
Automated classification of
behavioural and

electrophysiological data in
Neuroscience

Tiago Victor Gehring

Department of Computer Science
Faculty of Engineering

This dissertation is submitted for the degree of
Doctor of Philosophy

Supervisor: Prof. Eleni Vasilaki May 2018



ii



Declaration

I hereby declare that except where specific reference is made to the work of others,
the contents of this dissertation are original and are the result of my own work and
research during the three years of my PhD. Most of the material presented has
already been peerreviewed and published, or is about to be, in the form of journal
papers with myself as first author. None of the contents has been submitted in
whole or in part for consideration for any other degree or qualification in this, or
any other university.

Tiago Victor Gehring

May 2018



iv



Acknowledgements

First and foremost a very special thanks to my supervisor, Eleni Vasilaki, who
was always suportive and patient, finding always time to give me some advice or
feedback. Without her this work would not have been possible.

Special thanks also to Michele Giugliano and Daniel Wójcik for welcoming
me for extended visits to their labs in Antwerp and Warwsaw and giving me the
opportunity to have direct contact with great neuroscientists and other researchers.
It was really a fantastic experience.

I would also like to thank my examiners, Richard Clayton and Thomas Novotny,
for all their work and thorough feedback when reviewing this thesis. Thomas
reviewed my work in great detail on two separate occasions and was kind enough
to send me his handwritten notes and comments. This helped to improve the
quality of the final version substantially.

Finally I would also like to thank my family and friends in Germany, Brazil,
and England, and especially my girlfriend, Nicole Trethewey, for their patience
and support while I was working on my dissertation.



vi



Abstract

Due to technological advances the amount of data that can be collected in modern
science is increasing every day and neuroscience is no exception. Integrating large
amounts of data at different spatial and temporal scales is essential for uncovering
the underlying mechanisms of the brain but poses also new challenges since drawing
conclusions from vast amounts of data is increasingly difficult. New automated
and fast analysis methods that can make sense of large and complex data sets are
therefore in need and will become increasingly important in the years and decades
ahead. This work proposes new tools for the analysis of two important types of
data commonly found in neuroscience. The first is behavioural data from rodent
navigation tasks in the form of animal movement paths. Two novel classification
methods based on machine learning algorithms are proposed here. The methods
are able to automatically or semi-automatically reduce the complex movement
paths of the animals to a series of stereotypical types of behaviour, leading to
both more detailed and consistent results. The second type of data considered
here is electrophysiological data, in the form of extracellular multielectrode array
(MEA) recordings which can record the electrical activity of thousands of neurons
in parallel over long periods of time. Here a new highly-parallel data processing
tool which can reduce the MEA data to a series of spike trains is presented. The
tool can serve as basis for more sophisticated analyses like the reconstruction of
the individual cell spike trains, for which machine learning methods are again
essential. The results presented here show that machine learning algorithms and
parallel processing architectures are both fundamental tools for coping with large
and complex data sets, like the ones found in modern neuroscience.
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Chapter 1

Introduction and motivation

Modern science has to deal with an ever increasing amount of data. Technological
advances in materials, electronics and computers mean that we are increasingly
able to collect data at multiple scales at higher resolutions and for longer periods
of time. The “big data” revolution has arrived and, indeed, has been a reality for
many fields of science for some time already. For example, in the field of particle
physics, the Large Hadron Collider collected large amounts of data from particle
collisions leading to the confirmation of the existence of the Higgs boson. Other
examples include genetics, where full DNA sequencing of an organism is becoming
commonplace; or astronomy, where new telescopes such as The Atacama Large
Millimetre/sub-millimetre Array (ALMA) will generate hundreds of terabytes of
data every year when in full operation.

The big data revolution is also slowly reaching the field of neuroscience (Se-
jnowski et al. 2014). Understanding how fundamental mechanisms in the brain,
such as memory formation and learning, work remains one of the major challenges
facing modern science. In order to support the development of new theories and
models of the brain large amounts of data spanning multiple temporal and spatial
scales have to be collected and integrated.

New instruments and experimental techniques are making it possible to collect
vast amounts of data, but this brings also new challenges since drawing conclusions
from the large data sets becomes increasingly difficult. For example, it is relatively
straightforward to interpret patch clamp recordings (Sakmann and Neher 1984)
that record the electrical activity of a single neuron over a period of minutes to a
few hours; however, analysing and interpreting the results of the recorded activity
of many thousands of neurons from multi-electrode extracellular recordings, that
can collect data over a period of days or weeks, can be a significantly more daunting
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task.
In order to analyse and interpret the new large data sets that are becoming

so prevalent nowadays new automated analysis methods have to be developed.
Machine learning is a field of research concerned with the creation of algorithms
that can extract information automatically from data sets. Machine learning al-
gorithms are especially well suited for analysing large data sets and have been the
focus of much attention in the past few decades. They are pervasive nowadays,
finding applications not only in scientific research dealing with complex data sets,
such as drug discovery and speech recognition, but also in diverse fields such as
credit card fraud detection and behavioural advertisement.

Applications of machine learning algorithms in neuroscience include the auto-
matic classification of neuron cell types (Armañanzas and Ascoli 2015), interpreta-
tion of fMRI (functional Magnetic Resonance Imaging) images with the objective
of inferring the feelings or thoughts of a person (Pereira et al. 2009), and the
reconstruction of neuronal firing patterns of individual neurons from recordings
of an electrode surrounded by many neurons (a process known as spike-sorting,
considered in Section 5.4.1). It is expected that as the complexity and amount of
data that becomes available increases, the use of machine learning algorithms to
cope with the data will become increasingly common (Akil et al. 2011).

The main objective of this thesis is to investigate how machine learning meth-
ods can be applied to other types of data sets commonly found in neuroscience.
This thesis is divided into two parts; the first part will be devoted to developing
new analysis methods for behavioural data. The second part of this thesis will
focus on another fundamental type of experiments found in neuroscience: electro-
physiological recordings.

Behavioural research, the topic of the first part of this thesis, is arguably one
of the most fundamental areas in neuroscience but analysing and comparing the
behaviour of animals can be a very laborious task. It is therefore fundamental to
develop automated behavioural analysis methods which can consistently evaluate
the behaviour of animals. Machine learning algorithms can be especially useful in
achieving such goals (Sejnowski et al. 2014). For example, a study by Dankert et
al. (2009) presented a method for automatic behavioural monitoring of Drosophila.

In this thesis, new classification methods for two rodent navigation tasks com-
monly used in neuroscience, the Morris Water Maze and the Place Avoidance Task,
will be presented. The methods are based on the analysis of the movement paths
of the animals within the arenas, which poses interesting challenges because of
the complex nature and high variability of the data. Here, however, the prob-
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lem is made more manageable by first splitting the movement paths into shorter
segments. The segments are then classified into stereotypical classes of behaviour
using cluster analysis, which makes it possible not only to classify the data but
also to identify the common types of behaviour in a set of experiments.

In the field of electrophysiological recordings benefits can be gained from recent
technological advances such as the ability to record extracellular activity from
hundreds or thousands of locations and from many thousand cells at the same
time. Multielectrode array recordings are crucial because they make it possible to
study how neuronal ensembles work. Complex activity results from a collection
of many cells and not a single neuron. Although machine learning methods can
be used for tasks such as spike sorting, the raw electrical activity of the cells have
to be first processed and transformed into action potential (spike) trains emitted
by the cells. The amount of data generated from modern multielectrode arrays
is substantial but also inherently parallel since the data recordings from different
electrodes are independent from one another.

The second objective of this thesis will be to investigate how modern parallel
hardware architectures can be utilised to create high performance analysis tools
for electrophysiological data. The second part of the thesis will present a new
highly parallel processing tool for handling multichannel recordings that exploits
the parallel nature of both the data as well as of modern hardware architecture.
The new tool can be used for processing large recordings even on modest computers
and can serve as a basis for more sophisticated automated analyses, such as spike
sorting, which can again be reduced to a classification problem, for which machine
learning algorithms are especially well suited.

In order to be able to successfully make sense of large data sets both more
sophisticated and also faster and highly scalable algorithms have to be developed.
Both of these goals are addressed in this thesis, the first by showing that machine
learning methods can be used to develop algorithms that are able to find patterns
in data and to create automatic classifiers. The second goal is addressed by ap-
plying modern programming paradigms and techniques that can extract as much
performance as possible from current hardware, which is becoming increasingly
parallel in nature.

This thesis is built around two journal and one conference paper that I produced
with the role of first author during my PhD:

I Gehring T V, Luksys G, Sandi C, Vasilaki E (2015) Detailed classifica-
tion of swimming paths in the Morris Water Maze: multiple strategies within
one trial. Scientific Reports, 5, 14562
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II Gehring T V, Vasilaki E, Giugliano M. Highly scalable parallel processing
of extracellular recordings of Multielectrode Arrays. 2015 37th Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC). IEEE, 2015.

III Gehring T V, Węsierska M, Wójcik M, Vasilaki M Classification of
behavioural patterns in the Active Place Avoidance Task (in preparation)

The thesis is structured as follows. Chapter 2 presents a short literature review
that introduce some neuroscience and machine learning concepts relevant to this
work. Chapter 3 presents a new classification method for the swimming paths in
the Morris Water Maze, a rodent navigational task commonly used in behavioural
research. More specifically, in this chapter a semi-automated classification method
for the trajectories of the animals based on a constrained (semi-supervised) clus-
tering algorithm is introduced. This chapter is based on work that was published
in a journal article (Gehring, Luksys, et al. 2015). Chapter 4 builds on the previous
chapter by generalising the classification method to another important behavioural
task in neuroscience, the Place Avoidance Task. The chapter also shows how the
method developed in Chapter 3 can be transformed into a fully automated (unsu-
pervised) classification and data extraction method. The work in this chapter is at
the time of writing being prepared for submission to a journal. Chapter 5 changes
the focus from behavioural to electrophysiological data and presents a new high
performance data processing tool for Multielectrode Array recordings. This chap-
ter is based on material that was presented at the IEEE EMBC Conference in 2015
(Gehring, Vasilaki, et al. 2015). General conclusions, limitations of the methods
and results presented in this thesis, and suggestions for future improvements are
presented in the last chapter.



Chapter 2

Literature review

This chapter introduces some concepts that will be relevant for this work. It is
divided in two major sections: the first consists of a brief introduction to the field
of Behavioural Neuroscience and discusses how animal experiments can be useful
for understanding the brain. The second section will provide an overview of the
field of Machine Learning and introduces some important concepts and algorithms
that will be used in this work.

2.1 Behavioural Neuroscience

Behavioural Neuroscience is a field of research that studies how neural and physi-
ological processes in the brain give rise to different types of behaviour. It tries to
understand how functions in the brain are related to an animal’s behaviour and
the environment.

Important areas of study within Behavioural Neuroscience include:

• Learning and memory: how are memories in the brain formed and retrieved
and do how diseases, such as dementia, affect these?

• Sensorimotor processing: studies how the brain processes sensory inputs
from, for example, the visual, tacticle, and the auditory systems, allowing
us to experience the world. Many people that have autism have difficulties
integrating touch, smell, and sound sensory inputs. How are these inputs
processed in the brain and which neural or physiological disorders lead to
autism? This is just one of the questions that the study of the sensorimotor
processing in the brain tries to answer.
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2.1.1 Animal studies

In order to study how the brain processes lead to behaviour and how brain disorders
can be prevented animal models are frequently used. Animals are used instead
of humans for obvious ethical considerations, although the moral aspects of using
animals is also highly debated (Bovenkerk and Kaldewaij 2014). Animal studies are
nevertheless fundamental to advance our understanding of the brain. They have
already led to major breakthroughs in our understanding of some of the cerebral
mechanisms and to the development of drugs and treatments that substantially
improves our health and quality of life (Miller 1985).

The human brain is much more evolved than the brain of every other animal,
so it might at first not seem logical to use animals to understand the brain. Never-
theless, many fundamental brain processes are very similar in animals and humans
and so the understanding that we gain from animal experiments can frequently be
applied to humans.

Rats and mice are the predominant model organisms used in neuroscience,
although other animals such as fruit flies and zebrafish are also used.

Different experimental procedures for animals designed to test different aspects
of information processing in the brain have been proposed over time. This includes,
for example, the development of various different tasks where animals have to
escape from water (Blumberg et al. 2010). The water used in these experiments is
usually uncomfortably hot and so animals want to leave it as quickly as possible;
this motivates learning and memory processes (Wever 1932). Water maze tasks
have been shown to be useful for testing spatial learning and recall. They can
be used to, for example, test the effect of lesions to the brain, drugs or aging.
One of the most widely used water tasks is the Morris Water Maze, which will be
described in detail in Chapter 3.

Other behavioural tests of spatial memory not involving water have also been
proposed in the literature. One of these is the Active Place Avoidance Task, where
animals are allowed to move freely within an arena but have to learn to avoid a
shock sector and to ignore local cues for navigation. Place Avoidance Tasks will
be discussed in more detail in Chapter 4.

2.2 Machine Learning

Machine Learning is a branch of the artificial intelligence research field and one
of the fastest growing areas of research in Computer Science (Shalev-Shwartz and
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Ben-David 2014). Machine Learning has made major progress in the last couple
of decades (Jordan and Mitchell 2015) and machine learning algorithms are now
at the core of many modern technological developments such as autonomous cars
and speech recognition systems, among many others.

In general terms, Machine Learning is concerned with the development of al-
gorithms and systems that learn from experience (Flach 2012). How experience is
defined and how it’s acquired or delivered to the system will depend on the type of
problem at hand. The field of Machine Learning is vast and consists of a multitude
of methods and algorithms that can be applied to a wide range of problems.

One typical class of problems that machine learning methods are well suited
to solve are classification problems. In a classification problem the objective is to
assign objects into one of a group of categories based on a training set of data,
or objects for which the category is known. The training set is also known as the
labelled data. This is the data that is fed to the algorithms and which is then used
to create a classifier, which can then be used to predict the category of future,
unseen data.

A classic classification problem is for example the one of automatically identi-
fying handwritten digits. This can be useful to automatically extract the postal
code from letters in a mailing system, for example. In this case the categories (or
classes) are the 10 possible digits (0-9) and the labelled data consists of pairs of
sample images of handwritten digits and the value that they represent. The task at
hand is then to use this data to create a classifier that can take a handwritten digit
as input and output the digit that it represents making as little mistakes as possi-
ble. The ratio of incorrect to correct predictions is a measure of performance that
can be used to compare different classifiers. Classification problems usually fall
in a category of problems known as supervised learning, although reinforcement-
learning and semi-supervised algorithms (considered below) also exist.

Another class of problems in Machine Learning make no use of labelled data
but are rather concerned with the development of automated methods for finding
patterns in data. The patterns that are found can then be used to predict probable
future data outcomes (Murphy 2012). These are known as unsupervised learning
problems.

Some algorithms do not fall neither in the unsupervised class nor in the su-
pervised class. This is the case for example for reinforcement learning problems,
which do not make use of labelled data, but are also not completely unsupervised
since they receive feedback from signal that evaluates the actions taken by the
algorithm or an agent. Algorithms for which both labelled and unlabelled data is
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used also exist. These are known as semi-supervised learning problems and will
be especially relevant in this work.

The major types of machine learning algorithms are listed in Table 2.1 and
described in more detail in the next few sessions.

Table 2.1: Classes of machine learning algorithms. For each class of algorithms the type
of input data, its main applications and a some commonly used algorithms are listed.
ANN: Artificial Neural Network based algorithm.

Type Input Uses Algorithms

Supervised learning Labelled data Classification, regression
Decision tress,
backpropagation algorithm (ANN),
support vector machines

Unsupervised learning Data Model structure of data,
finding patterns and correlations

Clustering,
self-organized maps (ANN),
adaptive resonance (ANN)

Reinforcement learning Data + reward signal Agents, learning from experience REINFORCE
Semi-supervised learning Data + some labelled data Classification, finding patterns Constrained clustering

2.2.1 Supervised learning

Supervised learning can be described as learning by example. In supervised tasks
a learning algorithm is used to train a model by feeding it with pairs of values
consisting of a data point, or an instance, and an associated label, or the category
to which the data point belongs to. This collection of points is called the training
set or labelled data. After training the learned model can then be used to predict
the category of future data (the category is also known as the class of the data
point). Models constructed in this way are known as predictive models.

Supervised learning can be subdivided into classification and regression prob-
lems. In classification problems the labels used for training are discrete and the
output function is known as a classifier. If only two different classes exist the
problem is known as binary classification, otherwise as a multi-class classification.
In regression problems the labels are continuous and the trained function is called
the regression function.

Classifiers can be constructed, for example, by a method known as decision
tree learning (Breiman 1984; Rokach and Maimon 2008). Decision tree learning
constructs classifiers by means of a classification tree. It can also be used to
solve regression problems, by building a regression tree. Artificial Neural Networks
(ANN) are another class of supervised algorithms that are commonly used in
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classification problems (C. M. Bishop 1995). They too can be used to construct
(linear or non-linear) regression functions (Specht 1991).

2.2.1.1 Test data and cross-validation

The performance of supervised algorithms can be tested with a test data set dis-
tinct from the data that was used for training the model. Both sets have to be
distinct in order to avoid overfitting the data. Overfitting occurs when the con-
structed model is too complex and tries to reproduce the training data to a high
level of detail, without taking statistical fluctuations and noise into account. This
leads to models that do not generalise to new data besides the one that was used
for training the model.

In general both the training and test data sets are taken from the same set of
labelled data. It is important, however, that the set of test data (usually much
smaller) is not always the same but rather randomly selected for each model that
is constructed. An even better approach is to construct not one but many models
using different sets of test data. In a 10-fold cross-validation, for example, the
labelled data is randomly partitioned into 10 sets which are used in turn as the
test data set; the data remaining (90%) is used for training the model. In the end
the performance of the algorithm is evaluated by averaging the results for the 10
models that were constructed.

2.2.2 Unsupervised learning

In unsupervised learning no labelled data is available and the learning algorithm
is simply fed with data. The aim of unsupervised algorithms is to build represen-
tations of the input data or find patterns and statistical correlations in the inputs
that would otherwise be considered pure noise.

Self-Organized Maps (SOM) (Kohonen 1982) and Adaptive Resonance Theory
(ART) (Grossberg 1987) are both examples of unsupervised methods based on
artificial neural networks. Most clustering algorithms (described below) are also
unsupervised and are frequently employed to group objects.

Since unsupervised algorithms make no use of test data the performance of the
algorithms has to be defined differently than for supervised ones and will depend
on the problem at hand and on the algorithm used.
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2.2.3 Reinforcement learning

Closely related to unsupervised algorithms are reinforcement learning algorithms
(Sutton and Barto 1998). Reinforcement learning deals with a different type of
problems, however; it is concerned with learning what to do under different sit-
uations, or how to map situations to actions. Reinforcement algorithms have a
reward signal that acts as an evaluative feedback: actions that lead to rewards are
reinforced and other actions are weakened. The objective of reinforcement learning
algorithms is to find the actions that maximize the total reward.

Reinforcement learning is believed to be the base mechanism by which biologi-
cal organisms learn which actions to take in different situations (Holroyd and Coles
2002). One example of a reinforcement algorithm is the REINFORCE∗ algorithm
(R. Williams 1992).

2.2.4 Semi-supervised learning

Semi-supervised algorithms (Chapelle et al. 2006; Zhu 2006; Zhu and Goldberg
2009) fall somewhere between unsupervised and supervised algorithms. Whereas
in the supervised case only labelled data is used for training, the data is fully
unlabelled in the unsupervised case. Semi-supervised algorithms make use of both
labelled and unlabelled data to extend both unsupervised and supervised learning
paradigms.

Unsupervised algorithms, such as data clustering (described in the next sec-
tion), can be improved when a set of labelled data is also available. This data
can then be used to constrain the algorithm. In the case of clustering algorithms
this can be done by, for example, defining must-link and cannot-link constraints
between two instances, requiring them to be in the same cluster if they have the
same label or different clusters if the labels are different (Bilenko et al. 2004).

Supervised algorithms, such as classifiers, can also be improved when both
labelled and unlabelled data are available. For classification problems the classifier
can be trained with both labelled and unlabelled data; the objective is to construct
a better classifier than one trained with the labelled data alone. This might sound
counter-intuitive at first, but under the right conditions using both sets of data
can in fact lead to better results. This is true, for example, when the instances of
each class are concentrated in a limited region of space and not widely dispersed.
In this case the set of unlabelled data, usually much larger than the labelled one,

∗REward Increment = Non-negative Factor times Offset Reinforcement times Eligibility
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can help to define the boundaries of each class and therefore improve the results
(Liang et al. 2007).

An overview of the differences between supervised, unsupervised, and semi-
supervised algorithms is shown graphically in Figure 2.1.

Figure 2.1: The three major classes of algorithms in machine learning. In supervised
algorithms (left) the data is fully labelled and the objective is to find a partitioning of
the space respecting the labels. Unsupervised algorithms (middle) on the other hand
make no use of labels at all and try to find a partitioning solely on similarity or distance
between elements. Finally, semi-supervised algorithms have only a partial set of labelled
data which can be used to improve the results.

Semi-supervised algorithms can be further divided into inductive and transduc-
tive settings. In the former the objective is to predict labels of future data; in the
latter the goal is to assign labels only to the unlabelled training set. In Chapter 3
a transductive semi-supervised algorithm based on a constrained clustering algo-
rithm is used to classify a data set. The objective of the algorithm in this case is
to reduce the classification effort and label only a subset of the data, and not to
train a generic classifier that can be applied to new data sets.

2.3 Data clustering

Clustering algorithms (Aggarwal and Reddy 2013; Jain 2010; I. H. Witten et al.
2011) have as objective to partition a set of data points into groups, or clusters,
so that intraclass elements, or elements within the same cluster, are as similar as
possible; conversely, interclass elements of distinct clusters should be as dissimilar
as possible (Bijuraj 2013). Although formulations of clustering algorithms which
make use of labelled data exist (see below), clustering algorithms are generally
unsupervised. They can be considered as a form of data summarisation and are
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commonly used in applications such as data mining (I. Witten and Frank 2005)
and pattern recognition (C. Bishop 2006).

In order to successfully partition the data into meaningful clusters the notion
of similarity between elements has to be defined and provided to the clustering
algorithm. In many cases similarity functions based on a distance measure between
points are used.

2.3.1 Clustering strategies

Different types of clustering algorithms exist, but the algorithms can be roughly
divided into three broad classes: hierarchical and partitioning clustering, which
cover the vast majority of available clustering algorithms, and density based al-
gorithms. Many other more specialised clustering methods exist but will not be
discussed here.

2.3.1.1 Density based clustering

In density based clustering methods the clusters are defined as contiguous areas of
high density. Sparse regions between clusters containing few elements are usually
considered noise and discarded. One example of a density based clustering algo-
rithms is DBSCAN (Daszykowski and Walczak 2010). Closely related to density
clustering are grid clustering algorithms, which divide the space into a hierarchy
of discrete cells. One example is the STING algorithm (Wang and Muntz 1997),
which approaches the results of DBSCAN in the limiting case of infinitely many
cells.

2.3.1.2 Hierarchical clustering

Hierarchical clustering algorithms produce a hierarchy of clusters by following
either a bottom-up (agglomerative) approach, where individual clusters which are
found to be compatible are continuously merged at each level, or a top-down
(divisive) one, where clusters are split at each step if appropriate. Hierarchical
clustering makes usually use of a similarity matrix of N xN elements, which can
trivially be constructed from the similarity function, to decide if elements should
be part of the same cluster or not. The resulting cluster hierarchy, which has the
form of a dendrogram, can be cut at any level to give the resulting set of clusters.
Example of hierarchical clustering algorithms are the classic SLINK (Sibson 1973)
and Chameleon (Karypis et al. 1999) algorithms.
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2.3.1.3 Partitioning methods

Contrary to hierarchical and density based methods, for which the number of final
clusters is typically not set beforehand, partitioning methods take as input the
target number of clusters and attempt to find the best partitioning that matches
the given number of clusters. This is usually done by some sort of iteractive
optimisation that relocates elements between clusters attempting to improve the
solution. This can be done, for example, by taking a probabilistic view that
assumes that the data comes from a mixture of probability distributions whose
parameters have to be determined. The distribution parameters can be found, for
example, by computing the Log-likelihood function and maximising it using the
expectation maximisation method (Mitchell 1997).

Another approach to find a suitable partitioning of the data is to use a non-
parametric algorithm and not assume any specific underlying data probability
distributions but to instead define an objective function based solely on inter/intra-
cluster relations, such as the distance or similarity/dissimilarity between elements.
Since comparing all pairs of elements becomes quickly prohibitively expensive,
typically only one cluster representative for each cluster is compared to the others.
The cluster representative can be defined as one element in the cluster chosen to
be the most appropriate one, which leads to the k-medias method (Kaufman and
Rousseeuw 1987), or it can be defined as the centroid of the cluster; the latter
case leads to the k-means algorithm (Section 2.3.3). The objective function of
both k-medoids and k-means is constructed so as to sum all the distances between
cluster representatives and other cluster members. This objective function is then
iteractively minimised, leading to a solution.

2.3.2 Choosing a clustering method

Compared to density and partitioning methods hierarchical clustering algorithms
have some advantages, such as being completely deterministic and returning a
structure that is more informative than a flat set of clusters. However, they are
also more complex having typically at least quadratic complexity on the number
of elements (Manning et al. 2009). Moreover, hierarchical clustering algorithms
usually don’t revisit clusters after defining them, and so don’t attempt to improve
the results. Elements that are found to be linked (agglomerative algorithms) or
which should be split (divisive approach) in one clustering step stay so until the
end (Berkhin 2006; Kaufman and Rousseeuw 1990). Hierarchical clustering algo-
rithms also make it difficult to incorporate constraints (Wagstaff 2000) and cannot
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therefore easily be extended to a semi-supervised paradigm (Section 2.3.4).
Density based clustering algorithms such as DBSCAN offer some advantages

compared to the other methods, such as being able to find clusters of arbitrary
shapes and being robust against outliers. However, they also have some major
limitations, such as not being able to cluster data sets with large differences in
densities and the difficulty of specifying a proper density threshold ε in many
cases.

Partitioning based clustering methods are probably the most popular type of
clustering algorithms (Ayram and Kainen 2006) and are preferred in applications
such as pattern recognition (C. Bishop 2006) or data mining (I. H. Witten et al.
2011). They can also be easily extended to include constraints (Section 2.3.4) and
were therefore the type of clustering algorithm that was used in this work. They
also have some drawbacks, however, such as the problem of determining the ’right’
number of target clusters (Section 2.3.6 ).

There is a myriad of cluster algorithms that were proposed in the literature
(Estivill-Castro 2002). Here only two will be considered indetail: first the classic
K-Means partitioning algorithm will be introduced, followed by a description of
MPCK-means, an algorithm based on K-Means that also supports constrained
clustering and which was used extensively in this work.

2.3.3 K-Means clustering

Despite having been proposed over 50 years ago† the K-Means clustering algorithm
(Lloyd 1982; MacQueen 1967) is still widely used today. K-Means is a partition-
ing algorithm that uses the cluster centroids as cluster representatives. At first
centroids are chosen at random; elements are then assigned to the nearest centroid
based on a given distance measure. After this the new centroids are computed
and the process is repeated until a convergence criterion is met (typically when
less than 1% of the elements change cluster ownership). The process is described
in Algorithm 1.

The K-Means objective function that is to be minimised is just a double sum,
first over all the clusters then over the distance of the elements within the cluster
to the centroid (Equation 2.1).

fK−Means =
K∑
k=1

∑
xi∈Ck

‖xi − µk‖2 (2.1)

†The original algorithm formulation by Lloyd from Bell Labs dates back to 1957 but was
published only in 1982
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Data: points xi, target number of clusters K
Result: clusters {C1, C2, ... , Cl}, Ci = {ci1, ci2, ... , ci ni

}
1 ≤ cij ≤ N ; cij = index of jth element of ith cluster
begin

initialize centroids µi;
while convergence criterion not met do

form clusters Ci by assigning each point to the closest centroid;
µi ← new centroids;

end
end

Algorithm 1: K-Means clustering algorithm

In Equation 2.1 Ck, k = 1..K, are the clusters and µk the cluster centroids.
Different distance functions can be used in K-Means with the Euclidean distance
being the most common one. For the case of the Euclidean distance it is easy
to show (Aggarwal and Reddy 2013) that the objective function in Equation 2.1
leads to the choice of using the centroid as cluster representative. This can be
seen by taking the derivative of the objective function with respect to the cluster
representative, µi:

∂fK−Means

∂µj
= ∂

∂µj

K∑
k=1

∑
xi∈Ck

(xi − µk)2

=
∑

xi∈Cj

2(xi − µj)

Setting then the last expression to zero in order to find the minimum of the
objective function:

∑
xi∈Cj

(xi − µj) = 0 =⇒ Nj.µj =
∑

xi∈Cj

xi

=⇒ µj =
∑

xi∈Cj
xi

Nj

where Nj is the number of elements of cluster j. The last expression shows that
the cluster representative is just the mean value of the coordinates of the elements
in the cluster, or its centroid.

Not only the target number of clusters but also the choice for the initial cen-
troids will impact the results of K-Means. This is because K-Means is a greedy
algorithm, i.e., it chooses at each step the best local solution in the hope that this
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will lead to the global optimum. Since the position of the initial centroids is usually
randomised the clustering results are usually non-deterministic. However, many
other, non-randomised, initialization methods for K-Means have been proposed in
the literature (Arthur and Vassilvitskii 2007; Bradley and Bradley 1998; Hartigan
and Wong 1979).

2.3.4 Semi-supervised clustering

In its most basic form data clustering is completely unsupervised and, in many
cases, like in the case of the K-Means algorithm, non-deterministic. Without
any additional knowledge the clustering results will depend largely on how the
similarity between elements is defined, and possibly some other parameters such
as the target number of clusters. However, sometimes additional information about
the data relationships or constraints is available and it is desirable to incorporate
this knowledge into the clustering process. This additional information can be, for
example, a partial set of labelled data, which tells which elements should belong
to the same cluster and which not. Clustering algorithms which are able to make
use of this knowledge are known as semi-supervised clustering (SSC) algorithms.

Although semi-supervised clustering algorithms have been far less studied than
standard unsupervised ones, there has been a high interest in developing new semi-
supervised algorithms recently (e.g. Anand et al. 2014; Xiong et al. 2014). This is
because in fields such as data mining or pattern recognition it is often the case that
a large data set has to be analysed but only a relatively small amount of labelled
data is available or labelling is too time consuming. As was discussed in Section
2.2.4 some labelled data can be beneficial and improve the results, specially if the
objective is to classify a large data set. A few different semi-supervised clustering
algorithms have been proposed over the years, many based on the basic K-Means
algorithm attempting to use the labelled data to overcome some of its limitations.

Two algorithms based on the standard K-Means algorithm but which are able
to use a partial set of labelled data to improve the results were proposed by Basu
et al., (2002). Their first algorithm uses the available partial set of labels to
define the initial cluster centroids, which are taken to be the labelled points. This
effectively turns the algorithm into a deterministic one. However, it also imposes
some constraints on the labelled data itself because each cluster has to contain at
least one labelled data point. The second algorithm proposed by Basu et al. uses
the labels to not only fix the initial conditions, but also to constrain the clustering
by moving labelled elements to other clusters in case that the labels of the clusters
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and data points don’t match. As their experiments show, both algorithms improve
the clustering performance significantly over standard K-Means, with the second
proposed algorithm giving slightly better results than the first. However, the
constraints used in this form are “hard” constraints that have to be fulfilled, which
can be too restrictive at times. It is often desirable to have only a set of “soft”
constraints that help to guide the clustering process but don’t have to necessarily
be all enforced at the same time.

A better and most common choice for incorporating constraints into clustering
algorithms is to define pairwise ”must-link” (positive) and ”cannot-link” (negative)
constraints (Basu, Bilenko, et al. 2004; Law et al. 2005; Wagstaff 2000), also known
as equivalence constraints (Shental et al. 2004). These are shown graphically in
Figure 2.2. A must-link constraint between two elements states that they are of the
same class and should belong to the same cluster, or to clusters that are mapped to
objects of the same class in the case that multiple clusters per class are allowed. A
cannot-link constraint states that two elements are of different classes and should
not belong to the same cluster or to clusters of the same class. The constraints
defined in this form can be hard (Wagstaff 2000; Wagstaff et al. 2001) or soft,
allowing them to be violated; this can be accomplished by, for example, using a
modified objective function that includes the constraints as additional costs (Basu,
Bilenko, et al. 2004; Law et al. 2005).

Figure 2.2: Equivalence constraint in semi-supervised clustering. Must-link constraints
are shown as dotted lines and make elements of the same class end up in the same cluster.
Cannot-link constraints (solid broken lines) push elements apart forcing them to end up
in different clusters.
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2.3.5 The MPCK-means algorithm

MPCK-means (Metric Pairwise Constrained K-Means) is another clustering algo-
rithm based on K-Means that was proposed by Bilenko et al. in 2004 and which
was used extensively in this work. MPCK-means supports constrained clustering
in the form of soft must-link / cannot-link constraints that are incorporated into
a modified objective function:

fMPCK−means =
K∑
k=1

∑
xi∈Ck

‖xi − µk‖2 +
∑

(xi,xj)∈M
ci 6=cj

wij +
∑

(xi,xj)∈C
ci=cj

wij (2.2)

where, as before, x1..N are the elements to be clustered, C1..K the clusters and
µ1..K the centroids of the clusters;M and C are the sets of must-link and cannot-
link pairs of elements and ci is the cluster number of the ith element.

Equation 2.2 is just the basic K-Means objective function (Equation 2.1) with
the addition of two cost terms for violating the pairwise constraints: one for the
penalty for violating must-link constraints (all pairs (xi, xj) ∈ M where ci 6= cj)
and one term for the penalty for violating cannot-link ones ((xi, xj) ∈ C where ci =
cj); the penalty costs for violating the constraints are wij and wij respectively. The
objective function is then minimised iteractively using the same basic algorithm
as the one used by standard K-Means (Algorithm 1).

The MPCK-means algorithm uses the constraints not only for determining
cluster ownership but also to adapt the distance metric; this is known as metric
learning (Kulis 2013; Xiang et al. 2008; Yin et al. 2010). The original feature space
might not offer a good separation between different clusters of elements, but metric
learning can use the constraints to effectively warp the space so that elements from
the same cluster seem to be closer and elements from different clusters seem farther
apart. This is done by using a modified distance function so that the distances in
each dimension can be rescaled (Xing et al. 2003):

‖xi − xj‖A :=
√

(xi − xj)T A (xi − xj) (2.3)

where A is a symmetric positive-definite matrix that defines the scale factors
in each direction. In MPCK-means this matrix is defined independently for each
cluster, which gives rise to solutions involving clusters of multiple different shapes.

Including metric learning the objective function of MPCK-means becomes
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f ∗MPCK−means =
K∑
k=1

∑
xi∈Ck

(
‖xi − µk‖2

Ak
− log(det(Ak))

)
+

∑
(xi,xj)∈M

ci 6=cj

wij +
∑

(xi,xj)∈C
ci=cj

wij
(2.4)

with separate metric scaling matrices Ak for each cluster. The log-term comes
from the normalisation of the kth cluster‡.

One additional advantage of MPCK-means over standard K-means is that it
can use the constraints not only to guide the clustering process and update the
metric matrices, but also to initialize the centroids of the clusters. This turns
MPCK-means into a deterministic algorithm, provided that enough constraints
are available. In order to initialize the centroids, first the set of must-link con-
straints,M, is expanded by taking the transitive closure of the set. The number
of connected components of this set, λ, is then used to define λ neighborhood sets.
The centre of these neighborhoods are then used to initialize the K centroids. If
λ > K then a weighted farthest-first traversal algorithm is used to select the first
K neighborhoods (starting from the largest one). If λ < K then the remaining
clusters are initialized at random.

Algorithm 2 shows the general steps of the MPCK-means algorithm. Some
details, such as how the metric matrices, Ak, are updated are omitted for brevity.
Please refer to Bilenko et al. (2004) for more details.

2.3.6 Choosing the target number of clusters

One of the difficulties with using clustering algorithms such as K-Means is de-
termining the ideal number of target clusters (Everitt 1979; Milligan and Cooper
1985). Many methods for estimating the correct number of clusters, K, have been
proposed over the years. These include, for example, using the a metric called the
gap statistic (R. Tibshirani et al. 2001), which compares within-clusters dispersions
with a null distribution, or the Bayesan Information Criterion (BIC) (Chen and
Gopalakrishnan 1998). In many cases, however, custom measures for the problem
at hand have to be developed and the results for different target number of clus-

‡more precisely, K-means and MPCK-means can be viewed as Expectation-maximisation
algorithms on a mixture of Gaussian (Basu, Banerjee, et al. 2002) with identity and A−1

k covari-
ance matrices, respectively. The term in the equation arrives due to normalisation constant of
the kth Gaussian (Bilmes 1997)
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Data: points xi, target number of clusters K,
must-link constraintsM = (xi, xj),
cannot-link constraints C = (xi, xj)

Result: clusters {C1, C2, ... , Cl}, Ci = {ci1, ci2, ... , ci ni
}

1 ≤ cij ≤ N ; cij = index of jth element of ith cluster
begin

create λ neighborhoods fromM and C;
if λ ≥ M then

initialize centroids µi using weighted farthest-first traversal
else

initialize centroids µi, i ≤ λ, from constraints;
initialize remaining centroids randomly;

end
while convergence criterion not met do

Form clusters Ci by assigning each point to the closest centroid:
Ci =
arg min

k
(‖xi− µk‖2

Ak
− log(det(Ak)) +∑

(xi,xj)∈M
ci 6=cj

wij +∑
(xi,xj)∈C
ci=cj

wij;

µi ← new centroids;
Ak ← new metric matrices;

end
end

Algorithm 2: MPCK-means clustering algorithm
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ters compared. This was the approach taken here for the classification methods
presented in chapters 3 and 4 and which use the MPCK-means algorithm.

2.3.7 Dimensionality reduction

Technological advances in the available instruments and computers make it possi-
ble to collect an ever increasing amount of data. However, the large dimensional
data sets commonly generated in modern experiments usually contain a signifi-
cant amount of noise or information that is not relevant for the analysis objectives
at hand. These extra data dimensions can significantly impact the results and
performance of clustering and other machine learning algorithms. This is one of
the forms of the problem known as "curse of dimensionality" (Aggarwal and Reddy
2013). In the case of clustering algorithms a high dimensional feature space can be
problematic because common distance measures between elements tend then to be
very similar in high dimensional spaces (Aggarwal, Hinneburg, et al. 2001), mak-
ing it difficult to find meaningful clusters. For these reasons it is often necessary
to reduce the dimensionality of a data set before performing cluster analysis.

Dimensionality reduction in cluster analysis can be done by selecting the most
relevant data dimensions (or features), a process known as feature selection, or
by projecting the existing dimensions onto a smaller feature space, generating a
new set of features based on the old ones. The latter process is known as feature
extraction.

2.3.7.1 Feature selection

Feature selection methods have as objective to remove redundant features and
select only the ones that match some given relevant criteria (Guyon and Elisseeff
2003). This is often done by some sort of variable ranking (Stoppiglia et al. 2003),
which assigns scores to variables and selects only those that rank better than a
completely random variable.

2.3.7.2 Feature extraction

Another popular method for reducing the dimensionality of a data set is to define
a new smaller subset of features based on the original ones. This can be done, for
example, by Independent Component Analysis (ICA), which computes a new set
of maximally independent variables based on the input data (Kwak et al. 2001).
However, perhaps the most common and simplest feature extraction methods is
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Principal Component Analysis (PCA) (Wold et al. 1987). PCA transforms N pos-
sibly correlated sets of features into N linearly uncorrelated variables, or principal
components. The principal components are defined so that each successive com-
ponent points to the direction that maximises the variance of the data. That is,
the first principal component accounts for most of the variability of the data, fol-
lowed by the second, and so on. Therefore, by selecting only the first few principal
components and projecting the old feature values onto them, a new reduced set of
features that accounts for most of the variability of the data can be defined.

Summary This chapter introduced briefly some machine learning concepts and
relevant terminology and algorithms that are relevant to this work. In particular,
an overview of cluster analysis and some of the available clustering algorithms,
as well as some problems commonly encountered when clustering data, was pre-
sented. Clustering algorithms will be of major relevance to the next two chapters,
where a novel classification method for two navigation tasks commonly used in
neuroscience, the Morris Water Maze and the the Place Avoidance Task, will be
presented.



Chapter 3

Detailed classification of
trajectories in the Morris Water
Maze

The Morris Water Maze (MWM) (Morris 1984; Morris 1981) navigation task is
widely used in spatial learning studies (Bruin et al. 1994; D’Hooge and Deyn 2001;
Varvel and Lichtman 2002). In this task, rodents are placed in a circular water
pool with the goal of finding a submerged escape platform, which is made invisible
by using, for instance, milky water or completely black walls in the experimental
setup (Figure 3.1).

Figure 3.1: Left: schematic drawing of the Morris Water Maze. Right: example recorded
trajectories for the initial and later trials. In the former case animals spend much more
time close to the walls; in the latter they actively search for the platform.

In the MWM the animals have no internal reference points and have to therefore
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rely exclusively on external contextual visual cues for orientation and navigation
(Sharma et al. 2010). It has been shown (Redish and Touretzky 1998) that the
hippocampus plays a crucial role to navigate the MWM and that it is necessary
for self-localisation and route replay.

MWM pool sizes vary greatly between experiments and depend on the types of
animals used. For experiments with rats typical maze dimensions are a tank with a
diameter of 1 to 2 meters, in which a 10−15 cm platform is placed (Brandeis et al.
1989; Vorhees and M. Williams 2006). A typical experimental protocol consists of
a set of trials, spread over a few days, during which the starting position of the
animals is changed but the platform is kept at the same location. In a subsequent
probe trial, the platform is removed and the animals’ memory is evaluated by their
swimming persistence in the surroundings of the previous platform location (D. P.
Wolfer, Stagljar-Bozicevic, et al. 1998). This experimental protocol is known as
spatial acquisition (D’Hooge and Deyn 2001; Vorhees and M. Williams 2006).

Typically, the initial trials in the MWM are characterised by the animals’
tendency to spend most of the time next to the walls (a behaviour known as
thigmotaxis D. P. Wolfer and H. P. Lipp 1992), or to perform random searches
in the arena. In later training trials, however, animals show a gradual change in
behaviour, characterised by progressive active searches for the platform. As they
get familiar with the environment and testing rules, their ability of finding the
platform from different starting positions is improved, as indicated by the reduced
times to reach the platform.

Despite its widespread use in rodent behavioural studies, many studies quantify
and compare the behaviour of animals in the MWM and base their results on
just a handful of simple direct measures, without taking the different behavioural
patterns into account. One of the most commonly used performance measures is
the escape latency, defined as the time for the animal to find the platform and
escape the maze. Other measures proposed in the literature include the swimming
path length, which was suggested to be a better measure than escape latency
(Lindner 1997; Lindner and Gribkoff 1991; Morris 1984).

It has long been recognised, however, that simple performance measures alone
are not sufficient to quantify the wide range of different behaviours observed in
MWM experiments (Dalm et al. 2000; Gallagher et al. 1993). Swimming paths
with similar escape latencies, for example, can show very different types of be-
haviour (Figure 3.2). In order to be able to better characterise the behaviour
in the MWM, more sophisticated quantification methods were therefore proposed
over the years. Petrosini et al. (1998), for example, developed a scoring system of
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swimming paths based on measures such as the time that the animal spends in the
“right” or “wrong” quadrants of the maze. Dalm et al. (2000), showed that the
cumulative distance to the platform is correlated with the time spent next to the
platform, but not with the escape latency. By combining different measures, they
were able to create a classification method for the swimming paths, assigning each
one of them to one of three different classes of behaviour. Their method, however,
was applied only to a small group of animals (24) and attempted to classify only
swimming paths from the first two trials, which are usually long and are typically
characterised by common traits, such as a tendency for animals to move along
the walls. In their work they did not consider the later stages of learning which
show much more variability in the behaviour of animals and a wide distribution
of swimming path lengths as animals learn how to find the platform increasingly
faster.

Figure 3.2: Some examples of long swimming paths in the Morris Water Maze. All have
similar escape latencies but display completely different types of behaviour.

Categorisation methods for swimming paths in the MWM were also proposed
in other studies. Wolfer and Lipp (2000), for example, associated various types
of behaviour of the animals in the maze with different stages of learning. They
computed more than a dozen measures for each swimming path and showed that
these can be used to classify the paths into different behavioural classes (Figure
3.3), which they then associated with the different learning stages. However, they
noted that their categorisation is valid only for large populations of animals and
that single individuals might skip learning stages, or display more than one type
of behaviour within a single trial.

Graziano et al. (2003) developed a more complete classification of swimming
paths by dividing them into seven different classes, or exploration strategies in their
terminology. The classes of behaviour ranged from thigmotaxis, where the animal
almost never finds the platform (a type of behaviour mostly seen in early trials),
to straight paths to the platform (direct finding). These classes showed a high
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correlation with the escape latency value but offered a more detailed quantification
of the different stages of learning. By using the escape latency in addition to
more than two dozen other path measures, they were able to create an automatic
classifier that could assign swimming paths to one exploration strategy. However,
similar to the previous categorisation attempts discussed above, their method can
only map each swimming path to a single exploration strategy and is therefore not
able to detect behavioural changes within individual trials.

A further categorisation approach for trajectories in the MWM was proposed
by Stover et al. (2012). They extended the behavioural classes of Graziano and
collaborators to 9, which they then divided into 4 strategy types. However, con-
trary to the work of Graziano et al., they didn’t attempt to develop an automated
classifier for the swimming paths. Illouz and collaborators proposed another clas-
sifier, which they named MUST-C, that is based on a hierarchy of Support Vector
Machines (SVMs)∗. SVMs are particularly well suited for dividing complex data
sets into two regions and, by using a hierarchy of 8 SVMs, they were able to classify
swimming paths into 9 different classes.

All the classification methods just mentioned attempted to classify only full
swimming paths. They are therefore not well suited to quantify mixed types of
behaviour within a single trial, which frequently characterise animals’ strategies
in the maze. Swimming paths, in particular longer ones, frequently show traits
of more than one exploration strategy, making an unambiguous classification very
difficult.

In this chapter a new, more granular classification method for swimming paths
in the MWM is presented. In order to be able to quantify changes in behaviour
within a trial, the classification is targeted not at complete swimming paths, but
rather at shorter path segments. The method presented here consists of classifying
multiple segments of a single swimming path into stereotypical classes of behaviour.
As a result, swimming paths are not mapped to a single behavioural class, but
to several classes. This makes it possible to detect subtle changes in behaviour
between trials and among different groups of animals.

The development of this new method was motivated by the necessity of a more
sophisticated quantification framework for analysing MWM data. The method
was applied to a set of behavioural data where a strong manipulation (peripubertal
stress) did not yield obvious learning performance differences compared to a control
group when using more traditional quantification methods. A manual classification

∗See for example Suykens and Vandewalle (Suykens and Vandewalle 1999) or Murphy (Mur-
phy 2012) for an introduction to Support Vector Machines
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Wolfer and Lipp (2000) Experimental data

Figure 3.3: Examples of recorded trajectories in the Morris Water Maze. Left: Trajecto-
ries from Wolfer and Lipp (2000) showing stereotypical classes of behaviour which they
associated with different stages of learning. Right: Sample trajectories from the Mor-
ris Water Maze recordings considered here (Section 3.1). As can be seen the recorded
trajectories show multiple types of behaviours making it very difficult to unambiguously
classify them.

of the full swimming paths also didn’t produce satisfactory results because many of
them showed mixed types of behaviour and the data set was not sufficiently large
(around 300 paths per group). This led to large uncertainties in the classification
making clear that a new approach was needed.

The segmentation of swimming paths shown here is performed automatically
by custom analysis tools, described in Appendix A. The segmentation is done so
that each segment has approximately the same length and overlaps substantially
with the previous one. This overlap is important to make sure that the classi-
fication is not affected by an unfavourable segmentation, which could happen if
a charateristical type of behaviour is ’cut’ in the middle into two segments, for
example. The large overlap between segments tries to overcome this by moving
at small steps along the swimming path and looking at many possible segments,
with only small variations between them, at the same time. However, this also
means that a large number of segments (from a couple of dozens to a few hundred
per swimming path) are generated. The large number of path segments (up to
30,000 for the data set considered here) makes a complete manual classification
intractable for all practical purposes. In order to overcome this problem, a semi-
automatic classification method is adopted. The classification method, based on
a semi-supervised class of machine learning algorithms (Section 2.2.4), is able to
automatically classify segments into behavioural classes based on a small percent-
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age (between 5% and 12% of the segments for the data analysed here) of manually
classified data. Because the classifier is based on a data clustering algorithm, it
is also ideally suited for finding patterns in data, so that behaviour classes don’t
need to be known a priori.

..
.

i. segmentation of trajectories

class 1

class N

iii. semi-supervised clustering

...

classes distribution,

other results

ii. partial labelling of segments

   suitable

classification?

iv. evaluate clustering

Figure 3.4: Diagram illustrating the swimming path classification method. Swimming
paths are first segmented and then classified by means of a semi-supervised clustering
algorithm.

The analysis method proposed here is shown schematically in Figure 3.4. In
the next section first the experimental setup and then the data analysis method
proposed here will be detailed. This is followed by a presentation of the results
and finally a discussion about how the method compares to previous methods and
how it can in principle be further improved.

3.1 Morris Water Maze Experiments

The test data set consisted of MWM trajectories of a group of 57 rats, 30 of which
were subjected to peripubertal stress (Márquez et al. 2013; Veenit et al. 2013); the
other 27 animals were the control group.

The objective of the experiments was to assess how stress and adverse experi-
ences during youth can have an effect on behaviour in adulthood. Previous studies
suggest that maltreatment during childhood is associated with a higher risk of de-
veloping violent behaviours later in life (Jonson-Reid et al. 2010; Su et al. 2010).
In order to study how stress early in life impacts behaviour a group of rats was
exposed to stress invoking situations at a peripubertal age (postnatal days P28
to P42) using the protocol described in Toledo et al. (2011). The protocol sub-
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jects animals regularly to fear-inducing situations, such as placing them on top of
an elevated platform under bright light or submitting them to synthetic odours
resembling the ones produced by predators found in nature.

Experiments were performed at the Laboratory of Behavioural Genetics, EPFL.
All procedures were conducted in conformity with the Swiss National Institutional
Guidelines on Animal Experimentation and approved by a license from the Swiss
Cantonal Veterinary Office Committee for Animal Experimentation.

The water maze had a diameter of 2 m with a submerged platform 12 cm in
diameter. Recordings were performed with the help of object tracking software,
EthoVision (Noldus et al. 2001) version 3.1, and were done for a total of 12 trials
for each animal. The trials were spread into 3 consecutive days with 4 trials each.
Trials for each animal were applied consecutively so that the inter-trial interval for
a given day was on the order of only a few minutes. The starting position of the
animals was alternated between a few pre-defined locations over trials. Animals
were allowed to swim for 90 seconds and were guided to the platform if they failed
to find it during this time interval.

3.2 Data analysis

The main characteristic of the classification method of MWM trajectories described
here is that trajectories are first divided into shorter segments; these segments are
then classified into a discrete set of classes of behaviour. This is in stark contrast
with previous classification methods that attempted to classify full swimming paths
directly.

Because the segmentation of swimming paths leads to a large number of seg-
ments to be classified, labelling all of them manually becomes intractable. To deal
with this problem, a semi-supervised learning algorithm (Section 2.2.4) was used
here for the classification of the segments. Such an algorithm requires only a small
set of manually labelled data in order to constrain and validate the classification
results. The classification method consists of the following steps (Figure 3.5):

1. Segmentation of trajectories to overlapping segments of fixed length;

2. Computation of feature values for each segment;

3. Labelling of stereotypical segments for each segment class of interest;

4. Clustering and mapping of clusters to classes using the labelled data;
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Figure 3.5: Steps of the classification procedure of swimming paths

5. Evaluation of clustering performance;

6. Steps 3-5 are repeated until an acceptable clustering quality is found;

7. Computation of the distribution of behavioural classes for each trajectory;

These steps will be detailed below, after introducing the behaviour classes that
were adopted here.

3.3 Behavioural classes

A set of eight different classes of behaviour was chosen in the data analysis in-
troduced here (Figure 3.6). The choice of behavioral classes was motivated by
stereotypical behaviours that were observed during the classification process and
focused on behavioural traits that may be crucial for the learning outcome. For
this reason, a distinction was made between paths that pass nearby the platform
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but are not centred on it (scanning-surroundings) and closed paths that circle
the platform and where the animal actively searches for it (target-scanning). A
distinction was also made between paths concentrated almost exclusively on the
periphery of the arena (thigmotaxis) and ones in which the animal starts moving
inwards (incursion).

Self-orienting, a behaviour identified by Graziano et. al (2003), and chaining
response (D. Wolfer and H. Lipp 2000), where the animal memorises the distance
from the walls to the platform, are intermediate phases of spatial learning fre-
quently observed in the experiments and were, therefore, assigned to individual
classes. Finally, scanning and focused-search are both types of behaviour associ-
ated with random searches of other regions of the arena, mainly the centre in the
former case. The difference between these two cases is that in focused-search the
search is limited to a very small region, whereas in scanning larger areas are swept.
Due to this distinction, they were split into two separate classes but are otherwise
similar, in the sense that the search does not target the platform but rather other
parts of the arena.

3.3.1 Segmentation of trajectories

The segmentation of trajectories is a method proposed to overcome the inherent
difficulty of classifying very long swimming paths exhibiting many different types
of behaviour. Classifying segments of trajectories is simpler because shorter paths
usually don’t show multiple types of behaviour. Also, due to the segments having
approximately the same length, the variance of feature values is smaller, which also
improves the classification results. The use of shorter segments and not the full
trajectories for the classification therefore makes it possible to obtain a precise and
detailed quantification of swimming paths. The disadvantages of segmenting the
trajectories is an increased complexity of the classification method and the need
for fully automated validation methods since the number of segments generated
can be very large, making full manual proofing of the results intractable.

The segmentation adopted here consists of dividing a trajectory into N seg-
ments of length d (with small variations due to the discrete nature and spacing
of available data points) which overlap significantly with previous segments. The
overlap is necessary to reduce the classification variance due to unfavourable seg-
mentations.

More formally, trajectories were split into segments of length d, where segment
i is defined as the set of points of the recorded trajectory lying in the interval
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thigmotaxis

incursion

scanning

focused search

chaining response

self orienting

scanning−surroundings

target scanning

A B C D

E F G H

Figure 3.6: Examples of swimming paths showing different types of behaviour. Data:
Laboratory of Behavioural Genetics, EPFL. Swimming paths were segmented and the
generated segments were classified into a total of eight different types of behaviour,
distinguishable by different line types/colours. Behavioural classes: i) Thigmotaxis
(solid-black lines): Time is spent almost exclusively next to the walls; ii) Incursion
(dashed-black lines): paths where animal still touches the walls but starts making in-
cursions inwards; iii) Scanning (dotted-black lines): characterised by tighter paths that
sweep a specific region of the arena; iv) Focused search (dotted-green lines): animal
randomly searches a very small area of the arena; v) Chaining response (dashed-green
lines): concentric paths where the animal memorises the distance from the walls to the
platform (D. Wolfer and H. Lipp 2000); vi) Self-orienting (solid-green lines): Paths
where the animal makes one full turn to orient himself (Graziano et al. 2003); vii)
Scanning-surroundings (dotted-red lines): Open paths passing through a critical region
around the platform; viii) Target scanning (solid-red lines): search is focused on regions
next to or surrounding the platform;

[li, li + d]. For the analysis performed here overlaps of 70% and 90% between
segments were adopted. The number of segments for a trajectory of length L,
segment length d, and overlap α is N = d(L/d− 1)(1− α)−1e, where d..e is the
ceiling function. Trajectories shorter than the segment length are mapped to a
single segment. The starting point of segment i, 1 ≤ i ≤ N , is li = d ·(1−α)(i−1).

The choice of the appropriate segment length depends on the size of the arena
and on the stereotypical behaviour types of interest. The classification performance
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is not affected by small variations in the segment length, provided that the features
are only weakly correlated with the length. This allows for mixing of segments
of slightly different lengths in one classification. It also follows from this that the
number of segments, which is related to the segment length and overlap used in
the classification, does not have a large influence on the final classification results.

For the data analysed here, recorded on an arena with a diameter of 2 meters,
segment lengths of 250 cm and 300 cm and overlaps of 70% and 90% were adopted.

3.3.2 Computation of features

A total of eight segment features were selected for the classification procedure
(Table 3.1). A schematic overview of the required dimensions for computing the
features, as well as other definitions, is shown in Figure 3.7. The features adopted
here quantify different geometrical properties of the segments and other charac-
teristics, such as their relative proximity to the platform. Where possible, features
were made independent from the choice of segment length. In this way small
segment length variations don’t have an appreciable impact on the classification
results.

Figure 3.7: Definition of variables used for computing the measures, or feature values,
for each swimming path segment. The features are an essential part of the clustering
process since the feature values are used to estimate how similar the different segments
are.
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Table 3.1: Features used for the classification of swimming path segments. All features
are dimensionless and only weakly correlated with the choice of segment length as to
improve the classification robustness against segment length variations.

Feature Definition
Median distance to centre r1/2 = median(‖r‖)/Rarena, where r is the set of

vectors to the centre of the arena from each point of
the segment

Interquartile range of the
distance to centre (r75 − r25)/Rarena where r25 (r75) is the first (third)

quartile of the distance to the centre (Figure 3.7A)
Focus 1− 4πab/l2, l = segment length; a and b are the major

and minor axes of the surrounding ellipse (Figure 3.7B)
Target proximity Percentage of path lying within an area centred on the

platform and with radius equal to 6 times the platform
radius (Figure 3.7C area T1)

Eccentricity
√

1− b2/a2 (Figure 3.7B)
Maximum loop length Length of the longest self-intersecting loop in the

trajectory divided by the segment length (see Figure
3.7C, loop “l”)

Inner radius variation (ri,75− ri,25)/ri, where ri is the inner radius, or median
distance to the centre of the surrounding ellipse
(Figure 3.7D)

Central displacement Distance from the centre of the surrounding ellipse to
the centre of the platform divided by the arena radius
(3.7D, “d”)

Median distance to centre Calculated from the trajectory by computing the
distance to the centre of the arena for each data sample and taking the median
over the data. The median is used here instead of the (more commonly used)
mean because it is a more robust statistic, in the sense that a few points that are
very distant from the others, such as ones at the edges of the segments, will have
a smaller effect on the final value.

The distance to the centre is a very useful measure to indicate if an animal
spends most of its time on the periphery or moves also to more central regions
of the arena. It can be seen as a generalisation of other measures adopted in
previous studies, such as the time spent next to the walls or at the centre of the
arena (Graziano et al. 2003).



Chapter 3. Detailed classification of trajectories in the Morris Water Maze 35

Interquartile range of the distance to centre Besides the median of the
radial distance, its spread can provide information about the type of behaviour
involved. As a measure of spread, the interquartile range, or the distance between
the first and last quartile of the data set (Figure 3.7A), was computed. This value
is again more robust against outliers than the more commonly used standard
deviation.

Focus The focus measures if and by how much the animal targets its search to
specific parts of the arena. It is defined as f ≡ 1− 4πab/l2, where a and b are the
axis of the minimum enclosing ellipse around the trajectory (Figure 3.7B) and l is
the segment length. For computing the enclosing ellipse the algorithm described
in Moshtagh (2005) was used. With this definition increasing focus values are
associated with increasingly closed paths.

Target proximity The proximity value measures the percentage of the path
lying within a circle centred at the platform (Figure 3.7C) and with a radius of 6
times the platform radius.

Eccentricity The eccentricity measures how elongated the paths are; it also
makes use of the values computed from the minimum enclosing ellipsoid. It is
defined as ε ≡

√
1− b2/a2, where a and b are semi-major and semi-minor axis of

the enclosing ellipse (Figure 3.7B).

Maximum loop length This value measures the length of the longest loop, or
self-intersecting sub-segment of the path. To compute this value all pairs of lines
defined by two consecutive trajectory points were tested for intersection. If no
intersection was present a value of zero was assigned to the feature. This choice
leads to a discontinuity in the feature values but does not affect the clustering per-
formance (in fact, it was shown empirically to improve the clustering performance
since it divides the space into two regions, one of segments with loops and another
one without).

Inner radius variation The inner radius (Figure 3.7D), ri, is here defined
as the median distance of every point in the path to the centre of the minimum
enclosing ellipsoid. The coefficient of variation of the inner radius measures the
relative dispersion of points relative to a circle. A perfect circle has a coefficient
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of variation equal to zero. It is here defined as iqr{ri}/ri, where iqr{ri} is the
inter-quartile range of the inner radius.

Note: strictly speaking the coefficient of variation is defined in the literature
as the standard deviation divided by the mean. Here, however, these values are
replaced by the inter-quartile range and median to increase the robustness and
stability against outliers.

Central displacement The central displacement is the Euclidean distance of
the centre of the minimum enclosing ellipsoid to the centre of the arena (Figure
3.7D, “d”). It is an important measure to identify concentric paths with the arena.

3.3.3 Labelling of data and definition of constraints

The labelling of swimming path segments was done interactively, using a custom
Graphical User Interface (GUI) written in Matlab (Appendix A). The graphical
interface allowed to interactively browse through the segments, label them, and
check the data clustering results. Multiple labels could be assigned to a single
segment for cases in which characteristics of more than one behavioural class were
found. Other labels, not used in the clustering process, could also be defined and
assigned to segments or complete swimming paths. This was used to, for example,
tag segments or trajectories of interest that would later be exported or analysed
in more detail.

From the set of segments generated in the segmentation process (up to 30,000)
between 5% and 12% were labelled (Table 3.4). The selection of segments to be
labelled was done interactively from the complete set of segments. The custom
GUI made it possible to sort segments according to different criteria, such as
feature values or distance to the centre of the corresponding clusters. Various
filters made it also possible to select only a subset of the segments, making it
easier to identify segments that had to be labelled. One of those filters selected
only isolated segments, or segments that were still not classified and did not overlap
with any other successfully classified segments (see also discussion of the coverage
value below). Segments that were isolated or lying on the boundaries of clusters
were given priority in the labelling process.

Each pair of labels generated either a “cannot-link” (in case they differed) or
“must-link” constraint (in case that they were the same). The number of con-
straints was therefore proportional to N2, where N is the number of labelled
segments. Because of the large number of constraints generated in this way (more
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than 2 million for the full set of labels), and the resulting computational per-
formance impact on the clustering process, constraints were defined only between
relatively close points. The Euclidean distance, d, between two labelled data points
(the same distance function employed by the clustering algorithm) was calculated
and a constraint was defined only if d < 0.25 (feature values were all re-scaled to
lie in the [0, 1] range). With this, the total number of constraints was reduced to
less 10,000 and the time to run the clustering algorithm on a modern computer
(AMD Ryzen 7 CPU running at 3.8GHz) was reduced from over 32 minutes to
about 30 seconds without affecting the results.

3.3.4 Semi-supervised clustering

Semi-supervised learning methods (Section 2.2.4) are applicable to cases where
large pools of data are available and labelling them all may not be possible.
Whereas unsupervised algorithms search for structure in data without labels, su-
pervised algorithms are provided with data and labels and try to infer a mapping
between the two. Semi-supervised learning (SSL) can be considered an intermedi-
ate case between these two extremes. In one of the SSL formulations (Abu-Mostafa
1995), a pool of unlabelled data is provided together with an incomplete set of la-
bels; the objective is again to find a suitable mapping between data and labels.
A semi-supervised method was chosen here since the objective was precisely to be
able to classify a large set of trajectory segments (between 8,000 and 30,000 for
the data set analysed here) without having to label all of them manually, which
would be very time consuming.

Among standard machine learning methods, a clustering algorithm was chosen
(Section 2.3). The main reason for this choice was that clustering algorithms make
it easy to detect new classes of behaviour because, in its broadest sense, they have
as objective to group data points which are as similar as possible (Aggarwal and
Reddy 2013). Therefore clustering algorithms can be used not only to classify
data by finding clusters of similar segments, but also to identify new clusters with
common types of behaviour. Hence, classes of behaviour don’t have to be defined
a priori but are rather discovered by the algorithm by splitting the space into
groups of segments with common traits.

The semi-supervised clustering algorithm that was adopted here is known as
MPCK-means (Metric Pairwise Constrained K-Means), which was described in
Section 2.3.5. This is an algorithm inspired by the classical k-means algorithm,
but which is able to incorporate previous knowledge to guide the clustering process.
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Here the standard MPCK-means implementation† was used. The code is writ-
ten in Java and is provided as part of the WekaUT library, a modified version of the
popular Weka (Waikato Environment for Knowledge Analysis) machine learning
library (Holmes et al. 1994). The Java code was integrated directly into Matlab
and all algorithm options (such as the metric function and constraint weights)
were left at their defaults.

As with most clustering algorithms, the MPCK-means algorithm also requires
that the target number of target clusters is specified as an input. Determining the
ideal number of clusters is a common problem in data clustering (this is discussed
in more detail in Section 3.3.5). How this value was chosen here will be discussed
below.

3.3.4.1 Two-stage clustering

The MPCK-means algorithm uses “must-link” and “cannot-link” pairwise con-
straints between elements to guide the clustering process (Section 2.3.5). Here,
however, only cannot-link constraints were used in a first clustering stage. The
reason for this is that the feature space is not easily separable and therefore mul-
tiple clusters can belong to one class. This means that a large proportion of the
must-link constraints in Equation 2.2 cannot possibly be satisfied since two ele-
ments of the same class may well be ending on different clusters. It was found that
adding must-link constraints at this stage had a negative impact on the clustering
results. The same problem does not happen with cannot-link constraints since
these must be satisfied even if there is not a one-to-one mapping between clusters
and classes. However, “must-link” type of constraints were added in the second
clustering stage; this second clustering step attempted to further divide larger clus-
ters which either contained labels of more than one class or clusters which did not
contain a sufficient number of labels. Intuitively the idea of the algorithm adopted
here is to first find a rough partitioning of the data at large scales and then do
further local partitionings as necessary. For the local splitting of clusters (second
stage of the clustering) must-link constraints are relevant again since it is assumed
that, at least locally, only one cluster will be mapped to a class of behaviour.

Experiments showed that the 2-stage clustering algorithm adopted here im-
proves the clustering performance considerably (Figure 3.8). The algorithm is
detailed in Algorithm 3. In the first step, the algorithm clusters the data into the
target number of clusters using only “cannot-link” types of constraints. Clusters

†available at http://www.cs.utexas.edu/users/ml/risc/code/
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are then mapped to label classes (how this mapping is done is discussed in the
next section) and clusters which could not be unambiguously mapped to a class
are sub-divided further by another clustering step. It this second clustering step
each cluster that could not be mapped to a single class in the first step is split
once more, this time, however, using both must-link and cannot-link constraints;
multiple target number of clusters (from 2 up to two times the number of different
classes in the original cluster) are also tried in succession. The first successful
sub-partitioning, or the one with the smallest target number of clusters, is then
chosen (a partitioning is considered successful if at least one of the sub-clusters
could be mapped to a single class).

40 60 80 100 120

84

88

92

96

100

N
clus

%
 c

o
v
e

ra
g

e

20 40 60 80 100 120
20

30

40

50

60

70

80

90

N
clus

%
 u

n
d

e
fi
n

e
d

20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

N
clus

%
 e

rr
o

rs

A B C

Figure 3.8: A-B: Impact of the number of clusters on the clustering performance for
a set of 29,476 segments (Classification 3 in Table 3.4). Only the number of clusters
in the first stage, Nclus, is shown. A Percentage of classification errors (percentage of
labelled segments mapped to the wrong class); B Percentage of segments belonging to
clusters that could not be mapped unambiguously to a single class; Error bars represent
the 95% CI of a ten-fold cross validation over a set of 1,605 labels. Continuous lines:
two-stage clustering. Dashed lines: single stage clustering. The results show that the
second clustering stage leads both to significantly less classification errors and a smaller
percentage of unclassified segments. Asterisks in the middle plot mark the results when
using the full set of labels. C Percentage of the full swimming paths that are covered
by at least one segment of a known class. The target number of clusters, Nclus, was
chosen so that the coverage value is as high as possible while still having a low number
of classification errors.

As Figure 3.8 shows, the two-stage clustering shows significantly better results
than a single clustering stage. The two-stage algorithm also leads to less variance
of the final results over different target number of clusters.

3.3.4.2 Mapping clusters to classes

Labelled data was used not only to guide the clustering but also to map clusters
to classes and to estimate the quality of clustering (discussed in Section 3.3.5).
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Data: feature vectors xi, 1 ≤ i ≤ N
labels {L1, L2, ..., LN}
target number of clusters k
maximum constraint distance dmax

Result: clusters {C1, C2, ... , Cl}, Ci = {ci1, ci2, ... , ci ni
}

1 ≤ cij ≤ N ; cij = index of jth element of ith cluster
cluster labels {L1, L2, ... ,Ll}
/* initialization */
M← ∅, C ← ∅; /* must/cannot-link constraints */
/* creation of constraints */
foreach {i, j} |Li 6= ∅ ∧ Lj 6= ∅ ∧ |xi − xj | < dmax do

if Li ∩ Lj 6= ∅ then
M←M ∪ {i, j}; /* create must-link constraint */

else
C ← C ∪ {i, j} ; /* create cannot-link constraint */

end
end
/* main algorithm */
cluster data into k clusters C1, C2, ..., Ck using constraints C
foreach cluster Cl do

if Cl = ∅ then
discard Cl and move to next cluster

end
map cluster Cl to label Ll

ml = |Ml|, Ml = (Ll1 ∩ Ll2 ∩ ... Lln
|{l1, ..., ln} ∈ Cl);

/* number of distinct labels in Cl */
if ml ≥ 1 ∧ Ll = ∅ then

k′l ← max(ml, 2) ; /* number of sub-clusters */
while k′l < 2 ml do

cluster Cl into k′l sub-clusters C ′l1, ... , C ′l|k′
l

using constraints C ∪ M
map clusters C ′l1, .... , C ′l|k′

l
to classes L′l1, ... , L′l|k′

l

if L′l|i 6= ∅ for any 1 ≤ i ≤ k′l then
Cl ←{C ′l1, ... , C ′l|k′

l
}; /* accept sub-clustering */

Ll ←{L′l1, ... , L′l|k′
l
}

exit while
else

k′l ← k′l + 1; /* increase number of sub-clusters */
end

end
end

end
Algorithm 3: Two-stage clustering. Steps 1 and 2 define the set of constraints.
The main clustering, using only “cannot-link” constraints, is done at step 3.
Steps 4 describes how clusters that were not mapped to a class, because they
contained multiple label classes or an insufficient number of labels of one class, are
sub-divided. The sub-division process attempts to break down the cluster into
an increasing number of smaller ones until the smaller clusters can be mapped
to classes (in which case the larger cluster is replaced by the smaller ones - step
4h) or an upper limit of sub-clusters is reached.
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Clusters were mapped to the class of the labelled segments within the clus-
ter. Clusters containing labels of multiple classes, or clusters with less than the
minimum amount of labels, mi, were marked as undefined; segments belonging to
these clusters were discarded from further analyses. Since the clustering algorithm
generates clusters with a wide range of different sizes the minimum number of
required labels of cluster i, mi, was made dependent on the cluster size:

mi ≡ dni pmin, ie (3.1)

where ni is the cluster size, and pmin, i is defined as

pmin, i ≡ max(n−γi , pmin) (3.2)

Here γ = 0.7 and pmin = 0.01 were adopted.
With the definition above a larger proportion of labelled data is required in

the case of smaller clusters; for larger clusters this proportion gets smaller but is
always at least 1%.

3.3.5 Clustering validation, target number of clusters

The quality of the clustering was estimated by evaluating three values: i) the
number of classification errors; ii) the percentage of unclassified segments (i.e.,
proportion of segments belonging to one of the undefined clusters, as described
in the previous section) and iii) by the coverage value. The coverage value is
defined as the percentage of the trajectory that is covered by segments of known
classes. Because of the overlap between the segments of a trajectory this value is
not the same as the percentage of segments that were successfully classified. The
coverage value was chosen as the main criterion used to evaluate the classification
quality and in each classification the target was to achieve a coverage of at least
90%. It was chosen as the main quality criterion because the final objective of
the classification was to map as much of the trajectories to segments of a known
class. Only secondary attention was given to the absolute percentage of classified
segments which, contrary to the coverage value, does not take the overlap and
distribution of classified segments into account. It can therefore have a large
value even if the total coverage is small (this can happen, for example, if mostly
redundant and overlapping segments are successfully classified).

In order to estimate the classification error, another important measure of
the quality of the clustering, a 10-fold cross-validation was used (Section 2.2.1.1).
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This consisted in leaving 10% of the labelled segments for testing and not using
them to define the clustering constraints. The error was calculated by dividing
the number of incorrectly classified segments by the number of correct ones and
taking the mean over all 10 runs. The same two-way data split was also used
to tune clustering parameters, such as the target number of clusters. Since the
classification performed here was targeting only one data set, and the objective
was never to apply it to new data or to create a generic classifier, a two-way split
was favoured over a three-way one; in doing so more labelled data was left for the
clustering itself.

The percentages of unknown segments and of classification errors are not fully
independent. This is because rejecting more clusters will lead to less classification
errors, but will also leave a larger proportion of segments unclassified. The trade-
off between the two can be controlled in part by changing the minimum number
of labels required to assign a cluster to a class. This is controlled by parameters γ
and pmin (defined in Mapping clusters to classes above). Requiring more labels per
cluster leads to fewer classification errors but requires more labelled data, because
otherwise most clusters will not have enough labelled points and will therefore be
left as undefined.

Figure 3.8 shows how the classification errors, percentage of unknown segments
and coverage values vary as the target number of clusters, Nclus, is increased for one
particular classification (continuous lines show the final results and dashed ones
the results after the first clustering stage). The results shown are for Classification
3 in Table 3.4 and as can be seen in the figure the coverage value (right plot)
remains practically constant and above 96% for Nclus ≥ 60. The middle plot
shows that the number of undefined segments does continue to slowly decrease
with growing Nclus, but the new classified segments have little or no impact on
the overall final results. However, the leftmost plot in Figure 3.8 shows that
the classification error increases the more clusters are used but that it remains
practically constant between Nclus = 60 and Nclus = 80. Running the classification
for different target number of clusters within this range showed that values around
Nclus = 75 provided the best overall results with a smaller number of undefined
segments (even if this value is only of secondary importance), so this was the value
chosen for this particular classification.

A further important indicator of the quality of a classification, which can also
be used to detect issues such as mixing of classes, is the confusion matrix. It
counts the number of classification errors between individual classes, so that the
diagonal shows the number of correct classifications and values outside of the
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diagonal the classification errors. Table 3.2 shows the confusion matrix for the
data analysed in Section 3.4.2 for a 10-fold cross-validation. As can be seen the
total number of classification errors is relatively small in all cases, which shows
that the classifier is performing adequately. However, the confusion matrix shows
that most of the classification errors involve the Incursion (IC) class, specially the
Incursion-Thigmotaxis and Incursion-Scanning Surroundings cases. It shows that
separating the Incursion and the two other classes is more difficult because they
show many similar traits, such as very open paths. This shows that the confusion
matrix can be a valuable tool for identifying problematic combination of classes
that might need additional features in order to be successfully separated from one
another.

Table 3.2: Confusion matrix for the classification of the segments. Values are the total
number of miss-classifications for a 10-fold cross validation of the clustering algorithm
(i.e. 10 runs using 10% of the values each time for validation). Values in the diagonal
show the number of correct classification for this class. The confusion matrix can be used
to identify classes that are not well separated in the classification process (non-diagonal
values different than zero)

TT IC SC FS CR SO SS TS

Thigmotaxis (TT) 267 14 0 0 0 0 2 0
Incursion (IC) 8 331 3 0 4 0 4 2
Scanning (SC) 0 3 144 0 0 0 2 0

Focused search (FS) 0 0 1 72 0 0 0 1
Chaining response (CR) 0 8 0 0 90 0 1 0

Self orienting (SO) 0 0 0 0 0 61 0 0
Scanning surroundings (SS) 2 11 0 0 3 0 252 0

Target scanning (TS) 0 5 0 0 0 0 2 73

3.3.6 Mapping segment classes to swimming paths

After classifying the swimming path segments, the evolution of the strategies along
the swimming paths was computed. The mapping was done for discrete path inter-
vals that depended on the segment overlap (Table 3.4) and took into consideration
all the segments that overlap with the intervals. The corresponding segment class
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for an interval Ii was computed from the following expression:

CIi
≡ arg max

ck

∑
Sj ∈ ck

Ii ∩ Sj 6= ∅

wk exp
(
−d2

ij/2σ2
)

(3.3)

where Sj is a segment and dij is the distance from the centre of the jth path
segment to centre of the interval, in minimum path interval units (Figure 3.9). The
summation is done for all segments that overlap with the interval Ii and which
belong to the class ck; it is computed for all classes and the class that maximises the
expression is then selected. The parameter σ, which controls how much segments
influence the choice of segment classes over the swimming paths, was set to σ = 4.
There is also a class weight factor, wk, which is introduced to account for the fact
that certain behavioural classes are transient and have only a few representative
segments at a time whereas others are longer lasting and have many segments in
sequence. It was defined as

wk ≡
Lmax
Lmax,k

(3.4)

where Lmax,k is the longest trajectory segment of consecutive intervals of class k and
Lmax the longest homogeneous trajectory segment (that is, Lmax = max {Lmax,k}, k =
1...Nc, where Nc is the number of classes).

The class weight in Equation 3.3 is inversely proportional to the maximum
length of segments of the class so that transient classes, or classes which tend to
be shorter, do not get overshadowed by more common ones. Figure 3.10 shows
one example using unitary class weights (wk = 1) and using the above definition.
As can be seen in the former case the self-orienting and focused search segments
do not get detected because of the larger influence of surrounding classes (incur-
sion/thigmotaxis).

Table 3.3 shows the average and maximum lengths of consecutive intervals of
each class using first wk = 1 and then the definition above. An example of a
trajectory classified with constant and variable weights is shown in Figure 3.10.
Note that the values

3.3.7 Final classification results

The classification of the swimming paths was done for multiple times, for different
segment lengths and overlaps. To produce the final results, the multiple classifi-
cations were then combined. In order to combine two classifications, the classes
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Figure 3.9: The distance, d, between a segment and an interval is computed by measur-
ing the distance between their midpoints. Shown here schematically is one trajectory
segments of length L and a small interval.

thigmotaxis

incursion

scanning

focused search

chaining response

self orienting

scanning−surroundings

target scanning

Figure 3.10: Detailed classification of one trajectory. Left: classification results using
constant class weights. Right: results using weights as defined in Equation 3.4. As can be
seen in the former case the self-orienting loop (continuous green line) and focused search
segments (dotted green line) did not get detected and were replaced by neighbouring
classes (incursion, dashed black lines, and scanning, dotted black lines, respectively).

of matching segments in both classifications were compared. Mismatches were
discarded and not used in the mapping of strategies to paths.
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Table 3.3: Mean and maximum length (in cm) of consecutive intervals of each class
for the 250 cm / 90% overlap classification (Table 3.4) with constant weights (wk = 1
in Equation 3.3) and after adopting differentiated weights for minor and major classes
(Equation 3.4). See Figure 3.6 for a description of the behavioural classes.

k Class Mean seg. length [cm] Max seg. length [cm] w′k = wk(Eq. 3.4)
wk = 1 wk = w′k wk = 1 wk = w′k

1 Thigmotaxis 359.3 328.6 3,000 3,000 1.0
2 Incursion 194.5 191.2 1,225 1,200 2.4
3 Scanning 118.5 105.7 850 725 3.5
4 Scanning surroundings 145.2 155.5 675 650 4.4
5 Focused search 107.4 125.5 550 575 5.4
6 Self orienting 105.1 139.1 375 400 8.0
7 Target scanning 123.2 129.6 350 375 8.6
8 Chaining response 97.3 139.1 300 400 10.0

3.3.8 Statistical significance tests

Multi-factor testing of variance was done using a Friedman test (Siegel 1956), a
non-parametric test that is well suited for the type of data being analysed here,
which is not normally distributed. Besides this important characteristic of the data
being analysed here, the Friedman test is also a matched test, and can control for
experimental variability among subjects. For the case considered here, the same
animals were analysed over a set of 12 trials; the variability between different trials,
that affects all animals, is not taken into account in the Friedman test.

The p-values shown in the analyses answer the question: if the different treat-
ments (control vs. stress) are identical, what is the chance that a random sampling
would result in the distribution of values (or ranks, as used by the Friedman test)
as far apart as observed? Small p-values (< 0.05 in our analyses) lead us to dis-
card the null hypotheses that the results are identical and differences are only due
to random sampling.

3.4 Results

This section presents some results obtained with the analysis method proposed
here. First, results of a validation of the method will be presented; this was done
in order to gain confidence in the method and ensure that the results are consistent.
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Table 3.4: Parameters and results for three different classifications with variable segment
lengths and overlaps. The coverage value indicates the percentage of the swimming
paths that are covered by segments of known classes. This was the main criterion for
determining the quality of the clustering results. Different values for the target number
of clusters in the first clustering stage were used and the ones giving the best results
(highest coverage values with a low classification error) were selected (see Section 3.3.5
and Figure 3.8). The clustering algorithm uses a second stage where larger clusters with
mixed labels are further sub-divided. The agreement between two classifications was
computed by sub-dividing each trajectory into a series of small segments with the same
time interval, computing the resulting major class for each interval (similar to what was
done in Figure 3.13) and comparing them for both trajectories. As the table shows, the
agreement for the two 250 cm classifications is very good; for classifications with different
segment lengths the agreement is slightly lower.

Classification 1 Classification 2 Classification 3
Segment length 300 cm 250 cm 250 cm
Segment overlap 70% 70% 90%
Minimum path interval 90 cm 75 cm 25 cm
Segments 8,847 10,388 29,476
Labels 989 1,301 1,605
Clustering constraints 6,464 7,390 6,599
Clusters (first stage) 37 35 75
Clusters (final) 125 139 200
Unclassified segments 18.8% 20.0% 28.2%
Classification errors 0.51% 0.62% 0.19%
Coverage 94.1% 94.9% 97.3%
Agreement with 1 - 84.2% 71.1%
Agreement with 2 84.2% - 97.5%
Agreement with 3 71.1% 97.5% -

After this, the results from the analysis of the data set introduced in Section 3.1
will be presented.

3.4.1 Method validation

In order to validate the classification method, the initial classification results for the
data set analysed in the next section, introduced in Section 3.1), were compared to
a manual tagging of the swimming paths. The manual tagging consisted in visually
looking for the presence of four behavioural traits which are easily identifiable in
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the trajectory and to make sure that the proposed classification method was able
to identify them (i.e. that it was able to find segments belonging to the identified
classes). The four behavioural classes used for this were: i) Thigmotaxis; ii)
scanning of the region around the platform (called Target Scanning here); iii)
Incursion, or paths where the animal still touches the walls but start moving
inwards; and iv) Scanning, paths where the more central regions of the arena are
searched (these classes are described in more detail in Section 3.3).

The comparison of the manually tagged trajectories and automatic classifica-
tion results (presented in the next section) are shown in Table 3.5. The data set
considered here is the same as the one introduced in Section 3.1. The table shows
how many manually identified behavioral classes were not identified by the auto-
matic classifier. The values show that the automatic method is in good agreement
with the manually tagged trajectories, showing a maximum disagreement of about
7% for the Scanning class, which is a problematic case because the automatic clas-
sification also looks for more specific types of behaviour, such as Circular Response
and Self-orienting, which were not taken into account in the manual classification
and were usually identified as Scanning. The results for Scanning in Table 3.5
therefore include also these other sub-classes of behaviour (the same can be said
for Target Scanning, where the results for Scanning Surroundings – a class not
included in the manual labelling – were included as well).

Table 3.5: Manual classification results comparison. Table shows how many types of
behaviour from a manual labelling were not identified by the automatic classifier. The
first column shows the total number of manually tagged trajectories that displayed a
type of behaviour and the second one the number from them that were not identified
by the classifier. Values show a good agreement between the manual labelling and
the automatic classifier. Results for the Scanning class include also the sub-classes of
behaviour Circular Response, Self-orienting, and Focused search (Section 3.3), which
were not included in the manual classification. In the same way, results for Target
Scanning also include values for the Scanning Surroundings class.

Tagged Not identified Error
Thigmotaxis 240 6 2.5%
Incursion 300 5 1.7%
Scanning 152 10 6.6%
Target scanning 67 0 -

It has to be noted that the manual tagging of the trajectories did not quan-
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tify to which extent each one of the four behavioral classes was present in each
trajectory. It could only identify the presence or not of a behavioural class within
a trajectory and is therefore not as reliable as the classification method proposed
here. Nevertheless, the manual classification results, which show the proportion
of trajectories that displayed each type of behaviour (Figure 3.11), suggest that
stressed animals tend to spend at least some time next to the walls (thigmotaxis)
in significantly more trials than non stressed ones. This is also confirmed by the
more detailed classification results, presented in the next section, that is able to
quantify to what extent each class of behaviour is adopted in each trial. The results
of the next section also show that other types of behaviour, not easily identifiable
by manual inspection, show clear differences between both groups of animals.

3.4.2 Application: comparison of stressed and non-stressed
groups of animals

The analysis method proposed here was applied to a set of 57 rats, 30 of which
were submitted to peripubertal stress (Márquez et al. 2013); the other 27 animals
were the control group. The data consisted of recordings of swimming paths over
a set of 12 trials, divided into three daily sessions with 4 trials each.

Commonly used behavioural measures of learning, such as escape latency (Fig-
ure 3.12A), fail to show significant differences between the two groups. Although
differences in movement speed are pronounced (Figure 3.12B), they cannot be
unambiguously interpreted as differences in learning since it does not take into
account factors such as the path to the platform that was taken.

3.4.2.1 Behavioural classes

The method presented here produces results that offer a detailed overview of the
swimming paths and are able to identify four additional types of behaviour that
were not included in the manual labelling of swimming paths. Those were (Figure
3.6): chaining-response (D. Wolfer and H. Lipp 2000), characterised by concen-
tric paths where the animal sweeps all the points at the platform distance from
the wall; focused-search, where the animal limits its search to very small areas
randomly and repeatedly sweeping them; self-orienting (Graziano et al. 2003),
characterised by a loop where the animal orients itself in the arena; and scanning-
surroundings, or paths that cross a critical region around the arena but are not
limited to this region. Figure 3.6 shows examples of swimming paths including all
eight behavioural classes, as identified by the new classification method.
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Figure 3.11: Results of a manual classification of complete swimming paths. Labels
corresponding to four behavioural classes (thigmotaxis, incursion, scanning, and target
scanning / plots A-D respectively; see Figure 3.6 for a description of the classes) were
assigned to swimming paths depending on the types of behaviour that were identified by
a manual inspection. Multiple behavioural classes could be assigned to each swimming
path; values show the percentage of swimming paths for a trial that show traits of
each class. The data set is introduced in Section 3.1 and consists of a total of 57 rats,
30 of which were submitted to peripubertal stress. White bars: control group; Black
bars: stress group. Both groups were compared over the complete set of trials using a
Friedman test. Panel A shows that stressed animals tend to spend at least some time
next to the walls (thigmotaxis) in a trial more often than non-stressed ones. The more
detailed classification results, presented in Section 3.4.2, take also into account to which
extent each strategy is adopted within a trial and confirm this. They also show other
differences in behaviour between the two groups which cannot be easily identified by a
simple manual inspection of the trajectories.

3.4.2.2 Classification of swimming paths

The swimming path classification, as described in detail in Section 3.2, was done
three times: once for segment lengths of 300 cm with 70 % overlap between seg-
ments, then for segments of 250 cm with 70 % overlap, and finally again 250 cm
with 90 % overlap. In each case the clustering algorithm was run multiple times for
different target number of clusters in the first clustering stage. The results giving
the highest coverage values (i.e. fewer unclassified trajectory segments), while still
showing small number of classification errors, were then chosen (Section 3.3.5).
The different classifications were then compared and combined for producing the
final results.
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Figure 3.12: Comparison of full trajectory metrics for two groups of animals over a
set of 12 trials. White (black) boxes: control (stress) group. Boxes represent the first,
second (median, shown as a band) and third quartiles; whiskers are the minimum and
maximum values. Outliers are marked as a cross. The p-values of a Friedman non-
parametric test comparing both groups of animals over the full set of trials is shown
in each plot (see Section 3.3.8 for a discussion and interpretation of the Friedman test
and the p-values). A Escape latency shows a wide dispersion of values until later trials.
Trials were limited to 90 seconds, after which the animals were moved to the platform
and the trial was ended. B Average movement speed shows that stressed animals move
significantly faster than non-stressed ones. C Average path length. Stressed animals
tend to sweep longer paths than control animals; the difference between the two groups
is however less distinctive than when comparing the movement speeds.

In order to combine two classifications, the classes of matching segments in
both classifications were compared. Mismatches were discarded and not used in
the mapping of strategies to paths. The final results were based on a combined
classification of both the results for segment lengths of 250 cm.

Parameters and results for the three classifications performed here are listed
in Table 3.4. The percentage of corresponding segments that were assigned to
the same class, or the consistency rate between both classifications, is shown in
the last row of the table. The results show that the agreement between the two
classifications with 250 cm segment length is very good (> 97%). Between classifi-
cations with different segment lengths (250 and 300 cm) the agreement is slightly
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(15− 25%) lower. This is mostly due to the fact that the same segment mapping
parameters (Section 3.3.6) were used for both segment lengths. However, this had
no impact in the final classification since they were computed from a combination
of multiple classifications (Section 3.3.7), which increased the confidence in the
results.

Note that although the agreement factor seems to indicate an error of 10 to
almost 30%, the differences are mostly due to segments that show traits of two
different classes of behaviour and were mapped to opposite classes in both cases.
These differences do not impact the final classification results significantly, because
when computing the resulting class for a given point of a swimming path, all
segments that overlap the point are taken into consideration. This means that
small discrepancies of the actual segment classes in the case of transition segments
average out, or that when there is a difference in the results, it is limited to only
short path segments, of the order of one or two minimum discrete path length
intervals (between 25 and 75 cm depending on the segmentation parameters).

3.4.2.3 Evolution of strategies

After classifying the path segments, the distribution and evolution of strategies for
each swimming path was computed. This was done by computing the resulting
behavioural class for each minimum discrete path interval (25-90 cm depending on
the segmentation, Table 3.4). The class for each interval was selected based on the
classes of the overlapping segments.

Figure 3.13 shows the classification results for the first 6 trials for the stress and
control groups of animals. The detailed overview of each swimming path cannot be
achieved with previous classification methods. The results show gradual changes
in behaviour over the trials, and indicate at which points in time during a trial a
given strategy was adopted. Multiple strategies are usually present within a single
trial.

Initially, behaviours such as thigmotaxis and incursion dominate the trials, as
the animals look for wall contact where they presumably feel safer. However, it
can be seen that already at the second or third trials an increased presence of the
other more sophisticated strategies is observed. In these strategies animals explore
more central regions of the arena (scanning), orient themselves (self-orienting) or
actively look for the platform (chaining response, surroundings/target scanning).



Chapter 3. Detailed classification of trajectories in the Morris Water Maze 53

10s 50s 90s

trial 1

10s 50s 90s

trial 2

10s 50s 90s

trial 3

10s 50s 90s

trial 4

10s 50s 90s

trial 5

10s 50s 90s

trial 6

thigmotaxis

incursion

scanning

focused search

chaining response

self orienting

scanning−surroundings

target scanning

S
tr
e
s
s

C
o
n
tr
o
l

Figure 3.13: Classification results for the 6 first trials for the control (top) and stress
(bottom) group. Each bar represents a full trial (up to 90 seconds) and shows changes in
exploration strategies over the trial. Short paths, where the animal found the platform
directly, and which were not segmented, are marked in dark red. White boxes indicate
segments with behaviour not falling into any of the classes and which could not be
categorised. The results show that paths almost always correspond to multiple types of
behaviour. Also, it can be seen that on later trials animals are not only able to find the
platform faster, but they also change their strategies.
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3.4.2.4 Distributions of strategies

Basic analysis methods based on simple measures such as the escape latency (Fig-
ure 3.12A) fail to show significant differences between the two groups of animals.
One noticeable difference, however, is that stressed animals tend to move faster
than non-stressed ones; their paths to the platform are also longer (Figure 3.12B-
C).

The higher movement speeds of the stressed animals would suggest lower escape
latencies since, other behaviour characteristics being equal, they would find the
platform by chance more often. This, however, is not observed (Figure 3.12A). In
order to better understand and characterise the differences between the two groups
of animals, the technique presented here was used to compare how the preference
for the different strategies between the two groups of animals differs.

Figure 3.14 shows the distribution of strategies, using the same eight classes of
behaviour defined above, for both groups of animals over the complete set of 12
trials. The plots show the average path lengths spent on one strategy over a trial.
As expected from the differences in speed between both groups (Figure 3.12B),
stressed animals generally show longer paths than the control group. However,
the difference in path lengths between the two groups is not homogeneous among
all strategies. The results show that for the stressed animals there is a significant
increase in thigmotaxis, incursion, and scanning classes, all associated with low
chances of finding the platform (because most of the time is spent next to the
walls or centre of the arena in these behaviour patterns). Other, more cognitively
sophisticated strategies, such as self-orienting and target scanning, don’t show sig-
nificant differences among the two groups. The exception is the chaining-response
class, which shows a slight increase in the stress group. This difference, however,
is small compared to the differences between stress and control animals in the first
group of classes (i.e. thigmotaxis, incursion, and scanning).

The analysis presented here suggests that, although stressed animals sweep
significantly longer paths, most of that difference can be attributed to staying
near the walls and using simple exploration strategies such as scanning. More
sophisticated strategies, where animals actively look for the platform, are used
similarly by both experimental groups, explaining why stressed animals move faster
but take about the same time (or even longer) to escape the maze.
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Figure 3.14: Average segment lengths for each strategy adopted by stress (black) and control group (white) of
animals for a set of 12 trials divided in 3 sessions (days). Plots show the average length in meters that animals
spent in one strategy during each trial. Bars represent the first and third quartiles of the data; line shows the
median and crosses the outliers. Whiskers (when shown) indicate minimum and maximum values. A Friedman test
(Section 3.3.8) was used to compare both groups of animals over the complete set of trials; p-values are shown on
the top right. The results show that, as expected, stressed animals display longer average paths much more often
but the increase is non-uniform among the different strategies. According to the plots there is a clear difference
in the path lengths for the thigmotaxis, incursion, and scanning strategies, all of which are characterised by
low chance of finding the platform. For the scanning-surroundings, self-orienting, and target scanning strategies,
all which are associated with an increased chance of finding the platform, no statistically significant differences
were found. Chaining response shows a slight difference in favour of the stress group; focused-search shows no
significant differences. These results may explain why stressed animals sweep longer paths but on average they
don’t find the platform faster that non-stressed animals (Figure 3.12).
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3.4.2.5 Strategy transitions

Table 3.6 presents the results from another perspective: it compares the transition
probabilities within the same trial between strategies for both the control (left
table) and stress (right table) groups of animals. Values that deviate appreciably
between both groups are shown in bold. It can be seen that stressed animals show
a higher tendency for changing to thigmotaxis and incursion strategies, whereas
the control group shows higher values for a transition to self-orienting and scan-
ning surroundings strategies, both of which lead to increased chances of finding
the platform. These results are in agreement with the conclusions above. Further-
more, they provide an alternative angle to look at the behaviour of both groups of
animals, which would have been impossible using previous classification methods.

Table 3.6: Transition probabilities of strategies within trials for the control (left) and
stress (right) group of animals. Rows and columns indicate the starting and ending
strategies respectively. Row values (for the same starting strategy) are normalised. Bold
values indicate the most significant differences between the two groups. Results show a
higher tendency for stressed vs non-stressed animals to move to less efficient strategies
(thigmotaxis, incursion, and scanning - the ones where chances of finding the platform
are reduced); this is in agreement with results from Figure 3.14. TT = thigmotaxis, IC
= incursion, SC = scanning, FS = focused search, CR = chaining reaction, SO = self
orienting, SS = scanning surrounding, ST = scanning target.

TT IC SC FS CR SO SS ST

TT - 0.51 0.035 0.23 0.022 0.036 0.15 0.015

IC 0.35 - 0.055 0.12 0.13 0.13 0.17 0.036

SC 0.22 0.31 - 0.098 0.033 0.081 0.17 0.094

FS 0.45 0.25 0.015 - 0.051 0.045 0.15 0.033

CR 0 0.30 0 0 - 0.37 0.33 0

SO 0.28 0.25 0.11 0.12 0.082 - 0.089 0.078

SS 0.32 0.27 0.060 0.040 0.14 0.057 - 0.12

ST 0.17 0.35 0.083 0.083 0 0.13 0.20 -

TT IC SC FS CR SO SS ST

TT - 0.54 0.017 0.13 0.054 0.075 0.17 0.020

IC 0.51 - 0.054 0.11 0.073 0.071 0.16 0.023

SC 0.25 0.30 - 0.065 0.095 0.13 0.11 0.053

FS 0.27 0.42 0.025 - 0.10 0.046 0.12 0.021

CR 0.32 0.23 0.059 0.024 - 0.094 0.15 0.13

SO 0.31 0.36 0.057 0.042 0.061 - 0.15 0.024

SS 0.33 0.36 0.043 0.055 0.12 0.040 - 0.046

ST 0.28 0.30 0.024 0.13 0.059 0.021 0.18 -

Finally, Figure 3.15 shows that stressed animals also change strategies sig-
nificantly more often than non-stressed ones within a single trial. It has been
suggested (Aston-Jones et al. 2000; Luksys, Gerstner, et al. 2009; Luksys and
Sandi 2011) that high levels of arousal or stress lead to labile attention and fre-
quent strategy switches that may prevent efficient learning. In the reinforcement
learning framework (Section 2.2.3), which is relevant for computational modelling
of the Morris Water Maze (Richmond et al. 2011; Vasilaki et al. 2009), it has been
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shown (Luksys, Gerstner, et al. 2009; Luksys and Sandi 2011) that stress and
anxiety can lead to steeper reward discounting, which may be the computational
reason behind excessive strategy switches and impaired ability to learn tasks with
significantly delayed rewards. The results based on the classification of strategies
provide empirical evidence to support this view.

1 2 3 4 5 6 7 8 9 10 11 12

10

20

p=0.022 (*)

Figure 3.15: Number of transitions between strategies for both groups showing that
stressed animals change their behaviour more often within single trials

3.5 Discussion

The classification of swimming paths in the Morris Water Maze into behavioural
classes is a useful method to study spatial learning in rodents, since the different
classes of behaviour can be mapped to different stages of learning (D. P. Wolfer,
Stagljar-Bozicevic, et al. 1998). However, for some experiments, especially the
ones with a limited number of animals, longer trials, or larger arena sizes, the
discretisation of all swimming paths into only a few behavioural classes might not
be adequate. This is due to swimming paths that display characteristics of more
than one class of behaviour and that therefore cannot be reliably assigned to a
single class of behaviour (D. Wolfer and H. Lipp 2000). This in effect means that
results are valid only in a statistical sense, or for larger number of swimming paths.
In order to address these limitations, a new, more granular classification method
that allows a detailed description of all strategies employed by the animals in a
single trial was proposed here.

Contrary to previous approaches, the main target of the classification method
introduced here is not the full swimming paths, which can vary greatly in length
and consist of multiple types of behaviour, but rather shorter path segments of
constant length. By classifying multiple segments of swimming paths, changes
in behaviour within a single trial can be detected and quantified. As a result,
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instead of one single behavioural class, a distribution of classes is assigned to
each swimming path. It was shown that such detailed quantification can reveal
subtle and novel behavioural differences between two groups of animals (Figure
3.14); approaches comparing only individual path measures failed to provide clear
insight. In addition, the method presented here not only provides information
about which types of behaviour were exhibited, but also at which point during the
trial they were adopted (Figure 3.13).

This chapter presented a semi-automated classification method that requires
only a reduced set of labelled data to map path segments to classes of behaviour.
This is a useful feature, since it is impractical due to the large number of segments
usually generated. Earlier work by Graziano et al. (2003) has also proposed an
automated classification method of swimming paths. Their method was based on
linear discriminant analysis (LDA), and made use of a high-dimensional feature
space (more than 20 features), which made their classifier very robust. However,
in contrast to the work presented here, their method assigned complete trials to a
single class of behaviour. Here, instead, this problem was approached by applying
a semi-supervised clustering algorithm over a smaller feature space. The choice of
the clustering algorithm was motivated by the fact that clustering is ideally suited
for finding structure in data, without a priori knowledge of the classes. Therefore,
behavioural classes do not have to be predefined, but can rather be identified by
looking at common characteristics of elements of individual clusters. Also, clusters
containing ambiguous segments (for example transitional segments between two
classes) can be easily discarded.

In the implementation here, a set of features that captured both geometrical
(focus, eccentricity, distance to centre spread, maximum loop length, inner radius
variation) and positional (median distance to centre, target proximity, central
displacement) aspects of the segments was chosen. A smaller set of features was
preferred because more features span a space of higher dimensionality, which tend
to require a larger number of clusters to separate the data into their classes (clusters
that contain elements of a single class; in general multiple clusters can be mapped
to a single class). This in turn means that more labelled data has to be provided
to map these clusters to their respective classes.

Standard clustering algorithms usually fall in the unsupervised class of algo-
rithms and find patterns in data without any previous knowledge. However, here
a semi-supervised approach was adopted. In this approach a partial set of labelled
data was used to guide the clustering process and improve the results. The labelled
data is also essential to map clusters to classes and to compute an error estimate.
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The number of required labelled segments for classifying a set of swimming paths
will depend on the specific data set at hand, on the number of classes and on
parameters such as the minimum number of labelled segments. However, the la-
belling and clustering process can be performed incrementally, and so the number
of labels can be increased until a suitable classification is found. To help with this
process a custom Graphical User Interface (GUI) was developed here (Appendix
A). This GUI makes it easy to label swimming paths or segments, to cluster the
data, and to visualise the results of the clustering. All the code developed here is
freely available in GitHub‡.

The method presented here was successfully applied to a set of experiments
with two groups of animals for which standard analysis methods based on single
performance measures, such as comparing the escape latency values, failed to find
any significant differences in the performance between the groups, even though one
of the groups had been subjected to a strong manipulation. This manipulation led
to one group of animals moving significantly faster than the other one, but no other
differences in performance could otherwise be identified. Previous categorisation
methods for swimming paths also failed because of the inherent ambiguity of the
classification and the relatively small data set that had to be analysed. The method
presented here was developed with the objective of overcoming these limitations
and showed that the two groups of animals in the experiments considered here
display indeed subtle differences in their behaviour.

One valid criticism of the classification methods of swimming paths is that the
choice of measures can be very subjective. In his work, Korz (2006) makes this
point and provides an alternative, bottom-up, approach for the analysis of swim-
ming paths. His method is based on normalising the trajectories by reducing them
to 50 equidistant points and using the actual coordinates of the points to compare
trajectories. This is done by using principal component analysis (PCA), and has
the advantage that no arbitrary measures have to be introduced. He also shows
that the first few principal components are sufficient to account for most of the
variability in the swimming paths, and can therefore be used to simplify trajec-
tories. Although PCA-based methods have disadvantages such as interpretability
of the principal components, in principle a similar approach could be used here
for swimming path segments, if the intention were to avoid a subjective choice
of features. In this case, the feature set could be defined by the first principal
components of the segments rather than the geometrical and positional measures
used here.

‡https://github.com/RodentDataAnalytics/mwm-ml
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The work presented in this chapter can serve as a basis for defining more sophis-
ticated scoring mechanisms for swimming paths. Scoring methods of swimming
paths in the MWM were introduced in previous studies (e.g. Petrosini et al. 1998)
and are important because they make it easy to compare swimming paths accord-
ing to certain criteria between different groups of animals. The basis for such
scoring system strategies could, for example, be a weighted sum of the relative
distribution of strategies where their correlation with efficient swimming paths is
used as a weighting factor. This approach, however, was not pursued here and was
left for further investigations.

While the methods presented here were applied to trajectories of rats in the
MWM, the method is likely to work similarly well for other species of rodents,
such as mice. As mice and rats exhibit comparable trajectories in MWM, even
if they learn at different speeds and possibly use slightly different strategies, the
method itself should remain applicable, even if the exact number of behavioural
classes and their specific description may differ. The method presented here is
also general enough and can be extended to other behavioural tasks that employ
different types of mazes and trajectories. The next chapter will show how it can
be extended to a completely unsupervised paradigm method and be applied to
another experimental setup, the Active Allothetic Place Avoidance (AAPA) task.

Summary This chapter introduced a semi-supervised classification method for
Morris Water Maze swimming paths. The method offers a more detailed overview
of the behaviour of animals and is able to identify multiple exploration strategies
within single trials, something that was not possible in previous approaches. The
method was here successfully applied to a data set where it found subtle differences
in behaviour between two experimental groups of animals where other methods
failed. The next chapter will build on this and will show how the method presented
here can be extended to another experimental setup, the Active Allothetic Place
Avoidance task. It will also consider how the method can be turned into a fully
unsupervised method.



Chapter 4

Classification of trajectories in
the Place Avoidance Task

The Active Allothetic Place Avoidance (AAPA) task (Cimadevilla, M. Wesierska,
et al. 2001; Dockery and M. J. Wesierska 2010; Stuchlík et al. 2013) is an exper-
imental setup in which animals are placed in a dry circular arena where they are
free to move but have to learn to avoid a shock sector. If they enter this sector they
are punished by periodic mild electric shocks until they leave it again (Figure 4.1).
In this task the arena is slowly rotating over time and the shock sector is fixed in
space, so that animals have to constantly move around to avoid receiving a shock.
The AAPA task is a variation of the passive Place Avoidance Task (Bammer 1982;
Haroutunian et al. 1985), in which the arena does not rotate.

Navigation in a stable environment requires two types of memory mechanisms
(Bures et al. 1997; Fenton et al. 1998) which are brought into conflict by the
rotation of the arena in the AAPA task: the distal (room) cues and the local
(idiothetic) orientation within the arena, defined by the self-motion and local ref-
erences such as urine, faeces, and other marks left by the animals. In the AAPA
task animals have to learn to ignore the irrelevant local cues and to use only the
room reference frame in order to avoid the shock sector.

The AAPA task has been shown to be hippocampus dependent (Cimadevilla,
Kaminsky, et al. 2000; M. Wesierska 2005) and more sensitive to damages in this
brain region than the Morris Water Maze (MWM), described in Chapter 3. In
the MWM, animals have to also make use of only distal cues to orient themselves
(Morris 1981) and find the target platform. It has been shown (Cimadevilla, M.
Wesierska, et al. 2001; Stuchlik, Rezacova, et al. 2004), however, that lesions to
the hippocampus don’t affect the ability to navigate to fixed goals in space, such as
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Figure 4.1: The Active Place Avoidance task. Animals are placed on top of an elevated
arena which is slowly rotating (1 RPM). They can move freely around the arena but need
to learn how to avoid the shock sector, which is fixed in space. If they enter the shock
sector a small current pulse is delivered to their heads through an implanted electrode.
The position of the animals is tracked with a LED and a top-mounted camera.

the escape platform in the MWM. In the AAPA task there is no fixed target for the
animals to find; instead, they have to constantly move around ignoring local cues
in order to avoid the shock region. This makes the task more suitable for studying
the effect of drugs or lesions to the hippocampus, known to be fundamental for
memory formation and spatial navigation. Another advantage of the AAPA task
compared to the MWM is that animals don’t have to swim in a tank of water but
can instead move normally around the arena, a more natural setting for them.

Common performance measures for place avoidance experiments (Stuchlik and
Vales 2008; Vales et al. 2006; M. J. Wesierska et al. 2013) typically compare values
such as the total number of shocks received, the maximum shock avoidance time,
or the time for receiving the first shock in a session, among others. Although very
useful, these abstract performance measures don’t give any direct indication of
how the animals behave and how their behaviour changes over time.

In the previous chapter the problem of using only single performance measures
for comparing the behaviour of animals for the case of the Morris Water Maze was
discussed. In order to better quantify and compare the performance of animals a
categorisation method for the trajectories was presented there. The classification
was done in a semi-automated fashion: a partial set of the data was manually
classified and used to constrain a clustering algorithm and to map the clusters to
behavioural classes. Because a partial set of the trajectories were labelled there,
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the classification method falls into the semi-supervised class of algorithms (Section
2.2.4).

In this chapter the analysis method for the MWM introduced in Chapter 3 is
extended to AAPA experiments. The method presented here is also based on a
classification of the trajectories of the animals inside the arena into stereotypical
types of behaviour. Similar to what was done for the case of the MWM, trajectories
are first split into segments; these segments are then grouped into different classes
of behaviour by means of a clustering algorithm.

This chapter will show not only how the method developed for the MWM can
be generalised to other experimental setups, but also how it can be turned into a
completely unsupervised one. That is, the classification done here does not make
use of any labelled data. Behavioural classes of interest also don’t have to be
selected in advance but are instead identified by the clustering algorithm itself.
These differences are significant because they allow to analyse the data both faster
and without any previous knowledge about the types of behaviour seen in the
experiments.

The objective of this chapter is to develop an analysis method for AAPA ex-
periments that is complementary to standard performance measures and which
can give further insight into how the behaviour of animals changes over time and
differs between groups of animals. As a case study, and in order to validate the
method, a set of AAPA experiments investigating how silver nanoparticles affect
the spatial memory of rats will be analysed.

In what follows the proposed analysis method is first described in detail. The
method is then applied to the test data set in order to demonstrate that it can
successfully identify stereotypical types of behaviour in the data. The differences in
behaviour between treated and untreated animals is then compared with standard
analysis results to make sure that the results are consistent. This is followed by a
discussion about the results and future work perspectives.

4.1 Experimental Setup

The Place Avoidance Test experiments were conducted at the Nencki Institute
of Experimental Biology, Warsaw, Poland. The same basic experimental setup
as described in Wesierska et al. (2009) was used. The setup consisted of an
aluminium circular arena, 80 cm in diameter, which rotated at a frequency of 1
Hz. The arena was positioned at a height of 80 cm and placed in the centre of
a 3x4 meter lightly lit room which contained many stable external visual cues.
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Infrared light-emitting diodes (LED) for tracking the position of the animals and
a 25G (0.50 mm) hypodermic needle electrode, used for delivering shocks, were
attached to the backs of the rats. The experimental setup is shown schematically
in Figure 4.1.

Five recording sessions of 20 min each with a fixed shock sector (in the room
coordinates) were performed over a set of five consecutive days. This was followed
by a test trial five days later where the shock sector was not active. For the
trials with an active shock sector animals received a short (0.5 s) constant current
pulse whenever they entered a predefined 60◦ shock sector, which remained fixed
across the trials. The amplitude of the shock pulses varied between 0.2 and 0.5
mA and was determined individually for each animal so that shocks did not make
the animal freeze or induced attempts to escape the arena. Shocks were repeated
every 1.5 seconds until the animal left the shock sector. The position of the animal
and the current state of the electrode (shock active or not) was recorded at 25 Hz
using a commercial software package (Bio-Signal Group, New York).

4.2 Animals and treatment

Twenty naïve adult (2.5 month-old) male Wistar rats, weighing 270–310 grams,
were obtained from the breeding colony of the Center of Experimental Medicine of
the Medical University of Bialystok, Poland. They were accommodated in trans-
parent plastic home cages, four per cage, under standard conditions (a constant
temperature of 22◦C, 12:12 light/dark cycle, humidity at 50%). Water and food
were available in the cages ad-libitum. Ten of the animals were treated orally with
silver nanoparticles (experimental group) and ten with water (control group).

All manipulations were done according to the European Community directive
for the ethical use of experimental animals and the Polish Communities Council
for the care and use of laboratory animals.

4.3 Data analysis

The recorded trajectories of the animals were exported from the data acquisition
system as text files and further processed by custom data analysis software, written
in Matlab.

The data analysis method employed here is an extension and generalisation of
the method described in Chapter 3. Like done there for the case of the Morris
Water Maze, animal movement paths were first split into shorter segments and
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then classified into stereotypical behavioural classes by means of a clustering algo-
rithm. The method shown here, however, does not make use of labelled data and
is therefore a completely unsupervised algorithm. Contrary also to the method de-
veloped for the MWM, here the behavioural classes were not pre-defined but are
rather identified by the clustering algorithm itself. This is done by mapping each
one of the resulting clusters to one class of behaviour and by making sure that the
partitioning of the data does not lead to clusters that are too correlated or empty
(to avoid redundant or non-representative classes of behaviour, respectively).

Figure 4.2: Steps of the classification procedure for the AAPA task trajectories

The steps of the analysis done here consisted in (Figure 4.2):

1. splitting the trajectories of the animals into shorter segments;

2. computing a set of features for each segment and reducing the dimensionality
of the data;

3. clustering the data;
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4. analysing the distribution of the resulting clusters for both groups of animals;

Each one of these steps will be detailed in the next few sections.

4.3.1 Segmentation of trajectories

The main focus of the analysis presented here was to understand how the strate-
gies of animals for avoiding the shock sector evolve over time and differ between
treated and untreated animals. Therefore, in a first segmentation step the recorded
trajectories were split into segments delimited by entrances/exits from the shock
sector. That is, only the parts of the trajectories not falling in the shock sector
were considered. However, because the length of the trajectories between shocks
varied widely, from the order of a few seconds up to the duration of a trial (20
min), these segments were split further.

Long trajectories usually display multiple types of behaviour; the second seg-
mentation step had per objective to isolate the different behaviours found in a
trajectory and to generate a more uniform distribution of segment lengths, mak-
ing it easier to classify them. The second segmentation used changes in the angular
speed as criteria for splitting the trajectory segments. This is because in the Ac-
tive Place Avoidance Test animals have to move in the angular direction in order
to evade the shock sector. Therefore, changes in the sign and magnitude of the
angular speed were taken as the delimiting points of the segments. More formally,
trajectory points were processed sequentially and added to a sub-segment if the
difference between the local and median angular speed of the sub-segment (recom-
puted for each new added point) was less than 0.6 rad/s; if the difference was larger
a new sub-segment was created. Segments shorter than 5 seconds were discarded.

The two segmentation steps are shown schematically in Figure 4.3. From the
original 120 trajectories 1,737 segments were generated after the first segmentation
step and 5,787 after the second. Other statistics of the two segmentation steps
can be seen in Table 4.1.

4.3.2 Computation of features

This section describes the 11 features, that measure different geometrical and
positional aspects of the segments, that were used in the classification (Table 4.2).
Some features are computed using the room (world) reference frame, that is, the
coordinates including the rotation of the arena; other features are computed in
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Figure 4.3: Two-step segmentation of the trajectories. In the first step (top) trajectories
are split into segments containing only the parts of the paths not falling inside the shock
sector. Shown here are two example segments of the trajectory shown on the left. In the
second segmentation step (bottom), sudden changes in the angular speed (middle plots)
are taken as the delimiting points of the segments. Shown here are three sub-segments
of the first example segment from the first step (usually dozens of sub-segments are
generated in the second step for each segment).

Table 4.1: Segmentation of trajectories statistics. All lengths are measured in the arena
(rotating) reference frame. The last column shows the total length of the resulting
segments compared to the input, i.e., without the short segments that were discarded.

Segmentation Segments Avg. length Min. length Max. length Rel. length
(Full paths) 120 23,633 cm 3,565 cm 34,138 cm 100%
1st 1,737 1,442 cm 66 cm 24,370 cm 88,2%
2nd 5,787 384 cm 26 cm 3,887 cm 78,3%

the rotating reference frame, i.e., using the real paths swept by the animals. A
detailed description of each feature is given in what follows.

Angular distance to shock sector This value measures the angular distance
from the centre of the shock sector in the room coordinate frame to the angular
centre of the segment. The latter is computed by adding the normalised∗ position
vectors of each sample in the trajectory (i.e. the vector to the centre of the arena),

∗vectors are first normalised so that points farther away from the centre of the arena don’t
overweight more central ones
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Table 4.2: Features for the data clustering of trajectory segments

Feature Unit Reference Frame
Angular distance to shock sector rad Global
Angular dispersion rad Global
Angular dispersion (Arena) rad Arena
Median log radius - Global/Arena
IQR log radius - Global/Arena
Trajectory centrality % Global/Arena
Median speed cm/s Arena
IQR speed cm/s Arena
Median angular speed rad/s Arena
IQR angular speed rad/s Arena
Speed change frequency s−1 Arena

adding them and then taking the angle of the resulting vector relative to the middle
shock sector angle. If the resulting angle is negative, 2π is added to it so that the
resulting values are in the [0, 2π) range.

Angular dispersion The angular dispersion measures the angular spread of
the trajectories in the room coordinate frame. It is here defined as the difference
between the maximum and minimum angles of the position vectors (relative to the
centre of the arena) of the data samples in the trajectory.

Median/IQR of the log-radius These values are calculated from the trajec-
tory by computing the distance to the centre of the arena for each data sample,
taking the logarithm and then computing the median (interquartile range) of the
values†. The reason for taking the logarithm of the value is to give more weight to
the more central areas of the arena, which are more rarely explored by the animals.
The median and IQR were also chosen over mean and standard deviation because
they are less susceptible to outliers.

Trajectory centrality Measures the relative amount of time that the animal
spends at the more central regions of the arena. The value is computed by com-
puting the length of the trajectory falling within a concentric circle with a radius

†since the logarithm of zero is not defined, values equal to zero are changed to a small positive
number
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of 75% of the radius of the arena and dividing this value by the total length of the
trajectory.

Median/IQR speed The moving average of the speed between pairs of suc-
cessive trajectory samples is calculated and the the median/IQR of the resulting
values is then computed. More formally, the speed si of sample i is computed as:

si = α
‖xi − xi−1‖
ti − ti−1

+ (1− α)si−1 (4.1)

where xi and ti are the coordinates and sample times of the ith sample and
α = 0.5 was adopted here. Once again median and IQR were used instead of the
mean and standard deviation because of their improved stability.

Median/IQR angular speed The angular speed between each trajectory sam-
ple and the previous one is computed and the median/interquartile-range of the
resulting values is then taken. The angular speed between two samples is defined
as the difference in the angular position of two samples (relative to the centre of
the arena) divided by the time elapsed between them.

Speed change frequency Measures the number of times that the speed changes
abruptly within the segment. This happens, for example, when the animal changes
its movement direction. Calculated by counting the number of times that the speed
(calculated for each successive pairs of samples) crosses 25% of the median speed
of the segment, which is taken as the baseline.

The exact threshold value is not so important as long as it is not too high so
that almost no segments have samples that cross it and not too low so that even
small speed variations within a segment are counted. Through experimentation
it was found that a 25% threshold offers a good compromise between these two
extremes.

The 11 features computed for each trajectory segment were not used directly
for clustering the data. This reason for this is that clustering can be problematic
and inefficient in high dimensional vector spaces (Section 2.3.7). Also, since one
criterion for selecting the target number of clusters was based on the maximum
correlation between clusters (discussed below), it was important to discard redun-
dant features. For this reason a new smaller set of features orthogonal to each
other in the spanned space was generated using Principal Component Analysis
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(PCA) ‡, one of the most common algorithms used for feature extraction (Section
2.3.7.2).

Here the data was clustered multiple times using different numbers of principal
components. The criteria used to select the appropriate number of components,
or the dimension of the resulting feature space, are described below.

4.3.3 Clustering

The clustering algorithm that was adopted here was MPCK-means (Metric Pair-
wise Constrained K-Means, Section 2.3.5), the same as used in Chapter 3. The
MPCK-means algorithm supports constraints but this feature was not used here
since no labelled data was used. The method described here falls therefore into
the unsupervised category of algorithms.

Although it would have been possible to use a standard K-Means algorithm
(Section 2.3.3) for the analysis here, the MPCK-means was chosen instead in
order to maintain consistency with Chapter 3 and because it supports additional
features, such as metric learning, which leads to clusters with different sizes and
shapes. This is in contrast to the standard K-means algorithm, which uses a single
metric function which usually leads to a more homogeneous distribution of cluster
sizes and shapes§

4.3.4 Number of principal components and target number
of clusters

One of the difficulties in using a clustering algorithm is choosing the appropriate
target number of clusters since there is no standard measure to quantify the relative
clustering quality. In order to find a suitable value for the target number of clusters
and number of principal components (or features) to be used for clustering the data
the following criteria were used:

1. The maximum correlation between any two clusters should not be too large
(≤ 90% as a thumb rule). A large correlation between clusters means that
two or more clusters are too similar and therefore redundant. The correlation
between two clusters was computed by averaging the correlation between the

‡Wold et al. 1987
§Using its default settings, the standard MPCK-means implementation produces also deter-

ministic results, even when not using constraints. However, this is merely due to the fact that
the random seed used to initialize the centroids in the absence of constraints is fixed. Here the
seed was left at its default value and therefore the clustering results were always deterministic.
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first N elements closest to the centroids of each cluster, where N is the size
of the smallest cluster;

2. The minimum number of elements inside a cluster is not too small (≥ 5−10%
of the total elements approximately for the range of number of clusters being
considered here). This is to avoid having clusters that are empty or close to
empty;

The data was clustered using different number of principal components and
number of clusters (Figure 4.4). The results that fulfilled both of the above con-
ditions with the minimum number of principal components (or dimensions) and
maximum number of clusters (or types of behaviour) were then adopted.
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Figure 4.4: Clustering results for different number of principal components and target
number of clusters. Left panel: maximum correlation between clusters; Right panel:
minimum cluster size (in % of the total number of trajectory segments). Results are
shown for 4 to 6 principal components. As can be seen, results for 4 and 5 PC components
(solid and dashed lines) always lead to very small clusters being generated. Results for 6
PC (dotted lines) on the other hand lead to more homogeneous cluster sizes and smaller
correlation values between clusters on average.

4.4 Results

As a case study the method is applied to a set of experimental data acquired at the
Nencki Institute of Experimental Biology, Warsaw. In the experiments 20 rats were
submitted to the AAPA task and their movement trajectories were recorded. Of
those animals 10 were treated orally with silver nanoparticles; the other 10, which
received water, were the untreated control group. Each animal was submitted to



72 4.4. Results

5 sessions of 20 minutes each during which they could move freely in a circular
rotating arena and had to learn to avoid a shock sector which was fixed in the
room coordinate frame. This was followed by a test trial in which the shock sector
was deactivated.

Previous performance analysis methods of AAPA experiments typically rely on
individual performance measure comparisons, which can offer a good indication
about which group of animals is performing better, but offers little insight about
the differences in behaviour between them. The method shown here, on the other
hand, is able to identify and highlight the differences in behavioural patterns in the
data. This makes it possible to better understand how animals learn to navigate
the arena.

4.4.1 Single performance measures

Standard performance measures for the AAPA usually compare the number of
entrances to the shock sector, number of shocks received by an animal during a
session, and the maximum period of time between two shocks (see M. J. Wesierska
et al. 2013 for a detailed description of these and other statistics). Figure 4.5
shows a series of single performance measures for animals treated orally with silver
nanoparticles and the untreated control group. As the results show, there is a
clear difference between both groups and the animals in the treated group perform
poorly compared to the untreated ones.

The performance measures shown in Figure 4.5 indicate that there is a clear
difference between the two groups of animals, but only the results for the number
of entrances to the shock area (Figure 4.5a) show statistically significant differences
(according to a Friedman test) between both groups.

Besides showing statistical significant differences only in one case, the results
shown in Figure 4.5 provide no indication about the types of behaviour that lead
to such differences in the first place. The method described here, on the other
hand, is able to identify changes in the behaviour of the animals offering detailed
information on how the treatment that animals were subjected to affects their
comportment.

4.4.2 Trajectories classification

The recorded trajectories (120 in total) for each animal and session were segmented
as described in the Section 4.3.1, resulting in 5, 787 trajectory segments. A set of 11
features (Table 3) was computed for each segment. The dimensionality of the data
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Figure 4.5: Comparison of performance between untreated control (white) and treated
(black) animals over a set of 5 sessions. The p-values from a Friedman multi-factor test
(Section 3.3.8) are shown on the top right corner. (a): Animals in the control group are
able to quickly learn how to avoid the shock sector and are able to avoid the shock area
perform on average much better than treated animals, although only the results for the
number of entrances to the shock area are statistically significant. (e-f): Average speed
and the total length of the trajectories between both groups of animals don’t show any
significant differences.

was then reduced from 11 to Npc components using principal component analysis
(Section 2.3.7.2). The data was then clustered using the MPCK-means algorithm
for different numbers of target clusters, Nc . In order to select appropriate values
for Npc and Nc the clustering algorithm was run multiple times for different Npc

and Nc values and the results were then compared. The criteria for choosing both
values is based on running the clustering algorithm multiple times and comparing
the maximum correlation between clusters and size of the smallest cluster (Section
4.3.4). They effectively discard classifications which contain redundant or empty
(or close to empty) clusters.

Figure 4.4 shows the values for the maximum correlation between clusters (in
%) and minimum cluster size (in % of the total number of elements) for Npc

between 4 and 6 and an increasing number of clusters, starting at Nc = 5. As the
right panel shows the results for Npc = 4 and Npc = 5 (continuous and dashed
line) produce always close to empty clusters. Results for both number of principal
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Table 4.3: Clustering statistics showing relative size and percentage of elements be-
ginning or ending at the shock sector. A segment beginning at the shock sector are
associated with types of behaviour after the animal received one or more shocks. Seg-
ments ending in the shock sector are related to behaviour just before the animal (most
likely) receives a shock.

Cluster Elements Leaving shock Entering shock
1 16.8% 3.5% 0.2%
2 16.5% 37.6% 85.1%
3 10.9% 36.6% 3.8%
4 29.2% 0.1% 0.1%
5 12.2% 31.9% 64.0 %
6 14.4% 5.8% 1.7%

components have also highly correlated (≥ 90% correlation) clusters (left panel);
they were therefore discarded. The results for Npc = 6 (dotted lines), on the
other hand, show both a more homogeneous distribution of cluster sizes with no
empty clusters and a smaller maximum correlation between clusters; Npc = 6 was
therefore adopted here.

For the number of clusters both Nc = 5 and Nc = 6 produce similar results
but Nc = 6 was chosen here. The reason for this choice is that the maximum
correlation value doesn’t increase between Nc = 5 and Nc = 6 is an indication
that a division into 6 and not 5 clusters is more natural. Starting at Nc = 7 a
sharp decline in the minimum cluster size is observed, making Nc = 6 a suitable
choice.

4.4.2.1 Classes of behaviour

Figure 4.6 shows two example segments of trajectories for each one of the resulting
6 clusters. Segments are shown both in the room coordinates (as registered by the
camera) and the rotating arena reference frame (real path swept by the animals);
the movement speed in the arena reference frame is also shown for each one of the
segments. A description of the observed behavioural traits of each cluster is given
below. Table 4.3 gives also some statistics for each cluster, such as the relative
size and percentage of segments that start or end up within the shock sector. The
descriptions for each class are based solely on the observed traits of each one of
the computed clusters.
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Figure 4.6: Example trajectory segments for the six resulting clusters. Two examples
are shown for each cluster. Top left figures show the trajectory in the room (global)
reference frames. Top right plots show the trajectory compensating for the rotation of
the arena (arena reference frame). Lower plots show the movement speed of the rats.
Crosses mark the start of the segments.
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Class 1 Animals move inwards and explore the more central parts of the arena.

Class 2 Animals move very little around the arena and sit mostly in one position
(bottom speed plots in Figure 4.6). Paths frequently end in the shock sector (4.3).

Class 3 Relatively chaotic paths concentrated on the right/lower half of the
arena, on the right side and immediate vicinity of the shock sector.

Class 4 Paths focused above the shock sector. Animals frequently stand still
for a while and then move contrary to the disk rotation direction as they get close
to the shock sector.

Class 5 Animals move to a more central point in the arena then sit still ending
frequently in the shock sector (Table 4.3).

Class 6 Paths focused on the extreme opposite of the shock sector.

4.4.2.2 Treated and control groups compared

Figure 4.7 shows the percentage of path segments per day from each cluster for
both groups of animals. The differences between the groups were then checked for
significance using a Friedman multi-factor test (Section 3.3.8). Resulting p-values
for the Friedman test are shown in the plots for each cluster.

For 4 of the 6 clusters significant differences (p ≤ 0.05) were found between
the control and silver nanoparticles group. Animals in the treated group have a
much higher tendency (Class 2) for standing still in the arena, ending in many
cases in the shock sector. The same behavioural pattern is observed in Class 5
for the more central regions of the arena. The third pattern seen more often in
the treated group are chaotic paths focused in the lower right section of the arena
(Class 3). This type of behaviour is frequently associated with paths that originate
in the shock sector.

Animals in the untreated control group, on the other hand, demonstrate a
behavioural pattern in which animals sit still for a while but then move away from
the shock sector as they approach it (Class 4). This shows that animals are aware
of the location of the shock sector and use a strategy where they move as little as
possible.
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Figure 4.7: Distribution of segments of each cluster for control (white boxes) and treated
(black boxes) groups of animals for a set of 5 training (with active shocks) and 1 test
session (without shocks). Boxes represent the first and third quartiles of the data, lines
the median, crosses outliers, and whiskers minimum and maximum values. A Friedman
test (Section 3.3.8) was used to compare both groups of animals over all sessions; p-values
are shown on the top right.

4.5 Discussion

The method presented in this chapter for the Allothetic Active Place Avoidance
(AAPA) task relies on splitting the recorded trajectories of the animals in the
arena, computing a set of features for each resulting trajectory segment, and then
using a clustering algorithm to identify similar behavioural patterns in the data.
This is a generalisation to the approach of Chapter 3, which analysed the behaviour
of animals in the Morris Water Maze. There, however, the classes of behaviour
were predefined and a partial set of pre-labelled data was used to classify the tra-
jectories. This effectively led to a semi-automated or semi-supervised classification
method. The method presented here, on the other hand, offers a completely unsu-
pervised approach to the classification; behavioural classes of interest don’t have
to be defined beforehand and no manual labelling of data is necessary. Classes of
behaviour are instead identified by the algorithm itself as a result of the output
clusters. The fact that no manual labelling is necessary not only saves time but
can also lead to fully automated classifiers.

As a case study the new method presented here was applied to a data set con-
sisting of 20 animals. Half of the animals were treated with silver nanoparticles, the
other half was the untreated control group. Although standard performance mea-
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sures, such as the number of entrances to the shock sector within a session, already
show a clear difference in performance between the two groups of animals, these
differences become much more evident when looking at the different behavioural
patterns of the two groups. The analysis shown here is able to highlight the differ-
ences in behaviour between both groups of animals. This is especially true at later
trials, which shows that the spatial navigation and learning performance of the
animals is heavily affected by the presence of silver nanoparticles in the organism.
The method was also able to identify six types of distinct behaviours which, to
the best of the author’s knowledge, were never described in the literature before.

This chapter shows once again how machine learning algorithms can be ap-
plied to behavioural neuroscience and help to find patterns in data and interpret
results. In this chapter the semi-supervised method developed for the MWM in
the previous chapter was reduced to a fully unsupervised context and generalised
to work with another completely different experimental setup. This shows that
the method is general enough and can be extended further to other experimental
setups. It is to be noted that the software tools developed here, which are also an
extension of the tools used in Chapter 3, are freely available and can be used as
basis for creating more sophisticated tools, or to generalise the method to other
experimental setups. A brief description about the tools is given in Appendix A.

One possible point of criticism of the method that remains, and which was
also already highlighted in Chapter 3, is that the classification method depends on
relatively fine tuned features. In order to apply it to another experimental setup
an appropriate set of features that measure geometrical aspects of the trajectories
or their relative position relative to an objective (e.g. the escape platform in
the MWM) or special sector (e.g. the shock sector in the place avoidance task,)
has to be defined. In this chapter the problem was minimised to some degree
by using a larger pool of features and by using feature extraction in the form
of PCA to reduce the dimensionality and find a smaller set of features that can
account for most of the data variability. Nevertheless, the problem of first having
to design appropriate features for a given experiment remains. In order to fully
overcome this limitation the possibility of defining abstract measures that can
be more universally applied remains to be investigated. As mentioned previously,
Korz (2006), for example, proposes a method in which the coordinates of the paths
of animals in the MWM is used to define a new set of features. In his work PCA is
also used to reduce the resulting high dimensional feature space and he shows that
the first few principal components are enough to account for most of the variability
in the data. A similar approach was considered but not adopted here since the
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trajectories were classified not only by their geometrical aspect but also by other
factors, such as their relative position in the maze and the movement speed of the
animals. However, a more general approach for defining and identifying features
of interest could be investigated in a future work.

Summary This chapter focused once more on behavioural experiments in neu-
roscience and on how machine learning algorithms can be used to find behavioural
patterns and to create automated analysis methods for behavioural experiments.
The semi-supervised classification method that was developed in Chapter 3 for
analysing swimming paths in the Morris Water Maze was generalised here to an-
other important experimental paradigm in behavioural neuroscience, the Place
Avoidance Task. The semi-automated method presented in Chapter 3 was re-
duced here to a fully unsupervised method, which does not require any labelled
data and pre-defined classes of behaviour. Since producing labelled data is ex-
pensive, this is a major step forward from the point of view of the classification
effort. The fact that the behavioural patterns of interest are extracted automat-
ically from the data is also a major advantage. The next chapter will shift the
attention from behavioural neuroscience to another important class of data in neu-
roscience: multi-electrode array data recordings. Analysing this type of data poses
other types of challenges that will be considered there.
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Chapter 5

MEAs: Highly Scalable Parallel
Processing of Extracellular
Recordings

Multielectrode Arrays (MEAs) are devices that contain multiple sites through
which neural signals can be recorded or neurons can be stimulated (Spira and Hai
2013) (Figure 5.1). They are a valuable tool for investigating the activity and
information processing in neural ensembles since they allow multiple locations to
be recorded simultaneously (Obien et al. 2015). They can be used for in-vitro or
in-vivo recordings. In-vitro recordings can be used to record the activity of acute
brain slices (Heuschkel et al. 2002; Oka et al. 1999), with recording times on the
scale of hours, or cell cultures (Marom and Shahaf 2002; Pine 1980; Potter and
DeMarse 2001), which can be recorded non-invasively for long periods of time (over
a month). In-vivo recordings, on the other hand, use implanted electrodes in the
brain to record the activity of a living organism (BeMent et al. 1986; Kovacs et al.
1992).

Technological advances in the construction of MEAs lead to collections of an
increasing amount of data. For example, a simple calculation shows that record-
ings employing new large-scale MEAs with 4096 electrodes (Berdondini et al.
2009; Ferrea et al. 2012) with a sampling frequency of 7.7 kHz generate about
63 MiB/sec, (using a 16 bit analogue-digital converter), or almost 230 GiB of raw
(uncompressed) data per recorded hour. It is expected that future technology
advances will lead to an even larger amount of data being generated which has
then to be processed and interpreted in order to draw conclusions (Mahmud and
Vassanelli 2016).
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(a) Multielectrode Array for in-vitro
recordings commercialized by Multi-
channel Systems MCS GmbH

(b) Utah in vivo multielectrode array.
Source: Richard A. Normann - US
Patent 5,215,088. Public domain.

Figure 5.1: Multielectrode arrays

In order to be able to make sense of the data, raw MEA recordings have to
be first processed. Typical processing pipelines usually involve a filtering step
followed by a spike detection and artifact removal algorithm (Mahmud, Pulizzi,
et al. 2014). These pre-processing steps are then typically followed by a spike
sorting algorithm (discussed in Section 5.4.1) and/or other post-processing steps,
such as burst-detection in the case of cultured cells (Pelt, Wolters, et al. 2004).

Different software packages aiming to simplify and automate the processing
and analysis of MEA recordings were proposed over the years (Egert et al. 2002;
Mahmud, Pulizzi, et al. 2014; Wagenaar et al. 2005). These pioneering tools,
however, were designed primarily with ease of use and not performance in mind,
or were designed during a time were parallel hardware was not so prevalent as it
is today. They therefore do not scale well on modern hardware architectures (e.g.
multi-core CPUs with vector instruction sets or GPUs).

In this chapter a new MEA data processing tool, SpikeCL, is presented. It is
designed with scalability and parallel hardware in mind from the beginning and
offers substantial performance gains to previous tools on modern CPUs. The new
tool is based on OpenCL (Open Computing Language), an industry standard for
programming multi-core CPUs, GPUs, and dedicated accelerators.

The focus of the new tool is to optimise the performance-critical, pre-processing
steps that deal with large amounts of data. The objective is not to create a new
analysis framework, but rather to complement and speed-up existing ones. In
order to maximise the reuse of existing software the processing steps performed
here match closely the ones from one popular MEA data processing framework,
QSpike tools (Mahmud, Pulizzi, et al. 2014), a previously released and freely avail-
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able software package. The results from the pre-processing stages of the QSpike
tools software package and SpikeCL are interchangeable so that, for example, the
available report generating facilities provided by QSpike tools can be used without
major modifications using the new tool for pre-processing.

The processing pipeline in the tool was built so that different data sources can
be supported. Initially only offline data recordings are supported but the code can
be easily adapted to process online MEA recordings (live data streams). Another
possible extension to the tool is to add support for online spike sorting, or grouping
spikes based on their shapes. Spike sorting is discussed in Section 5.4.1.

In what follows first the architecture of the SpikeCL tool will be discussed. This
will then be followed by code benchmarks and an overview of possible extensions
of the tool. The chapter closes with a discussion about the achieved results and a
future outlook of MEA data processing tools.

5.1 Code

The software tool presented here, SpikeCL, was developed in C++ and is platform
agnostic; the code was tested on Linux, Windows, and OSX systems. It is provided
as a command line tool for manual processing of offline recordings (Multichannel
Systems’ MCD files are currently supported).

5.1.1 OpenCL

Modern CPUs consist of multiple cores and rely increasingly on SIMD (Single In-
struction Multiple Data) extensions, such as SSE (Streaming SIMD Extensions)
(Raman et al. 2000) and, more recently, AVX (Advanced Vector Extensions) (Fi-
rasta et al. 2010), to increase throughput. The basic idea behind SIMD is to apply
each CPU instruction to multiple data streams at once (Esterie et al. 2012). This
is in contrast to SISD (Single Instruction Single Data) architectures which apply
each instruction to a single data stream (Figure 5.2). Besides multi-core CPUs
other modern highly parallel hardware components, such as GPUs∗ (Graphical
Processing Units) or Intel’s MIC (Many Integrate Core) boards, available in the
form of the Xeon Phi line of dedicated accelerators, are becoming increasingly
widespread.

OpenCL is a widely used and supported framework for writing programs that
target modern parallel hardware architectures (see Tompson and Schlachter 2012

∗Modern GPUs can be used also for general, highly parallel, computing tasks
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Figure 5.2: Single Instruction Single Data (SISD) and Single Instruction Multiple Data
(SIMD) CPU architectures. SISD uses a single data stream per instruction. SIMD can
apply one instruction to multiple data streams, leading to massive performance gains.
Source: Ars Technica (www.arstechnica.com). Licensed under the Creative Commons
License.

for a short introduction, Munshi 2012 for a detailed treatment). The main ad-
vantages of using OpenCL, besides being an industry standard, is that it vastly
simplifies and abstracts the programming of parallel code that has to run in multi-
ple hardware configurations. This is achieved by means of OpenCL kernels, which
are just special functions, written in a subset of the C programming language,
which are compiled at runtime. Because kernels are compiled at runtime, the code
can be highly optimised for the specific hardware that will execute it. This can
be, for example, a multi-core CPU with a dozen or or so cores, or a GPU with
thousands of simplified computing cores. Both require very different types of op-
timization, that are handled by OpenCL at runtime. Figure 5.3 shows the general
architecture of an OpenCL application.

The SpikeCL tool makes use of the dynamic nature of OpenCL code and gen-
erates custom kernels for performance critical functions. The custom kernels can
be build for a specific set of parameters that are known only at runtime (e.g. the
coefficients of the filtering function) and targeting the hardware architecture at
hand (e.g. by using the maximum vector width supported by the CPU, allowing
it to process multiple channels at a time). All data intensive processing functions
in the SpikeCL tool, such as the data filtering and spike detection, were written in
the form of custom OpenCL kernels for maximum performance. Listing 5.1 shows
one OpenCL kernel for a data filtering step that was generated at runtime. Em-
bedded in the code is information such as the filter coefficients and the supported
hardware vector width (4 x 32 bit floats per CPU core in this case).
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Figure 5.3: Overview of the OpenCL programming and runtime architecture. The host
application generates the OpenCL kernels, or special functions, which are then compiled
at runtime targeting the specific hardware on which the code is to be run (e.g. a multi-
core CPU or a GPU). Because of the runtime compilation highly optimised code can be
generated.

Listing 5.1: Example of OpenCL Kernel that is generated by the SpikeCL tool. Kernels
are generated and compiled at runtime for an specific architecture and set of arguments.
This particular code is one pass of a 2nd order bidirectional filter that was generated for
a CPU that can process 4 channels per core at a time (therefore 4-vector floating points,
float4, are used in the code). Filter coefficients are also embedded in the kernel, which
makes the code highly efficient.

__kernel void f i lter_16_4_rev_f_f_16934953305227821146 (
__global f l o a t 4 ∗ x , ulong n ,
__global f l o a t 4 ∗ y , __global f l o a t 4 ∗ z )

{
long i = ( long ) get_global_id ( 0 ) ;
long co = ( long ) g e t_g loba l_o f f s e t ( 0 ) ;
z [4∗4 + i ] = 0 . ;
ulong j ;
ulong k ;
for ( k = 0 ; k < n ; ++k)
{

j = n − k − 1 ;
y [ j ∗4 + i − co ] = ( f loat )0 .512646935729248∗x [ j ∗4 + ( i − co ) ] + z [ i ] ;
z [ 0∗4 + i ] = ( f loat )−0.0038683462786876∗x [ j ∗4 + ( i − co ) ] + z [1∗4 + i ]

− ( f loat )−0.872973291418191∗y [ j ∗4 + i − co ] ;
z [1∗4 + i ] = ( f loat )−1.01707478174515∗x [ j ∗4 + ( i − co ) ] + z [2∗4 + i ]

− ( f loat )−0.487313079047431∗y [ j ∗4 + i − co ] ;
z [2∗4 + i ] = ( f loat )−0.0038683462786884∗x [ j ∗4 + ( i − co ) ] + z [3∗4 + i ]

− ( f loat )0 .0993040356576583∗y [ j ∗4 + i − co ] ;
z [3∗4 + i ] = ( f loat )0 .51264693572925∗x [ j ∗4 + ( i − co ) ] + z [4∗4 + i ]

− ( f loat )0 .309222050406897∗y [ j ∗4 + i − co ] ;
}

}
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5.1.2 Block processing, MCD files

The tool has built in support for processing Multichannel Systems’ MCD files.
However, other file formats or data sources such as online recorded data, can be
easily supported by adding a new data source type to the code (any source which
provides a continuous data stream can be used).

The main processing steps of the code work on data blocks, which contain a
chunk of multichannel recordings. These data blocks can be read and processed
in parallel, which can speed up the processing considerably. The reason for the
increased processing speed is large MCD files can be broken down into smaller
blocks and the reading and processing of data can progress concurrently. It has
to be noted, however, that using different block sizes can have an impact on the
results as the results of the backward filtering step (see below) and the estimate
of the spike detection threshold will vary slightly. Block processing is therefore
optional and, as long as there is enough system memory available, MCD files can
be processed as one block. The block size can also be set to a specific value via a
command line parameter.

5.2 Processing workflow

Figure 5.4 shows the different data processing steps performed by the tool. Except
for the generalised concept of input and output streams and block processing
(described above), these steps are exactly the same as the ones performed by the
original QSpike tools implementation in Matlab (Mahmud, Pulizzi, et al. 2014).
When a single data block is used the results of both tools is exactly the same.

5.2.1 Filtering

The first step of the processing performs an (optional but active by default) band
pass filter of the data using an IIR (Infinite Impulse Response) filter. By default a
bi-directional (non-causal) 2nd order elliptic filter with a 400−3000 Hz pass band is
used. However, this can easily be changed by providing custom filter coefficients or
a custom filter coefficient file with multiple sets of pre-computed filter coefficients.
A non-causal (or zero-phase) filter, which requires a forward and a backward pass
over the data, is chosen by default. A bidirectional filter is chosen in order to
minimise spike shape distortion and time lags (Quian Quiroga 2009). Single pass
filters can also be used with a one line code change.
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Figure 5.4: Overview of the data processing steps. Wider arrows symbolise steps where
larger amounts of data have to be processed.

It should be noted that the filtering step also expands the input data from
discrete ADC (Analogue Digital Converter) values (usually 16 bit integers) to 32
or 64 bit floating point values (depending on the compile time flags) in the first
pass. The data conversion and filtering operations are combined to avoid an extra
time consuming data copy operation.

5.2.2 Spike detection

The spike detection algorithm is based on a fixed threshold, tspk, which is estimated
from the background noise of the data (Quiroga et al. 2004), σn:

tspk = Kσn (5.1)

where K is a constant and σn is computed from the following expression: :

σn = kMAD(x) (5.2)

where x is the (band pass) filtered signal and MAD is the median absolute
deviation:

MAD = median {|x−median(x)|} (5.3)

In Equation 5.2 k is a scale factor, which can be computed from (Rousseeuw
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and Croux 1993):

k = 1/(Φ−1(3/4)) ≈ 1.4826 (5.4)

where Φ−1 is the quantile function for a normal distribution and the value 3/4
is chosen so that +/- 50% of the cumulative distribution function is covered.

If the standard deviation were used instead of the above expression (Equation
5.2), the spikes would have a large influence on the estimate of the noise. It was
shown by Quiroga et al. (2004) that, under the assumption that the number of
spikes is not too large, using the above estimate for the background noise using
the median leads to better results. For the computation of the median a recursive
binning algorithm is used (R. J. Tibshirani 2008).

5.2.3 Burst detection

The burst detection uses the method described in Van Pelt et al. (2005), which
first bins the spikes in discrete time windows and then calculates the number of
active electrodes (ones in which a spike was detected) at each time step. A burst
is detected if the number of active electrodes crosses a fixed threshold.

5.2.4 Post processing

The code does not provide any new post-processing code, such as report generation,
but rather makes use of the already available QSpike tools software stack. Only
minor modifications had to be made for the QSpike post-processing code to be
compatible with the output generated by the SpikeCL tool. As an example of
post-processing output, Figure 5.5 shows a raster plot produced by QSpike tools.

5.3 Results

This section presents some benchmarks that were performed with the new tool.

5.3.1 System setup

Benchmarks were conducted on two different systems:

• AMD Ryzen 1700 @ 3.85 GHz desktop PC with 8/16 cores/hardware threads,
32 GB of RAM, and a Samsung 960 EVO NVMe SSD;
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Figure 5.5: Example raster plot generated by the QSpike tools framework. Top-plot:
Spike times for a 60-channel array. Each dot marks one spike. Bottom plot: Total
number of spikes over all channels for a given time window.

• Intel i7-4600U (Haswell) @ 2.1 GHz laptop with 2/4 cores/hardware threads,
8 GB RAM, and a Samsung 830 SSD;

The operating system in both cases was Gentoo Linux 64 bit with Kernel ver-
sion 4.13. For the AMD system the OpenCL driver version 14.41 was used. For
the laptop the Intel OpenCL runtime version 4.4.0.117 was installed.

5.3.2 Performance scaling

Figure 5.6 shows how the main pre-processing operations, data filtering and spike
detection, scale with different number of channels being processed in parallel. The
number of parallel channels was always doubled, starting from 2, to allow for
optimal code vectorization (SIMD instructions found in modern x86 CPUs work
on floating point vectors of size 2, 4, 8 or 16†). As the graph shows, the filtering
operation scales well and even beyond the number of available hardware threads.
This can be explained by the fact that the filter code is highly vectorized since
it consists only of arithmetic operations and no branching is involved. These
operations can therefore be replaced by their SIMD counterpart (SSE or AVX

†Using the new AVX-512 instructions that are slowly being introduced by Intel and which
can process up to 16 32-bit values at a time.
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instructions) and with this process multiple channels at a time on a single hardware
thread. Peak performance of the bi-directional filter used in the tests was on the
order of 300− 400 GiB/s, even when running on the relatively modest laptop used
in the tests, showing that it does not represent a performance bottleneck.

The results in Figure 5.6 show that the spike detector does not scale as well
as the data filter. This is due to the fact that it is much harder to vectorize the
code of the spike detector because of the code branching involved. The branching
arises from the conditional check for a threshold crossing, which signals that a
spike was found. For this reason, only parts of the spike detection code, such as
the background noise estimation, could be satisfactorily vectorized. However, as
the results show, the spike detector does scale well up to the number of available
hardware threads (16 or 4 for the two hardware configurations tested here). The
achieved throughput of the spike detector is still multiple times more than the
amount that even the most advanced MEAs currently available (Ferrea et al. 2012)
can generate. The code can therefore be used as basis for an online processing
tool than can run even on readily available and inexpensive hardware, such as a
standard modern laptop.
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Figure 5.6: Performance scaling of filtering and spike-detection operations for different
number of channels processed in parallel. Two different systems were tested: an AMD
Ryzen 1700 desktop with 8/16 cores/threads (crosses) and an Intel Core i7 laptop with
2/4 cores/threads (circles). Details about the system configurations are given in Section
5.3.1. The results show that filtering shows close to linear scaling with the number of
parallel channels (left panel), even beyond the number of physical cores/lanes due to the
use of SIMD instructions. In the case of spike detection (right panel) the code cannot
make full use of vector instructions due to branching in the code; the performance peaks
therefore close to the point when all available hardware processing threads are exhausted.
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5.3.3 Processing of offline data

Figure 5.7 compares the overall performance scaling, combining both filtering of
the data and spike detection, when using different numbers of parallel channels
in the processing. The results show good performance scaling up to a number of
channels that is slightly higher than the number of available hardware threads.
This is mostly due to the spike detector not scaling as well as the data filter (5.6).
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Figure 5.7: Combined performance scaling for filtering and spike detection operations
for different number of data channels processed in parallel. Systems used: AMD Ryzen
1700 desktop with 8/16 cores/threads (crosses) and an Intel Core i7 laptop with 2/4
cores/threads (circles). Details about the system configurations are given in Section
5.3.1. Performance is again seen to scale well until the maximum number of hardware
lanes is reached, when it flattens. This is due mostly to the spike detector code, which
cannot be easily vectorized.

Figure 5.8 shows the time to process a 30min recording with 60 channels for
different block sizes. The results show that the performance improves slightly with
decreasing block size. This is due to the fact that smaller blocks lead to increased
levels of reading and processing parallelism. The rightmost point, with a block size
as large as the file, means that reading and processing operations are sequential,
as is the case in the original Matlab implementation. As described in the Section
5.1.2, the block size does have an impact on the results (Table 5.1) as the spike
threshold with varying block sizes will vary slightly. Included in Figure 5.8 is also
the time for processing the same file using the original implementation on the same
AMD Ryzen 8-core machine. It shows that for smaller block sizes (300 seconds)
the new code is approximately 8 times faster than the original one, a substantial
improvement. Perhaps even more importantly, the memory requirements of the
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new code are much lower and the analysis can be run even on a laptop with 8GB of
RAM, whereas the original implementation requires multiple times more memory
than that to process more than a couple of channels in parallel‡
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Figure 5.8: Time to process a 5.4 GiB MCD file with 60 data channels for different
block sizes. Sampling frequency: 25 kHz (30 s recording). The AMD Ryzen system
(Section 5.3.1) was used as a benchmark. The time to process the file on the same
system using the original QSpike tools pre-processing stage (written in Matlab) is also
indicated. The new pre-processing code is able to outperform the original QSpike code
by a large margin; the results show also that the processing performance improves when
using smaller block sizes because this allows for data extraction and processing to run
in parallel (the rightmost point is the point where both operations are sequential - first
all data is read and then processed, as is done in the original Matlab implementation).
The line shows a linear regression of the data.

5.4 Future developments

This section describes briefly some possible improvements to the existing SpikeCL
tool, which were planned but not finished at the time of this writing.

5.4.1 Spike sorting

Multielectrode Arrays capture the activity of multiple neurons at the same time,
each electrode capturing the activity of possibly multiple neurons. In order to

‡Processing of the same file on a 12 core, 24 thread Intel Xeon system with 72GB or RAM
takes about 180 seconds. In order for the code to run on the AMD Ryzen machine with 32GB of
RAM used here, no more than 10 channels could be run at a time before running out of system
memory.
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Table 5.1: Number of detected spikes for different block sizes. File was the same one as
in Figure 5.8. As can be seen the number of spikes can vary as much as 10% depending
on the block size. This happens because the amount of available data used to compute
the background noise is different in each case.

Block size [s] Spikes detected
300 144,918
600 138,252
900 146,064
1200 151,362
1500 153,216
1800 154,908

assign spikes to individual neurons a process known as spike sorting has to be
performed (Rey et al. 2015). It is a crucial step in studies of ensembles of neurons.

Spike sorting is based on the fact that spikes generated from two different
neurons, even if from the same type of cell, show some differences in their shapes
(Gold et al. 2006; Quian Quiroga 2009). The individual spike shape features
characteristic of each cell can be used to assign spikes to individual cells in MEA
recordings.

Spike sorting algorithms work by extracting a set of features from the spike
shapes and separating them into groups according to their similarity. Clustering
algorithms (Section 2.3) are well suited for this task and are usually chosen for this
(Quiroga et al. 2004; Rey et al. 2015). In order to define the number of clusters,
and therefore cells, manual (Gray et al. 1995), fully automated (Lewicki 1998),
and semi-automated (Hazan et al. 2006) methods have been proposed over the
years. A more complete overview of available spike sorting algorithms is given in
Bestel et al. 2012.

From the coding perspective, extending the SpikeCL tool to also support spike
sorting would be relatively straightforward, and would not require major modi-
fications to the current code. The spike sorting would be just one more step to
the processing pipeline (Figure 5.4) that takes as input the output from the spike
detection phase (Figure 5.9). However, spike sorting in itself is a complex subject
which would require some significant additional time. Scaling of the spike sorting
algorithm would be highly dependent on the scaling of the clustering algorithm
itself which is typically used for this task. Parallel clustering algorithms that scale
well with the number of processors (e.g. Qing et al. 2009) have been proposed in
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the literature, however; by making use of such algorithms it should be possible
to develop a spike sorting framework that scales well with the number of local
processors/hardware threads.

Figure 5.9: Spike sorting steps. Starting with the detected spikes the spike shape features
are first extracted and then fed to a clustering algorithm, which assigns one cluster to
each cell/source. Adapted from Quiroga et al. 2004.

5.4.2 Online processing

The SpikeCL tool currently processes only offline data but the code was written
in a form that different sources can be easily integrated. It would be relatively
straightforward to add support for processing a live data-stream, so that the in-
termediate raw data files don’t need to be stored. A couple of challenges remain
though:

i Filtering: the current filtering step uses a bi-directional (zero-phase) filter in
order to minimise the distortion of the spike shapes. This would not be possible
with a live recording but single-pass zero-phase filtering methods have been
proposed in the literature (Powell and Chau 1991);
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ii Spike sorting: the spike sorting algorithm (currently not implemented in SpikeCL)
would have to make use of a fast, ideally parallel, clustering algorithm;

5.5 Discussion

The results presented in this chapter show that by employing modern programming
technologies, such as OpenCL, highly efficient software that can target modern
parallel hardware architectures can be developed. This is especially well suited for
processing the large data sets generated by multi-electrode array recordings. The
new tool introduced here demonstrates substantial performance improvements of
data analysis compared to the original pre-processing stages of the QSpike tools
(Figure 5.8). The main reason for the differences is that, while the latter focuses
on process-level parallelism and processes data channels individually (one per CPU
core), the new tool uses thread-level parallelism and code vectorization to process
multiple channels per CPU core. Parallelisation does not pose major difficulties
since data generated from multi-electrode recordings is inherently parallel; this is
because individual data channels are independent from one another.

As technology advances there is a tendency for multi-site recordings with an
increasingly large number of recording channels to become commonplace. At the
same time modern hardware architectures are also becoming increasingly parallel.
This means that software tools that can extract the maximum performance from
state-of-the-art hardware will become increasingly important as well.

Although the focus here was to parallelize the code for modern CPUs, the
code presented here would in theory work also on GPU (Graphical Processing
Units) with minimal modification, since they are also supported by OpenCL.
Tests showed, however, that at least for offline data where many gigabytes of
recordings have to be processed at once, the data copying operation to the GPU is
prohibitively expensive and has a drastic performance impact on the code; using
system memory for this is also not ideal and impacts also performance. In order
to overcome this problem would be a major task which would probably involve
substantial changes to the processing pipeline. Furthermore, in order to extract
maximum performance from the GPUs, which consist to up to a few thousand
of micro-processing cores in modern hardware, most of the processing algorithms
would have to be rewritten. For these reasons and because the code in its cur-
rent form is able already to process recordings of MEAs with up to thousands
of channels even on modest hardware that is readily available, the optimizations
performed here were focused on CPUs only.
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The focus here was on improving the performance of the pre-processing stages
of MEA data analysis frameworks. This is a first step in being able to handle large
amounts of MEA recordings, which are becoming both more common and also
larger with new sophisticated MEAs with thousands of recording sites. This leaves
space for future improvements, though, such as parallelisation of the spike sorting
algorithm (Section 5.4.1), ideally using a highly parallel clustering algorithm (e.g.
Qing et al. 2009). Another possible improvement is the ability to process the data
in real-time (Section 5.4.2). This makes it not only unnecessary to allocate storage
space for the raw data, which often has to be copied around for processing, but
would also make it possible to create closed loop systems consisting of one or more
MEAs that communicate by means of an exchange of spikes.

Summary This chapter shifted focus from behavioural data to another very
important type of data found in neuroscience: Multielectrode Array (MEA) Ex-
tracellular recordings. One of the main challenges of analysing MEA recordings
is processing and reducing the large amount of raw data collected by the arrays
into data that can be more easily handled (spikes). Here a new tool for processing
MEA recordings was introduced. By making use of a highly parallel programming
model it offers substantial performance improvements compared to previous pro-
cessing frameworks. The tool can serve as basis for creating more sophisticated
MEA data processing systems that can, for example, interact with other systems
in real-time. Future prospects and a conclusions about the work presented in the
last three chapter will be considered in the next chapter.
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Conclusion

Modern technological advances allow us to now acquire vast amounts of data at
multiple spatial and temporal scales. This is already true for many areas of science,
for example in the analysis of sub-atomic particle collisions, or analysis of DNA
sequencing data, and the same is also becoming a reality in neuroscience.

Collecting vast amounts of data at multiple scales is fundamental for under-
standing complex systems, such as the brain. However, it brings also new chal-
lenges because processing, extracting the relevant information, and drawing con-
clusions from massive and complex data sets can be very difficult.

Machine learning methods are especially well suited to find patterns in data
and have been used with increasing frequency by scientists to analyse complex
data sets. They have been successfully used to, for example, automatically detect
features in images or to develop speech recognition applications.

The first and main objective of this thesis was to investigate how machine
learning methods can be used to analyse behavioural neuroscience experiments.
Behavioural data is fundamental in neuroscience because it can provide crucial in-
formation about how processes in the brain relate to behaviour and sensory input.
For example, Chapter 3 of this thesis focused on one of the most commonly used
rodent experiments in behavioral neuroscience, the Morris Water Maze (MWM).
The Morris Water Maze is a navigation task in which animals are free to move
within a circular arena and have to find a hidden platform to escape the maze. Be-
cause of the complex and highly variable movement paths of the animals, analysis
of MWM experiments poses some challenges. Typical analysis methods of MWM
focus on the evaluation of single performance measures, such as the time that the
animals take to find the escape the platform (known as the escape latency) or the
total distance moved until the platform is found. These simple measures are useful
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for initial performance evaluations but are also quite limiting because they do not
provide any information about the behaviour of the animals.

Simple measures for behavioural experiments, like the MWM, cannot capture
the multitude of behaviour patterns displayed by the animals. For this reason
in many cases they are also not able to detect differences in behaviour between
animals. This was the case, for example, for a set of experiments that investigated
the effect of peripubertal stress on the performance of rodents performing the
MWM task. Although the animals were submitted to a strong manipulation and
displayed some evident differences in behaviour, such as a much higher movement
speed, standard MWM performance measures, such as the escape latency, didn’t
show any differences between these animals and the control group. This was
paradoxical to some extent because the higher movement speed would suggest
that animals would be able to find the escape platform faster, but this was not the
case. The failure to find quantifiable differences in this experiment was motivation
for investigating other analysis approaches.

Categorisation methods of animal movement tracks have long been suggested
as a better approach for analysing behavioural data. By assigning each track
to a pre-defined class of behaviour many different path measures are effectively
combined and taken into account. Categorisation approaches have been previously
successfully applied to MWM experiments (D. Wolfer and H. Lipp 2000) but they
usually also have some drawbacks, such as an increased effort to classify the data.
In order to overcome this problem, automatic classification approaches have been
proposed in the literature. One example is the work of Graziano and collaborators
(Graziano et al. 2003), which combined over two dozen different path measures to
create an automatic classifier for MWM movement tracks.

Although a clear improvement over simple performance measures, categorisa-
tion methods proposed previously in the literature had one major limitation: they
are usually applicable only to large data sets. This is because each movement track
is assigned to a single class of behaviour but animals usually frequently change their
behaviour within a trial. This makes it difficult to map each track to a single class
of behaviour and statistical significant results can be obtained only for sufficiently
large data sets. This was not the case for the set of experiments considered here,
however, which consisted of slightly more than 300 movement paths.

Chapter 3 of this thesis presented an improved classification method for MWM
experiments. Compared to previous classification methods animal movement tracks
were not assigned to a single class, but rather to multiple classes of behaviour.
This was made possible by classifying not the complete trajectories of the animals,
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but multiple segments of the same path instead. This made it possible to detect
changes in the behaviour of animals within a single trial, something that could
not be done with previous approaches. The classification of the path segments
itself was done with the help of a semi-supervised clustering algorithm, which can
make use of a partial set of labelled segments to guide the clustering process. A
semi-supervised method that requires only a partial set of labels to classify the
data was chosen because labelling all segments (up to 30 thousand for the data set
considered here) would be very time consuming. Moreover, paths were segmented
so that segments had a significant overlap between them, so that there was no
need to classify all of the segments.

The novel classification method for the MWM developed in Chapter 3 was
successfully applied to the data set considered here, where previous methods failed.
By focusing on path segments instead of complete movement paths and by mapping
the segments to eight different behavioural classes, it was shown that the animals
induced to stress tended to adopt less efficient exploration strategies than the
control group. This explains why they perform the same as the control group even
though they move faster.

The classification for the MWM data was done with the help of custom software
tools that allow to classify the segments interactively, that is, by gradually labelling
segments and evaluating the results. These tools have been made freely available.

The analysis method developed for the MWM showed how machine learning
methods, in this case in the form of a semi-supervised clustering algorithm, can be
used to create more sophisticated data analysis methods that are able to deal with
complex data sets. Chapter 4 of this thesis focused on another type of behavioural
experiments, the Active Allothetic Place Avoidance task. The objective was to
investigate if the method developed for the MWM could be extended to other
experimental setups.

The Active Allothetic Place Avoidance (AAPA) task is an experimental setup
in which rodents are placed in a circular arena and have to learn to avoid a sector
where they otherwise receive an electrical shock. Because the arena is rotating but
the shock sector is kept fixed in space, animals have to constantly move around
the arena to avoid the shocks. As was the case for the MWM, previous analysis
methods for the AAPA task were based on single performance measures only.
These include, for example, measures such as the total number of shocks received
in a trial, or the maximum time interval for which animals are able to avoid
the shock sector. As in the case of the MWM these simple measures offer a useful
quantification of the performance of animals but give little information about their
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behaviour.
In Chapter 4 of this thesis a new analysis method for AAPA experiments was

introduced. The basic methodology was the same as the one applied to the MWM,
and was based on segmenting the animal tracks and then classifying the segments.
However, compared to the MWM the method was extended in two major ways.
First, an unsupervised clustering algorithm, instead of a semi-supervised one, was
used. That is, no manual labelling of data was necessary, which greatly reduced the
classification effort. The second difference compared to the method developed for
the MWM is that behavioural classes were not pre-defined but rather identified by
the clustering algorithm itself. Clustering algorithms are ideally suited for finding
patterns in data and were here therefore used to find the stereotypical classes of
behaviour.

The method developed for the AAPA task in Chapter 4 was applied to a set of
experiments that analysed the impact of silver nano-particles, commonly found in
cosmetics, on the behaviour of animals or, more specially, on their spatial memory
and navigation skills. The analysis results were able to detect six distinguishing
classes of behaviour that, to the best of this author’s knowledge, were never pre-
viously introduced in the literature. The results showed that animals treated with
silver nano-particles displayed remarkably different patterns of behaviour com-
pared to the control group. Standard performance measures were in this case
already able to show clear differences in the performance of both groups, but the
new classification approach proposed here was able to make this more explicit and
relate it directly to differences in behaviour.

Chapter 4 showed once more how classification methods based on machine
learning algorithms can be useful for analysing behavioural neuroscience experi-
ments. Machine learning methods can be used to develop analysis methods that
are able to find patterns of behaviour in complex data sets. The successful applica-
tion of the methods developed in chapters 3 and 4 suggest that the same principles
can be extended to other behavioral experiments.

In order be able to cope with large and complex data sets, now so ubiquitous
in science, not only more sophisticated but also highly scalable analysis meth-
ods have to be developed. Computer hardware in the last few decades showed a
shift from serial to increasingly parallel processing architectures. Multi-core CPUs
supporting advanced vector instruction sets and GPUs with thousands of micro-
processing cores are now found everywhere. In order to develop highly scalable
algorithms that are able to deal with large amounts of data, analysis tools that
are able to make full use of modern parallel hardware architectures have therefore
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to be developed.
The second objective of this thesis was to investigate how modern programming

paradigms can be used to develop highly scalable analysis tools. The focus here
was not on behavioural but on electrophysiological data, another fundamental type
of data commonly found in neuroscience. Chapter 5 looked at analysis methods
of data from multielectrode arrays (MEAs), which can record the extracellular
activity of many thousands of neurons over extended periods of time. The amount
of data that is recorded by MEAs can be substantial and this data has to be
first processed in order to transform it from raw electrical signals into more useful
information, such as the spike trains at each electrode. This gives rise to some
formidable data processing challenges.

Chapter 5 presented a new highly parallel tool for processing MEA data record-
ings. It showed that, by making use of modern computing environments and tools,
such as OpenCL, which can be used to compile code optimised for the hardware
at hand at runtime, highly scalable software can be developed. The new data
analysis tool developed here, SpikeCL, includes processing steps such as data fil-
tering and spike detection and is able to reduce large MEA recordings to a set of
spikes, greatly reducing the storage space requirements. Benchmarks showed that
the tool scales well for multi-core CPUs with vectorization units and that it is
able to outperform previous analysis tools by almost one order of magnitude with
much lower memory requirements at the same time. The throughput achieved by
the tool is sufficient for online data processing (where the data from a recording
session is processed in real time) from a modern MEA with thousands of electrodes
even on a modest laptop.

The MEA data analysis tool developed in Chapter 5 can serve as basis for more
sophisticated analysis frameworks. For example, a processing step for reconstruct-
ing the spike trains from each cell, a process known as spike sorting (Section 5.4.1),
can be added. Spike sorting methods are once more typically based on machine
learning methods, such as data clustering. This shows again the importance of
machine learning methods in modern data analysis.

In the coming years, as more sophisticated and sensitive instruments and elec-
tronics become available, the amount of data that is collected will increase ex-
ponentially. This is true for practically every field of science, from physics and
astronomy to genetics and neuroscience. This means that new analysis methods
for large data sets will become increasingly relevant and will become a fundamental
part of everyday scientific research.

This work focused on two very different, but equally important, types of data
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in neuroscience: behavioral and electrophysiological. Analysis of each one of these
presents its own set of challenges. For the case of behavioural data the results pre-
sented here showed that machine learning methods can be used to develop more
sophisticated methods for analysing these complex data sets. For the case of elec-
trophysiological data it was shown how recent advances in hardware architecture
can be exploited to develop highly scalable data processing tools. Moving forward
and in order to analyse the complex and large data sets of the future both of these
objectives, of highly scalable and sophisticated tools that make use of the lastest
developments in machine learning, will have to be combined.
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Appendix A

Software tools: behavioural data
analysis with Machine Learning

This Section gives a brief overview of the software tools that were developed to
classify the Morris Water Maze swimming paths (Chapter 3) and tracks in the
Place Avoidance Task (Chapter 4).

The code was written in Matlab (Mathworks, Inc.) and consisted of a Graphical
User Interface (GUI) and a series of reusable functions and classes for aiding in
the classification process ∗.

A.1 Graphical User Interface

The main Graphical User Interface (GUI) used for classifying trajectoy segments
is shown in Figure A.1) for the case of the Morris Water Maze data set.

The main windows of the GUI makes it possible to interactively browse through
the available segments and to assign labels to it (multiple labels can be assigned
to each segment). The labels are saved to a file and can be reloaded on a future
session, so that work can be resumed later. The labels are used to define the
must-link / cannot-link constraints between the segments. The GUI shows also
the computed feature values for each segment and allows to sort the segments
according to individual feature values or to a combination of all features (using a
distance function).

The objective of the main GUI window was to make it possible to not only label
the segments but also to visualize the classification results. The data clustering

∗The code is freely available and can be downloaded from GitHub:
https://github.com/RodentDataAnalytics/roda
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Figure A.1: Graphical User Interface used to assign labels to segments and visualize the
classification results

algorithm for a given number of clusters can be started from the same window.
The generated clusters can then be individually looked at by using the provided
data filters. Pre-defined filters for identifying segments lying on cluster boundaries
or isolated segments (i.e. ones for with a label was not assigned and which do not
overlap with any other labelled segments); this makes it possible to also identify
segments for which labels should be assigned in order to improve the classification.
Other statistics of the current classification, such as the percentage of classification
errors (if a cross-validation is enabled) and number of unclassified segments are
also immediately visible in the GUI. This all makes it possible to dynamically add
labels and almost immediately see the classification results.

For the Place Avoidance Task work (Chapter 4) the GUI was further extended
as to also include user definable secondary visualizations / plots for each segment
(Figure A.2). This was done in order to be able to show the segment both in
the world and arena (rotating) reference frames and other information such as the
movement speed. For the Place Avoidance Task work no labelling was done, the
classification of the segments was completely unsupervised.

Additional windows make it possible to also graphically compare the distribu-
tions of the features between different groups of segments (Figure A.3) and visu-
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Figure A.2: Graphical User Interface showing the Place Avoidance Task data with mul-
tiple visualizations per segment (Arena and Room coordintate frames; movement speed
plot).

alize other results, such as the correlations between different experimental groups
with the data clusters (Figure A.4).

Figure A.3: Comparing feature values distributions among different experimental groups
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Figure A.4: Measuring clusters and features correlations

A.2 Code features and configuration

The software tools developed here include not only the series of graphical user
interfaces just described but also a series of functions that can be used to perform
various tasks such as importing data sets, segment trajectories, compute a series
of features, define constraints from a set of labels, run a clustering algorithm, and
evaluate the quality of the results, among others.

The complete set of functions was written using the Object Oriented Pro-
gramming (OOP) model and with the intent to make most of the code reusable.
Almost all functionality can be customized through a central configuration ob-
ject, which is shared among all other task specific objects. In order to define a
new configuration for a different experiment or data set most of the time only
a new configuration object has to be defined. This object should inherit from
an existing base one so that only the new properties and functions specific to
the experiment at hand have to be defined. More information about the cus-
tomizing the code base can be found in the code base’s main page on GitHub
(https://github.com/RodentDataAnalytics/roda).



Appendix B

Data calibration: Morris Water
Maze recordings

Swimming paths of rats were recorded using an object tracking software (EthoVi-
sion Noldus et al. 2001, version 3.1). Due to the relatively close range of the camera
and the lens system used the recorded trajectories have to be first calibrated.

Figure B.1: Snapshot from the object tracking software (EthoVision) showing one trajec-
tory segment. Current position of the animal is shown by the black square. The position
of the black square relative to the yellow circle was used to automatically estimate the
current position of the animal (using image processing algorithms).

The recorded trajectories were calibrated by using the trajectories as shown on
screen in the tracking software, which has its own built-in calibration method, as
reference. To extract the reference points from the software its playback capability,



110

which replay a swimming path step by step, was used; screenshots saved to files
included the recording time at which they were taken in their name. One example
screenshot is shown in Figure B.1. The current position of the animal is shown
as a black (dark-grey) square; this feature was used to automatically detect the
position from the screenshots using imaging processing routines. As reference the
outer (yellow) circle was used. The so extracted coordinates were then compared
to the ones exported from the software, using the sample time information as
shown in the screenshots (seen on the bottom right).

The pairs of real and exported coordinates were then used to compute a pair of
error functions for x and y directions. These functions used a linear interpolation
of the differences for estimating the correction for the given coordinate along the
trajectory.
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Figure B.2: Calibration functions. Left: x axis correction. Right: y axis correction.

dx(x) = δxi + ( x− xi
xi+1 − xi

)(δxi+1 − δxi), xi ≤ x < xi+1 (B.1)

dy(x) = δyi + ( y − yi
yi+1 − yi

)(δyi+1 − δyi), yi ≤ y < yi+1 (B.2)
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where δxi and δyi, i = 1, 2, ..., N , are the sorted differences found between the
N extracted points from the trajectories and the respective exported coordinates.
Figure B.2 shows the two sets of error functions used to calibrate the data at hand.

The error functions were then used to correct the complete set of trajectories.
Figure B.3 shows an example of a distorted trajectory as exported by the tracking
software and the same trajectory after applying the correction.

Figure B.3: Example of data calibration applied to one trajectory. Left: original tra-
jectory as exported by the tracking software. Right: corrected trajectory that closely
matches the trajectory shown by the tracking software on the screen.
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Figure B.4: Calibration error as a function of the number of calibration points. The error
represents the distances (in the x or y axes) between corrected coordinates and points as
extracted from snapshots taking from the recording software. Only minor improvements
are observed after around 500 calibration points. Error bars represent the 95% CI.

The calibration was validated by using a (ten-fold stratified) cross-validation
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measuring the error of the interpolated function with calibration points not used
in the interpolation (Figure B.4).

The results show the average error (x and y axis) for different number of cal-
ibration points; as can be seen the improvements are only minimal when using
more than 500 calibration points (representing 7-8 trajectories in the data used
here).

For the final data calibration the full set of data points was used, 1654 for each
coordinate for the first set and 1195 for the second.
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