 

weekends separately for these people. I also recorded the onset and caloric content of 

self-defined breakfast, lunch, and dinner for weekday and weekend meals for these 

participants. Similar to previous work (266), events registered within 15 minutes of meal 

onset were combined into the same meal. Where participants reported consuming the 

same meal multiple times in a single recall, I only recorded the event with the most 

calories for the meal in question. Only events of ≥ 50 calories were scored as meals 

(264).  

 

3.3.5 Statistical analyses 

A directed acyclic graph was used to select variables for adjustment (Appendix C). For 

the primary analysis, I divided participants into those with smaller dietary phase angles 

and those with larger dietary phase angles, as well as those with healthy BMIs (healthy 

range 18.5 kg/m2 ≥ BMI < 25 kg/m2) or overweight and obese BMI values (BMI ≥ 25 

kg/m2). I then used logistic regression to determine if dietary phase angle was associated 

with overweight and obesity, adjusting for age, race, sex, and sleep duration. For 

regression analyses, I used dot plots to identify any unfeasible values and checked the 

distribution of residuals using QQ plots. Positively skewed outcomes were log-

transformed.  

Linear regression was used for secondary and tertiary analyses. Secondary analyses 

included 1) whether time from caloric offset to sleep onset was associated with sleep 

duration (adjusting for age, race, and sex), and 2) if caloric period was associated with 

daily caloric intake (adjusting for age, race, sex, and sleep duration). Tertiary analyses 

included whether mid-sleep time was associated with sleep duration, if sleep period was 

associated with caloric period, and whether mid-sleep time was associated with time at 

50% of daily caloric intake (all adjusting for age, race, and sex). I also determined 

whether mid-sleep time variability was associated with caloric period midpoint variability, 

and if sleep period variability was associated with caloric period variability (both adjusting 

for age and race).  

Paired t-tests were used to compare diet timing on weekdays and weekends for 

participants with both weekday and weekend diet recalls. For these, I used dot plots to 
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identify any unfeasible values, QQ plots to assess normality of distribution in each 

category, and SDs to check homogeneity of variances. (Variances were considered 

homogeneous if SDs differed by a factor of < 2.) A Bland-Altman plot was also used to 

assess agreement between SenseWear® and MCTQ measures of weekday mid-sleep 

time. Data are means ± SDs. p values ≤ 0.05 were considered significant. Statistical 

analyses were completed in Stata version 13 (Texas, US). 

 

3.4 Results 

Two hundred and eighty-nine respondents were invited to the first clinic. Of these 

participants, 240 attended, consented to the study, and passed the health screen. 

Twenty-seven participants then withdrew before beginning the study, 29 participants 

completed diet recalls but did not provide useable sleep data, four participants had 

descriptive data missing, and I could not calculate valid diet timing measures for four 

participants (three had weekend diet recalls only, one had breakfast listed as occurring 

before mid-sleep time). I therefore included 176 participants in the main analysis. 

Participant characteristics are summarised in Table 3.1. 

 

Table 3.1. Participant characteristics, stratified by sex. 

Characteristic Women (n = 104) Men (n = 72) 

Age (years) 44.5 ± 15.2 43.4 ± 15.5 

Race (% white) 75 72 

Smoking (% current smokers) 9 8 

Occupation (% managerial and professional) 36 53 

Body mass index (kg/m2) 25.1 ± 4.2 26.2 ± 4.1 

Weekday sleep 

Sleep onset time  23:59 ± 1:20 00:25 ± 1:27 

Mid-sleep time  03:37 ± 1:01 03:51 ± 1:18 

Sleep offset time  07:14 ± 1:00 07:18 ± 1:24 

Sleep duration (hours) 6:21 ± 1:16 5:49 ± 1:11 
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Sleep efficiency (%) 88 ± 9 85 ± 10 

Weekday diet 

Daily caloric intake 1,682 ± 573 2,118 ± 690 

Caloric onset 08:25 ± 1:09 08:29 ± 1:37 

Time at 50% daily caloric intake  15:40 ± 2:23 15:45 ± 2:51 

Caloric offset  20:38 ± 1:55 21:08 ± 1:20 

Caloric period  12:12 ± 2:09 12:39 ± 1:53 

Data are means ± SDs. 

 

Ninety-seven (55%) participants had three days of sleep recorded, 58 (33%) had two 

days, and 21 (12%) had one day. Of the 110 participants who completed three diet 

recalls, 57 participants completed three weekday diet recalls, 47 participants completed 

two weekday diet recalls and one weekend diet recall, and six participants completed 

one weekday and two weekend diet recalls. Of the 55 participants who completed two 

diet recalls, 37 participants completed two weekday diet recalls, and 18 participants 

completed one weekday diet recall and one weekend day diet recall. The remaining 11 

participants completed one weekday diet recall only.  

A Bland-Altman plot to assess agreement between SenseWear® and MCTQ measures 

of weekday mid-sleep time showed moderate agreement between the methods (Figure 

3.3). The mean difference showed that SenseWear® estimates were 12 minutes later 

(95% limits of agreement -85 minutes to 109 minutes), on average, and only 2/68 (3%) 

observations were outside the limits of agreement.  
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Figure 3.3. Bland-Altman plot comparing SenseWear® and Munich ChronoType 

Questionnaire estimates of weekday mid-sleep time. 

 

3.4.1 Dietary phase angle and body mass index  

In the unadjusted logistic regression analysis, participants with smaller dietary phase 

angles (9:52 ± 1:43 hours, n = 88) did not have higher odds of overweight or obesity than 

those with larger phase angles (14:08 ± 1:26 hours, n = 88) (OR 1.73, 95% CI 0.95 to 

3.14, p = 0.07). After adjustment, however, participants with smaller dietary phase angles 

had higher odds of overweight or obesity (OR 2.13, 95% CI 1.11 to 4.10, p = 0.02). This 

association persisted after inclusion of daily caloric intake as an adjustment (OR 2.09, 

95% CI 1.08 to 4.05, p = 0.03). 

 

3.4.2 Caloric offset and sleep duration 

Time between the last caloric event and sleep onset was negatively associated with 

sleep duration in the unadjusted analysis (-8.9 minutes of sleep per hour, 95% CI -14.7 

to -3.0 minutes, p = 0.003). This association remained after adjustment (-9.3 minutes of 

sleep per hour, 95% CI -15.3 to -3.2 minutes, p = 0.003).  
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3.4.3 Sleep timing and diet timing 

Mid-sleep time was not associated with sleep duration in the unadjusted analysis (-8.8 

minutes of sleep per hour later mid-sleep, 95% CI -18.6 minutes to 1.0 minute, p = 0.08) 

or after adjustment (-7.3 minutes of sleep per hour later mid-sleep, 95% CI -17.3 to 2.8 

minutes, p = 0.16). Later mid-sleep was associated with later caloric period midpoint in 

both the unadjusted analysis (33.1 minutes later caloric period midpoint per hour later 

mid-sleep, 95% CI 25.4 to 40.8 minutes, p < 0.001) and after adjustment (31.4 minutes 

later caloric period midpoint per hour later mid-sleep, 95% CI 23.5 to 39.2 minutes, p < 

0.001).  

Sleep period was not associated with caloric period in the unadjusted analysis (14.5 

minutes shorter caloric period per hour longer sleep period, 95% CI -29.5 to 0.5 minutes, 

p = 0.06). This association was significant after adjustment, however (16.1 minutes 

shorter caloric period per hour longer sleep period, 95% CI -30.8 to -1.5 minutes, p = 

0.03). Caloric period was not associated with caloric intake in the unadjusted analysis 

(31 calories per hour longer caloric period, 95% CI -17 to 78 calories, p = 0.20) or after 

adjustment (29 calories per hour longer caloric period, 95% CI -20 to 78 calories, p = 

0.24). 

As 126 participants had both multiple nights of sleep bouts and multiple diet recalls, 126 

people were included in the timing variability analysis. Weekday sleep period variability 

was not associated with weekday caloric period variability in the unadjusted analysis 

(logged coefficient 0.09, 95% CI -0.13 to 0.30, p = 0.43) or after adjustment (logged 

coefficient 0.05, 95% CI -0.18 to 0.28, p = 0.65). Weekday mid-sleep time variability was 

not associated with weekday caloric period midpoint variability in the unadjusted analysis 

(logged coefficient 0.05, 95% CI -0.34 to 0.44, p = 0.81) or after adjustment (logged 

coefficient -0.09, 95% CI -0.49 to 0.31, p = 0.66).  

 

3.4.4 Weekday and weekend diet timing 

On average, caloric onset was 31 minutes later on weekends than weekdays (95% CI 9 

to 53 minutes, t(70) = 2.8542, p = 0.006), and breakfast began 32 minutes later on 

weekends than weekdays (95% CI 8 to 54 minutes, t(63) = 2.7630, p = 0.008). Lunch 

was 22 minutes later on weekends than weekdays (95% CI 0 to 44 minutes, t(62) = 

1.9660, p = 0.05). Caloric offset, caloric period midpoint, caloric period, time at 50% daily 

caloric intake, and dinner onset did not differ between weekdays and weekends. These 

results are summarised in Table 3.2. 
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Table 3.2. Comparisons between participant weekday and weekend diet patterns. 

Characteristic Weekday Weekend p value n 

Timing variables 

Caloric onset  08:24 ± 1:16 08:55 ± 1:36 0.006 71 

Breakfast onset  08:34 ± 1:07 09:06 ± 1:10 0.008 64 

Lunch onset  13:27 ± 1:03 13:49 ± 1:16 0.05 63 

Caloric period midpoint  14:36 ± 1:22 14:54 ± 1:26 0.10 71 

Time at 50% daily 

caloric intake  

16:06 ± 2:49 15:41 ± 2:57 0.44 71 

Dinner onset  19:29 ± 1:11 19:33 ± 1:29 0.66 69 

Caloric offset  20:51 ± 2:05 20:53 ± 1:58 0.90 71 

Caloric period  12:26 ± 2:16 11:58 ± 2:10 0.12 71 

Caloric intakes 

Daily caloric intake  

1,927 ± 750 2,105 ± 750 0.09 71 

Breakfast caloric intake 

(% daily caloric intake)  

19.0 ± 12.3 18.7 ± 9.8 0.86 64 

Lunch caloric intake (% 

daily caloric intake)  

31.2 ± 31.54 30.4 ± 13.4 0.83 63 

Dinner caloric intake (% 

daily caloric intake)  

40.0 ± 32.4 37.2 ± 15.3 0.53 69 

Data are means ± SDs. 

 

For participants with both weekday and weekend diet recalls, I also plotted the proportion 

of daily calories, carbohydrates, fats, and proteins consumed across the 24-hour day, 



117 
 

 

 

 

 

using 04:00 as the beginning of the day because 04:00 was the closest hour to mean 

mid-sleep time (Figure 3.4). 

    

  

  

Figure 3.4. Comparisons between participant weekday and weekend diet timing 

(n = 71).  

Percentages of daily calorie (A), carbohydrate (B), fat (C), and protein (D) intakes are 

plotted in 1-hour bins. As the closest hour to mean mid-sleep time was 04:00, the first 

bin is for events from 04:01 to 05:00, the second is from 05:01 to 06:00, and so on.  

 

3.5 Discussion 

The prevalence of obesity has increased unremittingly in most countries in recent 

decades (4). Numerous factors have fuelled this trend, but diet timing has garnered little 

research attention. In this study we show that adults who consume the majority of daily 

caloric intake closer to mid-sleep time are more likely to be overweight or obese, even 

after inclusion of daily caloric intake as an adjustment. Preclinical studies have shown 

obesogenic effects of rest phase feeding in rodents (290, 291), but a clear limitation of 

these studies is the use of other animals: it would be premature to extrapolate that the 

same would be seen in humans. A small initial study of 52 adults with intermediate and 

late chronotypes reported that calorie consumption after 20:00 was correlated with BMI 

(246), but the first study to measure diet timing relative to circadian phase reported that 
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dietary phase angle but not clock time of caloric intake independently associates with 

adiposity in a group of 110 young adults (268). Our study supports the findings of the 

latter study and builds on it by including a larger group of adults.   

In contrast to some prior research (268), we found that calorie consumption closer to 

sleep onset was associated with longer sleep. The reason for this discrepancy between 

studies is unclear. We used different statistical methods to the previous work, and 

another plausible explanation for our divergent results is that we only considered the 

nocturnal sleep bout, whereas McHill and colleagues also considered naps (268). On 

one hand, diet-induced thermogenesis might be expected to offset the decline in body 

temperature that accompanies sleep onset, and pre-sleep caloric intake might thereby 

disrupt sleep. On the other, sufficient energy availability may be necessary to sustain 

sleep and prevent premature awakening to acquire food. Both studies only considered 

caloric intake timing, but the energy content and nutrient profile of the final dietary event 

are also likely to influence sleep. Experimental manipulation of diet composition and 

timing relative to sleep onset will rectify contradictory results of these studies. 

Digital means of recording diet have produced higher resolution insights into diet timing 

of late (266-268). Like the two of these studies carried out in the West (266, 268), we 

report that participants began consuming calories later on the weekends, and 

participants also consumed breakfast and lunch later. We also plotted macronutrient 

intakes according to time of day, showing subtle differences between weekdays and 

weekends. Unlike previous studies, a clear strength of our work is the use of a diet recall 

tool that has both been validated against biomarkers of dietary intakes and was 

developed explicitly for use with the population from which participants came. 

As later sleep timing has been associated with later meal timing (246), we anticipated 

that later mid-sleep time would be associated with a later caloric midpoint. We also 

hypothesised that sleep period would be inversely associated with caloric period. The 

data supported our contentions. Interestingly, however, we did not find that more variable 

sleep timing was related to more variable diet timing. Perhaps eating schedules are more 

dependent on cultural norms than individual variation in sleep timing. Alternatively, our 

study may have been underpowered to detect subtle associations between sleep timing 

variability and fluctuating diet timing.  

Our study has notable strengths, including use of relatively accurate sleep measurement 

devices, use of a validated diet recall tool, and a larger participant sample than similar 

previous research (246, 268). Nevertheless, we acknowledge that our work has 

limitations. Few nights of sleep were measured for each participant, and no weekend 

nights were included. We also did not collect information about recent trans-meridian 
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travel or use of alarms, and participants did not complete sleep logs to verify time in bed. 

Furthermore, we did not directly measure circadian phase. 

More experiments are necessary to clarify the metabolic and behavioural consequences 

of manipulating diet timing relative to circadian phase, and we can only speculate about 

the best measures of diet timing at present. It is plausible that foods consumed later in 

the waking day are less nutritious, and this could contribute to associations between 

dietary phase angle and body composition. Additional studies will benefit from precise 

methods of body composition measurement, like dual-energy X-ray absorptiometry. 

Furthermore, circadian phase is not fixed. If sleep timing and circadian phase shift over 

the course of the working week, should diet timing shift in lockstep? This is a particularly 

pertinent question for rotating shift workers and frequent flyers. It has been shown that 

diet-induced thermogenesis is lower late than early in the biological day (423), but effects 

of diet timing on key determinants of body composition such as substrate oxidation and 

skeletal muscle protein synthesis are not well characterised. Exactly how diet influences 

components of physical activity such as non-exercise activity thermogenesis is also 

unclear. Furthermore, experiments using polysomnography are required to show how 

diet composition and timing interact to influence sleep parameters.  

Our study adds credence to the notion that when we eat may be a critical determinant of 

our metabolic health. Should other studies continue to support this idea, it would make 

sense to include advice on diet timing in dietary guidelines. Perhaps diet timing is another 

piece in the complex puzzle we face in preventing and reversing obesity.  
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Chapter 4: Sleep duration, nutrient intakes, and metabolic health in UK adults: 

findings from the National Diet and Nutrition Survey 

 

4.1 Chapter overview 

In the previous chapter we identified diet timing relative to sleep as a possible contributor 

to overweight and obesity. We did not directly explore associations between sleep 

duration and diet or sleep duration and metabolic health, however. We therefore sought 

a publicly available dataset with sleep, diet, and metabolic health data. We chose the 

National Diet and Nutrition survey, a programme that aims to monitor trends in diet and 

nutritional status in 500 UK adults each year.  

A growing body of evidence associates short sleep with increased risk of metabolic 

diseases such as obesity, which may be related to diet. Yet few studies have 

concurrently determined associations between sleep duration and objective measures 

of metabolic health, as well as how sleep duration relates to diet. We therefore used 

National Diet and Nutrition Survey data to address this.  

In total, 1,615 UK adults completed questions about sleep duration, as well as three to 

four days of food diaries. Body mass index (BMI), waist circumference, and blood 

pressure were recorded. Fasting blood lipids, glucose, glycated haemoglobin (HbA1c), 

thyroid hormones, and C-reactive protein (CRP) were measured in a subset of 

participants. I used regression analyses and restricted cubic spline modelling to assess 

associations between sleep duration and outcomes.  

Consistent with our hypotheses, sleep duration was negatively associated with BMI and 

waist circumference. Sleep duration also tended to be positively associated with high-

density lipoprotein cholesterol. Sleep duration was not associated with any dietary 

measures.  

We found that longer sleep was associated with lower BMI and waist circumference, and 

favourable metabolic health profiles in general. We found little evidence of strong 

associations between sleep and diet, however. Findings from this chapter highlight the 

importance of sufficient sleep in curbing current trends in metabolic disease prevalence. 
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4.2 Background 

Including undiagnosed cases, ~ 4.5 million people in the UK have diabetes, and it was 

estimated that in 2015 ~ 415 million 20 to 70 year old adults had diabetes worldwide  

(429). Roughly 24,000 individuals die prematurely each year in the UK as result of 

diabetes (430). Diabetes is therefore a large economic burden, costing the National 

Health Service in the UK ~ £10 billion in direct costs each year, 10% of its budget (431).  

Type two diabetes accounts for the majority of diabetes cases and costs, and obesity is 

the most potent risk factor for type two diabetes. Although not all people with obesity 

develop the disease, obesity accounts for much of type two diabetes risk (432). About 

59% of women and 68% of men in the UK are now overweight or have obesity (2). 

Obesity predisposes the affected to other metabolic dysfunction, and central obesity 

appears to explain much of this (433). Metabolic syndrome (central obesity, 

dyslipidaemia, hyperglycaemia, and hypertension) is a cluster of risk factors that also 

increases risk of type two diabetes (7) and is thought to affect about a quarter of adults 

worldwide (6). Identifying the lifestyle factors that influence risk of obesity, metabolic 

syndrome, and type two diabetes is therefore a public health priority.  

Short sleep is increasingly common in many countries, and findings from an analysis of 

~ 250,000 sleep questionnaires worldwide suggest that ~ 80% of adults use alarms to 

shorten their sleep on work days (26). Large-scale epidemiologic studies have 

consistently linked short sleep to type two diabetes, obesity (and central obesity), and 

metabolic syndrome (31-33, 434), and some of the mechanisms contributing to 

associations between short sleep and metabolic diseases are increasingly well 

understood (416). Among these mechanisms, short sleep may affect dietary choices, 

predisposing individuals to selection of energy-dense, rewarding foods, and non-

homeostatic eating (435). The increases in type two diabetes, obesity and metabolic 

syndrome prevalence that have occurred concurrently with declines in sleep duration are 

hence unlikely to be mere coincidences.  

Given the small sample size of the previous chapter, we sought a larger dataset to better 

determine associations between sleep duration and diet, and sleep duration and 

metabolic health in UK adults. We therefore used data from years 1 to 4 of the National 

Diet and Nutrition Survey Rolling Programme (NDNS-RP) to determine whether sleep 

duration was associated with diet, adiposity, glucose and lipid metabolism, metabolic 

syndrome criteria, thyroid function, and inflammation in UK adults. In doing so, we are 

the first to concurrently report on associations between sleep duration and nutrient 

intakes, as well as sleep duration and objective measures of metabolic health in UK 

adults, to our knowledge. We hypothesised that short sleep would be associated with 1) 
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less healthy dietary habits, 2) obesity, 3) dysglycaemia, 4) dyslipidaemia, 5) metabolic 

syndrome, 6) impaired thyroid function, and 7) higher systemic inflammation. 

 

4.3 Methods  

The NDNS-RP aims to track diet and nutritional status in 1,000 individuals per year (500 

children aged 1.5 to 18 years, and 500 adults aged 19 years and over) living in private 

households in England, Northern Ireland, Scotland, and Wales. NDNS-RP results are 

used to monitor diet trends in the UK to develop policies to improve health, and data are 

available online at the UK Data Service website (436). A detailed overview of the NDNS-

RP methods has been described previously (437).  

Briefly, households were randomly selected from the Postcode Address File (all 

addresses in the UK) and grouped into units by location. Information about the purpose 

of the NDNS-RP was then sent to addresses randomly selected from these units, after 

which interviewers contacted the households to arrange visits to recruit participants and 

distribute diet diaries for four consecutive days of diet recording. With help from an 

interviewer, participants completed a computer-assisted personal interview to collect 

data on background and lifestyle. Height and weight were measured at these visits also. 

Individuals who completed diet diaries for at least three of the four days were eligible for 

visits by nurses for additional anthropometry and physiological measures. The 

Oxfordshire A Research Ethics Committee approved the study, which was conducted in 

accordance with the Declaration of Helsinki. We used the data for 19 to 65 year old, non-

pregnant adults. Written informed consent was obtained from all participants. 

Participants who provided blood samples were compensated with £15 in high street shop 

vouchers for their contributions.  

 

4.3.1 Sleep 

Participants were asked the following two computer-assisted personal interview 

questions about habitual sleep duration at interviews: “How long (do you) usually sleep 

on week nights?” and “How long (do you) usually sleep on weekend nights?” We 

therefore estimated participants’ mean daily sleep duration using the formula ((5 x self-

reported usual weekday sleep duration) + (2 x self-reported usual weekend sleep 

duration) / 7)). Participants were not asked about napping or shift work schedules. 
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4.3.2 Blood pressure 

After resting for five minutes in a seated position, blood pressure was measured three 

times with one minute between readings, using an automated sphygmomanometer 

(Omron HEM907, Kyoto, Japan). To avoid behaviours that can acutely influence blood 

pressure, participants had not eaten, exercised, drunk alcohol, or smoked in the 

preceding 30 minutes. For consistency, we used the mean of the second and third 

readings because the first reading is often the highest (438).  

 

4.3.3 Anthropometry  

Participants were measured for height and weight using portable stadiometers and 

weighing scales, respectively. Nurses measured waist circumference using tape 

measures at follow-up household visits. Height, weight, and waist circumference were 

measured twice. If there were unacceptable discrepancies (height ± 0.5 cm, weight ± 0.2 

kg, waist circumference, ± 3 cm) then a third measurement was completed, and the mean 

value of the two most similar measurements was used. 

 

4.3.4 Blood Measures 

After anthropometry and blood pressure measures were taken, eligible participants 

provided up to ~ 35 ml of fasted blood via venepuncture. Venepuncture exclusion criteria 

included bleeding and clotting disorders, use of anticoagulant medications, an epileptic 

fit within the previous five years, and self-disclosed infection with hepatitis B or human 

immunodeficiency virus. To stabilise samples, blood was collected into tubes containing 

appropriate anticoagulants/stabilising agents. Samples were then processed at suitably 

equipped field laboratories located within two hours and stored at -20 to -80°C before 

subsequent analyses after transportation to the National Health Service laboratory at 

Addenbrooke’s Hospital or the Human Nutrition Research centre in Cambridge, UK. 

Detailed information about sample processing (439) and the range of analytes measured 

(440) is available online.   

As we were interested in the associations between sleep duration and metabolic health, 

we analysed data for analytes of particular clinical relevance to metabolic diseases such 

as type two diabetes and obesity. Specifically, we used data for the following analytes: 

1) fasting glucose and glycated haemoglobin (HbA1c) (measures of glucose 

metabolism), 2) high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) 

cholesterol, and triglycerides (measures of lipid metabolism), 3) free triiodothyronine 
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(T3), free thyroxine (T4), and thyroid-stimulating hormone (TSH) (measures of thyroid 

function), and 4) C-reactive protein (CRP) (a measure of systemic inflammation).  

 

4.3.5 Metabolic syndrome 

I determined whether participants had the metabolic syndrome using the International 

Diabetes Federation (2006) criteria. According to these criteria, metabolic syndrome is 

defined as central obesity (using waist circumference values that are race- and sex-

specific) plus at least two of the following: raised blood pressure (systolic blood pressure 

≥ 130 mmHg, diastolic blood pressure ≥ 85 mmHg, or treatment for hypertension), raised 

fasting plasma glucose (≥ 5.6 mmol/L or treatment for diabetes), raised triglycerides (≥ 

1.7 mmol/L or treatment for hypertriglyceridaemia), and low HDL cholesterol (< 40 mg/dL 

for males, < 50 mg/dL for females, or treatment for low HDL cholesterol levels). In 

accordance with the criteria, central obesity was assumed if BMI was > 30 kg/m2 (6). 

 

4.3.6 Diet 

Participants completed three to four food diaries on consecutive days. These were 

collected no later than three days after the final diet day. Participants were asked to 

provide detailed descriptions of all items consumed, including time and estimated (not 

weighed) quantity of consumption. Weekend days were over-represented in year 1 of 

the NDNS-RP and were subsequently under-sampled in year 2 to address this.  

Food diary data were processed by trained coders and editors who entered diaries into 

the Medical Research Council Human Nutrition Research dietary assessment system, 

Diet In Nutrients Out, using food composition data for > 6,000 foods (441). Component 

parts of composite items (such as sandwiches) were assigned individual food codes. 

Detailed information on data coding and editing is provided in Appendix A of the NDNS-

RP official report (440).   

We decided to assess energy intake; macronutrient intakes (including alcohol); and fibre, 

fruit (excluding fruit juice) and vegetable intakes as markers of healthy dietary habits. We 

also assessed non-milk extrinsic sugar, saturated fatty acid, trans-fatty acid, and sodium 

intakes as indices of unhealthy dietary habits. Dietary fibre comprised non-starch 

polysaccharides, as defined by the Englyst method (442). Non-milk extrinsic sugars were 

defined as sugars added during processing or by participants, sugars in fruit juices, and 

50% of sugars in canned, dried and stewed fruits. Our choices of which foods and 

nutrients to analyse were partly informed by various diet quality indices (443). 
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4.3.7 Statistical analyses 

I used linear regression analyses to test associations between sleep duration and 1) 

energy intake and macronutrient intakes (including macronutrient intakes as 

percentages of total energy intake); 2) indices of diet quality, including fibre, saturated 

fatty acids, trans-fatty acids, total sugar, non-milk extrinsic sugar, sodium, total fruit, and 

total vegetable intakes; 3) body mass index (BMI); 4) waist circumference; 5) blood 

measures (fasting glucose, HbA1c, HDL cholesterol, LDL cholesterol, triglycerides, free 

T3, free T4, TSH, and CRP); and 6) metabolic syndrome score (out of the five criteria). I 

used dot plots to identify any unfeasible values and checked the distribution of residuals 

using QQ plots. Positively skewed outcomes were log-transformed. I also divided 

participants by tertiles of sleep duration to produce short, middle and long sleep 

categories and then used binary logistic regression analysis to determine whether 

metabolic syndrome prevalence differed between sleep duration categories. I used a 

directed acyclic graph to select variables to adjust for (Appendix D), and models were 

adjusted for age, race, sex, smoking, and socioeconomic status. Additional models 

included BMI as an adjustment for all outcomes other than indices of diet quality. 

As meta-analysis has shown there may not be simple linear relationships between sleep 

duration and diabetes risk (31), I also used restricted cubic splines to model relationships 

between sleep duration and metabolic outcomes. The splines comprised 4 polynomial 

segments separated by five knots (at the following percentiles of sleep duration:  5, 27.5, 

50, 72.5, and 95, as recommended by Harrell (444)), with linear regions before the first 

knot and after the last.  

Data are means ± SDs. Many people correct alpha levels using Bonferroni adjustments 

to reduce risk of Type I errors (incorrect rejection of null hypotheses). In doing so, 

however, they increase risk of Type-two errors (incorrect acceptance of null hypotheses). 

We therefore chose a conservative p value of ≤ 0.01 to account for multiple testing. 

Statistical analyses were completed in Stata version 13 (Texas, US). 

 

4.4 Results 

NDNS-RP data from years 1 to 4 are available for 1,692 19 to 65 year old adults. As not 

all participants were willing to give blood or met the blood sample eligibility criteria, blood 

data are available for only 51% of all participants, and some participants do not have 

data for various measures because of missing or invalid measurements. After excluding 

75 participants without sleep data and two participants because of 
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pregnancy/breastfeeding, we analysed data for the remaining 1,615 non-pregnant adults 

(Table 4.1), of whom 448 were aged 19 to 34 years, 655 were aged 35 to 50 years, and 

512 were aged 51 to 65 years. Two participants with TSH levels more than four times 

higher than the next highest value were excluded from thyroid hormone analyses. In 

total, 24.8% of participants reported being current smokers (sleep duration 7.15 ± 1.38 

hours), 20.5% ex-smokers (sleep duration 7.14 ± 1.18 hours) and 54.7% reported never 

having smoked regularly (sleep duration 7.24 ± 1.18 hours). Men reported sleeping 7.17 

± 1.15 hours, women 7.22 ± 1.29 hours.  

 

Table 4.1. National Diet and Nutrition Survey Rolling Programme participant 

characteristics, stratified by tertiles of mean sleep duration. 

Characteristic 

Shortest third of 

sleep duration (5.88 ± 

0.86 hours, n = 538) 

Middle third of sleep 

duration (7.26 ± 0.26 

hours, n = 538) 

Longest third of 

sleep duration            

(8.44 ± 0.66 hours, 

n = 539) 

Age (years) 44.7 ± 12.2 43.8 ± 12.5 41.2 ± 13.2 

Race (% white) 92.8 89.4 88.5 

Sex (% female) 55.4 53.5 62.3 

Smoking (% 

current smokers) 
27.3 23.2 23.8 

Occupation (% 

managerial and 

professional) 

50 57.6 47.1 

Diet 

Energy (calories) 1,822 ± 606 1,885 ± 578 1,783 ± 583 

Carbohydrate (g) 218 ± 73 225 ± 73 215 ± 71 

Carbohydrate (% 

total energy) 
45.6 ± 8.0 45.2 ± 7.2 45.7 ± 7.6 

Fat (g) 67 ± 27 71 ± 26 66 ± 26 

Fat (% total 

energy) 
32.7 ± 6.6 

33.3 ± 6.1 33.1 ± 6.5 
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Protein (g) 73 ± 31 76 ± 23 72 ± 24 

Protein (% total 

energy) 

16.3 ± 3.9 16.5 ± 3.5 16.6 ± 4.3 

Alcohol (g) 15.5 ± 25.6 14.7 ± 21.6 13.2 ± 23.7 

Fibre (g) 13.5 ± 5.1 14.3 ± 5.2 13.4 ± 5.0 

Metabolism 

BMI (kg/m2) 28.6 ± 5.5 (n = 499) 27.3 ± 5.3 (n = 506) 27.1 ± 5.4 (n = 505) 

Waist 

circumference 

(cm) 

95 ± 15 (n = 405) 92 ± 15 (n = 403) 91 ± 15 (n = 395) 

Fasting glucose 

(mmol/L) 
5.32 ± 1.35 (n = 252) 5.26 ± 1.12 (n = 246) 

5.09 ± 1.14 (n = 

247) 

HbA1c (%) 5.64 ± 0.70 (n = 271) 5.55 ± 0.57 (n = 260) 
5.46 ± 0.55 (n = 

254) 

HDL cholesterol 

(mmol/L) 
1.45 ± 0.43 (n = 272) 1.53 ± 0.41 (n = 267) 

1.54 ± 0.47 (n = 

257) 

LDL cholesterol 

(mmol/L) 
3.24 ± 0.95 (n = 266) 3.27 ± 1.00  (n = 262) 

3.15 ± 0.96 (n = 

250) 

Triglycerides 

(mmol/L) 
1.50 ± 1.14 (n = 270) 1.25 ± 0.83 (n = 267) 

1.32 ± 1.05 (n = 

257) 

Systolic blood 

pressure (mmHg) 
125 ± 14 (n = 309) 125 ± 16 (n = 319) 124 ± 16 (n = 298) 

Diastolic blood 

pressure (mmHg) 
75 ± 10 (n = 309) 75 ± 11 (n = 319) 75 ± 11 (n = 298) 

CRP (mg/L) 3.40 ± 4.15 (n = 273) 2.79 ± 3.11 (n = 267) 
3.35 ± 5.25 (n = 

257) 

Free T3 (pmol/L) 5.06 ± 0.58 (n = 102) 5.06 ± 0.52 (n = 100) 5.04 ± 0.51 (n = 79) 

Free T4 (pmol/L) 
13.07 ± 1.91 (n = 102) 13.23 ± 2.04 (n = 100) 13.39 ± 1.74 (n = 

79) 

TSH (mIU/L) 2.57 ± 2.18 (n = 102) 2.59 ± 1.76 (n = 100) 2.63 ± 1.68 (n = 79) 
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Legend: BMI (body mass index), CRP (C-reactive protein), HbA1c (glycated 

haemoglobin), HDL (high-density lipoprotein), LDL (low-density lipoprotein), TSH 

(thyroid-stimulating hormone), T3 (triiodothyronine), T4 (thyroxine). 

Data are means ± SDs. 

 

4.4.1 Sleep and diet 

Sleep duration was not associated with any dietary measure in the unadjusted and 

adjusted linear regression analyses (Table 4.2).  

 

Table 4.2. Sleep duration and dietary intakes. 

 Unadjusted model Adjusted modela 

Characteristic 

Coefficient per 

additional hour of 

sleep (95% CI) 

p value 

Coefficient per 

additional hour of 

sleep (95% CI) 

p value 

Energy (calories) 3 (-20 to 27) 0.78 3 (-17 to 24) 0.75 

Carbohydrate (g) 1 (-2 to 3) 0.72 0 (-3 to 2) 0.83 

Carbohydrate (% 

total energy) 

0.0 (0.0 to 0.0) 0.74 -0.2 (-0.5 to 0.1) 0.13 

Fat (g) 0 (-1 to 1) 0.55 0 (-1 to 1) 0.52 

Fat (% total energy) 0.1 (-0.1 to 0.4) 0.27 0.2 (-0.1 to 0.4) 0.25 

Protein (g) 0 (-1 to 1) 1.0 0 (-1 to 1) 0.79 

Protein (% total 

energy) 

0.0 (-0.1 to 0.2) 0.77 0.1 (-0.1 to 0.2) 0.47 

Alcohol (g)lb  0.00 (-0.07 to 0.06) 0.90 0.01 (-0.06 to 0.07) 0.83 

Fibre (g) 0.0 (-0.2 to 0.2) 0.71 0.1 (-0.1 to 0.3) 0.33 

Sugar (g) -1 (-2 to 1) 0.42 -1 (-2 to 1) 0.38 

NMES (g) 0 (-1 to 1) 0.95 -1 (-2 to 1) 0.45 

Trans-fatty acids 

(g) 

0.00 (-0.03 to 0.02) 0.75 0.00 (-0.03 to 0.03) 0.94 

Saturated fatty 

acids (g) 

0.0 (-0.5 to 0.4) 0.88  0.0 (-0.4 to 0.5) 0.85 
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Sodium (g) 0.02 (0.00 to 0.06) 0.10 0.02 (0.00 to 0.05) 0.14 

Fruits (not juices) 

(g) 

-2 (-6 to 2) 0.32 0 (-4 to 4) 0.99 

Vegetables (g) 1 (-3 to 5) 0.62 2 (-2 to 7) 0.28 

Legend: CI (confidence interval), NMES (non-milk extrinsic sugars). 

aAdjusted for age, race, smoking, socioeconomic status, and sex. 

bAlcohol data were log-transformed. 

 

In the models that also adjusted for BMI (n = 1,510 participants), sleep duration was 

again not associated with energy (-2 calories per additional hour of sleep, 95% CI -24 to 

20 calories, p = 0.84), carbohydrate (-1 g per additional hour of sleep, 95% CI -3 to 2 g, 

p = 0.66), fat (0 g per additional hour of sleep, 95% CI -1 to 1 g, p = 0.86), or protein (0 

g per additional hour of sleep, 95% CI -1 to 1 g, p = 0.77) intakes. 

 

4.4.2 Sleep and metabolic health 

After adjustment for age, race, sex, smoking, and socioeconomic status, HDL cholesterol 

tended to be higher in longer sleepers (0.03 mmol/L higher per additional hour of sleep, 

95% CI 0.00 to 0.05 mmol/L, p = 0.03, metabolic data are summarised in Table 4.3). For 

each additional hour of sleep, participants had lower HbA1c levels in the unadjusted 

model (0.05% lower, 95% CI -0.09 to -0.01, p = 0.006), but this association did not 

approach significance after adjustment (p = 0.09).Similarly, for each additional hour of 

sleep, participants tended to have lower triglyceride levels in the unadjusted model (0.07 

mmol/L lower, 95% CI -0.13 to -0.01, p = 0.02), but this association was not significant 

after adjustment (p = 0.11). Of the five criteria used to diagnose an individual with 

metabolic syndrome, for each additional hour of sleep, participants tended to have fewer 

of these criteria in the unadjusted model (0.10 fewer criteria, 95% CI -0.20 to -0.02, p = 

0.02), but again this association was not evident after adjustment (p = 0.36). In linear 

regression analyses, sleep duration was not associated with CRP, fasting glucose, LDL 

cholesterol, free T3, free T4, or TSH. In the logistic regression analysis, sleep duration 

was not associated with the presence of metabolic syndrome.  
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Table 4.3. Sleep duration and measures of metabolic health. 

 Unadjusted model Adjusted modela 

Characteristic 

Coefficient per 

additional hour of 

sleep (95% CI) 

p value 

Coefficient per 

additional hour of 

sleep (95% CI) 

p value n 

BMI (kg/m2) -0.58 (-0.81 to -0.36) < 0.001 -0.46 (-0.69 to -0.24) < 0.001 1,510 

Waist 

circumference 

(cm) 

-1.4 (-.2.1 to -0.8) < 0.001 -0.9 (-1.5 to -0.3) 0.004 1,203 

HbA1c (%) -0.05 (-0.09 to -0.01) 0.006 -0.03 (-0.07 to 0.00) 0.09 785 

Fasting glucose 

(mmol/L) 
-0.05 (-0.12 to 0.02) 0.18 -0.03 (-0.10 to 0.04) 0.44 745 

HDL cholesterol 

(mmol/L) 
0.02 (0.00 to 0.05) 0.08 0.03 (0.00 to 0.05) 0.03 795 

Triglycerides 

(mmol/L) 
-0.07 (-0.13 to -0.01) 0.02 -0.05 (-0.10 to 0.01) 0.11 794 

LDL cholesterol 

(mmol/L) 
-0.02 (-0.08 to 0.04) 0.48 0.01 (-0.05 to 0.07) 0.73 778 

Free T3 (pmol/L) 0.00 (-0.06 to 0.06) 0.97 -0.01 (-0.06 to 0.04) 0.72 281 

Free T4 (pmol/L) 0.18 (-0.02 to 0.38) 0.08 0.17 (-0.04 to 0.38) 0.10 281 

TSH (mIU/L) 0.03 (-0.17 to 0.24) 0.74 0.03 (-0.18 to 0.23) 0.79 281 

CRP (mg/L)b -0.05 (-0.09 to 0.00) 0.05 -0.04 (-0.09 to 0.01) 0.09 797 

Number of 

metabolic 

syndrome 

factors (out of 

5c) 

-0.10 (-0.20 to -0.02) 0.02 -0.04 (-0.13 to 0.05) 0.36 554 

 
Metabolic syndrome 

OR (95% CI)  
p value 

Metabolic syndrome 

OR (95% CI)  
p value n 

Shortest third of 

sleep duration 

(5.88 ± 0.79 

hours)d 

1.33 (0.84 to 2.13) 0.23 1.22 (0.73 to 2.06) 0.44 175 

Longest third  of 

sleep duration 

(8.38 ± 0.65 

hours)c 

1.05 (0.65 to 1.68) 0.85 1.18 (0.69 to 2.01) 0.55 184 

Legend: BMI (body mass index), CI (confidence interval), CRP (C-reactive protein), 

HbA1c (glycated haemoglobin), HDL (high-density lipoprotein), LDL (low-density 

lipoprotein), OR (odds ratio), T3 (triiodothyronine), T4 (thyroxine). 

aAdjusted for age, race, smoking, socioeconomic status, and sex. 

bData were positively skewed and so were log-transformed. 



131 
 

 

 

 

 

cUsing the five International Diabetes Federation (2006) criteria: central obesity, raised 

blood pressure, raised fasting plasma glucose, raised triglycerides, and reduced HDL 

cholesterol. 

dReference group sleep duration, 7.26 ± 0.26 hours (n = 195). 

 

Sleep duration was negatively associated with BMI and waist circumference, such that 

participants had 0.46 kg/m2 lower BMI values (95% CI -0.69 to -0.24 kg/m2, p < 0.001, 

Figure 4.1, panel A) and 0.9 cm lower waist circumferences (95% CI -1.5 to -0.3 cm, p = 

0.004, Figure 4.1, panel B) per additional hour of sleep. Restricted cubic spline modelling 

showed that the negative association between sleep duration and these outcomes was 

linear.  

 

 

Figure 4.1. Sleep duration, BMI and waist circumference.  

Black lines plot the predicted BMI (A) and waist circumference (B) values with 95% 

confidence intervals (grey fill) for typical females from the sample (white, never smokers, 

lower managerial and professional occupation, using the mean age). Very similar 

associations were apparent in males. 

 

After inclusion of BMI as an additional adjustment, sleep duration was not associated 

with any other metabolic outcomes (Table 4.4). 
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Table 4.4. Sleep duration and measures of metabolic health, including body 

mass index as an adjustment. 

Characteristic 
Coefficient per additional hour of 

sleep (95% CI) 
p value 

n 

Waist circumference (cm) 0.1 (-0.2 to 0.4) 0.56 1,157 

HbA1c (%) -0.02 (-0.06 to 0.01) 0.18 762 

Fasting glucose (mmol/L) -0.01 (-0.08 to 0.06) 0.77 726 

CRP (mg/L)a 0.00 (-0.05 to 0.04) 0.85 775 

Triglycerides -0.03 (-0.08 to 0.03) 0.38 772 

LDL cholesterol 0.02 (-0.04 to 0.07) 0.54 758 

HDL cholesterol 0.01 (-0.01 to 0.04) 0.22 774 

Free T3 (pmol/L) -0.01 (-0.07 to 0.04) 0.66 272 

Free T4 (pmol/L) 0.16 (-0.06 to 0.37) 0.16 272 

TSH (mIU/L) 0.02 (-0.19 to 0.23) 0.82 272 

Legend: CI (confidence interval), CRP (C-reactive protein), HbA1c (glycated 

haemoglobin), HDL (high-density lipoprotein), LDL (low-density lipoprotein), OR (odds 

ratio), T3 (triiodothyronine), T4 (thyroxine). 

Adjusted for age, body mass index, race, smoking, socioeconomic status, and sex. 

aData were positively skewed and so were log-transformed. 

 

4.5 Discussion  

Consistent with our predictions, sleep duration was negatively associated with BMI and 

waist circumference and tended to be positively associated with HDL cholesterol levels. 

In unadjusted models, sleep duration was negatively associated with HbA1c and also 

tended to be negatively associated with triglycerides and metabolic syndrome criteria, 

but these associations were no longer apparent after adjustment. Associations were 

strongly attenuated after inclusion of BMI as an adjustment, suggesting that higher BMI 

values contribute to metabolic dysfunction in shorter sleepers. Interestingly-and contrary 

to our expectations-sleep duration was not associated with diet. Collectively these 

findings suggest that among UK adults longer sleepers have favourable metabolic 

profiles in comparison to shorter sleepers, but not substantially different dietary habits. 
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Our observation that sleep duration was negatively associated with BMI and waist 

circumference is consistent with meta-analyses showing that short sleep is associated 

with obesity and central obesity (32, 33). The magnitudes of the associations that we 

found are within the ranges of those documented previously. Interestingly, a recent study 

of a large group of UK adults showed that gene/environment interactions may be key 

determinants of obesity risk, as the adverse effects of various sleep behaviours 

(including short sleep) on adiposity were more pronounced among those with genetic 

predisposition to obesity (445). These findings suggest a particular need to improve 

sleep patterns among people who are genetically susceptible to obesity.  

Blood lipids are important determinants of risk of various metabolic diseases. HDL 

cholesterol helps offset excessive inflammation and regulates reverse cholesterol 

transport, thereby influencing risk of health problems such as atherosclerotic 

cardiovascular disease (446). Whereas some studies have found that both short and 

long sleep may contribute to lower HDL cholesterol levels (447), we observed a more 

linear relationship. A consistency among studies, however, seems to be that short sleep 

is associated with adverse effects on lipid metabolism, including lower HDL cholesterol 

levels (448).  

As is true of lipid metabolism, sleep restriction has detrimental effects on glucose 

metabolism (416), so we tested whether sleep duration was associated with fasting 

glucose and HbA1c, markers used to diagnose type two diabetes. Sleep duration was 

associated with neither but was closer to being associated with HbA1c. This discrepancy 

may be partly explained by the different factors that fasting glucose and HbA1c reflect 

(449): HbA1c is a more stable marker of longer term glucose homeostasis, but fasting 

glucose is more susceptible to acute fluctuations resulting from variables such as diet 

and physical activity. A meta-analysis of prospective studies reported a U-shaped 

association between sleep duration and type two diabetes risk, but our restricted cubic 

spline models did not show nonlinear relationships with fasting glucose or HbA1c. This 

could reflect the relative scarcity of people whose sleep might be considered 

pathologically long. Whereas short sleepers comprised a significant proportion of the 

study population (9.9% reported sleeping less than six hours, for example), perhaps 

there were not enough long sleepers to see if long sleep might be pathological: Only 

1.1% of participants reported sleeping longer than 10 hours. 

A recent prospective study of > 160,000 adults found that compared to participants who 

self-reported sleeping six to eight hours a night, those sleeping less than six hours were 

at greater risk of developing each of the metabolic syndrome criteria and therefore had 

a 9% higher risk of metabolic syndrome. Furthermore, people who slept more than eight 
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hours had a 7% lower risk of metabolic syndrome development (450). Given our findings 

of greater adiposity, lower HDL cholesterol, and a tendency to impaired glucose 

metabolism among shorter sleepers, we expected sleep duration to be associated with 

metabolic syndrome. Whereas sleep duration was negatively associated with number of 

metabolic syndrome criteria in the unadjusted linear regression model, this relationship 

was not apparent after adjustment. As the full complement of metabolic syndrome 

components was only available for 554 participants, the study may have had insufficient 

statistical power to document an association. 

Thyroid hormones have myriad roles in metabolic regulation (451), so we determined if 

sleep duration was associated with thyroid function. We found that sleep duration was 

not associated with measures of thyroid function. Experimental sleep restriction has been 

shown to acutely increase thyroid hormone secretion, but chronic sleep restriction may 

lower free T4 levels (452). As hypothyroidism predisposes people to weight gain, 

impaired thyroid function could be a mechanism by which long-term sleep loss increases 

susceptibility to obesity. However, effects of sleep on thyroid function are somewhat 

unclear at present. 

Higher CRP levels increase susceptibility to metabolic diseases such as type two 

diabetes (453). Consequently, we also tested whether sleep duration was associated 

with blood CRP concentrations. We did not find that that sleep duration was associated 

with CRP, in contrast to evidence that sleep restriction generally induces a 

proinflammatory state, including elevated CRP levels (454). It is possible that our sample 

size was insufficient to determine any associations between sleep and CRP, and 

additional studies will help clarify whether dysregulated systemic inflammatory 

responses are another means by which short sleep adversely affects metabolic 

regulation.  

Epidemiologic studies have often associated short sleep with higher energy intake and 

have sometimes found that short sleep coincides with reduced dietary quality (365). 

Some of the underlying mechanisms are well characterised (416), and meta-analysis of 

experimental sleep restriction studies has shown that sleep restriction increases energy 

intake (213). It is unclear why we did not find that short sleep was associated with 

increased energy intake and indices of processed food intake, especially when we found 

that sleep duration was inversely associated with BMI. Perhaps other components of 

energy balance were affected by sleep duration. It has been found, for example, that 

sleep restriction may acutely reduce resting metabolic rate (455) and could hence lead 

to a positive energy balance if energy intake remained constant. The extra energy cost 

of wakefulness could compensate for this, however, and a recent meta-analysis of sleep 
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restriction intervention studies reported that curtailed sleep does not alter daily energy 

expenditure (213). It could be that sleep duration has a reciprocal relationship with free-

living physical activity, but we did not feel that there was sufficient experimental evidence 

that physical activity independently influences sleep duration to include physical activity 

as an adjustment.  

Another possibility is that dietary underreporting is more pervasive among individuals 

with higher BMI and those attempting to lose fat mass (456), hindering our ability to 

observe a relationship between sleep duration and energy intake using such self-

reported measures of diet. It is also plausible that sleep duration may have been related 

to diet in a nonlinear manner. Based on our interpretation of the literature, however, we 

decided a priori to use linear regression analyses to model dietary outcomes. Finally, 

other sleep parameters such as sleep efficiency, sleep timing (a simple estimate of 

chronotype), and sleep timing variability may influence diet and metabolic health (28, 

237, 457), but questions related to these variables are not included in the NDNS-RP. 

This study had several strengths, including comprehensive dietary assessment by way 

of four-day estimated food diaries, thorough metabolic profiling, concurrent measures of 

diet and metabolic health, and the study of a representative adult population. 

Nevertheless, this work also had limitations. The study used self-reported sleep duration 

instead of a more objective measure such as actimetry or polysomnography, and 

participants were not asked about napping or effects of work schedules on sleep. 

Correlations between self-reported sleep duration and actimetry-estimated sleep 

duration of 0.43 to 0.45 have been reported in adults, and self-reports tend to 

underestimate sleep duration, a discrepancy that may increase with longer self-reported 

sleep (458). Other limitations include the absence of information regarding behaviours 

that influence sleep (such as alarm use), missing data for some variables, and the 

possibility that participants’ behaviours were not rigorously standardised before 

collection of fasted samples.  

As this was a cross-sectional study, it is of course not possible to infer that insufficient 

sleep results in adverse metabolic consequences. Prospective studies using more 

objective measures of sleep duration and quality are needed to better clarify the 

relationships between sleep, dietary habits and metabolic health. As recent studies have 

documented an array of beneficial effects of sleep extension on dietary choices and 

metabolic health in habitual short sleepers (459-461), the optimisation of such 

interventions should be further studied. 

In conclusion, longer sleepers generally had more favourable metabolic profiles, but 

sleep duration was scarcely associated with dietary intakes. Our findings support the 
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accumulating evidence showing an important contribution of short sleep to metabolic 

diseases such as obesity. This evidence raises the question of whether interventions to 

enhance sleep benefit metabolic health, and the next chapter focuses on this question.  
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Chapter 5: A randomised controlled trial to determine if melatonin improves 

metabolic health and alters diet in adults at increased risk of type two diabetes 

 

5.1 Chapter overview 

In Chapter 4 we found that longer sleep was associated with favourable metabolic health 

profiles in UK adults, supporting the substantial body of evidence showing that sleep 

duration influences risk of cardiometabolic diseases. Findings from many studies also 

indicate important roles of the circadian system in metabolism. This background provides 

the rationale to explore whether a compound that influences sleep and circadian system 

function might also effect metabolic changes.  

Of the compounds that meet these criteria, exogenous melatonin is widely available in 

many countries and is established to be safe. Recent studies of humans have reported 

that melatonin signalling influences key metabolic processes, including blood glucose 

homeostasis and insulin action. Yet few studies have comprehensively assessed effects 

of melatonin supplementation on metabolic health in humans, and none has explored 

whether melatonin influences dietary choices. We aimed to address this by exploring the 

effects of long-term melatonin supplementation on metabolic health, sleep, and diet in 

UK adults at elevated risk of type two diabetes. The study was first conceived to 

exclusively determine whether melatonin affects metabolic health. To also explore if 

melatonin influences sleep and diet, we amended the study protocol to also assess these 

outcomes among participants in the second half of participant recruitment. 

Adults with first-degree relatives with type two diabetes were randomised to take either 

2 mg prolonged-release melatonin or placebo two hours before sleep each day for 24 

weeks. Participants visited the study centre at baseline, 12 weeks, 24 weeks, and 36 

weeks (after a 12 week washout). Bodyweight, waist circumference, and blood pressure 

were measured at each visit. Fasted blood samples were also taken to assess measures 

related to glucose metabolism (fasting glucose, glycated haemoglobin, glucagon, and 

adiponectin), lipids (high-density lipoprotein (HDL) cholesterol, low-density lipoprotein 

(LDL) cholesterol, total cholesterol, total: HDL cholesterol ratio, and oxidised LDL 

cholesterol), energy availability (leptin), and inflammation (CRP and IL-6). Of these 

markers, I completed the glucagon, adiponectin, leptin, interleukin-6, and oxidised LDL 

cholesterol laboratory analyses. Sleep quality was assessed at each visit using the 

Pittsburgh Sleep Quality Index. A subset of participants also completed the Munich 

ChronoType Questionnaire at each visit to estimate sleep duration, chronotype, and 

social jetlag, as well as a myfood24 recall under my supervision to record their dietary 
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intakes (energy, carbohydrate, protein, fat, fibre, fruit, and vegetable intakes). I analysed 

the data using multilevel mixed models according to the intention-to-treat principle.  

Contrary to our hypotheses, long-term melatonin supplementation did not significantly 

affect any of the outcomes measured, although participants in the placebo group tended 

to sleep longer at 36 weeks than at previous time-points. I discuss these null findings in 

the context of other studies and suggest related research questions that may be fruitful 

to pursue.  
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5.2 Background 

Cardiometabolic diseases result in widespread suffering, the burden of which continues 

to escalate. From 1990 to 2015 there was a 28.3% increase in global death rate related 

to overweight and obesity, and a 35.8% increase in disability-adjusted life years because 

of excessive adiposity. Worryingly, the rate of overweight- and obesity-related deaths 

increased in countries from across the spectrum of income per capita in this period (4). 

Diabetes contributes considerably to overweight and obesity-related deaths, and 

diabetes climbed from the 18th to 15th highest cause of years of life lost from 2005 to 

2015 alone, an increase of over 25% (462). A recent forecast projected that diabetes will 

be the 7th leading cause of death by 2030 (463). It is clear that efforts to address current 

trajectories in cardiometabolic diseases are ineffective, and there is much interest in 

measures to reverse these trends. Findings from preliminary studies indicate that 

melatonin and other melatonin receptor agonists might be promising agents in such 

reversal.    

A multisynaptic pathway relays photoperiodic information from specialised retinal 

photoreceptors to the pineal gland, where melatonin is primarily synthesised. As light 

exposure reduces melatonin synthesis, this photoneuroendocrine system ensures that 

circulating melatonin levels are highest during darkness. Melatonin therefore provides a 

biological signal of scotoperiod duration that is relayed systemically through the 

interaction of melatonin with two receptors in humans (hMT1 and hMT2, encoded by 

MTNR1A and MTNR1B, respectively). These receptors are present in several brain 

regions (55) and in many peripheral tissues. The suprachiasmatic nuclei of the 

hypothalamus also have melatonin receptors. As these nuclei are at the helm of 

regulation of the circadian system that synchronises timing of physiology and behaviour 

with the 24-hour day, melatonin is a critical hormone in coordinating biological rhythms 

(54). 

Although many consider melatonin as an important hormone in sleep regulation, 

pinealectomised patients have relatively normal sleep, so whether endogenous 

melatonin has key roles in human sleep is contentious (121). Rather, the presence of 

melatonin receptors in key metabolic tissues suggests roles of melatonin in metabolic 

regulation. As genome-wide association studies have associated MTNR1B variants with 

glycaemia, insulin responses, and type two diabetes risk (351-353), roles of melatonin in 

insulin and glucose metabolism have received much attention. Recent work has shown 

that pancreatic melatonin signalling may reduce glucose-stimulated insulin secretion. 

This same study reported that the common MTNR1B variant associated with increased 

diabetes risk increases pancreatic islet melatonin signalling. Melatonin synthesis may 

therefore reduce the likelihood of nocturnal hypoglycaemia (354), and so it is little 
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surprise that ingestion of exogenous melatonin acutely worsens oral glucose tolerance 

in humans (98).  

The significance of roles of melatonin in metabolic regulation is that artificial lighting now 

hampers melatonin synthesis in many people. About 99% of people in Europe live in 

settlements lit by artificial light at night (169). The introduction of electric lighting is 

associated with delayed melatonin synthesis and sleep onset, as well as shortened sleep 

duration (171, 172). Most people in Europe probably now experience disrupted melatonin 

rhythms and sleep, as supported by findings that self-reported sleep duration is declining 

during the working week (26). Interestingly, lower circulating melatonin levels have been 

found in people with metabolic diseases such as type two diabetes (326-329), and lower 

excretion of the primary melatonin metabolite has been associated with increased type 

two diabetes risk in a prospective study (331), raising the question of what effects 

increasing circulating melatonin may have.  

Preclinical studies using rodent models of metabolic diseases have consistently shown 

that long-term melatonin supplementation has numerous benefits on physiology, such 

as reducing hyperglycaemia, hyperinsulinaemia, hyperleptinaemia, and 

hypertriglyceridaemia (332, 333). Melatonin may also offset hepatic steatosis, improve 

liver mitochondrial function (334), and enhance vascular function in diet-induced obesity 

(337). Melatonin appears to counter adverse metabolic consequences associated with 

senescence in mice and rats (338, 339).  

Exogenous melatonin rarely results in side-effects in humans, even after single doses 

as high as 300 mg (464), and some preliminary studies of long-term melatonin 

supplementation in small groups of people have reported beneficial effects. Long-term 

use of a slow-release melatonin formulation reduced glycated haemoglobin (HbA1c) in 

type two diabetes patients with insomnia (342). Melatonin reduced blood pressure, low-

density lipoprotein cholesterol levels and measures of oxidative stress in metabolic 

syndrome patients (343). Similarly, long-term melatonin supplementation tended to 

reduce weight and blood pressure and led to greater metabolic syndrome remission after 

treatment than placebo (344). Other studies have reported that melatonin 

supplementation increased lean body mass in post-menopausal women without affecting 

weight (345), and that melatonin improves blood lipids in peri- and post-menopausal 

women (346). Not all studies have documented beneficial effects of long-term melatonin 

supplementation (347-350), although there is little evidence of any adverse effects of 

exogenous melatonin consumption.  

There are likely several reasons for discrepancies in findings between studies, including 

differences in participant characteristics, melatonin formulations, and ingestion timing. 
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No controlled trial has yet determined whether melatonin is an effective countermeasure 

against metabolic disease development. Furthermore, diet is an important determinant 

of disease risk, but no study of humans has assessed whether melatonin 

supplementation affects food intake, despite clear indications that supraphysiological 

doses of melatonin may improve some sleep parameters (465), inter-relationships 

between melatonin and key appetite hormones, and possible effects of melatonin 

supplementation on body composition (359). The purpose of this study was therefore to 

assess whether long-term melatonin improves metabolic health measures and alters 

dietary intakes in adults at increased risk of type two diabetes. 

 

5.3 Methods  

  

5.3.1 Participants  

Non-pregnant, 18 to 75 year old first-degree relatives of individuals with type two 

diabetes were recruited through a diabetes clinic in Leeds, UK, as well as through local 

general practice surgeries, research databases, and poster adverts targeting University 

of Leeds staff. All study visits took place at the Leeds Institute of Genetics and Health 

Therapeutics (LIGHT) laboratories at the University of Leeds. Inclusion criteria included 

at least one first-degree relative with a confirmed diagnosis of type two diabetes, 

absence of infection or systemic disease, use of stable doses medications for three 

months before the study, no use of melatonin in the four weeks preceding the study, and 

no use of medication contra-indicated for use in conjunction with melatonin.  

Recruited participants first attended a screening visit to assess their eligibility. A study 

nurse took a fasted blood sample (after ≥ 12 hours of fasting) via venepuncture for routine 

pathology testing and exclusion of diabetes. Anthropometrics, demographic information, 

and clinical histories were recorded for each participant. Participants also completed 

questionnaires to estimate morningness/eveningness (Morningness/Eveningness 

Questionnaire (226)), physical activity (International Physical Activity Questionnaire), 

and diabetes risk (Finnish Diabetes Risk Score).  

Participants gave written informed consent before participation. The local National 

Health Service Research Ethics Committee approved the study (number 14/YH/0172), 

which was conducted according to the guidelines outlined in the Declaration of Helsinki. 

Participants were not financially compensated for their participation. 
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5.3.2 Study design 

Eligible participants were randomised into either a group receiving a daily placebo tablet 

or a group receiving a daily 2 mg prolonged-release melatonin tablet (Circadin®, Neurim 

Pharmaceuticals, Zug, Switzerland) that was designed to mimic endogenous melatonin 

rhythms. This formulation is typically used to treat primary insomnia. Circadin® is a non-

selective melatonin receptor agonist, and its use results in no significant withdrawal 

symptoms (466). Access to the randomisation code was exclusively given to the 

pharmacist who prepared the tablet containers before tablets were shipped to the LIGHT 

laboratories from the University Medical Centre Hamburg-Eppendorf in Germany. The 

trial was therefore double-blind, with participants and investigators not knowing which 

group participants had been assigned to during data collection.  

After screening, the first study visits occurred between October 10th 2014 and February 

22nd 2016. Participants were instructed to take their tablets once daily in the evening, two 

hours before habitual bedtime. To check compliance, research nurses documented the 

number of tablets returned by participants at every visit.  Participants took tablets from 

the first study visit at week 0 (randomisation) until the third visit at week 24, between 

which the second visit took place at week 12. To determine if any effects of the treatment 

persisted, participants returned at 36 weeks, 12 weeks after discontinuing treatment. All 

visits were scheduled in the morning (between 07.30 and 11:00), and visits occurred at 

approximately the same time for each participant to minimise noise in measurements 

from diurnal variations in anthropometric and physiological measures. Based on previous 

blood test results, study nurses gave participants advice at each visit regarding health 

behaviours, including dietary choices, physical activity, and smoking cessation. Where 

relevant, nurses gave participants British Heart Foundation advice booklets. 

After collection of a fasted blood sample for determination of multiple cardiometabolic 

measures, participants had an oral glucose tolerance test at each study visit, with blood 

sampling at 30, 60, 90, and 120 minutes after ingestion of 75 g glucose drink. 

Bodyweight, height, abdominal circumference, and blood pressure were measured, and 

sleep quality was assessed in all participants using the Pittsburgh Sleep Quality Index 

(PSQI). 

I applied to the local National Research Ethics Service Committee for a minor protocol 

amendment to also record sleep duration, sleep timing, and dietary intakes. The 

amendment was approved, so the Munich ChronoType Questionnaire (MCTQ (227), 

Appendix B) was completed by participants recruited in the second year of the study, 

and second-year participants also completed online 24-hour dietary recalls using 

measure your food on one day 24-hour recall (myfood24).  
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5.3.3 Metabolic health, anthropometry, and blood pressure 

At each study visit, a cannula was first inserted into the antecubital vein, where possible. 

From this, a 75 ml fasted blood sample was collected. This blood sample was distributed 

into multiple tubes according to the measures to be made. Of these, a 4 ml serum tube 

sample was used to analyse blood lipids (low-density lipoprotein (LDL) cholesterol, high-

density lipoprotein (HDL) cholesterol, and triglycerides) and C-reactive protein (CRP). A 

4 ml ethylenediaminetetraacetic acid tube sample was used to analyse HbA1c. A 4 ml 

fluoride oxalate tube sample was used to analyse fasting glucose. Blood samples for 

these routine clinical blood measures were transported on the same day to the Leeds 

Teaching Hospitals Trust Laboratories for processing and analysis.  

The ethylenediaminetetraacetic acid tube sample was also used to measure plasma 

melatonin by coinvestigators at the University of Surrey. These samples were 

immediately spun at 3,000 x g at 4°C for 30 minutes. The plasma was then aliquoted and 

stored at -80°C before transport to the Chronobiology Section at the University of Surrey 

where samples were analysed using a previously described radioimmunoassay (467). 

Other blood samples were immediately processed in the LIGHT laboratories by the study 

technician, who then stored samples at -80°C for future analysis of other cardiometabolic 

function measures not detailed in this chapter. Fasted blood samples were also used to 

measure multiple other measures of cardiometabolic health. I only analysed data for the 

measures mentioned above (fasting glucose, HbA1c, blood lipids, and CRP).  

Participants then had an oral glucose tolerance test, with 6 to 8 ml blood samples taken 

at 30, 60, 90, and 120 minutes after ingestion of the 75 g glucose drink. The samples 

collected after ingestion of the glucose drink were used to assess multiple measures of 

glucose metabolism. Because of data unavailability, I did not analyse these data for this 

project.  

In between blood sample collections, participant height was measured using a 

stadiometer (Seca, Hamburg, Germany), weight was measured while wearing minimal 

clothing using calibrated scales (Seca, Hamburg, Germany), and waist circumference 

(level with the naval) was measured by tape measure. Blood pressure was measured in 

the non-cannulated arm while seated, using an automated blood pressure cuff (Omron 

M7, Kyoto, Japan). Blood pressure was measured after the participants had sat for at 

least five minutes. All measurements were completed by trained nurses. 
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5.3.4 My laboratory analyses 

The Principle Investigator on the project asked me to suggest other outcomes to 

measure that would complement the original suite of measures. I suggested adiponectin, 

glucagon, interleukin-6 (IL-6), leptin, and oxidised LDL, for reasons that will be discussed 

subsequently. I completed the laboratory assays for these measures. I prepared plasma 

samples according to the manufacturer’s instructions and aliquoted a quality control 

blood sample to include in duplicate each run. I used the same blood sample as a quality 

control for all of the assays.  

I processed the quality control blood sample in the same way that the participant samples 

had been processed. The sample was first collected into a tube (kept on ice) containing 

the anticoagulant ethylenediaminetetraacetic acid. The sample was immediately spun at 

3,000 x g at 4°C for 30 minutes. The plasma was then aliquoted and stored at -80°C. 

Individual aliquots were taken out to thaw beginning about two hours before using them. 

This quality control sample was included in all assays. 

First, I used commercial ELISA kits to measure adiponectin (Human Total 

Adiponectin/Acrp30 Quantikine ELISA Kit, Bio-Techne Ltd, Abingdon, UK). The kits use 

the quantitative sandwich enzyme immunoassay technique in which a monoclonal 

antibody specific to human adiponectin is pre-coated on 96-well microplates. A series of 

standards ranging from 3.9 to 250 ng/ml was included with samples and the quality 

control on each microplate, and everything was run in duplicate for all assays that I did 

in the EuRhythDia project. Samples were diluted 100-fold, as per the manufacturer’s 

instructions.  

In each run, adiponectin is first bound by the antibody during assay incubation. Unbound 

substances are then washed away and an enzyme-linked monoclonal antibody specific 

to human adiponectin is added. A last wash removes unbound antibody-enzyme 

reagents before a tetramethylbenzidine substrate solution is added. The substrate 

solution colour develops in proportion to the quantity of adiponectin bound in the first 

step. Finally, a sulphuric acid solution is added to stop colour development, and I 

measured colour within 30 minutes using a microplate reader (Thermo Scientific™ 

Multiskan™ GO Microplate Spectrophotometer, Waltham, Massachusetts, US). I 

subtracted optical density readings at 540 nm from readings at 450 nm to correct for 

optical imperfections in the plate, as recommended by the manufacturer. I then used the 

linear regression equation from the standard curve to quantify sample concentrations. 

Samples were re-run in instances in which there was an apparent outlier. No samples 

were outside the range of the standard curve. The quality control inter-assay CV for 

adiponectin was 6.98%. 
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I measured glucagon using commercial ELISA kits (Glucagon Quantikine ELISA Kit, Bio-

Techne Ltd, Abingdon, UK). The kits use a similar quantitative sandwich enzyme 

immunoassay technique to the adiponectin kits described above. A series of standards 

ranging from 15.6 to 1,000 pg/ml was included with samples and the quality control on 

each microplate. Samples were not diluted. Samples were re-run in instances in which 

1) one of two sample duplicates was below the lowest standard or 2) there was an 

apparent outlier. The Principle Investigator insisted that results below the lowest 

standard were given the value of the lowest standard for all assays, where applicable. 

The quality control inter-assay CV for glucagon was 22.02%. 

Next, I measured IL-6 using commercial ELISA kits (Human IL-6 Quantikine ELISA Kit, 

Bio-Techne Ltd, Abingdon, UK). The kits use a similar quantitative sandwich enzyme 

immunoassay technique to the kits described above. A series of standards ranging from 

0.78 to 50 pg/ml was included with samples and the quality control on each microplate. 

Samples were not diluted. Samples were re-run in instances in which 1) one of two 

sample duplicates was below the lowest standard or 2) there was an apparent outlier. 

The quality control inter-assay CV for IL-6 was 4.20%. 

I measured leptin using commercial ELISA kits (Human Leptin Quantikine ELISA Kit, 

Bio-Techne Ltd, Abingdon, UK). The kits use a similar quantitative sandwich enzyme 

immunoassay technique to the kits described above. A series of standards ranging from 

15.6 to 1,000 pg/ml was included with samples and the quality control on each 

microplate. Samples were not diluted. Samples were re-run in instances in which there 

was an apparent outlier. No samples were outside the range of the standard curve. The 

quality control inter-assay CV for leptin was 9.87%. 

I measured oxidised LDL cholesterol using commercial ELISA kits (Mercodia oxidized 

LDL ELISA, Mercodia, Uppsala, Sweden). The kits use a similar quantitative sandwich 

enzyme immunoassay technique to the kits described above, except that two monoclonal 

antibodies are directed against separate antigenic determinants on oxidised 

apolipoprotein B molecules. The samples were first diluted in 1/6,561 ratios (1/81 dilution 

of a 1/81 dilution). A series of five standards was included with samples and the quality 

control on each microplate. The manufacturer provides a high control and a low control 

with each kit, and these were also included on each microplate. Results were multiplied 

by 6,561 to account for the dilution. Samples were re-run in instances in which there was 

an apparent outlier. No samples were outside the range of the standard curve. The 

quality control inter-assay CV for oxidised LDL was 6.34%. 
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5.3.5 Sleep assessment 

The PSQI is a series of questions about sleep quality in the preceding month, and 

questions are scored and tallied to give an overall score in which higher scores are 

indicative of lower sleep quality (468). The MCTQ uses separate questions for work days 

and non-work days to estimate mid-sleep time (the halfway time between sleep onset 

and offset) on non-work days as a proxy of chronotype (corrected for age, sex and sleep 

debt). Results are also used to estimate sleep duration (mean sleep duration on work 

days and non-work days, assuming five work days and two free days) and social jetlag 

(the difference between mid-sleep time on work days and non-work days) (227). Full 

calculations for chronotype and social jetlag are available on the Worldwide experimental 

Platform website (469). I scored the PSQI and MCTQ questionnaires. 

 

5.3.6 Dietary assessment 

At each study visit I sat with participants to record their dietary intakes for the previous 

day using myfood24. I then contacted participants by e-mail, asking them to complete 

two further dietary recalls per visit. Because I supervised each of the study visit recalls, 

I am confident that visit recalls were completed correctly. I therefore chose to only 

analyse the recalls completed in my presence. From these recalls I calculated 1) energy 

intake, 2) macronutrient intakes, 3) fibre intake, and 4) total fruit and total vegetable 

consumption. I also recorded response rates to e-mail invitations to complete dietary 

recalls to assess the feasibility of using myfood24 in a clinical trial.  

 

5.3.7 Statistical analyses 

The primary endpoint of the study was differences in HbA1c between groups, and a 

power calculation performed by a coinvestigator indicated that, allowing for 20% of 

participants to dropout, a minimum sample size of 80 individuals would be required in 

each group to detect 7% decrease in HbA1c after 12 months, with α at 0.01 (to allow for 

multiple comparisons) and β at 0.2. These calculations were based on 1) a study in which 

five months of melatonin treatment resulted in an absolute decrease in HbA1c of 0.66% 

(a 7% relative decrease) (342), and 2) the HbA1c levels found in a previous study of first-

degree relatives of people with type two diabetes (470).  

I completed the statistical analyses presented in this chapter. I tested whether melatonin 

treatment influenced the following outcomes: 1) measures related to glucose metabolism 

(fasting glucose, HbA1c, glucagon, and adiponectin), 2) lipids (HDL cholesterol, LDL 

cholesterol, total cholesterol, total: HDL cholesterol ratio, and oxidised LDL cholesterol), 
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3) adiposity (BMI and waist circumference), 4) energy availability (leptin), 5) inflammation 

(CRP and IL-6), 6) sleep (duration, quality, chronotype, and social jetlag), and 7) diet 

(energy, carbohydrate, protein, fat, fibre, fruit, and vegetable intakes).  

To determine whether study visit one values needed to be included as model covariates, 

independent-samples t-tests were first used to check whether there were differences 

between groups at the first study visit. For t-tests I used dot plots to identify any 

unfeasible values, QQ plots to assess normality of distribution in each condition, and 

standard deviations to check homogeneity of variances. (Variances were considered 

homogeneous if they differed by a factor of less than two). One HDL datum was excluded 

from the analysis because the value was clearly unfeasible (206 mmol/L). All other data 

were included in the analyses. Positively skewed data were log-transformed. Study visit 

one data that remained positively skewed after log-transformation were tested using the 

non-parametric Mann-Whitney test.  

Multilevel mixed-effects linear regression models were then used to determine whether 

outcomes differed between groups after 12 weeks of treatment (study visit two), 24 

weeks of treatment (study visit three), and after a 12 week washout (study visit four). I 

chose these models because mixed models are relatively robust to 1) correlated errors 

due to measures repeated for each participant across time within a hierarchical data 

structure, and 2) missing data. The models used the restricted maximum likelihood 

approach (471), as restricted maximum likelihood variance components are less biased 

in small samples. Model predictors included fixed effects (treatment, time, and treatment 

* time interaction), and I included participant as a random effect to control for repeated 

measures. Random effects are presented as 1 SD of the residual variance (within-

participant variance) and 1 SD of the variance of the intercepts (between-participants 

variance). Joint (multiple degrees of freedom) tests were used to test for treatment by 

time interactions. If time effects were significant, I changed the reference study visit to 

that with the biggest contrast for data presentation purposes. (Doing so has no bearing 

on model estimates and fit.) If interactions were significant, tests of simple effects and 

pairwise comparisons were used to determine their nature. For multilevel mixed-effects 

models I checked the distribution of residuals in each group using QQ plots. Positively 

skewed outcomes were log-transformed. 

The Principle Investigator had reservations about treatment compliance and therefore 

wanted to do exploratory analyses using spot plasma melatonin concentration as the 

predictor variable and the same outcomes as the main analyses. For the exploratory 

analyses, model predictors included plasma melatonin concentration as the fixed effect 

and participant as a random effect to control for repeated measures. Two participants 
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had plasma melatonin concentrations that exceeded the melatonin assay limit of 

detection (500 pg/ml) at at least one study visit. Plasma melatonin concentration 

exceeded 500 pg/ml at three of the four visits in one of these participants. As this 

participant was in the control group, such high melatonin levels are remarkably unlikely 

(472). A participant in the treatment group had a plasma melatonin concentration that 

exceeded 500 pg/ml at one of the four visits. This concentration was more than 15 times 

higher than the participant’s melatonin concentrations at other visits. These two 

participants were therefore from the exploratory analyses.  

Data are reported as means ± SDs. p values of ≤ 0.01 were considered significant to 

account for multiple testing. All analyses were performed in Stata version 13 (Texas, 

US). 

 

5.4 Results  

 

5.4.1 Participant characteristics 

Difficulties recruiting participants meant that the final sample size was unfortunately far 

smaller than the target sample size. Approximately 340 adults with first-degree relatives 

with type two diabetes were approached. Of these, 78 participants were recruited. Four 

participants failed screening visits because of past medical histories, six requested 

withdrawal from the study (five because of difficulties with blood sampling, one because 

of mental health difficulties), four were lost because of communication problems, three 

were withdrawn by the study staff (two because of limited blood vessel access during 

sample collection, one because of dumping syndrome), and three stopped taking their 

tablets and withdrew. Complete data were therefore collected for 58 participants. First 

study visit participant characteristics are summarised in Table 5.1. 

 

Table 5.1. Participant characteristics at the first study visit. 

Characteristic Placebo na Melatonin na p value 

Age (years) 47.1 ± 12.5 38 47.1 ± 15.6 37 1.0 

Sex (% female) 73.7 38 83.8 37 0.29 

Anthropometry and metabolic health  

BMI (kg/m2) 27.9 ± 4.8 34 27.1 ± 4.9 32 0.50 

Waist circumference (cm) 91 ± 13 35 88 ± 14 32 0.39 

Systolic blood pressure (mmHg) 115 ± 16 35 114 ± 14 34 0.83 
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Diastolic blood pressure (mmHg) 77 ± 10 35 74 ± 9 34 0.14 

Fasting glucose (mmol/L) 4.82 ± 0.56 34 4.66 ± 0.49 35 0.20 

HbA1c (mmol/L) 35.9 ± 4.0 21 35.2 ± 4.0 21 0.59 

Glucagon (pg/ml) 46.3 ± 24.4 35 36.4 ± 20.9 35 0.06 

Adiponectin (µg/ml) 6.60 ± 2.98 35 6.46 ± 3.15 35 0.85 

Leptin (pg/ml) 25.1 ± 20.5 35 20.5 ± 15.6 35 0.39 

HDL cholesterol (mmol/L) 1.48 ± 0.43 19 1.77 ± 0.49 22 0.05 

LDL cholesterol (mmol/L) 2.87 ± 0.79 20 3.12 ± 0.94 22 0.34 

Total cholesterol (mmol/L) 4.88 ± 0.80 21 5.35 ± 0.87 22 0.07 

Total: HDL cholesterol ratio 3.39 ± 1.00 20 3.25 ± 1.09 22 0.68 

Triglycerides (mmol/L) 1.05 ± 0.45 21 1.04 ± 0.45 22 0.93 

Oxidised LDL (U/L) 51.2 ± 14.8 35 54.4 ± 15.8 35 0.39 

IL-6 (ng/ml) 1.70 ± 1.43 35 1.50 ± 1.22 35 0.58 

CRP (mg/L) 2.83 ± 4.13 20 1.66 ± 2.57 22 0.11 

Diet  

Energy (calories) 1,760 ± 764 16 1,760 ± 453 19 1.00 

Carbohydrate (g) 202 ± 108 16 172 ± 57 19 0.29 

Fat (g) 67 ± 36 16 76 ± 28 19 0.32 

Protein (g) 75 ± 27 16 84 ± 27 19 0.35 

Fibre 17.5 ± 16.00 16 21.1 ± 9.59 19 0.42 

Fruits (g) 177 ± 251 16 190 ± 179 19 0.64 

Vegetables (g) 204 ± 205 16 223 ± 213 19 0.75 

Sleep  

Sleep duration 6.98 ± 1.69 9 7.69 ± 0.54 10 0.26 

Chronotype 27.24 ± 1.15 9 27.59 ± 0.78 10 0.44 

Social jetlag 0.55 ± 0.90 9 0.62 ± 0.57 10 0.85 

PSQI score 6.73 ± 3.37 33 7.35 ± 3.50 31 0.44 

Legend: BMI (body mass index), CRP (C-reactive protein), HbA1c (glycated 

haemoglobin), HDL (high-density lipoprotein), IL (interleukin), LDL (low-density 

lipoprotein), PSQI (Pittsburgh Sleep Quality Index). 

Data are means ± SDs. 

aNumbers vary because of missing data for some measures. Numbers for diet and sleep 

outcomes (other than PSQI score) are low because these data were only collected for 

participants recruited in the second year of the study. 

 

5.4.2 Study compliance 

Excluding participants who dropped out (n = 20) and participants with missing tablet 

consumption data (n = 24), participants (n = 34) took 85% of their tablets on average. Of 
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the 35 participants recruited in the second year of the study, 35 participants completed 

at least one dietary recall, including those who eventually dropped out of the study. 

Together, these participants completed 96 of 231 (41.6%) unsupervised dietary recall 

invitations sent by e-mail. Two participants did not have e-mail addresses and so could 

not be contacted. These people therefore only completed dietary recalls under my 

supervision.  

 

5.4.3 Melatonin, anthropometry, and metabolic health 

There were no main effects of either treatment or time on waist circumference, leptin, 

blood pressure, fasting glucose, HbA1c, Adiponectin, LDL cholesterol, total cholesterol, 

total: HDL cholesterol ratio, triglycerides, oxidised LDL cholesterol, CRP, or IL-6 (Table 

5.2). 
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Table 5.2. Effects of melatonin supplementation on anthropometry and metabolic health.  

 Main effect of 

treatment 

Main effect of 

time 

Treatment * time 

interaction 

Random effects 

Characteristic Χ2 (1 df)  p 

value 

Χ2 (3 df)  p 

value 

Χ2 (3 df)  p 

value 

Within-participant variance 

(1 SD (95% CI)) 

Between-participants variance 

(1 SD (95% CI)) 

BMI 0.42 0.52 13.77 0.003 0.99 0.80 0.59 (0.48 to 0.73) 24.5 (17.4 to 34.4) 

Waist 

circumference 

0.77 0.38 4.60 0.20 5.73 0.13 10.9 (8.8 to 13.4) 169 (119 to 239) 

Systolic blood 

pressure 

0.46 0.50 5.49 0.14 0.65 0.88 80 (65 to 99) 134 (89 to 202) 

Diastolic blood 

pressure 

1.99 0.16 5.25 0.15 0.86 0.83 39.7 (32.2 to 48.9) 45.4 (29.2 to 70.5) 

Fasting 

glucose 

2.98 0.08 2.29 0.51 2.19 0.53 0.14 (0.11 to 0.17) 0.16 (0.10 to 0.25) 

HbA1c 1.80 0.18 7.21 0.07 3.59 0.31 1.69 (1.34 to 2.12) 13.5 (9.4 to 19.4) 

Glucagon 4.92 0.03 3.21 0.36 0.86 0.84 239 (195 to 294) 252 (164 to 387) 

Adiponectin 0.05 0.83 5.10 0.16 2.21 0.53 0.59 (0.48 to 0.72) 9.4 (6.6 to 13.2) 

Leptin 0.38 0.54 0.67 0.88 4.50 0.21 24.1 (19.5 to 29.6) 290.5 (205.5 to 410.7) 

HDL 

cholesterol 

5.06 0.025 6.70 0.08 5.05 0.17 0.03 (0.02 to 0.03) 0.14 (0.10 to 0.21) 

LDL 

cholesterol 

0.32 0.57 4.74 0.19 1.62 0.66 0.11 (0.09 to 0.14) 0.57 (0.39 to 0.82) 
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Total 

cholesterol 

1.97 0.16 6.14 0.11 2.25 0.52 0.14 (0.11 to 0.18) 0.59 (0.41 to 0.85) 

Total: HDL 

cholesterol 

0.68 0.41 7.43 0.06 1.93 0.59 0.09 (0.07 to 0.11) 0.88 (0.61 to 1.26) 

Triglycerides 0.22 0.64 7.09 0.07 2.34 0.51 0.09 (0.07 to 0.11) 0.21 (0.14 to 0.31) 

Oxidised LDL 0.76 0.38 1.64 0.65 1.50 0.68 51 (41 to 62) 168 (116 to 241) 

IL-6a 0.93 0.33 5.22 0.16 5.29 0.15 0.23 (0.19 to 0.28) 0.23 (0.15 to 0.36) 

CRPa 2.46 0.12 1.31 0.73 6.59 0.09 1.40 (1.12 to 1.76) 1.01 (0.61 to 1.66) 

 Legend: BMI (body mass index), CI (confidence interval), CRP (C-reactive protein), HbA1c (glycated haemoglobin), HDL (high-density lipoprotein), IL 

(interleukin), LDL (low-density lipoprotein). 

aData were positively skewed and so were log-transformed. 
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BMI differed across study visits (Χ2(3) =13.77, p = 0.003) such that participants tended 

to have higher BMI values at study visit three than study visit one (0.46 kg/m2, 95% CI 

0.08 to 0.84 kg/m2, p = 0.02, Figure 5.1).  

 

 

Figure 5.1. Effects of melatonin supplementation on body mass index (BMI).  

There was a main effect of time such that participants had higher BMI values at study 

visit three than at study visit one. Black, placebo group. Grey, melatonin group. Error 

bars are 95% confidence intervals. 

 

Plasma glucagon tended to differ between groups (Χ2(1)=4.92, p = 0.03) such that 

participants in the melatonin group tended to have lower glucagon levels (-9.8 pg/ml, 

95% CI -20.2 to 0.5 pg/ml, p = 0.06, Figure 5.2). (The reason that these values 

unavoidably differ slightly from those reported in Table 5.2 is that the χ2 squared test 

separates the main effects (treatment and time), whereas the estimates in the whole 

model are not independent.) 
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Figure 5.2. Effects of melatonin supplementation on plasma glucagon.  

There was a main effect of treatment group such that participants had lower values in 

the melatonin group. Black, placebo group. Grey, melatonin group. Error bars are 95% 

confidence intervals. 

 

Plasma HDL cholesterol also tended to differ between groups (Χ2(1)=5.06, p = 0.03) such 

that participants in the melatonin group tended to have higher HDL cholesterol levels 

(0.31 pg/ml, 95% CI 0.10 to 0.52 mmol/L, p = 0.004, Figure 5.3).  
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Figure 5.3. Effects of melatonin supplementation on plasma high-density 

lipoprotein (HDL) cholesterol.  

There was a main effect of treatment group such that participants had higher values in 

the melatonin group. Black, placebo group. Grey, melatonin group. Error bars are 95% 

confidence intervals. 

 

5.4.4 Melatonin and sleep 

There were no main effects of either treatment or time on chronotype or social jetlag 

(Table 5.3).  
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Table 5.3. Effects of melatonin supplementation on sleep. 

 Main effect of 

treatment 

Main effect of 

time 

Treatment * time 

interaction 

Random effects 

Characteristic Χ2 (1 df) p 

value 

Χ2 (3 df) p 

value 

Χ2 (3 df) p 

value 

Within-participant variance 

(1 SD (95% CI)) 

Between-participants variance 

(1 SD (95% CI)) 

Sleep duration  0.59 0.44 8.06 0.045 11.56 0.009 0.23 (0.15 to 0.34) 0.98 (0.53 to 1.80) 

Chronotype 0.71 0.40 0.28 0.96 0.28 0.96 0.09 (0.06 to 0.13) 0.62 (0.34 to 1.13) 

Social jetlag 0.15 0.70 3.91 0.27 1.10 0.78 0.19 (0.12 to 0.29) 0.38 (0.18 to 0.77) 

PSQI score 0.18 0.67 8.92 0.03 1.48 0.69 3.28 (2.63 to 4.08) 8.33 (5.64 to 12.29) 

Legend: CI (confidence interval), PSQI (Pittsburgh Sleep Quality Index).
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Sleep duration tended to differ significantly across study visits (Χ2(3)=8.06, p = 0.05), 

and there was a significant treatment * time interaction (Χ2(3)=11.56, p = 0.009, Figure 

5.4). Pairwise comparisons showed that sleep duration differed across study visits in the 

placebo group only. In the placebo group, sleep duration at study visit four was longer 

than at study visit three (0.93 hours, 95% CI 0.38 to 1.48 hours, p = 0.001), sleep duration 

at study visit four was longer than at study visit two (0.81 hours, 95% CI 0.30 to 1.32 

hours, p = 0.002), and sleep duration at study visit four was longer than at study visit one 

(0.65 hours, 95% CI 0.17 to 1.13 hours, p = 0.008). In the melatonin group, however, 

sleep duration at study visit four did not differ from study visit three (-0.05 hours, 95% CI 

-0.44 to 0.33, p = 0.78), study visit two (-0.11 hours, 95% CI -0.50 to 0.29, p = 0.60), or 

study visit one (-0.07 hours, 95% CI -0.48 to 0.35, p = 0.75). 

 

Figure 5.4. Effects of melatonin supplementation on sleep duration.  

Sleep was longer at study visit four than visit one, two, and three in the placebo group 

only. Black, placebo group. Grey, melatonin group. Error bars are 95% confidence 

intervals. 

 

Sleep quality (PSQI score) tended to differ across study visits (Χ2(3)=8.92, p = 0.03) such 

that participants appeared to have the lowest PSQI scores at study visit three (-0.74 
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compared to study visit one, 95% CI -1.64 to 0.16, p = 0.11, Figure 5.5). (Lower PSQI 

scores reflect higher sleep quality.)  

 

 

Figure 5.5. Effects of melatonin supplementation on Pittsburgh Sleep Quality 

Index (PSQI) scores.  

There tended to be a main effect of time such that participants had the lowest PSQI 

scores at study visit three. Black, placebo group. Grey, melatonin group. Error bars are 

95% confidence intervals. 

 

5.4.5 Melatonin and diet 

There were no main effects of either treatment or time on energy, carbohydrate, protein, 

fibre, fruit, or vegetable intakes (Table 5.4). 
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Table 5.4. Effects of melatonin supplementation on diet. 

 Main effect of 

treatment 

Main effect of 

time 

Treatment * time 

interaction 

Random effects 

Characteristic Χ2 (1 df) p 

value 

Χ2 (3 df) p 

value 

Χ2 (3 df) p 

value 

Within-participant variance 

(1 SD (95% CI)) 

Between-participants variance 

(1 SD (95% CI)) 

Energy  0.02 0.90 4.22 0.24 0.43 0.93 244,585 (175,255 to 341,342) 186,182 (81,526 to 425,186) 

Carbohydrate 0.07 0.79 3.73 0.29 1.24 0.74 6,265 (4,524 to 8,676) 2,853 (1,107 to 7,356) 

Fat 0.16 0.69 9.11 0.03 0.53 0.91 586 (419 to 819) 472 (208 to 1,071) 

Protein 1.04 0.31 3.92 0.27 3.28 0.35 528 (380 to 733) 244 (92 to 643) 

Fibre  0.55 0.46 1.59 0.66 1.24 0.74 91 (67 to 125) 63 (31 to 129) 

Total 

vegetables  

0.64 0.42 0.92 0.82 0.56 0.91 28,225 (20,658 to 38,563) 16,067 (7,465 to 34,580) 

Total fruits  0.01 0.93 3.37 0.34 0.38 0.95 22,376 (16,354 to 30,616) 23,170 (12,155 to 44,169) 

Legend: CI (confidence interval).
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Fat intake tended to differ across study visits (Χ2(3)=9.11, p = 0.03) such that participants 

tended to have higher fat intakes at study visit two than study visit three (16.5 g, 95% CI 

-1.8 to 34.9 g, p = 0.08, Figure 5.6).  

 

Figure 5.6. Effects of melatonin supplementation on fat intake.  

Fat intake tended to be higher at study visit two than at study visit three. Black, placebo 

group. Grey, melatonin group. Error bars are 95% confidence intervals. 

 

5.4.6 Exploratory analyses  

None of the exploratory analyses that used spot plasma melatonin concentration as the 

predictor variable and the same outcomes as the main analyses was significant (Tables 

5.5 to 5.7). Exploratory results therefore corroborate findings of the main analyses, which 

also showed little effect of melatonin treatment.
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Table 5.5. Plasma melatonin, anthropometry and metabolic health. 

 Main effect of melatonin Random effects  

Characteristic Χ2 (95% CI)  p value 

 

Within-participant variance 

(1 SD (95% CI)) 

Between-participants 

variance (1 SD (95% CI)) 

Number of participants 

(number of observations) 

BMI 0.002 (-0.002 to 0.006) 0.30 0.61 (0.49 to 0.76) 25 (18 to 35) 66 (226) 

Waist 

circumference 

0.008 (-0.010 to 0.025) 0.40 10.8 (8.7 to 13.5) 177 (124 to 251) 66 (225) 

Systolic blood 

pressure 

-0.004 (-0.050 to 0.042) 0.87 84 (68 to 105) 133 (87 to 204) 67 (230) 

Diastolic blood 

pressure 

0.004 (-0.028 to 0.036) 0.79 41 (33 to 52) 45 (29 to 72) 67 (230) 

Fasting glucose 0.000 (-0.002 to 0.002) 0.93 0.14 (0.12 to 0.18) 0.17 (0.11 to 0.27) 67 (227) 

HbA1c -0.002 (-0.009 to 0.006) 0.67 1.84 (1.45 to 2.35) 14 (10 to 20) 63 (196) 

Glucagon -0.021 (-0.010 to 0.053) 0.58 222 (179 to 276) 292 (191 to 448) 67 (230) 

Adiponectin 0.000 (-0.004 to 0.004) 0.94 0.55 (0.44 to 0.69) 9.33 (6.58 to 13.22) 67 (230) 

Leptin 0.018 (-0.009 to 0.044) 0.19 25 (20 to 32) 296 (208 to 421) 67 (230) 

HDL cholesterol 0.000 (-0.001 to 0.001) 0.76 0.027 (0.021 to 0.034) 0.16 (0.11 to 0.23) 62 (204) 

LDL cholesterol 0.001 (-0.001 to 0.003) 0.18 0.11 (0.09 to 0.14) 0.55 (0.38 to 0.81) 63 (205) 

Total cholesterol 0.001 (-0.001 to 0.003) 0.22 0.14 (0.11 to 0.18) 0.59 (0.40 to 0.86) 63 (206) 

Total: HDL 

cholesterol 

0.001 (-0.001 to 0.002) 0.48 0.09 (0.07 to 0.12) 0.91 (0.63 to 1.31) 63 (205) 

Triglycerides 0.001 (-0.001 to 0.002) 0.44 0.08 (0.06 to 0.10) 0.19 (0.12 to 0.28) 63 (206) 
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Oxidised LDL 0.014 (-0.021 to 0.049) 0.44 45 (37 to 57) 171 (118 to 248) 67 (230) 

IL-6a -0.001 (-0.003 to 0.002) 0.61 0.22 (0.18 to 0.27) 0.23 (0.14 to 0.35) 67 (230) 

CRPa -0.001 (-0.007 to 0.006) 0.87 1.35 (1.07 to 1.72) 0.99 (0.59 to 1.67) 63 (199) 

Legend: BMI (body mass index), CI (confidence interval), CRP (C-reactive protein), HbA1c (glycated haemoglobin), HDL (high-density lipoprotein), IL 

(interleukin), LDL (low-density lipoprotein). 

aData were positively skewed and so were log-transformed. 

 

Table 5.6. Plasma melatonin and sleep. 

 Main effect of melatonin Random effects  

Characteristic Χ2 (95% CI) p value Within-participant 

variance (1 SD (95% CI)) 

Between-participants variance 

(1 SD (95% CI)) 

Number of participants 

(number of observations) 

Sleep duration  0.002 (-0.003 to 0.007) 0.37 0.23 (0.15 to 0.35) 1.13 (0.61 to 2.09) 28 (74) 

Chronotype -0.001 (-0.003 to 0.002) 0.67 0.08 (0.05 to 0.13) 0.62 (0.34 to 1.10) 28 (71) 

Social jetlag 0.000 (-0.005 to 0.004) 0.83 0.20 (0.13 to 0.31) 0.37 (0.18 to 0.75) 27 (71) 

PSQI score -0.003 (-0.013 to 0.006) 0.49 3.3 (2.6 to 4.1) 8.8 (5.9 to 13.1) 65 (214) 

Legend: CI (confidence interval), PSQI (Pittsburgh Sleep Quality Index). 
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Table 5.7. Plasma melatonin and diet. 

 Main effect of melatonin Random effects  

Characteristic Χ2 (95% CI) p value Within-participant variance 

(1 SD (95% CI)) 

Between-participants variance 

(1 SD (95% CI)) 

Number of participants 

(number of observations) 

Energy  -2.1 (-6.3 to 2.1) 0.32 244,827 (173,812 to 344,857) 184,983 (80,801 to 423,490) 34 (107) 

Carbohydrate 0.002 (-0.65 to 0.66) 1.00 6,516 (4,662 to 9,108) 2,410 (833 to 6,977) 34 (107) 

Fat -0.17 (-0.38 to 0.05) 0.13 638 (451 to 902) 478 (204 to 1,122) 34 (107) 

Protein -0.16 (-0.35 to 0.03) 0.10 534 (381 to 717) 319 (134 to 757) 34 (107) 

Fibre  -0.04 (-0.12 to 0.04) 0.31 97 (70 to 133) 61 (29 to 129) 34 (107) 

Total 

vegetables  

0.19 (-1.23 to 1.60) 0.79 29,270 (21,207 to 40,397) 14,515 (6,336 to 33,252) 34 (107) 

Total fruits  0.10 (-1.15 to 1.36) 0.87 21,038 (15,223 to 29,075) 22,293 (11,689 to 42,518) 34 (107) 

Legend: CI (confidence interval). 
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5.5 Discussion 

Contrary to our hypotheses, we found few effects of long-term melatonin 

supplementation on measures of metabolic health, sleep, and diet in adults at elevated 

risk of type two diabetes. Plasma glucagon was lower and plasma HDL was higher in 

the melatonin group, but this was true across all study visits. Subjective sleep quality 

was highest in both groups at study visit three, and dietary fat intake was higher in both 

groups at study visit two than at study visit three, but there was no effect of melatonin 

treatment on any of these outcomes. The only outcome for which the effects of treatment 

differed across time was sleep duration, which was longer at visit four in the placebo 

group only. Visit four was after a 12 week washout period, however. Together, these 

findings do not support the use of melatonin as a countermeasure against development 

of metabolic diseases such as type two diabetes, although this does not mean that 

melatonin might not influence cardiometabolic health in other circumstances.  

The primary outcome of the study was change in HbA1c, a measure of long-term blood 

glucose levels. It was previously found that open-label use of the same slow-release 

melatonin formulation used in the study of this chapter reduced HbA1c after five months 

in type two diabetes patients with insomnia. Before the open-label period, however, 

participants were blinded to treatment and crossed over between melatonin and placebo 

conditions. During this initial period, treatment only improved sleep quality and did not 

influence HbA1c (342). A few factors may explain the discrepant findings between this 

previous study and that of this chapter. First, baseline HbA1c levels were roughly twice 

as high in the previous study. Second, participants in the prior study were also using 

either oral hypoglycaemic agents or insulin. Third, participants in the previous study 

complained of insomnia, although changes in sleep quality during treatment were not 

predictive of improvements in HbA1c.  

HbA1c and fasting glucose are arguably the most clinically relevant measures of glucose 

metabolism, as both are routinely used to diagnose diabetes. Interestingly, the study 

discussed above also found no effects on fasting glucose after the crossover or open-

label periods (342). This is commensurate with our findings, two previous studies of 

multiple weeks of melatonin supplementation in adults with metabolic syndrome (343, 

344), and an open-label study of six months of 2 mg of melatonin treatment in elderly 

women (349). It therefore seems that long-term melatonin supplementation minimally 

influences fasting glucose.  

Several hormones have critical roles in glucose metabolism. Of these, I analysed data 

for glucagon and adiponectin. Glucagon is a pancreatic peptide hormone that 

antagonises the effects of insulin by stimulating gluconeogenesis, glycogenolysis, and 
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lipolysis, also inhibiting glycogenesis and lipogenesis (473). In vitro experiments and pre-

clinical studies of rodents have shown that melatonin tends to increase glucagon levels 

(474). To my knowledge, only one study has documented effects of long-term melatonin 

supplementation on glucagon in humans, reporting lower insulin/glucagon ratios after 

three months of 4 mg melatonin each night, an effect only present in carriers of the 

rs10830963 risk variant of MTNR1B (354). Such previous studies indicate that it might 

be useful to determine if MTNR1B genotypes mediate how metabolic outcomes respond 

to melatonin supplementation. Although we found that plasma glucagon was lower in the 

melatonin group, this was across all study visits, so melatonin did not seem to 

meaningfully influence glucagon levels.  

Adiponectin is a protein produced by adipocytes and other cells. Adiponectin has anti-

inflammatory and insulin-sensitising effects through interactions with its receptors at 

tissues such as the liver and skeletal muscle. Specifically, adiponectin enhances muscle 

glucose uptake, reduces hepatic gluconeogenesis, and increases lipid oxidation (475). 

Several studies of rodents reported that melatonin supplementation or injection raises 

adiponectin levels (359). Regarding humans, a four-week trial found that twice-daily 

(once in the morning, once in the evening) melatonin supplementation increased plasma 

adiponectin levels by 119% in adults with non-alcoholic steatohepatitis (476). Another 

study reported that one year of nightly treatment with melatonin tended to increase 

adiponectin in post-menopausal women with osteopaenia (345). Again, however, we 

found no effects of melatonin supplementation on plasma adiponectin. Collectively, our 

findings show that long-term melatonin supplementation has negligible effects on key 

hormones involved in glucose regulation in relatively healthy adults. 

Like adiponectin, leptin is a peptide hormone secreted primarily by adipocytes. Leptin is 

produced in proportion to adipocyte mass and hence signals energy availability in the 

brain. Leptin has widespread roles in determining energy balance, influencing autonomic 

nervous system activity, many neuroendocrine processes, and behaviours such as 

physical activity (477). Studies of rodents have generally found that melatonin 

supplementation or injection reduces weight and leptin levels, although there is some 

evidence to the contrary, likely as a result of differences between studies in variables 

such as dietary composition (359). Few human studies have yet assessed effects of 

melatonin supplementation on leptin. A single daytime melatonin dose administered at 

three different times did not acutely influence leptin levels in post-menopausal women 

(478). Conversely, a larger dose reduced leptin levels in male patients with liver cirrhosis 

and portal hypertension but increased levels in healthy male controls, a difference 

perhaps related to variation in liver metabolism of melatonin (479). The only longer-term 

trial was the aforementioned study of adults with non-alcoholic steatohepatitis, in whom 
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melatonin increased plasma leptin levels by 33% (476). In contrast to these studies, we 

found no effect of long-term melatonin supplementation on plasma leptin levels in adults. 

As leptin levels generally reflect energy availability, some might expect plasma leptin to 

have tracked BMI. It is interesting that there were no differences in leptin, despite BMI 

increasing from visit one to visit three. Effects of leptin are dependent on leptin sensitivity, 

so altered leptin sensitivity across study visits is a plausible but speculative explanation 

for this result. Regardless, there was no difference between groups. 

Previous studies found that adults with metabolic syndrome tended to lose weight during 

long-term melatonin supplementation (343, 344), and numerous studies of rats have also 

reported that melatonin protects against development of obesity and central obesity 

(480). Beyond weight alone, melatonin may influence body composition in some 

circumstances, as one year of melatonin supplementation increased lean body mass in 

post-menopausal women, without affecting weight (345). We therefore expected to 

melatonin to influence body composition, but we found no effects of melatonin treatment 

on waist circumference or changes in BMI, which increased from study visit one to study 

visit three in both groups. It is noteworthy that not all previous studies have reported 

consistent effects of melatonin on bodyweight. In the study of metabolic syndrome 

patients whose health had not responded to a lifestyle intervention, BMI fell after one 

month of 5 mg melatonin each evening, but effects were not apparent after two months 

of melatonin treatment (343). Furthermore, the study in which metabolic syndrome 

patients were crossed over for 10 weeks found that weight fell 1.9 kg on average while 

taking melatonin, but this was not quite significant (p = 0.09). If melatonin influences 

bodyweight, it appears that effects are modest. Furthermore, our findings do not suggest 

that melatonin markedly influences diet. Diet is a key determinant of bodyweight, but only 

fat intake was found to differ across time. Notably, however, diet was only assessed in a 

subset of participants, limiting statistical power to detect differences. 

Excess adiposity often coincides with dyslipidaemia, a core characteristic of many 

cardiometabolic diseases. Multiple studies of rats have reported that melatonin 

supplementation protects against dyslipidaemia (480). Results from studies of humans 

are equivocal, however. Whereas one month of 1 mg of melatonin each evening was 

found increase HDL cholesterol in peri- and post-menopausal women (346), others 

reported that melatonin increased triglycerides (347) and very-low-density lipoprotein 

cholesterol in normolipidaemic post-menopausal women (348). Conversely, pilot studies 

found negligible effects on lipids in elderly women (349) and hypercholesterolaemic 

patients (350). Although we found that HDL cholesterol levels were higher in the 

melatonin group, this was true across all study visits, and LDL cholesterol and 
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triglycerides were not influenced by treatment. Melatonin did not appreciably influence 

routinely-measured blood lipids in this study. 

The atherogenic potential of blood lipids is increased by their oxidation (481), and 

systemic oxidative stress contributes to the pathogenesis of many disorders, including 

metabolic syndrome (323). In vitro work has shown that melatonin and its metabolites 

have many roles in protecting against mitochondrial dysfunction and hence excessive 

production of reactive oxygen species (482). Furthermore, melatonin is directly involved 

in defence against oxidative stress and scavenging free radicals (322), and in vitro work 

has shown that melatonin inhibits oxidation of LDL cholesterol (347, 483). We therefore 

hypothesised that melatonin would counter any excessive inflammation and hence 

reduce oxidised LDL, CRP, and IL-6. However, melatonin supplementation did not 

influence any of these outcomes. A previous study found that long-term melatonin 

supplementation did not influence CRP in adults with metabolic syndrome (343). There 

is otherwise little evidence regarding changes in CRP and IL-6 after melatonin 

supplementation in humans, other than small trials in which various doses of melatonin 

have been assessed for their effects on inflammatory responses to surgery. In none of 

these did melatonin influence CRP or IL-6 (484-486).  

Inflammation influences blood pressure, and melatonin has been found to alter blood 

pressure through effects on the autonomic nervous system and nitric oxide signalling. 

Numerous studies have reported that melatonin reduces blood pressure, and a meta-

analysis found that the same prolonged-release melatonin formulation used in this study 

reduced blood pressure in nocturnal hypertension (487). We did not find any effects of 

melatonin supplementation on blood pressure, however, perhaps because participants 

mostly had healthy blood pressure values. It is possible that we might have detected 

differences had 24-hour blood pressure monitoring been used rather than a single 

morning measure, and this is true of most outcomes in this study. It is also noteworthy 

that effects of melatonin on vascular function may depend on which vessels are 

measured: A study of adults reported that whereas melatonin reduced renal blood flow 

velocity and vascular conductance, melatonin increased forearm blood flow velocity and 

vascular conductance (488). 

Many studies have found that use of melatonin and other melatonin receptor agonists 

improve multiple aspects of sleep, including sleep duration and quality in people with 

difficulty sleeping (465). We found sleep was longer at visit four in the placebo group 

only, a finding that is difficult to explain if the possibility of a false-positive finding is 

overlooked. We also found that sleep quality improved from study visit one to study visit 

three. However, melatonin supplementation did not influence this trend, and a placebo 
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effect is therefore perhaps the most plausible explanation. PSQI scores of five or more 

are generally considered indicative of poor sleep quality, and mean PSQI scores at the 

first study visit in each group exceeded five. I therefore expected melatonin to influence 

sleep quality. Because participants were instructed to take melatonin at a consistent time 

shortly before bed, I did not anticipate that melatonin would influence chronotype or 

social jetlag, and this was the case.  

The melatonin dose used in this study may have been suboptimal, and it is tempting to 

speculate that a higher dose might have produced stronger effects. However, the dose 

used in this study was certainly supra-physiological. Peak daytime and night-time serum 

melatonin concentrations in healthy young adults are ~ 10 and 60 pg/ml blood, 

respectively (472). However, just 1 mg of exogenous melatonin can increase daytime 

serum melatonin concentration to over 400 pg/ml in healthy adults, and 10 mg can 

produce serum levels exceeding 6,000 pg/ml (489). Therefore, the 2 mg dose taken by 

participants was likely sufficient, regardless of whether it was a slow-release formulation. 

It is also possible that effects of melatonin supplementation may have differed according 

to differences between participants in pre-intervention melatonin signalling, but we did 

not measure overnight measure melatonin levels at this time or any other. 

Participants in the previous human studies that have found beneficial effects of melatonin 

have generally had metabolic health problems such as metabolic syndrome. As 

participants in this study had at least one first-degree relative with type two diabetes, 

participants were at increased risk of this disease. However, most of participants’ 

metabolic characteristics at the first study visit were within recommended ranges, even 

if they were typically overweight. This could explain why we found few effects of 

melatonin: perhaps melatonin supplementation is more beneficial in people with existing 

health problems.  

This study had several strengths. First, the randomised, double-blind, placebo-controlled 

design was suited to making inferences about causality. Second, the intervention 

duration exceeded that of similar previous studies (342-344), and repeated measures 

after a washout period showed whether any treatment effects persisted. Third, this study 

more comprehensively profiled metabolic health than prior studies. Fourth, this is the first 

study to assess whether melatonin supplementation influences diet in humans. Fifth, this 

is the first study to assess the effects of long-term melatonin supplementation on 

metabolic health in relatively healthy adults. 

This study also had limitations, however. First, the sample size was smaller than 

planned, limiting statistical power needed to detect differences between groups. Second, 

overnight measures of melatonin at the first study visit were not collected to determine 
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whether differences in endogenous melatonin mediate treatment responses. Third, 

MTNR1B genotype was not determined, despite previous work showing that MTNR1B 

genotype influences responses to treatment (354). Fourth, the study did not include 

objective measures of sleep. Fifth, as is true of other similar studies, the study had no 

objective biomarker of compliance with the intervention, instead using tablet counts. 

Sixth, the participants were given lifestyle advice at study visits that was not 

standardised. 

In summary, long-term melatonin use had negligible effects on most anthropometric, 

metabolic, sleep, and dietary outcomes in first-degree relatives of people with type two 

diabetes. Future studies that build on these findings are needed. In particular, studies 

with larger participant samples that consider how different participant characteristics 

influence responses to melatonin use will be insightful. Studies should also consider 

different clinical populations and test various melatonin doses and formulations. 

Melatonin could still prove to be a useful prophylactic agent against cardiometabolic 

disease development, but findings presented in this chapter do not support its use in 

similar populations.  
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Chapter 6: Discussion, directions for future work, and conclusions 

 

6.1 Summary of project contributions to existing knowledge 

The vital roles of the circadian system, sleep, and diet in metabolic health were evident 

long before this project began. Nevertheless, my initial literature review identified novel 

questions that are relevant to public health within these research topics. Several of these 

questions were within the scope of this project, and the previous four chapters document 

most of our efforts to answer these questions. In this final chapter I will summarise project 

findings (Figure 6.1) and their implications, discuss project strengths and limitations, and 

suggest ideas for future studies to build on this work and respond to ongoing societal 

developments.  

 

  

Figure 6.1. Summary of project findings.  

Numbers correspond to chapters. Legend: RCT (randomised controlled trial). 
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6.1.1 Validation of a new dietary recall tool that might help unveil diet-disease 

associations 

Diet quality influences disease risk and human lifespan (263). Studies that have 

assessed the interplay between sleep, diet, and health have produced some conflicting 

findings, perhaps in part because of use of dietary assessment methods with unknown 

validity in documenting diet composition. As it appears that it is not only what we eat but 

when we eat that matters (490), another pitfall of many dietary assessment methods 

used is their failure to document diet timing.  

We therefore assessed the validity of measure your food on one day 24-hour recall 

(myfood24), an online dietary recall tool developed to overcome some of the limitations 

inherent to other dietary assessment methods used with UK adults. Usability testing 

completed before the myfood24 validation study had shown that myfood24 is 

appropriately designed for use with UK adolescents and adults (391), and a subsequent 

study demonstrated that myfood24 has good agreement with the gold-standard 

interviewer-administered multiple-pass 24-hour recall method (MPR) in adolescents 

(415). But we still knew nothing of the validity of myfood24 in adults, as shown by its 

performance relative to reference measures. 

In the myfood24 validation study, we compared agreement between myfood24 and a 

suite of reference measures to agreement between the MPR and the same reference 

measures. I completed all of the laboratory analyses for two of the reference measures. 

We found that the dietary recall methods produced similar results, validating myfood24 

for use in Chapters 3 and 5 of this project and showing that use of myfood24 has great 

potential to document diet-disease relationships in future studies of UK adults.  

 

6.1.2 Use of the myfood24 validation study dataset to show that the circadian 

timing of food intake is associated with body mass index  

While reviewing the literature I realised that although there is some evidence that late 

eating is associated with body mass index (BMI) (246), nobody had directly studied 

whether diet timing relative to circadian phase was associated with metabolic outcomes, 

despite considerable evidence that the circadian system tunes many metabolic functions 

according to circadian time (491). My impression was that a salient question was how to 

best measure diet timing. Human sleep is relatively consolidated and is therefore quite 

evenly spread across the night, so using mid-sleep time is a reasonable way to assess 

sleep timing. People are likely to distribute their energy intakes unevenly across the 
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waking day, however, so using the halfway time between ingestion of the first and last 

caloric event of the day (the caloric midpoint) might be inappropriate. Mammals like mice 

do not have such consolidated sleep as humans, and time at 50% of daily locomotor 

activity is sometimes used to assess circadian phase in these animals (492). I therefore 

applied this same logic to assess diet timing, using the time of day at which people 

surpass 50% of daily caloric intake to approximate dietary phase.  

I found no evidence regarding whether more variable sleep timing was associated with 

less consistent diet timing. This seemed significant, as 1) irregular sleep is associated 

with poorer metabolic health (26), and 2) inconsistent eating patterns adversely affect 

metabolic responses to feeding, including diet-induced thermogenesis and blood 

glucose regulation (308). I therefore used the myfood24 dataset of Chapter 2 to address 

these gaps in the literature.  

After I analysed the data presented in Chapter 3, a paper was published addressing the 

same fundamental question that I sought to answer (268). The paper reported that later 

circadian timing of food intake was indeed associated with adiposity in a homogeneous 

group of young US adults. Chapter 3 adds to this published work by studying a larger 

group of adults from a different country, and also by assessing associations between 

sleep timing variability and diet timing variability. 

In Chapter 3 I revisited the myfood24 data, scoring 564 sleep records, and cleaning and 

scoring 550 diet recalls. Results of the main analysis agree with the findings of McHill 

and colleagues (268): Participants with smaller dietary phase angles were more likely to 

be overweight or obese. Although sleep timing was generally related to diet timing, sleep 

timing variability was not associated with diet timing variability. As I assessed the exact 

timing of all caloric events, the chapter also gives a higher resolution analysis of temporal 

patterns of diet in UK adults than previously reported. The findings strengthen the 

evidence implicating eating at suboptimal circadian phases in the pathogenesis of 

obesity and provide new insights into how sleep relates to diet in UK adults. 

 

6.1.3 Use of the National Diet and Nutrition Survey to explore associations 

between sleep duration, diet, and objective measures of metabolic health 

concurrently for the first time in UK adults 

Cross-sectional studies have sometimes reported that short-sleeping adults consume 

less healthy diets (365), and many large-scale studies have identified short sleep as a 

risk factor for obesity (32). In my literature review, however, I found no studies that had 

concurrently assessed associations between sleep duration and diet as well as between 
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sleep duration and objective measures of metabolic health in UK adults. We therefore 

sought a larger dataset to explore these relationships, choosing to use data from years 

1 to 4 of the National Diet and Nutrition Survey Rolling Programme (NDNS-RP) to do so. 

I designed and completed all of the analysis. 

As anticipated, sleep duration was negatively associated with BMI and waist 

circumference. Sleep duration tended to be associated with more healthy blood lipids. 

Contrary to our expectations, however, sleep duration was not associated with dietary 

measures. Chapter 4 therefore reinforces findings of other studies showing that sleep 

duration influences metabolic health. Chapter 4 also adds to these studies by more 

comprehensively profiling metabolic health than similar studies of UK adults (445, 493). 

 

6.1.4 A small randomised controlled trial showed that long-term melatonin 

supplementation does not substantially influence sleep, diet, and metabolic health 

in UK adults predisposed to type two diabetes 

Against the background of ongoing environmental changes, many people are at 

increasing risk of the unhealthy metabolic correlates of circadian system and sleep 

disruption (416). Safe therapies to facilitate circadian system alignment and enhance 

sleep are therefore attractive candidates in the prevention of metabolic diseases. As a 

proven chronobiotic with somnogenic effects when supraphysiological doses are 

ingested, melatonin meets these criteria (54). Several preliminary studies reported that 

melatonin improves various health parameters in adults with metabolic disorders (342, 

343). These studies have significant methodological issues, however. Furthermore, no 

randomised controlled trial had yet assessed whether 1) melatonin is an effective 

countermeasure against metabolic disease development, and 2) melatonin affects diet.  

We therefore assessed the effects of long-term melatonin supplementation on metabolic 

function, sleep, and diet in first-degree relatives of people with type two diabetes. I 

supervised myfood24 diet recalls at study visits. I then completed the glucagon, 

adiponectin, leptin, interleukin-6, and oxidised LDL cholesterol laboratory analyses. I 

also scored the Pittsburgh Sleep Quality Index and Munich ChronoType Questionnaires 

to assess sleep. Finally, I analysed the data. 

Contrary to our hypotheses, long-term melatonin supplementation did not significantly 

affect any of the metabolic or dietary outcomes measured. Although null findings can 

reflexively feel disheartening, the study results are important, as they indicate the need 

to study alternative interventions to enhance metabolic regulation in people with similar 

phenotypes (discussed in section 6.4). 
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6.2 Implications of our findings  

Our findings have two main implications that may contribute to informing public health 

policies concerning healthy lifestyle patterns. First, dietary guidelines should perhaps 

include more definitive advice on when to eat. Current UK government dietary 

recommendations focus exclusively on what to eat and drink but contain no advice on 

when to eat and drink. This is true of dietary guidelines in most countries. Perhaps the 

closest advance towards advice on when to eat is incorporation by some governments 

of the recommendation to consume breakfast, as was true when changes were made to 

the US dietary guidelines in 2010 (494). If future studies continue to support previous 

findings that mistimed food and drink intake initiates a panoply of adverse metabolic 

consequences (495), governments should revise their guidelines accordingly. A large 

proportion of people engage in shift work, so dietary recommendations tailored to these 

people would ultimately be another worthwhile development. Such recommendations 

may not yet be feasible, however, as few studies have directly addressed this question 

in humans yet. 

The second implication is that many people might experience improved health if the 

stakeholders who make decisions about changes in clock time and employee working 

hours modified their practices to allow people more complete sleep wherever possible. 

While one can hope that instructing people to go to bed earlier and sleep more leads to 

the desired outcomes, lasting behaviour change is often frustratingly elusive. Indeed, 

recidivism to prior behaviours and hence health status is frequently the norm, as 

exemplified by people who unsuccessfully try to lose weight and then retain the weight 

loss (496). Many strategies to facilitate the widespread, sustainable adoption of more 

healthy behaviours have been proposed. One such strategy is a libertarian paternalistic 

approach, in which governments implement changes to gently coax people into healthier 

lifestyle patterns (497).  

An example of the deleterious effects of changes in clock time is what appears to be an 

increase in traffic accidents following Daylight Savings Time (498). This is of little surprise 

given the sleep loss that people may experience after this transition. Circadian 

misalignment during changes in clock time is also a plausible contributor to some health 

problems, such as the apparent rise in unipolar depressive episodes that certain 

individuals suffer on transition from Summer Time (499). China is perhaps the most 

severe instance of political enforcement of inappropriate clock times. China spans five 

geographical time-zones, but the entire country follows Beijing time. The health effects 

of this discordance between clock time and solar time in China is a topic ripe for research. 
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Regarding work schedules, flexible working hours and shift work schedules tailored to 

individual chronotypes might help reduce sleep loss and circadian misalignment (250). 

In some circumstances the initial logistical difficulties posed by implementing flexible 

working hours may be outweighed by the benefits of enhanced worker satisfaction and 

productivity. If flexible schedules are unfeasible, delaying work times makes sense for 

the majority of workers, as ~ 80% of adults curtail sleep by using alarms to wake before 

work (26). And if this is still not an option, permitting workers naps may enhance 

productivity if they have accumulated sleep debts (500).  

School start times exemplify the benefits of delaying the start of the work day. Most 

studies of the effects of delaying school start times in adolescents have found that 

adolescents sleep longer as a result of waking later, have fewer motor vehicle crashes, 

are less likely to be late or skip school, fall asleep in lessons less, and achieve better 

grades (501). Influencing stakeholders to enforce change can seem an insurmountable 

challenge, but educating these people about anticipated economic benefits may help 

persuade them. Recent macroeconomic modelling of the effects of delayed school start 

times in the US forecast that delaying school start to 08:30 would increase high school 

graduation, reduce adolescent car crashes, and result in an $83 billion surplus after a 

decade (502). 

 

6.3 Project limitations and strengths 

Projects inevitably have shortcomings, and a limitation of this project is inconsistencies 

in methods between chapters. Whereas sleep was assessed using wearable devices in 

Chapter 3, for example, questionnaires were used in chapters 4 and 5. Similarly, diet 

was assessed using different methods in these chapters. This inconsistency is an 

unavoidable consequence of using data collected by other groups (like the NDNS-RP 

data). 

Cross-sectional research such as that of chapters 2, 3, and 4 has inherent limitations, 

including the possibility of reverse causality, undetected bias, and unmeasured 

confounding. Related to this, nutrition research has been heavily criticised on many 

occasions, often for good reasons (503). A huge array of dietary compounds has been 

associated with increased risk of cancer or protection from cancer, for instance, yet the 

reported associations generally shrink substantially in meta-analyses (504). Indeed, 

results from randomised trials of specific nutrients indicate that the magnitude of 

probable effects on many diseases is practically negligible (505). For this reason, many 

nutritionists have transitioned to using randomised trials to study the interplay of various 

nutrients via dietary pattern approaches, and this shift may overcome limitations of a 
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more nutrient-centric approach. Furthermore, much attention has recently been given to 

irreproducible study results (506), and many scientists are vying for use of more stringent 

significance thresholds.  

I acknowledge that as is true of the vast majority of similar published research, my project 

is not immune to these limitations. Research that fulfils these criteria would be 

remarkably costly, and my intention with this project was to maximise my contribution to 

the literature within the constraints of the resources available. This is not to dismiss the 

potential value of adopting the above ideas, however, and I consider the growing focus 

on experimental rigour to be a productive development.  

A key strength of this project is its contribution to the validation of a new tool suited to 

nutrition research in the 21st century. There is growing interest in big data – datasets so 

vast and complex that mining the information with traditional analytic methods is 

inappropriate. Online tools like myfood24 can record an unprecedented amount of 

dietary information, and studies of larger scales than existing research will help 

overcome the aforementioned pitfalls of nutritional research. 

I suggest that another strength of this project is its breadth. This breadth encompasses 

the methods used: from validation of a dietary assessment method, to nutritional 

epidemiology research, to a randomised controlled trial. But this breadth also 

encompasses the cross-disciplinary nature of the project, bringing together the unique 

research disciplines of chronobiology, sleep, and nutrition. In doing so, the project 

recognises that all are interdependent. Projects with narrow scopes are of course 

necessary to elucidating nuances in the biological mechanisms that underlie health and 

disease, but such projects also risk detachment from the greater context in which the 

work fits. The variety of this project has therefore fostered both my enthusiasm and my 

appreciation for multidisciplinary research.  

 

6.4 Possible directions for future work 

I acknowledge that some of the suggestions I discuss here present considerable 

logistical difficulties. My ideas are only intended to encourage reflection. 

Beginning with chapter 2, it would be productive to reach consensus on the best ways to 

assess validity of dietary recall methods. Next, we need to determine which dietary 

assessment tools are best by pitting similar methods head-to-head in the least biased 

way possible. An example of this would be independent researchers with no conflicts of 

interest directly comparing myfood24 to INTAKE24, against biomarkers of dietary 

intakes. Next, the best tool could be optimised for the needs of different populations, as 
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has been done for some 24-hour recall methods (507, 508). Digital methods could also 

be tweaked at this stage to capture other components of dietary patterns, such as the 

context in which foods and drinks are ingested (for example, the place of consumption 

and presence of others). Another consideration is that some participant characteristics 

clearly influence dietary recall accuracy. This is overtly evident in the tendency for people 

with obesity to underestimate intakes, and recall accuracy raises a consideration relevant 

to much human research: How do we best design studies to maximise compliance? It 

seems that this is a hugely important yet neglected research question. 

Recovery biomarkers of dietary intakes are currently only available for energy, protein, 

potassium, and sodium intakes, so there is a glaring need to develop novel biomarkers 

of nutrient intakes. New biomarkers of intakes have recently been identified, such as 

proline betaine as a biomarker of citrus intake (509), and developments in ‘-omics’ 

methods might be particularly well suited to identifying new biomarkers. Metabonomics 

is similar to metabolomics but uses a systems biology approach to determine metabolic 

responses to changes in stimuli such as diet (510). By identifying changes in metabolic 

profiles that correspond to dietary changes, nutritional metabonomics may be a 

particularly promising approach. Furthermore, development of new statistical analysis 

techniques could also be important to unveiling new biomarkers (377).  

We also need to better understand how gene-nutrient and other interactions influence 

the validity of biomarker measures. Myriad factors conceivably influence the kinetics of 

the absorption, distribution, metabolism, and excretion of nutrients, and such factors 

might lead to physiological confounding of how accurately biomarkers predict true 

intakes (511). It is also important to consider that many of the studies that first identified 

recovery biomarkers only included small groups of relatively homogeneous participants. 

The study that validated urinary nitrogen as a recovery biomarker of protein intake 

included only eight participants, for example (366). 

Chronobiomic studies that identify time-dependent biological signals could be particularly 

useful means of enhancing the precision of biomarker measures. Spot (single time-point) 

biomarker measurements are far more practical than 24-hour measurements but are 

also less accurate. The intersection of studies to identify novel biomarkers of circadian 

phase with research to determine effects of biological rhythms on associations between 

dietary intakes and nutritional biomarkers could therefore enhance the accuracy of spot 

biomarker measurements and hence improve power to detect diet-disease relationships.  

Relevant to both Chapter 2 and Chapter 3, many approaches to studying dietary patterns 

have been used, including participant-identified meal patterns and time of day patterns. 

The variables studied partly depend on features of different dietary assessment methods, 
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but variables have commonly included meal frequency, skipping, spacing, and timing 

(264). It might be fruitful to reach consensus on the best ways to characterise dietary 

patterns of both diet composition and timing.  

Studies of the effects of manipulating each caloric event will be instructive. An example 

is comparing the effects of long-term breakfast-skipping to long-term dinner-skipping on 

diet, metabolism, activity, and sleep. Another example is comparing the effects of long-

term consumption of a high-protein event at a late circadian phase to long-term 

consumption of an isocaloric event comprised of carbohydrate and/or fat at a similar 

circadian time. Indeed, whereas findings of Chapter 3 and other research (268) indicate 

that caloric intake at a late circadian phase might be obesogenic, sports nutrition 

research has shown that pre-sleep protein intake improves body composition responses 

to resistance training (512).  

Additional studies of effects of nutrient intake distributions across the day in different 

populations would also be useful. Elderly people, for example, are relatively resistant to 

the anabolic effects of protein intake on skeletal muscle mass, and their habitual patterns 

of protein intake are rarely conducive to offsetting the debilitating effects of sarcopaenia 

(513). The elderly also exemplify the fact that it is misguided to only focus on obesity: 

Some people would actually benefit from gaining weight, provided that the composition 

of the mass accrued is appropriate. We need more studies of clinical populations, an 

issue relevant to so much human health research.  

Chapter 3 considered the circadian phase of eating, a subject in its infancy and therefore 

a topic on which many related studies are needed. First, precise measures of circadian 

phase are currently laborious, and we need to identify biomarkers of circadian phase, 

circadian misalignment, and sleep debt for use in field studies. Another consideration is 

that circadian phase is not fixed, and dynamic modelling of circadian phase may 

ultimately enhance experimental precision.  

Chapter 3 is particularly relevant to shift workers, who are likely to often eat during the 

biological night. As shift work is a complex exposure scenario, there is a clear need to 

develop methods for field studies that better document the suite of exposures that shift 

work entails. For example, little is known about light exposure patterns among shift 

workers. A recent review reported that light intensity levels of 50 to 100 lux at the eye 

are typical during shift work, with levels periodically exceeding 200 lux (514). Validating 

new tools that are suited to large-scale studies (such as questionnaires) against 

calibrated light exposure measurement devices will help clarify how shift work exposures 

interact to influence health. It is plausible, for example, that sedentary behaviour during 

shift work is particularly detrimental to metabolic health, but at present this is mere 
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speculation. A neglected group of people who may also be particularly susceptible to 

similar health consequences is the cohabitants of shift workers - ‘second-hand shift 

workers’. Little is known about circadian alignment, sleep, diet, and metabolic health in 

these people, to my knowledge.  

Artificial lighting enables shift work, and we must consider the effects of nocturnal light 

pollution on the entire biosphere. To exemplify this, ~ 30% of vertebrates and > 60% of 

invertebrates are nocturnal (515). Like mammals, a diversity of plants and 

microorganisms also have circadian clocks that are being disrupted by artificial light at 

night (516, 517). Disruption at any level of an ecosystem is likely to produce numerous 

and hard to predict consequences at other levels too. 

In Chapter 4 we focused on sleep. Given the lack of objective data, we did not consider 

physical activity. However, we need to better understand the reciprocal relationships 

between physical activity and sleep. We also did not study sleep disorders in this project, 

but sleep disorders are becoming increasingly problematic. National surveys in countries 

like Canada, the US, and several parts of Africa and Asia have shown that perhaps 25 

to 40% of people worldwide report sleep difficulties including insomnia (518-520). If 

trends continue then insomnia will affect more people still in the coming years, and the 

economic cost of sleep problems is substantial (521, 522). Recent studies have explored 

the genetic basis of sleep phenotypes and their behavioural and metabolic correlates, 

an example of which is a recent genome-wide association study using UK Biobank data 

(523). Nevertheless, little is currently known about associations between many sleep 

problems, metabolic health, diet, and physical activity. 

The digital revolution is a great opportunity to use data collected through digital devices 

to gain new insights into sleep and health. A good example of this is a recent analysis of 

self-reported light exposure and sleep data generated worldwide through a mobile phone 

app designed to reduce jetlag by prescribing optimal light schedules (524). By analysing 

the data in relation to solar data for the date and location from which data were sent, the 

researchers found that home country was a stronger predictor of sleep onset than 

sunset, indicating that social cues are important determinants of sleep duration through 

their influence on sleep onset time. Perhaps unsurprisingly, sleep duration was therefore 

correlated with sleep onset time but not wake time in the 20 countries with the most 

respondents. The study highlights how simple digital tools can be used to test 

hypotheses worldwide with relative ease.  

Using big data to better understand global health is not yet so feasible in many parts of 

the world, however, and very little research has been done in many countries rife with 

poverty. The significance of this cannot be downplayed, and the financial cost of 
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improving health and quality of life in ‘less-developed’ countries is typically so much lower 

than in more affluent countries. There has been comparatively little sleep research in 

countries in Africa and Asia, but a recent study found that 17% of adults aged ≥ 50 years 

reported sleep problems in eight countries across Africa and Asia. If representative of 

the United Nations definition of less-developed countries, by 2030 this would correspond 

to more than 260 million adults in this age range worldwide (520). And this could be an 

underestimate, as the researchers only included people reporting severe sleep 

difficulties. Within the countries studied, there was large variability in sleep problems 

prevalence (from 4 to 44%), and differences were not due to poverty alone. Future 

research in such parts of the world could be hugely valuable to public health worldwide. 

We must therefore also acknowledge and rectify the problems that accompany the 

substantial racial bias in research, a bias exemplified by the difficulties in applying 

personalised genomic medicine approaches in minority populations that result from the 

disproportionately large amount of data collected on Caucasian people (525). 

Sometimes sleep loss is inevitable, and identification of strategies to counter the 

biological and behavioural consequences of sleep loss will be beneficial. Sleep extension 

appears to benefit many aspects of metabolic health. Among short-sleeping adults, for 

example, increased time in bed after a sleep extension intervention has been associated 

with improvements in glucose regulation and insulin sensitivity (460), and as few as three 

days of sleep extension may benefit insulin action and increase testosterone in habitually 

short-sleeping men (526). Sleep extension might also improve body composition. 

Increased sleep duration has been prospectively associated with attenuated increases 

in adiposity in short-sleepers (527), and findings from a study of overweight, habitually 

short-sleeping young adults show that this may be related to increased energy 

expenditure. Among these individuals, two weeks of two hours of increased time in bed 

in home environments increased sleep duration and daytime energy expenditure, also 

reducing appetite and desire for highly palatable foods (459).  

One factor that may influence the effects of sleep extension interventions on diet is 

chronotype. Using a crossover design to change the time at which adolescents went to 

bed and thereby compare a 6.5- to a 10-hour sleep opportunity for five nights, longer 

sleep opportunity reduced evening eating among individuals with earlier chronotypes 

only, despite similar sleep timing and duration between chronotypes (528). Hence there 

is a need to further study the influence of chronotype on appropriate lifestyle 

recommendations. Improvements in sleep hygiene are a natural starting point in attempts 

to enhance sleep, and future research on optimising such variables as sound, bedding, 

mattresses, and temperature may benefit people with sleep problems.  
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Of all pharmaceutical means of offsetting the effects of sleep loss, caffeine has perhaps 

most commonly been studied. However caffeine use can be problematic in that it 

interferes with recovery sleep after sleep loss (529). A little-studied sleep loss 

countermeasure is creatine monohydrate. By enhancing ATP replenishment, creatine 

appears to offset sleep homeostasis and so reduce sleep need, at least in rats (530). 

Creatine has also been shown to mitigate the negative effects of sleep loss on mood 

(531) and athletic skills in adults (532). As discussed at length in Chapter 1, sleep loss 

often has detrimental effects on body composition. It is therefore especially interesting 

that creatine generally improves body composition and neuromuscular performance 

(533). 

In Chapter 5 we studied the effects of melatonin on sleep and metabolic health. We found 

that this chronobiotic scarcely influenced any outcome, but more research on melatonin 

and melatonin receptor agonists is needed. There is currently a lack of selective MT1 

receptor ligands (534), and separate roles of MTNR1A and MTNR1B signalling in 

metabolic regulation should be explored (535). Other pharmaceutical chronobiotics may 

have potential in countering circadian system disruption. Pharmacological inhibition of 

casein kinase 1 helps synchronise misaligned oscillators and hence speeds adaptation 

to light/dark cycle shifts in mice (536, 537), as does therapeutic suprachiasmatic nuclei 

(SCN) neuropeptide modulation (538). An array of clock-enhancing small molecules may 

ultimately provide effective therapies for disorders of the circadian system (539). Of note, 

some of these pharmaceutical chronobiotics may also benefit metabolic health. Reverse-

erythroblastosis agonists, for example, diminish adiposity, hyperglycaemia and 

hyperlipidaemia in diet-induced obese mice (540). However, none of these compounds 

has been tested for safety or efficacy in humans yet. 

Intriguingly, a circadian clock was recently transplanted into a non-circadian organism 

for the first time, and such methods could have chronotherapeutic applications, such as 

regulating timely drug release (541). This is particularly pertinent given that most of the 

highest-selling drugs target the products of genes with 24-hour transcription profiles (64).  

Non-pharmaceutical interventions may also enhance circadian system function and 

sleep. These include blue-blocking glasses and apps to filter short-wavelength emissions 

from electronic devices (542, 543). As the brightness, colour, duration, and timing of light 

exposure influence many physiological functions (544-546), it is feasible that these 

interventions could influence SCN phase and numerous other processes independent of 

the SCN, including activity in other brain regions and endocrine networks that help 

regulate appetite. Novel developments in sleep technology may be integral to enhancing 

people’s sleep in the coming years. By enabling consumers to have greater control of 
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their light environments, developments in ‘smart’ lighting technology may also be 

particularly important to optimising circadian system alignment for individual 

chronotypes. In a similar vein, consideration should be given to light exposure when 

designing buildings and their windows.  

Reciprocity between physical activity and the circadian system exists, as both 

experimental circadian rhythm disruption and diseases associated with SCN dysfunction 

disrupt physical activity patterns (547, 548). Furthermore, physical activity influences 

melatonin rhythms a little, as well as peripheral tissue gene expression timing (549, 550). 

The circadian system also regulates the autonomic control of cardiovascular responses 

to exercise, resulting in peak cardiac vagal tone withdrawal in the morning. A bimodal 

acrophase in adrenaline and noradrenaline reactivity to exercise in both the morning and 

evening perhaps helps explain the increased risk of cardiovascular events at these times 

(551).  

Studies of rodents suggest that physical activity offsets some adverse metabolic effects 

of circadian system disruption that result from light exposure at night (552). Exercise may 

also offset some of the deleterious effects of sleep disruption, as resistance training 

attenuates the catabolic effects of sleep deprivation on lean body mass in rats, perhaps 

by nullifying changes in testosterone, insulin-like growth factor-1, and corticosterone 

(553).  As there is a paucity of human studies on the subject, it is important to study how 

to optimise exercise protocols to mitigate metabolic dysfunction induced by circadian 

system and sleep disruption.  

 

6.5 Conclusions 

Metabolic diseases such as obesity and type two diabetes are increasing at an 

unprecedented rate in many parts of the world. These increases are coinciding with rapid 

overhaul of the built world, environmental exposures, and people’s lifestyle patterns, 

which independently and collectively instigate circadian system and sleep disruption in 

a growing number of the population.  

Precise recording of lifestyle patterns depends on use of effective research tools, and 

the first part of this project validated a new dietary recall method that we hope will be 

used to identify diet-disease relationships in future studies. As we then used the new 

method in a study that supported the hypothesis that timing of caloric intake associates 

with obesity, we also showed how the tool can be applied to unveil underappreciated 

dietary influences on health. We next focused on sleep, finding that short-sleeping UK 

adults are not only more likely to be overweight but also have poorer metabolic health in 
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general. Finally, we showed that long-term melatonin supplementation scarcely 

influences metabolic health, sleep, and diet in adults predisposed to diabetes, paving the 

way for studies of whether alternative chronobiotic agents are efficacious in improving 

metabolic health. As will always be true, more research is needed. 

I once more express my sincere thanks to everyone who made this project possible. The 

project has truly been a pleasure to complete, in large part because of its participants 

and my colleagues. I just hope that my sleep loss in recent weeks has no enduring 

effects.  

With that I thank you for reading this thesis and wish you a night of sublime sleep.  
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Appendices 

Appendix A: Chapter 2 supplementary tables 

 

Appendix table 1. Attenuation factors and correlations between dietary assessment methods and true protein and total sugar intakes and 

densities, stratified by age.  

Dietary variable Dietary recall 

method 

Age < 40 years Age ≥ 40 years 

Attenuation factor (95% 

CI) 

Correlation with true 

intake (95% CI) 

Attenuation factor (95% 

CI) 

Correlation with true 

intake (95% CI) 

Protein intake (g) MPR 0.41 (0.28 to 0.54) 0.54 (0.41 to 0.68) 0.25 (0.15 to 0.36) 0.35 (0.23 to 0.47) 

myfood24 0.38 (0.25 to 0.51) 0.50 (0.36 to 0.65) 0.22 (0.11 to 0.33) 0.35 (0.20 to 0.51) 

Total sugar intake 

(g) 

MPR 0.13 (0.01 to 0.26) 0.22 (0.02 to 0.42) 0.17 (0.06 to 0.30) 0.24 (0.11 to 0.37) 

myfood24 0.07 (-0.06, 0.19) 0.13 (-0.12, 0.37) 0.14 (0.03, 0.24) 0.23 (0.07, 0.39) 

Protein density 

(g/MJ energy 

intake) 

MPR 0.33 (0.16 to 0.51) 0.38 (0.20 to 0.55) 0.07 (-0.07 to 0.21) 0.07 (-0.07 to 0.22) 

myfood24 0.28 (0.09 to 0.47) 0.32 (0.11 to 0.52) 0.04 (-0.13 to 0.21) 0.05 (-0.14 to 0.23) 

Total sugar density 

(g/MJ energy 

intake) 

MPR 0.02 (-0.13 to 0.17) 0.03 (-0.21 to 0.28) 0.25 (0.10 to 0.39) 0.28 (0.14 to 0.43) 

myfood24 0.06 (-0.10 to 0.22) 0.10 (-0.17 to 0.38) 0.18 (0.04 to 0.33) 0.23 (0.06 to 0.40) 

Legend: CI (confidence interval), MPR (interviewer-administered multiple-pass 24-hour recall method). 

All data were positively skewed and so were log-transformed. 
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Appendix table 2. Attenuation factors and correlations between dietary assessment methods and true protein and total sugar intakes and 

densities, stratified by body mass index. 

Dietary variable Dietary recall 

method 

BMI < 25 kg/m2 BMI ≥ 25 kg/m2 

Attenuation factor (95% 

CI) 

Correlation with true 

intake (95% CI) 

Attenuation factor (95% 

CI) 

Correlation with true 

intake (95% CI) 

Protein intake (g) MPR 0.37 (0.24 to 0.50) 0.44 (0.32 to 0.57) 0.33 (0.21 to 0.45) 0.47 (0.33 to 0.61) 

myfood24 0.32 (0.20 to 0.45) 0.45 (0.30 to 0.60) 0.28 (0.16 to 0.40) 0.42 (0.26 to 0.57) 

Total sugar intake 

(g) 

MPR 0.14 (0.02 to 0.26) 0.22 (0.05 to 0.40) 0.24 (0.10 to 0.37) 0.30 (0.14 to 0.45) 

myfood24 0.14 (0.02 to 0.26) 0.25 (0.04 to 0.47) 0.14 (-0.01 to 0.28) 0.19 (-0.01 to 0.39) 

Protein density 

(g/MJ energy 

intake) 

MPR 0.34 (0.17 to 0.51) 0.34 (0.20 to 0.49) 0.04 (-0.13 to 0.20) 0.04 (-0.14 to 0.23) 

myfood24 0.29 (0.11 to 0.48) 0.32 (0.14 to 0.51) -0.06 (-0.25 to 0.13) -0.06 (-0.27 to 0.14) 

Total sugar density 

(g/MJ energy 

intake) 

MPR 0.08 (-0.06 to 0.22) 0.14 (-0.09 to 0.37) 0.27 (0.09 to 0.44) 0.28 (0.11 to 0.44) 

myfood24 0.07 (-0.08 to 0.22) 0.12 (-0.15 to 0.38) 0.24 (0.05 to 0.43) 0.27 (0.07 to 0.47) 

Legend: CI (confidence interval), MPR (interviewer-administered multiple-pass 24-hour recall method). 

All data were positively skewed and so were log-transformed. 
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Appendix table 3. Attenuation factors and correlations between dietary assessment methods and true protein and total sugar intakes and 

densities, stratified by sex.  

Dietary variable Dietary recall 

method 

Men (n = 85) Women (n = 127) 

Attenuation factor (95% 

CI) 

Correlation with true 

intake (95% CI) 

Attenuation factor (95% 

CI) 

Correlation with true 

intake (95% CI) 

Protein intake (g) MPR 0.30 (0.19 to 0.41) 0.45 (0.34 to 0.55) 0.21 (0.11 to 0.30) 0.35 (0.20 to 0.49) 

myfood24 0.23 (0.13 to 0.34) 0.38 (0.26 to 0.51) 0.20 (0.10 to 0.30) 0.36 (0.20 to 0.52) 

Total sugar intake 

(g) 

MPR 0.24 (0.12 to 0.36) 0.37 (0.23 to 0.52) 0.14 (0.03 to 0.25) 0.20 (0.04 to 0.36) 

myfood24 0.14 (0.02 to 0.26) 0.25 (0.05 to 0.44) 0.13 (0.01 to 0.25) 0.22 (0.02 to 0.41) 

Protein intake 

density (g/MJ 

energy intake) 

MPR 0.20 (0.02 to 0.38) 0.21 (0.03 to 0.39) 0.20 (0.05 to 0.35) 0.22 (0.06 to 0.37) 

myfood24 0.20 (0.00 to 0.41) 0.22 (0.00 to 0.43) 0.13 (-0.04 to 0.30) 0.15 (-0.04 to 0.34) 

Total sugar intake 

density (g/MJ 

energy intake) 

MPR 0.30 (0.12 to 0.47) 0.34 (0.17 to 0.52) 0.07 (-0.07 to 0.21) 0.09 (-0.09 to 0.27) 

myfood24 0.21 (0.04 to 0.39) 0.26 (0.05 to 0.47) 0.12 (-0.03, 0.27) 0.17 (-0.04 to 0.38) 

Legend: CI (confidence interval), MPR (interviewer-administered multiple-pass 24-hour recall method). 

All data were positively skewed and so were log-transformed. 
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Appendix B: Munich ChronoType Questionnaire  

Morning/evening-type Questionnaire 

Roenneberg T, Wirz-Justice A, Merrow M (2003) Life between clocks: daily temporal patterns of 

human chronotypes. J Biol Rhythms, 18, 80-90. 

 

Purpose 

The purpose of this questionnaire is to explore associations between your ‘chronotype’ – a 

measure of whether you are more of a morning ‘lark’ or a night ‘owl’ based on your sleeping habits 

- and the foods you eat. In order to accomplish this, the questionnaire is divided into separate 

sections for work and work-free days, respectively.  

Thanks again for your time! 

 

Instructions 

 Please note that there are separate sections for work days and work-free days 

 

 Some questions give the option of either using the 24-hour clock or using the 12-hour 

clock. Please use one of these throughout. If, for example, your answer was 18:00 (6 

PM), you would either enter           or                                If 

you use the 12-hour clock, please cross-out the option that does not apply (AM is 

crossed-out in this example) 

 

 In multiple-choice questions, please cross-out the answer which does not apply to you. 

In these questions, choices are italicised    

 

 Please enter information for typical days (not days involving late-night parties, for 

example)  

 

18:00 6:00 AM/PM 
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 Please enter today’s date and your participant number in the boxes provided at the top 

of every page 
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Work Schedule 

1) I  do /  do not  have a regular work schedule 

2) I  have  /  have not  engaged in rotating shift work 

within the last three months  

3) I  have  /  have not  engaged in night shift work 

within the last three months  

 

Work days 

1) On nights before work days, I typically go to bed at    (24-hour) /

         ( note that some people stay awake for some 

time when in bed) 

2) On nights before work days, I actually get ready to fall asleep at    

    (24-hour) /             

… and it then typically takes me          minutes to fall asleep 

3) I typically wake up at         (24-hour) /          on work 

days 

4) After a further         minutes, I typically get up  

5) On average, I spend          hours and                    minutes outdoors in daylight 

without a roof over my head on work days 

6) I  do /  do not  typically use a device like an alarm or radio to 

wake up on work days. Please leave a comment if you cannot otherwise freely choose 

your sleep times on work days (because of pets or children, for example): 

 

  

: 

 

AM/PM : 

: 

: AM/PM 

 

: : AM/PM 
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Work-free days 

7) On nights before work-free days, I typically go to bed at           (24-hour) / 

         ( note that some people stay awake for some 

time when in bed) 

8) On nights before work-free days, I actually get ready to fall asleep at                 

(24-hour) /             

… and it then typically takes me          minutes to fall asleep 

9) I typically wake up at         (24-hour) /          on work-free 

days 

10) After a further         minutes, I typically get up  

11) On average, I spend          hours and                    minutes outdoors in daylight 

without a roof over my head on work-free days 

12) I  do /  do not  typically use a device like an alarm or radio to 

wake up on work-free days. Please leave a comment if you cannot otherwise freely 

choose your sleep times on work days (because of pets or children, for example): 

 

 

  

: 

AM/PM : 

: 

: AM/PM 

 

: : AM/PM 
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Appendix C: Chapter 3 directed acyclic graph 
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Appendix D: Chapter 4 directed acyclic graph 

 

 


