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ABSTRACT 

The focus of this thesis is on image quality assessment, specifically for problems of 

assessing the quality of an image blindly or without reference information. There are significant 

efforts over the last decade in developing objective blind models that can assess image quality 

as perceived by humans. Various models have been introduced, achieving highly competitive 

performances and high in correlation with subjective perceptual measures.  However, there are 

still limitations on these models before they can be viable replacements to traditional image 

metrics over a wide range of image processing applications. This thesis addresses several 

limitations. The thesis first proposes a new framework to learn a blind image quality model 

with minimal training requirements, operates locally and has ability to identify distortion in the 

assessed image. To increase the model’s performance, the thesis then modifies the framework 

by considering an aspect of human vision tendency, which is often ignored by previous models. 

Finally, the thesis presents another framework that enable a model to simultaneously learn 

quality prediction for images affected by different distortion types. 
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Chapter 1 

Introduction 

1.1 Image Quality 

For many people, the eyes are probably the most important among our five sense organs. 

We use our eyesight to obtain information and to understand the world around us. In the past, 

our eyes were mainly adapted to real world observations. The introduction of various digital 

image capture devices such as digital camera and mobile phone, however, has changed this 

scenario. The ubiquitous use of these devices nowadays has led to a widespread presence of 

digital images in our everyday life. We are now not only looking at real world environments 

but increasingly also at digital images. As our eyes are getting used to the high visual quality 

of real world environments, the same quality level is often expected when we look at digital 

images. 

How do we define image quality? Finding the exact definition to the term can be 

challenging since it depends on several factors such as the process of producing the image, the 

features that make up image quality and the viewers of the image. Hence there is no universal, 

formal definition to image quality. There have been, however, some literature attempted to give 

proper definition to it. For example, image quality was interpreted as the integrated of 

perception of the overall degree of excellence of an image [1]. It can also be understood as the 

subjective impression on how well image content is reproduced [2]. Meanwhile, in [3], quality 

was a representation of the level of sufficiency to the image function for a particular application 

domain. 
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The last definition is the most suitable in this study. It essentially means that the quality 

is defined differently depending on application for which it is defined. For example, people 

working in image acquisition applications such as laser range scanning measure quality based 

on the imaging system aspects. Printing workers focus on tone, colour and attributes such as 

line and area when they determine quality. For medical imaging researchers, the quality is 

related to the clarity with which they can detect malfunctions or diseases from the images [4]. 

In computer vision applications, such as object detection, robot navigation or traffic monitoring 

system, the quality of an image is often associated with the determination of the failure mode 

of computer algorithms [5]. Meanwhile, for image communication system, the quality of an 

image is associated to how well the image is acquired, processed or delivered over the 

transmission network. 

Producing digital representation of an image at the end of an image communication 

system involves many stages such as image acquisition, compression, transmission or storage, 

decoding, and display. Figure 1.1 illustrates typical processing stages of image communication 

system. Note that the image can also be repurposed at any of these stages, which can entail re-

acquisition, re-compression, or additional transmission. In addition, an enhancement algorithm 

can also be applied on any stages [6]. 

 

All these processing stages may introduce various distortions into the content of the 

image. Image acquisition or capture stage may introduce artefacts due to optical lens, sensing 

elements accuracy and digitisation process. Typical artefacts includes blurring, noise, 

Acquisition Compression Transmission 

Figure 1.1: Simplified processing stages of an image communication system. 

Decoding Display 
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contouring, aliasing, contrast inversion and colour artefacts. Compression with block-based 

coders (such as JPEG, MPEG-2 or H.264) may produce blocking and flatness artefacts, while 

wavelet-based coders (such as JPEG2000) can cause blurring and ringing artefacts. Meanwhile, 

transmitting the image data through transmission medium may generate distortions such as 

inter-symbol interference and multipath (ghosting) artefacts. These are due to reflections and 

arrival of data from different propagation path. At the receiver stage, the decoding process can 

also introduce artefacts such as horizontal or vertical shift of image data or DC shift due to 

decoding errors. Colour, luminance, interlace and flicker artefacts can also be generated at the 

display stage due to poor contrast range, resolution limitations, interlacing scanning or scan 

rate conversion.  

In addition, repurposing process, which commonly aim to display image at lower 

resolution device such as mobile phone or tablets, involves resampling and recompression that 

may also produce some distortions already discussed. Image enhancement process can produce 

other artefacts as well. For example, deblocking and denoising can cause blurriness while 

sharpening can cause ringing. For further details of type of distortions in image communication 

system, interested readers are referred to publications in [6], [7]. Note that the term ‘distortion’ 

here refers to a general degradation introduced into the content of an image without specifying 

any particular type while the term ‘artefact’ refers to a particular distortion. 

These distortions affect the original structure of the image content leading to a reduced 

output quality. The level of quality degradation depends on the severity and the class of 

artefacts generated by those stages. Measuring the quality loss introduced in any stage is crucial 

especially for multimedia applications. For example, visual content and service providers can 

use this measurement to fine-tune parameters of image transmission systems according to the 

quality of the transmitted images. This quality monitoring process is important to ensure that 



4 
 

they satisfy a given Quality of Service (QoS) so the level of quality of experience at the users’ 

end is acceptable [8]. 

1.2 Image Quality Assessment 

The purpose of image quality assessment (IQA) is to gauge the quality of an image using 

quality metrics. These metrics differ depending on the applications and they vary from the ones 

that assess quality of an image affected by specific distortion to the ones that measure quality 

globally in the presence of various impairments. For applications which the end targets are 

usually human observers, it would be beneficial to employ metrics that can correctly quantify 

the image quality as anticipated by them. 

1.2.1 Conventional image metrics 

Since digital image in communication or computer vision systems is presented in a pixel-

based format, the traditional approach attempts to estimate the image quality on a pixel-by-

pixel basis. This is done by computing the difference in a given image’s pixel values to those 

of its associated reference image. Here, a reference image refers to a similar image of a perfect 

quality and contains no distortion whereby its’ information is utilised to assess the quality 

degradations in the image. Metrics measuring image fidelity: the mean squared error (MSE) 

and the peak signal-to-noise ratio (PSNR) are commonly employed to this effect. The MSE 

between two images 𝐈1(𝑖, 𝑗) and 𝐈2(𝑖, 𝑗) can be calculated as [9]: 

MSE =
1

ℎI𝑤I
∑ ∑ [𝐈1(𝑖, 𝑗) − 𝐈2(𝑖, 𝑗)]2𝑤I

𝑗=1
ℎI
𝑖=1   ,   (1.1) 

with ℎI and 𝑤I represent the image height and the image width, respectively. The PSNR can 

then be computed as [9]: 

PSNR = 10 log
𝜂2

MSE
  .     (1.2) 
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In Equation (1.2), 𝜂 is the image’s maximum pixel value. 

This simple pixel-based approach is computationally efficient, explaining their 

continual use in monitoring system performance and system optimisation. However, it has been 

shown that they have low correlation with human perception of quality [10]-[11]. This example 

further illustrates this point. Figure 1.2 consists of a reference image plus two examples of its 

degraded image. The image at the centre represents the reference image. The image to the left 

has been compressed using JPEG2000 (JP2K) encoder while the image to the right has been 

subjected to artificial white noise. The computed MSE and PSNR values are given in Table 

1.1. 

 

Table 1.1: The computed MSE and PSNR values 
 

Artefact MSE PSNR (dB) 

JP2K compression 81.33 29.06 

White noise 112.42 27.66 

 

The MSE metric with a lower value indicates high similarity between the images. In 

the case of PSNR, which is measured in decibels (dB), high similarity between two images is 

represented by a higher value metric. From the table, we can see that the lower MSE value and 

the higher PSNR value for JP2K compressed image may lead to a conclusion it is more similar 

Reference JP2K compression White noise 

Figure 1.2: Reference image and examples of its degraded version 
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to the reference image and is of higher quality compared to the image affected by white noise. 

However, it is different when we look from human perception angle. When comparing the two 

distorted images, we can see that the JP2K compressed image is of lower quality than the image 

affected by white noise. This observation highlights the downside of conventional image 

metrics in relation to human perception of quality. 

1.2.2 Subjective image quality assessment 

Human viewers are broadly agreed to be the most accurate evaluators to image quality. 

Therefore, subjective quality measures that based on human perception are often considered 

the gold standard in perceptual assessment of image quality. These measures are normally 

obtained by conducting image quality experiments where participating viewers evaluate the 

presented images’ quality using rating scales. The ratings are then averaged across all observers 

with the computed averages are mostly reported in the form of mean opinion score (MOS) or 

differential mean opinion score (DMOS). A lower MOS value indicates higher quality while a 

higher DMOS value indicates a lower quality image. This score represents the perceived 

quality metric for the image. 

These subjective experiments are conducted according the specifications of the 

international standards. Two main standards commonly used are given by the International 

Telecommunication Union (ITU). The first standard Rec. BT.500-11 [12], which is produced 

by the radio communications sector (ITU-R), focuses on television pictures. It includes both 

techniques of single and double stimulus. The quality rating of the distorted stimulus is made 

without referring to the original stimulus in the single stimulus method. In the double stimulus 

method, the quality rating is performed via the double stimuli continuous quality scale 

involving both stimuli. Meanwhile, the Telecommunications sector (ITU-T) specifies 

experimental procedures for multimedia applications in the second standard Rec. P.910 [13]. 
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The quality of a stimulus is rated in the single stimulus method via an absolute category rating. 

Meanwhile, in the double stimulus method, a degradation category rating is utilised to rate the 

stimulus’ quality. 

The quality ratings produced from the subjective experiments are generally accepted to 

be the ‘ground-truth’ for quality prediction. However, that these subjective ratings need to 

involve human observers makes them expensive, time-consuming, and unfeasible for 

deployment in most real world applications. An automatic IQA model that can provide image 

quality metrics objectively is preferred. The obtained ratings, however, are still useful in 

designing and validating objective quality metrics. 

Several image quality databases have been developed recently for these design and 

validation purposes. The databases usually contain the images used in the experiments and their 

associated quality ratings rated by the participants.  The following are the list of some of 

databases commonly used in previous IQA works: 

 LIVE Database [14]: The database was developed at the University of Texas at Austin, 

USA. It comprises 29 reference images of which 779 degraded images were produced. 

Each reference image was subjected to 5 to 6 degradation levels in five source coding 

and artificial artefacts: additive white noise (WN), JPEG compression (JPEG), 

JPEG2000 compression (JP2K), Gaussian blur (GB) and fast fading (FF). 29 observers 

were involved in the experiments.  

 CSIQ Database [15]: The database was developed at the Oklahoma State University, 

USA involving 35 participants. It comprises 866 distorted images. They were 

generated when 6 types of artefacts (WN, JPEG, JP2K, GB, additive pink noise and 

global contrast decrements) were applied to 30 reference images at 4 to 5 degradation 

levels. 
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 TID2008 Database [16]: The database was developed at the Tampere University of 

Technology, Finland. It contains 17 types of artefacts of different types of noise, 

transmission errors, compression, local distortions, denoising, blur, contrast, and 

luminance changes. Each artefact was applied to 25 reference images at 4 degradation 

levels, resulting in 1700 distorted images. The ratings were collected from 838 

observers. 

 TID2013 Database [17]: The database is the latest version of the TID2008 database. 

The same 25 reference images were subjected to 24 types of artefacts at 5 degradation 

levels to produce 3000 distorted images. 7 additional artefacts were included in the 

database: multiplicative noise, comfort noise, colour saturation change, colour 

quantisation error, chromatic aberrations, lossy compression, and sampling error. A 

total of 985 people participated with the experiments. 

 IRCCyN/IVC Database [18], [19]: The database was developed at the Institut de 

Recherche en Communications et Cybernetique de Nantes (IRCCyN), France. It 

consists of 235 distorted images generated from 10 reference images. 4 types of 

artefacts: GB, JP2K, JPEG, JPEG and locally adaptive resolution coding; were applied 

to the reference image at five degradation levels. 15 subjects were involved to produce 

the ratings.  

 A57 Database [20]: The database was developed at Cornell University, USA. It has 3 

reference images that were subjected to 6 different artefacts at 3 degradation levels. 

The artefacts are WN, GB, JPEG, JP2K, customised JP2K via dynamic contrast-based 

quantization algorithm, and quantization errors of discrete wavelet transform LH sub-

bands. The resulting 54 distorted images were rated by 7 observers. 

 Toyoma/MICT Database [21]: The database was developed at University of Toyoma, 

Japan. There are 168 distorted images and 14 reference images. The distorted images 
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were generated based on 2 types of artefact: JPEG and JP2K at 7 degradation levels. 

The ratings were produced by 16 observers. 

 IRCCyN_IVC_Toyoma Database [22], [23]: The database, developed at the Institut de 

Recherche en Communications et Cybernetique de Nantes (IRCCyN), France, 

improves the MICT database. It uses different protocol, different type of display device 

and different populations to generate further ratings for the MICT images. There were 

27 subjects participated in the experiments. 

These databases are developed under constraint that the images are subjected to a single 

type of distortion only. Taking into account that images may subjected to multiple types of 

distortion in more realistic life scenarios, there are recent efforts to develop database of 

subjective evaluation of multiply distorted images. Examples of the multiply distorted image 

database are as follow: 

 LIVEMD Database [24], [25]: The database was developed at the University of Texas 

at Austin, USA. In the database, 15 reference images are first blurred at 4 levels. The 

blurred images are then subjected to two types of artefact, JPEG and WN, at 4 levels 

each. In all, 225 single / multiple distorted images are generated for each of the two 

cases: GBJPEG and GBWN. The ratings were collected from 19 observers. 

 MDID2013 Database [26], [27]: The database was developed at Shanghai Jiao Tong 

University, China. The database consists of 12 reference images. These images were 

subjected to blurring, JPEG compression and noise successively, producing a total of 

324 3-fold distorted images. A total of 25 subjects participated in the experiments. 

 MDID2017 Database [28], [29]: The database was developed at Shenzhen Tsinghua 

University, China. There are 20 reference images. Each image was first subjected to 

blurring or contrast change, then compressed by JPEG or JPEG2000 and finally 
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subjected to additional noise. There are 4 degradation levels of each artefacts yielding 

a total of 1600 distorted images. The ratings were collected from 192 observers. 

In addition to the above mentioned singly or multiply distorted image databases, there are 

other recent databases that were developed based on different motivations and targeted 

applications. Some differ on the nature of utilised images, some use real distortion rather than 

simulated ones, some collect ratings through online crowdsourcing platform rather than the 

typical in-lab sessions while others propose new rating representation other than MOS/DMOS. 

Examples of these recent databases include: 

 DRIQ Database [30]: The database was developed at the Oklahoma State University, 

USA. Rather than associating quality with the distortion levels/types of an image, the 

study look on how the quality is perceived by human on enhanced images. The 

database consists of 26 reference images in which 78 enhanced images were generated 

via manual digital retouching. The ratings were collected from 9 subjects. 

 CCID Database [31]: The database was developed at the Shanghai Jiao Tong 

University, China. Similar to the DRIQ database, CCID database is intended for 

enhanced image quality evaluation. It consists of 655 contrast-changed images. These 

image were obtained when 15 reference images were subjected to gamma transfer, 

cubic and logistic functions, intensity shifting, and compound function. 22 observers 

were involved in rating the images. 

 SSID Database [32], [33]: The database was developed at Saarland University, 

Germany. It is intended to evaluate the quality of image in synthetic or augmented 

scenarios. It contains 8 reference images which were subjected to 7 different artefacts 

arising in image composition of real and synthetic content. The artefacts are: JPEG, 

JP2K, WN, GB, object scaling error, object translation error, and object rotation error. 
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A total of 1680 distorted images were produced and the ratings were obtained from 

over 200 people through crowdsourced online platform.  

 LIVE Wild Image Database [34], [35]: The database was developed at the University 

of Texas at Austin, USA. Rather than dealing with simulated distortions as in most 

databases, the database is produced to evaluate image quality in the presence of 

real image distortions on images. A total of 1162 distorted images were captured using 

mobile devices without introducing extra artificial distortions beyond those occurring 

during capture, processing, and storage by a user’s device. The subjective evaluation 

study where conducted via a crowdsourced platform in which more than 8,100 

participants gave over 350,000 ratings to those images. 

 ESPL-LIVE HDR Database [36], [37]: The database was developed at the University 

of Texas at Austin, USA. It comprises of 605 source images taken from modern digital 

SLR camera. A total of 1811 HDR-processed images were generated via tone mapper 

operators and multi-exposure fusion algorithms. The subjective evaluation study where 

conducted via a crowdsourced platform in which more than 300,000 ratings were 

collected from over 5,000 participants. 

 PairComp TMO Database [38], [39]: The database was developed at the Institut de 

Recherche en Communications et Cybernetique de Nantes (IRCCyN), France to study 

the impact of high dynamic range (HDR) compression process to the evaluation of 

image quality. It consists of 10 HDR images. These images were tone-mapped via 9 

sets of tone mapper operators’ parameters to low dynamic range (LDR) for standard 

monitor display, resulting in 90 LDR images. These HDR and LDR images were 

observed by 20 participants to yield the ratings of the images. Most of the above 

databases utilised direct scaling methods and presented their ratings in terms of MOS 
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or DMOS. In contrast, this database use an indirect scaling method, namely paired 

comparison (PC), and reported the quality ratings in the form of preference scores [40].  

1.2.3 Objective image quality assessment 

In relation to the prediction of perceived image quality, the traditional fidelity metrics 

discussed in sub-chapter 1.2.1 can often be assumed as the worst-case scenario. Meanwhile, 

subjective experiments in sub-chapter 1.2.2 that provide accurate predictions are the best-case 

scenario. If we develop a hierarchy of the perceptual quality metrics’ prediction capability, the 

fidelity metrics form the lower end while the subjective experiments represent the upper end. 

In this scenario, an objective IQA model should be near the top end of the hierarchy by 

producing image quality metric that follows human perceptual measures. 

Objective IQA models can be classified into three main categories [41], [42]: full-

reference IQA (FR-IQA), reduced-reference IQA (RR-IQA) and no-reference IQA (NR-IQA) 

/ blind IQA (BIQA). FR-IQA models estimate the quality of a distorted image by comparing 

the entire information difference between the image and the corresponding reference image. 

The simplest approach to implement FR-IQA model is by measuring local pixel-wise disparity 

between the two images through MSE or PSNR metrics. However, they do not correlate well 

with subjective quality measures. Many improved FR-IQA models were then proposed through 

different means such as human visual system (HVS), image structure or image statistics. 

Primary visual cortex (V1) neural computational models are often utilised by HVS based FR-

IQA metrics to estimate the image quality [43]. VSNR [20] and MAD [15] are two examples 

of high performance FR-IQA models from this approach. Changes in local structure such as 

luminance, contrast, phase or gradient are exploited to represent quality in image structure 

based approach. Examples of FR-IQA models for this approach include SSIM [44], FSIM [45], 

MP-Q [46] and GMSD [47]. Image statistics methods measure the quality based on image 
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statistical properties and they are often supplemented by machine learning techniques. VIF [48] 

and MLIQM [49] are common examples for this approach. 

Meanwhile, only parts of the reference image information are necessary for RR-IQA 

models. A set of parameters that relate to visual perception of image quality and sensitive to 

various distortions are first identified and selected from the reference image. With the distorted 

image, these parameters are then utilised to predict its quality. Well-known examples include 

RR-SSIM [50], OSVP [51], and RRED [52].  

While these FR-IQA and RR-IQA models produce higher correlation with human 

perceptual measures, in certain applications, information of reference image may not be fully 

or partly accessible. For example, in monitoring the quality of service of an image 

communication system, the original emitted signals are often unavailable at intermediate points 

or at the end of the system. Although RR-IQA methods could be applied by transmitting the 

required features of the original signals via an ancillary channel, they become impractical in a 

system with limited resources such as frequency spectrum in wireless communications [53], 

[54]. Both ends of the image communication system itself (image acquisition and image 

display), as illustrated by Figure 1.1, are inherently without reference. Similarly, evaluation of 

the quality of an image captured by or displayed on either digital camera or mobile phone need 

to be made without the availability of a reference image. The operation of computer vision 

applications such as robot navigation or autonomous driving is also based on images being 

continuously captured by camera. Again, evaluating the quality of those images is without 

reference images. In addition, for photo and film restoration application, it is possible that a 

degraded print is the only available record of a photo or a film [55]. Therefore, a BIQA model 

is preferred in such cases. 
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BIQA models can be further categorised into two main classes [56]: distortion-specific 

(DS) models and general-purpose models. In the DS BIQA cases, a particular distortion model 

is utilised to estimate quality using an assumption that the distortion in the image is known 

beforehand. For example, the quality of an image affected by motion blur is estimated by 

motion models introduced in [57]-[60] while the effects of blocking and noise artefacts are 

investigated in [61]-[62] and [63] respectively. JPEG compressed images’ quality is predicted 

by the model in [64] whereas in [65], the quality of images compressed with JPEG2000 is 

estimated blindly. However, these models are only useful for specific application domains 

wherein the specific degradation is meaningful but cannot be used in a more general setting 

without substantial redesign. More fundamentally, when the distortion model is simply 

unknown, these models are ineffective and more general BIQA models are needed that can 

work across and adapt to any class of distortions. 

No previous information about the distortion inside the image is needed in general-

purpose BIQA models. Instead, image quality is derived solely on assumption that the image 

is degraded by the same distortion mechanism that affects a database of image exemplars. 

These image exemplars can be obtained from standard IQA databases such as the ones being 

listed in sub-chapter 1.2.2. Here, the models are trained to perform quality score estimation 

using such exemplars and their provided ratings values. 

1.3 Study Scope, Aims and Objectives 

1.3.1 Scope of study 

As described in sub-chapter 1.2, there are various factors need to be considered in an 

IQA model design process such as (1) subjective approach versus objective approach, (2) the 

amount of reference information available to the designer, (3) the type of distortions accounted 

for by the metric: application-specific or general-purpose, (4) the number of distortions within 
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the image: singly distorted or multiply distorted, or (5) the type of image: natural, synthetic or 

graphics. Incorporating all these factors into the model design can lead to the development of 

universally applicable IQA metric but comes at the expense of highly complicated model.   

Therefore, it is paramount to limit and identify the scope of the study.  

The study focuses on developing objective general-purpose BIQA models. The models 

are intended to deal only with natural images affected by a single distortion. Therefore, the 

models’ quality estimation performance will only be benchmarked against previous models 

developed within the same scope. For ease of comparison, the proposed models in this study 

will also be tested on the same IQA databases utilised by the benchmarked models. The 

performance evaluation of the proposed model is also reported in the same way as reported by 

the benchmarked models. 

1.3.2 Study aim and objectives 

Most general-purpose models employ a two-stage learning framework whereby they first 

discover various image features that carry discriminative information about image quality. The 

features are then utilised as input to regression algorithms for quality prediction model learning. 

While most previous work focus on designing new quality-predictive image features, this study 

tackles BIQA from an alternative angle. This study aims to contribute to the IQA research 

community by introducing new learning frameworks for general-purpose BIQA models. The 

resulting models shall be able to perform image quality prediction accurate to human perceptual 

measures and have competitive prediction performance to previous models. This can be done 

by fulfilling these objectives: 

a. Identify limitations of general-purpose BIQA models through critical analysis of their 

methods and corresponding performances. 
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b. Develop new learning frameworks for BIQA models based on potential solutions to 

those limitations. 

c. Test the developed models according to standard experimental procedure employed 

by IQA research community. 

d. Compare the developed models’ performances to several other models through 

extensive analysis of the models’ results on quality estimation accuracy and 

generalisation capabilities and speed requirements. 

1.4 Study Contributions and List of  Publications 

With respect to limited scope of the study, the contributions of this study can be 

summarised as the following: 

 The study first introduced a general-purpose BIQA model that employ a patch based 

learning framework. The main contribution of the model lies on it performing quality 

estimation using nearest neighbour learning techniques avoiding the need to have a 

prior training phase which is a prerequisite for many general-purpose BIQA models. 

Another key contribution is the model ability to perform image distortion identification, 

a useful property that is unavailable in most of previous models. Through its patch-

level operation, the model further contribute by providing local quality estimation. Note 

that the current absence of a dataset containing ground truth quality target for each patch 

makes it difficult to validate the local quality estimation performance of the model. 

However, the model takes advantage of the distortion uniformity across images inside 

the utilised databases to develop such dataset in order to validate its performance. 

 The study next improved the first model’s prediction performance by modifying the 

patch extraction stage of the model’s framework. The key contribution of the modified 

model lies on it exploring the use of two sampling strategies to extract image patches: 
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interest points based and saliency based, both strategy incorporate an aspect of human 

vision tendency which is often ignored by previous general-purpose BIQA models. 

 The study then presented the third general-purpose BIQA model that integrate multi-

task learning technique in its framework. As opposed to individual regression model 

learning by previous models, the main contribution of the third model lies on the fact it 

perform different regression model learning for different image distortion classes 

simultaneously. By exploiting a shared representation among the classes, the third 

model is shown to improve the prediction capability of a BIQA model in each distortion 

class. 

Some of the thesis content have been appeared in one or more publications. The following are 

the list of publications associated with the study: 

[1] R. A. Manap and L. Shao, ““Non-distortion-specific no-reference image quality 

assessment: a survey,” Information Sciences, vol. 301, no. 1, pp. 141-160, 2015. 

[2] R. A. Manap, L. Shao, and A. F. Frangi, “Non-parametric quality assessment of natural 

images,” IEEE Multimedia, vol. 23, no. 4, pp. 22-30, 2016. 

[3] R. A. Manap, L. Shao and A. F. Frangi, “PATCH-IQ: a patch based learning framework 

for blind image quality assessment,” Information Sciences, vol. 420, no. 1, pp. 329-344, 

2017. 

[4] R. A. Manap, L. Shao and A. F. Frangi, “Blind image quality assessment via a multi-task 

learning framework,” IEEE Transactions on Image Processing, pp. 1-13, 2017 

(submitted). 

[5] R. A. Manap, A. F. Frangi, and L. Shao, “Blind image quality assessment via a two-stage 

non-parametric framework,” in Proceedings of the IAPR Conference on Pattern 

Recognition, Kuala Lumpur, Malaysia, 2015, pp. 796-800. 
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[6] R. A. Manap, L. Shao, and A. F. Frangi, “A non-parametric framework for no-reference 

image quality assessment,” in Proceedings of the IEEE Conference on Signal and 

Information Processing, Orlando, FL, 2015, pp. 562-566. 

[7] R. A. Manap, L. Shao, A. F. Frangi, and A. M. Darsono, “Multi-task learning approach 

for natural images’ quality assessment,” in Proceedings of the International Conference 

on Telecommunication, Electronic and Computer Engineering, Melaka, Malaysia, 2017, 

pp. 1-6. 

1.5 Thesis Layout 

The rest of the thesis is structured to reflect on the objectives of the study. In Chapter 2, 

previous approaches in developing general-purpose BIQA models are first briefly reviewed, 

followed by analysis of their performances. Their limitations are then identified leading to the 

proposed research directions of the study. Chapter 3 addresses several limitations by 

introducing the first patch based learning framework for a general-purpose BIQA model. The 

model’s framework is first described followed by the experimental results and analysis. In 

Chapter 4, the second patch-based learning framework is proposed based on modification made 

to the first framework. The modified framework is first presented before further discussions on 

its experimental results. Chapter 5 introduces the multi-task learning based framework to 

address another limitation encountered by the previous general-purpose BIQA models. 

Similarly, the framework is first described, followed by the experimental results and analysis. 

Chapter 6 concludes the thesis by summarising all the work done throughout the study and 

their contributions followed by discussions on the work limitations and possible works for the 

future. 
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Chapter 2 

Literature Review 

2.1 Chapter Introduction 

To begin with, a short survey on the progress made in general-purpose BIQA models is 

presented whereby some of the major contributions are reviewed. However, to ensure we stay 

within the scope of the study, the review cannot be regarded to be exhaustive. For further 

discussions and references, interested readers are recommended to refer to other review 

publications [42], [43], and [55]. The chapter then continues with the description of common 

experimental procedures implemented in the previous general-purpose BIQA models followed 

by their performance analysis. Through these analysis, several limitations are identified leading 

to potential solutions that will be the basis of this study. 

2.2 Previous Work 

Previous general-purpose BIQA models usually follow a two-stage approach, whereby 

various types of features are first extracted and then used as input to a regressor. The regression 

algorithm is then used to model human perceptual measures based on a set of training images. 

At the feature extraction stage, the features generally can be classified into two types: 

handcrafted or machine-learned. 

2.2.1 Models based on handcrafted features 

BIQA models that employ handcrafted features usually design their features through the 

natural scene statistics (NSS) approach. The NSS models assume that certain statistical 

properties of natural images will be changed with the presence of distortions and the perceptual 
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quality of these images can be inferred by appropriately quantifying the changes. These models 

can be differentiated by the features used. 

In [66], the Blind Image Quality Index (BIQI) performs image quality estimation utilising 

18 statistical features derived from wavelet transform. The wavelet transform is first applied to 

an image and the resulting sub-band coefficients are parameterised by a general Gaussian 

distribution (GGD). The GGD model parameters are then selected as features representative of 

image quality. The Distortion Identification based Image Verity and INtegrity Evaluation 

(DIIVINE) model, which improves upon BIQI, is later proposed in [67]. Besides the wavelet 

sub-band coefficients’ GGD model parameters, a larger set of features is also derived to 

account for local dependency between the coefficients across different scales and orientations. 

A total of 88 features are utilised in DIIVINE to compute quality prediction. 

Another model that based on wavelet coefficient statistics is presented in [68]. Natural 

Scene Statistics Global Scheme (NSS-GS) utilises the wavelet coefficients’ original marginal 

distribution to design its features. Because the magnitudes of wavelet coefficients are likely to 

be continuous across scales, the model also exploits exponential decay characteristics of the 

coefficients in designing additional quality predictive features. Learning Based Image Quality 

(LBIQ) model [69] also utilises wavelet based statistical properties whereby its features are 

derived from the wavelet coefficients’ marginal and cross-scale joint distributions. Based on 

the observation that blur and noise are the two main degradation processes that occur in various 

distortion types, LBIQ also extracts additional features through blur and noise statistics. 

In [70], another wavelet based BIQA model incorporates a divisive normalisation 

strategy in its feature extraction stage to reflect the non-linear behaviour of visual cortex 

neurons. After linear decomposition of the image, the resulting wavelet coefficients are first 

normalised via divisive normalisation transform. The joint distributions of the neighbouring 
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normalised coefficients across different scales and orientations under various types of 

distortions are then used to measure the statistical independence between the neighbouring 

coefficients. These statistical independence measurements are used as features in this 

STAtistical INDependence based (STAIND) model. In [71], the Sparse Representation of 

Natural Scene Statistics (SRNSS) model also designed their features in wavelet transform 

domain. The mean, variance, and entropy of the wavelet coefficients in each image sub-band 

over 4 scales are used to compute 24 features. The features are then encoded using sparse 

coding before regression.   

Meanwhile, a BIQA model that build upon a local discrete cosine transform (DCT) 

statistical model is presented in [72]. The model, BLind Image Integrity Notator using DCT 

Statistics (BLIINDS), works by first applying DCT to image patch centred at each pixel in the 

image. It then extracts four features representing the information of image contrast and image 

structure and uses these features for quality estimation. Later on, using DCT statistics in BIQA 

task is further advanced by BLIINDS-II [73]. BLIINDS-II first divides image into blocks where 

the blocks are subjected to local DCT computation. The DCT coefficients of each block are 

then fitted by a GGD model. The resulting model parameters are utilised to retrieve relevant 

features. A total of 24 statistical features, extracted over three scales, are employed by 

BLIINDS-II to predict image quality. 

A NSS based BIQA model that operates in the spatial domain is later introduced in [74]. 

In contrast to previous models, no transformation is required by the model called Blind / 

Reference less Image Spatial QUality Evaluator (BRISQUE). BRISQUE utilises the empirical 

distributions of the locally normalised luminance coefficients and the pairwise products of 

these coefficients to design 18 statistical features for image quality estimation. In [75], a new 

model known as DErivative Statistics based Image QUality Evaluator (DESIQUE) modifies 

BRISQUE feature extraction approach to include operation in the frequency domain. In the 
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spatial domain, DESIQUE designs the features based on the normalised luminance coefficients 

as in BRISQUE. In the frequency domain, DESIQUE decomposes an image using log-Gabor 

filters. The filter band coefficients are then subjected to log-derivative statistics to characterise 

the distribution of the image’s high frequency components. All the statistics are then 

parameterised by a GGD model with the resulting parameters form another set of features. 

DESIQUE extracts 64 statistical features over two scales for quality analysis task. 

Using statistical properties derived from local spatial contrast features is also explored in 

[76]. The model, coded as GMLOG, first employs the marginal distributions of the jointly 

normalised gradient magnitude and the Laplacian of Gaussian operators of an image as its first 

two features. Based on the observations that both operators are non-independent, GMLOG also 

introduces independency distribution indexes to measure their dependencies. These 

independency distributions are then selected as the other two statistical features. A BIQA 

model employing a general regression neural network (GRNN) architecture is later proposed 

in [77]. The GRNN based BIQA model measures the content of an image on three elements: 

gradient, phase and local information to extract four features carrying useful perceptual quality 

information. 

Meanwhile, a BIQA model that utilises a visual codebook technique is proposed in [78]. 

Given an image, the model termed as Codebook Based Image Quality (CBIQ) first extracts a 

set of Gabor feature vectors from the randomly sampled image patches. A trained visual 

codebook, containing the associated Gabor features derived from training image patches, is 

then utilised to encode these feature vectors. CBIQ then averages the encoded feature vectors 

to yield the image-level features. The image-level features are used to estimate the image 

quality. The codebook based BIQA model is also introduced in [79]. The model, Bag-of-Word 

using Selected Features (BOWSF), employs three different sets of NSS features derived from 

BIQI, SRNSS and BRISQUE respectively to predict the image quality. A total of 78 features 
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are used by the model. Another Gabor filter based BIQA model is later presented in [80]. In 

contrast to CBIQ, the Image Quality index based on Visual saliency guided sampling and 

Gabor filtering (IQVG) model first incorporates the use of visual saliency map of an image to 

navigate its patch sampling process. IQVG then extracts similar Gabor-filter-based feature 

vectors as implemented in CBIQ from the sampled patches. However, rather than using a visual 

codebook, IQVG encodes the feature vectors directly using histograms and uses the 

combinations of these histograms as its image-level features. 

Because the image local structures vary when an image is distorted, using low-level local 

structure statistics as quality predictive features is investigated by the BIQA model in [81]. The 

model first decomposes an image into multi-scale sub-band images. Using a generalised local 

binary pattern (GLBP) operator as the local structure descriptor, each sub-band image is then 

encoded with the operator to produce the GLBP encoding maps. The normalised histograms of 

the encoding maps are finally combined to produce 18 statistical features for each sub-band 

image. A total of 72 statistical features, extracted over four scales, are then employed by the 

GLBP model to predict the image quality. Similar local binary pattern (LBP) based approach 

is presented in [82] whereby histogram of LBP codes of sub-band of wavelet decomposed 

image are BIQA features.  

 The use of LBP-based approach for BIQA model is further presented in [83]. The model 

first compute the LBP operators between centre pixel and its surrounding neighbours in image 

gradient magnitude map. Instead of typical frequency histogram, the Gradient-Weighted 

Histogram of Local Binary Pattern (GWH-LBP) model then use gradient-weighted histogram 

of the operators as its features. A total of 40 features extracted over 5 scales is employed by 

the model for image quality estimation. Another BIQA model that employs statistical 

properties of image local structure is proposed in [84]. However, instead of using local binary 

pattern descriptors, the model utilises local ternary pattern (LTP) descriptors to encode the 
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image. Similarly, the histograms of the corresponding LTPs are then used as input features to 

the regression stage. 

Using an assumption that colour space features are also highly correlated to human 

perception of image quality, a BIQA model that utilises colour channel information is 

introduced in [85]. The Natural Colour Statistics based (NCS) model first transforms the image 

into colour spaces based on four common colour models [86]: Lab, HSV, YCbCr and YIQ. 

Following similar approach as in BRISQUE, NCS then parameterises the locally normalised 

colour coefficients’ empirical distribution and the empirical distribution of the pairwise product 

of these coefficients by GGD model. The resulting 18 model parameters are then selected as 

features for NCS model. 

Motivated by recent advances in neuroscience, another group of BIQA models extract 

their quality predictive features based on free energy principle. The free energy principle is 

based on a hypothesis that a human brain operates in an internally generative ways to model 

the image we look at [87].  Using this generative model, the brain then generates the image’s 

predictions constructively. If the differences between the image and the outputs of the internal 

generative model relate to visual perception, the quality of an image can then be interpreted as 

how close the image itself agreed with the model’s output that best describes the image. The 

upper bound of the discrepancy between the two is given by the free energy of this cognitive 

process, making it possible to quantify perceptual quality using the free energy [88]. 

No-reference Free Energy based Quality Metric (NFEQM) [88] is the first BIQA model 

that employs this approach. NFEQM approximates the internal generative model by applying 

a linear autoregressive model to an image. Since free energy can measure the disparity between 

the image data and its closest representation by the generative model, NFEQM then optimises 

the linear autoregressive model parameters to find the minimum free energy term of the image. 
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NFEQM uses the term as a metric indicative of quality. The lower the free energy value, the 

higher the perceptual quality of the image is. 

An extension to NFEQM is proposed in [89]. The No-reference Free energy and 

Structural degradation based Distortion Metric (NFSDM) model combines the free energy 

feature with 54 additional features representing structural degradation variations in the image 

under different scales and Gaussian low-pass filtering processes. Later on, No-reference Free 

Energy based Robust Metric (NFERM) [90] modifies NFSDM by incorporating NSS based 

features into the model. Three feature classes are considered by NFERM. The first class 

contains 13 features derived from the free energy and the structural degradation methods. The 

second class consists of 6 features that carry information on image structure, gradient and phase 

while the last class comprises 4 NSS based features or model parameters produced by fitting 

GGD to the distribution of the image’s locally normalised coefficients. 

2.2.2 Models based on machine-learned features 

There are also general-purpose BIQA models that use features learned directly from raw 

image pixels. The first work along this approach can be seen in [91]. The COdebook 

Representation for No-reference Image Assessment (CORNIA) model first randomly samples 

raw patches from an image. Using a codebook, CORNIA then encodes the patches and pools 

the encoded patches to generate its image-level features. CORNIA is similar to CBIQ in that 

both utilise a visual codebook in their feature extraction stage. However, instead of employing 

features from Gabor-filter responses, CORNIA constructs the codebook using raw image 

patches in unsupervised manner. Due to a greater performance in image classification [92], 

CORNIA also employs max pooling in generating its features as opposed to average pooling 

in CBIQ. 
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Following the promising results achieved by unsupervised feature learning approach in 

CORNIA, an extended model is later proposed in [93]. The model, Saliency based Feature 

Learning for No-reference Image quality Assessment (SFLNIA) employs saliency detection 

method prior to the feature extraction stage. The salient regions are found through a saliency 

map calculated based on low-level local images features. Raw image patches are then extracted 

from these salient parts of the image. Similar feature learning strategy as in CORNIA is then 

employed to produce image-level features. Another model employing similar saliency 

detection method is presented in [94]. The model, Saliency-guided Deep framework for Image 

Quality Assessment (SDIQA) first detect salient regions using information divergence [95] 

before extracting raw image patches from the regions. SDIQA then use deep learning technique 

to produce image-level features. 

Meanwhile, a supervised feature learning framework for general-purpose BIQA model 

is presented in [96]. Termed as supervised CORNIA (SV-CORNIA), the model uses a set of 

linear filters to encode the normalised image patches. Based on the observation that the 

distributions of the filter responses vary for different categories and levels of distortion and the 

assumption that the distributions’ statistics are closely related of image quality, the model then 

extracts the maximal and the minimal filter responses as its features. The filters are learned in 

a supervised way by back-propagation method to ensure the extracted features are suitable for 

BIQA task. 

In [97], a BIQA model that utilises convolutional neural network (CNN) is proposed. 

Rather than using any handcrafted features as in GRNN model, CNN learns discriminant 

features directly from the normalised raw image patches. Another difference to GRNN model 

is that the feature learning and the regression stages are integrated into one general neural 

network framework, making the network deeper to increase the learning capacity. In CNN 

model, the locally normalised image patch is first convolved with 50 filters (kernels) to produce 
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50 feature maps. Each feature map is pooled in the second layer of the network into one 

maximum value and one minimum value, reducing individual map to a two-dimensional 

feature vector. The third and the fourth layer of the network then train the network and the 

output is employed as an input to the final layer for quality prediction task (regression). 

The encouraging results achieved by the CNN model leads to the introduction of other 

CNN-based BIQA models. A model known as Blind Image Evaluator based on CONvolutional 

neural network (BIECON) is presented in [98]. BIECON employs a CNN architecture which 

consists of 2 convolutional layers, 2 pooling layers and 5 connected layers to estimate the 

quality of the normalised input images patches.  At the same time, BIECON utilises a 

perceptron with one hidden layer to regress the mean and the standard deviation values of the 

extracted patch-wise features for image-level quality estimation. Meanwhile, a deeper CNN 

architecture for BIQA task is proposed in [99]. The Deep Image QuAlity Measure (DIQaM) 

model first extracts quality-predictive features from a set of un-normalised image patches 

through a CNN architecture of 10 convolutional layers with 5 pooling layers. The extracted 

features are then used as inputs to two fully connected layers to perform quality prediction for 

the patches. The patches’ quality scores are then pooled to obtain image-level quality estimate. 

2.2.3 Regression 

The extracted features, handcrafted or machine-learned, are then used to learn prediction 

models for BIQA. This is usually done by inputting the features into a regression algorithm to 

learn the mapping function between the features’ space and the image quality score space. 

Given the training images’ features and their associated MOS / DMOS values, kernel-based 

learning methods are often utilised to learn such mapping function. Usually, support vector 

regression (SVR) is used to this effect. 
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Given training data {(𝑥1, 𝑠1), (𝑥2, 𝑠2), … , (𝑥𝑛, 𝑠𝑛)}, where 𝑥𝑖, 𝑖 = 1,2,3, … , 𝑛 denotes the 

extracted feature vector and 𝑠𝑖 represents the corresponding MOS / DMOS value, the linear 

function that estimate the output value from the input feature vector is given as [100]: 

𝑓(𝑥) = 〈𝜔, 𝑥〉 + 𝑏  .     (2.1) 

In Equation (2.1), 𝜔 represents the weight vector, 〈∙ ,∙〉 denotes the inner product, and 𝑏 

represents a bias parameter. In the SVR case, 𝜔 and 𝑏 can be determined by minimising the 

later optimisation problem [101]: 

minimise 
1

2
‖𝜔‖2 + 𝑐SVR ∑ (𝜉𝑖 + 𝜉𝑖

∗)
𝑛

𝑖=1
 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

〈𝜔, 𝑥𝑖〉 − (𝑠𝑖 − 𝑏) ≤ 𝜀SVR + 𝜉𝑖

𝑠𝑖 − 𝑏 − 〈𝜔, 𝑥𝑖〉 ≤ 𝜀SVR + 𝜉𝑖
∗

𝜉𝑖, 𝜉𝑖
∗ ≥ 0

  .       (2.2) 

In Equation (2.2),  𝜀SVR represents the threshold / deviation parameter: all predictions must be 

within 𝜀SVR range of the true predictions, 𝜉𝑖 and 𝜉𝑖
∗ are the slack variables that allow for errors 

while 𝑐SVR represents a constant parameter for 𝜔 and 𝜉𝑖/𝜉𝑖
∗ balancing. Equation (2.2) minimiser 

is given as [101]: 

𝜔 = ∑ 𝑟𝑖𝑥𝑖
𝑛
𝑖=1   ,        (2.3) 

where 𝑟𝑖 is the combination coefficient. 

For non-linear cases, the input feature vector is usually mapped onto a feature space of 

high dimension Φ(𝑥) prior to regression. The function for regression can then be represented 

as [101]: 

𝑓(𝑥) = 〈∑ 𝑟𝑖Φ(𝑥𝑖), Φ(𝑥)𝑛
𝑖=1 〉 + 𝑏 = ∑ 𝑟𝑖〈Φ(𝑥𝑖)Φ(𝑥)〉 + 𝑏𝑛

𝑖=1   .      (2.4) 
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The term 〈Φ(𝑥𝑖)Φ(𝑥)〉, representing an inner product, is also recognised as a kernel 

function 𝑘(𝑥𝑖 , 𝑥). This leads to: 

𝑓(𝑥) = ∑ 𝑟𝑖𝑘(𝑥𝑖 , 𝑥) + 𝑏𝑛
𝑖=1   .    (2.5) 

While there are several kernel functions available, the radial basis function (RBF) kernel is 

often selected in BIQA task. It is given as [102]: 

𝑘(𝑥𝑖 , 𝑥) = exp(−𝛾RBF(|𝑥𝑖 − 𝑥|)2)  ,     (2.6) 

where 𝛾RBF is the precision parameter. 

2.3 Common Experimental Procedure and Performance Analysis 

Having introduced various general-purpose BIQA models’ approaches in sub-chapter 

2.2, their performances in predicting image quality are now briefly analysed. Prior to that, a 

standard experimental setup and evaluation protocols are first described to help readers obtain 

general ideas on how the models are typically tested and evaluated. Note that the performance 

results of each model are obtained from their corresponding publications. This may not 

represents a fair comparison between the models due to various factors such as random 

selection of training data, number of trials, and the choice of regression modules. However, the 

main purpose here is to give general observation on how well the models perform in relation 

to human quality perception. 

2.3.1 Experimental setup 

The prediction performance evaluation for a BIQA model is usually carried out using 

standard IQA databases. In a standard setting, the chosen database is first partitioned into two 

parts. 80% of the reference images and their distorted versions are randomly selected as a 

training set while the remaining 20% of the reference images and their distorted versions are 

set as a test set. This ensure no redundancy between the two sets. The training set is used to 
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first determine the parameters for the regression model. Once the regression model is learned, 

it is then used to perform the quality score prediction for the test set images. To guarantee that 

the obtained results are not influenced by one particular train-test partition, the experiments are 

normally repeated 100 to 1,000 times where different 80% train - 20% test partition is employed 

in each run. 

Two experiments are typically performed to ascertain the overall performance and the 

DS performance of the model. In the overall performance experiment, the train-test run is 

conducted across all distorted images regardless of their classes. This is to evaluate how well 

the model performs across all distortion types. In the DS performance experiment, the 

experiment is only carried out on images in a single distortion class. This is to evaluate how 

well it performs for one particular distortion. 

2.3.2 Metrics for performance evaluation 

Evaluating the performance of a BIQA model is crucial as to provide us with information 

on how robust the model is, a specific failure identification and possible improvements. 

Inadequate evaluation can lead to false performance claims and inability to identify model 

weaknesses. Identifying a model’s weakness is important as a model with systematic weakness 

may lose its interpretability, i.e. its ability to differentiate between high quality images from 

low quality images [103]. 

The performance of an objective BIQA model is usually evaluated by quantifying the 

differences between the predicted quality scores by the model and the ground truth ratings 

obtained from the subjective image quality experiments, i.e. the image databases’ quality 

ratings. As described in ITU-T P.1401 evaluation procedure for objective metrics [104], the 

model’s predicted scores are first mapped to MOS / DMOS values via regression before several 

performance metrics are utilised to analyse the model’s performance. Because of this, almost 
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all image databases discussed in sub-chapter 1.2.2 are developed via direct scaling testing 

methodologies such as absolute category rating or double stimuli continuous quality scale; 

resulting in their ground truth ratings being reported in the form of MOS / DMOS.  

For a BIQA model that is tested on a MOS / DMOS based database, the performance of 

the model is measured by its ability to predict the image quality score close to the MOS / 

DMOS value in the database. In this case, two correlation measurements are commonly used 

as the performance metrics. They are: the linear correlation coefficient (LCC) and the 

Spearman rank order correlation coefficient (SROCC). The LCC is utilised to indicate the 

model’s prediction accuracy. It can be computed as [105]: 

LCC =  
∑ (𝑞𝑖−𝑞̅)(s𝑖−s̅)

𝑁test
𝑖=1

√∑ (𝑞𝑖−𝑞̅)2(s𝑖−s̅)2𝑁test
𝑖=1

   .          (2.7)  

In this equation, 𝑁test represents the test images number, 𝑞𝑖 and 𝑞̅ are the predicted quality 

score of the 𝑖th image and the mean of all 𝑞𝑖 while s𝑖 and s̅ are the subjective score of the 𝑖th 

image and the mean of all s𝑖. The second metric SROCC is used to measure the prediction 

monotonicity of the model. It is calculated as [105]: 

SROCC = 1 −
6

𝑁test(𝑁test
2 −1)

∑ (s𝑖 − 𝑞𝑖)2𝑁test
𝑖=1    .    (2.8) 

Values closer to 1 (or -1) for both LCC and SROCC indicate higher correlation with human 

subjective score. 

Apart from evaluating the model’s performance across a wide range of quality levels, as 

represented by most image databases, the performance metrics computation should also be 

performed over a meaningful subsets of the databases. These subsets can include evaluation 

based upon the presence or absence of specific artefacts or sources with more or less observer 

variability in scores [6]. In such cases, the BIQA evaluation practice involving MOS / DMOS 
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based performance metrics may become less discriminative or reliable. For example, while 

BIQA models may achieve high correlation between the predicted MOS / DMOS and the actual 

MOS / DMOS when evaluated over the overall database quality range, the correlation is 

actually lower when we are focusing over smaller subset of the database. Recently, the MOS / 

DMOS based evaluation approach has been shown to be less effective in validating BIQA 

models that test consumer devices whereby the range of quality levels of images captured by 

consumer mobile devices or high-end camera is usually narrower and typically concentrated at 

the higher quality end [106].  

Several work have been presented to address this so-called range effect [106]. Instead of 

evaluating the model’s performance via subjective MOS / DMOS, these work assess the 

model’s performance using subjective preference scores. These scores are usually generated 

via indirect scaling test methodologies such as paired comparison (PC). The use of PC is 

motivated by the observation that it has a higher discriminatory power in cases where the 

difference between observed images are small. In addition, it is easier for observers to identify 

which image is of better quality in  a pair of images compared to relate image quality to a 

particular level on a given quality scale [40]. 

Evaluating the model’s performance under the PC based approach requires different 

performance metrics to be used. The first metric that can be used for this purpose is the model 

Resolving Power (RP) presented in ITU-T Rec. J.149 [107]. RP measures the difference 

between predicted scores of image A and image B by the model (∆𝑞𝑚𝑜𝑑𝑒𝑙 = 𝑞𝑚𝑜𝑑𝑒𝑙(𝐴) −

𝑞𝑚𝑜𝑑𝑒𝑙(𝐵)) necessary to have 95% probability that the image A is qualitatively better than 

image B. This way, RP can be used to indicate the model capability to determine whether a 

pair of images are qualitatively different. The model with lower difference (threshold) value is 

considered more accurate.    
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The use of RP, however, does not give information about the reliability of the model 

classification. Therefore, another performance metric in the form of the model classification 

errors analysis is required. Classification errors occur when the model’s evaluation on a pair of 

images differs from its subjective evaluation. This can happen in one of three ways [40]: (1) 

False Tie when the subjective evaluation indicates that the two images are different but the 

model evaluation indicates that they are identical, (2) False Differentiation when the subjective 

evaluation indicates that the two images are identical but the model evaluation indicates that 

they are different, and (3) False Ranking when subjective evaluation finds that image A is better 

than image B but the model evaluation finds the opposite. To evaluate the model performance, 

the frequencies of these errors is first computed by varying a threshold on the model’s score 

difference of the two images, ∆𝑞𝑚𝑜𝑑𝑒𝑙 while comparing the model classification outcomes to 

that of subjective evaluation. Analysing classification errors at ∆𝑞𝑚𝑜𝑑𝑒𝑙 = 0 will show us how 

many times the model makes the False Differentiation errors. In addition, by finding the 

∆𝑞𝑚𝑜𝑑𝑒𝑙 point where Correct Decision frequency is maximised, we can also determine the 

highest percentage of agreement between the model and the subjective test.    

Motivated by classification error analysis approach, another PC based performance 

metric is proposed based on receiver operating characteristic (ROC) analysis [108] – [109]. 

The general principle of ROC analysis is similar to classification error analysis whereby it 

creates a curve reflecting the correct classification when the threshold on the model’s scores is 

varied [108]. To generate the curve, the model’s True Positive Rate (TPR) and False Positive 

Rate (FPR) are first recorded for every threshold position. The TPR and FPR are given as [109]: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, 𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃+𝑇𝑁
     (2.9) 

In Equation (2.9), TP represents true positive where positive input is correctly classified by the 

model, FP represents false positive where negative input is classified as positive by the model, 



34 
 

TN represents true negative where the negative input is correctly classified by the model, and 

FN represents false negative where positive input is classified as negative by the model. The 

ROC curve can then be generated by plotting TPR as a function of FPR. For easier comparison 

purpose, the Area Under the ROC Curve (AUC) is then computed as [109]: 

𝐴𝑈𝐶 = ∑ {
𝑇𝑃𝑅(𝑝)+𝑇𝑃𝑅(𝑝−1)

2
×

𝐹𝑃𝑅(𝑝)−𝐹𝑃𝑅(𝑝−1)

2
}𝑃

𝑝=2                (2.10)  

where 𝑃 represents the number of threshold positions considered. 

This ROC analysis can then be used to evaluate a BIQA model performance for two 

cases. The first case is to determine the model capability to distinguish between similar and 

significantly different image pairs. This is done by first computing the absolute difference of 

the model scores over all possible image pairs. The TPR and FPR are then recorded as the 

threshold of these differences’ distribution is varied. The resulting AUC value is used to 

evaluate the model performance whereby the higher the AUC, the higher the model capability 

to determine whether the images are qualitatively different. 

The second case is to evaluate the model capability to determine which of the images is 

of higher quality. Here, only image pairs that are significantly different are considered. The 

distributions of both image pairs with positive score differences and image pairs with negative 

score differences are analysed in which the TPR and FPR are again recorded as the threshold   

is varied. The obtained AUC value is used to indicate how well the model recognise the better 

image in the pair. The higher the AUC value, the more capable the model to identify the image 

of higher quality. Similar to classification error approach, analysing the correct and false 

classification in threshold equal to zero will actually shows how many times does the model 

correctly recognise the better image in the pair. 
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2.3.3 Performance results and analysis 

While there are many available image quality databases, most of general-purpose BIQA 

models are evaluated using the LIVE IQA database [14]. Their reported results from the LIVE 

database are therefore utilised here for evaluation. Similarly, while there are alternative 

performance metrics available, the DMOS-based metrics are used here to benchmark the 

models. The median LCC and SROCC results of the BIQA models in both the overall and the 

DS experiments are tabulated in Tables 2.1 and 2.2, respectively. Due to the right-skewed 

distribution of the LCC and the SROCC values, median is often used in the previous works as 

their centre measurements. Several FR-IQA models are also included for reference. Note that 

the models with the highest LCC / SROCC values, in FR-IQA and both handcrafted based and 

machine learned based categories, are in bold. 

Table 2.1: Median LCC values for different IQA models tested on the LIVE IQA database 

 

Model JP2K JPEG WN GB FF ALL 

PSNR 0.873 0.876 0.926 0.779 0.870 0.882 

SSIM 0.921 0.955 0.982 0.893 0.939 0.906 

FSIM 0.910 0.985 0.976 0.978 0.912 0.960 

BIQI 0.809 0.901 0.954 0.829 0.733 0.821 

DIIVINE 0.922 0.921 0.988 0.923 0.888 0.917 

NSS-GS 0.947 0.933 0.963 0.950 0.942 0.926 

LBIQ - - - - - - 

STAIND 0.923 0.975 0.975 0.972 0.923 0.922 

SRNSS 0.936 0.939 0.940 0.936 0.947 0.932 

BLIINDS - - - - - - 

BLIINDS-II 0.935 0.968 0.980 0.938 0.896 0.930 

BRISQUE 0.923 0.973 0.985 0.951 0.903 0.942 

GMLOG 0.934 0.974 0.990 0.935 0.921 0.955 

GRNN 0.828 0.880 0.989 0.825 0.819 0.837 

CBIQ 0.920 0.967 0.954 0.949 0.939 0.928 

IQVG 0.927 0.920 0.979 0.953 0.940 0.942 

GLBP 0.956 0.972 0.985 0.954 0.912 0.954 

LTP 0.949 0.948 0.950 0.949 0.948 0.949 

NCS 0.950 0.964 0.991 0.935 0.942 0.939 

NFEQM 0.921 0.875 0.925 0.902 0.875 0.893 

NFSDM 0.955 0.959 0.935 0.945 0.848 0.924 

NFERM 0.955 0.982 0.992 0.937 0.888 0.946 

CORNIA 0.951 0.965 0.987 0.968 0.917 0.935 

SFLNIA 0.957 0.958 0.978 0.955 0.920 0.916 

SV-CORNIA 0.929 0.940 0.978 0.960 0.888 0.921 

CNN 0.953 0.981 0.984 0.953 0.933 0.953 

BIECON 0.965 0.987 0.970 0.945 0.931 0.962 
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Table 2.2: Median SROCC values for different IQA models tested on the LIVE IQA database 

 

Model JP2K JPEG WN GB FF ALL 

PSNR 0.870 0.885 0.942 0.763 0.874 0.866 

SSIM 0.939 0.946 0.964 0.907 0.941 0.913 

FSIM 0.972 0.984 0.972 0.971 0.952 0.965 

BIQI 0.800 0.891 0.951 0.846 0.707 0.820 

DIIVINE 0.913 0.910 0.984 0.921 0.863 0.916 

NSS-GS 0.931 0.915 0.971 0.939 0.935 0.930 

LBIQ 0.904 0.929 0.970 0.898 0.822 0.895 

STAIND 0.914 0.960 0.966 0.973 0.903 0.916 

SRNSS 0.928 0.931 0.938 0.933 0.941 0.930 

BLIINDS 0.922 0.839 0.974 0.957 0.750 0.800 

BLIINDS-II 0.929 0.942 0.969 0.923 0.889 0.931 

BRISQUE 0.914 0.965 0.979 0.951 0.877 0.940 

GMLOG 0.928 0.966 0.985 0.940 0.901 0.951 

GRNN 0.816 0.872 0.979 0.833 0.735 0.827 

CBIQ 0.919 0.965 0.933 0.944 0.912 0.930 

IQVG 0.919 0.900 0.962 0.943 0.938 0.942 

GLBP 0.947 0.956 0.979 0.954 0.889 0.951 

LTP 0.942 0.942 0.944 0.942 0.942 0.942 

NCS 0.947 0.937 0.985 0.949 0.932 0.941 

NFEQM 0.915 0.854 0.915 0.931 0.852 0.887 

NFSDM 0.951 0.948 0.927 0.935 0.821 0.922 

NFERM 0.942 0.965 0.984 0.922 0.863 0.941 

CORNIA 0.943 0.955 0.978 0.969 0.906 0.942 

SFLNIA 0.951 0.947 0.972 0.952 0.912 0.923 

SV-CORNIA 0.924 0.928 0.962 0.961 0.879 0.920 

CNN 0.952 0.977 0.976 0.962 0.908 0.956 

BIECON 0.952 0.974 0.980 0.956 0.923 0.961 

 

As shown in these tables, most of the general-purpose BIQA models consistently obtain 

median LCC and SROCC values close to 1. This indicates that the predicted image quality 

scores by those models generally have close correlation with human subjective scores and the 

models can reflect well the quality perception of a human observer. Compared to FR-IQA 

models, most of the BIQA models are already outperform PSNR and SSIM model in the overall 

performance experiment while approaching FSIM. They also give comparable prediction 

performances for individual distortion cases. For example, for images affected by noise 

artefacts, many BIQA models produce higher correlation values than those of FR-IQA models. 

The results are encouraging enough given that the FR-IQA models require additional 

information (in reference images) to estimate image quality. 
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Among the models that utilise handcrafted features, GMLOG and GLBP achieve the 

closest prediction performance in the overall performance experiment. When tested on JP2K 

compressed images, GLBP and NFSDM produce the two best correlation scores. NFERM has 

the highest SROCC and LCC values for JPEG compressed images while STAIND and LTP 

work the best in GB and FF cases, respectively. For images affected by WN artefacts, NFERM, 

GMLOG and NCS are the three models that achieve the highest correlation values. 

It can also be seen that BIECON has the best correlation scores among the machine-

learned based models in the overall performance experiment. The neural network based models 

also have the best correlation values for JP2K and JPEG compressed images. In FF cases, CNN 

and BIECON are the top two machined learned based BIQA models. Meanwhile, CORNIA 

has the highest correlation values when tested on blurred images. 

Although these models are normally trained and tested on a single database, i.e. the LIVE 

IQA dataset, most models can also be database independent. Once trained, the models are 

capable to evaluate the quality of images over the distortions they are trained for. Specifically, 

these models are usually trained entirely on the LIVE IQA database and then being tested on 

other major databases such as CSIQ [15] and / or TID2008 [16]. The results of cross database 

testing for several general-purpose BIQA models are tabulated in Table 2.3 where competitive 

performances are produced compared to FR-IQA models. These models also maintain good 

correlation scores indicating their good generalisation capability. 

Computational requirement is another important aspect to be considered when evaluating 

the performance of a BIQA model. Table 2.4 reports the average processing time required by 

a BIQA model in evaluating a typical 512 × 768 test image. BIQI appears to be the fastest 

model, requiring 0.08 second to predict the quality score of an image. Unfortunately, it has the 

worst prediction accuracy performance. BLIINDS-II, CBIQ, IQVG and NCS give more 
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accurate prediction than BIQI at the expense of higher processing times. Based on the table, 

GMLOG, BRISQUE and CNN are the best three models with high correlation scores while 

requiring an acceptable runtime to process an image. 

Table 2.3: SROCC values for cross database testing 

 

Model CSIQ TID2008 

PSNR 0.806 0.525 

SSIM 0.876 0.767 

FSIM 0.924 0.881 

BIQI 0.781 0.819 

DIIVINE 0.857 0.889 

NSS-GS - 0.848 

STAIND 0.843 0.856 

BLIINDS-II 0.888 0.906 

BRISQUE 0.899 0.905 

GMLOG 0.911 0.920 

CBIQ 0.879 - 

NCS 0.854 0.844 

NFERM 0.914 0.915 

CORNIA 0.897 0.893 

SV-CORNIA - 0.873 

CNN - 0.920 

 

Table 2.4: Average processing time for different BIQA models 
 

Model BIQI DIIVINE BLIINDSII BRISQUE GMLOG CBIQ IQVG NCS CORNIA CNN 

Runtime 

(s) 

0.08 28.20 123.20 0.18 0.10 60.00 60.00 107.00 1.59 0.13 

 

These analyses may to decide on which are the better BIQA models. However, it is still 

difficult to agree on the best BIQA model that can operate effectively for a wide range of 

different circumstances. The reason for this is due to their being designed based on various 

philosophies and having complementary features. As indicated by the results on Table 2.1 and 

Table 2.2, a particular model’s features may carry discriminative image quality information for 

images with a certain type of distortion but may not be useful for other types of distorted 

images. In addition, some models may have excellent performance when tested on one database 

but do not generalise well beyond that. The choice of which BIQA model to be employed is 

also depends on the applications. In applications where the number of distortion types 
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examined can be increased, models with a modular framework, such as CBIQ and LBIQ, are 

preferred to cater for a higher number of distortion types. This is accomplished at the expense 

of higher computational load. Fast computation is essential when the model must judge the 

image quality instantly such as on mobile devices. In such a scenario, fast models like GMLOG 

and BRISQUE are the best options. 

2.4 Limitations and Proposed Solutions 

It can be concluded these general-purpose BIQA models generally achieve highly 

competitive performances regarding well-known FR-IQA models. Their quality prediction 

performances are highly correlated to human perception of image quality. They also serve as 

the state-of-the arts of BIQA work. However, there are few limitations to be further addressed. 

As it can be seen in sub-chapter 2.1, two-step approach is usually employed by these 

models: feature extraction followed by model regression by human scores. Kernel based 

learning methods, in particular SVR, are often utilised by these models to develop a mapping 

from the image’s features to its image quality score. One major drawback of this approach is 

that they require training phase to optimise the regression (kernel) parameters. Although the 

training is often considered a one-time pre-processing step, it can take a long time especially 

for a huge image database. These models also need to re-train their regression parameters when 

images of new distortion types are introduced into the training data. Therefore, developing a 

model that requires minimal training or no training at all would be advantageous. 

To address this limitation, one requires to develop a model that requires minimal training 

or no training at all.  This study attempts to do this by proposing the use of nearest neighbour 

technique in the learning framework of a general-purpose BIQA model. This is motivated by 

the fact that the cost of learning for this technique is virtually zero where its training process 

only involves storing feature vectors and labels of the training images [110], alleviating the 
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need of regression parameters training phase. A BIQA model that integrate a nearest neighbour 

technique into its learning framework is presented in Chapter 3. 

 Another limitation shared by these models is that their performance degrades 

significantly when only being trained using a few training images. While increasing the number 

of training samples will help alleviate this problem, collecting large amounts of training 

samples for IQA is expensive as it involves obtaining additional images across wide ranges of 

quality level, content and distortion types. A model with robust performance regardless the size 

of training data is preferred. In addition, the previous models accumulate features over the 

entire image to derive the statistics required for quality estimation. Therefore, they can only 

provide a global estimate of image quality. These quality scores are uninformative enough 

where different parts of an image are subjected to different degradation levels. In such case, a 

model that can predict image quality locally could be useful. For example, for an image 

enhancement system, we only apply enhancement where necessary. 

This study attempts to address these two limitations by introducing a BIQA model that 

operate on patch-level. To overcome the issue of small training sample number, this study 

proposes to artificially augmenting the existing databases by sampling image patches from the 

databases’ images. This helps to increase the number of training samples for the model without 

having to obtain additional images. This study also proposes to extract relevant statistical 

features from those sampled image patches. This helps the model to directly perform local 

quality estimation on individual patches. One may question on the model performance 

validation as there are no local ground truth targets available currently. Similar to 

implementation in CNN [97] and DIQaM [99] models, the model can address this issue by 

assigning the image patches with quality labels from their corresponding annotated images. For 

the utilised databases, this practice is acceptable since the level of distortion is uniform across 
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the image. The patch-based BIQA model is first introduced in Chapter 3 while the improved 

version is presented in Chapter 4.        

As discussed in sub-chapter 2.3, a BIQA model may has great quality estimation 

capability for images degraded by one particular type of distortion but may suffers when tested 

on images with different distortion types. To address this, the study also aims to look at the 

possibility of integrating a multi-task learning architecture into the model’s framework. Multi-

task learning (MTL) represents a learning technique that utilise a shared representation to learn 

multiple related tasks simultaneously. Based on the assumption that the learner may find it 

easier to learn multiple tasks together rather than in isolation when the tasks shared what they 

learn, MTL has been shown to improve the learning capability of each individual task [111]. 

In BIQA, by treating an individual distortion class as a single task, we could employ MTL to 

improve the quality prediction in each distortion case. A BIQA model that is designed based 

on MTL framework is presented in Chapter 5. 

Finally, having a BIQA model capable of identifying the distortion affecting the image 

could also be useful in certain application domains. For example, in the restoration stage at the 

receiver end of an image communication system, it is easier to repair a distorted image if the 

distortion afflicting the image is known beforehand. Unfortunately, this property is unavailable 

in most of the previous models. 

The study therefore proposes to introduce a distortion identification stage into the 

suggested model’s framework. This is motivated by the intuition that the perceived quality of 

an image degraded by a particular distortion would be best predicted by images of the same 

distortion type. Therefore, by first identifying the distortion affecting the image, more relevant 

training samples could be selected for quality estimation purposes. This additional property 

makes the model appealing for applications where the knowledge of distortion type is 
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necessary. Both patch-based BIQA models presented in Chapter 3 and Chapter 4 integrate 

distortion identification stage into their learning frameworks. The MTL-based BIQA model 

introduced in Chapter 5 also has the capability to identify distortion within the tested images.    

At the time this thesis is being written, the author have been made aware of other works 

that also introduce distortion identification stage into a BIQA framework. For completeness, 

the works are briefly reviewed here. In [112], Chetouani et al propose to perform distortion 

classification prior to quality estimation. The classification is performed via linear discriminant 

analysis (LDA) classifier. The 8 input features to the classifier are selected to represent 

common image distortions such as noise (4 features), blur (1 feature), blocking (1 feature) and 

ringing (2 features). These features are extracted from the test image using different BIQA 

models depending on the distortion type. Once the classifier identifies the distortion type, 

appropriate BIQA models are then selected to perform quality estimation.  

The work is later extended in [113]. Here, metrics from different IQA models are 

proposed to be employed directly as input features to the LDA classifier. This is based on the 

assumption that different IQA models exhibit specific response for a given degradation type. 

A total of 12 features are utilised. Again, depending on the identified distortion class, 

appropriate BIQA models are then utilised to estimate the image quality. In [114], different 

features are first extracted from the image to model each degradation type considered: 3 

features for noise, 3 features for blur, 4 features for blocking and 3 features for ringing, 

respectively. The resulting models are then used to perform quality estimation for different 

distortion.  The scores are then combined to achieve final quality score for the image. 

Note that there are noticeable differences between those works and the models presented 

by this study. First, the models here use nearest neighbour based classifier to perform distortion 

identification as opposed to LDA classifier by those works. Second, the models here performs 
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both distortion identification and quality estimation at patch-level as opposed to image-level 

operation by those works. Third, all features utilised by the proposed models are general-

purpose and not limited for specific distortion. In contrast, those works employ a combination 

of distortion-specific features to perform their operation. The utilised features will be described 

in details in Chapter 3, 4 and 5.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 
 

Chapter 3 

Patch Based Learning Framework for 

Blind Image Quality Assessment Model 

3.1 Chapter Introduction 

At the end of Chapter 2, few limitations of BIQA models have been identified. These 

include intensive training phase requirements, inability to provide local quality estimation and 

inability to identify the distortion affecting an image. Two potential solutions were then 

proposed: the use of nearest neighbour techniques and local feature extraction. This chapter 

describes the first proposed BIQA model that integrate these solutions in its model framework. 

The model, dubbed PATCH based blind Image Quality assessment (PATCH-IQ), has a 

five-stage framework. Given an image, PATCH-IQ first samples non-overlapped local patches. 

At the second stage, it then extracts spatial domain BIQA features from those patches.  Rather 

than using the features directly for quality analysis, PATCH-IQ intuitively assumes that the 

perceived quality of a distorted image will be best predicted by features drawn from images of 

the same distortion class. Therefore, PATCH-IQ introduces a distortion identification process 

in the third stage. A nearest neighbour classifier is employed to perform such a task. The 

classifier achieves this by minimising the Image-to-Class (I2C) distance between the image’s 

patches and a set of annotated image patches. The patches correspond to the identified 

distortion class are then utilised in the fourth stage to predict local image quality. This is done 

via a k-nearest neighbour regression that associates the local image quality with the DMOS of 
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the annotated patches constrained to the identified distortion class. Finally, an overall image 

quality score is derived by pooling the local scores of all patches in the image.  

The remainder of this chapter is structured as follows. The PATCH-IQ framework will 

be described in details in sub-chapter 3.2. In sub-chapter 3.3, we will then look at the 

experimental results and later analyses. Sub-chapter 3.4 will conclude the chapter. 

3.2 Patch Based Framework for Blind Image Quality Assessment 

The framework for PATCH-IQ is illustrated in Figure 3.1. 

 

3.2.1 Local feature extraction 

As presented in Chapter 2, there are various statistical features can be used to perform a 

BIQA task. The choice of features for PATCH-IQ is affected by two main factors. First, it is 

crucial to employ features with low computational requirements since they are to be extracted 

at patch level. In this aspect, spatial domain features are chosen to avoid expensive computation 

normally encountered by image transform-based features. Second, the selected features should 

carry information not only on perceptual quality but on the distortion in the image as well. The 

same spatial domain features as implemented by the BRISQUE model [74] are therefore 

adopted. 

As in BRISQUE, PATCH-IQ utilises the empirical distributions of locally normalised 

luminance coefficients and pairwise products of these coefficients to design 18 statistical 

Feature 
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Figure 3.1: PATCH-IQ framework 
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features for both BIQA and distortion identification tasks. Given an image 𝐈, PATCH-IQ first 

samples non-overlapped patches of ℎp × 𝑤p size. For a patch 𝐏, its locally normalised 

luminance coefficients are obtained by computing local mean subtraction and divisive 

normalisation at each location (𝑖, 𝑗) : 

𝐏̂(𝑖, 𝑗) =
𝐏(𝑖,𝑗)−𝜇(𝑖,𝑗)

𝜎(𝑖,𝑗)+𝜀B
 ,             (3.1) 

where the local mean field 𝜇(𝑖, 𝑗) is defined as: 

𝜇(𝑖, 𝑗) = ∑ ∑ 𝜔𝑘,𝑙𝐏𝑘,𝑙(𝑖, 𝑗)𝐿
𝑙=−𝐿

𝐾
𝑘=−𝐾  ,                    (3.2) 

and the local variance field 𝜎(𝑖, 𝑗) is given by: 

𝜎(𝑖, 𝑗) = √∑ ∑ 𝜔𝑘,𝑙 (𝐏𝑘,𝑙(𝑖, 𝑗) − 𝜇(𝑖, 𝑗))
2

𝐿
𝑙=−𝐿

𝐾
𝑘= −𝐾  .         (3.3) 

In these equations, 𝑖 ∈ 1,2, … , ℎp and 𝑗 ∈ 1,2, … , 𝑤p are spatial indices with ℎp and 𝑤p being 

the patch height and width, respectively. Here, 𝜀B is a constant to prevent the denominator in 

Equation (3.1) from falling to zero while 𝜔G = {𝜔𝑘,𝑙|𝑘 = −𝐾, … , 𝐾, 𝑙 = −𝐿, … , 𝐿} is a 

Gaussian weighting function sampled with 3 standard deviations and rescaled to unit sum and 

𝐾 = 𝐿 is the function window size.  

Figure 3.2 shows the histogram plot of the normalised luminance coefficients for a 

natural undistorted image and for its various distorted versions. The undistorted / reference 

image demonstrates a Gaussian-like distribution while different distortion changes the 

coefficient’s distribution in its own way. For example, white noise affects the image by 

reducing the weight of the tail of the histogram while blur causes the image to exhibit a more 

Laplacian-like distribution. These observations indicate that the coefficients’ statistical 

properties are modified by distortion. Quantifying these modifications through a statistical 
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model thus will make it possible for us to perform BIQA task. In agreement with BRISQUE 

implementation, a generalised Gaussian distribution (GGD) model is used to fit the empirical 

distribution of the coefficients. GGD model is chosen as it can effectively capture a broader 

spectrum of distorted images statistics [115]. The empirical distribution of these coefficients is 

fitted by a GGD model as [74]: 

𝑓(𝑥; 𝜇, 𝜎2, 𝛾) = 𝑎 exp[−(𝑏|𝑥 − 𝜇|)𝛾] ,           (3.4) 

with         𝑎 = 𝑏𝛾/2Γ(1/𝛾) ,                         (3.5) 

𝑏 = (1/𝜎)√Γ(3/𝛾)/Γ(1/𝛾)  ,                        (3.6) 

and                 Γ(𝑥) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡      𝑥 > 0
∞

0
 .             (3.7) 

In Equation (3.4), 𝜇, 𝜎2 and 𝛾 are the mean, the variance and the shape parameter of the 

distribution respectively, whereas Γ(𝑥) is the gamma function. The estimated parameters: 𝜎2 

and 𝛾 are then chosen as the first two features. 
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Figure 3.2: Histogram of normalised coefficients for a natural undistorted image and its 

various distorted versions. 
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The other 16 statistical features are next derived from the empirical distributions of the 

pairwise products of neighbouring luminance coefficients. The pairwise products are first 

computed on four orientations: horizontal, vertical, main-diagonal, and secondary-diagonal as 

in Figure 3.3. Instead of GGD, the distributions of these products are modelled by an 

asymmetric generalised Gaussian distribution (AGGD). The AGGD generalises the GGD by 

allowing for asymmetry in the distributions. The AGGD is defined as [74]: 

𝑓(𝑥; 𝜈, 𝜎𝑙
2, 𝜎𝑟

2) =
𝛾

(𝑏𝑙+𝑏𝑟)Γ(1/𝛾)
exp[−(−𝑥/𝑏𝑙)

𝜈]       𝑥 < 0  ,       (3.8) 

and                  𝑓(𝑥; 𝜈, 𝜎𝑙
2, 𝜎𝑟

2) =
𝛾

(𝑏𝑙+𝑏𝑟)Γ(1/𝛾)
exp[−(𝑥/𝑏𝑟)𝜈]           𝑥 ≥ 0   ,           (3.9) 

where                   𝑏𝑙 = 𝜎𝑙√Γ(1/𝜈)/Γ(3/𝜈) and 𝑏𝑟 = 𝜎𝑟√Γ(1/𝜈)/Γ(3/𝜈)  .         (3.10) 

In these equations, 𝜈, 𝜎𝑙
2 and 𝜎𝑟

2 are the shape parameter, the left variance and the right variance 

of the distribution, respectively. The three parameters and the mean of the best AGGD fit are 

then selected at each orientation to represent those 16 features. 

Since images are naturally multiscale and IQA models that incorporate multiscale 

information achieved better correlation with human perceptual measures of image quality 

[116], PATCH-IQ extracts these 18 features over two scales. A total of 36 features are used by 

PATCH-IQ to perform both distortion identification and quality estimation. The suitability of 

Figure 3.3: The four orientations’ of the pairwise product [55] 
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the chosen features in performing both distortion identification and quality analysis will be 

discussed in sub-chapter 3.2.3 and sub-chapter 3.2.4, respectively. Table 3.1 summarises the 

extracted features. 

Table 3.1: List of extracted features 

 

Feature 

ID 
Scale Orientation Feature Description 

1-2 

1 

- 
Shape parameter and variance of GGD model of normalised 

luminance coefficients 

3-6 Horizontal 

Shape parameter, mean, left variance and right variance of 

AGGD model of pairwise products 

7-10 Vertical 

11-14 Main-diagonal 

15-18 
Secondary-

diagonal 

19-20 

2 

- 
Shape parameter and variance of GGD model of normalised 

luminance coefficients 

21-24 Horizontal 

Shape parameter, mean, left variance and right variance of 

AGGD model of pairwise products 

25-28 Vertical 

29-32 Main-diagonal 

33-36 
Secondary-

diagonal 

 

3.2.2 Labelled dataset construction 

Since PATCH-IQ employs a nearest-neighbour technique to perform image distortion 

identification and quality estimation, a labelled dataset 𝐃 consisting of BIQA features extracted 

from patch exemplars must be constructed. Most of BIQA models employ the 80:20 train-test 

ratio to train their regression models [117]. PATCH-IQ follows the same partition setting to 

build the dataset, i.e. patches from 80% of the randomly selected reference images from a 

standard IQA database and their distorted versions are used to extract the features for the 

dataset. Specifically, given a labelled image, PATCH-IQ first divides the image into 𝑃 non-

overlapping patches of ℎp × 𝑤p size. BIQA features, as discussed in sub-chapter 3.1.2, are then 

extracted on those patches. The extracted feature vectors are next combined over all the labelled 

images to form the dataset. Denote the total of labelled images by 𝑁label, the size of feature 

matrix for the dataset is: 
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𝐃 = [(∑ 𝑃𝑖
𝑁label
𝑖=1 ) × 36] .          (3.11) 

PATCH-IQ assigns the patches with two labels. The first label is the distortion class. 

Each patch is labelled according to the distortion type in its source image. The second label is 

the subjective score. Each patch is assigned with its source images’ subjective score, provided 

in the chosen IQA database. As discussed in sub-chapter 2.4, assigning the score in this way is 

acceptable as the distortion levels across the database images are uniform. An example of a 

dataset built from one image and its distorted versions is shown in Figure 3.4. There is no fixed 

number of distortion classes for the dataset. If the images from new distortion classes are 

provided, they can be added directly to the dataset. 

3.2.3 Distortion identification 

The third stage of the framework identifies the distortion class of the image. To show 

that the extracted features can capture image distortion, a 2-D scatter plot between the shape 

Original Distortion 1 Distortion 2 Distortion 3 Distortion 4 

Patch extraction 

Feature extraction 

∑ 

… 

Figure 3.4: Example of labelled dataset construction 
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and the variance parameters of the GGD model of the normalised luminance coefficients is 

generated. Figure 3.5 shows the results for the undistorted reference images and their 

corresponding distorted versions from the LIVE IQA database. It is easy to visualise from the 

figure that images from different distortion types are well separated in GGD parameter space 

showing the suitability of using these two features to perform distortion classification. WN, 

GB and JPEG images are well separated making them among the easiest to be identified. 

Meanwhile, a 3-D scatter plot of the shape parameter and both right and left variance 

parameters of the AGGD model of the horizontally paired products is plotted in Figure 3.6 

using the same set of images. Again, it shows that different distortions occupy different regions 

of the parameter space. This justifies the use of these AGGD parameters as the features for 

distortion classification purposes. Similar patterns could be observed for features extracted on 

different orientations and scales. 

Given a test image 𝐈test, PATCH-IQ extracts BIQA features using the same procedure as 

in sub-chapter 3.2.1 to form the image’s feature matrix 𝐅𝐈test
. PATCH-IQ then identifies the 

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

log()

lo
g
( 

2
)

Scatter plot between shape and variance parameters of GGD model of normalised luminance coefficients

 

 

Ori

JP2K

JPEG

WN

GB

FF
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normalised luminance coefficients for the LIVE IQA database images. 
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distortion type associated with the image by employing a nearest neighbour based classifier. In 

a nearest neighbour classification case, it has been shown that the optimal distance 

measurement is I2C distance rather than the usually used image-to-image (I2I) distance. A 

popular I2C based classifier, the Naïve Bayes nearest neighbour (NBNN) [118], is utilised. 

PATCH-IQ computes the distance between 𝐅𝐈test
 and the feature matrix from each of the 

distortion classes in the dataset 𝐃. The predicted distortion class for the image 𝑐̂ is then 

represented by the class with the minimum I2C distance value [118]: 

𝑐̂ = arg min
𝑐

‖𝐅𝐈test
− 𝑁𝑁𝑐(𝐅𝐈test

)‖
2
 ,   (3.12) 

where 𝑁𝑁𝑐(𝐅𝐈test
) is the NN-descriptor of 𝐅𝐈test

 in the distortion class 𝑐. 

3.2.4 Local quality estimation 

The fourth stage of the framework is to estimate the quality of the image patches. To 

visualise the relationship between the utilised features and human perception of image quality, 
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the SROCC values between features derived from the LIVE images and their corresponding 

DMOS values are plotted. The plot is shown in Figure 3.7. We can see that the way images are 

affected and how each feature captures quality information vary differently depending on types 

of distortion. The figure also indicates that the features generally correlate well with human 

perception of quality, particularly in WN, GB and JP2K cases, justifying their suitability for 

quality estimation task. 

PATCH-IQ works based on the intuition that the quality of a patch would be best 

predicted by patches of the same distortion type. Therefore, it performs quality estimation 

utilising only the labelled patches within the distortion class identified in the previous stage.  

PATCH-IQ then assumes that patches with similar features are perceived to have the same 

quality. Here, better quality prediction can be achieved by selecting a set of labelled patches 

that are similar to the test patch in feature space. PATCH-IQ performs this through a k-NN 

regression algorithm.  

Figure 3.7: Correlation of the extracted features with the DMOS for different distorted images in the 

LIVE database 
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For each test image patch 𝑝𝑖, 𝑖 = 1,2, … , 𝑃test the Euclidean distances 𝑑𝑖𝑗 between the 

patch and the labelled patches of the identified distortion class 𝑝𝑗 , 𝑗 = 1,2, … , 𝑃label is first 

calculated in the feature space. The labelled patches are then rearranged in ascending order 

according to the computed distances. The first 𝑘NN labelled patches are then utilised to estimate 

the patch quality. Figure 3.8 illustrates an example of this selection process.  

 

However, instead of using common inverse distance weighting scheme over the selected 

patches, the test patch quality is estimated through a linear regression: 

𝑞𝑝𝑖
= 𝜔P(𝑓𝑝𝑖

) ,       (3.13) 

where 𝜔P are the optimised weight vector for the patch feature vector 𝑓𝑝𝑖
.The weights can be 

calculated as [119]: 
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Select k-nearest 

Patches 

(Example, k = 3) 
  

𝑝label4 𝑝label2 𝑝label5 

Selected patches for quality estimation 
  

Figure 3.8: Example of k-nearest patches selection for local quality estimation 
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𝜔P = (𝐗𝑇𝐗)−1𝐗𝑇s ,                                  (3.14) 

where 𝐗 is the feature matrix of the selected labelled patches and 𝑠 represents their 

corresponding DMOS scores. 

3.2.5 Global quality estimation 

The final stage of the framework is basically a pooling stage. The patches’ scores are 

pooled to yield the global quality score for the image. Instead of typical average or max pooling, 

PATCH-IQ employs an inverse weighting rule to pool all the patches’ scores. In this 

framework, PATCH-IQ assigns each local score with a weight based on their minimum 

Euclidean distance 𝑑𝑖𝑗min computed in the previous local quality estimation stage. Figure 3.9 

illustrates the process. The image-level quality score for the image is then given as: 

𝑞𝐈 =
∑ 𝜔𝑖𝑞𝑝𝑖

𝑃test
𝑖=1

∑ 𝜔𝑖
𝑃test
𝑖=1

  ,                   (3.15) 

where                   𝜔𝑖 =
∑ 𝑑𝑖𝑗min

𝑃test
𝑖=1

𝑑𝑖𝑗min
  .                          (3.16) 
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Figure 3.9: Local quality score weighting scheme 
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3.3 Results and Discussions 

3.3.1 Experimental setup and evaluation protocol 

Databases: There are several established subjective image evaluation databases within 

the IQA research area. Two of the widely used IQA databases were utilised to evaluate the 

performance of PATCH-IQ: LIVE [14] and CSIQ [15]. 

Framework parameters: The parameters were empirically determined. For the feature 

extraction stage, the local window size 𝐾 = 𝐿 was 3 and constant 𝜀B was 1 as in the BRISQUE 

model while the patch size ℎP = 𝑤P was set at 96. Meanwhile, the number of nearest neighbour 

patches for linear regression in the local quality estimation stage was set at 1000. 

Performance metrics: There are several performance metrics available for model 

evaluation. Given the scope of the study and for ease of comparison, the performance 

evaluation of PATCH-IQ is reported in the same way as reported by the benchmarked models. 

Therefore, two correlation measures were utilised to evaluate the prediction performance of 

PATCH-IQ: LCC and SROCC. In addition, another metric the root mean square error (RMSE) 

was also employed. Similar to LCC, the RMSE can evaluate the prediction accuracy of a model. 

It is represented as [120]: 

RMSE =  √
1

𝑁test
∑ (s𝑖 − 𝑞𝑖)2𝑁test

𝑖=1    .       (3.17) 

In Equation (3.17), 𝑁test is the number of test images, 𝑞𝑖 is the predicted score of the 𝑖th image 

and s𝑖 is the image’s subjective score. In contrast to LCC and SROCC, a value closer to 0 for 

RMSE indicates higher correlation between the predicted score and the human subjective score. 

Benchmarked models: PATCH-IQ was compared against four state-of-the-art BIQA 

models: BIQI [66], BRISQUE [74], GMLOG [76], and CORNIA [91], whose source codes are 

publicly available. PATCH-IQ was also compared with three FR-IQA models: PSNR, SSIM 
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[44] and FSIM [45]. To train these BIQA and FR-IQA models, the databases were divided into 

two subsets: 80% of the reference images and their corresponding distorted versions were 

randomly selected to be a training set while the remaining 20% reference images and their 

associated distorted images were used for testing. There was no overlap between the two sets. 

The same training set was used to construct the labelled dataset required by PATCH-IQ. The 

LIBSVM [121], [122] package was utilised to perform regression for the four BIQA models: 

SVR with a RBF kernel for BIQI, BRISQUE and GMLOG and SVR with a linear kernel for 

CORNIA. For fair comparison, their SVR parameters were determined through cross 

validation in accordance to their respective papers. 

3.3.2 Evaluation on individual databases 

The same two experiments as in sub-chapter 2.2.1 were conducted to ascertain the overall 

performance and the distortion-specific (DS) performance of each model. The experiments 

were performed 1,000 times to ensure that the results are not governed by the specific train-

test partition. The median results for both the overall experiment and the DS experiment are 

tabulated in Tables 3.2 and 3.3, respectively. For simplicity, only the SROCC results are shown 

for the DS performance experiment. Similar patterns can be observed for the LCC and RMSE 

results. Note that for the CSIQ database, only four distortions also present in the LIVE 

database: JP2K, JPEG, WN and GB are considered. The top FR-IQA and BIQA models are in 

bold. 

Table 3.2: Median values across 1,000 runs of the overall performance experiment 
 

IQA model 
LIVE CSIQ 

LCC SROCC RMSE LCC SROCC RMSE 

PSNR 0.882 0.883 12.898 0.856 0.929 0.144 

SSIM 0.946 0.949 8.804 0.935 0.936 0.099 

FSIM 0.961 0.964 7.546 0.968 0.963 0.071 

BIQI 0.849 0.844 15.407 0.809 0.749 0.187 

BRISQUE 0.943 0.942 9.395 0.930 0.910 0.107 

GMLOG 0.951 0.950 8.829 0.939 0.925 0.010 

CORNIA 0.939 0.942 9.920 0.911 0.887 0.125 

PATCH-IQ 0.954 0.952 8.476 0.946 0.932 0.094 
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Table 3.3: Median SROCC values across 1,000 runs of the DS performance experiment 
 

IQA 

model 

LIVE CSIQ 

JP2K JPEG WN GB FF JP2K JPEG WN GB 

PSNR 0.895 0.881 0.985 0.782 0.891 0.936 0.888 0.936 0.929 

SSIM 0.961 0.976 0.969 0.952 0.956 0.961 0.955 0.897 0.961 

FSIM 0.972 0.984 0.972 0.971 0.952 0.970 0.966 0.936 0.973 

BIQI 0.830 0.906 0.933 0.866 0.689 0.764 0.910 0.540 0.783 

BRISQUE 0.916 0.964 0.979 0.945 0.887 0.898 0.921 0.921 0.919 

GMLOG 0.927 0.963 0.983 0.929 0.901 0.916 0.936 0.941 0.908 

CORNIA 0.921 0.936 0.961 0.952 0.905 0.894 0.882 0.786 0.904 

PATCHIQ 0.931 0.976 0.987 0.953 0.891 0.918 0.952 0.963 0.916 

 

In the overall performance experiment, PATCH-IQ produced the best values for all three 

performance metrics among the BIQA models when tested on the LIVE database. Similar 

results were obtained for the CSIQ database. In the DS performance experiment, PATCH-IQ 

had the highest SROCC values on both databases for images distorted by the JPEG and JP2K 

compression artefacts. It also yielded the best SROCC values for WN images. In the GB cases, 

PATCH-IQ performed the best on the LIVE database while came second on the CSIQ database. 

It also gave comparable prediction performance in FF cases. Compared to the FR-IQA models, 

PATCH-IQ achieved better overall performance compared to PSNR and SSIM while 

approaching FSIM. In terms of individual distortions, it outperformed PSNR and yielded 

competitive performance to SSIM and FSIM. It also outperformed both models for WN images. 

Given FR-IQA models require a reference image as their input, PATCH-IQ’s performance is 

promising. 

To access the consistency of PATCH-IQ’s quality prediction performance, the inter-

quartile range (IQR) results of all the SROCC and LCC obtained from the 1,000 runs of 

experiments on both databases are tabulated in Table 3.4. A model with low IQR value 

indicates that its’ results are more consistent under different train-test partitions. The box plots 

of SROCC and LCC distributions for all tested BIQA models are also shown in Figure 3.10. 
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The central mark on each box is the median while the top edge and the bottom edge are the 25th 

and 75th percentiles, respectively. 

Table 3.4: IQR values for 1,000 SROCC and LCC values obtained 
 

Database LIVE CSIQ 

Metrics LCC SROCC LCC SROCC 

BIQI 0.053 0.054 0.071 0.096 

BRISQUE 0.020 0.020 0.036 0.039 

GMLOG 0.017 0.016 0.024 0.026 

CORNIA 0.018 0.018 0.041 0.052 

PATCH-IQ 0.018 0.019 0.028 0.027 

 

 

On the LIVE database, PATCH-IQ obtained lower IQR values than BIQI and BRISQUE but 

slightly higher than GMLOG and CORNIA. Similar pattern can be observed on the CSIQ 

database with an exception that PATCH-IQ now had lower IQR values than CORNIA. This 

indicates that PATCH-IQ produced more consistent prediction than both BIQI and BRISQUE 
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but was less consistent than GMLOG. In terms of the outliers, ideally we would like as few 

outliers as possible and to have them as close to the main distribution as possible. Here, it can 

be seen that PATCH-IQ had more compact set of outliers than most models on both databases. 

These IQR and outlier observations indicate that, while PATCH-IQ may not be the most 

consistent model, it still achieved acceptable quality prediction consistency throughout the 

1000 runs of experiments. Note that PATCH-IQ predicts image quality based on the annotated 

patches from the previously identified distortion class. One possible factor that contributes to 

the prediction results variability and outliers is the PATCH-IQ’s capability to classify the 

distortion accurately. Therefore, by improving its distortion identification accuracy, PATCH-

IQ could also make its prediction performance more consistent. 

3.3.3 Statistical significance and hypothesis testing 

The differences in median correlations between the competing BIQA models may not be 

statistically significant. Therefore, a hypothesis test to evaluate the statistical significance 

difference between each model is conducted. As the SROCC and LCC values follow right-

skewed unimodal distributions, the Wilcoxon rank-sum test is employed avoiding the 

normality assumption required by a typical t-test [105]. The Wilcoxon rank-sum test measures 

the equivalence of the median values of two independent samples. The test is performed on the 

SROCC values obtained from the 1,000 runs of experiments at a significance level of 0.01. The 

null hypothesis is that the SROCC values of the two BIQA models are drawn from the 

populations with equal median while the alternative hypothesis is that the median of one model 

is greater than the other. 

The results are shown in Table 3.5. A score of ‘1’ implies there is a statistically significant 

difference between both models and the model in row has a larger median than the model in 

column. A score of ‘-1’ also implies there is a statistically significant difference between the 
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models, but the model in column now has a larger median than the model in row. A score of 

‘0’ indicates the null hypothesis cannot be rejected and there is no statistically significant 

difference between both row and column models. On both the LIVE and the CSIQ databases, 

PATCH-IQ is statistically different to all four competing models. 

Table 3.5: Results of the Wilcoxon rank-sum test using the SROCC values of competing BIQA models 
 

LIVE 

 BIQI BRISQUE GMLOG CORNIA PATCH-IQ 

BIQI 0 -1 -1 -1 -1 

BRISQUE 1 0 -1 1 -1 

GMLOG 1 1 0 1 -1 

CORNIA 1 -1 -1 0 -1 

PATCH-IQ 1 1 1 1 0 

CSIQ 

 BIQI BRISQUE GMLOG CORNIA PATCH-IQ 

BIQI 0 -1 -1 -1 -1 

BRISQUE 1 0 -1 1 -1 

GMLOG 1 1 0 1 -1 

CORNIA 1 -1 -1 0 -1 

PATCH-IQ 1 1 1 1 0 

 

3.3.4 Effects of labelled dataset size 

The size of the labelled dataset plays an important role to ensure the model’s processing 

time is at an acceptable level. The database size is determined by two parameters. They are: 1) 

the size of image patch and 2) the number of labelled images employed. In this sub-section, the 

study investigates how these parameters affect PATCH-IQ’s prediction performance. 

Since PATCH-IQ samples its image patches in non-overlapping way, a smaller patch 

size will lead to a larger number of samples for the labelled dataset. Having a large number of 

labelled samples is preferred as it normally help a model to obtain better learning capability. 

However, at the same time, PATCH-IQ employs BRISQUE features in its learning framework. 

Since BRISQUE features are designed as global IQA features [74], i.e. accumulated over the 

entire image, operation on a larger image patch will results in more discriminative IQA features 

being extracted.  
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To investigate the effect of patch size variation on the prediction performance, PATCH-

IQ was tested on the LIVE and the CSIQ databases with 8 different patch sizes: 16, 32, 48, 64, 

80, 96, 112, and 128. All other PATCH-IQ parameters were fixed at the initial values as in sub-

section 3.3.1. The performance variation of PATCH-IQ is shown in Table 3.6 and Figure 3.11, 

respectively. A larger patch in generally will lead to higher SROCC and LCC values. For the 

LIVE database, there was an obvious increment in both values as the patch size increases from 

16 to 64. After that, the values appear to be stabilised with the optimum values achieved at 

patch size of 96. As such, PATCH-IQ empirically choose image patches with the size of 96 in 

its framework. Similar patterns were observed for the CSIQ database testing whereby the 

optimum SROCC and LCC values were also achieved with patch with the size of 96. This 

suggests that the patch size utilised in PATCH-IQ framework is independent of the databases. 

Table 3.6: LCC and SROCC comparison for different patch size 

 

Size 16 32 48 64 80 96 112 128 

LIVE 

LCC 0.581 0.824 0.941 0.950 0.951 0.954 0.949 0.950 

SROCC 0.525 0.826 0.938 0.948 0.948 0.952 0.948 0.950 

CSIQ 

LCC 0.577 0.818 0.934 0.942 0.944 0.946 0.942 0.944 

SROCC 0.518 0.810 0.921 0.930 0.930 0.932 0.930 0.932 

 

 

 

Figure 3.11: LCC and SROCC variation for different patch size tested on LIVE database  
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Next, to investigate the effect of the number of images in the labelled dataset, the two 

databases are partitioned under three labelled-test ratios: 80:20, 50:50 and 30:70. All PATCH-

IQ parameters were fixed at the initial values as in sub-section 3.3.1. The four competing BIQA 

models are also evaluated under the same settings. The SROCC results for the overall 

performance experiment are shown in Table 3.7 and Figure 3.12. 

Table 3.7: SROCC comparison for different training (labelled) samples ratio 
 

Database LIVE CSIQ 

Ratio 80% 50% 30% 80% 50% 30% 

BIQI 0.844 0.835 0.816 0.749 0.737 0.718 

BRISQUE 0.942 0.927 0.903 0.910 0.895 0.872 

GMLOG 0.950 0.940 0.925 0.925 0.909 0.887 

CORNIA 0.942 0.937 0.929 0.887 0.881 0.873 

PATCHIQ 0.952 0.945 0.933 0.932 0.920 0.907 

 

 

 

 

(a) 

(b) 

Figure 3.12: SROCC comparison for different training (labelled) ratios on: (a) LIVE and (b) CSIQ 
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As expected, the performances of all tested BIQA models decreased as the number of 

samples is reduced. We can also see that PATCH-IQ still produced the best SROCC values at 

all three ratios for both databases. In terms of rate of change, PATCH-IQ’s performance 

reduced by 0.74% and 1.29% when the labelled samples were reduced from 80% to 50% on 

the LIVE and the CSIQ databases, respectively. When the samples were reduced from 80% to 

30%, its performance degraded by 2.00% on the LIVE database and by 2.68% on the CSIQ 

database. Compared to the competing models, PATCH-IQ produced better rate of change than 

the rest except for CORNIA. The results suggest that PATCH-IQ is more robust to the number 

of training samples (labelled samples) than BIQI, BRISQUE and GMLOG. This also prove 

that PATCH-IQ works well where the number of samples is small. 

3.3.5 Distortion identification accuracy 

Another useful property of PATCH-IQ is its ability to identify the distortion affecting the 

image. A popular NBNN classifier is employed by PATCH-IQ to perform distortion 

identification task. To show that the chosen classifier is capable to provide good classification 

performance, the median classification accuracy over 1,000 runs of experiments on both 

databases is reported. The results are tabulated in Table 3.8. The chosen classifier consistently 

achieves good performance across many distortions with the minimum accuracy value of 80%. 

Since the classifier uses the extracted spatial domain features as its input descriptors, the results 

indicate that the features are not only suitable for quality estimation but also suitable for 

distortion identification purposes. 

Table 3.8: Median classification accuracy 
 

LIVE JP2K JPEG WN GB FF ALL 

Accuracy 88.57 97.19 100 96.67 80 91.92 

CSIQ JP2K JPEG WN GB FF ALL 

Accuracy 86.67 86.67 96.67 86.67 - 88.33 
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To allow visualisation of the classification performance of PATCH-IQ, Figure 3.13 plots 

the confusion matrix for each distortion classes in both the LIVE and the CSIQ databases. We 

can use the confusion matrix to see if PATCH-IQ is confusing two distortion classes. Each 

column of the matrix represents the instances in the predicted distortion class while each row 

represents the instances in the actual distortion class. The sum of each row is 1 and the values 

represent the mean percentage for the 1,000 runs of experiments. Higher value indicates greater 

confusion. 

 

On the LIVE database, we can see that WN, GB and JPEG were generally well classified 

by PATCH-IQ and not confused with other distortion. JP2K and FF images were the worst 

with only 88% of JP2K images and 79% of FF images correctly classified. JP2K and FF were 

also most confused with each other whereby about 11% of FF images were misclassified as 

JP2K images and about 3% of JP2K images were predicted as FF images. This is because FF 

images in the database are essentially JP2K compressed images followed by packet-loss errors 

[14]. Meanwhile, in the CSIQ database, good classification performance was achieved by 

PATCH-IQ with less than 4% of the WN images were misclassified. JP2K and GB were the 

two most confused distortions. In JP2K cases, 12% of the images were misclassified as JPEG 
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or WN images while another 3% were wrongly predicted as GB images. In GB cases, 10% of 

the images were misclassified as JPEG images while another 5% were incorrectly predicted as 

either JP2K or WN images. 

3.3.6 Computational complexity 

Having a fast computation speed is always desirable especially for applications that 

require online quality assessment like adaptive coding in video streaming. In this sub-chapter, 

the processing time to run PATCH-IQ is analysed. There are three major stages that consume 

most of the processing time: (1) patch and feature extraction; (2) distortion identification; and 

(3) local quality estimation. 

Extracting BIQA features is the most time consuming part of the model framework. This 

is due to the features being extracted at the patch level rather than at the image level. A higher 

number of patches will lead to longer extraction time. In addition, the choice of statistical 

features to be utilised also plays important roles in keeping acceptable processing time. On 

average, utilising spatial domain features described in sub-chapter 3.2.1 and using the 

parameter setting as in sub-chapter 3.3.1, PATCH-IQ requires 0.28 second to extract the 

features in a typical 512 × 768 image. 

Processing time for the distortion identification stage is determined by the I2C distance 

computation. It depends on the size of the labelled dataset. The dataset size is determined by 

the number of labelled images and the number of patches within those images. A larger dataset 

will require longer time to compute the I2C distance between the test patches and their nearest 

neighbour labelled patches. However, as indicated by the results in Table 3.7, a larger database 

will lead to better prediction performance. Therefore, there is a clear trade-off between the 

prediction performance and the I2C distance computation time. Choosing an appropriate 

dataset size is essential to ensure fast computation while achieving competitive prediction 
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performance. At 80% ratio, PATCH-IQ requires an additional 0.04 second to perform 

distortion identification. 

Finally, the local quality estimation processing time is directly related to the number of 

nearest neighbour patches selected for linear regression. Similarly, a higher number of patches 

will lead to longer quality estimation time. Setting the parameters as described in sub-chapter 

3.3.1, an extra 0.05 second is required to perform quality estimation for all test patches. These 

processing times are achieved using un-optimised MATLAB R2011b code on an 8GB RAM 

computer with an Intel i5 3.20 GHz processor. Note that the construction time of the labelled 

dataset is not considered here as it is assumed that it is already available prior to the testing 

stage. 

The average run-time comparison between PATCH-IQ and the competing BIQA models 

is shown in Table 3.9. BIQI is the fastest but has the worst prediction performance among all 

the compared models. PATCH-IQ is slower than others except CORNIA. However, given its 

superior performance, PATCH-IQ can be a better option for IQA applications when real time 

computation is not a key requirement. 

Table 3.9: Average run-time 
 

BIQA model BIQI BRISQUE GMLOG CORNIA PATCH-IQ 

Run-time (s) 0.05 0.10 0.07 2.43 0.37 

 

3.4 Chapter Summary 

In summary, this chapter introduced a new BIQA model that estimates image quality 

without the presence of a reference image. The model, PATCH-IQ, is based on a five-stage 

framework that operates in a spatial domain. In contrast to many previous BIQA models, 

PATCH-IQ predicts the quality of an image directly from a set of annotated patches using a 

nearest neighbour method. The approach alleviates the need of any prior regression parameters 
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training phase. PATCH-IQ also extracts its features at patch level enabling quality prediction 

to be performed locally, a useful property that is unavailable in most previous BIQA models. 

The model was tested extensively on two subject-rated image databases.  The experimental 

results demonstrated that the image quality estimates by PATCH-IQ are highly correlated with 

human perceptual measures of image quality across various kinds of image distortions. 

PATCH-IQ also has greater performance to all competing BIQA models in quality prediction 

accuracy and robustness. Note that this performance analysis was only conducted through 

typical DMOS/MOS based performance metrics. There are extra testing that could be 

performed to further validate the prediction performance of PATCH-IQ. As described in sub-

chapter 2.3.2, PC-based metrics such as classification error or AUC could be utilised to further 

benchmark PATCH-IQ to other competing models. The results will further strengthen any 

claim made on PATCH-IQ performance. However, this is outside the scope of the study. In 

addition, note that there are further steps that could be taken to improve the performance of 

PATCH-IQ. In the next chapter, simple modifications to its framework are implemented and 

examined to see if a better prediction performance could be obtained. 
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Chapter 4 

Improving the Patch Based Learning 

Framework for Blind Image Quality 

Assessment Model 

4.1 Chapter Introduction 

Encouraged by the promising results reported in the previous chapter, this chapter will 

discuss simple modifications made to the initial PATCH-IQ’s framework. Two other patch 

sampling strategies are studied resulting to two modified BIQA models. The first modified 

model, termed as PATCH-IQ2, investigates the use of an interest points based sampling 

strategy to extract image patches and their corresponding quality predictive features. The 

second model, termed as PATCH-IQ3, meanwhile incorporates visual saliency estimation 

method in its sampling strategy. In sub-chapter 4.2, both sampling strategies will be first 

described. In sub-chapter 4.3, we will then look at their experimental results and later analyses. 

Sub-chapter 4.4 will conclude the chapter. 

4.2 Image Patch Sampling Strategy 

4.2.1 Interest points based sampling strategy 

In the previous chapter, PATCH-IQ samples image patches in a non-overlapping way. 

Although it is relatively straightforward, there exists a possibility that patches containing 

uniform parts of an image may be extracted. This is especially true for small-sized patches. 
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These patches are not useful in an IQA task as they have little effect on the evaluation results. 

To minimise this problem, a sampling strategy based on interest points of an image is 

considered next. 

Interest points of an image are generally referred to points in the image detected to 

simplify further processing in a vision system. They are normally located at regions of interest, 

the regions within an image with high information content [123]. The main application of 

interest points in computer vision and image processing field is to find points / regions in the 

image domain likely to represent objects. Therefore, they are often employed in processing 

tasks such as object recognition and image matching. In this study, PATCH-IQ2 tries to extend 

interest points’ application to a BIQA task. It uses interest points of an image to find image 

regions (patches) that contain significant information on image quality. 

It has been shown that when looking at an image, most of the time human focus on object-

like regions, i.e. the regions around interest points [124]. In that respect, this study assumes 

that any distortion applied to those regions will carry greater impact on how human perceived 

image quality than the distortion in any other image regions such as background. By first 

finding the location of interest points in an image, patches that contain more relevant 

information on perceptual image quality can be identified and selected. For this purpose, 

PATCH-IQ2 utilises an interest point detector to guide its patch sampling process. 

A wide variety of interest point detectors exist in the literature such classical edge-based 

detectors [125]-[126], corner-based detectors [127]-[128] or blob-based detectors [129]-[130]. 

Edge or corner-based approaches are common choice for interest point detection when dealing 

with images of same scale and orientation. However, when we have images of different scales 

and rotations, blob-based interest point detectors are preferred. The Scale Invariant Feature 

Transform (SIFT) algorithm [131] which is developed based on blob detection approach is 
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utilised here to perform interest points detection for PATCH-IQ2. SIFT is chosen due to its 

ability to detect local interest points that are stable and invariant to both image scales and 

orientations [132]. 

The operation of SIFT is briefly described here. SIFT takes an image and transforms it 

into a large collection of local feature vectors containing descriptors that are useful to identify 

objects in an image. There are 4 stages involved in SIFT: 1) Scale-space extrema detection; 2) 

Keypoint localisation; 3) Orientation assignment; and 4) Keypoint descriptor. The first two 

stages aim at identifying the locations of stable keypoints at which image features / descriptors 

will be extracted. The third stage assigns consistent orientation to these keypoints based on 

local image properties while the last stage uses local gradient information to create the 

descriptors. Interested readers are referred to [131] for further details. 

In IQA, the resulting SIFT descriptors may not be useful in estimating image quality. 

PATCH-IQ2, however, does not require the use of SIFT descriptors. Instead, it only utilises 

the first two stages of SIFT to help find the locations at which patches will be extracted. Based 

on the above assumption that the regions surrounding the keypoints contain greater information 

on image quality, PATCH-IQ2 then samples patches of  ℎP × 𝑤P size using the provided 

keypoints’ coordinates as centres. One may argue that an image affected by distortion can give 

lots of false keypoints as edges lose sharpness. These false keypoints obviously are not useful 

for object recognition or detection purposes. For quality assessment, these keypoints are still 

useful since, usually, the whole image is distorted. The extracted image patches still carry 

information on image quality. An example of this process is shown in Figure 4.1. Note that 

PATCH-IQ2 only extracts patches at the identified keypoint locations. If there is no keypoint 

detected at any particular image area, no patch is extracted at that area. 
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 PATCH-IQ2 extracts the similar spatial domain features as in Chapter 3 from the 

sampled patches. However, instead of using all the extracted features to construct the labelled 

dataset, PATCH-IQ2 only select features from 𝑃label patches in each image. This is done to 

ensure all images contribute the same number of features to the dataset and to reduce the 

computational demands of the framework. The selected features are then combined over all 

images to form the dataset. Figure 4.2 shows an example of a dataset built from the distorted 

versions of an image. Denote the total number of labelled images by 𝑁label, the size of feature 

matrix for the dataset is: 

𝐃 = [𝑁label𝑃label × 36] .              (4.1) 
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Figure 4.1: Patch extraction using interest point sampling strategy 
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The remaining components of PATCH-IQ2 are unchanged from the initial framework. 

Given a test image 𝐈test, PATCH-IQ2 first extracts BIQA features at the identified interest 

points’ locations. To speed-up the computation, only features from 𝑃test patches are chosen. 

PATCH-IQ2 then employs the same NBNN classifier to perform distortion identification and 

the same k-NN regression method to predict the local quality scores. Similar inverse distance 

weighted pooling method as in Chapter 3 is then used to produce the global score for the image. 

4.2.2 Visual saliency based sampling strategy 

The second modification considered by the study is to incorporate visual saliency 

computation into the initial PATCH-IQ sampling strategy. In general, visual saliency is the 

perceptual quality that makes an object, person, or pixel stand out relative to its neighbours and 

thus capture human attention [133]. As human visual attention is attracted to distinctive salient 

features, more importance should be given to the associated regions in the image. Here, the 

same assumption as in sub-chapter 4.2.1 is utilised. The study assumes that any distortion 

applied to more salient regions will carry greater impact on how human perceived image 

quality than the distortion in less salient image regions. By first finding locations of higher 

saliency image regions, patches that contain more relevant quality information can be sampled. 

For this purpose, PATCH-IQ3 employs saliency detection methods to guide its sampling.  

There are many saliency detection methods available in the literature that can be broadly 

classified as biological based, computational based, or a combination of both. All methods 

generally employ a low-level approach by determining contrast of image regions relative to 

their surroundings, using one or more features of intensity, colour, and orientation [93]. 

Interested readers are referred to publications in [134] – [135] for more comprehensive survey 

of visual saliency detection methods.  
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In this study, PATCH-IQ3 performs its saliency detection by adopting the spectral 

residual model presented in [136]. The use of the model is motivated by its simple 

implementation, fast computation and good detection performance in the presence of high level 

distortion. Specifically, given a test image 𝐈𝒕est(𝑥), PATCH-IQ3 first compute the log spectrum 

representation of the image [136]: 

ℒ(𝑓) = log 𝐴(𝑓)  with 𝐴(𝑓) = ℱ(𝐈test(𝑥))                     (4.2) 

where 𝐴(𝑓) represent the general shape of log spectra of the image and ℱ denote the Fourier 

Transform. The spectral residual of the image is next computed [136]: 

𝑅(𝑓) = 𝐿(𝑓) − ℎ𝑛(𝑓) ∗ 𝐿(𝑓)           (4.3) 

where ℎ𝑛(𝑓) is the local average filter to approximate the shape of 𝐴(𝑓). Finally, the spectral 

residual is transformed using inverse Fourier Transform into spatial domain to construct the 

saliency map of the image [136]: 

𝐒(𝑥) = ℱ−1[exp(𝑅(𝑓) + 𝑃(𝑓))]2         (4.4) 

where 𝑃(𝑓) is the phase spectrum of the image. 

The test image’s saliency map is used by PATCH-IQ3 to guide its patch sampling 

process. PATCH-IQ3 chooses the patches with high mean visual saliency values since patches 

with small visual saliency values play little role in human perception of the image quality. 

Here, PATCH-IQ3 randomly sample P patches of which their mean visual saliency values are 

bigger than a threshold 𝑇. To speed-up the computation, PATCH-IQ3 follow the same 

implementation as in the interest point based strategy whereby PATCH-IQ3 extract features 

from 𝑃test patches rather than the whole sampled patches . PATCH-IQ3 then employs the same 

NBNN classifier to perform distortion identification and the same k-NN regression method to 

predict the local quality scores. Similar inverse distance weighted pooling method as in Chapter 
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3 is then used to produce the global score for the image. Figure 4.3 shows an example of patch 

extraction based on visual saliency sampling strategy. 

 

4.3 Results and Discussions 

4.3.1 Experimental setup and evaluation protocol 

Databases: Besides the LIVE and the CSIQ databases, PATCH-IQ2 and PATCH-IQ3 

were also tested on another database: the LIVEMD database [24], [25]. The LIVE and CSIQ 

databases contain only images distorted by a single type of artefact typically found in image 

communication systems such as noise, blur or compression artefacts. The LIVEMD database 

also provides examples of images affected by multiple types of distortions. In the database, 15 

reference images are first blurred at 4 levels. The blurred images are then subjected to two 

types of artefact, JPEG and WN, at 4 levels each. In all, 225 single / multiple distorted images 

are generated for each of the two cases: GBJPEG and GBWN. Similar to the LIVE database, 

each image in the LIVEMD database is provided with DMOS value in the range between 0 and 

100 whereby a lower DMOS value indicates a higher quality image. 

Framework parameters: For both PATCH-IQ2 and PATCh-IQ3, the number of patches 

for each labelled image 𝑃label and the number of test image patches 𝑃test are empirically set at 

30 and 100 respectively while the patch size ℎP = 𝑤P is 256. Meanwhile, the saliency threshold 

𝑇 for PATCH-IQ3 is empirically set at 0.1. Other parameters remain unchanged. 

Patch 
 Sampling 

Saliency 
 Detection 

Figure 4.3: Patch extraction using saliency detection sampling strategy 
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Performance metrics and benchmarked models: The same three performance metrics 

used in the previous chapter are again employed here to measure the correlation between the 

predicted scores and the human subjective scores while PATCH-IQ2 and PATCH-IQ3 

performances are compared with the previous four BIQA models and the initial PATCH-IQ 

model. 

4.3.2 Evaluation on single distortion databases 

The median results across the 1,000 trials for both the overall experiment and the DS 

experiment are tabulated in Tables 4.1 and 4.2, respectively where the top FR-IQA and BIQA 

models are in bold. For the overall performance experiment, PATCH-IQ3 obtained the highest 

values for the three performance metrics among the competing BIQA models when tested on 

the LIVE database. However, when tested on the CSIQ database, PATCH-IQ2 obtained the 

highest values. Therefore, there is no clear indication to which sampling strategy is more 

superior for the overall performance experiment. Both PATCH-IQ2 and PATCH-IQ3 

increased the correlation values of the initial PATCH-IQ indicating that both the interest points 

based and saliency based sampling strategies improve the framework prediction performance. 

Table 4.1: Median values across 1,000 runs of the overall performance experiment 
 

IQA model 
LIVE CSIQ 

LCC SROCC RMSE LCC SROCC RMSE 

PSNR 0.882 0.883 12.898 0.856 0.929 0.144 

SSIM 0.946 0.949 8.804 0.935 0.936 0.099 

FSIM 0.961 0.964 7.546 0.968 0.963 0.071 

BIQI 0.849 0.844 15.407 0.809 0.749 0.187 

BRISQUE 0.943 0.942 9.395 0.930 0.910 0.107 

GMLOG 0.951 0.950 8.829 0.939 0.925 0.010 

CORNIA 0.939 0.942 9.920 0.911 0.887 0.125 

PATCH-IQ 0.954 0.952 8.476 0.946 0.932 0.094 

PATCH-IQ2 0.956 0.954 8.149 0.959 0.943 0.081 

PATCH-IQ3 0.958 0.956 7.962 0.949 0.934 0.089 

 

For the DS performance experiment, PATCH-IQ2 produced the best SROCC values for 

the noisy or blurred images on both databases. It also performed the best for images affected 
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by the JP2K compression artefacts when tested on the CSIQ database. In the JPEG cases, 

PATCH-IQ2 had slightly lower SROCC value than PATCH-IQ on the LIVE database but it 

had a better value on the CSIQ database. For PATCH-IQ3, it improved the initial PATCH-IQ’s 

SROCC values on JP2K and GB images. However, when tested on the WN and JPEG images, 

lower SROCC values were obtained. Meanwhile, direct comparison between PATCH-IQ2 and 

PATCH-IQ3 showed that PATCH-IQ2 had better SROCC values than PATCH-IQ3 for JPEG, 

WN and GB images on both database. In JP2K cases, PATCH-IQ2 had better SROCC value 

on the CSIQ database while PATCH-IQ3 was better on the LIVE database. These observations 

indicate that the SIFT interest points based sampling strategy is better than the SR visual 

saliency based sampling strategy for individual distortion cases.  

Table 4.2: Median SROCC values across 1,000 runs of the DS performance experiment 
 

IQA model LIVE CSIQ 

JP2K JPEG WN GB FF JP2K JPEG WN GB 

PSNR 0.895 0.881 0.985 0.782 0.891 0.936 0.888 0.936 0.929 

SSIM 0.961 0.976 0.969 0.952 0.956 0.961 0.955 0.897 0.961 

FSIM 0.972 0.984 0.972 0.971 0.952 0.970 0.966 0.936 0.973 

BIQI 0.830 0.906 0.933 0.866 0.689 0.764 0.910 0.540 0.783 

BRISQUE 0.916 0.964 0.979 0.945 0.887 0.898 0.921 0.921 0.919 

GMLOG 0.927 0.963 0.983 0.929 0.901 0.916 0.936 0.941 0.908 

CORNIA 0.921 0.936 0.961 0.952 0.905 0.894 0.882 0.786 0.904 

PATCHIQ 0.931 0.976 0.987 0.953 0.891 0.918 0.952 0.963 0.916 

PATCHIQ2 0.933 0.973 0.987 0.970 0.882 0.933 0.953 0.965 0.943 

PATCHIQ3 0.935 0.970 0.983 0.966 0.903 0.922 0.950 0.959 0.918 

 

Similar patterns can be observed as in the previous chapter regarding the FR-IQA models. 

Both PATCH-IQ2 and PATCH-IQ3 achieved better overall performance than PSNR and SSIM 

while approaching FSIM. PATCH-IQ2 and PATCH-IQ3 also produced comparable SROCC 

values to SSIM and FSIM in most of individual distortion cases. In fact, PATCH-IQ2 also had 

better SROCC values than the three FR-IQA models for WN images. 

Table 4.3 reports the IQR results of the 1,000 SROCC and LCC values for the competing 

BIQA models. The associated box plots are shown in Figure 4.4. PATCH-IQ2 produced higher 
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IQR values than the other models except for BIQI on the LIVE database. However, it obtained 

the lowest IQR values on the CSIQ database. For PATCH-IQ3, it obtained the lowest IQR 

values on the LIVE database and the second lowest on the CSIQ database. In terms of the 

outliers, both PATCH-IQ2 and PATCH-IQ3 had better set of outliers than PATCH-IQ on the 

CSIQ database while the reverse was true on the LIVE database. We can also see that PATCH-

IQ2 had more compact set of outliers than PATCH-IQ3, thus indicating that the SIFT interest 

points based sampling strategy is more robust to the tested images’ variations than the SR visual 

saliency based sampling strategy. 
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Figure 4.4: Box plots of performance metric distributions of BIQA models from 1,000 runs of 

experiments on the LIVE database (top row) and the CSIQ database (bottom row): (a) SROCC and 

(b) LCC 
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Table 4.3: IQR values for 1,000 SROCC and LCC values obtained in both databases 
 

Database LIVE CSIQ 

Metrics LCC SROCC LCC SROCC 

BIQI 0.053 0.054 0.071 0.096 

BRISQUE 0.020 0.020 0.036 0.039 

GMLOG 0.017 0.017 0.024 0.026 

CORNIA 0.018 0.018 0.041 0.052 

PATCH-IQ 0.018 0.019 0.028 0.027 

PATCH-IQ2 0.021 0.022 0.019 0.023 

PATCH_IQ3 0.013 0.014 0.023 0.024 

 

4.3.3 Evaluation on multiple distortion database 

To further investigate the effectiveness of the proposed framework, all the competing 

BIQA models are tested on the LIVEMD database. The database is more challenging as it also 

contains images that underwent multiple distortions. The results are presented in Table 4.4. 

The first five columns show the results from the DS performance experiment while the last 

column represents the results from the overall performance experiment. The top models are in 

bold.  The results suggest that both PATCH-IQ and PATCH-IQ2 generally had good prediction 

performance for the overall performance experiment where they consistently produced the top 

LCC, SROCC and RMSE values. However, the same cannot be said for PATCH-IQ3. While 

it obtained top three LCC value, its SROCC and RMSE values are poorer than some other 

competing models.  

In the DS performance experiment, PATCH-IQ2 performed the best among the three 

proposed models for singly distorted images followed by PATCH-IQ and PATCH-IQ3. It 

obtained the best LCC, SROCC and RMSE values in GB cases while achieved comparable 

performance to PATCH-IQ in both JPEG and WN cases. In multiple distortions cases, both 

PATCH-IQ2 and PATCH-IQ were among the top three BIQA models for images distorted by 

GB and WN. For GBJPEG images, PATCH-IQ and PATCH-IQ2 produced the top two SROCC 

values and gave comparable LCC and RMSE values to other BIQA models. The obtained 

results also show that PATCH-IQ3 does not produced superior performance to other models. 
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Table 4.4: Median values across 1,000 iterations on the LIVEMD database 
 

LCC 
 GBJPEG GBWN GB JPEG WN ALL 

BIQI 0.742 0.129 0.863 0.101 0.543 0.331 

BRISQUE 0.831 0.836 0.893 0.629 0.935 0.919 

GMLOG 0.812 0.780 0.771 0.674 0.845 0.869 

CORNIA 0.825 0.866 0.854 0.530 0.803 0.913 

PATCH-IQ 0.825 0.861 0.892 0.715 0.948 0.931 

PATCH-IQ2 0.821 0.855 0.895 0.726 0.948 0.931 

PATCH-IQ3 0.791 0.837 0.868 0.683 0.904 0.921 

SROCC 
 GBJPEG GBWN GB JPEG WN ALL 

BIQI 0.752 0.062 0.859 0.083 0.551 0.357 

BRISQUE 0.817 0.833 0.883 0.667 0.881 0.900 

GMLOG 0.811 0.762 0.776 0.667 0.800 0.845 

CORNIA 0.809 0.855 0.835 0.483 0.767 0.902 

PATCH-IQ 0.829 0.861 0.876 0.733 0.867 0.911 

PATCH-IQ2 0.824 0.864 0.884 0.717 0.883 0.911 

PATCH_IQ3 0.782 0.837 0.836 0.717 0.833 0.896 

RMSE 
 GBJPEG GBWN GB JPEG WN ALL 

BIQI 8.877 44.346 9.440 10.356 12.731 25.800 

BRISQUE 7.999 8.482 8.719 7.280 6.338 8.428 

GMLOG 8.356 9.973 12.436 7.469 9.771 10.220 

CORNIA 7.810 8.026 10.117 8.178 9.353 8.681 

PATCH-IQ 8.257 8.333 9.047 5.719 5.719 8.179 

PATCH-IQ2 8.260 8.409 8.551 5.741 5.837 8.143 

PATCH-IQ3 8.593 8.496 9.379 5.879 7.305 8.556 

  

4.3.4 Statistical significance and hypothesis testing 

The differences in median correlations between the competing BIQA models may not be 

statistically significant. Therefore, a hypothesis test to evaluate the statistical significance 

difference between each model is conducted. Similar to the hypothesis testing in Chapter 3, the 

Wilcoxon rank-sum test is employed to avoid the normality assumption required by a typical 

t-test. The test evaluates the median values equivalency between two independent samples. 

Here, the two samples are the 1,000 SROCC values obtained from a pair of BIQA models. The 

test was conducted by setting the significance level at 0.01 with the null hypothesis is that the 

SROCC values of the two models are drawn from the populations with equal median. The 

alternative hypothesis is that the median of one model is greater than that of the other. The 

results of the test are tabulated in Table 4.5.   
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Table 4.5: Results of the Wilcoxon rank-sum test using the SROCC values of competing BIQA models 
 

LIVE 

 BIQI BRISQUE GMLOG CORNIA 
PATCH-

IQ 

PATCH-

IQ2 

PATCH-

IQ3 

BIQI 0 -1 -1 -1 -1 -1 -1 

BRISQUE 1 0 -1 1 -1 -1 -1 

GMLOG 1 1 0 1 -1 -1 -1 

CORNIA 1 -1 -1 0 -1 -1 -1 

PATCH-

IQ 
1 1 1 1 0 0 -1 

PATCH-

IQ2 
1 1 1 1 0 0 0 

PATCH-

IQ3 
1 1 1 1 1 0 0 

CSIQ 

 BIQI BRISQUE GMLOG CORNIA 
PATCH-

IQ 

PATCH-

IQ2 

PATCH-

IQ3 

BIQI 0 -1 -1 -1 -1 -1 -1 

BRISQUE 1 0 -1 1 -1 -1 -1 

GMLOG 1 1 0 1 -1 -1 -1 

CORNIA 1 -1 -1 0 -1 -1 -1 

PATCH-

IQ 
1 1 1 1 0 -1 0 

PATCH-

IQ2 
1 1 1 1 1 0 1 

PATCH-

IQ3 
1 1 1 1 0 -1 0 

LIVEMD 

 BIQI BRISQUE GMLOG CORNIA 
PATCH-

IQ 

PATCH-

IQ2 

PATCH-

IQ3 

BIQI 0 -1 -1 -1 -1 -1 -1 

BRISQUE 1 0 1 0 1 -1 1 

GMLOG 1 -1 0 -1 0 -1 -1 

CORNIA 1 0 1 0 1 -1 1 

PATCH-

IQ 
1 -1 0 -1 0 0 1 

PATCH-

IQ2 
1 1 1 1 0 0 1 

PATCH-

IQ3 
1 -1 1 -1 -1 -1 0 

 

There is no significant differences between PATCH-IQ and PATCH-IQ2 median 

SROCC values on both the LIVE and the LIVEMD database. However, the median value 

difference between the two models are statistically significant on the CSIQ database with 

PATCH-IQ2 producing higher median SROCC value. Meanwhile, PATCH-IQ3 is different to 

PATCH-IQ on both the LIVE (PATCH-IQ3 producing higher median SROCC value) and the 

LIVEMD (PATCH-IQ3 producing lower median SROCC value) databases but no significant 
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differences observed between the two models on the CSIQ database. In addition, direct 

comparison between PATCH-IQ2 and PATCH-IQ3 show that the differences in the median 

SROCC values are not statistically significant when the models are tested on the LIVE 

database. However, on the CSIQ and the LIVEMD databases, the differences in the median 

SROCC values between the two models are statistically significant. With higher median 

SROCC value represents higher prediction performance, these observations indicate that the 

higher performance achieved by PATCH-IQ2 over PATCH-IQ3 is statistically significant.   

4.4 Further Analysis on PATCH-IQ2 

The results’ analyses from sub-chapter 4.3.2 to sub-chapter 4.3.4 indicate that PATCH-

IQ2 generally has better prediction performance than PATCH-IQ3 when tested using the 

chosen databases and performance metrics.  In order not to burst the chapter content, the 

remaining performance analysis are therefore limited to PATCH-IQ2. 

4.4.1 Influence of framework parameters 

Several parameters in the PATCH-IQ2 framework can be varied: 1) The number of 

labelled images; 2) the number of patches in each labelled image; and 3) the number of NN 

patches selected for linear regression. In this sub-section, the study investigates how these 

parameters affect the performance of the framework. 

To analyse the changes in prediction performance when the number of labelled images 

is varied, similar procedure as in sub-chapter 3.3.4 was performed. The databases were 

partitioned under three training (labelled) - test ratios: 80:20, 50:50 and 30:70. The numbers of 

selected labelled and test patches and the patch size were fixed as before. The SROCC results 

for the overall performance experiment are shown in Table 4.6 and Figure 4.5. 
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Table 4.6: SROCC comparison for different training (labelled) samples ratio 

 

Database LIVE CSIQ LIVEMD 

Ratio 80% 50% 30% 80% 50% 30% 80% 50% 30% 

BIQI 0.844 0.835 0.816 0.749 0.737 0.718 0.357 0.342 0.322 

BRISQUE 0.942 0.927 0.903 0.910 0.895 0.872 0.900 0.892 0.883 

GMLOG 0.950 0.940 0.925 0.925 0.909 0.887 0.845 0.812 0.776 

CORNIA 0.942 0.937 0.929 0.887 0.881 0.873 0.902 0.898 0.893 
PATCH-IQ 0.952 0.945 0.933 0.931 0.920 0.907 0.911 0.908 0.893 

PATCH-IQ2 0.954 0.947 0.935 0.943 0.932 0.915 0.911 0.906 0.895 

 

 

PATCH-IQ2 had the best SROCC among the competing BIQA models for both the LIVE 

database and the CSIQ database. It performed well in CSIQ database whereby there was 

 

Figure 4.5: SROCC comparison for different training (labelled) sample ratio for 

different databases 
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significant increase in the produced SROCC values compared to the initial PATCH-IQ. 

However, when tested in the LIVEMD database, there was no significant differences between 

PATCH-IQ and PATCH-IQ2 with similar SROCC values were obtained at 80% labelled ratio. 

Compared to the remaining four BIQA models, PATCH-IQ2 consistently produced higher 

SROCC values across three databases at different training ratios. These observations follow 

the initial finding in the previous chapter that the framework has better robustness to the 

number of training samples and can work better where the number of training images is small. 

Meanwhile, the results of varying the number of patches in each labelled image on the 

LIVE database at 80% training ratio are shown in Table 4.7 and Figure 4.6, respectively. A 

higher number of utilised patches will lead to higher SROCC and LCC values. However, it will 

lead to longer computation time for the identification of the distortion. Here, PATCH-IQ2 

chooses the lowest number of patches that outperforms the state-of-the-art BIQA models for 

its framework while has acceptable processing time. 

Table 4.7: LCC and SROCC comparison for different number of patches in a labelled image 

 

Patch 10 20 30 40 50 75 100 150 200 

LCC 0.948 0.951 0.956 0.956 0.960 0.963 0.959 0.963 0.963 

SROCC 0.947 0.950 0.954 0.954 0.957 0.961 0.957 0.962 0.962 

 

 

 
Figure 4.6: LCC and SROCC comparison for different number of patches in a labelled image on LIVE 

database 
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Next, the effect of the number of the nearest neighbour patches used for linear regression 

on the model performance is investigated. All other parameters were again fixed at the initial 

values. The performance variation of PATCH-IQ2 when tested on the LIVE database is shown 

in Table 4.8. Based on the results, there was a small variation on the obtained values indicating 

that the effect of the number of labelled patches is insignificant. The number that provides the 

optimum performance was empirically chosen. Here, the optimum performance was achieved 

when the number is set at 1,000. 

Table 4.8: Performance variations for different numbers of NN patches used in regression 

 

Patch 5 10 50 100 500 1,000 2,000 3,000 ALL 

LCC 0.945 0.949 0.928 0.950 0.953 0.956 0.953 0.950 0.945 

SROCC 0.942 0.946 0.934 0.949 0.952 0.954 0.951 0.949 0.944 

RMSE 9.114 8.820 10.346 8.631 8.435 8.149 8.440 8.732 9.098 

 

PATCH-IQ2’s prediction performance also depends on how the scores from test patches 

are pooled. In this study, PATCH-IQ2 pools all the patches’ scores by assigning weight to each 

score according to an inverse weighting rule. To justify this pooling approach, different pooling 

methods were also implemented on the model. Two other pooling methods: average pooling 

and max pooling were tested and the results from the LIVE and the CSIQ databases are shown 

in Table 4.9 and Figure 4.7. Among the three pooling methods, it can be seen that pooling 

method based on inverse weighting rule consistently produced the highest SROCC, LCC and 

RMSE values. It provided slight improvement to average pooling while better than max 

pooling. 

Table 4.9: Performance comparison for different pooling methods 

 

Database LIVE CSIQ 

Metrics LCC SROCC RMSE LCC SROCC RMSE 

IW Rule 0.956 0.954 8.149 0.959 0.943 0.081 

Average 0.954 0.951 8.481 0.957 0.933 0.085 

Max 0.865 0.872 19.467 0.900 0.884 0.179 
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4.4.2 Distortion identification accuracy 

To investigate the effect of different sampling strategy to the framework’s capability to 

perform distortion identification, the median classification accuracy over 1,000 trials of both 

PATCH-IQ and PATCH-IQ2 on the three databases is calculated. The results are reported in 

Table 4.10. Using interest points based sampling strategy contributed to small increases to the 

overall classification accuracy of the framework. While there were no significant increases on 

the LIVE and the LIVEMD databases, the increase was noticeable on the CSIQ database. 

These classification observations together with the prediction performance results in sub-

chapter 4.3.2 indicate that an increase in distortion classification accuracy improves the quality 

estimation prediction performance. This agrees with the insight obtained by this study that the 

quality of an image would be best predicted by images of the same distortion type. The results 

also indicate the suitability of the NBNN classifier in performing distortion identification 

 

 

Figure 4.7: LCC and SROCC comparison for different pooling methods on LIVE and CSIQ 

databases 
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where it achieved good classification performance on different distortion across three 

databases. 

Table 4.10: Median classification accuracy 

 

LIVE 

 JP2K JPEG WN GB FF ALL 

PATCH-IQ 88.57 97.19 100 96.67 80 91.92 

PATCH-IQ2 88.57 97.22 100 96.67 80 91.98 

CSIQ 

 JP2K JPEG WN GB FF ALL 

PATCH-IQ 86.67 86.67 96.67 86.67 - 88.33 

PATCH-IQ2 90 86.67 93.33 90 - 89.17 

LIVEMD 

 GBJEG GBWN GB JPEG WN ALL 

PATCH-IQ 100 99.98 99.99 93.77 91.97 98.56 

PATCH-IQ2 100 100 99.99 93.37 92.63 98.60 

 

 

Meanwhile, the confusion matrices for each distortion classes in the LIVE and the CSIQ 

databases for PATCH-IQ2 are plotted in Figure 4.8. In the LIVE database, we can see that WN, 

GB and JPEG images were generally well classified by PATCH-IQ2 and not confused with 

other distortion. JP2K and FF images were most confused with each other whereby about 11% 

of FF images were misclassified as JP2K images and about 4% of JP2K images were predicted 

as FF images. Meanwhile, in the CSIQ database, good classification performance was achieved 

0.88

0.01

0.00

0.00

0.11

0.06

0.97

0.01

0.02

0.08

0.01

0.00

0.99

0.00

0.00

0.01

0.01

0.00

0.97

0.02

0.04

0.01

0.00

0.01

0.79

JP2K JPEG WN GB FF

JP2K

JPEG

WN

GB

FF

0.88

0.05

0.01

0.01

0.10

0.86

0.04

0.09

0.00

0.05

0.94

0.00

0.02

0.04

0.01

0.90

JP2K JPEG WN GB

JP2K

JPEG

WN

GB

(a) (b) 

Figure 4.8: Mean confusion matrix across 1,000 runs of experiments for distortion classification: 

(a) LIVE and (b) CSIQ 



88 
 

by PATCH-IQ2 with less than 6% of the WN images were misclassified. It also achieved good 

performance for both GB and JP2K cases with 90% of the blurred images and 88% of the JP2K 

compressed images were correctly classified. JPEG was the most confused distortion class with 

10% of the images were misclassified as JP2K or WN images while another 4% were wrongly 

predicted as GB images. 

4.4.3 Feature analysis 

To evaluate the contributions of the utilised features on both the distortion classification 

and the quality prediction performances, we can re-use the plot of the SROCC values between 

the features derived from the LIVE images and their corresponding DMOS (Figure 3.7). For 

the ease of reading, the plot is shown again below as Figure 4.9. In each distortion case, we can 

observe that the variance parameters of both the GGD model and the AGGD model have better 

correlation with subjective scores compared to the shape parameters of the models. Meanwhile, 

among all the utilised features, the mean parameters of the AGGD models capture quality 

information the least. Another observation we can made is the same features extracted in 

different orientations generally have similar correlation values pattern. 
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Five different combinations of features were tested on the LIVE database to see how they 

affect the performance of PATCH-IQ2. They were: 1) All features (denoted as PATCH-IQ2), 

2) The GGD model-based features (denoted as PATCH-IQ2b), 3) The AGGD model-based 

features (denoted as PATCH-IQ2c), 4) All features except the mean parameter of the AGGD 

models (PATCH-IQ2d) and 5) The variance parameters of both the GGD model and the AGGD 

model (PATCH-IQ2e). PATCH-IQ2b should study the contribution of features derived directly 

from the locally normalised luminance coefficients, whereas PATCH-IQ2c was to evaluate the 

effects of features derived from the pairwise products of these coefficients. Meanwhile, 

features for PATCH-IQ2d and PATCH-IQ2e were selected based on the previous observations. 

The median classification accuracy values over 1,000 runs of experiments for the five 

PATCH-IQ2 versions are tabulated in Table 4.11. From the table, we can see that the best 

classification results for both the overall and the DS experiments were achieved when all 36 

features were utilised. PATCH-IQ2c had better classification accuracy than PATCH-IQ2b in 

both experiments, showing that the AGGD model-based features contribute more to a distortion 

identification task than the GGD model-based features. We can also observe that removing the 

mean parameters of the AGGD models as in PATCH-IQ2d had little effect to the classification 

performance. This indicates that the mean parameters of the AGGD models have small 

contributions to such a task. The classification accuracy also dropped when only variance 

parameters were utilised as PATCH-IQ2e’s features. 

Table 4.11: Median classification accuracy values for different group of features on the LIVE database 

 

 PATCH-IQ2 PATCH-IQ2b PATCH-IQ2c PATCH-IQ2d PATCH-IQ2e 

JP2K 88.57 82.35 88.57 88.24 79.42 

JPEG 97.22 88.57 97.22 96.92 94.29 

WN 100 96.67 100 100 100 

GB 96.67 96.67 96.67 96.67 93.33 

FF 80 66.67 79.42 80 66.67 

ALL 91.98 85.80 91.93 91.82 85.80 
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Meanwhile, Table 4.12 shows the median SROCC values over 1,000 trials obtained by 

the same five PATCH-IQ2 versions. Few similar observations can be made here. First, the best 

quality prediction performances for both experiments were produced when PATCH-IQ2 

utilised all the proposed features. Second, PATCH-IQ2c had better correlation values in most 

distortion cases than PATCH-IQ2b. This indicates that the AGGD model-based features have 

better correlation to human perceptual measures than the GGD model-based features. Third, 

PATCH-IQ2d achieved similar prediction performances to PATCH-IQ2 for images affected 

by noise and compression artefacts while only suffered a slight degradation in performance for 

GB and FF images. In agreement to the above discussion, this shows that the mean parameters 

of the AGGD models contribute little to a quality prediction task. Meanwhile, PATCH-IQ2e 

also achieved close prediction performance to PATCH-IQ in both experiments. This suggests 

that, while the variance parameters of both the GGD model and the AGGD models may not be 

suitable features for a distortion classification task, they are still useful for image quality 

prediction task. 

Table 4.12: Median SROCC values for different group of features on the LIVE database 

 

 PATCH-IQ2 PATCH-IQ2b PATCH-IQ2c PATCH-IQ2d PATCH-IQ2e 

JP2K 0.933 0.909 0.924 0.933 0.912 

JPEG 0.973 0.959 0.973 0.973 0.972 

WN 0.987 0.967 0.987 0.987 0.987 

GB 0.970 0.941 0.967 0.967 0.969 

FF 0.882 0.867 0.866 0.873 0.873 

ALL 0.954 0.932 0.948 0.953 0.947 

 

4.4.4 Computational complexity 

Similar to previous discussions in sub-chapter 3.3.6, the run-time of PATCH-IQ2 was 

determined by three major stages: 1) feature extraction; 2) distortion identification and 3) local 

quality estimation. At the feature extraction stage, PATCH-IQ2 required longer computation 

time than PATCH-IQ. This is due to PATCH-IQ2 having to first detect the locations of an 

image’s interest points. On average, PATCH-IQ2 required 0.46 second to extract its features 
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on a typical 512 × 768 image using the parameter setting as in sub-chapter 4.3.1. Meanwhile, 

for the distortion identification stage, PATCH-IQ2 required another 0.05 second to compute 

the I2C distance between all the test patches and the labelled patches at 80:20 labelled-test 

ratios. Finally, an extra 0.08 second is required to estimate the quality scores for the test image’s 

patches. Overall, on average, PATCH-IQ2 required 0.59 second to perform both distortion 

identification and quality estimation on one image. The average run-time comparison between 

PATCH-IQ2 and the competing BIQA models is shown in Table 4.13. PATCH-IQ2 was even 

slower than PATCH-IQ. However, given its superior distortion identification and quality 

prediction performances, PATCH-IQ2 can still be considered for applications that does not 

require real-time assessment. 

Table 4.13: Average run-time 

 

BIQA model BIQI BRISQUE GMLOG CORNIA PATCH-IQ PATCH-IQ 

Run-time (s) 0.05 0.10 0.07 2.43 0.37 0.59 

 

4.5 Chapter Summary 

This chapter discusses two modifications made to the initial PATCH-IQ model. These 

involve investigating the effects of employing patch extraction strategies that take human 

visual attention into consideration. The first modified strategy is to find the image’s interest 

point regions using SIFT algorithm prior to patch extraction. The second modified strategy is 

to extract patches from salient regions of the image using spectral residual based saliency 

detection method. These were motivated by a human observer usually focusing on the object-

like or salient regions on the image. Using an assumption these regions carry greater weights 

on evaluating the quality of an image, both strategies were used to guide the patch sampling 

process in the framework. Experimental results on three major IQA databases showed that the 

SIFT based model, PATCH-IQ2, produced better distortion identification and quality 
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prediction performances than the initial PATCH-IQ and the spectral residual based model, 

PATCH-IQ3. 

This was achieved at the expense of greater computational requirements. Longer 

computation time was required since the modified model, PATCH-IQ2, needs to detect the 

locations of the image’s interest points prior to feature extraction stage. As the number of 

interest points based patches is generally higher than the number of non-overlapped patches, 

the processing times for both feature extraction and I2C distance computation will be further 

increased. It is necessary to reduce the number of patches in the labelled dataset while 

maintaining its superior performance to PATCH-IQ. 

Finally, despite obtaining encouraging results, a few steps could be taken to improve 

these patch based models. Note that all three models rely on a labelled dataset. Introducing new 

types of distortions will increase the dataset size, leading to higher memory and processing 

time requirements. Here, the use of parallel computing or less computational expensive feature 

extraction methods could be explored to accelerate its speed. We could also integrate different 

nearest neighbour techniques [137]-[138] in the dataset construction to help dealing with an 

increasing number of new distortion classes. As for PATCH-IQ3, other visual saliency 

detection methods could also be tested to achieve better prediction performance. In addition, 

obtaining accurate image distortion class is essential to provide these models with better 

regression inputs for quality estimation stages. While they use a NBNN classifier to perform 

the classification, other nearest neighbour classifiers could also be tested to obtain higher 

classification accuracy. 
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Chapter 5 

Multi-Task Learning Framework for 

Blind Image Quality Assessment Model 

5.1 Chapter Introduction 

In the last two chapters, the study focused on addressing several limitations encountered 

by the general-purpose BIQA models such as intensive training phase requirements, their 

inability to provide local quality estimation and their inability to perform distortion 

identification for an image. This is done by introducing two general-purpose BIQA models, 

PATCH-IQ and PATCH-IQ2 that utilise a patch based learning framework. The study now 

attempt to address another limitation shared by most general-purpose BIQA models. 

Most models learn their prediction based on a set of training images. Given their 

respective features and the associated DMOS / MOS values, a regression function mapping the 

feature space to quality score space is learned. Since the features employed by these models 

are generally invariant to distortion, high prediction performances correlated with human 

perceptual measures are obtained by these models when tested on various types of distortions 

in standard IQA databases. However, it is still difficult to agree on the best general-purpose 

BIQA model that can work well across different distortion conditions. As discussed in Chapter 

2, some observe that one BIQA model may have good prediction performance for a particular 

type of distortion but is less effective when tested on images with different distortion types. 

One reason is due to BIQA models learn their prediction for each image distortion class 

independently, ignoring the relationship among the learning tasks.  
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This scenario motivates the study to look at an alternative learning technique for a BIQA 

model. In this chapter, using multi-task learning (MTL) technique to simultaneously learn such 

regression functions for different distortion classes is explored. MTL is a learning approach 

that utilises a shared representation to learn multiple related tasks simultaneously.  It is based 

on the assumption that the learner may find it easier to learn multiple tasks together rather than 

in isolation when the tasks share what they learn. MTL has been utilised in learning prediction 

models for web pages categorisation [139], disease prediction [140], therapy screening [141] 

and school examination scores [142].  Here, the study extends its application to BIQA tasks. 

The learning task for many real-life classification or regression problems can often be 

divided into several related subtasks. For example, predicting the outcome of therapy may 

consist of predictions made based on several combinations of drugs [141] or predicting the 

examination scores nationally can be partitioned into predictions made based on individual 

schools [142]. In BIQA, we can consider these related subtasks to be the quality prediction 

model learning for each individual distortion cases (e.g. noise, blur, compression artefacts, 

etc.). Previous BIQA models typically solve these subtasks by employing single-task learning 

(STL) approach whereby each quality prediction model is learned independently. MTL differs 

from STL whereby these prediction models are learned simultaneously by exploiting relevant 

shared information across them. The difference between the STL approach and the MTL 

approach for BIQA tasks in shown in Figure 5.1. By learning simultaneously, the size of the 

training data for each distortion case is increased, often leading to better generalisation 

performance. 

The proposed BIQA model is developed to utilise this advantage. The model, Multi-Task 

Learning based Blind Image Quality assessment (MTLBIQ), first extracts relevant spatial 

domain BIQA features from a collection of training images. These features are then utilised to 

simultaneously learn regression models for different distortion conditions. The training is 
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performed using a trace-norm regularised MTL technique. For an image of a known distortion, 

MTLBIQ simply selects a specific regression model to perform the prediction of quality score. 

For an image of an unknown distortion, MTLBIQ estimates different distortions in the image 

using a support vector machine (SVM) classifier. The probability estimates from the classifier 

are then used to weigh the image prediction scores from different regression models. The 

weighted scores are then pooled to yield the final quality score. 

The rest of this chapter is structured as follows. The learning framework including the 

utilised BIQA features for MTLBIQ is first introduced and discussed in sub-chapter 5.2. Sub-

chapter 5.3 presents the experiments conducted to evaluate and validate MTLBIQ’s 

performance. The chapter is then concluded in sub-chapter 5.4. 
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5.2 The Proposed Multi-Task Learning Framework 

Figure 5.2 illustrates the proposed framework for MTLBIQ. It consists of feature 

extraction (FE), quality estimation (QE) and distortion identification (DI) stages. 

 

5.2.1 Feature extraction 

The first stage of the framework is to extract BIQA features. Here, MTLBIQ proposes to 

extract two different set of BIQA features. The reason here is to check whether we can still 

achieve improvement in MTLBIQ’s prediction performance when different types of BIQA 

features is extracted. This helps to show the benefit of MTL on BIQA evaluation regardless 

which sets of features are being used.   

As in Chapters 3 and 4, MTLBIQ also employs spatial domain features to alleviate 

excessive computational load encountered by image transform based features. Two sets of 

spatial domain features are first extracted from an image before they are combined as BIQA 

features for MTLBIQ. The first set of features is similar to the ones implemented by the 

GMLOG model [76]. It consists of four statistical distributions derived from two image local 
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contrast operators: gradient magnitude (GM) and Laplacian of Gaussians (LOG). The GMLOG 

model showed that for a distorted image the shape of these distributions will differ from the 

same distributions of high quality images. As the distortion level increases, there are gradual 

changes in the distributions’ shapes indicating they are predictive to image quality and can be 

features for a BIQA task. 

Specifically, given an image 𝐈, its GM map 𝐆𝐈 and LOG response 𝐋𝐈 are defined 

respectively as: 

𝐆𝐈 = √[𝐈 ⊗ 𝐡𝑥]2 + [𝐈 ⊗ 𝐡𝑦]
2
                     (5.1) 

and      𝐋𝐈 = 𝐈 ⊗ 𝐡LOG .                   (5.2) 

In Equation (5.1), 𝐡𝑥 and 𝐡𝑦 are the Gaussian partial derivative filters applied along the 

horizontal and the vertical directions, respectively. Meanwhile, the LOG filter in Equation (5.2) 

is represented as: 

𝐡LOG(𝑥, 𝑦|𝜎G) =
𝜕2

𝜕𝑥2 𝐠(𝑥, 𝑦|𝜎G) +
𝜕2

𝜕𝑦2 𝐠(𝑥, 𝑦|𝜎G)             (5.3) 

where 𝐠(𝑥, 𝑦|𝜎G) is the isotropic Gaussian function with scale parameter 𝜎G. These GM and 

LOG operators are then jointly normalised to achieve stable image representations. The 

normalised operators are given by: 

𝐆𝐈 =
𝐆𝐈

(𝐍𝐈+𝜀GMLOG)
  , 𝐋̅𝐈 =

𝐋𝐈

(𝐍𝐈+𝜀GMLOG)
                          (5.4) 

where 𝐍𝐈 is a local adaptive normalisation factor while 𝜀GMLOG is a constant that prevents 

numerical instability. In agreement with the GMLOG work, the normalisation factor is defined 

for each location (𝑖, 𝑗) as: 

𝐍𝐈(𝑖, 𝑗) = √∑ ∑ 𝜔(𝑙, 𝑘)𝐅𝐈
2(𝑙, 𝑘)(𝑙,𝑘)∈Ω𝑖,𝑗

                        (5.5) 
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In Equation (5.5), Ω𝑖,𝑗 represents a local window centred at (𝑖, 𝑗), 𝜔(𝑙, 𝑘) is a spatially truncated 

Gaussian kernel weighting function rescaled to unit sum, and 

𝐅𝐈
2(𝑖, 𝑗) = 𝐆𝐈

2(𝑖, 𝑗) + 𝐋𝐈
2(𝑖, 𝑗)                  (5.6) 

Once both operators are normalised, MTLBIQ computes their respective marginal 

probability functions and use them as the first two BIQA features for the image. The marginal 

probability functions are defined as: 

𝑃𝐆𝐈
(𝐆𝐈 = 𝑔𝑚) = ∑ 𝐊𝑚,𝑛

𝑁
𝑛=1                                           (5.7) 

and                                   𝑃𝐋̅𝐈
(𝐋̅𝐈 = 𝑙𝑛) = ∑ 𝐊𝑚,𝑛

𝑀
𝑚=1                                             (5.8) 

In these equations, 𝐊𝑚,𝑛 = 𝑃(𝐆𝐈 = 𝑔𝑚 , 𝐋̅𝐈 = 𝑙𝑛) is the joint empirical probability 

function for the normalised GM and LOG operators while 𝑚 = 1,2,3, … , 𝑀 and 𝑛 =

1,2,3, … , 𝑁 represent the quantisation levels of those operators. To show that the two features 

(𝑃𝐆𝐈
 and 𝑃𝐋̅𝐈

) are predictive of image quality, their histograms for a set of distorted images 
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 and 𝑃𝐋̅𝐈

) of the distorted images produced at different 

DMOS values for one reference image 
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produced from one reference image in the LIVE IQA database are plotted. The plot is shown 

in Figure 5.3. It can be seen that, for each type of distortion, the shape of the histogram 

gradually changes as the distortion level changes. 

The next two BIQA features are derived because both the GM and LOG operators are 

inter-related. MTLBIQ measures the statistical interaction between both operators by 

computing the reliance of one particular value 𝐆𝐈 = 𝑔𝑚 over all potential values of 𝐋̅𝐈 and vice-

versa. The computations can be represented as: 

𝑄𝐆𝐈
(𝐆𝐈 = 𝑔𝑚) =

1

𝑁
∑ 𝑃(𝐆𝐈 = 𝑔𝑚|𝐋̅𝐈 = 𝑙𝑛)𝑁

𝑛=1                           (5.9) 

and             𝑄𝐋̅𝐈
(𝐋̅𝐈 = 𝑙𝑛) =

1

𝑀
∑ 𝑃(𝐋̅𝐈 = 𝑙𝑛|𝐆𝐈 = 𝑔𝑚)𝑀

𝑚=1                          (5.10) 

Equations (5.9) and (5.10) can be the sum of conditional probabilities for one particular 

value of 𝐆𝐈 over 𝐋̅𝐈 and vice-versa. The distributions of both 𝑄𝐆𝐈
 and 𝑄𝐋̅𝐈
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independency distributions, are plotted in Figure 5.4. Similar patterns can be observed whereby 

there are gradual changes in both 𝑄𝐆𝐈
 and 𝑄𝐋̅𝐈

 as the distortion level is varied, indicating their 

suitability for BIQA tasks. 

Table 5.1: List of MTLBIQ’s second set of features 

 

Feature 

ID 
Scale Orientation Feature Description 

1-2 

1 

(S1) 

- 
Shape parameter and variance of GGD model of 

normalised luminance coefficients 

3-6 Horizontal (H) 

Shape parameter, mean, left variance and right variance 

of AGGD model of pairwise products 

7-10 Vertical (V) 

11-14 Main-diagonal (MD) 

15-18 
Secondary-diagonal 

(SD) 

19-20 

2 

(S2) 

- 
Shape parameter and variance of GGD model of 

normalised luminance coefficients 

21-24 Horizontal (H) 

Shape parameter, mean, left variance and right variance 

of AGGD model of pairwise products 

25-28 Vertical (V) 

29-32 Main-diagonal (MD) 

33-36 
Secondary-diagonal 

(SD) 

 

Table 5.2: Overall BIQA features extracted for MTLBIQ 

 

ID Length Notations 

1 M = N 𝑃𝐆𝐈
 

2 M = N 𝑃𝐋̅𝐈
 

3 M = N 𝑄𝐆𝐈
 

4 M = N 𝑄𝐋̅𝐈
 

5 - 6 2 𝛾GGD(S1) , 𝜎GGD(S1)
2  

7 - 10 4 𝜈AGGD(S1−H) , 𝜇AGGD(S1−H) , 𝜎𝑙 AGGD(S1−H)
2  , 𝜎𝑟 AGGD(S1−H)

2  

11 - 14 4 𝜈AGGD(S1−V) , 𝜇AGGD(S1−V) , 𝜎𝑙 AGGD(S1−V)
2  , 𝜎𝑟 AGGD(S1−V)

2  

15 - 18 4 𝜈AGGD(S1−MD) , 𝜇AGGD(S1−MD) , 𝜎𝑙 AGGD(S1−MD)
2  , 𝜎𝑟 AGGD(S1−MD)

2  

19 - 22 4 𝜈AGGD(S1−SD) , 𝜇AGGD(S1−SD) , 𝜎𝑙 AGGD(S1−SD)
2  , 𝜎𝑟 AGGD(S1−SD)

2  

23 - 24 2 𝛾GGD(S2) , 𝜎GGD(S2)
2  

25 - 28 4 𝜈AGGD(S2−H) , 𝜇AGGD(S2−H) , 𝜎𝑙 AGGD(S2−H)
2  , 𝜎𝑟 AGGD(S2−H)

2  

29 - 32 4 𝜈AGGD(S2−V) , 𝜇AGGD(S2−V) , 𝜎𝑙 AGGD(S2−V)
2  , 𝜎𝑟 AGGD(S2−V)

2  

33 - 36 4 𝜈AGGD(S2−MD) , 𝜇AGGD(S2−MD) , 𝜎𝑙 AGGD(S2−MD)
2  , 𝜎𝑟 AGGD(S2−MD)

2  

37 - 40 4 𝜈AGGD(S2−SD) , 𝜇AGGD(S2−SD) , 𝜎𝑙 AGGD(S2−SD)
2  , 𝜎𝑟 AGGD(S2−SD)

2  

 

These four distributions (𝑃𝐆𝐈̅̅ ̅, 𝑃𝐋𝐈̅
, 𝑄𝐆𝐈̅̅ ̅, 𝑄𝐋𝐈̅

) are then concatenated to represent the first set 

of BIQA features for MTLBIQ. For the second set of its BIQA features, MTLBIQ utilised the 

same spatial domain features as described in Chapters 3 and 4. I.e. the second set of MTLBIQ’s 
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features consists of 36 features extracted over two scales. For ease of reading, the features are 

listed again in Table 5.1. The two sets of features are then concatenated to produce the final 

feature vector. Table 5.2 summarises all the features used by MTLBIQ. 

5.2.2 Quality estimation via multi-task learning 

Given a set of training images, the extracted feature vectors are then utilised to learn 

quality prediction models under different distortion conditions. Previous BIQA approaches 

find these models by employing STL whereby each quality prediction model is treated as a 

single task and learned independently. MTLBIQ, meanwhile, learns these models (tasks) 

simultaneously by employing a MTL technique. MTL techniques generally aim to minimise 

this objective function: 

min
𝐖

𝐹(𝐖) = 𝑓(𝐖) + Ω(𝐖)  ,               (5.11) 

with 𝑓(𝐖) represents the empirical loss function of the training set while Ω(𝐖) represents the 

regularisation term that captures the relationship among the tasks. For a BIQA case, 𝑓(𝐖) is 

represented by a loss function ℓ(∙,∙) as: 

𝑓(𝐖) =  ∑ ∑ ℓ(𝑠𝑖
𝑗
, 𝜔t𝑖

T 𝑥𝑖
𝑗
)

𝑅𝑖
𝑗=1

𝑇
𝑖=1  ,           (5.12) 

with 𝑇 is the number of BIQA learning tasks, 𝑅𝑖 represents the number of samples for the 𝑖th 

task, 𝑥𝑖
𝑗
 and 𝑠𝑖

𝑗
 are the 𝑗th feature vector and the associated DMOS value in the 𝑖th task, 

respectively and 𝐖 = [𝜔t1, 𝜔t2, … , 𝜔t𝑇] where 𝜔t represents the estimated parameter of the 

training samples. 

Depending on the assumptions made on the task relatedness, there are many formulations 

of Ω(𝐖) [143]-[146]. Because the utilised features are high dimensional and under the 

assumption that all BIQA tasks are inter-related, MTLBIQ employs a trace-norm regularised 

based MTL technique. The technique is chosen because of its well performance when dealing 
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with high dimensional MTL data [147]. The technique captures the task relatedness through 

low dimensional subspace learning whereby a common low-rank structure is shared among the 

models of various tasks. Figure 5.5 illustrates the trace-norm regularised training framework 

for MTLBIQ. 

 

To capture the low-rank structure shared by the tasks, the trace-norm regularised 

technique treats the objective function as a matrix rank minimisation problem. Equation (5.11) 

can now be rewritten as [147]: 

min
𝐖

𝐹(𝐖) = 𝑓(𝐖) + λ[Rank(𝐖)]  .           (5.13) 

Minimising the matrix rank is a NP-hard problem. To solve this, the rank function Rank(𝐖) 

is often approximated through convex relaxation methods. A trace-norm relaxation method is 

widely used to this effect as it has been shown theoretically to be a good approximation for 

Rank(𝐖) [148]. Therefore, the problem can now be approximated as a trace-norm 

minimisation problem whereby Equation (5.13) is rewritten as [147]: 

min
𝐖

𝐹(𝐖) = 𝑓(𝐖) + 𝜆‖𝐖‖∗  ,                             (5.14) 
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where 𝜆 is positive regularisation parameter and ‖∙‖∗ denotes the trace norm defined as the sum 

of singular values. Equation (5.14) can be solved typically by a sub gradient method [149]. 

However, for faster convergence rate, MTLBIQ employs an accelerated gradient method 

(AGM) [150] to find the optimised values of 𝐖: 

 𝐖 = arg min
𝐖

𝜏

2
‖𝐖 − (𝐙 −

1

𝜏
𝛻𝑓(𝐙))‖

F

2

+ 𝜆‖𝐖‖∗ ,                  (5.15) 

where 𝐙 represents the search point on the ongoing iteration, 𝜏 stands for the current step size 

while 𝛻𝑓(∙) represents the gradient for 𝑓(∙). The optimised values are then used to represent 

the trained model for each distortion case. Further details on AGM can be found in [150]. 

5.2.3 Distortion identification 

The trained models are then used to predict the quality score of a test image. For a test 

image of a known distortion type, MTLBIQ simply selects the trained regression model 

associated with the distortion. For a test image of unknown distortion, MTLBIQ first estimates 

different distortion types present in the image. The process is performed using the extracted 

feature vector as an input to an SVM classifier. SVM is chosen here due to its good 

generalisation capabilities and excellent performance in high dimensional spaces [151]. In this 

work, a multiclass SVM with a kernel of radial basis function (RBF) is utilised. Note that the 

aim is not to perform hard classification but to estimate each distortion class present in the 

image. These estimates are given by the probabilities provided by the classifier. These 

probability values are then used to weigh the image prediction scores from different MTL 

models. The weighted scores are then pooled to yield the final quality score for the image. 

5.3 Results and Discussions 

5.3.1 Experimental setup and evaluation protocol 
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Databases: Three publicly available subjective image databases were utilised to analyse 

the performance of MTLBIQ: LIVE, CSIQ and TID2008. As in the previous chapters, for both 

the CSIQ and the TID2008 databases, only 4 types of distortion present in the LIVE database 

are considered by MTLBIQ: JP2K, JPEG, WN and GB. 

Parameter setting: MTLBIQ’s features combine two sets of spatial domain features as 

implemented in GMLOG and BRISQUE. Here, MTLBIQ’s parameters are set to follow their 

implementation. The filters’ scale parameter 𝜎G to compute GM and LOG operators was set at 

0.5 while the quantisation level 𝑀 = 𝑁 is 10. The local window size 𝐾 = 𝐿 to compute the 

locally normalised luminance coefficients was set at 3. Both constant 𝜀GMLOG and 𝜀B are 1. 

Regression model learning: To investigate the effects of using different feature sets on 

MTLBIQ’s prediction performance, three MTLBIQ models were learned. The first model, 

denoted by MTLBIQ1, was trained using only the first set of features (GMLOG) while the 

second model MTLBIQ2 was trained using only the second set of features (BRISQUE). The 

third model, MTLBIQ3, utilised both sets of features in its training. 

Performance metrics and benchmarked models: To evaluate MTLBIQ’s performance, 

three metrics as in Chapter 4 were used to measure the consistency between the quality scores 

predicted from the experiments and the subjective DMOS/MOS values. They were: LCC, 

SROCC and RMSE. The benchmarked models were similar whereby the three MTLBIQ 

models were compared against six BIQA models: BIQI, BRISQUE, GMLOG, CORNIA, 

PATCH-IQ and PATCH-IQ2. The MTLBIQ models were also compared with two FR-IQA 

models: SSIM and FSIM. The train-test partition is set at 80:20 ratio. The trace-norm 

regularised MTL technique to train the three MTLBIQ models was implemented using the 

MALSAR package [152]. In the package, the loss function ℓ(∙,∙) is set as a least squares 

function. Meanwhile, regression for the competing models were performed using the LIBSVM 
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package as before. The same LIBSVM package was used to train the SVM classifier required 

by MTLBIQ models in the DI stage. 

Experiments: Two experiments were performed to evaluate the performance: the overall 

performance experiment and the DS performance experiment. Note that MTLBIQ contains 

different trained models for different distortion classes. For the DS performance experiment in 

which the distortion type is known beforehand, MTLBIQ can directly select a specific trained 

model for the QE stage without having to perform the DI stage. 

5.3.2 Overall performance comparison 

Table 5.3: Median values across 1,000 runs of the overall performance experiment 

 

IQA model 
LIVE CSIQ TID2008 

LCC SROCC RMSE LCC SROCC RMSE LCC SROCC RMSE 

SSIM 0.946 0.949 8.804 0.935 0.936 0.099 0.909 0.903 0.662 

FSIM 0.961 0.964 7.546 0.968 0.963 0.071 0.954 0.956 0.471 

BIQI 0.849 0.844 15.407 0.809 0.749 0.187 0.870 0.844 0.787 

BRISQUE 0.943 0.942 9.395 0.930 0.910 0.107 0.914 0.908 0.700 

GMLOG 0.951 0.950 8.829 0.939 0.925 0.100 0.926 0.929 0.625 

CORNIA 0.939 0.942 9.920 0.911 0.887 0.125 0.912 0.884 0.711 

PATCHIQ 0.954 0.952 8.476 0.946 0.932 0.094 0.939 0.930 0.572 
PATCHIQ2 0.956 0.954 8.149 0.959 0.943 0.081 0.946 0.932 0.536 

MTLBIQ1 0.960 0.957 8.806 0.948 0.926 0.092 0.947 0.934 0.522 

MTLBIQ2 0.955 0.949 9.452 0.949 0.934 0.090 0.957 0.951 0.468 

MTLBIQ3 0.963 0.958 8.643 0.966 0.950 0.074 0.966 0.961 0.424 

 

The median results across 1,000 iterations for the overall performance experiment are 

reported in Table 5.3. The best three BIQA models and the top FR-IQA model are in bold. 

MTLBIQ1 and MTLBIQ3 are among the top three models on the LIVE database while 

MTLBIQ2 and MTLBIQ3 are among the top three models on the CSIQ database. All three 

MTLBIQ models produced the top three LCC, SROCC and RMSE values on the TID2008 

database. We can also observe that MTLBIQ1 improved upon GMLOG and MTLBIQ2 

improved upon BRISQUE, respectively. This implies that MTL generally can improve the 

overall prediction performance of a BIQA model. MTLBIQ1 obtained better performance 
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metrics’ values than MTLBIQ2 on the LIVE database. In reverse, MTLBIQ2 outperformed 

MTLBIQ1 on the CSIQ and the TID2008 databases. Therefore, there is no clear indication to 

which set of features is more discriminative of image quality. The best metric values are 

achieved when we utilised both sets of features as in MTLBIQ3. Compared to FR-IQA models, 

MTLBIQ models outperformed SSIM while approaching FSIM. This is promising since 

MTLBIQ requires no reference image information. We can also compare both PATCH-IQ and 

PATCH-IQ2 with MTLBIQ2 since they employs the same set of features. Among the three 

models, PATCH-IQ2 produced the best metric values on the LIVE and the CSIQ databases 

while MTLBIQ2 had better metrics values on the TID2008 database. Thus, there is no clear 

indication to which learning framework is better for BIQA evaluation. We should also note 

that MTLBIQ2 extracts its features on image level. Better comparison could be made provided 

MTLBIQ2 is performed using features that are extracted on patch level as in both PATCH-IQ 

and PATCH-IQ2 operation.  

Table 5.4: IQR values for the overall performance experiment 

 

BIQA 

model 

LIVE CSIQ TID2008 

LCC SROCC LCC SROCC LCC SROCC 

BIQI 0.053 0.054 0.071 0.096 0.084 0.104 

BRISQUE 0.020 0.020 0.036 0.039 0.095 0.099 

GMLOG 0.017 0.017 0.024 0.026 0.043 0.043 

CORNIA 0.018 0.018 0.041 0.052 0.069 0.076 

PATCHIQ 0.018 0.019 0.028 0.027 0.047 0.060 
PATCHIQ2 0.021 0.022 0.019 0.023 0.049 0.048 

MTLBIQ1 0.012 0.015 0.020 0.023 0.027 0.032 

MTLBIQ2 0.016 0.017 0.036 0.037 0.023 0.030 

MTLBIQ3 0.012 0.014 0.024 0.027 0.021 0.027 

 

The IQR value of the 1,000 SROCC and LCC results obtained by each BIQA model are 

also computed. The values are recorded in Table 5.4 with the best three models are in bold. We 

can see that MTLBIQ1 and MTLBIQ3 were among the top three models across all three 

databases while MTLBIQ2 was also in the top three for the LIVE and the TID2008 databases. 

These observations suggest that the first set of features (GMLOG features) produces more 
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consistent prediction results than the second set of features (BRISQUE features). These also 

indicate that MTLBIQ framework generally produces more consistent prediction results 

compared to PATCH-IQ and PATCH-IQ2 frameworks.  

 

To visualise the IQR for each model, the box-plots of the SROCC and the LCC 

distributions were also generated as in Figure 5.6. We can see that MTLBIQ models have more 
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Figure 5.6: Box plots of performance metric distributions of BIQA models for 1,000 experiment trials on 

the LIVE database (top row), the CSIQ database (middle row) and the TID2008 database (bottom row): 

(a) SROCC and (b) LCC 
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compact outlier distributions than other competing BIQA models. The IQR and outlier 

observations indicate that MTLBIQ models have better quality prediction consistency and 

more robust to variation of training samples. 

Table 5.5: The Wilcoxon rank-sum test results based on the BIQA models SROCC values 

 

LIVE 

 BIQI BRISQUE GMLOG CORNIA MTLBIQ1 MTLBIQ2 MTLBIQ3 

BIQI 0 -1 -1 -1 -1 -1 -1 

BRISQUE 1 0 -1 1 -1 -1 -1 

GMLOG 1 1 0 1 -1 0 -1 

CORNIA 1 -1 -1 0 -1 -1 -1 

MTLBIQ1 1 1 1 1 0 -1 0 

MTLBIQ2 1 1 0 1 -1 0 -1 

MTLBIQ3 1 1 1 1 0 1 0 

CSIQ 
 BIQI BRISQUE GMLOG CORNIA MTLBIQ1 MTLBIQ2 MTLBIQ3 

BIQI 0 -1 -1 -1 -1 -1 -1 

BRISQUE 1 0 -1 1 -1 -1 -1 

GMLOG 1 1 0 1 0 -1 -1 

CORNIA 1 -1 -1 0 -1 -1 -1 

MTLBIQ1 1 1 0 1 0 -1 -1 

MTLBIQ2 1 1 1 1 1 0 -1 

MTLBIQ3 1 1 1 1 1 1 0 

TID2008 

 BIQI BRISQUE GMLOG CORNIA MTLBIQ1 MTLBIQ2 MTLBIQ3 

BIQI 0 -1 -1 -1 -1 -1 -1 

BRISQUE 1 0 -1 1 -1 -1 -1 

GMLOG 1 1 0 1 -1 -1 -1 

CORNIA 1 -1 -1 0 -1 -1 -1 

MTLBIQ1 1 1 1 1 0 -1 -1 

MTLBIQ2 1 1 1 1 1 0 -1 

MTLBIQ3 1 1 1 1 1 1 0 

 

Next, the statistical significance testing was performed via the Wilcoxon rank-sum test. 

The test was conducted as in Chapters 3 and 4. The results of the test for MTLBIQ models 

against the four other competing models are tabulated in Table 5.5. Observations on the results 

demonstrate that the differences between the MTLBIQ3 model and the rest of BIQA models 

were statistically significant on all three databases. MTLBIQ2 also differed from the rest with 

an exception to GMLOG on the CSIQ database in which no statistically significant differences 

in the prediction performance is observed. For MTLBIQ1, it also differed from the rest with an 

exception to GMLOG on the LIVE database.  
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Meanwhile, the test results for MTLBIQ models against PATCH-IQ and PATCH-IQ2 

are tabulated in Table 5.6.  We can see that the differences in prediction performance between 

MTLBIQ3 and PATCH-IQ and between MTLBIQ and PATCH-IQ2 are statistically significant 

when tested over the three databases. This is also the case when comparing MTLBIQ1 to both 

PATCH-IQ and PATCH-IQ2. For MTLBIQ2, it also differed from those two models with an 

exception to PATCH-IQ on the CSIQ database in which no statistically significant differences 

in the prediction performance is observed. 

Table 5.6: The Wilcoxon rank-sum test results for MTLBIQ models versus PATCH-IQ models 

 

LIVE 

 PATCH-IQ PATCH-IQ2 MTLBIQ1 MTLBIQ2 MTLBIQ3 

PATCH-IQ 0 0 -1 1 -1 

PATCH-IQ2 0 0 -1 1 -1 

MTLBIQ1 1 1 0 1 0 

MTLBIQ2 -1 -1 -1 0 -1 

MTLBIQ3 1 1 0 1 0 

CSIQ 
 PATCH-IQ PATCH-IQ2 MTLBIQ1 MTLBIQ2 MTLBIQ3 

PATCH-IQ 0 -1 1 0 -1 

PATCH-IQ2 1 0 1 1 -1 

MTLBIQ1 -1 -1 0 -1 -1 

MTLBIQ2 0 -1 1 0 -1 

MTLBIQ3 1 1 1 1 0 

TID2008 

 PATCH-IQ PATCH-IQ2 MTLBIQ1 MTLBIQ2 MTLBIQ3 

PATCH-IQ 0 -1 -1 -1 -1 

PATCH-IQ2 1 0 -1 -1 -1 

MTLBIQ1 1 1 0 -1 -1 

MTLBIQ2 1 1 1 0 -1 

MTLBIQ3 1 1 1 1 0 

 

5.3.3 Distortion specific performance comparison 

The median results for the DS performance experiment are tabulated in Table 5.7. For 

simplicity, only the SROCC results are reported. Similar patterns can be observed from the 

LCC and the RMSE results. Again, the top three BIQA models are in bold. We can see that 

MTLBIQ3 obtained the highest correlation with human perceptual measures for each distortion 

case in all three databases except for GB images on the LIVE database. Direct comparison 
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between MTLBIQ1 and MTLBIQ2 showed that MTLBIQ1 had higher prediction performance 

for images affected by JP2K compression artefacts while MTLBIQ2 performed better 

prediction in WN and GB cases. In JPEG cases, MTLBIQ1 is slightly better on the LIVE 

database while MTLBIQ2 is better when tested on the CSIQ and TID2008 databases. 

Compared to FR-IQA models, MTLBIQ3 produced better prediction performance than SSIM 

and FSIM for noisy images. It also obtained comparable performance for other distortion cases. 

Table 5.7: Median SROCC values across 1,000 runs for the DS performance experiment 
 

IQA model LIVE CSIQ TID2008 

JP2K JPEG WN GB FF JP2K JPEG WN GB JP2K JPEG WN GB 

SSIM 0.961 0.976 0.969 0.952 0.956 0.961 0.955 0.897 0.961 0.963 0.925 0.811 0.954 

FSIM 0.972 0.984 0.972 0.971 0.952 0.970 0.966 0.936 0.973 0.978 0.929 0.876 0.947 

BIQI 0.830 0.906 0.933 0.866 0.689 0.764 0.910 0.540 0.783 0.796 0.894 0.508 0.888 

BRISQUE 0.916 0.964 0.979 0.945 0.887 0.898 0.921 0.921 0.919 0.889 0.908 0.868 0.853 

GMLOG 0.927 0.963 0.983 0.929 0.901 0.916 0.936 0.941 0.908 0.902 0.922 0.905 0.877 

CORNIA 0.921 0.936 0.961 0.952 0.905 0.894 0.882 0.786 0.904 0.915 0.880 0.566 0.892 

PATCHIQ 0.931 0.976 0.987 0.953 0.891 0.918 0.952 0.963 0.916 0.910 0.923 0.904 0.905 

PATCHIQ2 0.933 0.973 0.987 0.970 0.882 0.933 0.953 0.965 0.943 0.922 0.931 0.900 0.921 

MTLBIQ1 0.936 0.969 0.984 0.929 0.904 0.928 0.929 0.945 0.918 0.947 0.935 0.907 0.929 

MTLBIQ2 0.933 0.966 0.990 0.945 0.891 0.926 0.961 0.981 0.944 0.944 0.964 0.951 0.955 

MTLBIQ3 0.948 0.976 0.990 0.949 0.914 0.946 0.965 0.981 0.951 0.955 0.968 0.954 0.964 

 

Direct comparison between MTLBIQ2 and BRISQUE and between MTLBIQ1 and 

GMLOG can investigate whether MTL can improve a BIQA model’s prediction performance 

for individual distortion category. On all three databases, we can see that MTLBIQ1 achieved 

higher SROCC values than GMLOG in all tested distortion cases with an exception for GB 

images on the LIVE database in which both achieved the same SROCC values. The same 

pattern can be observed in MTLBIQ2 versus BRISQUE cases. These observations validate the 

use of MTL to achieve better prediction performance for BIQA tasks. 

As in the overall performance experiment, we can also compare both PATCH-IQ and 

PATCH-IQ2 with MTLBIQ2 since they employs the same set of features. We can see that 

MTLBIQ2 obtained better SROCC values across for all distortion concerned when tested on 

the TID2008 database. When tested on the LIVE database, MTLBIQ2 produced higher 

SROCC values for JP2K, WN and FF images but lower SROCC values for JPEG and GB 
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images. However, the reverse happened when the models were tested on the CSIQ database. 

MTLBIQ2 now obtained higher SROCC values for JPEG and GB images but lower SROCC 

values for JP2K images. These observations across the three tested databases suggest that MTL 

based model can produced higher prediction performance than PATCH-IQ and PATCH-IQ2 

models for individual distortion case particularly for WN images. Again, fairer comparison 

could be made if MTLBIQ2 operates at patch level as in PATCH-IQ and PATCH-IQ2 

framework.    

5.3.4 Distortion identification accuracy 

Introducing a distortion identification stage for an unknown test image (overall 

experiment) brings additional property to MTLBIQ: it is capable to provide information on the 

distortion affecting the image. This property, which is unavailable in most of the previous 

BIQA models, could be useful in certain application domains. For example, it is easier to repair 

a distorted image at the receiver end of an image communication system when the distortion 

affecting the image is known beforehand. MTLBIQ utilises the SVM classifier for this purpose. 

To show that the classifier has a good classification performance, the mean classification 

accuracy over 1,000 runs of experiments on all three databases is recorded. The results are 

tabulated in Table 5.8. A good classification performance with minimum accuracy of 78% was 

consistently achieved by the classifier when tested on all four types of distortion shared by the 

three databases. Slight degradation in the classifier’s classification performance could be 

observed when it was tested on FF images on the LIVE database. This is to be expected as the 

FF images are essentially multiple distorted images whereby the images are first compressed 

by JP2K encoder before subjected to packet loss error. The results also validate the suitability 

of the utilised features for distortion identification purposes. 
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Table 5.8: Mean classification accuracy value over 1,000 iterations 

 

LIVE 

 JP2K JPEG WN GB FF ALL 

MTLBIQ1 83.32 96.12 98.20 94.79 78.72 90.24 

MTLBIQ2 82.51 87.53 97.23 92.67 83.48 88.45 

MTLBIQ3 82.74 89.86 99.29 95.26 84.26 89.66 

CSIQ 

 JP2K JPEG WN GB FF ALL 

MTLBIQ1 91.15 87.59 95.36 90.39 - 91.12 

MTLBIQ2 82.41 78.00 94.39 88.00 - 85.70 

MTLBIQ3 86.17 79.02 94.24 90.61 - 87.51 

TID2008 

 JP2K JPEG WN GB FF ALL 

MTLBIQ1 97.29 99.36 97.56 92.90 - 96.78 

MTLBIQ2 92.86 97.83 99.14 93.07 - 95.73 

MTLBIQ3 93.32 97.80 99.10 93.43 - 95.92 

 

5.3.5 Cross database test 

The experiments performed in sub-chapters 5.3.2 and 5.3.3 used training and test sets 

taken from the same database. A BIQA model is said to be robust and has good generalisation 

capability if the model, trained on one database, can still obtain good prediction results when 

tested on another database. Therefore, a cross database testing was performed in this sub-

chapter. A BIQA model was first trained with the LIVE database before the model was tested 

on both the TID2008 and the CSIQ databases. The same model was then trained on the CSIQ 

database and it was tested using the TID2008 and the LIVE databases. Finally, the model was 

trained using the TID2008 database before being tested on the remaining two databases. Again, 

SROCC were used for evaluation. The results for the cross database test are presented in Table 

5.9. We can see that MTLBIQ1 achieved higher SROCC values than GMLOG in 4 out of the 

6 tests. Similar patterns can be observed between MTLBIQ2 and BRISQUE whereby 

MTLBIQ2 outperformed BRISQUE in 5 out of the 6 tests. These show that MTL can improve 

the generalisation capability of a BIQA model. We can also see that MTLBIQ3 produced the 

best SROCC values in 4 tests and has close results in the other 2 tests. 

 



113 
 

Table 5.9: SROCC values for cross database test 

 

Train Test BIQI BRISQUE GMLOG CORNIA MTLBIQ1 MTLBIQ2 MTLBIQ3 

LIVE CSIQ 0.781 0.899 0.911 0.897 0.909 0.900 0.916 

LIVE TID2008 0.819 0.905 0.920 0.893 0.930 0.926 0.931 

CSIQ LIVE 0.454 0.931 0.946 0.928 0.931 0.933 0.938 

CSIQ TID2008 0.698 0.899 0.905 0.870 0.925 0.908 0.918 

TID2008 LIVE 0.763 0.929 0.934 0.909 0.940 0.922 0.943 

TID2008 CSIQ 0.801 0.867 0.839 0.833 0.855 0.876 0.877 

 

5.3.6 Computational complexity 

Fast computation is another crucial aspect to consider in any BIQA model evaluation. 

The processing time required to run the MTLBIQ models is analysed in this sub-chapter. The 

average run-time comparison between MTLBIQ models and the competing BIQA models for 

a typical image of 512 × 768 size is shown in Table 5.10. These processing times are achieved 

using un-optimised MATLAB R2011b code on an 8GB RAM computer with an Intel i5 3.20 

GHz processor. Note that the training time is not considered here as it is assumed that the 

models are already trained prior to the testing stage. 

Table 5.10: Average run-time comparison 

 

Model BIQI BRISQUE GMLOG CORNIA MTLBIQ1 MTLBIQ2 MTLBIQ3 

Run 

times 

0.05 0.10 0.07 2.43 0.08 0.11 0.19 

 

All MTLBIQ models are faster than CORNIA. Both MTLBIQ1 and MTLBIQ2 are 

slower by 0.01 seconds than GMLOG and BRISQUE, respectively. This is due to the distortion 

identification requirement. The differences are negligible and the MTLBIQ models can process 

up to 12 images per second (in MTLBIQ1 case), addressing real-time applications. 

5.4 Chapter Summary 

In this chapter, a simple yet effective BIQA model that employs a trace-norm regularised 

MTL technique in its learning framework is presented. The model, dubbed as MTLBIQ, utilises 
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a shared representation among differently distorted training samples to simultaneously learn 

prediction models for each distortion class. Experimental results on three standard IQA 

databases showed that MTLBIQ correlates highly with human perceived quality measures 

across various types of image distortions. MTLBIQ also achieves improved prediction 

performances when compared to several well-known BIQA models. Besides, MTLBIQ also 

can provide information on the distortion affecting an image, which is a useful property 

unavailable in most of the previous models. There are a few steps that could be taken to improve 

the MTLBIQ model. Further validation of its performance could be performed using different 

quality predictive features and databases. The MTL technique itself could also perform 

distortion identification for an image of unknown distortion. In addition, other MTL techniques 

can be tested for faster computation. 
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Chapter 6 

Conclusion and Future Work 

The chapter begins with a summary of the work performed throughout the study, 

including its contributions. It is followed by further discussions on several limitations of the 

work, which can be research topics worth to be pursued. The thesis is then concluded with 

some final remarks. 

6.1 Summary and Contributions 

The study focuses on image quality assessment (IQA) research area with specific aim of 

developing automatic prediction models that can provide image quality metric consistent with 

human perceptual measures. To begin with, Chapter 1 of the thesis provides a general overview 

on image quality and its traditional quality metrics. The chapter continues with discussions on 

the downside of traditional metrics and the needs for developing perceptual IQA models. This 

is followed by a general classification of the current perceptual IQA models whereby the scope 

of the work is set on one class: general-purpose blind IQA (BIQA). 

Chapter 2 reviews design philosophies and approaches on the general-purpose BIQA 

models. The review shows there are large number of distinct image features that can be 

considered regarding developing a successful BIQA model. We could incorporate all features 

into one model design. However, this approach can results in a highly complicated model that 

would be difficult for implementation in image communication systems. Rather than 

introducing new quality-predictive features, which is the focus of most current models, the 

study takes a different direction to perform BIQA. Specifically, the study aims to contribute to 

the IQA research community by developing new learning frameworks for BIQA models. This 
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is motivated by several limitations identified through the review and the corresponding 

performance analyses. 

The first proposed learning framework for BIQA model is presented in Chapter 3. The 

corresponding model, termed as PATCH-IQ, operates on a five-stage patch based framework. 

The main contribution of PATCH-IQ lies on it performing quality prediction using nearest 

neighbour learning methods avoiding the need to have a prior training phase, which is a 

prerequisite in many previous models. Other key contributions include its ability to provide 

local quality estimation and to perform image distortion identification, two useful properties 

that are unavailable in most of BIQA models. The reported experimental results show that 

PATCH-IQ performs competitively compared to some state-of-the-art models. 

In Chapter 4, a simple modification is proposed to the PATCH-IQ’s framework to further 

improve the quality prediction performance. This second learning framework considers the fact 

that, when presented with an image, human observer mostly concentrate on the object-like 

regions. The first modified models, PATCH-IQ2 employs interest points based sampling 

strategy in its framework whereby the utilised image patches are extracted at the locations of 

an image’s interest points. The second modified models, PATCH-IQ3 utilises image saliency 

map to guide its sampling strategy whereby patches are extracted at the image regions of high 

saliency values. Upon testing on three common IQA databases, the results show that higher 

distortion identification and quality estimation accuracy can be obtained at the expense of a 

slight increase in the computation time. Further analyses also show that both PATCH-IQ2 and 

PATCH-IQ3 have close correlation to subjective quality measures and they generalise well 

across different databases including the one with multiple distorted images. 

The third learning framework is next and is proposed in Chapter 5. Motivated by the 

observation that BIQA models may perform well in one particular type of distortion but is less 
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effective on others, the study presents a BIQA model that integrate multi-task learning (MTL) 

technique in its framework. The model, termed as MTLBIQ, consists of different sub-models 

for different distortion classes. Instead of individually trained as in the previous BIQA 

approaches, these sub-models are trained simultaneously by exploiting shared information 

across them. Using a set of spatial domain image features as training input, experimental results 

on three standard IQA databases show that MTLBIQ produces higher prediction performance 

than the BIQA model of the same image features across different distortion classes. MTLBIQ 

can also identify distortion of the image, which can be beneficial for different image processing 

applications particularly in image enhancement and image restoration systems. 

6.2 Limitations and Future Work 

Despite the promising results obtained by the three presented models, there are other 

steps that could be taken to allow for further models’ extension and future research. Besides 

limitations identified at the end of Chapters 4 and 5, other limitations that the study know of 

are highlighted below: 

 As most general-purpose BIQA models, the models presented here are developed 

through the luminance values analysis. Colour [153] is often a neglected factor 

which will further advance IQA research. Colour artefacts are among the most 

significant artefacts in image and video sequences [154], and cannot be ignored. 

Here, future work could include testing the models with colour images or 

developing an extended model that also incorporate colour information.  

 The proposed models are developed to handle only images subjected to a single 

type of distortion. Certain applications can cause images to be concurrently 

subjected to multiple types of distortions. In such cases, we should consider the 

collective effects of these distortions on the image and the effects of these 
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distortions on each other.  As demonstrated in previous studies on the joint effects 

of these distortions on image quality [155] - [156], multiple types of distortions can 

intuitively interact with each other when added to an image. Interaction with the 

image itself is also possible in ways that might be difficult to predict based on their 

physical combinations. Although PATCH-IQ and PATCH-IQ2 have been tested 

against an image of multiple distortions, both models treat these distortions as one 

type of distortion and do not take the interaction between the distortions into 

account. There were previous attempts [157] – [158] to determine the quality of a 

multiply distorted image. The BIQA models were developed based on combination 

of several image processing blocks to mimic the HVS image perceiving process. 

Competitive performance is reported as compared to single distortion based models 

though higher performance can be produced by replacing one or several blocks 

with more powerful models. We can take similar approach to incorporate these 

multiple distortions’ factors into the presented models, making them more 

generally applicable. 

 The presented models use handcrafted features and operate on a shallow learning 

architecture where a massive cost of computational time and expert knowledge can 

incur. An alternative way to do this is by automatically learn features and perform 

quality estimation through deep architectures. One advantage of a deep architecture 

has over a shallow architecture is that some highly non-linear functions can be 

expressed more compactly in terms of the number of parameters with deep 

architectures. The curse of dimensionality affecting shallow architectures is also 

addressed by deep architectures through distributed representations [159]. Deep 

learning has been successfully applied to other application domains such as audio 

classification [160] and image retrieval [161]. The proposed models could be 
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modified to incorporate deep learning architectures such as deep belief network 

and deep convolutional network. While this thesis is being written, initial work 

utilising deep architecture in designing BIQA model can already be seen in the two 

latest papers [162] - [163]. 

 The three models are designed for distorted images where they are based on the 

assumption that a good quality image is most identical to the original image. Yet, 

the concept of similarity is less applicable in the images such as artwork images 

[164], fused images [165] or user-generated images [166]. Although these images 

are outside the scope of this study, establishing different databases and learning 

strategies for accessing quality would be valuable for further understanding on how 

human observe and rate quality when dealing with such images. 

6.3 Conclusions 

The research on IQA, in particular BIQA, has seen tremendous improvements over the 

past few years. The increased usage of BIQA metrics in image processing applications indicate 

that the metrics are gradually accepted as substitutes to traditional image metrics. While these 

advances and efforts should be applauded, the IQA researchers generally agreed to the fact that 

BIQA metrics that can perform reliably under a different range of situations are yet to be 

produced. Recognising that BIQA research is far from finished, the work in this thesis made 

another contribution to the research by introducing three BIQA models that operate under 

differently designed learning frameworks. The results demonstrate that the presented models 

have high correlation with subjective perceptual measures and have better prediction 

performances than some, in not all, BIQA models. However, the models are not without its 

own limitations. Given a massive range of image processing applications and the subjectivity 
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of human perception on image quality, further works are still needed before they can be 

accepted as reliable and universally applicable quality metrics. 
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