
Type-Two Well-Ordering Principles,

Admissible Sets, and Π1
1-Comprehension

Anton Jonathan Freund

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy

The University of Leeds

School of Mathematics

March 2018

The candidate confirms that the work submitted is his own and that appropriate

credit has been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material and

that no quotation from the thesis may be published without proper acknowledge-

ment.

c© 2018 The University of Leeds and Anton Jonathan Freund

The right of Anton Jonathan Freund to be identified as author of this work has been

asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

Acknowledgements

I would like to express my gratitude towards Professor Michael Rathjen, for

supervising this thesis, for the weekly reading group on ordinal analysis, and for

sharing his mathematical insights. It has been wonderful to learn from him!

I would like to thank all members of the Leeds Logic Group for providing such

a fruitful and friendly research environment. In particular I want to thank the

long-term members of our reading group, Martin Krombholz, Michael Toppel, and

Professor Stanley Wainer.

I am deeply grateful to Professor Helmut Schwichtenberg. His advice and

support have been important throughout my mathematical education.

iii

Abstract

This thesis introduces a well-ordering principle of type two, which we call

the Bachmann-Howard principle. The main result states that the Bachmann-

Howard principle is equivalent to the existence of admissible sets and thus to

Π1
1-comprehension. This solves a conjecture of Rathjen and Montalbán. The equi-

valence is interesting because it relates “concrete” notions from ordinal analysis to

“abstract” notions from reverse mathematics and set theory.

A type-one well-ordering principle is a map T which transforms each well-order

X into another well-order T [X]. If T is particularly uniform then it is called a

dilator (due to Girard). Our Bachmann-Howard principle transforms each dilator

T into a well-order BH(T). The latter is a certain kind of fixed-point: It comes

with an “almost” monotone collapse ϑ : T [BH(T)] → BH(T) (we cannot expect

full monotonicity, since the order-type of T [X] may always exceed the order-type

of X). The Bachmann-Howard principle asserts that such a collapsing structure

exists. In fact we define three variants of this principle: They are equivalent but

differ in the sense in which the order BH(T) is “computed”.

On a technical level, our investigation involves the following achievements: a de-

tailed discussion of primitive recursive set theory as a basis for set-theoretic reverse

mathematics; a formalization of dilators in weak set theories and second-order

arithmetic; a functorial version of the constructible hierarchy; an approach to de-

duction chains (Schütte) and β-completeness (Girard) in a set-theoretic context;

and a β-consistency proof for Kripke-Platek set theory.

Independently of the Bachmann-Howard principle, the thesis contains a series of

results connected to slow consistency (introduced by S.-D. Friedman, Rathjen and

Weiermann): We present a slow reflection statement and investigate its consistency

strength, as well as its computational properties. Exploiting the latter, we show

that instances of the Paris-Harrington principle can only have extremely long proofs

in certain fragments of arithmetic.

v

Contents

Introduction. Explaining the Main Result 1

Chapter 1. Preliminaries: The Base Theory 11

1.1. A Set Theory Based on Primitive Recursion 13

1.2. Basic Constructions in Primitive Recursive Set Theory 22

1.3. Around the Constructible Hierarchy 35

1.4. Connecting with Second-Order Arithmetic 46

Chapter 2. Type-Two Well-Ordering Principles 59

2.1. An Abstract Bachmann-Howard Principle 61

2.2. A Predicative Bachmann-Howard Principle 81

2.3. A Computable Bachmann-Howard Principle 102

2.4. Well-Ordering Proofs 123

Chapter 3. Admissible Sets via Search Trees 139

3.1. A Functorial Version of the Constructible Hierarchy 141

3.2. From Search Tree to Admissible Set 156

3.3. Search Trees as Dilators 162

3.4. From Search Tree to Proof Tree 167

Chapter 4. A Consistency Proof 179

4.1. Buchholz Codes 181

4.2. Cut Elimination 189

4.3. Operator Control 199

4.4. Collapsing 211

Chapter 5. Some Results about Slow Consistency 229

5.1. An Analysis of Slow Reflection 232

5.2. Transfinite Iterations of Slow Consistency 236

5.3. Proof Lengths for the Paris-Harrington Principle 241

Bibliography 247

vii

INTRODUCTION

Explaining the Main Result

In this thesis we explore how well-ordering statements from proof theory can

be lifted to higher logical complexity. More specifically, we establish a conjecture

of Rathjen [67, 68] and Montalbán [55, Section 4.5]: A certain type-two well-

ordering principle is equivalent to the existence of admissible sets (i.e. transitive

models of Kripke-Platek set theory) and thus to Π1
1-comprehension. Our work uses

techniques from proof theory, reverse mathematics and set theory. We hope that

it will be interesting for researchers from many areas.

To understand well-ordering principles of higher type, it is good to start with

a classical result of proof theory. As formulated, the following theorem can be

found in [9, Theorem 4.6] and [25, Theorem 4.5]. Certainly, it can be traced back

to the work of Gentzen. One should also mention the contributions of Kreisel

and Lévy [49] (connections between reflection and transfinite induction), as well

as Mints [54] and Schwichtenberg [82] (use of the repetition rule resp. improper

occurrences of the ω-rule).

Theorem. The following statements are equivalent over primitive recursive

arithmetic:

(i) Any Π0
2-theorem of Peano arithmetic is true.

(ii) The usual notation system for ε0 is primitive recursively well-founded.

Statement (i) is known as the uniform Π0
2-reflection principle over Peano arith-

metic. It is easy to see that Π0
2-reflection implies consistency. Thus Gödel’s the-

orem implies that (i) is unprovable in Peano arithmetic, and a fortiori in the weaker

theory of primitive recursive arithmetic. Concerning statement (ii), the intuitive

meaning of ε0 is the smallest ordinal α with ωα = α. As no actual ordinals are

available in arithmetic, we officially work with a notation system: Inductively build

terms ωs1 + · · ·+ωsn representing ordinals in Cantor normal form, simultaneously

defining an ordering ≺ on these terms. Note that the resulting set of terms and the

ordering are primitive recursive. More precisely, then, statement (ii) asserts that

any primitive recursive sequence s0, s1, . . . of ordinal terms has entries sn+1 6≺ sn

1

2 INTRODUCTION

for some number n. One cannot emphasize enough that the above theorem con-

cerns statements of low logical complexity. Recall that Π0
2-formulas have a very

concrete interpretation: They assert that a certain algorithm terminates on all

inputs. The philosophical position associated with Hilbert’s programme regards

Π0
1-sentences as particularly meaningful (see e.g. [96]). It is a great achievement

of proof theory that it can characterize the Π0
2-theorems of rather strong theories

(many other methods do not apply, because true Π1
1-statements hold in all ω-models

of second-order arithmetic). As a famous application, H. Friedman has shown that

Kruskal’s theorem on embeddings of finite trees (which is a Π1
1-statement) and its

Π0
2-miniaturization are unprovable in the theory of arithmetical transfinite recur-

sion (see the presentation by Simpson [86], as well as the precise bounds determined

by Rathjen and Weiermann [72]).

Despite the foundational importance of Π0
2-statements, it is interesting to lift

proof-theoretic concepts and methods to higher logical complexity. At the level of

Π1
2-statements we can investigate questions of set existence, and certain methods

from computability theory become available. Indeed, Marcone and Montalbán [52]

have used such methods to establish the following result. Afshari and Rathjen [4]

gave a second proof (despite the order of publication), relying on a proof-theoretic

argument.

Theorem. The following are equivalent over ACA0:

(i) Arithmetical recursion along N (usually denoted ACA+
0).

(ii) Any subset of N is contained in a countable coded ω-model of ACA0.

(iii) Whenever X is a countable well-order, so is εX .

With this result we have entered the domain of reverse mathematics: Broadly

speaking, this research programme investigates connections between different foun-

dational and mathematical statements in the language of second-order arithmetic.

We refer to Simpson’s book [87] for more information. Concerning the above

theorem, recall that ACA0 stands for the theory of arithmetical comprehension.

The base theory can be weakened to RCA0 (recursive comprehension) if one is

only interested in the equivalence between (i) and (iii). In part (i) we could just as

well speak of ω iterations of the Turing jump. To understand statement (ii), recall

that an ω-model of second-order arithmetic interprets the first-order quantifiers as

ranging over the standard structure N of natural numbers. The second-order quan-

tifiers range over some subset of the power set of N. Working in second-order

INTRODUCTION 3

arithmetic one can consider ω-models with countable second-order part, coded

into a single subset of N. Finally, the expression εX in (iii) refers to a relativized

ordinal notation system: It contains terms εσ for all elements σ ∈ X, ordered as

in X. The space between these (morally speaking) ε-numbers is filled up with

terms that correspond to Cantor normal forms, such as ωω
εσ+ω0

. Crucially, the

term system εX and its ordering are primitive recursive relative to X, and RCA0

proves that these collections exist as sets. Thus the power of (iii) lies solely in

the assertion that well-foundedness is preserved. Note that this is expressed by a

Π1
2-formula, as well-foundedness itself is a Π1

1-property. A statement such as (iii)

will be called a type-one well-ordering principle. It is worth observing that the

contrapositive of (iii), rather than (iii) itself, is used in the proofs: Marcone and

Montalbán [52, Theorem 5.21] show that, for some computable linear order X,

there is a computable descending sequence in εX , while any descending sequence

in X allows to compute the ω-jump. It would be interesting to investigate well-

ordering principles in an intuitionistic setting, which is sensitive to the difference

between a statement and its contrapositive, but this is not the topic of the present

thesis.

The literature contains several results which have the same form as the theorem

above. They characterize the following in terms of type-one well-ordering prin-

ciples: arithmetical comprehension [30, 35], ωα iterations of the Turing jump [52],

arithmetical transfinite recursion [24, 73, 52], ω-models of arithmetical transfinite

recursion [68], ω-models of bar induction [71], and ω-models of Π1
1-comprehension

(the latter with [91] and without [92] bar induction). At least in principle, there is

no bound on the consistency strength of statements that can be reached in this way.

In contrast, there is a limitation in terms of logical complexity: Principles of the

forms (ii) and (iii) are expressed by Π1
2-formulas. Thus they cannot be equivalent to

a genuine Π1
3-statement, such as Π1

1-comprehension. To overcome this limitation,

Rathjen [67, 68] and Montalbán [55, Section 4.5] suggest to consider well-ordering

principles of type two: These take a type-one well-ordering principle as input and

give a well-order as output. Alternatively, one could consider transformations of

type-one well-ordering principles into type-one well-ordering principles. However,

the type of the output is less important, because it can be lowered by Curry-

ing. To increase the logical complexity of part (ii) above, Rathjen suggests to

replace ω-models by β-models. Recall that a β-model is an ω-model which sat-

isfies all true Σ1
1-statements. It is known that Π1

1-comprehension is equivalent to

4 INTRODUCTION

the statement that any set is contained in a countably coded β-model (see [87,

Theorem VII.2.10]). Rathjen [67] already describes a general strategy to construct

β-models from higher well-ordering principles: To prove the theorem above, Afshari

and Rathjen build ω-models by applying Schütte’s [77, 79] method of deduction

chains to ω-proofs (infinite proof trees where one can infer ∀x ϕ(x) once one has

proved ϕ(n) for each n ∈ N). In order to construct β-models, Rathjen proposes

to extend the relevant arguments to Girard’s [29] β-proofs. These are compatible

families of infinite proofs, indexed by the class of ordinals. Similar applications of

deduction chains have been considered by Buchholz [8] and Jäger [40]. The present

author found it difficult to directly build β-models of second-order arithmetic in

this way. The construction of transitive models of set theories (which are related

to β-models, but not always equivalent) turned out more feasible. Let us now state

the main results of this thesis (labelled according to their appearance in the text).

All notions will be explained below.

Theorem 4.4.6. The following are equivalent over the set theory ATRset
0 :

(i) The principle of Π1
1-comprehension.

(ii) The statement that each set is an element of some admissible set.

(iii) The abstract Bachmann-Howard principle: For any proto-dilator α 7→ T uα ,

there is an ordinal α with a Bachmann-Howard collapse ϑ : T uα
BH−−→ α.

(iv) The predicative Bachmann-Howard principle: For an arbitrary dilator T u,

the Bachmann-Howard order BH(T u) is well-founded.

(v) The computable Bachmann-Howard principle: For any coded dilator T ,

the relativized notation system ϑ(T) is well-founded.

While statements (ii), (iii) and (iv) rely on set-theoretic terminology, state-

ment (v) can be formulated in second-order arithmetic. We will show that (v)

implies arithmetical transfinite recursion, to get the following result:

Corollary 4.4.7. The following are equivalent over RCA0:

• The principle of Π1
1-comprehension.

• The computable Bachmann-Howard principle.

Let us explain the notions that appear in these results: The base theory for

most of this thesis will be primitive recursive set theory with infinity (PRSω).

For some arguments we need axiom beta and the axiom of countability as addi-

tional assumptions. This leads to ATRset
0 , the set-theoretic version of arithmetical

INTRODUCTION 5

transfinite recursion due to Simpson [85, 87]. Chapter 1 presents these theories in

detail. To make sense of statement (i) in a set-theoretic context, note that there

is a natural way to interpret formulas of second-order arithmetic as formulas of

set theory (see [87, Section VII.3]). Also recall that there is a single instance of

Π1
1-comprehension which implies all other instances of this axiom schema. As for

statement (ii), an admissible set is defined as a transitive model of Kripke-Platek

set theory. The equivalence between (i) and (ii) is known (see [41, Section 7]). In

Corollary 1.4.13 we verify that it holds over ATRset
0 .

Concerning statement (iii), a proto-dilator is a compatible choice of well-orders

Tα = (Tα, <Tα) for all ordinals α (see Definition 2.1.1). In view of compatibility

we get rank functions | · |Tα : Tα → max{α, 1}. Crucially, the order-types of Tα

do not need to form a normal function. Indeed, it is possible that the order-type

of Tα is always bigger than α, so that no order-preserving collapse Tα → α can

exist. However, we can take inspiration from ordinal analysis: The construction of

the Bachmann-Howard ordinal involves a “sufficiently” order-preserving collapse of

εΩ+1 (the first ε-number above Ω = ℵ1) into the countable ordinals. Inspired by

Rathjen’s version of the collapsing construction (see [72, Section 1]) we introduce

the notion of Bachmann-Howard collapse, denoted by ϑ : Tα
BH−−→ α. The main

requirement is that the order is preserved under a side condition, namely

σ <Tα τ ⇒ ϑ(σ) < ϑ(τ) for σ, τ ∈ Tα with |σ|Tα < ϑ(τ).

The other requirement is |σ|Tα < ϑ(σ), which excludes some trivial choices of

collapsing functions. The abstract Bachmann-Howard principle in (iii) states that

such a collapse does always exist. It is relatively straightforward to see that this is

true: Remark 2.1.6 provides a proof in ZFC. In Section 2.4 we show that a similar

construction goes through on the basis of an admissible set, establishing (ii)⇒(iii)

of the theorem above. We should mention that some restriction on the growth of

the function α 7→ Tα is necessary: Our definition of proto-dilator will contain

the condition that this is a primitive recursive set function (cf. Chapter 1). More

precisely, we allow primitive recursive set functions with parameters; in particular

the parameter ω is always allowed. As a consequence, any admissible set that

contains the parameters will be closed under α 7→ Tα. The restriction to primitive

recursion is convenient in another respect: We formulate ATRset
0 in a language

with a function symbol for each primitive recursive set function. Using a binary

function symbol (u, α) 7→ T uα we can quantify over the family of functions α 7→ T uα ,

6 INTRODUCTION

by quantifying over the set-sized parameter u. In this way, the abstract Bachmann-

Howard principle for a parametrized family of functions can be expressed by a single

formula. More precisely, then, part (iii) is a schema which refers to the collection

of these formulas.

To view the abstract Bachmann-Howard principle as a type-two well-ordering

principle, note that it takes the type-one well-ordering principle α 7→ Tα as input

and yields a well-order as output, namely an ordinal α which is sufficiently large to

admit a collapse ϑ : Tα
BH−−→ α. However, the transformation of input into output is

not underpinned by computation. — In this sense the principle is abstract. While

this is unsatisfactory from a foundational perspective, the abstract Bachmann-

Howard principle has the advantage that it is easy to state, and that it can be

appreciated independently of ordinal notation systems. In view of (iii)⇒(ii) it can

be seen as a new characterization of the Church-Kleene ordinal ωCK
1 (as the latter is

the minimal height of an admissible set, see [6, Corollary V.5.11]). This also sheds

some light on the interpretation of Ω in notation systems for the Bachmann-Howard

ordinal: Semantically, the obvious choices are Ω = ℵ1 and Ω = ωCK
1 . However,

Pohlers [60, Section 9.7] shows that interpretations of Ω by ordinals below ωCK
1

can also be justified. In a sense, our result reinstates ωCK
1 as the smallest ordinal

which supports the collapsing construction.

In order to remove the foundational deficits of the abstract Bachmann-Howard

principle we would like to give an explicit construction of the ordinal α and the

collapse ϑ : Tα
BH−−→ α. To make this work we have to restrict to a class of particu-

larly uniform well-ordering principles, which has been singled out by Girard [28]:

Dilators are endo-functors of the category of well-orders that preserve direct limits

and pull-backs. For details about our formulation of dilators we refer to Defini-

tion 2.2.1 and Remark 2.2.2. Let us remark that Aczel [2, 3] has already considered

a concept similar to that of dilator. Jervell’s [45] related notion of homogeneous tree

is also relevant (his idea to view dilators as trees of finite sequences has inspired

the presentation of search trees in Chapter 3). Proto-dilators were introduced

by the present author, as a less sophisticated but much simpler notion, which is

sufficient for some purposes.

Coming to statement (iv), the predicative Bachmann-Howard principle expli-

citly constructs a well-order BH(T) which corresponds to the ordinal α in the

abstract Bachmann-Howard principle. The idea is that an ordinal α with a col-

lapse ϑ : Tα
BH−−→ α is a certain kind of fixed-point. To get such a fixed-point we

INTRODUCTION 7

define BH(T) as a direct limit

BH0(T) BH1(T) BH2(T) · · ·

BH(T).

Roughly speaking, the construction guarantees a collapse of TBHn(T) into BHn+1(T).

In the limit we get the desired collapse of TBH(T) into BH(T). Let us point out

that well-foundedness is not, in general, preserved under direct limits: Indeed, any

linear order is the direct limit of its finite (hence well-founded) sub-orders. The

fact that the particular limit BH(T) is well-founded accounts for the strength of

our type-two well-ordering principle. We will see that BH(T) can be constructed

by a primitive recursive set function, with the parameters of T as inputs. Argu-

ably, such functions are acceptable from a predicativist standpoint (cf. [17]). For

this reason we describe the present variant of the Bachmann-Howard principle as

“predicative”. Of course, the implication (iv)⇒(i) of Theorem 4.4.6 means that

the well-foundedness of BH(T) cannot be justified by predicative means.

We point out that our definition of BH(T) as the limit of a directed system of

ω approximations is very similar to a construction due to Aczel [2, 3]. However,

there is a significant difference: Aczel assumes that the functor T preserves initial

segments (Girard calls such dilators “flowers”). Then the associated order-types

form a normal function and we have an isomorphism α ∼= Tα for some ordinal α. In

the present thesis we are most interested in dilators which do not preserve initial

segments and do not admit fully order-preserving maps Tα → α. The fact that we

still have an “almost” order-preserving collapse of TBH(T) into BH(T) seems to be

responsible for the proof-theoretic strength of the Bachmann-Howard principle.

The computable Bachmann-Howard principle constructs a relativized ordinal

notation system ϑ(T) by even more elementary means. Parallel to the type-one

well-ordering principle X 7→ εX discussed above, the point is that the existence

of ϑ(T) as a set (and indeed a linear order) can be proved in RCA0. Thus the

entire strength of the computable Bachmann-Howard principle lies in the assertion

that ϑ(T) is well-founded. Before we can construct ϑ(T) we need a formalization of

dilators in second-order arithmetic. This relies on Girard’s result that dilators are

determined by their restrictions to the category of natural numbers. In Section 2.3

we give a primitive recursive set function which reconstructs any dilator from its

restriction (up to natural isomorphism, cf. Remark 2.3.7). Let us point out two

8 INTRODUCTION

advantages with respect to the predicative Bachmann-Howard principle: Firstly,

as observed by Montalbán [55, Section 4.5], we can now quantify over all dilators.

Thus the predicative Bachmann-Howard principle can be expressed by a single

formula, rather than a schema (see Proposition 2.3.10). Secondly, in the case of

proto-dilators the restriction to primitive recursive set functions was somewhat

ad hoc. For dilators this restriction is automatic.

Back to the computable Bachmann-Howard principle, assume that T ⊆ N codes

the restriction of a dilator to the category of natural numbers. We will construct

a term system ϑ(T) which, by its very structure, comes with a collapse

ϑ(T)→ ϑ(T) ∩ Ω.

Here the sub-order ϑ(T) ∩ Ω ⊆ ϑ(T) corresponds to the order BH(T) from the

predicative Bachmann-Howard principle. To turn ϑ(T) ∩ Ω into the desired fixed

point, it is enough to ensure that ϑ(T) contains a copy of Tϑ(T)∩Ω. This can be

achieved in the following way: Assume that we have terms s0 <ϑ(T) · · · <ϑ(T) sn−1

in ϑ(T) ∩ Ω, and consider the embedding h : n→ ϑ(T) ∩ Ω with h(i) = si. As T

is functorial, any σ ∈ Tn yields an element Th(σ) ∈ Tϑ(T)∩Ω. Now the idea is to

add a term E
s0,...,sn−1
σ ∈ ϑ(T), which acts as the representative of Th(σ) in ϑ(T). If

we have an ordinal α with a Bachmann-Howard collapse then this interpretation

of terms can be made official (see Theorem 2.4.9). We thus get an embedding of

ϑ(T) ∩ Ω into α, establishing direction (iii)⇒(v) of Theorem 4.4.6.

So far we have mentioned the implications (i)⇔(ii)⇒(iii)⇒(v) of Theorem 4.4.6.

To show direction (v)⇒(iv) we will construct an embedding of BH(T) into ϑ(T)∩Ω,

by glueing a compatible family of embeddings BHn(T) → ϑ(T) ∩ Ω (see Corol-

lary 2.4.18). In order to complete the proof, it suffices to establish (iv)⇒(ii). To

get a glimpse of the argument, recall that Jäger [39] deduces the consistency of

Kripke-Platek set theory from the well-foundedness of the Bachmann-Howard or-

dinal. By the completeness theorem one gets a model of Kripke-Platek set theory.

There is, however, no reason why this model should be an admissible set: The sym-

bol ∈ does not have to be interpreted by a well-founded relation. Our task will be

to build a well-founded (and indeed transitive) model under the assumption that

BH(T) is well-founded for any dilator T . This is worked out in Chapters 3 and 4.

A more detailed explanation can be found at the beginning of these chapters.

After completing the proof of Theorem 4.4.6, the present author has learned

that a related result was announced in the unpublished second part of Girard’s

book on proof theory [31]: Girard claims that Π1
1-comprehension is equivalent to

INTRODUCTION 9

the statement that his functor Λ maps dilators to dilators. However, a full proof

of this equivalence is not given: Girard presents an argument (via functorial cut

elimination for theories of inductive definitions) but notes that certain intermedi-

ate results are missing. We would also like to point out that Girard’s functor Λ

is quite different from our Bachmann-Howard principle (it would be interesting

to determine the precise connection, possibly via Girard and Vauzeilles’ [32, 94]

functorial construction of the Bachmann hierarchy). In spite of these differences,

the present thesis was strongly influenced by Girard’s published work on Π1
2-logic,

in particular by the conceptual insights in [28, 29].

The author would also like to mention a draft version [21] of this thesis, which

he has made available on the arXiv repository. It contains most material related to

the abstract Bachmann-Howard principle, while the predicative and the comput-

able versions are not yet included. The present thesis has been entirely rewritten,

but some similar formulations may remain.

In the first paragraph of this introduction we have stated that our results solve a

conjecture of Rathjen and Montalbán. Let us now assess this claim in more detail:

Rathjen [68, Conjecture 6.1] writes that “[type-two well-ordering principles F],

where F comes from some ordinal representation system used for an ordinal analysis

of a theory TF , [should be] equivalent to statements of the form ‘every set belongs

to a countable coded β-model of TF ’.” He also points out that Π1
1-comprehension

is equivalent to such a statement about β-models. In Theorem 4.4.6 we do not

directly construct β-models. However, we do construct admissible sets (which

are rather similar to β-models), and we do reach Π1
1-comprehension. Montalbán

[55, Question 26] conjectures that Π1
1-comprehension is equivalent to the statement

that ϑ(f(Ω+1)) is well-ordered for every dilator f . He does not give the definition of

ϑ(f(Ω+1)) in detail, but it seems to be somewhat different from our constructions.

In any case, Montalbán writes that “the precise definitions of the notions involved

might have to be adjusted to get interesting results.” We think that Theorem 4.4.6

and Corollary 4.4.7 fall under this specification. It would be very interesting to

know whether our results have computability-theoretic proofs as well, just as the

aforementioned results [35, 24, 52] on well-ordering principles of type one.

Chapter 5 can be read independently of the rest of the thesis. It is concerned

with the notion of slow consistency, introduced by S.-D. Friedman, Rathjen and

Weiermann [26]. The results of this chapter were also obtained during the author’s

PhD studies and have been published in two papers [19, 20] in the Annals of Pure

10 INTRODUCTION

and Applied Logic. A precise definition of the slow consistency statement Con�(PA)

can be found in the introduction of Chapter 5. The point is that it weakens the

usual consistency statement Con(PA) for Peano arithmetic: Friedman, Rathjen

and Weiermann [26] show that we have

PA + Con�(PA) 0 Con(PA)

but still PA 0 Con�(PA). The present author has extended the idea by introducing

slow reflection statements RFN�PA(Πn). These have interesting properties, both on

the level of computational content and of consistency strength: On the one hand

RFN�PA(Π2) extends Peano arithmetic by a new provably total function. On the

other hand we have

PA + Con(PA) ` Con(PA + {RFN�PA(Πn) |n ∈ N}).

Our results on slow reflection imply that the usual consistency statement for Peano

arithmetic is equivalent to ε0 iterations of slow consistency. This has been conjec-

tured by S.-D. Friedman, Rathjen and Weiermann [26]. It was independently

established by Henk and Pakhomov [34]. Surprisingly, slow reflection can also be

used to prove a refinement of Paris and Harrington’s [58] famous independence

result: We will show that Σ0
1-instances of the Paris-Harrington principle can only

have extremely long proofs in certain fragments of Peano arithmetic.

CHAPTER 1

Preliminaries: The Base Theory

The present chapter is concerned with the base theory in which we are going

to work for the rest of the thesis. As explained in the introduction this will be a

reasonably weak set theory.

In second-order arithmetic the choice of base theory is — nowadays — relatively

straightforward. The most common axiom systems are linearly ordered in a very

strong sense: Given two of these systems, the stronger will prove all axioms of the

weaker (rather than just their Π0
1-consequences). As a base theory one will then

choose the weakest possible system (from a theoretical or practical perspective).

In contrast, natural set theories are not always comparable in this strong sense.

For example, Simpson’s set-theoretic version of arithmetical transfinite recursion

and Kripke-Platek set theory each have well-founded models of height ωCK
1 (the

Church-Kleene ordinal), but the two theories have no joint model of that height

(see [85, Lemma 5.1]).

As an — admittedly rather construed — example of possible pitfalls, assume

that we adopt Zermelo-Fraenkel set theory without infinity as our base theory.

Since this theory is interpretable in Peano arithmetic (due to Ackermann [1]) it

may, from a superficial standpoint, look like a legitimate choice of base theory.

Now, the principle of Π1
1-comprehension (which asserts that any Π1

1-definable sub-

class of the natural numbers is a set) and the existence of admissible sets both

imply the axiom of infinity. Thus when we add either statement the other one

becomes provable, simply because it is a theorem of Zermelo-Fraenkel set theory

with infinity. However, this does not establish any interesting connection between

Π1
1-comprehension and admissible sets.

For similar if more subtle reasons Kripke-Platek set theory, even with restric-

tions on induction, is no suitable basis for our investigation. This is because some

of our arguments rely on axiom beta (which states that any well-founded relation

can be collapsed to the ∈-relation). However, Kripke-Platek set theory together

with axiom beta already yields ∆1
2-comprehension (see [41, Theorem 8.2]).

11

12 1. PRELIMINARIES: THE BASE THEORY

Guided by these negative examples we choose primitive recursive set theory

with infinity (PRSω) as our default base theory. This rests on the primitive recur-

sive set functions investigated by Jensen and Karp [44] (who name Gandy, Platek,

and Takeuti and Kino as further originators of this or similar notions). Following

Rathjen [62], we formulate PRSω in a language with a function symbol for each

(definition of a) primitive recursive set function. Details can be found in Section 1.1.

For the moment, let us just stress that “primitive recursive” will by default refer to

primitive recursive set functions relative to the parameter ω (see Convention 1.2.9).

For some arguments it will be necessary to extend PRSω by axiom beta, or by the

axiom of countability (which states that every set is countable). Where this is the

case it will be indicated (see Convention 1.4.10).

Primitive recursive set theory has several advantages: Firstly, many funda-

mental constructions which are familiar from Kripke-Platek set theory are available

in PRSω as well. This is because the Σ-recursion theorem (see [6, Theorem I.5.4])

is mostly used to construct primitive recursive functions. Indeed, Rathjen [62]

shows that PRSω proves the same Π2-theorems as Kripke-Platek set theory with

Σ1-foundation (unfortunately the same principle is sometimes called Π1-foundation,

due to the duality between well-foundedness and ∈-induction). We will review some

relevant constructions in Section 1.2 and Section 1.3.

Summarizing the previous paragraph, one might say that primitive recursive set

theory keeps the concrete computational content of the Σ-recursion theorem. At the

same time it avoids the abstract principle — ∆0-collection — on which that theorem

rests in Kripke-Platek set theory. This makes PRSω more robust: As we have seen

above, the strength of Kripke-Platek set theory increases dramatically when we

add axiom beta. Extending PRSω by axiom beta (and the axiom of countability)

has a more moderate effect: Modulo the elimination of function symbols it leads

us to Simpson’s set-theoretic version of arithmetical transfinite recursion. Thus

PRSω + “beta” + “countability” has a natural interpretation in the second-order

system ATR0. Moreover, this interpretation is robust under extensions, in the

sense that we may add Π1
1-comprehension and other second-order axioms on both

sides (see [87, VII.3.34]). Note that the interpretation of Zermelo-Fraenkel set

theory without infinity in Peano arithmetic (see above) does not enjoy this property.

Details on the connection between PRSω and Simpson’s set theory can be found

in Section 1.4. There we also review the known fact that Π1
1-comprehension is

equivalent to the statement that any set is an element of some admissible set. Note

1.1. A SET THEORY BASED ON PRIMITIVE RECURSION 13

that admissible sets are defined as transitive models of Kripke-Platek set theory

(see Definition 1.3.11).

Another advantage of primitive recursive set theory is that we can represent

class-sized functions without coding. In particular this applies to the (proto-)

dilators that appear in our main result. Also, primitive recursion singles out a

natural class of functions with good properties: For example, admissible sets are

closed under primitive recursive set functions. The ability to speak about proper

classes becomes less important in view of Section 2.3: There we will see that dilators

are naturally represented by set-sized objects.

Finally, most mathematical arguments seem to involve functional dependencies.

With function symbols at our disposal we can formalize them in a straightforward

yet rigorous way. In this respect we are reminded of primitive recursive arithmetic,

with its great tradition in finitistic and proof-theoretic investigations.

1.1. A Set Theory Based on Primitive Recursion

In this section we introduce primitive recursive set theory with infinity (PRSω),

which will be the default base theory for the rest of this thesis (occasionally exten-

ded by axiom beta and the axiom of countability, see Section 1.4). Our exposition

draws on Jensen and Karp’s [44] investigation of primitive recursive set functions,

and on Rathjen’s [62] definition of a corresponding logical theory. As far as the

present author is aware, the existing literature does not contain a detailed introduc-

tion to the formalization of set-theoretic arguments in PRSω. Recovering known

facts about primitive recursion inside this formal theory is mostly standard, but a

few subtleties do arise: For example it will be important that ∆0-separation is a

theorem, rather than an axiom. Also, the interplay between transitive closures and

∈-induction requires some attention (see the discussion before Proposition 1.1.11).

Let us begin with the language of PRSω:

Definition 1.1.1. We inductively define primitive recursive (p.r.) function

symbols and their arities. Intended interpretations are given to guide the reader

but play no official role.

(i) We have a unary p.r. function symbol Z with intended interpretation

Z(x) = 0.

(ii) We have a binary p.r. function symbol M with intended interpretation

M(x1, x2) = x1 ∪ {x2}.

14 1. PRELIMINARIES: THE BASE THEORY

(iii) For each n ≥ 1 and each i = 1, . . . , n we have an n-ary p.r. function symbol

Pni with intended interpretation

Pni (x1, . . . , xn) = xi.

(iv) We have a quaternary p.r. function symbol C with intended interpretation

C(x1, x2, x3, x4) =

x1 if x3 ∈ x4,

x2 otherwise.

(v) Given p.r. function symbols G of arity k and H1, . . . ,Hk of a common

arity n we have an n-ary p.r. function symbol K[G;H1, . . . ,Hk] with in-

tended interpretation

K[G;H1, . . . ,Hk](~x) = G(H1(~x), . . . ,Hk(~x)).

(vi) For each (n+2)-ary p.r. function symbol G we have an (n+1)-ary p.r. func-

tion symbol R[G]. The intended interpretation is the unique function

which satisfies the recursion

R[G](x, ~y) = G
(⋃
{R[G](v, ~y) | v ∈ x}, x, ~y

)
.

By Lpr we denote the first order language with (binary) relation symbols ∈,= and

all primitive recursive function symbols.

Note that all primitive recursive function symbols have non-zero arity. It would

seem natural to conceive Z as a nullary function (constant symbol). The n-ary func-

tion with constant value 0 could then we recovered as K[Z;], where the semicolon

is followed by zero n-ary functions (one should write Kn[Z;] to indicate the arity).

The author finds it attractive to include nullary functions (primitive recursive sets)

but does not want to deviate from the existing literature at this point. Note that

nullary functions are dispensable for the purpose of formalization: Simply argue

under the assumption that a fixed variable assumes a particular value (cf. Conven-

tion 1.2.9). Let us also point out that other forms of the recursion principle can

be derived, in particular course-of-values recursion (see Lemma 1.2.3). The above

variant of recursion is natural if one thinks of the stages of an inductive definition.

We have said that the intended interpretations of our function symbols have no

official status. Instead, their meaning is fixed as in [62, Section 6]:

1.1. A SET THEORY BASED ON PRIMITIVE RECURSION 15

Definition 1.1.2. To each primitive recursive function symbol F we associate

an Lpr-formula AF , called the defining axiom of F :

AZ :≡ ∀x∀y∈Z(x)y 6= y,

AM :≡ ∀x1,x2(∀y∈M(x1,x2)(y ∈ x1 ∨ y = x2) ∧
∀y∈x1y ∈M(x1, x2) ∧ x2 ∈M(x1, x2)),

APni :≡ ∀x1,...,xnP
n
i (x1, . . . , xn) = xi,

AC :≡ ∀x1,x2,x3,x4((x3 ∈ x4 ∧ C(x1, x2, x3, x4) = x1) ∨
(x3 /∈ x4 ∧ C(x1, x2, x3, x4) = x2)),

AK[G;H1,...,Hk] :≡ ∀~xK[G;H1, . . . ,Hk](~x) = G(H1(~x), . . . ,Hk(~x)),

AR[G] :≡ ∀x,~y∃u(u =
⋃
{R[G](v, ~y) | v ∈ x} ∧R[G](x, ~y) = G(u, x, ~y)).

In the last line, u =
⋃
{R[G](v, ~y) | v ∈ x} abbreviates

∀w∈u∃v∈xw ∈ R[G](v, ~y) ∧ ∀v∈x∀w∈R[G](v,~y)w ∈ u.

Some readers may regret the unbounded existential quantifier in AR[G]. To

avoid it one could compute the witness u by a primitive recursive function, as in

Corollary 1.1.7 below. In any case, adding some fundamental facts about sets we

obtain the desired formal theory:

Definition 1.1.3. Primitive recursive set theory with infinity (PRSω) is the

Lpr-theory with the following axioms:

(i) The usual equality axioms (in particular = is compatible with each prim-

itive recursive function symbol).

(ii) The axiom of extensionality, i.e. the formula

∀x,y(∀z∈xz ∈ y ∧ ∀z∈yz ∈ x→ x = y).

(iii) The axiom of foundation (also called regularity), i.e. the formula

∀x(∃y∈xy = y → ∃y∈x∀z∈yz /∈ x).

(iv) The axiom of infinity, in the form

∃x(Z(x) ∈ x ∧ ∀y∈xM(y, y) ∈ x).

(v) The defining axiom AF of each primitive recursive function symbol F .

16 1. PRELIMINARIES: THE BASE THEORY

To remove the unbounded existential quantifier in the axiom of infinity one

could add a function symbol with constant value ω. We avoid such a function

symbol to facilitate the comparison with Simpson’s set theory ATRset
0 in Sec-

tion 1.4. Axiom (iii) is, more specifically, called set foundation, to distinguish it

from the scheme of foundation (∈-induction) for classes. The former implies the

latter if we have transitive closures and a sufficient amount of separation (see Prop-

osition 1.1.11). In addition to our axioms, Rathjen [62] lists pairing, union, and

∆0-separation. We will show that these can in fact be derived.

Proposition 1.1.4. In PRSω we can prove the following:

(i) The pairing axiom. In fact,

{x, y} := K
[
M ;K[M ;K[Z;P 2

1], P 2
1], P 2

2

]
(x, y)

defines a p.r. function symbol for which PRSω shows

z ∈ {x, y} ↔ z = x ∨ z = y.

(ii) The union axiom. In fact,⋃
x := K

[
R
[
K[C;P 3

2 , P
3
1 , P

3
2 , P

3
3]
]

;P 1
1 , P

1
1

]
(x)

defines a p.r. function symbol for which PRSω shows

w ∈
⋃
x↔ ∃v∈xw ∈ v.

Note that we can combine (i) and (ii) to construct the union x ∪ y =
⋃
{x, y}

of two sets.

Proof. (i) By the defining axioms for compositions and projections, together

with the equality axioms, we get

K
[
M ;K[M ;K[Z;P 2

1], P 2
1], P 2

2

]
(x, y) = M(M(Z(x), x), y).

The axioms for M and Z make z ∈M(M(Z(x), x), y) equivalent to z = x∨ z = y.

(ii) We remark that the given definition of
⋃
x is extracted from [62, 2.2(iii)].

Abbreviate K[C;P 3
2 , P

3
1 , P

3
2 , P

3
3] by G and observe

G(u, v, x) = C(v, u, v, x).

As a first step, let us show

v ∈ x→ R[G](v, x) = v.

1.1. A SET THEORY BASED ON PRIMITIVE RECURSION 17

The defining axiom for R[G] provides an (irrelevant) witness u0 such that we have

R[G](v, x) = G(u0, v, x) = C(v, u0, v, x).

For v ∈ x the defining axiom of C yields C(v, u0, v, x) = v, as desired. Next, by

the definition of the function symbol
⋃
· we have⋃

x = K
[
R[G];P 1

1 , P
1
1

]
(x) = R[G](x, x).

By the defining axiom of R[G] we get a (now relevant) witness u with

∀w(w ∈ u↔ ∃v∈xw ∈ R[G](v, x)) ∧R[G](x, x) = G(u, x, x).

In view of the above the first conjunct amounts to

w ∈ u↔ ∃v∈xw ∈ v.

To conclude it is thus enough to establish that u is equal to⋃
x = R[G](x, x) = G(u, x, x) = C(x, u, x, x).

By the defining axiom for C this reduces to x /∈ x: Foundation for {x} := {x, x} 6= ∅
yields ∀z∈xz /∈ {x}. Thus x ∈ x would imply x /∈ {x}, which is false. �

To approach ∆0-separation we first consider primitive recursive separation,

which is prima facie weaker but turns out equivalent. It may be helpful to think

in terms of primitive recursive classes, i.e. classes of the form

{(v0, . . . , vn) |Z(v0) ∈ F (v0, . . . , vn, ~y)}

with a p.r. function symbol F . To be precise, one should say that this class is

primitive recursive in ~y, but we will often leave the parameters implicit. We shall

also speak of primitive recursive relations or properties.

Lemma 1.1.5. In PRSω we can show primitive recursive separation. More pre-

cisely, for each (n+1)-ary p.r. function symbol F there is an (n+1)-ary p.r. func-

tion symbol FS such that PRSω proves

v ∈ FS(x, ~y)↔ v ∈ x ∧ Z(v) ∈ F (v, ~y).

We will also write {v ∈ x |Z(v) ∈ F (v, ~y)} at the place of FS(x, ~y).

Proof. The given requirement can be re-written as

FS(x, ~y) =
⋃
{{v} | v ∈ x ∧ Z(v) ∈ F (v, ~y)}.

18 1. PRELIMINARIES: THE BASE THEORY

This reveals the similarity with the function
⋃
x =

⋃
{v | v ∈ x} that we have

constructed in Proposition 1.1.4(ii). Indeed, it is not hard to adapt the argument

given there to the construction of FS . Details can be found in [62, 2.2(iii)]. �

Next, we observe that images of p.r. functions can themselves be computed by

primitive recursion. This fact will replace some applications of ∆0-collection, e.g. in

the proof of Proposition 1.2.1. An analogous result holds for rudimentary functions,

where it has a deeper proof via the Gandy-Jensen Lemma (see [53, Section 2]).

Proposition 1.1.6. For any (n + 1)-ary p.r. function symbol F there is an

(n+ 1)-ary p.r. function symbol rngF such that PRSω proves

w ∈ rngF (x, ~y)↔ ∃v∈xw = F (v, ~y).

We will also write rng(F (·, ~y)�x) or {F (v, ~y) | v ∈ x} at the place of rngF (x, ~y).

Proof. Similarly to Lemma 1.1.5, we can re-write the given requirement as

rngF (x, ~y) =
⋃
{{F (v, ~y)} | v ∈ x}.

So again, this is a variant of the argument used to construct
⋃
x =

⋃
{v | v ∈ x} in

Proposition 1.1.4(ii). Details can be found in [62, 2.2(v)]. �

As promised, the defining axiom of R[G] can now be reformulated without the

unbounded quantifier:

Corollary 1.1.7. The equation

R[G](x, ~y) = G
(⋃

rngR[G](x, ~y), x, ~y
)

is an atomic Lpr-formula, and indeed a theorem of PRSω.

Proof. The axiom AR[G] yields R[G](x, ~y) = G(u, x, ~y) for a witness u with

w ∈ u↔ ∃v∈xw ∈ R[G](v, ~y).

By Proposition 1.1.4 and Proposition 1.1.6 we get u =
⋃

rngR[G](x, ~y). �

The defining condition Z(v0) ∈ F (v0, . . . , vn, ~y) of a primitive recursive class

looks somewhat arbitrary, and it is cumbersome to apply. The following notion is

an improvement in both respects:

1.1. A SET THEORY BASED ON PRIMITIVE RECURSION 19

Definition 1.1.8. A ∆0-formula (or bounded formula) in the language Lpr is a

formula which only contains bounded quantifiers. This means that any occurrence

of a universal resp. existential quantifier must be of the form

∀x∈tθ ≡ ∀x(x ∈ t→ θ),

∃x∈tθ ≡ ∃x(x ∈ t ∧ θ),

where t is a term in which the bound variable x does not occur.

Since we allow primitive recursive functions as bounds on quantifiers, the no-

tion of ∆0-formula is more liberal in Lpr than in the language of pure set theory.

This need not concern us too much, as ∆0-formulas are not mentioned in our axio-

matization of PRSω (in contrast to [62], where ∆0-separation is included). Also,

the following result allows us to avoid reference to ∆0-formulas of Lpr: We will

often speak of primitive recursive properties instead.

Proposition 1.1.9. Over primitive recursive set theory, a class is ∆0 precisely

if it is primitive recursive. More precisely, for each ∆0-formula θ ≡ θ(x0, . . . , xn)

of Lpr there is an (n+ 1)-ary p.r. function symbol Fθ such that PRSω proves

θ ↔ Z(x0) ∈ Fθ(x0, . . . , xn).

Proof. First, for each term t ≡ t(x0, . . . , xn) (in which not all displayed vari-

ables need to occur) there is an (n+1)-ary function symbol Ft (which also depends

on the variable list x0, . . . , xn) such that PRSω proves

t = Ft(x0, . . . , xn).

It is straightforward to check this by induction on t: If t is a variable one uses the

projections. Otherwise one writes

t ≡ G(t0, . . . , tk)

and takes

Ft :≡ K[G;Ft0 , . . . , Ftk].

Now, following [62, 2.2(iv)], we invoke extensionality and equality to see

s = t↔ ∀z∈sz ∈ t ∧ ∀z∈tz ∈ s.

This means that we can eliminate all occurrences of the relation symbol =, without

leaving the realm of ∆0-formulas. Also, we can reduce the stock of logical symbols

20 1. PRELIMINARIES: THE BASE THEORY

to negation, disjunction, and bounded existential quantifier. Under these assump-

tions we argue by induction on the build-up of formulas. Concerning the remaining

prime formulas, observe that we have

s ∈ t↔ Z(x0) ∈ C(M(Z(x0), Z(x0)), Z(x0), s, t).

Let Fs and Ft be the functions constructed above, relative to the given list of free

variables x0, . . . , xn. Writing Zk for K[Z;P k1] (the k-ary function with constant

value zero) we can thus put

Fs∈t :≡ K
[
C;K[M ;Zn+1, Zn+1], Zn+1, Fs, Ft

]
.

Next, in view of

Z(x0) /∈ Fθ(x0, . . . , xn)↔

Z(x0) ∈ C(Z(x0),M(Z(x0), Z(x0)), Z(x0), Fθ(x0, . . . , xn)),

negation is covered by

F¬θ :≡ K[C;Zn+1,K[M ;Zn+1, Zn+1], Zn+1, Fθ].

Similarly, we stipulate

Fϕ∨ψ(x0, . . . , xn) := Fϕ(x0, . . . , xn) ∪ Fψ(x0, . . . , xn)

in the case of a disjunction. Finally, consider a bounded quantification

θ ≡ ∃y∈tϕ.

By induction hypothesis we have an (n+ 2)-ary p.r. function symbol Fϕ with

ϕ↔ Z(y) ∈ Fϕ(y, x0, . . . , xn).

Using the (n+ 2)-ary p.r. function symbol rngFϕ from Proposition 1.1.6 we set

Fθ :≡ K
[⋃

;K[rngFϕ ;Ft, P
n+1
1 , . . . , Pn+1

n+1]
]
.

Computing

Fθ(x0, . . . , xn) =
⋃
{Fϕ(y, x0, . . . , xn) | y ∈ Ft(x0, . . . , xn)}

we obtain

Z(x0) ∈ Fθ(x0, . . . , xn)↔ ∃y∈tZ(x0) ∈ Fϕ(y, x0, . . . , xn).

By the above the right side is equivalent to θ, as required. �

In particular we can restate the following result, now for ∆0-classes:

1.1. A SET THEORY BASED ON PRIMITIVE RECURSION 21

Corollary 1.1.10. Primitive recursive set theory proves ∆0-separation. More

precisely, for each ∆0-formula θ in the language Lpr we have a PRSω-proof of

v ∈ FSθ (x, y1, . . . , yn)↔ v ∈ x ∧ θ(v, y1, . . . , yn),

where FSθ = (Fθ)
S is constructed according to Proposition 1.1.9 and Lemma 1.1.5.

We will also write {v ∈ x | θ(v, y1, . . . , yn)} at the place of FSθ (x, y1, . . . , yn).

Let us turn to ∈-induction. To derive this principle from the axiom of founda-

tion we will use transitive closures, which is a somewhat subtle point: It would be

tempting to define TC(x) = x∪
⋃
{TC(y) | y ∈ x}, as in [62, 2.2(viii)]. However, to

verify that the set TC(x) is transitive we then seem to need ∈-induction, the very

principle that we want to justify. As we shall see, the axiom of infinity offers a way

out. This complication stresses the importance of ∈-induction as a basic principle

of PRSω: We can define functions by ∈-recursion, but to verify their properties

we will often need ∈-induction.

Proposition 1.1.11. Primitive recursive set theory with infinity establishes

∈-induction for primitive recursive properties. Indeed, we have a PRSω-proof of

∀x(∀y∈xθ(y, ~z)→ θ(x, ~z))→ ∀xθ(x, ~z),

for each ∆0-formula θ(x, ~z) in the language Lpr.

Proof. First, use primitive recursion to define

TCz(x) = x ∪
⋃(⋃

{TCy(x) | y ∈ z}
)
.

Given a witness w to the axiom of infinity, we want to see that TCw(x) is transitive.

So consider arbitrary sets u ∈ v ∈ TCw(x). It suffices to establish v ∈ TCz(x) for

some z ∈ w, for then we have v ∈
⋃
{TCz(x) | z ∈ w} and thus

u ∈
⋃(⋃

{TCz(x) | z ∈ w}
)
⊆ TCw(x).

If v ∈ TCw(x) holds by virtue of v ∈ x we take an arbitrary z ∈ w (note that w is

non-empty according to the axiom of infinity) and observe

v ∈ x ⊆ TCz(x).

Otherwise v ∈ TCw(x) holds by virtue of v ∈
⋃

(
⋃
{TCy(x) | y ∈ w}), so that we

have v ∈
⋃

TCy(x) for some y ∈ w. Setting z := M(y, y) 3 y we get

v ∈
⋃

(
⋃
{TCy(x) | y ∈ z}) ⊆ TCz(x),

22 1. PRELIMINARIES: THE BASE THEORY

and the axiom of infinity ensures z ∈ w, as desired. Let us stress that we will not

use TCw(x) ⊆ u for transitive u ⊇ x. This would require ∈-induction (on w), the

very principle that we want to establish. Now consider the instance of ∈-induction

in the statement of the proposition. Aiming at its contrapositive, assume ¬θ(x, ~z)
for some x. Corollary 1.1.10 allows us to form

{y ∈ TCw({x}) | ¬θ(y, ~z)}.

By assumption this set is non-empty, so that the axiom of foundation provides an

∈-minimal y ∈ TC({x}) with ¬θ(y, ~z). In particular we have θ(y′, ~z) for any y′ ∈ y
with y′ ∈ TCw({x}). The last condition is redundant as TCw({x}) is transitive.

Thus we see

∀y′∈yθ(y′, ~z) ∧ ¬θ(y, ~z),

and the contrapositive of ∈-induction is established. �

To conclude this section, let us repeat that our axiomatization of PRSω is

equivalent to Rathjen’s axiomatization in [62, Section 6], as pairing, union and ∆0-

separation are derivable by Proposition 1.1.4 and Corollary 1.1.10. Thus Rathjen’s

result [62, Theorem 1.4] applies to our setting: Any Π2-theorem of Kripke-Platek

set theory, with ∈-induction restricted to Σ1-formulas, is already provable in PRSω.

We will not use this fact, but it is certainly reassuring.

1.2. Basic Constructions in Primitive Recursive Set Theory

The present section recovers basic set-theoretic constructions in primitive recur-

sive set theory with infinity (PRSω), as introduced in the previous section. Largely

we follow Barwise’s development of Kripke-Platek set theory in [6, Chapter I]. As

in the previous section, most relevant facts about primitive recursion are known

and can be found in [44, 62].

First, the ordered pair of two sets can be computed by a primitive recursive

function (we will no longer differentiate between functions and function symbols).

Namely, using Proposition 1.1.4 we set

〈x, y〉 := {{x}, {x, y}}.

The claim that 〈x, y〉 is an ordered pair has an “external” and an “internal” jus-

tification: Externally, there is a universally accepted formula which characterizes

ordered pairs in the language of pure set theory (i.e. without p.r. function sym-

bols, cf. [6, Section I.3]). The set 〈x, y〉 defined above is the unique witness to

1.2. BASIC CONSTRUCTIONS IN PRIMITIVE RECURSIVE SET THEORY 23

that formula, provably in PRSω. This connection with established set theories

will be important in Section 1.4 (for example, concerning axiom beta we will want

to know that “relation” means the same in PRSω and in ATRset
0). Internally,

the role of 〈x, y〉 in PRSω-proofs reveals its status as an ordered pair. Namely,

Corollary 1.1.10 allows us to define the p.r. functions

π1(p) =
⋃
{x ∈

⋃
p | ∃y∈⋃ p p = 〈x, y〉},

π2(p) =
⋃
{y ∈

⋃
p | ∃x∈⋃ p p = 〈x, y〉},

and PRSω proves πi(〈x1, x2〉) = xi. A given set p is an ordered pair if and only if

we have

p = 〈π1(p), π2(p)〉.

As this is a ∆0-formula of Lpr, Proposition 1.1.9 tells us that being an ordered pair

is a primitive recursive property. To indicate the intended domains and ranges of

p.r. functions we will use expressions like

〈·, ·〉 : V2 → “ordered pairs”,

πi : “ordered pairs”→ V.

As usual V stands for the universe of sets. Using Proposition 1.1.9 we may write

it as the primitive recursive class

V = {x |x = x} = {x |Z(x) ∈ Fx=x(x)}.

In particular, x ∈ V will be an abbreviation for the atomic formula Z(x) ∈ Fx=x(x)

(this will be more relevant for p.r. classes different from V). Of course, ∀x∈V· is

then an unbounded quantifier. Now the first line above expresses that 〈·, ·〉 is a

binary function and that all its values are ordered pairs. The second line conveys

that the intended domain of the function πi is the class of ordered pairs. Officially,

πi is still defined on the entire universe of sets, just as any primitive recursive

function. All we want to express is that we are only interested in the values of πi

on ordered pairs. We only use this notation for domains (and ranges) which are

primitive recursive classes. In that case we can, if we wish, assign a given default

value outside of the intended domain. For example, let F be a p.r. function such

that Z(x) ∈ F (x) holds if and only if x is an ordered pair. Then

x 7→ C(πi(x), Z(x), Z(x), F (x))

is a primitive recursive function which coincides with πi on ordered pairs and

assigns the default value ∅ elsewhere (incidentally πi already does the same). Case

24 1. PRELIMINARIES: THE BASE THEORY

distinctions with several (primitive recursive) cases are available by composition.

In particular, this covers domains which are dependent products, such as∏
x∈V

F (x) = {(x0, x1) |x0 ∈ V ∧ x1 ∈ F (x0)}.

Using our new terminology, we show that product sets exist (cf. [62, 2.2(vii)]):

Proposition 1.2.1. There is a primitive recursive function × : V2 → V such

that PRSω shows

p ∈ x× y ↔ “p is an ordered pair” ∧ π1(p) ∈ x ∧ π2(p) ∈ y.

Proof. By Proposition 1.1.6 the function

F (x,w) = {〈v, w〉 | v ∈ x}

is primitive recursive. Using Proposition 1.1.6 again we get the p.r. function

x× y =
⋃
{F (x,w) |w ∈ y}.

The required property is straightforward to verify. �

It is interesting to compare the previous proof with the argument in [6, Sec-

tion I.3]: As advertised before, Proposition 1.1.6 replaces the applications of ∆0-

collection. Next, a set r is a relation if we have

∀p∈r“p is an ordered pair”,

which shows that this is a primitive recursive property of r. Using Proposition 1.1.6,

the domain, range and field of a relation can be computed by the p.r. functions

dom(r) = {π1(p) | p ∈ r},

rng(r) = {π2(p) | p ∈ r},

field(r) = dom(r) ∪ rng(r).

A set f is a function if we have

“f is a relation” ∧ ∀p,p′∈f (π1(p) = π1(p′)→ p = p′),

which is again a primitive recursive property. We speak of a function f : x → y

if we have dom(f) = x and rng(f) ⊆ y. In case rng(f) = y we have a surjection.

Being injective is also a p.r. property, as it is defined by the ∆0-formula

∀p,p′∈f (π2(p) = π2(p′)→ p = p′).

1.2. BASIC CONSTRUCTIONS IN PRIMITIVE RECURSIVE SET THEORY 25

Using Corollary 1.1.10 and Proposition 1.1.6 we get p.r. functions

(x, f) 7→ f(x) :=
⋃
{π2(p) | p ∈ f ∧ π1(p) = x),

(x, f) 7→ f �x := {p ∈ f |π1(p) ∈ x}.

In view of Proposition 1.1.6 the equation

rng(f) = {f(x) |x ∈ dom(f)}

is an atomic formula of Lpr, and indeed a theorem of PRSω. It is of course

important to distinguish between a function in this sense and a primitive recursive

function (symbol). The latter is a class-sized object. The former may be called

a set-sized function, if its status is not clear from the context. In particular, the

expression f(x) above is misleading: It might be better to write Eval(f, x) to

make clear that this involves the p.r. evaluation function, applied to the set-sized

function f ; yet we keep writing f(x) for its intuitive appeal. As important as this

distinction between class-sized and set-sized functions is, there is also a connection:

Proposition 1.2.2. The restriction of a p.r. function to a set is a set-sized

function. More precisely, for each primitive recursive function (v, ~y) 7→ F (v, ~y)

there is a primitive recursive function (x, ~y) 7→ F (·, ~y)�x such that PRSω proves

F (·, ~y)�x = {〈v, F (v, ~y)〉 | v ∈ x}.

In particular we have (F (·, ~y)�x)(v) = F (v, ~y) for all v ∈ x.

Proof. In view of Proposition 1.1.6 the given equation can be read as a

p.r. definition of (x, ~y) 7→ F (·, ~y)�x. �

In particular, we can construct set-sized functions by ∈-recursion: Simply define

the corresponding class-sized function by primitive recursion and restrict it to the

intended set-sized domain. Also, the terminology of the proposition allows a concise

statement of a familiar variant of the recursion principle (which will be superseded

by Proposition 1.2.10):

Lemma 1.2.3. For each (n+ 2)-ary p.r. function G there is an (n+ 1)-ary p.r.

function F such that PRSω proves

F (x, ~y) = G(F (·, ~y)�x, x, ~y).

Proof. Similarly to [44, 1.3(7)], but arguably somewhat simpler, we define

G′(u, x, ~y) := {〈x,G(u, x, ~y)〉},

26 1. PRELIMINARIES: THE BASE THEORY

F (x, ~y) := π2(
⋃
R[G′](x, ~y)).

For an appropriate set u we have R[G′](x, ~y) = G′(u, x, ~y). Thus
⋃
R[G′](x, ~y) is

indeed an ordered pair and we see

R[G′](x, ~y) = {〈x, F (x, ~y)〉}.

We can deduce ⋃
{R[G′](v, ~y) | v ∈ x} = F (·, ~y)�x

and then

R[G′](x, ~y) = G′
(⋃
{R[G′](v, ~y) | v ∈ x}, x, ~y

)
= {〈x,G(F (·, ~y)�x, x, ~y)〉}.

By the definition of F we get F (x, ~y) = G(F (·, ~y)�x, x, ~y), as desired. �

An important application of these considerations is the Mostowski collapse.

In PRSω we cannot collapse arbitrary well-founded relations (this requires axiom

beta, cf. Section 1.4). However, we can collapse (the restriction of the ∈-relation

to) a non-transitive set onto a transitive set. First, x is transitive precisely if it

satisfies the ∆0-formula

Trans(x) :≡ ∀y∈x∀z∈yz ∈ x.

Recall the subtle connection between transitive closures and ∈-induction (cf. the

proof of Proposition 1.1.11). Once the latter is established we may return to the

recursive definition

TC(x) = x ∪
⋃
{TC(y) | y ∈ x},

and use ∈-induction to show that TC(x) is the smallest transitive set that con-

tains x. Now, following [6, Section I.7] we define C to fulfill the recursion

C(x, y) = rng((C(·, y)�x)�y) = {C(v, y) | v ∈ x ∩ y}.

We are most interested in the set-sized functions

cy := C(·, y)�y.

Let us recall their crucial properties (cf. [6, Section I.7]):

Proposition 1.2.4. The following is provable in PRSω:

(i) The function cy is a surjection from y onto the transitive set C(y, y).

(ii) If x ⊆ y is transitive then cy �x is the identity on x.

1.2. BASIC CONSTRUCTIONS IN PRIMITIVE RECURSIVE SET THEORY 27

(iii) Assume that y is extensional, in the sense that we have

∀x,x′∈y(∀z∈y(z ∈ x↔ z ∈ x′)→ x = x′).

Then cy : y → C(y, y) is an ∈-isomorphism, i.e. a bijection with

∀x,x′∈y(x ∈ x′ ↔ cy(x) ∈ cy(x′)).

Proof. (i) By definition we have rng(cy) = {C(v, y) | v ∈ y} = C(y, y). To see

that C(y, y) is transitive, consider z ∈ x ∈ C(y, y). So we have x = C(v, y) for

some v ∈ y, and then z = C(w, y) for some w ∈ v ∩ y. In particular, w ∈ y means

z = C(w, y) ∈ C(y, y), as desired.

(ii) We prove the ∆0-formula z ∈ x → cy(z) = z by ∈-induction on z. As x is

transitive z′ ∈ z ∈ x implies z′ ∈ x ⊆ y. So for z ∈ x the induction hypothesis does

indeed yield

cy(z) = {cy(z′) | z′ ∈ z ∩ y} = {z′ | z′ ∈ z} = z.

(iii) We already know that cy has range C(y, y). It is clear that x, x′ ∈ y and x ∈ x′

imply cy(x) ∈ cy(x′). For the converse and the fact that cy is injective we follow

the proof in [6, Theorem I.7.4]: On a superficial level it may look like this proof

uses ∈-induction for a Π1-formula, which is unavailable in PRSω. Fortunately, it

is easy to restrict the unbounded quantifier. Namely, it suffices to establish the

∆0-formula

x ∈ y → ∀x′∈y((cy(x) = cy(x
′)→ x = x′) ∧ (cy(x) ∈ cy(x′)→ x ∈ x′))

by (main) induction on x. In the step we fix x ∈ y and show

x′ ∈ y → (cy(x) = cy(x
′)→ x = x′)∧

(cy(x) ∈ cy(x′)→ x ∈ x′) ∧ (cy(x
′) ∈ cy(x)→ x′ ∈ x)

by (side) induction on x′. Concerning the side induction step, assume first that we

have cy(x) = cy(x
′). For any z ∈ x ∩ y we have cy(z) ∈ cy(x) = cy(x

′), so that the

main induction hypothesis gives z ∈ x′. Similarly, by the side induction hypothesis

z ∈ x′ ∩ y implies z ∈ x. As y is extensional this yields x = x′, as desired. Next,

assume cy(x) ∈ cy(x′). By definition we have cy(x) = cy(z) for some z ∈ x′ ∩ y.

The side induction hypothesis gives x = z ∈ x′. Similarly, the main induction

hypothesis shows that cy(x
′) ∈ cy(x) implies x′ ∈ x. This completes the side and

main induction step. �

28 1. PRELIMINARIES: THE BASE THEORY

Next, being an ordinal is a p.r. property, defined by the ∆0-formula

Ord(x) :≡ Trans(x) ∧ ∀y∈x Trans(y).

In keeping with our above discussion of x ∈ V, the expression x ∈ Ord is an

abbreviation for the atomic Lpr-formula Z(x) ∈ FOrd(x), equivalent to Ord(x) by

Proposition 1.1.9. As usual, we use lower case greek letters for ordinals, often

leaving subformulas α ∈ Ord implicit. Also, we use α < β synonymous with α ∈ β;

by α ≤ β we abbreviate α < β ∨ α = β. As x ∈ Ord is atomic and < coincides

with ∈, Proposition 1.1.11 allows us to establish primitive recursive properties of

ordinals by induction. In Section 1.4 it will be important that “ordinal” means the

same in PRSω and ATRset
0 . This is ensured by the following fundamental fact:

Proposition 1.2.5. The class of ordinals is well-ordered by <, provably in the

theory PRSω. Thus a set is an ordinal precisely if it is transitive and well-ordered

by ∈ (i.e. a von Neumann ordinal).

Proof. As in the proof of Proposition 1.1.4 we have α /∈ α, i.e. the relation < is

irreflexive. That ordinals are transitive sets does indeed make < transitive. To see

that < is total we try to compare two given ordinals α, β: In view of β ∈M(β, β)

it suffices to show

∀γ∈M(β,β)(α < γ ∨ α = γ ∨ γ < α).

As this is a ∆0-formula we may argue by (main) ∈-induction on α. For the induction

step we establish

γ ∈M(β, β)→ α < γ ∨ α = γ ∨ γ < α

by (side) induction on γ. If some γ′ ∈ γ ∩M(β, β) satisfies α < γ′ or α = γ′ then

we get α < γ. Otherwise the side induction hypothesis yields γ′ < α for all γ′ ∈ γ
with γ′ ∈ Ord∩M(β, β). The last condition is redundant, as elements of ordinals

are ordinals and M(β, β) is transitive (indeed an ordinal). Thus we have γ ⊆ α.

In case γ = α we are done. Otherwise there is an (ordinal) α′ ∈ α with α′ /∈ γ.

By the (main) induction hypothesis we have α′ = γ or γ < α′. Both alternatives

imply γ < α, which completes the side and main induction step. As the relation <

is a restriction of ∈ it is well-founded. �

It is easy to check that the successor operation

Succ(α) := M(α, α)

1.2. BASIC CONSTRUCTIONS IN PRIMITIVE RECURSIVE SET THEORY 29

maps ordinals to ordinals. We call α a successor ordinal if α = M(β, β) holds for

some β. In view of β ∈ M(β, β) this property is primitive recursive. We clearly

have α < Succ(α), and also

α < β → Succ(α) ≤ β,

as β ∈ Succ(α) would imply β < α or β = α. A limit ordinal is one that is neither a

successor nor zero (the empty set). Limits are closed under the successor operation,

by the implication that we have just established. If x is a set of ordinals we write

supx :=
⋃
x.

It is straightforward to see that x ⊆ Ord (i.e. ∀y∈xy ∈ Ord) implies supx ∈ Ord.

We have α ≤ supx for any α ∈ x, and β < supx implies β < α for some α ∈ x.

In view of sup Succ(α) =
⋃

Succ(α) = α the successor relation is injective; and

supλ = λ holds for any limit ordinal λ. To define primitive recursive functions on

the ordinals one often uses the following recursion schema (cf. [62, 2.2(x)]):

Proposition 1.2.6. Given an (n+ 1)-ary p.r. function I and (n+ 2)-ary p.r.

functions S,L there is an (n+ 1)-ary p.r. function F such that PRSω proves

F (0, ~y) = I(0, ~y),

F (Succ(α), ~y) = S(F (α, ~y), α, ~y),

F (λ, ~y) = L(F (·, ~y)�λ, λ, ~y) if λ is a limit ordinal.

The argument 0 in I(0, ~y) is simply a dummy to increase the arity (recall that

we have no nullary functions).

Proof. As we have seen above, we can define a p.r. function by distinguish-

ing several p.r. cases. Thus the recursion schema from Lemma 1.2.3 allows us to

construct a primitive recursive function F with

F (x, ~y) =



I(x, ~y) if x = 0,

S ((F (·, ~y)�x)(
⋃
x),
⋃
x, ~y) if x is a successor ordinal,

L(F (·, ~y)�x, x, ~y) if x is a limit ordinal,

0 if x is not an ordinal.

To see that this yields the desired result, recall that we have
⋃

Succ(α) = α. In

view of Proposition 1.2.2 we get (F (·, ~y)�Succ(α))(
⋃

Succ(α)) = F (α, ~y). �

30 1. PRELIMINARIES: THE BASE THEORY

As an example, we can define a function + : Ord2 → Ord by setting

α+ 0 = α,

α+ Succ(β) = Succ(α+ β),

α+ λ = sup{α+ γ | γ < λ} for λ limit.

Basic properties of ordinal addition (such as monotonicity; see the list in [6, Exer-

cise I.6.9] for more examples) are provable by ∈-induction over primitive recursive

properties. Ordinal multiplication and exponentiation are defined analogously. Let

us come to a very important object: the first infinite ordinal. A set x is called a

natural number if it has the p.r. property

“x is an ordinal and every non-zero element of Succ(x) is a successor”.

As usual we use the letters n,m, k for natural numbers. A priori the natural

numbers form a class, just like the ordinals. However, in the presence of the axiom

of infinity their status turns out quite different:

Proposition 1.2.7. Provably in PRSω, there is a unique set ω such that we

have

x ∈ ω ↔ “x is a natural number”.

This set ω is the smallest limit ordinal.

Proof. Uniqueness is clear by extensionality. As for existence, let u be a

witness to the axiom of infinity, i.e. we have 0 ∈ u and x ∈ u→M(x, x) ∈ u. Set

ω := {x ∈ u | “x is a natural number”}.

It remains to check that ω contains all natural numbers. This follows by induction

over ordinals, observing that α is a natural number if Succ(α) = M(α, α) is. As ω

consists of ordinals it is itself an ordinal as soon as it is transitive: Given α ∈ n ∈ ω
we have Succ(α) ≤ n < Succ(n). So every element of Succ(α) lies in Succ(n), and

α is a natural number in ω. To see that ω is a limit, observe that 0 is a natural

number and that the class of natural numbers is closed under successors. �

An important application of ω is in the context of finite sequences: A set x is

called a finite sequence if and only if it satisfies the p.r. condition

“x is a function” ∧ “dom(x) is a natural number”.

1.2. BASIC CONSTRUCTIONS IN PRIMITIVE RECURSIVE SET THEORY 31

We write V<ω for the class of finite sequences and use the letters σ, τ for elements

of this class. Clearly, basic operations on finite sequences, such as

V<ω → ω, σ 7→ len(σ) := dom(σ),

V<ω × V→ V<ω, (σ, x) 7→ σ_x := σ ∪ {〈len(σ), x〉},

are primitive recursive. On an informal level, 〈x0, . . . , xn−1〉 denotes the sequence σ

with len(σ) = n and σ(i) = xi. In particular, 〈〉 = ∅ is the unique sequence with

empty domain. If we have rng(σ) ⊆ X for a set or p.r. class X then we say that σ

is a sequence with entries in X, written as σ ∈ X<ω. The ordinal ω ensures that

sets of finite sequences exist:

Proposition 1.2.8. There is a primitive recursive function G : V2 → V such

that PRSω proves the following: If ω is the set of natural numbers then we have

y ∈ G(ω, x)↔ “y is a finite sequence with entries in x”.

We will write x<ω at the place of G(ω, x) and speak of x 7→ x<ω as a unary primitive

recursive function with parameter ω (cf. Convention 1.2.9 below).

Proof. We use the recursion schema from Proposition 1.2.6 to define

G(0, x) := {〈〉},

G(n+ 1, x) := {σ_y |σ ∈ G(n, x) ∧ y ∈ x},

G(ω, x) :=
⋃
{G(n, x) |n ∈ ω}.

The successor clause relies on two applications of Proposition 1.1.6, similar to the

construction of the Cartesian product in Proposition 1.2.1. Given a finite sequence

σ with entries in x one establishes the p.r. property

n ≤ len(σ)→ σ �n ∈ G(n, x)

by induction on n. In particular σ = σ � len(σ) lies in G(len(σ), x) ⊆ G(ω, x).

Conversely, a straightforward induction on n shows that any element of G(n, x) is

a finite sequence with entries in x. �

The formulation of the previous proposition was somewhat awkward because

we do not have a constant symbol ω. Luckily, constants (as opposed to function

symbols) behave very much like variables:

32 1. PRELIMINARIES: THE BASE THEORY

Convention 1.2.9. Once and for all we reserve a variable which we denote

by ω. All proofs will be under the assumption

x ∈ ω ↔ “x is a natural number”.

Proposition 1.2.7 implies that this global assumption is harmless: In particular it

can be removed from any PRSω-proof of a statement in which the free variable

ω does not occur. Also, “primitive recursive” will from now on mean “primitive

recursive in the parameter ω”. More precisely, when we say that F is an n-ary

p.r. function (in ω) we officially refer to an (n+ 1)-ary p.r. function (in the strict

sense) with one argument-position reserved for ω. Just like all results, properties

of F are stated under the global assumption. The situation is exemplified by the

previous proposition.

So far we have only seen recursion over the ∈-relation. To define functions by

recursion over finite sequences we will use the following flexible principle:

Proposition 1.2.10. Assume that we have p.r. functions P : Vn+1 → V (“pre-

decessors”) and R : Vn+1 → Ord (“rank”) which satisfy

v ∈ P (x, ~y)→ R(v, ~y) < R(x, ~y),

provably in PRSω. For each p.r. function G : Vn+2 → V we then have a p.r. func-

tion F : Vn+1 → V (with parameter ω) such that PRSω proves

F (x, ~y) = G(F (·, ~y)�P (x, ~y), x, ~y).

Proof. First, we need a notion of transitive closure with respect to P . By

recursion over the (finite) ordinals we can set

TCP
0 (x, ~y) = P (x, ~y),

TCP
n+1(x, ~y) =

⋃
{P (v, ~y) | v ∈ TCP

n (x, ~y)},

TCP
ω (x, ~y) =

⋃
{TCP

n (x, ~y) |n ∈ ω}.

So we have P (x, ~y) ⊆ TCP
ω (x, ~y), and v ∈ TCP

ω (x, ~y) yields TCP
ω (v, ~y) ⊆ TCP

ω (x, ~y).

Now, by the recursion schema from Lemma 1.2.3 we can stipulate

H(α, x, ~y) = {〈v,G(H(R(v, ~y), x, ~y)�P (v, ~y), v, ~y)〉 | v ∈ TCP
ω (x, ~y) ∧R(v, ~y) < α}.

More precisely, H(R(v, ~y), x, ~y) refers to the evaluation of the set-sized function

H(·, x, ~y)�α at the argument R(v, ~y) < α. Having defined H we put

F (x, ~y) = G(H(R(x, ~y), x, ~y)�P (x, ~y), x, ~y).

1.2. BASIC CONSTRUCTIONS IN PRIMITIVE RECURSIVE SET THEORY 33

To see that F is as desired we must check

H(R(x, ~y), x, ~y)�P (x, ~y) = F (·, ~y)�P (x, ~y).

By the assumption that predecessors have lower rank we see that H(R(x, ~y), x, ~y)

is a (set-sized) function with domain

{v ∈ TCP
ω (x, ~y) |R(v, ~y) < R(x, ~y)} ⊇ P (x, ~y).

Also, applying the function H(R(x, ~y), x, ~y) to the argument v ∈ P (x, ~y) we get

the value G(H(R(v, ~y), x, ~y)�P (v, ~y), v, ~y). Thus it remains to establish

G(H(R(v, ~y), x, ~y)�P (v, ~y), v, ~y) = F (v, ~y)

for arbitrary v ∈ P (x, ~y). This is almost the definition of F , except that the expres-

sion H(R(v, ~y), v, ~y) �P (v, ~y) is replaced by H(R(v, ~y), x, ~y) �P (v, ~y). To conclude

one verifies

H(α, v, ~y) = H(α, x, ~y)�TCP
ω (v, ~y)

by a straightforward induction on α. �

It is easy to deduce the usual recursion principle for sequences. Note that the

parameter ω is superfluous in this application (and in many others), as explained

in the following proof:

Corollary 1.2.11. Given p.r. functions G,H of appropriate arity there is a

p.r. function F : V<ω × Vn → V such that PRSω proves

F (〈〉, ~y) = G(~y),

F (σ_x, ~y) = H(F (σ, ~y), σ, x, ~y).

Proof. Apply the previous proposition with P (σ_x, ~y) = {σ} and P (z, ~y) = ∅
for arguments z of a different form. The corresponding rank is R(σ, ~y) = len(σ). We

point out that the parameter ω is not actually needed for this instance of the prop-

osition: The relevant closure TCP
ω (σ, y) = {σ �n |n < len(σ)} can be constructed

without it. �

Recursion over the length is also available, as long as we are only interested in

a set-sized collection y of sequences: Simply apply Proposition 1.2.10 with

P (σ, y) = {τ ∈ y | len(τ) < len(σ)},

34 1. PRELIMINARIES: THE BASE THEORY

and again R(σ, y) = len(σ). In Proposition 1.3.3 we will use a similar principle

to define the satisfaction of formulas in a model. As another application of Prop-

osition 1.2.10 one can recover the familiar principle of recursion over transitive

closures (see [6, Theorem I.6.4]): Take the predecessors P (x) = TC(x) and the

primitive recursive rank function

rk : V→ Ord, rk(x) = sup{Succ(rk(y)) | y ∈ x},

known as von Neumann rank. Induction over transitive closures (see [6, The-

orem I.6.3]) is also available.

To conclude this section we discuss the notions of being finite resp. countable:

As usual, a set x is called finite if and only if there is a bijection f : n → x,

for some natural number n. Any such function f is an element of x<ω, the set of

finite sequences with entries in x. Conversely, a given sequence can (recursively) be

transformed into an injective sequence, i.e. one that lists each entry exactly once.

Setting

[x]<ω = {rng(σ) |σ ∈ x<ω}

we thus have

y ∈ [x]<ω ↔ “y is a finite subset of x”,

provably in PRSω. In particular, x is finite if and only if we have x ∈ [x]<ω,

which makes this notion primitive recursive (in ω). Basic facts are easily verified:

For example, the finite ordinals are precisely the natural numbers. Following [87,

Definition VII.3.6] we call a set x countable if and only if there is a (set-sized)

injection f : x → ω. Note that countability is not a primitive recursive property.

The following observation will be needed later:

Proposition 1.2.12. Provably in PRSω, a non-empty set x is countable if and

only if there exists a surjection g : ω → x.

Proof. Assuming that x is non-empty and countable, fix an element x0 ∈ x
and an injection f : x→ ω. Define

g = {〈n, y〉 ∈ ω × x |n = f(y) ∨ (n /∈ rng(f) ∧ y = x0)}.

A straightforward verification shows that g is a surjective function with domain ω

and range x. Conversely, if g : ω → x is a surjection then

f = {〈y, n〉 ∈ x× ω | y = g(n) ∧ ∀m<ny 6= g(m)}

is an injective function from x to ω. �

1.3. AROUND THE CONSTRUCTIBLE HIERARCHY 35

1.3. Around the Constructible Hierarchy

In this section we develop basic syntactic and semantic concepts in the base

theory PRSω. Our exposition culminates in the constructible hierarchy, which

will play an important role in the following chapters. The material is of course

well-known, even though the author is not aware of a presentation in PRSω. Let

us point out that we approach the constructible hierarchy via iterated definability

rather than the Gödel operations. This is possible because the ordinal ω is at our

disposal, as discussed in [6, Apologia I.5.1].

We begin with the notion of formula: As object language we consider the lan-

guage L∈ of pure set theory, with relation symbols ∈,= and no function symbols.

In contrast, recall that the language Lpr of our base theory PRSω contains a sym-

bol for each primitive recursive function. That being said, we do consider object

formulas with parameters (constant symbols); alternatively, one could work with

parameter-free formulas and variable assignments. To implement formulas (and

other syntactical objects) we use finite sequences, as discussed in the previous sec-

tion. For example, the formula xi ∈ xj could be represented by the sequence 〈0, i, j〉.
How exactly this is done will not matter, as long as we can construct and decon-

struct formulas by primitive recursive functions. With this in mind, let us give our

official definition of (object) formulas:

Definition 1.3.1. We define a p.r. function For : ω×V→ V by recursion over

the natural numbers (see Proposition 1.2.6):

(i) The set For(0,M) consists of all expressions s ∈ t, s /∈ t, s = t, s 6= t (called

prime formulas or atomic formulas) where s, t are variables or parameters

(constant symbols) from the set M .

(ii) The set For(n + 1,M) consists of all expressions of the form ϕ,ϕ ∧ ψ,

ϕ ∨ ψ,∀x∈sϕ,∃x∈sϕ,∀xϕ,∃xϕ, where ϕ,ψ lie in For(n,M) and s is a vari-

able other than x or a parameter in M .

By a formula with parameters in M (short: M -formula) we mean an element of

For(M) :=
⋃
n∈ω

For(n,M).

In view of Convention 1.2.9 we speak of M 7→ For(M) as a p.r. function (in ω).

Let us explain two points that may not be standard. First, when considering

the object language, we view bounded quantifiers as logical symbols in their own

right. This means that the formulas ∀y∈xy 6= y and ∀y(y /∈ x∨ y 6= y) are different:

36 1. PRELIMINARIES: THE BASE THEORY

The former contains a bounded quantifier while the latter contains (a bounded

occurrence of) an unbounded quantifier. This distinction will be important in some

proof-theoretic arguments. At the same time, Lemma 1.3.4 will allow us to neglect

the difference in semantic considerations. The second point is also connected with

proof-theoretic requirements: We only consider formulas in negation normal form,

i.e. negations may only occur in front of prime formulas. Negating an arbitrary

formula then becomes a defined operation. As a blueprint for recursion over (the

height of) formulas, let us present this operation in detail:

Lemma 1.3.2. There is a p.r. function

Neg :
∏
M∈V

“M -formulas”→ V

such that PRSω proves the following: If ϕ is an M -formula then so is Neg(M,ϕ),

and we have (writing ≡ for equality of formulas)

Neg(M, s ∈ t) ≡ s /∈ t, Neg(M, s /∈ t) ≡ s ∈ t,

Neg(M, s = t) ≡ s 6= t, Neg(M, s 6= t) ≡ s = t,

Neg(M,ϕ ∧ ψ) ≡ Neg(M,ϕ) ∨Neg(M,ψ),

Neg(M,ϕ ∨ ψ) ≡ Neg(M,ϕ) ∧Neg(M,ψ),

Neg(M, ∀x∈sϕ) ≡ ∃x∈s Neg(M,ϕ), Neg(M, ∃x∈sϕ) ≡ ∀x∈s Neg(M,ϕ),

Neg(M,∀xϕ) ≡ ∃x Neg(M,ϕ), Neg(M,∃xϕ) ≡ ∀x Neg(M,ϕ).

We will usually write ¬ϕ for Neg(M,ϕ). This is justified because ϕ ∈ For(M) and

M ⊆M ′ yield ϕ ∈ For(M ′) and Neg(M,ϕ) ≡ Neg(M ′, ϕ).

Before we give a proof, let us remark that the statement of the lemma already

involves p.r. functions such as (ϕ,ψ) 7→ ϕ ∧ ψ. These rely on basic operations on

sequences. To deduce ϕ ∧ ψ ∈ For(M) from ϕ ∈ For(m,M) and ψ ∈ For(n,M)

we must show that n ≥ m (similarly for m ≥ n) implies ϕ ∈ For(n,M). This is

established by an easy induction on n, justified by Proposition 1.1.11.

Proof. We want to read the equations in the lemma as the clauses of a recur-

sive definition in the sense of Proposition 1.2.10. To do so we define the height of

a formula ϕ ∈ For(M) as the number

min{n ∈ ω |ϕ ∈ For(n,M)} =
⋃
{n ∈ ω |ϕ ∈ For(n,M) ∧ ∀m<nϕ /∈ For(m,M)}.

1.3. AROUND THE CONSTRUCTIBLE HIERARCHY 37

In view of Corollary 1.1.10, the right hand side of the equation shows that the

height of a formula can be computed by a p.r. function. Note that the height of ϕ

resp. ψ is smaller than the height of ϕ ∧ ψ, and similarly for the other connectives

and quantifiers. So we can indeed apply Proposition 1.2.10, with

P (ϕ,M) := {ψ ∈ For(M) | “ψ has smaller height than ϕ”},

R(ϕ,M) := “the height of the M -formula ϕ”.

The remaining claims follow by straightforward inductions. �

The reader should observe that ¬¬ϕ is the very same formula as ϕ. Building

on negation, it is easy to conceive implication as a p.r. family (with parameter M)

of operations on M -formulas, namely

For(M) 3 ϕ,ψ 7→ (ϕ→ ψ) :≡ Neg(M,ϕ) ∨ ψ.

Other syntactic operations can also be constructed by recursion over (the height

of) M -formulas. As in the proof of the lemma, this recursion principle is justified

by Proposition 1.2.10. In particular, there is a p.r. family of functions which com-

putes the free variables of an M -formula; we will call a formula closed if it has no

free variables. Also, there is a p.r. family of functions Subst(M, ·) which take an

M -formula ϕ, a finite list 〈x1, . . . , xn〉 of variables and a list 〈a1, . . . , an〉 ∈M<ω of

parameters, and return the result of substituting ai for xi in ϕ. Usually we use the

notation ϕ ≡ ϕ(x1, . . . , xn) to convey both the formula and the variable list. We

then write

ϕ(a1, . . . , an) ≡ Subst(M,ϕ, 〈x1, . . . , xn〉, 〈a1, . . . , an〉)

for the result of substitution. It is important to keep in mind that ϕ(a1, . . . , an) is

an Lpr-term which involves the primitive recursive function symbol Subst, applied

to the arguments M,ϕ, 〈x1, . . . , xn〉 and 〈a1, . . . , an〉. To distinguish the object

formula ϕ(x1, . . . , xn) from the Lpr-term ϕ(a1, . . . , an) we reserve, for the rest of

this section, the letters x, y, z resp. a, b, c for use in the object resp. meta language

(alternatively one could use dot notation similar to that of Feferman [15] and write

ϕ(ẋ1, . . . , ẋn) in place of ϕ(a1, . . . , an)). For example,

∀ϕ(x)∈For(M)∀a∈Mϕ(a) ∈ For(M)

is a (bounded) Lpr-formula which expresses that the substitution of an arbitrary

M -parameter into an M -formula results in an M -formula. Working in PRSω, it

can be established by induction on (the height of) ϕ. Recursion over the height of

38 1. PRELIMINARIES: THE BASE THEORY

formulas also allows us to define a crucial semantic concept: satisfaction in a model.

We will only be interested in standard models, i.e. models where ∈ is interpreted

as actual set membership.

Proposition 1.3.3. There is a p.r. relation

� ⊆
∏
M∈V

“closed M -formulas”

such that PRSω proves (writing M � ϕ for (M,ϕ) ∈ �): For all M -formulas ϕ,ψ

(closed resp. with the indicated free variable) and all parameters a, b ∈M we have

(M � a ∈ b)↔ a ∈ b, (M � a /∈ b)↔ a /∈ b,

(M � a = b)↔ a = b, (M � a 6= b)↔ a 6= b,

(M � ϕ ∧ ψ)↔ (M � ϕ) ∧ (M � ψ), (M � ϕ ∨ ψ)↔ (M � ϕ) ∨ (M � ψ),

(M � ∀x∈aϕ(x))↔ ∀c∈a∩M (M � ϕ(c)),

(M � ∃x∈aϕ(x))↔ ∃c∈a∩M (M � ϕ(c)),

(M � ∀xϕ(x))↔ ∀c∈M (M � ϕ(c)), (M � ∃xϕ(x))↔ ∃c∈M (M � ϕ(c)).

We will refer to these equivalences as Tarski’s conditions.

Proof. Induction on n shows that ϕ ∈ For(n,M) implies ϕ(c) ∈ For(n,M).

Thus the height of ϕ(c) is (at most) the height of ϕ(x), which is smaller than the

height of ∀x∈aϕ(x) or ∀xϕ(x). Thus the defining clauses of � (or rather: of its

characteristic function) fall under the recursion principle from Proposition 1.2.10,

as in the proof of Lemma 1.3.2. �

Writing 2 for the complement of �, a straightforward induction on the height

of ϕ shows

M 2 ϕ ⇔ M � ¬ϕ.

As promised, the distinction between bounded quantifiers (as logical symbols in

their own right) and bounded occurrences of usual quantifiers is harmless from the

semantic viewpoint:

Lemma 1.3.4. Working in PRSω, consider an M -formula ϕ and a set a ∈M .

Then we have

(M � ∀x∈aϕ(x))↔ (M � ∀x(x ∈ a→ ϕ(x))).

The same holds for existential quantifiers.

1.3. AROUND THE CONSTRUCTIBLE HIERARCHY 39

Proof. Recall that implication is a defined operation, so that x ∈ a → ϕ(x)

stands for x /∈ a∨ϕ(x). By Tarski’s conditions (and basic properties of substitution)

the claim reduces to

∀c∈a∩MM � ϕ(c)↔ ∀c∈M (c /∈ a ∨M � ϕ(c)),

which is obvious. �

Next, we consider the relativization of a formula to a set. In the present section

we only need this concept for formulas of the meta language: Given a formula ϕ

and a (fresh) variable c we write ϕc for the result of replacing each occurrence

of an unbounded quantifier ∀a· resp. ∃a· in ϕ by the bounded quantifier ∀a∈c·
resp. ∃a∈c·. Later we will need the same construction for the object language:

Working in PRSω, there is a p.r. function which, given an M -formula ϕ and a

parameter c ∈M , computes the relativized M -formula ϕc. An important justifica-

tion for the definition of � is its behaviour on standard formulas (i.e. L∈-formulas

of the meta language). Each standard formula ϕ corresponds to a ∅-formula pϕq of

the object language, its Gödel code. In this context, ϕ(a1, . . . , an) denotes the

meta formula ϕ with free variables a1, . . . , an. On the other hand, pϕq(a1, . . . , an)

is the result of replacing the free (object) variables of pϕq by constant symbols for

the values of the (meta) variables a1, . . . , an. As above, pϕq(a1, . . . , an) is thus an

Lpr-term with free variables a1, . . . , an; for any values of these variables it denotes

a closed object formula. Sometimes we will write ϕ at the place of pϕq, relying on

the context for clarification.

Proposition 1.3.5. For each L∈-formula ϕ(a1, . . . , an) of the meta language

(with all free variables displayed) there is a PRSω-proof of

Trans(M)→ ∀a1,...,an∈M (ϕ(a1, . . . , an)M ↔M � pϕq(a1, . . . , an)).

Proof. One argues by (meta) induction on ϕ, using Tarski’s conditions. The

most interesting cases are the bounded quantifiers, say ϕ(a) ≡ ∀b∈aψ(a, b). Working

in PRSω, assume that M 3 a is transitive. The induction hypothesis yields

∀b∈M (ψ(a, b)M ↔M � pψq(a, b)).

By Tarski’s conditions M � pϕq(a) is equivalent to ∀b∈a∩MM � pψq(a, b), yielding

∀b∈a∩Mψ(a, b)M ↔M � pϕq(a).

40 1. PRELIMINARIES: THE BASE THEORY

As M is transitive the condition b ∈ a ∩M reduces to b ∈ a. The claim follows

in view of ∀b∈aψ(a, b)M ≡ ϕ(a)M . Let us also consider the case of an unbounded

quantifier, say ϕ(a) ≡ ∃bψ(a, b). Similarly to the above we get

∃b∈Mψ(a, b)M ↔M � pϕq(a).

The claim follows by ϕ(a)M ≡ ∃b∈Mψ(a, b)M , with the quantifier restricted. �

If ϕ contains no unbounded quantifiers then ϕM is the same formula as ϕ, and

thus M � pϕq(a1, . . . , an) does not depend on M . Let us extend this insight to

non-standard formulas: If we have M ⊆M ′ then any M -formula is an M ′-formula.

By a ∆0(M)-formula (resp. Σ(M)-formula resp. Π(M)-formula) we shall mean an

M -formula which contains no unbounded quantifiers (resp. no unbounded universal

resp. existential quantifiers). These notions can be defined by recursion over the

formula height, and are thus primitive recursive. We obtain the following result:

Lemma 1.3.6. Working in PRSω, assume that M is transitive in M ′ ⊇ M ,

i.e. that a ∈M implies a∩M ′ ⊆M . For a Σ(M)-formula ϕ resp. Π(M)-formula ψ

we then have

M � ϕ ⇒ M ′ � ϕ resp. M ′ � ψ ⇒ M � ψ.

In particular, a ∆0(M)-formula is satisfied in M if and only if it is satisfied in M ′.

Note that a transitive set M is transitive in any M ′ ⊇M .

Proof. Proposition 1.1.11 allows us to argue by induction on the height of the

formula ϕ resp. ψ (note that the induction statement is primitive recursive). For

the induction step one uses Tarski’s conditions. The most interesting case is that

of a bounded quantifier, say ϕ ≡ ∀x∈aψ(x). From M � ϕ we get ∀c∈a∩MM � ψ(c).

The height of ψ(c) is smaller than the height of ϕ, so that the induction hypothesis

yields ∀c∈a∩MM ′ � ψ(c). As M is transitive in M ′ we get a ∩M = a ∩M ′, and

then M ′ � ϕ. Let us also consider the case of an unbounded existential quantifier,

say ϕ ≡ ∃xψ(x). From M � ϕ we obtain ∃a∈MM � ψ(a), and the induction

hypothesis gives ∃a∈MM ′ � ψ(a). In view of M ⊆ M ′ we obtain ∃a∈M ′M ′ � ψ(a)

and thus M ′ � ϕ. �

With a reasonable satisfaction relation at our disposal, we can now approach

the constructible hierarchy. The following step is crucial:

1.3. AROUND THE CONSTRUCTIBLE HIERARCHY 41

Lemma 1.3.7. There is a p.r. function

Def :
∏
M∈V

“M -formulas with a single free variable”→ V

such that PRSω proves Def(M,ϕ) = {a ∈M |M � ϕ(a)} for any M -formula ϕ(x).

Also, there is a p.r. function Def0 : V→ V such that

Def0(M) = {Def(M,ϕ) | “ϕ a ∆0(M)-formula with a single free variable”}

is provable in PRSω.

Proof. The function Def is defined by p.r. separation, and is thus primitive

recursive by Corollary 1.1.10. As for Def0, the set of ϕ ∈ ∆0(M) ⊆ For(M) with a

single free variable can be computed by a p.r. function, again using Corollary 1.1.10.

As Def0(M) is the range of Def(M, ·) on that set, the function Def0 is primitive

recursive by Proposition 1.1.6. �

The reader will have noticed that Def0(M) only collects the subsets that are

defined by a bounded formula. This is not essential, but it will be convenient later.

For the definition of the constructible hierarchy it does not seem to make a big

difference: As Lα+1 3 Lα is transitive Lα � ϕ is equivalent to Lα+1 � ϕLα , and ϕLα

is a ∆0(Lα+1)-formula, whether ϕ itself is bounded or not. In any case, we will

work with the following notion:

Definition 1.3.8. We define a primitive recursive function

Ord×“transitive sets” 3 (α, u) 7→ Luα ∈ V

by recursion along the ordinals (Proposition 1.2.6), setting

Lu0 := u,

Luα+1 := Def0(Luα),

Luλ :=
⋃
{Luγ | γ < λ} for λ limit.

The function α 7→ Luα is called the constructible hierarchy relative to u.

To avoid confusion we point out that the term “relativized constructible hier-

archy” is also used for a different construction (considered by Hajnal, Lévy and

Shoenfield, see in particular [50]): Rather than starting with u as a set of “ur-

elements” one insists that all sets are to be constructed from the empty set, but

allows u as a predicate that can be used to define more subsets. This variant of

42 1. PRELIMINARIES: THE BASE THEORY

the constructible hierarchy will not play any role in the present thesis. Let us show

some basic properties:

Lemma 1.3.9. The following holds for any transitive u, provably in PRSω:

(i) The sets Luα are transitive for all ordinals α.

(ii) If α < β then Luα ∈ Luβ.

Proof. (i) Arguing by induction on α, it clearly suffices to show that Def0(M)

is transitive if M is. So assume b ∈ c ∈ Def0(M). Then we have c = Def(M,ϕ) for

some M -formula ϕ, and in particular b ∈ c ⊆M . If M is transitive we get

b = {a ∈M |M � a ∈ b} = Def(M,x ∈ b) ∈ Def0(M),

as required.

(ii) Observe

Luα = {a ∈ Luα |Luα � a = a} = Def(Luα, x = x) ∈ Def0(Luα) = Luα+1.

To conclude one shows Luα+1 ⊆ Luβ by induction on β ≥ α+ 1. The successor step

uses M ⊆ Def0(M) for transitive M , as established in the proof of (i). �

Next, we want to extend the familiar equation L∅α ∩Ord = α to the relativized

constructible hierarchy. Write

o(u) := u ∩Ord ∈ Ord

for the height of a transitive set u. The function o(·) is primitive recursive by

Corollary 1.1.10. We obtain the following result:

Lemma 1.3.10. Provably in PRSω, we have

o(Luα) = o(u) + α

for any transitive set u and any ordinal α.

Proof. We argue by induction on α: For α = 0 the claim is immediate.

Concerning the successor case, recall that the class of ordinals is defined by a

bounded formula Ord(a) in the (meta) language L∈. Using the induction hypothesis

and Proposition 1.3.5 we get

o(u) + α = {a ∈ Luα | Ord(a)} = {a ∈ Luα |Luα � pOrdq(a)} =

= Def(Luα, pOrdq) ∈ Def0(Luα) = Luα+1.

1.3. AROUND THE CONSTRUCTIBLE HIERARCHY 43

Together with the fact that Luα+1 is transitive we get o(u)+α+1 ⊆ Luα+1∩Ord. The

converse inclusion holds as β ∈ Luα+1 = Def0(Luα) implies β ⊆ Luα∩Ord = o(u) +α.

For a limit ordinal α the claim is immediate from the induction hypothesis. �

One of the main goals of this thesis is the construction of admissible sets,

i.e. transitive models of Kripke-Platek set theory. Let us give an official definition:

Definition 1.3.11. Kripke-Platek set theory (KP) is the L∈-theory whose

non-logical axioms are extensionality, pairing and union, as well as all instances of

the axiom scheme of ∆0-separation

∀~z∀x∃y∀v(v ∈ y ↔ v ∈ x ∧ θ(v, ~z)) (θ a ∆0-formula of L∈),

all instances of ∆0-collection

∀~z∀v(∀x∈v∃yθ(x, y, ~z)→ ∃w∀x∈v∃y∈wθ(x, y, ~z)) (θ a ∆0-formula of L∈),

and all instances of ∈-induction

∀~z(∀x(∀y∈xϕ(y, ~z)→ ϕ(x, ~z))→ ∀xϕ(x, ~z)) (ϕ any formula of L∈).

We will refer to “the set of KP-axioms” both in the meta theory and when we

work in PRSω; in the latter case one has instances of the axiom schemes for all

object formulas. Using the definition inside PRSω we get an Lpr-formula

Ad(A) :≡ A 6= ∅ ∧ Trans(A) ∧ ∀ϕ(“ϕ a KP-axiom”→ A � ϕ).

If Ad(A) holds, then we call A an admissible set.

We remark that some authors demand ω ∈ A. This makes no difference for our

result, as we will construct admissible sets that contain a given set — which one

may choose to contain ω. For a general introduction to Kripke-Platek set theory

we refer to Barwise’s book [6]. In particular, the principle of Σ-recursion (see [6,

Theorem I.6.4]) reveals that KP, extended by the axiom of infinity, is an extension

of PRSω. Many proof-theoretic investigations (e.g. [41]) implement admissible

sets in a different way, avoiding the use of a satisfaction relation: Namely, they

extend the language by a new relation symbol Ad(·) and add an axiom

∀A(Ad(A)→ ϕA)

for each KP-axiom ϕ (as above, ϕA is the relativization of ϕ to A). Note that

this refers to KP-axioms in the sense of the meta theory. Nevertheless it leads

to an equivalent notion of admissible set: In one direction, if ϕ is an actual KP-

axiom then pϕq is a KP-axiom in the sense of PRSω. So if A is admissible in the

44 1. PRELIMINARIES: THE BASE THEORY

“internal” sense then we have A � pϕq. By Proposition 1.3.5 this implies ϕA, as

desired. For the other direction we must first get ∈-induction out of the way:

Lemma 1.3.12. Working in PRSω, we have

M � ∀x(∀y∈xϕ(y)→ ϕ(x))→ ∀xϕ(x)

for any set M and any M -formula ϕ(x).

Proof. By Tarski’s conditions the claim reduces to

∀a∈M (∀b∈a∩MM � ϕ(b)→M � ϕ(a))→ ∀a∈MM � ϕ(a).

This amounts to ∈-induction over the p.r. property a ∈ M → M � ϕ(a), which is

available by Proposition 1.1.11. �

Now we can show that finitely many standard formulas suffice to make a set

admissible in the sense of Definition 1.3.11:

Proposition 1.3.13. There are Kripke-Platek axioms ϕ1, . . . , ϕn (in the sense

of the meta theory) such that PRSω proves

A 6= ∅ ∧ Trans(A) ∧ ϕ1
A ∧ · · · ∧ ϕnA → Ad(A).

Proof. First, arguing in the meta theory, let us show that there are finitely

many KP-axioms ϕ1, . . . , ϕn which imply all other KP-axioms, with the exception

of ∈-induction: By [6, Section V.I] there is a ∆1-formula True∆0(·) which defines

truth for ∆0-formulas, provably in KP. Rather than including separation and

collection for all ∆0-formulas we thus use the “universal” versions of these axiom

schemes, namely

∀θ∀c(∀a∈c∃b True∆0(θ(a, b))→ ∃d∀a∈c∃b∈d True∆0(θ(a, b)))

in the case of collection. As True∆0(·) is a ∆1-formula this is not a KP-axiom.

Nevertheless, it is a theorem of KP by [6, Theorem I.4.4] (for separation one

uses [6, Theorem I.4.5]). To obtain collection for “actual” ∆0-formulas we need

the equivalences

θ(a1, . . . , ak)↔ True∆0(pθq(a1, . . . , ak)),

as established in [6, Proposition V.1.6]. The point is that these can be proved

in a finite core theory, independent of the (actual) formula θ. Contemplating the

proof of Proposition 1.3.5 above, it is indeed enough to know the Tarski conditions

and properties of substitution (both independent of θ), and to verify some basic

1.3. AROUND THE CONSTRUCTIBLE HIERARCHY 45

connections (e.g. that p∃b∈aiψq is an existential formula with matrix ψ). Now,

aiming at the claim of the proposition, let us work in PRSω. Assume that A 6= ∅
is transitive and that ϕi

A holds for i = 1, . . . , n. By Proposition 1.3.5 this implies

A � pϕ1q ∧ · · · ∧ pϕnq.

We need to verify A � ϕ for an arbitrary object formula ϕ that is a KP-axiom in

the sense of PRSω. If ϕ is an instance of ∈-induction then it suffices to invoke

the previous lemma. Otherwise, formalizing the argument above, ϕ can be proved

from the assumptions pϕiq. The Tarski conditions guarantee that the satisfaction

relation is correct, so that we get A � ϕ as desired. �

In particular the proposition allows us to place a bound on the number of

parameters in collection formulas. This will be convenient later.

Convention 1.3.14. Let ϕ1, . . . , ϕn be the Kripke-Platek axioms from the

previous proposition. We reserve C for a number which is large enough to make

the following true for i = 1, . . . , n: If

ϕi ≡ ∀z1,...,zk∀v(∀x∈v∃yθ(x, y, z1, . . . , zk)→ ∃w∀x∈v∃y∈wθ(x, y, z1, . . . , zk))

is a ∆0-collection axiom with k parameters then we have k ≤ C.

We conclude the section with a well-known result, which reveals ∆0-collection

as the crucial axiom of Kripke-Platek set theory:

Proposition 1.3.15. Working in PRSω, consider a transitive set u and a

limit ordinal λ. If Luλ satisfies ∆0-collection then it is an admissible set. Indeed it

suffices to consider instances of ∆0-collection with at most C parameters.

Proof. As λ is a limit we have Luλ 6= ∅. Also recall that Luλ is transitive by

Lemma 1.3.9. Thus it suffices to establish Luλ � pϕiq for the axioms ϕ1, . . . , ϕn from

Proposition 1.3.13. The instances of ∆0-collection are satisfied by assumption and

the choice of C, so that it remains to consider the other axioms of Kripke-Platek set

theory: Extensionality is satisfied in any transitive set, and ∈-induction is covered

by Lemma 1.3.12. As for pairing, consider arbitrary sets a, b ∈ Luλ and choose an

ordinal α < λ with a, b ∈ Luα. Then

c = {d ∈ Luα | d = a ∨ d = b} = {d ∈ Luα |Luα � d = a ∨ d = b}

is an element of Luα+1 ⊆ Luλ. This establishes

∀a∈Luλ∀b∈Luλ∃c∈Luλ(a ∈ c ∧ b ∈ c ∧ ∀d∈c(d = a ∨ d = b)).

46 1. PRELIMINARIES: THE BASE THEORY

By Proposition 1.3.5 it follows that Luλ satisfies the pairing axiom. The union axiom

is established similarly (using the fact that any Luα is transitive). It remains to verify

separation for a ∆0-formula θ(x, ~z): Consider arbitrary parameters a,~c ∈ Luλ, say

a,~c ∈ Luα with α < λ. We have

b := {d ∈ Luα |Luα � d ∈ a ∧ θ(d,~c)} ∈ Luα+1 ⊆ Luλ.

Using Lemma 1.3.6 we get d ∈ b↔ Luλ � d ∈ a ∧ θ(d,~c) for any d ∈ Luλ, and then

∀a,~c∈Luλ∃b∈Luλ∀d∈LuλL
u
λ � d ∈ b↔ d ∈ a ∧ θ(d,~c).

Tarski’s conditions allow us to internalize the quantifiers, which yields

Luλ � ∀x,~z∃y∀v(v ∈ y ↔ v ∈ x ∧ θ(v, ~z)).

This is the separation axiom for θ. �

1.4. Connecting with Second-Order Arithmetic

The last three sections were devoted to our default base theory PRSω. Some

arguments, however, will require additional assumptions: axiom beta and the axiom

of countability (cf. Definition 1.4.2). This leads us to Simpson’s [85, 87] set theory

ATRset
0 , which we review in the present section. As ATRset

0 is bi-interpretable

with arithmetical transfinite recursion (the subsystem of second-order arithmetic)

it is still a suitable base theory for our analysis of Π1
1-comprehension. Note that

Simpson formulates ATRset
0 in the language L∈ of pure set theory, with relation

symbols ∈,= and no function symbols. A main (if standard) result of this section

is that function symbols for all primitive recursive set functions can be added.

Modulo the new function symbols, ATRset
0 is an extension of PRSω. Towards the

end of the section we review another fact that connects our results with second-

order arithmetic: the equivalence between Π1
1-comprehension and the existence of

admissible sets.

Let us point out that Simpson in [85] resp. [87] gives two equivalent (modulo

countability) but rather different axiomatizations of ATRset
0 . We adopt the version

in [85], which is closer to PRSω. The connection with [87] will be explained in

Remark 1.4.3. To describe ATRset
0 we need L∈-definitions of the primitive recursive

functions. Simpson refers to [44], where one finds the following (modulo a harmless

change regarding composition, cf. [44, 1.3(1)]):

1.4. CONNECTING WITH SECOND-ORDER ARITHMETIC 47

Definition 1.4.1. To each primitive recursive function symbol F of arity n

(without additional parameter ω, contrary to Convention 1.2.9) we associate an

L∈-formula DF (x1, . . . , xn, z), intended to express F (x1, . . . , xn) = z:

DZ(x, z) :≡ ∀y∈zy 6= y,

DM (x1, x2, z) :≡ ∀y∈z(y ∈ x1 ∨ y = x2) ∧ ∀y∈x1y ∈ z ∧ x2 ∈ z,

DPni (x1, . . . , xn, z) :≡ z = xi,

DC(x1, x2, x3, x4, z) :≡ (x3 ∈ x4 ∧ z = x1) ∨ (x3 /∈ x4 ∧ z = x2),

DK[G;H1,...,Hk](~x, z) :≡ ∃y1,...,yk

(
k∧
i=1

DHi(~x, yi) ∧ DG(y1, . . . , yk, z)

)
.

As for recursion, DR[G](x, ~y, z) is defined as the formula

∃f,w(“f is a function with transitive domain w ⊇ x”∧

∃u(u =
⋃
{f(v) | v ∈ x} ∧ DG(u, x, ~y, z))∧

∀x0∈w∃u0,z0(u0 =
⋃
{f(v) | v ∈ x0} ∧ z0 = f(x0) ∧ DG(u0, x0, ~y, z0))).

We can now present the axiomatization of ATRset
0 from [85]. Strictly speaking,

this version of ATRset
0 does not include countability, which is described as an

“optional extra axiom”. In any case, countability is covered by the crucial [85,

Theorem 3.6], so that we can safely include it:

Definition 1.4.2. The theory ATRset
0 is formulated in the language L∈ of

pure set theory and has the following non-logical axioms:

(i) The axiom of extensionality.

(ii) The axiom of foundation (also called regularity).

(iii) The axiom of infinity, formulated as

∃x(∅ ∈ x ∧ ∀y∈xy ∪ {y} ∈ x).

(iv) The axiom

∀x1,...,xn∃zDF (x1, . . . , xn, z),

for each primitive recursive function symbol F .

(v) Axiom beta, stating that for any well-founded relation r (given as a set of

ordered pairs) there exists a collapse, i.e. a set-sized function f which is

defined on the field of r and satisfies

f(y) = {f(x) | 〈x, y〉 ∈ r}.

48 1. PRELIMINARIES: THE BASE THEORY

Recall that r is well-founded (or regular) if we have

∀z(z 6= ∅ → ∃y∈z∀x∈z〈x, y〉 /∈ r).

(vi) The axiom of countability, stating that for any set x there exists an injec-

tion from x into the finite ordinals.

As promised, we now compare this axiomatization with the version in [87]:

Remark 1.4.3. The axiomatization of ATRset
0 in [87, Section VII.3] does not

demand the totality of all primitive recursive functions (axioms (iv) above) expli-

citly. It only demands the totality of (a finite number of) rudimentary functions,

and strengthens the other axioms appropriately: Countability is replaced by hered-

itary countability, which includes the existence of transitive closures; infinity now

requires a set of all finite sets, rather than a set of all finite ordinals. The primitive

recursive functions can be recovered according to [85, Theorem 3.1], in conjunction

with [87, Lemma VII.4.2]: The latter tells us that the (relativized) constructible

hierarchy up to any ordinal exists. At the same time, axiom beta provides relat-

ively large ordinals (e.g. for each provable well-ordering of ATR0). Once we have

sufficiently long segments of the constructible hierarchy, the Stability Theorem [44,

2.5] ensures the totality of all primitive recursive functions.

Our next goal is to extend the language of ATRset
0 by primitive recursive func-

tion symbols. The following is a preparation:

Lemma 1.4.4. For each primitive recursive function symbol F we have

ATRset
0 ` DF (x1, . . . , xn, z) ∧ DF (x1, . . . , xn, z

′)→ z = z′.

The same holds with PRSω at the place of ATRset
0 .

Proof. We argue by (meta) induction on the build-up of F . The basic func-

tion symbols Z,M,Pni , C are covered by extensionality and the fact that = is an

equivalence relation. In case F ≡ K[G;H1, . . . ,Hk] the assumptions DF (~x, z) and

DF (~x, z′) yield DG(y1, . . . , yk, z) resp. DG(y′1, . . . , y
′
k, z
′), for witnesses yi, y

′
i that

satisfy DHi(~x, yi) resp. DHi(~x, y′i). The induction hypothesis for Hi gives yi = y′i.

By the equality axioms we get DG(y1, . . . , yk, z
′), and the induction hypothesis

for G yields z = z′, as desired. The final and most interesting case is F ≡ R[G]:

Let f, w, u resp. f ′, w′, u′ be the witnesses provided by the assumptions DF (x, ~y, z)

and DF (x, ~y, z′). In particular we have DG(u, x, ~y, z) and DG(u′, x, ~y, z′). Invoking

the induction hypothesis for G we can conclude z = z′ once we have checked u = u′.

1.4. CONNECTING WITH SECOND-ORDER ARITHMETIC 49

As we have u =
⋃
{f(v) | v ∈ x} and u′ =

⋃
{f ′(v) | v ∈ x} it suffices to show that

f and f ′ agree on x. We argue that they do agree on the transitive set w∩w′ ⊇ x,

the intersection of their domains: Note first that the condition f(x0) 6= f ′(x0) can

be expressed by a ∆0-formula (which asserts that there are pairs p ∈ f, p′ ∈ f ′

such that p and p′ both have first component x0 but disagree on their second

component). From [87, Lemma VII.3.5] and Corollary 1.1.10 we know that ∆0-

comprehension is available in ATRset
0 and in PRSω, respectively. Thus we can

form the set

{x0 ∈ w ∩ w′ | f(x0) 6= f ′(x0)}.

We must show that this set is empty. If it is not, foundation yields an ∈-minimal

element x0. For this x0 the assumption DF (x, ~y, z) provides witnesses u0, z0 with

u0 =
⋃
{f(v) | v ∈ x0} ∧ z0 = f(x0) ∧ DG(u0, x0, ~y, z0).

Write u′0, z
′
0 for the analogous witnesses provided by DF (x, ~y, z′). By the minimality

of x0 and the fact that w ∩ w′ is transitive we have f(v) = f ′(v) for any v ∈ x0.

This implies u0 = u′0 and then z0 = z′0, by the induction hypothesis for G. Thus

we have f(x0) = z0 = f ′(x0), contradicting the assumption f(x0) 6= f ′(x0). �

We can now add primitive recursive function symbols, and present the desired

connection with second-order arithmetic:

Definition 1.4.5. The Lpr-theory ATRset
0 results from the L∈-theory ATRset

0

(the homonymy is justified in view of the following corollary) by adding all primitive

recursive function symbols, the corresponding equality axioms, and the axioms

∀x1,...,xnDF (x1, . . . , xn, F (x1, . . . , xn))

for all primitive recursive function symbols F .

Corollary 1.4.6. The Lpr-theory ATRset
0 is a conservative extension of the

L∈-theory ATRset
0 . Furthermore, any Lpr-formula ϕ provable in the former theory

corresponds to an L∈-formula ϕ∗ provable in the latter.

Proof. Recall that the L∈-theory ATRset
0 contains the axiom ∀~x∃zDF (~x, z),

for each p.r. function symbol F . This suffices for the conservativity result (by

an easy model-theoretic argument or, following the more constructive [84, Sec-

tion 4.5], via Herbrand’s theorem). The translation of ϕ into ϕ∗ is described in

[84, Section 4.6]. It relies on the uniqueness result of Lemma 1.4.4. �

50 1. PRELIMINARIES: THE BASE THEORY

Having established the Lpr-theory ATRset
0 we want to connect it to primitive

recursive set theory:

Proposition 1.4.7. The Lpr-theory ATRset
0 is an extension of PRSω.

Proof. We must show that ATRset
0 proves the PRSω-axiom AF (see Defin-

ition 1.1.2), for each p.r. function symbol F . If F is one of the basic functions

Z,M,Pni , C this holds because AF and ∀x1,...,xnDF (x1, . . . , xn, F (x1, . . . , xn)) are

the very same formula. Concerning F ≡ K[G;H1, . . . ,Hk], the ATRset
0 -axiom

DF (~x,K[G;H1, . . . ,Hk](~x)) states that there are witnesses y1, . . . , yk which satisfy

k∧
i=1

DHi(~x, yi) ∧ DG(y1, . . . , yk,K[G;H1, . . . ,Hk](~x)).

The axioms DHi(~x,Hi(~x)) together with Lemma 1.4.4 force yi = Hi(~x). Using the

equality axioms we get

DG(H1(~x), . . . ,H1(~x),K[G;H1, . . . ,Hk](~x)).

On the other hand, the axiom ∀y1,...,ykDG(y1, . . . , yk, G(y1, . . . , yk)) yields

DG(H1(~x), . . . ,Hk(~x), G(H1(~x), . . . ,Hk(~x))).

Again by Lemma 1.4.4 we can conclude

K[G;H1, . . . ,Hk](~x) = G(H1(~x), . . . ,Hk(~x)),

which is the desired PRSω-axiom AK[G;H1,...,Hk]. Finally, assume that F ≡ R[G] is

defined by recursion. Consider the witnesses f, w, u provided by the ATRset
0 -axiom

DR[G](x, ~y,R[G](x, ~y)). In particular we have DG(u, x, ~y,R[G](x, ~y)). Together

with the axiom DG(u, x, ~y,G(u, x, ~y)) and Lemma 1.4.4 this implies

R[G](x, ~y) = G(u, x, ~y).

To conclude that u is the witness required by AR[G] it remains to establish

u =
⋃
{R[G](v, ~y) | v ∈ x}.

AsDR[G](x, ~y,R[G](x, ~y)) includes u =
⋃
{f(v) | v ∈ x} this reduces to the equalities

f(x0) = R[G](x0, ~y) for all x0 ∈ w ⊇ x.

By the third line of DR[G](x, ~y,R[G](x, ~y)) the set u0 =
⋃
{f(v) | v ∈ x0} exists

and satisfies DG(u0, x0, ~y, f(x0)). Then it is immediate that DR[G](x0, ~y, f(x0))

holds with witnesses f, w, u0. Together with the axiomDR[G](x0, ~y,R[G](x0, ~y)) and

Lemma 1.4.4 this implies f(x0) = R[G](x0, ~y), as desired. �

1.4. CONNECTING WITH SECOND-ORDER ARITHMETIC 51

Conversely, we will later need the following:

Lemma 1.4.8. For each primitive recursive function symbol F we have

PRSω ` ∀x1,...,xn,z(DF (x1, . . . , xn, z)↔ F (x1, . . . , xn) = z).

Proof. In view of Lemma 1.4.4 it is enough to establish

PRSω ` ∀x1,...,xnDF (x1, . . . , xn, F (x1, . . . , xn)).

One argues by meta-induction on F . In the crucial case F ≡ R[G], let us show

that DR[G](x, ~y,R[G](x, ~y)) holds with witnesses w = TC(x) and f = R[G](·, ~y)�w.

Note that f is a set, due to Proposition 1.2.2. First, we need DG(u, x, ~y,R[G](x, ~y))

for u =
⋃
{f(v) | v ∈ x}. This follows from DG(u, x, ~y,G(u, x, ~y)) (by the induction

hypothesis for G) and G(u, x, ~y) = R[G](x, ~y) (by the axiom AR[G] of PRSω).

By the same argument one has DG(
⋃
{f(v) | v ∈ x0}, x0, ~y, f(x0)) for any x0 ∈ w,

completing the verification of DR[G](x, ~y,R[G](x, ~y)). �

Now that we have seen how PRSω relates to Simpson’s set theory ATRset
0 , let

us present known connections with second-order arithmetic. Following [87, The-

orem VII.3.9], there is a “natural translation” which allows us to identify formulas

of second-order arithmetic with formulas of set theory (not involving p.r. function

symbols): The natural numbers are identified with the set ω. Concerning addition

and multiplication on ω, rather weak set theories show that the graphs of these

operations exist as sets, denoted by Add,Mult ⊆ ω × ω × ω. Using these sets as

parameters, the desired translation is straightforward: For example, the formula

∃X∀nn+ n ∈ X

of second-order arithmetic corresponds to the set-theoretic formula

∃x(x ⊆ ω ∧ ∀y∈ω∃z∈ω(〈y, y, z〉 ∈ Add ∧ z ∈ x)).

Note that arithmetical formulas are translated into ∆0-formulas of L∈. Thus the

second-order theory ACA0 becomes a subtheory of PRSω, and of much weaker set

theories (all this is in the proof of [87, Theorem VII.3.9]; cf. also Corollary 1.1.10

above). In fact, Simpson’s result yields the following connection:

Corollary 1.4.9. The Lpr-theory ATRset
0 is conservative over ATR0, the

subtheory of second-order arithmetic. Furthermore, any result of the Lpr-theory

ATRset
0 can be translated into a corresponding result of ATR0.

52 1. PRELIMINARIES: THE BASE THEORY

Proof. Corollary 1.4.6 reduces the first claim to the fact that the L∈-theory

ATRset
0 is conservative over the second-order theory ATR0, which is famously due

to Simpson [85, Theorem 3.6]. To exhibit the desired translation we consider an

Lpr-formula ϕ that is provable in the Lpr-theory ATRset
0 . Corollary 1.4.6 yields a

L∈-formula ϕ∗ that is provable in the L∈-theory ATRset
0 . By [87, Lemma VII.3.16]

a corresponding second-order formula |ϕ∗| is also provable in ATRset
0 (modulo the

identification of second-order formulas with L∈-formulas). Conservativity implies

that |ϕ∗| is provable in ATR0, as desired. �

Recall that the aim of this thesis is an analysis of Π1
1-comprehension in terms

of type-two well-ordering principles. In view of the previous result the Lpr-theory

ATRset
0 and its subtheory PRSω are reasonable base theories for this undertaking.

We adopt the following terminology:

Convention 1.4.10. The default base theory for the rest of this thesis is prim-

itive recursive set theory with infinity (PRSω). When an argument uses axiom beta

or the axiom of countability this will be indicated (see e.g. Proposition 1.4.12 and

Corollary 1.4.13). If not indicated otherwise, ATRset
0 will denote the Lpr-theory

of that name.

In the rest of this section we review the connection between Π1
1-comprehension

and the existence of admissible sets. The relevant arguments are known (see in

particular [41, Section 7]), but we want to check that they apply in our setting.

Let us begin with the easier direction (following Convention 1.4.10, this result is

established in the base theory PRSω):

Proposition 1.4.11. If each countable set is an element of some admissible

set then (each instance of) Π1
1-comprehension holds.

Note that there is an instance of Π1
1-comprehension which implies all other

instances over ACA0. To see this, one can for example use a ∆1
1-definition of

truth for arithmetical formulas (cf. [87, Lemma VII.2.2]).

Proof. We follow the argument in [41, Section 7]: Consider a Π1
1-formula

ϕ(n, ~Y) and fix values for the parameters ~Y . By Kleene’s normal form theorem

(see e.g. [87, Lemma V.1.4, Lemma V.1.8]) and arithmetical comprehension there

is a countable set X = (Xn)n∈ω such that Xn is a linear order with field ω, and

such that we have

∀n∈ω(ϕ(n, ~Y)↔ “Xn is well-founded”).

1.4. CONNECTING WITH SECOND-ORDER ARITHMETIC 53

Now pick an admissible set A with X ∈ A. If Xn is well-founded then, by [41,

Theorem 4.6], there exists a collapsing function f ∈ A for Xn, i.e. a function

f : ω → V which satisfies

∀k,m∈ω(〈k,m〉 ∈ Xn → f(k) ∈ f(m)).

Conversely, the existence of such a collapsing function ensures that Xn is well-

founded: Given a non-empty set Z ⊆ ω, form {f(m) |m ∈ Z}. By foundation this

set has an ∈-minimal element a. Then any m ∈ Z with f(m) = a is Xn-minimal

in Z. Now Corollary 1.1.10 allows us to construct the set

{n ∈ ω | ∃f∈A“f : ω → V is collapsing for Xn”} = {n ∈ ω |ϕ(n, ~Y)},

as required for Π1
1-comprehension. �

For the converse implication we rely on the known fact (see [41, Corollary 7.2])

that the statement “each set is an element of some admissible set” is interpretable

in the subtheory Π1
1−CA0 of second-order arithmetic. Transferring this result

into a set-theoretic context, our task will be to show that we do not only get an

interpretation but an actual admissible set. First, let us give an overview of the

representation of admissible sets in Π1
1−CA0: As in Simpson’s interpretation of

ATRset
0 in ATR0, the idea is to code the membership relation on a given set by

a well-founded tree T ⊆ ω<ω (which can in turn be coded as a subset of ω). Note

that Jäger [41, Section 1.7] only admits “representation trees” which satisfy the

uniqueness condition

σ_n ∈ T ∧ σ_m ∈ T ∧ Tσ_n ' Tσ_m → n = m.

Here Tτ = {τ ′ | τ_τ ′ ∈ T} is the subtree of T at τ ∈ T , and S ' T expresses

that there is a tree-isomorphism f : S → T . Jäger also reserves odd numbers to

encode urelements, but this is not needed in our context. Now the idea is that the

representation tree T stands for the set |T | = cT (〈〉), where the collapsing function

cT : T → V, cT (σ) = {cT (σ_n) |σ_n ∈ T}

is defined by recursion over T . When we switch back to a set-theoretic context we

will make this interpretation official. As long as we work in second-order arithmetic

there is no set |T |, and its definition can only serve as informal guidance. Instead,

one officially argues in terms of the relations ' and

S ∈̃ T :≡ “S, T are representation trees” ∧ ∃n∈ω(〈n〉 ∈ T ∧ S ' T〈n〉).

54 1. PRELIMINARIES: THE BASE THEORY

To construct an admissible representation tree one uses properties of hyperarith-

metical sets. Very roughly, the argument goes as follows: Assume the premise of

∆0-collection in the form

∀S∈̃S′∃T (“T a hyperarithmetical representation tree” ∧ ϕ(S, T)).

Following [41, Lemma 5.2] we can use numerical Π1
1-uniformization (due to H. Fried-

man and Simpson) to choose a unique numerical code for each of the hyperarithme-

tical trees T . This allows us to collect the relevant codes into a ∆1
1-definable set. By

the Suslin-Kleene theorem (see [41, Theorem 5.1]) any ∆1
1-set is hyperarithmetical.

Thus we can build a hyperarithmetical representation tree T ′ with

∀S∈̃S′∃T ∈̃T ′ϕ(S, T).

This means that the hyperarithmetical representation trees form a model of Kripke-

Platek set theory. On the other hand, being a code of a hyperarithmetical repres-

entation tree is an arithmetical-in-Π1
1-property. Thus Π1

1-comprehension allows us

to define a representation tree which contains all hyperarithmetical representation

trees as immediate subtrees (see [41, Lemma 7.5]). This tree represents an admiss-

ible set. Details for all steps of this argument can be found in [41]. We shall be

content to transfer the result back into set theory. Following Convention 1.4.10, the

base theory for the following result is PRSω extended by axiom beta. Also recall

that a set is hereditarily countable if and only if it is a subset of some countable

transitive set.

Proposition 1.4.12 (Beta). If Π1
1-comprehension holds then each hereditarily

countable set is an element of some admissible set.

Proof. We begin by making the above semantics for representation trees offi-

cial (cf. [41, Section 1.7] resp. [87, Section VII.3]): Each tree T ⊆ ω<ω is associated

with the relation

rT = {〈σ, τ〉 ∈ T × T | ∃n∈ωσ = τ_n},

which is well-founded if T has no infinite branch (see [87, Lemma V.1.3] or the

proof of Lemma 3.3.4 below). In that case axiom beta provides a collapsing function

cT : T → V for rT , which satisfies

cT (σ) = {cT (σ_n) |σ_n ∈ T}.

The notation cT is justified because the collapse is unique: If c′T is a competitor,

consider an rT -minimal element σ ∈ {τ ∈ T | cT (τ) 6= c′T (τ)} and deduce the

1.4. CONNECTING WITH SECOND-ORDER ARITHMETIC 55

contradiction cT (σ) = c′T (σ). On the other hand, there is no primitive recursive

function which computes cT from T . This will not affect the present proof, but

it is an important distinction to make. In the same sense we write |T | := cT (〈〉).
Observe that S ' T implies |S| = |T |: If h : S → T is an isomorphism then we have

cS(σ) = cT (h(σ)) for all σ ∈ S, as an rS-minimal counterexample would yield a

contradiction. It follows that S ∈̃ T implies |S| ∈ |T |. To establish the proposition,

consider a hereditarily countable set a, witnessed by an injection f : TC(a) → ω.

As in the proof of Proposition 1.2.12 we get a bijection g : rng(f)→ TC(a). Put

S := {〈n1, . . . , nk〉 ∈ rng(f)<ω | g(ni+1) ∈ g(ni) for i = 1, . . . , k − 1}

and observe that cS(〈〉) := TC(a) and cS(σ_n) := g(n) defines the collapse of S.

In particular Sσ_n ' Sσ_m implies g(n) = cS(σ_n) = cS(σ_m) = g(m) and

then n = m, so that S is a representation tree. Setting

S′ := {〈n1, . . . , nk〉 ∈ S | g(n1) ∈ a}

yields a representation tree with |S′| = a. Now we can apply Jäger’s result: By

[41, Lemma 7.5] there is a representation tree T which satisfies S′ ∈̃ T as well as

a certain formula Ãd(T) of second-order arithmetic. In view of a = |S′| ∈ |T | it

remains to check that |T | is indeed an admissible set. The most difficult part is to

prove the equivalence

S ' T ↔ |S| = |T |

for representation trees S and T . Note that Jäger [41, Lemma 7.7] proves this in

the theory KPlr, which is stronger than ATRset
0 (namely as strong as Π1

1−CA0);

Simpson [87, Lemma VII.3.14] gives a proof in ATRset
0 , but with a different defin-

ition of '. We have already seen that S ' T implies |S| = |T |. To prepare the

converse direction, we first show a special case: For any representation tree T and

any node τ ∈ T we have

∀n,m∈ω(τ_n ∈ T ∧ τ_m ∈ T ∧ cT (τ_n) = cT (τ_m)→ n = m).

Assume that τ is a counter-example which is minimal with respect to the transit-

ive closure of rT . Consider witnesses n,m for the failure at τ . We want to deduce

the contradiction n = m. By the definition of representation trees it suffices to

construct an isomorphism g : Tτ_n → Tτ_m. We do this by recursion on se-

quences in Tτ_n, justified by Corollary 1.2.11 and Proposition 1.2.2. Throughout

the construction we will ensure

cT (τ_n_σ) = cT (τ_m_g(σ)).

56 1. PRELIMINARIES: THE BASE THEORY

Note that this holds at g(〈〉) = 〈〉 by the assumption on τ . Now assume that g(σ)

is already defined. For each k with σ_k ∈ Tτ_n we have

cT (τ_n_σ_k) ∈ cT (τ_n_σ) =

= cT (τ_m_g(σ)) = {cT (τ_m_g(σ)_l) | g(σ)_l ∈ Tτ_m}.

In other words, there is an l ∈ ω with g(σ)_l ∈ Tτ_m and

cT (τ_n_σ_k) = cT (τ_m_g(σ)_l).

Crucially, the minimality of τ ensures that this number l is unique. It can then be

computed by a primitive recursive function: Simply form the set of all l ∈ ω with

the required property and extract its only element. In the recursion step we can

thus put g(σ_k) := g(σ)_l for said number l. Injectivity is ensured by the fact

that k 6= k′ implies cT (τ_n_σ_k) 6= cT (τ_n_σ_k′), again by minimality of τ .

Surjectivity is straightforward. Now we can show that |S| = |T | implies S ' T .

Indeed, the construction of an isomorphism f : S → T is very similar to the

construction of g : Tτ_n → Tτ_m: In each step, make the unique choice that

satisfies cS(σ) = cT (f(σ)). Using the equivalence between ' and = we also get

S ∈̃ T ↔ |S| ∈ |T |

for representation trees S, T . Next, call a representation tree T transitive if σ ∈ T
implies Tσ ∈̃ T . In that case we have |Tσ| ∈ |T |, and it is easy to see that |T | is a

transitive set. To each (meta) formula ϕ of pure set theory and any representation

tree T Jäger [41, Section 7] associates a formula ϕ(T) of second-order arithmetic.

As above, we identify ϕ(T) with its natural translation into the language of set

theory. For ϕ(x1, . . . , xn) as described we can show that

ϕ(T)(Tσ1 , . . . , Tσn)↔ |T | � ϕ(|Tσ1 |, . . . , |Tσn |)

holds for any transitive representation tree T and all nodes σ1, . . . , σn ∈ T . This

follows by (meta) induction on ϕ, using the above equivalences between ' resp. ∈̃
and = resp. ∈ to cover the base cases. To complete the proof, let us now show

that |T | is an admissible set if the second-order formula Ãd(T) holds. In particular,

this formula demands that T is a transitive tree, so that |T | is a transitive set.

Also, Ãd(T) states TrΠ(T, 〈〉, ϕ) for all KP-axioms ϕ in the sense of the object

language, using a certain truth definition TrΠ(·). By the truth condition (Tr4) in

[41, Section 7] we get ϕ(T) for each KP-axiom in the sense of the meta language.

1.4. CONNECTING WITH SECOND-ORDER ARITHMETIC 57

The above equivalence yields |T | � ϕ. By Proposition 1.3.13 these standard axioms

(i.e. axioms in the sense of the meta theory) suffice to make |T | admissible. �

Adding the axiom of countability we can summarize these (known) results as

follows:

Corollary 1.4.13 (ATRset
0). The following are equivalent:

(i) The statement that each set is an element of some admissible set.

(ii) The principle of Π1
1-comprehension.

Concerning (ii), recall that there is an instance of Π1
1-comprehension which

implies all other instances.

Proof. The direction from (i) to (ii) is a weakening of Proposition 1.4.11.

Concerning the other direction, as ATRset
0 proves the existence of transitive clos-

ures and states that all sets are countable, it shows that all sets are hereditarily

countable. Then the claim holds by Proposition 1.4.12. �

CHAPTER 2

Type-Two Well-Ordering Principles

In this chapter we define the central new notions of the present thesis: the

abstract, the predicative, and the computable Bachmann-Howard principle. The

name derives from the fact that these principles relativize the construction of the

Bachmann-Howard ordinal. Crucially, our Bachmann-Howard principles are well-

ordering principles of type-two. This distinguishes them from Rathjen and Valen-

cia Vizcáıno’s [71] type-one well-ordering principle X 7→ ϑX , which is also based

on the Bachmann-Howard construction.

Section 2.1 is devoted to the abstract Bachmann-Howard principle. The latter

states that any proto-dilator α 7→ Tα admits an ordinal α with a Bachmann-Howard

collapse ϑ : Tα
BH−−→ α. For a detailed explanation of these notions we refer to the

introduction of the thesis. To release the full power of the abstract Bachmann-

Howard principle we need a particularly strong proto-dilator. In the second half

of Section 2.1 we will thus transform a given proto-dilator α 7→ Tα into a proto-

dilator α 7→ ε(T)α. Intuitively, ε(T)α contains an uncountable ε-number for each

element of Tα. This strengthening allows us to recover the usual construction of

the Bachmann-Howard ordinal. It will be needed to prove the direction (iii)⇒(v)

of Theorem 4.4.6.

We begin Section 2.2 by introducing dilators and prae-dilators. Note that the

latter are not quite equivalent to Girard’s pre-dilators (thus the different spelling).

More details can be found in Remark 2.2.2. In the rest of the section we construct

the relativized Bachmann-Howard order BH(T) needed to state the predicative

Bachmann-Howard principle. As explained in the introduction of the thesis, BH(T)

will be defined as a direct limit of approximations BHn(T). As a starting point we

choose BH0(T) = ε0 (other reasonable choices would be ω or even 0). Following

Rathjen and Valencia Vizcáıno’s [71] construction of relativized Bachmann-Howard

ordinals (but with one crucial difference, see Remark 2.2.4) we build a term sys-

tem ϑ(TBH0(T)). The structure of these terms immediately yields a sufficiently

order-preserving collapse of ϑ(TBH0(T)) into its “countable” part ϑ(TBH0(T)) ∩ Ω.

Thus we continue the construction with BH1(T) = ϑ(TBH0(T)) ∩ Ω, recursively

59

60 2. TYPE-TWO WELL-ORDERING PRINCIPLES

building term systems BHn(T) for all n ∈ N. The choice of BH0(T) yields an

embedding i0 : BH0(T) → ϑ(TBH0(T)) ∩ Ω = BH1(T). Using the fact that T is

functorial we get Ti0 : TBH0(T) → TBH1(T), and then

i1 : BH1(T) = ϑ(TBH0(T)) ∩ Ω→ ϑ(TBH1(T)) ∩ Ω = BH2(T).

Recursively one obtains embeddings in : BHn(T)→ BHn+1(T) for all n ∈ N. Now

BH(T) can be defined as the direct limit of the resulting system, as promised. The

construction also yields embeddings BHn(T)→ ϑ(TBHn(T)) ∩ Ω→ ϑ(TBH(T)) ∩ Ω.

These glue to an embedding of BH(T) into ϑ(TBH(T)) ∩ Ω, which will be an iso-

morphism because T preserves direct limits. As before, the structure of the term

system ϑ(TBH(T)) yields a collapse

ϑ(TBH(T))→ ϑ(TBH(T)) ∩ Ω ∼= BH(T),

so that BH(T) is the desired fixed-point. The predicative Bachmann-Howard prin-

ciple asserts that this fixed-point is well-founded. We will see that the construction

of BH(T) can be formalized in primitive recursive set theory. As that theory is

predicatively reducible this justifies the specification “predicative”. To assess the

strength of the predicative Bachmann-Howard principle, recall the result of Rathjen

and Valencia Vizcáıno [71]: If any set is contained in an ω-model of bar induction

then X 7→ ϑ(X) is a well-ordering principle (of type one). Assuming that T pre-

serves well-foundedness as well we infer that ϑ(TBHn(T)) ∩ Ω = BHn+1(T) is well-

founded if BHn(T) is. So inductively, all orders BHn(T) are well-founded. The

additional strength of our type-two well-ordering principle seems to lie in the fact

that well-foundedness is preserved in the direct limit. Recall that this is not the

case in general (indeed, any linear order is the direct limit of its finite suborders).

In the introduction to [29], Girard writes that “[t]he general aim of Π1
2-logic

[i.e. the study of dilators and related concepts] is to rebuild some parts of mathem-

atics [. . .] by making more explicit the finitary contents of such and such construc-

tion of the actual infinite kind.” There seem to be two ways to do this: Either one

compares finitistic and infinitary concepts in a setting which can officially speak

about both. Or one works in a finitist setting and treats infinite constructions as

ideal objects, which are not officially part of the ontology. In Section 2.3 we de-

velop both these approaches. First, we show that dilators are determined by their

restrictions to the category of natural numbers. This result is due to Girard [28,

Remark 2.1.6(ii)], but we find it very fruitful to re-work it in primitive recursive

set theory. Note that Girard [28, Remarks 2.3.5 and 2.3.6] himself hints at the

2.1. AN ABSTRACT BACHMANN-HOWARD PRINCIPLE 61

connection between dilators and primitive recursive set functions. Our present-

ation is greatly simplified by using an alternative characterization of dilators in

terms of supports (cf. Remark 2.2.2). As a result, we learn that the predicative

Bachmann-Howard principle can be given as a single statement, rather than an

axiom scheme (see Proposition 2.3.10). In the second half of Section 2.3 we study

dilators in the subtheory RCA0 of second-order arithmetic. This may be closer to

Girard’s original intention, who stresses the “‘finitistic’ character” of dilators (see

[28, Section 0.2.1], as well as the introduction of [29]). To formulate the comput-

able Bachmann-Howard principle we define a term system ϑ(T) which corresponds

to the order ϑ(TBH(T)) considered above. The point is that ϑ(T) is computable

relative to the coded prae-dilator T ⊆ N. Thus RCA0 proves that ϑ(T) exists

as a linear order. The computable Bachmann-Howard principle states that this

order is well-founded. More information on the definition of ϑ(T) can be found in

the introduction of the thesis. To conclude Section 2.3 we use a result of Rathjen

and Valencia Vizcáıno to show that the computable Bachmann-Howard principle

implies arithmetical transfinite recursion.

In Section 2.4 we prove the directions (ii)⇒(iii)⇒(v)⇒(iv) of Theorem 4.4.6:

First, we deduce the abstract Bachmann-Howard principle from the existence of ad-

missible sets. Our argument is similar to the usual construction of the Bachmann-

Howard ordinal (cf. Remark 2.1.6) and in particular to Rathjen’s well-ordering

proof in [61, Section 4]. Assuming the axiom of countability, we then show that the

abstract Bachmann-Howard principle implies its computable counterpart, which in

turn implies the predicative version.

2.1. An Abstract Bachmann-Howard Principle

In the first part of this section we introduce the new notions of proto-dilator and

Bachmann-Howard collapse, and the abstract Bachmann-Howard principle. In the

second part we build particularly strong proto-dilators, essentially reconstructing

a notation system for the Bachmann-Howard ordinal.

To understand the formal side of the following definitions, recall that our base

theory PRSω contains a symbol for each primitive recursive set function. Accord-

ing to Convention 1.2.9 the parameter ω is always allowed. While second-order

quantification is not available, we can use Currying to quantify over paramet-

rized families of functions: Given a primitive recursive function (u, x) 7→ F (u, x),

62 2. TYPE-TWO WELL-ORDERING PRINCIPLES

quantification over the family (x 7→ F (u, x))u∈V can be implemented as first-order

quantification over the parameter u.

Definition 2.1.1. Consider a primitive recursive function

T : V×Ord→ V, (u, α) 7→ T uα .

We say that T u, for a fixed value of the parameter u, is a proto-dilator if the

following holds:

(i) For any ordinal α, the value T uα = (T uα , <Tuα) is a well-order.

(ii) If α < β then we have T uα ⊆ T uβ and <Tuα = <Tuβ ∩ (T uα × T uα) (i.e. T uα is a

sub-order of T uβ , but not necessarily an initial segment).

(iii) We have T uλ =
⋃
γ<λ T

u
γ for any limit ordinal λ.

The (new) notion of proto-dilator is a non-functorial version of Girard’s [28]

notion of dilator: Condition (ii) demands “functoriality” for inclusion maps α ↪→ β,

but not for arbitrary order embeddings α → β. As we shall see, proto-dilators

keep precisely those properties that are needed for the abstract Bachmann-Howard

principle. We remark that Girard’s notion of prae-dilator (cf. Definition 2.2.1

below) weakens the notion of dilator in a completely different way.

A proto-dilator T u can be seen as approximating the class-sized well-order

Tu =
⋃

α∈Ord

T uα .

Note that Tu is a Σ1-class. In primitive recursive set theory it is better to work

with the primitive recursive class

Tu = {(α, σ) |σ ∈ T uα ∧ ∀γ<α σ /∈ T uγ },

as in the preprint [21]. In the present thesis, the interpretation of a proto-dilator

as a class-sized well-order will not play an official role. Indeed, the process of

approximation is as important as the approximated class. This is made explicit

in the following definition. Note that if α > 0, then σ ∈ T uα implies σ ∈ T uγ+1 for

some γ < α, using condition (iii) in the definition of proto-dilator.

Definition 2.1.2. Given a proto-dilator T u, we define rank functions

| · |Tuα : T uα → max{α, 1}

by setting

|σ|Tuα :=

min{γ < α |σ ∈ T uγ+1} if α > 0,

0 if α = 0.

2.1. AN ABSTRACT BACHMANN-HOWARD PRINCIPLE 63

Observe that we have

min{γ < α |σ ∈ T uγ+1} =
⋃
{γ < α |σ ∈ T uγ+1 ∧ ∀δ<γ σ /∈ T uδ+1}.

Thus, by Corollary 1.1.10 and Proposition 1.1.4, the function (u, α, σ) 7→ |σ|Tuα is

primitive recursive. From Proposition 1.2.2 we learn that | · |Tuα : T uα → max{α, 1}
is a set-sized function, and that (u, α) 7→ | · |Tuα is a primitive recursive operation.

As we will see in Example 2.1.5, it is possible that the order type of T uα is always

bigger than α. Thus we cannot expect to get an order embedding T uα → α. Instead,

the construction of the Bachmann-Howard ordinal suggests the following notion of

“mostly” order-preserving collapse. We are particularly influenced by Rathjen’s

notation system, as presented in [72, Section 1].

Definition 2.1.3. Consider a proto-dilator T u and an ordinal α. A function

ϑ : T uα → α is called a Bachmann-Howard collapse if the following conditions are

satisfied for all σ, τ ∈ T uα :

(i) σ <Tuα τ ∧ |σ|Tuα < ϑ(τ) ⇒ ϑ(σ) < ϑ(τ),

(ii) |σ|Tuα < ϑ(σ).

We write ϑ : T uα
BH−−→ α to express that these conditions hold.

Condition (i) expresses that the order is preserved under a side condition. Note

that the side condition would always fail if ϑ was the constant zero function. This

trivial choice is excluded by condition (ii).

Definition 2.1.4. The abstract Bachmann-Howard principle is the collection

of statements

∀u(“T u is a proto-dilator”→ ∃α∃ϑ ϑ : T uα
BH−−→ α)

for all primitive recursive set functions (u, α) 7→ T uα .

A proto-dilator is a special kind of type-one well-ordering principle: Each or-

dinal α (i.e. essentially each well-order) is transformed into a well-order T uα . Thus

the abstract Bachmann-Howard principle can be seen as a type-two well-ordering

principle: It takes the type-one well-ordering principle T u as input and yields a cer-

tain well-order α as output. Virtues and shortcomings of the abstract Bachmann-

Howard principle have been discussed in the introduction of the thesis. Concerning

logical complexity, for each primitive recursive set function (u, α) 7→ T uα , the state-

ment that T u is a proto-dilator can be expressed by a Π1-formula in the language

Lpr of primitive recursive set theory, with free variable u. Given a proto-dilator T u

64 2. TYPE-TWO WELL-ORDERING PRINCIPLES

and an ordinal α, the statement that ϑ : T uα → α is a Bachmann-Howard collapse is

expressed by a bounded Lpr-formula. In other words, being a Bachmann-Howard

collapse is a primitive recursive property (see Proposition 1.1.9). Thus each in-

stance of the abstract Bachmann-Howard principle is a Π2-statement. Recall that

Π2-statements of set theory correspond to Π1
3-statements of second-order arithmetic

(see [87, Theorem VII.3.24]). Theorem 4.4.6 will show that the abstract Bachmann-

Howard principle is equivalent to Π1
1-comprehension, which is a Π1

3-statement as

well. The following illustrates some important points:

Example 2.1.5. Define a proto-dilator α 7→ Tα by setting

Tα := ωα ∪ {Ω},

where ωα is ordered as usual and Ω is a new biggest element. For α < β the

inclusion of Tα into Tβ can be pictured as follows:

0 ωα Ω

ωβ

Looking at one order Tα individually, it is natural to interpret Ω as the ordinal ωα.

However, when we consider α 7→ Tα as a compatible family, it is better to think of Ω

as the order-type of the ordinals. In other words, we can think of T as approxim-

ating the class-sized well-order Ord∪{Ω}. The same class could be approximated

by α 7→ α ∪ {Ω}, but α 7→ ωα ∪ {Ω} has the “stronger” rank functions

|σ|Tα =

min{γ < α |β < ωγ+1} if σ = β < ωα (and α > 0),

0 if σ = Ω (or α = 0).

In particular, observe |ωβ|Tα = β for β < α. As required of a proto-dilator, we do

have

Tλ = ωλ ∪ {Ω} =
⋃
γ<λ

ωγ ∪ {Ω} =
⋃
γ<λ

Tγ

for any limit ordinal λ. However, on the level of order types we have

otyp(Tλ) = ωλ + 1 > ωλ = sup
γ<λ

(ωγ + 1) = sup
γ<λ

otyp(Tγ).

Thus the function α 7→ Tα is continuous in some sense, but not with respect to the

order topology on the ordinals (cf. the discussion in [28, Section 0.2.7]). In other

words, α 7→ otyp(Tα) is not a normal function. As otyp(Tα) = ωα + 1 > α holds

2.1. AN ABSTRACT BACHMANN-HOWARD PRINCIPLE 65

for all α, there can be no fully order-preserving collapse of Tα into α. Nevertheless,

we can define a Bachmann-Howard collapse ϑ : Tε1
BH−−→ ε1 by setting

ϑ(β) = β + 1 for β < ωε1 = ε1,

ϑ(Ω) = ε0.

To see that condition (i) of Definition 2.1.3 is satisfied, note that the side condition

|β|Tε1 < ϑ(Ω) = ε0 implies β < ω|β|Tε1 +1 < ε0, and thus ϑ(β) = β + 1 < ε0 = ϑ(Ω)

as required. The inequalities ε0 <Tε1 Ω and ϑ(ε0) > ϑ(Ω) are compatible, because

the side condition is violated by |ε0|Tε1 = ε0 6< ϑ(Ω). As for condition (ii), in

view of β < ωβ+1 we do have |β|Tε1 ≤ β < ϑ(β). To hint at the strength of

the abstract Bachmann-Howard principle, let us consider an arbitrary Bachmann-

Howard collapse ϑ : Tα
BH−−→ α (still for Tα = ωα ∪ {Ω}). We show that α and ϑ(Ω)

must be ε-numbers. First, observe that ϑ �ωα is order-preserving: Given ordinals

β < γ < ωα, condition (ii) of Definition 2.1.3 yields |β|Tα ≤ |γ|Tα < ϑ(γ). Together

with β <Tα γ, we infer ϑ(β) < ϑ(γ) by condition (i). As for any order-preserving

function, we inductively get γ ≤ ϑ(γ) for all γ < ωα. In view of rng(ϑ) ⊆ α this

forces ωα = α. Next, we show that ϑ(Ω) must be a limit ordinal: Condition (ii)

ensures 0 = |Ω|Tα < ϑ(Ω). Given β < ϑ(Ω), observe that β + 1 < ωβ+1 implies

|β+ 1|Tα ≤ β < ϑ(Ω). Together with β+ 1 <Tα Ω we get β+ 1 ≤ ϑ(β+ 1) < ϑ(Ω),

by condition (i). To conclude that ϑ(Ω) is an ε-number it remains to show that

β < ϑ(Ω) implies ωβ < ϑ(Ω). Indeed, the assumption ensures |ωβ|Tα = β < ϑ(Ω).

Together with ωβ <Tα Ω condition (i) yields ωβ ≤ ϑ(ωβ) < ϑ(Ω), as desired. While

ϑ(Ω) has to be an ε-number, the values ϑ(β) for β < ωα are not very informative.

The reason is that there are many order embeddings of ωα = α into α, many of

which qualify as a choice for ϑ�ωα. On the other hand, there is no order embedding

of ωα ∪ {Ω} ∼= ωα + 1 into α.

The example shows that there may not be a fully order-preserving collapse of Tα

into α. In contrast, we now prove that a Bachmann-Howard collapse does always

exist. The following argument adapts the usual construction of the Bachmann-

Howard ordinal (see e.g. [72, Lemma 1.1]). It is particularly easy to state in a

strong base theory, relying on cardinality arguments. In Section 2.4 we will see

that a similar proof goes through on the basis of an admissible set A: The elements

resp. sub-classes of A will play the role of the countable resp. uncountable sets.

66 2. TYPE-TWO WELL-ORDERING PRINCIPLES

Remark 2.1.6. Working in ZFC, consider a proto-dilator T u. In particu-

lar T u is primitive recursive, say with hereditarily countable parameter u. It fol-

lows that T uα is countable for any α < ℵ1 (by the Gödel-Lévy Theorem this holds

for any Σ1-definable function, cf. the introduction of [44]). We want to define a

Bachmann-Howard collapse ϑ : T uℵ1
→ ℵ1 by recursion over the well-order T uℵ1

.

Assuming that the values ϑ(σ) are already defined for σ <Tuℵ1
τ we put

C(τ, α) := {|τ |Tuℵ1
} ∪ {ϑ(σ) |σ <Tuℵ1

τ and |σ|Tuℵ1
< α} ⊆ ℵ1

for all α < ℵ1. By the definition of ranks, |σ|Tuℵ1
< α implies σ ∈ T uα . As T uα

is countable this means that C(τ, α) is countable as well. So we can construct a

sequence 0 = α0 < α1 < · · · < ℵ1 with C(τ, αk) ⊆ αk+1 for each k ∈ ω. Setting

α := supk∈ω αk < ℵ1 one easily sees

C(τ, α) =
⋃
k∈ω

C(τ, αk) ⊆ sup
k∈ω

αk+1 = α.

We can thus set

ϑ(τ) := min{α < ℵ1 |C(τ, α) ⊆ α},

completing the recursive definition of ϑ : T uℵ1
→ ℵ1. It remains to verify that this

is a Bachmann-Howard collapse: For σ, τ ∈ T uℵ1
with σ <Tuℵ1

τ and |σ|Tuℵ1
< ϑ(τ)

we get ϑ(σ) ∈ C(τ, ϑ(τ)) ⊆ ϑ(τ), i.e. ϑ(σ) < ϑ(τ), as required by condition (i) of

Definition 2.1.3. Also, the construction gives |τ |Tuℵ1
∈ C(τ, ϑ(τ)) ⊆ ϑ(τ), which is

condition (ii).

The following property of Rathjen’s notation system is preserved:

Lemma 2.1.7. Any Bachmann-Howard collapse ϑ : T uα
BH−−→ α is injective.

Proof. Consider two different elements σ, τ ∈ T uα . As T uα is linearly ordered we

may assume σ <Tuα τ . If we have |σ|Tuα < ϑ(τ) then condition (i) of Definition 2.1.3

yields ϑ(σ) < ϑ(τ). If we have |σ|Tuα ≥ ϑ(τ) then condition (ii) implies ϑ(τ) < ϑ(σ).

In both cases the values ϑ(σ) and ϑ(τ) are different, as required. �

The next remark shows that axiom beta (see Definition 1.4.2) is encoded in our

formulation of the abstract Bachmann-Howard principle, at least for linear orders.

The predicative Bachmann-Howard principle of the next section will not share this

somewhat dubious feature.

Remark 2.1.8. Put T uα := u, independently of α. If u = (u,<u) is a well-order

then T u is a proto-dilator. As we have T uα = T u0 for all α, we see that all ranks are

2.1. AN ABSTRACT BACHMANN-HOWARD PRINCIPLE 67

zero. By the abstract Bachmann-Howard principle, assume that there is a collapse

ϑ : T uα
BH−−→ α for some ordinal α. For σ, τ ∈ T uα we have

|σ|Tuα = 0 = |τ |Tuα < ϑ(τ),

using condition (ii) of Definition 2.1.3. Thus σ <Tuα τ implies ϑ(σ) < ϑ(τ), by

condition (i). In other words, ϑ is a fully order-preserving embedding of u into α.

Write rng(ϑ) for the range of ϑ. In Section 1.2 we have seen that the transitive

collapse c : rng(ϑ)→ V with

c(γ) = {c(β) |β ∈ rng(ϑ) and β < γ}

for all γ ∈ rng(ϑ) is available in primitive recursive set theory. Then the function

f := c ◦ ϑ : u→ V satisfies

f(τ) = {f(σ) |σ <u τ}

for all τ ∈ u, making it the collapse demanded by axiom beta.

In the functorial setting of the next section, it will be useful to replace ranks

by finite sets of “supports”. The formulation of the abstract Bachmann-Howard

principle is more elegant in terms of ranks, as these are fully determined by the func-

tion α 7→ T uα . We now show that a formulation in terms of supports is equivalent:

Definition 2.1.9. Consider primitive recursive functions

T : V×Ord→ V, (u, α) 7→ T uα ,

supp : V×Ord→ V, (u, α) 7→ suppuα .

Fix a value of the parameter u and assume that T u is a proto-dilator. We say that

suppu is a support for T u if the following holds:

(i) For any ordinal α, the value suppuα is a function from T uα to [α]<ω (the set

of finite subsets of α, see Section 1.2).

(ii) For any σ ∈ T uβ and any α < β we have

suppuβ(σ) ⊆ α ⇒ σ ∈ T uα .

Note that the definition of proto-dilator ensures T uα ⊆ T uβ .

(iii) If α < β then suppuα is the restriction of suppuβ to T uα .

Observe that the condition T uλ =
⋃
γ<λ T

u
γ in the definition of proto-dilator is

automatic if one has a support: Given σ ∈ T uλ , the finite set suppuλ(σ) ⊆ λ will be

contained in some γ < λ, which then implies σ ∈ T uγ .

68 2. TYPE-TWO WELL-ORDERING PRINCIPLES

Lemma 2.1.10. Consider a proto-dilator T u with support suppu. For any func-

tion ϑ : T uα → α the following are equivalent:

(i) The function ϑ is a Bachmann-Howard collapse.

(ii) For all σ, τ ∈ T uα we have ϑ(σ) > 0, as well as

• σ <Tuα τ ∧ suppuα(σ) ⊆ ϑ(τ) ⇒ ϑ(σ) < ϑ(τ),

• suppuα(σ) ⊆ ϑ(σ).

Proof. The crucial observation is

|σ|Tuα = max(suppuα(σ) ∪ {0}).

For suppuα(σ) = ∅ ⊆ 0 (in particular for α = 0) the definition of support yields

σ ∈ T u0 and thus |σ|Tuα = 0. For suppuα(σ) 6= ∅ (which implies α > 0) we get

|σ|Tuα ≤ γ ⇔ σ ∈ T uγ+1 ⇔ suppuα(σ) = suppuγ+1(σ) ⊆ γ + 1 ⇔

⇔ max(suppuα(σ) ∪ {0}) ≤ γ.

As a consequence, |σ|Tuα < ϑ(τ) is equivalent to suppuα ⊆ ϑ(τ), provided that we

have ϑ(τ) > 0. Note that ϑ(τ) > 0 is automatic if ϑ is a Bachmann-Howard

collapse, because of the condition ϑ(τ) > |τ |Tuα . Now the equivalence between (i)

and (ii) is immediate. �

We have seen a relatively simple proto-dilator in Example 2.1.5. It admitted a

Bachmann-Howard collapse for the ordinal ε1, which falls dramatically short of the

actual Bachmann-Howard ordinal. In the rest of this section we construct a much

stronger proto-dilator ε(T)u, relative to a given proto-dilator T u. This prepares

the predicative Bachmann-Howard principle of the next section, and ultimately the

construction of admissible sets. Intuitively, the order ε(T)uα consists of ε-numbers

Eσ > Ω ≥ α for all σ ∈ T uα , and of the ordinals in between. Formally, we begin

with the following preliminary term systems:

Definition 2.1.11. Consider a primitive recursive function (u, α) 7→ T uα . Given

values of u and α, assume that T uα = (T uα , <Tuα) is a linear order. Then ε0(T)uα is

defined as the following set of terms:

(i) We have terms 0,Ω ∈ ε0(T)uα.

(ii) For each ε-number γ < α we have a term eγ ∈ ε0(T)uα.

(iii) For each element σ ∈ T uα we have a term Eσ ∈ ε0(T)uα.

(iv) If t0, . . . , tn are terms in ε0(T)uα then so is the expression ωt0 + · · ·+ ωtn .

2.1. AN ABSTRACT BACHMANN-HOWARD PRINCIPLE 69

Note that this is an inductive definition with closure ordinal ω, similar to the

construction of M -formulas in Section 1.3. Thus the function (u, α) 7→ ε0(T)uα is

primitive recursive. Also, the stages of the inductive definition yield a notion of

height for ε0(T)uα-terms, as in the proof of Lemma 1.3.2. Recursion over this height

can be used to define further functions, such as the primitive recursive family of

length functions

Luα : ε0(T)uα → ω

with

Luα(0) = Luα(Ω) = Luα(eγ) = Luα(Eσ) = 0,

Luα(ωt0 + · · ·+ ωtn) = Luα(t0) + · · ·+ Luα(tn) + 1.

Using these lengths we single out ordered sets ε(T)uα ⊆ ε0(T)uα of terms in “Cantor

normal form”:

Lemma 2.1.12. There is a primitive recursive function

(u, α) 7→ (ε(T)uα, <ε(T)uα
)

such that <ε(T)uα
is a binary relation on ε(T)uα ⊆ ε0(T)uα and the following holds:

(i) We have 0,Ω ∈ ε(T)uα, as well as eγ ,Eσ ∈ ε(T)uα for any ε-number γ < α

resp. any element σ ∈ T uα .

(ii) A term ωt0 + · · · + ωtn ∈ ε0(T)uα lies in ε(T)uα if and only if we have

{t0, . . . , tn} ⊆ ε(T)uα and one of the following conditions is satisfied:

• Either we have n = 0 and t0 is not of the form Ω, eγ or Eσ;

• or we have n > 0 and tn ≤ε(T)uα
· · · ≤ε(T)uα

t0 (where s ≤ε(T)uα
t means

s <ε(T)uα
t ∨ s = t, the latter denoting syntactic equality).

For s, t ∈ ε(T)uα we have s <ε(T)uα
t if and only if one of the following holds:

(i) s = 0 and t 6= 0;

(ii) s = eγ and

• either t is of the form Ω,Eτ or eδ with γ < δ,

• or we have t = ωt0 + · · ·+ ωtn with s ≤ε(T)uα
t0;

(iii) s = Ω and

• either t is of the form Eτ ,

• or we have t = ωt0 + · · ·+ ωtn with s ≤ε(T)uα
t0;

(iv) s = Eσ and

• either t is of the form Eτ with σ <Tuα τ ,

• or we have t = ωt0 + · · ·+ ωtn with s ≤ε(T)uα
t0;

70 2. TYPE-TWO WELL-ORDERING PRINCIPLES

(v) s = ωs0 + · · ·+ ωsm and

• either t is of the form Ω, eδ or Eτ and s0 <ε(T)uα
t,

• or we have t = ωt0 + · · ·+ ωtn and one of the following holds:

– m < n and si = ti for all i ≤ m,

– there is a number j ≤ min{m,n} with sj <ε(T)uα
tj and si = ti

for all i < j.

Furthermore, these conditions determine ε(T)uα and <ε(T)uα
uniquely.

Proof. The idea is to decide r ∈ ε(T)uα and s <ε(T)uα
t by simultaneous recur-

sion on Luα(r) resp. Luα(s) + Luα(t). In fact, everything can be formulated in terms

of the relation <ε(T)uα
, as r ∈ ε(T)uα should be equivalent to r = 0∨ 0 <ε(T)uα

r. We

will describe <ε(T)uα
via its characteristic function χuα. Formally, we define

χ :
∏

(u,α)∈V×Ord

ε0(T)uα × ε0(T)uα → {0, 1}, (u, α, 〈s, t〉) 7→ χuα(s, t)

by the recursion principle from Proposition 1.2.10. For this purpose we introduce

the “rank function”

R :
∏

(u,α)∈V×Ord

ε0(T)uα × ε0(T)uα → ω,

R(u, α, 〈s, t〉) := Luα(s) + Luα(t)

and the “predecessor function”

P :
∏

(u,α)∈V×Ord

ε0(T)uα × ε0(T)uα → V,

P (u, α, 〈s, t〉) := {〈s′, t′〉 ∈ ε0(T)uα × ε0(T)uα |Luα(s′) + Luα(t′) < Luα(s) + Luα(t)}.

The latter is primitive recursive by Corollary 1.1.10. For 〈s′, t′〉 ∈ P (u, α, 〈s, t〉)
we have R(u, α, 〈s′, t′〉) < R(u, α, 〈s, t〉) by definition. In this situation, Proposi-

tion 1.2.10 allows us to construct χ by recursion, appealing to χuα � P (u, α, 〈s, t〉)
in order to define the value χuα(s, t). It is straightforward to implement the clauses

from the lemma in this form. For example, ωt0 +ωt1 ∈ ε(T)uα should be equivalent

to
∧
i=0,1 ti ∈ ε(T)uα ∧ t1 ≤ε(T)uα

t0, which translates into

χuα(0, ωt0 + ωt1) = 1 ⇔
∧
i=0,1

(ti = 0 ∨ χuα(0, ti) = 1) ∧ (t0 = t1 ∨ χuα(t1, t0) = 1).

This equivalence qualifies as a recursive clause for χ, because we have

Luα(0) + Luα(ti) ≤ Luα(t1) + Luα(t0) < Luα(0) + Luα(ωt0 + ωt1).

2.1. AN ABSTRACT BACHMANN-HOWARD PRINCIPLE 71

As a second example, Ω <ε(T)uα
ωt0 + ωt1 should be equivalent to the statement

ωt0 + ωt1 ∈ ε(T)uα ∧ Ω ≤ε(T)uα
t0, which becomes

χuα(Ω, ωt0 + ωt1) = 1 ⇔ χuα(0, ωt0 + ωt1) ∧ (Ω = t0 ∨ χuα(Ω, t0) = 1) ⇔

⇔
∧
i=0,1

(ti = 0∨χuα(0, ti) = 1)∧(t0 = t1∨χuα(t1, t0) = 1)∧(Ω = t0∨χuα(Ω, t0) = 1).

The second equivalence qualifies as a recursive clause for χ. Note that we cannot

take the first equivalence, because of 〈0, ωt0 +ωt1〉 /∈ P (u, α, 〈Ω, ωt0 +ωt1〉). Having

constructed χ, we set

ε(T)uα := {r ∈ ε0(T)uα | r = 0 ∨ χuα(0, r) = 1},

<ε(T)uα
:= {〈s, t〉 ∈ ε0(T)uα × ε0(T)uα |χuα(s, t) = 1}.

Again, Corollary 1.1.10 tells us that the maps (u, α) 7→ ε(T)uα and (u, α) 7→<ε(T)uα

are primitive recursive. The conditions from the lemma hold by construction. To

establish uniqueness, consider a competitor (ε∗(T)uα, <ε∗(T)uα
) which satisfies the

same clauses. By induction on n one verifies, simultaneously, that we have

r ∈ ε∗(T)uα ⇔ r ∈ ε(T)uα,

s <ε∗(T)uα
t ⇔ s <ε(T)uα

t

for all r, s, t ∈ ε0(T)uα with Luα(r) ≤ n resp. Luα(s) + Luα(t) ≤ n. �

It is standard to establish the following (cf. [79, Theorem 14.2]):

Lemma 2.1.13. If (T uα , <Tuα) is a linear order then so is (ε(T)uα, <ε(T)uα
).

Proof. First, refute s <ε(T)uα
s by induction on Luα(s). Next, use induction on

Luα(r) + Luα(s) + Luα(t) to show that r <ε(T)uα
s and s <ε(T)uα

t imply r <ε(T)uα
t.

Finally, establish s <ε(T)uα
t∨ s = t∨ t <ε(T)uα

s by induction on Luα(s) +Luα(t). �

The next result is more subtle, but also familiar from proof theory:

Proposition 2.1.14. If (T uα , <Tuα) is a well-order then so is (ε(T)uα, <ε(T)uα
).

We will use a syntactic construction of Gentzen to prove the result in primitive

recursive set theory. Before, let us point out a simple semantic argument, which

relies on axiom beta: The latter provides an embedding c : T uα → Ord. Note that

the enumerating function γ 7→ εγ of the class of ε-numbers is primitive recursive.

It is straightforward to extend the assignment eγ 7→ γ, Ω 7→ εα, Eσ 7→ εα+1+c(σ) to

an embedding of ε(T)uα into the ordinals.

72 2. TYPE-TWO WELL-ORDERING PRINCIPLES

Proof. Consider the set

X = {eγ | γ an ε-number below α} ∪ {Ω} ∪ {Eσ |σ ∈ T uα},

and let <X be the restriction of <ε(T)uα
to X. Clearly (X,<X) is a well-order.

Now (ε(T)uα, <ε(T)uα
) is the order (εX , <εX) considered by Afshari and Rathjen

in [4] (except that they work in second-order arithmetic, where X is represented

by a subset of ω; but this is not essential). According to [4, Section 5] the well-

foundedness proof for (εX , <εX), as presented in [79, Section 21], goes through in

the theory ACA+
0 of second-order arithmetic, which is considerably weaker than

primitive recursive set theory. For the reader’s convenience we reproduce the main

steps of the argument: First, observe that well-foundedness is the contrapositive of

transfinite induction, i.e. it suffices to show

Prog<ε(T)uα
(z)→ ε(T)uα ⊆ z,

where we abbreviate

Prog<ε(T)uα
(z) ≡ ∀t∈ε(T)uα

(∀s∈ε(T)uα
(s <ε(T)uα

t→ s ∈ z)→ t ∈ z).

In the following, quantifiers with bound variables r, s, t should always be read as

restricted to ε(T)uα; also, we sometimes write < at the place of <ε(T)uα
. To proceed,

one defines counterparts of ordinal addition and exponentiation to the base ω on

the term system ε(T)uα, and proves basic properties (cf. [79, Section 14]). Iterated

exponentiation is defined by ωt0 = t and ωtn+1 = ωω
t
n . It is straightforward to see

that any term s ∈ ε(T)uα is <ε(T)uα
-smaller than a term of the form ωx+1

n , with

x ∈ X, n ∈ ω and 1 := ω0. Thus it is enough to show

Prog<ε(T)uα
(z)→ ∀s<ωx+1

n
s ∈ z

for all x ∈ X and n ∈ ω. We would like to argue by induction over (x, n) ∈ X × ω
with the alphabetical ordering. As X is well-ordered, this is possible in PRSω,

provided that the induction statement is primitive recursive (as the set of counter-

examples can then be formed by Lemma 1.1.5). For fixed z, the above statement

is indeed primitive recursive (cf. Proposition 1.1.9), but in the induction step we

will have to vary z. To allow some variation while keeping the statement primitive

recursive, we use Gentzen’s jump operator

J(0, z) := z,

J(k + 1, z) := {r ∈ ε(T)uα | ∀t(∀s<t s ∈ J(k, z)→ ∀s<t+ωr s ∈ J(k, z))}.

2.1. AN ABSTRACT BACHMANN-HOWARD PRINCIPLE 73

Since all quantifiers are restricted to ε(T)uα the function J is primitive recursive. A

crucial property of these jumps is the implication

Prog<ε(T)uα
(J(k, z))→ Prog<ε(T)uα

(J(k + 1, z)).

To establish Prog<ε(T)uα
(J(k+1, z)), consider r ∈ ε(T)uα with ∀r0<r r0 ∈ J(k+1, z).

We have to deduce r ∈ J(k + 1, z), or equivalently

∀t(∀s<t s ∈ J(k, z)→ ∀s<t+ωr s ∈ J(k, z)).

For r = 0 this is immediate by Prog<ε(T)uα
(J(k, z)). Otherwise any s < t + ωr is

smaller than t + ωr0 · m, for some r0 < r and m ∈ ω. The primitive recursive

statement ∀s<t+ωr0 ·m s ∈ J(k, z) can be shown by induction on m, using the as-

sumption r0 ∈ J(k + 1, z) for the induction step. After these preparations, we can

use induction over (x, n) ∈ ({0}∪X)×ω to prove the primitive recursive statement

∀k∈ω(Prog<ε(T)uα
(J(k, z))→ ∀s<ωx+1

n
s ∈ J(k, z)).

Note that the open claim above is the special case k = 0. First consider the

induction step for n = 0, which means ωx+1
n = x+ 1. The case x = 0 is immediate.

For x > 0, any s < x is smaller than some term ωx0+1
m with {0} ∪X 3 x0 < x. As

we have (x0,m) < (x, 0) in the alphabetical ordering, we get ∀s<x s ∈ J(k, z) by

induction hypothesis. Using Prog<ε(T)uα
(J(k, z)) we obtain ∀s<x+1 s ∈ J(k, z), as

desired. Now consider the induction step for a pair of the form (x, n+1). Assuming

that we have Prog<ε(T)uα
(J(k, z)) and thus Prog<ε(T)uα

(J(k + 1, z)), the induction

hypotesis for (x, n) gives ∀s<ωx+1
n

s ∈ J(k+ 1, z), and then ωx+1
n ∈ J(k+ 1, z). The

definition of J(k + 1, z), with t = 0, yields ∀s<ωx+1
n+1

s ∈ J(k, z), as required. �

In the previous results, we have looked at the orders ε(T)uα = (ε(T)uα, <ε(T)uα
)

individually, i.e. for a fixed value of α. Let us now establish compatibility:

Proposition 2.1.15. If α 7→ T uα is a proto-dilator then so is α 7→ ε(T)uα.

Proof. Condition (i) of Definition 2.1.1 holds by the previous proposition. To

check condition (ii), consider arbitrary ordinals α < β and set

ε∗(T)uα := ε(T)uβ ∩ ε0(T)uα,

<ε∗(T)uα
:= <ε(T)uβ

∩ (ε∗(T)uα × ε∗(T)uα).

It is straightforward to see that ε∗(T)uα and <ε∗(T)uα
satisfy the defining conditions

for ε(T)uα resp. <ε(T)uα
, as given in Lemma 2.1.12. Thus the uniqueness result in

74 2. TYPE-TWO WELL-ORDERING PRINCIPLES

that lemma gives

ε(T)uα = ε∗(T)uα ⊆ ε(T)uβ,

<ε(T)uα
= <ε∗(T)uα

= <ε(T)uβ
∩ (ε(T)uα × ε(T)uα),

as required by condition (ii) of Definition 2.1.1. Concerning condition (iii), assume

that λ is a limit. By induction on terms s ∈ ε(T)uλ we see that there is a γ < λ

with s ∈ ε0(T)uγ . Together with the above we obtain s ∈ ε(T)uλ ∩ ε0(T)uγ = ε(T)uγ ,

as required. �

By Definition 2.1.2, the proto-dilator ε(T)u induces rank functions

| · |ε(T)uα
: ε(T)uα → max{α, 1}.

It will be helpful to have an explicit characterization:

Lemma 2.1.16. The rank functions | · |ε(T)uα
of the proto-dilator ε(T)u satisfy

|0|ε(T)uα
= 0, |Ω|ε(T)uα

= 0, |eγ |ε(T)uα
= γ,

|Eσ|ε(T)uα
= |σ|Tuα , |ωs0 + · · ·+ ωsn |ε(T)uα

= max
i≤n
|si|ε(T)uα

.

Proof. Straightforward from Definition 2.1.2. �

The notation system ε(T)uα contains three different kinds of “ε-numbers”, de-

noted by terms of the form eγ , Ω and Eσ, respectively. So far, they have all played

the same role. This changes with the following observation:

Lemma 2.1.17. Write α+ for the smallest ε-number bigger than or equal to α.

We can construct order isomorphisms

iα : α+ → ε(T)uα ∩ Ω := {s ∈ ε(T)uα | s <ε(T)uα
Ω}.

Proof. By recursion over the ordinals below α+ we can define iα as a function

with values in ε0(T)uα ⊇ ε(T)uα ∩ Ω:

iα(0) = 0,

iα(β) = eβ if β < α+ is an ε-number (thus β < α),

iα(β) = ωiα(β0) + · · ·+ ωiα(βn) if β = ωβ0 + · · ·+ ωβn with β > β0 ≥ · · · ≥ βn.

In the last clause, ωβ0 + · · · + ωβn refers to exponentiation and addition on the

actual ordinals; the expression ωiα(β0) + · · · + ωiα(βn) is a term in ε0(T)uα. We

2.1. AN ABSTRACT BACHMANN-HOWARD PRINCIPLE 75

transfer the length function Luα : ε0(T)uα → ω to α+, by setting L := Luα ◦ iα. It is

straightforward to verify

β < α+ ⇒ iα(β) ∈ ε(T)uα,

γ < δ < α+ ⇒ iα(γ) <ε(T)uα
iα(δ)

by simultaneous induction on L(β) resp. L(γ) + L(δ). As < and <ε(T)uα
are linear

orders, this implies that iα : α+ → ε(T)uα is an order embedding. It is easy to

check iα(β) <ε(T)uα
Ω by induction on β. By induction on s ∈ ε(T)uα ∩ Ω we show

that s lies in the range of iα: For s = 0 and s = eγ this is immediate. The cases

s = Ω and s = Eσ are excluded by s <ε(T)uα
Ω. Finally, consider a term of the

form s = ωs0 + · · · + ωsn . The induction hypothesis provides ordinals βi < α+

with si = iα(βi). Set β := ωβ0 + · · ·+ωβn < α+. Since iα is an order embedding we

get βn ≤ · · · ≤ β0. In case n = 0, the definition of ε(T)uα ensures that s0 is not of

the form eγ . This means that β0 cannot be an ε-number, so that we have β > β0.

Thus we see iα(β) = s, as desired. �

The following was foreshadowed in Example 2.1.5:

Lemma 2.1.18. Assume that α 7→ T uα and thus α 7→ ε(T)uα is a proto-dilator.

For any Bachmann-Howard collapse ϑ : ε(T)uα
BH−−→ α we have the following:

(i) If β < γ < α+ then ϑ(iα(β)) < ϑ(iα(γ)).

(ii) If γ < α+ then γ ≤ ϑ(iα(γ)).

(iii) We have α+ = α, which means that α is an ε-number.

Proof. (i) Using Lemma 2.1.16, it is straightforward to show

|iα(δ)|ε(T)uα
= min{ρ | δ < (ρ+ 1)+}

by induction on δ < α+. Thus β < γ implies |iα(β)|ε(T)uα
≤ |iα(γ)|ε(T)uα

. To-

gether with Definition 2.1.3(ii) we obtain |iα(β)|ε(T)uα
< ϑ(iα(γ)). As iα is an

order embedding we also have iα(β) <ε(T)uα
iα(γ). Then Definition 2.1.3(i) yields

ϑ(iα(β)) < ϑ(iα(γ)), as desired.

(ii) Using (i), we inductively get

ϑ(iα(γ)) ≥ sup{ϑ(iα(β)) + 1 |β < γ} ≥ sup{β + 1 |β < γ} = γ.

(iii) In view of rng(ϑ) ⊆ α we have β ≤ ϑ(iα(β)) < α for any β < α+. �

The following property of the usual Bachmann-Howard construction can also

be recovered, at least for terms above Ω:

76 2. TYPE-TWO WELL-ORDERING PRINCIPLES

Lemma 2.1.19. Assume that ϑ : ε(T)uα
BH−−→ α is a Bachmann-Howard collapse.

Then ϑ(t) is an ε-number for any t ∈ ε(T)uα with Ω ≤ε(T)uα
t.

Proof. First, we show that ϑ(t) is a limit: By condition (ii) of Definition 2.1.3

we have 0 ≤ |t|ε(T)uα
< ϑ(t). Given β < ϑ(t) we observe

|iα(β + 1)|ε(T)uα
= min{ρ |β + 1 < (ρ+ 1)+} ≤ β < ϑ(t).

Together with iα(β + 1) <ε(T)uα
Ω ≤ε(T)uα

t we get ϑ(iα(β + 1)) < ϑ(t), by Defini-

tion 2.1.3(ii). Part (ii) of the previous lemma yields β + 1 < ϑ(t), making ϑ(t) a

limit. To deduce that ϑ(t) is an ε-number we assume β < ϑ(t) and show ωβ < ϑ(t).

Crucially, we have

|iα(ωβ)|ε(T)uα
= min{ρ |ωβ < (ρ+ 1)+} ≤ β < ϑ(t).

Together with iα(ωβ) <ε(T)uα
t this does indeed yield ωβ ≤ ϑ(iα(ωβ)) < ϑ(t). �

As indicated in Example 2.1.5, we cannot expect much from the values ϑ(t)

for t <ε(T)uα
Ω. To repair this, we will instead consider the value ϑ(Ω + t).

Definition 2.1.20. The map ε(T)uα 3 t 7→ Ω + t ∈ ε(T)uα is given by the

following clauses:

Ω + 0 := Ω, Ω + eγ := ωΩ + ωeγ , Ω + Ω := ωΩ + ωΩ, Ω + Eσ := Eσ,

Ω + (ωs0 + · · ·+ ωsn) :=

ωΩ + ωs0 + · · ·+ ωsn if s0 ≤ε(T)uα
Ω,

ωs0 + · · ·+ ωsn if Ω <ε(T)uα
s0.

Let us list the required properties of this operation:

Lemma 2.1.21. The following holds for all s, t ∈ ε(T)uα:

(i) We have Ω ≤ε(T)uα
Ω + s.

(ii) If s <ε(T)uα
t then Ω + s <ε(T)uα

Ω + t.

(iii) We have |Ω + s|ε(T)uα
= |s|ε(T)uα

.

Proof. For all possible forms of s and t the claims are straightforward by

definition. As an example for (ii), let us consider s = eγ <ε(T)uα
ωt0 + · · ·+ ωtn = t

with eγ ≤ε(T)uα
t0. In case t0 = eγ <ε(T)uα

Ω we must have n > 0, and thus

Ω + s = ωΩ + ωeγ <ε(T)uα
ωΩ + ωeγ + ωt1 + · · ·+ ωtn = Ω + t.

For eγ <ε(T)uα
t0 ≤ Ω we have

Ω + s = ωΩ + ωeγ <ε(T)uα
ωΩ + ωt0 + · · ·+ ωtn = Ω + t.

2.1. AN ABSTRACT BACHMANN-HOWARD PRINCIPLE 77

For Ω <ε(T)uα
t0 we obtain

Ω + s = ωΩ + ωeγ <ε(T)uα
ωt0 + · · ·+ ωtn = Ω + t.

Part (iii) relies on the characterization of ranks in Lemma 2.1.16. In particular,

recall |Ω|ε(T)uα
= 0. �

Together with Lemma 2.1.19, it follows that ϑ(Ω + s) is an ε-number for all

terms s ∈ ε(T)uα. The following notation will help to recover the usual Bachmann-

Howard construction:

Definition 2.1.22. Given a Bachmann-Howard collapse ϑ : ε(T)uα
BH−−→ α, we

define the function

ϑ̄ : ε(T)uα → ε(T)uα ∩ Ω, ϑ̄(s) := iα ◦ ϑ(Ω + s) = eϑ(Ω+s).

For s ∈ ε(T)uα, we abbreviate

s∗ := iα(|s|ε(T)uα
) ∈ ε(T)uα ∩ Ω.

The properties of a Bachmann-Howard collapse can now be stated as follows:

Proposition 2.1.23. Assume that T u and thus ε(T)u is a proto-dilator, and

that ϑ : ε(T)uα
BH−−→ α is a Bachmann-Howard collapse. For s, t ∈ ε(T)uα we have

ϑ̄(s) <ε(T)uα
ϑ̄(t) ⇔

either s <ε(T)uα
t and s∗ <ε(T)uα

ϑ̄(t),

or t <ε(T)uα
s and ϑ̄(s) ≤ε(T)uα

t∗.

Proof. We begin with “⇐”: First assume s <ε(T)uα
t and s∗ <ε(T)uα

ϑ̄(t). As

iα is an embedding, the latter implies |s|ε(T)uα
< ϑ(Ω + t). Using Lemma 2.1.21(iii)

we get |Ω + s|ε(T)uα
< ϑ(Ω + t). Also, Lemma 2.1.21(ii) yields Ω + s <ε(T)uα

Ω + t.

Condition (i) of Definition 2.1.3 gives ϑ(Ω+s) < ϑ(Ω+t), and then ϑ̄(s) <ε(T)uα
ϑ̄(t),

as desired. Now assume ϑ̄(s) ≤ε(T)uα
t∗ (the condition t <ε(T)uα

s is redundant, but

we keep it for symmetry). Using condition (ii) of Definition 2.1.3 we see

|t|ε(T)uα
= |Ω + t|ε(T)uα

< ϑ(Ω + t).

Applying iα to both sides gives t∗ <ε(T)uα
ϑ̄(t), and then ϑ̄(s) <ε(T)uα

ϑ̄(t). To

show “⇒”, we may assume s 6= t. Aiming at the contrapositive, assume that the

right side of the equivalence fails. Then we have either t <ε(T)uα
s and t∗ <ε(T)uα

ϑ̄(s);

or we have s <ε(T)uα
t and ϑ̄(t) ≤ε(T)uα

s∗. In both cases direction “⇐” (with s

and t interchanged) yields ϑ̄(t) <ε(T)uα
ϑ̄(s). The latter implies ϑ̄(s) 6<ε(T)uα

ϑ̄(t),

completing the proof of the contrapositive. �

78 2. TYPE-TWO WELL-ORDERING PRINCIPLES

We can now embed the usual notation system for the Bachmann-Howard or-

dinal. This will play no official role, but similar constructions will be crucial in

Sections 2.3 and 2.4.

Remark 2.1.24. Consider the constant proto-dilator γ 7→ TXγ = X for a

well-order X = (X,<X) (cf. Remark 2.1.8). Recall that we have |σ|TXγ = 0 for

any σ ∈ X = TXγ . Form the associated proto-dilator γ 7→ ε(T)Xγ and assume that

ϑ : ε(T)Xα
BH−−→ α is a Bachmann-Howard collapse. I claim that the relativized

Bachmann-Howard order ϑX of Rathjen and Valencia Vizcáıno [71, Definition 2.6]

can be embedded into ε(T)Xα : The term Eσ ∈ ϑX with σ ∈ X = TXα is identified

with Eσ ∈ ε(T)Xα . Note that our rank

Eσ
∗ = iα(|Eσ|ε(T)Xα

) = iα(|σ|TXα) = iα(0) = 0

coincides with Rathjen and Valencia Vizcáıno’s rank assignment Eσ
∗ = 0. Assum-

ing that s ∈ ϑX is identified with s ∈ ε(T)Xα , we can identify ϑs ∈ ϑX with the

element ϑ̄(s) ∈ ε(T)Xα . Again, our rank assignment

ϑ̄(s)∗ = eϑ(Ω+s)
∗ = iα(|eϑ(Ω+s)|ε(T)Xα

) = iα(ϑ(Ω + s)) = eϑ(Ω+s) = ϑ̄(s)

is as required. Also, ϑ̄(s) = eϑ(Ω+s) ∈ ε(T)Xα behaves like an ε-number below Ω,

just as ϑs ∈ ϑX . Using the previous proposition, it is straightforward to see that

this yields an order embedding of ϑX into ε(T)Xα . Thus the well-foundedness of

ε(T)Xα (see Proposition 2.1.14) implies that ϑX is a well-order. In other words,

the abstract Bachmann-Howard principle implies that X 7→ ϑX is a type-one well-

ordering principle, over primitive recursive set theory. Also, the given embedding

restricts to an embedding of ϑX ∩ Ω into ε(T)Xα ∩ Ω ∼= α (the isomorphism comes

from Lemma 2.1.17, as Lemma 2.1.18 gives α = α+). For X = ∅ the structure

ϑX ∩Ω is the usual notation system for the Bachmann-Howard ordinal. This shows

that any ordinal α which admits a Bachmann-Howard collapse ϑ : ε(T)Xα
BH−−→ α

is at least as big as the Bachmann-Howard ordinal. From the assumption that

X 7→ ϑX is a type-one well-ordering principle, Rathjen and Valencia Vizcáıno

deduce that there are ω-models of bar induction. Recall that we want to construct

transitive set models of Kripke-Platek set theory. Thus we have reached the correct

proof-theoretic strength: The theory of bar induction and Kripke-Platek set theory

both correspond to the Bachmann-Howard ordinal. On the other hand, transitive

set models are stronger than ω-models. For this reason we have constructed a

type-two well-ordering principle: The point is that we do not only get a collapse of

2.1. AN ABSTRACT BACHMANN-HOWARD PRINCIPLE 79

the “constant” order ϑX into some ordinal α ∼= ϑX ∩Ω, but rather a “fixed-point”

α ∼= ε(T)uα ∩ Ω with collapsing structure ϑ : ε(T)Xα
BH−−→ α.

The following is also worth pointing out:

Remark 2.1.25. There is considerable freedom in the choice of ε(T)uα. For

example, we could strengthen ε(T)uα by adding a term εs for each s ∈ ε(T)uα;

the terms εσ for σ ∈ T uα would then we replaced by terms ϕ2(σ), where ϕ2

refers to the second branch of the Veblen function, which enumerates the fixed-

points of α 7→ εα. Note that Proposition 2.1.14 for this stronger system would

still be provable in our base theory PRSω. Conversely, it may be possible to

weaken ε(T)uα: As ∈-induction is automatic in standard models of set theory (see

Lemma 1.3.12), we only need to consider Kripke-Platek axioms of bounded com-

plexity. Thus we may not need full ordinal exponentiation in our proof-theoretic

arguments. Observe that there is a similar degree of freedom in the formulation

of Theorem 4.4.6(ii): The statement “any set is contained in an admissible set”

is, of course, equivalent to “any set is contained in an admissible set that is itself

contained in an admissible set” — even though the corresponding theories KP and

KP + “there is an admissible set” have different proof-theoretic strength. So for

our purpose, the precise order-type of ε(T)uα seems less important than the col-

lapsing structure. The given definition of ε(T)uα has the advantage that it relates

to the familiar notation systems ϑX (from [71], cf. the previous remark) and εX

(from [52] resp. [4]).

In the rest of this section we reformulate Proposition 2.1.23 in terms of supports,

rather than ranks (cf. Definition 2.1.9 and Lemma 2.1.10). This formulation will

be more suitable for the functorial approach in the next sections.

Definition 2.1.26. Consider primitive recursive functions (u, α) 7→ T uα and

(u, α) 7→ suppuα. For a fixed value of u, assume that T u is a proto-dilator and that

suppu is a support for T u. Define functions

Euα : ε(T)uα → [α]<ω

by the following recursion over terms:

Euα(0) = ∅, Euα(Ω) = ∅, Euα(eγ) = {γ},

Euα(Eσ) = suppuα(σ), Euα(ωs0 + · · ·+ ωsn) =
⋃
i≤n

Euα(si).

For s ∈ ε(T)uα we write Ēuα(s) := {iα(γ) | γ ∈ Euα(s)} ⊆ ε(T)uα ∩ Ω.

80 2. TYPE-TWO WELL-ORDERING PRINCIPLES

Note that the function (u, α, s) 7→ Euα(s) is primitive recursive (just as the func-

tion (u, α, s) 7→ Luα(s), cf. the discussion after Definition 2.1.11). Proposition 1.2.2

tells us that (u, α) 7→ Euα is primitive recursive as well (and that Euα is set-sized).

Lemma 2.1.27. If suppu is a support for T u then Eu is a support for ε(T)u.

Proof. Condition (i) of Definition 2.1.9 is immediate. To establish condi-

tion (ii), consider ordinals α < β. The required implication

Euβ (s) ⊆ α ⇒ s ∈ ε(T)uα

can be verified by induction on s ∈ ε(T)uβ. The most interesting case is s = Eσ. By

assumption we have suppuβ(σ) = Euβ (Eσ) ⊆ α. As suppu is a support for T u this

implies σ ∈ T uα , and then Eσ ∈ ε(T)uα. For condition (iii) we also consider α < β.

We need Euα(s) = Euβ (s) for s ∈ ε(T)uα, which is also shown by induction on s. In

the crucial case s = Eσ with σ ∈ T uα we have

Euα(Eσ) = suppuα(σ) = suppuβ(σ) = Euβ (s),

as suppu is a support for T u. �

We can now reformulate Proposition 2.1.23 as promised:

Corollary 2.1.28. Assume that T u is a proto-dilator with support suppu,

so that ε(T)u is a proto-dilator with support Eu. Consider a Bachmann-Howard

collapse ϑ : ε(T)uα
BH−−→ α and the associated function ϑ̄ : ε(T)uα → ε(T)uα∩Ω. Then,

for all s, t ∈ ε(T)uα, we have

ϑ̄(s) <ε(T)uα
ϑ̄(t) ⇔

either s <ε(T)uα
t and r <ε(T)uα

ϑ̄(t) for all r ∈ Ēuα(s),

or t <ε(T)uα
s and ϑ̄(s) ≤ε(T)uα

r for some r ∈ Ēuα(t).

Proof. By the proof of Lemma 2.1.10 we have

|s|ε(T)uα
= max(Euα(s) ∪ {0}).

Applying the embedding iα to both sides yields

s∗ = max<ε(T)uα
(Ēuα(s) ∪ {0}).

As the term ϑ̄(t) = eϑ(Ω+t) is different from zero, this implies

s∗ <ε(T)uα
ϑ̄(t) ⇔ r <ε(T)uα

ϑ̄(t) for all r ∈ Ēuα(s).

2.2. A PREDICATIVE BACHMANN-HOWARD PRINCIPLE 81

Similarly, we have

ϑ̄(s) ≤ε(T)uα
t∗ ⇔ ϑ̄(s) ≤ε(T)uα

r for some r ∈ Ēuα(t).

Then the claim follows from Proposition 2.1.23. �

Finally, it will be useful to have an explicit description of Ēuα:

Lemma 2.1.29. Consider a support suppu for T u. The associated function

Ēuα : ε(T)uα → [ε(T)uα ∩ Ω]<ω

satisfies

Ēuα(0) = ∅, Ēuα(Ω) = ∅, Ēuα(ϑ̄(s)) = {ϑ̄(s)},

Ēuα(Eσ) = [iα]<ω ◦ suppuα(σ), Ēuα(ωs0 + · · ·+ ωsn) =
⋃
i≤n

Ēuα(si),

where [iα]<ω ◦ suppuα(σ) abbreviates {iα(γ) | γ ∈ suppuα(σ)} (this will coincide with

a general definition of [f]<ω in the next section).

Proof. We have

Euα(ϑ̄(s)) = Euα(eϑ(Ω+s)) = {ϑ(Ω + s)}

and thus

Ēuα(ϑ̄(s)) = {iα(γ) | γ ∈ Euα(ϑ̄(s))} = {iα(ϑ(Ω + s))} = {eϑ(Ω+s)} = {ϑ̄(s)}.

The other cases are straightforward. �

2.2. A Predicative Bachmann-Howard Principle

As explained in the introduction of the thesis, the predicative Bachmann-

Howard principle improves on its abstract counterpart in a certain respect: It

underpins the transformation of a type-one well-ordering principle T into a well-

order BH(T) by an explicit construction. For an informal explanation of BH(T)

we again refer to the introduction. The present section presents the construction

of BH(T) in detail.

Recall that the base theory of this thesis is primitive recursive set theory, as

presented in Chapter 1. Let us discuss some notions of category theory in this

context: Our base theory does not include the existence of power sets. Equivalently,

it does not prove that the functions between two given sets form a set. Thus the

category of sets, and many related categories, are not recognized as locally small.

Nevertheless, we will see that many basic constructions are available. A functor will

82 2. TYPE-TWO WELL-ORDERING PRINCIPLES

be given by two primitive recursive functions, acting on objects resp. morphisms.

As an important example, recall the primitive recursive function

x 7→ [x]<ω = “the set of finite subsets of x”

constructed in Section 1.2. To turn this into an endo-functor of the category of

sets, consider a (set-sized) function f : x→ y and an element a ∈ [x]<ω, and put

[f]<ω(a) = {f(σ) |σ ∈ a} ∈ [y]<ω.

The function (f, σ) 7→ f(σ) is primitive recursive by Section 1.2. From Propo-

sition 1.1.6 we learn that (f, a) 7→ [f]<ω(a) is primitive recursive as well. Then

Proposition 1.2.2 tells us that the restriction [f]<ω(·) � z to a set z exists as a set,

and that (f, z) 7→ [f]<ω(·) � z is primitive recursive. Taking z = [x]<ω we finally

see that the transformation of f : x → y into [f]<ω : [x]<ω → [y]<ω is a primitive

recursive set function. Functoriality is easy to check. Thus the functions [·]<ω on

objects resp. morphisms do indeed form a (primitive recursive) functor. Quantifica-

tion over (class-sized) functors is not directly available. As in the previous section,

we can use Currying to quantify over parametrized families: Consider primitive

recursive functions (u, x) 7→ T ux and (u, f) 7→ T uf . The statement “T u is a functor”

can then be expressed by a Lpr-formula with free variable u. Quantification over

the family (T u)u∈V can be implemented as quantification over the set-sized para-

meter u. Natural transformations between (primitive recursive) functors S and T

can be handled in a similar way: Given a primitive recursive function η which

transforms x and σ ∈ Sx into ηx(σ) ∈ Tx, Proposition 1.2.2 yields a primitive

recursive function x 7→ ηx, where ηx : Sx → Tx is again a set-sized function. Apart

from the category of sets, we are most interested in the category of linear orders,

with order embeddings as morphisms. The forgetful functor from linear orders to

sets will be left implicit. Conversely, a subset y ⊆ x of an order (x,<x) can be seen

as a suborder.

To construct BH(T), we will need the type-one well-ordering principle T to

be particularly uniform. As it turns out, the required properties lead precisely to

Girard’s [28] notion of dilator; note that a similar notion was already considered

by Aczel [2, 3].

2.2. A PREDICATIVE BACHMANN-HOWARD PRINCIPLE 83

Definition 2.2.1. A prae-dilator consists of

(i) an endo-functor T u on the category of linear orders (where the actions

X 7→ T uX = (T uX , <TuX) and f 7→ T uf on objects resp. morphisms are

primitive recursive with parameter u), and

(ii) a natural transformation suppu : T u ⇒ [·]<ω (given by a primitive re-

cursive function X 7→ suppuX : T uX → [X]<ω with parameter u) which

computes supports, in the sense that any σ ∈ T uX lies in the range of

T uισ : T usuppuX(σ) → T uX , where ισ : suppuX(σ) ↪→ X is the inclusion.

A dilator is a prae-dilator which preserves well-foundedness, i.e. T uX must be a

well-order whenever X is.

In fact, the given definition is half-way between Girard’s dilators and his sys-

tems of ordinal denotations. In the following we observe that the different notions

of dilator are equivalent (but our prae-dilators are not quite equivalent to Girard’s

pre-dilators, hence the difference in spelling). As this equivalence does not play an

official role in the present thesis, we will not worry about formalization in PRSω.

Remark 2.2.2. Similar to [28, Section 0.1.2], we verify that (prae-)dilators

preserve direct limits and pull-backs: Consider a direct system (Xi, fij)i,j∈I of

linear orders Xi and embeddings fij : Xi → Xj . Assume that (X, fi)i∈I with

fi : Xi → X is a direct limit. In the case of linear orders, the universal property

amounts to

X =
⋃
i∈I

rng(fi),

as pointed out in [28, Example 1.3.6]. Assume that T and supp form a prae-dilator

in the sense of Definition 2.2.1. To show that T preserves our direct limit, we must

establish

TX =
⋃
i∈I

rng(Tfi).

As Tfi is an embedding of TXi into TX , the inclusion ⊇ is immediate. Concerning

the other inclusion, consider an element σ ∈ TX . Our definition of prae-dilator

yields a σ0 ∈ TsuppX(σ) with σ = Tισ(σ0). As suppX(σ) ⊆ X is finite, we get

suppX(σ) ⊆ rng(fi) for some i ∈ I. Then the inclusion ισ : suppX(σ) ↪→ X factors

as ισ = fi◦g, with an embedding g : suppX(σ)→ Xi. So σ = Tισ(σ0) = Tfi(Tg(σ0))

lies in the range of Tfi , as desired. Next, consider order embeddings fi : Xi → X

for i = 0, 1. According to [28, Theorem 1.5.5], the conditions for g : Y → X to be

84 2. TYPE-TWO WELL-ORDERING PRINCIPLES

a pull-back amount to

rng(g) = rng(f0) ∩ rng(f1).

To see that the prae-dilator (T, supp) preserves pull-backs we must thus show

rng(Tg) = rng(Tf0) ∩ rng(Tf1).

From rng(g) ⊆ rng(fi) we learn that g factors as g = fi ◦hi, with hi : Y → Xi. For

an arbitrary element Tg(σ) of rng(Tg) we then have Tg(σ) = Tfi(Thi(σ)) ∈ rng(Tfi),

as required for the inclusion ⊆. Conversely, for any element τ = Tfi(σi) of rng(Tfi)

we have suppX(τ) = suppX(Tfi(σi)) = [fi]
<ω(suppXi(σi)) ⊆ rng(fi), using the

naturality of supp. If this holds for i = 0, 1 we get suppX(τ) ⊆ rng(g). Then the

inclusion ιτ : suppX(τ)→ X factors as ιτ = g ◦ h with h : suppX(τ)→ Y . By the

definition of prae-dilator there is a τ0 ∈ TsuppX(τ) with τ = Tιτ (τ0). We thus get

τ = Tg(Th(τ0)) ∈ rng(Tg), as required for the inclusion ⊇. We have established

that any dilator in the sense of Definition 2.2.1 preserves direct limits and pull-

backs, and is thus a dilator in the sense of Girard [28, Definition 2.3.1]. Note that

Girard [28, Definition 4.4.1] does also have a notion of pre-dilator: It involves a

certain monotonicity condition which is automatic in the well-founded case, i.e. for

dilators. We have not included this monotonicity condition in our definition of

prae-dilator, as it will not be relevant for us. Thus there are prae-dilators in the

sense of Definition 2.2.1 which are not pre-dilators in the sense of Girard (note

the different spelling). The converse direction resembles Girard’s “normal form

theorem” [28, Theorem 2.3.12]: Consider an endo-functor T of linear orders which

preserves direct limits and pull-backs. We want to show that this induces a natural

family of support functions suppX : TX → [X]<ω. If such a family exists, then

suppX(σ) is uniquely determined as the smallest set a ∈ [X]<ω such that we have

σ ∈ rng(Tιa), where ιa : a ↪→ X denotes the inclusion. Indeed, σ = Tιa(σ0) implies

suppX(σ) = suppX(Tιa(σ0)) = [ιa]
<ω(suppa(σ0)) ⊆ a,

using naturality. Guided by this observation, write X =
⋃
a∈[X]<ω rng(ιa) as a

direct limit. Since T preserves direct limits we obtain

TX =
⋃

a∈[X]<ω

rng(Tιa).

Consider an element σ ∈ rng(Tιa)∩rng(Tιa′), for some a, a′ ∈ [X]<ω. Note that ιa∩a′

is the pull-back of ιa and ιa′ . As T preserves pull-backs we get σ ∈ rng(Tιa∩a′). Thus

2.2. A PREDICATIVE BACHMANN-HOWARD PRINCIPLE 85

we can indeed define suppX(σ) as the unique minimal a ∈ [X]<ω with σ ∈ rng(Tιa).

To see that this yields a natural transformation we must establish

suppY (Tf (σ)) = [f]<ω(suppX(σ)) =: b,

for any embedding f : X → Y and any σ ∈ TX . It suffices to verify that b is minimal

with Tf (σ) ∈ rng(Tιb). For a := suppX(σ) we have σ ∈ rng(Tιa), say σ = Tιa(σ0).

This yields

Tf (σ) = Tf (Tιa(σ0)) = Tιb(Tf�a(σ0)) ∈ rng(Tιb).

Aiming at minimality, assume Tf (σ) = Tιb0 (σ0) for some b0 ⊆ b and σ0 ∈ Tb0 .

Consider the set a0 := {x ∈ a | f(x) ∈ b0}. As f �a0 : a0 → b0 is surjective (recall

that we have b = [f]<ω(a)), we can form the inverse embedding (f �a0)−1 : b0 → a0.

Then we get

Tf (σ) = Tιb0 (σ0) = Tιb0◦f�a0◦(f�a0)−1(σ0) = Tf (Tιa0◦(f�a0)−1(σ0)),

and thus σ = Tιa0
(T(f�a0)−1(σ0)) ∈ rng(Tιa0

). By the minimality of a = suppX(σ)

this implies a0 = a and then b0 = b, as required. We have seen that each (pre-)

dilator T in the sense of Girard induces a unique (prae-)dilator in the sense of

Definition 2.2.1, over the same functor T . Even though the supports suppX(σ) are

uniquely determined by T (provided that T preserves direct limits and pull-backs),

it is very helpful to make them explicit, at least for our purpose.

Formalizing Definition 2.2.1 yields a Π1-definition of prae-dilators. The notion

of dilator is expressed by a Π2-formula but becomes Π1 in the presence of axiom

beta (which turns well-foundedness into a ∆1-property). Recall that Π1-formulas

of the set theory ATRset
0 correspond to Π1

2-formulas of second-order arithmetic

(see [87, Theorem VII.3.24]). In Section 2.3 we will recover a result of Girard:

Prae-dilators are determined by certain set-sized approximations, at least up to

isomorphism. So essentially, being a prae-dilator becomes a primitive recursive

property. Preservation of well-foundedness can be tested on the countable ordin-

als (see [28, Theorem 2.1.15]). However, the latter do not form a set in PRSω

or ATRset
0 , so that the notion of dilator remains of complexity Π1

2. Also, the con-

struction in Section 2.3 will yield a single primitive recursive family which comprises

all prae-dilators. For the rest of this section, we simply fix some primitive recursive

family of functions X 7→ T uX and X 7→ suppuX with parameter u. We want to

transform this into a primitive recursive function u 7→ BH(T u). If (T u, suppu), for

some value of u, is a prae-dilator then BH(T u) will be a linear order. As described

86 2. TYPE-TWO WELL-ORDERING PRINCIPLES

in the introduction of the thesis, we construct BH(T u) as the “ω-th iterate” of a

certain transformation X ϑ(T uX) ∩ Ω. The following is a preliminary step:

Definition 2.2.3. For each linear order X we define a set ϑ0(T uX) of terms:

(i) The symbol 0 is a term in ϑ0(T uX).

(ii) The symbol Ω is a term in ϑ0(T uX).

(iii) For each σ ∈ T uX the expression Eσ is a term in ϑ0(T uX).

(iv) If s is a term in ϑ0(T uX) then so is the expression ϑs.

(v) If s0, . . . , sn are terms in ϑ0(T uX) then so is the expression ωs0 + · · ·+ωsn .

Note that (u,X) 7→ ϑ0(T uX) is a primitive recursive function. Also, primitive

recursion and induction over terms in ϑ0(T uX) are available (cf. the discussion after

Definition 2.1.11). We would like to single out a subset ϑ(T uX) ⊆ ϑ0(T uX) of terms

in normal form. To recognize Cantor normal forms in (v), one must simultaneously

define an order relation <ϑX on the terms. Deciding the order between terms of

the form ϑs does, in turn, rely on the definition of finite sets EϑX(s) ⊆ ϑ(TX).

These sets come from the usual construction of the Bachmann-Howard ordinal

(see [72, Section 1], as well as Corollary 2.1.28 above). Intuitively, EϑX(s) consists

of “countable ordinals” on which s depends. In the present case, the crucial question

is: What should EϑX(Eσ) be? The only choice that seems immediately available

is EϑX(Eσ) = ∅. However, this turns out to be a dead end:

Remark 2.2.4. Our construction of ϑ(T uX) is inspired by Rathjen and Valen-

cia Vizcáıno’s relativized Bachmann-Howard construction in [71, Section 2]. As

suggested above, they do indeed set EϑX(Eσ) = ∅. In view of [71, Lemma 2.3]

this makes ϑEσ <ϑX ϑEτ equivalent to σ <TuX τ . In other words, σ 7→ ϑEσ be-

comes a fully order-preserving collapse of T uX into ϑ(T uX) ∩ Ω. This is appropriate

in Rathjen and Valencia Vizcáıno’s case, but not in ours: The construction of ad-

missible sets will rely on a certain fixed-point, namely a well-order BH(T u) for

which we have BH(T u) ∼= ϑ(T uBH(Tu)) ∩ Ω. Together with the above, we would get

an order-preserving collapse of T uBH(Tu) into BH(T u). This is incompatible with

the observation in Example 2.1.5: It can happen that, for any well-order X, the

order-type of T uX is bigger than the order-type of X. In other words, if we set

EϑX(Eσ) = ∅ then we may still be able to construct a fixed-point BH(T u), but we

cannot expect it to be well-founded.

Ruminating possible definitions of EϑX(Eσ), we are lead to consider suppuX(σ),

which is indeed a finite set on which Eσ depends. Unfortunately, suppuX(σ) is a

2.2. A PREDICATIVE BACHMANN-HOWARD PRINCIPLE 87

subset of X rather than ϑ0(T uX). On the other hand, the fixed-point construction

described in the introduction of the thesis did involve embeddings X ↪→ ϑ(T uX)∩Ω.

This motivates the following notion:

Definition 2.2.5. Consider a linear order X and functions EX : X → [X]<ω,

LX : X → ω and iX : X → ϑ0(T uX). Define functions EϑX : ϑ0(T uX) → [ϑ0(T uX)]<ω

and LϑX : ϑ0(T uX)→ ω by recursion over terms in ϑ0(T uX), setting

(i) EϑX(0) = ∅ and LϑX(0) = 0,

(ii) EϑX(Ω) = ∅ and LϑX(Ω) = 0,

(iii) EϑX(Eσ) = [iX]<ω ◦ suppuX(σ) and LϑX(Eσ) = max{LX(x) |x ∈ suppX(σ)},
(iv) EϑX(ϑs) = {ϑs} and LϑX(ϑs) = LϑX(s) + 1,

(v) EϑX(ωs0 + · · ·+ ωsn) = EϑX(s0) ∪ · · · ∪ EϑX(sn) and

LϑX(ωs0 + · · ·+ ωsn) = LϑX(s0) + · · ·+ LϑX(sn) + 1.

If these functions are extensions of EX and LX , in the sense that we have

EϑX ◦ iX = [iX]<ω ◦ EX and LϑX ◦ iX = LX ,

then X = (X,EX , LX , iX) is called a BH-system (for the prae-dilator (T u, suppu)).

Note that the functions (u,X) 7→ EϑX and (u,X) 7→ LϑX are primitive recur-

sive. In particular, the statement “X is a BH-system for (T u, suppu)” is primitive

recursive with parameter u. The function LϑX will control the recursive definition

of a subset ϑ(T uX) ⊆ ϑ0(T uX). To play this role, it must have the following property:

Lemma 2.2.6. Consider a BH-system (X,EX , LX , iX) for (T u, suppu). For any

s ∈ ϑ0(T uX) and any r ∈ EϑX(s) we have LϑX(r) ≤ LϑX(s).

Proof. One argues by induction on the build-up of s. The only interesting case

is s = Eσ. By the definition of EϑX we have r = iX(x) for some x ∈ suppuX(σ). The

definition of LϑX ensures LX(x) ≤ LϑX(s). To conclude we observe LϑX(r) = LX(x),

due to the condition LϑX ◦ iX = LX in the definition of BH-system. �

As promised, we can now single out a set of terms in “normal form”:

Lemma 2.2.7. There is a primitive recursive function which transforms a value

of u and a BH-system (X,EX , LX , iX) for (T u, suppu) into a set ϑ(T uX) ⊆ ϑ0(T uX)

and a binary relation <ϑX on ϑ(T uX), satisfying the following properties:

(i) We have 0,Ω ∈ ϑ(T uX), as well as Eσ ∈ ϑ(T uX) for any σ ∈ T uX .

88 2. TYPE-TWO WELL-ORDERING PRINCIPLES

(ii) A term ϑs ∈ ϑ0(T uX) lies in ϑ(T uX) if and only if s does.

(iii) We have ωs0 + · · ·+ ωsn ∈ ϑ(T uX) if and only if {s0, . . . , sn} ⊆ ϑ(T uX) and

• either n = 0 and s0 is not of the form Ω,Eσ or ϑs,

• or n > 0 and sn ≤ϑX · · · ≤ϑX s0 (where s ≤ϑX t means s <ϑX t ∨ s = t,

with the second disjunct referring to equality as terms).

Given s, t ∈ ϑ(T uX), we have s <ϑX t if and only if one of the following holds:

(i) s = 0 and t 6= 0,

(ii) s = Ω and we have

• either t = Eσ for some σ ∈ T uX ,

• or t = ωt0 + · · ·+ ωtm and s ≤ϑX t0,

(iii) s = Eσ for some σ ∈ T uX and we have

• either t = Eτ for some τ ∈ T uX with σ <TuX τ ,

• or t = ωt0 + · · ·+ ωtm and s ≤ϑX t0,

(iv) s = ϑs′ and one of the following holds:

• t = ϑt′ and we have

– either s′ <ϑX t′ and r <ϑX t for all r ∈ EϑX(s′) ∩ ϑ(T uX),

– or t′ <ϑX s′ and s ≤ϑX r for some r ∈ EϑX(t′) ∩ ϑ(T uX),

• t = Ω,

• t = Eτ for some τ ∈ T uX ,

• t = ωt0 + · · ·+ ωtn and s ≤ϑX t0,

(v) s = ωs0 + · · ·+ ωsn and one of the following holds:

• t = ωt0 + · · ·+ ωtm and

– either n < m and si = ti for all i ≤ n,

– or there is a number j ≤ min{m,n} with sj <
ϑ
X tj and si = ti

for all i < j,

• t is of the form Ω, Eτ or ϑt′ and we have s0 <
ϑ
X t.

Proof. The idea is to decide s <ϑX t by recursion over LϑX(s) + LϑX(t). In

doing so, we read r ∈ ϑ(T uX) as an abbreviation for r = 0∨0 <ϑX r. In other words,

the defining clauses of r ∈ ϑ(T uX) are included in the guise of recursive conditions

for 0 <ϑX r. Formally, the described approach falls under the recursion principle

from Proposition 1.2.10, as detailed in the proof of Lemma 2.1.12. To demonstrate

how s <ϑX t is decided recursively, let us look at the case of s = ϑs′ and t = ϑt′.

In particular we must decide conditions r ∈ ϑ(T uX) and r <ϑX t for r ∈ EϑX(s′).

Crucially, the previous lemma ensures LϑX(r) ≤ LϑX(s′) < LϑX(s). As this implies

2.2. A PREDICATIVE BACHMANN-HOWARD PRINCIPLE 89

LϑX(0) + LϑX(r) ≤ LϑX(r) + LϑX(t) < LϑX(s) + LϑX(t) our recursive procedure does

indeed decide r <ϑX t and 0 <ϑX r, i.e. r ∈ ϑ(T uX). The other cases are similar. �

As suggested by the notation, we indeed have the following:

Proposition 2.2.8. Assume that (X,EX , LX , iX) is a BH-system for the prae-

dilator (T u, suppu). Then (ϑ(T uX), <ϑX) is a linear order.

Proof. First, by induction on LϑX(s) one refutes s <ϑX s. Next, by induction

on LϑX(s) +LϑX(t) one shows that one of the alternatives s <ϑX t, s = t and t <ϑX s

must hold for any s, t ∈ ϑ(T uX). The only interesting case is s = ϑs′, t = ϑt′. If

s′ = t′ then s = t and we are done. So, by the induction hypothesis and symmetry,

we may assume s′ <ϑX t′. For any r ∈ EϑX(s′) ∩ ϑ(T uX) we have LϑX(r) ≤ s′.

Thus the induction hypothesis yields r <ϑX t or t ≤ϑ(TX) r. If the former holds

for all terms r ∈ EϑX(s′) ∩ ϑ(T uX) then we have s <ϑX t. On the other hand,

t ≤ϑ(TX) r for some r ∈ EϑX(s′) ∩ ϑ(T uX) yields t <ϑX s. Finally, by induction on

LϑX(r) +LϑX(s) +LϑX(t) one shows that r <ϑX s and s <ϑX t imply r <ϑX t. We only

consider r = ϑr′, s = ϑs′, t = ϑt′: There are four possibilities to look at, the most

interesting of which is

r′ <ϑX s′ and r′′ <ϑX s for all r′′ ∈ EϑX(r′) ∩ ϑ(T uX),

t′ <ϑX s′ and s ≤ϑX t′′ for some t′′ ∈ EϑX(t′) ∩ ϑ(T uX).

By trichotomy one of the following cases applies: Case r′ <ϑX t′. For any term

r′′ ∈ EϑX(r′)∩ϑ(T uX) we have LϑX(r′′) ≤ LϑX(r′) < LϑX(r). From r′′ <ϑX s and s <ϑX t

we thus get r′′ <ϑX t by induction hypothesis. This yields r <ϑX t. Case r′ = t′. We

get a term t′′ ∈ EϑX(t′) ∩ ϑ(T uX) = EϑX(r′) ∩ ϑ(T uX) with s ≤ϑX t′′ and t′′ <ϑX s. As

above we have LϑX(t′′) < LϑX(t) and LϑX(t′′) < LϑX(r), and the induction hypothesis

yields t′′ <ϑX t′′. This contradicts our result above, which means that r′ = t′ is

not actually possible. Case t′ < r′. Pick t′′ ∈ EϑX(t′) ∩ ϑ(T uX) with s ≤ϑX t′′. By

induction hypothesis we get r <ϑX t′′, and then r <ϑX t. The other asymmetric case

is easier: Assume that we have

s′ <ϑX r′ and r ≤ϑX s′′ for some s′′ ∈ EϑX(s′) ∩ ϑ(T uX),

s′ <ϑX t′ and s′′ <ϑX t for all s′′ ∈ EϑX(s′) ∩ ϑ(T uX).

Pick an s′′ ∈ EϑX(s′)∩ϑ(T uX) with r ≤ϑX s′′. We also have s′′ <ϑX t, so the induction

hypothesis gives r <ϑX t. �

90 2. TYPE-TWO WELL-ORDERING PRINCIPLES

We are particularly interested in the sub-order

ϑ(T uX) ∩ Ω := {s ∈ ϑ(T uX) | s <ϑX Ω}.

The definition of BH-system simply asked for a function iX : X → ϑ0(T uX). Now

that we have structure on the co-domain, we do want iX to respect it:

Definition 2.2.9. A BH-system X = (X,EX , LX , iX) for (T u, suppu) is called

good if the range of iX is contained in ϑ(T uX) ∩ Ω, and if

iX : (X,<X)→ (ϑ(T uX) ∩ Ω, <ϑX)

is an order embedding.

As in the case of (plain) BH-systems, the statement “X is a good BH-system

for (T u, suppu)” is primitive recursive in X and u. To construct a good BH-

system requires some amount of “divination”: We must write down a function

iX : X → ϑ(T uX) that becomes an embedding with respect to an order relation

which iX itself brings into being. Nevertheless, some initial good BH-systems are

easy to write down. The following resembles Lemma 2.1.17:

Lemma 2.2.10. There is a good BH-system (ε0, Eε0 , Lε0 , iε0) over the ordinal ε0,

independently of the prae-dilator (T u, suppu).

Proof. We put Eε0(α) = ∅ for all α < ε0. The functions Lε0 : ε0 → ω

and iε0 : ε0 → ϑ0(T uε0) are defined by recursion over Cantor normal forms: Set

Lε0(0) = 0 and iε0(0) = 0, as well as

Lε0(ωα0 + · · ·+ ωαn) = Lε0(α0) + · · ·+ Lε0(αn) + 1,

iε0(ωα0 + · · ·+ ωαn) = ωiε0 (α0) + · · ·+ ωiε0 (αn)

if ε0 > α0 ≥ · · · ≥ αn. By induction over (the Cantor normal form of) α < ε0 one

verifies Eϑε0 ◦ iε0(α) = ∅ = [iε0]<ω ◦ Eε0(α) and Lϑε0 ◦ iε0(α) = Lε0(α). This means

that (ε0, Eε0 , Lε0 , iε0) is a BH-system. To prove that the latter is good, we must

show iε0(α) ∈ ϑ(T uε0) ∩ Ω and β < γ → iε0(β) <ϑε0 iε0(γ). This is straightforward

by simultaneous induction on Lε0(α) resp. Lε0(β) + Lε0(γ). �

Next, we want to show that the structure of good BH-system carries over

from X to ϑ(T uX) ∩ Ω. The following result is a preparation. Note that it makes

the intersection with ϑ(T uX) in clause (iv) of Lemma 2.2.7 redundant.

Lemma 2.2.11. Consider a good BH-system (X,EX , LX , iX). For s ∈ ϑ(T uX)

we have EϑX(s) ⊆ ϑ(T uX) ∩ Ω.

2.2. A PREDICATIVE BACHMANN-HOWARD PRINCIPLE 91

Proof. One argues by induction on the build-up of s. First consider s = Eσ.

As X is good the range of iX is contained in ϑ(T uX) ∩ Ω, and we indeed have

EϑX(s) = [iX]<ω ◦ suppuX(σ) ⊆ ϑ(T uX) ∩ Ω.

In case s = ϑs′ we have EϑX(s) = {ϑs′}. Note that ϑs′ <ϑX Ω holds by definition.

The other cases are straightforward. �

Let us now equip ϑ(T uX) ∩ Ω with the structure of a BH-system:

Definition 2.2.12. Assume that (X,EX , LX , iX) is a good BH-system for a

prae-dilator (T u, suppu). As T u is a functor, the embedding iX : X → ϑ(T uX) ∩ Ω

yields an embedding T u(iX) : T uX → T uϑ(TuX)∩Ω (we write T u(iX) rather than T uiX ,

to save subscripts). Construct a function iϑX : ϑ0(T uX)→ ϑ0(T uϑ(TuX)∩Ω) by recursion

over terms in ϑ0(T uX), setting

(i) iϑX(0) = 0,

(ii) iϑX(Ω) = Ω,

(iii) iϑX(Eσ) = ETu(iX)(σ) for σ ∈ T uX ,

(iv) iϑX(ϑs) = ϑiϑX(s),

(v) iϑX(ωs0 + · · ·+ ωsn) = ωi
ϑ
X(s0) + · · ·+ ωi

ϑ
X(sn).

We write Eϑ(TuX)∩Ω, Lϑ(TuX)∩Ω and iϑ(TuX)∩Ω for the restrictions of EϑX , L
ϑ
X and iϑX

to ϑ(T uX) ∩ Ω. In view of the previous lemma this yields functions

Eϑ(TuX)∩Ω : ϑ(T uX) ∩ Ω→ [ϑ(T uX) ∩ Ω]<ω,

Lϑ(TuX)∩Ω : ϑ(T uX) ∩ Ω→ ω,

iϑ(TuX)∩Ω : ϑ(T uX) ∩ Ω→ ϑ0(T uϑ(TuX)∩Ω).

As promised, we have the following result:

Theorem 2.2.13. If (X,EX , LX , iX) is a good BH-system for a prae-dilator

(T u, suppu) then so is

(ϑ(T uX) ∩ Ω, Eϑ(TuX)∩Ω, Lϑ(TuX)∩Ω, iϑ(TuX)∩Ω).

Proof. Recall that Definition 2.2.5 yields functions

Eϑϑ(TuX)∩Ω : ϑ0(T uϑ(TuX)∩Ω)→ [ϑ0(T uϑ(TuX)∩Ω)]<ω,

Lϑϑ(TuX)∩Ω : ϑ0(T uϑ(TuX)∩Ω)→ ω.

To show that (ϑ(T uX) ∩ Ω, Eϑ(TuX)∩Ω, Lϑ(TuX)∩Ω, iϑ(TuX)∩Ω) is a BH-system we verify

Eϑϑ(TuX)∩Ω ◦ i
ϑ
X(s) = [iϑX]<ω ◦ EϑX(s),

92 2. TYPE-TWO WELL-ORDERING PRINCIPLES

Lϑϑ(TuX)∩Ω ◦ i
ϑ
X(s) = LϑX(s)

by induction over the term s ∈ ϑ0(T uX). The crucial case is s = Eσ with σ ∈ T uX .

As suppu is a natural transformation we indeed get

Eϑϑ(TuX)∩Ω ◦ i
ϑ
X(Eσ) = Eϑϑ(TuX)∩Ω(ETu(iX)(σ)) = [iϑX]<ω ◦ suppuϑ(TuX)∩Ω ◦T

u(iX)(σ) =

= [iϑX]<ω ◦ [iX]<ω ◦ suppuX(σ) = [iϑX]<ω ◦ EϑX(Eσ).

Similarly, using the condition LϑX ◦ iX = LX , we have

Lϑϑ(TuX)∩Ω ◦ i
ϑ
X(Eσ) = max{LϑX(y) | y ∈ suppuϑ(TuX)∩Ω ◦T

u(iX)(σ)} =

= max{LϑX(y) | y ∈ [iX]<ω ◦ suppuX(σ)} = max{LϑX ◦ iX(x) |x ∈ suppuX(σ)} =

= max{LX(x) |x ∈ suppuX(σ)} = LϑX(Eσ).

The other cases are straightforward. Once we know that ϑ(T uX) ∩ Ω is a BH-

system, Lemma 2.2.7 yields a subset ϑ(T uϑ(TuX)∩Ω) ⊆ ϑ0(T uϑ(TuX)∩Ω) and an order

relation <ϑϑ(TuX)∩Ω on that subset. For r, s, t ∈ ϑ(T uX) we prove

iϑX(r) ∈ ϑ(T uϑ(TuX)∩Ω)

s <ϑX t→ iϑX(s) <ϑϑ(TuX)∩Ω iϑX(t)

by simultaneous induction on LϑX(r) resp. LϑX(s)+LϑX(t). Note that the two claims

together imply iϑX(r) ∈ ϑ(T uϑ(TuX)∩Ω) ∩ Ω for r ∈ ϑ(T uX) ∩ Ω, making ϑ(T uX) ∩ Ω a

good BH-system. The first interesting case of the induction is s = Eσ <
ϑ
X Eτ = t

with σ, τ ∈ T uX and σ <TuX τ . As the function T u(iX) : T uX → T uϑ(TuX)∩Ω is an order

embedding we indeed get T u(iX)(σ) <Tu(ϑ(TuX)∩Ω) T
u(iX)(τ) and thus

iϑX(Eσ) = ETu(iX)(σ) <
ϑ
ϑ(TuX)∩Ω ETu(iX)(τ) = iϑX(Eτ).

The other interesting case is s = ϑs′ <ϑX ϑt′ = t. This inequality can hold for two

reasons: First assume that we have s′ <ϑX t′ and r <ϑX t for all r ∈ EϑX(s′)∩ϑ(T uX).

The induction hypothesis provides

iϑX(s′) <ϑϑ(TuX)∩Ω iϑX(t′).

To conclude iϑX(s) <ϑϑ(TuX)∩Ω iϑX(t) it remains to establish

r′ <ϑϑ(TX)∩Ω iϑX(t) for all r′ ∈ Eϑϑ(TuX)∩Ω(iϑX(s′)) ∩ ϑ(T uϑ(TuX)∩Ω).

By the above any such r′ is an element of [iϑX]<ω ◦EϑX(s′), i.e. of the form r′ = iϑX(r)

for some r ∈ EϑX(s′). Lemma 2.2.11 ensures r ∈ ϑ(T uX), so that the above assump-

tion yields r <ϑX t. By Lemma 2.2.6 we have LϑX(r) ≤ LϑX(s′) < LϑX(s). Thus the

2.2. A PREDICATIVE BACHMANN-HOWARD PRINCIPLE 93

induction hypothesis gives r′ = iϑX(r) <ϑϑ(TuX)∩Ω iϑX(t), which is what we needed.

Still concerning the case s = ϑs′ <ϑX ϑt′ = t, the other possibility is that we have

t′ <ϑX s′ and s ≤ϑX r for some r ∈ EϑX(t′) ∩ ϑ(T uX). First, the induction hypothesis

yields iϑX(t′) <ϑϑ(TuX)∩Ω iϑX(s′). Using the above we also get

iϑX(r) ∈ [iϑX]<ω(EϑX(t′)) = Eϑϑ(TuX)∩Ω(iϑX(t′)).

Thus, to conclude iϑX(s) <ϑϑ(TX)∩Ω iϑX(t) it suffices to establish iϑX(r) ∈ ϑ(T uϑ(TuX)∩Ω)

and iϑX(s) ≤ϑϑ(TuX)∩Ω iϑX(r). In view of

LϑX(r) ≤ LϑX(s) + LϑX(r) ≤ LϑX(s) + LϑX(t′) < LϑX(s) + LϑX(t)

both claims hold by induction hypothesis. The other cases are straightforward. �

By Lemma 2.2.7, the function (u,X,EX , LX , iX) 7→ (ϑ(T uX), <ϑX) is primit-

ive recursive. It is easy to see that the transformation of (u,X,EX , LX , iX) into

(u, ϑ(T uX)∩Ω, Eϑ(TuX)∩Ω, Lϑ(TuX)∩Ω, iϑ(TuX)∩Ω) is primitive recursive as well. The fol-

lowing iterations are central for our fixed-point construction:

Definition 2.2.14. We define a primitive recursive function

(u, n) 7→ BHn(T u) = (BHn(T u), EBHn(Tu), LBHn(Tu), iBHn(Tu))

by recursion over n ∈ ω: Invoking Lemma 2.2.10, we set

BH0(T u) := (ε0, Eε0 , Lε0 , iε0).

In the recursion step, we define BHn+1(T u) as the tuple

(ϑ(T uBHn(Tu)) ∩ Ω, Eϑ(Tu(BHn(Tu)))∩Ω, Lϑ(Tu(BHn(Tu)))∩Ω, iϑ(Tu(BHn(Tu)))∩Ω),

relying on the notation from Definition 2.2.12.

Let us record the following:

Corollary 2.2.15. If (T u, suppu) is a prae-dilator then BHn(T u) is a good

BH-system for all n ∈ N.

Proof. One argues by induction on n, as justified by Proposition 1.1.11. Cru-

cially, the induction statement is primitive recursive. Initial case and step are

covered by Lemma 2.2.10 and Theorem 2.2.13, respectively. �

Note that iBHn(T) embeds BHn(T u) into ϑ(T uBHn(Tu)) ∩ Ω = BHn+1(T u). We

want to define BH(T u) as the direct limit of the resulting directed system. To see

that this is permissible in our base theory, we give an explicit construction:

94 2. TYPE-TWO WELL-ORDERING PRINCIPLES

Definition 2.2.16. We put

BH(T u) := {(n, σ) |σ ∈ BHn(T u) ∧ (n = 0 ∨ σ /∈ rng(iBHn−1(Tu)))}.

The function u 7→ ω×
⋃
k∈ω BHk(T

u) is primitive recursive by Proposition 1.1.6,

Proposition 1.1.4 and Proposition 1.2.1. As we have BH(T u) ⊆ ω×
⋃
k∈ω BHk(T

u),

Corollary 1.1.10 tells us that BH(T u) exists as a set, and that u 7→ BH(T u) is

a primitive recursive function. In order to formulate the predicative Bachmann-

Howard principle, we need to define the “limit order” on BH(T u). To avoid explicit

constructions in each case, we recover a version of the universal property:

Lemma 2.2.17. There is a (set-sized) surjection

j :
∏
n∈N

BHn(T u)→ BH(T u), (n, σ) 7→ jn(σ)

such that we have jn+1 ◦ iBHn(Tu) = jn for each n ∈ N. Furthermore, for each

number k ∈ N and any (set-sized) function

f :
∏
n∈N

BHn(T u)k → a, (n, σ1, . . . , σk) 7→ fn(σ1, . . . , σk)

with

fn+1(iBHn(Tu)(σ1), . . . , iBHn(Tu)(σk)) = fn(σ1, . . . , σk) for σ1, . . . , σk ∈ BHn(T u),

there is a function

fω : BH(T u)k → a

such that we have

fω(jn(σ1), . . . , jn(σk)) = fn(σ1, . . . , σk) for σ1, . . . , σk ∈ BHn(T u).

The transformation of f into fω is primitive recursive.

Proof. By recursion over n ≥ m we define functions

inm := iBHn−1(Tu) ◦ · · · ◦ iBHm(Tu) : BHm(T u)→ BHn(T u).

In particular, imm is the identity on BHm(T u). As each iBHk(Tu) is an order embed-

ding, the functions inm are injective. Primitive recursive “ranks”

rk :
∏
n∈N

BHn(T u)→ N

2.2. A PREDICATIVE BACHMANN-HOWARD PRINCIPLE 95

can be defined by

rk(n, σ) := min{m ≤ n |σ ∈ rng(inm)} =

=
⋃
{m ≤ n |σ ∈ rng(inm) ∧ ∀l<mσ /∈ rng(inl)}.

Note that there is a unique τ ∈ BHrk(n,σ)(T
u) with inrk(n,σ)(τ) = σ. Furthermore,

the minimality of rk(n, σ) ensures (rk(n, σ), τ) ∈ BH(T u). Thus we can put

jn(σ) =
⋃
{(rk(n, σ), τ) | τ ∈ BHrk(n,σ)(T

u) ∧ inrk(n,σ)(τ) = σ}.

From in+1
m = iBHn(Tu) ◦ inm one readily deduces rk(n + 1, iBHn(Tu)(σ)) = rk(n, σ)

and then jn+1 ◦ iBHn(Tu)(σ) = jn(σ). As for surjectivity, for (n, σ) ∈ BH(T u) we

clearly have jn(σ) = (n, σ). To establish the second claim, set

fω((m1, τ1), . . . , (mk, τk)) := fm(imm1
(τ1), . . . , immk(τk))

with m = max{m1, . . . ,mk}.

The claim that f 7→ fω is primitive recursive follows from Proposition 1.2.2. Given

elements σ1, . . . , σk ∈ BHn(T u), write jn(σi) = (mi, τi) for i = 1, . . . , k. Note that

this entails m := max{m1, . . . ,mk} ≤ n and inmi(τi) = σi. Thus we get

fω(jn(σ1), . . . , jn(σk)) = fm(imm1
(τ1), . . . , immk(τk)) =

= fn(inm1
(τ1), . . . , inmk(τk)) = fn(σ1, . . . , σk),

as required. �

In particular, if fn : BHn(T u)2 → {0, 1} is the characteristic function of the

order relation <BHn(Tu), then we get a primitive recursive function u 7→ <BH(Tu)

such that <BH(Tu) is a binary relation on BH(T) and we have

jn(σ) <BH(Tu) jn(τ) ⇔ σ <BHn(Tu) τ for σ, τ ∈ BHn(T u).

Let us verify the following:

Lemma 2.2.18. If (T u, suppu) is a prae-dilator then (BH(T u), <BH(Tu)) is a

linear order, and the functions

jn : (BHn(T u), <BHn(Tu))→ (BH(T u), <BH(Tu))

are order embeddings.

96 2. TYPE-TWO WELL-ORDERING PRINCIPLES

Proof. Consider arbitrary elements jn(σ), jm(τ) ∈ BH(T u), say with m ≤ n.

Using the notation from the previous proof, we have σ, inm(τ) ∈ BHn(T u). Invoking

the trichotomy of <BHn(Tu) we have, say, σ <BHn(Tu) inm(τ). By the defining

condition of <BH(Tu) we get

jn(σ) <BH(Tu) jn(inm(τ)) = jm(τ),

establishing that <BH(Tu) is trichotomous. The other conditions on a linear order

carry over in a similar way. That jn is an order embedding is immediate by the

definition of <BH(Tu). In particular, it follows that jn is injective. �

Assume that (T u, suppu) is a dilator. Then the well-foundedness of BHn(T u)

implies the well-foundedness of T uBHn(Tu). Essentially by the type-one well-ordering

principle X 7→ ϑX of Rathjen and Valencia Vizcáıno (cf. Remark 2.1.24), it fol-

lows that ϑ(T uBHn(Tu)) ∩ Ω = BHn+1(T u) is well-founded as well. So inductively,

BHn(T u) is well-founded for all n. In general, well-foundedness is not preserved

under direct limits (indeed, any linear order is a direct limit of finite orders). In

Section 2.4 we will construct compatible embeddings of the orders BHn(T u) into a

sufficiently large well-order. These can be glued to an embedding of BH(T u) into

that well-order, witnessing the well-foundedness of BH(T u). The fact that this

particular limit preserves well-foundedness constitutes the strength of our type-

two well-ordering principle:

Definition 2.2.19. The predicative Bachmann-Howard principle is the collec-

tion of statements

∀u(“(T u, suppu) is a dilator”→ “(BH(T u), <BH(Tu)) is well-founded”)

for all pairs of primitive recursive functions (u,X) 7→ T uX and (u,X) 7→ suppuX .

As observed before, axiom beta turns the definition of dilator into a Π1-formula.

Thus the predicative Bachmann-Howard principle becomes a collection of Π2-

formulas. As Π2-formulas of ATRset
0 correspond to Π1

3-formulas of second-order

arithmetic, the predicative Bachmann-Howard principle has the same logical com-

plexity as Π1
1-comprehension. In Section 2.4 we will see that all prae-dilators form a

single primitive recursive family. This will allow to state the predicative Bachmann-

Howard principle as a single formula, rather than a schema. By direction (iv)⇒(i)

of Theorem 4.4.6, the predicative Bachmann-Howard principle cannot be estab-

lished in a predicative theory. Rather, the specification “predicative” refers to the

2.2. A PREDICATIVE BACHMANN-HOWARD PRINCIPLE 97

fact that u 7→ (BH(T u), <BH(Tu)) is a primitive recursive set function. One can

argue that such functions are acceptable for a predicativist (cf. [17]).

Recall that we wanted a well-founded fixed-point BH(T u) ∼= ϑ(T uBH(Tu)) ∩ Ω.

Well-foundedness cannot be established in a weak base theory, and is instead pos-

tulated by the predicative Bachmann-Howard principle. In the rest of this section

we show that BH(T u) is a fixed point, working in our usual base theory PRSω.

To make sense of this claim, we have to endow BH(T u) with the structure of a

BH-system. The following is a preparation:

Definition 2.2.20. Construct functions

jϑn : ϑ0(T uBHn(Tu))→ ϑ0(T uBH(Tu))

by recursion over terms in ϑ0(T uBHn(Tu)), setting

(i) jϑn(0) = 0,

(ii) jϑn(Ω) = Ω,

(iii) jϑn(Eσ) = ETu(jn)(σ) (using the embedding T u(jn) : T uBHn(Tu) → T uBH(Tu)),

(iv) jϑn(ϑs) = ϑjϑn(s),

(v) jϑn(ωs0 + · · ·+ ωsn) := ωj
ϑ
n(s0) + · · ·+ ωj

ϑ
n(sn).

In order to glue these functions we must verify the following:

Lemma 2.2.21. The families of functions

[jn]<ω ◦ EBHn(Tu) : BHn(T u)→ [BH(T u)]<ω,

LBHn(Tu) : BHn(T u)→ ω,

jϑn ◦ iBHn(Tu) : BHn(T u)→ ϑ0(T uBH(Tu))

each satisfy the compatibility condition from Lemma 2.2.17.

Proof. In the first case we must show

[jn+1]<ω ◦ EBHn+1(Tu) ◦ iBHn(Tu) = [jn]<ω ◦ EBHn(Tu).

Recall that EBHn+1(Tu) is the restriction of EϑBHn(Tu) to BHn+1(T u) ⊆ ϑ0(T uBHn(Tu)).

As BHn(T u) is a BH-system we have EϑBHn(Tu)◦iBHn(Tu) = [iBHn(Tu)]
<ω ◦EBHn(Tu).

Thus, for s ∈ BHn(T u), we obtain

[jn+1]<ω ◦ EBHn+1(Tu) ◦ iBHn(Tu)(s) = [jn+1]<ω ◦ [iBHn(Tu)]
<ω ◦ EBHn(Tu)(s) =

[jn+1 ◦ iBHn(Tu)]
<ω ◦ EBHn(Tu)(s) = [jn]<ω ◦ EBHn(Tu)(s),

98 2. TYPE-TWO WELL-ORDERING PRINCIPLES

as required. Similarly, we get LBHn+1(Tu) ◦ iBHn(Tu) = LBHn(Tu). Finally, we must

show

jϑn+1 ◦ iBHn+1(Tu) ◦ iBHn(Tu) = jϑn ◦ iBHn(Tu).

Recall that iBHn+1(Tu) is a restriction of iϑBHn(Tu) : ϑ0(T uBHn(Tu))→ ϑ0(T uBHn+1(Tu)).

Thus it suffices to establish

jϑn+1 ◦ iϑBHn(Tu)(s) = jϑn(s)

by induction on s ∈ ϑ0(T uBHn(Tu)). The interesting case is s = Eσ for σ ∈ T uBHn(Tu).

We have T u(jn+1) ◦ T u(iBHn(Tu))(σ) = T u(jn+1 ◦ iBHn(Tu))(σ) = T u(jn)(σ) by

functoriality, and thus

jϑn+1 ◦ iϑBHn(Tu)(Eσ) = jϑn+1(ETu(iBHn(Tu))(σ)) =

= ETu(jn+1)◦Tu(iBHn(Tu))(σ) = ETu(jn)(σ) = jϑn(Eσ),

as desired. �

Now we can glue these functions as follows:

Definition 2.2.22. The previous lemma and Lemma 2.2.17 yield functions

EBH(Tu) : BH(T u)→ [BH(T u)]<ω,

LBH(Tu) : BH(T u)→ ω,

iBH(Tu) : BH(T u)→ ϑ0(T uBH(Tu))

with

EBH(Tu) ◦ jn = [jn]<ω ◦ EBHn(Tu),

LBH(Tu) ◦ jn = LBHn(Tu),

iBH(Tu) ◦ jn = jϑn ◦ iBHn(Tu).

Let us check that the following structure is preserved in the limit:

Lemma 2.2.23. The tuple (BH(T u), EBH(Tu), LBH(Tu), iBH(Tu)) is a BH-system,

whenever (T u, suppu) is a prae-dilator.

Proof. As a preparation, we establish

EϑBH(Tu) ◦ j
ϑ
n(s) = [jϑn]<ω ◦ EϑBHn(Tu)(s)

by induction on s ∈ ϑ0(T uBHn(Tu)). The crucial case is s = Eσ with σ ∈ T uBHn(Tu).

Using the fact that suppu : T u ⇒ [·]<ω is a natural transformation one gets

2.2. A PREDICATIVE BACHMANN-HOWARD PRINCIPLE 99

EϑBH(Tu) ◦j
ϑ
n(Eσ) = EϑBH(Tu)(ETu(jn)(σ)) = [iBH(Tu)]

<ω ◦ suppuBH(Tu)(T
u(jn)(σ)) =

= [iBH(Tu)]
<ω ◦ [jn]<ω ◦ suppuBHn(Tu)(σ) =

= [jϑn]<ω ◦ [iBHn(Tu)]
<ω ◦ suppuBHn(Tu)(σ) = [jϑn]<ω ◦ EϑBHn(Tu)(Eσ),

as required. Since BHn(T u) is a BH-system we can deduce

EϑBH(Tu) ◦ iBH(Tu)(jn(s)) = EϑBH(Tu) ◦ j
ϑ
n ◦ iBHn(Tu)(s) =

= [jϑn]<ω ◦ EϑBHn(Tu) ◦ iBHn(Tu)(s) = [jϑn]<ω ◦ [iBHn(Tu)]
<ω ◦ EBHn(Tu)(s) =

= [iBH(Tu)]
<ω ◦ [jn]<ω ◦ EBHn(Tu)(s) = [iBH(Tu)]

<ω ◦ EBH(Tu)(jn(s)).

By Lemma 2.2.17, any element of BH(T u) is of the form jn(s) for some n ∈ N
and some s ∈ BHn(T u). Thus we have EϑBH(Tu) ◦ iBH(Tu) = [iBH(Tu)]

<ω ◦ EBH(Tu).

Similarly, one shows LϑBH(Tu)◦j
ϑ
n = LϑBHn(Tu) and then LϑBH(Tu)◦iBH(Tu) = LBH(Tu),

making BH(T u) a BH-system. �

Now Lemma 2.2.7 singles out the “normal forms” ϑ(T uBH(Tu)) ⊆ ϑ0(T uBH(Tu)),

as well as a binary relation <ϑBH(Tu) on ϑ(T uBH(Tu)). Proposition 2.2.8 ensures that

this is a linear order. As for the finite iterations we have the following:

Proposition 2.2.24. The map iBH(Tu) is an embedding of (BH(T u), <BH(Tu))

into (ϑ(T uBH(Tu)) ∩ Ω, <ϑBH(Tu)). In other words, BH(T u) is a good BH-system for

the prae-dilator (T u, suppu).

Proof. The crucial step is to establish

r ∈ ϑ(T uBHn(Tu)) ⇒ jϑn(r) ∈ ϑ(T uBH(Tu)),

s <ϑBHn(Tu) t ⇒ jϑn(s) <ϑBH(Tu) j
ϑ
n(t),

by simultaneous induction on LϑBHn(Tu)(r) resp. LϑBHn(Tu)(s) + LϑBHn(Tu)(t). The

only difficult case is

s = ϑs′ <ϑBHn(Tu) ϑt
′ = t.

First, assume that this holds because we have s′ <ϑBHn(Tu) t
′ and r0 <

ϑ
BHn(Tu) t for

all r0 ∈ EϑBHn(Tu)(s
′)∩ϑ(T uBHn(Tu)). Then jϑn(s′) <ϑBH(Tu) j

ϑ
n(t′) holds by induction

hypothesis. To obtain jϑn(s) <ϑBH(Tu) j
ϑ
n(t) it suffices to establish

r <ϑBH(Tu) j
ϑ
n(t) for all r ∈ EϑBH(Tu)(j

ϑ
n(s′)) ∩ ϑ(T uBH(Tu)).

As we have EϑBH(Tu) ◦ j
ϑ
n(s′) = [jϑn]<ω ◦ EϑBHn(Tu)(s

′) by the previous proof, any

such r can be written as r = jϑn(r0) with r0 ∈ EϑBHn(Tu)(s
′). Lemma 2.2.11

ensures r0 ∈ ϑ(T uBHn(Tu)), so that the above assumption yields r0 <ϑBHn(Tu) t.

100 2. TYPE-TWO WELL-ORDERING PRINCIPLES

Since LϑBHn(Tu)(r0) ≤ LϑBHn(Tu)(s
′) < LϑBHn(Tu)(s) holds by Lemma 2.2.6, the

induction hypothesis yields r = jϑn(r0) <ϑBH(Tu) jϑn(t), as required. Still con-

cerning the case s = ϑs′ <ϑBHn(Tu) ϑt′ = t, let us now assume that we have

t′ <ϑBHn(Tu) s
′ and s ≤ϑBHn(Tu) r0 for some r0 ∈ EϑBHn(Tu)(t

′) ∩ ϑ(T uBHn(Tu)). The

induction hypothesis provides jϑn(t′) <ϑBH(Tu) j
ϑ
n(s′), as well as jϑn(s) ≤ϑBH(Tu) j

ϑ
n(r0)

and jϑn(r0) ∈ ϑ(T uBH(Tu)). By the proof of the previous lemma we also have

jϑn(r0) ∈ [jϑn]<ω(EϑBHn(Tu)(t
′)) = EϑBH(Tu)(j

ϑ
n(t′)).

Together this implies

jϑn(s) = ϑjϑn(s′) <ϑBH(Tu) ϑj
ϑ
n(t′) = jϑn(t),

as needed. To deduce that the BH-system BH(T u) is good, consider an arbitrary

element jn(s) ∈ BH(T u). As BHn(T u) is good we have iBHn(Tu)(s) ∈ ϑ(T uBHn(Tu))

and iBHn(Tu)(s) <
ϑ
BHn(Tu) Ω. By the above this implies

iBH(Tu)(jn(s)) = jϑn(iBHn(Tu)(s)) ∈ ϑ(T uBH(Tu)) ∩ Ω.

This means that the range of iBH(Tu) is as desired. To see that iBH(Tu) is an order

embedding, consider two elements jn(s) <BH(Tu) jm(t) of BH(T u). In view of

jk(r) = jk+1(iBHk(Tu)(r)) we may assume m = n. By the defining equivalence

of <BH(Tu) we get s <BHn(Tu) t, and then iBHn(Tu)(s) <
ϑ
BHn(Tu) iBHn(Tu)(t). Using

the above we obtain

iBH(Tu)(jn(s)) = jϑn(iBHn(Tu)(s)) <
ϑ
BH(Tu) j

ϑ
n(iBHn(Tu)(t)) = iBH(Tu)(jn(t)),

so that iBH(Tu) is indeed order preserving. �

Finally, the limit construction yields the following fixed-point property. This

reveals the power of the predicative Bachmann-Howard principle:

Theorem 2.2.25. Consider a prae-dilator (T u, suppu). The embedding

iBH(Tu) : (BH(T u), <BH(Tu))→ (ϑ(T uBH(Tu)) ∩ Ω, <ϑBH(Tu))

is surjective, and thus an order isomorphism.

Proof. The main step is to show that any s ∈ ϑ(T uBH(Tu)) can be written

as s = jϑn(t), for some n ∈ N and t ∈ ϑ(T uBHn(Tu)). Arguing by induction on s, the

crucial case is s = Eσ with σ ∈ T uBH(Tu). By the definition of prae-dilator, σ lies in

the range of T uισ : T usuppu
BH(Tu)

(σ) → T uBH(Tu), where ισ : suppuBH(Tu)(σ) ↪→ BH(T u) is

the inclusion. Pick τ ∈ T usuppu
BH(Tu)

(σ) with σ = T uισ(τ). By Lemma 2.2.17 we have

2.2. A PREDICATIVE BACHMANN-HOWARD PRINCIPLE 101

BH(T u) =
⋃
k∈N rng(jk). Also, jk+1 ◦ iBHk(Tu) = jk implies rng(jk) ⊆ rng(jk+1).

Thus the finite set suppuBH(Tu)(σ) is contained in the range of jn, for some n ∈ N.

It follows that iσ factors as iσ = jn ◦ h, where h : suppuBH(Tu)(σ)→ BHn(T u) is an

order embedding. Using the functoriality of T we get

σ = T u(iσ)(τ) = T u(jn ◦ h)(τ) = T u(jn) ◦ T u(h)(τ).

Setting t := ETu(h)(τ) ∈ ϑ(T uBHn(Tu)) we obtain

jϑn(t) = ETu(jn)◦Tu(h)(τ) = Eσ = s,

as desired. Before we tackle the next case, note that we can increase n: If we have

s = jϑn(t) with t ∈ ϑ(T uBHn(Tu)) then the proof of Lemma 2.2.21 yields

s = jϑn(t) = jϑn+1(iϑBHn(Tu)(t)),

and the proof of Theorem 2.2.13 ensures

iϑBHn(Tu)(t) ∈ ϑ(T uϑ(Tu
BHn(Tu)

)∩Ω) = ϑ(T uBHn+1(Tu)).

Now consider the case

s = ωs0 + · · ·+ ωsk with k > 0 and sk ≤ϑBH(Tu) · · · ≤
ϑ
BH(Tu) s0.

By induction hypothesis we can write si = jϑn(ti) with ti ∈ ϑ(T uBHn(Tu)) and, as

we have just seen, the same n for all i ≤ k. In the previous proof we have seen

that the restriction of jϑn to ϑ(T uBHn(Tu)) is order preserving. Thus we must have

tk ≤ϑBHn(Tu) · · · ≤
ϑ
BHn(Tu) t0, and t := ωt0 + · · · + ωtk ∈ ϑ(T uBHn(Tu)) is a term

with s = jϑn(t). The remaining cases are straightforward. To deduce the claim of

the theorem, consider an arbitrary element s ∈ ϑ(T uBH(Tu)) ∩ Ω. As shown, we can

write s = jϑn(t) for some n ∈ N and t ∈ ϑ(T uBHn(Tu)). Since jϑn is order preserving

we get t ∈ ϑ(T uBHn(Tu)) ∩ Ω = BHn+1(T u). Recall from Definition 2.2.12 that

iBHn+1(Tu) is the restriction of iϑBHn(Tu) to this set. We can deduce that

s = jϑn(t) = jϑn+1(iϑBHn(Tu)(t)) = jϑn+1(iBHn+1(Tu)(t)) = iBH(Tu)(jn+1(t))

lies in the range of iBH(Tu), as required. �

Let us point out that our definition of BH(T u) is similar to Aczel’s [2, 3]

functorial construction of the derivative of a normal function. For a more detailed

comparison we refer to the introduction of the present thesis.

102 2. TYPE-TWO WELL-ORDERING PRINCIPLES

2.3. A Computable Bachmann-Howard Principle

In the first part of this section we re-establish a result of Girard [28, Re-

mark 2.1.6(ii)] in our context: Up to natural isomorphism, a prae-dilator is uniquely

determined by its restriction to (the category of) natural numbers. Indeed, there

is a single primitive recursive function which reconstructs (an isomorphic copy

of) any given prae-dilator from this restriction. With respect to the predicat-

ive Bachmann-Howard principle of the previous section, this has two advantages:

Firstly, we can quantify over (up to isomorphism) all prae-dilators, so that the pre-

dicative Bachmann-Howard principle becomes a single statement in the language of

set theory, rather than a schema (as pointed out by Montalbán [55, Section 4.5]).

Secondly, the seemingly ad-hoc condition that prae-dilators must be primitive re-

cursive becomes automatic. Under the axiom of countability, prae-dilators can be

coded by subsets of the natural numbers. In the second part of this section we

will show that such a coded prae-dilator T can be transformed into a relativized

notation system ϑ(T), also coded by a subset of the natural numbers. The trans-

formation T 7→ ϑ(T) will be primitive recursive in the usual sense, so that RCA0

proves the existence of ϑ(T) as a set, and indeed as a linear order. The comput-

able Bachmann-Howard principle asserts that ϑ(T) is well-founded for any coded

dilator T . In the next section we will see that the fixed-point BH(T) from the

predicative Bachmann-Howard principle corresponds to a subset ϑ(T)∩Ω ⊆ ϑ(T).

Any linear order is the direct limit of its finite sub-orders. As prae-dilators

preserve direct limits (see Remark 2.2.2), they can (up to isomorphism) be recon-

structed from their restrictions to the category of finite orders. This category is not

small, but it is equivalent to a small category (cf. [51, Section IV.4]): the category

of natural numbers, with strictly increasing maps

n = {0, . . . , n− 1} → {0, . . . ,m− 1} = m

as morphisms. Indeed, this category is small from the viewpoint of our base the-

ory PRSω, as all morphisms are finite subsets of ω × ω, i.e. elements of the set

[ω × ω]<ω (cf. Section 1.2). By Proposition 1.2.2, any primitive recursive function

with domain ω resp. [ω × ω]<ω exists as a set. Thus functors from the category of

natural numbers into some other category will be set-sized. The same applies to

natural transformations between such functors. For example, the restriction of the

“finite subset functor” [·]<ω to the category of natural numbers exists as a set. Of

course [n]<ω is the full power set of n = {0, . . . , n − 1}. We need some notation

2.3. A COMPUTABLE BACHMANN-HOWARD PRINCIPLE 103

concerning the equivalence of categories: Write |a| resp. ena : |a| → a for the car-

dinality resp. increasing enumeration of a finite order a. As they are unique, these

objects can be computed by primitive recursive functions (with parameter ω, as

always). For example,

a 7→ ena =
⋃
{f ∈ [ω × a]<ω | “f : n→ a is an isomorphism for some n ∈ ω”}

is primitive recursive by Corollary 1.1.10. Given an embedding f : a→ b, we write

|f | : |a| → |b| for the unique increasing function with

enb ◦|f | = f ◦ ena .

This makes | · | a functor from linear orders to natural numbers, and en· a natural

transformation from | · | to the identity.

Definition 2.3.1. A set-sized prae-dilator consists of

(i) a set-sized functor n 7→ Tn = (Tn, <Tn), f 7→ Tf from the category of

natural numbers to the category of linear orders and

(ii) a set-sized natural transformation supp : T ⇒ [·]<ω that yields supports,

in the sense that any σ ∈ Tn lies in the range of Tισ◦enσ : T| suppn(σ)| → Tn,

where ισ : suppn(σ) ↪→ n is the inclusion and enσ abbreviates ensuppn(σ).

The notion of set-sized prae-dilator can be formalized by a bounded Lpr-formula

with parameter ω. Thus, by Proposition 1.1.9, being a set-sized prae-dilator is a

primitive-recursive property. Following Girard [28, Theorem 2.1.5], a set-sized

prae-dilator can be extended to an endo-functor of linear orders. In the following

we give an explicit construction, to show that this extension is primitive recursive.

The idea is that the pair 〈a, σ〉 with a ∈ [X]<ω and σ ∈ T|a| represents the element

TιXa ◦ena(σ) of TX , where ιXa : a ↪→ X is the inclusion. To make sure that every

element is only represented once, we want to choose a minimal. This can be

expressed by the condition supp|a|(σ) = {0, . . . , |a| − 1} = |a|.

Definition 2.3.2. Given a set-sized prae-dilator T = (T, supp) and a linear

order X we define the set

DT
X := {〈a, σ〉 | a ∈ [X]<ω ∧ σ ∈ T|a| ∧ supp|a|(σ) = |a|}.

The binary relation <TX on DT
X is given by

〈a, σ〉 <TX 〈b, τ〉 ⇔ T|ιa∪ba |(σ) <T|a∪b| T|ιa∪bb |(τ).

104 2. TYPE-TWO WELL-ORDERING PRINCIPLES

With each order embedding f : X → Y we associate the function

DT
f : DT

X → DT
Y , DT

f (〈a, σ〉) = 〈[f]<ω(a), σ〉.

Finally, we define the family of functions

suppTX : DT
X → [X]<ω, suppTX(〈a, σ〉) = a.

To see that DT
f (〈a, σ〉) is an element of DT

Y it suffices to note |[f]<ω(a)| = |a|.
The functions (T,X) 7→ DT

X = (DT
X , <

T
X), (T, f) 7→ DT

f and (T,X) 7→ suppTX are

primitive recursive by the results of Sections 1.1 and 1.2. The following justifies

the term “set-sized prae-dilator”:

Lemma 2.3.3. If T = (T, supp) is a set-sized prae-dilator then (DT , suppT) is

a prae-dilator in the sense of Definition 2.2.1.

Proof. We begin by showing that (DT
X , <

T
X) is a linear order. Irreflexivity and

transitivity are straightforward (for the latter, compose with ιa∪b∪ca∪b and observe

|ιa∪b∪ca∪b | ◦ |ιa∪ba | = |ιa∪b∪ca | by functoriality). The claim that <TX is trichotomous is

easily reduced to the implication

T|ιa∪ba |(σ) = T|ιa∪bb |(τ) ⇒ 〈a, σ〉 = 〈b, σ〉.

Using the naturality of supp and the condition supp|a|(σ) = |a| we get

[ena∪b]
<ω ◦ supp|a∪b| ◦T|ιa∪ba |(σ) =

= [ena∪b]
<ω ◦ [|ιa∪ba |]<ω ◦ supp|a|(σ) = [ιa∪ba ◦ ena]

<ω(|a|) = a.

Thus a can be recovered from T|ιa∪ba |(σ), and T|ιa∪ba |(σ) = T|ιa∪bb |(τ) implies a = b.

Then |ιa∪ba | = |ιa∪bb | is the identity on |a| = |a ∪ b|, and we get σ = τ as desired.

Next, consider an embedding f : X → Y . The claim that DT
f is an embedding

of (DT
X , <

T
X) into (DT

Y , <
T
Y) is easily reduced to |[f]<ω(a) ∪ [f]<ω(b)| = |a ∪ b| and

|ι[f]<ω(a)∪[f]<ω(b)
[f]<ω(a) | = |ιa∪ba |. By uniqueness, the latter follows from

en[f]<ω(a)∪[f]<ω(b) ◦|ιa∪ba | = (f �a ∪ b) ◦ ena∪b ◦|ιa∪ba | = (f �a ∪ b) ◦ ιa∪ba ◦ ena =

= ι
[f]<ω(a)∪[f]<ω(b)
[f]<ω(a) ◦ (f �a) ◦ ena = ι

[f]<ω(a)∪[f]<ω(b)
[f]<ω(a) ◦ en[f]<ω(a) .

Functoriality is easy to observe. The naturality of suppT amounts to

suppTY ◦DT
f (〈a, σ〉) = suppTY (〈[f]<ω(a), σ〉) = [f]<ω(a) = [f]<ω ◦ suppTX(〈a, σ〉).

2.3. A COMPUTABLE BACHMANN-HOWARD PRINCIPLE 105

Finally, we must see that suppTX computes supports: Consider 〈a, σ〉 ∈ DT
X and the

inclusion map ι : suppTX(〈a, σ〉) = a ↪→ X. We clearly have 〈a, σ〉 ∈ DT
a and

DT
ι (〈a, σ〉) = 〈[ι]<ω(a), σ〉 = 〈a, σ〉.

Thus 〈a, σ〉 lies in the range of DT
ι , as required. �

Conversely, if T u = (T u, suppu) is a prae-dilator in the sense of Definition 2.2.1

then we write T u �ω for its restriction to the category of natural numbers. Prop-

osition 1.2.2 tells us that T u �ω exists as a set, and that u 7→ T u �ω is a primitive

recursive operation.

Lemma 2.3.4. If T u = (T u, suppu) is a prae-dilator in the sense of Defini-

tion 2.2.1 then the restriction T u �ω is a set-sized prae-dilator.

Proof. The only slight change concerns the supports: By Definition 2.2.1,

any σ ∈ T un lies in the range of T uισ , where ισ : suppun(σ) ↪→ n is the inclusion. As

enσ : | suppun(σ)| → suppun(σ) is an order isomorphism, σ does also lie in the range

of T uισ◦enσ , as required for a set-sized prae-dilator. Note that we could not refer

to T uισ in the definition of set-sized prae-dilator, because the domain of ισ is not a

natural number. �

Of course, we cannot expect DTu�ω
X and T uX to be equal as sets. Nevertheless

we can relate them as follows:

Definition 2.3.5. Given a prae-dilator T u = (T u, suppu) and a linear order X

we define the function

ηT
u

X : DTu�ω
X → T uX , ηT

u

X (〈a, σ〉) = T uιXa ◦ena
(σ).

Given that (u, f) 7→ T uf is primitive recursive, it is clear that ηT
u

: X 7→ ηT
u

X is

primitive recursive with parameter u. Note that the definition of ηT
u

does depend

on the primitive recursive definition of T u; in contrast, (T,X) 7→ DT
X for set-sized T

was given by a single primitive recursive definition.

Proposition 2.3.6. Consider a prae-dilator T u = (T u, suppu) and the prae-

dilator (DTu�ω, suppT
u�ω) reconstructed from the set-sized prae-dilator T u �ω. Then

ηT
u

: DTu�ω ⇒ T u is a natural isomorphism and we have

suppuX ◦ηT
u

X = suppT
u�ω

X .

106 2. TYPE-TWO WELL-ORDERING PRINCIPLES

Proof. To see that ηT
u

X : DTu�ω
X → T uX is an order embedding, consider ele-

ments 〈a, σ〉 <T
u�ω

X 〈b, τ〉 of DTu�ω
X . Then T u|ιa∪ba |(σ) <Tu|a∪b| T

u
|ιa∪bb |(τ) holds by the

definition of <T
u�ω

X . Using ιXa ◦ ena = ιXa∪b ◦ ιa∪ba ◦ ena = ιXa∪b ◦ ena∪b ◦|ιa∪ba | we get

ηT
u

X (〈a, σ〉) = T uιXa ◦ena
(σ) = T u

ιXa∪b◦ena∪b
◦ T u|ιa∪ba |(σ) <TuX

<TuX T u
ιXa∪b◦ena∪b

◦ T u|ιa∪bb |(τ) = T u
ιXb ◦enb

(τ) = ηT
u

X (〈b, τ〉),

as required. Next, consider an embedding f : X → Y . For a ∈ [X]<ω we have

(f �a) ◦ ena = en[f]<ω(a), as both functions enumerate [f]<ω(a) in increasing order.

This yields

f ◦ ιXa ◦ ena = ιY[f]<ω(a) ◦ (f �a) ◦ ena = ιY[f]<ω(a) ◦ en[f]<ω(a)

and then

T uf ◦ ηT
u

X (〈a, σ〉) = T uf◦ιXa ◦ena
(σ) = T u

ιY
[f]<ω(a)

◦en[f]<ω(a)
(σ) =

= ηT
u

Y (〈[f]<ω(a), σ〉) = ηT
u

Y ◦D
Tu�ω
f (〈a, σ〉).

To infer that ηT
u

is a natural isomorphism it suffices to show that the components

ηT
u

X : DTu�ω
X → T uX are surjective. Consider σ ∈ T uX and set a := suppuX(σ). By

the definition of prae-dilator, σ lies in the range of T u
ιXa

. As ena : |a| → a is an

isomorphism we can write σ = T u
ιXa ◦ena

(σ0) for some σ0 ∈ T u|a|. Using the naturality

of suppu we get

[ιXa ◦ ena]
<ω ◦ suppu|a|(σ0) = suppuX ◦T uιXa ◦ena

(σ0) = suppuX(σ) = a.

For cardinality reasons this implies suppu|a|(σ0) = |a|, which means 〈a, σ0〉 ∈ DTu�ω
X .

In view of ηT
u

X (〈a, σ0〉) = T u
ιXa ◦ena

(σ0) = σ we have established that ηT
u

X is surjective.

Using the naturality of suppu and the condition suppu|a|(σ) = |a| we also get

suppuX ◦ηT
u

X (〈a, σ〉) = suppuX ◦T uιXa ◦ena
(σ) = [ιXa ◦ ena]

<ω ◦ suppu|a|(σ) =

= [ιXa ◦ ena]
<ω(|a|) = a = suppT

u�ω
X (〈a, σ〉),

as demanded by the proposition. �

By Lemma 2.3.3 and the previous proposition, the notions of prae-dilator and

set-sized prae-dilator are essentially equivalent. An important application of this

result can be found in Proposition 2.3.10 below. It also follows that prae-dilators

are automatically primitive recursive. However, one has to be careful to interpret

this claim correctly:

2.3. A COMPUTABLE BACHMANN-HOWARD PRINCIPLE 107

Remark 2.3.7. Working in a stronger base theory, we may come to consider

prae-dilators which are not given by primitive recursive set functions. If T is such

a prae-dilator, the previous result is still valid: It yields an equivalent prae-dilator

DT �ω which is primitive recursive in the set-sized parameter T � ω (the natural

isomorphism ηT : DT �ω ⇒ T will no longer be primitive recursive). To point out

one consequence of this result, assume that T � ω has hereditary cardinality at

most κ. For any cardinal µ we then have

card(Tµ) = card(DT �ω
µ) ≤ max{µ, κ},

as primitive recursive set functions cannot raise infinite cardinalities (see the intro-

duction of [44]). In particular, the function µ 7→ 2µ (cardinal arithmetic) cannot

be a dilator. A similar argument applies to admissible ordinals at the place of

cardinals (see [28, Remark 2.3.6]). It is important to note that the associated

order-types of a dilator do not need to be primitive recursive: Assume that TX

is the relativized notation system ϕX0 to be found in [73] and [52]. As a nota-

tion system, ϕX0 has a primitive recursive construction. If X has order-type α

then ϕX0 has order-type ϕα0, which now denotes the corresponding value of the

Veblen function. However, as a function on ordinals, F (α) := ϕα0 is not primitive

recursive: Aiming at a contradiction, assume that F is primitive recursive with

parameters in Vβ (von Neumann hierarchy). By induction over primitive recursive

definitions one finds a number n such that α, β < γ implies F (α) ∈ Vϕnγ . Pick

an ordinal α > n with α, β < ϕα0. Then we get ϕα0 = F (α) < ϕn(ϕα0) = ϕα0,

which is the desired contradiction. This is linked to the fact that the collapse of a

well-founded relation cannot be computed primitive recursively (unless the relation

is set membership, cf. Proposition 1.2.4 and Definition 1.4.2). We point out that

Girard [28, Definition 2.3.1] defines dilators as endo-functors on the category of or-

dinals (rather than arbitrary well-orders). This has the advantage that equivalent

dilators are equal (since isomorphic ordinals are equal, cf. [28, Remark 2.1.6(ii)]).

However, if one only allows ordinals as values then it is no longer possible to find

a primitive recursive copy of each dilator, as just seen.

Preservation of well-foundedness cannot be tested on the category of natural

numbers. It can be tested on the countable ordinals (cf. [28, Theorem 2.1.15]), but

these do not form a set in our base theory PRSω. Indeed, the notion of dilator

is Π1
2-universal (as claimed in the foreword of [28]), so that its logical complexity

cannot be reduced.

108 2. TYPE-TWO WELL-ORDERING PRINCIPLES

Definition 2.3.8. A set-sized prae-dilator T is called a set-sized dilator if

(DT
X , <

T
X) is well-founded for any well-order X.

Let us relate this to dilators in the sense of Definition 2.2.1:

Corollary 2.3.9. If T is a set-sized dilator then (DT , suppT) is a dilator.

Conversely, if T u = (T u, suppu) is a dilator then T u �ω is a set-sized dilator.

Proof. From Lemma 2.3.3 we know that (DT , suppT) is a prae-dilator in the

sense of Definition 2.2.1. By assumption the function X 7→ DT
X preserves well-

foundedness, which makes (DT , suppT) a dilator. Conversely, Lemma 2.3.4 tells

us that T u �ω is a set-sized prae-dilator. By the definition of dilator, T uX is well-

founded for any well-order X. By Proposition 2.3.6 the order DTu�ω
X is isomorphic

to T uX . Thus DTu�ω
X is also well-founded, making T u �ω a set-sized dilator. �

Recall the primitive recursive construction u 7→ BH(T u) = (BH(T u), <BH(Tu))

from the previous section. With DT at the place of T u we get a primitive recursive

function T 7→ BH(DT). If T = (T, supp) is a set-sized prae-dilator then DT is a

prae-dilator in the sense of Definition 2.2.1, and Lemma 2.2.18 tells us that BH(DT)

is a linear order. If T is a set-sized dilator then DT is a dilator, and the pre-

dicative Bachmann-Howard principle of Definition 2.2.19 asserts that BH(DT) is

well-founded. Indeed, this instance of the predicative Bachmann-Howard principle

is universal:

Proposition 2.3.10. The statement

∀T (“T = (T, supp) a set-sized dilator”→ “ (BH(DT), <BH(DT)) is well-founded”)

implies any other instance of the predicative Bachmann-Howard principle.

Proof. Given primitive recursive functions (u,X) 7→ T uX , (u, f) 7→ T uf and

(u,X) 7→ suppuX , consider a value of u and assume that T u = (T u, suppu) is

a dilator. To deduce the corresponding instance of the predicative Bachmann-

Howard principle, we must show that the order BH(T u) is well-founded. The

previous corollary ensures that T u � ω is a set-sized dilator. By the statement in

the proposition, this implies that BH(DTu�ω) is well-founded. Thus it suffices to

give an embedding of BH(T u) into BH(DTu�ω). From the previous section, recall

that BH(T u) and BH(DTu�ω) are the direct limits of approximations BHn(T u)

resp. BHn(DTu�ω). The idea is to construct embeddings

hn : BHn(T u)→ BHn(DTu�ω)

2.3. A COMPUTABLE BACHMANN-HOWARD PRINCIPLE 109

which are compatible in the sense that they satisfy

hn+1 ◦ iBHn(Tu) = iBHn(DTu�ω) ◦ hn : BHn(T u)→ BHn+1(DTu�ω).

Assuming that we have these, recall the functions jn : BHn(DTu�ω)→ BH(DTu�ω)

with jn+1 ◦ iBHn(DTu�ω) = jn, and observe jn+1 ◦ hn+1 ◦ iBHn(Tu) = jn ◦ hn. Then

Lemma 2.2.17 allows us to glue the embeddings jn ◦ hn : BHn(T u) → BH(DTu�ω)

to an embedding of BH(T u) into BH(DTu�ω), as desired. Intuitively, it should be

clear that the natural isomorphism from Proposition 2.3.6 allows to construct the

maps hn, but the details are somewhat tedious: For n = 0 we take the identity on

BH0(T u) = ε0 = BH0(DTu�ω). To construct hn+1 from hn, write µ : T u ⇒ DTu�ω

for the inverse of the natural isomorphism ηT
u

from Proposition 2.3.6. For an

element σ ∈ T uBHn(Tu) we then have

σ′ := µBHn(DTu�ω) ◦ T uhn(σ) ∈ DTu�ω
BHn(DTu�ω)

.

By the obvious recursion on terms, extend the stipulation hϑn(Eσ) := Eσ′ to a map

hϑn : ϑ0(T uBHn(Tu))→ ϑ0(DTu�ω
BHn(DTu�ω)

).

Let hn+1 be the restriction of hϑn to BHn+1(T u) = ϑ(T uBHn(Tu))∩Ω ⊆ ϑ0(T uBHn(Tu)).

To see that this is an order embedding into BHn+1(DTu�ω), one first verifies the

compatibility condition hn+1 ◦ iBHn(Tu) = iBHn(DTu�ω) ◦ hn and, relying on it, the

equation

[hϑn]<ω ◦ EϑBHn(Tu) = EϑBHn(DTu�ω) ◦ h
ϑ
n.

The interesting case is that of a term Eσ for n = m+1 > 0. Here, the compatibility

condition is readily reduced to the following computation, which uses the induction

hypothesis hn ◦ iBHm(Tu) = iBHm(DTu�ω) ◦ hm and the naturality of µ:

µBHn(DTu�ω) ◦ T uhn ◦ T
u
iBHm(Tu)

(σ) = µBHn(DTu�ω) ◦ T ui
BHm(DT

u�ω)
◦ T uhm(σ) =

= DTu�ω
i
BHm(DT

u�ω)
◦ µBHm(DTu�ω) ◦ T uhm(σ).

Using compatibility, the equation suppuBHn(Tu) = suppT
u�ω

BHn(Tu) ◦µBHn(Tu) from Prop-

osition 2.3.6, the naturality of suppT
u�ω, and the naturality of µ we also get

[hϑn]<ω ◦ EϑBHn(Tu)(Eσ) =

= [hn+1]<ω ◦ [iBHn(Tu)]
<ω ◦ suppuBHn(Tu)(σ) =

= [iBHn(DTu�ω)]
<ω ◦ [hn]<ω ◦ suppT

u�ω
BHn(Tu)(µBHn(Tu)(σ)) =

= [iBHn(DTu�ω)]
<ω ◦ suppT

u�ω
BHn(DTu�ω)

(DTu�ω
hn

◦ µBHn(Tu)(σ)) =

110 2. TYPE-TWO WELL-ORDERING PRINCIPLES

= [iBHn(DTu�ω)]
<ω ◦ suppT

u�ω
BHn(DTu�ω)

(µBHn(DTu�ω) ◦ T uhn(σ)) =

= EϑBHn(DTu�ω) ◦ h
ϑ
n(Eσ).

Using these results one can establish

r ∈ ϑ(T uBHn(Tu)) ⇒ hϑn(r) ∈ ϑ(DTu�ω
BHn(DTu�ω)

),

s <ϑBHn(Tu) t ⇒ hϑn(s) <ϑBHn(DTu�ω) h
ϑ
n(t)

by simultaneous induction on LϑBHn(Tu)(r) resp. LϑBHn(Tu)(s) + LϑBHn(Tu)(t). The

most interesting case is s = ϑs′ <ϑBHn(Tu) ϑt
′ = t. Assume that this holds because

we have s′ <ϑBHn(Tu) t
′ and r′ <ϑBHn(Tu) t for all r′ ∈ EϑBHn(Tu)(s

′) (note that

r ∈ ϑ(T uBHn(Tu)) is automatic by Lemma 2.2.11). By induction hypothesis we have

hϑn(s′) <ϑ
BHn(DTu�ω)

hϑn(t′). To get hϑn(s) = ϑhϑn(s′) <ϑ
BHn(DTu�ω)

ϑhϑn(t′) = hϑn(t) we

have to show

r <ϑBHn(DTu�ω) h
ϑ
n(t) for all r ∈ EϑBHn(DTu�ω) ◦ h

ϑ
n(s′).

By the above, any such r can be written as r = hϑn(r′) with r′ ∈ EϑBHn(Tu)(s
′).

Lemma 2.2.6 ensures LϑBHn(Tu)(r
′) ≤ LϑBHn(Tu)(s

′) < LϑBHn(Tu)(s), so that the in-

duction hypothesis yields r = hϑn(r′) <ϑ
BHn(DTu�ω)

hϑn(t), as required. It follows

that the restriction hn+1 = hϑn � (ϑ(T uBHn(Tu)) ∩ Ω) is indeed an embedding into

ϑ(DTu�ω
BHn(DTu�ω)

)∩Ω = BHn+1(DTu�ω). Of course, one can use the inverse ηT
u

of µ

to get an inverse embedding BH(DTu�ω)→ BH(T u), but this was not required. �

Our next goal is to formalize the concept of set-sized dilator in the subtheory

RCA0 (recursive comprehension) of second-order arithmetic. For an introduction

to this theory we refer to [87]; as RCA0 extends the first-order theory IΣ1, the

information from [37] is also very useful. In the following, “primitive recursive”

has the usual number-theoretic (rather than set-theoretic) sense. It is quite natural

to formalize dilators in RCA0, given that Girard [28, Section 0.2.1] has stressed

their finitistic nature.

To represent a functor from natural numbers to linear orders we first need a

map n 7→ Tn = (Tn, <Tn) on objects. Using a suitable coding of tuples, this can be

represented by the set

T 0 = {〈0, n, σ〉 |σ ∈ Tn} ∪ {〈1, n, σ, τ〉 |σ <Tn τ}.

Officially, we have the converse relation between T 0 and (Tn, <Tn): The expressions

σ ∈ Tn and σ <Tn τ are to be read as abbreviations for 〈0, n, σ〉 ∈ T 0 resp.

〈1, n, σ, τ〉 ∈ T 0. Thus these relations are ∆0
1 in RCA0, and they can freely feature

2.3. A COMPUTABLE BACHMANN-HOWARD PRINCIPLE 111

in comprehension or induction formulas. In contrast, the statement “Tn is a linear

order” has complexity Π0
1. This is different from the set-theoretic context in which

we have worked so far: There, the set Tn counted as a bound on quantifiers, and

the statement “Tn is a linear order” was expressed by a bounded formula.

Next, we need a map f 7→ Tf on morphisms. Finite subsets of N and func-

tions between such sets can be represented by (unique) natural numbers, us-

ing a primitive recursive coding of sequences (see [87, Section II.2] or [37, Sec-

tion I.1(b)]). The function n 7→ “code of n = {0, . . . , n− 1}” is primitive recursive;

here n = {0, . . . , n − 1} is merely an abbreviation, in contrast to the set-theoretic

setting. The statements “f codes a strictly increasing function (i.e. a morphism)

from n = {0, . . . , n − 1} to m = {0, . . . ,m − 1}” and “h is the composition of g

and f“ are ∆0
1. Furthermore, RCA0 shows that a unique composition g ◦ f exists.

We can now represent the map f 7→ Tf by the set

T 1 = {〈f, σ, τ〉 |Tf (σ) = τ}.

Officially, Tf (σ) = τ becomes an abbreviation for the ∆0
1-relation 〈f, σ, τ〉 ∈ T 1.

Clearly, “Tf is an embedding of Tn into Tm” is an arithmetical statement (of com-

plexity Π0
2, because of totality). The conditions TIdn = IdTn and Tg ◦Tf = Tg◦f are

also arithmetical. Overall, we have an arithmetical formalization of the statement

“T = (T 0, T 1) is a functor from natural numbers to (countable) linear orders”.

To get a prae-dilator, we also need a natural transformation supp : T ⇒ [·]<ω.

The relation a ∈ [n]<ω is primitive recursive, and the code of any a ∈ [n]<ω is

primitive recursively bounded. Thus the function n 7→ [n]<ω is RCA0-provably

total, by bounded comprehension (see [87, Theorems II.3.9 and II.2.5] or [37,

Theorems I.1.36 and I.1.39]). For f : n→ m, the relation [f]<ω(a) = b is primitive

recursive, and the elements of [f]<ω ⊆ [n]<ω × [m]<ω are primitive recursively

bounded. So again, the function f 7→ [f]<ω is RCA0-provably total. Now, our

natural transformation is represented by the set

supp = {〈n, σ, a〉 | suppn(σ) = a}.

Again, suppn(σ) = a officially becomes an abbreviation for 〈n, σ, a〉 ∈ supp.

By the above, the conditions “suppn is a total function from Tn to [n]<ω” and

suppm ◦Tf = [f]<ω ◦ suppn, which make supp a natural transformation, are arith-

metical. Given a (code of a) finite set a of numbers, we can primitive recursively

compute its size |a| and (a code of) the enumeration ena : |a| → a. Given n and

a subset a ⊆ {0, . . . , n − 1} = n we can also compute the inclusion ιna : a ↪→ n.

112 2. TYPE-TWO WELL-ORDERING PRINCIPLES

The condition σ ∈ rng(Tιnσ◦enσ) from Definition 2.3.1 can then be expressed by the

Σ1-formula

∃a(suppn(σ) = a ∧ ∃σ0(σ0 ∈ T|a| ∧ Tιna◦ena(σ0) = σ)).

Note that the quantifier over a ∈ [n]<ω is bounded, but not the quantifier over σ0.

We can now restate Definition 2.3.1 in second-order arithmetic:

Definition 2.3.11 (RCA0). A coded prae-dilator consists of

(i) a functor n 7→ Tn = (Tn, <Tn), f 7→ Tf from natural numbers to linear

orders (given by sets T 0, T 1 ⊆ N, as explained above) and

(ii) a natural transformation supp : T ⇒ [·]<ω (given by a set supp ⊆ N)

which computes supports, in the sense that any σ ∈ Tn lies in the range

of Tιnσ◦enσ (as formalized above).

By the above, the statement that T = (T 0, T 1) and supp form a coded prae-

dilator is arithmetical. To define coded dilators we need the ordered sets (DT
X , <

T
X),

as in Definition 2.3.8 (there will be no need to reconstruct the functions DT
f and

suppTX from Definition 2.3.2). Given X ⊆ N, we can form the set

DT
X = {〈a, σ〉 | “a codes a finite subset of X” ∧ σ ∈ T|a| ∧ supp|a|(σ) = |a|}

by ∆0
1-comprehension. Above, we have considered enumerations ena : |a| → a with

respect to the usual order on a ⊆ N. Given a linear order X = (X,<X) and a finite

set a ⊆ X we can also consider the enumeration enXa : |a| → a which is strictly

increasing with respect to <X . Note that a 7→ enXa is primitive recursive relative

to X. For finite sets a ⊆ b ⊆ X we use bounded comprehension to construct

enXa,b = {〈i, j〉 | i < |a| ∧ j < |b| ∧ enXa (i) = enXb (j)}.

In other words, the function enXa,b : |a| → |b| satisfies enXb (enXa,b(i)) = enXa (i), with

the inclusion a ↪→ b left implicit. It follows that enXa,b is strictly increasing. Note

that enXa,b coincides with the function |ιba| from Definition 2.3.2. Using the totality

of the involved functions, the statement TenXa,a∪b
(σ) <T|a∪b| TenXb,a∪b

(τ) is equivalent

to both

∃σ′,τ ′(TenXa,a∪b
(σ) = σ′ ∧ TenXb,a∪b

(τ) = τ ′ ∧ σ′ <T|a∪b| τ
′)

and

∀σ′,τ ′(TenXa,a∪b
(σ) = σ′ ∧ TenXb,a∪b

(τ) = τ ′ → σ′ <T|a∪b| τ
′).

2.3. A COMPUTABLE BACHMANN-HOWARD PRINCIPLE 113

Thus this condition is ∆0
1, and RCA0 shows that the relation

〈a, σ〉 <TX 〈b, τ〉 ⇔ TenXa,a∪b
(σ) <T|a∪b| TenXb,a∪b

(τ)

on DT
X exists as a set. Also, RCA0 proves that (DT

X , <
T
X) is a linear order whenever

T is a coded prae-dilator and X is a linear order, as in Lemma 2.3.3. Before

we define coded dilators, let us reflect on the definition of well-ordering (cf. [87,

Definition I.6.1]):

Lemma 2.3.12 (RCA0). For any linear order (X,<X) the following charac-

terizations of well-foundedness are equivalent:

(i) There is no function f : N→ X with f(n+ 1) <X f(n) for all n ∈ N.

(ii) Any non-empty Z ⊆ X has a <X-minimal element.

Proof. Aiming at the contrapositive of (i)⇒(ii), assume that ∅ 6= Z ⊆ X

has no <X -minimal element. Say that a sequence s = 〈s0, . . . , sn−1〉 is minimally

descending in Z (abbreviated Z-m.d.) if s0 is the <N-minimal element of Z and

si+1 is the <N-minimal element of {z ∈ Z | z <X si}, for all i < n − 1. Clearly,

this is a ∆0
1-property of sequences. If both s and t are Z-m.d., one verifies si = ti

by induction on i (up to the length of the shorter sequence). Given that Z has

no <X -minimal element, a straightforward induction produces Z-m.d. sequences of

arbitrary length. By ∆0
1-comprehension this yields the function

f : = {〈n,m〉 | ∃s(“s is Z-m.d. of length n+ 1” ∧m = sn)} =

= {〈n,m〉 | ∀s(“s is Z-m.d. of length n+ 1”→ m = sn)},

which satisfies f(n + 1) <X f(n) for all n ∈ N. Aiming at the contrapositive

of (ii)⇒(i), assume that f : N → X satisfies f(n + 1) <X f(n) for all n ∈ N. The

difficulty is that we cannot form the set {f(n) |n ∈ N} in RCA0. Instead, we build

an infinite recursive subset by the usual construction: A sequence s = 〈s0, . . . , sn−1〉
is called minimally increasing for f (abbreviated f -m.i.) if we have s0 = 0 and if

si+1 is <N-minimal with f(si) <N f(si+1) and si <N si+1. Again, this is a ∆0
1-

property of s, and any two f -m.i. sequences agree (up to the lenght of the shorter

sequence). As f must have infinite range, we can inductively construct f -m.i.

sequences of arbitrary length. By ∆0
1-comprehension we define

Z : = {n | ∃s(“s is f -m.i. of length n+ 1” ∧ ∃i≤n n = f(si))} =

= {n | ∀s(“s is f -m.i. of length n+ 1”→ ∃i≤n n = f(si))}.

114 2. TYPE-TWO WELL-ORDERING PRINCIPLES

Note that Z contains f(0), as witnessed by the f -m.i. sequence of length f(0) + 1.

Finally, no element n = f(si) ∈ Z can be <X -minimal: Extend s to length n+ 2,

to ensure that the entry si+1 exists. In view of f(si+1) >N f(si) = n ≥ i, further

extend s to length f(si+1)+1 ≥ n+2. The resulting sequence witnesses f(si+1) ∈ Z.

In view of si+1 >N si we have f(si+1) <X f(si). �

Using either definition of well-foundedness, we can now restate Definition 2.3.8:

Definition 2.3.13 (RCA0). A coded prae-dilator (T, supp) is called a coded

dilator if the linear order (DT
X , <

T
X) (as constructed above) is well-founded for any

well-order X.

As well-foundedness is a Π1
1-property, being a coded dilator has complexity Π1

2,

just as expected. Our next goal is to define a notation system ϑ(T) relative to a

coded prae-dilator T . This is supposed to be a fixed-point, in the sense that any

σ ∈ DT
ϑ(T)∩Ω gives rise to a term Eσ ∈ ϑ(T), similar to the previous two sections.

In the present set-up, such a σ is of the form 〈a, σ0〉, where a is a finite subset of

ϑ(T) ∩ Ω and we have σ0 ∈ T|a| with supp|a|(σ0) = |a|. Writing a = {s0, . . . , sn−1}
with s0 <ϑ(T) · · · <ϑ(T) sn−1, we will represent Eσ by the term E

s0,...,sn−1
σ0 . Note

that we do not need to have completed the construction of ϑ(T) in order to write

down this term; in contrast, in the previous section we had to construct the order

BH(T) before we could consider elements σ ∈ TBH(T) and terms Eσ ∈ ϑ(TBH(T)).

Lemma 2.3.14 (RCA0). For any coded prae-dilator T = (T, supp) there is

a set ϑ(T) of terms, a binary relation <ϑ(T) on the set ϑ(T), and a function

Eϑ(T) : ϑ(T)→ [ϑ(T)]<ω, which are simultaneously generated as follows:

(i) We have a term 0 ∈ ϑ(T).

(ii) We have a term Ω ∈ ϑ(T).

(iii) Given terms s0, . . . , sn−1 ∈ ϑ(T) with s0 <ϑ(T) · · · <ϑ(T) sn−1 <ϑ(T) Ω and

an element σ ∈ Tn with suppn(σ) = n we have a term E
s0,...,sn−1
σ ∈ ϑ(T).

(iv) For each term s ∈ ϑ(T) we have a term ϑs ∈ ϑ(T).

(v) Given terms s0, . . . , sn ∈ ϑ(T) we have a term ωs0 + · · · + ωsn ∈ ϑ(T),

provided that

• either n = 0 and s0 is not of the form Ω,E
t0,...,tm−1
σ or ϑs,

• or n > 0 and we have sn ≤ϑ(T) · · · ≤ϑ(T) s0 (where s ≤ϑ(T) t abbrevi-

ates s <ϑ(T) t ∨ s = t, the latter referring to equality as terms).

Given s, t ∈ ϑ(T), we have s <ϑ(T) t if and only if one of the following holds:

2.3. A COMPUTABLE BACHMANN-HOWARD PRINCIPLE 115

(i) s = 0 and t 6= 0,

(ii) s = Ω and we have

• either t = E
t0,...,tm−1
τ ,

• or t = ωt0 + · · ·+ ωtm and s ≤ϑ(T) t0,

(iii) s = E
s0,...,sn−1
σ and we have

• either t = E
t0,...,tm−1
τ and Tf (σ) <Tk Tg(τ) for some strictly increasing

functions f : n→ k := |{s0, . . . , sn−1, t0, . . . , tm−1}| and g : m → k

which satisfy f(i) < g(j)⇔ si <ϑ(T) tj and f(i) = g(j)⇔ si = tj for

all i < n and j < m,

• or t = ωt0 + · · ·+ ωtm and s ≤ϑ(T) t0,

(iv) s = ϑs′ and one of the following holds:

• t = ϑt′ and we have

– either s′ <ϑ(T) t
′ and r <ϑ(T) t for all r ∈ Eϑ(T)(s

′),

– or t′ <ϑ(T) s
′ and s ≤ϑ(T) r for some r ∈ Eϑ(T)(t

′),

• t = Ω,

• t = E
t0,...,tm−1
τ ,

• t = ωt0 + · · ·+ ωtm and s ≤ϑ(T) t0,

(v) s = ωs0 + · · ·+ ωsn and one of the following holds:

• t = ωt0 + · · ·+ ωtm and

– either n < m and si = ti for all i ≤ n,

– or there is a number j ≤ min{m,n} with sj <ϑ(T) tj and si = ti

for all i < j,

• t is of the form Ω, E
t0,...,tm−1
τ or ϑt′ and we have s0 <ϑ(T) t.

The function Eϑ(T), mapping each s ∈ ϑ(T) to a finite set Eϑ(T)(s) ⊆ ϑ(T), satisfies

(i) Eϑ(T)(0) = ∅,
(ii) Eϑ(T)(Ω) = ∅,

(iii) Eϑ(T)(E
s0,...,sn−1
σ) = {s0, . . . , sn−1},

(iv) Eϑ(T)(ϑs) = {ϑs},
(v) Eϑ(T)(ω

s0 + · · ·+ ωsn) = Eϑ(T)(s0) ∪ · · · ∪ Eϑ(T)(sn).

Furthermore, the set ϑ(T), the relation <ϑ(T) and the function Eϑ(T) are uniquely

determined by these clauses.

A similar construction (relative to a well-order, rather than a prae-dilator) can

be found in [71, Section 2.1].

116 2. TYPE-TWO WELL-ORDERING PRINCIPLES

Proof. It is well-known that RCA0 can encode (finite) terms as natural num-

bers (see e.g. [37, Section I.1(d)]). In particular, we can construct a preliminary

term system ϑ0(T) ⊇ ϑ(T) which ignores the conditions involving <ϑ(T) (cf. Defin-

ition 2.2.3). Note that the conditions σ ∈ Tn and suppn(σ) = n are ∆0
1. By

recursion over terms, we can define Eϑ(T) as a function from ϑ0(T) to [ϑ0(T)]<ω.

It will be clear that the restriction Eϑ(T) �ϑ(T) has range in [ϑ(T)]<ω. Writing psq

for the code of s as a natural number (having arithmetized terms, this is of course

the number s itself), we define a “length function” Lϑ(T) : ϑ0(T)→ N by

Lϑ(T)(s) =



psq if s ∈ {0,Ω}

max{psq, 2 · Lϑ(T)(s0) + · · ·+ 2 · Lϑ(T)(sn−1) + Lϑ(T)(Ω) + 1}
if s = E

s0,...,sn−1
σ

max{psq, Lϑ(T)(s
′) + 1} if s = ϑs′

max{psq, Lϑ(T)(s0) + · · ·+ Lϑ(T)(sn) + 1} if s = ωs0 + · · ·+ωsn .

The occurrences of psq have the effect that ∀s∈ϑ0(T)(Lϑ(T)(s) ≤ n → . . .) is a

bounded quantifier (of course, s ∈ ϑ0(T) does not count as a bound). The factor 2

will be relevant in the next proof. We can decide r ∈ ϑ(T) and s <ϑ(T) t by

simultaneous recursion over Lϑ(T)(r) resp. Lϑ(T)(s) + Lϑ(T)(t). Note that we have

Lϑ(T)(r) ≤ Lϑ(T)(s) for all r ∈ Eϑ(T)(s), by induction over s. To formalize the

decision procedure in RCA0, consider finite partial functions

d : ϑ0(T) ∪ (ϑ0(T)× ϑ0(T))
p−−→ {0, 1},

coded by natural numbers. The idea is that d(r) = 1 resp. d(s, t) = 1 should be

equivalent to r ∈ ϑ(T) resp. s <ϑ(T) t. Call d a decision function if it satisfies the

corresponding clauses. For example, 〈Es0,...,sn−1
σ ,E

t0,...,tm−1
τ 〉 ∈ dom(d) must imply

Es0,...,sn−1
σ ∈ dom(d) ∧ Et0,...,tm−1

τ ∈ dom(d) ∧ ∀i<n,j<m〈si, tj〉 ∈ dom(d),

and d(E
s0,...,sn−1
σ ,E

t0,...,tm−1
τ) = 1 must be equivalent to the conjunction of the state-

ments d(E
s0,...,sn−1
σ) = d(E

t0,...,tm−1
τ) = 1 and

∃f,g(“f : n→ k, g : m→ k strictly increasing” ∧ Tf (σ) <Tk Tg(τ) ∧

∧ ∀i<n,j<m((f(i) < f(j)↔ d(si, tj) = 1) ∧ (f(i) = g(j)↔ si = tj))),

with k = |{s0, . . . , sn−1, t0, . . . , tm−1}|. Assuming that T is a prae-dilator, the

functions Tf and Tg are total, so that Tf (σ) <Tk Tg(τ) has complexity ∆0
1. Then

the statement “d is a decision function” is ∆0
1 as well (note the similarity with the

2.3. A COMPUTABLE BACHMANN-HOWARD PRINCIPLE 117

“partial satisfactions” of [37, Definition I.1.71]). Call d a decision for r resp. 〈s, t〉
if d is a decision function with r ∈ dom(d) resp. 〈s, t〉 ∈ dom(d). Given decision

functions d and d′, one can show the uniqueness result

∀n∀r,s,t∈ϑ0(T)((Lϑ(T)(r) ≤ n ∧ r ∈ dom(d) ∩ dom(d′)→ d(r) = d′(r)) ∧

(Lϑ(T)(s) + Lϑ(T)(t) ≤ n ∧ 〈s, t〉 ∈ dom(d) ∩ dom(d′)→ d(s, t) = d′(s, t)))

by a straightforward induction on n. The existence of decision functions can be

established in the form

∀n∀r,s,t∈ϑ0(T)((Lϑ(T)(r) ≤ n→ ∃d “d is a decision for r”) ∧

(Lϑ(T)(s) + Lϑ(T)(t) ≤ n→ ∃d “d is a decision for 〈s, t〉”)),

again by induction on n (recall that Σ1-formulas are provably closed under bounded

quantification). To see how this works, let us take up the example of s = E
s0,...,sn−1
σ

and t = E
t0,...,tm−1
τ . In view of Lϑ(T)(si)+Lϑ(T)(tj) < Lϑ(T)(s)+Lϑ(T)(t), the induc-

tion hypothesis provides a decision function dij for each pair 〈si, tj〉. Inductively,

we get decision functions d′k which cover all pairs 〈si, tj〉 with 〈i, j〉 < k: In the

step, set d′〈i,j〉+1 := d′〈i,j〉∪dij , which is a decision function by uniqueness. Once we

have a decision function that covers 〈si, tj〉 for all i < n and j < m, we can simply

add 〈s, t〉 to the domain (with the correct value). Having established uniqueness

and existence, we can define ϑ(T) by ∆0
1-comprehension, stipulating

s ∈ ϑ(T)⇔ ∃d(“d is a decision for s” ∧ d(s) = 1)

⇔ ∀d(“d is a decision for s”→ d(s) = 1).

In the same way, we define <ϑ(T). The uniqueness of ϑ(T) and <ϑ(T) is established

as the uniqueness of decision functions. �

As usual, linearity can be established in a weak base theory:

Proposition 2.3.15 (RCA0). If T is a prae-dilator then <ϑ(T) is a linear

order on the term system ϑ(T).

Proof. By simultaneous induction on n one proves that

Lϑ(T)(s) ≤ n→ s 6<ϑ(T) s,

Lϑ(T)(s) + Lϑ(T)(t) ≤ n→ s <ϑ(T) t ∨ s = t ∨ t <ϑ(T) s,

Lϑ(T)(s) + Lϑ(T)(t) + Lϑ(T)(r) ≤ n→ (s <ϑ(T) t ∧ t <ϑ(T) r → s <ϑ(T) r)

118 2. TYPE-TWO WELL-ORDERING PRINCIPLES

holds for all s, t, r ∈ ϑ(T). Concerning antisymmetry for s = E
s0,...,sn−1
σ , any strictly

increasing function f : n→ k := |{s0, . . . , sn−1}| ≤ nmust be the identity on k = n.

Thus E
s0,...,sn−1
σ <ϑ(T) E

s0,...,sn−1
σ would require σ <Tn σ, which fails because <Tn is

a linear order (by the definition of prae-dilator). Next, let us establish trichotomy

for s = E
s0,...,sn−1
σ and t = E

t0,...,tm−1
τ . The induction hypothesis makes <ϑ(T) linear

on {s0, . . . , sn−1, t0, . . . , tm−1} (note that the factor 2 in the definition of Lϑ(T)

yields Lϑ(T)(si) + Lϑ(T)(tj) + Lϑ(T)(si) < Lϑ(T)(s) + Lϑ(T)(t), which covers the

implication si <ϑ(T) tj ∧ tj <ϑ(T) si → si <ϑ(T) si). The definition of <ϑ(T) asks

for strictly increasing functions f : n → k := |{s0, . . . , sn−1, t0, . . . , tm−1}| and

g : m→ k which satisfy f(i) < g(j)⇔ si <ϑ(T) tj and f(i) = g(j)⇔ si = tj for all

i < n and j < m. Given that <ϑ(T) is linear on {s0, . . . , sn−1, t0, . . . , tm−1}, this

is equivalent to the condition that f and g make the following diagram commute,

where the horizontal arrows are the increasing enumerations with respect to <ϑ(T)

(to deduce commutativity from the conditions on f and g, observe that si 7→ f(i),

tj 7→ g(j) defines the inverse of the isomorphism in the middle row):

n {s0, . . . , sn−1}

k {s0, . . . , sn−1, t0, . . . , tm−1}

m {t0, . . . , tm−1}.

f

g

Clearly, there are unique f and g which do make the diagram commute. If we have

Tf (σ) <Tk Tg(τ) or Tg(τ) <Tk Tf (σ) then we get s <ϑ(T) t resp. t <ϑ(T) s and we

are done. So now assume Tf (σ) = Tg(τ). Similar to the proof of Lemma 2.3.3, the

naturality of supp and the condition suppn(σ) = n yield

[f]<ω(n) = [f]<ω ◦ suppn(σ) = suppk ◦Tf (σ) =

= suppk ◦Tg(τ) = [g]<ω ◦ suppm(τ) = [g]<ω(m).

Observing [f]<ω(n)∪ [g]<ω(m) = k we get [f]<ω(n) = [g]<ω(m) = k, so that f = g

is the identity on n = m = k. This yields σ = τ and 〈s0, . . . , sn−1〉 = 〈t0, . . . , tm−1〉,
hence s = t. To get transitivity for s = E

s0,...,sn−1
σ , t = E

t0,...,tm−1
τ and r = E

r0,...,rl−1
ρ ,

compose with the embeddings into {s0, . . . , sn−1, t0, . . . , tm−1, r0, . . . , rl−1}. Again,

the induction hypothesis ensures that <ϑ(T) is linear on this set. Transitivity for

s = ϑs′, t = ϑt′ and r = ϑr′ is established as in the proof of Proposition 2.2.8. �

2.3. A COMPUTABLE BACHMANN-HOWARD PRINCIPLE 119

We can now state our type-two well-ordering principle in second-order arith-

metic:

Definition 2.3.16 (RCA0). The computable Bachmann-Howard principle is

the statement

∀T (“T = (T 0, T 1, supp) a coded dilator”→ “(ϑ(T), <ϑ(T)) is well-founded”).

As observed above, being a coded dilator is a Π1
2-property. Thus the comput-

able Bachmann-Howard principle is a Π1
3-statement. In view of Corollary 4.4.7 its

logical complexity cannot be lowered. Our next goal is to show that the comput-

able Bachmann-Howard principle implies arithmetical transfinite recursion, using

a result of Rathjen and Valencia Vizcáıno [71]. This will allow us to switch back

to the base theory ATR0, or indeed to its set-theoretic variant ATRset
0 . As a

preparation, we show that the condition t <ϑ(T) s in the definition of ϑs <ϑ(T) ϑt

is redundant (we have included it for symmetry):

Lemma 2.3.17 (RCA0). If ϑs ≤ϑ(T) r holds for some r ∈ Eϑ(T)(t) then we

have ϑs <ϑ(T) ϑt.

Proof. Invoking the transitivity of <ϑ(T), it suffices to establish r <ϑ(T) ϑt

for all r ∈ Eϑ(T)(t). Note that any such r is smaller than Ω. Also, r must be a

subterm of t, and thus a proper subterm of ϑt. We prove the implication

“if r <ϑ(T) Ω is a proper subterm of t then we have r <ϑ(T) t”

by induction on Lϑ(T)(r)+Lϑ(T)(t). The case t = ωt0 +· · ·+ωtm is easily reduced to

t0 <ϑ(T) ω
t0 + · · ·+ωtm , which holds by induction on t0. The other interesting case

concerns r = ϑr0 and t = ϑt0. As r0 and t0 must be different terms, there are two

possibilities: First assume r0 <ϑ(T) t0. To conclude r <ϑ(T) t we need r1 <ϑ(T) t

for all r1 ∈ Eϑ(T)(r0). In view of Lϑ(T)(r1) ≤ Lϑ(T)(r0) < Lϑ(T)(r) this follows

from the induction hypothesis. Now assume t0 <ϑ(T) r0. To get r <ϑ(T) t we need

r ≤ϑ(T) t1 for some t1 ∈ Eϑ(T)(t0). Observe that there is some t1 ∈ Eϑ(T)(t0) such

that r = ϑr0 is a subterm of t1. In case r = t1 we are done. Otherwise r is a proper

subterm of t1 and the induction hypothesis yields r <ϑ(T) t1. �

We can now connect the computable Bachmann-Howard principle with a known

well-ordering principle of type one:

120 2. TYPE-TWO WELL-ORDERING PRINCIPLES

Proposition 2.3.18 (RCA0). The computable Bachmann-Howard principle

implies that ϑX is well-founded for any well-order X, where ϑX is the relativized

notation system of Rathjen and Valencia Vizcáıno [71, Section 2.1].

Proof. The idea is to define T as the constant dilator with value X = (X,<X).

As we shall see, ϑ(T) and ϑX are essentially the same term system. Working in

the base theory RCA0, we invoke ∆0
1-comprehension to define the sets

T 0 = {〈0, n, σ〉 |n ∈ N ∧ σ ∈ X} ∪ {〈1, n, σ, τ〉 |n ∈ N ∧ σ <X τ},

T 1 = {〈f, σ, τ〉 | “f a morphism of natural numbers” ∧ σ = τ ∈ X},

supp = {〈n, σ, ∅〉 |n ∈ N ∧ σ ∈ X}.

In other words, Tf is the identity on X and all supports are empty. It is easy to

see that T = (T 0, T 1, supp) is a coded prae-dilator. The condition supp|a|(σ) = |a|
forces a = ∅, so that we have

DT
Y = {〈∅, σ〉 |σ ∈ T0 = X} and 〈∅, σ〉 <TY 〈∅, τ〉 ⇔ σ <X τ.

Given that X is a well-order, this implies that (DT
Y , <

T
Y) is well-founded for any

(well-)order Y . Thus T is a coded dilator, and the computable Bachmann-Howard

principle tells us that (ϑ(T), <ϑ(T)) is well-founded. Define a function

h : ϑX → ϑ0(T)

by the obvious recursion on terms. In particular, we have

h(Eσ) = E〈〉σ for σ ∈ X = T0.

To show that h is an embedding, define a length function LϑX : ϑX → N by

LϑX (s) =


max{psq, p0q} if s ∈ {0,Ω} or s = Eσ,

max{psq, LϑX (s′) + 1} if s = ϑs′,

max{psq, LϑX (s0) + · · ·+ LϑX (sn) + 1} if s = ωs0 + · · ·+ ωsn .

Recall that the notation system ϑX works with a function ·∗ : ϑX → ϑX at the place

of our Eϑ(T) : ϑ(T) → [ϑ(T)]<ω (but note the sets EΩ(α) in [71, Section 2]). The

occurrences of p0q ensure LϑX (s∗) ≤ LϑX (s), by an easy induction on s. As before,

psq ≤ LϑX (s) means that ∀s∈ϑX (LϑX (s) ≤ n → . . .) is a bounded quantifier. By

simultaneous induction on LϑX (r) resp. LϑX (s) + LϑX (t) one can show

r ∈ ϑX ⇒ h(r) ∈ ϑ(T),

h(r∗) = max<ϑ(T)
(Eϑ(T)(h(r)) ∪ {0}),

2.3. A COMPUTABLE BACHMANN-HOWARD PRINCIPLE 121

s <ϑX t⇒ h(s) <ϑ(T) h(t).

As an example, assume that s = ϑs′ <ϑX ϑt′ = t holds because of s ≤ϑX (t′)∗

(note that the definition of ϑX does not contain the condition t′ <ϑX s′). In view

of LϑX ((t′)∗) ≤ LϑX (t′) < LϑX (t) the induction hypothesis gives

ϑh(s′) = h(s) ≤ϑ(T) h((t′)∗) = max<ϑ(T)
(Eϑ(T)(h(t′)) ∪ {0}).

As ϑh(s′) ≤ϑ(T) 0 fails we must have ϑh(s′) ≤ϑ(T) r for some r ∈ Eϑ(T)(h(t′)). By

the previous lemma we get h(s) = ϑh(s′) <ϑ(T) ϑh(t′) = h(t), as required. We

have thus shown that h is an order embedding of ϑX into ϑ(T). By recursion on

terms we can also construct a section h′ : ϑ(T)→ ϑX such that h′ ◦h is the identity

on ϑX (in the present case h′ is indeed the inverse of h, but in general this is not

necessary). To deduce that ϑX is well-founded, consider an inhabited set Z ⊆ ϑX .

Use ∆0
1-comprehension to form the set

Z ′ = {h(s) | s ∈ Z} = {t ∈ ϑ(T) |h′(t) ∈ Z ∧ t = h ◦ h′(t)}.

As ϑ(T) is well-founded we get a <ϑ(T)-minimal element h(s) of Z ′. Then s must

be <ϑX -minimal in Z. �

As promised, we can now use a result of Rathjen and Valencia Vizcáıno to

boost the base theory:

Corollary 2.3.19. Over RCA0, the computable Bachmann-Howard principle

implies all axioms of ATR0.

Proof. Assuming the computable Bachmann-Howard principle, let us first

boot up to ACA+
0 : By [52, Theorem 5.23] or [4, Theorem 4.1] it suffices to show

that the relativized notation system εX is well-founded for any well-order X. As

in the previous proof, εX can be embedded into ϑ(T), where T is the constant

dilator with value X (see also the last paragraph of [71, Section 4]). The point of

this first step is that valuations for countably coded ω-models are now available

(cf. [87, Lemma VII.2.2]). As usual, we write M � ϕ to express that ϕ is satis-

fied under some (and thus any) valuation. Recall that ATR0 is axiomatized by

a Π1
2-sentence ∀X∃Y ϕ(X,Y) which is provable by bar induction (see [87, Corol-

lary VII.2.19]). To deduce ∀X∃Y ϕ(X,Y) from the computable Bachmann-Howard

principle, consider an arbitrary setX. In view of the previous proposition, [71, The-

orem 4.1] yields a countably coded ω-modelM of bar induction which contains X

(in its second-order part). By meta-induction along the aforementioned proof we

122 2. TYPE-TWO WELL-ORDERING PRINCIPLES

get M � ∀U∃V ϕ(U, V). As X is contained in M this implies M � ∃V ϕ(X,V).

Finally, we obtain ∃Y ϕ(X,Y) by upward absoluteness. �

Back in our default base theory PRSω, let us relate coded and set-sized dilat-

ors. Given a coded prae-dilator (T 0, T 1, supp), consider the primitive recursive set

function n 7→ (Tn, <Tn) defined by

Tn = {σ ∈ ω | 〈0, n, σ〉 ∈ T 0},

<Tn = {(σ, τ) ∈ ω × ω | 〈1, n, σ, τ〉 ∈ T 0}.

Here (σ, τ) is the pair in the set-theoretic sense, while 〈1, n, σ, τ〉 refers to the en-

coding of tuples as natural numbers. Proposition 1.2.2 ensures that the function

n 7→ (Tn, <Tn) exists as a set. In the context of RCA0, the expression σ ∈ Tn was

used as an abbreviation for 〈0, n, σ〉 ∈ T 0. Our definition of Tn turns this abbre-

viation into an equivalence. Similarly, the sets T 1, supp ⊆ N give rise to set-sized

functions f 7→ Tf and n 7→ suppn. Clearly these functions form a set-sized prae-

dilator. For dilators the situation is slightly less straightforward: Definition 2.3.8

tests the well-foundedness of DT
X for all well-orders X, while Definition 2.3.13 does

only consider well-orders X ⊆ N (or equivalently countable well-orders). In the

presence of choice the definitions coincide: Consider an arbitrary well-order X.

Due to the characterization of well-foundedness in terms of descending sequences,

it suffices to check that any countable set Z ⊆ DT
X has a minimal element. It is

easy to see Z ⊆ DT
Y for some countable Y ⊆ X (cf. [28, Theorem 2.1.15]). Instead

of choice, we will assume the axiom of countability, which also ensures that the

two definitions of dilator coincide. Conversely, consider a set-sized (prae-)dilator

(T, supp) such that we have Tn ⊆ N for all n ∈ N. Set

T 0 = {〈0, n, σ〉 |σ ∈ Tn} ∪ {〈1, n, σ, τ〉 |σ <Tn τ}

and define T 1, supp ⊆ N in a similar way. It is easy to see that (T 0, T 1, supp) is a

coded (prae-)dilator. This justifies the following terminology:

Convention 2.3.20. Under the axiom of countability we identify coded (prae-)

dilators and set-sized (prae-)dilators (T, supp) which satisfy Tn ⊆ N for all n ∈ N.

In fact, countability makes any set-sized dilator equivalent to a coded dilator.

This leads to the following strengthening of Proposition 2.3.10:

2.4. WELL-ORDERING PROOFS 123

Proposition 2.3.21 (Countability). The statement

∀T (“T = (T, supp) a coded dilator”→ “ (BH(DT), <BH(DT)) is well-founded”)

implies any other instance of the predicative Bachmann-Howard principle.

Proof. By Proposition 2.3.10 it suffices to show that (BH(DS), <BH(DS)) is

well-founded for any set-sized dilator S = (S, supp′). Observe that
⋃
{Sn |n ∈ ω}

exists as a set, as n 7→ Sn is a set-sized function. By the axiom of countability (see

Definition 1.4.2) we get a bijection

d : c
∼=−−→
⋃
{Sn |n ∈ ω}

for some set c ⊆ ω. Define

Tn = {σ ∈ c | d(σ) ∈ Sn}, Tf (σ) = d−1(Sf (d(σ))),

<Tn = {(σ, τ) ∈ c× c | d(σ) <Sn d(τ)}, suppn(σ) = supp′n(d(σ)).

By Corollary 1.1.10 and Proposition 1.2.2 these stipulations yield set-sized functions

n 7→ (Tn, <Tn), f 7→ Tf and n 7→ suppn. It is straightforward to check that

(T, supp) is a coded prae-dilator. Recall the associated (prae-)dilators (DS , suppS)

and (DT , suppT) from Definition 2.3.2. Consider the primitive recursive family of

functions

ηX : DT
X → DS

X , ηX(〈a, σ〉) := 〈a, d(σ)〉.

It is straightforward to check that η : DT ⇒ DS is a natural isomorphism. In par-

ticular DT
X is well-founded whenever DS

X is, which makes (T, supp) a coded dilator.

By assumption this implies that (BH(DT), <BH(DT)) is well-founded. Observe

suppSX ◦ηX(〈a, σ〉) = suppSX(〈a, d(σ)〉) = a = suppTX(〈a, σ〉),

and note the similarity with Proposition 2.3.6. As in the proof of Proposition 2.3.10

we get an embedding of (BH(DS), <BH(DS)) into (BH(DT), <BH(DT)). This implies

that (BH(DS), <BH(DS)) is well-founded, as desired. �

2.4. Well-Ordering Proofs

In this section we show that the abstract Bachmann-Howard principle holds

if every set is contained in an admissible set. We also show that the abstract

Bachmann-Howard principle implies its computable counterpart, which in turn

implies the predicative version. This amounts to the directions (ii)⇒(iii)⇒(v)⇒(iv)

of Theorem 4.4.6.

124 2. TYPE-TWO WELL-ORDERING PRINCIPLES

Recall that a proto-dilator consists of a primitive recursive function α 7→ T uα

with parameter u (and parameter ω, cf. Convention 1.2.9). The abstract Bachmann-

Howard principle demands a certain collapse ϑ : T uα
BH−−→ α for some ordinal α.

Assume that we have an admissible set A with u, ω ∈ A. Put

o(A) := A ∩Ord

and observe that this is an ordinal because A is transitive. For such an ordinal,

we will be able to construct the desired collapse ϑA : T uo(A)
BH−−→ o(A). This ap-

proach combines Rathjen’s well-ordering proof in [61, Section 4] (where A is the

set-theoretic universe, i.e. class-sized) with the proof that admissible sets yield ax-

iom beta (see e.g. [41, Theorem 4.6]). As a preparation, we need to show that A is

closed under α 7→ T uα , and that this function can be defined in A. Recall that Defin-

ition 1.4.1 associates each primitive recursive function symbol F : Vn → V (again

with implicit parameter ω) with a Σ-formula DF (ω, x1, . . . , xn, z) in the language

L∈ of pure set theory (where the parameter ω is made explicit). We also write DF
for the Gödel code of this formula (cf. the discussion before Proposition 1.3.5).

Lemma 2.4.1. For each primitive recursive function F : Vn → V the following

is provable in PRSω: If A 3 ω is an admissible set then we have

x1, . . . , xn ∈ A→ F (x1, . . . , xn) ∈ A,

as well as

∀x1,...,xn,z∈A(F (x1, . . . , xn) = z ↔ A � DF (ω, x1, . . . , xn, z)).

Proof. By meta induction on the build-up of F it is straightforward to con-

struct proofs of

∀x1,...,xn∃zDF (ω, x1, . . . , xn, z)

in Kripke-Platek set theory, treating ω as a free variable. The crucial case F ≡ R[G]

is covered by the Σ-recursion theorem (see [6, Theorem I.6.4]). By meta induction

over these proofs, using the Tarski conditions from Proposition 1.3.3, one obtains

∀x1,...,xn∈A∃z∈AA � DF (ω, x1, . . . , xn, z),

where ω may now be given the intended interpretation. Both the closure of A under

F and the direction “→” of the equivalence are thus reduced to the direction “←”.

To verify the latter, consider ~x, z ∈ A with A � DF (ω, ~x, z). By Proposition 1.3.5

we get DF (ω, ~x, z)A, which implies DF (ω, ~x, z) because DF is a Σ-formula. Finally,

Lemma 1.4.8 yields F (~x) = z. �

2.4. WELL-ORDERING PROOFS 125

In particular, the lemma shows that DF is a ∆-formula from the viewpoint of

any admissible A, namely

A � (DF (ω, ~x, z)↔ ∀z′ 6=z¬DF (ω, ~x, z′)).

Under the scope of the satisfaction relation, we will write F (~x) = z to denote

either DF (ω, ~x, z) or ∀z′ 6=z¬DF (ω, ~x, z′), depending on the context. Note that the

lemma ensures

A � F (~x) = z ⇔ F (~x) = z.

Similarly, we write y ∈ F (~x) to abbreviate the Σ-formula ∃z(DF (ω, ~x, z) ∧ y ∈ z)
or the Π-formula ∀z(DF (ω, ~x, z) → y ∈ z) of the language L∈. For both variants

we have

A � y ∈ F (~x) ⇔ y ∈ F (~x).

Let us also recall the second recursion theorem in the context of admissible sets:

Lemma 2.4.2. Let ϕ(x1, . . . , xn, ~y,R) be a Σ-formula in the language L∈∪{R},
in which all occurrences of the n-ary relation symbol R are positive. Then there is

a Σ-formula θ(x1, . . . , xn, ~y) of L∈ such that PRSω proves the following: We have

A � (θ(x1, . . . , xn, ~y)↔ ϕ(x1, . . . , xn, ~y, {x1, . . . , xn | θ(x1, . . . , xn, ~y)}))

for any admissible set A and any elements x1, . . . , xn, ~y ∈ A.

Proof. According to [6, Theorem 2.3] we can prove the equivalence in Kripke-

Platek set theory, for a suitable formula θ. By meta induction along this proof we

see that the equivalence holds in A. �

One could prove the previous result for non-standard formulas, replacing meta

induction by induction inside PRSω, but this will not be needed. For the following,

we fix a primitive recursive function (u, α) 7→ T uα = (T uα , <Tuα). The idea is to define

a Bachmann-Howard collapse ϑA : T uo(A)
BH−−→ o(A) by stipulating

ϑA(σ) = α↔ A � θT (ω, u, σ, α),

where the formula θT is defined as follows. It may be helpful to recall the construc-

tion from Remark 2.1.6.

126 2. TYPE-TWO WELL-ORDERING PRINCIPLES

Definition 2.4.3. Invoking the second recursion theorem, let θT be a Σ-formula

of L∈ such that A � θT (ω, u, σ, α) is equivalent to

A � ∃γ(σ ∈ T uγ+1 ∧ ∀β<γ σ /∈ T uβ+1 ∧

∃f (“f : ω → Ord is a function” ∧ f(0) = γ + 1 ∧

∀n∈ω∃d(“d : {τ ∈ T uf(n) | τ <Tuf(n)
σ} → Ord is a function” ∧

∀τ∈dom(d) θT (ω, u, τ, d(τ)) ∧

f(n+ 1) = sup{d(τ) + 1 | τ ∈ dom(d)}) ∧

α = supn∈ω f(n))),

for any admissible set A 3 ω and any u, σ, α ∈ A.

Assume that α 7→ T uα is a proto-dilator and that A ⊇ {ω, u} is an admissible

set. Then o(A) is a limit ordinal and we have T uo(A) =
⋃
γ<o(A) T

u
γ , by condition (iii)

of Definition 2.1.1. From Lemma 2.4.1 we know that T uγ ∈ A holds for all γ < o(A).

Since A is transitive this yields

T uo(A) ⊆ A.

The following prepares our definition of ϑA : T uo(A)
BH−−→ o(A).

Lemma 2.4.4. If T u is a proto-dilator then we have

∀σ∈Tu
o(A)
∀α0,α1<o(A)(A � θT (ω, u, σ, α0) ∧ A � θT (ω, u, σ, α1)→ α0 = α1)

for any admissible set A ⊇ {ω, u}.

Proof. By assumption (T uo(A), <Tuo(A)
) is a well-order. As the satisfaction rela-

tion is primitive recursive (see Proposition 1.3.3) we can argue by (main) induction

over σ ∈ T uo(A). More precisely, Corollary 1.1.10 allows us to form the set

{σ ∈ T uo(A) | ¬∀α0,α1<o(A)(A � θT (ω, u, σ, α0) ∧ θT (ω, u, σ, α1)→ α0 = α1)}.

To show that this set is empty, one deduces a contradiction from the assumption

that σ is a minimal element with respect to <Tu
o(A)

. So assume that the claim holds

for all τ <Tu
o(A)

σ, and that we have A � θT (ω, u, σ, αi) for i = 0, 1. Let γi, fi ∈ A
be witnesses for the latter. To obtain α0 = α1 it suffices to prove f0(n) = f1(n) by

(side) induction over n ∈ ω. Clearly, the defining equivalence of θT gives γ0 = γ1

and thus f0(0) = f1(0). In the step n n+ 1 we consider functions

di : {τ ∈ T ufi(n) | τ <Tufi(n)
σ} → Ord

2.4. WELL-ORDERING PROOFS 127

as demanded by θT (ω, u, σ, αi). By induction hypothesis we have f0(n) = f1(n), so

that the domains of d0 and d1 are equal. For τ in the joint domain we have

A � τ ∈ T ufi(n) ∧ τ <Tufi(n)
σ ∧ θT (ω, u, τ, di(τ)).

As observed above this does indeed give τ ∈ T ufi(n) and τ <Tu
fi(n)

σ. By condition (ii)

of Definition 2.1.1 we obtain τ ∈ T uo(A) and τ <Tu
o(A)

σ. Thus the main induction

hypothesis yields d0(τ) = d1(τ). From d0 = d1 we get f0(n + 1) = f1(n + 1),

as required for the side induction step. Once we know f0 = f1 we immediately

get α0 = α1, contradicting the assumption that σ lies in the above set. �

In the previous result, A was used to obtain the set-sized well-order T uo(A), and

to make the induction statement primitive recursive. At the same time, we did not

need the full power of admissible sets. The latter is used in the next result, in the

form of Σ-replacement (see [6, Theorem I.4.6]).

Proposition 2.4.5. If T u is a proto-dilator then we have

∀σ∈Tu
o(A)
∃α<o(A) A � θT (ω, u, σ, α)

for any admissible set A ⊇ {ω, u}.

Proof. As in the previous proof, we argue by (main) induction over σ ∈ T uo(A).

To establish the claim for σ, we need suitable witnesses γ, f ∈ A. For the former we

can take γ = |σ|Tu
o(A)

< o(A) (cf. Definition 2.1.2). The values of f are constructed

recursively. More formally, we argue by (side) induction over k to establish

A � ∃fk(“fk : k + 1→ Ord is a function” ∧ fk(0) = γ ∧

∀n<k∃d(“d : {τ ∈ T ufk(n) | τ <Tufk(n)
σ} → Ord is a function”∧

∀τ∈dom(d) θT (ω, u, τ, d(τ))∧

fk(n+ 1) = sup{d(τ) + 1 | τ ∈ dom(d)})).

For k = 0 we have f0 = {〈0, γ〉}. Inductively, assume that fk ∈ A is given. By

∆-separation in A (see [6, Theorem I.4.5]) we can form the set

D = {τ ∈ T ufk(k) | τ <Tufk(k)
σ} ∈ A.

As above A � τ <Tu
fk(k)

σ is equivalent to τ <Tu
fk(k)

σ, which implies τ <Tu
o(A)

σ.

Thus the main induction hypothesis and the previous lemma yield

A � ∀τ∈D∃!δ θT (ω, u, τ, δ).

128 2. TYPE-TWO WELL-ORDERING PRINCIPLES

By Σ-replacement in A we get a d ∈ A with

A � “d : D → Ord is a function” ∧ ∀τ∈D θT (ω, u, τ, d(τ)).

Setting

fk+1 = fk ∪ {〈k + 1, sup{d(τ) + 1 | d ∈ D}〉}

completes the side induction step. By the proof of the previous lemma, fk is unique.

Thus another application of Σ-replacement tells us that the function k 7→ fk lies

in A. Finally, A contains the function f : ω → Ord with f(n) = fn(n). It is easy

to see that f is a witness for

θT (ω, u, σ, supn∈ω f(n)),

completing the main induction step. �

Now we are ready to define the desired collapsing function:

Definition 2.4.6. Assume that T u is a proto-dilator and that A ⊇ {ω, u} is

an admissible set. Proposition 2.4.5 and Lemma 2.4.4 allow us to define a function

ϑA : T uo(A) → o(A)

by putting

ϑA = {〈σ, α〉 ∈ T uo(A) × o(A) |A � θT (ω, u, σ, α)}.

This is a set by Corollary 1.1.10 and Proposition 1.3.3.

It remains to verify the properties of a collapse:

Theorem 2.4.7. If T u is a proto-dilator and A ⊇ {ω, u} is an admissible set

then ϑA : T uo(A) → o(A) is a Bachmann-Howard collapse.

Proof. We have to verify the two conditions from Definition 2.1.3. First,

consider τ, σ ∈ T uo(A) with τ <Tu
o(A)

σ and |τ |Tu
o(A)

< ϑA(σ). By the latter, if γ, f

witness A � θT (ω, u, σ, ϑA(σ)) then we have |τ |Tu
o(A)

< f(n) for some n ∈ ω. In

view of Definition 2.1.2 and condition (ii) of Definition 2.1.1 this implies τ ∈ T uf(n).

Switching to n = 0 if necessary we may also assume γ + 1 = f(0) ≤ f(n), to get

σ ∈ T uγ+1 ⊆ T uf(n) and thus τ <Tu
f(n)

σ. Then, if

d : {τ ∈ T uf(n) | τ <Tuf(n)
σ} → Ord

witnesses A � θT (ω, u, σ, ϑA(σ)), we have τ ∈ dom(d) and d(τ) < f(n+1) ≤ ϑA(σ).

From A � θT (ω, u, τ, d(τ)) we get d(τ) = ϑA(τ), so that we have ϑA(τ) < ϑA(σ) as

2.4. WELL-ORDERING PROOFS 129

required. Also, if γ, f witness A � θT (ω, u, σ, ϑA(σ)) then we get σ ∈ T uγ+1 and thus

|σ|Tu
o(A)
≤ γ < f(0) ≤ ϑA(σ), as demanded by condition (ii) of Definition 2.1.3. �

The following is direction (ii)⇒(iii) of Theorem 4.4.6:

Corollary 2.4.8. If every set is an element of an admissible set then (each

instance of) the abstract Bachmann-Howard principle holds.

Proof. An instance of the abstract Bachmann-Howard principle is given by

a primitive recursive function (u, α) 7→ T uα = (T uα , < T uα). Consider an arbitrary

value of the parameter u and assume that T u is a proto-dilator. By assumption

there is an admissible set A with {ω, u} ∈ A and thus {ω, u} ⊆ A. The previous

theorem yields a Bachmann-Howard collapse ϑA : T uo(A)
BH−−→ o(A), as required by

the abstract Bachmann-Howard principle. �

We continue with direction (iii)⇒(v) of Theorem 4.4.6:

Theorem 2.4.9 (Countability). The computable Bachmann-Howard principle

follows from (an appropriate instance of) the abstract Bachmann-Howard principle.

Proof. Let T = (T, supp) be a coded dilator. To establish the computable

Bachmann-Howard principle we must show that the term system (ϑ(T), <ϑ(T))

from Lemma 2.3.14 is well-founded. In the presence of countability we may assume

that T is a set-sized dilator (see Convention 2.3.20 and the discussion before). Then

Corollary 2.3.9 implies that (DT , suppT) is a dilator in the sense of Definition 2.2.1.

In particular DT
α = (DT

α , <
T
α) is a well-order for any ordinal α. Considering the

definition of DT , it is clear that α < β implies DT
α ⊆ DT

β and <Tα = <Tβ ∩(DT
α×DT

α),

and that we have DT
λ =

⋃
γ<λD

T
γ for λ limit. This means that α 7→ DT

α is a proto-

dilator. By Lemma 2.1.12 and Proposition 2.1.15 we can form the strengthened

proto-dilator α 7→ ε(D)Tα . The abstract Bachmann-Howard principle for the prim-

itive recursive function (T, α) 7→ ε(D)Tα yields an ordinal α with a collapse

ϑ : ε(D)Tα
BH−−→ α.

To conclude it suffices to embed (ϑ(T), <ϑ(T)) into the well-order (ε(D)Tα , <ε(D)Tα
).

Recall the preliminary term system ε0(D)Tα ⊇ ε(D)Tα from Definition 2.1.11. By

recursion over terms we construct a function

h : ϑ(T)→ ε0(D)Tα .

The stipulations h(0) = 0, h(Ω) = Ω and h(ωs0 + · · ·+ ωsn) = ωh(s0) + · · ·+ ωh(sn)

are straightforward. Now consider a term E
s0,...,sn−1
σ ∈ ϑ(T) where we have σ ∈ Tn

130 2. TYPE-TWO WELL-ORDERING PRINCIPLES

and suppn(σ) = n, as well as s0 <ϑ(T) · · · <ϑ(T) sn−1 <ϑ(T) Ω. Note that the first

two conditions imply 〈n, σ〉 ∈ DT
n . Recall the isomorphism iα : α

∼=−→ ε(D)Tα ∩ Ω

from Lemma 2.1.17 (also observe Lemma 2.1.18(iii)). Assuming that we have

h(s0) <ε(D)Tα
· · · <ε(D)Tα

h(sn−1) <ε(D)Tα
Ω (in particular h(sj) ∈ ε(D)Tα ⊆ ε0(D)Tα),

consider the embedding h∗ : n→ α defined by h∗(j) = i−1
α (h(sj)). Then DT

h∗ maps

〈n, σ〉 ∈ DT
n to DT

h∗(〈n, σ〉) ∈ DT
α , and we can set

h(Es0,...,sn−1
σ) = EDT

h∗ (〈n,σ〉) ∈ ε(D)Tα .

Explicitly, Definition 2.3.2 tells us

DT
h∗(〈n, σ〉) = 〈{i−1

α (h(s0)), . . . , i−1
α (h(sn−1))}, σ〉.

The case where h(s0) <ε(D)Tα
· · · <ε(D)Tα

h(sn−1) <ε(D)Tα
Ω fails will not be relevant;

one may assign 0 as a default value. Finally, consider a term ϑs ∈ ϑ(T). By

Definition 2.1.22 the Bachmann-Howard collapse ϑ : ε(D)Tα
BH−−→ α yields a function

ϑ̄ : ε(D)Tα → ε(D)Tα ∩ Ω.

In case h(s) ∈ ε(D)Tα ⊆ ε0(D)Tα we may thus set

h(ϑs) = ϑ̄(h(s)).

For h(s) /∈ ε(D)Tα we may again assign the default value h(ϑs) = 0. Observe that

suppT (cf. Definition 2.3.2) is a support for DT , in the sense of Definition 2.1.9.

From Definition 2.1.26 and Lemma 2.1.27 we get a support ET for ε(D)T , and

associated functions

ĒTα : ε(D)Tα → [ε(D)Tα]<ω.

Now one verifies

r ∈ ϑ(T)→ h(r) ∈ ε(D)Tα ,

[h]<ω ◦ Eϑ(T)(r) = ĒTα ◦ h(r),

s <ϑ(T) t→ h(s) <ε(D)Tα
h(t)

by simultaneous induction on Lϑ(T)(r) resp. Lϑ(T)(s) + Lϑ(T)(t) (cf. the proof of

Lemma 2.3.14). This relies on Corollary 2.1.28, Lemma 2.1.29, and the observation

that terms of the form ϑ̄(s) = eϑ(Ω+s) behave like ε-numbers of ε(D)Tα (cf. Defini-

tion 2.1.22). Let us look at three cases in detail: First, consider r = E
r0,...,rn−1
σ . In

view of Lϑ(T)(ri) + Lϑ(T)(ri+1) < Lϑ(T)(r) and Lϑ(T)(rn−1) + Lϑ(T)(Ω) < Lϑ(T)(r)

2.4. WELL-ORDERING PROOFS 131

(see the proof of Lemma 2.3.14) we get h(r0) <ε(D)Tα
· · · <ε(D)Tα

h(rn−1) <ε(D)Tα
Ω

by induction hypothesis, so that we have

h(r) = E〈{i−1
α (h(r0)),...,i−1

α (h(rn−1))},σ〉.

Using Lemma 2.1.29 and Definition 2.3.2 we obtain

ĒTα ◦ h(r) = [iα]<ω ◦ suppTα(〈{i−1
α (h(r0)), . . . , i−1

α (h(rn−1))}, σ〉) =

= [iα]<ω({i−1
α (h(r0)), . . . , i−1

α (h(rn−1))}) = {h(r0), . . . , h(rn−1)} = [h]<ω◦Eϑ(T)(r).

Next, consider s = E
s0,...,sn−1
σ <ϑ(T) E

t0,...,tm−1
τ = t. Then we have Tf (σ) <Tk Tg(τ)

for some strictly increasing functions f : n→ k = |{s0, . . . , sn−1, t0, . . . , tm−1}| and

g : m → k which satisfy f(i) < g(j) ⇔ si <ϑ(T) tj and f(i) = g(j)⇔ si = tj for

all i < n and j < m. The induction hypothesis tells us that h is order preserving

on {s0, . . . , sn−1, t0, . . . , tm−1}. Thus the conditions on f and g remain valid when

we replace si and tj by i−1
α (h(si)) resp. i−1

α (h(tj)). As in the proof of Proposi-

tion 2.3.15 we infer that the following diagram commutes, where the horizontal

arrows are the increasing enumerations:

n {i−1
α (h(s0)), . . . , i−1

α (h(sn−1))}

k {i−1
α (h(s0)), . . . , i−1

α (h(sn−1)), i−1
α (h(t0)), . . . , i−1

α (h(tm−1))}

m {i−1
α (h(t0)), . . . , i−1

α (h(tm−1))}.

f

g

This means that f and g correspond to the maps |ιa∪ba | resp. |ιa∪bb | from Defini-

tion 2.3.2, so that Tf (σ) <Tk Tg(τ) implies

〈{i−1
α (h(s0)), . . . , i−1

α (h(sn−1))}, σ〉 <Tα 〈{i−1
α (h(t0)), . . . , i−1

α (h(tm−1))}, τ〉.

By the definition of <ε(D)Tα
we obtain

h(s) = E〈{i−1
α (h(s0)),...,i−1

α (h(sn−1))},σ〉 <ε(D)Tα
E〈{i−1

α (h(t0)),...,i−1
α (h(tm−1))},τ〉 = h(t),

as desired. Finally, consider s = ϑs′ <ϑ(T) ϑt
′ = t. Assume this holds because

we have s′ <ϑ(T) t
′ and r′ <ϑ(T) t for all r′ ∈ Eϑ(T)(s

′). The induction hypothesis

provides h(s′) <ε(D)Tα
h(t′). To infer h(s) = ϑ̄(h(s′)) <ε(D)Tα

ϑ̄(h(t′)) = h(t) by Co-

rollary 2.1.28 we need r <ε(D)Tα
ϑ̄(h(t′)) for all r ∈ ĒTα (h(s′)). As the simultaneous

induction makes ĒTα (h(s′)) = [h]<ω ◦ Eϑ(T)(s
′) available, any such r can be writ-

ten as r = h(r′) with r′ ∈ Eϑ(T)(s
′). In view of Lϑ(T)(r

′) ≤ Lϑ(T)(s
′) < Lϑ(T)(s)

the induction hypothesis yields r = h(r′) <ε(D)Tα
h(t) = ϑ̄(h(t′)), as required. In

132 2. TYPE-TWO WELL-ORDERING PRINCIPLES

case t′ <ϑ(T) s
′ one argues similarly. We have thus shown that h is an order em-

bedding of (ϑ(T), <ϑ(T)) into (ε(D)Tα , <ε(D)Tα
). This implies that (ϑ(T), <ϑ(T)) is

well-founded, as demanded by the computable Bachmann-Howard principle. �

Let us discuss a potential simplification of the computable and the predicative

Bachmann-Howard principle:

Remark 2.4.10. In the context of the abstract Bachmann-Howard principle

we have separated the general notion of collapse ϑ : Tα
BH−−→ α from the construc-

tion of a particular proto-dilator α 7→ ε(T)α. Combining the two, we obtained a

particularly powerful collapse ϑ : ε(T)α
BH−−→ α, as exploited in the previous proof.

This separation has two advantages: Firstly, the type-two aspect (existence of

collapsing functions) and the type-one aspect (well-foundedness of ε(T)α, cf. Prop-

osition 2.1.14) are transparent. Secondly, the general notion of Bachmann-Howard

collapse becomes very simple and can be appreciated independently of ordinal nota-

tion systems. In the computable and the predicative Bachmann-Howard principle

the two aspects have been merged: Recall that we have embedded ϑ(T) into ε(D)Tα ,

rather than DT
α , in the previous proof. The main advantage is that ϑ(T) thus be-

comes similar to Rathjen and Valencia Vizcáıno’s [71] notation system ϑX (which

is relativized to a well-order X, rather than a dilator T). In particular, we have

constructed an embedding of ϑX into ϑ(T) in order to boot up from RCA0 to

ATR0 (see Lemma 2.3.18 and Corollary 2.3.19). Nevertheless it may be attractive

to construct variants of ϑ(T) and BH(T) which separate the two aspects. Presum-

ably, the modified term system ϑ(T) would consist of a single clause:

• Given terms s0 < · · · < sn−1 and an element σ ∈ Tn with suppn(σ) = n

we get a new term ϑ
s0,...,sn−1
σ .

Assume that ϑ : Tα → α is a Bachmann-Howard collapse. If si is interpreted by

h∗(i) ∈ α (cf. the previous proof) then ϑ
s0,...,sn−1
σ will be interpreted by ϑ(Th∗(σ)).

Conversely, if the modified term system ϑ(T) is well-founded with order type α,

then one should be able to read off a Bachmann-Howard collapse ϑ : Tα → α. Over

the base theory ATRset
0 the simplified version of ϑ(T) should thus be sufficient

(but the details remain to be checked). Over RCA0 the simplification will lead

to new complications: To show that a strengthened notation system like ε(T)α is

well-founded we seem to need ACA+
0 (cf. [52, 4]). Possibly, the well-foundedness

of ε(T)α could be deduced from an appropriate instance of the collapsing principle

2.4. WELL-ORDERING PROOFS 133

as well (recall that Schütte and Simpson [80] construct ε0 from collapsing functions

alone). We will not pursue this idea in the present thesis.

In the rest of this section we show that the computable Bachmann-Howard

principle implies its predicative counterpart, again under the axiom of countabil-

ity. This amounts to direction (v)⇒(iv) of Theorem 4.4.6. Let us fix a coded prae-

dilator T = (T, supp). By the discussion before Convention 2.3.20 we may view T

as a set-sized prae-dilator. Consider the associated prae-dilator DT = (DT , suppT)

provided by Definition 2.3.2 and Lemma 2.3.3. The order BH(DT) from the pre-

dicative Bachmann-Howard principle was constructed as the direct limit of ap-

proximations BHn(DT). Recall that this relied on the notion of good BH-system,

introduced in Definitions 2.2.5 and 2.2.9. In the following we define compatible

embeddings hn : BHn(DT) → ϑ(T) ∩ Ω, which glue to an embedding of BH(DT)

into

ϑ(T) ∩ Ω = {s ∈ ϑ(T) | s <ϑ(T) Ω}.

Using the computable Bachmann-Howard principle, we learn that BH(DT) is well-

founded whenever T is a coded dilator. By Proposition 2.3.21 this suffices to estab-

lish the predicative Bachmann-Howard principle. To give a recursive construction

of the embeddings hn we introduce the following concept (note that ϑ0(DT
X) refers

to the term system from Definition 2.2.3, while ϑ0(T) is the term system construc-

ted in the proof of Lemma 2.3.14):

Definition 2.4.11. Let X = (X,EX , LX , iX) be a good BH-system for DT .

Given an embedding hX : X → ϑ(T)∩Ω, we construct a map hϑX : ϑ0(DT
X)→ ϑ0(T)

by the following recursion over terms:

(i) hϑX(0) = 0,

(ii) hϑX(Ω) = Ω,

(iii) hϑX(Eσ) = E
hX(s0),...,hX(sn−1)
σ0 , where the element σ ∈ DT

X is written as

σ = 〈{s0, . . . , sn−1}, σ0〉 with s0 <X · · · <X sn−1,

(iv) hϑX(ϑs) = ϑhϑX(s),

(v) hϑX(ωs0 + · · ·+ ωsn) = ωh
ϑ
X(s0) + · · ·+ ωh

ϑ
X(sn).

If we have

hϑX ◦ iX = hX

then hX is called a BH-embedding of X.

As a starting point, recall the good BH-system BH0(DT) = (ε0, Eε0 , Lε0 , iε0)

from Lemma 2.2.10 and Definition 2.2.14.

134 2. TYPE-TWO WELL-ORDERING PRINCIPLES

Lemma 2.4.12. There is a BH-embedding hε0 : ε0 → ϑ(T) ∩ Ω.

Proof. The definition of hε0 coincides with the definition of the embedding

iε0 : ε0 → ϑ(DT
ε0) ∩ Ω in the proof of Lemma 2.2.10. It is straightforward to verify

the conditions of a BH-embedding. �

If X is a good BH-system then Lemma 2.2.7 and Proposition 2.2.8 yield a set

ϑ(DT
X) ⊆ ϑ0(DT

X) of terms in normal form and a linear order <ϑX on ϑ(DT
X). Also

recall the function EϑX : ϑ0(DT
X)→ [ϑ0(DT

X)]<ω from the definition of BH-system.

The following is needed to construct hn+1 from hn:

Lemma 2.4.13. Assume that hX : X → ϑ(T)∩Ω is a BH-embedding of the good

BH-system X = (X,EX , LX , iX). Then the following holds for all r, s, t ∈ ϑ0(DT
X):

(i) If r ∈ ϑ(DT
X) then hϑX(r) ∈ ϑ(T) and Eϑ(T) ◦ hϑX(r) = [hϑX]<ω ◦ EϑX(r).

(ii) If s, t ∈ ϑ(DT
X) and s <ϑX t then hϑX(s) <ϑ(T) h

ϑ
X(t).

Proof. We show parts (i) and (ii) by simultaneous induction over LϑX(r) and

LϑX(s)+LϑX(t), respectively. In (i), the only interesting case is r = E〈{s0,...,sn−1},σ0〉.

Using Definition 2.2.5, Definition 2.3.2, the fact that hX is a BH-embedding, and

the definition of Eϑ(T) in Lemma 2.3.14, we indeed get

[hϑX]<ω ◦ EϑX(r) = [hϑX]<ω ◦ [iX]<ω ◦ suppTX(〈{s0, . . . , sn−1}, σ0〉) =

= [hϑX ◦ iX]<ω({s0, . . . , sn−1}) = {hX(s0), . . . , hX(sn−1)} = Eϑ(T) ◦ hϑX(r).

In (ii), the first interesting case is s = E〈{s0,...,sn−1},σ0〉 <
ϑ
X E〈{t0,...,tm−1},τ0〉 = t.

This is equivalent to

〈{s0, . . . , sn−1}, σ0〉 <DTX 〈{t0, . . . , tm−1}, τ0〉.

By Lemma 2.3.3 the map DT
hX

: DT
X → DT

ϑ(T)∩Ω is an embedding, so that we get

〈{hX(s0), . . . , hX(sn−1)}, σ0〉 <DT
ϑ(T)∩Ω

〈{hX(t0), . . . , hX(tm−1)}, τ0〉.

According to Definition 2.3.2 this means

Tf (σ0) <Tk Tg(τ0),

where k is the cardinality of {hX(s0), . . . , hX(sn−1), hX(t0), . . . , hX(tm−1)} and f, g

make the following diagram commute (the horizontal arrows are the increasing

2.4. WELL-ORDERING PROOFS 135

enumerations with respect to <ϑ(T)):

n {hX(s0), . . . , hX(sn−1)}

k {hX(s0), . . . , hX(sn−1), hX(t0), . . . , hX(tm−1)}

m {hX(t0), . . . , hX(tm−1)}.

f

g

It is easy to deduce the equivalences f(i) < g(j) ⇔ hX(si) <ϑ(T) hX(tj) and

f(i) = g(j)⇔ hX(si) = hX(tj). The definition of <ϑ(T) in Lemma 2.3.14 yields

hϑX(s) = EhX(s0),...,hX(sn−1)
σ0

<ϑ(T) E
hX(t0),...,hX(tm−1)
τ0 = hϑX(t),

as desired. The other interesting case is s = ϑs′ <ϑX ϑt′ = t. Assume that

this holds because we have s′ <ϑX t′ and r′ <ϑX t for all r′ ∈ EϑX(s′) (recall that

r′ ∈ ϑ(DT
X) is automatic by Lemma 2.2.11). The induction hypothesis provides

hϑX(s′) <ϑ(T) h
ϑ
X(t′). To conclude hϑX(s) = ϑhϑX(s′) <ϑ(T) ϑh

ϑ
X(t′) = hϑX(t) we

need r <ϑ(T) h
ϑ
X(t) for all terms r ∈ Eϑ(T)(h

ϑ
X(s′)). By part (i) of the induction

hypothesis any such r can be written as r = hϑX(r′) with r′ ∈ EϑX(s′). Note that

Lemma 2.2.6 ensures LϑX(r′) ≤ LϑX(s′) < LϑX(s). Thus the induction hypothesis

yields r = hϑX(r′) <ϑ(T) h
ϑ
X(t), as required. The case ϑs′ <ϑX ϑt′ with t′ <ϑX s′ is

similar. �

We can now lift the BH-embedding hX : X → ϑ(T) ∩ Ω as follows:

Definition 2.4.14. With each BH-embedding hX : X → ϑ(T)∩Ω we associate

the function

hϑ(DTX)∩Ω := hϑX �(ϑ(DT
X) ∩ Ω) : ϑ(DT

X) ∩ Ω→ ϑ(T) ∩ Ω.

In view of the previous lemma this is an order embedding.

By Theorem 2.2.13 a good BH-system over X induces a good BH-system

(ϑ(DT
X) ∩ Ω, Eϑ(DTX)∩Ω, Lϑ(DTX)∩Ω, iϑ(DTX)∩Ω)

over ϑ(DT
X) ∩ Ω. The following completes the lifting of BH-embeddings:

Proposition 2.4.15. If hX : X → ϑ(T) ∩ Ω is a BH-embedding of the good

BH-system X then hϑ(DTX)∩Ω : ϑ(DT
X) ∩ Ω → ϑ(T) ∩ Ω is a BH-embedding of the

good BH-system ϑ(DT
X) ∩ Ω.

136 2. TYPE-TWO WELL-ORDERING PRINCIPLES

Proof. According to the definition of BH-embedding we must establish

hϑ
ϑ(DTX)∩Ω

◦ iϑ(DTX)∩Ω(s) = hϑ(DTX)∩Ω(s)

for s ∈ ϑ(DT
X) ∩Ω. Recall from Definition 2.2.12 that iϑ(DTX)∩Ω was defined as the

restriction of a map iϑX : ϑ0(DT
X)→ ϑ0(DT

ϑ(DTX)∩Ω
). Thus it suffices to show

hϑ
ϑ(DTX)∩Ω

◦ iϑX(s) = hϑX(s)

for s ∈ ϑ0(DT
X). Arguing by induction over the build-up of s, the only interesting

case is s = Eσ. Write σ = 〈{s0, . . . , sn−1}, σ0〉 and observe

iϑX(s) = EDTiX (σ) with DT
iX

(σ) = 〈{iX(s0), . . . , iX(sn−1)}, σ0〉.

As hX is a BH-embedding we have hϑ(DTX)∩Ω ◦ iX(si) = hϑX ◦ iX(si) = hX(si). Now

it is easy to see

hϑ
ϑ(DTX)∩Ω

◦ iϑX(s) = EhX(s0),...,hX(sn−1)
σ0

= hϑX(s),

as required. �

Recall the recursively constructed BH-systems BHn(DT) from Definition 2.2.14.

As promised, our construction yields corresponding BH-embeddings:

Definition 2.4.16. Let

h0 : BH0(DT) = ε0 → ϑ(T) ∩ Ω

be the BH-embedding from Lemma 2.4.12. Assuming that the BH-embedding

hn : BHn(DT)→ ϑ(T) ∩ Ω is already defined, invoke Definition 2.4.14 to get

hn+1 := hϑn �(ϑ(DT
BHn(DT)) ∩ Ω) : BHn+1(DT) = ϑ(DT

BHn(DT)) ∩ Ω→ ϑ(T) ∩ Ω.

This is a BH-embedding by Proposition 2.4.15.

Observe that there is a primitive recursive function which computes hϑX(s) from

hX and s. By Proposition 1.2.2 this implies that the transformation of hX into

the set-sized function hϑX is primitive recursive. It follows that n 7→ hn is primitive

recursive (with parameter T). Another application of Proposition 1.2.2 tells us

that (n, s) 7→ hn(s) is a set-sized function. As promised, we can now glue the

constructed BH-embeddings:

Theorem 2.4.17. For any coded prae-dilator T we have an order embedding

h : (BH(DT), <BH(DT))→ (ϑ(T) ∩ Ω, <ϑ(T)).

2.4. WELL-ORDERING PROOFS 137

Proof. By the definition of BH-embedding we have hϑn ◦ iBHn(DT) = hn. As

hn+1 is the restriction of hϑn this implies

hn+1 ◦ iBHn(DT) = hn.

Thus Lemma 2.2.17 yields a function

h : BH(DT)→ ϑ(T) ∩ Ω

with h◦jn = hn, where jn : (BHn(DT), <BHn(DT))→ (BH(DT), <BH(DT)) are order

embeddings (see Lemma 2.2.18). As the BH-embeddings hn are order preserving,

it is easy to deduce that h is an order embedding as well. �

Finally, we can deduce direction (v)⇒(iv) of Theorem 4.4.6:

Corollary 2.4.18 (Countability). The computable Bachmann-Howard prin-

ciple implies (any instance of) the predicative Bachmann-Howard principle.

Proof. By Proposition 2.3.21 it suffices to show that BH(DT) is well-founded

for any coded dilator T . The computable Bachmann-Howard principle tells us

that ϑ(T) is well-founded. In particular, the sub-order ϑ(T) ∩ Ω is well-founded.

We can conclude by the previous theorem. �

CHAPTER 3

Admissible Sets via Search Trees

In this chapter we present a construction of admissible sets, i.e. transitive

models of Kripke-Platek set theory. This is needed to prove the crucial direction

(iv)⇒(ii) of Theorem 4.4.6.

The main ingredient for our construction of admissible sets will be Schütte’s

method of deduction chains. In [79, Section II.5.3] this method is used to prove the

completeness theorem for predicate logic: Given a formula ϕ one tries to construct

a proof of ϕ in reverse order. If the process terminates then this results in a finite

proof tree with ϕ at the root. Otherwise the attempted proof of ϕ has an infinite

branch. This branch determines an interpretation of the non-logical symbols which

makes any formula on the branch false. In particular it yields a countermodel to ϕ,

as needed for the completeness theorem. Schütte calls a path between the root and

any node of this attempted proof a deduction chain. We use the term “search tree”

to refer to the attempted proof as a whole.

Historically, the first use of deduction chains seems to occur in [77]. In this

paper Schütte introduces his positive and negative forms and uses them to formu-

late the completeness proof described in the previous paragraph. Remarkably, he

goes on to apply the same method to a system with the ω-rule, proving what is

now known as the Shoenfield completeness theorem for recursive ω-logic (cf. [83]).

The recent literature contains more applications of deduction chains to ω-logic:

Jäger and Strahm [43] prove that ω-model reflection for Π1
n+1-formulas is equival-

ent to Π1
n-bar induction, extending previous results of H. Friedman and Simpson.

Afshari and Rathjen [4] combine deduction chains and the method of cut elimin-

ation to show that a certain well-ordering principle X 7→ εX implies the principle

of arithmetical recursion along the natural numbers. Many other Π1
2-statements

have been characterized in a similar way, as described in the introduction to the

present thesis. There are also some applications of deduction chains to β-logic:

Buchholz [8] constructs a functorial family of search trees in order to show that

certain arithmetical functions on Kleene’s O are dominated by dilators (originally

due to Girard). Jäger [40] extends this approach to general α-recursive functions.

139

140 3. ADMISSIBLE SETS VIA SEARCH TREES

In the present chapter we develop the method of search trees (deduction chains)

in a set-theoretic context. The main difference to ω-logic is that the domain of the

intended models is not fixed in advance: The first-order part of any ω-model is the

standard structure of natural numbers, but there is no canonical model of set theory.

To make the situation more manageable one can work inside a given stage Luα of the

relativized constructible hierarchy. Search trees are then constructed in Luα-logic,

which is characterized by the infinitary rule

· · · Γ, ϕ(a) · · · (a ∈ Luα)

Γ,∀xϕ(x)

with a premise for each element a ∈ Luα. From an infinite branch of the resulting

search tree we will be able to read off a model M ⊆ Luα which, as before, makes

all formulas on the given branch false. The main idea is quite simple: If a branch

contains the conclusion ∀xϕ(x) of an infinitary rule then it contains the premise

ϕ(a) for some a ∈ Luα. We stipulate that the model M determined by the branch

contains this element a. By induction on the formula complexity we may assume

M 2 ϕ(a), which is enough to guarantee M 2 ∀xϕ(x). Of course the existence of a

suitable model M ⊆ Luα relies on α being large enough. In our application we are

not given a large ordinal α in advance. Instead we construct search trees Suα for all

ordinals α simultaneously. Similar to the case of ω-logic one then argues as follows:

A priori it is possible that all search trees Suα are well-founded. In this case the

family of search trees can be extended to a β-proof of contradiction. In the next

chapter we will use methods of ordinal analysis to show that such a proof cannot

exist. Thus one of the search trees Suα must have an infinite branch after all. From

this branch we obtain the desired model M ⊆ Luα, as described above.

To conclude this introduction, let us summarize the different sections of the

present chapter: In order to get the β-proof mentioned in the previous paragraph

we have to ensure that the construction of search trees is functorial. For this

purpose we need a functorial version of the constructible hierarchy, which will be

introduced in Section 3.1. The idea is to define a canonical term system LuX for any

linear order X. If X ∼= α is well-founded we can give an interpretation of LuX in the

stage Luα of the actual constructible hierarchy. We remark that syntactic versions

of the constructible hierarchy are well-known in ordinal analysis, in particular from

the work of Jäger [39]. Earlier, Schütte [78] had considered a syntactic version of

ramified analysis. Section 3.2 contains a detailed definition of the search tree SuX ,

where X is an arbitrary linear order. For well-founded X we spell out how an

3.1. A FUNCTORIAL VERSION OF THE CONSTRUCTIBLE HIERARCHY 141

infinite branch in SuX determines a transitive model of Kripke-Platek set theory.

In Section 3.3 we verify that the construction X 7→ SuX yields a prae-dilator. If

SuX is well-founded for any well-order X then we have a dilator. In Section 3.4

we show how this dilator can be transformed into the aforementioned β-proof.

More precisely, β-proofs are usually defined as compatible families of infinite proofs

indexed by the ordinals (see e.g. [29, Section 6]). We will instead construct a

single infinite proof which represents the entire family: Invoking the predicative

Bachmann-Howard principle from the previous chapter, the dilator X 7→ SuX can

be transformed into a well-order BH(Su). The order-type of BH(Su) is so large

that the single search tree SuBH(Su) reflects many relevant properties of the general

construction X 7→ SuX . It will thus be enough to consider a single infinite proof

based on SuBH(Su), rather than an entire β-proof. This will simplify the ordinal

analysis in the next chapter considerably: We can now use the usual methods for

single infinite proofs, instead of generalizing them to compatible families.

3.1. A Functorial Version of the Constructible Hierarchy

In Section 1.3 we have considered the constructible hierarchy α 7→ Luα over a

transitive set u of “urelements”. The present section introduces a functorial version

X 7→ LuX of this construction. Semantically we can only make sense of LuX if X is

a well-order, and indeed isomorphic to an ordinal. From the functorial viewpoint,

however, it is natural to construct LuX for an arbitrary linear order X. To achieve

this we give a syntactic definition of LuX as a set of terms. For each order embedding

f : X → Y we will be able to define a function Luf : LuX → LuY by recursion over

the terms in LuX . We shall also define linear order relations on the sets LuX , in such

a way that Luf becomes an order embedding. This will allow us to view Lu· as an

endofunctor of linear orders. To begin, let us collect some properties that will be

used at various points of the present chapter:

Assumption 3.1.1. Throughout the following we fix a set u and assume that

(i) u is transitive,

(ii) u is countable, with a fixed enumeration u = {ui | i ∈ ω},
(iii) we have 0, 1 ∈ u,

(iv) the height o(u) = u ∩Ord of u is a successor ordinal.

In view of (ii) one should officially think of u as the function ω 3 i 7→ ui.

142 3. ADMISSIBLE SETS VIA SEARCH TREES

Condition (i) is standard in the definition of the constructible hierarchy. Con-

dition (ii) will be crucial in the context of search trees, as each branch of such a tree

can only accomodate a countable amount of information. Note that any non-empty

countable set has an enumeration, by Proposition 1.2.12. Conditions (iii) and (iv)

are pure convenience. To satisfy them we can simply replace u by u′ := u ∪ {0, 1}
and then further by u′′ := u′ ∪ {o(u′)}, which makes o(u′′) = o(u′) + 1 a successor.

To prepare the definition of Lu· , recall that [X]<ω denotes the set of finite

subsets of a given set X. In Section 1.2 we have seen that the map X 7→ [X]<ω is

primitive recursive. As in Section 2.2 we can turn this map into an endofunctor on

the category of sets, setting

[f]<ω(x) = {f(s) | s ∈ x} ∈ [Y]<ω

for a finite set x ∈ [X]<ω and a function f : X → Y . We also apply [·]<ω to linear

orders, omitting the forgetful functor to their underlying sets. Conversely, we may

view a subset of a linear order as a sub-order. If (X,<X) is a linear order (or at

least a partial order) then we define a partial order <fin
X on [X]<ω by stipulating

x <fin
X x′ :⇔ “for any s ∈ x there is an s′ ∈ x′ with s <X s′ ”.

If s, s′ are elements of X we write x <fin
X s′ and s <fin

X x′ rather than x <fin
X {s′}

and {s} <fin
X x′, respectively. We can now define the functor Lu· on objects:

Definition 3.1.2. For each linear order (X,<X) we define a set LuX of terms

and a support function suppL
X : LuX → [X]<ω, by simultaneous recursion:

(i) Any element ui ∈ u is an LuX -term with support suppL
X(ui) = ∅,

(ii) for each s ∈ X we have an LuX -term Lus with support suppL
X(Lus) = {s},

(iii) given s ∈ X, a ∆0-formula ϕ(x, y1, . . . , yn) and LuX -terms a1, . . . , an with

suppL
X(ai) <

fin
X s we get an LuX -term {x ∈ Lus |ϕ(x, a1, . . . , an)} with

suppL
X({x ∈ Lus |ϕ(x, a1, . . . , an)}) = {s} ∪ suppL

X(a1) ∪ · · · ∪ suppL
X(an).

Observe that LuX is given by an inductive definition with closure ordinal ω. In

this respect the situation is similar to the definition of M -formulas in Section 1.3.

As in that case we see that the function (u,X) 7→ LuX is primitive recursive (with

parameter ω, cf. Convention 1.2.9). Parallel to Lemma 1.3.2 we can define primitive

recursive functions by recursion over LuX -terms. As a first application, let us show

that LuX can be related to the usual constructible hierarchy if X is well-founded:

3.1. A FUNCTORIAL VERSION OF THE CONSTRUCTIBLE HIERARCHY 143

Proposition 3.1.3. Given an isomorphism X
∼=−→ α, s 7→ αs between X and

an ordinal α we can construct a surjection

J·K : LuX → Luα.

More precisely, we have JaK ∈ Luαs for each a ∈ LuX with suppL
X(a) <fin

X s. Con-

versely, x ∈ JaK implies x = Ja0K for some a0 ∈ LuX with suppL
X(a0) <fin

X suppL
X(a).

Recall that our default base theory PRSω does not prove axiom beta, i.e. it

does not prove that any well-order is isomorphic to an ordinal. The existence of

an isomorphism X ∼= α is an assumption of the above proposition. If such an

isomorphism exists then it is, of course, unique.

Proof. As explained above we can give a primitive recursive definition of J·K
by recursion over LuX -terms, setting

JuiK := ui,

JLus K := Luαs ,

J{x ∈ Lus |ϕ(x, a1, . . . , an)}K := {x ∈ Luαs |L
u
αs � ϕ(x, Ja1K, . . . , JanK)}.

The second clause uses the primitive recursive function γ 7→ Luγ from Defini-

tion 1.3.8. The third clause relies on the fact that ∆0-separation is primitive re-

cursive (see Corollary 1.1.10), and on the primitive recursive satisfaction relation �

from Proposition 1.3.3. By induction on a ∈ LuX one verifies that suppL
X(a) <fin

X s

implies JaK ∈ Luαs : The most interesting case is a = {x ∈ Lus |ϕ(x, a1, . . . , an)}.
By the definition of LuX we have suppL

X(ai) <
fin
X s, so the induction hypothesis

provides JaiK ∈ Luαs . Thus ϕ(x, Ja1K, . . . , JanK) is a ∆0(Luαs)-formula. Invoking

Definition 1.3.7 and Definition 1.3.8 we get

JaK = Def(Luαs , ϕ(x, Ja1K, . . . , JanK)) ∈ Def0(Luαs) = Luαs+1.

Now suppL
X(a) <fin

X t implies s <X t and thus αs + 1 ≤ αt. Using Lemma 1.3.9

we obtain JaK ∈ Luαt , as required. In particular it follows that the values of J·K lie

in Luα. Before we show that J·K is surjective, let us establish the last claim of the

proposition, i.e. the statement

∀a∈LuX
∀x∈JaK∃a0∈LuX

(Ja0K = x ∧ suppL
X(a0) <fin

X suppL
X(a)).

First consider a = ui. As u is transitive x ∈ JaK = ui ∈ u implies x ∈ u, say x = uj .

Taking a0 := uj ∈ LuX we have Ja0K = x and suppL
X(a0) = ∅ <fin

X suppL
X(a), as

required. If a is not a term ui then we have suppL
X(a) 6= ∅. In the remaining cases

144 3. ADMISSIBLE SETS VIA SEARCH TREES

we may thus argue by induction on s = max<X (suppL
X(a)) ∈ X. Clearly a is either

the term Lus or a term of the form {y ∈ Lus |ϕ(y, a1, . . . , an)}. In both cases the

assumption x ∈ JaK implies x ∈ Luαs . There are two possibilities: If x lies in u,

say x = uj , then a0 := uj works as above. If x does not lie in u then we must have

x = {y ∈ Luα0
|Luα0

� ψ(y, z1, . . . , zk)}

for some α0 < αs and z1, . . . , zk ∈ Luα0
. As X is isomorphic to α we get an s0 ∈ X

with αs0 = α0. In view of s0 <X s we can apply the induction hypothesis to the

term Lus0 , which satisfies max<X (suppL
X(Lus0)) = s0 and JLus0K = Luα0

. This yields

c1, . . . , ck ∈ LuX with JciK = zi and suppL
X(ci) <

fin
X s0. We can thus form the term

a0 := {y ∈ Lus0 |ψ(y, c1, . . . , ck)},

which satisfies

Ja0K = {y ∈ Luα0
|Luα0

� ψ(y, Jc1K, . . . , JckK)} = x

as well as

suppL
X(a0) ≤fin

X s0 <X s ≤fin
X suppL

X(a).

By a similar argument one deduces that J·K : LuX → Luα is surjective. �

We will later establish a much deeper connection between LuX and Luα, via a

verification calculus for LuX -formulas. Before that, let us look at functorial aspects

of the construction. The first step is to define Lu· on morphisms:

Definition 3.1.4. Given an order embedding f : X → Y we define a map

Luf : LuX → LuY (cf. the following lemma) by recursion on terms, setting

Luf (ui) = ui,

Luf (Lus) = Luf(s),

Luf ({x ∈ Lus |ϕ(x, a1, . . . , an)}) = {x ∈ Luf(s) |ϕ(x,Luf (a1), . . . ,Luf (an))}.

As the domain LuX of Luf is a set, Proposition 1.2.2 tells us that Luf is a set-

sized function. Furthermore the map f 7→ Luf is primitive recursive. Recall that we

represent functors and natural transformations by primitive recursive functions, as

discussed at the beginning of Section 2.2. Indeed we can verify the following:

Lemma 3.1.5. The functions X 7→ LuX , f 7→ Luf form a functor from linear

orders to sets (in particular we have rng(Luf) ⊆ LuY for f : X → Y). The family of

functions suppL
X : LuX → [X]<ω is a natural transformation from Lu· to [·]<ω.

3.1. A FUNCTORIAL VERSION OF THE CONSTRUCTIBLE HIERARCHY 145

Proof. First, let us establish Luf (a) ∈ LuY for an order embedding f : X → Y

and an arbitrary a ∈ LuX . This can be shown by induction on the term a if we

simultaneously check suppL
Y (Luf (a)) = [f]<ω(suppL

X(a)). The only interesting case

is a = {x ∈ Lus |ϕ(x, a1, . . . , an)}: From a ∈ LuX we know suppL
X(ai) <

fin
X s. Using

the simultaneous induction hypothesis and the fact that f is an order embedding

we get

suppL
Y (Luf (ai)) = [f]<ω(suppL

X(ai)) <
fin
Y f(s).

This yields Luf (a) ∈ LuY , as desired. The equality suppL
Y (Luf (a)) = [f]<ω(suppL

X(a))

is easily deduced from the induction hypothesis. Functoriality of Lu· is checked by

a straightforward induction. That suppL
· is a natural transformation was part of

the simultaneous induction above. �

The following specifies in which sense suppL
· is a family of support functions:

Lemma 3.1.6. For each order embedding f : X → Y we have

rng(Luf) = {b ∈ LuY | suppL
Y (b) ⊆ rng(f)}.

Proof. For b = Luf (a) ∈ rng(Luf) we have

suppL
Y (b) = suppL

Y (Luf (a)) = [f]<ω(suppL
X(a)) ⊆ rng(f),

as suppL
· is a natural transformation. Conversely, if we have suppL

Y (b) ⊆ rng(f)

then the inclusion i : suppL
Y (b) ↪→ Y factors as i = f ◦ g with g : suppL

Y (b) → X.

It is easy to observe that Lui is the inclusion of Lu
suppL

Y (b)
into LuY , and that b is

contained in Lu
suppL

Y (b)
. Thus we have b = Lui (b) = Luf (Lug (b)), which shows that b

lies in the range of Luf . �

It will be of central importance to have natural enumerations of the sets LuX :

Proposition 3.1.7. There are primitive recursive families of functions

enX : [X]<ω × ω → LuX , codeX : [X]<ω × LuX → ω

such that we have

enX(x, codeX(x, a)) = a

whenever suppL
X(a) ⊆ x. These functions are natural in the sense that the equations

enY ([f]<ω(x), n) = Luf (enX(x, n)),

codeY ([f]<ω(x),Luf (a)) = codeX(x, a)

hold for any order embedding f : X → Y .

146 3. ADMISSIBLE SETS VIA SEARCH TREES

Proof. The idea, inspired by Girard’s work on dilators [28], is to represent

terms in LuX by terms in Lun, for a suitable n ∈ ω. Here n = {0, . . . , n − 1}
is ordered as usual. According to Assumption 3.1.1 the set u is countable, with

a fixed enumeration u = {ui | i ∈ ω}. By Gödel numbering we get a family of

functions

en0
n : ω → Lun,

code0
n : Lun → ω

such that we have

en0
n(code0

n(a)) = a

for all n ∈ ω and a ∈ Lun. Given a finite linear order x we write

cx : |x|
∼=−→ x

for the unique increasing enumeration of x. By the previous lemma any a ∈ LuX

with suppL
X(a) ⊆ x lies in the range of Luix , where ix : x ↪→ X is the inclusion.

Thus a can be written as a = Luix◦cx(b) with b ∈ Lu|x|. This representation is unique,

since Lucx is a bijection and Luix is the inclusion of Lux into LuX , hence injective. It

follows that b can be computed by a primitive recursive function, namely as

b =
⋃
{c ∈ Lu|x| | a = Luix◦cx(c)}.

Now we define

enX(x, n) := Luix◦cx(en0
|x|(n)),

codeX(x, a) :=

code0
|x|(b) if suppL

X(a) ⊆ x and a = Luix◦cx(b),

0 if suppL
X(a) * x.

An easy computation yields enX(x, codeX(x, a)) = a in case suppL
X(a) ⊆ x. For an

embedding f : X → Y we have |[f]<ω(x)| = |x| and i[f]<ω(x) ◦ c[f]<ω(x) = f ◦ ix ◦ cx,

where i[f]<ω(x) is the inclusion of [f]<ω(x) into Y . Thus we can compute

enY ([f]<ω(x), n) = Lui[f]<ω(x)◦c[f]<ω(x)
(en0
|[f]<ω(x)|(n)) =

= Luf (Luix◦cx(en0
|x|(n))) = Luf (enX(x, n)).

As suppL
· is a natural transformation we see

suppL
X(a) ⊆ x ⇔ [f]<ω(suppL

X(a)) ⊆ [f]<ω(x) ⇔ suppL
Y (Luf (a)) ⊆ [f]<ω(x).

3.1. A FUNCTORIAL VERSION OF THE CONSTRUCTIBLE HIERARCHY 147

So if suppL
X(a) ⊆ x and a = Luix◦cx(b) then Luf (a) = Lui[f]<ω(x)◦c[f]<ω(x)

(b) and

codeY ([f]<ω(x),Luf (a)) = code0
|x|(b) = codeX(x, a).

If suppL
X(a) * x then we have suppL

Y (Luf (a)) * [f]<ω(x) and

codeY ([f]<ω(x),Luf (a)) = 0 = codeX(x, a),

as required. �

As a first application of our enumerations we define natural order relations on

the sets LuX , similar to the usual order on the actual constructible hierarchy:

Definition 3.1.8. Given a linear order (X,<X) we write <∗X for the anti-

lexicographic order on [X]<ω, i.e. for x 6= x′ we have

x <∗X x′ ⇔ max<X (x4x′) ∈ x′,

where x4x′ denotes the symmetric difference. The relation <L
X on LuX is given by

a <L
X b ⇔


either suppL

X(a) <∗X suppL
X(b),

or suppL
X(a) = suppL

X(b) and

codeX(suppL
X(a), a) < codeX(suppL

X(b), b).

Let us verify an important non-functorial property of <L
X :

Lemma 3.1.9. If (X,<X) is a linear order resp. well-order then so is (LuX , <
L
X).

Proof. It is immediate that the relation <∗X is trichotomous. To see that

it is transitive, i.e. that x0 <∗X x1 and x1 <∗X x2 imply x0 <∗X x2, one can ar-

gue by induction on |x2|: If x0 is empty the claim is immediate. Otherwise we

have maxx0 ≤X maxx1 ≤X maxx2 (all maxima with respect to <X). In case

maxx0 <X maxx2 we have max(x04x2) = maxx2 ∈ x2 and thus x0 <
∗
X x2. Now

assume maxx0 = maxx1 = maxx2. Set x′i := xi\{maxxi} and observe that we

have x′i4x′j = xi4xj . From this one gets x′0 <
∗
X x′1 and x′1 <

∗
X x′2. The induction

hypothesis yields x′0 <
∗
X x′2, which implies

max(x04x2) = max(x′04x′2) ∈ x′2 ⊆ x2,

as required for x0 <
∗
X x2. By a similar but easier argument one deduces that the

relation <L
X is transitive. To see that <L

X is trichotomous it suffices to observe that

148 3. ADMISSIBLE SETS VIA SEARCH TREES

suppL
X(a) = suppL

X(b) and codeX(suppL
X(a), a) = codeX(suppL

X(b), b) imply

a = enX(suppL
X(a), codeX(suppL

X(a), a)) =

= enX(suppL
X(b), codeX(suppL

X(b), b)) = b.

Now assume that <X is a well-order. Then the primitive recursive function

min<X (Z) :=
⋃
{s ∈ Z ∩X | ∀t∈Z∩X s ≤X t}

computes the <X -minimal element of any non-empty Z ⊆ X. Our first goal is to

show that <∗X is a well-order. Aiming at a contradiction, assume that Z ⊆ [X]<ω

is non-empty and has no <∗X -minimal element. Using Proposition 1.1.6 we can

define a sequence of sets Zn ⊆ [X]<ω and elements sn ∈ X by the recursion

Z0 := Z,

sn := min<X{max<X x |x ∈ Zn\{∅}},

Zn+1 := {x\{max<X x} |x ∈ Zn\{∅} and max<X x = sn}.

By induction on n we show that Zn ⊆ [X]<ω is non-empty and has no <∗X -minimal

element. In the step, note first that Zn cannot contain the empty set, which is the

<∗X -minimal element of [X]<ω. Thus we have sn = max<X x ∈ X for some x ∈ Zn,

and Zn+1 is non-empty. It is easy to observe that x with max<X x = sn is minimal

in Zn if x\{max<X x} is minimal in Zn+1. So in view of the induction hypothesis

Zn+1 cannot have a minimal element. Now that we know Zn 6= ∅ and ∅ /∈ Zn for

all numbers n it is easy to see

s0 >X s1 >X

This contradicts the well-foundedness of <X , so <∗X must be a well-order after all.

By a similar but easier argument one deduces that <L
X is a well-order. �

The following result generalizes a familiar fact about the actual constructible

hierarchy: If we have α < β then the usual order on Lβ extends the order on Lα.

Lemma 3.1.10. For each order embedding f : X → Y the function Luf is an

order embedding of (LuX , <
L
X) into (LuY , <

L
Y).

Proof. We must show that a <L
X b implies Luf (a) <L

Y Luf (b). First assume that

a <L
X b holds because of suppL

X(a) <∗X suppL
X(b). It is straightforward to verify

[f]<ω(suppL
X(a)) <∗Y [f]<ω(suppL

X(b)).

3.1. A FUNCTORIAL VERSION OF THE CONSTRUCTIBLE HIERARCHY 149

As suppL
· is a natural transformation we get

suppL
Y (Luf (a)) <∗Y suppL

Y (Luf (b)),

which implies Luf (a) <L
Y Luf (b) as desired. Now assume that a <L

X b holds because

of suppL
X(a) = suppL

X(b) and codeX(suppL
X(a), a) < codeX(suppL

X(b), b). Similar

to the above we get

suppL
Y (Luf (a)) = suppL

Y (Luf (b)).

Using Proposition 3.1.7 we can also compute

codeY (suppL
Y (Luf (a)),Luf (a)) = codeY ([f]<ω(suppL

X(a)),Luf (a)) =

= codeX(suppL
X(a), a) < codeX(suppL

X(b), b) =

= codeY ([f]<ω(suppL
X(b)),Luf (b)) = codeY (suppL

Y (Luf (b)),Luf (b)),

which again yields Luf (a) <L
Y Luf (b). �

Let us summarize our results in the terminology of the previous chapter:

Corollary 3.1.11. We may consider Lu· as an endofunctor on the category

of linear orders. Together with the natural transformation suppL
· : Lu· ⇒ [·]<ω it

forms a dilator.

Proof. In Lemma 3.1.5 we have established Lu· as a functor from linear orders

to sets. By Lemma 3.1.10 we may view it as a functor into linear orders. Also from

Lemma 3.1.5 we know that suppL
· is a natural transformation. To see that we have

a prae-dilator in the sense of Definition 2.2.1, consider an arbitrary order X and

an element a ∈ LuX . Write ιa for the inclusion of suppL
X(a) into X. In view of

suppL
X(a) ⊆ rng(ιa) Lemma 3.1.6 yields a ∈ rng(Luιa), as required for the support

function of a prae-dilator. Finally, Lemma 3.1.9 ensures that Lu· preserves well-

foundedness, which makes it a dilator. �

The corollary completes the definition of a functor Lu· , but many questions

remain open from the functorial standpoint: What is the role of the formula ϕ in

an LuX -term of the form {x ∈ Lus |ϕ(x, a1, . . . , an)}? How would we decide whether

a ∈ b holds for given LuX -terms a and b? Such questions can be answered with the

help of a syntactic verification calculus, as considered by Jäger [38, 39]. In the

rest of this section we verify that such a calculus can be set up in a functorial way.

Let us begin with the class of formulas to which our verifications will apply:

150 3. ADMISSIBLE SETS VIA SEARCH TREES

Definition 3.1.12. An LuX -formula is a formula that may contain elements

of LuX as parameters (cf. the notion of M -formula in Definition 1.3.1). Given an

embedding f : X → Y we define a map ϕ 7→ ϕ[f] from LuX -formulas to LuY -formulas:

Replace any parameter a ∈ LuX in ϕ by the parameter Luf (a) ∈ LuY .

It is easy to observe that the maps X 7→ “LuX -formulas” and f 7→ (·)[f] form a

functor. Recall from Section 1.3 that we only consider formulas in negation normal

form: Negation is a defined operation and ¬¬ϕ is (syntactically) the same formula

as ϕ. By induction over LuX -formulas one sees

(¬ϕ)[f] ≡ ¬(ϕ[f])

for any LuX -formula ϕ and any embedding f : X → Y . In other words, negation is

a natural isomorphism from the functor X 7→ “LuX -formulas” to itself. Similarly,

the substitution of a parameter a ∈ LuX for the free variable of an LuX -formula ϕ(x)

is natural: Writing ϕ[f] ≡ ϕ[f](x) to designate the free variable of the formula ϕ[f]

we have

ϕ(a)[f] ≡ ϕ[f](Luf (a)).

Now we are ready to describe the promised verification calculus. We adopt notation

used by Buchholz [10], who attributes it to Tait. Note that the indices 0 and 1 are

elements of u ⊆ LuX , according to Assumption 3.1.1.

Definition 3.1.13. To each closed LuX -formula ϕ we associate a (possibly infin-

ite) disjunction ϕ '
∨
a∈ιX(ϕ) ϕa or conjunction ϕ '

∧
a∈ιX(ϕ) ϕa. More precisely,

ϕ is assigned a type (disjunctive or conjunctive), an index set ιX(ϕ) ⊆ LuX , and a

sequence of closed LuX -formulas ϕa for a ∈ ιX(ϕ). The disjunctive types are

b ∈ ui '

“the empty disjunction” if b ≡ uj and uj /∈ ui,∨
a∈{uj |uj∈ui} a = b if b is not of the form uj ,

b /∈ ui ' “the empty disjunction” if b ≡ uj and uj ∈ ui,

b ∈ Lus '
∨

suppL
X(a)<fin

X s a = b,

b ∈ {x ∈ Lus | θ(x,~c)} '
∨

suppL
X(a)<fin

X s a = b ∧ θ(a,~c),

b0 6= b1 '
∨
a∈{0,1} ∃x∈bax /∈ b1−a,

ϕ0 ∨ ϕ1 '
∨
a∈{0,1} ϕa,

3.1. A FUNCTORIAL VERSION OF THE CONSTRUCTIBLE HIERARCHY 151

∃x∈bψ(x) '



∨
a∈{uj |uj∈ui} ψ(a) if b ≡ ui,∨
suppL

X(a)<fin
X s ψ(a) if b ≡ Lus ,∨

suppL
X(a)<fin

X s θ(a,~c) ∧ ψ(a)

if b ≡ {y ∈ Lus | θ(y,~c)},
∃xψ(x) '

∨
a∈LuX

ψ(a).

Observe that these disjunctive clauses cover precisely one of the formulas ϕ and ¬ϕ,

for each LuX -formula ϕ. In view of ϕ ≡ ¬¬ϕ we may assume that ϕ itself is the

disjunctive formula. Then the formula ¬ϕ is covered by the stipulation

¬ϕ '
∧
a∈ιX(ϕ) ¬ϕa if ϕ '

∨
a∈ιX(ϕ) ϕa.

In other words, if the formula ϕ is disjunctive then the formula ¬ϕ is conjunctive

and we have ιX(¬ϕ) = ιX(ϕ) as well as (¬ϕ)a ≡ ¬(ϕa) for a ∈ ιX(ϕ).

Let us show that the verification calculus is natural:

Lemma 3.1.14. Given any order embedding f : X → Y , the LuX-formula ϕ and

the LuY -formula ϕ[f] have the same type (disjunctive or conjunctive), we have

a ∈ ιX(ϕ) ⇔ Luf (a) ∈ ιY (ϕ[f])

for all a ∈ LuX , and

ϕ[f]Luf (a) ≡ ϕa[f]

holds for all a ∈ ιX(ϕ).

Proof. First assume that ϕ is disjunctive. We look at some representative

cases: Consider a formula of the form

ϕ ≡ b ∈ ui,

where b is not of the form uj , and observe that we have

ϕ[f] ≡ Luf (b) ∈ ui.

The function Luf is injective, as it is an order embedding by Lemma 3.1.10. Also

note that Luf is the identity on u. This implies that Luf (b) is still not of the form uj ,

so that both ϕ and ϕ[f] are disjunctive. We also get

a ∈ ιX(ϕ) ⇔ a ∈ {uj |uj ∈ ui} ⇔ Luf (a) ∈ {uj |uj ∈ ui} ⇔ Luf (a) ∈ ιY (ϕ[f]),

as well as

ϕ[f]Luf (a) ≡ Luf (a) = Luf (b) ≡ (a = b)[f] ≡ ϕa[f].

152 3. ADMISSIBLE SETS VIA SEARCH TREES

Next, assume that we have

ϕ ≡ b ∈ {x ∈ Lus | θ(x, c1, . . . , ck)}

and thus

ϕ[f] ≡ Luf (b) ∈ {x ∈ Luf(s) | θ(x,L
u
f (c1), . . . ,Luf (ck))}.

Both formulas are disjunctive. As f is an order embedding and suppL
· is a natural

transformation we can deduce

a ∈ ιX(ϕ) ⇔ suppL
X(a) <fin

X s ⇔ [f]<ω(suppL
X(a)) <fin

Y f(s) ⇔

⇔ suppL
Y (Luf (a)) <fin

Y f(s) ⇔ Luf (a) ∈ ιY (ϕ[f]).

Since θ(a, c1, . . . , ck) does only contain the displayed parameters we also see

ϕa[f] ≡ Luf (a) = Luf (b) ∧ θ(Luf (a),Luf (c1), . . . ,Luf (ck)) ≡ ϕ[f]Luf (a).

Concerning the cases ϕ ≡ b0 6= b1 and ϕ ≡ ϕ0 ∨ ϕ1 we remark that Luf is the

identity on {0, 1} ⊆ u. As a last example, assume that we have

ϕ ≡ ∃xψ(x)

and thus

ϕ[f] ≡ ∃xψ[f](x).

Both formulas are disjunctive. In view of ιX(ϕ) = LuX and ιY (ϕ[f]) = LuY we have

a ∈ ιX(ϕ) and Luf (a) ∈ ιY (ϕ[f]) for all terms a ∈ LuX . Above we have observed

that substitution is natural. Using this fact we get

ϕa[f] ≡ ψ(a)[f] ≡ ψ[f](Luf (a)) ≡ ϕ[f]Luf (a),

as required. Having checked all disjunctive cases, assume now that ϕ is a con-

junctive formula. Then ϕ is of the form ϕ ≡ ¬ψ where ψ is disjunctive. By the

naturality of negation we have ϕ[f] ≡ (¬ψ)[f] ≡ ¬(ψ[f]), so we may savely omit

the parentheses. From the disjunctive case we learn that ψ[f] is disjunctive. Ac-

cording to the second part of Definition 3.1.13 this makes ϕ[f] ≡ ¬ψ[f] conjunctive,

as required. In the same way we get

a ∈ ιX(ϕ) ⇔ a ∈ ιX(ψ) ⇔ Luf (a) ∈ ιY (ψ[f]) ⇔ Luf (a) ∈ ιY (ϕ[f])

and

ϕ[f]Luf ≡ (¬ψ[f])Luf (a) ≡ ¬(ψ[f]Luf (a)) ≡ ¬ψa[f] ≡ ϕa[f],

just as needed. �

3.1. A FUNCTORIAL VERSION OF THE CONSTRUCTIBLE HIERARCHY 153

Our next goal is to show that the verification calculus is sound ifX is isomorphic

to an ordinal α. Proposition 3.1.3 interprets each term a ∈ LuX as a set JaK ∈ Luα in

the actual constructible hierarchy. We can extend this interpretation to formulas:

To transform the LuX -formula ϕ into an Luα-formula JϕK, replace any parameter

a ∈ LuX in ϕ by the parameter JaK ∈ Luα. From Proposition 1.3.3 we know that the

satisfaction relation Luα � JϕK is primitive recursive.

Lemma 3.1.15. Assume that X is isomorphic to an ordinal α. Given a closed

LuX-formula ϕ, if we have ϕ '
∨
a∈ιX(ϕ) ϕa (resp. ϕ '

∧
a∈ιX(ϕ) ϕa) then Luα � JϕK

is equivalent to ∃a∈ιX(ϕ) Luα � JϕaK (resp. ∀a∈ιX(ϕ) Luα � JϕaK).

Proof. One begins with the disjunctive clauses from Definition 3.1.13. As a

first example, consider a formula

ϕ ≡ b ∈ {x ∈ Lus | θ(x, c)} '
∨

suppL
X(a)<fin

X s a = b ∧ θ(a, c).

Let d be the LuX -term {x ∈ Lus | θ(x, c)}, so that Luα � JϕK is equivalent to JbK ∈ JdK.

Writing αs ∈ α for the image of s under the isomorphism X ∼= α we must verify

JbK ∈ JdK ⇔ ∃a∈LuX
(suppL

X(a) <fin
X s ∧ JaK = JbK ∧ Luα � θ(JaK, JcK)).

Concerning direction⇒, Proposition 3.1.3 does ensure that there is a term a ∈ LuX

with JaK = JbK and suppL
X(a) <fin

X suppL
X(d). As we have suppL

X(d) = {s}∪suppL
X(c)

with suppL
X(c) <fin

X s the latter implies suppL
X(a) <fin

X s. Also,

JaK = JbK ∈ JdK = {x ∈ Luαs |L
u
αs � θ(x, JcK)}

yields Luαs � θ(JaK, JcK). As θ is a ∆0-formula (cf. Definition 3.1.2) the missing

conjunct Luα � θ(JaK, JcK) follows from Lemma 1.3.6. As for direction ⇐, by Prop-

osition 3.1.3 the condition suppL
X(a) <fin

X s implies JaK ∈ Luαs . To deduce that

JbK = JaK is an element of JdK it remains to establish Luαs � θ(JaK, JcK). The latter

follows from the assumption Luα � θ(JaK, JcK), again by Lemma 1.3.6. Next, assume

that ϕ is of the form b0 6= b1. In this case the claim amounts to

Luα � Jb0K 6= Jb1K ⇔ Luα � ∃x∈Jb0K x /∈ Jb1K ∨ Luα � ∃x∈Jb1K x /∈ Jb0K.

This holds because the transitive set Luα (cf. Lemma 1.3.9) satisfies the axiom of

extensionality. As a last disjunctive case, consider a formula

ϕ ≡ ∃x ψ(x) '
∨
a∈LuX

ψ(a).

Here we have to verify

Luα � ∃xJψK(x) ⇔ ∃a∈LuX
Luα � Jψ(a)K.

154 3. ADMISSIBLE SETS VIA SEARCH TREES

Concerning direction ⇒, Tarski’s conditions (see Proposition 1.3.3) yield a set

x ∈ Luα with Luα � JψK(x). By Proposition 3.1.3 the interpretation J·K : LuX → Luα is

surjective. Thus we get a term a ∈ LuX with Luα � JψK(JaK). To conclude it suffices

to observe that JψK(JaK) and Jψ(a)K are the same Luα-formula. In direction ⇐
one first infers Luα � JψK(JaK). By Proposition 3.1.3 we have JaK ∈ Luα. Thus we

get ∃x∈Luα L
u
α � JψK(x), and finally Luα � ∃xJψK(x) by Tarski’s conditions. Having

checked all disjunctive cases, let us now consider a conjunctive formula ϕ. As before

we write ϕ ≡ ¬ψ where ψ is disjunctive, to get

ϕ '
∧
a∈ιX(ψ) ¬ψa.

Also observe J¬ψK ≡ ¬JψK. Using the claim for the disjunctive case we obtain

Luα � JϕK ⇔ Luα 2 JψK ⇔ ∀a∈ιX(ψ) Luα 2 JψaK ⇔ ∀a∈ιX(ψ) Luα � J¬ψaK,

just as required. �

To make use of soundness we will need to know that the relevant verifications

are well-founded. As a first step, let us make the verification order explicit. Func-

toriality of this order will not be required.

Definition 3.1.16. The order <ι on closed LuX -formulas is defined as the trans-

itive closure of the relation

ϕa <ι ϕ for each a ∈ ιX(ϕ).

Note that the transitive closure of a binary relation can be constructed in prim-

itive recursive set theory, similar to the proof of Proposition 1.1.11. As promised

we have the following:

Proposition 3.1.17. If X is isomorphic to an ordinal then the verification

relation <ι on LuX-formulas is well-founded.

We could prove the same result for any well-order X, whether or not we have

an isomorphism with an ordinal. However, such an isomorphism will be given in

our application and it makes the presentation of the proof easier.

Proof. To accomodate the elements of u we shift the given isomorphism by

one, so that we get an order embedding X 3 s 7→ αs ∈ α with αs > 0 for all s ∈ X.

Now we define a notion of ordinal height for LuX -terms, setting

ht(ui) := 0, ht(Lus) := ht({x ∈ Lus |ϕ(x,~a)}) := ω · αs.

3.1. A FUNCTORIAL VERSION OF THE CONSTRUCTIBLE HIERARCHY 155

Some readers may have expected the height of {x ∈ Lus |ϕ(x,~a)} to depend on the

formula ϕ(x,~a). In our set-up it does not, because we have required ϕ(x,~a) to be a

∆0-formula with parameters “below s” (cf. Definition 3.1.2). Following the proof-

theoretic literature (see in particular [38]) we extend the notion of ordinal height

to closed LuX -formulas. Assumption 3.1.1 ensures that the parameter 0 ∈ u ⊆ LuX

is available for any order X. By recursion over the length of formulas we define

ht(a ∈ b) := ht(a /∈ b) := max{ht(a) + 6,ht(b) + 1},

ht(a = b) := ht(a 6= b) := max{ht(a),ht(b), 5}+ 4,

ht(ϕ0 ∨ ϕ1) := ht(ϕ0 ∧ ϕ1) := max{ht(ϕ0), ht(ϕ1)}+ 1,

ht(∃x∈bϕ(x)) := ht(∀x∈bϕ(x)) := max{ht(b), ht(ϕ(0)) + 2},

ht(∃xϕ(x)) := ht(∀xϕ(x)) := max{ω · α,ht(ϕ(0)) + 1}.

To establish the proposition it suffices to show

ht(ϕa) < ht(ϕ) for any LuX -formula ϕ and any a ∈ ιX(ϕ).

As a preparation, observe ht(a) < ω · αs for any a ∈ LuX with suppL
X(a) <fin

X s.

Note that this implies ht(a) + n < ω · αs for any n ∈ N, because ω · αs is a limit

ordinal. If ϕ is a ∆0-formula such that suppL
X(a) <fin

X s holds for any parameter a

in ϕ, then we get ht(ϕ) < ω · αs. For a general LuX -formula ϕ ≡ ϕ(x) one shows

ht(ϕ(a)) < max{ω · αs, ht(ϕ(0)) + 1} for a ∈ LuX with suppL
X(a) <fin

X s,

by induction over the length of ϕ (cf. [38, Lemma 3]). Similarly one sees

ht(ϕ(a)) < max{ω · α,ht(ϕ(0)) + 1} for all a ∈ LuX .

Based on these facts it is straightforward to verify ht(ϕa) < ht(ϕ) for any disjunct-

ive formula ϕ. As a representative example, let us consider

ϕ ≡ ∃x∈{y∈Lus | θ(y,c)} ψ(x) '
∨

suppL
X(a)<fin

X s θ(a, c) ∧ ψ(a).

Observe that we have

ht(ϕ) = max{ω · αs, ht(ψ(0)) + 2}

and

ht(ϕa) = ht(θ(a, c) ∧ ψ(a)) = max{ht(θ(a, c)) + 1,ht(ψ(a)) + 1}.

By the definition of LuX -terms we have suppL
X(c) <fin

X s, so that we get

ht(θ(a, c)) + 1 < ω · αs ≤ ht(ϕ).

156 3. ADMISSIBLE SETS VIA SEARCH TREES

We also have

ht(ψ(a)) + 1 < max{ω · αs, ht(ϕ(0)) + 2} = ht(ϕ),

as required. Having checked all disjunctive cases, consider a conjunctive formula

ϕ ≡ ¬ψ where ψ is disjunctive. According to Definition 3.1.13 we have

ϕ '
∧
a∈ιX(ψ) ¬ψa.

By the disjunctive case we obtain

ht(ϕa) = ht(¬ψa) = ht(ψa) < ht(ψ) = ht(¬ψ) = ht(ϕ)

for any a ∈ ιX(ψ) = ιX(ϕ), just as needed. �

3.2. From Search Tree to Admissible Set

In the introduction to this chapter we have sketched how Schütte’s method of

search trees (deduction chains) can be used to construct well-founded models of set

theories. The details of this construction are worked out in the present section.

Our aim is to construct a search tree SuX for any linear order X and any

set u which satisfies Assumption 3.1.1. Recall the syntactic version LuX of the

constructible hierarchy that was defined in the previous section. According to

Proposition 1.2.8 we can form the set (LuX)<ω of finite sequences with entries in LuX .

As usual we obtain a tree if we order these sequences by end extension. The search

tree SuX will be defined as a labelled subtree of (LuX)<ω.

Let us discuss some terminology that will be needed in the definition of SuX :

First, recall that we write len(σ) for the length of a sequence σ = 〈a0, . . . , alen(σ)−1〉.
If n ≤ len(σ) then σ � n denotes the restriction of σ to its first n entries, i.e. we

have σ � n = 〈a0, . . . , an−1〉. In the previous section we have considered support

functions suppL
X : LuX → [X]<ω. To get functions suppS

X : (LuX)<ω → [X]<ω we set

suppS
X(〈a0, . . . , an−1〉) := suppL

X(a0) ∪ · · · ∪ suppL
X(an−1).

Note that the family of functions suppS
· is primitive recursive by Corollary 1.2.11.

In the next section we will see that the functions suppS
X compute the support of a

certain prae-dilator.

Next, recall the notion of LuX -formula from Definition 3.1.12. By an LuX -sequent

we mean a finite sequence Γ = 〈ϕ0, . . . , ϕlen(Γ)−1〉 of closed LuX -formulas ϕi. Intu-

itively Γ should be interpreted as the disjunction ϕ0 ∨ · · · ∨ϕlen(Γ)−1. In particular

the empty sequent 〈〉 is a canonical way to express falsity. As usual we write Γ, ϕ

3.2. FROM SEARCH TREE TO ADMISSIBLE SET 157

for the sequent Γ_ϕ = 〈ϕ0, . . . , ϕlen(Γ)−1, ϕ〉. Each node of our search tree SuX

will be labelled by an LuX -sequent. It is helpful to think of SuX as an attempted

(infinitary) proof in which these sequents are deduced. The order of the formulas

in a sequent will be crucial for the definition of our search trees. Later we will be

able to ignore it, i.e. we will view sequents as finite sets.

As we aim at a model of Kripke-Platek set theory we will need an enumeration

of some relevant axioms: Let

Ax0 ≡ ∀x∃y y = x ∪ {x} ≡ ∀x∃y(∀z∈x z ∈ y ∧ x ∈ y ∧ ∀z∈y(z ∈ x ∨ z = x))

be a formula which ensures that the height of any transitive model is a limit ordinal.

Furthermore, let Ax1,Ax2, . . . be a primitive recursive enumeration of all instances

Axn+1 ≡ ∀z1,...,zk∀v(∀x∈v∃yθ(x, y, z1, . . . , zk)→ ∃w∀x∈v∃y∈wθ(x, y, z1, . . . , zk))

of ∆0-collection which have at most k ≤ C parameters (cf. Convention 1.3.14).

The bound on the number of parameters is harmless by Proposition 1.3.15. It will

be convenient for the ordinal analysis in the next chapter, even though it is not

strictly necessary (cf. Remark 4.2.8). Observe that the axioms Axn are formulas of

pure set theory. We may view them as LuX -formulas without any LuX -parameters.

Finally, we need a surjective function

N 3 n 7→ 〈π0(n), π1(n), π2(n)〉 ∈ N3,

which should additionally satisfy πi(n) ≤ n for all n ∈ N. It is straightforward to

construct such a surjection, for example via the Cantor pairing function. Now we

have all ingredients to define our search trees:

Definition 3.2.1. For any linear order X we define a tree SuX ⊆ (LuX)<ω and

a labelling lX : SuX → “LuX -sequents” by recursion over σ ∈ (LuX)<ω: In the base

case σ = 〈〉 we set

〈〉 ∈ SuX and lX(〈〉) = 〈〉 (the empty sequent).

The recursion step is only interesting for σ ∈ SuX , as SuX is to become a tree. We

distinguish odd and even stages: If len(σ) = 2n is even then we set

σ_a ∈ SuX ⇔ a = 0 and lX(σ_0) = lX(σ),¬Axn .

To see σ_0 ∈ (LuX)<ω, recall that we have 0 ∈ u ⊆ LuX by Assumption 3.1.1. If

len(σ) = 2n+1 is odd then we write ϕ for the π0(n)-th formula in lX(σ) (due to the

axioms added at even stages this sequent contains at least n+1 > π0(n) formulas).

158 3. ADMISSIBLE SETS VIA SEARCH TREES

Now we distinguish cases according to the type of ϕ (cf. Definition 3.1.13): If the

formula ϕ '
∧
a∈ιX(ϕ) ϕa is conjunctive, we set

σ_a ∈ SuX ⇔ a ∈ ιX(ϕ) and lX(σ_a) = lX(σ), ϕa.

If ϕ '
∨
a∈ιX(ϕ) ϕa is disjunctive, we use the enumeration enX : [X]<ω × ω → LuX

from Proposition 3.1.7 to compute

b := enX(suppS
X(σ �π1(n)), π2(n)).

Then we set

σ_a ∈ SuX ⇔ a = 0 and lX(σ_0) =

lX(σ), ϕb if b ∈ ιX(ϕ),

lX(σ) otherwise,

completing the definition of our search tree.

It may be helpful to observe that a node σ ∈ SuX with len(σ) = 2n + 1 is a

leaf if the π0(n)-th formula of lX(σ) corresponds to the empty conjunction. Let

us also discuss the formalization of the definition in our base theory PRSω: By

recursion over finite sequences (see Corollary 1.2.11) we get a primitive recursive

family of functions (LuX)<ω 3 σ 7→ 〈FX(σ), lX(σ)〉 such that σ ∈ SuX is equivalent

to FX(σ) = 1. According to Corollary 1.1.10 this makes the function

X 7→ SuX = {σ ∈ (LuX)<ω |FX(σ) = 1}

primitive recursive. In particular SuX exists as a set. Using Proposition 1.2.2 we

infer that lX : SuX → “LuX -sequents” is set-sized and that the map X 7→ lX is

primitive recursive.

Consider a (set-sized) function f : ω → LuX and recall that f � n denotes the

sequence 〈f(0), . . . , f(n− 1)〉 ∈ (LuX)<ω. As usual, f is called a branch of SuX if we

have f �n ∈ SuX for all numbers n. Let us put

Xf :=
⋃
n∈ω

suppL
X(f(n)) =

⋃
n∈ω

suppS
X(f �n) ⊆ X.

We say that a formula occurs on f if it is an entry of some sequent lX(f �n). The

following result is characteristic for the method of search trees (deduction chains):

Proposition 3.2.2. For any branch f of the search tree SuX the following holds:

(i) If the LuX-formula ϕ '
∧
a∈ιX(ϕ) ϕa occurs on f , then so does the for-

mula ϕa, for some element a ∈ ιX(ϕ) ∩ LuXf .

3.2. FROM SEARCH TREE TO ADMISSIBLE SET 159

(ii) If the LuX-formula ϕ '
∨
a∈ιX(ϕ) ϕa occurs on f , then so does the for-

mula ϕa, for all elements a ∈ ιX(ϕ) ∩ LuXf .

(iii) Any formula that occurs on f is an LuXf -formula.

To understand the proposition it may help to make the inclusion ιf : Xf ↪→ X

explicit. In the previous section we have observed that Luιf is the inclusion of LuXf
into LuX . In claims (i) and (ii) one might thus write ιX(ϕ) ∩ rng(Luιf) at the place

of ιX(ϕ) ∩ LuXf . The map ϕ 7→ ϕ[ιf] of Definition 3.1.12 is the inclusion from

LuXf -formulas into LuX -formulas. Thus claim (iii) states that any LuX -formula that

occurs on f is of the form ϕ[ιf], for some LuXf -formula ϕ.

Proof. (i) Assume that ϕ is the k-th formula of the sequent lX(f �m). Pick an

n ∈ N with π0(n) = k and n ≥ m (this can be ensured by demanding π1(n) = m).

As the sequents in the search tree are only ever extended at the end we see that ϕ

is still the k-th formula of lX(f �(2n+ 1)). Since f is a branch we have

f �(2n+ 2) = f �(2n+ 1)_f(2n+ 1) ∈ SuX .

By definition of the search tree we have f(2n+1) ∈ ιX(ϕ), and the formula ϕf(2n+1)

occurs in lX(f �(2n+ 2)). It remains to show f(2n+ 1) ∈ LuXf = rng(Luιf). In view

of suppL
X(f(2n+ 1)) ⊆ Xf = rng(ιf) this follows from Lemma 3.1.6.

(ii) Let ϕ be the k0-th formula of lX(f �m). For a ∈ ιX(ϕ)∩Xf = ιX(ϕ)∩ rng(Luιf)

we have suppL
X(a) ⊆ rng(ιf) = Xf by Lemma 3.1.6. As suppL

X(a) is finite and the

union Xf =
⋃
n∈ω suppS

X(f �n) is increasing this yields suppL
X(a) ⊆ suppS

X(f �k1)

for some k1 ≥ m. Setting k2 := codeX(suppS
X(f �k1), a) we get

a = enX(suppS
X(f �k1), k2)

by Proposition 3.1.7. Now pick a number n with πi(n) = ki. In view of m ≤ k1 ≤ n
we see that ϕ is still the k0-th formula of lX(f � (2n + 1)). By definition of the

search tree the formula ϕa occurs in lX(f �(2n+ 2)), as required.

(iii) We prove a somewhat finer result, which will be needed in the next chapter:

“For σ ∈ SuX , any formula in lX(σ) is an Lu
suppS

X(σ)
-formula. More

precisely, any such formula can be written as ϕ[ισ], where ϕ is

an Lu
suppS

X(σ)
-formula and ισ : suppS

X(σ) ↪→ X is the inclusion.”

In particular, any formula in lX(f � m) is an Lu
suppS

X(f�m)
-formula. In view of

suppS
X(f �m) ⊆ Xf we see that it is an LuXf -formula, as required by claim (iii).

More precisely, any formula in lX(f �m) can be written as ϕ[ιf�m]. The inclusion

160 3. ADMISSIBLE SETS VIA SEARCH TREES

ιf�m : suppS(f �m) ↪→ X factors as ιf�m = ιf ◦ ι0 with ι0 : suppS(f �m) ↪→ Xf .

Thus we obtain ϕ[ιf�m] = (ϕ[ι0])[ιf], where ϕ[ι0] is an LuXf -formula. To establish

the claim above, we show that any formula in lX(τ) is an Lu
suppS

X(σ)
-formula, by

induction over the initial segment τ of σ. In view of lX(〈〉) = 〈〉 the claim is void

for τ = 〈〉. To deduce the claim for τ_a, assume first that len(τ) = 2n is even.

Then we must have a = 0 and the only new formula in lX(τ_a) is the negated

axiom ¬Axn. The axioms are formulas of pure set theory, so we may view them as

Lu
suppS

X(σ)
-formulas without parameters. Now assume that len(τ) = 2n+ 1 is odd.

Let ϕ be the π0(n)-th formula of lX(τ). The induction hypothesis implies that ϕ is

an Lu
suppS

X(σ)
-formula; we write ϕ[ισ] when we consider ϕ as an LuX -formula. If ϕ[ισ]

is conjunctive then the definition of SuX yields a ∈ ιX(ϕ[ισ]), and lX(τ_a) contains

the new formula ϕ[ισ]a. In view of suppL
X(a) ⊆ suppS

X(σ) = rng(ισ) Lemma 3.1.6

guarantees a ∈ rng(Luισ), or in other words a = Luισ(a) with a ∈ Lu
suppS

X(σ)
. Using

Lemma 3.1.14 we get a ∈ ιsuppS
X(σ)(ϕ), and

ϕ[ισ]Luισ (a) ≡ ϕa[ισ]

is an Lu
suppS

X(σ)
-formula. Now assume that ϕ[ισ] is disjunctive. If

b = enX(suppS
X(τ �π1(n)), π2(n)) ∈ LuX

does not lie in ιX(ϕ[ισ]) then we have lX(τ_a) = lX(τ) and the claim is immediate

by induction hypothesis. If we do have b ∈ ιX(ϕ[ισ]) then lX(τ_a) contains the

new formula ϕ[ισ]b. Consider suppS
X(τ �π1(n)) as a subset of suppS

X(σ) and invoke

Proposition 3.1.7 to see that

b = enX([ισ]<ω(suppS
X(τ �π1(n))), π2(n)) =

= Luισ(ensuppS
X(σ)(suppS

X(τ �π1(n)), π2(n)))

lies in the range of Luισ . Since the latter is the inclusion of Lu
suppS

X(σ)
into LuX we

may write b = Luισ(b) with b = ensuppS
X(σ)(suppS

X(τ �π1(n)), π2(n)) ∈ Lu
suppS

X(σ)
. As

in the previous case Lemma 3.1.14 yields b ∈ ιsuppS
X(σ)(ϕ), and

ϕ[ισ]Luισ (b) ≡ ϕb[ισ]

is an Lu
suppS

X(σ)
-formula. �

As in other applications of search trees we can deduce that any formula on a

branch is false in a corresponding model. In our case this relies on the connection

between Lu· and the actual constructible hierarchy Lu· (cf. Lemma 3.1.15):

3.2. FROM SEARCH TREE TO ADMISSIBLE SET 161

Proposition 3.2.3. Assume that f is a branch in the search tree SuX and

that Xf , ordered as a subset of X, is isomorphic to an ordinal α. Then we have

Luα 2 JϕK for any LuXf -formula ϕ that occurs on f .

Proof. As in the previous proposition it is helpful to write ϕ 7→ ϕ[ιf] for the in-

clusion map from LuXf -formulas to LuX -formulas. Then the proposition claims that

we have Luα 2 JϕK for any LuXf -formula ϕ such that ϕ[ιf] occurs on the branch f .

Observe that this is a primitive recursive statement about ϕ. In view of Propo-

sition 3.1.17 it can be established by induction over the well-order <ι on the set

of LuXf -formulas. In the induction step we assume that ϕ[ιf] occurs on f . If ϕ

is conjunctive then so is the LuX -formula ϕ[ιf], by Lemma 3.1.14. The previous

proposition yields an a ∈ ιX(ϕ[ιf]) ∩ rng(Luιf) such that ϕ[ιf]a occurs on f . Since

Luιf : LuXf → LuX is the inclusion we can write a = Luιf (a) with a ∈ LuXf . From

Lemma 3.1.14 we learn a ∈ ιXf (ϕ), and the formula ϕa[ιf] ≡ ϕ[ιf]Luιf (a) occurs

on f . Also observe ϕa <ι ϕ, by definition of the verification order. Thus the in-

duction hypothesis provides Luα 2 JϕaK, which implies Luα 2 JϕK by Lemma 3.1.15.

Now assume that ϕ is disjunctive. To infer Luα 2 JϕK by Lemma 3.1.15 it suffices

to establish Luα 2 JϕaK for all a ∈ ιXf (ϕ). For any such a we have

Luιf (a) ∈ ιX(ϕ[ιf]) ∩ rng(Luιf) = ιX(ϕ[ιf]) ∩ LuXf ,

by Lemma 3.1.14. Given that ϕ[ιf] occurs on f the previous proposition tells us

that ϕa[ιf] ≡ ϕ[ιf]Luιf (a) occurs on f as well. From the induction hypothesis we

learn Luα 2 JϕaK, as required. �

Since the Kripke-Platek axioms have been included in our search trees we get

the following conditional construction of admissible sets:

Corollary 3.2.4 (Beta). If there is a well-order X such that the search tree SuX

has a branch, then there is an admissible set A with u ⊆ A.

As indicated we extend our default base theory PRSω by axiom beta in order

to prove this result. The author does not see how to avoid axiom beta at this point

(most other applications of axiom beta in the present thesis are mere convenience).

Proof. Let f be the given branch. Since X is a well-order, so is Xf ⊆ X.

Using axiom beta we get an isomorphism Xf
∼= α with an ordinal α. We want

to use Proposition 1.3.15 to show that Luα ⊇ u is admissible. For this purpose we

must first verify that α is a limit ordinal: By construction of the search tree the

formula ¬Ax0 occurs on f , namely in the sequent lX(f �1). Invoking the previous

162 3. ADMISSIBLE SETS VIA SEARCH TREES

proposition we obtain Luα 2 ¬Ax0 (observe J¬Ax0K ≡ ¬Ax0, as Ax0 contains no

parameters). Thus Luα does satisfy the formula

Ax0 ≡ ∀x∃y y = x ∪ {x}.

It is straightforward to infer that the height

o(Luα) = Luα ∩Ord

of Luα is a limit ordinal or zero. By Lemma 1.3.10 we have o(Luα) = o(u) + α, and

o(u) = u ∩ Ord is a successor ordinal according to Assumption 3.1.1. It follows

that α must indeed be a limit. To conclude by Proposition 1.3.15 we have to

show that Luα satisfies all ∆0-collection axioms with at most C parameters. Any

such axiom appears in the list Ax1,Ax2, . . . fixed above. Again the construction

of SuX ensures that the negated axiom ¬Axn occurs on any branch f , namely in the

sequent lX(f �(2n+1)). The previous proposition yields Luα � Axn, as required. �

Applying the corollary to the transitive closure u = TC({x}) we can construct

an admissible set A with x ∈ u ⊆ A. This will be used to prove direction (iv)⇒(ii)

of Theorem 4.4.6.

3.3. Search Trees as Dilators

In this section we show that the construction X 7→ SuX of search trees is func-

torial. We obtain a prae-dilator by considering SuX with the Kleene-Brouwer order

(also called Lusin-Sierpiński order) and the support function suppS
X . If the assump-

tion of Corollary 3.2.4 fails then X 7→ SuX preserves well-foundedness and the search

trees form a dilator. This yields a conditional construction of admissible sets.

The first step is to extend the construction of search trees to morphisms, i.e. to

embeddings f : X → Y . Lemma 3.1.10 provides an embedding Luf : LuX → LuY .

We obtain a function Suf : (LuX)<ω → (LuY)<ω between the corresponding trees of

finite sequences by setting

Suf (〈a0, . . . , an−1〉) := 〈Luf (a0), . . . ,Luf (an−1)〉.

This definition is easily cast as a recursion over sequences, so that (f, σ) 7→ Suf (σ) is

primitive recursive by Corollary 1.2.11. From Proposition 1.2.2 we learn that Suf

is a set-sized function and that the map f 7→ Suf is primitive recursive. Also recall

the natural transformation suppL
· : Lu· ⇒ [·]<ω from Lemma 3.1.5. In the previous

section we have extended suppL
· to a family of functions suppS

X : (LuX)<ω → [X]<ω

3.3. SEARCH TREES AS DILATORS 163

on finite sequences. It is straightforward to deduce that this family is natural as

well, in the sense that we have

suppS
Y (Suf (σ)) = [f]<ω(suppS

X(σ))

for any σ ∈ (LuX)<ω. We show that Suf respects our construction of search trees:

Lemma 3.3.1. Consider an order embedding f : X → Y . For any σ ∈ (LuX)<ω

we have σ ∈ SuX if and only if Suf (σ) ∈ SuY .

In particular the restriction of Suf to SuX has range in SuY . This restricted

function will also be denoted by Suf : SuX → SuY .

Proof. We argue by induction over the sequence σ. Simultaneously we check

lY (Suf (σ)) = lX(σ)[f]

in case σ ∈ SuX . To understand this equation, recall that the operation ϕ 7→ ϕ[f]

transforms LuX -formulas into LuY -formulas. Its extension to sequents is defined by

Γ[f] := 〈ϕ0[f], . . . , ϕn−1[f]〉 if Γ = 〈ϕ0, . . . , ϕn−1〉.

In the base case σ = 〈〉 of our simultaneous induction we observe 〈〉 ∈ SuX and

Suf (〈〉) = 〈〉 ∈ SuY , as well as

lY (Suf (〈〉)) = lY (〈〉) = 〈〉 = 〈〉[f] = lX(〈〉)[f].

In the induction step we consider a sequence σ_a ∈ (LuX)<ω. By induction hypo-

thesis σ ∈ SuX is equivalent to Suf (σ) ∈ SuY . As SuX and SuY are trees the induction

step is only interesting if σ ∈ SuX and Suf (σ) ∈ SuY hold. Concerning this case,

suppose first that σ has even length len(σ) = 2n. Recall that we have 0 ∈ u by

Assumption 3.1.1, which implies Luf (0) = 0. Also note that Luf is injective because

it is an order embedding. By construction of the search trees we get

σ_a ∈ SuX ⇔ a = 0 ⇔ Luf (a) = 0 ⇔ Suf (σ_a) = Suf (σ)_Luf (a) ∈ SuY .

As the axiom Axn is a formula of pure set theory (i.e. without parameters from LuX)

it is not affected by f . Using the induction hypothesis we thus obtain

lY (Suf (σ_0)) = lY (Suf (σ)),¬Axn = lX(σ)[f], (¬Axn)[f] = lX(σ_0)[f].

Now suppose that σ has odd length len(σ) = 2n+1. If ϕ is the π0(n)-th formula of

lX(σ) then the simultaneous induction hypothesis ensures that ϕ[f] is the π0(n)-th

164 3. ADMISSIBLE SETS VIA SEARCH TREES

formula of lY (Suf (σ)). Assume first that ϕ is conjunctive. Then ϕ[f] is conjunctive

as well, by Lemma 3.1.14. Using the same lemma we get

σ_a ∈ SuX ⇔ a ∈ ιX(ϕ) ⇔ Luf (a) ∈ ιY (ϕ[f]) ⇔ Suf (σ_a) = Suf (σ)_Luf (a) ∈ SuY .

For a ∈ ιX(ϕ) Lemma 3.1.14 also gives

lY (Suf (σ_a)) = lY (Suf (σ)), ϕ[f]Luf (a) = lX(σ)[f], ϕa[f] = lX(σ_a)[f].

Now assume that ϕ is disjunctive. As above we have

σ_a ∈ SuX ⇔ a = 0 ⇔ Luf (a) = 0 ⇔ Suf (σ_a) = Suf (σ)_Luf (a) ∈ SuY .

To describe the sequents lX(σ_0) and lY (Suf (σ_0)) we write

b = enX(suppS
X(σ �π1(n)), π2(n)).

The naturality of suppS
· and Proposition 3.1.7 yield

enY (suppS
Y (Suf (σ)�π1(n)), π2(n)) = enY ([f]<ω(suppS

X(σ �π1(n))), π2(n)) = Luf (b).

By Lemma 3.1.14 we have b ∈ ιX(ϕ) if and only if Luf (b) ∈ ιY (ϕ[f]). In case

b ∈ ιX(ϕ) we thus obtain

lY (Suf (σ_0)) = lY (Suf (σ)), ϕ[f]Luf (b) = lX(σ)[f], ϕb[f] = lX(σ_0)[f].

In case b /∈ ιX(ϕ) we have

lY (Suf (σ_0)) = lY (Suf (σ)) = lX(σ)[f] = lX(σ_0)[f],

completing the simultaneous induction. �

Next, we want to equip the search tree SuX with a linear order. Recall that

Lemma 3.1.9 provides a linear order <L
X on LuX . Based on this order it is standard

to define the Kleene-Brouwer order on the tree (LuX)<ω of sequences, namely by

σ0 <
S
X σ1 :⇔

{
either the sequence σ0 is a proper end extension of σ1,

or we can write σi = σ_a_i σ
′
i with a0 <

L
X a1.

Here the notation σi = σ_a_i σ
′
i refers to the concatenation of sequences, i.e. the

terms ai ∈ LuX are the first entries on which σ0 and σ1 disagree. Using the linearity

of <L
X it is straightfoward to see that <S

X is a linear order on (LuX)<ω. Let us

observe a functorial property:

Lemma 3.3.2. Consider an order embedding f : X → Y and sequences σ0, σ1

in (LuX)<ω. Then σ0 <
S
X σ1 implies Suf (σ0) <S

Y Suf (σ1).

3.3. SEARCH TREES AS DILATORS 165

Proof. If σ0 is a proper end extension of σ1 then Suf (σ0) is a proper end

extension of Suf (σ1). Now assume σi = σ_a_i σ
′
i with a0 <L

X a1. By definition

of Suf we see Suf (σi) = Suf (σ)_Luf (ai)
_Suf (σ′i). Using Lemma 3.1.10 we obtain

Luf (a0) <L
Y Luf (a1), which implies the desired inequality Suf (σ0) <S

Y Suf (σ1). �

The restriction of the order <S
X and the function suppS

X : (LuX)<ω → [X]<ω to

the search tree SuX ⊆ (LuX)<ω will also be denoted by <S
X resp. suppS

X (recall that

the same has already been declared for the function Suf). The following summarizes

our functorial investigation of search trees:

Proposition 3.3.3. The maps X 7→ (SuX , <
S
X), f 7→ Suf and X 7→ suppS

X form

a prae-dilator.

Proof. Lemma 3.3.1 and Lemma 3.3.2 ensure that each embedding f : X → Y

is transformed into an embedding Suf of (SuX , <
S
X) into (SuY , <

S
Y). Functoriality is

easily deduced from the corresponding properties of Lu· , established in Lemma 3.1.5.

The naturality of suppS
· has been observed at the beginning of the present section.

It remains to show that suppS
X computes supports, in the sense that any σ ∈ SuX lies

in the range of Suισ : Su
suppS

X(σ)
→ SuX , where ισ : suppS

X(σ) ↪→ X is the inclusion.

Let us write σ = 〈a0, . . . , an−1〉. In view of suppL
X(ai) ⊆ suppS

X(σ) = rng(ισ)

Lemma 3.1.6 yields ai ∈ rng(Luισ). As observed in Section 3.1 the function Luισ is the

inclusion map from Lu
suppS

X(σ)
into LuX . Thus we may consider σ = 〈a0, . . . , an−1〉

as a sequence in (Lu
suppS

X(σ)
)<ω, with

Suισ(σ) = 〈Luισ(a0), . . . ,Luισ(an−1)〉 = σ ∈ SuX .

From Lemma 3.3.1 we get σ ∈ Su
suppS

X(σ)
⊆ (Lu

suppS
X(σ)

)<ω, so that σ = Suισ(σ) lies

in the range of the restricted function Suισ : Su
suppS

X(σ)
→ SuX . �

Finally, we show that X 7→ (SuX , <
S
X) preserves well-foundedness if the assump-

tion of Corollary 3.2.4 fails. This relies on the following well-known property of the

Kleene-Brouwer order, which we need to establish in our base theory PRSω:

Lemma 3.3.4. Consider a well-order X and a tree T ⊆ (LuX)<ω. If T has no

branch then the restriction of <S
X to T is a well-order.

Proof. From Lemma 3.1.9 we know that <L
X is a well-order. Thus the prim-

itive recursive function

min<L
X

(Z) :=
⋃
{a ∈ Z ∩ LuX | ∀b∈Z∩LuX

a ≤L
X b}

166 3. ADMISSIBLE SETS VIA SEARCH TREES

computes the minimal element of each non-empty Z ⊆ LuX . In particular we can

use min<L
X

as a choice function on LuX . We will also need a choice function on the

set (LuX)<ω of finite sequences. For that purpose we use the length-lexicographic

order CSX , defined by

〈a0, . . . , an−1〉 CSX 〈b0, . . . , bm−1〉 :⇔

{
either n < m, or n = m and ai <

L
X bi

for the smallest i < n with ai 6= bi.

It is straightforward to see that CSX is a well-order: To find a CSX -minimal element,

first single out the sequences of minimal length. Amongst these, single out the

sequences with <L
X -minimal i-th entry by recursion over i. As above this makes

minCSX
(Z) :=

⋃
{σ ∈ Z ∩ (LuX)<ω | ∀τ∈Z∩(LuX)<ω σ E

S
X τ}

the desired choice function on (LuX)<ω. Now the lemma is shown by contraposition:

Assume that Z ⊆ T is a non-empty subset without <S
X -minimal element. Starting

with some value g(0) ∈ Z we define a <SX -descending sequence g : ω → Z by

g(n+ 1) := minCSX
({σ ∈ Z |σ <S

X g(n)}).

To transform g into a branch f of T we recursively define

f(n) := min<L
X

({a ∈ LuX | (f �n)_a is an initial segment of g(m)

for infinitely many m ∈ ω}).

Note that the property “is an infinite subset of ω” is primitive recursive. To con-

clude it suffices to show that the required element a ∈ LuX always exists: Inductively

we assume that f � n is a proper initial segment of infinitely many nodes of the

form g(m). We can define a strictly increasing function k 7→ mk such that all

nodes in {g(mk) | k ∈ ω} have this property. Let ak be the unique set in LuX such

that (f �n)_ak is an initial segment of g(mk). From g(mk+1) <S
X g(mk) and the

definition of the Kleene-Brouwer order we get ak+1 ≤L
X ak. As <L

X is well-founded

there must be a bound K such that ak = aK holds for all k ≥ K. It follows that

(f �n)_aK is an initial segment of g(mk) for all numbers k ≥ K. Thus a := aK is

as required for the definition of f(n). �

The results of the previous sections culminate in the following conditional con-

struction of admissible sets:

3.4. FROM SEARCH TREE TO PROOF TREE 167

Theorem 3.3.5 (Beta). Consider a set u which satisfies Assumption 3.1.1.

Then there is either an admissible set A with u ⊆ A, or the construction of search

trees results in a dilator (Su· , suppS
·).

Proof. First assume that there is a well-order X such that the search tree SuX

has a branch. Then Corollary 3.2.4 (which requires axiom beta) provides the desired

admissible set. If no such branches exist, then the previous lemma ensures that the

map X 7→ (SuX , <
S
X) preserves well-foundedness. Together with Proposition 3.3.3

this means that (Su· , suppS
·) is a dilator. �

To obtain an unconditional construction of admissible sets we must show that

(Su· , suppS
·) cannot be a dilator: If it was, then the search trees would form a

β-proof of contradiction in Kripke-Platek set theory, as we shall see in the next

section. The ordinal analysis in Chapter 4 will show that such a β-proof cannot

exist, provided that the predicative Bachmann-Howard principle from Section 2.2

holds. This will complete the proof of direction (iv)⇒(ii) of Theorem 4.4.6.

3.4. From Search Tree to Proof Tree

In the previous sections we have defined a family of search trees SuX , which form

a prae-dilator according to Proposition 3.3.3. The construction from Section 2.2

transforms this prae-dilator into a linear order BH(Su). This order can be seen as

a fixed-point of a “relativized Bachmann-Howard construction”. For that reason

the single tree SuBH(Su) will reflect crucial properties of the entire family X 7→ SuX .

In the present section we show that SuBH(Su) can be extended into an infinite proof

of a certain kind — we shall speak of Su-proofs. The use of infinite proofs in the

ordinal analysis of set theories is due to Jäger [38, 39]. More background will be

provided in the introduction of the next chapter.

Before we define the notion of Su-proof, let us recall our overall goal: We

want to construct an admissible set which contains the given set u. In view of

Theorem 3.3.5 it remains to cover the case where Su = (Su, suppS) is a dilator. In

that case the predicative Bachmann-Howard principle from Definition 2.2.19 tells

us that BH(Su) is a well-order. Invoking axiom beta we will be able to justify the

following (for the time being we simply treat it as an open assumption):

Assumption 3.4.1. In the following we argue under the assumption that the

order BH(Su) = (BH(Su), <BH(Su)) is isomorphic to an ordinal α.

168 3. ADMISSIBLE SETS VIA SEARCH TREES

As other instances of ordinal analysis suggest, the well-foundedness of BH(Su)

should not be required until the very end of our consistency proof, and the iso-

morphism BH(Su) ∼= α should not be needed at all (see also Remark 3.4.7 below).

Nevertheless, Assumption 3.4.1 will allow us to simplify many arguments. The

point is that it makes a semantic interpretation of LuBH(Su) available: According

to Proposition 3.1.3 each term a ∈ LuBH(Su) corresponds to a set JaK ∈ Luα in the

actual constructible hierarchy. Lemma 3.1.15 extends this interpretation to a map

ϕ 7→ JϕK from LuBH(Su)-formulas to Luα-formulas. We can then rely on the satisfac-

tion relation Luα � JϕK in order to define and analyze infinite proofs. In particular,

this accounts for the “truth rule” (True, ·) in the following list:

Definition 3.4.2. By an Su-rule we mean an expression of the form

• (True, ϕ), where ϕ is a bounded LuBH(Su)-formula such that Luα � JϕK,

• (
∧
, ϕ), where ϕ is a conjunctive LuBH(Su)-formula (cf. Definition 3.1.13),

• (
∨
, ϕ, a), where ϕ is a disjunctive LuBH(Su)-formula and a ∈ ιBH(Su)(ϕ),

• (Cut, ϕ), where ϕ is an LuBH(Su)-formula,

• (Ref, ∃w∀x∈a∃y∈wθ(x, y)), where we have a ∈ LuBH(Su) and θ(x, y) is a

bounded LuBH(Su)-formula (with no other free variables),

• (Rep, a), where we have a ∈ LuBH(Su).

Next, the construction from Section 2.2 yields a linearly ordered set

(ϑ(SuBH(Su)), <
ϑ
BH(Su))

of ordinal terms (this relies on the fact that BH(Su) can be equipped with the

structure of a BH-system, see Lemma 2.2.23 and Proposition 2.2.8). To view

BH(Su) as a fixed-point of the relativized Bachmann-Howard construction, recall

that ϑ(SuBH(Su)) contains a term Ω, which one may view as the first uncountable

ordinal. Theorem 2.2.25 provides an order isomorphism

iBH(Su) : BH(Su)
∼=−→ ϑ(SuBH(Su)) ∩ Ω = {s ∈ ϑ(SuBH(Su)) | s <

ϑ
BH(Su) Ω}.

In the following we identify BH(Su) with ϑ(SuBH(Su))∩Ω ⊆ ϑ(SuBH(Su)), leaving the

isomorphism iBH(Su) implicit. Instead of <BH(Su) and <ϑBH(Su) we simply write <.

For x ∈ [ϑ(SuBH(Su))]
<ω and t ∈ ϑ(SuBH(Su)) we abbreviate

x <fin t ⇔ “we have s < t for all s ∈ x”,

as in the previous sections. The subscript BH(Su) will be omitted in expressions

such as ιBH(Su)(ϕ) and suppL
BH(Su)(a). Finally, let us agree to view sequents as

3.4. FROM SEARCH TREE TO PROOF TREE 169

finite sets, rather than sequences (the order of formulas is no longer relevant). Now

we have all ingredients for the notion of Su-proof:

Definition 3.4.3. An Su-proof consists of a tree P ⊆ (LuBH(Su))
<ω and la-

belling functions

l : P → “LuBH(Su)-sequents”, r : P → “Su-rules”, o : P → ϑ(SuBH(Su)),

such that the following local correctness conditions hold at each node σ ∈ P :

If r(σ) is then . . .

(True, ϕ) we have ϕ ∈ l(σ);

(
∧
, ϕ) we have ϕ ∈ l(σ); for all a ∈ ι(ϕ) we have σ_a ∈ P

and l(σ_a) ⊆ l(σ), ϕa as well as o(σ_a) < o(σ);

(
∨
, ϕ, a) we have ϕ ∈ l(σ), σ_0 ∈ P and l(σ_0) ⊆ l(σ), ϕa as

well as o(σ_0) < o(σ) and suppL(a) <fin o(σ);

(Cut, ϕ) we have σ_i ∈ P for i ∈ {0, 1} ⊆ LuBH(Su); also, we

have l(σ_0) ⊆ l(σ),¬ϕ and l(σ_1) ⊆ l(σ), ϕ as well

as o(σ_i) < o(σ);

(Ref,∃w∀x∈a∃y∈wθ(x, y)) we have ∃w∀x∈a∃y∈wθ(x, y) ∈ l(σ); also, we have

σ_0 ∈ P and l(σ_0) ⊆ l(σ),∀x∈a∃yθ(x, y) as well

as o(σ_0) < o(σ) and Ω ≤ o(σ);

(Rep, a) we have σ_a ∈ P , l(σ_a) ⊆ l(σ) and o(σ_a) < o(σ).

Note that the definition does not contain any condition of the form σ /∈ P .

Indeed we could always assume that P is the full tree (LuBH(Su))
<ω, as we can add

arbitrary nodes σ with labels

l(σ) = 〈0 = 0〉, r(σ) = (True, 0 = 0), o(σ) = 0.

Nevertheless it is more intuitive to allow proper subtrees P ⊆ (LuBH(Su))
<ω. The

side condition suppL(a) <fin o(σ) (or [iBH(Su)]
<ω(suppL(a)) <fin o(σ), making the

isomorphism iBH(Su) explicit) of the disjunction rule (
∨
, ϕ, a) helps to control the

170 3. ADMISSIBLE SETS VIA SEARCH TREES

computational content of a proof. This will be important for the ordinal analysis

in the next chapter. The side condition Ω ≤ o(σ) ensures that no reflection rule

(Ref, ·) can occur in an Su-proof of height o(〈〉) < Ω. For such a proof it is

straightforward to verify soundness — and thus consistency:

Lemma 3.4.4. Consider an Su-proof P = (P, l, r, o). If P has height o(〈〉) < Ω

then we have Luα � JψK for some formula ψ ∈ l(〈〉) in the end-sequent of P . In

particular l(〈〉) cannot be the empty sequent.

Proof. We use induction over the well-order ϑ(SuBH(Su)) ∩ Ω ∼= BH(Su) in

order to establish

∀s∈ϑ(Su
BH(Su)

)∩Ω∀σ∈P (o(σ) = s→ ∃ψ∈l(σ) Luα � JψK).

Note that the induction statement is primitive recursive by Proposition 1.3.3. In

the induction step we distinguish cases according to the rule used at σ. As an

example, let us consider a disjunction rule r(σ) = (
∨
, ϕ, a): Local correctness

yields σ_0 ∈ P and o(σ_0) < o(σ) < Ω. By induction hypothesis we get Luα � JψK

for some formula ψ ∈ l(σ_0) ⊆ l(σ), ϕa. For ψ ∈ l(σ) the claim is immediate.

Now assume ψ ≡ ϕa. The definition of our Su-rules ensures a ∈ ι(ϕ), so that we

get Luα � JϕK by Lemma 3.1.15. Since local correctness guarantees ϕ ∈ l(σ) this

completes the induction step in the disjunctive case. As a second example, consider

a cut rule r(σ) = (Cut, ϕ): From the induction hypothesis for σ_0 we learn that Luα
satisfies some formula ψ ∈ l(σ_0) ⊆ l(σ),¬ϕ. For ψ ∈ l(σ) the claim is immediate,

so we may assume Luα � J¬ϕK. Since J¬ϕK and ¬JϕK are the same formula this

amounts to Luα 2 JϕK. The induction hypothesis for σ_1 yields Luα � JψK for some

formula ψ ∈ l(σ_1) ⊆ l(σ), ϕ. Since we have excluded the case ψ ≡ ϕ this leaves us

with ψ ∈ l(σ), as needed for the induction step. The remaining cases are similar or

easy. Note that r(σ) cannot be a reflection rule (Ref, ·), because local correctness

would require Ω ≤ o(σ), contrary to the assumption o(σ) = s ∈ ϑ(SuBH(Su))∩Ω. �

In the rest of this section we extend the search tree SuBH(Su) to an Su-proof of

the empty sequent. This proof will have height o(〈〉) > Ω, so that the consistency

result above does not apply. Consistency for Su-proofs with height above Ω does

not follow by a simple semantical argument, because we do not know whether Luα
satisfies reflection. Instead, the extended consistency result requires methods of

impredicative ordinal analysis, which will be presented in the next chapter. The

repetition rule (Rep, ·), which is trivial from a semantical viewpoint, will play an

3.4. FROM SEARCH TREE TO PROOF TREE 171

important role there. In order to extend SuBH(Su) to an Su-proof we need to give

infinite proofs of the Kripke-Platek axioms. As a preparation, let us observe that

the isomorphism BH(Su) ∼= ϑ(SuBH(Su)) ∩ Ω allows us to use the term structure of

ϑ(SuBH(Su)) in order to define functions on BH(Su). In particular we can define a

map ϑ(SuBH(Su)) 3 s 7→ s+ 1 ∈ ϑ(SuBH(Su)) by the stipulations

0 + 1 := ω0, Ω + 1 := ωΩ + ω0, Eσ + 1 := ωEσ + ω0,

ϑs+ 1 := ωϑs + ω0, (ωs0 + · · ·+ ωsn) + 1 := ωs0 + · · ·+ ωsn + ω0.

It is straightforward to observe s < s + 1. Also, s < Ω implies s + 1 < Ω, so that

the given operation on terms induces a map BH(Su) 3 s 7→ s + 1 ∈ BH(Su). It

follows that BH(Su) does not have a maximal element. This allows us to prove the

“limit axiom” used in the construction of search trees:

Lemma 3.4.5. There is an Su-proof P0 = (P0, l0, r0, o0) with height o0(〈〉) = Ω

and end-sequent l0(〈〉) = 〈Ax0〉, where

Ax0 ≡ ∀x∃y y = x ∪ {x} ≡ ∀x∃y(∀z∈x z ∈ y ∧ x ∈ y ∧ ∀z∈y(z ∈ x ∨ z = x)).

Proof. For each a ∈ LuBH(Su) we compute

sa = max({s+ 1 | s ∈ suppL(a)} ∪ {0}) ∈ BH(Su).

In view of suppL(a) <fin sa we can form the LuBH(Su)-terms

ba ≡ {z ∈ Lusa | z ∈ a ∨ z = a}.

Now the required Su-proof P0 can be visualized as

· · ·
`0 ba = a ∪ {a}

(
∨

)
`sa+1 ∃y y = a ∪ {a} · · ·

(
∧

).
`Ω ∀x∃y y = x ∪ {x}

This means that the leaves of P0 have the form 〈a, 0〉, for arbitrary a ∈ LuBH(Su).

They receive the labels

l0(〈a, 0〉) = 〈ba = a ∪ {a}〉,

r0(〈a, 0〉) = (True, ba = a ∪ {a}),

o0(〈a, 0〉) = 0.

172 3. ADMISSIBLE SETS VIA SEARCH TREES

To see that (True, ba = a ∪ {a}) is an Su-rule we must verify Luα � Jba = a ∪ {a}K,
which amounts to JbaK = JaK ∪ {JaK}. By the definition of J·K (see the proof of

Proposition 3.1.3) we have

JbaK = {z ∈ Luαa | z ∈ JaK ∨ z = JaK},

where αa is the image of sa under the isomorphism BH(Su) ∼= α. Also note that

suppL(a) <fin sa implies JaK ∈ Luαa , by Proposition 3.1.3. Since Luαa is transitive

we can infer JbaK = JaK ∪ {JaK}, as required. On the next level we have

l0(〈a〉) = 〈∃y y = a ∪ {a}〉,

r0(〈a〉) = (
∨
, ∃y y = a ∪ {a}, ba),

o0(〈a〉) = sa + 1.

Local correctness is satisfied in view of

∃y y = a ∪ {a} '
∨
b∈Lu

BH(Su)
b = a ∪ {a}

and suppL(ba) <
fin sa + 1. Finally, the root of P0 is labelled by

l0(〈〉) = 〈∀x∃y y = x ∪ {x}〉,

r0(〈〉) = (
∧
,∀x∃y y = x ∪ {x}),

o0(〈〉) = Ω.

To see that this assignment is locally correct, observe that we have

∀x∃y y = x ∪ {x} '
∧
a∈Lu

BH(Su)
∃y y = a ∪ {a},

and that sa + 1 ∈ BH(Su) ∼= ϑ(SuBH(Su)) ∩ Ω means sa + 1 < Ω. Working in our

base theory PRSω, the set

P0 = {σ ∈ (LuBH(Su))
<ω |σ = 〈〉 ∨ ∃a∈Lu

BH(Su)
(σ = 〈a〉 ∨ σ = 〈a, 0〉)}

and the set-sized functions l0, r0, o0 exist by ∆0-comprehension. �

Using the reflection rule (Ref, ·) we can also construct Su-proofs of ∆0-collection

(note that Ω + ω abbreviates the term ωΩ + ωω
0 ∈ ϑ(SuBH(Su))):

Lemma 3.4.6. There are Su-proofs Pn+1 = (Pn+1, ln+1, rn+1, on+1) with ordinal

height on+1(〈〉) = Ω + ω and end-sequent ln+1(〈〉) = 〈Axn+1〉, where

Axn+1 ≡ ∀z1,...,zk∀v(∀x∈v∃yθ(x, y, z1, . . . , zk)→ ∃w∀x∈v∃y∈wθ(x, y, z1, . . . , zk))

3.4. FROM SEARCH TREE TO PROOF TREE 173

is the n-th instance of ∆0-collection, according to the enumeration from Section 3.2.

The map n 7→ Pn+1 exists as a set-sized function.

Proof. The Su-proof Pn+1 starts with k + 1 applications of the rule (
∧
, ·),

which introduce the universal quantifiers at the beginning of Axn+1. This means

that we have 〈a1, . . . , ak, b〉 ∈ Pn+1 for arbitrary a1, . . . , ak, b ∈ LuBH(Su). To de-

scribe the labels, let us abbreviate

ψ(z1, . . . , zk, v) ≡ ∀x∈v∃yθ(x, y, z1, . . . , zk)→ ∃w∀x∈v∃y∈wθ(x, y, z1, . . . , zk).

For i ≤ k we then have

ln+1(〈a1, . . . , ai〉) = 〈∀zi+1,...,zk∀vψ(a1, . . . , ai, zi+1, . . . , zk, v)〉,

rn+1(〈a1, . . . , ai〉) = (
∧
, ∀zi+1,...,zk∀vψ(a1, . . . , ai, zi+1, . . . , zk, v)),

on+1(〈a1, . . . , ai〉) =

Ω + ω if i = 0,

Ω + 9 + k − i otherwise.

We also have

ln+1(〈a1, . . . , ak, b〉) = 〈∀x∈b∃yθ(x, y, a1, . . . , ak)→ ∃w∀x∈b∃y∈wθ(x, y, a1, . . . , ak)〉,

on+1(〈a1, . . . , ak, b〉) = Ω + 8.

The rule rn+1(〈a1, . . . , ak, b〉) will be given below. It is straightforward to observe

local correctness at the nodes 〈a1, . . . , ai〉 for i ≤ k. The next part of the proof can

be visualized as

`Ω+5 ¬∀x∈b∃yθ(x, y,~a), ∀x∈b∃yθ(x, y,~a)
(Ref)

`Ω+6 ¬∀x∈b∃yθ(x, y,~a),∃w∀x∈b∃y∈wθ(x, y,~a)
(
∨

)
`Ω+7 ¬∀x∈b∃yθ(x, y,~a),¬∀x∈b∃yθ(x, y,~a) ∨ ∃w∀x∈b∃y∈wθ(x, y,~a)

(
∨

).
`Ω+8 ¬∀x∈b∃yθ(x, y,~a) ∨ ∃w∀x∈b∃y∈wθ(x, y,~a)

To give a more explicit description we abbreviate

ϕ0 ≡ ∃x∈b∀y¬θ(x, y, a1, . . . , ak),

ϕ1 ≡ ∃w∀x∈b∃y∈wθ(x, y, a1, . . . , ak),

so that we get

∀x∈b∃yθ(x, y, a1, . . . , ak)→ ∃w∀x∈b∃y∈wθ(x, y, a1, . . . , ak) ≡

≡ ¬ϕ0 → ϕ1 ≡ ϕ0 ∨ ϕ1 '
∨
i∈{0,1} ϕi.

174 3. ADMISSIBLE SETS VIA SEARCH TREES

Thus we stipulate 〈~a, b, 0〉 ∈ Pn+1 and 〈~a, b, 0, 0〉 ∈ P , with labels

rn+1(〈~a, b〉) = (
∨
, ϕ0 ∨ ϕ1, 0),

ln+1(〈~a, b, 0〉) = 〈ϕ0 ∨ ϕ1, ϕ0〉,

on+1(〈~a, b, 0〉) = Ω + 7,

rn+1(〈~a, b, 0〉) = (
∨
, ϕ0 ∨ ϕ1, 1),

ln+1(〈~a, b, 0, 0〉) = 〈∃x∈b∀y¬θ(x, y,~a),∃w∀x∈b∃y∈wθ(x, y,~a)〉,

on+1(〈~a, b, 0, 0〉) = Ω + 6.

Local correctness at 〈~a, b〉 and 〈~a, b, 0〉 is easily checked. At last, we are in a position

to apply the reflection rule: Local correctness at 〈~a, b, 0, 0〉 is ensured if we stipulate

〈~a, b, 0, 0, 0〉 ∈ Pn+1 and

rn+1(〈~a, b, 0, 0〉) = (Ref,∃w∀x∈b∃y∈wθ(x, y,~a)),

ln+1(〈~a, b, 0, 0, 0〉) = 〈∃x∈b∀y¬θ(x, y,~a), ∀x∈b∃yθ(x, y,~a)〉,

on+1(〈~a, b, 0, 0, 0〉) = Ω + 5.

In particular Ω ≤ Ω + 6 validates the side condition of the reflection rule. Observe

that the sequent at 〈~a, b, 0, 0, 0〉 has the form ϕ,¬ϕ. To deduce it we distinguish

cases according to the form of b: For notational convenience we only look at b ≡ Lus .

In this case we have

∀x∈b∃yθ(x, y,~a) '
∧

suppL(c)<fins ∃yθ(c, y,~a),

and the remaining proof can be visualized as

· · ·

· · ·
`0 ¬θ(c, d,~a), θ(c, d,~a)

(
∨

)
`Ω ¬θ(c, d,~a),∃yθ(c, y,~a) · · ·

(
∧

)
`Ω+1 ∀y¬θ(c, y,~a), ∃yθ(c, y,~a)

(
∨

)
`Ω+2 ∃x∈b∀y¬θ(x, y,~a), ∃yθ(c, y,~a) · · ·

(
∧

).
`Ω+5 ∃x∈b∀y¬θ(x, y,~a),∀x∈b∃yθ(x, y,~a)

The top sequent is covered by a truth rule (True, ·), since one of the ∆0-formulas

¬θ(c, d,~a) and θ(c, d,~a) holds in Luα. The lowest sequent could be deduced with

height Ω+3, but the ordinal Ω+5 is needed to cover the slightly more complicated

case b ≡ {z ∈ Lus |ψ(z)}. More explicitly, we stipulate that Pn+1 contains the nodes

3.4. FROM SEARCH TREE TO PROOF TREE 175

〈~a, b, 0, 0, 0, c〉 and 〈~a, b, 0, 0, 0, c, 0〉 for all c ∈ LuBH(Su) which satisfy suppL(c) <fin s.

These nodes receive the labels

rn+1(〈~a, b, 0, 0, 0〉) = (
∧
,∀x∈b∃yθ(x, y,~a)),

ln+1(〈~a, b, 0, 0, 0, c〉) = 〈∃x∈b∀y¬θ(x, y,~a),∃yθ(c, y,~a)〉,

on+1(〈~a, b, 0, 0, 0, c〉) = Ω + 2,

rn+1(〈~a, b, 0, 0, 0, c〉) = (
∨
,∃x∈b∀y¬θ(x, y,~a), c),

ln+1(〈~a, b, 0, 0, 0, c, 0〉) = 〈∀y¬θ(c, y,~a), ∃yθ(c, y,~a)〉,

on+1(〈~a, b, 0, 0, 0, c, 0〉) = Ω + 1.

Note that the side condition suppL(c) <fin on+1(〈~a, b, 0, 0, 0, c〉) of the rule (
∨
, ·) is

trivial in view of suppL(c) ⊆ BH(Su) ∼= ϑ(SuBH(Su))∩Ω. Finally, Pn+1 contains the

nodes 〈~a, b, 0, 0, 0, c, 0, d〉 and 〈~a, b, 0, 0, 0, c, 0, d, 0〉 for arbitrary d ∈ LuBH(Su). They

are labelled by

rn+1(〈~a, b, 0, 0, 0, c, 0〉) = (
∧
,∀y¬θ(c, y,~a)),

ln+1(〈~a, b, 0, 0, 0, c, 0, d〉) = 〈¬θ(c, d,~a),∃yθ(c, y,~a)〉,

on+1(〈~a, b, 0, 0, 0, c, 0, d〉) = Ω,

rn+1(〈~a, b, 0, 0, 0, c, 0, d〉) = (
∨
, ∃yθ(c, y,~a), d),

ln+1(〈~a, b, 0, 0, 0, c, 0, d, 0〉) = 〈¬θ(c, d,~a), θ(c, d,~a)〉,

on+1(〈~a, b, 0, 0, 0, c, 0, d, 0〉) = 0,

rn+1(〈~a, b, 0, 0, 0, c, 0, d, 0〉) =

(True, θ(c, d,~a)) if Luα � Jθ(c, d,~a)K,

(True,¬θ(c, d,~a)) otherwise.

Note that the case distinction is primitive recursive, by Proposition 1.3.3. The

explicit description of Pn+1 shows that the proof tree and its labelling functions

can be defined by ∆0-separation (in the language of PRSω). All parameters of

the separation formula can be computed from n, as we work with a primitive

recursive enumeration n 7→ Axn of axioms. By Corollary 1.1.10 this implies that

the function n 7→ Pn+1 is primitive recursive. As the domain of this function is the

set ω, Proposition 1.2.2 tells us that n 7→ Pn+1 exists as a set-sized function. �

Let us comment on the role of Assumption 3.4.1 in the context of Su-proofs:

Remark 3.4.7. The Su-proofs constructed in the previous lemmas make use

of the truth rule (True, ·). This rule relies on an interpretation of LuBH(Su)-terms as

176 3. ADMISSIBLE SETS VIA SEARCH TREES

sets in the actual constructible hierarchy, and thus on the isomorphism BH(Su) ∼= α

provided by Assumption 3.4.1. It is well known from ordinal analysis (see [39])

that formulas such as ∀x∃y y = x ∪ {x} and ϕ ∨ ¬ϕ can be derived by the rules

(
∧
, ·) and (

∨
, ·) alone, without using the truth rule. This alternative approach

would be more elegant, in the sense that it does not require axiom beta (which is

needed to justify Assumption 3.4.1). On the other hand, several arguments would

become more difficult without the truth rule: For example, Su-proofs of ϕ ∨ ¬ϕ
would have to be constructed by recursion over the height of ϕ. This is somewhat

technical, because even ∆0-formulas can have transfinite height, as in the proof of

Proposition 3.1.17. The semantical interpretation of LuBH(Su)-terms is also used in

Lemma 3.4.4, which establishes consistency via soundness. It is well known from

ordinal analysis that consistency can be proved without semantical concepts: For

proofs of height below Ω the relevant syntactical method is predicative cut elimin-

ation (cf. the introduction of the next chapter). Again, this alternative approach

would avoid axiom beta but add technical difficulty. In any case, it seems that

axiom beta is essential for the construction of admissible sets via search trees (see

Corollary 3.2.4). Given that we cannot avoid axiom beta at that point, we may as

well use it again, to justify Assumption 3.4.1 and simplify our Su-proofs.

As promised, we can now extend the search tree SuBH(Su) into an Su-proof of

the empty sequent. According to Lemma 2.2.7, each node σ ∈ SuBH(Su) gives rise

to a term Eσ ∈ ϑ(SuBH(Su)) with Ω < Eσ. In particular we have an ordinal term E〈〉

that is associated with the root 〈〉 of the search tree.

Proposition 3.4.8. If Assumption 3.4.1 is satisfied then there is an Su-proof

PS = (PS , lS , rS , oS) with empty end-sequent lS(〈〉) = 〈〉 and height oS(〈〉) = E〈〉.

Proof. By construction the search tree is locally correct at nodes of odd

length. For σ ∈ SuBH(Su) of even length len(σ) = 2n, the negated axiom ¬Axn

has been added at σ_0 ∈ SuBH(Su). To restore local correctness we label σ by a cut

rule and add the premise Axn at the new node σ_1 ∈ PS . Above σ_1 we insert

the proof (Pn, ln, on, rn) from Lemma 3.4.5 resp. Lemma 3.4.6. More formally, we

put

PS = SuBH(Su) ∪ {σ
_1_τ |σ ∈ SuBH(Su) ∧ ∃n∈ω(len(σ) = 2n ∧ τ ∈ Pn)}.

Observe that the decomposition of σ_1_τ ∈ PS is unique, because σ_1 ∈ SuBH(Su)

fails if σ has even length. Concerning the labels, recall that the search tree is

3.4. FROM SEARCH TREE TO PROOF TREE 177

already equipped with a function

lBH(Su) : SuBH(Su) → “LuBH(Su)-sequents”.

We obtain a primitive recursive function lS : PS → “LuBH(Su)-sequents” by setting

lS(σ) = lBH(Su)(σ) for σ ∈ SuBH(Su),

lS(σ_1_τ) = ln(τ) for σ ∈ SuBH(Su) with len(σ) = 2n.

Since lS has set-sized domain, it exists as a set-sized function, by Proposition 1.2.2.

To define the functions rS : PS → “LuBH(Su)-rules” and oS : PS → ϑ(SuBH(Su)) in the

same way, it suffices to describe their restrictions to the search tree: The ordinal

labels are given by

oS(σ) = Eσ for σ ∈ SuBH(Su),

similar to the construction of Rathjen and Valencia Vizcáıno [71, Theorem 5.26].

Concerning the rules, we first set

rS(σ) = (Cut,Axn) for σ ∈ SuBH(Su) with len(σ) = 2n.

To see that the labelling is locally correct for nodes of even length, observe that

the construction of the search tree yields σ_0 ∈ SuBH(Su) ⊆ PS and

lS(σ_0) = lBH(Su)(σ
_0) = lBH(Su)(σ),¬Axn = lS(σ),¬Axn .

The inequality σ_0 <SBH(Su) σ in the Kleene-Brouwer order implies

oS(σ_0) = Eσ_0 < Eσ = oS(σ),

by the definition of ϑ(SuBH(Su)). We also have σ_1 = σ_1_〈〉 ∈ PS and

lS(σ_1) = ln(〈〉) = 〈Axn〉 ⊆ lS(σ),Axn,

as well as

oS(σ_1) = on(〈〉) ≤ Ω + ω = ωΩ + ωω
0
< Eσ = oS(σ).

Now consider a node σ ∈ SuBH(Su) of odd length 2n+ 1. Following the construction

of the search tree, let ϕ be the π0(n)-th formula in the sequent lBH(Su)(σ) = lS(σ).

If ϕ is conjunctive, we set rS(σ) = (
∧
, ϕ). Observe that we have σ_a ∈ SuBH(Su)

and lBH(Su)(σ
_a) = lBH(Su)(σ), ϕa for all a ∈ ι(ϕ), as needed for local correctness.

If ϕ is disjunctive, we compute b ∈ LuBH(Su) as in Definition 3.2.1. Then we set

rS(σ) =

(
∨
, ϕ, b) if b ∈ ι(ϕ),

(Rep, 0) otherwise.

178 3. ADMISSIBLE SETS VIA SEARCH TREES

Note that suppL(b) ⊆ BH(Su) ∼= ϑ(SuBH(Su)) ∩ Ω guarantees the side condition

suppL(b) <fin Ω < Eσ = o(σ)

of the disjunction rule. The other local correctness conditions are straightforward.

To complete the proof we point out that local correctness at σ_1_τ ∈ PS follows

from local correctness at τ ∈ Pn. �

CHAPTER 4

A Consistency Proof

In this chapter we conclude the proof of Theorem 4.4.6, which is the main result

of the present thesis. To establish the open implication (iv)⇒(ii) of the theorem, we

must show that the predicative Bachmann-Howard principle implies the existence

of admissible sets. Aiming at a contradiction, assume that the desired admissible

sets do not exist. Then Theorem 3.3.5 tells us that the construction of search

trees results in a dilator X 7→ SuX . By the predicative Bachmann-Howard principle

we infer that the linear order BH(Su) constructed in Section 2.2 is well-founded.

Invoking axiom beta we obtain an ordinal α with BH(Su) ∼= α. In other words,

we are able to satisfy Assumption 3.4.1, on which we have based our investigation

of infinite proof trees. In particular, Proposition 3.4.8 yields an Su-proof of a

contradiction (represented by the empty sequent). In the present chapter we adapt

Jäger’s [39] ordinal analysis of Kripke-Platek set theory in order to show that such

an Su-proof cannot exist. The resulting contradiction concludes our construction

of admissible sets. In the following we give a brief historical survey of ordinal

analysis, emphasizing concepts that will be important for our application. For a

comprehensive expert introduction we refer to Rathjen’s paper [66].

Ordinal analysis was invented by Gentzen [27] in his consistency proof for

Peano arithmetic. Of course, an unconditional consistency proof is impossible

in view of Gödel’s incompleteness theorems. Nevertheless, Gentzen managed to

reduce the consistency of Peano arithmetic to a principle which is finitistically

meaningful and has some intuitive justification: the well-foundedness of ε0 (cf. the

introduction to this thesis). Subsequent investigations have shown that much more

information can be extracted from this reduction: An important example are the

provably total functions considered by Kreisel [48], Wainer [95] and Schwichten-

berg [81]. The information from an ordinal analysis can be used to establish natural

independence results, such as the unprovability of Goodstein’s theorem in Peano

arithmetic. This result is due to Kirby and Paris [47], who use model-theoretic

methods. Rathjen [69] argues that a proof-theoretic argument via Gentzen’s or-

dinal analysis was already anticipated by Goodstein [33]. Cichon [14] has shown

179

180 4. A CONSISTENCY PROOF

that the result can be reduced to Schwichtenberg and Wainer’s characterization of

the provably total functions. As a second example we mention the independence of

Kruskal’s theorem from ATR0. This result has been proved by H. Friedman (see

the presentation by Simpson [86]), relying on methods of ordinal analysis. Let us

also refer to the work of Schmidt [75], which already contains the crucial observa-

tion, and to the precise bounds established by Rathjen and Weiermann [72]. To

summarize one might say that Gentzen presented his investigation as a consistency

proof in the spirit of Hilbert’s programme, while modern ordinal analysis tends to

emphasize questions of conservativity, computational content and independence.

On a technical level, Schütte [76] recognized that the use of infinite proofs

with the ω-rule would greatly simplify the ordinal analysis of Peano arithmetic: It

becomes a straightforward application of cut elimination, a method which removes

detours through “complex” formulas in order to restrict the space of possible proofs.

At the same time, infinite proofs are harder to formalize in a weak base theory, and

they make it more difficult to extract computational information. A particularly

elegant solution to this problem was provided by Buchholz [9, 11]: He denotes

each infinite proof by a finite term that describes its role in the ordinal analysis.

In Sections 4.1 and 4.2 we will present “Buchholz codes” and cut elimination for

our Su-proofs.

An important classification within ordinal analysis distinguishes between pre-

dicative and impredicative methods. Roughly speaking, models of predicative the-

ories are built from below, while models of impredicative theories are character-

ized by a closure property that requires a large set (e.g. a non-recursive or un-

countable ordinal). Cut elimination (with an extension to infinite formula ranks)

is the main method of predicative ordinal analysis. Indeed, Feferman [16] and

Schütte [78] have used it to analyze the notion of predicativity itself. The first

impredicative result is Takeuti’s [90] ordinal analysis of Π1
1-comprehension. Many

subsequent investigations have helped to make the ordinal analysis of impredicative

theories more transparent: Let us mention the approach via inductive definitions,

due to Buchholz, Feferman, Pohlers and Sieg [12], as well as Pohler’s [59] no-

tion of local predicativity and Buchholz’ [10] operator controlled derivations. In

Section 4.3 we will introduce operator control for our Su-proofs.

A particularly important innovation for our application is due to Jäger: He was

the first to give direct ordinal analyses for set-theoretic axiom systems (see [38,

39, 41], as well as the joint paper [42] with Pohlers). Specifically, the consistency

4.1. BUCHHOLZ CODES 181

proof in the present chapter is based on Jäger’s ordinal analysis of Kripke-Platek set

theory. To indicate how impredicativity is handled in this context, let us consider

the reflection rule

Γ,∀x∈a∃yθ(x, y)
.

Γ, ∃w∀x∈a∃y∈wθ(x, y)

This rule is sound in the first uncountable stage Lℵ1 of the constructible hierarchy:

For each x ∈ a ∈ Lℵ1 , the premise Lℵ1 � ∀x∈a∃yθ(x, y) provides an ordinal αx < ℵ1

such that we have Lℵ1 � θ(x, y) for some y ∈ Lαx . Since a ∈ Lℵ1 is countable we

have α := supx∈a αx < ℵ1. Then w := Lα is a witness for Lℵ1 � ∃w∀x∈a∃y∈wθ(x, y).

We could replace ℵ1 by the Church-Kleene ordinal ωCK
1 , but not by a recursive or-

dinal > ω. This indicates that the reflection rule is indeed impredicative. Also, the

rule is not admissible, since a proof of the premise Γ, ∀x∈a∃yθ(x, y) cannot be trans-

formed into a proof of the conclusion Γ,∃w∀x∈a∃y∈wθ(x, y). The situation changes

when we restrict to countable proof trees (in general one has an uncountable rule,

which deduces ∀xϕ(x) from a premise ϕ(a) for each a ∈ Lℵ1): If Γ,∀x∈a∃yθ(x, y)

has an infinite proof of countable height α then we can (under suitable assumptions)

construct a proof of the sequent Γ, ∀x∈a∃y∈Lαθ(x, y). One might thus describe re-

flection as a “countably admissible rule”. In order to obtain an ordinal analysis of

Kripke-Platek set theory one has to perform three tasks simultaneously: eliminate

cuts, collapse proofs to countable height, and remove occurrences of the reflection

rule. In Section 4.4 we will work out the details for our Su-proofs.

To conclude our survey of ordinal analysis, let us mention the strongest res-

ults that are known today: Rathjen [63, 64, 65] has analyzed Π1
2-comprehension

via the extension of Kripke-Platek set theory by Σ1-separation. Theories of sim-

ilar strength have been studied by Arai [5]. These investigations require collapsing

structures which go far beyond the methods used in the present thesis. For example,

Rathjen’s [63] ordinal analysis of Kripke-Platek set theory with Π3-reflection col-

lapses a single infinite proof into stationary many proofs below a weakly compact

cardinal. More information can be found in [66, Section 3].

4.1. Buchholz Codes

To carry out the ordinal analysis sketched in the introduction of this chapter,

we need to transform Su-proofs in various ways. The most intuitive definition of

these transformations uses recursion over the ordinal height of the infinite proofs.

However, this approach is not available in our base theories PRSω and ATRset
0 ,

182 4. A CONSISTENCY PROOF

because the Su-proofs of a given height do not form a set. A very elegant alternative

was developed by Buchholz [9, 11]: The collection of infinite proofs is replaced by

a set of finite terms, which represent proofs according to their role in the ordinal

analysis. For example, if the term P denotes an infinite proof [P], then EP denotes

the proof that results from [P] by an application of cut elimination. If one works in

a finitistic base theory, then the actual proofs [P] do not play any official role and

all arguments are carried out on the level of finite terms. On the other hand, if the

base theory allows for the existence of infinite objects, then the interpretation of

codes as actual proofs can be made official (cf. [9, Definition 5.4]). In our setting,

P 7→ [P] will be a primitive recursive set function.

From a formal viewpoint it would be best to give the entire system of codes for

infinite proofs at once. However, this would condense the whole ordinal analysis

into a single technical definition, which would be difficult to present in an intuitive

and readable way. For this reason we start with a system of basic Su-codes. As

we present different parts of the ordinal analysis, we will introduce new codes step

by step, so that the full system of Su-codes is defined by the end of the chapter.

It is straightforward to transform this exposition into a more formal proof, as

explained in Remark 4.1.6 below. The following term system recovers the Su-proof

PS = (PS , lS , rS , oS) from Proposition 3.4.8 (similar to [9, Definition 6.1]):

Definition 4.1.1. A basic Su-code is an expression of the form PSσ, where σ

is a finite sequence in (LuBH(Su))
<ω. We define functions

l〈〉 : “basic Su-codes”→ “LuBH(Su)-sequents”,

r〈〉 : “basic Su-codes”→ “Su-rules”,

o〈〉 : “basic Su-codes”→ ϑ(SuBH(Su)),

n : “basic Su-codes”× LuBH(Su) → “basic Su-codes”

by stipulating

l〈〉(PSσ) =

lS(σ) if σ ∈ PS ,

〈0 = 0〉 otherwise,

r〈〉(PSσ) =

rS(σ) if σ ∈ PS ,

(True, 0 = 0) otherwise,

4.1. BUCHHOLZ CODES 183

o〈〉(PSσ) =

oS(σ) if σ ∈ PS ,

0 otherwise,

n(PSσ, a) = PS σ
_a.

The idea is that PSσ denotes the subtree of PS above the node σ. The functions

l〈〉, r〈〉 and o〈〉 read off the labels at the root of this subtree, i.e. at the node σ itself.

The function n navigates to the immediate subproofs. Iterating this function, we

can recover the entire proof tree. Note that the following definition is formulated

for general Su-codes, rather than just for basic codes. Indeed, it will extend to all

Su-codes that we introduce over the course of this chapter.

Definition 4.1.2. We extend n to a function

n̄ : “Su-codes”× (LuBH(Su))
<ω → “Su-codes”

by setting

n̄(P, 〈〉) = P, n̄(P, σ_a) = n(n̄(P, σ), a).

For each Su-code P we define a tree [P] ⊆ (LuBH(Su))
<ω: Assuming that σ ∈ [P]

holds by recursion we stipulate

σ_a ∈ [P] ⇔ a ∈ ι(r〈〉(n̄(P, σ))),

where the arity of the different Su-rules is given by

ι ((True, ϕ)) = ∅, ι
((∧

, ϕ
))

= ι(ϕ), ι
((∨

, ϕ, a
))

= {0},

ι ((Cut, ϕ)) = {0, 1}, ι ((Ref, ∃w∀x∈a∃y∈wθ)) = {0}, ι ((Rep, a)) = {a}.

We also consider the functions

lP : [P]→ “LuBH(Su)-sequents”, lP (σ) = l〈〉(n̄(P, σ)),

rP : [P]→ “Su-rules”, rP (σ) = r〈〉(n̄(P, σ)),

oP : [P]→ ϑ(SuBH(Su)), oP (σ) = o〈〉(n̄(P, σ)).

The tuple [P] = ([P], lP , rP , oP) is called the interpretation of P .

The function n̄ and the characteristic function of the tree [P] are primitive

recursive by Corollary 1.2.11. From Corollary 1.1.10 we learn that [P] is a set,

which is primitive recursive in P . Proposition 1.2.2 ensures that lP , rP and oP

exist as set-sized functions and that the map P 7→ ([P], lP , rP , oP) is primitive

recursive. It is straightforward to see that [PS〈〉] coincides with the Su-proof PS .

184 4. A CONSISTENCY PROOF

We will have no official use for this observation, because it is superseded by the

following more general approach, which shows that the interpretation [P] of any

Su-code P is a locally correct Su-proof (in the sense of Definition 3.4.3).

Definition 4.1.3. We say that an Su-code P is locally correct if it satisfies

the relevant condition from the following list (we will later speak of condition (L)

in order to refer to this requirement):

If r〈〉(P) is then . . .

(True, ϕ) we have ϕ ∈ l〈〉(P);

(
∧
, ϕ) we have ϕ ∈ l〈〉(P); for all elements a ∈ ι(ϕ) we have

l〈〉(n(P, a)) ⊆ l〈〉(P), ϕa and o〈〉(n(P, a)) < o〈〉(P);

(
∨
, ϕ, a) we have ϕ ∈ l〈〉(P) and l〈〉(n(P, 0)) ⊆ l〈〉(P), ϕa, as well

as o〈〉(n(P, 0)) < o〈〉(P) and suppL(a) <fin o〈〉(P);

(Cut, ϕ) l〈〉(n(P, 0)) ⊆ l〈〉(P),¬ϕ and l〈〉(n(P, 1)) ⊆ l〈〉(P), ϕ,

as well as o〈〉(n(P, i)) < o〈〉(P) for i = 0, 1;

(Ref,∃w∀x∈a∃y∈wθ(x, y)) we have ∃w∀x∈a∃y∈wθ(x, y) ∈ l〈〉(P); furthermore we

have l〈〉(n(P, 0)) ⊆ l〈〉(P),∀x∈a∃yθ(x, y), as well as

o〈〉(n(P, 0)) < o〈〉(P) and Ω ≤ o〈〉(P);

(Rep, a) we have l〈〉(n(P, a)) ⊆ l〈〉(P) and o〈〉(n(P, a)) < o〈〉(P).

If the Su-code P is locally correct then its interpretation [P] is locally correct

at the root. To infer that [P] is locally correct at every node, we must consider the

system of Su-codes as a whole:

Lemma 4.1.4. Any basic Su-code is locally correct in the sense of condition (L).

Proof. Let us first consider an Su-code PSσ with σ /∈ PS . Then we have

r〈〉(PSσ) = (True, 0 = 0) and l〈〉(PSσ) = 〈0 = 0〉, from which local correctness

is obvious. Now consider an Su-code PSσ with σ ∈ PS . In this case the local

correctness of PSσ follows from the local correctness of the Su-proof PS at the

node σ. As an example, let us look at the case r〈〉(PSσ) = rS(σ) = (Rep, a):

4.1. BUCHHOLZ CODES 185

Definition 3.4.3 ensures σ_a ∈ PS and lS(σ_a) ⊆ lS(σ), from which we deduce

l〈〉(n(PSσ, a)) = l〈〉(PS σ
_a) = lS(σ_a) ⊆ lS(σ) = l〈〉(PSσ).

Similarly we obtain o〈〉(n(PSσ, a)) < o〈〉(PSσ), as required. �

As promised, this is enough to secure the following result, which will extend to

all Su-codes introduced in this chapter:

Corollary 4.1.5. The interpretation [P] of any Su-code P is locally correct

at every node. Thus [P] is an Su-proof in the sense of Definition 3.4.3.

Proof. The local correctness of [P] at the node σ ∈ [P] follows from the

local correctness of the Su-code n̄(P, σ). As an example, let us consider the case

of a rule rP (σ) = r〈〉(n̄(P, σ)) = (
∧
, ϕ). By definition we have σ_a ∈ [P] for

any element a ∈ ι(ϕ) = ι(r〈〉(n̄(P, σ))). The local correctness of the code n̄(P, σ)

yields ϕ ∈ l〈〉(n̄(P, σ)) = lP (σ). For a ∈ ι(ϕ) we also get

lP (σ_a) = l〈〉(n̄(P, σ_a)) = l〈〉(n(n̄(P, σ), a)) ⊆ l〈〉(n̄(P, σ)), ϕa = lP (σ), ϕa.

Similarly one shows oP (σ_a) < oP (σ), as required by Definition 3.4.3. �

In particular we learn that [PS〈〉] is an Su-proof with end-sequent

lPS〈〉(〈〉) = l〈〉(n̄(PS〈〉, 〈〉)) = l〈〉(PS〈〉) = lS(〈〉) = 〈〉.

In this sense we have recovered the Su-proof (PS , lS , rS , oS) from Proposition 3.4.8

in terms of basic Su-codes. As indicated above, the system of Su-codes will be

extended dynamically. Let us explain how this works from a formal standpoint:

Remark 4.1.6. The interpretation [P] of an Su-code P depends on the func-

tions l〈〉, r〈〉, o〈〉 and n, but not on any specific properties of the basic Su-codes.

Similarly, Corollary 4.1.5 does only depend on the fact that all Su-codes satisfy con-

dition (L). This means that any system of codes admits an interpretation P 7→ [P]

by Su-proofs, provided that the functions l〈〉, r〈〉, o〈〉 and n are defined and that

condition (L) holds. As we present the different steps of our ordinal analysis we

will introduce function symbols

Iϕ,a, Rϕ, E , BΣ
ϕ,s, BΠ

ϕ,s, Ct,

where ϕ is a formula and we have a ∈ LuBH(Su), s ∈ BH(Su) and t ∈ ϑ(SuBH(Su)). At

the end of the chapter we will have completed the definition of a set of Su-codes,

given by the following clauses:

186 4. A CONSISTENCY PROOF

• Any basic Su-code PSσ is an Su-code.

• If F is a k-ary function symbol from the list above and P1, . . . , Pk are

Su-codes, then the term FP1 . . . Pk is an Su-code as well.

Note that this is an inductive definition with closure ordinal ω. Thus the set of Su-

codes exists in our base theory PRSω, similarly to the set of M -formulas construc-

ted in Definition 1.3.1. Primitive recursive functions can be defined by recursion

over the build-up of Su-codes as terms, parallel to the proof of Lemma 1.3.2. In-

duction over Su-codes can be used to establish primitive recursive properties. The

basic Su-codes considered above are the constant symbols of the full term system.

Thus they constitute the base case of any recursion resp. induction over Su-codes.

Once the definition of Su-codes is completed, the functions l〈〉, r〈〉, o〈〉 and n from

Definition 4.1.1 must be extended to all codes. In order to do so, we will need

auxiliary functions

d : “Su-codes”→ ω,

h0 : “Su-codes”→ ϑ(SuBH(Su)),

h1 : “Su-codes”→ [ϑ(SuBH(Su)) ∩ Ω]<ω,

o〈a〉 : “Su-codes”→ ϑ(SuBH(Su)) (for a ∈ LuBH(Su)).

Officially, the values l〈〉(P), r〈〉(P), o〈〉(P), d(P), h0(P), h1(P) and the set-sized func-

tions a 7→ n(P, a) and a 7→ o〈a〉(P) are defined by simultaneous recursion over the

Su-code P . Once the definition of these functions is complete, condition (L) must

be established for all Su-codes. In order to do so, we will need auxiliary correctness

conditions (C1), (C2), (H1), (H2), (H3), (N1) and (N2), which govern the behaviour

of the functions d, h0, h1 and o〈a〉. Officially, all these conditions are established

by simultaneous induction over Su-codes. However, this will not be the order of

presentation: To give an intuitive and readable account of the ordinal analysis, we

will state the various recursive clauses and induction steps as they become relevant.

Nevertheless, it is straightforward to transform our exposition into a formal proof:

First, define the set of Su-codes as the set of terms that is generated by the basic

Su-codes as constants and all the function symbols listed above. Next, collect all

recursive clauses, which are distributed over the following sections. Together they

ensure that the functions l〈〉, r〈〉, o〈〉 and n and the auxiliary functions are defined

on all Su-codes. Finally, collect the proofs of all induction steps. They show that

all Su-codes satisfy condition (L) and the other correctness conditions listed above.

Once this is accomplished we see that Definition 4.1.2 and Corollary 4.1.5 extend

4.1. BUCHHOLZ CODES 187

to the full system of Su-codes. Thus any Su-code P yields an Su-proof [P] with

corresponding properties.

As a first extension of the system of basic Su-codes we introduce the function

symbols Iϕ,a. This implements a proof transformation known as inversion: The

idea is that the proof of a universal formula ∀xψ(x) '
∧
a∈Lu

BH(Su)
ψ(a) can be

transformed into a proof of any instance ψ(a).

Lemma 4.1.7. For any conjunctive LuBH(Su)-formula ϕ and any a ∈ ι(ϕ) we can

extend the system of Su-codes by a unary function symbol Iϕ,a, such that we have

l〈〉(Iϕ,aP) = (l〈〉(P)\{ϕ}) ∪ {ϕa},

o〈〉(Iϕ,aP) = o〈〉(P)

for any Su-code P .

The meaning of the lemma may not be completely obvious, but it should become

clear in view of Remark 4.1.6: The given equations are the recursive clauses for the

functions l〈〉 and o〈〉 in the case of a code of the form Iϕ,aP . To prove that “we can

extend the system of Su-codes” in the specified way, we must state recursive clauses

for the functions r〈〉 and n, and we must verify the corresponding induction step for

condition (L). The auxiliary functions d, h0, h1 and o〈a〉 and the corresponding

correctness conditions will be added over the course of the next sections.

Proof. In order to explain the idea behind the required proof transformation,

we begin with an informal description in terms of transfinite recursion: The crucial

case is that of a proof P with last rule (
∧
, ϕ). This means that the end-sequent of

P has the form Γ, ϕ, and that the a-th immediate subproof n(P, a) of P deduces the

sequent Γ, ϕ, ϕa. Since this subproof has smaller ordinal height than P , we may

recursively transform it into a proof Iϕ,an(P, a) with end-sequent Γ, ϕa. Using

the repetition rule we obtain a proof Iϕ,aP with the same end-sequent and the

desired ordinal height. One should also consider the case of a proof P with last

rule (True, ϕ) and end-sequent Γ, ϕ. Definition 3.4.2 ensures that ϕ is a bounded

formula with Luα � JϕK. It is straightforward to observe that ϕa is bounded as well,

and Lemma 3.1.15 yields Luα � JϕaK. In this situation, the end-sequent Γ, ϕa of the

desired proof Iϕ,aP can be deduced by the rule (True, ϕa), without a recursive call.

Now we reproduce the same idea in terms of Su-codes: The recursive clauses for

188 4. A CONSISTENCY PROOF

l〈〉 and o〈〉 can be found in the statement of the lemma. To extend r〈〉 and n we set

r〈〉(Iϕ,aP) =


(Rep, a) if r〈〉(P) = (

∧
, ϕ),

(True, ϕa) if r〈〉(P) = (True, ϕ),

r〈〉(P) otherwise.

n(Iϕ,aP, b) = Iϕ,an(P, b).

It remains to verify condition (L) for Iϕ,aP , assuming the same condition for P .

This is done by case distinction over the last rule of P . Let us write out the details

for the crucial case r〈〉(P) = (
∧
, ϕ): In view of a ∈ ι(ϕ) condition (L) for P yields

l〈〉(n(P, a)) ⊆ l〈〉(P) ∪ {ϕa}, which implies

l〈〉(n(Iϕ,aP, a)) = l〈〉(Iϕ,an(P, a)) = l〈〉(n(P, a))\{ϕ} ∪ {ϕa} ⊆

⊆ (l〈〉(P) ∪ {ϕa})\{ϕ} ∪ {ϕa} ⊆ l〈〉(P)\{ϕ} ∪ {ϕa} = l〈〉(Iϕ,aP).

Similarly, we get

o〈〉(n(Iϕ,aP, a)) = o〈〉(Iϕ,an(P, a)) = o〈〉(n(P, a)) < o〈〉(P) = o〈〉(Iϕ,aP).

In view of r〈〉(Iϕ,aP) = (Rep, a) this means that Iϕ,aP satisfies condition (L). The

other cases are straightforward. Note that ϕ cannot be the main formula of a rule

(Ref, ·) or (
∨
, ·), because these formulas are disjunctive. �

Note that the recursive clauses which define l〈〉(Iϕ,aP), o〈〉(Iϕ,aP), r〈〉(Iϕ,aP)

and n(Iϕ,aP, b) do not rely on any assumption about the specific form of the term P .

For this reason, the same recursive clauses will apply to a term P = EP ′, even

though the function symbol E has not yet been introduced. Similarly, the proof

above will show that condition (L) for Iϕ,aEP ′ follows from condition (L) for EP ′,
as soon as this term has been added. A more detailed explanation of this point can

be found in Remark 4.1.6. To see an application of inversion, observe that [PS〈1〉]
is an Su-proof with end-sequent

lPS〈1〉(〈〉) = l〈〉(n̄(PS〈1〉, 〈〉)) = l〈〉(PS〈1〉) = lS(〈1〉) = {Ax0} = {∀x∃y y = x ∪ {x}}.

In view of ∀x∃y y = x ∪ {x} '
∧
a∈Lu

BH(Su)
∃y y = a ∪ {a} the inversion operator

allows us to construct an Su-proof [I∀x∃y y=x∪{x},aPS〈1〉] with end-sequent

lI∀x∃y y=x∪{x},aPS〈1〉(〈〉) = l〈〉(I∀x∃y y=x∪{x},aPS〈1〉) =

= l〈〉(PS〈1〉)\{∀x∃y y = x ∪ {x}} ∪ {∃y y = a ∪ {a}} = {∃y y = a ∪ {a}}.

4.2. CUT ELIMINATION 189

Inversion is a simple proof transformation, which could have been implemented

without the help of Buchholz codes. On the other hand, codes seem to be the

most elegant way to formalize the more complex proof transformations that we

will discuss in the following sections.

4.2. Cut Elimination

In the present section we show how certain occurrences of the cut rule (Cut, ·)
in our Su-proofs can be eliminated. The required transformations of infinite proofs

will be implemented with the help of Buchholz codes, as described in the previous

section. The central ingredient for the ordinal analysis of impredicative theories is

collapsing, rather than cut elimination, but the latter is still needed as an auxiliary

construction. Specifically, our goal is to remove all cuts (Cut, ϕ) where ϕ is not

bounded or of the form ∀xθ, for some bounded formula θ. To control the cuts that

occur in a proof we introduce the following notion of formula rank:

Definition 4.2.1. The rank rk(ϕ) of a closed LuBH(Su)-formula ϕ is defined by

the following recursion over the length of ϕ:

• If ϕ is a bounded formula then we set rk(ϕ) = 0.

• If at least one of the formulas ϕ0 and ϕ1 is unbounded then we set

rk(ϕ0 ∨ ϕ1) = rk(ϕ0 ∧ ϕ1) = max{rk(ϕ0), rk(ϕ1)}+ 1.

• If ϕ ≡ ϕ(x) is unbounded then we set

rk(∃x∈aϕ(x)) = rk(∀x∈aϕ(x)) = rk(ϕ(0)) + 2.

• We set rk(∃xϕ(x)) = rk(∀xϕ(x)) = rk(ϕ(0)) + 1.

Observe that a formula ϕ is bounded if and only if it has rank rk(ϕ) = 0.

If we have rk(ϕ) = 1 then ϕ must be of the form ∀xθ or ∃xθ, where θ is bounded.

Crucially, the “instances” of a formula have smaller rank than the formula itself:

Lemma 4.2.2. Consider a closed LuBH(Su)-formula ϕ with rk(ϕ) > 0. Then we

have rk(ϕa) < rk(ϕ) for all a ∈ ι(ϕ).

Proof. As a preparation one verifies rk(ψ(a)) = rk(ψ(0)), by a straightforward

induction over the length of ψ ≡ ψ(x). Based on this fact one can check the claim

for all disjunctive formulas from Definition 3.1.13. The most interesting case is

ϕ ≡ ∃x∈{y∈Lus | θ(y,~c)} ψ(x) '
∨

suppL(a)<fins θ(a,~c) ∧ ψ(a).

190 4. A CONSISTENCY PROOF

Since θ is a bounded formula (cf. Definition 3.1.2) we indeed get

rk(θ(a,~c) ∧ ψ(a)) = rk(ψ(a)) + 1 = rk(ψ(0)) + 1 < rk(ψ(0)) + 2 = rk(ϕ).

To infer the claim for conjunctive formulas it suffices to observe rk(¬ψ) = rk(ψ). �

In Remark 3.4.7 we have explained that certain technical difficulties can be

avoided because of Assumption 3.4.1. This also applies to the notion of rank: To

obtain a finitistic ordinal analysis of Kripke-Platek set theory, one would have to

assign transfinite formula ranks, similarly to the proof of Proposition 3.1.17. In

particular, bounded formulas would receive non-zero ranks, and the previous lemma

would apply to these formulas as well. In the presence of Assumption 3.4.1 and

the truth rules (True, ·) we can ignore the internal structure of bounded formulas,

which allows us to work with finite ranks. Based on the notion of formula rank, we

assign cut ranks to the Su-codes that we have constructed in the previous section:

Definition 4.2.3. The function

d : “Su-codes”→ ω

is defined by the recursive clauses

d(PSσ) = C + 6 for any basic Su-code PSσ,

d(Iϕ,aP) = d(P),

where C is the constant from Convention 1.3.14.

Clearly this yields d(P) = C + 6 for any of the Su-codes considered so far.

Nevertheless it is important to state the recursive clause for d(Iϕ,aP) explicitly:

As explained in the previous section, the system of Su-codes will be extended

dynamically. Once we have introduced the function symbol E , the recursive clause

above will allow us to compute d(Iϕ,aEP) = d(EP), which may well be different

from C + 6. Whenever we add a new function symbol, we will give a recursive

clause which ensures that d is defined on the extended system of Su-codes. We will

also make sure that the next result is preserved, by adding a proof of the relevant

induction step (see Remark 4.1.6 for more details):

Lemma 4.2.4. The assignment of cut ranks is locally correct, in the sense that

the following conditions hold for every Su-code P :

(C1) If r〈〉(P) = (Cut, ϕ) is a cut rule then we have rk(ϕ) < d(P).

(C2) We have d(n(P, a)) ≤ d(P) for any a ∈ ι(r〈〉(P)).

4.2. CUT ELIMINATION 191

Proof. The claim is established by induction over Su-codes. First, we consider

a basic Su-code PSσ. Condition (C2) is satisfied because n(PSσ, a) = PS σ
_a is a

basic Su-code as well, so that we have d(n(PSσ, a)) = C + 6 = d(PSσ). To verify

condition (C1) we distinguish the following three cases: For σ /∈ PS we observe that

r〈〉(PSσ) = (True, 0 = 0) is not a cut rule, which means that condition (C1) is void.

Next, assume that σ lies in the Su-proof PS but not in the search tree SuBH(Su). By

the proof of Proposition 3.4.8 we have σ = σ0
_1_τ , where σ0 ∈ SuBH(Su) has even

length len(σ0) = 2n and τ lies in the Su-proof Pn = (Pn, ln, rn, on) constructed in

Lemma 3.4.5 resp. Lemma 3.4.6. Together with Definition 4.1.1 we can compute

r〈〉(PSσ) = rS(σ) = rn(σ).

It is straightforward to observe that the Su-proofs Pn do not contain any cuts.

In other words, rn(σ) is not a cut rule and condition (C1) is void once again.

Finally, assume that σ does lie in the search tree SuBH(Su) ⊆ PS . If σ has odd

length, then r〈〉(PSσ) = rS(σ) is of the form (
∨
, ·), (

∧
, ·) or (Rep, ·), by the proof

of Proposition 3.4.8. If len(σ) = 2n is even, then we see

r〈〉(PSσ) = rS(σ) = (Cut,Axn).

For n = 0 we have Ax0 ≡ ∀x∃y y = x∪{x}. Since y = x∪{x} abbreviates a bounded

formula this yields rk(Ax0) = 2 < C + 6 = d(PSσ), as required by condition (C1).

For n > 0 the formula Axn is one of the ∆0-collection axioms

∀z1,...,zk∀v(∀x∈v∃yθ(x, y, z1, . . . , zk)→ ∃w∀x∈v∃y∈wθ(x, y, z1, . . . , zk)).

As agreed in Section 3.2, we only list collection axioms with k ≤ C parameters (this

is harmless by Proposition 1.3.15). Thus we have rk(Axn) = k+5 < C+6 = d(PSσ),

which means that condition (C1) is satisfied. Now that we have covered all basic

Su-codes, let us consider a code of the form Iψ,bP . Concerning condition (C1), note

that r〈〉(Iψ,bP) = (Cut, ϕ) implies r〈〉(P) = (Cut, ϕ), by the proof of Lemma 4.1.7.

Using the induction hypothesis for P we obtain

rk(ϕ) < d(p) = d(Iψ,bP).

Also observe ι(r〈〉(Iψ,bP)) ⊆ ι(r〈〉(P)): The function symbol Iψ,b was only intro-

duced for b ∈ ι(ψ). In the crucial case of a rule r〈〉(P) = (
∧
, ψ) this yields

ι(r〈〉(Iψ,bP)) = ι((Rep, b)) = {b} ⊆ ι(ψ) = ι(r〈〉(P)).

192 4. A CONSISTENCY PROOF

Thus condition (C2) for P applies to any a ∈ ι(r〈〉(Iψ,bP)). We can deduce

d(n(Iψ,bP, a)) = d(Iψ,bn(P, a)) = d(n(P, a)) ≤ d(P) = d(Iψ,bP),

as required by condition (C2) for Iψ,bP . �

In the previous section we have seen that any Su-code P can be interpreted as

an Su-proof [P] = ([P], lP , rP , oP). It is instructive to observe that d(P) bounds

the complexity of all cut formulas in this proof (even though this fact will not play

an official role): Iterating condition (C2) we get d(n̄(P, σ)) ≤ d(P) for any σ ∈ [P].

So if rP (σ) = r〈〉(n̄(P, σ)) = (Cut, ϕ) is a cut, then condition (C1) for n̄(P, σ) yields

rk(ϕ) < d(n̄(P, σ)) ≤ d(P).

The aim of this section is to transform each Su-code P into an Su-code P ′ such that

any cut formula in the Su-proof [P ′] is bounded or of the form ∃xθ resp. ∀xθ, for

some bounded formula θ. By the above observations it suffices to ensure d(P ′) ≤ 2.

It is well-known that cut elimination increases the height of proofs. In order to

describe the increased ordinal labels, we define the following operations on our

notation system ϑ(SuBH(Su)):

Lemma 4.2.5. We can construct maps

+̂ : ϑ(SuBH(Su))× ϑ(SuBH(Su))→ ϑ(SuBH(Su)),

ω̂(·) : ϑ(SuBH(Su))→ ϑ(SuBH(Su))

with the following properties:

(a) If s < t then r +̂ s < r +̂ t.

(b) We have s ≤ s +̂ t and t ≤ s +̂ t.

(c) We have (r +̂ s) +̂ t = r +̂ (s +̂ t).

(d) If s < t then ω̂s < ω̂t.

(e) We have s ≤ ω̂s.
(f) If s < ω̂r and t < ω̂r then s +̂ t < ω̂r.

Note that we write +̂ and ω̂, because the terms in ϑ(SuBH(Su)) already contain

the symbols + and ω. For example, we want to distinguish the expression ω̂0 +̂ ω̂0

from the term ω0 + ω0 (even though the former will denote the latter).

4.2. CUT ELIMINATION 193

Proof. Given terms sn ≤ · · · ≤ s1 in ϑ(SuBH(Su)) we define

ω〈s1, . . . , sn〉 =


0 if n = 0,

s1 if n = 1 and s1 is of the form Ω,Eσ or ϑs,

ωs1 + · · ·+ ωsn otherwise.

Lemma 2.2.7 yields ω〈s1, . . . , sn〉 ∈ ϑ(SuBH(Su)). Conversely, any s ∈ ϑ(SuBH(Su))

can uniquely be written as s = ω〈s1, . . . , sn〉. We can thus define addition by

ω〈s1, . . . , sn〉 +̂ ω〈t1, . . . , tm〉 = ω〈s1, . . . , si, t1, . . . , tm〉,

where i ≤ n is maximal with t1 ≤ si (set i = 0 if s1 < t1, and i = n if m = 0).

Exponentiation can be given as

ω̂s = ω〈s〉.

In view of Lemma 2.2.7 it is straightforward to observe

ω〈s1, . . . , sn〉 < ω〈t1, . . . , tm〉 ⇔


either n < m and si = ti for i ≤ n,

or there is a j ≤ min{n,m} with sj < tj

and si = ti for i < j.

Building on this characterization we verify the claims of the lemma:

(a) Write r = ω〈r1, . . . , rk〉, s = ω〈s1, . . . , sn〉 and t = ω〈t1, . . . , tm〉, as well as

r +̂ s = ω〈r1, . . . , ri, s1, . . . , sn〉,

r +̂ t = ω〈r1, . . . , rj , t1, . . . , tm〉.

For r = 0 we have r +̂s = s < t = r +̂ t, and t = 0 is impossible in view of s < t. To

cover the case s = 0 we infer r < r +̂ t: For r1 < t1 we get r < t = r +̂ t. Otherwise

j ≤ k is maximal with t1 ≤ rj . For j = k we observe that 〈r1, . . . , rj , t1, . . . , tm〉
is a proper end extension of 〈r1, . . . , rk〉. For j < k we note rj+1 < t1, due to the

maximality of j. Now assume that r, s and t are all different from zero: From s < t

we infer s1 ≤ t1, which implies i ≥ j. If we have i = j, then r +̂ s < r +̂ t is

straightforward. If we have j < i ≤ k, then the choice of j implies rj+1 < t1, which

again yields r +̂ s < r +̂ t.

(b) In view of 0 ≤ t we can infer s = s +̂ 0 ≤ s +̂ t by part (a). The inequality

t = ω〈t1, . . . , tm〉 ≤ ω〈s1, . . . , si, t1, . . . , tm〉 = s +̂ t

follows from tm ≤ · · · ≤ t1 ≤ si ≤ · · · ≤ s1, which is due to the choice of i.

(c) The claim is immediate if we have s = 0, t = 0 or r = 0. Otherwise we write

194 4. A CONSISTENCY PROOF

r = ω〈r1, . . . , rk〉, s = ω〈s1, . . . , sn〉 and t = ω〈t1, . . . , tm〉 and distinguish two cases:

If we have s1 < t1, then the reader can easily verify

(r +̂ s) +̂ t = ω〈r1, . . . , ri, t1, . . . , tm〉 = r +̂ (s +̂ t),

where i ≤ k is maximal with t1 ≤ ri (or i = 0 if r1 < t1). For t1 ≤ s1 we get

(r +̂ s) +̂ t = ω〈r1, . . . , ri, s1, . . . , sj , t1, . . . , tm〉 = r +̂ (s +̂ t),

where i ≤ k is maximal with s1 ≤ ri and j ≤ n is maximal with t1 ≤ sj .
(d) By the above we have ω̂s = ω〈s〉 < ω〈t〉 = ω̂t.

(e) If s is of the form Ω,Eσ or ϑs′ then we have ω̂s = s. Also note 0 < ω0 = ω̂0.

To cover the remaining case we prove the statement

“if s is of the form ωs0 + · · ·+ ωsn then we have s0 < s”,

by induction over s. If s0 is of the form 0,Ω,E or ϑs′, then the claim is immediate by

Lemma 2.2.7. If we have s0 = ωs0,0 + · · ·+ωs0,m , then s0 < s follows from s0,0 < s0,

as provided by the induction hypothesis. Once we know s0 < s we can infer

s = ωs0 + · · ·+ ωsn < ωs = ω̂s,

as required for claim (e).

(f) For s = 0 or t = 0 the claim is immediate. Otherwise we write s = ω〈s1, . . . , sn〉
and t = ω〈t1, . . . , tm〉. The assumptions s < ω̂r = ω〈r〉 and t < ω̂r = ω〈r〉 imply

s1 < r resp. t1 < r. We can infer s +̂ t = ω〈s1, . . . , si, t1, . . . , tm〉 < ω〈r〉 = ω̂r, as

desired. �

Before the statement of Lemma 3.4.5 above, we have give an ad hoc definition

of a map s 7→ s + 1. It is straightforward to check that this is consistent with

the present definition of addition, in the sense that we have s + 1 = s +̂ ω0. As

a preparation for cut elimination, we present a proof transformation known as

reduction: It allows to combine proofs of Γ,¬ϕ and Γ, ϕ into a proof of Γ, without

increasing the cut rank.

Lemma 4.2.6. For any conjunctive LuBH(Su)-formula ϕ with rk(ϕ) ≥ 2 we can

extend the system of Su-codes by a binary function symbol Rϕ, such that we have

l〈〉(RϕP0P1) = (l〈〉(P0)\{¬ϕ}) ∪ (l〈〉(P1)\{ϕ}),

o〈〉(RϕP0P1) = o〈〉(P1) +̂ o〈〉(P0),

d(RϕP0P1) = max{d(P0), d(P1), rk(ϕ)}

for all Su-codes P0 and P1.

4.2. CUT ELIMINATION 195

To understand what exactly the lemma claims, the reader may wish to consult

Remark 4.1.6, as well as the explanation after the statement of Lemma 4.1.7.

Proof. We begin with an informal description of the proof transformation in

terms of transfinite recursion: Assume that P0 and P1 have end-sequent Γ,¬ϕ and

Γ, ϕ, respectively. Our goal is to construct a proof of Γ. In the crucial case, the

formula ¬ϕ has been introduced by the last rule of P0. The assumption rk(ϕ) ≥ 2

ensures that this cannot be a reflection rule. So P0 ends with a rule (
∨
,¬ϕ, b),

and the immediate subproof n(P0, 0) has end-sequent Γ,¬ϕ,¬ϕb. Since n(P0, 0)

has smaller height than P0 we can recursively construct a proof Rϕn(P0, 0)P1 of

the sequent Γ,¬ϕb. On the other hand we can apply inversion to the proof P1, in

order to get a proof Iϕ,bP1 of the sequent Γ, ϕb. Combining these proofs by the

rule (Cut, ϕb) we obtain the desired proof of Γ. Officially, this idea is implemented

on the level of Su-codes: The recursive clauses for l〈〉, o〈〉 and d can be found in the

statement of the lemma. To extend the functions r〈〉 and n we set

r〈〉(RϕP0P1) =

(Cut, ϕb) if r〈〉(P0) = (
∨
,¬ϕ, b),

r〈〉(P0) otherwise,

n(RϕP0P1, a) =

Iϕ,bP1 if r〈〉(P0) = (
∨
,¬ϕ, b) and a = 1,

Rϕn(P0, a)P1 otherwise.

To justify this extension we must verify condition (L) from Definition 4.1.3, as well

as conditions (C1) and (C2). This is done by case distinction on the last rule of P0.

Let us write out the details for r〈〉(P0) = (
∨
,¬ϕ, b): Inductively we may assume

condition (L) for P0, which provides l〈〉(n(P0, 0)) ⊆ l〈〉(P0)∪{¬ϕb} (note that (¬ϕ)b

and ¬(ϕb) are the same formula, by Definition 3.1.13). This allows us to deduce

l〈〉(n(RϕP0P1, 0)) = l〈〉(Rϕn(P0, 0)P1) = l〈〉(n(P0, 0))\{¬ϕ} ∪ l〈〉(P1)\{ϕ} ⊆

⊆ (l〈〉(P0) ∪ {¬ϕb})\{¬ϕ} ∪ l〈〉(P1)\{ϕ} ⊆ l〈〉(RϕP0P1) ∪ {¬ϕb}

and

l〈〉(n(RϕP0P1, 1)) = l〈〉(Iϕ,bP1) = l〈〉(P1)\{ϕ} ∪ {ϕb} ⊆ l〈〉(RϕP0P1) ∪ {ϕb},

as condition (L) demands in the case of the cut rule r〈〉(RϕP0P1) = (Cut, ϕb).

Since condition (L) for P0 provides o〈〉(n(P0, 0)) < o〈〉(P0) we can also infer

o〈〉(n(RϕP0P1, 0)) = o〈〉(P1) +̂ o〈〉(n(P0, 0)) < o〈〉(P1) +̂ o〈〉(P0) = o〈〉(RϕP0P1),

196 4. A CONSISTENCY PROOF

as well as

o〈〉(n(RϕP0P1, 1)) = o〈〉(Iϕ,bP1) = o〈〉(P1) ≤ o〈〉(P1) +̂ o〈〉(n(P0, 0)) < o〈〉(RϕP0P1).

Condition (C1) for RϕP0P1 is satisfied, because Lemma 4.2.2 implies

rk(ϕb) < rk(ϕ) ≤ d(RϕP0P1).

Using condition (C2) for P0 we get

d(n(RϕP0P1, 0)) = d(Rϕn(P0, 0)P1) = max{d(n(P0, 0)), d(P1), rk(ϕ)} ≤

≤ max{d(P0), d(P1), rk(ϕ)} = d(RϕP0P1).

We can also observe

d(n(RϕP0P1, 1)) = d(Iϕ,bP1) = d(P1) ≤ d(RϕP0P1),

as required by condition (C2) for RϕP0P1. The other cases are established by sim-

ilar computations. Concerning the side condition of the reflection rule, observe that

Ω ≤ o〈〉(P0) implies Ω ≤ o〈〉(P1) +̂ o〈〉(P0) = o〈〉(RϕP0P1), by part (b) of the previ-

ous lemma. Similarly, suppL(b) <fin o〈〉(P0) implies suppL(b) <fin o〈〉(RϕP0P1), as

needed to preserve the side condition of a rule (
∨
, ψ, b) with ψ 6≡ ¬ϕ. �

As usual, we can now define a cut elimination process, which lowers the cut

rank as long as it is bigger than two:

Proposition 4.2.7. We can extend the system of Su-codes by a unary function

symbol E, such that we have

l〈〉(EP) = l〈〉(P),

o〈〉(EP) = ω̂o〈〉(P),

d(EP) = max{2, d(P)− 1}

for any Su-code P .

Proof. As before, we begin with an informal presentation: In the crucial case,

the last rule of P is a cut (Cut, ϕ) with rk(ϕ) = d(P)−1 ≥ 2. We assume that ϕ is

conjunctive. The immediate subproofs n(P, 0) and n(P, 1) deduce sequents Γ,¬ϕ
resp. Γ, ϕ, where Γ is the end-sequent of P . Recursively we obtain proofs En(P, 0)

and En(P, 1) with the same end-sequents but lower cut rank. Using the transform-

ation from the previous lemma we can build a proof Rϕ(En(P, 0))(En(P, 1)) of the

desired sequent Γ. The cut rank remains low, because we have avoided to reapply

4.2. CUT ELIMINATION 197

the rule (Cut, ϕ). Officially, the proof transformation has to be implemented in

terms of Su-codes: This is accomplished by the recursive clauses

r〈〉(EP) =

(Rep, 0) if r〈〉(P) = (Cut, ϕ) with rk(ϕ) ≥ 2,

r〈〉(P) otherwise,

n(EP, a) =



Rϕ(En(P, 0))(En(P, 1)) if r〈〉(P) = (Cut, ϕ) where ϕ is
conjunctive and rk(ϕ) ≥ 2,

R¬ϕ(En(P, 1))(En(P, 0)) if r〈〉(P) = (Cut, ϕ) where ϕ is
disjunctive and rk(ϕ) ≥ 2,

En(P, a) otherwise.

Observe how the repetition rule (Rep, 0) is used to “call” the result of cut reduction:

The informal presentation above suggests that EP and Rϕ(En(P, 0))(En(P, 1)) are

the same proof. Taking this literally, we would have to define r〈〉(EP) as the

rule r〈〉(Rϕ(En(P, 0))(En(P, 1))). However, we are not allowed to refer to this rule,

since we define r〈〉 by recursion over terms. The repetition rule allows us to state

a valid recursive clause nevertheless, as discovered by Mints [54] (the improper

ω-rule considered by Schwichtenberg [82] serves a similar purpose). To complete

the proof we must establish conditions (L), (C1) and (C2) for EP , assuming that the

same conditions hold for P . Let us write out the details for the crucial case of a

rule r〈〉(P) = (Cut, ϕ), where ϕ is a conjunctive formula with rk(ϕ) ≥ 2: Using

condition (L) for P we can compute

l〈〉(En(P, 0))\{¬ϕ} = l〈〉(n(P, 0))\{¬ϕ} ⊆ (l〈〉(P) ∪ {¬ϕ})\{¬ϕ} ⊆ l〈〉(P).

Similarly we have l〈〉(En(P, 1))\{ϕ} ⊆ l〈〉(P), so that we can deduce

l〈〉(n(EP, 0)) = l〈〉(Rϕ(En(P, 0))(En(P, 1))) =

= l〈〉(En(P, 0))\{¬ϕ} ∪ l〈〉(En(P, 1))\{ϕ} ⊆ l〈〉(P) = l〈〉(EP),

as condition (L) demands in the case r〈〉(EP) = (Rep, 0). For i = 0, 1, condition (L)

for P yields o〈〉(n(P, i)) < o〈〉(P), which implies ω̂o〈〉(n(P,i)) < ω̂o〈〉(P). By part (f)

of Lemma 4.2.5 we obtain

o〈〉(n(EP, 0)) = o〈〉(Rϕ(En(P, 0))(En(P, 1))) = o〈〉(En(P, 1)) +̂ o〈〉(En(P, 0)) =

= ω̂o〈〉(n(P,1)) +̂ ω̂o〈〉(n(P,0)) < ω̂o〈〉(P) = o〈〉(EP).

198 4. A CONSISTENCY PROOF

Condition (C1) is void because r〈〉(EP) is not a cut rule. To prepare condition (C2),

observe that the same condition for P ensures

d(En(P, i)) = max{2, d(n(P, i))− 1} ≤ max{2, d(P)− 1} = d(EP).

In view of r〈〉(P) = (Cut, ϕ), condition (C1) for P provides rk(ϕ) < d(P) and thus

rk(ϕ) ≤ d(P)− 1 ≤ d(EP).

Together we obtain

d(n(EP, 0)) = d(Rϕ(En(P, 0))(En(P, 1))) =

= max{d(En(P, 0)), d(En(P, 1)), rk(ϕ)} ≤ d(EP),

as required by condition (C2) for EP . The other cases are verified by similar

computations. Note that part (e) of Lemma 4.2.5 yields o〈〉(P) ≤ ω̂o〈〉(P) = o〈〉(EP),

so that the side conditions of the rules (
∨
, ·) and (Ref, ·) are preserved. �

In the previous section, the Su-proof PS from Proposition 3.4.8 has been imple-

mented in terms of Su-codes: It can be recovered as the interpretation PS = [PS〈〉]
of the Su-code PS〈〉 with end-sequent l〈〉(PS〈〉) = 〈〉 and cut rank d(PS〈〉) = C + 6.

The previous proposition allows us to form the Su-code EC+4PS〈〉 = E · · · EPS〈〉
with C+ 4 occurrences of the function symbol E . It is straightforward to compute

l〈〉(EC+4PS〈〉) = 〈〉,

d(EC+4PS〈〉) = 2,

which means that [EC+4PS〈〉] is an Su-proof of the empty sequent. For any cut rule

(Cut, ϕ) that occurs in this proof we must have rk(ϕ) < 2, so that ϕ is bounded or

of the form ϕ ≡ ∀xθ resp. ϕ ≡ ∃xθ with a bounded formula θ. We cannot eliminate

the remaining cuts, because they may occur in the form

Γ,∀x∈a∃yθ(x, y)
(Ref)

Γ, ∃w∀x∈a∃y∈wθ(x, y) Γ,∀w∃x∈a∀y∈w¬θ(x, y)
(Cut),

Γ

where the cut formula has rank rk(∃w∀x∈a∃y∈wθ(x, y)) = 1. Cut reduction cannot

be extended to this situation, because we are unable to transform the proof of

Γ, ∀w∃x∈a∀y∈w¬θ(x, y) into a proof of Γ,∃x∈a∀y¬θ(x, y). Even if we had such a

transformation this would not lower the cut rank, because the new cut formula

would have rank rk(∀x∈a∃yθ(x, y)) = 3, which is even higher than before. In the

following sections we will present a transformation known as collapsing, which

4.3. OPERATOR CONTROL 199

removes occurrences of the reflection rule. To conclude the present section, let us

comment on the role of the constant C:

Remark 4.2.8. The usual axiomatization of Kripke-Platek set theory includes

collection for all ∆0-formulas. At the same time it is not hard to show that finitely

many instances of collection are sufficient (see Proposition 1.3.15). This allowed us

to work with an axiomatization Ax0,Ax1, . . . in which the number of parameters

that may occur in a collection axiom has a finite bound C, leading to the bound

rk(Axn) ≤ C + 5 on the rank of the axioms. As a consequence, we were able

to extend our search tree SuBH(Su) into an Su-proof PS with cut rank C + 6. If

one admits axioms of unbounded rank, then the embedding of the search tree into

the infinite proof system becomes considerably more difficult. Indeed, this is the

situation that Rathjen and Valencia Vizcáıno [71] had to resolve in their analysis

of bar induction. Their idea was to intertwine embedding and cut elimination:

Recursively, we may assume that the search tree above the nodes σ_a has been

embedded as a sequence of infinite proofs Pσ_a of finite cut rank. We would like to

combine these proofs into a proof Pσ that embeds the search tree above σ. However,

it is possible that there is no common bound for the cut ranks of the proofs Pσ_a,

so that Pσ would have infinite cut rank. The solution is to apply cut elimination to

the proofs Pσ_a, in order to reduce their cut ranks before the proofs are combined.

We did not follow this approach, because the bound C is harmless in our situation

and simplifies matters considerably. Let us point out that the role of the epsilon

numbers oS(σ) = Eσ is much clearer in Rathjen and Valencia Vizcáıno’s case: The

point is that one can perform cut elimination above the node σ, without changing

the ordinal label Eσ = ω̂Eσ . This feature is not required in our proof, so potentially

the notation system ϑ(SuBH(Su)) could have been defined more economically. In any

case, the type-two aspect of our well-ordering principles seems more important than

the precise order-type of ϑ(SuBH(Su)), as discussed in Remarks 2.1.25 and 2.4.10.

4.3. Operator Control

In order to obtain a consistency result for Su-proofs we need to collapse proofs

to countable height, as indicated in the introduction of the present chapter. The

collapsing construction for proofs relies on a corresponding collapse on the ordinal

notations: By the definition of the order (ϑ(SuBH(Su)), <) in Lemma 2.2.7, each

term s ∈ ϑ(SuBH(Su)) gives rise to a term ϑs ∈ ϑ(SuBH(Su)) with ϑs < Ω. Also recall

that we identify the ordered sets ϑ(SuBH(Su))∩Ω and BH(Su), which are isomorphic

200 4. A CONSISTENCY PROOF

by Theorem 2.2.25. To summarize, we have a collapsing function

ϑ(SuBH(Su)) 3 s 7→ ϑs ∈ ϑ(SuBH(Su)) ∩ Ω ∼= BH(Su).

A complication arises from the fact that this function is not fully order preserving:

According to Lemma 2.2.7 we have

s < t ⇒ ϑs < ϑt under the side condition Eϑ(s) <fin ϑt,

where Eϑ(s) = EϑBH(Su)(s) is computed as in Definition 2.2.5. Note that we have

Eϑ(s) ⊆ ϑ(SuBH(Su))∩Ω by Lemma 2.2.11. Collapsing functions which are partially

order preserving are a characteristic feature of impredicative proof theory. Buch-

holz [10] has introduced controlling operators as an elegant way to handle them.

In the present section we adapt his approach to the setting of Su-proofs. The first

step is to define the required operators themselves:

Definition 4.3.1. For a term t ∈ ϑ(SuBH(Su)) and a finite set x ⊆ ϑ(SuBH(Su))∩Ω

we construct a set Ht(x) ⊆ ϑ(SuBH(Su)) by the stipulations

H0
t (x) =

⋃
s∈x

Eϑ(s),

Hn+1
t (x) = {ϑs | s ∈ Hnt (x) ∧ s ≤ t} ∪ {s ∈ ϑ(SuBH(Su)) |E

ϑ(s) ⊆ Hnt (x)} ∪

∪ {s ∈ ϑ(SuBH(Su)) | ∃s′(s
′ ∈ Hnt (x) ∧ s < s′ < Ω)},

Ht(x) =
⋃
n∈ω
Hnt (x).

It is straightforward to see that the function (t, x, n) 7→ Hnt (x) is primitive

recursive. Proposition 1.1.6 ensures that (t, x) 7→ Ht(x) is a primitive recursive set

function (with parameter ω, cf. Convention 1.2.9). In fact, Proposition 1.2.2 shows

that (t, x) 7→ Ht(x) exists as a set-sized function. Let us establish basic properties:

Lemma 4.3.2. The following holds for any number n:

(a) If s ∈ Hnt (x) then Eϑ(s) ⊆ Hnt (x).

(b) We have Hnt (x) ⊆ Hn+1
t (x).

Since Eϑ(s) is finite, it follows that s ∈ Ht(x) is equivalent to Eϑ(s) ⊆ Ht(x).

Proof. The claims are established by simultaneous induction over n:

(a) First assume n = 0: A straightforward induction over the term s′ < Ω shows

that s ∈ Eϑ(s′) implies Eϑ(s) ⊆ Eϑ(s′). Now s ∈ H0
t (x) means s ∈ Eϑ(s′) for

some s′ ∈ x ⊆ ϑ(SuBH(Su)) ∩ Ω. Thus we get Eϑ(s) ⊆ Eϑ(s′) ⊆ H0
t (x), as desired.

4.3. OPERATOR CONTROL 201

Now assume that we have n = m + 1: A straightforward induction over s < Ω

shows Eϑ(s) ≤fin s (recall s0 < ωs0 + · · ·+ ωsn from the proof of Lemma 4.2.5(e)).

So if s ∈ Hnt (x) holds because of s < s′ < Ω with s′ ∈ Hmt (x) then Eϑ(s) <fin s′

yields Eϑ(s) ⊆ Hnt (x). If s ∈ Hnt (x) holds because of Eϑ(s) ⊆ Hmt (x) then we get

Eϑ(s) ⊆ Hnt (x) by the induction hypothesis for (b). For s = ϑs′ the claim is trivial

because of Eϑ(ϑs′) = {ϑs′}.
(b) By part (a) we see that s ∈ Hnt (x) implies Eϑ(s) ⊆ Hnt (x), which yields

s ∈ Hn+1
t (x) as desired. �

As observed by Buchholz [10], it is crucial that Ht(·) has the properties of a

closure operator:

Lemma 4.3.3. The following holds for all finite sets x, y ⊆ ϑ(SuBH(Su)) ∩ Ω:

(a) We have x ⊆ Ht(x).

(b) If x ⊆ Ht(y) then Ht(x) ⊆ Ht(y).

Together, part (a) and (b) show that x ⊆ y implies Ht(x) ⊆ Ht(y).

Proof. (a) For s ∈ x we have Eϑ(s) ⊆ H0
t (x) and thus s ∈ H1

t (x).

(b) By the previous lemma we have
⋃
s∈xE

ϑ(s) ⊆ Hnt (y) for some n. A straight-

forward induction on m shows Hmt (x) ⊆ Hn+m
t (y). �

Next, we show that the values of Ht(·) are closed under certain operations on

the ordinal notations (i.e. the operatorHt(·) is “nice” in the sense of Buchholz [10]):

Lemma 4.3.4. The following holds for any t ∈ ϑ(SuBH(Su)):

(a) We have 0 ∈ Ht(∅) and Ω ∈ Ht(∅).
(b) For σ ∈ SuBH(Su) we have Eσ ∈ Ht(suppS(σ)).

(c) If s, s′ ∈ Ht(x) then s +̂ s′ ∈ Ht(x) and ω̂s ∈ Ht(x).

To understand part (b), recall that iBH(Su) : BH(Su)
∼=−→ ϑ(SuBH(Su)) ∩ Ω is left

implicit. Officially, suppS(σ) refers to [iBH(Su)]
<ω(suppS

BH(Su)(σ)) ⊆ ϑ(SuBH(Su))∩Ω.

Proof. (a) From Eϑ(0) = Eϑ(Ω) = ∅ ⊆ H0
t (∅) we get 0,Ω ∈ H1

t (∅).
(b) By Definition 2.2.5 we have Eϑ(Eσ) = [iBH(Su)]

<ω(suppS
BH(Su)(σ)). Thus the

previous lemma yields Eϑ(Eσ) ⊆ Ht(suppS(σ)). In view of Lemma 4.3.2(b) we

can assume Eϑ(Eσ) ⊆ Hnt (suppS(σ)) for some number n. The definition of our

operators allows us to infer Eσ ∈ Hn+1
t (suppS(σ)) ⊆ Ht(suppS(σ)).

(c) Recall the notation ω〈s1, . . . , sn〉 from the proof of Lemma 4.2.5, and observe

that we have Eϑ(ω〈s1, . . . , sn〉) = Eϑ(s1)∪ · · · ∪Eϑ(sn). Writing s = ω〈s1, . . . , sn〉

202 4. A CONSISTENCY PROOF

and s′ = ω〈s′1, . . . , s′m〉 we have s +̂ s′ = ω〈s1, . . . , si, s
′
1, . . . , s

′
m〉 for some i ≤ n,

which yields

Eϑ(s +̂ s′) = Eϑ(s1) ∪ · · · ∪ Eϑ(si) ∪ Eϑ(s′1) ∪ · · · ∪ Eϑ(s′m) ⊆ Eϑ(s) ∪ Eϑ(s′).

If we have s, s′ ∈ Ht(x) then Lemma 4.3.2 yields Eϑ(s)∪Eϑ(s′) ⊆ Ht(x). Thus we

get Eϑ(s +̂ s′) ⊆ Ht(x), which implies s +̂ s′ ∈ Ht(x). Also recall ω̂s = ω〈s〉. Given

s ∈ Ht(x) we can thus infer Eϑ(ω̂s) = Eϑ(s) ⊆ Ht(x) and then ω̂s ∈ Ht(x). �

Finally, we relate our operators to the collapsing function s 7→ ϑs:

Lemma 4.3.5. The following holds:

(a) If t < t′ then Ht(x) ⊆ Ht′(x).

(b) If s ∈ Ht(x) and s ≤ t then ϑs ∈ Ht(x).

(c) If s ∈ Ht(∅) ∩ Ω and t < t′ then s < ϑt′.

(d) If s, t ∈ Ht(∅) and s < s′ then ϑ(t +̂ ω̂s) < ϑ(t +̂ ω̂s
′
).

Concerning (c), note that Ht(∅)∩Ω is an abbreviation for {s ∈ Ht(∅) | s < Ω}.

Proof. (a) A straightforward induction on n shows Hnt (x) ⊆ Hnt′(x).

(b) The claim is immediate by the definition of Ht(x).

(c) The claim for s ∈ Hnt (∅) ∩ Ω is established by induction on n: For n = 0 it

suffices to observe H0
t (∅) = ∅. Now assume that we have ϑs ∈ Hn+1

t (∅) because

of s ∈ Hnt (∅) and s ≤ t. By Lemma 4.3.2 we obtain Eϑ(s) ⊆ Hnt (∅), so that

the induction hypothesis yields Eϑ(s) <fin ϑt′. Together with s ≤ t < t′ we

can infer ϑs < ϑt′ by Lemma 2.2.7. Next, assume that s ∈ Hn+1
t (∅) holds because

of Eϑ(s) ⊆ Hnt (∅). Then the induction hypothesis yields Eϑ(s) <fin ϑt′. Given that

we have s < Ω this implies s < ϑt′, by a straightforward induction on the term s.

Finally, if s ∈ Hn+1
t (∅) holds because we have s < s′ < Ω for some s′ ∈ Hnt (∅), then

we get s < s′ < ϑt′ by the induction hypothesis.

(d) By the previous lemma we get t+̂ ω̂s ∈ Ht(∅). Lemma 4.2.5 provides t ≤ t+̂ ω̂s,

so that part (a) resp. (b) yield t +̂ ω̂s ∈ Ht+̂ω̂s(∅) and ϑ(t +̂ ω̂s) ∈ Ht+̂ω̂s(∅). In

view of ϑ(t +̂ ω̂s) < Ω we can infer ϑ(t +̂ ω̂s) < ϑ(t +̂ ω̂s
′
) by part (c). �

Recall that Lemma 3.4.4 shows consistency for Su-proofs of height below Ω. In

order to extend this result to a proof P of height o〈〉(P) ≥ Ω we will collapse P into

a proof CtP with o〈〉(CtP) = ϑ(t +̂ ω̂o〈〉(P)) < Ω. This is possible under certain con-

ditions of operator control: For example, we will ensure o〈〉(n(P, a)) ∈ Ht(∅) to get

ϑ(t +̂ ω̂o〈〉(n(P,a))) < ϑ(t +̂ ω̂o〈〉(P)),

4.3. OPERATOR CONTROL 203

which means that monotonicity of the ordinal labels is preserved. Similarly, we will

ensure suppL(a) ⊆ Ht(∅) in order to obtain

suppL(a) <fin ϑ(t +̂ ω̂o〈〉(P)) = o〈〉(CtP),

as the side condition of a rule r〈〉(CtP) = (
∨
, ϕ, a) demands. To track the required

conditions we associate each proof P with an operator x 7→ Hh0(P)(h1(P) ∪ x):

Definition 4.3.6. We construct functions

h0 : “Su-codes”→ ϑ(SuBH(Su)),

h1 : “Su-codes”→ [ϑ(SuBH(Su)) ∩ Ω]<ω

by recursion over the Su-codes considered so far:

h0(PSσ) = 0, h1(PSσ) = suppS(σ),

h0(Iϕ,aP) = h0(P), h1(Iϕ,aP) = h1(P) ∪ suppL(a),

h0(RϕP0P1) = max{h0(P0), h0(P1)}, h1(RϕP0P1) = h1(P0) ∪ h1(P1),

h0(EP) = h0(P), h1(EP) = h1(P).

We will abbreviate HP (x) = Hh0(P)(h1(P) ∪ x).

As before, the isomorphism iBH(Su) : BH(Su)→ ϑ(SuBH(Su))∩Ω is left implicit.

This means that suppS(σ) and suppL(a) refer to the sets [iBH(Su)]
<ω(suppS

BH(Su)(σ))

and [iBH(Su)]
<ω(suppL

BH(Su)(a)), respectively. It is straightforward to see that the

functions P 7→ hi(P) for i = 0, 1 are primitive recursive. Whenever we extend the

system of Su-codes by a new function symbol, we will add a recursive clause to the

definition of the functions hi. The assignment of operators to proofs must satisfy

certain local correctness conditions. To express these conditions, we associate each

LuBH(Su)-formula ϕ with a (generally infinite) set supp(ϕ) ⊆ ϑ(SuBH(Su))∩Ω, putting

supp(ϕ) =

∅ if ι(ϕ) = LuBH(Su),⋃
a∈ι(ϕ) suppL(a) otherwise.

In view of Lemma 3.1.13 we have ι(ϕ) = LuBH(Su) if and only if ϕ begins with an

unbounded quantifier. We will use supp(ϕ) to keep track of the bounded universal

formulas ϕ ≡ ∀x∈aψ(x) that occur in a proof. Since supp(ϕ) = ϑ(SuBH(Su)) ∩ Ω

would break operator control, we have no choice but to set supp(ϕ) = ∅ in the

case of an unbounded formula. Indeed, it is well known that collapsing does not

204 4. A CONSISTENCY PROOF

apply to proofs of unbounded universal statements. We can now formulate local

correctness conditions for our controlling operators (cf. [10, Section 3]):

Lemma 4.3.7. The following holds for any Su-code P :

(H1) We have o〈〉(P) ∈ HP (∅).
(H2) If r〈〉(P) is of the form (

∧
, ϕ) then we have supp(ϕ) ⊆ HP (∅). If r〈〉(P)

is of the form (
∨
, ϕ, a) or (Rep, a) then we have suppL(a) ⊆ HP (∅).

(H3) We have h0(n(P, a)) ≤ h0(P) and h1(n(P, a)) ⊆ HP (suppL(a)) for any

element a ∈ ι(r〈〉(P)).

Proof. As explained in Remark 4.1.6, all local correctness conditions are es-

tablished by induction over Su-codes. For a basic Su-code P = PSσ we observe

h0(n(PSσ, a)) = h0(PSσ
_a) = 0 = h0(PSσ)

and

h1(n(PSσ, a)) = h1(PSσ
_a) = suppS(σ_a) = suppS(σ) ∪ suppL(a) =

= h1(PSσ) ∪ suppL(a) ⊆ Hh0(PSσ)(h1(PSσ) ∪ suppL(a)) = HPSσ(suppL(a)),

as required by condition (H3). To verify conditions (H1) and (H2) we distinguish

three cases: First, assume that σ does not lie in the Su-proof PS = (PS , lS , oS , rS)

from Proposition 3.4.8. Then we have o〈〉(PSσ) = 0 and r〈〉(PSσ) = (True, 0 = 0),

so conditions (H1) and (H2) are immediate. Next, assume that σ lies in the proof PS

but not in the search tree SuBH(Su) ⊆ PS . This means that we have σ = σ0
_1_τ ,

where σ0 ∈ SuBH(Su) has even length len(σ0) = 2n and τ is a node in the Su-proof

Pn = (Pn, ln, on, rn) from Lemma 3.4.5 resp. Lemma 3.4.6. The ordinal label is

computed as

o〈〉(PSσ) = oS(σ) = on(τ),

and similarly we have r〈〉(PSσ) = rn(τ). For n = 0 the interesting nodes are those

of the form τ = 〈a〉, which are labelled by

o0(〈a〉) = sa + 1 = sa +̂ ω̂0, with sa = max({s+ 1 | s ∈ suppL(a)} ∪ {0}),

r0(〈a〉) = (
∨
, ∃y y = a ∪ {a}, ba), with ba ≡ {z ∈ Lusa | z ∈ a ∨ z = a}.

It is straightforward to observe

suppL(a) = suppS(τ) ⊆ suppS(σ) ⊆ Hh0(PSσ)(suppS(σ)) = HPSσ(∅).

4.3. OPERATOR CONTROL 205

By Lemma 4.3.4 we get s + 1 = s +̂ ω̂0 ∈ HPSσ(∅) for any s ∈ suppL(a). This

implies sa ∈ HPSσ(∅) and then

o〈〉(PSσ) = o0(〈a〉) = sa +̂ ω̂0 ∈ HPSσ(∅),

as required by condition (H1). We also obtain

suppL(ba) = suppL(a) ∪ {sa} ⊆ HPSσ(∅),

as needed for condition (H2). For n > 0 all ordinal labels in Pn are of the form

Ω + k = ωΩ + ω0 + · · ·+ ω0 (with k summands ω0), Ω + ω = ωΩ + ωω
0

or 0. Thus

we have Eϑ(on(τ)) = ∅ for all τ ∈ Pn, which implies on(τ) ∈ Ht(x) for arbitrary

values of t and x. In particular we get

o〈〉(PSσ) = on(τ) ∈ HPSσ(∅),

as required by condition (H1). Concerning condition (H2), the most interesting

node is τ = 〈~a, b, 0, 0, 0〉 ∈ Pn with label

r〈〉(PSσ) = rn(〈~a, b, 0, 0, 0〉) = (
∧
, ∀x∈b∃yθ(x, y,~a)).

We need to establish suppL(c) ⊆ HPSσ(∅) for all c ∈ ι(∀x∈b∃yθ(x, y,~a)). If b is an

LuBH(Su)-term of the form ui, then c must be a term uj with uj ∈ ui. According to

Definition 3.1.2 we have suppL(uj) = ∅, which makes the claim trivial. If b is of

the form Lus or of the form {z ∈ Lus |ψ(z)}, then c ∈ ι(∀x∈b∃yθ(x, y,~a)) implies

suppL(c) <fin s ∈ suppL(b) ⊆ suppS(τ) ⊆ suppS(σ) ⊆ HPSσ(∅) ∩ Ω.

In view of Definition 4.3.1 we obtain

suppL(c) ⊆ HPSσ(∅),

as required. The other relevant rules are of the form

r〈〉(PSσ) = rn(τ) = (
∨
, ϕ, a),

where a occurs in the finite sequence τ . In this case we have

suppL(a) ⊆ suppS(τ) ⊆ suppS(σ) = h1(PSσ) ⊆ Hh0(PSσ)(h1(PSσ)) = HPSσ(∅),

so that condition (H2) is satisfied. It remains to consider a basic Su-code PSσ

where σ does lie in the search tree SuBH(Su) ⊆ PS . Using Lemma 4.3.4(b) we get

o〈〉(PSσ) = oS(σ) = Eσ ∈ Hh0(PSσ)(suppS(σ)) = HPSσ(∅),

as required by condition (H1). If σ has even length then r〈〉(PSσ) = rS(σ) is a cut

rule and condition (H2) is void. Now assume that σ has odd length len(σ) = 2n+1.

206 4. A CONSISTENCY PROOF

Following Definition 3.2.1 and the proof of Proposition 3.4.8, let ϕ be the π0(n)-th

formula of the sequent lS(σ). If ϕ is conjunctive then we have

r〈〉(PSσ) = rS(σ) = (
∧
, ϕ).

The proof of Proposition 3.2.2(iii) shows that ϕ is an Lu
suppS(σ)

-formula. More

precisely, we can write ϕ ≡ ϕ0[ισ], where ισ : suppS(σ) ↪→ BH(Su) is the inclusion

and ϕ0 is an Lu
suppS(σ)

-formula. In view of Definition 3.1.12 any parameter b in ϕ

is of the form b = Luισ(b0) with b0 ∈ Lu
suppS(σ)

. The naturality of suppL
· yields

suppL(b) = suppL
BH(Su)(L

u
ισ(b0)) = [ισ]<ω(suppL

suppS(σ)(b0)) ⊆ suppS(σ) ⊆ HPSσ(∅).

It is straightforward to deduce supp(ϕ) ⊆ HPSσ(∅), as needed for condition (H2):

Above, this has already been verified for ϕ ≡ ∀x∈b∃yθ. As a second example, let us

consider the formula ϕ ≡ b /∈ Lus . For any a ∈ ι(ϕ) we have

suppL(a) <fin s ∈ suppL(Lus) ⊆ HPSσ(∅) ∩ Ω,

because Lus is a parameter of ϕ. By definition, our operators are downwards closed

below Ω. Thus we see suppL(a) ⊆ HPSσ(∅) and then

supp(ϕ) =
⋃
a∈ι(ϕ) suppL(a) ⊆ HPSσ(∅),

as promised. Now assume that ϕ, the π0(n)-th formula of the sequent lS(σ), is

disjunctive. Following the proof of Proposition 3.4.8 we compute

b = enBH(Su)(suppS(σ �π1(n)), π2(n))

and observe

r〈〉(PSσ) = rS(σ) =

(
∨
, ϕ, b) if b ∈ ι(ϕ),

(Rep, 0) otherwise.

As in the proof of Proposition 3.2.2(iii) we get b = Luισ(b0) for some b0 ∈ Lu
suppS(σ)

.

Above we have seen that this implies

suppL(b) ⊆ HPSσ(∅),

which means that condition (H2) is satisfied. Having established the claim for all

basic Su-codes, let us look at a code of the form Iϕ,aP . To prove the corresponding

induction step we must deduce conditions (H1) to (H3) for Iϕ,aP from the same

conditions for P . Indeed, condition (H1) for P and Lemma 4.3.3 yield

o〈〉(Iϕ,aP) = o〈〉(P) ∈ Hh0(P)(h1(P)) ⊆ Hh0(P)(h1(P) ∪ suppL(a)) = HIϕ,aP (∅),

4.3. OPERATOR CONTROL 207

as required by condition (H1) for Iϕ,aP . Condition (H2) is verified by case distinc-

tion on the last rule of P . Let us consider the most interesting case r〈〉(P) = (
∧
, ϕ):

Then we have r〈〉(Iϕ,aP) = (Rep, a), and the definition of h1(Iϕ,aP) ensures

suppL(a) ⊆ h1(Iϕ,aP) ⊆ HIϕ,aP (∅).

In all other cases, condition (H2) is preserved in view of HP (∅) ⊆ HIϕ,aP (∅).
Concerning condition (H3), we note that the function symbol Iϕ,a was only in-

troduced for a ∈ ι(ϕ) = ι((
∧
, ϕ)). It is straightforward to see that this implies

ι(r〈〉(Iϕ,aP)) ⊆ ι(r〈〉(P)) in all possible cases. Using condition (H3) for P we can

thus infer

h0(n(Iϕ,aP, b)) = h0(Iϕ,an(P, b)) = h0(n(P, b)) ≤ h0(P) = h0(Iϕ,aP)

for all b ∈ ι(r〈〉(Iϕ,aP)). With the help of Lemma 4.3.3 we also get

h1(n(Iϕ,aP, b)) = h1(Iϕ,an(P, b)) = h1(n(P, b)) ∪ suppL(a) ⊆

⊆ Hh0(P)(h1(P) ∪ suppL(b) ∪ suppL(a)) ⊆ HIϕ,aP (suppL(b)),

as required by condition (H3) for Iϕ,aP . Next, let us consider an Su-code of the

form RϕP0P1. In view of h0(Pi) ≤ h0(RϕP0P1) and h1(Pi) ⊆ h1(RϕP0P1) we

get HPi(x) ⊆ HRϕP0P1(x), by Lemma 4.3.5(a) and Lemma 4.3.3. Together with

condition (H1) for Pi we see o〈〉(Pi) ∈ HPi(∅) ⊆ HRϕP0P1(∅). Using Lemma 4.3.4(c)

this implies

o〈〉(RϕP0P1) = o〈〉(P1) +̂ o〈〉(P0) ∈ HRϕP0P1(∅),

as condition (H1) demands. In view of HP0(∅) ⊆ HRϕP0P1(∅) condition (H2) is

preserved. Condition (H3) is most interesting if we have r〈〉(P0) = (
∨
,¬ϕ, b) and

thus r〈〉(RϕP0P1) = (Cut, ϕb): Using condition (H3) for P0 we get

h0(n(RϕP0P1, 0)) = h0(Rϕn(P0, 0)P1) = max{h0(n(P0, 0)), h0(P1)} ≤

≤ max{h0(P0), h0(P1)} = h0(RϕP0P1),

as well as

h0(n(RϕP0P1, 1)) = h0(Iϕ,bP1) = h0(P1) ≤ h0(RϕP0P1).

We can also compute

h1(n(RϕP0P1, 0)) = h1(Rϕn(P0, 0)P1) = h1(n(P0, 0)) ∪ h1(P1) ⊆

⊆ HP0(suppL(0)) ∪ h1(RϕP0P1) ⊆ HRϕP0P1(suppL(0)).

208 4. A CONSISTENCY PROOF

Crucially, condition (H2) for P0 provides suppL(b) ⊆ HP0(∅). This implies

h1(n(RϕP0P1, 1)) = h1(Iϕ,bP1) = h1(P1) ∪ suppL(b) ⊆ HRϕP0P1(∅),

as required by condition (H3) for RϕP0P1. Finally, we look at an Su-code of the

form EP . Condition (H1) for P yields o〈〉(P) ∈ HP (∅). By Lemma 4.3.4(c) we get

o〈〉(EP) = ω̂o〈〉(P) ∈ HP (∅) = HEP (∅),

so that condition (H1) for EP is satisfied. In view of HEP (∅) = HP (∅) we see that

condition (H2) is preserved. Condition (H3) is most interesting if r〈〉(P) = (Cut, ϕ)

is a cut with rk(ϕ) ≥ 2. Assuming that ϕ is conjunctive, condition (H3) for P yields

h0(n(EP, 0)) = h0(Rϕ(En(P, 0))(En(P, 1))) = max{h0(En(P, 0)), h0(En(P, 1))} =

= max{h0(n(P, 0)), h0(n(P, 1))} ≤ h0(P) = h0(EP).

In view of suppL(0) = suppL(1) = ∅ we can also compute

h1(n(EP, 0)) = h1(Rϕ(En(P, 0))(En(P, 1))) = h1(En(P, 0)) ∪ h1(En(P, 1)) =

h1(n(P, 0)) ∪ h1(n(P, 1)) ⊆ HP (∅) = HEP (suppL(0)),

as required by condition (H3) for EP . �

Whenever we add a function symbol to the system of Su-codes, we will extend

the previous proof by the corresponding induction step. Recall that any Su-code P

yields an Su-proof [P] = ([P], lP , rP , oP). Conditions (H1) and (H3) ensure that

all ordinal labels in this proof are controlled by the operator HP (·), in the sense

that we have

oP (σ) ∈ HP (suppS(σ))

for any sequence σ ∈ [P]. To see that this is the case, note that condition (H3)

implies Hn(P,a)(x) ⊆ HP (suppL(a) ∪ x), using Lemma 4.3.5(a) and Lemma 4.3.3.

By induction over σ we get Hn̄(P,σ)(x) ⊆ HP (suppS(σ) ∪ x). Now condition (H1)

for n̄(P, a) yields oP (σ) = o〈〉(n̄(P, σ)) ∈ Hn̄(P,σ)(∅) ⊆ HP (suppS(σ)), as promised.

The parameters of the rule rP (σ) are controlled as well, using condition (H2).

To conclude this section we discuss a further complication: The last rule

r〈〉(CtP) of the collapsed proof CtP will depend on the ordinal height o〈〉(n(P, a))

of the immediate subproof n(P, a) of P . This is problematic because we define

r〈〉 and o〈〉 by simultaneous recursion over terms and because n(P, a) is not a sub-

term of P (cf. Remark 4.1.6). In order to solve this problem we add an auxiliary

function (P, a) 7→ o〈a〉(P) to our simultaneous recursion. Since P is a subterm

4.3. OPERATOR CONTROL 209

of CtP , the rule r〈〉(CtP) is allowed to depend on the value o〈a〉(P). We will en-

sure o〈a〉(P) = o〈〉(n(P, a)) in all relevant cases. First, let us define the (set-sized)

function a 7→ o〈a〉(P) by recursion over the Su-codes introduced so far:

Definition 4.3.8. We construct a function

o〈·〉(·) : “Su-codes”× LuBH(Su) → ϑ(SuBH(Su)), (P, a) 7→ o〈a〉(P)

by recursion over Su-codes, setting

o〈a〉(PSσ) = o〈〉(PS σ
_a),

o〈a〉(Iϕ,bP) = o〈a〉(P),

o〈a〉(RϕP0P1) =

o〈〉(P1) if r〈〉(P0) = (
∨
,¬ϕ, b) and a = 1,

o〈〉(P1) +̂ o〈a〉(P0) otherwise,

o〈a〉(EP) =



ω̂o〈1〉(P) +̂ ω̂o〈0〉(P) if r〈〉(P) = (Cut, ϕ) where ϕ is
conjunctive and rk(ϕ) ≥ 2,

ω̂o〈0〉(P) +̂ ω̂o〈1〉(P) if r〈〉(P) = (Cut, ϕ) where ϕ is
disjunctive and rk(ϕ) ≥ 2,

ω̂o〈a〉(P) otherwise.

The required properties of o〈a〉(·) are ensured by local correctness conditions:

Lemma 4.3.9. The following conditions hold for any Su-code P :

(N1) We have o〈a〉(P) = o〈〉(n(P, a)) for all a ∈ ι(r〈〉(P)).

(N2) We have o〈a〉(P) ∈ Hn(P,a)(∅) for all a ∈ ι(r〈〉(P)).

Proof. The two conditions are established by induction over Su-codes. For a

basic Su-code PSσ we have

o〈a〉(PSσ) = o〈〉(PS σ
_a) = o〈〉(n(PS σ, a))

for any a ∈ LuBH(Su). By condition (H1) for the basic Su-code PSσ
_a we also get

o〈a〉(PSσ) = o〈〉(PS σ
_a) ∈ HPSσ_a(∅) = Hn(PSσ,a)(∅).

For an Su-code of the form Iϕ,bP we observe ι(r〈〉(Iϕ,bP)) ⊆ ι(r〈〉(P)). Thus

condition (N1) for P implies

o〈a〉(Iϕ,bP) = o〈a〉(P) = o〈〉(n(P, a)) = o〈〉(Iϕ,bn(P, a)) = o〈〉(n(Iϕ,bP, a))

for any a ∈ ι(r〈〉(Iϕ,bP)), as condition (N1) for Iϕ,bP demands. By condition (N2)

for P we also obtain

210 4. A CONSISTENCY PROOF

o〈a〉(Iϕ,bP) = o〈a〉(P) ∈ Hn(P,a)(∅) ⊆

⊆ Hn(P,a)(suppL(b)) = HIϕ,bn(P,a)(∅) = Hn(Iϕ,bP,a)(∅).

For an Su-code RϕP0P1 we consider the crucial case of a rule r〈〉(P0) = (
∨
,¬ϕ, b),

which yields r〈〉(RϕP0P1) = (Cut, ϕb). Using condition (N1) for P0 we obtain

o〈0〉(RϕP0P1) = o〈〉(P1) +̂ o〈0〉(P0) = o〈〉(P1) +̂ o〈〉(n(P0, 0)) =

= o〈〉(Rϕn(P0, 0)P1) = o〈〉(n(RϕP0P1, 0)),

as well as

o〈1〉(RϕP0P1) = o〈〉(P1) = o〈〉(Iϕ,bP1) = o〈〉(n(RϕP0P1, 1)).

By condition (H1) for P1 we obtain o〈〉(P1) ∈ HP1(∅) ⊆ HRϕn(P0,0)P1
(∅), and

condition (N2) for P0 provides o〈0〉(P0) ∈ Hn(P0,0)(∅) ⊆ HRϕn(P0,0)P1
(∅). Together

with Lemma 4.3.4(c) we can conclude

o〈0〉(RϕP0P1) = o〈〉(P1) +̂ o〈0〉(P0) ∈ HRϕn(P0,0)P1
(∅) = Hn(RϕP0P1,0)(∅).

Also by condition (H1) for P1 we obtain

o〈1〉(RϕP0P1) = o〈〉(P1) ∈ HP1(∅) ⊆ HIϕ,bP1(∅) = Hn(RϕP0P1,1)(∅),

as required by condition (N2) for RϕP0P1. Finally, we consider an Su-code of the

form EP . Let us look at the crucial case of a rule r〈〉(P) = (Cut, ϕ) with rk(ϕ) ≥ 2,

which yields r〈〉(EP) = (Rep, 0). Assuming that ϕ is conjunctive, we can use

condition (N1) for P to deduce

o〈0〉(EP) = ω̂o〈1〉(P) +̂ ω̂o〈0〉(P) = ω̂o〈〉(n(P,1)) +̂ ω̂o〈〉(n(P,0)) =

= o〈〉(En(P, 1)) +̂ o〈〉(En(P, 0)) = o〈〉(Rϕ(En(P, 0))(En(P, 1))) = o〈〉(n(EP, 0)).

For i = 0, 1, condition (N2) for P implies

o〈i〉(P) ∈ Hn(P,i)(∅) = HEn(P,i)(∅) ⊆ HRϕ(En(P,0))(En(P,1))(∅) = Hn(EP,0)(∅).

Together with Lemma 4.3.4(c) we obtain

o〈0〉(EP) = ω̂o〈1〉(P) +̂ ω̂o〈0〉(P) ∈ Hn(EP,0)(∅),

as required by condition (N2) for EP . �

4.4. COLLAPSING 211

Whenever we add a function symbol to the system of Su-codes, we will ex-

tend Definition 4.3.8 and Lemma 4.3.9 by a recursive clause and a proof of the

corresponding induction step. Condition (N2) for P coincides with condition (H1)

for n(P, a), but the two conditions become available at different stages of our simul-

taneous induction. More specifically, we will need condition (N2) for P in order to

ensure condition (L) for CtP . Condition (H1) for n(P, a) has not been established

at that point of the induction, since n(P, a) is not a subterm of P . Let us point out

that condition (N1) may — and will — fail for a /∈ ι(r〈〉(P)). We also remark that

Buchholz [11, Section 5] follows a different approach, which avoids the redundancy

that is inherent to the function o〈a〉(·): He begins by defining the function o〈〉 on

all Su-codes, observing that it does not depend on any of the other functions that

are part of our simultaneous recursion. Only afterwards, these other functions are

defined by a separate recursion. Of course, the rule r〈〉(CtP) may now depend on

the ordinal o〈〉(n(P, a)). Similarly, condition (H1) can be verified in a separate in-

duction. Afterwards, condition (H1) for n(P, a) may be used in order to establish

condition (L) for CtP . This is a viable alternative, which avoids some redundancy.

On the other hand it makes the structure of the proof yet more complicated (in

view of Remark 4.1.6 it is already somewhat challenging to keep track of the official

proof). We have chosen the approach via the function o〈a〉(·) in order to avoid this.

4.4. Collapsing

In this section we present the collapsing construction for Su-proofs. Under suit-

able conditions, it transforms a proof of ordinal height above Ω into a proof with

the same end-sequent and height below Ω. Lemma 3.4.4 tells us that the latter

cannot prove a contradiction, so neither does the former. In this way, the consist-

ency result is extended to proofs with height above Ω. This is the last piece that

we need in order to establish Theorem 4.4.6 and Corollary 4.4.7, the main results

of the present thesis. They will be proved at the end of the section.

Recall that we write ϕa for the relativization of the LuBH(Su)-formula ϕ to the

term a ∈ LuBH(Su): To obtain ϕa from ϕ one replaces each occurrence of an un-

bounded quantifier ∃x· or ∀x· by the bounded quantifier ∃x∈a· or ∃x∈a·, respectively.

For s ∈ BH(Su) we write ϕs rather than ϕLus . As before, a subscript ϕa refers to

the verification calculus of Definition 3.1.13. Also recall that a Σ(LuBH(Su))-formula

(short: Σ-formula) is an LuBH(Su)-formula which does not contain any unbounded

212 4. A CONSISTENCY PROOF

universal quantifier. Using this terminology we can describe a proof transformation

known as boundedness (cf. the “Begrenzungslemma” in [39, Section 6]):

Lemma 4.4.1. For any Σ-formula ϕ and any s ∈ BH(Su) we can extend the

system of Su-codes by a unary function symbol BΣ
ϕ,s, such that we have

l〈〉(BΣ
ϕ,sP) =

(l〈〉(P)\{ϕ}) ∪ {ϕs} if o〈〉(P) ≤ s,

l〈〉(P) otherwise,

o〈〉(BΣ
ϕ,sP) = o〈〉(P),

d(BΣ
ϕ,sP) = d(P),

h0(BΣ
ϕ,sP) = h0(P),

h1(BΣ
ϕ,sP) = h1(P)

for any Su-code P .

As before, the isomorphism iBH(Su) : BH(Su)→ ϑ(SuBH(Su))∩Ω is left implicit.

The condition in the case distinction should officially read o〈〉(P) ≤ iBH(Su)(s).

Proof. We begin with an informal description in terms of transfinite recursion:

In the most interesting case, ϕ ≡ ∃xψ(x) is an existential formula introduced by

the last rule (
∨
, ∃xψ(x), b) of P . Thus the end-sequent of P has the form Γ,∃xψ(x)

and the immediate subproof n(P, 0) establishes the sequent Γ,∃xψ(x), ψ(b). Re-

cursively we may transform n(P, 0) into a proof BΣ
ϕ,sn(P, 0) of Γ, ∃x∈Lusψ

s(x), ψ(b),

and then into a proof BΣ
ψ(b),sB

Σ
ϕ,sn(P, 0) of Γ, ∃x∈Lusψ

s(x), ψs(b). Crucially, the as-

sumption o〈〉(P) ≤ s and condition (L) for P imply suppL(b) <fin s. In view of

∃x∈Lusψ
s(x) '

∨
suppL(a)<fins ψ

s(a) we can use the rule (
∨
, ∃x∈Lusψ

s(x), b) to deduce

the desired sequent Γ, ∃x∈Lusψ
s(x). Officially, we have to implement this idea in

terms of Su-codes: Let us first consider the “unintended” case o〈〉(P) > s. Here we

set r〈〉(BΣ
ϕ,sP) = r〈〉(P) and n(BΣ

ϕ,sP, a) = n(P, a), as well as o〈a〉(BΣ
ϕ,sP) = o〈a〉(P).

Then the code BΣ
ϕ,sP behaves as P itself, and it is straightforward to see that the

local correctness conditions are preserved. In the “intended” case o〈〉(P) ≤ s we set

r〈〉(BΣ
ϕ,sP) =


(
∨
, ϕs, b) if r〈〉(P) = (

∨
, ϕ, b),

(
∧
, ϕs) if r〈〉(P) = (

∧
, ϕ),

r〈〉(P) otherwise,

4.4. COLLAPSING 213

n(BΣ
ϕ,sP, a) =


BΣ
ϕb,s
BΣ
ϕ,sn(P, 0) if r〈〉(P) = (

∨
, ϕ, b),

BΣ
ϕa,sB

Σ
ϕ,sn(P, a) if r〈〉(P) = (

∧
, ϕ) and a ∈ ι(ϕ),

BΣ
ϕ,sn(P, a) otherwise,

o〈a〉(BΣ
ϕ,sP) = o〈a〉(P).

Local correctness is verified by case distinction over the last rule of P . Let us first

assume r〈〉(P) = (
∨
, ϕ, b): Then ϕ is a disjunctive formula with b ∈ ι(ϕ), and

condition (L) for P provides suppL(b) <fin o〈〉(P) ≤ s. Based on these facts one

can verify that ϕs is disjunctive, that we have b ∈ ι(ϕs) and (ϕs)b ≡ (ϕb)
s, and that

ϕb is a Σ-formula. This means that r〈〉(BΣ
ϕ,sP) = (

∨
, ϕs, b) is an Su-rule and that

n(BΣ
ϕ,sP, a) = BΣ

ϕb,s
BΣ
ϕ,sn(P, 0) is an Su-code. To establish condition (L) for BΣ

ϕ,sP

we first observe that ϕs ∈ l〈〉(BΣ
ϕ,sP) holds by definition. By condition (L) for P

we obtain o〈〉(BΣ
ϕ,sn(P, 0)) = o〈〉(n(P, 0)) < o〈〉(P) ≤ s, so that BΣ

ϕb,s
BΣ
ϕ,sn(P, 0) and

BΣ
ϕ,sn(P, 0) fall under the intended case. We can thus compute

l〈〉(n(BΣ
ϕ,sP, 0)) = l〈〉(BΣ

ϕb,s
BΣ
ϕ,sn(P, 0)) ⊆ l〈〉(n(P, 0))\{ϕ,ϕb} ∪ {ϕs, ϕsb} ⊆

⊆ (l〈〉(P)∪{ϕb})\{ϕ,ϕb}∪{ϕs, ϕsb} ⊆ l〈〉(P)\{ϕ}∪{ϕs, ϕsb} = l〈〉(BΣ
ϕ,sP)∪{ϕsb},

as required by condition (L) for BΣ
ϕ,sP . The other local correctness conditions fol-

low from the same conditions for P , since BΣ
· does not change the ordinal height,

the cut rank or the controlling operator. We also look at the case r〈〉(P) = (
∧
, ϕ):

Note that the conjunctive formula ϕ cannot begin with an unbounded universal

quantifier, as it is a Σ-formula. Based on this fact one can check that ϕs is con-

junctive, that we have ι(ϕs) = ι(ϕ) and (ϕs)a ≡ (ϕa)
s for all a ∈ ι(ϕ), and that ϕa

is a Σ-formula. In particular this implies that r〈〉(BΣ
ϕ,sP) = (

∧
, ϕs) is an Su-rule

and that BΣ
ϕa,s is one of the new function symbols. For a ∈ ι(ϕs) = ι(ϕ) we get

o〈〉(BΣ
ϕ,sn(P, a)) = o〈〉(n(P, a)) < o〈〉(P) ≤ s by condition (L) for P . Similarly to

the previous case we can infer

l〈〉(n(BΣ
ϕ,sP, a)) = l〈〉(BΣ

ϕa,sB
Σ
ϕ,sn(P, a)) ⊆ l〈〉(n(P, a))\{ϕ,ϕa} ∪ {ϕs, ϕsa} ⊆

⊆ l〈〉(P)\{ϕ} ∪ {ϕs, ϕsa} = l〈〉(BΣ
ϕ,sP) ∪ {ϕsa},

as required by condition (L) for BΣ
ϕ,sP . To see that condition (H2) is preserved,

note that ι(ϕ) = ι(ϕs) implies

supp(ϕs) = supp(ϕ) ⊆ HP (∅) = HBΣ
ϕ,sP

(∅).

214 4. A CONSISTENCY PROOF

The remaining conditions and cases are straightforward. Note that r〈〉(P) = (Ref, ·)
is impossible, since o〈〉(P) ≤ s ∈ BH(Su) ∼= ϑ(SuBH(Su)) ∩ Ω means o〈〉(P) < Ω. �

To complement boundedness, we define a variant of inversion (cf. Lemma 4.1.7),

which relativizes unbounded universal quantifiers. In Section 4.2 we have seen that

any formula ψ of rank rk(ψ) = 0 is bounded. Furthermore, rk(ψ) = 1 implies that

ψ is of the form ∃xθ or ∀xθ, where θ ≡ θ(x) is a bounded formula. If we also know

that ψ is conjunctive, then we must have ψ ≡ ∀xθ. This explains the formulation

of the following result:

Lemma 4.4.2. For any conjunctive LuBH(Su)-formula ψ with rk(ψ) ≤ 1 and any

s ∈ BH(Su) we can extend the system of Su-codes by a unary function symbol BΠ
ψ,s,

such that we have

l〈〉(BΠ
ψ,sP) = (l〈〉(P)\{ψ}) ∪ {ψs},

o〈〉(BΠ
ψ,sP) = o〈〉(P),

d(BΠ
ψ,sP) = d(P),

h0(BΠ
ψ,sP) = h0(P),

h1(BΠ
ψ,sP) = h1(P) ∪ {s}

for any Su-code P .

In fact, we could restrict the universal quantifiers in any LuBH(Su)-formula ψ.

The case rk(ψ) ≤ 1 is somewhat simpler and will be sufficient for our purpose.

Proof. As before, we begin with an informal description in terms of transfinite

recursion: In the crucial case, the formula ψ ≡ ∀xθ(x) is introduced by the last rule

r〈〉(P) = (
∧
, ψ) of P . Thus the end-sequent of P has the form Γ,∀xθ(x) and the

immediate subproofs n(P, a) deduce Γ,∀xθ(x), θ(a) for all a ∈ LuBH(Su). Recursively

we obtain proofs BΠ
ψ,sn(P, a) of Γ, ∀x∈Lus θ(x), θ(a). In view of

ψs ≡ ∀x∈Lus θ(x) '
∧

suppL(a)<fins θ(a)

we can use a rule (
∧
, ψs) to deduce the desired sequent Γ,∀x∈Lus θ(x). Observe

that the premises Γ,∀x∈Lus θ(x), θ(a) with suppL(a) 6<fin s are simply discarded. In

terms of Su-codes, this idea is implemented by the clauses

r〈〉(BΠ
ψ,sP) =

(
∧
, ψs) if r〈〉(P) = (

∧
, ψ),

r〈〉(P) otherwise,

4.4. COLLAPSING 215

n(BΠ
ψ,sP, a) = BΠ

ψ,sn(P, a),

o〈a〉(BΠ
ψ,sP) = o〈a〉(P).

To complete the proof we must deduce the local correctness conditions for BΠ
ψ,sP

from the same conditions for P . This is straightforward in case rk(ψ) = 0: Then

the formula ψ is bounded, we have ψs ≡ ψ, and BΠ
ψ,sP behaves similarly to P . Now

assume that we have rk(ψ) = 1. As observed above this means that ψ is of the

form ∀xθ, where θ ≡ θ(x) is a bounded formula. Thus we have ψs ≡ ∀x∈Lus θ and

ι(ψs) = {a ∈ LuBH(Su) | suppL(a) <fin s} ⊆ LuBH(Su) = ι(ψ).

In particular we see that ι(r〈〉(BΠ
ψ,sP)) ⊆ ι(r〈〉(P)) holds in all cases. In view of

this fact it is straightforward to verify that conditions (C2), (H3), (N1) and (N2)

are preserved. The same is true for conditions (C1) and (H1). The remaining

conditions (L) and (H2) are established by case distinction over the last rule of P .

Let us look at the crucial case r〈〉(P) = (
∧
, ψ): Concerning condition (L) we

note that ψs ∈ l〈〉(BΠ
ψ,sP) holds by definition. For a ∈ ι(ψs) ⊆ ι(ψ) we observe

ψa ≡ θ(a) ≡ (ψs)a in order to deduce

l〈〉(n(BΠ
ψ,sP, a)) = l〈〉(BΠ

ψ,sn(P, a)) = l〈〉(n(P, a))\{ψ} ∪ {ψs} ⊆

⊆ (l〈〉(P) ∪ {ψa})\{ψ} ∪ {ψs} ⊆ l〈〉(BΠ
ψ,sP) ∪ {ψa} = l〈〉(BΠ

ψ,sP) ∪ {(ψs)a},

as condition (L) demands for the rule r〈〉(BΠ
ψ,sP) = (

∧
, ψs). We can also compute

o〈〉(n(BΠ
ψ,sP, a)) = o〈〉(BΠ

ψ,sn(P, a)) = o〈〉(n(P, a)) < o〈〉(P) = o〈〉(BΠ
ψ,sP).

Condition (H2) for P provides supp(ψ) ⊆ HP (∅). However, this inclusion turns

out to be trivial, since ι(ψ) = LuBH(Su) implies supp(ψ) = ∅. Thus we have to show

supp(ψs) =
⋃
a∈ι(ψs) suppL(a) ⊆ HBΠ

ψ,sP
(∅)

without any input from the induction hypothesis. For a ∈ ι(ψs) we have

suppL(a) <fin s ∈ h1(BΠ
ψ,sP) ⊆ HBΠ

ψ,sP
(∅) ∩ Ω.

In view of Definition 4.3.1 this yields suppL(a) ⊆ HBΠ
ψ,sP

(∅), as needed to estab-

lish condition (H2) for BΠ
ψ,sP . In all other cases it is straightforward to see that

conditions (L) and (H2) are preserved. �

Finally, we have all ingredients to present the collapsing construction. Let us

begin by setting out the conditions under which an Su-proof can be collapsed to

countable height:

216 4. A CONSISTENCY PROOF

Definition 4.4.3. Consider an ordinal term t ∈ ϑ(SuBH(Su)) with t ∈ Ht(∅).
An Su-code P is called t-controlled if the following conditions are satisfied:

• Any formula in the end-sequent l〈〉(P) of P is a Σ-formula.

• We have h0(P) ≤ t and h1(P) ⊆ Ht(∅). Thus the controlling operator

of P satisfies HP (∅) ⊆ Ht(∅), by Lemma 4.3.5(a) and Lemma 4.3.3(b).

If P is t-controlled and has cut rank d(P) ≤ 2, then P is called t-collapsing.

In view of Lemma 2.2.7 we have ϑs < Ω for any term s ∈ ϑ(SuBH(Su)). Thus the

following result shows that a t-collapsing proof can be transformed into a proof of

height below Ω (cf. the “Kollabierungslemma” in Jäger’s ordinal analysis [39]):

Theorem 4.4.4. For any t ∈ ϑ(SuBH(Su)) with t ∈ Ht(∅) we can extend the

system of Su-codes by a unary function symbol Ct, such that we have

l〈〉(CtP) = l〈〉(P),

o〈〉(CtP) =

ϑ(t +̂ ω̂o〈〉(P)) if P is t-collapsing,

o〈〉(P) otherwise

for any Su-code P .

Proof. Let us begin with an informal description of the proof transformation

in terms of transfinite recursion: In the crucial case, the proof P ends with a

reflection rule r〈〉(P) = (Ref,∃w∀x∈a∃y∈wθ(x, y)). Thus the end-sequent of P has

the form Γ,∃w∀x∈a∃y∈wθ(x, y) and the immediate subproof n(P, 0) deduces

Γ,∃w∀x∈a∃y∈wθ(x, y),∀x∈a∃yθ(x, y).

Recursively we can transform n(P, 0) into a proof Ctn(P, 0) of height

s := ϑ(t +̂ ω̂o〈〉(n(P,0))) ∈ ϑ(SuBH(Su)) ∩ Ω ∼= BH(Su).

As agreed above, the isomorphism iBH(Su) : BH(Su) → ϑ(SuBH(Su)) ∩ Ω from The-

orem 2.2.25 is left implicit. By the boundedness result from Lemma 4.4.1 we obtain

a proof BΣ
∀x∈a∃yθ(x,y),sCtn(P, 0) of the sequent

Γ, ∃w∀x∈a∃y∈wθ(x, y), ∀x∈a∃y∈Lus θ(x, y).

Using Lus as an existential witness for w we can recover the end-sequent

Γ,∃w∀x∈a∃y∈wθ(x, y)

of P . The new proof does not use the reflection rule and has height below Ω.

4.4. COLLAPSING 217

Still on an informal level, we also discuss the case of a cut r〈〉(P) = (Cut, ϕ):

Then the immediate subproofs n(P, 0) and n(P, 1) deduce Γ,¬ϕ resp. Γ, ϕ, where

Γ is the end-sequent of P . By condition (C1) for P we have rk(ϕ) < d(P) ≤ 2.

Assuming that ϕ is conjunctive this means that ϕ is bounded or of the form ∀xθ,
for a bounded formula θ. The problem is that ϕ may not be a Σ-formula, so that

n(P, 1) is not t-collapsing. To resolve this we collapse n(P, 0) into a proof Ctn(P, 0)

of height ϑt′, with

t′ := t +̂ ω̂o〈〉(n(P,0)).

By boundedness we obtain a proof BΣ
¬ϕ,ϑt′Ctn(P, 0) of the sequent

Γ,¬ϕϑt′ .

On the other hand, Lemma 4.4.2 transforms n(P, 1) into a proof BΠ
ϕ,ϑt′n(P, 1) of

Γ, ϕϑt
′
.

Now ϕϑt
′

is a bounded formula, and we can show that BΠ
ϕ,ϑt′n(P, 1) is t′-collapsing.

Thus we get a proof Ct′BΠ
ϕ,ϑt′n(P, 1) with height below Ω and end-sequent Γ, ϕϑt

′
.

Finally, a cut over the formula ϕϑt
′

recovers the end-sequent Γ of P .

The requirements for a formal proof are explained in Remark 4.1.6: We must

state recursive clauses which define the values l〈〉(CtP), o〈〉(CtP), r〈〉(CtP), d(CtP),

h0(CtP), h1(CtP) and the set-sized functions a 7→ n(CtP, a) and a 7→ o〈a〉(CtP) in

terms of the corresponding values for P . Also, we must establish the local correct-

ness conditions (L), (C1), (C2), (H1), (H2), (H3), (N1) and (N2) for CtP , assuming

that the same conditions hold for P . Observe that the property “P is t-collapsing”

is primitive recursive in the values l〈〉(P), d(P), h0(P) and h1(P). Thus the afore-

mentioned recursive clauses may depend on this property. In particular, the state-

ment of the theorem contains valid recursive clauses for l〈〉(CtP) and o〈〉(CtP).

Concerning the other functions, we first assume that P is not t-collapsing. In this

“unintended” case we set

r〈〉(CtP) = r〈〉(P), n(CtP, a) = n(P, a), d(CtP) = d(P),

h0(CtP) = h0(P), h1(CtP) = h1(P), o〈a〉(CtP) = o〈a〉(P).

This means that CtP behaves just like P itself. As a consequence, it is completely

straightforward to check that local correctness is preserved. In the “intended” case

of a t-collapsing Su-code P we put

d(CtP) = 1, h0(CtP) = t +̂ ω̂o〈〉(P), h1(CtP) = ∅.

218 4. A CONSISTENCY PROOF

Still assuming that P is t-collapsing, the values of r〈〉(CtP), n(CtP, a) and o〈a〉(CtP)

are defined by case distinction over the last rule of P . We verify local correctness

as we go along:

Case r〈〉(P) = (True, ϕ): We set

r〈〉(CtP) = (True, ϕ), n(CtP, a) = P, o〈a〉(CtP) = o〈〉(P).

Using condition (L) for P we get ϕ ∈ l〈〉(P) = l〈〉(CtP), as required by condition (L)

for CtP . Conditions (C1) and (H2) are trivial in the case of a truth rule. Condi-

tions (C2), (H3), (N1) and (N2) are void because of ι(r〈〉(CtP)) = ι((True, ϕ)) = ∅
(so the values of n(CtP, a) and o〈a〉(CtP) are in fact irrelevant). It remains to check

condition (H1): The same condition for P and the fact that P is t-collapsing imply

o〈〉(P) ∈ HP (∅) ⊆ Ht(∅) ⊆ Ht+̂ω̂o〈〉(P)(∅).

Also recall the assumption t ∈ Ht(∅). By Lemma 4.3.4(c) and Lemma 4.3.5(b) we

obtain t +̂ ω̂o〈〉(P) ∈ H
t+̂ω̂

o〈〉(P)(∅) and then

o〈〉(CtP) = ϑ(t +̂ ω̂o〈〉(P)) ∈ H
t+̂ω̂

o〈〉(P)(∅) = HCtP (∅),

as required by condition (H1) for CtP .

Case r〈〉(P) = (
∧
, ϕ): We set

r〈〉(CtP) = (
∧
, ϕ), n(CtP, a) = Ctn(P, a), o〈a〉(CtP) = ϑ(t +̂ ω̂o〈a〉(P)).

To prepare local correctness, let us show that n(P, a) is t-collapsing for any a ∈ ι(ϕ):

Condition (L) for P ensures ϕ ∈ l〈〉(P). As P is t-collapsing this implies that

ϕ is a Σ-formula. In view of Definition 3.1.13 we infer that ϕa is a Σ-formula

as well. Using condition (L) for P it follows that l〈〉(n(P, a)) ⊆ l〈〉(P), ϕa consists

of Σ-formulas. Condition (C2) for P ensures d(n(P, a)) ≤ d(P) ≤ 2, and condi-

tion (H3) implies h0(n(P, a)) ≤ h0(P) ≤ t. To conclude that n(P, a) is t-collapsing

it remains to establish h1(n(P, a)) ⊆ Ht(∅): Since ϕ is a conjunctive Σ-formula we

have ι(ϕ) 6= LuBH(Su). The definition of supp(ϕ) and condition (H2) for P yield

suppL(a) ⊆ supp(ϕ) ⊆ HP (∅).

Using condition (H3) for P and Lemma 4.3.3 we obtain the desired inclusion

h1(n(P, a)) ⊆ HP (suppL(a)) ⊆ HP (∅) ⊆ Ht(∅).

Throughout the following we assume a ∈ ι(ϕ) = ι(r〈〉(P)) = ι(r〈〉(CtP)). We have

just checked that n(P, a) is t-collapsing. Crucially, this means that Ctn(P, a) is

4.4. COLLAPSING 219

evaluated according to the intended case. As seen in Definition 4.4.3 we also get

Hn(P,a)(∅) ⊆ Ht(∅).

Based on these observations we can verify local correctness for CtP : Condition (L)

for P implies ϕ ∈ l〈〉(P) = l〈〉(CtP), as well as

l〈〉(n(CtP, a)) = l〈〉(Ctn(P, a)) = l〈〉(n(P, a)) ⊆ l〈〉(P) ∪ {ϕa} = l〈〉(CtP) ∪ {ϕa}.

To see that the ordinal labels remain monotone we need o〈〉(n(P, a)) ∈ Hn(P,a)(∅).
It would be tempting to infer this from condition (H1) for n(P, a). However, that

condition is not available at the present stage of the induction, since n(P, a) may

not be a subterm of P . Instead, we invoke conditions (N1) and (N2) for P to obtain

o〈〉(n(P, a)) = o〈a〉(P) ∈ Hn(P,a)(∅) ⊆ Ht(∅).

Also, condition (L) for P yields o〈〉(n(P, a)) < o〈〉(P). By Lemma 4.3.5(d) we get

o〈〉(n(CtP, a)) = o〈〉(Ctn(P, a)) = ϑ(t +̂ ω̂o〈〉(n(P,a))) < ϑ(t +̂ ω̂o〈〉(P)) = o〈〉(CtP),

as required by condition (L) for CtP . Condition (C1) is trivial because CtP does

not end with a cut rule, and condition (C2) is satisfied in view of

d(n(CtP, a)) = d(Ctn(P, a)) = 1 = d(CtP).

The proof of condition (H1) is the same as in the previous case. By condition (H2)

for P we have supp(ϕ) ⊆ HP (∅). Since P is t-collapsing this implies

supp(ϕ) ⊆ Ht(∅) ⊆ Ht+̂ω̂o〈〉(P)(∅) = HCtP (∅),

as required by condition (H2) for CtP . To establish condition (H3) for CtP we recall

that condition (L) for P provides o〈〉(n(P, a)) < o〈〉(P). By Lemma 4.2.5 we infer

h0(n(CtP, a)) = h0(Ctn(P, a)) = t +̂ ω̂o〈〉(n(P,a)) < t +̂ ω̂o〈〉(P) = h0(CtP).

Since n(P, a) is t-collapsing we also get

h1(n(CtP, a)) = h1(Ctn(P, a)) = ∅ ⊆ HCtP (suppL(a)),

as required by condition (H3) for CtP . To show that condition (N1) is preserved

we note that o〈〉(n(P, a)) = o〈a〉(P) implies

o〈〉(n(CtP, a)) = o〈〉(Ctn(P, a)) = ϑ(t +̂ ω̂o〈〉(n(P,a))) = ϑ(t +̂ ω̂o〈a〉(P)) = o〈a〉(CtP).

Finally, condition (N2) for P yields o〈a〉(P) ∈ Hn(P,a)(∅) ⊆ Ht(∅). Lemma 4.3.4(c)

allows us to infer t +̂ ω̂o〈a〉(P) ∈ Ht(∅) ⊆ Ht+̂ω̂o〈a〉(P)(∅). By Lemma 4.3.5(b) we get

220 4. A CONSISTENCY PROOF

o〈a〉(CtP) = ϑ(t +̂ ω̂o〈a〉(P)) ∈ H
t+̂ω̂

o〈a〉(P)(∅) =

= H
t+̂ω̂

o〈〉(n(P,a))(∅) = HCtn(P,a)(∅) = Hn(CtP,a)(∅),

as required by condition (N2) for CtP .

Case r〈〉(P) = (
∨
, ϕ, a): We set

r〈〉(CtP) = (
∨
, ϕ, a), n(CtP, a) = Ctn(P, a), o〈a〉(CtP) = ϑ(t +̂ ω̂o〈a〉(P)).

In view of Assumption 3.1.1 and Lemma 3.1.2 the element 0 ∈ u ⊆ LuBH(Su) has sup-

port suppL(0) = ∅ ⊆ Ht(∅). One can deduce that n(P, 0) is t-collapsing, similarly

to the previous case. As part of condition (L) we must show suppL(a) <fin o〈〉(CtP):

Condition (H2) for P guarantees the inclusion suppL(a) ⊆ HP (∅) ⊆ Ht(∅). In view

of suppL(a) ⊆ BH(Su) ∼= ϑ(SuBH(Su))∩Ω we do in fact have suppL(a) ⊆ Ht(∅)∩Ω.

Together with t < t +̂ ω̂o〈〉(P) we can invoke Lemma 4.3.5(c) to get

suppL(a) <fin ϑ(t +̂ ω̂o〈〉(P)) = o〈〉(CtP),

as promised. The other conditions are handled as in the previous case.

Case r〈〉(P) = (Cut, ϕ) for a conjunctive formula ϕ: We abbreviate

t′ := t +̂ ω̂o〈0〉(P)

and set

r〈〉(CtP) = (Cut, ϕϑt
′
),

n(CtP, a) =

BΣ
¬ϕ,ϑt′ Ct n(P, 0) if a = 0,

Ct′ BΠ
ϕ,ϑt′ n(P, a) otherwise,

o〈a〉(CtP) =

ϑt′ if a = 0,

ϑ(t′ +̂ ω̂o〈1〉(P)) otherwise.

Let us verify that these equations are valid recursive clauses: First, the clauses

for CtP may depend on the value o〈0〉(P). According to condition (N1) for P we

have o〈0〉(P) = o〈〉(n(P, 0)). However, we had to avoid the expression o〈〉(n(P, 0)) in

the recursive clauses for CtP , because n(P, 0) is not a subterm of P . Next, in view

of ϑt′ < Ω we may consider ϑt′ as an element of BH(Su) ∼= ϑ(SuBH(Su)) ∩ Ω. This

allows us to form the relativized formula ϕϑt
′
. Condition (C1) for the t-collapsing

proof P yields rk(ϕ) < d(P) ≤ 2. As observed before the statement of Lemma 4.4.2

this means that ϕ is bounded or of the form ∀xθ, for some bounded formula θ. It

follows that ¬ϕ is a Σ-formula. Thus BΣ
¬ϕ,ϑt′ and BΠ

ϕ,ϑt′ have the form of the function

4.4. COLLAPSING 221

symbols introduced in Lemma 4.4.1 resp. Lemma 4.4.2. Finally, condition (N2) and

condition (H3) for the t-collapsing proof P imply

o〈0〉(P) ∈ Hn(P,0)(∅) ⊆ HP (suppL(0)) ⊆ Ht(∅).

Together with the assumption t ∈ Ht(∅) we obtain

t′ ∈ Ht(∅) ⊆ Ht′(∅),

which ensures that Ct′ is one of the function symbols introduced by the present

theorem. Having established that the definition of r〈〉(CtP), n(CtP, a) and o〈a〉(CtP)

is valid, let us verify the local correctness conditions for CtP : Condition (L) for P

provides l〈〉(n(P, 0)) ⊆ l〈〉(P) ∪ {¬ϕ}, so that this sequent consists of Σ-formulas.

As before we infer that n(P, 0) is t-collapsing. Together with condition (N1) for P

we obtain

o〈〉(Ctn(P, 0)) = ϑ(t +̂ ω̂o〈〉(n(P,0))) = ϑ(t +̂ ω̂o〈0〉(P)) = ϑt′.

This ensures that the code BΣ
¬ϕ,ϑt′Ctn(P, 0) is evaluated according to the intended

case o〈〉(Ctn(P, 0)) ≤ ϑt′: The transformation BΣ
¬ϕ,ϑt′ does replace the Σ-formula

¬ϕ by the bounded formula (¬ϕ)ϑt
′ ≡ ¬(ϕϑt

′
). Using condition (L) for P we get

l〈〉(n(CtP, 0)) = l〈〉(BΣ
¬ϕ,ϑt′Ctn(P, 0)) = l〈〉(Ctn(P, 0))\{¬ϕ} ∪ {¬ϕϑt′} =

= l〈〉(n(P, 0))\{¬ϕ} ∪ {¬ϕϑt′} ⊆ l〈〉(P) ∪ {¬ϕϑt′} = l〈〉(CtP) ∪ {¬ϕϑt′},

as required by condition (L) for CtP . Similarly to the previous cases we also have

o〈〉(n(CtP, 0)) = o〈〉(BΣ
¬ϕ,ϑt′Ctn(P, 0)) = o〈〉(Ctn(P, 0)) =

= ϑ(t +̂ ω̂o〈〉(n(P,0))) < ϑ(t +̂ ω̂o〈〉(P)) = o〈〉(CtP).

In order to establish condition (L) with respect to n(CtP, 1) we show that the

Su-code BΠ
ϕ,ϑt′n(P, 1) is t′-collapsing: Since ϕϑt

′
is bounded the sequent

l〈〉(BΠ
ϕ,ϑt′n(P, 1)) = l〈〉(n(P, 1))\{ϕ} ∪ {ϕϑt′} ⊆ l〈〉(P) ∪ {ϕϑt′}

consists of Σ-formulas. We can also compute

d(BΠ
ϕ,ϑt′n(P, 1)) = d(n(P, 1)) ≤ d(P) ≤ 2,

as well as

h0(BΠ
ϕ,ϑt′n(P, 1)) = h0(n(P, 1)) ≤ h0(P) ≤ t ≤ t′.

222 4. A CONSISTENCY PROOF

As before we get h1(n(P, 1)) ⊆ HP (∅) ⊆ Ht(∅) ⊆ Ht′(∅), by condition (H3) for P

and the fact that P is t-collapsing. Together with t′ ∈ Ht′(∅) we obtain

h1(BΠ
ϕ,ϑt′n(P, 1)) = h1(n(P, 1)) ∪ {ϑt′} ⊆ Ht′(∅).

Having established that BΠ
ϕ,ϑt′n(P, 1) is t′-collapsing, let us now verify condition (L)

with respect to n(CtP, 1): Invoking the above inclusion we get

l〈〉(n(CtP, 1)) = l〈〉(Ct′BΠ
ϕ,ϑt′n(P, 1)) = l〈〉(BΠ

ϕ,ϑt′n(P, 1)) ⊆

⊆ l〈〉(P) ∪ {ϕϑt′} = l〈〉(CtP) ∪ {ϕϑt′}.

To see that the ordinal labels remain monotone we observe o〈〉(n(P, 1)) ∈ Ht(∅),
by conditions (N1), (N2) and (H3) for P and since P is t-collapsing. This implies

ϑ(t′ +̂ ω̂o〈〉(n(P,1))) ∈ H
t′+̂ω̂

o〈〉(n(P,1))(∅) ∩ Ω.

Conditions (N1) and (L) for P provide o〈i〉(P) = o〈〉(n(P, i)) < o〈〉(P) for i = 0, 1.

Using Lemma 4.2.5 we can deduce

t′ +̂ ω̂o〈〉(n(P,1)) = t +̂ (ω̂o〈0〉(P) +̂ ω̂o〈〉(n(P,1))) < t +̂ ω̂o〈〉(P).

Finally, Lemma 4.3.5(c) allows us to infer

o〈〉(n(CtP, 1)) = o〈〉(Ct′BΠ
ϕ,ϑt′n(P, 1)) = ϑ(t′ +̂ ω̂

o〈〉(BΠ
ϕ,ϑt′n(P,1))

) =

= ϑ(t′ +̂ ω̂o〈〉(n(P,1))) < ϑ(t +̂ ω̂o〈〉(P)) = o〈〉(CtP),

completing the proof of condition (L) for CtP . To establish condition (C1) for CtP
we observe that ϕϑt

′
is a bounded formula, which implies

rk(ϕϑt
′
) = 0 < 1 = d(CtP).

The other local correctness conditions are straightforward to verify, based on the

facts that we have already established.

Case r〈〉(P) = (Cut, ϕ) for a disjunctive formula ϕ: The situation is symmetric

to the previous case. Thus ¬ϕ is conjunctive, we have rk(¬ϕ) = rk(ϕ) < d(P) ≤ 2,

and ϕ is a Σ-formula. We abbreviate t′ := t +̂ ω̂o〈1〉(P) and observe t′ ∈ Ht′(∅) as

well as ϑt′ ∈ ϑ(SuBH(Su)) ∩ Ω ∼= BH(Su). As in the previous case we obtain valid

recursive clauses by setting

r〈〉(CtP) = (Cut, ϕϑt
′
),

n(CtP, a) =

BΣ
ϕ,ϑt′ Ct n(P, 1) if a = 1,

Ct′ BΠ
¬ϕ,ϑt′ n(P, a) otherwise,

4.4. COLLAPSING 223

o〈a〉(CtP) =

ϑt′ if a = 1,

ϑ(t′ +̂ ω̂o〈0〉(P)) otherwise.

The local correctness conditions are verified as in the previous case.

Case r〈〉(P) = (Ref, ∃w∀x∈a∃y∈wθ): We abbreviate

s := ϑ(t +̂ ω̂o〈0〉(P))

and set

r〈〉(CtP) = (
∨
, ∃w∀x∈a∃y∈wθ,Lus),

n(CtP, a) = BΣ
∀x∈a∃yθ,s Ct n(P, 0),

o〈a〉(CtP) = ϑ(t +̂ ω̂o〈0〉(P)).

As in the case of a cut we observe that s is an element of ϑ(SuBH(Su))∩Ω ∼= BH(Su).

This allows us to form the LuBH(Su)-term Lus . According to Definition 3.4.2 the

formula θ must be bounded. Thus ∀x∈a∃yθ is a Σ-formula and BΣ
∀x∈a∃yθ,s is one of

the function symbols introduced in Lemma 4.4.1. Condition (L) for P yields

l〈〉(n(P, 0)) ⊆ l〈〉(P) ∪ {∀x∈a∃yθ},

so that l〈〉(n(P, 0)) consists of Σ-formulas. As in the previous cases we can deduce

that n(P, 0) is t-collapsing. Together with condition (N1) for P we infer

o〈〉(Ctn(P, 0)) = ϑ(t +̂ ω̂o〈〉(n(P,0))) = ϑ(t +̂ ω̂o〈0〉(P)) = s.

Crucially, this ensures that BΣ
∀x∈a∃yθ,sCtn(P, 0) is evaluated according to the inten-

ded case, which means that BΣ
∀x∈a∃yθ,s replaces ∀x∈a∃yθ by the bounded formula

(∀x∈a∃yθ)s ≡ ∀x∈a∃y∈Lus θ.

Since θ does not contain the variable w (see Definition 3.4.2) we also have

∃w∀x∈a∃y∈wθ '
∨
b∈Lu

BH(Su)
∀x∈a∃y∈bθ.

Putting these observations together we obtain

l〈〉(n(CtP, 0)) = l〈〉(BΣ
∀x∈a∃yθ,sCtn(P, 0)) = l〈〉(n(P, 0))\{∀x∈a∃yθ}∪{(∀x∈a∃yθ)s}⊆

⊆ l〈〉(P)∪{∀x∈a∃y∈Lus θ}= l〈〉(CtP)∪{(∃w∀x∈a∃y∈wθ)Lus },

as condition (L) demands for the rule r〈〉(CtP) = (
∨
, ∃w∀x∈a∃y∈wθ,Lus). Also note

that ∃w∀x∈a∃y∈wθ ∈ l〈〉(P) = l〈〉(CtP) follows from condition (L) for P . As in the

previous cases we get

o〈〉(n(P, 0)) = o〈0〉(P) ∈ Hn(P,0)(∅) ⊆ Ht(∅),

224 4. A CONSISTENCY PROOF

using conditions (N1) and (N2) for P and the fact that n(P, 0) is t-collapsing. Since

condition (L) for P provides o〈〉(n(P, 0)) < o〈〉(P) we can conclude

o〈〉(n(CtP, 0)) = o〈〉(BΣ
∀x∈a∃yθ,sCtn(P, 0)) = o〈〉(Ctn(P, 0)) =

= ϑ(t +̂ ω̂o〈〉(n(P,0))) < ϑ(t +̂ ω̂o〈〉(P)) = o〈〉(CtP)

by Lemma 4.3.5(d). In view of s = ϑ(t +̂ ω̂o〈〉(n(P,0))) the same inequality shows

suppL(Lus) = {s} <fin o〈〉(CtP),

completing the proof of condition (L) for CtP . Let us also observe

s = ϑ(t +̂ ω̂o〈〉(n(P,0))) ∈ H
t+̂ω̂

o〈〉(n(P,0))(∅) ⊆ H
t+̂ω̂

o〈〉(P)(∅) = HCtP (∅).

This yields suppL(Lus) = {s} ⊆ HCtP (∅), as required by condition (H2) for CtP .

The remaining local correctness conditions are straightforward to verify.

Case r〈〉(P) = (Rep, b): We set

r〈〉(CtP) = (Rep, b), n(CtP, a) = Ctn(P, a), o〈a〉(CtP) = ϑ(t +̂ ω̂o〈a〉(P)).

Crucially, condition (H2) for P provides suppL(b) ⊆ HP (∅), so that Lemma 4.3.3

yields HP (suppL(b)) ⊆ HP (∅). Using condition (H3) for P and the fact that P is

t-collapsing we get

h1(n(P, b)) ⊆ HP (suppL(b)) ⊆ HP (∅) ⊆ Ht(∅).

This ensures that n(P, b) is t-collapsing, as one can easily show. Based on this fact

it is straightforward to verify the local correctness conditions, similarly to the case

of a rule r〈〉(P) = (
∧
, ϕ). �

In Lemma 3.4.4 we have established soundness for Su-proofs of height below Ω.

As promised, collapsing allows us to extend this result to suitable Su-proofs of

arbitrary ordinal height:

Corollary 4.4.5. Consider an Su-code P which is t-controlled, for some term

t ∈ ϑ(SuBH(Su)) with t ∈ Ht(∅). Then we have Luα � JϕK for some formula ϕ ∈ l〈〉(P).

In particular the end-sequent l〈〉(P) of P cannot be empty.

To understand the soundness claim, recall that Assumption 3.4.1 provides an

isomorphism between BH(Su) and an ordinal α. From Proposition 3.1.3 we get an

interpretation J·K : LuBH(Su) → Luα of LuBH(Su)-terms by elements of the actual con-

structible hierarchy. Before the statement of Lemma 3.1.15 this has been extended

4.4. COLLAPSING 225

to a map ϕ 7→ JϕK, which interprets each LuBH(Su)-formula ϕ by a formula JϕK with

parameters in Luα.

Proof. The idea is to collapse P to height below Ω, by the previous theorem.

Then we can apply Lemma 3.4.4 to the collapsed proof. We have assumed that P is

t-controlled, but it may still fail to be t-collapsing, due to its cut rank. This obstacle

is removed by Proposition 4.2.7: The Su-code E iP = E · · · EP with i-occurrences

of the function symbol E has the same end-sequent

l〈〉(E iP) = l〈〉(P)

and the lower cut rank

d(E iP) ≤ max{2, d(P)− i},

as one can verify by induction over i. Definition 4.3.6 yields h0(E iP) = h0(P)

and h1(E iP) = h1(P), which means that E iP and P are controlled by the same

operator. Invoking the previous theorem, let us now form the Su-code Ct Ed(P)P .

In view of d(Ed(P)P) ≤ 2 it is straightforward to check that Ed(P)P is t-collapsing,

which ensures

o〈〉(Ct Ed(P)P) = ϑ(t +̂ ω̂o〈〉(E
d(P)P)) < Ω.

The inequality holds by definition of the order on ordinal terms (see Lemma 2.2.7).

Before we can apply Lemma 3.4.4 we must transform the Su-code Ct Ed(P)P into an

“actual” Su-proof (cf. Definition 3.4.3). This is achieved by Corollary 4.1.5, which

extends to all codes that have been introduced in the present chapter, as exlained

in Remark 4.1.6: It yields an Su-proof [Ct Ed(P)P] with end-sequent

lCt Ed(P)P (〈〉) = l〈〉(Ct Ed(P)P) = l〈〉(Ed(P)P) = l〈〉(P)

and ordinal height

oCt Ed(P)P (〈〉) = o〈〉(Ct Ed(P)P) < Ω.

Now Lemma 3.4.4 implies Luα � JϕK for some formula ϕ ∈ lCt Ed(P)P (〈〉) = l〈〉(P),

just as the corollary claims. �

Finally we have all ingredients for the characterization of Π1
1-comprehension

in terms of type-two well-ordering principles. An explanation of this result can

be found in the introduction to the present thesis. The different versions of the

Bachmann-Howard principle have been introduced in Chapter 2. In particular we

refer to Definitions 2.1.3 and 2.1.4 (abstract version), Definition 2.2.19 (predicative

version), as well as Lemma 2.3.14 and Definition 2.3.16 (computable version). To

226 4. A CONSISTENCY PROOF

avoid misunderstanding, let us stress that the following theorem does not rely on

Assumptions 3.1.1 and 3.4.1, upon which some of the previous considerations were

based. As part of the proof we will show that these standing assumptions are

satisfied where they are required.

Theorem 4.4.6. The following are equivalent over ATRset
0 :

(i) The principle of Π1
1-comprehension.

(ii) The statement that each set is an element of some admissible set.

(iii) The abstract Bachmann-Howard principle: For any proto-dilator α 7→ T uα ,

there is an ordinal α with a Bachmann-Howard collapse ϑ : T uα
BH−−→ α.

(iv) The predicative Bachmann-Howard principle: For an arbitrary dilator T u,

the Bachmann-Howard order BH(T u) is well-founded.

(v) The computable Bachmann-Howard principle: For any coded dilator T ,

the relativized notation system ϑ(T) is well-founded.

Before we prove the theorem, let us point out that the abstract Bachmann-

Howard principle in (iii) is a schema: We can quantify over parametrized families of

proto-dilators (by quantifying over the parameter u), but not over all proto-dilators,

since the latter are class-sized functions. The proof will show that (ii) implies any

instance of (iii). Conversely, a single instance of (iii) implies (v) and thus (ii). As a

consequence, there is a single instance of the abstract Bachmann-Howard principle

which implies any other instance. Note that this fact is established in a rather

indirect way. The argument is much more direct in the case of (iv) and (v): Up

to natural isomorphism, a dilator is determined by its set-sized restriction to the

category of natural numbers, as shown by Girard [28] (see also Proposition 2.3.6

above). This allows us to quantify over essentially all dilators. In particular, the

predicative Bachmann-Howard principle is naturally expressed by a single instance,

as elaborated in Proposition 2.3.10. Coded dilators are set-sized objects from the

outset (see Definition 2.3.11). Thus we can quantify over all coded dilators, and

the computable Bachmann-Howard principle is expressed by a single formula.

Proof. The equivalence between (i) and (ii) is known (see [41, Section 7]).

In Corollary 1.4.13 we have verified that it holds over the base theory ATRset
0 .

The implications (ii)⇒(iii)⇒(v)⇒(iv) have been established in Corollary 2.4.8,

Theorem 2.4.9 and Corollary 2.4.18. It remains to prove the implication (iv)⇒(ii):

Aiming at (ii) we consider an arbitrary set x. The first step is to construct a set

4.4. COLLAPSING 227

u 3 x which satisfies Assumption 3.1.1. We begin by forming the transitive closure

u′ := TC({x, 0, 1}).

Writing o(u′) = u′ ∩Ord for the ordinal height of u′ we put

u := u′ ∪ {o(u′)}.

Note that u is transitive and that o(u) = o(u′)+1 is a successor ordinal. Also recall

that ATRset
0 includes the axiom of countability, which ensures that u is a count-

able set. Proposition 1.2.12 yields a function i 7→ ui with range u = {ui | i ∈ ω}.
Having verified Assumption 3.1.1, we can consider the functorial constructible hier-

archy X 7→ LuX and the construction of search trees X 7→ SuX , as presented in

Sections 3.1 and 3.2. We have to consider two possibilities: First assume that

there is a well-order X for which the search tree SuX has an (infinite) branch. In

this case Corollary 3.2.4 provides an admissible set A with x ∈ u ⊆ A, just as

required by statement (ii) of the present theorem. Now assume that SuX does not

have a branch for any well-order X. As we have seen in Section 3.3 this implies

that X 7→ SuX is a dilator (with the Kleene-Brouwer order on the tree SuX and

certain support functions suppS
X : SuX → [X]<ω). On an informal level we remark

that the collection of search trees becomes a β-proof (cf. [29]) of contradiction,

with the Kripke-Platek axioms as open assumptions. We want to show that this

is impossible, so that one of the search trees must have a branch after all, com-

pleting the proof of (ii). In order to achieve this we invoke statement (iv) of the

theorem, which tells us that the Bachmann-Howard order BH(Su) for the dilator

X 7→ SuX is well-founded. Since the base theory ATRset
0 includes axiom beta

we learn that BH(Su) is isomorphic to some ordinal α. This allows us to satisfy

Assumption 3.4.1, upon which we have based our investigation of infinite proofs.

According to Proposition 3.4.8, the search tree SuBH(Su) can be extended to an

Su-proof PS with empty end-sequent lS(〈〉) = 〈〉. Over the course of the present

chapter we have reconstructed a certain class of Su-proofs as a system of Su-codes,

which is more suitable for the formalization of ordinal analysis in a restricted base

theory. In particular, Definition 4.1.1 provides an Su-code PS〈〉 with end-sequent

l〈〉(PS〈〉) = lS(〈〉) = 〈〉.

In view of Definition 4.3.6 the controlling operator of PS〈〉 is given by

h0(PS〈〉) = 0, h1(PS〈〉) = suppS
BH(Su)(〈〉) = ∅.

228 4. A CONSISTENCY PROOF

We can now observe that PS〈〉 is 0-controlled in the sense of Definition 4.4.3.

According to Corollary 4.4.5 this implies l〈〉(PS〈〉) 6= 〈〉. The resulting contradiction

shows that X 7→ SuX cannot be a dilator. Thus there must be a well-order X for

which the search tree SuX has a branch. As seen above this yields an admissible set A
with x ∈ u ⊆ A. This completes the proof of the missing implication (iv)⇒(ii). �

Statements (ii), (iii) and (iv) from the previous theorem involve set-theoretic

notions. In contrast, the computable Bachmann-Howard principle in (v) has been

formulated in the language of second-order arithmetic (see Section 2.3). We can

conclude our investigation with a result in the usual setting of reverse mathematics:

Corollary 4.4.7. The following are equivalent over RCA0:

(i) The principle of Π1
1-comprehension.

(ii) The computable Bachmann-Howard principle.

Proof. By the previous theorem the equivalence holds over ATRset
0 . Since (i)

and (ii) are statements of second-order arithmetic they are equivalent over ATR0,

by the conservativity result from Corollary 1.4.9 (originally due to Simpson [85]).

Crucially, Corollary 2.3.19 shows that the computable Bachmann-Howard principle

implies any axiom of ATR0, over the base theory RCA0 (this builds on a result of

Rathjen and Valencia Vizcáıno [71]). It is well known that Π1
1-comprehension im-

plies any axiom of ATR0 as well (e.g. via Σ1
1-separation, see [87, Theorem V.5.1]).

Thus the equivalence between (i) and (ii) holds over RCA0, as desired. �

Finally, let us recall Remark 2.4.10: There we have sketched simplified versions

of the predicative and the computable Bachmann-Howard principle, which make

the type-two and the type-one aspects of these well-ordering principles more trans-

parent. It seems very worthwhile to elaborate these ideas in greater detail, but this

lies beyond the scope of the present thesis.

CHAPTER 5

Some Results about Slow Consistency

The notion of slow consistency for Peano arithmetic (PA) was introduced by

S.-D. Friedman, Rathjen and Weiermann [26]. During his PhD the present author

has written two papers about this notion, which have been published in the Annals

of Pure and Applied Logic [19, 20]. This chapter summarizes the main results

and ideas of this work, without repeating the proofs in full detail. It can be read

independently of the rest of the thesis.

Before we can define slow consistency we need to recall the fast-growing hier-

archy, which is due to Wainer [95] and Schwichtenberg [81]: To each limit or-

dinal λ ≤ ε0 one associates a “fundamental sequence”, i.e. a strictly increasing

sequence of ordinals {λ}(n) with supremum λ. The idea is to compute {λ}(n)

from the Cantor normal form of λ, in a natural way. As the precise definition

varies throughout the literature we fix the version used in [26]. In particular this

yields {ε0}(n) := ωn+1 := ω1
n+1 with ωα0 := α and ωαk+1 := ωω

α
k . Now the fast-

growing hierarchy of functions Fα is defined by recursion over the ordinals α ≤ ε0,

setting

F0(n) := n+ 1,

Fα+1(n) := Fn+1
α (n),

Fλ(n) := F{λ}(n)(n) for λ limit.

A superscript to a function denotes the number of iterations, i.e. we have F 0(n) = n

and F k+1(n) = F (F k(n)). Exploiting the Cantor normal form, the ordinals below

ε0 can be coded by finite terms and thus by natural numbers. The value Fα(n)

can be computed by manipulating expressions of the form F k1
α1

(· · · (F kiαi (m)) · · ·).
Sommer [89, Section 5.2] has encoded the resulting computation sequences in a

particularly efficient way, to obtain a ∆0-formula F iα(x) = y with free variables

α, x, y, i which defines (iterates of) the functions in the fast-growing hierarchy. To

be precise, Sommer’s formula only applies to α < ε0. To see that the graph of Fε0

has a ∆0-definition one observes that the code of ωn+1 is bounded by a polynomial

229

230 5. SOME RESULTS ABOUT SLOW CONSISTENCY

in Fε0(n), as verified in [19, Section 2]. We will write Fα(x)↓ and Fα ↓ to abbreviate

the formulas ∃y Fα(x) = y and ∀x∃y Fα(x) = y, respectively. Also recall that IΣn

is the fragment of Peano arithmetic in which induction is restricted to Σn-formulas

(we write Σn rather than Σ0
n because the present chapter is only concerned with

first-order arithmetic). By the usual arithmetization of syntax (see e.g. [37]) we

obtain a Π1-formula Con(IΣx) with free variable x which expresses that the theory

IΣx is consistent. Now slow consistency can be defined as the statement

Con�(PA) :≡ ∀x(Fε0(x)↓→ Con(IΣx+1)).

Let us point out that the original slow consistency statement of Friedman, Rathjen

and Weiermann [26] has Con(IΣx) at the place of Con(IΣx+1) and is denoted

by Con∗(PA). The stronger fragment IΣx+1 is optimal in a certain sense, as we

shall see in Section 5.2.

The usual consistency statement Con(PA) for Peano arithmetic is equivalent

to the assertion ∀x Con(IΣx). This means that Con�(PA) implies Con(PA) if

the statement Fε0 ↓ is available. However, the results of Kreisel [48], Wainer [95]

and Schwichtenberg [81] show that the totality of Fε0 is not provable in Peano

arithmetic. It is thus conceivable that we have

PA + Con�(PA) 0 Con(PA).

Friedman, Rathjen and Weiermann [26, Theorem 3.10] show that this is indeed

the case. Their proof uses a model-theoretic result of Sommer [89]. A proof-

theoretic argument can be found in a recent preprint by Pakhomov and the present

author [23]. As observed in [26, Proposition 3.3], an application of Gödel’s theorem

also yields

PA 0 Con�(PA).

Thus PA + Con�(PA) is a natural theory between PA and PA + Con(PA) (also

with respect to interpretability, as pointed out in [26]). In addition to this result,

Friedman, Rathjen and Weiermann construct natural examples of incomparable

theories and of an Orey sentence (see [26, Corollaries 3.15 and 3.19]). To explain

the name “slow consistency”, let us consider the function F−1
ε0 given by

F−1
ε0 (n) := max({m |Fε0(m) ≤ n} ∪ {0}).

Note that the maximum is well-defined because Fε0(m) ≤ n implies m ≤ n. Since

Fε0 grows extremely fast, its inverse grows extremely slow: The function F−1
ε0 is

5. SOME RESULTS ABOUT SLOW CONSISTENCY 231

PA-provably total, but PA does not show that it has infinite range. Friedman,

Rathjen and Weiermann point out that slow consistency can be described as

Con�(PA) ≡ Con(
⋃
{IΣF−1

ε0
(x)+1 |x ∈ N}).

In other words, the slow consistency statement corresponds to an extremely slow

enumeration of the fragments of Peano arithmetic.

For each fixed number n there is an arithmetical formula TrueΠn(·) which

defines truth for Πn-formulas (see e.g. [37, Section I.1(d)]). The statement that

ϕ is provable in IΣx can be expressed by a formula ProvIΣx(ϕ) with free vari-

ables x and ϕ. Now the uniform Πn-reflection principle over IΣx is given by the

arithmetical formula

RFNIΣx(Πn) :≡ ∀ϕ(“ϕ a closed Πn-formula” ∧ ProvIΣx(ϕ)→ TrueΠn(ϕ))

with free variable x. Since Σn-reflection is equivalent to Πn+1-reflection this covers

all of the usual formula classes. Extending the notion of slow consistency, the

present author [19, 20] has introduced the slow reflection principles

RFN�PA(Πn) :≡ ∀x(Fε0(x)↓→ RFNIΣx+1(Πn)).

Various properties of slow reflection will be summarized in Section 5.1, from the

viewpoints of computational content and of consistency strength. To anticipate one

of the most interesting results, extending Peano arithmetic by the slow reflection

principle RFN�PA(Π2) adds a new provably total function F �ε0 (a somewhat slower

version of Fε0), but at the same time we have

PA + Con(PA) ` Con(PA + {RFN�PA(Πn) |n ∈ N}).

In the final section of [26], Friedman, Rathjen and Weiermann show that finite

iterations of slow consistency remain weaker than the usual consistency statement.

They conjecture that the same is true for transfinite iterations below ε0. This

conjecture has been proved by the present author [20] and independently by Henk

and Pakhomov [34]. In Section 5.2 we will summarize our proof, which relies

on the analysis of slow reflection. Another application will be presented in Sec-

tion 5.3: Our computational bounds on slow reflection imply that Σ1-instances

of the Paris-Harrington principle cannot have short proofs in certain fragments of

Peano arithmetic. More results about slow consistency can be found in the papers

of Henk and Pakhomov [34] and of Rathjen [70].

232 5. SOME RESULTS ABOUT SLOW CONSISTENCY

5.1. An Analysis of Slow Reflection

The slow reflection statements RFN�PA(Πn) have been defined in the introduc-

tion of this chapter. In the present section we summarize results [19, 20] about

their computational content and their consistency strength.

First recall that uniform Π2-reflection over the fragment IΣn is equivalent to

the totality of the function Fωn from the fast-growing hierarchy. This has been

established by Paris [57], using model-theoretic methods. Beklemishev [7] gives

a proof-theoretic argument based on transfinite iterations of reflection. It is not

completely clear whether these papers prove the equivalence for each standard

number n or whether n can be seen as a free variable. The present author [18] has

provided an explicit proof of

IΣ1 ` ∀x(RFNIΣx(Π2)↔ Fωx ↓),

by formalizing an ordinal analysis of Buchholz and Wainer [13]. Indeed, one can

argue that the equivalence is already implicit in the work of Wainer [95] and

Schwichtenberg [81]. By the definition of slow reflection we now see

IΣ1 ` RFN�PA(Π2)↔ ∀x(Fε0(x)↓→ Fωx+1 ↓).

The function Fε0 is defined by diagonalization over the previous functions in the

fast-growing hierarchy: We have Fε0(n) = Fωn+1(n). To characterize slow reflection

we diagonalize over the same functions, but in an extremely slow manner:

Definition 5.1.1 ([19]). The function F �ε0 : N→ N is defined by

F �ε0(n) := Fωm+1(n) with m = F−1
ε0 (n).

A ∆0-definition of the graph of F �ε0 can be found in [19].

Uniform Π2-reflection over Peano arithmetic is equivalent to the totality of Fε0 .

We can now establish a similar result for slow reflection:

Proposition 5.1.2 ([19]). We have

IΣ1 ` RFN�PA(Π2)↔ F �ε0 ↓ .

Proof. In view of the above it suffices to show

IΣ1 ` F �ε0 ↓↔ ∀x(Fε0(x)↓→ Fωx+1 ↓).

To establish the direction from left to right we consider an arbitrary x with Fε0(x)↓.
It suffices to show Fωx+1(y)↓ for y ≥ Fε0(x). The latter implies x ≤ F−1

ε0 (y). Using

5.1. AN ANALYSIS OF SLOW REFLECTION 233

the assumption F �ε0 ↓ we infer that Fωx+1(y) ≤ F �ε0(y) is defined (see [89, Section 5]

and [26, Section 2] for the required properties of the fast-growing hierarchy). For

the other direction we have to show F �ε0(y)↓ for arbitrary y. Setting x := F−1
ε0 (y)

we see Fε0(x) ↓, by the definition of F−1
ε0 . Using the right side of the equivalence

we learn that F �ε0(y) = Fωx+1(y) is defined, as desired. �

Recall that g : N→ N is called a provably total function of a theory T if we have

T ` ∀x∃yθ(x, y) for some Σ1-formula θ(x, y) which defines the relation g(x) = y

(note that the existence of a Σ1-definition implies that g is computable). The

previous result implies that F �ε0 is a provably total function of PA + RFN�PA(Πn).

Let us make the following observation:

Proposition 5.1.3 ([19]). Any provably total function of Peano arithmetic is

eventually dominated by F �ε0.

Proof. By the result of Wainer [95] and Schwichtenberg [81] it suffices to show

that F �ε0 dominates any of the functions Fωm for m ∈ N. Set N := Fε0(m) and

observe m ≤ F−1
ε0 (n) for n ≥ N . The definition of F �ε0 yields Fωm(n) ≤ F �ε0(n). �

We point out that the previous proof cannot be formalized in Peano arithmetic,

which does not know that the required value Fε0(m) is defined. Indeed, we will get

PA + RFN�PA(Π2) 0 ∀x Fωx ↓

by Theorem 5.1.5 below. Using the previous proposition we can show that slow

reflection does not follow from usual reflection statements of lower logic complexity:

Proposition 5.1.4 ([20]). For each number n > 0 we have

PA + RFNPA(Πn) 0 RFN�PA(Πn+1).

Proof. For n = 1 we recall that Π1-reflection is equivalent to consistency (this

also explains why the claim fails for n = 0). Thus it suffices to show

PA + Con(PA) 0 RFN�PA(Π2).

This holds because the Π1-formula Con(PA) cannot add a provably total function,

while RFN�PA(Π2) adds the function F �ε0 . For n ≥ 2 we observe that RFNPA(Πn)

implies the totality of Fε0 . In the presence of Fε0 ↓ slow reflection collapses into

the usual reflection statement. So if RFNPA(Πn) did imply RFN�PA(Πn+1), then

it would also imply RFNPA(Πn+1). That implication is unprovable by a classical

result of Kreisel and Lévy [49]. �

234 5. SOME RESULTS ABOUT SLOW CONSISTENCY

The previous results provide lower bounds on the strength of slow reflection.

Next, we present an upper bound on the computational content of RFN�PA(Π2):

Theorem 5.1.5 ([19]). Any provably total function of PA + RFN�PA(Π2) is

eventually dominated by Fε0.

Proof (Sketch). In view of Proposition 5.1.2 we can replace RFN�PA(Π2) by

the statement that F �ε0 is total. As mentioned above, any provably total function

of Peano arithmetic is dominated by one of the functions Fα with α < ε0. An

analogous result can be established with F �ε0 as a new base function: First define

a hierarchy of functions F �ε0+α by setting

F �ε0+0(n) := F �ε0(n),

F �ε0+α+1(n) := (F �ε0+α)n+1(n),

F �ε0+λ(n) := F �ε0+{λ}(n)(n) for λ limit.

In [19, Proposition 3.9] we have shown that any provably total function of the

theory PA + RFN�PA(Π2) is dominated by a function F �ε0+α with α < ε0, adapting

Buchholz and Wainer’s [13] proof of the result for Peano arithmetic. To deduce the

claim of the theorem we must bound the functions F �ε0+α in terms of Fε0 : According

to [19, Lemma 3.7] we have

(F �ε0+α)l(n) ≤ (Fωm+α)l(n)

for any m > 0 and any α ≤ ωm which satisfy (Fωm+α)l(n) ≤ Fε0(m). This is

shown by transfinite induction over α, with a side induction over l. For α = 0

and l = 1 the assumption n < Fωm(n) ≤ Fε0(m) ensures F−1
ε0 (n) < m. By the

definition of F �ε0 we can infer F �ε0(n) ≤ Fωm(n), as promised. To conclude that

F �ε0+α is dominated by Fε0 one shows that

Fωn+α(n) ≤ Fωn+ωn(n) ≤ Fωn+1(n) = Fε0(n)

holds for sufficiently large n. By the above we get F �ε0+α(n) ≤ Fωn+α(n) ≤ Fε0(n),

as desired. �

Since the usual Π2-reflection principle over Peano arithmetic is equivalent to

the totality of Fε0 the theorem implies

PA + RFN�PA(Π2) 0 RFNPA(Π2).

As a consequence of Theorem 5.1.7 below we will in fact have

PA + {RFN�PA(Πn) |n ∈ N} 0 Con(PA).

5.1. AN ANALYSIS OF SLOW REFLECTION 235

We proceed with a model-theoretic construction due to Sommer [89], which plays

an important role in Friedman, Rathjen and Weiermann’s [26] investigation of

slow consistency. In the case of slow reflection we need a non-standard version

of Sommer’s result (see the explanation below):

Proposition 5.1.6. Consider a model M � PA and assume that we have

M � Fωωα·cn−1
(a) = b,

where n > 0 is standard, a, b, c are non-standard, and α ∈M codes an ordinal < ε0

(in the sense of M). Then there is an initial segment I ⊆ M with a ∈ I, b /∈ I
and I � IΣn. If we have α ∈ I then I satisfies transfinite Πn-induction up to ωα2 .

Sommer [89, Theorem 5.25] proves the same result for the case of a standard

ordinal α (in other words, the code of α must lie in N ⊆M). For our application it

will be crucial that α can be a non-standard element ofM. Most of Sommer’s proof

carries over to the non-standard case, but some arguments need to be adapted (for

example, the proof of [89, Lemma 2.24] constructs a number m which depends on α;

Sommer relies on the fact that α is standard in order to guarantee a ≥ m+ n+ 1

for any non-standard a ∈ M). In [20, Section 2] we go through Sommer’s entire

proof, in order to verify that all necessary changes can be accommodated. We

also check that the result can be formalized in ACA0 (if one is satisfied with

a partial satisfaction relation for the model I). The theory ACA0 is convenient

because it allows to express model-theoretic concepts in a natural way. Sommer [89,

Section 6.4] shows that his arguments can be formalized in a much weaker theory.

To conclude this section we deduce an upper bound on the consistency strength of

slow reflection:

Theorem 5.1.7 ([20]). We have

PA + Con(PA) ` Con(PA + {RFN�PA(Πn) |n ∈ N}).

Proof (Sketch). We can argue in ACA0, which is conservative over Peano

arithmetic. The assumption Con(PA) provides a model M � PA, which we may

assume to be non-standard. Using Gentzen’s proofs of transfinite induction we get

PA ` Fε0(m)↓ and thusM � Fε0(m)↓ for each standard number m (this does not

follow by Σ1-completeness, because our meta theory does not prove the totality

of Fε0). Overspill provides non-standard elements a, b ∈ M with M � Fε0(a) = b.

Let n > 0 be an arbitrary standard number. Exploiting provable relations between

236 5. SOME RESULTS ABOUT SLOW CONSISTENCY

the functions in the fast-growing hierarchy (see [89, Section 5] and [26, Section 2])

we obtain a non-standard b′ ≤ b with

M � F
ω
ωa−n+1·(a+1)

n−1

(a) = b′.

By the previous proposition this yields an initial segment I ⊆M with a ∈ I, b′ /∈ I
and I � IΣn. The code of ωx is primitive recursive in x, which implies that ωa−n lies

in I. Thus I satisfies Πn-induction up to the ordinal ωa−n+2. Kreisel and Lévy [49]

have observed the equivalence between transfinite induction and uniform reflection

principles. The precise relation for fragments of arithmetic has been determined

by Ono [56]. In [20, Proposition 1.3] we provide a uniform proof, which applies to

non-standard fragments. Using this result we can infer I � RFNIΣa(Πn). In view

of I 63 b′ ≤ b = Fε0(a) we have I 2 Fε0(a)↓. Thus we see that I satisfies

RFN�PA(Πn) ≡ ∀x(Fε0(x)↓→ RFNIΣx+1(Πn)),

which establishes the consistency of IΣn+ RFN�PA(Πn). Since n > 0 was arbitrary

we learn that PA + {RFN�PA(Πn) |n ∈ N} is consistent, as desired. �

5.2. Transfinite Iterations of Slow Consistency

In this section we apply our analysis of slow reflection in order to prove a conjec-

ture of Friedman, Rathjen and Weiermann [26]: The usual consistency statement

for Peano arithmetic is equivalent to ε0 iterations of slow consistency. We will

also see that this goes down to ω iterations if we change the definition of slow

consistency by an “index shift”.

Classical results on iterated consistency and reflection can be found in the work

of Turing [93] and Feferman [15]. In particular, Turing has shown that any true

Π1-formula follows from iterations of consistency along a well-order of type ω + 1.

Crucially, this result relies on the fact that arbitrary paths in Kleene’s O are admit-

ted: The truth of the given Π1-formula is simply encoded into a particular definition

of the order ω. The situation changes considerably when we restrict to iterations

along a “natural” description of a well-order, such as the usual notation system

for ε0. Schmerl [74] has shown that we can characterize the Π1-consequences of

Peano arithmetic by iterating consistency along ε0, starting with primitive recur-

sive arithmetic. This result has been refined and extended by Beklemishev [7]. In a

recent preprint [22], the present author has observed that bounds on iterated con-

sistency can be read off from an ordinal analysis in terms of infinite proofs (Schmerl

and Beklemishev use different methods). Roughly speaking, a Π1-formula with a

5.2. TRANSFINITE ITERATIONS OF SLOW CONSISTENCY 237

cut-free ω-proof of height α follows from α iterations of slow consistency. It may

seem that this fact requires transfinite induction up to α, but this is not the case:

Statements about iterated consistency can be established by the reflexive induction

rule introduced by Schmerl [74] (who acknowledges a simplification due to Girard).

For the base theory IΣ1 this rule tells us that

IΣ1 ` ∀α(ProvIΣ1(∀β<α̇ϕ(β))→ ϕ(α)) implies IΣ1 ` ∀αϕ(α).

The statement of the rule involves Feferman’s [15] dot notation: By ψ(α̇) we

denote the Gödel number of the formula which results from ψ(γ) by substituting

the numeral α for the free variable γ. The reflexive induction rule resembles an

instance of transfinite induction, but it is actually a consequence of Löb’s theorem.

For a finite extension PA + ϕ of Peano arithmetic, slow consistency is defined

by the formula

Con�(PA + ϕ) :≡ ∀x(Fε0(x)↓→ Con(IΣx+1 + ϕ)).

To describe finite iterations of slow consistency we set Con�1(PA) ≡ Con�(PA) and

Con�n+1(PA) ≡ Con�(PA + Con�n(PA)).

As shown by Friedman, Rathjen and Weiermann [26], we have

PA + Con(PA) ` Con(PA + Con�n(PA))

for each number n ≥ 1. By Gödel’s theorem we conclude that the usual consistency

statement does not follow from finitely many iterations of slow consistency. Fried-

man, Rathjen and Weiermann have conjectured that the same holds for transfinite

iterations below ε0. The first task is to express these iterations. As pointed out by

Beklemishev [7], the diagonal lemma offers an elegant way to do this: We can use

it to construct a Π1-formula Con�α(PA) with

IΣ1 ` Con�α(PA)↔ ∀β<α Con�(PA + Con�
β̇
(PA)).

It is easy to see that this results in a strict hierarchy:

Lemma 5.2.1 ([20]). For α, β ≤ ε0 we have

PA + Con�α(PA) ` Con�β(PA) if and only if α ≥ β.

Proof. The direction from right to left follows from our definition of iteration.

For the other direction we argue by contradiction: Assume that we have α < β

238 5. SOME RESULTS ABOUT SLOW CONSISTENCY

and PA + Con�α(PA) ` Con�β(PA). The definition of iterated consistency yields

PA + Con�α(PA) ` Con�(PA + Con�α(PA)).

This leads to a contradiction with Gödel’s theorem, as shown in [26]. �

According to [20, Proposition 3.3] the theories Tα := PA + Con�α(PA) satisfy

the recursion

T0 ≡ PA,

Tα+1 ≡ PA + Con�(Tα),

Tλ ≡ PA + ∀α<λ Con�(Tα) for λ limit.

Note that the finite iterations coincide with those above. Previous work on iter-

ated consistency would suggest the weaker limit T′λ = PA ∪ {Con�(T′α) |α < λ}.
However, the definition of slow consistency for infinite extensions of Peano arith-

metic is not obvious: Should Fε0(x)↓ imply Con(IΣx+1 ∪ {Con�(T′α) |α < λ}) or

rather Con(IΣx+1 + Con�(T′{λ}(x))), where {λ}(x) refers to the fundamental se-

quence of λ? We avoid this question by working with finite extensions of PA. Let

us now present the main result of this section:

Theorem 5.2.2 ([20]; independently [34]). We have

PA ` Con(PA)↔ Con�ε0(PA).

Proof (Sketch). For the direction from left to right we observe that reflec-

tion allows iterations of consistency: If T ` ¬ϕ implies ¬ϕ, then ϕ implies T 0 ¬ϕ,

which means Con(T + ϕ). Applying this idea to slow consistency we get

PA + RFN�PA(Π2) ` Con�β(PA)→ Con�(PA + Con�
β̇
(PA)).

By the defining equivalence of Con�α(PA) this yields

PA + RFN�PA(Π2) ` ∀β<α Con�β(PA)→ Con�α(PA).

As shown by Gentzen, Peano arithmetic proves transfinite induction up to each

fixed ordinal α < ε0. For such an ordinal we can thus infer

PA + RFN�PA(Π2) ` Con�α(PA).

Now we invoke the assumption Con(PA): By Theorem 5.1.7 it implies the consist-

ency of PA + RFN�PA(Π2). Since consistency entails Π1-reflection we learn that

Con�α(PA) is true for any α < ε0. This implies Con�ε0(PA), as desired. The other

5.2. TRANSFINITE ITERATIONS OF SLOW CONSISTENCY 239

direction relies on Schmerl’s [74] result on iterated consistency, which we have

already mentioned above. It tells us that we have

PA ` Conε0(IΣ1)→ Con(PA),

where Conα(IΣ1) refers to iterations of usual consistency over IΣ1. We observe

that Con�(PA) implies Con(IΣ1), since the premise Fε0(0)↓ in the slow consistency

statement is available by Σ1-completeness. For the transfinite iterations we obtain

IΣ1 ` ∀α≤ε0(Con�α(PA)→ Conα(IΣ1)).

Note that transfinite induction up to ε0 is not available. Instead, the claim is

established by the reflexive induction rule discussed above. Combining the previous

implications we see that Con�ε0(PA) implies Con(PA), as desired. �

In particular we can conclude

PA + Con(PA) ` Con�α(PA)

for each α < ε0, as conjectured in [26, Remark 4.4]. In the introduction to the

present chapter we have mentioned that the original slow consistency statement

Con∗(PA) of Rathjen, Friedman and Weiermann and our statement Con�(PA)

differ by an index shift. Since Con∗(PA) is slightly weaker than Con�(PA), it

is straightforward to see that the previous results remain valid for the original

definition of slow consistency. On the other hand, the picture changes considerably

if we look at the stronger variants

Con†(PA + ϕ) ≡ ∀x(Fε0(x)↓→ Con(IΣx+2 + ϕ))

and

RFN†PA(Πn) ≡ ∀x(Fε0(x)↓→ RFNIΣx+2(Πn)).

The change is particularly dramatic in the case of slow reflection:

Proposition 5.2.3 ([20]). For each n > 1 we have

PA + RFN†PA(Πn) ` RFNPA(Πn).

Proof. To see that RFN†PA(Πn) collapses into the usual reflection principle

we show that the †-variant of slow reflection implies the totality of Fε0 . Arguing by

induction over x, let us assume that Fε0(x)↓ holds. By the definition of RFN†PA(Πn)

this means that the reflection statement RFNIΣx+2(Πn) is available. In IΣx+2 one

can establish Π2-induction up to ωx+2
x+1 < ωx+2, by Gentzen’s classical construction

(see [89] for the precise bounds in fragments of arithmetic). In particular IΣx+2

240 5. SOME RESULTS ABOUT SLOW CONSISTENCY

proves that Fε0(x + 1) = Fωx+2(x + 1) = Fωx+2
x+1

(x + 1) is defined. Using reflection

we infer that Fε0(x+ 1)↓ is true, as needed for the induction step. �

This explains why we focus on the �-variant: It yields the strongest non-trivial

reflection statements. In the next section we will use our analysis of slow reflection

to establish optimal bounds on the length of certain proofs. These optimal bounds

cannot be deduced from the ∗-variant of slow reflection, which is weaker. In the case

of slow consistency the †-variant does not collapse completely, but the hierarchy of

iterated consistency statements (defined as above) becomes much shorter:

Proposition 5.2.4 ([20]; independently [34]). We have

PA ` Con(PA)↔ Con†ω(PA).

Proof (Sketch). Recall that Friedman, Rathjen and Weiermann [26] show

PA + Con(PA) ` Con(PA + Con�n(PA)),

by induction on n in the meta theory. Their argument is not affected by the index

shift, and the induction is easily internalized. Thus we get

PA + Con(PA) ` ∀n Con(PA + Con†ṅ(PA)).

The formula on the right implies Con†ω(PA), as needed for direction “→” of the

claim. To establish the other direction we prove

PA ` Con†n+1(PA)→ ∀k≤n Con(IΣk+1 + Con†
ṅ−k̇(PA)).

We argue by induction over k: Recall that IΣk+1 shows Fε0(k)↓, as in the previous

proof. Also note that Con†n−k(PA) is equivalent to Con†(PA + Con†n−(k+1)(PA)).

By definition of the †-variant of slow consistency this yields

IΣk+1 + Con†n−k(PA) ` Con(IΣk+2 + Con†n−(k+1)(PA)).

Since consistency entails Π1-reflection, we learn that the statement on the right

follows from Con(IΣk+1 + Con†n−k(PA)), as required for the induction step. In

particular we have shown that Con†n+1(PA) implies Con(IΣn+1), which means

that Con†ω(PA) ≡ ∀n Con†n(PA) implies ∀n Con(IΣn) ≡ Con(PA). �

To conclude this section we mention that Henk and Pakhomov [34] introduce

a “square root” variant of slow consistency, which reaches the usual consistency

statement after two iterations. They do not consider the notion of slow reflection.

5.3. PROOF LENGTHS FOR THE PARIS-HARRINGTON PRINCIPLE 241

5.3. Proof Lengths for the Paris-Harrington Principle

In this section we present natural mathematical theorems which only have

extremely long proofs in certain fragments of Peano arithmetic. Surprisingly, the

notion of slow reflection plays a crucial role in our arguments, even though it does

not occur in the statement of the results.

Recall that true Σ1-statements can be established in very weak fragments of

arithmetic: Choose a witness to the existential quantifier and prove the resulting

∆0-formula by an explicit verification of finitely many cases. Let us observe that

these trivial proofs are long if the existential witness is large. In this case we

would like to find shorter proofs, which explain the truth of the Σ1-formula in

a more meaningful way. Refining the traditional independence question, we ask

which theory is required to formalize a feasible proof of a given statement. In

order to answer this question we will apply the following observation: If we have

a computational bound on reflection, then we know that the smallest witness to

an existential statement cannot be too much bigger than the size of its proof.

Conversely, the proof must be long if the minimal witness is large. This has been

observed before (see e.g. [36]), but the following application appears to be new:

Proposition 5.3.1 ([19]). For any fixed number k, there is no primitive re-

cursive way to construct proofs of the statements Fε0(n)↓ in the theory IΣk.

Note that we write n rather than n for the n-th numeral.

Proof. Consider a function g : N→ N such that g(n) is the Gödel number of

an IΣk-proof of Fε0(n)↓. We have to show that g cannot be primitive recursive. In

fact we will prove that g dominates any provably total function of Peano arithmetic,

which is a much stronger claim. The point is that Peano arithmetic proves uniform

Σ1-reflection over IΣk. Prenexing quantifiers we obtain

PA ` ∀x,p∃y(ProofIΣk
(p, Fε0(ẋ)↓)→ Fε0(x) = y),

where ProofIΣk
(p, ϕ) expresses that p codes an IΣk-proof of ϕ. This shows that

there is a PA-provably total function f : N2 → N such that we have

Fε0(n) = f(p, n) whenever p is an IΣk-proof of Fε0(n)↓.

It is straightforward to transform f into a PA-provably total function f ′ : N2 → N
which is monotone in the first argument and dominates f . Now consider an arbit-

rary PA-provably total function h : N→ N. Aiming at a contradiction we assume

242 5. SOME RESULTS ABOUT SLOW CONSISTENCY

that g(n) ≤ h(n) holds for arbitrarily large values of n. As g(n) codes an IΣk-proof

of Fε0(n)↓ we obtain

Fε0(n) = f(g(n), n) ≤ f ′(g(n), n) ≤ f ′(h(n), n) < f ′(h(n), n) + 1.

This is impossible, because the PA-provably total function n 7→ f ′(h(n), n) + 1

must eventually be dominated by Fε0 . �

Let us point out that the previous result yields an asymptotic bound: It shows

that the function n 7→ “the smallest IΣk-proof of Fε0(n)↓” grows very fast, but it

does not say anything about the initial values of that function. This is both a defect

and a virtue: Certainly it would be more satisfying to exhibit a single statement

with a long proof. On the other hand, asymptotic results are more manageable,

because we do not have to estimate any constants (which arise e.g. from the chosen

arithmetization of syntax). A theorem of H. Friedman (presented by Smith [88])

states that Π1
2-bar induction is not enough to formalize a feasible proof of one

particular Σ1-statement. This is much more impressive than the results in the

present section, but it is hard to work out all details of the proof. To see how the

previous proposition can be improved we make the following observation:

Proposition 5.3.2. There is a primitive recursive construction which maps

each number n to a proofs of Fε0(n)↓ in IΣn+1.

Proof. As observed in the proof of Proposition 5.2.3 we get IΣn+1 ` Fε0(n)↓
via Gentzen’s proofs of ordinal induction. It is straightforward to see that these

proofs are constructed in a primitive recursive way. �

We want to show that no primitive recursive construction yields proofs of

Fε0(n)↓ in IΣn. Compared to Proposition 5.3.1 this means that we have to vary k

alongside with n. At first sight it may seem that this cannot be achieved by the

same method: To get an asymptotic bound for a sequence of proofs in a theory T

we have worked with the Σ1-reflection principle over T. Which theory should we

consider in order to cover all the fragments IΣn at once? As it turns out, slow

reflection creates just the right interplay between proof length and the complexity

of the induction axioms that are used in a proof. To elaborate this idea, let us

begin with the slow provability predicate

Prov�PA(ϕ) :≡ ∃x(Fε0(x)↓ ∧ProvIΣx+1(ϕ)).

5.3. PROOF LENGTHS FOR THE PARIS-HARRINGTON PRINCIPLE 243

It was first considered by Rathjen [70], who showed that it satisfies the axioms of

Gödel-Löb provability logic. The joint provability logic of slow and usual provability

was determined by Henk and Pakhomov [34]. One can easily verify

IΣ1 ` Con�(PA)↔ ¬Prov�PA(0 = 1),

as well as

IΣ1 ` RFN�PA(Πn)↔ ∀ϕ(“ϕ a closed Πn-formula” ∧ Prov�PA(ϕ)→ TrueΠn(ϕ)).

The present author has observed that slow provability can in turn be derived from

a notion of slow proof (we write 〈·, ·〉 for the Cantor pairing function):

Definition 5.3.3 ([19]). A slow proof of ϕ is a pair p = 〈q,N〉 where q codes

an IΣn+1-proof of ϕ and we have Fε0(n) = N , for some number n. This can be

expressed by a formula Proof�PA(p, ϕ) which is ∆1 in IΣ1 (because of n ≤ N).

The point is that a slow proof becomes extremely large if it uses complex

induction axioms, due to its second component. As expected we have

IΣ1 ` Prov�PA(ϕ)↔ ∃p Proof�PA(p, ϕ).

Using the notion of slow proof, Proposition 5.3.1 can be improved as follows:

Theorem 5.3.4 ([19]). For sufficiently large values of n, any IΣn-proof of the

statement Fε0(n) ↓ must have code above Fε0(n − 1). In particular there is no

primitive recursive way to construct proofs of Fε0(n)↓ in IΣn.

Proof (Sketch). Uniform Σ1-reflection for the notion of slow proof is (trivi-

ally) provable in PA + RFN�PA(Π2). From Theorem 5.1.5 we know that any prov-

ably total function of that theory is dominated Fε0 . In fact one can show a bit more

(see [19, Theorem 3.10]): If g is a provably total function of PA + RFN�PA(Π2),

then we have

g(Fε0(n− 1)) ≤ Fε0(n)

for sufficiently large values of n. Similarly to the proof of Proposition 5.3.1, the

following can be deduced for any primitive recursive function h: If n is sufficiently

large, then we have

p > h(Fε0(n− 1)) for any slow proof p of Fε0(n)↓.

In the present proof we take h(m) = 〈m,m〉 to be the diagonal of the Cantor

pairing function. Aiming at a contradiction, let us now assume that q ≤ Fε0(n−1)

244 5. SOME RESULTS ABOUT SLOW CONSISTENCY

codes an IΣn-proof of Fε0(n) ↓. Then p = 〈q, Fε0(n − 1)〉 is a slow proof of the

same statement. By the monotonicity of the Cantor pairing function we obtain

p ≤ 〈Fε0(n− 1), Fε0(n− 1)〉 = h(Fε0(n− 1)).

For sufficiently large n this contradicts the inequality above. �

In the rest of this section we present similar bounds for instances of the Paris-

Harrington principle. Let us begin with some notation: By |x| we denote the

cardinality of a finite set x ⊆ N. We say that x is large if it is non-empty and

satisfies |x| ≥ min(x). Let us also write

[x]n = {y ⊆ x ; |y| = n}.

Given a function f : [z]n → k, a subset x ⊆ z is called f -homogeneous if f is

constant on [x]n. Where appropriate we write N = {0, . . . , N − 1}. Following [58]

we now consider the relation

PH(k,m, n,N) :≡
“for any function f : [N]n → k there is a large

f -homogeneous subset x ⊆ N with |x| ≥ m”.

We will refer to k as the number of colours. The Paris-Harrington principle (or

Strengthened Finite Ramsey Theorem) asserts ∀k,m,n∃N PH(k,m, n,N). By the

famous independence result of Paris and Harrington [58], this principle is true but

unprovable in Peano arithmetic. For fixed values of k,m and n the Σ1-formula

∃N PH(k,m, n,N) can be established in a very weak theory, as explained above.

We obtain the following result on proof length:

Theorem 5.3.5 ([19]). For sufficiently large values of n, any proof of the state-

ment ∃N PH(8, n+ 4, n+ 3, N) in the theory IΣn has code above Fε0(n− 1).

For i = 3, 4 we assume that n+ i and n+i are the same term. This assumption

is convenient but not necessary (cf. the proof of Theorem 5.3.7 below).

Proof (Sketch). Ketonen and Solovay [46] have shown that the minimal

witness for ∃N PH(8, n + 4, n + 3, N) is at least as big as Fε0(n). Now one can

argue as in the proof of Theorem 5.3.4, with the formula PH(8, x + 4, x + 3, y) at

the place of Fε0(x) = y. �

Let us compare our bound with the following known result:

Proposition 5.3.6. There is a primitive recursive construction which maps k

and n to a proof of ∀m∃N PH(k,m, n+ 3, N) in the theory IΣn+2.

5.3. PROOF LENGTHS FOR THE PARIS-HARRINGTON PRINCIPLE 245

Proof. According to [37, Section II.2(c)] the theory IΣ1 shows that the de-

sired sequence of proofs exists. Since the provably total functions of IΣ1 are prim-

itive recursive this implies the claim. �

In view of this result it is not clear whether the fragment IΣn in Theorem 5.3.5

is optimal, or whether it can be strengthened to IΣn+1. This question is still open.

However, we can reach the optimal fragment if we vary the number of colours:

Theorem 5.3.7 ([19]). There is an elementary function c : N → N with the

following property: For sufficiently large n, any proof of ∃N PH(c(n), n+4, n+3, N)

in the theory IΣn+1 has code above Fε0(n).

We clarify that c(n) refers to the numeral c(n) rather than the expression c(n).

Proof (Sketch). We set c(n) = 1035(n+1)2
. Then the minimal witness for

∃N PH(c(n), n+ 4, n+ 3, N) is at least as big as Fε0(n+ 1), as shown by Ketonen

and Solovay [46] (copying their result would suggest c(n) = 1023(n+1)2
, but the

bound needs to be adapted because of a slightly different definition of fundamental

sequences, cf. [19, Lemma 2.4]). The result is deduced similarly to Theorem 5.3.4,

but there is one new subtlety: The argument from Proposition 5.3.1 yields bounds

for a sequence of formulas ∃yθ(n, y) which are parametrized by the n-th numeral.

As in the case of the previous theorem we may assume that we have n+ 4 ≡ n+ 4

and n+ 3 ≡ n+3. However, there is no term t(x) with c(n) ≡ t(n). Thus the state-

ments ∃N PH(c(n), n+ 4, n+ 3, N) are not of the required form. In order to prove

the desired bound we need to “preprocess” proofs. For this purpose one constructs

a Σ1-formula θ(n,N) and a primitive recursive function h0 : N → N with the fol-

lowing properties: Firstly, the statements θ(n,N) and PH(c(n), n+ 4, n+ 3, N)

are equivalent (in the standard structure of natural numbers). Secondly, if q

is an IΣn+1-proof of ∃N PH(c(n), n + 4, n + 3, N) then h0(q) is an IΣn+1-proof

of ∃N θ(n,N). As in the proof of Theorem 5.3.4 one can show that the following

holds for any primitive recursive function h: If n is sufficiently large then we have

p > h(Fε0(n)) for any slow proof p of ∃Nθ(n,N).

In the case of Theorem 5.3.4 we have considered h(m) = 〈m,m〉. For the present

application we need to set

h(m) := max{〈h0(q),m〉) | q ≤ m}.

246 5. SOME RESULTS ABOUT SLOW CONSISTENCY

Now the claim can be established by contradiction: Assume that q ≤ Fε0(n) is an

IΣn+1-proof of ∃N PH(c(n), n+4, n+3, N). It follows that h0(q) is an IΣn+1-proof

of ∃Nθ(n,N), so that p := 〈h0(q), Fε0(n)〉 is a slow proof of the same statement.

By the definition of h we have

p = 〈h0(q), Fε0(n)〉 ≤ h(Fε0(n)).

For sufficiently large n this contradicts the inequality above. �

Bibliography

1. Wilhelm Ackermann, Die Widerspruchsfreiheit der allgemeinen Mengenlehre, Mathematische

Annalen 114 (1937), 305–315.

2. Peter Aczel, Mathematical problems in logic, PhD thesis, Oxford, 1966.

3. , Normal functors on linear orderings, Journal of Symbolic Logic 32 (1967), p. 430,

abstract to a paper presented at the annual meeting of the Association for Symbolic Logic,

Houston, Texas, 1967.

4. Bahareh Afshari and Michael Rathjen, Reverse mathematics and well-ordering principles: A

pilot study, Annals of Pure and Applied Logic 160 (2009), 231–237.

5. Toshiyasu Arai, Proof theory for theories of ordinals II: Π3-reflection, Annals of Pure and

Applied Logic 129 (2004), 39–92.

6. Jon Barwise, Admissible sets and structures, Perspectives in Mathematical Logic, vol. 7,

Springer, Berlin, 1975.

7. Lev Beklemishev, Proof-theoretic analysis by iterated reflection, Archive for Mathematical

Logic 42 (2003), 515–552.

8. Wilfried Buchholz, Induktive Definitionen und Dilatoren, Archive for Mathematical Logic 27

(1988), 51–60.

9. , Notation systems for infinitary derivations, Archive for Mathematical Logic 30 (1991),

277–296.

10. , A simplified version of local predicativity, Proof Theory: A Selection of Papers From

the Leeds Proof Theory Programme 1990 (Peter Aczel, Harold Simmons, and Stanley S.

Wainer, eds.), Cambridge University Press, 1992, pp. 115–147.

11. , Finitary treatment of operator controlled derivations, Mathematical Logic Quarterly

3 (2001), 363–396.

12. Wilfried Buchholz, Solomon Feferman, Wolfram Pohlers, and Wilfried Sieg, Iterated inductive

definitions and subsystems of analysis, Springer, Berlin, 1981.

13. Wilfried Buchholz and Stanley S. Wainer, Provably computable functions and the fast grow-

ing hierarchy, Logic and Combinatorics. Proceedings of the AMS-IMS-SIAM Joint Summer

Research Conference 1985 (Stephen G. Simpson, ed.), Contemporary Mathematics, vol. 65,

American Mathematical Society, 1987, pp. 179–198.

14. E. A. Cichon, A short proof of two recently discovered independence results using recursion

theoretic methods, Proceedings of the American Mathematical Society 87 (1983), 704–706.

15. Solomon Feferman, Transfinite recursive progressions of axiomatic theories, Journal of Sym-

bolic Logic 27 (1962), 259–316.

16. , Systems of predicative analysis, Journal of Symbolic Logic 29 (1964), 1–30.

247

248 BIBLIOGRAPHY

17. , Predicatively reducible systems of set theory, Axiomatic Set Theory (Providence,

Rhode Island) (Thomas J. Jech, ed.), Proceedings of Symposia in Pure Mathematics, vol.

XIII, part II, American Mathematical Society, 1974, pp. 11–32.

18. Anton Freund, A uniform characterization of Σ1-reflection over the fragments of Peano arith-

metic, 2015, available as arXiv:1512.05122.

19. , Proof lengths for instances of the Paris-Harrington principle, Annals of Pure and

Applied Logic 168 (2017), 1361–1382.

20. , Slow reflection, Annals of Pure and Applied Logic 168 (2017), 2103–2128, first pub-

lished as arXiv:1601.08214v1.

21. , A Higher Bachmann-Howard Principle, 2017, preprint published as arXiv:1704.01662.

22. , A note on iterated consistency and infinite proofs, 2017, preprint available as

arXiv:1709.01540.

23. Anton Freund and Fedor Pakhomov, Short proofs for slow consistency, 2017, preprint available

as arXiv:1712.03251.

24. Harvey Friedman, Antonio Montalbán, and Andreas Weiermann, A characterization of ATR0

in terms of a Kruskal-like tree theorem, unpublished.

25. Harvey Friedman and Michael Sheard, Elementary descent recursion and proof theory, Annals

of Pure and Applied Logic 71 (1995), 1–45.

26. Sy-David Friedman, Michael Rathjen, and Andreas Weiermann, Slow consistency, Annals of

Pure and Applied Logic 164 (2013), 382–393.

27. Gerhard Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie, Mathematische Annalen

112 (1936), 493–565.

28. Jean-Yves Girard, Π1
2-logic, part 1: Dilators, Annals of Pure and Applied Logic 21 (1981),

75–219.

29. , Introduction to Π1
2-logic, Synthese 62 (1985), 191–216.

30. , Proof theory and logical complexity, volume 1, Studies in Proof Theory, Bibliopolis,

Napoli, 1987.

31. , Proof theory and logical complexity, volume 2, http://girard.perso.math.cnrs.fr/

Archives4.html (accessed on November 21, 2017), 1982, Manuscript.

32. Jean-Yves Girard and Jacqueline Vauzeilles, Functors and ordinal notations. II: A functorial

construction of the Bachmann hierarchy, Journal of Symbolic Logic 49 (1984), 1079–1114.

33. Reuben L. Goodstein, On the restricted ordinal theorem, Journal of Symbolic Logic 9 (1944),

33–41.

34. Paula Henk and Fedor Pakhomov, Slow and ordinary provability for Peano arithmetic, 2016,

available as arXiv:1602.01822.

35. Jeffry L. Hirst, Reverse mathematics and ordinal exponentiation, Annals of Pure and Applied

Logic 66 (1994), 1–18.

36. Petr Hájek, Franco Montagna, and Pavel Pudlák, Abbreviating Proofs Using Metamathemat-

ical Rules, Arithmetic, Proof Theory, and Computational Complexity (Peter Clote and Jan

Kraj́ıček, eds.), Oxford University Press, 1993, pp. 197–221.

37. Petr Hájek and Pavel Pudlák, Metamathematics of first-order arithmetic, Perspectives in

Mathematical Logic, Springer, Berlin, 1993.

BIBLIOGRAPHY 249

38. Gerhard Jäger, Beweistheorie von KPN, Archiv für mathematische Logik und Grundlagen-

forschung 20 (1980), 53–64.

39. , Zur Beweistheorie der Kripke-Platek-Mengenlehre über den natürlichen Zahlen,

Archiv für mathematische Logik und Grundlagenforschung 22 (1982), 121–139.

40. , Countable admissible ordinals and dilators, Zeitschrift für mathematische Logik und

Grundlagen der Mathematik 32 (1986), 451–456.

41. , Theories for Admissible Sets. A Unifying Approach to Proof Theory, Studies in Proof

Theory, Bibliopolis, Napoli, 1986.

42. Gerhard Jäger and Wolfram Pohlers, Eine beweistheoretische Untersuchung von (∆1
2−CA)+

(BI) und verwandter Systeme, Sitzungsberichte der Bayerischen Akademie der Wissenschaften,

Mathematisch-Naturwissenschaftliche Klasse (1982).

43. Gerhard Jäger and Thomas Strahm, Bar induction and ω model reflection, Annals of Pure

and Applied Logic 97 (1999), 221–230.

44. Ronald B. Jensen and Carol Karp, Primitive recursive set functions, Axiomatic Set Theory

(Providence, Rhode Island) (Dana S. Scott, ed.), Proceedings of Symposia in Pure Mathem-

atics, vol. XIII, part I, American Mathematical Society, 1971, pp. 143–176.

45. Herman R. Jervell, Introducing homogeneous trees, Proceedings of the Herbrand Symposium.

Logic Colloquium ’81 (J. Stern, ed.), Studies in Logic and the Foundations of Mathematics,

vol. 107, North-Holland, 1982, pp. 147–158.

46. Jussi Ketonen and Robert Solovay, Rapidly growing Ramsey functions, Annals of Mathematics

113 (1981), 267–314.

47. Laurie Kirby and Jeff Paris, Accessible independence results for Peano arithmetic, Bulletin of

the London Mathematical Society 14 (1982), 285–293.

48. Georg Kreisel, On the Interpretation of Non-Finitist Proofs II, Journal of Symbolic Logic 17

(1952), 43–58.

49. Georg Kreisel and Azriel Lévy, Reflection principles and their use for establishing the complex-

ity of axiomatic systems, Zeitschrift für mathematische Logik und Grundlagen der Mathematik

14 (1968), 97–142.

50. Azriel Lévy, A generalization of Gödel’s notion of constructibility, Journal of Symbolic Logic

25 (1960), 147–155.

51. Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in

Mathematics, vol. 5, Springer, 1998.

52. Alberto Marcone and Antonio Montalbán, The Veblen functions for computability theorists,

Journal of Symbolic Logic 76 (2011), 575–602.

53. Adrian R.D. Mathias and Nathan J. Bowler, Rudimentary recursion, gentle functions and

provident sets, Notre Dame Journal of Formal Logic 56 (2015), 3–60.

54. Grigori Mints, Finite investigations of transfinite derivations, Journal of Soviet Mathematics

10 (1978), 548–596, translated from Zap. Nauchn. Semin. LOMI 49 (1975).

55. Antonio Montalbán, Open questions in reverse mathematics, Bulletin of Symbolic Logic 17

(2011), 431–454.

56. Hiroakira Ono, Reflection principles in fragments of Peano arithmetic, Zeitschrift für mathe-

matische Logik und Grundlagen der Mathematik 33 (1987), 317–333.

250 BIBLIOGRAPHY

57. Jeff Paris, A hierarchy of cuts in models of arithmetic, Model Theory of Algebra and Arith-

metic (L. Pacholski, J. Wierzejewski, and A. Wilkie, eds.), Lecture Notes in Mathematics, vol.

834, Springer, 1980, pp. 312–337.

58. Jeff Paris and Leo Harrington, A Mathematical Incompleteness in Peano Arithmetic, Hand-

book of Mathematical Logic (Jon Barwise, ed.), North Holland, 1977, pp. 1133–1142.

59. Wolfram Pohlers, Cut-elimination for impredicative infinitary systems. Part I. Ordinal analysis

for ID1, Archiv für mathematische Logik und Grundlagenforschung 21 (1981), 113–129.

60. , Proof theory. The first step into impredicativity, Springer, Berlin, 2009.

61. Michael Rathjen, Fragments of Kripke-Platek set theory, Proof Theory: A Selection of Papers

From the Leeds Proof Theory Programme 1990 (Peter Aczel, Harold Simmons, and Stanley S.

Wainer, eds.), Cambridge University Press, 1992, pp. 251–273.

62. , A proof-theoretic characterization of the primitive recursive set functions, Journal of

Symbolic Logic 57 (1992), 954–969.

63. , Recent advances in ordinal analysis: Π1
2 −CA and related systems, Bulletin of Sym-

bolic Logic 1 (1995), 468–485.

64. , An ordinal analysis of stability, Archive for Mathematical Logic 44 (2005), 1–62.

65. , An ordinal analysis of parameter free Π1
2-comprehension, Archive for Mathematical

Logic 44 (2005), 263–362.

66. , The art of ordinal analysis, Proceedings of the International Congress of Mathem-

aticians, Madrid 2006 (Marta Sanz-Solé, Javier Soria, Juan Luis Varona, and Joan Verdera,

eds.), vol. 2, European Mathematical Society, 2006, pp. 45–69.

67. , Omega Models and Well-Ordering Principles, Beta Models and Functors, Talk at the

Reverse Mathematics Workshop, University of Chicago, September 2011.

68. , ω-models and well-ordering principles, Foundational Adventures: Essays in Honor of

Harvey M. Friedman (Neil Tennant, ed.), College Publications, 2014, pp. 179–212.

69. , Goodstein’s theorem revisited, Gentzen’s centenary: The quest for consistency (Rein-

hard Kahle and Michael Rathjen, eds.), Springer, Berlin, 2015, pp. 229–242.

70. , Long sequences of descending theories and other miscellanea on slow consistency,

Journal of Logics and their Applications 4 (2017), 1411–1426, Special Issue Dedicated to the

Memory of Grigori Mints.

71. Michael Rathjen and Pedro Francisco Valencia Vizcáıno, Well ordering principles and bar

induction, Gentzen’s centenary: The quest for consistency (Reinhard Kahle and Michael

Rathjen, eds.), Springer, Berlin, 2015, pp. 533–561.

72. Michael Rathjen and Andreas Weiermann, Proof-theoretic investigations on Kruskal’s theorem,

Annals of Pure and Applied Logic 60 (1993), 49–88.

73. , Reverse mathematics and well-ordering principles, Computability in Context: Com-

putation and Logic in the Real World (S. Barry Cooper and Andrea Sorbi, eds.), Imperial

College Press, 2011, pp. 351–370.

74. Ulf R. Schmerl, A fine structure generated by reflection formulas over primitive recursive

arithmetic, Logic Colloquium ‘78 (M. Boffa, D. van Dalen, and K. MacAloon, eds.), 1979,

pp. 335–350.

BIBLIOGRAPHY 251

75. Diana Schmidt, Well-partial orderings and their maximal order types, Habilitationsschrift,

Universität Heidelberg, 1979.

76. Kurt Schütte, Beweistheoretische Erfassung der unendlichen Induktion in der Zahlentheorie,

Mathematische Annalen 122 (1951), 368–389.

77. , Ein System des verknüpfenden Schliessens, Archiv für mathematische Logik und

Grundlagenforschung 2 (1956), 55–67.

78. , Eine Grenze für die Beweisbarkeit der transfiniten Induktion in der verzweigten

Typenlogik, Archiv für mathematische Logik und Grundlagenforschung 7 (1964), 45–60.

79. , Proof theory, Grundlehren der Mathematischen Wissenschaften, vol. 225, Springer,

Berlin, 1977.

80. Kurt Schütte and Stephen G. Simpson, Ein in der reinen Zahlentheorie unbeweisbarer Satz

über endliche Folgen von natürlichen Zahlen, Archiv für mathematische Logik und Grundla-

genforschung 25 (1985), 75–89.

81. Helmut Schwichtenberg, Eine Klassifikation der ε0-rekursiven Funktionen, Zeitschrift für

mathematische Logik und Grundlagen der Mathematik 17 (1971), 61–74.

82. , Proof theory: Some applications of cut-elimination, Handbook of Mathematical Logic

(Jon Barwise, ed.), North Holland, 1977, pp. 867–895.

83. Joseph R. Shoenfield, On a restricted ω-rule, Bulletin de l’Académie Polonaise des Sciences,

Série des sciences, mathématiques, astronomiques et physiques 7 (1959), 405–407.

84. , Mathematical logic, Addison-Wesley, 1967.

85. Stephen G. Simpson, Set theoretic aspects of ATR0, Logic Colloquium ’80 (Dirk van Dalen,

Daniel Lascar, and Timothy J. Smiley, eds.), Studies in Logic and the Foundations of Math-

ematics, North Holland, 1982, pp. 255–271.

86. , Nonprovability of certain combinatorial properties of finite trees, Harvey Friedman’s

Research on the Foundations of Mathematics (L. A. Harrington, M. D. Morley, A. Sčědrov,

and S. G. Simpson, eds.), Studies in Logic and the Foundations of Mathematics, vol. 117,

North-Holland, 1985, pp. 87–117.

87. , Subsystems of second order arithmetic, Perspectives in Logic, Cambridge University

Press, 2009.

88. Rick L. Smith, The consistency strengths of some finite forms of the Higman and Kruskal

theorems, Harvey Friedman’s Research on the Foundations of Mathematics (L. A. Harrington,

M. D. Morley, A. Sčědrov, and S. G. Simpson, eds.), Studies in Logic and the Foundations of

Mathematics, vol. 117, North-Holland, 1985, pp. 119–136.

89. Richard Sommer, Transfinite induction within Peano arithmetic, Annals of Pure and Applied

Logic 76 (1995), 231–289.

90. Gaisi Takeuti, Consistency proofs of subsystems of classical analysis, Annals of Mathematics

68 (1967), 299–348.

91. Ian Alexander Thomson, Well-Ordering Principles and Π1
1-Comprehension + Bar Induction,

PhD thesis, University of Leeds, 2017.

92. Ian Alexander Thomson and Michael Rathjen, Well-ordering principles, ω-models and Π1
1-

comprehension, The Legacy of Kurt Schütte (Reinhard Kahle and Michael Rathjen, eds.),

Springer, to appear 2018.

252 BIBLIOGRAPHY

93. Alan M. Turing, Systems of logic based on ordinals, Proceedings of the London Mathematical

Society 45 (1939), 161–228.

94. Jacqueline Vauzeilles, Functors and ordinal notations. IV: The Howard ordinal and the func-

tor Λ, Journal of Symbolic Logic 50 (1985), 331–338.

95. Stanley S. Wainer, A Classification of the Ordinal Recursive Functions, Archiv für mathe-

matische Logik und Grundlagenforschung 13 (1970), 136–153.

96. Richard Zach, Hilbert’s Program, The Stanford Encyclopedia of Philosophy (Edward N.

Zalta, ed.), spring ed., 2016, available via https://plato.stanford.edu/archives/spr2016/

entries/hilbert-program/.

