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Abstract

In this thesis we introduce a new family of finite dimensional diagram algebras
over a commutative ring with identity, the decorated partial Brauer algebras, denoted
by DPB,,(0,0.,0", pi, 1'). These algebras are unital, associative and have a basis
consisting of decorated partial Brauer diagrams which are partial Brauer diagrams

with possibly decorated edges and decorated isolated vertices.

We show that this algebra is a cellular algebra by applying Theorem of Green and
Paget to iterated construction . Subsequently, we give an indexing set for the simple
modules. Over a field of characteristic different from 2, we determine when the
decorated partial Brauer algebra is quasi-hereditary. Finally, we give a complete

description of the restriction rule for the cell modules over C.
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Chapter 1

Introduction

The representation theory over C of the general linear groups GL,(C) and the
symmetric groups &,, are related by Schur-Weyl duality via the mutually centralising
actions of the two groups on the r* tensor product V®”, where V is a complex vector
space of dimension n. In [2], Richard Brauer introduced a class of finite dimensional
algebras which are called Brauer algebras to provide a corresponding result when
replacing the general linear groups by either orthogonal or symplectic groups and

replacing the group algebra of the symmetric group by a Brauer algebra.

For an arbitrary ring R, n € N, § € R, the Brauer algebra, denoted 9,,(0), has a basis
consisting of Brauer diagrams which consist of 2n vertices in a rectangle frame with
n of them in the top row numbered 1 to n from left to right and others in the bottom
row numbered 1’ to n’ from left to right, where each vertex is connected to precisely
one other by an edge. The product of two diagrams is given by concatenation, that
is by placing one diagram above the other, and identifying the vertices in the middle
row. This produces a new diagram possibly with some number (r say) of closed loops

which are removed and we record this by multiplying by §".

Brauer algebras have been studied by Hanlon and Wales [9], they conjectured that
B,,(9) is semisimple over C if § & Z. This was proved by Wenzl in [20].

Cellular algebras were first introduced by Graham and Lehrer in [6]. For these al-

gebra, they defined cell representations. Also they obtained a general description of

1



2 CHAPTER 1. INTRODUCTION

the irreducible representations of cellular algebras together with a criterion for the
cellular algebra to be semi-simple. Graham and Lehrer proved that the Brauer alge-
bra is a cellular algebra. Moreover, over a field of characteristic p (possibly p = 0)
they showed that the set of irreducible modules of Brauer algebra is indexed by the

set p-regular partitions of n, n — 2, ..., 0 or 1.

In [14] K6nig and Xi described the Brauer algebra as an iterated inflation of symmetric
group algebras. Using their result, in [12], which is that an iterated inflation of cellular
algebras is cellular, they proved cellularity of the Brauer algebra. Also, in [13] they

determined for which parameters the Brauer algebra is quasi-hereditary.

As a generalization of Brauer algebras, a class of algebras called the Partial Brauer al-
gebra was introduced by Martin and Mazorchuk [15]. This algebra, denoted P*B,,(4, ¢'),
9,0" € R, is an associative algebra with 1 which has a basis given by partial Brauer
diagrams, these are Brauer diagrams that allow for the possibility of removing edges.
The representations of the partial Brauer algebra are studied by Martin and Ma-
zorchuk [15]. They showed that this algebra is generically semisimple over C. Fur-
thermore, they constructed the Specht modules and determined a restriction rule for

the Specht modules.

Motivated by Brauer and partial Brauer algebras, in this thesis, we define a new class
of finite dimensional algebras which has a basis consisting of the decorated partial
Brauer diagrams, these are the partial Brauer diagrams where the edges and isolated
vertices may be decorated. We call them the decorated partial Brauer algebra and
denote them DP*B,, (4, do, ', p, it').

These algebras are non-trivial 5-parameter deformation of the left-right symmetric
partial Brauer algebras, where a left-right symmetric partial Brauer algebra is a
subalgebra of the partial Brauer algebra spanned by the partial Brauer diagrams
with 2n northern nodes and 2n southern nodes that are symmetric under reflection
about the vertical axis. The decorated partial Brauer diagrams are constructed from
the left-hand halves of the left-right symmetric partial Brauer diagrams (after cutting
along the axis of symmetry) as follows: Each pair of lines that intersect on the vertical

[13

axis of symmetry are joined by a decorated line with a “o” decoration. Individual



lines which cross the axis of symmetry are contracted to decorated labelled isolated
vertices with a “[]J” decoration.

The deformation of the isolated components, which form during the product of two
symmetric partial Brauer diagrams, introduce the new parameters of the decorated

partial Brauer algebra. We describe this deformation as follows:

1. an open string that crosses the axis of symmetry which does not cross other

open stings is contracted to a decorated isolated vertex with a “[J” decoration

W, ”n

and this is replaced with a parameter “u”.

2. a loop which crosses the axis of symmetry at one point introduces a decorated

loop and this is replaced with a parameter “d,”.

IO | =[5

3. a loop which crosses the axis of symmetry at more than one point introduces

two meeting squares or a decorated (or undecorated) open string with square

W,

in both of its endpoints, all these are replaced with a parameter “u'”.

1

Q — E ;

o)) [DD][s

The structure of this thesis is as follows:

In chapter two we recall some definitions and results which are useful for the later

chapters. In the first section of this chapter we give a brief review of the partial
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Brauer algebra. In the next section we recall the definition of cellular algebra in
sense of Graham and Lehrer and its equivalent version given by Koénig and Xi. In
section three we recall the definition of the group ZsS,,, describe some combinatorics,

as well as the cellularity of the Hecke algebra of type B.

Chapter three is devoted to defining our main object of study, the decorated partial
Brauer algebra, which has basis the decorated partial Brauer diagrams. In the first
section we give a definition of the set of the decorated partial Brauer partition and its
size. In section two we define decorated partial Brauer diagrams and we show that
the set of these diagrams are equivalent to the set of the decorated partial Brauer
partitions. The multiplication of these diagrams is defined in the third section which
is as the multiplication of the partial Brauer diagrams with additional rules that
handle the decorated lines and decorated vertices. Also, we show that this operation
is associative. Finally, we state the definition of the algebra with its dimension. In
the last section, we define the Symmetric partial Brauer algebra and we show that
there is a bijection between the set of symmetric partial Brauer diagrams and the set

of decorated partial Brauer diagrams.

Chapter four is devoted to describing the cellular structure of the decorated partial

Brauer algebra. In particular it proves the following

Theorem 1.0.1 (Theorem 4.5.1). Let K be a field, 0, 0, &', u, p € K. Then the
decorated partial Brauer algebra, DPB, (0, 0,0, u, p') is a cellular algebra over K.

We prove this result by using Theorem 4.1.2 introduced by Green and Paget, which
establish that an algebra is an iterated inflation of cellular algebra and hence is
cellular, [7, Theorem 1]. Firstly, we identify the group algebra K /S; as a subalgebra
of DPB,,(9,d.,0, p, it'), where :5’\,: is the set of all decorated partial Brauer diagrams
that only have propagating lines. For [ = 0,...,n, we define a K-vector space J;
which is spanned by all decorated partial Brauer diagrams with at most [ propagating
lines and we show that J; is a two-sided ideal of DPB,, (4, o, ", u, p’), this gives a
filtration of DPB,,(0, 0o, 0", pt, 1)

0CJyC Iy Cov C Juoy C Jp=DPB(0,0,8, 11, 1) (+)
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Then we show that each J;/J;_1 in (x) is an inflation of Kg’l along V; (i.e. J;/Ji_1 =
i)V K S ), where V} is a K-vector space spanned by the set of decorated
partial Brauer lower half diagrams with [ non-crossing undecorated propagating
lines, (Lemma 4.4.6 and 4.4.9). In addition we define the required K-bilinear form
p i) eV, — K §l to give a multiplication structure on this inflation (Definition
4.4.7). Then we define an involution on (V) @ V; ® K S, In particular we show that
the map ¢ given by
ilz)@yen) =iy @z

is an anti-involution on i(V;) ® V; ® KS; (Lemma 4.4.12). Finally, we show that, for
each 0 < < n and any u,v € hy(DPB(n)) and w € S, we have for any d € DPB(n)
that

d.(i(u) @vem) = ¢(d,i(u) v 0(d,i(u)r (mod J_q)

where J;_; = Z;IOZ'(V;C) ®Vk®K5’Nk and ¢;(d,i(u)) € i(V}), 6,(d,i(u)) € KS, depend
only on d and i(u) (Lemma 4.4.14). These results satisfy all conditions of Theorem
4.1.2 of Green and Paget, which establishes the cellularity of the decorated partial

Brauer algebra.

Applying the cellularity of the decorated partial Brauer algebra and a result due
to Dipper and James for simple modules of K :S’;, we give an indexing set of the
simple modules of DPB,,(9, do, ", u, i) over a field K of characteristic p, p # 2. In
particular we show that: If k is a field of characteristic p, p # 2, and at least one of
the elements &', p or 1’ is non-zero, then the simple modules of DPB,, (4, 0o, 0", i, ')
are indexed by {(l,\) | 0 <1 <mn, \isa p— restricted bipartition of {} (Theorem
4.7.1).

In chapter five we give a necessary and sufficient condition for the decorated partial
Brauer algebra over a field of characteristic p, p # 2 to be quasi-hereditary (Theorem

5.2.1).

Chapter six is dedicated to proving the restriction rule for the cell modules of the

decorated partial Brauer algebra.






Chapter 2

Background

2.1 The Partial Brauer algebra

Let R be a commutative ring, 4, € R and n a natural number. The partial Brauer
algebra denoted PB,(6,6), introduced by Martin and Mazorchuk (see [15]), is a
unital associative finite dimensional algebra with the basis the so-called partial Brauer

partitions. In this section we briefly recall the definition of the partial Brauer algebra.

Partial partition

Definition 2.1.1. (Partial partition)[15]

For a finite set T', a partition of a set T is a collection { X7, X, X3,...} of nonempty
subsets of T such that U;X; =T and X; N X; =0 (i # j).

We call each subset in a partition of 7" a part or a block.

A partition of a set T in which each part (each subset) has exactly two elements is

called a pair partition or Brauer partition.

A partition of a set T in which each part has at most two elements is called a
partial (Brauer) partition. In other words a partial (Brauer) partition is a partition

of a set T" into pairs and singletons.
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The set of all pair partitions of T" is denoted by By, and the set of all partial (Brauer)
partitions is denoted by PBry.

Forn e N, let n={1,...,n}, m' ={1',... ,m'}.

Let T'= n Um/, a partial partition of a finite set 7' = n U m’ may be represented in

the plane by a diagram, the so-called (n,m)-partial Brauer diagram.

Partial Brauer diagrams

Definition 2.1.2. [8] An (n,m)-partial Brauer diagram is a rectangle with n vertices
labelled 1,...,n on the top row and m vertices labelled 1’,...,m’ on the bottom row

such that each vertex is connected to at most one other vertex by an edge.

In this diagram two vertices form an edge (are joined together) if and only if they

are in the same part of the partial partition.

Example 2.1.3. Theset {{1,3},{2,3'},{4,7},{5},{6,5'}, {1}, {2/,4'},{6'},{7'} } is

represented by the following partial Brauer diagram:

Note that the partial Brauer diagrams consist of vertical edges (propagating lines)
which connect a vertex in the top row to a vertex in the bottom row, horizontal edges
(arcs), which connect vertices in same row, and isolated (singleton) vertices which

are not incident to an edge.

Definition 2.1.4. An isolated (singleton) vertez in a partial Brauer diagram is a
vertex on the top row or bottom row of the rectangle frame which is not incident to

an edge.

The diagram representing a partial partition is not unique. We say that two diagrams

are equivalent if they represent the same partial partition. Thus we identify diagrams
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if they are equivalent. Since we are interested in equivalent diagrams so we will use

the term partial Brauer diagram to mean the equivalence class of the given diagram.

e

Let PB(n, m) denoted to the set of all partial Brauer diagrams where n is the number

of labelled vertices in the top row and m is the number of the labelled vertices in the
bottom row. The following gives the number of its elements. (Note that the number

n + m of the labelled vertices could be even or odd.)

Proposition 2.1.5. (see section (2) in [8] for the special case when m =n)

|25 ]

PB(n,m) = 3 (";m) (20— 1)!

=0

where 1 is the number of edges in the diagram , (2l —1)!! = (21 —1)(2l—3)---3.1 and
(- =1.

Proof. Let PB'(n,m) denote the set of partial Brauer diagrams which have [ edges.

To count the size of this set, firstly we choose 2[ vertices of n + m to be in pairs.

n+m

51 ) ways for a fixed [. We then choose two vertices of 2I to be an edge.

This gives (
For each choice we get two vertices less to choose from. So there are (2 — 1) choices
for the first edge, (21 — 3) for the second edge. Continuing in this manner we get the
number of ways to draw a diagram with [ edges which is (20 — 1)!l. Therefore for a

fixed number [ of edges we have

n+m

|PBl(n,m)|:< ol )(21—1)!!.

Take a sum X7 ("3") (20—1)!! over [ to get all possible elements of the set PB(n,m).
[
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Note that since the set of partial Brauer diagrams on n + m vertices correspond to
the set of partial Brauer partitions the above formula gives the number of partial

Brauer partitions of n U m/’.

!/

Note that we are mainly interested in the case T ={1,...,n,1,...,n'} =nUn’, we

define PB,, = PB,,y and PB(n) = PB(n,n)

Multiplication of partial Brauer diagrams

The multiplication of two partial Brauer diagrams d; and ds is given by concatenation,
that is, by identifying the bottom row vertices in d; with corresponding top row
vertices in dy. We call the set of vertices formed by top row of dy and the bottom
row of dy the middle row of didy or the equator.

In the multiplication of partial Brauer diagrams there are two different connected
components which can be formed in the middle row, namely, loops and open strings
(which are not closed pathes of connected lines in the middle row). These connected
components will be removed with the middle row and replace them with parameters
as follows: Let a factor 6 € R be associated to each removed loop and a factor § € R
be associated to each removed open string. This gives a 2-parameter version of the

partial Brauer algebra (see section 1 in [15]). So the multiplication of d; and dy is
dydy = 61(6)™ds.

where d3 is the resulting partial Brauer diagram after removing the middle row with
connected components, [ denotes the number of loops that are removed from the
middle row, and m is the number of open strings or isolated vertices that are removed

from the middle row (see [8]). For example,

— ___
/ ~— ____
= — 50

N NN




CHAPTER 2. BACKGROUND 11

This diagram multiplication is associative with identity element I (see [8]):

v -1 & G+1) n!
We may now define the partial Brauer algebra.

Definition 2.1.6. [8] Let R be a commutative ring, 6,6 € R, n a natural number.
The partial Brauer algebra PB,(8,6 ), is an associative unitial algebra with basis the

set of partial Brauer diagrams and multiplication as defined above.

The dimension of PB,,(4,§) is

, n 2n
dim(PB,,(4,0)) = (20 — 1!
=0 21

where [ is the number of edges in the diagram.

2.2 Cellular algebras

In this section we recall the original definition of cellular algebras in the sense of

Graham and Lehrer and an equivalent definition given by Konig and Xi.

Definition 2.2.1. (Graham and Lehrer, [6]). Let R be a commutative ring with
identity. A cellular algebra over R is an associative (unital) algebra A together with
cell datum (A, M, C, i) where

(C1) A is a partially ordered set (poset) and for each A € A, M(\) is a finite set such
that the algebra A has an R-basis O, where (S,T) runs through all elements of
M(X\) x M(X) for all A € A.

(Cy) Let A € A and S, T € M(A). Then the map 7 is an R-linear anti-involution of
A such that i(Cg,) = Ch .
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(C3) For each A € A, S, T € M(\) and for any element a € A we have

aClr = Z ra(U, S)C) 1 (mod A(< \))
UeM(N)

where 7,(U,S) € R is independent of T, and A(< M) is the R-submodule of A
generated by {Cg - | p <\ S,T" € M(u)}.

If we apply 7 to the equation in (C3), we obtain

Crgila)= Y r(U.S)Chy (mod A(< \))

UeM(\)
Thus, the R-module A(< A) generated by the set {CG, 1 | p < A, S”, 7" € M(u)}
is a two-sided ideal of A fixed by 1.

Examples of cellular algebras are the following: [6]

(a) Ariki-Koike algebras;

(b) Brauer’s algebras;

(c) Temperley-Lieb algebras;

Definition 2.2.2. [6]. For each A € A, let W(A) be the free R-module with basis

{Cs | S € M(\)} and left A-action defined by

aCs = > 1S, 8)Cs (ae A, S e M)

S'eM(N)

W (A) is called the cell module of A corresponding to A.
Also, W(A) may be thought of as a right A-module with action

Csa= Y  ri(S,5)Cs.

S'eM(N)
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In [6], Graham and Lehrer defined a bilinear form ¢, : W(\) x W(A) — R such that
oA(Cr,Cy), for T, U € M (M), is given by

CrChy = ox(Cr, Cu)Chy (mod A < \)

where S, V' are any elements in M (\).

When R is a field, they proved in [6, Theorem 3.4], that the isomorphic classes of

simple modules are indexed by the set
Ao={reA | ¢ #0}.

Definition 2.2.3. [6] Let R be a field. The radical of the cell module W (\) is given
by
radW (X)) = {x € W(X) | ¢a(z,y) =0 for all y € W(N).

Proposition 2.2.4. [6] Let R be a field. Then

(1) rad W(A) is a submodule of W ().

(ii) If ox # 0, the quotient W (X)/rad W (X) is irreducible.

The following is a basis-free definition of cellular algebra which is equivalent to the

given by Graham and Lehrer.

Definition 2.2.5. (Kénig and Xi, [11]). Let A be an R-algebra where R is a com-
mutative Noetherian integral domain. Assume there is an anti-involution ¢ in A with
i = Id. A two-sided ideal J in A is called cell ideal if and only if i(J) = J and there
exists a left ideal A C J such that A is finitely generated and free over R and such
that there is an isomorphism of A-bimodules v : J ~ A ®p i(A) (where i(A) C J is

the i-image of A) making the following diagram commutative:

J —=— A®g i(A)
li lx®yHi(y)®i(x)
J —=5 A ®pri(A)
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The algebra A with the involution i is called cellular if and only if there is an
R—module decomposition A = J; & J;, & ... @ J, (for some n) with i(J}) = J;
for each j and such that setting J; = EBLlJl’ gives a chain of two-sided ideals of
A:0=JyC J; C Jp C...C J, = A (each of them fixed by i) and for each j
(j =1,...,n) the quotient J; = J;/.J; 1 is a cell ideal (with respect to the involution
induced by 4 on the quotient) of A/.J;_;.

The A’s obtained from each section .J;/.J;_; are called cell modules of the cellular

algebra A, and the above chain of ideals in A is called a cell chain of A.

In [11] it is proved that the two above definitions of cellular algebra are equivalent.

2.3 The wreath product

Definition 2.3.1. [10]

Put Zy ={f | f:{Ll,...,n} — Zs}, the set of all mappings from {1,--- ;n} into Z,.
Define Zy 1S, = Z5 x S, = {(f,m) | f : {1,...,n} = Zy,® € S,,}, where S, is the

symmetric group on n symbols, with multiplication in Zj ¢ S,, defined as
(f,m)(fs7) = (f + o f 77)
where
(i) = ((i)m)n, (f+ @) = fG) + f/(i), forall ie{l,...,n}
and _f € Zy, defined by
f) = f(ir), forall i€ {l,...,n}.

Zs 1 Sy, is called the wreath product of Zs by S, and its order is |Zy|"|S,| = 2"nl.

Theorem 2.3.2. The set Zs1.S,, which is defined in 2.53.1 is a group called the wreath

product group.
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Proof. (1) The identity element in Zs? S, is (0,1d), where

(Ovld)(f7 7T) = (0 + Idf? Idﬂ-) = (f> 7T)

and

(f,m)(0,1d) = (f + 0,7 Id) = (f, 7).

(2) The inverse of an element (f,7) in Zy 1S, is (f,m)"' = (-1 f, 7 1), where

(f,m) G fom ™) = (f + 2 f)omn) = (f + £,1d) = (2f,1d) = (0,1d)

and

G fom D7) = Gof + o fomim) = (2,0 f,1d) = (0,1d).

(3) The associativity:
Let (fh 7T1), (fg, 7T2)7 (fg, 7T3) - ZQ I Sn Then

[(f1, ™) (fo, )] (f3, 73) = (f1 + ﬁ1f277172)<f3>773)

= ((fl + 7r1f2) + 7r17r2f3a 7Tl7T27T3).

Also

(f1, m)[(f2, m2) (f3, m3)] = (f1, m1)(f2 + o, f3, Tam3)

= (i +,, (f2+ £, f3), mT2m3)
= (fi + o fo+ 5y (5 f3), M)
= (

Ji+ o fo + pim, f3, M),

then the multiplication is associative. O
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The Hyperoctahedral group (Coxeter group of type B,)

Definition 2.3.3. Let S be a set. A matrix m: S xS — {1,2,...,00} is called a

Cozeter matriz if it satisfies

m(s,s’) =m(s,s) for all s ¢ €S,

m(s,s) =1<=s=¢"

Let 5%, = {(s,s') € S? | m(s,s") # oo}. A Coxeter matrix m determines a group W

with the presentation

Generators : S;

Relations : (ss')™®%) = ¢, for all (s,s') € S%,,

Here, “e” denotes the identity element of any group under consideration. Since

m(s,s) =1, we have that
s?=e¢ forall s€S

8,8")

so the relation (ss')™(**) = ¢ is equivalent to

ss'ss’s-- = s'ss’ss’ - -
A J/ A J/

~

m(;r,s’) m(s,s’)

The group W is called a Coxeter group, S is the set of Coxeter generators and the
pair (W, S) is called a Cozeter system.

Definition 2.3.4. [3] The Cozxeter group of type B,, (or the hyperoctahedral group),
denoted by W, is a group of signed permutations of 1,...,n.

Let n > 1, consider the set I,, = I7 U, where I ={1,...,n}, I  ={-1,...,—n}.
Let S(I,,) denoted the group of permutations of the set I,,, then W, is (a subgroup
of S(I,)) defined by

W, ={m e S(1,) | n(—i) = —n(i) forall iecI,}.

The Coxeter group W, is generated by the set S = {sq, s1,...,S,—1} subject to the

following relations:
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s?=1 forall i
SiSj = S;j8; if ‘Z—j’#l
8;Si+1S8;i = Si+15iSi+1 for i Z 1

S$150S1S0 — S0S1S0S1-

where

S0 = (17 _1)
and

si= (i, i+ 1)(—=i,—i—1) for 1<i<n-—1

Note that, the elements

Sp_1:=((n—=1),n)(—=(n—1),—n)

generate a subgroup W,, C W, which isomorphic to S,, the symmetric group of de-
gree n. Also, if we put t; = so = (1,—1) and t; = s;_1t;_18;,_1 for 2 < i < n, means
t; = (—i,1) for 1 <i < n, then t? = 1, t;t; = t;t; and the subgroup C' C W,, generated
by {ti,...,t,} is a subgroup of W,, isomorphic to (Z/27Z)" = Z3.

In fact W, is isomorphic to the wreath product Zy S, of Zs with .S, , where Z, is a
cyclic group of order 2, and then |W,,| = 2"n!. (See [3]).

Definition 2.3.5. Let w € W,,. An expression w = v1vy ... g, v; € {80, 81, ,Sn}
in which & is minimal is called a reduced expression for w and [(w) = k is the length

of w.

2.4 Bipartitions and Bitableaux

Partitions and tableaux



18 CHAPTER 2. BACKGROUND

Definition 2.4.1. Let n be a non-negative integer. A composition of n is a finite
sequence of non-negative integers A = (A1, Ag,...) such that [A\| =>". )\, =n.

The integer \; for all 7 > 1 is called a part of \.

A composition A\ of n is called a partition if \; > \;y1 for all ¢ > 1 and we write

AFEn.

A partition A can be illustrated graphically by a diagram called a Young diagram.

Definition 2.4.2. A Young diagram [A] of A = (Ay,..., \) Fnis{(i,j) |1 <i,1<
J < A;}, which is array of n boxes placed in rows. The ith row of [A] consists of \;

boxes, 1 <17 < [. For example:

if A = (4,2), then [\|=

Definition 2.4.3. Let A be a partition of n. Then the conjugate partition A" of \ is
a partition of n whose Young diagram [\'] is obtained from the Young diagram [)] of

A by exchanging the rows and columns in [A]. For example:

Let A= (4,2),s0 [N]=L_] and then X' = (22,1?).

Definition 2.4.4. (1) A A-tableau t is obtained from [A] by filling in the boxes of
[A] with the non-repeated numbers 1,...,n. We say that t has shape A and write
Shape(t) = A. for example:

Ot
[\]

1[3]

(2) A A-tableau t is called row standard if the entries in t increase from left to right
in each row and t is called standard if it is row standard and the entries increase from

top to bottom in each column. For example:

2[3/4]6] 1
1|5 is a row standard tableau but not standard, while | 2

56
is standard.

=~ w
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(3) The initial tableau t* is a A-tableau in which the numbers 1,...,n appear in order

along successive rows. For example:
112]3]4]
if A = (4,2), then t*=1516

Definition 2.4.5. The dominance order is a partial order, denoted by >, defined on

the set of partitions of n as follows:

A>p o if and only if  XF A\ >¥F 4 forall k.

The symmetric group S,, acts on the set of A-tableaux by permuting the entries of

[A]. For example:
5/6/1]3]
let t =12/4 . then t(2,6)(1,4,5) = [6]5

—
N

413

Definition 2.4.6. Let A = (A\q,..., \x) be a partition of n. The Young subgroup Sy
of S, is the subgroup
S)\:S)\l ><S)\2 Xoee XS)\k

which is also the row stabiliser of t*.
Let t be a row-standard A-tableau, we define the element d(t) to be a permutation
of S,, such that

t=td(t).

Bipartitions and Bitableaux

Definition 2.4.7. A bicomposition X of n is an ordered pair (A, A\?)) of composi-
tions such that |[\| = [AM| + [A®)| = n. We call A?) the ith component of A. If both
A and A® are partitions, then A = (A, X)) is called a bipartition of n.

Definition 2.4.8. A Young diagram of a bipartition \ is:
N ={(j.k)[1<j< P fori>1and k=1,2}

which is the ordered pair of Young diagrams of its components. Note that the triple

(1,7, k) refers to the row, column and component in which that node appears. For
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example:

if A= ((4,3,2),(2,1)), then [\|= ( (i

Definition 2.4.9. Let A\ be a bipartition.
(1) A A-bitableau t = (£, t()) is obtained from [)] by filling in each box in [\] with
one of the numbers 1,2, ..., n, allowing no repeats. We say that t has shape A and

write Shape(t) = . For example:

71 6) is a ((3,2),(2,1))-bitableau.

—
oo IN
IS
2

(2) A A-bitabeau t = (t(V),t?) is called row standard if the entries increase from left
to right in each row of t(*) and in each row of t® and t = (tV),t®) is called standard
if it is row standard, and all the entries increase from top to bottom in each column

of t and in each column of t. For example:

417 8‘, 5/6] is a row standard bitableau,
23] 1]
2[718][1]6]\ . :

<3 i 5] ) is a standard bitableau.

The set of all standard A-bitabeaux is denoted by Std(\).

(3) We define t* = (£*", ) to be the standard A-bitabeau in which the numbers

t)\(l)

1,2,...,n appear in order along the rows of first component and then along the

t)\(2)

rows of second component . For example:

B v ([11213] [6]7]
let)\—((372)7(271))7thent_(4 ) 78 )

Definition 2.4.10. The row stabilizer of t* is the Young subgroup Sy = Sy X Sy@
of S,.
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(2) For a row standard A-bitabeau t we define d(t) € S, to be the element of S,, such

that
t =t d(t).
_ _(l2]7]8][1]6] _
For example, let A = ((3,2),(2,1)), t= sTal 5 then d(t) = (1276)(3854).

Definition 2.4.11. Let A = (AW, A\®) and p = (1™, @) be bipartitions of n. The

set of bipartitions is a poset with partial order > where A B> p, if

Egzl/\gl) > Egzl,u(l) for all j

i

and

IAD] + E?:l)\z(?) > [p] + ok 1#52) for all k.

1=

If A> p we say that A dominates pu. If A> p and A # p we write A > p.

For example, let n = 2, then

((2),(0) > ((1,1),(0)) &> ((1), (1) & ((0), (2)) & ((0), (1, 1))-

2.5 A cellular basis of the group algebra RV,

Let R be a commutative ring with identity. In this section we are going to recall the
cellular basis of the group algebra RW,,, where W,, = Z51S,, (defined in Definition
2.3.4) is the hyperoctahedral group (wreath product of Zy with S,) with generators

t1 = sg, 81, -, Sp subject to the relations in Definition 2.3.4.

Note that the references, which are used in this section, are about the Hecke algebras
of type B where these algebras are the deformation of the group algebra of W, =
Z2 1 Sy, (in other words, the group algebra of W,, = Zy 1S, is a special case of the
Hecke algebra of type B). (See section 3 in [3].)

Theorem 2.5.1. [}/, [5]. The algebra RW,, is a free R-module with basis {w | w €
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Lemma 2.5.2. [}/, [5]. Let x be the R-linear antiautomorphism of RW,, determined
by sf =s; for allt with) <i<n—1. Then w* = wt for all w € W,.

Proof. Let w = vivy---v, v; € S = {807517"' 7Sn—1}7 then w™ = vu_1--- vy as

-1 _
v, ~ = v;, then

w* = (vivg -+ uy)*
*

Rk
=V U_q 0

— o = w L ]

For each pair 7, j of positive integers, define s, ; € W, inductively by s;; = 1 (for all

i) and

5i8i41 -85 it i <,
Si’j:
$i—15i—25; if 4 > 7.

Proposition 2.5.3 ([3],(2.1)). Let a,b be any positive integers then
(i) t, commutes with t, ;

(ii) to, commutes with s, unlessb=a—1 or b= a.

Note that from Definition 2.3.4, we have t; = sq, t; = s;_1t;_15;_1 for 2 < i < n so

ta = Sq,1t151,4 for any positive integer a.

Definition 2.5.4 ([3],[5]). For 0 < a < n, a = |AY|, let the element u} of RW,, be

given by
U(T = 1, U;r = H(l + Si’1t1817i) = H(l + tz)
i=1 i=1
where t; = sp.
For example,
uf = (1+t)

uy = (14 t1)(1 +to).
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Proposition 2.5.5 ([3|(3.4) and [5](2.4)). Let 0 < a < n.
(i) if a > 1, then ult; = tyu.

(i1) if a >0, b > 1 are distinct integers, then u} commutes with s.

Note that from lemma (2.5.2), we can show that s} ; = s1, as follows:

*
Sa1 = (Sa—18a—2 " -~ 5251)
%% * *
= 8189839541

= 81582 8a—28a—1 = Sl,a-

* * ok gk ok _
and then t; = (84,1t151,4)" = 87 411541 = Sa1t1510 = ta-

23

Also, from proposition 2.5.3, we can show that (1 + ¢,) commutes with (1 + ¢;) for

any positive integers a, b as follows

(T+t,)(1+1p)

=1+ ta+ty + tats
=1+t +1t+ tpt,
=1+t,+t(1+1,)

= (1 +1t)(1 + ta).

So from the above relation we can show that (u})* = ul as follows:

()" = (I, (1 + 8))°

(
= (14+t) - (14+t) (1 +t1)"
= (
(1‘|‘ta

) )
L4tn) - (L+85)(1+1¢))

) (L4 t)(1+ 1)

) g

=(1+t)(1+ta) - (1+1,)

= H?:l(l + tz‘) =

Definition 2.5.6. [4],[17] Let A be a bipartition of n. The elements z), m, are

defined as follows:
(i) zy = Yypes,w where y = Sya) X Sy is the row stabilizer of t*.

(ii) my = ufwy where a = |A\D].
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Note that (z))* = x, and from proposition 2.5.5 we have my = u}z) = x ul. Hence
Definition 2.5.7. [4],[17] Let A be a bipartition of n and s, t row standard -

bitableax. Let Cg = d(s)*myd(t), where d(s), d(t) € S, as is defined in Definition
2.4.10.

Note that (Cs)* = d(t)*mid(s) = d(t)*myd(s) = Cts.

Definition 2.5.8. [4] Suppose A is a bipartition of n.
(i) Let A* be the R-module spanned by

{C4 | s and t are standard u — bitableaux for some bipartition p of n with x> A}.
(i) Let A* be the R-module spanned by
{C4 | s and t are standard p — bitableaux for some bipartition p of n with u > A}.

Proposition 2.5.9. [4] Let \ be a bipartition of n. Then A* and A> are two sided
1deals of RW,,.

The following theorem shows that RW, is a cellular algebra in sense of Graham and

Lehrer.

Theorem 2.5.10. [4/,[17] The group algebra RW,, is a free R-module with basis
M = {C| s and t are standard \ — bitableazx for some bipartition X of n}

Moreover the following statements hold

(1) The R-linear antiautomorphism x satisfies * : Co, — Cp, for all s, t € Std(\).
(2) Let X be a bipartition of n and t a standard A-bitableau. Let h € RW,. Then for
each standard A-bitableau b there exists ry, € R such that, for all standard \-tableau
s, we have

hC3y = Z rsCpy  (mod AY).
beStd(N)

So the basis M is a cellular basis of RW,, and we call I the standard basis of RW,,.
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The following definition describes the cell (Specht) modules of RW,.

Definition 2.5.11. [4],[17] Let A be a bipartition of n. Let C} = Cyr + A =
d(t)my + A>. The Specht module S* is a free R-module with basis

{C}| t astandard \ — bitableau}.

The action of RW,, on this basis is given by

hCr= > G

beStd())

The bilinear form (, ) on S* is a symmetric map from S* x S* to R defined by
Cfl\scf?\b = <Os>\7 Ot?\>01>1\b (HlOd m)

for all standard A-bitableaux s, t. This form satisfies (hu,v) = (u, h*v) for all u,v €
S* and h € RW,,.

The following example will illustrate the cellular basis and Specht modules of R(Zz
Sa).

Example 2.5.12. The cell datum of R(Zy1.Ss) is (A, M, 9, *) where

A = {N\ | A\ is a bipartition of 2} is a dominance ordered set which is a

partially ordered set.
e M(A), A € Ais a set of standard tableaux of shape A.

Basis {C2, | s,t € M(\)}.

The anti-involution map *, where (C,)* = CL\.

The bipartitions of n =2 are:
A= (2):00)  so A=
Ao = ((1,1),(0) so X =2;
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A= ((1),(1)  so MY|=1
A=((0),(2)  so M=o
s = ((0),(1,1)) so A =0.

So A = {A1, A2, A3, Ay, A5} and the dominance order on the elements of A is as follows:
)\1D)\2|>)\3>)\4>)\5.

The standard A- tableauz are:

Ai-bitableau t; = ( ,@);

,@)

A3-bitableax t3 = (,),and S3 = (7 )Q

Ag-bitableau t4 = (@,);

\s-bitableau t; = (@,).

So we have: M(M) = {61}, M) = {ts}, M(As) = {tsss}, M(\) = {ta},
M(As) = {ts}.

!

Ao-bitableau to = <

=] fee]

Now we will construct the elements C2 = d*(s)myd(t) of the basis, where

my=ufzy, uf=[[_,(1+s51551i), =n=Tues,w, a= A

We have: ud =1, uf =1+s0, uy = (1+80)(1+ $15081).

Ty =14+s1, 2y, =1, zy,=1, z), =1+s, =z, =1. Therefore

my, = ugzx, = (14 50)(1 + s15081)(1 + s1);

my, = ug zx, = (1 + 50)(1 + 515081);

my, = Ui Ty, = (14 80);

T _ )
my, = Uy Ty, = 1+ 51;

= ugwy, = 1, and then

Coly, = d*(t1)my, d(t1) = Lmy, = my;
Ct)\;b =d (tQ)m/\2d(t2) = M),

Az .
Ct3t3 - m)\37
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Cp2, = Limy,si = (1 + so)s1;
Co%, = s1.my,.1 = s1(1+ sp);
C(S>\3383 = S1.My3.81 = 51(1 + S())Sl;
013)114‘64 = My,

Ct)\;% =Myy = 1.
Thus the cellular basis of R(Zy1.Ss) is

_ A1 A2 A3 A3 A3 A A4 A5
m - {Ct1t17 Ct2t27 Ct3t3? C C C ’ Ct4t47 Ct5t5}'

t3s3? “s3t3) s3s3?

Now we will find the ideals

A* = span{C% | s,t € M(p), it is a bipartition of 2, 1 > \}:
AM = span{CQ, };

A% = span{Cpy , Co%

AN = span{C't)‘lltl, Ot)\gzty Ct);,gty Ct)\gssy 08)\331237 Ces, b

AM = Span{C't’\lltl, 01?\221227 Ct/\ggtgv 01?\33537 CS>\33t3’ CS);,3537 01:);41:4};

As A1 A2 A3 A3 A3 A Aq As
A% = span{Cy,, Cix,, Cod,. C C Co Cotes O b

t3s3?’ “'s3t3? ~s3s3)

Note that A is an ideal in R(Zy1Ss) for all A € A and we have the following chain
of ideals:

AM C AN C AN C AM C AN = R(Z50 S).

Now we will find the cell (Specht) modules S* of R(Zy1S;), where
S* = span{C; | t is a standard A\ — bitableau}.

SM = span{Cy, }, where Cy, = d(t1)my, + AN = my ;

S* = span{Cy,} where Cy, = d(to)my, + A2 = my, + AX2;

S = span{Cy,, Cs, } where

Cy, = d(ts)my, + A% = my, + A%, Cy, = d(s3)my, + A = my, 51 + A%
SM = span{Cy,} where Cy, = d(ty)my, + AN = my, + A

5% = span{Cy,} where Cy, = d(ts)my, + A =14 Ads.






Chapter 3

The Decorated partial Brauer

algebra

The purpose of this chapter is to define a new algebra called the decorated partial
Brauer algebra, which is a unital associative algebra over a commutative ring R with
a basis of diagrams. These diagrams, which are called the decorated partial Brauer
diagrams, are the partial Brauer diagrams where each line and each isolated vertex
can be decorated.

We begin with defining the set of decorated partial Brauer partitions, which can be
represented by the decorated partial Brauer diagrams and find its size. Then in the
second section we define the decorated partial Brauer diagrams, identify them with
the decorated partial Brauer partitions, describe their multiplication and determine
the dimension of the algebra.

In the last section we define the symmetric partial Brauer algebra, which is a sub-
algebra of the partial Brauer algebra and then show a correspondence between the

decorated partial Brauer diagrams and the symmetric partial Brauer diagrams.

29
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3.1 Decorated partial (Brauer) partitions

From the set of partial partitions, which are defined in Definition 2.1.1, we will

construct a new set called a decorated partial (Brauer) partition.

Given P = {Py, P, ..., P} a partition of a finite set T, we put
PY:={P e P| |P|=d}.

Note that for P a partial partition P = P! U P2,

Definition 3.1.1. For a finite set T, a decorated partial (Brauer) partition of T is a
triple (P, F, G) with

(i) P=A{P,P,,..., } is a partial (Brauer) partition of 7.

(ii) F is an element of P(P?) (the power set of the set P?).

(iii) G is an element of P(P!) (the power set of the set P!).

The set of all decorated partial (Brauer) partitions of 7" is denoted DPBr, so
DPBr = {(P,F,G)| P € PBr, F e€P(P*, GeP(P)}.

Example 3.1.2. Let T = {1,2,3,4,5,6}. Then P = {{1,3},{2,5},{4},{6}} €
PBr.

Note that P = P? U P!, where P? = {{1,3},{2,5}} and P! = {{4},{6}}.

Consider F' = {{1,3}} € P(P?) and G = {{4},{6}} € P(P").

Then (P, F,G) € DPBr.

It will be helpful to illustrate the decorated partial Brauer partitions with a picture,
see Example 3.2.4. In the next section the decorated partial Brauer partitions will

be identified with diagrams.
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Lemma 3.1.3. For T finite,

|2

T
|DPBr|= > (|2k|> olTI=2k 9k () — 1)II.

k=0

where (2k — 1) = (2k — 1).(2k — 3) - -- 3.1 and k is the number of blocks of size two
i P € DPBr.

17|
Proof. Let PBL = {P € PBr| |P? =k}. So PBy = | |.%, PB% and,

Y
pPBr=|| || {(P.FG)| FeP(P?.GeP(P)}
L;J o
= U (@I ferr?) < PP}
L] o
= | |{(P.f)| PePBE feP(F)xPPHl.

Note that, since |P?| = k then |P!| = |T| — 2k and therefore |P(P?)| = 2F and
|P(PY)| = 2/71=2k Also, from Proposition 2.1.5, we have |PBE| = (‘27];‘)(214: — 1! So,

1121
|DPBr|=| | |{(P,f)| PePBf, fecP(P)xPP
k=0
5
=) |PBj|.2F 2T
k=0
1L

ITI\ ok o726
= 2% 2 2k — ). ]
> <2k, (2k = 1)

k=0

Note that |DPByr| depends on |T'|, for example the first few values are:

T |ol1]2/3[4] 5| 6 | 7 8
IDPBy| || 1]2]6|20]| 76| 312 | 1348 | 6512 | 32400

/

We are mainly interested in the case T'={1,...,n,1,... ,n/} = nUn  and we define

DPB, = DPB,, where
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DPB, = {(P,F,G)| P € PB,,F € P(P?) where P> = {P, € P | |P| =2} C P,
and G € P(P') where P* ={P; € P| |P;| =1} C P}.

3.2 Decorated partial Brauer diagrams

Definition 3.2.1. For n,m € N, let n:={1,...,n} and m’ :={1',... ,m'}.

An (n,m)-rectangle R is [0,1] x [0, 1], together with n + m labelled vertices which
is divided into two sets {1,...,n} and {l’,...,m'} of vertices, arranged (from left
to right) on the top row and the bottom row (respectively) in the frame OR of a
rectangle R (by a frame we mean the boundary of R). We also allow any number
of (unlabelled) isolated vertices in the interior (R) of a rectangle R, (by isolated
vertex we mean a distinguished vertex in R which does not lie on any edge), where

(R) = R\OR.

Note that we use a dash to indicate a vertex in the bottom row.

Definition 3.2.2. An (n,m)-decorated partial Brauer pseudo-diagram is an (n,m)-
rectangle R together with [ edges which are embeddings f; : [0,1] — R,i € {1,...,l}
such that

(L) fi(z) € (R) where 0 <z < 1.

(LQ) If fz(l’> € 0R, T e {0, 1} then fz(l') S ﬂUm’

(Ls) If fi(z) = f;(y), z,y € {0,1} and i # j then f;(z) € (R).

(Ly) If fi(x) = fi(y) = fu(2), z,y,z € {0,1} then at least two of i, j, k coincide.

(Ls) fi, f; are pairwise transversal (i.e. their tangent lines at their intersection point

are distinct).

13 7

With potential decorations, “o” and “[1” as follows:

¢

(1) Any number of the decorations “o” can appear anywhere on the edges but not

at their endpoints, or on any isolated vertex.
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(ii) The decoration “[J” can only appear in the following cases:
(D7) On isolated vertices which do not lie on any edges such that if an isolated
vertex is on R then there is at most one decoration.

(D3) The non-concurrent endpoints of edges which lie in the interior (R) can

have at most one decoration.

We write C'(n,m) for the set of decorated partial Brauer pseudo-diagrams, where n
is the number of labelled vertices in the top row and m is the number of labelled

vertices in the bottom row.

An example of a decorated partial Brauer pseudo-diagram:

Uw
OF 1
TN

}

Note that many connected components which can be formed by some of the embedded

edges f;, appear in the interior (R) of the (n,m)-pseudo-diagram and they do not
connect to the top and the bottom row of the rectangle frame. These connected

components will be called isolated components.

Now we will reduce a decorated partial Brauer pseudo-diagram to define a decorated

partial Brauer diagram as follows:

Definition 3.2.3. Consider a diagram d € C(n,m) such that it has no isolated

components and in addition

43 2

(i) Each edge that connects two labelled vertices has at most one decoration “o
(ii) There is no edge with an interior endpoint.
Such a diagram is called a decorated partial Brauer diagram. (See Figure 3.1). In such

a diagram undecorated (resp. decorated) lines which connect a vertex in the top row

with a vertex in the bottom row are called undecorated (resp. decorated) propagating
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\J/\e/
0 [ 7

Ficure 3.1: Example of a decorated partial Brauer diagram.

lines. Undecorated (resp. decorated) lines which connect vertices in the same row are
called undecorated (resp. decorated) arcs. Undecorated (resp. decorated) vertices on
the top row or on the bottom row on the rectangle frame R which are not incident

on an edge are called undecorated (resp. decorated) isolated vertices.

Note that the underlying diagram of a decorated partial Brauer diagram, by which
we mean the same diagram but with all decorations removed, is a partial Brauer

diagram.

In the following we will identify a decorated partial Brauer partition (P, F, G) (which

is defined in Definition 3.1.1) with a decorated partial Brauer diagram.

(I) A decorated partial Brauer partition (P, F, G) can be represented by a decorated

partial Brauer diagram as follows:

(a) Any part of size two {i, 7} € P containing vertices 7 and j is represented by
an edge joining the corresponding vertices labelled ¢ and j. If {i,j} € F

43

then put one “o” decoration on this edge.

(b) Each part of size one {i} € P is represented by an isolated vertex which

coincides with the vertex i on OR. If {i} € G then put “0O0” on this vertex.

Example 3.2.4. Let P = {{1,3},{2,1'},{4},{2'}}, F = {{1,3}} and G =
{{4},{2'}}. So the decorated partial Brauer partition (P, F, G) € DP By y can
be represented by the following diagram:

<+
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(IT) Each decorated partial Brauer diagram d represents a decorated partial Brauer

partition (P, F,G) € DP By, as follows:

(a) If two labelled vertices ¢ and j in a diagram d is connected by an edge then
i and j belong to the same part partition i.e. {i,j} € P. If this edge which

connects 7 and j is decorated with “o” decoration then {i,j} € PN F.

¢ 1s any labelled 1solated vertex imn nUm’ which does not lie on any edge
b) Ifii labelled isolated i " which d li d

then we have {i} € P. If this labelled isolated vertex is decorated with

“0J” then {i} € PNG.
]
- >T\

then d represents (P, F,G) = ({{1,2’}, {1,3'},{2}, {3} }, {{1,2'}}, {{2}}).

Example 3.2.5. Let

Note that from the above discussion the following can be deduced:

(i) A part of size two {i,j} € P (resp. in P and F) if and only if the labelled
vertices ¢ and j are connected by an edge (resp. decorated edge with one

decoration “o 7).

(ii) A part of size one {i} € P (resp. in P and G) if and only if i is a labelled iso-
lated vertex (resp. a labelled decorated isolated vertex with a single decoration

“07)innUm/.

Therefore we have the following.

Definition 3.2.6. We consider two diagrams d;, dy which represent decorated partial
Brauer partition equivalent and we write d; ~ ds if they represent the same decorated

partial Brauer partition.

So by decorated partition Brauer diagram we mean the equivalence class of a given

diagram.
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Definition 3.2.7. The set of decorated partial Brauer diagrams denoted by DPB(n, m)

is the set of all ~ equivalence classes of decorated partial Brauer diagrams.

Since a diagram is identified with its partition that means that there is a map from
the set of decorated partial Brauer diagrams to the set of decorated partial Brauer

partitions:

7 : DPB(n,m)—~3DP By
(3.1)
d— m(d)

where d is a decorated partial Brauer diagram and w(d) is the decorated partial
partition it represents.
For example:

Let

‘ O

So, m(dy) = m(dz) = ({{17 2} {21 {31 {1, 3" {{1, 2'} ), {{3}})7 and then

dy, dy are equivalent.

3.3 Multiplication of decorated partial Brauer di-

agrams

The method for multiplying decorated partial Brauer diagrams is given by concate-
nation. This is like multiplying partial Brauer diagrams with some additional rules
which handle the joining of decorated lines and decorated vertices (see Figure 3.2

which illustrate these rules).



CHAPTER 3. THE DECORATED PARTIAL BRAUER ALGEBRA 37

Let R be a commutative ring with identity, and ¢, d,, 0’, j1, i’ elements in R. We define

a multiplication of decorated partial Brauer diagrams as the map

P : DPB(n,m)x DPB(m,l) - RDPB(n,l)

as follows. Let d; € DPB(n,m), do € DPB(m,l) be diagrams. We define their
product dyd, as follows:

Place d; above ds and then identify the bottom of d; with the top of dsy in such a way
so that the vertex labelled 2’ in d; is identified with the vertex labelled x in dy. These
vertices will be referred to as a middle row of dyds. Note that this concatenation of
d; and dy gives us dids as an element of C'(n,l). To obtain dyds as an element of

RDPB(n,l) we use the following rules:

43 7

(1) If more than one decoration “o” appear on the same edge then they should be

cancelled in pairs according to the local cancellation (1) in Figure 3.2.

(2) Any undecorated or decorated edge with “o” that does not join two labelled
vertices from the top row or the bottom row of d;ds may contract to a (possibly

decorated) vertex. (See (2) in Figure 3.2.)

(3) Isolated components, which can appear in this multiplication, (see Figure 3.3
which illustrates such components) should be removed and replaced with pa-

rameters as follows:

(C1) Chains of edges in the middle row which do not connect to the top and

the bottom row of d;ds may form the following:

(i) undecorated (resp. decorated with a single decoration “o ) closed
loop, which is then replaced with parameter 9, (resp. ds).

(ii) undecorated (or decorated with a single decoration “o”) open string,
which is then replaced with a parameter ¢'.

(iii) undecorated (or decorated with a single decoration “o”) open string
with one side (resp. both sides) of its endpoints is decorated with
a single decoration “[J”, which is then replaced with a parameter p

(resp. ).
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(Cy) If two undecorated isolated vertices meet in the middle row so an undec-
orated isolated vertex is formed in the middle row which is then replaced

with a parameter §’.

(C3) If an undecorated isolated vertex meets a decorated isolated vertex with
“00” in the middle row then a decorated isolated vertex with “[1” is formed

which is then replaced with a parameter pu.

(Cy) If two decorated isolated vertices each of them is decorated with “[1” meet
in the middle row, they are replaced with a parameter y' (we call such a

feature two meeting squares).

(See Figure 3.3 which illustrates these isolated components with their parame-

ters.)

So the product of d; and dy is
didy = 6" 65 (&)™ i (u')" d

where dj is a decorated partial Brauer diagram obtained from the concatenation with
the isolated components deleted. Here, [ is the number of undecorated loops, the
number m is the number of decorated loops with “o”, the number n is the number of

7

undecorated open strings, decorated open strings with “o” or undecorated isolated
vertices, the number k£ is the number of squares, decorated or undecorated open
strings with square in one side of their endpoints and ¢ is the number of two meeting
squares, decorated or undecorated open strings with square in both sides of their
endpoints, that arise in the middle row.

(See Figure 3.4 for an illustrative example of the multiplication of two decorated

partial Brauer diagrams.)

Note that the multiplication of decorated partial Brauer diagrams produces a deco-
rated partial Brauer pseudo-diagram, which is then reduced to a decorated partial
Brauer diagram that by using the rules in Figure 3.2 and then removing the induced

isolated components.
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F1GURE 3.2: Rules in a product of two decorated partial Brauer diagrams.
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FIGURE 3.3: isolated components that may appear in the decorated partial Brauer
pseudo-diagram or in the middle row during the product of two decorated partial
Brauer diagrams.
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F1GURE 3.4: An example of the multiplication of decorated partial Brauer dia-

grams.
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In next step we show that this reduction is consistent (i.e. satisfies the diamond

condition [1]). First we will recall the diamond condition.

We consider the algebra A generated by indeterminate x4, ..., z,, subject to relations

w;=s; (1<j<m),

where each w; is a word in z1,...,z, and s; € K(zy,...,2,).

Definition 3.3.1. Given words u,v and a relation w; = s; we consider the linear
map

K(xy,...,z,) = K(x1,...,2,)

sending f = Auw;v + f' where A € K, and f’ is a linear combination of other words

different from uww;v, to g = Aus;v + f.
We call g the reduction of f with respect to u,v and the relation w; = s;.
We write f ~» g to indicate that g is a reduction of f for some w,v and w; = s;.

Definition 3.3.2. We say that two reductions of f, say f ~» g and f ~~ h, satisfy
the diamond condition if there exist sequences of reductions starting with ¢ and h,

which lead to the same element.

Pictorially.

In particular we are interested in this in the following two cases:

An owverlap ambiguity is a word which can be written as w;v and also as ww; for
some 7, j and some words u,v # 1, so that w; and w; overlap. There are reductions

f~ svand f~ us;j.
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An inclusion ambiguity is a word which can be written as w; and as uw;v for some
i # 7 and some u,v. There are reductions f ~- s; and f ~» us;w.

Example 3.3.3. For the relations 22 = x, y* = 1, yx = 1 — xy the ambiguities are:

(zz)r =z(xx), (yy)y=y(yy), (yy)r=y(yz), (yr)z=y(rx).

Does the diamond condition hold for these?

(xx)z ~> 22 ~ 2 and z(xx) ~ zx ~~> 2. Yes.

(yy)y ~ 1y =y and y(yy) ~ yl = y. Yes.

(yy)r ~ 1z =z and y(yr) ~ y(1 —2y) =y —yry =y — (y2)y ~y — (1 —ay)y =
xyy = x(yy) ~ x1 = z. Yes.

(yr)x ~ (1—zy)r = z—axyx ~ r—x(l—2xy) = zry ~ zy and y(xx) ~ yr ~ 1—xy.

No.

In the following Lemma we will show that the rules which are used in the product of

the decorated partial Brauer diagrams satisfy the diamond condition.

Lemma 3.3.4. Let d € C(n,m). Let x be any decorated edge with single decoration

o”ind, y and z be any decorated with single decoration “0)" (resp. undecorated)

1solated vertex in d. Pictorially:

We have the relations:

2 =1,

yr =1y = zy (which is defined if x and y are on the same edge),
zx = z = xz (which is defined if x and z are on the same edge),
yz =y = zy (which is defined if y and z are on the same vertex),

5=z

and their ambiguities are:
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Then the diamond condition holds for them.

Proof.

(xx)x ~> lx ~ x and z(xzx) ~ .1~ 2

(z2)y ~> Ly ~y and z(zy) ~ 1Y ~ Y

(xx)z ~> 1.z~ 2 and (x2) ~> T2~ 2

(yz)z ~ yz ~>y and ylar) ~yl~y

(ya)y ~ yy =y and y(zy) ~ yy = y*

(yz)z ~ yz ~~y and y(xz) ~ yz ~y

(z2)T ~ 22 ~> 2 and z2(zx) ~ 2.1~ 2

)y oy ey and a(zy) gy

(22)2 ~ 22 =2" =2 and 2(w2) w2z =22 =2 O

Now let pd be a decorated partial Brauer pseudo-diagram. Write pd ~» d’ to mean d’
is obtained from pd by applying one of the rules in Figure 3.2 or by removing one of

the isolated components in Figure 3.3. We have the following.

Proposition 3.3.5. For any pd there is a chain of relations “ ~~ 7 starting from

pd and ending in a (reduced) diagram with no isolated components and which has at
most one decoration on each line and on each isolated vertex. If there are multiple

such chains from pd, then every one ends in the same reduced diagram.

Proof. For any pd, there are three ways of reductions, that are: reduced the number
of the decorations “o” on lines (lines which have more than one decoration), contract

a line with one decorated (resp. undecorated) interior endpoint to a decorated (resp.
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undecorated) vertex, and remove an isolated component. Note that all these ways of
reductions are local in the sense that each single relation occurs on individual line,
also each isolated component is removed individually from its location. Therefore the
reduction of any pd diagram can be considered as the reduction of each of its individ-
ual lines. From Lemma 3.3.4 we have that the Diamond condition [1] is satisfied for
all sequences of relations on each line. Then after finishing the reduction on lines it
is easy to remove any isolated component. Note that having the Diamond condition
for our reduction ensures that any different such chain of the same pd should lead to

the same reduced diagram. O]

In the following we will show that the multiplication of decorated partial Brauer
diagrams is associative.

We first define some notations.

Notation.
Since we mainly interested in the set n Un/, we write DPB(n,n) = DPB(n).
Let i,j e nUn/, d € DPB(n), we write i ~g4 j if there is an edge that joins 7 to j in

the diagram d.

Let dy,d>, ds € DPB(TL)
We use c@ to denote the graph obtained by placing the diagram d; above the
diagram dy and then d;d, is c@ after multiplying d; with dy (i.e. the result of the

multiplication). Vertices on the top row of d/l\dg are labelled by 1,... n, vertices in
the middle row of c@ are labelled by 1’,...,n" and the vertices in the bottom row

of (@ are labelled by 1”,...,n".

The graph @, means that the diagram d; is stacked on top of the diagram d,
stacked on top of the diagram dj3.

Definition 3.3.6. Let i,5 € nUn'Un”, P be a path (chain of edges) in d/l\dg that
joins ¢ to 7.

We say that the path P in c@ is a lift of the edge i ~4,4, j and the edge © ~4,4, 7 is
a contraction of the path P. (NB: the edge i ~4,4, j is considered to be a path that

is a contraction and a lift of itself.)
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From the multiplication of decorated partial Brauer diagrams (which is by concate-

nation) the following can be deduced:

(I) For i,7 € nUn", we have i ~g4, j if and only if the edge i ~g4, j is a

contraction of a path in 0@

(II) Fori € n, i is an undecorated (resp. a decorated) isolated vertex in the top row
of didy if and only if i is an undecorated (resp. a decorated) isolated vertex
in the top row of d; or
there exists a path in c@ that joins 7 to an undecorated (resp. a decorated)

vertex in the middle row of c@

Similarly, for i € n/, i is an undecorated (resp. a decorated) isolated vertex in
the bottom row of dyds if and only if i is an undecorated (resp. a decorated)
isolated vertex in the bottom row of ds or

there exists a path in c@ that joins ¢ to an undecorated (resp. a decorated)

vertex in the middle row of c@

Proposition 3.3.7. The multiplication on the set DPB(n) is associative.

Proof. Let dy,ds,ds € DPB(n). We want to show the following:

(A) Fori,j e nUn” ,i~wana, j if and only if 4 ~g (g,a5) J-

(B) If i is an undecorated (resp. a decorated) isolated vertex in the top row of
(dyds)ds then it is also in the top row of d;(dads) and vice versa.

(C) If i is an undecorated (resp. a decorated) isolated vertex in the bottom row of
(dyds)ds then it is also in the bottom row of d;(dsd3) and vice versa.

(D) (didz)ds and d;(dsds3) have the same parameters.

Proof:

(A) Let i ~4,45)4, j then from (I) there is a path P in (mg which is a lift of the
edge i ~(4,d5)d; J- Each edge in the path P that lies in d;d; is in turn a contraction
of a path in c@

So we lift each such edge to a path in d/l@ to obtain a path ) which joins ¢ to j in

the graph dl/dg\dg Now we contract each subpath of ) that lies wholly in cg\dg to an
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o —

edge in dods. This gives a path R in d;(dsd3) that joins i to j. This implies that (by
using (I)) 4 ~a, (dsd5) 7 Which is a contraction of a path R.
Similarly (by using the same process) we can show that if ¢ ~g,(4,4,) j then we get

v ™ (didp)ds-

It remains to show that ¢ ~(4,4,)4, J and ¢ ~g,(4,45) J are both decorated or both
undecorated (i.e. @ ~(q,dp)q, J is decorated if and only if i ~g, (4,4,) J is decorated).
Let P be a path that joins 7 to j in the graph c@

Let z, y and z be the number of decorated edges which are in the path P and lie in
the diagram d;, ds, d3 respectively.

Let h (resp. h) be the number of subpaths of the path P that lie wholly in c@ (resp.
dads).

Let r;, 1 < i < h (resp. 7, 1 < i < 71) be the number of decorated edges in each
subpath p; (resp. p;) of the path P that lies wholly in c@ (resp. c@)

Let @ be a path in the graph (dl/d2\)d3 (where (a@lg is a diagram d;d, stacked on
top of the diagram d3) which is produced from a contraction of each subpath of the
path P that lies wholly in dyds.

Let R be a path in the graph dmg\dg) (where d@) is a diagram d; stacked on
top of the diagram dods) which is produced from a contraction of each subpath of
the path P that lies wholly in dods. Let s; € {0,1}, 1 < i < h (resp. §; € {0,1},
1 <1< B) be the number of the decoration on each edge which lies in the path
Q@ (resp. R) and in the diagram dydy (resp. dods), where these edges are in turn a
contraction of the subpaths p; (resp. p;).

Therefore, from the rule of the multiplication on DPB(n), we have

ri =s; (mod 2) and =38 (mod 2).

Now let A (resp. B) be the number of the decorated edges which lie in the path @
(resp. R) and in the diagram d;dy (resp. dads). So A+ z (resp. =+ B) is the number
of decorated edges in the path @ (resp. R).
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So we have
A:ZsiEZri:$+y (mod 2) and BzZs}EZFizy—l—z (mod 2).

Therefore,

A+z=(x+y)+z=c+(y+2)=x+B (mod 2).
This proves (A).

(B) Let ¢ be an undecorated (resp. a decorated) isolated vertex in the top row of
(dyds)ds then either

(i) ¢ is an undecorated (resp. a decorated) isolated vertex in the top row of dids, or
(ii) there exists a path P in (@3 that joins 7 to an undecorated (resp. decorated)

—_—

vertex in the middle row of (dyds)ds.

Assume (i) then there is either

(1) 7 is an undecorated (resp. a decorated) isolated vertex in the top row of d; then
(from (II)) ¢ is an undecorated (resp. a decorated) isolated vertex in the top row of
di(deds). Or

(2) there exists a path @ in did, that joins the vertex i to an undecorated (resp.
a decorated) vertex in the middle row of didy. From (I), each edge in the path @
which lies in d is a contraction of itself in 61/233 Therefore @ is a path is d@)
Consequently (by using (II)) ¢ in an undecorated (resp. a decorated) isolated vertex

in the top row of dy(dads).

Assume (ii). So each edge in the path P that lies in d;ds is in turn a contraction of
a path in c@ Then each such edge is lifted to a path in c@ This gives a path P
in the graph dl/dg\dg Now we contract each subpath of P that lies wholly in d/ggg to
an edge or isolated vertex in dsds. This produces a path in d@g\d?)) that joins ¢ to
an undecorated (resp. a decorated) vertex in the top row of dy which is a middle row
of d@) Therefore (from (II)) we have ¢ is an undecorated (resp. a decorated)
isolated vertex in the top row of d;(dad3).

Similarly By using the same process it can be shown that if ¢ is an undecorated

(resp. a decorated) isolated vertex in the top row of d;(dads) then also in the top
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row of (dydsy)ds.
This proves (B).

(C) The proof is similar as (B).

(D) There are the following cases:

(i) Let P be a not closed path in the graph m which does not connect to the
top row of d; nor the bottom row of ds.
Firstly, we will find the product (d;ds)ds.
Contract each subpath of P which lies wholly in c@ This produces a path
Q in (6@3 which does not connect to the top row of d;ds nor the bottom
row of d3, or (in the case when P lies wholly in c@) possibly produces an
undecorated isolated vertex in (@3 which does not lie on the top row of
dyds nor the bottom row of ds.
Therefore, in the result of the product (dids)ds the path @ (or the isolated

vertex) is removed and multiplied with a parameter §'.

Now we will find the product d;(dads).

Contract each subpath of P which lies wholly in CEE?, This gives a path R in
d@) which does not connect to the top row of d; nor the bottom row of
dads, or (in the case when P lies wholly in CEES) possibly gives an undecorated
isolated vertex in dﬁg\dg) which does not lie on the top row of d; nor the
bottom row of dyds.

Therefore, in the result of the product d;(dads), the path R or the isolated

vertex is removed and multiplied with a parameter ¢'.

Similarly if P is a path in m with one of its endpoint (resp. both of its
endpoints) is decorated with “0J”, so in the result of (dydy)d; and d; (dads) both

of them will multiply with a parameter p (resp. p').

(ii) Let P be a closed path in @, which does not connect to the top row of d; nor
the bottom row of ds (by closed path we mean its endpoints coincide together.
In other word, a closed path is a loop).

Let z,y, z be the number of decorated edges which are in the path P and lie in
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dy, ds, d3 respectively.

Let’s first find the product (dids)ds.

We contract each subpath of P which lies wholly in c@ So we obtain a closed
path Q in (didz)ds.

Let A be the number of decorated edges in the path @ which lies wholly in

dyds. Therefore, the number A + 2 of decorated edges in () satisfies
A+z=(r+y)+2z (mod?2).

(Note that the proof of this relation is as the proof in (A).)
If A+ zis even (resp. odd), then in the result of the multiplication of (dyds)ds
we remove a path ), which is an undecorated (resp. decorated) loop, and

multiply with a parameter 0 (resp. do).

Now we will find a product d(dads).

We contract each subpath of P which lies wholly in cgd\g Then we obtain a
closed path R in d@—g\d?))

Let B be the number of decorated edges in the path R which lies wholly in

dods. Therefore, the number x + B of decorated edges in R satisfies
r+B=x+(y+z (mod?2).

(The proof of this relation is as the proof in (A).)

If z + B is even (resp. odd), then in the result of the multiplication of d(dads)
we remove a path R, which is an undecorated (resp. decorated) loop, and
multiply with a parameter 0 (resp. do).

Since A+ z =z + B (mod 2), so the paths @) and R are both an undecorated

loop or both a decorated loop.

Therefore, in all cases the same multiplying parameters in both product (d;dy)d; and

d1(dyds) are obtained.

Hence, from A, B, C and D, we have (dyds)ds = d;(d2ds3). O
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The identity element for multiplication on decorated partial Brauer diagrams D P B(n)

is the identity element of the undecorated partial Brauer diagrams, I:

1 2’ (i—1) ¢ (+1) n'

Now we will give a definition of a decorated partial Brauer algebra.

Definition 3.3.8. (Decorated partial Brauer algebra) Let R be a commutative
ring with identity, d,0’,d., 4, ' € R and n a natural number. The decorated partial
Brauer algebra denoted by DP$B,,(d,d, do, 11, i1 is the free R-module with basis the
decorated partial Brauer diagrams D P B(n) and multiplication induced by the linear

extension of the product on decorated partial Brauer diagrams defined in 3.3.

Remark 3.3.9. Note that DP*B,(d,d, 0o, u, it') is an associative and unital R-

algebra by the previous results.

From Lemma 3.1.3 and equation 3.1 we have the following.
Proposition 3.3.10. The dimension of DPB,,(9, o, 0", pu, i) is:
=L (2
dim(DPB, (8,6, 6o, 1, ) = > ( ") 92n=209L(9] — 1)
1=0

where | is the number of edges in the diagram.

Lemma 3.3.11. The decorated partial Brauer algebra, DP*B,,, is generated by the

diagrams s;, e;, 1 <1 <n—1 and g;, pi, ¢;, 1 <1 <n, where

i i+ 1 1

SZ: oo >< . e ) gZ

i GG+ i’

q

€; =

)

i’ (i+1)
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Di

I
=
=

I

Proof. We first recall that the partial Brauer algebra, P®B,,, is generated by the

~0 0-

diagrams s;, €; for 1 <7 <n —1and p; for 1 <1i <n (section 2.4 in [8], proposition

20 in [15]).

Also, from the definition of decorated partial Brauer diagram, we observe that the
decorated partial Brauer diagram is a partial Brauer diagram with potential decora-

tion on any edge or any isolated vertex.

A proof goes by induction on the number of the decorations of any diagram d €

DPB(n).

Let d be any decorated partial Brauer diagram. If d has no decoration then d is a
partial Brauer diagram and the result follows.

Now, suppose that d has at least one decoration. We distinguish two cases:

Case I: Let d has a decorated edge {i,j} (say), i,j € nUn’ are the endpoints of the
edge {i,7}. So the diagram d can be decomposed to a product d = g;b = bg; that
if {i,7} is a decorated propagating line or d = g;b = g;b (resp. d = bg; = bg;)
if {i,7} is a decorated arc in the top row (resp. bottom row) of d, where b is
the diagram d with the decoration on the edge {i,j} removed (i.e. b is d with

strictly one less decoration).

Case II: Let d has a decorated isolated vertex i (say) in the top row (resp. bottom
row) of d, 1 < i < n. Then the diagram d can be decomposed to a product
d = gc (resp. d = cq;), where ¢ is a diagram d with the decoration on the

vertex i removed (i.e. ¢ is d with strictly one less decoration).

Consequently, from Cases I and II and by induction, any decorated partial Brauer
diagram with any number of decorations is a product of the diagrams g¢;, ¢, p;,

1<i<nands;,e,1<i<n-—1. O
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3.4 The Left-Right symmetric partial Brauer al-
gebra

In this section we will define a subalgebra of the partial Brauer algebra P%B,, (9, '),

called the Symmetric partial Brauer algebra, spanned by partial Brauer diagrams

that are symmetric. Then we will demonstrate a correspondence between the set of

decorated partial Brauer diagrams and the set of symmetric partial Brauer diagrams.

Definition 3.4.1. We say D; is a symmetric diagram if when D; is reflected about

its central vertical axis the same diagram is obtained.

Definition 3.4.2. The set of left-right symmetric partial Brauer diagrams, denoted
by SPB(2n), is the set of partial Brauer diagrams which are symmetric.

An example of a symmetric partial Brauer diagram is

Lemma 3.4.3. The set SPB(2n) spans a subalgebra of PBs,(0,d"), denoted by
SPBsy,,(9,0").

Proof. Firstly, note that the identity element of PB(2n) is a symmetric diagram so
it belongs to SPB(2n).

The multiplication of two diagrams d; and dy in SPB(2n) is, as in PB(2n), given
by concatenation. In this concatenation, by concatenating arcs from bottom row of
dy with arcs from top row of ds, some symmetric chains of lines form in the middle

row of dids. These symmetric chains may introduce the following:

1. Some of these chains may join pairs in the top row of d; or pairs in the bottom
row of dy or vertices from top of d; with vertices from bottom of ds, these new

lines will be symmetric since they are introduced from symmetric chains.
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2. Some of them may only join with the top of d; (resp. the bottom of dy) which
introduce symmetric isolated vertices in the top row of d; (resp. the bottom

row of dy).

3. Some of these chains which do not connect to the top row of d; nor the bottom
row of dy form symmetric closed loops or open strings in the middle row which

are removed.

Also, from this concatenation, some symmetric isolated vertices may appear in the
middle row which form from meeting two isolated vertices, these isolated vertices are
also removed.

Therefore the diagram obtained after removing the middle row with connected com-
ponents (closed loops, open strings or isolated vertices) consists of arcs and isolated
vertices from the top row of d;, arcs and isolated vertices from the bottom row of
dy and new symmetric lines, isolated vertices which produced by the concatenation
so this diagram is in SPB(2n) meaning that the set of SPB(2n) diagrams is closed

under multiplication. O

Definition 3.4.4. Let R be a commutative ring with identity, §,0" € R, n a nat-
ural number. The left-right symmetric partial Brauer algebra SPBs,(0,9'), is an
associative unital subalgebra of the partial Brauer algebra with a basis consisting of

symmetric partial Brauer diagrams.

In the following a process will be introduced to get a decorated partial Brauer diagram

from a symmetric partial Brauer diagram and vice versa.

A decorated partial Brauer diagram can be obtained from a symmetric partial Brauer
diagram as follows:

First draw the symmetric partial Brauer diagram so that there is a vertical axis of
symmetry between the points n and n 4+ 1. Draw it so no more than two lines are
concurrent at any point. Also note that arcs do not just touch as this would violate

condition (Ls) in the Definition 3.2.2.

Example 3.4.5. >< is a symmetric diagram which is redrawn

so that there is a same vertical axis of symmetry in the middle.
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Now consider the left half of symmetric diagram after cutting along the axis of sym-

metry then

(f1) Lines crossing the axis which do not cross any other lines on the axis have a
square “[J” placed on the point on the axis. These lines are then contracted

with their square.

(f2) For pairs of lines that intersect on the vertical axis of symmetric decorate this
point with “o”. This line can then be moved with the decoration “o” to form

a decorated edge.

Example

: il
s

This process defines a map f : SPB(2n) — DPB(n).

Also, a decorated partial Brauer diagram can be deformed to get a symmetric partial
Brauer diagram by following steps:

(1) Deform the (both types of) decorations to touch the east wall of the rectangle.
(2) Take a reflection of the deformed diagram about the east wall.

(3) Remove the decoration from any line.
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This process defines a map g : DPB(n) — SPB(2n).

Clearly, from the definitions of f and ¢ they are the inverse of each other as bijection.

Therefore the following is obtained.

Proposition 3.4.6. There is a bijection between the set of symmetric partial Brauer

diagrams SPB(2n) and the set of decorated partial Brauer diagrams DPB(n).



Chapter 4

The decorated partial Brauer

algebra is cellular

This chapter is devoted to establishing the cellularity of the decorated partial Brauer
algebra. The main result in this chapter is Theorem 4.5.1 which shows that DP®B,, is
cellular. To prove this theorem, we apply Theorem 4.1.2 given by Green and Paget,
which exhibits an algebra as an iterated inflation of existing cellular algebras which
implies the cellularity of the algebra (Proposition 3.4 in [12]). For more details about
iterated inflation we refer to [12], [14]. The second main result in this chapter is
Theorem 4.7.1 which gives an indexing set of simple modules of the decorated partial
Brauer algebra. Throughout this chapter, K is a field and, unless otherwise stated,

all tensors are over K.

4.1 Xi’s Lemma

In [21] Xi’s gave the following Lemma to provide a characterisation of iterated infla-

tion of cellular algebras.

%)
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Lemma 4.1.1. [21, Lemma 3.3]. Let K be a field, A a K-algebra with an involution

1. Suppose there is a vector space decomposition

AZ@VJ-@)KV]'@KBJ'

j=1

where V; is a vector space and B; is a cellular algebra with respect to an involution o;
and a cell chain Jl(j) C---C Js(j) = B, for each j. Define J; = @;:1 V;®KkV; @k Bj.
Assume that the restriction of i on V;®@k V; @k B; is given by w@vRb — v@w®o;(b).
If for each j there is a bilinear form ¢; : V; @k V; — B; such that 0j(¢;(w,v)) =
¢j(v,w) for all w,v € V; and the multiplication of two elements in V; @k V; @k Bj

is governed by ¢; modulo J;_y, that is, for z,y,u,v € V; and b,c € B;, we have
(@Y (LRVRCc) =120 bp,(y,u)c

modulo the ideal J;_1, and if V; ® V; ® Jl(j) + Ji_1 is an ideal in A for all I and j,

then A is a cellular algebra.

Recently (in 2018) Green and Paget showed that this lemma is incorrect and they

present the following replacement for Xi’s lemma.

Theorem 4.1.2. [7, Theorem 1] Let A be a K-algebra, with an anti-involution o.
Suppose that we have, up to isomorphism of K-vector spaces, a K-vector space de-
composition

Ag@W®KBi®KW

el
of A, where I is a finite partially ordered set, each V; is a K-vector space, and each
B; is a cellular algebra over K with respect to an anti-involution o; and cellular data
(Ai, M;,C ;). We shall henceforth consider A to be identified with this direct sum
of tensor products.

Suppose that for each i € I, we have basis V; for V; and a basis B; for B; such that:

1. For each i € I, we have for any u,v € V; and any b € B; that

c(u®@b®v)=1v® 0;(b) ®u.
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2. Let A be the basis of A consisting of all elements u @b v for all u,v € V; and
allb € B; as i ranges over I. Then for any i € I we have maps ¢; : AxV; — V;
and 0; : A xV; = B; such that for any u,v € V; and any b € B;, we have for
any a € A that

a.(u®bv) = ¢i(a,u) ®;(a,u)b®v (mod J(< 1))
where J(< i) =@, Vi® Bio V.
Then A is cellular with respect to o and the cellular data (A, M, C, o), where
o A is the set {(i,\) : 1 € [ and X € \;} with the partial order defined by setting

LN < Gow) ifi<i  and  (i,A) < (i) if A < p

(that is, lexicographic order);
o for (i,A\) € A, M(i,\) is V; x M;(\);

o for (i,A\) € A and (2, X),(y,Y) € M(i,\), let
i
Cly ) =% ® Cky ®.

Green and Paget mention that we may use any bases of the cellular algebras B; to

check the conditions of Theorem 4.1.2: we need not use the cellular bases of the B;.

Proposition 4.1.3. [7, Proposition 2] Let A be an algebra satisfying the hypotheses
of Theorem 4.1.2. Then the multiplication in each layer of A is governed by a bilinear
form as in Xi’s lemma: for each i € I there is a unique B;-valued K -bilinear form 1;
on V; such that for any u,v,x,y € V; and b,c € B;, we have ¥;(y,u) = o;(;(u,y))
and

(2RcRyY)(uRbRv) =2 c(y,u)b®@v  (mod J(< 7).

Proposition 4.1.4. [7, Proposition 3] Let A be as in Theorem 4.1.2, let (i, \) € A,
and let A* be the cell module of B; corresponding to \. The cell module AWM of A
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may be obtained by equipping V; @ AN with the action given, for a € A, v € V; and
2 € AN by
a(zx ® z) = ¢i(a, z) ® 0;(a, x)z.

4.2 The group algebra K :S*vn

Let S’; be the set of decorated partial Brauer diagrams which only have propagating
lines and do not have any isolated vertices. Then S, C DPB(n) with multiplication
induced from the multiplication in the decorated partial Brauer algebra and has
the same identity element as the decorated partial Brauer which is the undecorated
partial Brauer diagram with n propagating lines. In the following we will show that

—~

S, forms a group.

Proposition 4.2.1. The set g; 15 closed under the multiplication induced by

DPB,.(6,00,0, u, 1), and forms a group.

Proof. Let dy,dy € :SZ Firstly we want to show that dids € :5‘;

Since d; and dy have no arcs nor isolated vertices in the top row nor the bottom row,
there are no chains formed in the middle row of dyd,, therefore it is not possible to
have any arc or isolated vertex in the top row nor the bottom row of d;d,. Further-
more there are no isolated component that can be produced in this product. So the
resulting diagram d;ds has only propagating lines.

Since the identity element of DPB(n) is an undecorated partial Brauer diagram with

n propagating lines then idppp(n) € Sn.

Now let d € 5’; and d be the diagram obtained from d by reflecting d around its
central horizontal axis, so d € S, (since the reflecting does not change the number of
propagating lines). Let e be a decorated (resp. undecorated) propagating line joining
i to 5" in d, then it corresponds to a decorated (resp. undecorated) propagating line ¢’
which joins j to i in d. By concatenating d, d (resp. d, d) we will get an undecorated

propagating line ee’ (resp. €e) joining i to ¢ in dd (resp. joining j to j in dd),
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i,7 € {1,...,n}, meaning that dd = dd = idg-. Thus d is the inverse element of d.

Therefore 5; is a group. O

As a consequence of previous proposition, we have the following.

Corollary 4.2.2. The group algebra KS, is a subalgebra of DP*B,, (9, o, ', 1, 1t').

Next we will show that :S’Vn is isomorphic to the wreath product group Zs S,.

Proposition 4.2.3. There is an isomorphism between /S; and Zs S, where S, is

the symmetric group and Zo = {0, 1}.

Proof. Let ¢ : S, = 71 S, be a map defined by ¢(d) = (f,7), d € g;, where 7

is an undecorated (underlying) permutation of d, f € Z% and ‘" entries of f are

_ 0 if (¢,9m) is undecorated,
fi) = N
1 if (4,4m) 1is decorated.

Now let ¢(dy) = (f1,m1), ¢(d2) = (f2,m2), we want to show that

¢(didz) = ¢(d1)p(do).

From Definition 2.3.1, we have ¢(dy)¢(dz) = (f1,m1).(f2, m2) = (fi + 5, f2, mim2).

Let ¢(dids) = (g,7’), where 7’ is the product of the underlying permutations of d;

and dy. So 7’ = m.m9, it remains to prove that g = f; + = 2. We have

o

. if (i,27’") is undecorated,
9(i) =

—_

if (i,in") 1is decorated.

0 if (4,im) is undecorated,
1 if (4,4m) is decorated.

and

. 0 if (im,imme) is undecorated,
7r1f2 = fQ(MT1> =

1 if (imy,immy) is decorated.

Observe that if the propagating lines (i,im) and (im,imms) are both decorated or

undecorated so the propagating line (i,imm3) will be undecorated, meaning that

f1(0) + folim) = 0 = g(i) if f1(i) = fa(im).



CHAPTER 4. THE DECORATED PARTIAL BRAUER ALGEBRA IS
60 CELLULAR

If one of the propagating lines (i,im;) and (im,im my) is decorated and the other

undecorated therefore the propagating line (7, imm2) will be decorated, that means if

f1(2) # fa(imy) so fi(i) + fa(im) =1 = g(i). Then
9(i) = (fi + 7, [2) (1) = f1(1) + fa(imi).

Therefore ¢ is homomorphism.

Now we want to show that ¢ is bijective.

Note that

Ker ¢ = {d € S, | ¢(d) = idzyus,} = {d € S, | (f,7) = (0,ids,)}.

Clearly ¢(idg-) = (0,ids,). If ¢(d) = (0,ids,), d € S,, then the underlying diagram
of d is the identity diagram of S,, and the 0 = (0,0,...,0) tells us that none of the

lines are decorated. Therefore d = idg-. Then Ker ¢ = idg and hence ¢ is injective.

Note that the set SZ is the set of symmetric group diagrams such that each propa-

gating line can be decorated so we have:
1S,] = 27|18, | = 2".n! = |Zx1 S,

Therefore ¢ is bijective and hence ¢ is an isomorphism. O

4.3 The K-vector space V]

Definition 4.3.1. A decorated partial Brauer half diagram is a diagram with one
row of n vertices labelled 1,...,n consisting of k& decorated or undecorated arcs,
[ non-crossing undecorated propagating lines starting from points on this row to-
wards points of infinity and the remaining n — (2k + 1) points are decorated or un-

decorated isolated vertices (vertices which are not connected to any edge), where

ke{0,..., (2]} 1€{0,. .. n}.
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Let hy(DPB(n)) denote the set of decorated partial Brauer lower half diagrams with

[ non-crossing undecorated propagating lines and V; denote the K-vector space whose

basis is h(DPB(n)).

Lemma 4.3.2.

L
h(DPB(n))| = )

2]
k=0

n—2k n! on—(1+2k)
l (n — 2k)k!

Proof. To draw k arcs in n vertices, firstly choose 2k vertices from n to be the

") ways for a fixed k. Then choose two vertices

endpoints of the k arcs. This gives (2,€

of 2k to be an arc. l.e. to draw an arc, pick a vertex from 2k and join it with a
randomly chosen vertex. For each choice we get two vertices less to choose from. So
there are (2k — 1) choices for the first arc, (2k — 3) choices for the second and so on.

Therefore the number of possibilities for drawing k arcs between n vertices is

n n n! 2k)! n!
(Qk)(2k—4><2k—3)"‘31:: <2k>(2k_1)”::(Qk)Kn——Zk)!gk;!::2k01——2kﬂkf

Now choose [ vertices from n — 2k to be propagating lines therefore, for fixed I,

n—2k nt mp partial Brauer half diagrams with £ arcs and [ non-crossing

there are( . )W

propagating lines. The remaining n — 2k — [ vertices represent isolated vertices. Since
in the decorated partial Brauer half diagrams each arc and each isolated vertex can

be decorated but not the propagating lines then there are

n — 2]’{: n' 2k2n—2k—l _ n— 2]{: TL' 2n—2k—l
I )22k — )& I ) 2k — 1R

decorated partial Brauer half diagrams with [ propagating lines. Take the sum over
ke{o,..., L”T_ZJ} to get the all decorated partial Brauer half diagrams with fixed /

non-crossing undecorated propagating lines. O

4.4 An inflation of Kg’l along V;

We first recall the definition of an inflation.
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Definition 4.4.1. [14, Definition 3.1]. Given a K-algebra B, a K-vector space V,
and a bilinear form ¢ : V®V — B with values in B, we define an associative algebra
(possibly without unit) A = A(B,V, ) as follows: as a K-vector space, A equals
V ®V ® B. The multiplication is defined on basis elements as follows:

(a@bRr).(cRdRy) =a®d® xpb,c)y.

We need an additional property, namely an involution on A: assume there is an
involution ¢ on B. Assume moreover, that ¢ satisfies o(p(v,w)) = ¢@(w,v). Then
we can define an involution i on A by putting i(a ® b®@ ) =b® a @ o(z).

This definition makes A into an associative K-algebra (possibly without unit), and i

is an involutory anti-automorphism of A. We call A an inflation of B along V.

If V has dimension one and the image of ¢ contains the unit element of B, then
A clearly isomorphic to B. Otherwise, A need not have a unit element, but it may

contain idempotents.

The involution on DPB,, (4, ., ', i, 1') is described in the following lemma.

Lemma 4.4.2. The map i : DPB,(0,8, 00, p, 1t') — DPB,(6,0", 00, i, 1) which
sends the diagram d to the diagram i(d) which is the reflection of the diagram d

upside down, extended linearly to the whole algebra is an anti-involution.

Proof. Clearly i? =id (see for example figure 1). Tt remains to show that i(d,dy) =
i(dy)i(dy) for all dy,ds € DPB(n). However, this follows immediately from the way
the product is defined in DPB,,(6, ¢, 0o, i1, 1) (see for example figure 2). ]

[
" \6?/ s /67\4& s \QV
Ll N

FIGURE 4.1: The involution map i.

Definition 4.4.3. For d a decorated partial Brauer diagram let #(d) denote the

number of propagating lines (decorated or undecorated).
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e e = dydy = i(dydy),
dy = \[ O J 2
PN
and

TN

~—
i(dy) = /i ——
/;K = = i(da)i(d)-

FIGURE 4.2: The map i is an anti-involution.

Note that the multiplication of decorated partial Brauer diagrams cannot increase

the number of propagating lines, so we have the following fact:

Lemma 4.4.4. For d,,dy € DPB(n)

#(didz) < min{#(d1), #(d2)}-

Now let J; be a K-vector space spanned by all decorated partial Brauer diagrams

with at most [ propagating lines, [ € {0,1,...,n}.

Lemma 4.4.5. J; is a two-sided ideal in DPB, (6,0, 0o, i1, 1t').

Proof. Let d € DPB(n) and d' € J;, we have #(d') < [ so #(dd'),#(d'd) <
min{#(d), #(d')} < I. Therefore dd’" and d'd € J; so J; is a two-sided ideal in
DPB,. (6,0, 00, i1, 1t'). ]

Therefore we have a filtration of the decorated partial Brauer algebra by the two-sided

ideals J;:

0CJCJiClC - CdyoCdJy1CdJdy=DPB,(0,d,00, 1, 1)
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and each quotient J; /J;_; is spanned by the decorated partial Brauer diagrams with

[ propagating lines.

In the following lemmas we will show that the quotient .J; /J;_; is isomorphic to the

algebra (V) @ V, ® KS,ie. Ji,/ Ji_1 is an inflation of KS, along V.

Lemma 4.4.6. For a fixed I, let B; denote the K-algebra B; = J;/J;_1. There is a

bijective K -vector space homomorphism between By and i(V)) @ V; ® Kg’l.

Proof. Note that B; has basis of decorated partial Brauer diagrams with [ propagating
lines and i(V;) @ V;@ K S, has basis the set {i(z)@y®7 | z,y € hy(DPB(n)), ™ € S,}.
Define amap v : B, = (V) @ V, ® Kg’l as follows:

Let d be a diagram in B; so d consists of an element i(z) (top half of d) where
x € hy(DPB(n)), an element y € h(DPB(n)) (bottom half of d) and an element
wa = (f,04) € §z7 where f € Z% and o4 € S}, (S; is symmetric group), which is
defined as follows: renumber the top endpoints of the propagating lines in d from left
to right as 1,...,[ and their bottom endpoints as 1’,...,!’ from left to right. Then
put o4(i) = j" if there is a propagating line in d that joins ¢ with j’, meaning that
{i,5'} € d. The i*" entry of f is 0 if this propagating line is undecorated and 1 if it
is decorated. This determines an element 7y = (f, 04) € §l Since i(z),y and 74 are
uniquely determined by d so d gives a unique element i(z) @y @y € i(V)) @V, @ K S,.
We therefore have a well-defined map 1, which send a basis element of B; to basis
element of i(V}) ® V; ® KS), ¥(d) = i(z) ® y ® 74 extended linearly to the whole
algebra B;.

Now we check that 1 is a bijection.
Let d = ¥;)\;d; € B; where d; is a diagram (basis element) in B;, A\; € K such that

¥(d) =0. So

0 =o(d) = (E;A;d;)
= X, \(d;) (as 1 is linear)

= 2\ (i(r5) ® y; @ 7)),
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But the set {i(z)@y®7 | 2,y € h(DPB(n)), = € 9} is a basis of i(V}) @V, ® K 5,
meaning that it is linearly independent. Therefore A\; = 0 for all j. So d = 0 and

then Ker v = 0. Hence 1 is one-to-one.

We now show that v is onto.

Let u,v € hy(DPB(n)) so each of them has [ non-crossing undecorated propagating
lines. We produce a diagram d by taking i(u), v and joining up the propagating lines
to reproduce permutation o and decorate propagating lines according to the value
of f. L.e. the diagram d when we ignore all non-propagating lines and decorations
produces the permutation o and the j** propagating line has a decoration if and only

if f(j) = 1. It is clear that ¥(d) = i(u) ® v ® (f,0) so 9 is onto.

Then the K-linear extension of the map ¢ to all of B; is a K-vector space isomor-
phism. O
In order to give a multiplication structure on i(V}) ® V; ® K gl, we need to define the

K-bilinear form ;.

Definition 4.4.7. We will construct the bilinear form
v Vi®i(V) = KS

(where K Sy is interpreted to be K) as follows:
Let © € ly(DPB(n)), y € i(h(DPB(n))) be half diagrams on n vertices (labelled
1,...,n). Construct our zy by identifying the labelled vertices of = with the labelled

vertices of y so we will get a graph (I" say) which consists of:

(i) Decorated or undecorated isolated vertices which are not connected to any edge.

(ii) Decorated or undecorated paths where a path is a sequence of connected (dec-
orated or undecorated) edges aj, as, . .., @y, these edges may be arcs or propa-

gating lines.

There are five types of paths which may be formed in I':
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1. A decorated or undecorated path which form a (decorated or undecorated)

closed loop, (note that this path has no propagating lines).

2. A decorated or undecorated path which has no propagating lines (i.e. a; and

a,, are both arcs) and does not form a closed loop.

3. A decorated or undecorated path which has one propagating line (i.e. a; or a,,

is a propagating line.

4. A decorated or undecorated path that begins and ends with propagating lines
both of them are in z or in y (i.e. ay,a,, € x (or aj,a,, € y) are propagating

lines).

5. A decorated or undecorated path which begins and ends with propagating lines
one of them in x and the other in y (i.e. a; and a,, are propagating lines,

a; € x, a, €y (or ay € y,a,, € )).
Now we will define ¢; as follows:

(I) If the graph I' has any paths of type 3 or 4 then ¢;(x,y) = 0. (Note that in this

case the number of propagating lines in zy is less than [.)

(IT) If the graph I' has only isolated vertices and paths of type 1 or 2 or 5, then
pi(w,y) = 0° (") 68 p(u)" m

where the scalars 9,0, 0., i, pi’ e, 0, p, q,r are as defined in the multiplication of
decorated partial Brauer diagrams, 7 = (f,0) € S, is defined as follows:

Since we have basis elements = and y, we can form the elements z; := i(z)®z®id
and 2, = y ®i(y) ®id in i(V}) ® V; ® KS;. The product 2z, is of the form
i(x) ®i(y) ® @i(z,y) and in B

Oz (22) = 6% (87)° 08 pd ()" !

where d’ € B; consists of the top of ¥~!(z;) (i.e. i(x)), the bottom of ¥~ (zy)
(i.e. i(y)) (note that as we only have paths of type 1,2 or 5 s0 # (11 (21)¢ " (2)) =
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#d' = I, consequently the top of ©"!(21) and the bottom of ¥~ (2;) won’t be

~ |
changed) and a permutation 7 = (f,o) € S;, where o = ,

lo -+ lo
1 <---<i<--- <[ are the endpoints of propagating lines of the bottom of

¥71(21) (i.e. x), io’s are the endpoints of the propagating lines of the top of

™ H(z) (i.e. y) and f € Z% has value 1 or 0 according to whether (i,i0) is

decorated or not.

Then extend ¢; linearly to the whole vector space V; ® i(V}).

The following example illustrates the computing of ¢;(z,y) in case I1.

Example 4.4.8. Let

'~ 7y | € hy(DPB(10))

Yy w I Qez‘(hg(DPB(lo)j)

Yl (i(z) @ 7 ®id) =
Yy ®i(y) ®id) = P

so ™= ((1,0),(12)) and then ¢;(z,y) = om

= dd

Lemma 4.4.9. For a fized [, let By denote the K-algebra B; = J;,/J;_1, then By is

isomorphic (as a K-algebra) to an inflation i(V}) @V, @ K S;, where the multiplication

ini(V) @V, KS, is given by

(a@bez)(c@dey)=a®d®rp(b )y

for a,c € i(h(DPB(n))), b,d € hy(DPB(n)) and z,y € Sy, which is the set of

decorated partial Brauer diagrams having only | propagating lines.
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Proof. From Lemma 4.4.6 we have seen that the map ¢ : B; — (V) @ V, ® Kgl is a
K-vector space isomorphism. To show that ¢ is a K-algebra isomorphism, it remains

to show that
1/J(d1d2) = ¢(d1)¢(d2)~

Let dy, dy € By, ¥(dy) = a®b@m and ¢(ds) = c®d®m, where a, ¢ € i(h(DPB(n))),
b, d € hy(DPB(n)), m = (f1,01), m = (f2,02) € . So

Y(d1)Y(dz) = a @ d @ mp(b, ). (*)

We have the following cases:

Case 1: If #dyds < [ meaning that didy € J;_1 so dyds = 0 in B; and then ¢(dydy) = 0.
Also #dids < | means there is a path of type 3 or 4 formed in the middle row of d;ds
so in this case we have ¢;(b, ¢) = 0. Therefore 1(didy) = 0 = ¥(dy)Y(da).

Case 2: If #d;dy = [, meaning that in the product d;dy each vertex i, where 1 <7 </
are the endpoints of propagating lines on the top half diagram of d; (i.e. in a), joins
to zoy, 1 < zoy < [ are the endpoints of propagating lines on the bottom half diagram
of dy (i.e. in d). Then, from the multiplication method of decorated partial Brauer

diagrams, we have
didy = 6° (8")° 05 p? ()" ds (%)

where the scalars 0,0, 0o, i, i/, €,0,p,q,r are as defined in the multiplication of dec-
orated partial Brauer diagrams which are formed from the paths in the middle row

of didy, and d3 € By consists of the top of d; (i.e. a), the bottom of dy (i.e. d) and

~ 1 .. ]
m=1(g,7) € S;, where v = € S}, g € ZY has value 1 or 0 according

1/y DY l’y
to (7,1v) is decorated or not, so

Y(ds) =a®d® .

Note that since 7 joins to zos in dyds that means iy = zo,.

Also in this case since 7 joins to iy in dy and zog joins to z in ds so i07 joins to z
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in the middle row of dyds (i.e. in the graph I'). As all propagating lines match up in
the graph I', so no paths of type 3 or 4.

Put @b, ¢) = 6°(6")08pu (u')" 7'

Note that since ¢;(b, ¢) is formed from the bottom row of d; and the top row of ds
so the paths formed in it are the same paths that are formed in the middle row of

dydy therefore ¢;(b, c) has the same scalars as in (xx). Now we want to show that

~ 10'1 s lOl
7w = mn'm, where ©' = (f',0') € S}, o' = € Sy and f' € ZY
loyo’ --- loyo!

has value 1 or 0 according to whether (ioy,i010") is decorated or not. From (x) we

have
B(d)b(dy) = 5800 (1 0 @ d & o',
where
mn'my = (fi,00)(f', 0")(f2, 02)
= (fi+ . [ 010")(f2, 02)
=i+, + 5o f2,010'02),
and

(fi+ o [+ oo f2) (1) = f1(i) + f'(i01) + falioro’), 1<i<l

Note that vertex i joins to oy in dy and io; joins to z (where 1 < z < [ are the
endpoint of propagating lines in ¢) in the middle row of dydy but (by ¢’) iy joins to
to10’, this implies that z = ioy0’. Also, since in dy the vertex z joins to zo, = i010' 09
implying that i joins to io10’0y in didy, but (by ) i joins to iy therefore v = 010’ 0.

Also we have the following:

e If the three lines (i,i04), (i01,i010") and (io10’,i010'05) are all undecorated or
two of them are decorated and the third is undecorated then the line (i, i010'09) =

(i,47v) will be undecorated so f1(i) + f'(io1) + fa(io10’) = 0 = g(7).

e If the three lines (i,i01), (i01,i010") and (io10’, i010'09) are all decorated or two

of them are undecorated and the third is decorated then the line (i,ic10'09) =
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(1,77) will be decorated so fi(i) + f'(ioy) + fao(ioro’) =1 = g(i).
Then
fl +01f/+0'10’f2 =g
Therefore m7'my = m. Hence in this case we also have ¢(didy) = ¥(dy)Y(dz). O
Let DPB!(n) denote the set of decorated partial Brauer diagrams with [ propagating
lines. We have the following.
Proposition 4.4.10.
125t 2
n — 2k n!
DPB'(n)| = ——————on= (k) ) olj1,
| ()] (Z ( z )(n—%)!k!

k=0

Proof. Since (from Lemma 4.4.6) B, isomorphic to i(V;) ® V; ® K S, then

|DPB'(n)| = |i(h(DPB(n)))|.|l(DPB(n))].|S|

= [(DPB(n))*.|S)| (as [i(la(DPB(n)))| = [h(DPB(n))|)
125 2
n — 2k n! e (1420 . .
= ( % ( l )m2 ( )) 2! (using Lemma 4.3.2).
]

Note that the bilinear form ¢; which defined in Definition 4.4.7 is not symmetric (i.e.
oi(x,y) # @iy, x)), however we have the following:

Lemma 4.4.11. Let ™ : K§l — Kgl be the K-linear involution on Kg’l defined via
T=n"forallw €S, Then ¢ (z,y) = @(i(y),i(z)) forall x € h(DPB(n)), y €
i(hi(DPB(n))).

Proof. From Definition 4.4.7 of ¢;, by reflecting the graph I' which is xy upside
down we will get the graph i(I") which will be i(zy) = i(y)i(z). Therefore the
graph i(I") has the same types of paths as in T" but replace z,y by i(y),i(x). So
vi(x,y) and ¢;(i(y),i(x)) have the same types of scalars. Also, if ¢;(x,y) = 0 then
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wu(i(y),i(z)) = 0.

Now let ¢y (2, ) # 0 meaning that ¢;(z, y) = 6°(6)°62u (/)" 7 where 7 = (f,0) € S,
1 - ]

and o = takes vertices in = (which are the endpoints of propagating
lo -+ lo

lines in x) to vertices in y (which are the endpoints of propagating lines in y).

Since turning diagrams upside down does not change scalars we have

oz, y) = 6°(0")°60p (') =

lo -+ o
where 77t = (1 f,07t) o7t = is the permutation formed in

1 - 1
i(T") by flipping o so 0! takes vertices in i(y) (which are the endpoints of propagating

lines in ) to vertices in i(x) (which are the endpoints of propagating lines in x). Since
the map f in 7 has value 1 or 0 according to the line (i,i0) (which is from row 1 to
row 2 in o) is decorated or not and reflecting graphs upside down does not change
the decoration of the lines so the map _-.1f has value 1 or 0 according to the line
(ic,i) = (j,jo ') in the permutation 7= (which corresponds to the line (4, i0) in the

permutation 7) is decorated or not.

Now, from the Definition 4.4.7 of ¢; we have

pu(i(y), i(x)) = 0°(8")05u ()" w

1 ]
where w = (g,7), v = , 1 <-.-<j<--- <l are the endpoints of

1’7/ DY lf}/
propagating lines in i(y) (which are the endpoints of propagating lines in y), 17, ...,

J7, ..., Iy are the endpoints of propagating lines in i(z) (which are the endpoints
of propagating lines in x). Meaning that ~ takes vertices in y to vertices in z.
Therefore v = o1 and the map ¢ has value 1 or 0 according to whether the line
(7,77) is decorated or not. Since j's are vertices in y so j = io for i's vertices in

1

z. Therefore (j,jv) = (io,ico™") = (io,i) so g = ,-1f and then w = 7.

e1(iy),i(x)) = 6°(8") 0kt (W) =t = @iz, y). O

Hence

The following Lemma describes the anti-involution on i(V}) ® V; ® K S,.
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Lemma 4.4.12. The map v given by
Wi(r)@yor) =ily)@zor !
where z,y € hy(DPB(n)) and 7 € S, is an anti-involution on i(V;) @ V; @ K S,.

Proof. Let d € By, i(d) € B be the reflection of d through its horizontal axis. So the
top (resp. bottom) of d will be bottom (resp. top) of i(d) and the element 7 € S; in
d will be 71 € S; in i(d).

By Lemma 4.4.9, we have ¢(d) = i(z) @ y @ 7, z,y € ly(DPB(n)), = € S;. Then

Y(i(d) =i(y) @z r = (i(r) @y @ 7) = 1(¥(d)). (%)

Note that

then (2 = id. Also

L((i(l’l) Q1 @) (i(z2) ® Yo @ Wz))

= 1(¥(d1).(d2))

= 1(¢(drdy)) (as v is an isomorphism)
= ¢(i(dida) (from (¥))

=Y (i(ds).i(dy)) (as 7 is anti-involution)

= (i(dy)) . (i(dr)) (as 1) is an isomorphism)
= 1(¢(d2)) (v (dy)) (from(*))

= 1(i(22) @ yo @ ) L (i(x1) @ yy @ ).

Then ¢ is anti-involution on i(V}) ® V; ® KS,. O

Remark 4.4.13. Note that by Lemmas 4.4.6, 4.4.9 we can identify the set DPB(n)
with the set Up_oi (hy(DPB(n))) ®h(DPB(n))®5S, via 1 so, if no confusion can arise,
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we will express for any element d with #d = [ in the basis of DP*B,,(9,d, do, i1, it’)
by its corresponding representation x ® y ® 7 in the basis of (V) ® V; @ K S,. Note
that with this identification we can write J; := @220 i(Ve) @ Ve ® KSNk.

Also, with this identification we have the following

For dy, dy € By so dy = 21 ® y1 ® 71, dy = T2 ® Yo ® mp and, by Lemma 4.4.9, their

multiplication is,

dide =11 QY2 ® 7T1901(y1, ZEQ)?TQ (mod Jl—l)-

Lemma 4.4.14. For each 0 <[ < n, there are maps ¢, : DPB(n)xi(h)(DPB(n))) —
i(V;) and 6, : DPB(n) xi(hy(DPB(n))) — KS, such that for any u,v € hy(DPB(n))
and 7 € S, we have for any d € DPB(n) that

d.(i(u) @vem)=¢(d,i(u) v 0(d,i(u))r (mod J_1)
where J_, = 2;10 (Vi) @ Vi ® K:g\;

Proof. Let d; = i(a) ® b ® m, € DPB(n) with #d, = m, a,b € h,(DPB(n)),
m € Sp be any basis element of DPB, (9, o, 0", pu, p') and dy = i(u) ® v ® T,
u,v € hy(DPB(n)), m € S;. We want to show that

dids = ¢y(dy,i(u)) @ v ® O(dy,i(u))ms (mod J;_1)

where ¢;(dy,i(u)) € i(V}), 0,(dy,i(u)) € K S, are independent of 7.
We have the following cases:

Case 1: If m > [ then Lemma 4.4.4 implies that #d,ds < [, and

o If #(dldg) <l then did, =0 (IIlOd Jl—1)~

o If #(didy) = | = #ds then the bottom row of dyds is “v” which is the bottom
row of dy. Consider the product of dy with i(u), which is the top of dy. This

is formed by a series of concatenations: i(a).m;.b.i(u) and it will be of the form

Az.o where A € K, z € i(hy(DPB(n))). The half diagram = = top (d;.i(u))
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i.e. z is the half diagram obtained by concatenating d; and i(u), the scalar A
arises from any isolated components that are removed from the product d;.i(u).
The permutation o € S, is the permutation induced from this concatenation
which is independent of 7. Then by concatenating this further with m.v we
will get x.0.m9.0 = x ® v ® omy. Therefore, from the above description we have
di(dy,i(w)) = Az € i(V) and 6,(dy,i(u)) =0 € S,

(See Example 4.4.16 which illustrates this product.)

Therefore in case, m > [, we have

dido =N TRV ® oms (mod J;_1)

= ¢y(dy,i(u)) @ v ® O)(dy,i(u))me  (mod J;_q).

Note that in case m =, then x = i(a) and o = m1p;(b,i(u)).
Case 2: If m < I, then #(d1ds) < m but m < [ means didy € J,, C J;_; and then
dldg =0 (mod Jl—l)' ]

Remark 4.4.15. Note that, similarly, for ¢, : h(DPB(n)) x DPB(n) — V, and
0, - h(DPB(n)) x DPB(n) — KS, , u,v € hy(DPB(n)) and 7 € S;, we can show
that for any d € DPB(n)

(i(u) @v@7).d=i(u)® ¢(v,d) @ m0,(v,d) (mod J;_1)

The following example illustrates the product d.(i(u)®v®m) (in the previous lemma),

where d € DPB(n), u,v € hy(DPB(n)) and 7 € .

Example 4.4.16. Let

N
dy = %
N

— [ { [ - ® . { [ }J — ©® Oaamemg)

—a®b®m € DPB(T)
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and

FaEERN

=i(u) ® v my
Then
N_—
L=
q P
P
_y [ [ [ ® ﬁ\ } . l ® ((o,1,0),(132))
=0 ruvenr
Also,
X
r=dy.i(u) = - &/e/f\g’ _5/U { [ { ,

o= ((17 1,0), (13)) (which is the permutation induced from the product d;.i(u))

and

0.7y = ((1,1,0),(13)).((0,0,1),(12)) = ((0,1,0),(132)) =7
Then

dids =6 TR0 om,

= ¢3(dy,i(u)) ® v ® O5(dy, i(u))ms.
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4.5 The main Theorem

Theorem 4.5.1. Let K be a field, 9,0,,0, u, 1/ € K. Then the decorated partial

Brauer algebra DPB,,(0, 90,0, pi, i) is a cellular algebra over K.

Proof. By Lemma 4.4.6, the decorated partial Brauer algebra has a decomposition

as a K-vector space

DPB,,(8,06,8", 1, 1) = i(V,) @ Vi @ KS,, ®i(Vipt) ® Vo ® K Sy

O @i(V) Vi 0 KS ®i(Vo) ® Vo ® KS,.

Note that K §l is a cellular algebra with involution 7 = 7! for all w € 5’1 (see Theorem
2.5.10). By Lemmas 4.4.12 and 4.4.14 , the above decomposition of DPB,, (9, do, 0, i, pt')

satisfies the conditions in Theorem 4.1.2. Hence it is a cellular algebra. ]

As a consequence of previous theorem and from Proposition 4.1.4 we have the fol-

lowing;:

Corollary 4.5.2. The cell modules of DPB,,(0,d.,0", p, ') are
Ayl A) =i(V) © 1

where | € {0,1,...,n}, X is a bipartition of | and S* is a cell module of K§l corre-

sponding to .

4.6 The K-bilinear form on cell modules

In this section we give the K-bilinear form on the set of cell modules A, (I, A).
Firstly we describe the cellular basis for DPB,,(0, do, ', u, ¢') in the sense of [6].
Note that, from Lemma 4.4.6, the set

{ilx)@y@n | z,yeh(DPB(n)), me¢ §l}



CHAPTER 4. THE DECORATED PARTIAL BRAUER ALGEBRA IS
CELLULAR 7

forms a basis for the algebra B; =2 i(V)) @ V, ® K §l Therefore the K-algebra
DPB,(6,00,0", i, 1t') has a basis

I1 ix)@y@n | z,yen(DPB®), =eS}

0<i<n

—{ix)®yon | x,ye€m(DPB(n), m€S, 0<I1<n}.

To describe the cellular basis of DP$B,,(9, o, ', 11, it'), we need the following defini-

tions.

Definition 4.6.1. For n > 1, define the poset A(n) as follows.
Suppose I € N, 0 < [ < n. Let P(I) be the set of bipartitions of [ ordered by

dominance (Definition 2.4.11). Then, we have
An)={(,\) | 0<I<n, Ne P}
For (I, A), (I'; X') € A(n) we define an ordered relation in A(n) by
LN <TN) if I<l or I=0"and A> N
and we write (I, \) < (', ') if (I,A) < (', N) and (I,\) # (I, N).

It is clear that the order relation < in A(n) is a partial order since the order A > )\

is a partial order (Definition 2.4.11).

Example 4.6.2. Let n = 2. The set

The order on A(n) is as follows:

(0.0, ) < (1. ((1).(0))) < (1, (0. (1)) <
(2, ((2),(0))) < (2, ((1,1),(0))) < (2, ((1),(1))) < (2, ((o),(2))) < (2, ((0),(1,1))).
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Definition 4.6.3. For (I, \) € A(n), define

M(l,\) ={(z,8) | =€ h(DPB(n)), s € Std\, X\ is a bipartition of /}.

Now we can use a cellular basis of K'S;, whichis {C2, | s,t € Std\, \is a bipartition of [}
(defined in Theorem 2.5.10), to obtain a cellular basis of DPB,,(, d,, 0", i, p’) as fol-

lows.

Let (I,\) € A(n), (z,s), (y,t) € M(l,\). Define
CY oy =il@) @y @ Ch.
So by Lemma 4.4.6 the set

M= {C2 0 | (,5),(y,8) € ML), A a bipartition of 1, 0 <1 < n}

(@,8)(y,t)

forms a basis of DPB,,(0,d.,0", u, ') (which proves condition (C}) of Definition
2.2.1).

Moreover, by Lemma 4.4.12, we have

(S N
UCE e we) = W) @z @ C = Oy,

(which is condition (Cy) of Definition 2.2.1).

To prove (Cs), it suffices to show that for any basis element z of DPB,,(6, 0o, 0", i, 1),
where z = i(a) ® b® 7, a,b € hy(DPB(n)), 7 € S), and C(l 2;( +) € M, the product

200N

(z,5)(y,t)

D, twe) Cldgy  (mod ACY) 1)

(z/ 8" )EM(I,N)

where (2/,8") depends only on 2 and (z,s), and

AT = Span{CEB | (2.9), (0,8) € Mk, p), (k) < (LN)
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Notice in particular that J;_; C fl(l’)‘), where (from Lemma 4.4.6) J;_; has basis the

set {O(x ) (0.6) | (x,8),(y,t) € M(k,u), uis a bipartition of k, k <1 — 1},

From Lemma 4.4.14 we have

2O = (i) @b m)(i(x) @ y @ C)
= 4i(2,i(2)) @y @ Oi(z,i(x))C%  (mod AMV)
= ai(x’) YK O'CS/\t (mod A(l,,\)) (*)

where 2/ € h(DPB(n)) and o € S; are independent of C, o € K.

st

Since C2, is an element of a cellular basis of K Sl, o€ Sl, then we have

oC = g rg OX, (mod A*)
s’€StdA
= § Ts Cs)\’t + § :apqOSq (#x)
s’'eStdA H>A

where s’ depends on ¢ and s, ry¢ € K. By substituting (x*) in (x) we get

C(i’; o = @ile) @y e ( Z reCoy + Z apqCly) + terms in AV
s’'eStdA U>A
= (@) ®y® Z re Chy+ai(r) @y ® Z apqChq + terms in AN,
s'eStd\ U

From the definition of A¢* we observe that the middle term in the above equation

is in AWM so we have

(LA . .
ZO(x S;(y o =0ai@)®ye Z ry C%, + terms in AV

s’ €StdA
= Z arg (i(x )®y®0/t)+terms in AN
s’ €StdA
= Z T2 ) C((I’A) Nwst) (mod AGV).
(a/,8)eM(L,N)

So the datum (A(n), M,9,¢) is a cell datum of DPB,,(0, do, 0", pt, ') and (9, A(n))
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is a cellular basis of DPB,,(9, do, 0, p, p').
Note that by applying the anti-involution ¢ on (1) we get

ct yu(2)

LA "
(z,8)(y,t Z T(ylvtl)c((z,s;(y’,t’) (mOd A(l A)) (1/)

(v t)eM(lN)

From (1) and (1) we deduce that the K-vector space
A0 — Span{CER—i(a) @y Ch | (,5), (5.1) € Mlkp), (kop0) < (1, 0)}

is an ideal of DPB,,(5, 8., 8", 1, 1'). Also, since ALY =5, 1) AFH then AGN is
an ideal of DPB,,(0, 0,9, p, 1t').

Since the cell (Specht) module S* of KS; (defined in Definition 2.5.11) has basis
{C | t € Std\}, we can say the set

i(x) @ CY | € h(DPB(n)), C is an element from the basis of S*
t t

forms a basis for the cell module A, (I, \), with the action given, for a € DPB(n),
by
a.(i(z) ® CY) = du(a,i(x)) @ Oi(a,i())C3.

where ¢(a,i(x)) € i(Vi), Oi(a,i(z)) € KS|.
Proposition 4.6.4.

125

n — 2k n!
dim A, ( L — L G DR A
im 2 ( ) (= 21K im S

Proof. Since the cell module A, (I, \) of DP*B,,(9, do, &', 1, i) has basis

(LA
{C(z,s

; =i(x)@C) | (x,8) € M(I,\)}.

Therefore,
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dim A, (I, \) = [M(1,\)]
= [l(DPB(n))[.|Std()]
= |h(DPB(n))|.dim $*
125

81

— 2k !
_ Z (n )(n— on=(42k)  dim g (From lemma 4.3.2).

I ) (n—2k)k!

k=0

We now give an example of a basis of a cell module.

Example 4.6.5. Let n =2, [ = 1.

Firstly we will find S*, the cell modules of K 5’1, where )\ is a bipartition of 1.

The bipartitions of [ = 1 are:

A = (1), (0)), a = [AD] = 1,

Ao = ((0), (1)), a = |AV| =0, where \; > Ay.

The standard A-bitableaux are:

Std(A)={t1 = (1]0)},  Std(xo)={t2 = (0,[1))}.

Now we will construct the elements Csy = d*(s)m,d(t), where
my = ufxy, uf =7 (1+ si15081,), T\ = ZweSA w

soug =1, uf =1+ s

So we have

my, =ujzy, =1+sy and  my, = uj
Coly =1+sy and Cp4, =1, then
AM = span{Cyy 1, AM =,

A =span{Cp},, Co3. ),  Ad =AM,
Therefore, S = span{Cy'}, where OCp' = (14 sp) + A,
S*2 = span{C;?}, where Cp? =1 + A,

Also, hy(DPB(2)) = {1, =2, x3, x4}, where

Ty, = 1, and then

:Cl:‘ ° 9 x2:- bl 1’3: |:|7 $4:|:|

]
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Therefore, A(1, Ar) = span{i(e1) @ G, i(z2) © O, i(as) @ G, ifwa) @ O}
Ao(1, Ng) = span{i(z1) ® Cp2, i(z2) ® Cp2, i(x3) ® Co2, i(x4) ® Cp2}.

Now we will define a bilinear form, say ®( ), on the cell modules A,(l,\) in the

sense of Graham and Lehrer [6].

Definition 4.6.6. For (I,\) € A(n), define ®¢ 5 : Ay(l,A) x Ay(I,A) = K by

cy ol = D (y ® Ci(2)) ® CL)CLY ) (mod AGY)

(z.8)(y,t) ~ (28")(y' 1) )y’

The following proposition describes how to get a bilinear form ®; 5y on the cell module

A, (1, )\) using a bilinear form ¢ ) on the cell modules S*.

Proposition 4.6.7.

q)(l,,\)(y ® C£\> @(35/) ® C;\/) = ¢(1,A) (02\7 901(97 i(fﬂ’)) Cs)\’)

where (y @ C}), (i(z) @ C3) are in An(L,N), ¢a,) is the symmetric K -bilinear form
on the cell module S* of KS;, where dan = (, ) as in Definition 2.5.11 and ¢ is
as defined in Definition 4.4.7.

Proof. LetC’M) —z()®y®CA andC’l’\ V) =8
from the cellular ba81s of DPB,,(9,00,8, p, 1t'), then

i(z)) @y @ C2,, be elements

[BY [BY , : .
C(ac s)(y, t)C(a: s")(y',t') = Z(.I) & y/ ® C15)\1: (()Ol(yv ’L(Jf/)) C’s)\’t’) (Il’lOd A(Z’A))
From (the proof of) Proposition 2.9 in [16], we have

(G2, aCR)Cp, = Cii(aCly,) - (mod A%)
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where C2,C € S*, a € A (A is an algebra).

Therefore, by using this property, we have got

o Corary = 1(2) @ Yo (C sy, i())C) C (mod A®V)
Eﬁbu)( ta%ﬁl(ya ( /)) ) ( )®y ®C St, (mod A(Z,A))
= un (Gl 1)) Cy ) (mod A®Y),

From definition 4.6.6 we have

l)\) (BY) _ A\ (A
Cla e Clom ey = Pun(y @ Cia") @ C)CLY oy (mod AMY)
Therefore we get the desired result. O

Lemma 4.6.8. Suppose that at least one of the elements 0’ and p' is a non-zero
element in K. Then ®q 5y # 0 if and only if the corresponding linear form ¢ xy for

cellular algebra Kgl s non-zero.

Proof. From Definition 4.4.7 of the bilinear form ¢; (in the case where the number

of propagating lines in zy = [), we have
pi(x,y) =0° (") 0 p? (W) m

where m € §l is as defined in Definition 4.4.7.

If | = n then ¢, (v;, i(v;)) = id for all v;, v; € h,(DPB(n)) and then, from Proposition
4.6.7, we have
B (v @ C7),i(v;) @ CF) = ¢ (CF, C2)

for CP, C2 basis elements of S*.

If 0 <1 < n then there exist basis elements v;, v; € hy(DPB(n)) such that v;, v; have
[ propagating lines and n — [ decorated or undecorated isolated vertices (i.e. there
are no arcs). In the case where the product of v; and i(v;) has [ propagating lines we
have ¢;(v;,4(v;)) = (6')° p? (1')" id where o is the number of undecorated isolated

vertices meeting an undecorated isolated vertex, ¢ is the number of decorated isolated
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vertices meeting an undecorated isolated vertex and r is the number of decorated
isolated vertices meeting a decorated isolated vertex. (Note that we do not get a
parameter 0 or d, as there are no arcs so no loops can form, also the permutation is

the identity as no arcs can swap the propagating lines.)

Now pick v; with n—[ undecorated isolated vertices, then ¢;(vy,i(v1)) = (8')" " id and
this is non-zero if and only if ¢’ # 0. Similarly pick v, with n — [ decorated isolated
vertices, then ;(vs,4(v2)) = (¢/)*7! id and this is non-zero if and only if u’ # 0.
Also, we have (in the case where the product of v; and i(vy) has [ propagating lines)
o1(v1,i(v9)) = @y (vg,i(v1)) = p"~t id and this is non-zero if and only if p # 0. Thus
overall ¢;(v;,1(v;)), 4,5 € {1,2} is non-zero if and only if at least one of &', u, p' is

non-zero.

Then, from proposition 4.6.7, we have for [ > 1

D0 (0 © CFivy) ® C2)

= ¢an(Cy, @i(vii(vy)) CF)
= dun(Cy, " 1id C2)
=" o0 (CF,C2)

where C, C2 basis elements of the Specht module S* of K S, and

(
(5/, if Vi =V =1

a=9qu i vy =v; =1,

i, if v; = vy and v; = vy or vice versa.
\

Since at least one of &', yu or i’ is non-zero this formula implies that ® ) # 0 if its
corresponding linear form ¢ ) for cellular algebra K §l is non-zero.

Conversely, if ¢ ) (Cp, C2) = O for all s, t € Std(\) then for all m € S, Pan(Cp,mCL) =
0. Then from Proposition 4.6.7 we have @ ) = 0.

Note that, if [ = 0 then K§0 is interpreted to be K and then

i(Vo) @ Vo KSy ~i(Vo) @ V@ K =~ i(Vp) @ Vi
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(since i(Vp) and V4 are K-modules). So, from the multiplication method of i(V}) ®
V,® K S, for | = 0 and any elements a, b, ¢, d € ho(DPB(n)) we have

(i(a) @b @ 1)(i(c) ®d® 1) = @o(b,i(c))(i(a) ®d® 1)

where ¢ (b,i(c)) = ¢ (6")° 62 u? (1/)" (note that there are no permutations as there
are no propagating lines). Therefore, for [ = 0, we have ®(g ) # 0 when ¢y # 0. Since
at least one of the elements &', p or y' is non-zero so py # 0, where po(vy,i(v1)) =
(0", wo(va,i(v2)) = ()™ and @o(v1,i(v2)) = p". Therefore, @ 5 # 0 when at least

one of ¢', u, i/ is non-zero. ]

4.7 The indexing set of the simple modules for

DPB,

In this section we give the indexing set of the simple modules when K is a field of

characteristic p, p # 2, using a result of Dipper and James for simple modules of

K(Z3S,).

Recall that a partition A is p-restricted if \; — A1 < p (p # 0) for all ¢; if p = 0, then
all partitions are p-restricted. The bipartition A = (Ay, A2) is said to be p-restricted,
p # 2, when both A\; and Ay are p-restricted.

Theorem 4.7.1. Let DPB,,(9,d.,0", pu, i) be the decorated partial Brauer algebra
over a field K of characteristic p, p # 2 (possibly p = 0). If at least one of the
elements &', i or 1’ is non-zero then the non-isomorphic simple modules are indexed
by

{(I,\) | 0<1<mn,A\is a p-restricted bipartition of [}.

Proof. Since from Theorem 4.5.1 DPB,, (6, 0o, ", i, p’) is cellular and from Theorem
(3.4) in [6] the simple DPB,,(0, o, &', u, ¢’ )-modules are indexed by

{(LA) € A(n) | ®ua # 0}. If I # 0 then it follows from Lemma 4.6.8, that
@) # 0 if and only if the corresponding linear form ¢ y) for the cellular algebra
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K S, is non-zero. By using the result of Dipper and James (Theorem 5.3 in [3]) which
states that ¢y # 0 if and only if X is a p-restricted bipartition of /, then we have
®.n) # 0 if and only if A is a p-restricted bipartition of I. If [ = 0 then from the proof
of Lemma 4.6.8, ®(o) # 0 when at least one of the elements ¢', u or ' is non-zero.

This completes the proof of the Theorem. O



Chapter 5

Criteria for the decorated partial
Brauer algebra to be

quasi-hereditary

In this chapter we determine when the decorated partial Brauer algebra is quasi-

hereditary.

5.1 Preparatory definitions

In this section we recall the definition of a quasi-hereditary algebra and some results

which will be used to prove our main result.

Definition 5.1.1. [13] Let K be a field and A a K-algebra. An ideal J in A is called
a hereditary ideal if J is idempotent (J* = J), J(radA)J = 0 and J is a projective
left (or right) A-module. The algebra A is called quasi-hereditary provided there is
a finite chain 0 = J; C J; C --- C J, = A of ideals in A such that J; /J;_; is a
hereditary ideal in A 7J;_; for all j. Such a chain is then called a heredity chain of
the quasi-hereditary algebra A.

Lemma 5.1.2. [13, Lemma 2.1] Let A be a cellular algebra with involution i and cell
chain 0 =Jy C Jy C--- C J, =A. Then the following are equivalent.
87
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1. The given cell chain of A is a heredity chain (making A into a quasi-hereditary
algebra).

2. All J; satisfy J2 € Ji_1.

3. n equals the number of isomorphism classes of simple modules.

The following gives the different kinds of cell ideals.

Proposition 5.1.3. [11, Proposition 4.1] Let A be a K-algebra (K is any field) with

an involution i and J a cell ideal. Then J satisfies one of the following conditions:

(a) J has square zero.

(b) There exists a primitive idempotent e in A such that J is generated by e as a
two-sided ideal (i.e. J = AeA). In particular, J* = J. Moreover, eAe equals
Ke ~ K, and multiplication in A provides an isomorphism of A-bimodules

Ae @k eA ~ J. In other words J is a heredity ideal.

Theorem 5.1.4. [3, Theorem 5.5] Let K be a field of characteristic p, p # 2, then
K(Zy S,) is semi-simple if and only if p=0 or p > n.

5.2 The main result

In the following we state when the decorated partial Brauer algebra over a field is

quasi-hereditary.

Theorem 5.2.1. Let K be a field of characteristic p, p # 2, 9, 0o, &', p and u' are
elements in K. Then the decorated partial Brauer algebra DPB,, (0, 0,0, pu, 1) is
quasi-hereditary if and only if

(1) at least one of the elements &', p or p' is non-zero, and

(ii) p is zero or strictly bigger than n.
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Proof. By Theorem 4.5.1, DPB,,(6, 00, 0', p1, pt') = Do i(V;) @ V; ® Kg’j is a cellular

algebra with cell chain

WOCW1CW2C---CWZ;

—1 Sk

where

( o~

i(Vo) ® Vo ® K Sp, if j=0.
_ Alm

Wj = ( ZL:_Ol Z(Vk) QRVE,® KSk) D Z(Vm) RV, ® A k=1 k.

if Z:ll Sk <J <D ey ke

and forall 1 <[l <n,1<r <sg, )\7@ is a bipartition of [ with )\gl) > )\g) > > Aé’).
Also, AN = Span {C% | s,t € Std u, u is a bipartition of I, u> )\1(})} is an ideal
of K §l and the chain

(O} Q) Q) ~
AN c AN cc AN = KOS,

is a cell chain for the cellular algebra K §z

To prove that the given cell chain of DP%B,, (9, d., 0", i, 1) is a heredity chain (and
DPB,(6,00,0, u, 1t') is quasi-hereditary) we need to show that for all 0 <[ < n the
square of z'(Vl)®Vl®B>‘g) (which is a cell ideal in the cell chain of DPB,, (6, 0o, d', i1, 1t'))
is non-zero (Proposition 5.1.3), where BN = A’\gl), BN = AAS)/A’\gll, 1l<r<sg
is a subquotient in the cell chain of K'S;. If the characteristic of K (p # 2) is zero or
strictly bigger than n then by Theorem 5.1.4 K S, is semi-simple for all [ < n. Let

{(735) = C’{}g) + AN | u,v e Std AD, AV is a bipartion of [}

. N0

be a basis of BN . Then there are basis elements Cﬁf‘,l) and Cﬁ}{,, such that their
product is non-zero (since KS; is semi-simple so (from Theorem (3.8) in [6]) the
bilinear form gb(l’/\w) # 0). Since, for | =n, i(V,) @V, ® K:S’; = K/S\; the square of
(V) @V, ® B’\’(”n), 1 <r <s, is not zero. Also, for all 0 <[ < n, there exists basis

elements vy, vy € hy(DPB(n)) where v, has [ propagating lines and n — [ undecorated
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isolated vertices, vy has [ propagating lines and n — [ decorated isolated vertices. For

instance,

’01: °

=0

and U2 = |

Now consider the following products:

, SNON N0
2= (i(v1) @ v1 ® Cy )(i(v1) @ v1 @ Coiyy))
. N0
=i(v) QU ® C,’l\;(“,wgol (v1, i(vl))Cﬁfv, + lower terms

. N0O)
(0" (o) © 0 © Cj?Cﬁfv/ + lower terms.

) SXUNPS A (D)
25 1= (i(12) ® vy ® O3 ) (i(v2) ® vy ® Ciiyy)

. N0 , N0
=i(v) ® Uy ® C’{}(,l 0 (’Ug, z(vg))C’,;\fv, + lower terms

, D) 2y
= (1) i(ve) @ vy @ Cy, Co

u’'v’

+ lower terms.

and

_ SNON N0
zz := (i(v1) @ v1 ®@ O, )(i(v2) @ v ® Ci)
NGO N0
=i(v]) Uy ® C’l’};l o1 (v1, i(vg))C;}fv, + lower terms

SO0
= ()" i) ® vy ® C’l’}(,l CN ., + lower terms.

since at least one of the elements ', p or p’ is non-zero then at least one of the

elements 27,25 or z3 is non-zero.

Conversely, for J,_1 = Z;é Vi) @V @ K :S’\; which is an ideal in the cell chain of
DPB,,(0,00,0, p, it'), the quotient DPB,,(6, 0o, pt, '),/ Jr1 =~ KS’;. Let

A ={X| Xis a bipartion of n}
and

Ao ={N € A | ¢\ #0,0¢, is a bilinear form on cell modules of K/S\;}
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If 2 < p < n this means there exists ;4 € A which is not p-restricted so ¢, = 0

meaning that A, is strictly contained in A but

|A| = the number of cell modules of KS,

= the length of a cell chain of ideals of K g;

So the length of a cell chain of K S, and hence also that of DPB,.(0,00,0, u, 1) is
strictly bigger than the number of simple modules. Then by Lemma 5.1.2 the cell
chain is not a hereditary chain and hence DP*B,,(d,d,d, i, it') can not be quasi-
hereditary.

Also, if & = p = p/ = 0, then the cell chain of DPB,(0,0,,8 ,, ') contains a
nilpotent ideal, i(V,—1) @ V,,_1 ® KS,_1, since any element v; € hy,_1(DPB(n)) has
n — 1 propagating lines and 1 decorated or undecorated isolated vertex then for any
elements v;,v; € h,_1(DPB(n)) (in the case that the product of v; and i(v;) has

n — 1 propagating lines) we have

)
¢’ id, if v; = v; has one undecorated isolated vertex .

p id, if one of the elements v;,v; has one decorated isolated
Pn-1(vi; 1(v5)) = vertex and the other has undecorated isolated vertex

where these two isolated vertices meet together.

\ 1 id, if v; = v; has one decorated isolated vertex.

So if &' = p = ' = 0 then ¢,_1(v;,i(v;)) = 0 for all v;,v; € hy,—1(DPB(n)). There-
fore the product of any basis elements of i(V,,_1) ® V,,_1 ® K g;,/l is

(i(v1) ® v ® Cs)\t)(l(’vg) Qv X Cs/\’t’)
=i(v) @y ®CY Yn (v, i(v3)) Coe (mod J,,_»)
0 (mod Jn_g).

where C2,,

(1(Vpo1) @ Vg ® K@:)Q = 0 and hence DPB,,(6,0,,0", i, 1) can not be quasi-

CS’\,t, are basis elements of K g’:,/l, A is a bipartition of n — 1, then

hereditary. O






Chapter 6

Restriction rules for the cell

modules

For n > 1, we can identify DPB, (9,0, u,p/) with a subalgebra of
DPB, (6,00, u, i) via an injective homomorphism

i 0 DPB,1(6,00,0', j1, i) = DPB,(6,0.,8", j, 1)

which takes a diagram d €  DP9B, 1(9,0,,0", u,p/) to the diagram
i(d) € DPB,(0,00,0', i, 1t') obtained by adding extra vertices n and n’ to the right

side of d and joining them by an undecorated propagating line.

i(d) =1 d

We can therefore consider the restriction of any DP®B,-module to the subalgebra
DP$B,,_; to obtain a DP*B,,_;-module.

The aim of this chapter is to describe the restriction rule of the DP9B,,(4, 0o, 0", i, ')
cell modules over C (Theorem 6.3.1). Throughout this chapter let R = C.

To prove this result we define R-submodules A (I, \), j = 1,2, 3,4 of the cell module
A, (1, \) (which is defined in Corollary 4.5.2). In section one we show that A7 (I, \) =
93
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A, (L) for j=1,2and A3(1L,N) 2P, An_1(l — 1, ). Section two is devoted

p—A Tn—

to showing that An(LA) ) =@, ., An_1(l+1,v). In section three we describe the

D1 AL
restriction rules for the cell modules.

Note that, throughout this chapter we will abbreviate the notation DPB,,(4, ", §o, i, 1)

to DP®B,, where the parameters are clear.

6.1 The modules Al(l;\), A2(I,\) and A3(l, )

Definition 6.1.1. For 0 <[ < n, let DPB!(n) denote the set of all decorated partial
Brauer diagrams with exactly [ propagating lines.

Let Wl(n) denote the set of all decorated partial Brauer diagrams that have
exactly | propagating lines and the vertices (I + 1), ..., n’ in the bottom row are
fixed undecorated isolated vertices, i.e. Wl(n) is the set of all decorated partial
Brauer diagrams with [ propagating lines and fixed bottom w;, where

w= 1

1 l l+1 n

Denote by BL the C-space with basis DPB!(n).

There is a left DP®B,, action on B_il where, if a is any decorated partial Brauer
diagram, d € Wl(n) then the product ad is either a diagram with [ propagating
lines and the bottom row of ad is u; or zero if #(ad) < [. So B_fl is a left DP*B,-
module. Also this module is a right Cgl—module by the action permuting the vertices

{1';...,l'} and / or changing the decoration on the first [ propagating lines.

Note that Bl is a C-subspace of B; 2 i(V;) ® V; ® CS; (which is defined in Lemmas
4.4.6, 4.4.9), spanned by basis elements of B; with fixed bottom u;. So, from Lemma
4.4.9 we have Bl 2~ i(V;) ® u; @ CS; which has a basis

{veuer | vei((DPB(n)), e S}
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Also, since Bl is a right CS;-module any basis element d in B, can be written as
d=vuT=(v®uy®id),

where v € i(h(DPB(n))) and 7 € S).

Now for any element v € i(h(DPB(n))), let F(v) denote a unique diagram in
DPB!(n) with top v and [ propagating lines that are not decorated and do not cross

each other. So F'(v) can be written as
Fv)=v®u ®id.

Recall that, for a given bipartition A of [, the cell module of DPB,, (defined in
Corollary 4.5.2) is
An (L) =i(V;) ® 7,

where S? is a cell module of Cgl, and the set
{v@x | vei(l(DPB(n))), = is a basis element of S*}

is a basis of A, ([, \).

Remark 6.1.2. Let A be a bipartition of [, u an arbitrary element of hj(DPB(n)). de-
fine i(V;) ®@u® S to be the C-submodule of AN /AN with basis {v@u@z+ AN |
v € i(hy(DPB(n))), zis a basis element of S*}. Then, by Lemma 4.4.14,i(V}) ® u ®
S* is a left DPB,-module and the action of any basis element a € DPB(n) on a ba-
sis element of 4(V;) ®u® S* is independent of u, that is, i(V}) @u® S* = i(V)) @w® S
for any u,w € hy(DPB(n)). Then (see [16], pg 17) the cell module

AN =i(V) @ S* 2 i(V) @u St

via the map v @ z — v ® u @ & + A®Y where u is a fixed non-zero element of

hi(DPB(n)), z is a basis element of S*.
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Now since CS5; ®cg S A >~ G2 we have a vector space isomorphism,

Ay (1, N) 24i(V) @c u ¢ S

2

i(Vi) ®c u @c CS) ®¢g S*
= B_Tl1®<c§, S

Clearly the set

{F(v)®z | ve€i(h(DPB(n))), = is a basis element of S}

spans B_fl Rcg, S*. The correspondence F(v) ® 2 <+ v @ u; @  + AN together with

the isomorphism tell us it is a basis of BY, Rcg, S,

The action of DP*B,, on this module is as follows (implied in 4.5.2).

Let a be a basis element of DP*B,,, #(a) = k and F(v) ® z a basis element of
B_7l1 ®cg, O g

The action of a on F(v) ® x is aF(v) ® x which is zero if #(aF(v)) < [. Otherwise,
#(aF () =1

Since a is a basis element, from Lemma 4.4.9, it can be written as a = i(21) ® 20 @ 7

where z1, 25 € hy(DPB(n)), © € Sy,. From Lemma 4.4.14, we have

aF(v) =(i(z1) ® 2@ m) (v R ®id) = c® w ® oid

=(c®u ®id)o = F(c)o

where ¢ = (av) € i(hy(DPB(n))) is the top half diagram induced from concatena-
tion of a with the top of F(v), and o € S, is the permutation induced from this

concatenation. So,

a(Flv)®@z)=aF(v)®@z=F(c)o@x = F(c)®ox.

Now consider the following partition of the set hj(DPB(n)) of half diagrams with [
propagating lines

w(oPB) -,

Jj=1
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where

o W, (resp. W) is a subset of hy(DPB(n)) such that the vertex n in each diagram

v €Wy (resp. Wa) is an undecorated (resp. decorated) isolated vertex.

e s is a subset of hj(DPB(n)) such that the vertex n in each v € W3 belongs

to a propagating line.

o W, is a subset of hj(DPB(n)) such that the vertex n in each v € Wy belongs

to a decorated or an undecorated arc.

Note that (from the above description) the sets W; and W5 are not empty in the case
[ <n—1, W3 is not empty in the case 1 <[ < n and the set W, is not empty only

in the case l <n — 2.

For each j = 1,2,3,4, let AJ (I, \) be a C-subspace of A, (I, \) with basis

{Fv)®x | v€i(W,), xis a basis element of S*}.

From the embedding i of DP*B,,_; into DP*B,,, we have the following.

Lemma 6.1.3. For j =1,2,3. Each AJ(I,\) is a DPB,,_1-module.

Proof. Let a be a basis element in DP*B,,_;, when embedded in DP*B,,, this diagram
has an undecorated propagating line that joins the vertex n in its top row to the vertex
n’ in its bottom row and denoted by i(a). Thus, for any basis element F'(v) ® « with
v € i(W;), 7 = 1,2,3, the vertex n in v has not been affected by the action of a
(which is the action of i(a)). Meaning that the action of a fixes the vertex n which
means (i(a)v) € i(W;), j = 1,2,3. Then the action of i(a) on F(v)®x is i(a)F(v)®@x
which is zero if #(i(a)F(v)) < I. Otherwise

where ¢ = i(a)v € i(W;), the top of i(a)F(v), and o € S;. Therefore we have,

i(a)(Flv)®@z)=1i(a)F(v) @z = F(c)o @z = F(c) ® o,
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where ¢ = i(a)v € i(W;), j = 1,2,3, ox is an element of S*. O

It is clear that, from the description of W;,j = 1,2,3, AL([,\) N AJ(I,\) = 0 for
i #7507 =1,2,3.

So we can write AL(L,A) + AZ(L,A) + A3 (LA = @, AL(LN).

Put M := @321 AJ(1,X). The quotient %l”\) is a DP*B,,_1-module, where A"J\(/j’)‘)

has basis
{(Fv)®x)+ M | v€i(W,), zis a basis element in S*}.
Note that % can only be non-zero if [ <n — 2.

In the following we will analyze each A? (I, \). Firstly, we recall the following defini-

tion.

Definition 6.1.4. (1) Let A be a partition of n, the elements (7, j) of a Young diagram
[A] are called nodes. A node (i, A;) is called a removable node of A if \; > A\;11. A
node (i, \; + 1) of [\ U {(i, \; + 1)} is called an addable node of A if i =1 ori > 1
and \; < A\j_1.

The removable (resp. addable) nodes are the nodes which can be removed from (resp.
added to) the Young diagram [A] to produce a Young diagram with n—1 (resp. n+1)

nodes.

(2) Let A be a bipartition of n, the elements (1, j, k) of Young diagram [A] are called
nodes. Let v = (i, j, k), we say that:

7 is a removable node if the element p such that [u] = [\] — {7} is still a bipartition
(of rank n — 1, i.e. |u|=n—1).

7 is an addable node if the element p such that [u] = [A] U {~} is still a bipartition
(of rank n + 1).

We use the notation p — A to mean p is obtained from A\ by removing a removable

node (or, equivalently, A is obtained from p by adding an addable node).

Let S* ¢C§"\/ denote the restriction of S* from (C:S'; to an\_/l and S* TE%H denote

n—1 n

the induced representation of S* from Cg; to CS’;;. Since C@/L is semi-simple, we
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have [18],[19]

)\ C5S, @ S A (CS7L+1 @ v
and S SY.
\L(CSn 1 (CSn

n—A A—v

Proposition 6.1.5. The module A3(1, \) is isomorphic to @
DP$B,,_1-module.

A, 4(l—1,p) as a

n—A

Proof. For any v € i(W3), let f3(v) be a half diagram obtained from v by removing
the vertex n. Since in each v € i(W3), the vertex n has a propagating line, f3(v) has
(n — 1) vertices and (I — 1) propagating lines so f3(v) € i(h_1(DPB(n —1))). Note
that, the map f3 : i(W3) — i(ly_1(DPB(n —1))) is a bijection between sets, since
any half diagram b € i(h_i(DPB(n — 1))) corresponds to a unique half diagram
V' € i(Ws) that by adding a propagating line to the right of it. Write f3*(b) =¥
By using f3 we define the following C-linear map

. CSn
¥ AY(1,A) — B @, S Lo

Fv)@z+— F(f3(v)) ® .

where F'(f3(v)) = f3(v) ® w1 ® id.
Note that the map v takes a basis element F(v) ® x of A3(I,\) to a basis element
of Bl L ® S5 JC . It removes the vertices n, n’ together with the propagating line

n 1

connecting n with I’ and leaving everything else unchanged.

’ ! (n—-1)
I — 1 vertices

!
l n

Since the map f3 is a bijection, any basis element F'(b) ® = of Bl 1 ® S, | ,where

F(b) = b®u_ ®id, b € i(ly_1(DPB(n—1))), has a unique ¢-preimage F(f; ' (b)) @z
where f;'(b) is obtained from b by adding a vertex n on the right-hand side of b
together with a propagating line on it. Therefore, F(f;'(b)) ® z is obtained from
F(b) ® by adding the vertices n, n’ and an undecorated propagating line that

connects n with I’ which is a basis element of A2(I;\). So 1 is a bijection.
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It remains to show that ¢ commutes with the action of DPB,,_;.
Let a be a basis element in DPB,,_;. Since the action of a (which isi(a)) on v € i(W3)

fixes the vertex n and the map f3 only affects the vertex n we have

afs(v) = fs(i(a)v)

o %X,wmgwu,

—
—

e RO

Now

w(a(F(v) ® x)) = @/J(aF(v) ® m) =¢(i(a)F(v) ® x)
=yY(F(c)o®@x) =9(F(c)®ox) = F(f3(c)) ® ox.

where ¢ = i(a)v = top(i(a)F(v)) € i(W;) which is induced from concatenation
i(a) with v, since the action of i(a) fixes n so ¢ has a propagating line at n. The
permutation o € S, which is induced from the concatenation of i(a)v, permutes the

vertices {1’,..., (I — 1)’} and fixes I'. (Note that o can be identified with element of

S)_1 since it permutes [ — 1 propagating lines.)

On the other hand,

a(¥(F(0) ® 7)) = a(F(f5(v)) @ 7) = aF (f3(v)) © @
=a(fs(v) @u_1®id) @z
=(bRu,®did) e
= (b®u_1®id) @'z
=F(b)®dx
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where b = af3(v) = top(aF(f3(v))) € i(hy—1(DPB(n — 1)))) which is induced from
the concatenation of afs;(v) and o’ € 5/'1\_/1 the permutation induced from the con-

catenation af3(v). But afs(v) = f3(i(a)v) = f3(c) then F(b) = F(f3(c)) and ¢’ is o.

Therefore,
P(a(F(v) @ x)) = a(Y(F(v) @ 2)).
Using the restriction rule for (Cgl to Cgl:, we have
gA CS ~
g =D
U=

where the sum is over all bipartitions p of [ —1 that are obtained from A\ by removing

one box. So,

A1) = P B @pe— 5" 2 P Auall - O

L= n—A

Proposition 6.1.6. The module AJ (1, \), 7 = 1,2 is isomorphic to A,_1(l,\) as an
DPB,,_1-module.

Proof. For v € i(W) (resp. i(W3)), let fi(v) (resp. f2(v)) be a half diagram obtained
from v by removing the vertex n (resp. the vertex n with its decoration). Note that
fiw), fo(v) € i((DPB(n —1))). The map f;, j = 1,2 induces the following

isomorphism of DP®B,,_;-modules

Oéj . A%(Z,A) — Bil*l ®C§l S)\,

Fv)®@z— F(fij(v)) @z, j=12.

These are illustrated below:

ai

t+1 G+ (n-1)
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a2

a+n  a a+1 (n-1

The proof that these are DP*B,,_;-module isomorphisms is similar to the proof of

the previous Lemma 6.1.5. O

Ap (L)

@3 AR

6.2 The quotient module

This section is devoted to proving the following proposition:

Proposition 6.2.1. The DP*B,,_1-module # s isomorphic to

DA i+1,p).

A=l

The strategy of proof is as follows: Firstly, we define a map ¢ from i(W,) to

i(hit1(DPB(n—1))). Then we define a map f, from i(Wy) to B4, where fy(F(v)) =

F(o))m, vei(Wy), m e Si+1. The map f; induces a linear map + from % to

B Qcs S* 1. We finally show that the map ~ is a DPB,,_;-isomorphism in

Siy1

Lemmas 6.2.8 and 6.2.14.
We start with some definitions.

Definition 6.2.2. Let ¢ : i(Wy) — i(hy1(DPB(n — 1))) be a map defined as
follows:

For v € i(Wy), let p(v) be the half diagram obtained from v by removing the vertex n
together with its incident undecorated or decorated arc {t,n} (say) and then adding
a propagating line in the position of the vertex t. So the resulting half diagram,
©(n), has n — 1 vertices and [ + 1 propagating lines, which means that ¢(n) €
i(hiy1 (DPB(n — 1))). This is illustrated below:
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Recall, for v € i(Wy), F(v) = v ® w; ®1id is a diagram in DPB!(n) with top v and {
propagating lines that are not decorated and do not cross each other.

By using the map ¢ we define the following;:

Definition 6.2.3. For v € i(W,), let f4(F(v)) be the diagram obtained from F'(v)
as follows: Firstly, remove the vertex n together with its incident undecorated (resp.
decorated) arc {t,n} (say) and the bottom vertex n’. Next, connect the vertex ¢ in
the top to the vertex (I 4+ 1)’ in the bottom by an undecorated (resp. a decorated)
propagating line.

Note that the resulting diagram f;(F(v)) has n — 1 vertices in each row and [ +
1 propagating lines where the newly created propagating line {¢, (I + 1)’} may be
decorated, undecorated or may cross other propagating lines. This is illustrated

below:

fa

I+1 I+1

I1+1 I+1

Therefore, fi(F(v)) consists of top ¢(v), bottom u;41 and a permutation 7 € Sit1
which gives any crossing or decoration for the new line. So f4(F(v)) can be written

as

Ji(F(0)) = () @ w1 @ = (p(v) @ iy @id)w = F(p(v))m,
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where F'(p(v)) is a diagram in DPB!*!(n — 1) with top ¢(v) and [ + 1 propagating

lines that are not decorated and do not cross each other, and

ul+1:1 J

More formally, suppose that there are j—1 propagating lines to the left of ¢ in f4(F(v))
so the newly created (decorated or undecorated) propagating line {t, (I41)"} will cross
others and the remaining propagating lines are drawn so that they do not cross each
other (note that the vertex t is in the position of the j* propagating line so we put

t = j). This means that the diagram
fi(F () = Fle()mp, 1<) <I+1,

where 7; r = (f,0;), 0; = (j,l +1,1,...,5 + 1) is a permutation in S;4; that maps
j to (I + 1) and then shifts the integers between j + 1 and [ + 1 down by one,
f=10,...,0,f(4),0,...,0) where

0, if the propagating line {7, (I + 1)’} is undecorated,

fG) =
1, if the propagating line {7, (I + 1)’} is decorated.

For example,

wo] T[T - s

Remark 6.2.4. We view S; as a subgroup of S;;1 via the embedding of {1,...,1} C

{1,...,1,1+ 1}. This also induces an embedding of S, C 51:1 which is compatible
with the natural embedding of S, C S, (via o — ((0,...,0),0)).

Lemma 6.2.5. The set T ={m;; | 1<j<Il+1, f(j) € {0,1}} forms a set of

left coset representatives ofgl mn 51:1, where 7; y is as in Definition 6.2.5.
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Proof. We first show that, for all 1 < j <k <141, 0,5 # oxS5;.

For1 <j <k <[+ 1 we have,

o, = (0 +1,...,k+1kk—-1,...,5+1) and o, = (k,l+1,....,k+1). So
ot =kk+1,k+2,...;0,l+ 1) and 0}, '0; = (j, |+ L,k—1,k—2,...,i+1) €5

because o, 'o; does not fix [ + 1. This implies that

W’;}ﬂ-jhg = (Ulzlf’ Ulf_l)(g’a-j) = (U;lf +U;1 g,O'k_lO'j) g Sl'

Then 7Tk7f§'l # 7Tj7g§l forall 1 <j<k<I+1

Now, note that since for 1 < j <[4 1, each 7; ; has underlying permutation o; with
the propagating line {j,1 + 1} either decorated or undecorated and
Hoj=0,l+1,...,5+1), 1 <j<I+4+1}|=1+1, we have

) |8

Tl =204 1) = =g = & = (S s 5

Hence the set {m; ;S; | 1 <7 <I1+1, f(j) € {0,1}} is a set of left coset represen-

tations of §l in 51\4:1 O

As a consequence of the previous lemma we have the following

Corollary 6.2.6. Let 75 € 51:1 be as in Definition 6.2.3, then
(CSf'l:l = D1<j<it1 Ty f ng
as a right (Cgl—module.
Then for a (Cgl—module S* we have
S ngQ: (Cgl:l ®cg, SA = Br<j<ir1(mjf CS, ®cg, S
Since 7;;CS) @5 S* = 7jp ®pg S via CS; ®pg S = S*, the set

{mjs ®cg x| mp €T, 1<j<I+1, xisa basis element of S*Y
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T@ST; '

. . A
is a basis of e
S cs

Using the map f4 we define a linear map from = (l A to BH1 Dcsm S* 1 (where

M = @?21 AJ (1, N)) as follows:
Definition 6.2.7. Define

A
5 Tl(l7 A) BH—

)\ CS:I
M 1 ®(CSH_1 T qQ 9

Fo) @2z — fo(F())m;; @ (75 © ).

where v € i(W,) with arc {¢,n} and j — 1 propagating lines on the left of ¢, the

diagram f4(F(v)) = F(¢(v))m; ¢ is as defined in Definition 6.2.3. Then extend v

An(lA)

linearly to the whole K-module =*;

Note that f4(F(v))7; ; = F(p(v)) = ¢(v) @ w1 ®id is a diagram in B with [+ 1
propagating lines that are not decorated and do not cross each other. Also, note that
the set {F(b) ® (m;;®x) | b€ i(hs1(DPB(n—1))), z is a basis element of S*} is
a basis of BLTL ®cs, SA TC@L.

cs,

In the following lemmas we show that v is a DP*®B,,_;-isomorphism.

Lemma 6.2.8. The map v is a bijection.

Proof. We want to find the dimension of #.
Note that since in any element of W, the vertex n can be joined to any vertex from

1,...,n — 1 by a decorated or undecorated arc, we obtain that

(Wil =2(n — D|(DPB(n —2))|
|25~

n—2—2k (n—2)! L
=2 -1 on—2-(1+2k) (po T, 43.9).
(n—1) £ ( I ) (n—2 — 2k)Ik! ) (by Lemma 4.3.2)
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Therefore,
dim# = |Wy|. dim S*
P2 oo (n —2)!
—9 —1). e — on— 2—(1+2k) di S)\
(n=1) kz_o ( l )(n—2—2k;)'k' .

Now we find the dimension of BL™, Rps— S TCSZH Since
+1

A ACSis1 |§l\+/1| : A
dim S TCSl ——g’l .dim S
24 (1 4+ 1)!
= %.dim S*=2(1+1).dim S*.

Then, by Lemma 4.3.2, we have

dlm(BlJr 1 ®(CSZ+1 SA TC‘EZ“)
= |h1 (DPB(n — 1))]. dim S ng“

L717172(z+1)J

- nol=2k (n—1)! n—1—(1+142k) N
B % < [+1 )(n—l—%)!klz 2(1+1).dim S

This equals

|_’IL2[
I+ 1)(n—1-2k)! (n—1)! a9 :
on (l+2k).d S)\
kz U+ D)l(n—2—2k— D) (n—1— 2k)&l o

2-1
L*=

=2 Z n—l—Qk;( _Q_Qk)( (n—1)(n —2)!

n 2—(l+2k).d‘ A
l n—1—2k)(n—2— 2k)lk! S

LnZL

2 n—2—2k (n—2)! 5
= — E n—2-(1+2k) 3: - QX
=2(n—1) 2 ( / )(n—2—2k)!k‘!2 .dim S™.

So dim 224N — dlm(BlJr

CSj11
M )\ T Jl+1

1 ®<CSz+1 cs )-
Hence it suffices to check that v is onto.

Let F(b)®(m; s®x) be a basis element in Bl+11®5’\ TCSZ“ where b € i(hy1(DPB(
))) and F'(b) = b® w1 ®id a diagram in BlJrl with [+ 1 propagating lines that are
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not decorated and do not cross each other.
Choose v € i(Wy) such that f,(F(v)) = F(b)m; s (i.e. choose v € i(W,) with arc
{t,n} and j — 1 propagating lines to the left of ¢t and ¢(v) = b). Thus

YF(v) ®@z) = f1(F(v)7;} © (755 © z)

= (FO)mjp)m; ;@ (mjp @ ) = F(b) @ ()5 © ).

75

So v is a bijection. O

It remains to show that v is a DP*®B,,_;-homomorphism.
Using the definition of a linear map v we have the following:

Lemma 6.2.9. Let v € i(Wy) with an arc {t,n} and j — 1 propagating lines on the
left of t. For o € (Cgl,

YF(v) ® ox) = fa(F(v))m}; ® (155 © o)
where x is a basis element of S*, fy and 7, ; are as in definition 6.2.3.
Proof. From Definition 2.5.11 of the Specht module S* of Cgl, the set
{C} | t€Std (\), \is a bipartition of [}

is a basis of S*.
Since z is a basis element of S*, put z = C}, 0 € Cgl, then from Definition 2.5.11,

the action of ¢ on x is given by:

or =00} = Z ryCy.
beStd(n)

Therefore,

F(v)®or = F(v) ® cC)

=F)® Y nCr= > mnFed)
beStd () beStd()
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Then

YF@)@ox)=v( > n(Fl)®Cy)
beStd()

— Z oy (F(v) ® C’If‘) (as v is linear)
beStd(n)

= > n(fiF@)m5} @ (0 © C))
beStd(n)

= (F)r @m0 Y nlp)
beStd(n)

= fa(F(v))m;; ® (w5 ® o). O
The following lemmas show that the map v commutes with the generators {s;, g;, €;, pi, ¢; }
of the DPB,,_;.

Lemma 6.2.10.
Y (s:(F(v) @ 2)) = s:(v(F(v) @ 2))

where v € {(Wy), with an arc {t,n} and j — 1 propagating lines on the left of t, s;,
1<i:<n-—2areasin Lemma 3.3.11.

Proof. There are three cases to consider:

e Case I: Assume t # i, 1 + 1. We distinguish the following two cases:

1. Suppose ¢ and 7 + 1 belong to propagating lines in v then that also holds
in ¢(v).
Let i be joined to k' and i + 1 joined to (k + 1)’ by propagating lines in
F(v), 1 <k <l—1. Then the action of s; on F'(v) induces a permutation

but does not change v. So we have

siF(v) = F(v)sy.
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This is illustrated below:

t i 1+1 n t i 141 n
s F(v)
F(v) = %Z/ >U
K (k+1) K (k4 1)
t i i+ 1 n
) >><§// o
K (k+1)

(F(v)sp ® x)
= () ® s32)
= fa(F(v))m;} @ (1 @ sgx)  (from Lemma 6.2.9)

= Flp(v)) @ (mj,r56 @ @)

Note that, if ¢ >t then j < k<[l—1landifi+1<tthenk+1<j—1
(where ¢ is in the position of j™ propagating line). Since m; ; shifted the
integers between j + 1 and [ + 1 down by one and fixed the lines on the

left of ¢ we have

Spmyf g <k<Il-1,
T4, fSk =
sy, Hk+1<j5—1
On the other hand, since ¢ is in the position of the j** propagating line in
©(v), F(p(v)) has [ + 1 propagating lines where the propagating lines to
the right of ¢t have their bottom endpoints shifted up by one compared to
F(v). So we have the following:

If i > t so in this case, the vertex ¢ in F'(¢(v)) is joined to (k+ 1) and the
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vertex ¢ + 1 is joined to (k + 2)’. Then we have
sil'(p(v) = F(p(v))ski1-
Then

Si (V(F(U)

\/
Il
»

% FSO,U 7.(-]7]0(8‘%‘))

(F((

F(p(v))sk1 & (55 ® )
F(p(v)) @ (sknmp @ @)

F(p(v)) @ (mj 51 ® z) = 7(si(F(v) @ 7)).

if i + 1 < ¢, then the vertex ¢ in F(¢(v)) is joined to k' and i + 1 is joined

o(k+1). So
sil"(p(v)) = F(p(v))sk
Therefore,
si(WF () © 7)) = 5:(Flp(v)) ® (75 @ )
= F(p(v)sk @ (m;7 @ )
= F(p(v)) @ (spmj 5 @ x)
= F(p(v)) @ (mjps0 @ x) = 7(s8:(F(v) ® z))

2. Suppose that one of the vertices i, ¢ + 1 or both of them does not belong
to a propagating line in v (i.e. one of the vertices 7,7 + 1 belongs to
a propagating line and the other is a decorated or undecorated isolated
vertex (resp. the other belongs to an arc) or both of them are decorated or
undecorated isolated vertex (resp. belong to an arc)) then that also holds
in ¢(v). In this case the action of s; on F(v) and also on F(p(v)) does
not introduce any permutation. Since s; does not affect the arc {¢,n} and

the map ¢ only affects the arc {t,n} so we have

sip(v) = p(siv).
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This is illustrated below:

(similarly for the other cases.)
Also, s;F(v) = F(c), where ¢ = s;v € i(Wy) and s, F(p(v)) = F(s;p(v)) =
F(¢(c)). Then

v(5:(F(v) @ 2)) = v(F(c) @ 2)
= Flp(e)) @ (mjy @ )
= s (p(v)) @ (7 @ )

= 5i(F(p(v)) ® (m5 @ 7)) = 5 (v(F(v) @ 7)).
e Case II: Assume t = 7, we have the following two cases:

1. If in v the vertex i + 1 belongs to a propagating line so it is also in ¢ (v).
In this case, the action of s; on F(v) introduces a new arc {i + 1,n}
and a propagating line in the position of i, and does not introduce any
permutation. So

siF(v) = F(c), (6.1)

where ¢ = s;v € i((Wy) is v with a new arc {i + 1,n} and a propagating
line in the position of i. Therefore in f4(F(c)) the vertex i + 1 is joined to
(I+1).

F(v) = 7/

5
T

e
P !
/ -
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Since there are j — 1 propagating lines on the left of ¢ and in f;(F(c)) the
vertex ¢ = t belongs to a propagating line therefore there are j propagating

lines on the left of i + 1 so (from the definition of f;) we have

fa(F(e)) = Fp(e))mjty- (6.2)

V(si(F(v) ® x)) = v(F(c) ® x) (from 6.1)
— ), @ (may @2)  (from 6.2)
= F(p(c) @ (mj415 @ @)
On the other hand, since v has an arc {¢,n} then in ¢(v) there are propa-
gating lines in the position of ¢+ = i and i+ 1 (which are the positions of j**

and j' + 1 propagating lines). So the action of s; on F(p(v)) introduces

a permutation s; and does not make any change in ¢(v) so we have,

s (o) = Fp(v))s;. (6.3)

F(e(v)) = //i+1 SSF () //ﬂ
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Therefore,

si(V(F(v) @ 2)) = s:(F(e(v)) ® (75 @ x))
((v))
)

s; ® (mf ® x) (from 6.3)
(o(v)) ® (855 © ),

=F
=F

where s;m; f = mj11,5, and since ¢ = s;v is v with a new arc {i 4+ 1,n} and
a propagating line in the position of i, then ¢(c) has propagating lines in

the position of ¢ and i + 1 which means ¢(c) = ¢(v). Then

V(si(F(v) @ 2)) = s;(7(F(v) ® z)).

. If in v the vertex i + 1 is joined by an arc to a vertex r (say) (resp. is a

decorated or an undecorated isolated vertex) so that also holds in ¢(v).
The action of s; on F(v) introduces new arcs {i + 1,n}, {i,r} (resp. a
new arc {¢+1,n} and an isolated vertex in the position of i) and does not

introduce any permutation. So

where ¢ = s;v € i(W,) is v with new arcs {i + 1,n} and {i,7} (resp. an
isolated vertex in the position of 7). So ¢(c) has a propagating line in the

position of i + 1.

t=14 14+1 1 n t=4 i1+1 7 n t=141 141 r

v= = |5 ST = v,

Since in (v) the vertex i + 1 is joined by an arc to a vertex r (resp.

isolated vertex) and the vertex i belongs to a propagating line, the action

of s; on p(v) is, s;p(v) = ¢(c) and then s;F(p(v)) = F(p(c)).
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Therefore,

Y(s:(F(v) @ 2)) = 7(F(c) © x)
= fa(F(c))m}; @ (mj; @ )
= F(p(c)) @ (mjy ® x)
= 5iF(p(v)) ® (1) ® )
= 5i(F(p(v)) ® (mj,s ® 7))
= si(V(F(v) ® z)).

e Case III: Assume t = 7+ 1. The proof is similar to the case t = 1.

Lemma 6.2.11.

Y(g:(F(v) @ 2)) = g;(v(F(v) ® 2))

115

where v € {(Wy), with an arc {t,n} and j — 1 propagating lines on the left of t, g;,

1<i<n-—1 are as in Lemma 3.3.11.

Proof. Firstly, suppose that i # t. We have the following cases:

1. If in v the vertex i belongs to a propagating line then it is also in ¢(v). Suppose

in F'(v), the vertex i is joined to &', 1 < k <[, by an undecorated propagating

line. Then the action of g; on F(v) changes the decoration of the propagating

line {7, k'}. So we have
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Then
7 (9:(F(v) ® 2)) = y(F(v)ge @ x)
=7(F(v) @ gr)
= F(p(v)) @ (75 ® grx) (from Lemma 6.2.9)
= Flp(v)) @ (mj,59r @ ).

Since there are j — 1 propagating lines on the left of ¢, we have the following.
If i >t then j <k <[ andifi <tthen k <j—1 (where ¢ is in the position
of j propagating line). Since 7; ; shifts the integers between j + 1 and [ + 1

down by one and fixes those on the left of ¢t = 5 then we have,

Ty, HE<j—1
T5,f9k = )
k4175 f, lfj < k < l.
On the other hand, since F'(¢(v)) has I+1 propagating lines and the propagating
lines on the right of £ have their bottom endpoints shifted up by one compared
to F(v), we have the following.

If i > ¢ then the vertex i in F'(p(v)) joins to (k4 1)". So we have

9 (p(v)) = Fp(v))grs1-

Then

g(V(F)®z)) = g(Fp(v) @ (15 ® ))

(Fle)

F(p(v)gr1 @ ()5 ® x)
F(p(v)) @ (g7 p © )
F(o(v) @ (595 ® w) = v(9:(F(v) ® ).

p(v

If i < t, meaning that the propagating line {i, ¥’} is on the left of ¢, we have

9:F(p(v)) = F(p(v))gx
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and then

gi(V(F(v) @ x)) = g:(F(p(v)) @ (55 @ 2))
= F(p(v) @ (grmj.s @ )
= F(p(v)) @ (mj,59c @ ) = v(g:(F(v) @ )).

2. If in v the vertex i is joined to a vertex r by an undecorated (resp. a decorated)
arc, then that also holds in ¢(v). The action of g; introduces a decorated (resp.
undecorated) arc {i,7} (i.e. the action of g on v (and also on ¢(v)) only changes
the decoration of the arc {i,7}). Let g;v = ¢ € i(W,) so ¢(c) has a decorated
(resp. undecorated) arc {i,r} and a propagating line in the position of ¢.
Note that ¢(v) has an undecorated (resp. decorated) arc {i,r} and a propa-
gating line in the position of ¢, and the action of g; on ¢(v) only changes the

decoration of the arc {i,7}. Therefore we get

gip(v) = p(giv) = w(c).

T

-

i r i
o 9 »(v) ~——

Note that the action of g; on v and also on ¢(v) does not introduce any per-

mutation so we have,

9iF'(v) = F(giv) = F(c) and g, F(p(v)) = F(gip(v)) = F(p(c)).
Then

Y(g:(F(v)) ® x)) = 7(F(c) ® x)
= F(p(c)) ® (ms @ x)
= g:F(p(v)) @ () @ )

= 9i(F(p(v) & (mj5 ® 7)) = g:(v(F(v) ® ).
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3. If in v the vertex 7 is a decorated or an undecorated isolated vertex then this
also true in ¢(v). In this case the action of g; on v and also on ¢(v) does not

make any change. So we have
Y(gi(Fv) @) = g:(v(F(v) ® ).

Secondly, assume t = 1.
(a) Suppose that the arc {¢,n} is an undecorated arc in v. So the action of g; on v
(and also on F'(v)) gives a decorated arc {¢,n} and does not give any permutation

so we have,

giF'(v) = F(c), (6.4)

where ¢ = g;v € i(W,) is v with a decorated arc {t,n}. This implies that

e(c) = ¢(v). (6.5)

Now, since in ¢ the arc {¢,n} is decorated so in f4(F(c)) the vertex i =t is joined to
the vertex (I + 1)’ by a decorated propagating line. So, from the definition of f;, we

have

f1(F(c)) = F(p(c))7; s where
7= (00, .., £(),0,....0),0;) = ((0,...,0,1,0,...,0),0;)

while, fi(F(v)) = F(¢(v))m s, where m;; = ((0,...,0),0;) since the arc {t,n} is
undecorated in v. That means 7; is 7m; ; with a decorated line {j, ({ +1)'}. This
implies that

9T f = Tjf- (6.6)

Also, note that in F(p(v)) the vertex ¢ = i belongs to an undecorated propagating
line. Therefore the action of g; introduces a decorated propagating line in the position

of i =t (which is a position of j* propagating line). So we have

il (p(v)) = F(p(v))g;- (6.7)
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Then
7(gi(F(v) @ ) = 7(g:F(v) ® x)
— 1 (F(¢) ® 2) (from 6.4)
= fu(F () ()" @ (75 @ @)
F(p(c) ® (7 @ x)
F(p(v)) ® (g;1;5 ® ) (from 6.5, 6.6)
F(p(v)g; @ () @ )
= :F(p(v) ® (15 © @) (from 6.7)
= ( )@ (M ®@x) = gi('y(F(fU) ® :1:))
(b) If in v the arc {¢,n} is decorated the proof is similar to the case (a). O

Lemma 6.2.12.
y(ei(F(v) ® I)) =€ (7(F(U) ® x))

where v € ((Wy), with an arc {t,n} and j — 1 propagating lines on the left of t, e;,

1 <1 <n—2are as in Lemma 5.3.11.
Proof. Firstly, Assume t # 7,7 + 1. We have the following cases:

1. If in F(v) one of the vertices i or i + 1 belongs to a propagating line and the
other is an undecorated or decorated isolated vertex or both of them belong
to propagating lines, then that also holds in F'(¢(v)). In this case the product
e;F'(v) has less than [ propagating (resp. the product e;F((v) has less than
[ + 1 propagating lines). Therefore, ¢;F'(v) = 0 = ¢;F(¢(v)) and then

v(ei(F(v) ® x)) =0,

e:(1(F(v) ©12)) = P (p(v) ® (1,5 ® 2) = 0.

2. If in F(v) the vertices i, i + 1 are joined together by a decorated or an undeco-
rated arc or both of them are decorated or undecorated isolated vertices, then

that also holds in fy(F'(v)). Then the products e; F'(v) and e; f4(F'(v)) introduce
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the same scalar A (say), where X is one of the parameters {0, o, 0", y, t/'}. So

we have

eiF'(v) = AF(c) and e; f4(F(v)) = Afa(F(c)) where ¢ = e;v € i(Wy). Then

v(ei(F(v) ® )

F(v) ® x)

v(ei
(AF(c) ® x)

Y
A (F(e) @ ) (as v is linear)
)\(f4(F(c))7rj_7} ® (m,f ® 35))

= e fa(F(v))m;; @ (155 ® @)

= (i F)m;} © (135 ©2)) = ei(4(F(v) © 2)).

3. If in v the vertex i is joined to a vertex r (say) by an arc and the vertex i + 1
belongs to a propagating line (resp. the vertex i+ 1 joins to a vertex s (say) by
an arc, resp. the vertex ¢ 4+ 1 is an undecorated or decorated isolated vertex),
then that also holds in ¢(v). Note that since the action of e; on v and also on

©(v) does not affect the vertex ¢ and the map ¢ only affects ¢, we have

eip(v) = p(ew) = p(c)

where ¢ = e;v = top(e; F'(v)).
Therefore e;F(v) = F(c) and e, F(¢(v)) = F(ejp(v)) = F(p(ev)) = F(p(c)).
Then

v(e(F(v) @ z)) = y(e:F(v) ® x)
=7(F(c) ® x)
= fa(F(c)mj; @ (mj; @ )
= F(p(c)) ® (1 ® z)
= ¢;F'(p(v)) ® ()5 ® x)
= eifs(F(v))m;; @ (755 ® )

= (iP5} ® (15 ® 7)) = ei(v(F(v) @ 7).
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Note that, the dual of case (3) is similar to case (3).

Secondly, assume ¢t =i (the t =i+ 1 case is similar). We distinguish three cases:

1. If in the diagram F'(v) the vertex ¢ 4+ 1 is an undecorated (resp. a decorated)
isolated vertex, then in the product e;F'(v) we have an undecorated (resp. a
decorated) isolated vertex in the position of n in the top. This means that
top(e;F'(v)) € i(Wh) (resp. i(W2)). So e;F'(v) ® x = 0 in # and then
Y(ei(F(v) @ z)) = 0.

it 1

On the other hand, in f4(F(v)) the vertex ¢ is joined to the vertex (I + 1) by
a propagating line while the vertex i + 1 is an undecorated (resp. a decorated)
isolated vertex. Then in the product e;fi(F(v)) we obtain an undecorated
(resp. a decorated) isolated vertex in the position of (I+1)" in the bottom. This
means that #(e; f1(F(v))) < I+ 1, so e;f4(F(v)) is zero in ﬂ Therefore,
(P () ©2) = e F@)} ® (i @ 2)) = 0.

eifa(F(v)) = , =

+1)

1+

2. If in the diagram F'(v) the vertex ¢ + 1 belongs to a propagating line then we
obtain in e;F'(v) a propagating line that connects the vertex n in the top of
e;F'(v) with a vertex in the bottom. This means that top(e;F'(v)) € i(W3). This
implies that e; F'(v) @z = 0 in the quotient # and then vy(e;(F(v)®z)) = 0.
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e, F(v) = =

P41

On the other hand, in f;(F(v)) the vertices ¢ and i+ 1 are incident to the prop-
agating lines. Therefore the product e; f4(F'(v)) has less than [ 4+ 1 propagating
lines. Consequently e; f4(F(v)) is zero in ﬁ Then we have e;y(F(v) ® z) =
ei(f4(F(v))7r;} ® (mj 5 ® x)) = 0.

eifs(F(v)) = =

+1)

1+

3. If in the diagram F'(v) the vertex ¢t = i is connected to n by an undecorated
(resp. a decorated) arc and the vertex i + 1 is connected to a vertex r by an
undecorated arc. Then in e;F'(v) the vertex n is connected to the vertex r by
an undecorated (resp. a decorated) arc. This implies that in fy(e;F'(v)) the
vertex r is joined to the vertex (I + 1)’ by an undecorated (resp. a decorated)

propagating line.

i+

e;F(v) = T ~ = AN /

a1+
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Suppose that in the diagram e; F'(v) there are w — 1 propagating lines on the

left of . So from the definition of f; we have

fa(eiF (v)) = F(p(eiF(v)))mw,g (6.8)

On the other hand, in the diagram f,(F(v)) the vertex i is joined to the vertex
(I+1)" by an undecorated (resp. decorated) propagating line and the vertex i+1
is joined to r by an undecorated arc. Consequently, the vertex r in e; f4(F'(v))
is joined to the vertex (I 4+ 1)’ by undecorated (resp. decorated) propagating

line. Then we have

fa(eiF'(v)) = eifa(F(v)). (6.9)
This is illustrated below.
t=1 741 T n t=1 i+ 1 T
= =
F(v) = AN :
a+1)
eifi(F(v)) = = / = fi(e:F (v)).
\ +1)
(1+1)

Similarly, if the vertex i + 1 is connected to a vertex r in F'(v) by a decorated

arc then we have got fy(e;F(v)) = e;f4(F(v)). Hence, we have

v(e(F(v) @) = y(eF (v) ® x)
= fi(e;F(0)m,t @ (Tuy ® @) (from 6.8)
= fa(e:F(v)) @ (1® )
=eifs(F(v)) @ (1® ) (from 6.9)
= ¢;(fa(F(v))m;; ® (1) @ 2))
=e;(v(F(v) @ z)). O
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Lemma 6.2.13. (a) v(p:(F(v) ® 2)) = p;i(7(F(v) @ 2)),

(b) v(@:(F(v) @ 2)) = ¢:(v(F(v) @ 7))

where v € i(Wy), with an arc {t,n} and j — 1 propagating lines on the left of t, p;,

g, 1 <i<n-—1areas in Lemma 3.5.11.

Proof. (a) Firstly, assume that ¢ # i. We have the following cases:

1. If the vertex i # t is an undecorated (resp. a decorated) isolated vertex in F'(v)

then it is also in fy(F(v)). In this case we have p;F'(v) = §'F(v) (resp. uF(v)),
also p; f4(F(v)) = 0’ f4(F(v)) (resp. pfs(F(v))). Consequently, we have

(AF(v) @ z)
(v(F z)) (as v is linear)
(

fa(F(v) ]f®(7rﬂf® ))

Y(pi(F(v) @ x)) = y(piF(v) @ 2) =5

A
A

fa(F ())]f®<7w® )
(fa(F())m;; @ (mj @ 1))
(v(F

z)).

bi
bi
pi

where A = ¢ (resp. ).

2. If the vertex i is incident to a propagating line in F'(v) then that also holds
in fy(F(v)). Then we have #(p;F'(v)) < I, also #(p;fs(F(v))) < I+ 1. This
implies that p; F (v) is zero in BY, and also p; f4(F (v)) is zero in BlJrl Therefore,
v(pi(F(v) @ x)) = y(piF (v) ® ) = 0 and
pi(V(F(v) @ ) = pi(fa(F(v))m;; @ (m; @ 7)) =0,

3. If the vertex i is connected to a vertex r (say) by a decorated or an undecorated
arc in F'(v) then that also holds in f4(F'(v)). So in the product p;F'(v) and also
in p; f4(F(v)) we have got an undecorated isolated vertex in the position of ¢
and r. Note that since the action of p; on F'(v) and also on f4(F(v)) does not

affect the vertex t and f; only affects ¢, we have

fa(piF(v)) = pi fa(F(v)).
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This is illustrated below.

S
)
<

N

:

F(v) =

fa

fa

a+1y

= [ai(p:iF(v)).

pifa(F(v))
—

a1+

Let p;F'(v) = F(c) where ¢ = p;v = top(p;F'(v)). Then we have

(pi(F(v) @ x)) = y(F(c) © x)

= f4(F(C)7T;; ® (75 @ x)

= fa(piF ()75 © (75 © )
= pif4(F(v))7r;} ® (75 @ x)
= pi( fo(F(v))7;+ @ (m55 @ )

=pi(7(F(v) ® x)).

+1

Secondly, suppose that ¢ = t. Then in p;F'(v) we have an undecorated isolated vertex

in the position of n in the top. This means that top(p;F(v)) € «(W;). This implies

that (p;F(v) @ z) is zero in 2282 and then ~(pi(F(v) ® x)) = 0.

M

On the other hand, in fy(F(v)) the vertex i is joined to the vertex (I 4+ 1) by a

propagating line. Consequently, in p; f4(F(v)) we have got an undecorated isolated

vertex in the position of ({41)" in the bottom. This means that # (p; f1(F(v))) < {41

implying that p; f4(F(v)) is zero in B.TY. Therefore,
pi(V(F () ®x)) = pi(f2(F(0))7; ;@ (m;; © ) = 0.

Hence fy(pi(F(v) ® m)) =p; (’y(F(v) ® az))

(b) The proof is similar to (a).

From the previous lemmas and Lemma 3.3.11 we have the following:
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Lemma 6.2.14. The map 7 is a DP*B,,_1-module homomorphism.
Now we are in the position to prove the main result of this section.

Proof of Proposition 6.2.1. From Lemma 6.2.8 and Lemma 6.2.14 we have
An(LN) ~ . (CSH
Anlld) o pHHL Since S* 1 2=, ., 5,

A (CSnJrl
M 1 ®cg, 9 1oz

~ P B @ e, S =P Al +1,v).

A—v A—v

This completes the proof of the proposition. O

6.3 Main result

Now we are ready to state the main result of this chapter.
From Propositions 6.1.5, 6.1.6 and 6.2.1, we obtain the restriction rules for the cell

modules.

Theorem 6.3.1. Let )\ be a bipartition of . Then we have the following:

(a) Forl=0, there is a short exact sequence of DPB,,_1-modules as follows

0 — A, (0, (0,0)) % — A, (0,(0,0)) I55a
— Ay (L[ 19) @ A (1,0, ) — 0.

(b) Forn>3,1<1<n-—2, there is a short exact sequence of DPB,_1-modules

as follows

0— A s (LN & @ Ana(l— 1, 1) — Al ) 1BRR"

H—A

— @An_l(l +1,v) — 0.

A—v
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FIGURE 6.1: Bratelli diagram for the cell module A, (I, A), for n < 2.

(c) Forl=mn—1, we have

An(n =10 1058~ Ai(n =10 @ @ Ana(n—1,p).

n—A

(d) Ifl =mn, the cell module of the DP*B,, coincides with the Specht module of (CSTL.

Then we have

An(n, ) Lopar =~ S @:71: P s+
U=

In the following we represent the restriction rule for the cell module using a Bratteli

diagram.

Let A, = {\ | X is a bipartition of [, [ is the number of the propagating lines of
AL (LX), 0<1<n}.

Define the Bratteli diagram for the restriction rule for the cell module A, (I, \) to be
a graph consisting of vertices in n-th level labelled by the bipartitions in A,,, n > 0,
and edges between vertices in (n — 1)-th level and n-th level i.e. between u € A,
and A\ € A,,, these edges are defined as follows: There are two edges between p and
A if A = p and one edge between p and A if p is obtained from A by removing or
adding one box. (See Figure 6.1.)
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6.4 Future work

This thesis makes only a start in understanding the representation theory of the
decorated partial Brauer algebra. There are many future avenues of research that

could be explored.

We would like to understand when the algebra is semisimple. We expect, like many
of its diagram algebra cousins, that it is generically semisimple. Since the algebra is
cellular, one way to prove this could be to show that the cell modules are generically
simple, or equivalently, that the Gram determinant of each cell module is non-zero.
This uses the work of Graham and Lehrer, [6], who showed that if A is cellular R-
algebra (R a field) then A is semisimple if and only if the non-zero cell modules of A

are simple modules.

Once we know it is generically semisimple, then the next question is what conditions
on the parameters give a non-semisimple algebra. This may involve reparametrising

in terms of quantum integers, as for other diagram algebras.

We then could begin to explore the non-generic representation theory of the algebra.
Since the decorated partial Brauer algebra contains the symmetric group theory, this
is a hard problem in general. But certainly we could expect to relate the represen-
tation theory of this algebra (and its decomposition numbers) to that of the Brauer

algebra and hence the symmetric group.
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